
Computational Intelligence and Neuroscience

Interpretation of Machine
Learning: Prediction,
Representation, Modeling, and
Visualization 2022

Lead Guest Editor: Nian Zhang
Guest Editors: Zhishan Guo and Yide Zhang

 



Interpretation of Machine Learning:
Prediction, Representation, Modeling, and
Visualization 2022



Computational Intelligence and Neuroscience

Interpretation of Machine Learning:
Prediction, Representation, Modeling,
and Visualization 2022

Lead Guest Editor: Nian Zhang
Guest Editors: Zhishan Guo and Yide Zhang



Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Computational Intelligence and Neuroscience.” All articles are open access articles distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.



Chief Editor
Andrzej Cichocki, Poland

Associate Editors
Arnaud Delorme, France
Cheng-Jian Lin  , Taiwan
Saeid Sanei, United Kingdom

Academic Editors
Mohamed Abd Elaziz  , Egypt
Tariq Ahanger  , Saudi Arabia
Muhammad Ahmad, Pakistan
Ricardo Aler  , Spain
Nouman Ali, Pakistan
Pietro Aricò  , Italy
Lerina Aversano  , Italy
Ümit Ağbulut  , Turkey
Najib Ben Aoun  , Saudi Arabia
Surbhi Bhatia  , Saudi Arabia
Daniele Bibbo  , Italy
Vince D. Calhoun  , USA
Francesco Camastra, Italy
Zhicheng Cao, China
Hubert Cecotti  , USA
Jyotir Moy Chatterjee  , Nepal
Rupesh Chikara, USA
Marta Cimitile, Italy
Silvia Conforto  , Italy
Paolo Crippa  , Italy
Christian W. Dawson, United Kingdom
Carmen De Maio  , Italy
omas DeMarse  , USA
Maria Jose Del Jesus, Spain
Arnaud Delorme  , France
Anastasios D. Doulamis, Greece
António Dourado  , Portugal
Sheng Du  , China
Said El Kaali  , Morocco
Mohammad Reza Feizi Derakhshi  , Iran
Quanxi Feng, China
Zhong-kai Feng, China
Steven L. Fernandes, USA
Agostino Forestiero  , Italy
Piotr Franaszczuk  , USA
ippa Reddy Gadekallu  , India
Paolo Gastaldo  , Italy
Samanwoy Ghosh-Dastidar, USA

Manuel Graña  , Spain
Alberto Guillén  , Spain
Gaurav Gupta, India
Rodolfo E. Haber  , Spain
Usman Habib  , Pakistan
Anandakumar Haldorai  , India
José Alfredo Hernández-Pérez  , Mexico
Luis Javier Herrera  , Spain
Alexander Hošovský  , Slovakia
Etienne Hugues, USA
Nadeem Iqbal  , Pakistan
Sajad Jafari, Iran
Abdul Rehman Javed  , Pakistan
Jing Jin  , China
Li Jin, United Kingdom
Kanak Kalita, India
Ryotaro Kamimura  , Japan
Pasi A. Karjalainen  , Finland
Anitha Karthikeyan, Saint Vincent and the
Grenadines
Elpida Keravnou  , Cyprus
Asif Irshad Khan  , Saudi Arabia
Muhammad Adnan Khan  , Republic of
Korea
Abbas Khosravi, Australia
Tai-hoon Kim, Republic of Korea
Li-Wei Ko  , Taiwan
Raşit Köker  , Turkey
Deepika Koundal  , India
Sunil Kumar  , India
Fabio La Foresta, Italy
Kuruva Lakshmanna  , India
Maciej Lawrynczuk  , Poland
Jianli Liu  , China
Giosuè Lo Bosco  , Italy
Andrea Loddo  , Italy
Kezhi Mao, Singapore
Paolo Massobrio  , Italy
Gerard McKee, Nigeria
Mohit Mittal  , France
Paulo Moura Oliveira  , Portugal
Debajyoti Mukhopadhyay  , India
Xin Ning  , China
Nasimul Noman  , Australia
Fivos Panetsos  , Spain

https://orcid.org/0000-0002-8709-2715
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0002-4525-0738
https://orcid.org/0000-0002-7472-4840
https://orcid.org/0000-0002-3831-6620
https://orcid.org/0000-0003-2436-6835
https://orcid.org/0000-0002-6635-6494
https://orcid.org/0000-0001-9444-8209
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0003-1341-5427
https://orcid.org/0000-0001-9058-0747
https://orcid.org/0000-0002-7661-0070
https://orcid.org/0000-0003-2527-916X
https://orcid.org/0000-0001-7323-5220
https://orcid.org/0000-0003-4504-7550
https://orcid.org/0000-0003-0641-4792
https://orcid.org/0000-0001-5549-7075
https://orcid.org/0000-0002-0799-3557
https://orcid.org/0000-0002-5445-6893
https://orcid.org/0000-0001-8396-7388
https://orcid.org/0000-0001-9282-5154
https://orcid.org/0000-0002-8548-976X
https://orcid.org/0000-0002-3025-7689
https://orcid.org/0000-0002-5166-4224
https://orcid.org/0000-0003-0097-801X
https://orcid.org/0000-0002-5748-3942
https://orcid.org/0000-0001-7373-4097
https://orcid.org/0000-0001-9918-3238
https://orcid.org/0000-0002-2881-0166
https://orcid.org/0000-0003-4793-6239
https://orcid.org/0000-0001-9975-6462
https://orcid.org/0000-0002-2107-3044
https://orcid.org/0000-0003-3220-9389
https://orcid.org/0000-0002-8390-7163
https://orcid.org/0000-0003-1050-1792
https://orcid.org/0000-0002-0570-1813
https://orcid.org/0000-0002-6133-5491
https://orcid.org/0000-0002-4238-3463
https://orcid.org/0000-0002-1267-493X
https://orcid.org/0000-0002-8980-4253
https://orcid.org/0000-0003-1131-5350
https://orcid.org/0000-0001-9789-5231
https://orcid.org/0000-0003-2529-3391
https://orcid.org/0000-0002-3811-2310
https://orcid.org/0000-0003-1688-8772
https://orcid.org/0000-0001-9957-5661
https://orcid.org/0000-0003-3480-4851
https://orcid.org/0000-0002-6846-2004
https://orcid.org/0000-0003-0609-9083
https://orcid.org/0000-0002-1602-0693
https://orcid.org/0000-0002-6571-3816
https://orcid.org/0000-0001-8335-3407
https://orcid.org/0000-0003-0878-4615
https://orcid.org/0000-0003-4283-1243
https://orcid.org/0000-0002-5394-385X
https://orcid.org/0000-0001-7897-1673
https://orcid.org/0000-0002-8566-0870
https://orcid.org/0000-0003-0897-411X


Evgeniya Pankratova  , Russia
Rocío Pérez de Prado  , Spain
Francesco Pistolesi  , Italy
Alessandro Sebastian Podda  , Italy
David M Powers, Australia
Radu-Emil Precup, Romania
Lorenzo Putzu, Italy
S P Raja, India
Dr.Anand Singh Rajawat  , India
Simone Ranaldi   , Italy
Upaka Rathnayake, Sri Lanka
Navid Razmjooy, Iran
Carlo Ricciardi, Italy
Jatinderkumar R. Saini  , India
Sandhya Samarasinghe  , New Zealand
Friedhelm Schwenker, Germany
Mijanur Rahaman Seikh, India
Tapan Senapati  , China
Mohammed Shuaib  , Malaysia
Kamran Siddique  , USA
Gaurav Singal, India
Akansha Singh  , India
Chiranjibi Sitaula  , Australia
Neelakandan Subramani, India
Le Sun, China
Rawia Tahrir  , Iraq
Binhua Tang  , China
Carlos M. Travieso-González  , Spain
Vinh Truong Hoang  , Vietnam
Fath U Min Ullah  , Republic of Korea
Pablo Varona  , Spain
Roberto A. Vazquez  , Mexico
Mario Versaci, Italy
Gennaro Vessio  , Italy
Ivan Volosyak  , Germany
Leyi Wei  , China
Jianghui Wen, China
Lingwei Xu  , China
Cornelio Yáñez-Márquez, Mexico
Zaher Mundher Yaseen, Iraq
Yugen Yi  , China
Qiangqiang Yuan  , China
Miaolei Zhou  , China
Michal Zochowski, USA
Rodolfo Zunino, Italy

https://orcid.org/0000-0003-4214-7230
https://orcid.org/0000-0001-6097-4016
https://orcid.org/0000-0002-1078-5599
https://orcid.org/0000-0002-7862-8362
https://orcid.org/0000-0001-5940-5799
https://orcid.org/0000-0002-7849-0893
https://orcid.org/0000-0001-5205-5263
https://orcid.org/0000-0003-2943-4331
https://orcid.org/0000-0003-0399-7486
https://orcid.org/0000-0001-6657-2587
https://orcid.org/0000-0003-2286-1728
https://orcid.org/0000-0002-5520-8066
https://orcid.org/0000-0002-4564-2985
https://orcid.org/0000-0001-7187-052X
https://orcid.org/0000-0003-4744-5835
https://orcid.org/0000-0002-4621-2768
https://orcid.org/0000-0002-3464-3894
https://orcid.org/0000-0002-1243-9358
https://orcid.org/0000-0002-1754-8991
https://orcid.org/0000-0002-7645-4610
https://orcid.org/0000-0002-0883-2691
https://orcid.org/0000-0001-6555-7617
https://orcid.org/0000-0003-1444-190X
https://orcid.org/0000-0002-2169-6356
https://orcid.org/0000-0002-2726-9873
https://orcid.org/0000-0001-7140-2224
https://orcid.org/0000-0003-1664-1024


Contents

HAZMAT Vehicle Reidentification in Road Tunnels Based on the Fusion of Appearance and
Spatiotemporal Information
Lei Jia  , Xiaobao Li, Wen Wang, Jianzhu Wang, Haomin Yu, Tianyuan Wang, and Qingyong Li 

Research Article (10 pages), Article ID 3677387, Volume 2023 (2023)

CAW: A Remote-Sensing Scene Classification Network Aided by Local Window Attention
Wei Wang  , Xiaowei Wen  , Xin Wang  , Chen Tang, and Jiwei Deng
Research Article (10 pages), Article ID 2661231, Volume 2022 (2022)

Semisupervised Semantic Segmentation with Mutual Correction Learning
Yifan Xiao, Jing Dong  , Dongsheng Zhou  , Pengfei Yi, Rui Liu, and Xiaopeng Wei 

Research Article (9 pages), Article ID 8653692, Volume 2022 (2022)

Fast Detection of Defective Insulator Based on Improved YOLOv5s
Zhao Liquan  , Zou Mengjun  , Cui Ying  , and Jia Yanfei 

Research Article (12 pages), Article ID 8955292, Volume 2022 (2022)

Intelligent Detection Method of Gearbox Based on Adaptive Hierarchical Clustering and Subset
Huimiao Yuan  , Yongwei Tang  , Huijuan Hao  , Yuanyuan Zhao  , Yu Zhang  , and Yu Chen 

Research Article (10 pages), Article ID 6464516, Volume 2022 (2022)

Feature Selection Based on Adaptive Particle Swarm Optimization with Leadership Learning
Zhiwei Ye  , Yi Xu  , Qiyi He  , Mingwei Wang, Wanfang Bai, and Hongwei Xiao
Research Article (18 pages), Article ID 1825341, Volume 2022 (2022)

A Variable Radius Side Window Direct SLAM Method Based on Semantic Information
Yan Chen  , Jianjun Ni  , Emmanuel Mutabazi, Weidong Cao  , and Simon X. Yang
Research Article (18 pages), Article ID 4075910, Volume 2022 (2022)

PointTransformer: Encoding Human Local Features for Small Target Detection
Yudi Tang  , Bing Wang, Wangli He, Feng Qian, and Zhen Liu
Research Article (10 pages), Article ID 9640673, Volume 2022 (2022)

SR-DSFF and FENet-ReID: A Two-Stage Approach for Cross Resolution Person Re-Identification
Zongzong Wu, Xiangchun Yu  , Donglin Zhu  , Qingwei Pang, Shitao Shen, Teng Ma, and Jian
Zheng 

Research Article (11 pages), Article ID 4398727, Volume 2022 (2022)

Spatial-Temporal Change Trend Analysis of Second-Hand House Price in Hefei Based on Spatial
Network
Zheng Yin  , Rui Sun  , and Yuqing Bi 

Research Article (10 pages), Article ID 6848038, Volume 2022 (2022)

A Model for Surface Defect Detection of Industrial Products Based on Attention Augmentation
Gang Li  , Rui Shao  , Honglin Wan  , Mingle Zhou  , and Min Li 

Research Article (12 pages), Article ID 9577096, Volume 2022 (2022)

https://orcid.org/0000-0003-0192-825X
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-2298-3429
https://orcid.org/0000-0003-3443-5574
https://orcid.org/0000-0003-2386-5405
https://orcid.org/0000-0003-3489-6661
https://orcid.org/0000-0003-3414-9623
https://orcid.org/0000-0002-8497-611X
https://orcid.org/0000-0002-9499-1911
https://orcid.org/0000-0003-2786-3300
https://orcid.org/0000-0002-9013-9238
https://orcid.org/0000-0001-7858-8172
https://orcid.org/0000-0002-5364-135X
https://orcid.org/0000-0003-0088-3774
https://orcid.org/0000-0001-5421-2816
https://orcid.org/0000-0003-2093-3740
https://orcid.org/0000-0002-2723-4697
https://orcid.org/0000-0002-2026-8018
https://orcid.org/0000-0001-9764-7887
https://orcid.org/0000-0001-6493-7781
https://orcid.org/0000-0001-9739-3258
https://orcid.org/0000-0003-4969-5723
https://orcid.org/0000-0002-7130-8331
https://orcid.org/0000-0002-0394-9639
https://orcid.org/0000-0002-8395-615X
https://orcid.org/0000-0001-6206-450X
https://orcid.org/0000-0001-9868-8103
https://orcid.org/0000-0002-7818-1791
https://orcid.org/0000-0002-1526-3626
https://orcid.org/0000-0002-8347-3764
https://orcid.org/0000-0002-1874-4791
https://orcid.org/0000-0002-7896-4833
https://orcid.org/0000-0002-5405-0033
https://orcid.org/0000-0001-7592-8944
https://orcid.org/0000-0003-4911-276X
https://orcid.org/0000-0002-0507-5576


Research Article
HAZMAT Vehicle Reidentification in Road Tunnels Based on the
Fusion of Appearance and Spatiotemporal Information
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Vehicles transporting hazardous material (HAZMAT) pose a severe threat to highway safety, especially in road tunnels. Vehicle
reidentifcation is essential for identifying and warning abnormal states of HAZMAT vehicles in road tunnels. However, there is
still no public dataset for benchmarking this task. To this end, this work releases a real-world tunnel HAZMAT vehicle rei-
dentifcation dataset, VisInt-THV-ReID, including 10,048 images with 865 HAZMAT vehicles and their spatiotemporal in-
formation. A method based on multimodal information fusion is proposed to realize vehicle reidentifcation by fusing vehicle
appearance and spatiotemporal information. We design a spatiotemporal similarity determination method for vehicles based on
the spatiotemporal law of vehicles in tunnels. Compared with other reidentifcation methods based on multimodal information
fusion, i.e., PROVID, Visual + ST, and Siamese-CNN, experimental results show that our approach signifcantly improves the
vehicle reidentifcation recognition precision.

1. Introduction

Hazardous materials (HAZMAT) could endanger the health
and safety of people, environment, and property. With the
increasing demand of HAZMAT, trafc accidents occurred
frequently during HAZMAT transportation, and especially,
a risk increase is generally observed in the presence of
tunnels [1–3], which makes it of great importance to tighten
regulation for vehicles transporting HAZMAT in tunnels.

HAZMAT vehicle reidentifcation (ReID) methods face
the following challenges in tunnel scenes: (1) the strong
refection of the tank of a HAZMAT vehicle can cause large
diferences in its appearance under the uneven lighting
conditions of a tunnel; (2) it is difcult to distinguish the
HAZMAT vehicles with the same vehicle type efectively,
due to their close appearance. However, there still remains a
research gap both in HAZMAT vehicle data and in spe-
cialized algorithms. Tis motivates us to focus on the study
of HAZMAT vehicle reidentifcation in tunnels.

Vehicle ReID aims to determine whether a vehicle image
captured in nonoverlapping cameras belongs to the same
vehicle in trafc monitoring scenarios. Existing methods
mainly perform research on vehicle ReID based on the vehicle
appearance [4]. However, due to the special and complex
tunnel environment containing dim illumination and limited
viewing feld, it is more challenging for the tunnel vehicle ReID
problem than that in open road scenes [5, 6]. Tus, large
fuctuation can be seen by merely conducting tunnel vehicle
ReID based on the appearance information. As shown in
Figure 1, the red, green, and blue lines in each subfgure are
RGB channel color histograms for each image. Vehicles for the
second and third images may have similar appearance features,
whereas they are actually two diferent IDs. From such in-
stance, we can see that in real-world applications, it is extremely
sensitive to environmental changes to merely perform vehicle
ReID via appearance information.

To address the above problem, except for appearance in-
formation, the spatiotemporal information is further leveraged
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to improve vehicle ReID performance in recent works [7–9].
Tis is inspired by the fact that the vehicle movements follow
some implicit motion pattern according to the trafc rules.
However, due to the randomness of vehicle motion, it is
difcult to accurately model the spatiotemporal motion laws of
vehicles in the open road. But the trafc rules of vehicles in
tunnels are more distinct than in the open road, such as ve-
hicles are expected to move in one fxed direction within
limited speed, and no U-turns. It leads to the urgent need for a
special spatiotemporal model tailored to the tunnel scene.

Terefore, to realize HAZMAT vehicle ReID in tunnel
scenes, this work proposes a vehicle ReIDmethod based on the
fusion of vehicle appearance and tunnel spatiotemporal in-
formation. For vehicle appearance modeling, a deep residual
network (i.e., Resnet50 [10]) is chosen as a feature extractor to
model the complex appearance variation of tunnel vehicle.
Meanwhile, to capture the spatiotemporal cues between
cameras and vehicles, we develop a novel spatiotemporal
similarity metric to model the between-vehicle structure cor-
relation as well as the camera-vehicle topological relationship.

Furthermore, the extracted appearance representation and
the spatiotemporal model are combined to efciently encode
the appearance variation and movement pattern for the tunnel
vehicles. Moreover, to evaluate the HAZMAT vehicle ReID
problem in the tunnel scenes, we construct and release a real-
world HAZMAT Vehicle ReID dataset, named by VisInt-
THV-ReID, containing 10,048 images of 865 HAZMAT ve-
hicles collected from four high-resolution cameras. Tese
images were captured by 4 cameras in the tunnel. Each camera
monitors a space with a range of 150meters and takes around 3
pictures of vehicles with far, middle, and near distances, re-
spectively. Each vehicle is attached by the camera mileage and
the picture shooting time. According to the spatial coordinate
transformation method [11], we infer the spatial positions of
vehicles in tunnel from the perspective of camera monitoring
and obtain their temporal information by comparing time-
stamps of monitoring cameras. We use the vehicle ReID to
determine whether the HAZMAT vehicles are exiting the
tunnel within a normal time. If one vehicle passes the tunnel
more than once, we identify the HAZMAT vehicle with a

diferent vehicle ID for each time in the dataset. More attention
is paid to the driving condition of the HAZMAT vehicle each
time when it passes through the tunnel. Te proposed method
is evaluated to be efective through exhaustive experiments on
the VisInt-THV-ReID dataset.

Te main contributions of this work are summarized as
follows:

(i) We extend the scenarios of vehicle ReID task to the
challenging problem of HAZMAT vehicle ReID in
tunnel scenes and propose a method that fuses both
appearance modeling and spatiotemporal mining
for more precise vehicle ReID.

(ii) We design a spatiotemporal metric approach based
on the movement law of vehicles in road tunnels
which brings in the description of between-vehicle
structure correlation as well as the camera-vehicle
topological relationship.

(iii) We build a real-world tunnel HAZMAT vehicle
ReID dataset, named as VisInt-THV-ReID. As far as
we know, the released VisInt-THV-ReID is the frst
HAZMAT vehicle ReID dataset captured in the
tunnel scenes, which is crucial for the promotion of
automatic regulation of HAZMAT transportation.
Exhaustive experiments demonstrate that the pro-
posed method can generate a state-of-the-art
performance.

Te rest of this work is organized as follows: Te review
related works are presented in Section 2. Section 3 details the
proposed HAZMAT vehicle ReID method. In Section 4, we
execute experiments for the evaluation of the proposed
approach on VisInt-THV-ReID. Finally, we conclude this
work in Section 5.

2. Related Work

Vehicle ReID in trafc monitoring scenarios can be seen as a
part of multicamera tracking. Given an image of a vehicle in
a specifc area, the task is to fnd its image as captured under

Probe
Vehicle ID: 0543 Time: 15:14:20
Camera: 01# Distance: 155 m

Vehicle ID: 0543 Time: 15:14:45
Camera: 02# Distance: 608 m

Vehicle ID: 0685 Time: 15:16:42
Camera: 03# Distance: 1043 m

Candidate Candidate

Figure 1: Te HAZMAT vehicles are difcult to distinguish due to their close appearance. Te refection of the tank causes signifcant
diferences in its appearance under the variable lighting conditions in the tunnel.
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other cameras. Tis work studies vehicle ReID with spa-
tiotemporal information fusion in tunnel scenes. We in-
troduce related work from the aspects of vehicle ReID in
tunnel scenes and multimodal information fusion.

2.1.VehicleReIDMethods inTunnels. Vehicle ReID in tunnel
scenes is challenging due to low resolution, dim light, and
dramatic changes in vehicle appearance. A vehicle is de-
tected and tracked by each camera in road tunnels, and a
detected vehicle is matched with the previous camera.

Fŕıas-Velázquez et al. [6] proposed a probabilistic
framework based on a two-step strategy that reidentifes
vehicles in road tunnels. Tey built a Bayesian model that
fnds the optimal assignment between vehicles of connected
groups based on descriptors such as trace transform sig-
natures, lane changes, and motion discrepancies. Rios-
Cabrera et al. [12] presented an integrated solution to detect,
track, and identify vehicles in a tunnel surveillance appli-
cation, taking into account practical constraints, such as
real-time operation, imaging conditions, and decentralized
architecture. AdaBoost [13] cascade is used for vehicle de-
tection, and a comprehensive confdence score integrates the
information of all stages of the cascade. Jelača et al. [14]
proposed a real-time tracking method of multiple non-
overlapping cameras in a road tunnel monitoring scene,
using AdaBoost for vehicle detection. Te vehicle detector
and a Kalman flter of average optical fow are used for
tracking. Te ReID algorithm applies the projection feature
similarity of a radon transform between vehicle images.
Chen et al. [15] proposed a spatiotemporal successive dy-
namic programming algorithm to identify vehicles between
pairs of cameras. Tey extracted features based on Harris
corner detection and OpponentSIFT descriptors, consider-
ing color information [16]. Zhu et al. [5] proposed a syn-
ergistically cascaded forest model to gradually construct the
linking relationships between vehicle samples with in-
creasing alternative random forest and extremely random-
ized forest layers.

Te abovementioned methods generally focus on the
extraction of hand-designed features of vehicle images,
which can only show good performance in specifc scenes.
Tese manual features are susceptible to the interference of a
complex tunnel environment, and they are difcult to im-
prove the precision of ReID.

2.2. Methods Using Multimodal Information. As a vehicle is
far from cameras and the illumination is insufcient, the
image resolution is low. Due to their similarity, it is im-
practical to efectively identify HAZMAT vehicles without
special markings only by appearance. Recent work on ve-
hicle ReID has improved the model by combining multi-
dimensional information of vehicle attributes such as type,
color, time, and space information with appearance features.

To reidentify vehicles based on fusion diferent ap-
pearance information, Liu et al. [17] designed a network
using BOW-SIFT [18], BOW-CN [19], and GoogLeNet [20]
to extract texture, color, and semantic features, respectively.
Handmade features are fused with the vehicle type and color

features obtained through deep learning. Liu et al. [21]
proposed PROVID, which makes full use of appearance
features, license plates, camera locations, and semantic in-
formation to carry out a progressive search from coarse to
fne in the feature domain and from near to far in physical
space.

To reidentify vehicles based on spatiotemporal infor-
mation, Zhong et al. [7] proposed a vehicle pose guide model
using a spatiotemporal probability model based on the
Gaussian distribution to predict the spatiotemporal motion
of vehicles. A convolution neural network (CNN) was used
to predict the driving direction of a vehicle and the results of
visual appearance, and then, the driving direction and
spatiotemporal models were fused. Shen et al. [8] proposed a
two-stage framework incorporating complex spatiotemporal
information to efectively regularize ReID results. A can-
didate visual-spatiotemporal path was generated by a chain
Markov random feld model with a deeply learned potential
function. A Siamese-CNN+Path-LSTM model takes the
candidate path and pairwise queries to generate a similarity
score. Jiang et al. [9] proposed an approach with a multi-
branch architecture and a reranking strategy using the
spatiotemporal relationship among vehicles from multiple
cameras.

3. Method

3.1. Overview. Typically, a tunnel surveillance system con-
sists of a series of cameras C � C0, C1, C2, . . . , CM , with
nonoverlapping visual receptive felds. Ai

�→
denotes the 2048-

dimensional appearance feature vector obtained from the i

-th vehicle image through the image appearance feature
extraction network, and Si

→
denotes the spatiotemporal

feature vector of the i-th vehicle collected by the camera.Te
spatiotemporal features involved are velocity vi, timestamp ti

, and space position li of the tunnel.
We use Pa(i, j) to represent the similarity of the ap-

pearance feature vectors of vehicles i and j from upstream
and downstream cameras and Pst(i, j) to represent the
similarity of the spatiotemporal features of the vehicle
pairs. P(i, j) is the probability that vehicle pairs are
identical after fusing multimodal information. Te inputs
of the proposed model are vehicle image pairs (i, j) and
their spatiotemporal features (Si

→
, Sj

→
) involved velocity,

timestamp, and space position in the tunnel. Te output is
the probability P(i, j) of whether the pair of vehicle images
is the same vehicle.

Te framework of the proposed method has three parts,
as shown in Figure 2.

(1) Similarity calculation of vehicle appearance features.
Resnet50 [10] is used as the feature extractor to
obtain a 2048-dimensional appearance feature vector
of a vehicle.

(2) Based on the spatiotemporal movement law of
HAZMAT vehicles, we calculate the theoretical
distance and the actual distance of the vehicle pairs.
Te tunnel spatial discrepancy εij is used to evaluate

Computational Intelligence and Neuroscience 3



the diversity between the theoretical distance and the
actual distance.

(3) Similarity calculation of multimodal information
fusion. Based on parts 1 and 2, the spatiotemporal
and appearance similarity of the input vehicle image
pairs are summed with a weight. We rerank the
vehicle similarity of fusion information.

3.2. Appearance Features of Vehicle ReID. Te vehicle ap-
pearance feature extraction network is shown in Figure 3.
We use Resnet50 as the feature extraction backbone network
and adjust each image to 256 × 128 pixels. Given an input
image xi with label yi, the predicted probability of xi being
recognized as class yi is encoded with a softmax function,
represented by p(yi | xi). ID prediction p(yi | xi) is used to
calculate ID loss [22]. Te model outputs ReID feature Ai

�→

which is used to calculate triplet loss [23]. Te output di-
mension of the full connection layer is changed to the
number of vehicle IDs in the training dataset.

Te ID loss treats the training process of vehicle ReID as
an image classifcation problem [24], i.e., each identity is a
distinct class. In the testing phase, the output of the pooling
layer or embedding layer is adopted as the feature extractor.
Te identity loss is then computed by the cross-entropy.

LID � −
1
N



N

i�1
log p yi xi

  , (1)

where N represents the number of training samples within
each batch.

Te triple loss for feature extraction can reduce the
intraclass distance of positive pairs and increase the inter-
class distance of negative pairs. Given a triplet (xa, xp, xn),
including an anchor image xa, a positive xp, and negative xn,
the triplet loss is formulated as follows:

LTri � 
N

i�1
f x

a
i(  − f x

p
i 

�����

�����
2

2
− f x

a
i(  − f x

n
i( 

����
����
2
2 + α , (2)

where α is a margin and usually set to 0.3. N is the number of
training samples within each batch. f(∙) stands for the
appearance feature extractor.

In this work, we use ID loss and triplet loss together for
optimizing the model. For image pairs in the embedding
space, ID loss mainly optimizes the cosine distances while
triplet loss focuses on the Euclidean distances. Te feature
vectors of the two losses are inconsistent in the embedding
space. To address this problem, the BNNeck [22] is applied
for more efective loss computation. BNNeck adds a batch
normalization (BN) layer before the classifer FC layers of
the model. Te feature before the BN layer is denoted as Ai

�→
.

We let Ai

�→
pass through the BN layer to acquire a normalized

feature ai
→. In the training stage, the feature Ai

�→
is used to

compute the triplet loss. Te feature ai
→ is used to compute

the ID loss. Finally, the triplet loss and ID loss are combined
to optimize the model. To train the ReIDmodel, we combine
ID loss and triple loss as follows:

L � LID + LTri. (3)

In the test stage, the appearance features ( Ai

�→
, Aj

�→
) for

input image pairs (i, j) are generated using the vehicle
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Loss

ID
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Figure 2: Vehicle ReID pipeline based on the fusion of appearance and spatiotemporal information.
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appearance feature extraction network. We use the cosine
distance to measure the similarity between features and is
expressed as follows:

Pa(i, j) �
Ai

�→
· Aj

�→

Ai

�→�����

����� Aj

�→�����

�����

. (4)

3.3. Vehicle Spatiotemporal Features. Te motion of the
vehicle is limited by its speed and spatiotemporal motion.
Te time that the vehicle travels through a pair of cameras
should be within a reasonable range. In a highway tunnel
monitoring system, the driving speed of a vehicle is within
the range of 10–80 km/h. Te time interval of vehicle
movement is afected by the camera installation position and
the topological relationship of the tunnel and cameras. We
analyze the motion law of the vehicle time interval between
cameras in the VisInt-THV-ReID dataset. For each pair of
cameras, the vehicle space interval can be modeled as a
random variable that follows a certain distribution [6, 7].

In order to derive the spatiotemporal similarity proba-
bility distribution of the vehicle, we propose a feature called
spatial discrepancy. We introduce the spatial discrepancy by
considering Figure 4(a). Tis fgure shows the spatiotem-
poral graph that relates vehicle i observed in upstream
camera with another vehicle j observed in downstream
camera. Te motion variables involved are velocity vi of
vehicle i, timestamp ti, and space position li of the tunnel.
Te state vector Si

→
expresses the spatiotemporal state of

vehicle i.
To construct the spatiotemporal similarity relationship

between the vehicle pairs, we calculate the theoretical dis-
tance and the actual distance of the vehicle pairs and defne
the indicator εij to calculate the diversity of the distances.
According to the constant acceleration model, the theo-
retical distance of the vehicle is calculated as follows
according to the upstream and downstream cameras of the
tunnel:

sij �
vi + vj

2
· tj − ti . (5)

Te actual distance between the current position of the
vehicle collected by the upstream and downstream cameras
is expressed as follows:

lij � lj − li



. (6)

Te spatial discrepancy εij evaluates the ftness between
the displacement estimate sij and the actual distance lij as
stated in Figure 4(a). Te tunnel spatial discrepancy is
expressed as follows:

εij �
sij − lij 

sij



 + lij




∈ (−1, 1), (7)

which is used to evaluate the diversity between the theo-
retical distance and the actual distance. Te spatial dis-
crepancy εij is evaluated by the vehicle spatiotemporal
features involving velocity, timestamp, and space position.

To maintain the consistency of the data structure of the
multimodal data fusion, we maintain the consistency of the
spatiotemporal similarity discriminant method with the
appearance feature discriminant method and use the chord
function to represent the spatiotemporal similarity proba-
bility distribution of the vehicle. Te Pst(i, j) is defned as
follows:

Pst(i, j) � cos ε2ij ·
π
2

 . (8)

As shown in Figure 4(b), Pst(i, j) increases as εij tends to
0. Based on Pst(i, j), we can determine candidate matching
vehicles according to the spatiotemporal similarity in
tunnels.

3.4. Vehicle ReID by Fusing Image and Tunnel Spatiotemporal
Information. To make full use of the vehicle appearance and
spatiotemporal information, we establish a multimodal in-
formation strategy. Te vehicle ReID probability is defned
as follows:

P(i, j) � λPa(i, j) +(1 − λ)Pst(i, j), (9)

where the weight coefcient, λ ∈ (0, 1), is used to fuse the
spatiotemporal and appearance similarity.

Triplet loss

BN layers

FC layers

ID

ResNet50

256 × 128 images

(2048) (2048)

ID loss

p(yi|xi)

BNNeck

features Ai features ai

Figure 3: Te framework of vehicle appearance modeling.
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4. Experiments

4.1. VisInt-THV-ReIDDataset. We verifed the efectiveness
of the proposed method on the VisInt-THV-ReID (Te
dataset is open-sourced at the following website: https://
github.com/jialei-bjtu/VisInt-THV-ReID) dataset, which is
collected from four cameras deployed in Taijia Expressway
Linxian No. 3 tunnel in Shanxi province, China, providing
high-defnition video data of 6 million pixels and spaced at
300meters. We collected video data for 10 hours daily over
3 days, from November 26 to 28, 2020, from 10:00 to 20:00.
We annotated 10,048 pictures of 865 HAZMAT vehicles
with their spatial position, speed, and timestamp informa-
tion. To the best of our knowledge, this is the frst open-
source HAZMATvehicle ReID dataset.Te sample dataset is
shown in Figure 5.

To mark the spatiotemporal and speed information of a
vehicle, we must transform its spatial coordinates. Per-
spective transformation is used to transform the vehicle
driving area under the camera vision to a fxed-size rectangle
[11], as shown in Figure 6.

Te position (xi, yi) of a vehicle in the camera feld of
view in the tunnel is calculated as follows:

x
′
, y
′
,ω′  � x

o
, y

o
, 1  · T,
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y
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⎡⎣ ⎤⎦,
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(10)

where xi is the lateral distance of the vehicle from the left
wall of the tunnel, yi is its longitudinal distance from the
current camera installation position, (xo, yo) is the lower
midpoint of the vehicle object detection box in the image,

and T is the transformation matrix defning the mapping
between the original region and the transformation region.
Using the image sequence taken by the surveillance camera,
the speed of vehicle i in the tunnel can be obtained as follows:

vi �

������

x
2
i + y

2
i



−

���������

x
2
i−1 + y

2
i−1



  · f, (11)

where f is the frame rate of the monitoring camera, the
spatial position vector li obtained by the camera at time ti is
(xi, yi), and the spatiotemporal vector of vehicle i is
Si

→
(vi, ti, li).
We trained and tested the model on the VisInt-THV-

ReID dataset, whose 10,048 images of 865 HAZMAT ve-
hicles were divided into training, query, and test sets at a 10 :
1 : 9 ratio. Te training set had 433 HAZMAT vehicles and
4980 images.Tere were 432 HAZMATvehicles in the query
and test sets, with 432 vehicle images in the query set and
4636 in the test set.

4.2. Experimental Settings. Te mAP [21] and cumulative
matching characteristic (CMC) curve [25] were used to
evaluate the performance of the proposed method on the
VisInt-THV-ReID dataset. Te average precision for a query
image is calculated as follows:

AP �


n
k�1P(k) · gt(k)

Ngt
, (12)

where n is the number of images in the test set, Ngt is the
number of ground truths, P(k) is the current precision result
of the k-th query image, and gt(k) is an indicator function.
When the matching result of the k-th query image is correct,
gt(k) � 1, and gt(k) � 0 when it is incorrect.

Te mAP is calculated as follows:

mAP �


Q
q�1AP(q)

Q
, (13)

where Q is the number of pictures in the query dataset. Te
CMC curve shows the probability that the correct matching
image of the vehicle appears in the candidate lists. Te CMC
of the k-th position is as follows:

(vj,tj,lj) 

(vi,ti,li) 

t
i

j' j

lij sij

l
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Figure 4: (a) Motion states of vehicles i and j. (b) Spatiotemporal similarity distribution in tunnels.
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CMC(k) �


Q
q�1gt(q, k)

Q
, (14)

where gt(q, k) is an indicator function, which equals 1 when
the ground truth of the q query image appears before the k

position. We also used Rank-1, Rank-5, Rank-10, and Rank-
20 in the feld of ReID to evaluate the model.

4.3. Ablation Study. Table 1 compares the experimental
results of the multimodal fusion ReID method with those of
Visual and ST-COS, which are appearance-based and spa-
tiotemporal-based, respectively.

Te method of Visual achieved 89.7% mAP and 96.3%
Rank-1. Te method of ST-COS achieved 85.5% mAP and
71.3% Rank-1.Te fusionmethod Visual + ST-COS achieved
99.7% mAP and 99.8% Rank-1. Te mAP of the fusion
method increases by 142% and 10% compared to Visual and
ST-COS and the Rank-1 rises by 3.5% and 28.5%.

Te above results show that the multimodal information
fusion method is superior to the use of appearance or
spatiotemporal information alone and verify the efective-
ness of the proposed multimodal information fusion
method.

4.4. Comparison with Baselines. Table 2 shows the recog-
nition precision of three baseline methods, PROVID [21],
Visual + ST [7], and Siamese-CNN [8], comparing to that of
Visual + ST-COS on the VisInt-THV-ReID dataset.

4.4.1. Appearance Feature Extraction and STR Spatiotem-
poral Fusion (PROVID). Te method of PROVID extracts
the appearance features of HAZMAT vehicles by the
Resnet50 network and uses the STR method to measure the
spatiotemporal relationship [21]. Te STR is defned as
follows:

STR(i, j) �
Ti − Tj

Tmax
·
δ Ci, Cj 

Dmax
, (15)

where Ti and Tj are the timestamps for the vehicles i and j

captured by the cameras. Tmax is the maximum time interval
of vehicles passing through the tunnel. δ(Ci, Cj) is the actual
distance between the current position of the vehicles col-
lected by the upstream and downstream cameras, and Dmax
is the global maximum distance between any vehicles.We set
Dmax as the length of the tunnel.

4.4.2. Visual + ST. Te method of Visual + ST extracts the
appearance features of HAZMATvehicles with the Resnet50
network and uses a spatiotemporal model based on the
Gaussian distribution to predict the probability of vehicles
[7]. PstG(i, j) presents the similarity of the spatiotemporal
features of vehicle pairs, and it is defned as follows:

PstG(i, j) � e
− 10·ε2

ij 
, (16)

where εij is the tunnel spatial discrepancy as defned in
equation (7).

4.4.3. Siamese-CNN. Te method of Siamese-CNN uses a
Resnet50 network to extract the appearance features of
HAZMAT vehicles, and a multilayer perception network is
applied to obtain their spatial and temporal relationships [8].
Te spatiotemporal branch computes the spatiotemporal
compatibility. Given the timestamps (ti, tj) and the posi-
tions (li, lj) of vehilces, the input features of the branch are
calculated as their time diference ∆t(ti, tj) and spatial
diference ∆d(li, lj). Te scalar spatiotemporal compatibility
is obtained by feeding the concatenated features,
[∆t(ti, tj),∆d(li, lj)]T, into a multilayer perception with two
fully connected layers. Te outputs of the two branches are
concatenated and input into a 2 × 1 fully connected layer
with a sigmoid function to obtain the fnal compatibility
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Velocity: 65.3 km/h

ID: 0184 Cam: 01
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Figure 5: VisInt-THV-ReID dataset.
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between the two states. Siamese-CNN takes all visual, spatial,
and temporal information into consideration.

Te results show that the proposed method achieves the
best performance. It improves mAP and Rank-1 by 9.7% and

4.2%, respectively, compared with PROVID. Tis indicates
that the STR spatiotemporal measurement method is not
accurate enough to express the spatiotemporal information
of vehicles in road tunnels. Compared with Siamese-CNN,

Original region

Perspective
transformation

transformed region

Figure 6: Coordinate transformation of vehicle position in tunnel space based on surveillance video.

Table 1: Results of ablation experiment.

Methods mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%)
Visual 89.7 96.3 99.5 99.5 99.8
ST-COS 85.5 71.3 85.9 98.8 100
Visual + ST-COS 99.7 99. 100 100 100
Te bold values in Table 1 are the best values from the same column of data.

Table 2: Results of comparative experiments.

Methods mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%)
PROVID 90.0 95.6 99.5 99.8 99.8
Visual + ST 90.8 96.1 99.5 99.8 99.8
Siamese-CNN 82.2 96.8 98.4 99.1 99.3
Our method 99.7 99. 100 100 100
Te bold values in Table 2 are the best values from the same column of data.
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Figure 7: CMC curves on VisInt-THV-ReID dataset.
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the proposed method improves mAP and Rank-1 by 17.5%
and 3.0%. Since Siamese-CNN uses a multilayer perception
network to train the spatial and temporal information of
vehicles, the difculty of model training is decreased and the
precision is not ideal. Compared with Visual + ST, the
proposed method improves mAP and Rank-1 by 8.9% and
3.7%, respectively. Tis shows that the proposed cosine
spatiotemporal model can more accurately express the
spatiotemporal state of a tunnel compared with Gaussian
distribution. Te CMC curves of all methods are shown in
Figure 7.

4.5. Parameter Analysis. We experimented with the pa-
rameters of λ in the interval of 0.1–0.9. Te best fusion result
is achieved when λ equals 0.35.Te comparison results of the
parametric experiments are shown in Table 3. It can be
observed from the table that a larger λ would cause ap-
pearance features to dominate vehicle identifcation, while a
smaller λ causes spatiotemporal information to dominate.
Table 3 shows that λ can have an important efect on the
fusion results, and λ is relatively insensitive to the results in
the interval 0.3–0.7.

5. Conclusion and Future Work

In this study, we presented a vehicle ReID method based on
the fusion of vehicle appearance and tunnel spatiotemporal
information for the task of HAZMAT vehicle ReID in road
tunnels. Te proposed method was evaluated on the VisInt-
THV-ReID dataset. Tis study could play a role in pro-
moting HAZMAT vehicle monitoring and trafc safety
management in road tunnels.

Our future work has two aspects. Based on vehicle ReID
research, we will study multicamera vehicle tracking tech-
nology to collect vehicle trajectories. In addition, we will use
the time-to-collision (TTC) to indirectly evaluate safety and
study a tunnel accident risk prediction model based on the
trafc fow state.
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Remote-sensing image scene data contain a large number of scene images with di�erent scales. Traditional scene classi�cation
algorithms based on convolutional neural networks are di�cult to extract complex spatial distribution and texture information in
images, resulting in poor classi�cation results. In response to the above problems, we introduce the vision transformer network
structure with strong global modeling ability into the remote-sensing image scene classi�cation task. In this paper, the parallel
network structure of the local-window self-attention mechanism and the equivalent large convolution kernel is used to realize the
spatial-channel modeling of the network so that the network has better local and global feature extraction performance. Ex-
periments on the RSSCN7 dataset and theWHU-RS19 dataset show that the proposed network can improve the accuracy of scene
classi�cation. At the same time, the e�ectiveness of the network structure in remote-sensing image classi�cation tasks is veri�ed
through ablation experiments, confusion matrix, and heat map results comparison.

1. Introduction

With the development of satellite remote-sensing technol-
ogy and unmanned aerial vehicle technology, the intersec-
tion of remote sensing and computer vision provides a new
research area for remote-sensing image processing. Com-
pared to terrestrial imagery, remote-sensing imagery pro-
vides a di�erent perspective to describe the Earth’s surface
and facilitate a range of Earth observation missions [1].
Remote-sensing image scene classi�cation is the funda-
mental work for understanding remote-sensing imagery and
plays an important role in remote-sensing imagery appli-
cations such as Land Use/Land Cover (LULC) classi�cation
[2–4] and urban planning [5].

