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Shiping Lu, China
Gert Lube, Germany
Nazim I. Mahmudov, Turkey
Oluwole D. Makinde, South Africa
Francisco J. Marcellán, Spain
Guiomar Martı́n-Herrán, Spain
Nicola Mastronardi, Italy
Michael McAleer, The Netherlands
Stephane Metens, France
Michael Meylan, Australia
Alain Miranville, France
Jaime E. Munoz Rivera, Brazil
Javier Murillo, Spain
Roberto Natalini, Italy
Srinivasan Natesan, India
Jiri Nedoma, Czech Republic
Jianlei Niu, Hong Kong
Khalida I. Noor, Pakistan
Roger Ohayon, France
Javier Oliver, Spain
Donal O’Regan, Ireland
Martin Ostoja-Starzewski, USA
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Advanced control theory fills a gap between the mathematical control theory and modern
control engineering practices. Conceptually, advanced control theories can include any the-
oretical problems related to the controller design. But in this issue it may include model
predictive control, sliding mode control, robust control, real-time optimization, and iden-
tification and estimation, which are not limited to controller design. Advanced control
technologies have become ubiquitous in various engineering applications (e.g., chemical pro-
cess control, robot control, air traffic control, vehicle control, multiagent control, networked
control). The development of mathematical methods is essential for the applications of
advanced control theories. Sometimes, it lacks effective methods to tackle the computational
issue (e.g., model predictive control of a fast process). Sometimes, a new application requires
a brand-new solver for applying the advanced control theory (e.g., a new production line far
exceeding the usual speed). The main focus of this special issue will be on the new research
ideas and results for the mathematical problems in advanced control theories.

A total number of 63 papers were submitted for this special issue. Out of the submitted
papers, 25 contributions have been included in this special issue. The 25 contributions
consider several closely related and interesting topics.
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The subjects in controller design and synthesis have occupied 13 contributions. These
contributions include, for example, variable structure control, model predictive control
(MPC), fuzzy logic control (FLC), robust control, networked and distributed control, optimal
control, and adaptive control. For Markovian jump nonlinear systems with unmodeled
dynamics and Wiener noise, J. Zhu et al. use backstepping technique and stochastic small-
gain theorem, so as to design a switch controller such that stochastic stability is guaranteed.
L. Ding et al. consider sliding mode control for mobile manipulators with stochastic jump
switching joints. Adaptive parameter techniques are adopted to cope with the effect of
Markovian switching and nonlinear dynamics uncertainty and follow the desired trajectory
for wheeled mobile manipulators. T. Zou considers the dynamic stability property of the
double-layered MPC. The double-layered MPC is a common structure for real applications.
X. Zhang et al. develop a three-dimensional FLC design methodology based on clustering
and support vector machine regression learning from a spatiotemporal dataset. Y. Wang
focuses on the robust stability of Lotka-Volterra predator-prey system with the fuzzy
impulsive control. Y. Zhu and L. Fan present the robust force/motion control strategies for
mobile manipulators under both holonomic and nonholonomic constraints in the presence
of uncertainties and disturbances. Y. H. Yang and C. L. Chen propose a generic spatial
domain control scheme for a class of nonlinear rotary systems of variable speeds with
spatially periodic disturbances. When the system state is unmeasurable, a nonlinear state
observer is established for providing the estimated states. Q. Ling et al. investigate the
effects of the network-induced delays, packet dropouts, and the torque disturbance on
the speed tracking of a permanent magnet synchronous motors system. The designed
controller can robustly guarantee stability and performance. Q. Ling and H. Deng study the
second moment stability of a Markov jump linear system with real states. They propose
an alternative necessity proof of the stability condition for this system. Y. Guo and T.
Pan investigate the problem of robust stability of uncertain linear discrete-time system
over network with bounded packet loss. X. Liu et al. consider a containment problem of
networked fractional-order system with multiple leaders under a fixed directed interaction
graph. The distributed protocol, flocking problem, communication delay, and interconnection
topology are studied. Y. Lei et al. establish an optimal control model of distributed parameter
systems (DPS) for polymer injection strategies. G. M. Bahaa considers the optimal boundary
control problem for an infinite order distributed parabolic systems with multiple time delays
given in the integral form both in the state equations and in the Neumann boundary
conditions.

Closely related to the controller design and synthesis are the 8 contributions on the
estimation problem. These contributions include, for example, Kalman filter, robust state
estimator, fusion estimator, target tracking filter, and modeling parameter estimation. X. Lu
et al. deal with Kalman smoothing problem for wireless sensor networks with multiplicative
noises. Packet loss occurs in the observation equations, and multiplicative noises occur both
in the system state equation and the observation equations. L. Zhang et al. revisit the state
estimator for polytopic uncertain systems. The notion of quadratic boundedness, which
has been useful in specifying stability of the system with uncertain but bounded noise,
is utilized. H. Zhao and C. Zhang consider the finite-time H∞ filter for linear continuous
time varying systems with uncertain observations and L2-norm bounded noise. By using
the projection theory in Krein space, the finite-time H∞ filter is solved. X. Wang and S.
Sun present a self-tuning weighted measurement fusion Kalman filter, for the linear discrete
stochastic systems with multiple sensors and unknown noise statistics. It is proved that the
presented self-tuning weighted measurement fusion Kalman filter converges to the optimal
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weighted measurement fusion Kalman filter. F. Lian, C. Han et al. study the convergence of
the Gaussian mixture extended-target probability hypothesis density filter and its extended
Kalman filtering approximation in mildly nonlinear condition. The problem of extended-
target tracking is very valuable for many real applications, such as ground or littoral
surveillance, robotics, and autonomous weapons. F. Lian, C. Li et al. study the convergence
for the sequential Monte Carlo implementations of the multitarget multi-Bernoulli (MeMBer)
filter and cardinality-balanced MeMBer filters. By combining the linear matrix inequalities for
the system identification and those to obtain a discrete time controller, K. Hiramoto proposes
a framework to integrate two steps for the model-based control system design, that is, the
SISO system identification and the controller synthesis. K. Kobayashi and K. Kaito utilize a
one-dimensional consolidation model, incorporating inhomogeneous ground subsidence, to
generate the sets of sample paths designating ground subsidence processes. The estimation
of ground subsidence processes is an important subject for the asset management of civil
infrastructures on soft ground, such as airport facilities.

There are also 3 contributions on the image processing and acoustic signal processing.
These contributions can be seen as the extensions of the estimation problem, in the context of
this special issue. L. Zi and J. Du propose an energy-driven image interpolation algorithm
employing Gaussian process regression. Image interpolation, as a method of obtaining a
high-resolution image from the corresponding low-resolution image, is a classical problem
in image processing. P. Han and J. Du use a nonsubsampled pyramid structure and
a nonsubsampled directional filter to achieve multidimensional and translation-invariant
image decomposition for spatial images. Spatial images are inevitably mixed with different
levels of noise and distortion. C. Wang and P. Zhang present an improved spoken
term detection strategy, which integrates a phoneme confusion matrix and an improved
word-level minimum classification error training method. Spoken term detection system
will degrade significantly if there is mismatch between acoustic model and spontaneous
speech.

The last contribution is for the mathematical programming. T. Hasuike et al. consider
the risk-control and management approach for a bottleneck spanning tree problem under the
situation where edge costs in a given network include randomness and the reliability. Note
that several other contributions mentioned above have also considered optimizations (e.g.,
in the work of G. M. Bahaa, necessary and sufficient optimality conditions for the Neumann
problem with the quadratic performance functional are derived; in the work of Y. Lei et al.,
the necessary conditions for optimality are obtained through application of the calculus of
variations and Pontryagin’s weak maximum principle; in the work of X. Wang and S. Sun,
the global optimality property is considered; some other works utilize optimization to obtain
the controller, estimator, or modeling parameters).

From the above contributions, some trends in the advanced control theories seem
to become clearer. The studied problems are becoming more and more complex (e.g., con-
sidering disturbance/noise, stability/convergence, probability/randomness, distributed
parameters, time-delay/networked phenomenon, physical constraints, impulsive system,
optimization and control integrated system, fractional-order system, and parametric
uncertainties). Usually, several kinds of complexities should be included into a single work
in order for it to be publishable as a contribution.

We hope the readers of this special issue will find it interesting and stimulating and
expect that the included papers to contribute to further advance the area of advanced control.
Finally, we would like to thank all the authors who have submitted papers to the special issue
and the reviewers involved in the refereeing of the submissions.
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This paper considers a new risk-control and management approach for a bottleneck spanning
tree problem under the situation where edge costs in a given network include randomness and
reliability. Particularly, this paper focuses on the case that only mean value and variance of edge
costs are calculated without assuming a specific random distribution. In order to develop the
risk control approach, a confidence interval-based formulation is introduced. Using this interval,
as well as minimizing the maximum value of worse edge costs, maximizing the minimum
value of robust parameters to edge costs is introduced as objective functions in the risk-control.
Furthermore, in order to maintain the constructing spanning tree network entirely, the reliability
for each edge is introduced, and maximizing the total reliability of spanning tree is assumed
as the third objective function. The proposed model is a multiobjective programming problem,
and hence, it is difficult to solve it directly without setting some optimal criterion. Therefore,
satisfaction functions for each object and the integrated function are introduced, and the exact
solution algorithm is developed by performing deterministic equivalent transformations. A
numerical example is provided by comparing our proposed model with previous standard models.

1. Introduction

Minimum spanning tree (MST) problem is one of most important combinatorial optimization
nodes. In the real world, MST problems to find a least cost spanning tree in an edge
weighted graph connecting all are usually seen in real-world network optimization problems
(most recently, Chen [1] and Ferreira et al. [2]). In more detail, when designing a layout
for telecommunication and power networks or constructing a large-scale gas pipeline, if
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a decision maker wishes to minimize the cost for connection between cities, the situation
is formulated as an MST problem. Then, another object is to minimize the working hours
for construction or to maximize the reliability to the whole of constructing network. In fact,
European Commission [3] today presented its energy infrastructure priorities for the next
two decades, aimed at making networks fit for the 21st century. Then, the commission defines
EU priority corridors for the transport and networks of electricity, gas, and oil. Thus, it is
important to construct several types of networks actually enhancing the importance and the
reliability of backbone lines as well as minimizing the cost and constructing time.

In MST problems, there are two main problems whose objects are different from
each other. The ordinary object of MST problem is minimizing the total cost of spanning
tree, and another is minimizing the maximum value of edge costs in a spanning tree. The
latter model is particularly called bottleneck spanning tree (BST) problem, and it is more
efficient for the construction of information and communications networks under delivery
deadline or capacity constraints of edges. For instance, in the case of constructing new power
lines or internet networks among all houses in a town, builders generally construct all lines
concurrently, and hence, it is important to construct all lines safely by the delivery deadline.
As a mathematical formulation of this case, the BST problem may be appropriate. Therefore,
in this paper, we focus on a BST problem.

Previous researches of MST problems including BST problems deal with constant edge
costs, and it is possible to apply many exact and polynomial time solution algorithms directly,
developed by Cheriton and Tarjan [4], Gabow et al. [5], Geetha and Nair [6], Kruskal [7], and
Prim [8]. However, more practically, it is necessary to consider the situation that one makes
an optimal decision on the basis of data involving various uncertainties. For instance, the cost
to connect between two nodes often depends on the economical environment which varies
randomly. In risk-control and management approaches in order to avoid adverse impacts
derived from uncertainty, it is recently important to minimize a downside risk which can
denote the risk of edge cost going up to some target level set by the decision maker. As a
recent study, note the design of a communication network where routing delays on links are
not known with certainty due to the time varying nature of the traffic load on the network. In
this application, it is desirable to construct a network configuration that hedges against the
worst possible contingency in routing delays (Kouvelis and Yu [9]).

If all random distributions to edge costs are certainly determined such as normal
distributions, the decision maker may directly use some downside risk measures such as
value at risk (VaR) and conditional value at risk (cVaR) (Rockafellar and Uryasev [10]).
However, in practice, it is difficult to determine a certain random distribution to each edge
cost even if there are a lot of received data. Instead, it is usually possible to calculate
mean value and variance derived from received data, and hence, a confidence interval-
based approach may be also obtained using only mean value and variance. In general, if the
decision maker assumes many practical situations from better to worse cases, this situation
mathematically means that the range of confidence interval becomes wide. Therefore, the
problem with the confidence interval is regarded as one of robust programming problems.
As an extension of the previous confidence interval, Watada et al. [11] recently proposed d-
confidence interval where parameter d represents an adjustment parameter to the confidence
region in robustness. For instance, in a normal distribution with mean value m and variance
σ2, the d-confidence interval is represented as [m − dσ,m + dσ]. In this paper, we propose an
MST problem using the d-confidence interval.

On the other hand, it is also important to consider how we ensure the reliability of
trunk and backbone line in the network. For instance, we consider that the decision maker
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constructs a fast Internet network among cities with some important metropolises. In this
situation, even if it happens that the only connection between two cites is disrupted by
destroying the connection line derived from natural disasters or breakdown of machines, a
city loses contact with the other cities and metropolises and this wreaks enormous damages in
the whole network. Therefore, it is often important and necessary to construct more reliable
lines connecting these metropolises even if the total cost is high. Thus, we need to set the
reliability of each edge and to decide the minimum spanning tree maximizing the total
reliability to the whole of spanning tree as well as minimizing the total cost.

In mathematical programming under uncertainty, some researchers proposed a
stochastic, fuzzy, or uncertain network optimization. As studies of BST problems under
uncertainty, Ishii and Nishida [12] and Katagiri et al. [13] investigated BST problems
where edge costs are assumed to be random or fuzzy random variables and developed
a polynomial-time algorithm. However, risk-control and management models for BST
problems with multiobjective functions have not been studied deeply since it is usually
formulated as a constrained spanning tree problem which is more difficult to deal with. In
this paper, we assume the situation where the decision maker has satisfaction levels for all
objects, and hence, we introduce satisfaction functions to objective functions, which are often
called fuzzy goals. Furthermore, as an integrated function of multiobjective functions, we
focus on the Bellman-Zadeh minimum operator (Bellman and Zadeh [14]) which is one of the
standard appropriate aggregation functions and is dealt with in many studies. Using these
mathematical formulations, we transform main problems into the deterministic equivalent
problems and obtain the exact solution algorithm.

This paper is organized as follows. In Section 2, we introduce a standard BST problem
and three objects of our proposed model. Then, we formulate our proposed multiobjective
BST problem. In Section 3, in order to solve the proposed BST problem directly in
mathematical programming, we introduce satisfaction functions for all objects and Bellman-
Zadeh’s minimum operator as an integrated function. In Section 4, performing deterministic
equivalent transformations of the initial problem, we develop the polynomial-time solution
algorithm based on a standard MST problem and the bisection method. Furthermore, in order
to represent some features of our proposed BST problem by comparing with the standard BST
problem and probability maximization-based BST problem not including the total reliability,
Section 5 provides a simple numerical example. Finally, Section 6 concludes this paper.

2. Mathematical Formulation of Proposed Multiobjective BST Problem

In this section, we introduce a formulation of standard MST problem and our proposed robust
MST problem with the reliability to the whole of spanning tree under uncertainty.

We assume a connected undirected graph G = (V, E) where V = {v1, v2, . . . , vn} is
a finite set of n vertices representing terminals or telecommunication stations and so forth.
E = {e1, e2, . . . , em} is a finite set of edges representing connections between these terminals
or stations, and T = {T1, T2, . . . , Tk} is a finite set of spanning trees in given undirected graph
G = (V, E). Let undirected graph x = (x1, x2, . . . , xm)

t be a vector defined by

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S � {1, 2, . . . , m}, (2.1)

where S is the index set of edges.
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2.1. Formulation of Standard BST Problem

First, we introduce a standard BST problem. The ordinary MST problem is to find the
spanning tree minimizing the total cost. On the other hand, a BST problem is formulated
as follows:

Minimize max
j∈S
{
cjxj

}

subject to xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.2)

where cj(j ∈ S) are edge costs in the given undirected graph. The above problem is easily
transformed into a minimum spanning tree problem if all edge costs are constant in this
problem. Therefore, the efficient solution algorithms are applied to the problem, and it is not
difficult to obtain the optimal spanning tree in a polynomial time.

However, we should consider that all edge costs are uncertain values rather than
constant in real-world practical situations. In this paper, we assume the case to calculate the
mean value and variance of each edge cost using some data but cannot determine a specific
random distribution. From mean value cj and variance σ2

j of each edge cost, we define a d-
confidence interval of each edge cost based on the study (Watada et al. [11]) using parameter
dj as [cj − djσj , cj + djσj] where mean values cj and robust parameters dj are positive. If
the random distribution occurs according to a general ellipsoidal distribution such as the
normal, Student t, Pareto’s distributions, this formulation denotes the value at risk satisfying
with some risk factors. Furthermore, if the random distribution occurs according to the stable
distribution such as the normal, Cauchy’s, and Levy’s distributions, this formulation denotes
the conditional value at risk (for instance, Rachev et al. [15]). Therefore, we focus on cj +djσj

of d-confidence interval and regard parameter dj as the downside risk in robustness.

2.2. Objects for the Proposed Model

(i) Minimizing the maximum value of downside edge cost cj + djσj .

In practical network optimization and previous standard BST problem (2.2), it is
natural for the decision maker to minimize the maximum value of downside edge costs
cj + djσj . Therefore, minimizing the maximum value of cj + djσj is also formulated as the
following problem:

Minimize max
j∈S
{(

cj + djσj

)
xj

}

subject to xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.3)
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Introducing parameter f as an acceptable target edge cost, the above problem is equivalently
transformed into the following problem:

Minimize f

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.4)

(ii) Maximizing the minimum value of robust parameters dj .

In robustness, if parameter dj is constant and of larger value, interval [cj−djσj , cj+djσj]
is also wide. It urges the decision maker to deal with more robust cases than the small value
of dj . In risk control and management, it is also important to maximize the minimum value
of parameter dj , and hence, the following robust BST problem is formulated:

Maximize max
j∈S
{
djxj

}

subject to xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.5)

In a way similar to the transformation from problems (2.3) to (2.4), problem (2.5) is also
equivalently transformed into the following problem introducing parameter d as a target
value of robustness:

Maximize d

subject to min
j∈S
{
djxj

} ≥ d

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.6)

(iii) Maximizing the total reliability to the whole of spanning tree.

It is also often necessary to construct the network connecting nodes keeping the higher
reliability even if the worst value of edge cost is large. This means that we need to set the
reliability of each edge and to decide a spanning tree maximizing the total reliability as well
as minimizing the maximum value of downside edge costs and maximizing the minimum
value of robust parameters. In this paper, we assume that the decision maker gives a constant
value of reliability βj to each edge as a constant value from 0 to 1 according to edge costs that
is, βj ∈ [0, 1].

In this paper, we focus on the concept that the whole of spanning tree is nonfunctional
as a normal communication network even if only one edge in the spanning tree is broken
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down. Therefore, the problem maximizing the total reliability of spanning tree is formulated
as the following problem:

Maximize
∏
ej∈T

βjxj

subject to xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.7)

The objective function of problem is often used in the mathematical formulation maximizing
the total reliability in communication networks.

2.3. Main Formulation of Our Proposed BST Model

By integrating these three objects, our proposed BST model is formulated as the following
multiobjective programming problem:

Minimize f

Maximize d

Maximize
∏
ej∈T

βjxj

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(2.8)

This problem is a multiobjective programming problem, and hence, it is hard to solve it
directly in mathematical programming problem without some optimal criterion. Therefore, in
the following sections, we discuss a solution approach to solve problem (2.8) in mathematical
programming.

3. Introduction of Fuzzy Goals and
Bellman-Zadeh’s Minimum Operator

In multiobjective programming problem (2.8), it is difficult to deal with a tradeoff between
the total cost f and robustness parameter d directly, because these attributes are completely
opposite. Furthermore, taking account of satisfaction of decision maker and robustness for the
execution of network, the decision maker often has satisfaction functions for target values of
the total cost f , the robust parameter d, and the total reliability β =

∏
ej∈Tβjxj , which is often

called fuzzy goals.
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In this paper, we define the following satisfaction function characterized by linear
membership functions:

μfG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(
ω ≤ fL

)
,

fU −ω
fU − fL

(
fL < ω ≤ fU

)
,

0
(
fU < ω

)
,

μdG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 (dU ≤ ω),
ω − dL

dU − dL
(dL ≤ ω < dU)

0 (ω < dL),

,

μβG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(
βU ≤ ω

)
,

ω − βL
βU − βL

(
βL ≤ ω < βU

)
,

0
(
ω < βU

)
,

(3.1)

where fL, fU, dL, dU, βL, and βU are constant positive values determined by the decision
maker. Introducing these satisfaction functions into problem (2.8), we reformulate the
proposed BST problem as follows:

Maximize μfG

(
f
)

Maximize μdG

(
d
)

Maximize μβG

⎛
⎝∏

ej∈T
βjxj

⎞
⎠

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S

(3.2)

Problem (3.2) is also a multiobjective programming problem, and hence, it remains
the difficulty of solving this problem directly since a complete optimal solution that
simultaneously optimizes all of the multiobjective functions does not always exist. Therefore,
instead of a complete optimal solution, a Pareto optimal solution may be reasonable for a
multiobjective case.

As a reasonable solution concept for the fuzzy multiobjective decision-making
problem, a Pareto optimal solution is defined as follows in the ordinary multiobjective
programming problem proposed by Sakawa et al. (Sakawa [16], Sakawa et al. [17]):
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Definition 3.1. Let x and X be a decision variable column vector and a set of feasible
solutions, respectively. Then, x∗ ∈ X is said to be an M-Pareto optimal solution if and
only if there does not exist another x ∈ X such that μfG(f) ≥ μfG(f

∗), μdG(d) ≥ μdG(d
∗
)

and μβG(
∏

ej∈Tβjxj) ≥ μβG(
∏

ej∈Tβjx
∗
j ), and either μfG(f) > μfG(f

∗), μdG(d) > μdG(d
∗
) or

μβG(
∏

ej∈Tβjxj) > μβG(
∏

ej∈Tβjx
∗
j ).

Introducing an aggregation function μD(x) for three membership functions
μfG(f), μdG(d) and μβG(

∏
ej∈Tβjxj), the problem can be rewritten as follows:

Maximize μD(x)

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(3.3)

The aggregation function μD(x) represents the integrated satisfaction or preference degree of
the decision maker for the whole of satisfaction functions. Some researchers have proposed
aggregation functions: the minimum operator (Bellman and Zadeh [14]), the product
operator (Zimmermann [18]), and so forth. Particularly, the following Bellman-Zadeh’s
minimum operator ZG is one of the standard appropriate aggregation functions and is dealt
with in many studies, and the mathematical formulation is to minimize the aspiration value
in all satisfaction functions:

ZG = min
{
μfG

(
f
)
, μdG

(
d
)
, μβG

(∏
ej∈Tβjxj

)}
. (3.4)

Therefore, setting satisfaction functions for the multiobjective and introducing the Bellman-
Zadeh minimum operator, we transform problem (3.2) into the following single objective
programming problem:

Maximize ZG

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(3.5)
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In mathematical programming, the optimal solution of problem (3.5) is also the same as
that of the following problem introducing parameter h which means the common target
satisfaction level:

Maximize h

subject to ZG ≥ h,

max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(3.6)

4. Development of Polynomial-Time Solution Algorithm for
the Proposed BST Problem

In problem (3.6), the first, second, and third constraints are equivalently transformed into the
following inequalities without the loss of optimality.

First constraint:

ZG ≥ h

⇐⇒ μfG

(
f
) ≥ h, μdG

(
d
)
≥ h, μβG

⎛
⎝∏

ej∈T
βjxj

⎞
⎠ ≥ h

⇐⇒ fU − f
fU − fL ≥ h,

d − dL

dU − dL
≥ h,

(∏
ej∈Tβjxj

)
− βL

βU − βL ≥ h

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f ≤ fU − h

(
fU − fL

)
d ≥ dL + h(dU − dL)∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)
.

(4.1)

Second constraint:

max
{(

cj + djσj

)
xj

∣∣j ∈ S
} ≤ f ⇐⇒ (cj + djσj

)
xj ≤ f. (4.2)

Third constraint:

min
{
djxj

∣∣j ∈ S
} ≥ d ⇐⇒ dj ≥ dxj . (4.3)
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Furthermore, these constraints (4.1), (4.2), and (4.3) are reduced as follows:

f ≤ fU − h
(
fU − fL

)(
cj + djσj

)
xj ≤ f

⇐⇒ (cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

d ≥ dL + h(dU − dL)
dj ≥ dxj

⇐⇒ dj ≥ {dL + h(dU − dL)}xj .

(4.4)

Consequently, problem (3.6) is equivalently transformed into the following problem:

Maximize h

subject to
(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

dj ≥ {dL + h(dU − dL)}xj ,∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)
,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(4.5)

We focus on third constraint
∏

ej∈Tβjxj ≥ βL + h(βU − βL) in the above problem. In problem
(4.5), decision variables xj , (j ∈ S) become only 0 or 1, respectively. Therefore,

∏
ej∈Tβjxj =∏

ej∈Tβj holds. Using this formula, since
∏

ej∈Tβjxj and βL + h(βU − βL) are positive, this
constraint is equivalently transformed into the following logarithmic constraint without the
loss of optimality:

∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)

⇐⇒
∏
ej∈T

βj ≥ βL + h
(
βU − βL

)

⇐⇒ log

⎛
⎝∏

ej∈T
βj

⎞
⎠ ≥ log

(
βL + h

(
βU − βL

))

⇐⇒
∑
ej∈T

log βj ≥ log
(
βL + h

(
βU − βL

))

⇐⇒
∑
j∈S

(
log βj

)
xj ≥ log

(
βL + h

(
βU − βL

))
.

(4.6)
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Therefore, the optimal solution of problem (4.5) is the same as that of the following problem:

Maximize h

subject to
(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

dj ≥ {dL + h(dU − dL)}xj ,∑
j∈S

(
log βj

)
xj ≥ log

(
βL + h

(
βU − βL

))
,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(4.7)

Furthermore, by reducing the first and second constraints in problem (4.7) as follow:

(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
dj ≥ {dL + h(dU − dL)}xj

⇐⇒

⎧⎪⎨
⎪⎩
djxj ≤

f(h) − cjxj

σj
,
(
f(h) = fU − h

(
fU − fL

))
djxj ≥ d(h)x2

j , (d(h) = dL + h(dU − dL))

⇐⇒ d(h)x2
j ≤

f(h) − cjxj

σj

⇐⇒ d(h)xj ≤
f(h) − cjxj

σj

⇐⇒ xj ≤
f(h)

d(h)σj + cj
,

(4.8)

problem (4.7) is also equivalently transformed into the following problem introducing β(h) =
βL + h(βU − βL):

Maximize h

subject to xj ≤
f(h)

d(h)σj + cj
,

∑
j∈S

(
log βj

)
xj ≥ log β(h),

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(4.9)

This problem is a constrained spanning tree problem. In general, it is difficult to solve
constrained network optimization problems in the polynomial time. However, since
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problem (4.9) fulfills the following theorem, we will show that the solution algorithm of
problem (4.9) in the polynomial-time.

Theorem 4.1. Fix parameter h = h, and set Rj(h) = f(h)/(d(h)σj + cj). If Rj(h) < 1, then xj = 0,
that is, edge ej is not included in the optimal spanning tree.

Proof. Since Rj(h) < 1 and xj ≤ R(h), xj < 1 is obtained. Furthermore, since xj is a 0-1 decision
variable, xj = 0 is also obtained.

From Theorem 4.1, we can narrow feasible spanning trees in the given network.
Furthermore, in the case of fixed parameter h, we introduce an auxiliary problem of problem
(4.9) as follows:

Maximize
∑
j∈S

(
log βj

)
xj

subject to xj = 0, j = 1, . . . , i,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j = i + 1, . . . , m,

(4.10)

where i is the maximum number of index j satisfying Rj(h) < 1. Since we assume 0 < βj ≤ 1,
log βj is a negative value. Therefore, the above problem is equivalently transformed into the
following minimizing problem:

Minimize
m∑

j=i+1

(− log βj
)
xj

subject to xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j = i + 1, . . . , m.

(4.11)

This auxiliary problem is the same as a standard MST problem, and hence, it is possible to
obtain the optimal spanning tree in the polynomial time using the Kruskal algorithm [7]
or the Prim algorithm [8]. Furthermore, as an optimality condition between this auxiliary
problem and problem (4.9), the following theorem holds.

Theorem 4.2. Let x∗j (h), (j = 1, 2, . . . ,m) be the optimal solution of auxiliary problem (4.11), and
let h∗ be the optimal value of problem (4.9). Then, the following rules hold:

∑
j∈S

(
log βj

)
x∗j
(
h
)
> log β

(
h
)
−→ h < h∗,

∑
j∈S

(
log βj

)
x∗j
(
h
)
= log β

(
h
)
−→ h = h∗,

∑
j∈S

(
log βj

)
x∗j
(
h
)
< log β

(
h
)
−→ h > h∗.

(4.12)
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Proof. log β(h) is an increasing function on h due to setting membership function (3.1).
Then, since Rj(h) = f(h)/(d(h)σj + cj) is a decreasing function on h from decreasing
function f(h) and increasing function d(h), the number of indexes satisfying xj(h) < 1
is increasing. Therefore, in the case of h ≤ h, the feasible region of problem (4.11) of n
the case of h is narrower than h, and

∑
j∈S(− log βj)x∗j (h) ≤

∑
j∈S(− log βj)x∗j (h); that is,∑

j∈S(log βj)x∗j (h) ≥
∑

j∈S(log βj)x∗j (h) holds. Consequently, from increasing function log β(h)
and decreasing function

∑
j∈S(log βj)xj(h), this theorem is obtained.

Consequently, from Theorems 4.1 and 4.2 and auxiliary problem (4.9), we develop the
following solution algorithm for our proposed BST problem (3.6).

4.1. Solution Algorithm

Step 1. Elicit the satisfaction functions μfG(ω), μdG(ω), and μβG(ω) by the decision maker, and
go to Step 2.

Step 2. Set hL ← 0, hU ← 1, k ← 1, and go to Step 3.

Step 3. In the case h1 = 1, solve problem (4.11). If the optimal spanning tree x∗j (1) is obtained,
then x∗j (1) is also the optimal spanning tree of our proposed model (3.6), and terminate this
algorithm. If not, go to Step 4.

Step 4. In the case h1 = 0, solve problem (4.11). If there are no feasible solutions, return to
Step 1 and reset parameters of satisfaction functions μfG(ω), μdG(ω), and μβG(ω). If not, go to
Step 5.

Step 5. Set hk ← (hL + hU)/2, and go to Step 6.

Step 6. Calculate Rj(hk) of each edge ej , and check Rj(hk) ≥ 1 or not. If Rj(hk) < 1, then
x∗j (hk) = 0, and go to Step 7.

Step 7. Solve auxiliary problem (4.11) of the proposed model, and obtain the optimal
spanning tree x∗j (hk). Then, calculate

∑
j∈S(log βj)x∗j (hk), and go to Step 8.

Step 8. From Theorem 4.2, if
∑

j∈S(log βj)x∗j (hk) = log β(hk), then h is also the optimal solution
of our proposed BST problem (3.6), and hence, x∗j (hk) is the optimal spanning tree. Therefore,
terminate the algorithm. Then, in the case k ≥ 2, if x∗j (hk−1) = x∗j (hk), j = 1, 2, . . . , m, and the
following conditions holds:

∑
j∈S

(
log βj

)
x∗j (hk−1) > log β(hk−1),

∑
j∈S

(
log βj

)
x∗j (hk) < log β(hk), (4.13)

x∗j (hk) is the optimal spanning tree of the proposed problem (3.6), and terminate this
algorithm. If not, go to Step 9.

Step 9. If
∑

j∈S(log βj)x∗j (hk) > log β(hk), then hL ← hk, k ← k + 1 and return to Step 3. If∑
j∈S(log βj)x∗j (h) < log β(h), then hU ← hk, k ← k + 1 and return to Step 5.
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Consequently, solving problem (4.11) on each parameter hk using this solution
algorithm, we obtain an exact bottleneck spanning tree for our proposed BST problem
(3.6) according to decision maker’s satisfaction. The main steps of this solution algorithm
is to solve auxiliary problem (4.11) and to do the bisection method on parameter h. The
computational complexity to solve auxiliary problem (4.11) are polynomial time due to
Kruskal’s or Prim’s polynomial time algorithm. Then, the computational complexity of
bisection method is also polynomial time. Therefore, the total computational complexity of
this solution algorithm from Steps 1 to 9 is the polynomial-time.

5. Numerical Example

In this section, we provide a simple numerical example. Let G be a graph with 6 vertices that
is, n = 6. Figure 1 illustrates the given graph G, and parameters in this example are given
in Table 1. In the real world applications such as construction of telecommunication stations
networks between cities, some uncertain factors may intervene in the decision making of the
construction cost. Furthermore, in the case to ensure the reliability of trunk and backbone
networks, we also need to enhance the reliability of spanning tree as well as robustness
of edge costs. Therefore, using the numerical example in this section, we compare our
proposed BST problem with the standard BST problem and probability maximization-based
BST problem not including the reliability.

First, we solve a standard BST problem using data of constant edge costs not including
the reliability. As constant edge costs, we deal with mean values in Table 1. Using the mean
values, we solve the standard BST problem, and obtain the optimal spanning tree as Figure 2.

Next, we consider the case where each edge cost is a random variable not including
the reliability of spanning tree that is, we solve the following probability maximization-based
BST problem:

Maximize d

subject to max
j∈S
{(

cj + djσj

)
xj

} ≥ f,

min
j∈S
{
djxj

} ≥ d,

xj =

{
1
(
ej ∈ T

)
0
(
ej /∈ T

) , j ∈ S.

(5.1)

We use data of parameters in Table 1, and set parameter f = 5. We solve problem (5.1)
and obtain the optimal spanning tree as Figure 3.

Comparing Figure 3 with Figure 2, edges e5 and e10 selected in Figure 2 are changed
into edges e7 and e11. Numerical data in Table 1 shows that mean values of edges e5 and
e10 are similar to those of edges e7 and e11, respectively. However, variances of edges e5 and
e10 are much higher than those of edges e7 and e11, and hence, probability maximization-
based BST problem, which is a subproblem of our proposed BST problem, tends to avoid the
uncertain risk derived from variances.

Finally, we solve our proposed BST problem with maximizing the reliability of the
whole of spanning tree. We set parameters of satisfaction functions μfG(ω), μdG(ω), and
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Table 1: Parameter values of random edge costs with the reliability.

Edge Mean value Variance Reliability
e1 3.0 1.0 0.99
e2 4.0 0.5 0.99
e3 2.0 0.5 0.98
e4 7.0 1.0 0.99
e5 3.5 2.0 0.97
e6 8.0 4.0 1.00
e7 4.0 0.2 0.97
e8 3.0 1.0 0.98
e9 6.0 2.0 0.98
e10 4.0 2.5 0.99
e11 4.5 0.1 0.99
e12 5.0 1.5 0.98

1

2

3 4

5

6

e1

e2
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Figure 1: Given graph G.
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Figure 2: Optimal spanning tree of standard BST problem.

μβG(ω) as fL = 4, fU = 6, dL = 0.5, dU = 2.0, βL = 0.90, βU = 0.95, respectively. Using data of
random edge costs in Table 1, we solve our proposed BST problem according to the solution
algorithm in Section 4 and obtain the optimal spanning tree represented in Figure 4.

Comparing Figure 4 with Figures 2 and 3, edge e11 is selected in Figure 4 in the same
manner as Figure 3, which is not selected in Figure 2. On the other hand, edge e7 selected
in Figure 3 is changed into edge e2. This is why the reliability of e7 is smaller than that of
edge e2 from Table 1. In our proposed BST problem, we simultaneously consider the higher
total reliability of spanning tree, and hence, our proposed model with randomness and the
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Figure 3: Optimal spanning tree of probability maximization-based BST problem.
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Figure 4: Optimal spanning tree of our proposed BST problem with the reliability.

reliability is well balanced between constructing more reliable edges and avoiding uncertain
risks.

6. Conclusion

In this paper, we have proposed a new bottleneck spanning tree problem that each edge cost
includes both uncertainty derived from randomness and the reliability of given spanning
tree and have developed the risk control and management approach. Since it is difficult
to determine a specific random distribution to each edge cost from received data, we
have considered the d-confidence interval based on only mean value and variance in risk-
control and management to avoid adverse impacts derived from uncertainty. Our proposed
model has been formulated as a multiobjective bottleneck spanning tree problem such as
(i) minimizing the maximum value of worse edge costs, (ii) maximizing the minimum
robustness derived from the d-confidence interval of each edge, and (iii) maximizing the
reliability to the whole of spanning tree. Furthermore, in order to deal with the satisfaction
for the objects of the decision maker and to solve the proposed model in mathematical
programming, we have introduced satisfaction functions for all objects and developed
the exact solution algorithm using Bellman-Zadeh’s minimum operator and deterministic
equivalent transformations. By comparing our proposed model with some existing models of
bottleneck spanning tree problems using a numerical example, we have obtained the result
that our proposed model with randomness and the reliability was well balanced between
constructing more reliable edges and avoiding uncertain risks.
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Our modeling approach to introduce robustness and reliability in a given network is
simple and has usefulness in well-balanced network between robustness and reliability. Fur-
thermore, our proposed model will be naturally applied to the other network optimization
problems such as the shortest path problem and the maximum flow problem. Therefore, this
study will be based on the other extended studies of network optimization. In this problem,
it is also important to determine the value of the reliability to each edge and the relativity
between any two edges strictly, and hence, we are now attacking to construct the exact and
mathematical method to determine the reliability and relativity of all edges as a future study.
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An LMI-based method for the integrated system identification and controller design is proposed
in the paper. We use the fact that a class of a system identification problem results in an LMI
optimization problem. By combining LMIs for the system identification and those to obtain a
discrete time controller we propose a framework to integrate two steps for the model-based control
system design, that is, the system identification and the controller synthesis. The framework
enables us to obtain a good model for control and a model-based feedback controller simultaneously
in the sense of the closed-loop performance. An iterative design algorithm similar to so-called
Windsurfer Approach is presented.

1. Introduction

In conventional control system design modeling of a control object and a controller synthesis
have been dealt with separately, that is, those are divided into two independent steps,
although those two processes are inseparably related [1]. Since the early 1990s so-called
“iterative system identification and controller design” scheme has been actively studied to
achieve the higher closed-loop performance ([2–4], etc.). The iterative manner is required
because of the fact that we cannot determine the optimal nominal model (obtained from
I/O data of the true plant) and the optimal controller (obtained from the nominal model)
simultaneously in the sense of the performance of the closed-loop system with the true plant
and the designed controller.

Several methodologies have been proposed on the iterative system identification and
controller design and those can be classified as follows.
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(1) Triangular inequality based method [5, 6]: an iterative frequency weighted system
identification and a model-based controller synthesis based on the triangular
inequality that shows an upper bound of the closed-loop H2 norm with the true
plant and the model-based controller.

(2) Windsurfer Approach [7–10]: expanding the closed-loop bandwidth gradually by the
iterative system identification and controller design.

(3) Frequency weighted LQG control based method [11]: an iterative update of the
frequency weighting used in the quadratic performance index of the frequency
weighted LQG control.

In some studies of approaches 1 and 2 the so-called “Hansen scheme” [12] is adopted
as a method for the system identification in the closed-loop. With the Hansen scheme the
closed-loop identification problem can be transformed into an open-loop one. By combining
the Hansen scheme and the controller synthesis methodology based on Youla parameteri-
zation we can construct an iterative identification/control algorithm that aims at a (local)
convergence of an upper bound of the closed-loop norm. However, in the algorithm the order
of the model and the controller tends to be extremely high with the progress of the algorithm.

As another direction in the field of system identification, methodologies based on
stochastic gradient have been actively studied for various types of systems, including multi-
variable systems, the Hammerstein systems, and systems with scarce measurement [13–19].

The objective of above iterative methodologies is essentially to obtain a good plant
model that results in the good performance of the closed-loop system with the true plant and
the controller. However, in the above methods the system identification and the controller
synthesis are still carried out in independent two steps, respectively, that is, the least square
method with an appropriate frequency weighting and the model-based controller design.
For the model obtained with the above iterative methods we can explain the validity of
the obtained plant model with qualitative knowledge about control relevant modeling, for
example, the importance of the model accuracy around the closed-loop bandwidth, and so
forth [2]. However, we do not have a method to get a quantitatively good model for control,
in other words, good parameters of the plant model that directly leads to the improvement
of a performance index for evaluating the closed-loop system, for example, closed-loop H2

or H∞ norm although the optimal H2 or H∞ controller design methods have been well
established for a given plant model. In general iterative system identification and controller
design methods we cannot guarantee the convergence of the closed-loop H2 or H∞ norm.
This is because we cannot consider the change of the closed-loop performance coming from
the model update in the system identification step (usually conducted in the closed-loop
setting) in standard iterative system identification and controller design algorithms. In [9] the
amount of the safe controller update for the closed-loop stability and the safe performance
improvement in the iterative identification and control are studied with the ν-gap metric [20].
However, the closed-loop performance is measured with the ν-gap only and the control law
is confined to the IMC based method.

In this paper a new method for the iterative identification and controller design is
proposed aiming to integrate the system identification and the controller design steps under
an LMI framework. We assume that the ARX model is the model of the true plant and the
H2 norm of the closed-loop system is the performance index. In the proposed approach
the model update is iteratively obtained using the closed-loop I/O data from the closed-
loop experiment with a constraint on the norm of the closed-loop system with the updated
plant model and the feedback controller. This method is based on the fact that a system



Journal of Applied Mathematics 3

identification problem for ARX models can be formulated as an LMI optimization problem.
By combining LMIs to obtain the plant model with the LMI-based method to obtain the
discrete time H2 controller [21] the adjustment existing both in the plant model parameter
and the parameters related to the feedback controller can be obtained simultaneously by
solving a set of LMIs. The LMI condition is an approximated version of a BMI condition that
represents specifications on the closed-loop system identification and the controller update
so that theH2 norm of the closed-loop system with the updated model and controller does
not exceed a specified value. In the closed-loop system identification the two-stage method
[22] is adopted to minimize the effect of the bias coming from the correlation between the
measurement noise and the plant input signal.

In the conventional least square approach for system identification, such simultaneous
adjustment of parameters both in the plant model and the feedback controller is not possible.
Furthermore there does not occur a problem about the “order explosion” of the plant model
and the feedback controller in the proposed method; in contrast to the fact such problem
is inevitable in the strategy based on the Hansen scheme. A design algorithm similar to
Windsurfer Approach [7, 8], which gradually expands the control authority, while keeping
the closed-loopH2 norm less than a specified value, is presented.

The rest of the paper is organized as follows. In Section 2 the iterative system
identification and controller design problem which is addressed in the present study is
formulated. An LMI-based system identification method for an SISO ARX model is presented
in Section 3. In Section 4 the iterative method for the system identification and the controller
design based on the LMI framework is proposed. A design example is presented in Section 5
and the conclusion is given in Section 6.

Notations are as follows: k: sample number, z−1: the shift operator in discrete time
systems, that is, z−1a(k) = a(k − 1), I, 0: an identity and zero matrices having the appropriate
dimension, respectively, Rm×n: the set of m × n real matrices, Sm: the set of m-dimensional
symmetric matrices, trace(A): trace of a square matrix A, σ(B): the maximum singular value
of a matrix B ∈ Rm×n, CT : the transpose of a matrix C, ‖D(z)‖2: the H2 norm of a stable
transfer function D(z).

2. Problem Formulation

Let us consider an SISO linear time invariant discrete time system given as follows:

y(k) = yp(k) + v(k) = P(z)u(k) + v(k), (2.1)

where u(k), yp(k), y(k), and v(k) are the input and output of the plant, the measurement
signal, and the noise, respectively. The true plant is defined as the discrete time transfer
function P(z).

In the present paper the ARX discrete time system is considered to model the true I/O
relationship of the plant in (2.1). The ARX model is parameterized as

yARX(k) = PARX(z)u(k) + vARX(k),

PARX(z) =
NARX(z)
DARX(z)

, vARX(k) = HARX(z)s(k), HARX(z) =
1

DARX(z)
,
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NARX(z) = bnz
−1 + bn−1z

−2 + · · · + b2z
−(n+1) + b1z

−n,

DARX(z) = 1 + anz
−1 + an−1z

−2 + · · · + a2z
−(n+1) + a1z

−n,

(2.2)

where PARX(z), yARX(k), and s(k) are the ARX model, that is, the nth order linear time
invariant discrete transfer function, the output of the ARX model, and the zero-mean white
noise, respectively. In the ARX model, model parameters to be identified are ai, bi ∈ R, i =
1, . . . , n.

Let K(z) be a linear time invariant feedback controller connected to the plant P(z) as
shown in Figure 1. The I/O relationship of the controller K(z) is given as follows:

uk(k) = K(z)y(k). (2.3)

The controller K(z) in (2.3) is obtained from the model PARX(z) and the order is n, that is, the
controller K(z) is assumed to be a model-based full-order controller. Note that we cannot get
the exact expression of the true plant P(z) in general and the model PARX(z) is only available
as a model for the controller design.

A state-state realization of the model PARX(z) is defined as the following control
canonical form:

PARX(z) :

⎧⎨
⎩
xARX(k + 1) = AARXxARX(k) + BARXu(k)

yARX(k) = CARXxARX(k) + vARX(k),

AARX =

[
0(n−1)×1 In−1

−a1 −a2 · · · − an

]
, BARX =

[
01×(n−1) 1

]T
, CARX =

[
b1 · · · bn

]
.

(2.4)

By assuming an input disturbance d(k) as shown in Figure 1 we define a generalized
plant G(z) as

G(z) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x(k + 1) = Ax(k) + B1w(k) + B2uk(k)

z(k) = C1x(k) +D12u(k)

y(k) = C2x(k) +D21w(k),

x(k) = xARX(k), w(k) :=

[
d(k)

vARX(k)

]
, z(k) :=

[
z1(k)

z2(k)

]
:=

[
ρyp(k)

u(k)

]
, ρ > 0,

A := AARX, B1 :=
[
BARX 0

]
, B2 := BARX, C1 :=

[
ρCARX

0

]
,

C2 = CARX, D12 :=
[

0
1

]
, D21 :=

[
0 1
]
,

(2.5)
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d(k) +

+

++u(k)

uk(k)

P(z)

K(z)

v(k)

yp(k)

y(k)

Figure 1: Closed-loop system with the true plant P(z) and the model-based controller K(z).

where ρ > 0 is a weighting factor that is adjusted by the control designer. We can change the
control authority by changing the value of ρ > 0;

K(z) :

⎧⎨
⎩
xK(k + 1) = AKxK(k) + BKy(k)

uk(k) = CKxK(k).
(2.6)

Assume that the input disturbance d(k) and the input and the output signals u(k) and
y(k) are always available. In this paper a control system design problem is formulated as
follows.

Simultaneous Modeling and Controller Design Problem

Find the feedback controller K(z) in (2.6) and the ARX model PARX(z) in (2.2) so that the
closed-loop system with P(z) and K(z) is stable and a performance index given by

Jy :=
Nf∑
k=0

y2(k) (2.7)

is minimized for a user-specified disturbance subject to the H2 norm of the closed-loop
system with G(z) and K(z) is less than μ > 0 and

|u(k)| ≤ u, ∀k = 0, . . . ,Nf , (2.8)

where u > 0 is the allowed maximum value of |u(k)|, k = 0, . . . ,Nf .
Note that in the above problem formulation the closed-loop system with the unknown

true plant P(z) in (2.1) and the model-based controller K(z) in (2.6), which is obtained with
the ARX model PARX(z), is not necessarily stable even if the closed-loop system with PARX(z)
and K(z) is stable. The feature is always true also in general model-based control system
design problems.
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3. LMI-Based System Identification and Controller Design

3.1. LMI-Based System Identification

Assume that we have N + 1 samples of input and output data of the plant P(z) in (2.1),
denoted by u(k) and y(k), k = 0, . . . ,N, from a single identification experiment. In the ARX
model in (2.2) the prediction error e(k, θ) is given by

e(k, θ) := DARX(z)y(k) −NARX(z)u(k) = y(k) −DIO(k)θ,

DIO(k) :=
[−DO(k) DI(k)

]
,

DO(k) :=
[
y(k − n) · · · y(k − 1)

]
, DI(k) :=

[
u(k − n) · · · u(k − 1)

]
,

θ :=
[
a1 · · · an b1 · · · bn

]T
, u

(
k − j) = y

(
k − j) = 0, ∀k − j < 0, j = 1, . . . , n.

(3.1)

The objective function for the system identification, the sum of the squared prediction
error e(k, θ), is given as

Jp :=
N∑
k=1

e2(k, θ) =
N∑
k=1

(
y(k) −DIO(k)θ

)2
. (3.2)

Using the Schur complement lemma we can easily see that the square of the prediction
error at each kth sample is less than α(k) > 0, k = 1, . . . ,N, that is, e2(k) = (y(k)−DIO(k)θ)

2 <
α(k), k = 1, . . . ,N if and only if the following matrix inequalities are satisfied:

[
α(k) y(k) −DIO(k)θ

y(k) −DIO(k)θ 1

]
> 0, k = 1, . . . ,N. (3.3)

Note that conditions in (3.3) are N LMI constraints on the parameter vector θ and α(k),
k = 1, . . . ,N. With (3.3) the optimal solution to the least square problem can also be obtained
as the solution vector θopt that solves the following LMI optimization problem:

Minimize f(α(k)) :=
N∑
k=1

α(k) subject to (3.3) and α(k) > 0, ∀k = 1, . . . ,N. (3.4)

Note that we can obtain the unique and globally optimal solution vector θopt because of the
LMI nature of the optimization problem (3.4).

3.2. Controller Design

To solve the control system design problem formulated in Section 2 the feedback controller
K(z) in (2.6) is designed so that the H2 norm of the closed-loop system is less than μ > 0.
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We employ the LMI-based discrete time controller design method proposed in [21]. The LMI
conditions for the controller design are given as follows:

trace(W) < μ2, (3.5)

⎡
⎢⎢⎣
W C1X +D12L C1

∗ X +XT − P I + ST − J
∗ ∗ Y + YT −H

⎤
⎥⎥⎦ > 0, (3.6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P J AX + B2L A B1

∗ H Q YA + FC2 YB1 + FD21

∗ ∗ X +XT − P I + ST − J 0

∗ ∗ ∗ Y + YT −H 0

∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (3.7)

where J, Q, S, X, Y ∈ Rn×n, F, LT ∈ Rn×1, H,P ∈ Sn, and W ∈ S2. Note that blocks whose
descriptions are easily inferred from the symmetric property of LMIs are denoted by “∗”.
Coefficient matrices of the controller K(z) in (2.6) can be obtained as follows:

AK = V −1(Q − YAX − YB2L − FC2X)U−1, BK = V −1F, CK = (L − C2X)U−1, (3.8)

where matrices U,V ∈ Rn×n are chosen arbitrarily if they satisfy VU = S − YX.

4. Windsurfer-Like Approach with an LMI-Based Method

4.1. Design Algorithm

For the control design problem in Section 2 a method for the iterative system identification
and controller design under an LMI framework is proposed by combining the LMI-based
system identification and the discrete time controller design [21] in the previous section into a
single system of LMIs. With the generalized plant G(z) in (2.5) a following design algorithm,
similar to Windsurfer Approach [7, 8], is proposed in the present paper.

4.1.1. Windsurfer-Like Approach with an LMI-Based Method

Step 1. Let id = 1 as the iterative number of the algorithm. If the plant P(z) is stable collect the
input and output data of P(z) in the open-loop setting (K(z) = 0) and obtain the initial ARX
model P 1

ARX(z) in (2.2) by the LMI-based method in Section 3 or the standard least square
method so that the objective function Jp (3.2) (f(α(k)) in (3.4)) is minimized. If the plant P(z)
is unstable, the initial model P 1

ARX(z) is obtained with a method based on the first principle
modeling. Set the weighting factor ρid > 0 and the closed-loop H2 norm constraint μ > 0
in (3.5). Note that the weighting factor ρ1 > 0 (the weighting factor in id = 1) is set to be
sufficiently small so that the initial controller K1(z) that will be obtained in the next step has
a mild control authority.
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Step 2. With the LMI-based method shown in the previous section [21], obtain a feedback
controller Kid(z) satisfying the closed-loop H2 norm constraint. If id = 1, go to Step 5. Else
if such controller Kid(z) cannot be obtained or the constraint (2.8) is violated, go to Step 7.
Otherwise go to Step 3.

Step 3. Obtain the performance index Jidy in (2.7) for the closed-loop system with the true
plant and the controller Kid(z).

Step 4. Let im = 1 as the iterative number of the minor loop. Inject the disturbance d(k) for
the closed-loop identification and collect the input u(k) and the output y(k), k = 0, . . . ,Nf

for another system identification in the closed-loop setting.

Step 5. Set the weighting factor ρid as ρid+1 = rimρid (rim > 1) to increase the control authority.
Obtain the new model of the plant Pid+1

ARX(z) and an (approximated) update of the controller
corresponding to the plant model Pid+1

ARX(z) with the closed-loopH2 norm constraint.

Step 6. Obtain Kid+1(z) satisfying the closed-loopH2 norm constraint for the newly identified
model Pid+1

ARX(z). Compute Jid+1
y with the true plant and the controller Kid+1(z). If Jidy −Jid+1

y ≤ ε,
0 < ε � 1, set id = id + 1 and go to Step 7. Else if Jid+1

y > Jidy , set rim+1 < rim , where rim+1 ≥ 1. Set
im = im + 1 and go to Step 5. Otherwise (Jid+1

y < Jidy and Jidy − Jid+1
y > ε) set id = id + 1 and go to

Step 2.

Step 7. Set the previously obtained controller Kid−1(z) as the optimal one and stop.

The proposed algorithm can be applied also to unstable plant if the initially designed
controller K1(z) stabilizes the true plant P(z).

Because of checking processes on the value of the performance index Jidy , id = 1, . . ., in
Steps 2 and 6 the performance index Jidy (id = 1, . . .) that is obtained by the above algorithm
is at least nonincreasing for the iteration number id = 1, . . .. In other words we can always get
at least a locally optimal pair of the ARX model PARX(z) and the feedback controller K(z).

On the other hand the result of the proposed algorithm clearly depends on the initially
obtained model because of the local convergence property of the algorithm. As a method to
avoid the effect of the local optima some models other than the initial model in Step 1, the
model obtained with the standard system identification method or the first principle based
method, are obtained firstly. Then the algorithm is carried out for those models and the best
result is selected. For example such models are able to be obtained by introducing small
perturbations into coefficients of the initial model obtained in Step 1.

The simultaneous update of the plant model and the controller in Step 5 of the
algorithm is carried out with an LMI-based method, that is, the main idea of the present
paper. The detail of the LMI-based method will be described in the next subsection.

4.2. Simultaneous Tuning of the Plant Model and the Controller:
LMI-Based Method

The LMI-based simultaneous update method of the model and the controller in Step 5 of
the algorithm is described. The objective of the present closed-loop identification is to get
adjustments not only for the model Pid

ARX(z) but also for matrices related to the controller Kid(z)
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so that the given closed-loopH2 norm constraint is not violated even for the increased control
authority represented as the increase of the weighting factor ρid+1 = rρid (r > 1). Assume that
the plant model derived in the idth closed-loop identification is given as follows:

Pid
ARX(z) =

Nid
ARX(z)

Did
ARX(z)

,

Nid
ARX(z) = bidn z

−1 + bidn−1z
−2 + · · · + bid2 z

−(n+1) + bid1 z
−n,

Did
ARX(z) = 1 + aid

n z
−1 + aid

n−1z
−2 + · · · + aid

2 z
−(n+1) + aid

1 z
−n.

(4.1)

Except for the initial system identification (id = 1) of the proposed design algorithm
the system identification is carried out in the closed-loop, that is, the disturbance signal d(k)
is injected and the plant input uid+1(k) and the output yid+1(k), k = 0, . . . ,N are collected
in the closed-loop system with P(z) and Kid(z). To minimize the bias effect coming from
the correlation between u(k) and v(k) in (2.1) in the closed-loop identification the two-stage
method [22] is adopted. In the two-stage method we firstly obtain the model of the sensitivity
function Sid

r (z) given by

Sid
r (z) =

1
1 − P(z)Kid(z)

, (4.2)

with the disturbance d(k) and the plant input u(k). Define the model of the sensitivity
function Sid

r (z) in (4.2) as the Nsth order FIR model given as

Sid
FIR(z) = sid0 + sid1 z

−1 + · · · + sidNs
z−Ns. (4.3)

With the model of the sensitivity function Sid
FIR(z) a filtered plant input uid

f (k) is given as

uid
f (k) = Sid

FIR(z)d(k), k = 0, . . . ,N. (4.4)

The new model Pid+1
ARX(z) is obtained with the input uid

f
(k) and the output yid(k). Because the

synthesized plant input uid
f
(k) is uncorrelated with the noise v(k), the bias effect caused by

the correlation between v(k) and u(k) is suppressed.
The newly identified model Pid+1

ARX(z) is defined as follows:

Pid+1
ARX(z) =

Nid+1
ARX(z)

Did+1
ARX(z)

=
Nid

ARX(z) +N
id
ARX(z)

Did
ARX(z) +D

id
ARX(z)

,

N
id
ARX(z) = Δbnz

−1 + · · · + Δb1z
−n := R(z)ΔNid

ARX,

D
id
ARX(z) = Δanz

−1 + · · · + Δa1z
−n := R(z)ΔDid

ARX,

ΔNid
ARX :=

[
Δb1 Δb2 · · · Δbn−1 Δbn

]T
,
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ΔDid
ARX :=

[
Δa1 Δa2 · · · Δan−1 Δan

]T
,

R(z) :=
[
z−n z−(n−1) · · · z−2 z−1],

(4.5)

where vectors ΔNid
ARX and ΔDid

ARX are adjustments for coefficients of the numerator and
denominator polynomials of the idth ARX model Pid

ARX(z), respectively.
To get the new model Pid+1

ARX(z) we obtain those adjustment vectors ΔNid
ARX and ΔDid

ARX

using the I/O data uid
f (k) and yid(k) with the fixed Pid

ARX(z). Similar to the LMI-based system

identification in the previous section the problem to obtain adjustment vectors ΔNid
ARX and

ΔDid
ARX results in the following LMI optimization problem:

Minimize fid+1(α) :=
N∑
k=1

α(k), α(k) > 0,

subject to

[
α(k) ∗

yid+1(k) −Did+1
IO

(
θid + Δθid

)
1

]
> 0, k = 1, . . . ,N,

(4.6)

where

Did+1
IO (k) :=

[
−Did+1

O (k) Did+1
I (k)

]
,

Did+1
O (k) =

[
yid+1(k − n) · · · yid+1(k − 1)

]
, Did+1

I (k) =
[
uid+1
f (k − n) · · · uid+1

f (k − 1)
]
,

θid :=
[
aid

1 · · · aid
n bid1 · · · bidn

]T
,

Δθid :=
[(

ΔDid
ARX

)T (
ΔNid

ARX

)T]T
=
[
Δa1 · · · Δan Δb1 · · · Δbn

]T
.

(4.7)

In the above LMI-based identification problem the unknown parameters are α(k) > 0, i =
1, . . . ,N and Δθid .

The LMI optimization problem (4.6) to get the new model Pid+1
ARX(z) is solved jointly

with the LMI constraint for the controller synthesis given in (3.5)–(3.7). By the id-th LMI-
based system identification in the above, the transfer function of the ARX model is changed
from Pid

ARX(z) into Pid+1
ARX(z) shown in (4.5). Considering the state-space realization of Pid

ARX(z)
in (2.4) the state-space realization of the newly identified model

Pid+1
ARX(z) :=

⎡
⎣ Aid+1

ARX Bid+1
ARX

Cid+1
ARX 0

⎤
⎦ (4.8)
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is given as

Aid+1
ARX = Aid

ARX −ΔAARX, Bid+1
ARX = Bid

ARX := BARX, Cid+1
ARX = Cid

ARX + ΔCARX,

ΔAARX :=

⎡
⎢⎢⎣

0(n−1)×n

(
ΔDid

ARX

)T
⎤
⎥⎥⎦, ΔCARX :=

(
ΔNid

ARX

)T
.

(4.9)

The variation of coefficient matrices in the state-state form of Pid
ARX(z) coming from the

id-th closed-loop system identification and the increase of the weighting factor (ρid+1 = rρid ,
r > 1) in Step 5 of the algorithm provides changes of coefficient matrices of the generalized
plant G(z) in (2.5). Those changes of parameters are defined as the symbols with “Δ” like
ΔAARX and ΔCARX in the above. Reflecting those changes, parameter matrices related to the
feedback controller in (3.5)–(3.7), for example, W , P , and H, and so forth, should also be
changed because we cannot expect that the constraint on the closed-loopH2 norm still holds
if those controller related parameters are left as they are.

In the present paper not only the changes of the coefficient matrices of the generalized
plant, including the changes of the plant model and the weighting factor ρ > 0, but also those
of parameter matrices related to the feedback controller are simultaneously obtained in the
process of the closed-loop identification step.

Define the changes of the matrices related to the feedback controller, for example, W ,
X, and L, and so forth in (3.5)–(3.7) as Δ• where • is W , X, and L, and so forth. Then the
condition for the controller synthesis in (3.5)–(3.7) so that the closed-loopH2 norm with the
newly obtained plant model Pid+1

ARX(z) and the feedback controller is less than μ > 0 becomes a
system of BMI given as follows:

trace
(
Wid + ΔW

)
< μ2, (4.10)

⎡
⎢⎢⎣
Wid + ΔW

(
Cid

1 + ΔC1

)(
Xid + ΔX

)
+D12

(
Lid + ΔL

)
Cid

1 + ΔC1

∗ Θid
22 Θid

23
∗ ∗ Θid

33

⎤
⎥⎥⎦ > 0, (4.11)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Pid + ΔP Jid + ΔJ
(
Aid

ARX −ΔAARX

)(
Xid + ΔX

)
+ BARX

(
Lid + ΔL

)
Aid

ARX −ΔAARX B1

∗ Hid + ΔH Qid + ΔQ Ξid
24 Ξid

25

∗ ∗ Xid + ΔX +
(
Xid
)T + ΔXT − Pid −ΔP Ξid

34 0

∗ ∗ ∗ Ξid
44 0

∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

Θid
22 = Xid + ΔX +

(
Xid
)T

+ ΔXT − Pid −ΔP, Θid
23 = I +

(
Sid
)T

+ ΔST − Jid −ΔJ,

Θid
33 = Y id + ΔY +

(
Y id
)T

+ ΔYT −Hid −ΔH,

Ξid
24 =

(
Y id + ΔY

)(
Aid

ARX −ΔAARX

)
+
(
Fid + ΔF

)(
Cid

ARX + ΔCARX

)
,
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Ξid
25 =

(
Y id + ΔY

)
B1 +

(
Fid + ΔF

)
D21, Ξid

33 = Θid
22, Ξid

34 = Θid
23, Ξid

44 = Θid
33,

Cid
1 =

[
ρid+1Cid

ARX
0

]
, ΔC1 =

[
ρid+1ΔCARX

0

]
, ΔC2 = ΔCARX.

(4.12)

The update of the plant model Pid
ARX(z) and the controller Kid(z) is given as the solution

to the LMI optimization problem in (4.6) with BMI constraints in (4.10)–(4.12). However, it
is difficult to obtain the global optimal solution to the nonconvex problem. To solve the non-
convex optimization problem in an approximated manner a method that iteratively solves an
approximated LMI problem of the original BMI problem. The approximated LMI problem is
derived by neglecting the second or higher order products of parameter matrices (symbols
with Δ) in the BMI problem. The approximation of the BMIs in (4.10)–(4.12) are given as
follows:

trace
(
Wid + ΔW

)
< μ2, (4.13)

⎡
⎢⎣W

id + ΔW Cid
1 X

id + Cid
1 ΔX + ΔC1X

id +D12
(
Lid + ΔL

)
Cid

1 + ΔC1

∗ Φid
22 Φid

23
∗ ∗ Φid

33

⎤
⎥⎦ > 0, (4.14)

⎡
⎢⎢⎢⎢⎢⎣

Pid + ΔP Jid + ΔJ Ψid
13 Aid

ARX −ΔAARX B1

∗ Hid + ΔH Qid + ΔQ Ψid
24 Ψid

25
∗ ∗ Ψid

33 Ψid
34 0

∗ ∗ ∗ Ψid
44 0

∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎦ > 0,

Φid
22 = Xid + ΔX +

(
Xid
)T

+ ΔXT − Pid −ΔP,

Φid
23 = I +

(
Sid
)T

+ ΔST − Jid −ΔJ,

Φid
33 = Y id + ΔY +

(
Y id
)T

+ ΔYT −Hid −ΔH,

Ψid
13 = Aid

ARXX
id +Aid

ARXΔX −ΔAARXX
id + BARX

(
Lid + ΔL

)
,

Ψid
24 = Y idAid

ARX − Y idΔAARX + ΔYAid
ARX + FidCid

ARX + FidΔCARX + ΔFCid
ARX,

Ψid
25 =

(
Y id + ΔY

)
B1 +

(
Fid + ΔF

)
D21, Ψid

33 = Φid
22,

Ψid
34 = Φid

23, Ψid
44 = Φid

33.

(4.15)

The above approximation is reasonable only if parameter matrices, symbols with Δ,
are small in some sense. In other words, the approximation becomes more accurate if the
update of the plant model Pid

ARX(z) and the model-based controller Kid(z) are forced to
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u(k) = K(z)y(k) + d(k)

Lb

y(k) = w(xs, k) + v(k)

Figure 2: Cantilevered beam.

be smaller. To confine the size of parameter matrices to be small enough following LMI
constraints on parameter matrices are introduced:

(Δ•)T (Δ•) < (β(σ(•)))2
I ⇐⇒

[
βσ(•)I (Δ•)T
Δ• βσ(•)I

]
> 0, (4.16)

where • represents the parameter matrix of interest and β > 0 is a small positive value, say,
0.1. The LMI (4.16) restricts the maximum singular value of the parameter matrix. Then using
the plant I/O data we can obtain adjustments of the plant model PARX(z) and the feedback
controller K(z), represented as the symbols with Δ, by solving the LMI optimization problem
(4.6) with LMI constraints (4.13)–(4.15) and (4.16). In other words by solving the above single
constrained LMI optimization problem we can get the adjustment not only on the plant model
but also on the approximated feedback controller with the closed-loopH2 norm.

In the proposed algorithm the weighting factor ρid for the output yp is increased (z1 =
ρidyp) as the iterative number id gets larger. Since the controller Kid(z) is designed so that
the closed-loopH2 norm is less than μ > 0, the controller Kid(z) tends to be more aggressive
according to the increase of the iterative number id and the closed-loop response of the yp

is expected to become more desirable until the constraint on the control effort u(k) (2.8) is
violated. In this sense the present iterative method is similar to Windsurfer Approach [7, 8]
that aims to achieve the wider closed-loop bandwidth with a gradual change of the reference
model in the IMC control framework.

5. Simulation Example

Let us consider an active vibration control of a cantilevered beam with the length Lb depicted
in Figure 2. At x = xs = 0.3Lb a sensor that measures y(k) = w(xs, k) + v(k) where w(xs, k)
and v(k) are the deflection of the beam at x = xs and the measurement noise, respectively. At
the free end (x = Lb) of the beam an actuator that produces the control force u(k) is installed.
The control and disturbance forces are applied as the form of u(k) = K(z)y(k) + d(k) where
K(z) is the transfer function of the feedback controller and d(k) is the input disturbance.

The true plant P(z) in (2.1) is defined as follows. Firstly a 30th order finite dimensional
continuous time system is analytically derived by approximating the beam system by taking
the lower fifteen modes of vibration with a small modal damping for each mode. Secondly
the discrete time plant P(z) is obtained by discretizing the 30th order continuous time system
with zero-order hold in sampling interval Ts = 0.05 [s]. The plant P(z) is stable and non-
minimum phase because of noncollocation of the sensor and the actuator. In fact the plant
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P(z) has three non-minimum phase zeros at z = 10.163, 1.898, and 1.543. It is well known
such non-minimum phase zeros of the plant generally constrain the achievable performance
of the feedback control system. Moreover the Windsurfer Approach based on IMC method
[7] does not work in the case that the model has non-minimum phase zeros within the control
bandwidth. In the present simulation study the non-collocation of the sensor and the actuator
is assumed to show that the proposed windsurfer-like algorithm works for the plant with
non-minimum phase zeros. We assume that we do not have any structural information of
the true plant P(z) including the order and the location of poles and zeros in the simulation
example. Only the I/O signals of P(z) subject to the disturbance are available throughout the
application of the proposed LMI-based algorithm.

As the model of the true plant P(z), the ARX model PARX(z) in (2.2) is assumed. In the
performance index in (2.7) the disturbance to obtain Jy is the impulse function and Nf = 104.
The allowed maximum absolute value of the control effort in (2.8) is u = 0.1. The disturbance
signal for the system identification is a zero-mean band limited white noise with 12 variance
and the sensor measurement is contaminated by a zero-mean band-limited white noise s(k)
with 0.012 variance.

In the present example the feedback controller K(z) is obtained so that the closed-
loop H2 norm is less than μ = 1. The model of the sensitivity function Sid

r (z) in (4.2) in
the two-stage approach is defined as 50th order FIR filter in each iteration. The order of the
the ARX model n is set to n = 2, 4, 6, . . . , 20 in the present simulation example. Note that
we cannot avoid a bias error in the simulation example because the order of all the models
considered in the example is lower than that of the true plant. Such undermodeling situation
is assumed because the author would like to show that the proposed LMI-based method
effectively works even in the undermodeling case that often appears in general control system
design problems. Examples that we must accept the undermodeling condition are given as
follows.

(i) In general the order of true plant cannot be determined exactly because all existing
control objects possibly have nonlinearities to some extent. When we obtain a
linear model of the true plant to adopt a linear model-based control law such
nonlinearities are ignored or linearized by assuming the order of the linear model
(not the true plant).

(ii) Even if we could determine the exact order of the true plant it is often the case that
the full order model-based controller cannot be used because the order of the true
plant is too high to implement the full-order controller.

The proposed LMI-based iterative algorithm for the system identification and
controller design is carried out. The achieved value of the performance index Jy in (2.4) with
the LMI-based design algorithm for each order of the model n is summarized in Table 1.

From the result in Table 1 the minimum value of the performance index Jy is achieved
in n = 8. In other words, the best control performance in the sense of the closed-loop system
with the 30th order true plant and the model-based controller is achieved when we take the
8th order ARX model. In n = 8 the algorithm is terminated in id = 4 because the further
performance improvement can no longer be achieved in the sense of Jy in (2.7). Bode plots of
the obtained models Pid

ARX(z) for id = 1 (open-loop identification), . . ., 4 with that of the true
plant and those of corresponding controllers Kid(z), id = 1, . . . , 4 are shown in Figures 3 and 4.
We can see that the gain of the feedback controller is getting larger along with the progress
of the algorithm. Closed-loop impulse responses are shown in Figure 5. The closed-loop
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Figure 3: Bode plots of the true plant P(z) and its models Pid
ARX(z)’s (n = 8).
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Figure 4: Bode plots of the the feedback controllers Kid (z)’s (n = 8).
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Table 1: The achieved value of the performance index Jy for each order of the ARX model. The best control
performance is achieved in n = 8.

n Achieved Jy n Achieved Jy

2 1010.7 12 121.04
4 180.16 14 152.88
6 102.30 16 121.79
8 53.071 18 950.09
10 122.79 20 564.68
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Figure 5: Impulse responses of the open and closed-loop systems (n = 8).

impulse response y(k) is well controlled and the maximum amplitude of the control effort
u(k) becomes larger with the progress of the algorithm.

The result of the present example indicates that the best fit in the sense of some open-
loop responses does not necessarily generate a good model for the controller design. Furthermore
the open-loop accuracy of the plant model does not necessarily promise the good closed-loop
performance, in other words, there exists the inseparably relationship between the modeling
and controller design processes [1, 2].

Furthermore, for a comparison purpose, we obtain a feedback controller minimizing
Jy with the constraint on the closed-loopH2 norm μ = 1 and that on the control effort u = 0.1
(in (2.8)) when the transfer function of the 30th order true plant is exactly known and is
available for the controller design. By applying theH2 control method in [21] with adjusting
the weighting factor ρ > 0 the achieved minimum value of Jy with μ < 1 and u = 0.1 becomes
Jy = 25.404. The achieved Jy is smaller than the best value (Jy = 53.071) in the proposed
algorithm. However, the author would like to emphasize that the above ideal situation is
possible because the present example is a simulation and such situation can never be realized
in general.

As another comparison let us assume that modal parameters up to lower 4th modes
of vibration correctly, that is, the 8th-order exact reduced-order model of the 30th order true
plant is available. Note that this ideal situation cannot be realized in general. For the 8th
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order plant the 8th order controller is obtained so that the performance index Jy is minimized
with μ < 1 and u = 0.04 by increasing the weighting factor ρ gradually with the method in
[21]. Notice that 0.04 is the almost same peak value as that of the case where the optimal
Jy = 53.071 is obtained in n = 8 with the proposed algorithm. Then the achieved minimum
value of Jy = 65.733 and it is larger than Jy = 53.071 that is obtained with the proposed design
algorithm in n = 8.

With the above discussion the obtained 8th order model in the present simulation
example is a reasonable solution to the formulated simultaneous modeling and control
design problem even if it is a locally optimal solution and the effectiveness of the proposed
integrated system identification and controller update methodology with the LMI-based
framework is shown.

6. Conclusion

An LMI-based methodology for iterative system identification and controller design has
been proposed. With the fact that the standard least-square-based system identification
results in the LMI optimization problem the plant model and the feedback controller are
simultaneously adjusted in a single system of LMI. The iterative design algorithm similar to
Windsurfer Approach is proposed.

The relation between the proposed methodology and the other existing methods for
iterative identification and control, including IFT [23] and VFRT [24], will be considered in
the future study.
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Many industrial processes and physical systems are spatially distributed systems. Recently, a novel
3-D FLC was developed for such systems. The previous study on the 3-D FLC was concentrated
on an expert knowledge-based approach. However, in most of situations, we may lack the expert
knowledge, while input-output data sets hidden with effective control laws are usually available.
Under such circumstance, a data-driven approach could be a very effective way to design the 3-D
FLC. In this study, we aim at developing a new 3-D FLC design methodology based on clustering
and support vector machine (SVM) regression. The design consists of three parts: initial rule
generation, rule-base simplification, and parameter learning. Firstly, the initial rules are extracted
by a nearest neighborhood clustering algorithm with Frobenius norm as a distance. Secondly, the
initial rule-base is simplified by merging similar 3-D fuzzy sets and similar 3-D fuzzy rules based
on similarity measure technique. Thirdly, the consequent parameters are learned by a linear SVM
regression algorithm. Additionally, the universal approximation capability of the proposed 3-D
fuzzy system is discussed. Finally, the control of a catalytic packed-bed reactor is taken as an
application to demonstrate the effectiveness of the proposed 3-D FLC design.

1. Introduction

Many industrial processes and physical systems such as industrial chemical reactor [1, 2],
semiconductor manufacturing [3], and thermal processing [4] are “distributed” in space.
They are usually called spatially distributed systems, or distributed parameter systems [1].
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Figure 1: A three-dimensional fuzzy set.

The states, controls, and outputs of such systems depend on the space position as well as
on the time [2]. Traditionally, model-based methods are used to control such systems, where
a good mathematical model is definitely required. However, the process model may not be
easily obtained in many complex situations, and then, a model-free control method has to
be used. This leads to the recent development of the novel three-dimensional fuzzy-logic
control (3-D FLC) [5–8], which has the inherent capability to process spatiotemporal dynamic
systems. The 3-D FLC uses one kind of three-dimensional (3-D) fuzzy set (shown in Figure 1),
which is composed of the traditional fuzzy set and a third dimension for the spatial
information, and executes a 3-D rule inference engine. It is actually a kind of spatiotemporal
fuzzy-control system with the traditional model-free advantage.

To date, the 3-D FLC design has been focused on an expert-knowledge-based approach
[5], that is, the fuzzy-rule design is from human experts’ knowledge. In this approach, human
knowledge to the control solution must exist, and be structured. Practically, experts may have
problems structuring the knowledge [9]. Sometimes, although experts have the structured
knowledge, they may sway between extreme cases: offering too much knowledge in the field
of expertise, or tending to hide their knowledge [9]. Thus, we often lack expert knowledge
for control that is usually hidden in an input-output data set. Under this circumstance, a
data-driven design becomes a good choice for the 3-D FLC, that is, extraction of fuzzy rules
from a spatiotemporal input-output data set. Since the research on the 3-D FLC is just at the
beginning stage, extracting 3-D fuzzy control rules from a spatiotemporal data set is still a
challenging and open problem for spatially distributed systems.

Traditional data-driven FLC design methods have been developed in the past three
decades. They are usually composed of three parts: rule generation, structure optimization,
and parameter optimization [10]. For instance, grid partitioning of multidimensional space
[11] and clustering technique [12] can be used to generate rules automatically; reducing
redundancy variable [12], fusing similar clusters [13], and fusing similar fuzzy set [14] can be
applied to reduce the rule number and realize the structure optimization; genetic algorithm
[15] and gradient decent approach [16] can be adopted for fine tuning of membership
function and realize the parameter optimization. For a complete review of data-driven fuzzy
system design, one can further refer to [10]. These methods provide useful solutions to a
traditional FLC design.

In this study, we aim at developing a new data-driven 3-D FLC design method
based on clustering and SVM-regression learning. The initial 3-D rule base is first generated
by a nearest-neighborhood-clustering method from a spatiotemporal data set via defining
Frobenius norm as a distance. Then, the initial 3-D rule base is simplified based on similarity
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measure technique defined for 3-D fuzzy sets and 3-D fuzzy rules. Subsequently, an SVM-
regression learning algorithm is used to learn the parameters of the rule consequent parts.
In addition, the universal approximation capability of the proposed 3-D fuzzy system is
discussed.

The paper is organized as follows. Preliminaries about 3-D FLC and SVM regression
are addressed in Section 2. In Section 3, a clustering and SVM-regression learning-based
3-D fuzzy control design methodology is presented in detail. In Section 4, the universal
approximation capability of the proposed 3-D fuzzy system is presented. In Section 5, a
catalytic packed-bed reactor is presented as an example to illustrate the proposed design
scheme of a 3-D FLC and validate its effectiveness. Finally, conclusions are given in Section 6.

2. Preliminaries

2.1. 3-D FLC

The 3-D FLC is designed to have the inherent capability to deal with spatial information
and its basic structure is shown in Figure 2. It has a similar functional structure similar
to the traditional FLC, which consists of three basic blocks: fuzzification, rule inference,
and defuzzification. However, it will differ in the detailed operations because of the spatial
processing requirement. Generally, the 3-D FLC will be involved with the following basic
designs: 3-D membership function (MF), 3-D fuzzification, 3-D rule base, 3-D rule inference,
and defuzzification. One can refer to [5] for detailed description. Once each component of a
3-D FLC is set, a precise mathematical formula of the 3-D FLC can be derived.

Assumed that we have 3-D fuzzy rules represented by the following expression:

R
l

: IF x1(z) is C
l

1 and · · · and xs(z) is C
l

s, Then u is Bl, (2.1)

where xi(z) = (xi(z1)xi(z2) · · ·xi(zp))
T denotes the ith spatial input variable (1 ≤ i ≤ s), xi(zj)

is the input of xi(z) from the sensing location z = zj (1 ≤ j ≤ p); z denotes one-dimensional

space in a discrete space domain Z = {z1, z2, . . . , zp}; C
l

i denotes a 3-D fuzzy set, l = 1, . . . ,N;
u denotes output variable (the control action); Bl denotes a traditional fuzzy set.
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If Gaussian type 3-D membership functions (MF) are used to describe 3-D fuzzy sets
in (2.1), then we have

μl
Gi(xi(z)) = exp

⎛
⎝−

(
xi(z) − cli(z)

σl
i(z)

)2
⎞
⎠, (2.2)

where μl
Gi denotes the Gaussian type 3-D MF of the ith spatial input xi(z) in the lth rule;

cli(z) = (cli(z1), . . . , cli(zp))
T and σl

i(z) = (σl
i(z1), . . . ,σl

i(zp))
T are the center and width of μl

Gi,
respectively; cli(zj) and σl

i(zj) denote center and width of the Gaussian type 2D MF of the
ith spatial input xi(z) at the sensing location z = zj . The Gaussian type 3-D MF μl

Gi can be
regarded as an assembly of multiple Gaussian type 2-D MFs over the space domain Z. Then,
the Gaussian type 2-D MF of the ith spatial input xi(z) at the sensing location z = zj is given
as

μGij

(
xi

(
zj
))

= exp

⎛
⎜⎝−

⎛
⎝xi

(
zj
) − clij
σl
ij

⎞
⎠

2
⎞
⎟⎠, (2.3)

where clij = cli(zj) and σl
ij = σl

i(zj).
Furthermore, if we employ singleton fuzzification, “product” t-norm and “weighted

aggregation” dimension reduction [6] in the 3-D rule inference, singleton fuzzy sets for the
output variable, and “center of sets” defuzzification [17], the 3-D FLC can be mathematically
expressed as

u(xz) =

∑N
l=1 ζ

l
∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

∑N
l=1

∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

=

∑N
l=1 ζ

l
∑p

j=1 aj
∏s

i=1 exp
(
−
((

xi

(
zj
) − clij)/σl

ij

)2
)

∑N
l=1

∑p

j=1 aj
∏s

i=1 exp
(
−
((

xi

(
zj
) − clij)/σl

ij

)2
) ,

(2.4)

where xz = (x1(z)x2(z) · · ·xs(z)) ∈ Ω ⊂ Rp×s is a spatial input vector with Ω as the input
domain, p as the number of sensors, and s as the number of spatial inputs; N is the number
of rules; aj is the spatial weight from the jth spatial point [6]; ζl ∈ U is the nonzero value in
the singleton fuzzy set of the output variable for the lth rule.

In (2.4), let

φl(xz) =

∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

∑N
l=1
∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
)) , (2.5)
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then (2.4) can be rewritten as

u(xz) =
N∑
l=1

ζlφl(xz). (2.6)

Similar to a traditional FLC [16], we define φl(xz) as a spatial fuzzy basis function (SFBF).
Each SFBF corresponds to a 3-D fuzzy rule, and all the SFBFs correspond to a 3-D rule base.
Mathematically, a 3-D FLC is a linear combination of all the SFBFs.

Equation (2.6) shows that the 3-D FLC is a nonlinear mapping from the input space
xz ∈ Ω ⊂ Rp×s to the output space u(xz) ∈ U ⊂ R. It provides us a way to understand
and analyze the 3-D FLC from the point of view of function approximation. In Section 4, we
will prove that the 3-D FLC has a universal approximation property based on the nonlinear
mapping in (2.6).

2.2. Linear SVM Regression

An SVM is a learning algorithm that originated from theoretical foundations of the statistical
learning theory [18] and has been widely used in many practical applications, such as
bioinformatics, machine vision, text categorization, handwritten character recognition, time
series analysis, and so on. The distinct advantage of the SVM over other machine learning
algorithms is that it has a good generalization ability and can simultaneously minimize the
empirical risk and the expected risk [19]. The SVM algorithms can be categorized into two
categories: SVM classification and SVM regression. In this study, we are concerned with the
SVM regression with ε-insensitive loss function [20].

Suppose we have a training set D = {[xi,yi] ∈ Rs×R, i = 1, . . . , q} consisting of q pairs
(x1,y1), (x2,y2), . . . , (xq,yq), where the inputs are s-dimensional vectors, and the labels are
continuous values. In ε-SVM regression, the goal is to find a function f(x,w) so that for all
training patterns x has a maximum deviation ε from the target values yi and has a maximum
margin. The ε-insensitive loss function is defined as follows:

∣∣y − f(x,w)
∣∣
ε =

{
0, if

∣∣y − f(x,w)
∣∣ ≤ ε,∣∣y − f(x,w)

∣∣ − ε, otherwise.
(2.7)

The ε-insensitive loss function defines an ε tube [9].
The regression problem can be formulated as a convex optimization problem as

follows:

min
w,b,ξi,ξ

∗
i

=
1
2
‖w‖2 + C

(
l∑

i=1

ξi +
l∑

i=1

ξ∗i

)
(2.8)
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subject to

yi − 〈w · xi〉 − b ≤ ε + ξi

〈w · xi〉 + b − yi ≤ ε + ξ∗i

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , q,

(2.9)

where ξi and ξ∗i are slack variables, and the constant C is a design parameter chosen by the
user, which determines the trade off between the complexity of f(x,w) and the approximate
error.

The above optimization problem can be solved in a dual space. By introducing the
Lagrange multipliers, the primal optimization problem can be formulated in its dual form as
follows:

max
αi,α

∗
i

⎧⎨
⎩−1

2

q∑
i=1

q∑
j=1

(
α∗
i − αi

)(
α∗
j − αj

)〈
xi · xj

〉 − ε q∑
i=1

(
α∗
i + αi

)
+

q∑
i=1

(
α∗
i − αi

)
yi

⎫⎬
⎭ (2.10)

subject to

q∑
j=1

α∗
i =

q∑
i=1

αi,

0 ≤ α∗
i ≤ C, 0 ≤ αi ≤ C, i = 1, . . . , q.

(2.11)

Solving the dual quadratic programming problem, we can find an optimal weight vector w
and an optimal bias b of the regression hypersurface given as follows:

w =
q∑
i=1

(
α∗
i − αi

)
xi,

b =
1
q

(
q∑
i=1

(
yi − 〈w · xi〉

)
.

(2.12)

Then, the best regression hypersurface is given by

f(x,w) =
q∑
i=1

(
α∗
i − αi

)〈x · xi〉 + b =
∑
i∈SV

(
α∗
i − αi

)〈x · xi〉 + b (2.13)

The training pattern xi with nonzero (α∗
i − αi) is called support vector (SV).

3. Clustering and SVM-Regression Learning-Based 3-D FLC Design

Clustering and SVM-regression learning-based 3-D FLC design is a novel design of a 3-D
FLC by integrating a nearest-neighborhood-clustering and an SVM-regression. The design
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Figure 3: Conceptual configuration of a clustering and SVM-regression learning-based 3-D FLC.

methodology can be depicted by Figure 3. Firstly, a nearest-neighborhood-clustering method
with Frobenius norm defined as a distance is employed to mine the underlying knowledge
of the spatiotemporal data set S and yield the initial structure, that is, antecedent part of 3-D
fuzzy rules. Because the obtained input space partition may have redundancy in terms of
highly overlapping MFs, it is necessary to optimize the obtained initial fuzzy partition. Then,
a similarity measure technique is utilized to merge similar 3-D fuzzy sets and to merge similar
3-D fuzzy rules, and then to simplify the initial rule structure. Finally, a linear SVM-regression
algorithm is used to learn the parameters of the consequent parts based on an equivalence
relationship between a linear SVM regression and a 3-D FLC.

The spatiotemporal data set S from a spatially distributed system is composed of n
spatiotemporal input-output data pairs given as follows:

S =
{(

xk
z , u

k
)
| xk

z ∈ Rp×s, uk ∈ R, k = 1, . . . ,n
}
, (3.1)

where xk
z = (xk

1 (z), . . . ,x
k
s (z)) denotes the value of s spatial input variables at the kth sampling

time, xk
i (z) = (xk

i (z1), . . . ,xk
i (zp))

Tdenotes the value of ith spatial input variable at the kth
sampling time (i = 1, . . . , s), uk denotes the output value at the kth sampling time, n denotes
the number of sampling time, and p denotes the number of sensors. Since infinite sensors are
used, xk

z is a matrix with p rows and s columns.
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3.1. Initial Structure Learning

3.1.1. Nearest Neighborhood Clustering Method

Clustering method is one of the data-driven learning tools for unlabeled data. It can mine
underlying knowledge (or data structure) from a dataset that is difficult for humans to
manually identify. One of the simplest clustering algorithms is the nearest-neighborhood
clustering algorithm [16]. However, the existing nearest-neighborhood clustering algorithm
has not the capability to deal with spatiotemporal data. In this study, we expand its capability
to deal with spatiotemporal data set S, which is of matrix form. The key point is that the
Frobenius norm given in (3.2) is used for defining a distance in a nearest neighborhood
clustering algorithm.

‖X‖F =
√

tr
(
XTX

) (
X ∈ Rp×s). (3.2)

The nearest neighborhood clustering algorithm is summarized as follows.

(i) Step 1: Begin from the first spatiotemporal data x1
z. Let the first cluster center c1

z be
x1
z, the number of data pairs m1 be 1, and the threshold be ρ0 for generating new

fuzzy rules.

(ii) Step 2: Suppose that the kth spatiotemporal data xk
z (k = 2, . . . ,n) is considered,

when N clusters have been generated and their centers are c1
z, c

2
z, . . ., and cNz

respectively. Firstly, compute the distance between xk
z and each center of N clusters

using ‖xk
z − clz‖F (l = 1, . . . ,N). Then, compute the threshold ρ using

ρ = max
l=1,...,N

⎛
⎜⎝ 1

1 +
∥∥∥xk

z − clz

∥∥∥
F

⎞
⎟⎠ (3.3)

Hence, the corresponding cluster center clkz is taken as the nearest neighborhood
cluster of xk

z .

(iii) Step 3: (a) If ρ < ρ0, then xk
z is taken as a new cluster center, and let N = N+1, mN =

1, and cNz = xk
z . (b) If ρ ≥ ρ0,x

k
z belongs to the cluster with the center clkz . The center

of lkth cluster is tuned by introducing a learning rate η = η0/(mlk + 1) (η0 ∈ [0, 1])
as follows:

clkz = clkz + η
(
xk
z − clkz

)
, (3.4)

and let mlk = mlk + 1.

(iv) Step 4: Let k = k + 1. If k ≥ n + 1, then quit. Otherwise, back to Step 2.

3.1.2. Rule Extraction and 3-D MF Construction

After clustering learning, we obtain an input space partition with N cluster centers
c1
z, c

2
z, . . . , c

N
z . Then, we will produce antecedent part of rule base and construct 3-D MFs in
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terms of the partition. Each cluster corresponds to a 3-D fuzzy rule. Assumed that we employ
Gaussian type 3-D MF. Then, the cluster center corresponds to the center of Gaussian type
3-D MFs in the antecedent part. Thus, the number of fuzzy rules is equal to the number of
clusters N. In addition, we determine the width of the Gaussian MFs in terms of the domain
of variables. For instance, the width of the Gaussian type 3-D MFs from the same sensing
location are defined as

σ
(
zj
)
= max

1≤i≤s

(
xmax
i

(
zj
) − xmin

i

(
zj
)

10

)
, (3.5)

where xmax
i (zj) and xmin

i (zj) are the maximum and the minimum bound values of the ith
spatial input variable, respectively.

3.2. Structure Simplication

After the initial structure learning, the obtained fuzzy partition of the input space and fuzzy
rules may have redundancy in terms of highly overlapping MFs. In this step, we will simplify
the fuzzy partition and fuzzy rules. The crucial technique for simpification is similarity
measure. The previous similarity measure techniques [14, 21, 22] developed for traditional
fuzzy sets and traditional fuzzy rules are not suitable to 3-D fuzzy sets and 3-D fuzzy rules.
In this study, we will define a new similarity measure technique.

3.2.1. Similarity Measure

Firstly, we define the similarity of two 3-D fuzzy sets A and B as below.

S
(
A,B

)
=

1

1 + d
(
A,B

) , S(·) ∈ (0, 1], (3.6)

where d(A,B) is a distance between A and B. Since Gaussian type 3-D MFs are chosen, the
following simple expression can be used to approximate the distance:

d
(
A,B

)
=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
cA(z1) σA(z1)

...
...

cA(zp) σA(zp)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
cB(z1) σB(z1)

...
...

cB(zp) σB(zp)

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥
F

, (3.7)

where cA(zj )(cB(zj )) and σA(zj )(σB(zj )) are center and width of the Gaussian type 3-D MF A(B)
at sensing location z = zj (j = 1, . . . , p), respectively.

Based on the similarity measure, we can merge similar 3-D fuzzy sets, or merge similar
3-D fuzzy rules.
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(i) Merge of Two Similar 3-D Fuzzy Sets A and B

Firstly, the similarity between A and B is computed according to (3.6). If S(A,B) is higher
than a threshold, we can conclude that A and B are similar, and then merge them into a new
3-D fuzzy set C. The center and width of C are viewed as the average values of A and B, and
are given as the following:

cC(zj ) =
cA(zj ) + cB(zj )

2
,

σC(zj ) =
σA(zj ) + σB(zj )

2
.

(3.8)

(ii) Merge of Two Similar 3-D Fuzzy Rules R
l1
and R

l2

The similarity R
l1

and R
l2

is inferred by measuring their similarity in the antecedent part. For

instance, the similarity computation between R
l1

and R
l2

is given by

Srule

(
R

l1
,R

l2
)

= min
1≤i≤s

{
S

(
C

l1
i ,C

l2
i

)}
, (3.9)

where R
l1

and R
l2

have the same rule form as in (2.1), C
l1
i (C

l2
i ) denotes the 3-D fuzzy set

for the ith spatial input variable xi(z) in the l1th (l2th) rule. If Srule(R
l1
,R

l2) is higher than a

threshold, we can conclude that R
l1

and R
l2

are similar, and then merge them into a new 3-D

fuzzy rule R
l1l2

. The merging of two 3-D fuzzy rules is realized by merging the two fuzzy sets
of each spatial input variable in the two 3-D fuzzy rules, respectively.

3.2.2. Similarity Measure-Based Structure Simplification

Based on the similarity measure, the simplification task includes removing 3-D fuzzy sets
similar to the universal set, merging similar 3-D fuzzy sets, and merging similar rules. The
detailed procedure of structure simplification is summarized as follows.

(i) Step 1: Given a 3-D fuzzy rule base � = {Rl}
K

l=1. Firstly, set proper thresholds: λu ∈
(0, 1] for removing 3-D fuzzy sets that are similar to the universal set, λset ∈ (0, 1]
for merging similar 3-D fuzzy sets, and λrule ∈ (0, 1] for merging 3-D fuzzy rules
with similar antecedents.

(ii) Step 2: Calculate sjki = S(C
j

i ,C
k

i ) with j /= k, j = 1, . . . ,K, k = 1, . . . ,K, and i =
1, . . . , s. Let srmq = maxj /= k{sjki} and select C

r

q and C
m

q .

(iii) Step 3: If srmq ≥ λset, merge C
r

q and C
m

q into a new 3-D fuzzy set C
rm

q , set C
r

q = C
rm

q

and C
m

q = C
rm

q , and back to step 2. If no more two 3-D fuzzy sets have the similarity
with srmq ≥ λset (j /= k), then go to step 4.

(iv) Step 4: Remove the 3-D fuzzy set similar to the universal set and the rule with
membership function that is always near zero over the space domain.
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(v) Step 5: Calculate the similarity of two rules sl1l2 = Srule(R
l1
,R

l2) with l1 /= l2, l1 =
1, . . . ,N, l2 = 1, . . . ,N. Let srm = maxl1 /= l2{sl1l2}.

(vi) Step 6: If srm ≥ λrule, merge the rth and the mth rules into a new rule Rnew and
substitute them. Let N = N − 1, and back to step 5. If no more rules have similarity
with srm ≥ λrule (r /=m), then quit.

Generally speaking, the threshold λu is higher than the threshold λset, while the choice
of a suitable threshold λrule depends on the application. The lower λset is set, the less fuzzy
sets and less fuzzy rules are yielded in the resulting rule base. In this study, we set λu =
0.95, λset = 0.75, and λrule = 1.

3.3. Parameter Learning

After the structure simplification, we obtain a rule base with optimized antecedent parts.
For a complete rule base, the rest task is to determine the consequent part parameters. In
this study, we employ an SVM regression algorithm to learn the consequent part parameter
ξl (l = 1, . . . ,N) in the 3-D FLC.

Firstly, the original input samples are transformed into new samples. Utilizing the
spatial fuzzy basis functions φl(xk

z) (l = 1, . . . ,N) in (2.5), we can transform each spatial input
sample xk

z (k = 1, . . . ,n) in S into a new input sample φ(xk
z) = (φ1(xk

z),φ
2(xk

z), . . . ,φ
N(xk

z)).
Then, the original data set S in (3.1) can be transformed into a new data set S′ as follows:

S′ =
{(

φ
(
xk
z

)
, uk

)
| φ
(
xk
z

)
∈ RN , uk ∈ R, k = 1, . . . ,n

}
. (3.10)

Secondly, an equivalence relationship of an SVM regression and a 3-D FLC can be
derived based on the new data set S′. From (2.13), the final decision function f(φ(xk

z)) of an
SVM can be described with the following form:

f
(
φ
(
xk
z

))
=

n∑
k=1

(
α∗
k − αk

)〈
φ
(
xk
z

)
,φ(xz)

〉
+ b, (3.11)

where α∗
k

and αk are associated learning parameters in a SVM, The training pattern φ(xk
z) with

nonzero (α∗
k
− αk) is called support vector (SV). Furthermore, (3.11) can further be expressed

by

f
(
φ
(
xk
z

))
=

n∑
k=1

(
α∗
k − αk

) N∑
l=1

φl
(
xk
z

)
φl(xz) + b

=
N∑
l=1

(
n∑

k=1

(
α∗
k − αk

)
φl
(
xk
z

))
φl(xz) + b

=
N∑
l=1

ξlφl(xz) + b

= u(xz)

(3.12)
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In (3.12), the bias term b in a 3-D FLC can be realized by adding a fuzzy rule as follows:

R
0

: IF x1(z) is C
0
1 and · · · and xs(z) is C

0
s, THEN u is b, (3.13)

where C
0
i is a universal 3-D fuzzy set, whose fuzzy degree is 1 over the space domain for any

spatial input xi(z), i = 1, . . . , s. From (3.12), we can see that an SVM will be equivalent to a
3-D FLC if (3.14) holds.

