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Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves
enterprises’ production efciency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless,
the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difculty. Tis
study simulated inventory records by using the dynamics inventory management system. Four deep neural network models
trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-
LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network
(DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction
accuracy with the least square error of 0.14%.Te results concluded that the complexity of the model was not directly related to the
prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics
prediction, this study contributed to the academia.Te research results provided useful advice for companies’ planned production
and inventory ofcers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories
in warehouses.

1. Introduction

Researchers have found chaos in physics, chemistry,
ecology, geography, and economics data [1], and the dis-
crete nonlinear management system has been widely
studied by many researchers [2–8]. Te concept of chaotic
strategic management dates back to 1983. In 1994,
Feichtinger [4] studied chaotic planning, queuing, and
scheduling in management operations. Murphy [5] used
chaos to study public relations’ problems and crises. After
reviewing the chaos management research, Joseph [6]
pointed out that chaos management requires a change in
rules and adaptability [1].

Temain purpose of inventory is to meet the demand, so
demand forecasting is the basic premise of inventory

management. Boardman and others used a clustering al-
gorithm to compare new and existing similar products and
predict sales volume of new products [9]. Van der Auweraer
et al. utilized auxiliary installed base data to predict the spare
parts demand [10]. Yu et al. proposed a support vector
machine (SVM) model to predict the newspaper demand of
diferent stores by including 32 features in the model [11].
Shimmura and Takenaka used the SVM method to forecast
the demand for convenience store inventory data by re-
ducing the feature dimension and data quantity [12].
Tanizaki et al. used POS, Bayesian linear regression, and
other methods to predict hotel passenger fow [13].

In the era of big data, the cost of acquiring, storing,
and processing a large amount of data is signifcantly
reduced. Decision makers can observe historical demand
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and acquire data such as weather, prices, holidays, pro-
motion information, and demographic information to
improve demand forecasting accuracy [14, 15]. In recent
years, the advantages of machine learning in processing
large datasets and high-dimensional feature data have
attracted the attention of scientists. Te rapid increase in
data changes the prediction algorithm from traditional
forecasting approaches to deep learning [16–31]. For
example, Kong et al. used the restricted Boltzmann ma-
chine (RBM) algorithm based on deep learning to predict
trafc fow. Te phase space reconstruction of the RBM
algorithm constructed the polymorphic long-term model
of chaotic time series [17]. Wei and Wang proposed an
anomaly detection method of hierarchical spatiotemporal
feature learning network based on deep learning [18].
Zhang et al. used the residual neural network framework
to model time proximity, period, and trend characteristics
of crowd fow [19]. Haq et al. [29] utilized the multilayer
bidirectional LSTM algorithm to identify the mitochon-
drial protein of the Plasmodium falciparum parasite.
Khan et al. [30] used deep learning algorithms to predict
residential and commercial energy consumption. Azar
and Vaidyanathan [1] used a new deep learning algorithm
to predict and analyze renewable energy power genera-
tion. However, as a typical nonlinear system, the complex
inventory management presented a chaotic and nonlinear
phenomenon with high complexity and small amplitude
change during the time series change. It is impossible to
make accurate predictions by using traditional machine
learning. Tus, fnding a suitable deep learning algorithm
for prediction is necessary. Having said that, however, the
above mentioned deep learning algorithm can also be used
in other chaotic systems [32–35].

Tis paper aims to:

(1) Analyze the nonlinear characteristics of inventory
management using the nonlinear dynamics theory;

(2) Verify the inventory data characteristics and forecast
the inventory by using LSTM, bi-LSTM, and DLSTM
algorithms.

Tis paper predicted inventory data under complex,
chaotic systems. Te prediction results concluded that the
bi-LSTM algorithm is better for chaotic nonlinear datasets
and provided a reference for other chaotic datasets. Te rest
of this paper is organized as follows: in Section 2, the chaotic
inventory management system, the inventory data, and the
data irregularity are nonlinear y 0-1 test. Section 3 in-
troduces prediction models: LSTM, bi-LSTM, CNN-LSTM,
and DLSTM. Section 4 verifes the abovementioned algo-
rithms by experiments, and the optimal model is obtained by
comparing three indexes. Finally, the results are summarised
in Section 5.

2. InventoryManagement Systems andDatasets

2.1. Inventory Management Model. Many enterprises face
inventory peoblems whih can be represented in form of
complicated chaotic systems of equations as follows [36]:

xi+1 � s + pzi+1,

yi+1 � qxi+1 + ryizi,

zi+1 � 1 − xi − yi + zi,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where s, p, q, and r are the system parameters, s represents
the initial sales base, p represents the inventory fund transfer
rate, q represents the product resource rate, and r represents
the inventory efciency. xi represents the resources for sales
in period i, yi represents the number of customers in period i,
and zi represents the inventory capital of the company in
period i. Normalizing the parameters of the inventory
management model [36], the results would be:
0<xi < 10<yi < 1 and 0< zi < 1/r. Where p � 0.43, q� 0.38,
s� 0.11, and r� 0.72.Te attractors of a system (1) are shown
in Figure 1.

2.2. 0-1 Test. Tis study implemented the 0-1 test to in-
vestigate whether the data is chaotic. He et al. used 0-1 test
algorithm to make correlation analysis on the time series
of fractional order system [8]. If φ(n) (n= 1, 2, 3, . . .)
represents a one-dimensional observable iterative data, then
the two real-valued functions would be [36]:

p(n) � 􏽘
n

i�1
φ(i) cos(θ(i)),

s(n) � 􏽘

n

i�1
φ(i) sin(θ(i)),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where θ(i) � iω + 􏽐
i
j�1φ(j), the trajectories are visualised in

Figure 2. If the bounded trajectory in the Figure 2 is a regular
cloud shape, then the unbounded trajectory follows Brow-
nianmotion and the data is chaotic.Tis method was used to
study the y and z sequence of the system (1). Its parameters
were the same as those in Figure 2. Te p-s relationship is
displayed in Figure 3. Te change of inventory safety
threshold due to the change in stocks of goods with time is
irregular, which cannot be accurately predicted by tradi-
tional algorithms [36].

3. Research Method

3.1. LSTM Model. LSTM network improves RNN. RNN
neurons are shown in Figure 3. Cell memory unit structure is
added to the hidden layer of RNN, which allows themodel to
learn the information for a long time and efectively over-
come the problem of gradient disappearance or explosion
[29]. LSTM introduces a memory cell structure in the hidden
layer, including three gate controllers: input, forgetting, and
output gates [37], allowing the network to forget historical
information and update the memory state with new in-
formation. Te structural diagram of LSTM neurons is
shown in Figure 4.

Te three gates adopt the sigmoid function, and all of
them are nonlinear summation units. At the same time, the
activation functions inside and outside the module are in-
cluded. Te multiplication operation is used to control the

2 Complexity



activation functions of the units. Te calculation consists of
the following steps:

We calculate the value ft of the forgotten gate as follows:

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (3)

We calculate the value of the input gate as follows:

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁,

􏽥ct � tan h WC · ht−1, xt􏼂 􏼃 + bC( 􏼁.
(4)

We calculate the current time memory unit state value Ct
as follows:

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct. (5)

We calculate the output gate and memory output ht of
the LSTM unit as follows:

ot � σ Wo ht−1, xt􏼂 􏼃 + b0( 􏼁,

ht � ot ∗ tan h Ct( 􏼁.
(6)

LSTM and RNN speculate backward data through for-
warding information. Forward and backward information is
used to predict the current time, strengthening the
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Figure 1: Attractors of system (1) with p � 0.43, q� 0.38, s� 0.11, and r� 0.72. (a) x-y phase. (b) y-z phase.
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connection between feature information and predicted value
and improving the model’s prediction accuracy. Te re-
search shows that the LSTM network has positive results in
multivariate classifcation and prediction.

3.2. Bi-LSTM. Te LSTM prediction model only predicts
through the law of unilateral data, and it cannot fully mine
the time feature information, so the prediction accuracy
needs further improvement. Targeting the LSTM model’s
defciency, a bidirectional-LSTM (bi-LSTM) prediction
model is proposed. Te structural diagram of Bi-LSTM
neurons is shown in Figure 5. Bi-LSTM [37] uses two
unrelated LSTM models to predict data from the front and
back. Te output of the hidden layers of the two models is
used as the input of the output layer, and fnally, the built-in
function of the output layer outputs the fnal predicted
value.

h
→

t � LSTM x, h
→

t−1􏼒 􏼓,

h
⟵

t � LSTM x, h
⟵

t−1􏼒 􏼓,

yt−1 � g W
h

→
y h
→

t

+ W
h
⟵

y h
⟵

t

+ by􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Bi-LSTM, based on the time window method, refers to
the prediction of the next time step by using the historical
value of the time window length of data.Te parameter value
of the time window step represents the historical data for
predicting the future value. For example, if the current value
xt and the previous values xt−1 and xt−2 are used to predict
the value of the next period x+1.

Regularization avoids overftting in prediction. L1 and
L2 regularization methods introduce a penalty for the
problem of too large parameters in the model.Temost used
regularization technique for deep learning is dropout, which
randomly inactivates some neurons. Each training session is
equivalent to a diferent weak classifer, thus improving the

model’s generalization ability and using the dropout method
to improve the model’s applicability.

According to Khan et al. [38], the hybrid network DB-
Net, is proposed by combining the extended convolutional
neural network (DCNN) with the bidirectional long-term
and short-term memory (bi-LSTM). Sagheer and Kotb [39]
put forward “CL-Net” based on a new hybrid structure T of
ConvLSTM and LSTM. All the above improve LSTM and bi-
LSTM deep learning models.

3.3. CNN-LSTM. A convolutional neural network (CNN)
comprises fve parts: input layer, convolution layer, pooling
layer, full connection layer, and output layer.

X= [x1, x2, . . ., xn] is the input data matrix, where n
represents the length of the time series and m represents the
number of data features. Te time-series data are convolved
to obtain the following equation:

oc � fc X⊗Wc + bc( 􏼁, (8)

where ⊗ is the convolution operation, convolution kernel
WC ∈ Rj∗m is the weight vector, j is the convolution kernel
size, and bc is the bias of this layer. fc(·) represents the
convolution layer activation function. oc is the convolution
kernel feature mapping result.

sigmoid tanhsigmoid sigmoid

tanh

forget
gate

iuput
gate

output
gate

Ct-1

ft

xt

it ôi oi

ht-1

ht

ct

Figure 4: General framework of LSTM.
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Figure 5: General framework of bi-LSTM.
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Pool operation selects the most critical features of the
convolution layer sequence to form the pooling layer.
Tere are two kinds of pooling operations: maximum
pooling and average pooling. Te commonly used pooling
method is maximum pooling, and the maximum global
pooling is used in the last pooling operation. Te ex-
pression is:

op(k) � max oc(2k − 1), oc(2k)( 􏼁,

op � max oc( 􏼁,

⎧⎨

⎩ (9)

where op (k) is the output result of the kth pool; op is the
output result of maximum global pooling.

A combination of timing features is realized through the
full connection layer:

od � fd op × Wd + bd􏼐 􏼑. (10)

Among them, Wd is the weight matrix of the full con-
nection layer, bd is the bias, and the activation function fd(·)

of the full connection layer includes ReLU, tanh, and
sigmoid.

Te output layer outputs the results of the full con-
nection layer:

y � fo od × Wo + bo( 􏼁, (11)

Wo is the weight matrix of the output layer, bo is the bias, and
the activation function fo is the softmax function.

CNN-LSTM is a combination of CNN and LSTM, which
is divided into four layers:

(1) Input layer: data input after normalization.
(2) CNN layer: this layer extracts the data features

through CNN, where the convolution layer and
pooling layer can extract the features that more
clearly refect the inventory changes and reduce
overftting. Te full connection layer can summarise
and output the abovementioned features.

(3) LSTM layer: the extracted features are converted into
the corresponding data format of LSTM, and time
series data mining is carried out through three gate
mechanisms in LSTM to obtain the internal change
rule and the prediction model.

(4) Output layer: the activation function of the output
layer is the Sigmoid function, and the LSTM pre-
diction result is the output.

3.4. DLSTM. In the Deep LSTM (DLSTM) architecture, as
shown in Figure 6 [40], the input at time t, xt is introduced to
the frst LSTM block along with the previous hidden state
St−1(1), and the superscript (1) refers to the frst LSTM. Te
hidden state at time t, s(1)

t is computed andmoves forward to
the next step and up to the second LSTM block. Te second
LSTM uses the hidden state s

(1)
t along with the previous

hidden state s
(2)
t−1 to compute s

(2)
t , which goes forward to the

next step and up to the third LSTM block and so on until the
last LSTM block is compiled in the stack.

Te beneft of such stacked architecture is that each layer
can process some part of the desired task and subsequently
pass it on to the next layer until the last accumulated layer
fnally provides the output. Another beneft is that such
architecture allows the hidden state at each level to operate
diferently. Te previous two benefts have a signifcant
impact in scenarios showing the use of data with long-term
dependency or in the case of handling multivariate time
series datasets.

Te prediction results of Bi-LSTM can be compared with
LSTM. Te model structure of LSTM itself is relatively
complex, and training is more time-consuming than CNN.
Te characteristics of RNN networks determine that they
cannot process data in parallel. Furthermore, although
LSTM can alleviate the long-term dependence of RNN to
some extent, it is difcult for longer sequence data.

4. Experimental Results

4.1. Data Sources. Te experimental data in this paper come
from dynamic equation (1). According to the defnition of
the state variable of dynamic system (1), the state variable Z
is the inventory data. Te frst 70000 datasets were used as
training datasets and the last 3000 test datasets, totalling
10000. In this paper, system (1) state Z was adopted, and
10000 samples were selected, as shown in Figure 7. Te
abovementioned analysis showed that the inventory data are
chaotic. To fully use the time series between the data, this
paper predicts and evaluates the inventory data and verifes
it with the actual data.

4.2.Evaluation IndexandModelParameters. Tis paper used
LSTM, bi-LSTM, GRU, CNN-LSTM, and other algorithmic
models for prediction. To evaluate the efectiveness of these
methods, mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) were used to
evaluate the model. Tese indicators are defned as follows
[19]:

MSE �
1
N

�����������

􏽘

N

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

RMSE �

�������������

1
N

􏽘

N

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

MAE �
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(12)

where 􏽢yi is the observed inventory quantity, yi is the forecast
quantity of the inventory, and N is the number of test
samples.