Remote-sensing image scene classi�cation refers to the
classi�cation of di�erent remote-sensing images in a dataset
according to certain classi�cation features, so the key to
scene classi�cation lies in the extraction of image features.
�e following are three types of methods for image feature
extraction: First, the feature descriptors are directly
extracted from the image, such as color histogram, scale-
invariant feature transform SIFT [6], directional gradient

histogram HOG [7], and local binary pattern LBP ; the
second is to continue feature extraction based on some
underlying features extracted from image blocks, such as the
bag-of-words model BOVW and sparse coding [8]; and the
third is to automatically extract features from images
through deep learning methods. Each of the three methods
has its own advantages and disadvantages, while the deep
learning method does not need to manually extract feature
descriptors, and it possesses excellent classi�cation e�ect, so
the trend of using deep learning methods for remote-sensing
image scene classi�cation is increasing [9, 10] at present.
Among these deep learning methods, traditional convolu-
tional neural network (CNN) is the most widely used one.
Compared with traditional handcrafted feature extraction
methods, its multistage feature extraction architecture can
extract more discriminative semantic features and provides
an end-to-end framework. Deep learning techniques for
remote-sensing image scene classi�cation aremainly divided
into three types, namely unsupervised image classi�cation,
supervised image classi�cation, and object-based image
analysis [11]. In this paper, the technique of supervised
classi�cation is used to classify remote-sensing images.
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(e difficulty of remote-sensing scene classification is
that when determining the scene scheme, (1) the size of key
objects varies greatly, (2) many objects unrelated to the scene
scheme are often submerged in the image, and (3) compared
with natural images, remote-sensing scenes are more
complex in terms of spatial arrangement and object dis-
tribution [12, 13]. (erefore, how to effectively perceive
regions of interest of different sizes and build more dis-
criminative representations from complex object distribu-
tions is crucial for understanding remote-sensing scenes.
Figure 1 below shows the changes in the size and number of
objects in the aerial images selected in this paper.

In recent years, the transformer has achieved great
success in the fields of natural language processing ?NLP?
and speech processing (SP). Due to its powerful global
feature extraction capability, this structure was introduced
into the field of computer vision [14]. (e dominant model
in the field of computer vision is the CNN network. As the
transformer structure becomes more and more efficient, the
use of the vision transformer to complete visual tasks has
become a new research direction. Vision transformer has
powerful global modeling capabilities, but there are some
limitations, such as the lack of information exchange in the
local area, the large amount of parameters and calculation,
getting extremely prone to over-fitting, and the internal
structure information of the image block getting destroyed
in the process of image patching. In response to the above
problems, researchers have redesigned the vision trans-
former network model. One of the design solutions is to
combine the vision transformer and CNN network struc-
ture. (is network can fuse the global modeling ability of
vision transformer and the local feature extraction ability of
CNN to improve the model efficiency and performance to a
certain extent, such as the conformer [15], CoAtNet [16],
visual attention network (VAN [17]), twins [18], and
LocalViT [19]. Another method is to control the model
capacity by dividing the input feature map into small
windows for local-window self-attention. (is method can
enhance the capture efficiency of local relationships and
greatly reduce the computational complexity of the model,
such as the Swin transformer [20]. However, it should be
noted that in this method, there will be the problem of
window limitation. (e information of the image only in-
teracts in each small window, and there will be a lack of
information interaction between the windows. A Swin
transformer uses a shifted window attention to construct the
global input image, but it is not constructed in overlapping
local windows, so weights can only be shared on channel
dimensions and not including global weight sharing on
space, and in the form of shifted window attention, it does
not really override the relationship between global objects.

For remote-sensing scene classification tasks, it is ex-
tremely important to design a network that can learn local
and global features to solve the problem of the size change of
key targets in each pixel area.(e contributions of this paper
mainly include the following three points:

(1) A parallel model structure is proposed, which spa-
tially solves the problem of limited receptive field of

small window self-attention and enhances the spa-
tial-channel modeling capability of the network

(2) According to some lightweight vision transformer
structures, the computational efficiency has been
improved

(3) (e enhanced classification module is introduced to
enhance the feature representation capability of
high-level feature remote-sensing image scenes and
enhance the expressive capability of the network

Compared with other network structures, this network
has higher classification accuracy. Validated on the RSSCN7
dataset and WHU-RS19 dataset, it achieved good results.

(e rest of the chapter is structured as follows. (e
second section is related work, including the research status
and analysis of some lightweight convolutional neural
network structures and vision transformer structures, as well
as the role of parallel structures in feature extraction. Section
3 provides the method of this paper, including the overall
framework of the network and the introduction of each
module. Section 4 shows the experiments of our method on
two remote-sensing scene classification datasets. Finally, a
conclusion is drawn in Section 5.

2. Related Work

2.1. Scene Classification Lightweight Network. For the tra-
ditional convolutional neural network, the core of the
lightweight network is to lighten the network in terms of
volume and speed under the premise of maintaining the
accuracy as much as possible. For example, the classic
convolutional neural network SqueezeNet [21] uses model
compression to replace 3× 3 convolution with 1× 1 con-
volution to reduce the amount of parameters and calculation
and ShuffleNet [22] proposes pointwise group convolution
and channel shuffle to maintain accuracy and reduce the
parameters and calculation. MobileNet [23] proposes a
depthwise separable convolution structure instead of ordi-
nary convolution, which greatly reduces the model volume
and improves the calculation speed. (ese network struc-
tures are widely used in scene classification tasks due to their
low computational cost [24].

(e introduction of the traditional vision transformer
structure into the remote-sensing scene classification task
will inevitably introduce a large amount of parameters and
calculations. In the existing research, the work of reducing
the parameters and calculations of the vision transformer
model while maintaining the network accuracy are as fol-
lows: (e Swin transformer divides the feature map into
multiple small windows, adopts the local-window self-at-
tention mechanism in the small windows to reduce the
computational complexity, and realizes the global modeling
of the image on the channel through the shifted window
attention operation and obtains good results; MPViT [25]
uses multiscale patch and multipath structure, while re-
ducing the number of channels and reducing model pa-
rameters to achieve good performance; CMT [26]
introduced depthwise separable convolution in the self-
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attention module to downsample the feature map, by which
computational resources are saved effectively.

(is paper refers to the lightweight structure and
principles of the convolutional neural network and the vi-
sion transformer structure and designs a lightweight net-
work architecture that can combine the advantages of the
vision transformer and the convolutional neural network
feature extraction.

2.2. Transformer Parallel Structure. Parallel structures in
neural networks, such as GoogLeNet, [27] improve network
performance by paralleling convolution kernels of different
sizes (different receptive fields) and Big-Little Net [28]
obtains multiscale features by fusing two branches at dif-
ferent scales. According to the structural characteristics of
the convolutional network structure and transformer
structure, iFormer [29] applies the frequency ramp structure
to trade off the high and low frequency components and
improves the efficiency through the channel splitting
mechanism. In order to be able to learn key objects of
different sizes within remote-sensing images and use less
amount of parameters and calculation, this paper parallelizes
equivalent large convolution kernels with local-window self-
attention capturing local relations and global feature
extraction.

(e channel assignment in the parallel network structure
can be divided into two types: one is to compress the channel
to a specified number by point convolution, and the other is
to divide the channel into a specified number by channel
split [30]. Compared with channel split, the method of
applying point convolution for channel compression has
more parameters. Finally, we split the feature map output by
patch merging into two equal parts by channel split and then
use channel concatenating and shuffling. (e method in-
tegrates different features in the branch to realize the
construction of global features in the network space-channel
range.

3. Methodology

3.1. Framework Overview. (e overall framework of this
network structure is shown in Figure 2(a), which consists of
three parts: stem, stage, and enhanced classification. Stem
consists of convolutional layers and pooling layers, which
downscale an input image of size 256× 256 to 64× 64. Each
stage consists of the patch merging module and CAW
module. Patch merging mainly plays the role of down-
sampling the image, and CAW block is the main feature
extraction module. (e patch merging module changes the
size of the feature map to 1/2 times the original size by
selecting elements in the row and column directions of the

(a) (b)

Figure 1: (a) and (b) Examples of object size and number variation in remote-sensing images.

Computational Intelligence and Neuroscience 3



feature map at intervals of 2 and then stitching them to-
gether as a whole tensor. At this time, the channel dimension
will become original four times, and a fully connected layer
is used to adjust the channel dimension to twice the original
to achieve downsampling. After the feature extraction of the
three-layer stage, the feature map is input into the enhanced
classification layer to obtain the final classification result.

3.2. CAW Block. In the task of remote-sensing scene
classification, it is of great significance to the classification
of remote-sensing scenes to better capture the character-
istics of target objects of different sizes and make the
features more representative. (e concatenation of local-
window self-attention mechanism and shifted window self-
attention can realize the global modeling of the image in the
channel direction. For general image classification tasks,
images are generally localized, and this structure can learn
most of the content in the image. However, in the scene
classification image, there are changes in the size of the
target object, so it is particularly important to introduce a
global modeling in the space. In the process of using vision
transformer to patch the feature map, the internal structure
information of the image block will be destroyed, and the
feature map is not patched when the convolutional neural
network is used to extract the features of the image, which
can ensure the integrity of the internal features of the
image. (erefore, we consider adding a convolution kernel
to the parallel branch for feature extraction. In the con-
volutional neural network, a larger convolution kernel can
achieve more global feature extraction, but a large con-
volution kernel will bring a huge amount of parameters and
calculation, so we introduce the VAN module. (e VAN
network mainly consists of two parts which are the large
kernel attention (LKA) structure and the multilayer per-
ceptron (MLP) structure, where the LKA structure uses a

5 × 5 depthwise convolution, a 7 × 7 depthwise convolution
(with a dilation rate of 3), and a 1 × 1 convolution to ap-
proximate a 21 × 21 convolution kernel, which can be used
in the image with a slight compute costs and parameters to
capture long-range relationships.

(e CAW block proposed in this paper is a parallel
structure module of vision transformer. (e Swin trans-
former divides the feature map into several small windows
and then uses the self-attention mechanism for feature
extraction for each small window, while the VAN mainly is
composed of LKA and MLP. LKA stacks depthwise con-
volution (DW-Conv), depthwise dilated convolution (DW-
D-Conv), and 1× 1 convolution (1× 1 Conv) to make LKA
equivalent for larger convolutional neural networks. In this
paper, a Swin transformer with a window size of 4 × 4 and a
VAN network with an equivalent window of 21 × 21 are
used to form a parallel structure. (is parallel mechanism
not only retains the feature extraction advantages of the
Swin transformer’s local-window self-attention but also
makes up the window limit problem for the Swin trans-
former. (e CAW block module diagram is shown in
Figure 2(b), and the input feature map channel is divided
into two equal parts. (e operation description and ex-
pressions of the entire network structure are as follows,
where X, Y ∈Rh×w×c/2 are the feature maps obtained by
patch merging and channel split.

(e feature map of the upper branch converts the feature
map of sizeH×W×C/2 into the feature vector of HW×C/2
through reshape operation and then uses layer normaliza-
tion (LN) to normalize the feature vector, and inputs the
Swin transformer module for feature extraction; the Swin
transformer module is mainly composed of windowed
multihead self-attention (W-MSA), moving window mul-
tihead self-attention (SW-MSA), MLP, and skip connec-
tions. (e output formula of the local-window self-attention
branch is expressed as

65X64X64

25
6X

25
6X

3

In
pu

t

M
ax

po
ol

in
g

C
on

v 
7X

7
(S

=2
)

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

O
ut

pu
t

32X32X128 16X16X160 8X8X192

Enhanced
Classification

CAW
Block

Stage3Stage2Stage1Stem

CAW
Block

CAW
Block

(a)

Van
Block

Swin
Transformer

Block

CAW Block

X2

C
on

ca
t

Sh
uffl

e

Sp
lit

Re
sh

ap
e

(b)

Enhanced Classification

1X
1 

C
on

v–
BN

Re
lu

Av
gp

oo
lin

g,
 8

X8

Li
ne

ar

(c)

Figure 2: Network structure diagram.

4 Computational Intelligence and Neuroscience



X′ � W − MSA(LN(Reshape(X))) + Reshape(X),

X1 � MLP LN X′( (  + X′,

X1′ � SW − MSA LN X1( (  + X1,

X2 � MLP LN X1′( (  + X1′.

(1)

(e feature map of the lower branch enters the VAN for
global feature enhancement. In the VANmodule, the feature
map is first normalized through batch normalization (BN),
then through a 1× 1 convolution kernel,then nonlinearly
activated with Gaussian Error Linear Unit (GELU), then
through LKA and a 1× 1 convolution kernel, and finally
passes through theMLP structure.(e output formula of the
global feature supplementary branch is expressed as

%

Y′ � Conv1 × 1(LKA(GELU(Conv1 × 1(BN(Y))))) + Y,

Y1 � MLP BN Y′( (  + Y′,

Y1′ � Conv1 × 1(LKA(GELU(Conv1 × 1?BN Y1( )))) + Y1,

Y2 � MLP BN Y1′( (  + Y1′.

(2)

Finally, merge the feature maps of the two branches and
then perform the Shuffle operation to shuffle the feature
maps in the two channels so that the feature maps of the two
channels are fused. (e final output of the module is

OUTPUT � Shuff le Concat X2, Y2( ( . (3)

3.3. EnhancedClassification. Current CNNs usually take the
final downsampling operation, the fully connected layer, and
the softmax classifier as a whole, treating it as a classification
layer. Some salient features of this classification layer include
those as follows: It usually does not have any convolutional
layers, the number of parameters is small, and it is usually a
linear feature representation structure. For remote-sensing
image scenes, owing to interclass similarity and intraclass
variation, it is necessary to highlight local semantics and
more discriminative features. (erefore, it is particularly
important to optimize the classification layer to have
stronger feature representation capabilities. To enhance the
feature representation of high-level feature remote-sensing
imagery scenes, an additional 1× 1 convolutional layer and a
ReLU activation function are added before the classifier. As
shown in Figure 2(c), adding a 1× 1 convolutional layer
before the classifier can increase the nonlinearity of the
network and enhance the expressive ability of the network to
a certain extent.

4. Experiments and Results

4.1. Network Complexity. (is network is designed based on
the vision transformer structure. In order to ensure the
accuracy of the network and reduce the amount of pa-
rameters and calculation of the network structure, this paper
refers to some vision transformer network structures with
less parameters and less calculation in the design of the
network structure. In order to prove the effectiveness of the

network structure proposed in this paper in remote-sensing
image classification tasks, this paper selects some classic
convolutional neural networks and vision transformer
structures for comparative experiments. (e comparison
table of parameters and calculation is shown in Table 1:

4.2. Dataset. (is paper conducts experiments on two
widely used remote-sensing image classification datasets:
RSSCN7 dataset and WHU-RS19 dataset.

(e RSSCN7 dataset [34] was released by Qin Zou of
Wuhan University in 2015. It contains 2800 remote-sensing
images and a total of seven typical scene categories including
grassland, forest, farmland, parking, residential, industrial,
river, and lake. Each category contains 400 images with a
pixel size of 400× 400, and the diversity of scene images
makes it more challenging. In the experiment, we divide the
dataset into training sets and test sets in an 8 : 2 ratio by
random selection.

(e WHU-RS19 dataset [12] was released by Wuhan
University in 2011, containing 1005 remote-sensing images
and a total of 19 typical scene categories including airports,
beaches, bridges, business districts, deserts, farmland,
football fields, forests, factories, grassland, mountains, parks,
parking, ponds, ports, railway stations, residential, rivers,
and viaducts, each of which contains 50 images with a pixel
size of 600× 600. Compared with the RSSCN7 dataset, this
dataset is more diverse and has fewer training samples, so it
is more challenging.(e distribution ratio of training set and
test set of this dataset is the same as that of RSSCN7 dataset.

4.3. Evaluation Criteria. In this section, we explain the
evaluation metrics used to quantify the classification per-
formance of network models: accuracy, precision, sensi-
tivity, specificity, and F1-score. To represent the above
metrics, we also need to count four quantities in the con-
fusion matrix: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). (e evaluation index
formula is expressed as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

Specificity �
TN

TN + FP
,

F1 − score � 2 ×
precision × recall
precision + recall

(4)

Confusion matrices are often used to measure model
classification performance.(is matrix can intuitively reflect
the difference between the predicted value and the true
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value. It consists of four quantities: TP, TN, FP, and FN,
which are specifically expressed as follows:

True Positive(TP) FalseNegative(FN)

False Positive(FP) TrueNegative(TN)
 . (5)

4.4. Preprocessing and Experimental Set-Up. In order to
obtain a better training effect, the pictures in the experiment
are all subjected to the same preprocessing. First, the pictures
in the dataset are scaled and adjusted to 256× 256, and then
the pictures are digitized and normalized. (e normalized
means set is [0.485, 0.456, 0.406], and standard deviation is
set to [0.229, 0.224, 0.225].

(e experimental environment of this paper is shown in
the following table, including software and hardware in-
formation, and the same experimental environment and
experimental platform are applied to ensure the fairness and
feasibility of the experiment. (e training set and test set use
the batchsize of 16, and the optimizer uses AdamW, the
weight decay coefficient is 5e− 2, and the learning rate is
0.0001. (e experimental platform data is shown in Table 2.

In the training process, in order to make the network get
better convergence effect, a total of 500 epochs were trained
in each experiment. We take the highest value of the rec-
ognition accuracy of the experimental test set as the final
classification accuracy and use the accuracy, sensitivity,
precision, specificity, and F1 value as evaluation indicators.

4.5. Experimental Results and Discussion. In order to verify
that the introduction of VAN based on the structure of Swin
transformer can solve the problem of limited receptive field
of the Swin transformer and improve the classification effect
of remote-sensing scene images, this paper conducts ex-
periments on the RSSCN7 dataset and the WHU-RS19
dataset. Among them, 4 sets of ablation experiments and 10
sets of comparison experiments are set on the RSSCN7
dataset, and 10 sets of comparison experiments are set on the
WHU-RS19 dataset. (e comparative experiments in this
paper include 4 groups of classic convolutional neural
networks and 6 groups of transformer structure-related
network structures. In order to ensure the accuracy of the
experimental results, all experiments in this paper use the

same experimental environment, learning rate, loss func-
tion, optimizer, batchsize, etc.

In order to study the influence of the depth of CAW on
the classification performance of remote-sensing images, we
increased the number of module layers at different stages,
and compared the accuracy, parameter amount, and com-
putation amount of CAW-Net with different depths, where
brackets represent the number of CAW blocks at different
stages. (e experimental data are shown in Tables 3 and 4:

From the experimental results, with the increase of the
number of network layers, the amount of parameters and the
amount of calculation increase, the model appears over-
fitting, which leads to a decrease in the accuracy rate.
Considering both the classification performance and model
complexity, we believe that CAW (1, 1, 1) has the best price-
performance ratio.

In order to prove the complementarity of the two vision
transformer structures and achieve the effect of improving
the performance of remote-sensing scene image classifica-
tion, in the ablation experiment, we split and replace the two
branches into four different combined structures to conduct
experiments on RSSCN7. (e maximum value in the 500
epochs is used as the experimental result, and the experi-
mental results are shown in Table 5. Among them, the Swin
transformer-only and VAN-only models are network
models obtained by paralleling the same module with other
structures unchanged; No Shuffle is the network model
obtained by removing the Shuffle structure in the original
network structure; and point convolution is a network
structure model that replaces the channel segmentation
structure in the original network structure with point
convolution for channel compression.

It can be seen from Table 5 that the parallel connection of
Swin transformer and VAN can solve the problem of limited
receptive field of local-windows self-attention and further
improve the performance of the network. Compared with
using the two modules alone, the accuracy is increased by
0.54% and 1.56%, respectively; Adding Shuffle after the two
branches which are connected in parallel can better integrate
the features of the two branches, and the network accuracy is
increased by 0.89%. In the channel allocation, the spilt
operation is better than channel compression, which im-
proves the network performance by 0.72%. Considering the
classification performance andmodel complexity, we believe
that this network structure has the best cost performance. In
Figure 3, we give the seven-category confusion matrix of the
RSSCN7 dataset of this network, and Figure 4 shows the 19-
category confusion matrix of this network.

Table 2: Experimental platform data.

Attributes Configuration information
Operating
system Windows 10

CPU Intel(R) Core (TM) i5-10300H CPU @
2.50GHz

GPU GeForce RTX 2060
CUDA CUDA 11.6.110
Frame PyTorch 3.7

Table 1: Comparison of parameters and calculations of the model.

Model FLOPs (G) Parameter (M)
ResNet50 [31] 5367.48 23.52
Vgg16 [32] 20185.96 138.36
DenseNet [33] 3742.61 7.98
GoogleNet [27] 2071.13 6.99
ViT-Ti [14] 21980.16 86.38
Swin transformer [20] 7078.50 28.24
VAN [17] 1149.08 41.00
Conformer-Ti [15] 3241.03 11.31
CMT [26] 1580.74 8.17
MPViT [25] 4212.25 6.08
CAW 566.61 1.27
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In order to reflect the recognition effect of this network
structure on remote-sensing datasets, this paper uses some
classic convolutional neural network models and vision
transformer network models that perform well in computer
vision for comparative experiments. (e experiments are
performed on the RSSCN7 dataset and the WHU-RS19
dataset under the same environment. (e experimental
results are shown in Tables 6 and 7. (e experimental results
with the best effect are marked in bold, and the results are
kept to two decimal places.

From the results in Tables 5–7, we can see that
compared with other network structures, the network
structure proposed in this paper achieves good results on

remote-sensing datasets with exponentially reduced pa-
rameters and calculation. (e parameters of this network
are 9.4 times that of ResNet50, 38.8 times that of ViT-Ti,
and 12.5 times that of Swin transformer. Compared with
these networks, on the RSSCN7 dataset, the accuracy rates
of the networks proposed in this paper have increased by
1.79%, 5.36%, and 2.32%, respectively, and the accuracy
rates on the WHU-RS19 dataset have increased by 1.46%,
14.08%, and 4.86%.

We apply Gradient-weighted Class Activation Mapping
(Grad-CAM) [35] to a different network, using images from
the RSSCN7 validation set. Grad-CAM is a recently pro-
posed visualization method, which highlights the feature
map in the form of a heat map in order to visualize the
feature representation learned by the neural network from
an intuitive effect.

As shown in Figure 5, we compare the visualization
results of Swin transformer, VAN, and our network. Both
the Swin transformer and VAN can capture the area where
the target object is located, but it is not accurate enough
and there is a certain misjudgment; for example, in the
factory scene, the field next to the factory with a similar
color is misjudged as a factory. Although VAN can
identify the scene area in these scenes, it is more divergent.
For example, in the grass and industry scenes, the VAN
network can capture the area where the grass and the
industry are located, but the range is small and not ac-
curate enough. Our model captures details representing
semantic features in complex background images, and it
has higher confidence than baseline models in the clas-
sification of some difficult objects. We can infer that our
model has stronger feature extraction ability and can learn
more discriminative features.

Table 3: Comparison results of CAW-Net networks with different depths.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
CAW (1, 2, 1) 95.18 95.24 95.17 99.21 95.19
CAW (1, 2, 2) 95.54 95.39 95.54 99.29 95.53
CAW (1, 2, 3) 95.35 95.40 95.34 99.24 95.37
CAW (1, 1, 1) 96.25 96.27 96.24 99.40 96.24

Table 4: Comparison of parameters and calculations of CAW-Net with different depths.

Model FLOPs (G) Parameter (M)
CAW (1, 2, 1) 656.68 1.58
CAW (1, 2, 2) 695.12 2.03
CAW (1, 2, 3) 733.55 2.48
CAW (1, 1, 1) 566.61 1.27

Table 5: Comparison results of parallel networks with different structures.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
Swin transformer-only 95.71 95.84 95.73 99.30 95.71
VAN-only 94.69 94.69 94.64 99.14 94.63
No shuffle 95.36 95.39 95.34 99.24 95.36
Point convolution 95.53 95.64 95.53 99.27 95.56
CAW 96.25 96.27 96.24 99.40 96.24
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Figure 3: RSSCN7 dataset classification confusion matrix.
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Figure 4: WHU-RS19 dataset classification confusion matrix.

Table 6: Overall accuracy and other parameters of the method on the RSSCN7 dataset.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
ResNet50 [31] 94.46 94.59 94.09 99.09 94.49
Vgg16 [32] 93.75 93.79 93.76 98.99 93.71
GoogleNet [27] 93.57 93.61 93.57 98.93 93.56
DenseNet [33] 93.21 93.34 93.21 98.89 93.21
ViT-Ti [14] 90.89 90.89 90.89 98.49 90.89
Swin transformer [20] 93.93 93.96 93.91 99.00 93.93
VAN [17] 94.11 94.17 94.11 99.03 94.11
Conformer-Ti [15] 95.00 95.06 95.00 99.20 95.00
CMT [26] 94.82 95.06 94.83 99.14 94.81
MPViT [25] 95.00 95.03 95.00 99.19 95.00
CAW 96.25 96.27 96.24 99.40 96.24
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5. Conclusions

Aiming at the problems of large size changes of key ob-
jects, complex spatial arrangement, and object distribu-
tion in remote-sensing scene classification tasks, this
paper proposes a parallel network model combining the
local-window self-attention mechanism and equivalent
large convolution kernel. (e complementary parallel
structure of Swin transformer and VAN realizes the space-
channel modeling of transformer network structure with a
small amount of parameters and calculation. A series of
experiments on two challenging remote-sensing image
scene classification datasets show that the network pro-
posed in this paper has good remote-sensing image scene
classification results.

In the follow-up work, we will further simplify the
network structure and try to optimize the network perfor-
mance by introducing some other attention mechanismsthat
can improve the network performance.
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�e semisupervised semantic segmentation method uses unlabeled data to e�ectively reduce the required labeled data, and the
pseudo supervision performance is greatly in�uenced by pseudo labels. �erefore, we propose a semisupervised semantic
segmentation method based on mutual correction learning, which e�ectively corrects the wrong convergence direction of pseudo
supervision. �e well-calibrated segmentation con�dence maps are generated through the multiscale feature fusion attention
mechanism module. More importantly, using internal knowledge, a mutual correction mechanism based on consistency reg-
ularization is proposed to correct the convergence direction of pseudo labels during cross pseudo supervision. �e multiscale
feature fusion attention mechanism module and mutual correction learning improve the accuracy of the entire learning process.
Experiments show that the MIoU (mean intersection over union) reaches 75.32%, 77.80%, 78.95%, and 79.16% using 1/16, 1/8, 1/
4, and 1/2 labeled data on PASCAL VOC 2012. �e results show that the new approach achieves an advanced level.

1. Introduction

Asa fundamental task, semantic segmentation iswidelyused in
medical image diagnosis [1], automatic driving [2], and other
�elds, which is the process of de�ning the boundaries between
the various semantic entities in an image. From a technical
point of view, each pixel in the image is assigned a category or
semantic label. With the development of deep learning, fully
supervised semantic segmentations [3–7] achieve success, but
they all need enough pixel-level labels to complete the rep-
resentation learning, which requires a lot of manpower.

Weakly supervised and semisupervised semantic seg-
mentation e�ectively reduces the annotation burden.
Weakly supervised methods use weak annotations as labels
to train segmentation models. Semisupervised methods
combine additional unlabeled data with a small amount of
labeled data to improve segmentation model performance
and close the gap with supervised models trained from fully
pixel-labeled data. How to use unlabeled data for training

models to get good segmentation performance is a problem
we need to solve.

In semisupervised semantic segmentation, the methods
are mainly based on adversarial learning [8–10] and con-
sistency regularization [11, 12]. �e generative adversarial
network (GAN)-based approach [8] proposed a full con-
volution discriminator, which can learn to distinguish the
ground truth and the output of the generator, enhancing the
consistency between the predicted maps of the segmentation
network and the ground truth. Consistency regularization
enforces the prediction consistency of perturbations by
increasing the input image perturbation [11, 12], the feature
perturbation [13], and the network perturbation [14] to
make the prediction consistent among the output of multiple
perturbations. Chen et al. [15] proposed the cross pseudo
supervision loss, in which unlabeled data were input into
two segmentation networks with di�erent initializations to
generate pseudo labels for cross supervision and strengthen
the consistency of the model.
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However, the cross pseudo supervision still has two
drawbacks. First, the segmentation network generates inac-
curate pseudo labels to guide model learning, which damages
the model accuracy, and pseudo labels are directly generated
by the confidence segmentation maps of unlabeled images,
completely ignoring the ability of the network itself to im-
prove pseudo labels. Second, the cross pseudo supervision is
plagued by confirmation bias and tends to overfitting pseudo
labels that are incorrectly predicted. After one segmentation
network predicts the wrong label output, the cross pseudo
supervision trains the other model with wrong knowledge,
thus hindering the cross learning of the model.

To address the above two problems, we propose a new
semisupervised semantic segmentationmethod based on cross
pseudo supervision. Many works combine consistency regu-
larization with pseudo labels, our proposed method also in-
cludes pseudo labels [16–18] and utilizes pseudo segmentation
maps to enhance consistency. To address the first problem, we
introduce the multiscale feature fusion attention mechanism
module [19] to generate well-calibrated segmentation confi-
dence maps, and the multiscale feature fusion attention
mechanism mode fuses high-level feature maps and low-level
feature maps to generate segmentation confidence maps with
higher quality. To address the second problem, we propose
mutual correction learning to improve the model convergence
in the wrong direction caused by pseudo labels. -e mutual
correction loss uses the internal knowledge of pseudo labels for
mutual correction, which not only strengthens the consistency
of the network but also corrects the learning direction of the
model. In this way, the segmentation performance of con-
sistency training is greatly improved. To sum up, our two-fold
contributions are as follows:

(i) We propose an effective module to generate better
quality segmentation confidence maps by fusing
low-level texture information and high-level se-
mantic information of the features.

(ii) We propose mutual correction learning for semi-
supervised semantic segmentation, which uses the
intrinsic knowledge to correct the convergence di-
rection of the model and effectively ameliorates the
problem of model performance degradation by er-
roneous cross pseudo supervision.

-e rest of this article is arranged as follows: -e second
section introduces the related work of semisupervised semantic
segmentation. In the approach section, we describe the details
of mutual correction learning with pseudo labels. -e exper-
imental details and results are presented in the experiment
section. In the conclusion section, we summarize this paper.

1.1. Related Work

1.1.1. Fully Supervised Semantic Segmentation. Fully con-
volutional networks (FCNs) [3] can accept input images of
any size, and the deconvolution layer is used to perform
upsampling of the feature map of the last convolution layer
and predict each pixel. Although high-level features contain
rich semantic information, they cannot capture long-term

relationships well. -erefore, global pooling [4], dilated con-
volution [5], pyramid pooling [6], and attention mechanisms
[7] are used to better aggregate context. Deeplabv3+ [20] fuses
features of different scales to refine the object boundaries of the
segmentation results. However, training supervised segmen-
tation networks requires a large amount of labeled data, which
is expensive to collect. Our work alleviates the constraints of
annotated data by making efficient use of unlabeled data. To
make a fair comparison with previous works, we use Deep-
labv3+ as the backbone architecture.

1.1.2. Weakly Supervised Semantic Segmentation. Weakly
supervision is to further reduce the cost of data annotation
based on full supervision. Some early works use weak an-
notations such as bounding boxes [21–23], scribbles [24],
and image-level labels [25–28]. -e recent methods use object
location information to generate pseudo pixel annotations and
train the segmentation network, and their segmentation per-
formance is significantly improved. Al-Huda et al. [26] fused
activation maps and saliency maps to guide the model to
generate initial pixel-level annotations and generate more
accurate pixel labeling through iteration. Although promising
results have been obtained using the above methods, most of
them require additional training strategies. Al-Huda et al. [28]
proposed a new postprocessing method, which learned the
concept of the object scale from the intermediate features of
hierarchical structure through dynamic programming and
further improved the segmentation accuracy.

1.1.3. Semisupervised Semantic Segmentation. -e semi-
supervised method is based on incomplete supervised
learning, using partially labeled data and unlabeled data for
model training. -e semisupervised semantic segmentation
method is mainly based on the idea of consistent regula-
rization and pseudo labeling.

Consistency regularization enforces the model to make
consistent predictions concerning various perturbations. Its
effectiveness is based on the smoothing assumption or the
cluster assumption. -ese assumptions consider that data
pointing close to each other are likely from the same class,
which are often used in classification tasks [29, 30]. As for
semantic segmentation tasks, French and Ouali found that
semantic segmentation tasks do not fully comply with the
clustering assumption in [11, 13]. -erefore, Ouali et al. [13]
proposed to perturb the output of the encoder while
maintaining the clustering assumption and used multiple
auxiliary decoders to obtain a consistent prediction. French
et al. [11] found that mask-based enhancement strategies
were effective and introduced data enhancement technology
CutMix [31]. -e idea of CutMix is to mix samples by
replacing part region of the image with a patch from another
image and treat it as an extension of Cutout [32] and Mixup
[33]. Cross consistency training (CCT) [13] used shared
encoders and multiple decoders as segmentation networks,
and the prediction using different decoders enhanced
consistency. Mittal et al. [9] proposed a dual-branch method
for semisupervised semantic segmentation, the GAN-based
model solved the inaccuracy of low-level details, and the
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semisupervised multilabel classification model corrected the
misunderstanding of high-level information. Lai et al. [34]
proposed different contexts in the same area to enhance the
consistency of context awareness. Guided collaborative
training (GCT) [35] further used different initialization
segmentation networks to enhance the consistency of dis-
turbed network prediction. Our approach combines the
ideas of CutMix [31] and cross pseudo supervision (CPS)
[15] to enhance the consistency between mixed output and
mixed input prediction.

Pseudo labeling is a technique that utilizes unlabeled
data through feature learning and alternating pseudo label
prediction [16–18]. Its main goal is entropy minimization,
and it encourages the network to make confident pre-
dictions of unlabeled images and prevents features from
being trained to the wrong class. Chen et al. [17] proposed
a new two-branch network in which the pseudo network
extracted the correct pseudo labels as auxiliary supervised
information for the training segmentation network. Zhou
et al. [18] proposed a pseudo label enhancement strategy
to improve the quality of pseudo labels. -e key to pseudo
labeling is the quality of pseudo labels. Most models
[36, 37] refine pseudo labels from external guidance, such
as teachers. However, the teacher model is often fixed,
making the student inherit some inaccurate predictions
from the teacher. In order to generate better pseudo labels,
the recent approach is to update both the teacher and
student models, such as coteaching [38], dual students
[14], and metapseudo labels [39]. Furthermore, it is es-
sential that the model converges in the right direction at

the beginning of training. In the third section, mutual
correction learning is used to correct the convergence
direction of the model.

1.2. Approach. Semisupervised semantic segmentation uses
labeled imagesDl � xl, y∗  and unlabeled imagesDu � xu 

to learn a segmentation network. x ∈ RH×W×3 denotes the
images with a resolution of H × W, y∗ ∈ RH×W×K is the
ground truth corresponding to xl with pixels labeled by
Kclasses, andfis a segmentation network with a weight of θ.

-e approach proposed in the paper is shown in Fig-
ure 1. -e mutual correction learning model consists of two
parallel segmentation networks. f(θ1) and f(θ2) are the
same segmentation networks with different initialization.
-e network inputs are xu1, xu2, and xmix, unlabeled images
xu1 and xu2 are with the same augmentation, and xmix is
obtained through CutMix [31] by (1), where M ∈ (0, 1)W×H

is binary coding and represents the position of removing and
filling from two images:

xmix � M⊙ xu1 +(1 − M)⊙ xu2. (1)

p is the segmentation confidence map obtained after
softmax normalization. -e output structure with a weight
θ2 is the same as the output with θ1.

p11 � f xu1; θ1( , (2)

p12 � f xu2; θ1( , (3)

ƒ (θ1)

ƒ (θ2)

p11

p12

xu2

xmix
Cutmix image

ymix1

ymix2

pmix2

Lmc Lcps

pmix1

MFFAUnlabeled Data

Encoder Decoder

Encoder

multi-scale 
features

SE
module location details 

semantic 
information

attention 
features

fusion 
features

MFFA

Mutual Correction Learning

xu1

p21

p22

Decoder

Figure 1: Overview of mutual correction learning. Two images xu1 and xu2 are sampled from the unlabeled dataset. -e CutMix images are
generated by two source images, and they are all inputted into each segmentation network. pi1 and pi2 are mixed as pseudo segmentation
maps ymixi to supervise the other segmentation network. ⊕: CutMix, MFFA: multiscale feature fusion attention mechanism module, Lmc:
mutual correction loss, Lcps: cross pseudo supervision loss, p: segmentation confidence map, ymixi: predicted one-hot label map, and SE
module: squeeze-and-excitation module.
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pmix1 � f xmix; θ1( , (4)

y is the predicted pseudo label. At each position i, the
pseudo label y is the one-hot map computed by the seg-
mentation confidence map p, and the value of M in (5) is the
same as that in Eq. (1).

ymix1 � M⊙p11 + (1 − M)⊙p12. (5)

1.2.1. Multiscale Feature Fusion Attention Mechanism
Module. Since generating pseudo labels with rich semantic
information requires multiple convolution operations to
continuously extract features, the dimension of features
continues to expand, resulting in serious high-dimensional
information redundancy. When all channel features are
fused, the importance of features in each channel is not
considered. Hence, Hu et al. [19] proposed the squeeze-and-
excitation (SE) module for the adaptive fusion of channel
features to reduce the redundancy of high-dimensional
features.

-is paper introduces the multiscale feature fusion
attention mechanism module to fuse high-level and low-
level feature maps. -e attention mechanism uses two SE
modules to extract different attention features from low-
level features to high-level features, as shown in Figure 2.
-e module contains location details in low-level features
and semantic information in high-level features to im-
prove the accuracy of the prediction of different target
boundaries.

In (6), the role of the global mean pooling (GAP) layer is
to integrate global spatial information. It takes the feature
map as input to obtain a feature vector containing semantic
correlation. -e attention vector is obtained by (7), and the
output x of the encoder is generated by eq (8).

g xk(  �
1

W × H


H

i�1


W

j�1
xk(i, j), (6)

where k � 1, 2, 3 · · · d, dis channel dimensions, and xkis the
channel input of the module.

Ac � δ2 δ1 g(x) + bα  + bβ . (7)

x � [x1, x2, · · · , xd], g is the GAP layer, δ1 and δ2 are
activation functions ReLU and sigmoid, respectively, and bα
and bβ are the bias.

x � Ac ⊗x. (8)

-e output of the encoder is the sum of low-level xl and
high-level xh, which is decoded to obtain the segmentation
confidence map.

1.2.2. Mutual Correction Learning. -e two segmentation
networks have different learning capabilities after different
initialization, and they can learn online from the pseudo
labels generated by each other. In the training process, if the
segmentation network f(θ1) generates poor quality one-hot
labels ymix1, the segmentation network f(θ2) produces a
good quality confidence map pmix2, and the model may
converge in the wrong direction guided by the poor quality
label; the self-correction ability of the cross pseudo super-
vision is limited, which may degrade the performance of the
model.

In order to prevent the model from converging in the
wrong direction, we propose the mutual correction loss to
correct this problem, and the training objectives include
three losses: supervision loss Ls, mutual correction loss
Lmc, and cross pseudo supervision loss Lcps. -e super-
vision loss is not marked in the network structure diagram.

Ls: the labeled image xl does not require CutMix and is
input into the two networks for supervised learning. -e
supervision loss Ls can be written as follows:

Ls �
1

Nl





Dl

(1/W × H) 
W×H

i�1
lce p

i
1,y
∗ i
1  +lce p

i
2,y
∗ i
2  .

(9)

Nl represents the number of labeled images in a batch,
and W and H represent the width and height of the input
image. lce is the standard cross entropy loss function and
y∗ i
1 (y∗ i

2 ) is the ground truth.
Lmc: we propose a mutual correction loss Lmc to make

the model have the ability to self-correct. Unlabeled images
xu1 and xu2 are input to the network f(θ1) and f(θ2),
respectively, to produce the corresponding confidence maps
p11, p12 and p21, p22. Cross entropy describes the difficulty of
expressing probability distributions p11 (p12) through
probability distributions p21 (p22). -e smaller the value of
cross entropy is, the closer the two probability distributions
are. According to the consistency principle, the confidence
map similarity of p11 and p21 should be higher. In other
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Figure 2: MFFA: multiscale feature fusion attention mechanism module. σ: sigmoid, ⊗ : element multiplication, and ⊕: element addition.
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words, the loss between (p11, p21) and (p12, p22) should be as
small as possible, so the mutual correction loss Lmc can be
written in the following form:

Lmc �
1

Nu




Du

(1/W×H) 
W×H

i�1
lce p

i
11,p

i
21 +lce p

i
12,p

i
22  .

(10)

Lcps [15]: -e cross pseudo supervision loss is sym-
metric, and the pseudo label ymix1 is used to supervise the
confidencemap pmix2 generated by another network, and the
other one uses the pseudo label ymix2 to supervise the
confidence map pmix1. -e cross pseudo supervision loss
Lcps can be written in the following form:

Lcps �
1

Nu





Du

(1/W × H) 
W×H

i�1
lce p

i
mix1, y

i
mix2 

+lce p
i
mix2, y

i
mix1 .

(11)

When training the segmentation network, we use
multiple loss constraints on the segmentation network and
minimize them for tuning. c and λ are the hyperparameters
set by the experiment, and the loss function of the whole
training can be written as follows:

L � Ls + cLmc + λLcps. (12)

1.3. Experiments

1.3.1. Datasets. PASCAL VOC 2012 [40] is the most widely
used benchmark dataset for semantic segmentation tasks.
Pascal VOC 2012 training set used in this paper contains
10,582 images and annotations, and the validation set
contains 1449 images and annotations. PASCAL VOC has a
total of 20 categories, such as aircraft, bicycles, birds, and
boats.

Cityscapes [41] contains tagged images of urban street
scenes taken from vehicles driven in European cities,
specifically for semantic understanding of urban street
scenes. It has 19 category tags and contains 5000 finely
labeled images, including 2975 images for network
training, 500 images for network verification, and 1525
images for testing. In addition, we only used the fine
annotation graph for training.

Following the division protocol of GCT [35], the entire
training set was randomly divided into two groups, with 1/2
(5291), 1/4 (2646), 1/8 (1323), and 1/16 (662) of the whole
training set as the labeled set.

1.3.2. Evaluation Metrics. Mean intersection over union
(MIoU) is a common evaluation metric in semantic seg-
mentation. In (13), where TPc, FPc, and FNc represent the
prediction results of true positive, false positive, and false
negative of category c, C represents the total number of
categories.

MIoU �
1
C



C

c�1
TPc/TPc + FPc + FNc( . (13)

For all experiments, we used only one network for in-
ferential prediction, testing the results of the 1456 PASCAL
VOC 2012 value set (or 500 Cityscapes value set).

1.3.3. Implementation Details. -e PyTorch deep learning
framework was used to complete the proposed method and
related experiments. We used ResNet-101 pretrained on
ImageNet as backbone and SyncBN [42] for training. Our
method set weight decay as 0.0005 and momentum as 0.9.
-e loss weights c and λ are 1 and 1.5 on PASCAL VOC and
1.5 and 6 on cityscapes. We used a multiple learning rate
strategy, and the initial learning rate values were set to
0.0025 for PASCAL VOC, while 0.02 for Cityscapes.

1.3.4. Comparison with Other Methods. In Figure 3, the
improvements of this method are shown under different
label proportions. All methods are based on DeepLabv3+.

Figure 3(a) shows that our approach using ResNet-50
consistently outperforms the supervised baseline approach
on PASCAL VOC 2012. -e improvements of our method
over the baseline method are 8.28%, 6.80%, 4.23% and 3.28%
under 1/16, 1/8, 1/4, and 1/2 scale settings separately.
Figure 3(b) shows that our method uses ResNet-101 for
8.45%, 6.26%, 5.26%, and 4.94% lift at 1/16, 1/8, 1/4, and 1/2
scale settings, respectively.

We compared our method with some recent semi-
supervised segmentation methods, including cross consis-
tency training (CCT) [13], guided collaborative training
(GCT) [35], context-aware consistency (CAC) [34], and
cross pseudo supervision (CPS) [15] under different seg-
mentation protocols. Table 1 shows the experimental
comparison results on PASCAL VOC 2012. In different scale
settings, our method is superior to other methods, whether
ResNet-50 or ResNet-101. Especially in 1/8 and 1/4 pro-
portions, it was 1.43% and 1.20% and 1.36% and 1.27%
higher than CPS, respectively.

We further verified the effectiveness of the proposed
method by comparing with other methods on Cityscapes in
Table 2. Compared with CCT and GCT, the accuracy of our
method is greatly improved with a small number of labeled
images, especially in the case of 1/16.-emain reason for the
low improvement on Cityscapes results compared to
PASCAL VOC 2012 is that PASCAL VOC 2012 is an object-
centered semantically segmentation dataset with an average
of three objects per image. Cityscapes is a highly complex
urban street scene, and the resolution and scene complexity
of each picture are much higher than those of PASCAL VOC
2012, which will lead to the inclusion of more complex
information in the mutual correction learning and weaken
the ability of mutual correction. -erefore, our method is
more suitable for each dataset with fewer graph object
instances.
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1.3.5. Ablation Study. -e ablation study in Table 3 shows
the contribution of each function. -e ablation study was
based on PASCAL VOC 2012 with 1/8 labeled data.