ξl =
n∑

k=1

(
α∗
k − αk

)
φl
(
xk
z

)
. (3.14)

Finally, a linear SVM regression is employed to learn the consequent part parameters.
Using (3.14), the parameters ξl (l = 1, . . . ,N) in consequent parts are obtained in terms of the
SVM learning, that is,

ξl =
∑
k∈SV

(
α∗
k − αk

)
φl
(
xk
z

)
. (3.15)

4. Universal Approximation of Clustering and
SVM-Regression Learning-Based 3-D FLC

In essence, the clustering and SVM-regression learning-based 3-D FLC design is a fuzzy
modeling that extracts fuzzy control rules and constructs a 3-D FLC from spatiotemporal
data hidden with effective control laws. In other words, the proposed 3-D FLC aims
at approximating an unknown nonlinear control function. Thus, in this subsection, we
are concerned with its universal approximation capability. The universal approximation
capability of the SVM learning-based 3-D FLC can be described by the following theorem.

Theorem 4.1. Suppose that the input universe of discourse Ω is a compact set in Rp×s. Then, for
any given real continuous function g(xz) on Ω and arbitrary ε > 0, there exists a 3-D FLC u(xz) as
described in (2.4) satisfying the following inequality:

sup
xz∈Ω

(∣∣u(xz) − g(xz)
∣∣) < ε. (4.1)

The proof of the theorem is given in the appendix by using Stone-Weierstrass theorem
[23]. Theorem 4.1 indicates that the clustering and SVM-regression learning-based 3-D FLC is
a universal approximator, that is, it can approximate continuous control functions to arbitrary
accuracy.

5. Application

5.1. A Catalytic Packed-Bed Reactor

We take a catalytic packed-bed reactor [1, 5] as an example. The reactor is long and thin as
shown in Figure 4. It is fed with gaseous reactant C from the right side, and the zero-order
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Jacket

Gas C

Reaction C→D

Catalyst

Figure 4: Sketch of a catalytic packed-bed reactor.

gas phase reaction C → D is carried out on the catalyst. The reaction is endothermic, and a
jacket is used to heat the reactor. A dimensionless model that describes this nonlinear tubular
chemical reactor is provided as follows:

εp
∂Tg

∂t
= −∂Tg

∂z
+ αc

(
Ts − Tg

) − αg

(
Tg − u

)
,

∂Ts
∂t

=
∂2Ts
∂z2

+ B0 exp
(

γTs
1 + Ts

)
− βc

(
Ts − Tg

) − βp(Ts − b(z)u)

(5.1)

subject to the boundary conditions

z = 0, Tg = 0,
∂Ts
∂z

= 0; z = 1,
∂Ts
∂z

= 0, (5.2)

where Tg , Ts, and u denote the dimensionless temperature of the gas, the catalyst, and jacket,
respectively. The values of the process parameters are given as follows:

εp = 0.01, γ = 21.14, βc = 1.0, βp = 15.62, (5.3)

B0 = −0.003, αc = 0.5, αg = 0.5. (5.4)

The concerned control problem is to control the catalyst temperature Ts(z, t)
throughout the reactor to track a spatial reference profile (Tsd(z) = 0.42 − 0.2 cos(πz)) in
order to maintain a desired degree of reaction rate using the measurements of catalyst
temperature from five sensing locations z′ = [0 0.25 0.5 0.75 1] and manipulating one
spatially distributed heating source (b(z) = 1 − cos(πz)). The mathematical model (5.1)-(5.2)
is only for the process simulation for evaluation of the control scheme. The method of lines
[24] is used to simulate the model.

In this application, we aim at extracting 3-D fuzzy rules from a spatiotemporal data
set using clustering and SVM regression learning algorithm and constructing a complete 3-D
FLC without any prior knowledge.
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Figure 5: Distributions of Gaussian type 3-D fuzzy sets in the simplified fuzzy-rule base.

5.2. Design of a Clustering and SVM-Regression Learning-Based 3-D FLC

5.2.1. Spatiotemporal Data Collection

The spatiotemporal input-output data set is collected from the catalytic packed-bed reactor
controlled by expert-knowledge-based 3-D FLC [5], where pseudorandom quinary signal
(PRQS) [25] with maximum length of 124 as perturbed signal is added to the control
input. Each spatiotemporal input-output data pair consists of a spatial error input e∗(z) =
[e∗1, . . . , e

∗
5]

T , a spatial error in change input r∗(z) = [r∗1 , . . . , r
∗
5]

T , and an incremental output
Δu∗, where e∗i = Ts(zi, q) − Tsd(zi) r∗i = e∗i (q) − e∗i (q − 1); q and q − 1 denotes the qth and q-
1th sampling time, respectively. The detailed design of the expert-knowledge-based 3-D FLC,
including fuzzification, 3-D rule inference, and defuzzification, can refer to [5]. The scaling
factors for the spatial error, the spatial error in change, and the incremental output are set as
2.0, 0.001, and 0.8716, respectively. The parameters of PRQS are chosen with the following
settings: the number of the levels is 5, the length of the period is 124, the sampling time is
0.2 s, and the minimum switching time (i.e., clock period) is 0.2 s.

Two groups of data sets are obtained by adding PRQS signal with different scaling
factor (i.e., 0.447 and 0.1) to the control input. The first group with 150 data pairs is generated
for training by adding PRQS perturbation signal with a scaling factor 0.447, and the other
group with 150 data pairs is generated for test by adding PRQS perturbation signal with a
scaling factor 0.1. To evaluate the performance, we employ the following root-mean-squared
error (RMSE) as the criteria:

RMSE =

√√√√ n∑
k=1

(
Δu∗

k
−Δuk

)2

n
, (5.5)
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Table 1: Learning results of an SVM regression with different values of C and ε.

C ε
Number of

SV
RMSE training

(×10−2)
RMSE testing

(×10−2)
SSE

(×10−2)
IAE

(×10−1)
ITAE
(×10−1)

1

0.00001 149 4.89 3.48 1.70 2.566 8.656
0.0001 140 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

10

0.00001 149 4.89 3.48 1.70 2.566 8.656
0.0001 140 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

100

0.00001 149 4.89 3.48 170 2.566 8.656
0.0001 141 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

1000

0.00001 149 4.89 3.48 170 2.566 8.656
0.0001 141 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.574 8.702
0.01 106 4.75 3.13 1.84 2.700 9.395
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

where n denotes the number of samples, Δu∗
k

denotes actual output, and Δuk denotes
expected output.

5.2.2. Design of a Clustering and SVM-Regression Learning-Based 3-D FLC

The design procedure of the proposed 3-D FLC is given as follows:

(i) Employ the nearest neighborhood clustering algorithm to deal with the spatiotem-
poral data set for the input space partition with ρ0 = 0.7 and η0 = 0, and then
generate 16 3-D fuzzy rules with 32 3-D fuzzy sets, where the width of Gaussian
type 3-D fuzzy sets is σz = [0.0620, 0.0902, 0.1518, 0.2008, 0.2175]T from (3.5).

(ii) Simplify the 3-D fuzzy sets and 3-D fuzzy rules based on similarity measure (as
described in Section 3.2) with λu = 0.95, λset = 0.75, and λrule = 1, and then obtain



16 Journal of Applied Mathematics

Table 2: Performance comparisons.

Performance index
Clustering and
SVM-regression

learning-based 3-D FLC

Expert-knowledge-based 3-D
FLC

Number of rules 15 49
No disturbance

ISS (×10−2) 1.70 1.69
IAE (×10−1) 2.566 2.557
ITAE (×10−1) 8.655 8.646

With 50% increase disturbance in velocity of gas

ISS (×10−2) 1.77 1.78
IAE (×10−1) 2.675 2.680
ITAE (×10−1) 9.058 9.062

15 3-D fuzzy rules with 15 3-D fuzzy sets. The distributions of Gaussian type 3-D
fuzzy sets are shown in Figure 5.

(iii) SVM algorithm described in Section 3.2 is used to learn the consequent part
parameters with C = {1, 10, 100, 1000} and ε = {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2}.
The RMSE in (5.5) for training and test are listed in Table 1. From Table 1, we can
find that: (1) smaller ε yielded more support vectors and led to reasonable training
and test performance; while larger ε yielded less support vectors and led to worse
training and test performance. (2) C almost had no influence on the training and
test performance, once ε was fixed. In this study, we choose C = 100 and ε = 0.0001.
Finally, a complete 3-D FLC is constructed with 15 3-D fuzzy rules and 15 3-D fuzzy
sets as shown in Figure 6. Using the linguistic hedges approach [14, 21], we can
interpret these 3-D fuzzy rules using linguistic words. For instance, the first 3 fuzzy
rules are interpreted as follows.

(a) R
1

: IF e∗(z) is less than POSITIVE SMALL and r∗(z) is more than POSITIVE
SMALL, THEN Δu∗ is sort of POSITIVE MEDIUM.

(b) R
2

: IF e∗(z) is very ZERO and r∗(z) is very NEGATIVE SMALL, THEN Δu∗

is very ZERO.

(c) R
3

: IF e∗(z) is sort of POSITIVE SMALL and r∗(z) is more than POSITIVE
MEDIUM, THEN Δu∗ is more than POSITIVE MEDIUM.

5.2.3. Control-Performance Validation

The designed clustering and SVM regression learning-based 3-D FLC is applied to the
control of the catalytic packed-bed reactor, where simulation time is 10 s. We select the
same quantitative performance criteria as in [5]: steady-state error (SSE), integral of the
absolute error (IAE), and integral of time multiplied by absolute error (ITAE). The control
performance is given in Table 2, and the control profile is given in Figures 7 and 8, where (a),
(b), and (c) represent catalyst temperature evolution profile, manipulated input, and catalyst
temperature profiles in steady state, respectively. We can find that the proposed 3-D FLC has
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Figure 6: Continued.
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Figure 6: 3-D fuzzy rules and their associated 3-D fuzzy sets of a clustering and SVM-regression learning-
based 3-D FLC.

comparable control performance to the expert-knowledge-based 3-D FLC in [5] both in ideal
condition and in disturbed condition.

In addition, we do more control experiments when the SVM-learning algorithm adopts
different C and ε. According to the experimental results (see the last three columns in Table 1),
we can find that the proposed 3-D FLC shows good control performance when a smaller ε is
chosen.
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Figure 7: Controlled by a clustering and SVM-regression learning-based 3-D FLC under ideal situation
(dotted line: reference profile).
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Figure 8: Controlled by a clustering and SVM-regression learning-based 3-D FLC under disturbed situation
(dotted line: reference profile).

The above simulation results demonstrate that the proposed design method of a
clustering and SVM-regression learning-based 3-D FLC is effective. It provides a beneficial
complementary design method to 3-D FLCs.

6. Conclusions

In this paper, we have proposed a new 3-D FLC design methodology based on clustering and
SVM regression learning from a spatiotemporal data set. The 3-D FLC design is divided into
three steps. Firstly, an initial rule structure is extracted by a nearest neighborhood clustering
method, which is modified to be suitable for spatio-temporal data. Secondly, the initial
structure is simplified via using similarity measure technique, which is defined for 3-D fuzzy
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sets and 3-D fuzzy rules. Thirdly, the parameters of the rule consequent parts are learned by a
spatial fuzzy basis function-based SVM regression learning algorithm. Besides, the universal
approximation capability of the proposed 3-D fuzzy system is discussed. Finally, effectiveness
of the proposed 3-D FLC design methodology is validated on a catalytic packed-bed reactor.

Appendix

A. Proof of the Clustering and SVM-Regression Learning-Based 3-D
FLC as a Universal Approximator

Let Θ be a set of 3-D FLCs defined in Ω, which is a compact set in Rp×s. Then, Preliminary 1
is given as follows.

Preliminary 1

Let d∞(u, g) be a semimetric [26] with the following definition

d∞
(
u, g

)
= sup

xz∈Ω

(∣∣u(xz) − g(xz)
∣∣)

(A.1)

Therefore, (Θ,d∞) is a metric space. Since there is at least one fuzzy rule in the rule base of a
3-D FLC, Θ is non-empty. Thus, (Θ,d∞) is strictly defined.

Subsequently, we will prove that (Θ,d∞) is dense in (C[Ω],d∞) using Stone-
Weierstrass theorem, where C[Ω] is a set of real continuous functions defined in a compact
set Ω. The Stone-Weierstrass theorem is first stated here as follows.

Stone-Weierstrass Theorem (see [16, 23])

Let Z be a set of real continuous functions on a compact set U. If (1)Z is an algebra, that is,
the set Z is closed under addition, multiplication, and scalar multiplication; (2) Z separates
points on U, that is, for every x,y ∈ U,x /=y, there exists f ∈ Z such that f(x)/= f(y); and
(3) Z vanishes at no point of U, that is, for each x ∈ U there exists f ∈ Z such that f(x)/= 0;
then, the uniform closure of Z consists of all real continuous functions on U, that is, (Z,d∞)
is dense in (C[U],d∞).

Proof . (1) Firstly, we prove (Θ,d∞) is an algebra. Let u1, u2 ∈ Θ, then we can write them as

u1(xz) =

∑N1
l1=1 u

l1
1
∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
) + b1,

u2(xz) =

∑N2
l2=1 u

l2
2

p2∑
j2=1

a
↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
)

∑N2
l2=1

∑p2

j2=1 a↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
) + b2.

(A.2)

Subsequently, we have three derivation procedures.
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(i) Addition

u1(xz) + u2(xz)

=

∑N1
l1=1

∑N2
l2=1

(
ul1

1 + ul2
2

)∑p1

j1=1

∑p2

j2=1
←→a j1a↔j2

∏s
i=1 expZ

∑N1
l1=1

∑N2
l2=1

∑p1

j1=1

∑p2

j2=1
←→a j1a↔j2

∏s
i=1 expZ

+ (b1 + b2),

(A.3)

where Z denotes (−((xi(zj1) −←→c l1
ij1)/

←→σ l1
ij1)

2 − ((xi(zj2) − c
↔
l2

ij2
)/σ

↔
l2

ij2
)2). Equation (A.3) has the

same form as (3.12), then u1(xz) + u2(xz) ∈ Θ.

(ii) Multiplication

u1(xz)u2(xz)

=

∑N1
l1=1

∑N2
l2=1 u

l1
1 u

l2
2
∑p1

j1=1

∑p2

j2=1
←→a j1a↔j2

∏s
i=1 expZ

∑N1
l1=1

∑N2
l2=1

∑p1

j1=1

∑p2

j2=1
←→a j1a↔j2

∏s
i=1 expZ

+ b2

∑N1
l1=1 u

l1
1

∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

+ b1

∑N2
l2=1 u

l2
2
∑p2

j2=1 a↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
)

∑N2
l2=1

∑p2

j2=1 a↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
) + b1b2,

(A.4)

where Z denotes (−((xi(zj1) −←→c l1
ij1)/

←→σ l1
ij1)

2 − ((xi(zj2) − c
↔
l2

ij2
)/σ

↔
l2

ij2
)2). In terms of algebraic

operation, the product of functions in Gaussian form is also a function in Gaussian form.
Thus, (A.4) has the same form as (3.12), and u1(xz)u2(xz) ∈ Θ.

(iii) Scalar Multiplication

For arbitrary c ∈ R, we have

cu1(xz) = c

∑N1
l1=1 u

l1
1
∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
) + cb1. (A.5)

Equation (A.5) has the same form as (3.12), and cu1(xz) ∈ Θ.
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Finally, by combining (A.3)∼(A.5) together, we can conclude that (Θ,d∞) is an algebra.
(2) Secondly, we will prove that (Θ,d∞) separates point on Ω by constructing a simple

3-D FLC u(xz) as in (3.12), namely, u(x0
z)/=u(y0

z) holds for arbitrarily given x0
z,y

0
z ∈ Ω with

x0
z /=y0

z.
We choose two fuzzy rules, that is, N = 2.
Let

x0
z =

((
x0

1(z1), . . . ,x0
1

(
zp
))T

, . . . ,
(
x0
s(z1), . . . ,x0

s

(
zp
))T

)

y0
z =

((
y0

1(z1), . . . ,y0
1

(
zp
))T

, . . . ,
(
y0
s(z1), . . . ,y0

s

(
zp
))T

)
,

aj =
1
p
, σ1

ij = σ2
ij = 1, c1

ij = x0
i

(
zj
)
, c2

ij = y0
i

(
zj
)
,

x1
z = x0

z, x2
z = y0

z

(
j = 1, . . . , p

)
.

(A.6)

We have

u
(
x0
z

)
=

u1 + u2(1/p
)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2

)
1 +

(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2

) + b

= ζu1 + (1 − ζ)u2 + b,

u
(
y0
z

)
=

u2 + u1(1/p
)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2

)
1 +

(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2

) + b

= ζu2 + (1 − ζ)u1 + b,

ζ =
1

1 +
(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2

) .

(A.7)

Since x0
z /=y0

z, there must be some i and j such that x0
i (zj)/=y0

i (zj). Thus, we have∏s
i=1 exp(−(x0

i (zj) − y0
i (zj))

2)/= 1. For arbitrary j,
∏s

i=1 exp(−(x0
i (zj) − y0

i (zj))
2) ≤ 1 holds,

therefore, we have
∑p

j=1

∏s
i=1 exp(−(x0

i (zj)−y0
i (zj))

2)/= p. If we choose u1 = 0 and u2 = 1, then

u
(
x0
z

)
= 1 − ξ + b /= ξ + b = u

(
y0
z

)
. (A.8)

Therefore, (Θ,d∞) separates point on Ω.
(3) Finally, we prove (Θ,d∞) vanishes at no point of Ω.
For any 3-D FLC u(xz) expressed as in (3.12), if we choose ζl ≥ 0 (l = 1, . . . ,N) and

b > 0, then for any xz ∈ Ω, we have u(xz) > 0.
Therefore, (Θ,d∞) vanishes at no point of Ω.
By combining the results from (1) to (3) together, Theorem 4.1 is proven.
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The convergence for the sequential Monte Carlo (SMC) implementations of the multitarget multi-
Bernoulli (MeMBer) filter and cardinality-balanced MeMBer (CBMeMBer) filters is studied here.
This paper proves that the SMC-MeMBer and SMC-CBMeMBer filters, respectively, converge to
the true MeMBer and CBMeMBer filters in the mean-square sense and the corresponding bounds
for the mean-square errors are given. The significance of this paper is in theory to present the
convergence results of the SMC-MeMBer and SMC-CBMeMBer filters and the conditions under
which the two filters satisfy mean-square convergence.

1. Introduction

Recently, the random finite-set- (RFS-) based multitarget tracking (MTT) approaches [1] have
attracted extensive attention. Although theoretically solid, the RFS-based approaches usually
involve intractable computations. By introducing the finite-set statistics (FISSTs) [2], Mahler
developed the probability hypothesis density (PHD) [3], and cardinalized PHD (CPHD) [4]
filters, which have been shown to be a computationally tractable alternative to full multitarget
Bayes filters in the RFS framework. The sequential Monte Carlo (SMC) implementations for
the PHD and CPHD filters were devised by Zajic and Mahler [5], Sidenbladh [6], and Vo
et al. [7]. Vo et al. [8, 9] devised the Gaussian mixture (GM) implementation for the PHD
and CPHD filters under the linear, Gaussian assumption on target dynamics, birth process,
and sensor model. However, the SMC-PHD and SMC-CPHD approaches require clustering
to extract state estimates from the particle population, which is expensive and unreliable
[10, 11].

In 2007, Mahler proposed the multitarget multi-Bernoulli (MeMBer) [2] recursion,
which is an approximation to the full multitarget Bayes recursion using multi-Bernoulli
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RFSs under low clutter density scenarios. In 2009, Vo et al. showed that the MeMBer filter
overestimates the number of targets and proposed a cardinality-balanced MeMBer (CBMeM-
Ber) filter [12] to reduce the cardinality bias. Then, the SMC and GM implementations for
the MeMBer and CBMeMBer filters were, respectively, proposed in nonlinear and linear-
Gaussian dynamic and measurement models. The key advantage of this approach is that the
multi-Bernoulli representation allows reliable and inexpensive extraction of state estimates.
The Monte Carlo simulations given by Vo et al. showed that the SMC-CBMeMBer filter
outperforms the SMC-CPHD (and hence SMC-PHD) filter despite having smaller complexity
under certain range of signal settings.

Although the convergence results for the SMC-PHD and GM-PHD filters were
established by Clark and Bell [13] in 2006 and by Clark and Vo [14] in 2007, respectively, there
have been no results showing the asymptotic convergence for the SMC-MeMBer and SMC-
CBMeMBer filters. This paper demonstrates the mean-square convergence of the errors [15–
17] for the two filters. In other words, given simple sufficient conditions, the approximation
error of the multi-Bernoulli parameter set comprised of a set of weighted samples is proved
to converge to zero as the number of the samples tends to infinity at each stage of the two
algorithms. In addition, the corresponding bounds for the mean-square errors are obtained.

2. MeMBer and CBMeMBer Filters

A Bernoulli RFS Y (i) has probability 1 − r(i) of being empty, and probability r(i) (0 ≤ r(i) ≤ 1)
of being a singleton whose only element is distributed according to a probability density p(i).
The probability density of Y (i) is

π
(
Y (i)

)
=
{

1 − r(i) Y (i) = ∅,
r(i)p(i)(yi) Y (i) = {yi}.

(2.1)

A multi-Bernoulli RFS Y is a union of a fixed number of independent Bernoulli RFSs
Y (i), i = 1, . . . ,M, that is, Y =

⋃M
i=1 Y

(i). Y is thus completely described by the multi-Bernoulli
parameter set {(r(i), p(i))}Mi=1 with the mean cardinality

∑M
i=1 r

(i) and the probability density
[2]:

π(Y ) =
M∏
j=1

(
1 − r(j)

) ∑
1≤i1 /= ···/= in≤M

n∏
j=1

r(ij )p(ij )
(
yj
)

1 − r(ij ) . (2.2)

Throughout this paper, we abbreviate a probability density of the form (2.2) by π =
{(r(i), p(i))}Mi=1.

By approximating the multitarget RFS as a multi-Bernoulli RFS at each time step,
Mahler proposed the MeMBer recursion, which propagated the multi-Bernoulli parameters
of the posterior multitarget density forward in time [2]. The MeMBer filter is summarized as
follows.
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MeMBer Prediction

If at time k − 1, the posterior multitarget density is a multi-Bernoulli of the form πk−1 =
{(r(i)

k−1, p
(i)
k−1)}

Mk−1
i=1 , then the predicted multitarget density is also a multi-Bernoulli and is given

by

πk|k−1 =
{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1

⋃{(
r
(i)
Γ,k, p

(i)
Γ,k

)}MΓ,k

i=1
, (2.3)

where {(r(i)Γ,k, p
(i)
Γ,k)}

MΓ,k

i=1 are the parameters of the multi-Bernoulli RFS of births at time k:

r
(i)
P,k|k−1 = r

(i)
k−1

〈
p
(i)
k−1, pS,k

〉
, i = 1, . . . ,Mk−1, (2.4)

p
(i)
P,k|k−1(xk) =

〈
fk|k−1(xk | ·), p(i)k−1pS,k

〉
〈
p
(i)
k−1, pS,k

〉 , i = 1, . . . ,Mk−1. (2.5)

MeMBer Update

If at time k, the predicted multitarget density is a multi-Bernoulli of the form πk|k−1 =
{(r(i)

k|k−1, p
(i)
k|k−1)}

Mk|k−1

i=1 ; then the posterior multitarget density can be approximated by a multi-
Bernoulli as follows:

πk ≈
{(

r
(i)
L,k

, p
(i)
L,k

)}Mk|k−1

i=1

⋃{(
rU,k(zk), pU,k(·; zk)

)}
zk∈Zk

, (2.6)

where,

r
(i)
L,k

= r
(i)
k|k−1

1 −
〈
p
(i)
k|k−1, pD,k

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 , i = 1, . . . ,Mk|k−1, (2.7)

p
(i)
L,k(xk) = p

(i)
k|k−1(xk)

1 − pD,k(xk)

1 −
〈
p
(i)
k|k−1, pD,k

〉 , i = 1, . . . ,Mk|k−1, (2.8)

rU,k(zk) =
1

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

Mk|k−1∑
i=1

r
(i)
α,k(zk), zk ∈ Zk, (2.9)

pU,k(xk; zk) =
1∑Mk|k−1

i=1 r
(i)
α,k(zk)

Mk|k−1∑
i=1

p
(i)
α,k(xk; zk), zk ∈ Zk, (2.10)

p
(i)
α,k(xk; zk) =

r
(i)
k|k−1p

(i)
k|k−1(xk)ψk,zk(xk)

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 , i = 1, . . . ,Mk|k−1, (2.11)

r
(i)
α,k(zk) =

〈
p
(i)
α,k(xk; zk), 1

〉
=

r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 , i = 1, . . . ,Mk|k−1. (2.12)
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By correcting the cardinality bias in the rU,k(zk) of the MeMBer update step, Vo et al.
proposed the CBMeMBer filter [12]. The CBMeMBer recursions are the same as the MeMBer
recursions except the update of rU,k(zk), which is revised as

r∗U,k(zk) =
1

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

Mk|k−1∑
i=1

(
1 − r(i)

k|k−1

)
r
(i)
α,k(zk)

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 . (2.13)

Note that not (38) in [12] but (2.10) in our paper is used in the CBMeMBer update
step here. The reasons are (1) the (38) in [12] and the (2.10) in our paper are both the
approximations of (36) in [12] under the same assumption 〈p(i)

k|k−1, pD,k〉 ≈ 1, but the latter

is more precise than former; (2) the (38) in [12] is unbounded at r(i)
k|k−1 = 1 while (2.10) in our

paper is bounded at r(i)
k|k−1 = 1 as long as pD,k(xk)/= 1.

For the multi-Bernoulli representation πk = {(r(i)k , p
(i)
k )}Mk

i=1 , the probability r
(i)
k indicates

how likely the ith hypothesized track is a true track, and the posterior density p
(i)
k describes

the distribution of the estimated current state of the track. Hence,
∑Mk

i=1 r
(i)
k

denotes the
multitarget number and the multitarget state estimate can be obtained by choosing the means
or modes from the posterior densities of the hypothesized tracks with existence probabilities
exceeding a given threshold.

3. SMC-MeMBer and SMC-CBMeMBer Filters

The SMC implementations of the MeMBer and CBMeMBer recursions are summarized as
follows.

SMC-MeMBer and SMC-CBMeMBer Predictions

Suppose that at time k−1 the (multi-Bernoulli) posterior multitarget density π̃k−1 = {(r(i),L
(i)
k−1

k−1 ,

p
(i),L(i)

k−1
k−1 )}Mk−1

i=1 is given and each p
(i),L(i)

k−1
k−1 , i = 1, . . . ,Mk−1, is comprised of a set of weighted

samples {ω(i,j)
k−1 , x

(i,j)
k−1}

L
(i)
k−1

j=1 :

p
(i),L(i)

k−1
k−1 (xk) =

L
(i)
k−1∑
j=1

ω
(i,j)
k−1δx(i,j)

k−1
(xk), i = 1, . . . ,Mk−1. (3.1)

Then, given proposal densities q
(i)
k
(· | x(i,j)

k−1 , Zk) and b
(i)
k
(· | Zk), the predicted (multi-

Bernoulli) multitarget density π̃k|k−1 = {(r(i),L
(i)
k−1

P,k|k−1, p
(i),L(i)

k−1
P,k|k−1)}

Mk−1
i=1 ∪ {(r(i),L

(i)
Γ,k

Γ,k , p
(i),L(i)

Γ,k

Γ,k )}MΓ,k

i=1 can be
computed as follows:

r
(i),L(i)

k−1
P,k|k−1 = r

(i),L(i)
k−1

k−1

〈
p
(i),L(i)

k−1
k−1 , pS,k

〉
, i = 1, . . . ,Mk−1, (3.2)
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p
(i),L(i)

k−1
P,k|k−1(xk) =

L
(i)
k−1∑
j=1

ω̃
(i,j)
P,k|k−1δx(i,j)

P,k|k−1
(xk), i = 1, . . . ,Mk−1,

p
(i),L(i)

Γ,k

Γ,k (xk) =
L
(i)
Γ,k∑

j=1

ω̃
(i,j)
Γ,k δx(i,j)Γ,k

(xk), i = 1, . . . ,MΓ,k,

(3.3)

where r
(i),L(i)

Γ,k

Γ,k (i = 1, . . . ,MΓ,k) is given by birth model; x(i,j)
P,k|k−1, ω̃(i,j)

P,k|k−1 (i = 1, . . . ,Mk−1) and

x(i,j)Γ,k , ω̃(i,j)
Γ,k (i = 1, . . . ,MΓ,k) are, respectively, given by

x(i,j)
P,k|k−1 ∼ q

(i)
k

(
· | x(i,j)

k−1 , Zk

)
, j = 1, . . . , L(i)

k−1, x(i,j)Γ,k ∼ b
(i)
k (· | Zk), j = 1, . . . , L(i)

Γ,k, (3.4)

ω̃
(i,j)
P,k|k−1 =

1∑L
(i)
k−1

j=1 ω
(i,j)
P,k|k−1

ω
(i,j)
P,k|k−1,

ω
(i,j)
P,k|k−1 =

ω
(i,j)
k−1fk|k−1

(
x(i,j)
P,k|k−1 | x

(i,j)
k−1

)
pS,k

(
x(i,j)
k−1

)
q
(i)
k

(
x(i,j)
P,k|k−1 | x

(i,j)
k−1 , Zk

) , j = 1, . . . , L(i)
k−1,

(3.5)

ω̃
(i,j)
Γ,k =

1∑L
(i)
Γ,k

j=1 ω
(i,j)
Γ,k

ω
(i,j)
Γ,k , ω

(i,j)
Γ,k =

pΓ,k
(
x(i,j)Γ,k

)
b
(i)
k

(
x(i,j)Γ,k | Zk

) , j = 1, . . . , L(i)
Γ,k. (3.6)

SMC-MeMBer and SMC-CBMeMBer Updates

Suppose that at time k the predicted (multi-Bernoulli) multitarget density π̃k|k−1 = {(r(i),L
(i)
k|k−1

k|k−1 ,

p
(i),L(i)

k|k−1

k|k−1 )}Mk|k−1

i=1 is given and each p
(i),L(i)

k|k−1

k|k−1 , i = 1, . . . ,Mk|k−1, is comprised of a set of weighted

samples {ω(i,j)
k|k−1, x

(i,j)
k|k−1}

L
(i)
k|k−1

j=1 :

p
(i),L(i)

k|k−1

k|k−1 (xk) =
L
(i)
k|k−1∑
j=1

ω
(i,j)
k|k−1δx(i,j)

k|k−1
(xk), i = 1, . . . ,Mk|k−1. (3.7)

Then, the multi-Bernoulli approximation of the SMC-MeMBer-updated multitarget

density π̃k ≈ {(r
(i),L(i)

k|k−1

L,k , p
(i),L(i)

k|k−1

L,k )}Mk|k−1

i=1 ∪ {(rL
(i)
k|k−1

U,k (zk), p
L
(i)
k|k−1

U,k (·; zk))}zk∈Zk
and SMC-CBMeMBer-

updated multitarget density π̃∗k ≈ {(r
(i),L(i)

k|k−1

L,k , p
(i),L(i)

k|k−1

L,k )}Mk|k−1

i=1 ∪ {(r∗,L
(i)
k|k−1

U,k (zk), p
L
(i)
k|k−1

U,k (·; zk))}zk∈Zk

can be computed as follows:

r
(i),L(i)

k|k−1

L,k = r
(i),L(i)

k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉 , i = 1, . . . ,Mk|k−1, (3.8)
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p
(i),L(i)

k|k−1

L,k (xk) =
L
(i)
k|k−1∑
j=1

ω
(i,j)
k|k−1

1 − pD,k

(
x(i,j)
k|k−1

)
1 −

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉δx(i,j)
k|k−1

(xk), i = 1, . . . ,Mk|k−1, (3.9)

r
L
(i)
k|k−1

U,k (zk) =
1

κk(zk) +
∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

Mk|k−1∑
i=1

r
(i),L(i)

k|k−1

α,k (zk), zk ∈ Zk, (3.10)

r
∗,L(i)

k|k−1

U,k (zk) =
1

κk(zk) +
∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

×
Mk|k−1∑
i=1

(
1 − r(i),L

(i)
k|k−1

k|k−1

)
r
(i),L(i)

k|k−1

α,k (zk)

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉 , zk ∈ Zk,

(3.11)

p
L
(i)
k|k−1

U,k (xk; zk) =
1∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

Mk|k−1∑
i=1

p
(i),L(i)

k|k−1

α,k (xk; zk), zk ∈ Zk, (3.12)

where,

p
(i),L(i)

k|k−1

α,k (xk; zk) =
L
(i)
k|k−1∑
j=1

ω
(i,j)
k|k−1r

(i),L(i)
k|k−1

k|k−1 ψk,zk

(
x(i,j)
k|k−1

)
1 − r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉δx(i,j)
k|k−1

(xk), i = 1, . . . ,Mk|k−1, (3.13)

r
(i),L(i)

k|k−1

α,k (zk) =
〈
p
(i),L(i)

k|k−1

α,k (xk; zk), 1
〉

=
r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , ψk,zk

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉 , i = 1, . . . ,Mk|k−1.

(3.14)

Resampling

To reduce the effect of degeneracy, we resample the particles for the multi-Bernoulli parame-
ter set after the update step.

4. Convergence of the Mean-Square Errors for the SMC-MeMBer and
SMC-CBMeMBer Filters

To show the convergence results for the SMC-MeMBer and SMC-CBMeMBer filters, certain
conditions on the functions need to be met:

(1) the transition kernel fk|k−1(xk | xk−1) satisfies the Feller property [18], that is, for all
ϕ ∈ Cb(Rd),

∫
ϕ(xk−1)φk|k−1(xk | xk−1)dxk−1 ∈ Cb(Rd);
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(2) single-sensor/target likelihood density ψk,zk(xk) ∈ B(Rd);

(3) Q(i)
k

are rational-valued random variables such that there exists p > 1, some constant
C, and α < p − 1 so that

E

[∣∣∣∣∣
N∑
i=1

(
Q

(i)
k
−Nω

(i)
k

)
q(i)

∣∣∣∣∣
p]
≤ CNα

∥∥q∥∥p
, with

N∑
i=1

Q
(i)
k

= N (4.1)

for all vectors q = (q(1), . . . , q(N));

(4) the importance sampling ratios are bounded, that is, there exists constants B1 and
B2 such that ‖p(i)Γ,k/b

(i)
k
‖ ≤ B1, i = 1, . . . ,MΓ,k, and ‖fk|k−1/q

(i)
k
‖ ≤ B2, i = 1, . . . ,Mk−1;

(5) the resampling strategy is multinomial and hence unbiased [19].

First, the convergence of the mean-square errors for the initialization steps of the two
filters can easily be established by Lemma 0 in [13]. Assuming that at time k = 0, we can
sample exactly from the initial distribution p

(i)
0 (i = 1, . . . ,M0). Then, for all ϕ ∈ B(Rd),

E

[(
r
(i),L(i)

0
0 − r(i)0

)2
]
≤ c0

L
(i)
0

, i = 1, . . . ,M0,

E

[(〈
p
(i),L(i)

0
0 , ϕ

〉
−
〈
p
(i)
0 , ϕ

〉)2
]
≤ ∥∥ϕ∥∥2 d0

L
(i)
0

, i = 1, . . . ,M0

(4.2)

hold for some real numbers c0 > 0 and d0 > 0 which are independent of the number L
(i)
0 of

the sampled particles at time k = 0, i = 1, . . . ,M0.
Also, the convergence of the mean-square errors for the resampling steps of the two

filters can easily be established by Assumption 5 and Lemma 5 in [19].
The main difficulty and greatest challenge is to prove the mean-square convergence

for the prediction steps and update steps of the two filters. They are, respectively, established
by Propositions 4.1 and 4.2.

Proposition 4.1. Suppose that, for all ϕ ∈ B(Rd),

E

[(
r
(i),L(i)

k−1
k−1 − r(i)k−1

)2
]
≤ ck−1

L
(i)
k−1

, i = 1, . . . ,Mk−1, (4.3)

E

[(〈
p
(i),L(i)

k−1
k−1 , ϕ

〉
−
〈
p
(i)
k−1, ϕ

〉)2
]
≤ ∥∥ϕ∥∥2 dk−1

L
(i)
k−1

, i = 1, . . . ,Mk−1, (4.4)

hold for some real numbers ck−1 > 0 and dk−1 > 0 which are independent of the number L(i)
k−1 of the

resampled particles at time k − 1, i = 1, . . . ,Mk−1.
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Then, after the prediction steps of the SMC-MeMBer and SMC-CBMeMBer filters at
time k:

E

[(
r
(i),L(i)

k−1
P,k|k−1 − r

(i)
P,k|k−1

)2
]
≤ cP,k|k−1

L
(i)
k−1

, i = 1, . . . ,Mk−1, (4.5)

E

[(〈
p
(i),L(i)

k−1
P,k|k−1, ϕ

〉
−
〈
p
(i)
P,k|k−1, ϕ

〉)2
]
≤ ∥∥ϕ∥∥2 dP,k|k−1

L
(i)
k−1

, i = 1, . . . ,Mk−1, (4.6)

E

[(〈
p
(i),L(i)

Γ,k

Γ,k|k−1, ϕ

〉
−
〈
p
(i)
Γ,k|k−1, ϕ

〉)2
]
≤ ∥∥ϕ∥∥2 dΓ,k

L
(i)
Γ,k

, i = 1, . . . ,MΓ,k, (4.7)

hold for a constant dΓ,k > 0 and some real numbers cP,k|k−1 > 0 and dP,k|k−1 > 0 which are
independent of L

(i)
k−1, i = 1, . . . ,Mk−1. cP,k|k−1 and dP,k|k−1 are defined by (A.8) and (A.18),

respectively. The proof of Proposition 4.1 can be found in Appendix A.1.

Proposition 4.2. Suppose that, for all ϕ ∈ B(Rd),

E

[(
r
(i),L(i)

k|k−1

k|k−1 − r(i)
k|k−1

)2]
≤ ck|k−1

L
(i)
k|k−1

, i = 1, . . . ,Mk|k−1, (4.8)

E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ

〉
−
〈
p
(i)
k|k−1, ϕ

〉)2]
≤ ∥∥ϕ∥∥2 dk|k−1

L
(i)
k|k−1

, i = 1, . . . ,Mk|k−1 (4.9)

hold for some real numbers ck|k−1 > 0 and dk|k−1 > 0 which are independent of the number L(i)
k|k−1

of the predicted particles, i = 1, . . . ,Mk|k−1. Then, after the update steps of the SMC-MeMBer and
SMC-CBMeMBer filters at time k:

E

[(
r
(i),L(i)

k|k−1

L,k − r(i)L,k

)2]
≤ cL,k

L
(i)
k|k−1

, i = 1, . . . ,Mk|k−1, (4.10)

E

[(〈
p
(i),L(i)

k|k−1

L,k , ϕ

〉
−
〈
p
(i)
L,k, ϕ

〉)2]
≤ ∥∥ϕ∥∥2 dL,k

L
(i)
k|k−1

, i = 1, . . . ,Mk|k−1, (4.11)

E

[(
r
L
(i)
k|k−1

U,k
(zk) − rU,k(zk)

)2]
≤ cU,k

Lmin
k|k−1

, zk ∈ Zk, (4.12)

E

[(
r
∗,L(i)

k|k−1

U,k (zk) − r∗U,k(zk)
)2]

≤
c∗U,k

Lmin
k|k−1

, zk ∈ Zk, (4.13)

E

[(〈
p
L
(i)
k|k−1

U,k (·; zk), ϕ
〉
− 〈pU,k(·; zk), ϕ

〉)2]
≤ ∥∥ϕ∥∥2 dU,k

Lmin
k|k−1

, zk ∈ Zk (4.14)
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hold for some real numbers cL,k > 0, dL,k > 0, cU,k > 0, c∗U,k > 0, and dU,k > 0, which are independent

of L(i)
k|k−1. cL,k, dL,k, cU,k, c∗U,k

and dU,k are defined by (A.29), (A.35), (A.47), (A.55), and (A.61),

respectively. Lmin
k|k−1 = min(L(1)

k|k−1, . . . ,L
(Mk|k−1)
k|k−1 ), min(·) denotes the minimum. In addition, cU,k, c∗U,k,

and dU,k depend on the number of targets and decrease with the increase of the target number. From

(A.47) and (A.55), it can also be seen that c∗
U,k
≥ cU,k. It indicates that r

∗,L(i)
k|k−1

U,k
(zk) may need more

particles than r
L
(i)
k|k−1

U,k
(zk) to achieve the same mean-square error bound. The proof of the Proposition 4.2

can be found in Appendix A.2.

Propositions 4.1 and 4.2 show that the bounds for the mean-square error of the SMC-
MeMBer and SMC-CBMeMBer prediction steps and update steps at each stage depend on the
number of particles. The mean-square errors tend to zero as the number of particles tends to
infinity. The bounds for the mean-square errors of these quantities are inversely proportional
to the corresponding particle number.

Moreover, from the proofs of Propositions 4.1 and 4.2, it can be seen that

(1) Assumptions 1, 3, and 4 ensure that (4.6) holds;

(2) Assumption 4 ensures that (4.7) holds;

(3) Assumption 2 ensures that (4.12), (4.13), and (4.14) hold;

(4) Assumption 5 ensures the convergence of the mean-square errors for the
resampling steps of the two filters.

Assumptions 3, 4, and 5 are concerned with the SMC method. They can be satisfied as
long as the appropriate sampling strategies are chosen. Assumptions 1 and 2 are concerned
with the likelihood and target transition kernel. They may be too restrictive or unrealistic
for some practical applications. However, these convergence results give justification to the
SMC implementations of the MeMBer and CBMeMBer filters and show how the order of the
mean-square errors are reduced as the number of particles increases.

5. Simulations

Here, we briefly describe the application of the convergence results for the SMC-CBMeMBer
filter to the nonlinear MTT example presented in Example 1 of [12]. The experiment settings
are the same as those of Example 1 except that the number of the particles L

(i)
k

used for each
hypothesized track at time k. For convenience, we assume L

(i)
k = L. Assumptions 1–5 are

satisfied in this example. So, the SMC-CBMeMBer filter converges to the ground truth in the
mean-square sense.

For the SMC-CBMeMBer filter, the estimates of the multitarget number and states,
which are derived from the particle multi-Bernoulli parameter set, are unbiased. Therefore,
via comparing the tracking performance of the algorithm in the various particle number L,
the convergence results for the SMC-CBMeMBer filter can be verified to a great extent.

The standard deviation of the estimated cardinality distribution and the optimal
subpattern assignment (OSPA) multitarget miss-distance [20] of order p = 2 with cut-off
c = 100 m, which jointly captures differences in cardinality and individual elements between
two finite sets, are used to evaluate the performance of the method. Table 1 shows the time-
averaged standard deviation of the estimated cardinality distribution and the time-averaged
OSPA in various L via 200 MC simulation experiments.
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Table 1: Time-averaged standard deviation of the estimated cardinality distribution and time-averaged
OSPA (m) in various L.

Particle number L 100 500 1000 1500 2000
Time-averaged standard deviation of the estimated
cardinality distribution from the SMC-CBMeMBer filter 2.69 2.03 1.48 1.23 1.04

OSPA (m) from the SMC-CBMeMBer filter 65.2 51.9 42.3 34.8 27.7

Table 1 shows that both the standard deviation of the estimated cardinality distribu-
tion and OSPA decrease with the increase of the particle number L. This phenomenon can be
reasonably explained by the convergence results derived in this paper: first, the mean-square
error of the particle multi-Bernoulli parameter set decreases as the number of the particles
increases; then, the more precise estimates of the cardinality distribution and multitarget
states can be derived from the more precise particle multi-Bernoulli parameter set, which
eventually leads to the results presented in Table 1.

6. Conclusions and Future Work

This paper presents the mathematical proofs of the convergence for the SMC-MeMBer and
SMC-CBMeMBer filters and gives the bounds for the mean-square errors. In the linear-
Gaussian condition, Vo et al. presented the analytic solutions to the MeMBer and CBMeMBer
recursions: GM-MeMBer and GM-CBMeMBer filters [12]. The future work is focused on
studying the convergence results and error bounds for the two filters.

Appendix

A.

In deriving the proofs, we use the Minkowski inequality, which states that, for any two ran-
dom variables X and Y in L2,

E
[
(X + Y )2

]1/2 ≤ E
[
X2

]1/2
+ E

[
X2

]1/2
. (A.1)

Using Minkowski’s inequality, we obtain that, for all ϕ ∈ B(Rd),

E

[(
r(i),L

(i)
〈
p(i),L

(i)
, ϕ

〉
− r(i)

〈
p(i), ϕ

〉)2
]1/2

= E

[(
r(i),L

(i)
〈
p(i),L

(i)
, ϕ
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〈
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(i)
, ϕ

〉
+ r(i)

〈
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(i)
, ϕ

〉
− r(i)

〈
p(i), ϕ

〉)2
]1/2

(A.2)

≤ E

[〈
p(i),L

(i)
, ϕ

〉2(
r(i),L

(i) − r(i)
)2
]1/2

+ r(i)E

[(〈
p(i),L

(i)
, ϕ

〉
−
〈
p(i), ϕ

〉)2
]1/2

(A.3)

≤ ∥∥ϕ∥∥E[(r(i),L(i) − r(i)
)2
]1/2

+ r(i)E

[(〈
p(i),L

(i)
, ϕ

〉
−
〈
p(i), ϕ

〉)2
]1/2

(A.4)

holds, i = 1, . . . ,M, for the multi-Bernoulli density π = {(r(i), p(i))}Mi=1 and its particle approx-
imation πL(i)

= {(r(i),L(i)
, p(i),L

(i)
)}Mi=1.
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A.1. Proof of Proposition 4.1

We first prove (4.5). From (2.4) and (3.2), we have

E
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r
(i),L(i)

k−1
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(i)
P,k|k−1
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p
(i)
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(A.5)

(by (A.4))
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(A.6)

(by (4.3), (4.4), and 0 ≤ r
(i)
k−1 ≤ 1)
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√
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L
(i)
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. (A.7)

So that (4.5) is proved with

cP,k|k−1 =
∥∥pS,k∥∥2

(√
ck−1 +

√
dk−1

)2
. (A.8)

Now turn to (4.6). From (2.5), we have
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(adding and subtracting a new term)
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(using Minkowski’s inequality)
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(A.11)

By Assumption 3 and Lemma 1 in [13], we easily obtain that the first term in (A.11)
becomes
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(since ‖fk|k−1/q
(i)
k ‖ ≤ B2 by Assumption 4 and fk|k−1pS,k ∈ Cb(Rd) by Assumption 1)
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Adding and subtracting a new term in the second term of (A.11), we have

E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝

〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i),L(i)

k−1
k−1 , pS,k

〉 −

〈
p
(i)
k−1, pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i)
k−1, pS,k

〉
⎞
⎟⎟⎠

2⎤⎥⎥⎥⎦
1/2
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= E

⎡
⎢⎢⎣
⎛
⎜⎜⎝

〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i),L(i)

k−1
k−1 , pS,k

〉 −

〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i)
k−1, pS,k

〉

+

〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i)
k−1, pS,k

〉 −

〈
p
(i)
k−1, pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i)
k−1, pS,k

〉
⎞
⎟⎟⎠

2⎤⎥⎥⎥⎦
1/2

(A.14)

(using Minkowski’s inequality)

≤ 1〈
p
(i)
k−1, pS,k

〉E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝

〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉
〈
p
(i),L(i)

k−1
k−1 , pS,k

〉 (〈
p
(i)
k−1, pS,k

〉
−
〈
p
(i),L(i)

k−1
k−1 , pS,k

〉)⎞⎟⎟⎠
2⎤⎥⎥⎥⎦

1/2

+
1〈

p
(i)
k−1, pS,k

〉E

[(〈
p
(i),L(i)

k−1
k−1 , pS,k

〈
fk|k−1, ϕ

〉〉 − 〈p(i)k−1, pS,k
〈
fk|k−1, ϕ

〉〉)2
]1/2

(A.15)

≤ 2

∥∥〈fk|k−1, ϕ
〉∥∥〈

p
(i)
k−1, pS,k

〉 E

[((〈
p
(i)
k−1, pS,k

〉
−
〈
p
(i),L(i)

k−1
k−1 , pS,k

〉))2
]1/2

(A.16)

(by (4.4))

≤ 2

∥∥ϕ∥∥ · ∥∥pS,k∥∥
inf

(
pS,k

)
√√√√dk−1

L
(i)
k−1

, (A.17)

where inf(·) denotes the infimum.
Finally, substituting (A.12) and (A.17) into (A.11), (4.6) is proved with

dP,k|k−1 =

(√∥∥pS,k∥∥2
B2

2 +
∥∥fk|k−1pS,k

∥∥2 +
2
∥∥pS,k∥∥√dk−1

inf(pS,k)

)2

. (A.18)

Now, turn to (4.7). By Lemma 0 in [13] and the boundedness of ‖p(i)Γ,k/b
(i)
k ‖ ≤ B1 (i =

1, . . . ,Mk−1) in Assumption 4, we get that (4.7) holds for a constant dΓ,k. This completes the
proof.
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A.2. Proof of Proposition 4.2

Now turn to (4.10). From (2.7) and (3.8), we have

E

[(
r
(i)
L,k − r

(i),L(i)
k|k−1

L,k

)2]1/2

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝r(i)

k|k−1

1 −
〈
p
(i)
k|k−1, pD,k

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

(A.19)

(adding and subtracting a new term)

= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
(i)
k|k−1

1 −
〈
p
(i)
k|k−1, pD,k

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉

+r
(i),L(i)

k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

(A.20)

(using Minkowski’s inequality)

≤
E

[(
r
(i)
k|k−1

(
1 −

〈
p
(i)
k|k−1, pD,k

〉)
− r(i),L

(i)
k|k−1

k|k−1

(
1 −

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉))2]1/2

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉

+ E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝r

(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

.

(A.21)

The numerator of the first term in (A.21) is

E

[(
r
(i)
k|k−1

(
1 −

〈
p
(i)
k|k−1, pD,k

〉)
− r(i),L

(i)
k|k−1

k|k−1

(
1 −

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉))2]1/2

= E

[((
r
(i)
k|k−1 − r

(i),L(i)
k|k−1

k|k−1

)
+
(
r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
− r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉))2]1/2
(A.22)
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(using Minkowski’s inequality and then (A.4))

≤ E

[(
r
(i)
k|k−1 − r

(i),L(i)
k|k−1

k|k−1

)2]1/2

+
∥∥pD,k

∥∥E
[(

r
(i)
k|k−1 − r

(i),L(i)
k|k−1

k|k−1

)2]1/2

+ r
(i)
k|k−1E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
−
〈
p
(i)
k|k−1, pD,k

〉)2]1/2
(A.23)

(by (4.8) and (4.9))

≤
(
1 +

∥∥pD,k

∥∥)√ck|k−1 + r
(i)
k|k−1

∥∥pD,k

∥∥√dk|k−1√
L
(i)
k|k−1

. (A.24)

The second term in (A.21) is

E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝r

(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r(i),L(i)
k|k−1

k|k−1

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1

k|k−1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2

×

⎛
⎜⎜⎝r

(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉
− r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉
⎞
⎟⎟⎠

2⎤
⎥⎥⎦

1/2

(A.25)

(by 0 ≤ r
(i),L(i)

k|k−1

k|k−1 ≤ 1)

≤
E

[(
r
(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉
− r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉)2]1/2

1 − r(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉 (A.26)

(by (A.4), (4.8) and (4.9))

≤
∥∥pD,k

∥∥√ck|k−1 + r
(i)
k|k−1

∥∥pD,k

∥∥√dk|k−1(
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉)√
L
(i)
k|k−1

. (A.27)
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Substituting (A.24) and (A.27) into (A.21), and then using 0 ≤ r
(i)
k|k−1 ≤ 1, we get

E

[(
r
(i)
L,k − r

(i),L(i)
k|k−1

L,k

)2]1/2

≤
(
1 + 2

∥∥pD,k

∥∥)√ck|k−1 + 2r(i)
k|k−1

∥∥pD,k

∥∥√dk|k−1(
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉)√
L
(i)
k|k−1

≤
(
1 + 2

∥∥pD,k

∥∥)√ck|k−1 + 2
∥∥pD,k

∥∥√dk|k−1(
1 − ∥∥pD,k

∥∥)√L
(i)
k|k−1

.

(A.28)

Finally, (4.10) is proved with

cL,k =

⎛
⎜⎝

(
1 + 2

∥∥pD,k

∥∥)√ck|k−1 + 2
∥∥pD,k

∥∥√dk|k−1

1 − ∥∥pD,k

∥∥
⎞
⎟⎠

2

. (A.29)

Now turn to (4.11). From (2.8) and (3.9), we have

E

[(〈
p
(i)
L,k, ϕ

〉
−
〈
p
(i),L(i)

k|k−1

L,k , ϕ

〉)2]1/2

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

〈
p
(i)
k|k−1, ϕ

(
1 − pD,k

)〉
1 −

〈
p
(i)
k|k−1, pD,k

〉 −

〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2 (A.30)

(adding and subtracting a new term)

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

〈
p
(i)
k|k−1, ϕ

(
1 − pD,k

)〉
1 −

〈
p
(i)
k|k−1, pD,k

〉 −

〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉

1 −
〈
p
(i)
k|k−1, pD,k

〉

+

〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉

1 −
〈
p
(i)
k|k−1, pD,k

〉 −

〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2
(A.31)
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(using Minkowski’s inequality)

≤
E

[(〈
p
(i)
k|k−1, ϕ

(
1 − pD,k

)〉 −〈p(i),L(i)
k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉)2]1/2

1 −
〈
p
(i)
k|k−1, pD,k

〉

+ E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

〈
p
(i),L(i)

k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉

1 −
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2

·

⎛
⎜⎜⎜⎝

〈
p
(i)
k|k−1, pD,k

〉
−
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

1 −
〈
p
(i)
k|k−1, pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2
(A.32)

≤
E

[(〈
p
(i)
k|k−1, ϕ

(
1 − pD,k

)〉 −〈p(i),L(i)
k|k−1

k|k−1 , ϕ
(
1 − pD,k

)〉)2]1/2

1 −
〈
p
(i)
k|k−1, pD,k

〉

+

∥∥ϕ∥∥E
[(〈

p
(i)
k|k−1, pD,k

〉
−
〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉)2]1/2

1 −
〈
p
(i)
k|k−1, pD,k

〉

(A.33)

(by (4.9))

≤
∥∥ϕ∥∥√dk|k−1(

1 − ∥∥pD,k

∥∥)√L
(i)
k|k−1

. (A.34)

Finally, (4.11) is proved with

dL,k =
dk|k−1(

1 − ∥∥pD,k

∥∥)2
. (A.35)

Now, turn to (4.12). From (2.9) and (3.10), we have

E

[(
r
L
(i)
k|k−1

U,k (zk) − rU,k(zk)
)2]1/2

= E

⎡
⎢⎢⎣
⎛
⎜⎝

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k
(zk)

−
∑Mk|k−1

i=1 r
(i)
α,k(zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

⎞
⎟⎠

2⎤⎥⎥⎦
1/2 (A.36)



18 Journal of Applied Mathematics

(adding and subtracting a new term)

= E

⎡
⎢⎣
⎛
⎜⎝

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)
−

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

+

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

−
∑Mk|k−1

i=1 r
(i)
α,k(zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

⎞
⎟⎠

2⎤⎥⎥⎦
1/2 (A.37)

(using Minkowski’s inequality)

≤ E

⎡
⎢⎢⎣
⎛
⎜⎝r

L
(i)
k|k−1

U,k
(zk)

∑Mk|k−1

i=1 r
(i)
α,k(zk) −

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k(zk)

⎞
⎟⎠

2⎤⎥⎥⎦
1/2

+ E

⎡
⎢⎢⎣
⎛
⎜⎝

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k
(zk) −

∑Mk|k−1

i=1 r
(i)
α,k

(zk)

κk(zk) +
∑Mk|k−1

i=1 r
(i)
α,k

(zk)

⎞
⎟⎠

2⎤⎥⎥⎦
1/2

(A.38)

(using κk(zk) ≥ 0, 0 ≤ r
L
(i)
k|k−1

U,k
(zk) ≤ 1)

≤
2
∑Mk|k−1

i=1 E

[(
r
(i),L(i)

k|k−1

α,k (zk) − r(i)α,k(zk)
)2]1/2

∑Mk|k−1

i=1 r
(i)
α,k(zk)

.
(A.39)

From (2.12) and (3.14), the expectation in the summation of (A.39) is

E

[(
r
(i),L(i)

k|k−1

α,k
(zk) − r(i)α,k

(zk)
)2]1/2

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 − r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , ψk,zk

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2 (A.40)



Journal of Applied Mathematics 19

(adding and subtracting a new term)

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , ψk,zk

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉 − r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

+
r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉 − r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2
(A.41)

(using Minkowski’s inequality)

≤ E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , ψk,zk

〉
− r(i)

k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

+
r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)k|k−1

〈
p
(i)
k|k−1, pD,k

〉E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
− r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

(A.42)

(by 0 ≤ r
(i),L(i)

k|k−1

k|k−1 ≤ 1, Assumption 2 and (A.4))

≤

∥∥ψk,zk

∥∥E
[(

r
(i),L(i)

k|k−1

k|k−1 − r(i)
k|k−1

)2]1/2

+ r
(i)
k|k−1E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , ψk,zk

〉
−
〈
p
(i)
k|k−1, ψk,zk

〉)2]1/2

1 − ∥∥pD,k

∥∥

+
r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉

×

∥∥pD,k

∥∥E
[(

r
(i),L(i)

k|k−1

k|k−1 − r(i)
k|k−1

)2]1/2

+ r
(i)
k|k−1E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
−
〈
p
(i)
k|k−1, pD,k

〉)2]1/2

1 − ∥∥pD,k

∥∥
(A.43)
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(by (4.8), (4.9), and 0 ≤ r
(i)
k|k−1 ≤ 1)

≤
∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
(
1 − ∥∥pD,k

∥∥)2
√
L
(i)
k|k−1

. (A.44)

From (2.12), 0 ≤ r
(i)
k|k−1 ≤ 1 and Assumption 2, the denominator of (A.39) is

Mk|k−1∑
i=1

r
(i)
α,k(zk) =

Mk|k−1∑
i=1

r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 ≥ Mk|k−1∑
i=1

r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉

≥ inf
(
ψk,zk

)Mk|k−1∑
i=1

r
(i)
k|k−1 = inf

(
ψk,zk

)
nk|k−1,

(A.45)

where nk|k−1 =
∑Mk|k−1

i=1 r
(i)
k|k−1 is the number of the predicted targets at time k.

Substituting (A.44) and (A.43) into (A.39), we get

E

[(
r
L
(i)
k|k−1

U,k
(zk) − rU,k(zk)

)2]1/2

≤
2
∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
(
1 − ∥∥pD,k

∥∥)2 inf
(
ψk,zk

)
nk|k−1

Mk|k−1∑
i=1

⎛
⎜⎝ 1√

L
(i)
k|k−1

⎞
⎟⎠

≤
2
∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
Mk|k−1

inf
(
ψk,zk

)
nk|k−1

(
1 − ∥∥pD,k

∥∥)2
√
Lmin
k|k−1

,

(A.46)

where Lmin
k|k−1 = min(L(1)

k|k−1, . . . , L
(Mk|k−1)
k|k−1 ), min(·) denotes the minimum.

Finally, (4.12) is proved with

cU,k =

⎛
⎜⎝2

∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
Mk|k−1

inf
(
ψk,zk

)
nk|k−1

(
1 − ∥∥pD,k

∥∥)2

⎞
⎟⎠

2

. (A.47)

Now, turn to (4.13). First, from (2.12), 0 ≤ r
(i)
k|k−1 ≤ 1 and Assumption 2, we have

r
(i)
α,k(zk) =

r
(i)
k|k−1

〈
p
(i)
k|k−1, ψk,zk

〉
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉 ≤
∥∥ψk,zk

∥∥
1 − ∥∥pD,k

∥∥ . (A.48)
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Then, from (2.13), (3.11), and (A.39), we get

E

[(
r
∗,L(i)

k|k−1

U,k (zk) − r∗U,k(zk)
)2]1/2

≤

∑Mk|k−1

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

⎡
⎢⎣
⎛
⎝ r

(i),L(i)
k|k−1

α,k
(zk)

−r(i)α,k(zk)

⎞
⎠

2⎤⎥⎦
1/2

+ E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
(i),L(i)

k|k−1

α,k
(zk)

(
1 − r(i),L

(i)
k|k−1

k|k−1

)

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

–
r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∑Mk|k−1

i=1 r
(i)
α,k(zk)

(A.49)

(adding and subtracting a new term in the second expectation in the summation)

≤

∑Mk|k−1

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

[(
r
(i),L(i)

k|k−1

α,k (zk) − r(i)α,k(zk)
)2]1/2

+E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
(i),L(i)

k|k−1

α,k (zk)
(

1 − r(i),L
(i)
k|k−1

k|k−1

)

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉− r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1 − r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉

+
r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1 − r(i),L

(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉− r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑Mk|k−1

i=1 r
(i)
α,k(zk)

(A.50)

It holds that (using Minkowski’s inequality for the second term in the summation)

≤

∑Mk|k−1

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

[(
r
(i),L(i)

k|k−1

α,k (zk) − r(i)α,k(zk)
)2]1/2

+E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1

α,k
(zk) − r(i)α,k

(zk) + r
(i)
α,k

(zk)r
(i)
k|k−1 − r

(i),L(i)
k|k−1

α,k
(zk)r

(i),L(i)
k|k−1

k|k−1

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

+
r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1−r(i)

k|k−1
〈
p
(i)
k|k−1, pD,k

〉E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

r
(i),L(i)

k|k−1
k|k−1

〈
p
(i),L(i)

k|k−1
k|k−1 , pD,k

〉
−r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉

1 − r(i),L
(i)
k|k−1

k|k−1

〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑Mk|k−1

i=1 r
(i)
α,k(zk)

(A.51)
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(by 0 ≤ r
(i),L(i)

k|k−1

k|k−1 ≤ 1, (A.4), and Minkowski’s inequality)

≤

∑Mk|k−1

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
2−∥∥pD,k

∥∥)E
[(

r
(i),L(i)

k|k−1

α,k (zk)−r(i)α,k(zk)
)2]1/2

+E

⎡
⎢⎣
⎛
⎜⎝ r

(i)
α,k

(zk)r
(i)
k|k−1−r

(i)
α,k

(zk)r
(i),L(i)

k|k−1

k|k−1

+r(i)α,k(zk)r
(i),L(i)

k|k−1

k|k−1 −r(i),L
(i)
k|k−1

α,k (zk)r
(i),L(i)

k|k−1

k|k−1

⎞
⎟⎠

2⎤
⎥⎦

1/2

+
r
(i)
α,k(zk)

(
1−r(i)

k|k−1

)
1−r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉
⎛
⎜⎜⎜⎜⎝

∥∥pD,k

∥∥E
[(

r
(i),L(i)

k|k−1

k|k−1 −r(i)
k|k−1

)2]1/2

+ r
(i)
k|k−1E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
−
〈
p
(i)
k|k−1, pD,k

〉)2]1/2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
1 − ∥∥pD,k

∥∥)∑Mk|k−1

i=1 r
(i)
α,k(zk)

(A.52)

(using 0 ≤ r
(i),L(i)

k|k−1

k|k−1 ≤ 1 and Minkowski’s inequality again for the second term in the
summation)

≤

∑Mk|k−1

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
3−∥∥pD,k

∥∥)E
[(

r
(i),L(i)

k|k−1

α,k
(zk)−r(i)α,k

(zk)
)2]1/2

+r(i)
α,k(zk)E

[(
r
(i)
k|k−1−r

(i),L(i)
k|k−1

k|k−1

)2]1/2

+
r
(i)
α,k(zk)

(
1 − r(i)

k|k−1

)
1 − r(i)

k|k−1

〈
p
(i)
k|k−1, pD,k

〉
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∥∥pD,k

∥∥E
[(

r
(i),L(i)

k|k−1

k|k−1 −r(i)
k|k−1

)2]1/2

+ r
(i)
k|k−1E

[(〈
p
(i),L(i)

k|k−1

k|k−1 , pD,k

〉
−
〈
p
(i)
k|k−1, pD,k

〉)2]1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
1 − ∥∥pD,k

∥∥)∑Mk|k−1

i=1 r
(i)
α,k(zk)

(A.53)

(by 0 ≤ r
(i)
k|k−1 ≤ 1, (4.8), (4.9) (A.44), (A.45), and Assumption 2)

≤
∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
(
1 − ∥∥pD,k

∥∥)3 inf
(
ψk,zk

)
nk|k−1

Mk|k−1∑
i=1

⎛
⎜⎝4 −

(
r
(i)
k|k−1 + 1

)∥∥pD,k

∥∥√
L
(i)
k|k−1

⎞
⎟⎠

≤
∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)(
4Mk|k−1 −

(
nk|k−1 +Mk|k−1

)∥∥pD,k

∥∥)
(
1 − ∥∥pD,k

∥∥)3 inf
(
ψk,zk

)
nk|k−1

√
Lmin
k|k−1

.

(A.54)
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Finally, (4.13) is proved with

c∗U,k =

⎛
⎜⎝

∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
(
1 − ∥∥pD,k

∥∥)3 inf(ψk,zk)

((
4 − ∥∥pD,k

∥∥)Mk|k−1

nk|k−1
− ∥∥pD,k

∥∥)
⎞
⎟⎠

2

. (A.55)

Now turn to (4.14). From (2.10) and (3.12), we get

E

[(〈
pU,k(·; zk), ϕ

〉 −〈pL(i)
k|k−1

U,k
(·; zk), ϕ

〉)2]1/2

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

〈∑Mk|k−1

i=1 p
(i),L(i)

k|k−1

α,k (xk; zk), ϕ
〉

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)
−

〈∑Mk|k−1

i=1 p
(i)
α,k(xk; zk), ϕ

〉
∑Mk|k−1

i=1 r
(i)
α,k(zk)

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2 (A.56)

(adding and subtracting a new term)

= E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

〈∑Mk|k−1

i=1 p
(i),L(i)

k|k−1

α,k (·; zk), ϕ
〉

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk)
−

〈∑Mk|k−1

i=1 p
(i),L(i)

k|k−1

α,k (·; zk), ϕ
〉

∑Mk|k−1

i=1 r
(i)
α,k(zk)

+

〈∑Mk|k−1

i=1 p
(i),L(i)

k|k−1

α,k (·; zk), ϕ
〉

∑Mk|k−1

i=1 r
(i)
α,k

(zk)
−

〈∑Mk|k−1

i=1 p
(i)
α,k

(·; zk), ϕ
〉

∑Mk|k−1

i=1 r
(i)
α,k

(zk)

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

1/2
(A.57)

(using Minkowski’s inequality)

≤ E

⎡
⎢⎢⎣
⎛
⎜⎝

〈
Mk|k−1∑
i=1

p
(i),L(i)

k|k−1

α,k
(·; zk), ϕ

〉⎛
⎜⎝

∑Mk|k−1

i=1 r
(i),L(i)

k|k−1

α,k (zk) −
∑Mk|k−1

i=1 r
(i)
α,k(zk)∑Mk|k−1

i=1 r
(i)
α,k

(zk)
∑Mk|k−1

i=1 r
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(by (2.12) and (3.14))

≤ 2
∥∥ϕ∥∥∑Mk|k−1
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(by (A.39) and (A.47))

≤
∥∥ϕ∥∥√
Lmin
k|k−1

cU,k. (A.60)

Finally, (4.14) is proved with

dU,k = cU,k =

⎛
⎜⎝2

∥∥ψk,zk

∥∥(√ck|k−1 +
√
dk|k−1

)
Mk|k−1.

inf(ψk,zk)nk|k−1
(
1 − ∥∥pD,k

∥∥)2

⎞
⎟⎠

2

. (A.61)

This completes the proof.

Nomenclature

xk: State vector of a single target at time k
zk: Single measurement vector at time k
nk: Number of existing targets at time k
mk: Number of measurements collected at time k
Xk = {xi,k}nk

i=1: Finite set of multitarget state-vectors at time k
Zk = {zi,k}mk

i=1: Finite set of measurements collected at time k
fk|k−1(xk | xk−1): Single-target Markov transition density at time k
pS,k(xk−1): Probability of target survival at time k
pD,k(xk): Probability of detection at time k
κk(zk): Intensity of Poisson clutter process at time k
ψk,zk(xk) = fk(zk | xk): Single-sensor/target likelihood density at time k
δx(·): Dirac delta function centered at x
R

d: d-dimensional real space
Cb(Rd): Set of continuous bounded functions on R

d

B(Rd): Set of bounded Borel measurable functions on R
d

π(Y (i)): Probability density of a Bernoulli random finite set (RFS) Y (i)

π(Y ): Probability density of multi-Bernoulli RFS Y =
⋃M

i=1 Y
(i)

π = {(r(i), p(i))}Mi=1: Abbreviation of π(Y ). {(r(i), p(i))}Mi=1 is the multi-Bernoulli param-
eter set

π̃ = {(r(i),L(i)
, p(i),L

(i)
)}Mi=1: Particle approximation of π = {(r(i), p(i))}Mi=1. (r(i),L

(i)
, p(i),L

(i)
)

denotes that (r(i), p(i)) is comprised of the number L(i) of the
particles

‖ · ‖: Supremum norm. ‖ϕ‖ � sup(| ϕ |), sup(·) denotes the supremum
〈·, ·〉: Inner product. If the measure in 〈·, ·〉 is continuous, it defines the

integral inner product; if the measure in 〈·, ·〉 is discrete, it defines
the summation inner product.
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The estimation of ground subsidence processes is an important subject for the asset management
of civil infrastructures on soft ground, such as airport facilities. In the planning and design stage,
there exist many uncertainties in geotechnical conditions, and it is impossible to estimate the
ground subsidence process by deterministic methods. In this paper, the sets of sample paths
designating ground subsidence processes are generated by use of a one-dimensional consolidation
model incorporating inhomogeneous ground subsidence. Given the sample paths, the mixed
subsidence model is presented to describe the probabilistic structure behind the sample paths. The
mixed model can be updated by the Bayesian methods based upon the newly obtained monitoring
data. Concretely speaking, in order to estimate the updating models, Markov Chain Monte Calro
method, which is the frontier technique in Bayesian statistics, is applied. Through a case study, this
paper discussed the applicability of the proposed method and illustrated its possible application
and future works.

1. Introduction

In Japan, it is not rare to build airports on man-made islands or reclamation land. In these
offshore airports, the airport pavement may be damaged due to the ground’s inhomogeneous
subsidence. If the performance standard regarding airport pavement gradients is not
satisfied, due to the progression of ground subsidence, large-scale repair work on concrete
pavement is necessary. Therefore, predicting future ground subsidence is an important issue
for asset management strategy of airport pavements.

Ground subsidence estimation models using the consolidation theory have been
developed for soft ground [1]. However, there are many uncertainties in the actual
ground conditions, and it is extremely difficult to deterministically predict the process
of ground subsidence. Therefore, a method of probabilistically predicting the process of



2 Journal of Applied Mathematics

ground subsidence using a one-dimensional consolidation model that takes inhomogeneous
subsidence into consideration, and using soil constants that show ground conditions as
random variables, was developed [2]. With these probabilistic ground subsidence models,
soil constants are generated with Monte Carlo simulation, and sample paths of the process of
ground subsidence are simulated in accordance.

In this paper, a statistical ground subsidence model (hereinafter, mixed ground
subsidence model) is expressed as the aggregation of sample paths sought by probabilistic
ground subsidence models. Then, a mixed ground subsidence model, which employs
monitoring information of ground subsidence after the establishment of airports, and
sequentially performs Bayesian updating on weight coefficients of sample paths, is proposed.
With this method, the accuracy of estimation of ground subsidence using monitoring
information can be improved sequentially. The estimation accuracy of the mixed ground
subsidence model depends on the method of generation of sample paths and its estimation
accuracy.

With the above issues, this paper proposes a mixed ground subsidence model targeted
for offshore airports. In the following sections, Section 2 organizes the basic idea of the study,
Section 3 formulates a mixed ground subsidence model using the sample paths, Section 4
proposes a Bayesian updating model, and Section 5 introduces a numerical calculation
example.

2. Basic Approach of This Study

2.1. Mixed Ground Subsidence Model

The target period is divided into two periods: before the airport was in service and after
it began services. The former period shall be defined as the planning phase, and the latter
the operating phase. For the planning phase, there is no monitoring information regarding
ground subsidence process. Therefore, it becomes an issue to predict the amount of ground
subsidence over the years for each mesh, using the first model (probabilistic one-dimensional
consolidation model). The airport manager performs necessary boring tests during the
planning phase and acquires data on ground subsidence. Data acquired by boring tests is
partial information regarding ground subsidence, and not complete information. Therefore,
the process of ground subsidence cannot be definitely predicted. Consequently, for the
planning phase, several scenarios of ground subsidence will be established and sample
paths of ground subsidence process for each mesh will be acquired. Then, using the sample
information, the statistical regularity of the process of ground subsidence is expressed
using the second model. From the second model, it is possible to express the probabilistic
distribution of the deterioration process. Next, the operating phase is considered. From the
point when the airport begins services, the airport manager continuously monitors ground
subsidence amount for each mesh. The airport manager uses the monitoring information
of the ground subsidence amount to conduct Bayesian updating on the second model
and formulates the third model. The ground subsidence estimation model proposed in
this paper is a composite estimation model comprising the following: (1) the probabilistic
one-dimensional consolidation model (first model) that generates sample paths of the
ground subsidence process, (2) the mixed ground subsidence model (second model) that
expresses the statistical regularity of the sample paths generated with the first model,
and (3) the third model updated by Bayesian updating on the second model using new
monitoring information acquired as time passes.
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In this paper, the subsidence process of airport ground is expressed using a
probabilistic one-dimensional consolidation model, with consideration to the process of
inhomogeneous ground subsidence. Therefore, the targeted airport ground is divided into
planar meshes and also uses a three-dimensional model that divides meshes perpendicular
to each planar mesh. By using the first model, the change over time in the amount of ground
subsidence can be predicted for each planar mesh. However, there are many uncertainties in
ground conditions. Therefore, using a one-dimensional consolidation model with randomly
sampled ground conditions, multiple ground subsidence scenarios will be generated. The
ground condition of each three-dimensional mesh is established by random generation. If
the ground condition of each mesh is established in this way, the ground subsidence process
over time of each planar mesh can be predicted using the first model. A ground subsidence
process obtained in this way is one sample of subsidence process (hereinafter, sample path)
for that ground condition scenario by random generation.

By randomly generating ground condition scenarios, multiple sample paths can
be obtained for each planar mesh. In order to develop an airport pavement design and
maintenance plan, it is necessary to summarize the numerous sample path information
created by the first model. The easiest method is to use an expectation path that averages
the sample paths generated with the first model. An expectation path is convenient, but it
does not adequately utilize the enormous information acquired by the first model. Therefore,
in this paper, weight coefficients are assigned to the sample paths acquired by the first
model, and a mixed ground subsidence model (second model) that expresses the ground
subsidence process by weight average of the sample paths is formulated. As the actual
ground subsidence process cannot be observed in the planning phase, it is impossible
to statistically predict the second model. Thus, unless there is theoretical or experiential
additional information on the certainty of each sample path, the weight of each sample
path must be handled equally. In other words, the ground subsidence process is defined
as the expectation path that averages all sample paths. However, after the airport begins
services, monitoring information on the process of ground subsidence can be acquired. The
issue now is to improve the estimation accuracy of the ground subsidence process by using
the monitoring information and sequentially performing Bayesian updating on the second
model. The model acquired by Bayesian updating using monitoring information will be
called the third model.

2.2. Bayesian Updating Scheme

In airport pavement management, it is required that the ground subsidence process
is continuously monitored, the subsidence process predicted in the planning phase is
reevaluated, and if necessary the maintenance strategy is reconsidered. As shown in Figure 1,
let us say a certain amount of time has passed since the point when airport services began
t0 and has reached point T . The ground subsidence process is predicted during the planning
phase with the probabilistic one-dimensional consolidation model. The dotted lines in the
figure are the predicted results of the amount of ground subsidence over time, for a certain
planar mesh. The figure shows sample paths of ground subsidence process for 20 calculation
scenarios, with altered soil constants. Furthermore, the thick red line in the figure is the
expectation path, which is the simple average of these paths. Let us say that after the airport
begins services, the ground subsidence process of each mesh is continuously monitored. In
the figure, the ground subsidence amount actually observed from point t0 when services
began and the current point T is shown with the black dots. In this example, the actual values
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Figure 1: Bayesian updating on mixed ground subsidence model.

of the ground subsidence are in a lower position than the expectation path. Therefore, when
ground subsidence is predicted using the expectation path, the actual subsidence may be
underestimated.

The mixed ground subsidence model can be obtained by assigning weight coefficients
to sample paths and seeking the weight average of sample paths. Furthermore, let us say the
distribution is according to prior distribution with weight vectors. At the initial point there is
no monitoring information regarding ground subsidence. Therefore, equal weight is assigned
to all sample paths. However, when monitoring information is acquired, higher weight can
be assigned to sample paths closer to the observed values of ground subsidence amount. As
a result, it is possible to limit the distribution range of weight coefficients within a narrower
range. In Figure 1, the ground subsidence sample paths predicted for after point T are shown
in thick blue lines, using the mixed ground subsidence model with Bayesian updating with
monitoring information up to point T . In comparison to the spread of the sample paths sought
with the first model, sample paths with Bayesian updating are collected within a narrower
range, and it can be understood that the estimation accuracy of the mixed ground subsidence
model is improved.

3. Mixed Ground Subsidence Model

3.1. Purpose of Second Model

By using the first model, sample paths regarding multiple ground subsidence processes can
be generated for each planar mesh. In other words, each sample path shows the result of
ground subsidence process simulation, with randomly generated soil constants as conditions.
There are many uncertainties with ground conditions, so there is no guarantee that the
actually observed ground subsidence process matches one sample path. In this chapter,
the actual ground subsidence process is expressed with a mixed ground subsidence model,
which expresses the aggregation of sample paths obtained with the first model. As mentioned



Journal of Applied Mathematics 5

above, the expectation path is the expectation sought from all sample paths and can be said
to be a special case of the mixed ground subsidence model with equal weight assigned to
all sample paths. Using the mixed ground subsidence model (second model), it is possible to
express the probabilistic structure behind the sample paths. Furthermore, merits of the second
model include (1) Bayesian updating of the ground subsidence model using monitoring
information of ground subsidence amount observed at airports after services begin is made
easy and (2) statistical testing on estimation accuracy of the ground subsidence model is
possible.

3.2. Formalization of Mixed Ground Subsidence Model

The sample path k = 1, . . . , K calculated with the first model expresses the ground subsidence
amount at point t for each mesh. The ground subsidence amount at point t (t = 0, . . . , T)
in sample path k of planar mesh i (i = 1, . . . ,N) can be expressed as fi(t, k). The mixed
ground subsidence model is defined as an aggregation of sample paths generated with the
first model. For weight coefficients assigned to each sample path to be uniquely determined,
the sample paths that comprise the mixed ground subsidence model must be independent.
Let us say a total of K independent samples are obtained. The mixed ground subsidence
model can be expressed as the linear combination of sample paths:

yt
i =

K∑
k=1

ωi(k)fi(t, k) + εi. (3.1)

Here, ωi(k) is the weight assigned to the sample path k, and the following holds:
K∑
k=1

ωi(k) = 1 (i = 1, . . . ,N). (3.2)

Here, the weight vector of planar mesh i shall be expressed as ωi = (ωi(1), . . . , ωi(K)). The
weight vector ωi is a random variable that satisfies the constrained condition (3.2). Next,
let us assume that εi is a random variable that expresses the measurement error and each
independently is subject to the one-dimensional normal distribution N(0, σ2

i ).

3.3. Probabilistic Estimation of Ground Subsidence Amount

The weight matrix ωi and probability error εi of the mixed ground subsidence model (3.1)
are random variables. If these random variable values can be formalized, specific ground
subsidence paths can be acquired. Here, let us say the prior probability density function of
ωi is subject to the Dirichlet distribution. The probability density function of the Dirichlet
distribution is given by

D
(
ωi | α(0)) = Ψ

(
α(0)
) K∏

k=1

{ωi(k)}a
(0)
k
−1, (3.3a)

Ψ
(
α(0)) =

Γ
(∑K

k=1 α
(0)
k

)
∏K

k=1Γ
(
α
(0)
k

) . (3.3b)
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Here, Γ(-) is a gamma function, and α(0) = (α(0)
1 , . . . , α

(0)
K ) is a constant parameter vector in

the initial data. During the planning phase, the calculation results of the first model (sample
paths) are available, as forerunning information [3]. The method of establishing parameters
of the Dirichlet distribution using sample paths will be discussed in Section 5.3. Next, we
will say φi = σ−2

i , and the prior probability density function of φi is subject to a gamma
distribution. In other words, φi � G(β(0), γ (0)), and the probability density function of the
gamma distribution is given by

g
(
φi | β(0), γ (0)

)
=

(
γ (0)
)β(0)

Γ
(
β(0)
) φi

β(0)−1 exp
(
−γ (0)φi

)
. (3.4)

Hence, β(0) and γ (0) are constant parameters in the initial data. At this time, the prior
probability density function π(yt

i) of the ground subsidence amount yt
i at point t of mesh

i can be expressed as

π
(
yt
i

) ∝ ∫ · · ·∫ φi
β(0)−1/2

K∏
k=1

ωi(k)
a
(0)
k
−1 exp

⎡
⎣−φi

⎧⎨
⎩γ (0) +

1
2

(
yt
i −

K∑
k=1

ωi(k)fi(t, k)

)2
⎫⎬
⎭
⎤
⎦

dφi dωi(1) · · ·dωi(K − 1).

(3.5)

However, ωi(K) = 1 −∑k−1
k=1 ωi(k). It is difficult to analytically calculate the prior probability

density function π(yt
i), so it shall be calculated with Monte Carlo simulation. In other

words, by random sampling φi, ωi(1), . . . , ωi(K − 1) with prior probability density functions
(3.3a) and (3.4), and randomly selecting yt

i with the normal probability density function
N(
∑K

k=1 ωi(k)fi(t, k), φ−1
i ), the probability distribution of the ground subsidence amount can

be estimated.

4. Bayesian Updating Model

4.1. Bayesian Updating of the Mixed Ground Subsidence Model

The mixed ground subsidence model is a statistical model that expresses statistical
uncertainties in ground subsidence process, using sample paths of ground subsidence
process generated by the first model. The mixed ground subsidence model includes random
variables ωi (weight vector assigned to each sample path) and εi (probabilistic error). At
the initial point, measurement values for these random variables do not exist, and the
statistical characteristics of the ground subsidence process is expressed with the random
variables’ prior probability density functions (3.3a) and (3.4). In the operating phase when
the airport is in service, monitoring information regarding the ground subsidence amount
of each mesh is measured. Now, let us say time has passed from the point when services
began (hereinafter, initial point) and has reached point T . Furthermore, let us say that
from monitoring at point t (t = 0, . . . , T), the data regarding ground subsidence amount
y0,T
i = (y0

i , . . . , y
T
i ) (i = 1, . . . ,N) has been acquired. The symbol “ ′′ means the monitoring

information (actual value). The overall monitoring results shall be expressed with the vector
y0,T = (y0,T

1 , . . . , y0,T
N ). Here, let us consider for now that the weight vector ωi is a given value,

and only the probability error is a random variable. Also, the reciprocal φ of the probability
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error variance shall be a given value. Now, the likelihood that the monitoring result y0,T
i is

observed can be expressed as

L
(
y0,T
i | ωi, φi

)
∝

T∏
t=0

φ1/2
i exp

⎡
⎣−φi

2

{
yt
i −

K∑
k=1

ωi(k)fi(t, k)

}2
⎤
⎦. (4.1)

Next, it shall be assumed that the prior probability density function of ωi is subject to
the Dirichlet distribution (3.3a), and the reciprocal φi of the variance follows the gamma
distribution (3.4).

Here, the conditional posterior probability density function π(φi | ωi, y
0,T
i ) of φi, with

ωi and y0,T
i as known values, can be expressed as

π
(
φi | ωi, y

0,T
i

)
∝ φi

β
(0)−1 exp

(
−γ (0)φi

)
,

β
(0)

= β(0) +
T + 1

2
,

γ
(0) = γ (0) +

1
2

T∑
t=0

{
yt
i −

K∑
k=1

ωi(k)fi(t, k)

}2

.

(4.2)

In other words, π(φi | ωi, y
0,T
i ) is subject to the gamma distribution G(β

(0)
, y(0)), and model

samples of φi can be generated from the gamma distribution G(β
(0)
, y(0)).

Next, the conditional posterior probability density function π(ωi | φi, y
0,T
i ) of ωi, with

φi and y0,T
i as known values, can be expressed as

π
(
ωi | φi, y

0,T
i

)
∝ exp

⎡
⎣−φi

2

T∑
t=0

{
yt
i −

K∑
k=1

ωi(k)fi(t, k)

}2
⎤
⎦ K∏

k=1

ωi(k)
a
(0)
k
−1. (4.3)

4.2. MH Algorithm

The conditional posterior probability density function of ωi, shown in (4.3), is not a generally
known distribution. Therefore, it is difficult to conduct direct sampling [4] of model samples
of ωi from the conditional posterior probability density function π(ωi | φi, y

0,T
i ). This paper

applies the MH (Metropolis-Hasting) method [5] that does not use a direct sampling method.
The MH method samples from a proposed distribution that is similar to π(ωi | φi, y

0,T
i ) and

according to it obtains samples from the original distribution [6]. Furthermore, to improve
the efficiency of sampling, random walk is used. It is not new to use the MH method with
random walk, but the algorithm should be explained briefly here, for the convenience of the
reader.

First, the initial value of the parameter vector ωi can be expressed as
(ω0

i (1), . . . , ω
0
i (K)). Here, a new candidate point ω′i shall be proposed with

ω′i = ω0
i + λν. (4.4)
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Here, λ is the constant parameter that establishes the range of step width, and ν =
(ν(1), . . . , ν(K)) is the parameter vector that establishes the step width. In order for the
candidate point ω′i to satisfy the constrained condition

∑K
k=1 ω

′
i(k) = 1,

∑K
k=1 ν(k) = 0 must

hold. Now, from the change of variables ν′ = ν + K−1I, ν′ shall be subject to the Dirichlet
distribution. However, I is an identity matrix of 1 × K. The range of step width is the same
for every k and established at (−λK−1, λ(1 − K−1)). Also, the proposed distribution shall be
defined, using the Dirichlet distribution with the constant parameter vector x = (x1, . . . , xK),
as follows:

q
(
ω0

i , ω
′
i | φi, y

0,T
i

)
= D

(
ω′i −ω0

i

λ
+

I
K
| χ
)
. (4.5)

This proposed distribution satisfies the condition:

q
(
ω0

i , ω
′
i | φi, y

0,T
i

)
= q
(
ω′i, ω

0
i | φi, y

0,T
i

)
. (4.6)

Therefore, as the proposed density q is symmetrical to (ω0
i , ω

′
i), the acceptance probability

κ(ω0
i , ω

′
i | y0,T

i ) of the new candidate point can be expressed as

κ
(
ω0

i , ω
′
i | y0,T

i

)
= min

⎧⎨
⎩

π
(
ω′i | φn

i , y
0,T
i

)
π
(
ωn

i | φn
i , y

0,T
i

) , 1
⎫⎬
⎭. (4.7)

If accepted, it moves to a new candidate point, and if rejected it remains. The MH algorithm
procedure can be organized as follows.

Step 1 (Initial Establishment). The parameter vectors α(0) = (α(0)
1, . . . , α

(0)
k), β(0), and γ (0)

of the prior distributions (3.3a) and (3.4) are arbitrarily established. Furthermore, the initial
values ω0

i = (ω0
i (1), . . . , ω

0
i (K)) and φ0

i of the parameter estimation are arbitrarily established.
The constant parameter λ, constant parameter vector χ, and sample numbers n and n are
established. The influence of these initial values shall decrease gradually, as the number of
MCMC simulations increase. The number of simulations has to be n = 0.

Step 2 (Sample Extraction of Parameter Estimation ωi). The parameter estimation ωn+1
i =

(ωn+1
i (1), . . . , ωn+1

i (K)) when the number of simulations is n + 1 is generated as follows. ν′

that is subject to the Dirichlet distribution is randomly generated. The parameter vector ν
that establishes the step width is calculated with ν = ν′ −K−1I. The new candidate point ω′i is

ω′i = ωn
i + λν. (4.8)

The acceptance probability is calculated as

κ
(
ωn

i , ω
′
i | φn

i , y
0,T
i

)
= min

⎧⎨
⎩

π
(
ω′i | φn

i , y
0,T
i

)
π
(
ωn

i | φn
i , y

0,T
i

) , 1
⎫⎬
⎭. (4.9)
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Then the uniform distribution u ∼ U(0, 1) is generated, and if the two following equations
are satisfied:

κ
(
ωn

i , ω
′
i | φn

i , y
0,T
i

)
> u,

ω′i(k) ≥ 0 (k = 1, . . . , K),
(4.10)

then ωn+1
i = ω′i, so proceed to Step 3. If not, return to Step 2.

Step 3 (Sample Extraction of Parameter Estimation φi). φn+1
i is generated from π(φi |

ωn+1
i , y0,T

i ). In other words, φn+1
i is randomly generated from the gamma distribution

G(β
(0)
, γ (0)).

Step 4 (Final Judgment of the Algorithm). The updated values ωn+1
i = ωn+1

i (1), . . . , ωn+1
i (K)),

φn+1
i of the parameter estimation, obtained from the above steps, are recorded. If n ≤ n, then

n = n + 1 so return to Step 2. If not, the algorithm is finished.

4.3. Bayesian Updating and Bayesian Estimation

It shall be considered that using the monitoring result y0,T
i = (y0

i , . . . , y
t
i) of mesh i up to

the monitoring at point t, the posterior distribution of the unknown parameters of the mixed
ground subsidence model is obtained. Then, using the monitoring result yt+1,t′

i = (yt+1
i , . . . , yt′

i )
from between point t + 1 and t′, the problem of updating the posterior distribution of
the unknown parameters is supposed. If the posterior probability density function of the
unknown parameters of the first Bayesian estimation is π(ωi, φi | y0,T

i ), the posterior
probability density function of the unknown parameter after the second Bayesian updating
π(ωi, φi | y0,t′

i ) can be expressed as

π
(
ωi, φi | y0,T

i

)
∝ L
(
ωi, φi | yt+1,t′

i

)
π
(
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i

)

∝ L
(
ωi, φi | y0,T

i

)
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)
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(
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)
.

(4.11)

Here, L(ωi, φi | y0,t′

i ) is the likelihood function defined using the database that pools the
monitoring results from the initial point to point t′. On the other hand, D(ωi | α(0)) and
g(φi | β(0), γ (0)) are each prior distributions of ωi and φi used in the first Bayesian estimation.
Therefore, the posterior distribution after Bayesian updating is

π
(
ωi, φi | y0,T

i

)
∝ φ

β(0)+(t
′−1)/2

i · exp

⎡
⎣−φi

⎧⎨
⎩γ (0) +

1
2
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(
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k=1

ωi(k)fi(t, k)

)2
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⎭
⎤
⎦

·
K∏
k=1

ωi(k)
α
(0)
k
−1.

(4.12)
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In other words, in order to update the posterior distribution of unknown parameters, it is
necessary to define the likelihood functions with the database that includes new monitoring
results and newly estimate the posterior distribution by the MH method.

The monitoring information y0,T
i from initial point t = 0 to point t = T and the posterior

distribution of the parameter of the mixed ground subsidence model π(ωi, φi | y0,T
i ) are

assumed to be given values. With this, the ground subsidence amount after point t = T can
be estimated. The actual value (monitoring information) of ground subsidence amount of
planar mesh i at point t = T shall be expressed as yT

i . On the other hand, the predicted value
of ground subsidence amount for point t (> T), which comes after point t = T , predicted at
point t = T , shall be yt̃

i(T). If it is assumed that with the passing of time ground subsidence
always progresses, then the following holds:

yT
i ≤ ỹT̃+1

i (T) ≤ · · · ≤ ỹT̃+n
i (T) ≤ · · · . (4.13)

Hence, n is a natural number. Here, the parameter ωi of the mixed ground subsidence model
is a given value. At this time, if ground subsidence amount yT

i is observed at point t = T ,
prediction residual of the mixed ground subsidence model can be expressed as

ξTi = yT
i −

K∑
k=1

ωi(k)fi(t, k). (4.14)

Furthermore, if the weight coefficient ωi is given, the predicted value of ground subsidence
amount at point t (> T), which comes after point t = T , predicted at point T , can be expressed
definitely with the mixed ground subsidence model:

ỹt̃
i(T) =

K∑
k=1

ωi(k)fi
(
t̃, k
)
+ ξTi . (4.15)

Next, the posterior distribution F(ωi | y0,T
i ) of parameter ωi updated by Bayesian updating

using the monitoring information y0,T up to point t = T can be approximated with MCMC
method. Furthermore, the weight sample generated with MCMC method can be expressed as
ωn

i (n ∈M, i = 1, . . . ,N). At this point, if ground subsidence amount yT
i is observed at point

T , the probability distribution function Hi(yi | t, yT
i ) regarding ground subsidence amount

yt̃
i (T) at point t (> T) can be expressed as

Hi

(
ỹi | t̃, yT

i

)
=

�
{
ỹt̃,n
i (T) ≤ ỹ, n ∈M

}
n − n . (4.16)
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However, yt̃,n
i (T) is the predicted value of ground subsidence for point t (> T), predicted at

point T , using the weight coefficient sample value ωn
i , and can be defined as

ỹt̃,n
i (T) =

K∑
k=1

ωn
i (k)fi

(
t̃, k
)
+ ξT,ni ,

ξT,ni = yT
i −

K∑
k=1

ωn
i (k)fi(T, k).

(4.17)

Furthermore, the expected value of ground subsidence amount E[yt̃
i(T)] at point t can be

expressed as

E
[
ỹt̃
i(T)
]
=

∑n
n=n+1 ω

n
i (k)fi

(
t̃, k
)
+ ξT,ni

n − n . (4.18)

Also, the 100%(1 − 2δ) credible interval of ground subsidence amount yt̃
i (T) of point t,

predicted at point T , can be defined as yt̃

i
(δ, T) < yt̃

i(T) < yt̃
i(δ, T) using sample order statistics

yt̃

i
(δ, T) and yt̃

i
(δ, T):
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(4.19)

5. Empirical Study

5.1. Summary of Applied Case

In this paper, the offshore H airport is targeted. At this airport, with approximately 30
thousand commissions of short-range international passenger flights and commissions of
international cargo flights during late-night and early-morning hours, PFI is applied from
planning and construction to maintenance of basic facilities including aprons, airport safety
facilities, supplementary facilities, roads and parking spaces, and green tracts. Among these,
aprons are areas where aircraft are parked, and concrete pavement is used because of the
necessity of strong resistance of fluidity and oil. These aprons are situated on soft ground, and
the fatigue and deterioration of the concrete pavement due to inhomogeneous subsidence of
the ground is a problem.

The targeted area was the apron area of H airport, with a range of 825 m × 400 m,
and for consolidation subsidence the basic unit was a 25 m × 25 m square mesh. The apron
area was divided into planar meshes. Also, the targeted consolidation layers were alluvial
clay layer around GL-7 m to GL-25 m and diluvial clay layer around GL-25 m to GL-60 m,
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Table 1: Soil constants using first model.

Compression index: Cc Normal distribution
Initial void ratio e0 Normal distribution
Consolidation yielding stress: Pc Normal distribution
Consolidation coefficient: cv Log-normal distribution

and the one-dimensional consolidation theory was used. With Markov hazard model [7], the
correlation between soil constants can be considered. In this applied case, from the boring
test results, the horizontal correlation length was set at b = 100 m, and the perpendicular
correlation length was set at 4-5 m. The perpendicular mesh divisions were divided at every
4 m, even within the same ground. For analysis, from the 17 boring results and consolidation
test results conducted on the targeted area, the alluvial clay layer and diluvial clay layer
was divided in the depth direction into 10 layers, Ac1–Ac6 and Dc1–Dc4, respectively, and the
soil constants were organized. Table 1 shows the inhomogeneous subsidence simulation soil
constant used in the applied case.

5.2. Analysis Results by the First Model

The inhomogeneous subsidence shall be simulated with the first model. For each block,
the soil constant is randomly generated from the probability distribution. Specifically, the
soil constants of each consolidation layer divided perpendicularly were generated from
the expected value, standard deviation, and coefficient of variation shown in Table 2, by
normal distribution for compression index Cc, initial void ratio e0, and consolidation yielding
stress pc, and by log-normal distribution for consolidation coefficient cν. Furthermore, these
expected values and distributions are established according to boring test results conducted
on representative planar meshes. For all three-dimensional blocks, the soil constants were
randomly generated by the Monte Carlo simulation. The pairs of soil constants generated
for all three-dimensional blocks shall be called calculation scenarios. Furthermore, for each
calculation scenario, the ground subsidence process of the targeted calculation scenario is
calculated with the first model.

An example of the inhomogeneous subsidence simulation is shown in Figure 2. This
figure shows 20 sample paths of ground subsidence amount over time, for the planar mesh
i = 73, which was chosen as an example. The chosen planar mesh has an existing ground
height of AP + 3.0 m, a planned ground height of AP + 6.0 m, and is a part of the area with high
embankment. As a result of simulation with the first model, the expected path subsidence
amount after 30 years is 35.75 cm as shown in Figure 3 and is predicted to have the largest
subsidence among the entire targeted area. In the horizontal axis, the start of services at H
airport is set at 0, but it can be seen that ground subsidence had already occurred between
roadbed adjustment and the start of services. Also, when comparing the 20 sample paths of
Figure 2, it can be understood that the ground subsidence amount changes greatly depending
on the soil constant scenario. In fact the average subsidence amount for after 30 years is
35.75 cm and the variance is 30.66 cm2. On the other hand, in any sample path the ground
subsidence processes converge with the passing of time.

