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Fuzzy calculus is the study of theory and applications of
integrals and derivatives of uncertain functions. This branch
of mathematical analysis, extensively investigated in recent
years, has emerged as an effective and powerful tool for the
mathematical modeling of several engineering and scientific
phenomena.

Based on the wide applications in engineering and sci-
ences such as physics, mechanics, chemistry, and biology,
research on fuzzy ordinary and partial differential equations
and other relative topics is active and extensive around the
world. In the past few years, the growth of the subject is man-
ifested by hundreds of research papers, several monographs,
and many international conferences.

This special issue contains 8 papers, the contents of which
are summarized as follows.

The paper “Fuzzy Fixed Point Results For Φ Contractive
Mapping with Applications” by H. Humaira et al. establishes
common fuzzy fixed point results forΦ contractivemappings
involving control functions as coefficients of contractions in
the setting of complex-valued metric space by using rational
type contractions.

The paper “On Fuzzy Portfolio Selection Problems: A
Parametric Representation Approach” by O. S. Fard and
M. Ramezanzadeh investigates the constrained fuzzy-valued
optimization problems with regard to the features of the
parametric representation of fuzzy numbers.

In “Parameter Optimization of MIMO Fuzzy Optimal
Model Predictive Control By APSO,” A. Taieb et al introduce
a new development for designing a multi-input multioutput

fuzzy optimal model predictive control using the adaptive
particle swarm optimization algorithm.

In “The Karush-Kuhn-Tucker Optimality Conditions for
the Fuzzy Optimization Problems in the Quotient Space of
Fuzzy Numbers,” N. Yu and D. Qiu propose the solution
concepts for the fuzzy optimization problems in the quotient
space of fuzzy numbers.

In “Random Fuzzy Differential Equations with Impulses”
by H. Vu, the random fuzzy differential equations (RFDEs)
with impulses are considered. Using Picard method of
successive approximations, the existence and uniqueness of
solutions under suitable conditions are proved and some
properties of solution are studied.

The paper “Methods in Ranking Fuzzy Numbers: A
Unified Index and Comparative Reviews” by T.-L. Nguyen
proposes a unified index that multiplies weighted-mean
and weighted-area discriminatory components of a fuzzy
number, respectively, called centroid value and attitude-
incorporated left-and-right area.

In “The Portfolio Balanced Risk Index Model and Analy-
sis of Examples of Large-Scale Infrastructure Project,”W.Gao
andK.Hong focus on a three-dimensional portfolio balanced
risk index model for large-scale infrastructure project risk
evaluation. Taking subjectivity utility and complex evaluation
motivation into consideration, a method of combinational
equilibrium evaluation is built using the index form to reflect
whole loss changes of risk.

The paper “Different solution strategy for solving epi-
demic model in imprecise Environment” by A. Mahata
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et al. discusses the different solution strategy for solving
epidemic model in different imprecise environment, that is, a
susceptible-infected-susceptible model in imprecise environ-
ment.
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We study the different solution strategy for solving epidemic model in different imprecise environment, that is, a Susceptible-
Infected-Susceptible (SIS) model in imprecise environment. The imprecise parameter is also taken as fuzzy and interval
environment. Three different solution procedures for solving governing fuzzy differential equation, that is, fuzzy differential
inclusion method, extension principle method, and fuzzy derivative approaches, are considered. The interval differential equation
is also solved. The numerical results are discussed for all approaches in different imprecise environment.

1. Introduction

1.1. Modeling with Impreciseness. The aim of mathematical
modeling is to imitate some real world problems as far as pos-
sible. The presence of imprecise variable and parameters in
practical problems in the field of biomathematical modeling
became a new area of research in uncertainty modeling. So,
the solution procedure of such problems is very important. If
the solution of said problems with uncertainty is developed,
then, many real life models in different fields with imprecise
variable can be formulated and solved easily and accurately.

1.2. Fuzzy Set Theory and Differential Equation. Differential
equations may arise in the mathematical modeling of real
world problems. But when the impreciseness comes to it, the
behavior of the differential equation is altered. The solution
procedures are taken in different way. In this paper we take
two types of imprecise environments, fuzzy and interval, and
find their exact solution. In 1965, Zadeh [1] published the first

of his papers on the new theory of Fuzzy Sets and Systems.
After that Chang and Zadeh [2] introduced the concept of
fuzzy numbers. In the last few years researchers have been
giving their great contribution on the topic of fuzzy number
research [3–5]. As for the application of the fuzzy set theory
applied in fuzzy equation [6], fuzzy differential equation
[7], fuzzy integrodifferential equation [8–10], fuzzy integral
equation [11], and so on were developed.

1.3. Different Approaches for Solving Fuzzy Differential Equa-
tion. The application of differential equations has been
widely explored in various fields like engineering, economics,
biology, and physics. For constructing different types of
problems in real life situation the fuzzy set theory plays an
important role. The applicability of nonsharp or imprecise
concept is very useful for exploring different sectors for
its applicability. A differential equation can be called fuzzy
differential equation if (1) only the coefficient (or coefficients)
of the differential equation is fuzzy valued number, (2) only
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Table 1

Fuzzy differential
equation

Name of the theory Some references

Fuzzy differential inclusion Baidosov [12],
Hüllermeier [13]

Zadeh’s Extension principle Oberguggenberger and Pittschmann [14],
Buckley and Feuring [15]

Approach using derivative of fuzzy valued
functions

Dubois-Prade derivative Dubois and Prade [16]
Puri-Ralescu derivative Puri and Ralescu [17]
Goetschel-Voxman derivative Goetschel Jr. and Voxman [18]
Friedman-Ming-Kandel derivative Friedman et al. [19]
Seikkala derivative Seikkala [20]
SGH derivative Bede and Gal [21]
Same-order and reverse-order derivative Zhang and Wang [22]
𝜋-derivative Chalco-Cano et al. [23]
gH-derivative Stefanini and Bede [24]
g-derivative Bede and Stefanini [25]
H2-derivative Mazandarani and Najariyan [26]
Interactive derivative de Barros and Santo Pedro [27]
gr-derivative Mazandarani et al. [28]

Approach using fuzzy bunch of real valued
functions instead of fuzzy valued functions Gasilov et al. [29–32], Amrahov et al. [33]

the initial value (or values) or boundary value (or values) is
fuzzy valued number, (3) the forcing term is fuzzy valued
function, and (4) all the conditions (1), (2), and (3) or their
combination is present on the differential equation.

There exist two types of strategies for solving the FDEs,
which are as follows:

(a) Zadeh’s extension principle method.
(b) Differential inclusion method.
(c) Approach using derivative of fuzzy valued functions.
(d) Approach using fuzzy bunch of real valued functions

instead of fuzzy valued functions.

Now we look on some different procedure and concepts
of derivation in Table 1.

There exist different numerical techniques [34–36] for
solving the fuzzy differential equation.The techniques are not
fully similar to any differential equation solving techniques.

In this paper we only study the first three approaches.

1.4. Interval Differential Equation. An interval number is
itself an imprecise parameter. Because the value is not a crisps
number, the value lies between two crisp numbers. When we
take any parameter, may be coefficients or initial condition or
both, of a differential equation then the interval differential
equation comes. The basic behaviors of that number are dif-
ferent from a crisp number. Hence, the calculus of those types
numbers valued functions is different. Sowe need to study the
differential equation in these environments. From the time
that Moore [37] and Markov [38] as the pioneers introduced

the interval analysis and related notions, several monographs
and papers were devoted to connect the fuzzy analysis
and interval analysis [39], but, the later one was not well-
realized and applicable to model dynamical systems. After
introducing generalized Hukuhara differentiability, different
perspectives, which leaded to nice schemes and strategies
to achieve the solutions, were discussed in the literature
[40–43]. Lupulescu in [44] developed the notions of RL-
and Caputo-types derivatives for interval-valued functions.
Salahshour et al. [45, 46] proposed a nonsingular kernel
and conformable fractional derivative for interval differential
equations of fractional order. Recently interval differential
equation is studied by da Costa et al. [47] and Gasilov and
Emrah Amrahov [48].

1.5.Work Done Using Fuzzy Differential Equation and Interval
Differential Equation on Biomathematical Problem. Fuzzy
differential equation and biomathematics are not new topics.
A lot of research was done in this field. For instance,
check [49–68]. Many authors consider interval parameter
with differential equation in biomathematical model. For
presence of interval parameter the equation becomes interval
differential equation. Using the property of interval number
they solve the concerned model and discuss the behavior.
Pal and Mahapatra [62] consider a bioeconomic modeling
of two-prey and one-predator fishery model with optimal
harvesting policy through hybridization approach in interval
environment. Similarly, optimal harvesting of prey–predator
system with interval biological parameters is discussed in
[63]. Sharma and Samanta consider optimal harvesting of
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a two species competition model with imprecise biological
parameters in [69]. Although Barros et al. [70] studied SIS
model in fuzzy environment using fuzzy differential inclusion
still we can study the model in different environments by
different approaches.

1.6. Motivation. Impreciseness comes in every model for
biological system. The necessity for taking some parameter
as imprecise in a model is an important topic today.There are
somanyworks done on biologicalmodel with imprecise data.
Sometimes parameters are taken as fuzzy and sometimes it is
an interval. Our main aim is modeled as a biological problem
associated with differential equation with some imprecise
parameters. Thus fuzzy differential equation and imprecise
differential equation are important. Now we can concentrate
some previous works on biological modeling in imprecise
environments:

1.7. Novelties. Although some developments are done, some
new and interesting research works have been done by
ourselves, which are mentioned as follows:

(i) SIS model is studied in imprecise environment.

(ii) The fuzzy and interval environments are taken for
analyses in the model.

(iii) The governing fuzzy differential equation is solved by
three approaches: fuzzy differential inclusion, exten-
sion principal, and fuzzy derivative approaches.

(iv) The SIS model is solved by reducing the dimension of
the model for fuzzy cases. For these reasons we use
completely correlated fuzzy number.

(v) Numerical examples are taken for showing the com-
parative view of different approaches.

Moreover, we can say all developments can help for the
researchers who are engaged with uncertainty modeling, dif-
ferential equation, and biological system if fuzzy parameters
are assumed in the models. One can model and find the
solution on any biological model with fuzzy and differential
equation by the same approaches.

2. Basic Definitions

2.1. Definition

Definition 1 (fuzzy set). Let 𝐹 be a fuzzy set which is defined
by a pair (𝑈, 𝜇𝐹(𝑥)), where𝑈 is a nonempty universal set and

𝜇𝐹 (𝑥) : 𝑈 󳨀→ [0, 1] . (1)

For each 𝑥 ∈ 𝑈, 𝜇𝐹(𝑥) is the grade of membership function
of 𝐹.
Definition 2 (fuzzy number in trapezoidal form). A fuzzy
number in trapezoidal form represented by three points

like as 𝐾̃ = (𝐾1, 𝐾2, 𝐾3, 𝐾4) and the presentation can be
illustrated as membership function as

𝜇𝐾̃ (𝑦) =

{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑦 ≤ 𝐾1

𝑦 − 𝐾1𝐾2 − 𝐹1 , 𝐾1 ≤ 𝑦 ≤ 𝐾2

1, 𝑦 = 𝐹2
𝐾4 − 𝑦
𝐾4 − 𝐾3

, 𝐾3 ≤ 𝑦 ≤ 𝐾4

0, 𝑦 ≥ 𝐾4.

(2)

Definition 3 (𝛼-cut of a fuzzy set). The 𝛼-cut of 𝐾̃ =(𝐾1, 𝐾2, 𝐾3, 𝐾4) is given by

𝐾𝛼 = [𝐾1 + 𝛼 (𝐾2 − 𝐾1) , 𝐾4 − 𝛼 (𝐾4 − 𝐾3)] ,
∀𝛼 ∈ [0, 1] . (3)

Definition 4 (correlated fuzzy number: [71]). Let 𝐴𝑓 and 𝐵𝑓
are two fuzzy sets whose membership function is written as
follows: 𝜇𝐴𝑓(𝑥) and 𝜇𝐵𝑓(𝑥). Then there exist 𝑑, 𝑒 ∈ 𝑅 with
𝑞 ̸= 0 such that their joint possibility distribution is given by

𝜇𝐶̃𝑓 (𝑥, 𝑦) = 𝜇𝐴𝑓 (𝑥) 𝜒{𝑑𝑥+𝑒=𝑦} (𝑥, 𝑦)
= 𝜇𝐵𝑓 (𝑥) 𝜒{𝑑𝑥+𝑒=𝑦} (𝑥, 𝑦) ,

(4)

where𝜒{𝑑𝑥+𝑒=𝑦}(𝑥, 𝑦) = {1, if 𝑑𝑥+𝑒 = 𝑦; 0, if 𝑑𝑥+𝑒 ̸= 𝑦} is the
characteristic function of the line {(𝑥, 𝑦) ∈ 𝑅2 : 𝑑𝑥 + 𝑒 = 𝑦}.

In this case we have (𝐶𝑓)𝛼 = {(𝑥, 𝑑𝑥 + 𝑒 = 𝑦) ∈ 𝑅2 :
𝑥 = (1 − 𝑙)𝐴01(𝛼) + 𝑙𝐴02(𝛼), 𝑙 ∈ [0, 1]}, where (𝐴𝑓)𝛼 =
[𝐴01(𝛼), 𝐴02(𝛼)], (𝐵𝑓)𝛼 = 𝑑(𝐴𝑓)𝛼 + 𝑒, for any 𝛼 ∈ [0, 1].
Moreover if 𝑑 ̸= 0,

𝜇𝐵𝑓 (𝑥) = 𝜇𝐴𝑓 (𝑥 − 𝑒
𝑑 ) , ∀𝑥 ∈ 𝑅. (5)

Definition 5 (correlated trapezoidal fuzzy number). Two
trapezoidal fuzzy numbers 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵 =(𝑏1, 𝑏2, 𝑏3, 𝑏4) are said to be correlated if 𝑎1 △ 𝑏1 = 𝑎2 △ 𝑏2 =𝑎3 △ 𝑏3 = 𝑎4 △ 𝑏4 = 𝑞, where △ is arbitrary operation and𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑞 is constant.
Example 6. Let a trapezoidal fuzzy number be like 𝐴 =(1/5, 2/5, 3/5, 4/5). Now we have to find another trapezoidal
fuzzy number 𝐵 that is correlated to 𝐴.

Let 𝐵 be of the form (𝑏1, 𝑏2, 𝑏3, 𝑏4).
So clearly we have 𝑏1 + 1/5 = 𝑏2 + 2/5 = 𝑏3 + 3/5 =𝑏4 + 4/5 = 1
So, 𝑏1 = 4/5, 𝑏2 = 3/5, 𝑏3 = 2/5, 𝑏4 = 1/5.
So we can write 𝐵 = (4/5, 3/5, 2/5, 1/5), but here 4/5 ̸<3/5 ̸< 2/5 ̸< 1/5.
We can write it in modified form as 𝐵 = (1/5, 2/5, 3/5,4/5).

Note 7 (use of correlated fuzzy number). There can be a basic
question arising here, which is why we take correlated fuzzy
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variables. Fuzzy number can be employed and applied in var-
ious fields for various models. Sometimes for simplification
of a model, we give a transformation so that the operation
between two variables becomes unit. Now, if the initial
condition or the solution is defined as a fuzzy parameter
then the certain operation on this quantity is obviously a
unit number. Otherwise, the importance of using a correlated
fuzzy number is to take the data in fewer amounts, which can
be very helpful for calculation.

Definition 8 (strong and weak solution of fuzzy differential
equation). Consider the first order fuzzy differential equa-
tion 𝑑𝑥/𝑑𝑡 = 𝑓(𝑘, 𝑥(𝑡)) with (𝑡0) = 𝑥0. Here 𝑘 or (and) 𝑥0
is fuzzy number(s).

Let the solution (the solution comes from any method)
of the above FDE be 𝑥(𝑡) and its 𝛼-cut be 𝑥(𝑡, 𝛼) =[𝑥1(𝑡, 𝛼), 𝑥2(𝑡, 𝛼)].

If 𝑥1(𝑡, 𝛼) ≤ 𝑥2(𝑡, 𝛼) ∀𝛼 ∈ [0, 1] then 𝑥(𝑡) is called strong
solution; otherwise 𝑥(𝑡) is called weak solution and in that
case the 𝛼-cut of the solution is given by

𝑥 (𝑡, 𝛼) = [min {𝑥1 (𝑡, 𝛼) , 𝑥2 (𝑡, 𝛼)} ,
max {𝑥1 (𝑡, 𝛼) , 𝑥2 (𝑡, 𝛼)}] . (6)

Definition 9 (interval number). An interval number 𝐼 is
represented by closed interval [𝐼𝑙, 𝐼𝑢] and defined by 𝐼 =[𝐼𝑙, 𝐼𝑢] = {𝑥 : 𝐼𝑙 ≤ 𝑥 ≤ 𝐼𝑢, 𝑥 ∈ R}, where R is the set of
real numbers and 𝐼𝑙 and 𝐼𝑢 are the left and right boundary of
the interval number, respectively.

3. Method for Solving Fuzzy
Differential Equation

Let us consider the differential equation

𝑥󸀠 (𝑡) = 𝑓 (𝑡, 𝑘, 𝑥 (𝑡)) , 𝑥 (𝑡0) = 𝑥0, 𝑎 ≤ 𝑡 ≤ 𝑏, (7)

where 𝑘 is constant, 𝑥0 is initial condition, and 𝑓(𝑡, 𝑘, 𝑥(𝑡)) is
the function which may be linear or nonlinear.

The differential equation (7) can be fuzzy differential
equation if

(i) 𝑥0, that is, initial condition, is fuzzy number.
(ii) 𝑘, that is, coefficient, is a fuzzy number.
(iii) 𝑥0 and 𝑘, that is, initial condition and coefficient, are

both fuzzy numbers.

3.1. Differential InclusionMethod for Solving FuzzyDifferential
Equation. There are the papers where the concept of fuzzy
differential equations is understood as the family of differen-
tial inclusions. For details seeAgarwal et al. [72, 73], Diamond
[74, 75], Laksmikantham et al. [76], and Lakshmikantham
and Tolstonogov [77]. This new approach allowed consider-
ing some interesting aspects of fuzzy differential equations
such as periodicity, Lyapunov stability, regularity of solution
sets, attraction, and variation of constants formula (see [74,
75, 78, 79]). Also the numerical methods for FDEs have been
developed in Hüllermeier [13, 80] and Ma et al. [81].

Let us assume the following differential inclusion is of the
form

𝑢󸀠 (𝑡) ∈ 𝑔 (𝑡, 𝑢 (𝑡)) (8)

with 𝑢(0) = 𝑢0 ∈ 𝑈0.𝑔 : [0, 𝑇] × 𝑅𝑛 → 𝐹𝑛 is a set valued function and 𝑈0 ∈ 𝐹𝑛
(here 𝐹𝑛 is space of fuzzy numbered valued functions). We
have to solve 𝑢(⋅, 𝑢0) of (8) with 𝑢0 ∈ 𝑈0 provided:

(a) The function 𝑢(⋅, 𝑢0) is absolutely continuous in[0, 𝑇].
(b) The function 𝑢(⋅, 𝑢0) satisfies (8) for 𝑡 ∈ [0, 𝑇].

Now we denote the attainable set at time 𝑡 ∈ [0, 𝑇] which
is subset of 𝑅𝑛 associated with the problem (8) defined by𝐴(𝑡, 𝑈0) = {𝑢(𝑡, 𝑢0) : 𝑢(⋅, 𝑢0) which is solution of (8) }.

In fuzzy environment dynamical system the problem (8)
can be formed as

𝑢󸀠 (𝑡) ∈ 𝑔 (𝑡, 𝑢 (𝑡)) 𝑢 (0) = 𝑢0 ∈ 𝑈̃0, (9)

where 𝑔 : [0, 𝑇] × 𝑅𝑛 → 𝐹𝑛 is a fuzzy set valued function and𝑈0 ∈ 𝐹𝑛.
According to Hüllermeier [13] the fuzzy initial value

problem can be formed as family of differential inclusion
given as

𝑢󸀠𝛼 (𝑡) ∈ 𝑔 (𝑡, 𝑢𝛼 (𝑡)) 𝑢𝛼 (0) ∈ 𝑈0𝛼 with 𝛼 ∈ [0, 1] , (10)

where 𝑔(𝑡, 𝑢𝛼(𝑡)) are the 𝛼-cuts of fuzzy set 𝑔(𝑡, 𝑢(𝑡)).
Here the attainable sets related to the problem (10) can be

defined by𝐴𝛼(𝑡, 𝑈0𝛼, ⋅) = {𝑢𝛼(𝑡) : 𝑢𝛼(⋅, 𝑢𝛼)which is a solution
of (10) in [0, 𝑇]}.

Hence there is fuzzy interval 𝑈(𝑡) = 𝐴(𝑡, 𝑈0, ⋅) which is
a fuzzy solution of (10) via differential inclusion if for all 𝑡 ∈[0, 𝑇] the collection of 𝛼-cuts {𝐴𝛼(𝑡, 𝑈0𝛼, ⋅)}𝛼∈[0,1] satisfies the
condition of the following theorem.

Theorem 10 (see [71]). Let {𝐴𝛼 ⊆ 𝑅 | 0 ≤ 𝛼 ≤ 1} be family of
sets satisfying the following:

(i) 𝐴𝛼 is a compact and convex interval, for all 0 ≤ 𝛼 ≤ 1;
(ii) 𝐴𝛽 ⊆ 𝐴𝛼 for 0 ≤ 𝛼 ≤ 𝛽 ≤ 1;
(iii) 𝐴𝛼 = ⋂𝑖=1 𝐴𝛼𝑖

for any nondecreasing sequence𝛼𝑖 → 𝛼
in [0, 1].

Then there is a unique fuzzy interval 𝑢 ∈ ϝ𝑐 such that [𝑢]𝛼 =𝑌𝛼. Conversely, the𝛼-cuts sets [𝑢]𝛼 for any 𝑢 ∈ ϝ𝑐 satisfy these
conditions.

Therefore, we have the 𝛼 solution 𝑢𝛼 : [0, 𝑇] → 𝑅𝑛 of (9)
if it is a solution of (10).

Theorem 11 (see [71]). Suppose 𝐸, 𝐹 ∈ 𝜀(𝑅) are completely
correlated fuzzy numbers; let G be their joint possibility
distribution and 𝑓 : 𝑅2 → 𝑅2 be a continuous function; then[𝑓𝐶(𝐸, 𝐹)]𝛼 = 𝑓([𝐶]𝛼).
Theorem 12 (see [71]). For all (𝑢0,V) ∈ 𝑅2 there exists a unique
solution to (10) in [0, 𝑇0]. Then the solution of the problem (7)
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via extension principle when𝑈0 and 𝑌 are noninteractive, and
when𝑈0 and 𝑌 are completely correlated satisfies the following
relation [(𝐿𝑡)𝑐(𝑈0, 𝑉)]𝛼 ⊆ [(𝐿𝑡)𝐽𝑝(𝑈0, 𝑉)]𝛼, for all 𝛼 ∈ [0, 1],
where 𝐽𝑝(𝑢0, V) = min(𝜇𝑈0(𝑢0), 𝜇𝑉(V)), meaning 𝐽𝑝 is the joint
possibility distribution of the noninteractive fuzzy numbers𝑈0, 𝑉.
3.2. Extension Principle for Solving Fuzzy Differential Equa-
tion. Extension principle is a method by which we can
easily find the solution of a fuzzy differential equation. Some
researchers considered this method to find the solution of
fuzzy differential equations [82–84].

Definition 13 (extension principle on fuzzy sets). Suppose
that we have some usual sets 𝑋𝑅 and choose some fuzzy sets
𝐴 ∈ 𝐹𝑆(𝑋𝑅).

The extension principle for fuzzy sets states that if 𝐹(𝐴) ∈𝐹𝑆(𝑌𝑅) such that 𝑦 ∈ 𝑋𝑅,

𝜇𝐹(𝐴) (𝑦)

= {{{
sup {𝜇𝐴 (𝑥) : 𝑥 ∈ 𝐹−1 {𝑦}} , if 𝑦 ∈ Range (𝐹)
0, if 𝑦 ∉ Range (𝐹)

(11)

and for every 𝐵 ∈ 𝐹𝑆(𝑌), 𝐹−1(𝐵) is defined in the following
way

𝜇𝐹−1(𝐵) (𝑥) = 𝜇𝐵 (𝐹 (𝑥)) (12)

for every 𝑥 ∈ 𝑋𝑅.

Example 14. Let𝐴 be a fuzzy set where membership function
is written as

𝜇𝐴 (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{

0 if 𝑥 ≤ 3
𝑥 − 3 if 3 ≤ 𝑥 < 4
1 if 𝑥 = 4
6 − 𝑥
2 if 4 < 𝑥 ≤ 6

0 if 𝑥 ≥ 6.

(13)

Let us choose a function 𝐹(𝑥) = 2𝑥 + 3.
Now by Zadeh’s extension principle, 𝐹(𝐴) can be deter-

mined and its membership function is written as

𝜇𝐹(𝐴) (𝑦) =

{{{{{{{{{{{{{{{{{{{{{{{

0 if 𝑥 ≤ 9
𝑦 − 9
2 if 9 ≤ 𝑦 < 11

1 if 𝑦 = 11
15 − 𝑦

4 if 11 < 𝑦 ≤ 15
0 if 𝑦 ≥ 15.

(14)

Method 15 (solution of fuzzy differential equation using
extension principle). Let us consider the fuzzy initial value
problem (FIVP)

𝑢󸀠 (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑢̃ (𝑡0) = 𝑢̃0, 𝑎 ≤ 𝑡 ≤ 𝑏. (15)

If we denote
[𝑢̃ (𝑡)]𝛼 = [𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)] ,
[𝑢̃0]𝛼 = [𝑢𝛼0,1, 𝑢𝛼0,2] ,
[𝑓 (𝑡, 𝑥 (𝑡))]𝛼

= [𝑔𝛼1 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)) , 𝑔𝛼2 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡))] .

(16)

By using the extension principle we have the membership
function

𝑔 (𝑡, 𝑢 (𝑡)) (𝑠) = sup {𝑢 (𝑡) (𝜏) | 𝑠 = 𝑔 (𝑡, 𝜏)} , 𝑠 ∈ 𝑅. (17)

The result 𝑔(𝑡, 𝑥(𝑡)) is a fuzzy function.
And

𝑔𝛼1 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡))
= min {𝑔 (𝑡, 𝑢) | 𝑢 ∈ [𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)]} ,

𝑔𝛼2 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡))
= max {𝑔 (𝑡, 𝑢) | 𝑢 ∈ [𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)]} .

(18)

3.3. Fuzzy Derivative and Solution of Fuzzy Differential
Equation by Fuzzy Derivative Approach. Bede and Gal [85]
presented a concept of generalizedHukuhara differentiability
of fuzzy valued map-pings, which permits them to obtain
the solutions of FDEs with a diminishing diameter of solu-
tions values. This was followed up in the literature [85–
91]. This comprehensive definition allows us to resolve the
disadvantages of the previous fuzzy derivatives. Indeed, the
strongly generalized derivative is defined for a larger class of
fuzzy number valued functions in the case of the Hukuhara
derivative.

Before going to the fuzzy differential equation approach
we first know the following definition.

Definition 16 (generalized Hukuhara difference). The gener-
alized Hukuhara difference of two fuzzy numbers 𝑝, 𝑞 ∈ RF

is defined as follows:

𝑝⊝𝑔𝑞 = 𝑟 ⇐⇒ {{{
(i) 𝑝 = 𝑞 ⊕ 𝑟
or (ii) 𝑝 = 𝑞 ⊕ (−1) 𝑟. (19)

Consider [𝑟]𝛼 = [𝑟1(𝛼), 𝑟1(𝛼)]; then 𝑟1(𝛼) = min{𝑝1(𝛼) −𝑞1(𝛼), 𝑝2(𝛼) − 𝑞2(𝛼)} and 𝑟1(𝛼) = max{𝑝1(𝛼) − 𝑞1(𝛼), 𝑝2(𝛼) −𝑞2(𝛼)}.
Here the parametric representation of a fuzzy valued

function 𝐺 : [𝑎, 𝑏] → RF is expressed by

[𝐺 (𝑡)]𝛼 = [𝐺1 (𝑡, 𝛼) , 𝐺2 (𝑡, 𝛼)] ,
𝑡 ∈ [𝑎, 𝑏] , 𝛼 ∈ [0, 1] . (20)
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Definition 17 (generalized Hukuhara derivative on a fuzzy
function). The generalized Hukuhara derivative of a fuzzy
valued function 𝐺 : (𝑎, 𝑏) → RF at 𝑡0 is defined as

𝐺󸀠 (𝑡0) = lim
ℎ→0

𝐺 (𝑡0 + ℎ) ⊝𝑔𝐺(⊝𝑔)
ℎ . (21)

If 𝐺󸀠(𝑡0) ∈ RF satisfying (21) exists, we say that 𝐺 is
generalized Hukuhara differentiable at 𝑡0.

Also we say that 𝐺(𝑡) is (i)-gH differentiable at 𝑡0 if
[𝐺󸀠 (𝑡0)]𝛼 = [𝐺󸀠

1 (𝑡0, 𝛼) , 𝐺󸀠
2 (𝑡0, 𝛼)] (22)

and 𝐺(𝑡) is (ii)-gH differentiable at 𝑡0 if
[𝐺󸀠 (𝑡0)]𝛼 = [𝐺󸀠

2 (𝑡0, 𝛼) , 𝐺󸀠
1 (𝑡0, 𝛼)] . (23)

Method 18 (solution of fuzzy differential equation using
fuzzy differential equation approach). Consider the fuzzy
differential equation taking in (15).

We have the following two cases.

Case 1. If we consider 𝑢󸀠(𝑡) in the first from (i), then we have
to solve the following system of ODEs:

𝑑
𝑑𝑡 (𝑢𝛼1 (𝑡)) = 𝑔𝛼1 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)) , 𝑢𝛼1 (𝑡0) = 𝑢𝛼0,1
𝑑
𝑑𝑡 (𝑢𝛼2 (𝑡)) = 𝑔𝛼2 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)) , 𝑢𝛼2 (𝑡0) = 𝑢𝛼0,2.

(24)

Case 2. If we consider 𝑢󸀠(𝑡) in the first from (ii), then we have
to solve the following system of ODEs:

𝑑
𝑑𝑡 (𝑢𝛼1 (𝑡)) = 𝑔𝛼2 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)) , 𝑢𝛼1 (𝑡0) = 𝑢𝛼0,1
𝑑
𝑑𝑡 (𝑢𝛼2 (𝑡)) = 𝑔𝛼1 (𝑡, 𝑢𝛼1 (𝑡) , 𝑢𝛼2 (𝑡)) , 𝑢𝛼2 (𝑡0) = 𝑢𝛼0,2.

(25)

In both cases, we should ensure that the solution [𝑢𝛼1 (𝑡), 𝑢𝛼2 (𝑡)]
is valid level sets of a fuzzy number valued function and[(𝑑/𝑑𝑡)(𝑢𝛼1 (𝑡)), (𝑑/𝑑𝑡)(𝑢𝛼2 (𝑡))] are valid level sets of a fuzzy
valued function.

4. Model Formulation on Epidemic

There are so many mathematical models in biology; SIS
model is an important model of them. In a given species
population at time 𝑡, let 𝑆(𝑡) be the number of susceptible,
which means the number of those who can be infected,
and 𝐼(𝑡) be the number of infected persons in the species
population. In this model, a susceptible species can become
infected at a rate proportional to 𝑆(𝑡)𝐼(𝑡) and an infected
species can recover and become susceptible again at a rate of𝛾𝐼(𝑡) so that the model can be formulated as follows:

𝑑𝑆 (𝑡)
𝑑𝑡 = −𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡)

𝑑𝐼 (𝑡)
𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) ,

(26)

where 𝑆(𝑡) = 𝑆0𝐼(𝑡) = 𝐼0 at 𝑡 = 0 is the initial condition.

Here a susceptible 𝑆(𝑡) can become infected 𝐼(𝑡) at rate
proportional of SI and on infected can recover and become
susceptible again at a rate proportional to 𝐼.

𝑆(0) + 𝐼(0) = 𝑁(0) (total number of population).
Now taking 𝑆(𝑡)/𝑁(𝑡) = 𝑠(𝑡), 𝐼(𝑡)/𝑁(𝑡) = 𝑖(𝑡), the model

can be written as

𝑑𝑠 (𝑡)
𝑑𝑡 = −𝑚𝑠 (𝑡) 𝑖 (𝑡) + 𝛾𝑖 (𝑡)

𝑑𝑖 (𝑡)
𝑑𝑡 = 𝑚𝑠 (𝑡) 𝑖 (𝑡) − 𝛾𝑖 (𝑡) ,

(27)

where𝑚 = 𝛽𝑁(𝑡) with initial condition 𝑠(𝑡) + 𝑖(𝑡) = 1.
Note 19 (dimension less of a model). Sometimes for a math-
ematical model, it is critical to find the dynamical behavior.
However, the dependent variables in themodel are connected
with another dependent variable, which makes the finding
of the behavior complicated. In this regard, there is some
criterion in which we can eliminate the conditions and make
the model more simple and which is very easy to solve.
According to these circumstances, we reduce the dimension
of the above model.

The crisp solution of the above system of equations is
written in two different cases.

Case 1 (when 𝑝 = 𝑚−𝛾 ̸= 0). In this case the solution can be
written as

𝑠 (𝑡) = 𝑖0𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖0𝑚𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 ,

𝑖 (𝑡) = 𝑖0𝑝𝑒𝑝𝑡𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 .
(28)

Case 2 (when 𝑝 = 𝑚 − 𝛾 = 0). In this case the solution can
be written as

𝑠 (𝑡) = 1 + 𝑖0 (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖0 ,

𝑖 (𝑡) = 𝑖01 + 𝑚𝑡𝑖0 .
(29)

Note 20. May be someone will ask why do we take SIS
model for comparing different solution strategy for solving
in uncertain environment? Basically we take the particular
SIS model and apply the different techniques in uncertain
environment. Once one can be familiar with it, anyone can
take one of the strategies which best fits their model.
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Table 2

𝑖𝑒1 (𝑡) 𝑖𝑒2 (𝑡)𝜕𝑝1 (𝑖0)𝜕𝑖0 > 0 𝑖01 (𝛼) ⋅ 𝑝𝑒𝑝𝑡𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝
𝑖02(𝛼)𝑝𝑒𝑝𝑡𝑖02(𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝

𝜕𝑝1 (𝑖0)𝜕𝑖0 < 0 𝑖02(𝛼)𝑝𝑒𝑝𝑡𝑖02(𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝
𝑖01 (𝛼) 𝑝𝑒𝑝𝑡𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝

5. Solution of the above SIS Model in Fuzzy
Environment by Different Strategy

5.1. Solution of Fuzzy SIS Model via Differential Inclusion.

(𝑑𝑠 (𝑡)𝑑𝑡 , 𝑑𝑖 (𝑡)𝑑𝑡 )
= (−𝑚𝑠 (𝑡) 𝑖 (𝑡) + 𝛾𝑖 (𝑡) , 𝑚𝑠 (𝑡) 𝑖 (𝑡) − 𝛾𝑖 (𝑡))

(𝑠0, 𝑖0) ∈ 𝐶.
(30)

The solution of the problem (30) using differential inclusion
is obtained from the solution of the auxiliary

(𝑑𝑠 (𝑡)𝑑𝑡 , 𝑑𝑖 (𝑡)𝑑𝑡 )
= (−𝑚𝑠 (𝑡) 𝑖 (𝑡) + 𝛾𝑖 (𝑡) , 𝑚𝑠 (𝑡) 𝑖 (𝑡) − 𝛾𝑖 (𝑡))

(𝑠0, 𝑖0) ∈ 𝐶 (𝛼) ,
(31)

where𝐶(𝛼) = {(1−𝑖0, 𝑖0) ∈ 𝑅2 : 𝑖0 = (1−𝑙)𝑖01(𝛼)+𝑙𝑖02(𝛼), 𝑙 ∈[0, 1]}.
The attainable sets of the problem of (31) can be written

as 𝐴 𝑡(𝐶(𝛼)) = {𝑢(𝑡, 𝑠0, 𝑖0) : 𝑢(⋅, 𝑠0, 𝑖0), solution of (31)} ={𝑢(𝑡, 𝑠0, 𝑖0) : 𝑢󸀠(𝑡, 𝑠0, 𝑖0) = (−𝑚𝑠𝑖+𝛾𝑖, 𝑚𝑠𝑖−𝛾𝑖), (𝑠0, 𝑖0) ∈ 𝐶(𝛼)}.
Case 1 (when 𝑝 = 𝑚 − 𝛾 ̸= 0).
𝐴 𝑡 (𝐶 (𝛼)) = {(𝑖0𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖0𝑚𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 ,

𝑖0𝑝𝑒𝑝𝑡𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝) : 𝑖0 = (1 − 𝑙) 𝑖01 (𝛼) + 𝑙𝑖02 (𝛼) , 𝑙

∈ [0, 1]} .

(32)

Case 2 (when 𝑝 = 𝑚 − 𝛾 = 0).
𝐴 𝑡 (𝐶 (𝛼)) = {(1 + 𝑖0 (𝑚𝑡 − 1)

1 + 𝑚𝑡𝑖0 , 𝑖01 + 𝑚𝑡𝑖0) : 𝑖0
= (1 − 𝑙) 𝑖01 (𝛼) + 𝑙𝑖02 (𝛼) , 𝑙 ∈ [0, 1]} .

(33)

5.2. Solution of Fuzzy SIS Model by Extension Principle
Method. Let [𝑖𝑒1(𝑡), 𝑖𝑒2(𝑡)] and [𝑠𝑒1(𝑡), 𝑠𝑒2(𝑡)] be the solution
by extension principle method.

Now different cases arise.

Case 1 (when 𝑝 = 𝑚−𝛾 ̸= 0). In this case the solution can be
written as
𝑖𝑒1 (𝑡)
= max{ 𝑖0𝑝𝑒𝑝𝑡𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} ,

𝑖𝑒2 (𝑡)
= min{ 𝑖0𝑝𝑒𝑝𝑡𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} .

(34)

The solution depends on the function 𝑝1(𝑖0) = 𝑖0𝑝𝑒𝑝𝑡/(𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝) whether it is increasing or decreasing. The
solution can be written as in Table 2.

Here,

𝜕𝑝1 (𝑖0)𝜕𝑖0 = 𝑖0𝑝𝑒𝑝𝑡
{𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝}2 . (35)

So, it depends upon 𝑝, whether it is negative or positive. If we
take 𝑝 > 0 then

𝑖𝑒1 (𝑡) = 𝑖01 (𝛼) ⋅ 𝑝𝑒𝑝𝑡𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝 ,

𝑖𝑒2 (𝑡) = 𝑖02 (𝛼) 𝑝𝑒𝑝𝑡𝑖02 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝
(36)

and also

𝑠𝑒1 (𝑡) = max{𝑖0𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖0𝑚𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 | 𝑖0

∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} ,

𝑠𝑒2 (𝑡) = min{𝑖0𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖0𝑚𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝 | 𝑖0

∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} .

(37)

The solution depends on the function 𝑞1(𝑖0) = (𝑖0𝑒𝑝𝑡(𝑚 −𝑝) + 𝑝 − 𝑖0𝑚)/(𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝) whether it is increasing or
decreasing. The solution can be written as in Table 3.

Here,

𝜕𝑞1 (𝑖0)𝜕𝑖0 = − 𝑝𝑚 (1 + 𝑒𝑝𝑡)
{𝑖0𝑚(𝑒𝑝𝑡 − 1) + 𝑝}2 < 0. (38)
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Table 3

𝑠𝑒1 (𝑡) 𝑠𝑒2 (𝑡)𝜕𝑞1 (𝑖0)𝜕𝑖0 > 0 𝑖01 (𝛼) 𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖01 (𝛼)𝑚𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝
𝑖02(𝛼)𝑒𝑝𝑡(𝑚 − 𝑝) + 𝑝 − 𝑖02(𝛼)𝑚𝑖02(𝛼)𝑚(𝑒𝑝𝑡 − 1) + 𝑝

𝜕𝑞1 (𝑖0)𝜕𝑖0 < 0 𝑖02(𝛼)𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖02(𝛼)𝑚𝑖02(𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝
𝑖01 (𝛼) 𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖01 (𝛼)𝑚𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝

Table 4

𝑖𝑒1 (𝑡) 𝑖𝑒2 (𝑡)𝜕𝑝2 (𝑖0)𝜕𝑖0 > 0 𝑖01 (𝛼)1 + 𝑚𝑡𝑖01 (𝛼)
𝑖02(𝛼)1 + 𝑚𝑡𝑖02(𝛼)

𝜕𝑝2 (𝑖0)𝜕𝑖0 < 0 𝑖02(𝛼)1 + 𝑚𝑡𝑖02(𝛼)
𝑖01 (𝛼)1 + 𝑚𝑡𝑖01 (𝛼)

Table 5

𝑠𝑒1 (𝑡) 𝑠𝑒2 (𝑡)𝜕𝑞2 (𝑖0)𝜕𝑖0 > 0 1 + 𝑖01 (𝛼) (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖01 (𝛼)

1 + 𝑖02(𝛼)(𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖02(𝛼)

𝜕𝑞2 (𝑖0)𝜕𝑖0 < 0 1 + 𝑖02(𝛼)(𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖02(𝛼)

1 + 𝑖01 (𝛼) (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖01 (𝛼)

So, the solution is given by

𝑠𝑒1 (𝑡) = 𝑖02 (𝛼) 𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖02 (𝛼)𝑚𝑖02 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝 ,

𝑠𝑒2 (𝑡) = 𝑖01 (𝛼) 𝑒𝑝𝑡 (𝑚 − 𝑝) + 𝑝 − 𝑖01 (𝛼)𝑚𝑖01 (𝛼)𝑚 (𝑒𝑝𝑡 − 1) + 𝑝 .
(39)

Case 2 (when 𝑝 = 𝑚 − 𝛾 = 0). In this case the solution can
be written as

𝑖𝑒1 (𝑡) = max{ 𝑖01 + 𝑚𝑡𝑖0 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} ,

𝑖𝑒2 (𝑡) = min{ 𝑖01 + 𝑚𝑡𝑖0 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} .
(40)

The solution depends on the function 𝑝2(𝑖0) = 𝑖0/(1 + 𝑚𝑡𝑖0)
whether it is increasing or decreasing. The solution can be
written as in Table 4.

Here,

𝜕𝑝2 (𝑖0)𝜕𝑖0 = 1
{1 + 𝑚𝑡𝑖01 (𝛼)}2 > 0. (41)

Hence the solution is

𝑖𝑒1 (𝑡) = 𝑖01 (𝛼)1 + 𝑚𝑡𝑖01 (𝛼) ,

𝑖𝑒2 (𝑡) = 𝑖02 (𝛼)1 + 𝑚𝑡𝑖02 (𝛼)
(42)

and also

𝑠𝑒1 (𝑡)
= max{1 + 𝑖0 (𝑚𝑡 − 1)

1 + 𝑚𝑡𝑖0 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} ,
𝑠𝑒2 (𝑡)

= min{1 + 𝑖0 (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖0 | 𝑖0 ∈ [𝑖01 (𝛼) , 𝑖02 (𝛼)]} .

(43)

The solution depends on the function 𝑞2(𝑖0) = (1 + 𝑖0(𝑚𝑡 −1))/(1 + 𝑚𝑡𝑖0) whether it is increasing or decreasing. The
solution can be written as in Table 5.

Here,

𝜕𝑞2 (𝑖0)𝜕𝑖0 = − 1
{1 + 𝑚𝑡𝑖0}2 < 0. (44)

Hence the solution is

𝑠𝑒1 (𝑡) = 1 + 𝑖02 (𝛼) (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖02 (𝛼) ,

𝑠𝑒2 (𝑡) = 1 + 𝑖01 (𝛼) (𝑚𝑡 − 1)
1 + 𝑚𝑡𝑖01 (𝛼) .

(45)

5.3. Solution of Fuzzy SISModel by FuzzyDifferential Equation
Approach. Let [𝑖1(𝑡, 𝛼), 𝑖2(𝑡, 𝛼)] and [𝑠1(𝑡, 𝛼), 𝑠2(𝑡, 𝛼)] be the
solution using generalized Hukuhara derivative approach.
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Now different cases can be found as follows.

Case 1 (𝑠(𝑡) and 𝑖(𝑡) is (i)-gH differentiable). In this case the
differential equation transforms to

𝑑𝑠1 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) + 𝛾𝑖1 (𝑡, 𝛼)
𝑑𝑠2 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) + 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖1 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) − 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖2 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) − 𝛾𝑖1 (𝑡, 𝛼) ,

(46)

with initial conditions 𝑠1(0, 𝛼) = 𝑠01(𝛼), 𝑠2(0, 𝛼) = 𝑠02(𝛼),𝑖1(0, 𝛼) = 𝑖01(𝛼), and 𝑖2(0, 𝛼) = 𝑖02(𝛼).
Case 2 (𝑠(𝑡) is (i)-gH and 𝑖(𝑡) is (ii)-gH differentiable). In this
case the differential equation transforms to

𝑑𝑠1 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) + 𝛾𝑖1 (𝑡, 𝛼)
𝑑𝑠2 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) + 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖2 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) − 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖1 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) − 𝛾𝑖1 (𝑡, 𝛼) ,

(47)

with initial conditions 𝑠1(0, 𝛼) = 𝑠01(𝛼), 𝑠2(0, 𝛼) = 𝑠02(𝛼),𝑖1(0, 𝛼) = 𝑖01(𝛼), and 𝑖2(0, 𝛼) = 𝑖02(𝛼).
Case 3 (𝑠(𝑡) is (ii)-gH and 𝑖(𝑡) is (i)-gH differentiable). In this
case the differential equation transforms to

𝑑𝑠2 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) + 𝛾𝑖1 (𝑡, 𝛼)
𝑑𝑠1 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) + 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖1 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) − 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖2 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) − 𝛾𝑖1 (𝑡, 𝛼) ,

(48)

with initial conditions 𝑠1(0, 𝛼) = 𝑠01(𝛼), 𝑠2(0, 𝛼) = 𝑠02(𝛼),𝑖1(0, 𝛼) = 𝑖01(𝛼), and 𝑖2(0, 𝛼) = 𝑖02(𝛼).
Case 4 (𝑠(𝑡) and 𝑖(𝑡) is (ii)-gH differentiable). In this case the
differential equation transforms to

𝑑𝑠2 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) + 𝛾𝑖1 (𝑡, 𝛼)
𝑑𝑠1 (𝑡, 𝛼)𝑑𝑡 = −𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) + 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖2 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠1 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) − 𝛾𝑖2 (𝑡, 𝛼)
𝑑𝑖1 (𝑡, 𝛼)𝑑𝑡 = 𝑚𝑠2 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼) − 𝛾𝑖1 (𝑡, 𝛼) ,

(49)

with initial condition 𝑠1(0, 𝛼) = 𝑠01(𝛼), 𝑠2(0, 𝛼) = 𝑠02(𝛼),𝑖1(0, 𝛼) = 𝑖01(𝛼), and 𝑖2(0, 𝛼) = 𝑖02(𝛼)
6. Modeling SIS in Interval Environment

The problem in interval environment is

𝑑𝑠 (𝑡, 𝜆)
𝑑𝑡 = −𝑚𝑠 (𝑡; 𝜆) 𝑖 (𝑡; 𝜆) + 𝛾𝑖 (𝑡; 𝜆)

𝑑𝑖 (𝑡, 𝜆)
𝑑𝑡 = 𝑚𝑠 (𝑡; 𝜆) 𝑖 (𝑡; 𝜆) − 𝛾𝑖 (𝑡; 𝜆) ,

(50)

where𝑚 = 𝛽𝑁(𝑡)with initial condition 𝑖(0; 𝜆) = (𝑖0𝑙)1−𝜆(𝑖0𝑢)𝜆
at 𝑡 = 0, 𝑠(𝑡) + 𝑖(𝑡) = 1.

We get the solution for two cases as follows.

Case 1 (when 𝑝 ̸= 0). The solution is written as

𝑖 (𝑡; 𝜆) = (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆 𝑝𝑒𝑝𝑡
(𝑖0𝑢)1−𝜆 (𝑖0V)𝜆𝑚(𝑒𝑝𝑡 − 1) + 𝑝 ,

𝑠 (𝑡; 𝜆) = 1 − (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆 𝑝𝑒𝑝𝑡
(𝑖0𝑢)1−𝜆 (𝑖0V)𝜆𝑚(𝑒𝑝𝑡 − 1) + 𝑝 .

(51)

Case 2 (when 𝑝 = 0). The solution is written as

𝑖 (𝑡, 𝜆) = (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆
1 + 𝑚𝑡 (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆 ,

𝑠 (𝑡; 𝜆) = 1 − (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆
1 + 𝑚𝑡 (𝑖0𝑢)1−𝜆 (𝑖0V)𝜆 .

(52)

7. Numerical Examples

7.1. Numerical Example on Fuzzy Cases. Find the solution
after 𝑡 = 10 when 𝑆0 = (0.80, 0.85, 0.90, 0.95) and 𝐼0 =(0.05, 0.10, 0.15, 0.20), when𝑚 = 0.3 and 𝛾 = 0.005.

Solution by differential inclusion and extension principle
and fuzzy differential equation is given by

[(𝑠𝑖1 (𝑡, 𝛼) , 𝑠𝑖2 (𝑡, 𝛼)) ; (𝑖𝑖1 (𝑡, 𝛼) , 𝑖𝑖2 (𝑡, 𝛼))] ,
[(𝑠𝑒1 (𝑡, 𝛼) , 𝑠𝑒2 (𝑡, 𝛼)) ; (𝑖𝑒1 (𝑡, 𝛼) , 𝑖𝑒2 (𝑡, 𝛼))] ,
[(𝑠1 (𝑡, 𝛼) , 𝑠2 (𝑡, 𝛼)) ; (𝑖1 (𝑡, 𝛼) , 𝑖2 (𝑡, 𝛼))] .

(53)

7.1.1. Solution by Differential Inclusion.

Case 1 (when 𝑝 ̸= 0).
𝐴 𝑡 (𝐶 (𝛼)) = {(0.005𝑖0𝑒0.295𝑡 + 0.295 − 0.305𝑖00.3𝑖0 (𝑒0.295𝑡 − 1) + 0.295 ,

0.295𝑖0𝑒0.295𝑡0.3𝑖0 (𝑒0.295𝑡 − 1) + 0.295) : 𝑖0 = (1 − 𝑙) (0.05

+ 0.05𝛼) + 𝑙 (0.20 − 0.05𝛼) , 𝑙 ∈ [0, 1]} .

(54)
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Table 6: Solution boundary for 𝑡 = 10.
𝛼 𝑠𝑖1 (𝑡, 𝛼) 𝑠𝑖2 (𝑡, 𝛼) 𝑖𝑖1 (𝑡, 𝛼) 𝑖𝑖2 (𝑡, 𝛼)
0 0.5022 0.1832 0.4974 0.8160
0.2 0.4549 0.1923 0.5446 0.8070
0.4 0.4152 0.2022 0.5843 0.7971
0.6 0.3814 0.2129 0.6181 0.7864
0.8 0.3523 0.2246 0.6471 0.7747
1 0.3270 0.2375 0.6724 0.7618

si1(t, )

si2(t, )

ii1(t, )

ii2(t, )



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.90.80.70.60.50.40.30.20.10

Figure 1: Solution boundary for 𝑡 = 10.