DeepLabv3+ and ResNet-50 were the segmentation net-
works. -e supervised loss training (SupOnly) model was
used as the benchmark of our work.

In Table 3, ID 2 shows the performance improvement
with cross pseudo supervision losses, with 5.37% MIoU
improvement on PASCAL VOC 2012 compared to ID 1 with
supervised losses alone.

In order to prove the validity of the multiscale feature
fusion attention mechanism module, we made a com-
parison between the model with MFFA and the model
with the cross pseudo supervised loss. Features of dif-
ferent scales combine rich localization and semantic
information to generate accurate segmentation maps of
boundary information. ID 2 and ID 3 showed that the
model with the MFFA module improved by 0.36%
compared with the model with cross pseudo supervision
loss. In addition, ID 4 and ID 5 found that MFFA im-
proved by 0.82%.

In ID 2 and ID 4, the effectiveness of the mutual cor-
rection loss was compared with that of the supervised loss
and cross pseudo supervised loss. -e cross pseudo super-
vision learns the error information and corrects it effectively
through the mutual correction loss, and MIoU shows an
increase of 0.61%. ID 3 and ID 5 found that the mutual
correction loss increased MIoU by 1.07% while using the
MFFA module. According to ID 5, MIoU improved by
1.43% with the multiscale feature fusion attention mecha-
nism module and mutual correction loss.
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Figure 3: Comparison with SupOnly in PASCAL VOC 2012 (1/2, 1/4, 1/8, 1/16). (a) ResNet-50. (b) ResNet-101.

Table 1: Comparison with other methods on PASCAL VOC 2012
under different partition protocols. -e segmentation network is
DeepLabv3+. SupOnly represents supervised training, using only
labeled data.

Method
ResNet-50

1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 64.20 68.30 71.87 73.12
CCT [13] 65.22 70.87 73.43 74.75
GCT [35] 64.05 70.47 73.45 75.20
CAC [34] 70.10 72.40 74.00 76.50
CPS [15] 71.98 73.67 74.90 76.15
Ours 72.48 75.10 76.10 76.40

Method ResNet-101
1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)

SupOnly 66.87 71.54 73.69 74.22
CCT [13] 67.94 73.00 76.17 77.56
GCT [35] 69.77 73.30 75.25 77.14
CAC [34] 72.40 74.60 76.30 78.20
CPS [15] 74.48 76.44 77.68 78.64
Ours 75.32 77.80 78.95 79.16
-e meaning of the bold values represent the best results.

Table 2: Comparison with other methods on Cityscapes under
different partition protocols. -e segmentation network is Deep-
Labv3+, and the backbone is ResNet-50. SupOnly represents su-
pervised training, using only labeled data.

Method
ResNet-50

1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
CCT [13] 66.35 72.46 75.68 76.78
GCT [35] 65.81 71.33 75.30 77.09
CAC [34] — 69.70 72.70 —
CPS [15] 74.47 76.61 77.83 78.77
Ours 74.47 76.75 78.03 78.89
-e meaning of the bold values represent the best results.

Table 3: Ablation study. Ls: supervised loss. Lcps: cross pseudo
supervised loss. MFFA: multiscale feature fusion attention
mechanism module. Lmc: mutual correction loss.

ID Ls Lcps MFFA Lmc MIoU

1 ✓ 68.30
2 ✓ ✓ 73.67
3 ✓ ✓ ✓ 74.03
4 ✓ ✓ ✓ 74.28
5 ✓ ✓ ✓ ✓ 75.10
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1.3.6. Qualitative Results. Figure 4 shows the results of
different methods on PASCAL VOC 2012. -e actual
labels are shown in column (b), CPS (column (c)), and
predicted boundary errors, and our method corrects
these problems in column (d). Obviously, mutual cor-
rection learning can more accurately predict the edges
and categories of objects, thus improving the feature
representation of the model.

1.3.7. Limitations. When the output predictions of the two
segmentation networks are both wrong, the error correction
of the mutual correction learning is limited. -e results also
show that our approach is influenced by the distribution of
long-tail classes on semantic segmentation datasets, which

makes pseudo labels biased towards majority classes, and we
will continue to study it and improve further.

2. Conclusion

We propose a semisupervised semantic segmentation ap-
proach based on mutual correction learning. -e MFFA
module is introduced to generate confidence maps, which in
turn yield well-calibrated pseudo labels. To alleviate the
problem of poor quality pseudo labels guiding the model to
learn misinformation, we propose a mutual correction loss,
utilizing the internal knowledge to correct the convergence
direction of the model. Experiments show our approach
further narrows the gap between fully supervised and
semisupervised semantic segmentation.

(a) (b) (c) (d)

Figure 4: Example qualitative results from PASCAL VOC 2012. All the approaches are trained under 1/8 with ResNet-101 as the backbone:
(a) input; (b) ground truth; (c) CPS; (d) ours.
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Defective insulator detection is an essential part of transmission line inspections based on unmanned aerial vehicles. It can timely
discover insulator defects and repair them to avoid a power transmission accident.  e detection speed of defective insulators
based on arti�cial intelligence directly a�ects inspection e�ciency. To improve the detection speed of defective insulators based on
YOLOv5s, an improved detection method with faster detection speed and acceptable precision is proposed. First, a new ResNet
unit with three branches is designed based on depthwise separable convolution with kernel three and average pooling. To reduce
parameters, the new ResNet unit is used to replace the original ResNet unit used in the CSP1_X module in YOLOv5s. Besides, we
also introduce channel shu�e in the CSP1_X module to facilitate the �ow of feature information from di�erent channels. Second,
a new residual CBL module is designed based on depthwise separable and standard convolution.  e new residual CBL module is
used to replace the two CBL modules used in the CSP2_X module in YOLOv5s to reduce parameters and extract more useful
features.  ird, we design a separate, coordinated attention module by introducing location information into channel attention.
 e new attention module is added to the end of the CSP2_X module to improve the ability to extract insulator location in-
formation. Besides, we also use convolution to replace the focus model to reduce computation. Compared with defective insulator
detection methods, the proposed method has smaller parameters, �oating-point operations per second, and higher frames per
second. Although it has lower mean precision, it has a faster detection speed. Besides, the increase in detection speed is greater
than the decrease in mean precision.

1. Introduction

Unmanned aerial vehicle has been widely used in trans-
mission line inspection to improve inspection e�ciency and
reduce the workload for inspectors [1, 2]. In the traditional
transmission line inspection based on an unmanned aerial
vehicle, the inspector detects the defective transmission
devices by watching the screen. It takes a lot of time to detect
faulty devices, which is a�ected by the screen size and the
light intensity. With the development of arti�cial intelli-
gence technology, the deep learning method has been widely
used in object tracking [3, 4], image super-resolution re-
construction [5], image dehazing [6], and defective trans-
mission device detection [7]. e images of transmission line
devices captured by the unmanned aerial vehicle are
transmitted via a wireless mobile communication network to

a server with high computing power.  e captured images
are detected by arti�cial intelligence methods deployed on
the server. It consumes much time to transmit images to
serves, a�ecting transmission devices’ detection speed. It
cannot be used in detection areas without wireless mobile
network coverage.

With the development of portable edge computing de-
vices, the captured images can be detected by arti�cial in-
telligence methods deployed on the mobile edge computing
device [8].  e captured images are transmitted to portable
edge computing devices carried by inspectors with short-
range wireless communication. It is not dependent on the
mobile network and has a greater range of applications.  e
computation power of portable edge computing devices is
limited, which a�ects the detection speed. In order to im-
prove detection speed, one is to improve the computation
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power of portable edge computing devices, and the other is
to reduce the computation of the artificial intelligence
methods. *e cost of reducing computation is lower.
*erefore, we mainly focus on how to reduce computation.

Object detection based on deep learning can be divided
into two categories: one-stage detection method and two-
stage detection method. In the one-stage method, it directly
generates detection boxes and classifies the objects without
generating region proposals. *e two-stage method divides
the detection process into two stages. It generates region
proposals in the first stage, regresses the bounding box and
candidate regions, and classifies the objects in the second
stage. *e one-stage method focus on improving detection
speed. *e two-stage method focus on improving detection
precision. *e two-stage method is mainly developed on the
serves with high computing power. It is more suitable for
offline object detection. *e one-stage method has lower
computation than two-stage method. It is more suitable for
online object detection. Although it has been widely used in
defective insulator detection, the detection is still required to
be improved to meet the practical requirements.

YOLOv5 is one of the one-stagemethods [9]. Although it
is named YOLOv5, it is designed based on YOLOv3 [10] and
is unrelated to YOLOv4 [11]. *e YOLOv5 has four versions
that are YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
*e YOLOv5s has a smaller computation and lower pre-
cision. *e YOLOv5x has a larger computation and higher
precision. *e YOLOv5s is more suitable for deploying on
the portable edge computing device. To improve the de-
fective insulator detection speed of YOLOv5s with accept-
able precision, we propose an improved YOLOv5s.

For this paper, the main contributions are as follows:

(1) To reduce computation and improve the detection
speed of defective insulators, we design a new ResNet
unit with two branches, and use it to replace the
original ResNet unit used in CSP1_X module in
YOLOv5s. *e new ResNet is based on depthwise
separable convolution with kernel three and average
pooling. It has smaller computation than the original
ResNet unit In YOLOv5s. Besides, to extract more
useful features from different channels, we also in-
troduce the channel shuffle operation into CSP1_X
module in YOLOv5s.

(2) To further reduce the computation, we also design a
residual CBL module and use it instead of two
original CBL modules in CSP2_X module in
YOLOv5s. *e residual CBL module has smaller
computation than the original two CBL modules.
Besides, to extract more useful features from dif-
ferent channels, we also introduce the channel
shuffle operation into CSP2_X module in YOLOv5s
to facilitate the flow of feature information from
different channels.

(3) To reduce background interference and make the
network pay more attention to useful information,
we design a separate embedded coordinated atten-
tion module and introduce it into the CSP2_X
module to extract more useful features. Besides, to

reduce computation, we also use convolution with
kernel 3 to replace the focus.

*e traditional transmission line inspection based on
unmanned aerial vehicle requires a human eye view of the
defective insulators. To improve the inspection efficiency
based on unmanned aerial vehicle, artificial intelligence
methods are deployed on servers or ground service stations
to automatically detect defective insulators from the captured
image by unmanned aerial vehicles. Although many artificial
intelligence methods have higher precision, they have slower
detection speed that directly affects inspection efficiency. To
improve defective insulator detection speed with acceptable
detection precision, we propose an improved YOLOv5s with
lower computation for defective insulator detection to im-
prove the inspection efficiency. *e structure of the rest of
this article is organized as follows. Related work is provided
in Section 2. Our proposed method are introduced in Section
3. *e experimental results and discussions are reported in
Section 4. Finally, conclusions are given in Section 5.

2. Related Work

Object detection method based on deep learning has been
widely used in defective insulator and transmission device
detection. *ere are two categories of object detection
models. *e first category is two-stage detection models,
such as Faster R–CNN [12], Mask R–CNN [13], Cascade
R–CNN [14], and Sparse R–CNN [15]. *e second category
is one-stage detection models, such as the SSD series method
[16, 17] and the YOLO series method [9–11]. *e two-stage
has a larger computation and is more suitable for offline
detection. *e one-stage has smaller computation and is
more suitable for online detection. *erefore, the defective
insulator detection method based on a one-stage method is
more suitable for developing a portable edge computing
device with limited computation power.

*e YOLO series method is the most representative
method of the one-stage detection method. *e YOLOv1-
method was first proposed by Redmon et al. [18]. It crea-
tively combined candidate area and object recognition into
one stage. It transformed the object recognition problem
into a regression problem and directly predicted the location
and class of the object using a depth convolution neural
network. Compared with the two-stage method, it has lower
computation and acceptable accuracy. Due to these ad-
vantages, the YOLO method attracts much attention from
many scholars and has become an important branch of
object detection research based on deep convolution neural
networks. To improve the detection speed and precision of
YOLOv1, Redmon et al. [19] proposed YOLOv2. In
YOLOv2, batch normalization is introduced into the con-
volution layer. *e new convolution layer consists of con-
volution, batch normalization, and LeakyReLU activating
function. In the VOC2007 dataset, the mean average pre-
cision is improved from 63.4% to 65.8%. In order to solve the
problem caused by the different training and detection
image sizes, YOLOv2 fine-tuned the classification network
that had been trained on 244× 244 low-resolution images on
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448× 448 high-resolution images. After fine-tuning, the final
global average pooling and softmax layers are removed as the
final backbone network. *en mean average precision is
improved from 65.8% to 69.5%. It also introduced anchor
boxes inspired by Faster R–CNN to improve precision. *e
size of the output feature map is 13×13. Each cell contains
five anchor boxes to predict five bound boxes. Besides,
YOLOv2 designed a new network named Darket-19 and
used it as a backbone. In 2018, Redmon proposed YOLOv3,
which is also the last version proposed by Redmon [10]. In
order to extract more useful features, YOLOv3 used the
Darknet-53 as the backbone and introduced feature pyramid
networks to fuse more features. *e number of network
layers increased and contained many residual networks in
Darknet-53. Besides, it also proposed binary cross-entropy
loss for classification. Although Redmon withdraws from
research in artificial intelligence, many improved YOLOv3
are proposed by scholars.

Yang et al. proposed GC-YOLOv3 based on YOLOv3 to
improve the mean average precision [20]. *ey designed a
cascading network that consisted of learnable semantic
fusion and used a global self-attention mechanism to extract
more useful information. Qu et al. proposed an improved
YOLOv3 with auxiliary networks for remote sensing image
detection to improve detection precision and detection
speed [21]. *ey used an image blocking module to feed
fixed images and DIOU to replace IOU in YOLOv3. Besides,
they used a convolutional block attention module to connect
the backbone network and designed an auxiliary network. In
order to improve detection speed, the adaptive feature fusion
method was also introduced into the improved YOLOv3. In
order to improve detection speed, Yin et al. proposed Faster-
YOLO [22]. *ey used ELELEM-AE joint network and
DRKCELM network to design a feature extractor. *e
feature extractor integrates the advantages of ELM-EA and
ELM-LRF.*e detection speed of Faster-YOLO is two times
faster than YOLOv3. In order to improve detection preci-
sion, Cai et al. proposed a modified YOLOv3 [23] based on
MobileNetv1. *ey used the MobileNetv1 to replace the
backbone of YOLOv3 and optimized the feature map size
according to the detection results.

In 2020, Alexey et al. [11] proposed the YOLOv4 method
base on YOLOv3. *ey used the cross-stage partial con-
nections network to replace the residual block in YOLOv3 to
design the backbone of YOLOv4. *e path aggregation
network also was used to fuse more features. *ey used
spatial pyramid pooling to realize multi-scale features fusion
and mish function to replace the LeakyReLu function as a
new activate function. Besides, they used the mosaic data
argument method to improve detection precision. *e
YOLOv4 has a faster detection speed and precision. To
improve the detection speed of YOLOv4, Deng et al. [24]
proposed an improved YOLOv4. *ey used feature pyramid
networks and atrous spatial pyramid pooling to modify the
MobileNetV3 to improve real-time and feature extraction
ability. *e improved MobileNetV3 is used as the backbone
of YOLOv4 to reduce computation. *ey also introduced a
convolutional block attention module to YOLOv4 to extract
more useful features. *e original team of YOLOv4

proposed scaled-YOLOv4 based on YOLOv4-CSP to make
the model can be developed on different devices [25]. To
further improve the performance of YOLOv4, some im-
proved methods based on YOLOv4 have also been proposed
[26–28]. To improve the one-stage method performance,
Glenn proposed YOLOv5 based on YOLOv3 [10]. YOLOv5
designed two types of cross-stage partial (CSP) Networks
that are CSP1_X and CSP2_X. *e CSP1_X modules were
used in the backbone, and the CSP2_Xwere used in the Neck
part of YOLOv5. YOLOv5 has four different version net-
works that are YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. *e different version of YOLOv5 has different
depth CSP modules. YOLOv5 used the LeakyReLU function
to activate the function in middle/hidden layers and the
sigmoid function as an activated function in detection layers.
Besides, YOLOv5 used GIOU loss as the loss function of the
bounding box. YOLOv5s has a faster detection than
YOLOv4 andYOLOv3. It is more suitable for developing
portable edge computing devices.

Due to the advantage of the YOLO series method, they
have been widely used in transmission devices and defective
insulator detection. Liu et al. [29] proposed an aerial in-
sulator image detection method based on YOLOv3 for high-
voltage transmission lines. A cross-stage partially densely
connected module was proposed to solve the feature reuse
and propagation of feature layers in low-resolution images.
It had higher detection precision defective insulator de-
tection in complex transmission line backgrounds than
YOLOv3 and YOLOv4. Qiuet al. [30] proposed a defective
insulator detection algorithm based on YOLOv4. *ey used
the Graph Cut data enhancement method to produce a new
dataset, and the Laplace sharpening method was used to
preprocess the insulator dataset images. To make the al-
gorithm more lightweight, they used MobileNet as the
backbone network of YOLOv4. It had a faster detection
speed than YOLOv4. He et al. [31] proposed a self-exploding
insulator detection algorithm based on YOLOv4. *ey
proposed a new feature fusion structure and an improved SE
attention mechanism, which effectively suppressed useless
features and achieved higher detection accuracy than
YOLOv4. Feng et al. [32] verified in detail the performance
of YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x on the
public dataset China Power Line Insulation Dataset
(CPLID), and the experimental results showed that YOLOv5
performed well on this dataset, especially YOLOv5x, with a
detection accuracy of 95.5%, which can effectively identify
defective insulators. Since the YOLOv5x model has a large
number of parameters, Lan et al. [33]selected YOLOv5s with
a smaller number of parameters as the baseline model,
making it lighter by replacing the original CSP structure with
the Ghost module and adding CBAM attention to improve
the detection accuracy. To further improve the detection
accuracy of defective insulators, some other methods based
on YOLO have also been proposed [34–36].

3. Improved YOLOv5s

3.1. Improved CSP Module. Two types of CSP modules are
given as CSP1_X and CSP2_X in YOLOv5s. *e CSP1_X
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module is used in the backbone to extract features and the
CSP2_X module is used in the Neck to fuse features. *e
CSP1_X consists of two branches. *e first branch mainly
consists of CBL module, ResNet units, and a convolution
layer. *e second branch only consists of a convolution
layer. *e output features of two branches are fused by
concatenate operation. *e ResNet unit computation di-
rectly affects detection speed.

To reduce the computation of CPS1_X, we designed a
new ResNet unit and replaced the original ResNet unit in
CSP1_X. *e proposed ResNet unit is named as ResNet1
unit and is shown in Figure 1. *e proposed ResNet1 unit
consists of two branches that we name the upper branch and
lower branch, respectively. *e upper branch contains two
parallel depthwise separable convolutions (DWConv). *e
kernel sizes of the two depthwise separable convolutions are
3, and the number of output channels is half the number of
input channels. We use the two parallel depthwise separable
convolutions to extract different features. *erefore, we use
concatenate operation to connect the output feature maps of
two DWConv to keep the number of channels constant. To
avoid gradient explosion or gradient disappearance and
improve training speed, we add batch normalization (BN)
and LeakyReLU activating function in the upper branch.
Besides, we use a 1× 1 convolution to reduce the number of
output channels to halve the original number. *e lower
branches contain a 1× 1 convolution and an average
pooling. *e 1× 1 convolution is used to reduce the number
of channels to make the lower branch have the same number
of channels as the upper branch.

*e average pooling is used to reduce the value of the
background feature, which is useful for separating the

defective insulator and background information. In the end,
the upper and lower branches are connected by concate-
nating operation to construct the complete ResNet1 unit.
We use the proposed ResNet1 unit to replace the original
ResNet unit to reduce the computation of CSP1_X. In the
end, we use the BN module, LeakyReLU activating function,
and CBL module to extract features from the concatenated
feature map. *e CBL module consists of a 1× 1 standard
convolution, a BN module, and a LeakyReLU activating
function. *ey are used to increase network depth to make
the network extract more detailed information about the
defective insulator. *e improved CPS1_X is named
ICPS1_X which is shown in Figure 1. *e X is the number of
ResNet1 unit used in ICSP1_X.*e X is different in different
modules. In YOLOv5s, two different ICSP1_X modules are
present, i.e., ICSP1_1 and ICSP1_3.*e numbers of ResNet1
unit of ICSP1_1 and ICSP1_3 is 1 and 3, respectively. *e
ICSP1_X module does not change the number of feature
map channels. *ey are only used in the backbone of the
network to extract features.

To further reduce the computation of the network, we
also design a new residual module to replace the two CBL
modules in CSP2_X. We name the proposed residual unit
and improved CSP2_X as ResNet2 unit and ICSP2_X, re-
spectively. *e ResNet2 unit and ICSP2_X are shown in
Figure 1. *e proposed ResNet2 unit also contains two
branches. *e upper branch includes a CBL module, a
DWCBL module, and a 1× 1 convolution. *e CBL module
consists of a 1× 1 standard convolution, a BN module, and a
LeakyReLU activating function. *e CBL module is used to
increase the depth of the network, which is useful for
extracting more detailed information about the defective
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insulator. *e number of output channels for the CBL
module is half the number of input channels in the ResNet2
unit. *e DWCBL module consists of 3× 3 depthwise
separable convolutions, a BN module and a LeakyReLU
activating function. *e input feature map of DWCBL
module has the same number of channels as the output
feature map of DWCBL module. *e last 1× 1 standard
convolution in ResNet2 unit is also used to increase the
network depth. *e lower branch only consists of a 1× 1
standard convolution. *e number of output channels for
the 1× 1 standard convolution is half the number of input
channels. In the end, the upper and lower branches are
connected by concatenating operation to construct the
complete ResNet2 unit. *e input feature map of the pro-
posed ResNet2 unit module has the same number of
channels as the output feature map of the ResNet2 unit. We
use the proposed ResNet2 unit to replace two CBL modules
in the original CSP2_X to obtain the ICSP2_X module.
*eICSP2_X also consists two branches that are named
upper branch and lower branch, respectively. *e upper
branch consists of a CBL module, X ResNet2 unit and a 1× 1
standard convolution. *e number of output channels for
the upper branch is also the is half the number of input
channels. *e lower branch of ICSP2_X is only a 1× 1
standard convolution to reduce the number of input
channels. *e concatenating operation is also used to
connect upper and lower branches. *e same BN module,
LeakyReLU activating function, and CBL module are also
used to extract features from the concatenated feature map
in the ICSP2_X module. Besides, we also introduce the
channel shuffle into ICSP2_X to facilitate the flow of feature
information from different channels.

In the ICSP1_X and ICSP2_X, we use depthwise sepa-
rable convolution to replace the standard 3× 3 convolution.
*e FLOPs of standard convolution can be expressed as:

Nc � 2 × K
2

× Cin × Cout × H × W, (1)

where K is the kernel size of standard convolution, Cin and
Cout are the number of channels for input and output, re-
spectively, and Hand W are the width and height of the
feature map. *e FLOPs of depthwise separable convolution
can be expressed as:

Dc � 2 × K
2

× Cin + Cout × Cin  × H × W. (2)

*e FLOPs ratio of standard convolution and depthwise
separable convolution is:

Dc

Nc

�
2 × K

2 ∗Cin + 12 ∗Cin ∗Cout ∗H∗W

2 × K
2 ∗Cin ∗Cout ∗H∗W

�
K

2
+ Cout

K
2 ∗Cout

.

(3)

In YOLO5s, the numbers of output channels are 128,
256, and 512 for different modules.*e kernel sizes are 1 or 3
for other convolutions. *e number of output channels is
much larger than kernel size, so the (3) can be simplified as:

Dc

Nc

�
K

2
+ Cout

K
2 ∗Cout

≈
Cout

K
2 ∗Cout

�
1

K
2. (4)

*e original ResNet unit of CSP1_X contains a 1× 1
convolution and a 3× 3 convolution. *e proposed ResNet
unit of ICSP1_X contains two 1× 1 convolutions and two
3× 3 depthwise separable convolutions. For the CSP1_X, the
computation of the proposedResNet1 unit and original
ResNet unit is about 2/9. For the CSP2_X, the computation
of the proposed ResNet2 unit and CBL model is about 1/9.
Our proposed two networks that are the ResNet1 unit and
RestNet2 unit reduce the computation of CSP1_X and
CSP2_X. *e proposed ICSP1_X and ICSP2_X have smaller
computations than the original CSP1_X and CSP2_X.

3.2. Separate Embedded Coordinated Attention Module.
*e backbone of our improved YOLOv5s based on our
proposed ICSP1_X and ISCP2_X has few parameters and
computation but also reduces feature extraction ability.
Inspired by [37], to balance the detection speed and pre-
cision, we designed a separated embedded coordinated at-
tention module named SCA module and introduce it into
ICSP1_X module and ICSP2_X module to extract more
useful defective insulator features. *e proposed SCA
module is shown in Figure 2. It consists of two branches: the
upper branch consists of short cut to reserve input feature
map. *e lower branch is used to compute the weight of
useful features; the lower branch has two average pooling
operations: adaptive average pooling (H) and adaptive av-
erage pooling (W). *e kernel sizes of adaptive average
pooling (H) and adaptive average pooling (W) areH× 1 and
1×W, respectively. *ey encode each channel along the
horizontal and vertical coordinates, respectively. We can
obtain two separate position-aware feature maps from the
two adaptive average pooling operations. *erefore, we can
capture long-range dependencies of feature information
along one spatial direction while retaining precise location
information in the other spatial direction. To make the
network have better expression ability. We use CBH
modules consisting of a convolution layer, a BN layer and a
H_sigmoid activate function. Without changing the size of
the direction-aware feature map, we use the 1× 1 convo-
lution layer to increase the depth of the network, use BN
layer to improve the generalization ability of the network
and use the H_sigmoid active function to increase the
nonlinear representation ability of the network. *en two
1× 1 convolutions are used to reduce the number of
channels to half the original number. *e output feature of
two branches that contain two adaptive average pooling are
connected by concatenate operation. *e CBH module is
also used to fuse the feature obtained by concatenate op-
eration. *e split method is used to separate the feature map
from the horizontal coordinate and vertical coordinate. In
the end, we can obtain the weight of the horizontal coor-
dinate, and the weight of the vertical coordinate of the
feature map by the CBH module and sigmoid activate
function. We multiply the input feature map by two weights
to get the output feature map.
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To better explain the model, we suppose that the input
feature map X ∈ RC×H×W. *e number of channels is C , and
the size of the feature map is H × W. Output feature map of
adaptive average pooling (H) and adaptive average pooling
(W) in the cth channel can be expressed as Zc(H) and
Zc(W). *ey can be expressed as followings:

Zc(H) �
1
W


0≤ i<W

Xc(H, i)

Zc(W) �
1
H


0≤ i<H

Xc(i, W),

(5)

where Xc is the input feature map in the cth channel. *e
sizes of Zc(H) and Zc(W) are H × 1 and 1 × W, respec-
tively. *e 1× 1 convolution is used to halve the number of
output channels of CBH in Figure 3. *e concat operation
connects the two output feature maps obtained from CBH
and a 1× 1 convolution. It can be expressed as follows.

X1 � f
1×1

(CBH(Z(H))), f
1×1

(CBH(Z(W))) , (6)

where f1×1 is the 1× 1 convolution, [, ] is the concatenating
operation. X1 is the output feature map of concat operation
in Figure 2. Next, we use the split function to separate the
output feature of the CBH module that is connected with
concat operation module into two parts. In the end, we
obtain the weights of two parts.*e sizes of weight are H × 1
and 1 × W, respectively. *e size of the final weight obtained
by multiplying two weight vectors is H × W. Finally, we
multiply the input feature map X with the final weight to get
the output feature map.

3.3. Improved Focus Module. In YOLOv5s, it uses focus to
realize down-sampling without losing information. In focus,
it firstly uses a slicing operation to expand the input channel
four times. Second, it uses a 3× 3 convolution to obtain a
down-sampling feature map. *ere is a large computation
for the slicing operation. To reduce computation, we use a
3× 3 convolution with a down-sampling function to replace
the focus module. We suppose the input image size is
640× 640× 3 and the size of the output feature map size is
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Figure 2: Improved YOLOv5s.
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320× 320× 32.*e FLOPs of focus and convolution without
considering the BN and activate function are shown in (7)
and (8), respectively.

Focus � 3 × 3 × 12 × 32 × 320 × 320 � 353894400. (7)

Cov � 3 × 3 × 3 × 32 × 320 × 320 � 88473600. (8)

Based on (7) and (8), the computation of the focus model
is about four times larger than convolution. *erefore, using
convolution to replace focus can reduce computation.

Based on our proposed ICSP1_X, ICSP2_X, SCA, and
improved focus modules, the improved YOLOv5s are shown
in Figure 2. *e pseudo-code of our proposed method is
shown in Table 1. *e Adam optimizer method is used to
optimize the parameters of the network.

4. Simulation and Discussion

*e experimental environment is configured as follows: the
operating system is Ubuntu 18.04. *e deep learning
framework is Pytorch. Six detection methods that our pro-
posed method, YOLOv3 [10], YOLOv4 [11], YOLOv5s [9],
Fast R-Transformer [38], and Mina-Net [31] method are set
with the same parameters and pre-training weights are used.
*e initial learning rate was set to 0.001, and the learning rate
was dynamically adjusted using the cosine annealing learning
rate. To prevent overfitting, the Adam optimizer is used to
adjust the parameters. Pre-training is used in the first five
epochs to accelerate the convergence of the model. Pre-
training weights are used for all the above methods.

We sourced 195 insulator images from the Power supply
and the Internet.*e number of defective insulator images is

too small to train the network. *erefore, we use the same
method used in the CPLID dataset [39] to expand the data
set. We extract defective insulators and fuse them with
different backgrounds. *e parts of generated defective
insulator images are shown in Figure 4. Our proposed de-
fective dataset contains 2300 images. We use 1800 images as
training images and 500 images as test images.

4.1. Ablation Study. We design a new ResNet1 unit and
ResNet2 unit and introduce them into CSP1_X and CSP2_X
modules to reduce the computation. Besides, we also in-
troduce the channel shuffle operation into improved
CSP1_X and CSP2_X modules. To simplify, we name the
YOLOv5s based on improved CSP1_X and CSP2_X without
channel shuffle operation as YOLOv5s + Res, YOLOv5s
based on improved CSP1_X and CSP2_X with channel
shuffle operation as YOLOv5s +Res +Cs. Besides, we also
design a separate embedded coordinate attention module
and introduce it into the improved and CSP2_X modules.
We name the YOLOv5s +Res +Cs based on a separate
embedded coordinate attention module as YOLOv5s +Res
+Cs + SA. We also name the YOLOv5s +Res +Cs based on
the convolutional block attention module [40] as YOLOv5s
+Res +Cs +CBAM, and based on Squeeze-and-Excitation
[41] as YOLOv5s +Res +Cs + SE. In addition, we also use
convolution to replace focus in YOLOv5s. *e YOLOv5s +
Res +Cs + SA based on a convolution without using focus is
named YOLOv5s +Res +Cs + SA-Foc, which is also our
complete improved YOLOv5s. *e results are shown in
Table 2.

*e YOLOv5s have the most parameters, FLOPs, and the
highest mean average precision (mAP). *e YOLOv5s +Res
that YOLOv5s based on improved CSP CSP1_X and
CSP2_X have the smallest parameters, FLOPs, and mAP. As
the number of parameters decreases, the mAP also de-
creases. Although the YOLOv5s +Res + cs that YOLOv5s
based on improved CSP CSP1_X and CSP2_X with channel
shuffle operation have the same number of parameters and
FLOPs, but it has larger mAP than YOLOv5s + Res. *e
channel shuffle operation improves the precision
without increasing parameters and FLOPs. Compared with
YOLOv5s +Res +Cs, the YOLOv5s +Res +Cs + SE,
YOLOv5s +Res +Cs +CBAM and YOLOv5s +Res +Cs + SA
that are introduced different attention modules into
YOLOv5s +Res +Cs have larger parameters, FLOPs, and
mAP.*e attentionmechanism improves detection precision
while increasing parameters and FLOPs. Compared with
YOLOv5s +Res +Cs + SE and YOLOv5s +Res +Cs +CBAM,
YOLOv5s +Res +Cs + SAhas the largermAP.*eSAmodule
is our proposed attention module. *is shows that our pro-
posed attention module performs better in precision than SE
and CBAM attention modules. Compared with YOLOv5s
+Res +Cs + SA, the YOLOv5s +Res +Cs + SA-Foc that uses
convolution to replace the focus module to reduce compu-
tation has smaller parameters, FLOPs, and mAP.

We propose the improved CSP1_X module and CSP2_X
module and modify the focus module to reduce computa-
tion. We propose an attention module and introduce it into

Table 1: Pseudo code of our proposed method.

θ
⌢

←Improved YOLOv5sTraning(z1: Ndata
, x1: Ndata

, θ)

/∗Training network model
Input: (zn, xn) 

Nda ta

n�1 , a dataset of sequence pairs
Input:θ, initial model parameters
Output: θ

⌢

, the trained parameters
Hyperparameters: Nepochs ∈ N
For i � 1, 2, · · · , Nepochs do
For n � 1, 2, · · · , Nda ta do

θ←Improved YOLOv5s((zn, xn, θ))

loss(θ)←lcon(θ) + 0.5 × lcls(θ)+

0.05 × lbox(θ)

mn←β1mn−1 + (1 − β1)∇loss(θ)

vn←β2vn−1 + (1 − β2)∇loss(θ)
2

m
⌢

n←
mn

1 − β1
, v

⌢

n←
vn

1 − β2

θ←θ −
μ

��

v
⌢

n



+ ϵ
× m

⌢

n

End

End
Return θ

⌢

� θ
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the network to improve precision. Based on the analysis of
Table 2, the improved CSP1_X module, CSP2_X module,
and modified focus reduce the parameters and FLOPs, and
the proposed attention module increases precision.

4.2. Comparisons for Different Methods. We compare our
complete proposed method with YOLOv3, YOLOv4, and
YOLOv5s, Fast R-Transformer, and [38] Mina-Net [31]. We
randomly select three different insulators that contain de-
fective insulators. *e detection results are shown in
Figures 5–7. In each figure, figure (a), figure (b), figure (c),
figure (d), figure (e), and figure (f ) are obtained by Fast

R-Transformer, Mina-Net YOLOv3, YOLOv4, YOLOv5s,
and our proposed method, respectively. In Figure 5, there
are two defective insulators, and the YOLOv3 only detects
one defective insulator. *e YOLOv4, YOLOv5s, Fast
R-Transformer, Mina-Net, and our proposed method suc-
cessfully detect all defective insulators. In Figures 6 and 7, all
methods successfully detect all defective insulators. *is
shows that the proposed method is valid for defective in-
sulator detection.

To verify the performance of the proposed method from
a statistical point of view, we use YOLOv3, YOLOv4,
YOLOv5s, Fast R-Transformer,Mina-Net, and our proposed
to detect all images in the test dataset. *e detection results

Table 2: YOLOv5s with different modules.

Methods Params (M) FLOPs (G) mAP (%)
YOLOv5s 7.06 16.3 94.5
YOLOv5s +Res 5.19 12.2 91.7
YOLOv5s +Res +Cs 5.19 12.2 93.2
YOLOv5s +Res +Cs + SE 5.38 12.3 93.5
YOLOv5s +Res +Cs +CBAM 5.40 12.4 93.7
YOLOv5s +Res +Cs + SA 5.47 12.8 94.1
YOLOv5s +Res +Cs + SA-foc(ours) 5.45 12.5 93.6

Figure 4: Parts of generated defective insulator images.
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are shown in Table 3.*e parameters of Fast R-Transformer,
Mina-Net, YOLOv3, YOLOv4, YOLOv5s, and our proposed
method are 116.10M, 67.94M, 61.90M, 63.94M, 7.06M,
and 5.45M, respectively. Our proposed method has the
smallest parameters, followed by YOLOv5s. *e FLOPs of
Fast R-Transformer, Mina-Net YOLOv3, YOLOv4,
YOLOv5s, and our proposed method are 257.5G, 168.2G,
155.1G, 157.1G, 16.3G, and 12.5 G, respectively. Our
proposed method still has the smallest parameters, followed
by YOLOv5s. *e mAPs of Fast R-Transformer, Mina-Net,
YOLOv3, YOLOv4, YOLOv5s, and our proposed method
are 99.7%, 99.2%, 91.5%, 98.7%, 94.5%, and 93.6%, re-
spectively. *e Fast R-Transformer has the largest mAP,
followed by Mina-Net and YOLOv4. *e FPS of Fast

R-Transformer, Mina-Net, YOLOv3, YOLOv4, YOLOv5s,
and our proposed method are 38.6, 47.5, 54.6, 52.7, 157.4,
and 197.8, respectively. Our proposedmethod has the largest
FPS, followed by YOLOv5s.

Based on the analysis of Table 3, our proposed method
has the smallest parameters, FLOPs, and the largest FPS.*e
FLOPs of different models are computed by model_into()
function in touch_utils.py. Compared with YOLOv5s, al-
though the mAP of our proposed method is reduced by
0.9%, FPS of our proposed method is increased by about
20%. Although our proposed method has a smaller mAP
than other methods, our proposed method has a faster
detection speed. Besides, the increase in detection speed is
greater than the decrease in precision.

(a) (b) (c)

(d) (e) (f )

Figure 5: Defective porcelain insulator detection.

(a) (b) (c)

(d) (e) (f )

Figure 6: Defective toughened glass insulator detection.
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5. Conclusions

*is study proposed a faster defective insulator detection
method based on YOLOv5s. It designs two different ResNet
units for CSP1_X module and CSP2_X module in YOLOv5s
to reduce computation, respectively. It also introduced
channel shuffle into CSP1_Xmodule and CSP2_Xmodule to
extract more effective features from different channels
without increasing computation. Besides, it designed a
separate embedded coordinated attention module and in-
troduced it into the CSP2_X module to make the network
pay more attention to useful information. To reduce the
computation, it replaced the focus module using a convo-
lution with stride 2. Compared with defective insulator
detection methods based on Fast R-Transformer, Mina-Net,
YOLOv3, YOLOv4, and YOLOv5s, our proposed method
has the smallest parameters and FLOPs and the largest FPS.
*is shows that the proposed method has the fastest de-
fective insulator detection speed. Although the other
methods except YOLOv3 have larger mAP than our method,
the difference in mAP is not large. *e mAP of Fast
R-Transformer is the largest. Although the mAP of Fast
R-Transformer is 6.1% higher than that of our method, the
detection speed of Fast R-Transformer is only 1/5 of our

method detection speed. Our method and YOLOv5s have a
faster detection speed than others. Compared with
YOLOv5s, although the mAP of our proposed method is
reduced by 0.9%, the detection speed of our proposed
method is increased by about 20%. *e increase in detection
speed is greater than the decrease in precision.*e proposed
method has a faster detection speed and an acceptable de-
tection precision.

Data Availability

*e labeled dataset used to support the findings of this study
is available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by the National Natural Science
Foundation of China (61271115) and Science and Tech-
nology Research Project of Jilin Provincial Department of
Education (JJKH20220054KJ).

References

[1] W. Zhao, Q. Dong, and Z. Zuo, “A method combining line
detection and semantic segmentation for power line extrac-
tion from unmanned aerial vehicle images,” Remote Sensing,
vol. 14, no. 6, Article ID 1367, 2022.

[2] X. Li, Z. Li, H.Wang, andW. Li, “Unmanned aerial vehicle for
transmission line inspection: status, standardization, and
perspectives,” Frontiers in Energy Research, vol. 9, p. 336, 2021.

(a) (b) (c)

(d) (e) (f )

Figure 7: Defective suspended glass insulator detection.

Table 3: Comparisons for different methods.

Methods Params (M) FLOPs (G) mAP (%) FPS
Fast R-Transformer 116.1 257.5 99.7 38.6
Mina-net 67.94 168.2 99.2 47.5
YOLOv3 61.90 155.1 91.5 54.6
YOLOv4 63.94 157.1 98.7 52.7
YOLOv5s 7.06 16.3 94.5 157.4
Ours 5.45 12.5 93.6 197.8

10 Computational Intelligence and Neuroscience



[3] R. Xia, Y. Chen, and B. Ren, “Improved Anti-occlusion Object
Tracking Algorithm Using Unscented Rauch-Tung-Striebel
Smoother and Kernel Correlation Filter,” Journal of King Saud
University - Computer and Information Sciences, 2022.

[4] J. Zhang, W. Feng, T. Yuan, J. Wang, and A. K. Sangaiah,
“SCSTCF: spatial-channel selection and temporal regularized
correlation filters for visual tracking,”Applied Soft Computing,
vol. 118, Article ID 108485, 2022.

[5] Y. Chen, L. Liu, V. Phonevilay et al., “Image super-resolution
reconstruction based on feature map attention mechanism,”
Applied Intelligence, vol. 51, no. 7, pp. 4367–4380, 2021.

[6] L. Zhao, Y. Zhang, and Y. Cui, “An attention encoder-decoder
network based on generative adversarial network for remote
sensing image dehazing,” IEEE Sensors Journal, vol. 22, no. 11,
pp. 10890–10900, 2022.

[7] W. Rahmaniar and A. Hernawan, “Real-time human detec-
tion using deep learning on embedded platforms: a review,”
Journal of Robotics and Control (JRC), vol. 2, no. 6,
pp. 462–468, 2021.

[8] H. Mei, H. Jiang, F. Yin, L. Wang, and M. Farzaneh, “Ter-
ahertz imaging method for composite insulator defects based
on edge detection algorithm,” IEEE Transactions On Instru-
mentation And Measurement, vol. 70, pp. 1–10, 2021.

[9] J. Glenn, “YOLOv5,” 2020, https://github.com/ultralytics/
YOLOv5.

[10] J. Redmon and A. Farhadi, “Yolov3: an incremental im-
provement,” 2018, http://arxiv.org/abs/1804.02767.

[11] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4:
optimal speed and accuracy of object detection,” 2020, http://
arxiv.org/abs/2004.10934.

[12] Z. Zhang, Z. Xiong, B. Zhang, Y. Yang, and E. Fu, “Detection
for small target ship in remote sensing image based on super
resolution reconstruction technology,” Journal of Northeast
Electric Power University, vol. 42, no. 2, pp. 33–40, 2022.

[13] K. He, G. Gkioxari, P. Dollár, R. Girshick, and
R.-C. N. N. Mask, Proceedings of the IEEE International
Conference on Computer Vision, pp. 2961–2969, 2017.

[14] Z. Cai and N. Vasconcelos, “Cascade R-CNN: delving into
high quality object detection,” Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 6154–6162, 2018.

[15] P. Sun, R. Zhang, Y. Jiang et al., “End-to-End object detection
with learnable proposals,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 14454–14463, Nashville, TN, USA, 2021.

[16] W. Liu, D. Anguelov, D. Erhan et al., SSD: Single Shot
Multibox Detector, European Conference on Computer Vision,
pp. 21–37, Springer, Berlin/Heidelberg, Germany, 2016, http://
arxiv.org/abs/1512.02325.

[17] J. Jeong, H. Park, and N. Kwak, “Enhancement of SSD by
concatenating feature maps for object detection,” 2017, http://
arxiv.org/abs/1705.09587 arXiv preprint arXiv:1705.09587.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, Las Vegas, NV, USA, June 2016.

[19] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7263–7271, Honolulu, HI,
USA, July 2017.

[20] Y. Yang and H. Deng, “GC-YOLOv3: you only look once with
global context block,” Electronics, vol. 9, no. 8, p. 1235, 2020.

[21] Z. Qu, F. Zhu, and C. Qi, “Remote sensing image target
detection: improvement of the YOLOv3 model with auxiliary
networks,” Remote Sensing, vol. 13, no. 19, p. 3908, 2021.

[22] Y. Yin, H. Li, and W. Fu, “Faster-YOLO: an accurate and
faster object detection method,” Digital Signal Processing,
vol. 102, Article ID 102756, 2020.

[23] K. Cai, X. Miao, W. Wang, H. Pang, Y. Liu, and J. Song, “A
modified YOLOv3 model for fish detection based on Mobi-
leNetv1 as backbone,” Aquacultural Engineering, vol. 91,
Article ID 102117, 2020.

[24] T. Deng and Y. Wu, “Simultaneous vehicle and lane detection
via MobileNetV3 in car following scene,” Plos one, vol. 17,
no. 3, Article ID e0264551, 2022.

[25] C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “Scaled-
yolov4: scaling cross stage partial network,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13029–13038, 2021.

[26] F. Guo, Y. Qian, and Y. Shi, “Real-time railroad track
components inspection based on the improved YOLOv4
framework,” Automation in Construction, vol. 125, Article ID
103596, 2021.