In this paper, LSTM, DLSTM, GRU, CNN-LSTM, and
bi-LSTM algorithms were adopted, and the main parameter
values in the algorithms are shown in Table 1.
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4.3. Results. Te inventory forecasting model adopted the
LSTM algorithm, and the comparison between the predicted
result and the actual value is shown in Figure 8. Te change
of the Loss function after 50 cycles is displayed in Figure 9.
Figure 8 shows the last 150 data of the test set, allowing the
readers to check the predicted and actual values. MSE was
0.005315, RMSE was 0.072905, and MAE was 0.060346. All
in all, the prediction errors were quite small.

Te comparison between the predicted result by using
the bi-LSTM algorithm and the actual value is shown in
Figure 10. Te change of the Loss function after 50 cycles is
shown in Figure 11. Figure 10 shows the last 150 data of the
test set for the convenience of readers to check the predicted

and actual values. MSE was 0.001475, RMSE was 0.038405,
MAE was 0.029732, and the forecasting errors were small.

Te inventory forecasting model adopted the
CNN-LSTM algorithm. Te comparison between the pre-
dicted result and the actual values is shown in Figure 12. Te
change of the Loss function after 50 cycles is shown in
Figure 12. Figure 12 shows the last 150 data of the test set for
the convenience of readers to check the predicted and actual
values. MSE is 0.027766, RMSE is 0.166631, MAE is
0.117720, and the forecasting errors are relatively small.

Te inventory forecasting model adopted Figure 13 the
DLSTM algorithm. Figure 14 shows that the last 150 data of
the test set were used for the convenience of readers to check
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Figure 7: Inventory quantity of system (1).
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Figure 6: General framework of DLSTM.
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Table 1: Parameters of four models.

LSTM DLSTM CNN-LSTM Bi-LSTM
Number of neurons 80 2 80 80
Dropout 0.3 0.3 0.3 0.3
Loss function mean_squared_error mean_squared_error mean_squared_error mean_squared_error
Optimizer Adam Adam Adam Adam
Training times 50 50 50 50
Batch_size 64 1 64 64
Training set 7000 7000 7000 7000
Test set 3000 3000 3000 3000
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Figure 8: Timing diagram of real and predicted value (LSTM).
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Figure 9: Training and validation loss (LSTM).
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the predicted and actual values.Te comparison between the
predicted result and the actual value is shown in Figure 14.
MSE was 0.462163, RMSE was 0.6798, and MAE was
0.570947.

By comparing the abovementioned evaluating indicator,
the results are shown in Table 2. Te results obtained by bi-
LSTM were the best with the slightest error, despite all other

algorithms being used due to relatively small errors. Because
the data fuctuation was not particularly large, DLSTM had
no apparent advantages in this scenario. At the same time,
we found no correlation between the complexity and per-
formance of the model. For example, the DLSM algorithm is
more responsible but is not the best for inventory safety
prediction.
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Figure 10: Te timing diagram of the actual and predicted values (bi-LSTM).
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Tere are often uncertain factors in the production
process, such as many sudden orders, temporary con-
sumption increases, the sudden advance of delivery, late
delivery, and so on. Trough the abovementioned four

algorithms, we can see that the bi-LSTM algorithm accu-
rately predicted the inventory capacity, and it is of sub-
stantial value for enterprises to make purchase and
demand plans.
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Figure 12: Timing diagram of actual and predicted value (CNN-LSTM).
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Figure 13: Training and validation loss (CNN-LSTM).
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5. Conclusion

Excessive inventory capacity causes inventory backlog, di-
rectly afecting the company’s production efciency. In this
paper, we focused on the prediction of inventory capacity. It
used an inventory management dynamics system to obtain
10000 inventory data and used four prediction algorithms in
artifcial intelligence: LSTM, BI-LSTM, CNN-LSTM, and
DLSTM to train and predict. Te prediction results showed
that bi-LSTM had the best prediction results.

Tis study contributed to the academic circle by comparing
diferent forms of neural network prediction of dynamics and
chaotic nonlinear inventorymanagement data. It also provided
theoretical support for other predictions. Te predicted results
ofered practical suggestions for enterprises’ planned pro-
duction and inventory ofcers when they decide on the optimal
inventory of goods and reduce the likelihood of accidents due
to excessive amounts of goods in warehouses. In future work,
other algorithms, such as CNN-BILSTM and CNN-DLSTM, as
well as AutoML as per Li et al. [41, 42], could be used to predict
inventory and compare with the four deep learningmethods in
this research.
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Kırıkkale, Turkey
2Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences,
Sakarya 54050, Turkey
3Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Turkey
4Department of Management Information Systems, Faculty of Political Sciences, Social Sciences University of Ankara,
Altındag 06050, Ankara, Turkey
5Department of Computer Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey

Correspondence should be addressed to Muhammed Ali Pala; pala@subu.edu.tr

Received 19 February 2022; Revised 23 June 2022; Accepted 11 July 2022; Published 29 August 2022

Academic Editor: Ning Cai

Copyright © 2022 Fahrettin Horasan et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Watermarking is one of the most common techniques used to protect data’s authenticity, integrity, and security. (e obfuscation
in the frequency domain used in the watermarking method makes the watermarking stronger than the obfuscation in the spatial
domain. It occupies an important place in watermarking works in imperceptibility, capacity, and robustness. Finding the optimal
location to hide the watermarking is one of the most challenging tasks in these methods and affects the method’s performance. In
this article, sample identification information is processed with the method of watermaking on the hiding environment created by
using a chaos-based random number generator on biomedical data to provide solutions to problems such as visual attack, identity
theft, and information confusion. In order to obtain biomedical data, a lensless digital in-line holographic microscopy (DIHM)
setup was designed, and holographic data of human blood and cancer cell lines, which are widely used in the laboratory en-
vironment, were obtained. (e standard USAF 1951 target was used to evaluate the resolution of our imaging setup. Various QR
codes were generated for medical sample identification, and the captured medical data were processed by watermarking it with
chaos-based random number generators. A new method using chaos-based discrete wavelet transform (DWT) and singular value
decomposition (SVD) has been developed and applied to high-resolution data to eliminate the problem of encrypted data being
directly targeted by third-party attacks. (e performance of the proposed new watermarking method has been demonstrated by
various robustness and invisibility tests. Experimental results showed that the proposed scheme reached an average PSNR value of
564588 dB and SSIM value of 0.9972 against several geometric and destructive attacks, which means that the proposed method
does not affect the image quality and also ensures the security of the watermarking information. (e results of the proposed
method have shown that it can be used efficiently in various fields.

1. Introduction

In recent years, significant developments in medical imaging
technologies have brought many new perspectives to hos-
pital and laboratory environments. (ese developments
have resulted in large databases of information such as

medical images, experimental procedure records, diagnostic
and treatment reports, and patient records. (e secure
management, indexing, and archiving of these digitized data
that emerged with these technologies become a significant
issue. Illegal access, copying, and unlawful data modification
cause serious security problems [1, 2]. A high degree of
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security procedures is required to store, record, and transmit
these data securely. In addition, other identifying data at-
tached to images may be lost, hacked, or archived incor-
rectly. Although various methods have been proposed in the
literature to solve these problems, the watermarking tech-
nique is one of the most popular methods [3–5].

Watermarking is defined as embedding the data in
another signal; it is embedding additional information di-
rectly into the data by gradually altering the original data or
some transformed version of these data. (e characteristics
of a watermarking algorithm vary depending on the ap-
plication for which it is designed. Undetectability, robust-
ness, and security are essential criteria for a successful
watermarking operation [6]. Undetectability defines the
confidentiality of the presence of the watermark in the data,
and the signal embedded in the data should not be noticed.
(e watermark embedded in the data must survive any
reasonable action applied to the carrier. Otherwise, it is
called fragile if it is not detected after the slightest change. In
addition, embedded data should be resistant to unauthorized
access and should not show any hint of the presence of the
watermark. With the digital watermarking process, data
corruption and access by unauthorized persons are highly
restricted, producing results that are highly resistant to
attacks [6–10]. In addition, a digital watermark is used to
check for privacy, integrity, and malpractice obligations and
tackle ethical and legal issues [11–13]. (e watermarking of
medical data brings with it various advantages.(anks to the
embedded data that contribute to savings in archiving large-
scale digitized data. Embedded data reduce the need for
additional bandwidth in transmission processes and in-
creases the transfer rate. (anks to the metadata hidden in
the image data; it increases the safety of patients’ records in
the hospital and the safety of experiments in laboratory
environments. (is situation primarily provides advantages
in archiving and proper classification and prevents unau-
thorized access to these data from outside [14, 15].

In recent years, many studies have been conducted on
watermarking medical data. Alshaikn et al. [16] tried to
determine the most suitable region to embed the water-
mark in the discrete cosine transform (DCT) based
watermarking approach. (ey use a modified pigeon al-
gorithm to determine the optimal burial path. Hsu et al.
[17] proposed a high-capacity QR decomposition (QRD)
based blind watermarking algorithm with artificial intel-
ligence technologies for color images. Applying the wa-
termark involves dividing the main image into
nonoverlapping blocks of 4×4 pixels and then applying the
QRD to each block. Ernawan et al. [18] proposed a self-
embedded watermark using a spiral block mapping for
tamper detection and restoration. (ey implemented a 3×3
block-based encoding, self-embedding watermark with two
authentication bits and seven recovery bits. Muigai et al.
[19] proposed an imperceptible and reversible medical
image watermarking (MIW) scheme based on image seg-
mentation, image estimation, and nonlinear difference
broadening for the integrity and authenticity of medical
images and detection of both intentional and unintentional
manipulations.

Huang and Wu [20] proposed a new visual information
hiding technique called optical watermarking for authen-
ticating original printed documents. An optical watermark is
a two-dimensional binary image. It can be of any shape and
can be printed anywhere in a document. An optical wa-
termark is created by overlaying many two-dimensional
binary images, each of which has different carrier structural
patterns that embed confidential information. (e hidden
information is embedded in each layer using phase mod-
ulation. Xie and Arce [21] developed a blind watermarking
technique with a digital image signature for authentication.
(e signature algorithm is first implemented in the discrete
wavelet transform (DWT) domain and then combined into
the SPIHT compression algorithm. (e capacity of the
watermarking method is determined by the upper limit of
the bit rate of information that can be hidden in the image
using the binary engraving and multibit engraving methods.
Arena et al. [22] proposed digital watermarks to validate
both video and images. In such embodiments, the water-
mark is embedded in a master image, so that subsequent
changes in the watermarked image can be detected with a
high probability. (e study presents the possibility of ap-
plying a real-time watermark on a video stream. Sidir-
opoulas et al. [23] proposed a new technique combining
localization and reversibility. Moreover, the watermark
dependency on the original image and the nonlinear wa-
termark placement procedure ensured that no malicious
attack would generate information leakage.

(akkar et al. proposed a blind image watermarking
scheme based on discrete wavelet transform (DWT) and
singular value decomposition (SVD). (is study applied
DWT to the medical image’s ROI (region of interest) to
obtain different frequency subbands of wavelet decompo-
sition [13]. Dhanalakshmi and (aiyalnayaki proposed a
binary watermarking method based on DWT-SVD and
chaos cryptography [6]. A different spatial domain-based
digital image watermarking method has been proposed by
Lin et al. [24]. Today, encryption and watermarkingmethods
have begun to work together to extend security to the
electronic patient report (EPR) medical data [4]. An ex-
cellent watermarking algorithm must be robust and reliable
against attacks [8]. Also, some studies have proposed the
wavelet-based watermarking method for medical images
[25–30].

In the SVD method, the diagonal elements of the sin-
gular value matrices are less subject to change against
possible attacks after watermarking [31]. In more detail, the
large-valued ones of the singular value matrix do not un-
dergo significant change. In addition, the imperceptibility of
the cover image is better as it allows for hiding less data
belonging to the watermark. (e most important advantage
of using the DWT-SVDmethod is reducing the SVD process
cost [32]. For this, the scaling feature of the DWT technique
was used. R-DWT is applied to realize the most appropriate
scaling. (us, a robust, transparent, and less costly scheme is
obtained [33]. (e disadvantage of the SVD method is the
false positive problem. (is is the case when another wa-
termark (actually another logo or image that is not water-
marked) could be extracted from the watermarked image.
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(is study used chaos-based random number generators to
counter the false positive problem. Watermarking is per-
formed on randomly selected pixels. (us, it is possible to
remove the watermark only by those who know these chaotic
keys.

(is study developed a new method using chaos-based
discrete wavelet transform (DWT) and singular value de-
composition (SVD) for watermarking with high imper-
ceptibility and robustness. In addition, a new application
area has been gained by applying the proposedmethod to the
data obtained from the DIHM system. In the following
sections of this article, the theoretical details of holography
and the design parameters of our microscopy setup are
explained in detail. (e standard USAF 1951 target was used
to evaluate the resolution of the imaging setup. Human
blood and cancer cell culture cells, which are widely in-
vestigated in clinical and laboratory applications, were used
as medical samples. A QR code was created for information
such as medical sample preparation procedures and patient
information. (e chaotic system is used for random number
generators. (e dynamic analysis results of the chaotic
system determined as suitable for the watermarking process
are shown. (e randomness performance of random
number generators has been demonstrated by NIST and
ENTstatistical tests. (e new method using discrete wavelet
transform (DWT) and singular value decomposition (SVD)
intended for watermarking is explained in detail. (e per-
formance of the proposed new watermarking method has
been demonstrated by various robustness and invisibility
tests.

2. Lensless Digital In-Line
Holographic Microscopy

Microscopy systems that allow imaging at the micro-nano
level have an undeniable effect on the development of to-
day’s scientific world. Micro-nano level sensors developed
based on semiconductor technology have expanded the
usage area of microscopy systems and caused this devel-
opment to progress. With these developments, DIHM has
begun to be used in many application areas, from physics to
medical imaging [34–37]. With its advantages such as wide
field of view, high spatial resolution, easy integration, and
low cost, DIHM has become a tool that performs essential
functions, especially in the laboratory and clinical stages of
medical imaging. DIHM is used in laboratory conditions to
imaging microorganisms such as cancer cells, bacteria, yeast
cells, or sperm cells, perform viability analyses, track the cells
in 2D, and determine sample 3D localizations [38–42]. It is
used in the clinic for human-level counting and classifying
blood cells, morphological examination of medical samples,
and disease diagnosis [43–45]. Considering all these areas of
use, the commercial studies of DIHM systems are currently
used for clinical and laboratory experiments. With DIHM,
where algorithm integration is easy, various analyses can be
obtained with high accuracy rates with traditional image
processing methods, segmentation methods, or deep neural
network methods [46, 47]. (is situation constitutes an
excellent alternative to the methods accepted as a gold

standard, and it seems likely to reachmore areas of use in the
future. In this section, the basic principles of holography are
mentioned, and the design parameters of our imaging
system are detailed.