5.3. Creating the Second Model

Using the 20 sample paths obtained with the first model (see Figure 2), the mixed ground
subsidence model (second model) is estimated. The sample paths from the first model are
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Table 2: Soil constants for inhomogeneous subsidence simulation.

Layer Cc (kN/m2) e0 pc (kN/m2) cv (cm2/day)
EV SD EV SD EV CV EV log cv log cv SD

Ac1 0.45 0.07 1.34 0.17 70 0.36 993 −4.26 0.29
Ac2 0.41 0.06 1.21 0.11 59 0.33 1025 −4.15 0.09
Ac3 0.73 0.11 1.84 0.22 95 0.49 759 −4.40 0.33
Ac4 0.87 0.08 2.09 0.15 90 0.39 787 −4.32 0.23
Ac5 0.74 0.21 1.91 0.39 99 0.44 1103 −4.20 0.26
Ac6 0.31 0.12 1.17 0.22 139 0.08 3435 −3.63 0.09
Dc1 0.44 0.13 1.32 0.30 174 0.71 1680 −3.95 0.14
Dc2 0.57 0.16 1.54 0.27 144 0.67 1945 −4.01 0.34
Dc3 0.66 0.12 1.58 0.19 135 0.66 1000 −4.27 0.29
Dc4 0.70 0.25 1.64 0.67 186 0.65 1002 −4.23 1.66

Note—EV: expected value, SD: standard deviation, CV: coefficient of variation. For Ac1–Ac6, the alluvial clay ground layer
was divided into 6 layers in the depth direction from categorization of soil characteristics, acquired from boring test results
and lab consolidation test results, and the layers were numbered from the top layer to the bottom layer. Similarly, for Dc1–
Dc4 also, according to the categorization of soil characteristics, the diluvial clay ground layers were numbered from the top
layer to the bottom layer.
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Figure 2: Examples of simulation results of inhomogeneous subsidence.

in a strong correlation to each other. For example, the correlation coefficient between the
20 sample paths of Figure 2 was at least 0.976. Therefore, in order to avoid the problem of
multicollinearity, out of the 20 sample paths the 2 sample paths that set the upper limit and
lower limit of predicted subsidence at the end of the contract were selected for the estimation
of the mixed ground subsidence model. Hereinafter, the sample path at the upper limit shall
be called α and the sample path at the lower limit shall be called β. We shall add that with
any mesh, the sample path α and β set the upper and lower limits of predicted subsidence for
the overall contract period. In other words, by selecting sample paths α and β, it is possible
to expand the section between the two sample paths as much as possible and maximize the
range created with the second and third models. Figure 3 shows the expected value path by
simple average of the 20 sample paths. This figure also shows the averaged results of the
2 sample paths used for the mixed ground subsidence model (sample average). Naturally,
this path does not match the expected value path, which is a simple average of the 20 sample
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Figure 3: Simulated monitoring data and sample paths.

paths. Therefore, in order to predict the ground subsidence amount yt
i of mesh i at point t, the

weight coefficient ωi(k) (k = 1, 2) of the mixed ground subsidence model must be corrected
so that the misfit between the expected path of the mixed ground subsidence model and the
sample average is as little as possible. Now, the predicted ground subsidence amount of mesh
i at point t of the expected value path from the 20 sample paths shall be expressed as yt

i. If
ωi(k) (k = 1, 2) takes a value that satisfies:

min
ωi(1),ωi(2)

{
ỹt
i −

2∑
k=1

ωi(k)fi(t, k)

}2

, (5.1)

then the misfit between the expected value path and average path is arbitrarily small.
However, fi(t, k) is the sample path (generated with the first model) selected for the mixed
ground subsidence model. Now, the weight vector ωi at point t established in (5.1) shall
be expressed as ωt

i. Furthermore, let us say the prior probability density function of the
weight vector ωi of the mixed ground subsidence model can be identified as a Dirichlet
distribution of (3.3a). The posterior probability density function π(yt

i) of ground subsidence
amount yt

i at point t of mesh i is difficult to analytically estimate as shown in (3.5), so it
is necessary to calculate this with Monte Carlo simulation. For this, the weight vector ωi is
randomly generated from a Dirichlet distribution as shown in (3.3a). Therefore, in order to
make the separation between the expected value path and average path arbitrarily small, a
Dirichlet distribution and parameter vector is established in which the following equation
approximately holds:

E[ωi(k)] ≈ ω̃t
i(k) (k = 1, 2). (5.2)
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Now, in the Dirichlet distribution, the expected value of ωi(k) can be expressed as

E[ωi(k)] =
α
(0)
k∑2

k=1 α
(0)
k

(k = 1, 2). (5.3)

Therefore, the initial parameter of the Dirichlet distribution α(0)
k(k = 1, 2) is established so

that the following holds:

ω̃t
i(k) =

α
(0)
k∑2

k=1 α
(0)
k

(k = 1, 2). (5.4)

Using the mixed ground subsidence model established with the above, the ground
subsidence amount after 5 years y5

i is predicted. The distribution of the predicted subsidence
amount can be obtained, as shown in (3.5), by establishing the prior probability density
function of α(0) and φi. Now, the parameter vector of the Dirichlet distribution α(0) shall be,
according to the weight vector ω5

i , established as α1
(0) = 0.593 and α2

(0) = 0.407. Figure 4
uses planar mesh i = 73 and shows how the predicted subsidence distribution changes after
5 years, due to the values of the parameters β(0) and γ (0) of the prior probability density
function φi. As shown in Figure 4, if the values of parameters β(0) and γ (0) are increased, the
predicted subsidence amount is distributed within a narrower range. On the other hand, if the
values of β(0) and γ (0) are decreased, the predicted subsidence amount is distributed within
a wider range. Figure 5 shows how the 95% credible interval of the predicted subsidence
amount at point t changes according to the values β(0) and γ (0). The initial parameter of the
prior probability density of φi can be arbitrarily established, but for the efficiency of Bayesian
learning it is better if the prior distribution is dispersed. In this paper, the initial parameters
were established at β(0) = 0.5 and γ (0) = 0.5. From the results of Figure 4, the case in which
these initial values were used shows greater dispersion of prior distribution of the parameter
values, among the 4 calculation cases in the same figure.

5.4. Estimating the Third Model

After services are offered at the airport, information on the ground subsidence amount of
each planar mesh can be obtained through continuous monitoring. Using this monitoring
information, the mixed ground subsidence model is reconsidered. At the moment, the airport
is not in service and there is no monitoring information. So, the monitoring results of ground
subsidence amount of each planar mesh are assumed and Bayesian updating is conducted
on the mixed ground subsidence model. Now, the period of the airport during operation
and management shall be divided into two periods: (1) from the first year to the sixth
year and (2) after the sixth year. After services begin, each year periodical monitoring of
ground subsidence amount is conducted, and at the fifth year after services begin, Bayesian
estimation of the mixed ground subsidence model is considered. Next, after the sixth year,
monitoring information of ground subsidence can be obtained each year. Here we shall
consider the problem of adding the newly acquired monitoring information to the database
and conducting Bayesian updating of the mixed ground subsidence model every year
according to the newly updated database.
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Figure 5: 95% credible interval of predicted subsidence amount.

In the targeted airport ground, there are a total of 528 planar meshes. Let us assume
the airport apron has been in service for 5 years, and consider the problem of predicting
ground subsidence amount after the sixth year, using monitoring information of 5 years to
update the mixed ground subsidence model. Figure 3 shows the sample path created with
the first model and expected value path calculated with the second model, using an example
mesh (i = 73) of the 528 planar meshes. Currently, there is no monitoring information so
the Bayesian updated third model is created using assumed information. In order to check
whether the estimation results of ground subsidence can be appropriately corrected with the
Bayesian updated third model, even if the actual ground subsidence amount is larger than
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Table 3: Estimation results of mixed ground subsidence model.

Parameter Expected value 95% credible interval Geweke test statistics
ω73(1) 0.553 0.518 0.589 −8.63E − 02
ω73(2) 0.447 0.428 0.467 −8.63E − 02
φ73 2.76 0.66 7.41 −4.49E − 02

the expected path of the second model, the hypothesized monitoring information shown with
the black dots in Figure 3 was used. The ground subsidence process shown in this example
is lower than the expected sample path, and the ground subsidence amount is larger than
the expected value path. The mixed ground subsidence model of the targeted mesh can be
expressed as

yt
73 =

2∑
k=1

ω73(k)f73(t, k) + ε73. (5.5)

Also, k = 1 is the sample path α of Figure 3, while k = 2 is sample path β.
Furthermore, for the prior probability density function of weight vector ωi of the

mixed ground subsidence model, the same distribution was used as the Dirichlet distribution
used in the second model. On the other hand, the prior probability density function of the
variance parameter φi of the probability error term εi is subject to the gamma distribution of
(3.4), and the parameter of the gamma distribution was established as (β(0), γ (0)) = (0.5,0.5)
according to the consideration of Section 5.3. Also, the number of convergence tests totaled
8,000 samples: n = 2, 000, n = 10, 000.

First, after services, the mixed ground subsidence model is updated with Bayesian
updating according to the monitoring information of 5 years. In Table 3, the estimation
results of the mixed ground subsidence model are shown with the weights ω73(1), ω73(2),
expected value of distribution parameter φ73, the 95% credible interval, and the Geweke test
statistics [8]. Geweke test statistics are statistics for testing whether the sampling process of
MCMC method reaches a steady state and is used to test whether the sample number n is
appropriate or not. From the estimation results, the total weight is 1 and the constrained
condition equation (3.2) is satisfied. Also, the expected value of weight ω73(1) is high but this
is an inevitable result as the simulated monitoring information is at a higher position than the
sample average path. The posterior probability density functions of these two parameters are
shown in Figures 6 and 7. Also, when conducting the MH method, n = 2, 000 was established
as the sample number for the Markov chain to reach a steady state, but the absolute value of
the Geweke test statistics are all lower than 1.96 and the hypothesis that it “converges to a
steady state” with a significance level of 5% cannot be dismissed. The prior distributions of
these parameters are shown in Figures 6 and 7, but the variance of the parameter distributions
of the mixed ground subsidence model is smaller with Bayesian updating.

Next, using the mixed ground subsidence model updated with Bayesian updating
on the fifth year, the ground subsidence path after the sixth year is estimated and the
results are shown in Figure 8. As stated above, the actual path of ground subsidence process
is simulated as having greater subsidence than the expected sample path. Therefore, the
expected subsidence amount after 30 years has passed is 38.11 cm, 35.75 cm greater than the
expected sample path. At year 30, the lower limit of the 95% credible interval is 37.99 cm and
the upper limit is 38.22 cm, and it is understood that after Bayesian updating the estimation
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95% credible
interval

0.04

0.03

0.02

0.01

0
0

5 10 15

Expected value

Parameter value

Pr
ob

ab
ili

ty
 d

en
si

ty

Posterior distribution
Prior distribution

Figure 7: Probability distribution of parameter φ73.

accuracy of the mixed ground subsidence model has improved and better risk management
of ground subsidence is possible.

Furthermore, we shall consider how after the sixth year monitoring information is
continuously accumulated and Bayesian updating is sequentially conducted on the mixed
ground subsidence model. Let us look at planar mesh i = 73 once more. With this mesh,
monitoring information as shown in the white dots in Figure 3 is accumulated after the
sixth year. Here, let us say that as new monitoring information is obtained each year,
Bayesian updating is conducted on the mixed ground subsidence model. Furthermore, using
the updated mixed ground subsidence model, the ground subsidence amount at year 30
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Figure 8: Subsidence estimation results at 5th year.

Table 4: Estimation results of ground subsidence amount (mesh i = 73).

Year Subsidence estimation of 30th year 95% credible interval Width of credible interval
5 38.109 37.990 38.224 0.234
6 38.209 38.139 38.279 0.140
7 38.218 38.174 38.263 0.089
8 38.226 38.199 38.254 0.055
9 38.439 38.419 38.457 0.038
10 38.151 38.140 38.163 0.023
15 38.115 38.114 38.116 0.002
20 38.477 38.477 38.477 0.000
25 39.046 39.046 39.046 0.000

Note: the simulated monitoring data (subsidence amount) at the 30th year is 39.09 cm.

is estimated and the results are shown in Table 4. In this chart, using the mixed ground
subsidence model after Bayesian updating with the monitoring information up to that point,
the estimation (expected value) of the ground subsidence amount at the 30th year after being
in service, as well as the upper and lower limits of the 95% credible interval, is shown.
Furthermore, the simulated monitoring information (subsidence amount) at the 30th year
is 39.09 cm. Compared to the Bayesian updating result, with the accumulation of information
the expected path is slightly corrected and the credible interval range is narrower. From this
it can be understood that the estimation accuracy is improved due to Bayesian updating.
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6. Conclusion

This paper attempts to propose a methodology of conducting Bayesian updating on ground
subsidence estimation results using continuous monitoring and monitoring information of
ground subsidence, which is an important issue in asset management of airport facilities.
Specifically, using a one-dimensional consolidation model that takes inhomogeneous
subsidence into consideration, sample paths regarding ground subsidence process and a
mixed ground subsidence model that averages the load of the sample paths are calculated.
Furthermore, a methodology of conducting Bayesian updating using MCMC method on
the mixed ground subsidence model, by continuously monitoring the ground subsidence
amount after the airport begins services, is proposed. Furthermore, the applicability of the
methodology proposed in this paper is empirically evaluated through an applied case of
the ground subsidence estimation management of an airport facility. However, in order to
improve the applicability of the Bayesian updating model proposed in this paper, there
are several issues to be studied in the future. First, the applied case in this paper is at the
state where the airport facilities have just begun services. Therefore, monitoring information
is not yet available. Consequently, in the applied case, Bayesian updating of the mixed
ground subsidence model was conducted using simulated monitoring information. In the
future, it is necessary to continuously monitor the ground subsidence process of airports
and use actual monitoring information to evaluate the efficiency of Bayesian updating on
the mixed ground subsidence model. Secondly, in airport pavement management, ground
subsidence estimation management is an important issue for consideration, but for pavement
management, managing deterioration and damage processes of airport pavements is also
important. For this, the deterioration and damage progress of airport pavements as well as
ground subsidence should be modelized. Thirdly, the Bayesian updating model proposed in
this paper is a methodology for conducting Bayesian updating on estimation results based on
monitoring information during the designing phase. This type of Bayesian updating model
has the potential to be applied to a wider range of problems outside of ground subsidence
estimation management. In the future, it is necessary to evaluate the efficiency of the Bayesian
updating model on asset management of public facilities other than airport pavements.
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The optimal boundary control problem for (n×n) infinite order distributed parabolic systems with
multiple time delays given in the integral form both in the state equations and in the Neumann
boundary conditions is considered. Constraints on controls are imposed. Necessary and suffacient
optimality conditions for the Neumann problem with the quadratic performance functional are
derived.

1. Introduction

Distributed parameters systems with delays can be used to describe many phenomena in
the real world. As is well known, heat conduction, properties of elastic-plastic material, fluid
dynamics, diffusion-reaction processes, the transmission of the signals at a certain distance by
using electric long lines, and so forth, all lie within this area. The object that we are studying
(temperature, displacement, concentration, velocity, etc.) is usually referred to as the state.

During the last twenty years, equations with deviating argument have been applied
not only in applied mathematics, physics, and automatic control, but also in some problems
of economy and biology. Currently, the theory of equations with deviating arguments
constitutes a very important subfield of mathematical control theory.

Consequently, equations with deviating arguments are widely applied in optimal
control problems of distributed parameter system with time delays [1].

The optimal control problems of distributed parabolic systems with time-delayed
boundary conditions have been widely discussed in many papers and monographs. A
fundamental study of such problems is given by [2] and was next developed by [3, 4]. It was
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also intensively investigated by [1, 5–16] in which linear quadratic problem for parabolic
systems with time delays given in the different form (constant, time delays, time-varying
delays, time delays given in the integral form, etc.) was presented.

The necessary and sufficient conditions of optimality for systems consist of only one
equation and for (n × n) systems governed by different types of partial differential equations
defined on spaces of functions of infinitely many variables and also for infinite order systems
are discussed for example in [9, 11, 15–18] in which the argument of [19, 20] was used.

Making use of the Dubovitskii-Milyutin Theorem in [13, 21–28] the necessary and
sufficient conditions of optimality for similar systems governed by second order operator
with an infinite number of variables and also for infinite order systems were investigated.
The interest in the study of this class of operators is stimulated by problems in quantum field
theory.

In particular, the papers of [1, 8] present necessary and sufficient optimality conditions
for the Neumann problem with quadratic performance functionals, applied to a single one
equation of second-order parabolic system with fixed time delay and with multiple time
delays given in the integral form both in the state equations and in the Neumann boundary
conditions, respectively. Such systems constitute a more complex case of distributed
parameter systems with time delays given in the integral form.

Also in [9, 11] time-optimal boundary control for a single one equation distributed
infinite order parabolic and hyperbolic systems in which constant time lags appear in the
integral form both in the state equation and in the Neumann boundary condition is present.
Some specific properties of the optimal control are discussed.

In this paper we recall the problem in a more general formulation. A distributed
parameter for infinite order parabolic (n × n) systems with multiple time delays given in
the integral form both in the state equations and in the Neumann boundary conditions is
considered. Such an infinite order parabolic system can be treated as a generalization of the
mathematical model for a plasma control process. The quadratic performance functionals
defined over a fixed time horizon are taken and some constraints are imposed on the initial
state and the boundary control. Such a system may be viewed as a linear representation of
many diffusion processes, in which time-delayed signals are introduced at a spatial boundary,
and there is a freedom in choosing the controlled process initial state. Following a line of
the Lions scheme, necessary and sufficient optimality conditions for the Neumann problem
applied to the above system were derived. The optimal control is characterized by the adjoint
equations.

This paper is organized as follows. In Section 1, we introduce spaces of functions of
infinite order. In Section 2, we formulate the mixed Neumann problem for infinite order
parabolic operator with multiple time delays given in the integral form. In Section 3, the
boundary optimal control problem for this case is formulated, then we give the necessary
and sufficient conditions for the control to be an optimal. In Section 4, we generalized the
discussion to two cases, the first case: the optimal control for (2 × 2) coupled infinite order
parabolic systems is studied. The second case: the optimal control for (n× n) coupled infinite
order parabolic systems was to be formulated.

2. Sobolev Spaces with Infinite Order

The object of this section is to give the definition of some function spaces of infinite order and
the chains of the constructed spaces which will be used later.
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Let Ω be a bounded open set of R
n with a smooth boundary Γ, which is a C∞ manifold

of dimension (n−1). Locally, Ω is totally on one side of Γ. We define the infinite order Sobolev
space W∞{aα, 2}(Ω) of infinite order of periodic functions φ(x) defined on Ω [29–31] as
follows:

W∞{aα, 2}(Ω) =

⎧⎨
⎩φ(x) ∈ C∞(Ω) :

∞∑
|α|=0

aα

∥∥Dαφ
∥∥2

2 <∞
⎫⎬
⎭, (2.1)

where C∞(Ω) is the space of infinitely differentiable functions, aα ≥ 0 is a numerical sequence,
and ‖ · ‖2 is the canonical norm in the space L2(Ω), and

Dα =
∂|α|

(∂x1)
α1 · · · (∂xn)

αn
, (2.2)

α = (α1, . . . , αn) being a multi-index for differentiation, |α| = ∑n
i=1 αi.

The space W−∞{aα, 2}(Ω) is defined as the formal conjugate space to the space
W∞{aα, 2}(Ω), namely:

W−∞{aα, 2}(Ω) =

⎧⎨
⎩ψ(x) : ψ(x) =

∞∑
|α|=0

(−1)|α|aαD
αψα(x)

⎫⎬
⎭, (2.3)

where ψα ∈ L2(Ω) and
∑∞
|α|=0 aα‖ψα‖2

2 <∞.
The duality pairing of the spaces W∞{aα, 2} (Ω) and W−∞{aα, 2}(Ω) is postulated by

the formula:

(
φ, ψ

)
=

∞∑
|α|=0

aα

∫
Ω
ψα(x)Dαφ(x)dx, (2.4)

where

φ ∈W∞{aα, 2}(Ω), ψ ∈W−∞{aα, 2}(Ω). (2.5)

From above, W∞{aα, 2}(Ω) is everywhere dense in L2(Ω) with topological inclusions
and W−∞{aα, 2}(Ω) denotes the topological dual space with respect to L2(Ω), so we have the
following chain of inclusions:

W∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆W−∞{aα, 2}(Ω). (2.6)
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We now introduce L2(0, T ;L2(Ω)) which we will denoted by L2(Q), where Q = Ω×]0, T[
denotes the space of measurable functions t → φ(t) such that

∥∥φ∥∥
L2(Q) =

(∫T

0

∥∥φ(t)∥∥2
2dt

)1/2

<∞, (2.7)

endowed with the scalar product (f, g) =
∫T

0 (f(t), g(t))L2(Ω)dt, L
2(Q) is a Hilbert space.

In the same manner we define the spaces L2(0, T ;W∞{aα, 2}(Ω)), and L2(0, T ;
W−∞{aα, 2}(Ω)), as its formal conjugate.

Also, we have the following chain of inclusions:

L2(0, T ;W∞{aα, 2}(Ω)) ⊆ L2(Q) ⊆ L2(0, T ;W−∞{aα, 2}(Ω)
)
. (2.8)

The construction of the Cartesian product of n-times to the above Hilbert spaces can
be constructed, for example

(W∞{aα, 2}(Ω))n = W∞{aα, 2}(Ω) ×W∞{aα, 2}(Ω) × · · · ×W∞{aα, 2}(Ω)︸ ︷︷ ︸
n-times

=
n∏
i=1

(W∞{aα, 2}(Ω))i,

(2.9)

with norm defined by:

∥∥φ∥∥
(W∞{aα,2}(Ω))n =

n∑
i=1

∥∥φi

∥∥
W∞{aα,2}(Ω), (2.10)

where φ = (φ1, φ2, . . . , φn) = (φi)
n
i=1 is a vector function and φi ∈W∞{aα, 2}(Ω).

Finally, we have the following chain of inclusions:

(
L2(0, T ;W∞{aα, 2}(Ω))

)n ⊆
(
L2(Q)

)n ⊆
(
L2(0, T ;W−∞{aα, 2}(Ω)

))n
, (2.11)

where (L2(0, T ;W−∞{aα, 2}(Ω)))n are the dual spaces of (L2(0, T ;W∞{aα, 2}(Ω)))n. The
spaces considered in this paper are assumed to be real.
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3. Mixed Neumann Problem for Infinite Order Parabolic
System with Multiple Time Lags

The object of this section is to formulate the following mixed initial boundary value Neumann
problem for infinite order parabolic system with multiple time delays which defines the state
of the system model [1, 5–11, 18, 24, 26].

∂y

∂t
+A(t)y(x, t) +

m∑
i=1

∫bi

ai

bi(x, t)y(x, t − hi)dhi = u,

(x, t) ∈ Ω × (0, T), hi ∈ (ai, bi),

(3.1)

y
(
x, t′

)
= Φ0

(
x, t′

)
,

(
x, t′

) ∈ Ω × (−Δ, 0), (3.2)

y(x, 0) = y0(x), x ∈ Ω, (3.3)

∂y

∂νA
(x, t) =

l∑
s=1

∫ds

cs

cs(x, t)y(x, t − ks)dks + v, (x, t) ∈ Γ × (0, T), ks ∈ (cs, ds), (3.4)

y
(
x, t′

)
= Ψ0

(
x, t′

)
,

(
x, t′

) ∈ Γ × (−Δ, 0), (3.5)

where Ω ⊂ Rn has the same properties as in Section 1. We have

y ≡ y(x, t;u), y(0) ≡ y(x, 0;u), y(T) ≡ y(x, T ;u), u ≡ u(x, t), v ≡ v(x, t),

Q = Ω × (0, T), Q = Ω × [0, T], Q0 = Ω × [−Δ, 0), Σ = Γ × (0, T), Σ0 = Γ × [−Δ, 0),
(3.6)

(i) T is a specified positive number representing a finite time horizon,

(ii) hi, ks are time delays, such that hi ∈ (ai, bi) and ks ∈ (cs, ds) where 0 < a1 < a2 <
· · · < am, 0 < b1 < b2 < · · · < bm, for i = 1, 2, . . . , m and 0 < c1 < c2 < · · · < cl,
0 < d1 < d2 < · · · < dl, for s = 1, 2, . . . , l,

(iii) bi(t), i = 1, 2, . . . , m are given real C∞ functions defined on Q,

(iv) cs(x, t), s = 1, 2, . . . , l are given real C∞ functions defined on Σ,

(v) Δ = max{bm, dl},
(vi) y is a function defined on Q such that Ω × (0, T) � (x, t) → y(x, t) ∈ R,

(vii) u, v are functions defined on Q and Σ such that Ω × (0, T) � (x, t) → u(x, t) ∈ R
and Γ × (0, T) � (x, t) → v(x, t) ∈ R,

(viii) Φ0,Ψ0 are initial functions defined on Q0 and Σ0, respectively, such that Ω×[−Δ, 0) �
(x, t′) → Φ0(x, t′) ∈ R. Γ × [−Δ, 0) � (x, t′) → Ψ0(x, t′) ∈ R.
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The parabolic operator (∂/∂t) + A(t) in the state equation (3.1) is an infinite order
parabolic operator andA(t) [17, 21, 29–31] is given by:

Ay =
∞∑
|α|=0

(−1)|α|aαD
2αy(x, t),

A =
∞∑
|α|=0

(−1)|α|aαD
2α

(3.7)

is an infinite order self-adjoint elliptic partial differential operator maps W∞{aα, 2}(Ω) onto
W−∞{aα, 2}(Ω).

For this operator we define the bilinear form as follows.

Definition 3.1. For each t ∈ (0, T), we define a family of bilinear forms on W∞{aα, 2}(Ω) by:

π
(
t;y, φ

)
=

(A(t)y, φ
)
L2(Ω), y, φ ∈W∞{aα, 2}(Ω), (3.8)

whereA(t) maps W∞{aα, 2}(Ω) onto W−∞{aα, 2}(Ω) and takes the above form. Then

π
(
t;y, φ

)
=

(A(t)y, φ
)
L2(Ω)

=

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2αy(x, t), φ(x)

⎞
⎠

L2(Ω)

=
∫
Ω

∞∑
|α|=0

aαD
αy(x)Dαφ(x)dx.

(3.9)

Lemma 3.2. The bilinear form π(t;y, φ) is coercive on W∞{aα, 2}(Ω), that is,

π
(
t;y, y

) ≥ λ
∥∥y∥∥2

W∞{aα,2}(Ω), λ > 0. (3.10)

Proof. It is well known that the ellipticity ofA(t) is sufficient for the coerciveness of π(t;y, φ)
on W∞{aα, 2}(Ω):

π
(
t;φ, ψ

)
=

∫
Ω

∞∑
|α|=0

aαD
αφDαψ dx. (3.11)
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Then

π
(
t;y, y

)
=

∫
Ω

∞∑
|α|=0

aαD
αyDαy dx

≥
∞∑
|α|=0

aα

∥∥∥D2αy(x)
∥∥∥2

L2(Ω)

≥ λ
∥∥y∥∥2

W∞{aα,2}(Ω), λ > 0.

(3.12)

Also we have

∀y, φ ∈W∞{aα, 2}(Ω) the function t −→ π
(
t;y, φ

)
is continuously differentiable in (0, T) and π

(
t;y, φ

)
= π

(
t;φ, y

)
.

(3.13)

Equations (3.1)–(3.5) constitute a Neumann problem. Then the left-hand side of the
boundary condition (3.4) may be written in the following form:

∂y(x, t)
∂νA

=
∞∑
|ω|=0

(
Dωy(x, t)

)
cos(n, xk) = q(x, t), x ∈ Γ, t ∈ (0, T), (3.14)

where ∂/∂νA is a normal derivative at Γ, directed towards the exterior of Ω, and cos(n, xk) is
the kth direction cosine of n, with n being the normal at Γ exterior to Ω.

Then (3.4) can be written as:

q(x, t) =
l∑

s=1

∫ds

cs

cs(x, t)y(x, t − ks)dks + v(x, t), x ∈ Γ, t ∈ (0, T). (3.15)

Remark 3.3. We will apply the indication q(x, t) appearing in (3.14) to prove the existence of
a unique solution for (3.1)–(3.5).

We will formulate sufficient conditions for the existence of a unique solution of the
mixed boundary value problem (3.1)–(3.5) for the cases where the boundary control v ∈
L2(Σ).

For this purpose, we introduce the Sobolev space W∞,1(Q) [20, Vol. 2, page 6] defined
by:

W∞,1(Q) = L2(0, T ;W∞{aα, 2}(Ω)) ∩W1
(

0, T ;L2(Ω)
)
, (3.16)
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which is a Hilbert space normed by

∥∥y∥∥
W∞,1(Q) =

[∫T

0

∫ ∥∥y∥∥2
W∞{aα,2}(Ω)dt +

∥∥y∥∥2
W1(0,T ;L2(Ω))

]1/2

=

⎡
⎣∫

Q

⎛
⎝ ∞∑
|α|=0

aα

∣∣Dαy
∣∣2 +

∣∣∣∣∂y∂t
∣∣∣∣

2
⎞
⎠dx dt

⎤
⎦

1/2

=

⎡
⎣∫

Q

⎛
⎝a0

∣∣y∣∣2 +
∞∑
|α|=1

aα

∣∣Dαy
∣∣2 +

∣∣∣∣∂y∂t
∣∣∣∣

2
⎞
⎠dx dt

⎤
⎦

1/2

, a0 > 0,

(3.17)

where the space W1(0, T ;L2(Ω)) denotes the Sobolev space of order 1 of functions defined on
(0, T) and taking values in L2(Ω) [20, Vol. 1].

The existence of a unique solution for the mixed initial-boundary value problem
(3.1)–(3.5) on the cylinder Q can be proved using a constructive method, that is, solving
at first equations (3.1)–(3.5) on the subcylinder Q1 and in turn on Q2 and so forth, until
the procedure covers the whole cylinder Q. In this way, the solution in the previous step
determines the next one.

For simplicity, we introduce the following notation:

Ej =̂
((
j − 1

)
λ, jλ

)
, Qj = Ω × Ej, Σj = Γ × Ej for j = 1, . . . , K, λ = min{a1, c1}. (3.18)

Making use of the results of [7, 20] we can prove that the following result holds.

Theorem 3.4. Let y0, Φ0, Ψ0, v and u be given with y0 ∈ W∞{aα, 2}(Ω), Φ0 ∈ W∞,1(Q0), Ψ0 ∈
L2(Σ0), v ∈ L2(Σ) and u ∈ W−∞,−1(Q). Then, there exists a unique solution y ∈ W∞,1(Q) for
the mixed initial-boundary value problem (3.1)–(3.5). Moreover, y(·, jλ) ∈ W∞{aα, 2}(Ω) for j =
1, . . . , K.

4. Problem Formulation-Optimization Theorems

Now, we formulate the optimal control problem for (3.1)–(3.5) in the context of the
Theorem 3.4, that is v ∈ L2(Σ).

Let us denote by U = L2(Σ) the space of controls. The time horizon T is fixed in our
problem.

The performance functional is given by

I(v) = λ1

∫
Q

[
y(x, t;v) − zd

]2
dx dt + λ2

∫
Σ
(Nv)v dΓdt, (4.1)

where λi ≥ 0, and λ1 + λ2 > 0, zd is a given element in L2(Q); N is a positive linear operator
on L2(Σ) into L2(Σ).
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Control Contraints

We define the set of admissible controls Uad such that

Uad is closed, convex subset of U = L2(Σ). (4.2)

Let y(x, t;v) denote the solution of the mixed initial-boundary value problem (3.1)–
(3.5) at (x, t) corresponding to a given control v ∈ Uad. We note from Theorem 3.4 that for
any v ∈ Uad the performance functional (4.1) is well-defined since (v) ∈W∞,1(Q) ⊂ L2(Q).

Making use of the Loins’s scheme we will derive the necessary and sufficient
conditions of optimality for the optimization problem (3.1)–(3.5), (4.1), (4.2). The solving
of the formulated optimal control problem is equivalent to seeking a v∗ ∈ Uad such that

I(v∗) ≤ I(v), ∀v ∈ Uad. (4.3)

From the Lion’s scheme [19, Theorem 1.3, page 10], it follows that for λ2 > 0 a unique
optimal control v∗ exists. Moreover, v∗ is characterized by the following condition:

I ′(v∗)(v − v∗) ≥ 0, ∀v ∈ Uad. (4.4)

For the performance functional of form (4.1) the relation (4.4) can be expressed as

λ1

∫
Q

(
y(v∗) − zd

)[
y(v) − y(v∗)]dx dt + λ2

∫
Σ
Nv∗(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.5)

In order to simplify (4.5), we introduce the adjoint equation, and for every v ∈ Uad,
we define the adjoint variable p = p(v) ≡ p(x, t;v) as the solution of the equations:

−∂p(v)
∂t

+A∗(t)p(v) +
m∑
i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v)dhi = λ1
(
y(v) − zd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

(4.6)

−∂p(v)
∂t

+A∗(t)p(v) = λ1
(
y(v) − zd

)
, (x, t) ∈ Ω × (T −Δ, T), (4.7)

p(x, T ;v) = 0, x ∈ Ω, (4.8)

p(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T), (4.9)

∂p(v)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

(4.10)

∂p(v)
∂νA∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ(T), T), (4.11)
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where

∂p(v)
∂νA∗

(x, t) =
∞∑
|ω|=0

(
Dωp(v)

)
cos(n, xω)(x, t),

A∗(t)p(v) =
∞∑
|α|=0

(−1)|α|aαD
2αp(x, t).

(4.12)

As in the above section with change of variables, that is, with reversed sense of time.
that is, t′ = T − t, for given zd ∈ L2(Q) and any v ∈ L2(Σ), there exists a unique solution
p(v) ∈W∞,1(Q) for problem (4.6)–(4.11).

The existence of a unique solution for the problem (4.6)–(4.11) on the cylinder Ω ×
(0, T) can be proved using a constructive method. It is easy to notice that for given zd and
u, the problem (4.6)–(4.11) can be solved backwards in time starting from t = T , that is,
first solving (4.6)–(4.11) on the subcylinder QK and in turn on QK−1, and so forth until the
procedure covers the whole cylinder Ω × (0, T). For this purpose, we may apply Theorem 3.4
(with an obvious change of variables).

Hence, using Theorem 3.4, the following result can be proved.

Lemma 4.1. Let the hypothesis of Theorem 3.4 be satisfied. Then for given zd ∈ L2(Ω, R∞) and any
v ∈ L2(Σ), there exists a unique solution p(v) ∈W∞,1(Q) for the adjoint problem (4.6)–(4.11).

We simplify (4.5) using the adjoint equation (4.6)–(4.11). For this purpose denoting by
p(0) ≡ p(x, 0;v) and p(T) ≡ p(x, T ;v), respectively, setting v = v∗ in (4.6)–(4.11), multiplying
both sides of (4.6) and (4.7) by y(v)− y(v∗), then integrating over Ω× (0, T −Δ) and Ω× (T −
Δ, T), respectively and then adding both sides of (4.6), (4.11), we get

λ1

∫
Q

(
y(v∗) − zd

)[
y(v) − y(v∗)]dx dt

=
∫
Q

(
−∂p(v

∗)
∂t

+A∗(t)p(v∗)
)
× [

y(v) − y(v∗)]dx dt

+
∫T−Δ

0

∫
Ω

(
m∑
i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v∗)dhi

)
× [

y(x, t;v) − y(x, t;v∗)]dx dt

=
∫T

0

∫
Ω
p(v∗)

∂

∂t

[
y(v) − y(v∗)]dx dt

+
∫T

0

∫
Ω
A∗(t)p(v∗)[y(v) − y(v∗)]dx dt

+
m∑
i=1

∫bi

ai

∫
Ω

∫T−Δ

0

(
bi(x, t + hi)p(x, t + hi;v∗)

) × [
y(x, t;v) − y(x, t;v∗)]dx dt dhi.

(4.13)
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Using (3.1), the first integral on the right-hand side of (4.13) can be written as:

∫T

0

∫
Ω
p(v∗)

∂

∂t

[
y(v) − y(v∗)]dx dt

= −
∫
Q

p(v∗)A(t)
(
y(v) − y(v∗))dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫T

0
p(x, t;v∗)bi(x, t) ×

[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi

= −
∫
Q

p(v∗)A(t)
(
y(v) − y(v∗))dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫T−hi

−hi

p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dx dhi

= −
∫
Ω
p(v∗)A(t)

(
y(v) − y(v∗))dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫0

−hi

p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dx dhi

−
m∑
i=1

∫bi

ai

∫
Ω

∫T−Δ

0
p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dxd hi

−
m∑
i=1

∫bi

ai

∫
Ω

∫T−hi

T−Δ
p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dx dhi

= −
∫
Q

p(v∗)A(t)
(
y(v) − y(v∗))dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫0

−hi

p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dx dhi

−
m∑
i=1

∫bi

ai

∫
Ω

∫T−Δ

0
p
(
x, t′ + hi;v∗

)
bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dx dhi

−
m∑
i=1

∫bi

ai

∫
Ω

∫T

T−Δ+hi

p(x, t;v∗)bi(x, t) ×
[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi.

(4.14)

Using Green’s formula, the second integral on the right-hand side of (4.13) can be written as:

∫T

0

∫
Ω
A∗(t)p(v∗)[y(v) − y(v∗)]dx dt

=
∫T

0

∫
Ω
p(v∗)A(t)

[
y(v) − y(v∗)]dx dt
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+
∫T

0

∫
Γ
p(v∗)

(
∂y(v)
∂νA

− ∂y(v∗)
∂νA

)
dΓdt

−
∫T

0

∫
Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)]dΓdt.

(4.15)

Using the boundary condition (3.2), one can transform the second integral on the right-hand
side of (4.15) into the form:

∫T

0

∫
Γ
p(v∗)

(
∂y(v)
∂νA

− ∂y(v∗)
∂νA

)
dΓdt

=
l∑

s=1

∫ds

cs

∫
Γ

∫T

0
p(x, t;v∗)cs(x, t) ×

[
y(x, t − ks;v) − y(x, t − ks;v∗)

]
dΓdt dks

+
∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫
Γ

∫T−ks

−ks
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks

+
∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫
Γ

∫0

−ks
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫
Γ

∫T−Δ

0
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫
Γ

∫T−ks

T−Δ
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks

+
∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫
Γ

∫0

−ks
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫
Γ

∫T−Δ

0
p
(
x, t′ + ks;v∗

)
cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(
x, t′;v∗

)]
dt′ dΓdks
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+
l∑

s=1

∫ds

cs

∫
Γ

∫T

T−Δ+ks
p(x, t;v∗)cs(x, t) ×

[
y(x, t − ks;v) − y(x, t − ks;v∗)

]
dt dΓdks

+
∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt.

(4.16)

The last component in (4.15) can be rewritten as

∫T

0

∫
Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)]dΓdt

=
∫T−Δ

0

∫
Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)]dΓdt + ∫T

T−Δ

∫
Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)]dΓdt.

(4.17)

Substituting (4.16) and (4.17) into (4.15) and then the results into (4.13), we obtain

λ1

∫
Q

(
y(v∗) − zd

)[
y(v) − y(v∗)]dx dt

=
∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt −

∫
Q

p(v∗)A(t)
[
y(v) − y(v∗)]dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫0

−hi

bi(x, t + hi)p(x, t + hi;v∗) ×
[
y(x, t;v) − y(x, t;v∗)]dt dx dhi

−
m∑
i=1

∫bi

ai

∫
Ω

∫T−Δ

0
bi(x, t + hi)p(x, t + hi;v∗) ×

[
y(x, t;v) − y(x, t;v∗)]dt dx dhi

+
∫
Q

p(v∗)A(t)
[
y(v) − y(v∗)]dx dt

−
m∑
i=1

∫bi

ai

∫
Ω

∫T

T−Δ+hi

p(x, t;v∗)bi(x, t) ×
[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi

+
l∑

s=1

∫ds

cs

∫
Γ

∫0

−ks
cs(x, t + ks)p(x, t + ks;v∗) ×

[
y(x, t;v) − y(x, t;v∗)]dt dΓdks

−
l∑

s=1

∫ds

cs

∫
Γ

∫T−Δ

0
cs(x, t + ks)p(x, t + ks;v∗) ×

[
y(x, t;v) − y(x, t;v∗)]dt dΓdks

−
l∑

s=1

∫ds

cs

∫
Γ

∫T

T−Δ+ks
cs(x, t)p(x, t;v∗) ×

[
y(x, t − ks;v) − y(x, t − ks;v∗)

]
dt dΓdks
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−
∫
Γ

∫T−Δ

0

∂p(v∗)
∂νA∗

× [
y(x, t;v) − y(x, t;v∗)]dt dΓ

−
∫
Γ

∫T

T−Δ

∂p(v∗)
∂νA∗

× [
y(x, t;v) − y(x, t;v∗)]dt dΓ

+
m∑
i=1

∫bi

ai

∫
Ω

∫T−Δ

0
bi(x, t + hi)p(x, t + hi;v∗) ×

[
y(x, t;v) − y(x, t;v∗)]dt dx dhi.

(4.18)

Afterwards, using the facts that y(x, t, v) = y(x, t, v∗) = Φ0(x, t) for x ∈ Ω and t ∈
[−Δ, 0) and y(x, t, v) = y(x, t, v∗) = Ψ0(x, t) for x ∈ Γ and t ∈ [−Δ, 0), p|Ω(x, t;v∗) = 0 and
consequently p|Γ(x, t;v∗) = 0 for t ∈ [T −Δ + λ, T), we obtain

λ1

∫
Q

[
y(v∗) − zd

] × (
y(v) − y(v∗))dx dt =

∫T

0

∫
Γ
p(v∗)(v − v∗)dΓdt. (4.19)

Substituting (4.19) into (4.5) gives

∫T

0

∫
Γ

(
p(v∗) + λ2Nv∗

)
(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.20)

The foregoing result is now summarized.

Theorem 4.2. For the problem (3.1)–(3.5), with the performance functional (4.1) with zd ∈ L2(Q)
and λ2 > 0 and with constraints on controls (4.2), there exists a unique optimal control v∗ which
satisfies the maximum condition (4.20).

4.1. Mathematical Examples

Example 4.3. Consider now the particular case where Uad = U = L2(Σ) (no constraints case).
Thus the maximum condition (4.20) is satisfied when

v∗ = −λ2N
−1p(v∗). (4.21)

If N is the identity operator on L2(Σ), then from Lemma 4.1 it follows that v∗ ∈W∞,1(Q).

Example 4.4. We can also consider an analogous optimal control problem where the
performance functional is given by:

I(v) = λ1

∫
Σ

[
y(x, t;v)|Σ − zd

]2
dΓdt + λ2

∫
Σ
(Nv)vdΓdt, (4.22)

where zd ∈ L2(Σ).
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From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each v ∈ L2(Σ), there
exists a unique solution y(v) ∈ W∞,1(Q) with y|Σ ∈ L2(Σ). Thus, I(v) is well defined. Then,
the optimal control v∗ is characterized by:

λ1

∫
Σ

(
y(v∗)|Σ − zd

)[
y(v)|Σ − y(v∗)|Σ

]
dΓdt + λ2

∫
Σ
Nv∗(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad.

(4.23)

We define the adjoint variable p = p(v∗) = p(x, t;v∗) as the solution of the equations:

− ∂p(v∗)
∂t

+A∗(t)p(v∗) +
m∑
i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v∗)dhi = 0,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

−∂p(v∗)
∂t

+A∗(t)p(v∗) = 0, (x, t) ∈ Ω × (T −Δ, T),

p(x, T ;v∗) = 0, x ∈ Ω,

p(x, t;v∗) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p(v∗)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;v∗)dks + λ1
(
yv∗|Σ − zΣd

)
,

(x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

∂p(v∗)
∂νA∗

(x, t) = λ1
(
y(v∗)|Σ − zΣd

)
, (x, t) ∈ Γ × (T −Δ(T), T).

(4.24)

As in the above section, we have the following result.

Lemma 4.5. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zΣd ∈ L2(Σ) and any
v ∈ L2(Σ), there exists a unique solution p(v∗) ∈W∞,1(Q) to the adjoint problem (4.24).

Using the adjoint equations (4.24)in this case, the condition (4.23) can also be written
in the following form:

∫T

0

∫
Γ

(
p(v∗) + λ2Nv∗

)
(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.25)

The following result is now summarized.

Theorem 4.6. For the problem (3.1)–(3.5) with the performance function (4.22) with zΣd ∈ L2(Σ)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal
control v∗ which satisfies the maximum condition (4.25).
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Example 4.7 (u ∈ L2(Q)). We can also consider an analogous optimal control problem where
the performance functional is given by:

I(u) = λ1

∫
Q

[
y(x, t;u) − zd

]2
dx dt + λ2

∫
Q

(Nu)udx dt, (4.26)

where zd ∈ L2(Q).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each u ∈ L2(Q), there
exists a unique solution y(u) ∈ W∞,1(Q). Thus, I is well defined. Then, the optimal control
u∗ is characterized by:

λ1

∫
Q

(
y(u∗) − zd

)[
y(u) − y(u∗)]dx dt + λ2

∫
Q

Nu∗(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.27)

We define the adjoint variable p = p(u∗) = p(x, t;u∗) as the solution of the equations:

− ∂p(u∗)
∂t

+A∗(t)p(u∗) +
m∑
i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;u∗)dhi = λ1
(
y(u∗) − zd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

−∂p(u
∗)

∂t
+A∗(t)p(u∗) = λ1

(
y(u∗) − zd

)
, (x, t) ∈ Ω × (T −Δ, T),

p(x, T ;u∗) = 0, x ∈ Ω,

p(x, t;u∗) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p(u∗)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;u∗)dks,

(x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

∂p(u∗)
∂νA∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ(T), T).

(4.28)

As in the above section, we have the following result.

Lemma 4.8. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zd ∈ L2(Q) and any
u ∈ L2(Q), there exists a unique solution p(u∗) ∈W∞,1(Q) to the adjoint problem (4.28).

Using the adjoint equations (4.28) in this case, the condition (4.27) can also be written in the
following form:

∫
Q

(
p(u∗) + λ2Nu∗

)
(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.29)

The following result is now summarized.
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Theorem 4.9. For the problem (3.1)–(3.5) with the performance function (4.26) with zd ∈ L2(Q)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.28), there exists a unique optimal
control u∗ which satisfies the maximum condition (4.29).

Example 4.10. We can also consider an analogous optimal control problem where the
performance functional is given by:

I(u) = λ1

∫
Σ

[
y|Σ(x, t;u) − zΣd

]2
dΓdt + λ2

∫
Q

(Nu)udx dt, (4.30)

where zΣd ∈ L2(Σ).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each u ∈ L2(Q), there
exists a unique solution y(u) ∈ W∞,1(Q) with y|Σ ∈ L2(Σ). Thus, I is well defined. Then, the
optimal control u∗ is characterized by:

λ1

∫
Σ

(
y(u∗) − zΣd

)[
y(u) − y(u∗)]dΓdt + λ2

∫
Q

Nu∗(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.31)

The above inequality can be simplified by introducing an adjoint equation, the form
of which is identical to (4.24). Then using Theorem 3.4 we can establish the existence of a
unique solution p = p(u∗) = p(x, t;u∗) ∈W∞,1(Q) for (4.24).

As in the above section, we have the following result.

Lemma 4.11. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zΣd ∈ L2(Σ) and any
u ∈ L2(Q), there exists a unique solution p(u∗) ∈W∞,1(Q) to the adjoint problem (4.24)–(37).

Using the adjoint equations (4.24)–(37) in this case, the condition (4.31) can also be written
in the following form:

∫
Q

(
p(u∗) + λ2Nu∗

)
(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.32)

The following result is now summarized.

Theorem 4.12. For the problem (3.1)–(3.5) with the performance function (4.30) with zΣd ∈ L2(Σ)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal
control u∗ which satisfies the maximum condition (4.32).

5. Generalization

The optimal control problems presented here can be extended to certain different two cases.
Case 1: optimal control for 2 × 2 coupled infinite order parabolic systems with multiple time
delays. Case 2: optimal control for n×n coupled infinite order parabolic systems with multiple
time delays. Such extension can be applied to solving many control problems in mechanical
engineering.
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Case 1 (optimal control for 2 × 2 coupled infinite order parabolic systems with multiple time
delays). We can extend the discussions to study the optimal control for 2 × 2 coupled infinite
order parabolic systems with multiple time delays. We consider the case where v = (v1, v2) ∈
L2(Σ) × L2(Σ), the performance functional is given by [15, 16]:

I(v) = I1(v) + I2(v) =
2∑
i=1

(
λ1

∫
Q

[
yi(x, t;v) − zid

]2
dx dt + λ2

∫
Σ
(Nivi)vidx dt

)
, (5.1)

where zd = (z1d, z2d) ∈ (L2(Q))2.

The following results can now be proved.

Theorem 5.1. Let y0, Φ0,Ψ0, v, and u be given with y0 = (y0,1, y0,2) ∈ (W∞{αα, 2}(Ω))2, Ψ0 =
(Ψ0,1,Ψ0,2) ∈ (L2(Σ0))

2
,Φ0 = (Φ0,1,Φ0,2) ∈ (W∞,1(Q0))

2
, v = (v1, v2) ∈ (L2(Σ))2, and u =

(u1, u2) ∈ (W−∞,−1(Q))2. Then, there exists a unique solution y = (y1, y2) ∈ (W−∞,1(Q))2 for the
following mixed initial-boundary value problem:

∂y1

∂t
+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠ y1 +

m∑
i=1

∫bi

ai

bi(x, t)y1(x, t − hi)dhi − y2 = u1,

in Q,hi ∈ (ai, bi),

∂y2

∂t
+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠y2 +

m∑
i=1

∫bi

ai

bi(x, t)y2(x, t − hi)dhi + y1 = u2,

in Q,hi ∈ (ai, bi),

y1
(
x, t′;u

)
= Φ0,1

(
x, t′

)
,

(
x, t′

) ∈ Ω × [−Δ, 0),

y2
(
x, t′;u

)
= Φ0,2

(
x, t′

)
,

(
x, t′

) ∈ Ω × [−Δ, 0),

y1(x, 0;u) = y0,1, x ∈ Ω,

y2(x, 0;u) = y0,2, x ∈ Ω,

∂y1

∂νA
(x, t) =

l∑
s=1

∫ds

cs

cs1(x, t)y1(x, t − ks)dks + v1, on Σ, ks ∈ (cs, ds),

∂y2

∂νA
=

l∑
s=1

∫ds

cs

cs2(x, t)y2(x, t − ks)dks + v2, on Σ, ks ∈ (cs, ds),

y1
(
x, t′;u

)
= Ψ0,1

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),

y2
(
x, t′;u

)
= Ψ0,2

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),

(5.2)
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where

y ≡ y(x, t;u) =
(
y1(x, t;u), y2(x, t;u)

) ∈ (
W∞,1(Q)

)2
,

u ≡ u(x, t) = (u1(x, t), u2(x, t)) ∈
((

W∞,1(Q)
)′)2

,

v ≡ v(x, t) = (v1(x, t), v2(x, t)) ∈
(
L2(Σ)

)2
.

(5.3)

Lemma 5.2. Let the hypothesis of Theorem 5.1 be satisfied. Then for given zd = (z1d, z2d) ∈ (L2(Q))2

and any v = (v1, v2) ∈ (L2(Σ))2, there exists a unique solution p(v) = (p1(v), p2(v)) ∈ (W∞,1(Q))2

for the adjoint problem:

− ∂p1(v)
∂t

+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠p1(v) +

m∑
i=1

∫bi

ai

bi(x, t + hi)p1(x, t + hi;v)dhi + p2(v)

= λ1
(
y1(v) − z1d

)
, (x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

− ∂p2(v)
∂t

+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠p2(v) +

m∑
i=1

∫bi

ai

bi(x, t + hi)p2(x, t + hi;v)dhi − p1(v)

= λ1
(
y2(v) − z2d

)
, (x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

∂p1(v)
∂t

+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠p1(v) = λ1

(
y1(v) − z1d

)
, (x, t) ∈ Ω × (T −Δ, T),

∂p2(v)
∂t

+

⎛
⎝ ∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎠p2(v) = λ1

(
y2(v) − z2d

)
, (x, t) ∈ Ω × (T −Δ, T),

p1(x, T ;v) = 0, p2(x, T ;v) = 0, x ∈ Ω,

p1(x, t;v) = 0, p2(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p1(x, t;v)
∂νA∗

=
l∑

s=1

∫ds

cs

cs1(x, t + ks)p1(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂p2(x, t;v)
∂νA∗

=
l∑

s=1

∫ds

cs

cs2(x, t + ks)p2(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂p1(x, t)
∂νA∗

= 0,
∂p2(x, t)
∂νA∗

= 0, (x, t) ∈ Γ × (T −Δ(T), T).

(5.4)
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Theorem 5.3. The optimal control v∗ ≡ v∗(x, t) = (v∗1(x, t), v
∗
2(x, t)) ∈ (L2(Σ))2 is characterized by

the following maximum condition:

∫T

0

∫
Γ

([
p1(v∗) + λ2N1v

∗
1

](
v1 − v∗1

)
+

[
p2(v∗) + λ2N2v

∗
2
](
v2 − v∗2

))
dΓdt ≥ 0,

∀v = (v1, v2) ∈
(
L2(Σ)

)2
,

(5.5)

where p ≡ p(x, t;v) = (p1(x, t;v), p2(x, t;v)) ∈ (W∞,1(Q))2 is the adjoint state.

The foregoing result is now summarized.

Theorem 5.4. For the problem (5.2) with the performance function (5.1) with zd = (z1d, z2d) ∈
(L2(Q))2 and λ2 > 0, and with constraint: Uad is closed, convex subset of (L2(Σ))2, and with
adjoint problem (5.4), then there exists a unique optimal control v∗ ≡ v∗(x, t) = (v∗1(x, t), v

∗
2(x, t)) ∈

(L2(Σ))2 which satisfies the maximum condition (5.5).

Case 2 (optimal control for (n×n) coupled infinite order parabolic systems with multiple time
delays). We will extend the discussion to (n×n) coupled infinite order parabolic systems. We
consider the case where v = (v1, v2, . . . , vn) ∈ ((L2(Σ))n, the performance functional is given
by [15, 16]:

I(v) =
n∑
j=1

(
λ1

∫
Q

[
yj(x, t;v) − zjd

]2
dx dt + λ2

∫
Σ

(
Njvj

)
vjdx dt

)
, (5.6)

where zd = (z1d, z2d, . . . , znd) ∈ (L2(Q))n.

The following results can now be proved.

Theorem 5.5. Let y0,Φ0,Ψ0, v, and u be given with yp = (yp,1, yp,2, . . . , yp,n) ∈ (W∞{aα, 2}(Ω))n,
Φ0 = (Φ0,1,Φ0,2, . . . ,Φ0,n) ∈ (W∞,1(Q0))

n, Ψ0 = (Ψ0,1,Ψ0,2, . . . ,Ψ0,n) ∈ (L2(Σ0))
n, v =

(v1, v2, . . . , vn) ∈ (L2(Σ0))
n, and u = (u1, u2, . . . , un) ∈ (W−∞,−1(Q))n. Then, there exists a unique

solution y = (y1, y2, . . . , yn) ∈ (W∞,1(Q0))
n for the following mixed initial-boundary value problem:

for all j, j = 1, 2, . . . , n one has

∂yj

∂t
+ S(t)yj(x, t) +

m∑
i=1

∫bi

ai

bi(x, t)yj(x, t − hi)dhi = uj,

(x, t) ∈ Ω × (0, T), hi ∈ (ai, bi),

yj

(
x, t′

)
= Φ0,j

(
x, t′

) (
x, t′

) ∈ Ω × [−Δ, 0),

yj(x, 0) = y0,j(x), x ∈ Ω,
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∂yj

∂νS
(x, t) =

l∑
S=1

∫ds

cs

cs(x, t)yj(x, t − ks)dks + vj ,

(x, t) ∈ Γ × (0, T), ks ∈ (cs, ds),

yj

(
x, t′

)
= Ψ0,j

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),

(5.7)

where

y ≡ y(x, t;u) =
(
y1(x, t;u), y2(x, t;u), . . . , yn(x, t;u)

) ∈ (
W∞,1(Q)

)n
,

u ≡ u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)) ∈
(
W−∞,−1(Q)

)n
,

v ≡ v(x, t) = (v1(x, t), v2(x, t), . . . , vn(x, t)) ∈
(
L2(Σ)

)n
.

(5.8)

The operator S(t) is an n × n matrix takes the form [15, 16, 18, 22]:

S(t)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
|α|=0

(−1)|α|aαD
2α + 1 −1 · · −1

1
∞∑
|α|=0

(−1)|α|aαD
2α + 1 · · −1

· · · · ·
· · · · ·
1 1 · ·

∞∑
|α|=0

(−1)|α|aαD
2α + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,
(5.9)

that is

S(t)yj(x) =
∞∑
|α|=0

(−1)|α|aαD
2αyj(x) +

n∑
r=1

Bjryj(x), ∀j, j = 1, 2, . . . , n, (5.10)

where

Bjr =

{
1, if j ≥ r,

−1, if j < r.
(5.11)

Lemma 5.6. Let the hypothesis of Theorem 5.5 be satisfied. Then for given zd = (z1d, z2d, . . . , znd) ∈
(L2(Q))n and any v(x, t) = (v1(x, t), v2(x, t), . . . , vn(x, t)) ∈ (L2(Σ))n, there exists a unique
solution

p(v) ≡ p(x, t;v) =
(
p1(x, t;v), p1(x, t;v), . . . , pn(x, t;v)

) ∈ (
W∞,1(Q)

)n
, (5.12)
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for the adjoint problem: for all j, j = 1, 2, . . . , n, one has

−∂pj(v)
∂t

+ S∗(t)pj(v) +
m∑
i=1

∫bi

ai

bi(x, t + hi)pj(x, t + hi;v)dhi = λ1
(
yj(v) − zjd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

∂pj(v)
∂t

+ S∗(t)pj(v) = λj
(
yj(v) − zjd

)
, (x, t) ∈ Ω × (T −Δ, T),

pj(x, T, v) = 0, x ∈ Ω,

p(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂pj(v)
∂νS∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)pj(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂pj(v)
∂νS∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ, T),

(5.13)

where

S∗(t)pj(x) =
∞∑
|α|=0

(−1)|α|aαD
2αpj(x) +

n∑
r=1

Brjpj(x), ∀j, j = 1, 2, . . . , n, (5.14)

Brj are the transpose of Bjr .

Theorem 5.7. The optimal control v∗ ≡ v∗(x, t) = (v∗1(x, t), v
∗
2(x, t), . . . , v

∗
n(x, t)) ∈ (L2(Σ))n is

characterized by the following maximum condition:

n∑
j=1

∫
Σ

[
pj(v∗) + λ2Njv

∗
j

](
vj − v∗j

)
dΓdt ≥ 0, ∀v = (v1, v2, . . . , vn) ∈ (Uad)n, (5.15)

where

p(v∗) ≡ p(x, t;v∗) =
(
p1(x, t;v∗), p1(x, t;v∗), . . . , pn(x, t;v∗)

) ∈ (
W∞,1(Q)

)n
(5.16)

is the adjoint state.

The foregoing result is now summarized.

Theorem 5.8. For the problem (5.7) with the performance function (5.6) with zd =
(z1d, z2d, . . . , znd) ∈ (L2(Q))n and λ2 > 0, and with constraint: Uad is closed, convex subset of
(L2(Σ))n, and with adjoint equations (5.13), then there exists a unique optimal control v∗ ≡ v∗(x, t) =
(v∗1(x, t), v

∗
2(x, t), . . . , v

∗
n(x, t)) ∈ (L2(Σ))n which satisfies the maximum condition (5.15).
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In the case of performance functionals (4.1), (4.22), (4.26), (4.30), (5.1), and (5.6) with
λ1 > 0 and λ2 = 0, the optimal control problem reduces to minimization of the functional on
a closed and convex subset in a Hilbert space. Then, the optimization problem is equivalent
to a quadratic programming one, which can be solved by the use of the well-known Gilbert
algorithm.

6. Conclusions

The optimization problem presented in the paper constitutes a generalization of the optimal
boundary control problem for second-order parabolic systems with Neumann boundary
condition involving constant time lag appearing in the state and in the boundary conditions
considered in [1, 5–9, 14–16, 18, 21, 32].

Moreover, the results obtained in this paper (Theorems 4.2, 4.6, 5.4, and 5.8) can be
treated as a generalization of the optimization theorems proved by [8–10]. Also the main
result of the paper contains necessary and sufficient conditions of optimality for (n × n)
infinite order parabolic systems with multiple time delays given in integral form both in the
state equation and in the Neumann boundary condition that give characterization of optimal
control (Theorem 5.8). But it is easily seen that obtaining analytical formulas for optimal
control are very difficult. This results from the fact that state equations (5.7), adjoint equations
(5.13), and maximum condition (5.15) are mutually connected that cause that the usage of
derived conditions is difficult. Therefore we must resign from the exact determination of the
optimal control and therefore we are forced to use approximation methods.

Also it is evident that by modifying:

(i) the boundary conditions, (Dirichlet, Neumann, mixed, etc.),

(ii) the nature of the control (distributed, boundary, etc.),

(iii) the nature of the observation (distributed, boundary, etc.),

(iv) the initial differential system,

(v) the time delays (constant time delays, time-varying delays, multiple time-varying
delays, time delays given in the integral form, etc.),

(vi) the number of variables (finite number of variables, infinite number of variables
systems, etc.),

(vii) the type of equation (elliptic, parabolic, hyperbolic, etc.),

(viii) the order of equation (second order, Schrödinger, infinite order, etc.),

(ix) the type of control ( optimal control problem, time-optimal control problem, etc.),

an infinity of variations on the above problems are possible to study with the
help of [19] and Dubovitskii-Milyutin formalisms [22–27]. Those problems need further
investigations and form tasks for future research. These ideas mentioned above will be
developed in forthcoming papers.
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The convergence of the Gaussian mixture extended-target probability hypothesis density (GM-
EPHD) filter and its extended Kalman (EK) filtering approximation in mildly nonlinear condition,
namely, the EK-GM-EPHD filter, is studied here. This paper proves that both the GM-EPHD filter
and the EK-GM-EPHD filter converge uniformly to the true EPHD filter. The significance of this
paper is in theory to present the convergence results of the GM-EPHD and EK-GM-EPHD filters
and the conditions under which the two filters satisfy uniform convergence.

1. Introduction

The problem of extended-target tracking (ETT) [1, 2] arises because of the sensor resolution
capacities [3], the high density of targets, the sensor-to-target geometry, and so forth. For
targets in near field of a high-resolution sensor, the sensor is able to receive more than one
measurement (observation, or detection) at each time from different corner reflectors of a
single target. In this case, the target is no longer known as a point object, which at most
causes one detection at each time. It is called extended target. ETT is very valuable for many
real applications [4, 5], such as ground or littoral surveillance, robotics, and autonomous
weapons.

The ETT problem has attracted great interest in recent years. Some approaches [6, 7]
have been proposed for tracking a known and fixed number of the extended targets without
clutter. Nevertheless, for the problem of tracking an unknown and varying number of the
extended targets in clutter, most of the association-based approaches [8], such as nearest
neighbor, joint probabilistic data association, and multiple hypothesis tracking, would no
longer be applicable straightforwardly owing to their underlying assumption of point objects.
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Recently, the random-finite-set- (RFS-) based tracking approaches [9] have attracted
extensive attention because of their lots of merits. The probability hypothesis density (PHD)
[10] filter, developed by Mahler for tracking multiple point targets in clutter, has been shown
to be computationally tractable alternative to full multitarget filter in the RFS framework. The
sequential Monte Carlo (SMC) implementation for the PHD filter was devised by Vo et al.
[11]. Then, Vo and Ma [12] devised the Gaussian mixture (GM) implementation for the PHD
filter under the linear, Gaussian assumption on target dynamics, birth process, and sensor
model. Actually the original intention of the PHD filter devised by Clark and Godsill is to
address nonconventional tracking problems, that is, tracking in high target density, tracking
closely spaced targets, and detecting targets of interest in a dense clutter background [13]. So
it is especially suitable for the ETT problem.

Given the Poisson likelihood model for the extended target [14], Mahler developed the
theoretically rigorous PHD filter for the ETT problem in 2009 [15]. Under the linear, Gaussian
assumption, the GM implementation for the extended-target PHD (EPHD) filter was
proposed by Granström et al. [16], in 2010. Similar to the point-target GM-PHD filter, the GM-
EPHD filter can also be extended to accommodate mildly nonlinear target dynamics using the
extended Kalman (EK) filtering [17] approximation. The extension is called EK-GM-EPHD
filter. Experimental results showed the EK-GM-EPHD filter was capable of tracking multiple
humans, each of which gave rise to, on average, 10 measurements at each scan and was
therefore treated as an extended target, using a SICK LMS laser range sensor [16].

Although the GM-EPHD and EK-GM-EPHD filters have been successfully used for
many real-world problems, there have been no results showing the convergence for the two
filters. The convergence results on point-target particle-PHD and GM-PHD filters [18, 19]
do not apply directly for the GM-EPHD and EK-GM-EPHD filters because of the significant
difference between the measurement update steps of the PHD and EPHD filters. Therefore,
to ensure the more successful and extensive applications of the EPHD filter to “real-life”
problems, it is necessary to answer the following question: do the GM-EPHD and EK-GM-
EPHD filters converge asymptotically toward the optimal filter and in what sense?

The answer can actually be derived from Propositions 3.2 and 3.3 in this paper.
Proposition 3.2 demonstrates the uniform convergence [20–22] of the errors for the
measurement update step of the GM-EPHD filter. In other words, given simple sufficient
conditions, the approximation error of the measurement-updated EPHD by a sum of
Gaussians is proved to converge to zero as the number of Gaussians in the mixture tends
to infinity. In addition, the uniform convergence results for the measurement update step of
the EK-GM-EPHD filter are derived from Proposition 3.3.

2. EPHD and GM-EPHD Filters

At time k, let xk be the state vector of a single extended target, and zk a single measurement
vector received by sensor. Multiple extended-target states and sensor measurements can,
respectively, be represented as finite sets Xk = {xi,k}nk

i=1 and Zk = {zi,k}mk

i=1, where nk and mk

denote the number of the extended targets and sensor measurements, respectively. A Poisson
model is used to describe the likelihood function for the extended target according to Gilholm
et al. [14]:

lZk(xk) = e−γ(xk)
∏
zk∈Zk

γ(xk)φzk(xk), (2.1)
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where φzk(xk) denotes the single-measurement single-target likelihood density; γ(xk) denotes
the expected number of measurements arising from an extended target.

The clutter is modeled as a Poisson RFS with the intensity κk(zk) = λkck(zk), where λk
is the average clutter number per scan and ck(zk) is the density of clutter spatial distribution.

Given the Poisson likelihood model for the extended targets, Mahler derived the
EPHD filter using finite-set statistics [15, 23]. The prediction equations of the EPHD filter
are identical to those of the point-target PHD filter [10]. The EPHD measurement update
equations are

υk(xk) =

⎛
⎝1 − pD,k(xk) + e−γ(xk)pD,k(xk) +

∑
℘k∠Zk

ω℘k

∑
Wk∈℘k

ηWk(xk)
dWk

⎞
⎠υk|k−1(xk), (2.2)

ηWk(xk) = pD,k(xk)e−γ(xk)
∏
zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

, (2.3)

ω℘k =

∏
Wk∈℘k

dWk∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
dW ′

k

; dWk = δ|Wk |,1 +
〈
υk|k−1, ηWk

〉
, (2.4)

where pD,k(xk) denotes the probability that the set of observations from the extended target
will be detected at time k; ℘k∠Zk denotes that ℘k partitions set Zk [15], for example, let
Z = {z1, z2, z3}, then the partitions of Z are ℘1 = {{z1, z2, z3}}, ℘2 = {{z1}, {z2}, {z3}}, ℘3 =
{{z1, z2}, {z3}}, ℘4 = {{z1, z3}, {z2}}, and ℘5 = {{z1}, {z2, z3}}; |Wk| denotes the cardinality of
the set Wk; δ|Wk |,1 = 1 if |Wk| = 1, and δ|Wk |,1 = 0 otherwise; the notation 〈·, ·〉 is the usual inner
product. The measure in 〈·, ·〉 of (2.4) is continuous, it defines the integral inner product

〈
υk|k−1, ηWk

〉
=
∫
υk|k−1(xk)ηWk(xk)dxk. (2.5)

By making the same six assumptions that are made in [12] and the additional
assumption that γ(xk) can be approximated as functions of the mean of the individual
Gaussian components, Granström et al. proposed the GM-EPHD filter [16]. At time k, let
υ
Jk|k−1

k|k−1 denote the GM approximation to the predicted EPHD υk|k−1 with Jk|k−1 Gaussian

components, and υ
Jk
k the GM approximation to the measurement-updated EPHD υk with

Jk Gaussian components. The prediction equations of the GM-EPHD filter are identical to
those of point-target GM-PHD filter [12]. The GM-EPHD measurement update equations are
as follows.

Let the predicted EPHD be a GM of the form

υ
Jk|k−1

k|k−1(xk) =
Jk|k−1∑
i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (2.6)

where N(·|m,P) denotes the density of Gaussian distribution with the mean m and
covariance P.

Then, the measurement-updated EPHD is a GM given by
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υ
Jk
k (xk) = υ

ND,Jk|k−1

k (xk) +
∑

℘k∠Zk

∑
Wk∈℘k

υ
D,Jk|k−1

k (xk,Wk), (2.7)

where υ
ND,Jk|k−1

k
(xk) denotes the Gaussian components handling no detections,

υ
ND,Jk|k−1

k (xk) =
Jk|k−1∑
j=1

w
(j)
k N

(
xk | m(j)

k|k−1,P
(j)
k|k−1

)
,

w
(j)
k

=
(

1 −
(

1 − e−γ(m
(j)
k|k−1)

)
pD,k

)
w

(j)
k|k−1,

m(j)
k = m(j)

k|k−1; P(j)
k = P(j)

k|k−1,

(2.8)

and υ
D,Jk|k−1

k
(xk,Wk) denotes the Gaussian components handling detected targets

υ
D,Jk|k−1

k (xk,Wk) =
Jk|k−1∑
j=1

w
(j)
k
N
(
xk | m(j)

k
,P(j)

k

)
, (2.9)

w
(j)
k = ω

Jk|k−1

℘k

ηWk

(
m(j)

k|k−1

)
d
Jk|k−1

Wk

w
(j)
k|k−1, (2.10)

ω
Jk|k−1

℘k
=

∏
Wk∈℘k

d
Jk|k−1

Wk∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
d
Jk|k−1

W ′
k

; d
Jk|k−1

Wk
= δ|Wk |,1 +

〈
υ
Jk|k−1

k|k−1, ηWk

〉
, (2.11)

ηWk

(
m(j)

k|k−1

)
= pD,ke

−γ(m(j)
k|k−1)

∏
zk∈Wk

γ
(
m(j)

k|k−1

)
φzk

(
m(j)

k|k−1

)
λkck(zk)

, (2.12)

φzk

(
m(j)

k|k−1

)
=N

(
zk | Hkm

(j)
k|k−1,Rk +HkP

(j)
k|k−1H

T
k

)
, (2.13)

K(j)
k = P(j)

k|k−1H
T

k

(
HkP

(j)
k|k−1H

T

k + Rk

)−1
, (2.14)

m(j)
k = m(j)

k|k−1 +K(j)
k

⎛
⎜⎝
⎡
⎢⎣

z1
...

z|Wk |

⎤
⎥⎦ −Hkm

(j)
k|k−1

⎞
⎟⎠; P(j)

k =
(
I −K(j)

k Hk

)
P(j)
k|k−1, (2.15)

Hk =

⎡
⎢⎣
Hk

...
Hk

⎤
⎥⎦
⎫⎪⎬
⎪⎭|Wk|; Rk = blkdiag

⎛
⎜⎝

|Wk |︷ ︸︸ ︷
Rk, . . . ,Rk

⎞
⎟⎠, (2.16)

where I denotes the identity matrix; pD,k has been assumed to be state independent; Hk

and Rk denote the observation matrix and the observation noise covariance, respectively;
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blkdiag(·) denotes block diagonal matrix, the measure in 〈·, ·〉 of (2.11) is discrete, and it
defines the summation inner product

〈
υ
Jk|k−1

k|k−1, ηWk

〉
=

Jk|k−1∑
l=1

ηWk

(
m(l)

k|k−1

)
w

(l)
k|k−1. (2.17)

3. Convergence of the GM-EPHD and EK-GM-EPHD Filters

The convergence properties and corresponding proof of the initialization step, prediction
step, and pruning and merging step for the GM-EPHD filter are identical to those for
point-target GM-PHD filter [19]. The main difficulty and greatest challenge is to prove the
convergence for the measurement update step of the filter.

In order to derive the convergence results of the measurement update step for the
GM-EPHD filter, the following lemma is first presented.

Consider the following assumptions.

B1: After the prediction step at time k, υJk|k−1

k|k−1 converges uniformly to υk|k−1. In other
words, for any given εk|k−1 > 0 and any bounded measurable function ϕ ∈ B(Rd),
where B(Rd) is the set of bounded Borel measurable functions on R

d, there is a
positive integer J such that

∣∣∣〈υJk|k−1

k|k−1 − υk|k−1, ϕ
〉∣∣∣ ≤ εk|k−1

∥∥ϕ∥∥∞, (3.1)

for Jk|k−1 ≥ J , where ‖ · ‖∞ denotes ∞-norm. ‖ϕ‖∞ � sup(|ϕ|), sup(·) denotes the
supremum.

B2: The clutter intensity κk(zk) = λkck(zk) is known a priori.

B3: γ(xk) ∈ Cb(Rd), where Cb(Rd) denotes the set of the continuous bounded functions
on R

d.

Lemma 3.1. Given a partition ℘k = {W1,k,W2,k, . . . ,Wn,k} and suppose that assumptions B1–B3
hold, then

∣∣∣∣∣
∏

i=1,...,n

d
Jk|k−1

Wi,k
−

∏
i=1,...,n

dWi,k

∣∣∣∣∣ ≤ εk|k−1

∑
j=1,...,n

∥∥∥ηWj,k

∥∥∥
∞

∏
i=1,...,n;i /= j

(
d
Jk|k−1

Wi,k
+ dWi,k

)
. (3.2)

The proof of Lemma 3.1 can be found in Appendix A.
The uniform convergence of the measurement-updated GM-EPHD is now established

by Proposition 3.2.

Proposition 3.2. After the measurement update step of the GM-EPHD filter, there exists a real
number ak, dependent on the number of measurements such that

∣∣∣〈υJk
k − υk, ϕ

〉∣∣∣ ≤ akεk|k−1
∥∥ϕ∥∥∞, (3.3)

where ak is defined by (B.10).
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The proof of the Proposition 3.2 can be found in Appendix B.
Proposition 3.2 shows that the error for the GM-EPHD corrector converges uniformly

to the true EPHD corrector at each stage of the algorithm and the corresponding error bound
is also provided. The error tends to zero as the number of Gaussians in the mixture tends to
infinity. However, from (B.10), it can be seen that the error bound for the GM-EPHD corrector
depends on the number of all partitions of the measurement set. It is quickly realized that as
the size of the measurement set increases, the number of possible partitions grows very large.
Therefore, the number of Gaussians in the mixture to ensure the asymptotic convergence of
the error to a given bound would grow very quickly with the increase of the measurement
number.

Now turn to the convergence for the EK-GM-EPHD filter, which is the nonlinear
extension of the GM-EPHD filter. Due to the nonlinearity of the extended-target state and
observation processes, the EPHD can no longer be represented as a GM. However, the
EK-GM-EPHD filter can be adapted to accommodate models with mild nonlinearities. The
convergence property and corresponding proof of the prediction step for the EK-GM-EPHD
filter are identical to those for point-target EK-GM-PHD filter [19]. We now establish the
conditions for uniform convergence of the measurement update step for the EK-GM-EPHD
filter.

Proposition 3.3. Suppose that the predicted EK-EPHD is given by the sum of Gaussians

υ
EK,Jk|k−1

k|k−1 (xk) =
Jk|k−1∑
i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (3.4)

and the φzk(xk) in (2.1) is given by the nonlinear single-measurement single-target equation zk =
hk(xk,vk), where hk is known nonlinear functions and vk is zero-mean Gaussian measurement noise
with covariance Rk, then the measurement-updated EK-EPHD approaches the Gaussian sum

υk(xk) → υ
EK,Jk
k (xk) = υ

ND,EK,Jk|k−1

k (xk) +
∑

℘k∠Zk

∑
Wk∈℘k

υ
D,EK,Jk|k−1

k (xk,Wk), (3.5)

uniformly in xk and Zk as P
(i)
k|k−1 → 0 for i = 1, . . . , Jk|k−1, and where

υ
ND,EK,Jk|k−1

k (xk) =
Jk|k−1∑
i=1

(
1 − pD,k + e−γ(m

(i)
k|k−1)pD,k

)
w

(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (3.6)

υ
D,EK,Jk|k−1

k (xk,Wk) =
Jk|k−1∑
i=1

ω
EK,Jk|k−1

℘k

ηEK
Wk

(
m(i)

k|k−1

)
d
EK,Jk|k−1

Wk

w
(i)
k|k−1N

(
xk | m(i)

k
,P(i)

k

)
, (3.7)

ω
EK,Jk|k−1

℘k
=

∏
Wk∈℘k

d
EK,Jk|k−1

Wk∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
dEK
W ′

k

; d
EK,Jk|k−1

Wk
= δ|Wk |,1 +

Jk|k−1∑
i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1

)
, (3.8)
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ηEK
Wk

(
m(i)

k|k−1

)
= pD,ke

−γ(m(i)
k|k−1)

×
∏
zk∈Wk

γ
(
m(i)

k|k−1

)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k Rk

(
U(i)

k

)T
+H(i)

k P(i)
k|k−1

(
H(i)

k

)T
)

λkck(zk)
,

(3.9)

H(i)
k

=
∂hk(xk, 0)

∂xk

∣∣∣∣
xk=m

(i)
k|k−1

; U(i)
k

=
∂hk

(
m(i)n

k|k−1,vk
)

∂vk

∣∣∣∣∣∣∣
vk=0

, (3.10)

K(i)
k = P(i)

k|k−1

(
H

(i)
k

)T
(
H

(i)
k P(i)

k|k−1

(
H

(i)
k

)T

+U
(i)
k Rk

(
U

(i)
k

)T
)−1

, (3.11)

m(i)
k

= m(i)
k|k−1 +K(i)

k

⎛
⎜⎜⎜⎝
⎡
⎢⎣

z1
...

z|Wk |

⎤
⎥⎦ −

⎡
⎢⎢⎢⎣
h
(
m(i)

k|k−1, 0
)

...
h
(
m(i)

k|k−1, 0
)
⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠;P(i)

k
=
(
I −K(i)

k
H

(i)
k

)
P(i)
k|k−1, (3.12)

H
(i)
k =

⎡
⎢⎢⎣
H(i)

k
...

H(i)
k

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭|Wk|; U

(i)
k =

⎡
⎢⎢⎣
U(i)

k
...

U(i)
k

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭|Wk|, (3.13)

The proof of Proposition 3.3 can be found in Appendix C.
From Propositions 3.2 and 3.3, we can obtain that the EK-GM-EPHD corrector

uniformly converges to the true EPHD corrector in xk and Zk under the assumptions that
P(i)
k|k−1 → 0 for i = 1, . . . , Jk|k−1 and the number of Gaussians in the mixture tends to

infinity. These assumptions may be too restrictive or be unrealistic for practical problems,
although the EK-GM-EPHD filter have demonstrated its potential for real-world applications.
However, Propositions 3.2 and 3.3 give further theoretical justification for the use of the GM-
EPHD and EK-GM-EPHD filters in ETT problem.

4. Simulations

Here we briefly describe the application of the convergence results for the GM-EPHD and
EK-GM-EPHD filters to the linear and nonlinear ETT examples.

Example 4.1 (GM-EPHD filter to linear ETT problem). Consider a two-dimensional scenario
with an unknown and time varying number of the extended targets observed over the region
[−1000, 1000]× [−1000, 1000] (in m) for a period of T = 45 time steps. The sampling interval is
Δt = 1s. At time k, the actual number of the existing extended targets is nk and the state of the
ith target is xi,k = [xi,k, yi,k, ẋi,k, ẏi,k, ẍi,k, ÿi,k]

T (i = 1, . . . , nk). Assume that the process noise
� i,k of the ith extended target is independent and identically distributed (IID) zero-mean
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Gaussian white noise with the covariance matrix Qi,k. Then the Markovian transition density
of xi,k could be modeled as

fk|k−1(xi,k | xi,k−1) =N(xi,k | Φi,kxi,k−1,Qi,k), (4.1)

where Φi,k is discrete-time evolution matrix. Here Φi,k and Qi,k are given by the constant
acceleration model [24], as

Φi,k =

⎡
⎢⎢⎣

1 Δt
Δt2

2
1 Δt

1

⎤
⎥⎥⎦ ⊗ I2; Qi,k = σ2

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δt4

4
Δt3

2
Δt2

2

Δt3

2
Δt2

2
Δt

Δt2

2
Δt 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ I2; I2 =

[
1

1

]
, (4.2)

where “⊗” denotes the Kronecker product. The parameter σ� is the instantaneous standard
deviation of the acceleration, given by σ� = 0.05 m/s2.

Note that the objective of this paper is to focus on the convergence analysis for the GM-
EPHD and EK-GM-EPHD filters, rather than the simulation of the extended-target motions.
Therefore, although the proposed evolutions for the extended targets seem to be uncritical
and oversimplifying, they will have little effect on the intention of the paper. Readers could
be referred to [25] for further discussion on the extended-target motion models. The models
proposed in [25] can also be accommodated within the EPHD filter straightforwardly.

At time k, the x-coordinate and y-coordinate measurements of the extended targets are
generated by a sensor located at [0, 0]T . The measurement noise vk is IID zero-mean Gaussian
white noise with covariance matrix Rk = diag(σ2

x, σ
2
y), where diag(·) denotes the diagonal

matrix, σx and σy are, respectively, standard deviations of the x-coordinate and y-coordinate
measurements. In this simulation, they are given as σx = σy = 25 m. The single-measurement
single-target likelihood density φzk(xi,k) is

φzk(xi,k) =N(zk | Hkxi,k,Rk), (4.3)

where

Hk =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
. (4.4)

The detection probability of the sensor is pD,k(xk) = 0.95.
In this simulation, it is assumed that the effect of the shape for each extended target

is much smaller than that of the measurement noise. Hence, the shape estimation is not
considered here.

At time k, the number of the measurements arising from the ith extended target
satisfies Poisson distribution with the mean γ(xi,k). In this simulation, it is given as γ(xi,k) = 3
(i = 1, . . . , nk).
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Figure 1: The true trajectories for extended targets and sensor location.

The clutter is modeled as a Poisson RFS with the intensity κk(zk) = λkck(zk). In this
example, the actual clutter density is ck(zk) = U(zk). It means that the clutter is uniformly
distributed over the observation region.

Figure 1 shows the true trajectories for extended targets and sensor location.

In Figure 1, “Δ” denotes the sensor location, “©” denotes the locations at which the
extended targets are born, “�” denotes the locations at which the extended targets die, and
“+” denotes the measurements generated by the extended targets. Extended target 1 is born
at 1 s and dies at 25 s. Extended target 2 is born at 1 s and dies at 30 s. Extended target 3 is
born at 10 s and dies at 35 s. Extended target 4 is born at 20s and dies at 45 s.

The intensity of the extended-target birth at time k is modeled as

βk(xk) = λβfβ
(
xk | ψβ

)
, (4.5)

where λβ is the average number of the extended-target birth per scan, fβ(xk|ψβ) is the
probability density of the new born extended-target state, and ψβ is the set of the density
parameters. In this example, they are taken as λβ = 0.05, fβ(xk|ψβ) = π1

βN(xk|μ1
β,Σ

1
β) +

π2
βN(xk|μ2

β,Σ
2
β), where ψβ = {π1

β , π
2
β ,μ

1
β,μ

2
β,Σ

1
β,Σ

2
β}, π1

β = π2
β = 0.5, μ1

β = [−600, 750, 0, 0, 0, 0]T ,

μ2
β
= [−650,−800, 0, 0, 0, 0]T , and Σ1

β = Σ2
β = diag(400, 400, 100, 100, 9, 9).

The GM-EPHD filter is used to estimate the number and states of the extended targets
in the linear ETT problem. We now conduct Monte Carlo (MC) simulation experiments on
the same clutter intensity and target trajectories but with independently generated clutter
and target-generated measurements in each trial. Via comparing the tracking performance
of the GM-EPHD filter in the various number Jk of Gaussians in the mixture and in various
clutter rate λk, the convergence results for the algorithm can be verified to a great extent. For
convenience, we assume Jk = J and λk = λ at each time step. Assumptions B2–B3 are satisfied
in this example. So, the GM-EPHD filter uniformly converges to the ground truth.

The standard deviation of the estimated cardinality distribution and the optimal
subpattern assignment (OSPA) multitarget miss distance [26] of order p = 2 with cutoff
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Table 1: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the GM-EPHD filter in various J given λ = 50.

Gaussian number J in the mixture 50 100 300 500 700
Time averaged standard deviation of
the estimated cardinality distribution
from the GM-EPHD filter

2.12 1.39 0.97 0.71 0.58

OSPA (m) from the GM-EPHD filter 83.5 58.7 49.6 43.1 39.5

Table 2: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the GM-EPHD filter in various λ given J = 700.

Clutter rate λ 50 100 200 300 400
Time averaged standard deviation of
the estimated cardinality distribution
from the GM-EPHD filter

0.58 0.70 0.95 1.23 1.48

OSPA (m) from the GM-EPHD filter 39.5 42.9 49.0 56.1 61.7

c = 100 m, which jointly captures differences in cardinality and individual elements between
two finite sets, are used to evaluate the performance of the method. Given the clutter rate
λ = 50, Table 1 shows the time averaged standard deviation of the estimated cardinality
distribution and the time averaged OSPA from the GM-EPHD filter in various J via 200 MC
simulation experiments.

Table 1 shows that both the standard deviation of the estimated cardinality distribu-
tion and OSPA decrease with the increase of the Gaussian number J in the mixture. This
phenomenon can be reasonably explained by the convergence results derived in this paper.
First, according to Proposition 3.2, the error of the GM-EPHD decreases as J increases; then,
the more precise estimates of the multitarget number and states can be derived from the more
precise GM-EPHD, which eventually leads to the results presented in Table 1.

Given J = 700, Table 2 shows the time averaged standard deviation of the
estimated cardinality distribution and the time averaged OSPA from the GM-EPHD filter
in various clutter rate λ via 200 MC simulation experiments. Obviously, the number of the
measurements collected at each time step increases with the increase of λ.

From Table 2, it can be seen that the errors of the multitarget number and state
estimates from the GM-EPHD filter grow significantly with the increase of λ. A reasonable
explanation for this is that the partition operation included in (B.10) leads that the
error bound of the GM-EPHD corrector grows very quickly with the increase of the
measurement number. Therefore, Table 2 consists with the convergence results established
by Proposition 3.2, too.

Example 4.2 (EK-GM-EPHD filter to nonlinear ETT problem). The experiment settings are the
same as those of Example 4.1 except the single-measurement single-target likelihood density
φzk(xi,k). The range rk and bearing θk measurements of the extended targets are generated
with the noise covariance matrix Rk = diag(σ2

r , σ
2
θ
), where σr and σθ are, respectively,

standard deviations of the range and bearing measurements. In this simulation, they are
given as σr = 25 m and σθ = 0.025 rad. The φzk(xi,k) becomes

φzk(xi,k) =N(zk | hk(xi,k),Rk), (4.6)
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Table 3: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the EK-GM-EPHD filter in various J given λ = 50.

Gaussian number J in the mixture 50 100 300 500 700
Time averaged standard deviation of
the estimated cardinality distribution
from the EK-GM-EPHD filter

3.15 2.29 1.77 1.21 0.76

OSPA (m) from the EK-GM-EPHD filter 93.2 86.7 75.3 54.6 43.9

Table 4: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the EK-GM-EPHD filter in various λ given J = 700.

Clutter rate λ 50 100 200 300 400
Time averaged standard deviation of
the estimated cardinality distribution
from the EK-GM-EPHD filter

0.76 0.92 1.29 1.61 1.92

OSPA (m) from the EK-GM-EPHD filter 43.9 48.1 55.8 67.8 79.5

where

hk(xi,k) =
[√

x2
i,k

+ y2
i,k arctan

yi,k

xi,k

]T
. (4.7)

The EK-GM-EPHD filter is used to estimate the number and states of the extended
targets in the nonlinear ETT problem. Given λ = 50, Table 3 shows the time averaged standard
deviation of the estimated cardinality distribution and the time averaged OSPA from the EK-
GM-EPHD filter in various J via 200 MC simulation experiments while, given J = 700, Table 4
shows the time averaged standard deviation of the estimated cardinality distribution and
the time averaged OSPA from the EK-GM-EPHD filter in various λ via 200 MC simulation
experiments.

As expected, Tables 3 and 4, respectively, show that the errors of the multitarget
number and state estimates from the EK-GM-EPHD filter decrease with the increase of J
and increase with the increase of λ. These consist with the convergence results established by
Propositions 3.2 and 3.3. In addition, comparing Tables 1 and 2 with Tables 3 and 4, it can be
seen that the errors from the EK-GM-EPHD filter are obviously larger than the errors from the
GM-EPHD filter given the same J and λ. The additional errors from the EK-GM-EPHD filter
are caused by the reason that the condition P(i)

k|k−1 → 0 for i = 1, . . . , Jk|k−1 in Proposition 3.3 is
very difficult to approach in this example.

5. Conclusions and Future Work

This paper shows that the recently proposed GM-EPHD filter converges uniformly to the true
EPHD filter as the number of Gaussians in the mixture tends to infinity. Proofs of uniform
convergence are also derived for the EK-GM-EPHD filter. Since the GM-EPHD corrector
equations involve with the partition operation that grows very quickly with the increase
of the measurement number, the future work is focused on studying the computationally
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tractable approximation for it and providing the convergence results and error bounds for
the approximate GM-EPHD corrector.

Appendices

A. Proof of Lemma 3.1

We have known that γ(xk) ∈ Cb(Rd), φzk(xk) = N(zk|Hkxk,Rk) ∈ Cb(Rd), λkck(zk) is known
a priori and 0 ≤ pD,k ≤ 1 according to assumptions A1–A6 in [12] and assumptions B1–B3.
So, from (2.3) we get ηWk(xk) ∈ Cb(Rd). In addition, by (2.4) and (2.11) and the definition of
∞-norm, we have dWk ≥ 0, dJk|k−1

Wk
≥ 0, and ‖ηWk‖∞ ≥ 0 because of the facts that υk|k−1(xk) ≥ 0,

υ
Jk|k−1

k|k−1(xk) ≥ 0 and ηWk(xk) ≥ 0.
For the initial induction step, assume n = 1. In this case, from (3.1) we get

∣∣∣dJk|k−1

W1,k
− dW1,k

∣∣∣ = ∣∣∣〈υJk|k−1

k|k−1, ηW1,k

〉
− 〈υk|k−1, ηW1,k

〉∣∣∣ = ∣∣∣〈υJk|k−1

k|k−1 − υk|k−1, ηW1,k

〉∣∣∣ ≤ εk|k−1
∥∥ηW1,k

∥∥
∞.

(A.1)

In the case of n = 2, by the triangle inequality and (A.1), we have

∣∣∣dJk|k−1

W1,k
d
Jk|k−1

W2,k
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∣∣∣∣∣∣
d
Jk|k−1

W2,k
+ dW2,k

2

(
d
Jk|k−1

W1,k
− dW1,k

)
+
d
Jk|k−1

W2,k
− dW2,k

2

(
d
Jk|k−1

W1,k
+ dW1,k

)∣∣∣∣∣∣
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2
.

(A.2)

Since εk|k−1 > 0, dWk ≥ 0, dJk|k−1

Wk
≥ 0 and ‖ηWk‖∞ ≥ 0, (A.2) becomes

∣∣∣dJk|k−1

W1,k
d
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W2,k
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W1,k

))
.

(A.3)
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Assume that we have established (3.2) for i = 1, . . . , n. We are to establish (3.2) for
i = 1, . . . , n + 1. Using the triangle inequality and (A.1), we get
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Since εk|k−1 > 0, dWk ≥ 0, dJk|k−1

Wk
≥ 0 and ‖ηWk‖∞ ≥ 0, (A.4) becomes
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(A.5)

and this closes the inductive step. This completes the proof.



14 Journal of Applied Mathematics

B. Proof of Proposition 3.2

By the EPHD corrector equations, (2.2), and the triangle inequality, we get
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By (3.1), the second term in the summation of (B.1) is
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Using the triangle inequality, the first term in the summation of (B.1) is

∣∣∣∣∣∣∣
ω

Jk|k−1

℘k

〈
υ
Jk|k−1

k|k−1, ϕηWk

〉
d
Jk|k−1

Wk

−
ω℘k

〈
υ
Jk|k−1

k|k−1, ϕηWk

〉
dWk

∣∣∣∣∣∣∣

=

〈
υ
Jk|k−1

k|k−1, ϕηWk

〉∣∣∣dWkω
Jk|k−1

℘k
− dJk|k−1

Wk
ω℘k

∣∣∣
d
Jk|k−1

Wk
dWk

=

〈
υ
Jk|k−1

k|k−1, ϕηWk

〉∣∣∣dWkω
Jk|k−1

℘k
− dJk|k−1

Wk
ω

Jk|k−1

℘k
+ d

Jk|k−1

Wk
ω

Jk|k−1

℘k
− dJk|k−1

Wk
ω℘k

∣∣∣(
δ|Wk |,1 +

〈
υ
Jk|k−1

k|k−1, ηWk

〉)
dWk

≤

〈
υ
Jk|k−1

k|k−1, ηWk

〉∥∥ϕ∥∥∞
∣∣∣ωJk|k−1

℘k

(
dWk − d

Jk|k−1

Wk

)
+ d

Jk|k−1

Wk

(
ω

Jk|k−1

℘k
−ω℘k

)∣∣∣〈
υ
Jk|k−1

k|k−1, ηWk

〉
dWk

≤
∥∥ϕ∥∥∞(ωJk|k−1

℘k

∣∣∣dWk − d
Jk|k−1

Wk

∣∣∣ + d
Jk|k−1

Wk

∣∣∣ωJk|k−1

℘k
−ω℘k

∣∣∣)
dWk

.

(B.3)

Using the triangle inequality again for the term |ωJk|k−1

℘k
−ω℘k | in the numerator of (B.3),

we get
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Using Lemma 3.1, we get
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where ℘k −Wk denotes the complement of Wk in ℘k.
Then, (B.4) can be rewritten as
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Substitute (A.1) and (B.6) into (B.3),
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∥∥ϕ∥∥∞(ωJk|k−1

℘k

∥∥ηWk

∥∥
∞ + d

Jk|k−1

Wk
ρk
)

dWk

. (B.8)

Substituting (3.1), (B.2), and (B.8) into (B.1), we have

∣∣∣〈υJk|k−1

k
− υk, ϕ

〉∣∣∣ ≤ εk|k−1
∥∥ϕ∥∥∞

⎛
⎝∥∥1 − pD,k + e−γpD,k

∥∥
∞

+
∑

℘k∠Zk

∑
Wk∈℘k

⎛
⎝ω

Jk|k−1

℘k

∥∥ηWk

∥∥
∞ + d

Jk|k−1

Wk
ρk

dWk

+ω℘k

∥∥ηWk

∥∥
∞

dWk

⎞
⎠
⎞
⎠.

(B.9)

So that Proposition 3.2 is proved with

ak =
∥∥1 − pD,k + e−γpD,k

∥∥
∞ +

∑
℘k∠Zk

∑
Wk∈℘k

ω
Jk|k−1

℘k

∥∥ηWk

∥∥
∞ + d

Jk|k−1

Wk
ρk +ω℘k

∥∥ηWk

∥∥
∞

dWk

. (B.10)

This completes the proof.
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C. Proof of Proposition 3.3

Clearly, by the EPHD corrector equations, (2.2)–(2.4), and the predicted EK-EPHD, (3.4), we
obtain that the υ

ND,EK,Jk|k−1

k (xk) in (3.5) is a Gaussian sum presented by (3.6). Now turn to the

υ
D,EK,Jk|k−1

k
(xk,Wk) in (3.5). From (2.2), we get

υ
D,EK,Jk|k−1

k (xk,Wk) = ω
Jk|k−1

℘k

ηWk(xk)

d
Jk|k−1

Wk

υ
EK,Jk|k−1

k|k−1 (xk). (C.1)

Consider the term ηWk(xk)υ
EK,Jk|k−1

k|k−1 (xk) in (C.1). Using the predicted EK-EPHD, (3.4),

ηWk(xk)υ
EK,Jk|k−1

k|k−1 (xk) = pD,ke
−γ(xk)

∏
zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

Jk|k−1∑
i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
. (C.2)

And by the result for the EK Gaussian sum filter [17], we get

ηWk(xk)υ
EK,Jk|k−1

k|k−1 (xk)

−→
Jk|k−1∑
i=1

w
(i)
k|k−1pD,ke

−γ(m(i)
k|k−1)

×
∏
zk∈Wk

γ
(
m(i)

k|k−1

)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k
Rk

(
U(i)

k

)T
+H(i)

k
P(i)
k|k−1

(
H(i)

k

)T
)

λkck(zk)

×N
(
xk | m(i)

k
,P(i)

k

)

=
Jk|k−1∑
i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1

)
N
(
xk | m(i)

k
,P(i)

k

)
,

(C.3)

uniformly as P(i)
k|k−1 → 0 for all i = 1, . . . , Jk|k−1, and ηEK

Wk
(m(i)

k|k−1), H
(i)
k

, U(i)
k

, m(i)
k

, P(i)
k

are given
by (3.9)–(3.13), respectively.