The boundary of the solution is given by

𝑠𝑖1 (𝑡, 𝛼)
= 0.005 (0.05 + 0.05𝛼) 𝑒0.295𝑡 + 0.295 − 0.305 (0.05 + 0.05𝛼)

0.3 (0.05 + 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑠𝑖2 (𝑡, 𝛼)
= 0.005 (0.20 − 0.05𝛼) 𝑒0.295𝑡 + 0.295 − 0.305 (0.20 − 0.05𝛼)

0.3 (0.20 − 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑖𝑖1 (𝑡, 𝛼) = 0.295 (0.05 + 0.05𝛼) 𝑒0.295𝑡

0.3 (0.05 + 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑖𝑖2 (𝑡, 𝛼) = 0.295 (0.20 − 0.05𝛼) 𝑒0.295𝑡

0.3 (0.20 − 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295 .

(55)

Remarks 21. From Figure 1 and Table 6 it shows that 𝑠𝑖1(𝑡, 𝛼)
is decreasing and 𝑠𝑖2(𝑡, 𝛼) is increasingwhereas 𝑖𝑖1(𝑡, 𝛼) is

increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the boundary of the solution. The solution for 𝑠(𝑡) gives
the natural weak solution but 𝑖(𝑡) gives the natural strong
solution.

Case 2 (when 𝑝 = 0). The boundary of the solutions is

𝐴 𝑡 (𝐶 (𝛼)) = {(1 + 𝑖0 (0.3𝑡 − 1)
1 + 0.3𝑡𝑖0 , 𝑖01 + 0.3𝑡𝑖0) : 𝑖0

= (1 − 𝑙) (0.05 + 0.05𝛼) + 𝑙 (0.20 − 0.05𝛼) , 𝑙
∈ [0, 1]} .

(56)

Remarks 22. From Figure 2 and Table 7 it shows that 𝑠𝑖1(𝑡, 𝛼)
is decreasing and 𝑠𝑖2(𝑡, 𝛼) is increasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the boundary of the solution. The solution for 𝑠(𝑡) gives
the natural weak solution but 𝑖(𝑡) gives the natural strong
solution.

7.2. Solution by Extension Principle.

Case 1 (when 𝑝 ̸= 0). Here the solutions are given by
𝑠𝑖1 (𝑡, 𝛼)
= 0.005 (0.20 − 0.05𝛼) 𝑒0.295𝑡 + 0.295 − 0.305 (0.20 − 0.05𝛼)

0.3 (0.20 − 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑠𝑖2 (𝑡, 𝛼)
= 0.005 (0.05 + 0.05𝛼) 𝑒0.295𝑡 + 0.295 − 0.305 (0.05 + 0.05𝛼)

0.3 (0.05 + 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑖𝑖1 (𝑡, 𝛼) = 0.295 (0.05 + 0.05𝛼) 𝑒0.295𝑡

0.3 (0.05 + 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295
𝑖𝑖2 (𝑡, 𝛼) = 0.295 (0.20 − 0.05𝛼) 𝑒0.295𝑡

0.3 (0.20 − 0.05𝛼) (𝑒0.295𝑡 − 1) + 0.295 .

(57)

Remarks 23. From Figure 3 and Table 8 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem. The solution for 𝑠(𝑡) gives
the natural strong solution but 𝑖(𝑡) gives the natural strong
solution.
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Table 7: Solutions boundary for 𝑡 = 10.
𝛼 𝑠𝑖1 (𝑡, 𝛼) 𝑠𝑖2 (𝑡, 𝛼) 𝑖𝑖1 (𝑡, 𝛼) 𝑖𝑖2 (𝑡, 𝛼)
0 0.9565 0.8750 0.0435 0.1250
0.2 0.9492 0.8790 0.0508 0.1210
0.4 0.9421 0.8831 0.0579 0.1169
0.6 0.9355 0.8874 0.0645 0.1126
0.8 0.9291 0.8919 0.0709 0.1081
1 0.9231 0.8966 0.0769 0.1034

Table 8: Solution for 𝑡 = 10.
𝛼 𝑠𝑒1 (𝑡, 𝛼) 𝑠𝑒2 (𝑡, 𝛼) 𝑖𝑒1 (𝑡, 𝛼) 𝑖𝑒2 (𝑡, 𝛼)
0 0.1832 0.5022 0.4974 0.8160
0.2 0.1923 0.4549 0.5446 0.8070
0.4 0.2022 0.4152 0.5843 0.7971
0.6 0.2129 0.3814 0.6181 0.7864
0.8 0.2246 0.3523 0.6471 0.7747
1 0.2375 0.3270 0.6724 0.7618

si1(t, )

si2(t, )

ii1(t, )

ii2(t, )



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
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0.1

0
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Figure 2: Solutions boundary for 𝑡 = 10.

Case 2 (when 𝑝 = 0). The solutions are given by

𝑠𝑖1 (𝑡, 𝛼) = 1 + (0.20 − 0.05𝛼) (0.3𝑡 − 1)
1 + 0.3𝑡 (0.20 − 0.05𝛼)

𝑠𝑖2 (𝑡, 𝛼) = 1 + (0.05 + 0.05𝛼) (0.3𝑡 − 1)
1 + 0.3𝑡 (0.05 + 0.05𝛼)

𝑖𝑖1 (𝑡, 𝛼) = (0.05 + 0.05𝛼)
1 + 0.3𝑡 (0.05 + 0.05𝛼)

𝑖𝑖2 (𝑡, 𝛼) = (0.20 − 0.05𝛼)
1 + 0.3𝑡 (0.20 − 0.05𝛼) .

(58)
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Figure 3: Solution for 𝑡 = 10.

Remarks 24. From Figure 4 and Table 9 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem.The solution for 𝑠(𝑡) gives the nat-
ural strong solution and 𝑖(𝑡) gives the natural strong solution.
7.3. Solution by Fuzzy Differential Equation Approach. Now
the solutions for different cases are given by the following.

Case 1 (𝑠(𝑡) and 𝑖(𝑡) is (i)-gH differentiable).

Remarks 25. From Figure 5 and Table 10 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
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Table 9: Solution for 𝑡 = 10.
𝛼 𝑠𝑒1 (𝑡, 𝛼) 𝑠𝑒2 (𝑡, 𝛼) 𝑖𝑒1 (𝑡, 𝛼) 𝑖𝑒2 (𝑡, 𝛼)
0 0.8750 0.9565 0.0435 0.1250
0.2 0.8790 0.9492 0.0508 0.1210
0.4 0.8831 0.9421 0.0579 0.1169
0.6 0.8874 0.9355 0.0645 0.1126
0.8 0.8919 0.9291 0.0709 0.1081
1 0.8966 0.9231 0.0769 0.1034

Table 10: Solutions for 𝑡 = 10.
𝛼 𝑠1 (𝑡, 𝛼) 𝑠2 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼)
0 0.4471 0.9046 0.0954 0.5529
0.2 0.4845 0.8810 0.1190 0.5155
0.4 0.5209 0.8564 0.1436 0.4791
0.6 0.5564 0.8308 0.1692 0.4436
0.8 0.5908 0.8043 0.1957 0.4092
1 0.6243 0.7768 0.2232 0.3757

se1(t, )

se2(t, )
ie1(t, )

ie2(t, )
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Figure 4: Solution for 𝑡 = 10.

increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem. The solution for 𝑠(𝑡) gives the
natural strong solution and 𝑖̃(𝑡) gives the natural strong
solution.

Case 2 (𝑠(𝑡) is (i)-gH and 𝑖(𝑡) is (ii)-gH differentiable).

Remarks 26. From Figure 6 and Table 11 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem. The solution for 𝑠(𝑡) gives


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Figure 5: Figure for 𝑡 = 10.

the natural weak solution but 𝑖̃(𝑡) gives the natural strong
solution.

Case 3 (𝑠(𝑡) is (ii)-gH and 𝑖(𝑡) is (i)-gH differentiable).

Remarks 27. From Figure 7 and Table 12 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem. The solution for 𝑠(𝑡) gives
the natural weak solution but 𝑖̃(𝑡) gives the natural strong
solution.
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Table 11: Solution for 𝑡 = 10.
𝛼 𝑠1 (𝑡, 𝛼) 𝑠2 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼)
0 0.7403 0.6601 0.1097 0.4899
0.2 0.7359 0.6662 0.1341 0.4638
0.4 0.7313 0.6722 0.1587 0.4378
0.6 0.7266 0.6782 0.1834 0.4118
0.8 0.7218 0.6840 0.2082 0.3860
1 0.7168 0.6898 0.2332 0.3602

Table 12: Solution for 𝑡 = 10.
𝛼 𝑠1 (𝑡, 𝛼) 𝑠2 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼)
0 0.7403 0.6601 0.1097 0.4899
0.2 0.7359 0.6662 0.1341 0.4638
0.4 0.7313 0.6722 0.1587 0.4378
0.6 0.7266 0.6782 0.1834 0.4118
0.8 0.7218 0.6840 0.2082 0.3860
1 0.7168 0.6898 0.2332 0.3602
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Figure 6: Figure for 𝑡 = 10.

Case 4 (𝑠(𝑡) and 𝑖(𝑡) is (ii)-gH differentiable).

Remarks 28. From Figure 8 and Table 13 it shows that 𝑠𝑖1(𝑡, 𝛼)
is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing whereas 𝑖𝑖1(𝑡, 𝛼) is
increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing.The figure demonstrates
the solution of the problem. The solution for 𝑠(𝑡) gives the
natural strong solution and 𝑖(𝑡) gives the natural strong
solution.

7.4. Numerical Example on Interval Cases. Find the solution
after 𝑡 = 10 when 𝑆 = [0.80, 0.95] and 𝐼 = [0.05, 0.20], when𝑚 = 0.3 and 𝛾 = 0.005.
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Figure 7: Solution for 𝑡 = 10.

Case 1 (when 𝑝 ̸= 0).
𝑠 (𝑡; 𝜆) = 1

− 0.295 (0.05)1−𝜆 (0.20)𝜆 𝑒0.295𝑡
0.3 (0.05)1−𝜆 (0.20)𝜆 (𝑒0.295𝑡 − 1) + 0.295 ,

𝑖 (𝑡; 𝜆) = 0.295 (0.05)1−𝜆 (0.20)𝜆 𝑒0.295𝑡
0.3 (0.05)1−𝜆 (0.20)𝜆 (𝑒0.295𝑡 − 1) + 0.295 .

(59)
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Table 13: Solution for 𝑡 = 10.
𝛼 𝑠1 (𝑡, 𝛼) 𝑠2 (𝑡, 𝛼) 𝑖1 (𝑡, 𝛼) 𝑖2 (𝑡, 𝛼)
0 0.6855 0.7376 0.2624 0.3145
0.2 0.6872 0.7317 0.2683 0.3128
0.4 0.6883 0.7254 0.2746 0.3117
0.6 0.6875 0.7171 0.2829 0.3125
0.8 0.6914 0.7143 0.2857 0.3086
1 0.6950 0.7114 0.2886 0.3050
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Figure 8: Figure for 𝑡 = 10.

Case 2 (when 𝑝 = 0).
𝑠 (𝑡; 𝜆) = 1 − (0.05)1−𝜆 (0.20)𝜆

1 + 0.3𝑡 (0.05)1−𝜆 (0.20)𝜆 ,

𝑖 (𝑡, 𝜆) = (0.05)1−𝜆 (0.20)𝜆
1 + 0.3𝑡 (0.05)1−𝜆 (0.20)𝜆 .

(60)

Remarks 29. From Figures 9 and 10 and Tables 14 and 15 it
shows that 𝑠𝑖1(𝑡, 𝛼) is increasing and 𝑠𝑖2(𝑡, 𝛼) is decreasing
whereas 𝑖𝑖1(𝑡, 𝛼) is increasing and 𝑖𝑖2(𝑡, 𝛼) is decreasing. The
figure demonstrates the solution of the problem.The solution
for 𝑠(𝑡) gives the natural strong solution but 𝑖(𝑡) gives the
natural strong solution.

8. Conclusion

In this paper we study the different solution strategies
for analyzing fuzzy differential equation and application in
mathematical biology model, namely, SIS model, which is

Table 14: Solution for 𝑡 = 10.
𝜆 𝑠 (𝑡; 𝜆) 𝑖(𝑡; 𝜆)
0 0.5026 0.4974
0.2 0.4309 0.5691
0.4 0.3610 0.6390
0.6 0.2955 0.7045
0.8 0.2361 0.7639
1 0.1840 0.8160

Table 15: Solution at 𝑡 = 10.
𝜆 𝑠 (𝑡; 𝜆) 𝑖 (𝑡, 𝜆)
0 0.9565 0.0435
0.2 0.9449 0.0551
0.4 0.9310 0.0690
0.6 0.9146 0.0854
0.8 0.8958 0.1042
1 0.8750 0.1250

considered to be an important area of research in biological
research. The approaches regarding fuzzy differential inclu-
sion, extension principle, and fuzzy differential equationwere
applied to find the fuzzy solutions of the given model. The
whole paper is concluded as follows:

(i) Demonstrating SIS model with fuzzy numbers which
enabled meeting the uncertain parameters as well,
which is appreciatively helpful for the decisionmakers
to investigate the situation in a more precise manner.

(ii) The different approaches having significant place in
fuzzy calculus efficiently made it possible to obtain
the fuzzy solution of the governingmodel by different
methods.

(iii) The use of correlated fuzzy number in the said model
is for finding the fuzzy solution.

Thus in the future we seek to apply these concepts to different
types of differential equation models in fuzzy environ-
ments.
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Figure 9: Figure at 𝑡 = 10.
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Figure 10: Figure at 𝑡 = 10.
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In this paper, using rational type contractions, common fuzzy fixed point result for Φ contractive mappings involving control
functions as coefficients of contractions in the setting of complex-valuedmetric space is established.The derived results generalizes
some result in the existing literature. To show the validity of the derived results an appropriate example and applications are also
discussed.

1. Introduction

Fixed point theory is considered to be the most interesting
and dynamic area of research in the development of nonlinear
analysis. In this area, Banach contraction principal [1] is
an initiative for researchers during last few decades. This
principal plays an important and key role in investigating the
existence and uniqueness of solution to various problems in
mathematics, physics, engineering, medicines, and social sci-
ences which leads to mathematical models design by system
of nonlinear integral equations, functional equations, and
differential equations. Banach contraction principal has been
generalized in different directions by changing the condition
of contraction or by the underlying space. For instance, we
refer to [2–8]. Particularly Dass and Gupta [9] extended the
Banach contraction principal for rational type inequality
and obtained fixed point results in metric space, which is
further extended to different spaces by many authors. In the
meanwhile researchers realized that where division occurs in
cone metric spaces, the concept of rational type contraction
is not meaningful.

To overcome this problem a newmetric space was recent-
ly established by Azam et al. [10], known as complex-valued
metric space, where the author obtained fixed point results
via rational type contractive condition.This work was further
extended by Sitthikul and Saejung [11]. Afterwards Rouzkard

and Imdad [12] extended the aforementioned results of
Azam et al. by obtaining common fixed point results which
satisfies certain rational contractions in complex-valuedmet-
rics spaces. Consequently in [13, 14], the authors extended
common fixed point results for multivalued mappings in
complex-valued metric space. In addition, Sintunavarat and
Kumam [15] derived common fixed point results by substi-
tuting the constant coefficients in contractive condition by
control functions.

Heilpern [16] established the concept of fuzzy mappings
and obtained fixed point results in metric linear space. He
generalized the results of [1, 17], under the consideration
of fuzzy mappings in complete metric linear spaces. Several
mathematicians extended the work of Heilpern in different
metric spaces for linear contraction. For instance, we refer to
[18–24]. While in [25], the author investigated for fuzzy com-
mon fixed point with rational contractive condition. The
concept of fuzziness is helpful in solving such real world
problems where uncertainty occurs and many authors solve
such problems by mathematical modeling in terms of fuzzy
differential equations. For instance in [26], the author investi-
gated the existence of solution for fuzzy differential equations.
Nieto [27] worked on Cauchy problems for continuous fuzzy
differential equations. Song et al. studied the global existence
of solutions to fuzzy differential equation [28]. Moreover, the
existence of fuzzy solution of first order initial value problem
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was studied in [29], which is lately extended to integrodif-
ferential equations [30]. Recently Long et al. [31] combined
the matrix convergent to zero technique with calculations
of fuzzy-valued functions, which is quite a new approach
to study the system of differential and partial differential
equations (PDE’s) in generalized fuzzy metric spaces. In
[32] Long et al. improved different results existing in the
literature on the existence of coincidence points for a pair
of mappings and studied applications to partial differential
equations with uncertainty. After the wide study of fuzziness
in the systemof differential equations, it has nowbeen studied
in fractional differential equations to obtain the existence
and uniqueness of fuzzy solution under Caputo generalized
Hukuhara differentiability; for instance, see [33].

In the current work, using rational type contraction,
common fuzzy fixed point results forΦ contractivemappings
are studied. The established results generalizes some results
from the exiting literature particularly the result of Joshi et
al. [34] for fuzzy mappings. Applications and appropriate
example are also provided.

2. Preliminaries

Definition 1 (see [10]). Assume C is the set of complex
numbers. For 𝜀1, 𝜀2 ∈ C we define a partial order ≾ on C as
follows:

(Ci) 𝜀1 ≾ 𝜀2 ⇔ Re(𝜀1) ≤ Re(𝜀2) and Im(𝜀1) ≤ Im(𝜀2);
(Cii) 𝜀1 ≺ 𝜀2 ⇔ Re(𝜀1) < Re(𝜀2) and Im(𝜀1) < Im(𝜀2);
(Ciii) 𝜀1⋨ 𝜀2 ⇔ Re(𝜀1) = Re(𝜀2) and Im(𝜀1) < Im(𝜀2);
(Civ) 𝜀1 = 𝜀2 ⇔ Re(𝜀1) = Re(𝜀2) and Im(𝜀1) = Im(𝜀2).

Clearly if 𝑎 ≤ 𝑏,⇒ 𝑎𝑧 ≾ 𝑏𝑧, for all 𝑧 ∈ C and for all 𝑎, 𝑏 ∈ R.
Note that if 𝜀1 ̸= 𝜀2 and one of (Ci), (Cii) and (Ciii) is satisfied
then 𝜀1⋨ 𝜀2, and we write 𝜀1 = 𝜀2 if only (Civ) is satisfied. Note
that

(i) 0 ≾ 𝜀1⋨ 𝜀2 ⇒ |𝜀1| < |𝜀2|, ∀𝜀1, 𝜀2 ∈ C;
(ii) 𝜀1 ≾ 𝜀2 and 𝜀2 ≺ 𝜀3 ⇒ 𝜀1 ≺ 𝜀3, ∀𝜀1, 𝜀2, 𝜀3 ∈ C.

Definition 2 (see [10]). Let X be a nonempty set and 𝑑 :
X × X → C be a mapping which satisfies the following
conditions:

(1) 0 ≾ 𝜌(𝑧, 𝑤), for all 𝑧, 𝑤 ∈ X and 𝜌(𝑧, 𝑤) = 0 if and
only if 𝑧 = 𝑤;

(2) 𝜌(𝑧, 𝑤) = 𝜌(𝑤, 𝑧), for all 𝑧, 𝑤 ∈ X;
(3) 𝜌(𝑧, 𝑤) ≾ 𝜌(𝑧, 𝑧1) + 𝜌(𝑧1, 𝑤), for all 𝑧, 𝑧1, 𝑤 ∈ X.

Then (X, 𝜌) is called a complex-valued metric space.

Definition 3 (see [10]). A point 𝑧 ∈ X is known as an interior
point of a set 𝑍 ⊆ X, if we find 0 ≺ 𝜖 ∈ C such that

B (𝑧, 𝜖) = {𝑤 ∈ X : 𝜌 (𝑧, 𝑤) ≺ 𝜖} ⊆ 𝑍. (1)

A point 𝑧 ∈ 𝑍 is known as the limit point of 𝑍, if there exists
an open ballB(𝑧, 𝜖) such that

B (𝑧, 𝜖) ∩ (𝑍 \ {𝑧}) ̸= 𝜙, (2)

where 0 ≺ 𝜖 ∈ C. A subset 𝑍 of X is said to be open if each
point of 𝑍 is an interior point of 𝑍. Furthermore, 𝑍 is said to
be closed if it contain all its limit points.
The family

B = {B (𝑧, 𝜖) : 𝑧 ∈ X, 0 ≺ 𝜖} (3)

is a subbasis for a Hausdorff topologyT onX.

Now recall some definitions from [13, 14].
Let (X, 𝜌) be a complex-valuedmetric space.Throughout

this paper we denoted the family of all nonempty closed
bounded subsets of complex-valued metric space X by
CB(X). For ] ∈ C we represent

𝑠 (]) = {𝑧 ∈ C : ] ⪯ 𝑧} (4)

and for 𝑤 ∈ X and 𝐵 ∈ CB(X).
𝑠 (𝑤, 𝐵) = ⋃

𝑏∈𝐵

𝑠 (𝜌 (𝑤, 𝑏)) = ⋃
𝑏∈𝐵

{𝑧 ∈ C : 𝜌 (𝑤, 𝑏) ⪯ 𝑧} . (5)

For 𝐴, 𝐵 ∈ CB(X), we denote
𝑠 (𝐴, 𝐵) = (⋂

𝑝∈𝐴

𝑠 (𝑝, 𝐵)) ∩ (⋂
𝑞∈𝐵

𝑠 (𝑞, 𝐴)) . (6)

Let 𝜏 be a multivaluedmapping fromX intoCB(X); for 𝑧 ∈
X and 𝑄 ∈ CB(X) we define

W𝑧 (𝑄) = {𝜌 (𝑧, 𝑞) : 𝑞 ∈ 𝑄} . (7)

Thus for 𝑧, 𝑤 ∈ X

W𝑧 (𝜏𝑤) = {𝜌 (𝑧, 𝑢) : 𝑢 ∈ 𝜏𝑤} . (8)

Lemma 4 (see [35]). Let (X, 𝜌) be complex-valued metric
space.

(i) Let 𝑧, 𝑤 ∈ C. If 𝑧 ⪯ 𝑤, then 𝑠(𝑧) ⊂ 𝑠(𝑤).
(ii) Let 𝑧 ∈ X and 𝐷 ∈ N(X). If 𝛿 ∈ 𝑠(𝑧, 𝐷), then 𝑧 ∈ 𝐷.
(iii) Let 𝑤 ∈ C, 𝑃, 𝑄 ∈ CB(X) and 𝑝 ∈ 𝑃. If V ∈ 𝑠(𝑃, 𝑄),

then 𝑧 ∈ 𝑠(𝑝, 𝑄) for all 𝑝 ∈ 𝑃 or 𝑧 ∈ 𝑠(𝑃, 𝑞) for all𝑞 ∈ 𝑄.

Definition 5 (see [10]). Let {𝑤𝑟} be a sequence in complex-
valued metric space (X, 𝜌) and 𝑤 ∈ X; then

(i) 𝑤 is a limit point of {𝑤𝑟} if for each 0 ≺ 𝜖 ∈ C there
exists 𝑟0 ∈ 𝑁 such that 𝜌(𝑤𝑟, 𝑤) ⪯ 𝜖 for all 𝑟 ⪰ 𝑟0 and
it is written as lim𝑟→∞𝑤𝑟 = 𝑤.

(ii) {𝑤𝑟} is a Cauchy sequence if for any 0 ≺ 𝜖 ∈ C there
exists 𝑟0 ∈ 𝑁 such that 𝜌(𝑤𝑟, 𝑤𝑟+𝑡) ≺ 𝜖 for all 𝑟 ≻ 𝑟0
where 𝑡 ∈ 𝑁.

(iii) we say that (X, 𝜌) is complete complex-valued metric
space if every Cauchy sequence in X converges to a
point inX.
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Definition 6 (see [18]). Let (𝑉, 𝜌) be a metric space. A fuzzy
set 𝐵 is characterized by its membership function 𝑓𝐵 :𝑉 → [0, 1]. A set of elements of 𝑉 along with its grade of
membership is called a fuzzy set. For simplicity we denote𝑓𝐵(𝑢) by 𝐵(𝑢). The 𝛼-level set of a fuzzy set 𝐵 is mentioned
by [𝐵]𝛼 and is defined as follows:

[𝐵]𝛼 = {𝑢 : 𝐵 (𝑢) ≥ 𝛼} if 𝛼 ∈ (0, 1] ,
[𝐵]0 = {𝑢 : 𝐵 (𝑢) > 0} . (9)

Definition 7 (see [18]). LetL(X) be the family of all fuzzy sets
in a metric spaceX. For 𝐺,𝐻 ∈ L(X), 𝐺 ⊂ 𝐻 means 𝐺(𝑧) ≤𝐻(𝑧) for each 𝑧 ∈ X.

Definition 8 (see [16]). Assume X is an arbitrary set and 𝑌
is a metric space. A mapping 𝐺 is called a fuzzy mapping if𝐺 : X → L(𝑌). A fuzzymapping𝐺 is a fuzzy subset onX×𝑌
with a membership function 𝐺(𝑥)(𝑦). The function 𝐺(𝑥)(𝑦)
is the grade of membership of 𝑦 in 𝐺(𝑥).
Definition 9 (see [20]). Assume that (X, 𝜌) is complex-valued
metric space and 𝐺1, 𝐺2 : X → L(X) are fuzzy mappings.
A point 𝑤 ∈ X is a fuzzy fixed point of 𝐺1 if 𝑤 ∈ [𝐺1𝑤]𝛼
where 𝛼 ∈ [0, 1] and a common fuzzy fixed point of 𝐺1, 𝐺2 if𝑤 ∈ [𝐺1𝑤]𝛼 ∩ [𝐺2𝑤]𝛼. If 𝛼 = 1 then 𝑤 is known as common
fixed point of fuzzy mappings.

Definition 10 (see [14]). Suppose (X, 𝜌) is complex-valued
metric space; the fuzzy mapping 𝐺1 : X → L(X) enjoys
the greatest lower bound property (glb property) on (X, 𝜌),
if, for any 𝑤 ∈ X and 𝛼 ∈ (0, 1], the greatest lower bound of𝑊𝑤([𝐺1𝑦]𝛼) exists in C for all 𝑤, 𝑦 ∈ X. Here we mention𝜌(𝑤, [𝐺1𝑦]𝛼) by the glb of 𝑊𝑤([𝐺1𝑦]𝛼). That is,

𝜌 (𝑤, [𝐺1𝑦]𝛼) = inf {𝜌 (𝑤, 𝑢) : 𝑢 ∈ [𝐺1𝑦]𝛼} . (10)

Remark 11 (see [13]). Let (X, 𝜌) be a complex-valued metric
space. If C = R, then (X, 𝜌) is a metric space. Furthermore𝐻(𝐴, 𝐵) = inf 𝑠(𝐴, 𝐵) is the Hausdorff distance induced by 𝜌,
where 𝐴, 𝐵 ∈ CB(X).
Definition 12 (see [34]). Suppose Ψ is a collection of nonde-
creasing functions, Φ : C → C, such that Φ(0) = 0 andΦ(𝑡) ≺ 𝑡, when 0 ≺ 𝑡.
3. Main Result

In this section we present our main results. To present the
main results we need the lemmas given below.

Lemma 13. Let (X, 𝜌) be complex-valued metric space and𝐺1, 𝐺2 : X → L(X) be fuzzy mappings, such that for each𝑤 ∈ X and some 𝛼 ∈ (0, 1] there exists [𝐺1𝑤]𝛼, [𝐺2𝑤]𝛼,
nonempty closed and bounded subsets of X. Let 𝑤0 ∈ X and
define the sequence {𝑤𝑘} by

𝑤2𝑘+1 ∈ [𝐺1𝑤2𝑘]𝛼 ,
𝑤2𝑘+2 ∈ [𝐺2𝑤2𝑘+1]𝛼 ,

∀𝑘 = 0, 1, 2, . . . .
(11)

Assume that there exists a mapping 𝜙 : X → [0, 1) such that𝜙(𝑢) ⪯ 𝜙(𝑤) for all 𝑢 ∈ [𝐺1𝑤]𝛼 and 𝜙(V) ⪯ 𝜙(𝑤) for all V ∈[𝐺2𝑤]𝛼. Then 𝜙(𝑤2𝑘) ⪯ 𝜙(𝑤0) and 𝜙(𝑤2𝑘+1) ⪯ 𝜙(𝑤1).
Proof. Suppose 𝑤 ∈ X and 𝑘 = 0, 1, 2, . . .. Then we have

𝜙 (𝑤2𝑘) ⪯ 𝜙 (𝑤2𝑘−2) for 𝑤2𝑘−1 ∈ [𝐺1𝑤2𝑘−2]𝛼 ,
⪯ 𝜙 (𝑤2𝑘−4) for 𝑤2𝑘−2 ∈ [𝐺1𝑤2𝑘−4]𝛼 ,
⪯ ⋅ ⋅ ⋅ ⪯ 𝜙 (𝑤0) .

(12)

Similarly we have

𝜙 (𝑤2𝑘+1) ⪯ 𝜙 (𝑤1) . (13)

Theorem 14. Suppose (X, 𝜌) is a complete complex-valued
metric space and 𝐺1, 𝐺2 : X → L(X) are fuzzy mappings
satisfying glb property. Assume that for each 𝑦 ∈ X and some𝛼 ∈ (0, 1] there exist [𝐺1𝑦]𝛼, [𝐺2𝑦]𝛼 which are nonempty
closed bounded subsets of X. Suppose there exist mappings𝜓𝑖 : X → [0, 1), 𝑖 = 1, . . . , 7 such that

(i) 𝜓𝑖(𝑢) ⪯ 𝜓𝑖(𝑦), 𝑖 = 1, . . . , 7 for all 𝑢 ∈ [𝐺1𝑦]𝛼 and𝑦 ∈ X;

(ii) 𝜓𝑖(V) ⪯ 𝜓𝑖(𝑦), 𝑖 = 1, . . . , 7 for all V ∈ [𝐺2𝑦]𝛼 and𝑦 ∈ X;

(iii) ∑𝜓𝑖(𝑦) + 2𝜓4(𝑦) < 1, 𝑖 = 1, 2, 3, 6, 7 ∀𝑦 ∈ X; and

Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼)
+ 𝜓3 (𝑦) 𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜓4 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) )
∈ 𝑠 ([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼)

(14)

for some Φ ∈ Ψ and for all 𝑦,𝑤 ∈ X. Then 𝐺1 and 𝐺2 have a
common fuzzy fixed point.
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Proof. Let 𝑦0 ∈ X and 𝑦1 ∈ [𝐺1𝑦0]𝛼. Using (14) with 𝑦 = 𝑦0
and 𝑤 = 𝑦1 we get

Φ(𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓5 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓6 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓7 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) )
∈ 𝑠 ([𝐺1𝑦0]𝛼 , [𝐺2𝑦1]𝛼) .

(15)

By Lemma 4(iii) we have

Φ(𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓5 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓6 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓7 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) )
∈ 𝑠 (𝑦1, [𝐺2𝑦1]𝛼) .

(16)

By definition there exists some 𝑦2 ∈ [𝐺2𝑦1]𝛼, such that

Φ(𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓5 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)

+ 𝜓6 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓7 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) )
∈ 𝑠 (𝜌 (𝑦1, 𝑦2)) .

(17)

Therefore

𝜌 (𝑦1, 𝑦2) ⪯ Φ(𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1)
+ 𝜓2 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓5 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓6 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓7 (𝑦0) 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) )
≺ 𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, [𝐺1𝑦0]𝛼)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼) + 𝜓4 (𝑦0)
⋅ 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) + 𝜓5 (𝑦0)
⋅ 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) + 𝜓6 (𝑦0)
⋅ 𝜌 (𝑦0, [𝐺1𝑦0]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) + 𝜓7 (𝑦0)
⋅ 𝜌 (𝑦1, [𝐺1𝑦0]𝛼) 𝜌 (𝑦0, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦0, 𝑦1) .

(18)

Using the glb property of 𝐺1 and 𝐺2 we have
𝜌 (𝑦1, 𝑦2) ⪯ 𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, 𝑦1)

+ 𝜓3 (𝑦0) 𝜌 (𝑦1, 𝑦2)
+ 𝜓4 (𝑦0) 𝜌 (𝑦0, 𝑦1) 𝜌 (𝑦0, 𝑦2)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓5 (𝑦0) 𝜌 (𝑦1, 𝑦1) 𝜌 (𝑦1, 𝑦2)1 + 𝜌 (𝑦0, 𝑦1)
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+ 𝜓6 (𝑦0) 𝜌 (𝑦0, 𝑦1) 𝜌 (𝑦1, 𝑦2)1 + 𝜌 (𝑦0, 𝑦1)
+ 𝜓7 (𝑦0) 𝜌 (𝑦1, 𝑦1) 𝜌 (𝑦0, 𝑦2)1 + 𝜌 (𝑦0, 𝑦1) .

(19)

It implies that

𝜌 (𝑦1, 𝑦2) ⪯ 𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, 𝑦1)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, 𝑦2) + 𝜓4 (𝑦0) 𝜌 (𝑦0, 𝑦2)
+ 𝜓6 (𝑦0) 𝜌 (𝑦1, 𝑦2)

⪯ 𝜓1 (𝑦0) 𝜌 (𝑦0, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦0, 𝑦1)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, 𝑦2) + 𝜓4 (𝑦0) 𝜌 (𝑦0, 𝑦1)
+ 𝜓4 (𝑦0) 𝜌 (𝑦1, 𝑦2) + 𝜓6 (𝑦0) 𝜌 (𝑦1, 𝑦2) .

(20)

Finally we get

𝜌 (𝑦1, 𝑦2) ⪯ 𝜇𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨𝜌 (𝑦1, 𝑦2)󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 , (21)

where

𝜇 = 𝜓1 (𝑦0) + 𝜓2 (𝑦0) + 𝜓4 (𝑦0)1 − (𝜓3 (𝑦0) + 𝜓4 (𝑦0) + 𝜓6 (𝑦0)) < 1. (22)

Now for 𝑦2 ∈ [𝐺2𝑦1]𝛼, consider
Φ(𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼)

+ 𝜓3 (𝑦2) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓5 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓7 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) )
∈ 𝑠 ([𝐺1𝑦2]𝛼 , [𝐺2𝑦1]𝛼) .

(23)

Using Lemma 4(iii) we get

Φ(𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)

+ 𝜓4 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓5 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓7 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) )
∈ 𝑠 ([𝐺1𝑦2]𝛼 , 𝑦2) .

(24)

By definition there exists 𝑦3 ∈ [𝐺1𝑦2]𝛼, such that

Φ(𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓5 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓7 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) )
∈ 𝑠 (𝜌 (𝑦3, 𝑦2)) .

(25)

Therefore

𝜌 (𝑦3, 𝑦2) ⪯ Φ(𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1)
+ 𝜓2 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)
+ 𝜓4 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓5 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓7 (𝑦2) 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) )
≺ 𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, [𝐺1𝑦2]𝛼)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼) + 𝜓4 (𝑦2)
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⋅ 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) + 𝜓5 (𝑦2)
⋅ 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) + 𝜓6 (𝑦2)
⋅ 𝜌 (𝑦2, [𝐺1𝑦2]𝛼) 𝜌 (𝑦1, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) + 𝜓7 (𝑦2)
⋅ 𝜌 (𝑦1, [𝐺1𝑦2]𝛼) 𝜌 (𝑦2, [𝐺2𝑦1]𝛼)1 + 𝜌 (𝑦2, 𝑦1) .

(26)

Again utilizing the greatest lower bound property of 𝐺1 and𝐺2 we get
𝜌 (𝑦3, 𝑦2) ⪯ 𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, 𝑦3)

+ 𝜓3 (𝑦2) 𝜌 (𝑦1, 𝑦2)
+ 𝜓4 (𝑦2) 𝜌 (𝑦2, 𝑦3) 𝜌 (𝑦2, 𝑦2)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓5 (𝑦2) 𝜌 (𝑦1, 𝑦3) 𝜌 (𝑦1, 𝑦2)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, 𝑦3) 𝜌 (𝑦1, 𝑦2)1 + 𝜌 (𝑦2, 𝑦1)
+ 𝜓7 (𝑦2) 𝜌 (𝑦1, 𝑦3) 𝜌 (𝑦2, 𝑦2)1 + 𝜌 (𝑦2, 𝑦1) .

(27)

It implies that

𝜌 (𝑦3, 𝑦2) ⪯ 𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, 𝑦3)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, 𝑦2) + 𝜓5 (𝑦2) 𝜌 (𝑦1, 𝑦3)
+ 𝜓6 (𝑦2) 𝜌 (𝑦2, 𝑦3)

⪯ 𝜓1 (𝑦2) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦2) 𝜌 (𝑦2, 𝑦3)
+ 𝜓3 (𝑦2) 𝜌 (𝑦1, 𝑦2) + 𝜓5 (𝑦2) 𝜌 (𝑦1, 𝑦2)
+ 𝜓5 (𝑦2) 𝜌 (𝑦2, 𝑦3) + 𝜓6 (𝑦2) 𝜌 (𝑦2, 𝑦3) .

(28)

Applying Lemma 13 we get

𝜌 (𝑦3, 𝑦2) ⪯ 𝜓1 (𝑦0) 𝜌 (𝑦2, 𝑦1) + 𝜓2 (𝑦0) 𝜌 (𝑦2, 𝑦3)
+ 𝜓3 (𝑦0) 𝜌 (𝑦1, 𝑦2) + 𝜓5 (𝑦0) 𝜌 (𝑦1, 𝑦2)
+ 𝜓5 (𝑦0) 𝜌 (𝑦2, 𝑦3) + 𝜓6 (𝑦0) 𝜌 (𝑦2, 𝑦3) .

(29)

Finally we get

𝜌 (𝑦3, 𝑦2) ⪯ ]𝜌 (𝑦2, 𝑦1)󵄨󵄨󵄨󵄨𝜌 (𝑦2, 𝑦3)󵄨󵄨󵄨󵄨 ≤ ] 󵄨󵄨󵄨󵄨𝜌 (𝑦1, 𝑦2)󵄨󵄨󵄨󵄨 , (30)

where

] = 𝜓1 (𝑦0) + 𝜓3 (𝑦0) + 𝜓5 (𝑦0)1 − (𝜓2 (𝑦0) + 𝜓5 (𝑦0) + 𝜓6 (𝑦0)) < 1. (31)

Inductively we can obtain a sequence {𝑦𝑛} in X such that𝑦2𝑟+1 ∈ [𝐺1𝑥2𝑟]𝛼, 𝑦2𝑟+2 ∈ [𝐺2𝑦2𝑟+1]𝛼 for 𝑟 = 0, 1, 2 . . ..
󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+1, 𝑦2𝑟+2)󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟, 𝑦2𝑟+1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+2, 𝑦2𝑟+3)󵄨󵄨󵄨󵄨 ≤ ] 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+1, 𝑦2𝑟+2)󵄨󵄨󵄨󵄨 . (32)

It implies that

󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+1, 𝑦2𝑟+2)󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟, 𝑦2𝑟+1)󵄨󵄨󵄨󵄨
≤ 𝜇] 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟−1, 𝑦2𝑟)󵄨󵄨󵄨󵄨
≤ 𝜇]𝜇 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟−2, 𝑦2𝑟−1)󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅
≤ 𝜇 (𝜇])𝑟 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+2, 𝑦2𝑟+3)󵄨󵄨󵄨󵄨 ≤ ] 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑟+1, 𝑦2𝑟+2)󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅
≤ (𝜇])𝑟+1 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 .

(33)

Then for 𝑠 < 𝑡, we have
𝜌 (𝑦2𝑠+1, 𝑦2𝑡+1) ⪯ 𝜌 (𝑦2𝑠+1, 𝑦2𝑠+2) + 𝜌 (𝑦2𝑠+2, 𝑦2𝑠+3)

+ 𝜌 (𝑦2𝑠+3, 𝑦2𝑠+4) + ⋅ ⋅ ⋅
+ 𝜌 (𝑦2𝑡, 𝑦2𝑡+1) ,

(34)

which implies that

󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑠+1, 𝑦2𝑡+1)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑠+1, 𝑦2𝑠+2)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑠+2, 𝑦2𝑠+3)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑠+3, 𝑦2𝑠+4)󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜌 (𝑦2𝑡, 𝑦2𝑡+1)󵄨󵄨󵄨󵄨
≤ [𝜇𝑡−1∑
𝑘=𝑠

(𝜇])𝑘 + 𝑡∑
𝑘=𝑠+1

(𝜇])𝑘] 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 .
(35)

Similarly we obtain

𝜌 (𝑦2𝑠, 𝑦2𝑡+1) ≤ [ 𝑡∑
𝑘=𝑠

(𝜇])𝑘 + 𝜇𝑡−1∑
𝑘=𝑠

(𝜇])𝑘] 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 ,
𝜌 (𝑦2𝑠, 𝑦2𝑡) ≤ [𝑡−1∑

𝑘=𝑠

(𝜇])𝑘 + 𝜇𝑡−1∑
𝑘=𝑠

(𝜇])𝑘] 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 ,
𝜌 (𝑦2𝑠+1, 𝑦2𝑡)

≤ [𝜇𝑡−1∑
𝑘=𝑠

(𝜇])𝑘 + 𝑡−1∑
𝑘=𝑠+1

(𝜇])𝑘] 󵄨󵄨󵄨󵄨𝜌 (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 .

(36)

Since (𝜇]) < 1, therefore {𝑦𝑟} is a Cauchy sequence in X.
Since X is complete so there exists 𝑙 ∈ X such that 𝑦𝑟 → 𝑙
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when 𝑟 → ∞. Now we have to prove that 𝑙 ∈ [𝐺1𝑙]𝛼 and𝑙 ∈ [𝐺2𝑙]𝛼. From (14) with 𝑦 = 𝑦2𝑟 and 𝑤 = 𝑙 we get
Φ(𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙) + 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼)

+ 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, [𝐺2𝑙]𝛼)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙) )
∈ 𝑠 ([𝐺1𝑦2𝑟]𝛼 , [𝐺2𝑙]𝛼) .

(37)

Since 𝑦2𝑟+1 ∈ [𝐺1𝑦2𝑟]𝛼, so by Lemma 4(iii) we have

Φ(𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙) + 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼)
+ 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, [𝐺2𝑙]𝛼)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙) )
∈ 𝑠 (𝑦2𝑟+1, [𝐺2𝑙]𝛼) .

(38)

By definition there exists some 𝑤𝑟 ∈ [𝐺2𝑙]𝛼, such that

Φ(𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙) + 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼)
+ 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, [𝐺2𝑙]𝛼)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)

+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙) )
∈ 𝑠 (𝜌 (𝑦2𝑟+1, 𝑤𝑟)) .

(39)

Therefore

𝜌 (𝑦2𝑟+1, 𝑤𝑟) ⪯ Φ(𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼)
+ 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, [𝐺2𝑙]𝛼)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑙, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, [𝐺1𝑦2𝑟]𝛼) 𝜌 (𝑦2𝑟, [𝐺2𝑙]𝛼)1 + 𝜌 (𝑦2𝑟, 𝑙) ) .

(40)

By using the greatest lower bound property of 𝐺1 and 𝐺2, we
have

𝜌 (𝑦2𝑟+1, 𝑤𝑟) ⪯ Φ(𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) + 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, 𝑤𝑟)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟+1, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) ) ⪯ 𝜓1 (𝑦2𝑟)
⋅ 𝜌 (𝑦2𝑟, 𝑙) + 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) + 𝜓3 (𝑦2𝑟)
⋅ 𝜌 (𝑙, 𝑤𝑟) + 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) + 𝜓6 (𝑦2𝑟)
⋅ 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) + 𝜓7 (𝑦2𝑟)
⋅ 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟+1, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) .

(41)
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Now by using triangular inequality, we get

𝜌 (𝑙, 𝑤𝑟) ⪯ 𝜌 (𝑙, 𝑦2𝑟+1) + 𝜌 (𝑦2𝑟+1, 𝑤𝑟)
⪯ 𝜌 (𝑙, 𝑦2𝑟+1) + 𝜓1 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑙)

+ 𝜓2 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1)
+ 𝜓3 (𝑦2𝑟) 𝜌 (𝑙, 𝑤𝑟)
+ 𝜓4 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦2𝑟) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦2𝑟) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦2𝑟) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟+1, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) .

(42)

Applying Lemma 13 we get

𝜌 (𝑙, 𝑤𝑟) ⪯ 𝜌 (𝑙, 𝑦2𝑟+1) + 𝜌 (𝑦2𝑟+1, 𝑤𝑟)
⪯ 𝜌 (𝑙, 𝑦2𝑟+1) + 𝜓1 (𝑦0) 𝜌 (𝑦2𝑟, 𝑙)

+ 𝜓2 (𝑦0) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) + 𝜓3 (𝑦0) 𝜌 (𝑙, 𝑤𝑟)
+ 𝜓4 (𝑦0) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓5 (𝑦0) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓6 (𝑦0) 𝜌 (𝑦2𝑟, 𝑦2𝑟+1) 𝜌 (𝑙, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙)
+ 𝜓7 (𝑦0) 𝜌 (𝑙, 𝑦2𝑟+1) 𝜌 (𝑦2𝑟+1, 𝑤𝑟)1 + 𝜌 (𝑦2𝑟, 𝑙) ,

(43)

which, on 𝑟 → ∞, reduced to

𝜌 (𝑙, 𝑤𝑟) ⪯ 𝜓3 (𝑦0) 𝜌 (𝑙, 𝑤𝑟)󵄨󵄨󵄨󵄨𝜌 (𝑙, 𝑤𝑟)󵄨󵄨󵄨󵄨 ≤ 𝜓3 (𝑦0) 󵄨󵄨󵄨󵄨𝜌 (𝑙, 𝑤𝑟)󵄨󵄨󵄨󵄨 . (44)

Since 𝜓3(𝑦0) < 1, so |𝜌(𝑙, 𝑤𝑟)| → 0 as 𝑟 → ∞. so we have𝑤𝑟 → 𝑙 as 𝑟 → ∞. Since [𝐺2𝑙]𝛼 is closed, so 𝑙 ∈ [𝐺2𝑙]𝛼.
Similarly, it follows that 𝑙 ∈ [𝐺1𝑙]𝛼. Thus we obtain that 𝐺1
and 𝐺2 have common fixed points.

Corollary 15. Let (X, 𝜌) be a complete complex-valuedmetric
space and𝐺1 : X → L(X) be fuzzymappingwith glb property.
For each 𝑦 ∈ X there exists 𝛼 ∈ (0, 1] such that [𝐺1𝑦]𝛼
is nonempty closed bounded subset of X. Then there exists
mappings 𝜓𝑖 : X → [0, 1), 𝑖 = 1, . . . , 7 with

(i) 𝜓𝑖(𝑢) ⪯ 𝜓𝑖(𝑦), 𝑖 = 1, 2, . . . , 7 for all 𝑢 ∈ [𝐺1𝑦]𝛼 and∀𝑦 ∈ X;

(ii) ∑𝜓𝑖(𝑦) + 2𝜓4(𝑦) < 1, where 𝑖 = 1, 2, 3, 6, 7 ∀𝑦 ∈ X;
and

Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼)
+ 𝜓3 (𝑦) 𝜌 (𝑤, [𝐺1𝑤]𝛼)
+ 𝜓4 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺1𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺1𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺1𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺1𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) )
∈ 𝑠 ([𝐺1𝑦]𝛼 , [𝐺1𝑤]𝛼) ,

(45)

for someΦ ∈ Ψ and for all 𝑦,𝑤 ∈ X.Then𝐺1 has a fuzzy fixed
point.

Proof. Proof is immediate on setting 𝐺1 = 𝐺2 inTheorem 14.

Corollary 16. Let (X, 𝜌) be a complete complex-valuedmetric
space and 𝐺1, 𝐺2 : X → L(X) be fuzzy mappings with glb
property. For each 𝑦 ∈ X there exists some 𝛼 ∈ (0, 1] such that[𝐺1𝑦]𝛼, [𝐺2𝑦]𝛼, nonempty closed bounded subsets ofX. Then
there exist mappings 󰜚, 𝜎, 𝛾, 𝜉, 𝜁, 𝜆, 𝜂 : X → [0, 1) with

(i) 󰜚(𝑢) ⪯ 󰜚(𝑦), 𝜎(𝑢) ⪯ 𝜎(𝑦), 𝛾(𝑢) ⪯ 𝛾(𝑦), 𝜉(𝑢) ⪯ 𝜉(𝑦),𝜁(𝑢) ⪯ 𝜁(𝑦), 𝜆(𝑢) ⪯ 𝜆(𝑦), 𝜂(𝑢) ⪯ 𝜂(𝑦) for all 𝑢 ∈[𝐺1𝑦]𝛼 and 𝑦 ∈ X;
(ii) 󰜚(V) ⪯ 󰜚(𝑤), 𝜎(V) ⪯ 𝜎(𝑤), 𝛾(V) ⪯ 𝛾(𝑤), 𝜉(V) ⪯ 𝜉(𝑤),𝜁(V) ⪯ 𝜁(𝑤), 𝜆(V) ⪯ 𝜆(𝑤), 𝜂(V) ⪯ 𝜂(𝑤) for all V ∈[𝐺2𝑤]𝛼 and 𝑤 ∈ X;
(iii) 󰜚(𝑦)+𝜎(𝑦)+𝛾(𝑦)+2𝜉(𝑦)+𝜁(𝑦)+𝜆(𝑦)+𝜂(𝑦) ⪯ 1 ∀𝑦 ∈

X; and

󰜚 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜎 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼)+ 𝛾 (𝑦) 𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜉 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜁 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜆 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜂 (𝑥) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)

∈ 𝑠 ([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼) ,

(46)

∀𝑦, 𝑤 ∈ X; then 𝐺1 and 𝐺2 have a common fuzzy fixed point.
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Proof. It can be easily proven by letting Φ(𝑡) = 𝑝𝑡 where𝑝 ∈ (0, 1) in Theorem 14 with 󰜚(𝑦) = 𝑝𝜓1(𝑦), 𝜎(𝑦) =𝑝𝜓2(𝑦), 𝛾(𝑦) = 𝑝𝜓3(𝑦), 𝜉(𝑦) = 𝑝𝜓4(𝑦), 𝜁(𝑦) = 𝑝𝜓5(𝑦),𝜆(𝑦) = 𝑝𝜓6(𝑦), 𝜂(𝑦) = 𝑝𝜓7(𝑦).
Corollary 17. Suppose (X, 𝜌) is a complete complex-valued
metric space and 𝐺1, 𝐺2 : X → L(X) are fuzzy mappings
enjoying glb property. For each 𝑦 ∈ X there exists some𝛼 ∈ (0, 1] such that [𝐺1𝑦]𝛼, [𝐺2𝑦]𝛼, nonempty closed bounded
subsets ofX with

󰜚𝜌 (𝑦, 𝑤) + 𝜎𝜌 (𝑦, [𝐺1𝑦]𝛼) + 𝛾𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜉𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜁𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜆𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜂𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)

∈ 𝑠 ([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼) ,

(47)

for all 𝑦,𝑤 ∈ X and 󰜚, 𝜎, 𝛾, 𝜉, 𝜁, 𝜆, 𝜂 are nonnegative reals with󰜚 + 𝜎+ 𝛾+ 2𝜉 + 𝜁 + 𝜆+ 𝜂 < 1. Then 𝐺1 and 𝐺2 have a common
fuzzy fixed point.