[27] J. Yu and W. Zhang, “Face Mask wearing detection algorithm
based on improved YOLO-v4,” Sensors, vol. 21, no. 9, p. 3263,
2021.

[28] Z. Ma, Y. Li, M. Huang, Q. Huang, J. Cheng, and S. Tang, “A
lightweight detector based on attention mechanism for alu-
minum strip surface defect detection,” Computers in Industry,
vol. 136, 103585.

[29] C. Liu, Y. Wu, J. Liu, Z. Sun, and H. Xu, “Insulator faults
detection in aerial images from high-voltage transmission
lines based on deep learning model,” Applied Sciences, vol. 11,
no. 10, p. 4647, 2021.

[30] Z. Qiu, X. Zhu, C. Liao, D. Shi, and W. Qu, “Detection of
transmission line insulator defects based on an improved
lightweight YOLOv4 model,” Applied Sciences, vol. 12, no. 3,
p. 1207, 2022.

[31] H. He, X. Huang, Y. Song et al., “An insulator self-blast
detection method based on YOLOv4 with aerial images,”
Energy Reports, vol. 8, pp. 448–454, 2022.

[32] Z. Feng, L. Guo, D. Huang, and R. Li, “Electrical Insulator
Defects Detection Method Based on YOLOv5,” in Proceedings
of the 2021 IEEE 10th Data Driven Control and Learning
Systems Conference (DDCLS), pp. 979–984, Suzhou, China,
May 2021.

[33] Y. Lan andW. Xu, “Insulator defect detection algorithm based
on a lightweight network,” Journal of Physics: Conference
Series, vol. 2181, no. 1, Article ID 012007, 2022.

[34] Y.Wang, P. Cao, X.Wang, and X. Yan, “Research on insulator
self explosion detection method based on deep learning,”
Journal of Northeast Electric Power University, vol. 40, no. 3,
pp. 33–40, 2020.

[35] M. F. Palangar, S. Mohseni, M. Mirzaie, and A. Mahmoudi,
“Designing an automatic detector device to diagnose insulator
state on overhead distribution lines,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 2, pp. 1072–1082, 2022.

[36] B. Wang, M. Dong, M. Ren et al., “Automatic fault diagnosis
of infrared insulator images based on image instance seg-
mentation and temperature analysis,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 8, pp. 5345–
5355, 2020.

[37] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for
efficient mobile network design,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp. 13713–13722, 2021.

Computational Intelligence and Neuroscience 11

https://github.com/ultralytics/YOLOv5
https://github.com/ultralytics/YOLOv5
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1705.09587
http://arxiv.org/abs/1705.09587


[38] S. Dian, X. Zhong, and Y. Zhong, “Faster R-Transformer: an
efficient method for insulator detection in complex aerial
environments,” Measurement, vol. 199, Article ID 111238,
2022.

[39] X. Tao, D. Zhang, Z. Wang, X. Liu, H. Zhang, and D. Xu,
“Detection of power line insulator defects using aerial images
analyzed with convolutional neural networks,” IEEE Trans-
actions On Systems, Man, and Cybernetics: Systems, vol. 50,
no. 4, pp. 1486–1498, 2020.

[40] S. Woo, J. Park, J. K. Leeand, and S. Kweon, “CBAM: con-
volutional block Attention module,” Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pp. 3–19,
2018.

[41] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation net-
works,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7132–7141, 2018.

12 Computational Intelligence and Neuroscience



Research Article
Intelligent Detection Method of Gearbox Based on Adaptive
Hierarchical Clustering and Subset

Huimiao Yuan ,1 Yongwei Tang ,1,2 HuijuanHao ,1 Yuanyuan Zhao ,1 Yu Zhang ,1

and Yu Chen 1

1Qilu University of Technology (Shandong Academy of Sciences),
Shandong Computer Science Center (National Supercomputer Center in Jinan),
Shandong Key Laboratory of Computer Networks,
Jinan 250014, China
2School of Mechanical Engineering, Shandong University, Key Laboratory of High E�ciency and CleanMechanical Manufacture,
Jinan 250100, China

Correspondence should be addressed to Huijuan Hao; haohj@sdas.org

Received 21 June 2022; Revised 1 August 2022; Accepted 6 August 2022; Published 30 August 2022

Academic Editor: Nian Zhang

Copyright © 2022Huimiao Yuan et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep learning uses mechanical time-frequency signals to train deep neural networks, which realizes automatic feature extraction
and intelligent diagnosis of fault features and gets rid of the dependence on a large number of signal processing technology and
experience. Aiming at the problem of misclassi�cation of similar samples, a fault diagnosis algorithm based on adaptive hi-
erarchical clustering and subset (AHC-SFD) is proposed to extract features and applied to gearbox fault diagnosis. Firstly, the
adaptive hierarchical clustering algorithm is used to analyze the characteristics of di�erent data, and then the data set is clustered
into multiple feature groups; �nally, according to the feature group, the SubCNN model is established for multiscale feature
extraction, so as to carry out fault diagnosis. �e test results show that the fault recognition rate achieved by the proposed method
is more than 99.7% on the gearbox dataset, and the method has better generalization ability.

1. Introduction

Major accidents caused by mechanical equipment failure [1]
constantly alert people to ensure the safe and reliable op-
eration of equipment, especially the mechanical equipment
failure at the key core of the production line will bring
signi�cant shutdown losses to the whole production line, not
only causing huge economic losses, but also endangering
personal safety in serious cases. �e online monitoring, fault
diagnosis, and prediction of mechanical equipment [2, 3]
play an important role in improving equipment operation
reliability, optimizing operation and maintenance strategies,
and are crucial to the maintenance of mechanical equip-
ment. Traditional intelligent fault diagnosis methods need to
master a large number of signal processing techniques to
extract relatively accurate feature parameters. At the same
time, if the shallow model is used to characterize the

relationship between signal and fault, and the diagnosis
ability and generalization ability are insu�cient, it is di�cult
to meet the actual needs of fault diagnosis under big data.

In recent years, the application of deep learning in fault
diagnosis of complex industrial systems has begun to take
shape [4]. Lei et al. [5, 6] proposed a big data health moni-
toring method based on denoising self-encoder (DAE) for
mechanical equipment, which has realized a variety of fault
diagnosis for planetary gears, re�ecting the powerful ability of
deep learning to extract mechanical vibration signal char-
acteristics. Yu and Zhao [7–9] e�ectively integratedDAE and
EN to solve the problem of noise interference in fault diag-
nosis, e�ectively detect abnormal samples in industrial
processes, and isolate fault variables from normal variables.
Nguyen et al. [10–12] proposed a deep learning network
composed of automatic encoder and softmax classi�er to
identify bearing faults of di�erent degrees. DBN is more
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combined with other technologies to solve the problem of
fault diagnosis. Since CNNwas used to identify bearing faults
in 2016, fault diagnosis performance and scope of application
have been continuously improved. Hoang and Kang [13–16]
proposed a new method based on CNN for rolling bearing
fault diagnosis. By using the effectiveness of CNN in image
classification, theCWRUbearing data set can achieve 100%
diagnosis accuracy. Based on resnet-50, a transfer learning
convolution neural network TCNN is proposed by Wen
et al. [17, 18] for fault diagnosis, and the prediction ac-
curacy is significantly better than other DL models and
traditional diagnosis methods. 'e application of RNN in
fault diagnosis began to recover in 2015. Abed et al. [19, 20]
used RNN for bearing fault diagnosis and realized accurate
detection and classification of bearing faults under non-
stationary conditions. Pan et al. [21–23] proposed amethod
for bearing fault classification by combining one-dimen-
sional CNN and LSTM, and the experimental test accuracy
is 99.6%.

Although the above algorithm has been applied in
mechanical equipment fault diagnosis, there is still a lot of
room to improve the fault recognition rate. Feature ex-
traction is a key part of fault diagnosis. It is found that for
samples with similar features and belonging to different
patterns, a single model will extract similar features,
resulting in false recognition [24] and a reduction in the
accuracy of fault diagnosis. In view of the above problems,
referring to the idea of subset [25, 26], this study proposes
a multiscale feature extraction fault diagnosis algorithm
model AHC-SFD based on adaptive hierarchical clus-
tering and applied to gearbox fault diagnosis. 'e test
results show that the proposed method can achieve the
fault recognition rate achieved by the proposed method is
more than 99.7% on the gearbox dataset and has better
generalization ability.

2. Gear Fault Diagnosis Algorithm Based on
Adaptive Hierarchical Clustering and Subset

Gear boxes generally work in the environment with strong
noise and complex structure, and the collected vibration
signals are easily affected by external factors. To fully develop
the feature extraction ability of the CNN network, this study
proposes a fault diagnosis algorithm based on adaptive
hierarchical clustering and subset. First, all data obtained the
optimal clustering results through adaptive hierarchical
clustering, and a multiscale feature extraction module is
designed according to the clustering results to realize the
classification of fault data.

2.1. AdaptiveHierarchical Clustering. 'enumber of clusters
is an important parameter that affects the clustering effect, but
before clustering, it is often necessary to set the number of
clusters to take a fixed value. As the amount of data changes,
the original parameter values cannot optimize the clustering
result of the algorithm. Combined with the characteristics of
vibrationsignals, anadaptivehierarchical clustering (DIANA)
algorithm is proposed in this study. 'e clustering contour

coefficient is used as the index of clustering effectiveness
evaluation, so that it can adaptively determine the number of
clusters according to the value of self-defined discriminant
function. 'e process is shown in Figure 1.

'e specific algorithm flow chart is as follows:

(1) Extract the average value of each original vibration
signal to form a feature sample set X � x1, x2, . . . ,

xnum} , U � u1, u2, . . . , uC  indicates fault type set
(2) Start clustering, make k � 0, smax � −∞;
(3) Let k � k + 1, take k as the number of clusters, and

perform hierarchical clustering on the input training
samples (DIANA);

(4) Calculate the contour coefficient s(k),

a(i) �
1

nc − 1


j∈Cc,i≠ j

d(i, j). (1)

In equation (1), nc represents the number of samples
of class c, Cc represents the samples of class c, and
d(i, j) represents the absolute distance between
samples i and j;

Start

k=0,smax=-∞

k=k+1

Taking k as the number of
clusters, the input samples
are hierarchically clustered

Calculations(k)

s_Index=k
smax=s(k)

Ins_Index is the number
of clusters, clustering the

input samples

Output clustering
results

s(k)>smax

k≥n

yes

yes

no

no

Figure 1: Adaptive hierarchical clustering flow chart.
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b(i) �

min

p, p≠ c

1
np


j∈Cp,i∈Cc

d(i, j)].
⎡⎢⎢⎢⎢⎢⎣ (2)

In equation (2), p denotes a mark other than Class c,
np represents the number of samples not of class c,
Cp represents a sample that is not class c, Cc is the
sample of class c, and d(i, j) is the absolute distance
between samples i and j;

s(i) �
b(i) − a(i)

max[a(i), b(i)]
. (3)

In equation (3), a(i) represents the average distance
between sample i and all other samples belonging to
the same type of fault, and b(i) represents the
minimum value of the average distance between
sample i and all samples in each class of nonclass i

fault;

s(k) �
1

num


num

i�1
si. (4)

In equation (4), si is the contour coefficient of the
sample individual, num is the number of samples in
the feature sample set, and k is the number of clusters;

(5) When s(k)> smax, then s Index � k and smax � s(k),
perform step 7;

(6) When s(k)≤ smax, return to step 3;
(7) Judge whether k is less than n, where n indicates the

number of dataset types:
When k≥ n, s Index is the number of clusters and
the clustering results are output;
When k< n, repeat step 3.

2.2. Multiscale (Subset) Feature Extraction. In order to
maximize the extraction of feature information from
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Figure 2: Multiscale feature extraction module.
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training data and quickly realize iteration, this study designs
a multilayer and multichannel multiscale feature extraction
module based on the CNN. 'e structure is shown in
Figure 2. 'e branch structure of each subset (12 layers in
total) is the same, in which the convolution kernel sizes of
the 8-layer convolution layers are 1∗ 8, 1∗ 8, 1∗ 4, 1∗ 4,
1∗ 4, 1∗ 2, and 1∗ 2, the number of channels is set to 16, 16,
64, 64, 256, 256, 512, and 512, and the step size is set to 2, 2, 2,
2, 2, 1, and 1. 'e relu activation function is used behind
each convolution layer, and the max pool layer of 4 adopts
the 1∗ 2 structure. Finally, the extracted feature information
is output.

2.3. AHC-SFD Diagnostic Algorithm. 'e flow chart of
adaptive hierarchical clustering and subset fault diagnosis
proposed in this study is shown in Figure 3. 'e mean value
of each vibration signal is used as the input of adaptive
hierarchical clustering to obtain the optimal clustering

results. 'e labeled samples corresponding to the results are
input to the multiscale feature extraction module to obtain
more effective fault data features. Finally, the features
extracted by the multifeature extraction module are trans-
formed into one-dimensional data through the fully con-
nected layer. Output the fault diagnosis result through
softmax function.

3. Experimental Verification and Analysis

In order to evaluate the effectiveness and accuracy of fault
diagnosis of the AHC-SFD network model, the gearbox
dataset is used for experimental verification. 'e data are
collected from a reference two-stage gearbox, the gear speed
is controlled by a motor, and the torque is provided by a
magnetic brake, which can be adjusted by changing its input
voltage. A 32-tooth pinion and an 80-tooth pinion are in-
stalled on the first stage input shaft, the second stage consists

.
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Figure 3: Flow chart of adaptive hierarchical clustering and subset fault diagnosis.
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of a 48-tooth pinion and a 64-tooth pinion. Input shaft speed
is measured by tachometer, and gear vibration signal is
measured by accelerometer, as shown in Figure 4.

3.1. Fault Dataset Description and Processing. 'e pinion on
the input shaft introduces 9 different gear conditions, in-
cluding five different severity labels, such as health, missing
teeth, root cracking, peeling, and tip cutting. 'e number
of samples in each status tag is the same.'e collected data
are roughly divided into training samples and test samples
in the proportion of 4 : 1. Each sampling sample is set to
3600 points. 'e dataset is described in Figures 5–13 and
Table 1.

3.2. Adaptive Hierarchical Clustering

3.2.1. Refactoring Input Data Format. 'e dataset collected
by the test-bed is a one-dimensional vibration signal se-
quence. In order to reduce the clustering time and carry out
the adaptive hierarchical clustering operation quickly and

effectively, this study takes the one-dimensional vibration
signal with 3600 sampling points as the average value and
takes the average value as the input value of the adaptive
hierarchical clustering. 'e specific operation is as follows:
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Figure 5: Health.
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Figure 6: Missing teeth.
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Figure 7: Root cracking.

500 1000 1500 2000 2500 3000

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 8: Peeling.
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Figure 9: Tip cutting5.
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X �


3600
i�1 xi

3600
. (5)

In equation (5), xi represents the i-th eigen value of a
sample and X represents the average value of a sample.

3.2.2. Result Output. 'e principle of adaptive clustering is
to obtain a certain clustering result, so that the distance
between classes is as large as possible, the distance within a
class is as small as possible, and the classes have good
separability. It can be seen from 2.1 that the cluster contour
coefficient is used as the index for cluster effectiveness
evaluation in this study. 'e closer the cluster contour
coefficient is to 1, the better the clustering result is.'e closer
it is to −1, the worse the clustering result is. In this study, the
number of clusters is set between [1, 9]. During clustering,
the cluster contour coefficients obtained with the change of
the number of clusters is shown in Figure 14. It can be clearly
seen that when the number of clusters are 2, the cluster
contour coefficient (Sk) is the largest. 'erefore, the branch
of the multiscale feature extraction module is set to 2.

3.3. Improved CNN Network

3.3.1. Grouping Label Data According to Clustering Results.
Use labeled data; the labeled data samples are
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), ym), x(i) represents the
feature vector, and y(i) ∈ 1, 2, . . . , t{ } represents the fault
type. According to the clustering results in 3.2.2, the label
data (one-dimensional vibration signal) is divided into two
groups. 'e two groups are divided into training samples
and test samples according to the ratio of 39 :11 and 19 : 6,
respectively. 'e description of the training and testing
datasets is shown in Table 2.

3.3.2. Data Standardization Operation. In order to better
speed up the network model training, make the data easy to
calculate and obtain more generalized results, the input data
are standardized, and the vibration signal data aremapped to
the (0,1) interval by using the normalization equation. 'e
mathematical expression is as follows:
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Figure 10: Tip cutting4.
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Figure 12: Tip cutting2.
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Figure 13: Tip cutting1.
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zi �

xi −
min

1≤f≤F

xf 

max

1≤f≤F
xf  −

min

1≤f≤F
xf 

. (6)

In equation (6), zi represents the preprocessed data,
xirepresents the frequency value of the vibration signal,
min
1≤f≤F

xf  and max
1≤f≤F

xf  represent the minimum

and maximum values of frequency in each group of vi-
bration signals, and f represents the number of each vi-
bration signal.

3.3.3. Diagnostic Result Output. In order to evaluate the
difference between the normalized prediction result and the
corresponding sample label, the cross entropy function is
used to calculate the error loss value. 'e mathematical
expression is as follows:

J(θ) � −
1
m



m

i�1


t

r�1
I y

(i)
� r  × log

e
xt

iΔck


m
k�1 e

xt
iΔck

⎛⎝ ⎞⎠. (7)

In equation (7), J(θ) represents the loss function, I Δ{ }

represents the logical indication function (when the value is
true, I� 1, otherwise I� 0), and y(i) represents the i-th real
label of the fault.

'e weight matrix θ is iteratively updated by means of
gradient descent. 'e iterative equation is as follows:

θj � θj − α
zJ(θ)

zθj

. (8)

In equation (8), θj represents the weight matrix of the j-
th update.

3.3.4. Model Parameter Structure. 'e experiment was
implemented on a Linux computer using Pycharm platform,
Python as the programming language, and PyTorch deep
learning framework.

During network training based on stochastic gradient de-
scent, the multilayer back-propagation of the error signal can
easily lead to “gradient dispersion” (too small gradient will make
the returned training error signal extremely weak) or “gradient
explosion” (too large gradient will lead to Nan in the model).
With the increase of network depth, training becomesmore and
more difficult. Considering the network lightweight, during the
experiment, the Adam optimizer is used to continuously update
the network training parameters. 'e batch size is set to 30 and
the number of iterations is 200. 'is study introduces the early
stopping mechanism. By monitoring the changing value of the
training set loss function between adjacent iterations during the
training process, early stopping can terminate themodel training
in time to prevent the model from overfitting. 'e learning rate
is 0.0005.'emodel is built on the basis of convolutional neural
network model, so the parameter design is similar to the
convolutional neural network, and the parameter design is
shown in Table 3.

Table 1: Gearbox dataset.

Fault information Sample information Category information
Fault type Fault degree Sample length Number of samples Category tag
Health 0 3600 104 0
Missing tooth 0 3600 104 1
Root crack 0 3600 104 2
Spalling 0 3600 104 3

Tip cutting

5 (lightest) 3600 104 4
4 3600 104 5
3 3600 104 6
2 3600 104 7

1 (most serious) 3600 104 8
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Sk

Sk of diffrent kinds and numbers
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Number of species

Figure 14: Cluster contour coefficients of different cluster
numbers.

Table 2: Training test dataset.

Grouping
information

'e number of training
samples

'e number of test
samples

Group I 360 102
Group II 360 104
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Table 3: Parameter design.

'e number of layers Structure name Structural parameters 'e number of channels Output size
Input (1,3600) 1 (1,3600)

1 Convolution layer (1,8,2) 16 (1,1797)
2 Convolution layer (1,8,2) 16 (1,895)
3 Pool layer (1,2) (1,447)
4 Convolution layer (1,4,2) 64 (1,222)
5 Convolution layer (1,4,2) 64 (1,110)
6 Pool layer (1,2) (1,55)
7 Convolution layer (1,4,2) 256 (1,26)
8 Convolution layer (1,4,2) 256 (1,12)
9 Pool layer (1,2) (1,6)
10 Convolution layer (1,2,1) 512 (1,5)
11 Convolution layer (1,2,1) 512 (1,4)
12 Pool layer (1,2) (1,2)
13 Full connection layer (1024) (1024)
14 Full connection layer (50) (50)
15 Output layer (9) (9)
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Figure 15: AHC-SFD and CNN experimental results.
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3.4.ResultAnalysis. To verify whether the method has a high
diagnostic rate and good generalization ability, the experi-
mental results in this study are compared with those using
only the CNN. 'e experimental results are shown in
Figure 15.

'e comparison results of AHC-SFD and CNN on the
test set are shown in Figure 16.

It can be seen from the comparison results in Figures 15
and 16 that after 140 epochs, the accuracy of AHC-SFD
algorithm on the test set reaches 99.7%, while the accuracy of
the CNN algorithm on the test set is only 98.9%. 'erefore,
the diagnostic methods in this study tend to be faster, more
stable, with higher accuracy and stronger generalization
ability.

In order to further demonstrate the learning ability of the
model for different categories of features, the t-SNE di-
mension reduction algorithm in flow pattern learning is
introduced to visualize the features learned by the full
connected layer. 'e experimental results are shown in
Figure 17.

It can be seen from the scatter plot Figure 17 that the
method AHC-SFD in this study has identification errors in
the samples of class 0 and class 7, and the other samples are
gathered at the corresponding positions. However, CNN
features have recognition errors in class 1, class 2, class 5, and
class 8 samples, and there are many overlaps in class 1 and
class 5 samples. It can be seen that AHC-SFD has stronger
feature learning ability than the CNN.

4. Conclusion

'e AHC-SFD algorithm established in this study is a di-
agnosis algorithm based on adaptive hierarchical clus-
tering and subset, which has the following three
advantages: (1) the AHC-SFD algorithm directly takes the

original vibration signal as the input of 1D-CNN, which
can obtain the characteristics of vibration signal to
the greatest extent. (2) A grouping method based on
adaptive hierarchical clustering is proposed, which ana-
lyzes the characteristics of different data and then clusters
the dataset into multiple feature groups. (3) A multiscale
feature extraction module is proposed to reduce the
misclassification of similar samples, thus ensuring the
maximum extraction of effective information into
the data. It is verified on the gearbox dataset that the
diagnostic accuracy is better than the single-channel CNN
model.

Data Availability

'e data set used in this article can be obtained from the
corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest
regarding this work.

Acknowledgments

'is work was supported by Innovation Ability Improve-
ment Project of Scientific and Technological Small and
Medium-Sized Enterprises in Shandong Province (grant no.
2021TSGC1089), “20 New Colleges and Universities” Fun-
ded Project in Jinan (grant no. 2021GXRC074), Major
Scientific and Technological Innovation Projects in Shan-
dong Province (grant no. 2019JZZY010117), and 2020 In-
dustrial Internet Innovation and Development Project,
Solution Application and Promotion Public Service Plat-
form (grant no. TC200802C).

0
1
2
3
4

5
6
7
8

AHC-SFD Feature Visualization
15

10

5

0

-5

-10

-15

1050-5-10-15

(a)

CNN feature Visualization

10

5

0

-5

-10

-10 -5 0 5 10

0
1
2
3
4

5
6
7
8

(b)

Figure 17: AHC-SFD and CNN feature visualization.

Computational Intelligence and Neuroscience 9



References

[1] Z. Hou, “Research status and development prospect of ro-
tating machinery fault diagnosis,” Forging equipment and
manufacturing technology, vol. 56, no. 5, pp. 33–37, 2021.

[2] X. Zhao, “Automatic on-line monitoring and fault diagnosis
system for mine electromechanical equipment,” Mining
equipment, vol. 11, no. 6, pp. 246-247, 2021.

[3] G. Fan, “Research on on-line monitoring and fault diagnosis
of secondary circuit in intelligent substation,” Light source and
lighting, vol. 45, no. 2, pp. 228–230, 2022.

[4] B. Shen, B. Chen, C. Zhao, F. Chen, W. Xiao, and N. Xiao, “A
review of research on deep learning in mechanical equipment
fault prediction and health management,” Machine tools and
hydraulics, vol. 49, no. 19, pp. 162–171, 2021.

[5] Y. Lei, F. Jia, and X. Zhou, “A deep learning-based method for
machinery health monitoring with big data,” Journal of
Mechanical Engineering, vol. 51, no. 21, pp. 49–56, 2015.

[6] F. Jia, Y. Lei, J. Lin, X. Zhou, and N Lu, “Deep neural net-
works: a promising tool for fault characteristic mining and
intelligent diagnosis of rotating machinery with massive
data,” Mechanical Systems and Signal Processing, vol. 72-73,
pp. 303–315, 2016.

[7] W. Yu and C. Zhao, “Robust monitoring and fault isolation of
nonlinear industrial processes using denoising autoencoder
and Elastic Net,” IEEE Transactions on Control Systems
Technology, vol. 27, pp. 1–9, 2019.

[8] H. Mu ., Rolling Bearing Fault Diagnosis Method Based on
Integrated Soft Competition Yu Norm Art, Wuhan University
of science and technology, Wuhan, China, 2017.

[9] Y. Tang, “Application of integrated diagnosis method in
transformer fault diagnosis,” Coal mine machinery, vol. 33,
no. 5, pp. 264–266, 2012.

[10] V. H. Nguyen, J. S. Cheng, Y. Yu, and V. T 'ai, “An ar-
chitecture of deep learning network based on ensemble
empirical mode decomposition in precise identification of
bearing vibration signal,” Journal of Mechanical Science and
Technology, vol. 33, no. 1, pp. 41–50, 2019.

[11] G. Chen, J. Zhang, and G. Kan, “Intelligent fault diagnosis
method of bearing based on improved superposition auto-
matic encoder,” Noise and vibration control, vol. 42, no. 1,
pp. 156–161, 2022.

[12] S. Liu, Research on Bearing Fault Diagnosis Based on Stack
Automatic Encoder, Taiyuan University of science and tech-
nology, Taiyuan, China, 2020.

[13] D. T. Hoang and H. J. Kang, “Rolling element bearing fault
diagnosis using convolutional neural network and vibration
image,” Cognitive Systems Research, vol. 53, pp. 42–50, 2019.

[14] C. Wei, J. Zhou, and J. Zhang, “FDM 3D printing fault di-
agnosis method based on,” Agricultural equipment and vehicle
engineering, vol. 60, no. 2, pp. 149–153, 2022.

[15] Ke Zhang, J. Wang, H. Shi, X. Zhang, and L. Fu, “Research on
fault diagnosis of rolling bearing under variable working
conditions based on,” Control engineering, vol. 29, no. 2,
pp. 254–262, 2022.

[16] Y. Ye and Y. Li, “Multi wind turbine fault diagnosis based on
CNN ensemble learning,” Journal of Industrial Engineering,
vol. 25, no. 1, pp. 136–143, 2022.

[17] L. Wen, X. Li, and L. Gao, “A transfer convolutional neural
network for fault diagnosis based on ResNet- 50,” Neural
Computing & Applications, vol. 31, pp. 1–14, 2019.

[18] J. Ding, Q. Shao, Z. Qi, M. Xie, Bo Gao, and Yu Yang,
“Convolution neural network fault diagnosis based on

transfer learning,” Science, technology and engineering, vol. 22,
no. 14, pp. 5653–5658, 2022.

[19] W. Abed, S. Sharma, R. Sutton, and A Motwani, “A robust
bearing fault detection and diagnosis technique for brushless
DC motors under non-stationary operating conditions,”
Journal of Control, Automation and Electrical Systems Au-
tomation and Electrical Systems, vol. 26, no. 3, pp. 241–254,
2015.

[20] M. Chang, Fault Diagnosis and Prediction of Wind Power
Rolling Bearing Based on Deep Learning, Jiangnan University,
Wuxi, China, 2021.

[21] H. Pan, X. He, and S. Tang, “An improved bearing fault
diagnosis method using one-dimensional CNN and LSTM,”
Journal of Mechanical Engineering, vol. 64, no. 7/8, pp. 443–
452, 2018.

[22] P. Zhang, X. Shu, X. Li, J. Hang, S. Ding, and Q. Wang,
“Research on fault diagnosis method of AC motor system
based on LSTM,” Journal of electrical machinery and control,
vol. 26, no. 3, pp. 109–116, 2022.

[23] Y. Li, J. Hu, J. Lai, W. Wang, Y. Zhao, and Y. Fan, “Fault
diagnosis of wind turbine planetary gearbox based on 1d-cnn-
lstm hybrid neural network model,” Electrical automation,
vol. 43, no. 5, pp. 20–22+26, 2021.

[24] J. Bai, Y. Wu, J. Zhang, and F. Chen, “Subset based deep
learning for RGB-D object recognition,” Neurocomputing,
vol. 165, pp. 280–292, 2015.

[25] A. T. Duong, H. T. Phan, and N. D. H. Le, A Hierarchical
Approach for Handwritten Digit Recognition Using Sparse
Autoencoder. Issues and Challenges of Intelligent Systems and
Computational Intelligence, Springer, Newyork, NY, USA,
2014.

[26] Y. Zhang, X. Li, L. Gao, and P. Li, “A new subset based deep
feature learning method for intelligent fault diagnosis of
bearing,” Expert Systems with Applications, vol. 110,
pp. 125–142, 2018.

10 Computational Intelligence and Neuroscience



Research Article
Feature Selection Based on Adaptive Particle Swarm
Optimization with Leadership Learning

Zhiwei Ye ,1 Yi Xu ,1 Qiyi He ,1 Mingwei Wang,1 Wanfang Bai,2 and Hongwei Xiao3

1School of Computer Science, Hubei University of Technology, Wuhan 430070, China
2Xining Big Data Service Administration, Xining 810000, China
3Xining Zhiyun Digital Economy Research Institute, Xining 810000, China

Correspondence should be addressed to Qiyi He; qiyi.he@hbut.edu.cn

Received 29 June 2022; Revised 7 August 2022; Accepted 9 August 2022; Published 28 August 2022

Academic Editor: Nian Zhang

Copyright © 2022 Zhiwei Ye et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of the Internet of �ings (IoT), the curse of dimensionality becomes increasingly common. Feature
selection (FS) is to eliminate irrelevant and redundant features in the datasets. Particle swarm optimization (PSO) is an e�cient
metaheuristic algorithm that has been successfully applied to obtain the optimal feature subset with essential information in an
acceptable time. However, it is easy to fall into the local optima when dealing with high-dimensional datasets due to constant
parameter values and insu�cient population diversity. In the paper, an FS method is proposed by utilizing adaptive PSO with
leadership learning (APSOLL). An adaptive updating strategy for parameters is used to replace the constant parameters, and the
leadership learning strategy is utilized to provide valid population diversity. Experimental results on 10 UCI datasets show that
APSOLL has better exploration and exploitation capabilities through comparison with PSO, grey wolf optimizer (GWO), Harris
hawks optimization (HHO), �ower pollination algorithm (FPA), salp swarm algorithm (SSA), linear PSO (LPSO), and hybrid PSO
and di�erential evolution (HPSO-DE). Moreover, less than 8% of features in the original datasets are selected on average, and the
feature subsets are more e�ective in most cases compared to those generated by 6 traditional FS methods (analysis of variance
(ANOVA), Chi-Squared (CHI2), Pearson, Spearman, Kendall, and Mutual Information (MI)).

1. Introduction

Large amounts of data have been generated in various ¡elds
such as social media, healthcare, cybersecurity, and edu-
cation in the past decades, and edge computing provides an
e�ective solution for data storage and transmission. How-
ever, as the dimensionality of the data increases, the curse of
dimensionality problem becomes common, which has a
negative impact on the stability, security, and computational
e�ciency of edge computing. Feature selection (FS) is a data
preprocessing technique in machine learning and data
mining that has been applied to improve the performance of
edge computing by eliminating irrelevant and redundant
features in the datasets [1–3]. In general, it is a combinatorial
optimization problem [4, 5] that tries to ¡nd the optimal
feature subsets with essential information from the original
datasets. Given a dataset with N features, there will be 2N

possible feature subsets, and the search space rises expo-
nentially as the number of features increases [6, 7]. Hence,
some traditional FS methods have received considerable
interest due to their ability to evaluate feature importance
and select a certain number of top-ranked features. �ese
methods include statistical test (e.g., analysis of variance
(ANOVA) [8, 9] and Chi-Squared (CHI2) [10, 11]), cor-
relation criteria (e.g., Pearson [12], Spearman [13, 14],
Kendall [15, 16]), and information theory (e.g., symmetrical
uncertainty (SU) [17], mutual information (MI) [18, 19], and
entropy [20]). However, the statistical test and correlation
criteria techniques only consider the correlation between
features and labels, and the feature subsets are not appro-
priate because some highly correlated but redundant fea-
tures are selected. As a result, information theory techniques
are applied to FS problems owing to their consideration of
redundancy between features as well. Moreover, the
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redundancy calculation only focuses on the interaction
between two features and fails to identify those of multiple
features [21], which may ignore some important features.
)erefore, how to find suitable feature subsets efficiently
needs to be further investigated.

Metaheuristic algorithms such as monarch butterfly
optimization (MBO) [22], slimemold algorithm (SMA) [23],
moth search algorithm (MSA) [24], hunger games search
(HGS) [25], hybrid rice optimization (HRO) [26], colony
predation algorithm (CPA) [27], weighted mean of vectors
(INFO) [28], grey wolf optimizer (GWO) [29], clonal flower
pollination algorithm (FPA) [30], salp swarm algorithm
(SSA) [31], Harris hawks optimization (HHO) [32], and
particle swarm optimization (PSO), have been used to solve
combinatorial optimization problems because of their dy-
namic exploration and exploitation capabilities in the search
space, some of which have shown to be successful in FS
problems [33, 34]. For instance, Shen and Zhang [29]
proposed a two-stage GWO for processing biomedical
datasets, which showed better performance in terms of time
consumption and classification accuracy by removing more
than 95.7% of the redundant features. Hussain et al. [32]
developed an FS method based on HHO, which removed
87% of features and achieved 92% of classification accuracy.
Yan et al. [30] presented a binary clonal FPA for some
biomedical datasets, which enhanced population diversity
and selected fewer features with strong robustness. Balak-
rishnan et al. [31] designed an FS method based on salp SSA,
which increased the ability of particles to explore different
regions by randomly updating their position and improved
the confidence level by 0.1033% on 6 datasets. However, a
series of parameters need to be set by users in these met-
aheuristic algorithms, and unsuitable parameters may lead
to slow convergence and local stagnation. A lot of experi-
ments and extensive experience are needed to find the ap-
propriate parameter settings.

Compared with the above metaheuristic algorithms,
PSO is applied to solve FS problem of its fast convergence
and few parameters. However, the exploration and exploi-
tation capabilities are influenced by parameter setting and
population diversity as the number of features increases.
)erefore, some improved PSO based on parameter
updating and population diversity updating strategies have
been proposed for FS. For example, Song et al. [35] de-
veloped a three-phase hybrid FS algorithm, which reduced
the computational cost by using correlation-guided clus-
tering and an improved integer PSO. Tran et al. [36] used a
bare-bones PSO for FS, which reduced the search space of
the problem and improve the search efficiency. Song et al.
[37] also introduced a variable-size cooperative coevolu-
tionary PSO for high-dimensional datasets, which divided a
high-dimensional FS problem into multiple low-dimen-
sional subproblems with a low computational cost. Hu et al.
[38] presented a multi-objective PSO for FS, which achieved
superior performances in approximation, diversity, and
feature cost by introducing a tolerance coefficient. Hosseini
Bamakan et al. [39] proposed a time-varying PSO-based FS
method to deal with the network intrusion detection
problem, which obtained a higher detection rate and lower

false alarm rate by introducing a chaotic concept and time-
varying parameters. Mafarja et al. [40] proposed a binary
PSO-based FS method, which adopted a time-varying inertia
weighting strategy and showed a superior convergence rate
on some datasets. Huang et al. [41] utilized cut-point and
feature discretization to expand the searching scope of PSO
for gene expression datasets, which selected fewer features
and maintained similar classification accuracy. Xue et al.
[42] introduced adaptive parameters in PSO for high-di-
mensional datasets, which allowed particles to automatically
adjust parameters during the search process and decreased
time consumption. Moradi and Gholampour [43] used a
PSO with the local search strategy for high-dimensional
datasets, which adjusted the search process by considering
the correlation information between distinct features. Chen
et al. [44] introduced an FS method based on hybrid PSO
and differential evolution (HPSO-DE), which enhanced
population diversity by adopting mutation, crossover, and
selection operators. Although the optimization ability of
PSO is improved to some extent by the above techniques, the
randomness of the search process may be increased and they
lack consideration for jumping out of the local optima.

In the paper, an FS method based on adaptive PSO with
leadership learning (APSOLL) is proposed, which combines
parameter updating and population diversity updating strat-
egies to compensate for the shortcomings of PSO.)e adaptive
updating strategy for parameters is used to guide particles to
search in a more reasonable scope, and the leadership learning
strategy is utilized to enhance population diversity. Overall, the
main contributions of our work are as follows:

(1) Based on the population state, an adaptive updating
strategy for parameters is proposed to replace the
constant parameters which guide particles to search
in a more reasonable scope.

(2) Adopting leadership learning strategies to provide
valid population diversity by learning from the first
three leaders in the population that enhances the
exploration and exploitation capabilities of PSO.

(3) )e effectiveness of the proposed method is verified
by comparing it with six traditional methods
(ANOVA, CHI2, Pearson, Spearman, Kendall, and
MI) and seven metaheuristic algorithms-based FS
methods (GWO, HHO, FPA, SSA, LPSO, and
HPSO-DE).

2. Background and Related Work

2.1. Overview of PSO. PSO is a population-based meta-
heuristic algorithm for simulating the predatory activities of
bird and fish populations [45, 46], and each particle in the
population has two properties: velocity vector vi � (vi1, vi2,

· · · , vid) and position vector xi � (xi1, xi2, · · · , xid), where d
denotes the dimension. In the search process of PSO, the
velocity vectors are dynamically adjusted by the personal best
position (pbesti) and the global best position (gbest) at the
current stage, and the position vectors are the candidate
solutions to the optimization problems, all of which are
updated by equations (1)–(2).
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vi(t + 1) � ω × vi(t) + c1r1 p besti − xi(t)( )
+ c2r2 g best − xi(t)( ),

(1)

xi(t + 1) � xi(t) + vi(t + 1). (2)

where vi and xi represent the velocity and position vectors of
the i–th (i= 1, 2, . . ., N) particle, and the upper and lower
limits of each dimension are set to 1 and 0, respectively. ω is
de¡ned as the inertia parameter, and it is a non-negative
number. c1 and c2 are acceleration parameters, and the
former represents the personal learning parameter and the
latter represents the global learning parameter, which is used
to control the search scope of particles and set by users. r1
and r2 are random numbers in [0, 1].

2.2. �e Leadership Learning Strategy. Leadership learning
strategy is a management concept that describes the dynamic
process of feed-forward and feedback in a living system.
Hirst et al. [47] suggested that learning activities of indi-
viduals will a�ect the decisions of leaders, and it is called
feed-forward learning �ow. Moreover, e�ective leaders may
quickly identify key information in group development and
have a lasting impact on the individuals and group activities
through their decisions in turn, which is regarded as
feedback learning �ow. In the model of leadership learning
strategy, feed-forward and feedback learning �ow among
individuals, groups, and leaders together determine the
scope of the system development, and the framework is
shown in Figure 1.

Based on the leadership learning strategy, GWO was
proposed with e�ective exploration capability and accept-
able time consumption by learning from the ¡rst three best
solutions (leaders) of each iteration [48–51]. In the search
process, the population is divided into four levels, se-
quentially α, β, δ, and ω, where α, β, and δ are regarded as
leaders, the remaining particles ω are considered as indi-
viduals, and the population is considered group. Moreover,
the particles and leaders learning from each other are
considered as the leadership learning strategy, and it is
shown in Equation (3).

X1
�→

� Xα
�→

− A1
�→

× Dα
�→
, X2
�→

� Xβ
�→

− A2
�→

× Dβ
�→
, X3
�→

� Xδ
�→

− A3
�→

× Dδ
�→
.

(3)

where Xα
�→

, Xβ
�→

, and Xδ
�→

are position vectors of α, β, and δ.

Dα
�→

� |C1
�→
×Xα
�→
−X
→
|, Dβ
�→

� |C2
�→
×Xβ
�→
−X
→
|, Dδ
�→

� |C3
�→
×Xδ
�→
−X
→
|

denote the distance between particles and leaders. C1
�→

, C2
�→

,
and C3

�→
are random numbers from 0 to 2.�e search scope of

particles is controlled by the convergence factor A
→
, which is

computed as Equation (4).

A
→
� 2a × r3 − a, (4)

where the variable a � 2(1 − t/T) is the control coe�cient (T
denotes the maximum number of iterations), and it de-
creases linearly from 2 to 0 during the search process.

3. The Proposed Method

In this section, an FSmethod based on APSOLL is presented to
conduct classi¡cation on 10 UCI datasets. �e corresponding
techniques for the proposed method are described as follows:

3.1. Adaptive Updating Strategy for Parameters. During the
search process of PSO, the search scope of particles is af-
fected by convergence factor c1 and c2. In general, they are
usually less than 2 and set to constant values by users
[52–54]. However, the population is dynamically changed
according to the optimal ¡tness value, it is appropriate to
adaptively adjust c1 and c2 for better exploration and ex-
ploitation. Moreover, the change of ¡tness value during the
iteration re�ects the state of the population, thus the
adaptive updating strategy is proposed based on this case,
and it is used to replace the convergence factor, which is
shown in equations (5)‒(6).

m � m + 1, if fitness(t) � fitness t − t1), 0, otherwise,({
(5)

c �
m

T
( )

2/3
+ 1,

(6)

wherem is a variable and initially set to 0, and it is increased by
1 if the ¡tness value is improved in the next iteration, otherwise
the value of which is always 0. �us, c is dynamically changed
between 1 and 2 during the search process, and it is gradually
increased if the algorithm falls into the local optima.

3.2. �e Search Process of Leadership Learning Strategy.
�e population diversity of PSO may be inadequate due to
the strategy learned from pbesti and gbest. Smith [55] pro-
posed that the more leaders of individuals engage feed-forward
and feedback in a living system, the more possible it is for the

Feedback learning flow

Individuals Group Leaders

…
…

Feed-forward learning flow

Figure 1: �e framework of leadership learning.
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group to change, innovate, and cooperate. However, the time
consumption will increase as the number of leaders increases
during the process. )erefore, inspired by GWO, the leadership
learning strategy from 3 leaders is used to reconstruct the ve-
locity vectors of PSO, which will increase population diversity
and provide more accurate information for better exploration
and exploitation. In addition, an adaptive parameter c is
combined to guide the particles to search in a more reasonable
scope, and the process is shown in Equation (7).

vi(t + 1) � ωΔvi(t) +
c

2
× r4 X1

�→
− xi(t) 

+
c

3
× r4 X2

�→
− xi(t) 

+
c

4
× r4 X3

�→
− xi(t) ,

(7)

where X1
�→

, X2
�→

and X3
�→

represent the leadership learning
strategy. r4 is a random number between 0 and 1. c is
updated by (6), it is dynamically changed between 1 and 2
during the search process, and it is gradually increased if the
algorithm falls into the local optima. )e cooperation of c/2,
c/3 and c/4 will allow particles to search in a more reasonable
scope with higher possibilities.

As for the leadership learning strategy, Hu et al. [50]
proposed that the convergence factor |A

→
| greater than 1

shows better exploration capability and less than 1 shows
better exploitation capability. However, it can be seen from
(4) that |A

→
| is linearly decreased and always less than 1in the

last 50% of iterations, and the exploration capability is in-
sufficient when the algorithm is trapped in the local optima
in this case. Hence, it is considered to increase the possibility
that |A

→
| is greater than 1 at this stage and it is modified as

shown in Equation (8).
A
→

� 2c
a × r5 − a. (8)

where r5 is a random number in [0, 1], and |A
→

| is adaptively
changed during the search process. It will be greater than 1
with a higher possibility and thus enhance the exploration
capability when the algorithm falls into the local optima.

3.3. 0e Encoding Schema. )e core object of the proposed
method is to select a suitable expression form for FS and
establish a reasonable mapping between the solutions and
the feature subsets. )e candidate solutions that are
binarized are used to represent the features, where “1”
denotes the feature is selected and “0” illustrates the feature
is abandoned. For instance, there is a feature dataset with 10
features, and the candidate solution is coded as 1010000011,
which means the 1st, 3rd, 9th, and 10th features are selected
and the others are abandoned. )e position vector of each
particle is binarized according to Equation (9).

Xbid �
1, if xid > 0.5,

0, otherwise,
 (9)

where Xbi � (Xbi1, Xbi2, · · · , Xbid), i and d denote the
number of particles and the number of features, respectively.