Now consider the terms ωJk|k−1

℘k
and d

Jk|k−1

Wk
in (C.1). First, using the predicted EK-EPHD,

(3.4), the inner product 〈υEK,Jk|k−1

k|k−1 , ηWk〉 is given by

〈
υ
EK,Jk|k−1

k|k−1 , ηWk

〉
=
∫
ηWk(xk)υ

EK,Jk|k−1

k|k−1 (xk)dxk

= pD,k

∫
e−γ(xk)

∏
zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

Jk|k−1∑
i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
dxk.

(C.4)
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And by the result for the EK Gaussian sum filter [17], we get

〈
υ
EK,Jk|k−1

k|k−1 , ηWk

〉

−→
∫ Jk|k−1∑

i=1

w
(i)
k|k−1pD,ke

−γ(xk)

×
∏
zk∈Wk

γ
(
m(i)

k|k−1

)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k
Rk

(
U(i)

k

)T
+H(i)

k
P(i)
k|k−1

(
H(i)

k

)T
)

λkck(zk)

×N
(
xkm

(i)
k
,P(i)

k

)
dxk,

(C.5)

uniformly as P(i)
k|k−1 → 0 for all i = 1, . . . , Jk|k−1.

Changing the order of the summation and integral, (C.5) is equal to

〈
υ
EK,Jk|k−1

k|k−1 , ηWk

〉

−→
Jk|k−1∑
i=1

∫
w

(i)
k|k−1pD,ke

−γ(m(i)
k|k−1)

×
∏
zk∈Wk

γ
(
m(i)

k|k−1

)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k Rk

(
U(i)

k

)T
+H(i)

k P(i)
k|k−1

(
H(i)

k

)T
)

λkck(zk)

×N
(
xk | m(i)

k ,P(i)
k

)
dxk

=
Jk|k−1∑
i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1

)∫
N
(
xk | m(i)

k
,P(i)

k

)
dxk

=
Jk|k−1∑
i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1

)
.

(C.6)

Then, the expressions of ω
EK,Jk|k−1

Wk
and d

EK,Jk|k−1

Wk
(see (3.8)) are derived by (2.4) and

(C.6).
Finally, (3.7) is obtained by substituting (3.8) and (C.3) into (C.1). This completes the

proof.
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In the real applications, the model predictive control (MPC) technology is separated into two
layers, that is, a layer of conventional dynamic controller, based on which is an added layer of
steady-state target calculation. In the literature, conditions for offset-free linear model predictive
control are given for combined estimator (for both the artificial disturbance and system state),
steady-state target calculation, and dynamic controller. Usually, the offset-free property of the
double-layered MPC is obtained under the assumption that the system is asymptotically stable.
This paper considers the dynamic stability property of the double-layered MPC.

1. Introduction

The technique model predictive control (MPC) differs from other control methods mainly
in its implementation of the control actions. Usually, MPC solves a finite-horizon optimal
control problem at each control interval, so that the control moves for the current time and
a period of future time (say, totally N control intervals) are obtained. However, only the
current control move is applied to the plant. At the next control interval, the same kind of
optimization is repeated with the new measurements [1]. The MPC procedures applied in the
industrial processes lack theoretical guarantee of stability. Usually, industrial MPC adopts a
finite-horizon optimization, without a special weighting on the output prediction at the end
of the prediction horizon.

Theoretically, the regulation problem for the nominal MPC can have guarantee of
stability by imposing special weight and constraint on the terminal state prediction [2]. The
authors in [2] give a comprehensive framework. However, [2] does not solve everything
for the stability of MPC. In the past 10 years, the studies on the robust MPC for regulation
problem go far beyond [2]. We could say that, for the case of regulation problem when
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the system state is measurable, the research on MPC is becoming mature (see e.g., [3–8]).
For the case of regulation problem when the system state is unmeasurable, and there is no
model parametric uncertainty, the research on MPC is becoming mature (see e.g. [9–11]). For
other cases (output feedback MPC for the systems with parametric uncertainties, tracking
MPC, etc.), there are many undergoing researches (see e.g., [12–16]).

A synthesis approach of MPC is that with guaranteed stability. However, the industrial
MPC adopts a more complex framework than the existing synthesis approaches of MPC. Its
hierarchy is shown in, for example [17]. In other words, the synthesis approaches of MPC
have not been sufficiently developed to include the industrial MPC. Today, the separation
of the MPC algorithm into steady-state target and dynamic control move calculations is a
common part of industrial MPC technology [17]. The use of steady-state target calculation
is necessary, since the disturbances entering the systems or new input information from the
operator may change the location of the optimal steady-state at any control interval (see e.g.,
[18]). The goal of the steady-state target calculation is to recalculate the targets from the local
optimizer every time the MPC controller executes.

In the linear MPC framework, offset-free control is usually achieved by adding step
disturbance to the process model. The most widely used industrial MPC implementations
assume a constant output disturbance that can lead to sluggish rejections of disturbances that
enter the process elsewhere. In [19, 20], some general disturbance models that accommodate
unmeasured disturbances entering through the process input, state, or output, have been
proposed. In a more general sense, the disturbance model can incorporate any nonlinearity,
uncertainty, and physical disturbance (measured or unmeasured). The disturbance can be
estimated by the Kalman filter (or the usual observer). The estimated disturbance is assumed
to be step-like, that is unchanging in the future, at each control interval (MPC refreshes its
solution at each control interval). The estimated disturbance drives the steady-state target
calculation, in order to refresh the new target value for the control move optimization.

This paper visits some preliminary results for the stability of double-layered MPC or
output tracking MPC. These results could be useful for incorporating the industrial MPC
into the synthesis approaches of MPC. The preliminary results for this paper can be found in
[21, 22].

Notations 1. For any vector x and positive-definite matrix M, ‖x‖2
M := xTMx. x(k + i | k)

is the value of vector x at time k + i, predicted at time k. I is the identity matrix with
appropriate dimension. All vector inequalities are interpreted in an element-wise sense. The
symbol � induces a symmetric structure in the matrix inequalities. An optimal solution to the
MPC optimization problem is marked with superscript �. The time-dependence of the MPC
decision variables is often omitted for brevity.

2. System Description and Observer Design

Consider the following discrete-time model:

x(k + 1) = Ax(k) + Bu(k) + Ed(k),

d(k + 1) = d(k) + Δd(k),

y(k) = Cx(k) +Dd(k),

(2.1)



Journal of Applied Mathematics 3

where u ∈ �m denotes the control input variables, x ∈ �n the state variables, y ∈ �p the
output variables, and d ∈ �q the unmeasured signals including all disturbances and plant-
model mismatches.

Assumption 2.1. The augmented pair

([
C D

]
,

[
A E
0 I

])
(2.2)

is detectable, and the following condition holds:

rank
[
I −A −E
C D

]
= n + q. (2.3)

The augmented observer is

[
x̂(k + 1)
d̂(k + 1)

]
=
[
A E
0 I

][
x̂(k)
d̂(k)

]
+
[
B
0

]
u(k) +

[
F1
s

F2
s

](
Cx̂(k) +Dd̂(k) − y(k)

)
, (2.4)

where Fs = [(F1
s )

T
, (F2

s )
T ]

T
is the prespecified observer gain. Define the estimation error

x̃(k) = x(k)− x̂(k) and d̃(k) = d(k)− d̂(k); then one has the following observer error dynamic
equation:

[
x̃(k + 1)
d̃(k + 1)

]
=
([

A E
0 I

]
+
[
F1
s

F2
s

][
C D

])[x̃(k)
d̃(k)

]
+
[

0
I

]
Δd(k). (2.5)

Assumption 2.2. Δd(k) is an asymptotically vanishing item, and the observer error dynamics
is asymptotically stable, that is, limk→∞{Δd(k), x̃(k), d̃(k)} = {0, 0, 0}.

3. Double-Layered MPC with Off-Set Property

For the system (2.1), its steady-state state and input target vectors, xt(k) and ut(k), can
be determined from the solution of the following quadratic programming (QP) problems
(steady-state target calculation, steady-state controller):

min
xt,ut

‖ut − ur‖2
Rt
, (3.1)

s.t.

⎧⎪⎪⎨
⎪⎪⎩
[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k)

yr −Dd̂(k)

]

umin ≤ ut ≤ umax

(3.2)
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min
xt,ut

∥∥yt − yr

∥∥2
Qt
, (3.3)

s.t.

⎧⎪⎪⎨
⎪⎪⎩
[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k)

yt −Dd̂(k)

]

umin ≤ ut ≤ umax,

(3.4)

where yr is the desired steady-state output (e.g., from the local optimizer), ur is the desired
steady-state input, and (umin, umax) are the input bounds. Problems (3.1) and (3.2) is solved;
when (3.1) and (3.2) is feasible, yt = yr and (3.3) and (3.4) is not solved; when (3.1) and (3.2)
is infeasible, (3.3) and (3.4) is solved.

When this target generation problem is feasible, one has

xt(k) = Axt(k) + But(k) + Ed̂(k),

yt(k) = Cxt(k) +Dd̂(k).
(3.5)

Subtracting (3.5) from (2.1) and utilizing (2.5) yield

χ̂(k + 1, k) = Aχ̂(k, k) + Bω(k) − F1
s

(
Cx̃(k) +Dd̃(k)

)
, (3.6)

where the shifted variables χ̂(·, k) := x̂(·) − xt(k), ω := u − ut. The following nominal model
of the transformed system (3.6) is used for prediction

χ̂(k + i + 1 | k) = Aχ̂(k + i | k) + Bω(k + i | k). (3.7)

Its infinite horizon predictive control performance cost is defined as

J∞0 (k) =
∞∑
i=0

W
(
χ̂(k + i | k), ω(k + i | k)), (3.8)

where W(χ̂(k + i | k), ω(k + i | k)) = ‖χ̂(k + i | k)‖2
Q + ‖ω(k + i | k)‖2

R.

Defining a quadratic function V (χ̂(k + i | k)) = ‖χ̂(k + i | k)‖2
P , if one can show that

V
(
χ̂(k + i + 1 | k)) − V (χ̂(k + i | k)) ≤ −W(χ̂(k + i | k), ω(k + i | k)), (3.9)

then it can be concluded that V (χ̂(k + i | k)) → 0 as i → ∞. Furthermore, summing (3.9)
from i = N to∞ yields the upper bound of J∞N as

∞∑
i=N

W
(
χ̂(k + i | k), ω(k + i | k)) ≤ V

(
χ̂(k +N | k)). (3.10)
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By substituting (3.10) into (3.8), one can get

J∞0 (k) ≤
N−1∑
i=0

W
(
χ̂(k + i | k), ω(k + i | k)) + V

(
χ̂(k +N | k)) =: J

(
χ̂(k), π(k)

)
. (3.11)

Here J(χ̂(k), π(k)) gives an upper bound of J∞0 (k); so we can formulate the MPC as an
equivalent minimization problem on J(χ̂, π) with respect to the optimal control sequence

π∗(k) = [ω∗(k | k)T , ω∗(k + 1 | k)T , . . . , ω∗(k +N − 1 | k)T ]T . (3.12)

When x̂(k + N | k) lies in the terminal region, ω(k + i | k) = Kχ̂(k + i | k), i ≥ N. From the
definition of J(χ̂(k), π(k)), at time instant k + 1, one has

J
(
χ̂(k + 1), π(k + 1)

)
=

N∑
i=1

W
(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)
+ V
(
χ̂(k +N + 1 | k + 1)

)
(3.13)

with the shifted control sequence

π(k + 1) =
[
(ω∗(k + 1 | k) + ut(k) − ut(k + 1))T , . . . ,

(ω∗(k +N − 1k) + ut(k) − ut(k + 1))T ,
(
Kχ̂(k +Nk) + ut(k) − ut(k + 1)

)T]T
.

(3.14)

We can explicitly derive the multi-step-ahead state and output prediction:

χ̂(k +N | k) = ANχ̂(k) + ÃBπ(k), (3.15)

Ỹχ(k) = T̃Aχ̂(k) + T̃Bπ(k), (3.16)

where

ÃB =
[
AN−1B, . . . , AB, B

]
, Ỹχ(k) =

⎡
⎢⎢⎢⎣

χ̂(k | k)
χ̂(k + 1 | k)

...
χ̂(k +N − 1 | k)

⎤
⎥⎥⎥⎦, (3.17)

T̃A =

⎡
⎢⎢⎢⎣

I
A
...

AN−1

⎤
⎥⎥⎥⎦, T̃B =

⎡
⎢⎢⎢⎣

0 0 · · · 0
B 0 · · · 0
...

. . . . . .
...

AN−2B · · · B 0

⎤
⎥⎥⎥⎦. (3.18)
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Lemma 3.1. For a quadratic functionW(x, u) = xTQx+uTRu,Q,R > 0, there exist finite Lipschitz
constants Lx,Lu > 0 such that

‖W(x1, u1) −W(x2, u2)‖ ≤ Lx‖x1 − x2‖ +Lu‖u1 − u2‖ (3.19)

for all x1, x2 ∈ X, u1, u2 ∈ U, where X, U are bounded regions. Similarly, for a quadratic function
V (x) = xTPx, P > 0, there exists a finite Lipschitz constant LV > 0 such that

‖V (x1) − V (x2)‖ ≤ LV ‖x1 − x2‖ (3.20)

for all x1, x2 ∈ X.

Clearly, Lx, Lu, LV depend onX, U. However, it is unnecessary to specifyX, U in the
following. Moreover, LV depends on P , which is time varying; this paper assumes taking LV

for all possible P .

Lemma 3.2. Consider the prediction model (3.7). Then, with the shifted control sequence π(k + 1),

∥∥χ̂(k + i | k + 1) − χ̂(k + i | k)∥∥
≤ ‖A‖i−1

(∥∥∥F1
sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖

)

+
i−2∑
j=0
‖A‖j‖B‖(‖ut(k) − ut(k + 1)‖).

(3.21)

Proof . It is easy to show that

χ̂(k + 1, k + 1) = x̂(k + 1) − xt(k + 1)

= χ̂(k + 1 | k) − F1
s

(
Cx̃(k) +Dd̃(k)

)
+ xt(k) − xt(k + 1).

(3.22)

Then,

∥∥χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)∥∥
=
∥∥χ̂(k + 1) − χ̂(k + 1 | k)∥∥
≤
∥∥∥F1

sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖,

‖χ̂(k + 2 | k + 1) − χ̂(k + 2 | k)‖
=
∥∥A(χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)) + B(ω(k + 1 | k + 1) −ω(k + 1 | k))∥∥
≤ ‖A‖∥∥χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)∥∥ + ‖B‖‖ut(k) − ut(k + 1)‖.

(3.23)

By induction, one can easily show the claimed result, and thus the proof is completed.
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Theorem 3.3. For the system (2.1) subject to the input constraints

umin ≤ u ≤ umax, (3.24)

under Assumptions 2.1-2.2, the closed-loop output feedback model predictive control system, with
objective function J(χ̂(k), π(k)), augmented observer (2.4), and target generation procedure (3.1)–
(3.4), achieves the offset-free reference tracking performance if the following three conditions are
satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem (3.1)–(3.4), at
each time k.

(b) There exist feasible solutions, including a control sequence π∗(k), a positive-definite matrix
X̂, and any matrix Ŷ , at each time k, to the dynamic optimization problem (dynamic control
move calculation problem)

min
γ1,γ2,π,X̂,Ŷ

(
γ1 + γ2

)
, (3.25)

subject to the linear matrix inequalities

⎡
⎢⎣

γ1 � �

T̃Aχ̂(k) + T̃Bπ Q̃−1 �

π 0 R̃−1

⎤
⎥⎦ ≥ 0, (3.26)

[
1 �

ANχ̂(k) + ÃBπ X̂

]
≥ 0, (3.27)

⎡
⎢⎢⎢⎣

X̂ � � �

AX̂ + BŶ X̂ � �

X̂ 0 γ2Q
−1 �

Ŷ 0 0 γ2R
−1

⎤
⎥⎥⎥⎦ ≥ 0, (3.28)

[
u2
j �

ŶTUT
j X̂

]
≥ 0, j = 1, . . . , m, (3.29)

[
Im×N
−Im×N

]
π ≤

[
Πm(umax − ut(k))
−Πm(umin − ut(k))

]
, (3.30)

where Uj is the jth row of the m-ordered identity matrix, Q̃ = IN ⊗ Q, R̃ = IN ⊗ R,
Πm = [Im, . . . , Im]

T , and uj = min{(umax − ut(k))j , (ut(k) − umin)j}.
(c) By applying u(k) = ut(k) + ω∗(k | k), where ω∗(k | k) is obtained by solving (3.25)—

(3.30), the closed-loop system is asymptotically stable.

Proof. The matrix inequality (3.28) implies that

(A + BK)TP(A + BK) − P +Q +KTRK ≤ 0. (3.31)
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By referring to [23], it is easy to prove that (3.9) holds for all i ≥ N. Then, V (χ̂(k +N | k)) ≤
‖χ̂(k +N | k)‖2

P . Let ‖χ̂(k +N | k)‖2
P ≤ γ2(k), which is guaranteed by (3.27), where P = γ2X̂

−1.
Meanwhile, it is easy to show that, by applying (3.26), the optimal γ∗1 (k) is exactly the optimal
value of

JN−1∗
0 (k) =

N−1∑
i=0

W
(
χ̂(k + i | k), ω∗(k + i | k)). (3.32)

Now we check if each element of the predictive control inputs satisfies the constraints
uj,min ≤ uj(k + i | k) ≤ uj,max, i ≥ 0, j = 1, . . . , m. For any i within the finite horizon N, the
input constraints are satisfied since Πm(umin − ut(k)) ≤ π ≤ Πm(umax − ut(k)), as shown in
(3.30). Otherwise, beyond the finite horizon i ≥ N, χ̂(k + i | k) belongs to the constraint set
E =

⋃{z ∈ �n | zTX̂−1z ≤ 1}, which is guaranteed by (3.27). In this case, by referring to [23],
it is easy to show that, (3.27)–(3.29) guarantee that the feedback control law ω(k + i | k) =
Kχ̂(k + i | k), i ≥N, K = Ŷ X̂−1 satisfies the input constraints.

Since point (c) is assumed, the offset-free property can be referred to as in [19, 20,
22].

4. Improved Procedure for Double-Layered MPC

At each time k + 1 ≥ 0, we consider the following constraints:

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k + 1)

yr −Dd̂(k + 1)

]
,

umin ≤ ut ≤ umax,

(4.1)

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k + 1)

yt −Dd̂(k + 1)

]
,

umin ≤ ut ≤ umax,

(4.2)

⎡
⎣ 1

υ
(k) �

AN[x̂(k + 1) − xt] + ÃBπ(k + 1) X̂(k)

⎤
⎦ ≥ 0, (4.3)

(
υ(k)UjŶ (k)X̂(k)−1Ŷ (k)TUT

j

)1/2 ≤ (umax − ut)j ,

(
υ(k)UjŶ (k)X̂(k)−1Ŷ (k)TUT

j

)1/2 ≤ (ut − umin)j ,

j = 1, . . . , m,

(4.4)

where υ(k) = γ∗2 (k)/(γ
∗
2 (k) −W(χ̂(k +N | k), ω∗(k +N | k)) + (1 − �)W(χ̂(k | k), ω∗(k | k))),

with � ∈ (0, 1] being a given design parameter. Equation (4.1) is utilized for (3.1); (4.2) is
utilized for (3.3).
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Theorem 4.1. For the system (2.1) subject to the input constraints under Assumptions 2.1-2.2, the
closed-loop output feedback model predictive control system, with objective function J(χ̂(k), π(k)),
augmented observer (2.4), target generation procedure (at k = 0, (3.1)–(3.4); at any k + 1, (3.1),
(3.3), (4.1)–(4.4)), and dynamic optimization problem (3.25)–(3.30), is input-to-state (ISS) stable if
the following two conditions are satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem, at each control
interval.

(b) There exist feasible solutions, including a control sequence π∗(k), a positive-definite matrix
X̂, and any matrix Ŷ , at time k = 0, to the dynamic optimization problem (3.25)–(3.30).

Proof. By applying the shifted control sequence π(k + 1), at time k + 1, one has

γ1(k + 1) − γ∗1 (k) = JN−1
0 (k + 1) − JN−1∗

0 (k)

= W
(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+
N−1∑
i=1

[
W
(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(χ̂(k + i | k), ω∗(k + i | k))] −W(χ̂(k | k), ω∗(k | k)).

(4.5)

By applying Lemmas 3.1-3.2, it is shown that

γ1(k + 1) − γ∗1 (k)
≤W

(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+Lx

N−1∑
i=1

⎡
⎣‖A‖i−1

(∥∥∥F1
sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖

)

+
i−2∑
j=0
‖A‖j‖B‖(‖ut(k) − ut(k + 1)‖)

⎤
⎦

+ (N − 1)Lu‖ut(k) − ut(k + 1)‖ −W(χ̂(k | k), ω∗(k | k)).

(4.6)

By further applying

χ̂(k +N | k + 1) = χ̂(k +N | k) +AN−1
[
−F1

s

(
Cx̃(k) +Dd̃(k)

)
+ xt(k) − xt(k + 1)

]

+
N−2∑
i=0

AiB[ut(k) − ut(k − 1)],
(4.7)
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it is shown that

γ1(k + 1) − γ∗1 (k) ≤ W
(
χ̂(k +N | k), ω∗(k +N | k))

+ L̃x

(∥∥∥F1
sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖

)
+ L̃u‖ut(k) − ut(k + 1)‖ −W(χ̂(k | k), ω∗(k | k)),

(4.8)

where L̃x, L̃u > 0 are appropriate scalars.
On the other hand, at time k + 1, since the target generation problem is feasible, it is

feasible to choose γ2(k+1) = γ∗2 (k)−W(χ̂(k+N | k), ω∗(k+N | k)+(1−�)W(χ̂(k | k), ω∗(k | k)).
Then,

(
γ1(k + 1) + γ2(k + 1)

) − (γ∗1 (k) + γ∗2 (k)
)

≤ −�W(χ̂(k | k), ω∗(k | k))
+ L̃x

(∥∥∥F1
sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖

)
+ L̃u‖ut(k) − ut(k + 1)‖

≤ −�λmin(Q)
∥∥χ̂(k | k)∥∥

+ L̃x

(
‖F1

sC‖‖x̃(k)‖ +
∥∥∥F1

sD
∥∥∥∥∥∥d̃(k)∥∥∥ + ‖xt(k) − xt(k + 1)‖

)
+ L̃u‖ut(k) − ut(k + 1)‖.

(4.9)

Hence, γ∗1 (k) + γ∗2 (k) can serve as an ISS (for the definition of this term, see [22]) Lyapunov
function, and the closed-loop system is input-to-state stable.

If we use the terminal equality constraint, rather than the terminal inequality con-
straint, then (3.27) should be revised as

ANχ̂(k) + ÃBπ = 0 (4.10)

and (3.28), (3.29) should be removed; moreover, (4.3) should be revised as

AN(x̂(k + 1) − xt) + ÃBπ(k + 1) = 0 (4.11)

with the shifted control sequence

π(k + 1) =
[
(ω∗(k + 1 | k) + ut(k) − ut(k + 1))T , . . . ,

(ω∗(k +N − 1 | k) + ut(k) − ut(k + 1))T , (ut(k) − ut(k + 1))T
]T
,

(4.12)

and (4.4) should be removed.
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Theorem 4.2. For the system (2.1) subject to the input constraints under Assumptions 2.1–2.2, the
closed-loop output feedback model predictive control system, with objective function J(χ̂(k), π(k)),
augmented observer (2.4), target generation procedure (at k = 0, (3.1)–(3.4); at any k + 1, (3.1),
(3.3), (4.1), (4.2), (4.11)), and dynamic optimization problem (3.25), (3.26), (4.10), (3.30), is input-
to-state stable if the following two conditions are satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem, at each time
k.

(b) There exist feasible solutions π∗(k), at time k = 0, to the dynamic optimization problem
(3.25), (3.26), (4.10), (3.30).

Proof. By applying the shifted control sequence π(k + 1), at time k + 1, one has

γ1(k + 1) − γ∗1 (k)
= W

(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+
N−1∑
i=1

[
W
(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(χ̂(k + i | k), ω∗(k + i | k))] −W(χ̂(k | k), ω∗(k | k))
=
[
W
(
χ(k +N | k + 1), ω(k +N | k + 1)

)
−W(χ(k +N | k), ω(k +N | k))]

+
N−1∑
i=1

[
W
(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(χ̂(k + i | k), ω∗(k + i | k))] −W(χ̂(k | k), ω∗(k | k)).

(4.13)

By analogy to Theorem 4.1, it is shown that γ∗1 (k) can serve as an ISS Lyapunov function, and
the closed-loop system is input-to-state stable.

Assume that A is nonsingular. Then, applying (4.11) yields

xt = x̂(k + 1) +A−NÃBπ(k + 1). (4.14)

Further applying (4.3) yields yt = Cx̂(k + 1) + CA−NÃBπ(k + 1) +Dd̂(k + 1) and

But = (I −A)
[
x̂(k + 1) +A−NÃBπ(k + 1)

]
− Ed̂(k + 1). (4.15)

Hence, by applying (4.10)-(4.11), an analytical solution of the steady-state controller may be
obtained.
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Figure 1: The closed-loop output trajectories, the corresponding control input signals, and the disturb-
ances.
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5. Numerical Example

Let us consider the heavy fractionator, which is a Shell standard problem, with the following
model:

GU(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.05e−27s

50s + 1
1.77e−28s

60s + 1
5.88e−27s

50s + 1

5.39e−18s

50s + 1
5.72e−14s

60s + 1
6.90e−15s

40s + 1

4.38e−20s

33s + 1
4.42e−22s

44s + 1
7.20

19s + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, GF(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2e−27s

45s + 1
1.44e−27s

60s + 1

1.52e−18s

25s + 1
1.83e−15s

20s + 1
1.14

27s + 1
1.26

32s + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.1)

where GU(s) is the transfer function matrix between inputs and outputs, and GF(s) between
disturbances and outputs. The three inputs of the process are the product draw rates from
the top and side of the column (u1, u2), and the reflux heat duty for the bottom of the column
(u3). The three outputs of the process represent the draw composition (y1) from the top of the
column, the draw composition (y2), and the reflux temperature at the bottom of the column
(y3). The two disturbances are the reflux heat duties for the intermediate section and top of
the column (d1, d2).

The inputs are constrained between −0.5 and 0.5, while the outputs between −0.5
and 0.5. The weighting matrices are identity matrices. N = 3. The sampling interval is 3
seconds. With the algorithm as in Theorem 3.3 applied, the simulation results are shown in
Figure 1. The steady-state calculation begins running at instant k = 20, when the optimizer
finds the optimum target yt = [−0.5, 0.5,−0.4269]T . The objective value is −0.3538, indicating
that −0.3538 unit benefits are obtained. During time k = 200–300, the disturbances d1 = −1.3
and d2 = 1 are added. The simulation verifies our theoretical results.

6. Conclusions

We have given some preliminary results for the stability of double-layered MPC. The results
cannot be seen as the strict synthesis approaches; rather, they are endeavors towards this kind
of approaches. Instead of asymptotic stability, we obtain the input-to-state stability, as in [22].
The results are inspired by [22]; but they are much different, as shown in Remarks 1–11 of
[21].

We believe that several works need to be continued. Indeed, assuming feasibility of
the target generation problem at each control interval is very restrictive, and overlooking
the uncertainties in the prediction model brings difficulties for proving both the asymptotic
stability and offset-free property. It may be necessary to develop a whole procedure, where
the target generation problem is guaranteed (rather than assumed) to be feasible at each
control interval and an augmented system is used for the stability analysis.
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We propose a generic spatial domain control scheme for a class of nonlinear rotary systems
of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the
rotary system in time domain is transformed into one in spatial domain employing a coordinate
transformation with respect to angular displacement. Under the circumstances that measurement
of the system states is not available, a nonlinear state observer is established for providing the
estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed
to stabilize the system and improve the tracking performance. The first control module applies
adaptive backstepping with projected parametric update and concentrates on robust stabilization
of the closed-loop system. The second control module introduces an internal model of the periodic
disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error
but also improves parametric adaptation. The overall spatial domain output feedback adaptive
control system is robust to model uncertainties and state estimated error and capable of rejecting
spatially periodic disturbances under varying system speeds. Stability proof of the overall system
is given. A design example with simulation demonstrates the applicability of the proposed design.

1. Introduction

Rotary systems play important roles in various industry applications, for example,
packaging, printing, assembly, fabrication, semiconductor, robotics, and so forth. Design of
control algorithm for a motion system often comes up with nonlinearities and uncertainties.
Nonlinearities are either inherent to the system or due to the dynamics of actuators and
sensors. Uncertainties are mainly caused by unmodeled dynamics, parametric uncertainty,
and disturbances. For dealing with nonlinearities, common techniques, for example, feedback
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linearization and backstepping, are to utilize feedback to cancel all or part of the nonlinear
terms. On the other hand, design techniques for conducting disturbance rejection or
attenuation in control systems mostly originate from the internal model principle [1],
for example, those incorporating or estimating the exosystem of the disturbances [2–6].
Conventional controllers are mostly time-based controllers as they are synthesized and
operate in temporal or time domain. Several researches [7–9] have started studying spatial
domain controllers ever since a repetitive controller design was initiated by Nakano et al.
[10]. In the design of Nakano et al., the repetitive control system has its repetitive kernel (i.e.,
e−Ls with positive feedback) synthesized and operated with respect to a spatial coordinate,
for example, angular position or displacement. Hence its capability for rejecting or tracking
spatially periodic disturbances or references will not degrade when the controlled system
operates at varying speed. All existing studies propose design methods starting with a
linear time-invariant (LTI) system. After reformulation, a nonlinear open-loop system is
obtained in spatial domain. Subsequently, the open-loop system is either linearized around
an operating speed or regarded as a quasi-linear parameter varying (quasi-LPV) system
and then adjoined with the spatial domain internal model of the tracking or disturbance
signal. Design paradigms based on linear (robust) control theory are then applied to the
resulting augmented system. However, presuming the open-loop system to be LTI and
resorting to design paradigm of linear control will inevitably restrict the applicability and
limit the achievable performance of a design method. Chen and Yang [11] introduced a new
spatial domain control scheme based on a second-order LTI system with availability of state
measurements. To achieve robust stabilization and high-performance tracking, a two-module
control configuration is constructed. One of the modules utilizes adaptive backstepping
with projected parametric adaptation to robustly stabilize the system. The other module
incorporates a spatial domain internal model of the disturbances cascaded with a loop-
shaping filter to improve the tracking performance.

This paper extends the work of Chen and Yang [11, 12]. The control scheme has been
generalized such that it is applicable to a class of nonlinear systems (instead of just LTI
systems). Moreover, the major shortcoming in Chen and Yang’s design [11], that is, which
requires full-state feedback, is resolved by incorporation of a nonlinear state observer. Various
types of nonlinear state observers have been developed and put into use in the past (e.g.,
[13, 14]). This paper will study the feasibility of incorporating a K-filter-type state observer
[13] into the proposed design. The proposed system incorporating the state observer can
be proved to be stable under bounded disturbance and system uncertainties. An illustrative
example is given for demonstration and derivation of the control algorithm. Simulation is
performed to verify the feasibility and effectiveness of the proposed scheme. Compared to
the preliminary work in [12] (which is only applicable to second order systems), the results
have been generalized to be suited for nth order systems. Specifically, the design and stability
proof are more comprehensive and rigorous than those presented in [12].

Recently, there have been emerging design techniques based on adaptive fuzzy control
(AFC), which may cope with nonlinearities and uncertainties with unknown structures
[15–17]. The major differences between those techniques and the proposed one are as
follows: (1) design being time based (AFC) versus spatial based (the proposed approach);
(2) assuming less information about the nonlinearities/uncertainties (AFC) versus more
information about the nonlinearities/uncertainties (the proposed approach). Note that
the spatial-based design is not just a change of the independent variable from time to
angular displacement. A nonlinear coordinate transformation is actually involved. Therefore,
the systems under consideration in AFC and the proposed method are different. Next,
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the capability of the design approaches suggested in AFC for tackling systems subject to
a more generic class of nonlinearities/uncertainties lies in the usage of a fuzzy system
to approximate those nonlinearities/uncertainties. It is actually not clear regarding the
complexity of the fuzzy system (i.e., number of membership functions) that should be used to
achieve the required control performance. It is also not clear whether or not the control effort
is reasonable. In general, when characteristics of the uncertainties or disturbances are known,
such information should be incorporated as much as possible into the design to enhance
performance, avoid conservativeness, and result in sensible control input. Hence, instead
of assuming the disturbances to be generic (probably just being bounded as by AFC), the
proposed design is aiming at a type of disturbances specific to rotary systems and utilizes
the spatially periodic nature of the disturbances to establish a well-defined control module
integrated into the overall control configuration.

This paper is organized as follows. Reformulation of a generic nonlinear rotary system
with respect to angular displacement will be presented in Section 2. Design of the state
observer is described in Section 3. Section 4 will cover derivation and stability analysis of
the proposed spatial domain output feedback control scheme. Simulation verification for the
proposed scheme will be presented in Section 5. Conclusion is given in Section 6.

2. Problem Formulation

In this section, we show how a generic NTI model can be transformed into an NPI model
by choosing an alternate independent variable (angular displacement instead of time) and
defining a new set of states (or coordinates) with respect to the angular displacement. Note
that the transformation described here is equivalent to a nonlinear coordinate transformation
or a diffeomorphism. The NPI model will be used for the subsequent design and discussion,

ẋ(t) =
[
ft
(
x(t), φf

)
+ Δft

(
x(t), φf

)]
+
[
gt
(
x(t), φg

)
+ Δgt

(
x(t), φg

)]
u(t),

y = Ψx(t) + dy(t) = x1(t) + dy(t),
(2.1)

where x(t) = [x1(t) · · · xn(t)]
T , Ψ = [1 0 · · · 0], and u(t) and y(t) correspond to control

input and measured output angular velocity of the system, respectively. dy(t) represents
a class of bounded output disturbances which constitutes (dominant) spatially periodic
and band-limited (or nonperiodic) components. Here we refer band-limited disturbances
to signals whose Fourier transform or power spectral density is zero above a certain finite
frequency. The only available information of the disturbances is the number of distinctive
spatial frequencies and the spectrum distribution for band-limited disturbance components.
ft(x(t), φf) and gt(x(t), φg) are known vector-valued functions with unknown but bounded
system parameters, that is, φf = [φf1 · · · φfk] and φg = [φg1 · · · φgl]; Δft(x(t), φf)
and Δgt(x(t), φg) represent unstructured modeling inaccuracy, which are also assumed to
be bounded. Instead of using time t as the independent variable, consider an alternate
independent variable θ = λ(t), that is, the angular displacement. Since by definition

λ(t) =
∫ t

0
ω(τ)dτ + λ(0), (2.2)
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where ω(t) is the angular velocity, the following condition:

ω(t) =
dθ

dt
> 0, ∀ t > 0, (2.3)

will guarantee that λ(t) is strictly monotonic such that t = λ−1(θ) exists. Thus all the variables
in the time domain can be transformed into their counterparts in the θ-domain, that is,

x̂(θ) = x
(
λ−1(θ)

)
, ŷ(θ) = y

(
λ−1(θ)

)
,

û(θ) = u
(
λ−1(θ)

)
, d̂(θ) = d

(
λ−1(θ)

)
,

ω̂(θ) = ω
(
λ−1(θ)

)
,

(2.4)

where we denote •̂ as the θ-domain representation of •. Note that, in practice, (2.3) can
usually be satisfied for most rotary systems where the rotary component rotates only in one
direction. Since

dx(t)
dt

=
dθ

dt

dx̂(θ)
dθ

= ω̂(θ)
dx̂(θ)
dθ

. (2.5)

Equation (2.1) can be rewritten as

ω̂(θ)
dx̂(θ)
dθ

=
[
ft
(
x̂(θ), φf

)
+ Δft

(
x̂(θ), φf

)]
+
[
gt
(
x̂(θ), φg

)
+ Δgt

(
x̂(θ), φg

)]
û(θ),

ŷ(θ) = Ψx̂(θ) + d̂y(θ) = x̂1(θ) + d̂y(θ).

(2.6)

Equation (2.6) can be viewed as a nonlinear position-invariant (as opposed to the definition
of time-invariant) system with the angular displacement θ as the independent variable. Note
that the concept of transfer function is still valid for linear position-invariant systems if we
define the Laplace transform of a signal ĝ(θ) in the angular displacement domain as

Ĝ(s̃) =
∫∞

0
ĝ(θ)e−s̃θdθ. (2.7)

This definition will be useful for describing the linear portion of the overall control system.

3. Nonlinear State Observer

Drop the θ notation and note that (2.6) can be expressed as a standard nonlinear system:

˙̂x = f
(
x̂, φf

)
+ g
(
x̂, φg

)
û + d̂s, ŷ = h(x̂) + d̂y = ω̂ + d̂y, (3.1)
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where terms involving unstructured uncertainty are merged into d̂s = Δf(x̂, φf) +
Δg(x̂, φg)û with

Δf
(
x̂, φf

)
=

Δft
(
x̂, φf

)
x̂1

, Δg
(
x̂, φg

)
=

Δgt
(
x̂, φg

)
x̂1

. (3.2)

In addition, we have

f
(
x̂, φf

)
=

ft
(
x̂, φf

)
x̂1

, g
(
x̂, φg

)
=

gt
(
x̂, φg

)
x̂1

, h(x̂) = ω̂ = x̂1. (3.3)

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, that is,
the undisturbed output h(x̂). It is not difficult to verify that (3.1) has the same relative degree
in D0 = {x̂ ∈ R

n | x̂1 /= 0} as the NTI model in (2.1). If (3.1) has relative degree r, we can define
the following nonlinear coordinate transformation:

ẑ = T(x̂) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(x̂)
...

ψn−r(x̂)
h(x̂)

...
Lr−1
f

h(x̂)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
ẑ2

ẑ1

]
, (3.4)

where ψ1 to ψn−r are chosen such that T(x̂) is a diffeomorphism on D0 ⊂ D and

Lgψi(x̂) = 0, 1 ≤ i ≤ n − r, ∀x̂ ∈ D0. (3.5)

With respect to the new coordinates, that is, ẑ1 and ẑ2, (3.1) can be transformed into the so-
called normal form, that is,

˙̂z2 = Lfψ(x̂)
∣∣
x̂=T−1(ẑ) + d̂so � Ψ(ẑ1, ẑ2),

˙̂z1 = Acẑ1 + Bc

[
LgL

r−1
f h(x̂)

∣∣∣
x̂=T−1(ẑ)

]⎡⎣û +
Lr
fh(x̂)

LgL
r−1
f

h(x̂)

∣∣∣∣∣∣
x̂=T−1(ẑ)

⎤
⎦ + d̂si,

ŷ = Ccẑ1 + d̂y,

(3.6)

where d̂so and d̂si = [d̂si1 · · · d̂sir ]
T

come from d̂s going through the indicated coordinate
transformation. ẑ1 = [ẑ11 · · · ẑ1r] ∈ R

r , ẑ2 ∈ R
n−r , and (Ac, Bc, Cc) is a canonical form

representation of a chain of r integrators. The first equation is called internal dynamics and
the second is called external dynamics. Internal dynamics which is not affected by the control
u. By setting ẑ1 = 0 in that equation, we obtain

˙̂z2 = Ψ(0, ẑ2), (3.7)
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which is the zero dynamics of (3.1) or (3.6). The system is called minimum phase if (3.7) has
an asymptotically stable equilibrium point in the domain of interest. To allow us to present
the proposed algorithm and stability analysis in a simpler context, we will make the following
assumptions for the subsequent derivation:

(1) f(x̂(θ), φf) and g(x̂(θ), φg) are linearly related to those unknown system
parameters, that is,

f
(
x̂(θ), φf

)
= φ1f1(x̂(θ)) + · · · + φfkfk(x̂(θ)),

g
(
x̂(θ), φg

)
= φg1g1(x̂(θ)) + · · · + φglgl(x̂(θ)).

(3.8)

(2) Equation (3.1) is minimum phase, and the internal dynamics in (3.6) is ISS (input-
to-state stable).

(3) The output disturbance is sufficiently smooth, that is, ˙̂dy, . . . , d̂
(r)
y exist,

(4) d̂(r−1)
si1

, d̂
(r−2)
si2

, . . . , ˙̂dsir−1 exist, that is, the transformed unstructured uncertainty is
sufficiently smooth.

(5) The reference command ŷm and its first r derivates are known and bounded.
Moreover, the signal ŷ(r)

m is piecewise continuous.

With assumption (2), we focus on designing a nonlinear state observer for external dynamics
of (3.6),

˙̂z1 = Acẑ1 + Bc

[
LgL

r−1
f h(x̂)

∣∣∣
x̂=T−1(ẑ)

]⎡⎣û +
Lr
f
h(x̂)

LgL
r−1
f h(x̂)

∣∣∣∣∣∣
x̂=T−1(ẑ)

⎤
⎦ + d̂si. (3.9)

Since f(x̂) and g(x̂) are linearly related to system parameters, LgL
r−1
f

h(x̂) and LgL
r−1
f

h(x̂) can

be written as Lr
f
h(x̂) = ΘTWf(x̂) and LgL

r−1
f

h(x̂) = ΘTWg(x̂), where Wf(x̂) and Wg(x̂) are

two nonlinear functions, and Θ = [φf1 · · · φfk φg1 · · · φgl · · · ]T = [φ1 · · · φ�]
T ∈ R

� ,
where � is the number of unknown parameters. Next, we adopt the following observer
structure: ż1 = A0z1 + ky + F(y, u)TΘ, where z1 = [z11 · · · z1r]

T is the estimate of z1,
and Wf(y) and Wg(y) are nonlinear functions with the same structure as Wf(x) and Wg(x)
except that each entry of x is replaced by y. Furthermore,

A0=

⎡
⎢⎣
−k1

...
−kr

I(r−1)×(r−1)

01×(r−1)

⎤
⎥⎦, k=

[
k1 · · · kr

]T
, F

(
y, u
)T =
[

0(r−1)×�
W

T

f

(
y
)
+W

T

g

(
y
)
u

]
∈ R

r×�.

(3.10)

By properly choosing k, the matrix A0 can be made Hurwitz. Define the state estimated error
as ε � [εz11 · · · εz1r ]

T � z1 − z1. The dynamics of the estimated error can be obtained as
ε̇ = A0ε + Δ, where Δ = −kdy + BcΘT [Wg(x) −Wg(y)] u + BcΘT [Wf(x) −Wf(y)] + dsi. To
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proceed, the role of the state observer is replaced by z1 � ξ + ΩTΘ and the following two
K-filters:

ξ̇ = A0ξ + ky, Ω̇T = A0ΩT + F
(
y, u
)T
, (3.11)

such that ξ = [ξ11 · · · ξ1r]
T ∈ R

r and ΩT � [v1 · · · v�] ∈ R
r×� . Decompose the second

equation of (3.11) into v̇j = A0vj + erσj , j = 1, 2, . . . , �, where er = [0 · · · 0 1] ∈ R
r and

σj = w1j +w2ju with w1j and w2j are the jth columns of W
T

f (y) and W
T

g(y), respectively. With
the definition of the state estimated error ε, the state estimate z1, and (3.11), we acquire the
following set of equations which will be used in the subsequent design:

z1k = z1k + εz1k = ξ1k +
�∑
j=1

vj,kφj + εz1k , k = 1, . . . , r, (3.12)

where •j,i denotes the ith row of •j .

4. Spatial Domain Output Feedback Adaptive Control System

To apply adaptive backstepping method, we firstly rewrite the derivative of output ŷ as

˙̂y = ˙̂z11 +
˙̂dy = ẑ12 + d̂si1 +

˙̂dy = z12 + εẑ12 + d̂si1 +
˙̂dy. (4.1)

With the second equation in (3.12), (4.1) can be written as

˙̂y = z12 + εẑ12 + d̂si1 +
˙̂dy = ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy, (4.2)

where ωT = [v1,2 · · · v�−1,2 0].
In view of designing output feedback backstepping with K-filters, we need to find

a set of K-filter parameters, that is, v�,2, . . . , v1,2, separated from û by the same number of
integrators between ẑ12 and û. From (3.11), we can see that v�,2, . . . , v1,2 are all candidates
if w2j are not zero. In the following derivation, we assume that v�,2 is selected. Hence, the
system incorporating the K-filters can be expressed as

˙̂y = ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +
˙̂dy, v̇�,i = v�,i+1 − kiv�,1, i = 2, . . . , r − 1,

v̇�,r = −krv�,1 +w1� +w2�û.
(4.3)

To apply adaptive backstepping to (4.3), a new set of coordinates will be introduced

z1 = ŷ − ŷm, zi = v�,i − αi−1, i = 2, . . . , r, (4.4)
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where ŷm is the prespecified reference command and αi−1 is the virtual input which will be
used to stabilize each state equation. For simplicity, we define ∂α0/∂ŷ � −1 for subsequent
derivations.

Step 1 (i = 1). With (4.4), the first state equation of (4.3) can be expressed as

ż1 = ξ12 + z2φ� + α1φ� +ωTΘ + εẑ12 + d̂si1 +
˙̂dy − ˙̂ym. (4.5)

Consider a Lyapunov function V1 = (1/2)z2
1 and calculate its derivative

V̇1 = z1ż1 = z1

(
ξ12 + z2φ� + α1φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy − ˙̂ym

)
. (4.6)

Define the estimates of φi as φ̃i and Φ = [Φ1 · · · Φ�] = Θ − Θ̃, where Θ̃ =

[φ̃f1 · · · φ̃fk φ̃g1 · · · φ̃gl · · · ]
T
= [φ̃1 · · · φ̃�]

T ∈ R
� . Note that Θ is the “true” parameter

vector while Θ̃ is the estimated parameter vector. Design the virtual input α1 as α1 = α1/φ̃�

and specify

α1 =
1
z1

(
−z1ξ12 − z1z2φ̃� − z1ωΘ̃ + z1 ˙̂ym − c1z

2
1 − d1z

2
1 − g1z

2
1

)

= −ξ12 − z2φ̃� −ωT Θ̃ + ˙̂ym − c1z1 − d1z1 − g1z1,

(4.7)

where ci, di, gi are variables. Therefore, (4.6) becomes

V̇1 = −c1z
2
1 − d1z

2
1 − g1z

2
1 + τ1Φ + z1

(
εẑ12 + d̂si1 +

˙̂dy

)
, (4.8)

where τ1Φ = z1z2Φ� + α1Φ� + z1ω
TΦ.

Step 2 (i = 2, . . . , r − 1). With respect to the new set of coordinates (4.4), the second equation
of (4.3) can be rewritten as

żi = zi+1 + αi − kiv�,1 −
⎡
⎣∂αi−1

∂ŷ

(
ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy

)
+
∂αi−1

∂ξ

(
A0ξ + kŷ

)

+
∂αi−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αi−1

∂vj

(
A0vj + erσj

)
+

i−1∑
j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦.

(4.9)
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Consider a Lyapunov function Vi =
∑i−1

j=1 Vj + (1/2)z2
i and its derivative

V̇i =
i−1∑
j=1

V̇j + zi

⎧⎨
⎩zi+1 + αi − kiv�,1 −

⎡
⎣∂αi−1

∂ŷ

(
ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy

)

+
∂αi−1

∂ξ

(
A0ξ + kŷ

)
+
∂αi−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αi−1

∂vj

(
A0vj + erσj

)

+
i−1∑
j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦
⎫⎬
⎭.

(4.10)

Specify

αi =
1
zi

⎧⎨
⎩−zizi+1 + zikiv�,1 + zi

⎡
⎣∂αi−1

∂ŷ

(
ξ12 + v�,2φ̃� +ωT Θ̃

)
+
∂αi−1

∂ξ

(
A0ξ + kŷ

)

+
∂αi−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αi−1

∂vj

(
A0vj + erσj

)
+

i−1∑
j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦

−ciz2
i − di

(
∂αi−1

∂ŷ

)2

z2
i − gi

(
∂αi−1

∂ŷ

)2

z2
i

⎫⎬
⎭.

(4.11)

The derivative of Vi becomes

V̇i = −
i−1∑
j=1

⎛
⎝cjz

2
j + dj

(
∂αj−1

∂ŷ

)2

z2
j + gj

(
∂αj−1

∂ŷ

)2

z2
j

⎞
⎠ + τiΦ −

i−1∑
j=1

zj
∂αj−1

∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy

)
,

(4.12)

where τiΦ = τ1Φ −
∑i−1

j=2(∂αj−1/∂ŷ)(zjv�,1Φ� + zjω
TΦ).

Step 3. With respect to the new set of coordinates (4.4), the third equation of (4.3) can be
written as

żr =− krv�,1+w1�+w2�û −
⎡
⎣∂αr−1

∂ŷ

(
ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy

)
+
∂αr−1

∂ξ

(
A0ξ + kŷ

)

+
∂αr−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αr−1

∂vj

(
A0vj + erσj

)
+

r−1∑
j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦.

(4.13)
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The overall Lyapunov function may now be chosen as

Vr =
r−1∑
j=1

Vj +
1
2
z2
r +

1
2
ΦTΓ−1Φ +

r∑
j=1

1
4dj

εTPε, (4.14)

where Γ is a symmetric positive definite matrix, that is, Γ = ΓT > 0. With the definition of state
estimated error ε, we can obtain that

V̇r =
r−1∑
j=1

V̇j + zr

⎧⎨
⎩−krv�,1 +w1� +w2�û −

⎡
⎣∂αr−1

∂ŷ

(
ξ12 + v�,2φ� +ωTΘ + εẑ12 + d̂si1 +

˙̂dy

)

+
∂αr−1

∂ξ

(
A0ξ + kŷ

)
+
∂αr−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αr−1

∂vj

(
A0vj + erσj

)

+
r−1∑
j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦
⎫⎬
⎭

+ Φ̇TΓ−1Φ −
r∑

j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.15)

Specify the control input as

û =
1

zrw2�

⎧⎨
⎩zrkrv�,1 − zrw1� + zr

⎡
⎣∂αr−1

∂ŷ

(
ξ12 + v�,2φ̃� +ωT Θ̃

)
+
∂αr−1

∂ξ

(
A0ξ + kŷ

)

+
∂αr−1

∂Θ̃
˙̃Θ

�∑
j=1

∂αr−1

∂vj

(
A0vj + erσj

)
+

r−1∑
j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤
⎦

−crz2
r − dr

(
∂αr−1

∂ŷ

)2

z2
r − gr

(
∂αr−1

∂ŷ

)2

z2
r + zrûR̂

⎫⎬
⎭,

(4.16)

where ûR̂ is an addition input which will be used to target on rejection of uncertainties.
Substituting (4.16) into V̇r , we have

V̇r =−
r∑

j=1

⎛
⎝cjz

2
j +dj

(
∂αj−1

∂ŷ

)2

z2
j +gj

(
∂αj−1

∂ŷ

)2

z2
j

⎞
⎠+τr−1Φ− ∂αr−1

∂ŷ

(
zrv�,1Φ�+zrω

TΦ
)
+zrûR̂

−
r∑

j=1

zj
∂αj−1

∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy

)
+ Φ̇TΓ−1Φ −

r∑
j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.17)
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Write τrΦ = τr−1Φ − (∂αr−1/∂ŷ)(zrv�,1Φ� + zrω
TΦ) and we arrive at

V̇r = −
r∑

j=1

⎛
⎝cjz

2
j + dj

(
∂αj−1

∂ŷ

)2

z2
j + gj

(
∂αj−1

∂ŷ

)2

z2
j

⎞
⎠ +
(
τr + Φ̇TΓ−1

)
Φ + zrûR̂

−
r∑

j=1

zj
∂αj−1

∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy

)
−

r∑
j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.18)

From (4.18), we may specify the parameter update law in order to cancel the term (τr +
Φ̇TΓ−1)Φ. To guarantee the estimated parameters will always lie within allowable region w,
a projected parametric update law will be specified as

˙̃Θ =

{
ΓτTr if Θ̃ ∈ w0,

PR

(
ΓτTr
)

if Θ̂ ∈ ∂w, τrΓΘ̃perp > 0,
(4.19)

where w is the allowable parameter variation set (compact and convex) with its interior and
boundary denoted by w0 and ∂w, respectively. If the current estimated parameter vector lies
within the allowable parameter variation set, normal update law is employed. If the current
estimated parameter vector lies on the boundary of the allowable parameter variation set,
projected update law denoted by PR(·) is employed to prevent the parameter vector from
leaving the variation set. With (4.19), (4.18) can be written as

V̇r = −
r∑

j=1

⎛
⎝cjz

2
j + gj

(
∂αj−1

∂ŷ

)2

z2
j

⎞
⎠ − r∑

j=1

dj

(
∂αj−1

∂ŷ
zi +

1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

zj
∂αj−1

∂ŷ

(
d̂si1 +

˙̂dy

)
−

r∑
j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)

≤ −
r∑

j=1

⎛
⎝cjz

2
j + gj

(
∂αj−1

∂ŷ

)2

z2
j

⎞
⎠ − r∑

j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

zj
∂αj−1

∂ŷ

∣∣∣d̂si1 +
˙̂dy

∣∣∣ − r∑
j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.20)
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Add and subtract terms
∑r

j=1(1/4gj)|d̂si1 +
˙̂dy|

2
; we have

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

gj

(
∂αj−1

∂ŷ

)2

z2
j −

r∑
j=1

zj
∂αj−1

∂ŷ

∣∣∣d̂si1 +
˙̂dy

∣∣∣ − r∑
j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)
−

r∑
j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
.

(4.21)

Moreover, we obtain

V̇i ≤ −
r∑

j=1

cjz
2
j −

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4di

(
εTPΔ + ΔTPε

)
−

r∑
j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+ zrûR̂.

(4.22)

As shown in Figure 1, the tracking error Z1(s̃) and the control input ÛR̂(s̃) are related by

ÛR̂(s̃) = −R̂(s̃)Ĉ(s̃)Z1(s̃), (4.23)

where we have chosen R̂(s̃) as a low-order and attenuated-type internal model filter, that is,

R̂(s̃) =
k∏
i=1

s̃2 + 2ζiωnis̃ +ω2
ni

s̃2 + 2ξiωnis̃ +ω2
ni

, (4.24)

where k is the number of periodic frequencies to be rejected, ωni is determined based on
the ith disturbance frequency in rad/rev, and ξi and ζi are two damping ratios that satisfy
0 < ξi < ζi < 1. We can adjust the gain of R̂(s̃) at those periodic frequencies by varying the
values of ξi and ζi.

Theorem 4.1. Consider the control law of (4.16) and (4.23) applied to a nonlinear system with
unmodeled dynamics, parameter uncertainty and subject to output disturbance as given by (3.1).

Assume that ŷm, ˙̂ym, . . . , ŷ
(r)
m (where r is the relative degree) and d̂y,

˙̂dy, . . . , d̂
(r)
y are known and

bounded, d̂
(r−1)
si1

, d̂
(r−2)
si2

, . . . , ˙̂dsir−1 are sufficiently smooth, f, g, h, Lr
fh, LgL

r−1
f h are Lipschitz

continuous functions, at least one column of W(ŷ) is bounded away from zero. Furthermore, suppose
that a loop-shaping filter Ĉ(s̃) is designed such that the feedback system is stable. Then the modified
parameter update law as given by (4.19) yields the bounded tracking error.
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K-filters

Internal model filter

Output feedback adaptive backstepping

−ꉱu
ꉱR ꉱu σ

ε

∫

+

ꉱdy

+ ꉱy
−

ꉱym

z1

NL1(·)

NL2(·) f(·) + g(·) α(·) + ∆f(·) + ∆g(·) α(·)

ꉱC(∼s) ꉱR(∼s)

Figure 1: The control configuration for the proposed spatial domain adaptive control system.

Proof. Step 1 (show that only Θ̃ ∈ w0 needs to be considered).
Denote by ˙̃Θperp the component of ˙̃Θ perpendicular to the tangent plane at Θ̃ so that

˙̃Θ = PR(
˙̃Θ) + ˙̃Θperp. Since Θ ∈ w and w is convex, we have (Θ̃ −Θ)

T ˙̃Θperp ≥ 0. Choose
Lyapunov function V (Φ) = ΦTΦ and use the parameter update law as defined in (4.19).
When Θ̃ ∈ w0, we have V̇ = −ΦT ˙̃Θ. When Θ̃ ∈ ∂w, we have

V̇ = −ΦTPR

( ˙̃Θ
)
= −ΦT

( ˙̃Θ − ˙̃Θperp

)
= −ΦT ˙̃Θ +ΦT ˙̃Θperp ≤ −ΦT ˙̃Θ, (4.25)

where we use the fact that

ΦT ˙̃Θperp =
(
Θ − Θ̃

)T ˙̃Θperp = −
(
Θ̃ −Θ

)T ˙̃Θperp ≤ 0. (4.26)

Thus, we only have to consider the scenario corresponding to Θ̃ ∈ w0 in the sequel.
Step 2. Substituting (4.23) back into (4.22), we have

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
− zrR̂(s̃)Ĉ(s̃)z1.

(4.27)

Using the definition of tracking error z1 = ŷ − ŷm = (z11 − ŷm) + εẑ11 − d̂y, (4.27) can be
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written as

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑
j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)

+
∣∣∣zrR̂(s̃)Ĉ(s̃)(z11 − ŷm

)∣∣∣ + ∣∣∣zrR̂(s̃)Ĉ(s̃)(εẑ11 − d̂y

)∣∣∣.

(4.28)

Use the following equality:

ẑrR̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

)
≤ γ2ẑ2

r +
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

, γ > 0 is designable. (4.29)

Equation (4.28) becomes

V̇r ≤ −
r−1∑
j=1

cjz
2
j − c′rz2

r −
r∑

j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)
+
∣∣∣zrR̂(s̃)Ĉ(s̃)(z11 − ŷm

)∣∣∣

+
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
,

(4.30)

where c′r = cr − γ2 > 0. Moreover, the positive designable parameters ci can be written as

cj = Cj + hj , j = 1, . . . , r − 1,

c′r = Cr + hr,
(4.31)

where Cj, Cr and hj , hr > 0. Thus, (4.30) can be written as

V̇r ≤ −
r−1∑
j=1

(
Cj + hj

)
z2
j − (Cr + hr)z2

r −
r∑

j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)
+
∣∣∣zrR̂(s̃)Ĉ(s̃)(z11 − ŷm

)∣∣∣

+
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

.

(4.32)
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Utilizing the fact that(√
h1|z1| −

√
hr |zr |

)2
= z2

1 + hrz
2
r −
√
h1hr

∣∣∣zr(z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣, (4.33)

we have

V̇r ≤ −
r−1∑
j=2

(
Cj + hj

)
z2
j − C1z

2
1 − Crz

2
r

−
(√

h1|z1| −
√
hr |zr |

)2 −
√
h1hr

∣∣∣zr(z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣
−

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑
j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)

+
∣∣∣zrR̂(s̃)Ĉ(s̃)(z11 − ŷm

)∣∣∣ +( 1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

.

(4.34)

To design h1, . . . , hr (or c1, . . . , cr ), dj and gj such that

−
r∑

j=1

hjz
2
j −

r∑
j=1

dj

(
∂αj−1

∂ŷ
zj +

1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1

∂ŷ
zj +

1
2gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣
)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
−
(√

h1|z1| −
√
hr |zr |

)2

−
√
h1hr

∣∣∣zr(z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣ + ∣∣∣zrR̂(s̃)Ĉ(s̃)(z11 − ŷm

)∣∣∣ ≤ 0,

(4.35)

we arrive at

V̇r ≤ −
r∑

j=1

Cjz
2
j +
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2 + r∑
j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.36)

Equation (4.36) implies that

V̇r ≤ −
r∑

j=1

Cjz
2
j −
⎛
⎝1

2
ΦTΓ−1Φ +

r∑
j=1

1
4dj

εTPε

⎞
⎠ +

⎛
⎝1

2
ΦTΓ−1Φ +

r∑
j=1

1
4dj

εTPε

⎞
⎠

+
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2

+
r∑

j=1

1
4dj

∣∣∣εTPΔ + ΔTPε
∣∣∣ ≤ −2kvVr + C,

(4.37)
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where kv � min{C1, . . . Cr, λmin(Γ)}, λmin (Γ) is the smallest eigenvalue of Γ and

C =
1
2
ΦTΓ−1Φ +

r∑
j=1

1
4dj

εTPε +
(

1
2γ

R̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy

∣∣∣2

+
r∑

j=1

1
4dj

∣∣∣εTPΔ + ΔTPε
∣∣∣

(4.38)

is bounded since εẑ11 , d̂y are bounded and ΦTΓ−1Φ is bounded due to the parameter update
law specified in (4.19). We conclude that

Vr ≤ e−2kvθVr(0) +
∫θ

0
Ce−2kv(θ−τ)dτ ≤ e−2kvθVr(0) +

(
1 − e−2kvθ

) C

2kv
. (4.39)

As θ → ∞, we have

Vr(∞) ≤ C

2kv
, (4.40)

which implies that the overall system is stable and the bound C/(2kv) can be decreased
by increasing kv or increasing γ . By (4.14), this implies that z, Θ̃, ε are bounded. Since
z1 = ŷ− ŷm, ŷ is also bounded. From (3.11), we can see that ξ and v1, . . . , v� are bounded since
Wf(ŷ) and Wg(ŷ) are bounded. Moreover, we conclude that the virtual inputs α are bounded
because they consist of bounded terms. Also, z1 is bounded from (3.12) and also ẑ1 from
the definition of ε. With the ISS assumption and bounded ẑ1, we conclude that the internal
dynamics ẑ2 is bounded. Finally, x̂ is bounded by diffeomorphism, that is, x̂ = T−1(ẑ).

5. Illustrative Example

For realistic simulation, we set up a simulation configuration as shown in Figure 2, in which
the controller and parametric adaptation operate in the θ-domain whereas the open-loop
system operates in the time domain. The proposed spatial domain output feedback adaptive
control scheme is applied to a reformulated system in spatial domain expressed as

˙̂x = f(x̂) + g(x̂)û + d̂s, ŷ = h(x̂) + d̂y, (5.1)

where

f(x̂) =

⎡
⎣−a1 +

x̂2

x̂1
−a0

⎤
⎦, g(x̂) =

⎡
⎣ 0
b0

x̂1

⎤
⎦, h(x̂) = x̂1, (5.2)

with a0 = 5155, a1 = 1138, and b0 = 140368. For verification purpose, the output disturbance
is assumed to be a low-pass rectangular periodic signal (with amplitude switching between
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Figure 2: The configuration for numerical simulation.
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Figure 3: The output disturbance and the corresponding frequency spectrum.

−0.1 and 0.1) (see Figure 3), that is,

d̂y(θ) =
0.1

0.0125s̃ + 1

[ ∞∑
l=−∞

(−1)lΠ(θ − 1 − l)
]
+

10

(0.005s̃ + 1)2
N0, (5.3)
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where

Π(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1 |θ| < 1,
0.5 |θ| = 1,
0 otherwise.

(5.4)

Note that the disturbance has been low-pass filtered so that it is continuously differentiable.
Parameters of the internal model filter are specified to target the fundamental frequency and
the first three harmonic frequencies of the periodic disturbance, that is,

R̂(s̃) =
4∏
i=1

s̃2 + 2ζiωnis̃ +ω2
ni

s̃2 + 2ξiωnis̃ +ω2
ni

, (5.5)

where

ςi = 0.2, ξi = 0.0002,

ωn1 = 0.25π, ωn2 = 3 × 0.25π, ωn3 = 5 × 0.25π, ωn4 = 7 × 0.25π,
(5.6)

Furthermore, the stabilizing filter is specified as

Ĉ(s̃) =
100 000(s̃/100 + 1)

(s̃/10 000 + 1)
. (5.7)

The parameters of the K-filter are set to k1 = 1600 and k2 = 100. The initial values of the
estimated parameters are set to ã0 = 1500, ã1 = 500, and b̃0 = 1000000. The allowable
parameter variation sets are

ã0 ∈ Ωã0 � {ã0 : 100 ≤ ã0 ≤ 10 000},

ã1 ∈ Ωã1 � {ã1 : 10 ≤ ã1 ≤ 10 000},

b̃0 ∈ Ωb̃0
�
{
b̃0 : 10 000 ≤ b̃0 ≤ 10 000 000

}
.

(5.8)

Note that ds(t) is set to 0 so that the system performance is not affected by the unstructured
uncertainty. Suppose that a variable speed control task demands the system to initially run
at 30 rev/s and then speed up to 35 rev/s and finally speed down to 25 rev/s (see Figure 4).
To avoid getting infinite value when taking derivative, the reference command is specified to
have smooth (instead of instant) change. Figure 5 compares the tracking performance of two
scenarios. The figures on the left are for the pure output feedback adaptive backstepping
design. The ones on the right are for the proposed output feedback design with internal
model control. Without internal model control, the adaptive backstepping design has already
shown superb tracking performance. We see that adding the internal model control further
reduces the magnitude of the tracking error without noticeable increase in the control input.
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Figure 5: Comparison of tracking performance.

6. Conclusion

This paper presents the design of a new spatial domain adaptive control system, which can
be applied to rotary systems operating at varying speeds and subject to spatially periodic
and band-limited disturbances and structured/unstructured parametric uncertainties.
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The proposed design integrates two control paradigms, that is, adaptive backstepping and
internal model control. The overall output feedback adaptive control system can be shown
to be stable and have bounded state estimated error and output tracking error. Feasibility
and effectiveness of the proposed design are further justified by a numerical example. Future
effort will be dedicated to implementation and verification of the proposed control design to
a practical rotary system, for example, a brushless dc-motor-driven control system.
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The paper deals with Kalman (or H2) smoothing problem for wireless sensor networks (WSNs)
with multiplicative noises. Packet loss occurs in the observation equations, and multiplicative
noises occur both in the system state equation and the observation equations. The Kalman
smoothers which include Kalman fixed-interval smoother, Kalman fixedlag smoother, and Kalman
fixed-point smoother are given by solving Riccati equations and Lyapunov equations based on the
projection theorem and innovation analysis. An example is also presented to ensure the efficiency
of the approach. Furthermore, the proposed three Kalman smoothers are compared.

1. Introduction

The linear estimation problem has been one of the key research topics of control community
according to [1]. As is well known, two indexes are used to investigate linear estimation, one
is H2 index, and the other is H∞ index. Under the performance of H2 index, Kalman filtering
[2–4] is an important approach to study linear estimation besides Wiener filtering. In general,
Kalman filtering which usually uses state space equation is better than Wiener filtering, since
it is recursive, and it can be used to deal with time-variant system [1, 2, 5]. This has motivated
many previous researchers to employ Kalman filtering to study linear time variant or linear
time-invariant estimation, and Kalman filtering has been a popular and efficient approach for
the normal linear system. However, the standard Kalman filtering cannot be directly used in
the estimation on wireless sensor networks (WSNs) since packet loss occurs, and sometimes
multiplicative noises also occur [6, 7].

Linear estimation for systems with multiplicative noises under H2 index has been
studied well in [8, 9]. Reference [8] considered the state optimal estimation algorithm for
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singular systems with multiplicative noise, and dynamic noise and noise measurement
estimations have been proposed. In [9], we presented the linear filtering for continuous-time
systems with time-delayed measurements and multiplicative noises under H2 index.

Wireless sensor networks have been popular these years, and the corresponding
estimation problem has attracted many researchers’ attention [10–15]. It should be noted
that in the above works, only packet loss occurs. Reference [10] which is an important and
ground-breaking reference has considered the problem of Kalman filtering of the WSN with
intermittent packet loss, and Kalman filter together with the upper and lower bounds of the
error covariance is presented. Reference [11] has developed the work of [10], the measure-
ments are divided into two parts which are sent by different channel under different packet
loss rate, and the Kalman filter together with the covariance matrix is given. Reference [14]
also develops the result of [11], and the stability of the Kalman filter with Markovian packet
loss has been given.

However, the above references mainly focus on the linear systems with packet loss,
and they cannot be useful when there are multiplicative noises in the system models [6, 7,
16–18]. For the Kalman filtering problem for wireless sensor networks with multiplicative
noises, [16–18] give preliminary results, where [16] has given Kalman filter, [17] deals with
the Kalman filter for the wireless sensor networks system with two multiplicative noises and
two measurements which are sent by different channels and packet-drop rates, and [18] has
given the information fusion Kalman filter for wireless sensor networks with packet loss and
multiplicative noises.

In this paper, Kalman smoothing problem including fixed-point smoothing [6], fixed-
interval smoothing, and fixed-lag smoothing [7] for WSN with packet loss will be studied.
Multiplicative noises both occur in the state equation and observation equation, which will
extend the result of works of [8] where multiplicative noises only occur in the state equations.
Three Kalman smoothers will be given by recursive equations. The smoother error covariance
matrices of fixed-interval smoothing and fixed-lag smoothing are given by Riccati equation
without recursion, while the smoother error covariance matrix of fixed-point smoothing is
given by recursive Riccati equation and recursive Lyapunov equation, which develops the
work of [6, 7], where some main theorems with errors on Kalman smoothing are given.

The rest of the paper is organized as follows. In Section 2, we will present the system
model and state the problem to be dealt with in the paper. The main results of Kalman
smoother will be given in Section 3. In Section 4, a numerical example will be given to show
the result of smoothers. Some conclusion will be drawn in Section 5.

2. Problem Statement

Consider the following discrete-time wireless sensor network systems with multiplicative
noises:

x(t + 1) = Ax(t) + B1x(t)w(t) + B2u(t), (2.1)

y(t) = Cx(t) +Dx(t)w(t) + v(t), (2.2)

y(t) = γ(t)y(t), x(0), (2.3)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is measurement, u(t) ∈ Rr is input sequence, v(t) ∈ Rp

is the white noise of zero means, which is additive noise, and w(t) ∈ R1 is the white noise
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of zero means, which is multiplicative noise. A ∈ Rn×n, B1 ∈ Rn×n, B2 ∈ Rn×r , C ∈ Rp×n, and
D ∈ Rp×n are known time-invariant matrices.

Assumption 2.1. γ(t) (t ≥ 0) is Bernoulli random variable with probability distribution

p
(
γ(t)
)
=

{
λ(t), γ(t) = 1,
1 − λ(t), γ(t) = 0.

(2.4)

γ(t) is independent of γ(s) for s /= t, and γ(t) is uncorrelated with x(0), u(t), v(t), and w(t).

Assumption 2.2. The initial states x(0), u(t), v(t), and w(t) are all uncorrelated white noises
with zero means and known covariance matrices, that is,

〈⎡⎢⎢⎣
x(0)
u(t)
v(t)
w(t)

⎤
⎥⎥⎦,
⎡
⎢⎢⎣
x(0)
u(s)
v(s)
w(s)

⎤
⎥⎥⎦
〉

=

⎡
⎢⎢⎣
Π(0) 0 0 0

0 Qδt,s 0 0
0 0 Rδt,s 0
0 0 0 Mδt,s

⎤
⎥⎥⎦, (2.5)

where 〈a, b〉 = E[ab∗], and E denotes the mathematical expectation.
The Kalman smoothing problem considered in the paper for the system model (2.1)–

(2.3) can be stated in the following three cases.

Problem 1 (fixed-interval smoothing). Given the measurements {y(0), . . . ,y(N)} and scalars
{γ(0), . . . , γ(N)} for a fixed scalar N, find the fixed-interval smoothing estimate x̂(t | N) of
x(t), such that

minE[x(t) − x̂(t |N)]′
[
x(t) − x̂(t |N) | yN0 , γN0 , x(0),Π(0)

]
, (2.6)

where 0 ≤ t ≤N, yN0 � {y(0), . . . ,y(N)}, γN0 � {γ(0), . . . , γ(N)}.

Problem 2 (fixed-lag smoothing). Given the measurements {y(0), . . . ,y(t)} and scalars {γ(0),
. . . , γ(t)} for a fixed scalar l, find the fixed-lag smoothing estimate x̂(t − l | t) of x(t − l), such
that

minE[x(t − l) − x̂(t − l | t)]′[x(t − l) − x̂(t − l | t) | yt0, γ t0, x(0),Π(0)
]
, (2.7)

where yt0 � [y(0), . . . ,y(t)], γt0 � [γ(0), . . . , γ(t)].

Problem 3 (fixed-point smoothing). Given the measurements {y(0), . . . ,y(N)} and scalars
{γ(0), . . . , γ(N)} for a fixed time instant t, find the fixed-point smoothing estimate x̂(t | j)
of x(t), such that

minE[x(t) − x̂(t | j)]′[x(t) − x̂(t | j) | yj0, γ j0 , x(0),Π(0)
]
, (2.8)

where 0 ≤ t < j ≤N, yj0 � {y(0), . . . ,y(j)}, γj0 � {γ(0), . . . , γ(j)}, j = t + 1, t + 2, . . . ,N.
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3. Main Results

In this section, we will give Kalman fixed-interval smoothing, Kalman fixed-lag smoothing,
and Kalman fixed-point smoothing for the system model (2.1)–(2.3) and compare them with
each other. Before we give the main result, we first give the Kalman filtering for the system
model (2.1)–(2.3) which will be useful in the section. We first give the following definition.

Definition 3.1. Given time instants t and j, the estimator ξ̂(t | j) is the optimal estimation of
ξ(t) given the observation sequences

L{y(0), . . . ,y(t),y(t + 1), . . . ,y
(
j
)
; γ(0), . . . , γ(t), γ(t + 1), . . . , γ

(
j
)}
, (3.1)

and the estimator ξ̂(t) is the optimal estimation of ξ(t) given the observation

L{y(0), . . . ,y(t − 1); γ(0), . . . , γ(t − 1)
}
. (3.2)

Remark 3.2. It should be noted that the linear space L{y(0), . . . ,y(t − 1); γ(0), . . . , γ(t − 1)}
means the linear spaceL{y(0), . . . ,y(t−1)} under the condition that the scalars γ(0), . . . , γ(t−
1) are known. So is the linear space L{y(0), . . . ,y(t),y(t + 1), . . . ,y(j); γ(0), . . . , γ(t), γ(t +
1), . . . , γ(j)}.

Give the following denotations:

ỹ(t) � y(t) − ŷ(t), (3.3)

e(t) � x(t) − x̂(t), (3.4)

P(t + 1) � E
[
e(t + 1)eT (t + 1) | yt0, γ t0

]
, (3.5)

Π(t + 1) � E
[
x(t + 1)xT (t + 1) | yt0, γ t0

]
, (3.6)

it is clear that ỹ(t) is the Kalman filtering innovation sequence for the system (2.1)–(2.3). We
now have the following relationships:

ỹ(t) = γ(t)Ce(t) + γ(t)Dx(t)w(t) + γ(t)v(t). (3.7)

The following lemma shows that {ỹ} is the innovation sequence. For the simplicity of
discussion, we omitted the {γ(0), . . . , γ(t − 1)} as in Remark 3.2.

Lemma 3.3.

{ỹ(0), . . . , ỹ(t)} (3.8)

is the innovation sequence which spans the same linear space consider that

L{y(0), . . . ,y(t)}. (3.9)
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Proof. Firstly, from (3.2) in Definition 3.1, we have

ŷ(t) = Proj{y(t) | y(0), . . . ,y(t − 1)}. (3.10)

From (3.3) and (3.10), we have ỹ(t) ∈ L{y(0), . . . ,y(t)} for t = 0, 1, 2, . . .. Thus,

L{ỹ(0), . . . , ỹ(t)} ⊂ L{y(0), . . . ,y(t)}. (3.11)

Secondly, from inductive method, we have

y(0) = ỹ(0) + Ey(0) ∈ L{ỹ(0)},
y(1) = ỹ(1) + Proj{y(1) | y(0)} ∈ L{ỹ(0), ỹ(1)},

...

y(t) = ỹ(t) + Proj{y(t) | y(0), . . . ,y(t − 1)}
∈ L{ỹ(0), . . . , ỹ(t − 1)}.

(3.12)

Thus,

L{y(0), . . . ,y(t)} ⊂ L{ỹ(0), . . . , ỹ(t)}. (3.13)

So

L{y(0), . . . ,y(t)} = L{ỹ(0), . . . , ỹ(t)}. (3.14)

Next, we show that ỹ is an uncorrelated sequence. In fact, for any t, s (t /= s), we can
assume that t > s without loss of generality, and it follows from (3.7) that

E
[
ỹ(t)ỹT (s)

]
= E
[
γ(t)Ce(t)ỹT (s)

]
+ E
[
γ(t)Dx(t)w(t)ỹT (s)

]

+ E
[
γ(t)v(t)ỹT (s)

]
.

(3.15)

Note that E[γ(t)Dx(t)w(t)ỹT(s)] = 0, E[γ(t)v(t)ỹT (s)] = 0. Since e(t) is the state prediction
error, it follows that E[γ(t)Ce(t)ỹT (s)] = 0, and thus E[ỹ(t)ỹT (s)] = 0, which implies that ỹ(t)
is uncorrelated with ỹ(s). Hence, {ỹ(0), . . . , ỹ(t)} is an innovation sequence. This completes
the proof of the lemma.

For the convenience of derivation, we will give the orthogonal projection theorem in
form of the next theorem without proof, and readers can refer to [4, 5],
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Theorem 3.4. Given the measurements {y(0), . . . ,y(t)} and the corresponding innovation sequence
{ỹ(0), . . . , ỹ(t)} in Lemma 3.3, the projection of the state x can be given as

Proj{x | y(0), . . . ,y(t)} = Proj{x | ỹ(0), . . . , ỹ(t)}
= Proj{x | y(0), . . . ,y(t − 1)}

+ E
[
xỹT (t)

][
E
(
ỹ(t)ỹT (t)

)]−1
ỹ(t).

(3.16)

According to a reviewer’s suggestion, we will give the Kalman filter for the system
model (2.1)–(2.3) which has been given in [7]

Lemma 3.5. Consider the system model (2.1)–(2.3) with scalars γ(0), . . . , γ(t + 1) and the initial
condition x̂(0) = 0; the Kalman filter can be given as

x̂(t + 1 | t + 1) = x̂(t + 1) + P(t + 1)CT

×
[
CP(t + 1)CT +DΠ(t + 1)MDT + R

]−1

× [y(t + 1) − γ(t + 1)Cx̂(t + 1)
]
,

(3.17)

x̂(t + 1) = Ax̂(t) +K(t)
[
y(t) − γ(t)Cx̂(t)],

x̂(0) = 0,
(3.18)

P(t + 1) =
[
A − γ(t)K(t)C

]
P(t) × [A − γ(t)K(t)C

]T
+
[
B1 − γ(t)K(t)D

]
Π(t) × [B1 − γ(t)K(t)D

]T
M

+ B2QBT
2 + γ(t)K(t)RKT (t),

P(0) = E
[
x(0)xT (0) | γ(0)

]
,

(3.19)

Π(t + 1) = AΠ(t)AT + B1Π(t)BT
1 M + B2QBT

2 , Π(0) = P(0), (3.20)

where

K(t) �
[
AP(t)CT + B1MΠ(t)DT

]
×
[
CP(t)CT +DΠ(t)MDT + R

]−1
. (3.21)

Proof. Firstly, according to the projection theorem (Theorem 3.4), we have

ŷ(t) = Proj
{
y(t) | ỹ(0), . . . , ỹ(t − 1); γ(0), . . . , γ(t − 1)

}
= Proj

{
γ(t)Cx(t) + γ(t)Dx(t)w(t) + γ(t)v(t) | ỹ(0), . . . , ỹ(t − 1); γ(0), . . . , γ(t − 1)

}
= γ(t)Cx̂(t),

(3.22)



Journal of Applied Mathematics 7

then from (3.7), we have

Qỹ(t) � 〈ỹ(t), ỹ(t)〉 = γ(t)CP(t)CT + γ(t)DΠ(t)MDT + γ(t)R. (3.23)

Secondly, according to the projection theorem, we have

x̂(t + 1) = Proj
{
x(t + 1) | ỹ(0), . . . , ỹ(t); γ(0), . . . , γ(t)}

= Proj
{
Ax(t) + B1x(t)w(t) + B2u(t) | ỹ(0), . . . , ỹ(t − 1); γ(0), . . . , γ(t − 1)

}
+ Proj

{
Ax(t) + B1x(t)w(t) + B2u(t) | ỹ(t); γ(t)

}
= Ax̂(t) + γ(t) ×

[
AP(t)CT + B1MΠ(t)DT

]
Q−1

ỹ (t)

= Ax̂(t) + γ(t)K(t)

× [Ce(t) +Dx(t)w(t) + v(t)]

= Ax̂(t) +K(t)
[
y(t) − γ(t)Cx̂(t)],

(3.24)

which is (3.18) by considering (3.21), (3.22), and (3.23).
Thirdly, by considering (3.7) and Theorem 3.4, we also have

x̂(t + 1 | t + 1) = Proj
{
x(t + 1) | ỹ(0), . . . , ỹ(t), ỹ(t + 1); γ(0), . . . , γ(t), γ(t + 1)

}
= x̂(t + 1) + Proj

{
x(t + 1) | ỹ(t + 1); γ(t + 1)

}
= x̂(t + 1) + P(t + 1)CT ×

[
CP(t + 1)CT +DΠ(t + 1)MDT + R

]−1

× [y(t + 1) − γ(t + 1)Cx̂(t + 1)
]
,

(3.25)

which is (3.17).
From (2.1) and (3.24), we have

e(t + 1) = x(t + 1) − x̂(t + 1)

=
[
A − γ(t)K(t)C

]
e(t) +

[
B1 − γ(t)K(t)D

]
x(t)w(t)

+ B2u(t) − γ(t)K(t)v(t),

(3.26)

then we have

P(t + 1) = E
[
e(t + 1)eT (t + 1) | γt+1

0

]
=
[
A − γ(t)K(t)C

]
P(t) × [A − γ(t)K(t)C

]T
+
[
B1 − γ(t)K(t)D

]
Π(t) × [B1 − γ(t)K(t)D

]T
M

+ B2QBT
2 + γ(t)K(t)RKT (t),

(3.27)

which is (3.19).
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From (2.1), (3.20) can be given directly, and the proof is over.

Remark 3.6. Equation (3.19) is a recursive Riccati equation, and (3.20) is a Lyapunov equation.

3.1. Kalman Fixed-Interval Smoother

In this subsection, we will present the Kalman fixed-interval smoother by the projection
theorem. First, we define

P(t, k) � E
[
x(t)eT (t + k) | yt+k0 , γ t+k0

]
, (3.28)

e(t | t + k) � x(t) − x̂(t | t + k), (3.29)

P(t | t + k) � E
[
e(t | t + k) eT (t | t + k) | yt+k0 , γ t+k0

]
. (3.30)

Then we can give the theorem which develops [6] as follows.

Theorem 3.7. Consider the system (2.1)–(2.3) with the measurements {y(0), . . . ,y(N)} and scalars
{γ(0), . . . , γ(N)}, Kalman fixed-interval smoother can be given by the following backwards recursive
equations:

x̂(t |N) = x̂(t | t) +
N−t∑
k=1

P(t, k)CT
[
CP(t + k)CT +DΠ(t + k)MDT + R

]−1

× [y(t + k) − γ(t + k)Cx̂(t + k)
]
, t = 0, 1, . . . ,N,

(3.31)

and the corresponding smoother error covariance matrix can be given as

P(t |N) = P(t) −
N−t∑
k=0

γ(t + k)P(t, k)CT

×
[
CP(t + k)CT +DΠ(t + k)MDT + R

]
CP(t, k), t = 0, 1, . . . ,N,

(3.32)

where

P(t, k) = P(t, k − 1)
[
A − γ(t + k − 1)K(t + k − 1)C

]T
, k = 1, . . . ,N − t, (3.33)

with P(t, 0) = P(t), and P(t + k), P(t), x̂(t) can be given from (3.18), (3.19), and (3.17).

Proof. From the projection theorem, we have

x̂(t |N) =Proj{x(t) | y(0), . . . ,y(t),y(t + 1), . . . ,y(N)}
= Proj{x(t) | ỹ(0), . . . , ỹ(t), ỹ(t + 1), . . . , ỹ(N)}
= Proj{x(t) | ỹ(0), . . . , ỹ(t)} + Proj{x(t) | ỹ(t + 1), . . . , ỹ(N)}
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= x̂(t | t) +
N−t∑
k=1

Proj{x(t) | ỹ(t + k)}

= x̂(t | t) +
N−t∑
k=1

Proj
{
x(t) | γ(t + k)[Ce(t + k)Dx(t + k)w(t + k) + v(t + k)]

}

= x̂(t | t) +
N−t∑
k=1

P(t, k)CT
[
CP(t + k)CT +DΠ(t + k) MDT + R

]−1

× [y(t + k) − γ(t + k)Cx̂(t + k)
]
,

(3.34)

which is (3.31).
Noting that x(t) is uncorrelated with w(t + k − 1), u(t + k − 1), and v(t + k − 1) for

k = 1, . . . ,N − t, then from (3.5), we have

P(t, k) = E
[
x(t)eT (t + k) | yt+k0 , γ t+k0

]
= 〈x(t),[

A − γ(t + k − 1)K(t + k − 1)C
]
e(t + k − 1)

+
[
B1 − γ(t + k − 1)K(t + k − 1)D

] × x(t + k − 1)w(t + k − 1)

+B2u(t + k − 1) − γ(t + k − 1)K(t + k − 1)v(t + k − 1)
〉

= P(t, k − 1)
[
A − γ(t + k − 1)K(t + k − 1)C

]T
,

(3.35)

which is (3.33).
Next, we will give the proof of covariance matrix P(t | N). From the projection

theorem, we have x(t) = x̂(t |N) + e(t |N) = x̂(t) + e(t), and from (3.34), we have

e(t |N) = e(t) −
N−t∑
k=0

P(t, k)CT
[
CP(t + k)CT +DΠ(t + k)MDT + R

]−1 × ỹ(t + k), (3.36)

that is,

e(t) = e(t |N) +
N−t∑
k=0

P(t, k)CT
[
CP(t + k)CT +DΠ(t + k)MDT + R

]−1 × ỹ(t + k). (3.37)

Thus, (3.32) can be given.

Remark 3.8. The proposed theorem is based on the theorem in [6]. However, the condition
of the theorem in [6] is wrong since multiplicative noises w(0), . . . ,w(t) are not known. In
addition, the proposed theorem gives the fixed-interval smoother error covariance matrix
P(t | N) which is an important index in Problem 1 and also useful in the comparison with
fixed-lag smoother.
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3.2. Kalman Fixed-Lag Smoother

Let tl = t − l, and we can give Kalman fixed-lag smoothing estimate for the system model
(2.1)–(2.3), which develops [6] in the following theorem.

Theorem 3.9. Consider the system (2.1)–(2.3), given the measurements {y(0), . . . ,y(t)} and scalars
{γ(0), . . . , γ(t)} for a fixed scalar l (l < t), then Kalman fixed-lag smoother can be given by the
following recursive equations:

x̂(tl | t) = x̂(tl | tl) +
l∑

k=1

P(tl, k)CT
[
CP(tl + k)CT +DΠ(tl + k)MDT + R

]−1

× [y(tl + k) − γ(tl + k)Cx̂(tl + k)
]
, t > l,

(3.38)

and the corresponding smoother error covariance matrix P(tl | t) can be given as

P(tl | t) = P(tl) −
l∑

k=0

γ(tl + k)P(tl, k)CT
[
CP(tl + k)CT +DΠ(tl + k)MDT + R

]
CP(tl, k), t > l,

(3.39)

where

P(tl, k) = P(tl, k − 1)
[
A − γ(tl + k − 1)K(tl + k − 1)C

]T
, k = 1, . . . , l, (3.40)

with P(tl, 0) = P(tl), and P(tl + k), P(tl), x̂(tl + k), and x̂(tl | tl) can be given from Lemma 3.5.

Proof. From the projection theorem, we have

x̂(tl | t) = Proj{x(tl) | y(0), . . . ,y(tl),y(tl + 1), . . . ,y(t)}
= Proj{x(tl) | ỹ(0), . . . , ỹ(tl), ỹ(tl + 1), . . . , ỹ(t)}
= Proj{x(tl) | ỹ(0), . . . , ỹ(tl)} + Proj{x(tl) | ỹ(tl + 1), . . . , ỹ(t)}

= x̂(tl | tl) +
l∑

k=1

Proj{x(tl) | ỹ(tl + k)}

= x̂(tl | tl) +
l∑

k=1

Proj
{
x(tl) | γ(tl + k)[Ce(tl + k) +Dx(tl + k)w(tl + k) + v(tl + k)]

}

= x̂(tl | tl)

+
l∑

k=1

P(tl, k)CT
[
CP(tl + k)CT +DΠ(tl + k)MDT + R

]−1

× [y(tl + k) − γ(tl + k)Cx̂(tl + k)
]
,

(3.41)

which is (3.38).
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Noting that x(t) is uncorrelated with w(t + k − 1), u(t + k − 1), and v(t + k − 1) for
k = 1, . . . , l, then from (3.5), we have

P(tl, k) = E
[
x(tl)eT (tl + k) | ytl+k0 , γ tl+k0

]
=
〈
x(tl),

[
A − γ(tl + k − 1)K(tl + k − 1)C

] × e(tl + k − 1)

+
[
B1 − γ(tl + k − 1)K(tl + k − 1)D

] × x(tl + k − 1)w(tl + k − 1)

+B2u(tl + k − 1) − γ(tl + k − 1)K(tl + k − 1)v(tl + k − 1)
〉

= P(tl, k − 1)
[
A − γ(tl + k − 1)K(tl + k − 1)C

]T
,

(3.42)

which is (3.40).
Next, we will give the proof of covariance matrix P(tl | t). Since x(tl) = x̂(tl | t) + e(tl |

t) = x̂(tl) + e(tl), from (3.41), we have

e(tl | t) = e(tl) −
l∑

k=0

P(tl, k)CT
[
CP(tl + k)CT +DΠ(tl + k)MDT + R

]−1 × ỹ(tl + k), (3.43)

that is,

e(tl) = e(tl | t) +
l∑

k=0

P(tl, k)CT
[
CP(tl + k)CT +DΠ(tl + k)MDT + R

]−1
× ỹ(tl + k). (3.44)

Thus, (3.39) can be given.

Remark 3.10. It should be noted that the result of the Kalman smoothing is better than that
of Kalman filtering for the normal systems without packet loss since more measurement
information is available. However, it is not the case if the measurement is lost, which can
be verified in the next section. In addition, in Theorems 3.7 and 3.9, we have changed the
predictor type of x(t) or x(tl) in [6] to the filter case of x(t | t) or x(tl | tl), which will be more
convenient to be compared with Kalman fixed-point smoother (3.45).

3.3. Kalman Fixed-Point Smoother

In this subsection, we will present the Kalman fixed-point smoother by the projection theorem
and innovation analysis. We can directly give the theorem which develops [7] as follows.

Theorem 3.11. Consider the system (2.1)–(2.3) with the measurements {y(0), . . . ,y(j)} and scalars
{γ(0), . . . , γ(j)}, then Kalman fixed-point smoother can be given by the following recursive equations:

x̂
(
t | j) = x̂(t | t) +

j−t∑
k=1

P(t, k)CT
[
CP(t + k)CT +DΠ(t + k)MDT + R

]−1

× [y(t + k) − γ(t + k)Cx̂(t + k)
]
, j = t + 1, . . . ,N,

(3.45)
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and the corresponding smoother error covariance matrix P(t | j) can be given as

P
(
t | j) = P

(
t | j − 1

) − γ(j)K(t | j) × [CP(j)CT +DΠ
(
j
)
MDT + R

]
KT(t | j), (3.46)

where

P(t, k) = P(t, k − 1) × [A − γ(t + k − 1)K(t + k − 1)C
]T
, k = 1, . . . , j − t, (3.47)

K
(
t | j) = γ

(
j
)
P(t)ΨT

1

(
j, t
) × [CP(j)CT +DΠ

(
j
)
MDT + R

]−1
, (3.48)

Ψ1
(
j, t
)
= Ψ1

(
j − 1

) · · ·Ψ1(t), (3.49)

with P(t, 0) = P(t), P(t | t − 1) = P(t), Ψ1(t) = A − γ(t)K(t)C, and P(t + k), P(t), and x̂(t) can
be given from (3.19) and (3.18).

Proof. The proof of (3.45) and (3.47) can be referred to [7], and we only give the proof of the
covariance matrix P(t | j). From the projection theorem, we have

x̂(t | t + k) = Proj{x(t) | ỹ(0), . . . , ỹ(t), ỹ(t + 1), . . . , ỹ(t + k)}
= Proj{x(t) | ỹ(0), . . . , ỹ(t + k − 1)} + Proj{x(t) | ỹ(t + k)}
= x̂(t | t + k − 1) +K(t | t + k)ỹ(t + k),

(3.50)

where

K(t | t + k) = E
[
x(t)ỹT (t + k)

]
Q−1

ỹ (t + k). (3.51)

Define Ψ1(t) = A − γ(t)K(t)C and Ψ2(t) = B1 − γ(t)K(t)D, then (3.26) can be rewritten as

e(t + 1) = Ψ1(t)e(t) + Ψ2(t)x(t)w(t) + B2u(t) − γ(t)K(t)v(t), (3.52)

and recursively computing (3.52), we have

e(t + k) = Ψ1(t + k, t)e(t) + Ψ2(t + k, t)x(t)w(t)

+
t+k∑
i=t+1

Ψ1(t + k, i) × [B2u(i − 1) − γ(i − 1)K(i − 1)v(i − 1)
]
,

(3.53)

where

Ψ1(t + k, i) = Ψ1(t + k − 1) · · ·Ψ1(i), i < t + k,

Ψ2(t + k, t) = Ψ1(t + k − 1) · · ·Ψ1(t + 1)Ψ2(t),

Ψ1(t + k, t + k) = In.

(3.54)
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By considering (3.7), (3.53), and Theorem 3.4,

E
[
x(t)ỹT (t + k)

]
= γ(t + k)P(t)ΨT

1 (t + k, t), (3.55)

so

K(t | t + k) = γ(t + k)P(t)ΨT
1 (t + k, t) ×

[
CP(t + k)CT +DΠ(t + k)MDT + R

]−1
, (3.56)

which is (3.48) by setting t + k = j.
From (3.50) and considering x(t) = x̂(t | t+k)+e(t | t+k) = x̂(t | t+k−1)+e(t | t+k−1),

then we have

e(t | t + k) = e(t | t + k − 1) −K(t | t + k)ỹ(t + k), (3.57)

that is,

e(t | t + k − 1) = e(t | t + k) +K(t | t + k)ỹ(t + k). (3.58)

Then according to (3.30), we have

P(t | t + k − 1) = P(t | t + k) +K(t | t + k)Qỹ(t + k)KT (t | t + k), (3.59)

Combined with (3.23), we have (3.46) by setting t + k = j.

3.4. Comparison

In this subsection, we will give the comparison among the three cases of smoothers. It can be
easily seen from (3.31), (3.38), and (3.45) that the smoothers are all given by a Kalman filter
and an updated part. To be compared conveniently, the smoother error covariance matrices
are given in (3.32), (3.39), and (3.46), which develops the main results in [6, 7] where only
Kalman smoothers are given.

It can be easily seen from (3.31) and (3.38) that Kalman fixed-interval smoother is
similar to fixed-lag smoother. For (3.31), the computation time is N− t, and it is l in (3.38). For
Kalman fixed-interval smoother, the N is fixed, and t is variable, so when t = 0, 1, . . . ,N − 1,
the corresponding smoother x̂(t | N) can be given. For Kalman fixed-lag smoother, the l is
fixed, and t is variable, so when t = l + 1, l + 2, . . ., the corresponding smoother x̂(tl | t) can
be given. The two smoothers are similar in the form of (3.31) and (3.38). However, it is hard
to see which smoother is better from the smoother error covariance matrix (3.32) and (3.39),
which will be verified in numerical example.

For Kalman fixed-point smoother in Theorem 3.7, the time t is fixed, and in this case,
we can say that Kalman fixed-point smoother is different from fixed-interval and fixed-lag
smoother in itself. j can be equal to t + 1, t + 2, . . ..
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4. Numerical Example

In the section, we will give an example to show the efficiency and the comparison of the
presented results.

Consider the system (2.1)–(2.3) with N = 80, l = 20,

A =
[

0.8 0.3
0 0.6

]
, B1 =

[
0.2 0
0.1 0.9

]
, B2 =

[
0.5
0.8

]
,

C =
[
1 2
]
, D =

[
2 2
]
,

γ(t) =
1 + (−1)t

2
.

(4.1)

The initial state value x(0) =
[

1
0.5

]
, and noises u(t) and w(t) are uncorrelated white noises

with zero means and unity covariance matrices, that is, Q = 1, M = 1. Observation noise v(t)
is of zero means and with covariance matrix R = 0.01.

Our aim is to calculate the Kalman fixed-interval smoother x̂(t | N) of the signal x(t),
Kalman fixed-lag smoother x̂(tl | t) of the signal x(tl) for t = l + 1, . . . ,N, and Kalman fixed-
point smoother x̂(t | j) of the signal x(t) for j = t + 1, . . . ,N based on observations {y(i)}Ni=0,
{y(i)}ti=0 and {y(i)}ji=0, respectively. For the Kalman fixed-point smoother x̂(t | j), we can set
t = 30.

According to Theorem 3.7, the computation of the Kalman fixed-interval smoother
x̂(t |N) can be summarized in three steps as shown below.

Step 1. Compute Π(t + 1), P(t + 1), x̂(t + 1), and x̂(t + 1 | t + 1) by (3.20), (3.19), (3.18), and
(3.17) in Lemma 3.5 for t = 0, . . . ,N − 1, respectively.

Step 2. t ∈ [0,N] is set invariant compute P(t, k) by (3.33) for k = 1, . . . ,N − t; with the above
initial values P(t, 0) = P(t).

Step 3. Compute the Kalman fixed-interval smoother x̂(t | N) by (3.31) for t = 0, . . . ,N with
fixed N.

Similarly, according to Theorem 3.9, the computation of the Kalman fixed-lag
smoother x̂(tl | t) can be summarized in three steps as shown below.