2.1. Hologram 6eory. DIHM is based on Gabor’s holo-
graphic principle [48]. (e interaction of the light source and
the rays emanating from this light source with the sample and
the diffraction patterns resulting from this interaction are
recorded by charge-matched semiconductors (CCD) or
complementary metal oxide semiconductors (CMOS). (e
interaction of the beams emitted from the light source with
the sample and the diffraction patterns resulting from this
interaction are recorded via charge-coupled devices (CCD) or
complementary metal oxide semiconductors (CMOS) [49].
Coherent sources are used as light sources, and spatially
filtered light-emitting diodes (LED) are used in many ap-
plications in the literature [38, 50]. DIHM, in which no optical
lens is used, uses Fourier optics’ principles numerically in its
image creation processes. According to the in-line principle,
the hologram (H(x, y)) can be expressed as

H(x, y) � |I(x, y)|
2

� |R(x, y)|
2

+|O(x, y)|
2

+ R
∗
(x, y)O(x, y) + O

∗
(x, y)R(x, y),

(1)

where |I(x, y)|2 is the diffraction image, R(x, y) is the
reference wave, O(x, y) is the diffraction of the object,
R(x, y)2 the intensity of the reference wave (constant term),
and O(x, y)2 is the zero-order diffraction of the object and is
very small compared to other terms, so that it can be
neglected. R∗(x, y)O(x, y) is the real image and
O∗(x, y)R(x, y) is the twin image.(e hologram needs to be
normalized [51]. For this, the constant DC (|R(x, y)|2 �

|R(x, y)|2 + |O(x, y)|2) term in (1) can be extracted from the
hologram intensity data by recording between the sensor
and the object plane without an object. It can be normalized
with the average intensity value of the background of the
hologram data. Normalization or background removal
eliminates the inhomogeneous light distribution or un-
wanted noise in the hologram. In addition, the obtained
hologram data can be obtained regardless of the reference
wave or the imaging sensor’s sensitivity [52]. (erefore, the
hologram’s real image and twin image terms must remain in
the equation to obtain the object information. (us, the
result of background normalization is

􏽥H(x, y) �
|I(x, y)|

2

|R(x, y)|
2

� 1 +
R
∗
(x, y)O(x, y) + O

∗
(x, y)R(x, y)

|R(x, y)|
2 .

(2)

2.2. Microscopy Setup and Imaging Evaluation. Our DIHM
setup consists of a light source, pinhole, imaging sensor, and
electronic components. All mechanical parts were 3D
printed, and electronic components were controlled with a
microcomputer. Due to the diffraction phenomenon, short-
wavelength illumination sources can achieve higher spatial

Complexity 3



resolution [53]. For this reason, a Power LED source of
430 nm wavelength has been used as the light source. (e
power LED source was driven with a 250mA constant
current source. (e microcomputer provides the PWM
signal to coordinate the light source with the imaging sensor
during hologram acquisition. With the PWM control, the
heating of the light source is prevented, and therefore the
temperature-dependent change of the wavelength is pre-
vented. A 150 µm diameter laser cut pinhole was placed in
front of the LED source to provide spatial filtering and make
the light source partially coherent. Sony IMX 219PQ was
used as the imaging sensor. (e CMOS sensor has a max-
imum resolution of 3280× 2464 and a pixel pitch is 1.12 µm.
(e imaging sensor has an approximately 10mm2 active
sensor area, which is equal to the field of view of the DIHM.
All data obtained during the study were collected and
processed at this resolution. (e medical samples and the
calibration slide were placed directly on the imaging sensor.
(e imaging sensor was connected to the microcomputer
with the help of a flex cable, and parameters such as exposure
time, gain, and white balance were adjusted. Considering the
magnification factor in the produced imaging system, the
distance between the sensor and the object (z2) was chosen
as less than 1 cm, and the distance between the imaging
sensor and the light source (z1) was chosen as 6 cm. Figure 1
shows a schematic representation of the DIHM system.

After the light source interacts with the object plane, the
interference of the object’s diffraction waves and reference
waves on the imaging sensor generate the hologram. (e
hologram and background images collected with the help of
the microcomputer were recorded as color images and then
transferred to the PC to perform the image processing steps.
Since the imaging sensor has a Bayer filter, only the green
channel is used to obtain maximum light information.
Background data were extracted from the hologram, and
images were converted to [0, 255] scale. (e normalized
hologram data is backpropagated in the z optical axis be-
tween the sensor and object planes via the angular spectrum
method [47, 54]. (e angular spectrum method uses no
approximations and is appropriate for small z2 distances
[55]. Fast Fourier transform (FFT) first transferred the
hologram to the spatial frequency domain. (en, the ho-
logram in the frequency domain is multiplied by the created
transfer function. Finally, the images that have been mul-
tiplied in the frequency domain are converted to the spatial
domain by inverse fast Fourier transform (IFFT). (e an-
gular spectrum method used in creating the transfer func-
tion can be mathematically expressed as follows:

I(x, y; z) � I
− 1

I I(x, y; 0)􏼈 􏼉exp i
2πz

λ

����������������

1 − λfx( 􏼁
2

− λfy􏼐 􏼑
2

􏽲

􏼨 􏼩􏼨 􏼩,

(3)
where I represents the FFT and I− 1 represents the IFFT. x

and y are the spatial coordinates in the image plane, z is the
propagation distance, fx and fy represent th spectral co-
ordinates in the Fourier space, and λ is the wavelength.
I(x, y; 0) is the expression of the hologram’s light-intensity
field on the imaging sensor and I(x, y; z) the reconstructed
image in the optic axis direction.

When creating the transfer function, the distance be-
tween the required image sensor and the sample may not be
known in some cases. In order to solve this problem, it must
be solved numerically by multiplying the transfer function
formed from a small reconstruction distance with the ho-
logram. In the study, 50 transfer functions were created with
a 10 µm step size, multiplied with a hologram, and the
sample images were obtained. Tenenbaum gradient, Brenner
gradient, and Tamura gradient of all images were calculated
to find the optimum distance through the images [56, 57].
(e local maximum values of the calculated functions are
taken as the best image. In order to improve the hologram
images, methods such as phase retrieval and twin image
elimination can be applied to images [58, 59]. However, in
this study, these routines were not applied within the scope
of the study, and the basic system microscopy scheme was
considered.

(e standard USAF 1951 resolution target was used to
evaluate the resolution capability of our microscopy setup.
USAF 1951 target has a maximum of seven groups and six
elements. (e raw hologram obtained by USAF 1951 is
shown in Figure 2(a), the region of interest (ROI) is shown in
Figure 2(a), the image resulting from the reconstruction of
the ROI is shown in Figure 2(c), and the group is shown in
Figure 2(d), the normalized pixel intensity value of group 7
and elements 6 is given. (e figures show that the micro-
scope designed for imaging resolves 228.1 (lp/mm).

2.3. Sample Preparation and Data Collection. As for medical
data, the most analyzed medical samples in clinics and
laboratories were preferred. Human blood cells were imaged
as the first medical sample. (e sample blood samples used
in this study were approved by the Sakarya University Ethics
Committee’s decision number 050.01.04/291. (e partici-
pant was healthy laboratory personnel, verbal and written
information was given about the study, and the samples were
used with permission. Blood samples were prepared in 5 µL,
and the samples were placed on a glass slide. MCF-7 breast
cancer cell culture was used as a secondary medical sample,
and MCF-7 cell culture is one of the most frequently used
cell cultures in laboratory research. (e MCF-7 cell line was
supported and grew with 10% fetal bovine serum and 1%
penicillin and incubated at 37°C with 5% CO2. Trypan blue
was added to the cells in a ratio of 1 :1. It was taken in the
same volume as the blood sample and imaged in DIHM. In
Figure 3, images of the obtained medical samples and re-
gions of interest are given.

3. The Used Chaotic System, Its Dynamic
Analysis, and RNG Design

Edward Lorenz introduced the concept of chaos and the
attractor, which is very sensitive to initial conditions, in 1963
[60]. In recent years, developments related to chaotic sys-
tems have attracted the attention of researchers [61, 62]. (e
science of chaos, briefly defined as the order in disorder, is
encountered in many applications such as electronics,

4 Complexity



computers, control, �nance, and health because it is
mathematically simple and can be used in practice [63–67].

�is section discusses the fundamental dynamic analysis
of the chaotic system without equilibrium points used for

watermarking. �e chaos-based random generator will form
the basis of watermarking work and its statistical tests. �e
equations for the chaotic system without equilibrium points
used for the chaos-based random number generator are
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Figure 2: Resolution evaluation of the imaging system: (a) raw hologram data obtained in size 3280× 2464; (b) the raw hologram of the
target region of interest; (c) reconstructed hologram; (d) normalized intensity pro�le of group 7 element 6.
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Figure 1: Schematic representation of the DIHM system, z2 distance less than 1 cm and z1 distance 6 cm.
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Figure 3: Medical samples were obtained with DIHM. (a) Image of human blood cells and selected ROI. (b) MCF-7 cell line and selected
ROI.
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_x � ay − x + zy,
_y � −bxz − cx + yz + d,

_z � e − fxy − x2.

(4)

�e random numbers required for the watermarking
application are generated from chaotic systems. 3D con-
tinuous-time chaotic system has six parameters. �e values
of these parameters are
a � 2.8, b � 0.2, c � 1.4, d � 1, e � 10, and f � 2. In addi-
tion, the initial conditions of the chaotic system are
x(0) � 0, y(0) � 0, z(0) � 0. In other cases, the system may
emerge from chaos. In (5), the set of equations can be seen
with parameter values entered. �e watermarking applica-
tion generated random numbers according to the parameter
values and initial conditions selected in the article study. In
order to show that the system is chaotic, some analyzes are
given in the article and it is shown that the system is chaotic.
With the system that proved to be chaotic, random number
generation was made as given in algorithm 1, and the
watermarking application was carried out as a result of
successful test processes.

_x � 2.8y − x + zy,
_y � −0.2xz − 1.4x + yz + 1,

_z � 10 − 2xy − x2.

(5)

3.1.DynamicAnalysis. �e time series analysis, sensitivity to
initial conditions, and phase portraits of the chaotic system
used in the article are shown in Figures 4–6. �e sensitivity
analysis of the initial conditions shows that the system
exhibits di�erent behavior with a minimal change. For this
reason, the chosen chaotic system is suitable for essential
studies such as encryption, data hiding, and watermarking.

3.2. Random Number Generation. Random numbers are
generally divided into pseudo (PRNG) and true (TRNG). If
we obtain di�erent random numbers every time we start a
system, this system is called TRNG. Because of the pro-
duction of di�erent random numbers each time, the use of
TRNG is, in some cases, not suitable for studies such as

encryption. For this reason, PRNG s can be preferred to get
the same numbers when the system is started from the
beginning. In this article, pseudorandom numbers were
preferred because the same random numbers were needed
when the system was rerun for the watermarking applica-
tion. �e pseudocode for how random numbers are gen-
erated is given in Algorithm 1.

If Algorithm 1 is explained, a chaotic system without an
equilibrium point selected for the PRNG design is dis-
cretized by the RK4 numerical analysis algorithm since it is a
continuous-time system. After the discretization process, the
obtained point-based numbers were converted to a binary
number system. After the conversion process, a 32 bit binary
number system is produced for each point-based number.
�is study created random number sequences by selecting
low-signi�cant 16 bit number series from the 32nd bit to the
17th bit of each generated number.

3.3. Statistical Tests. NIST-800-22 statistical tests with the
highest standards at the international level were used to
measure the randomness performance of the numbers
produced. Although the NIST-800-22 tests consist of 16
di�erent tests, a series of numbers consisting of a minimum
of 1 Mbit “0” and “1” is required. If one or more NIST-800-
22 tests fail, the bit series must be rebuilt and the test re-
peated. All tests must be successful for the produced series of
bits to be successful. �e NIST-800-22 Test results are
interpreted according to P values. �e result must be greater
than the de�ned P-value for the test to be considered suc-
cessful. �e random bit series created successfully passed
this study’s NIST-800-22 statistical tests. �e chosen chaotic
system is three-dimensional. �erefore, three di�erent
outputs can be obtained: x, y, and z. However, in this study,
the tests were performed only with random numbers ob-
tained from the output “x” and the results are given in
Table 1.

According to Table 1, all P values are greater than 0.001.
�erefore, the generated random bit series has successfully
passed all NIST-800-22 statistical tests. Generated random
numbers can be safely used in encryption, data hiding, and
watermarking applications due to the test’s success.

Another reliable statistical test, the ENT test, is a test
application developed by John Walker that applies various
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tests to byte sequences produced by pseudorandom number
generator applications [25].�ere are �ve di�erent statistical
tests found in the ENT test that de�ne the randomness of bit
sequences. ENT test results mean values of random numbers
obtained from output x are given in Table 2. According to
Table 2, it was concluded that the random numbers gen-
erated from the last 16 bit values of the x output, which
passed all tests, provided randomness.

4. DWT-SVD Based Watermarking Application

�is section describes watermarking the cover image and
removing the watermark from the watermarked image. First,
a 256× 256 dimensional matrix (selected blocks) is obtained
from the high-resolution medical images of blood and
cancer cells through chaos-based random numbers. In other

words, it forms the B ∈ RM×M matrix, we call selected blocks,
which consists of randomly selected pixels that we obtained
from the large-size image we call cover image (C). R-level
wavelet transform algorithm is applied to this obtained
image. �e watermarking process uses singular value de-
composition (SVD) for the M×M size image to be water-
marked and theN×N size watermark. In the continuation of
this section, details of the discrete wavelet transform, sin-
gular value decomposition, and watermarking algorithm are
given.

4.1. Generating Selected Blocks Matrix from Cover/Water-
marked Cover Image. �is study hides the watermark in the
B matrix created from the pixels selected with CBRNG from
the original image. �en, this matrix with a watermark is
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placed on the cover image, pixel by pixel, to its previous
positions with CBRNG. In this way, it is aimed to discover
watermarking difficult.