Proof. It can be easily proven by setting 󰜚(𝑦) = 󰜚, 𝜎(𝑦) = 𝜎,𝛾(𝑦) = 𝛾, 𝜉(𝑦) = 𝜉, 𝜁(𝑦) = 𝜁, 𝜆(𝑦) = 𝜆, 𝜂(𝑦) = 𝜂
in Corollary 16 with 󰜚, 𝜎, 𝛾, 𝜉, 𝜁, 𝜆, 𝜂 being nonnegative reals
such that 󰜚 + 𝜎 + 𝛾 + 2𝜉 + 𝜁 + 𝜆 + 𝜂 < 1.

Using Remark 11 we get the following corollaries from
Theorem 14.

Corollary 18. Suppose (X, 𝜌) is a complete metric space and𝐺1, 𝐺2 : X → L(X) are fuzzy mappings with glb property.
For each 𝑦 ∈ X related to some 𝛼 ∈ (0, 1] there exists[𝐺1𝑦]𝛼, [𝐺2𝑦]𝛼, nonempty closed bounded subsets ofX. Then
there exist mappings 𝜓𝑖 : X → [0, 1), 𝑖 = 1, 2, . . . , 7 such that

(i) 𝜓𝑖(𝑢) ≤ 𝜓𝑖(𝑦), for all 𝑢 ∈ [𝐺1𝑦]𝛼 and ∀𝑦 ∈ X;
(ii) 𝜓𝑖(V) ≤ 𝜓𝑖(𝑦), for all V ∈ [𝐺2𝑦]𝛼 and ∀𝑦 ∈ X;
(iii) ∑𝜓𝑖(𝑦) + 2𝜓4(𝑦) < 1, 𝑖 = 1, 2, 3, 5, 6, 7 ∀𝑦 ∈ X; and

𝐻([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼) ≤ Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤)
+ 𝜓2 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) + 𝜓3 (𝑦) 𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜓4 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)

+ 𝜓6 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) ) ,

(48)

for some Φ ∈ Ψ and for all 𝑦,𝑤 ∈ X. Then 𝐺1 and 𝐺2 have a
common fuzzy fixed point.

Corollary 19. Suppose (X, 𝜌) is complete metric space and𝐺1, 𝐺2 : X → L(X) is fuzzy mappings with glb property.
For each 𝑦 ∈ X there exists some 𝛼 ∈ (0, 1] such that[𝐺1𝑦]𝛼, [𝐺2𝑦]𝛼, nonempty closed bounded subsets of X such
that

𝐻([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼)
≤ 󰜚𝜌 (𝑦, 𝑤) + 𝜎𝜌 (𝑦, [𝐺1𝑦]𝛼) + 𝛾𝜌 (𝑤, [𝐺2𝑤]𝛼)

+ 𝜉𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜁𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜆𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜂𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) ,

(49)

for all 𝑦,𝑤 ∈ X and 󰜚, 𝜎, 𝛾, 𝜉, 𝜁, 𝜆, 𝜂 are nonnegative reals with󰜚 + 𝜎+ 𝛾+ 2𝜉 + 𝜁 + 𝜆+ 𝜂 < 1. Then 𝐺1 and 𝐺2 have a common
fuzzy fixed point.

Proof. By putting 󰜚(𝑦) = 𝜓1(𝑦), 𝜎(𝑦) = 𝜓2(𝑦), 𝛾(𝑦) =𝜓3(𝑦), 𝜉(𝑦) = 𝜓4(𝑦), 𝜁(𝑦) = 𝜓5(𝑦), 𝜆(𝑦) = 𝜓6(𝑦), 𝜂(𝑦) =𝜓7(𝑦) in Corollary 18, it can be easily proven.

4. Application

Theorem 20. Let (X, 𝜌) be a complete complex-valued metric
space and 𝐺1, 𝐺2 : X → CB(X) be multivalued mapping
with glb property. If there exist mappings 𝜓𝑖 : X → [0, 1), 𝑖 =1, 2, . . . , 7 such that

(i) 𝜓𝑖(𝑢) ⪯ 𝜓𝑖(𝑦) for all 𝑢 ∈ 𝐺1𝑦 and ∀𝑦 ∈ X;
(ii) 𝜓𝑖(V) ⪯ 𝜓𝑖(𝑦) for all V ∈ 𝐺2𝑦 and ∀𝑦 ∈ X;
(iii) 𝜓𝑖(𝑦) + 2𝜓4(𝑦) < 1, 𝑖 = 1, 2, 3, 5, 6, 7 ∀𝑦 ∈ X; and

Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, 𝐺1𝑦)
+ 𝜓3 (𝑦) 𝜌 (𝑤, 𝐺2𝑤)
+ 𝜓4 (𝑦) 𝜌 (𝑦, 𝐺1𝑦) 𝜌 (𝑦, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
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+ 𝜓5 (𝑦) 𝜌 (𝑤, 𝐺1𝑦) 𝜌 (𝑤, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, 𝐺1𝑦) 𝜌 (𝑤, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, 𝐺1𝑦) 𝜌 (𝑦, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤) ) ∈ 𝑠 (𝐺1𝑦, 𝐺2𝑤) ,

(50)

for some Φ ∈ Ψ and for all 𝑦,𝑤 ∈ X, then 𝐺1 and 𝐺2 have a
common fixed point.

Proof. Let the fuzzy mapping 𝑆, 𝑇 : X → L(X) be defined by
𝑆𝑦 = {{{

𝛼 if 𝑦 ∈ 𝐺1𝑦
0 if 𝑦 ∉ 𝐺1𝑦.

𝑇𝑦 = {{{
𝛼 if 𝑦 ∈ 𝐺2𝑦
0 if 𝑦 ∉ 𝐺2𝑦.

(51)

Then for any 𝛼 ∈ (0, 1, 𝑆𝑦]𝛼 = 𝐺1𝑦 and [𝑇𝑦]𝛼 = 𝐺2𝑦.
Since for every 𝑦,𝑤 ∈ X, 𝑠([𝑆𝑦]𝛼, [𝑇𝑤]𝛼) = 𝑠(𝐺1𝑦, 𝐺2𝑤),

therefore Theorem 14 can be applied to obtain some points𝑢 ∈ X such that 𝑢 ∈ 𝐺1(𝑢) ∩ 𝐺2(𝑢).
Corollary 21. Let (X, 𝜌) be a complete complex-valuedmetric
space and 𝐺1, 𝐺2 : X → CB(X) be multivalued mapping
with glb property. Suppose there exist mappings 𝜓𝑖 : X →[0, 1), 𝑖 = 1, 2, . . . , 7 such that

(i) 𝜓𝑖(𝑢) ⪯ 𝜓𝑖(𝑦) for all 𝑢 ∈ 𝐺1𝑦 and ∀𝑦 ∈ X;
(ii) 𝜓𝑖(V) ⪯ 𝜓𝑖(𝑦) for all V ∈ 𝐺2𝑦 and ∀𝑦 ∈ X;
(iii) 𝜓𝑖(𝑦) + 2𝜓4(𝑦) < 1, 𝑖 = 1, 2, 3, 5, 6, 7 ∀𝑦 ∈ X; and

𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, 𝐺1𝑦)
+ 𝜓3 (𝑦) 𝜌 (𝑤, 𝐺2𝑤)
+ 𝜓4 (𝑦) 𝜌 (𝑦, 𝐺1𝑦) 𝜌 (𝑦, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, 𝐺1𝑦) 𝜌 (𝑤, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, 𝐺1𝑦) 𝜌 (𝑤, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, 𝐺1𝑦) 𝜌 (𝑦, 𝐺2𝑤)1 + 𝜌 (𝑦, 𝑤)

∈ 𝑠 (𝐺1𝑦, 𝐺2𝑤) .

(52)

Then 𝐺1 and 𝐺2 have a common fixed point.

Proof. It can be proven by the same way as Corollary 16.

Remark 22. (i) Theorem 20 is actually Theorem 2.3 of [34].
(ii) By setting 𝜓2(𝑦) = 𝜓3(𝑦) = 𝜓4(𝑦) = 𝜓5(𝑦) =0, 𝜓1(𝑦) = 󰜚, 𝜓6(𝑦) = 𝜆, 𝜓7(𝑦) = 𝜂 in Corollary 21, we get

Theorem 9 of [13].
(iii) By setting 𝜓1(𝑦) = 𝜓4(𝑦) = 𝜓5(𝑦) = 𝜓7 = 0, 𝜓2(𝑦) =𝜎, 𝜓3(𝑦) = 𝛾, 𝜓6(𝑦) = 𝜆 in Corollary 21 we obtain Theorem15 of [13].
(iv) By setting 𝜓2(𝑦) = 𝜓3(𝑦) = 0, 𝜓1(𝑦) = 󰜚, 𝜓4(𝑦) =𝜉, 𝜓5(𝑦) = 𝜁, 𝜓6(𝑦) = 𝜆, 𝜓7(𝑦) = 𝜂 in Corollary 21 we get

Theorem 9 of [36].
(v) By setting 𝜎 = 𝛾 = 𝜉 = 𝜁 = 0 in Corollary 17, we get

Theorem 12 of [25].
(vi) By setting 󰜚 = 𝜉 = 𝜁 = 𝜂 = 0 in Corollary 17, we get

Theorem 19 of [25].
Example 23. LetX = [0, 1] and 𝜌 : X×X → C be complex-
valued metric space defined by 𝜌(𝑦, 𝑤) = |𝑦 − 𝑤|𝑒 ̇𝜄(𝜋/12), for
all 𝑦,𝑤 ∈ X.

Let 𝛼 ∈ (0, 1] and𝐺1, 𝐺2 : X → L(X) be fuzzy mappings
defined by

𝐺1 (0) (𝑟) =
{{{{{{{{{{{

1 if 𝑟 = 012 if 0 < 𝑟 ≤ 𝑦500 if
𝑦50 < 𝑟 ≤ 1,

𝐺2 (0) (𝑟) =
{{{{{{{{{{{

1 if 𝑟 = 016 if 0 < 𝑟 ≤ 𝑦1500 if
𝑦150 < 𝑟 ≤ 1,

(53)

if 𝑦 ̸= 0,

𝐺1 (𝑦) (𝑟) =
{{{{{{{{{{{{{

𝛼 if 0 ≤ 𝑟 ≤ 𝑦75𝛼3 if
𝑦75 < 𝑟 ≤ 𝑦10𝛼4 if
𝑦10 < 𝑟 ≤ 1,

𝐺2 (𝑦) (𝑟) =
{{{{{{{{{{{{{

𝛼 if 0 ≤ 𝑟 ≤ 𝑦40𝛼2 if
𝑦40 < 𝑟 ≤ 𝑦20𝛼5 if
𝑦20 < 𝑟 ≤ 1.

(54)

Let 𝜓1, 𝜓2, 𝜓3, 𝜓4, 𝜓5, 𝜓6, 𝜓7 : X → [0, 1) be defined by𝜓1(𝑦) = (𝑦 + 1)/74, 𝜓2(𝑦) = 𝑦/10, 𝜓3(𝑦) = 𝑦/20, 𝜓4(𝑦) =𝑦/30, 𝜓5(𝑦) = 𝑦/60, 𝜓6(𝑦) = 𝑦/40.
Then for 𝑦 = 0, [𝐺10]1 = [𝐺20]1 = {0} and ∀𝑦, 𝑤 ̸=0 [𝐺1𝑦]𝛼 = [0, 𝑦/75] and [𝐺2𝑦]𝛼 = [0, 𝑦/40].
And then

W𝑤 ([𝐺1𝑦]𝛼) = {𝜌 (𝑤, 𝑢) : 𝑢 ∈ [0, 𝑦75]}
W𝑤 ([𝐺2𝑦]𝛼) = {𝜌 (𝑤, 𝑢) : 𝑢 ∈ [0, 𝑦40]} . (55)
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Let 𝜌(𝑤, [𝐺1𝑤]𝛼) and 𝜌(𝑤, [𝐺2𝑤]𝛼) be the greatest lower
bound ofW𝑤([𝐺1𝑦]𝛼) andW𝑤([𝐺2𝑦]𝛼). Then

𝜌 (𝑤, [𝐺1𝑦]𝛼) = {{{{{{{
0 if 𝑤 ≤ 𝑦75
(𝑤 − 𝑦75) 𝑒 ̇𝜄(𝜋/12) if 𝑤 > 𝑦75 ,

𝜌 (𝑦, [𝐺2𝑤]𝛼) = {{{{{
0 if 𝑦 ≤ 𝑦40
(𝑦 − 𝑤40) 𝑒 ̇𝜄(𝜋/12) if 𝑥 > 𝑤40 ;

(56)

also 𝜌(𝑦, [𝐺1𝑦]𝛼) = (74𝑦/75)𝑒 ̇𝜄(𝜋/12), and 𝜌(𝑤, [𝐺2𝑤]𝛼) =(39𝑤/40)𝑒 ̇𝜄(𝜋/12).
It can be easily verified that 𝜓𝑖(𝑢) ≤ 𝜓𝑖(𝑤), ∀𝑢 ∈ [𝐺1𝑦]𝛼

and 𝜓𝑖(V) ≤ 𝜓𝑖(𝑤), ∀V ∈ [𝐺2𝑦]𝛼. Moreover if 𝜛𝑦𝑤 ∈ C such
that

𝜛𝑦𝑤 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑦75 − 𝑤40
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 √2𝑒 ̇𝜄(𝜋/12), (57)

then
𝑠 ([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼) = {𝜔 ∈ C : 𝜛𝑦𝑤 ⪯ 𝜔} . (58)

Consider

Φ(𝜓1 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑦, 𝑤)󵄨󵄨󵄨󵄨 + 𝜓2 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑦, [𝐺1𝑦]𝛼)󵄨󵄨󵄨󵄨
+ 𝜓3 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑤, [𝐺2𝑤]𝛼)󵄨󵄨󵄨󵄨
+ 𝜓4 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑦, [𝐺1𝑦]𝛼)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜌 (𝑦, [𝐺2𝑤]𝛼)󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝜌 (𝑦, 𝑤)󵄨󵄨󵄨󵄨
+ 𝜓5 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑤, [𝐺1𝑦]𝛼)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜌 (𝑤, [𝐺2𝑤]𝛼)󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝜌 (𝑦, 𝑤)󵄨󵄨󵄨󵄨
+ 𝜓6 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑦, [𝐺1𝑦]𝛼)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜌 (𝑤, [𝐺2𝑤]𝛼)󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝜌 (𝑦, 𝑤)󵄨󵄨󵄨󵄨
+ 𝜓7 (𝑦) 󵄨󵄨󵄨󵄨𝜌 (𝑤, [𝐺1𝑦]𝛼)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜌 (𝑦, [𝐺2𝑤]𝛼)󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝜌 (𝑦, 𝑤)󵄨󵄨󵄨󵄨 ) ;

(59)

then clearly for 𝜓1(𝑦) = (𝑦 + 1)/74, 𝜓2(𝑦) = 𝑦/10, 𝜓3(𝑦) =𝑦/20, 𝜓4(𝑦) = 𝑦/30, 𝜓5(𝑦) = 𝑦/60, 𝜓6(𝑦) = 𝑦/40, 𝜓7 =𝑦/25 and Φ(𝑡) = 74𝑡/75.󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑦75 − 𝑤40
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 7475 (𝑦 + 174 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨 + 𝑦10

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 74𝑦75
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑦20
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 39𝑤40

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑦30
󵄨󵄨󵄨󵄨74𝑦/75󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦 − 𝑤/40󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨

+ 𝑦60
󵄨󵄨󵄨󵄨𝑤 − 𝑦/75󵄨󵄨󵄨󵄨 |39𝑤/40|1 + 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨

+ 𝑦40
󵄨󵄨󵄨󵄨74𝑦/75󵄨󵄨󵄨󵄨 |39𝑤/40|1 + 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨

+ 𝑦75
󵄨󵄨󵄨󵄨𝑤 − 𝑦/75󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦 − 𝑤/40󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨 )

(60)

which can be easily calculated by

7475 (𝑦 + 174 󵄨󵄨󵄨󵄨𝑦 − 𝑤󵄨󵄨󵄨󵄨) = 7425 ( 174 󵄨󵄨󵄨󵄨󵄨𝑦2 + 𝑦 − 𝑤 − 𝑦𝑤󵄨󵄨󵄨󵄨󵄨)
≥ 175 (󵄨󵄨󵄨󵄨𝑦 − 𝑤 − 𝑦𝑤󵄨󵄨󵄨󵄨)
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦75 − 𝑤 (1 + 𝑦)75
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑦75 − 𝑤75
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑦75 − 𝑤40
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(61)

The remaining terms of (59) are nonzero reals. Consequently
we can obtain

Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼)
+ 𝜓3 (𝑦) 𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜓4 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) ) ⪰ 𝜛𝑦𝑤.

(62)

Therefore

Φ(𝜓1 (𝑦) 𝜌 (𝑦, 𝑤) + 𝜓2 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼)
+ 𝜓3 (𝑦) 𝜌 (𝑤, [𝐺2𝑤]𝛼)
+ 𝜓4 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓5 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓6 (𝑦) 𝜌 (𝑦, [𝐺1𝑦]𝛼) 𝜌 (𝑤, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤)
+ 𝜓7 (𝑦) 𝜌 (𝑤, [𝐺1𝑦]𝛼) 𝜌 (𝑦, [𝐺2𝑤]𝛼)1 + 𝜌 (𝑦, 𝑤) )
∈ 𝑠 ([𝐺1𝑦]𝛼 , [𝐺2𝑤]𝛼) .

(63)

Hence all conditions of Theorem 14 are satisfied by 𝐺1, 𝐺2;
therefore there exists 0 ∈ X such that 0 ∈ [𝐺10]𝛼 ∩ [𝐺20]𝛼.
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This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO) Fuzzy Optimal Model Predictive
Control (FOMPC) using the Adaptive Particle Swarm Optimization (APSO) algorithm. The aim of this proposed control, called
FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This
is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on
the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS) fuzzy system whose parameters are
identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to
two nonlinear processes, Continuous Stirred Tank Reactor (CSTR) and Tank system, where the proposed approach provides better
performances compared with other methods.

1. Introduction

Predictive control is a member of advanced discrete-time
process control algorithms. This control algorithm is based
on the use of an explicit process model to predict the
manipulated variables and thus the future control actions
are optimized throughout a finite horizon. To obtain a good
performance, a process model describing the effects of all
the different inputs on all the outputs must be developed.
Although the linear model predictive control is suitable for
processes that are not highly nonlinear, this strategy has
been applied in the control of nonlinear systems, whether
for SISO systems [1–3] or for MIMO systems [4–7]. But
many industrial processes have strong nonlinearities and
predictive control is applied in order to provide satisfactory
control results. Two problems have appeared because of the
introduction of nonlinearities in the predictive control.

(i) The first of the problems is that the modeling of
processes is much more difficult and complex than
the linear case. fuzzy logic is among the most used
strategies in all areas [4]. Despite the fact that this
strategy has been developed in the last few years,

the fuzzy models of the TS type remain among the
most used methods to deal with the MPC control for
nonlinear systems (NMPC), because of their capacity
to give an accurate approximation of the complex
nonlinear MIMO systems.

(ii) The second important problem in nonlinear pre-
dictive control is the solving of the optimization
problem. Conventional optimization methods, such
as the gradient search method, used for designing
the state feedback controller are restricted to the
eigenvalues of the linear system matrix that not only
increases the difficulty but also takes long time to find
the global optimum solution [8]. Hence, evolutionary
computation (EC) can be considered an alternative
method to solve this type of optimization problem.
In literature, plenty of works have been reported
to solve the control optimization problems using
EC techniques because they do not require explicit
gradient information for optimization.

Particle Swarm Optimization (PSO), introduced by [9],
is a population based metaheuristic search (MS) algorithm,
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Figure 1: Problem principle of optimal control.

which emulates the collaborative behaviour of bird flocking
and fish schooling in searching for foods. In addition, unlike
other heuristic optimization methods, PSO has a flexible
and well-balanced mechanism to enhance the global and
local exploration abilities. Since the introduction of PSO,
many works based on MPC have been solved using PSO
because it is not largely affected by the size and nonlinearity
of the problem. Reference [10] introduces an approach
for designing an adaptive fuzzy model predictive control
using the PSO algorithm (AFMPC-PSO). In [11], a type of
MPC is proposed using Chaos Particle Swarm Optimization
(CPSO). First, for the modeling phase, the TS fuzzy model
is employed to approximate the nonlinear system. Second,
we introduce CPSO intoMPC using a modified performance
criterion in order to provide less computational controller’s
expression.

Although these methods have represented effective solu-
tions to the problemof theMPC control of nonlinear systems,
there is the problem of choice of control parameters. Several
studies have shown the influence of these parameters on the
quality of the responses of the systems treated. To overcome
this problem, this paper presents a method of tuning the
weight parameters of the performance function according to
the output quantities detected from the system. One of the
challenges in MPC is how control parameters can be tuned
for various target systems, and the use of APSO for automatic
tuning is one of the solutions. Firstly, for the modeling
phase, the TS fuzzy model is employed to approximate the
nonlinear system. In the second step, we used the principle
of optimal control to calculate the control law of each linear
subsystem.Then, we introduceAPSO algorithm to determine
the best weight parameters of the performance function using
a performance criterion in order to improve the quality of the
response with a minimum of energy.

The rest of the paper is organized as follows. Section 2
presents the influence of weights existing in the objective
function on the quality of system performances. Section 3
reviewed the TS fuzzy model and the OMPC design method.
Themain contribution of this paper is presented in Section 4.
In order to show the good performance of the proposal
approach, simulation results are given in Section 5. Finally,
Section 6 concludes.

2. Statement

The MPC control is a method of designing process control
systems with feedback. This designing is carried out by the
online repetition of a procedure that includes inputting data
to a system of the initial input values. The principle of
calculating the control law is the resolution of an optimal
control problem using the present output values. So, the
MPC control is a special case of the optimal control whose

horizon is finite. It is recalled that this command minimizes
the function described above. However, when the horizon is
infinite, we speak of optimal control. The objective function
is written as follows:

𝐽𝑐𝑜 =
𝑛𝑦∑
𝑖=1

Γ𝑦𝑖 (𝑦𝑟𝑖 − 𝑦𝑖)2 +
𝑛𝑢∑
𝑖=1

Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2 , (1)

where Γ𝑦𝑖, Γ𝑢𝑖 are the weight values of the outputs and inputs.𝑢𝑟𝑖 are the control instructions that are defined beforehand
based on an expertise of the system. The partial derivative of
the objective function described by (1) is as follows:

𝜕𝐽𝑐𝑜𝜕𝑢 = 𝜕∑𝑛𝑦𝑖=1 Γ𝑦𝑖 (𝑦𝑟𝑖 − 𝑦𝑖)2 + ∑𝑛𝑢𝑖=1 Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2𝜕𝑢 . (2)

By applying the principle of the optimal control, we obtain
the following:

𝑢𝑜𝑝 (𝑘) = 𝜕𝐽𝑐𝑜 (𝑦, 𝑢, Γ𝑦𝑖, Γ𝑢𝑖)
𝜕𝑢 . (3)

The structure of the loop system based on OMPC illustrating
this method is shown in Figure 1. According to (1), the
criterion 𝐽𝑐𝑜 depends strongly on the weights Γ𝑖 = [Γ𝑦𝑖, Γ𝑢𝑖].
These weights directly affect the performances index (Pi) of
the system studied, such as overshoot (Ov%), settling time
(Ts), rise time (Tr), and static error (Es).

To show the importance of the choice of these parameters
on the response of the system in closed loop, we consider
the following a multivariable linear system. This system is
described by the following equations:

𝑥11 (𝑘) = 0.9401𝑥11 (𝑘 − 1) + 𝑢1 (𝑘 − 1)
𝑥12 (𝑘) = 0.9524𝑥12 (𝑘 − 1) + 𝑢2 (𝑘 − 1)
𝑥21 (𝑘) = 0.9083𝑥21 (𝑘 − 1) + 𝑢1 (𝑘 − 1)
𝑥22 (𝑘) = 0.9306𝑥22 (𝑘 − 1) + 𝑢2 (𝑘 − 1)
𝑦1 (𝑘) = −0.7664𝑥11 (𝑘) + 0.9𝑥12 (𝑘)
𝑦2 (𝑘) = −0.6055𝑥21 (𝑘) + 1.3472𝑥22 (𝑘) .

(4)

The criterion to be minimized is:

𝐽𝑐𝑜 =
2∑
𝑖=1

Γ𝑦𝑖 (𝑦𝑖 − 𝑦𝑟𝑖)2 +
2∑
𝑖=1

Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2 ; (𝑖 = 1, 2) (5)

with 𝑦𝑟1 = 6.1, 𝑦𝑟2 = 12.8, 𝑢𝑟1 = 1, and 𝑢𝑟2 = 1.
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In a first step, the minimization of the objective function
is obtained by canceling the gradient of 𝐽𝑐𝑜 with respect to

𝑢𝑖; the expressions are obtained as a function of 𝑥𝑖𝑗 of (4)
and Γ:

𝑢1 (𝑘) = 2Γ𝑢1 + Γ𝑦2 (1.63Γ𝑦2 (𝑘 − 1) − 0.66𝑥21 (𝑘 − 1) + 1.52𝑥22 (𝑘 − 1) − 15, 50)
+ Γ𝑦1 ((1.37𝑢2 (𝑘 − 1) − 1.10𝑥11 (𝑘 − 1) + 1.13𝑥22 (𝑘 − 1) − 9.35))(1.17Γ𝑦1 + 0.73Γ𝑦2 + 2Γ𝑢1) .

𝑢2 (𝑘) = 2Γ𝑢2 + Γ𝑦1 (1, 37𝑢1 (𝑘 − 1) + 1.29𝑥11 (𝑘 − 1) − 1.54𝑥12 (𝑘 − 1)) + 10.98
+ Γ𝑦2 (1.36𝑢1 (𝑘 − 1) + 1, 48𝑥21 (𝑘 − 1) − 3.37𝑥22 (𝑘 − 1) + 34.48)(1.62Γ𝑦1 + 3.62Γ𝑦2 + 2Γ𝑢2)

(6)

Table 1 shows how the overshoot, settling time, rise time,
and static error as the performance indices vary with the
weight parameters (Γ𝑦1, Γ𝑦2, Γ𝑢1, Γ𝑢2) of the performance
function when outputs transitions 𝑦1 and 𝑦2 of the optimal
control are used. As can be seen from the table, the transient
characteristics depend strongly on the weight parameters(Γ𝑦1, Γ𝑦2, Γ𝑢1, Γ𝑢2) of evaluation function (4).

The example presented shows the influence of the choice
of the values of the weights existing in the expression of the
optimal control law. So, the weight parameters directly affect
Ov%, Es, ts, and tr.

3. MIMO TS Fuzzy Model and OMPC Design

Takagi and Sugeno proposed the well-known TS fuzzymodel
in [12] to describe the complicated nonlinear system. The
TS fuzzy models are universal approximators capable of
approximating any continuous function with certain level
of accuracy [13]. Since the MIMO system can be divided
into multiple input-single output (MISO) systems, we take
MISO systems instead, to identify MIMO systems. It is
assumed that anMISO system𝐹(𝑥, 𝑦) is the system that needs
identification, where 𝑥 is the system input with 𝑥 ∈ 𝑅𝑀 and𝑦 is the system output with 𝑦 ∈ 𝑅.

The rules of TS fuzzy models, used in this work, have the
following form:

𝑅𝑔: IF 𝑍𝑖1 est Ω𝑖𝑔1 et . . . 𝑍𝑖𝑀 est Ω𝑖𝑔𝑀
THEN 𝑦𝑖𝑔 (𝑘) = 𝐴 𝑖𝑔𝑦 (𝑘 − 1) + 𝐵𝑖𝑔𝑢 (𝑘 − 1) ,

𝑖 = 1, . . . , 𝑛𝑦, 𝑔 = 1, 2, . . . , 𝑐𝑖,
(7)

where 𝑅𝑔 represents the 𝑔th rule, 𝑐𝑖 is the number of rules
for the 𝑖th subsystem,𝑀 is the dimension of the input vector,Ω𝑖𝑔 is the fuzzy subset of the 𝑔-th rule, 𝑍𝑖 = [𝑍𝑖1, . . . , 𝑍𝑖𝑀] ∈𝑅𝑀 is the input vector, and 𝐴𝑔 = [𝐴𝑔1, . . . , 𝐴𝑔𝑛𝑦] and 𝐵𝑔 =[𝐵𝑔1, . . . ,B𝑔𝑛𝑢] are two polynomial vectors.The final output is
calculated as the average of the outputs corresponding to the
rules 𝑅𝑟, weighted by the normalized degree of completion
(membership), as follows:

𝑦𝑖 (𝑘) = ∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) 𝑦𝑖𝑔 (𝑘)
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) (8)

w𝑖𝑔 (𝑍𝑖) =
𝑀∏
𝑗=1

A𝑖𝑔𝑗 (𝑍𝑖𝑗) . (9)

The standardized degree of completion is described in the
following form:

𝜇𝑖𝑔 (𝑍𝑖) = w𝑖𝑔 (𝑍𝑖)
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) . (10)

The standard degree of achievement is actually the degree
of activation of the corresponding local model in the region
where the system evolves. The fuzzy subsets are generally
Gaussian, triangular or sigmoid and must satisfy the follow-
ing properties:

𝑐𝑖∑
𝑔=1

𝜇𝑖𝑟 (𝑍𝑖) = 1, ∀𝑔 = 1, 2, . . . , 𝑐𝑖
0 ≤ 𝜇𝑖𝑔 (𝑍𝑖) ≤ 1.

(11)

TheMPCcontrol is amethod of designing process control
systems with feedback. This designing is carried out by the
online repetition of a procedure that includes inputting data
to a system of the initial input values. The MPC control is
a special case of the optimal control. It is recalled that this
control minimizes the function described above. However,
when the horizon is infinite, we speak of optimal control for
each linear subsystem.

The concept of the OMPC technique for TS system is
utilized to design fuzzy controller. In this concept, the fuzzy
controller rule shares the same premise part as the fuzzy
system (8) and use same number of fuzzy rules.

The fuzzy controller is inferred as follows:

𝑈𝑖 = ∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) 𝑢𝑖𝑔
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) . (12)

In the OMPC, the cost index to be minimized is expressed as
follows:

𝐽𝑔 =
𝑛𝑦∑
𝑖=1

Γ𝑦𝑔 (𝑦𝑟𝑖𝑔 − 𝑦𝑖𝑔)2 +
𝑛𝑢∑
𝑖=1

Γ𝑢𝑔 (𝑢𝑖𝑔 − 𝑢𝑟𝑖𝑔)2 , (13)
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Table 1: Weight parameter Γ𝑖 dependence of transient characteristic.
Pi { Γ𝑦1 ,Γ𝑦2Γ𝑢1 ,Γ𝑢2

}
{ 1,11,1 } { 1,10.2,0.2 } { 1,0.11,0.1 } { 0.3,0.31,0.1 }

Es1 0.000 0.003 0.015 0.000
Es2 0.000 0.001 0.02 0.000
Ov1 (%) 40.41 32.09 09.33 26.33
Ov2 (%) 57.3988 36.36 25.33 53.20
Ts1 12.00 10.50 8.00 12.00
Ts2 11.00 13.00 16.00 17.00
Tr1 4.869 5.4701 4.6000 5.5637
Tr2 7.00 6.50 20.00 21.00

where Γ𝑦𝑔 , Γ𝑢𝑔 are the weight values of the outputs and inputs.𝑢𝑟𝑖𝑔 are the control instructions that are defined beforehand
based on an expertise of the system. The general structure of
the 𝑔th controller is then as follows:

𝑅𝑔: IF 𝑍𝑖1 is Ω𝑖𝑔1, . . . , 𝑍𝑖𝑀 is Ω𝑖𝑔𝑀
THEN 𝑢𝑖𝑔 (𝑘) = 𝜕𝐽𝑖𝑔

𝜕𝑢𝑖𝑔 .
(14)

The previous solution shows that the Γ weights directly affect
the performance of the system. Indeed, despite the fact that
the weight values Γ chosen can give good performance, we
can not conclude that these are the best values.

4. Design of the Proposed FOMPC Controller

In this section, we describe a new method for determining
the weight values of the objective function 𝐽𝑔 of each local
system.

So, an objective function is given, and the optimal control
law of each local system is calculated. Then, the APSO
algorithm intervenes to determine the optimal values of the
weight. The next step is to design the global control law
such that the proposed OFMPC-APSO presents the desired
dynamic characteristics. The proposed FOMPC based on
APSO combines both of the advantages of FOMPC and
APSO algorithm. APSO algorithm is used to search and to
fine tune the weight vector Γ𝑦 and Γ𝑢 of MPC controller.
So, the expression of control law by the principle of optimal
control is calculated. Once the latter has been established, the
next step is to calculate the optimal weights such that the
proposed algorithm presents the desired dynamic character-
istics.

4.1. Design of the Linear Control Law. We consider parameter
optimization problem as a simple problem of tuning only the
weight Γ. Now let us assume that the performance functionΦ for each output evaluates the (Ov%), (Ts), (Tr), and (Es).
Let us define the performance functionΦ as proposed in the
following:

Φ𝑔 = 𝑞1Es + 𝑞2Ov% + 𝑞3Ts + 𝑞4Tr. (15)

Here (𝑞1, 𝑞2, 𝑞3 et 𝑞4) are the weights of the respective
performance indices. So, we obtain the optimal values of

the weights of criterion (13) while respecting the following
constraint:

min Φ𝑔
Γmin<Γ<Γmax

(Γ) . (16)

With Γmin and Γmax the minimum and maximum limits are
chosen.

The optimization problem given by (15) is a constrained
nonlinear and nonconvex optimization problem, the solution
of which is difficult and generally expensive in computing
time. Different approaches were investigated to solve this
problem, such as the numerical optimization techniques [14,
15], the metaheuristic based optimization algorithms [16–18],
the linearization of the process fuzzy model [19], and the use
of particular model structures to obtain a convex form for the
cost function [20].

4.2. APSOAlgorithm. ThePSOalgorithm is a type of stochas-
tic global optimization algorithm for improving candidate
solutions [9]. This algorithm iteratively explores a multidi-
mensional search space with a swarm of individuals (referred
to as “particles”), looking for the global optima [21, 22]. PSO
has memory to store the knowledge of good solutions by all
particles; in addition, particles in the swarm share informa-
tion with each other. Therefore, due to the simple concept,
easy implementation, and quick convergence, nowadays PSO
has gained much attention and wide applications in solving
continuous nonlinear optimization problems [23–26].

It is initialized with a population of random solutions,
called particles, to find the optimal result. Each particle has
a position and a velocity, representing a possible solution
to the optimization problem and a search direction in the
search space. In each iterative process, the particle adjusts
the velocity and position according to the best experiences
that are called the 𝑝best, found by itself, and 𝑔best, found by
all its neighbors [27]. For every generation, the velocity and
position can be updated by the following equations:

𝑉𝑑𝑝 (t + 1) = 𝑤𝑉𝑑𝑝 (t) + 𝑟1𝐶1 (𝑝best𝑑𝑝 − 𝑋𝑑𝑝 (t))
+ 𝑟2𝐶2 (𝑝best𝑑𝑔 − 𝑋𝑑𝑝 (t))

(17)

𝑋𝑑𝑝 (t + 1) = 𝑋𝑑𝑝 (t) + 𝑉𝑑𝑝 (t + 1) , (18)

where 𝑖 = 1, 2, . . . , 𝑁𝑝 and 𝑁𝑝 is the number of particles,
t is the number of iterations, and 𝑟1 and 𝑟2 are two random
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Figure 2: The control scheme.

Pahse 1. Identification of the model
Step 1. The nonlinear MIMO system is modeled by a TS fuzzy inference system.
Step 2. Identify of parameters using WRLS method.
Pahse 2. Application of Algorithm 1 for each local model
Step 1. The weight parameter Γ is specified.
Step 2. Give the objective function in the form of Eq. (13).
Step 3. Calculate the control law 𝑢𝑖 using Eq. (3).
Step 4. Compute ΓBest that minimize the restricted function (15) using the procedure of Algorithm 2
and find the best particle labeled as Γ = [ΓBest𝑦𝑖 , ΓBest𝑢𝑖 ].
Step 5. Calculate the control law 𝑢𝑖 using (3) According to the optimum values of ΓBest
Pahse 3. Design the control law 𝑈 via equation (12)

Algorithm 1: FOMPC-APSO algorithm.

numbers in the interval [0, 1]. 𝐶1 and 𝐶2 are positive
constants.𝑤 is the inertia weight, a parameter used to control
the impact of the previous velocities on the current velocity. If
it is chosen properly, the particle will have the balanced ability
of exploitation and development. 𝑤 is updated as follows:

𝑤 = 𝑤max (𝑤max − 𝑤min
tmax

) t, (19)

where 𝑤min and 𝑤max are minimum and maximum values of𝑤 which are taken as 0.4 and 0.9, respectively.
In conventional PSO, the velocity of each particle in

the next search is updated using the knowledge of its past
velocity and personal and global best positions. However, the
performance of PSO greatly depends on its parameters; it
often suffers from being trapped in local optimum [28, 29].
Indeed, the inertia weight is the most important parameter
to balance the local search ability and global search ability
[30]. This balancing is a key role to improve the performance
of PSO. However, the method of selecting inertia weight is
difficult. And experiments show that particles can accumulate
at point in local searching area. So, to avoid all these
difficulties, an improved version of PSO has appeared; it is
the APSO algorithm.

The basic idea of APSO is that the global best and the
personal best position of particle always change over iteration

and tend to the similar value if the swarm has approached
the solution. The values of 𝑝best and 𝑔best are taken and are
used to adjust the value of inertia weight by using feedback
mechanism. In this condition, the inertia weight should be
set to larger value. So, the balancing between local-global can
be controlled based on the swarm condition.

The modified inertia weight is modified as follows:

𝜔 = (𝜔0 − 𝑝𝑔best𝑝𝑝best ) , (20)

where 𝜒0 is the initial value of inertia weight.
The controller structure is illustrated in Figure 2. This

Figure represents the case of a systemwith two inputs (𝑢1 and𝑢2) and two outputs (𝑦1 and 𝑦2). 𝑦𝑟1 and 𝑦𝑟2 represent the
references of each output, respectively.

4.3. FOMPC-APSO Algorithm. The general design steps of
the FOMPC-APSO algorithm are summarized in Algo-
rithm 1.

5. Simulation Study

In order to show the considerable contribution in the perfor-
mance of the proposed control scheme, two highly nonlinear
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S.1. Choose the weighting matrices Γ = [Γ𝑦𝑖 > 0, Γ𝑢𝑖 > 0], Γmax, Γmin, the number of particles NP.
Initialize the position and velocity of each particle; fix learning factors 𝐶1 and 𝐶2; 𝜔0 and the
number of iterations tmax.
S.2. For t = 1 to tmax do
for each particle do
(1) Calculate the fittness value of each particle by minimizing the following Eq. (15)
(2) Find the individual best pbest for each particle and the global best 𝑔best.
(3) Update the velocity and the position of each particle using equations (17) and (18), respectively.
end for
end for
S.3. Find the best particle labeled as Γ = [ΓBest𝑦𝑖 , ΓBest𝑢𝑖 ]

Algorithm 2: Procedure of weight parameter optimization.

Table 2: Specification of the surge tank.

Parameter Description Normal operation condition
𝐻0 Initial value of tank level 0.15 [m]𝐻𝑠 Initial value of the output channel level 0.015 [m]𝑎 Section of the channel output 0.0001 [m2]𝐴 Section of the tank 0.04 [m2]𝑄0 The initial flow 0.00013 [m3s−1]𝑘0 Constant 1𝑘1 Constant 0.1

+

a

Qs(k)

H(k)

I(k)

Q(k)

Figure 3: The surge tank system.

systems are selected. The first example is the surge tank. The
second example is the CSTR. We compare our results with
those obtained by other existing methods such as NMPC [31]
and FMPC using the APSO algorithm [32].

In this paper, the Tr, Ts, Ov%, pic, and Es are used as the
performance indexes.

5.1. Surge Tank System. The behaviour of the surge tank
system, shown in Figure 3, is fed by a pump driven by a
current 𝐼(𝑘) [10].

In Figure 3,𝑄(𝑘) is the feed rate, 𝐼(𝑘) is the supply current
of the pump,𝐻 is the liquid level in the tank,𝑄𝑠 is the output
flow, 𝑎 is the section of the output channel,𝐴 is the section of
the tank, and𝐻𝑠 is the water level in the output channel. The
mathematical model of this reactor is

(i) Model of the valve is as follows:

𝑄 (𝑘) = 𝑄 (𝑘 − 1) + 𝑇𝑒 (−𝑘0𝑄 (𝑘 − 1) + 𝑘1𝐼 (𝑘 − 1)) (21)

(ii) The change in water level in the tank is given by the
following:

𝑉 (𝑘) = 𝐴𝐻 (𝑘)
= 𝐻 (𝑘 − 1) + 𝑇𝑒 (𝑄 (𝑘 − 1) − 𝑄𝑠 (𝑘 − 1)) ,

(22)

where 𝑄𝑠(𝑘) = 0.6𝑎√2𝑔(𝐻(𝑘) − 𝐻𝑠).
The values of the constant parameters of this system are

grouped in the Table 2.
Fuzzymodeling: 1000 pairs of data are used to identify the

model using the FCM algorithm. For a good approximation
of the plant, we suppose that the subsystems are in the third
order. The model consists of two rules of the form:

𝑅1: If 𝐼1 is 𝑄1
THEN 𝐻1 (𝑘)

= 𝑎11𝐻(𝑘 − 1) + 𝑎12𝐻(𝑘 − 2)
+ 𝑎13𝐻(𝑘 − 3) + 𝑏11𝐼1 (𝑘 − 1)
+ 𝑏12𝐼1 (𝑘 − 2)

𝑅2: IF 𝐼1 is 𝑄2
THEN 𝐻2 (𝑘)

= 𝑎21𝐻(𝑘 − 1) + 𝑎22𝐻(𝑘 − 2)
+ 𝑎23𝐻(𝑘 − 3) + 𝑏21𝐼1 (𝑘 − 1)
+ 𝑏22𝐼1 (𝑘 − 2) .

(23)
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Table 3: Pi performances obtained by the different algorithms.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 0.8111 0.9820 0.7402
Ts 5.6402 11.0788 1.9936
Ov% 6.0804 2.6922 0.5017
Pic 1.26 0.2055 0.2162
Es 0.00 0.00 0.00
W% 53.4 54.86 —

The vector of parameters of 𝑔th rule is obtained by using
the WRLS. This fuzzy model is used to represent the process
model in the controller:

𝑎11 = 1.952,
𝑎21 = 0.0487,
𝑎31 = 0.0522,
𝑏11 = 0.1131,
𝑏21 = 0.1106,
𝑎21 = 0.8421,
𝑎22 = 0.0808,
𝑎23 = 0.0764,
𝑏21 = 0.1668,
𝑏22 = 0.1697.

(24)

Once the estimated model is obtained, we will investigate
the optimal parameters of the FOMPC control law using
the APSO algorithm. This gives the best results with these
settings: 𝑡max = 350, 𝑁𝑝 = 35, 𝐶1 = 𝐶2 = 2.05, 𝑟2 = 0.2,
and 𝑤0 = 1.4. The fitness function of the APSO algorithm is
defined by the following:

𝐽𝑖 = Γ𝑦𝑖 (𝐻𝑖 − 𝐻𝑟)2 + Γ𝐼𝑖 (𝐼𝑖)2 , 𝑖 = 1, 2. (25)

Table 3 shows the performances obtained by these meth-
ods. In each interval time, we have changed the set point for
evaluating eachmethod to control a highly nonlinear system.
The proposed method can generate a high quality solution
within shorter calculation time and it tends to converge
very fast compared to other methods.The comparison shows
some interesting results. It is important to observe that, with
FOMPC-APSO, the Ts has been reduced almost 2 times
comparing with that obtained from the NMPC and has been
reduced almost 5 times comparing with that obtained from
the FMPC-APSO.The same observation can be made for the
Ov%, where in the FOMPC-APSO case we notice a reduction
of nearly 4 times compared with that obtained from FMPC-
APSO and more than 10 times with NMPC without any
increase in Tr. So, the proposed method is able to keep better
stability with less control effort applied.

In fact, the proposed technique is able to achieve good
performance using 53.4% of total control energy consumed
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Figure 4: Evolution of liquid level𝐻.
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Figure 5: Evolution of liquid level𝐻 in the presence of disturbance.

by FMPC-APSO as well as 54.68% of FMPC-APSO. As it is
presented in Table 3, the accuracy of our model outperforms
that of other methods. To confirm these results further,
Figure 4 shows the variations in liquid level in the tank when
a step change is applied at 30, 60, and 90, respectively, by
FOMPC-APSO, FMPC-APSO, and NMPC.

Figure 5 shows the manipulated responses when a distur-
bance is applied to the feed rate, at 40 and 80, respectively.

In conclusion, the proposed controller shows the best
performance for both set point tracking and regulatory
conditions for the entire range of the process as compared to
the other controllers.
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Table 4: CSTR model parameters.

Description Parameter Nominal value
Product concentration 𝐶𝑎 0.1 [mol L−1]
Reactor temperature 𝑇 438.51 [K]
Coolant flow rate 𝑞𝑐 103.41 [min−1]
Process flow rate 𝑞 100 [Lmin−1]
Feed concentration 𝐶𝐴𝑓 1 [mol L−1]
Feed temperature 𝑇𝑓 350 [K]
Inlet coolant temp 𝑇𝑐𝑓 350 [K]
Reaction volume V 100 [L]
Heat transfer coefficient ℎ𝑎 7 ∗ 105 [calmin−1 K]
Reaction rate constant 𝑘0 7.2 ∗ 1010 [min−1]
Activation energy term 𝐸/𝑅 1 ∗ 104 [K]
Heat of reaction Δ𝐻 2 ∗ 105 [calmol−1]
Liquid densities ℓ𝑐, ℓ 1 ∗ 103 [g L−1]
Specific heats 𝐶𝑝, 𝐶𝑝𝑐 1 [cal g−1 K−1]

In fact, the proposed technique is able to achieve good
performance using 53.4% of total control energy consumed
by NMPC as well as 54.86% of FMPC-APSO. As it is
presented in Table 3, the accuracy of our model outperforms
that of other methods.

5.2. Continuous Stirred Tank Reactor (CSTR). The efficiency
and the control accuracy of the proposed algorithm were
investigated and compared to other control strategies by
considering the control of a highly nonlinearMIMO process,
namely, a Continuous Stirred Tank Reactor, where the model
is presented in [33] and described by the following differen-
tials equations:

𝐶𝑎 (𝑘 + 1) = 𝐶𝑎 (𝑘) + 𝑇𝑒 (1V𝑞 (𝑘) (𝐶𝐴𝑓 − 𝐶𝑎 (𝑘))
− 𝑘0𝐶𝑎 (𝑘) 𝑒(−𝐸/𝑅𝑇(𝑘)))

𝑇 (𝑘 + 1) = 𝑇 (𝑘) + 𝑇𝑒 (1V𝑞 (𝑘) (𝑇𝑓 − 𝑇 (𝑘))
+ 𝑘1𝐶𝑎 (𝑘) 𝑒−(𝐸/𝑅𝑇(𝑘))
+ 𝑘2𝑞𝑐 (𝑘) (1 − 𝑒−(𝑘3/𝑞𝑐(𝑘))) (𝑇𝑐𝑓 − 𝑇 (𝑘))) ,

(26)

where 𝑘1 = −Δ𝐻𝑘0/ℓ𝐶𝑝, 𝑘2 = ℓ𝑐𝐶𝑝𝑐/ℓ𝐶𝑝V, and 𝑘3 =ℎ𝑎/ℓ𝑐𝐶𝑝𝑐.
The process describes the reaction that converts the

product 𝐴 into a new product B, the concentration 𝐶𝑎 is the
concentration of product 𝐴, and 𝑇 is the temperature of the
mixture. The reaction is exothermic and it is controlled by a
coolant flowwhose rate is represented by 𝑞𝑐.The temperature
is controlled by changing the coolant and by controlling the
temperature, and the concentration is also controlled. 𝐶𝑎0 is
the inlet feed concentration, 𝑞 is the process flow rate, and𝑇𝑓 and 𝑇𝑐𝑓 are the inlet feed and coolant temperatures. All
these values are assumed constant at nominal values. In the

same way, 𝑘0, 𝐸/𝑅, V, 𝑘1, 𝑘2, and 𝑘3 are thermodynamic and
chemical constants.The numerical values of these parameters
are given in Table 4.

Fuzzy modeling: the above nonlinear model is used to
produce input-output time data. The sampling time is set to
0.01min. [𝐶𝑎(𝑘−1), 𝐶𝑎(𝑘−2), 𝑞𝑐(𝑘−1), 𝑞𝑐(𝑘−2), 𝑞(𝑘−1)]
and [𝑇(𝑘 − 1), 𝑇(𝑘 − 2), 𝑞(𝑘 − 1), 𝑞(𝑘 − 2), 𝑞𝑐(𝑘 − 1)] are
selected as the input vector.The rule numbers of the identified
fuzzy models are four.

The APSO algorithm parameters are chosen as follows:
the maximum number of APSO iterations 𝑡max = 110,
number of particles𝑁𝑝 = 10, 𝑟1 =0.2, 𝑟2 = 0.2, 𝐶1 = 1.5, 𝐶2 =
2.5, and 𝑤0 = 1.4.

The fitness function is selected as follows:

𝐽𝑖 = Γ𝑦1𝑖 (𝐶𝑎𝑖 − 𝐶𝑎𝑟)2 + Γ𝑞𝑖 (𝑞𝑐𝑖)2 + Γ𝑦2𝑖 (𝑇𝑖 − 𝑇𝑟)2
+ Γ𝑞𝑖 (𝑞𝑖)2 𝑖 = 1, 2, 3, 4. (27)

The reference signals applied to the system are as follows:

𝐶𝑎𝑟 =
{{{{{{{{{{{{{{{

0.1 0 ≤ 𝑘 < 50
0.05 50 ≤ 𝑘 < 100
0.15 100 ≤ 𝑘 < 150
0.25 150 ≤ 𝑘

𝑇𝑟 =
{{{{{{{{{{{{{{{

480 0 ≤ 𝑘 < 50
365 50 ≤ 𝑘 < 100
495 100 ≤ 𝑘 < 150
465 150 ≤ 𝑘.