Step 1. Compute Π(tl + k + 1), P(tl + k + 1), x̂(tl + k + 1), and x̂(tl + k + 1 | tl + k + 1) by (3.20),
(3.19), (3.18), and (3.17) in Lemma 3.5 for t > l and k = 1, . . . , l, respectively.

Step 2. t ∈ [0,N] is set invariant; compute P(tl, k) by (3.40) for k = 1, . . . , l with the above
initial values P(tl, 0) = P(tl).

Step 3. Compute the Kalman fixed-lag smoother x̂(tl | t) by (3.38) for t > l.
According to Theorem 3.11, the computation of Kalman fixed-point smoother x̂(t | j)

can be summarized in three steps as shown below.

Step 1. Compute Π(t + 1), P(t + 1), x̂(t + 1), and x̂(t + 1 | t + 1) by (3.20), (3.19), (3.18) and
(3.17) in Lemma 3.5 for t = 0, . . . ,N − 1, respectively.

Step 2. Compute P(t, k) by (3.47) for k = 1, . . . , j − t with the initial value P(t, 0) = P(t).
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Figure 1: The origin and its fixed-point smoother x̂1(30 | j), where the blue line is the origin signal, the red
line is the smoother.

Step 3. Compute the Kalman fixed-point smoother x̂(t | j) by (3.45) for j = t + 1, . . . ,N.
The tracking performance of Kalman fixed-point smoother x̂(t | j) =

[
x̂1(t|j)
x̂2(t|j)

]
is drawn

in Figures 1 and 2, and the line is based on the fixed time t = 30, and the variable is j. It can be
easily seen from the above two figures that the smoother is changed much at first, and after
the time j = 35, the fixed-point smoother is fixed, that is, the smoother at time t = 30 will take
little effect on y(j), y(j + 1), . . . due to packet loss. In addition, at time j = 30, the estimation
(filter) is more closer to the origin than other j > 30, which shows that Kalman filter is better
than fixed-point smoother for WSN with packet loss. In fact, the smoothers below are also
not good as filter.

The fixed-interval smoother x̂(t | N) =
[
x̂1(t|N)
x̂2(t|N)

]
is given in Figures 3 and 4, and the

tracking performance of the fixed-lag smoother x̂(tl | t) =
[
x̂1(tl |t)
x̂2(tl |t)

]
is given in Figures 5 and 6.

From the above figures, they can estimate the origin signal in general.
In addition, according to the comparison part in the end of last section, we give the

comparison of the sum of the error covariance of the fixed-interval and fixed-lag smoother
(the fixed-point smoother is different from the above two smoother, so its error covariance
is not necessary to be compared with, which has been explained at the end of last section),
and we also give the sum of the error covariance of Kalman filter, and they are all drawn in
Figure 7. As seen from Figure 7, it is hard to say which smoother is better due to packet loss,
and the result of smoothers is not better than filter.

5. Conclusion

In this paper, we have studied Kalman fixed-interval smoothing, fixed-lag smoothing [6], and
fixed-point smoothing [7] for wireless sensor network systems with packet loss and
multiplicative noises. The smoothers are given by recursive equations. The smoother error
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Figure 2: The origin and its fixed-point smoother x̂2(30 | j), where the blue line is the origin signal, the red
line is the smoother.
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Figure 3: The origin and its fixed-interval smoother x̂1(t | N), where the blue line is the origin signal, the
red line is the smoother.

covariance matrices of fixed-interval smoothing, and fixed-lag smoothing are given by
Riccati equation without recursion, while the smoother error covariance matrix of fixed-
point smoothing is given by recursive Riccati equation and recursive Lyapunov equation. The
comparison among the fixed-point smoother, fixed-interval smoother and fixed-lag smoother
has been given, and numerical example verified the proposed approach. The proposed
approach will be useful to study more difficult problems, for example, the WSN with random
delay and packet loss [19].
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Figure 4: The origin and its fixed-interval smoother x̂2(t | N), where the blue line is the origin signal, the
red line is the smoother.
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line is the smoother.

Disclosure

X. Lu is affiliated with Shandong University of Science and Technology and also with
Shandong University, Qingdao, China. H. Wang and X. Wang are affiliated with Shandong
University of Science and Technology, Qingdao, China.



18 Journal of Applied Mathematics

0 10 20 30 40 50 60

0

5

10

15

20

25

30
The origin and its fixed-lag smoother for the second state

Sm
oo

th
er

−20

−15

−10

−5

t − l

Figure 6: The origin and its fixed-lag smoother x̂2(t − l | t), where the blue line is the origin signal, the red
line is the smoother.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500
The sum of the error covariance for filter and smoothers

t

Figure 7: The sum of the error covariance for filter, fixed-interval smoother, and fixed-lag smoother, where
the blue line is for the filter, the green line is for fixed-interval smoother, and the red line is for the fixed-lag
smoother.

Acknowledgment

This work is supported by National Nature Science Foundation (60804034), the Scientific
Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shan-
dong Province (BS2012DX031), the Nature Science Foundation of Shandong Province
(ZR2009GQ006), SDUST Research Fund (2010KYJQ105), the Project of Shandong Province



Journal of Applied Mathematics 19

Higher Educational Science, Technology Program (J11LG53) and ”Taishan Scholarship” Con-
struction Engineering.

References

[1] N. Wiener, Extrapolation Interpolation, and Smoothing of Stationary Time Series, The Technology Press
and Wiley, New York, NY, USA, 1949.

[2] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineer-
ing, vol. 82, no. 1, pp. 35–45, 1960.

[3] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice-Hall, Englewood Cliffs, NJ, USA,
1999.

[4] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, USA, 1979.
[5] X. Lu, H. Zhang, W. Wang, and K.-L. Teo, “Kalman filtering for multiple time-delay systems,”

Automatica, vol. 41, no. 8, pp. 1455–1461, 2005.
[6] X. Lu, W. Wang, and M. Li, “Kalman fixed-interval and fixed-lag smoothing for wireless sensor

systems with multiplicative noises,” in Proceedings of the 24th Chinese Control and Decision Conference
(CCDC ’12), Taiyuan, China, May 2012.

[7] X. Lu and W. Wang, “Kalman fixed-point smoothing for wireless sensor systems with multiplicative
noises,” in Proceedings of the 24th Chinese Control Conference (CCDC ’12), Taiyuan, China, May 2012.

[8] D. S. Chu and S. W. Gao, “State optimal estimation algorithm for singular systems with multiplicative
noise,” Periodical of Ocean University of China, vol. 38, no. 5, pp. 814–818, 2008.

[9] H. Zhang, X. Lu, W. Zhang, and W. Wang, “Kalman filtering for linear time-delayed continuous-time
systems with stochastic multiplicative noises,” International Journal of Control, Automation, and Systems,
vol. 5, no. 4, pp. 355–363, 2007.

[10] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering
with intermittent observations,” IEEE Transaction on Automatic Control, vol. 49, no. 9, pp. 1453–1464,
2004.

[11] X. Liu and A. Goldsmith, “Kalman filtering with partial observation losses,” in Proceedings of the 15th
International Symposium on the Mathematical Theory of Networks and Systems, pp. 4180–4183, Atlantis,
Bahamas, December 2004.

[12] A. S. Leong, S. Dey, and J. S. Evans, “On Kalman smoothing with random packet loss,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 7, pp. 3346–3351, 2008.

[13] L. Schenato, “Optimal estimation in networked control systems subject to random delay and packet
drop,” IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1311–1317, 2008.

[14] M. Huang and S. Dey, “Stability of Kalman filtering with Markovian packet losses,” Automatica, vol.
43, no. 4, pp. 598–607, 2007.

[15] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and
estimation over lossy networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, 2007.

[16] X. Lu and T. Wang, “Optimal estimation with observation loss and multiplicative noise,” in Proceed-
ings of the 8th World Congress on Intelligent Control and Automation (WCICA ’10), pp. 248–251, July 2010.

[17] X. Lu, M. Li, and Q. Pu, “Kalman filtering for wireless sensor network with multiple multiplicative
noises,” in Proceedings of the 23th Chinese Control and Decision Conference (CCDC ’11), pp. 2376–2381,
May 2011.

[18] X. Lu, X. Wang, and H. Wang, “Optimal information fusion Kalman filtering for WSNs with
multiplicative noise,” in Proceedings of the International Conference on System Science and Engineering
(ICSSE ’12), June 2012.

[19] L. Schenato, “Kalman filtering for networked control systems with random delay and packet loss,” in
Proceedings of the Conference of Mathematical Theroy of Networks and Systems (MTNSar ’06), Kyoto, Japan,
July 2006.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 514504, 22 pages
doi:10.1155/2012/514504

Research Article
Robust Adaptive Switching Control
for Markovian Jump Nonlinear Systems via
Backstepping Technique

Jin Zhu,1 Hongsheng Xi,1 Qiang Ling,1 and Wanqing Xie2

1 Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027, China
2 Center of Information Science Experiment and Education, University of Science and Technology of China,
China

Correspondence should be addressed to Jin Zhu, jinzhu@ustc.edu.cn

Received 28 March 2012; Accepted 9 May 2012

Academic Editor: Xianxia Zhang

Copyright q 2012 Jin Zhu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper investigates robust adaptive switching controller design for Markovian jump nonlinear
systems with unmodeled dynamics and Wiener noise. The concerned system is of strict-feedback
form, and the statistics information of noise is unknown due to practical limitation. With
the ordinary input-to-state stability (ISS) extended to jump case, stochastic Lyapunov stability
criterion is proposed. By using backstepping technique and stochastic small-gain theorem, a
switching controller is designed such that stochastic stability is ensured. Also system states will
converge to an attractive region whose radius can be made as small as possible with appropriate
control parameters chosen. A simulation example illustrates the validity of this method.

1. Introduction

The establishment of modern control theory is contributed by state space analysis method
which was introduced by Kalman in 1960s. This method, describing the changes of internal
system states accurately through setting up the relationship of internal system variables and
external system variables in time domain, has become the most important tool in system
analysis. However, there remain many complex systems whose states are driven by not only
continuous time but also a series of discrete events. Such systems are named hybrid systems
whose dynamics vary with abrupt event occurring. Further, if the occurring of these events
is governed by a Markov chain, the hybrid systems are called Markovian jump systems. As
one branch of modern control theory, the study of Markovian jump systems has aroused lots
of attention with fruitful results achieved for linear case, for example, stability analysis [1, 2],
filtering [3, 4] and controller design [5, 6], and so forth. But studies are far from complete
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because researchers are facing big challenges while dealing with the nonlinear case of such
complicated systems.

The difficulties may result from several aspects for the study of Markovian jump
nonlinear systems (MJNSs). First of all, controller design largely relies on the specific model
of systems, and it is almost impossible to find out one general controller which can stabilize
all nonlinear systems despite of their forms. Secondly Markovian jump systems are applied to
model systems suffering sudden changes of working environment or system dynamics. For
this reason, practical jump systems are usually accompanied by uncertainties, and it is hard
to describe these uncertainties with precise mathematical model. Finally, noise disturbance is
an important factor to be considered. More often that not, the statistics information of noise
is unknown when taking into account the complexity of working environment. Among the
achievements of MJNSs, the format of nonlinear systems should be firstly taken into account.
As one specific model, the nonlinear system of strict-feedback form is well studied due to
its powerful modelling ability of many practical systems, for example, power converter [7],
satellite attitude [8], and electrohydraulic servosystem [9]. However, such models should
be modified since stochastic structure variations exist in these practical systems, and this
specific nonlinear system has been extended to jump case. For Markovian jump nonlinear
systems of strict-feedback form, [10, 11] investigated stabilization and tracking problems for
such MJNSs, respectively. And [12] studied the robust controller design for such systems
with unmodeled dynamics. However, for the MJNSs suffering aforementioned factors in this
paragraph, research work has not been performed yet.

Motivated by this, this paper focuses on robust adaptive controller design for a class
of MJNSs with uncertainties and Wiener noise. Compared with the existing result in [12],
several practical limitations are considered which include the following: the uncertainties
are with unmodeled dynamics, and the upper bound of dynamics is not necessarily
known. Meanwhile the statistics information of Wiener noise is unknown. Also the adaptive
parameter is introduced to the controller design whose advantage has been described in [13].
The control strategy consists of several steps: firstly, by applying generalized Itô formula, the
stochastic differential equation for MJNS is deduced and the concept of JISpS (jump input-
to-state practical stability) is defined. Then with backstepping technology and small-gain
theorem, robust adaptive switching controller is designed for such strict-feedback system.
Also the upper bound of the uncertainties can be estimated. Finally according to the stochastic
Lyapunov criteria, it is shown that all signals of the closed-loop system are globally uniformly
bounded in probability. Moreover, system states can converge to an attractive region whose
radius can be made as small as possible with appropriate control parameters chosen.

The rest of this paper is organized as follows. Section 2 begins with some mathematical
notions including differential equation for MJNS, and we introduce the notion of JISpS and
stochastic Lyapunov stability criterion. Section 3 presents the problem description, and a
robust adaptive switching controller is given based on backstepping technique and stochastic
small-gain theorem. In Section 4, stochastic Lyapunov criteria are applied for the stability
analysis. Numerical examples are given to illustrate the validity of this design in Section 5.
Finally, a brief conclusion is drawn in Section 6.

2. Mathematical Notions

2.1. Stochastic Differential Equation of MJNS
Throughout the paper, unless otherwise specified, we denote by (Ω,F, {Ft}t≥0, P) a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
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continuous and F0 contains all p-null sets). Let |x| stand for the usual Euclidean norm for
a vector x, and let ‖xt‖ stand for the supremum of vector x over time period [t0, t], that is,
‖xt‖ = supt0≤s≤t|x(s)|. The superscript T will denote transpose and we refer to Tr(·) as the
trace for matrix. In addition, we use L2(P) to denote the space of Lebesgue square integrable
vector.

Take into account the following Markovian jump nonlinear system:

dx = f(x, u, t, r(t))dt + g(x, u, t, r(t))dω(t), (2.1)

where x ∈ R
n, u ∈ R

m are state vector and input vector of the system, respectively.
r(t), t ≥ 0 is named system regime, a right-continuous Markov chain on the probability
space taking values in finite state space S = {1, 2, . . . ,N}. And ω(t) = {ω1, ω2, . . . , ωl} is l-
dimensional independent Wiener process defined on the probability space, with covariance
matrix E{dωdωT} = Υ(t)ΥT (t)dt, where Υ(t) is an unknown bounded matrix-value function.
Furthermore, we assume that the Wiener noise ω(t) is independent of the Markov chain r(t).
The functions f : R

n+m × R+ × S → R
n and g : R

n+m × R+ × S → R
n×l are locally Lipschitz in

(x, u, r(t) = k) ∈ R
n+m × S for all t ≥ 0; namely, for any h > 0, there is a constant Kh ≥ 0 such

that

∣∣f(x1, u1, t, k) − f(x2, u2, t, k)
∣∣ ∨ ∣∣g(x1, u1, t, k) − g(x2, u2, t, k)

∣∣ ≤ Kh(|x1 − x2| + |u1 − u2|)
(2.2)

∀(x1, u1, t, k), (x2, u2, t, k) ∈ R
n+m × R+ × S, |x1| ∨ |x2| ∨ |u1| ∨ |u2| ≤ h. (2.3)

It is known by [2] that with (2.3) standing, MJNS (2.1) has a unique solution.
Considering the right-continuous Markov chain r(t) with regime transition rate matrix

Π = [πkj]N×N , the entries πkj , k, j = 1, 2, . . . ,N are interpreted as transition rates such that

P
(
r(t + dt) = j | r(t) = k

)
=

{
πkjdt + o(dt) if k /= j,

1 + πkjdt + o(dt) if k = j,
(2.4)

where dt > 0 and o(dt) satisfies limdt→ 0(o(dt)/dt) = 0. Here πkj > 0(k /= j) is the transition
rate from regime k to regime j. Notice that the total probability axiom imposes πkk negative
and

N∑
j=1

πkj = 0, ∀k ∈ S. (2.5)

For each regime transition rate matrix Π, there exists a unique stationary distribution ζ =
(ζ1, ζ2, . . . , ζN) such that [14]

Π · ζ = 0,
N∑
k=1

ζk = 1, ζk > 0, ∀k ∈ S. (2.6)
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Let C2,1(Rn × R+ × S) denote the family of all functions F(x, t, k) on R
n × R+ × S which are

continuously twice differentiable in x and once in t. Furthermore, we give the stochastic
differentiable equation of F(x, t, k) as

dF(x, t, k) =
∂F(x, t, k)

∂t
dt +

∂F(x, t, k)
∂x

f(x, u, t, k)dt

+
1
2

Tr

[
ΥTgT (x, u, t, k)

∂2F(x, t, k)
∂x2

g(x, u, t, k)Υ

]
dt

+
N∑
j=1

πkjF
(
x, t, j

)
dt +

∂F(x, t, k)
∂x

g(x, u, t, k)dω(t)

+
N∑
j=1

[
F
(
x, t, j

) − F(x, t, k)]dMj(t),

(2.7)

where M(t) = (M1(t),M2(t), . . . ,MN(t)) is a martingale process.
Take the expectation in (2.7), so that the the infinitesimal generator produces [2, 15]

LF(x, t, k) = ∂F(x, t, k)
∂t

+
∂F(x, t, k)

∂x
f(x, u, t, k) +

N∑
j=1

πkjF
(
x, t, j

)

+
1
2

Tr

[
ΥTgT (x, u, t, k)

∂2F(x, t, k)
∂x2

g(x, u, t, k)Υ

]
.

(2.8)

Remark 2.1. Equation (2.7) is the differential equation of MJNS (2.1). It is given by [12], and
the similar result is also achieved in [15]. Compared with the differential equation of general
nonjump systems, two parts come forth as differences: transition rates πkj and martingale
process M(t), which are both caused by the Markov chain r(t). And we will show in the
following section that the martingale process also has effects on the controller design.

2.2. JISpS and Stochastic Small-Gain Theorem

Definition 2.2. MJNS (2.1) is JISpS in probability if for any given ε > 0, there existKL function
β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such that

P
{|x(t, k)| < β(|x0|, t) + γ(‖ut(k)‖) + dc

} ≥ 1 − ε ∀t ≥ 0, k ∈ S, x0 ∈ R
n \ {0}. (2.9)

Remark 2.3. The definition of ISpS (input-to-state practically stable) in probability for
nonjump stochastic system is put forward by Wu et al. [16], and the difference between JISpS
in probability and ISpS in probability lies in the expressions of system state x(t, k) and control
signal ut(k). For nonjump system, system state and control signal contain only continuous
time t with k ≡ 1. While jump systems concern with both continuous time t and discrete
regime k. For different regime k, control signal ut(k) will differ with different sample taken
even at the same time t, and that is the reason why the controller is called a switching one.
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Figure 1: Interconnected feedback system.

Based on this, the corresponding stability is called Jump ISpS, and it is an extension of ISpS.
Let k ≡ 1, and the definition of JISpS will degenerate to ISpS.

Consider the jump interconnected dynamic system described in Figure 1:

dx1 = f1(x1, x2,Ξ1(r(t)), r(t))dt + g1(x1, x2,Ξ1(r(t)), r(t))dWt1,

dx2 = f2(x1, x2,Ξ2(r(t)), r(t))dt + g2(x1, x2,Ξ2(r(t)), r(t))dWt2,
(2.10)

where x = (xT
1 , x

T
2 )

T ∈ R
n1+n2 is the state of system, Ξi(r(t)), i = 1, 2 denotes exterior

disturbance and/or interior uncertainty. Wti is independent Wiener noise with appropriate
dimension, and we introduce the following stochastic nonlinear small-gain theorem as a
lemma, which is an extension of the corresponding result in Wu et al. [16].

Lemma 2.4 (stochastic small-gain theorem). Suppose that both the x1-system and x2-system are
JISpS in probability with (Ξ1(k), x2(t, k)) as input and x1(t, k) as state and (Ξ2(k), x1(t, k)) as input
and x2(t, k) as state, respectively; that is, for any given ε1, ε2 > 0,

P
{|x1(t, k)| < β1(|x1(0, k)|, t) + γ1(‖x2(t, k)‖) + γw1(‖Ξ1t(k)‖) + d1

} ≥ 1 − ε1,

P
{|x2(t, k)| < β2(|x2(0, k)|, t) + γ2(‖x1(t, k)‖) + γw2(‖Ξ2t(k)‖) + d2

} ≥ 1 − ε2,
(2.11)

hold with βi(·, ·) being KL function, γi and γwi being K∞ functions, and di being nonnegative
constants, i = 1, 2.

If there exist nonnegative parameters ρ1, ρ2, s0 such that nonlinear gain functions γ1, γ2 satisfy

(
1 + ρ1

)
γ1 ◦

(
1 + ρ2

)
γ2(s) ≤ s, ∀s ≥ s0, (2.12)

the interconnected system is JISpS in probability with Ξ(k) = (Ξ1(k),Ξ2(k)) as input and x =
(x1, x2) as state; that is, for any given ε > 0, there exist aKL function βc(·, ·), aK∞ function γw(·),
and a parameter dc ≥ 0 such that

P
{|x(t, k)| < βc(|x0|, t) + γw(‖Ξt(k)‖) + dc

} ≥ 1 − ε. (2.13)
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Remark 2.5. The previously mentioned stochastic small-gain theorem for jump systems is
an extension of nonjump case. This extension can be achieved without any mathematical
difficulties, and the proof process is the same as in [16]. The reason is that in Lemma 3.1
we only take into account the interconnection relationship between synthetical system and
its subsystems, despite the fact that subsystems are of jump or nonjumpform. If both
subsystems are nonjump and ISpS in probability, respectively, the synthetical system is
ISpS in probability. By contraries, if both subsystems are jump and JISpS in probability,
respectively, the synthetical system is JISpS in probability correspondingly.

3. Problem Description and Controller Design

3.1. Problem Description

Consider the following Markovian jump nonlinear systems with dynamic uncertainty and
noise described by

dξ = q
(
y, ξ, t, r(t)

)
dt,

dxi = xi+1dt + fT
i (Xi, t, r(t))θ∗dt + Δi(X, ξ, t, r(t))dt + gT

i (Xi, t, r(t))dω,

dxn = udt + fT
n (X, t, r(t))θ∗dt + Δn(X, ξ, t, r(t))dt + gT

n (X, t, r(t))dω i = 1, 2, . . . , n − 1,

y = x1,

(3.1)

where Xi = (x1, x2, . . . , xi)
T ∈ R

i(X ∈ R
n) is state vector, u ∈ R is system input signal, ξ ∈ R

n0

is unmeasured state vector, and y is output signal. θ∗ ∈ R
p0 is a vector of unknown adaptive

parameters. The Markov chain r(t) ∈ S and Wiener noise ω are as defined in Section 2. fi :
R

i × R+ × S → R
p0 , gi : R

i × R+ × S → R
l are vector-valued smooth functions, and

Δi(X, ξ, t, r(t)) denotes the unmodeled dynamic uncertainty which could vary with different
regime r(t) taken. Both fi, gi and Δi are locally Lipschitz as in Section 2.

Our design purpose is to find a switching controller u of the form u(x, t, k), k ∈ S
such that the closed-loop jump system could be JISpS in probability and the system output y
could be within an attractive region around the equilibrium point. In this paper, the following
assumptions are made for MJNS (3.1).

(A1) The ξ subsystem with input y is JISpS in probability; namely, for any given ε > 0,
there existKL function β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such that

P
{|ξ(t, k)| < β(|ξ0|, t) + γ

(∥∥y∥∥) + dc

} ≥ 1 − ε ∀t ≥ 0, k ∈ S, ξ0 ∈ R
n0 \ {0}. (3.2)

(A2) For each i = 1, 2, . . . , n, k ∈ S, there exists an unknown bounded positive constant
p∗i such that

|Δi(X, ξ, t, k)| ≤ p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k), (3.3)

where φi1(·, k), φi2(·, k) are known nonnegative smooth functions for any given k ∈
S. Notice that p∗i is not unique since any p∗i > p∗i satisfies inequality (3.3). To avoid
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confusion, we define p∗i the smallest nonnegative constant such that inequality (3.3)
is satisfied.

For the design of switching controller, we introduce the following lemmas.

Lemma 3.1 (Young’s inequality [12]). For any two vectors x, y ∈ R
n, the following inequality

holds

xTy ≤ εp

p
|x|p + 1

qεq
∣∣y∣∣q, (3.4)

where ε > 0 and the constants p > 1, q > 1 satisfy (p − 1)(q − 1) = 1.

Lemma 3.2 (martingale representation [17]). Let B(t) = [B1(t), B2(t), . . . , BN(t)] be N-
dimensional standard Wiener noise. Supposing M(t) is an FN

t -martingale (with respect to P) and
that M(t) ∈ L2(P) for all t ≥ 0, then there exists a stochastic process Ψ(t) ∈ L2(P), such that

dM(t) = Ψ(t) · dB(t). (3.5)

3.2. Controller Design

Now we seek for the switching controller for MJNS (3.1) so that the closed-loop system
could be JISpS in probability, where the parameter θ∗, p∗i needs to be estimated. Denote the
estimation of adaptive parameter θ∗ with θ and the estimation of upper bound of uncertainty
p∗i with pi. Perform a new transformation as

zi = xi(k) − αi−1
(
Xi−1, t, θ, pi, k

) ∀i = 1, 2, . . . , n, k ∈ S. (3.6)

For simplicity, we just denote αi−1(Xi−1, t, θ, pi, k), fi(Xi, t, k), gi(Xi, t, k), Δi(X, ξ, t, k), q(y, ξ,
t, k) by αi−1(k), fi(k), gi(k), Δi(k), q(k), respectively, where α0(k) = 0, αn(k) = u(k), for all
k ∈ S, and the new coordinate is Z(k) = (z1(k), z2(k), . . . , zn(k)).

According to stochastic differential equation (2.7), one has

dzi = dxi − dαi−1(k)

=
[
xi+1 + fT

i (k)θ
∗ + Δi(k)

]
dt − ∂αi−1(k)

∂t
dt −

i−1∑
j=1

∂αi−1(k)
∂xj

[
xj+1 + fT

j (k)θ
∗ + Δj(k)

]
dt

− ∂αi−1(k)
∂θ

θ̇ dt −
i−1∑
j=1

∂αi−1(k)
∂pi

ṗidt − 1
2

i−1∑
p,q=1

∂2αi−1(k)
∂xp∂xq

gT
p (k)ΥΥ

Tgq(k)dt −
N∑
j=1

πkjαi−1
(
j
)
dt

+

⎡
⎣gT

i (k) −
i−1∑
j=1

∂αi−1(k)
∂xj

gT
j (k)

⎤
⎦dω +

N∑
j=1

[
αi−1(k) − αi−1

(
j
)]
dMj(t)
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=
[
zi+1 + αi(k) + τTi (k)θ

∗ + Λi(k)
]
dt − ∂αi−1(k)

∂t
dt − ∂αi−1(k)

∂θ
θ̇ dt −

i−1∑
j=1

∂αi−1(k)
∂pi

ṗidt

−
i−1∑
j=1

∂αi−1(k)
∂xj

xj+1dt − 1
2

i−1∑
p,q=1

∂2αi−1(k)
∂xp∂xq

gT
p (k)ΥΥ

Tgq(k)dt −
N∑
j=1

πkjαi−1
(
j
)
dt

+ ρTi (k)dω + Γi(k)dM(t).

(3.7)

Here we define

Λi(k) � Δi(k) −
i−1∑
j=1

∂αi−1(k)
∂xj

Δj(k),

τi(k) � fi(k) −
i−1∑
j=1

∂αi−1(k)
∂xj

fj(k),

ρi(k) � gi(k) −
i−1∑
j=1

∂αi−1(k)
∂xj

gj(k),

Γi(k) � [αi−1(k) − αi−1(1), αi−1(k) − αi−1(2), . . . , αi−1(k) − αi−1(N)].

(3.8)

From assumption (A2), one gets that there exists nonnegative smooth function φi1, φi2

satisfying

|Λi(k)| ≤ p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k). (3.9)

The inequality (3.9) could easily be deduced by using Lemma 3.1.
Considering the transformation zi in (3.7) which contains the martingale process M(t),

according to Lemma 3.2, there exist a function Ψ(t) ∈ L2(P) and an N-dimensional standard
Wiener noise B(t) satisfying dM(t) = Ψ(t)dB(t), where E[Ψ(t)Ψ(t)T ] = ψ(t)ψ(t)T ≤ Q < ∞
and Q is a positive bounded constant. Therefore we have

dzi =

⎧⎨
⎩zi+1 + αi(k) + τTi (k)θ

∗ + Λi(k) − ∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇ −
i−1∑
j=1

∂αi−1(k)
∂pi

ṗi

−
i−1∑
j=1

∂αi−1(k)
∂xj

xj+1 − 1
2

i−1∑
p,q=1

∂2αi−1(k)
∂xp∂xq

gT
p (k)ΥΥ

Tgq(k) −
N∑
j=1

πkjαi−1
(
j
)⎫⎬⎭dt

+ ρTi (k)dω + Γi(k)Ψ(t)dB(t).

(3.10)

Differential equation of new coordinate Z = (z1, z2, . . . , zn) is deduced by (3.10). The
martingale process resulting from Markov process is transformed into Wiener noise by using
Martingale representation theorem. To deal with this, quartic Lyapunov function is proposed,
and in the controller design, consideration must be taken for the Wiener noise B(t).
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Choose the quartic Lyapunov function as

V (k) =
1
4

n∑
i=1

z4
i +

1
2γ

θ̃T θ̃ +
n∑
i=1

1
2σi

p̃2
i , (3.11)

where γ > 0, σi > 0 are constants. θ̃ = θ∗ − θ and p̃i = pMi − pi are parameter estimation errors,
where pMi � max{p∗i , p0

i } and p0
i are given positive constants.

In the view of (3.10) and (3.11), the infinitesimal generator of V satisfies

LV (k) =
n∑
i=1

z3
i

⎧⎨
⎩zi+1 + αi(k) + τTi (k)θ

∗ + Λi(k) − ∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇ −
i−1∑
j=1

∂αi−1(k)
∂pi

ṗi

−
i−1∑
j=1

∂αi−1(k)
∂xj

xj+1 − 1
2

i−1∑
p,q=1

∂2αi−1(k)
∂xp∂xq

gT
p (k)ΥΥ

Tgq(k) −
N∑
j=1

πkjαi−1
(
j
)⎫⎬⎭

+
3
2

n∑
i=1

z2
i ρ

T
i (k)ΥΥ

Tρi(k) +
3
2

n∑
i=1

z2
i Γi(k)ψψ

TΓTi (k) −
1
γ
θ̃T θ̇ −

n∑
i=1

1
σi
p̃iṗi +

N∑
j=1

πkjV
(
j
)

≤
n∑
i=1

z3
i

⎧⎨
⎩
(

3
4
δ4/3
i +

1
4δ4

i−1

)
zi + αi(k) + τTi (k)θ −

∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇ −
i−1∑
j=1

∂αi−1(k)
∂pi

ṗi

−
i−1∑
j=1

∂αi−1(k)
∂xj

xj+1 + λz3
i

i−1∑
p,q=1

[
∂2αi−1(k)
∂xp∂xq

]2[
gT
p (k)gq(k)

]2
+ μ1zi

[
ρTi (k)ρi(k)

]2

+μ2zi
[
Γi(k)ΓTi (k)

]2 −
N∑
j=1

πkjαi−1
(
j
)⎫⎬⎭ +

[
(n − 1)n(2n − 1)

96λ
+

9n
16μ1

]
|Υ|4

+
9n

16μ2
Q2 − θ̃T

[
1
γ
θ̇ −

n∑
i=1

z3
i τi(k)

]
−

n∑
i=1

[
1
σi
p̃iṗi − z3

iΛi(k)
]
+

N∑
j=1

πkjV
(
j
)
.

(3.12)

The following inequalities could be deduced by using Young’s inequality and norm
inequalities with the help of changing the order of summations or exchanging the indices
of the summations:

n∑
i=1

z3
i zi+1 ≤ 3

4

n−1∑
i=1

δ4/3
i z4

i +
1
4

n−1∑
i=1

1
δ4
i

z4
i+1 =

n∑
i=1

(
3
4
δ4/3
i +

1
4δ4

i−1

)
z4
i

− 1
2

n∑
i=1

z3
i

i−1∑
p,q=1

∂2αi−1(k)
∂xp∂xq

gT
p (k)ΥΥ

Tgq(k)
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≤
n∑
i=1

λz6
i

i−1∑
p,q=1

[
∂2αi−1(k)
∂xp∂xq

]2

gT
p (k)gp(k)g

T
q (k)gq(k) +

n∑
i=1

i−1∑
p,q=1

1
16λ

∣∣∣ΥΥT
∣∣∣2

=
n∑
i=1

λz6
i

i−1∑
p,q=1

[
∂2αi−1(k)
∂xp∂xq

]2[
gT
p (k)gq(k)

]2
+

∣∣ΥΥT
∣∣2

96λ
(n − 1)n(2n − 1),

3
2

n∑
i=1

z2
i ρ

T
i (k)ΥΥ

Tρi(k)

≤
n∑
i=1

μ1z
4
i

[
ρTi (k)ρi(k)

]2
+

n∑
i=1

9
16μ1

∣∣∣ΥΥT
∣∣∣2

=
n∑
i=1

μ1z
4
i

[
ρTi (k)ρi(k)

]2
+

9n
16μ1

∣∣∣ΥΥT
∣∣∣2
,

3
2

n∑
i=1

z2
i Γi(k)ψψ

TΓTi (k)

≤ 3
2

n∑
i=1

z2
i Γi(k)QΓTi (k)

≤
n∑
i=1

μ2z
4
i

[
Γi(k)ΓTi (k)

]2
+

n∑
i=1

9
16μ2

Q2

=
n∑
i=1

μ2z
4
i

[
Γi(k)ΓTi (k)

]2
+

9n
16μ2

Q2,

(3.13)

where δ0 = ∞, δn = 0 and λ > 0, μ1 > 0, μ2 > 0, δi > 0, i = 1, 2, . . . , n are design parameters to
be chosen.

Here we suggest the following adaptive laws [18]:

θ̇ = γ

[
n∑
i=1

z3
i τi(k) − a

(
θ − θ0

)]
,

ṗi = σi

[
z3
i �i(k) −mi

(
pi − p0

i

)]
.

(3.14)

Here a > 0, θ0 ∈ R
p0 , mi > 0, i = 1, 2, . . . , n are design parameters to be chosen. And define

function β(k) as

�i(k) = φi1(Xi, k) · tanh

[
z3
i φi1(Xi, k)

εi

]
+ z3

i tanh

(
z6
i

υi

)
,

βi(k) = pi ·�i(k),

(3.15)
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where εi > 0, υi > 0, i = 1, 2, . . . , n are control parameters to be chosen, and let the virtual
control signal be

αi(k) = − cizi −
(

3
4
δ4/3
i +

1
4δ4

i−1

)
zi − τTi (k)θ +

∂αi−1(k)
∂t

+
∂αi−1(k)

∂θ
θ̇ +

i−1∑
j=1

∂αi−1(k)
∂pi

ṗi

+
i−1∑
j=1

∂αi−1(k)
∂xj

xj+1 − λz3
i

i−1∑
p,q=1

[
∂2αi−1(k)
∂xp∂xq

]2[
gT
p (k)gq(k)

]2 − μ1zi
[
ρTi (k)ρi(k)

]2

− μ2zi
[
Γi(k)ΓTi (k)

]2
+

N∑
j=1

πkjαi−1
(
j
) − βi(k).

(3.16)

Thus the real control signal u(k) satisfies u(k) = αn(k) such that

LV ≤ −
n∑
i=1

ciz
4
i + aθ̃

(
θ − θ0

)
+

n∑
i=1

z3
i

[
Λi(k) − pMi �i(k)

]
+

n∑
i=1

mip̃i
(
pi − p0

i

)

+
[
(n − 1)n(2n − 1)

96λ
+

9n
16μ1

]
|Υ|4 + 9n

16μ2
Q2 +

N∑
j=1

πkjV
(
j
)
.

(3.17)

Based on assumption (A2) and (3.9), we obtain the following inequality by applying
Lemma 3.1:

z3
iΛi(k) − pMi z3

i �i(k) ≤
∣∣∣z3

iΛi(k)
∣∣∣ − pMi z3

i φi1(Xi, k) · tanh

[
z3
i φi1(Xi, k)

εi

]
− pMi z6

i tanh

(
z6
i

υi

)

≤
∣∣∣z3

i

∣∣∣ ∗ [p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k)
] − pMi z3

i φi1(Xi, k)

· tanh

[
z3
i φi1(Xi, k)

εi

]
− pMi z6

i tanh

(
z6
i

υi

)

≤
∣∣∣z3

i

∣∣∣p∗i φi1(Xi, k) − pMi z3
i φi1(Xi, k) · tanh

[
z3
i φi1(Xi, k)

εi

]

+ pMi

∣∣∣z3
i

∣∣∣φi2(|ξ|, k) − pMi z6
i tanh

(
z6
i

υi

)

≤ pMi

[∣∣∣z3
i φi1(Xi, k)

∣∣∣ − z3
i φi1(Xi, k) · tanh

[
z3
i φi1(Xi, k)

εi

]]

+ pMi

[
z6
i − z6

i tanh

(
z6
i

υi

)
+

1
4
φ2
i2(|ξ|, k)

]

≤ εi + υi

2
pMi +

pMi
4

φ2
i2(|ξ|, k).

(3.18)
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In (3.18), the following inequality is applied:

0 ≤ ∣∣η∣∣ − η · tanh
(
η

ε

)
≤ 1

2
ε. (3.19)

Notice the fact that

aθ̃T
(
θ − θ0

)
= − 1

2
aθ̃T θ̃ − 1

2
a
(
θ − θ0

)T(
θ − θ0

)
+

1
2
a
(
θ∗ − θ0

)T(
θ∗ − θ0

)

≤ − 1
2
aθ̃T θ̃ +

1
2
a
(
θ∗ − θ0

)T(
θ∗ − θ0

)
,

mip̃i
(
pi − p0

i

)
= − 1

2
mip̃

2
i −

1
2
mi

(
pi − p0

i

)2
+

1
2
mi

(
pMi − p0

i

)2

≤ − 1
2
mip̃

2
i +

1
2
mi

(
pMi − p0

i

)2
.

(3.20)

Submitting (3.18), (3.20) into (3.12), there is

LV (k) ≤ −
n∑
i=1

ciz
4
i −

1
2
aθ̃T θ̃ −

n∑
i=1

1
2
mip̃

2
i +

1
2
a
(
θ∗ − θ0

)T(
θ∗ − θ0

)
+

n∑
i=1

1
2
mi

(
pMi − p0

i

)2

+
[
(n − 1)n(2n − 1)

96λ
+

9n
16μ1

]
|Υ|4 + 9n

16μ2
Q2 +

n∑
i=1

εi + υi

2
pMi

+
n∑
i=1

pMi
4

φ2
i2(|ξ|, k) +

N∑
j=1

πkjV
(
j
)

≤ − α1V (k) + Vξ(|ξ|, k) + dz +
N∑
j=1

πkjV
(
j
)
.

(3.21)

Here parameter α1, dz andK∞ function Vξ(|ξ|, k) is chosen to satisfy

Vξ(|ξ|, k) ≥
n∑
i=1

pMi
4

φ2
i2(|ξ|, k), α1 = min

{
4ci, a · γ,m · σi

}
,

dz =
1
2
a
(
θ∗ − θ0)T(θ∗ − θ0) + n∑

i=1

1
2
mi

(
pMi − p0

i

)2
+
[
(n − 1)n(2n − 1)

96λ
+

9n
16μ1

]
|Υ|4

+
9n

16μ2
Q2 +

n∑
i=1

εi + υi

2
pMi .

(3.22)

4. Stochastic Stability Analysis

Theorem 4.1. Considering the MJNS (3.1) with Assumptions (A2) standing, the X-subsystem
is JISpS in probability with the adaptive laws (3.14) and switching control law (3.16) adopted;
meanwhile all solutions of closed-loop X-subsystem are ultimately bounded.
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Proof. Considering the MJNS (3.1) with Lyapunov function (3.11), the following equations
hold according to [10]:

EV (r(t)) =
N∑
l=1

EV (l)ζl, ELV (r(t)) =
N∑
l=1

E(LV (l))ζl. (4.1)

Thus (3.21) can be written as

ELV (r(t)) =
N∑
l=1

E(LV (l))ζl

≤
N∑
l=1

E

⎧⎨
⎩−α1ζlV (l) + ζlVξ(|ξ|, l) + ζldz + ζl

N∑
j=1

πljV
(
j
)⎫⎬⎭

= − α1

N∑
l=1

ζlEV (l) + E

⎧⎨
⎩

N∑
l=1

ζl
N∑
j=1

πljV
(
j
)⎫⎬⎭ +

N∑
l=1

ζlEVξ(|ξ|, l) + dz

≤ − αEV (r(t)) + χ(|ξ(t)|) + dz,

(4.2)

where positive scalar α is given as

α � α1 −max
l,j∈S

{
ζl
ζj

}
∗max

j∈S

{
N∑
l=1

πlj

}

χ(|ξ(t)|) �
N∑
l=1

ζlEVξ(|ξ|, l).
(4.3)

It is easily seen that χ(|ξ(t)|) is a K∞ function with r(t) given, and appropriate control
parameter ci, l · γ , m · σi can be chosen to satisfy α > 0.

For each integer h ≥ 1, define a stopping time as

τh = inf{t ≥ 0 : |z(t)| ≥ h} (4.4)

Obviously, τh → ∞ almost surely as h → ∞. Noticing that 0 < |z(t)| ≤ h if 0 ≤ t < τh, we can
apply the generalized Itô formula to derive that for any t ≥ 0,

E
[
eα·(t∧τh)V (r(t ∧ τh))

]
= V (z0, 0, r(0)) +

∫ t∧τh

0
eαs[αEV (r(s)) + ELV (r(s))]ds

≤ V (r(0)) +
∫ t∧τh

0
eαs

[
αEV (r(s)) − αEV (r(s)) + χ(|ξ(t)|) + dz

]
ds

= V (r(0)) +
∫ t∧τh

0
eαs

[
χ(|ξ(t)|) + dz

]
ds.

(4.5)
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Let h → ∞, apply Fatou’s lemma to (4.5), and we have

E
[
eαtV (r(t))

] ≤ V (r(0)) + E

∫ t

0
eαs

[
χ(|ξ(t)|) + dz

]
ds. (4.6)

By using mean value theorem for integration, there is

E
[
eαtV (x(t), t, k)

]
= eαtEV (r(t))

≤ V (r(0)) + sup
0≤s≤t

[
χ(|ξ(s)|) + dz

] · ∫ t

0
eαsds.

(4.7)

According to the property ofK∞ function, the following inequality is deduced:

eαtEV (r(t)) ≤ V (r(0)) +

{
χ

(
sup
0≤s≤t
|ξ(s)|

)
+ dz

}
·
∫ t

0
eαsds

= V (r(0)) +
[
χ(‖ξ(t)‖) + dz

] ·( 1
α

)(
eαt − 1

)

≤ V (r(0)) +
[
χ(‖ξ(t)‖) + dz

] ·( 1
α

)
eαt.

(4.8)

According to (3.11), one gives

eαt
N∑
j=1

1
4
E
{
z4
i

}
≤ eαtEV (r(t)) ≤ EV (r(0)) +

[
χ(‖ξ(t)‖) + dz

] ·( 1
α

)
eαt. (4.9)

Consequently,

N∑
i=1

E
{
z4
i

}
≤ 4e−αtV (r(0)) +

4
α

{
χ(‖ξ(t)‖) + dz

}
. (4.10)

DefiningKL function β(·, ·),K∞ function γ(·), and nonnegative number dc as:

β(|z0|, t) = 4e−λtV (r(0)), γ(‖ξ(t)‖) = 4
α
χ(‖ξ(t)‖), dc =

4
α
dz. (4.11)

and applying Chebyshev’s inequality, we have that the X-subsystem of MJNS (3.1) is JISpS
in probability.

The proof is completed.

Theorem 4.2. Considering the MJNS (3.1)with Assumptions (A1), (A2) holding, the interconnected
Markovian jump system is JISpS in probability with adaptive laws (3.14) and switching control law
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Figure 2: Regime transition r(t).
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Figure 3: System output y.

(3.16) adopted; meanwhile all solutions of closed-loop system are ultimately bounded. Furthermore,
the system output could be regulated to an arbitrarily small neighborhood of the equilibrium point in
probability within finite time.

Proof. From Assumption (A1), the ξ subsystem is JISpS in probability. And it has been shown
in Theorem 4.1 that the X subsystem is JISpS in probability. Similar to the proof in [12], we
have that the entire MJNS (3.1) is JISpS in probability; that is, for any given ε > 0, there exists
T > 0 and δ > 0 such that if t > T , the output of jump system y satisfies

P
{∣∣y(t)∣∣ < δ

} ≥ 1 − ε. (4.12)

Meanwhile δ can be made as small as possible by appropriate control parameters chosen.

5. Simulation

With loss of generality, in this section we consider a two-order Markovian jump nonlinear
system with regime transition space S = {1, 2}, and the system with unmodeled dynamics
and noise is as follows:

dξ = q(x1, ξ, t, r(t))dt,

dx1 = x2dt + f1(x1, t, r(t))θ∗dt + Δ1(X, ξ, t, r(t))dt + x1/3
1 dω,
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dx2 = udt + f2(X, t, r(t))θ∗dt + Δ2(X, ξ, t, r(t))dt,

y = x1,

(5.1)

where the transition rate matrix is Π = [ π11 π12
π21 π22 ] =

[ −2 2
3 −3

]
with stationary distribution ζ1 =

ζ2 = 0.5.
Here let noise covariance be E{dωdωT} = 1 and system dynamics for each mode as

q(x1, ξ, t, 1) = −0.5ξ + 0.3x1, q(x1, ξ, t, 2) = −0.4ξ + 0.3x1 cos t,

f1(x1, t, 1) = x2
1, f1(x1, t, 2) = −x1 cosx1,

Δ1(X, ξ, t, 1) = 0.5ξ + 0.4x1 sin 2t, Δ1(X, ξ, t, 2) = x1ξ,

f2(X, t, 1) = x1 sinx2 + x2, f2(X, t, 2) = x1 + 2x2,

Δ2(X, ξ, t, 1) = 0.4ξ sin t + 0.3x1. Δ2(X, ξ, t, 2) = x1|ξ|1/2.

(5.2)

From Assumption (A2), we have

Δ1(X, ξ, t, 1) ≤ p∗1|ξ| + p∗1|x1|, Δ1(X, ξ, t, 2) ≤ p∗1|ξ|2 + p∗1|x1|2,

Δ2(X, ξ, t, 1) ≤ p∗2|ξ| + p∗2|x1|, Δ2(X, ξ, t, 2) ≤ p∗2|ξ| + p∗2|x1|2,
(5.3)

where p∗1 ≤ 0.5 and p∗2 ≤ 0.5 and the ξ subsystem satisfies

LV0(ξ, t, k) ≤ − 4
10
|ξ|2 + χ0(|x1|) + d0, (5.4)

where V0 = (1/2)ξ2, χ0(|x1|) = 0.15|x1|2, d0 = 0.125, and it can be checked which satisfies the
stochastic small-gain theorem. Thus the control law is taken as follows (here δ1 = 1 ).

Case 1. The system regime is k = 1:

α1(1) = −
(
c1 +

3
4

)
x1 − x2

1θ − μ1x
7/3
1 − p1x1 tanh

(
x4

1

ε1

)
− x3

1 tanh

(
x6

1

vi

)

α2(1) = −
(
c2 +

1
4

)
z2(1) − x1 sinx2 − u1z

3
2(1)x

2
1 −

1
4
z3

2(1) −
(
c1 +

3
4
+ 2x1 +

3
4
x2

1x
4
1

)

×
(
x2

1 + x2

)
+ π11α1(1) + π12α1(2) − μ2z2(1)[α1(1) − α1(2)]4 − τ2(1)θ − τ1(1)θ̇

− p1 tanh

(
x4

1

ε1

)
− 3x2

1 tanh

(
x6

1

vi

)
− 4p1x

4
1sech2

(
x4

1

ε1

)
− x8

1sech2

(
x6

1

vi

)
− p2�1(2),
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z2(1) = x2 − α1(1),

θ̇ = γ

[
2∑
i=1

z3
i τi(1) − a

(
θ − θ0

)]
,

ṗ1 = σ1

[
x3

1�i(1) −m1

(
p1 − p0

1

)]
,

ṗ2 = σ2

[
z3

2(1)�2(1) −m2

(
p2 − p0

2

)]
.

(5.5)

Case 2. The system regime is k = 2:

α1(2) = −
(
c1 +

3
4

)
x1 − x1 sinx1 − x2 − p1x1 tanh

(
x4

1

ε1

)
− x3

1 tanh

(
x6

1

vi

)
,

α2(2) = −
(
c2 +

1
4

)
z2(2) − μ1z

3
2(2)x

4
1 −

1
4
z3

2(2) −
(
c1 +

11
4

+
3
4
x2

1 + x6
1

)
(x1 + x2)

+ π21α1(1) + π22α1(2) − μ2z2(2)[α1(1) − α1(2)]4 − τ2(2)θ − τ1(2)θ̇

− p1 tanh

(
x4

1

ε1

)
− 3x2

1 tanh

(
x6

1

vi

)
− 4p1x

4
1sech2

(
x4

1

ε1

)
− x8

1sech2

(
x6

1

vi

)
− p2�2(2),

z2(2) = x2 − α1(2),

θ̇ = γ

[
2∑
i=1

z3
i τi(2) − a

(
θ − θ0

)]
,

ṗ1 = σ1

[
x3

1�i(2) −m1

(
p1 − p0

1

)]
,

ṗ2 = σ2

[
z3

2(2)�2(2) −m2

(
p2 − p0

2

)]
.

(5.6)

In computation, we set the initial value to be x1 = 1.6, x2 = −2.7, θ = 0, p1 = p2 = 0 let
parameter θ0 = 1, γ = 1, a = 1, p0 = 0.7, εi = vi = 0.5, mi = 1, μ1 = μ2 = 1 and the time step to
be 0.05 s. For comparison, two groups of different control parameters are given. First we take
the parameter with values c1 = c2 = 0.7, σ1 = σ2 = 2, and the simulation results are as follows.
Figure 2 shows the regime transition of the jump system, Figure 3 shows the system output
y which is defined as the system state x1, and Figure 4 shows system state x2. Figure 5 shows
the corresponding switching controller u; finally Figure 6 shows the trajectory of adaptive
parameter θ and Figure 7; Figure 8 shows the trajectory of parameter p1, p2, respectively.

Now we choose different control parameters as c1 = c2 = 2, σ1 = σ2 = 5 and repeat
the simulation. The simulation results are as follows. Figure 9 shows the regime transition of
the jump system, Figure 10 shows the system output y which is defined as the system state
x1 and, Figure 11 shows system state x2, and Figure 12 shows the corresponding switching
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Figure 5: Switching controller u.
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Figure 6: Adaptive parameter θ.
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Figure 8: Parameter p2.

0 20 40 60 80 100 120 140 160 180 200
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

R
eg

im
e
r(
t)

Time t (0.05 s)

Figure 9: Regime transition r(t).

controller u; the trajectory of adaptive parameter θ is shown in Figures 13 and 14; Figure 15
shows the trajectory of parameter p1, p2, respectively.

Comparing the results from two simulations, all the signals of closed-loop system
are globally uniformly ultimately bounded, and the system output can be regulated to a
neighborhood near the equilibrium point despite different jump samples. As could be seen
from the figures, larger values of c1, c2, σ1, σ2 help to increase the convergence speed of
system states. This reason is that the increase of these parameters increases the value of α,
which determines the system states convergence speed. Also adaptive parameters θ and p1,
p2 approach convergence faster with the increasing of aforementioned parameters.

Remark 5.1. Much research work has been performed towards the study of nonlinear system
by using small-gain theorem [16, 19]. In contrast to their contributions, this paper considers
a more general form than nonjump systems. The controller u(k) varies with different regime
r(t) = k taken, and it differs in two aspects (see (3.16)): the coupling of regimes πkjαi−1(j) and
μ2zi[Γi(k)ΓTi (k)]

2, which are both caused by the Markovian jumps. The switching controller
will degenerate to an ordinary one if r(t) ≡ 1. This controller design method can also be
applied for the nonjump nonlinear system.

6. Conclusion

In this paper, the robust adaptive switching controller design for a class of Markovian jump
nonlinear system is studied. Such MJNSs, suffering from unmodeled dynamics and noise
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Figure 10: System output y.
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Figure 11: System state x2.
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Figure 12: Switching controller u.
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Figure 13: Adaptive parameter θ.
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Figure 15: Parameter p2.

of unknown covariance, are of the strict feedback form. With the extension of input-to-
state stability (ISpS) to jump case as well as the small-gain theorem, stochastic Lyapunov
stability criterion is put forward. By using backstepping technique, a switching controller is
designed which ensures the jump nonlinear system to be jump ISpS in probability. Moreover
the upper bound of uncertainties can be estimated, and system output will converge to
an attractive region around the equilibrium point, whose radius can be made as small as
possible with appropriate control parameters chosen. Numerical examples are given to show
the effectiveness of the proposed design.
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This paper investigates the problem of robust stability of uncertain linear discrete-time system
over network with bounded packet loss. A new Lyapunov functional is constructed. It can more
fully utilize the characteristics of the packet loss; hence the established stability criterion is more
effective to deal with the effect of packet loss on the stability. Numerical examples are given to
illustrate the effectiveness and advantage of the proposed methods.

1. Introduction

A networked control system (NCS) is a system whose feedback loop or (and) control loop is
(are) connected via a communication network, which may be shared with other devices. The
main advantages of NCS are low cost, reduced weight, high reliability, simple installation,
and maintenance. As a result, the NCSs have been applied in many fields, such as mobile
sensor networks, manufacturing systems, teleoperation of robots, and aircraft systems [1].

However, the insertion of the communication networks in control loops will bring
some new problems. One of the most common problems in NCSs, especially in wireless
sensor networks, is packet dropout, that is, packets can be lost due to communication noise,
interference, or congestion [2]. Some results on this issue have been available. Generally, in
these results there are two types of packet-loss model. One is stochastic packet loss ([2–5];
etc), another is arbitrary but bounded packet loss ([6–9]; etc).

Here, we are concerned about the arbitrary but bounded packet loss. For this case,
there are two approaches available. One approach is based on switched system theory;
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another one is based on the theory of time-varying-delay system. Yu et al. [7] modeled the
packet-loss process as an arbitrary but finite switching signal. This enables them to apply the
theory from switched systems to stabilize the NCS. However, Yu et al. [7] adopted a common
Lyapunov function and the results are quadratic. Xiong and Lam [9] utilized a packet-loss-
dependent Lyapunov function to establish the stabilization condition, which is less conser-
vative than that of Yu et al. [7]. Unfortunately, however, in the stability condition of their
approaches the system matrices appear in the forms of power and cross-multiplication among
them. Therefore, it is difficult to deal with the systems with parametric uncertainty by using
these approaches. In contrast, if utilizing the delay system approach, the system matrices are
affine in the stability condition. Hence, this approach suits the uncertain systems. However,
it may be very conservative if directly using the existing delay system approaches (e.g., [10–
14]) to deal with the bounded packet loss. The main reason is that the existing approaches can
not fully utilize the characteristic of packet loss. Therefore, for the systems in the simulta-
neous presence of parameter uncertainties and bounded packet loss, the problem of robust
stability has not been fully investigated and remains to be challenging, which motivates the
present study.

In this paper, we study the robust stability problem for uncertain discrete-time systems
with bounded networked packet loss. First, we transform the packet loss into a time-varying
input delay. Second, we note that the considered time-varying delay has a new characteristic.
It is different with the general time-varying delay, that is, the considered time delay will
change with some laws in the interval of two consecutive successful transmissions of the
network, which is not possessed by general time-varying delay. In order to utilize this char-
acteristic, we define a new Lyapunov functional. It does not only depend on the bound of the
delay, but also on the rate of its change. Due to more fully utilizing the properties of the packet
loss (that is the time-varying delay induced by the packet loss), the established stability
criterion shows its less conservativeness. The construction of Lyapunov functional is inspired
by Fridman [15], where the stability of sampled-data control systems is considered. It does
not mean that the method developed in this paper is trivial. In fact, as it is shown in the
Section 3 of this paper that the properties of induced-delay are more complicate than that in
Fridman [15], such that the method of Fridman [15] cannot directly be applied to the problem
considered in this paper. Finally, three examples are provided to illustrate the effectiveness of
the developed results.

2. Problem Formulation

The framework of NCSs considered in the paper is depicted in Figure 1. The plant to be con-
trolled is modeled by linear discrete-time system:

x(k + 1) = (A + ΔA)x(k) + (B + ΔB)u(k), (2.1)

where k ∈ Z+ is the time step, x(k) ∈ R
nx and u(k) ∈ R

nu are the system state and control
input, respectively. x0 � x(0) is the initial state. A and B are known real constant matrices
with appropriate dimension. ΔA and ΔB are unknown matrices describing parameter uncer-
tainties.

In this paper, the parameter uncertainties are assumed to be of the form
[
ΔA ΔB

]
=

DF(k)
[
E1 E2

]
, where D, E1, and E2 are known real constant matrices of appropriate
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Figure 1: Networked control systems with packet loss.

dimensions, and F(k) is an unknown real-valued time-varying matrix satisfying F(k)FT (k) ≤
I.

Networks exist between sensor and controller and between controller and zero-order
holder (ZOH). The sensor is clock driven, the controller and ZOH are event driven and the
data are transmitted in a single packet at each time step. As have been mentioned in Section 1,
this paper only considers the network packet loss. Then it is assumed that there is not any
network-induced delay.

Let S � {i1, i2, i3, . . .} ⊂ {0, 1, 2, 3, . . .} denote the sequence of time points of successful
data transmissions from the sensor to the zero-order hold at the actuator side and in < in+1 for
any n = 1, 2, 3, . . ..

Assumption 2.1. The number of consecutive packet loss in the network is less than m, that is

in+1 − in − 1 ≤ m, ∀n ∈ {1, 2, 3, . . .}. (2.2)

Remark 2.2. Assumption 2.1 is similar to that in Liu et al. [8]. From the physical point of view,
it is natural to assume that only a finite number of consecutive packet losses can be tolerated
in order to avoid the NCS becoming open loop. Thus, the number of consecutive packet loss
in the networks should be less than the finite number m.

The networked controller is a state-feedback controller:

u = Kx. (2.3)

From the viewpoint of the ZOH, the control input is

u(k) = u(in) = Kx(in), in ≤ k < in+1. (2.4)

The initial inputs are set to zero: u(k) = 0, 0 ≤ k < i1. Hence the closed-loop system becomes

x(k + 1) = (A + ΔA)x(k) + (B + ΔB)Kx(in), (2.5)

for k ∈ [in, in+1). The objective of this paper is to analyze the robust stability of NCS (2.5).
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Remark 2.3. The packet loss process can take place in the sensor-controller link and the con-
troller-actuator link. Since the considered controller is static in this paper, it is equivalent to
incorporate the double-sided packet loss as a single-packet loss process. This is just the reason
that this paper only considers the single-packet loss process. However, if the controller is on-
line implemented, then one should clearly consider the double-sided packet loss rather than
incorporate them as a single-packet loss process. For such case, readers can be referred to
Ding [16], which systematically addressed the modeling and analysis methods for double-
sided packet loss process.

3. Stability of Networked Control Systems

In this section, we analyze the stability property of NCSs. Here we firstly investigate the sta-
bility of NCS (2.5) when the plant (2.1) without any uncertainty, that is, ΔA = 0 and ΔB = 0.
we have the following result.

Theorem 3.1. Assuming ΔA = 0 and ΔB = 0, NCS (2.5) with arbitrary packet-loss process is
asymptotically stable if there exist matrices P > 0, Z > 0, Q1, Q2, M, N, and S such that the fol-
lowing LMI holds

Φ1 � Ξ1 + Ξ2 + ΞT
2 +m(Ξ3 + Ξ5) − (m + 1)Ξ4 < 0, (3.1)⎡

⎣Φ̃2 N

∗ − 1
m − 1

Z

⎤
⎦ < 0, (3.2)

Φ3 � Ξ1 + Ξ6 + ΞT
6 − Ξ4 − 1

m
Ξ7 < 0, (3.3)

[
P + (m + 1)Λ1 (m + 1)Λ2

∗ (m + 1)Λ3

]
> 0, (3.4)

where Φ̃2 � Ξ1 + Ξ2 + ΞT
2 + Ξ3 + Ξ5 − 2Ξ4 and

Ξ1 =diag{P,−P, 0}, Ξ6 =
[
S −SA −SBK],

Ξ2 =
[
M −MA +N −MBK −N], Λ1 =

Q1 +QT
1

2
,

Λ2 = −Q1 +Q2, Λ3 =
Q1 +QT

1

2
−Q2 −QT

2 ,

Ξ3 =

⎡
⎣Λ1 0 Λ2

∗ 0 0
∗ ∗ Λ3

⎤
⎦, Ξ4 =

⎡
⎣0 0 0
∗ Λ1 Λ2

∗ ∗ Λ3

⎤
⎦,

Ξ5 =

⎡
⎣Z −Z 0
∗ Z 0
∗ ∗ 0

⎤
⎦, Ξ7 =

⎡
⎣0 0 0
∗ Z −Z
∗ ∗ Z

⎤
⎦.

(3.5)
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Proof. Define

dk = k − in, in ≤ k < in+1, (3.6)

then the NCS (2.5) can be represented as a delay system:

x(K + 1) = Ax(K) + BKx(k − dk), k ∈ [in, in+1). (3.7)

Inspired by Fridman [15], we construct the following new functional candidate as:

V (k) � V1(k) + V2(k) + V3(k), (3.8)

with V1(k) = xT (k)Px(k) and

V2(k) =(in+1 − in − dk)
[

x(k)
x(k − dk)

]T

×

⎡
⎢⎢⎣
Q1 +QT

1

2
−Q1 +Q2

∗ Q1 +QT
1

2
−Q2 −QT

2

⎤
⎥⎥⎦
[

x(k)
x(k − dk)

]
,

V3(k) = (in+1 − in − dk)
k−1∑

i=k−dk

ηT (i)Zη(i),

(3.9)

where η(i) = x(i + 1) − x(i) and P > 0, Z > 0, Q1, Q2 are to be determined.
From (2.2) and (3.6), we know that dk ≤ m. Therefore, similar with the discussion

of Fridman [15], it can be seen that (3.4) guarantees (3.8) to be a Lyapunov functional. For
k ∈ [in, in+1), we, respectively, calculate the forward difference of the functional (3.8) along
the solution of system (3.7) by two cases.

Case 1 (in ≤ k < in+1 − 1). In this case, we have dk+1 = dk + 1. Then,

ΔV1(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k), (3.10)

ΔV2(k) =(in+1 − in − dk − 1)ξT (k)Ξ3ξ(k)

− (in+1 − in − dk)ξT (k)Ξ4ξ(k),

ΔV3(k) = (in+1 − in − dk − 1)[x(k + 1) − x(k)]T

× Z[x(k + 1) − x(k)] −
k−1∑

i=k−dk

ηT (i)Zη(i),

(3.11)

where ξ(k) = [x (k + 1)T x(k)T x(k − dk)
T ]

T
.
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In addition, for any appropriately dimensioned matrices M and N the following rela-
tionships always hold:

0 = 2ξT (k)M[x(k + 1) −Ax(k) − BKx(k − dk)] , (3.12)

0 ≤ 2ξT (k)N[x(k) − x(k − dk)],

+ dkξ
T (k)NZ−1NTξ(k) +

k−1∑
i=k−dk

ηT (i)Zη(i).
(3.13)

Then, from (3.10)–(3.13), we have

ΔV (k) ≤ ξT (k)Ωξ(k), (3.14)

where Ω = Ξ1 + Ξ2 + ΞT
2 + (in+1 − in − dk − 1)(Ξ3 + Ξ5) − (in+1 − in − dk)Ξ4 + dkNZ−1NT .

Now we prove (3.1) and (3.2) guaranteeing that Ω < 0. By Schur complement, (3.2) is
equivalent to

Φ2 � Φ̃2 + (m − 1)NZ−1NT < 0. (3.15)

Then from (3.1) and (3.15), we know that Φ1 < 0 and Φ2 < 0. Hence for any scalar α ∈ [0, 1],
the following inequality holds:

αΦ1 + (1 − α)Φ2 < 0. (3.16)

Noting that in this case 0 ≤ dk ≤ in+1 − in − 2, then we have 0 ≤ in+1 − in − 2 − dk ≤ m − 1.
Therefore, 0 ≤ (in+1 − in − dk − 2)/(m − 1) ≤ 1. By setting α = (i(n+1) − in − dk − 2)/(m − 1), from
(3.16) we obtain that Ω + (m − (in+1 − in − 1))NZ−1NT < 0. Due to m − (in+1 − in − 1) ≥ 0, the
inequality above implies Ω < 0 holds. Therefore, in this case ΔV (k) < 0 holds.

Case 2 (k = in+1 − 1). In this case, we have dk = in+1 − in − 1 and dk+1 = 0. The

ΔV1(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k), (3.17)

ΔV2(k) = −ξT (k)Ξ4ξ(k),

ΔV3(k) = −
k−1∑

i=k−dk

ηT (i)Zη(i).
(3.18)

By the Jensen’s inequality [17], we have

−
k−1∑

i=k−dk

ηT (i)Zη(i)

≤ − 1
m
(x(k) − x(k − dk))

TZ(x(k) − x(k − dk)).

(3.19)
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In addition, for any appropriately dimensioned matrix S the following relationship always
holds:

0 = 2ξT (k)S[x(k + 1) −Ax(k) − BKx(k − dk)]. (3.20)

Then, from (3.17)–(3.20), we have

ΔV (k) ≤ ξT (k)
[
Ξ1 + Ξ6 + ΞT

6 − Ξ4 − 1
m
Ξ7

]
ξT (k). (3.21)

In this case, we can see that (3.3) guarantees ΔV (k) < 0.
From both Cases 1 and 2, we can conclude ΔV (k) < 0 for k ∈ [in, in+1), for all n ∈

{1, 2, 3, . . .}. Then, from the Lyapunov stability theory, the NCS (2.5) with arbitrary packet-
loss process satisfying (2.2) is asymptotically stable.

Remark 3.2. The proposed stability criterion in Theorem 3.1 is dependent on the bound of the
packet loss. Furthermore, from the proof of Theorem 3.1, we can see that the varying rate
of packet-loss-induced delays is fully utilized to obtain the stability condition. According
to the difference of induced delays’ varying rates, we separate k ∈ [in, in+1) into two parts,
that is in ≤ k < in+1 − 1 and k = in+1 − 1. For the two cases, we, respectively, calculate the
forward difference of the functional and guarantee it less than zero, such that the NCS is
asymptotically stable. Theorem 3.1 is more effective to deal with packet loss than the existing
time-varying delay system approaches in the sense that Theorem 3.1 can allow a larger upper
bound of the packet loss, which will be demonstrated in an example in next section.

Remark 3.3. In Fridman [15], the continuous-time sampled control system is considered. The
varying rate of sampling-induced delays is constant when the derivative of the Lyapunov
functional is calculated. However, in our paper, the varying rate of packet-loss-induced
delays will be changing when the difference of the Lyapunov functional is calculated. There-
fore, the method of Fridman [15] for continuous-time domain cannot directly be applied to
the problem of discrete-time domain considered in this paper.

Note that in LMIs (3.1)–(3.3) the system matrices A and B appear in affine form, thus
the stability condition presented in Theorem 3.1 can be readily extended to cope with uncer-
tain systems (2.1). By using Theorem 3.4 and the well-known S-procedure, we can easily
obtain the following theorem, and hence its proof is omitted.

Theorem 3.4. NCS (2.5) is robustly asymptotically if there exist matrices P > 0, Z > 0,Q1,Q2,M,
N, S and scalar ε1, ε2, ε3 satisfying (3.4) and the following LMIs:

⎡
⎣Φ1 MD ε1ΠT

∗ −ε1I 0
∗ ∗ −ε1I

⎤
⎦ < 0,

⎡
⎣Φ3 SD ε3ΠT

∗ −ε3I 0
∗ ∗ −ε3I

⎤
⎦ < 0,

⎡
⎢⎢⎢⎢⎣
Φ̃2 N MD ε2ΠT

∗ − 1
m − 1

Z 0 0

∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I

⎤
⎥⎥⎥⎥⎦ < 0,

(3.22)

where Φ1, Φ̃2, Φ3 are given in (3.5) and Π =
[

0 −E1 −E2K
]
.
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Remark 3.5. Because the LMIs of Theorem 3.1 are affine in the system matrices A and B, it
is readily extended to deal with the systems with norm-bounded parameter uncertainty (i.e.,
Theorem 3.4). With similar reason it can also be easily extended to deal with the systems with
polytopic-type uncertainty. The reason why we only consider one of the cases is to avoid the
paper being too miscellaneous.

Remark 3.6. It is worth to reiterate that if there is only packet loss, the method of this paper
is more suitable than the general time-delay method. However, if there simultaneously exist
network-induced delay and packet loss, the method of this paper is not applicable, but the
general time-delay method is still valid. For example, Yue et al. [18], Gao and Chen [19],
and Huang and Nguang [20] considered the networked control systems with both network-
induced delay and packet loss, where Yue et al. [18] and Gao and Chen [19] are the methods
of continuous-time domain, Huang and Nguang [20] is the method of discrete-time domain.
Yue et al. [18] investigated the H∞ regulating control for network-based uncertain systems.
Gao and Chen [19] studied the H∞ output tracking control for network-based uncertain
systems. For the uncertain networked control system with random time delays, Huang
and Nguang [20] analyzed robust disturbance attenuation performance and proposed the
corresponding design method for the controllers.

4. Numerical Examples

In this section, three examples are provided to illustrate the effectiveness and advantage of
the proposed stability results.

Example 4.1. Borrow the system considered by Gao and Chen [10], where ΔA = 0, ΔB = 0
and

A =
[

1.0078 0.0301
0.5202 1.0078

]
, B =

[−0.0001
−0.0053

]
. (4.1)

Here we are interested in the allowable maximum bound of dropout loss that guar-
antees the asymptotic stability of the closed-loop system. For extensive comparison purpose,
we let the controller gain matrices take two different values: K1 =

[
105.2047 25.3432

]
and

K2 =
[

110.6827 34.6980
]
. By using different methods, the calculated results are presented

in Table 1. From the table, it is easy to see that the method proposed in this paper is more
effective than the others. But it is never to say that the proposed method in this paper is more
suitable to deal with the time-delay; it is only to show that the proposed method is more
suitable to deal with the packet-loss than the general time-delay methods.

Example 4.2. Borrow the system considered by Wang et al. [14], where ΔA = 0, ΔB = 0 and

A =

⎡
⎢⎢⎣

1 0.01 0 0
0 1 0 0
0 0 1 0.01
0 0 0 1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 0
0.01 0

0 0
0 0.01

⎤
⎥⎥⎦,

K =
[−0.0166 −0.2248 0.0006 0.0016

0.0004 0.0016 −0.0165 −0.2271

]
.

(4.2)
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Table 1: Calculated maximum bound of dropout loss.

Controller gain matrix K = K1 K = K2

[10, Theorem 1] 7 5
[11, Theorem 1] 6 5
[12, Theorem 1] 6 4
[13, Theorem 1] 7 5
Theorem 3.1 in this paper 13 10

When lower bound of the equivalent delay is 0, the allowable maximum upper bound
of the equivalent delay is 13 as reported in Wang et al. [14]. Therefore, if there is only
bounded packet loss, by using the method of Wang et al. [14], the allowable maximum
bound of dropout loss is 13. However, by using Theorem 3.1 of this paper, one can obtain
that the allowable maximum bound of dropout loss is 190. This example shows again that the
proposed method is more suitable to deal with the packet-loss than the general time-delay
methods.

Example 4.3. Consider the following uncertain system:

x(k + 1) =
[

1.0078 + α(k) 0.0301
0.5202 1.0078

]
x(k) +

[ −0.1
−5.3 + α(k)

]
u(k), (4.3)

where |α(k)| ≤ α. The system matrices can be written in the form of (2.1) with matrices given
by

A =
[

1.0078 0.0301
0.5202 1.0078

]
, B =

[−0.1
−5.3

]
, D = α,

E1 =
[

1 0
0 0

]
, E2 =

[
0
1

]
, F(k) =

α(k)
α

.

(4.4)

Now assume that the controller gain matrix is K =
[

0.1052 0.0253
]
, and our purpose is to

determine the upper value of α such that the closed-loop system is robustly stable. By using
Theorem 3.4, the detail calculated result is shown in Table 2.

In the following, we will present some simulation results. Assume the initial condition
to be x(k) = [1 − 1]T for k ≤ 0. Let α(k) changes randomly between −0.0027 and 0.0027, which
is shown in Figure 2(a). In addition, let the upper of dropout loss is 13, which is shown in
Figure 2(b). Then, the state response of the close-loop system is given in Figure 2(c). It can
be seen from this figure that the system is robustly asymptotically stable, which shows the
validity of the method proposed in this paper.

5. Conclusions

The problem of robust stability analysis for uncertain systems over network with bounded
packet loss has been considered in this paper. A new Lyapunov functional is constructed.
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Table 2: Calculated upper values of α for different cases.

m 3 5 7 9 11 13
Upper value of α 0.0105 0.0104 0.0101 0.0096 0.0077 0.0027

0 60 120 240180
−0.0027

0.0027

α
(k
)

k

(a)

0 60 120 240180

k

0

13

d
k

(b)

0 60 120 240180

k

−1

0

1

x
(k
)

(c)

Figure 2: Simulation results.

This Lyapunov functional not only utilizes the bound of the packet loss but also utilizes
the varying rate of the packet-loss-induced delays, which aims at reducing the conservatism
of the results. Numerical examples are also presented to demonstrate the effectiveness and
advantages of the proposed approach.
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Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR). In
this paper, an optimal control model of distributed parameter systems (DPSs) for polymer injection
strategies is established, which involves the performance index as maximum of the profit, the
governing equations as the fluid flow equations of polymer flooding, and the inequality constraint
as the polymer concentration limitation. To cope with the optimal control problem (OCP) of this
DPS, the necessary conditions for optimality are obtained through application of the calculus of
variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the
computation of optimal injection strategies. The numerical results of an example illustrate the
effectiveness of the proposed method.

1. Introduction

It is of increasing necessity to produce oil fields more efficiently and economically because of
the ever-increasing demand for petroleum worldwide. Since most of the significant oil fields
are mature fields and the number of new discoveries per year is decreasing, the use of EOR
processes is becoming more and more imperative. At present, polymer flooding technology
is the best method for chemically EOR [1]. It could reduce the water-oil mobility ratio and
improve sweep efficiency [2–5].

Because of the high cost of chemicals, it is essential to optimize polymer injection
strategies to provide the greatest oil recovery at the lowest cost. The optimization procedure
involves maximizing the objective function (cumulative oil production or profit) from
a polymer flooding reservoir by adjusting the injection concentration. One way of solving
this problem is direct optimization with the reservoir simulator. Numerical models are
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used to evaluate the complex interactions of variables affecting development decisions,
such as reservoir and fluid properties and economic factors. Even with these models, the
current practice is still the conventional trial and error approach. In each trial, the polymer
concentration of an injection well is selected based on the intuition of the reservoir engineer.
This one-well-at-a-time approach may lead to suboptimal decisions because engineering and
geologic variables affecting reservoir performance are often nonlinearly correlated. And the
problem definitely compounds when multiple producers and injectors are involved in a field
development case. The use of the optimal control method offers a way out.

The optimal control method has been researched in EOR techniques in recent years.
Ramirez et al. [6] firstly applied the theory of optimal control to determine the best possible
injection strategies for EOR processes. Their study was motivated by the high operation costs
associated with EOR projects. The objective of their study was to develop an optimization
method to minimize injection costs while maximizing the amount of oil recovered. The
performance of their algorithm was subsequently examined for surfactant injection as an
EOR process in a one-dimensional core flooding problem [7]. The control for the process was
the surfactant concentration of the injected fluid. They observed a significant improvement
in the ratio of the value of the oil recovered to the cost of the surfactant injected from 1.5
to about 3.4. Optimal control was also applied to steam flooding by Liu et al. [8]. They
developed an approach using optimal control theory to determine operating strategies to
maximize the economic attractiveness of steam flooding process. Their objective was to
maximize a performance index which is defined as the difference between oil revenue and
the cost of injected steam. Their optimization method also obtained significant improvement
under optimal operation. Ye et al. [9] were involved in the study of optimal control of
gas-cycling in condensate reservoirs. It was shown that both the oil recovery and the total
profit of a condensate reservoir can be enhanced obviously through optimization of gas
production rate, gas injection rate, and the mole fractions of each component in injection gas.
Daripa et al. [10–15] researched the basic physical mechanisms that contribute to poor
oil recovery by EOR technologies and how to individually control each of these physical
mechanisms. Brouwer and Jansen [16] and Sarma et al. [17] used the optimal control
theory as an optimization algorithm for adjusting the valve setting in smart wells of water
flooding. The water flooding scheme that maximized the profit was numerically obtained by
combining reservoir simulation with control theory practices of implicit differentiation. They
were able to achieve improved sweep efficiency and delayed water breakthrough by dynamic
control of the valve setting.

For the previous work on optimal control of polymer flooding, Guo et al. [18] applied
the iterative dynamic programming algorithm to solve the OCP of a one-dimensional core
polymer flooding. However, the optimal control model used in their study is so simple that
it is not adapted for practical oilfield development. As a result of the complicated nature
of reservoir models with nonlinear constraints, it is very tedious and troublesome to cope
with a large number of grid points for the state variables and control variables. To avoid
these difficulties, Li et al. [19] and Lei et al. [20] used the genetic algorithms to determine
the optimal injection strategies of polymer flooding and the reservoir model equations were
treated as a “black box.” The genetic algorithms are capable of finding the global optimum on
theoretical sense, but, as Sarma et al. [17] point out, they require tens or hundreds of thousand
reservoir simulation runs of very large model and are not able to guarantee monotonic
maximization of the objective function.

In this paper, an optimal control model of DPS for polymer flooding is established
which maximizes the profit by adjusting the injection concentration. Then the determination
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of polymer injection strategies turns to solve this OCP of DPS. Necessary conditions for
optimality are obtained by Pontryagin’s weak maximum principle. A gradient numerical
method is presented for solving the OCP. Finally, an example of polymer flooding project
involving a heterogeneous reservoir case is investigated and the results show the efficiency
of the proposed method.

2. Mathematical Formulation of Optimal Control

2.1. Performance Index

Let Ω ∈ R2 denote the domain of reservoir with boundary ∂Ω, n be the unit outward normal
on ∂Ω, and (x, y) ∈ Ω be the coordinate of a point in the reservoir. Given a fixed final time
tf , we set Ψ = Ω × [0, tf], Γ = ∂Ω × [0, tf], and suppose that there exist Nw injection wells
and No production wells in the oilfield. The injection and production wells are located at
Lw = {(xwi, ywi) | i = 1, 2, . . . ,Nw} and Lo = {(xoj , yoj) | j = 1, 2, . . . ,No}, respectively. This
descriptive statement of the cost functional must be translated into a mathematical form to
use quantitative optimization techniques. The oil value can be formulated as

∫ tf

0

∫∫
Ω
ξo
(
1 − fw

)
qoutdσ dt, (2.1)

where ξo is the cost of oil per unit mass (104 $/m3), fw(x, y, t) is the fractional flow of water,
and qout(x, y, t) is the flow velocity of production fluid (m/day). We define qout(x, y, t) ≥ 0 at
(x, y) ∈ Lo and qout(x, y, t) ≡ 0 at (x, y) /∈ Lo.

The polymer cost is expressed mathematically as

∫ tf

0

∫∫
Ω
ξpqincpindσ dt, (2.2)

where ξp is the cost of oil per unit volume (104 $/m3), cpin(x, y, t) is the polymer concentration
of the injection fluid (g/L), and qin(x, y, t) is the flow velocity of injection fluid (m/day). We
define qin(x, y, t) ≥ 0 at (x, y) ∈ Lw and qin(x, y, t) ≡ 0 at (x, y) /∈ Lw.

The objective functional is, therefore,

max J =
∫ tf

0

∫∫
Ω

[
ξo
(
1 − fw

)
qout − ξpqincpin

]
dσ dt. (2.3)

2.2. Governing Equations

The maximization of the cost functional J given by (2.3) is not totally free but is constrained
by the system process dynamics. The governing equations of the polymer flooding process
must therefore be developed to describe the flow of both the aqueous and oil phases through
the porous media of a reservoir formation. The equations used in this paper allow for the
adsorption of polymer onto the solid matrix in addition to the convective and dispersive
mechanisms of mass transfer. Let p(x, y, t), Sw(x, y, t) and cp(x, y, t) denote the pressure,
water saturation, and polymer concentration of the oil reservoir, respectively, at a point
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(x, y) ∈ Ω and a time t ∈ [0, tf], then p(x, y, t), Sw(x, y, t), and cp(x, y, t) satisfy the following
partial differential equations (PDEs).

(i) The flow equation for oil phase

∂

∂x

(
kpro

∂p

∂x

)
+

∂

∂y

(
kpro

∂p

∂y

)
− (1 − fw)qout = h

∂ao

∂t
,
(
x, y, t

) ∈ Ψ. (2.4)

(ii) The flow equation for water phase

∂

∂x

(
kprw

∂p

∂x

)
+

∂

∂y

(
kprw

∂p

∂y

)
+ qin − fwqout = h

∂aw

∂t
,
(
x, y, t

) ∈ Ψ. (2.5)

(iii) The flow equation for polymer component

∂

∂x

(
kdrd

∂cp

∂x

)
+

∂

∂x

(
kprc

∂p

∂x

)
+

∂

∂y

(
kdrd

∂cp

∂y

)
+

∂

∂y

(
kprc

∂p

∂y

)
+ qincpin − fwqoutcp

= h
∂ac

∂t
,
(
x, y, t

) ∈ Ψ.

(2.6)

(iv) The boundary conditions and initial conditions

∂p

∂n

∣∣∣∣
∂Ω

= 0,
∂Sw

∂n

∣∣∣∣
∂Ω

= 0,
∂cp

∂n

∣∣∣∣∣
∂Ω

= 0,
(
x, y, t

) ∈ Γ, (2.7)

p
(
x, y, 0

)
= p0(x, y), Sw

(
x, y, 0

)
= S0

w

(
x, y
)
,

cp
(
x, y, 0

)
= c0

p

(
x, y
)
,
(
x, y
) ∈ Ω,

(2.8)

where the corresponding parameters are defined as

kp = Kh, kd = Dh, (2.9)

ro =
kro
Boμo

, rw =
krw

BwRkμw
, rc =

krwcp

BwRkμp
, rd =

φpSw

Bw
, (2.10)

ao =
φ(1 − Sw)

Bo
, aw =

φSw

Bw
, ac =

φpSwcp

Bw
+ ρr
(
1 − φ)Crp. (2.11)

The constant coefficient K(x, y) is the absolute permeability (μm2), h is the thickness of the
reservoir bed (m), D is the diffusion coefficient of polymer (m2/s), ρr (kg/m3) is the rock
density, and μo (mPa·s) is the oil viscosity.
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The oil volume factor Bo, the water volume factor Bw, the rock porosity φ, and the
effective porosity to polymer φp are expressed as functions of the reservoir pressure p:

Bo =
Bor[

1 + Co

(
p − pr

)] ,
Bw =

Bwr[
1 + Cw

(
p − pr

)] ,
φ = φr

[
1 + CR

(
p − pr

)]
,

φp = faφ,

(2.12)

where pr is the reference pressure (MPa), φr , Bor , and Bwr denote the porosity, the oil, and
water volume factor under the condition of the reference pressure, respectively, fa is the
effective pore volume coefficient, Co, Cw, and CR denote the compressibility factors of oil,
water, and rock, respectively.

Functions relating values of the oil and water relative permeabilities kro and krw to the
water saturation Sw are

krw = krwro

(
Sw − Swc

1 − Swc − Sor

)nw

,

kro = krocw

(
1 − Sw − Sor

1 − Swc − Sor

)no

,

(2.13)

where krwro is the oil relative permeability at the irreducible water saturation Swc, krwcw is
the water relative permeability at the residual oil saturation and Sor, nw, and no are constant
coefficients.

The polymer solution viscosity μp (mPa·s), the permeability reduction factor Rk, and
the amount adsorbed per unit mass of the rock Crp (mg/g) which depend on the polymer
concentration cp are given by

μp = μw

[
1 +
(
ap1cp + ap2c

2
p + ap3

p

)]
,

Rk = 1 +
(Rk max − 1) · brk · cp

1 + brk · cp ,

Crp =
acp

1 + bcp
,

(2.14)

where μw is the viscosity of the aqueous phase with no polymer (mPa·s), ap1, ap2, ap3,
Rk max, brk, and a (cm3/g) and b (g/L) are constant coefficients.

The fractional flow of water fw is given by,

fw =
rw

ro + rw
. (2.15)
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2.3. Constraint

Since the negative and overhigh injection polymer concentrations are not allowed, the
constraint in polymer flooding is expressed mathematically as

0 ≤ cpin ≤ cmax, (2.16)

where cmax is the maximum injection polymer concentration.

2.4. Optimal Control Formulation

The reservoir pressure p, the water saturation Sw and the polymer concentration cp are the
three state variables for the problem as formulated. The system state vector is denoted by

u
(
x, y, t

)
=
[
p, Sw, cp

]T
. (2.17)

The control for the process is the polymer concentration of injected fluid

v
(
x, y, t

)
= cpin,

(
x, y
) ∈ Lw. (2.18)

Then the OCP of DPS for polymer flooding has the general form,

max
v

J =
∫ tf

0

∫∫
Ω
F(u, v)dσ dt, (2.19)

s.t. f
(
u̇,u,ux,uy,uxx,uyy, v

)
= 0,

(
x, y, t

) ∈ Ψ, (2.20)

g
(
u,ux,uy,uxx,uyy

)
= 0,

(
x, y, t

) ∈ Γ, (2.21)

u
(
x, y, 0

)
= u0(x, y), (

x, y
) ∈ Ω, (2.22)

0 ≤ v ≤ vmax, (2.23)

where u̇ = ∂u/∂t, ul = ∂u/∂l, ull = ∂2u/∂l2, l = x, y, (2.19) denotes the performance
index (2.3), (2.20) expresses the governing equations (2.4)–(2.6), (2.21) and (2.22) denote
the boundary and initial conditions, respectively, and (2.23) denotes the injection polymer
concentration constraint (2.16).

3. Necessary Conditions of Optimal Control

3.1. Maximum Principle of DPS

We desire to find a set of necessary conditions for the state vector, u, and the control, v, to
be extremals of the functional J (2.19) subject to the PDEs (2.20)∼(2.22) and the constraint
(2.23). A convenient way to cope with such an OCP of DPS (2.19)∼(2.23) is through the use
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of distributed adjoint variables. The first step is to form an augmented functional by adjoining
the governing equations to the performance index J . We define the Hamiltonian as

H = F + λT f, (3.1)

where λ(x, y, t) is the adjoint vector. Then the argument functional is given by,

JA = J +
∫ tf

0

∫∫
Ω
λT f
(
u̇,u,ux,uy,uxx,uyy, v

)
dσ dt =

∫ tf

0

∫∫
Ω
H
(
u̇,u,ux,uy,uxx,uyy, v

)
dσ dt.

(3.2)

Following the standard procedure of the calculus of variables, the increment of JA,
denoted by ΔJA, is formed by introducing variations δu, δux, δuy, δuxx, δuyy, δu̇, and δv
giving

ΔJA = JA
(
u + δu,ux + δux,uy + δuy,uxx + δuxx,uyy + δuyy, u̇ + δu̇, v + δv

)
− JA
(
u,ux,uy,uxx,uyy, u̇, v

)
.

(3.3)

This formulation assumes that the final time, tf , is fixed.
Expanding (3.3) in a Taylor series and retaining only the linear terms give the variation

of the functional, δJA,

δJA =
∫ tf

0

∫∫
Ω

⎡
⎣(∂H

∂u

)T

δu +
(
∂H

∂ux

)T

δux +
(

∂H

∂uxx

)T

δuxx +

(
∂H

∂uy

)T

δuy

+

(
∂H

∂uyy

)T

δuyy +
(
∂H

∂u̇

)T

δu̇ +
(
∂H

∂v

)
δv

⎤
⎦dσ dt.

(3.4)

Since the variations δu, δul, δull (l = x, y), and δu̇ are not independent can be expressed in
terms of the variations δu by integrating the following three terms by parts:

∫∫
Ω

[(
∂H

∂ul

)T

δul

]
dσ =

∫∫
Ω

∂

∂l

[(
∂H

∂ul

)T

δu

]
dσ −

∫∫
Ω

[
∂

∂l

(
∂H

∂ul

)T

δu

]
dσ, (3.5)

∫∫
Ω

[(
∂H

∂ull

)T

δull

]
dσ =

∫∫
Ω

[
∂2

∂l2

(
∂H

∂ull

)]T
δudσ

+
∫∫

Ω

∂

∂l

[(
∂H

∂ull

)T

δul − ∂

∂l

(
∂H

∂ull

)T

δu

]
dσ,

(3.6)

∫ tf

0

(
∂H

∂u̇

)T

δu̇ =

[(
∂H

∂u̇

)T

δu

]∣∣∣∣∣
tf

0

−
∫ tf

0

∂

∂t

(
∂H

∂u̇

)T

δudt. (3.7)
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Using the Green’s formula in (3.5) and (3.6), we obtain

∫∫
Ω

∑
l=x,y

[(
∂H

∂ul

)T

δul +
(
∂H

∂ull

)T

δull

]
dσ

=
∫∫

Ω

∑
l=x,y

[
− ∂

∂l

(
∂H

∂ul

)
+

∂2

∂l2

(
∂H

∂ull

)]T
δudσ

+
∮
∂Ω

⎧⎨
⎩
[(

∂H

∂ux
− ∂

∂x

∂H

∂uxx

)T

δu +
(

∂H

∂uxx

)T

δux

]
dy

−
⎡
⎣
(

∂H

∂uy
− ∂

∂y

∂H

∂uyy

)T

δu +

(
∂H

∂uyy

)T

δuy

⎤
⎦dx
⎫⎬
⎭.

(3.8)

By substituting the above equations (3.7) and (3.8) into (3.4), the first variation δJA is
expressed as

δJA =
∫ tf

t0

∫∫
Ω

(
∂H

∂u
− ∂

∂x

∂H

∂ux
− ∂

∂y

∂H

∂uy
+

∂2

∂x2

∂H

∂uxx
+

∂2

∂y2

∂H

∂uyy
− ∂

∂t

∂H

∂u̇

)T

δudσ dt

+
∫ tf

t0

∮
∂Ω

⎧⎨
⎩
[(

∂H

∂ux
− ∂

∂x

∂H

∂uxx

)T

δu +
(

∂H

∂uxx

)T

δux

]
dy

−
⎡
⎣
(

∂H

∂uy
− ∂

∂y

∂H

∂uyy

)T

δu +

(
∂H

∂uyy

)T

δuy

⎤
⎦dx
⎫⎬
⎭dt

+
∫∫

Ω

[(
∂H

∂u̇

)T

δu

]∣∣∣∣∣
tf

0

dσ +
∫ tf

t0

∫∫
Ω

(
∂H

∂v

)
δv dσ dt.

(3.9)

When the state and control regions are not bounded, the variation of the functional
must vanish at an extremal (the fundamental theorem of the calculus of variations). When
the control region is constrained by a boundary, then the necessary condition for optimality
is to maximize the performance index JA with respect to the control v. This means that the
variation δJA is

δJA(v∗, δv) ≥ 0, (3.10)

where v∗ denotes the optimal control. Equation (3.10) is the weak minimum principle of
Pontryagin. The necessary conditions for these two cases are the same except for the term
involving the variation of the control, δv. For polymer flooding problem there are higher and
lower bounds on the control variable v given as (2.16).

The following necessary conditions for optimality are obtained when we apply Pon-
tryagin’s maximum principle.
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(1) Adjoint Equations

Since the variation δu is free and not zero, the coefficient terms involving the δu variation in
the first term of (3.9) are set to zero. This results in the adjoint equations as given by

∂H

∂u
−
∑
l=x,y

(
∂

∂l

∂H

∂ul
+

∂2

∂l2
∂H

∂ull

)
− ∂

∂t

∂H

∂u̇
= 0. (3.11)

Substitute the Hamiltonian (3.1) into (3.11) and the adjoint equations become

∂F

∂u
+
(
∂f
∂u
− ∂

∂t

∂f
∂u̇

)T

λ

+
∑
l=x,y

⎡
⎣
(

∂2

∂l2
∂f
∂ull

− ∂

∂l

∂f
∂ul

)T

λ +
(

2
∂

∂l

∂f
∂ull

− ∂f
∂ul

)T ∂λ

∂l
+
(

∂f
∂ull

)T ∂2λ

∂l2

⎤
⎦

−
(
∂f
∂u̇

)T ∂λ

∂t
= 0.

(3.12)

Equation (3.12) is a set of PDEs with nonconstant coefficients.

(2) Transversality Boundary Conditions

The adjoint boundary conditions are obtained from the second term of (3.9):

[(
∂H

∂ul
− ∂

∂l

∂H

∂ull

)T

δu +
(
∂H

∂ull

)T

δul

]∣∣∣∣∣
∂Ω

= 0, l = x, y. (3.13)

(3) Transversality Terminal Conditions

Since the initial state is specified, the variation δu|t=0 of (3.9) is zero. However, the final state is
not specified; therefore, the variation δu|t=tf is free and nonzero. This means that the following
relation must be zero:

∂H

∂u̇
=
(
∂f

∂u̇

)T

λ = 0, at t = tf . (3.14)

(4) Optimal Control

With all the previous terms vanishing, the variation of the functional δJA becomes

δJA =
∫ tf

0

∫∫
Ω

(
∂H

∂v

)
δv dσ dt. (3.15)

This equation expresses the direct influence of variation δv on δJA. A necessary condition for
the optimality of v∗ is that δJA ≥ 0 for all possible small variations, δv. Since there are lower
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and higher bounds on the control v (2.9), we use the weak maximum principle to assert the
following necessary conditions for optimality:

∂H

∂v
= 0 for 0 ≤ v∗ ≤ vmax, (3.16)

when the control vector is unconstrained. Because the variation δv can only be negative along
the lower bound, we have

∂H

∂v
≤ 0 for v∗ = 0. (3.17)

And because the variation δv can only be positive along the higher bound, we have

∂H

∂v
≥ 0 for v∗ = vmax. (3.18)

3.2. Necessary Conditions of OCP for Polymer Flooding

Let λ(x, y, t) = (λ1, λ2, λ3)
T denote the adjoint vector of OCP for polymer flooding. Applying

the theory developed in Section 3.1 and substituting the governing equations (2.4)–(2.6) into
(3.12), the adjoint equations, given by (3.12), reduce for the polymer flooding problem under
consideration as given in,

∑
l=x,y

{
∂

∂l

(
kpro

∂λ1

∂l

)
+

∂

∂l

(
kprw

∂λ2

∂l

)
+

∂

∂l

(
kprc

∂λ3

∂l

)

−
[
kp

∂ro
∂p

∂p

∂l

∂λ1

∂l
+ kd

∂rw
∂p

∂p

∂l

∂λ2

∂l
+

(
kp

∂rc
∂p

∂p

∂l
+ kd

∂rd
∂p

∂cp

∂l

)
∂λ3

∂l

]}

− qout

(
ξo
∂fw
∂p
− ∂fw

∂p
λ1 +

∂fw
∂p

λ2 + cp
∂fw
∂p

λ3

)

+
∂ao

∂p

∂λ1

∂t
+
∂aw

∂p

∂λ2

∂t
+
∂ac

∂p

∂λ3

∂t
= 0,

(
x, y, t

) ∈ Ψ,

∑
l=x,y

[
−kp

∂p

∂l

(
∂ro
∂Sw

∂λ1

∂l
+

∂rw
∂Sw

∂λ2

∂l
+

∂rc
∂Sw

∂λ3

∂l

)
− kd ∂rd

∂Sw

∂cp

∂l

∂λ3

∂l

]

− qout

(
ξo

∂fw
∂Sw

− ∂fw
∂Sw

λ1 +
∂fw
∂Sw

λ2 + cp
∂fw
∂Sw

λ3

)
+

∂ao

∂Sw

∂λ1

∂t
+
∂aw

∂Sw

∂λ2

∂t

+
∂ac

∂Sw

∂λ3

∂t
= 0,

(
x, y, t

) ∈ Ψ,
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∑
l=x,y

[
∂

∂l

(
kdrd

∂λ3

∂l

)
− kp

∂p

∂l

(
∂rw
∂cp

∂λ2

∂l
+
∂rc
∂cp

∂λ3

∂l

)]

− qout

[
ξo
∂fw
∂cp

− ∂fw
∂cp

λ1 +
∂fw
∂cp

λ2 +

(
cp

∂fw
∂cp

+ fw

)
λ3

]

+
∂ac

∂cp

∂λ3

∂t
= 0,

(
x, y, t

) ∈ Ψ.

(3.19)

The boundary conditions (2.7) of the DPS result in (∂u/∂l)|∂Ω = 0 and δul|∂Ω = 0, l =
x, y, in (3.13). The coefficients of the arbitrary variation δul|∂Ω terms must be zero and yield
the boundary conditions for the adjoint equations as given by

∂H

∂ul
− ∂

∂l

∂H

∂ull
= 0, l = x, y. (3.20)

By substituting the governing equations (2.4)–(2.6) into (3.20), the boundary conditions of
adjoint equations for the polymer flooding OCP are expressed as

(
ro
∂λ1

∂l
+ rw

∂λ2

∂l

)∣∣∣∣
∂Ω

= 0,
∂λ3

∂l

∣∣∣∣
∂Ω

= 0, l = x, y,
(
x, y, t

) ∈ Γ. (3.21)

The following transversality terminal conditions at t = tf are obtained by substituting
the governing equations (2.4)–(2.6) into (3.14):

−∂ao

∂p
λ1 − ∂aw

∂p
λ2 − ∂ac

∂p
λ3 = 0,

− ∂ao

∂Sw
λ1 − ∂aw

∂Sw
λ2 − ∂ac

∂Sw
λ3 = 0, −∂ac

∂cp
λ3 = 0.