3.4.0eDefinition ofObjective Function. )e feature subsets
generated by FS methods for classification have two main
goals, which are maximizing the classification accuracy
(minimizing the classification error) and minimizing the
number of selected features. As a mainstream classifier, K
nearest neighbor (KNN) [56–58] is utilized for FS due to its
advantages of simplicity and insensitivity to noisy data.
Furthermore, how to reduce the number of selected fea-
tures is considered another core issue. )e ultimate goal is
to obtain the optimal feature subsets with essential in-
formation from the original datasets while achieving higher
classification accuracy with fewer features. Hence, the
objective function that combines the classification accuracy
and the number of selected features is adopted and it is
defined as Equation (10).

Fitness(X) � θ × acc(X) + (1 − θ) × 1 −
#X

N
 . (10)

where acc (X) denotes the classification accuracy of the
feature subsets, #X andN represent the number of features in
the feature subset and the original dataset. θ is a weighting
factor to balance the classification accuracy and the number
of selected features, and it is set to 0.7.

3.5. Implementation of the Proposed Method. )e main
process of APSOLL is to search for the optimal feature
subsets with essential information from the original
datasets and apply it for classification, and the pseudocode
is shown in Algorithm 1. Among these, the particles are
binarized to determine the corresponding feature subsets in
each iteration, and the leaders are determined by com-
puting the fitness function, which is used to guide the
search process. Figure 2 shows the flowchart of APSOLL.
When the algorithm starts running, it randomly initializes
the velocity vector vi, position vector xi, pbesti, gbest, and
sets m � 0 and t � 0. In each iteration, the fitness value of
each particle is calculated in order to find the optimal three
solutions (leaders). Based on the information provided by
the leader, the velocity of the particles and the position of
the population are updated. In this process, if the optimal
fitness value is not changed, the adaptive parameter m is
added by 1. )e algorithm run is ended and the optimal
solution is binarized when the maximum number of it-
erations is reached.

4. Experimental Design

All experimental procedures are implemented using Python
3.8 in a PCwith Intel(R) Core (TM) i5-9400 @ 2.9GHz CPU,
and 16GB DDR4 of RAM under Windows 10 Operating
System. 10 public datasets are used to assess the quality of the
proposed method. APSOLL is compared with 7 meta-
heuristic algorithms to evaluate the optimization ability, and
6 traditional FS methods such as ANOVA, CHI2, Pearson,
Spearman, Kendall, and MI are used to analyze the effec-
tiveness of the feature subsets selected by the proposed
method.
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4.1.DatasetsDescription. 10 datasets from the UCI machine
learning database are used to evaluate the performance of
the proposed method, including myocardial infarction
complications (MIC), urban, SCADI, arrhythmia, made-
lon, isolet5, multiple features (MF), Parkinson’s disease
(PD), CNAE-9, and QSAR, all of which have more than 100
features, with the number of classes ranging from 2 to 26

and instances ranging from 69 to 2600, and the details of
datasets are shown in Table 1. In the experiments, each
dataset is randomly divided into two parts: a total of 70% of
the instances are chosen as the training data, and the
remaining 30% are used as the testing data. Li et al. [54]
described in detail why the dataset dividing approach was
adopted.

Start

Randomly initialize
velocity vi position xi,

Pbesti, gbest,set m=0, t=0

Calculate fitness
value of each

particle

t<max_iterNo

fitness(t)=fitness(t-1) t=t+1

Yes

m=m+1

m=0

Output the best
particle

End

Update xα, xβ, and xδ

Update c by
equation (6)

Update the velocity
of each particle by
using equation (7)

Update the position
by using equation

(2)

Yes

No

Compute |X1| |X2|,
and |X3| by using

equation (3)

Update |A| by
equation (8)

Figure 2: �e �owchart of APSOLL.

Input: the number of iterations T, population size N
Output: �e classi¡cation accuracy and the number of features among the feature subsets
Initialization: xi � (xi1, xi2, · · · , xid)
Set ub� 1, lb� 0, m� 0, initial iteration t� 0
while t<T do

Binarize each particle by using Equation (9)
Compute the ¡tness value of each particle by using Equation (10)
Update xα, xβ, and xδ
Update c by Equation (6)
Update |A

→
| by Equation (8)

Compute X1
�→

, X2
�→

, and X3
�→

by using Equation (3)
Update the velocity of each particle by using Equation (7)

Update the population position by using Equation (2)
t� t+1
end while

Binarize xα by using Equation (9)
return the ¡tness value and the feature subset

ALGORITHM 1: FS based on APSOLL.
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4.2. Parameters Setting for Metaheuristic Algorithms. As for
APSOLL, the search process requires only one inertia weight
parameter ω to be set. In addition, some commonly used FS
methods based on metaheuristic algorithms are adopted to
evaluate the optimization ability, such as GWO, PSO, HHO,
FPA, SSA, LPSO, and HPSO-DE. Among them, LPSO [40]
and HPSO-DE [44] are classical benchmark PSO-based FS
methods by adopting parameter updating and population
diversity updating strategies, respectively. )e parameters of
each metaheuristic algorithm are set based on the published
literature, which is shown in Table 2. Furthermore, the binary
encoding scheme is utilized for each metaheuristic algorithm
and it is run independently 30 times to take the average as the
result in order to eliminate the influence of randomness.

5. Results and Discussion

5.1. Experimental Results of Different Metaheuristic
Algorithms. )e optimization ability of APSOLL is evalu-
ated from the fitness value, classification accuracy, number
of selected features, and CPU time.)e average convergence

curves of the fitness value are shown in Figures 3-4, and the
number of selected features in the search process is shown in
Figures 5-6. In the experiment, the t-test with a significance
level of 0.05 is used to determine whether the results ob-
tained from the proposed algorithm are statistically signif-
icantly different from other metaheuristic algorithms, and
the experimental results are presented in Tables 3-4, where
Fit, Acc, and #F denote the fitness values, classification
accuracy and number of selected features after 30 inde-
pendent runs, and Time presents the CPU time of the whole
process (in seconds). Sfit, Sacc, and Sf display the t-test results,
where “+” or “−” means the result is worse or better than the
proposed method and “�” means they are similar in the t-
test. In other words, the more “+”, the better the proposed
methods.

From the variation curves of the fitness value, it is shown
that APSOLL has achieved better fitness values on all
datasets, which means the optimization ability of APSOLL is
better than other metaheuristic algorithms by adopting the
adaptive updating and leadership learning strategy. From

Table 2: Parameters Setting of different metaheuristic algorithms.

Algorithms Parameters Values

Common settings

Number of iterations T�100
Population size N� 30

)e upper limit of particle position ub� 1
)e lower limit of particle position lb� 0

GWO Correlation coefficient a decreases linearly from 2 to 0

PSO Acceleration factor c1 � 2, c2 � 2
Inertia weight w � 0.9

HHO Levy component β� 0.8

FPA
Acceleration factor c1 � 2, c2 � 2
Levy component β� 1.5
Switch probability P � 0.8

SSA Convergence factor C decreases linearly from 2 to 0

LPSO
Acceleration factor c1 � 2, c2 � 2

Upper limit of inertia weight wmax� 0.9
Lower limit of inertia weight wmin� 0.4

HPSO-DE

Acceleration factor c1 � 2, c2 � 2
Crossover rate CR� 0.2
Scaling factor F� 0.5

Predefined generation G� 5
Inertia weight w � 0.9

APSOLL Inertia weight w � 0.9

Table 1: Details of datasets.

Dataset Number of features Number of instances Number of classes
MIC 124 1700 7
Urban 147 507 9
SCADI 205 69 6
Arrhythmia 279 452 13
Madelon 500 2600 2
Isolet5 617 1559 26
MF 649 2000 10
PD 754 756 2
CNAE-9 857 1080 9
QSAR 1024 1687 2
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Figure 3: �e average convergence curves of di�erent metaheuristic algorithms for datasets below 500 dimensions.

Computational Intelligence and Neuroscience 7



Isolet5

GWO
PSO
HHO

FPA
SSA
LPSO

HPSO-DE
APSOLL

0.7

0.8

0.9

Fi
tn

es
s

20 40 60 80 1000
Number of iterations

MF

GWO
PSO
HHO

FPA
SSA
LPSO

HPSO-DE
APSOLL

0.80

0.85

0.90

0.95

1.00

Fi
tn

es
s

20 40 60 80 1000
Number of iterations

PD

GWO
PSO
HHO

FPA
SSA
LPSO

HPSO-DE
APSOLL

0.7

0.8

0.9

Fi
tn

es
s

20 40 60 80 1000
Number of iterations

CNAE-9

GWO
PSO
HHO

FPA
SSA
LPSO

HPSO-DE
APSOLL

20 40 60 80 1000
Number of iterations

0.70

0.75

0.80

0.85
Fi

tn
es

s

GWO
PSO
HHO

FPA
SSA
LPSO

HPSO-DE
APSOLL

QSAR

0.80

0.85

0.90

0.95

Fi
tn

es
s

20 40 60 80 1000
Number of iterations

Figure 4: �e average convergence curves of di�erent metaheuristic algorithms for datasets above 500 dimensions.
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Figure 5: �e average number of selected features for datasets below 500 dimensions by di�erent FS methods based on metaheuristic
algorithms.
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Figure 6: �e average number of selected features for datasets above 500 dimensions by di�erent FS methods based on metaheuristic
algorithms.
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Figures 3–4, it can be observed that HHO and HPSO-DE
converge prematurely on most datasets, and PSO, SSA, FPA,
and LPSO converge slower and have poor overall perfor-
mance. In contrast, APSOLL achieves a balance in con-
vergence speed and performance. In terms of classification
accuracy, APSOLL-based FS method exceeds 80% on av-
erage in 9 of the 10 datasets, especially on MF, which has
reached 98.07%. As it can be seen in Figures 5–6, PSO, SSA,
FPA, and LPSO have limited performance in reducing the
size of feature subsets, while APSO performs better than
other methods on most datasets during the iterative process.
In Tables 3–4, the number of selected features by APSOLL is
less than those of other metaheuristic algorithms in most
cases. A total of 30%–50% of features in the original datasets
are selected by FPA and SSA, while less than 8% of features
are selected by APSOLL. In particular, only 7.58 features are
selected on average from the original 754 features on PD. As
for CPU time, APSOLL consumes less time on MIC and

madelon compared to other metaheuristic algorithms.
Moreover, although it consumes slightly more time on other
datasets, it performs better in the two main aims of the
classification accuracy and the number of selected features.

In summary, the optimization ability of APSOLL is
better than other metaheuristic algorithms, and the suitable
feature subsets are selected with higher classification accu-
racy and fewer features at an acceptable time.

5.2. Experimental Results of Traditional Methods. To dem-
onstrate the effectiveness of APSOLL-based FS method, the
performance is compared with that of 6 traditional methods.
Figures 7‒8 show the classification accuracy of 6 traditional
FS methods for different numbers of selected features, and
the optimal solutions of the proposed and traditional
methods are presented in Table 5.

Table 3: Comparisons between APSOLL and other metaheuristic algorithms for datasets below 500 dimensions.

Datasets Method Fit (std.) Sfit Acc (std.) Sacc #F (std.) S f Time

MIC

GWO 93.28 (0.27) + 91.03 (0.40) + 1.80 (0.65) � 125.37
PSO 87.04 (0.96) + 91.03 (0.48) + 27.40 (3.49) + 220.42
HHO 91.83 (1.76) + 89.08 (2.60) + 2.13 (2.42) � 162.52
FPA 82.66 (0.53) + 90.63 (0.75) + 44.2 (2.50) + 217.76
SSA 82.68 (0.87) + 90.65 (0.78) + 44.2 (3.23) + 122.10
LPSO 86.89 (0.89) + 91.08 (0.54) + 28.13 (3.48) + 220.95

HPSO-DE 92.99 (0.38) + 90.83 (0.45) + 2.43 (1.09) + 133.59
APSOLL 93.65 (0.35) ∗ 91.40 (0.56) ∗ 1.33 (0.47) ∗ 122.10

Urban

GWO 87.21 (4.12) � 85.03 (16.03) � 11.33 (2.70) + 96.00
PSO 65.57 (5.57) + 64.97 (13.90) + 48.53 (5.89) + 160.65
HHO 83.78 (3.18) + 79.43 (14.26) + 8.93 (5.41) � 94.06
FPA 57.64 (2.87) + 58.26 (10.28) + 64.40 (6.52) + 163.10
SSA 58.10 (3.92) + 58.17 (10.39) + 61.83 (5.88) + 162.84
LPSO 62.53 (4.90) + 60.41 (11.97) + 47.80 (5.17) + 163.89

HPSO-DE 86.06 (1.20) � 82.24 (14.30) � 7.40 (2.11) � 47.19
APSOLL 86.60 (2.18) ∗ 82.84 (20.46) ∗ 6.83 (1.91) ∗ 75.32

SCADI

GWO 95.13 (2.04) � 95.40 (2.88) � 11.23 (7.49) � 29.19
PSO 86.43 (3.22) + 93.33 (4.19) + 60.87 (8.10) + 124.32
HHO 91.95 (3.61) + 90.63 (4.51) + 10.23 (7.14) � 24.98
FPA 81.80 (3.48) + 92.38 (4.19) + 87.90 (7.17) + 147.73
SSA 81.05 (3.59) + 90.79 (4.59) + 85.47 (8.11) + 152.42
LPSO 86.01 (3.12) + 92.54 (4.20) + 59.90 (6.65) + 100.95

HPSO-DE 94.38 (2.38) + 93.65 (3.33) + 8.07 (2.89) � 23.31
APSOLL 97.04 (1.63) ∗ 97.22 (2.35) ∗ 6.92 (2.75) ∗ 33.66

Arrhythmia

GWO 78.11 (1.31) + 72.33 (1.70) + 23.48 (5.65) + 161.93
PSO 67.50 (1.28) + 68.97 (1.98) + 100.23 (8.12) + 164.50
HHO 74.48 (1.94) + 65.29 (3.20) + 11.40 (10.72) � 127.69
FPA 62.73 (1.07) + 65.59 (1.97) + 122.57 (7.68) + 160.16
SSA 62.56 (1.30) + 65.39 (1.77) + 122.93 (6.44) + 159.65
LPSO 67.92 (1.39) + 68.77 (1.80) + 95.03 (6.31) + 167.47

HPSO-DE 75.49 (0.86) + 66.96 (1.39) + 12.87 (2.50) � 80.80
APSOLL 80.82 (1.45) ∗ 74.14 (1.75) ∗ 10.08 (3.95) ∗ 113.36

Madelon

GWO 90.28 (1.00) + 89.71 (1.17) + 42.00 (7.01) + 310.38
PSO 74.72 (1.12) + 82.04 (1.18) + 211.73 (12.36) + 327.80
HHO 81.44 (3.82) + 78.95 (3.48) + 216.47 (10.49) + 399.71
FPA 75.08 (0.86) + 77.52 (1.16) + 236.67 (9.62) + 320.63
SSA 70.06 (1.21) + 77.53 (1.57) + 242.17 (8.97) + 322.84
LPSO 75.07 (1.18) + 82.94 (1.58) + 63.70 (37.22) + 325.15

HPSO-DE 79.98 (1.72) + 73.64 (2.56) + 26.13 (5.06) + 301.25
APSOLL 92.44 (0.44) ∗ 90.65 (0.62) ∗ 16.92 (4.75) ∗ 259.51
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It is observed from Figures 7‒8 that the traditional
methods are difficult to improve the classification accuracy
by sequentially increasing the number of features when a
certain level is reached. In comparison, more suitable feature
subsets are obtained by the metaheuristic algorithm-based
FS method, among these, APSOLL has better performance.
In addition, it is not the case that the more features selected,
the higher the classification accuracy is, which indicates that
the redundancy among features affects the classification
performance on most datasets.

As can be seen from Table 5, it is clear that the classi-
fication accuracy is improved by at least 1.28% on average via
the proposed method on 5 datasets, especially on arrhythmia
and isolet5, with 11.77% and 4.26%, respectively. Although
the classification accuracy of the proposed method is about
2% on average lower than traditional methods on myo-
cardial, MF, PD, and CNAE-9, the number of selected

features is lower than that of these methods, only 2, 21, 9, and
64 features are selected, respectively. To further analyze the
number of selected features, fewer features are selected by
the proposed method on 6 datasets. Among them, it is
noticed that more than 30% of the features are selected by
traditional methods on Isolet5 and MF, while only 7.46%
and 3.24% of the features are selected by the proposed
method, respectively. In terms of time consumption, tra-
ditional methods are affected by the number of features due
to the sequential addition of features to the feature subsets,
and its time consumption increase dramatically as the
number of features increases, while APSOLL performs more
stability on most datasets because its dynamic exploration
and exploitation capabilities, and the CPU time is still ac-
ceptable. In brief, the proposed method is dependable and
effective for solving FS problems compared with traditional
methods.

Table 4: Comparisons between APSOLL and other metaheuristic algorithms for datasets above 500 dimensions.

Datasets Method Fit (std.) Sfit Acc (std.) Sacc #F (Std.) Sf Time

Isolet5

GWO 89.66 (1.01) + 91.23 (1.38) � 86.53 (9.14) + 212.36
PSO 78.10 (1.04) + 87.31 (1.44) + 268.07 (10.71) + 219.31
HHO 82.61 (1.71) + 81.60 (1.83) + 92.57 (26.83) + 283.60
FPA 74.45 (0.89) + 83.50 (1.34) + 287.73 (10.48) + 211.13
SSA 74.25 (1.02) + 83.60 (1.45) + 293.53 (8.69) + 207.08
LPSO 78.61 (0.98) + 87.79 (1.40) + 264.42 (10.19) + 215.30

HPSO-DE 81.72 (1.08) + 76.42 (1.68) + 36.53 (5.12) − 215.85
APSOLL 91.37 (0.49) ∗ 91.08 (0.55) ∗ 48.92 (2.36) ∗ 219.14

MF

GWO 96.63 (0.54) + 97.77 (0.54) � 39.27 (6.89) + 225.82
PSO 86.86 (0.72) + 97.19 (0.54) + 241.73 (13.51) + 274.84
HHO 94.04 (0.95) + 94.98 (0.98) + 52.93 (13.66) + 303.36
FPA 84.31 (0.53) + 96.47 (0.60) + 286.13 (6.77) + 281.36
SSA 84.39 (0.53) + 96.67 (0.71) + 287.33 (9.16) + 275.93
LPSO 87.18 (0.63) + 97.19 (0.61) + 234.7 (8.29) + 267.64

HPSO-DE 94.05 (0.53) + 93.84 (0.77) + 35.57 (4.65) + 224.65
APSOLL 97.71 (0.33) ∗ 98.07 (0.53) ∗ 20.25 (1.23) ∗ 228.91

PD

GWO 85.54 (2.25) + 80.88 (3.54) � 27.00 (9.84) + 187.67
PSO 71.54 (1.62) + 74.60 (2.11) + 268.4 (11.07) + 185.17
HHO 86.78 (1.28) + 81.60 (1.90) + 8.43 (6.53) � 127.75
FPA 68.77 (1.31) + 74.60 (2.24) + 338.03 (12.81) + 174.27
SSA 68.59 (1.44) + 74.23 (1.99) + 336 (13.24) + 173.38
LPSO 71.38 (1.96) + 74.48 (2.60) + 270.43 (14.95) + 185.49

HPSO-DE 86.88 (0.87) + 83.26 (1.39) � 35.20 (4.53) + 197.66
APSOLL 88.44 (0.85) ∗ 83.92 (1.24) ∗ 7.58 (2.22) ∗ 152.82

CNAE-9

GWO 86.28 (1.22) + 88.80 (1.53) − 167.83 (20.93) + 203.26
PSO 77.41 (1.75) + 88.25 (2.47) − 409.80 (14.03) + 197.09
HHO 74.04 (1.83) + 79.55 (4.12) + 332.23 (80.68) + 269.84
FPA 73.91 (1.36) + 83.79 (1.99) + 420.70 (15.22) + 185.77
SSA 73.74 (1.85) + 83.80 (2.51) + 425.57 (12.44) + 183.18
LPSO 77.69 (1.27) + 88.79 (1.92) − 412.63 (14.06) + 195.26

HPSO-DE 69.52 (1.87) + 77.60 (2.43) + 422.40 (13.83) + 200.46
APSOLL 87.35 (0.55) ∗ 85.03 (0.93) ∗ 61.83 (5.38) ∗ 210.71

QSAR

GWO 92.45 (0.54) + 93.21 (0.66) � 95.57 (9.18) + 236.35
PSO 82.20 (0.62) + 92.01 (0.68) + 416.70 (17.62) + 327.26
HHO 92.68 (0.45) + 90.35 (0.83) + 19.10 (12.23) − 227.42
FPA 80.13 (0.49) + 91.16 (0.80) + 466.93 (10.49) + 323.93
SSA 80.06 (0.48) + 91.37 (0.71) + 474.40 (11.67) + 320.06
LPSO 82.40 (0.55) + 92.02 (0.59) + 410.13 (14.90) + 323.23

HPSO-DE 92.44 (0.27) + 91.14 (0.41) + 46.30 (6.15) + 207.01
APSOLL 94.10 (0.55) ∗ 93.11 (0.74) ∗ 36.83 (7.84) ∗ 231.28
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Figure 8: �e classi¡cation accuracy of 6 traditional FS methods in selecting di�erent numbers of features for datasets above 500
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6. Conclusions and Future Work

In the paper, APSOLL is proposed for FS, which enhances
exploration and exploitation capabilities by utilizing an
adaptive updating strategy to guide the population search in
a more reasonable scope and the leadership learning strategy
to increase population diversity. Experimental results in
comparison with other FS methods based on metaheuristic
algorithms reveal that APSOLL offers better optimization
ability and selects the suitable feature subsets within an
acceptable time. Moreover, APSOLL-based FS method
achieves better or approximate classification accuracy by
selecting less than 8% of features from the original datasets
compared to other traditional methods. In conclusion, the
suitable feature subsets are selected by the proposed method
while ensuring a proper balance between the classification
accuracy and the number of selected features. In the future, it
is interesting to decrease the CPU time of APSOLL by
combining the feature ranking and applying it to process
ultrahigh dimensional datasets.
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Simultaneous Localization and Mapping (SLAM) is a challenging and key issue in the mobile robotic �elds. In terms of the visual
SLAM problem, the direct methods are more suitable for more expansive scenes with many repetitive features or less texture in
contrast with the feature-based methods. However, the robustness of the direct methods is weaker than that of the feature-based
methods. To deal with this problem, an improved direct sparse odometry with loop closure (LDSO) is proposed, where the
performance of the SLAM system under the in�uence of di�erent imaging disturbances of the camera is focused on. In the
proposed method, a method based on the side window strategy is proposed for preprocessing the input images with a multilayer
stacked pixel blender. �en, a variable radius side window strategy based on semantic information is proposed to reduce the
weight of selected points on semistatic objects, which can reduce the computation and improve the accuracy of the SLAM system
based on the direct method. Various experiments are conducted on the KITTI dataset and TUM RGB-D dataset to test the
performance of the proposed method under di�erent camera imaging disturbances. �e quantitative and qualitative evaluations
show that the proposed method has better robustness than the state-of-the-art direct methods in the literature. Finally, a real-
world experiment is conducted, and the results prove the e�ectiveness of the proposed method.

1. Introduction

Simultaneous Localization and Mapping (SLAM) plays es-
sential roles in robotic and other related �elds [1–3]. In the
robotic �eld, SLAM systems are used to solve the problem of
robots about where they are. Based on the acquisition of its
pose and surrounding environment, a robot can further
solve where to go or what to do [4].

Many kinds of sensors are used in SLAM systems, such
as LiDAR, camera, and inertial measurement unit [5, 6].
Commonly, SLAM algorithms are divided into laser SLAM
and visual SLAM according to the sensor used [7, 8]. Due to
the low cost of the camera, the large amount of information
it carries, and the ease of use, visual SLAM has become more
popular among researchers in recent years. Visual SLAM

usually uses monocular cameras, binocular cameras, or
RGB-D cameras to obtain environmental information.
Compared with other types of cameras, the monocular
camera is cheap and common. In addition, there are the
most abundant data sources of themonocular camera. So the
monocular SLAM plays an important role in the visual
SLAM �eld and has been widely studied and applied [9, 10].
However, the monocular SLAM can obtain only image
information without scale information, so it is more de-
pendent on the quality of the image. �erefore, how to
improve the robustness of monocular SLAM under di�erent
disturbances is a very challenging and important task in this
�eld [11, 12].

�ere are three main implementation schemes in visual
SLAM, namely feature-based method, direct method, and
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semidirect method. 'e feature-based method finds feature
points, matches them, calculates the pose, and constructs a
map through geometric relations. 'e most commonly used
methods for feature extraction are Scale Invariant Feature
Transform (SIFT) [13], Speeded Up Robust Features (SURF)
[14], and Oriented Fast and Rotated BRIEF (ORB) [15]. ORB
is one of the best methods, which improves the speed and
accuracy of FAST [16], and uses BRIEF [17] for the efficient
computation of features. Accordingly, ORB-SLAM is cur-
rently the most popular visual SLAM solution [18, 19].

Unlike the feature-based method, the direct approach
does not rely on the one-to-one matching of points. It
optimizes the interframe pose by extracting pixels with
apparent gradients and minimizing the photometric error
function of the pixels, such as the large-scale direct mon-
ocular SLAM (LSD-SLAM) [20] and the direct sparse
odometry (DSO) [21]. 'e semidirect method, such as the
semidirect visual odometry (SVO) [22], uses a similar
structure to the feature-based method and combines the
tracking of the direct method and the motion optimization
of the feature-based method. 'e feature-based method and
the semidirect method both rely on low-level geometric
feature extractors with high repeatability. 'ey are not
suitable for surfaces with many repetitive features or less
texture. In contrast, the direct method can be used in a
broader range of scenarios. In this paper, we focus on direct
method solutions for the monocular SLAM. 'e main
purpose of this paper is to improve the robustness of the
direct methods under different disturbances.

'e robustness of the direct method-based SLAM system
is challenged by photometric calibration, dynamic objects,
rolling shutter effect, camera imaging disturbances, and so
on [23]. 'ere have been many excellent works to improve
the robustness of the direct method-based SLAM systems.
For example, Zhu et al. [24] proposed a photometric transfer
net (PTNet), which is trained to pixel-wisely remove
brightness discrepancies between two frames without
ruining the context information, to overcome the problem of
brightness discrepancies. Liu et al. [25] proposed an en-
hanced visual SLAM algorithm based on the sparse direct
method to solve the illumination sensitivity problem. Sheng
et al. [26] filtered out the dynamic objects based on the
semantic information to improve the positioning accuracy
and robustness of DSO [21]. Zhou et al. [27] jointly opti-
mized the 3D lines, points, and poses within a sliding
window to consider the collinear constraint among the
points to improve the robustness of the direct method.

'e works introduced above can improve the robustness
of the direct method to some extent. However, the research
focusing on the influence of different camera imaging dis-
turbances and semistatic objects is relatively lacking. During
the long-term operation of the monocular SLAM system, the
image quality of the camera will be affected by different
disturbances from the external environment and internal
sensors. In this paper, two main types of imaging distur-
bances are studied, namely, different noise on the camera
and the brightness influence on the imaging process. 'e
main noises on the camera include Gaussian noise and Salt-
and-Pepper noise. Gaussian noise is often caused by the high

temperature of the camera sensor running for a long time
and mutual interference of internal circuit components [28].
Salt-and-Pepper noise is often caused by the faulty of the
camera sensor, the wear of the camera lens, and the ad-
sorption of dust in the air [29, 30]. 'e brightness influence
on the imaging is a very common problem of the vision-
based SLAM. For example, the accumulated irradiance
exceeding the camera’s dynamic range can cause the camera
overexposure interference when the ambient brightness is
not uniform [31, 32]. Another important influence on the
robustness of the direct methods in the vision-based SLAM
is the semistatic objects, which refer to objects that are static
most of the time but will change at a certainmoment, such as
the cars parked on the side of the road. Semistatic objects are
not suitable for being directly filtered out like dynamic
objects because most of them are rich in texture and are
suitable for estimating pose when they are static [33]. 'us,
the main motivation of this paper is to study how to improve
the robustness of the direct method-based SLAM system in
different camera imaging disturbances and reduce the
specific gravity of semistatic objects.

'emain contributions of this paper are as follows: (1) A
regional pixel information fusion method based on multiple
average calculations is proposed to improve the robustness
of the direct sparse odometry with loop closure- (LDSO-)
based SLAM. (2) A side window strategy is introduced into
the framework of the LDSO-based SLAM to enhance the
edge-preserving property. (3) A method based on semantic
information is presented to reduce the effects of nonstatic
objects on the LDSO-based SLAM. So there are three main
improvements of the proposed method, namely, a regional
pixel information fusion method for robustness, a side
window strategy for edge preserving, and the semantic-
based strategy for the nonstatic objects. Compared with the
existing methods, the proposed method improves the ro-
bustness of the direct method-based SLAM against multiple
camera imaging disturbances, including Gaussian noise,
Salt-and-Pepper noise, and camera overexposure, rather
than just against a single disturbance.

'e rest of this paper is organized as follows. Section 2
gives out an overview of the background. 'e proposed
algorithm is presented in Section 3. In Section 4, detailed
quantitative and qualitative experimental results are pro-
vided. 'e discussions of the proposed algorithm are carried
out in Section 5. Finally, Section 6 concludes this paper and
gives out the future work.

2. Background

Direct method-based SLAM systems jointly estimate the
position and posture changes of the camera by minimizing
the photometric error in the image alignment. It makes
direct methods more accurate and robust than feature-based
methods in scenes that lack texture or are full of repetitive
textures. However, the monocular direct methods suffer
from the accumulated drift of global translation, rotation,
and scale without closed-loop detection. 'is leads to in-
accurate long-term trajectory estimation and mapping. In
this paper, Direct Sparse Odometry with Loop closure
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(LDSO) [34] is focused on, which adds closed-loop detection
to DSO for global optimization. 'e main process of LDSO
is reviewed in this section.

2.1.FrameworkofLDSO. 'e algorithm framework of LDSO
is shown in Figure 1.When a new frame of image is acquired,
all the active 3D points in the current sliding window of the
local bundle adjustment module are projected into this
frame. 'e initial pose of this frame is estimated by direct
image alignment. 'is frame is added to the local windowed
bundle adjustment if it is judged as a new keyframe. Old or
redundant keyframes and points are marginalized. 'e
active keyframes and the marginalized keyframes rely on
bag-of-words (BoW) for closed-loop detection and verifi-
cation. If the closed-loop candidate is verified, it is added to
the global pose graph for optimization.

2.2. Local Bundle Adjustment. In the local bundle adjust-
ment module based on sliding window, 5–7 keyframes are
maintained. 'eir parameters are jointly optimized by
minimizing the photometric error. 'e photometric error is
defined as

min 
Ti ,Tj,pk∈W

Ei,j,k,
(1)

where W � T1, . . . ,Tm,p1, . . . ,pn  is the m keyframe poses
represented as Euclidean transformation and n points of
inverse depth parameterization in the sliding window. Ei,j,k

is calculated by

Ei,j,k � 
p∈Npk

wp Ij p′  − bj  −
tje

aj

tie
ai

Ii[p] − bi( 

��������

��������c

, (2)

where Npk
denotes the neighborhood pattern of pk; a and b

are the affine light transform parameters; t denotes the
exposure time; I is an image; wp is a heuristic weighting
factor; ‖ · ‖c is the Huber norm; and p′ denotes the repro-
jected pixel of p on Ij, which is calculated by

p′ �  RΠ− 1 p, dpk
  + t , (3)

whereΠ is the projection function fromR3 toΩ; R and t are
the relative rotation and translation between the two frames;
and dp is the inverse depth of point p.

2.3. Closed-Loop Detection and Verification. In the LDSO
SLAM, the DSO’s point selection strategy has been modified
to be more sensitive to corner points. 'e selected corner
points are calculated as their ORB descriptors and packed
into BoW. When the ORB descriptor of each keyframe is
calculated, the closed-loop candidates of the keyframe are
proposed by querying the BoW database. 'e similarity
transformation from the closed-loop candidate to the cur-
rent keyframe Scr is optimized by minimizing 3D and 2D
geometric constraints:

Eloop � 
qi∈Q1

w1 ScrΠ
− 1 pi, dpi

  − Π− 1 qi, dqi
 

�����

�����2
+ 

qj∈Q2

w2  ScrΠ
− 1 pj, dpj

   − qj

������2
,

������ (4)

where Q1 and Q2 are the matched features in the current
keyframe without and with depth, respectively; pi denotes
the reconstructed feature in the closed-loop candidates; dq is
the inverse depth of the feature q; and w1 and w2 are the
weights to balance the different measurement units.

It can be noticed from equation (2) that the pose esti-
mation of LDSO relies on minimizing the photometric error
of the selected points. If the selected points are disturbed by
imaging disturbances, equation (2) is converted into

Ei,j,k � 
p∈Npk

wp Ij p′  − bj  −
tje

aj

tie
ai

Ii[p] − bi( 

��������

��������c

+ En,

(5)

where En is the error due to imaging disturbances. As the
intensity of the camera imaging disturbance increases, the
optimization direction for minimizing the photometric error is
more inclined to the error caused by the imaging disturbances
rather than the estimated pose. 'erefore, the robustness of
LDSO in camera imaging disturbances is not strong enough.

3. Proposed Method

To enhance the robustness of the direct SLAM method, the
points are fused with the surrounding pixels’ information.
'e overview of the proposed method for obtaining and
using fusion points is shown in Figure 2.

New Frame

Estimate
Initial Pose

New
Keyframe?

Project
3D Points

Marginalized
Keyframes

Active
Keyframes

Closed-loop
Detection Global Graph Optimization

Local Bundle
Adjustment

Y

Figure 1: 'e framework of the LDSO method.
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As shown in Figure 2, the area around each pixel is
divided into blocks according to the side window strategy
when a new frame arrives. 'e area block that crosses the
image’s edge the fewest times is chosen. 'is region block’s
pixel information is averaged into a single point. Multilayers
of such pixel information fusion are superimposed to form a
convolutional neural network (CNN) like structure [35, 36].
In the middle layer, semistatic objects are detected. 'e
radiuses of the side window of the pixels belonging to the
semistatic objects are increased in the back layers.'e fusion
points form the fused image. 'e points with sufficient
gradient intensity and corners are selected using a dynamic
grid search.'ese points are used in direct SLAM to improve
the robustness of the system. 'e details of the proposed
method are introduced as follows. 'e regional pixel in-
formation fusion is realized by multilayer fusion with a
CNN-like structure. 'en, the side window strategy is added
to the fusion method for edge preservation. Finally, the
radius of the side window is adjusted based on semantic
information to reduce the weights of the semistatic objects.

3.1. Regional Pixel Information FusionMethod. As we know,
the main reason why the robustness of feature-based SLAM
is better than that of direct SLAM is that the feature carries
the general information of pixels in a local area instead of a
single pixel [37]. 'erefore, to improve the robustness of
LDSO in different camera imaging disturbances, a regional
pixel information fusion method is introduced into the
LDSO algorithm. Namely, each pixel can fuse the infor-
mation of surrounding pixels, and the fusion intensity de-
creases as the distance between the pixels increases.

'e mean filter is one of the most common methods of
fusing pixels. Unlike other filters such as the median, max,
and min filters, which select one pixel and discard others, the
mean filter considers information from all pixels. In addi-
tion, the mean filter is simple to implement. So, a 3 × 3 mean
filter is used to fuse eight neighborhood pixels into one pixel
in this study. At the same time, referring to the charac-
teristics of the classic convolutional neural networks (CNN)
[38], the mean filters are stacked in the structure of CNN. In
CNN, the stacked convolutional layers are considered to
extract high-level features of the image so that these feature
points can be used for object classification operations. Each
feature point obtained contains information about a local
area.'e CNN-like structure of the multilayer fusion used in
this study is shown in Figure 2.

Remark 1. 'emain reason for using the 3 × 3 mean filter in
this paper is that it is the minimum size that can cover eight
neighborhood information. Using the stacking structure, the
3 × 3 receptive field can be easily expanded to 5 × 5, 7 × 7,
and other larger receptive fields. By this stacking structure,
the closer the points in this area are to the edge, the fewer
times they are repeatedly used and the less they affect the
obtained feature points.'ese characteristics are precisely in
line with our needs for fusing regional pixel information.

3.2. Side Window Strategy for Pixel Fusion Area Selection.
'e consistent use of the square area as the pixel fusion range
can conveniently improve the overall robustness of the visual
odometry, but it will also cause a certain degree of damage to
the edges of the image. 'e more the layers are stacked, the

2r+1

Point and
Surrounding

Eight Side
Windows

Cross Edge
the Least

Choose a
Side Window

Fuse
Information

U
D

L R

NENW

SESW

Side Window-based Fusion

New
Frame

Middle Layer

Multilayer Fusion
with CNN-like Structure

Semantic-based Variable Radius Side Window

Yolov5 Semistatic
Objects

Increase
Radius

Dynamic
Grid Search

Points and
Corners Used

Figure 2: 'e overview of the proposed method for obtaining and using fusion points.
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greater the degree of damage. In image processing, this is
called nonedge preservation [39]. As mentioned earlier, the
points/features selected by LDSO are pixels with sufficient
intensity gradients and corner features. Pixel fusion across
the edges will reduce the gradient intensity of the pixels and
blur the corner features. Since it makes the selected points
difficult to gather at the edge, the point cloud map con-
structed is very unclear. Since the corner features are blurred
and difficult to be extracted, it is difficult for LDSO to detect
the closed-loop effectively.

To solve the above problems caused by the nonedge
preservation of pixel fusion in the fixed square area, the side
window strategy is introduced into LDSO [40]. 'e side
window strategy treats each pixel as a potential edge point.
Unlike the traditional pixel fusion method that takes the
pixel’s position as the center of the filter window, the side
window strategy aligns the edge of the filter window with the
pixel. Different from nonlinear anisotropic weightings such
as the spatial weighting and gray value weighting of bilateral
filters, which only reduce the diffusion of pixels along the
edge normal direction, the side window strategy can cut off
all the normal diffusion [41].

'e details of the side window strategy proposed in our
multilayer fusion are as follows:

(1) Each pixel and its surroundings are divided into
eight side windows, as shown in Figure 2. 'ey are
the side windows in eight directions: up (U), down
(D), left (L), right (R), northwest (NW), northeast
(NE), southwest (SW), and southeast (SE). 'e
center point pi of the pixel fusion is located on the
side or corner of the window.'e radius r of the side
window determines the range of the pixel fusion.

(2) 'e average value of the pixels in each side window is
calculated as the output qn of the side window, where
n ∈ U, D, L, R,NW,NE, SW, SE{ }.

(3) Compare the distance measured by L1 norm between
the output qn of the eight side windows and the
center point pi.'e fusion output pfusion of the center
point pi and its surrounding pixels is pfusion � qs,
where

s � argmin
n∈ U,D,L,R,NW,NE,SW,SE{ }

qn − pi


 . (6)

Remark 2. In the proposed multilayer superimposed pixel
fusion strategy, the diffusion of pixels along the normal edge
direction will be further amplified. And the side window
strategy cuts off the possibility of pixels spreading along the
normal direction of the edge, which is more suitable for our
multilayer fusion.

'e pseudocode of the proposed side window-based
multilayer fusion method is summarized in Algorithm 1.

3.3. Semantic-Based Variable Radius Side Window Strategy.
When humans use their eyes to estimate their position and
remember the environment, they do not take all the objects

they see into consideration. Instead, they focus on static
objects such as walls and pillars and use semistatic objects
that are stationary most of the time, such as cars parked on
the side of the road, as a reference. Inspired by this, a se-
mantic-based variable radius side window strategy is pro-
posed to assign weights to static and semistatic objects.

First, in the first half of the stacked structure of pixel
fusion, a smaller radius for the side window is used. In
multilayer pixel fusion, due to the smaller coverage area, the
side window with a smaller radius can make the image retain
more details such as edges while reducing the impact of
camera imaging disturbances. Subsequent object detection
in a camera imaging disturbed environment is carried out on
this basis.

Second, Yolov5 (one of the popular object detection
deep networks) is used to distinguish static and semistatic
objects in the input images. Yolov5 is the latest version of
the Yolo object detection algorithm [42, 43]. 'e main
reason for using the Yolov5 network is that Yolov5 can also
maintain a higher processing frame rate under lower
hardware conditions while achieving the accuracy of the
current state-of-the-art technology. In this study, the
pretrained Yolov5 model on the Microsoft COCO
(Common Objects in Context) dataset is used to extract
object location and category semantic information [44].
Common movable categories such as bicycles, cars, mo-
torcycles, buses, and trucks in the COCO dataset are
marked as semistatic objects.

'ird, in the second half of the stacked structure of the
pixel fusion, a slightly larger radius is used for the side
windows of the regions where the semistatic objects are
detected. A side window with a larger radius is more likely to
contain more image edges.'e selection principle of the side
window is to select the side window whose output is most
similar to the center pixel.'e larger the edge gradient of the
image within the coverage of the side window, the more
dissimilar the output is from the center pixel. 'erefore, the
side window strategy is more inclined to retain the image
edges with large gradients. Edges with smaller gradients in
the side window will be blurred. With repeated pixel fusion,
the obvious image edges in the semistatic object area will be
preserved, while the pixel gradients inside will be reduced.

Remark 3. 'e specific gravity of the point in the semistatic
object area selected by the LDSO with a high gradient
intensity will decrease. 'e preserved obvious image edges
can provide enough corner features for LDSO. In this way,
a static object-based and semistatic object-assisted ap-
proach similar to the human positioning strategy is
achieved.

A summary of the proposed points selection strategy
based on the side window with semantic-based variable
radius is given in Algorithm 2.

Overall, the workflow of the proposed variable radius
side window direct SLAMmethod is summarized as follows:

Step 1. 'e radius parameters applicable to different regions
are selected based on semantic information.
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Step 2. 'e different radius parameters are applied to the
side window strategy to form a variable radius side window
strategy.

Step 3. 'e semantic information-based variable radius side
window strategy is applied to a multilayer stacked pixel
blender to fuse regional pixel information.

Step 4. 'e points are selected according to Algorithm 2 on
the points fused with local information.

Step 5. 'e selected points are used to estimate the camera
pose by minimizing equation (2) and perform global opti-
mization by minimizing equation (4) when loop closures are
detected.

4. Experimental Results and Analysis

In this section, the proposed method is comprehensively
evaluated on outdoor datasets (KITTI dataset) and indoor
datasets (TUM RGB-D dataset), which are introduced as
follows:

(1) KITTI dataset [45, 46]: this dataset is currently the
most extensive dataset in the world for evaluating
computer vision algorithms in autonomous driving
scenarios. It contains real image data collected in
outdoor scenes such as urban areas, villages, and
highways. 'e “00–10” sequences in this dataset
provide ground truth, which are used in this study.

(2) TUM RGB-D dataset [47, 48]: this dataset provides
RGB-D data and ground-truth data intending to
establish a novel benchmark for the evaluation of

Input: Image I, Layer number L, Radius of side window r

Output: Set of fusion points
(1) for ∀l ∈ L do
(2) for ∀ xi, yi  ∈ I do
(3) S � (xi − r): (xi + r), (yi − r): (yi + r) ;
(4) % S is the surrounding of the pixel pi

(5) Divide S into U, D, L, R,NW,NE, SW, SE{ };
(6) for n ∈ U, D, L, R,NW,NE, SW, SE{ } do
(7) qn � mean(pj), j ∈ n;
(8) end for
(9) s � argmin |qn − pi| ;
(10) % Select the side window s;
(11) pfusion � qs;
(12) end for
(13) end for

ALGORITHM 1: Side window-based multilayer fusion.

Input: Number of layers L, Desired number of points Ndes
Output: Selected points
(1) for ∀l ∈ L do
(2) if l< 1/2L then
(3) Use small radius side windows for multilayer fusion;
(4) end if
(5) if l≥ 1/2L then
(6) Use Yolov5 to distinguish static and semistatic objects;
(7) Increase the radius of the side windows of the regions where the semistatic objects are detected;
(8) end if
(9) end for
(10) Split the image composed of fusion points into patches;
(11) while Nsel <Ndes do
(12) Randomly select a patch M

(13) Compute the median of gradient as the region-adaptive threshold;
(14) Split M into d × d blocks;
(15) Select a point with the highest gradient which surpasses the gradient threshold from d × d, 2 d × 2 d, 4 d × 4 d blocks separately;
(16) end while

ALGORITHM 2: Semantic variable radius side window-based points selection.
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visual odometry and visual SLAM systems. In this
paper, the sequences “freiburg1_xyz,” “frei-
burg2_xyz,” “freiburg2_rpy,” “freiburg1_desk,” and
“freiburg1_desk2” are selected, which were all ac-
quired in the office interior scene with rich texture.