(28)

Tables 5 and 6 contain the performance indices obtained for
the outputs Ca and T by the NMPC [10], FMPC-APSO [11],
and FOMPC-APSO algorithms. It summarizes the results of
this example in terms of the Ov%, Tr, Ts, and Es. As seen
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Table 5: Pi found by different methods.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 1.4965 4.4693 0.4135
Ts 6.8561 7.2779 3.5480
Ov% 5.0973 0.1215 0.00
Pic 1.0510 1.0012 1.0000
Es 0.00 0.00 0.00
W% 48.94 47.28 —

Table 6: Pi found by different methods.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 1.3711 3.0459 0.4116
Ts 9.2185 4.5471 3.2626
Ov% 5.4003 1.6309 0.0011
Pic 1.0540 1.0163 1.0000
ES 0.00 0.00 0.00
W% 48.14 49.07 —
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Figure 6: Evolution of concentration 𝐶𝑎.

in these tables, we can note that our method gives the best
performance of all compared techniques.

They applied NMPC algorithm to control the concen-
tration of product and it has the Tr and Ts values of
1.4965min and 6.8561min, while the FMPC-APSO approach
has 4.4693min and 7.2779min. However, the corresponding
Tr and Ts values for the same problem were 0.4135min and
3.5480 and with no Ov%. This indicates that the proposed
controller is able to perform faster than the other methods in
real application environment. Figures 6 and 7 show the evo-
lution of the Ca and T outputs from the three methods. From
these figures, there is a perfect continuation of the signal of
the setpoint whose FOMPC-APSOmethod has ensured good
performances. We also note that our method provides more
acceptable control effort regarding Figures 8 and 9.

In a second test, the disturbances on the system output in
different times have been applied to validate the tracking of
the reactor concentration. Thus, a disturbance of 0.002mol/l
at time 𝑡 = 82min and time 𝑡 = 130min is added.
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Figure 7: Evolution of temperature 𝑇.

Figure 10 illustrates the disturbance rejection performance of
the FOMPC-APSO controller.The results show that the adap-
tive controller has the ability to keep the process stable and
regulate the outlet concentration at its desired set point value.

6. Conclusion

In this paper, we have introduced the FOMPC-APSO con-
troller applied to highly nonlinear systems. An approach of
determining the optimum weights is developed by minimiz-
ing a chosen performance criterion using APSO algorithm.
The proposed approach is based on the advantage of the TS
fuzzy system in the modeling phase and the metaheuristic
optimization APSO algorithm in a new structure predictive
controller. The advantage of this structure is its ability to
handle highly nonlinear systems regardless and keep a good
stability in terms of overshoot, rise time, and settling time
including disturbances. We have achieved these objectives
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Figure 10: Evolution of concentration with external disturbances.

without any obligation increase in the control signal since
we have injected the phenomenon of optimal control in the
synthesis of our controller. Compared with other similar
existing methods, the FOMPC-APSO algorithm enhances
the convergence and accuracy of the controller optimization,
which is much easier for implementation in real time.
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Fuzzy portfolio selection problem is a major issue in the financial field and a special case of constrained fuzzy-valued optimization
problems (CFOPs). In this respect, the present paper aims to investigate the CFOP with regard to the features of the parametric
representation of fuzzy numbers named as convex constraint function (CCF) which is proposed by Chalco-Cano et al. in 2014.
Furthermore, relying on this parametric representation, some proper conditions are provided for the existence of solutions to
a CFOP. To this end, by the increasing representation of CCF, the main problem is converted to a parametric multiobjective
programming problem and some solution concepts from a similar framework in the multiobjective programming are proposed
for the CFOP. Eventually to illustrate the proposed results, the fuzzy portfolio selection problem is discussed.

1. Introduction

In fact, because of using the experimental and empirical
data for modeling a real world phenomenon, a determin-
istic mathematical model may not be a perfectly realistic
representation. There are several approaches to deal with
such real world phenomena, for example, fuzzy techniques,
stochastic models, and interval analysis, which differ by
their advantages and disadvantages [1, 2]. However, in many
practical situations, the uncertainties are not of the statistical
or interval type; more precisely, this situation happensmainly
through the modeling in terms of linguistic expressions that
depend on the human judgment. In other words, an expert
perceives exactly which values and parameters are possible
and which are not.Therefore, the set of all possible values and
parameters can be naturally described as fuzzy numbers by
the expert’s knowledge.

Historically, fuzzy set theory was proposed by Zadeh in
[3] and developed considerably by many other researchers.
This theory provides conceptually powerful techniques to
handle the imperfect information related to vagueness and
imprecision.

Nowadays, the fuzzy optimization problem is effective
in a lot of different disciplines related to optimization such

as operations research engineering, economics, and artificial
intelligence [4–7]. It can be said that the fuzzy optimization
problem provides an appropriate choice for considering
the vagueness and ambiguousness into the formulation and
solutions of the multitude of optimization problems. Indeed,
there are several motivations to apply fuzzy optimization
model; first, it deals with some practical optimization prob-
lems more conveniently than conventional optimization
model; also, fuzzy optimization model efficiently reduces
information loss arising from the traditional optimization
model; moreover, it allows the designer to implement lin-
guistic constraints that may not be easily defined using more
conventional optimization algorithms; finally, this model
may permit managers to have not only one solution but
also a set of them, so that the most suitable solution can
be applied according to the state of existing decision of the
production process at a given time and without increasing
delay. Furthermore, accessing a set of solutions enables user
to investigate and analyze the system information in more
detail.

On the other hand, most of the common portfolio
selection models deal with the uncertainty via probabilistic
approaches, where those probabilistic approaches only partly
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capture the reality. In addition, there are some other tech-
niques that manage the uncertainty of the financial markets
as the fuzzy set theory. It is noteworthy that the fuzzy
portfolio selection model integrates the quantitative and
qualitative analysis, experts’ knowledge, and the investors’
opinion in a better manner [7]. Therefore, in this paper,
the portfolio selection problem under fuzzy environment
based on the constrained fuzzy optimization problem is
going to be studied.Manymodern computingmethodologies
can be seen for various fuzzy systems, for example, [8–14].
It is also worth mentioning that there are several results
associated with parametric representations of fuzzy numbers
[15–17]. Recently, Chalco-Cano et al. [15] have proposed two
parametric representations for interval numbers named as
“increasing/decreasing convex constraint function” and then
explicitly extended the proposed representations to the fuzzy
case. The representations have the advantage of allowing
flexible and easy-to-control shapes of the fuzzy numbers and
it is very simple to implement [17]. Accordingly, this point of
view and its increasing parametric representation motivate
us here to study the fuzzy portfolio selection problem as
an application of the constrained fuzzy-valued optimization
problem. To this end, the arithmetic of fuzzy numbers and
the calculus of fuzzy-valued functions are developed based
on this parametric representation. Then, by parametric rep-
resentation of fuzzy-valued function, the constrained fuzzy
optimization problem is transformed into a deterministic
multiobjective problem. Besides, some solution concepts
from a similar framework in themultiobjective programming
problem are proposed for the constrained fuzzy-valued opti-
mization problem, by converting it to a general constrained
optimization problem. Finally, it has been demonstrated that
the solution of the general optimization is related to the
solution of the main problem.

The rest of the paper is organized as follows. Section 2 is
devoted to giving the definitions of fuzzy numbers and some
arithmetic that are used later in the development of results
in fuzzy environment. The fuzzy-valued functions in the
parametric form and their properties, calculus and convexity,
are studied in Section 3. In Section 4, the constrained
fuzzy-valued optimization problem is discussed and, as an
application, the proposed method is considered to the fuzzy-
valued quadratic programming problem. In Section 5, two
numerical examples are established to confirm the efficacy of
the proposed approach;more particularly one of them reveals
how to solve the fuzzy portfolio selection problem. At the end,
the conclusion is made in Section 6.

2. Fuzzy Numbers and Their Arithmetic

In this section, some basic notations and results on the fuzzy
arithmetic are presented; however, it is assumed that the
reader is familiar with the fuzzy theory.

Definition 1 (see [18]). Let 𝑎 : R → [0, 1] be a fuzzy set on
the set of real numbersR. The fuzzy set 𝑎 is a fuzzy number if
it is a normal, convex, upper semicontinuous, and compactly
supported.

The set of all fuzzy numbers on R is denoted by F(R).
For all 𝛼 ∈ (0, 1], 𝛼-level set [𝑎]𝛼 of any 𝑎 ∈ F(R) is defined
as [𝑎]𝛼 = {𝑥 ∈ R; 𝑎(𝑥) ≥ 𝛼}. The 0-level set [𝑎]0 is defined
as the closure of the set {𝑥 ∈ R; 𝑎(𝑥) > 0}. By Definition 1,
for any 𝑎 ∈ F(R) and for each 𝛼 ∈ (0, 1], [𝑎]𝛼 is a compact
and convex subset of R and [𝑎]𝛼 = [𝑎𝛼, 𝑎𝛼]. 𝑎 ∈ F(R) can
be recovered from its 𝛼-level by a well-known decomposition
theorem, which states that

𝑎 = ⋃
𝛼∈[0,1]

𝛼 [𝑎]𝛼 , (1)

where 𝛼[𝑎]𝛼 denotes the algebraic product of a scalar 𝛼 with
the 𝛼-level set [𝑎]𝛼 and union on the right-hand side is the
standard fuzzy union.

As previously mentioned, fuzzy numbers and their arith-
metic can be expressed in terms of parameters in the several
models [15–17]. Here, from increasing parametric representa-
tion [15], each 𝛼-level of an arbitrary fuzzy number 𝑎 ∈ F(R)
is represented alternatively by its bounds as follows:

[𝑎]𝛼 = [𝑎𝛼, 𝑎𝛼]= {𝑎 (𝑡, 𝛼) = 𝑎𝛼 + 𝑡 (𝑎𝛼 − 𝑎𝛼) | 𝑡, 𝛼 ∈ [0, 1]} , (2)

which is based on the convex combination of upper and lower
bounds. Moreover, by the parametric representation (2), the𝛼-level of a 𝑘-dimensional fuzzy vector C̃𝑘] ∈ (F(R))𝑘 and a
fuzzy matrix Ã𝑚 ∈ (F(R))𝑝×𝑞 can be represented as the set
of real-valued vectors and matrices, respectively; that is,

[C̃𝑘]]𝛼 = [(𝑐1, 𝑐2, . . . , 𝑐𝑘)𝑇]𝛼 = {𝑐 (t, 𝛼) | 𝑐 (t, 𝛼)
= (𝑐1 (𝑡1, 𝛼) , 𝑐2 (𝑡2, 𝛼) , . . . , 𝑐𝑘 (𝑡𝑘, 𝛼))𝑇 , 𝑐𝑖 (𝑡𝑖, 𝛼)= 𝑐𝛼𝑖 + 𝑡𝑖 (𝑐𝛼𝑖 − 𝑐𝛼𝑖 ) , t = (𝑡1, . . . , 𝑡𝑘)𝑇 , 0 ≤ 𝑡𝑖 ≤ 1, 𝑖= 1, . . . , 𝑘, 0 ≤ 𝛼 ≤ 1} ,

(3)

[Ã𝑚]𝛼 = {𝐴 (t, 𝛼) | 𝐴 (t, 𝛼)
= (𝑎𝑖𝑗 (𝑡𝑖𝑗, 𝛼))𝑝×𝑞 , 𝑎𝑖𝑗 (𝑡𝑖𝑗, 𝛼) = 𝑎𝛼𝑖𝑗+ 𝑡𝑖𝑗 (𝑎𝛼𝑖𝑗 − 𝑎𝛼𝑖𝑗) , 0 ≤ 𝑡𝑖𝑗 ≤ 1, 𝑖 = 1, 2, . . . , 𝑝, 𝑗
= 1, 2, . . . , 𝑞, 0 ≤ 𝛼 ≤ 1} .

(4)

The parametric representation (2) helps us to build the fuzzy
arithmetic, immediately. Nevertheless, the binary operations
between two arbitrary fuzzy number can be defined in terms
of parameter as follows.

Definition 2. For 𝑎, 𝑏̃ ∈ F(R), the algebraic operations can
be defined as

[𝑎 ⊛ 𝑏̃]𝛼 = {𝑎 (𝑡1, 𝛼) ∗ 𝑏 (𝑡2, 𝛼) | 𝑡1, 𝑡2, 𝛼 ∈ [0, 1]} , (5)
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[𝑎 ⊘ 𝑏̃]𝛼
= {𝑎 (𝑡1, 𝛼)𝑏 (𝑡2, 𝛼) | 𝑡1, 𝑡2, 𝛼 ∈ [0, 1] , 𝑏 (𝑡2, 𝛼) ̸= 0} , (6)

[𝑘𝑎]𝛼 = {𝑘𝑎 (𝑡, 𝛼) | 𝑡, 𝛼 ∈ [0, 1]} , (7)

where ∗ ∈ {+, −, ⋅} and 𝑘 ∈ R.

Remark 3. It is clear that 𝑎 ⊖ 𝑏̃ ̸= 𝑎 ⊖𝐻 𝑏̃ in general, where ⊖𝐻
is the Hukuhara difference. However, it can be deduced that𝑎 ⊖𝐻 𝑏̃ = 𝑎⊖𝑏̃ if, in (5), 𝑡 = 𝑡1 = 𝑡2 and 𝑐(𝑡, 𝛼) = 𝑎(𝑡, 𝛼)−𝑏(𝑡, 𝛼)
is a nondecreasing function for all 𝑡, 𝛼 ∈ [0, 1].
Definition 4. Theproduct of 𝑘-dimensional fuzzy vector C̃𝑘] =(𝑐1, 𝑐2, . . . , 𝑐𝑘)𝑇 ∈ (F(R))𝑘 and a 𝑘-dimensional real vector𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑘)𝑇 ∈ R𝑘 is defined as (C̃𝑘])𝑇⬦𝑑 = ∑𝑘𝑗=1 𝑐𝑗𝑑𝑗,
where it is a fuzzy number.

It is noteworthy that fuzzy numbers are frequently partial
ordered. In fact, there aremanyways to define the fuzzy order
among the set of all fuzzy numbers [19–22]. For example,
Ramı́k and ı́mánek [22] proposed a partial order relation
called the fuzzy-max order; Molinari [20] considered a new
criterion of choice between generalized triangular fuzzy
numbers and so on. In this paper, two specific partial ordering
relations on fuzzy numbers using parametric representation
are introduced.

Definition 5. For two arbitrary 𝑎, 𝑏̃ ∈ F(R), with parametric
representations [𝑎]𝛼 = {𝑎(𝑡, 𝛼) | 𝑡, 𝛼 ∈ [0, 1]} and [𝑏̃]𝛼 ={𝑏(𝑡, 𝛼) | 𝑡, 𝛼 ∈ [0, 1]}, it can be deduced that

(i) 𝑎 ⪯ 𝑏̃ if 𝑎(𝑡1, 𝛼) ≤ 𝑏(𝑡2, 𝛼), ∀𝑡1, 𝑡2, 𝛼 ∈ [0, 1],
(ii) 𝑎 ⪯𝑤 𝑏̃ if 𝑎(𝑡, 𝛼) ≤ 𝑏(𝑡, 𝛼), ∀𝑡, 𝛼 ∈ [0, 1].
It is easy to see that ⪯ and ≺𝑤 are partial order relations

onF(R).
3. Fuzzy-Valued Function and Its
Differential Calculus

A fuzzy-valued function is a function with fuzzy values, as𝑓 : 𝑋 → F(R), where 𝑋 is a subset of the vector space
R𝑛. Here, the fuzzy-valued functions with fuzzy coefficients
are considered which allow us to express their 𝛼-levels as a
set of classical functions, using the parametric representation
(2). To this end, let C̃ denote the set of all coefficients present
in the fuzzy-valued function 𝑓, respectively. Without loss of
generality, one can consider C̃ as an ordered set with respect
to its presence in the fuzzy-valued function 𝑓 (or as fuzzy
vector like C̃𝑘]). Then, for a given fuzzy vector C̃𝑘] , the 𝛼-
level of fuzzy-valued function 𝐹C̃𝑘] : R𝑛 → F(R) can be
considered as[𝐹C̃𝑘] (x)]𝛼= {𝑓𝑐(t,𝛼) (x) | 𝑓𝑐(t,𝛼) : R𝑛 → R, 𝑐 (t, 𝛼) ∈ [C̃𝑘]]𝛼} . (8)

For every fixed x and 𝛼 ∈ [0, 1], 𝑓𝑐(t,𝛼)(x) is continuous in
t; consequently, min𝑐(t,𝛼)∈[C̃𝑘] ]𝛼𝑓𝑐(t,𝛼)(x) = mint∈[0,1]𝑘𝑓𝑐(t,𝛼)(x)
and max𝑐(t,𝛼)∈[C̃𝑘] ]𝛼𝑓𝑐(t,𝛼)(x) = maxt∈[0,1]𝑘𝑓𝑐(t,𝛼)(x) exist and

[𝐹C̃𝑘] (x)]𝛼 = [ min
t∈[0,1]𝑘

𝑓𝑐(t,𝛼) (x) , max
t∈[0,1]𝑘

𝑓𝑐(t,𝛼) (x)] . (9)

Example 6. Consider the fuzzy-valued function 𝐹C̃3] : R2 →
F(R), where 𝐹C̃3] (𝑥1, 𝑥2) = 𝑐1 ⊙ 𝑥21 ⊕ 𝑐2 ⊙ cos(𝑐3 ⊙ 𝑥2),
C̃3] = (𝑐1, 𝑐2, 𝑐3) = (5̃, 2̃, 3̃), and 5̃ = ⟨1, 5, 6⟩, 2̃ = ⟨0, 2, 4⟩,
and 3̃ = ⟨1, 3, 5⟩. For every 𝛼 ∈ [0, 1], by the parametric
representation (3), we have

[C̃3]]𝛼 = {𝑐 (t, 𝛼) | 𝑐 (t, 𝛼) = (1 + 4𝛼 + 𝑡1 (5 − 5𝛼) , 2𝛼
+ 𝑡2 (4 − 4𝛼) , 1 + 2𝛼 + 𝑡3 (4 − 4𝛼))𝑇 , t= (𝑡1, 𝑡2, 𝑡3)𝑇 , 0 ≤ 𝑡𝑖 ≤ 1, 𝑖 = 1, 2, 3}

(10)

and so[𝐹C̃3]]𝛼 = {𝑓𝑐(t,𝛼) (𝑥1, 𝑥2) | 𝑓𝑐(t,𝛼) (𝑥1, 𝑥2)= (1 + 4𝛼 + 𝑡1 (5 − 5𝛼)) 𝑥21 + (2𝛼 + 𝑡2 (4 − 4𝛼))⋅ cos ((1 + 2𝛼 + 𝑡3 (4 − 4𝛼)) 𝑥2) , t = (𝑡1, 𝑡2, 𝑡3)𝑇 , 0≤ 𝑡𝑖 ≤ 1, 𝑖 = 1, 2, 3} .
(11)

Because of the continuity of 𝑓𝑐(t,𝛼)(𝑥) at t, for every 𝑥 and 𝛼 ∈[0, 1], (9) provides that
[𝐹C̃3]]𝛼 = [(1 + 4𝛼) 𝑥21+ 2𝛼 cos ((1 + 2𝛼) 𝑥2) , (6 − 𝛼) 𝑥21+ (4 − 2𝛼) cos ((5 − 2𝛼) 𝑥2)] .

(12)

Definition 7. Let 𝐹C̃𝑘] : Ω ⊆ R𝑛 → F(R) be a fuzzy-valued
function, where Ω is a convex subset of R𝑛. 𝐹C̃𝑘] is called
convex onΩ with respect to ⪯ if𝐹C̃𝑘] (𝜆x1 + (1 − 𝜆) x2) ⪯ 𝜆𝐹C̃𝑘] (x1) ⊕ (1 − 𝜆) 𝐹C̃𝑘] (x2) , (13)

for all x1, x2 ∈ Ω and 0 ≤ 𝜆 ≤ 1. Moreover, the fuzzy-valued
function 𝐹C̃𝑘] is convex with respect to ⪯𝑤, if (13) is valid for⪯𝑤.
Remark 8. By Definitions 5 and 7, the convexity of fuzzy-
valued function 𝐹C̃𝑘] with respect to ⪯ or ⪯𝑤 can be deduced
by 𝑓𝑐(t󸀠 ,𝛼) (𝜆x1 + (1 − 𝜆) x2)≤ 𝜆𝑓𝑐(t󸀠󸀠 ,𝛼) (x1) + (1 − 𝜆) 𝑓𝑐(t󸀠󸀠 ,𝛼) (x2) ,∀𝛼 ∈ [0, 1] , t󸀠, t󸀠󸀠 ∈ [0, 1]𝑘 ,
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𝑓𝑐(t,𝛼) (𝜆x1 + (1 − 𝜆) x2)≤ 𝜆𝑓𝑐(t,𝛼) (x1) + (1 − 𝜆) 𝑓𝑐(t,𝛼) (x2) ,∀𝛼 ∈ [0, 1] , t ∈ [0, 1]𝑘 ,
(14)

respectively, for all x1, x2 ∈ Ω and 0 ≤ 𝜆 ≤ 1.

For any two arbitrary fuzzy vectors C̃𝑘] , D̃𝑘] ∈ (F(R))𝑘,
the definition of algebraic operations between fuzzy-valued
functions can be expressed, based on the parametric repre-
sentation (8), as

(i) [𝐹C̃𝑘] (x) ⊛ 𝐹C̃𝑘] (y)]𝛼 = {𝑓𝑐(t,𝛼) (x) ∗ 𝑓𝑐(t,𝛼) (y) | 𝑓𝑐(t,𝛼) : R𝑛 󳨀→ R, 𝑐 (t, 𝛼) ∈ [C̃𝑘]]𝛼} ,
(ii) [𝐹C̃𝑘] (x) ⊛ 𝐹D̃𝑘] (x)]𝛼 = {𝑓𝑐(t,𝛼) (x) ∗ 𝑓𝑑(t󸀠󸀠 ,𝛼) (x) | 𝑓𝑐(t,𝛼), 𝑓𝑑(t󸀠󸀠,𝛼) : R𝑛 󳨀→ R, 𝑐 (t, 𝛼) ∈ [C̃𝑘]]𝛼 , 𝑑 (t󸀠󸀠, 𝛼) ∈ [D̃𝑘]]𝛼} , (15)

where ∗ ∈ {+, −, ⋅, /}.
It is obvious that a metric to define the distance between

two arbitrary fuzzy numbers is required to introduce the dif-
ferential calculus of a fuzzy-valued function in the parametric
form. Hereinafter, for two arbitrary fuzzy numbers 𝑢̃ and Ṽ,
the quantity 𝐷 (𝑢̃, Ṽ) = sup

0≤𝛼≤1

{𝑑 ([𝑢̃]𝛼 , [Ṽ]𝛼)} (16)

describes the distance between 𝑢̃ and Ṽ, where

𝑑 ([𝑢̃]𝛼 , [Ṽ]𝛼) = max{max
t󸀠

min
t󸀠󸀠

󵄨󵄨󵄨󵄨󵄨𝑢 (t󸀠, 𝛼) − V (t󸀠󸀠, 𝛼)󵄨󵄨󵄨󵄨󵄨 ,
max
t󸀠󸀠

min
t󸀠

󵄨󵄨󵄨󵄨󵄨𝑢 (t󸀠, 𝛼) − V (t󸀠󸀠, 𝛼)󵄨󵄨󵄨󵄨󵄨} . (17)

It is easy to see that the upper metric is equivalent to the well-
known Hausdorff metric [23].

Definition 9 (limit of fuzzy-valued function [24]). Let 𝐹C̃𝑘] :
R𝑛 → F(R) be a fuzzy-valued function and a ∈ R𝑛, 𝑐 ∈
F(R). The limit of 𝐹C̃𝑘] as x approaches a is the fuzzy number𝑐 andwewrite limx→a𝐹C̃𝑘] (x) = 𝑐, if for every 𝜀 > 0 there exists𝛿 > 0 such that𝐷(𝐹C̃𝑘] (x), 𝑐) < 𝜀, whenever ‖x − a‖ < 𝛿. Here,‖ ⋅ ‖ is the usual (Euclidean) norm in R𝑛.

Moreover, the fuzzy-valued function 𝐹C̃𝑘] : R𝑛 → F(R)
is continuous at x∗ ∈ R𝑛 if and only if, for every 𝜀 > 0, there
exists 𝛿 = 𝛿(x∗, 𝜀) > 0 such that limx→x∗𝐹C̃𝑘] (x) = 𝐹C̃𝑘] (x∗).
Proposition 10 (see [24]). The limit of fuzzy-valued function𝐹C̃𝑘] (x) exists at x∗, if limx→x∗𝑓𝑐(t,𝛼)(x) exists for every 𝑐(t, 𝛼) ∈[C̃𝑘]]𝛼 and

lim
x→x∗

[𝐹C̃𝑘] (x)]𝛼 = [𝐹C̃𝑘] (x∗)]𝛼
= [min

t
lim
x→x∗

𝑓𝑐(t,𝛼) (x) ,max
t

lim
x→x∗

𝑓𝑐(t,𝛼) (x)] . (18)

Moreover, 𝐹C̃𝑘] is continuous at x∗ if and only if 𝑓𝑐(t,𝛼) is
continuous at x∗ for every t ∈ [0, 1]𝑘 and 𝛼 ∈ [0, 1].

One of the first definitions of differentiability for fuzzy-
valued functions is the Hukuhara differentiability, which
suffers disadvantages in particular to the point that the
inverse subtraction does not exist.The generalized Hukuhara
derivative has been attempted to clear these difficulties,
which is more general than Hukuhara derivative. Finally, the
generalized derivative is proposed based on the generalized
difference [23]. Roughly speaking, all these derivatives vary
with respect to their corresponding differences. Here, based
on Definition 2, the following derivative can be defined in
terms of parameter.

Definition 11 (differentiability of fuzzy-valued function). The
fuzzy-valued function 𝐹C̃𝑘] is said to be differentiable at x∗,
if 𝑓𝑐(t,𝛼) is differentiable at x∗ for every t ∈ [0, 1]𝑘 and 𝛼 ∈[0, 1] and {𝑓𝑐(t,𝛼)(x∗ + h) − 𝑓𝑐(t,𝛼)(x∗), 0 ≤ 𝛼 ≤ 1} satisfies the
assumptions of StackingTheorem [23].

In addition, the fuzzy-valued function 𝐹C̃𝑘] is said to be
differentiable on R𝑛 if it is differentiable for all x ∈ R𝑛.
Proposition 12 (see [24]). If the fuzzy-valued function 𝐹C̃𝑘] is
differentiable at x∗, then there exists a fuzzy number 𝐹󸀠

𝐶̃𝑘]
(x∗)

such that

[𝐹󸀠
𝐶̃𝑘]

(x∗)]𝛼 = lim
h→0

[𝐹C̃𝑘] (x∗ + h) ⊖ 𝐹C̃𝑘] (x∗)]𝛼‖h‖
= [ min

t∈[0,1]𝑘
lim
h→0

𝑓𝑐(t,𝛼) (x∗ + h) − 𝑓𝑐(t,𝛼) (x∗)‖h‖ ,
max
t∈[0,1]𝑘

lim
h→0

𝑓𝑐(t,𝛼) (x∗ + h) − 𝑓𝑐(t,𝛼) (x∗)‖h‖ ] .
(19)

Remark 13. Consider the fuzzy-valued function 𝐹C̃2] :[−2, 5] → F(𝑅) defined as

𝐹C̃2] (𝑥) = −1̃ ⊙ 𝑥 ⊕ −2̃ ⊙ sinh (𝑥 + 2) , (20)

where −1̃ = ⟨−2, −1, 3⟩ and −2̃ = ⟨−3, −2, −1⟩. Using gH-
derivative and Definition 11, we have
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[𝐹󸀠C̃2] (𝑥)]𝛼 = {{{
[(3 − 4𝛼) + (−3 + 𝛼) cosh (𝑥 + 2) , (−2 + 𝛼) + (−1 − 𝛼) cosh (𝑥 + 2)] , −2 ≤ 𝑥 ≤ 0,[(−2 + 𝛼) + (−3 + 𝛼) cosh (𝑥 + 2) , (3 − 4𝛼) + (−1 − 𝛼) cosh (𝑥 + 2)] , 0 < 𝑥 ≤ 5,

[𝐹󸀠C̃2] (𝑥)]𝛼 = [(−2 + 𝛼) + (−3 + 𝛼) cosh (𝑥 + 2) , (3 − 4𝛼) + (−1 − 𝛼) cosh (𝑥 + 2)] , (21)

respectively, which are different. In fact, the sign of the
independent variable x is not considered in Definition 11,
while the gH-derivative depends on the sign of x. Therefore,
in general, it cannot be expected that the derivatives of a
fuzzy-valued function be equal.

Thepartial derivative of𝐹C̃𝑘] in the direction𝑥𝑖 at the point
x∗ can be defined in terms of its 𝛼-level as

[𝜕𝐹C̃𝑘] (x∗)𝜕𝑥𝑖 ]𝛼 = {𝜕𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖 | ∀𝑐 (t, 𝛼) ∈ [C̃𝑘]]𝛼}
= [ min

t∈[0,1]𝑘

𝜕𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖 , max
t∈[0,1]𝑘

𝜕𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖 ] , (22)

provided that, for every 𝛼 ∈ [0, 1], 𝜕𝑓𝑐(t,𝛼)(x∗)/𝜕𝑥𝑖, 𝑖 =1, 2, . . . , 𝑛, exist and they are the 𝛼-level of a fuzzy number.
Moreover, the gradient of fuzzy-valued function 𝐹C̃𝑘] (i.e., the
partial derivatives 𝜕𝐹C̃𝑘] (x∗)/𝜕𝑥𝑖 at the point x∗) is defined as
a fuzzy vector as follows:∇𝐹C̃𝑘] (x∗)

= (𝜕𝐹C̃𝑘] (x∗)𝜕𝑥1 , 𝜕𝐹C̃𝑘] (x∗)𝜕𝑥2 , . . . , 𝜕𝐹C̃𝑘] (x∗)𝜕𝑥𝑛 )𝑇 . (23)

Definition 14. Suppose that the second-order partial deriva-
tives 𝜕2𝑓𝑐(t,𝛼)(x∗)/𝜕𝑥𝑖𝜕𝑥𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, at the point x∗
exist and are 𝛼-levels of fuzzy number (i.e., satisfying the
assumption of Stacking Theorem). Then, the Hessian matrix
of 𝐹C̃𝑘] at the given point is given by

∇2𝐹C̃𝑘] (x∗) = (𝜕2𝐹C̃𝑘] (x∗)𝜕𝑥𝑖𝜕𝑥𝑗 )
𝑛×𝑛

, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛, (24)

where

[𝜕2𝐹C̃𝑘] (x∗)𝜕𝑥𝑖𝜕𝑥𝑗 ]𝛼
= {𝜕2𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖𝜕𝑥𝑗 | ∀𝑐 (t, 𝛼) ∈ [C𝑘]]𝛼}
= [ min

t∈[0,1]𝑘

𝜕2𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖𝜕𝑥𝑗 , max
t∈[0,1]𝑘

𝜕2𝑓𝑐(t,𝛼) (x∗)𝜕𝑥𝑖𝜕𝑥𝑗 ] ,
𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(25)

It is apparent that[∇2𝐹C̃𝑘] (x∗)]𝛼 = {∇2𝑓𝑐(t,𝛼) (x∗) | ∀𝑓𝑐(t,𝛼) ∈ [𝐹C̃𝑘] ]𝛼} . (26)

Definition 15. The fuzzy-valued function 𝐹C̃𝑘] is said to be
twice continuously differentiable at x∗, if its Hessian matrix
at that point (i.e., ∇2𝐹C̃𝑘] (x∗)) exists and all of its components
are continuous functions. Also, 𝐹C̃𝑘] is twice continuously
differentiable on R𝑛, if it is twice continuously differentiable
for all x ∈ R𝑛.

Furthermore, using Definition 14 and Proposition 10, it
can be shown that the fuzzy-valued function 𝐹C̃𝑘] inherits
the twice continuous differentiability of 𝑓𝑐(t,𝛼) at x∗, when𝜕2𝑓𝑐(t,𝛼)(x∗)/𝜕𝑥𝑖𝜕𝑥𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are 𝛼-levels of a fuzzy
number.

Definition 16. A fuzzy matrix Ã𝑚 is said to be symmetric if
each of its 𝛼-levels is symmetric. Moreover, by the parametric
representation (4), a fuzzy matrix Ã𝑚 is positive definite (or
positive semidefinite) if every 𝐴(t, 𝛼) is positive definite (or
positive semidefinite).

Theorem 17 (see [24]). Let 𝐹C̃𝑘] be a twice continuously
differentiable fuzzy-valued function on the open convex setΩ ⊆ R𝑛. The function 𝐹C̃𝑘] is convex with respect to ⪯𝑤 if and
only if its fuzzy Hessian matrix is positive semidefinite for all
x ∈ Ω.

4. Constrained Fuzzy-Valued
Optimization Problem

Consider the following constrained fuzzy-valued optimiza-
tion problem:(CFOP) min 𝐹C̃𝑘] (x)

s.t. 𝐺
𝑗D̃
𝑚𝑗
]
(x) ⪯ (or ⪯𝑤) 𝐵𝑗𝑗 = 1, 2, . . . , 𝑝, (27)

where 𝐵𝑗 ∈ F(R) for 𝑗 = 1, 2, . . . , 𝑝 and 𝐹C̃𝑘] , 𝐺𝑗D̃𝑚𝑗] :
R𝑛 → F(R) are fuzzy-valued functions with the parametric
representations[𝐹C̃𝑘] (𝑥)]𝛼 = {𝑓𝑐(t,𝛼) (x) | 𝑓𝑐(t,𝛼) : R𝑛 󳨀→ R, 𝑐 (t, 𝛼)

∈ [C̃𝑘]]𝛼} ,
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[𝐺
𝑗D̃
𝑚𝑗
]
(x)]𝛼 = {𝑔𝑗𝑑(t𝑗 ,𝛼) (x) | 𝑔𝑗𝑑(t𝑗 ,𝛼) (x) : R𝑛󳨀→ R, 𝑑 (t𝑗, 𝛼) ∈ [D̃𝑚𝑗] ]𝛼} .

(28)

According to the partial orderings as discussed inDefinition 5
and the parametric representations (3) and (4), the feasible
region of the CFOP can be expressed as

F = {𝑥 ∈ R
𝑛 : 𝐺
𝑗D̃
𝑚𝑗
]
(𝑥) ⪯ (or ⪯𝑤) 𝐵𝑗 𝑗 = 1, 2, . . . , 𝑝}

= {{{
{x ∈ R𝑛 : 𝑔𝑗𝑑(t󸀠𝑗 ,𝛼) (x) ≤ 𝑏𝑗 (t󸀠󸀠𝑗 , 𝛼) , ∀𝛼 ∈ [0, 1] , ∀𝑗 ∈ 1, 2, . . . , 𝑝} if 𝐺

𝑗D̃
𝑚𝑗
]
(x) ⪯ 𝐵𝑗,{x ∈ R𝑛 : 𝑔𝑗𝑑(t𝑗 ,𝛼) (x) ≤ 𝑏𝑗 (t𝑗, 𝛼) , ∀𝛼 ∈ [0, 1] , ∀𝑗 ∈ 1, 2, . . . , 𝑝} if 𝐺

𝑗D̃
𝑚𝑗
]
(x) ⪯𝑤 𝐵𝑗,

= {{{{{{{{{
{x ∈ R𝑛 : max

t𝑗∈[0,1]
𝑚𝑗
𝑔𝑗𝑑(t𝑗 ,𝛼) (x) ≤ 𝑏𝑗 (0, 𝛼) , ∀𝛼 ∈ [0, 1] , ∀𝑗} if 𝐺

𝑗D̃
𝑚𝑗
]
(x) ⪯ 𝐵𝑗,

{x ∈ R𝑛 : max
t𝑗∈[0,1]

𝑚𝑗
𝑔𝑗𝑑(t𝑗 ,𝛼) (x) ≤ 𝑏𝑗 (1, 𝛼) , min

t𝑗∈[0,1]𝑚
𝑔𝑗𝑑(𝑡𝑗 ,𝛼) (x) ≤ 𝑏𝑗 (0, 𝛼) , ∀𝛼 ∈ [0, 1] , ∀𝑗} if 𝐺

𝑗D̃
𝑚𝑗
]
(x) ⪯𝑤 𝐵𝑗.

(29)

4.1. Solution Concepts and Optimality Conditions. In this
section, a novel solution methodology was presented on
the CFOP, which has depended on the definition of the
corresponding optimal solution. Accordingly, it has been
tried to define this concept based on the proposed partial
orders. The feasible point x∗ is said to be an optimal solution
of the CFOP with respect to ⪯𝑤, if and only if𝐹C̃𝑘] (x∗) ⪯𝑤 𝐹C̃𝑘] (x) (30)

for all x ∈ F. Nevertheless, by the definition of the partial
order ⪯𝑤, the CFOP can be handled via the following
multiobjective problem:(COP)t min

x∈F
𝑓𝑐(t,𝛼) (x) . (31)

So, the solution of the CFOP can be interpreted as the
solution of (COP)t, which is conforming to the concept of an
efficient solution of a multiobjective problem. Consequently,
the solution concept of the CFOP can be determined based
on the thought of dominance.

Definition 18. Let F ⊆ R𝑛 be the feasible set of the CFOP
(i) A point x∗ ∈ F is an efficient solution of the CFOP if

there is no x ∈ F, where𝑓𝑐(t,𝛼) (x) ≤ 𝑓𝑐(t,𝛼) (x∗)∀t ∈ [0, 1]𝑘 , 𝐹C̃𝑘] (x) ̸= 𝐹C̃𝑘] (x∗) . (32)

(ii) Apoint x∗ ∈ F is said to be a properly efficient solution
of the CFOP, if it is an efficient solution and there is a real
number 𝜇 > 0 such that there exists at least one t󸀠 ∈ [0, 1]𝑘,
t ̸= t󸀠, with 𝑓𝑐(t,𝛼)(x) > 𝑓𝑐(t,𝛼)(x∗), whereas𝑓𝑐(t,𝛼) (x∗) − 𝑓𝑐(t,𝛼) (x)𝑓𝑐(t,𝛼) (x) − 𝑓𝑐(t,𝛼) (x∗) ≤ 𝜇, (33)

for some t ∈ [0, 1]𝑘 and every x ∈ F with 𝑓𝑐(t,𝛼)(x) <𝑓𝑐(t,𝛼)(x∗).

One of the main advantages of efficient solutions is to
enable the decision maker to select one optimal solution
that is matched best to his demand. In order to enhance the
usefulness, the proposed solution concepts can be typically
expanded as follows:

(1) CFOP has a weak efficient solution at x∗ ∈ F,
whenever relation (32) is established for some 𝛼 ∈[0, 1].

(2) CFOP has a strong efficient solution at x∗ ∈ F, if, for
all 𝛼 ∈ [0, 1], relation (32) is valid.

(3) CFOP has a strong independent efficient solution at
x∗ ∈ F, when x∗ is an efficient solution and it is
independent of 𝛼.

(4) CFOP has no efficient solution, if there is no x∗ ∈ F
such that relation (32) is satisfied for any 𝛼 ∈ [0, 1].

Likewise, the concepts of weak, strong, strong independent,
and no properly efficient solutions for the CFOP can be
defined.

The fundamental idea to handle the considered multiob-
jective problem with infinity objective (COP)t is to convert
it to the following constrained single-objective optimization
problem:

(COP) min
x∈F

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) 𝑓𝑐(t,𝛼) (x) 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡𝑘, (34)

where 𝑤(t) = 𝑤(𝑡1, 𝑡2, . . . , 𝑡𝑘) is a weight function 𝑤 :[0, 1]𝑘 → (0, +∞) and 𝑡1, 𝑡2, . . . , 𝑡𝑘 aremutually independent.
It can be shown that the solutions of the COP can be related
to the CFOP ones.

Theorem 19. If x∗ ∈ F is an optimal solution of the COP, then
it is a properly efficient solution of the CFOP.

Proof. By contradiction, assume that x∗ ∈ F is not a properly
efficient solution of the CFOP.Therefore, x∗ is not an efficient
solution of the CFOP or the second part of Definition 18
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(ii) is violated. Anyway, for some t ∈ [0, 1]𝑘 and x ∈ F
with 𝑓𝑐(t,𝛼)(x) < 𝑓𝑐(t,𝛼)(x∗), pick out a continuous weight
function 𝑤 : [0, 1]𝑘 → (0, +∞). Then, by choosing 𝜇 =
max{t ̸=t󸀠 , t,t󸀠∈[0,1]𝑘 , 𝑤(t)>0}{𝑤(t󸀠)/𝑤(t)}, we have

𝑓𝑐(t,𝛼) (x∗) − 𝑓𝑐(t,𝛼) (x)𝑓𝑐(t,𝛼) (x) − 𝑓𝑐(t,𝛼) (x∗) > 𝜇 (35)

for all t󸀠 ∈ [0, 1]𝑘 with 𝑓𝑐(t,𝛼)(x) > 𝑓𝑐(t,𝛼)(x∗). Consequently,
𝑓𝑐(t,𝛼) (x∗) − 𝑓𝑐(t,𝛼) (x) > 𝜇 (𝑓𝑐(t,𝛼) (x) − 𝑓𝑐(t,𝛼) (x∗))

> 𝑤 (t󸀠)𝑤 (t) (𝑓𝑐(t,𝛼) (x) − 𝑓𝑐(t,𝛼) (x∗)) ,
𝑤 (t) 𝑓𝑐(t,𝛼) (x∗) − 𝑤 (t) 𝑓𝑐(t,𝛼) (x)> 𝑤 (t󸀠) 𝑓𝑐(t,𝛼) (x) − 𝑤 (t󸀠) 𝑓𝑐(t,𝛼) (x∗) .

(36)

By integrating with respect to 𝑡1, 𝑡2, . . . , 𝑡𝑘, we have
∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) 𝑓𝑐(t,𝛼) (x∗) 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡𝑘

− ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) 𝑓𝑐(t,𝛼) (x) 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡𝑘

> ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤(t󸀠) 𝑓𝑐(t,𝛼) (x) 𝑑𝑡󸀠1𝑑𝑡󸀠2 ⋅ ⋅ ⋅ 𝑑𝑡󸀠𝑘

− ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤(t󸀠) 𝑓𝑐(t,𝛼) (x∗) 𝑑𝑡󸀠1𝑑𝑡󸀠2 ⋅ ⋅ ⋅ 𝑑𝑡󸀠𝑘;

(37)

therefore

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) 𝑓𝑐(t,𝛼) (x∗) 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡𝑘

> ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) 𝑓𝑐(t,𝛼) (x) 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡𝑘, (38)

which contradicts the assumption that x∗ is an optimal
solution of the COP.

It is noteworthy that a CFOP is said to be a constrained
fuzzy-valued convex programming problem if𝐹C̃𝑘] , 𝐺𝑗D̃𝑚𝑗] are
convex functions with respect to ⪯𝑤 or ⪯.
Theorem 20. If the CFOP is a constrained fuzzy-valued
convex programming problem, then the COP is a constrained
convex programming problem.

Proof. It is the same as the proof of Theorem 3 of [25].
4.2. Constrained Fuzzy-Valued Quadratic Programming Prob-
lem. The constrained fuzzy-valued quadratic programming
(CFQP) problem is a special case of the CFOP, when the
fuzzy-valued function 𝐹C̃𝑘] is quadratic and the constraints𝐺
𝑗D̃
𝑚𝑗
]

are linear in x ∈ R𝑛. Generally, the problem can be
formulated as follows:

(CFQP) min C̃𝑛] ⬦ x ⊕ 12 ⊙ x𝑇 ⬦ Q̃𝑚 ⬦ x

s.t. Ã𝑚x ⪯ (or ⪯𝑤) B̃𝑝] , x ≥ 0, x ∈ R
𝑛, (39)

where Q̃𝑚 = (Q̃𝑖𝑗)𝑛×𝑛 ∈ (F(R))𝑛×𝑛 is a symmetric fuzzy
matrix, Ã𝑚 = (Ã𝑖𝑗)𝑝×𝑛 ∈ (F(R))𝑝×𝑛, C̃𝑛] ∈ (F(R))𝑛, and
B̃𝑝] ∈ (F(R))𝑝. According to (29), the feasible region of the
CFQP can be obtained by the set

F = {x ∈ R
𝑛 : Ã𝑚x ⪯ (or ⪯𝑤) B̃𝑝] , x ≥ 0}

= {{{
{x ∈ R𝑛 : 𝐴 (1, 𝛼) x ≤ 𝑏 (0, 𝛼) , x ≥ 0, ∀𝑗, 𝛼} if Ã𝑚x ⪯ B̃𝑝] ,{x ∈ R𝑛 : 𝐴 (1, 𝛼) x ≤ 𝑏 (1, 𝛼) , 𝐴 (0, 𝛼) x ≤ 𝑏 (0, 𝛼) , x ≥ 0, ∀𝑗, 𝛼, } if Ã𝑚x ⪯𝑤 B̃𝑝] .

(40)

It is self-evident that F is a convex set. Moreover, if the
fuzzy Hessian matrix Q̃𝑚 is positive semidefinite then, by
Theorem 17, the objective function will also be a fuzzy-valued
convex function with respect to ⪯𝑤. Consequently, the CFQP

will be a convex optimization problem. On the other hand, its
corresponding optimization problem with a weight function𝑤 : [0, 1]𝑛2+𝑛 → (0, +∞) can be denoted by

(CQP) min
x∈F

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t) {𝑐 (t󸀠, 𝛼)𝑇 x + 12x𝑇𝑄(t󸀠󸀠, 𝛼) x} 𝑑t󸀠𝑑t󸀠󸀠, (41)

where 𝑐(t󸀠, 𝛼) ∈ [C̃𝑛]]𝛼, 𝑄(t󸀠󸀠, 𝛼) ∈ [Q̃𝑚]𝛼, 𝑑t󸀠 =𝑑𝑡󸀠1𝑑𝑡󸀠2 ⋅ ⋅ ⋅ 𝑑𝑡󸀠𝑛, and 𝑑t󸀠󸀠 = 𝑑𝑡󸀠󸀠𝑖𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑚, t = (t󸀠, t󸀠󸀠)𝑇. By Theorem 20, the optimization problem (41) is also a con-
strained convex quadratic programming problem.Therefore,



8 Complexity

using KKT optimality conditions, its corresponding optimal
solution can be obtained which is a properly efficient solution
for (39).

Consider the feasible region F = {x ∈ R𝑛 : 𝐴(1, 𝛼) x ≤𝑏(0, 𝛼), x ≥ 0}; accordingly, the Lagrange function is
obtained as𝐿 (x, 𝛼, 𝜆, 𝜇) = ℎ (x, 𝛼) + 𝜆𝑇 (𝐴 (1, 𝛼) x − 𝑏 (0, 𝛼))− 𝜇𝑇x, (42)

where

ℎ (x, 𝛼) = ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t)

⋅ {𝑐 (t󸀠, 𝛼)𝑇 x + 12x𝑇𝑄(t󸀠󸀠, 𝛼) x} 𝑑t󸀠𝑑t󸀠󸀠, (43)

and 𝜆 ∈ R𝑝, 𝜇 ∈ R𝑛, 𝜆 ≥ 0, and 𝜇 ≥ 0. So, the KKT optimality
conditions are∇x𝐿 (x, 𝛼, 𝜆, 𝜇)

= ∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (𝑡) {𝑐 (t, 𝛼)𝑇 + 𝑄 (𝑡󸀠󸀠, 𝛼) x} dt󸀠dt󸀠󸀠

+ 𝜆𝑇𝐴 (1, 𝛼) = 𝜇𝑇,𝜆𝑇 (𝐴 (1, 𝛼) x − 𝑏 (0, 𝛼)) = 0,𝜇𝑇x = 0,
(44)

where 𝜆 ≥ 0, 𝜇 ≥ 0, and x ∈ F.
Furthermore, if the feasible regionF takes another form in

(40), then the KKT optimality conditions can be determined
in a similar way.

5. Numerical Examples

In this section, two examples are given to illustrate the
efficiency of the proposed approach. In the first example, the
various solutions are discussed in detail and in the second one
a special problem, namely, the constrained portfolio selection
problem, is expressed.

Example 1. Consider the following constrained fuzzy-valued
quadratic programming problem:

min
x∈R2

𝐹C̃5] (𝑥1, 𝑥2)= 6̃ ⊙ 𝑥21 ⊕ 4̃ ⊙ 𝑥1𝑥2 ⊕ 1̃0 ⊙ 𝑥22 ⊕ 1̃ ⊙ 𝑥1 ⊕ 2̃⊙ 𝑥2
s.t. −̃2 ⊙ 𝑥1 ⊕ −̃1 ⊙ 𝑥2 ⪯ −̃1,1̃ ⊙ 𝑥1 ⊕ 1̃ ⊙ 𝑥2 ⪯ 4̃,𝑥1, 𝑥2 ≥ 0,

(45)

where 6̃ = ⟨4, 6, 7⟩, 4̃ = ⟨3, 4, 5⟩, 1̃0 = ⟨9, 10, 12⟩, 1̃ =⟨0, 1, 2⟩, 2̃ = ⟨0, 2, 4⟩, −̃2 = ⟨−4, −2, 0⟩, and −̃1 = ⟨−2, −1, 2⟩.
The corresponding optimization problem with respect to 𝑤 :[0, 1]5 → (0, +∞) is

(CQP) min
x∈F

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (t)

⋅ {(4 + 2𝛼 + 𝑡1 (3 − 3𝛼)) 𝑥21+ (3 + 𝛼 + 𝑡2 (2 − 2𝛼)) 𝑥1𝑥2+ (9 + 𝛼 + 𝑡3 (3 − 3𝛼)) 𝑥22+ (𝛼 + 𝑡4 (2 − 2𝛼)) 𝑥1+ (2𝛼 + 𝑡5 (4 − 4𝛼)) 𝑥2} 𝑑t,
F = {(𝑥1, 𝑥2) : −2𝛼𝑥1 + (2 − 3𝛼) 𝑥2≤ −2 + 𝛼, (2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2≤ 3 + 𝛼, 𝑥1, 𝑥2 ≥ 0} ,

(46)

where 𝑑t = 𝑑𝑡1𝑑𝑡2𝑑𝑡3𝑑𝑡4𝑑𝑡5. The fuzzy-valued function𝐹C̃5] is convex (see Example 2.2 [24]). Therefore, the con-
strained quadratic programming problem (46) is a convex
programming problem, by Theorem 20. Accordingly, using
the obtained result of Section 4.2, the KKT conditions for
CQP are

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (𝑡) {2 (4 + 2𝛼 + 𝑡1 (3 − 3𝛼)) 𝑥1 + (3 + 𝛼 + 𝑡2 (2 − 2𝛼)) 𝑥2 + (𝛼 + 𝑡4 (2 − 2𝛼))} dt − 2𝛼𝜆1 + (2 − 𝛼) 𝜆2

= 𝜇1,
∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0
𝑤 (𝑡) {(3 + 𝛼 + 𝑡2 (2 − 2𝛼)) 𝑥1 + 2 (9 + 𝛼 + 𝑡3 (3 − 3𝛼)) 𝑥2 + (2𝛼 + 𝑡5 (4 − 4𝛼))} dt + (2 − 3𝛼) 𝜆1 + (2 − 𝛼)

⋅ 𝜆2 = 𝜇2,𝜆1 (−2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 − (−2 + 𝛼)) = 0,𝜆2 ((2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 − (3 + 𝛼)) = 0,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝜆1, 𝜆2, 𝜇1, 𝜇2 ≥ 0, (𝑥1, 𝑥2) ∈ F.