(3.22)

Since the coefficient terms involving the adjoint variables in (3.22) are not zero, the terminal
conditions of adjoint equations in the OCP of polymer flooding can be simplified to

λ1
(
x, y, tf

)
= 0, λ2

(
x, y, tf

)
= 0, λ3

(
x, y, tf

)
= 0,

(
x, y
) ∈ Ω. (3.23)

Equation (3.23) shows that the adjoint variables are known at the final time tf . Since the state
variables are known at the initial time and the adjoint variables are known at the final time,
the OCP is a split two-point boundary-value problem.

The variation of the performance index, J , reduces to the following simplified
functional of the control variation:

δJA =
∫ tf

0

∫∫
Ω
qin
(
ξp + λ3

)
δv dσ dt. (3.24)
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From the results of (3.16)–(3.18), the necessary condition for optimality of polymer flooding
problem is

qin
(
ξp + λ3

)
⎧⎪⎪⎨
⎪⎪⎩
= 0, for 0 ≤ v∗ ≤ vmax,

≤ 0, for v∗ = 0,
≥ 0, for v∗ = vmax.

(3.25)

4. Numerical Solution

We propose an iterative numerical technique for determining the optimal injection strategies
of polymer flooding. The computational procedure is based on adjusting estimates of control
function v to improve the value of the objective functional. For a control to be optimal, the
necessary condition given by (3.25) must be satisfied. If the control v is not optimal, then
a correction δv is determined so that the functional is made lager, that is, δJA > 0. If δv is
selected as

δv = wqin
(
ξp + λ3

)
, (4.1)

where w is an arbitrary positive weighting factor, the functional variation becomes

δJA =
∫ tf

0

∫∫
Ω
w
[
qin(ξp + λ3)

]2
dσdt ≥ 0. (4.2)

Thus, choosing δv in the gradient direction ensures a local improvement in the objective
functional, JA. At the higher and lower bounds on v, we must make the appropriate
weighting terms equal to zero to avoid leaving the allowable region.

The computational algorithm of control iteration based on gradient direction is as
follows.

(1) Initialization

Make an initial guess for the control function, v(x, y, t), (x, y) ∈ Lw, t ∈ [0, tf].

(2) Resolution of the State Equations

Using stored current value of v(x, y, t), (x, y) ∈ Lw, integrate the governing equations
forward in time with known initial state conditions. We use the finite difference method of a
full implicit scheme for the PDEs as discussed in [21, 22]. The profit functional is evaluated,
and the coefficients involved in the adjoint equations which are function of the state solution
are computed and stored.

(3) Resolution of the Adjoint Equations

Using the stored coefficients, integrate the adjoint equations numerically backward in time
with known final time adjoint conditions by (3.23). Compute and store δv as defined by (4.1).
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Figure 1: Permeability (μm2) distribution.

1

2

3

4

5

6

7

8

9

10
W1 W2

W3 W4

P1

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

1 2 3 4 5 6 7 8 9

Figure 2: Initial water saturation contour map.

(4) Computation of the New Control

Using the evaluated δv, an improved function is computed as

v
(
x, y, t

)new = v
(
x, y, t

)old + δv
(
x, y, t

)
,
(
x, y
) ∈ Lw, (4.3)
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Figure 3: Initial reservoir pressure (MPa) contour map.

Table 1: Parameters of reservoir description used in the example.

Parameters Values
Number of production well, Np 1
Number of injection wells, Nw 4
Thickness of the reservoir bed, h (m) 5
Reference pressure, pr (MPa) 12
Porosity under the condition of the reference pressure, φr 0.31
Rock density, ρr (kg/m3) 2000
Rock compressibility factor, CR (1/MPa) 9.38 × 10−6

Irreducible water saturation, Sor 0.25
Residual oil saturation, Swc 0.22
Oil relative permeability at the irreducible water saturation, krwro 0.5228
Water relative permeability at the residual oil saturation, krocw 0.9
Index of oil relative permeability curve, no 4.287
Index of water relative permeability curve, nw 2.3447

where 0 ≤ vnew ≤ vmax. A single variable search strategy can be used to find the value
of the positive weighting factor w which maximizes the improvement in the performance
functional using (4.3).

(5) Termination

The optimization algorithm is stopped when the variation δv is too small to effectively
change the performance measure, that is, when

∣∣∣Jnew − Jold
∣∣∣ < ε, (4.4)

where ε is a small positive number.
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Table 2: Fluid data used in the example.

Parameters Values
Oil viscosity, μo (mPa·s) 50
Compressibility factors of oil, Co (1/MPa) 5 × 10−6

Oil volume factor under the condition of the reference pressure, Bor 1
Aqueous phase viscosity with no polymer, μw (mPa·s) 0.458
Compressibility factors of water, Cw (1/MPa) 4.6 × 10−6

Water volume factor under the condition of the reference pressure, Bwr 1
Polymer absorption parameter, a (g/cm3) 0.03
Polymer absorption parameter, b (g/cm3) 3.8
Diffusion coefficient, D (m2/s) 1 × 10−5

Effective pore volume coefficient, fa 1
Permeability reduction parameter, Rk max 1.15
Permeability reduction parameter, brk 1.2
Viscosity parameter, ap1 15.426
Viscosity parameter, ap2 0.4228
Viscosity parameter, ap3 0.2749

5. Case Study

In this section we present a numerical example of optimal control for polymer flooding done
with the proposed iterative gradient method.

The two-phase flow of oil and water in a heterogeneous two-dimensional reservoir is
considered. The reservoir covers an area of 421.02 × 443.8 m2 and has a thickness of 5 m and
is discretized into 90(9 × 10 × 1) grid blocks. The production model is a five-spot pattern,
with one production well P1 located at the center of the reservoir (5, 6) and four injection
wells W1∼W4 placed at the four corners (1, 10), (9, 10), (1, 1), and (9, 1) as shown in the
permeability distribution map of Figure 1. Polymer is injected when the fractional flow of
water for the production well comes to 97% after water flooding. The time domain of polymer
injection is 0∼1440 days and the polymer flooding project life is tf = 5500 (days). Figures 2
and 3 show the contour maps of the initial water saturation S0

w and the initial reservoir
pressure p0, respectively. The initial polymer concentration is c0

p = 0 (g/L). In the performance
index calculation, we use the price of oil ξo = 0.0503 (104 $/m3) (80 ($/bbl)), and the cost of
polymer ξp = 2.5 × 10−4 (104 $/kg). The fluid velocity of production well is qout = 7.225 ×
10−3 (m/day), and the fluid velocity of every injection well is qin = 2.89 × 10−2 (m/day).
The PDEs are solved by full implicit finite difference method with step size 10 days. For
the constraint (29), the maximum injection polymer concentration is cmax = 2.2 (g/L). The
parameters of the reservoir description and the fluid data are shown in Tables 1 and 2,
respectively.

The polymer injection strategies obtained by the conventional engineering judgment
method (trial and error) are the same 1.8 (g/L) for all injection wells. The performance
index is J = $1.592 × 107 with oil production 32429 m3 and polymer injection 155520 kg.
For comparison, the results obtained by engineering judgment method are considered as the
initial control strategies of the proposed iterative gradient method. A backtracking search
strategy [23] is used to find the appropriate weighting term w and the stopping criterion
is chosen as ε = 1 × 10−5. By using the proposed algorithm, we obtain a cumulative oil of
33045 m3 and a cumulative polymer of 151618 kg yielding the profit of J∗ = $1.624 × 107
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Figure 4: Injection polymer concentration of well W1.
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Figure 5: Injection polymer concentration of well W2.

over the polymer flooding project life of the reservoir. The results show an increase in
performance index of $3.2 × 105. Figures 8 and 9 show the fractional flow of water in
production well and the cumulative oil production curves of the two methods, respectively.
It is obvious that the fractional flow of water obtained by iterative gradient method is lower
than that by engineering judgment. Therefore, with the less cumulative polymer injection,
the proposed method gets more oil production and higher recovery ratio. Figure 4 to
Figure 7 show the optimal control policies of the injection wells W1∼W4. As a result, the
optimal injection polymer concentration profiles of W1 and W2 are significantly different
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Figure 6: Injection polymer concentration of well W3.
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Figure 7: Injection polymer concentration of well W4.

from those of W3, W4. It is mainly due to the differences of the well positions and the distance
to the production well, as well as the reservoir heterogeneity and the uniform initial water
saturation distribution.

6. Conclusion

In this work, a new optimal control model of DPS is established for the dynamic injection
strategies making of polymer flooding. Necessary conditions of this OCP are obtained by
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Figure 8: Fractional flow of water for the production well P1.
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Figure 9: Cumulative oil production.

using the calculus of variations and Pontryagin’s weak maximum principle. An iterative
computational algorithm is proposed for the determination of optimal injection strategies.
The optimal control model of polymer flooding and the proposed method are used for a
reservoir example and the optimum injection concentration profiles for each well are offered.
The results show that the profit is enhanced by the proposed method. Meanwhile, more oil
production and higher recovery ratio are obtained. And the injection strategies chosen by
engineering judgment are same for all the wells, whereas the optimal control policies by the



Journal of Applied Mathematics 19

proposed method are different from each other as a result of the reservoir heterogeneity and
the uniform initial conditions.

In conclusion, given the properties of an oil reservoir and the properties of a polymer
solution, optimal polymer flooding injection strategies to maximize profit can be designed by
using distributed-parameter control theory. The approach used is a powerful tool that can aid
significantly in the development of operational strategies for EOR processes.
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This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-
varying systems with uncertain observations and L2-norm bounded noise. The design of finite-
time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum
and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-
space model according to the Krein space linear estimation theory. By using the projection theory
in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to
illustrate the performance of the H∞ filter.

1. Introduction

Most of the literatures on estimation problem always assume the observations contain the
signal to be estimated [1–8]. In [5], the linear matrix inequality technique was applied
to solve the finite-time H∞ filtering problem of singular Markovian jump systems. In [6],
new stability and robust stability results for 2D discrete stochastic systems were proposed
based on weaker conservative assumptions. In [7], an observer was incorporated to the
vaccination control rule for an SEIR propagation disease model. In [8], two linear observer
prototypes for a class of linear hybrid systems were proposed based on the prediction error.
However, in practice, the observation may contain the signal in a random manner, that is,
the observation consists of noise alone in a nonzero probability, and it is commonly called
uncertain observations or missing measurements [9, 10]. In this paper, the finite-time H∞
filtering problem is investigated for linear continuous time-varying systems with uncertain
observations and L2-norm bounded noises.
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The H2-based optimal filtering has been well studied for linear systems with uncertain
observations [9–13]. In [9], the recursive least-squares estimator was proposed for linear
discrete-time systems with uncertain observations. The robust optimal filter for discrete
time-varying systems with missing measurements and norm-bounded parameter uncertain-
ties was designed by optimizing the upper bound of the state estimation error variance
in [10]. Using the covariance information, the recursive least-squares filtering and fixed-
point smoothing algorithms for linear continuous-time systems with uncertain observations
were proposed in [11]. Linear and nonlinear one-step prediction algorithms for discrete-time
systems with uncertain observations were presented from a covariance assignment viewpoint
in [12]. The statistical convergence properties of the estimation error covariance were studied,
and the existence of a critical value for the arrival rate of the observations was shown in [13].
In recent years, due to the fact that the H∞-based estimation approach does not require the
information on statistics of input noise, it has received more and more attention for linear
systems with uncertain observations [14–16]. Using Lyapunov function approach, the H∞
filtering algorithms in terms of linear matrix inequalities were proposed for systems with
missing measurements in [14–16]. To authors’ best knowledge, research on finite-time H∞
filtering for linear continuous time-varying systems with uncertain observations has not been
fully investigated and remains to be challenging, which motivates the present study.

Although the Krein space linear estimation theory [1, 3] has been applied to fault
detection and nonlinear estimation [17, 18], no results have been developed for systems
with uncertain observations, which will be an interesting research topic in the future. In this
paper, the problem of finite-time H∞ filtering will be investigated for linear continuous time-
varying systems with uncertain observations and L2-norm bounded input noise. Based on
the knowledge of Krein space linear estimation theory [1, 3], a new approach in Krein space
will be developed to handle the H∞ filtering problem for linear continuous time-varying
systems with uncertain observations. It will be shown that the H∞ filtering problem for linear
continuous time-varying systems with uncertain observations is partially equivalent to an H2

filtering problem for a certain Krein space state-space model. Through employing projection
theory, both the existence condition and a solution of the H∞ filtering can be obtained in terms
of a differential Riccati equation. The major contribution of this paper can be summarized as
follows: (i) it shows that the H∞ filtering problem for systems with uncertain observations
can be converted into an H2 optimal estimation problem subject to a fictitious Krein space
stochastic systems; (ii) it develops a Kalman-like robust estimator for linear continuous time-
varying systems with uncertain observations.

Notation. Elements in a Krein space will be denoted by boldface letters, and elements in the
Euclidean space of complex numbers will be denoted by normal letters. The superscripts “−1”
and “∗” stand for the inverse and complex conjugation of a matrix, respectively. δ(t − τ) = 0
for t /= τ and δ(t − τ) = 1 for t = τ . R

n denotes the n-dimensional Euclidean space. I is
the identity matrix with appropriate dimensions. For a real matrix, P > 0 (resp., P < 0)
means that P is symmetric and positive (resp., negative) definite. 〈·, ·〉 denotes the inner
product in Krein space. diag{· · · } denotes a block-diagonal matrix. θ(t) ∈ L2[0, T] means∫T
t=0 θ

∗(t)θ(t)dt < ∞. L{· · · } denotes the linear space spanned by sequence {· · · }. An abstract
vector space {K, 〈·, ·〉} that satisfies the following requirements is called a Krein space [1].

(i) K is a linear space over C, the field of complex numbers.

(ii) There exists a bilinear form 〈·, ·〉 ∈ C onK such that
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(a) 〈y, x〉 = 〈x,y〉∗,
(b) 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉,

for any x,y, z ∈ K, a, b ∈ C, and where ∗ denotes complex conjugation.

(iii) The vector spaceK admits a direct orthogonal sum decomposition

K =K+ ⊕K− (1.1)

such that {K+, 〈·, ·〉} and {K−,−〈·, ·〉} are Hilbert spaces, and

〈x,y〉 = 0 (1.2)

for any x ∈ K+ and y ∈ K−.

2. System Model and Problem Formulation

In this paper, we consider the following linear continuous time-varying system with
uncertain observations

ẋ(t) = A(t)x(t) + B(t)w(t),

y(t) = r(t)C(t)x(t) + v(t),

z(t) = L(t)x(t),

x(0) = x0,

(2.1)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

p is an exogenous disturbance belonging to
L2[0, T], y(t) ∈ R

m is the observation, v(t) ∈ R
m is the observation noise belonging to

L2[0, T], z(t) ∈ R
q is the signal to be estimated, and A(t), B(t), C(t), and L(t) are known

real time-varying matrices with appropriate dimensions.
The stochastic variable r(t) ∈ R takes the values of 0 and 1 with

Prob{r(t) = 1} = Er{r(t)} = p(t),

Prob{r(t) = 0} = 1 − Er{r(t)} = 1 − p(t),
Er{r(t)r(s)} = p(t)p(s), t /= s,

Er

{
r2(t)

}
= p(t)

(2.2)

[11]. Note that many literatures associated with observer design are based on the assumption
that p(t) = 1 [1–4], it can be unreasonable in many practical applications [9, 10, 13]. In this
paper, we assume that p(t) is a known positive scalar.
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The finite-time H∞ filtering problem under investigation is stated as follows: given a
scalar γ > 0, a matrix P0 > 0, and the observation {y(s)|0≤s≤t}, find an estimate of the signal
z(t), denoted by z̆(t) = F{y(s)|0≤s≤t}, such that

JF = Er

{
‖x0‖2

P−1
0
+
∫T

0
‖w(t)‖2dt +

∫T

0
‖v(t)‖2dt − γ−2

∫T

0

∥∥ef(t)∥∥dt
}

> 0, (2.3)

where ef(t) = z̆(t) − z(t).
Thus, the finite-time H∞ filtering problem can be equivalent to the following:

(I) JF has a minimum with respect to {x0, w(t)|0≤t≤T};

(II) z̆(t) can be chosen such that the value of JF at its minimum is positive.

3. Main Results

In this section, through introducing a fictitious Krein space-state space model, we construct a
partially equivalent Krein space projection problem. By using innovation analysis approach,
we derive the finite-time H∞ filter and its existence condition.

3.1. Construct a Partially Equivalent Krein Space Problem

To begin with, we introduce the following state transition matrix:

d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I, (3.1)

it follows from the state-space model (2.1) that

y(t) = r(t)C(t)Φ(t, 0)x0 + r(t)C(t)
∫ t

0
Φ(t, τ)B(τ)w(τ)dτ + v(t), (3.2)

z̆(t) = L(t)Φ(t, 0)x0 + L(t)
∫ t

0
Φ(t, τ)B(τ)w(τ)dτ + ef(t). (3.3)
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Thus, we can rewrite JF as

JF = Er

{
‖x0‖2

P−1
0
+
∫T

0
‖w(t)‖2dt +

∫T

0
‖v(t)‖2dt − γ−2

∫T

0

∥∥ef(t)∥∥2
dt

}

= x∗0P
−1
0 x0 +

∫T

0
w∗(t)w(t)dt

+ Er

{∫T

0

(
y(t) − r(t)C(t)Φ(t, 0)x0 − r(t)C(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)∗

×
(
y(t) − r(t)C(t)Φ(t, 0)x0 − r(t)C(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)
dt

}

− γ−2
∫T

0

(
z̆(t) − L(t)Φ(t, 0)x0 − L(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)∗

×
(
z̆(t) − L(t)Φ(t, 0)x0 − L(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)
dt

= x∗0P
−1
0 x0 +

∫T

0
w∗(t)w(t)dt

+
∫T

0

(
y0(t) − C1(t)Φ(t, 0)x0 − C1(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)∗

×
(
y0(t) − C1(t)Φ(t, 0)x0 − C1(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)
dt

+
∫T

0

(
ys(t) − C2(t)Φ(t, 0)x0 − C2(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)∗

×
(
ys(t) − C2(t)Φ(t, 0)x0 − C2(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)
dt

− γ−2
∫T

0

(
z̆(t) − L(t)Φ(t, 0)x0 − L(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)∗

×
(
z̆(t) − L(t)Φ(t, 0)x0 − L(t)

∫ t

0
Φ(t, τ)B(τ)w(τ)dτ

)
dt,

(3.4)

where

C1(t) = p(t)C(t), C2(t) =
√
p(t)
(
1 − p(t))C(t), y0(t) = y(t), ys(t) ≡ 0. (3.5)
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Moreover, we introduce the following Krein space stochastic system

ẋ(t) = A(t)x(t) + B(t)w(t),

y0(t) = C1(t)x(t) + v(t),

ys(t) = C2(t)x(t) + vs(t),

z̆(t) = L(t)x(t) + ef(t),

x(0) = x0,

(3.6)

where x0, w(t), v(t), vs(t), and ef(t) are mutually uncorrelated white noises with zero means
and known covariance matrices as

〈
⎡
⎢⎢⎢⎢⎢⎣

x0

w(t)
v(t)
vs(t)
ef(t)

⎤
⎥⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎢⎣

x0

w(τ)
v(τ)
vs(τ)
ef(τ)

⎤
⎥⎥⎥⎥⎥⎦
〉

=

⎡
⎢⎢⎢⎢⎢⎣

P0 0 0 0 0
0 Iδ(t − τ) 0 0 0
0 0 Iδ(t − τ) 0 0
0 0 0 Iδ(t − τ) 0
0 0 0 0 −γ2Iδ(t − τ)

⎤
⎥⎥⎥⎥⎥⎦. (3.7)

Let

y0(t) = C1(t)x(t) + v(t),

ys(t) = C2(t)x(t) + vs(t),
(3.8)

then it follows from (3.1), (3.3), (3.4), and (3.7) that

JF = x∗0〈x0, x0〉−1x0 +
∫T

0
w∗(t)〈w(t),w(t)〉−1w(t)dt +

∫T

0
v∗(t)〈v(t),v(t)〉−1v(t)dt

+
∫T

0
v∗s(t)〈vs(t),vs(t)〉−1vs(t)dt +

∫T

0
e∗f(t)

〈
ef(t), ef(t)

〉−1
ef(t)dt.

(3.9)

According to [1] and [3], we have the following results.

Lemma 3.1. Consider system (2.1), given a scalar γ > 0 and a matrix P0 > 0, then JF in (2.3) has
the minimum over {x0, w(t)|0≤t≤T} if and only if the innovation ỹz(t) exists for 0 ≤ t ≤ T , where

ỹz(t) = yz(t) − ŷz(t), (3.10)
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yz(t) = [y∗0(t) y∗s(t) z̆∗(t)]∗, and ŷz(t) denote the projection of yz(t) onto L{{yz(τ)}|0≤τ<t}. In this
case the minimum value of JF is

min JF =
∫T

0

(
y0(t) − C1(t)x̂(t)

)∗(
y0(t) − C1(t)x̂(t)

)
dt

+
∫T

0

(
ys(t) − C2(t)x̂(t)

)∗(
ys(t) − C2(t)x̂(t)

)
dt

− γ−2
∫T

0
(z̆(t) − L(t)x̂(t))∗(z̆(t) − L(t)x̂(t))dt,

(3.11)

where x̂(t) is obtained from the Krein space projection of x(t) onto L{{yz(j)}|0≤τ<t}.

Remark 3.2. By analyzing the indefinite quadratic form JF in (3.4) and using the Krein space
linear estimation theory [1], it has been shown that the H∞ filtering problem for linear
systems with uncertain observations is equivalent to the H2 estimation problem with respect
to a Krein space stochastic system, which is new as far as we know. In this case, Krein space
projection method can be applied to derive an H∞ estimator for linear systems with uncertain
observations, which is more simple and intuitive than previous versions.

3.2. Solution of the Finite-Time H∞ Filtering Problem

By applying the standard Kalman filter formula to system (3.6), we have the following
lemma.

Lemma 3.3. Consider the Krein space stochastic system (3.6), the prediction x̂(t) is calculated by

˙̂x(t) = A(t)x̂(t) +K(t)ỹz(t), (3.12)

where

ỹz(t) = yz(t) −H(t)x̂(t),

H(t) =
[
C∗1(t) C∗2(t) L∗(t)

]∗
,

K(t) = P(t)H∗(t)R−1
ỹz(t),

Rỹz(t) = diag
{
I, I,−γ2I

}
,

(3.13)

and P(t) is computed by

Ṗ(t) = A(t)P(t) + P(t)A∗(t) + B(t)B∗(t) −K(t)Rỹz(t)K
∗(t),

P(0) = P0.
(3.14)

Now we are in the position to present the main results of this subsection.
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Theorem 3.4. Consider system (2.1), given a scalar γ > 0 and a matrix P0 > 0, and suppose P(t) is
the bounded positive definite solution to Riccati differential equation (3.14). Then, one possible level-γ
finite-timeH∞ filter that achieves (2.3) is given by

z̆(t) = L(t)x̂(t), 0 ≤ t ≤ T, (3.15)

where

˙̂x(t) = A(t)x̂(t) + P(t)C∗f(t)
(
yf(t) − Cf(t)x̂(t)

)
,

x̂(0) = 0
(3.16)

with yf(t) = [y∗0(t) y∗s(t)]
∗, Cf(t) = [C∗1(t) C∗2(t)]

∗.

Proof. It follows from Lemma 3.3 that if P(t) is a bounded positive definite solution to Riccati
differential equation (3.14), then the projection x̂(t) exists. According to Lemma 3.1, it is
obvious that the H∞ filter that achieves (2.3) exists. If this is the case, the minimum value
of JF is given by (3.11). In order to achieve min JF > 0, one natural choice is to set

z̆(t) − L(t)x̂(t) = 0 (3.17)

thus the finite-time H∞ filter can be given by (3.15).
On the other hand, from (3.12) and (3.15), It is easy to verify that (3.16) holds.

Remark 3.5. Let

e(t) = x(t) − x̂(t), (3.18)

it follows from (2.1) and (3.16) that

ė(t) = (A(t) − Γ(t)C(t))e(t) + B(t)w(t) − P(t)C∗f(t)vz(t), (3.19)

where

Γ(t) = P(t)C∗f(t)

[
p(t)I√

p(t)
(
1 − p(t))I

]
, vz(t) =

[
v(t)
vs(t)

]
. (3.20)

Unlike [14–16], the parameter matrices in the filtering error equation (3.19) do not contain
the stochastic variable r(t), which is an interesting phenomenon. As mentioned in Definition
1 in [19], it is obvious that, if (C(t), A(t)) is detectable, then the filtering error equation (3.19)
is exponentially stable. Based on the above analysis, it can be concluded that the following
assumptions are necessary for the finite-time H∞ filter design in this paper:

(i) (C(t), A(t)) is detectable,

(ii) w(t), v(t) ∈ L2[0, T].
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Figure 1: Stochastic variable r(t).

4. A Numerical Example

We consider system (2.1) with the following parameters:

A(t) =
[−10 6

2 −5

]
, B(t) =

[
2.8
1.6

]
, C(t) = [18 9.5], L(t) = [1 1] (4.1)

and set γ = 1.1, x(0) = [0 0]∗, p(t) = 0.8, and P0 = I. In addition, we suppose that the noises
w(t) and v(t) are generated by Gaussian with zero means and covariances Qw = 1, Qv = 0.02,
the sampling time is 0.02 s, and the stochastic variable r(t) is simulated as in Figure 1. Based
on Theorem 3.4, we design the finite-time H∞ filter. Figure 2 shows the true value of signal
z(t) and its H∞ filtering estimate, and Figure 3 shows the estimation error z̃(t) = z(t) − z̆(t).
It can be observed from the simulation results that the finite-time H∞ filter has good tracking
performance.

5. Conclusions

In this paper, we have proposed a new finite-time H∞ filtering technique for linear
continuous time-varying systems with uncertain observations. By introducing a Krein state-
space model, it is shown that the H∞ filtering problem can be partially equivalent to a Krein
space H2 filtering problem. A sufficient condition for the existence of the finite-time H∞ filter
is given, and the filter is derived in terms of a differential Riccati equation.

Future research work will extend the proposed method to investigate the H∞
multistep prediction and fixed-lag smoothing problem for linear continuous time-varying
systems with uncertain observations.
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0 1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n 

er
ro

r

0

0.4

0.8

t/s

−0.4

−0.8

Figure 3: Estimation error z̃(t).

Acknowledgments

The authors sincerely thank the anonymous reviewers for providing valuable comments and
useful suggestions aimed at improving the quality of this paper. The authors also thank the
editor for the efficient and professional processing of their paper. This work is supported by
the National Natural Science Foundation of China (60774004, 61034007, and 60874016) and
the Independent Innovation Foundation of Shandong University, China (2010JC003).

References

[1] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic Estimation and Control: A Unified Approach
to H2 and H∞ Theories, SIAM, New York, NY, USA, 1999.



Journal of Applied Mathematics 11

[2] T. Kailath, “A view of three decades of linear filtering theory,” IEEE Transactions on Information Theory,
vol. 20, no. 2, pp. 146–181, 1974.

[3] H. Zhang and L. Xie, Control and Estimation of Systems with Input/Output Delays, vol. 355, Springer,
Berlin, Germany, 2007.

[4] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, USA, 1979.
[5] C. X. Liu, Y. Q. Zhang, and H. X. Sun, “Finite-time H∞ filtering for singular stochastic systems,”

Journal of Applied Mathematics, vol. 2012, Article ID 615790, 16 pages, 2012.
[6] J.-R. Cui, G.-D. Hu, and Q. Zhu, “Stability and robust stability of 2D discrete stochastic systems,”

Discrete Dynamics in Nature and Society, vol. 2011, Article ID 545361, 11 pages, 2011.
[7] M. De la Sen, A. Ibeas, and S. Alonso-Quesada, “Observer-based vaccination strategy for a true mass

action SEIR epidemic model with potential estimation of all the populations,” Discrete Dynamics in
Nature and Society, vol. 2011, Article ID 743067, 19 pages, 2011.

[8] M. De La Sen and N. Luo, “Design of linear observers for a class of linear hybrid systems,” Interna-
tional Journal of Systems Science, vol. 31, no. 9, pp. 1077–1090, 2000.

[9] N. E. Nahi, “Optimal recursive estimation with uncertain observation,” IEEE Transactions on Informa-
tion Theory, vol. 15, no. 4, pp. 457–462, 1969.

[10] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust finite-horizon filtering for stochastic systems with
missing measurements,” IEEE Signal Processing Letters, vol. 12, no. 6, pp. 437–440, 2005.

[11] S. Nakamori, “Estimation of signal using covariance information given uncertain observations in con-
tinuous-time systems,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E79-A, no. 6, pp. 736–744, 1996.

[12] W. NaNacara and E. E. Yaz, “Recursive estimator for linear and nonlinear systems with uncertain ob-
servations,” Signal Processing, vol. 62, no. 2, pp. 215–228, 1997.

[13] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering
with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464,
2004.

[14] W. Wang and F. W. Yang, “H∞ filter design for discrete-time systems with missing measurements,”
Acta Automatica Sinica, vol. 32, no. 1, pp. 107–111, 2006.

[15] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust H∞ filtering for stochastic time-delay systems with
missing measurements,” IEEE Transactions on Signal Processing, vol. 54, no. 7, pp. 2579–2587, 2006.

[16] H. Zhang, Q. Chen, H. Yan, and J. Liu, “Robust H∞ filtering for switched stochastic system with miss-
ing measurements,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3466–3474, 2009.

[17] H. Zhao, M. Zhong, and M. Zhang, “H∞ fault detection for linear discrete time-varying systems with
delayed state,” IET Control Theory & Applications, vol. 4, no. 11, pp. 2303–2314, 2010.

[18] H. Zhao, C. Zhang, G. Wang, and G. Xing, “H∞ estimation for a class of Lipschitz nonlinear discrete-
time systems with time delay,” Abstract and Applied Analysis, vol. 2011, Article ID 970978, 22 pages,
2011.

[19] K. M. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an H∞ setting,” IEEE Transactions on
Automatic Control, vol. 36, no. 2, pp. 152–166, 1991.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 840873, 13 pages
doi:10.1155/2012/840873

Research Article
Distributed Containment Control of
Networked Fractional-Order Systems with
Delay-Dependent Communications

Xueliang Liu,1, 2 Bugong Xu,1, 2 and Lihua Xie3

1 College of Automation Science and Engineering, South China University of Technology,
Guangzhou 510640, China

2 Key Laboratory of Autonomous Systems and Network Control, Ministry of Education,
Guangzhou 510640, China

3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Correspondence should be addressed to Bugong Xu, aubgxu@scut.edu.cn

Received 5 March 2012; Accepted 26 May 2012

Academic Editor: Baocang Ding

Copyright q 2012 Xueliang Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is concerned with a containment problem of networked fractional-order system with
multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed
protocol is proposed in delayed communication channels. By employing the algebraic graph
theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically
proved that the whole follower agents will flock to the convex hull which is formed by the
leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated
in the dynamic network is obtained. As a special case, the interconnection topology under the
undirected case is also discussed. Finally, some numerical examples with simulations are presented
to demonstrate the effectiveness and correctness of the theoretical results.

1. Introduction

In recent years, coordination of multiagent systems has attracted considerable interest in
the control community due to their wide application areas in formation control [1–3],
flocking/swarming [4, 5], consensus [6–9], sensor networks [10, 11], synchronization of
complex networks [12, 13], and distributed computation [14]. A common character of
these applications is that each individual agent lacks a global knowledge of the whole
system and can only send and/or obtain state information from its neighbors through local
communications. Significant progress has been made in the coordination problem (see, e.g.,
[11, 15, 16] and the references therein).
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As a special case of coordination control, containment control means to drive the
followers to be in the convex hull which is spanned by the leaders. Different from general
leader-following consensus problems, where there exist multiple leaders and multiple
followers in containment problems. The coordinate objective is likely to be one or several
target sets in multiagent coordination control. These target sets may be a biological
communities, a team of robots, a food enrichment area, and so on. For example, a kind of
biological group hunts another kind of biological communities, a team of biological group
cooperatively builds their nest, and several agents lead a team of agents avoiding hazardous
obstacles. Thus, how to control a multiagent system to achieve a common target becomes an
interesting problem.

The idea of fractional calculus has been known since the development of the regular
calculus, with the first reference probably being dated back to the seventeenth century [17],
where the meaning of derivative of order one-half was first mentioned. Although it has a
long history, the fractional calculus applications to physics and engineering are just a recent
focus of interest. Moreover, fractional derivatives provide an excellent tool for the description
of memory and hereditary properties of various materials and processes. As pointed out by
many researchers, many physical systems are more suitable to be modeled by fractional-order
dynamic equations [18]. Many systems are known to display fractional-order dynamics, such
as viscoelastic systems, electromagnetic waves, and quantum evolution of complex systems.
In additional, integer-order systems can be regarded as a special case of fractional-order
systems.

More recently, many interesting agent-related consensus problems are under inves-
tigation, and fractional-order consensus becomes a hot topic. The consensus problem of
fractional-order systems is first proposed and investigated by Cao et al. [19, 20], where
three different cases of coordination models are introduced. By employing a varying-
order fractional coordination strategy, a higher convergence performance is obtained. Sun
et al. [21] study the consensus problem for fractional-order systems under undirected
scale-free networks. They also compared the convergence rate of fractional-order dynamics
and the integer-order dynamics. In order to increase the convergence speed and ensure
the exponential convergence, a switching order consensus protocol is employed. Shen et
al. [22, 23] consider the consensus problem of fractional-order systems with nonuniform
input and/or communication delays over directed networks. Based on the Nyquist stability
criterion and frequency domain approach, some sufficient conditions are obtained to
ensure the fractional-order consensus. Formation control problems for fractional-order
systems were discussed in [24]. However, little research work has been done toward the
problem of containment control of fractional-order system, which is the main focus of this
paper.

Motivated by the above discussion, in this paper, we consider the containment
problem of networked fractional-order systems over directed topologies. Different from
generally leader-following consensus problem, there exist multiple leaders in a containment
control problem. The objective is to drive the followers to be in the convex hull formed by
the leaders. On the other hand, in practice delays unavoidably exist due to the finite speed
of transmission, acquisition, and traffic congestions. Therefore, studying the agents with
the form of fractional-order dynamics over delayed communication channel becomes very
significant.

The rest of the paper is organized as follows. Section 2 gives some preliminaries on
algebraic graph theory and Caputo fractional operator and formulates the problem under
investigation. In Section 3, containment control under fixed directed topologies and delayed
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communication channels is investigated. In Section 4, two examples are provided to verify
the theoretical analysis. Finally, some concluding remarks will be drawn in Section 5.

Some remarks on the notation are given as follows: [α] stands for the integer part of
α, 1n is an n-dimension column vector with all ones. IN is the identity matrix with dimension
N × N. R

N×N and R
N , respectively, denote the family of all N × N dimensional matrices

and the N dimensional column vector. The notation A > 0 (A ≥ 0) means that matrix A is
positive definite (semidefinite). “‖x‖′′ stands for the Euclidean norm of vector x. λi(A) and
ρ(A) denote the ith eigenvalue of matrix A and spectral radius of matrix A, respectively. diag
{· · · } stands for a block diagonal matrix. A⊗B means the Kronecker product of matrices A and
B. A set Θ ∈ R

N is convex if the line segment between any two elements in Θ lies in Θ, that
is, if for any x, y ∈ Θ and any γ with 0 ≤ γ ≤ 1, we have γx + (1 − γ)y ∈ Θ. Similarly, a vector
sum γ1x1 + γ2x2 + · · · + γnxn is called a convex combination of x1, x2, . . . , xn if the coefficients
satisfy γi ≥ 0 and

∑n
i=1 γi = 1. The convex hull of Θ denoted by co{Θ} is the intersection of all

convex sets containing Θ. For nonempty set E, the Euclid distance between point x and set E
is defined as dE(x) = infy∈E‖x − y‖.I = {1, 2, . . . ,N}.

2. Preliminary

Before formulating our problem, we introduce some basic concepts in graph theory and the
Caputo fractional operator for fractional-order networks.

2.1. Algebraic Graph Theory

Algebraic graph theory is a natural framework for analyzing coordination problems. Let the
interaction topology of information exchanged between N agents be described by a directed
graph G = {V,E,A}, where V = {1, 2, . . . ,N} is the set of vertices, vertex i represents the
ith agent, E ⊂ V × V is the set of edge. An edge in G is denoted by an ordered pair (j, i),
representing that agent i can receive information from agent j. The neighborhood of the ith
agent is denoted by Ni = {j ∈ V | (j, i) ∈ E}. A = [aij]N×N ∈ RN is called the weighted
adjacency matrix of G with nonnegative elements where aii = 0 and aij ≥ 0 with aij > 0 for
j ∈ Ni. The in-degree of agent i is defined as degin (i) =

∑N
j=1 aij , and the out-degree of agent

i is defined as degout(i) =
∑N

j=1 aji. The Laplacian matrix of G is defined as L = D −A, where
D = diag{degin(1),degin(2), . . . ,degin(N)}. A sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is
called a path from agent i1 to agent ik. A directed tree is a directed graph, where every agent
has exactly one neighbor except one agent has no neighbors. A spanning tree ofG is a directed
tree whose vertex set is V and whose edge set is a subset of E. In undirected graphs, if there is
a path between any two vertices of a graph G, then G is connected, otherwise disconnected.

2.2. Caputo Fractional Operator

For an arbitrary real number α, the Riemann-Liouville and Caputo fractional derivatives are
defined, respectively, as

aD
α
t f(t) =

1
Γ(m − α)

dm

dtm

∫ t

a

(t − τ)m−α−1f(τ)dτ, (2.1)

C
aD

α
t f(t) =

1
Γ(m − α)

∫ t

a

fm(τ)

(t − τ)α+1−mdτ, (2.2)
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where m = [α] + 1 is the first integer which is not less than α and Γ(·) is the Euler’s gamma
function.

It is worth pointing out that the advantage of Caputo approach is that the initial
conditions for fractional-order differential equations with Caputo derivatives take on the
same form as that for integer-order differential equations. For details, please refer to [17].
Therefore, we will only use the Caputo fractional operator in this paper to model the system
dynamics. For notational simplicity, we rewrite C

aD
α
t f(t) as f (α)(t) in the rest of the paper.

2.3. Laplace Transform

In the following, we will introduce the Laplace transform of the caputo fractional derivative
which will fascinate the development of the subsequent results:

L
{
f (α)(t)

}
=

{
sαF(s) − sα−1f(0), α ∈ (0, 1];
sαF(s) − sα−1f(0) − sα−2ḟ(0), α ∈ (1, 2].

(2.3)

2.4. Problem Formulation

Consider a networked fractional-order system consisting of N + m agents, where N agents
labeled by 1, 2, . . . ,N are referred to as the follower agents and the other agents labeled by
N + 1, . . . ,N +m act as leaders of the team. The information interaction topology among N
following-agents is described by the graph G = (V,E,A), and the whole system involving
N + m agents is conveniently modeled by a weighted directed graph G = (V,E,A) with
V = {1, 2, . . . ,N +m} andA = aij ∈ R

(N+m)×(N+m), i, j = 1, 2, . . . ,N +m, where the lower block
submatrix of order N can be regarded asA. In this paper, we regard the convex hull spanned
by multiple leaders as a virtual leader. The graph G has a spanning tree meaning that there
exits a path from the virtual leader to every follower agent. In general, the dynamic of each
leader is independent of the follower agents. xk represents the position state of the leader k
and keeps being a constant.

The dynamic of follower agent i takes the following form:

x
(α)
i (t) = ui(t), i ∈ I, (2.4)

where xi(t) ∈ R
n is the position state, ui(t) ∈ R

n is the control input of agent i, and x
(α)
i (t) ∈ R

n

is the αth derivative of xi(t). In practice, the fractional order α often lies in (0, 1], so we assume
that the order α is a positive real number but not more than 1 in this paper.

For the aforementioned fractional-order dynamics, the following control rule will be
used for follower agent i:

ui(t) =
∑
j∈Ni

aij

(
xj(t − τ) − xi(t − τ)

)
+

N+m∑
k=N+1

bik(xk(t − τ) − xi(t − τ)), (2.5)

where bik ≥ 0, bik > 0 if and only if the leader k (k = N + 1,N + 2, . . . ,N +m) is a neighbor of
agent i. Let B = [BN+1,BN+2, . . . ,BN+m], where Bk ∈ R

N×N is a diagonal matrix with bik (i =
1, 2, . . . ,N) as its diagonal entry. Assume the time delay in (2.5) satisfies 0 < τ ≤ h.
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Inserting the control rule (2.5) into each follower agent dynamic (2.4), the dynamics
of agent i becomes

x(α)(t) = −(H⊗ In)x(t − τ) + [B(Im ⊗ 1N)] ⊗ Inx(t − τ), (2.6)

where x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N(t)]T , x(t) = [xT

N+1(t), x
T
N+2(t), . . . , x

T
N+m(t)]

T , H = L +
B(1m ⊗ IN).

Our objective is to let the N follower agents move into the polytope region formed
by the leaders; that is, for any xi(t) (i = 1, 2, . . . ,N) it can be represented as a convex hull of
xk(t) (k = N + 1,N + 2, . . . ,N +m) when t → +∞, namely:

lim
t→+∞

dΘ(xi(t)) = 0, i = 1, 2, . . . ,N, (2.7)

where Θ = {μ | μ ∈ co{xN+1(t), xN+2(t), . . . , xN+m(t)}}.

3. Convergence Analysis

Before starting our main results, we begin with the following lemmas which will play an
important role in the proof of main results.

Lemma 3.1. If graph G has a spanning tree, then the matrixH associated with G is a positive stable
matrix; that is, all the eigenvalues ofH lie in the open right hand plane.

Proof. This lemma follows from Lemma 4 in [9] by considering the convex region formed by
the leaders as a virtual leader.

Lemma 3.2 (see [25]). The following autonomous system:

dαx(t)
dtα

= Ax(t), x(0) = x0, (3.1)

with 0 < α ≤ 1, x ∈ Rn, and A ∈ Rn×n, is asymptotically stable if and only if | arg(ρ(A))| > απ/2 is
satisfied for all eigenvalues of matrixA. Also, this system is stable if and only if | arg(ρ(A))| ≥ απ/2 is
satisfied for all eigenvalues of matrixAwith those critical eigenvalues satisfying | arg(ρ(A))| = απ/2
having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of the matrix A is
the dimension of the subspace of vectors v for which Av = λv.

When the time delay τ = 0, the dynamic network degenerates to the delay-free case,
and the dynamic (2.6) can be rewritten as

x(α)(t) = −(H⊗ In)x(t) + [B(Im ⊗ 1N)] ⊗ Inx(t). (3.2)

Then, we have the following theorem.

Theorem 3.3. For the fractional-order dynamic system (3.2), the follower agents can enter the region
spanned by the leaders if the fixed interaction graph G has a directed spanning tree.
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Proof . By Lemma 3.1, we learn that matrixH is invertible. Let δ(t) = x(t)−[H−1B(Im⊗1N)]⊗
Inx(t). Then, we get the following error system:

δ(α)(t) = −(H⊗ In)δ(t). (3.3)

Since all the eigenvalues of matrix H lie in the open right hand plane, then, | arg(−H))| ∈
(π/2, π] and 2 arg(ρ(H))/π > 1 hold. It follows from Lemma 3.2 that system (3.3) is
asymptotically stable for any α ∈ (0, 1].

In the sequel, we will prove that all the follower agents can be aggregated in a polytope
region formed by the leaders. In other words, we need only to prove that for any vector
x∗i (t) ∈ R

n (i = 1, 2, . . . ,N), the region can be expressed as a convex hull of xk(t) ∈ R
n(k = N+

1,N+2, . . . ,N+m). This problem can be transformed to prove that matrix [H−1B(Im⊗1N)]⊗In
is a row stochastic matrix that is, it is a nonnegative matrix, and the sum of the items in every
row is 1.

Since all the eigenvalues of H have positive real parts, there exist a positive scalar
κ > 0 and nonnegative matrix Z such that H = κI − Z holds. Obviously, κ > ρ(Z) and
λi(H) = κ − λi(Z), ∀i = 1, 2, . . . ,N. Therefore,

H−1 = (κI − Z)−1 =
1
κ

(
I +

1
κ
Z +

1
κ2

Z2 + · · ·
)
≥ 0. (3.4)

It can be seen that matrix H−1 ⊗ In is a nonnegative matrix and so is [H−1B(Im ⊗ 1N)] ⊗ In.
Notice thatH = L + B(1m ⊗ IN) and L1N = 0; we obtain

(H⊗ In)(1N ⊗ 1n) = ((L + B(1m ⊗ IN)) ⊗ In)(1N ⊗ 1n)

=

(
N+m∑
i=N+1

Bi1N
)
⊗ 1n.

(3.5)

Thus,

([
H−1B(Im ⊗ 1N)

]
⊗ In
)
(1m ⊗ 1n) =

(
(H⊗ In)−1[B(Im ⊗ 1N)] ⊗ In

)
(1m ⊗ 1n)

= (H⊗ In)−1

(
N+m∑
i=N+1

Bi1N
)
⊗ 1n

= 1N ⊗ 1n.

(3.6)

It is obvious that [H−1B(Im ⊗ 1N)] ⊗ In is a row stochastic matrix. Thus, the conclusion of
Theorem 3.3 holds.

Remark 3.4. This result coincides with the existing results in [26] and has been extended to
fractional order cases.

In what follows, we will focus on the convergence analysis of (2.6) under fixed and
directed interconnection topologies in delayed communication channels.
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Theorem 3.5. For the fractional-order dynamic system (2.6), the follower agents can enter the region
spanned by the leaders if the fixed interaction graph G has a directed spanning tree and τ < τ∗, where

τ∗ = min
i∈I

π − (απ/2) + ηi(∣∣μi

∣∣)1/α
, (3.7)

μi, i ∈ I is the ith eigenvalue of matrixH, ηi = arctan(Im(μi)/Re(μi)).

Proof. Since the communication topology G has a spanning tree, all the eigenvalues of H
have positive real parts by Lemma 3.1. Therefore, matrix H is invertible. Let δ(t) = x(t) −
x∗(t), x∗(t) = [H−1B(Im ⊗ 1N)] ⊗ Inx(t). Then, we get the following error system

δ(α)(t) = −(H⊗ In)δ(t − τ). (3.8)

Taking Laplace transform of system (3.8), it yields that

sαξ(s) − sα−1ξ(0) = −e−τs(H⊗ In)ξ(s), (3.9)

where ξ(s) is the Laplace transforms of position states δ(t). After some simple manipulation
we obtain

ξ(s) = (Δ(s))−1ξ(0), (3.10)

where Δ(s) = sαI+e−τs(H⊗In), which is called a characteristic matrix in [27]. The distribution
of det(Δ(s))’s eigenvalues totally determines the stability of system (3.8). Thus, a sufficient
condition for the error dynamics (3.8) which converges to zero is that all the poles of Δ(s) are
located at the open left half plane or s = 0.

Then, the characteristic equation of (3.8) is

sα + e−τsμi = 0, (3.11)

where μi is the ith eigenvalue of matrixH.
Obviously, s /= 0. Now, we turn to prove that the poles of (3.11) are located at the open

left half plane. Since the directed graph G has a spanning tree, all the eigenvalues ofH have
positive real parts. Without loss of generality, we assume that the eigenvalues satisfy 0 <
Re(μ1) ≤ Re(μ2) ≤ · · · ≤ Re(μn). Based on the Nyquist stability theorem, all the roots of (3.11)
lie in the open left half complex plane, if and only if the Nyquist curve e−τsμi/s

α does not
enclose the point (−1, 0i) for any w ∈ R, where i is the imaginary unit.

Therefore, assume that s = iw = w(cos(π/2) + i sin(π/2)) (w > 0) is a root of (3.11);
we have

wα
(

cos
απ

2
+ i sin

απ

2

)
+
∣∣μi

∣∣(cos
(
ηi −wτ

)
+ i sin

(
ηi −wτ

))
= 0, (3.12)
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where ηi = arctan(Im(μi)/Re(μi)). Separating the real and imaginary parts of (3.12) yields

wα cos
απ

2
+
∣∣μi

∣∣ cos
(
ηi −wτ

)
= 0,

wα sin
απ

2
+
∣∣μi

∣∣ sin
(
ηi −wτ

)
= 0.

(3.13)

From the above two equations, one gets

w2α +
∣∣μi

∣∣2 + 2
∣∣μi

∣∣wα cos
(απ

2
− ηi +wτ

)
= 0, (3.14)

that is

(
wα − ∣∣μi

∣∣)2 + 2
∣∣μi

∣∣wα
[
1 + cos

(απ
2
− ηi +wτ

)]
= 0. (3.15)

Obviously, the two terms in the left-hand side of (3.15) are nonnegative the equality holds if
and only if both the two terms are zero, namely:

wα =
∣∣μi

∣∣, (3.16)

1 + cos
(απ

2
− ηi +wτ

)
= 0. (3.17)

Thus, combining (3.16) and (3.17), we can easily obtain that

π + 2kπ =
(∣∣μi

∣∣)1/α
τ +

απ

2
− ηi, k = 0, 1, 2, . . . . (3.18)

Therefore, the smallest time-delay τ > 0 occurs at k = 0 and satisfies

τ =
π − (απ/2) + ηi

(
∣∣μi

∣∣)1/α
. (3.19)

Similarly, one can repeat the very argument for the case that w < 0 and get similar conclusion.
Thus, the Nyquist plot of e−τsμi/s

α does not enclose the point (−1, 0i) for all i > 1 if

τ <
π − (απ/2) + ηi(∣∣μi

∣∣)1/α
. (3.20)

Then all the roots of det(Δ(s)) lie in the open left hand plan. Therefore, the error system (3.8)
is asymptotically stable, that is, x → x∗ = [H−1B(Im ⊗ 1N)] ⊗ Inx, as t → +∞. The rest of the
proof is similar to that of Theorem 3.3 and hence is omitted.

For the case of the considered undirected graph, that is, agent i and agent j can receive
information from each other when there exists an edge between i and j; we can get the
following result.
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Theorem 3.6. Under an undirected time-invariant interaction graph G, that is, strongly connected,
the follower agents can enter the region spanned by the leaders if τ < τ∗, where

τ∗ = min
i∈I,μi>0

π − (απ/2)(∣∣μi

∣∣)1/α
, (3.21)

μi, i ∈ I is the ith eigenvalue of matrixH.

Proof . The proof of Theorem 3.6 is similar to that of the Theorem 3.5 by noting that the
eigenvalues ofH are nonnegative real number, and hence omitted.

4. Numerical Examples

In this section, two numerical simulations will be presented to illustrate the effectiveness of
the theoretical results obtained in the previous sections. In all the simulations, all dynamics of
agent are integrated with a fixed time step 0.05. The following two directed graphs with 0-1
weights will be needed in the analysis of this section. Circle and triangle stand for follower
agent and leader, respectively.

Example 4.1. Consider a dynamic fractional-order network of four follower agents and two
leaders with a fixed topology given in Figure 1. Obviously, the topology G1 has a spanning
tree. Suppose that all the agents are moving in a horizontal line and each follower agent can

receive the state information of its neighbors precisely. The matrixH is
( 2 −1 0 0

0 2 −1 −1
0 0 1 −1
0 0 0 1

)
, and its

four eigenvalues are 0.2451, 1.0000, 1.8774 + 0.7449i, 1.8774 − 0.7449i, respectively. The initial
position states of follower agents are generated randomly in [1, 6], and leaders are chosen as
x1(0) = 0.5, x2(0) = −0.5. Let α = 0.92 and u0(t) = 0.2. The state trajectories of the fractional-
order close-loop systems (2.6) are shown in Figure 3. It can be easily seen that as time goes
on, the whole follower agents will be flocked in the segment [−0.5, 0.5], which is formed by
the two leaders.
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Figure 3: State trajectories of four follower agents and two leaders under the topology G1.

Example 4.2. Consider a dynamic fractional-order network of five follower agents and four
leaders moving in a plane. The interconnection topology among the above agents is given in
Figure 2. Clearly, G2 is strongly connected. The matrixH is

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 0
−1 3 −1 0 0
0 −1 2 −1 0
0 0 −1 3 −1
0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠, (4.1)

and its five eigenvalues are 0.6972, 1.3820, 2.0000, 3.6180, 4.3028, respectively. The initial
position states of agents and leaders are given as follows:

x1(0) = (0, 2)T , x2(0) = (0, 3)T , x3(0) = (0, 4)T , x4(0) = (0, 5)T , x5(0) = (0, 6)T ,

x1(0) = (4, 5)T , x2(0) = (5, 6)T , x3(0) = (6, 5)T , x4(0) = (5, 4)T .
(4.2)

Take the fractional order α = 0.96 in (2.1). Then, it can be seen from Theorem 3.6 that all
the followers will enter into the region formed by the leaders if τ < 0.3573. Figures 4 and 5
depict the simulation results for position trajectories under different time delays. From these
simulations, one can easily find that the containment control is realized via protocol (2.5)
as long as the time delay doesnot exceed the upper bound. These simulations are consistent
with the theoretical result in Section 3.
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5. Conclusion

In this paper, the containment control problem of multiple leaders has been considered
for networks of fractional-order dynamics with delay-dependent communication channels.
Utilizing algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency
domain method, some sufficient conditions are obtained. It is shown that all the follower
agents will ultimately move into the convex hull which is spanned by the leaders, for
appropriate communication time delay if the topology of weighted network has a spanning
tree. Moreover, two numerical simulations are provided to validate the effectiveness of our
theoretical analysis.
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Image interpolation, as a method of obtaining a high-resolution image from the corresponding
low-resolution image, is a classical problem in image processing. In this paper, we propose a novel
energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm,
each interpolated pixel is predicted by a combination of two information sources: first is a statistical
model adopted to mine underlying information, and second is an energy computation technique
used to acquire information on pixel properties. We further demonstrate that our algorithm can
not only achieve image interpolation, but also reduce noise in the original image. Our experiments
show that the proposed algorithm can achieve encouraging performance in terms of image
visualization and quantitative measures.

1. Introduction

Image interpolation is a very important aspect of image processing and involves the use
of a known pixel set to produce an unknown pixel set, resulting in an image of higher
resolution [1, 2]. This technique is widely used in remote sensing, aerospace, infrared
imaging, low-light level night imagery, and other fields [3–5]. However, maintaining image
quality during image interpolation is still a difficult issue [6]. To address this, many image
interpolation methods have been proposed. For example, traditional bilinear interpolation
computes the unknown pixel value using the location information between the adjacent
pixels. This technique does not consider the contents of the image, so edge blurring will
occur in the interpolated image [7, 8]. In order to capture image details more clearly, an
artifact-free image upscaling method called ICBI [9] has recently been proposed, which uses
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Figure 1: Overview of our approach for image interpolation.

iterative curvature-based interpolation to obtain a high image quality, but does not take
into account underlying local information between image patches. Local image information
can be mined according to its structural redundancy characteristic, as proposed by Glasner
et al. [10]. This characteristic can lay the foundations for the training and predicting of a
statistical model [11, 12]. A statistical model known as Gaussian process regression (GPR)
was first applied in the reconstruction of high-resolution images in 2011 and has been
shown to be capable of generating an image with sharp edges by extracting the necessary
information from a low-resolution image [13]. However, it should be noted that this method
only uses the local structural information for each pixel’s neighborhood, so it can still generate
unexpected details. To develop the above techniques, we propose here a novel energy-
driven interpolation algorithm employing Gaussian process regression (EGPR) (Figure 1).
This algorithm not only emphasizes the influence of adjacent pixel properties on interpolated
values, but also brings into full play the role of the statistical model.

Our contribution is twofold. Firstly, we propose a framework for both magnification
and deblurring in order to fulfill the interpolation task for low-resolution images with low
noise. Secondly, we demonstrate an energy-driven approach based on the properties of
adjacent pixels within this framework. In addition, we define the processing unit and its
properties for better implementation of the EGPR algorithm.

The rest of the paper is structured as follows. Section 2 discusses GPR. Section 3
illustrates the proposed EGPR algorithm. Section 4 presents experimental work carried out
to demonstrate the effectiveness of our algorithm. Section 5 concludes the paper.

2. Gaussian Process Regression

In recent years, GPR has become a hot issue in the field of machine learning and has attracted
great academic interest [14–16]. It has many advantages, including its rigorous underlying
statistical learning theory, easy regression process implementation, few parameters, and
improved model interpretability [17–19]. As a result of these benefits, it has been used in
many areas [20–23]; however, to the best of our knowledge, it has not yet been fully utilized
in image interpolation. Rasmussen and Williams [24] defined the Gaussian process and noted
in particular that a Gaussian process is completely specified by its mean and covariance
functions ((2.1) and (2.2), resp.):

μ(x) = E[Y (x)], (2.1)

COV
(
x, x′

)
= E
[(
Y (x) − μ(x))(Y(x′) − μ(x′))], (2.2)
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where x and x′ are any random variables. In particular, they could represent n-dimensional
input or output vectors. The Gaussian process can be written as follows:

g(x) ∼ GP
(
μ(x),COV

(
x, x′

))
. (2.3)

There are a variety of covariance functions, of which one of the most commonly used
is the squared exponential (SE) covariance function

COV
(
g
(
xp

)
, g
(
xq

))
= exp

(
−1

2
∣∣xp − xq

∣∣2). (2.4)

In Gaussian processes, the marginal likelihood p(y | X) at a point is very useful and is the
integral of the likelihood multiplied by the prior probability

p
(
y | X) = ∫ p

(
y | g,X)p(g | X)dg. (2.5)

We can rewrite (2.5) as follows:

log p
(
g | X) = −1

2
gTCOV−1g − 1

2
log|COV| − n

2
log 2π. (2.6)

We can make use of Gaussian identities to obtain (2.7), in order to compute the log
marginal likelihood. The conjugate gradients method has been applied to solve this equation.
Using this approach, we can obtain the hyperparameters of the covariance function. Further
details of GPR can be found in [24] as follows:

log p
(
g | X) = −1

2
yT
(

COV(X,X) + σ2
nI
)−1

y − 1
2

log
∣∣∣COV(X,X) + σ2

nI
∣∣∣ − n

2
log 2π. (2.7)

3. The Proposed Algorithm

In this paper, we combine the energy-driven approach with GPR to accomplish the task of
image interpolation. The proposed algorithm models low-resolution image data as a function
of a probability distribution that satisfies a local static Gaussian process. This algorithm
framework is shown in Figure 2 and is broadly divided into the training process and
prediction process. Firstly, the GPR model can be established using the low-resolution image
data. Next, this model is used to predict the unknown pixel values of a high-resolution image
by adopting an energy computation approach. Through the above two steps, we produce a
high-quality enlarged image. The process is further clarified by the following:

L′ = d ∗ L, H ′ = L′↑s, H = f ∗H ′, (3.1)

where L and H denote the input low-resolution image with a little noise and the output high-
resolution image, respectively, L′ denotes the noise-free low-resolution image, H ′ denotes the
initial high-resolution image, sdenotes the upsampling factor, and d and f denote the clear
transfer function and energy transfer function, respectively.
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Figure 2: Architecture of the proposed algorithm.

3.1. Training

The following definitions are used in the EGPR algorithm.

Definition 3.1. A given image L is divided into many regions of equal size, and each region
is defined as a processing unit (PU). Each PU is also divided into 3 × 3 overlapping image
patches (the total number is M). The center of each patch is defined as an output vector YTR

of PU, where YTR = (y1, y2, . . . yM)T , while the nearest eight values are defined as an input
vector XTR of PU, where

XTR =

⎧⎪⎪⎨
⎪⎪⎩

x11, x12 . . . , x18

x21, x22 . . . , x28

. . . .
xM1, xM2 . . . , xM8

⎫⎪⎪⎬
⎪⎪⎭. (3.2)

Definition 3.2. Given a total of N pixels in each PU, the pixels are sorted and denoted as
I1, I2 . . . IN . Imax ave, Imin ave, and Iave are defined using the following formulae:

Imax ave =
Top∑
i=1

Ii
Top

, Imin ave =
Below∑
i=1

Ii
Below

, Iave =
N∑
i=1

Ii
N

, (3.3)

where top represents the number of the largest pixels used and below the number of the
smallest pixels used. Then Imax ave, Imin ave, and Iave are called basic properties of PU.

To facilitate the operation of the PU, it is necessary to introduce some properties in
advance.
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Property 1. Given a number N in each PU, if Imax ave = 0, then pixel value Ii = 0, where i ≤N.

Property 2. Given xij , if xij = a, then its corresponding output vector value is yij = a, where
yij ∈ YTR, i ∈M, j = 1.

Denoising is the first step in the EGPR algorithm, and we use the following formula
(3.4) to obtain noise-free images:

Ii =

{
Ineighbor, (Imax ave − Imin ave)〈θ &Ii〉(Iave + B),
Ii, otherwise,

(3.4)

where θ and B represent empirical values, and Ineighbor represents the adjacent pixel value.
Before applying GPR, we can obtain the particular relationship between the input and

output vectors of PU according to Properties 1 and 2. Pixels with this relationship need not
be included in the following GPR training, so the predicted values can be directly obtained,
saving time and speeding up the EGPR algorithm.

Training plays an important role in the EGPR algorithm, and we adopt a different
approach from that used in [13]. Our algorithm contains two processes: training domain
establishment and GPR model foundation. In the first stage, we search possible training
domains along the four directions of each specific PU. Next, we compute the structural
similarity between directions to determine the definite training domain. Inspired by the
concept of image SSIM, we define the PU structural similarity as follows.

Definition 3.3 (PU structural similarity). Given two processing units P and Q, their structural
similarity is defined as

S(P,Q) =

(
2mPmQ + C1

)(
2ψPQ + C2

)
(
m2

P +m2
Q + C1

)(
ψ2
P + ψ2

Q + C2

) , (3.5)

where C1 and C2 are constants, and the other components are calculated as follows:

mP =
1
N

N∑
i=1

pi, pi ∈ P, mQ =
1
N

N∑
i=1

qi, qi ∈ Q, ψP =

(
1

N − 1

N∑
i=1

(
pi −mp

)2

)1/2

,

ψQ =

(
1

N − 1

N∑
i=1

(
qi −mq

)2

)1/2

, ψPQ =
1

N − 1

N∑
i=1

(
pi −mp

)(
qi −mq

)
.

(3.6)

When the search step count reaches the predefined number, or if the PU structure
similarity falls below a certain value, the first stage is complete. In the second stage, we apply
a Gaussian process prior probability and establish the GPR model with Gaussian noise γ (see
(3.7) below) using the image data from training domains. In (3.7), “GP” denotes a Gaussian
process

y = g(X) + γ, γ ∼ GP
(

0, σ2
n

)
. (3.7)
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(a) Iteration= 50 (b) Iteration= 100

Figure 3: Images obtained after adaptation with different numbers of iterations. In (a), many black points
are observed, each indicating a zero prediction for the pixels. In (b), the black points have been eliminated.

When aiming to achieve high-quality images, the conjugate gradients method is
chosen to obtain the model hyperparameters, including mean, variance, and log marginal
likelihood. Notice that different iteration numbers in the conjugate gradients method may
lead to different prediction accuracies. Figure 3 shows the interpolation images obtained after
50 iterations and 100 iterations, where it can be seen that the latter is better than the former.

3.2. Prediction

Inspired by the ICBI algorithm, we firstly compute the initial pixel value H ′(2x + 1, 2y + 1)
according to the following formulae:

τ1 = I
(
2x + 4, 2y

)
+ I
(
2x + 2, 2y − 2

)
+ I
(
2x, 2y + 4

)
+ I
(
2x − 2, 2y + 2

)
,

τ2 = I
(
2x + 4, 2y + 2

)
+ I
(
2x + 2, 2y + 4

)
+ I
(
2x, 2y − 2

)
+ I
(
2x − 2, 2y

)
,

(3.8)

d1
(
2x + 1, 2y + 1
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= τ1 + I

(
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+ I
(
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(
I
(
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(
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+ I
(
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+ I
(
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(3.9)

H ′(2x + 1, 2y + 1
)

=
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1
2
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I
(
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)
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(
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))
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(
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) ≥ d2
(
2x + 1, 2y + 1

)
.

(3.10)
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However, the pixel value obtained is only a roughly estimated value and needs further
refinement. Following [9], we establish (3.11) to calculate the energy of each interpolated
pixel, and the initial estimate can be modified accordingly,

E
(
2x + 1, 2y + 1

)
= cEc

(
2x + 1, 2y + 1

)
+ eEe

(
2x + 1, 2y + 1

)
+ iEi

(
2x + 1, 2y + 1

)
, (3.11)

where c, e, and i are chosen to adjust the energy contributions from the three parts.
Ec represents the curvature continuity energy and can be computed with the following

formulae:

σ1 =
∣∣d1
(
2x, 2y

) − d1
(
2x + 1, 2y + 1

)∣∣ + ∣∣d2
(
2x, 2y

) − d2
(
2x + 1, 2y + 1

)∣∣,
σ2 =

∣∣d1
(
2x, 2y

) − d1
(
2x + 1, 2y − 1

)∣∣ + ∣∣d2
(
2x, 2y

) − d2
(
2x + 1, 2y − 1

)∣∣,
σ3 =

∣∣d1
(
2x, 2y

) − d1
(
2x − 1, 2y + 1

)∣∣ + ∣∣d2
(
2x, 2y

) − d2
(
2x − 1, 2y + 1

)∣∣,
σ4 =

∣∣d1
(
2x, 2y

) − d1
(
2x − 1, 2y − 1

)∣∣ + ∣∣d2
(
2x, 2y

) − d2
(
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Ec

(
2x + 1, 2y + 1

)
= α1σ1 + α2σ2 + α3σ3 + α4σ4,

(3.12)

where αi(i = 1 . . . 4) are weight values (see (3.13)), and d1 and d2 have the same meanings as
above. θ is set as the threshold

αi =

{
1 ifσi < θ,

0, otherwise.
(3.13)

The second energy term Eb represents the curvature enhancement energy and can be
computed by

Ee

(
2x + 1, 2y + 1

)
=
∣∣d2
(
2x + 1, 2y + 1

)∣∣ − ∣∣d1
(
2x + 1, 2y + 1

)∣∣. (3.14)

The third energy term, Ei, represents the isolevel curves smoothing energy and can be
computed with

Ei

(
2x + 1, 2y + 1

)
= D
(
2x + 1, 2y + 1

)
I
(
2x + 1, 2y + 1

)
, (3.15)
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where D(2x + 1, 2y + 1) can be computed as follows:
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(3.16)

Suppose that the low-resolution image Lij is of size m × n and that it is changed to the
corresponding interpolated image Hij ′ of size ((m× 2scale)− (2scale − 1))× ((n× 2scale)− (2scale −
1)), where “scale” denotes the magnification factor. Then we use the nearest interpolation
algorithm for the missing pixels in order to obtain the image Hij ′ of size (m × 2scale) × (n ×
2scale).

Similarly, we partition Hij ′ into overlapping processing units. The eight adjacent pixels
of each pixel are treated as GPR model test input data based on the model M which was
obtained from the training process. Note that if PU has Property 1 or Property 2, then we
can directly obtain the corresponding pixel values. Otherwise, we capture the prediction
distribution of unknown pixels in the initial high-resolution image. The joint distribution
of the training domain output y and the test output f

′
is given by the following equation:

[
y
g ′

]
∼ GP

(
0,
[

COV(X,X) + σ2
nI,COV(X,X′)

COV(X′, X),COV(X′, X′)

])
, (3.17)

where X denotes the GPR training data matrix, X′ is the test matrix, and COV(X,X′) is the
n× n matrix of covariances. Therefore, we can derive the predictive distribution based on the
obtained model M:

g ′ | X, y,X′ ∼ GP
(
g ′, V

(
g ′
))

,

g ′ = COV
(
X′, X

)[
COV(X,X) + σ2

nI
]−1

y,

V
(
g ′
)
= COV

(
X′, X′

) − COV
(
X′, X

)[
COV(X,X) + σ2

nI
]−1

COV
(
X,X′

)
.

(3.18)

During the prediction of high-resolution image pixels, two rules should be obeyed.
Firstly, the PU divided by the initial high-resolution image should correspond to that divided
by the low-resolution image. Secondly, the gradient algorithm should satisfy the common
positive definite matrix. If not, it will lead to a zero prediction, and the prediction value
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(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 4: Comparison of images obtained using four methods, with scale= 1. Parts (a)–(d) show image 1.
Parts (e)–(h) show image 2.

will need modifying. The modification method can be utilized to maintain the original
interpolated pixel value. Finally, we combine all the processing units together in a smooth
manner to obtain the high-resolution images without noise.

4. Experimental Results and Discussion

In this section, we compare the experimental results obtained using the proposed algorithm
with those obtained using the bilinear algorithm, GPR algorithm [13], and ICBI algorithm
[9]. Each algorithm was run in MATLAB. In order to evaluate algorithm performance, we
first downsampled original high-quality images to acquire low-resolution images. Then we
enlarged these low-resolution images by utilizing the different interpolation algorithms and
compared the enlarged images with the original high-quality images. In all experiments,
we set the PU size to 30 × 30, but this may be increased according to the magnification
factor. At the same time, we used zero mean and square exponential functions as the
respective mean and covariance functions in the EGPR. The covariance function required two
hyperparameters: a characteristic length scale, the default value of which was 0.21, and the
standard deviation of the signal, the default value of which was 0.08. In addition, to achieve
color image interpolation, we trained and predicted the GPR model separately for each of the
R, G, and B channels.

Figure 4 shows the interpolation results from the four algorithms when “scale” was set
as 1. Figures 4(a)–4(d) are comparisons of image 1, and Figures 4(e)–4(h) are comparisons
of image 2. In the enlarged red-bordered region, it can be seen that the bilinear method
introduces jaggy effects, the GPR method reduces these jaggy effects, and the ICBI method
achieves a clear edge but is still a little blurry. By employing the energy computation based
on properties of adjacent pixels, our new method generates a clearer image without noise.

Similarly, Figures 5 and 6 demonstrate the interpolation results with scales of 2 and
3, respectively. From these figures, it can be seen that our method achieved the clearest
and smoothest enlarged image of the four methods tested, for example, along edges on the
root hand in Figure 6(h). Moreover, the advantages of our proposed algorithm become more
enhanced at greater enlargement factors.
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(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 5: Comparison of images obtained using four methods, with scale= 2. Parts (a)–(d) show image 3.
Parts (e)–(h) show image 4.

(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 6: Comparison of images obtained using four methods, with scale= 3. Parts (a)–(d) show image 5.
Parts (e)–(h) show image 6.

Table 1: Comparison of PSNR for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 32.9940 33.2792 33.3456 33.3986
Image 2 1 30.6314 30.7861 31.3684 31.4594
Image 3 2 29.5738 29.4194 29.7173 29.7213
Image 4 2 27.7717 27.4767 27.8485 27.8625
Image 5 3 23.4038 24.4366 24.7153 24.7171
Image 6 3 24.3122 25.1477 25.6880 25.6909

Table 2: Comparison of RMS for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 16.4437 15.8419 15.7032 15.6004
Image 2 1 21.1046 20.3410 19.1890 18.9614
Image 3 2 24.9225 24.8861 24.4329 24.4191
Image 4 2 31.0516 32.1427 30.6882 30.6118
Image 5 3 50.8161 44.8762 43.3017 43.2633
Image 6 3 45.9833 41.5720 39.0571 39.0412
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Table 3: Comparison of MSSIM for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 0.936 0.937 0.938 0.940
Image 2 1 0.946 0.947 0.953 0.955
Image 3 2 0.905 0.906 0.909 0.910
Image 4 2 0.812 0.808 0.815 0.816
Image 5 3 0.818 0.837 0.850 0.851
Image 6 3 0.857 0.865 0.878 0.879

To further validate our algorithm, we also provide objective measurements. Peak
signal-to-noise ratio (PSNR) and root mean square (RMS) error are traditional quantitative
measures of accuracy, and by comparing their values for the above images, we can conclude
that the proposed EGPR algorithm yields interpolated pixel values that are much closer
to their original high-quality values than those obtained with the bilinear algorithm, GPR
algorithm, and ICBI algorithm. Tables 1 and 2 summarize the PSNR and RMS values for
each algorithm at different magnification factors and for each image. It can be observed that
the PSNR values for images obtained using the EGPR algorithm are the highest, and those
using the bilinear algorithm are the lowest. Further, RMS values for images obtained using
the EGPR algorithm are the lowest, and those using the bilinear algorithm are the highest.
Overall, it can be clearly demonstrated that our new method outperforms the other three
algorithms.

MSSIM [25] is an image quality assessment index which assesses the image visibility
quality from an image formation point of view under the assumption of the correlation
between human visual perception and image structural information. We compared the
MSSIM obtained using the EGPR algorithm at different scale values with the corresponding
values obtained using the bilinear, GPR, and ICBI algorithms, as shown in Table 3. It is noted
that our new algorithm achieves a greater MSSIM than the other three algorithms, and the
results show that the images obtained using our algorithm are closer to the original high-
resolution images in terms of image structure similarity.

In addition, Figure 7 clearly demonstrates the quantitative assessment results for each
image at different magnification levels. In this figure, the blue dots represent the quality
scores of the images obtained using the comparison algorithms, and the red dots represent
those obtained using our algorithm. Our interpolation algorithm is notably superior to the
other algorithms, according to all three objective measurements. The proposed algorithm
therefore yielded encouraging performance in terms of image visualization and quantitative
quality assessment, making it a competitive image interpolation algorithm.

5. Conclusions

In this paper, we have presented a novel EGPR method for image interpolation. The main
feature of this new algorithm is its ability to obtain relatively high prediction accuracy of the
unknown pixels by fully utilizing underlying image patch information. The implementation
process involves two steps: training and prediction. The former creates a GPR model using
only single-image data as the training set, and the latter combines energy computation
with the acquired model to produce a high-resolution image. Experiments have shown that
our algorithm can yield encouraging performance not only in terms of image visualization
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Figure 7: Quantitative quality assessment results for the four interpolation methods.

but also in terms of PSNR, RMS, and MSSIM quality measures. However, better image
interpolation comes at the expense of greater algorithm complexity. Methods of improving
the algorithm efficiency need further investigation. In future, we can improve this algorithm
to address the problem of the interpolation of image sequences. Images in the same sequence
are also subject to the recurrence phenomenon, whereby images contain spatial-temporal
correlation [26]. We believe that this problem can be addressed using the improved EGPR
algorithm by finding an appropriate energy-driven computation and training mode.
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Robust force/motion control strategies are presented for mobile manipulators under both holon-
omic and nonholonomic constraints in the presence of uncertainties and disturbances. The controls
are based on structural knowledge of the dynamics of the robot, and the actuator dynamics is
also taken into account. The proposed control is robust not only to structured uncertainty such
as mass variation but also to unstructured one such as disturbances. The system stability and the
boundness of tracking errors are proved using Lyapunov stability theory. The proposed control
strategies guarantee that the system motion converges to the desired manifold with prescribed
performance. Simulation results validate that not only the states of the system asymptotically
converge to the desired trajectory, but also the constraint force asymptotically converges to the
desired force.

1. Introduction

Mobile manipulators refer to robotic manipulators mounted on mobile platforms. Such sys-
tems combine the advantages of mobile platforms and robotic arms and reduce their draw-
backs [1–4]. For instance, the mobile platform extends the arm workspace, whereas the
arm offers much operational functionality. Applications for such systems could be found in
mining, construction, forestry, planetary exploration, teleoperation, and military [5–11].

Mobile manipulators possess complex and strongly coupled dynamics of mobile
platforms and manipulators [12–16]. A control approach by nonlinear feedback linearization
was presented for the mobile platform so that the manipulator is always positioned at
the preferred configurations measured by its manipulability [17]. In [14], the effect of the
dynamic interaction on the tracking performance of a mobile manipulator was studied, and
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nonlinear feedback control for the mobile manipulator was developed to compensate the
dynamic interaction. In [18], a basic framework for the coordination and control of vehicle-
arm systems was presented, which consists of two basic task-oriented control: end-effector
task control and platform self-posture control. The standard definition of manipulability was
generalized to the case of mobile manipulators, and the optimization of criteria inherited
from manipulability considerations were given to generate the controls of the system when
its end-effector motion was imposed [19]. In [20], a unified model for mobile manipulator
was derived, and nonlinear feedback was applied to linearize and decouple the model, and
decoupled force/position control of the end-effector along the same direction for mobile
manipulators was proposed and applied to nonholonomic cart pushing. The previously
mentioned literature concerning with control of the mobile manipulator requires the precise
information on the dynamics of the mobile manipulator; there may be some difficulty in
implementing them on the real system in practical applications.

Different researchers have investigated adaptive controls to deal with dynamics
uncertainty of mobile manipulators. Adaptive neural-network- (NN-) based controls for
the arm and the base had been proposed for the motion control of a mobile manipulator
[21, 22]; each NN control output comprises a linear control term and a compensation term for
parameter uncertainty and disturbances. Adaptive control was proposed for trajectory/force
control of mobile manipulators subjected to holonomic and nonholonomic constraints with
unknown inertia parameters [23, 24], which ensures the state of the system to asymptotically
converge to the desired trajectory and force. The principal limitation associated with these
schemes is that controllers are designed at the velocity input level or torque input level, and
the actuator dynamics are excluded.

As demonstrated in [25–27], actuator dynamics constitute an important component of
the complete robot dynamics, especially in the case of high-velocity movement and highly
varying loads. Many control methods have therefore been developed to take into account
the effects of actuator dynamics (see, e.g., [28–30]). However, the literature is sparse on the
control of the nonholonomic mobile manipulators including the actuator dynamics. In most
of the research works for controlling mobile manipulators, joint torques are control inputs
though in reality joints are driven by actuators (e.g., DC motors), and therefore using actuator
input voltages as control inputs is more realistic. To this effect, actuator dynamics is combined
with the mobile manipulator’s dynamics in this paper.

This paper addresses the problem of stabilization of force/motion control for a class
of mobile manipulator systems with both holonomic and nonholonomic constraints in the
parameter uncertainties and external disturbances.

Unlike the force/motion control presented in [31–37], which is proposed for the
mechanical systems subject to either holonomic or nonholonomic constraints, in our paper,
the control is to deal with the system subject to both holonomic and nonholonomic con-
straints. After the dynamics based on decoupling force/motion is first presented, the robust
motion/force control is proposed for the system under the consideration of the actuator
dynamics uncertainty to complete the trajectory/force tracking. The paper has main contribu-
tions listed as follows.

(i) Decoupling robust motion/force control strategies are presented for mobile
manipulator with both holonomic and nonholonomic constraints in the parameter
uncertainties and external disturbances, and nonregressor-based control design is
developed in a unified manner without imposing any restriction on the system
dynamics.
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(ii) The actuators (e.g., DC motor) dynamics of both the mobile platform and the arm
are integrated with mobile manipulator dynamics and kinematics so that the actu-
ator input voltages are the control inputs thus making the system more realistic.

Simulation results are described in detail that show the effectiveness of the proposed
control law.

The rest of the paper is organized as follows. The system description of mobile
manipulator subject to nonholonomic constraints and holonomic is briefly described in
Section 2. Problem statement for the system control is given in Section 4. The main results of
robust adaptive control design are presented in Section 5. Simulation studies are presented by
comparison between the proposed robust control with nonrobust control in Section 6. Conc-
luding remarks are given in Section 7.

2. System Description

Consider an n DOF mobile manipulator with nonholonomic mobile base. The constrained
mechanical system can be described as

M
(
q
)
q̈ + C

(
q, q̇
)
q̇ +G

(
q
)
+ d(t) = B

(
q
)
τ + f, (2.1)

where q = [q1, . . . , qn]
T ∈ Rn denote the generalized coordinates; M(q) ∈ Rn×n is the sym-

metric bounded positive definite inertia matrix; C(q̇, q)q̇ ∈ Rn denotes the Centripetal and
Coriolis torques; G(q) ∈ Rn is the gravitational torque vector; d(t) denotes the external
disturbances; τ ∈ Rm is the control inputs; B(q) ∈ Rn×m is a full rank input transformation
matrix and is assumed to be known because it is a function of fixed geometry of the system;
f ∈ Rm denotes the vector of constraint forces; J ∈ Rn×m is Jacobian matrix; λ = [λn, λh] ∈ Rm

is Lagrange multipliers corresponding to the nonholonomic and holonomic constraints.
The generalized coordinates may be separated into two sets q = [qv, qa]

T , where qv ∈
Rv describes the generalized coordinates for the mobile platform, qa ∈ Rr is the coordinates
of the manipulator, and n = v + r.

Assumption 2.1 (see [38–40]). The mobile manipulator is subject to known nonholonomic
constraints.

Assumption 2.2. The system (2.8) is subjected to k independent holonomic constraints, which
can be written as

h
(
q
)
= 0, h

(
q
) ∈ Rk, (2.2)

where h(q) is full rank, then J(q) = ∂h/∂q.

Remark 2.3. In actual implementation, we can adopt the methods of producing enough
friction between the wheels of the mobile platform and the ground such that this assumption
holds [41–43].
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The vehicle is subjected to nonholonomic constraints, the l nonintegrable and inde-
pendent velocity constraints can be expressed as

A
(
qv
)
q̇v = 0, (2.3)

where A(qv) = [AT
1 (qv), . . . , A

T
l (qv)]

T : Rv → Rl×v is the kinematic constraint matrix which
is assumed to have full rank l. In the paper, the vehicle is assumed to be completely non-
holonomic. The effect of the constraints can be viewed as a restriction of the dynamics on the
manifold Ωn as

Ωn =
{(

qv, q̇v
) | A(qv)q̇v = 0

}
. (2.4)

The generalized constraint forces for the nonholonomic constraints can be given by

fn = AT(qv)λn. (2.5)

Assume that the annihilator of the codistribution spanned by the covector fields
A1(qv), . . . , Al(qv) is a (v− l)-dimensional smooth nonsingular distribution Δ on Rv. This dis-
tribution Δ is spanned by a set of (v − l) smooth and linearly independent vector fields
H1(qv), . . . ,Hv−l(qv); that is, Δ = span{H1(qv), . . . ,Hv−l(q)}, which satisfy, in local coordi-
nates, the following relation:

HT(qv)AT(qv) = 0, (2.6)

where H(qv) = [H1(qv), . . . ,Hnv−l(qv)] ∈ Rv×(v−l). Note that HTH is of full rank. Constraints
(2.3) imply the existence of vector η̇ ∈ Rv−l [44], such that

q̇v = H
(
qv
)
η̇. (2.7)

Considering the nonholonomic constraints (2.3) and its derivative, the dynamics of
mobile manipulator can be expressed as

[
HTMvH HTMva

MavH Ma

][
η̈
q̈a

]
+
[
HTMvḢ +HTCvH HTCva

MavḢ + CavH Ca

][
η̇
q̇a

]
+
[
HTGv

Ga

]
+
[
HTdv

da

]

=
[
HTBvτv
Baτa

]
+
[

0 0
Jv Ja

]T[
0
λh

]
.

(2.8)

From Assumption 2.2, the holonomic constraint force fh can be converted to the joint
space as fh = JTλh. Hence, the holonomic constraint on the robot’s end effector can be
viewed as restricting only the dynamics on the constraint manifold Ωh defined by Ωh =
{(q, q̇) | h(q) = 0, J(q)q̇ = 0}. The vector qa can be further rearranged and partitioned
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into qa = [q1
a, q

2
a]

T ; q1
a ∈ Rr−k describes the constrained motion of the manipulator, and q2

a ∈ Rk

denotes the remaining joint variable. Then,

J
(
q
)
=

[
∂h

∂η
,
∂h

∂q1
a

,
∂h

∂q2
a

]
. (2.9)

From [45], it could be concluded q is the function of ζ = [η, q1
a]

T , that is, q = q(ζ), and we
have q̇ = L(ζ)ζ̇, where L(ζ) = ∂q/∂ζ, q̈ = L(ζ)ζ̈ + L̇(ζ)ζ̇, and L(ζ), J1(ζ) = J(q(ζ)) satisfy the
relationship

LT (ζ)J1T (ζ) = 0. (2.10)

The dynamic model (2.8), when it restricted to the constraint surface, can be transformed into
the reduced model:

M1L(ζ)ζ̈ + C1ζ̇ +G1 + d1(t) = u + J1Tλh, (2.11)

where

M1 =
[
HTMvH HTMva

MavH Ma

]
,

C1 =
[
HTMvḢ HTMva

MavH Ma

]
L̇(ζ) +

[
HTMvḢ +HTCvH HTCva

MavḢ + Cav Ca

]
L(ζ),

G1 =
[
HTGv

Ga

]
, d1(t) =

[
HTdv

da

]
,

u = B1τ, B1 =
[
HTBv 0

0 Ba

]
, ζ =

[
η
q1
a

]
.

(2.12)

Multiplying LT by both sides of (2.11), we can obtain

ML(ζ)ζ̈ + CL

(
ζ, ζ̇
)
ζ̇ +GL + dL(t) = LTB1τ. (2.13)

The force multipliers λh can be obtained by (2.11):

λh = Z(ζ)
(
C1(ζ, ζ̇)ζ̇ +G1 + d1(t) − B1τ

)
, (2.14)

where ML = LTM1L, CL = LTC1, GL = LTG1, Z = (J1(M1)−1J1T )−1J1(M1)−1.

Property 1. The matrix ML is symmetric and positive definite.

Property 2. The matrix ṀL − 2CL is skew symmetric.
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Property 3 (see [46]). For holonomic systems, matrices J1(ζ), L(ζ) are uniformly bounded and
uniformly continuous if ζ is uniformly bounded and continuous, respectively.

Property 4. There exist some finite positive constants ci > 0 (1 ≤ i ≤ 4) and finite nonnegative
constant ci ≥ 0 (i = 5) such that for all ζ ∈ Rn, for all ζ̇ ∈ Rn, ‖ML(ζ)‖ ≤ c1, ‖CL(ζ, ζ̇)‖ ≤
c2 + c3‖ζ̇‖, ‖GL(ζ)‖ ≤ c4, and supt≥0‖dL(t)‖ ≤ c5.

3. Actuator Dynamics

The joints of the mobile manipulators are assumed to be driven by DC motors. Consider the
following notations used to model a DC motor: ν ∈ Rm represents the control input voltage
vector; I denotes an m-element vector of motor armature current; KN ∈ Rm×m is a positive
definite diagonal matrix which characterizes the electromechanical conversion between
current and torque; La = diag[La1, La2, La3, . . . , Lam], Ra = diag[Ra1, Ra2, Ra3, . . . , Ram], Ke =
diag[Ke1, Ke2, Ke3, . . . , Kem], ω = [ω1, ω2, . . . , ωm]

T represent the equivalent armature induct-
ances, resistances, back EMF constants, angular velocities of the driving motors, respectively;
Gr = diag(gri) ∈ Rm×m denotes the gear ratio for m joints; τm are the torque exerted by the
motor. In order to apply the DC servomotors for actuating an n-DOF mobile manipulator,
assuming no energy losses, a relationship between the ith joint velocity q̇i and the motor shaft
velocity ωi can be presented as gri = ωi/q̇i = τi/τmi with the gear ratio of the ith joint gri, the
ith motor shaft torque τmi, and the ith joint torque τi. The motor shaft torque is proportional
to the motor current τm = KNI. The back EMF is proportional to the angular velocity of the
motor shaft; then we can obtain

La
dI

dt
+ RaI +Keω = v. (3.1)

In the actuator dynamics (3.1), the relationship between ω and ζ̇ is dependent on the type of
mechanical system and can be generally expressed as

ω = GrTζ̇. (3.2)

The structure of T depends on the mechanical systems to be controlled. For instance, in the
simulation example, a two-wheel differential drive 2-DOF mobile manipulator is used to
illustrate the control design. From [47], we have

v =

(
rθ̇l + rθ̇r

)
2

,

θ̇ =

(
rθ̇r − rθ̇l

)
2l

,

θ̇1 = θ̇1,

θ̇2 = θ̇2,

(3.3)
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Figure 1: The 2-DOF mobile manipulator.

where θ̇l and θ̇r are the angular velocities of the two wheels, respectively, and v is the linear
velocity of the mobile platform, as shown in Figure 1. Since ẏ = v cos θ, we have

[
θ̇l θ̇r θ̇1 θ̇2

]T = T
[
ẏ θ̇ θ̇1 θ̇2

]T
,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r cos θ

l

r
0 0

1
r cos θ

− l
r

0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.4)

where r and l are shown in Figure 1.
Eliminating ω from the actuator dynamics (3.1) by substituting (3.2), one obtains

LTB1GrKNI = ML(ζ)ζ̈ + CL

(
ζ, ζ̇
)
ζ̇ +GL + dL(t), (3.5)

λh = Z(ζ)
(
C2ζ̇ +G2 + d2(t) − B1GrKNI

)
, (3.6)

ν = La
dI

dt
+ RaI +KeGrTζ̇. (3.7)

Until now we have brought the kinematics (2.3), dynamics (3.5), (3.6) and actuator
dynamics (3.7) of the considered nonholonomic system from the generalized coordinate
system q ∈ Rn to feasible independent generalized velocities ζ ∈ Rn−l−k without violating
the nonholonomic constraint (2.3).
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4. Problem Statement

Since the system is subjected to the nonholonomic constraint (2.3) and holonomic constraint
(2.2), the states qv, q1

a, q2
a are not independent. By a proper partition of qa, q2

a is uniquely
determined by ζ = [η, q1

a]
T . Therefore, it is not necessary to consider the control of q2

a.
Given a desired motion trajectory ζd(t) = [ηdq1

a
d]T and a desired constraint force fd(t),

or, equivalently, a desired multiplier λh(t), the trajectory and force tracking control is to
determine a control law such that for any (ζ(0), ζ̇(0)) ∈ Ω, ζ, ζ̇, λ asymptotically converge
to a manifold Ωd specified as Ω where

Ωd =
{(

ζ, ζ̇, λh
) | ζ = ζd, ζ̇ = ζ̇d, λ = λd

}
. (4.1)

The controller design will consist of two stages: (i) a virtual adaptive control input Id

is designed so that the subsystems (3.5) and (3.6) converge to the desired values, and (ii) the
actual control input ν is designed in such a way that I → Id. In turn, this allows ζ − ζd and
λ − λd to be stabilized to the origin.

Assumption 4.1. The desired reference trajectory ζd(t) is assumed to be bounded and uni-
formly continuous and has bounded and uniformly continuous derivatives up to the second
order. The desired Lagrangian multiplier λd(t) is also bounded and uniformly continuous.

5. Robust Control Design

5.1. Kinematic and Dynamic Subsystems

Let eζ = ζ − ζd, ζ̇r = ζ̇d − kζeζ, r = ėζ + kζeζ with kζ > 0, eβ = λ − λd. A decoupled control
scheme is introduced to control generalized position and constraint force separatively.

Consider the virtual control input I is designed as

I = K−1
NG−1

r B1−1
τ. (5.1)

Let the control u be as the form

u = L+Tua − J1Tub,

ua = B1GrKNaIa,

ub = B1GrKNbIb,

(5.2)

where ua, Ia ∈ Rn−l−k and ub, Ib ∈ Rk and L+T = (LTL)−1LT . Then, (2.13) and (2.14) can be
changed to

ML(ζ)ζ̈ + CL

(
ζ, ζ̇
)
ζ̇ +GL + dL(t) = B1GrKNaIa, (5.3)

Z(ζ)
(
C1(ζ, ζ̇)ζ̇ +G1 + d1(t) − L+TB1GrKNaIa

)
+ B1GrKNbIb = λh. (5.4)
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Consider the following control laws:

B1GrKNaI
d
a = −Kpr −Ki

∫
rdt − rΦ2

Φγ(‖r‖) + δ
, (5.5)

Φ = CTΨ, (5.6)

B1GrKNbI
d
b =

χ2

χ + δ
+ λdh −Kfeλ, (5.7)

χ = c1‖Z(ζ)‖
∥∥∥L+T

∥∥∥∥∥∥∥ d

dt

[
ζ̇d
]∥∥∥∥, (5.8)

where C =
[
c1 c2 c3 c4 c5

]
; Ψ =

[ ‖(d/dt)[ζ̇r]‖ ‖ζ̇r‖ ‖ζ̇‖ ‖ζ̇r‖ 11
]T ; Kp,Ki,Kf are

positive definite. γ(‖r‖) can be defined as follows: if ‖r‖ ≤ ρ, γ(‖r‖) = ρ, else γ(‖r‖) = ‖r‖, ρ
is a small value, δ(t) is a time-varying positive function converging to zero as t → ∞, such
that

∫ t
0 δ(ω)dω = a <∞. There are many choices for δ(t) that satisfies the condition.

5.2. Control Design at the Actuator Level

Till now, we have designed a virtual controller I and ζ for kinematic and dynamic subsystems.
ζ tending to ζd can be guaranteed, if the actual input control signal of the dynamic system I
be of the form Id which can be realized from the actuator dynamics by the design of the actual
control input ν. On the basis of the above statements we can conclude that if ν is designed in
such a way that I tends to Id, then (ζ − ζd) → 0 and (λ − λd) → 0.

Defining I = eI + Id and substituting I and ζ̇ of (3.7) one gets

LaėI + RaeI +KeGrTėζ = −Laİ
d − RaI

d −KeGrTζ̇
d + ν. (5.9)

The actuator parameters KN , La, Ra, and Ke are considered unknown for control
design; however, there exist L0, R0, and Ke0, such that

‖La − L0‖ ≤ α1, ‖Ra − R0‖ ≤ α2, ‖Ke −Ke0‖ ≤ α3. (5.10)

Consider the robust control law

ν = ν0 −
3∑
i=1

eIμ
2
i

‖eI‖μi + δ
−KdeI, (5.11)
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where

ν0 = L0İ
d + R0I

d +Ke0GrTζ̇
d,

μ1 = α1

∥∥∥∥
(

d

dt

)
Id
∥∥∥∥,

μ2 = α2

∥∥∥Id∥∥∥,
μ3 = α3

∥∥∥∥
(

d

dt

)
ζd
∥∥∥∥.

(5.12)

5.3. Stability Analysis for the System

Theorem 5.1. Consider the mechanical system described by (2.1), (2.3), and (2.2); using the control
law (5.5) and (5.7), the following hold for any (q(0), q̇(0)) ∈ Ωn ∩Ωh:

(i) r and eI converge to a set containing the origin with the convergence rate as t → ∞;

(ii) eq and ėq asymptotically converge to 0 as t → ∞;

(iii) eλ and τ are bounded for all t ≥ 0.

Proof. (i) By combing (3.5) with (5.5), the closed-loop system dynamics can be rewritten as

MLṙ = B1GrKNaI
d
a + B1GrKNaeI −

(
MLζ̈r + CLζ̇r +GL + dL

) − CLr. (5.13)

Substituting (5.5) into (5.13), the closed-loop dynamic equation is obtained:

MLṙ = −Kpr −Ki

∫
r dt − rΦ2

Φγ(‖r‖) + δ
− μ − CLr + B1GrKNaeI, (5.14)

where μ = MLζ̈r + CLζ̇r +GL + dL.
Consider the function

V = V1 + V2,

V1 =
1
2
rTMLr +

1
2

(∫
rdt

)T

Ki

∫
rdt + eTζ kζKNaKpeζ,

V2 =
1
2
eTI KNaLaeI .

(5.15)

Then, differentiating V1 with respect to time, we have

V̇1 = rT
(
MLṙ +

1
2
ṀLr +Ki

∫
rdt

)
+ 2eTζ kζKNaKpėζ. (5.16)



Journal of Applied Mathematics 11

From Property 1, we have (1/2)λmin(ML)rTr ≤ V ≤ (1/2)λmax(ML)rTr. By using Property 2,
the time derivative of V along the trajectory of (5.14) is

V̇1 = −rTKpr − rTμ − ‖r‖2Φ2

Φγ(‖r‖) + δ
+ 2eTζ kζKNaKpėζ + rTB1GrKNaeI

≤ −rTKpr − ‖r‖2Φ2

Φγ(‖r‖) + δ
+ ‖r‖Φ + 2eTζ kζKNaKpėζ + rTB1GrKNaeI

≤ −rTKpr −
‖r‖2Φ2 − γ(‖r‖)Φ2‖r‖ − ‖r‖Φδ

Φγ(‖r‖) + δ
+ 2eTζ kζKNaKpėζ + rTB1GrKNaeI,

(5.17)

when ‖r‖ ≥ ρ; therefore,

V̇1 ≤ −rTKpr + δ + 2eTζ kζKNaKdr − 2eTζ kζKNaKpkζeζ + rTB1GrKNaeI. (5.18)

Differentiating V2(t) with respect to time, using (3.7), one has

V̇2 = −eTI KNa

[
Laİ

d
a + RaI

d
a +KeGrTζ̇

d + RaeI +KeGrTėζ − ν
]
. (5.19)

Substituting ν in (5.19) by the control law (5.11), one has

V̇2 = − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ − eTI KNa(La − L0)İd

− eTI KNa(Ra − R0)Id − eTI KNa(Ke −Ke0)GrTζ̇
d − eTI KNa

3∑
i=1

μ2
i eI

‖eI‖μi + δ

≤ − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ + α1KNa‖eI‖
∥∥∥İd∥∥∥

+ α2KNa‖eI‖
∥∥∥Ida∥∥∥ + α3KNaGrT‖eI‖

∥∥∥ζd∥∥∥ −KNa

3∑
i=1

‖eI‖2μ2
i

‖eI‖μi + δ

≤ − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ +KNa

3∑
i=1

αiδ

= − eTI KNa(Kd + Ra)eI − eTI KNKeGrTr + eTI KNaKeGrTkζeζ +KNaδ
3∑
i=1

αi.