'emain reason for using the two datasets is that both of
them provide ground truth, which is required for the
quantitative evaluation. Because there is a certain natural
camera overexposure problem in the two datasets [49], they
are used directly to test the proposed method under the
disturbance of camera overexposure. In addition, Gaussian
noise and Salt-and-Pepper noise are added to the two
datasets in these experiments to further test the proposed
method under different camera sensor noises. In this paper,
the variance of Gaussian noise added is 0.003, and the rate of
Salt-and-Pepper noise added is 10%. 'e noise addition
operation and the noise-adding parameters in this study are
relatively common in the literature [50, 51]. Figure 3 shows
an example scene before and after adding two kinds of noise.

4.1. Quantitative Evaluation. In this study, the proposed
method is based on the side window fusion strategy on the
direct method-based SLAM. Here, it is compared with the
general direct sparse odometry method (DSO) and the
general direct sparse odometry with loop closure (LDSO). In
this paper, the large-scale direct monocular SLAM (LSD-
SLAM) is not compared because its tracking robustness is
not as good as DSO [52]. To further discuss the performance
of our method, ORB-SLAM3 is also added for comparison,
which is one of the state-of-the-art methods based on the
feature-based method [53, 54]. 'e root mean squared error
of absolute trajectory error (RMSEATE) is used to evaluate
the performance of these methods [55].

4.1.1. On the KITTI Dataset. Firstly, some comparison ex-
periments are conducted on the KITTI dataset to show the
robustness of the proposed method in the face of different
camera imaging disturbances. 'e results with no noise
added, Gaussian noise, and Salt-and-Pepper noise are listed

in Tables 1–3, respectively. 'e missing values in the tables
mean tracking failures.

'e results in Table 1 show that our method can achieve
similar or better performance compared with the other
direct methods in the sequences without added noise. 'e
results on the sequences without added noise show that the
performance of the proposed method is obviously better
than the general LDSO method on the sequences
“KITTI_00” and “KITTI_02,” where the RMSE values of
the proposed method are 32.42% and 51.91% less than the
general LDSO method. 'e main reason is that the se-
quences “KITTI_00” and “KITTI_02” have a large number
of scenes in the shade of trees (see Figures 4(a) and 4(c)),
and frequent changes in ambient light bring more frequent
camera overexposure problems to the images. 'e results
show that the proposed method can deal with the camera
overexposure interference on the direct methods
effectively.

In the sequences with Gaussian noise, we can see that
the performance of the general direct methods decreases
obviously on all of the sequences in the KITTI dataset, but
the proposed method is not seriously affected by the
Gaussian noise (see Table 2). In particular, the other direct
methods fail to track in sequence “KITTI_03,”
“KITTI_04,” and “KITTI_09” while our method still
works. 'e results in Table 2 show that the proposed
method outperforms the general LDSO method by more
than 13.7% on all of the sequences in the KITTI dataset. In
the sequences with Salt-and-Pepper noise, DSO and
LDSO are entirely inoperable, while our method obtains
good performance (see Table 3).

Compared with ORB-SLAM3, our method obtains
slightly better performance on the sequences without added
noise, except sequences “KITTI_08,” “KITTI_09,” and
“KITTI_10.” 'e main reason is that these sequences
contain very rich textures that are more suitable for feature-
based methods. In particular, ORB-SLAM3 will track failure
in the sequence “KITTI_01,” whether the noise is added or
not. 'is is due to the fact that the sequence “KITTI_01” is a
very texture-deficient highway scene and is not suitable for
feature-based SLAM methods (see Figure 4(b)).

(a) (b)

(c)

Figure 3: Comparison of the example scene before and after adding noise. (a)'e original image. (b)'e image after adding Gaussian noise.
(c) 'e image after adding Salt-and-Pepper noise. Note that the effect of the added noise is noticeable.
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(a) (b)

(c)

Figure 4: Example scenes for sequences “KITTI_00,” “KITTI_01,” and “KITTI_02” in the KITTI dataset: (a) is from the sequence
“KITTI_00”; (b) is from the sequence “KITTI_01”; (c) is from the sequence “KITTI_02.”'e sequences “KITTI_00” and “KITTI_02” are the
sequences with more camera overexposure interference, while “KITTI_01” is the sequence with little camera overexposure interference.
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Figure 5: Continued.
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Although ORB-SLAM3 performs better in the face of
Gaussian noise (see Table 2), ORB-SLAM3 is unavailable
under the influence of Salt-and-Pepper noise (see Table 3).
By contrast, the results show that ourmethod performsmore
consistently in different camera imaging disturbances than
other methods (see Tables 2 and 3).

To compare the robustness in different camera imaging
disturbances more clearly, the absolute pose errors (APE)

with respect to translation on the example sequence
“KITTI_07” in different noises are shown in Figure 5. Here,
the main reason for using the sequence “KITTI_07” as the
example is that this sequence has a medium sequence length
in the KITTI dataset. In the next part of this paper, the
sequence “KITTI_07” is also used as the study object, where
the reason is not further explained. 'e lack of the APE
curves of DSO and LDSO in the sequence with Salt-and-
Pepper noise is due to their inability to work. Notice that our
method has more consistent APE curves in different noises,
and all the APEs of our method are less than 5.0%. 'is
experiment highlights that our strategy effectively improves

Figure 6: Blurred image with smears in TUM RGB-D dataset.

Table 4: RMSEATE on TUM RGB-D dataset with no noise added.

Method
No noise added

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] 0.061 0.011 0.046 0.774 0.904
Ours 0.063 0.012 0.043 0.780 0.905

Table 5: RMSEATE on TUM RGB-D dataset with Gaussian noise.

Method
Gaussian noise

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] — 0.096 — 0.518 —
Ours 0.156 0.010 0.060 0.801 0.756
Note. “—” means tracking failure.

Table 6: RMSEATE on TUM RGB-D dataset with Salt-and-Pepper
noise.

Method
Salt-and-Pepper noise

fr1_xyz fr2_xyz fr2_rpy fr1_desk fr1_desk2
LDSO [34] — — — 0.841 —
Ours 0.129 0.011 0.058 0.796 0.871
Note. “—” means tracking failure.
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Figure 5: Comparison of APE with respect to translation in different noises on the sequence “KITTI_07”: (a) APE of DSO. (b) APE of
LDSO. (c) APE of our method. Note that the performance gap of our method is significantly smaller than that of DSO and LDSO. In
particular, DSO and LDSO do not work in the sequence with Salt-and-Pepper noise, and the results in this case cannot be added for
comparison. Besides, the performance of our method is better than the others overall.
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the robustness of direct SLAM when facing different camera
imaging disturbances outdoors.

4.1.2. On the TUM RGB-D Dataset. Secondly, some ex-
periments are conducted on the TUM RGB-D dataset to
verify whether our strategy has the effect of improving
robustness in indoor environments. Since DSO and LDSO
perform very similarly in this case, our method is only
compared with LDSO. In this dataset, there are many
blurred images with smears, as shown in Figure 6. In this
experiment, because the selected sequences are relatively
short, the difference in RMSE is not apparent. 'us, we
mainly compare whether the tracking of the SLAM system
based on different methods is successful. 'e results are
shown in Tables 4–6.

'e results in this experiment show that the SLAM
system will fail easily after adding noise to the images. Note
that, in the sequences in which no noise is added, both our

method and LDSO can track successfully (see Table 4). After
adding different noises to the sequences, LDSO becomes
more prone to failure tracking, while our method still tracks
successfully (see Tables 5 and 6). 'is experiment highlights
that our approach can still improve the robustness of direct
SLAM under different camera imaging disturbances when
faced with a poor indoor image input.

4.2. Qualitative Evaluation. 'is section mainly conducts a
qualitative evaluation of the completeness and the clarity of
the predicted trajectory map and the constructed point
cloud map in the camera imaging disturbances. Examples
of the point cloud map constructed on the sequence
“KITTI_07” are shown in Figure 7. 'e results show that
our method is similar to LDSO in the absence of noise
interference. When disturbed by Gaussian noise and Salt-
and-Pepper noise, LDSO is negatively affected to varying
degrees, while our method has a better and more stable

Zoom in Zoom inReal view Real view

Output of LDSO Output of ours

(a)

Real view Zoom in

Output of LDSO Output of ours

(b)

Real view Zoom in

Output of LDSO Output of ours

(c)

Figure 7: Sample outputs of the sequence “KITTI_07”: (a), (b), and (c) are the outputs on the sequence with no added noise, Gaussian noise,
and Salt-and-Pepper noise, respectively. Left: LDSO’s outputs. Right: our method’s outputs. Note that, in the sequence without adding noise,
the quality of our method’s trajectory estimation and point cloudmap construction is similar to that of LDSO. In the sequence with Gaussian
noise added to LDSO, the closed-loop cannot be detected, and the trajectory estimation in the second half is wrong. LDSO does not work in
the sequence with Salt-and-Pepper noise added. Our strategy achieves a more robust performance under different noise interferences.

Computational Intelligence and Neuroscience 13



performance in the trajectory prediction and point cloud
map construction. 'e main reason is that our method uses
the multilayer pixel fusion features based on the side
window strategy instead of directly using the original
pixels, which can improve the robustness of the direct
method-based SLAM in different camera imaging
disturbances.

5. Discussion

'e total performances of the proposed method have been
proved on different datasets by some comparison ex-
periments in Section 4. In this section, some additional
comparison experiments are conducted to discuss the
performance of our method in different intensities of
camera imaging disturbances. In addition, the perfor-
mance of the key improvement of the proposed method,
namely, the points selection strategy, is further discussed.
At last, the proposed method is tested in real-world ap-
plications to demonstrate the effectiveness of the pro-
posed method.

5.1. Performance inCamera ImagingDisturbances ofDifferent
Intensities. Firstly, the performance of our method in the
camera imaging disturbances of different intensities is dis-
cussed, where some expanded comparison experiments are
conducted under the sensor noise of different intensities and
the camera overexposure with different frequencies.

5.1.1. About Different Noise Intensities. 'e performance of
our method in the camera sensor noise of different in-
tensities is discussed on the sequence “KITTI_07.” 'e
comparison experiments are carried out separately in
Gaussian noise and Salt-and-Pepper noise with different
intensities. 'e variance of Gaussian noise ranges from
0.001 to 0.009 and is incremented by a step size of 0.002.
'e rate of Salt-and-Pepper noise added ranges from 2% to
10%, and the step size is 2%. 'e results are shown in
Tables 7 and 8. For Gaussian noise, DSO tracking fails when
the variance is greater than 0.005. LDSO tracking fails when
the variance is greater than 0.003. Our method tracks
successfully at all noise intensities and performs stably
when the variance is below 0.005. 'is reflects that our
method is more robust than other direct methods in dif-
ferent intensities of Gaussian noise. For Salt-and-Pepper
noise, both DSO and LDSO fail to track when the noise
addition rate is greater than 2%. Our method can track
successfully and perform stably at all noise addition rates. It
can be seen that our method is more robust than other
direct methods in different intensities of Salt-and-Pepper
noise. ORB-SLAM3 can also track successfully in all in-
tensities of Gaussian noise and performs stably when the
variance is below 0.007. While ORB-SLAM3 outperforms
our method in robustness under different intensities of
Gaussian noise, it fails to track at all addition rates of Salt-
and-Pepper noise.

5.1.2. About Different Overexposure Frequencies. To discuss
the performance of our method under the interference of
camera overexposure, the sequence “KITTI_01,” which
suffers little from camera overexposure, is experimented
with adding simulated camera overexposure disturbance at
different frequencies. 'e camera overexposure addition
operation in this study is similar to other pieces of literature
[56]. 'e number of interval frames at which overexposure
interference is added ranges from 30 to 10 and is decreased
by a step size of 5. 'e results are shown in Table 9.

'e results in Table 9 show that our method performs
close to LDSOwhen the camera overexposure interference is
not very serious. However, when the overexposure inter-
ference interval is 20 frames, the proposed method out-
performs the general LDSO method by more than 46%. In
addition, LDSO starts to fail to track when the overexposure
interference interval is lower than 15 frames, while our
method can still work when the overexposure interference
interval is bigger than 10 frames. ORB-SLAM3 fails to track
in the sequence “KITTI_01” under the added camera
overexposure interference. 'e results of this experiment
show that the proposed method has better performance
under the camera overexposure interference.

Table 9: RMSEATE comparison under interference of camera
overexposure at different frequencies.

Interval
frames DSO [21] LDSO

[34]
ORB-SLAM3

[54] Ours

30 32.946 11.866 — 11.522
25 34.257 12.248 — 11.836
20 — 22.240 — 11.885
15 — — — 13.333
10 — — — —
Note. “—” means tracking failure.

Table 7: RMSEATE comparison in Gaussian noise of different
intensities.

Variance DSO [21] LDSO [34] ORB-SLAM3 [54] Ours
0.001 24.396 2.504 1.872 1.655
0.003 38.812 53.481 1.932 1.973
0.005 45.968 — 2.101 2.946
0.007 — — 2.566 12.343
0.009 — — 10.242 13.816
Note. “—” means tracking failure.

Table 8: RMSEATE comparison in Salt-and-Pepper noise of dif-
ferent intensities.

Addition rate
(%)

DSO
[21]

LDSO
[34]

ORB-SLAM3
[54] Ours

2 35.500 35.525 — 1.409
4 — — — 1.602
6 — — — 1.755
8 — — — 2.225
10 — — — 2.238
Note. “—” means tracking failure.
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Figure 8: Point selection results of our strategy and LDSO in different noises: (a), (b), and (c) are the images from the KITTI dataset with no
added noise, Gaussian noise, and Salt-and-Pepper noise, respectively. Top rows: point selection results of LDSO. Bottom rows: point
selection results of our strategy. Note that the points selected by our strategy are more consistent in different noises. Moreover, on semistatic
objects such as cars parked on the side of the road, the points selected by our approach are significantly less than those by LDSO and are
mainly distributed on the apparent edges.

Table 10: RMSEATE comparison of whether using semantic-based variable radius side window.

Method
No noise added Gaussian noise Salt-and-Pepper noise

KITTI_07 KITTI_08 KITTI_07 KITTI_08 KITTI_07 KITTI_08
FR-SW 2.256 106.652 2.794 112.754 2.471 106.093
SVR-SW 1.789 99.579 1.973 102.206 2.238 101.590

Gaussian noise added

(a)

Salt-and-Pepper noise added

(b)

Figure 9: Some images in the real scene added with noise. (a) Added with Gaussian noise. (b) Added with Salt-and-Pepper noise.
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5.2. About Points Selection Strategy. Secondly, the effect of
the points selection strategy of our method to improve the
robustness of direct method-based SLAM is discussed.
Figure 8 shows the selection of points in an example scene
with different types of noise. Here, our points selection
strategy is compared with that of the general LDSO. It is easy
to notice that the points selected by our strategy are more
consistent in different noises. It is not easy for LDSO to
detect closed loops under the influence of Gaussian noise.
Gaussian noise creates texture in untextured areas. 'ese
textures are selected as the basis for closed-loop detection,
which easily leads to the failure of closed-loop detection. In
Salt-and-Pepper noise, LDSO is entirely inoperable. 'e
reason is that the image-gradient-based features selected by
LDSO are easily located at the position of the Salt-and-
Pepper noise (see Figure 8(c)). 'ese randomly generated
noise positions cannot be used as the basis for estimating
camera pose. As shown in Figure 8(a), the points selected by
our method are significantly less than that by LDSO and are
mainly distributed on the apparent edges of the semistatic
objects such as cars parked on the side of the road. 'e
consistent selection of points of our method improves the
robustness of direct method-based SLAM.

'e comparison results of RMSEATE based on the
proposed semantic-based variable radius side window (SVR-
SW) and the fixed radius side window in the general LDSO
(FR-SW) are shown in Table 10. Here, the sequences “07”
and “08” of the KITTI dataset are used, which contain more
semistatic objects. It can be noticed that the proposed SVR-
SW strategy achieves better performance on different noises.
'e main reason is that the semantic-based variable radius
side window can reduce the weight of selected points of
semistatic objects to improve the performance of direct
method-based SLAM in scenes with more semistatic objects.

5.3. Experiment in Real Scene. 'irdly, to discuss the per-
formance of our method in real scenes, an experiment is
conducted on a real-world dataset collected outdoors by the
Zenmuse X5S camera mounted on the DJI Inspire 2 drone
[57]. In reality, the camera imaging disturbances often do
not exist all the time but are sudden and random. For

simulation of this situation, Gaussian noise and Salt-and-
Pepper noise are artificially added to parts of this dataset.
Some images added with noise are shown in Figure 9, which
have obvious brightness changes due to the shade of trees
and lots of semistatic objects in the real scene, such as bi-
cycles and cars. 'e real-world dataset is collected along the
road to easily judge whether our method estimates the
correct trajectory using the satellite map. 'e experimental
result of this self-collected real dataset is shown in Figure 10.
It can be seen that the trajectory estimated by our method
does not deviate from the road due to the camera imaging
disturbances, including the artificially added noise and the
natural brightness changes. Our method performs good
robustness on different camera imaging disturbances in real
scenes.

6. Conclusion

'e robustness in the camera imaging disturbances of the
direct method-based SLAM is studied in this paper, and a
concept of side windows is introduced into this visual SLAM
system. Based on this concept, a multilayer stacked pixel
blender is used to process the input images, which can
significantly reduce the blurring effects on the edges of the
images. In addition, the size of the fusion window can be
adjusted based on semantic information to reduce the
proportion of selected points on semistatic objects. At last, to
more clearly evaluate the robustness of the proposed method
under different camera imaging disturbances, the public
datasets enhanced with different camera imaging distur-
bances are used to perform detailed quantitative and
qualitative experiments. 'e results demonstrate that our
strategy can improve the robustness of the direct method-
based SLAM against the different camera imaging distur-
bances, including various sensor noises and camera over-
exposure. Furthermore, the results of the real-world
experiment show that the proposed method can work ef-
ficiently in real-world applications. In the future, how to
further improve the robustness of the visual SLAM method
while improving efficiency by using different fusionmethods
should be studied, such as deep neural networks.

(a) (b)

Figure 10: Result of experiment in real scene. (a) 'e trajectory estimated by our method, which is marked with a yellow curve. (b) 'e
approximate trajectory on the satellite map, which is marked with a red dashed line.
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�e improvement of small target detection and obscuration handling is the key problem to be solved in the object detection task.
In the �eld operation of chemical plant, due to the occlusion of construction workers and the long distance of surveillance
shooting, it often leads to the phenomenon of missed detection. Most of the existing work uses multiple feature fusion strategies to
extract di�erent levels of features and then aggregate them into global features, which does not utilize local features and makes it
di�cult to improve the performance of small target detection. To address this issue, this paper introduces Point Transformer, a
transformer encoder, as the core backbone of the object detection framework that �rst uses a priori information of human skeletal
points to obtain local features and then uses both self-attention and cross-attention mechanisms to reconstruct the local features
corresponding to each key point. In addition, since the target to be detected is highly correlated with the position of human skeletal
points, to further boost Point Transformer’s performance, a learnable positional encoding method is proposed by us to highlight
the position characteristics of each skeletal point. �e proposed model is evaluated on the dataset of �eld operation in a chemical
plant. �e results are signi�cantly better than the classical algorithms. It also outperforms state-of-the-art by 12 percent of map
points in the small target detection task.

1. Introduction

In recent years, the application of computer vision in
chemical safety has developed rapidly. In the �eld operation
of chemical plant, the most important element is safety,
which often leads to very serious consequences due to the
illegal construction by workers. With the development of
deep learning, using this method to solve the safety problems
in the �eld operation of chemical plant has become popular
research nowadays. In surveillance video analysis, object
detection algorithms, such as YOLO [1] and SSD [2], are
often used to detect and identify construction sites using a
large amount of training data, which can signi�cantly im-
prove the on-site safety protection level, as well as providing
timely warnings for detected violations. However, in the �eld
operation of chemical plant, the application scenario is very
di�erent from the traditional object detection task, where the

equipment worn by workers needs more attention from the
model because a large number of targets to be detected are
highly relevant. It is di�cult to solve this problem using
classical object detection algorithms such as YOLO.

Many recent studies have introduced feature fusion
modules [3] to improve the recognition rate of object de-
tection algorithms in small targets and occlusion phe-
nomena. By merging shallow local features and deep global
features [4], the model can focus on both local features and
global semantic information. �ese strategies have been
widely used in object detection algorithms and have the
potential to signi�cantly improve the performance of al-
gorithm on dataset, such as COCO [5]. In order to further
improve the detection performance, many studies have
introduced attention mechanism modules [6, 7] to recon-
struct local features at occluded locations. By designing the
attention mechanism, the model can make better use of local
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features in reasoning and determining the occluded regions.
However, these strategies and improvements are only for the
general scene application. 'ey do not consider the special
characteristics in the field operation of chemical plant. 'e
objects to be detected are mainly focused on the construction
workers, and how to extract the local features of the con-
struction workers is the key to improving the recognition
performance of our algorithm.

As shown in Figure 1, most of the targets to be detected
in our research are highly related to construction workers
and show a clear dependence on the skeletal point locations
of workers, e.g., helmets are always worn on the head and
gloves are always worn on the hand, which can be used as a
priori knowledge for the detection task. Based on this, we use
the trained OpenPose [8] model to extract 25 skeletal point
positions of the human body as a priori information for the
local features of subsequent model reconstruction. 'is local
feature extraction method has been used to reconstruct
human local features in many ReID [9, 10] studies. For
example, Wang et al. [11] used human skeletal point features
to solve the partial occlusion phenomenon, and inspired by
this, human skeletal point local feature extraction will also be
applied to our network structure.

First of all, in the backbone design, feature extraction
methods such as traditional ResNet [12] and EfficientNet
[13] are not used. Although these backbones have achieved
excellent results in many classical challenges, the relatively
deep network also impacts the construction of local features,
which makes it difficult to improve the detection perfor-
mance of small targets. We chose the popular transformer
[14] architecture as the core feature extraction module to
address this problem. Although the attention mechanism
module can be used to reconstruct each local feature area
better, most of the areas in our task are background, and we
want the workers themselves to be given more attention by
the model. Consequently, when the transformer module was
designed, the method of gated positional encoding was
introduced to focus on extracting local features in the human
skeletal point region. Compared to the classic transformer
architecture, we designed the module to focus on recon-
structing features in the human skeletal points while
downplaying irrelevant features such as the background.

Although the traditional self-attention [15] approach can
reconstruct each part of the features by weight calculation
when the attention mechanism module is designed, it is
difficult to capture the interrelationship between the local
features. In LoFTR [16], self-attention is used to reconstruct
local features, and cross-attention is used to highlight the
relationship between different key points. Inspired by this,
the cross-attention method is also introduced to highlight
the relational properties of different skeletal point regions
when the human skeletal point region features are recon-
structed. When construction workers work together, the
tools and equipment they use are nearly the same, and the
cross-attention approach also allows the characteristics of
the construction scene and the collaborative work to be
learned by the model.

Since transformer architectures are inherently insensitive
to position information, it is often necessary to introduce
positional encoding [17] features. Transformer architectures
often use a fixed positional encoding method to highlight the
characteristics of different regions, but these methods only
give a unique identifier to each local feature region and do not
have learning capabilities. In our study, most of the targets to
be detected show obvious positional relationships. For ex-
ample, the helmet must be at the top of the protective goggles.
Based on this, a learnable positional encoding method is
proposed by us. On one hand, the importance of position
information is highlighted so that the model can better learn
the position relationship between different objects. On the
other hand, due to the different importance of human skeletal
point features at different positions, for example, a large
number of targets to be detected are concentrated on the
hands and head, and a few on the human torso.'erefore, it is
also possible to differentiate depending on the position of the
target to be detected.

Based on our knowledge, there is currently no research
on applying human skeletal points as local features in object
detection algorithms for the field operation chemical plant
scene. To solve the problem of small target detection and
covering in this scene, we propose a novel end-to-end object
detection framework with a transformer as the core back-
bone for feature extraction, and an improved attention
mechanism is designed to highlight the relationship between
local features. Additionally, since location information is
particularly important in our research scenario, a learnable
positional encoding method is also introduced to highlight
the location relationship properties between the targets to be
detected. 'e main contributions of our research are
summarized as follows:

(i) A new type of end-to-end object detection backbone
is proposed that optimizes the local feature ex-
traction through the features of human skeleton
points while designing and improving the attention
module to improve the model’s detection
performance.

(ii) Multiple attentional mechanisms are proposed to
reconstruct the local features of human skeletal
points and their interdependence information by
using self-attention and cross-attention,
respectively.

(iii) In the transformer structure, a learnable positional
encoding method is proposed to optimize the fea-
ture reconstruction of each local skeletal point by
utilizing a weighting mechanism of the local
features.

2. Related Works

2.1. Object Detection Models. 'is section introduces some
fundamental concepts in the field of object detection and
then elaborates and illustrates several popular attention
mechanism modules and positional encoding methods.
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2.2. Back Bone Design. 'e object detection algorithm is
composed of four primary modules that were developed
during the process. (1) Operations for data augmentation and
preprocessing. (2) Design of backbone in feature extraction
module. (3) Feature fusion module. (4) Output module. 'e
data augmentation module is primarily used to increase the
amount of training data and enhance the model’s general-
izability. 'e backbone is generally trained by classical clas-
sification models, such as those obtained by using ResNet on
the ImageNet dataset, and the feature fusionmodule is mainly
used to increase the diversity of features, such as the SPP [18]
layer in YOLOV5. 'e output layer mainly uses the learned
features to get the prediction results.

Almost all object detection algorithms perform data
augmentation [19, 20]operations on the training data to
expand the amount of data. For example, by applying CutMix
operations to the data, the data is rotated and scaled in
EfficientDet [21], and the overall Map is significantly im-
proved. In YOLOV5 [19] Mosaic Data Augmentation op-
erations are also used to increase the amount of training data.
Utilizing data augmentation can significantly improve the
model’s generalizability and minimize the risk of overfitting.

Numerous object detection algorithms choose DenseNet
[22, 23] and EfficientNet [13] as core feature extraction
modules for backbone design. On one hand, these models
perform well across all classical datasets. On the other
hand, due to the abundance of pre-trained models, dif-
ferent pre-trained models can be selected based on the
difference of application scenarios. However, because these
models require more convolutional layers to achieve a
larger receptive field, they tend to focus on global features
and ignore some local features. As a result, the traditional
backbone design method is better suited to large target

detection tasks and will be significantly less effective at
detecting small targets. Given that the majority of the
targets in our task are related to construction workers and
fall under the category of small target detection tasks, we
will design and implement a new end-to-end network
structure for the backbone selection.

2.3. Transformer Encoder. Both feature concatenation and
fusion methods are widely used in the design of feature
fusionmodules, for example, the FPN [21, 24]method is used
in mask R-CNN [25] to extract multiple layers of features,
and SPP [18] is used in YOLOV5 to obtain richer features.
'e advantage of these methods is that they allow for the
simultaneous use of deep and shallow features, which im-
proves the model’s detection performance of targets of
various sizes. However, because these methods do not take
into account the application scenario and do not select the
appropriate features based on the characteristics of the
detected target, we chose the transformer architecture,
which is better suited for local feature reconstruction. 'e
transformer architecture has demonstrated excellent per-
formance in a variety of computer vision tasks, including
object detection in DETR [26] using the transformer’s en-
coder and decoder, and as the backbone of the Swin
transformer [27, 28]in detection and classification scenarios,
significantly improving model performance. 'e attention
mechanism module is at the heart of the transformer ar-
chitecture, as it recombines the features of each region by
calculating the weight relationship between each local fea-
ture. 'e advantage of this approach is that the model can
pay more attention to local features and also learn more
about the relational properties between regions.

Figure 1: An example of labeling data, it can be seen from the figure that a large number of targets to be detected are highly correlated with
construction personnel.
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2.4. Positional Encoding Method. Due to the insensitivity of
the transformer architecture to position information, ad-
ditional position feature is typically added to highlight local
features. BERT [29] uses a fixed positional encoding method
to emphasize contextual information, while VIT [15] uses
absolute positional encodingmethod to improve the model’s
classification performance. Typically, the obtained positional
features must be fused with local features, which introduces
position information into each local feature. However, be-
cause positional features are fixed, they cannot be updated
for learning purposes, limiting their usefulness. In this task,
we will enhance the positional encoding method in order to
highlight the positional characteristics of various local
features.

3. Methodology

Our proposed framework is illustrated in Figure 2 and
consists of the following points: a transformer encoder-
based feature extraction backbone (A), which is used to
extract features from the input image, mainly involving two
attention mechanism modules, self-attention and cross-at-
tention; a gated position encoding computation module (G),
which is used to highlight the positional characteristics
between different skeletal points; and a Head-Attention
module (H), which uses the positional characteristics of
skeletal points to enhance the detection effect of the output
layer.

3.1. Revisiting Transformers and Small Target Detection Task.
Classical object detection algorithms use ResNet, Effi-
cientNet, etc. as the backbone [30] of feature extraction,
which uses numerous layers of convolution in order to
obtain a larger receptive field and then extracts features at
different levels for the obtained different levels of feature
maps. Although global features can be extracted at different
scales by using operations such as FPN [24], the backbone
with convolutional layers as the core is still insensitive to
local features and it is difficult to obtain the relational
properties between different regions.

'e advantage of designing a backbone based on self-
attention is that it can extract features for each local location;
in turn, the problem of insensitivity to small targets in
convolution is improved. 'e traditional transformer ar-
chitecture first divides the input image according to a given
region, for example, 16∗ 16 as the base unit for local feature
reconstruction in VIT [15]. In order to use the transformer
module to process the input image (x ∈ RH×W×C), we re-
shape it and get the sequence input (xl ∈ RN×(L2 ·C)), N
represents the length of the sequence, and L represents the
size of each token. But the problem of doing this is that if the
input image is large and the selected window is small, it
makes the computation inefficient, but if a larger window is
set, it is difficult to mention the fine-grained extraction of
local features, which has become one of the main problems
of transformer framework nowadays. It is difficult to handle
more fine-grained local feature extraction due to the limi-
tation of computational magnitude. In our task, some large

targets such as fire extinguishers and scaffolds are easily
detected, which makes our main research problem focus on
the construction workers’ bodies, and these objects to be
detected are usually highly correlated with human skeletal
point locations. Based on this, the human skeletal point
information will be used to highlight the characteristics of
local features, thus allowing the model to focus more on
small targets in the human body.

In the field operation chemical plant scene, if the ap-
plication scenario involves only a single construction job,
there is usually not much occlusion, which also makes the
detection task relatively easy. However, in our task, it is
almost always a multi-person collaborative work scenario of
multi-people collaborative construction, which makes many
local features easily obscured from each other. To solve the
problem, inspired by LoFTR [16], both self-attention and
cross-attention feature extraction methods are chosen to be
applied to local feature computation, which can reconstruct
local features by self-attention on one hand and extract
relational properties between skeletal points by cross-at-
tention on the other hand. For self-attention layers, the input
features are key points at different locations of the same
person. For cross-attention layers, the input features are key
points that differ from person to person. All attention
mechanism calculation methods are calculated by

Attention(Q, K, V) � softmax QK
T

 V, (1)

where Q indexes query vectors, K indexes key vectors, and V

is the value vectors.

3.2. Local Feature Extraction. We first obtain the skeletal
point positions of all construction workers by a trained pose
estimation model [31, 32], 25 keypoints are obtained, all
consisting of 2D coordinates.'e feature map obtained after
the backbone is expanded into a sequence for subsequent
calculation of the attention mechanism module. 'e tra-
ditional transformer calculates self-attention on the entire
sequence. However, in our task, we need to pay more at-
tention to local features, that is, the regions corresponding to
the key points. Based on this, we map the key points to the
expanded sequence (downsampling ratio consistent with the
backbone), which corresponds to part of the token in the
corresponding sequence. In the calculation of self-attention,
except for the tokens where the key points are located, the
weights calculated from other positions are truncated, and
the maximum is not over 0.05. 'e reason for this is that we
do not want the model to consider too many background
features. In the calculation of cross-attention, we design a
mask mechanism, only the tokens corresponding to the key
points will be updated. After the attention mechanism, we
reshape the entire sequence to get its feature map (consistent
with the size of the feature map in the last layer of the
backbone).

A set of learnable weight parameters is designed by us to
weight each local feature corresponding to each skeletal
point. 'e reason for this is that most of the small targets to
be detected in our dataset are concentrated on the hands and
head, while the large targets to be detected are mainly on the
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torso. In order to improve the detection of small targets, we
want the model to focus more on the hand and head lo-
cations and slightly on the body and leg locations. Based on
this, we designed an additional set of learnable gated pa-
rameters to combine the local features and weighted the
features at the location of skeletal points before calculating
attention with other local features.

In the process of calculating self-attention, the difference
with the original VITmethod is that we weight the features at
the locations of skeletal points and the weight parameters are
learnable, which has the advantage of making the model
more focused on the areas where small target objects exist,
which is the core of our research problem.We do not use the
same or random weights for the initialization of all skeletal
points, but rather give larger weights for the hands and head,
initialized to 10, and smaller weights for the body and leg key
points, initialized to 2. For the location of other non-human
skeletal points, it is consistent with the traditional trans-
former architecture. 'e self-attention method based on
gated parameters allows the model to utilize more prior
knowledge and focus on local feature extraction of the
human body.

When constructing local features, it is difficult to
highlight the location relationship between skeletal points if
only the self-attention method is used; for example, the
helmet is always located above the glove location, and if one
worker in the current construction scene is wearing gloves
and helmet, all other workers should also be required to wear
gloves and helmet. In chemical scenes, usually all workers in
an area wear the same work equipment, but due to the small
target and the existence of obscuration and other problems,
there are frequently some missed tests phenomenon. In

order to make full use of the positional features between
objects, we additionally add the cross-attention module to
optimize local feature extraction. As shown in Figure 3, for
each skeletal point region of the construction worker, the
attention between it and other construction workers’ skeletal
points is calculated in the same way as the traditional self-
attention, and the superimposed features are averaged if
there are multiple people in the figure. In the experiment, we
will discuss the effects brought by these two attention
mechanism modules separately.

3.3. 4e Prominent Role of Positional Encoding. 'e ad-
vantage of using a transformer as a backbone for feature
extraction is that it has strong reconstruction ability for local
features, but suchmethods as self-attention are insensitive to
positional information which only gives a unique identifier
to each region and does not have an actual feature repre-
sentation. In the field operation chemical plant scene, po-
sitional information is particularly important, e.g., tools are
always held in the hands and safety buckles are always tied
on the body, and there are obvious location characteristics
between these objects and human skeletal points. Based on
this, we introduced an additional learnable positional
encoding method to highlight the importance of local fea-
tures when designing the transformer architecture. 'is
module is only for self-attention calculation and initializes
the position encoding of the sequence expanded by the
output feature map of the backbone. Different from the
initialization method in VIT, the position encoding we
designed is learnable, not a fixed parameter. In addition, it is
not only related to its absolute position, but also needs to
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Figure 2: 'e overall architecture of our proposed model. Attention backbone (A) utilize a trained pose estimation model to reconstruct
local features based on transformer encoder. Gated position embedding module (G) uses human skeletal point location information to
enhance local feature learning. Head-layer module (H) reconstructs the output layer by weighting the positional encoding feature maps.
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consider the characteristics of K and V corresponding to its
token. Inspired by Wang et al. [17], for the positional
encoding features as shown in Figure 4, we learn positional
information for Q, K, and V, respectively, and its learned
positional features are weighted together with the recon-
structed features computed in self-attention, and the posi-
tional encoding method is computed in the same way as in
Axial-DeepLab [17].

y � 
p∈Nm×m(o)

softmaxp q
T
o kp + q

T
o r

q
p−o + k

T
pr

k
p−o  vp + r

v
p−o ,

(2)

where rk
p−o ∈ R

dq represents the learnable positional
encoding for K, and rv

p−o ∈ R
dout is the same for V.

In Medical Transformer [33], the positional encoding
method is initialized randomly because the features at each
location do not have a priori knowledge, but in our task, it is
obvious that the location of human skeletal points has a more
important role. Based on this, we do not choose a random
approach when initializing the positional features, but per-
form a Gaussian initialization centered on each key point,
which will result in a larger weight value for the region where
the skeletal points are located and a smaller weight value for
the other locations, which also matches the distribution of the
objects to be detected in our task. Since the targets to be
detected are highly concentrated in the hands and heads, we
also give larger weight values when initializing their positional
feature and the rest of the skeletal point locations are ini-
tialized with the same Gaussian initialization method.

3.4. Improvement of the Output Layer. Since the position
encoding feature is very sensitive to the features corre-
sponding to the keypoints, we use a fully connected layer to

its probability map to weight the output layer. In the object
detection task, multiple anchor sizes and multiple output
layers are usually designed to make the model adaptable to
different size targets. 'ough the network structure is
designed to focus on the attention method and emphasize
the importance of positional information, the local features
corresponding to the skeletal points cannot be well utilized if
the output layer is still chosen similar to the YOLOV5 head-
layer, which only predicts the features at different levels
separately, so we perform an additional weighting calcula-
tion for the output features. As presented in 3.3, the
learnable positional encoding features are multiplied with
each output layer feature in YOLOV5 as shown in Figure 5.
'is enables more attention to be paid to the human skeletal
point area; thus, improving the detection performance.

4. Experiments

In this chapter, we evaluate our proposed method in the field
operation chemical plant scene. We set up several sets of
ablation experiments and analyze them in comparison with
the corresponding performance of the mainstream object
detection algorithms presently. We will present the exper-
imental setup and results in the following sections.

4.1. Datasets Description. 'e data we selected came from the
scene of field operation chemical plant, and because the sur-
veillance video was blurred, so we chose to shoot the con-
struction site in person. All videos were shot with 1080p
explosion-proof equipment. To make the data more diverse, we
chose different angles and distances for the same construction
scene. All video datawere cut into images at 100 frames intervals
to build a dataset and annotated it, and all data were manually
annotated using the LabelMe toolkit.'e overall dataset consists
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Figure 3: For each local feature, both self-attention and cross-attention mechanisms are used to reconstruct the local features of the human
body.
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of 2400 annotated images, but since our research focuses on the
presence of small targets and occlusions, some easy-to-detect
data samples were excluded from the original dataset. 'e
dataset was randomly split where the training set consisted of
1281 images and the test set consisted of 200 images. For the
selection of labels, there are 19 categories of labeled objects in
total, including helmets, goggles, gloves, construction equip-
ment, fire extinguishers, and signs. However, since objects such

as fire extinguishers and scaffolds are usually easier to be de-
tected, we only kept the objects related to construction workers
in the labels, and the total number of labels is 13.

4.2. Influence of Different AttentionMethods. In this part, we
conduct a comparative experimental analysis of different
design approaches for the attention mechanism module. In

MatMul

So�Max

MatMul

Q K

Input
Embedding

V

. . .

(a)

q Q K Vk

Input
Embedding

MatMul MatMul MatMul

MatMulSo�Max

+

+

MatMul

v

. . .

(b)
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the next experiments, we choose the evaluation method
consistent with the COCO benchmark [5]. Firstly, all human
skeletal point locations are obtained using the OpenPose
model. Next in the backbone selection, we conducted the
following experiments, respectively: (1) directly using the
native YOLOV5 model; (2) using only the basic transformer
encoder as the feature extraction backbone; (3) using both
self-attention and cross-attention as the feature extraction
backbone. In the above experiments, all attention mecha-
nism modules do not use positional encoding features.
Table 1 shows that if only the traditional object detection
algorithm is used, it is difficult to get better performance in
the dataset with mostly small targets, and when using
transformer as the backbone, although the detection effect
can be slightly improved on small target objects, the overall
map value is not significantly improved. When both self-
attention and cross-attention modules are used, the detec-
tion performance is not only improved by 5.6 percentage
points on small targets, but also the overall map value is
improved by 3.1 percentage points. 'is can be attributed to
the fact that by using multiple attention mechanism strat-
egies allows the model to learn richer and more reliable local
features, and by cross-attention also allows the model to
learn the relational properties between different local
features.

4.3. Influence of Position Encoding Method. Since the targets
to be detected shows an obvious dependence on the location
of human skeletal points, we designed a learnable positional
encoding method. In the next experiments, we will analyze
the performance of different positional encoding methods
on the results which are used with self-attention and cross-
attention as the base backbone. First, we used the traditional
transformer positional encoding method that is consistent
with VIT, and Table 2 shows that the introduction of po-
sitional encoding method can increase the overall Ap value
of the model by up to 1.3 percentage points, which has a
significant impact on the detection performance. Further-
more, the traditional positional encoding method was
replaced with a learnable gated positional encoding method,
and the gated values (weights) were initialized to 0.05 for Q,
K, and V. Since the method of positional encoding is ran-
domly initialized at the beginning of training, which may
lead to instability occurred during model training, on the
basis of that, a smaller initial value was chosen for this
parameter. From Table 2, it can be concluded that the use of
our proposed gated positional encoding method can im-
prove the overall detection performance by 2.4 percentage
points. On the effect of detection for small target objects, the
improvement is 1.9 percentage points relative to the tra-
ditional positional encoding method. 'is can be attributed
to the fact that, for the detection task of the equipment worn
by the construction personnel, a large number of targets to
be detected show obvious characteristics of positional re-
lationships, and by training the learnable positional
encoding method, the model can better learn the positional
dependencies between different objects.

4.4. Influence of the Output Layer. In this part, we will
compare and analyze the effect of the output layer of the
object detection algorithm on the results.'ree output layers
are selected in YOLOV5 for regression and classification
tasks after concat features from different layers, respectively,
using different receptive field features for the prediction of
different size targets. In our design, positional-encoded
weight mapping is additionally introduced on top of it to
further highlight the degree of influence of different skeletal
point locations on the results in the output layer. From
Table 3, it can be seen that the output layer with the po-
sitional-encoded weight mapping improves the detection of
small targets by 1.7 percentage points. 'is can be attributed
to the fact that, although multiple attention and location
encoding strategies are used in the backbone module, some
features and information are lost if not emphasized in the
output stage. 'e combination of positional-encoded weight
mapping with the output layer can significantly improve the
detection performance of our model for small target de-
tection tasks.

4.5. Comparison with the SOTA Model. To highlight the
effectiveness of our proposedmethod, in this chapter, we will
compare and analyze our method with the current SOTA
object detection algorithms. In order to analyze the effec-
tiveness of the transformer module in the field operation of
chemical plant, we conduct an experimental comparison
with EfficientDet and FCOS. Since the detection perfor-
mance of EfficientDet is directly related to the levels of
EfficientNet, we select EfficentNet-B0 and EfficentNet-B3 as
backbones to observe their effect on small target detection
task. In order to prove the importance of local features in the
small target detection task, we choose to compare with the
Transformer-based Deformable DETR method and select
ResNet50 as its backbone. In the data preprocessing stage, all
models use the same data augmentation strategy, and for the
fairness of the experiment, all models do not use multi-scale
input, and all input sizes are 640∗ 640. Due to the instability

Table 1: Influence of different backbone design on feature
encoding.

Backbone design AP AP50 AP75 APs APm APl
YOLOV5-X 31.4 40.1 33.2 17.3 38.7 53.5
Transformer encoder 31.6 40.4 33.7 18.6 39.6 49.8
Self-attention and cross-
attention 34.5 42.1 37.1 24.2 42.1 45.6

Table 2: Ablation studies of positional encoding method.

Positional-encoding
method AP AP50 AP75 APs APm APl

Without positional
encoding 34.5 42.1 37.1 24.2 42.1 45.6

2D positional encoding 35.8 43.6 38.9 25.7 42.2 45.1
Learnable gated positional
encoding 36.9 45.1 40.3 27.6 44.1 44.4
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of the label balancingmethod during training, we did not use
this method for all models. From Table 4, it can be seen that
although the EfficientDet model has a good performance in
large target detection, it cannot effectively identify small
targets. In addition, when the levels of backbone layers
increased, the small target detection performance is not
improved. Although the transformer is used as the entire
encoder and decoder modules in Deformable DETR, there
are still problems in the small target detection task in the
field operation of chemical plant. Even if two-stage training
is performed on Deformable DETR, it is difficult to improve
its small target detection performance. 'rough the above
comparison experiments, it can be found that for the small
target detection problem in the field operation of chemical
plant, not only the feature relationship between regions
needs to be considered in the selection of network structure,
but also the local feature extraction module is required to
strengthen the model’s local perception ability.

4.6. Training Details. 'e overall training process of the
model is consistent with YOLOV5, using ADAM [34] as the
optimizer and choosing a moment value of 0.9, an initial
learning rate of 0.01, and a learning rate decay and early stop
strategy. All network structures are used in YOLOV5-X
structure except backbone design. All experiments are based
on the same evaluation criteria used in the COCO dataset
after 300 epochs of iterations of RTX3090.