According to Figure 7, random numbers were gener-
ated (CBRNG) with the proposed chaotic system according
to the size (256 × 256) of the B matrix to be obtained. (en,
the N-dimensional RNG array was obtained. In Figure 7,
the B matrix is created by selecting the green pixel values of
the CBRNG array of the cover image. With the watermark
hidden in the B matrix with the proposed method, the
256× 256 matrix B with the watermark shown in red in
Figure 7 is obtained. As a result of the watermarking, the
watermarked matrix is repositioned to the CBRNG array
pixels marked in red. Since the watermarking process is
performed on random numbers indicated by the CBRNG
series, the chaotic system that makes up the CBRNG
number system must be known to obtain the secret
watermark.

(e algorithm’s pseudocode for generating the B matrix
in the proposed chaos-based RNG watermarking method is
given in Algorithm 2.

According to Algorithm 2, the width (Width1) and
height (Height1) values of matrix B are taken as input. (en,
the cover image (img1) to be processed is selected, and the
width (Width) and height (Height) values are read. By
selecting the RNG file, the CBRNG sequence is divided into
two: CBRNG X and Y. (e values in the CBRNG array are
checked and parsed as repetitive values.(is is to avoid using
the same location twice, thanks to unique values. (e ele-
ments of the CBRNG X array are normalized with the width
value and the elements of the CBRNG Y array with the
height value, so the array number values are adjusted
according to the width and height limit of the original image.
An empty array is created according to the desired Width1
and Height1 values for the B matrix to be obtained. Two
nested loops are created. It starts from the first row and first
column of matrix B. All the image pixels are processed until
the outer loop to the value of Height1 in the first iteration
and the value of Width1 in the first iteration of the inner
loop. In Algorithm 2, the outer loop variable i shows the
rows in the cover image; if the inner loop variable j shows the
column row, CBRNG Y shows the rows, and CBRNG X
shows the random number generator values for the columns.
In each step of the loop, the pixel of the cover image is taken
at the position determined by the CBRNG sequence and
placed in the next pixel of the B matrix. (is process
continues until all pixels of matrix B have been generated.

4.2. Obtaining Cover/Watermarked Cover Image from Se-
lected Blocks Matrix. In the proposed chaos-based CBRNG
watermarking method, the flow diagram of the algorithm for
placing the watermarked matrix B back to its previous
positions in the cover image is given in Algorithm 3. By
selecting the watermarkedmatrix B to be obtained according
to Algorithm 3, the width (Width1) and height (Height1)

Input: System Parameters (a� 2.8, b� 0.2, c� 1.4, d� 1, e� 10, f� 2), Initial condition (x(0)� 0, y(0)� 0, z(0)� 0)
Output: Chaos-Based Random Numbers (CBRNG)

(1) Start
(2) Determination of the appropriate value of Δh (0.05)
(3) while minimum 1Mbit data do

Solving the chaotic system using the RK-4 algorithm
Obtaining time series
Convert float to binary
Select “s� 16” bit LSB

end while
(4) Apply randomness tests
(5) if test results� � pass then

Ready-tested random numbers for engineering application
else
Test results� � false
return Start

end if
(6) Exit.

ALGORITHM 1: Chaos-Based Random Number Generator (CBRNG).

Table 1: RNG NIST-800-22 tests with a 3D chaotic system without
equilibrium points.

Statistical tests P value (x) Result
Frequency (monobit) test 0.6326 Successful
Block-frequency test 0.4965 Successful
Cumulative-sums test 0.6356 Successful
Runs test 0.0684 Successful
Longest-run test 0.8196 Successful
Binary matrix rank test 0.1178 Successful
Discrete Fourier transform test 0.7342 Successful
Nonoverlapping templates test 0.0053 Successful
Overlapping templates test 0.2708 Successful
Maurer’s universal statistical test 0.2039 Successful
Approximate entropy test 0.6650 Successful
Random excursions test 0.4787 Successful
Random excursions variant test 0.6745 Successful
Serial test 1 0.5894 Successful
Serial test 2 0.6463 Successful
Linear complexity test 0.3089 Successful
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values are read. �en, by selecting the cover image (img1) to
be processed, the width (Width) and height (Height) values
are obtained. By selecting the CBRNG �le, the CBRNG
sequence is divided into two CBRNG X, and Y. Duplicate
values are parsed by checking the values in the CBRNG
array. �is avoids using the same location twice, thanks to
unique values. �e elements of the CBRNG X array are
normalized with the width value, and the elements of the
CBRNG Y array with the height value so that the array
number values are set according to the width and height
limit of the original image. Two nested loops are created. It
starts from the �rst row and �rst column of matrix B. All the
image pixels are processed until the outer loop to the value of
Height1 in the 1st iteration and the value of Width1 in the
1st iteration of the inner loop. In Algorithm 3, the outer loop
variable i represents the rows in the original image; if the
inner loop variable j is the column row, CBRNGY represents
the rows, and CBRNG X represents the random number
generator values for the columns. At each step of the loop,
the pixel of matrix B in the j column position of the i row is
taken and placed in the cover image pixel at the position
determined by the CBRNG array. �is process continues

until all the indices of the watermarked matrix B have been
placed back.�us, a watermarked image is obtained by using
CBRNG from matrix B. �is process is also used in the
watermarking and watermark removal algorithm.

4.3. DWTand SVD Methods. Discrete wavelet transform is
one of the most basic methods that transform digital images
from the spatial domain to the frequency domain. DWT is a
feature extraction technique that allows the processing of
images at di�erent resolutions. It is especially preferred in
watermarking research because it is resistant to attacks
applied to the image [68]. In this study, R-level DWT, which
considers the size of the selected blocks matrix and the
watermark size, is used. Here, R is determined according to
the result of the expression log2(M/N). For example, if
M� 512 and N� 128, R� 2. �erefore, 2-level DWT is ap-
plied. After the DWTprocess, LL for low frequency, HL for
horizontal mid-frequency, LH for vertical mid-frequency,
and HH for high frequency are obtained. Performing the
DWTprocess R times on these subbands obtained from the
previous DWT operation is called R-LEVEL DWT. For
example, Figure 8 shows the subbands obtained due to 1-
level DWT and 2-level DWT.

Singular value decomposition (SVD), mainly used for
dimension reduction in signal processing studies, is pre-
ferred in watermarking because it is more resistant to at-
tacks. Assuming A ∈ Rm×n and m> n, A is factored by the
SVD operation as shown in the following equation:

A � UΣVT. (6)

�ematrices U and V here are orthogonal and satisfy the
conditions UUT � UTU � I and VVT � VTV � I, respec-
tively. �e Σ is a diagonal matrix, and it satis�es the con-
dition σ1 > σ2 > , . . . , > σm, the diagonal elements being
σ1, σ2, . . . , σm, respectively.

4.4. Proposed Watermarking Scheme. In this article, num-
bers produced by a chaos-based number generator and
watermarking techniques were combined to protect medical
con�dentiality, and digital watermarking was made on
medical images. �e study considers a new binary water-
marking scheme that includes encryption to improve
medical images’ tenure, protection, and robustness. �e
security feature of the proposed watermarking technique is
enhanced by chaos-based and uniquely number generation.
�e watermarked primary image is encrypted using the
chaos-based encryption technique. It is then placed in the
image and transmitted. �e chaotic encryption scheme

Table 2: ENT test results of random numbers obtained from x output.

Test name Average Ideal results Result
Arithmetic mean 127.4068 127,5 Successful
Entropy 7.9985 8 Successful
Correlation 0.0012006 0 Successful
Chi-square 252.137 Between 10% and 90% Successful
Monte Carlo 3.1331 (error� 0.0027013) Pi number Successful

Cover Image

24
64

24
64

25
6

25
6

256

256

3280

3280

355 124 453 N CBRNG Array

Selected
Blocks Matrix

Watermarked Selected
Blocks Matrix

Watermark

Watermarked Image

···

Figure 7: Working principle of the proposed chaos-based RNG
watermarking method.
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provides a large key space and high key precision, and the
password can resist brute force attacks and statistical ana-
lyses. (e proposed method is secure against third-party
attacks and can meet the need for image encryption. A
reliable watermark decryption scheme and an extraction
scheme for both the primary and secondary watermark are
established to remove the watermark. In the proposed
method, the watermark is hidden in the image created by
selecting random pixels with the numbers produced by RNG
from the original image with medical content. (e 8 bit
images containing human blood and cancer cell samples
were used. In the method, first, the watermark is hidden in
the image created from the pixels selected with RNG from
the original image. (en, the watermarked image is placed

on the original image with RNG, pixel by pixel, to its
previous positions. In this way, the method makes water-
mark detection difficult and makes it difficult to discover the
watermark. (e watermarked image recreated at the end of
the method is not distinguishable from the original image.
(e watermark can be removed lossless from the water-
marked image. (e RNG sequence created through the
chaotic system is needed for the watermark extraction
process. By operating the chaotic system with the same
initial conditions at the receiving end, the same RNG se-
quence can be produced, or a standard RNG sequence can be
used. RNG sequence can be considered the proposed
method’s chaotic encryption algorithm. Different encryp-
tions can be made by changing the RNG sequence. (is

Input: Cover/Watermarked Image
Output: Selected Block Matrix (B)

(1) Start
(2) Read Cover Image (img1)
(3) Get Width and Height from img1
(4) Select CBRNG file
(5) Divide CBRNG numbers by CBRNG X and CBRNG Y
(6) Normalize the values in the CBRNG X array by modulo with Width
(7) Normalize the values in the CBRNG Y array by modulo with Height
(8) Discard repetitive values in CBRNG X and Y
(9) Get Width1 and Height1 from B
(10) Create an array of size B
(11) for i� 1: Height1: 1

for j� 1: Width1: 1
B(i, j)� img1(CBRNG Y(i), CBRNG X(j))

end for
(12) Return B

(13) End

ALGORITHM 2: Generating the Selected Blocks Matrix.

Input: Cover Image, B∗

Output: Watermarked Image (C∗)

(1) Start
(2) Read Cover Image (img1)
(3) Get Width and Height from img1
(4) Select CBRNG file
(5) Divide CBRNG numbers by CBRNG X and CBRNG Y
(6) Normalize the values in the CBRNG X array by modulo with Width
(7) Normalize the values in the CBRNG Y array by modulo with Height
(8) Discard repetitive values in CBRNG X and Y
(9) Get array B∗

(10) Get Width1 and Height1 from B∗

(11) for i� 1: Height1: 1
for j� 1: Width1: 1
img1(CBRNG Y(i), CBRNG X(j))� B∗ (i,j)

end for
(12) Create C∗ from img1 array
(13) Return C∗

(14) End

ALGORITHM 3: Generating the Watermarked Image.
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increases the system’s security and prevents malicious
people from destroying the watermark.

In the next section, watermarking embedding and
watermarking extraction algorithms are explained. In this
algorithm, the cover image, selected block obtained with
chaos-based random numbers, and the watermark are
represented by C ∈ Rx×y, B ∈ Rm×m, and W ∈ Rn×n, re-
spectively. After the watermarking embedding, C∗ ∈ Rx×y

and B∗ ∈ Rm×m are obtained. After the watermarking ex-
traction, W∗ ∈ Rn×n is obtained. Here, the condition
∀x∀y(x≥m≥ n∧y≥m≥ n) is met.

4.4.1. Watermarking Embedding Algorithm. First, B is ob-
tained from the cover image (C) using CBRNG. In the
second step, R-level DWT is applied to matrix B. (e SVD is
applied to the Rth LL (LLR) obtained with the R-level DWT.
UB,ΣB and VT

B are obtained from this process. Also, singular
value decomposition is applied to the W matrix and UW,ΣW
and VT

W matrices are obtained. Σ∗B is obtained by taking into
account the singular values (ΣB and ΣW) and the scaling
factor (α) in

Σ∗B � ΣB + αΣW. (7)

In (8), using Σ∗B, UB, and VT
B , LL∗R is obtained.

LL
∗
R � UBΣ

∗
BV

T
B. (8)

With LL∗R, the reverse of the R-level DWT process is
applied and B∗ is obtained. (en, using B∗ and CBRNG, the
pixels in C are updated and C∗ is obtained. (e water-
marking embedding process is explained step by step in
Algorithm 4. Figure 9 shows the proposed watermarking
embedding scheme.

4.4.2. Watermarking Extraction Algorithm. In this algo-
rithm, Watermarked hologram Image (C∗) and the CBRNG
used in the watermarking embedding algorithm are taken as
inputs. As the output, the extracted watermark W∗ is ob-
tained. As in the watermarking embedding algorithm, the
watermarked selected block (B∗) is obtained from the C∗

image using the same CBRNG.
(en, R-level DWT is applied to the B∗ matrix and

LL∗W, HL∗W, LH∗W is obtained. SVD is applied to the LL∗W and
UE,ΣE and VT

E matrices are obtained. (en, the singular

values of the watermark are extracted using the ΣB obtained
during watermarking embedding process with

Σ∗W �
ΣE − ΣB( 􏼁

α
. (9)

Using the Σ∗W and UW, and VT
W, the extracted watermark

W∗ is obtained by equation (10). (e watermarking ex-
traction process is explained step by step in Algorithm 5.
Figure 10 shows the proposed watermarking extraction
scheme.

W
∗

� UWΣ
∗
WV

T
W. (10)

5. Experimental Results and Safety Analysis

In this section, performance tests were conducted to analyze
the invisibility and the robustness of the proposed technique
in this study. (e human blood and cancer cell line images
shown in Figure 11 are used as the cover image. (e textual
data in Figure 12(a) for blood images and Figure 12(b) for
cancer images were used as watermarks.(e QR codes as the
visual representation of the texts given in Figures 12(a) and
12(b) are shown in Figure 13, respectively. All of the ex-
periments were carried out on a Workstation with an Intel
dual-core 2.7GHz CPU with 32GB of RAM, using the
MATLAB R2018b version.

(e proposed model’s time complexity is relatively low,
considering that the watermark size is much smaller than the
cover image size. (e size of the watermark image is a × b.
Here the condition a> b and a<min(m, n) is satisfied.
Accordingly, the time complexity of the proposed method is
ab2. Here, a and b values are smaller than the dimensions of
the cover image (m and n). (e a and b values are very small
relative to the dimensions of the cover image (m and n).
(erefore, the time complexity of the proposed algorithm is
not dependent on the size of the cover image.