(47)
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For a particular weight function 𝑤(t) = 𝑡1 + 𝑡3, the above
system can be simplified as

232 𝑥1 + 12𝑥1𝛼 + 4𝑥2 + 1 − 2𝛼𝜆1 + (2 − 𝛼) 𝜆2 = 𝜇1,
4𝑥1 + 432 𝑥2 − 32𝑥2𝛼 + 2 + (2 − 3𝛼) 𝜆1 + (2 − 𝛼) 𝜆2= 𝜇2,𝜆1 (−2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 − (−2 + 𝛼)) = 0,𝜆2 ((2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 − (3 + 𝛼)) = 0,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝜆1, 𝜆2, 𝜇1, 𝜇2 ≥ 0, (𝑥1, 𝑥2) ∈ F.

(48)

For each 𝛼 ∈ [0.3852, 1], the solution of problem is (𝑥∗1 , 𝑥∗2 ) =(−0.5(𝛼 − 2)/𝛼, 0). Therefore, the fuzzy-valued optimiza-
tion problem (45) has a weak properly efficient solution at(−0.5(𝛼 − 2)/𝛼, 0).

Now, by considering some changes in the fuzzy-valued
optimization problem (45), it can be shown that the solution
of problem changes.

Case 1. Set B̃󸀠
2

] = [2̃; 4̃] instead of B̃2] = [−̃1; 4̃]. In this case,
the following system may be obtained:

232 𝑥1 + 12𝑥1𝛼 + 4𝑥2 + 1 − 2𝛼𝜆1 + (2 − 𝛼) 𝜆2 = 𝜇1,
4𝑥1 + 432 𝑥2 − 32𝑥2𝛼 + 2 + (2 − 3𝛼) 𝜆1 + (2 − 𝛼) 𝜆2= 𝜇2,𝜆1 (−2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 − 2𝛼) = 0,𝜆2 ((2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 − (3 + 𝛼)) = 0,− 2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 ≤ 2𝛼,(2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 ≤ (3 + 𝛼) ,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝑥1, 𝑥2, 𝜆1, 𝜆2, 𝜇1, 𝜇2 ≥ 0.

(49)

Consequently, the problem has a strong independent prop-
erly efficient solution at (𝑥∗1 , 𝑥∗2 ) = (0, 0).
Case 2. Set B̃󸀠

2

] = [−̃1; −̃4] instead of B̃2] = [−̃1; 4̃], where−̃4 = ⟨−5, −4, −2⟩ is a triangular fuzzy number; we have

232 𝑥1 + 12𝑥1𝛼 + 4𝑥2 + 1 − 2𝛼𝜆1 + (2 − 𝛼) 𝜆2 = 𝜇1,
4𝑥1 + 432 𝑥2 − 32𝑥2𝛼 + 2 + (2 − 3𝛼) 𝜆1 + (2 − 𝛼) 𝜆2= 𝜇2,

𝜆1 (−2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 − (−2 + 𝛼)) = 0,𝜆2 ((2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 − (−5 + 𝛼)) = 0,− 2𝛼𝑥1 + (2 − 3𝛼) 𝑥2 ≤ −2 + 𝛼,(2 − 𝛼) 𝑥1 + (2 − 𝛼) 𝑥2 ≤ −5 + 𝛼,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝑥1, 𝑥2, 𝜆1, 𝜆2, 𝜇1, 𝜇2 ≥ 0,
(50)

which has no solution, and so the problem has no properly
efficient solution.

Case 3. Set Ã󸀠𝑚 = [−̃4, 2̃; −̃1, −̃4] instead of Ã𝑚 =[−̃2, −̃1; −̃1, −̃1]. Therefore, the corresponding system is232 𝑥1 + 12𝑥1𝛼 + 4𝑥2 + 1 + (−2 − 2𝛼) 𝜆1 + (2 − 3𝛼) 𝜆2= 𝜇1,
4𝑥1 + 432 𝑥2 − 32𝑥2𝛼 + 2 + (4 − 2𝛼) 𝜆1 + (2 − 3𝛼) 𝜆2= 𝜇2,𝜆1 ((−2 − 2𝛼) 𝑥1 + (4 − 2𝛼) 𝑥2 − (−2 + 𝛼)) = 0,𝜆2 ((2 − 3𝛼) 𝑥1 + (2 − 3𝛼) 𝑥2 − (3 + 𝛼)) = 0,(−2 − 2𝛼) 𝑥1 + (4 − 2𝛼) 𝑥2 ≤ −2 + 𝛼,(2 − 3𝛼) 𝑥1 + (2 − 3𝛼) 𝑥2 ≤ 3 + 𝛼,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝑥1, 𝑥2, 𝜆1, 𝜆2, 𝜇1, 𝜇2 ≥ 0,

(51)

where, for each𝛼 ∈ [0, 1], the pair (𝑥∗1 , 𝑥∗2 ) = (−0.5(𝛼−2)/(𝛼+1), 0) is the solution of the above system. Thus, the problem
has a strong properly efficient solution at (−0.5(𝛼 − 2)/(𝛼 +1), 0).

To complete the discussion, it is interesting to explain
the results by giving a special example named as portfolio
selection problem. With respect to the mathematical pro-
gramming problems including randomness and fuzziness, it
is necessary to consider a certain optimization criterion so as
to transform these problems into well-defined problems [26].
Therefore, in this paper, we consider fuzzy portfolio selection
problem.

Example 2 (fuzzy portfolio selection problem [27]). The
portfolio selection problem consists in selecting a portfolio
of assets (or securities) that provides the investor with a
given expected return andminimizes the risk.Mean-Variance
optimization is probably the most popular approach to
portfolio selection, which takes the variance of the portfolio
as the measure of risk. It was introduced more than 50 years
ago in the pioneering work by Markowitz [28].

Suppose that there are 𝑛 assets indexed by 𝑖 = 1, 2, . . . , 𝑛.
Each asset 𝑖 is characterized by its random rate of return 𝑟𝑖,
and its covariances with the rates of return of other assets
are 𝜎𝑖𝑗 for 𝑗 = 1, 2, . . . , 𝑛. The matrix 𝜎𝑛×𝑛 is symmetric and
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each diagonal element 𝜎𝑖𝑖 represents the variance of asset 𝑖. A
positive value 𝑅 represents at least the desired rate of return.

The portfolio problem is to allocate total available wealth
among these 𝑛 assets, allocating a fraction 𝑥𝑖 of wealth to
the asset 𝑖. The value ∑𝑛𝑖,𝑗=1 𝑥𝑖𝜎𝑖𝑗𝑥𝑗 represents the variance of
the portfolio, and it is considered as the measure of the risk
associated with the portfolio. Consequently, the problem is to
minimize the overall variance, still ensuring the rate of return𝑅. Thus, the problem can be formulated as follows:

min
𝑥1 ,𝑥2,...,𝑥𝑛

𝑛∑
𝑖,𝑗=1

𝑥𝑖𝜎𝑖𝑗𝑥𝑗
s.t.

𝑛∑
𝑖=1

𝑟𝑖𝑥𝑖 ≥ 𝑅
𝑛∑
𝑖=1

𝑥𝑖 = 1.
(52)

There may be the further restriction that each 𝑥𝑖 ≥ 0 which
would imply that the assets must not be shorted. For 𝑛 = 3,
we have

min
x∈R3

12x𝑇𝑄𝑚x
s.t. − 𝑟1𝑥1 − 𝑟2𝑥2 − 𝑟3𝑥3 ≤ −𝑅𝑥1 + 𝑥2 + 𝑥3 = 1

x ≥ 0,
(53)

where

x = (𝑥1, 𝑥2, 𝑥3)𝑇 ,
𝑄𝑚 = ( 2𝜎11 𝜎12 + 𝜎21 𝜎13 + 𝜎31𝜎12 + 𝜎21 2𝜎22 𝜎23 + 𝜎32𝜎13 + 𝜎31 𝜎23 + 𝜎32 2𝜎33 ). (54)

Since each asset is characterized by its random rate of return,
then, for a closer look, we consider that the coefficients 𝜎𝑖𝑗,𝑟𝑖, and 𝑅 become imprecise numbers. Thus, interpretation
makes it flexible and allows us to have a class of solutions
and also it helps us to improve the prediction and simulation
and better assess the problem. In other words, the purpose
is to introduce a model that, considering the uncertainty, the
basket offers the best way to meet the demands of investors.

To have a typical application of this model, let the fuzzy
optimization problem be of the following form:

min
x∈R3

12 ⊙ x𝑇 ⬦ Q̃𝑚 ⬦ x

s.t. − 𝑟1𝑥1 − 𝑟2𝑥2 − 𝑟3𝑥3 ⪯ −𝑅̃𝑥1 + 𝑥2 + 𝑥3 = 1
x ≥ 0,

(55)

where (𝑟1, 𝑟2, 𝑟3) = (1̃, 3̃, 2̃) ,𝑅̃ = 3̃,
Q̃𝑚 = (6̃ 1̃ 4̃1̃ 9̃ 2̃4̃ 2̃ 1̃6) , (56)

and 1̃ = ⟨0, 1, 2⟩, 2̃ = ⟨1, 2, 4⟩, 3̃ = ⟨1, 3, 6⟩, 4̃ = ⟨3, 4, 5⟩,6̃ = ⟨4, 6, 9⟩, 9̃ = ⟨6, 9, 11⟩, and 1̃6 = ⟨12, 16, 20⟩. One
can easily check that (1/2) ⊙ x𝑇 ⬦ Q̃𝑚 ⬦ x is a fuzzy-
valued convex function from Definition 7 or Theorem 20.
Using themethod proposed in Section 4.2, the corresponding
constrained convex quadratic programming, with the weight
function 𝑤 : [0, 1]6 → (0, +∞), is

min
F

∫1
0
∫1
0
⋅ ⋅ ⋅ ∫1
0

12𝑤 (t)
⋅ {(4 + 2𝛼 + 𝑡1 (5 − 5𝛼)) 𝑥21+ (6 + 3𝛼 + 𝑡2 (5 − 5𝛼)) 𝑥22+ (12 + 4𝛼 + 𝑡3 (8 − 8𝛼)) 𝑥23+ 2 (𝛼 + 𝑡4 (2 − 2𝛼)) 𝑥1𝑥2+ 2 (3 + 𝛼 + 𝑡5 (2 − 2𝛼)) 𝑥1𝑥3+ 2 (1 + 𝛼 + 𝑡6 (3 − 3𝛼)) 𝑥2𝑥3} 𝑑t,

F = {(𝑥1, 𝑥2, 𝑥3) : − (2 − 𝛼) 𝑥1 − (6 − 3𝛼) 𝑥2− (4 − 2𝛼) 𝑥3 ≤ − (1 + 2𝛼) ,𝑥1 + 𝑥2 + 𝑥3 = 1, 𝑥1, 𝑥2, 𝑥3 ≥ 0} ,

(57)

where dt = 𝑑𝑡1𝑑𝑡2 ⋅ ⋅ ⋅ 𝑑𝑡6. For a particular weight function𝑤(t) = 1, one can obtain the following systems from KKT
conditions:12 (13𝑥1 + 2𝑥2 + 8𝑥3 − 𝛼𝑥1) − (2 − 𝛼) 𝜆1 + 𝜆2 = 𝜇1,12 (2𝑥1 + 17𝑥2 + 5𝑥3 + 𝛼𝑥2 − 𝛼𝑥3) − (6 − 3𝛼) 𝜆1+ 𝜆2 = 𝜇2,12 (8𝑥1 + 5𝑥2 + 32𝑥3 − 𝛼𝑥2) − (4 − 2𝛼) 𝜆1 + 𝜆2 = 𝜇3,𝜆1 (− (2 − 𝛼) 𝑥1 − (6 − 3𝛼) 𝑥2 − (4 − 2𝛼) 𝑥3+ (1 + 2𝛼)) = 0,𝜇1𝑥1 = 0, 𝜇2𝑥2 = 0, 𝜇3𝑥3 = 0, 𝜆1, 𝜇1, 𝜇2, 𝜇3 ≥ 0,(𝑥1, 𝑥2, 𝑥3) ∈ F.

(58)

For each 𝛼 ∈ [0.9455, 1], the solution of problem is (𝑥∗1 , 𝑥∗2 ) =(0, −(4∗𝛼−3)/(𝛼−2)).Then, the problem has weak properly
efficient solutions.
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6. Conclusion

This study identified that a specific parametric representation
for the fuzzy number can clarify the fuzzy arithmetic and
calculus of fuzzy-valued function which had several accept-
able properties as flexibility, easy-to-control shapes, and
applicability in practice. Furthermore, the various solution
concepts associated with constrained fuzzy-valued optimiza-
tion problem were outlined. More precisely, the constrained
fuzzy-valued optimization problem with both fuzzy-valued
objective function and constraints was converted to a general
constrained optimization problem, based on its underlying
fuzzy-valued functions.The ability of the proposed approach
might help to consider more realistic modeling efforts in
the real world, such as fuzzy portfolio selection problem as a
prominent problem in the financial field.
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[22] J. Ramı́k and J. ı́mánek, “Inequality relation between fuzzy
numbers and its use in fuzzy optimization,” Fuzzy Sets and
Systems, vol. 16, no. 2, pp. 123–138, 1985.

[23] B. Bede and L. Stefanini, “Generalized differentiability of fuzzy-
valued functions,” Fuzzy Sets and Systems. An International
Journal in Information Science andEngineering, vol. 230, pp. 119–
141, 2013.

[24] M. Heidari, M. R. Zadeh, O. S. Fard, and A. H. Borzabadi, “On
unconstrained fuzzy-valued optimization problems,” Interna-
tional Journal of Fuzzy Systems, vol. 18, no. 2, pp. 270–283, 2016.

[25] A. K. Bhurjee and G. Panda, “Efficient solution of interval
optimization problem,” Mathematical Methods of Operations
Research, vol. 76, no. 3, pp. 273–288, 2012.

[26] T. Hasuike, H. Katagiri, and H. Ishii, “Portfolio selection
problems with random fuzzy variable returns,” Fuzzy Sets and
Systems. An International Journal in Information Science and
Engineering, vol. 160, no. 18, pp. 2579–2596, 2009.



12 Complexity

[27] A. Schaerf, “Local Search Techniques for Constrained Portfolio
Selection Problems,” Computational Economics, vol. 20, no. 3,
pp. 177–190, 2002.

[28] H. Markowitz, “Portfolio selection,”The Journal of Finance, vol.
7, no. 1, pp. 77–91, 1952.



Research Article
The Karush-Kuhn-Tucker Optimality Conditions for
the Fuzzy Optimization Problems in the Quotient Space of
Fuzzy Numbers

Nanxiang Yu and Dong Qiu

College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Nanan, Chongqing 400065, China

Correspondence should be addressed to Dong Qiu; dongqiumath@163.com

Received 13 April 2017; Revised 4 June 2017; Accepted 11 July 2017; Published 7 August 2017

Academic Editor: Omar Abu Arqub

Copyright © 2017 Nanxiang Yu and Dong Qiu.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose the solution concepts for the fuzzy optimization problems in the quotient space of fuzzy numbers. The Karush-Kuhn-
Tucker (KKT) optimality conditions are elicited naturally by introducing the Lagrange function multipliers. The effectiveness is
illustrated by examples.

1. Introduction

The fuzzy set theory was introduced initially in 1965 by Zadeh
[1]. After that, to use this concept in topology and analysis
many authors have expansively developed the theory of fuzzy
sets and application. The fuzziness occurring in the opti-
mization problems is categorized as the fuzzy optimization
problems. Bellman and Zadeh [2] inspired the development
of fuzzy optimization by providing the aggregation operators,
which combined the fuzzy goals and fuzzy decision space.
After this motivation and inspiration, there come out a lot of
works dealing with the fuzzy optimization problems.

Zimmermann and Rödder initially applied fuzzy sets
theory to the linear programing problems and linear mul-
tiobjective programing problems by using the aspiration
level approach [3–6]. Durea and Tammer [7] derived the
Lagrange multiplier rules for fuzzy optimization problems
using the concept of abstract subdifferential. Bazine et al. [8]
developed some fuzzy optimality conditions for fractional
multiobjective optimization problems. In 2013, the solution
approach for the lower level fuzzy optimization problem and
the fuzzy bilevel optimization problem was investigated by
Budnitzki [9]. Panigrahi et al. [10] extended and general-
ized these concepts to fuzzy mappings of several variables
using the approach due to Buckley and Feuring [11] for

fuzzy differentiation and derived the KKT conditions for
the constrained fuzzy minimization problems. Wu [12, 13]
presented the KKT conditions for the optimization problems
with convex constraints and fuzzy-valued objective functions
on the class of all fuzzy numbers by considering the concepts
of Hausdorff metric and Hukuhara difference. Chalco-Cano
et al. [14] discussed the KKT optimality conditions for a class
of fuzzy optimization problems using strongly generalized
differentiable fuzzy-valued functions, which is a concept of
differentiability for fuzzy mappings more general than the
Hukuhara differentiability.

These above results of fuzzy optimization are based on
well-known and widely used algebraic structures of fuzzy
numbers and the differentiability of fuzzy mappings was
based on the concept of Hukuhara difference. However these
operations can have some disadvantages for both theory and
practical application. In [15], Qiu et al. intuitively showed
a method of finding the inverse operation in the quotient
space of fuzzy numbers based on the Mareš equivalence
relation [16, 17], which have the desired group properties
for the addition operation [18–20] midpoint function. As an
application of the main results, it is shown that if we identify
every fuzzy number with the corresponding equivalence
class, there would bemore differentiable fuzzy functions than
what is found in the literature. In [21] Qiu et al. further
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investigated the differentiability properties of such functions
in the quotient space of fuzzy numbers. In this paper, theKKT
optimality conditions for the constrained fuzzy optimization
problems in the quotient space of fuzzy numbers are derived.

2. Preliminaries

We start this section by recalling some pertinent concepts and
key lemmas from the function of bounded variation, fuzzy
numbers, and fuzzy number equivalence classes which will
be used later.

Definition 1 (see [22]). Let 𝑓 : [𝑎, 𝑏] → R be a function. 𝑓 is
said to be of bounded variation if there exists a 𝐶 > 0 such
that

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖−1) − 𝑓 (𝑥𝑖−1)󵄨󵄨󵄨󵄨 ≤ 𝐶 (1)

for every partition 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑏 on[𝑎, 𝑏]. The set of all functions of bounded variation on [𝑎, 𝑏]
is denoted by BV[𝑎, 𝑏].
Definition 2 (see [22]). Let 𝑓 : [𝑎, 𝑏] → R be a function of
bounded variation.The total variation of 𝑓 on [𝑎, 𝑏], denoted
by 𝑉𝑏𝑎 (𝑓), is defined by

𝑉𝑏𝑎 (𝑓) = sup
𝑝

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖−1) − 𝑓 (𝑥𝑖)󵄨󵄨󵄨󵄨 , (2)

where 𝑝 represents all partitions of [𝑎, 𝑏].
Lemma 3 (see [22]). Let 𝑓, 𝑔 ∈ BV[𝑎, 𝑏], and then we have
the following:

(1) 𝑐𝑓 + 𝑑𝑔 ∈ BV[𝑎, 𝑏] and
𝑉𝑏𝑎 (𝑐𝑓 + 𝑑𝑔) ≤ |𝑐| 𝑉𝑏𝑎 (𝑓) + |𝑑| 𝑉𝑏𝑎 (𝑔) (3)

for any contents 𝑐, 𝑑 ∈ R.
(2) 𝑓 ⋅ 𝑔 ∈ BV[𝑎, 𝑏] and

𝑉𝑏𝑎 (𝑓 ⋅ 𝑔) ≤ 𝑉𝑏𝑎 (𝑓) sup
𝑥∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨𝑔 (𝑥)󵄨󵄨󵄨󵄨
+ 𝑉𝑏𝑎 (𝑔) sup

𝑥∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 .
(4)

Lemma4 (see [22]). Everymonotonic function𝑓 : [𝑎, 𝑏] → R

is of bounded variation and

𝑉𝑏𝑎 (𝑓) = 󵄨󵄨󵄨󵄨𝑓 (𝑎) − 𝑓 (𝑏)󵄨󵄨󵄨󵄨 . (5)

Any mapping 𝑥 : R → [0, 1] will be called a fuzzy set 𝑥
onR. Its 𝛼-level set of 𝑥 is [𝑥]𝛼 = {𝑥 ∈ R : 𝑥(𝑥) ≥ 𝛼} for each𝛼 ∈ (0, 1]. Specifically, for 𝛼 = 0, the set [𝑥]0 is defined by[𝑥]0 = cl{𝑥 ∈ R : 𝑥(𝑥) > 0}, where cl𝐴 denotes the closure of
a crisp set 𝐴. A fuzzy set 𝑥 is said to be a fuzzy number if it is
normal, fuzzy convex, and upper semicontinuous and the set[𝑥]0 is compact.

Let𝐹 be the set of all fuzzy numbers onR.Then for an 𝑥 ∈𝐹 it is well known that the 𝛼-level set [𝑥]𝛼 = [𝑥𝐿(𝛼), 𝑥𝑅(𝛼)]
is a nonempty bounded closed interval inR for all 𝛼 ∈ [0, 1],
where 𝑥𝐿(𝛼) denotes the left-hand end point of [𝑥]𝛼 and𝑥𝑅(𝛼) denotes the right one. For any 𝑥, 𝑦 ∈ 𝐹 and 𝜆 ∈ R,
owing to Zadeh’s extension principle [23], the addition and
scalar multiplication can be, respectively, defined for any 𝑥 ∈
R by

(𝑥 + 𝑦) (𝑥) = sup
𝑥1 ,𝑥2 :𝑥1+𝑥2=𝑥

min {𝑥 (𝑥1) , 𝑥 (𝑥2)} ,

𝜆𝑥 (𝑥) = {{{
𝑥(𝑥𝜆) , 𝜆 ̸= 0,
0, 𝜆 = 0.

(6)

We say that a fuzzy number 𝑠 ∈ 𝐹 is symmetric if 𝑠 = −𝑠 [16].
We denote the set of all symmetric fuzzy numbers by 𝜑.
Definition 5 (see [15]). Let 𝑥 ∈ 𝐹, and we define a function𝑥𝑀 : [0, 1] → R by assigning the midpoint of each 𝛼-level set
to 𝑥𝑀(𝛼) for all 𝛼 ∈ [0, 1]; that is,

𝑥𝑀 (𝛼) = 𝑥𝐿 (𝛼) + 𝑥𝑅 (𝛼)2 . (7)

Then the function𝑥𝑀 : [0, 1] → Rwill be called themidpoint
function of the fuzzy number 𝑥.
Lemma 6 (see [15]). For any 𝑥 ∈ 𝐹, the midpoint function 𝑥𝑀
is continuous from the right at 0 and continuous from the left
on [0, 1]. Furthermore, it is a function of bounded variation on[0, 1].
Definition 7 (see [24]). Let 𝑥, 𝑦 ∈ 𝐹, and we say that 𝑥 is
equivalent to 𝑦, if there exist two symmetric fuzzy numbers𝑠1, 𝑠2 ∈ 𝜑 such that 𝑥+ 𝑠1 = 𝑦+ 𝑠2 and then we denote this by𝑥 ∼ 𝑦.

It is easy to verify that the equivalence relation defined
above is reflexive, symmetric, and transitive [16]. Let ⟨𝑥⟩
denote the fuzzy number equivalence class containing the
element 𝑥 and denote the set of all fuzzy number equivalence
classes by 𝐹/𝜑.
Definition 8 (see [17]). Let 𝑥 ∈ 𝐹 and let 𝑥 be a fuzzy number
such that 𝑥 = 𝑥 + 𝑠 for some 𝑠 ∈ 𝜑, and if 𝑥 = 𝑦 + 𝑠1 for some𝑦 ∈ 𝐹 and 𝑠1 ∈ 𝜑, then 𝑠1 = 0̃.Then the fuzzy number 𝑥 will
be called the Mareš core of the fuzzy number 𝑥.
Definition 9 (see [21]). Let ⟨𝑥⟩ ∈ 𝐹/𝜑, and we define the
midpoint function𝑀⟨𝑥⟩ : [0, 1] → R by

𝑀⟨𝑥⟩ (𝛼) = 𝑥𝑀 (𝛼) (8)

for all 𝛼 ∈ [0, 1], where 𝑥 is the Mareš core of 𝑥.
Definition 10 (see [21]). Let ⟨𝑥⟩, ⟨𝑦⟩ ∈ 𝐹/𝜑, and we define the
sum of this two fuzzy number equivalence classes as a fuzzy
equivalence class ⟨𝑧̃⟩ ∈ 𝐹/𝜑, which satisfies the condition

𝑀⟨𝑥⟩ (𝛼) + 𝑀⟨𝑦⟩ (𝛼) = 𝑀⟨𝑧̃⟩ (𝛼) (9)
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for all 𝛼 ∈ [0, 1] and we denote this by

⟨𝑥⟩ + ⟨𝑦⟩ = ⟨𝑥 + 𝑦⟩ = ⟨𝑧̃⟩ . (10)

Remark 11. Theaddition operation defined byDefinition 10 is
a group operation over the set of fuzzy number equivalence
classes 𝐹/𝜑 up to the equivalence relation in Definition 7. For
the details of the discussion, please see [25, 26].

Definition 12 (see [15]). Let ⟨𝑥⟩, ⟨𝑦⟩ ∈ 𝐹/𝜑, and we say that⟨𝑧̃⟩ ∈ 𝐹/𝜑 is the product of ⟨𝑥⟩ and ⟨𝑦⟩ if their midpoint
functions satisfy

𝑀⟨𝑥⟩ (𝛼) ⋅ 𝑀⟨𝑦⟩ (𝛼) = 𝑀⟨𝑧̃⟩ (𝛼) (11)

for all 𝛼 ∈ [0, 1] and we denote this by

⟨𝑥⟩ ⋅ ⟨𝑦⟩ = ⟨𝑧̃⟩ . (12)

Definition 13 (see [21]). For any ⟨𝑥⟩ ∈ 𝐹/𝜑 and 𝜆 ∈ R, we
define 𝜆 ⋅ ⟨𝑥⟩ = 𝜆⟨𝑥⟩ by

𝜆 ⟨𝑥⟩ = ⟨𝑥⟩ 𝜆 = ⟨𝜆𝑥⟩ . (13)

It is obvious that 𝑀𝜆⟨𝑥⟩(𝛼) = 𝑀⟨𝜆𝑥⟩(𝛼) = 𝜆𝑀⟨𝑥⟩(𝛼) for all𝛼 ∈ [0, 1].
Definition 14 (see [15]). Let ⟨𝑥⟩, ⟨𝑦⟩ ∈ 𝐹/𝜑, and we define𝑑sup : 𝐹/𝜑 × 𝐹/𝜑 → R+ ∪ {0} by

𝑑sup (⟨𝑥⟩ , ⟨𝑦⟩) = sup
𝛼∈[0,1]

󵄨󵄨󵄨󵄨󵄨𝑀⟨𝑥⟩ (𝛼) − 𝑀⟨𝑦⟩ (𝛼)󵄨󵄨󵄨󵄨󵄨 . (14)

It is easy to see that (𝐹/𝜑, 𝑑sup) is a metric space [15].

3. The Karush-Kuhn-Tucker
Optimality Conditions

In this paper, we always suppose that the range of fuzzy
mappings is the set of all fuzzy number equivalence classes.

Definition 15 (see [21]). Let 𝐹 : 𝑇 → 𝐹/𝜑 be a fuzzy mapping,
where 𝑇 = [𝑎, 𝑏] ⊆ R. Then 𝐹 is said to be differentiable at𝑡 ∈ 𝑇 if there exists an 𝐹󸀠(𝑡) ∈ 𝐹/𝜑 such that

lim
ℎ→0

𝑑sup (𝐹 (𝑡 + ℎ) − 𝐹 (𝑡)ℎ , 𝐹󸀠 (𝑡)) = 0. (15)

If 𝑡 = 𝑎 (or 𝑏), then we consider only ℎ → 0+ (or ℎ → 0−).
Lemma 16 (see [21]). 𝐹 : 𝑇 → 𝐹/𝜑 is differentiable on 𝑇 if
and only if

(1) 𝑀𝐹(𝑡)(𝛼) is differentiable with respect to 𝑡 ∈ 𝑇 for all𝛼 ∈ [0, 1]. That is, (𝜕/𝜕𝑡)𝑀𝐹(𝑡)(𝛼) exists and is of
bounded variation with respect to 𝛼 ∈ [0, 1] for all𝑡 ∈ 𝑇;

(2) the mappings {𝑀𝐹(𝑡)(𝛼)}𝛼∈[0,1] are uniformly differen-
tiable with the derivatives (𝜕/𝜕𝑡)𝑀𝐹(𝑡)(𝛼). That is, for
each 𝑡 ∈ 𝑇 and 𝜀 > 0, there exists a 𝛿 > 0 such that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀𝐹(𝑡+ℎ) (𝛼) − 𝑀𝐹(𝑡) (𝛼)ℎ − 𝜕𝜕𝑡𝑀𝐹(𝑡) (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝜀 (16)

for all |ℎ| ∈ (0, 𝛿) and 𝛼 ∈ [0, 1].

Definition 17 (see [27]). Let ⟨𝑎⟩ = (⟨𝑎1⟩, ⟨𝑎2⟩, . . . , ⟨𝑎𝑛⟩)𝑇 ∈(𝐹/𝜑)𝑛 and 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑇 ∈ R𝑛 be an 𝑛-dimensional
fuzzy number equivalence class vector and 𝑛-dimensional
real vector, respectively. We define their product as

⟨𝑎⟩𝑇 𝑡 = 𝑛∑
𝑖=1

⟨𝑎𝑖⟩ 𝑡𝑖 = ⟨𝑎1⟩ 𝑡1 + ⟨𝑎2⟩ 𝑡2 + ⋅ ⋅ ⋅ + ⟨𝑎𝑛⟩ 𝑡𝑛, (17)

which is a fuzzy number equivalence class.

Definition 18 (see [27]). Let𝐹 : Ω → 𝐹/𝜑 be a fuzzymapping,
where Ω is an open subset in R𝑛. We say that 𝐹 has a partial
derivative at 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑇 ∈ Ω with respect to the 𝑖th
variable 𝑡𝑖 if there exists an (𝜕/𝜕𝑡𝑖)𝐹(𝑡) ∈ 𝐹/𝜑 such that

lim
ℎ→𝑜

𝑑sup(𝐹 (𝑡 + ℎ𝑒𝑖) − 𝐹 (𝑡)
ℎ , 𝜕𝜕𝑡𝑖𝐹 (𝑡)) = 0, (18)

where 𝑒𝑖 stands for the unit vector that the 𝑖th component is1 and the others are 0.
Definition 19 (see [27]). Let 𝐹 : Ω → 𝐹/𝜑 be a fuzzy
mapping, where Ω is an open subset in R𝑛.We say that 𝐹 is
differentiable at 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑇 ∈ Ω if 𝐹 has continuous
partial derivatives (𝜕/𝜕𝑡𝑖)𝐹(𝑡) with respect to 𝑖th variable𝑡𝑖 (𝑖 = 1, 2, . . . , 𝑛) and satisfies

𝐹 (𝑡 + ℎ) = 𝐹 (𝑡) + ∇̃𝐹 (𝑡)𝑇 ℎ + 𝑜 (‖ℎ‖) ,
ℎ = (ℎ1, ℎ2, . . . , ℎ𝑛)𝑇 ∈ R

𝑛, (19)

where ∇̃𝐹(𝑡) ∈ (𝐹/𝜑)𝑛 is an 𝑛-dimensional fuzzy number
equivalence class vector defined by

∇̃𝐹 (𝑡) = (𝜕𝐹 (𝑡)𝜕𝑡1 , 𝜕𝐹 (𝑡)𝜕𝑡2 , . . . , 𝜕𝐹 (𝑡)𝜕𝑡𝑛 )𝑇 , (20)

and ‖ℎ‖ is the usual Euclid norm of ℎ and 𝑜 : [0, +∞) → 𝐹/𝜑
is a fuzzy mapping that satisfies

lim
𝑡→0

𝑑sup (𝑜 (𝑡)𝑡 , ⟨0̃⟩) = 0. (21)

Then we call ∇̃𝐹(𝑡) the gradient of the fuzzy mappings 𝐹 at 𝑡.
Definition 20 (see [27]). Let ⟨𝑥⟩, ⟨𝑦⟩ ∈ 𝐹/𝜑.

(1) We say that ⟨𝑥⟩ ⪯ ⟨𝑦⟩ if 𝑀⟨𝑥⟩(𝛼) ≤ 𝑀⟨𝑦⟩(𝛼) for all𝛼 ∈ [0, 1].
(2) We say that ⟨𝑥⟩ ≺ ⟨𝑦⟩ if ⟨𝑥⟩ ⪯ ⟨𝑦⟩ and there exists at

least one 𝛼0 ∈ [0, 1] such that𝑀⟨𝑥⟩(𝛼0) < 𝑀⟨𝑦⟩(𝛼0).
(3) If ⟨𝑥⟩ ⪯ ⟨𝑦⟩ and ⟨𝑦⟩ ⪯ ⟨𝑥⟩ then ⟨𝑥⟩ = ⟨𝑦⟩.
Sometimes we may write ⟨𝑦⟩ ⪰ ⟨𝑥⟩ instead of ⟨𝑥⟩ ⪯ ⟨𝑦⟩

and write ⟨𝑦⟩ ≻ ⟨𝑥⟩ instead of ⟨𝑥⟩ ≺ ⟨𝑦⟩. Note that ⪯ is a
partial order relation on 𝐹/𝜑.
Definition 21. Let ⟨𝑎⟩ ∈ 𝐹/𝜑, and we say that ⟨𝑎⟩ is
nonnegative if ⟨𝑎⟩ ⪰ ⟨0̃⟩; that is,𝑀⟨𝑎⟩(𝛼) ≥ 0 for all𝛼 ∈ [0, 1].
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Let 𝐹 : R𝑛 → 𝐹/𝜑 be a fuzzy mapping. Consider the
following optimization problem:

min 𝐹 (𝑡) = 𝐹 (𝑡1, 𝑡2, . . . , 𝑡𝑛) ,
subject to 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑇 ∈ Ω ⊆ R

𝑛, (22)

where the feasible set Ω is assumed to be convex subset of
R𝑛. Since ⪯ is a partial order relation on 𝐹/𝜑, we may follow
the similar solution concept (the nondominated solution)
used in multiobjective programing problems to interpret the
meaning of minimization in problem (22).

Definition 22. Let 𝑡∗ be a feasible solution of problem (22);
that is, 𝑡∗ ∈ Ω.

(1) We say that 𝑡∗ is a local nondominated solution of
problem (22) if there exists an 𝜀 > 0 and there does
not exist any 𝑡 ∈ 𝑁𝜀(𝑡∗) ∩ Ω such that 𝐹(𝑡) ≺ 𝐹(𝑡∗),
where𝑁𝜀(𝑡∗) is an 𝜀-neighborhood around 𝑡∗.

(2) We say that 𝑡∗ is a (global) nondominated solution of
problem (22) if there exists no 𝑡 ∈ Ω such that 𝐹(𝑡) ≺𝐹(𝑡∗).

Definition 23. Let 𝐹 : Ω → 𝐹/𝜑 be a fuzzy mapping, whereΩ is a nonempty convex subset in R𝑛. 𝐹 is said to be convex
onΩ if, for any 𝑠, 𝑡 ∈ Ω and 𝜆 ∈ (0, 1), we always have 𝐹(𝜆𝑠 +(1 − 𝜆)𝑡) ⪯ 𝜆𝐹(𝑠) + (1 − 𝜆)𝐹(𝑡). 𝐹 is said to be concave if −𝐹
is convex.

Theorem 24. Let 𝐹 : Ω → 𝐹/𝜑 be a fuzzy mapping, whereΩ is a nonempty convex subset in R𝑛. Then 𝐹 is convex on Ω
if and only if 𝑀𝐹(𝑡)(𝛼) is convex with respect to 𝑡 ∈ Ω for all𝛼 ∈ [0, 1].
Proof. The result follows from Definitions 20 and 23 imme-
diately.

Let 𝑓, 𝑔𝑗 : R𝑛 → R be real-valued functions. Consider
the following optimization problem:

min 𝑓 (𝑡) = 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑛) ,
subject to 𝑔𝑗 (𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚. (23)

Suppose that the constraint functions 𝑔𝑗 are convex on R𝑛

for all 𝑗 = 1, 2, . . . , 𝑚, and then the feasible set Ω = {𝑡 ∈ R𝑛 :𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} is a convex subset ofR𝑛.The well-
knownKKToptimality conditions for problem (23) are stated
as below.

Theorem 25 (see [28, 29]). Let Ω = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤0, 𝑗 = 1, 2, . . . , 𝑚} be the convex feasible set and 𝑡∗ ∈ Ω be
a feasible solution of problem (23). Suppose that the objective
function 𝑓 and constraint functions 𝑔𝑗 are convex on R𝑛 and
continuously differentiable at 𝑡∗ for all 𝑗 = 1, 2, . . . , 𝑚. If
there exist nonnegative Lagrange multipliers 𝑢𝑗 ∈ R, 𝑗 =1, 2, . . . , 𝑚, such that

(1) ∇𝑓(𝑡∗) + ∑𝑚𝑗=1 𝑢𝑗∇𝑔𝑗(𝑡∗) = 0,
(2) 𝑢𝑗𝑔𝑗(𝑡∗) = 0 for all 𝑗 = 1, 2, . . . , 𝑚,

then 𝑡∗ is nondominated solution of problem (23).

Let 𝐹 : R𝑛 → 𝐹/𝜑 be a fuzzy mapping and 𝑔𝑗 : R𝑛 → R

be real-valued functions, 𝑗 = 1, 2, . . . , 𝑚. Now we consider the
following optimization problem:

min 𝐹 (𝑡) = 𝐹 (𝑡1, 𝑡2, . . . , 𝑡𝑛) ,
subject to 𝑔𝑗 (𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚. (24)

If we suppose that the constraint functions 𝑔𝑗 are convex on
R𝑛 for all 𝑗 = 1, 2, . . . , 𝑚, then we can see that problem (24)
follows from problem (22) by taking the convex feasible set asΩ = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}.

Now we are in a position to present the KKT optimality
conditions for nondominated solutions of problem (24).

Theorem 26. Let Ω = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}
be the convex feasible set and 𝑡∗ ∈ Ω be a feasible solution of
problem (24). Suppose that the fuzzy-valued objective function𝐹 and real-valued constraint functions𝑔𝑗 are convex onR𝑛 and
continuously differentiable at 𝑡∗ for all 𝑗 = 1, 2, . . . , 𝑚. If there
exist nonnegative real-valued Lagrange function multipliers 𝑢𝑗
for 𝑗 = 1, 2, . . . , 𝑚 defined on [0, 1] such that

(1) 𝑀∇̃𝐹(𝑡∗)(𝛼) + ∑𝑚𝑗=1 𝑢𝑗(𝛼)∇𝑔𝑗(𝑡∗) = 0 for all 𝛼 ∈ [0, 1],
(2) 𝑢𝑗(𝛼)𝑔𝑗(𝑡∗) = 0 for all 𝛼 ∈ [0, 1] and 𝑗 = 1, 2, . . . , 𝑚,

then 𝑡∗is a nondominated solution of problem (24).

Proof. Suppose that conditions (1) and (2) are satisfied and 𝑡∗
is not a nondominated solution of problem (24). Then there
exists a 𝑡 ∈ Ω such that 𝐹(𝑡) ≺ 𝐹(𝑡∗); that is, for some 𝛼∗ ∈[0, 1] we have that𝑀𝐹(𝑡)(𝛼∗) < 𝑀𝐹(𝑡∗)(𝛼∗).We now define a
real-valued function 𝑓 by 𝑓(𝑡) = 𝑀𝐹(𝑡)(𝛼∗).Then we have

𝑓 (𝑡) < 𝑓 (𝑡∗) . (25)

Since the fuzzy mapping 𝐹 is convex onR𝑛 and continuously
differentiable at 𝑡∗, byTheorem 24 and Lemma 16 we see that𝑓 is also convex on R𝑛 and continuously differentiable at 𝑡∗.
Furthermore, we have ∇𝑓(𝑡) = ∇𝑀𝐹(𝑡)(𝛼∗) = 𝑀∇̃𝐹(𝑡)(𝛼∗).
Since conditions (1) and (2) are satisfied, we can obtain the
following two new conditions for any fixed 𝛼∗ ∈ [0, 1]:

(1󸀠) ∇𝑓(𝑡∗) + ∑𝑚𝑗=1 𝑢𝑗𝛼∗ ⋅ ∇𝑔𝑗(𝑡∗) = 0;
(2󸀠) 𝑢𝑗𝛼∗ ⋅ 𝑔𝑗(𝑡∗) = 0 for all 𝑗 = 1, 2, . . . , 𝑚,

where 𝑢𝑗𝛼∗ = 𝑢𝑗(𝛼∗) ≥ 0 for 𝑗 = 1, 2, . . . , 𝑚.Nowwe consider
the following constrained optimization problem:

min 𝑓 (𝑡) = 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑛) ,
subject to 𝑔𝑗 (𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚 (26)

which has the same constraints of problem (24). By The-
orem 25, conditions (1󸀠) and (2󸀠) are the KKT conditions
of problem (26). Therefore, we have that 𝑡∗ is an optimal
solution of problem (26) with the real-valued objective
function 𝑓; that is, 𝑓(𝑡∗) ≤ 𝑓(𝑡) for all 𝑡 ∈ Ω, which
contradicts inequality (25). Then we get that 𝑡∗ is indeed a
nondominated solution of problem (24).
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Theorem 27. Let Ω = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}
be the convex feasible set and 𝑡∗ ∈ Ω be a feasible solution of
problem (24). Suppose that the fuzzy-valued objective function𝐹 and real-valued constraint functions 𝑔𝑗 are convex on R𝑛

and continuously differentiable at 𝑡∗ for all 𝑗 = 1, 2, . . . , 𝑚. If
there exist nonnegative fuzzy number equivalent class Lagrange
multipliers ⟨𝑥𝑗⟩ ∈ 𝐹/𝜑 for 𝑗 = 1, 2, . . . , 𝑚 such that

(1) ∇̃𝐹(𝑡∗) + ∑𝑚𝑗=1⟨𝑥𝑗⟩ ⋅ ∇𝑔𝑗(𝑡∗) = ⟨0̃⟩,
(2) ⟨𝑥𝑗⟩ ⋅ 𝑔𝑗(𝑡∗) = ⟨0̃⟩ for all 𝑗 = 1, 2, . . . , 𝑚,

then 𝑡∗ is a nondominated solution of problem (24).

Proof. Since conditions (1) and (2) are satisfied, taking the
midpoint function of (1) and (2), we obtain the following new
conditions:

(1󸀠) 𝑀∇̃𝐹(𝑡∗)(𝛼) + ∑𝑚𝑗=1𝑀⟨𝑥𝑗⟩(𝛼) ⋅ ∇𝑔𝑗(𝑡∗) = 0 for all 𝛼 ∈[0, 1].
(2󸀠) 𝑀⟨𝑥𝑗⟩(𝛼) ⋅ 𝑔𝑗(𝑡∗) = 0 for all 𝛼 ∈ [0, 1] and 𝑗 =1, 2, . . . , 𝑚.

Since the fuzzy number equivalence classes ⟨𝑥𝑗⟩ are non-
negative for all 𝑗 = 1, 2, . . . , 𝑚, then we can get that𝑀⟨𝑥𝑗⟩ are nonnegative real-valued functions defined on [0, 1]
for all 𝑗 = 1, 2, . . . , 𝑚. So, (1󸀠) and (2󸀠) verify the KKT
optimality conditions (1) and (2) ofTheorem 26, respectively.
Therefore, we get that 𝑡∗ is a nondominated solution of
problem (24).

Lemma 28 (see [28]). Let Ω = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 =1, 2, . . . , 𝑚} be a feasible set and 𝑡∗ ∈ Ω. Assume that 𝑔𝑗 are
differentiable at 𝑡∗ for all 𝑗 = 1, 2, . . . , 𝑚. Let 𝐽 = {𝑗 : 𝑔𝑗(𝑡) = 0}
be the index set for the active constraints. Then we have

𝐷 ⊆ {𝑑 ∈ R
𝑛 : ∇𝑔𝑗 (𝑡∗)𝑇 𝑑 ≤ 0 ∀𝑗 ∈ 𝐽} , (27)

where𝐷 is the cone of feasible directions of Ω at 𝑡∗ defined by
𝐷 = {𝑑 ∈ R

𝑛 : 𝑑 ̸= 0, there exists a 𝛿
> 0 such that 𝑡∗ + 𝜂𝑑 ∈ Ω ∀𝜂 ∈ (0, 𝛿)} . (28)

Lemma 29 (see [28]). Let 𝐴 and 𝐶 be two matrices. Exactly
one of the following systems has a solution:

System I: 𝐴𝑥 ≤ 0, 𝐴𝑥 ̸= 0, 𝐶𝑥 ≤ 0 for some 𝑥 ∈ R𝑛.

System II: 𝐴𝑇𝜆 + 𝐶𝑇𝑢 = 0 for some (𝜆, 𝑢), 𝜆 > 0, 𝑢 ≥0.
Theorem 30. Let Ω = {𝑡 ∈ R𝑛 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}
be the convex feasible set and 𝑡∗ ∈ Ω be a feasible solution of
problem (24). Suppose that the fuzzy-valued objective function𝐹 is differentiable and strictly pseudoconvex on Ω, and the
real-valued constraint functions 𝑔𝑗 are convex on R𝑛 and
continuously differentiable at 𝑡∗ for all 𝑗 = 1, 2, . . . , 𝑚. If there

exist a 𝛼∗ ∈ [0, 1] and nonnegative Lagrange multipliers 𝑢𝑗 ∈
R for 𝑗 = 1, 2, . . . , 𝑚 such that

(1) 𝑀∇̃𝐹(𝑡∗)(𝛼∗) + ∑𝑚𝑗=1 𝑢𝑗 ⋅ ∇𝑔𝑗(𝑡∗) = 0,
(2) 𝑢𝑗 ⋅ 𝑔𝑗(𝑡∗) = 0 for all 𝑗 = 1, 2, . . . , 𝑚,

then 𝑡∗ is a strongly nondominated solution of problem (24).

Proof. Suppose that conditions (1) and (2) are satisfied and𝑡∗ is not a strongly nondominated solution of problem (24).
Then there exists a 𝑡 ∈ Ω with 𝑡 ̸= 𝑡∗ such that 𝐹(𝑡) ⪯ 𝐹(𝑡∗).
Since 𝐹 is differentiable and strictly pseudoconvex on Ω, we
have

∇̃𝐹 (𝑡∗)𝑇 (𝑡 − 𝑡∗) ≺ ⟨0̃⟩ ; (29)

that is,

𝑀∇̃𝐹(𝑡∗) (𝛼∗)𝑇 (𝑡 − 𝑡∗) < 0. (30)

Let 𝑑 = 𝑡 − 𝑡∗. SinceΩ is a convex set and 𝑡, 𝑡∗ ∈ Ω, we have
𝑡∗ + 𝜂𝑑 = 𝑡∗ + 𝜂 (𝑡 − 𝑡∗) = 𝜂𝑡 + (1 − 𝜂) 𝑡∗ ∈ Ω (31)

for any 𝜂 ∈ (0, 1). By Lemma 28 we get that 𝑑 ∈ 𝐷, which
means that

∇𝑔𝑗 (𝑡∗)𝑇 𝑑 ≤ 0 ∀𝑖 ∈ 𝐽, (32)

where 𝐷 is the cone of feasible directions of Ω at 𝑡∗ and 𝐽 ={𝑗 : 𝑔𝑗(𝑡) = 0} is the index set for the active constraints. Now
let 𝐴 = 𝑀∇̃𝐹(𝑡∗)(𝛼∗)𝑇 and 𝐶 be the matrix whose rows are∇𝑔𝑗(𝑡∗)𝑇 for 𝑗 ∈ 𝐽.We consider the following two systems:

System I: 𝐴𝑥 ≤ 0, 𝐴𝑥 ̸= 0, 𝐶𝑥 ≤ 0 for some 𝑥 ∈ R𝑛.

System II:𝐴𝑇𝜆+𝐶𝑇𝑢 = 0 for some (𝜆, 𝑢), 𝜆 > 0, 𝑢 ≥0.
Then by (30) and (32) we get that System I has a solution 𝑑 =𝑡−𝑡∗. Further, by Lemma 29 System II has no solutions, which
means that there exist no multipliers 0 < 𝜆 ∈ R and 0 ≤ 𝑢𝑗 ∈
R for 𝑗 ∈ 𝐽 such that

𝜆𝑀∇̃𝐹(𝑡∗) (𝛼∗) + ∑
𝑗∈𝐽

𝑢𝑗 ⋅ ∇𝑔𝑗 (𝑡∗) = 0. (33)

Since 𝜆 > 0, dividing (33) by 𝜆 and denoting 𝜂𝑗 = 𝑢𝑗/𝜆 for𝑗 ∈ 𝐽, we have that
𝑀∇̃𝐹(𝑡∗) (𝛼∗) + ∑

𝑗∈𝐽

𝜂𝑗 ⋅ ∇𝑔𝑗 (𝑡∗) = 0. (34)

Since 𝐽 is the index set for the active constraints, we have𝑔𝑗(𝑡∗) < 0 for 𝑗 ∉ 𝐽. Further, if 𝑢𝑗 ⋅ 𝑔𝑗(𝑡∗) = 0 for all𝑗 = 1, 2, . . . , 𝑚, we can get that 𝜂𝑗 = 0 for 𝑗 ∉ 𝐽; that is,
∑
𝑗∈𝐽

𝜂𝑗 ⋅ ∇𝑔𝑗 (𝑡∗) = 𝑚∑
𝑗=1

𝜂𝑗 ⋅ ∇𝑔𝑗 (𝑡∗) . (35)
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From (34) and (35), there exist no multipliers 0 ≤ 𝜂𝑗 ∈ R for𝑗 = 1, 2, . . . , 𝑚 such that

(1󸀠) 𝑀∇̃𝐹(𝑡∗)(𝛼∗) + ∑𝑚𝑗=1 𝜂𝑗∇𝑔𝑗(𝑡∗) = 0,
(2󸀠) 𝑢𝑗 ⋅ 𝑔𝑗(𝑡∗) = 0 for all 𝑗 = 1, 2, . . . , 𝑚,

which contradicts conditions (1) and (2) for the existence of
multipliers 0 ≤ 𝑢𝑗 ∈ R for 𝑗 = 1, 2, . . . , 𝑚.Hence,we have that𝑡∗ is indeed a strongly nondominated solution of problem
(24).