(5.20)

Integrating (5.18) and (5.20), V̇ can be expressed as

V̇ ≤ − rTKpr + δ + 2eTζ kζKNaKpr − 2eTζ kζKNaKpkζeζ + rTB1GrKNaeI

− eTI KNa(Kd + Ra)eI − eTI KNaKeGrTr + eTI KNaKeGrTkζeζ +KNaδ
3∑
i=1

αi.
(5.21)
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We can obtain

V̇ ≤ −[rT eζ eI
]
Q

⎡
⎣KNa 0 0

0 KNa 0
0 0 KNa

⎤
⎦
⎡
⎣ r
eζ
eI

⎤
⎦, (5.22)

where

Q =

⎡
⎢⎢⎢⎢⎣

Kp −Kpkζ
1
2
Gr

(
KeT − B1)

−kζKp 2kζKpTkζ −1
2
KeGrTkζ

1
2
Gr

(
KeT − B1) −1

2
KeGrTkζ (Kd + Ra)

⎤
⎥⎥⎥⎥⎦. (5.23)

The term Q on the right-hand side (5.22) can always be negative definite by choosing suitable
Kp and Kd. Since [Kna] is positive definite, we only need to choose Kp and Kd such that Q is
positive definite. Therefore, Kd and Kp can always be chosen to satisfy

(Kd + R) > K−1
p

[
1
2
Gr

(
KeT − B1) −1

2
KeGrTkζ

][ 2I k−1
ζ

k−1
ζ

k−1
ζ
T−1k−1

ζ

]⎡⎢⎣
1
2
Gr

(
KeT − B1)

−1
2
KeGrTkζ

⎤
⎥⎦. (5.24)

If ‖r‖ ≤ ρ, it is easy to obtain V̇ ≤ 0. r, eζ, and eI converge to a set containing the origin
with t → ∞.

(ii) V is bounded, which implies that r ∈ Ln−k
∞ . From r = ėζ + kζeζ, it can be obtained

that eζ, ėζ ∈ Ln−k
∞ . As we have established eζ, ėζ ∈ L∞, from Assumption 4.1, we conclude that

ζ(t), ζ̇(t), ζ̇r(t), ζ̈r(t) ∈ Ln−k
∞ and q̇ ∈ Ln

∞.
Therefore, all the signals on the right hand side of (5.14) are bounded, and we can

conclude that ṙ and therefore ζ̈ are bounded. Thus, r → 0 as t → ∞ can be obtained.
Consequently, we have eζ → 0, ėζ → 0 as t → ∞. It follows that eq, ėq → 0 as t → ∞.

(iii) Substituting the control (5.5) and (5.7) into the reduced order dynamic system
model (5.4) yields

(
1 +Kf

)
eλ = Z(ζ)

(
C1(ζ, ζ̇)ζ̇ +G1 + d1(t) − L+TGrKNaIa

)
+ B1GrKNbI

d
b + B1GrKNbeI

= −Z(ζ)L+TML(ζ)
(
ζ̈
)
+

χ2

χ + δ
+ B1GrKNbeI .

(5.25)

Since ζ̇ = 0 when I ∈ Rk, (3.7) could be changed as

La
dIb
dt

+ RaIb = νb. (5.26)
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Figure 2: The positions of the joints.
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Figure 3: The velocities of the joints.

Therefore, r = 0 and eζ = 0 in the force space; (5.20) could be changed as

V̇2 = −eTI KNb(Kd + R)eI +KNbδ
3∑
i=1

αi. (5.27)

Since KNb is bounded, V̇ < 0, we can obtain eI → 0 as t → ∞. The proof is completed by
noticing that ζ̈, Z(q), KNb and eI are bounded. Moreover, ζ → ζd, and −Z(ζ)L+TML(ζ)(ζ̈d) +
χ2/(χ + δ) ≤ δ, eI → 0, the right-hand side terms of (5.25), tend uniformly asymptotically to
zero; then it follows that eλ → 0, then f(t) → fd(t).

Since r, ζ, ζ̇, ζr , ζ̇r , ζ̈r , eλ and eI are all bounded, it is easy to conclude that τ is bounded
from (5.2).

6. Simulations

To verify the effectiveness of the proposed control algorithm, let us consider a 2-DOF mani-
pulator mounted on two-wheels-driven mobile base [23] shown in Figure 1. The mobile man-
ipulator is subjected to the following constraints: ẋ cos θ + ẏ sin θ = 0. Using Lagrangian
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approach, we can obtain the standard form with qv = [x, y, θ]T , qa = [θ1, θ2]
T , q = [qv, qa]

T ,
and Av = [cos θ, sin θ, 0]T :

Mv =

⎡
⎢⎢⎢⎢⎣
mp12 +

2Iwsin2θ

r2
−2Iw

r2
sin θ cos θ −m12d sin θ

−2Iw
r2

sin θ cos θ mp12 +
2Iwcos2θ

r2
m12d cos θ

−m12d sin θ m12d cos θ M1
11

⎤
⎥⎥⎥⎥⎦,

M1
11 = Ip + I12 +m12d

2 +
2IwL2

r2
, Ma = diag[I12, I2],

Mva =

⎡
⎣0.0 0.0

0.0 0.0
I12 0.0

⎤
⎦,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin θ

r
−sin θ

r
0.0 0.0

−cos θ
r

cos θ
r

0.0 0.0

− l
r

l

r
0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cv =

⎡
⎢⎢⎢⎢⎣

2Iw
r2

θ̇ sin θ cos θ
2Iw
r2

θ̇ sin2 θ −m12dθ̇ cos θ 0.0

−2Iw
r2

θ̇ cos2 θ
2Iw
r2

θ̇ sin θ cos θ m12dθ̇ cos θ 0.0

0.0 0.0 0.0 0.0

⎤
⎥⎥⎥⎥⎦,

Cva = 0.0, Ca = 0.0, Gv = [0.0, 0.0, 0.0]T , Ga =
[
0.0, m2gl2 sin θ2

]T
,

H =

⎡
⎢⎢⎢⎢⎢⎣

− tan θ 0.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎥⎥⎥⎦,

τv = [τl, τr]T , τa = [τ1, τ2]T ,

mp12 = mp +m12, m12 = m1 +m2, I12 = I1 + I2.

(6.1)

Let the desired trajectory qd = [xd, yd, θd, θ1d, θ2d]
T and the end effector be subject to

the geometric constraint Φ = l1 + l2 sin(θ2) = 0, and yd = 1.5 sin(t), θd = 1.0 sin(t), θ1d =
π/4(1 − cos(t)), λd = 10.0N.

The trajectory and force tracking control problem is to design control law τ such that
(4.1) holds and all internal signals are bounded.
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Figure 5: Tracking the desired currents.

In the simulation, we assume the parameter mp = m1 = m2 = 1.0, Iw = Ip = 1.0, 2I1 =
I2 = 1.0, I = 0.5, d = L = R = 1.0, 2l1 = 1.0, 2l2 = 0.6, q(0) = [0, 2.0, 0.6, 0.5]T , q̇(0) =
[0.0, 0.0, 0.0, 0.0]T , KN = diag[0.01], Gr = diag[100], La = [0.005, 0.005, 0.005, 0.005]T , Ra =
[2.5, 2.5, 2.5, 2.5]T , and Ke = [0.02, 0.02, 0.02, 0.02]T . The disturbance on the mobile base
is set 0.1 sin(t) and 0.1 cos(t). By Theorem 5.1, the control gains are selected as Kp =
diag[1.0, 1.0, 1.0], kζ = diag[1.0, 1.0, 1.0], Ki = 0.0 and Kf = 0.995, C = [8.0, 8.0, 8.0, 8.0, 8.0]T ,
KN = 0.1, Kd = diag[10, 10, 10, 10], α1 = 0.008, α2 = 4.0, α3 = 0.03. The disturbance on the
mobile base is set 0.1 sin(t) and 0.1 cos(t). The simulation results for motion/force are shown
in Figures 2, 3, 4, 5, 6, 7, 8, and 9. The desired currents tracking and input voltages on the
motors are shown in Figures 5, 6, 8, and 9. The simulation results show that the trajectory
and force tracking errors asymptotically tend to zero, which validate the effectiveness of the
control law in Theorem 5.1.

7. Conclusion

In this paper, effective robust control strategies have been presented systematically to con-
trol the holonomic constrained nonholonomic mobile manipulator in the presence of uncer-
tainties and disturbances, and actuator dynamics is considered in the robust control. All con-
trol strategies have been designed to drive the system motion converge to the desired
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manifold and at the same time guarantee the boundedness of the constrained force. The
proposed controls are nonregressor based and require no information on the system dynam-
ics. Simulation studies have verified the effectiveness of the proposed controller.
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The hybrid joints of manipulators can be switched to either active (actuated) or passive
(underactuated) mode as needed. Consider the property of hybrid joints, the system switches
stochastically between active and passive systems, and the dynamics of the jump system cannot
stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine
whether the closed-loop system is stochastically stable. In this paper, we consider stochastic
stability and sliding mode control for mobile manipulators using stochastic jumps switching
joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching
and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile
manipulators. The resulting closed-loop system is bounded in probability and the effect due to the
external disturbance on the tracking errors can be attenuated to any preassigned level. It has been
shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if
a set of coupled linear matrix inequalities (LMIs) have solutions. Finally, a numerical example is
given to show the potential of the proposed techniques.

1. Introduction

The hybrid joint shown in Figure 1 was first proposed in [1–5], which is with one clutch
and one brake. When the clutch is released, the link is free, and the passive link is directly
controlled by the dynamic coupling of mobile manipulators; when it is on, the joint is actuated
by the motor. Moreover, the passive link can be locked by the brake embedded in the joint as
needed. The robot with hybrid joints is called the hybrid actuated robot.

One of the advantages of using hybrid actuated robots is that they may consume less
energy than the fully-actuated ones. For example, hyperredundant robots, such as snake-like
robots or multilegged mobile robots [6], need large redundancy for dexterity and specific task
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Clutch Shaft
encoder

Figure 1: The hybrid joint.

completion while underactuation structure allows a more compact design and much simpler
control and communication schemes. The hybrid actuated robot concept is also useful for the
reliability or fault-tolerant design of fully-actuated robots working in hazardous areas or with
dangerous materials. If any of the joint actuators of such a device fails, one degree of freedom
of the system would be lost. It is important, in these cases, that the passive (failed) joint can
still be controlled via the dynamic coupling with the active ones, so the system can still make
use of all of its degrees of freedom originally planned.

Hybrid actuated mobile manipulator is the robot manipulator consisting of hybrid
joints mounting on a wheeled mobile robot, which first appeared in [1–5]. Hybrid actuated
mobile manipulators are different from full-actuated mobile manipulators in [7–26], due to
simultaneously integrating both kinematic constraints and dynamic constraints. For these
reasons, increasing effort needs to be made towards control design that guarantee stability
and robustness for hybrid actuated mobile manipulators with the consideration of joint
switching. The hybrid joint is also with the characteristic of underactuated the joints [27–
34], for example, the hybrid joints in the free mode, which can rotate freely, can be indirectly
driven by the effect of the dynamic coupling between the active and passive joints. The zero
torque at the hybrid joints results in a second-order nonholonomic constraint [35, 36].

The mobile manipulator using Markovian switching hybrid joint can be loosely
defined as a system that involves the interaction of both discrete events (represented by
finite automata) and continuous-time dynamics (represented by differential equations). The
joint switching seems to be stochastic and the switching may appear in any joints of the
robot which need to develop Markovian jump linear system (MJLS) [37] to incorporate
abrupt changes in the joints of mobile manipulators and use the Markovian jumping systems
to guarantee the stochastic stability. Therefore, the discrete part (switching part) can be
regarded as a continuous-time Markov process representing the modes of the system and
the continuous part represents the dynamics state of the system, which evolves according to
the differential dynamic equation when the mode is fixed. The hybrid formulation provides
a powerful framework for modeling and analyzing the systems subject to abrupt joint
switching variations, which are partly due to the inherently vulnerability to abrupt changes
caused by component failures, sudden environmental disturbances, abrupt variation of the
operation point of mobile manipulator, and so on.

The joint switching seems to be stochastic and the switching may appear in any joints
of the robot, while simple switching approach cannot handle all the possibility. In this paper,
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to avoid the necessity of stopping the robot as the joint switches, MJLS method used to model
and analyze switching robotic systems is an effective but challenging work.

To our best knowledge, there are few works considering MJLS method used to
model and analyze switching robotic systems. In this paper, we consider the problem of
adaptive control for stochastic jump systems with matched uncertainties and disturbances.
The jumping parameters are treated as continuous-time discrete-state Markov process. Note
that adaptive control method is one of the most popular techniques of nonlinear control
design [8]. However, adaptive control for stochastic nonlinear mechanical dynamics systems
with Markovian switching has received relatively little attention. Therefore, this paper will
be concerned with the design of adaptive control for mobile manipulators using Markovian
switching joints. There exist parameter uncertainties, nonlinearities, and external disturbance
in the systems and environments under consideration. First, we design a reduced model for
the wheeled mobile manipulator with switching joints. After introducing continuous-time
Markov chain, adaptive control is adopted to cope with the effect of Markovian switching
and nonlinear dynamics uncertainty and drive wheeled mobile manipulators following the
desired trajectory. The resulting closed-loop system is bounded in probability and the effect
due to the external disturbance on the tracking error can be attenuated to any pre-assigned
level. Moreover, unknown upper bounds of dynamics uncertainties and disturbances can be
estimated by adaptive updated law. The mechanical system with matched disturbances and
Markov jumping is solved in terms of a finite set of coupled LMIs. It has been shown that
the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of
coupled LMIs have solutions. Finally, a numerical example is given to show the potential of
the proposed techniques.

The main contributions of this paper lie in:

(i) developing a reduced model for mobile manipulators such that it could be
transformed into the framework of MJLS with modeling system dynamics
uncertainties;

(ii) designing an adaptive sliding mode control (SMC) for wheeled mobile manipula-
tors with hybrid joints with Markovian switching;

(iii) the system with matched disturbances and Markov jumping is solved in terms of a
finite set of coupled LMIs.

2. Preliminary

Lemma 2.1 (see [38]). Let e = H(s)r with H(s) representing an (n × m)-dimensional strictly
proper exponentially stable transfer function, r and e denoting its input and output, respectively.
Then r ∈ Lm

2
⋂
Lm
∞ implies that e, ė ∈ Ln

2
⋂
Ln
∞, e is continuous, and e → 0 as t → ∞. If, in

addition, r → 0 as t → ∞, then ė → 0.

Lemma 2.2 (see [39]). For the matrix A and B with appropriate dimensions, if (I + AB) is
nonsingular, then (I +AB)−1 = I −A(I + BA)−1B.

Theorem 2.3. Given a Markov jump linear system with the system parameter matrices Ai, Bi, Ci,
Di, and I > η2DT

i Di, for η ≥ 0, Φ(t) is unknown but satisfying ‖Φ(t)‖ ≤ η,

ẋ =
[
Ai + Bi[I −Φ(t)Di]−1Φ(t)Ci

]
x, (2.1)
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if there exits Pi > 0 satisfies the following inequality for each i ∈ S = 1, 2, . . . ,N,

⎡
⎢⎢⎢⎣
PiAi +AT

i Pi +
N∑
j=1

πijPj ηPiBi CT
i

ηBT
i P

T
i −I ηDT

i

Ci ηDi −I

⎤
⎥⎥⎥⎦ < 0, (2.2)

then the system (2.1) is stable in the mean square sense.

Proof. If there exists a positive definite matrix Pi satisfying Lyapunov inequality (2.3), then
the indefinite system (2.1) is asymptotically stable:

PiAi +AT
i Pi + PiBi[I −Φ(t)Di]−1Φ(t)Ci +

(
Ai + Bi[I −Φ(t)Di]−1Φ(t)Ci

)T
PT
i +

N∑
j=0

πijPj < 0.

(2.3)

Let pi = [I −Φ(t)Di]
−1Φ(t)Cix, then pi can be represented as pi = Φ(t)[Cix+Dipi]. Then, from

the inequality ‖Φ(t)‖ ≤ η, we can achieve pTi pi ≤ η2[Cix +Dipi]
T [Cix +Dipi]. Since

2xTPiBi(I −Φ(t)Di)−1Φ(t)Cix = 2xTPiBipi

≤ 2xTPiBipi +
[
Cix +Dipi

]T[
Cix +Dipi

] − η−2pTi pi

= xTCT
i Cix + 2xT

[
PiBi + CT

i Di

]
pi

− η−2pTi

[
I − η2DT

i Di

]
pi.

(2.4)

Assume that aT
i = xT (PiBi +CT

i Di), bi = pi, Wi = η2(I −η2DT
i Di)

−1, using inequality (2.4) and
Lemma 2.1, there is

2xTPiBi(I −Φ(t)Di)−1Φ(t)Cix

≤ xTCT
i Cix + η2xT

(
PiBi + CT

i Di

)(
I − η2DT

i Di

)−1(
PiBi + CT

i Di

)T
x.

(2.5)

If the following inequality stands, then inequality (2.3) holds:

PiAi +AT
i Pi +

N∑
j=0

πijPj + CT
i Ci + η2

(
PiBi + CT

i Di

)(
I − η2DT

i Di

)−1(
PiBi + CT

i Di

)T
< 0.

(2.6)

With Schur Complement, it is easy to transfer (2.6) into (2.2), namely, the system (2.1) is
stable. The proof is completed.
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Definition 2.4. A stochastic process ν(t) is said to be bounded in probability if the random
variables |ν(t)| are bounded in probability uniformly in t, that is,

lim
r→∞

sup
t>0

P |ν(t)| > r = 0. (2.7)

3. System Description

3.1. Dynamics

Consider an na DOF robotic manipulator mounted on a two-wheeled driven mobile platform,
the dynamics can be described as:

M
(
q
)
q̈ + V

(
q, q̇
)
q̇ +G

(
q
)
+ d(t) = B

(
q
)
τ + f, (3.1)

where q = [qTv , q
T
a]

T ∈ R
n with qv = [x, y, ϑ]T ∈ R

nv denoting the generalized coordinates for
the mobile platform and qa ∈ R

na denoting the coordinates of the robotic manipulator joints,
and n = nv + na. The symmetric positive definite inertia matrix M(q) ∈ R

n×n, the Centripetal
and Coriolis torques V (q, q̇) ∈ R

n×n, the gravitational torque vector G(q) ∈ R
n, the known

input transformation matrix B(q) ∈ R
n×m, the control inputs τ ∈ R

m, and the generalized
constraint forces f ∈ R

n could be represented as, respectively,

M
(
q
)
=
[
Mv Mva

Mav Ma

]
, V

(
q, q̇
)
=
[
Vv Vva

Vav Va

]
, f =

[
JTv λn

0

]
,

G
(
q
)
=
[
Gv

Ga

]
, B

(
q
)
τ =
[
τv
τa

]
, d(t) =

[
dv

da

]
,

(3.2)

where Mv and Ma describe the inertia matrices for the mobile platform and the links,
respectively, Mva and Mav are the coupling inertia matrices of the mobile platform and
the links; Vv, Va denote the Centripetal and Coriolis torques for the mobile platform,
the links, respectively; Vva, Vav are the coupling Centripetal and Coriolis torques of the
mobile platform, the links. Gv and Ga are the gravitational torque vectors for the mobile
platform, the links, respectively; τv is the input vector associated with the left driven
wheel and the right driven wheel, respectively; and τa are the control input vectors
for the joints of the manipulator; dv, da denote the external disturbances on the mobile
platform, the links, respectively; Jv ∈ R

l×nv is the kinematic constraint matrix related
to nonholonomic constraints; λn ∈ R

l is the associated Lagrangian multipliers with the
generalized nonholonomic constraints. We assume that the mobile manipulator is subject to
known nonholonomic constraints. A method of modeling the dynamics of wheeled robots
considering wheel-soil interaction mechanics is presented in [40, 41]. For the reason of
simplification, we can adopt the methods of producing enough friction between the wheels
of the mobile platform and the ground.



6 Journal of Applied Mathematics

3.2. Reduced System

When the system is subjected to nonholonomic constraints, the (n − m) nonintegrable and
independent velocity constraints can be expressed as

Jv
(
q
)
q̇v = 0. (3.3)

The constraint (3.3) is referred to as the classical nonholonomic constraint when it is not
integrable. In the paper, constraint (3.3) is assumed to be completely nonholonomic and
exactly known.

Since Jv(q) ∈ R
(nv−m)×n introduce Ja ∈ R

nα×n, and J = [Jv, Ja]
T ∈ R

(n−m)×n, such that it is
possible to find a m + na rank matrix R(q) ∈ R

n×(m+na) formed by a set of smooth and linearly
independent vector fields spanning the null space of J(q), that is,

RT(q)JT(q) = 0, (3.4)

where R(q) = [r1(q), . . . , rm(q), rm+1(q), . . . , rm+na(q)]. Define an auxiliary time function ż(t) ∈
R

m+na , and ż(t) = [ż1(t), . . . , żm(t), żm+1(t), . . . , żm+na(t)]
T such that

q̇ = R
(
q
)
ż(t) = r1

(
q
)
ż1(t) + · · · + rm

(
q
)
żm(t) + rm+1

(
q
)
żm+1(t) + · · · + rm+na

(
q
)
żm+na(t).

(3.5)

Equation (3.5) is the kinematic model for the wheeled inverted pendulums. Usually, ż(t) has
physical meaning, consisting of the angular velocity ω, the linear velocity v, and the joint
angle vector θa, that is, ż(t) = [v ω θ̇T

a ]
T . Equation (3.5) describes the kinematic relationship

between the motion vector q and the velocity vector ż(t).
Differentiating (3.5) yields

q̈ = Ṙ
(
q
)
ż + R

(
q
)
z̈. (3.6)

From (3.5), ż can be obtained from q and q̇ as

ż =
[
RT(q)R(q)]−1

RT(q)q̇. (3.7)

The dynamic equation (3.1), which satisfies the nonholonomic constraint (3.3), can be
rewritten in terms of the internal state variable ż as

M
(
q
)
R
(
q
)
z̈ + V ∗ż +G

(
q
)
+ d(t) = B

(
q
)
τ + JT

(
q
)
λ, (3.8)

with V ∗ = [M(q)Ṙ(q) + V (q, q̇)R(q)], λ = [λn, 0]
T .
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Table 1: The modes of operation.

Mode
The modes of hybrid joints

Right wheel Left wheel Joint 1 Joint 2 · · · Joint na

1 normal normal normal normal · · · normal
2 normal underactuated normal normal · · · normal
3 normal underactuated underactuated normal · · · normal
4 normal underactuated normal underactuated · · · normal
...

...
...

...
...

...
...

2na+1 normal underactuated underactuated underactuated · · · underactuated

Substituting (3.5) and (3.6) into (3.1), and then premultiplying (3.1) by RT (q), the
constraint matrix JT (q)λ can be eliminated by virtue of (3.4). As a consequence, we have
the transformed nonholonomic system

M(q)z̈ + V(q, q̇)ż + G(q) +D = U, (3.9)

where M(q) = RTM(q)R, V(q, q̇) = RT [M(q)Ṙ + V (q, q̇)R], G(q) = RTG(q), D = RTd(t),
U = RTB(q)τ , which is more appropriate for the controller design as the constraint λ has been
eliminated from the dynamics.

Remark 3.1. In this paper, we choose z = [θr θl θ1 θ2, . . . , θna]
T , where θr , θl denote the

rotation angle of the left wheel and the right wheel of the mobile platform, respectively,
and θ1, . . . , θna denote the joint angles of the link 1, 2, . . . , na, respectively, and τ =
[τr , τl, τ1, . . . , τna].

Remark 3.2. The total degree of freedom for a two-wheeled driven mobile manipulator is
nq = na + 2.

3.3. Switching Dynamics

The hybrid joint is within each actuator of the wheels and links of the mobile manipulator,
such that switching may appear in every joint independently. Since the left wheel and right
wheel are symmetric, for simplification, we assume that the switching appears in the left
wheel and each joint of the manipulator independently. Therefore, there are 2na+1 modes
of operation, which are listed in Table 1 depending on which hybrid joint is in the active
(actuated) or passive (underactuated) mode.

Let hp be the number of passive hybrid joints that have not already reached their set
point in a given instant. If hp > ha, ha passive joints are controlled and grouped in the vector
zp ∈ R

ha , the remaining passive hybrid joints, if any, are kept locked by the brakes, and the
active joints are grouped in the vector za ∈ R

ha . If hp < ha, the hp passive hybrid joints
are controlled applying torques in ha active hybrid joints. In this case, zp ∈ R

hp and za ∈
R

ha . The strategy is to control all passive hybrid joints until they reach the desired position,
considering the conditions exposed above, and then turn on the clutch. After that, all the
active hybrid joints are controlled by themselves as a fully-actuated robot.
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The dynamics (3.9) can be partitioned into two parts, the actuated part and the passive
part, represented by “a” and “p,” respectively. Then we can rewrite the dynamics (3.9) as

[Ma(ζ) Map(ζ)
Mpa(ζ) Mp(ζ)

][
z̈a
z̈p

]
+
[Va Vap

Vpa Vp

][
ża
żp

]
+
[Ga

Gp

]
+
[Da(t)
Dp(t)

]
=
[Ua

Up

]
, (3.10)

where

(i)Ma ∈ R
ha×ha ,Mp ∈ R

hp×hp : the inertia matrices of the actuated parts and the passive
parts, respectively;

(ii)Map ∈ R
ha×hp ,Mpa ∈ R

hp×ha : the coupling inertia matrices of the actuated parts and
the passive parts, respectively;

(iii) Va ∈ R
ha×ha , Vp ∈ R

hp×hp : the Centripetal and Coriolis torque matrices of the
actuated parts and the passive parts, respectively;

(iv) Vap ∈ R
ha×hp , Vpa ∈ R

hp×ha : the coupling Centripetal and Coriolis torques of the
actuated parts and the passive parts, respectively;

(v) Ga ∈ R
ha , Gp ∈ R

hp : the gravitational torque vector for the actuated parts and the
passive parts, respectively;

(vi) Da(t) ∈ R
ha , Dp(t) ∈ R

hp : the bounded external disturbance from the environments
on the actuated parts and the passive parts, respectively;

(vii) Ua ∈ R
ha : the control input torque vector for the actuated parts of the joints;

(viii) Up ∈ R
hp : the control input torque vector for the passive parts of the joints satisfying

Up = 0.

After some simple manipulation, we can further obtain

Ua = M(z)z̈p +H(z, ż) +D(t), (3.11)

where

M =Ma −MaM−1
paMp,

H = V 1ża + V 2żp + Ga −MaM−1
paGp,

D(t) = Da −MaM−1
paDp,

V 1 = Va −MaM−1
paVpa,

V 2 = Vap −MaM−1
paVp.

(3.12)
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4. Control Design

4.1. Model-Based Control with Unmodeled Dynamics

Define the tracking errors as

e = zp − zpd,
ė = żp − żpd,

(4.1)

where z̈pd, żpd and zpd denote the desired trajectories vectors of passive joint accelerations,
velocities, and positions, respectively.

The parameters M, H, and D(t) in dynamical model (3.11) are functions of physical
parameters of mobile manipulators like links masses, links lengths, moments of inertial, and
so on. The precise values of these parameters are difficult to acquire due to measuring errors
and environment and payloads variations. Therefore, it is assumed that actual value M, H,

and D(t) can be separated as nominal parts denoted by M0, H0, and D0(t) and uncertain
parts denoted by ΔM, ΔH, and ΔD(t), respectively. These variables satisfy the following
relationships:

M = M0 + ΔM,

H = H0 + ΔH,

D = D0 + ΔD.

(4.2)

Suppose that the dynamical models of robot manipulators are known precisely and
unmodeled dynamics are excluded, that is, ΔM, ΔH, and ΔD in (3.11) are all zeros. At this
time, dynamical models (3.11) can be converted into the following nominal models:

M0(z)z̈p +H0(z, ż) +D0 = U0. (4.3)

Consider the control law as

U0 = M0(z)
(
z̈pd −Kvė −Kpe

)
+H0(z, ż) +D0, (4.4)

where Kv and Kp are positive definite matrices. Substituting (4.4) into (4.3) yields

ë +Kvė +Kpe = 0. (4.5)

From Lemma 2.1, it is obvious that errors ė and ë will asymptotically if proportional gain Kp

and derivative gain Kv are chosen in the favorable situation.
According to (4.4), the proposed control is effective based on the strong assumptions

that exact knowledge of robot dynamics is precisely known and unmodeled dynamics has
to be ignored, which is difficult to obtain in practices. Therefore, we need to approximate
dynamics nonlinear functions. One can imagine that model-based control is used to control
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nominal system and another adaptive based control attaching to model-based control for
uncertain system can be designed. In this way, applying (4.4) to original systems (3.11) yields

ë +Kvė +Kpe = Ξ, (4.6)

Ξ = −M−1
0
(
ΔMz̈p + ΔH(z, ż) + ΔD(t)

)
, (4.7)

which Ξ is a function of joint variables, physical parameters, parameters variations,
unmodeled dynamics, and so on and denotes the structured uncertainty and unstructured
uncertainty.

Up to now, the control objective can be restated as: seek a control law based on nominal
parameters and adaptive-based compensator such that joint motions of robotic systems (3.11)
can follow desired trajectories. The overall control law can be written as

Ua = U0 +Uc, (4.8)

where Uc is an adaptive-based controller serving as a compensator for model-based control
and designed later. Using control law (4.8), the closed-loop system becomes:

ë +Kvė +Kpe = M
−1
0 Uc + Ξ. (4.9)

Supposed that the state vector is defined as x = [eT , ėT ]T , the state space equation has
form as

ẋ = Ax + BU, (4.10)

A =
[

0 I
−Kp −Kv

]
, B =

[
0
I

]
,

U = M
−1
0 Uc + Ξ.

(4.11)

4.2. Stochastic Control Design

Since the hybrid joints can be switched among different modes, considering the Markovian
jumping, we can rewrite (4.10) by integrating Markovian jumping parameters as

ẋ(t) = A(rt)x(t) + B(rt)U, (4.12)

where rt = j, and j is one of the Markovian jumping parameters in the limited set S =
{1, 2, . . . ,N} with the mode transition rate matrix

∏
= (πjι), (k, ι ∈ N). The jump transition

probability can be defined as

P(rt+Δt = ι | rt = k) =

{
πkιΔt + o(Δt), k /= ι,

1 + πkkΔt + o(Δt), ι = k,
(4.13)
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where
∑N

ι=1,ι /= k πkι = −πkι, πkι ≥ 0, ∀ ι, k ∈ Ω, ι /= k. Here, Δt > 0 and limΔt→ 0o(Δt)/Δt = 0.
The model of the form (4.12) is a hybrid system in which one state x(t) takes values
continuously and another state rt, referred to as the mode or operating form, takes values
discretely in S.

For V (t, x) ∈ C1, let us introduce the weak infinitesimal operator LV of the process
{x(t), ηt, t ≥ 0} at the point {t, x, j},

LV =
∂V

∂t
+
∂V

∂x
ẋ(t) +

N∑
k=1

πkjV
(
x, j
)
. (4.14)

For each possible value rt = j, j ∈ S, we will denote the system matrices associated
with mode j by

A(rt) = A
(
j
)
= Aj, B(rt) = B

(
j
)
= Bj, (4.15)

where Aj , Bj are known real constant matrices of appropriate dimensions which describe the
nominal system.

Theorem 4.1. If the linear matrix inequalities (4.16) have the solution Xj for given Aj , Bj , Xj > 0,
and

⎡
⎢⎣B̃j 0 0

0 I 0
0 0 I

⎤
⎥⎦

T
⎡
⎢⎢⎢⎣
(
AjXj +XjA

T
j +

N∑
k=1

πkjXj

)
∗ ∗

η −I ηI
AjXj ηI −I

⎤
⎥⎥⎥⎦
⎡
⎢⎣B̃j 0 0

0 I 0
0 0 I

⎤
⎥⎦ < 0, (4.16)

and define the sliding surface as

σj = Sjxj + γ

∫ t

0
Sjxjdt, (4.17)

Sj =
(
BT
j X

−1
j Bj

)−1
BT
j X

−1
j . (4.18)

Consider the adaptive control as

Uc = −M0Kσj −M0
(
SjAjxj + γSjxj

) −M0
1
b

5∑
i=1

σj ĉiΦ2
i∥∥σj

∥∥Φi + δ
, (4.19)

with the adaptive law

˙̂ci = −�iĉi +
ωiΦ2

i

∥∥σj

∥∥2∥∥σj

∥∥Φi + δi
, i = 1, . . . , 5, (4.20)
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where Ĉ = [ĉ1, . . . , ĉ5]
T , and Φ = [‖z̈pr‖, 1, ‖ż‖, 1, ‖ż‖]T , ωi > 0, K is positive definite, δi > 0

and �i > 0 ( 1 ≤ i ≤ 5) satisfying: limt→∞δi(t) = 0,
∫∞

0 δi(s)ds = ρiδ < ∞, limt→∞�i(t) = 0,∫∞
0 �i(s)ds = ρi� < ∞ with the constants ρiδ and ρi� , and b will be defined later. Then, a stable
sliding mode exists from the initial time, and the sliding dynamics is stable.

Proof. Define the transfer matrix Tj and the related vector ν, we have

Tj =

⎡
⎣

(
B̃jXjB̃j

)
B̃T
j(

BT
j X

−1
j Bj

)−1
BT
j X

−1
j

⎤
⎦, (4.21)

ν =
[
ν1 ν2

]T
= Tjxj , (4.22)

where ν1 ∈ Rn−m, and ν2 ∈ Rm, B̃j is any basis of the null space of BT
j , that is, Bj is an

orthogonal complement of Bj , Note that given any Bj , B̃j is not unique. Moreover, T−1
j =

[ XjB̃j Bj ].
Consider (4.22), it is easy to have

σ̇j = ν̇2 + γν2. (4.23)

From the definition of σj , we have

σ̇j = Sj

(
Ajxj + BjU

)
+ γSjxj . (4.24)

Consider (4.11) and (4.18), we can rewrite (4.24) as

σ̇j = SjAjxj + SjBjM
−1
0 Uc + SjBjΞ + γSjxj = SjAjxj +M

−1
0 Uc + Ξ + γSjxj . (4.25)

with SjBj = I.
Consider (4.7), and z̈p = z̈r + σ̇j with z̈r = z̈pd − γν2 and σ̇j = ν̇2 + γν2, we can rewrite it

as

Ξ = −M−1
0
(
ΔMz̈p + ΔH(z, ż) + ΔD(t)

)
= −M−1

0 ΔMz̈r −M
−1
0 ΔMσ̇j −M

−1
0 ΔH(z, ż) −M−1

0 ΔD.
(4.26)

Let Γ = (I +M
−1
0 ΔM)−1, then we have

σ̇j = Γ
(
SjAjxj + γSjxj +M

−1
0 Uc −M

−1
0 ΔMz̈r −M

−1
0 ΔH(z, ż) −M−1

0 ΔD
)
. (4.27)

Let us consider the Lyapunov function as

V1 = σT
j σj . (4.28)
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Taking the derivative (4.28) and integrating (4.27), we have

V̇1 = σT
j σ̇j + σ̇T

j σj

= 2σT
j Γ
(
SjAjxj + γSjxj +M

−1
0 Uc −M

−1
0 ΔMz̈r −M

−1
0 ΔH(z, ż) −M−1

0 ΔD
)
.

(4.29)

Substituting (4.19) into (4.29), we have

V̇1 = −2σT
j ΓKσj + 2σT

j Γ

×
(
−1
b

5∑
i=1

σj ĉiΦ2
i∥∥σj

∥∥Φi + δ
−M−1

0 ΔMz̈r −M
−1
0 ΔH(z, ż) −M−1

0 ΔD

)

= −2σT
j ΓKσj − 2σT

j Γ
1
b

5∑
i=1

σĉiΦ2
i∥∥σj

∥∥Φi + δ
− 2σT

j ΓM
−1
0 ΔMz̈r

− 2σT
j ΓM

−1
0 ΔH(z, ż) − 2σT

j ΓM
−1
0 ΔD

≤ −2σT
j ΓKσj − 2Γ

1
b

5∑
i=1

∥∥σj

∥∥2
ĉiΦ2

i∥∥σj

∥∥Φi + δ
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0 ΔM

∥∥∥‖z̈r‖
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔH(z, ż)‖ + 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔD‖.

(4.30)

Assumption 4.2. There exist some finite positive constants ci > 0 (1 ≤ i ≤ 5) such that ∀z ∈
Rn−l, ∀ż ∈ Rn−l, ‖Γ‖‖M−1

0 ΔM‖ ≤ c1, ‖Γ‖‖M
−1
0 ‖‖ΔH(z, ż)‖ ≤ c2 + c3‖ż‖, ‖Γ‖‖M

−1
0 ‖‖ΔD‖ ≤

c4 + c5‖ż‖.

Remark 4.3. For simplification, we assume that ΔM > 0. There exist the minimum and
maximum eigenvalues λmin(Γ) and λmax(Γ), such that for all x ∈ R(n−l−np), there exists the
known positive parameter b satisfying 0 < b ≤ λmin(Γ), that is, xTbIx ≤ xTλmin(Γ)Ix.

Remark 4.4. In reality, these constants ci, 1 ≤ i ≤ 5 cannot be obtained beforehand. Although
any fixed large ci can guarantee good performance, it is not practical as large ci imply, in
general, high noise amplification and high cost of control. Therefore, it is necessary to develop
an adaptive law which can approximate the knowledge of ci, 1 ≤ i ≤ 5.

Choose the Lyapunov function candidate V3 = V1 + V2 with

V2 = C̃TΩ−1C̃, (4.31)

where C̃ = C − Ĉ, and Ω = diag[ωi], i = 1, . . . , 5, therefore, we have

V3 ≤ −2σT
j ΓKσj − 2Γ

1
b

5∑
i=1

∥∥σj

∥∥2
ĉiΦ2

i∥∥σj

∥∥Φi + δ
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0 ΔM

∥∥∥‖z̈r‖
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔH(z, ż)‖ + 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔD‖ + 2 ˙̃C
T
Ω−1C̃.

(4.32)
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Integrating (4.20) into (4.32), we have

V3 ≤ −2σT
j ΓKσj − 2Γ

1
b

5∑
i=1

∥∥σj

∥∥2
ĉiΦ2

i

‖σj‖Φi + δ
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0 ΔM

∥∥∥‖z̈r‖
+ 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔH(z, ż)‖ + 2
∥∥σj

∥∥‖Γ‖∥∥∥M−1
0

∥∥∥‖ΔD‖

+ 2
5∑
i=1

ĉTi �iω
−1
i c̃i − 2

5∑
i=1

c̃iΦ2
i

∥∥σj

∥∥2∥∥σj

∥∥‖Φi‖ + δi

≤ −2σT
j ΓKσj + 2

5∑
i=1

ĉTi �iω
−1
i c̃i +

5∑
i=1

2δi

≤ −2λmin(ΓK)
∥∥σj

∥∥2 +
5∑
i=1

�i

2ωi
c2
i +

5∑
i=1

2δi,

(4.33)

with c̃iĉi = −(ĉi − (1/2)ci)
2 + (1/4)c2

i . Therefore, V̇3 ≤ −λmin(ΓK)‖σj‖2 +
∑5

i=1(�i/2ωi)c2
i +∑5

i=1 2δi. Since
∑5

i=1(�i/2ωi)c2
i +
∑5

i=1 2δi is bounded, there exists t > t1,
∑5

i=1(�i/2ωi)c2
i +∑5

i=1 2δi ≤ ρ1 with the finite constant ρ1, when ‖σj‖ ≥
√
ρ1/λmin(ΓK), then V̇3 ≤ 0. For ‖σj‖ ≥√

ρ1/λmin(ΓK), and σj will converge to a compact set denoted by

Υj :=

{
σj :
∣∣σj

∣∣ ≤
√

ρ1

λmin(ΓK)

}
. (4.34)

From all the above, σj converges to a small set containing the origin as t → ∞. Moreover,
σj → 0 as t → ∞ because of limt→∞δi(t) = 0, limt→∞�i(t) = 0, therefore, Υj converges to the
origin, there σj → 0, therefore, ν̇2 → 0 and ν2 → 0.

Consider (4.21) and (4.22), we have

ν̇ = Tjẋj . (4.35)

Consider Theorem 2.3 and (4.23), and let σ̇ = 0, it is easy to have

ν̇ =
[
ν̇1

ν̇2

]
= Ajν, (4.36)

where

Aj =
[
Λj1 Λj2

0 −γI
]
=

⎡
⎣(B̃T

j XB̃j

)−1
B̃T
j AjXjB̃

(
B̃T
j XB̃j

)−1
B̃T
j AjBj

0 −γI

⎤
⎦, (4.37)

Therefore, we can partition the state equation as as

ν̇1 = Λj1ν1 + Λj2ν2,

ν̇2 = −γν2,
(4.38)
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Since ν2 → 0 and ν̇2 → 0, we only consider the stability of ν̇1 = Λj1ν1. It is easy to obtain that
if there exists a positive-define matrix Pj = B̃T

j XjB̃j enabling the following inequality to hold:

⎡
⎢⎢⎢⎣
PjΛj1 + ΛT

j1Pj +
N∑
k=1

πkjPj ∗ ∗

ηB̃j −I ∗
Cj ηI −I

⎤
⎥⎥⎥⎦ < 0, (4.39)

where Cj = AjXjB̃j , then the system

ν̇1 = Λj1ν1 (4.40)

is asymptotically stable, where X is a solution matrix to the LMIs (4.16), which implies that
the sliding-mode dynamics (4.36) is asymptotically stable. This implies that (4.39) holds if
the matrix inequality shown in (4.16) holds.

Remark 4.5. Note that Theorem 4.1 provides a solution to the problem of adaptive control
for mechanical nonlinear systems with Markovian jump parameters. It is worth mentioning
that the work conducted in this paper is the attempt to overcome the dynamics uncertainty
arising in the sliding mode control for dynamics nonlinear systems with Markovian jump
parameters and adopt adaptive control for dynamics nonlinear systems with Markovian
jump parameters. The results obtained could be extended to general dynamics systems.

4.3. Switching Stability

For the system switching stability between the two different modes, we give the following
theorems.

Theorem 4.6. Consider the switching system (4.13) if the system is both stable before and after the
switching phase using the control law (4.19). Assume that there exists no external impacts during the
switching, the system is also stable during the switching phase.

Proof. Since V1 and V2 are decreasing from Theorem 4.1, we know the system is stable no
matter the hybrid joint is either actuated or underactuated. In the preceding, we have shown
that the Lyapunov function is nonincreasing during the switching. Let V

−
12 = (1/2 )(ζ̇− −

ζ̇)D(ζ̇− − ζ̇) and V
+
12 = (1/2) (ζ̇+ − ζ̇)D(ζ̇+ − ζ̇) denote the Lyapunov function before and after

the switching, and ζ̇+ and ζ̇− represent the post- and preswitch velocities, respectively. The
Lyapunov function change during the switching can be simplified as follows:

ΔV = V
+ − V

− =
1
2
(
ζ̇+ − ζ̇)D(ζ̇+ − ζ̇) − 1

2
(
ζ̇− − ζ̇)D(ζ̇− − ζ̇). (4.41)

There is no external impact during the switching, which means that there are no extra energy
injected into the system. Since the inertia properties of the switching joint and link exist,
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Figure 2: The wheeled mobile manipulator in the simulation.

during the switching joint, if the switching joint is switched from the active mode to the
passive mode without considering the friction, the motion of the link should be continuous,
that is, ζ̇+ = ζ̇− = ζ̇. Therefore, during the switching, the Lyapunov function is nonincreasing.
If considering the friction, the Lyapunov function is decreasing, that is, ΔV ≤ 0, the motion
is stable during the switching. Similarly, if the switching joint is switched from the passive
mode to the active mode, although the joint torque is added, since the motion of the system is
continuous because of the inertia, that is, ΔV ≤ 0, the motion of the system is also stable.

5. Simulation Studies

To verify the effectiveness of the proposed control algorithm, let us consider a wheeled mobile
underactuated manipulator shown in Figure 2.

The following variables have been chosen to describe the vehicle (see also Figure 2),

(i) τl, τr : the torques of two wheels;

(ii) τ1: the torques of joint 1;

(iii) θl, θr : the rotation angle of the left wheel and the right wheel of the mobile platform;

(iv) v: the forward velocity of the mobile platform;

(v) θ: the direction angle of the mobile platform;

(vi) ω: the rotation velocity of the mobile platform, and ω = θ̇;

(vii) θ1: the joint angle of the underactuated link;

(viii) m1, I1, l1: the mass, the inertia moment, and the length for the link;

(ix) r: the radius of the wheels;

(x) l: the distance of the wheels;

(xi) lG: the distance between the wheel and joint 1;

(xii) m: the mass of the mobile platform;

(xiii) I: the inertia moment of the mobile platform;
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(xiv) Iw: the inertia moment of each wheel;

(xv) g: gravity acceleration.

The mobile underactuated manipulator is subject to the following constraint: ẋ cos θ −
ẏ sin θ + θ̇lG = 0. Using the Lagrangian approach, we can obtain the dynamic model with
q = [θl, θr , θ1]

T , then we could obtain

M
(
q
)
q̈ + C

(
q, q̇
)
q̇ +G

(
q
)
= Bτ,

M
(
q
)
=

⎡
⎣m11

(
q
)

m12
(
q
)

m13
(
q
)

∗ m22
(
q
)

m23
(
q
)

∗ ∗ m33
(
q
)
⎤
⎦, C

(
q, q̇
)
=

⎡
⎣c1
(
q, q̇
)

c2
(
q, q̇
)

c3
(
q, q̇
)
⎤
⎦,

B =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦,

(5.1)

where

m11
(
q
)
= 2p1 +

2p3

l2
tan2θr,

m12
(
q
)
=

p4

l
tan θr − p8 sin θl,

m13
(
q
)
= 0, m22

(
q
)
= 2p2,

m23
(
q
)
= p6, m33

(
q
)
= 2p5,

c1
(
q, q̇
)

=
4p3

l2
tan θr sec2θrθ̇

2
r θ̇l +

p4

l
sec θrθ̇2

r − 2p7 sec θr sin θ1θ̇lθ̇
2
r

−2p7 sec2θr cos θ1θ̇1θ̇l − p8 cos θ1θ̇1θ̇r ,

c2
(
q, q̇
)
=

p4

l
sec2θrθ̇lθr − p8 cos θ1θlθ1,

c3
(
q, q̇
)
= p7 tan θr cos θ1θ̇lθ̇1 + p8 cos θ1θ̇lθ̇r θ̇1,

p1 =
1
2

(
m +m1 +

Iw
r2

)
, p2 =

1
2

(
I + Im +m1l

2
1 + I1

)
, p3 =

1
2
(Im + Iw),

p4 = Im, p5 =
1
2

(
m1l

2
1 + I1

)
, p6 = m1l

2
1 + I1, p7 =

m1l1
l1

, p8 = m1l1.

(5.2)

As discussed in Section 2, we set the fully operational configuration represented
by OOO while three possible configurations can occur: AAP , APA, and APP , where
A represents actuated joints and P represents passive joints. For example, if we find
that a switching occurs in τθ1 , then the switching configuration to validate the proposed
methodology is the AAP configuration. We consider a workspace with a positioning domain
which range from −8◦ to 12◦, with the velocities set to 1◦/s, and use 2 sectors of position in
each joint, denoted as I(−8◦ : 2◦) and II(2◦ : 12◦), to map the mobile manipulator workspace.
The linearization points with respect to I and II are chosen as −3◦ and 7◦, respectively. Then,
according to Section 3.2, 8 linearization points with 32 modes are found. For simplification,
we select the 8 modes in simulation, which are shown in Table 2. There exist 8 modes for the
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Table 2: Simulation modes.

Mode Joint status Mode Joint status
Linearization Section

θr θl θ1

1 AAA 5 AAP I I I
2 AAA 6 AAP II I I
3 APA 7 APP II I II
4 APA 8 APP II II II

simulation example, which means an 8 × 8 dimension transition rate matrix Π is needed, so
Π is defined as

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.72 0.15 0.22 0.21 0.14 0 0 0
0.2 −0.7 0.2 0.2 0 0.1 0 0

0.16 0.22 −0.68 0.2 0 0 0.1 0
0.22 0.3 0.2 −0.82 0 0 0 0.1

0 0 0 0 −0.78 0.26 0.26 0.26
0 0 0 0 0.26 −0.78 0.26 0.26
0 0 0 0 0.26 0.26 −0.78 0.26
0 0 0 0 0.26 0.26 0.26 −0.78

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.3)

The system parameters are chosen as G = 0 kg, B = I, m = 10.0 kg, m1 = 2.0 kg, I = 1.0 kg ·m2,
I1 = 1.0 kg ·m2, Im = 2.0 kg ·m2, Iw = 2.0 kg · m2, l = 1.0 m, l1 = 1.0 m, r = 0.5 m.

Assume that the nominal models are obtained as:

A1 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0040 0.0012 0.0653 −0.0728
−0.0047 −0.0010 −0.0717 0.0647

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

0 0
0 0

0.0003 0.3354
−0.0003 −0.0020

⎤
⎥⎥⎦,

A2 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0040 0.0012 0.0653 −0.0728
−0.0047 −0.0010 −0.0717 0.0647

⎤
⎥⎥⎦, B2 =

⎡
⎢⎢⎣

0 0
0 0

0.0003 0.3354
−0.0003 0.3333

⎤
⎥⎥⎦,

A3 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0057 0.0014 0.0725 −0.0764
−0.0064 −0.0011 −0.0790 0.0676

⎤
⎥⎥⎦, B3 =

⎡
⎢⎢⎣

0 0
0 0

0.0035 0.3582
−0.0035 −0.0249

⎤
⎥⎥⎦,

A4 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0057 0.0014 0.0725 −0.0764
−0.0064 −0.0011 −0.0790 0.0676

⎤
⎥⎥⎦, B4 =

⎡
⎢⎢⎣

0 0
0 0

0.0035 0.3582
−0.0035 0.3333

⎤
⎥⎥⎦,
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A5 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0042 0.0016 0.0628 −0.0686
−0.0048 −0.0013 −0.0691 0.0606

⎤
⎥⎥⎦, B5 =

⎡
⎢⎢⎣

0 0
0 0

−0.0022 0.3175
0.0022 0.0158

⎤
⎥⎥⎦,

A6 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0042 0.0016 0.0628 −0.0686
−0.0048 −0.0013 −0.0691 0.0606

⎤
⎥⎥⎥⎥⎥⎦, B6 =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0

−0.0022 0.3175
0.0022 0.3333

⎤
⎥⎥⎥⎥⎥⎦,

A7 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0055 0.0010 0.0753 −0.0809
−0.0062 −0.0008 −0.0819 0.0719

⎤
⎥⎥⎥⎥⎥⎦, B7 =

⎡
⎢⎢⎣

0 0
0 0

0.0068 0.3808
−0.0068 −0.0475

⎤
⎥⎥⎦,

A8 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

0.0055 0.0010 0.0753 −0.0809
−0.0062 −0.0008 −0.0819 0.0719

⎤
⎥⎥⎦, B8 =

⎡
⎢⎢⎣

0 0
0 0

0.0068 0.3808
−0.0068 0.3333

⎤
⎥⎥⎦.

(5.4)

The parameters in (4.19) are set as C(0) = [0.00002, . . . , 0.00002]T , for i = 1, 2, . . . , 8, M0 = I,
ωi = 0.5, αi = δ = 1/(t + 1)2, K = diag[1.0], b = 1.0, γ = 1.0. The initial condition we used for
simulation is x0 = [0.3, 0.3, 0.2,−0.1, 0.1,−0.15]T . Via LMI optimization with the data Aj, Bj ,
we can get the following solution to the LMIs (4.16) as:

X1 = 104

⎡
⎢⎢⎣

1.9625 0.0001 −0.0012 0.0011
0.0001 1.9620 −0.0003 0.0002
−0.0012 −0.0003 1.0267 0.0000
0.0011 0.0002 0.0000 1.0267

⎤
⎥⎥⎦,

X2 = 103

⎡
⎢⎢⎣

2.7094 −0.0148 −0.0022 0.0015
−0.0148 2.7654 −0.0004 −0.0003
−0.0022 −0.0004 4.8496 −0.0000
0.0015 −0.0003 −0.0000 4.8496

⎤
⎥⎥⎦,

X3 = 103

⎡
⎢⎢⎣

2.4313 −0.0153 −0.0028 0.0020
−0.0153 2.4918 −0.0005 −0.0002
−0.0028 −0.0005 4.8077 −0.0000
0.0020 −0.0002 −0.0000 4.8077

⎤
⎥⎥⎦,

X4 = 103

⎡
⎢⎢⎣

2.2073 −0.0145 −0.0026 0.0018
−0.0145 2.2639 −0.0004 −0.0003
−0.0026 −0.0004 4.7749 −0.0000
0.0018 −0.0003 −0.0000 4.7749

⎤
⎥⎥⎦,
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X5 = 103

⎡
⎢⎢⎣

2.8110 −0.0160 −0.0023 0.0016
−0.0160 2.8679 −0.0005 −0.0002
−0.0023 −0.0005 4.8654 −0.0000
0.0016 −0.0002 −0.0000 4.8654

⎤
⎥⎥⎦,

X6 = 103

⎡
⎢⎢⎣

5.2731 −0.0149 −0.0037 0.0030
−0.0149 5.3153 −0.0010 0.0003
−0.0037 −0.0010 5.3202 −0.0000
0.0030 0.0003 −0.0000 5.3202

⎤
⎥⎥⎦,

X7 = 103

⎡
⎢⎢⎣

5.2363 −0.0123 −0.0054 0.0045
−0.0123 5.3133 −0.0007 0.0000
−0.0054 −0.0007 5.3153 −0.0000
0.0045 0.0000 −0.0000 5.3153

⎤
⎥⎥⎦,

X8 =

⎡
⎢⎢⎣
−0.6928 −0.0000 −0.0000 −0.0000
−0.0000 −0.6928 −0.0000 −0.0000
−0.0000 −0.0000 −0.6928 −0.0000
−0.0000 −0.0000 −0.0000 −0.6928

⎤
⎥⎥⎦.

(5.5)

So we can obtain the solution of Si, for i = 1, 2, . . . , 8. Torque disturbances D(t) are introduced
to verify the robustness of the controllers

⎡
⎣dr(t)
dl(t)
d1(t)

⎤
⎦ =

⎡
⎣ 0.023 sin(4t)

0.007 sin(3t) + 0.009cos2t
0.015 cos(5t)

⎤
⎦. (5.6)

The disturbance is turned off after the switching introduction in corresponding joint or wheel.
The system switches among the 8 modes randomly during operation. From Figure 3,

we can see that firstly the system switches from mode 1 to mode 4, then from mode 4 to
mode 1, finally, it switches from mode 1 to modes 4, 6, and 7. Figure 4 shows that the system
is stabilized during operation. From Figures 5, 6, and 7, it can be noticed that the torque inputs
are bounded. The simulation results demonstrate the tracking error decays to the equilibrium
point under the designed mode-dependent controller.

6. Conclusion

In this paper, we consider stochastic stability and sliding mode control for mobile
manipulators using stochastic jumps switching joints. Adaptive parameter techniques are
adopted to cope with the effect of the Markovian switching and nonlinear dynamics
uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting
closed-loop system is bounded in probability and the effect due to the external disturbance
on the tracking errors can be attenuated to any preassigned level. It has been shown that the
adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of
coupled LMIs have solutions. Finally, a numerical example is given to show the potential of
the proposed techniques.
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This paper studies the second moment stability of a discrete-time jump linear system with real
states and the system matrix switching in a Markovian fashion. A sufficient stability condition was
proposed by Fang and Loparo (2002), which only needs to check the eigenvalues of a deterministic
matrix and is much more computationally efficient than other equivalent conditions. The proof
to the necessity of that condition, however, is a challenging problem. In the paper by Costa and
Fragoso (2004), a proof was given by extending the state domain to the complex space. This paper
proposes an alternative necessity proof, which does not need to extend the state domain. The proof
in this paper demonstrates well the essential properties of the Markov jump systems and achieves
the desired result in the real state space.

1. Introduction

1.1. Background of the Discrete-Time Markov Jump Linear Systems

This paper studies the stability condition of discrete-time jump linear systems in the real state
domain. In a jump linear system, the system parameters are subject to abrupt jumps. We are
concerned with the stability condition when these jumps are governed by a finite Markov
chain. A general model is shown as follows:

x[k + 1] = A
[
q[k]

]
x[k],

x[0] = x0, q[k] = q0,
(1.1)
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where x[k] ∈ Rn is the state and {q[k]} is a discrete-time Markov chain with a finite state
space {q1, q2, . . . , qN} and a transition matrix Q = (qij)N×N , where qij = P(q[k+1] = qj | q[k] =
qi). x0 ∈ Rn is the initial state. q0 is the initial Markov state, whose distribution is denoted as
p = [p1 p2 · · · pN] with pi = P(q0 = qi). {q[k]} is assumed to be a time-homogeneous aperiodic
Markov chain. When q[k] = qi, A[q[k]] = Ai(i = 1, . . . ,N), that is, A[q[k]] switches among
{Ai}Ni=1. A compound matrix is constructed from Ai as

A[2] =
(
QT ⊗ In2

)
diag (Ai ⊗Ai)Ni=1, (1.2)

where In2 denotes an identity matrix with the order of n2 and ⊗ denotes the Kronecker product
[1]. A brief introduction on the Kronecker product will be given in Section 2.1.

For the jump linear system in (1.1), the first question to be asked is “is the system
stable?” There has been plenty of work on this topic, especially in 90s, [2–6]. Recently
this topic has caught academic interest again because of the emergence of networked
control systems [7]. Networked control systems often suffer from the network delay and
dropouts, which may be modelled as Markov chains, so that networked control systems
can be classified into discrete-time jump linear systems [8–11]. Therefore, the stability of
the networked control systems can be determined through studying the stability of the
corresponding jump linear systems. Before proceeding further, we review the related work.

1.2. Related Work

At the beginning, the definitions of stability of jump linear systems are considered. In [6],
three types of second moment stability are defined.

Definition 1.1. For the jump linear system in (1.1), the equilibrium point 0 is

(1) stochastically stable, if, for every initial condition (x[0] = x0, q[0] = q0),

E

[ ∞∑
k=0

‖x[k]‖2 | x0, q0

]
<∞, (1.3)

where ‖ · ‖ denotes the 2-norm of a vector;

(2) mean square stable (MSS), if, for every initial condition (x0, q0),

lim
k→∞

E
[
‖x[k]‖2 | x0, q0

]
= 0; (1.4)

(3) exponentially mean square stable, if, for every initial condition (x0, q0), there exist
constants 0 < α < 1 and β > 0 such that for all k ≥ 0,

E
[
‖x[k]‖2 | x0, q0

]
< βαk‖x0‖2, (1.5)

where α and β are independent of x0 and q0.
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In [6], the above 3 types of stabilities are proven to be equivalent. So we can study
mean square stability without loss of generality. In [6], a necessary and sufficient stability
condition is proposed.

Theorem 1.2 (see [6]). The jump linear system in (1.1) is mean square stable, if and only if, for any
given set of positive definite matrices {Wi : i = 1, . . . ,N}, the following coupled matrix equations
have unique positive definite solutions {Mi : i = 1, . . . ,N}:

N∑
j=1

qijA
T
i MjAi −Mi = −Wi. (1.6)

Although the above condition is necessary and sufficient, it is difficult to verify because it claims
validity for any group of positive definite matrices {Wi : i = 1, . . . ,N}. A more computationally
efficient testing criterion was, therefore, pursued [3, 4, 12–15]. Theorem 1.3 gives a sufficient mean
square stability condition.

Theorem 1.3 (see [4, 12]). The jump linear system in (1.1) is mean square stable, if all eigenvalues
of the compound matrix A[2] in (1.2) lie within the unit circle.

Remark 1.4. By Theorem 1.3, the mean square stability of a jump linear system can be reduced
to the stability of a deterministic system in the form yk+1 = A[2]yk [13]. Thus the complexity
of the stability problem is greatly reduced. Theorem 1.3 only provides a sufficient condition
for stability. The condition was conjectured to be necessary as well [2, 15]. In the following,
we briefly review the research results related to Theorem 1.3.

In [14], Theorem 1.3 was proven to be necessary and sufficient for a scalar case, that is,
Ai(i = 1, . . . ,N) are scalar. In [15], the necessity of Theorem 1.3 was proven for a special case
with N = 2 and n = 2. In [4, 12], Theorem 1.3 was asserted to be necessary and sufficient
for more general jump linear systems. Specifically, Bhaurucha [12] considered a random
sampling system with the sampling intervals governed by a Markov chain while Mariton [4]
studied a continuous-time jump linear system. Although their sufficiency proof is convincing,
their necessity proof is incomplete.

The work in [3] may shed light on the proof of the necessity of Theorem 1.3. In [3], a
jump linear system model being a little different from (1.1) is considered. The difference lies
in

(i) x[k] ∈ Cn, where C stands for the set of complex numbers,

(ii) x0 ∈ Sc, where Sc is the set of complex vectors with finite second-order moments in
the complex state space.

The mean square stability in [3] is defined as

Lim
k→∞

E
[
x[k]x∗[k] | x0, q0

]
= 0, ∀x0 ∈ Sc, ∀q0, (1.7)
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Mean square stable

x0 ε Sc

Mean square stable

x0 ε Sj

A(2) is schur stable

Figure 1: Relationship between different senses of mean square stability.

where ∗ stands for the conjugate transpose. Corresponding to the definition in (1.7), the mean
square stability in (1.4) can be eewritten into (because x[k] ∈ Rn in (1.4), there is no difference
between xT [k] and x∗[k]),

Lim
k→∞

E
[
x[k]x∗[k] | x0, q0

]
= 0, ∀x0 ∈ Sj, ∀q0, (1.8)

where Sj is the set of all vectors in Rn. For any vector x ∈ Rn, we can treat it as a random
vector with a single element in Rn, and also a random vector in Cn. Of course, such random
vectors have finite second-order moments. Therefore, we know

Sj ⊂ Sc, Sj ∩ Sc /=Sc. (1.9)

It can be seen that the mean square stability in (1.7) requires stronger condition (x0 ∈ Sc) than
the one in (1.8) (x0 ∈ Sj). When Ai(i = 1, . . . ,N) are real matrices, a necessary and sufficient
stability condition was given in the complex state domain.

Theorem 1.5 (see [3]). The jump linear system in (1.1) (with complex states) is mean square stable
in the sense of (1.7) if and only if A[2] is Schur stable.

Due to the relationship of Sj ⊂ Sc and Theorem 1.5, we can establish the relationship diagram
in Figure 1. As it shows, the Schur stability of A[2] is a sufficient condition for mean square stability
with x0 ∈ Sj at the first look.

We are still wondering “whether the condition in Theorem 1.3 is necessary too?” the answer
is definitely “yes.” That necessity was conjectured in [2]. A proof to the necessity of that
condition was first given in [16], which extends the state domain to the complex space and
establishes the desired necessity in the stability sense of (1.7). As mentioned before, our
concerned stability (in the sense of (1.8)) is weaker than that in (1.7). This paper proves
that the weaker condition in (1.8) still yields the schur stability of A[2], that is, the necessity
of theorem 1.3 is confirmed. This paper confines the state to the real space domain and makes
the best use of the essential properties of the markov jump linear systems to reach the desired
necessity goal. In Section 2, a necessary and sufficient version of Theorem 1.3 is stated and its
necessity is strictly proven. In Section 3, final remarks are placed.
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2. A Necessary and Sufficient Condition for Mean Square Stability

This section will give a necessary and sufficient version of Theorem 1.3. Throughout this
section, we will define mean square stability in the sense of (1.4) (x0 ∈ Sj). At the beginning,
we will give a brief introduction to the Kronecker product and list some of its properties.
After then, the main result, a necessary and sufficient condition for the mean square stability,
is presented in Theorem 2.1 and its necessity is proven by direct matrix computations.

2.1. Mathematical Preliminaries

Some of the technical proofs in this paper make use of the Kronecker product, ⊗ [1]. The
Kronecker product of two matrices A = (aij)M×N , B = (bpq)P×Q is defined as

A ⊗ B =

⎡
⎢⎢⎢⎣
a11B a12B · · · a1NB
a21B a22B · · · a2NB

...
...

. . .
...

aM1B aM2B · · · aMNB

⎤
⎥⎥⎥⎦

MP×NQ

. (2.1)

For simplicity, A ⊗A is denoted as A[2] and A ⊗A[n] is denoted as A[n+1](n ≥ 2).
For two vectors x and y, x ⊗ y simply rearranges the columns of xyT into a vector.

So for two stochastic processes {x[n]} and {y[n]}, limn→∞E[x[n] ⊗ y[n]] = 0 if and only if
limn→∞E[x[n]yT [n]] = 0. Furthermore, if limn→∞E[x[2][n]] = 0 and limn→∞E[y[2][n]] = 0,
then

lim
n→∞

E
[
x[n] ⊗ y[n]] = 0. (2.2)

The following property of the Kronecker product will be frequently used in the
technical proofs

(A1A2 · · ·An) ⊗ (B1B2 · · ·Bn) = (A1 ⊗ B1)(A2 ⊗ B2) · · · (An ⊗ Bn), (2.3)

where Ai, Bi(i = 1, 2, . . . , n) are all matrices with appropriate dimensions.
Our computations need two linear operators, vec and devec. The vec operator

transforms a matrix A = (aij)M×N into a vector as

vec(A) = [a11 · · ·aM1a12 · · ·aM2 · · ·a1N · · ·aMN]T . (2.4)

The devec operator inverts the vec operator for a square matrix, that is,

devec(vec(A)) = A, (2.5)

where A is a square matrix.
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2.2. Main Results

Theorem 2.1. The jump linear system in (1.1) is mean square stable if and only if A[2] is Schur
stable, that is, all eigenvalues of A[2] lie within the unit circle.

There are already some complete proofs for sufficiency of Theorem 2.1, [3, 12, 13]. So we will
focus on the necessity proof. Throughout this section, the following notational conventions will be
followed.

The initial condition of the jump linear system in (1.1) is denoted as x[0] = x0, q[0] = q0

and the distribution of q0 is denoted as p = [p1 p2 · · · pN] (P(q[0] = qi | q0) = pi).
The system transition matrix in (1.1) is defined as

Φ(k;m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k−1∏
l=m

A
[
q[l]
]
, if m < k,

In, if m ≥ k,

(2.6)

where In is an identity matrix with the order of n. With this matrix, the system’s state at time
instant k can be expressed as

x[k] = Φ(k; 0)x0. (2.7)

A conditional expectation is defined as

Φi[k] = P
(
q[k] = qi | q0

)
E
[
(Φ(k; 0))[2] | q[k] = qi, q0

]
, (2.8)

where i = 1, 2, . . . ,N. Specially Φi[0] = piIn2 (i = 1, . . . ,N). Based on the definition of Φi[k],
we obtain

E
[
(Φ(k; 0))[2] | q0

]
=

N∑
i=1

Φi[k]. (2.9)

By combining all Φi[k](i = 1, 2, . . . ,N) into a bigger matrix, we define

VΦ[k] =
[
ΦT

1 [k] ΦT
2 [k] · · · ΦT

N[k]
]T
. (2.10)

Thus, VΦ[0] = pT ⊗ In2 .
The necessity proof of Theorem 2.1 needs the following three preliminary Lemmas.

Lemma 2.2. If the jump linear system in (1.1) is mean square stable, then

lim
k→∞

E
[
(Φ[k; 0])[2] | q0

]
= 0, ∀q0. (2.11)
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Proof of Lemma 2.2. Because the system is mean square stable, we get

lim
k→∞

E
[
x[2][k] | x0, q0

]
= 0, ∀x0, q0. (2.12)

The expression of x[k] = Φ(k; 0)x0 yields

lim
k→∞

E
[
(Φ(k; 0)x0)

[2] | x0, q0

]
= 0. (2.13)

Φ(k; 0) is an n × n matrix. So we can denote it as Φ(k; 0) = [a1(k), a2(k), . . . , an(k)], where
ai(k) is a column vector. By choosing x0 = ei (ei is an Rn×1 vector with the ith element as 1
and the others as 0), (2.13) yields

lim
k→∞

E
[
a
[2]
i [k] | q0

]
= 0, i = 1, 2, . . . , n. (2.14)

By the definition of the Kronecker product, we know

(Φ(k; 0))[2] = [a1[k] ⊗ a1[k], . . . , a1[k] ⊗ an[k], . . . , an[k] ⊗ a1[k], . . . , an[k] ⊗ an[k]].
(2.15)

So (2.14) yields

lim
k→∞

E
[
(Φ[k; 0])[2] | q0

]
= 0, ∀q0. (2.16)

Lemma 2.3. If the jump linear system in (1.1) is mean square stable, then

lim
k→∞

Φi[k] = 0, i = 1, . . . ,N, ∀q0. (2.17)

Proof of Lemma 2.3. Choose any z0, w0 ∈ Rn. Lemma 2.2 guarantees

lim
k→∞

E
[(

z
[2]
0

)T
(Φ(k; 0))[2]w[2]

0 | q0

]
= 0. (2.18)

By the definition of the Kronecker product, we know

E
[(

z
[2]
0

)T
(Φ(k; 0))[2]w[2]

0 | q0

]
= E
[(

zT0Φ(k; 0)w0

)2 | q0

]
. (2.19)

By (2.8), (2.9), and (2.19), we get

E
[(

zT0Φ[k; 0]w0

)2 | q0

]
=

N∑
i=1

P
(
q[k] = qi | q0

)
E
[(

zT0Φ[k, 0]w0

)2 | q[k] = qi, q0

]
. (2.20)
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Because P(q[k] = qi | q0) ≥ 0 and E[(zT0Φ[k; 0]w0)
2 | q[k] = qi, q0] ≥ 0, the combination of

(2.18) and (2.20) yields

lim
k→∞

P
(
q[k] = qi | q0

)
E
[(

zT0Φ(k; 0)w0

)2 | q[k] = qi, q0

]
= 0. (2.21)

Φ(k; 0) is an n× n matrix. So it can be denoted as Φ(k; 0) = (amj(k))m=1,...,n;j=1,...,n. In (2.21), we
choose z0 = em and w0 = ej and get

lim
k→∞

P
(
q[k] = qi | q0

)
E
[(
amj(n)

)2 | q[k] = qi, q0

]
= 0, (2.22)

where i = 1, 2, . . . ,N, m = 1, . . . , n and j = 1, . . . , n. By the definition of Φi[k], we know the
elements of Φi[k] take the form of

P
(
q[k] = qi | q0

)
E
[
am1j1(k)am2j2(k) | q[k] = qi, q0

]
, (2.23)

where m1, m2, j1, j2 = 1, . . . , n. So (2.22) guarantees

lim
k→∞

Φi[k] = 0, ∀q0. (2.24)

Lemma 2.4. VΦ[k] is governed by the following dynamic equation

VΦ[k] = A[2] VΦ[k − 1], (2.25)

with VΦ[0] = pT ⊗ In2 .

Proof of Lemma 2.4. By the definition in (2.8), we can recursively compute Φi[k] as follows:

Φi[k] = P
(
q[k] = qi | q0

)
E
[(
A
[
q[k − 1]

]
Φ(k − 1; 0)

)[2] | q[k] = qi, q0

]
= P
(
q[k] = qi | q0

)
E
[(
A
[
q[k − 1]

])[2](Φ(k − 1; 0))[2] | q[k] = qi, q0

]

= P
(
q[k] = qi | q0

) N∑
j=1

P
(
q[k − 1] = qj | q[k] = qi, q0

)

× E
[(
A
[
q[k − 1]

])[2](Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]

=
N∑
j=1

A
[2]
j P
(
q[k] = qi | q0

)
P
(
q[k − 1] = qj | q[k] = qi, q0

)

× E
[
(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]
.

(2.26)
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Because Φ(k−1; 0) depends on only {q[k−2], q[k−3], . . . , q[0]} and the jump sequence {q[k]}
is Markovian, we know

E
[
(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]
= E
[
(Φ(k − 1; 0))[2] | q[k − 1] = qj , q0

]
. (2.27)

P(q[k] = qi | q0)P(q[k − 1] = qj | q[k] = qi, q0) can be computed as

P
(
q[k] = qi | q0

)
P
(
q[k − 1] = qj | q[k] = qi, q0

)
= P
(
q[k − 1] = qj , q[k] = qi | q0

)
= P
(
q[k] = qi | q[k − 1] = qj , q0

)
P
(
q[k − 1] = qj | q0

)
= P
(
q[k] = qi | q[k − 1] = qj

)
P
(
q[k − 1] = qj | q0

)
= qjiP

(
q[k − 1] = qj | q0

)
.

(2.28)

Substituting (2.27) and (2.28) into the expression of Φi[k], we get

Φi[k] =
N∑
j=1

qjiA
[2]
j Φj[k − 1]. (2.29)

After combining Φi[k](i = 1, 2, . . . ,N) into VΦ[k] as (2.10), we get

VΦ[k] = A[2]VΦ[k − 1]. (2.30)

We can trivially get VΦ[0] from Φi[0] by (2.10).

Proof of Necessity of Theorem 2.1. By Lemma 2.3, we get

lim
k→∞

VΦ[k] = 0. (2.31)

By Lemma 2.4, we get VΦ[k] = Ak
[2]VΦ[0] and VΦ[0] = pT ⊗ In2 . Therefore, (2.31) yields

lim
k→∞

Ak
[2]

(
pT ⊗ In2

)
= 0, (2.32)

for any p (the initial distribution of q0).
Ak

[2] is an Nn2 × Nn2 matrix. We can write Ak
[2] as Ak

[2] = [A1(k), A2(k), . . . , AN(k)]
where Ai(n)(i = 1, . . . ,N) is an Nn2 × n2 matrix. By taking pi = 1 and pj = 0(j = 1, . . . , i −
1, i + 1, . . . ,N), (2.32) yields

lim
k→∞

Ai(k) = 0. (2.33)

Thus we can get

lim
k→∞

Ak
[2] = 0. (2.34)

So A[2] is Schur stable. The proof is completed.
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3. Conclusion

This paper presents a necessary and sufficient condition for the second moment stability
of a discrete-time Markovian jump linear system. Specifically this paper provides proof for
the necessity part. Different from the previous necessity proof, this paper confines the state
domain to the real space. It investigates the structures of relevant matrices and make a good
use of the essential properties of Markov jump linear systems, which may guide the future
research on such systems.
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This paper considers a class of networked Permanent Magnet Synchronous Motors (PMSMs),
whose feedback loops are closed over a shared data network. Although the installation and
maintenance cost of the networked PMSM system can be lowered by replacing the conventional
point-to-point feedback cables with a network, the network packet dropouts and transmission
delay may degrade the system’s performance and even destabilize it. The load torque disturbance
is another source to deteriorate the PMSM system’s performance. To investigate the effects of the
data network and the torque disturbance on the speed tracking of a PMSM system is one major
task of this paper. In particular, we derive a sufficient stability condition for this system in an
LMI (linear matrix inequality) form and provides a way to bound the system’s H∞ performance.
Moreover, we adopt an iterative LMI method to design the speed controller of the PMSM system,
which can robustly guarantee stability and performance against the network-induced delays,
packet dropouts, and the torque disturbance. Simulations are done to verify the effectiveness of
the obtained results.

1. Introduction

In the high-performance applications, such as robotics, aeronautic devices, and precision
machine tools, the positioning accuracy is required to be higher and higher so that an
alternative better than the traditional induction motors is needed. The permanent magnet
synchronous motor (PMSM) is one wise choice to meet this accuracy challenge in the low-
to-medium power servo systems. Because the PMSM’s rotor is a permanent magnet and
the flux linkage is constant [1], it possesses many advantages, like superior power density,
large torque-to-inertia ratio, and high efficiency. Consequently, the PMSM has received
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widespreading acceptance in industrial applications and is recognized as one of the key
components in automation applications.

In PMSM applications, speed tracking is of great importance [2]. The existence of the
load torque disturbance, however, makes speed tracking a rather tough task. In fact, it is
impossible to measure the disturbance directly in real application. One way is to estimate the
disturbance and actively cancel it [3]. Such methods may complicate the system design and
increase the system’s cost. We take another way, that is, designing a robust controller that can
guarantee the system’s performance is less sensitive to the disturbance.

Conventionally, a PMSM servo system includes a small number of PMSMs, which
are connected to controllers by point-to-point cables to close the control loops. The modern
industry, however, demands more and more PMSMs that could be located in geographically
separated areas. Thus the direct cable connection architecture is inconvenient for the
installation and maintenance. Instead, we can close the feedback loops of PMSMs over a
digital network to form a networked control system (NCS), which is a newly developed
technology being able to reduce the system’s wiring cost, simplify the system’s diagnosis and
maintenance, and improve the system’s agility [4]. The use of network will, however, induce
intermittent losses and delays of the feedback information, may deteriorate the system’s
performance, and even cause instability [5]. There are many results on NCSs, some of which
are introduced here (see more in the survey [6]). Reference [7] investigates the problem of
robust stabilization and disturbance for the NCSs with random communication network-
induced delays. Reference [8] Considers H∞ output tracking for NCSs with delays and data
packet dropouts. In [9], the discrete-time NCSs is studied and a state feedback controller with
less conservatism is given. Moreover, a modified optimization algorithm is also proposed in
[9] to cope with Bilinear Matrix Inequalities (BMIs).

As an important field of NCSs, networked servo systems are also well studied in recent
years. In [10], fuzzy logic control is used to enhance the performance of networked servo
systems with delays. To compensate the noise in the transmission channels, two-degrees-of-
freedom control is utilized in [11]. Predictive control [12] is implemented to suppress the
negative effects of delays and dropouts induced by the network. These results mainly focus
on servo systems with DC motors or AC induction motors. Nevertheless, PMSM, as one
of the main actuators in servo systems, is rarely mentioned in the previous NCS research.
Due to its great potential in the industry, the networked PMSM servo systems could be one
of the hot research topics in the future. Though a networked PMSM servo system has the
same problems of data packet dropouts and transmission delay as typical networked servo
systems, it has its own characteristics due to the employment of field-orientation mechanism
and the special motor structures [13]. So when we design a controller for such a system, the
specific properties should be taken into account to achieve less conservative results. The load
torque disturbance, as a common disturbance in applications, should also be considered in
the networked PMSM servo system.

This paper is organized as follows. In Section 2, we establish the mathematical model
for the networked PMSM servo systems, which suffers the uncertain network-induced delay
and data dropouts as well as the load torque disturbance. A sufficient stability condition of
the system is given and proven in Section 3 based on the Lyapunov-Krasovskii techniques.
Moreover, a bound on the system’s H∞ performance is also provided in Section 3. An iterative
LMI method is proposed to design a robust controller in Section 4, which can guarantee both
the stability and performance under the torque perturbation and the network-induced delay
and dropouts. Simulations are done in Section 5 to verify the effectiveness of the obtained
results. Some final remarks are placed in Section 6.
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2. Problem Formulation

2.1. PMSM Dynamics

In the synchronously rotating rotor d-q coordinate, a PMSM drive can be modeled as [2]

ud = Rid + Ld
did
dt
− npωLqiq,

uq = Riq + Lq

diq

dt
+ npωLdid + npωφa,

J
dω

dt
+ B0ω + Tl = npφa,

(2.1)

where ω is the rotating speed; id and iq are the d- and q-axes stator currents, respectively;
ud and uq are the d- and q-axes stator voltages, respectively; R is the stator resistance per
phase; Ld and Lq are the d- and q-axes stator inductances, respectively, and Ld = Lq = L in
the surface-mounted PMSM; np is the number of poles; φa =

√
3/2φf , with φf being the flux

linkage of the permanent magnet rotor; J is the total moment of inertia of the motor and load,
and B0 is the friction coefficient of the motor; Tl is the load torque.

A well-known strategy for a PMSM drive is the field-oriented vector control approach.
Under this scheme, a practical structure of cascaded control loops, including a speed loop
and two current loops, is usually employed [14]. In order to approximately eliminate the
coupling between the d- and q-axes currents, the d-axis reference current i∗d is set at zero and
id is regulated via a PI controller, as is shown in Figure 1.

Design the current controller of the q-axis as

uq = Riqr + npφaω, (2.2)

where iqr is the reference current of the q-axis, which is computed by the speed controller.
Then the state-space equation of a PMSM can be represented as

⎡
⎢⎢⎣
diq

dt

dω

dt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−R
L

0

npφa

J
−B0

J

⎤
⎥⎥⎥⎦
⎡
⎣iq
ω

⎤
⎦ +

⎡
⎢⎣
R

L

0

⎤
⎥⎦iqr +

⎡
⎢⎢⎣

0

−Tl
J

⎤
⎥⎥⎦. (2.3)

To proceed further, we need to make the following two definitions.

Definition 2.1. The tracking errors of speed, the q-axis current iq, and the reference current iqr
are defined as

e(t) = ω∗ −ω, eq(t) = i∗q − iq, eqr(t) = i∗qr − iqr , (2.4)

where ω∗, i∗q, i∗qr are the corresponding reference values.
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Figure 1: Configuration of a PMSM Servo System.

By Definition 2.1, the state-space equation (2.3) can be rewritten into a compact form
as

ẋ(t) = Ax(t) + B(u(t) + d(t)), (2.5)

where

x(t) =
[
eq(t) e(t)

]T
, u(t) =

[
eqr(t) 0

]T
, d(t) = [0 ΔTl(t)]T ,

A =

⎡
⎢⎢⎢⎣
−R
L

0

npφa

J
−B0

J

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎣
R

L
0

0
1
J

⎤
⎥⎥⎦.

(2.6)

ΔTl(t) represents the load torque disturbance, which is bounded and perhaps time-varying.

Definition 2.2. The disturbance suppressing performance of the system is evaluated by the
following signal:

z(t) = e(t). (2.7)

We want to design a robust controller for a networked PMSM to satisfy the following
requirements.

(1) When the load torque disturbance d(t) = 0, the system is asymptotically stable
under any initial state, namely,

lim
t→∞

z(t) = 0. (2.8)
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Figure 2: The diagram of a typical networked servo system.

(2) When the load torque disturbance d(t)/= 0, the closed-loop system has the ability to
suppress disturbance, namely,

‖z(t)‖2 ≤ γ‖d(t)‖2, (2.9)

where ‖·‖2 stands for the L2 norm of a continuous-time signal and γ is a quantitative
measure of the disturbance attenuation. The smaller γ , the better disturbance
attenuation.

2.2. Structure of Networked PMSM Servo Systems

A typical networked servo system is shown in Figure 2, which can be divided into three parts:
(1) the remote unit containing a remote controller and a remote motor,
(2) the central controller,
(3) the communication network.

The remote unit and the central controller exchange feedback information through the
communication network.

When the remote motors are PMSMs, we get a networked PMSM servo system as
shown in Figure 3. Each distributed remote controller receives control signals from the
communication network and then convert them into PWM signals to drive the motor. It
also sends local measurements, such as rotating speed, motor current, and local environment
information, back to the central controller via the shared data network. The central controller
is usually a sophisticated controller and can provide advanced real-time control strategies to
the remote units.

2.3. System Modeling

Because of the limited bandwidth of the network, data packet dropouts are unavoidable.
When a dropout occurs, it might be more advantageous to drop the old packet and transmit
a new one than to retransmit the old one [15]. Network-induced delays are also considered
here. The model of the concerned networked PMSM servo system is shown in Figure 4.
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The following assumptions are placed on the networked PMSM servo system.

(1) The sensor is clock driven, and the controller and actuator are event driven.

(2) The sampling period is a positive constant scalar h.

(3) The controller-to-actuator and the sensor-to-controller delays are denoted as τca and
τsc, respectively. The state feedback controller is static (see (2.14)). So these two
delays can be lumped as

τk = τsc + τca. (2.10)

Moreover, τk is less than h, that is, 0 ≤ τk ≤ τ ≤ h, where τ is the upper bound of
delays. Due to the static feedback controller, we can assume that the transmission
from the controller to the actuator is delay free and all delays come from the
transmissions from the sensor to the controller, that is, τsc = τk and τca = 0, in
Figure 4.

(4) The maximum numbers of the consecutive controller-to-actuator and sensor-to-
controller data dropouts are denoted as dca and dsc, respectively. They can also
be lumped as

dk = dca + dsc. (2.11)

dk is bounded as 0 ≤ dk ≤ d. Similar to τk, dk is also assumed to only come from the
transmissions from the sensor to the controller, that is, dsc = dk and dca = 0.
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If only delays exist in the system, the sampled signal at kh (∀k ∈ N) will arrive at the
controller at the time kh + τk. So the delay is η(t) = t − kh and its range is

η(t) ∈ [0, h + τ], (2.12)

When the data dropouts also exist, they can be treated as delays and yield the following
overall delay range:

η(t) ∈
[
0,
(
d + 1

)
h + τ

]
=
[
0, η
]
. (2.13)

It is well known that time-varying delay is more difficult to handle than constant delay from
the control system’s perspective. The actuator can know the total delay η(t) by the time
stamping technique. In the present paper, the actuator is assumed to purposefully postpone
to implement the received control variable by the time of η−η(t) and yields a constant overall
delay of η, which is easier to deal with. We choose a static state feedback controller. Due to
the constant delay strategy, our controller takes the following form:

u(t) = Kx
(
t − η), (2.14)

where K is the feedback gain to be designed. By substituting (2.14) into (2.5), we get the
following state-space equation of the networked PMSM servo system:

ẋ(t) = Ax(t) + BKx
(
t − η) + Bd,

z(t) = Cx(t).
(2.15)

3. Analysis of Networked PMSM Servo Systems

3.1. A Sufficient Stability Condition

In industry applications, the stability of a servo system is crucial. So we first have to guarantee
that the system is stable. Here stability means the asymptotic stability when the disturbance is
zero, that is, d(t) = 0. Under the delay and dropout conditions in (2.13), we get the following
stability condition, which is expressed in an LMI (linear matrix inequality) form and easy to
verify.

Theorem 3.1. Under the given controller gain K and the upper bound η > 0 (in (2.13)), the system
(2.15) is asymptotically stable if there exist matrices P > 0, Q > 0, Z > 0, Y and W such that the
following matrix inequality (3.1) holds:

⎡
⎢⎢⎢⎢⎢⎣

W1 W2 −ηY AT

∗ W3 −ηW KTBT

∗ ∗ −ηZ 0

∗ ∗ ∗ −η−1Z−1

⎤
⎥⎥⎥⎥⎥⎦ < 0, (3.1)

whereW1 = PA +ATP + Y + YT +Q, W2 = PBK − Y +WT , and W3 = −Q −W −WT .
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Proof. We construct the following Lyapunov-Krasovskii function:

V (t) = V1(t) + V2(t) + V3(t), (3.2)

where V1(t) = xT (t)Px(t), V2(t) =
∫ t
t−η x

T (α)Qx(α)dα, and V3(t) =
∫0
−η
∫ t
t+β ẋ

T (s)Zẋ(s)dsdβ.
By the Newton-Leibniz formula, we get

x
(
t − η) = x(t) −

∫ t

t−η
ẋ(α)dα. (3.3)

The derivatives of V1, V2, and V3 are computed as follows:

V̇1(t) = 2xT (t)P
[
Ax(t) + BKx

(
t − η)]

= 2xT (t)P(A + BK)x(t) − 2xT (t)PBK
∫ t

t−η
ẋ(α)dα

= 2xT (t)P(A + BK)x(t)

+ 2xT (t)(Y − PBK)
∫ t

t−η
ẋ(α)dα + 2xT(t − η)W ∫ t

t−η
ẋ(α)dα

−
[

2xT (t)Y
∫ t

t−η
ẋ(α)dα + 2xT(t − η)W ∫ t

t−η
ẋ(α)dα

]

= 2xT (t)P(A + BK)x(t) + 2xT (t)(Y − PBK)
[
x(t) − x(t − η)]

+ 2xT(t − η)W[x(t) − x(t − η)]
−
[

2xT (t)Y
∫ t

t−η
ẋ(α)dα + 2xT(t − η)W ∫ t

t−η
ẋ(α)dα

]

=
1
η

∫ t

t−η

[
2xT (t)(PA + Y )x(t) + 2xT (t)

(
PBK − Y +WT

)
x
(
t − η)

−2xT(t − η)Wx
(
t − η) − 2xT (t)ηYẋ(α) − 2xT(t − η)ηWẋ(α)

]
dα,

V̇2(t) = xT (t)Qx(t) − xT(t − η)Qx
(
t − η)

=
1
η

∫ t

t−η

[
xT (t)Qx(t) − xT(t − η)Qx

(
t − η)]dα,

V̇3(t) =
∫0

−η

[
ẋT (t)Zẋ(t) − ẋ(t + β

)
Zẋ
(
t + β

)]
dβ

=
∫ t

t−η

[
ẋT (t)Zẋ(t) − ẋ(α)Zẋ(α)

]
dα

=
1
η

t∫
t−η

[
xT (t)ηATZAx(t) + 2xT (t)ηATZBKx

(
t − η)

+xT(t − η)ηKTBTZBKx
(
t − η) − ẋT (α)ηZẋ(α)

]
dα.

(3.4)
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Finally, we have

V̇ (t) =
1
η

∫ t

t−η
ζT (t, α)Φζ(t, α)dα, (3.5)

where

ζ(t, α) =

⎡
⎢⎢⎣

x(t)

x
(
t − η)
ẋ(α)

⎤
⎥⎥⎦, Φ =

⎡
⎢⎢⎣
W1 + ηATZA W2 + ηATZBK −ηY

∗ W3 + ηKTBTZBK −ηW
∗ ∗ −ηZ

⎤
⎥⎥⎦. (3.6)

By the Schur complement theorem, we get from (3.1) that there must exist ε > 0 such that

Φ < −εI, (3.7)

where I represents an identity matrix of an appropriate dimension. Substituting (3.7) into
(3.5) yields

V̇ (t) < −ε‖x(t)‖2. (3.8)

According to Lyapunov-Krasovskii theorem, if there exist ε > 0 such that V̇ (t) < −ε‖x‖2, the
system (2.15) is asymptotic stable. So if the matrix inequality (3.1) holds, the system (2.15) is
asymptotically stable. This completes the proof.

3.2. Robust Performance Analysis

Definition 3.2. A stable system in (2.15) is said to satisfy the H∞ performance index γ > 0 if
under the zero initial condition,

‖z(t)‖2 ≤ γ‖d(t)‖2. (3.9)

We can verify whether the performance requirement in (3.9) is satisfied through the following
theorem.

Theorem 3.3. Under the given controller gain K and the upper bound η > 0 (in (2.13)), the system
(2.15) satisfies the performance index γ in (3.9) if there exist matrices P > 0,Q > 0, Z > 0, Y andW
such that the following matrix inequality holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 W2 −ηY PB AT CT

∗ W3 −ηW 0 KTBT 0

∗ ∗ −ηZ 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1Z−1 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.10)

whereW1 = PA +ATP + Y + YT +Q, W2 = PBK − Y +WT , and W3 = −Q −W −WT .
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Proof. Equation (3.10) implies (3.1). By Theorem 3.1, we know the system is stable.
Define Jzd =

∫∞
0 [zT (t)z(t) − γ2dT (t)d(t)]dt. Jzd can be modified into

Jzd =
∫∞

0

[
zT (t)z(t) − γ2dT (t)d(t) + V̇ (t)

]
dt + V (t)|t=0 − V (t)|t=∞. (3.11)

Under the zero initial condition, V (t)|t=0 = 0. Because of V (t)|t=∞ ≥ 0, we get

Jzd ≤
∫∞

0

[
zT (t)z(t) − γ2dT (t)d(t) + V̇ (t)

]
dt

≤ 1
η

∫∞
0

∫ t

t−η

⎡
⎢⎢⎢⎢⎢⎣

x(t)

x(t − η)
ẋ(α)

d(t)

⎤
⎥⎥⎥⎥⎥⎦

T

Ξ

⎡
⎢⎢⎢⎢⎢⎣

x(t)

x
(
t − η)
ẋ(α)

d(t)

⎤
⎥⎥⎥⎥⎥⎦,

(3.12)

where

Ξ =

⎡
⎢⎢⎢⎢⎢⎣

W1 + CTC W2 −ηY PB

∗ W3 −ηW 0

∗ ∗ −ηZ 0

∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

AT

KTBT

0

BT

⎤
⎥⎥⎥⎥⎥⎦ηZ

⎡
⎢⎢⎢⎢⎢⎣

AT

KTBT

0

BT

⎤
⎥⎥⎥⎥⎥⎦

T

. (3.13)

By the Schur complement theorem, we know that (3.10) implies Ξ < 0. Therefore,
Jzω < 0, that is,

∫∞
0

[
zT (t)z(t) − γ2dT (t)d(t)

]
dt < 0. (3.14)

After simple manipulations, the above equation yields

‖z(t)‖2
2 ≤ γ2‖d(t)‖2

2. (3.15)

Equation (3.15) is equivalent to (3.9).

In (3.9), the left side variable z(t) and the right one d(t) have different units. So the
ratio between them, γ , does not have a clear physical meaning. In order to overcome this
difficulty, we introduce the following relative sensitive functions.

Definition 3.4. The sensitive functions of the speed tracking error and the load torque
disturbance are defined as

Sz =
‖Z‖2

ωref
, ST =

‖ΔTl‖2

Tl0
, (3.16)

where ωref is the reference tracking speed and Tl0 is the nominal load torque.
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Based on the above definition, (3.15) can be rewritten into

Sz ≤ γ̃ST , (3.17)

where γ̃ = (Tl0/ωref)γ .

Remark 3.5. In (3.17), both units of Sz and ST are percentage. So (3.17) means how much
percent of load torque disturbance yields how much percent of speed tracking error. γ̃ is
exactly the gain between two percentage variables (Sz and ST ) and can quantitatively reflect
the capability to attenuate the load torque disturbance attenuation. γ̃ is determined by the
system’s delay in (2.13) and the controller gain K in (2.14). Although we cannot change the
system’s delay, we do have freedom to choose an appropriate K to yield a better (smaller) γ̃ ,
which is the major task of the next section.

4. The Design of the Robust Controller

When we design the robust controller, the controller gain K is unknown. So the matrix
inequalities in Theorems 3.1 and 3.3 are bilinear matrix inequalities (BMIs). As a result, we
cannot find a maximum η or the minimum γ using convex optimization algorithms. In the
subsequent part, we propose some methods to resolve this issue.

Define X = P−1 and Δ = diag{X,X,X, I, I, I}. Pre- and postmultiply (3.10) by Δ, we
obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃1 W̃2 −ηỸ B XAT XCT

∗ W̃3 −ηW̃ 0 FTBT 0

∗ ∗ −ηXS−1X 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1S 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.1)

where W̃1 = AX + XAT + Ỹ + Ỹ T + Q̃, W̃2 = BF − Ỹ + W̃T , W̃3 = −Q̃ − W̃ − W̃T , Ỹ = XYX,
Q̃ = XQX, W̃ = XWX, F = KX, and S = Z−1.

Define a matrix variable M < XS−1X, then matrix inequality (4.1) is equivalent to the
combination of matrix inequalities (4.2), (4.3) and(4.4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃1 W̃2 −ηỸ B XAT XCT

∗ W̃3 −ηW̃ 0 FTBT 0

∗ ∗ −ηM 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1S 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.2)
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[−Z P

P −N

]
< 0, (4.3)

S = Z−1, N = M−1, P = X−1. (4.4)

Based on the above transformation, a robust controller can be designed as follows.

Theorem 4.1. Under the given η > 0 and γ > 0, the system (2.15) satisfies the performance index γ
if there exist matrices X > 0, P > 0, Q > 0, Z > 0, M > 0, S > 0, N > 0, Y and W such that matrix
inequalities (4.2), (4.3) and (4.4) hold. In this case, a robust H∞ state feedback controller gain can be
chosen as K = FX−1.

It is noted that the conditions in Theorem 4.1 are not LMI because of the inverse matrix
constraints in (4.3) and (4.4). Fortunately, there are some methods to efficiently solve these
inequalities. In [16], a method is given to obtain the suboptimal delay η or the suboptimal γ by
setting S = X. With more computational efforts, better results can be obtained by an iterative
algorithm in [17]. That iterative algorithm is called cone complementary linearization (CCL)
method. By adopting the CCL method, we get the following algorithm to cope with the
nonlinear minimization problem subject to LMIs.

Algorithm 4.2. There are 4 steps.

Step 1. Choose a sufficiently large initial variable γ > 0 such that there exists a feasible
solution to matrix inequalities (4.2) and (4.3) and (4.4). Set γmin = γ .

Step 2. Find a feasible set (X0, P0, Q0, Z0,M0, S0,N0, Y0,W0) satisfying (4.2) and (4.3), and
the matrix inequality in (4.5) (One way to get a feasible set is by setting S = X as the
aforementioned suboptimal solution). Set k = 0,

[
S I

I Z

]
< 0,

[
N I

I M

]
< 0,

[
P I

I X

]
< 0. (4.5)

Step 3. Solve the LMI problem in (4.6),

MinX,P,Q,Z,M,S,N,Y,W tr(SkZ + SZk +NMk + PkX + PXk)

s.t. equations (4.2),(4.3), and (4.5).
(4.6)

Set Xk+1 = X, Pk+1 = P , Qk+1 = Q, Zk+1 = Z, Mk+1 = M, Sk+1 = S, Nk+1 = N, Yk+1 = Y , and
Wk+1 = W .

Step 4. If (3.10) holds, then set γmin = γ and return to Step 2 after decreasing γ to some extent.
If (3.10) is not satisfied within a specified number of iterations, to say kmax, then we stop the
above iterations. Otherwise, set k = k + 1 and go back to Step 3.
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Table 1: The nominal parameters of a PMSM.

R L φf B0

2.875Ω 0.0085 H 0.0816 Wb 0.00185 N ·m · s
J np Tl

0.0008 N ·m · s 4 2 N ·m

Table 2: The relationship between the speed tracking error and η.

Speed error
percentage 6% 5.6% 5.2% 4.8% 4.4% 4.0%
η 0.082 0.075 0.068 0.061 0.055 0.049
Speed error
percentage 3.6% 3.2% 2.8% 2.4% 2.0%
η 0.043 0.037 0.032 0.026 0.005

5. Simulation Results

To verify the results in Theorems 3.1, 3.3, and 4.1, a MATLAB/SIMULINK simulation
platform of networked PMSM servo systems is built up, which is shown in Figure 1. The
sampling period h is 10 ms. The tracking reference speed is set to 1500 r/min. The nominal
parameters of a PMSM is shown in Table 1.