LL_1

LL_2

LH_1 LH_1

LH_2

HL_1 HL_1

HL_2

HH_1 HH_1

HH_2

Figure 8: 1-level DWT and 2-level DWT.
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Number

Generator

Host Image

Selected Blocks R-DWT SVD

SVD
Compute an
Embedded

Singular Values

Watermarked
Host Image Inverse R-DWT Inverse SVD

Watermark

Figure 9: Proposed watermarking embedding scheme.
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(e chaos-based random numbers were used to cope
with the false positive problem encountered in the SVD
technique used in the study. Tests were carried out to see if
the proposed model was resistant to false positive problems.
Table 3 provides the images and robustness results of the

extracted watermark in cases where the chaotic keys are
entered correctly or incorrectly. (e results were obtained
using the blood cell cover image and a 256× 256 watermark.
It is understood from the table that the watermark was not
extracted correctly in all rows except the first row, where the

Input: Cover Image (C), Watermark Image (W), scaling factor (α)

Output: Watermarked Hologram Image (H∗)

(1) Start
(2) B � Generating the Selected Blocks Matrix (C)
(3) [LLR, HLR, LHR ve HHR]�R_Level_DWT(B)
(4) SVD is applied to the LLR and UB,ΣB and VT

B are obtained.
(5) SVD is applied to the W and UW,ΣW and VT

W are obtained.
(6) Σ∗B � ΣB + αΣW
(7) LL∗R � UBΣ∗BVT

B

(8) B∗ � InverseRlevelDWT(LL∗R, HLR, LHRHHR)

(9) C∗ �Generating the Watermarked Image (C, B∗)

(10) return C∗.
(11) End.

ALGORITHM 4: Watermarking Embedding Algorithm.

Chaos Based
Random
Number

Generator

Watermarked
Host Image

Selected Blocks R-DWT SVD

Compute an
Extracted

Singular Values

Extracted
Watermarked

Inverse R-DWT Inverse SVD

Figure 10: Proposed watermarking extraction scheme.

Input: Watermarked Cover Image (C∗)

Output: Extracted watermark (W∗)

(1) Start
(2) B∗ �Generating the Selected Blocks Matrix (C∗)

(3) [LL∗W, HL∗W, LH∗W, HH∗W] �R_Level_DWT (B∗)

(5) SVD is applied to the LL∗W and UE,ΣE ve VT
E are obtained.

(6) Σ∗W � (ΣE − ΣB)/α
(7) W∗ � UWΣ∗WVT

W

(8) return W∗.
(9) End.

ALGORITHM 5: Watermarking Extraction Algorithm.
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(a) (b)

Figure 11: Sample blood and cancer cell images (256× 256).

TESTDATE:30.04.2021
ID:12345
PATIENTNUMBER:182654
NAME: MUHAMMED ALI
SURMANE:PALA
SEX:M
DATE OF BIRTH:01.01.1994
PHONE NUMBER:+90264295
ALLERGIES:NONE
ADRESS:NONE

(a)

CELL LINE NAME: MCF7
SPECIES: HUMAN
DOUBLING TIME: 25.4
DISEASE: ADENOCARCINOMA
CULTURE: ADHERENT
VIABILITY PROTOCOL: WST-1
OTHER INFORMATON: NONE 

(b)

Figure 12: Watermark texts (a) for cancer cell image and (b) blood image.

(a) (b)

Figure 13: Watermark QR codes (256× 256). (a) Watermark QR code for blood images and (b) cancer cell line images.
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correct keys were entered. Accordingly, it is impossible to
extract the watermark for someone who does not know the
keys of the random number generator and the chaos
function used in the proposed model.

In order to obtain the best performance in the water-
marking algorithm, the optimal scaling factor must be
found. Normalized correlation (NC) is used for watermark
robustness for performance analysis. In contrast, peak sig-
nal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) metrics measure watermark impercepti-
bility. �e calculation of the NC is shown in the following
equation.

NC W,W∗( ) �
∑Ni�1∑

N
j�1Wi,jW

∗
i,j������������

∑Ni�1∑
N
j�1W

2
i,j

√ ������������
∑Ni�1∑

N
j�1W

∗2
i,j

√ . (11)

Equations for calculating MSR, PSNR, and SSIMmetrics
are

MSE C, C∗( ) �
∑Ni�1∑

N
j�1 Ci,j − C

∗
i,j( )

M2 , (12)

PSNR C, C∗( ) � 10 log10
C2
max

MSE C, C∗( )
, (13)

Table 3: FPP analysis result.

System parameters Initial condition NC
a� 2.8, b� 0.2, c� 1.4, d� 1, e� 10, f� 2 x0� 0, y0� 0, z0� 0 1
a� 1.8, b� 0.2, c� 1.4, d� 1, e� 10, f� 2 x1� 1, y0� 0, z0� 0 0.5912
a� 1.8, b� 0.4, c� 1.4, d� 1, e� 10, f� 2 x1� 1, y0�1, z0� 0 0.5221
a� 1.8, b� 0.4, c� 1.0, d� 1, e� 10, f� 2 x1� 1, y0�1, z0�1 0.4766
a� 1.8, b� 0.4, c� 1.0, d� 2, e� 10, f� 2 x1� 1, y0�1, z0�1 0.4643
a� 1.8, b� 0.4, c� 1.0, d� 2, e� 5, f� 2 x1� 1, y0�1, z0�1 0.4539
a� 1.8, b� 0.4, c� 1.0, d� 2, e� 5, f� 1 x1� 1, y0�1, z0�1 0.4304
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Figure 14: NC results of tests under di�erent attacks according to scaling factor change. (a) Human blood. (b) Cancer cell line.

14 Complexity



0 0.02 0.04 0.06 0.08 0.1 0.12
scaling factor (α)

PS
N

R 
(d

B)

0.14 0.16 0.18 0.2

80

70

60

50

40

30

20

10

0

No Attack
Gaussian low-pass filter
Median
Gaussian noise
Rescaling (0.25, 4)
Rescaling (4, 0.25)
Salt and pepper noise

Speckle noise
JPEG compression
JPEG2000 compression
Sharpening attack
Histogram equalization
Average filter
Motion blur

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
scaling factor (α)

PS
N

R 
(d

B)

0.14 0.16 0.18 0.2

80

70

60

50

40

30

20

10

0

No Attack
Gaussian low-pass filter
Median
Gaussian noise
Rescaling (0.25, 4)
Rescaling (4, 0.25)
Salt and pepper noise

Speckle noise
JPEG compression
JPEG2000 compression
Sharpening attack
Histogram equalization
Average filter
Motion blur

(b)

Figure 15: PSNR results of tests under di�erent attacks according to scaling factor change. (a) Human blood. (b) Cancer cell line.
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Figure 16: SSIM results of tests under di�erent attacks according to scaling factor change. (a) Human blood. (b) Cancer cell line.
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SSIM C, C
∗

( 􏼁 �
2μcμc∗ + v1

μ2C + μ2C∗ + v1
·

αCC∗ + v2

α2C + α2C∗ + v2
. (14)

(e μc and μc∗ in the equations are themean of C and C∗,
respectively. α2C and α2C∗ are the variances of C andC∗. v1 and
v2 are two variables used to balance the partition with a weak
denominator. Finally, αCC∗ is the covariance of C and C∗.

For the robustness and invisibility analysis of the wa-
termark, three forms of watermarks (64× 64, 128×128, and
256× 256) were used. (e best scaling factors for all three
forms and each cover image were determined by considering
the changes in NC, PSNR, and SSIM metrics. For the ro-
bustness analysis, various attacks were applied to the
watermarked image, and the watermark’s invisibility was
examined. In addition, robustness analyses were performed
on the watermark extracted from the watermarked image.
(e applied attacks are basically noise (Gaussian, salt and
peppers, and speckle noises), filter (median, Gaussian low-
pass, and average), compression (JPEG with quality factor

(QF) 50 and JPEG2000 with compression ratio (CR) 12),
rescaling (0.25, 4), histogram equalization (HE), sharpening
(threshold� 0.8), and motion blur (with (eta� 4, Len� 7)
attacks.

It is necessary to analyze the durability of watermark and
the cover image’s imperceptibility to determine the opti-
mum scaling factor. For this, both NC values, as well as
PSNR and SSIM metrics, were examined. Accordingly, cases
where all three metrics are good can be selected as the scaling
factor. In order to determine the optimum scaling factor, NC
change under various attacks is shown in Figure 14 for blood
and cancer cell line images, respectively. PSNR and SSIM
results are also shown in Figures 15 and 16, respectively.
When the changes are examined, the NC value increases as
the alpha increases, while the PSNR and SSIM results de-
crease. In cases where noisy attacks such as Gaussian noise,
speckle noise, salt and pepper noise, compression, and
sharpening attacks are applied, the results give good results
even at smaller alpha values. For example, relevant results

Host Image

Watermark
Size 256×256

Watermarked Image

PSNR=50.0403
SSIM=0.99394

Extractedwatermark

NC=1 NC=0.99995 NC=0.99949

Extractedwatermark Extractedwatermark

PSNR=56.5783
SSIM=0.99858

PSNR=62.9189
SSIM=0.99967

Watermarked Image Watermarked Image

Watermark
Size 128×128

Watermark
Size 64×64

Host Image Host Image

Figure 17: Invisibility performance of blood image.
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were obtained when these attacks were applied even when
α= 0.01.

Another issue to be measured in watermarking studies is
invisibility. (e fact that people cannot notice the water-
marked information is essential for the security of the data.
In this case, it is aimed that the watermarked image obtained
after watermarking does not look much different from the
original. For this reason, invisibility measurement is es-
sential in order not to understand the watermark in the
watermarked image. Figures 17 and 18 show the invisibility
and robustness results obtained for exemplary blood and
cancer cell line images, respectively. (e watermark texts
were transformed into QR codes in 256× 256, 128×128, and
64× 64 sizes. Here, the performance results after these three
different watermarking are listed.

When Figures 17 and18 are examined, 100% successful
access to the texts is achieved from the QR codes obtained.
(e literature states that acceptable invisibility is when the
measured values for invisibility are PSNR>0.37 dB and

Host Image Host Image Host Image

Watermark
Size 256×256

Watermark
Size 128×128

Watermark
Size 64×64

Watermarked Image Watermarked Image Watermarked Image

PSNR=49.9757
SSIM=0.99307

Extractedwatermark Extractedwatermark Extractedwatermark

PSNR=56.4868
SSIM=0.99834

PSNR=62.7533
SSIM=0.9996

NC=0.99999 NC=0.99992 NC=0.99962

Figure 18: Invisibility performance of cancer cell line image.

Table 4: (e robustness performance of the watermarked blood
image obtained using different-sized watermarks.

Attack
Watermark size

256× 256 128×128 64× 64
No attack 1 0.99999 0.99994
Gaussian low-pass filter 0.98809 0.96782 0.95473
Median 0.94269 0.92397 0.94444
Gaussian noise 0.97201 0.97087 0.98694
Rescaling (0.25, 4) 0.90461 0.88459 0.86823
Rescaling (4, 0.25) 0.99985 0.99956 0.99923
Salt and pepper noise 0.99971 0.99973 0.99961
Speckle noise 0.9994 0.99933 0.99948
JPEG compression 0.99875 0.99353 0.97793
JPEG2000 compression 0.99959 0.99915 0.99391
Sharpening attack 0.99995 0.98755 0.98443
Histogram equalization 0.98631 0.97033 0.96303
Average filter 0.98684 0.96459 0.94941
Motion blur 0.9775 0.95125 0.93015
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SSIM>0.93. When all the images here are examined, it is
observed that a value far above these limits is obtained. In
addition, if the QR code images are taken into account, it has
been observed that the NC results of the recalled watermarks
are very close to 1.

Tables 4 and 5 provide the normalized correlation (ro-
bustness) of images against various attacks. Here, 256× 256,
128×128, and 64× 64 sized QR codes were watermarked
separately, and the results were listed after these three dif-
ferent watermarks.

When Tables 4 and 5 are examined, it is seen that a
robust watermarking process is performed for the sample
blood and the sample cancer cells in the no attack condition.
As the watermark size decreased, the performance decreased
slightly, but outstanding results were still obtained.

(ere is almost no loss in the watermark after the applied
noise (Gaussian, salt and peppers, and speckle noises) at-
tacks. Similarly, outstanding performances were obtained in
each Gaussian low-pass filter, rescaling (4, 0.25), JPEG
compression, JPEG2000 compression, and sharpening at-
tacks. It has been observed that the median and average filter
attacks, rescaling (0.25.4), histogram equalization, and
motion blur attacks are good enough but not as good as the
above attacks. Outstanding results were obtained in all at-
tacks, mainly when a 256× 256 watermark was applied.
Although the results obtained for Histogram equalization
and Rescaling (0.25.4) attacks were sufficient when 128×128
and 64× 64 size watermarks were applied, the robustness
decreased more than the others. Lossless results were ob-
tained in almost all of the proposed watermark methods
against all attacks except these attacks. After the QR code of
all watermarks is converted back to the text, completely
lossless watermark texts are obtained.

6. Conclusion

Watermarking has excellent potential to provide valuable
solutions for medical applications such as identity theft, data
security, health data management, and storage. (is study
developed a new method using chaos-based discrete wavelet

transform (DWT) and singular value decomposition (SVD)
for watermarking with high imperceptibility and robustness.
In order to obtain a high-resolution biomedical image, a
low-cost, large field of view and easy-to-integrate LED-based
DIHM setup was designed. (e resolution capability of the
imaging system is demonstrated with the standard USAF
1951 resolution target. (e captured diffraction patterns of
medical samples were reconstructed using the angular
spectrum method. Images of human blood and cancer cell
lines, which are widely used in the laboratory environment,
were obtained. For the security feature of the proposed
watermarking technique, chaos-based random number
generators are used. Specifically, chaos-based random
number generators were used to eliminate the false positive
problem, which is the disadvantage of the SVD method. (e
chaotic system without equilibrium points is preferred for
the chaos-based random number generator. (e suitability
of the selected chaotic system for use in studies such as
encryption, data hiding, and watermarking has been proven
by dynamic analysis. Random numbers are generated with
CBRNG as the same random numbers are needed when the
system is rerun for the watermarking application. NIST-800-
22 and ENTstatistical tests with the highest standards at the
international level were used to measure the randomness
performance of the numbers produced. For the water-
marking process, a new method using chaos-based discrete
wavelet transform (DWT) and singular value decomposition
(SVD) has been developed and applied to high-resolution
data in order to eliminate the problem of encrypted data
being directly targeted by third-party attacks. (e perfor-
mance of the proposed new watermarking method has been
demonstrated by various robustness and invisibility tests.
Robustness and invisibility results show the watermarked
host images have good visual quality, PSNRs, and SSIMs.
Experimental results showed that the proposed scheme
reached an average PSNR value of 564588 dB and an SSIM
value of 0.9972 against several geometric and destructive
attacks. Furthermore, the watermarks can be clearly
extracted from the watermarked host image, and even for the
watermarks with different sizes, the proposed image
watermarking method achieved good invisibility and ro-
bustness. To the best of our knowledge, the proposed
method has been applied for the first time in DIHM systems,
along with producing solutions to the problems in the
watermarking process. (e proposed method can be applied
to medical images obtained in both clinical and laboratory
conditions and has the potential to be applied to many
different high-resolution data. We can apply our proposed
method to color images and many other areas in our future
work. It is also possible to construct a blind and more secure
watermarking system using some cutting-edge techniques
like blockchain, deep learning, or machine learning, and
better error-correcting code.