5. Conclusions

In the field operation of chemical plant, there are often small
target detection tasks and construction workers obscure
each other. How to perform local feature extraction becomes
the key to improve the detection performance. To solve this
problem, we propose the point transformer, which first uses
self-attention and cross-attention for local feature recon-
struction of human skeletal points. In addition, since the
target to be detected in our task is highly correlated with the
location of the skeletal points of the construction workers,
we designed a learnable positional encoding method to
highlight the importance of location information in order to
make better use of this priori information. It is shown in

experiments on the scene of field operation chemical plant
dataset that the proposed point transformer outperforms
present-day classical object detection algorithms. Our ap-
proach can be seen as an application of optimizing the
performance of small target detection tasks using local
features of the human body. However, this has not yet been
exploited due to the obvious synergistic relationship be-
tween the movement changes of the skeletal points during
the construction work, which exhibits graph structural
properties. Our future work will aim at using the graph
model to construct local features of the human body to
further improve the detection performance [35].
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In real-life scenarios, the accuracy of person re-identi�cation (Re-ID) is subject to the limitation of camera hardware conditions
and the change of image resolution caused by factors such as camera focusing errors. People call this problem cross-resolution
person Re-ID. In this paper, we improve the recognition accuracy of cross-resolution person Re-ID by enhancing the image
enhancement network and feature extraction network. Speci�cally, we treat cross-resolution person Re-ID as a two-stage task: the
�rst stage is the image enhancement stage, and we propose a Super-Resolution Dual-Stream Feature Fusion sub-network, named
SR-DSFF, which contains SR module and DSFF module. e SR-DSFF utilizes the SR module recovers the resolution of the low-
resolution (LR) images and then obtains the feature maps of the LR images and super-resolution (SR) images, respectively,
through the dual-stream feature fusion with learned weights extracts and fuses feature maps from LR and SR images in the DSFF
module. At the end of SR-DSFF, we set a transposed convolution to visualize the feature maps into images. e second stage is the
feature acquisition stage. We design a global-local feature extraction network guided by human pose estimation, named FENet-
ReID.e FENet-ReID obtains the �nal features through multistage feature extraction andmultiscale feature fusion for the Re-ID
task. e two stages complement each other, making the �nal pedestrian feature representation has the advantage of accurate
identi�cation compared with other methods. Experimental results show that our method improves signi�cantly compared with
some state-of-the-art methods.

1. Introduction

e purpose of person Re-ID is to match the target person of
interest across the images under multiple cameras. Due to its
wide range of applications, such as intelligent surveillance,
person tracking, and criminal case forensics, it has been
widely used in computer vision in recent years. With the
development of deep learning, many deep feature extraction
networks have been designed for person Re-ID to improve
the matching accuracy. However, in practical applications,
person Re-ID still presents enormous challenges due to
factors such as di�erent low-resolution images [1], illumi-
nation changes [2], occlusions [3], and weather changes [4].

Some deep learning based person Re-ID methods [5, 6]
perform well on the premise of ensuring that the resolutions

of gallery images and query images are consistent and high-
resolution (HR). However, this premise is usually not
guaranteed because the resolution of the query images is
usually low, but the gallery images are all �ltered HR images,
which resulted in a mismatch between the resolution of the
query images and gallery images. At this time, traditional
person Re-ID methods cannot extract discriminative person
features for target matching, so more and more people begin
to focus on cross-resolution person Re-ID [7–12]. Cross-
resolution person Re-ID works aim to address the problem
of resolution mismatch between query images and gallery
images.

Cross-resolution person Re-ID was �rst proposed by Li
et al. [13] in 2015, which opened a precedent for cross-
resolution person Re-ID research. Subsequent research on
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cross-resolution person Re-ID can be divided into two stages
in time. In some early works, dictionary learning or metric
learning are used to learn pedestrians between images of
different resolutions. +e common feature representations
are as shown in work [7–10]. However, the feature maps
extracted by these methods based on LR images are unre-
liable, so the early cross-resolution person Re-ID matching
accuracy is not satisfactory. Subsequently, with the proposal
of some SR models [14–17], some researchers began to apply
SR models to cross-resolution person Re-ID, which is the
development of cross-resolution person Re-ID second stage.
Jiao et al. [12] were the first to use SRCNN [18] to recover the
resolution of LR images and proposed a method to train the
SR sub-network and the Re-ID sub-network jointly. Since
then, more and more works have begun introducing SR
modules into cross-resolution person Re-ID, which further
improves the matching accuracy of cross-resolution person
Re-ID. For example, MMSR [19] designed a mixed-space
super-resolution model to recover the resolution of LR
images with variable resolution. Recently, many new
methods represented by PRI [11] have improved the de-
tection accuracy of cross-resolution person Re-ID to a new
level. However, there are still some gaps in practical
application.

+rough the study of numerous cross-resolution person
Re-ID methods in recent years, we found some of their
disadvantages. Most of the current research ideas are to use
the SR module to recover the query images resolution to the
high-resolution displayed by the gallery images. +e use of
the SR modules significantly improves the matching accu-
racy of cross-resolution person Re-ID, but in fact, we found
through experiments that the SR images generated after the
SR modules will inevitably lose some original details [20].
We believe that this will bring hidden dangers to subsequent
Re-ID tasks. Although Zhuang et al. [21] proposed CAD-
NET to jointly learn the feature maps of the SR images and
the LR images to alleviate the loss of feature details; however,
there are still significant problems in directly fusing feature
maps from images of different resolutions. Furthermore,
most researchers use deep neural networks to capture low-
level details by extracting local features [22] of images, which
are likely to bring semantic ambiguity. For example, a man
with a woman’s suitcase is mistaken for a woman.+erefore,
we believe that it is necessary to devise better methods in
reducing the loss of original details brought by the SR
module and extracting image feature extraction.

In this paper, we propose a person Re-ID method that
jointly optimizes the feature details of person images and the
extraction of features. Specifically, we propose a deep net-
work consisting of the SR-DSFF sub-network and the
FENet-ReID sub-network. Firstly, the SR-DSFF uses a dy-
namic upscale module to learn the weights in the convo-
lution kernel; these weights are then used to generate SR
images. Different from other methods that utilize SRmodels,
we treat SR-DSFF as an image enhancement model rather
than a single SR model. +erefore, we added the DSFF
module after the SR module. +e DSFF module clearly
distinguishes high- and low-resolution inputs during feature
learning, so that the feature information of different

resolution images complement each other to ensure its
robustness to resolution variance. Subsequently, the global-
local feature extraction network (FENet-ReID) extracts
person representations for person Re-ID. +e FENet-ReID
consists of two convolution stages (FE-C1 and FE-C2) and
three feature fusion units. +e two convolution stages
consist of four CNN sub-networks, and each feature fusion
unit sequentially fuses two equal-sized feature maps to
obtain a more discriminative final feature representation of a
person. +e main contributions of this paper are as follows:

(i) We propose an image enhancement sub-network
named SR-DSFF. Unlike other methods, we do not
rely on a single SR module to recover image reso-
lution. Instead, the DSFF module is added after the
SR module to reduce the loss of image details.

(ii) We propose a feature extraction network based on
human pose estimation named FENet-ReID, using
the final features from multistage feature extraction
and multiscale feature fusion to perform cross-
resolution person Re-ID.

(iii) We have done a lot of experiments on three cross-
resolution person Re-ID datasets, all of which have
reached the industry-leading level. Compared with
other state-of-the-art methods, our proposed
method achieves 2.7%, 5.4%, and 3.7% improve-
ment on Rank-1 on MLR-Market1501, MLR-
CUHK03, and CAVIAR datasets, respectively.

+e rest of this article is organized as follows: Section 2
introduces the related work and Section 3 mainly introduces
the proposed method. Section 4 evaluates the model’s
performance through extensive experiments and concludes
with a conclusion in Section 5.

2. Related Work

2.1. Person Re-ID. Person Re-ID has been studied by aca-
demia for many years since 2005. Still, it was not until 2014
that deep learning began to be applied to person Re-ID, that
person Re-ID achieved a huge breakthrough. Many current
methods [23–27] have achieved outstanding results in closed-
world [28], and even some state-of-the-art methods have
achieved accuracy close to or surpassing the human level. For
example, Zheng et al. [29] proposed a method that combines
the similarity of intraclass data in high-dimensional space and
the difference between classes and achieves complementary
effects by fusing the two loss functions. And Chen et al. [30]
proposed a method on transfer learning in unsupervised
situations, for the two models with the same network to fill
the unlabeled part of each other and it can be further replaced
by two different networks. As a result, traditional person Re-
ID has entered a bottleneck period and many methods have
been developed to deal with various challenges, such as pe-
destrians with different poses, different styles of cameras, and
occlusion. For example, Wei et al. [31] proposed a GLAD that
exploits both local and global features of the human body to
generate a representation with strong discriminativeness to
handle significant variations in human poses. Liu et al. [32]
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proposed a method for uniform style, that is, to deal with the
style changes caused by different cameras by generating
images with a unified camera style through Unity GAN. Qian
et al. [33] proposed a generative adversarial network
(PNGAN) specially designed for pose normalization in Re-
ID. Some methods [34–36] use human pose information to
reduce background noise to solve the problem of occlusion.
However, the above methods usually assume that the reso-
lutions of query images and gallery images are similar and
high enough, which will bring significant problems to ap-
plying these methods in open-world [28].

2.2. Cross-Resolution Person Re-ID. In order to solve the
problem that the resolution span is too large, many methods
have also been proposed in recent years. Traditional methods
[37, 38] process images employing metric learning or dic-
tionary learning, but the details of LR images are not ob-
vious, so the performance of these methods is limited. With
the development of super-resolution technology, some SR-
based cross-resolution person Re-ID methods have been
proposed in later studies. SR-based cross-resolution person
Re-ID usually relies on SR modules to recover the resolution
of LR images. Since Ledig et al. [16] first proposed SRGAN,
SRmodules have been widely used in the resolution recovery
stage of cross-resolution person Re-ID. And Jiao et al. [12]
jointly trained SRCNN and Re-ID networks for the first
time. Mao et al. [39] proposed a Foreground-Focus Super-
Resolution (FFSR) module and Resolution-Invariant Fea-
ture Extractor (RIFE). Unlike other SR-based methods,
FFSR combines Re-ID loss and foreground attention loss
during training and suppresses irrelevant background while
restoring pedestrian image resolution. Some other SR
models are also widely used in cross-resolution person Re-
ID, such as Meta-SR [17] and VDSR [40].

2.3. Feature Representation Learning in Person Re-ID. In the
field of person Re-ID,most deep learning based works [41–43]
are used to extract feature maps from the entire pedestrian
images, so simply extracting global features is likely to lose key
information about pedestrians. Subsequent works [44–46]
tried to horizontally divide pedestrian images into several
fixed-length blocks to extract more detailed local features.+e
experimental results show that the matching accuracy of
person Re-ID after adding local features is much better than
those methods that use global features. However, dividing the
pedestrian image into fixed-length blocks to extract local
features is not sensitive to the change of the pedestrian’s
posture. +e pedestrians captured by the surveillance cameras
often have posture changes.+erefore, it is necessary to design
a better feature extractor for pedestrian pose changes.

2.4. Discussion. Cross-resolution person Re-ID is only a
branch of the field of person Re-ID. +ere are still many
issues to be resolved. For example, to make the person Re-ID
technology applicable on a large scale, we need to design a
lighter network while ensuring the accuracy so that the
hardware device can accept it. In addition, in the research of

person Re-ID, I found that some techniques can also be
applied to building retrieval [47] or drone-based geo-lo-
calization [48] etc.

At present, most SR-based cross-resolution person Re-
ID methods focus on the reconstruction of SR images so the
reconstructed SR images can be closer to the original HR
images. However, these methods ignore the loss of image
detail in the reconstruction process and the distribution
difference between high- and low-resolution image features.
Different from current methods, our network learns and
fuses features from LR and HR images through dual-streams
of attention-weighted feature extraction while recovering
the image resolution. Compared with the way current
methods deal with LR images, our method preserves richer
image feature details.

3. Proposed Methods

Our network structure diagram is shown in Figure 1. +is
section introduces the SR-DSFF and FENet-ReID,
respectively.

3.1. SR-DSFF. As the first stage of cross-resolution person
Re-ID, we first consider restoring the resolution of the query
images. For open-world, we often face the problem that the
resolution span of query images is too large, so we cannot
predict a suitable scale factor to handle query images of
arbitrary resolutions. For open-world needs and improving
cross-resolution person Re-ID methods, it is crucial to
design a method that can handle query images at arbitrary
resolutions. Inspired by some work [49], we employ a dy-
namic Meta-Upscale module to learn the weights in the
convolution kernels, which are then used to generate SR
images. Our SR module is different from some existing SR
models such as FSRCNN [14], SRDenseNet [15], and
SRGAN [16]. Inspired by meta-learning [50], we divide the
SR module into two modules, the feature learning module
and the Meta-Upscale module [17]. We choose RDN [51] as
the feature learning module, and it is worth noting that we
replace the ordinary upscale module with an improved
Meta-Upscale module.

SR-DSFF takes a set of LR images In
L � I1L, I2L, I3L, . . . ,

IN
L } as input. In the training phase, we obtain images In

L from
a set of original HR images In

H � I1H, I2H, I3H, . . . , IN
H  by

down-sampling. In the SR module, our goal is to predict the
SR images In

S � I1S, I2S, I3S, . . . , IN
S  from images In

L. Assuming
that the scale factor of each pixel (i1, j1) of the images In

L is s

during the enlargement process, in the prediction stage, the
features Fn

IL of the images In
L is extracted by the feature

learning module in the SR module, +e features of the
images In

L on its pixel (i1, j1) and the corresponding
filter weights determine each pixel (i, j) in the generated
images In

S .
For each pixel (i, j) in the images In

S , it is determined by
the feature of the images In

L on its pixel (i1, j1) and the
corresponding filter weights. So we can think of the Meta-
Upscale module as a mapping function from FIL to In

S . +e
mapping function is as follows:
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I
n
S(i, j) � f F

n
IL i1, j1( , w(i, j)( , (1)

where In
S(i, j) is the pixel value of the images In

S at (i, j), f( ·

) represents the feature mapping function for calculating
pixel values, and w(i, j) is the weight prediction module of
the pixel point (i, j) (corresponding to equation (3)).

For each pixel (i, j) in the images In
S , we consider the

pixel (i, j) to be determined by the features of (i1, j1) on the
LR images. We map these two pixels through a projection
transformation function T:

i1, j1(  � T(i, j) �
i

s
,
j

s
 . (2)

Specifically, we can think of the resolution recovery
process as a variable fractional stride mechanism that en-
ables convolution to use an arbitrary scale factor s (not
limited to integer multiples of scale factors) to upscale
feature maps. For example, when the scale factor s � 2, one
pixel (i1, j1) determines two pixels on the images In

S . If the
scale factor is a non-integer, taking s � 1.5 as an example,
some pixels determine two pixels, and some pixels
determine one pixel. All in all, each pixel (i, j) on the images
In

S can find a most relevant pixel (i1, j1) on the images In
L.

After determining the positional relationship between
the images In

L and the images In
S , it is also necessary to learn

the weights and offset between the two. Different from the
traditional upscale module, our Meta-Upscale module
predicts the corresponding number of filter weights for any
scale factors employing two fully connected layers. In order
to train multiple scale factors simultaneously, it is better to
add the scale factors to vij to distinguish the weights of
different scale factors. We can express the weight prediction
and vij as follows:

W(i, j) � φ vij; θ , (3)

vij �
i

s
−

i

s
,
j

s
−

j

s
 , (4)

where W(i, j) is the convolution kernel weight corre-
sponding to the pixel (i, j) on the images In

S , vij is the vector
associated with (i, j), φ is the weight prediction network, and
θ is the weight of the weight prediction network.+en obtain
the pixel value of the pixel (i1, j1). Its feature mapping
function is expressed as follows:

Φ FIL i1, j1( , W(i, j)(  � FIL i1, j1( W(i, j). (5)

Finally, in order to ensure that the images In
S have high-

resolution, we define a SR loss Lrec between the SR images
and its original HR images, and the SR lossLrec is expressed
as follows:

Lrec � E I
n
S − I

n
H1

����
���� , (6)

where In
H and In

S represent original HR images and SR
images, respectively. As shown in Figure 2, the effect of the
SR module on the resolution recovery of LR images is
pronounced.

It is worth noting that although we use the SR lossLrec to
make the images In

S to reduce the loss of pedestrian features
during the resolution recovery process. However, in the
process of resolution recovery, the loss of features is still
inevitable. In addition, the visual cues contained between
different resolution images are different, so it is not reliable to
rely on the SR images for the Re-ID task. To sum up, we
added a DSFF module after the SR module to learn the
features in different resolution images In

L and In
S and fuse the

learned featuremaps. Since SR images and LR images contain
other visual cues, different feature extractors should be used
to extract image feature maps of different resolution images.

+e DSFF module consists of two feature extraction
branches. We denote these two branches named FESL and
FESS, respectively. In each branch, we take ResNet101 [52] as
the backbone, and ResNet101 is modified to be a Feature
Extraction Block named FEB to extract the feature maps of
the input images by duplicating its convolutional layers as
FESL and FESS. And we introduce spatial attention and
channel attention in FESL and FESS. As shown in Figure 1,
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Figure 1:+e network consists of SR-DSFF sub-network and FENet-ReID.+e query images first enter the SR-DSFF, and the SR images are
output through the feature extractor and the upscale module in the SR module. +en, the feature maps of the query images and the SR
images are jointly learned and fused through the DSFF module, and the final images are output into FENet-ReID through transposed
convolution. FENet-ReID extracts the global and local features of the images that are obtained in the SR-DSFF and fuses them to obtain the
final feature maps. Finally, a fully connected (FC) layer is used on the final feature maps to predict the ID labels of pedestrians. Our network
is divided into two training stages: (1) Update the SR module with the SR loss Lrec (equation (6)); and (2) jointly train the DSFF and the
FENet-ReID with the total loss LTOTAL (equation (12)). +ese two stages are represented by yellow and black arrows on the figure,
respectively.
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there is always a feature extraction branch in FEB corre-
sponding to the images In

L and images In
S , respectively.

Among them, FESL and FESS have the same structure.
However, the training purposes of the two branches are
different. For example, for the SR images, we choose a more
appropriate FESS for feature extraction, so the mS is fused
with larger weights. As shown in Figure 3, in the spatial
attention, we utilize softmax to transform the learned feature
vectors into weight ωL1 or ωS1, in the channel attention, we
use one global average pooling (GAP) layer and two fully
connected (FC) layers to predict ωL2 or ωS2, and the feature
maps mL and mS obtained by each branch can be expressed
as follows:

m
L

� ωL1
× m

L1
+ ωL2

× m
L2

, (7)

m
S

� ωS1
× m

S1
+ ωS2

× m
S2

, (8)

where mL and mS represent feature maps obtained by FESL

and FESS, respectively. mL1 and mL2 represent the feature
maps obtained by FESL through spatial attention and
channel attention, respectively. mS1 and mS2 represent the
feature maps obtained by FESL through spatial attention and
channel attention, respectively. +e resolution of the input
images determines the size of ωL and ωS. For LR images, ωL

will be larger thanωS, and vice versa. In order to learnωL and
ωS, we introduce resolution weighting lossLR. According to
the training images In

L and In
S can be expressed as follows:

L
R

I
n
r(  � ωL

− (1 − r)
����

����
2
2 + ωS

− r
����

����
2
2,

(9)

where ωL � (ωL1,ωL2), ωS � (ωS1,ωS2), In
r represents In

L or
In

S , and r represents the resolution of In
r . Finally, we denote

the output feature m as follows:

m � m
L

+ m
S
. (10)

Finally, the feature m is put into the last transposed
convolutional layer of the SR-DSFF to get the final image
with richer semantic information.

3.2. FENet-ReID. After obtaining the final images, our ul-
timate goal is to obtain a discriminative pedestrian feature
representation for the Re-ID task. To get this feature map as
shown in Figure 1, we extract global and local features from
the final images and fuse them.

We utilize human pose estimation [53]. Unlike Spindie
Net [54], we only select four key points on pedestrians to
make our model robust to a wider variety of pedestrian poses
and camera views. Based on these four key points, we get
three key regions of pedestrians: the head, upper body, and
lower body.

Our FENet-ReID process consists of two modules, the
Feature Extraction Module (FEM) and the Feature Fusion
Module (FFM).+e FEM and FFM are introduced separately
below.

3.2.1. FEM. We design a Convolutional Neural Networks
(CNNs) consisting of four sub-networks in FEM. As
shown in Figure 4, the FEM consists of two convolution
stages (FE-C1 and FE-C2). Using the FEM, we obtain four
256-dimensional feature vectors from the pedestrian im-
age global and three key regions. In FE-C1, there are three
convolutional layers and one Inception module [55] in
each CNN. First, convolve the input image to obtain a
feature map with a spatial size of 24 × 24. At the same time,
the same operation is performed on the three key regions
of pedestrian and a ROI Pooling operation is performed to
keep the feature maps obtained by FE-C1 of equal size. In
FE-C2, the four feature maps obtained in the previous
stage are input, and the spatial size is reduced to 12 ×12
through an initial module first, then we use a global
pooling layer and a fully connected layer to convert into
256-dimensional feature vectors, that is, the output of FE-
C2 is four 256-dimensional feature vectors, which cor-
respond to the global image and three human key regions
images, respectively.

3.2.2. FFM. To make the final feature representation of
pedestrians more discriminative, next we fuse together the
four 256-dimensional feature vectors obtained earlier to
generate a compact 256-dimensional feature vector. We
adopt a feature fusion unit to fuse two feature vectors of
equal size. Specifically, as shown in the right part of Figure 4,
we use three such feature fusion units, where two primary
operations are performed in each feature fusion unit: (1) Use
the element-wise maximization operation to delete the
features of the smaller value, and only keep the features of
the maximum value. (2) An inner product layer is used for
feature transformation, and its output can be used for
subsequent feature fusion units. +e three feature fusion
units from left to right sequentially fuse the pedestrian’s
lower body and upper body into the main body, fuse the
main body and head into the whole body, and finally fuse the
whole body and feature vector of the full image into the final
256-dimensional feature F. Finally, we use a fully connected
layer on the feature F to predict the ID labels of pedestrians.
It can be expressed as person Re-ID loss by a cross-entropy
loss LX, and the expression is as follows:

Figure 2: Shows the performance of our SR module on the dataset
Market1501. +e effect is evident by comparing it with LR images.
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L
X

In(  � CrossEntropy FC Fn( , Pn( , (11)

where In represents the final images obtained by transposed
convolution in SR-DSFF and Pn represents the person ID
labels of the training images In.

+rough a training set Z � (In
H, In

r , In, Pn) , n � 1, . . . ,

N, where In
H represents the original HR images, In

r repre-
sents In

L or In
S , and Pn is the person ID label. +e total loss

LTOTAL of the DSFF module and FENet-ReID can be
expressed as follows:
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LTOTAL � L
X

In(  + α 
t�1: 4

L
R
t I

n
r( , (12)

where In
r means In

L or In
S input into FESL or FESS.

4. Experiment

4.1. Dataset. We evaluate our method on three datasets, all
of which are most commonly used for person Re-ID.

MLR-Market1501 [56]: Market1501 dataset was cap-
tured by six cameras, five of which were high-resolution
cameras, and one was low-resolution. Market1501 contains
1501 different pedestrian categories with 32668 detected
pedestrian bounding boxes. Among them, pedestrians of
each category are captured by at least two cameras. We
follow SING [12] that the images captured by one of the
cameras are processed at the same down-sampling rate and
the resolutions of the images captured by the other cameras
remain unchanged to create the MLR-Market1501. Based on
the person ID labels, we split the dataset into a training set
containing 751 pedestrians and a test set containing 750
pedestrians.

CAVIAR [57] was collected in the real world, including
1220 images of 72 pedestrians captured by two cameras.
According to [12], we discarded 22 identities of pedestrian
images so that only HR images are included in the dataset.
We randomly split the dataset into two training and test sets
containing 25 pedestrian identities.

MLR-CUHK03: CUHK03 [58] is the first large-scale
person Re-ID dataset, and its colossal data volume is enough
to support it for deep learning. +e dataset contains 632
different pedestrian categories and is photographed by five
pairs of cameras. Also, according to [12], we randomly
down-sample the images captured by one of the cameras of
each team with the down-sampling rate of r ∈ 2, 3, 4{ } to
create the MLR-CUHK03 dataset. We use the same number
of pedestrian identities (316/316) as training/testing sets.

4.2. Implementation Details. Our model training is divided
into two steps: (1) Firstly train the SR module separately and
(2) then jointly train the DSFF and FENet-ReID.

In the SRmodule, the widely used loss function is L2 loss,
but according to work [59], we use L1 loss to make the
network better convergence. In the network training, in
order to construct the LR image training set, we conduct the
down-sampling operation on the images in several data sets
and then adjust the image obtained by down-sampling to the
same size as the original HR images. It is worth noting that
we use a unified down-sampling factor r� 4 to down-sample
original HR images. For each batch, we randomly selected 16
LR images of 96∗ 96 size as training images. We use Adam
as the optimizer. During the training process, the training
scale factor of the SR module varies from 1 to 4 with a step of
0.1, and these scale factors are uniformly distributed. Ini-
tialize the learning rate of all layers to 10− 4 and perform 106
update iterations.

DSFF and FENet-ReID are trained by Stochastic Gra-
dient Descent (SGD), and the training is done in two steps:
(1) Use LR to initialize on the target dataset and adjust the
DSFF module. (2) Under the guidance of the loss function in
equation (12), the DSFF and FEFF are jointly trained.
According to the experiment, we fix the hyper parameter in
equation (12) as α � 1, and each step has 60 epochs, the batch
size is set to 32. +e initial learning rate is set to 10− 2 in the
first 30 epochs, and 10− 3 after 30 epochs. +e final 256-
dimensional feature is used for Re-ID with Euclidean
distance.

Our network is trained on Pytorch, and all experiments
are implemented with NVIDIA RTX3080Ti GPU, Intel i9
CPU, and 64GB memory.

4.3. Comparison with State-of-the-Art. Tables 1–3 shows the
results of our method on three datasets, as well as the
comparison with other state-of-the-art methods in the last
three years. +e methods we choose cover two broad cat-
egories: (1) Traditional person re-id methods: SpreID [60],
CamStyle [61], LA-Transformer [64]; (2) Advanced
methods for cross-resolution person Re-ID (other methods
in Tables 1–3). It can be seen from the comparison results
that the performance of our method has improved
significantly.

On theMLR-Market1501 dataset, the Rank-1 accuracy of
our method improves by 2.7% over the current state-of-the-

Table 1: +e proposed method is compared with the current state-
of-the-art methods on the dataset MLR-Market1501.

Methods
MLR-Market1501

Rank-1 Rank-5 Rank-10
SING [12] 74.4 87.8 91.6
SPreID [60] 77.4 89 93.9
CamStyle [61] 74.5 88.5 92.2
CAD-net [62] 83.7 92.7 95.8
FFSR+RIFE [39] 66.9 84.7 -
CRGAN [63] 83.7 92.7 95.8
INTACT [22] 88.1 95 96.9
PRI [11] 84.9 93.5 96.1
LA-transformer [64] 86.7 96.4 97.4
Ours 90.9 96.4 97.6
+e best and second-best results are in bold and italics, respectively.

Table 2: +e proposed method is compared with the current state-
of-the-art methods on the dataset CAVIAR.

Methods
CAVIAR

Rank-1 Rank-5 Rank-10
SING [12] 33.5 72.7 89
SPreID [60] 36.2 71.9 88.7
CamStyle [61] 32.1 72.3 85.9
CAD-net [62] 42.8 76.2 91.5
FFSR+RIFE [39] 36.4 72 —
CRGAN [63] 42.8 76.2 91.5
INTACT [22] 44 81.8 93.9
PRI [11] 43.2 78.5 91.9
LA-transformer [64] 42.1 80.7 92.4
Ours 47.9 84.6 96.2
+e best and second-best results are in bold and italics, respectively.
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art methods. On the MLR-CUHK03 dataset, compared with
other methods, the accuracy is improved by 5.4% relative to
second place in Rank-1. On the CAVIAR dataset, our Rank-
1 accuracy is also 3.9% better than the current state-of-the-
art. It can be seen that SR-DSFF and FENet-ReID outper-
form the vast majority of existing methods compared with
existing cross-resolution person re-id methods. Only on
dataset MLR-Market1501 and MLR-CUHK03, our method
is on par with LA-Transformer [64] and PRI [11] in Rank-5
accuracy comparison.

4.4. Ablation Study

4.4.1. Validity of DSFF and FENet-ReID. To verify the ef-
fectiveness of our SR-DSFF and FENet-ReID, as shown in
Table 4, we fixed the DSFF as ResNet101 and compared it
with other different SR models as shown in Table 5. It is
worth noting that we use the entire SR-DSFF as an image
enhancement model, because the purpose of our SR-DSFF is
to obtain images that are more suitable for person Re-ID.
Experiments are performed on the dataset MLR-
Market1501.

In Table 4, we fix the DSFF as bilinear interpolation and
compare it with three feature extractors, namely, (1)
ResNet101 baseline, (2) two ResNet101 with the same

weights, and (3) two ResNet101, and dual-stream feature
fusion with the learned weights learned by equation (9).
From Table 4, we can see that using two ResNet101 improves
the model significantly. After further assigning weights to
the two ResNet101, the effect also enhances. Finally, our SR-
DSFF shows the best results with dual-stream feature fusion
and learned weights. +e accuracy of Rank-1 is enhanced by
12.3% compared to the baseline.

In Table 5, we discuss the effect of different loss functions
on the recognition accuracy of the network. In addition to
the loss function we adopted, we also selected three other
commonly used loss functions (Circle loss, Triplet loss, and
Sphere loss). In the experimental design, we use the exact
same SR-DSFF and FENet-ReID and only replace the person
Re-ID loss (equation (11)) with other loss functions during
network training. Experimental results show that our loss
function has the best performance on FENet-ReID guided by
human pose estimation.

In Table 6, our method and variants of our method
(trained with/without and “weighting loss”) are compared
with other SR-based person Re-ID methods. It can be seen
from Table 5 that adding weighting loss during training
greatly improves the accuracy of Re-ID. At the same time,
our method significantly improves the performance of other
SR-based cross-resolution person Re-ID methods.

5. Conclusion

In this paper, a deep network composed of SR-DSFF and
FENet-ReID is proposed to solve the cross-resolution person
Re-ID problem. +at is a new idea for solving cross-reso-
lution person Re-ID problem, that is, in SR-DSFF, the dy-
namic Meta-Upscale module is used to recover the LR
images to SR images in the SR module, and through the
dual-weighted feature extraction stream in the DSFF, the
fusion feature maps with more effective pedestrian infor-
mation are obtained, and the final images is recovered
through the transposed convolution. +en, the FENet-ReID
is used to segment the three key regions of the person based
on the human posture estimation, and the feature extraction
is carried out combined with the full images and key region
images for person Re-ID. We conducted extensive experi-
ments on three datasets to verify the effectiveness of the
proposed method.

Table 3: +e proposed method is compared with the current state-
of-the-art methods on the dataset MLR-CUHK03.

Methods
MLR-CUHK03

Rank-1 Rank-5 Rank-10
SING [12] 67.7 90.7 94.7
SPreID [60] 76.5 92.5 98.3
CamStyle [61] 69.1 89.6 93.9
CAD-net [62] 82.1 97.4 98.8
FFSR+RIFE [39] 73.3 92.6 —
INTACT [22] 86.4 97.4 98.5
PRI [11] 85.2 97.5 98.8
LA-transformer [64] 86.3 97.1 98.6
Ours 91.8 97.5 99.2
+e best and second-best results are in bold and italics, respectively.

Table 4: Performance of different feature extractors on MLR-
Market1501.

Structure Weight learning Rank-1 Rank-5
ResNet101 — 76.9 82.4
Two ResNet101 — 80.4 90.9
Two ResNet101 √ 86.6 95.7
SR-DSFF (ours) √ 89.2 95.9

Table 5: +e influence of different loss functions on recognition
accuracy.

Loss functions Rank-1 Rank-5 Dataset
Circle loss 88.4 95.7 MLR-Market1501
Triplet loss 88.7 94.9 MLR-Market1501
Sphere loss 89.3 96.1 MLR-Market1501
Ours 90.9 96.4 MLR-Market1501

Table 6: Performance of different feature extractors on MLR-
Market1501.

Models DS Weight Rank-1 Rank-5
CycleGAN [65] — — 62.6 76.2
SING [12] — — 74.4 87.8
CSR-GAN [66] — √ 74.3 87.7
FFSR+RIFE [39] √ √ 66.9 84.7
CAD-NET [21] — — 83.7 92.7
SR-DSFF (ours) √ — 86.1 92.6
SR-DSFF (ours) √ √ 90.3 96.4
“DS” represents whether dual-stream feature fusion is performed and
“Weight” indicates whether weighting loss was added during feature
extraction.
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Spatial Markov chain can e�ectively explore the spatial evolution trend of housing price under the in�uence of lag factor. �is
paper uses spatial autocorrelation and spatial Markov to study 353 second-hand houses in Hefei. �e results show that (1) the
housing price of Hefei urban area presents a situation of “two points and one side,” the high housing price is concentrated in the
south and southwest of the urban area, and the price level gradually weakens from south to north, and the housing development
shows a north-south di�erentiation. (2) �ere is a signi�cant spatial autocorrelation between second-hand housing prices in
Hefei. �e “high-high” residential price clusters are mainly distributed in Shushan District and Binhu New Area, while the “low-
low” residential price clusters are mostly in Yaohai district and its surrounding areas. �e number of “low-high” agglomeration
and “high-low” agglomeration is small, and the degree of change is not big. (3) Under the in�uence of di�erent neighborhood
environments, the housing prices in urban Area of Hefei show club convergence overall. At the same time, under the short-term
in�uence of the policy, the housing prices of low level and middle and low level are promoted in the same neighborhood
environment, while the housing prices of high level and middle and high level are negatively a�ected.

1. Introduction

Housing is a major issue concerning people’s livelihood,
a�ecting the basic livelihood of millions of families. With the
continuous improvement of economic life, the demand of
house buyers is getting higher and higher. However, in order
to meet the needs of residents, real estate developers actively
launch di�erentiated housing products, so as to broaden the
range of housing options for residents, but also produce
some negative e�ects: urban living space misallocation,
obvious spatial di�erentiation, housing prices, housing
prices causing “speculation,” eventually leading to excessive
real estate investment, forming the “bubble economy,” but
really needing just to be di�cult to meet the residents of
housing, a�ecting the well-being of the people, which is not
conducive to social stability and harmonious [1].

Hefei is a large city with a population of 10 million.
Compared with 2010, its permanent population increased by
1.91 million, and the proportion of urban population in-
creased by 20 percentage points [2]. Rapid urbanization and
population agglomeration bring about increased demand

and supply pressure for housing. �e exuberance of demand
and the relative reduction of supply cause the distortion of
the market and the relationship between supply and de-
mand. Under the combined action of multiple factors, such
as the rise of land price and the in�ux of investors into the
market, the real estate market in Hefei appears irrational
overheating and fails to meet the demands of consumers
with real rigid demand for housing [3]. In order to promote
the steady and healthy development of Hefei real estate
market, Hefei city issued new real estate policies in early
April 2021, which began to strictly manage the land market
and real estate market, strictly regulate the price of com-
mercial housing, and severely crack down on all kinds of real
estate market disorder.

Taking 353 second-hand residential houses in Hefei as
the research object, this paper analyzes the spatial distri-
bution di�erence of housing prices in di�erent regions by
means of mathematical statistics and spatial analysis (see
Figure 1) and explores the rule of housing price type
transformation under the in�uence of policies. It aims to
promote the benign development of Hefei housing market,
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solve the real estate market disorder and supply and demand
contradiction, and provide reference for Hefei municipal
government and planning departments to formulate re-
gional housing price regulation policies and public facilities
planning.

2. Literature Review

As immovable property, a house has not only the basic
property of living, but also high investment value. Different
lots of real estate, the future appreciation space has also
different size, because its high purchase cost limits the
consumer group’s choice range. )erefore, the change trend
of housing price is one of the hot issues with the highest
social attention. In recent years, many domestic scholars
have introduced spatial data to study its spatial correlation
and structure based on the use of traditional econometric
models. )e spatial distribution of urban residential prices
has been studied from a spatially macroscopic perspective,
and the patterns and causes of residential price changes in
space have been quantified and analyzed by constructing a
mathematical analysis model.

Kriging interpolation method can study the spatial
differentiation of housing prices and the spatial distribution
characteristics and evolution rules of housing prices, and
explore the evolution trend of the outward diffusion of
regional housing spatial development in recent years [4–7].
Compared with other interpolation methods, Kriging
method not only considers spatial correlation, but also re-
sults are more reliable when there are more data points [4].
Kriging is an accurate local interpolation technique, which
takes into account the spatial orientation of sample points

and the spatial position relationship with unknown sample
points [5].

Moran’s I index is often used as a tool to analyze the
spatial correlation and heterogeneity of housing prices, and
reflects the spatial agglomeration and dispersion charac-
teristics of housing through significance [8–13]. Global
spatial autocorrelation is an assessment of the degree of
spatial autocorrelation, which reflects the overall trend of
spatial correlation of observed variables in the whole re-
search area [8]. Moran’s I measures the relationship between
spatial elements, which is similar to the correlation coeffi-
cient in statistics. Its value ranges from −1 to 1. If it is greater
than zero, it indicates a positive correlation; if it is less than
zero, it indicates a negative correlation; if it is equal to zero, it
indicates no spatial correlation [9]. Moran’s I index is greatly
influenced by the spatial weight matrix, and the global space
can explore the change rule of the spatial correlation of
housing price under different spatial weights [10]. Signif-
icant Moran’s I value indicates that the price of new res-
idential buildings in urban areas has spatial agglomeration,
that is, plots with high prices gather together, and plots
with low prices gather together [11]. Luo and Wei analyzed
the land value of Milwaukee by geostatistical method, and
found that urban land price has significant spatial corre-
lation, and there are differences among different locations
and land use properties [12]. Liu et al. used the global
autocorrelation model to find that China’s real estate prices
present a positive spatial correlation on the whole. For each
region, the spatial spillover effect of real estate prices in the
eastern and central regions is significant, and the real estate
prices in the eastern region have a stronger spatial positive
correlation [13].
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theory, spatial planning theory
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Figure 1: Organizational flow chart.
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Space Markov chain method is the traditional method
of Markov chain and regional condition. Markov chain
method optimized combination, giving full consideration
to the space between the time series of regional interaction,
through spatial weight matrix that can solve the problem of
the spatial relations between areas, and with the aid of
lagging behind the concept of space, define each field of
spatial neighborhood. )us, the spatial effects of geo-
graphical environment on regional development are
quantitatively analyzed [14–17]. After analyzing the
change of housing price in Britain, Sean Holly found that
the change of housing price in London would lead to the
change of housing price in other areas, and such influence
had a certain lag [14]. Xue Liang used spatial Markov chain
model to quantitatively study the ecological security and
economic level of Guanzhong region and summarized its
spatial-temporal evolution characteristics [15, 18]. Zhou Li
used traditional Markov chain and spatial Markov chain
methods to construct nonspatial and spatial Markov
transfer probability matrices of rural economic develop-
ment level, respectively, and analyzed and predicted the
evolution characteristics of spatial-temporal pattern of
rural economic development level in the research period
[16]. Yan Tao et al. used spatial data statistical analysis
model and spatial Markov model to analyze regional
differences and spatiotemporal evolution characteristics
of Urban economic development in China from 2001 to
2016 [17].

3. Data Sources and Research Methods

3.1. Data Sources. Four districts, one city, and four counties
are under the jurisdiction of Hefei city. )is paper mainly
selects four municipal districts of Hefei (Yaohai district,
Luyang District, Shushan District and Baohe District) as the
research scope (As shown in Figure 2), and collects the price
data of 353 second-hand housing in Hefei from 2020 to 2021.
Among them, the sample panel data comes from Anjuke,
and the spatial vector data of the base map comes from the
national basic data of the National geographic Information
Resource Catalogue Service system, through the use of Baidu
map to pick up and edit coordinate information, combined
with ArcGIS, GeoDa, and Matlab software for data pro-
cessing and analysis.

3.2. Research Methods

3.2.1. Spatial Autocorrelation

(1) Global autocorrelation model. Global autocorrela-
tion is used to quantitatively describe the average
degree of association of all spatial units with
neighboring regions over the whole region, so as to
determine whether the phenomenon exists in spatial
agglomeration. In this paper, Global Moran’s I is
selected to reflect the overall distribution of com-
modity housing prices in each neighborhood, and its
calculation formula is as follows.

GlobalMoran’s I �
n 

n
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n
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where yiyj is the house price of the ith and jth cell,
respectively, y is the mean value of house prices of all
cells,Wij is the value of spatial weights between cell i
and cell j (the spatial weight matrix of distances is
constructed in this paper), and n is the total number
of cells studied.

(2) Local autocorrelation model. Local autocorrelation
can be used to reflect the degree of spatial correlation
between local study units in the study area and the
values of similar attributes in the surrounding area,
and the calculation formula is

LocalMoran’s I �
n yi − y(  

m
j�1 Wij yi − y( 


n
i�1 yi − y( 

2 , (2)

where yi is the house price of the ith, Wij is the spatial
weight value between cell i and cell j, n is the total
number of cells studied, andm is the number of cells
adjacent to cell i.

3.2.2. Kriging Interpolation Method. )e Kriging interpo-
lation method is a method for unbiased optimal estimation
of regionalized variables within a certain region based on the
theory of variance function and structural analysis [6, 7].)e
Kriging interpolation method considers the correlation
between cells, and the test results are more informative in the
case of multiple sample points. In this paper, the general
kriging interpolation method, which has a wide range of
applications, is used to interpolate housing prices, and its
formula is as follows:

Ζ
∧

x0(  � 
n

i�1
λiΖ xi( . (3)

Z
∧
(x0) denotes the predicted value of the unknown point,

Z(xi) denotes the value of the surrounding known points, λi
denotes the weight of the ith known point on the unknown
point, and n is the amount of sample data.

3.2.3. Markov Chain. Markov chain is a stochastic process in
which both time and state are in a discrete state. In the
process of analysis, continuous values are discretized and
divided into k types by numerical rank, and then the
probability distribution of each type and its interannual
variation are calculated to approximate the evolution of
things. )e expressions are as follows:

mij �
nij

ni

, (4)

where ni is the number of dwellings belonging to type i in the
study time period, and nij refers to the number of residential
buildings that changed from type i in t years to type j in
t+ 1 years during the study period.
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3.2.4. Spatial Markov Chain. Traditional Markov chain can
count the spatiotemporal evolution of second-hand housing
prices, unable to analyze the influence of the economic
development in the region of neighborhood region, and thus
on the basis of traditional Markov chain, it is introduced into
the spatial lag conditions to build the space of the Markov
chain, which is an effective analysis of the regional economic
development and its surrounding residential environment
for residential type change in the price. )e spatial lag
operator corresponding to the spatial lag operator is often
used in spatial autocorrelation analysis. )e spatial lag of a
local area is the weighted average value of the observation
values around the location; that is, the product (WX) of the
regional observation vector (X) and the spatial weight matrix
(W) is used to determine the neighborhood state of the
region. It provides a method basis for quantitative analysis of
regional spatial distribution pattern [17].

Lag � 
n

i�1
xiwij, (5)

where Lag is the spatial lag operator, xi is the attribute value
of the regional cell, andwij is the weight of the observation of
domain j for the spatial lag operator at location i. )e
traditional k× kMarkov matrix is decomposed into k× k× k
conditional transfer probability matrices conditional on the
spatial lag according to the economic state or type of the
adjacent region. mij (k) denotes a spatial transfer probability
conditional on the spatial lag type of the cell at moment t,
which is transferred from type i to type j. By comparing the
traditional Markov matrix with the spatial Markov transfer
matrix to explore the probability of upward or downward
transferring of a study unit, the transformation of different
used residential price types in different neighborhood

environments can be analyzed, and the degree of influence of
the neighborhood environment on the price transfer of used
residential units can be studied.