Example 31. Define a fuzzy mapping 𝐹 : R3 → 𝐹/𝜑 by

𝐹 (𝑡) = ⟨𝑎⟩𝑇 𝑡 + ‖𝑡‖2 = 3∑
𝑖=1

(⟨𝑎𝑖⟩ 𝑡𝑖 + 𝑡𝑖2)
= ⟨𝑎1⟩ 𝑡1 + ⟨𝑎2⟩ 𝑡2 + ⟨𝑎3⟩ 𝑡3 + 𝑡12 + 𝑡22 + 𝑡32

(36)

for all 𝑡 = (𝑡1, 𝑡2, 𝑡3)𝑇 ∈ R3, where ⟨𝑎⟩ = (⟨𝑎1⟩, ⟨𝑎2⟩, ⟨𝑎3⟩)𝑇 ∈(𝐹/𝜑)3 and we define ⟨𝑎𝑖⟩ by the level sets of its Mareš core[𝑎1]𝛼 = [−6, −12𝛼 + 6], [𝑎2]𝛼 = [−1, −2𝛼 + 1], and [𝑎3]𝛼 =[−4, −8𝛼 + 4] for all 𝛼 ∈ [0, 1] and 𝑖 = 1, 2, 3, respectively.
Thus, we have

𝑀𝐹(𝑡1 ,𝑡2,𝑡3) (𝛼) = −6𝛼𝑡1 + 𝑡21 − 𝛼𝑡2 + 𝑡22 − 4𝛼𝑡3 + 𝑡23
= 𝛼 (−6𝑡1 − 𝑡2 − 4𝑡3) + 𝑡21 + 𝑡22 + 𝑡23

(37)

for all 𝛼 ∈ [0, 1] and 𝑡 = (𝑡1, 𝑡2, 𝑡3)𝑇 ∈ R3. It is obvious that𝑀𝐹(𝑡)(𝛼) is continuous from the right at 0 and continuous
from the left on [0, 1] with respect to 𝛼.Now we consider the
following optimization problem:

min 𝐹 (𝑡) = 𝐹 (𝑡1, 𝑡2, 𝑡3) ,
subject to 𝑔1 (𝑡1, 𝑡2, 𝑡3) = 4𝑡1 − 𝑡2 + 2𝑡3 − 8 ≤ 0,

𝑔2 (𝑡1, 𝑡2, 𝑡3) = 3𝑡1 + 2𝑡2 − 𝑡3 − 1 ≤ 0,
𝑔𝑗 (𝑡1, 𝑡2, 𝑡3) = −𝑡𝑗−2 ≤ 0,

for 𝑗 = 3, 4, 5,
𝑔𝑗 (𝑡1, 𝑡2, 𝑡3) = 𝑡𝑗−5 − 2 ≤ 0,

for 𝑗 = 6, 7, 8.

(38)

It is obvious that the constraint functions 𝑔𝑗 are convex onR3
for all 𝑗 = 1, 2, . . . , 8, and then we know that the feasible setΩ = {𝑡 ∈ R3 : 𝑔𝑗(𝑡) ≤ 0, 𝑗 = 1, 2, . . . , 8} is convex. Since𝑀𝐹(𝑡)(𝛼) is decreasing with respect to 𝛼 for all 𝑡 ∈ Ω, we get
that

𝑉10 (𝑀𝐹(𝑡)) = 󵄨󵄨󵄨󵄨𝑀𝐹(𝑡) (1) − 𝑀𝐹(𝑡) (0)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨6𝑡1 + 𝑡2 + 4𝑡3󵄨󵄨󵄨󵄨
≤ 6 󵄨󵄨󵄨󵄨𝑡1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡2󵄨󵄨󵄨󵄨 + 4 󵄨󵄨󵄨󵄨𝑡3󵄨󵄨󵄨󵄨 ≤ 22. (39)

Thus, we find that 𝑀𝐹(𝑡)(𝛼) is of bounded variation with
respect to 𝛼 for all 𝑡 = (𝑡1, 𝑡2, 𝑡3)𝑇 ∈ Ω ⊆ R3. It is easy to
verify that 𝐹 is differentiable and strictly pseudoconvex onΩ,

and 𝑔𝑗 are convex onR3 and continuously differentiable at 𝑡∗
for all 𝑗 = 1, 2, . . . , 8.Then we obtain

𝑀∇̃𝐹(𝑡1 ,𝑡2,𝑡3) (𝛼) = (2𝑡1 − 6𝛼, 2𝑡2 − 𝛼, 2𝑡3 − 4𝛼)𝑇 ,
∇𝑔1 (𝑡1, 𝑡2, 𝑡3) = (4, −1, 2)𝑇 ,
∇𝑔2 (𝑡1, 𝑡2, 𝑡3) = (3, 2, −1)𝑇 ,
∇𝑔3 (𝑡1, 𝑡2, 𝑡3) = (−1, 0, 0)𝑇 ,
∇𝑔4 (𝑡1, 𝑡2, 𝑡3) = (0, −1, 0)𝑇 ,
∇𝑔5 (𝑡1, 𝑡2, 𝑡3) = (0, 0, −1)𝑇 ,
∇𝑔6 (𝑡1, 𝑡2, 𝑡3) = (1, 0, 0)𝑇 ,
∇𝑔7 (𝑡1, 𝑡2, 𝑡3) = (0, 1, 0)𝑇 ,
∇𝑔8 (𝑡1, 𝑡2, 𝑡3) = (0, 0, 1)𝑇 ,

(40)

for all 𝛼 ∈ [0, 1] and 𝑡 = (𝑡1, 𝑡2, 𝑡3)𝑇 ∈ Ω. Now we consider
the point 𝑡∗ = (𝑡∗1 , 𝑡∗2 , 𝑡∗3 )𝑇 = (1, 0, 2)𝑇 ∈ Ω. Since

𝑔3 (𝑡∗) ̸= 0,
𝑔5 (𝑡∗) ̸= 0,
𝑔6 (𝑡∗) ̸= 0,
𝑔7 (𝑡∗) ̸= 0,

(41)

from condition (2) inTheorem 30, we get that
𝑢3 = 𝑢5 = 𝑢6 = 𝑢7 = 0. (42)

Now, applying condition (2) ofTheorem 30 at the point 𝑡∗, we
obtain

𝑀∇̃𝐹(𝑡∗) (𝛼∗) + 8∑
𝑗=1

𝑢𝑗 ⋅ ∇𝑔𝑗 (𝑡∗)

= [[
[

2 − 6𝛼∗ + 4𝑢1 + 3𝑢2−𝛼∗ − 𝑢1 + 2𝑢2 − 𝑢44 − 4𝛼∗ + 2𝑢1 − 𝑢2 + 𝑢8
]]
]
= 0.

(43)

After these algebraic calculations, we obtain that there exist a𝛼∗ = 1 ∈ [0, 1] and nonnegative Lagrange multipliers

𝑢1 = 14 ,
𝑢2 = 1,
𝑢4 = 34 ,
𝑢8 = 12 ,
𝑢𝑗 = 0, 𝑗 = 3, 5, 6, 7,

(44)

which satisfied conditions (1) and (2) of Theorem 30. Hence,
we get that 𝑡∗ = (𝑡∗1 , 𝑡∗2 , 𝑡∗3 )𝑇 = (1, 0, 2)𝑇 ∈ Ω is a strongly
nondominated solution of problem (38).
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4. Conclusions

In this present investigation, the KKT optimality conditions
are elicited naturally by introducing the Lagrange function
multipliers, and we also provided some examples to illustrate
the main results. The research on the quotient space of fuzzy
numbers can be traced back to the works of Mareš [16, 17].
Hong and Do [24] improved this result and proposed a more
refined equivalence relation.This equivalence relation can be
used to partition the set of fuzzy numbers into equivalence
class having the desired group properties for the addition
operation. Since the quotient space of fuzzy numbers is
characterized by the midpoint functions, there are more
differentiable fuzzy mappings. As a matter of fact, there are
still many other types of the KKT optimality conditions that
can be derived using the similar techniques discussed in this
paper on the quotient space of fuzzy numbers. However, for
the nondifferentiable fuzzy optimization problem, we can
follow the approach proposed by Ruziyeva and Dempe [30]
to derive the necessary and sufficient optimality conditions in
the quotient space of fuzzy numbers. In addition, Fuzzy sets
and fuzzy optimization problems have several appropriate
applications to today’s world. But there are no sufficient
examples and applications of the topics discussed in this
paper. Therefore, we will develop the contribution of this
research to practical problems in future studies.
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Fuzzy set theory, extensively applied in abundant disciplines, has been recognized as a plausible tool in dealing with uncertain and
vague information due to its prowess in mathematically manipulating the knowledge of imprecision. In fuzzy-data comparisons,
exploring the general ranking measure that is capable of consistently differentiating the magnitude of fuzzy numbers has widely
captivated academics’ attention. To date, numerous indices have been established; however, counterintuition, less discrimination,
and/or inconsistency on their fuzzy-number rating outcomes have prohibited their comprehensive implementation. To ameliorate
their manifested ranking weaknesses, this paper proposes a unified index that multiplies weighted-mean and weighted-area
discriminatory components of a fuzzy number, respectively, called centroid value and attitude-incorporated left-and-right area.
From theoretical proof of consistency property and comparative studies for triangular, triangular-and-trapezoidal mixed, and
nonlinear fuzzy numbers, the unified index demonstrates conspicuous ranking gains in terms of intuition support, consistency,
reliability, and computational simplicity capability. More importantly, the unified index possesses the consistency property for
ranking fuzzy numbers and their images as well as for symmetric fuzzy numbers with an identical altitude which is a rather critical
property for accurate matching and/or retrieval of information in the field of computer vision and image pattern recognition.

1. Introduction

It has been well recognized that uncertainty inevitably exists
in several real-world phenomena due to the inherent errors
or impreciseness ofmeasurement tools,methods, and uncon-
trollable conditions [1, 2]. In managing the uncertainty and
vagueness, the fuzzy set theory has been widely considered as
a powerful tool [3, 4]. And many scholars have made special
efforts in proposing more and more effective approaches to
deal with practical problems in the fuzzy environment. Since
the inception of the fuzzy set theory, Soliman and Mantawy
[5] showed that five major strongly connected branches have
been developed, including fuzzy mathematics, fuzzy logic
and artificial intelligence, fuzzy systems, uncertainty and
information, and fuzzy decision-making. Their subbranches
have also been established; for example, fuzzy differential
equations [6–14] and fuzzy integrodifferential equations [15–
22] are of fuzzy mathematics while fuzzy-number rank-
ing, the focus of this paper, is of fuzzy decision-making.
Specifically, based on its feasible mathematical capacity for

representing the imprecise information in practice, we have
observed many successful cases spreading in disparate disci-
plines, such as robot selection [23], supplier selection [24],
logistics center allocation [25], facility location determina-
tion [26], choosing mining methods [27], manufacturing
process monitoring [1, 2, 28–31], cutting force prediction
[32], firm-environmental knowledge management [33, 34],
green supply-chain operation [35], and weapon procurement
decision [36]. Apparently, to find their best alternative, those
decisive problems are evaluated under resource constraints
and with to some extent linguistic preference of multiat-
tribute, which is realized from users’ perspectives, as well as
subjective quantification of multiple characteristics, which is
assessed from decision-makers [2, 3, 37–39]. In these cases,
fuzzy-data comparisons and rankings are inevitable.

As the fuzzy data (fuzzy numbers) can overlap with
each other and are represented by possibility distributions,
their comparison and ordering, not akin to that of real
numbers which can be linearly ordered, become challenging
and cumbersome. Generally, to rank fuzzy quantities, a set of
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fuzzy numbers, through a specific defuzzification measure, is
converted into real numbers, where a natural order between
them is definitive [40]. However, evenwhen ordering for a set
of single fuzzy numbers, this defuzzification procedure does
lose a certain amount of fuzziness/imprecision information
existing in the original data [1, 40–47], not to mention
the ordering for problems of multicriteria decision-making,
where sets of fuzzy numbers have experienced some mathe-
matical operations [48]; therefore, much endeavor has been
attempted to minimize loss of information, a fundamental
problem for fuzzy-data analysis.

Jain [49] in 1977 first launched a fuzzy set rating
procedure for multiple-aspect decision-making. Since then,
exploring a general ranking measure, capable of consistently
differentiating the magnitude of fuzzy numbers, has widely
captivated academics’ attention [50]. Nowadays, a majority of
diverse improved approaches/indices established from wide-
range perspectives focus on either compensating their prede-
cessors’ failures in certain reasonable properties for ordering
of fuzzy quantities [43, 44] or resolving the counterintuitive,
indiscriminate, and/or inconsistent rating outcomes among
certain types of fuzzy numbers [42, 51–54].

In general, the existing rankingmeasures can be classified
into two main categories:

(i) Indices that value the fuzzy number itself such as
center-, area-, and deviation-driven ordering mea-
sures

(ii) Indices that not only evaluate the fuzzy number itself,
but also gauge decision-maker’s attitude in regard to
specific purposes such as confidence and risk

In category one, Yager [55] and Lee and Li [56] first bor-
rowed statistical center-orientedmeasures for assessing fuzzy
numbers, where the former constructed a centroid (weighted
mean) index and the latter developed mean and standard
deviation indices; however, Cheng [57] pointed out their
inefficient manipulation of the fuzzy numbers that possesses
unusually large or small data (outliers) andmean-and-spread
values. To cope with the inefficiencies, R. Saneifard and R.
Saneifard [58], Zhang et al. [59], Bodjanova [60, 61], and
Yamashiro [62] suggested amedian index, a resistantmeasure
of the center, to take into account data located on the tails;
Cheng [57] proposed coefficient-of-variation and distance
indices; but both indices were later criticized for some incon-
sistent ordering among specific types of fuzzy numbers [63].
Based on the area between the centroid point and the original
point, Chu and Tsao [63] succeeded in establishing an area-
driven ranking index; unfortunately, because of its inherent
computation flaw, the area indexwas questioned byWang and
Lee [64] who illustrated some numerical examples to show
its counterintuitive results and further provided a compelling
revised index to resolve the problem. Nonetheless, Wang and
Lee’s area index does have its own deficiency of ordering
correctness when encountering fuzzy numbers with identical
centroid points [65]. By defining fuzzy-number maximal and
minimal reference sets, Wang et al. [66] first introduced a
deviation-driven ordering index by combining right-and-left
deviation degree with the coefficient of relative variation; not

surprisingly, this index was argued (1) bearing mathematical
incapability with zero value in the denominator [53] and
pointed out (2) leaving substantial room for improvement
under some special occasions such as fuzzy numbers with the
same left, right, and total utilities [39] as well as ranking fuzzy
numbers’ images [46].

Emphatically, the aforementioned drawbacks plagued on
this deviation-driven ordering index have somewhat reignited
the development of category two, initially proposed by Liou
and Wang [67] in 1992, and contrived ranking measures that
not only evaluate the fuzzy number itself, but also consider
decision-maker’s attitude in relation to specific purposes.The
evidence can be seen in the most recent works; for example,
to remove shortages of Wang et al.’s deviation-degree index
[66], Wang and Luo [39] incorporated decision-maker’s
attitude towards risk into left-and-right area between fuzzy-
number points and the positive-and-negative ideal points;
to improve Liou and Wang’s index [67], Yu and Dat [48]
incorporated decision-maker’s attitude regarding confidence
into left-right-total integral value subjected to fuzzy-number
median value. More recently, Das and Guha [68] proposed
a new ranking approach by computing the centroid point
of trapezoidal intuitionistic fuzzy numbers (TrIFN) and
applied it to solve multicriteria decision-making problems in
combination with expert’s degree of satisfaction. However,
their formulas fail to effectively work when their TrIFN
(𝑎, 𝑏, 𝑐, 𝑑) becomes either (𝑎, 𝑎, 𝑐, 𝑑) or (𝑎, 𝑏, 𝑐, 𝑐) or the sat-
isfaction/dissatisfaction degree takes a value of zero. In addi-
tion, as shown in Table 1, certain shortcomings such as coun-
terintuition, less reliability, inconsistency, complex/laborious
computation, and indecisive ranking results have been found
to be existing in several current ranking approaches.

Ostensibly, as opposed to the prolific ranking indices to
date that have been presented in category one, the estab-
lished ranking indices related to category two are still few,
leaving a wide range of topics for further investigation.
Based on the integration of the two categories, this paper
proposes a unified index that multiplies weighted mean and
weighted area, two discriminatory components of a fuzzy
number, respectively, called centroid value (the category one
measurement) and attitude-incorporated left-and-right area
(the category two measurement). According to comprehen-
sively comparative studies from triangular, triangular-and-
trapezoidal mixed, and nonlinear fuzzy numbers, the unified
index demonstrates obtrusive ranking benefits with respect
to intuition support, computational easiness, consistency, and
reliability capability.

Aside from the Introduction, the remainder of this paper
is organized into four sections as follows. Section 2 provides
preliminary definitions and remarks for the research. The
proposed unified index is described in Section 3, whose com-
parative studies with some existing ranking indices are done
with several literature-exemplary fuzzy numbers in Section 4.
Summary and conclusions make up the last section.

2. Preliminaries

The following definitions and remarks are mainly adopted
from Zimmermann [69] and Lee [70].
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Definition 1 (fuzzy subset). Let R be a nonempty set. The
fuzzy subset 𝐴 of R is defined by a function 𝜉𝐴 : R → [0, 1].
𝜉𝐴 is called amembership function.

Definition 2 (𝛼-cut set). The 𝛼-cut set of 𝐴, denoted by 𝐴𝛼𝑐,
is defined by 𝐴𝛼𝑐 = {𝑥 ∈ R : 𝜉𝐴(𝑥) ≥ 𝛼} for all 𝛼 ∈ (0, 1].
The 0-cut set 𝐴0𝑐 is defined as the closure of the set {𝑥 ∈ R :
𝜉𝐴(𝑥) > 0}.
Definition 3 (𝛼-level set). The 𝛼-level set of𝐴, denoted by𝐴𝛼,
is defined by 𝐴𝛼 = {𝑥 ∈ R : 𝜉𝐴(𝑥) = 𝛼} for all 𝛼 ∈ [0, 1].
Definition 4 (fuzzy number). A fuzzy number 𝐴 =
(𝑎, 𝑏, 𝑐, 𝑑; 𝑤) is described as any fuzzy subset of the real line
R with the membership function 𝜉𝐴(𝑥) which is given by

𝜉𝐴 (𝑥) =
{{{{{{{
{{{{{{{
{

𝜉𝐿
𝐴
(𝑥) , 𝑎 ≤ 𝑥 < 𝑏

𝑤, 𝑏 ≤ 𝑥 ≤ 𝑐
𝜉𝑅
𝐴
(𝑥) , 𝑐 < 𝑥 ≤ 𝑑

0, otherwise,

(1)

where 0 ≤ 𝑤 ≤ 1 is a constant and 𝜉𝐿
𝐴
(𝑥), 𝜉𝑅
𝐴
(𝑥) are continuous

functions on [0, 1].
A fuzzy number has the following properties:

(i) 𝐴 is normal if there exists an 𝑥 ∈ R such that 𝜉𝐴(𝑥) =
1; that is, 𝑤 = 1.

(ii) 𝜉𝐴(𝑥) is fuzzy convex; that is, 𝜉𝐴(𝑡𝑥 + (1 − 𝑡)𝑦) ≥
min{𝜉𝐴(𝑥), 𝜉𝐴(𝑦)} for 𝑡 ∈ [0, 1].

(iii) 𝜉𝐴(𝑥) is upper semicontinuous; that is, {𝑥 ∈ R :
𝜉𝐴(𝑥) ≥ 𝛼} is a closed subset of R for each 𝛼 ∈ (0, 1].

(iv) The 0-level set 𝐴0 is a closed and bounded subset of
R.

Since 𝐴𝛼 ⊂ 𝐴0 for each 𝛼 ∈ (0, 1], condition (iv) shows
that the 𝛼-level sets 𝐴𝛼 are bounded subsets of R for all
𝛼 ∈ (0, 1]. It is well known that condition (ii) is satisfied if and
only if the 𝛼-level set 𝐴𝛼 is a convex subset of R. Therefore,
from conditions (i)–(iv), it is implied that if 𝐴 is a fuzzy
number, then the 𝛼-level set of 𝐴 is a closed, bounded, and
convex subset ofR, that is, a closed interval inR, denoted by
𝐴𝛼 = [𝐴𝐿𝛼, 𝐴𝑈𝛼].
Remark 5. Let 𝐴 be a fuzzy number. Then, the following
statements hold true:

(i) 𝐴𝐿𝛼 ≤ 𝐴𝑈𝛼 for all 𝛼 ∈ [0, 1].
(ii) 𝐴𝐿𝛼 is increasing with respect to 𝛼 ∈ [0, 1]; that is,

𝐴𝐿𝛼 ≤ 𝐴𝐿𝛽 for 0 ≤ 𝛼 < 𝛽 ≤ 1.
(iii) 𝐴𝑈𝛼 is decreasing with respect to 𝛼 ∈ [0, 1]; that is,

𝐴𝑈𝛼 ≥ 𝐴𝑈𝛽 for 0 ≤ 𝛼 < 𝛽 ≤ 1.
Remark 6. Let𝐴 be a fuzzy number such that its membership
function is strictly increasing on interval [𝑎, 𝑏] and strictly

Ã�㰀
i

−di −ci −bi −ai

�휉Ã(x)
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Figure 1: 𝐴󸀠𝑖 is the image of 𝐴 𝑖.

decreasing on interval [𝑐, 𝑑]. From the fact of strict mono-
tonicity, 𝜉𝐿

𝐴
(𝑥) and 𝜉𝑅

𝐴
(𝑥) are continuous functions on [0, 1].

This implies that 𝐴 is also a real fuzzy number.

Definition 7 (the image of a fuzzy number [4]). Let 𝑛 fuzzy
numbers be 𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) (𝑖 = 1, 𝑛). Then, the image
of 𝐴 𝑖 is 𝐴󸀠𝑖 = (−𝑑𝑖, −𝑐𝑖, −𝑏𝑖, −𝑎𝑖; 𝑤𝑖), as shown in Figure 1.

3. A Unified Index

Based on integration of the two aforementioned categories for
ranking fuzzy numbers, a unified index, which combines cen-
troid value (weighted mean) and attitude-incorporated left-
and-right area (weighted area), is proposed in this section.

Definition 8 (centroid value (a center-driven measure that
belongs to category one)). Centroid value of a fuzzy number
𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) for 𝑖 = 1, 𝑛, symbolized by CV𝑖, is
defined as [3, 4, 38, 63, 65, 71]

CV𝑖 =
∫𝑑𝑖
𝑎𝑖

𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥
∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
. (2)

From the statistical point of view, it is the weighted mean
of 𝐴 𝑖, meaning that when 𝐴 𝑖 = (𝑎, 𝑎, 𝑎, 𝑎; 𝑤𝑖), we can
accordingly have CV𝑖 = 𝑎.
Definition 9 (left-and-right areas (an area-driven measure
that belongs to category one)). Left-and-right areas of a fuzzy
number 𝐴 𝑖 for 𝑖 = 1, 𝑛, denoted by 𝑆𝐿𝑖 and 𝑆𝑅𝑖 , are given by

𝑆𝐿𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(3)

where 𝑔𝐿
𝐴𝑖

(𝑦) and 𝑔𝑅
𝐴𝑖

(𝑦) stand for inverse functions of
the left-and-right membership functions, 𝜉𝐿

𝐴𝑖
(𝑥) and 𝜉𝑅

𝐴𝑖
(𝑥),

respectively, and visual views of 𝑆𝐿𝑖 and 𝑆𝑅𝑖 are shown in
Figure 2 [72].

Now, a fuzzy-number measure belonging to category two
is presented. It also contemplates decision-maker’s attitude as
regards data revelation, called attitude-incorporated left-and-
right area, signified by AA𝜆𝑖 .

AA𝜆𝑖 = 𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖 , (4)
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Figure 2: Left area 𝑆𝐿𝑖 and right area 𝑆𝑅𝑖 .

where 𝜆 ∈ [0, 1] is level of optimism reflecting a data-revela-
tion optimism degree of a decision-maker, where the larger
the 𝜆 set by the decision-maker is, the more optimistic
attitude the decision-maker has on the data revelation. Two
extreme cases are 𝜆 = 0, meaning the decision-maker is
completely pessimistic, and 𝜆 = 1, meaning the decision-
maker is completely optimistic. Case 𝜆 = 1/2 reflects a
neutral decision attitude. From the mathematical viewpoint,
(4) can be seen as a weighted-area value of 𝐴 𝑖.

For boosting the fuzzy-number discrimination power, let
us consider an index named UI𝜆𝑖 by multiplying two size-
discriminatory values of a fuzzy number; that is,

UI𝜆𝑖 = (CV𝑖 + 𝜀𝑖) [𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖 ] . (5)

UI𝜆𝑖 is called unified index. And, 𝜀𝑖 initially takes a very
small real number which is quantifiable and rational for
comparing the targeted fuzzy numbers whose centroid values
take a value of zero, CV𝑖 = 0. It is used to provide consistent
ranking power when CV𝑖 = 0. Particularly, this paper
suggests using 𝜀𝑖 = 𝑤𝑖 × 10−9 so that we can efficiently
rank fuzzy numbers that have similar centroids but different
height.

Remark 10. Consider the ranking of two fuzzy numbers,
𝐴 𝑖 and 𝐴𝑗. Given the data-optimistic level 𝜆, from (5), we
obtain their realized unified indices, UI𝜆𝑖 and UI𝜆𝑗 . Then, the
following decisions can be made:

(i) At the data-optimistic level 𝜆, if UI𝜆𝑖 > UI𝜆𝑗 , then𝐴 𝑖 ≻
𝐴𝑗.

(ii) At the data-optimistic level 𝜆, if UI𝜆𝑖 < UI𝜆𝑗 , then𝐴 𝑖 ≺
𝐴𝑗.

(iii) At the data-optimistic level 𝜆, if UI𝜆𝑖 = UI𝜆𝑗 , then𝐴 𝑖 ≃
𝐴𝑗.

Now, we will prove the unified index’s consistency prop-
erty when ranking fuzzy numbers and their images. Without
loss of generality, CV𝑖 ̸= 0 is considered in the following.

Proposition 11. Let 𝐴󸀠𝑖 = (−𝑑𝑖, −𝑐𝑖, −𝑏𝑖, −𝑎𝑖; 𝑤𝑖) be the image
of a fuzzy number𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) for 𝑖 = 1, 𝑛. Its centroid

value is CV𝑖󸀠 = −CV𝑖, left-and-right areas are 𝑆𝑅𝑖󸀠 = 𝑆𝐿𝑖 and 𝑆𝐿𝑖󸀠 =
𝑆𝑅𝑖 , attitude-incorporated left-and-right area is AA𝜆𝑖󸀠 = AA1−𝜆𝑖
and AA1−𝜆𝑖󸀠 = AA𝜆𝑖 , and unified index is UI𝜆𝑖󸀠 = −UI1−𝜆𝑖 and
UI1−𝜆𝑖󸀠 = −UI𝜆𝑖 .
Proof. From (2),

CV𝑖󸀠 =
∫−𝑎𝑖
−𝑑𝑖

𝑥𝜉𝐴󸀠
𝑖
(𝑥) 𝑑𝑥

∫−𝑎𝑖
−𝑑𝑖

𝜉𝐴󸀠
𝑖
(𝑥) 𝑑𝑥 = −∫𝑑𝑖

𝑎𝑖
𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥

∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
= −CV𝑖. (6)

Based on (3),

𝑆𝐿𝑖󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴󸀠
𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑆𝑅𝑖

𝑆𝑅𝑖󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴󸀠
𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑆𝐿𝑖 .

(7)

According to (4) and with the above results, 𝑆𝑅𝑖󸀠 = 𝑆𝐿𝑖 and 𝑆𝐿𝑖󸀠 =𝑆𝑅𝑖 , we further have
AA𝜆𝑖󸀠 = 𝜆𝑆𝑅𝑖󸀠 + (1 − 𝜆) 𝑆𝐿𝑖󸀠 = 𝜆𝑆𝐿𝑖 + (1 − 𝜆) 𝑆𝑅𝑖 = AA1−𝜆𝑖 . (8)

Similarly,

AA1−𝜆𝑖󸀠 = (1 − 𝜆𝑆𝑅𝑖󸀠) + 𝜆𝑆𝐿𝑖󸀠 = (1 − 𝜆) 𝑆𝐿𝑖 + 𝜆𝑆𝑅𝑖 = AA𝜆𝑖 . (9)

Finally, regarding (5) and the aforementioned outcomes, we
can simply obtain

UI𝜆𝑖󸀠 = CV𝑖󸀠 [𝜆𝑆𝑅𝑖󸀠 + (1 − 𝜆) 𝑆𝐿𝑖󸀠] = −UI1−𝜆𝑖 ,
UI1−𝜆𝑖󸀠 = CV𝑖󸀠 [(1 − 𝜆) 𝑆𝑅𝑖󸀠 + 𝜆𝑆𝐿𝑖󸀠] = −UI𝜆𝑖 .

(10)

We complete the proof.

Proposition 12. Let a set of fuzzy numbers be 𝐴𝑘 = (𝑎𝑘, 𝑏𝑘,𝑐𝑘, 𝑑𝑘; 𝑤𝑘) and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘, −𝑎𝑘; 𝑤𝑘), 𝑘 =
1, 𝑛. For a pairwise comparison of 𝐴 𝑖 and 𝐴𝑗 for 𝑖, 𝑗 ∈ 𝑘, two
statements hold true: (1)UI𝜆𝑖 > UI𝜆𝑗 if and only if UI

1−𝜆
𝑖󸀠 < UI1−𝜆𝑗󸀠

and (2) UI𝜆𝑖 < UI𝜆𝑗 if and only if UI
1−𝜆
𝑖󸀠 > UI1−𝜆𝑗󸀠 .
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Proof. Consider UI𝜆𝑖 > UI𝜆𝑗 . From Proposition 11, we have
the results UI𝜆𝑖 = −UI1−𝜆𝑖󸀠 and UI𝜆𝑗 = −UI1−𝜆𝑗󸀠 . Thus, UI1−𝜆𝑖󸀠 <
UI1−𝜆𝑗󸀠 . On the other hand, considerUI1−𝜆𝑖󸀠 < UI1−𝜆𝑗󸀠 . According
to Proposition 11, UI1−𝜆𝑖󸀠 = −UI𝜆𝑖 and UI1−𝜆𝑗󸀠 = −UI𝜆𝑗 . Hence,
UI𝜆𝑖 > UI𝜆𝑗 . Overall, the proof is completed.

Remark 13. Let a set of fuzzy numbers be 𝐴𝑘 = (𝑎𝑘, 𝑏𝑘, 𝑐𝑘,𝑑𝑘; 𝑤𝑘) and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘, −𝑎𝑘; 𝑤𝑘), 𝑘 =
1, 𝑛. As regards Remark 10 and Propositions 11 and 12, the
following decisions can be made for a pairwise comparison
of 𝐴 𝑖 and 𝐴𝑗, for 𝑖, 𝑗 ∈ 𝑘.

(i) At the data-optimistic level 𝜆, if UI𝜆𝑖 > UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 < UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≻ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≺ 𝐴󸀠𝑗.

(ii) At the data-optimistic level 𝜆, if UI𝜆𝑖 < UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 > UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≺ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≻ 𝐴󸀠𝑗.

(iii) At the data-optimistic level 𝜆, if UI𝜆𝑖 = UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 = UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≃ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≃ 𝐴󸀠𝑗.

Finally, the following theory is very useful for ranking
“symmetric” fuzzy numbers with an identical altitude.

Theorem 14. Consider a set of “symmetric” fuzzy numbers,
𝐴𝑘 = (𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘; 𝑤𝑘), and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘,
−𝑎𝑘; 𝑤𝑘), 𝑘 = 1, 𝑛. By using the unified index, the pairwise
comparison of𝐴 𝑖 and𝐴𝑗 for 𝑖, 𝑗 ∈ 𝑘 is 𝜆 = 0.5,𝐴 𝑖 ≃ 𝐴𝑗 (𝐴󸀠𝑖 ≃
𝐴󸀠𝑗), 𝜆 ∈ [0, 0.5), 𝐴 𝑖 ≺ 𝐴𝑗 (𝐴󸀠𝑖 ≻ 𝐴󸀠𝑗), and 𝜆 ∈ (0.5, 1],
𝐴 𝑖 ≻ 𝐴𝑗 (𝐴󸀠𝑖 ≺ 𝐴󸀠𝑗).
Proof. (i) Since 𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤) and 𝐴𝑗 = (𝑎𝑗, 𝑏𝑗, 𝑐𝑗,
𝑑𝑗; 𝑤) for 𝑖, 𝑗 = 1, 𝑛 are symmetric, we have 𝑎𝑖 + 𝑑𝑖 = 𝑎𝑗 + 𝑑𝑗.
Moreover, from (2),

CV𝑖 =
∫𝑑𝑖
𝑎𝑖

𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥
∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
= 𝑎𝑖 + 𝑑𝑖

2 ,

CV𝑗 =
∫𝑑𝑗
𝑎𝑗

𝑥𝜉𝐴𝑗 (𝑥) 𝑑𝑥
∫𝑑𝑗
𝑎𝑗

𝜉𝐴𝑗 (𝑥) 𝑑𝑥
= 𝑎𝑗 + 𝑑𝑗

2 .
(11)

Therefore, CV𝑖 = CV𝑗.
(ii) According to (3) and (4), we have

AA𝜆𝑖 = 𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖
AA𝜆𝑗 = 𝜆𝑆𝑅𝑗 + (1 − 𝜆) 𝑆𝐿𝑗 ,

(12)

where

𝑆𝐿𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑆𝐿𝑗 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝐿
𝐴𝑗

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑗 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝑅
𝐴𝑗

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(13)

Due to the symmetry, we have AA𝜆𝑖 < AA𝜆𝑗 for 𝜆 ∈
[0, 0.5), AA𝜆𝑖 = AA𝜆𝑗 when 𝜆 = 0.5, and vice versa.

(iii) From (i), (ii), and (5), we have

(i) 𝜆 ∈ [0, 0.5), UI𝜆𝑖 < UI𝜆𝑗 ,

(ii) 𝜆 = 0.5, UI𝜆𝑖 = UI𝜆𝑗 ,

(iii) 𝜆 ∈ (0.5, 1], UI𝜆𝑖 > UI𝜆𝑗 .

Finally, according to Remark 13, we complete the proof.

4. Comparative Studies

In this section, several fuzzy-number examples, which
are popular in the literature for a wide range of fuzzy-
number comparative studies, are used to compare ranking
performance between the unified index and some up-to-
date representative indices from the publications. To make
it easier to follow the whole discussion of comparison,
Table 1 briefly shows the evaluated types of fuzzy numbers,
reference sources, and critical shortcomings of the refer-
ences. Detailed explanations about performance shortages
for existing indices in contrast with the proposed index are
subsequently described in Examples 15∼22.

It can be noted that, based on Propositions 11 and 12 and
Remark 13, the unified index fulfills the consistency property
for ranking the fuzzy numbers and their partnered images; for
conciseness, in several examples, the consistency of image-
ranking results is not mentioned or shown on the result
tables.

4.1. Ranking of Normal Triangular Fuzzy Numbers. This
subsection focuses on the ranking of normal triangular fuzzy
numbers with some special shape which are recognizably
difficult to discriminate in the literature. First, a case with
two congruent fuzzy numbers is employed for checking
index’s computation easiness; then, the work is extended
on three similar fuzzy numbers for contrasting indices’
ranking consistency and intuition satisfaction; finally, an
example, which includes a slight move-away fuzzy number
and two fuzzy numbers with an identical center value and
geometric enlargement relationship, is examinedwith respect
to ranking indices’ reliability and consistency.

Example 15. Rank two fuzzy numbers 𝐴1 = (1, 4, 5) and
𝐴2 = (2, 3, 6) as shown in Figure 3 [48], which are congruent,
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Table 1: The ranking performance assessments for some representative indices as opposed to the unified index.

Section Example Evaluated fuzzy numbers Compared references Shortcomings (cf. the index)

Section 4.1 Example 15 𝐴1 = (1, 4, 5)
Yu & Dat [48] More laborious in computation𝐴2 = (2, 3, 6)

Section 4.1 Example 16
𝐴1 = (5, 6, 7) Chu & Tsao [63] Counterintuition
𝐴2 = (5.9, 6, 7) Cheng [57] Counterintuition
𝐴3 = (6, 6, 7) Yu & Dat [48] Less reliability

Section 4.1 Example 17
𝐴1 = (1, 3, 5)

Liou &Wang [67], Yu & Dat [48]
Inconsistency

Counterintuition at 𝜆 = 0𝐴2 = (2, 3, 4)
𝐴3 = (1, 4, 6)

Section 4.2 Example 18 𝐴1 = (1, 5, 5)
Zhang et al. [73]

Computation complexity
𝐴2 = (2, 3, 5, 5) Inconsistency

Section 4.2 Example 19
𝐴1 = (0, 3, 6)

Ky Phuc et al. [38], Asady [46]
Computation complexity

Indecisive ranking for (𝐴1, 𝐴3)𝐴2 = (−1, 0, 2)
𝐴3 = (0, 2, 4, 6)

Section 4.2 Example 20
𝐴1 = (−12, 1, 2)

Abbasbandy & Hajjari [74],
Nasseri & Sohrabi [75]

Counterintuition𝐴2 = (−23/12, 1/12, 13/12)
𝐴3 = (−6, 0, 1, 1)

Section 4.3 Example 22 𝐴1 = (1, 2, 5) Ky Phuc et al. [38], Asady [46],
Zhang et al. [73] More elaborate in computation𝐴2 = (1, 2, 2, 4)
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Figure 3: Fuzzy numbers 𝐴1 and 𝐴2 in Example 15.

but overlapping after flipping and sliding movement. Here,
the proposed unified index is contrasted with themost recent
work published by Yu and Dat [48] in 2014 as regards
computation simpleness.

According to the unified index in (5), we simply have
the results shown in Table 2, 𝐴1 ≺ 𝐴2 (𝐴󸀠1 ≻ 𝐴󸀠2) at
any arbitrary level-of-optimism attitude of data revelation
from the decision-maker, 𝜆 ∈ [0, 1]. Yu and Dat [48]
advocated the identical ranking result in this case; however,
their computation of median values before ranking these two
fuzzy numbers is procedure-laborious in practice as reported
by some predecessors [58–62].

By the same token, when comparing two normal triangu-
lar fuzzy numbers 𝐵1 = (0.1, 0.6, 0.8) and 𝐵2 = (0.2, 0.5, 0.9),
taken from [76] and based on the proposed approach, we
always have 𝐵1 ≺ 𝐵2, which is coherent with that in [57, 63,

Table 2: Ranking results for Example 15.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 8.333 9.167 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.1 9.000 9.900 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.2 9.667 10.633 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.3 10.333 11.367 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.4 11.000 12.100 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.5 11.667 12.833 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.6 12.333 13.567 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.7 13.000 14.300 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.8 13.667 15.033 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.9 14.333 15.767 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
1.0 15.000 16.500 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2

77–80]. However, the approaches by R. Chutia and B. Chutia
[81] and Deng [82] lead to a counterintuitive result 𝐵2 ≺ 𝐵1.
Example 16. Consider three triangle fuzzy numbers, 𝐴1 =
(5, 6, 7), 𝐴2 = (5.9, 6, 7), and 𝐴3 = (6, 6, 7) [39], which
are similar and covered with the same right-hand side as
displayed in Figure 4. By human instinct, they are easily
being discriminated; that is, for the fuzzy numbers and their
images, the intuitive and consistent rankings are 𝐴1 ≺
𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3. Therefore, this example is
capable of judging the indices’ performance if intuition- and
consistency-satisfied.

We first check the unified index. Based on (5), Propo-
sitions 11 and 12, and Remark 13, the ranking results, listed
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Table 3: Ranking results for Example 16.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 33.000 37.485 38.000 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.1 33.600 37.831 38.317 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.2 34.200 38.178 38.633 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.3 34.800 38.524 38.950 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.4 35.400 38.871 39.267 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.5 36.000 39.217 39.583 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.6 36.600 39.564 39.900 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.7 37.200 39.910 40.217 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.8 37.800 40.257 40.533 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.9 38.400 40.603 40.850 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
1.0 39.000 40.950 41.167 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3

�휉Ã(x)

x
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Figure 4: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 16.

in Table 3 for the fuzzy numbers and their images, affirm
the intuitive and consistent outcomes, 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3.

In the literature, while many support the intuitive results
for ranking the fuzzy numbers [39, 46, 57, 66, 83, 84], Chen
[85] and Chu and Tsao [63] provide a different consequence
as 𝐴1 ≺ 𝐴3 ≺ 𝐴2 and Cheng [57] gives 𝐴3 ≺ 𝐴2 ≺ 𝐴1, so
their counterintuitions are apparent.

Moreover, due to scarcity of methods in the literature for
consistently ranking their images, a recent work from Yu and
Dat [48] claimed to bridge the gap. Unfortunately, when 𝜆 =
1, their approach leads to a disparate ranking, 𝐴1 ≃ 𝐴2 ≃
𝐴3 (𝐴󸀠1 ≃ 𝐴󸀠2 ≃ 𝐴󸀠3), indicating that their index as a whole
somewhat lacks reliability.

Example 17. Again, examine three fuzzy numbers, 𝐴1 =
(1, 3, 5), 𝐴2 = (2, 3, 4), and 𝐴3 = (1, 4, 6), as shown in
Figure 5. Visibly, 𝐴3 = (1, 4, 6) is right way out 𝐴1 and𝐴2, so there is no dispute that a capable index should rate
𝐴3 (𝐴󸀠3) as the largest (smallest). The challenging one is to
distinguish 𝐴1 and 𝐴2 (𝐴󸀠1 and 𝐴󸀠2) due to their symmetry
with respect to 𝑥 = 3, identical centroid value, and their
geometric enlargement relationship. Actually, majority of
the existing ranking measures in category one (evaluating
the fuzzy number itself) rank 𝐴1 ≃ 𝐴2, and their image
ranking is not available.Therefore, this example is to compare
the proposed unified index with the category two ranking
measures (not only evaluating the fuzzy number itself, but
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Figure 5: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 17.

also gauging decision-maker’s attitude in regard to specific
purposes such as confidence and risk), initiated byWang and
Luo [39], Yu and Dat [48], Yu et al. [65], and Liou and Wang
[67], in terms of ranking indices’ reliability and consistency.

First, we check the unified index’s results in Table 4.
Regardless of 𝜆 ∈ [0, 1], 𝐴3 (𝐴󸀠3) is always the largest
(smallest), which confirms human intuition. For the ranking
of 𝐴1 and 𝐴2, dividing from 𝜆 = 0.5, 𝐴1 ≃ 𝐴2 (𝐴󸀠1 ≃ 𝐴󸀠2);
the upper part 𝜆 ∈ [0, 0.5), 𝐴1 ≺ 𝐴2 (𝐴󸀠1 ≻ 𝐴󸀠2); the lower
part 𝜆 ∈ (0.5, 1], 𝐴1 ≻ 𝐴2 (𝐴󸀠1 ≺ 𝐴󸀠2). Although this result
has been proved inTheorem 14, there are still some insightful
conclusions to be addressed.

First, this finding is consistent with that of Wang and Luo
[39] and Yu et al. [65]. In fact, with respect to the unified
index, these results are reasonable because the chosen 𝜆 value
manifests the decision-maker’s optimism towards revelation
of left- and right-area data. 𝜆 ∈ (0.5, 1] implies that the
right-area data is more preferred by the decision-maker; 𝜆 ∈
[0, 0.5) represents the notion that the decision-maker is more
optimistic regarding the left-area data; 𝜆 = 0.5 indicates
that the decision-maker is neutral towards preference of data
location.

Then, we evaluate the indices proposed by Yu and Dat
[48] and Liou and Wang [67]. While Yu and Dat’s work
confirms most of the results in Table 4, it does exhibit an
apparent counterintuition issue at 𝜆 = 0, where it suggests
that 𝐴3 does not dominate 𝐴2; that is, 𝐴2 ≃ 𝐴3 (𝐴󸀠2 ≃
𝐴󸀠3). Moreover, Liou and Wang’s index [67] not only afflicts
the same shortage of Yu and Dat’s index, but also has
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Table 4: Ranking results at different optimism levels in Example 17.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 6.000 7.500 9.167 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.1 6.600 7.800 10.083 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.2 7.200 8.100 11.000 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.3 7.800 8.400 11.917 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.4 8.400 8.700 12.833 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.5 9.000 9.000 13.750 Ã1 ≃ Ã2 ≺ Ã3 and Ã󸀠1 ≃ Ã󸀠2 ≻ Ã󸀠3
0.6 9.600 9.300 14.667 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.7 10.200 9.600 15.583 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.8 10.800 9.900 16.500 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.9 11.400 10.200 17.417 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
1.0 12.000 10.500 18.333 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
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Figure 6: Fuzzy numbers 𝐴1 and 𝐴2 in Example 18.

shown inconsistent results for ranking the fuzzy numbers
and their images due to the index’s limited definition and
generalization.

4.2. Ranking for Normal Triangular-and-Trapezoid Mixed
Fuzzy Numbers. Here, the proposed unified index is used to
broaden the ranking comparisons to normal triangular-and-
trapezoidmixed fuzzy numbers.The cases from the literature
that have one trapezoid mixed with one triangular fuzzy
number, followed by two examples with two triangular fuzzy
numbers, are investigated.

Example 18. Compare a triangular fuzzy number 𝐴1 =
(1, 5, 5) overlapping with a trapezoidal fuzzy number 𝐴2 =
(2, 3, 5, 5), as shown in Figure 6. Of ten existingmeasures that
have been studied in this case, three (30%) support 𝐴1 ≺ 𝐴2
[30, 66, 86] and seven (70%) stand for𝐴1 ≻ 𝐴2 [47, 53, 63, 73,
74, 83, 87]. Clearly, this stark contrast outcome is intriguing
for further investigation. Therefore, in this example, we first
attempt to explain the predecessors’ conflicting consequence
by using the unified index. Then, the index itself will be
compared with the recent work proposed by Zhang et al.
in 2014 [73] to lay out their result similarity as well as their
performance with regard to computation easiness and image
consistency.

Table 5 is the ranking results of using the unified index,
where 𝜆 ∈ [0, 0.8], 𝐴1 ≻ 𝐴2 and 𝜆 ∈ [0.9, 1], 𝐴1 ≺ 𝐴2. Once

Table 5: Ranking results at different optimism levels in Example 18.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 11.000 9.333 𝐴1 ≻ 𝐴2
0.1 11.733 10.267 𝐴1 ≻ 𝐴2
0.2 12.467 11.200 𝐴1 ≻ 𝐴2
0.3 13.200 12.133 𝐴1 ≻ 𝐴2
0.4 13.933 13.067 𝐴1 ≻ 𝐴2
0.5 14.667 14.000 𝐴1 ≻ 𝐴2
0.6 15.400 14.933 𝐴1 ≻ 𝐴2
0.7 16.133 15.867 𝐴1 ≻ 𝐴2
0.8 16.867 16.800 𝐴1 ≻ 𝐴2
0.9 17.600 17.733 𝐴1 ≺ 𝐴2
1.0 18.333 18.667 𝐴1 ≺ 𝐴2

more, the chosen 𝜆 value manifests the decision-maker’s
optimism towards revelation of the left-and-right area of
fuzzy data. From the 𝜆-probability point of view, around 80%
support 𝐴1 ≻ 𝐴2 and 20% favor 𝐴1 ≺ 𝐴2. In fact, this result,
providing a level-of-optimism attitude-based explanation
for conflicts among the comparison, is interesting to be
approximatewith aforementioned percentages obtained from
the literature conclusions. Moreover, it is also similar to
Zhang et al.’s [73] result who uses a preference-probability
relation to explain the uncertainty level of the comparison;
with seven intricate and somewhat complicated steps, they
concluded 𝐴1 ≻ 𝐴2 with a confidence degree of 73% and
𝐴1 ≺ 𝐴2 with 27%.

Finally, it is worth mentioning that as opposed to the
unified index, Zhang et al.’s [73] seven-step algorithm for
ranking fuzzy numbers not only suffers a computation-
complexity problem, but also lacks capacity for ranking the
fuzzy-number image.

Example 19. Taken from [38] and shown in Figure 7, one
trapezoid fuzzy number, 𝐴3 = (0, 2, 4, 6), mingled with two
triangular fuzzy numbers, 𝐴1 = (0, 3, 6) and 𝐴2 = (−1, 0, 2),
is considered in this example. Noticeably, 𝐴2 left distances
away from 𝐴1 and 𝐴3, so there is no argument that a reliable
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Table 6: Ranking results of the three fuzzy numbers in Example 19.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 4.500 0.167 3.000 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.1 5.400 0.183 4.200 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.2 6.300 0.200 5.400 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.3 7.200 0.217 6.600 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.4 8.100 0.233 7.800 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.5 9.000 0.250 9.000 Ã1 ≃ Ã3 ≻ Ã2 and Ã󸀠1 ≃ Ã󸀠3 ≺ Ã󸀠2
0.6 9.900 0.267 10.200 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.7 10.800 0.283 11.400 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.8 11.700 0.300 12.600 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.9 12.600 0.317 13.800 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
1.0 13.500 0.333 15.000 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
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Figure 7: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 19.

index should discriminate 𝐴2 (𝐴󸀠2) as the smallest (largest).
The question is the rating result of the triangular fuzzy
number 𝐴1 and the trapezoid fuzzy number 𝐴3 and their
images. Therefore, this example is to compare the unified
index with the recent works of Asady in 2010 and Ky Phuc
et al. [38] in 2012 who proposed a deviation-degree ranking
measure.

First, we check the unified index’s results in Table 6.
Regardless of 𝜆 ∈ [0, 1], 𝐴2 (𝐴󸀠2) is always the smallest
(largest), which confirms human intuition. For the ranking
of 𝐴1 and 𝐴3, dividing from 𝜆 = 0.5, 𝐴1 ≃ 𝐴3 (𝐴󸀠1 ≃ 𝐴󸀠3);
the upper part 𝜆 ∈ [0, 0.5), 𝐴1 ≻ 𝐴3 (𝐴󸀠1 ≺ 𝐴󸀠3); the lower
part 𝜆 ∈ (0.5, 1], 𝐴1 ≺ 𝐴3 (𝐴󸀠1 ≻ 𝐴󸀠3). Literally, this finding
(refer to Theorem 14) is consistent with two fuzzy numbers
with the same attitude and symmetry, shown in Example 17.

Then, we evaluate Ky Phuc et al.’s [38] and Asady’s [46]
deviation-degree index. Despite the exhausted computation,
its capability can only provide the partial result, “𝐴1 ≻ 𝐴2”
and “𝐴3 ≻ 𝐴2,” leaving undecided ranking for 𝐴1 and𝐴3. Actually, as mentioned in Section 1, the deviation-degree
index, belonging to the category one rankingmeasure, has the
limitation for ranking the fuzzy numbers akin to 𝐴1 and 𝐴3
that are overlapping and each has axis-of-symmetry property.

Example 20. Additionally, let us consider one trapezoidal
fuzzy number,𝐴3 = (−6, 0, 1, 1), blended with two triangular
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Figure 8: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 20.

fuzzy numbers, 𝐴1 = (−12, 1, 2) and 𝐴2 = (−23/12, 1/12,
13/12), which are adapted from [66] and shown in Figure 8.
Unlike the previous challenging one that is with a symmetric
and triangle-embedded trapezoid shape, they are all left-
skewed fuzzy numbers and easy to be distinguished by human
perception; that is,𝐴1 ≺ 𝐴3 ≺ 𝐴2. Hence, for this subsection,
this example is capable of judging the indices’ performance if
intuition-satisfied.