Data Availability

(e datasets generated during and/or analyzed during the
current study are available from the corresponding author
upon request.

Table 5: (e robustness performance of the watermarked cancer
cell line image obtained using different-sized watermarks.

Attack
Watermark size

256× 256 128×128 64× 64
No attack 0.99988 0.99999 0.99996
Gaussian low-pass filter 0.98733 0.97427 0.96717
Median 0.93992 0.93212 0.94764
Gaussian noise 0.97206 0.96799 0.98251
Rescaling (0.25.4) 0.94459 0.89711 0.87132
Rescaling (4.0.25) 0.99944 0.99947 0.99914
Salt and pepper noise 0.99953 0.99954 0.99955
Speckle noise 0.99899 0.99925 0.99944
JPEG compression 0.99919 0.99268 0.97928
JPEG2000 compression 0.99943 0.99915 0.99740
Sharpening attack 0.9997 0.98721 0.98400
Histogram equalization 0.9911 0.84563 0.83418
Average filter 0.98625 0.97174 0.96350
Motion blur 0.98371 0.9686 0.95394
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,e linear and nonlinear dynamics of thermal convection of a rotating hybrid nanofluid layer heated from below with the
Cattaneo–Christov heat flux model are studied in this paper. Starting from the flow equations of a hybrid nanofluid and
exploiting the free boundary conditions, the analytical expressions of the stationary and oscillatory Rayleigh numbers of
the base fluid are determined as a function of the dimensionless parameters of the heat transfer fluid and the thermo-
physical properties of the hybrid nanofluid. ,e effects of hybrid nanoparticles and Taylor number on the onset of
stationary convection in the base fluid are investigated graphically. ,en, a numerical study of the transition from natural
convection to chaotic behaviour of the hybrid nanofluid is made using the truncated Galerkin approximation. ,is
approximation allowed us to find a novel six-dimensional nonlinear system depending on the parameters of the base fluid
and the thermophysical properties of the hybrid nanofluid that can be reduced to five, four, or three dimensions when we
tend some parameters to zero. ,e different results showed that the addition of hybrid nanoparticles (alumina-copper) to a
thermal fluid (water) subjected to the rotation force in the presence or absence of the thermal relaxation time allows control
of the chaotic convection in the base fluid. On the other hand, the increase of the rescaled Taylor number and the Cattaneo
number widens the domain of chaos in the hybrid nanofluid with the increase of the rescaled Rayleigh number of the
base fluid.

1. Introduction

In 1995, Choi introduced, at the Argonne National Labo-
ratory of the University of Chicago in the U.S., the concept of
nanofluid [1]. ,is new generation of fluids consists of

dispersing nanoparticles (assemblies of a few hundred to a
few thousand atoms, leading to an object with at least one
dimension of thousands of atoms, leading to an object of
which at least one of the dimensions is of nanometric size) in
a base liquid (water, oil, ethylene glycol, toluene). ,e use of
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these nanofluids in some industrial operations that involve
heat transfer by convection is a promising alternative so-
lution to improve thermal performance. ,us, the problem
of natural convection in a nanofluid layer heated from below
has been studied by several researchers [2–6] with the
Fourier law. ,e flow and heat transport of nanomaterial
with quadratic radiative heat flux and aggregation kine-
matics of nanoparticles reported byMahanthesh [7] revealed
that the suspension of the nanoparticles increases the
thermal conductivity and, thus, improves the temperature
and reduces the heat flux at the plate. ,e Rayleigh-Bénard
convection in nanofluid submerged with dust particles was
investigated by Shalini and Mahanthesh [8]. ,ey pointed
out that the inclusion of nano and dust particles reduces the
Rayleigh number while the rotation postpones the onset of
convection and stabilizes the system.

Ahuja and Sharma [9] conducted a comprehensive re-
view of the instability of Rayleigh-Bénard convection in
nanofluids by summarizing in their work the studies related
to the instability of a horizontal nanofluid layer under the
impact of various parameters such as rotationmagnetic field,
Hall currents, and LTNE (local thermal nonequilibrium)
effects in porous and nonporous media. ,e thermal con-
vection in a rotating fluid layer provides a system to study
hydrodynamic instabilities, pattern formation, and spatio-
temporal chaos in nonlinear dynamical systems with many
practical applications in engineering, such as food pro-
cessing, chemical processes, solidification, centrifugal cast-
ing of metals, and rotating machines [10].

To compensate for the defect and all the disadvantages of
mono nanofluids, it is essential to combine several nano-
particles to prepare a hybrid nanofluid [11]. Natural mag-
netohydrodynamic convection in a triangular cavity filled
with a hybrid (copper-alumina)/water nanofluid with lo-
calized heating from below and internal heat has been in-
vestigated by Rashad et al. [12].,ey concluded that a hybrid
nanofluid composed of equal amounts of copper and alu-
mina nanoparticles dispersed in water has no significant
improvement on the average Nusselt number compared to
the mono nanofluid and that the effect of increasing the
hybrid nanoparticles becomes significant in the case where
natural convection is very low. Aladin et al. [13] also studied
the significant effects of suction and magnetic field on a
moving plate containing a hybrid (copper-alumina)/water
nanofluid. ,ey have proved that the hybrid nanofluid gives
better results than the mono nanofluid.

According to Myson and Mahanthesh [14], the hybrid
nanofluid delays the convection and will further enhance the
heat transfer rate, but the Casson parameter advances the
convection while reducing the heat transfer rate. Mackolil
and Mahanthesh [15] illustrated the optimization of heat
transfer in the thermal Marangoni and nonlinear convective
flow of a hybrid nanomaterial with sensitivity analysis. It is
shown that the hybrid nanomaterial possesses enhanced
thermal fields for nanoparticle volume fractions less than
0.02. ,e sensitivity computation of nonlinear convective
heat transfer in hybrid nanomaterial between two concentric
cylinders with irregular heat sources was also made by
,riveni and Mahanthesh [16].

Given its advantages and industrial applications, espe-
cially in chemical reactions, biological systems, crystal
production, petroleum reservoir modeling, and packed-bed
catalytic filtration, chaotic convection in a hybrid nanofluid
layer should receive considerable attention due to the per-
formance of nanofluids. Jawdat et al. [17], Moaddy et al.
[18, 19], and Bhardwaj and Chawla [20] all contributed well
to nonlinear dynamical analysis of the thermal convection in
a horizontal nanofluid layer heated from below in the
presence or absence of a magnetic field. ,ey studied the
effect of nanoparticles on chaotic convection in a layer of
fluid (water) heated from below and noticed that the stability
region can be increased by using nanofluids and that the
onset of chaotic convection can be delayed under the in-
fluence of nanoparticles. Also, variations in temperature and
magnetic field strength cause the system to transition from a
steady state to chaos and back to a steady state. ,e case of
hybrid nanofluid was first presented by Dèdèwanou et al.
[21] with the Fourier law. ,ey found that the copper
nanofluid makes it possible to quickly switch from chaotic to
periodic regimes compared to the alumina nanofluid, and
the use of hybrid nanoparticles allows further control of the
chaos in the base fluid by expanding the convective flow and
reducing the chaotic flow.

Furthermore, Maxwell and Cattaneo modified Fourier’s
law by taking into account the aspect of thermal relaxation
time in the propagation of heat [22]. In order to eliminate
the heat flow and thus obtain a single equation for the
temperature field, Christov [23] proposed a generalization of
the material-invariant Maxwell–Cattaneo law, in which the
relaxation time of the heat flow is given by the convex
Oldroyd upper derivative. ,is new law was used by
Straughan [24] to study thermal convection in an ordinary
fluid. He concluded that the thermal relaxation time is
significant if the Cattaneo number is large enough, and the
convection mechanism changes from stationary to oscilla-
tory convection with narrower cells. Indeed, some re-
searchers used the Cattaneo–Christov model to appreciate
the effects of temporal relaxation on the thermal behavior of
a nanofluid [25–31]. Alebraheem and Ramzan [26] have
studied the heat and mass transfer of Casson nanofluid flow
containing gyrotactic microorganisms past a swirling cyl-
inder by considering the Cattaneo-Christov heat flux model.
According to their numerical solution of the subject system,
which is framed via the bvp4c technique of MATLAB
software, the concentration of the fluid is reduced owing to
the increase in values of the brownianmotion parameter and
local Reynolds number, but the diminishing density of
microorganisms is perceived for mounting estimates of the
bioconvection Péclet number. Multiple slip impacts in the
MHD hybrid nanofluid flow with Cattaneo–Christov heat
flux and autocatalytic chemical reaction were investigated by
Gul et al. [32]. ,ey found that the fluid temperature is
diminishing function of the thermal slips parameters but
increased for high estimates of the heat source-sink and
nanoparticle volume concentration parameters while en-
tropy number augmented for higher thermal relaxation
parameter and Reynolds number. Lu et al. [33] have also
studied a thin film flow of nanofluid comprising carbon
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nanotubes influenced by Cattaneo–Christov heat flux and
entropy generation. ,ey showed that the velocity and
temperature distributions increase as the solid volume
fraction escalates. Recently, a three-dimensional flow of
gold-silver/engine oil hybrid nanofluid owing to a rotating
disk of variable thickness with Cattaneo–Christov heat flux
has been addressed by Zhang et al. [34].,ey proved that the
performance of the hybrid nanofluid is far better than the
common nanofluid according to the surface temperature
and heat transfer rate. ,is same remark is made from the
results obtained for the model-based comparative study of
magnetohydrodynamics unsteady hybrid nanofluid flow
between two infinite parallel plates with particle shape effects
[35]. Considering hybrid nanofluid Yamada-Ota and Xue
flow models in a rotating channel with the modified Fourier
law, it is observed that the velocity profile decreases for the
higher rotation parameter while it increases for the escalated
slip parameter, but the fluid concentration and temperature
are on the decline for higher surface catalyzed reaction and
thermal relaxation parameters respectively [36]. Ramdan
et al. [37] have analyzed the hydrodynamic and heat
characteristics of the three-dimensional flow of a steady,
laminar, and incompressible convective graphene-copper
oxide/water and graphene-silver/water hybrid nanofluids
(used as a solar energy absorber) with varied particle shapes
in a porous medium.,eir study revealed that the rotational
parameter has declined the velocity profiles but enhanced
the temperature profiles, and the decline effect is significant
in the case of graphene-copper oxide/water whereas the
enhancement effect of temperature is significant for gra-
phene-silver/water. A comparative analysis of magnetized
partially ionized copper, copper oxide-water, and kerosene
oil nanofluid flow with Cattaneo–Christov heat flux was
made by Abid et al. [38]. ,ey noted the greater effective
thermal conductivity for copper-water partially ionized
nanofluid as compared to other given partially ionized
nanofluids (copper-kerosene oil, copper oxide-water/kero-
sene oil partially ionized nanofluids). Ramzan et al. [39]
developed a mathematical model for the nanofluid flow
containing carbon nanotubes with ethylene glycol as a base
fluid in a rotating channel with an upper permeable wall by
adding the Cattaneo–Christov heat flux’s impact with
thermal stratification. ,e displacement of the lower plate at
variable velocity, caused by the rotation of the fluid, pro-
duces forced convection with rotation and centripetal im-
pact. Nevertheless, the upper plate is porous. Chu et al. [40]
investigated a numerical solution for MHD Maxwell
nanofluid with gyrotactic microorganisms, a higher-order
chemical reaction in the presence of variable source/sink,
and Newtonian heating in a rotating flow on a deformable
surface and noted that on incrementing the conjugate heat
parameter and thermal relaxation time, the rate of heat
transfer augments, but the rate of heat transfer decreases on
varying the fluid relaxation time.

Despite all the above, the study of nanoparticles requires
more attention due to their industrial uses. After inspecting
the scientific literature, we noted that no work has yet
addressed the chaotic aspect of thermal convection in hybrid
nanofluids, taking into account the thermal relaxation time,

although this would be very useful in some applications like
petroleum reservoir modeling, chemical reactions, thermal
transport in biological tissue, and surgical operations.
Nevertheless, Layek and Pati [41] studied the effects of
thermal lag on the onset of convection, its bifurcations, and
the chaos of a horizontal layer of the heated Boussinesq fluid
underneath via a five-dimensional nonlinear system. A
comparative study of the five-dimensional system obtained
for the case of a hybrid nanofluid was made by Dèdèwanou
et al. [42]. ,erefore, the objective of the present paper is to
investigate the effects of hybrid nanoparticles on the oc-
currence of thermal convection instability and chaos in a
rotating fluid layer heated from below with the Cattaneo–
Christov heat flux model. A specific objective is to determine
the analytical expression for the stationary Rayleigh number
that can be used to study the nonlinear dynamics of thermal
convection in rotating hybrid nanofluid flow in the presence
of thermal relaxation time. ,is work aims to study the
different transition regimes as a function of the thermo-
physical properties of nanofluids and then to show the effects
of hybrid nanoparticles, Taylor number, and Cattaneo
number on the chaotic behavior of natural convection in a
basic fluid such as water via dynamical systems.

In the next section, the thermal convection in an
infinite horizontal rotating hybrid nanofluid layer with the
hyperbolic Cattaneo–Christov heat flux is outlined. Section
3 discusses the theory of conduction, stationary convection,
and oscillatory convection, where we generalize and sim-
plify the expression for the Rayleigh number by deriving a
number of new analytical results. In order to reduce the set
of equations governing the dynamic behavior of thermal
convection in the hybrid (alumina-copper)/water nano-
fluid, discretized models in four and six dimensions are
developed in Section 4 using the Galerkin expansion. We
have studied the nature of the nonlinear dynamics of the
obtained dynamical systems and determined the fixed
points by analyzing the stability of the stationary solutions.
,ese analyses have allowed us to justify the influence of the
hybrid alumina-copper nanoparticle, the Cattaneo num-
ber, and the Taylor number on number on the transition
from chaos to periodicity and vice versa in the fluid. In
Section 5, we present the different simulations performed,
and the results obtained are discussed. ,e conclusions are
drawn in Section 6.