4. Empirical Analysis

4.1. Spatially Divergent Characteristics of Second-HandHouse
Prices in Hefei City

4.1.1. Global Autocorrelation. In this paper, the global
Moran’s I index of second-hand residential prices in Hefei
city from 2020 to 2021 are calculated based on the spatial
weight matrix of Euclidean distance (Table 1).It can be seen
from the table that all the global Moran’s I indices are
positive, and are between 0.6037 and 0.6896, with a confi-
dence of 99%. )e results show that the second-hand houses
in Hefei urban area have significant spatial correlation effect
and show agglomeration phenomenon in space. Among
them, under the influence of the new real estate policy,
Moran’s I index of second-hand housing price in Hefei
decreased from 0.6883 to 0.6791 in a short period after April.
It shows that the agglomeration effect is slightly weakened,
and the trend of housing price growth has been temporarily
controlled.

4.1.2. Local Autocorrelation. )e global Moran’s I index
shows that there are different levels of spatial clustering of
second-hand residential prices in Hefei city, which does not
show the spatial clustering characteristics of second-hand
residential prices in Hefei city. )erefore, this paper adopts
the LISA diagram of local autocorrelation to analyze the
spatial distribution and spatial clustering characteristics of

Huangqianwang plate

Swan Lake plate

Miles
0 1.5 3 6 9 12

Luyang old city

Luyang District

Shushan District

Yaohai old city

N

Yaohai District

Baohe new area

Baohe District

Figure 2: Distribution of Hefei city districts.
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residential prices in Hefei city. Figure 3 shows the spatial
agglomeration of housing prices in the four phases.

As shown in Figure 3, the “high-high” agglomeration is
mainly distributed in the area of Shushan District, such as
the governmental affairs district board, Huang Qianwang
board, Economic Development District board, and Binhu
New District board. )e “low-low” agglomeration is mainly
distributed in the northeastern area, such as Yaohai Old
Town board, Xinzhan District board, and partial Luyang
District board. )e residential houses in the “low-high”
agglomeration are mainly scattered around the “high-high”
agglomeration, and the number is gradually decreasing,
while the residential houses in the “high-low” agglomeration
are more spatially dispersed, and the number of “high-low”
clusters is spatially dispersed and remains low for a long
time.

Figure 3(a) shows: in October 2020, “high-high” con-
centrated in the government affairs area of Shushan District,
closely surrounding Swan Lake and municipal government
affairs center, such as )e Arch of Triumph, Ink Orchid
Pavilion, Swan Lake bank and Sansheng Yi Garden. “Low-
low” residential cluster is mainly distributed in Yaohai
district and Yaohai district and Luyang district junction;
“high-low” cluster houses are small in number and scattered
around “low-low” cluster houses, located at the intersection
of Luyang and Yaohai old city; “low-high” clustered houses
are mainly distributed around “high-high” clustered houses,
between government district and economic district, and the
rest are scattered in Huangqianwang plate.

Figure 3(b) shows the following: compared with October
2020, in January 2021, “high-high” clustered residences are
still mainly concentrated in the government affairs district
board and Binhu New District board in Shushan District,
among which Binhu New District expands 5 “high-high”
clustered objects; the number of “low-low” clustered resi-
dences increases, mainly in Baohe District, and the location
north of the junction of Luyang District and Yaohai District;
“high-low” clustered and “low-high” clustered residences do
not change significantly in spatial location, and increase or
decrease in quantity.

Figure 3(c) shows that, compared to January 2021, the
“high-high” agglomeration in April of that year expanded in

the governmental district section of Shushan District and the
Binhu New District section, and the degree of expansion was
not obvious; the distribution pattern of the “low-low” ag-
glomeration changed more, except for the local areas along
the Banqiao River in Yaohai District and Luyang District,
and the increase in the number in Baohe District was more
obvious, mainly in the location north of Taihu Road, such as
Chengjian Century Garden and the Youth District. )e
“high-low” agglomeration and the “low-high” agglomera-
tion do not have significant changes in the space and number
of residences.

Figure 3(d) shows, that compared with April 2021, the
location of “high-high” agglomeration in July of that year
has not changed significantly, but the number of “high-
high” agglomeration has increased slightly compared with
the previous one, mainly in Baohe District, such as
Edinburgh of World Jincheng, Windsor City of World
Jincheng and Oriental Residence in Baohe District; the
number of residences in “low-low” agglomeration has
decreased in Baohe District, but they are still concentrated
in Yaohai District and its surroundings; “high-low” ag-
glomeration is scattered around the residences in “low-
low” agglomeration and the number has decreased.)ere is
no significant change in the number of “low-high” clusters,
and only one place in Shushan District, Newspaper Park
(East), is influenced by the surrounding “high-high”
clusters to change from “low-high” clusters to “high-high”
clusters.

4.2. Overall Divergent Characteristics of Second-Hand House
Prices in Hefei City

4.2.1. Kriging Interpolation Method. )e Kriging interpo-
lation analysis method using the spatial distribution tool of
ArcGIS was used to locally interpolate the residential price
data to generate a continuous price surface, as shown in
Figure 4.

According to the results of Kriging interpolation anal-
ysis, the housing prices in hefei urban area decrease from
west to east and from south to north, which can be sum-
marized as the distribution of “two points and one side”.
Two “points” are Shushan district and Binhu New District,
which are two areas with high housing prices, while “one
side” is Luyang District and Yaohai District, which are
relatively low and evenly distributed. At the same time, the
areas with high housing prices gradually decrease from the
circle to the periphery and the grading is obvious.)ere is no
obvious leap-over phenomenon, and the housing prices
show a certain agglomeration phenomenon in the region.
Since the implementation of the New Deal, Yaohai district
and its surrounding old city in the long-term low value level,
only a few local areas of the price growth trend.)eremay be
several reasons for the long-term low value of Yaohai
District and its surroundings:

(1) Luyang District and Yaohai District, as the old urban
areas of Hefei, carry the history of urban develop-
ment, and their old planning and old buildings lead

Table 1: Global Moran index of second-hand residential prices in
Hefei city, 2020–2021.

Moran’s I Z score P value
Oct. 0.6037 25.6593 <0.001
Nov. 0.6079 25.8290 <0.001
Dec. 0.6305 26.7703 <0.001
Jan. 0.6430 27.2898 <0.001
Feb. 0.6450 27.3593 <0.001
Mar. 0.6848 29.0196 <0.001
Apr. 0.6883 29.1532 <0.001
May. 0.6825 28.8979 <0.001
Jun. 0.6791 28.7499 <0.001
Jul. 0.6850 28.9959 <0.001
Aug. 0.6896 29.1880 <0.001
Sept. 0.6890 29.1619 <0.001
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Figure 3: Local spatial distribution of second-hand residential prices in Hefei city, 2020–2021.
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Figure 4: Continued.
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to land scarcity to limit their real estate development
potential.

(2) For a long time, Luyang district and Yaohai District
have been the economic center and industrial center of
Hefei respectively. )e government and enterprises
have built low-income housing such as demolition
houses and public rental houses to solve the housing
problem of the working population. As a result, resi-
dents in the old city have nomore demand for housing.

(3) )e excessive development and use of the old city
makes the blocks appear to be “old and small, dirty
and messy,” but the poor living environment limits
the rise of housing prices. From the point of view of
spatial distribution, the local area of Baohe River
region changed from high to low, and then
remained stable. It shows that there is a certain
“inflated price” problem in the reduced regional
price, and the “inflated” regional price drops to the
“real” level. Shushan district and Binhu New Dis-
trict have obviously slowed down the trend of
outward diffusion, price growth has slowed down.
)is shows that housing prices in Shushan district
and Binhu New Area have gradually returned to a
state of stable growth after the impact of policy
adjustment.

4.3. Time Evolution Characteristics of Second-Hand House
Prices in Hefei City

4.3.1. Markov Shift Matrix. With the support of ArcGIS
software, the Markov shift probability matrix of the second-
hand residential property prices in Hefei city was obtained
by overlaying the data of previous years (as shown in
Table 2).

(1) As can be seen from Table 2, the larger values in the
matrix of residential price types in the two different

time periods are concentrated on the main diagonal,
which indicates that the residential prices in the
second-hand residential market in Hefei city have a
high stability in the process of development. From
the values on the diagonal, it can be seen that the
probability of residential prices maintaining their
original level type in the first six months is at least
88.9%, and the probability of residential price levels
maintaining their original state in the second six
months is at least 87.6%. Compared with the first six
months, the ability of residential prices to maintain
their original level in the later period affected by
policy regulation has slightly decreased, and policy
regulation has played a certain effect.

(2) Different types of residential prices are affected by
policy adjustments to different degrees. As can be
seen from Table 2, the probability of low level, low
and medium level, and high level types of residential
to maintain their original state has decreased by the
impact of policy regulation. Among them, the
probability of upward shift of low and lower level
increases, while the probability of upward shift of
medium and high level types of residential houses
decreases, and only the probability of maintaining
their original level is high. )is indicates that the
medium and high level types of housing are more
influenced by the policy, and the target of policy
regulation is more clear.

(3) Each stage still presents upward development trend.
Overall, the probability sum of the upper triangle
and the lower triangle in stage 1 is 0.205 and 0.065,
respectively, and the probability sum of the upper
triangle and the lower triangle in stage 2 is 0.205 and
0.064, respectively. )e probability sum of the upper
triangle of the two stages is larger than that of the
lower triangle, which shows that the probability of
upward transfer of the housing price type is larger
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Figure 4: Distribution of kriging space of second-hand residential prices in Hefei city in April and September 2021.
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than that of downward transfer, indicating that the
housing price presents an upward development
trend in general.

(4) Most residential prices maintain their original
state, and the lowest probability of maintaining
their original level is 87.6%, which is higher than
the probability of the price type shifting to other
types. )is indicates that there is a “club con-
vergence” of residential price types, and most
residential prices tend to converge to higher or
high-economic types.

4.3.2. Spatial Markov Transfer Matrix. )e traditional
Markov chain approach is based on the assumption that
regions are independent of each other, thus ignoring the
positive and negative influence of the neighborhood envi-
ronment in the dynamic evolution of the region. Residential
neighborhoods are relatively small regional units, but they
do not exist independently, and they are interconnected with
the surrounding areas. )erefore, based on the traditional
Markov transfer probability matrix, the spatial Markov
chain transfer probability matrix is constructed by intro-
ducing the condition of spatial lag through Matlab software
(see Table 3).

(1) Residential neighborhood background plays an
important role in the development of residential
economy. )e probability of economic type transfer
is different for a house in different neighborhood. If a
house is adjacent to a house with a low price level, it
will be negatively affected by the neighborhood,
resulting in a negative spatial spillover effect and
difficult to move up. When it is adjacent to the house
with a higher price level, the positive spillover effect
will be generated, which inhibits its downward
transfer and promotes its upward transfer. As a
result, the house price gradually tends to the same
level in space, which provides a spatial explanation
for the phenomenon of “club convergence.”

(2) Different neighborhood environments play different
roles in the process of residential price shift. For
example, the probability of upward shift is 0.041 and
downward shift is 0.020 when a higher type resi-
dential neighborhood is adjacent to a lower type
residential neighborhood in Stage 2, and 0.178 and
0.000 when it is adjacent to a high type residential
neighborhood. 13.7 percentage points, while its
probability of downward shift decreases by 20 per-
centage points. )is indicates that the probability of
upward shift increases when a residential

Table 2: Markov shift probability matrix of second-hand residential prices in Hefei city, 2020–2021

Local status
2020.10–2021.3 (stage 1) 2021.4–2021.9 (stage 2)

n Low Lower Higher High n Low Lower Higher High
t/t+ 1 1765 <25% 25%∼50% 50%∼75% >75% 1765 <25% 25%∼50% 50%∼75% >75%
Low 448 0.946 0.054 0.000 0.000 449 0.931 0.069 0.000 0.000
Lower 447 0.034 0.897 0.069 0.000 444 0.025 0.876 0.099 0.000
Higher 449 0.000 0.029 0.889 0.082 433 0.000 0.028 0.935 0.037
High 421 0.000 0.000 0.002 0.998 439 0.000 0.000 0.011 0.989

Table 3: Spatial Markov transition probability matrix of secondary residential prices in Hefei city in 2020–2021 (conditional on spatial lag).

Spatial lag Local status
2020.10–2021.3 (stage 1) 2021.4–2021.9 (stage 2)

n Low Lower Higher High n Low Lower Higher High
t/t+ 1 1765 <25% 25%∼50% 50%∼75% >75% 1765 <25% 25%∼50% 50%∼75% >75%

Low

Low 313 0.968 0.032 0.000 0.000 318 0.950 0.050 0.000 0.000
Lower 75 0.080 0.920 0.000 0.000 59 0.102 0.831 0.068 0.000
Higher 25 0.000 0.000 1.000 0.000 16 0.000 0.063 0.938 0.000
High 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000

Lower

Low 94 0.904 0.096 0.000 0.000 91 0.890 0.110 0.000 0.000
Lower 97 0.052 0.887 0.062 0.000 166 0.012 0.898 0.090 0.000
Higher 98 0.000 0.020 0.939 0.041 89 0.000 0.067 0.921 0.011
High 5 0.000 0.000 0.000 1.000 8 0.000 0.000 0.000 1.000

Higher

Low 37 0.865 0.135 0.000 0.000 40 0.875 0.125 0.000 0.000
Lower 230 0.017 0.909 0.074 0.000 194 0.015 0.856 0.129 0.000
Higher 249 0.000 0.040 0.896 0.064 253 0.000 0.016 0.941 0.043
High 89 0.000 0.000 0.011 0.989 103 0.000 0.0 0.019 0.981

High

Low 4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lower 45 0.000 0.822 0.178 0.000 25 0.000 1.000 0.000 0.000
Higher 77 0.000 0.013 0.766 0.221 75 0.000 0.013 0.933 0.053
High 327 0.000 0.000 0.000 1.000 328 0.000 0.000 0.009 0.991
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neighborhood is adjacent to more developed resi-
dential houses; on the contrary, the probability of
upward shift is suppressed when it is adjacent to less
developed residential houses.

(3) Policy adjustments play different roles for dif-
ferent types of residences. As a result of the policy,
the upward shift of low and low-middle level types
of residences is promoted, while the shift of
middle and high level types of residences is
suppressed. For example, the probability of up-
ward shift for low and medium level types of
dwellings in the same medium and high level
neighborhood environment is 0.074 for Stage 1
and 0.129 for Stage 2, representing a 5.5% increase
in the probability of upward shift. )e probability
of upward shift of stage 1 to 0.064 and upward
shift of stage 2 to 0.043 for the higher level type of
housing in the high level neighborhood envi-
ronment decreased by 2.1%.

5. Research Conclusion

)is paper analyzes the spatiotemporal evolution charac-
teristics of residential prices in Hefei city by using kriging
interpolation, spatial autocorrelation, and spatial Markov
chain, based on the study of 353 residential community price
seats in Hefei city from 2020 to 2021. )e following con-
clusions are drawn.

(1) From the perspective of spatial pattern, the resi-
dential houses in Hefei city show the situation of
“two points on one side,” the high level of residential
prices is mainly concentrated in the south and
southwest of Hefei city, while Yaohai district and its
surroundings have been at low level for a long time,
and the residential development is divided between
north and south. Hefei city residential prices have
obvious clustering phenomenon, HH clustering of
residential drive obvious role.

(2) From the perspective of time evolution, under the
influence of different neighborhood environments,
the neighborhood with higher price level will in-
crease the probability of upward transfer and inhibit
the possibility of downward transfer, and the spatial
convergence of clubs is presented overall. At the
same time, under the short-term influence of the
policy, the housing prices of low level and middle
and low level are promoted in the same neighbor-
hood environment, while the housing prices of high
level and middle and high level are negatively
affected.

(3) Generally speaking, the policy has a positive regu-
lation effect on the housing price of high level and
high level type and promotes the transfer of low level
and low level price type. Limited by the “old broken
small, dirty and messy” living environment and the
scarcity of development resources, the housing price
in the old city of Hefei has a slow growth, but

compared with Shushan District, Binhu New Area
and new station area, the housing price in the old city
is still in the overall low value level for a long time,
the growth power is insufficient. )e government
district and Binhu New Area, as new areas with
policy-oriented resource input, always make clear
the spatial layout of community living circle, grad-
ually improve the future-oriented growth public
service system, and provide public service guarantee
for all ages, with strong community public service
and green livable ability. As a result, housing prices
have remained high for a long time.
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Detecting product surface defects is an important issue in industrial scenarios. In the actual scene, the shooting angle and the
distance between the industrial camera and the shooting object often vary, which results in a large variation in the scale and angle.
In addition, high-speed cameras are prone to motion blur, which further deteriorates the defect detection results. In order to solve
the above problems, this study proposes a surface defect detection model for industrial products based on attention enhancement.
�e network takes advantage of the lower-level and higher-resolution feature map from the backbone to improve Path Ag-
gregation Network (PANet) in object detection. �is study makes full use of multihead self-attention (MHSA), an independent
attention block for enhancing the backbone network, which has made considerable progress for practical application in industry
and further improvement of the surface defect detection. Moreover, some tricks have been adopted that can improve the detection
performance, such as data augmentation, grayscale �lling, and channel conversion of input images. Experiments in this study on
internal datasets and four public datasets demonstrate that our model has achieved good performance in industrial scenarios. On
the internal dataset, the mAP@.5 result of our model is 98.52%. In the RSDDs dataset, the model in this study achieves 86.74%. In
the BSData dataset, the model reaches 82.00%. Meanwhile, it achieves 81.09% and 74.67% on the NRSD-MN and NEU-DET
datasets, respectively. �is study has demonstrated the e�ectiveness and certain generalization ability of the model from internal
datasets and public datasets.

1. Introduction

�e detection of industrial products has always received a
great deal of attention in computer vision. Most traditional
methods rely on manual parameter setting, which is not
conducive to higher detection accuracy and speed. Object
detection based on convolutional neural networks has sig-
ni�cantly progressed in recent years. Some well-known
benchmark datasets, including MS COCO [1] and PASCAL
VOC [2], have promoted the development of object detection
applications. However, most of the object detection tasks are
designed for images of natural scenes. �ere are three
problems caused by these models for object detection in
industrial scenes. First, with large variations of orientation
and position during the shooting process with the industrial
camera, the shape of the object signi�cantly changes. Second,

the images are captured at high speed, thus producing
blurred objects.�ird, images captured by industrial cameras
often contain cluttered background because the targeted area
is larger than the object area. For instance, a mirror image of
the object produced by the object’s background has inter-
fered with the detection of the object, as shown in Figure 1.
�e above detection in industrial scenes is a challenging task.
�is study presents a targeted detection network in industrial
settings. In this study, we come up with an attention-aug-
mented object detection network, which improves the sur-
face defect detection of existing industrial products. �e
network contains three key components, including the
backbone, neck, and head. Referring to the backbone, it is
composed of �ve convolutional groups and an independent
attention block. Additionally, more feature information can
be attained with the help of augmentation with independent
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attention blocks, which serves as an innovation for the
backbone. In the neck, the SPP [3] structure and the PANet
[4] structure are used to make the network more suitable for
the detection of industrial defects. An FDS Block adopted in
this study (fast downsampling block) is designed to quickly
downsample the high-resolution feature in the backbone to
concatenate well with the feature information in the neck.

&e contributions of this study are listed as follows:

(1) &is study aggregates image feature information of
lower level and high resolution in the backbone
network into PANet, making themodel collect richer
feature information and improve feature extraction
capabilities.

(2) &is study integrates the multihead self-attention
(MHSA) mechanism into the detection network’s
backbone, which can advance the feature extraction
ability and pay more attention to information.

(3) &is study provides a fast downsampling block (FDS
Block) for the high-resolution images of the back-
bone network that quickly reduces the resolution
and simultaneously increases the number of feature
map channels. Based on that, high-resolution images
in the backbone can be used to connect information
with the highest-level, lowest-resolution feature
maps in PANet as soon as possible.

(4) We validate the effectiveness of our module through
extensive ablation studies.

(5) We propose a surface defect detection method for
industrial products based on attention augmenta-
tion, which can perform well in industrial scenarios.

&e structure of this study is organized as follows. Re-
lated works and the proposedmethod are described in detail,
respectively, in Sections 2 and 3. Sections 4 and 5 tell the
experimental results and conclusions of the study.

2. Related Works

2.1. Convolutional Neural Network. Since AlexNet [5] won
the ImageNet competition in 2012, more and more con-
volutional neural networks have been proposed. &e VGG
[6] network won second place in the 2014 ILSVRC com-
petition. On the basis of AlexNet, it has been greatly im-
proved, that is to say, multiple smaller convolution kernels
can replace the receptive field of large convolution kernels.
ResNet [7] has shown that a network with residual blocks
can expand the network depth to 101 layers. ResNeXt [8]
proposed a separable convolution between the depths of the
common convolution kernels, which makes a balance be-
tween the two strategies by controlling the number of
groups. DenseNet [9] widened the network structure.
DarkNet53 [10] and CSPDarkNet53 [11] are also proposed
as popular methods.

2.2. Generic Object Detector. Modern detectors usually
consist of two stages, a backbone pretrained on ImageNet
and a head for predicting object classes and bounding boxes.
&e most representative two-stage object detector is the
R-CNN [12] family, including Fast R-CNN [13], Faster
R-CNN [14], and R-FCN [15]. &e most representative one-
stage object detectors are the YOLO family, involving
YOLOv1 [16], YOLOv2 [17], YOLOv3 [10], and YOLOv4
[11]. At the same time, SSD [18] and RetinaNet [19] are one-
stage object detectors. In recent years, anchor-free object
detectors have developed. Such detectors include CenterNet
[20], RepPoints [21], FCOS [22], and so on. Recently, object
detectors have often constructed some layers (necks) be-
tween the head and the backbone, and these layers usually
collect feature maps at different stages. &e neck can gen-
erally cover multiple bottom-up paths and multiple top-
down paths. Networks with this mechanism include the
feature pyramid network (FPN) [23] and Path Aggregation
Network (PANet).

2.3. Object Detection Effective Strategies. Data augmentation
expands the dataset and makes the model more robust
among datasets with different environments. Well-known
data augmentation methods include MixUp [24], CutMix
[25], and Mosaic [11]. MixUp randomly selects two samples
from the training image for random weighted summation,
which is in line with the labels of the samples. Unlike oc-
clusion, which typically uses a zero-pixel “black cloth” to
occlude an image, CutMix resorts to another image area to
cover the occlusion. Mosaic is an improved version of
CutMix, stitching the four images to greatly enrich the
background of the detected object. Other data augmentation
methods include DropBlock [26], class label smoothing [11],
Cross mini-Batch Normalization (CmBN) [11], CIoU loss
[27], DIoU loss [27], and mesh sensitivity elimination [11].
With multiple anchors, mesh sensitivity elimination will
obtain a single ground truth, cosine annealing schedule,
optimal hyperparameters, and random training shape. BOS
(Bag of Specials), such as Mish activation function [11],
Cross-Stage Partial Connection (CSP [28]), SPP, and PANet,

Figure 1: &e mold points at the bottom of the glass bottle.
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can significantly heighten the accuracy of object detection
with only a small increase in inference cost.

2.4. Attention Mechanism. In response to the defects of
Seq2Seq [29], Bahdanau [30] proposed an attention
mechanism to achieve a soft distinction and provide some
visual effects of attention. Luong et al. [31] have put forward
two improved versions of attention, such as global attention
and local attention. Ahmed et al. [32] came up with a novel
network structure transformer, which contains an attention
mechanism called self-attention. Liu et al. [33] presented the
gated multilingual attention (GMLATT) framework to solve
such problems as data sparseness and monolingual ambi-
guity, using multilingual information combined with the
attention mechanism to complete the task. Since the at-
tention mechanism extracted key features by the weighted
calculation of all local features and ignored the strong
correlation between local features, there was robust infor-
mation redundancy between features. In order to solve this
problem, researchers from Meitu Cloud Vision and the
Institute of Automation, Chinese Academy of Sciences, drew
on the idea of PCA (principal component analysis) and
proposed a self-attention model [34] that introduced the
interactive perception of local features and combined them
with the model embedded in a CNN network.&e algorithm
performs extremely well on behavior classification of mul-
tiple academic datasets and Meitu’s internal industrial video
dataset. Google released BoTNet [35], replacing the bot-
tleneck of the fourth block in ResNet with the MHSA
(multihead self-attention) module and forming a new
module named Bottleneck Transformer (BoT). &e final
network structure, including blocks like BoT, is called
BoTNet.

2.5. Industrial Defects. Zhang and Song [36] proposed a
segmentation network to improve NRSD segmentation,
which applied an attention mechanism to optimize the
extracted information and performed well for both artificial
and natural NRSDs. Niu and Song [37] proposed an un-
supervised stereo saliency detection method based on a
binocular line scanning system, which can simultaneously
obtain high-precision image and contour information. He
et al. [38] proposed a novel defect detection system based on
deep learning and focused on steel plate defect detection,
which uses a multilevel feature fusion network (MFN) to
focus on multilevel features. Wu et al. [39] developed a more
flexible deep learning method for industrial defect detection,
and the author proposed a unified framework for detecting
industrial products or flat surface defects. Xu et al. [40]
established a defect detection network (D4Net) to detect
deformed defects in a given image and its corresponding
reference image.

3. Method

3.1. Network Overview. &e proposed model includes three
parts: backbone, neck, and head. &e backbone covers
CSPDarknet53 and an attention-enhancing structure

(purple block in the backbone in Figure 2). &e neck part
applies the PANet as the main part. In addition, this study
decreases the resolution of the information on the 104×104
feature map (blue block in Figure 2 backbone) and fuses it
with the feature map in PANet to form the red block in
Figure 2 neck, which is input to the third detection head.
&is study adopts a series of strategies, i.e., data augmen-
tation, grayscale filling, and automatic conversion of images
to three-channel RGB, making the model more robust.

3.2. Structure. In Figure 3, this study gives the most detailed
explanation of the model, which is divided into two parts, A
and B. Part A explains the backbone of the model, and Part B
interprets the neck, SPP Block (spatial pyramid pooling
block), and the FDS Block (fast downsampling block) that
are connected with the neck by the trunk part.

3.2.1. Attention-Enhanced Backbone. &e backbone used in
this study is CSPDarkNet53, as shown in Figure 3, and it is
divided into five parts. Block1, Block2, Block3, Block4, and
Block5 (details are shown in Figure 4). To meet the actual
needs of industrial product defect detection and strengthen
the feature extraction ability of the model to focus on more
information, this study resorts to an attention enhancement
strategy for the backbone.

&is study uses MHSA to enhance CSPDarknet53.
Transformers based on the self-attentionmechanism are first
applied in the NLP domain. In order to make the CNN
backbone network with such characteristics, an effective
method is to replace the spatial convolution layer in CNN
with the MHSA proposed in transformer. As for our
method, instead of replacing the convolution of the last
residual layer with an MHSA layer like BoTNet, we choose
the MHSA structure as the entire attention block before
Block5 of the backbone network. In this study, the input
resolution and output resolution of the attention block, the
number of input channels, and the number of output
channels are not changed. &e attention block is shown in
Figure 5.

In addition, this study adopts some detection en-
hancement strategies for the backbone, including the use of
the Mish activation function and the Mosaic data en-
hancement method.

3.2.2. Neck. As shown in Figure 3, the high-resolution
feature map, SPP structure, and PANet structure in the
backbone include the neck, making the network more
suitable for detecting industrial product defects. &e neck
takes three feature maps of different output sizes from the
backbone as input. &e 13×13 size feature map passes into
the SPP structure after three convolutions. &en, the SPP
structure is formed by the max-pooling layer from three
different kernel sizes of 5, 9, and 13. In addition, the SPP
structure also includes one shortcut layer. After the SPP
structure, the data go to the PANet structure. &e 26× 26
and 52× 52 feature maps are directly fed into the PANet
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network after three convolutions. &e SPP structure is
shown in Figure 6.

&e PANet structure combines high-level, low-resolution
feature maps with low-level, high-resolution feature maps
bottom-up. &en, it connects the low-level, high-resolution
feature maps with high-level, low-resolution feature maps
from top to bottom. In this study, according to the experi-
ments, the 104×104 feature map has the function of de-
livering rich information to the highest and lowest resolution
layers. &erefore, the 104×104×128 feature map and the
13×13×1024 feature map in the PANet will be input to the
FDS Block, and then, the 13×13×1024 feature map will be
accordingly output. In doing so, we can not only collect rich
feature information involved in the backbone, but also the
output does not change the feature map size of PANet. &e
structure of the FDS Block structure is shown in Figure 7.

3.3. NMS of5is Study. In this study, DIOU-NMS is used to
obtain the most suitable detection box for each object,
thereby improving the discriminative ability of the model in
this study in the detection of surface defects of industrial
products. &e mathematical formula of DIOU-NMS is de-
fined as follows:

Si �
Si, IOU − R M, bi( <N,

0, IOU − R M, bi( ≥N,
 (1)

where bi is removed by considering both the IoU and the
distance between the center points of the two boxes, si is the

classification score, and N is the NMS threshold, where the
mathematical formula for R is defined as follows:

R �
ρ2 b, b

gt
 

c
2 , (2)

where ρ is the distance, b and bgt represent the two boxes,
and c is the diagonal length of the smallest box containing
the two boxes.

3.4. Loss Function. In this study, the expression of the loss
function is as follows:
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Overall, the first line of formulas is classification loss, the
second and third lines of formulas are box regression loss,
and the fourth and fifth lines of formulas are confidence loss.

v

training
image

data
processing

Mosaic

RGB

gray fill

backbone neck

head1

head

head2

head3

size:416×416 size:104×104 MHSA SPP concatenate
with 104×104

PANet

Figure 2: An overview of the detection process. Among them, the purple feature blocks in the backbone are attention enhancement
structures.
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Figure 3: In the model structure diagram of this study, the yellow background is the backbone, the blue background is the neck, and the
green background is the head.
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4. Experimental Results

4.1. Experiment Description

4.1.1. Dataset. Five datasets are exerted in this study, that is,
four public datasets (RSDDs [41], BSData [42], NRSD-MN
[36], and NEU-DET [38]) and one internal dataset for
comparison with existing methods. &e internal dataset is
the image of the mold point at the bottom of the glass bottle,
which is collected and saved from the actual production line
with a CCD camera. &e image resolution is fixed at

800× 780. In addition, each dataset is divided into training,
validation, and testing, with an amount ratio of 5 : 2 : 3. All
object detection images refer to different colors to represent
the corresponding types. RSDDs (Railway Surface Defects
Dataset) contains two types of datasets. &e first one is the
type I captured from the fast lane, covering 67 challenging
images.&e second is a class II captured from normal/heavy-
transport tracks, containing 128 challenging images. Each
image from both datasets includes at least one defect with
complex and noisy backgrounds. Referring to the experi-
ments in this study, object detection is performed on the
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Figure 4: Details of blocks 1 to 5.
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type I dataset with a resolution of 160×1000. &irty-two
images are selected in this study as the training set, 14 as the
validation set during training, and 21 as the test set. Figure 8
shows three examples of images and defects. &e image size
of BSData is 1130× 460. &is study chooses a subset of 394
defect images, of which 192 for training, 83 for training
validation, and 119 for testing. Furthermore, Figure 9 shows
some example pictures. &e internal dataset of this study
contains 481 training images, 207 validation images during
training, and 295 testing images. Example images are shown
in Figure 1. NEU-DET dataset is a defect classification data

set. &ere are six types of defects from hot-rolled steel plates,
including crazing, inclusion, patches, pitted surface, rolled-
in scales, and scratches. &e dataset has a total of 1800
images.&is study selects 1260 images as the training set and
540 as the test set. Example images are shown in Figure 10.
&e NRSD-MN dataset contains 4101 images, including
3936 man-made NRSD images and 165 natural NRSD
images. In this study, 4101 images are selected as our training
and test sets, compared with the state-of-the-art algorithm.
Among them, we take 2971 images as training set and 1130
images as test set. Example images are shown in Figure 11.

Rh Rw
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H×W×C

r
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Figure 5: Attention block, where q, k, v and r refer to query, key, value, and position encoding, and Rh and Rw refer to height and height
relative position encoding width.
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Figure 6: SPP structure.
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4.1.2. Implementation. &is study implements the model
described in this study on PyTorch 1.9.0. &e computing
performance of industrial computers is strong or weak. In
order to make the model have good detection ability on
computers with different performances, this study trains and
tests the model on GPUs with different performances.
Ablation experiments are performed on NVIDIA
RTXA6000 for the internal and RSDDs dataset, ablation
experiments on NEU-DET and NRSD-MN datasets are
performed on NVIDIA RTX 3080, and ablation experiments
for the BSData dataset are performed on NVIDIA Tesla k80.
In the model in this study, after training and testing images
entered into the network, the resolution is unified to
416× 416. &e batch size is 8 on NVIDIA RTXA6000, 8 on
NVIDIA RTX 3080, 4 on NVIDIA Tesla k80, and 2 on
NVIDIA RTX 3060. &is study has two parts during
training, which are divided into the freeze training part and
the unfreeze training part. Freeze training sees that the

backbone is frozen and sees the unchanged feature ex-
traction network. &e initial learning rate becomes 0.001
during freeze training and 0.0001 after freeze training, and
the learning rate decay is annealed cosine.

4.1.3. Performance Metrics for Object Detection. &emethod
proposed in this study provides defect localization and
defect type classification for defect objects.

&e IoU (intersection over union) measures the degree
of overlap between two regions, which is the ratio of the
overlapping area of the two regions to the total area (the
overlapping part is only calculated once). As for the object
detection task, the model output is considered to be correct
till the IoU value of the rectangular box output by the model
and the rectangular box manually marked is greater than a
certain threshold.

Precision and recall can be expressed as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(4)

As the name indicates, AP means the average precision.
Simply put, it is the average of the precision values on the PR
curve. For the PR curve, this study employs the integral to
calculate it.

AP � 
1

0
p(r)dr. (5)

&e mAP is a general model evaluation criterion in the
field of object detection. &e object detection in this study is
used for detecting multiple objects. &erefore, this study can
calculate the mAP.

&e mAP can be expressed as follows:

mAP �


N
n�1 

1
0 p(r)dr

N
. (6)
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Figure 7: Structure of FDS block.

Figure 8: Example image of the RSDDs dataset.
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4.2. Results. &is study uses the test set of the internal
dataset, the test set of the RSDDs dataset, the test set of the
BSData dataset, the test of the NEU-DETdataset, and the test
of the NRSD-MN dataset to evaluate our model and report
mAP (using the metric mAP@.5 of the PASCAL VOC
dataset).

In the end, this study achieves a good score of 98.52 on
the internal dataset, which is higher than the state-of-the-art
model yolov5x highest score of 98.45 on the internal dataset.
Moreover, a good score of 86.74 on the RSDDs test dataset is
performed, higher than the yolov5x highest score of 85.45 on
the RSDDs dataset. It also gets a good score of 82.00 on the
BSData test dataset, which is higher than the highest score of
yolov5x on the BSData dataset of 81.79. Subsequently, in the
NEU-DET dataset and the NRSD-MN dataset, our model
achieved 74.67 and 81.09, respectively. As listed in Table 1,
the scores of our model can compare their scores among
YOLOV3, YOLOV4, YOLOv5l, and YOLOv5x algorithms.
Figure 12 shows the comparison of mAP in the five datasets.

&e comparative experiments on the internal dataset in
this study are performed on NVIDIA RTX 3060 with batch
size set to 2. &is study conducts freeze training for 100
epochs followed by 100 epochs after unfreezing. &e com-
parative experiments in Table 1 demonstrate the detection
ability of the model in the internal dataset.

&e comparative experiments on the RSDDs dataset are
conducted on NVIDIA RTX 3060 with batch size set to 2.
&is study makes freeze training for 100 epochs and con-
tinues training for 100 epochs after unfreezing. &e com-
parative experiments in Table 1 show the detection ability of
the model in the RSDDs dataset.

&e comparative experiments on the BSData dataset are
made onNVIDIA RTX 3060 with batch size set to 2. In order
to verify the ability of the model and fit the data faster and
better, this study only carries out freeze training for 50
epochs. Only 50 epochs will be continuously trained after
unfreezing. &e comparative experiments in Table 1 dem-
onstrate the detection ability of the model in this study in the
BSData dataset.

&e comparative experiments on the NEU-DET dataset
and the NRSD-MN dataset are made on NVIDIA RTX 3080
with batch size 8. In order to verify the ability of the model
and fit the data faster and better, this study only carries out
freeze training for 200 epochs.&e comparative experiments
in Table 1 demonstrate the detection ability of the model in
this study in the NEU-DET dataset and the NRSD-MN
dataset.

Figure 10: Example image of the NEU-DET dataset.

Figure 11: Example image of the NRSD-MN dataset.

Figure 9: Example image of the BSData dataset.
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4.3. Ablation

4.3.1. On the Internal Dataset. &is study utilizes a test set of
internal datasets (including images of glass bottle bottom
mold points collected in actual industrial production) to
evaluate our model and report mAP (including the metric
mAP@.5 of the PASCAL VOC dataset). Table 2 recites the
scores of the models.

&e ablation experiments in Table 2 exhibit the detection
ability of each improved module of the proposed model in the
internal dataset. With attempts to advance the use of higher-
resolution images (832× 832), the fitting ability does not meet
expectations, followed by an increased amount of computation
by two times. Although this study tries to use 104×104 feature
information to add to P3 and pass the result to the detection
head, the effect is far from expectations. &erefore, this study
no longer makes an attempt on 832× 832 images in the
subsequent experiments nor does it add 104×104 feature
information to P3 in the PANnet structure.

Effects of Attention Blocks. &e addition of an attention
block increases the amount of computation, but mAP im-
proves very well. It can be seen from Table 2 that the
CSPDarkNet53+ attention block performs well in object

detection, with an increase of 1.45%. &e introduction of
attention block is worthwhile.

Effects of FDS Block. Using lower-layer, higher-res-
olution feature maps for fusion improves mAP and does
not have a large impact on computation and inference
speed. It also plays a certain role in detecting dense and
large objects. As shown in Table 2, by adding 104 ×104
feature information to the P5 layer on PANet, mAP in-
creases by 1%.

Aggregation Effect. &is study lists the mAP of all the
results of the ablation experiment. It is found that adding all
innovation points to the model at the same time benefits the
most, and mAP achieves the best results.

Table 1: Comparison with state-of-the-art methods in three different datasets.

Methods (Internal) mAP (RSDDs) mAP (BSData) mAP (NEU-DET) mAP (NRSD-MN) mAP
YOLOv3 91 76.60 77.63 54.7 63.09
YOLOv4 95.97 79.27 81.38 70.35 75.4
YOLOv5l 95.53 80.43 80.39 72.7 78.71
YOLOv5x 98.45 85.45 81.79 74.07 80.15
Our method 98.52 86.74 82.00 74.67 81.09
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Figure 12: Comparison of mAP in five datasets.

Table 2: Ablation studies on the internal dataset.

Number Methods mAP
A CSPDarkNet53 + SPP+PANet 95.97
B A+ 832× 832 resolution 95.33 (↓0.64)
C A+ 104×104 feature to P3 95.75(↓0.22)
D A+FDS block 96.97 (↑1.00)
E A+ attention block 97.42 (↑1.45)
F Our method (D+E) 98.52 (↑2.55)
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4.3.2. On the RSDDs Dataset. &is study uses the test set of
the RSDDs dataset to evaluate our model and report mAP
(using the metric mAP@.5 of the PASCAL VOC dataset).
Table 3 lists the scores of the models.

&e ablation experiments in Table 3 demonstrate the
detection ability of each improved module in the RSDDs
dataset.

Impact of Attention Block. It can be seen from Table 3
that the CSPDarkNet53+ attention block performs well in
object detection, with an increase of 1.33%.&e introduction
of attention block is worthwhile.

&e Effect of FDS Block. As shown in Table 3, by adding
104×104 feature information to the P5 layer in PANet, mAP
increases by 2.11%.

Aggregation Effect.&is study enumerates themAP of all
the results of the ablation experiment. It is found that adding
all innovation points to the model simultaneously benefits
the most, and mAP gets the best results. As shown in Table 3,
mAP increases by 7.47%.

4.3.3. On the BSData Dataset. &is study uses the test set of
the BSData dataset to evaluate our model and report mAP
(using the metric mAP@.5 of the PASCAL VOC dataset).
Table 4 lists the scores of the models.

&e ablation experiments in Table 4 demonstrate the
detection ability of each improved module of the model on
the BSData dataset.

Effects of Attention Blocks. As Table 4 shows, the
CSPDarkNet53+ attention block performs well in object
detection, with an increase of 0.21%. So it is well worth
making an introduction to the attention block.

Effects of FDS Block. As shown in Table 4, by adding
104×104 feature information to the P5 layer on PANet,
mAP increases by 0.41%.

Aggregation Effect. &is study shows the mAP of all the
results of the ablation experiment. We find that adding all
innovation points to the model at the same time behaves
well, and mAP achieves the best results. As shown in Table 4,
mAP has increased by 0.62%.

In order to test the fast fitting ability of the model, this
study only performs freeze training for 50 epochs. In ad-
dition, 50 epochs will be carried out after thawing, which
improves the detection effect. &is study believes that the
model will have better detection results in light of more
sufficient computing conditions.

4.3.4. On the NEU-DET Dataset. &is study uses the test set
of the NEU-DET dataset to evaluate our model and report
mAP (using the metric mAP@.5 of the PASCAL VOC
dataset). Table 5 lists the scores of the models.

&e ablation experiments in Table 5 demonstrate the
detection ability of each improved module of the model on
the NEU-DET dataset.

Effects of Attention Blocks. As Table 5 shows, the
CSPDarkNet53+ attention block performs well in object
detection, with an increase of 1.73%. So it is well worth
making an introduction to the attention block.

Effects of FDS Block. As shown in Table 5, by adding
104×104 feature information to the P5 layer on PANet,
mAP increases by 0.87%.

Aggregation Effect. &is study shows the mAP of all the
results of the ablation experiment. We find that adding all
innovation points to the model at the same time behaves
well, and mAP achieves the best results. As shown in Table 5,
mAP has increased by 4.32%.

4.3.5. On the NRSD-MN Dataset. &is study uses the test set
of the NRSD-MN dataset to evaluate our model and report
mAP (using the metric mAP@.5 of the PASCAL VOC
dataset). Table 6 lists the scores of the models.

&e ablation experiments in Table 6 demonstrate the
detection ability of each improved module of the model on
the NRSD-MN dataset.

Effects of Attention Blocks. As Table 6 shows, the
CSPDarkNet53+ attention block performs well in object
detection, with an increase of 2.51%. So it is well worth
making an introduction to the attention block.

Effects of FDS Block. As shown in Table 6, by adding
104×104 feature information to the P5 layer on PANet,
mAP increases by 1.05%.

Aggregation Effect. &is study shows the mAP of all the
results of the ablation experiment. We find that adding all

Table 3: Ablation studies on the RSDDs dataset.

Number Methods mAP
A CSPDarkNet53 + SPP+PANet 79.27
B A+ attention block 80.6 (↑1.33)
C A+FDS block 81.38 (↑2.11)
D Our method (B +C) 86.74 (↑7.47)

Table 4: Ablation experiments on the BSData dataset.

Number Methods mAP
A CSPDarkNet53 + SPP+PANet 81.38
B A+ attention block 81.59 (↑0.21)
C A+FDS block 81.79 (↑0.41)
D Our method (B +C) 82.00 (↑0.62)

Table 5: Ablation experiments on the NEU-DET dataset.

Number Methods mAP
A CSPDarkNet53 + SPP+PANet 70.35
B A+ attention block 72.08 (↑1.73)
C A+FDS block 71.22 (↑0.87)
D Our method (B +C) 74.67 (↑4.32)

Table 6: Ablation experiments on the NRSD-MN dataset.

Number Methods mAP
A CSPDarkNet53 + SPP+ PANet 75.4
B A+ attention block 77.91 (↑2.51)
C A+FDS block 76.45 (↑1.05)
D Our method (B +C) 81.09 (↑5.69)
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innovation points to the model at the same time behaves
well, and mAP achieves the best results. As shown in Table 6,
mAP has increased by 5.69%.

5. Conclusions

&is study proposes a surface defect object detector for
industrial products, which is especially good at detecting
product surface defects in industrial scenarios. Experiments
on an internal dataset and four public datasets (RSDDs,
BSData, NRSD-MN, and NEU-DET) have been carried out.
Experiments show that the model in this study has good
performance. &is study argues that with rich computing
resources, a longer training time can be used to allow the
model to get better detection results. On the basis of previous
research work, this study plans to further improve the object
detection network structure to achieve better industrial
detection performance in the future, including higher ac-
curacy, faster test speed, and better prediction stability. At
the same time, in the face of more difficult and deeper defect
detection, on the one hand, this study intends to use
camouflaged object detection to conduct experiments and
research. On the other hand, it is committed to helping
developers and researchers analyze and process scenes
captured in industrial machine vision.
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