The result in Table 7, obtained with the unified index,
clearly shows that 𝐴1 ≺ 𝐴3 ≺ 𝐴2, which is identical to
previous works in [46, 47, 63, 64, 66, 87]. However, counter
results are claimed by Abbasbandy and Hajjari [74] who
ranked them as 𝐴1 ≃ 𝐴2 ≃ 𝐴3 and Nasseri and Sohrabi [75]
who suggested 𝐴2 ≺ 𝐴3 ≺ 𝐴1. Both works’ counterintuition
is obvious.

Example 21. Now, two special cases taken fromR. Chutia and
B. Chutia [81] are considered. The first set includes 𝐴1 =
(0.1, 0.1, 0.1, 0.1; 0.8) and 𝐴2 = (−0.1, −0.1, −0.1, −0.1; 1.0)
which were ranked as 𝐴1 > 𝐴2; and the second one includes
𝐵1 = (1, 1, 1, 1; 0.5) and 𝐵2 = (1, 1, 1, 1; 1.0) which were
ranked as 𝐵1 < 𝐵2. The proposed unified index also leads
to similar conclusions as in [37, 78, 81, 88–90], indicating that
the index can effectively work with crisp numbers as well.

4.3. Ranking for Nonlinear Fuzzy Numbers. Finally, although
empirical phenomenon and human perception are rather
unlikely to gather the nonlinear fuzzy numbers, this more
general type can be justifiable for investigating the index’s
computation easiness as well as adaptability.
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Table 7: Ranking results of the three fuzzy numbers in Example 20.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 −18.333 −0.229 −4.125 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.1 −16.833 −0.221 −3.850 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.2 −15.333 −0.213 −3.575 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.3 −13.833 −0.204 −3.300 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.4 −12.333 −0.196 −3.025 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.5 −10.833 −0.188 −2.750 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.6 −9.333 −0.179 −2.475 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.7 −7.833 −0.171 −2.200 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.8 −6.333 −0.163 −1.925 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.9 −4.833 −0.154 −1.650 𝐴1 ≺ 𝐴3 ≺ 𝐴2
1.0 −3.333 −0.146 −1.375 𝐴1 ≺ 𝐴3 ≺ 𝐴2
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Figure 9: Fuzzy numbers 𝐴1 and 𝐴2 in Example 22.

Example 22. Let us consider two fuzzy numbers shown in
Figure 9, adapted from Liou and Wang [67]: 𝐴1 = (1, 2, 5)
and 𝐴2 = (1, 2, 2, 4) with a nonlinear membership function

𝑓𝐴2 (𝑥) =
{{{{{
{{{{{
{

[1 − (𝑥 − 2)2]1/2 , 1 ≤ 𝑥 ≤ 2,
[1 − 1

4 (𝑥 − 2)2]
1/2

, 2 ≤ 𝑥 ≤ 4,
0, otherwise.

(14)

In this nonlinear case, by using the unified index, the con-
clusions in Table 8, 𝐴1 ≻ 𝐴2 (𝐴󸀠1 ≺ 𝐴󸀠2) for 𝜆 ∈ [0, 1], do not
add much complexity for the computation. Obviously, previ-
ous proposedmeasures in [53, 63, 66, 67, 76] possess the same
conclusion and computation easiness. However, in recent
works, Ky Phuc et al. [38], Asady [46], and Zhang et al. [73],
their indices become more complicated and elaborate for
ranking the nonlinear fuzzy numbers as well as their images.

5. Conclusions

Numerous indices for fuzzy-data comparisons and rankings
have been widely implemented to resolve decisive problems
that are evaluated under resources constraint and with to
some extent linguistic preference of multiattribute, realized
from users’ perspectives, as well as subjective quantification
of multiple characteristics, assessed from decision-makers.
However, counterintuition, computation complexity, less reli-
ability, and/or inconsistency on their fuzzy-number rating

Table 8: Ranking results at different optimism levels in Example 22.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 6.750 2.945 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.1 7.650 3.516 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.2 8.550 4.087 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.3 9.450 4.658 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.4 10.350 5.230 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.5 11.250 5.801 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.6 12.150 6.372 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.7 13.050 6.943 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.8 13.950 7.515 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.9 14.850 8.086 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
1.0 15.750 8.657 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2

outcomes have hampered their comprehensive implemen-
tation. To lessen their exhibited ranking weaknesses, this
paper develops a unified index thatmultipliesweighted-mean
and weighted-area discriminatory components of a fuzzy
number, respectively, called centroid value (a measure that
values the fuzzy number itself) and attitude-incorporated
left-and-right area (a fuzzy-numbermeasure that also reflects
on the decision-maker’s attitude as regards data revelation).
From theoretical proofs and comparative studies, this unified
index has demonstrated four advantages for ranking fuzzy
numbers.

First, ranking results of the unified index support the
human-intuition judgement. Secondly, it shows computation
easiness regardless of different types of fuzzy numbers. It can
be noted that this computation simplicity becomes crucial for
multiagents-multicriteria decision-making problems, which
normally involve numerous comparisons and analyses of
fuzzy numbers. Thirdly, the unified index can provide a
level-of-optimism attitude-based explanation for ranking
conflicts among the literature. Most importantly, the unified
index possesses the consistency property for ranking fuzzy
numbers and their images as well as for symmetric fuzzy
numbers with an identical altitude. Literally, in fields of
computer vision and image pattern recognition, this property
has been a rather critical one for accurate matching and/or
retrieval of information.
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We consider the random fuzzy differential equations (RFDEs) with impulses. Using Picard method of successive approximations,
we shall prove the existence and uniqueness of solutions to RFDEs with impulses under suitable conditions. Some of the properties
of solution of RFDEs with impulses are studied. Finally, an example is presented to illustrate the results.

1. Introduction

Impulsive differential equations (IDEs) are a new branch
of differential equations. IDEs can find numerous applica-
tions in different branches of optimal control, electronics,
economics, physics, chemistry, and biological sciences. We
refer to [1–4] and the references therein. As we know, the
real systems are often faced with two kinds of uncertain-
ties (fuzziness and randomness). Therefore, this topic has
extensively been studied by mathematicians in recent years.
Investigations of dynamic systems with fuzziness have been
developed in connection with fuzzy differential equations
(FDEs). Evidence of FDEs for such areas as control theory,
differential inclusions, and fuzzy differential equations can be
found in the papers of [5–8], the books and monographs [9],
and references therein. In [10], Lakshmikantham and McRae
combined the theories of impulsive differential equations and
fuzzy differential equations. There are a few papers on the
latter topic; see [10–12].

Moreover, the class of random fuzzy differential equations
(RFDEs) could be applicable in the investigation of numerous
engineering and economics problems where the phenomena
are simultaneously subjected to two kinds of uncertainties,
that is, fuzziness and randomness, simultaneously (see, e.g.,
Malinowski [13–16], Feng [17, 18], and Fei [19, 20]). Feng
[17] introduced the concepts by the mean-square derivative
and mean-square integral of second-order fuzzy stochastic
processes. Using the results, the author [18] investigated the
properties of solutions of the fuzzy stochastic differential

systems, including the existence and uniqueness of solution,
the dependence of the solution of the initial condition, and
the continuity and the boundedness of solution of systems
when there are perturbations of the coefficients and the
initial conditions. In [19, 20], Fei proved the existence and
uniqueness of solution of fuzzy random differential equation
(FRDE). The author also discussed the dependence of solu-
tion to FRDE on initial values. Finally, the nonconfluence
property of the solution for FRDE is studied.

In [13], Malinowski considered the following random
fuzzy differential equations:

𝐷𝐻𝑥 (𝑡, 𝜔) [𝑡0 ,𝑡0+𝑝],P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔)) ,
𝑥 (𝑡0, 𝜔) P.1= 𝑥0 (𝜔) ∈ 𝐸𝑑,

(1)

where 𝑓 : Ω × [𝑡0, 𝑡0 + 𝑝] × 𝐸𝑑 → 𝐸𝑑 and the symbol𝐷𝐻 denotes the fuzzy Hukuhara derivative. The author
proved the existence and uniqueness of the solution for
RFDEs under Lipschitz condition. Malinowski [14, 15] stud-
ied two kinds of solutions to the RFDEs with two kinds
of fuzzy derivatives. For both cases the author established
the existence and uniqueness of local solutions to RFDEs.
In addition, the author also presented some examples being
simple illustrations of the theory of RFDEs.

Inspired andmotivated by Fei [19], Feng [18], Malinowski
[14], and other authors as in [3, 10, 21], in this paper, we con-
sider the RFDEs with impulses under Hukuhara derivative.
The paper is organized as follows: in Section 2, we summarize
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some preliminary facts and properties of the fuzzy set space,
fuzzy differentiation, and integration. We also recall the
notions of fuzzy random variable and fuzzy stochastic pro-
cess. In Section 3, we discuss the RFDEswith impulses. Under
suitable conditions, we prove the existence and uniqueness of
solutions to RFDEs with impulses. In Section 4, we give some
examples to illustrate these results.

2. Preliminaries

In this section, we give some definitions and properties
and introduce the necessary notation which will be used
throughout the paper. We denote 𝐸𝑑 = {𝑢 : R𝑑 → [0, 1] | 𝑢
satisfies (i)–(iv) stated below}, where

(i) 𝑢 is normal; that is, there exists an 𝑥0 ∈ R𝑑 such that𝑢(𝑥0) = 1;
(ii) 𝑢 is fuzzy convex; that is, for 0 ≤ 𝜆 ≤ 1, 𝑢(𝜆𝑥1 + (1 −𝜆)𝑥2) ≥ min{𝑢(𝑥1), 𝑢(𝑥2)}, for any 𝑥1, 𝑥2 ∈ R𝑑;
(iii) 𝑢 is upper semicontinuous;

(iv) 𝑐𝑙{𝑥 ∈ R𝑑 : 𝑢(𝑧) > 0} is compact set.

Then 𝐸𝑑 is called the space of fuzzy numbers.
For 0 < 𝛼 ≤ 1, we denote [𝑢]𝛼 = {𝑥 ∈ R𝑑 | 𝑢(𝑥) ≥ 𝛼} and[𝑢]0 = 𝑐𝑙{𝑥 ∈ R | 𝑢(𝑥) > 0}. For 𝑑 = 1 and from conditions

(i)–(iv), we infer that the 𝛼-level cut of 𝑢, denoted by [𝑢]𝛼,
is a bounded closed interval for any 𝛼 ∈ [0, 1] and 𝑢 ∈ 𝐸𝑑,
and [𝑢]𝛼 = [𝑢𝑙𝛼, 𝑢𝑟𝛼], where 𝑢𝑙𝛼 and 𝑢𝑟𝛼 are the lower and upper
branches of 𝑢.

For 𝑢, V ∈ 𝐸𝑑, the Hausdorff distance between 𝑢 and V is
defined by

𝑑∞ (𝑥, 𝑦) = sup
𝛼∈[0,1]

max {𝑑𝐻 ([𝑢]𝛼) , 𝑑𝐻 ([V]𝛼)} (2)

and (𝐸𝑑, 𝑑∞) is a complete metric space.
If we define𝐷 : 𝐸𝑑 × 𝐸𝑑 → R+ by the expression

𝐷(𝑢, V) = sup
𝑡∈[𝑎,𝑏]

𝑑∞ (𝑢 (𝑡) , V (𝑡)) , (3)

then it is well-known that𝐷 is metric in𝐸𝑑 and (𝐸𝑑, 𝐷) is also
a complete metric space.

Some properties are well-known for themetric Hausdorff𝐷 defined on 𝐸𝑑 as follows:
𝐷 (𝑢 + 𝑤, V + 𝑤) = 𝐷 (𝑢, V) ,

𝐷 (𝜆𝑢, 𝜆V) = 𝜆𝐷 (𝑢, V) ,
𝐷 (𝑢, V) ≤ 𝐷 (𝑢, 𝑤) + 𝐷 (V, 𝑤) ,

(4)

for every 𝑢, V, 𝑤 ∈ 𝐸𝑑 and 𝜆 ∈ R+.

Definition 1 (see [22]). Let 𝑢, V ∈ 𝐸𝑑. If there exists 𝑤 ∈ 𝐸𝑑
such that 𝑢 = V +𝑤, then𝑤 is called the Hukuhara difference
of 𝑢, V and it is denoted by 𝑢 ⊖ V.

Definition 2 (see [22]). Let 𝑓 : (𝑎, 𝑏) → 𝐸𝑑 and 𝑡 ∈ (𝑎, 𝑏).
We say that 𝑓 is differentiable at 𝑡 if there exists an element𝐷𝐻𝑓(𝑡) ∈ 𝐸𝑑 such that the limits

lim
ℎ→0+

𝑓 (𝑡 + ℎ) ⊖ 𝑓 (𝑡)ℎ = lim
ℎ→0+

𝑓 (𝑡) ⊖ 𝑓 (𝑡 − ℎ)ℎ (5)

exist and are equal to𝐷𝐻𝑓(𝑡).
Definition 3 (see [22]). Let 𝑓 : (𝑎, 𝑏) → 𝐸𝑑. The integral of
𝑓 on (𝑎, 𝑏), denoted by ∫𝑏

𝑎
𝑓(𝑡)𝑑𝑡, is defined levelwise by the

equation

[∫𝑏
𝑎
𝑓 (𝑡) 𝑑𝑡]𝛼 = ∫𝑏

𝑎
[𝑓 (𝑡)]𝛼 𝑑𝑡

= {∫𝑏
𝑎
𝑓̃ (𝑡) 𝑑𝑡 | 𝑓̃ : (𝑎, 𝑏)

󳨀→ R is a measurable selection for [𝑓 (⋅)]𝛼} ,
(6)

for all 𝛼 ∈ [0, 1].
Definition 4 (see [22]). A fuzzy mapping 𝑓 : (𝑎, 𝑏) → 𝐸𝑑 is
integrable if𝑓 is integrable bounded and stronglymeasurable.

The following are some properties of integrability of fuzzy
mapping (see [22]):

(a) If 𝑓 : (𝑎, 𝑏) → 𝐸𝑑 is continuous then it is integrable.
(b) If 𝑓 : (𝑎, 𝑏) → 𝐸𝑑 is integrable and 𝑐 ∈ (𝑎, 𝑏) then

∫𝑏
𝑎
𝑓(𝑠)𝑑𝑠 = ∫𝑐

𝑎
𝑓(𝑠)𝑑𝑠 + ∫𝑏

𝑐
𝑓(𝑠)𝑑s.

(c) Let 𝑓, 𝑔 : (𝑎, 𝑏) → 𝐸𝑑 be integrable and 𝜆 > 0. Then

(i) ∫𝑏
𝑎
(𝑓(𝑠) + 𝑔(𝑠))𝑑𝑠 = ∫𝑏

𝑎
𝑓(𝑠)𝑑𝑠 + ∫𝑏

𝑎
𝑔(𝑠)𝑑𝑠,

(ii) ∫𝑏
𝑎
𝜆𝑓(𝑠)𝑑𝑠 = 𝜆 ∫𝑏

𝑎
𝑓(𝑠)𝑑𝑠,

(iii) 𝐷(𝑓, 𝑔) is integrable and
𝐷(∫𝑏
𝑎
𝑓(𝑠)𝑑𝑠, ∫𝑏

𝑎
𝑔(𝑠)𝑑𝑠) ≤ ∫𝑏

𝑎
𝐷(𝑓(𝑠), 𝑔(𝑠))𝑑𝑠.

Let (Ω,F,P) be a complete probability space. A function𝑥 : Ω → 𝐸𝑑 is called a fuzzy random variable, if the set-
valued mapping [𝑥(⋅)]𝛼 : Ω → K𝑐(R𝑑) is a measurable
multifunction for all 𝛼 ∈ [0, 1]; that is,

{𝜔 ∈ Ω | [𝑥 (𝜔)]𝛼 ∩ 𝐵 ̸= 0} ∈ F (7)

for every closed set 𝐵 ⊂ R𝑑.

Definition 5 (see [13]). A mapping 𝑥 : [𝑎, 𝑏] ×Ω → 𝐸𝑑 is said
to be a fuzzy stochastic process if 𝑥(⋅, 𝜔) is a fuzzy-set-valued
function with any fixed 𝜔 ∈ Ω and 𝑥(𝑡, ⋅) is a fuzzy random
variable for any fixed 𝑡 ∈ [𝑎, 𝑏].
Definition 6 (see [13]). A fuzzy stochastic process 𝑥 : [𝑎, 𝑏] ×Ω → 𝐸𝑑 is called continuous if there exists Ω0 ⊂ Ω with
P(Ω0) = 1 and such that, for every 𝜔 ∈ Ω0, the trajectory𝑥(⋅, 𝜔) is a continuous function on [𝑎, 𝑏] with respect to the
metric𝐷.
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For convenience, from now on, we shall write 𝑥(𝜔) P.1=𝑦(𝜔) to replace P({𝜔 | 𝑥(𝜔) = 𝑦(𝜔)}) = 1 for short, where 𝑥,𝑦 are randomelements, and similarly for inequalities. Alsowe
shall write 𝑥(𝑡, 𝜔) [𝑎,𝑏],P.1= 𝑦(𝑡, 𝜔) to replace P({𝜔 | 𝑥(𝑡, 𝜔) =𝑦(𝑡, 𝜔)}, ∀𝑡 ∈ [𝑎, 𝑏]) = 1 for short, where 𝑥, 𝑦 are some
stochastic processes, and similarly for inequalities.

3. Existence and Uniqueness for
RFDEs with Impulses

In this section, we consider the following random fuzzy
differential equation with impulses:

𝐷𝐻𝑥 (𝑡, 𝜔) P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) ,
𝑡 ∈ 𝐽 fl [𝑡0, 𝑡0 + 𝑝] , 𝑡 ̸= 𝑡𝑘,

𝑥 (𝑡+𝑘 , 𝜔) P.1= 𝐼𝑘 (𝑥 (𝑡𝑘, 𝜔) , 𝜔) , 𝑘 = 1,𝑚, 𝑡 = 𝑡𝑘,
𝑥 (𝑡+0 , 𝜔) P.1= 𝑥0 (𝜔) ∈ 𝐸𝑑,

(8)

where 𝑓 : 𝐽 × 𝐸𝑑 × Ω → 𝐸𝑑, 𝐼𝑘 : 𝐸𝑑 × Ω → 𝐸𝑑 is continuous
with P.1, and 𝑡𝑘, 𝑘 = 1,𝑚, are points of impulses such that𝑡0 ≤ ⋅ ⋅ ⋅ < 𝑡𝑘 < 𝑡𝑘+1 ≤ 𝑡0 + 𝑝 and 𝑥0 : Ω → 𝐸𝑑 is fuzzy
random variable.

Lemma 7. Let 𝑥 : 𝐽 × Ω → 𝐸𝑑 be a fuzzy stochastic process.
Then 𝑥 is the solution of problem (8) if and only if 𝑥 is a
continuous fuzzy stochastic process and satisfy the following
random impulsive fuzzy integral equation:

𝑥 (𝑡, 𝜔) = 𝑥0 (𝜔) + ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) .
(9)

Proof. We divide the proof into two steps.

Step 1. If 𝑥(𝑡) satisfies problem (8), then it will be expressed
as (9). Indeed, for every 𝑡 ∈ [𝑡0, 𝑡1) we have

𝐷𝐻𝑥 (𝑡, 𝜔) P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) . (10)

By Lemma 3.1 in [13], we obtain

𝑥 (𝑡1, 𝜔) [𝑡0 ,𝑡1),P.1= 𝑥0 (𝜔) + ∫𝑡1
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠. (11)

If 𝑡 ∈ [𝑡1, 𝑡2) and by Lemma 3.1 in [13], we have

𝑥 (𝑡, 𝜔) P.1= 𝑥 (𝑡+1 , 𝜔) + ∫𝑡
𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
P.1= 𝐼1 (𝑥1 (𝑡, 𝜔) , 𝜔) + ∫𝑡

𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
P.1= 𝐼1 (𝑥1 (𝑡, 𝜔) , 𝜔) + 𝑥0 (𝜔)

+ ∫𝑡1
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
+ ∫𝑡
𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠.

(12)

If we assume that

𝑥 (𝑡, 𝜔) [𝑡𝑘−1 ,𝑡𝑘),P.1= 𝑥0 (𝜔) + ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘−1∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) ,
(13)

then we have

𝑥 (𝑡, 𝜔) [𝑡𝑘 ,𝑡𝑘+1],P.1= 𝑥 (𝑡+𝑘 , 𝜔) + ∫𝑡
𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
[𝑡𝑘 ,𝑡𝑘+1],P.1= 𝐼1 (𝑥𝑘 (𝑡, 𝜔) , 𝜔) + ∫𝑡

𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
...

[𝑡𝑘 ,𝑡𝑘+1],P.1= 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) + 𝑥0 (𝜔)
+ ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠.

(14)

It follows by mathematical induction that (13) holds for any𝑘 ≥ 1.
Step 2. Conversely, if a fuzzy stochastic process 𝑥 satisfies
the random fuzzy integral equation (9), then it is equivalent
to problem (8). Indeed, if 𝑡 ∈ [𝑡0, 𝑡1) we easily see that
𝑥(𝑡0, 𝜔) P.1= 𝑥0(𝜔) and the Hukuhara difference 𝑥0(𝜔) +∫𝑡
𝑡0
𝑓(𝑠, 𝑢(𝑠, 𝜔), 𝜔)𝑑𝑠 exists, withP.1. By Lemma 3.2 in [13] we

have

𝐷𝐻𝑥 (𝑡, 𝜔) [𝑡0 ,𝑡1),P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) . (15)
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Let ℎ > 0 small enough such that 𝑡 − ℎ ∈ [𝑡1, 𝑡2) for every𝑡 ∈ [𝑡1, 𝑡2); we have
𝑥 (𝑡, 𝜔) ⊖ 𝑥 (𝑡 − ℎ, 𝜔) P.1= ∫𝑡

𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
⊖ ∫𝑡−ℎ
𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
P.1= ∫𝑡
𝑡−ℎ

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠.
(16)

Similarly, let ℎ > 0 small enough such that 𝑡 + ℎ ∈ (𝑡1, 𝑡2) for
every 𝑡 ∈ (𝑡1, 𝑡2); we obtain

𝑥 (𝑡 + ℎ, 𝜔) ⊖ 𝑥 (𝑡, 𝜔) P.1= ∫𝑡
𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
⊖ ∫𝑡+ℎ
𝑡1

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠
P.1= ∫t+ℎ

𝑡
𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠.

(17)

Multiplying both sides of (16) and (17) by 1/ℎ and passing to
the limit with ℎ → 0+, we obtain

lim
ℎ→0+

𝑥 (𝑡, 𝜔) ⊖ 𝑥 (𝑡 − ℎ, 𝜔)ℎ
= lim
ℎ→0+

1ℎ ∫
𝑡

𝑡−ℎ
𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠 = 𝐷𝐻𝑥 (𝑡, 𝜔) ,

lim
ℎ→0+

𝑥 (𝑡 + ℎ, 𝜔) ⊖ 𝑥 (𝑡, 𝜔)ℎ
= lim
ℎ→0+

1ℎ ∫
𝑡+ℎ

𝑡
𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠 = 𝐷𝐻𝑥 (𝑡, 𝜔) .

(18)

This allows us to claim that 𝑥 is differentiable on (𝑡1, 𝑡2] and
consequently

𝐷𝐻𝑥 (𝑡, 𝜔) [𝑡1 ,𝑡2),P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) . (19)

By mathematical induction, if 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1,𝑚, we get

𝐷𝐻𝑥 (𝑡, 𝜔) (𝑡𝑘 ,𝑡𝑘+1],P.1= 𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) . (20)

Also, we can easily show that

Δ𝑥 (𝑡𝑘, 𝜔) P.1= 𝐼𝑘 (𝑥 (𝑡𝑘, 𝜔) , 𝜔) , 𝑘 = 1,𝑚. (21)

The proof is complete.

Lemma 8. Let (Ω,F,P) be a probability space. Let 𝐴 : Ω →
R+, 𝐵𝑖 : Ω → R+, 𝑖 = 0, 1, 2, . . ., and stochastic processes𝑋,𝑌 : 𝐽 × Ω → R be such that

(i) 𝑋(⋅, 𝜔) is nonnegative and continuous with P.1 and 𝑡𝑖
are the points of discontinuity of the first of𝑋(⋅, 𝜔)with
P.1,

(ii) 𝑌(⋅, 𝜔) is locally Lebesgue integrable with P.1.
If

𝑋(𝑡, 𝜔) 𝐽,P.1≤ 𝐴 (𝜔) + ∫𝑡
𝑡0

𝑋 (𝑠, 𝜔) 𝑌 (𝑠, 𝜔) 𝑑𝑠
+ ∑
𝑡0≤𝑡𝑖<𝑡

𝐵𝑖 (𝜔)𝑋 (𝑡𝑖, 𝜔) ,
(22)

then we have

𝑋 (𝑡, 𝜔)
𝐽,P.1≤ 𝐴 (𝜔) ∏

𝑡0≤𝑡𝑖<𝑡

(1 + 𝐵𝑖 (𝜔)) exp(∫𝑡
𝑡0

𝑌 (𝑠, 𝜔) 𝑑𝑠) . (23)

Now, we show the main results of this paper.

Theorem 9. Let the mapping 𝑓 : 𝐽 × 𝐸𝑑 × Ω → 𝐸𝑑 be
continuous with P.1 and 𝐼𝑘 : 𝐸𝑑 × Ω → 𝐸𝑑. Assume the
following conditions hold:

(A1) There exists a nonnegative constant 𝐿1 such that𝐷[𝑓(𝑡, 𝜑, 𝜔), 𝑓(𝑡, 𝜙, 𝜔)] ≤ 𝐿1𝐷[𝜑, 𝜙], for every 𝑡 ∈ 𝐽
and 𝜑, 𝜙 ∈ 𝐸𝑑 with P.1.

(A2) There exists a nonnegative constant 𝐿2,𝑘 such that𝐷[𝐼𝑘(𝜑, 𝜔), 𝐼𝑘(𝜙, 𝜔)] ≤ 𝐿2,𝑘𝐷[𝜑, 𝜙], for 𝑘 = 0, 1, 2, . . . ,
𝑚, for every 𝑡 ∈ 𝐽 and 𝜑, 𝜙 ∈ 𝐸𝑑 with P.1.

(A3) There exists a nonnegative constant 𝑀1 such that𝐷[𝑓(𝑡, 𝑥0(𝜔), 𝜔), 0̂] ≤ 𝑀1, for every 𝑡 ∈ 𝐽 and 𝑥0 ∈ 𝐸𝑑
with P.1.

Then the random fuzzy differential equation with impulses
(9) has a unique solution, provided that

𝐿1𝑝𝑛𝑛! + 𝑘∑
𝑖=1

𝐿2,𝑖 < 1, for any 𝑛 ∈ N. (24)

Proof. Define a sequence of the functions 𝑥𝑛 : 𝐽 × Ω → 𝐸𝑑,𝑛 = 0, 1, 2, . . . as follows: for every 𝜔 ∈ Ω let us put

𝑥0 (𝑡, 𝜔) = 𝑥0 (𝜔) ,
𝑥𝑛 (𝑡, 𝜔) = 𝑥0 (𝜔) + ∫𝑡

𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔) .
(25)



Complexity 5

For every 𝑡 ∈ 𝐽 and 𝜔 ∈ Ω, we have
𝑑∞ [𝑥1 (𝑡, 𝜔) , 𝑥0 (𝑡, 𝜔)]

= 𝑑∞ [∫𝑡
𝑡0

𝑓 (𝑠, 𝑥0 (𝑠, 𝜔) , 𝜔) 𝑑𝑠, 0̂]

+ 𝑑∞ [ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥0 (𝑡𝑖, 𝜔) , 𝜔) , 0̂]

≤ ∫𝑡
𝑡0

𝑑∞ [𝑓 (𝑠, 𝑥0 (𝜔) , 𝜔) , 0̂] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥0 (𝜔) , 𝜔) , 0̂]

≤ 𝑀1 (𝑡 − 𝑡0) + 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥0 (𝜔) , 𝜔) , 0̂]

≤ 𝑝𝑀1 + 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥0 (𝜔) , 𝜔) , 0̂] fl 𝑀0;

(26)

it follows that 𝑑∞[𝑥1(𝑡, 𝜔), 𝑥0(𝑡, 𝜔)] 𝐽,P.1≤ 𝑀0. Furthermore,
by assumptions (A1)-(A2) and (25), we can find that

𝑑∞ [𝑥𝑛 (𝑡, 𝜔) , 𝑥𝑛−1 (𝑡, 𝜔)]
𝐽,P.1≤ ∫𝑡
𝑡0

𝑑∞ [𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) ,
𝑓 (𝑠, 𝑥𝑛−2 (𝑠, 𝜔) , 𝜔)] 𝑑𝑠
+ 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔) , 𝐼𝑖 (𝑥𝑛−2 (𝑡𝑖, 𝜔) , 𝜔)]
𝐽,P.1≤ 𝐿1 ∫𝑡

𝑡0

𝑑∞ [𝑥𝑛−1 (𝑠, 𝜔) , 𝑥𝑛−2 (𝑠, 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝑑∞ [𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝑥𝑛−2 (𝑡𝑖, 𝜔)]
𝐽,P.1≤ 𝐿1 ∫𝑡

𝑡0

sup
𝑠∈𝐽

𝑑∞ [𝑥𝑛−1 (𝑠, 𝜔) , 𝑥𝑛−2 (𝑠, 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝑑∞ [𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝑥𝑛−2 (𝑡𝑖, 𝜔)] 𝐽,P.1≤ (𝐿1

⋅ (𝑡 − 𝑡0)𝑛−1(𝑛 − 1)! + 𝑘∑
𝑖=1

𝐿2,𝑖)𝐷[𝑥𝑛−1 (𝜔) , 𝑥𝑛−2 (𝜔)] ,

(27)

which implies that

𝐷[𝑥𝑛 (𝑡, 𝜔) , 𝑥𝑛−1 (𝑡, 𝜔)]
𝐽,P.1≤ (𝐿1 (𝑡 − 𝑡0)

𝑛−1

(𝑛 − 1)! + 𝑘∑
𝑖=1

𝐿2,𝑖)
⋅ 𝐷 [𝑥𝑛−1 (𝜔) , 𝑥𝑛−2 (𝜔)] .

(28)

Now, we need to prove that for all 𝑡 ∈ 𝐽 with P.1 the
following inequality holds: for any 𝑛 = 1, 2, . . .,

𝐷[𝑥𝑛 (𝑡, 𝜔) , 𝑥𝑛−1 (𝑡, 𝜔)]
𝐽,P.1≤ (𝐿1 (𝑡 − 𝑡0)

𝑛−1

(𝑛 − 1)! + 𝑘∑
𝑖=1

𝐿2,𝑖)
⋅ 𝐷 [𝑥𝑛−1 (𝜔) , 𝑥𝑛−2 (𝜔)] .

(29)

Indeed, inequality (29) holds for 𝑛 = 1. Further, if
inequality (29) is true for any 𝑛 = 𝑚 ≥ 1, then using (25)
and assumptions (A1)-(A2), we have

𝐷[𝑥𝑚+1 (𝑡, 𝜔) , 𝑥𝑚 (𝑡, 𝜔)] 𝐽,P.1≤ ∫𝑡
𝑡0

sup
𝑠∈𝐽

𝑑∞
⋅ [𝑓 (𝑠, 𝑥𝑚 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 𝑥𝑚−1 (𝑠, 𝜔) , 𝜔)] 𝑑𝑠
+ 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥𝑚 (𝑡𝑖, 𝜔) , 𝜔) , 𝐼𝑖 (𝑥𝑚−1 (𝑡𝑖, 𝜔) , 𝜔)]
𝐽,P.1≤ 𝐿1 ∫𝑡

𝑡0

sup
𝑠∈𝐽

𝑑∞ [𝑥𝑚 (𝑠, 𝜔) , 𝑥𝑚−1 (𝑠, 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝑑∞ [𝑥𝑚 (𝑡𝑖, 𝜔) , 𝑥𝑚−1 (𝑡𝑖, 𝜔)]
𝐽,P.1≤ 𝐿1 ∫𝑡

𝑡0

sup
𝑠∈𝐽

𝑑∞ [𝑥𝑚 (𝑠, 𝜔) , 𝑥𝑚−1 (𝑠, 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝑑∞ [𝑥𝑚 (𝑡𝑖, 𝜔) , 𝑥𝑚−1 (𝑡𝑖, 𝜔)] 𝐽,P.1≤ (𝐿1

⋅ (𝑡 − 𝑡0)𝑚𝑚! + 𝑘∑
𝑖=1

𝐿2,𝑖)𝐷[𝑥𝑚 (𝜔) , 𝑥𝑚−1 (𝜔)] .

(30)

Thus, inequality (29) is true for every 𝑡 ∈ 𝐽 with P.1.
Next, we see that 𝑥0(𝑡, 𝜔) does not depend on 𝑡 and for

the right-side continuity of 𝑥1(⋅, 𝜔), one obtains
𝐷[𝑥1 (𝑡 + ℎ, 𝜔) , 𝑥1 (𝑡, 𝜔)]
[𝑡0 ,𝑡0+𝑝),P.1≤ ∫𝑡+ℎ

𝑡
𝐷[𝑓 (𝑠, 𝑥0 (𝑠, 𝜔) , 𝜔) , 0̂] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐷[𝐼𝑖 (𝑥0 (𝑡𝑖 + ℎ, 𝜔) , 𝜔) , 𝐼𝑖 (𝑥0 (𝑡𝑖, 𝜔) , 𝜔)] .
(31)

From the assumption (A3) and𝐷[𝐼𝑖(𝑥0(𝑡𝑖 + ℎ, 𝜔), 𝜔), 𝐼𝑖(𝑥0(𝑡𝑖,𝜔), 𝜔)] → 0 asℎ → 0+withP.1, we imply that𝑑∞[𝑥1(𝑡+ℎ, 𝜔),𝑥1(𝑡, 𝜔)] → 0 as ℎ → 0+ with P.1.
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For every 𝑛 ≥ 2, we deduce that
𝐷[𝑥𝑛 (𝑡 + ℎ, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)]
[𝑡0 ,𝑡0+𝑝),P.1≤ ∫𝑡+ℎ

𝑡
(𝐷[𝑓 (𝑠, 𝑥0 (𝑠, 𝜔) , 𝜔) , 0̂]

+ 𝑛−1∑
𝑞=1

𝐷[𝑓 (𝑠, 𝑥𝑞 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 𝑥𝑞−1 (𝑠, 𝜔) , 𝜔)])𝑑𝑠

+ 𝑘∑
𝑖=1

𝐷[𝐼𝑖 (𝑥0 (𝑡𝑖 + ℎ, 𝜔) , 𝜔) , 𝐼𝑖 (𝑥0 (𝑡𝑖, 𝜔) , 𝜔)] .

(32)

Using inequality (29) and assumption (A3), we get

𝐷[𝑥𝑛 (𝑡 + ℎ, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)] 󳨀→ 0
as ℎ 󳨀→ 0+ with P.1. (33)

Similar for the left-side continuity, we have 𝑑∞[𝑥𝑛(𝑡 −ℎ, 𝜔), 𝑥𝑛(𝑡, 𝜔)] → 0 as ℎ → 0+. Hence the functions 𝑥𝑛(⋅, 𝜔),𝑛 ≥ 2, are continuous with P.1.
For 𝑛 ∈ N and 𝑡 ∈ 𝐽 the function 𝑥𝑛(𝑡, ⋅) defined by

(25) is fuzzy random variable. Indeed, [𝑥𝑛(⋅)]𝛼 is measurable
multifunction for every 𝛼 ∈ [0, 1]; it remains to show
the same for the mapping 𝜔 󳨃→ [∫𝑡

𝑡0
𝑓(𝑠, 𝑥𝑛−1(𝑠, 𝜔), 𝜔)𝑑𝑠 +

∑𝑘𝑖=1 𝐼𝑖(𝑥𝑛−1(𝑡𝑖, 𝜔), 𝜔)]𝛼 which is a measurable multifunction
with every 𝛼 ∈ [0, 1], 𝑛 ∈ N, and 𝑡 ∈ 𝐽. Let 𝛼 ∈ [0, 1] be fixed.
By virtue of the definition of fuzzy integral and theorem of
Nguyen [23] we obtain

[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠 + 𝑘∑
𝑖=1

𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔)]
𝛼

= ∫𝑡
𝑡0

𝑓 (𝑠, [𝑥𝑛−1 (𝑠, 𝜔)]𝛼 , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 ([𝑥𝑛−1 (𝑡𝑖, 𝜔)]𝛼 , 𝜔) .

(34)

As the integrand is a multifunction continuous in 𝑠 and
measurable in 𝜔, with any 𝑡 ∈ 𝐽, the mapping

𝜔 󳨃󳨀→ ∫𝑡
𝑡0

𝑓 (𝑠, [𝑥𝑛−1 (𝑠, 𝜔)]𝛼 , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 ([𝑥𝑛−1 (𝑡𝑖, 𝜔)]𝛼 , 𝜔)
(35)

is a measurable multifunction for 𝑛 ∈ N. Therefore, for
every 𝑡 ∈ 𝐽, the sequence {𝑥𝑛(𝑡, ⋅)} is a sequence of fuzzy
random variable. Consequently, {𝑥𝑛(𝑡, 𝜔)} is a sequence of
fuzzy stochastic process.

In the sequel, for any 𝑛 ∈ N, we shall prove that the
sequence {𝑥𝑛(𝑡, 𝜔)} is a Cauchy sequence uniformly on the
variable 𝑡withP.1 and then {𝑥𝑛(⋅, 𝜔)} is uniformly convergent
with P.1.

For any 𝑛 ∈ N and by inequality (29), we obtain

𝐷[𝑥𝑛+1 (𝑡, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)] 𝐽,P.1≤ 𝑀𝐷[𝑥𝑛 (𝜔) , 𝑥𝑛−1 (𝜔)]
𝐽,P.1≤ 𝑀𝑛𝐷[𝑥1 (𝜔) , 𝑥0 (𝜔)] .

(36)

Notice now that, for every𝑚 > 𝑛 > 0, we have
𝐷[𝑥𝑚 (𝑡, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)]
𝐽,P.1≤ 𝑚−1∑
𝑙=𝑛

𝐷[𝑥𝑙+1 (𝑡, 𝜔) , 𝑥𝑙 (𝑡, 𝜔)]
𝐽,P.1≤ (𝑀𝑛 +𝑀𝑛+1 + ⋅ ⋅ ⋅ + 𝑀𝑚−1)𝐷 [𝑥1 (𝜔) , 𝑥0 (𝜔)]
𝐽,P.1≤ 𝑀𝑛1 −𝑀𝐷[𝑥1 (𝜔) , 𝑥0 (𝜔)] .

(37)

For 𝑚 > 𝑛 > 0 large enough, it follows from the above
inequalities with𝑀 < 1 that

𝐷[𝑥𝑚 (𝑡, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)] P.1󳨀󳨀→ 0. (38)

Since (𝐸𝑑, 𝐷) is a complete metric space and (38) holds, then
𝐷[𝑥𝑛(𝑡, 𝜔), 𝑥(𝑡, 𝜔)] P.1󳨀󳨀→ 0, whichmeans that there existsΩ0 ⊂Ω such that P(Ω) = 1 and for every 𝜔 ∈ Ω0 the sequence{𝑥𝑛(⋅, 𝜔)} is uniformly convergent.

In the following, we shall show that 𝑥(𝑡, 𝜔) is solution of
the random impulsive fuzzy integral equation (8). Let 𝑛 ∈ N.
Observe that

𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠, ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠]
𝐽,P.1≤ ∫𝑡
𝑡0

𝐷[𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔)] 𝑑𝑠
𝐽,P.1≤ 𝐿1 ∫𝑡

𝑡0

𝐷[𝑥𝑛−1 (𝑠, 𝜔) , 𝑥 (𝑠, 𝜔)] 𝑑𝑠.
(39)

Since the sequence 𝑥𝑛(𝑡, 𝜔) converges uniformly to 𝑥(𝑡, 𝜔) on
the variable 𝑡 ∈ 𝐽 with P.1 as 𝑛 → +∞, Thus for any 𝜀 > 0
there is 𝑛0 > 0 large enough such that, for all 𝑛 > 𝑛0, we derive

𝐷[𝑥𝑛−1 (𝑡, 𝜔) , 𝑥 (𝑡, 𝜔)]
𝐽,P.1≤ min

{{{
(𝑛 − 1)!𝐿1𝑝𝑛−1 𝜀, (

𝑘∑
𝑖=1

𝐿2,𝑖)
−1

𝜀}}}
. (40)

Therefore,

𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠, ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠]
𝐽,P.1≤ 𝜀,

𝐷[ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔) , 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔)]
𝐽,P.1≤ 𝑘∑
𝑖=1

𝐿2,𝑖𝐷[𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝑥 (𝑡𝑖, 𝜔)] 𝐽,P.1≤ 𝜀.

(41)
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On the other hand, we have

𝐷[𝑥 (𝑡, 𝜔) , 𝑥0 (𝜔) + ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔)] 𝐽,P.1≤ 𝐷 [𝑥 (𝑡, 𝜔) , 𝑥𝑛 (𝑡, 𝜔)]

+ 𝑑∞ [𝑥𝑛 (𝑡, 𝜔) , 𝑥0 (𝜔)
+ ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔)]

+ 𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥𝑛−1 (𝑠, 𝜔) , 𝜔) 𝑑𝑠,

∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠] + 𝐷[ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥𝑛−1 (𝑡𝑖, 𝜔) , 𝜔) ,
𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔)] .

(42)

Thus, in view of the convergence of the two previous equa-
tions and (41), one obtains that

𝐷[𝑥 (𝑡, 𝜔) , 𝑥0 (𝜔) + ∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔)] 𝐽,P.1= 0.
(43)

It means the fuzzy stochastic process 𝑥(𝑡, 𝜔) is solution of
problem (8).

To prove the uniqueness, let us assume that 𝑥, 𝑦 : 𝐽×Ω →𝐸𝑑 are the two continuous fuzzy stochastic processes which
are solutions of problem (8). Note that

𝐷[𝑥 (𝑡, 𝜔) , 𝑦 (𝑡, 𝜔)] 𝐽,P.1= 𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠,

∫𝑡
𝑡0

𝑓 (𝑠, 𝑦 (𝑠, 𝜔) , 𝜔) 𝑑𝑠] + 𝐷[ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) ,
𝑘∑
𝑖=1

𝐼𝑖 (𝑦 (𝑡𝑖, 𝜔) , 𝜔)] 𝐽,P.1≤ (𝐿1𝑝𝑛𝑛! + 𝑘∑
𝑖=1

𝐿2,𝑖)𝐷[𝑥 (𝜔) ,
𝑦 (𝜔)] .

(44)

By Lemma 8, we get

𝐷[𝑥 (𝑡, 𝜔) , 𝑦 (𝑡, 𝜔)] 𝐽,P.1≤ 0. (45)

The uniqueness is proved. The proof is complete.

4. Some of the Properties of Solution of
RFDEs with Impulses

Theorem 10. Suppose that the mappings 𝑓 : 𝐽 × 𝐸𝑑 ×Ω → 𝐸𝑑
and 𝐼𝑘 : 𝐸𝑑 × Ω → 𝐸𝑑 satisfy all the conditions of Theorem 9.
Then we have

𝐷[𝑥 (𝑡, 𝜔) , 0̂] 𝐽,P.1≤ (𝐷 [𝑥0 (𝜔) , 0̂] + (𝑡 − 𝑡0)𝑀1)
⋅ ∏
𝑡0≤𝑡𝑖<𝑡

(1 + 𝐿2,𝑖)
⋅ exp (𝐿1 (𝑡 − 𝑡0)) ,

(46)

where 𝐿1, 𝐿2,𝑖 are constants nonnegative for any 𝑖 =0, 1, 2, 3, . . ..
Proof. Let 𝑥(𝑡, 𝜔) be solution of problem (8). For every 𝑡 ∈[𝑡0, 𝑡1) and 𝜔 ∈ Ω, we have

𝐷[𝑥 (𝑡, 𝜔) , 0̂]
≤ 𝐷 [𝑥0 (𝜔) , 0̂] + 𝐷[∫𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠, 0̂]
≤ 𝐷 [𝑥0 (𝜔) , 0̂] + ∫𝑡

𝑡0

𝐷[𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) , 0̂] 𝑑𝑠
≤ D [𝑥0 (𝜔) , 0̂] + ∫𝑡

𝑡0

𝐷[𝑓 (𝑠, 0̂, 𝜔) , 0̂]
+ 𝐷 [𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 0̂, 𝜔)] ) 𝑑𝑠

≤ 𝐷 [𝑥0 (𝜔) , 0̂] + (𝑡 − 𝑡0)𝐷 [𝑓 (𝑠, 0̂, 𝜔) , 0̂]
+ 𝐿1 ∫𝑡

𝑡0

𝐷[𝑥 (𝑠, 𝜔) , 0̂] 𝑑𝑠
≤ 𝐷 [𝑥0 (𝜔) , 0̂] + (𝑡 − 𝑡0)𝑀1
+ ∫𝑡
𝑡0

𝐿1𝐷[𝑥 (𝑠, 𝜔) , 0̂] 𝑑𝑠.

(47)

For every 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 1, 2, 3, . . ., and 𝜔 ∈ Ω, we have
𝐷[𝑥 (𝑡, 𝜔) , 0̂] ≤ 𝑑∞ [𝑥0 (𝜔) , 0̂]

+ 𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠, 0̂]

+ 𝐷[ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) , 0̂] ≤ 𝐷 [𝑥0 (𝜔) , 0̂]

+ ∫𝑡
𝑡0

(𝐷 [𝑓 (𝑠, 0̂, 𝜔) , 0̂]
+ 𝐷 [𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 0̂, 𝜔)]) 𝑑𝑠



8 Complexity

+ 𝑘∑
𝑖=1

𝐷[𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) , 0̂] ≤ 𝐷 [𝑥0 (𝜔) , 0̂] + (𝑡
− 𝑡0)𝑀1 + ∫𝑡

𝑡0

𝐿1𝐷[𝑥 (𝑠, 𝜔) , 0̂] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑘𝐷[𝑥 (𝑡𝑖, 𝜔) , 0̂] .
(48)

If we let 𝜉(𝑡, 𝜔) = 𝐷[𝑥(𝑡, 𝜔), 0̂], 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), and 𝑘 = 0, 1, 2,3, . . ., then we have

𝜉 (𝑡, 𝜔) P.1≤ 𝜉0 (𝜔) + (𝑡 − 𝑡0)𝑀1 + ∫𝑡
𝑡0

𝐿1𝜉 (𝑠, 𝜔) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝜉 (𝑡𝑖, 𝜔) .
(49)

By virtue of Lemma 8, one obtains

𝜉 (𝑡, 𝜔) P.1≤ (𝜉0 (𝜔) + (𝑡 − 𝑡0)𝑀1) ∏
𝑡0≤𝑡𝑖<𝑡

(1 + 𝐿2,𝑖)
⋅ exp (𝐿1 (𝑡 − 𝑡0)) .

(50)

The proof is complete.

Theorem 11. Suppose that the mappings 𝑓 : 𝐽 × 𝐸𝑑 ×Ω → 𝐸𝑑
and 𝐼𝑘 : 𝐸𝑑 × Ω → 𝐸𝑑 satisfy all the conditions of Theorem 9.
Then we have

𝐷[𝑥 (𝑡, 𝜔) , 𝑦 (𝑡, 𝜔)] 𝐽,P.1≤ 𝐷 [𝑥0 (𝜔) , 𝑦0 (𝜔)]
⋅ ∏
𝑡0≤𝑡𝑖<𝑡

(1 + 𝐿2,𝑖) exp (𝐿1 (𝑡 − 𝑡0)) , (51)

where 𝐿1, 𝐿2,𝑖 are constants nonnegative for any 𝑖 =0, 1, 2, 3, . . ..
Proof. Let 𝑥(𝑡, 𝜔) and 𝑦(𝑡, 𝜔) be solutions of problem (8). For
every 𝑡 ∈ [𝑡0, 𝑡1) and 𝜔 ∈ Ω, we have

𝐷[𝑥 (𝑡, 𝜔) , 𝑦 (𝑡, 𝜔)] ≤ 𝑑∞ [𝑥0 (𝜔) , 𝑦0 (𝜔)]
+ 𝐷[∫𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠,
∫𝑡
𝑡0

𝑓 (𝑠, 𝑦 (𝑠, 𝜔) , 𝜔) 𝑑𝑠] ≤ 𝐷 [𝑥0 (𝜔) , 𝑦0 (𝜔)]
+ ∫𝑡
𝑡0

𝐷[𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 𝑦 (𝑠, 𝜔) , 𝜔)] 𝑑𝑠
= 𝐷 [𝑥0 (𝜔) , 𝑦0 (𝜔)]
+ 𝐿1 ∫𝑡

𝑡0

𝐷[𝑥 (𝑠, 𝜔) , 𝑦 (𝑠, 𝜔)] 𝑑𝑠.

(52)

For every 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 1, 2, 3, . . ., and 𝜔 ∈ Ω, we have
𝐷[𝑥 (𝑡, 𝜔) , 𝑦 (𝑡, 𝜔)] ≤ 𝑑∞ [𝑥0 (𝜔) , 𝑦0 (𝜔)]

+ 𝐷[∫𝑡
𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) 𝑑𝑠,

∫𝑡
𝑡0

𝑓 (𝑠, 𝑦 (𝑠, 𝜔) , 𝜔) 𝑑𝑠] + 𝐷[ 𝑘∑
𝑖=1

𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) ,
𝑘∑
𝑖=1

𝐼𝑖 (𝑦 (𝑡𝑖, 𝜔) , 𝜔)] ≤ 𝐷 [𝑥0 (𝜔) , 𝑦0 (𝜔)]

+ ∫𝑡
𝑡0

𝐷[𝑓 (𝑠, 𝑥 (𝑠, 𝜔) , 𝜔) , 𝑓 (𝑠, 𝑦 (𝑠, 𝜔) , 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝑑∞ [𝐼𝑖 (𝑥 (𝑡𝑖, 𝜔) , 𝜔) , 𝐼𝑖 (𝑦 (𝑡𝑖, 𝜔) , 𝜔)]
= 𝐷 [𝑥0 (𝜔) , 𝑦0 (𝜔)]
+ ∫𝑡
𝑡0

𝐿1𝐷[𝑥 (𝑠, 𝜔) , 𝑦 (𝑠, 𝜔)] 𝑑𝑠

+ 𝑘∑
𝑖=1

𝐿2,𝑖𝐷[𝑥 (𝑡𝑖, 𝜔) , 𝑦 (𝑡𝑖, 𝜔)] .