2. Mathematical Modeling

2.1. Problem Formulation. We consider an infinite rectan-
gular cavity with two horizontal walls maintained at different
temperatures. ,is cavity, heated from below with a thermal
relaxation time, is filled with a hybrid nanofluid (water and
nanoparticles), subject to gravity acting downwards and to
rotation. In order to develop our numerical model, it is
necessary to adopt certain assumptions, namely, the flow is
assumed to be permanent and incompressible, the mixture is
assumed to be homogeneous, single-phase, Newtonian, the
nanoparticles are spherical, and the mass transfer between
the particles and the fluid is negligible. ,e Cartesian co-
ordinate system used is such that the y-axis follows the
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horizontal and the vertical z-axis is collinear with gravity.
,e geometry of our problem is presented in Figure 1.

2.2. Governing Equations. In this section, we have studied
the equations governing the dynamic and thermal fluxes
with boundary conditions and nondimensional parameters
characterizing the thermal convection in a rotating hybrid
nanofluid layer in the presence of thermal relaxation time.
Taking into account the listed assumptions and using the
hybrid nanofluid model proposed in Section 3, the equations
governing the conservation of mass, momentum, energy,
and heat flux for a laminar flow of the hybrid nanofluid are
written in their dimensional form respectively as follows
[10, 42]:

zvi

zxi

� 0, (1)

ρhf

zvi

zt
+ vj

zvi

zxj

􏼠 􏼡􏼢 􏼣 � −
zp

zxi

− ρgei

+ μhf∇
2
vi + 2ρhfΩj

zvi

zxj

ei,

(2)

(ρCp)hf

zT

zt
+ vj

zT

zxj

􏼠 􏼡􏼢 􏼣 � −
zQj

zxj

, (3)

zQi

zt
+ vj

zQi

zxj

􏼠 􏼡􏼢 􏼣 + Qi � − khf

zT

zxi

. (4)

In equation (2), ei � (0, 0, 1) is the unit vector and ∇2 �

(z2/zx2) + (z2/zy2) + (z2/zz2) is the Laplacian operator.
,e use of the Boussinesq approximation allows us to define
the density as a function of temperature as

ρ � ρhnf 1 − βhf T − T0( 􏼁􏽨 􏽩. (5)

,e density, thermal expansion coefficient, heat capacity,
dynamic viscosity, thermal conductivity of the dynamic
viscosity, and thermal conductivity of the hybrid nanofluid,
respectively, are defined as follows:

ρhf � 1 − φ2( 􏼁 1 − φ1( 􏼁ρf + φ1ρs1􏽨 􏽩 + φ2ρs2,

(ρβ)hf � 1 − φ2( 􏼁 1 − φ1( 􏼁(ρβ)f + φ1(ρβ)s1􏽨 􏽩 + φ2(ρβ)s2,

(ρCp)hf � 1 − φ2( 􏼁 1 − φ1( 􏼁(ρCp)f + φ1(ρCp)s1􏽨 􏽩 + φ2(ρCp)s2,

(ρCp)hf � 1 − φ2( 􏼁 1 − φ1( 􏼁(ρCp)f + φ1(ρCp)s1􏽨 􏽩 + φ2(ρCp)s2,

μf � μhf 1 − φ1( 􏼁
− 2.5 1 − φ2( 􏼁

− 2.5
,

khf � kgf

ks2 + ηkgf􏼐 􏼑 − ηφ2 kgf − ks2􏼐 􏼑

ks2 + ηkgf􏼐 􏼑 + φ2 kgf − ks2􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦,

(6)

to

khnf � khf

ks1 + ηkhf􏼐 􏼑 − ηφ1 khf − ks1􏼐 􏼑

ks1 + ηkhf􏼐 􏼑 + φ1 khf − ks1􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦, (7)

where

η � m − 1. (8)

,e thermophysical properties of nanoparticles and
water used in this work are summarized in Table 1 (see [13]).

3. Linear Stability Analysis

We consider a classical Rayleigh-Bénard problem of linear
stability of convective rolls in a horizontal fluid layer with
unconstrained boundary conditions. ,us, the temperature
boundary conditions are T � Tc at z� 0 and T � T0 at z� 1
with Tc >T0. As for the velocity, its component along the z
axis is zero at the boundaries.

3.1. Steady-State Solutions. A time-independent quiescent
solution of equations (1)–(4) with temperature and heat flux
varying in the z direction only, is obtained by reducing
equations (2)–(4) to

ρhf vj

zvi

zxj

􏼠 􏼡 +
zp

zxi

+ ρgei − μhf∇
2
vi − 2ρhfΩj

zvi

zxj

ei � 0,

(ρCp)hf vj

zT

zxj

􏼠 􏼡 +
zQj

zxj

� 0,

vj

zQi

zxj

􏼠 􏼡 + Qi + khf

zT

zxi

� 0.

(9)

,en, the steady state solutions are given

vb(z) � 0,

Tb � Tc − χxjej,

Qb(z) � χkhf andPb(z) � P0,

(10)

with the temperature gradient χ and the profile of P0 defined
by

Tc

T0

y

H

z

Ω

Hybrid nanofluid

g

Figure 1: Configuration of the problem.
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χ �
zT

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
and

zp0

zxi

� ρ Tb( 􏼁gei.

(11)

3.2. Simplified Set of Equations. In order to simplify the
parametric representation of this physical problem and to
find the characteristic properties of the system, it is necessary
to recast the flow equations. ,us, the following normalized
quantities are introduced:

􏽥xi �
xi

H
,

􏽥vi �
ρfH.vi

μf

,

􏽥P �
H

2
.P

ρf.]f

,

t∗ �
μft

ρf.H
2,

􏽥T �

����������

βfgkfH
2

χ]f(ρCp)f

􏽶
􏽴

T,

􏽥Qi �
H

kf

􏽥T

T
􏼠 􏼡Qi.

(12)

Considering small perturbations on the basic solutions
as follows:

􏽥vi � 􏽥vb + 􏽥vi
′,

􏽥T � 􏽥Tb + T′,

􏽥Qi � 􏽥Qb + Qi
′,

􏽥P � 􏽥Pb + 􏽥P′,

(13)

and neglecting the products of the primed quantities, we
obtain the following dimensional equations:

z􏽥vi
′

z􏽥xi
′

� 0, (14)

z􏽥vi
′

z􏽥t′
� −

z􏽥P′

z􏽥xi
′

+
μhf

μf

ρf

ρhf

􏼠 􏼡∇2􏽥vi
′

+
(ρβ)hf

(ρβ)f

����
Raf

􏽱
􏽥Tei +

���
Ta

√ z􏽥vi
′

z􏽥xj

ei,

(15)

(ρCp)hf

(ρCp)f

􏼠 􏼡 Prf

z􏽥T′

z􏽥t′
−

����
Raf

􏽱
􏽥w′􏼠 􏼡 � −

z 􏽥Qi
′

z􏽥xj
′
, (16)

2PrfCf

z 􏽥Qi
′

z􏽥t′
+ 􏽥Qi
′ � −

khf

khf

􏼠 􏼡
z􏽥T′

z􏽥xi
′
, (17)

where the dimensionless parameters are defined by

Prf �
μf

ρfαf

,

Cf �
αfτ

2H
2,

Raf �
g.H

4βfχ
αf]f

.

(18)

Nowwe eliminate the pressure from the nondimensional
equations (14)–(17) by taking the curl-curl of equation (15),
the divergence of equation (15), the inner product of any
vector equation with ei;, and denoting the divergence of the
heat flux Q � (z 􏽥Qi/z􏽥xi), to obtain, after dropping the tilde
notation for brevity, the equations

z

zt
∇2w􏼐 􏼑 �

����
Raf

􏽱 (ρβ)hf

(ρβ)f

z
2
T

zx
2 +

z
2
T

zy
2􏼠 􏼡

+
μhf

μf

ρf

ρhf

􏼠 􏼡∇4w +
���
Ta

√ zζ
zz

,

(19)

(ρCp)hf

(ρCp)f

􏼠 􏼡 Prf

zT

zt
−

����
Raf

􏽱
w􏼠 􏼡 � − Q, (20)

2PrfCf

zQ

z􏽥t′
+ Q � −

khf

khf

􏼠 􏼡∇2T.

(21)

which describe the evolution of the conduction steady state
perturbations in a conveniently simplified form with four
variables such as the z-component of the velocity field, the
vorticity ζ � zv/zx − zu/zy, the heat flux Q, and the tem-
perature T.

An evolutionary equation for the vorticity can be ob-
tained from the equation of motion by taking curl, then the
dot product with e3 for the vertical component. ,us,
eliminating the pressure and introducing the vorticity in
equation (2) allows us to obtain the following:

μhf

μf

ρf

ρhf

􏼠 􏼡∇2 −
z

zt
􏼢 􏼣ζ � −

���
Ta

√ zw

zz
. (22)

From equations (19) and (22), we obtain the following:

Table 1: ,e thermophysical properties of the water and nanoparticles at 293K.

ρ Cp k β × 10− 5

Water 997.1 4179 0.613 21
Alumina 3970 765 40 0.85
Copper 8933 385 401 1.67
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z
2
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(23)

3.3. Normal Modes and Analytical Solution. ,e linear sta-
bility of the conduction solutions is studied by writing the
perturbations in separable form and assuming an expo-
nential time dependence

w � W(z)h(x, y)e
σt

,

T � Θ(z)h(x, y)e
σt

,

Q � Φ(z)h(x, y)e
σt

,

(24)

with the plane tiling function satisfying

∇2h(x, y) � − κ2h(x, y), (25)

where W,Θ,Φ are eigenfunctions. ,e substitution of
equation (24) into the differential equations (20), (21), and
(23) leads to

D
2

− κ2􏼐 􏼑 c1 D
2

− κ2􏼐 􏼑 − σ􏼐 􏼑
2

+ TaD
2

􏼔 􏼕

W � κ2c2

����
Raf

􏽱
c1 D

2
− κ2􏼐 􏼑 − σ􏽨 􏽩Θ,

(26)

σPrfΘ �
����
Raf

􏽱
W − c3Φ, (27)

2σPrfCfΦ +Φ � − c4 D
2

− κ2􏼐 􏼑Θ, (28)

where D � d/dt, D2 � d2/dt2 and

c1 �
μhf

μf

ρf

ρhf

,

c2 �
(ρβ)hf

(ρβ)f

,

c3 �
(ρCp)f

(ρCp)hf

,

c4 �
khf

khf

. (29)

Equations (26)–(28), which represent the starting point
for analytical and numerical calculations on thermal con-
vective instability are used to study the occurrence of sta-
tionary and oscillatory convection in nanofluids. ,ey are
equivalent to those obtained by Straughan [24] and Bissell
[43, 44] in the case of an ordinary fluid not subjected to a
Coriolis force, i.e. when φ1 � φ2 � 0 and Ta � 0. ,e dis-
appearance of tangent shear stresses at the free surface and
the conservation of the mass equation allow us to obtain the
boundary conditions of the free surface defined by

W � 0,

D
2
W � 0 and

Θ � 0 at z � 0, 1.

(30)

In order to obtain an approximate solution of equations
(26)–(28), we used the Galerkin weighted residual method
by choosing the test function written as

W � W0 sin(πz),

Θ � Θ0 sin(πz),

Φ � Φ0 sin(πz),

(31)

which fulfill the conditions at the borders mentioned in
equation (30).

By substituting the test functions defined in equation
(31) into equations (26)–(28) and performing some inte-
grations, we obtain the following matrix equation:

J c1J + σ( 􏼁 +
π2Ta

c1J + σ( 􏼁
􏼢 􏼣 − κ2c2

����
Raf

􏽱
0

−
����
Raf

􏽱
σPrf c3

0 − c4J 2σPrfCf + 1􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

W0

Θ0

Φ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(32)

where J � D2 − κ2. For this matrix equation (32) to admit a
nontrivial solution, the Rayleigh number of the base fluid
must be in the following form:

Raf �
c3c4J + σPrf 2σPrfCf + 1􏼐 􏼑􏽨 􏽩 J c1J + σ( 􏼁 + π2

Ta/ c1J + σ( 􏼁􏼐 􏼑􏽨 􏽩

κ2c2 2σPrfCf + 1􏼐 􏼑
. (33)
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For the following, let σ � jω with j2 � − 1 and ω the real
frequency. ,us, the expression for the Rayleigh number
defined in equation (33) becomes

Raf � Δ1 + jωΔ2, (34)

with

Δ1 � κ2c2 1 + 4ω2
Pr

2
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2
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2
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(35)

Δ2 � κ2c2 1 + 4ω2
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2
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2
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2 + 2JPrfCf 2c1Jω

2
Pr

2
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2π2c1JPrfCfTa 2ω2
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fCf − c3c4J􏼐 􏼑
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2
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2
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(36)

Since the Rayleigh number is a real and positive physical
quantity, then for the expression equation (33) to exist, ω
must be zero or Δ2 � 0.

3.4. Stationary Convection. According to the stability ex-
change principle for the stationary case, the stability margin
is characterized by the frequency equal to zero. ,is con-
dition allows to obtain from the expression equation (33),
the Rayleigh number of the base fluid of the stationary
convection expressed as follows:

Ra
st
f �

c3c4

κ2c2
c1 κ2 + π2􏼐 􏼑

3
+
π2Ta

c1
􏼢 􏼣. (37)

If c1 � c2 � c3 � c4 � 1 and the cavity is not rotating, i.e.
φ1 � φ2 � 0 and Ta � 0, equation (37) is equivalent to the
classical Rayleigh number of stationary convection in or-
dinary fluids [42].

In the absence of the rotation force, we have

Ra
st
f �

c1c3c4

c2

κ2 + π2􏼐 􏼑
3

κ2
. (38)

,e absolute critical Rayleigh number of the hybrid
nanofluid in this case is defined as

Ra
st
f �

27π4

4
c1c3c4

c2
, (39)

with the corresponding wavenumber

κst
c �

π
�
2

√ . (40)

We note that the Rayleigh number obtained for sta-
tionary convection in nanofluids is not a function of the
Prandtl number or the Cattaneo number of the base fluid.
,us, the same results can be associated with the more
usual Fourier law for mono nanofluids or hybrid
nanofluids.