In the following simulations, the load torque disturbance is no larger than 30% of
the nominal value. According to Theorem 4.1 and Definition 3.4, we obtain the relationship
between the speed tracking error and η, which is demonstrated in Table 2.

Remark 5.1. The data in Table 2 shows the relationship between the speed tracking error
and the maximum delay η. When the networked PMSM servo system needs higher tracking
accuracy, it can tolerate less transmission delay and data packet dropouts. If the speed tacking
error is less than 2.0%, η is equal to 0.005 s, which means that the system cannot tolerate even
one data packet dropout under this circumstance.

In the sequel, we simulate 3 cases to demonstrate the effectiveness of the obtained
results. In these simulations, the maximum relative speed tracking error is 5%, and the load
torque disturbance is no larger than 30% of the nominal value. According to Definition 3.4,
we get

γ ≤ γmin = 125. (5.1)

By Theorem 4.1 (with γ = γmin), we try to maximize η and reach a suboptimal solution with
η = 0.064 s and the corresponding controller gain of K = [0,−0.0212].

5.1. Stability of System

Case 1. The first simulation is to verify the stability of the networked PMSM servo system. η is
set to 0.064 s. Figure 5 shows the speed tracking error trajectory. After approximate 0.15 s, the
speed tracking error is almost zero. So this result demonstrates the correctness of the stability
condition in Theorem 3.1.
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Figure 5: The speed tracking error.

5.2. Robustness against Transmission Delay and Data Dropouts

Case 2. In the second case, performance comparison is made between two approaches, the
robust controller proposed in this paper and the PID controller.

The PID Controller

Its parameters are tuned to perform well under the network-delay-free situation. In the
simulation, the network-induced delay is set to 0.1 h (= 0.001 s).

Robust Controller

The robust controller is then applied as the central controller to regulate the speed loop. The
network-induced delay η is set to be 0.064 s. η = 0.064 s = 6.4 h means that the system can
tolerate 5 dropouts among any 6 consecutive data packets.

The results of this case are shown in Figure 6.
Although the PID controller suffers a much smaller delay than the robust controller,

it generates much worse tracking performance than the robust controller. The reason lies in
that the design of the robust controller takes the delay into account, while the design of the
PID controller does not. So the effectiveness of Theorems 3.3 and 4.1 is confirmed.

5.3. Robustness against Load Torque Disturbance

Case 3. The purpose of the third simulation is to verify that the proposed robust controller
can effectively suppress the load torque disturbance. Under the worst condition of five
consecutive data packet dropouts and network-induced delay up to 0.4 h, a 30% load torque
disturbance occurs at time 0.5 s and disappears at time 0.55 s. Figure 7 shows the simulation
results.
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Figure 7: Speed response under the network delays and dropouts and the load torque disturbance.

As we see in Figure 7, when the load torque disturbance starts at time 0.5 s, the speed
deviates from the reference speed of 1500 r/min. However, after the disturbance disappears
at time 0.55 s, the speed of PMSM quickly returns back to the reference speed in about 0.03 s.
From the speed response curve, we can also see that the speed tracking error is less than
5% during the whole process. These simulation results confirm that the robust controller
designed in this paper satisfies the accuracy demand and can effectively suppress the load
torque disturbance.

6. Conclusion

The networked PMSM servo system has a promising future in industry applications.
However, its performance may be degraded by the network delays and data packet dropouts.
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The load disturbance is also a detrimental factor for the control performance. In this paper, we
propose a sufficient stability condition by the Lyapunov-Krasovskii method, quantitatively
investigate the robustness of the system’s performance against the load torque disturbance,
and give a way to design a robust controller, which can either tolerate larger network delay or
give better H∞ performance. The simulations are done to verify the correctness of the stability
result and demonstrate the superiority of the obtained controller in terms of performance
robustness against the data packet dropouts and transmission delay as well as the load torque
disturbance.
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Having attracted much attention in the past few years, predator-prey system provides a good
mathematical model to present the correlation between predators and preys. This paper focuses
on the robust stability of Lotka-Volterra predator-prey system with the fuzzy impulsive control
model, and Takagi-Sugeno (T-S) fuzzy impulsive control model as well. Via the T-S model and
the Lyapunov method, the controlling conditions of the asymptotical stability and exponential
stability are established. Furthermore, the numerical simulation for the Lotka-Volterra predator-
prey system with impulsive effects verifies the effectiveness of the proposed methods.

1. Introduction

Since Volterra presented the differential equation to solve the issue of the sharp change of
the population of the sharks (predator) and the minions (prey) in 1925, the predator-prey
system has been applied into many areas and played an important role in the biomathematics.
Much attention has been attracted to the stability of the predator-prey system. Brauer and
Soudack studied the global behavior of a predator-prey system under constant-rate prey
harvesting with a pair of nonlinear ordinary differential equations [1]. Xu and his workmates
concluded that a short-time delay could ensure the stability of the predator-prey system [2].
After analyzing the different capability between the mature and immature predator, Wang
and his workmates obtained the global stability with the small time-delay system [3]. Li
and his partners studied the impulsive control of Lotka-Volterra predator-prey system and
established sufficient conditions of the asymptotic stability with the method of Lyapunov
functions [4]. Liu and Zhang studied the coexistence and stability of predator-prey model
with Beddington-DeAngelis functional response and stage structure [5]. Li did some work
on the predator-prey system with Holling II functional response and obtained the existence,
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uniqueness and global asymptotic stability of the in random perturbation [6]. Furthermore,
Ko and Ryu studied the qualitative behavior of nonconstant positive solutions on a general
Gauss-type predator-prey model with constant diffusion rates under homogenous Neumann
boundary condition [7]. Additionally, many papers discussed the predator-prey system with
other different methods, such as LaSalle’s invariance principle method [8], Liu and Chen’s
impulsive perturbations method [9], and Moghadas and Alexander’s generalized Gauss-type
predator–prey model [10].

In recent years, fuzzy impulsive theory has been applied to the stability analysis of the
non-linear differential equations [11–15]. However, it should be admitted that the stability
of fuzzy logic controller (FLC) is still an open problem. It is well-known that the parallel
distributed compensation technique has been the most popular controller design approach
and belongs to a continuous input control way. It is important to point out that there exist
many systems, like the predator-prey system, which cannot commonly endure continuous
control inputs, or they have impulsive dynamical behavior due to abrupt jumps at certain
instants during the evolving processes. In this sense, it is the same with communication
networks, biological population management, chemical control, and so forth [16–23]. Hence,
it is necessary to extend FLC and reflect these impulsive jump phenomena in the predator-
prey system. Until recently, few papers talk about the stability of Lotka-Volterra predator-
prey system with fuzzy impulsive control. In this paper, the writer will study the robustness
of the predator-prey system by the fuzzy impulsive control based on the T-S mathematical
model.

The rest of this paper is organized as follows. Section 2 describes the Lotka-Volterra
predator-prey system and T-S fuzzy system with impulsive control. In Section 3, the theoretic
analysis and design algorithm on stability of the impulsive fuzzy system are performed.
Numerical simulations for the predator-prey system with impulsive effects are carried out
with respect to the proposed method in Section 4. Finally, some conclusions are made in
Section 5.

2. Problem Equation

The Lotka-Volterra predator-prey system is expressed with the following differential
equation:

ẋ1(t) = x1(t)
(
μ1 − r12x2(t)

)
,

ẋ2(t) = x2(t)
(−μ2 + r21x1(t)

)
,

(2.1)

where x1(t), x2(t) (x1(t) > 0, x2(t) > 0) denote the species density of the preys and the
predators in the group at time t respectively. The coefficient μ1 > 0 denotes the birth rate
of the preys, and μ2 > 0 denotes the death rate of the predators. The other two coefficients r12

and r21 (both positive) describe interactions between the species.
In order to discuss the stability of the system, a matrix differential equation is present-

ed as follows:

ẋ = Ax + Φ(x), where A =

[
μ1 0

0 −μ2

]
, Φ(x) =

[−r12x1x2

r21x1x2

]
. (2.2)
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Lemma 2.1. ẋ = f(x(t)), where x(t) ∈ Rn is the state variable, and f ∈ C[Rn, Rn] satisfiesf(0) = 0,
is a vector field defined over a compact region W ⊆ Rn. By using the methods introduced in [24], one
can construct fuzzy model for system (2.1) as follows.

Control Rule i (i = 1, 2, . . . , r): IF z1(t) is Mi1, z2(t) is Mi2 . . ., and zp(t) is Mip, THEN
ẋ(t) = Aix(t), where r is the number of T-S fuzzy rules, and z1(t), z2(t), . . . , zp(t) are the premise
variables, eachMij (j = 1, 2, . . . , p) is a fuzzy set, and Ai ∈ Rn×n is a constant matrix.

Thus, the nonlinear equation can be transformed to the following linear equation.
If x2(t) isMi

ẋ = Aix(t), t /= τj ,

Δx|t=τj = Ki,jx(t), t = τj ,

i = 1, 2, . . . , r, j = 1, 2 . . . ,

(2.3)

where

Ai =

[
μ1 − dir12 0

dir21 −μ2

]
, (2.4)

and di is related to the value of x2(t) (here, di = x2(t)). Mi, x(t), Ai ∈ R2 × 2, r is the number of the
IF-THEN rules, Ki,j ∈ R2 × 2 denotes the control of the j th impulsive instant, Δx|t=τj ≡ x(τ+j − τ−j ).

Correspondently, with center-average defuzzifier, the overall T-S fuzzy impulsive system can
be represented as follows:

ẋ(t) =
r∑
i=1

hi(x2(t))(Aix(t)), t /= τj ,

Δx|t=τj =
r∑
i=1

hi(x2(t))Ki,jx, t = τj ,

(2.5)

where hi(x2(t)) = ωi(x2(t))/
∑r

i=1 ωi(x2(t)) and ωi(x2(t)) =
∏p

j=1Mi,j(x2(t)).

Obviously, hi(x2(t)) ≥ 0,
∑r

i=1 hi(x2(t)) = 1, i = 1, 2, . . . , r.

Lemma 2.2. If P is a real semipositive matrix, then a real matrix C exists, making P = CTC.

3. Stability Analysis

Theorem 3.1. Assume that λi is the maximum eigenvalue of [AT
i + Ai](i = 1, 2, . . . , r), let λ(α) =

maxi{λi}, 0 < δj = τj − τj−1 < ∞ is impulsive distance [25]. If λ(α) ≥ 0 and there exists a constant
scalar ε > 1 and a semipositive matrix P, such that

ln
(
εβj

)
+ λ(α)δj ≤ 0, PAi = AiP, (3.1)
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where

P = CTC, βj = max
i

∥∥C(I +Ki,j

)∥∥. (3.2)

Then the system (2.5) is stable globally and asymptotically.

Proof. Let the candidate Lyapunov function be in the form of

V (x) =
1
2
xTPx. (3.3)

Clearly, for t /= τj ,

•
V (x) =

1
2

r∑
i=1

hi(x2(t))xT
[
AT

i P + PAi

]
x

=
1
2

r∑
i=1

hi(x2(t))xTP
[
P−1AT

i P +Ai

]
x

≤ 1
2
λ(α)xTP

r∑
i=1

hi(x2(t))x

=
1
2
λ(α)xTPx

= λ(α)V (x(t)),

(3.4)

where t ∈ (τj−1, τj] (j = 1, 2, . . .).
For t = τj , we have

V
(
x
(
τ+j

))
=

1
2

r∑
i=1

hi(x2(t))
[(
I +Ki,j

)
x
(
τj
)]T

P
[(
I +Ki,j

)
x
(
τj
)]

=
1
2

r∑
i=1

hi(x2(t))
[(
I +Ki,j

)
x
(
τj
)]T

CTC
[(
I +Ki,j

)
x
(
τj
)]

=
1
2

r∑
i=1

hi(x2(t))
∥∥C(I +Ki,j

)
x
(
τj
)∥∥

≤ 1
2

r∑
i=1

hi(x2(t))
∥∥C(I +Ki,j

)∥∥∥∥x(τj)∥∥

≤ 1
2

r∑
i=1

hi(x2(t))βj
∥∥x(τj)∥∥

= βjV
(
x
(
τj
))
, j ∈N.

(3.5)
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Let j = 1, for any t ∈ (τ0, τ1], by (3.4), we obtain

V (x(t)) ≤ V (x(τ0)) exp(λ(α)(t − τ0)). (3.6)

Then

V (x(τ1)) ≤ V (x(τ0)) exp(λ(α)(τ1 − τ0)). (3.7)

From (3.5) and (3.7), we obtain

V
(
x
(
τ+1

)) ≤ β1V (x(τ1)) ≤ β1V (x(τ0)) exp(λ(α)(τ1 − τ0)). (3.8)

In the same way, for any t ∈ (τ1, τ2], we have

V (t, x) ≤ V
(
τ+1 , x

)
exp(λ(α)(t − τ1)) ≤ β1V (τ0, x) exp(λ(α)(t − τ0)). (3.9)

Similarly, for all k and t ∈ (τk, τk+1], we obtain

V (t, x) ≤ βk · · · β2β1V (τ0, x) exp(λ(α)(t − τ0)). (3.10)

From (3.2), we obtain

βk exp(λ(α)δk) ≤ 1
ε
, k ∈N. (3.11)

Thus, for t ∈ (τk, τk+1], k ∈N, we have

V (x(t)) ≤ V (x(τ0))β1β2 · · · βk exp(λ(α)(t − τ0))

= V (x(τ0))
[
β1 exp(λ(α)δ1)

] · · · [βk exp(λ(α)δk)
]

exp(λ(α)(t − τk))

≤ V (x(τ0))
1
εk

exp(λ(α)(t − τk)).

(3.12)

So, if t → ∞, then k → ∞ and V (t, x) → 0. So the system (2.5) is stable globally and
asymptotically.

Theorem 3.2. Assume that λi is the maximum eigenvalue of [Ai + AT
i ](i = 1, 2, . . . , r), let λ(α) =

maxi{λi}, 0 < δj = τj − τj−1 < ∞ is impulsive distance. If λ(α) < 0 and a constant scalar 0 ≤ ε <
−λ(α) exists, such that

ln
(
β
) − εδj ≤ 0, PAi = AiP, (3.13)

where P = CTC and βj = maxi‖C(I +Ki,j)‖.
Then the system (2.5) is stable globally and exponentially.
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Proof. Let the candidate Lyapunov function be in the form of

V (x) =
1
2
xTPx. (3.14)

Firstly, (3.4)–(3.10) hold.
From (3.13), we obtain

βk exp(−εσk) ≤ 1, k ∈N. (3.15)

Thus, for t ∈ (τk, τk+1], k ∈N,

V (x(t)) ≤ V (x(t0))β1β2 · · · βk exp(λ(α)(t − t0))
= V (x(t0))β1β2 · · · βk exp((−ε)(t − t0)) exp((λ(α) + ε)(t − t0))
= V (x(t0))

[
β1 exp(−ε(t1 − t0))

] · · · [βj exp(−ε(t − tk))
]

exp((λ(α) + ε)(t − t0))
≤ V (x(t0)) exp((λ(α) + ε)(t − t0)).

(3.16)

Note that 0 ≤ ε < −λ(α), thus λ(α) + ε < 0. So the system (2.5) is stable globally and
exponentially.

Next, we consider some special cases of the two theorems. Assume that K = Ki,j and
σ = σj in the two theorems above, so we can have the following corollary.

Corollary 3.3. Let λi be the largest eigenvalue of [A +AT ], (i = 1, 2, . . . , r), λ(α) = maxi{λi} > 0. If
there exists a constant ε > 1 and a real semi-positive P such that

ln
(
εβ

)
+ λ(a)δ ≤ 0, PAi = AiP, (3.17)

where P = CTC, βj = maxi‖C(I +Ki,j)‖, and 0 < δ = τj − τj−1 <∞ (j ∈N) is impulsive distance.
Then the system (2.5) is stable globally and asymptotically.

Corollary 3.4. Let λi be the largest eigenvalue of [A +AT ](i = 1, 2, . . . , r), λ(α) = maxi{λi} < 0. If
there exists a constant 0 ≤ ε < −λ(α) and a real semi-positive P such that

ln
(
β
) − εδ ≤ 0, PAi = AiP, (3.18)

where P = CTC, βj = maxi‖C(I +Ki,j)‖, and 0 < δ = τj − τj−1 < ∞(j ∈ N) is impulsive distance.
Then the system (2.5) is stable globally and exponentially.

4. Numerical Simulation

In this section, we present a design example to show how to perform the impulsive fuzzy
control on the Lotka-Volterra predator-prey systems with impulsive effects. Especially, the
biological systems are very complex, nonlinear, and uncertain. As a result, they should be
represented by fuzzy logical method with linguistic description.
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Figure 1: The phase portrait of the system with fuzzy impulsive control.

Now, consider a predator-prey system with impulsive effects as follows:

ẋ = Ax + Φ(x), (4.1)

where,

A =

[
μ1 0

0 −μ2

]
, Φ(x) =

[−r12x1x2

r21x1x2

]
. (4.2)

Solving

From (2.3), we have the following impulsive fuzzy control for the above predator-prey model.

Rule i

IF x2(t) is Mi, then

{
ẋ(t) = Aix(t) t /= τj ,

Δx = Ki,jx(t) t = τj ,
i = 1, 2, j ∈N, (4.3)

where,

A1 =

[
μ1 − dr12 0

dr21 −μ2

]
, A2 =

[
μ1 − (1/2)dr12 0

(1/2)dr21 −μ2

]
, (4.4)

due to x2(t) ∈ [0, d] = [0, 0.12], and M1(x2(t)) = x2(t)/d, M2(x2(t)) = −x2(t)/d.
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Let ε = 1.2, δ = 0.05, P = I, μ1 = 0.2, μ2 = 0.16, r12 = 0.10, r21 = 0.31.
From Theorem 3.1 and Corollary 3.3, we can get that λ(α) = 0.194.
Thus, we have chosen diag ([−0.82, −0.82]) as impulsive control matrix, such that

β = ‖I +K‖ = 0.18, ln
(
εβ

)
+ λ(α)δ = −1.316 ≤ 0. (4.5)

Thus, from Theorem 3.1 and Corollary 3.3, we can conclude that the numerical
example is globally stable. The phase portrait of the system with impulsive control is shown
in Figure 1.

5. Conclusions

The impulsive control technique, which was proved to be suitable for complex and nonlinear
system with impulsive effects, was applied to analyzing the framework of the fuzzy systems
based on T-S model and the proposed design approach. First, the robustness of the Lotka-
Volterra predator-prey system based on the fuzzy impulsive control was carefully analyzed.
Then, the overall impulsive fuzzy system was obtained by blending local linear impulsive
system. Meanwhile, the asymptotical stability and exponential stability of the impulsive
fuzzy system were derived by Lyapunov method. Finally, a numerical example for predator-
prey systems with impulsive effects was given to illustrate the application of impulsive fuzzy
control. The simulation results show that the proposed method was effective.
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Spatial images are inevitably mixed with different levels of noise and distortion. The contourlet
transform can provide multidimensional sparse representations of images in a discrete domain.
Because of its filter structure, the contourlet transform is not translation-invariant. In this
paper, we use a nonsubsampled pyramid structure and a nonsubsampled directional filter to
achieve multidimensional and translation-invariant image decomposition for spatial images. A
nonsubsampled contourlet transform is used as the basis for an improved Bayesian nonlocal
means (NLM) filter for different frequencies. The Bayesian model adds a sigma range in image
a priori operations, which can be more effective in protecting image details. The NLM filter retains
the image edge content and assigns greater weight to similarities for edge pixels. Experimental
results both on standard images and spatial images confirm that the proposed algorithm yields
significantly better performance than nonsubsampled wavelet transform, contourlet, and curvelet
approaches.

1. Introduction

In spatial rendezvous and docking, spatial images are obtained by multisource remote
sensors. Spatial images are inevitably mixed with different levels of noise and distortion. The
accurate image feature extraction will be helpful for spatial object recognition and can directly
influence the success of spatial rendezvous and docking [1, 2]. Image feature extraction
of spatial images is based on the definition of image features; to some extent, it can be
said that it is based on sensitivity changes to image grayscale values for the human eye.
Multidimensional image representation can process images for the sparsest representation,
especially for 2D image signals [3, 4]. This approach identifies optimal high-dimensional

mailto:junpingdu@126.com
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Figure 1: Multidimensional image decomposition.

function representation for an image and yields superior image-processing results for an
effective solution. A nonlocal means (NLM) filter uses redundant image information on
the basis that structural similarity superimposed on pixel noise is random and noise can
be effectively removed using weighted averages [5, 6]. Compared to traditional statistical
filtering methods, NLM filtering overcomes the constraint of the local neighborhood and
extends pixel similarity to block-based similarity, so it is very suitable to deal with spatial
images.

In this paper, we use a nonsubsampled pyramid structure and a nonsubsampled
directional filter to achieve multidimensional and translation-invariant image decomposition
for spatial images. A nonsubsampled contourlet transform is used as the basis for an
improved Bayesian nonlocal means (NLM) filter for different frequencies. The Bayesian
model adds a sigma range in image a priori operations, which can be more effective in
protecting image details. The NLM filter retains the image edge content and assigns greater
weight to similarities for edge pixels. Experimental results both on standard images and
spatial images confirm that the proposed algorithm yields significantly better performance
than nonsubsampled wavelet transform, contourlet, and curvelet approaches.

The rest of this paper is organized as follows. Section 2 describes multidimensional
image decomposition, with a focus on contourlet and nonsubsampled contourlet transforms
(NSCTs). Section 3 outlines application of an NLM filter and proposes an improved NLM
algorithm based on a Bayesian model. Section 4 applies the improved NLM filter to NSCT,
especially NSDFB, to process image features for further extraction. Section 5 compares feature
extraction results for the proposed algorithm and other algorithms. Section 6 concludes the
paper.

2. Contourlet Transform Decomposition

2.1. Multidimensional Image Decomposition

The target of image multidimensional representation is to provide a description of image with
less characteristic information. The wavelet transform is a classic image multidimensional
representation algorithm that has a good effect on image edge points [7, 8]. However, the
wavelet transform can capture only limited direction information in the horizontal, vertical,
and diagonal directions, as shown in the left side of Figure 1. It is difficult to express image
smoothness contours; a better image representation is shown in the right side of Figure 1.
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Other well-known multidimensional image decomposition algorithms include ban-
dlets, brushlets, edge multidimensional transform, complex wavelets, and wedgelet. How-
ever, these algorithms require image edge detection and then summarize a representative
adaptive coefficient. A decomposition algorithm that can transform an image into fixed
decomposition coefficients is desirable. These coefficients can then be used in a broader
context that does rely on edge detection alone but also includes better directional image
decomposition.

In 2004, Candès and Donoho proposed a curvelet transform that uses a value
approximation algorithm for a continuous 2D spatial domain and adds a smooth signal on
the basis of a 1D Fourier transform [9]. The best approximation deviation is O((logM)3M−2)
for curvelet and O(M−1) for wavelet transforms. The curvelet transform is first applied to a
continuous signal and then combines a multidimensional filter and ridgelet transformation.
A second curvelet transform is based on frequency segments and extreme judgment.
The curvelet transform is universally applicable to continuous signals, but there will be
parallel noise in discrete fields [10]. It is also biased in directional image decomposition.
The reason is that the typical rectangular sampling mode leads to a priori geometric
deviation in decomposition of discrete image signals, especially in the horizontal and vertical
directions. This limitation prompted researchers to develop a new multiscale decomposition
algorithm that does not depend on edge detection and can decompose images in cross-scale
multidimensions.

2.2. Contourlet Transform

The contourlet transform is a multidimensional decomposition algorithm proposed by
Do and Vetterli in 2005 [11]. The transform can be directly used for multidimensional
decomposition of discrete image signals. It has a dual filter for image decomposition
and yields a smoother sparse representation of the original image. The two filters are a
Laplacian pyramid (LP) filter [12, 13] and a directional filter bank (DFB) [14]. The LP yields
nonconsecutive image points, and then the DFB connects consecutive points into a nonlinear
structure. The process is shown in Figure 2.

A subsample contourlet transform uses a relevance factor M for image subsampling
at each decomposition level. A 2D filter is evolved from the 1D filter. For complete image
reconstruction, the following relationship holds for the 1D filter:

M0(z)N0(z) +M1(z)N1(z) = 2,

Sm =

⎧⎨
⎩
D

(
2l−1, 2

)
, for 0 ≤ m ≤ 2l−1 − 1,

D
(
2, 2l−1), for 2l−1 ≤ m ≤ 2l − 1,

(2.1)

where M0(z) and M1(z) represent low- and high-pass analysis filters, and N0(z) and N1(z)
represent low- and high-pass synthesis filters, respectively. Downsampling matrices Sm are
shown above. For 2D complete decomposition,

M0
(
M′(z)

)
N0

(
M′(z)

)
+M1

(
M′(z)

)
N1

(
M′(z)

)
= 2. (2.2)
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M′(z) represents discrete properties of the heterogeneous domain, which can help
to reduce the filter complexity from O(N2) to O(N). In two dimensions, the first DFB step
is construction of the spectrum in the frequency domain using two-channel quincunx filter
banks to decompose an image into horizontal and vertical directions [15]. The DFB equivalent
parallel family is

{
D

(l)
k

[
n − S(l)

m

]}
0≤m≤2l ,m∈L2

. (2.3)

Cutting operations on both directions for the decomposition spectrum provide 2D
directional and segmental image decomposition. Like the discrete wavelet transform, the
discrete downsampling contourlet transform is shift-invariant [16].

2.3. Nonsubsampled Contourlet Transform

NSCT is a fast implementation of the contourlet transform that provides a shift-invariant
and multidimensional image representation [17]. Compared with subsampled contourlet
transforms, NSCT is closer to the nonredundant wavelet transform [18]. NSCT uses a 2D
nonsubsampled filter bank and can be expressed as

M0(z)N0(z) +M1(z)N1(z) = 1, (2.4)

where M(z) represents a 2D filter of the z transform, M0(z) and M1(z) represent 2D low- and
high-pass analysis filters, and N0(z) and N1(z) represent 2D low- and high-pass synthesis
filters, respectively. There are also other limitations for the filter design.

NSCT involves two steps: multidimensional representation and directional decompo-
sition. Multidimensional representation is achieved by nonsubsampled pyramid decomposi-
tion. This step is similar to the 1D discrete nonsubsampled wavelet transform (NSWT), which
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uses the à trous method [19]. Compared to NSWT, NSCT uses a nonsubsampled 2D filter. The
frame bound of an NSCT directional decomposition is

P1 ≤ |M0(eε)| + |M1(eε)|︸ ︷︷ ︸
t(eε)

≤ P2,

P1 =ess inf t(eε), P2 =ess sup t(eε), ε ∈ [−π,π]2.

(2.5)

After decomposition of the first layer, the sampling filter banks provide multiscale
decomposition of the underlying properties. The process for two-layer nonsubsampled
pyramid decomposition is shown in Figure 3.

The frequency domain for layer j supported by a low-pass filter is [−(π/2j),−(π/2j)];
the replacement domain is from [−(π/2j−1),−(π/2j−1)] to [−(π/2j),−(π/2j)], which is
supported by a high-pass filter.

Each step in NSWT image decomposition involves three directions. The total image
redundancy is 3J + 1; in NSP, the result redundancy is J + 1 [20]. The second NSCT
step provides directional information via the nonsubsampled filter, which combines two-
channel quincunx sampling filters and a resampling operation for 2D frequency division
on directional edges [21]. More accurate directional details can be sampled discretely on a
sample stage. Sampling uses a quincunx matrix Q and considers image direction alignment.
The process is shown in Figure 4.

3. NLM Filter Based on a Bayesian Approach

3.1. NLM Filter

Different frequency components play different roles in an image structure. Low-frequency
components account for most image energy, forming basic local gradation areas, but play
a small role in image content or structure. High-frequency components form the main
image edges and determine its basic content or structure and are thus the most important
components. Changes in high-frequency information lead to changes in the basic image
content or structure, and information extracted from the image by the human eye will thus
be subject to major changes. Thus, high-frequency components play the most important role
in image perception by the human eye.

At present, many image filters only consider adjacent pixels; some filters take into
account information for neighboring pixels, such as Yaroslavsky neighborhood filters [22]
and bilateral filters [23]. A nonlinear filter involves additive white noise and can effectively
handle image redundancy [24].

The NLM algorithm takes advantage of grayscale image redundancy and structural
redundancy through a weighted average of pixel values to estimate the current pixel value.
The value of each pixel is calculated using the Gaussian-weighted Euclidean distance
between subblocks; a pixel as taken as the right center of the corresponding subblock. This
ensures that pixels with a similar structure are assigned greater weight. For an original image
v = {v(i) | i ∈ I}, the expression for the image processed using the NLM filter, NL(v), is

NL(v, i) =
∑
j∈I

w
(
i, j

)
v
(
j
)
, (3.1)
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where w(i, j) is the Gaussian-weighted Euclidean distance between pixels i and j, which
represents the similarity of the image subblocks with i and j as centers:

w
(
i, j

)
=

1
Z(i)

exp

[
−
∥∥v(Ni)d×d − v(Nj)d×d

∥∥2

h2

]
,

Z(i) =
∑
j

exp

⎡
⎢⎣−

∥∥∥v(Ni)d×d − v
(
Nj

)
d×d

∥∥∥2

2a

h2

⎤
⎥⎦,

h2 =
1

σ2(1 + r2)

N∑
i

N∑
j

(
rNi −Nj

)2
,

(3.2)
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where Z(i) is a normalization factor, v(Ni) is a set of subblocks with pixel i as the center, ‖ · ‖2a
is a Gaussian-weighted Euclidean distance function, a is Gaussian kernel standard deviation,
and h is a filter parameter that controls the degree of smoothing. The weight w(i, j) meets
0 ≤ w(i, j) ≤ 1, if neighborhood pixels are more similar with v(Ni), the weight of center pixel
is greater.

3.2. NLM Filter Combined with a Bayesian Method

The traditional NLM algorithm is very similar in both grayscale and structure content
for smooth neighborhood areas. The algorithm yields the best results in flat areas, where
better denoising effects can be obtained. At image edges and in texture-rich regions, the
algorithm performs poorly because these regions have many repeat structures, the difference
in grayscale content is greater, and the larger Euclidean distance makes the weights very
small and reduces denoising capability, especially the ability to retain image detail [25].
To improve the edge retention capacity of the NLM algorithm, a Bayesian algorithm was
added to make use of image edge information and adjust the similarity of the neighborhood
structure so that the center pixel of edge contents that are similar can be given greater weight.
This provides a more effective approach for protecting image detail.

The Bayesian NLM filter is expressed as

n(x) =

∑
y∈Δ(x) p

(
v(x) | u(y))p(u(y))u(y)∑

y∈Δ(x) p
(
v(x) | u(y))p(u(y)) , (3.3)

where v(x) represents noise data, u(x) represents nonnoise image data, n(x) is the average
pixel precision weight for gray value u(y) at a rate of change Δx, and p(v(x) | u(y))p(u(y))
is the similarity between v(x) and u(y). Equation (5) can then be rewritten as

w
(
i, j

)
=

1
Z(i)

exp

⎡
⎢⎣−

∥∥∥v(Ni)d×d − v
(
Nj

)
d×d

∥∥∥2

2a

h2
−

∥∥∥n(xi)d×d − n
(
xj

)
d×d

∥∥∥2

2a

h′

⎤
⎥⎦. (3.4)

3.3. Improved Bayesian NLM Filter

We propose an improved Bayesian NLM filter in which a sigma range is added to the prior
image operation for more effective protection of image details [26]. The first step is analysis
of the probability density for pixel levels, which takes the average variance for the improved
Bayesian filter. Considering the independence and integrity of an image, its conditional
probability distribution can be expressed as

p
(
v(x) | u(y)) =

M×M∑
m=1

p
(
vm(x) | um

(
y
))
, (3.5)
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where vm(x) and um(y) are the image probability densities at pixel m and vm(y) is a subset
of um(y). For L-level image decomposition, the conditional probability density function is

p
(
vm(x) | um

(
y
))

=
vm(x)L−1

F(L)

(
L

um

(
y
)
)

exp

(
−Lvm(x)
um

(
y
)
)
, (3.6)

F(L) =
√
Ga(L)

L∑
l

exp
(
um

(
y
)l−1 − vm(x)l−1

)
. (3.7)

Because of multiscale features, we assume that the prior probability p(u(y)) is
continuous and uniform, p(u(y)) = 1/|Δx|. The proposed algorithm uses an iterative
technique, which takes the observed value v(x) as the initial value u(y). This treatment can
process data directly but takes longer, and details can become fuzzy. If the frequency window
is too large, the result will have too much edge details and point targets become even more
blurred. Experimental results confirmed that 3 × 3 window is an appropriate choice. The
algorithm uses an a priori estimate mean u′(y) to replace u(y) to reduce image noise bias and
Δx is replaced by N(x). The new Bayesian filter can be expressed as

n(x) =

∑
y∈Δ(x) p

(
v(x) | u′(y))p(u′(y))u′(y)∑

y∈Δ(x) p
(
v(x) | u′(y))p(u′(y)) . (3.8)

N(x) can be expressed as N(x) = Δx ∩N1(x) ∩N2(x), where N1(x) and N2(x) are
a priori regional image characteristics and pixel features, respectively. The a priori regional
characteristic is image region Δx, and unrelated points are removed using a region similarity
algorithm. The a priori pixel feature is the set obtained by comparing the similarity of adjacent
pixels [27]. A priori pixel characteristics are generally always overlooked in NLM filter
processes. In fact, a priori pixel characteristics are good for excluding pixel noise [28].

The sigma range between pixel x and the a priori mean u′(x) can be defined as
(u′(x)I1, u

′(x)I2) and the range (I1, I2) meets ξ =
∫ I2

I1
p(s)ds, where p(s) is the image

probability density function. For different sigma values ξ ∈ {0.1, 0.2, . . . , 0.9}, the range can
be calculated by pixel search [29].

It is desirable to have a greater sigma weight; however, under conditional probability,
the sigma range cannot be greater than the maximum upper boundary, u′(x)I2 < Vmax, where
Vmax is the maximum image density. It has been demonstrated that a priori pixel characteristics
can have a good effect on retention of image edges, but there will be some situations in which
isolated pixels are ignored. To solve this problem, the proposed algorithm uses a threshold
T = Vmax/2 to separate two pixels [30]. For a priori pixels, only u′(x) < T are retained.

4. Image Feature Extraction Based on the Contourlet Transform

The proposed algorithm can improve the accuracy and completeness of image feature
extraction based on direct contourlet decomposition. An image is first processed by
the contourlet transform to yield a multidimensional domain, with multiple-resolution
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Figure 5: Image feature extraction based on the contourlet transform.

decomposition coefficients for large-scale details (low-frequency signal) and finer image
details (high-frequency signal). Next, the algorithm applies deeper decomposition to the
large-scale approximation. The whole process can be repeated until the algorithm yields the
detail required.

Figure 5 shows the two-layer decomposition, where I is the observed image, I ′ is the
image processed using the contourlet transform, LP is a Laplacian pyramid decomposition
filter, DFB is a direction filter bank, LF is the low-frequency signal and HF is the high-
frequency signal.

The decomposition coefficients for different frequencies are processed using the
Bayesian-based NLM filter with a decomposition threshold. In particular, we use the wavelet
threshold approach for the low-frequency part and the NLM approach for the high-frequency
part. The specific steps in the algorithm are as follows.

Step 1. Decompose image I using the nonsubsampled contourlet transform.

Step 2. Apply the decomposition threshold method to the low-frequency part for noise
suppression and feature extraction.

Step 3. Apply the improved Bayesian NLM filter to the high-frequency part for feature
extraction.

Step 4. Reconstruct the high-frequency and low-frequency parts of the image processed using
the contourlet transform.

For the low-frequency part, threshold decomposition is used to remove image noise.
First, the threshold value T is set. Decomposition coefficients smaller than T are considered to
be noise and thus are set to zero; coefficients greater than T are reserved. The decomposition
threshold is

T =
θn
2k

√
2 logN, θn =

M(d1)
0.6745

, M(d1) =
N∑
i=0

∑
n∈z2

d1[2n + ki], (4.1)
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where k is the number of layers for wavelet decomposition, θn is a function for estimating
mean absolute deviation, where d1 is the high-frequency coefficient for first-layer contourlet
decomposition. The high-frequency part of the first layer usually contains few signal
components and comprises mainly noise. For the high-frequency part, G[Dk(x)] and
G[Dk(y)] are two blocks for image I. G [Dk(p)] represents the rectangular neighborhood
around p as center. The proposed algorithm uses an improved Bayesian NLM image filter
and a Euclidean distance to represent similarity between high-frequency image blocks. The
similarity is represented by w(x, y), which is defined as

w
(
x, y

)
=

1
Z(x)

e−(‖G[Dk(x)]−G[Dk(y)]‖2/h2),

Z(x) =
∑
x,y∈I

e−(‖G[Dk(x)]−G[Dk(y)]‖2/h2),

(4.2)

where h is a constant used to control the exponential decay rate. Compared with the original
NLM filter, the contourlet transform decomposes the image at different resolutions and the
proposed approach uses different algorithm to process an image: threshold decomposition
is used for the low-frequency part, and an improved Bayesian NLM filter is used for the
high-frequency part. The NLM filter involves time-consuming calculations. If an image is
decomposed by the contourlet transform for k levels, the improved algorithm only has to
process 1/2k of the original size. This not only reduces the computational complexity but
also greatly improves the accuracy of feature extraction.

5. Experimental Results

Spatial image can directly influence the success of spatial rendezvous and docking. We
must ensure that the most accurate image feature can be extracted from spatial images.
The proposed algorithm can also be applied to general image processing. To verify the
performance of the algorithm, we carried out experiments both on Spatial images and
standard images.

5.1. Performance Evaluation Based on Spatial Images

Tests were carried out on image I and image II for an image size of 512 × 512. Multidi-
mensional contourlet and curvelet decomposition algorithms were used for comparison. The
same parameters were used for all algorithms.

Image feature extraction results were evaluated according to subjective and objective
standards. Figure 6 shows the processing results for image I, and Figure 7 shows the results
for image II. It is evident that the proposed algorithm yields a better subjective visual effect
compared with the curvelet and contourlet algorithms.

The results show that feature extraction with the curvelet transform leads to confusion
for some background information, and the contourlet transform yields a blurry image. By
contrast, the proposed algorithm effectively suppresses noise and displays the main features
of the image. Finer image details are shown in Figure 8.
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 6: Process results for image I.

(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 7: Process results for image II.
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(a) Original (b) Noisy (c) Curvelet (d) Contourlet

(e) Contourlet + NL-
means

Figure 8: Process results for image II.

5.2. Performance Evaluation Based on Standard Images

Figures 9 and 10 show the processing results for image as III, IV. Image as III and IV are
standard images for an image size of 512 × 512. It is shown that our algorithm also provides
better performance than that of Curvelet transform and Contourlet transform.

Results are objectively evaluated using the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM), defined as follows:

PSNR = 10 log10
(L − 1)2∑M

i=1
∑N

j=1
[
R
(
i, j

) − F(
i, j

)]2
,

SSIM
(
x, y

)
=

(
2uxuy + C1

)(
2σxy + C2

)
(
u2
x + u2

y + C1
)(
σ2
x + σ2

y + C2
) ,

MSSIM(X,Y ) =
1
W

W∑
r=1

SSIM(Xr, Yr),

(5.1)

where ux and uy are the mean and σx and σy are the standard deviation for the original and
processed images, respectively, σxy is the covariance for the original and processed images,
and C1 and C2 are constants. MSSIM is mean SSIM, and W is the number of image subblocks.
For greater PSNR and MSSIM (0 ≤ MSSIM ≤ 1), the processed image is closer to the
original.
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 9: Process results for image III.

Table 1 compares the feature extraction performance for images I and II for several
algorithms and different noise levels. The PSNR results show that the contourlet transform
is superior to the curvelet transform for image I by almost 0.5 dB. Both the contourlet and
curvelet transforms provide good edge detection. The proposed CT+NLM algorithm showed
even better performance (∼1.1 dB) compared with the contourlet transform but retained the
good edge detection of the latter method (Table 1).The proposed algorithm uses an NLM
filter for adaptive image expression. The MSSIM results show that the proposed algorithm
yields the best performance for Gaussian, Poisson, Salt and Pepper and Speckle noise
(Table 2).

Our algorithm uses a nonsubsampled key point filter for which J+1 redundancy is the
most efficient. In pyramid decomposition, a lesser extent of image loss can be considered as an
effective means to reduce redundancy. The proposed algorithm, which uses a nonsubsampled
pyramid filter and a directional filter, leads to some image loss in reducing redundancy.
Search windows of 16 × 16, 32 × 32, and 64 × 64 were applied to images I and II. The size
of the search window can affect the computational complexity of the NLM filter.

Comparison of the experimental results for different window sizes reveals that the
proposed algorithm delivers better noise suppression and feature extraction than the other
algorithms. It provides a maximum PSNR value and a minimum MSSIM value for all
windows (Table 3).
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 10: Process results for image IV.

Table 1: PSNR results.

Noise σ
PSNR (dB)

Noisy Original Curvelet Contourlet CT + NLM

10 Image I 31.22 32.93 33.01 33.58 34.62
Image II 32.98 33.53 33.89 34.21 35.40

20 Image I 31.16 31.89 32.75 33.01 34.19
Image II 32.49 33.14 33.19 33.82 34.89

30 Image I 30.78 31.56 32.13 32.78 33.76
Image II 31.98 32.75 32.82 33.21 34.17

40 Image I 30.56 31.01 31.74 32.53 33.61
Image II 31.20 32.11 32.42 32.91 33.98

50 Image I 29.88 30.54 31.29 31.74 32.83
Image II 30.77 31.56 31.98 32.17 33.28

6. Conclusions

Focusing on the actual needs of spatial images analysis, an improved contourlet transform,
consisting of a nonsubsampled pyramid transform and nonsubsampled directional filter
banks, was used to reduce the filter design problem of spatial images. The improved
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Table 2: MSSIM results.

Noise MSSIM
Noisy Original Curvelet Contourlet CT + NLM

Gaussian Image I 0.2979 0.3128 0.3524 0.4277 0.5185
Image II 0.3014 0.3256 0.3688 0.4316 0.5220

Poisson Image I 0.5744 0.6231 0.6827 0.7173 0.8219
Image II 0.5891 0.6349 0.7028 0.7339 0.8551

Salt and pepper Image I 0.2948 0.3239 0.3740 0.4157 0.5255
Image II 0.3001 0.3398 0.3829 0.4254 0.5345

Speckle Image I 0.2953 0.3321 0.3974 0.4309 0.5312
Image II 0.3021 0.3476 0.4012 0.4452 0.5422

Table 3: Experimental results for different search windows.

Scheme
Search window 16 × 16 Search window 32 × 32 Search window 64 × 64
Image I Image II Image I Image II Image I Image II

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Original 30.53 0.658 31.45 0.679 30.09 0.669 31.21 0.685 29.89 0.675 31.09 0.703
Curvelet 30.78 0.697 31.66 0.722 30.12 0.701 31.39 0.737 29.91 0.688 31.15 0.749
Contourlet 31.23 0.759 31.98 0.784 30.35 0.762 31.65 0.791 30.17 0.744 31.23 0.806
CT + NLM 32.38 0.783 32.89 0.802 31.37 0.788 32.68 0.811 31.23 0.796 32.22 0.835

contourlet transform uses a mapping approach to solve the 2D filter design problem. The
algorithm uses a Bayesian NLM filter for high-frequency information to suppress noise and
improve the accuracy of image feature extraction. Experimental results confirm that the NLM
filter can effectively retain structural information and reduce the residual structure. In the
NSCT domain, the proposed algorithm showed better denoising and enhancement effects
compared with the contourlet transform. Moreover, in comparison with NSWT, the algorithm
is a more mature and sophisticated image-processing method.
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This paper designs state estimators for uncertain linear systems with polytopic description,
different state disturbance, and measurement noise. Necessary and sufficient stability conditions
are derived followed with the upper bounding sequences on the estimation error. All the
conditions can be expressed in the form of linear matrix inequalities. A numerical example is given
to illustrate the effectiveness of the approach.

1. Introduction

In many control systems, the state variables are usually not accessible for direct connection.
In this case, it is necessary to design a state estimator, so that its output will generate an
estimate of those states. Generally speaking, there are two kinds of estimators for dynamic
systems: observers and filters. The former is under the supposition of the perfect knowledge
of system and measurement equations, and the latter can be applied to the system with
disturbance. Many literatures focus on the design of state estimators for linear system, for
example, a sliding mode and a disturbance detector for a discrete Kalman filter [1], the
quantized measurement method [2], the least squares estimation for linear singular systems
[3], stochastic disturbances and deterministic unknown inputs on linear time-invariant
systems [4], and the bounded disturbances on a dynamic system [5].

The concept of quadratic boundedness (QB) is first defined for an uncertain nonlinear
dynamical system [6], and then its necessary and sufficient conditions for a class of nominally
linear systems [7] and a class of linear systems which contain norm-bounded uncertainties
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[8] are obtained. For discrete system, QB is applied mainly two regions: the receding horizon
control (RHC) and the design of estimator. In RHC research, Ding utilizes QB to characterize
the stability properties of the controlled system [9–13]. Alessandri et al. find the upper
bounds on the norm of the estimation error by means of invariant sets, and these upper
bounds can be expressed in terms of linear matrix inequalities [14]. Paper in [5] designs
a filter by searching a suitable tradeoff between the transient and asymptotic behaviors of
the estimation error. The designed filter is for the linear discrete systems with the identical
state disturbance and measurement noise. For the discrete linear systems, the disturbance
and noise are different in general. Nevertheless, little work has been done on the design of
the state estimators for uncertain linear systems with different disturbance/noise. So how
to design state estimators for uncertain linear systems with different state disturbance and
measurement noise is important work.

The existing research work on state estimation usually constructs a filter for uncertain
systems with bounded disturbance/noise, with no consideration of input or state constraint.
Since the disturbance and noise are not assumed exactly identical, the stability station of the
estimator is different from that in the paper [5]. For the above reasons, the situation becomes
more complicated and the extension of the method is not straightforward.

This paper designs state estimators for uncertain linear systems with polytopic
description. The problem is constructed in the form of linear matrix inequalities (LMIs). The
organization of the paper is as follows. The earlier results are presented in the Section 2.
The new robust estimator for uncertain linear systems with different disturbance/noise is
designed in Section 3. A numerical simulation example is followed in Section 4. And some
conclusions are given in the end.

Notations. For any vector x and a positive-defined matrix Q,EQ is the ellipsoid which is
defined as {x | x′Qx ≤ 1};Q′ is the transpose of matrix Q. ||x|| is the Euclid norm of vector x.
The symbol ∗ induces a symmetric structure in LMIs.

2. Earlier Results

In this section, some results presented by Alessandri et al. [5, 14] are briefly introduced.
For a given discrete-time dynamic system,

xt+1 = Atxt +Gtwt, t = 0, 1, . . . , (2.1)

where xt ∈ Rn is the state vector and wt ∈ EQ ⊂ Rp is the noise vector. The definition of strictly
quadratically bounded with a common Lyapunov matrix of a system and positively invariant
set are defined by Alessandri et al. [5, 14], and the following theorem is proved.

Theorem 2.1 (see [14]). The following facts are equivalent:

(i) System (2.1) is strictly quadratically bounded with a common Lyapunov matrix P > 0 for
all allowable wt ∈ EQ and (At,Gt) ∈ ϕ, t = 0, 1, . . ., where ϕ is a known bounded set.

(ii) The ellipsoid EP is a positively invariant set for system (2.1) for all allowable wt ∈ EQ and
(At,Gt) ∈ ϕ, t = 0, 1, . . ..

(iii) There exists αt ∈ (0, 1) such that for any (At,Gt) ∈ ϕ,
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[
A′tPAt − P + αtP A′tPGt

∗ G′tPGt − αtQ

]
≤ 0. (2.2)

For a discrete-time linear system with the same state disturbance and noise,

xt+1 = Atxt + Btwt,

yt = Ctxt +Dtwt,

zt = Ltxt,

(2.3)

for t = 0, 1, . . ., where xt ∈ Rn, yt ∈ Rm, zt ∈ Rr are the state vector, the measured output
and the signal will be estimated, respectively, and wt ∈ EQ ⊂ Rp is the disturbance/noise
vector. At, Bt, Ct,Dt, Lt are the system matrixes with the proper dimensions. We consider the
disturbance/noise to be unknown, and the system matrixes are supposed to be unknown and time
varying but belonging to a polytopic set P, that is, (At, Bt, Ct,Dt, Lt) ∈ P, t = 0, 1, . . ., where

P �
{
(A,B,C,D, L) =

N∑
i=1

λi
(
A(i), B(i), C(i), D(i), L(i)

)
;
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, . . .N

}
. (2.4)

Here (A(i), B(i), C(i), D(i), L(i)) i = 1, 2, . . .N are vertexes of the polytope P.

Definition 2.2 (see [5]). A sequence of vectors ξt is said to be exponentially bounded with
constants β ∈ (0, 1), k1 ≥ 0, and k2 > −k1 if

‖ξt‖ ≤ k1 + k2
(
1 − β)t, t = 0, 1, . . . . (2.5)

It is easy to see that β determines the convergence speed and k1/2
1 represents an upper

bound of the sequence ξt.

Theorem 2.3 (see [5]). Consider two scalars α ∈ (0, 1) and γ > 0. The following facts are equivalent.

(i) There exist Â, B̂, L̂, and P > 0 such that the following conditions are satisfied for any
(A,B,C,D, L) ∈ P:

C̃P−1C̃′ − γ2I < 0,[
A′PA − P + αP A′PG

∗ G′PG − αQ
]
< 0.

(2.6)
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(ii) There exist V,W,X > 0, Y > 0, and Z such that

⎡
⎣γ

2I L −W L
∗ X X
∗ ∗ Y

⎤
⎦ > 0,

⎡
⎢⎢⎢⎢⎢⎣

(1 − α)X (1 − α)X 0 A′X A′Y + C′Z′ + V ′

∗ (1 − α)Y 0 A′X A′Y + C′Z′

∗ ∗ αQ B′X D′Z + B′Y
∗ ∗ ∗ X X
∗ ∗ ∗ ∗ Y

⎤
⎥⎥⎥⎥⎥⎦ > 0,

(2.7)

for (A,B,C,D, L) = (A(i), B(i), C(i), D(i), L(i)), i = 1, 2, . . .N.
Then, the cost J(r, α) � μγ−(1−μ)α can be minimized over V,W,X > 0, Y > 0, Z, α ∈ (0, 1)

and γ > 0 under the constrains (2.7).

3. A Robust Estimator for Uncertain Linear Systems
with Different Noises

Let us consider the discrete-time linear system with different disturbance/noise:

xt+1 = Atxt + Btwt,

yt = Ctxt +Dtvt,

zt = Ltxt,

(3.1)

where the matrixes and vectors are the same as (2.3) except wt ∈ EQ1 , vt ∈ EQ2 , which are the
vectors of the state disturbance and measurement noise, respectively.

To estimate the signal zt, the linear filter is introduced which has the following form:

x̂t+1 = Âx̂t + B̂yt,

ẑt = L̂x̂t,
(3.2)

for t = 0, 1, . . ., where x̂t ∈ Rn is the filter state vector and ẑt ∈ Rr is the estimation of the signal
zt.

Define the estimation error et, the augmented state vector, and the augmented dis-
turbance/noise as

et � zt − ẑt, x̃t �
[
xt

x̂t

]
, w̃t =

[
wt

vt

]
(3.3)
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and the dynamic system associated with the estimation error

x̃t+1 =

[
A 0
B̂Ct Â

]

Ã

x̃t +

[
Bt 0
0 B̂Dt

]

B̃

w̃t, (3.4)

et =
[
Lt − L̂

]
C̃

x̃t, (3.5)

for t = 0, 1, . . ..
The objective is to find an estimate ẑt of the signal zt such that the estimation error et =

zt − ẑt is exponentially bounded for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 , and (At, Bt, Ct,Dt, Lt) ∈
P, t = 0, 1, . . .. Then the following problem has to be solved.

Problem 1. Find matrices Â, B̂, L̂ such that, for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 and
(At, Bt, Ct,Dt, Lt) ∈ P, t = 0, 1, . . .; the estimation error et is exponentially bounded with
constants β ∈ (0, 1), k1 ≥ 0, and k2 > −k1.

In order to solve Problem 1, we now exploit the results on quadratic boundedness.
More specifically, the following proposition holds.

Proposition 3.1. Suppose there exist matrices Â, B̂, L̂, a symmetric matrix P > 0, and two scalars
γ > 0 and α ∈ (0, 1) such that, for any (A,B,C,D, L) ∈ P,

C̃P−1C̃′ − γ2I < 0, (3.6)[
Ã′PÃ − P + αP Ã′PB̃

∗ B̃′PB̃ − αR

]
< 0, (3.7)

where R = diag{Q1, Q2}. Then, for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 , and (At, Bt, Ct,Dt, Lt) ∈
P, t = 0, 1, . . ., the estimation error is exponentially bounded with constants

β = α, k1 = γ2, k2 = γ2(x̃′0Px̃0 − 1
)
. (3.8)

Hence the matrices Â, B̂, and L̂ are a solution of Problem 1.

Remark 3.2. We can see that condition (3.7) ensures system (3.1) is strictly bounded with a
common Lyapunov matrix P , and from Corollary 2 of paper [5], it is clearly, γ is a bound.
But its feasibility cannot be easily verified. The following theorem transposes them into the
equivalent LMI conditions.

Theorem 3.3. Consider two scalars α ∈ (0, 1) and γ > 0. The following facts are equivalent.

(i) There exist Â, B̂, L̂, and P > 0 such that conditions (3.6) and (3.7) are satisfied for any
(A,B,C,D, L) ∈ P.

(ii) There exist V,W,X > 0, Y > 0, and Z such that
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⎡
⎣γ

2I L −W L
∗ X X
∗ ∗ Y

⎤
⎦ > 0, (3.9)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − α)X (1 − α)X 0 0 A′X A′Y + C′Z′ + V ′

∗ (1 − α)Y 0 0 A′X A′Y + C′Z′

∗ ∗ αQ1 0 B′X B′Y
∗ ∗ 0 αQ2 0 D′Z
∗ ∗ ∗ ∗ X X
∗ ∗ ∗ ∗ ∗ Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (3.10)

Proof. The proof of (3.6)⇔(3.9) is the same as Theorem 2 of reference [5]; here it is omitted
for brevity.

(3.7)⇒(3.10) suppose the condition (3.7) is satisfied. The matrix P and matrix P−1 are
partitioned as

P =
[
P11 P12

P21 P22

]
, P−1 =

[
S11 S
S21 S

]
, (3.11)

with P11 ∈ Rn×n and S11 ∈ Rn×n. Clearly PP−1 = P−1P = I, so we have

S12P
′
12 = I − S11P11, S11P12 + S12P22 = 0. (3.12)

Moreover, (3.7) is strict inequality, and we can assume, without loss of generality, that I −
S11P11 is invertible [15]. Hence S12 and P12 are invertible. Using the Schur complement, we
can rewrite (3.7) as

⎡
⎢⎣(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦ > 0. (3.13)

Define

T �

⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦, (3.14)
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where H ′ =
[

I I
S′12S

−1
11 0

]
, so

T ′

⎡
⎢⎣(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦T =

⎡
⎣H 0 0

0 I 0
0 0 H

⎤
⎦
⎡
⎢⎣(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦
⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦

=

⎡
⎢⎣(1 − α)HP 0 HÃ′P

0 αR B̃′P
HPA HPB̃ HP

⎤
⎥⎦
⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦ =

⎡
⎢⎣(1 − α)HPH ′ 0 HÃ′PH ′

0 αR B̃′PH ′

HPAH ′ HPB̃ HPH ′

⎤
⎥⎦,

HPH ′ =
[
I S−1

11S12

I 0

][
P11 P12

P21 P22

][
I I

S′12S
−1
11 0

]

=
[
P11 + S−1

11S12P21 +
(
P12 + S−1

11S12P22
)
S′12S

−1
11 P11 + S−1

11S12P21

P11 + P12S
′
12S

−1
11 P11

]
.

(3.15)

Using condition (3.12), we can get

HPH ′ =
[
S−1

11 S−1
11

S−1
11 P11

]
=
[
X X
X Y

]
, (3.16)

where X � S−1
11 , Y � P11:

HÃ′PH ′ =
[
I S−1

11S12

I 0

][
A′ C′B̂′

0 Â′

][
P11 P12

P21 P22

][
I I

S′12S
−1
11 0

]

=

[
A′ C′B̂′ + S−1

11S12Â
′

A′ C′B̂′

][
P11 + P12S

′
12S

−1
11 P11

P21 + P22S
′
12S

−1
11 P21

]

=
[
A′X A′Y + C′Z′ + V ′

A′X A′Y + C′Z′

]
.

(3.17)

Here we define V � P12ÂS′12S
−1
11 , Z � P12B̂:

B̃′PH ′ =

[
B′ 0
0 D′B̂′

][
P11 P12

P21 P22

][
I I

S′12S
−
11 0

]

=

[
B′P11 B′P12

D′B̂′P21 D′B̂′P22

][
I I

S′12S
−
11 0

]
=

[
B′P11 + B′P12S

′
12S

−1
11 B′P11

D′B̂′P21 +D′B̂′P22S
′
12S

−1
11 D′B̂′P21

]

=
[
B′X B′Y

0 D′Z′

]
.

(3.18)

So we can get condition (3.10).
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Figure 1: The state and estimator trajectories.

(3.10)⇒(3.7) suppose there exist V,X > 0, Y > 0 and Z satisfied condition (3.4), as
condition (3.4) holds at every vertex (A(i), B(i), C(i), D(i), L(i)) of the polytope P, and it also
holds for every system matrice (A,B,C,D, L) ∈ P.

We can obtain
[
X X
X Y

]
> 0 from condition (3.10), and based on the Schur complement,

the result of I − X−1Y < 0 can be deduced. Then there exist two square invertible matrixes
M and N such that M′N ′ = I − X−1Y . Choosing P11 = Y, S11 = X−1, S′12 = M and P12 = N,
condition (3.7) can be obtained by premultiplying and postmultiplying condition (3.10) by
(T ′)−1and T−1. If we apply the change of variable

Â = N−1VX−1M−1, B̂ = N−1Z,

L̂ = WX−1M−1, P =
[
Y N
N ′ −N ′X−1M−1

]
.

(3.19)

so, we can get the linear filter (3.2).

Remark 3.4. In paper [5], the estimators for uncertain systems propose that the state
disturbance and measurement noise are identical with the time. Ordinarily, they are different
in practice, so the result in our paper is the general case.

4. A Numerical Example

Let us consider the system [12] in the form of (3.1) with

At =
[

0.385 0.33
0.21 + at 0.59

]
, Bt =

[
0.3
0.3

]
,

Ct =
[
0.2 0.2 + at

]
, Dt = 0.3, Lt = [10],

(4.1)
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Figure 2: Plots of the RSME for the considered filters.

where at is an uncertain parameter satisfying |at| ≤ 0.11. Suppose the state disturbance
satisfies the condition |wt| ≤ 0.25 and the measurement noise satisfies |vt| ≤ 0.1 (i.e.,
Q1 = 16, Q2 = 100).

As this kind of uncertainty is of the polytopic type described in Section 3, the proposed
method is used to obtain a linear filter. In the context, we will refer to this filter as the
“filter with different disturbance/noise” (FDDN). Choose two sets of initial states: x̂0 =
{[8 6]T , [−11 7]T}, x0 = {[10 7]T , [−9 − 6]T}. The resulting state trajectories are shown
in Figure 1 by the marked solid line, followed with the estimator state trajectories shown by
the marked dotted line. Figure 1 indicates that the designed estimator can track the systems’
states effectively.

The performance of the filter can be further studied by using an average measure of
the estimation error, such as the expected quadratic estimation error. Comparison was then
made between the FDDN and the “filter with identity disturbance/noise” (FIDN), to evaluate
the performance achieved when the different disturbance/noise is taken into account in the
synthesis of the filter. At each time instant, the uncertain parameters were chosen to be
within, with equal probability, one of their limit values. We assumed x0, wt and vt, t = 0, 1, . . .,
to be independent random vectors, and the initial states are in the ball of radius 10 (i.e.,
||x0|| ≤ 10). Figure 2 shows the plots of the “root mean square error” (RMSE), computed over
103 randomly chosen simulations, for the considered filters. The performance of the FDDN
turns out to be better from the point of view of the asymptotic behavior when there is large
difference between the disturbance and noise.

5. Conclusions

The main contribution of this work is the method of constructing an estimator for the un-
certain system with the different state disturbance and measurement noise. The stability of
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the estimator is analyzed using quadratic boundness. Moreover, the estimator can be got by
LMI procedures.
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For the linear discrete stochastic systems with multiple sensors and unknown noise statistics, an
online estimators of the noise variances and cross-covariances are designed by using measure-
ment feedback, full-rank decomposition, and weighted least squares theory. Further, a self-tuning
weighted measurement fusion Kalman filter is presented. The Fadeeva formula is used to establish
ARMA innovation model with unknown noise statistics. The sampling correlated function of the
stationary and reversible ARMA innovation model is used to identify the noise statistics. It is
proved that the presented self-tuning weighted measurement fusion Kalman filter converges
to the optimal weighted measurement fusion Kalman filter, which means its asymptotic global
optimality. The simulation result of radar-tracking system shows the effectiveness of the presented
algorithm.

1. Introduction

With the development of scientific technology, the scale of a control system has become more
and more complex and tremendous, and the accuracy, fault-tolerance, and robustness of a sys-
tem are required much higher, so that single sensor has been unable to satisfy the demands
of high scientific technologies. Thus, the multisensor information fusion technology has been
paid great attention to and become an important research issue.

In early 1980s, Shalom [1, 2] presented the computation formula of cross-covariance
matrix by studying the correlation of two sensor subsystems with independent noises. Carl-
son [3] presented the famous federated Kalman filter by using the upper bound of noise
variance matrix to replace noise variance matrix and supposing that the initial local esti-
mation errors are not correlated. Kim [4] proposed the maximum likelihood fusion estimation
algorithm by requiring the hypothesis that random variables obey normal distributions.
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The universal weighted least squares method and the best linear unbiased fusion estimation
algorithm were presented by Li et al. [5] on the basis of a unified linear model for three
estimation fusion architectures of centralized filter, distributed filter, and hybrid filter. Three
weighted fusion algorithms of matrix-weighted, diagonal-matrix-weighted, and scalar-
weighted in the linear minimum variance sense were proposed by Sun and Deng [6], Sun [7],
where the matrix-weighted fusion algorithm, maximum likelihood fusion algorithm [4], and
distributed best linear unbiased estimation algorithm [5] have the same result and avoid the
derivation on the basis of hypothesis of normal distribution and linear model. The short-
comings of methods presented in [3–7] are that they have larger calculation burdens and the
fusion accuracy is global suboptimal.

Based on Kalman filtering, Gan and Chris [8] discussed two kinds of multisensor
measurement fusion method: the centralized measurement fusion (CMF) and the weighted
measurement fusion (WMF). The former is to directly merge the multisensor data through
the augmented measurement vector to calculate the estimation. Its advantage is that it can
obtain globally optimal state estimator. Its shortcoming is that the computational burden is
large since the measurement dimension is high. So it is unsuitable for real-time application.
The latter is to weigh local sensor measurements to obtain a low-dimensional measurement
equation, and then to use a single Kalman filter to obtain the final fused state estimation.
Its advantages are that the computational burden can be obviously reduced and the globally
optimal state estimation can be obtained [8–12].

It is known that the existing information fusion Kalman filtering is only effective
when the model parameters and noise statistics are exactly known. But this restricts its
applications in practice. In real applications, the model parameters and noise statistics are
completely or partially unknown in general. The filtering problem for systems with unknown
model parameters and/or noise statistics yields the self-tuning filtering. Its basic principle
is the optimal filter plus a recursive identifier of model parameters and/or noise statis-
tics [13].

For self-tuning fusion filters, there are two methods of self-tuning weighted state
fusion and self-tuning measurement fusion. Weighted state fusion method is used by Sun [14]
and Deng et al. [15], respectively, but the used distributed state fusion algorithm is globally
suboptimal and the acquired self-tuning estimator cannot reach globally asymptotic opti-
mality. For the self-tuning measurement fuser, [9, 16] considered the uncorrelated input
noise and measurement noise. Ran and Deng [17] presented a self-tuning measurement
fusion Kalman filter under the assumption that all sensors have the same measurement mat-
rices.

This paper is concerned with the self-tuning filtering problem for a multisensor system
with unknown noise variances, different measurement matrices, and correlated noises.
Firstly, transform the system with correlated input noise and measurement noise into one
with uncorrelated input noise and measurement noise by using the measurement feedback
and taking measurement data as a part of system control item. Then, weigh all the meas-
urements by using full-rank decomposition and weighted least squares theory. The Fadeeva
formula is used to establish ARMA innovation model with unknown noise covariance
matrices and the sampling correlated function of a stationary and reversible ARMA
innovation model is used to identify the noise covariance matrices. It is rigorously proved
that the presented self-tuning weighted measurement fusion Kalman filter converges to the
optimal weighted measurement fusion Kalman filter, that is, it has asymptotic global optima-
lity.
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2. Problem Formulation

Consider the controlled multisensor time-invariant systems with correlated noises:

x(t + 1) = Φx(t) + Bu(t) + Γw(t), (2.1)

yi(t) = Hix(t) + vi(t), i = 1, . . . , L, (2.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the given control, yi(t) ∈ Rmi is the measurement
of the sensor i, w(t) ∈ Rr is the input noise, and vi(t) ∈ Rmi is the measurement noise. L is
the number of sensors, Hi ∈ Rmi×n is the measurement matrix of the sensor i. Φ, B, and Γ are
constant matrices with compatible dimensions.

Assumption 2.1. w(t) and vi(t) are correlated Gaussian white noise with zero means, and

E

{[
w(t)

vi(t)

][
wT(k) vT

j (k)
]}

=

[
Qw Sj

ST
i Rij

]
δtk, i = 1, . . . , L, (2.3)

where the symbol E denotes the expectation, δtk is Kronecker delta function, that is, δtt = 1,
δtk = 0 (t /= k). The variance matrix of vi(t) is Rii = Ri. Combining L measurement equations
of (2.2) yields

y(I)(t) = H(I)x(t) + v(I)(t), (2.4)

where y(I)(t) = [yT
1 (t), . . . , y

T
L(t)]

T, H(I) = [HT
1 , . . . ,H

T
L]

T and v(I)(t) = [vT
1 (t), . . . , v

T
L(t)]

T. Let
the variance of v(I)(t) be R(I) = (Rij) > 0 and the cross covariance of w(t) and v(I)(t) be
S = [S1, . . . , SL].

Assumption 2.2. (Φ,H(I)) is a detectable pair and (Φ,Γ) is a controllable pair, or Φ are stable.

Assumption 2.3. Measurement data yi(t) is bounded, that is,

∥∥yi(t)
∥∥ < c, i = 1, . . . , L, (2.5)

where ‖ · ‖ is the norm of a vector and c > 0 is a positive real number.

2.1. CMF and WMF Kalman Filter

To convert the systems (2.1) and (2.4) into the uncorrelated system, (2.1) is equivalent to

x(t + 1) = Φx(t) + Bu(t) + Γw(t) + J
[
y(I)(t) −H(I)x(t) − v(I)(t)

]
, (2.6)

where J is a pending matrix. (2.6) can be converted into

x(t + 1) = Φx(t) + u(t) +w(t), (2.7)
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where Φ = Φ − JH(I), u(t) = Bu(t) + Jy(I)(t), w(t) = Γw(t) − Jv(I)(t). Jy(I)(t) as an output
feedback becomes a part of the control item. Then, primary system formulae (2.1) and (2.2)
are equivalent to the system formed by formulae (2.4) and (2.7). To make E[w(t)v(I)T(t)] = 0,
introduce J = ΓSR(I)−1 which ensures that w(t) and v(I)(t) are not correlated. Then, variance
matrix of w(t) is yielded as Qw = Γ(Qw − SR(I)ST)ΓT. From [18], we know that any nonzero
matrix H(I) has full-rank decomposition:

H(I) = FH(II), (2.8)

where F is a full column-rank matrix with the rank r, and H(II) is a full row-rank matrix with
the rank r, then measurement model (2.4) can be represented as

y(I)(t) = FH(II)x(t) + v(I)(t). (2.9)

Given that F is a full column-rank matrix, it follows that FTR(I)F is nonsingular. Then,
the weighted least squares (WLS) [19] method is used and the Gauss-Markov estimate of
H(II)x(t) is yielded as

y(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1y(I)(t), (2.10)

substituting (2.9) into (2.10) yields

y(II)(t) = H(II)x(t) + v(II)(t), (2.11)

v(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1v(I)(t). (2.12)

The variance matrix R(II) = E[v(II)(t)v(II)T(t)] of v(II)(t) is given by

R(II) =
(
FTR(I)−1F

)−1
. (2.13)

For systems (2.4) and (2.7), and (2.7) and (2.11), respectively, using standard Kalman
filtering algorithm [20], we can obtain CMF and WMF Kalman estimators x̂(i)(t | t + j), i = I,
II, j = 0, j < 0, and j > 0, and their error variance matrices P (i)(t | t + j). It is proved in [11]
that the weighted measurement fusion steady-state Kalman filter x̂(II)(t | t) for the weighted
measurement fusion system (2.7) and (2.11) has the global optimality, that is, it is numerically
identical to the CMF steady-state Kalman filter x̂(I)(t | t) if they have the same initial values.

The above WMF method can obviously reduce the computational burden since the
dimension of the measurement vector for the centralized measurement fusion is m × 1, m =
m1 +m2 + · · · +mL, while that for the weighted measurement fusion is r × 1, and m is much
larger than r generally.
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2.2. Optimal Measurement Fusion Steady-State Kalman Filter

By the above WMF methods, the corresponding optimal steady-state Kalman filter is given
as [21]

x̂(II)(t + 1 | t + 1) = x̂(II)(t + 1 | t) +K
(II)
f ε(II)(t + 1),

x̂(II)(t + 1 | t) = Ψ(II)
p x̂(II)(t | t − 1) +K

(II)
p y(II)(t) + u(t),

x̂(II)(t | t +N) = x̂(II)(t | t) +
N∑
j=1

K(II)(j)ε(II)(t + j
)
, N > 0,

u(t) = Bu(t) + Jy(I)(t),

J = ΓSR(I)−1,

ε(II)(t) = y(II)(t) −H(II)x̂(II)(t | t − 1),

K
(II)
f

= Σ(II)H(II)T
(
H(II)Σ(II)H(II)T + R(II)

)−1
,

K
(II)
p = ΦΣ(II)H(II)T

(
H(II)Σ(II)H(II)T + R(II)

)−1
,

Ψ(II)
p = Φ −K(II)

p H(II),

K(II)(j) = Σ(II)
((

In −K(II)
f H(II)

)T
Φ

T
)j

H(II)T
(
H(II)Σ(II)H(II)T + R(II)

)−1
,

P (II) =
[
In −K(II)

f
H(II)

]
Σ(II),

(2.14)

where Ψ(II)
p is a stable matrix [19] and Σ(II) satisfies the following Riccati equation:

Σ(II) = Φ
[
Σ(II) − Σ(II)H(II)T

(
H(II)Σ(II)H(II)T + R(II)

)−1
H(II)Σ(II)

]
Φ

T
+Qw. (2.15)

When noise variance matrices Qw, Si, and Rij(i, j = 1, . . . , L) are unknown, the problem
is to find a self-tuning WMF Kalman filter x̂(II)s(t | t) for the fused system (2.7) and (2.11).
Then, the key to the problem is how to find the consistent estimates of the noise variance and
cross-covariance matrices Qw, Si, and Rij .

3. Online Estimators of Variances and Cross-Covariances

Lemma 3.1 (matrix inverse Fadeeva formula [13]). The matrix inverse formula is given by

(
In − q−1Φ

)−1
=

adj
(
In − q−1Φ

)
det
(
In − q−1Φ

) =
F
(
q−1)

A
(
q−1
) , (3.1)
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where Φ is an n × n matrix, q−1 is a backward shift operator, In is an n × n unit matrix, and

A
(
q−1
)
= 1 + a1q

−1 + · · · + anq
−n, F

(
q−1
)
= In + F1q

−1 + · · · + Fn−1q
−(n−1) (3.2)

then the coefficients ai and Fi can be computed recursively as

ai = −1
i

trace
(
ΦFi−1

)
, i = 1, . . . , n,

Fi = ΦFi−1 + aiIn, i = 1, . . . , n − 1, F0 = In, a0 = 1.

(3.3)

Suppose the greatest common factor of A(q−1) and F(q−1) as scalar polynomial of μ(q−1), that is,

F
(
q−1
)
= μ
(
q−1
)
F
(
q−1
)
,

A
(
q−1
)
= μ
(
q−1
)
A
(
q−1
)
.

(3.4)

Eliminate the greatest common factor μ(q−1) of numerator and denominator in (3.1), we have the
irreducible Fadeeva formula:

(
In − q−1Φ

)−1
=

F
(
q−1)

A
(
q−1
) ,

F
(
q−1
)
= In + F1q

−1 + · · · + Fnf q
−nf ,

A
(
q−1
)
= 1 + a1q

−1 + · · · + anaq
−na , ana /= 0, na ≤ n − nμ,

Fi = ΦFi−1 + aiIn, i = 1, . . . , nf , F0 = In, nf = n − nμ − 1.

(3.5)

Theorem 3.2. For the ith subsystem of systems (2.1) and (2.2) under the Assumptions of 2.1, 2.2, and
2.3, the innovation model of CARMA

Ai

(
q−1
)
yi(t) = Ci

(
q−1
)
u(t) +Di

(
q−1
)
εi(t) (3.6)

is stable. The innovation εi(t) ∈ Rmi is a white noise with zero mean and variance matrix Qεi ,

Ci

(
q−1
)
= HiF

(
q−1
)
Bq−1,

Bi

(
q−1
)
= HiF

(
q−1
)
Γq−1,

(3.7)

where the polynomial matrices of Di(q−1), Ai(q−1), Ci(q−1), and Bi(q−1) have the form as

Xi

(
q−1
)
= Xi0 +Xi1q

−1 + · · · +Xinxiq
−nxi , i = 1, 2, . . . , L; (3.8)
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with

Ai0 = Imi , Di0 = Imi , Bi0 = 0, (3.9)

we have

Di

(
q−1
)
εi(t) = Bi

(
q−1
)
w(t) +Ai

(
q−1
)
vi(t). (3.10)

Proof. From (2.1) and (2.2), we have

yi(t) = Hi

(
In − q−1Φ

)−1
q−1[Bu(t) + Γw(t)] + vi(t). (3.11)

Applying the extended Fadeeva formula of (3.5), we have

Ai

(
q−1
)
yi(t) = Ci

(
q−1
)
u(t) + Bi

(
q−1
)
w(t) +Ai

(
q−1
)
vi(t). (3.12)

Suppose (Ai(q−1)Imi , Ci(q−1), Bi(q−1)) left-coprime, and (Bi(q−1), Ai(q−1)Imi) or their greatest
left factor’s determinant has no zero point on the unit circles. Note that it needs to be left-
coprime factorization if it is not left-coprime. Then, there is an MA process of Di(q−1)εi(t),
which makes (3.10) hold and guarantees Di(q−1) stable. We have (3.6) from (3.10) and (3.12).
The proof is completed.

Define a new measurement process:

zi(t) = Ai

(
q−1
)
yi(t) − Ci

(
q−1
)
u(t). (3.13)

From (3.6), we have

zi(t) = Di

(
q−1
)
εi(t). (3.14)

From (3.10), we have

zi(t) = Bi

(
q−1
)
w(t) +Ai

(
q−1
)
vi(t). (3.15)

Remark 3.3. When the noise variances Qw and Ri are known, the Gevers-Wouters [20] algo-
rithm can be used to construct ARMA innovation model and obtain Di(q−1) and Qεi .
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In (3.14), zi(t) is a stationary stochastic process, whose correlated function Rzij (k) has
cut-off property, and suppose it be cut-off at nzij , that is,

Rzij (k) = E
[
zi(t)zT

j (t − k)
]
, k = 0, 1, . . . , nzij ,

Rzij (k) = 0, k > nzij , i, j = 1, 2, . . . , L.
(3.16)

At the end of time t, the sampling estimation of the correlated function Rzij (k) (k =
0, 1, . . . , nzij ) based on measurements (zi(t), zi(t − 1), zi(t − 2), . . .) can be defined as

R̂t
zij (k) =

1
t

t∑
α=1

zi(α)zT
j (α − k), (3.17)

then we have its recursive form:

R̂t
zij (k) = R̂t−1

zij (k) +
1
t

[
zi(t)zT

j (t − k) − R̂t−1
zij (k)

]
, t = 2, 3, . . . , (3.18)

with the initial value R̂1
zij (k) = zi(1)zT

j (1 − k).
Computing the correlated function on both sides of (3.14), we have

Rzij (k) =
n0∑
u=k

BiuQwB
T
j,u−k +

n0∑
u=k

AiuS
T
i B

T
j,u−k +

n0∑
u=k

BiuSjA
T
j,u−k +

n0∑
u=k

AiuRijA
T
j,u−k,

k = 0, 1, . . . , nzij , i, j = 1, . . . , L,

(3.19)

where n0 = max(nai, nbi, naj , nbj). Aij and Bij are known, Bij = 0(j > nbi), Aij = 0(j > nai).
However (3.19) is a matrix equations set. Substituting the sampling estimates at the

time tR̂t
zij (k) (k = 0, . . . , nzij ) into (3.19), and solving the matrix equations set, then we have

the estimates Ŝi(t), Q̂w(t), and R̂ij(t) at the time t.
From the ergodicity of the stationary stochastic process (3.14) and the Assumption 2.3,

when t → ∞, we have Ŝi(t) → Si, Q̂w(t) → Qw and R̂ij(t) → Rij .

4. Self-Tuning WMF Kalman Filter

When the statistical features of the noise are unknown, the self-tuning weighted measure-
ment fusion Kalman estimator can be obtained through the following three steps.

Step 1. For different sensor systems, (3.16)– (3.19) are used to identify online the estimates
Q̂w(t), R̂ij(t), and Ŝi(t), i, j = 1, . . . , L, of noise variances of Qw, Rij , and Si at the time t, which
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will yield the following available estimates at the time t:

Ŝ =
[
Ŝ1, . . . , ŜL

]
,

R̂(I) =

⎡
⎢⎢⎢⎣
R̂11 · · · R̂1L

...
...

R̂L1 · · · R̂LL

⎤
⎥⎥⎥⎦,

Ĵ = ΓŜR̂(I)−1,

û(t) = Bu(t) + Ĵy(I)(t),

Q̂ = Q̂w − ŜR̂(I)−1ŜT, Q̂w = ΓQ̂ΓT,

ŷ(II)(t) = Ω̂y(I)(t),

Ω̂ =
(
FTR̂(I)−1F

)−1
FTR̂(I)−1,

R̂(II) = (FTR̂(I)−1F)
−1
,

Φ̂ = Φ − ĴH(I).

(4.1)

Step 2. From (2.15), solving the following Riccati equation, we get the estimation value Σ̂(II)

of Σ(II) at the time t:

Σ̂(II) = Φ̂
[
Σ̂(II) − Σ̂(II)H(II)T

(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
H(II)Σ̂(II)

]
Φ̂

T
+ Q̂w. (4.2)

Step 3. Equations (2.14) are applied, and the self-tuning weighted measurement fusion state
estimator is given by

x̂(II)s(t + 1 | t + 1) = x̂(II)s(t + 1 | t) + K̂
(II)
f ε̂(II)(t + 1),

x̂(II)s(t + 1 | t) = Ψ̂(II)
p x̂(II)s(t | t − 1) + K̂

(II)

p ŷ(II)(t) + û(t),

x̂(II)s(t | t +N) = x̂(II)s(t | t) +
N∑
j=1

K̂(II)(j)ε̂(II)(t + j
)
, N > 0,

ε̂(II)(t) = ŷ(II)(t) −H(II)x̂(II)s(t | t − 1),

K̂
(II)
f

= Σ̂(II)H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

K̂
(II)

p = Φ̂Σ̂(II)H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

Ψ̂(II)
p = Φ̂ − K̂

(II)

p H(II),

K̂(II)(j) = Σ̂II
((

In − K̂(II)
f H(II)

)T
Φ̂

T)j

H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

P̂ (II) =
[
In − K̂(II)

f H(II)
]
Σ̂(II).

(4.3)



10 Journal of Applied Mathematics

0.5

0

−0.5

−1

−1.5

t/step

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Figure 1: ρ1 and the convergence of estimation value ρ̂1(t).
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Figure 2: d11 and the convergence of estimation value d̂11(t).
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Figure 3: d12 and the convergence of estimation value d̂12(t).

Remark 4.1. At every moment, the iteration method to solve Riccati equation (4.2) causes
comparatively large computation burden, which is not convenient for the real applications.
To reduce the computational burden, a computing period (dead band) Td of (4.2) is set and
the estimation value Σ̂(II) keeps invariant in the period Td. So, Σ̂(II) is only computed at the
moments of t = Td, 2Td, 3Td, . . ., which can reduce computation burden, and can be called
Riccati equation with a dead band [9, 17].
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Figure 4: Qε1 and the convergence of estimation value Q̂ε1(t).
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Figure 5: Qξ1 and the convergence of estimation value Q̂ξ1(t).
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Figure 6: ρ2 and the convergence of estimation value ρ̂2(t).
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Figure 7: d21 and the convergence of estimation value d̂21(t).
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Figure 8: Qε2 and the convergence of estimation value Q̂ε2(t).

1.5

1

0.5

0

t/step

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Figure 9: Qw and the convergence of estimation value Q̂w(t).
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Figure 10: Qξ2 and the convergence of estimation value Q̂ξ2(t).
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Figure 13: Speed x2 and self-tuning WMF Kalman filter x̂(II)s
2 (t | t).
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Kalman filter.

5. Simulation Example

The self-tuning α − β radar track system with colored measurement noise:

x(t + 1) =

[
1 T0

0 1

]
x(t) +

[
0.5T2

0

T0

]
w(t),

yi(t) = H0ix(t) + vi(t), i = 1, 2,

vi(t + 1) = ρiv(t) + ξi(t),

(5.1)

where w(t) and ξi(t), i = 1, 2, are independent Gaussian white noises with zero means and
variances of Qw = 1, Qξ1 = 0.04, and Qξ2 = 0.7, vi(t) is colored measurement noise, H01 =
[1 0] and H02 = [0 1]. T0 = 1 is the sampling period, x(t) = [x1(t) x2(t)]

T, x1(t) and x2(t),
are, respectively, the position and speed of the moving object at tT0, ρ1 = −0.4, ρ2 = −0.5.

When ρi, Qw and Qξi(i = 1, 2) are unknown, the problem is to find the self-tuning WMF
α − β tracking filter x̂(II)s(t | t).

The parameter convergence results of subsystem 1 are shown in Figures 1, 2, 3, 4, and 5,
and the parameter convergence results of subsystem 2 are shown in Figures 6, 7, 8, 9, and 10,
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Figure 15: The curve of velocity errors e2(t) = x̂
(II)
2 (t | t) − x̂

(II)s
2 (t | t) for optimal and self-tuning WMF

Kalman filter.

where the curved lines denote the estimates and the straight lines denote true values. The
self-tuning WMF Kalman filter x̂(II)s(t | t) is shown in Figures 11, 12, 13, 14, and 15, where
Figure 11 is the convergence of Σ̂(II). Using the iteration algorithm with dead band Td = 200,
we can see that the parameter estimates in Σ̂(II) shown in ladder-shape curves converge to the
corresponding real values.

The object-tracking curves of self-tuning WMF Kalman filter is shown in Figures 12, 13,
14, and 15. We can see that the system can gradually track the position and speed of the objects
as the time increases, where the real lines are real values and the dashed lines are estimates.
The error curves between the optimal and self-tuning WMF Kalman filter is shown in Figures
14 and 15. We see that the error curves take on the funnel shape, which demonstrates that the
self-tuning filter has better convergence.

6. Conclusion

For multisensor linear discrete time-invariant stochastic control system with different measu-
rement matrices and correlated noise, an online identification method is designed when the
input noise and measurement noise variance are unknown. It firstly uses Fadeeva formula to
construct ARMA innovation model with unknown noise covariance matrices, and then uses
the ergodicity of sampling-correlated function in the stationary and inverse ARMA inno-
vation model to identify the noise covariance matrices. Further, a self-tuning WMF Kalman
filter has been presented from a steady-state global optimal measurement fusion Kalman
filter by matrix full-rank decompostion, weighted least squares method, and measurement
feedback. It has asymptotic global optimality. Compared to the centralized fusion algorithm,
it can reduce the computational burden.
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Generally speaking, spoken term detection system will degrade significantly because of mismatch
between acoustic model and spontaneous speech. This paper presents an improved spoken term
detection strategy, which integrated with a novel phoneme confusion matrix and an improved
word-level minimum classification error (MCE) training method. The first technique is presented
to improve spoken term detection rate while the second one is adopted to reject false accepts. On
mandarin conversational telephone speech (CTS), the proposed methods reduce the equal error
rate (EER) by 8.4% in relative.

1. Introduction

In recent years, there is an increasing trend towards the use of spoken term detection systems
for real-world applications. In such systems, it is desirable to achieve the highest possible
spoken term detection rate, while minimizing the number of false spoken term insertions.
Unfortunately, most speech recognition systems fail to perform well when speakers have a
regional accent. Particulary in China, the diversity of Mandarin accents is great and evolving.

Pronunciation variation has become an important topic. Normally, a confusion matrix
is adopted to achieve higher recognition rate in speech recognition system. In [1], confusion
matrix is adopted in spoken document retrieval system. Retrieval performance is improved
by exploiting phoneme confusion probabilities. The work in [2] introduces an accent adap-
tation approach in which syllable confusion matrix is adopted. Similar approaches are dis-
cussed in [3].

The quality of confusion matrix has an obvious influence on the performance of spo-
ken term detection. Based on traditional approaches, we propose an improved method to
generate a phoneme confusion matrix.

MCE is one of the main approaches in discriminative training [4]. In [5], MCE is used
to optimize the parameters of confidence function in large vocabulary speech recognition
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system (LVCSR). The work in[6] introduces MCE into spoken term detection. In this paper,
we present an improved MCE training method for calculating spoken term confidence.

The remainder of the paper is structured as follows: Section 2 introduces our baseline
system. In Section 3, we discuss the phoneme confusion matrix based on confusion network.
An improved MCE training method is presented in Section 4. In Section 5, the experiments
are given and discussed, and finally Section 6 draws some conclusions from the proposed
research.

2. Baseline System

In our baseline system, search space is generated based on all Chinese syllables, not specif-
ically for spoken terms. Phoneme recognition is performed without any lexical constraints.
Given a spoken input, our decoder outputs 1-best phoneme sequence. A phoneme confusion
matrix is used to extract spoken terms.

The main steps of generating phoneme confusion matrix are listed as follows [2].

(1) Canonical pin-yin level transcriptions of the accent speech data should be obtained
firstly.

(2) A standard Mandarin acoustic recognizer whose output is pin-yin stream is used
to transcribe those accent speech data.

(3) With the help of dynamic programming (DP) technique, these pin-yin level trans-
criptions are aligned to the canonical pin-yin level transcriptions.

(4) Regardless of insertion and deletion errors, substitution errors are considered. Each
pin-yin can be divided into two phonemes. Given a canonical phoneme phm and an
aligning hypothesis phn, we can compute confusion probability:

P
(
phn | phm

)
=

count
(
phn | phm

)
∑N

i=1 count
(
phi | phm

) , (2.1)

where count(phn | phm) is the number of phn which is aligned to phm. N is the total
phoneme number in dictionary.

With 1-best phoneme sequence and confusion matrix, similarities between phonemes
are computed. For each spoken term, corresponding phonemes will be searched from pro-
nunciation dictionary firstly. Then, sliding window is used to align phonemes of spoken term
and 1-best phoneme sequence. The step of sliding window is set to two because there are two
phonemes in each syllable in Chinese. An example of searching “gu zhe” is given in Figure 1.

Given a term ϕ1, ϕ2 is the aligning 1-best phoneme sequence. Then, similarity between
them is denoted as Sim(ϕ1, ϕ2):

Sim
(
ϕ1, ϕ2

)
=

1
N

log

(
N∏
i=1

P
(
βi | αi

))
, (2.2)

where αi and βi are the ith phoneme of ϕ1 and ϕ2, respectively, N is the number of phonemes
of ϕ1.
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t ui g u z h l

g u z h e

g u z h e

g u z h e

ee

Figure 1: Extraction of “gu zhe.”

Spoken term rate gets a significant improvement with the help of confusion matrix. But
at the same time, false accepts have been increased too. Effective confidence measure should
be adopted to reject false hypotheses. In this paper, word confidence is calculated with catch-
all model [5]. A confidence score for a hypothesized phoneme phi is estimated by

CM
(
phi

)
=

1
e[i] − b[i] + 1

e[i]∑
n=b[i]

log p
(
q(n)| o(n)

)
=

1
e[i] − b[i] + 1

e[i]∑
n=b[i]

log
P
(
o(n)| q(n)

)
P
(
q(n)
)

P
(
o(n)
) ,

(2.3)

where b[i] is the start time of phi and e[i] is the end time. q(n) represents Viterbi state sequ-
ence.

Deriving word level scores from phoneme scores is a natural extension of the recogni-
tion process. We adopted the arithmetic mean in logarithmic scale. Spoken term confidence
CMpos is defined as

CMpos(w) =
1
m

m∑
i=1

CM
(
phi

)
, (2.4)

where m is the number of phonemes in w.

3. Confusion Matrix Based on Confusion Network

Just as the above description, confusion matrix is generated from 1-best hypothesis. However,
there is a conceptual mismatch between decoding criterion and confusion probability eva-
luation. Given an input utterance, a Viterbi decoder is used to find the best sentence. But it
does not ensure that each phoneme is the optimal one. In this paper, we propose an impro-
ved method of generating confusion matrix. Instead of 1-best phoneme hypothesis, we get
hypotheses from confusion network (CN) [7].

Just as Figure 2 describes, CN is composed of several branches. For schematic descrip-
tion, we give top 4 hypotheses in each branch. Corresponding canonical pin-yin stream is
also presented in Figure 2.
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ai2, 0.062

na1, 0.068

na4, 0.086

eps, 0.083

nei4, 0.375

lie4, 0.379

xi3, 0.994

huan4, 0.192

eps, 0.751

an1, 0.047 lie2, 0.064

eps, 0.006

huan3, 0.057

na4 ni3 xi3 huan1

Figure 2: An example of confusion network.

Experimental show that syllable error rate (SER) of CN is far lower than that of 1-best
sequence. Base on this point, we believe that CN provides us more useful information. In this
paper, we attempt to use n-best hypotheses of each branch. Firstly, canonical pin-yin level
transcriptions are formatted into a simple CN. Then, recognizer output voting error reduction
(ROVER) technology is adopted to align two CNs. At last, we select special branches to
generate confusion matrix. Given a canonical phoneme phm, only branches including phm

are considered. A sequence of class labels α(k) is defined as

α(k) =

⎧⎨
⎩

1 if phm ∈ the kth Branch,

0 if phm /∈ the kth Branch.
(3.1)

Then, (2.1) can be rewritten as

P
(
phn | phm

)
=

∑C
k=1 α(k)count

(
phn | phm

)
∑N

i=1
∑C

k=1 α(k)count
(
phi | phm

) , (3.2)

where C is the number of branches in CNs of training data, N is the number of phonemes in
dictionary.

Another optional method is also attempted in this paper. Max probability rule can be
applied in calculating confusion probability. The branches with maximum probability phm

are considered. We define

β(k) =

⎧⎪⎪⎨
⎪⎪⎩

1
if phm is a phoneme with maximum probability in the kth Branch,

0 others.

(3.3)

Then, (3.2) can be rewritten as

(
phn | phm

)
=

∑C
k=1 β(k)count

(
phn | phm

)
∑N

i=1
∑C

k=1 β(k)count
(
phi | phm

) . (3.4)
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4. MCE with Block Training

The work in [5] proposed a word-level MCE training technique in optimizing the parameters
of the confidence function. In [6], a revised scheme is implemented under spoken term
scenario. In this paper, we attempt to improve the MCE training methods proposed in [6].

According to the update equations in [6], sequential training is used to update param-
eters. That is to say, the parameters of triphones are modified with each training sample.
It is not matched well with optimization method of MCE. We adopt block training method
instead. The parameters are modified with all averaged samples at once. The weighted mean
confidence measure of W is defined as

CM(W) =
1

Nw

Nw∑
i=1

(
aphiCM

(
phi

)
+ bphi

)
. (4.1)

Procedures of block training are listed as follows.

(1) Misclassification measure is defined as

d(W) = (CM(W) − C) × Sign(W), (4.2)

where C is confidence threshold, Sign(W) is defined as

Sign(W) =

⎧⎨
⎩

1 if W is incorrect,

−1 if W is correct.
(4.3)

(2) A smooth zero-one loss function is given by

l(W) =
1

1 + exp
(−γd(W)

) . (4.4)

(3) The parameter estimation is based on the minimization of the expected loss which,
for a training sample of size M, is defined as

l
(
W
)
= E(l(W)) =

1
M

M∑
j=1

l
(
Wj

)
. (4.5)
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Generalized probabilistic descent (GPD) algorithm is used to minimize the loss func-
tion l(W) [8]:

∂l
(
W
)

∂aphi

=
1
M

M∑
j=1

∂l
(
Wj

)
∂aphi

=
γ

Mphi

Mphi∑
j=1

1
Nj

K
(
Wj

)
CMj

(
phi

)
,

∂l
(
W
)

∂bphi

=
1
M

M∑
j=1

∂l
(
Wj

)
∂bphi

=
γ

Mphi

Mphi∑
j=1

K
(
Wj

)
Nj

,

∂l
(
W
)

∂C
=

1
M

M∑
j=1

∂l
(
Wj

)
∂C

=
−γ
M

M∑
j=1

K
(
Wj

)
,

(4.6)

where Mphi is the number of samples that contain the phoneme phi, Nj is the number of
phonemes of Wj , CMj(phi) is the confidence of phi in Wj . However k(Wj) is defined as

k
(
Wj

)
= l
(
Wj

)(
1 − l(Wj

))
Sign

(
Wj

)
. (4.7)

At last, we get the revised update equations as

ãphi(n + 1) = ãphi(n) − εn
∂l
(
W
)

∂aphi

exp
(
ãphi(n)

)
,

bphi(n + 1) = bphi(n) − εn
∂l
(
W
)

∂bphi

,

C(n + 1) = C(n) − εn
∂l
(
W
)

∂C
.

(4.8)

5. Experiments

We conducted experiments using our real-time spoken term system. Acoustic model is
trained using train04, which is collected by Hong Kong University of Science and Technology
(HKUST).

5.1. Experimental Data Description

The test data is a subset of development data (dev04), which is also collected by HKUST.
Total 20 conversations are used for our evaluation. 100 words are selected as the spoken term
list, including 75 two-syllable words and 25 three-syllable words.

Confusion matrixes adopted in this paper are generated using 100-hour mandarin CTS
corpus. The word-level MCE training set is a subset of train04 corpus. 865667 terms are ex-
tracted for the training, including 675998 false accepts and 189669 correct hits.
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Table 1: SER of CN and 1-best pin-yin sequence.

SER Pruning beam
1-best pin-yin 75.0% —
CN 71.0% 0.5
CN 51.9% 0.2
CN 35.3% 0

Table 2: Recognition rates of different phoneme confusion matrixes.

Confusion matrix Recognition rates
1-best recognition result 77.3%
CN 80.9%
CN + maximum probability 82.0%

5.2. Experiment Results

The detection error tradeoff (DET) is used in this paper to evaluate the performance of spoken
term. The false acceptation (FA) rate fits the case in which an incorrect word is accepted, and
the false reject (FR) fits the case of rejecting the correct word:

FA =
num. of incorrect words labelled as accepted

num. of incorrect words
,

FR =
num. of correct words labelled as rejected
num. of keywords ∗ hours of testset ∗ C

,

(5.1)

where C is a factor which scales the dynamic range of FA and FR on the same level. In this
paper, C is set to 10. Recognition rates (RA) are also computed. It can be obtained as:

RA =
num. of correct words labelled as accepted

total num. of recognized words
. (5.2)

In order to assess how CN gives more information than 1-best pin-yin sequence, the
syllable error rates (SERs) of both CN and pin-yin sequence are given in Table 1. SER of CN
drops significantly with the reduction of pruning beam.

Table 2 summarizes recognition rates of different confusion matrixes. With the n-best
hypotheses of CN, recognition rates are improved obviously. Then maximum probability rule
is applied, and the recognition rate arrives 82.0%.

To evaluate the performance of methods proposed in this paper, EERs of different
methods are listed in Table 3.

As we can see from Table 3, the improved confusion matrixes provide obviously EER
reduction of up to 3.9% in relative. MCE with block training is superior to sequential training,
relative 1.7% EER reduction is achieved. When two methods are used at the same time, we get
a further improvement, 8.4% relative reduction compared with the baseline system.
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Table 3: EER of different methods.

Methods EER
Baseline 48.8%
CN 47.5%
CN + maximum probability 46.9%
MCE with sequential training 46.2%
MCE with block training 45.4%
CN + maximum probability + MCE with block training 44.7%

6. Conclusions

In order to describe how the accent-specific pronunciation differs from those assumed by the
standard Mandarin recognition system, the phoneme confusion matrix is adopted. Different
from traditional algorithm, confusion network is applied in generating confusion matrix.
It improves the recognition rate of spoken term system. Moreover, a revised MCE training
method is presented in this paper. Experiments prove that it performs obviously better than
the sequential training.
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