(53)

If we let 𝜉(𝑡, 𝜔) = 𝐷[𝑥0(𝜔), 𝑦0(𝜔)], 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), and 𝑘 =0, 1, 2, 3, . . ., then we have

𝜉 (𝑡, 𝜔) P.1≤ 𝜉0 (𝜔) + ∫𝑡
𝑡0

𝐿1𝜉 (𝑠, 𝜔) 𝑑𝑠 + 𝑘∑
𝑖=1

𝐿2,𝑖𝜉 (𝑡𝑖, 𝜔) . (54)

By virtue of Lemma 8, one obtains

𝜉 (𝑡, 𝜔) P.1≤ 𝜉0 (𝜔) ∏
𝑡0≤𝑡𝑖<𝑡

(1 + 𝐿2,𝑖) exp (𝐿1 (𝑡 − 𝑡0)) . (55)

The proof is complete.

5. Illustrative Examples

In this section, we shall consider two examples. First, we
give an example to illustrate the existence and uniqueness
results obtained in Section 3. Second, we will find explicit
representation of solutions RFDEs with impulses.

Example 1. Let Ω = (0, 1), F-Borel 𝜎-algebra of subsets ofΩ, and P-Lebesgue measure on (Ω,F). Let us consider the
problem as follows:

𝐷𝐻𝑥 (𝑡, 𝜔) [0,1],P.1= exp (−𝑡)(5 + exp (𝑡)) (1 + 𝑥 (𝑡, 𝜔)) ,
𝑡 ̸= 𝑡𝑘,
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𝑥 (𝑡+𝑘 , 𝜔) P.1= 𝑥 (𝑡𝑘, 𝜔)2 + 𝑥 (𝑡𝑘, 𝜔) ,
𝑡 = 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚,

𝑥 (0, 𝜔) P.1= (−1, 0, 1, 2) 𝜔 ∈ 𝐸1,
(56)

where 𝑥 : [0, 1] × Ω → 𝐸1 is a fuzzy stochastic process.
Set

𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) = exp (−𝑡)(5 + exp (𝑡)) (1 + 𝑥 (𝑡, 𝜔)) ,
for every 𝑡 ∈ [0, 1] , 𝑡 ̸= 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚,

𝐼𝑘 (𝑥𝑘 (𝑡, 𝜔) , 𝜔) = 𝑥 (𝑡𝑘, 𝜔)2 + 𝑥 (𝑡𝑘, 𝜔) ,
for every 𝑡 ∈ [0, 1] , 𝑡 = 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚.

(57)

For every 𝑡 ∈ [0, 1], 𝑡 ̸= 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚, we have

𝑑∞ [𝑓 (𝑡, 𝑥 (𝑡, 𝜔) , 𝜔) , 𝑓 (𝑡, 𝑦 (𝑡, 𝜔) , 𝜔)]
= 𝑑∞ [ exp (−𝑡)(5 + exp (𝑡)) (1 + 𝑥 (𝑡, 𝜔)) ,

exp (−𝑡)(5 + exp (𝑡)) (1 + 𝑦 (𝑡, 𝜔))] [0,1],P.1= exp (−𝑡)5 + exp (𝑡)
⋅ 𝑑∞ [ 11 + 𝑥 (𝑡, 𝜔) , 11 + 𝑦 (𝑡, 𝜔)]
[0,1],P.1= exp (−𝑡)5 + exp (𝑡)
⋅ sup
𝛼∈[0,1]

max{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 + 𝑥𝑙𝛼 (𝑡, 𝜔) −

11 + 𝑦𝑙𝛼 (𝑡, 𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 + 𝑥𝑟𝛼 (𝑡, 𝜔) −

11 + 𝑦𝑟𝛼 (𝑡, 𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}

[0,1],P.1= exp (−𝑡)5 + exp (𝑡)
⋅ sup
𝛼∈[0,1]

max{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑙𝛼 (𝑡, 𝜔) − 𝑦𝑙𝛼 (𝑡, 𝜔)(1 + 𝑥𝑙𝛼 (𝑡, 𝜔)) (1 + 𝑦𝑙𝛼 (𝑡, 𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑟𝛼 (𝑡, 𝜔) − 𝑦𝑟𝛼 (𝑡, 𝜔)(1 + 𝑥𝑟𝛼 (𝑡, 𝜔)) (1 + 𝑦𝑟𝛼 (𝑡, 𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}
[0,1],P.1≤ 16

⋅ sup
𝛼∈[0,1]

max {󵄨󵄨󵄨󵄨𝑥𝑙𝛼 (𝑡, 𝜔) − 𝑦𝑙𝛼 (𝑡, 𝜔)󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥𝑟𝛼 (𝑡, 𝜔) − 𝑦𝑟𝛼 (𝑡, 𝜔)󵄨󵄨󵄨󵄨} [0,1],P.1≤ 16𝑑∞ [𝑥, 𝑦] ,

(58)

where 𝐿1 = sup𝑡∈[0,1](exp(−𝑡)/(5 + exp(𝑡))) = 1/6.

Using a similar calculation as above, for every 𝑡 ∈ [0, 1],𝑡 = 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚, we obtain

𝑑∞ [𝐼𝑘 (𝑥𝑘 (𝑡, 𝜔) , 𝜔) , 𝐼𝑘 (𝑦𝑘 (𝑡, 𝜔) , 𝜔)]
[0,1],P.1≤ 12𝑑∞ [𝑥, 𝑦] , where 𝐿2,𝑘 = 12 .

(59)

By a direct calculation, one obtains that

𝑑∞ [ exp (−𝑡)(5 + exp (𝑡)) (1 + 𝑥 (𝑡, 𝜔)) , 0̂]
[0,1],P.1= exp (−𝑡)5 + exp (𝑡)𝑑∞ [ 11 + 𝑥 (𝑡, 𝜔) , 0̂]
[0,1],P.1= exp (−𝑡)5 + exp (𝑡)
⋅ sup
𝛼∈[0,1]

max{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 + 𝑥𝑙𝛼 (𝑡, 𝜔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

11 + 𝑥𝑟𝛼 (𝑡, 𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}

[0,1],P.1≤ 16

(60)

and for any 𝑛 = 1, 2, . . .,
𝐿1𝑝𝑛𝑛! + 𝑘∑

𝑖=1

𝐿2,𝑖 = 16𝑛𝑛! + 12 < 1. (61)

We can see that conditions (A1)–(A4) are satisfied. Hence, by
Theorem 9, problem (56) has a solution defined on [0, 1].
Example 2. Let Ω = (0, 1), F-Borel 𝜎-algebra of subsets ofΩ, and P-Lebesgue measure on (Ω,F). Consider the RFDEs
with impulses as follows:

𝐷𝐻𝑥 (𝑡, 𝜔) [0,𝑇],P.1= 𝜆 (𝜔) 𝑥 (𝑡, 𝜔) ,
𝑡 ̸= 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚,

𝑥 (𝑡+𝑘 , 𝜔) P.1= 𝑥𝑘 (𝑡𝑘, 𝜔) + 𝐼𝑘 (𝑥𝑘 (𝑡, 𝜔) , 𝜔) ,
𝑡 = 𝑡𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚,

𝑥 (0, 𝜔) P.1= 𝑥0 (𝜔) ,

(62)

where 𝜆 : Ω → R+ is a random variable and 𝑥 : [0, 1] × Ω →𝐸1 is a fuzzy stochastic process. In this example, we suppose
that 𝑡 ∈ [0, 2] and 𝜆(𝜔) = 1 with P.1 and for every 𝛼 ∈ [0, 1]

[𝑥 (𝑡, 𝜔)]𝛼 = [𝑥𝑙𝛼 (𝑡, 𝜔) , 𝑥𝑟𝛼 (𝑡, 𝜔)]
[𝑥𝑘 (𝑡𝑘, 𝜔)]𝛼 = [(𝜔, 2𝜔, 3𝜔)]𝛼

= [(1 + 𝛼) 𝜔, (3 − 𝛼) 𝜔] ,
𝑡 = 𝑘, 𝑘 = 1, 2,

(63)

and initial conditions [𝑥0(𝜔)]𝛼 = [(−𝜔, 0, 𝜔)]𝛼 = [(𝛼 −1)𝜔, (1 − 𝛼)𝜔], where 𝑥𝑙𝛼, 𝑥𝑟𝛼 : [0,∞) × Ω → R are the crisp
stochastic process.
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Problem (62) can translate this into the following system
of random differential equation with impulses:

𝑥󸀠𝑙𝛼 (𝑡, 𝜔) = 𝑥𝑙𝛼 (𝑡, 𝜔) , 𝑡 ∈ [0, 2] , 𝑡 ̸= 𝑡𝑘,
𝑥󸀠𝑟𝛼 (𝑡, 𝜔) = 𝑥𝑟𝛼 (𝑡, 𝜔) , 𝑡 ∈ [0, 2] , 𝑡 ̸= 𝑡𝑘,
𝑥𝑙𝛼 (𝑡+𝑘 , 𝜔) = (1 + 𝛼) 𝜔, 𝑡 = 𝑘, 𝑘 = 1, 2,
𝑥𝑟𝛼 (𝑡+𝑘 , 𝜔) = (3 − 𝛼) 𝜔, 𝑡 = 𝑘, 𝑘 = 1, 2,
𝑥𝑙𝛼 (0, 𝜔) = (𝛼 − 1) 𝜔,
𝑥𝑟𝛼 (0, 𝜔) = (1 − 𝛼) 𝜔.

(64)

Solving system (64) on [0, 2], we obtain
𝑥𝑙𝛼 (𝑡, 𝜔) = {{{

(𝛼 − 1) 𝜔 exp (𝑡) , for 𝑡 ∈ [0, 1) ,
(1 + 𝛼) 𝜔 exp (𝑡 − 1) , for 𝑡 ∈ [0, 2) ,

𝑥𝑟𝛼 (𝑡, 𝜔) = {{{
(1 − 𝛼) 𝜔 exp (𝑡) , for 𝑡 ∈ [0, 1) ,
(3 − 𝛼) 𝜔 exp (𝑡 − 1) , for 𝑡 ∈ [0, 2) .

(65)

It is easy to see that the diameter of solution 𝑥(𝑡, 𝜔) of (62) is
an increasing function withP.1 for every 𝑡 ∈ [0, 2]. Hence we
infer that the solution 𝑥 : [0, 2]×Ω → 𝐸1 to (62) is as follows:
𝑥 (𝑡, 𝜔)
= {{{

[(𝛼 − 1) , (1 − 𝛼)] 𝜔 exp (𝑡) , for 𝑡 ∈ [0, 1) ,
[(1 + 𝛼) , (3 − 𝛼)] 𝜔 exp (𝑡 − 1) , for 𝑡 ∈ [0, 2)

(66)

or

𝑥 (𝑡, 𝜔) = {{{
(−1, 0, 1) 𝜔 exp (𝑡) , for 𝑡 ∈ [0, 1) ,
(1, 2, 3) 𝜔 exp (𝑡 − 1) , for 𝑡 ∈ [0, 2) . (67)

Note that the existence of a unique solution is guaranteed.
Therefore, this procedure can be continued to be the solution
on each [𝑚,𝑚 + 1], for every𝑚 ∈ N,𝑚 ≥ 3.
6. Conclusion

Under suitable conditions, we investigated the existence
and uniqueness of solutions to random fuzzy differential
equation with impulses by using the method of successive
approximations.Moreover, we studied some of the properties
of solution of RFDEs with impulses. Finally, some examples
are given to illustrate the main theorems. In the future, we
shall study the class of random fuzzy differential equations in
the quotient space of fuzzy numbers, introduced by Qiu et al.
in [24].
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[12] R. Rodrguez-López, “Periodic boundary value problems for
impulsive fuzzy differential equations,” Fuzzy Sets and Systems,
vol. 159, no. 11, pp. 1384–1409, 2008.

[13] M. T. Malinowski, “On random fuzzy differential equations,”
Fuzzy Sets and Systems. An International Journal in Information
Science and Engineering, vol. 160, no. 21, pp. 3152–3165, 2009.

[14] M. T. Malinowski, “Existence theorems for solutions to random
fuzzy differential equations,” Nonlinear Analysis, Theory, Meth-
ods and Applications, vol. 73, no. 6, pp. 1515–1532, 2010.

[15] M. T. Malinowski, “Random fuzzy differential equations under
generalized Lipschitz condition,” Nonlinear Analysis. Real
World Applications. An International Multidisciplinary Journal,
vol. 13, no. 2, pp. 860–881, 2012.

[16] M. T. Malinowski, “Random fuzzy fractional integral equa-
tions—theoretical foundations,” Fuzzy Sets and Systems. An
International Journal in Information Science and Engineering,
vol. 265, pp. 39–62, 2015.

[17] Y. Feng, “Mean-square integral and differential of fuzzy stochas-
tic processes,” Fuzzy Sets and Systems. An International Journal
in Information Science and Engineering, vol. 102, no. 2, pp. 271–
280, 1999.



Complexity 11

[18] Y. Feng, “Fuzzy stochastic differential systems,” Fuzzy Sets and
Systems. An International Journal in Information Science and
Engineering, vol. 115, no. 3, pp. 351–363, 2000.

[19] W. Fei, “Existence and uniqueness of solution for fuzzy random
differential equations with non-Lipschitz coefficients,” Informa-
tion Sciences. An International Journal, vol. 177, no. 20, pp. 4329–
4337, 2007.

[20] W. Fei, “A generalization of Bihari’s inequality and fuzzy
random differential equations with non-Lipschitz coefficients,”
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 15, no. 4, pp. 425–439, 2007.

[21] M. Guo, X. Xue, and R. Li, “Impulsive functional differen-
tial inclusions and fuzzy population models,” Fuzzy Sets and
Systems. An International Journal in Information Science and
Engineering, vol. 138, no. 3, pp. 601–615, 2003.

[22] V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy
Differential Equations and Inclusions, vol. 6, Taylor and Francis
Publishers, London, UK, 2003.

[23] H. T. Nguyen, “A note on the extension principle for fuzzy sets,”
Journal of Mathematical Analysis and Applications, vol. 64, no.
2, pp. 369–380, 1978.

[24] D. Qiu, W. Zhang, and C. Lu, “On fuzzy differential equations
in the quotient space of fuzzy numbers,” Fuzzy Sets and Systems.
An International Journal in Information Science andEngineering,
vol. 295, pp. 72–98, 2016.



Research Article
The Portfolio Balanced Risk Index Model and Analysis of
Examples of Large-Scale Infrastructure Project

Wu Gao1,2 and Kairong Hong1

1Business School, Central South University, Changsha 410083, China
2Department of City Management, Hunan City University, Yiyang 413000, China

Correspondence should be addressed to Wu Gao; gw740620@sina.com

Received 17 March 2017; Accepted 20 April 2017; Published 14 May 2017

Academic Editor: Omar Abu Arqub

Copyright © 2017 Wu Gao and Kairong Hong. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper focuses on a three-dimensional portfolio balanced risk indexmodel for large-scale infrastructure project risk evaluation
as a hot topic of current research. Taking subjectivity utility and complex evaluation motivation into consideration, a method of
combinational equilibrium evaluation is built using the index form to reflect whole loss changes of risk. For risk index evaluation
and measurement issues, this paper first constructs a risk evaluation index system and three risk coefficients of single factor by
questionnaire survey and fuzzy evaluation. Then we calculate the risk index of single factor, which arrives at the classification and
combination risk index through AHP method. Finally, we verify the index validity by analysis of examples. With this research we
expand the evaluation dimension and provide a new analytical tool for risk monitoring and warning.

1. Introduction

In the near future, major infrastructure project investment
will prove to be a pivotal means of improving people’s
livelihood and promoting a healthy and sustainable develop-
ment of China’s national economy. How to scientifically and
reasonably carry on the dynamic evaluation will influence
the control, solution, and even the success of the project.
Project risk refers to the deviation between the final result and
expected subject or the loss due to the existence of uncertain
factors. In the joint action of internal and external environ-
ment change andmultiple subject game, major infrastructure
project risk is a complex and evolved dynamicmaking project
risk evaluation more difficult. Project risk measurement
methods in the existing literature include variance, standard
deviation, the product of probability and loss [1], and average
value of personal injury and property losses [2].

Among them, using dynamic, comparative, integrative,
and average characteristics, a project risk index is amore intu-
itive approach reflecting the project risk in numerical form
on the basis of unified dimension [3–6]; for example, coast
corrosion risk index can be divided into stable, low, medium,
and high level according to corrosion rate led by coastal

vulnerability and development degree (Guido Benassai, et al.,
2015). In order to better conduct evaluation of risk parame-
ters, based on existing fuzzy mathematical models, like fuzzy
differential equations, integrodifferential equations, group
decision-making [7], interval number [8], and so forth, this
paper builds a portfolio balance index model (PBIM) for
project risk to reflect the multidimensional combination
value losses by combined dynamic equilibrium index and
provides analysis tools for early warning andmonitoring.The
innovation points can be listed as follows: first, it changes the
common practice of the individual project subject evaluation
and lets all item subjects participate in the project risk
evaluation; second, psychological utility factors are added in
the project risk severity evaluation, which breaks through
the two-dimensional evaluation method of probability mul-
tiplying the objective loss; third, group intuitionistic fuzzy
evaluation and statistical analysis are used to determine the
risk parameters, which can reflect all the will and preferences
of the project.

Research ideas and methods of this article are as follows:
(1) to filter main risk indicators through typical case analysis,
questionnaire investigation, and statistical analysis, (2) to
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construct risk evaluation index system and design index
weight by analytic hierarchy process, (3) to build a project risk
portfolio balance evaluation model and add main psycholog-
ical effect factors based on traditional two-dimensional eval-
uation, which can make up the limitations of the evaluation
of project risk material loss and at the same time make the
project risk assessment have subjective and objective char-
acteristics, and (4) to do questionnaire survey in fuzzy eval-
uation of project risk parameters. The average data reflects
a collection of plural value preference, which can effectively
make up disadvantages of single subject evaluation andmake
project risk assessment into a group of decision-making
behaviors. A project risk index can not only make value
loss explicit and comparable, but can also provide evidence
to analyze and offer reasons for project changes and risk
strategy.

2. The Theoretical Basis of Major
Infrastructure Project Portfolio Balance
Risk Index Model Construction

The risk portfolio balance index model of major infras-
tructure projects must be based on multidimensional value
impact and evaluation of complex decision-making motiva-
tion analysis, because they jointly determine game design
ideas of model parameters and a combined calculation
method of risk index.

2.1. The Subjective and Objective Value of Project Risk Impact
Analysis. General project risk evaluation only considers the
probability of occurrence and the objective severity; however,
project risk bears the characteristics of subjectivity and
objectivity. Risk is the result of subjective evaluation wherein
even the same project risk has different implications for
different subject [9]. As a result, subject factors must be
considered in risk assessment. The aim of rational behavior
subject is to pursue comprehensive utility maximization [10]
instead of simple profit maximization.

Project risk evaluation should not only consider objective
value losses, but also measure the damage to the subject
itself and others’ well-being and satisfaction [11]. Therefore,
a three-dimensional evaluation method used in project risk
assessment (probability + objective severity + subjective
utility loss) is a more scientific approach than the usual
two-dimensional evaluation method (probability + objective
severity). Objective loss refers to material loss caused by
problems to project value such as a decrease of project quality,
construction schedule delay, safety performance degradation,
profit reduction, and rising costs. Subjective utility cost refers
to all types of emotional damage and the subjective judgment
value decline led by the risk to project subject. Emotional
damage includes psychological fear, anxiety, frustration, dis-
content, injustice, and impatience.

2.2.The Complex Psychological Motivation Analysis of Evalua-
tion Subject. Behavioral economics describes associated sub-
jects of major infrastructure projects as “complex economic
men.” They have many preferences including risk aversion,

altruism, and fairness preference. When evaluating project
risk, they not only consider their own risk losses, but also take
the risk of other associated subjects into account. They not
only consider thematerial loss brought on by the risk, but also
consider psychology utility loss. A project subject is based
on a complex collection of preferences when making risk
assessment decisions [12, 13]. In order to validate the above
viewpoint, the questionnaire shown in Table 1 investigates the
complex evaluation motivation of a project subject.

Issuing 100 questionnaires to related subjects of major
infrastructure project in a mobile Internet platform, we had
96 valid questionnaires returned, indicating that 96% of
respondents would both consider the social, environmental,
and ecological value loss, while only 4% of respondents
reported they would only consider the economic loss. Of
respondents, 89% stated they would also consider personal
emotion, risk capacity, and psychological disutility, and only
11% of the respondents would merely consider material loss.
Of respondents, 82% said they would consider the interest
and feelings of other related subjects, while only 18% reported
they would consider only their own interest loss and subjec-
tive feeling. 98% of respondents indicated they would both
consider other related subjects’ behavior strategy reactions,
and only 2% of the respondents would only consider their
own behavior strategy. The survey suggests that most related
subjects would consider economic, social, environmental,
and ecological value loss, nonmaterial psychological utility
cost, and behavior strategy reactions of correlation subjects.
Therefore, building a framework, which contains factors such
as risk probability, objective severity, and psychological utility
loss makes the interactive equilibrium evaluation a more
reasonable and scientific approach.

3. Construction of a Project Risk Portfolio
Balance Evaluation Index System of a Major
Infrastructure Project

The construction of an evaluation index system is the key to
calculating a project risk index and to screen and sort risk
factors within the whole life cycle of a major infrastructure
project based on many case studies and questionnaires. The
objective is to use the principles of importance, representa-
tiveness, and conciseness and to select appropriate main risk
factors in order to form a project risk evaluation index system
according to the nature of the classification.

(1) Questionnaire and Statistical Analysis of Project Risk
Factors Screening. First, the main risk factors based on many
case studies throughout the life cycle of major infrastructure
projects are listed [14]. Then, the project risk factors list is
sent to the related subjects for their additional inclusions or
modifications in order to determine the main project risk
factors which are established after 2-3 rounds of feedback
and changes. Finally, respondents would score the occurrence
probability and severity of risk factors by five-mark scoring.
For the occurrence probability of risk factors, five-mark
scoring ranges are as follows: 1 = extremely unlikely, 2 = slim
chance, 3 = certain possibility, 4 = high possibility, and 5 =most
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Table 1: Subject risk evaluation motivation questionnaire of major infrastructure projects.

Answer choices Survey questions
◻ Only consider
the former (1) Whether you only consider the economic loss or you consider the social, environmental and

ecological value loss when evaluating project risk?
◻ Consider all
factors
◻ Only consider
the former (2) Whether you only consider the material loss or you consider the personal emotion, risk

capacity and psychological disutility when evaluating project risk?
◻ Consider all
factors
◻ Only consider
the former (3) Whether you consider only your own interest loss and subjective feeling or both the interest

loss and feelings of other related subjects when evaluating project risk?
◻ Consider both
◻ Only consider
the former

(4) If you do the project risk evaluation, do you prefer to consider your own behavior strategy, or
consider other related subject behavior strategy reactions caused by your own evaluation
behavior?◻ Consider both

likely. For the severity of the risk factors, five-mark scoring
ranges as follows: 1 = mild, 2 = milder, 3 = generally serious,
4 = serious, and 5 = very serious. Using SPSS17.0 software
to statistically analyze 96 questionnaires, the mean, median,
mode, and standard deviation [15] of all the risk factors’
probability and severity evaluation are as shown in Table 2.

(2) The Importance Sequence of Project Risk Factors. Accord-
ing to the results shown in Table 2, we are required to rank the
importance of the project risk factors based on the product
size of probability and severity average. Results are shown in
Table 3.

(3) The Choice and Grouping of Major Project Risk Factors.
According to the sequence of risk factors shown in Table 3,
we selected the top 50% of risk factors to construct a major
infrastructure project risk evaluation index system, shown in
Table 4.Owing to the uniqueness of eachmajor infrastructure
project, the indicators in Table 4 can be properly adjusted to
a specific project risk assessment.

4. Construction of a Combinational Balanced
Risk Index Model

The construction idea of a portfolio balanced risk index
model is based on clear index connotation and principle.
This includes calculating individual risk index through the
base model and then calculating the project classification
and balanced risk index by using the method of weighted
portfolio addition [16].

4.1. Construction Principles of a Combinational
Balanced Risk Index

4.1.1. Portfolio Addition Principle. The construction principle
of portfolio balanced risk index is as follows: the project
overall risk index is composed of six secondary indexes
including (1) management risk index, (2) technology risk
index, (3) economic risk index, (4) social risk index, (5)

legal risk index, and (6) natural risk index; in addition, a
secondary index is made up of several three-level indexes. In
the process of portfolio addition, expert evaluation method
is used to analyze the importance level of the index in order
to determine the weight of each index so as to reach the
weighted synthesis step by step.

4.1.2. Balance Reflects Risk Value Preference Principle of
Multiple Subjects. The portfolio balanced risk index is a
comprehensive reflection of the value ofmultivariate subjects’
preferences and interests. Through the questionnaire survey
of probability of project risk factors, objective severity and
subjective opinions and preferences of all projects can be
reflected in the project risk parameters.

4.1.3. Dynamic Comparable Principle. Theportfolio balanced
risk index reflects the size of the project risk and comparabil-
ity between different periods of project risk. For example, if
the projects’ risks index in t3 is 0.3 and in t2 is 0.2, then the
project risk in t2 is smaller than t3.

4.2. The Basic Model of Portfolio Balanced Risk Index. The
portfolio balanced risk index is the function of three vari-
ables: risk probability, objective severity, and subject negative
feelings as shown in (1).The project risk coefficient value is in
the range of 0∼1; the greater the value, the greater the project
risk is [17, 18].

RI𝑖 = 𝑓 (𝑃𝑖, 𝑉𝑖, 𝐹𝑖) = 𝑃
󸀠
𝑖 × 𝑉
󸀠
𝑖 × 𝐹
󸀠
𝑖 . (1)

Index definition: RI𝑖 is single factor risk index; 𝑃󸀠𝑖 is
probability coefficient; 𝑉󸀠𝑖 is objective gravity coefficient; 𝐹󸀠𝑖
is subjective feeling coefficient; 𝑃󸀠𝑖 = 𝑃𝑖/5 (probability
coefficient is equal to probability scoringmean of all themain
projects concerning risk 𝑖 and the ratio of the maximum
possible value); 𝑉󸀠𝑖 = 𝑉𝑖/5 (objective gravity coefficient
is equal to objective gravity mean of all the main projects
concerning risk 𝑖 and the ratio of the maximum possible
value); 𝐹󸀠𝑖 = 𝐹𝑖/3 (subjective feeling coefficient is equal to
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Table 3: Main risk factors sequence through the whole life cycle of a major infrastructure project.

Importance
sequence Project risk factors Probability

average
Severity
average

Probability
average ×

Severity average
1 Incorrect project orientation 3.833 3.896 14.93
4 Incorrect market demand forecasting 3.958 3.646 14.43
34 Thoughtless about inflation impact 3.083 3.195 9.85
20 Incorrect estimation about project investment 3.25 3.229 10.49
29 Incorrect estimation about return on investment (ROI) 3.167 3.125 9.90
28 Thoughtless about financing difficulty 3.25 3.083 10.02
9 Incorrect estimation about investment return 3.417 3.5 11.96
26 Thoughtless about financing difficulty 3.167 3.229 10.23
30 Government policy changes 3.167 3.125 9.90
7 Lack of external experts consultation 3.688 3.396 12.52
31 Thoughtless about project impact 3.167 3.125 9.90

21 Lack of field investigation and not adjusting measures
to local conditions 3.25 3.229 10.49

39 Insufficient communication between designer and
owner 3.167 3.021 9.57

5 Lack of innovation and applicability of design plan 3.646 3.833 13.98
37 Lack of designers’ full participation 3.02 3.229 9.75
32 Instability of safety equipment performance 3.166 3.124 9.89
22 Financing difficulty or rising costs 3.25 3.229 10.49

33 Improved environmental protection requirements on
construction site 3.164 3.123 9.87

23 Materials and equipment supply not on time 3.25 3.229 10.49
27 Lack of experienced construction personnel 3.25 3.146 10.22
16 Inability or irresponsibility of contractors 3.333 3.271 10.9
24 Inability or irresponsibility of supervisors 3.25 3.229 10.49
6 Nontimely funding 3.188 4.083 13.02
12 Material price increase 3.375 3.292 11.11
3 Lack scientific construction process and method 3.771 3.833 14.45
13 Legal disputes of related subject 3.374 3.291 11.10
17 Worsening social order of project area 3.333 3.271 10.90
8 Opposition and obstruction to project construction 3.125 3.958 12.37

2 Lack good communication and cooperation among
subjects 3.917 3.75 14.69

11 Bad weather or major natural disasters 2.958 3.875 11.46

38 Trial operation effect can not meet the design
requirements 3.083 3.125 9.63

25 Instability of equipment performance 3.25 3.229 10.49
14 Speedy technology and equipment renewal 3.373 3.290 11.09
18 Technology and equipment maintenance is not timely 3.333 3.271 10.90
35 Rising operating costs 3.083 3.188 9.83
36 Sudden events 2.979 3.292 9.81
10 Major natural disasters 2.958 3.917 11.59
15 Lack of a clear accountability system 3.371 3.289 11.07
19 Lack of operation management or experiences 3.333 3.271 10.90
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Table 4: Portfolio balanced risk index system of a major infrastructure project.

The target layer The primary Risk The secondary risk

The combinational balanced risk

Technical risk (TR)

Lack scientific construction process and method (TR1)
Poor creativity and applicability of design plan (TR2)

Speedy technology and equipment (TR3)
Inability or irresponsibility of contractors (TR4)

Technology and equipment maintenance is not timely (TR5)

Economic risk (ER)

Nontimely funding (ER1)
Material price increase (ER2)

Incorrect market demand forecasting (ER3)
Financing difficulty or rising costs (ER4)

Social risk (SR)
Opposition and obstruction to project construction (SR1)

Government policy changes (SR2)
Worsening social order of project area (SR3)

Natural risk (NR) Major natural disasters (NR1)
Bad weather (NR2)

Management risk (MR)

Lack good communication and cooperation among subjects (MR1)
Incorrect project orientation (MR2)

Wrong decision-making procedure or method (MR3)
Lack of a clear accountability system (MR4)

Legal risk (LR) Contract inadequacy (LR1)
Low contracture capability of cooperative enterprise (LR2)

subjective feeling mean of all the main projects concerning
risk 𝑖 and the ratio of the intermediate value; if the subject of
subjective evaluation is over the median 3, the psychological
effect is amplified or the project risk is narrowed and vice
versa).

The source data of 𝑃𝑖, 𝑉𝑖, 𝐹𝑖 are scoring risk probability,
objective severity, and subjective feeling on a related project
by five-mark scoring to obtain the scores {𝑃𝑖}, {𝑉𝑖}, {𝐹𝑖}, and
then use SPSS software to calculate the mean 𝑃𝑖, 𝑉𝑖, 𝐹𝑖.

The fuzzy evaluation principle is as follows: for risk
probability, five-mark scoring ranges from 1 = extremely
unlikely, 2 = slim chance, 3 = certain possibility, 4 = high
possibility, and 5 =most likely; for objective severity, five-mark
scoring ranges from 1 = the influence of the objective value of
the project can be ignored, 2 = slightly, 3 = generally serious,
4 = serious, and 5 = very serious; for subjective feelings, five-
mark scoring ranges from 1 = psychological negative impact is
very small and completely tolerable, 2 = psychological negative
influence is small and tolerable, 3 = appropriate psychological
negative influence which can be withstood, 4 = psychological
negative impact is larger and can barely be afforded, and 5 =
psychological negative effect is very serious and hard to bear
[19, 20].

4.3. The Calculation of Risk Classification. Risk classification
index is calculated by weighted averagemethod of each single
index; the formula is in

CRI =
𝑚

∑
𝑖=1

RI𝑖 × 𝑤𝑖, (2)

where CRI is portfolio balanced project risk index; RI𝑖 is
single factor portfolio balanced project risk index; 𝑤𝑖 are
single factor weights.

4.4. The Calculation of Portfolio Risk Index. The portfolio
risk index is calculated by weighted average method of
natural, social, legal, economic,management, and technology
classification. The calculation formula is in

PRI =
𝑛

∑
𝑙=1

𝑤𝑙 ⋅
𝑚

∑
𝑖=1

RI𝑖 × 𝑤𝑖. (3)

4.5. Establishment of a Project Risk Index Weight. Based on
AHP method, this includes forming a discriminant matrix
first by the importance of the comparison between two
indicators at the same level and then calculating the index
weight. The specific process is as follows.

4.5.1. To Build a Project Risk Hierarchical Structure. The
project risk hierarchical structure of risk evaluation index
system is shown in Figure 1.

4.5.2. To Build the Discriminant Matrix and Assignment. The
importance scales and their meaning are shown in Table 5.

The discriminant matrix, after soliciting opinions from
experts, is shown in Table 6.

4.5.3. The Calculation and Test of Weight. Using the sum
method to calculate theweight and to get the arithmeticmean
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�e combinational risk index of major infrastructure project

Technical risk Economic risk index Management risk 
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Figure 1: The hierarchy of project risk index.

Table 5: The Importance scale.

Importance
scale Meaning

1
Comparison between two factors, the
former is equally as important as the
latter

3
Comparison between two factors, the
former is slightly more important than
the latter

5
Comparison between two factors, the
former is obviously more important than
the latter

7
Comparison between two factors, the
former is strongly more important than
the latter

9
Comparison between two factors, the
former is extremely more important than
the latter

2, 4, 6, 8 Median value of above judgment

Inverse
If the importance percentage of factor 𝐼
and factor 𝑗 is 𝑎𝑖𝑗, then the importance
percentage of factor 𝑗 and factor 𝐼 is 1/𝑎𝑖𝑗

Table 6: The discriminant matrix.

A B1 B2 B3 B4 B5 B6
B1 1 a12 a13 a14 a15 a16
B2 a21 1 a23 a24 a25 a26
B3 a31 a32 1 a34 a35 a36
B4 a41 a42 a43 1 a45 a46
B5 a51 a52 a53 a54 1 a56
B6 a61 a62 a63 a64 a65 1

of the column vectors as the final weight is shown in (4). In
addition, to limit the deviation of discriminant matrix in a
certain range, we needed to undertake a consistency check

with CR; when CR < 0.1, the consistency of discriminant
matrix is acceptable

𝑊𝑖 =
1
𝑛

𝑛

∑
𝑗=1

𝑎𝑖𝑗
∑𝑛𝑘=1 𝑎𝑘𝑙

. (4)

5. Example Analyses

The Hong Kong-Zhuhai-Macau Bridge (HZMB) is an over-
sized bridge-tunnel project linking Hong Kong, Zhuhai, and
Macau, with a total length of 49.968 kilometers and a total
investment of 72.9 billion Yuan. It is a world-class sea-
crossing passageway of national strategic significance. With
project construction projected to be 7 years, construction
began in December 2009 and will be completed in 2017. It
will be the world’s longest six-lane driving immersed tunnel
and in distance the world’s longest sea-crossing bridge-tunnel
road. Next we will evaluate and analyze the HZMB using a
combinational balanced risk index model.

5.1.TheMain Project Risk Identification in Construction Phase.
In addition to the common features every large project
generally shares such as large scale, tight construction period,
high level of difficulty, and heightened risk, the HZMB
also contends with the characteristics of high social atten-
tion, coconstruction, and coadministration by three distinct
governments and complicated navigation environment con-
straints such as white dolphin conservation. On the basis of
investigation and access to second-hand data, it is concluded
that the HZMB construction stages of the main project risks
are as follows.

5.1.1. Technical Risk

(1) Risk of Being Poorly Designed. The sea areas of the HZMB
are the world’s most important trade channel with extensive
air- and waterways. The design height of the bridge cannot
be too low because of the normal passage of tonnage ships.
At the same time, the height of the bridge deck and bridge
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tower cannot be too high or it will affect the normal takeoff
and landing of planes.

(2) Technology Innovation Risk. The HZMB project is the
construction of the world’s longest immersed deep-water
tunnel, requiring numerous technological innovations. For
example, the connection between the bridge and the tunnel
requires an artificial island to be constructed using a grouping
of giant round steel cylinders fixed directly onto the seabed
and then filled with earth in order to form the man-made
island. For Chinese engineers this is a first endeavor at
creating this type of structure and, therefore, it includes high
levels of uncertainty.

5.1.2. Economic Risk

(1) Risk of Nontimely Funding. With an investment of over 70
billion Yuan, the financing of this project has been the subject
of much debate including issues such as who will invest and
how to allocate investment proportion from the decision-
making stage to the time when the bridge officially started.
The principal financing risk is whether all involved parties
can provide project construction funds at the appropriate
time.

(2) Risk of Rising Costs.On one hand, inflation causes a rise in
the price of materials; even if it specifies the value adjusting
formula in the contract terms, it is hard to fully compensate
the loss caused by the rising cost of rawmaterials in the future.
On the other hand, the frequent changes of complicated
construction conditionswill cause the rise of cost control risk.

5.1.3. Social Risk

(1) Risk of Regional System Differences. The HZMB belongs
to the coconstruction and coadministration of three distinct
governments and involves the policy of “one country, two
systems.” The interest orientation of all governments, laws
and regulations, administrative systems, management proce-
dures, and technical standard requirements vary thereby cre-
ating innumerable challenges and difficulties in coordination
efforts.

(2) Public-Against-Project Risks. The project has a significant
impact on local natural ecological environment and the lives
of the public making it easy to trigger social dissatisfaction
and opposition if mishandled.

5.1.4. Natural Risk

(1) Typhoon Risk. Typhoons are common in the Lingdingyang
Bay and pass through the South China Sea every year with
more than 200 days a year reporting a wind speed of 6
magnitude. Consequently, the wind action will naturally
move the steel with the same frequency which can produce
resonance and cause destructive effects on the bridge.

(2) Earthquake Risk. Construction of the HZMB faces a
serious challenge in the form of an earthquake. It is diffi-
cult to predict earthquake risk because of complex seabed

structure. An earthquake would cause horizontal and vertical
deformation and destruction of the tunnel and differences
in movement and rotation in the tunnel socket joints, after
which the project would be a total loss.

(3) Chloride Salt Corrosion Risk. Experiments show that the
reinforced concrete will rust under the action of chlorine salt
corrosion and eventually result in cracking and peeling of the
concrete. How to ensure a service life of 120 years for the
bridge is uncertain.

5.1.5. Management Risk

(1) Schedule Control Risk. The main body construction began
in December 2009 and was projected to be completed by the
end of 2016. However, whether the project can be completed
smoothly has become a great challenge due to hydrological
and meteorological factors as well as less effective working
days.

(2) Quality Management Risk. The construction project is
difficult with many operation points, long duration, syn-
chronous operation, and crossover operation processes. The
complicatedmeteorology in LingdingyangBay can easily lead
to negligence in the quality of management.

(3) Safety Management Risk. The construction environment
is very poor due to many factors including a large tidal
range, quick water flow, various flow directions, high waves,
deep scour, thick, soft ground, and frequent typhoons that
endanger the safety of the workers and the construction
creating an environment where injuries and property losses
are probable.

5.1.6. Legal Risk. Thenature of the project attracts an interna-
tional financial clique desiring to invest in the form of BOT.
However, in view of the different legal systems of Mainland
China, Hong Kong, and Macao, this may involve some legal
conflict and blind areas. If legal blind areas are used by
financial clique and some funds are reserved in the contract,
the bridge construction may fall into endless legal disputes.

5.2. The Construction of Project Risk Evaluation Index System
in Construction Stage. Based on the above project risks, to
construct a project risk evaluation index system according
to the AHP method, as shown in Table 7, some appropriate
adjustments of indexes are made in line with the project.

5.3. Calculation of Portfolio Balanced Risk Index in
Initial Construction Stage

5.3.1. Probability and Severity Investigation of Project Risk
Factors. Invite 30 related subjects from the project construc-
tion unit, as well as investors and government departments
in order to score the probability, severity, objectivity, and
subjectivity of single risk factor in the HZMB construction
stage, and then calculate the average by SPSS17.0.
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Table 7: Risk evaluation index system in construction stage.

Primary index Secondary index Third-grade index

The CTR of the
HZMB in
construction
stage

Technical risk (R1)
Risk of being poorly designed (R11)
Innovation risk (R12)

Economic risk (R2)
Risk of nontimely funding (R21)
The risk of rising costs (R22)

Social risk (R3)
The risk of regional system differences (R31)
The public against risks (R32)

Nature risk (R4)
Typhoon risk (R41)
Earthquake risk (R42)
Chloride salt corrosion risk (R43)

Management risk (R5)
Schedule control risk (R51)
Quality management risk (R52)
Safety management risk (R53)

Legal risk (R6) Legal conflict or blind area risk (R61)

Table 8: Three-dimensional evaluation data of single risk factor in the HZMB initial construction stage.

Stage Sequence Risk factors Average value
of probability

Average value
of object
severity

Average value
of subject
feeling

Initial con-
struction
stage

1 Risk of being poorly designed (R11) 2.17 3.65 3.42
2 Innovation risk (R12) 2.52 3.48 3.07
3 Risk of nontimely funding (R21) 2.08 4.16 3.66
4 The risk of rising costs (R22) 3.21 3.23 2.77
5 The risk of regional system differences (R31) 2.78 2.35 2.47
6 The public against risks (R32) 1.56 3.72 3.98
7 Typhoon risk (R41) 3.45 4.03 3.86
8 Earthquake risk (R42) 1.06 4.75 4.67
9 Chloride salt corrosion risk (R43) 2.72 3.25 3.09
10 Schedule control risk (R51) 2.91 2.76 2.92
11 Quality management risk (R52) 1.85 4.49 4.33
12 Safety management risk (R53) 2.04 4.16 4.08
13 Legal conflict or blind area risk (R61) 2.11 3.53 3.16

5.3.2. Calculation of Single Risk Factor Parameter. Calculate,
respectively, probability, objective severity, and subjective
feeling coefficient of a single factor according to the survey
results in Table 8 and the equation in Section 4.2, as shown in
Table 9.

5.3.3. Calculation of Classification and Portfolio Risk Index.
Use weighted addition to obtain project risk classification
index according to single risk factor index shown in Table 10
and obtain portfolio risk index in the same way; then
calculate index weight by AHP method; the final results are
shown in Table 10.

5.4. The Calculation of Risk Index in Medium-Term Con-
struction Stage. Calculate the classification and portfolio risk

index of the HZMB inmedium-term according to the above-
mentioned method to reorganize investigation and collect
basic data, as shown in Table 11.

5.5. Comparative Analysis of Project Risk Index in Early-
and Mid-Construction. The portfolio balanced project risk
index in early 2010 and middle 2012 is obtained through
the above-mentioned calculation, as shown in Table 12. It
is clear that the portfolio balanced project risk index fall is
very obvious, and technology risk index and management
risk index decrease dramatically, which is in accord with our
intuitive understanding.

The combinational balanced risk index of this project in
2010 was 0.38, showing if all kinds of risk factors were not
well controlled or changed; about 38% expected value will
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Table 9: Single risk factor parameter and coefficient of the HZMB in initial construction stage.

Stages Sequence Risk factor Probability coefficient
Objective
severity

coefficient

Subjective
feeling

coefficient

Single risk
factor

parameter

Initial
construction
stage

1 Risk of being poorly designed (R11) 0.43 0.73 1.14 0.36
2 Innovation risk (R12) 0.50 0.70 1.02 0.36
3 Risk of nontimely funding(R21) 0.42 0.83 1.22 0.43
4 The risk of rising costs (R22) 0.64 0.65 0.92 0.38
5 The risk of regional system differences (R31) 0.56 0.47 0.82 0.22
6 The public against risks (R32) 0.31 0.74 1.33 0.31
7 Typhoon risk (R41) 0.69 0.81 1.29 0.72
8 Earthquake risk (R42) 0.21 0.95 1.56 0.31
9 Chloride salt corrosion risk (R43) 0.54 0.65 1.03 0.36
10 Schedule control risk (R51) 0.58 0.55 0.97 0.31
11 Quality management risk (R52) 0.37 0.90 1.44 0.48
12 Safety management risk (R53) 0.41 0.83 1.36 0.46
13 Legal conflict or blind area risk (R61) 0.42 0.71 1.05 0.31

Table 10: The classification and portfolio risk index of the HZMB in initial construction stage.

Primary
index

Secondary index Third-grade index
Risk name Index Weight Risk name Index Weight

Portfolio
risk index
of the
HZMB in
initial con-
struction
stage
PRI = 0.38

Technical risk 0.36 0.212
Risk of being poorly

designed (R11)
0.36 0.667

Innovation risk (R12) 0.36 0.333

Economic risk 0.41 0.137
Risk of nontimely funding

(R21)
0.43 0.667

The risk of rising costs (R22) 0.38 0.333

Social risk 0.27 0.162
The risk of regional system

differences (R31)
0.22 0.50

The public against risks
(R32)

0.31 0.50

Nature risk 0.48 0.116
Typhoon risk (R41) 0.72 0.387

Earthquake risk (R42) 0.31 0.412
Chloride salt corrosion risk

(R43)
0.36 0.201

Management risk 0.44 0.265
Schedule control risk (R51) 0.31 0.227
Quality management risk

(R52)
0.48 0.538

Safety management risk
(R53)

0.46 0.235

Legal risk 0.31 0.108 Legal conflict or blind area
risk (R61)

0.31 1.00

be lost after their interaction. The combinational balanced
risk index in 2012 was 0.15, showing only about 15% projects
could not achieve expected value. The main reason for these
dramatic declines is that related subjects accumulate substan-
tial knowledge and experience and significantly improve the
knowledge level and behavior ability during the construction
process. In addition, after a running-in period, the cooper-
ation relationship between subjects is effectively improved.
Moreover, the subjects actively explore and innovate in areas
such as technology research and development, plan design,

government cooperationmechanism, and international BOT
financing and formulate a series of effective countermea-
sures such as (1) largely eliminating and weakening the
force between the seismic energy by using polymer rubber
materials; (2) developing high-performance concrete to resist
the erosion from chlorine salt on concrete in sea water; (3)
devising a creative installation method to ensure that the
crane tower height is less than 120 meters; (4) establishing
a coordination team led by the National Development and
Reform Commission to eliminate organizational difficulties
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Table 11: Classification and portfolio risk index of the HZMB in medium-term construction stage.

Primary
index

Secondary index Third-grade index
Risk name Index Weight Risk name Index Weight

Portfolio
risk index
of the
HZMB in
medium-
term con-
struction
stage
PRI = 0.15

Technical risk 0.17 0.212
Risk of being poorly

designed (R11)
0.18 0.667

Innovation risk (R12) 0.14 0.333

Economic risk 0.30 0.137
Risk of nontimely funding

(R21)
0.28 0.667

The risk of rising costs (R22) 0.35 0.333

Social risk 0.15 0.162
The risk of regional system

differences (R31)
0.12 0.50

The public against risks
(R32)

0.18 0.50

Nature risk 0.32 0.116
Typhoon risk (R41) 0.48 0.387

Earthquake risk (R42) 0.25 0.412
Chloride salt corrosion risk

(R43)
0.14 0.201

Management risk 0.20 0.265
Schedule control risk (R51) 0.29 0.227
Quality management risk

(R52)
0.18 0.538

Safety management risk
(R53)

0.16 0.235

Legal risk 0.18 0.108 Legal conflict or blind area
risk (R61)

0.18 1.00

Table 12: The portfolio balanced risk comparison of the HZMB in initial and medium-term construction stage.

𝑇
PR

Technical
risk index

Economic
risk index

Social risk
index

Nature
risk index

Management risk
index

Law risk
index

Portfolio
risk index

2010 0.36 0.41 0.27 0.48 0.44 0.31 0.38
2012 0.17 0.30 0.15 0.32 0.20 0.18 0.15

arising from three governments and the risks brought on
by varying legal demands and management systems; and
(5) inviting lawyers familiar with international BOT legal
business to study the contract details, risk control, and so on.

5.6. Early Warning Analysis of Project Risk Index. In order to
dynamically monitor and analyze early warning project risks,
we can set the risk index threshold through the investigation
of the risk bearing capacity and the degree of acceptance of
the risk by the subjects, combined with the risk loss, and
divide different levels of risk early warning intervals and
set up corresponding risk countermeasures [21] as shown
in Table 13, in order to ensure the appropriate measures be
initiated according to the level of risk.

This study shows that the portfolio balanced risk index of
the HZMB reaches above the orange line in initial construc-
tion stage, while it drops below the orange line and enters a
relative safety area in the median-term construction.

6. Conclusion and Discussion

In this article, a combination of behavioral science, question-
nairemethod, statistical analysis, and fuzzy evaluation is used

to construct a portfolio balanced index model in order to
dynamically evaluate the risk factors of major infrastructure
projects and to measure the combined loss of project risk
to project subjects. PBIM is an effective and powerful tool
for risk evaluation and monitoring of major infrastructure
projects. Our conclusions are as follows.

(1) From the perspective of project entity utility, the risk
of major infrastructure projects is not only related to the
probability of occurrence of project risks, loss of objective
value caused by risks, but also to the risk bearing capacity,
emotional factors, and psychological utility of the project
subjects. These factors need to be systematically balanced,
considered, and measured in combination so as to fully
evaluate the overall value loss of the project risk.

(2) A project risk index constructed on the basis of
portfolio balanced evaluation has strong inclusiveness. This
is accomplished through questionnaires and scenario inves-
tigation of the multiproject related subjects, the selection
of project risk index and the design of relevant parameters
reflecting the collective value preference of multiproject sub-
jects, multiple psychological utility, and behavioral strategy
interaction factors, and eliminating the limitations of a single
subject closed evaluation of project risk.
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Table 13: Early warning level of project risk index.

Portfolio
balanced risk
index

Qualitative description of the project risk
severity Early warning level and coping strategy

Above 0.40 The risk is very serious and the overall
value may result in significant loss

Red warning interval, first-grade
powerful measures are taken to control
and resolve risk

[0.30, 0.40] The risk is comparatively serious and the
overall value may result in great loss

Orange warning interval, secondary
measures are taken to control and resolve
risk

[0.20, 0.30] The risk is generally serious and the
overall value may result in great loss

Yellow warning interval, three-grade
measures are taken to control and resolve
risks

[0.10, 0.20]
The risk is comparatively mild and the
chance that the overall value deviating
from the expected goal is minimal

A relatively safe interval, analyze the
cause of risks and verify risk control
measures

Below 0.1
The risk is comparatively mild and the
chance of the overall value deviating from
the expected goal is very minimal

Safe interval, analyze the cause of risks

(3) The combined equilibrium risk index is simple and
intuitive for reflecting the size of the project risk, which
can directly compare the risks of different projects and the
same project in different periods, not only to determine the
relevance of the main project feasibility and the size of the
potential risk in order to provide an effective analysis tool,
but also, according to the Early Warning Interval of Project
risk index, to help the project in relation to the main control
and resolving of risk.

(4) The main body of the major infrastructure project
has complex risk evaluation decision motive; this includes
avoidance of their own risk for self-interest motive needs, but
also an interactive fairness and altruism motive, whereby the
motivation to evaluate project risk is a complex preference
set. This preference set affects the evaluation decision of the
subject. For this reason, the preference set of the multiple
project subjects can be displayed by means of group survey.

It should be noted that we principally used fuzzy math-
ematics and the questionnaire method to evaluate the risk
factors of major infrastructure projects, and these methods
have certain imprecision and subjectivity. However, this
procedure is consistent with the characteristics of major
infrastructure project risk and behavior decision-making
and is also a scientific approach. In the next study, we will
shorten the observation time for specific projects, extract
more comprehensive data, and conduct amore detailed study
of the evolution of a project risk index.
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