3.5. Oscillatory Convection. Now, we study the effects of the
Cattaneo number, the nanoparticles, and the rotation on the
oscillating convection. In this case, we must have ω≠ 0 and
Δ2 � 0. ,erefore, the Rayleigh number of the base fluid for
oscillatory convection is given by

Ra
os
f � κ2c2 1 + 4ω2

Pr
2
fC

2
f􏼐 􏼑􏽨 􏽩

− 1

· J c1c3c4J
2

− ω2
Prf􏼐 􏼑 +

π2Ta c1c3c4J
2

+ ω2
Prf􏼐 􏼑

c1J( 􏼁
2

+(ω)
2

⎡⎣

+ 2Jω2
PrfCf c3c4J − 2ω2

Pr
2
fCf􏼐 􏼑

+
2π2ω2

PrfCfTa 2ω2
Pr

2
fCf − c3c4J􏼐 􏼑

c1J( 􏼁
2

+(ω)
2

⎤⎥⎦.

(41)

,e corresponding oscillatory frequency ω must verify
the following equations:
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4c1J
2
Pr

3
fC

2
f􏼐 􏼑ω4

+ J
2

c3c4 + c1Prf􏼐 􏼑􏽨

+ 4c1JPr
3
fC

2
f c1J

3
+ π2

Ta􏼐 􏼑 − 2c1c3c4PrfCfJ
3
􏽩ω2

+ c
2
1J c3c4 + c1Prf􏼐 􏼑 + π2

JTa c1 − c3c4( 􏼁􏽨

− 2c1c3c4PrfCfJ
2

c3c4 + c1Prf􏼐 􏼑􏽩 � 0.

(42)

For oscillatory instability to be possible, the value of ω2

generated by equation (42) must be positive.

4. Dynamical System Analysis

In order to explore how thermal relaxation time, hybrid
nanoparticles, and rotation affect the nonlinear stability of
the onset of thermal convection in a horizontal layer of
ordinary fluid such as water, we reduce the problem to the
classical case of two-dimensional convective rolls in a fluid
layer with unconstrained horizontal boundaries. ,us, we

assume that all physical quantities are independent of x. We
consider the early stages of nonlinear convection when the
basic structure of the convective rolls is still determined by
the dynamic behavior of the linearized solution. ,e real
components of the fluid velocity are expressed in terms of
partial derivatives of the stream function as follows:

u � −
zψ(y, z, t)

zz
,

w �
zψ(y, z, t)

zy
.

(43)

Eliminating the pressure from equation (2) and intro-
ducing the expressions of the stream function defined in
equations (43) into the resulting equation and equations (3)
and (4), we obtain with the appropriate dimensionless
variables [10, 42], the following new equations:

1
Prf

z

zt∗
− c5∇

2
􏼠 􏼡

2

− Ta
z
2

zz
2
∗

⎡⎣ ⎤⎦
z
2ψ∗

zy
2
∗

� c6Raf

1
Prf

z

zt∗
− c5∇

2
􏼠 􏼡

z
2
T∗

zy
2
∗

, (44)

1 + 2Cf

d

dt∗
􏼠 􏼡

dT∗
dt∗

−
zψ∗
zy∗

􏼠 􏼡 � c7
z
2
T∗

zy
2
∗

+
z
2
T∗

zz
2
∗

􏼠 􏼡, (45)

with

d

dt∗
�

z

zt∗
−

zψ∗
zz∗

z

zy∗
+

zψ∗
zy∗

z

zz∗
,

Raf �
g.H

3βf Tc − T0( 􏼁

αf]f

,

Prf �
]f

αf

,

Cf �
ταf

2H
2,

c5 �
μhf

μf

ρf

ρhf

kf

khf

(ρCp)hf

(ρCp)f

,

c6 �
(ρβ)hf

(ρβ)f

ρhf

ρhf

,

c7 �
khf

kf

(ρCp)f

(ρCp)hf

.

(46)

,e ratio of the Rayleigh number of the hybrid nanofluid
to that of the base fluid gives the effective Rayleigh number
of the hybrid nanofluid as a function of the thermophysical
properties and Rayleigh number of the heat transfer fluid
defined as

Raf �
(ρβ)hf

(ρβ)f

􏼠 􏼡
kf

khf

􏼠 􏼡
(ρCp)hf

(ρCp)f

􏼠 􏼡
μf

μhf

􏼠 􏼡Raf. (47)

Similarly, the Cattaneo number of the hybrid nanofluid
is defined as follows:

Chf � c7Cf. (48)

4.1. Reduced Set of Equations. ,e solution of the coupled
nonlinear system of partial differential equations (44) and
(45) will be obtained by representing the current function
and the temperature using the Galerkin expansion in the
following form [42]:

ψ∗ y∗z∗t∗( 􏼁 � A11 t∗( 􏼁sin κy∗( 􏼁sin πz∗( 􏼁,

T∗ y∗z∗t∗( 􏼁 � B11 t∗( 􏼁cos κy∗( 􏼁sin πz∗( 􏼁

+ B02 t∗( 􏼁sin πz∗( 􏼁.

(49)

,is representation is equivalent to a Galerkin expansion
of the solution in the y and z directions, truncated when
i + j � 2, where i is the Galerkin summation index in the y

direction and j is the Galerkin summation index in the z

direction. Substituting equations (49) into equations (44)
and (45), multiplying the equations by the orthogonal
eigenfunctions corresponding to equations (44), and inte-
grating over the domain and wavelength of the convection
cell in the vertical and horizontal directions respectively, i.e.,
􏽒
π/κ
0 dy 􏽒

1
0 dz(.), we obtain a set of three ordinary differential
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equations for the time evolution of the second-order am-
plitudes expressed by

d
2
A11

dt
2
∗

� − 2c5Prf κ2 + π2
􏼐 􏼑

dA11

dt∗
− c

2
5Pr

2
f κ2 + π2

􏼐 􏼑
2
A11 − π2Pr

2
fTaA11 +

c6κ
2
PrfRaf

κ2 + π2􏼐 􏼑
A11 + c6κ

2
PrfRaf c5Prf − c7􏼐 􏼑,

d
2
B02

dt
2
∗

�
1

2Cf

dB02

dt∗
+
πκ
2

A11B11 − 4π2c7B02􏼢 􏼣 −
πκ2

2
A
2
11 +

πκ
2

A11
dB11

dt∗
+ B11

dA11

dt∗
􏼠 􏼡 + π2κ2A2

11B11 + πκA11
dB11

dt∗
,

d
2
B02

dt
2
∗

�
1

2Cf

dB02

dt∗
+
πκ
2

A11B11 − 4π2c7B02􏼢 􏼣 −
πκ2

2
A
2
11 +

πκ
2

A11
dB11

dt∗
+ B11

dA11

dt∗
􏼠 􏼡 + π2κ2A2

11B11 + πκA11
dB11

dt∗
.

(50)

After introducing new variables of amplitudes defined as

U �
κ/κc( 􏼁A11

κ/κc( 􏼁
2

+ 2
,

Y � κRfB11,

Z � πRfB02,

(51)

and the expressions

Rf �
Raf

Rafc

,

t∗ � κ2 + π2􏼐 􏼑t,

λ �
8

κ/κc( 􏼁
2

+ 2􏽨 􏽩
,

Rafc �
ϵ κ2 + π2
􏼐 􏼑

3

κ2
,

δ �
1

2Cf κ2 + π2􏼐 􏼑
,

Tf �
π2Ta

κ2 + π2􏼐 􏼑
3,

ϵ �
(ρβ)f

(ρβ)hf

αhf

αf

μhf

μf

,

κc �
π
�
2

√ , (52)

in equations 50, we obtain the following system:

€U � − 2c5Prf
_U + Prf c6ϵRf − Prf Tf + c

2
5􏼐 􏼑􏽨 􏽩U − c6Prf UZ − c5Prf − c7􏼐 􏼑􏽨 􏽩Y,

€Y � ϵRf
_U + U

2
Y − 2U _Z − _UZ + δ ϵRfU − _Y − UZ − c7Y􏼐 􏼑,

€Z � _UY + 2U _Y − ϵRfU
2

+ U
2
Z + δ UY − _Y − λc7Z􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(53)

,erefore, we can reduce the amplitude equations of
system (53) to a system of first-order nonlinear equations by
introducing the amplitudes V � _U, P � ϵRfU − _Y − UZ,
and S � UY − _Z.,us, we obtain the six-dimensional system

by describing the nonlinear dynamic behavior of thermal
convection in mono or hybrid nanofluids, presented as
follows:

_U � V,

_Y � ϵRfU − P − UZ,

_Z � UY − S,

_P � US − δ P − c7Y( 􏼁,

_S � UP − δ S − λc7Z( 􏼁,

_V � − 2c5PrfV + Prf c6 ϵRf − Prf Tf + c
2
5􏼐 􏼑􏽨 􏽩U − c6Prf UZ − c5Prf − c7􏼐 􏼑􏽨 􏽩Y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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where the dot (.) denote the time derivative d/dt.
When φ1 � φ2 � 0, φ1 ≠ 0 and φ2 � 0, φ1 � 0 and φ2 � 0,

system equation (63) corresponds to the base fluid, alumina-
water nanofluid, copper-water nanofluid, respectively.

When Tf � 0, system (63) is equivalent to the system
obtained by Dèdèwanou et al. [42]. When φ1 � φ2 � 0,

Cf � 0, system (54) is equivalent to the system obtained by
Gupta et al. [10].

When φ1 � φ2 � 0, Tf � 0, system (54) is equivalent to
the system obtained by Layek and Pati [41].

In the absence of the thermal relaxation time, (54) and
(46) are reduced to the following system:

_U � V,

_Y � ϵRfU − c7Y − UZ,

_Z � UY − λc7Z,

_V � − 2c5PrfV + Prf c6 ϵRf − Prf Tf + c
2
5􏼐 􏼑􏽨 􏽩U − c6Prf UZ − c5Prf − c7􏼐 􏼑􏽨 􏽩Y.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(55)

Lorenz [45] has investigated the nonlinear analysis of
convection in pure fluid confined in a nonporous cavity by
using the Fourier law. His nonlinear dynamic system has
been analyzed and solved for Prf � 10, so that there are
convection cells in the domain and that the boundary
conditions are satisfied [45, 46]. Bissell [43] analyzed the
oscillatory convection with the Cattaneo–Christov hyper-
bolic heat-flow model and included the effects owing to
Prandtl number, which in some circumstances can be used
as a control parameter. He showed that the Cattaneo
threshold can be conceived equivalently as a Prandtl
threshold, so that system bifurcations could potentially be
triggered by varying the Prandtl number. For small values of
Cattaneo number, a five-dimensional nonlinear system
obtained by Layek and Pati [41] undergoes a subcritical
transition to chaos similar to the Lorenz system but un-
dergoes a period-doubling transition to chaos when Prf � 5
and Cf � 0.001. For increasing values of Prandtl number, he
found that the fine-structure of the period-doubling cascade
is interrupted and that this is due to the generation of in-
ternal noise that fastens the transitional process. With the
critical value of the wavenumber corresponding to the
convection threshold, the expression of the Rayleigh number
of the base fluid defined in equation (53) gives:
Rafc � 27π4ϵ/4.

4.2. Dissipation Effect. ,e nonlinear dynamical system
(54) has the reflection symmetry
(U, Y, P)⟶ − (U, Y, P) and

∇
→

. ϑ
→

�
z _U

zU
+

z _Y

zY
+

z _Z

zZ
+

z _P

zP
+

z _S

zS
+

z _V

zV
,

∇
→

. ϑ
→

� − Prf 2c5 + c6( 􏼁 + 2δ􏽨 􏽩.

(56)

We note that ∇
→

. ϑ
→
< 0 whatever the values of Prf, c5, c6

and δ. ,en system (54) is dissipative and its solutions are
bounded in phase space. ,erefore, if a set of initial points in
phase space occupies the region ϑ(0) at t � 0, then after

some time, t, the end points of the corresponding trajectories
will fill a volume

ϑ(t) � exp − Prf 2c5 + c6( 􏼁 + 2δ􏽨 􏽩t􏽮 􏽯. (57)

4.3. Equilibrium Points and Heir Stability. In this section,
the nature of the nonlinear dynamics of systems (54) and
(55) is determined around the fixed points by analyzing the
stability of stationary solutions. ,e hybrid nanofluid is
confined in a nonporous cavity so that there are convection
cells in the domain and the boundary conditions are
satisfied.

4.3.1. He Case of Cf � 0. Considering the general form of
system (54) defined by _X � F(Xs) and the equilibrium
(stationary or fixed) points Xs defined by F(Xs) � 0, we
obtained three fixed equilibrium points of the system, in-
cluding the first one

U1 � Y1 � Z1 � P1 � S1 � V1 � 0, (58)

is the stationary solution and the other two

U2,3 � ±

�����������������������������

− λc5c6c7

Tf + c
2
5􏼐 􏼑

c7

c5c6
Tf + c

2
5􏼐 􏼑 − ∈ Rf􏼢 􏼣

􏽶
􏽴

,

Y2,3 � ±

���������������������������������
− λc7

c5c6
Tf + c

2
5􏼐 􏼑

c7

c5c6
Tf + c

2
5􏼐 􏼑 − ∈ Rf􏼢 􏼣

􏽳

,

Z2,3 � ∈ Rf −
c7

c5c6
Tf + c

2
5􏼐 􏼑,

V2,3 � 0,

(59)

are the convection solutions.,e linear stability of the points
can be obtained by linearizing the nonlinear dynamical
system equation (55). ,us, the resulting Jacobian matrix is
as follows:
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M �

0 0 0 1

εrf − Z − c7 − U 0

Y U − λPrf 0

Prf c6εrf − Prf Tf + c
2
5􏼐 􏼑􏽨 􏽩 c6Prf c5Prf − c7􏼐 􏼑 − c6PrfU 2c5Prf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

Using test solutions of the form exp(ξt), ξ ∈ C, the
stability of the fixed point corresponding to the conduction

solution is controlled by the roots of the following char-
acteristic polynomial equation:

λc7 + ξ( 􏼁 ξ3 + 2c5Prf + c7􏼐 􏼑ξ2 + Pr
2
f Tf + c

2
5􏼐 􏼑 + Prf 2c5c7 − c6ϵRf􏼐 􏼑􏽨 􏽩ξ2 + Pr

2
f Tf + c

2
5􏼐 􏼑 − c5c6 ϵRf􏽨 􏽩􏽮 􏽯 � 0. (61)

,is equation (61) generates four eigenvalues. ,e first
one given by ξ � − λc7 is always negative, and the other three
are the solutions of the following equation:

ξ3 + 2c5Prf + c7􏼐 􏼑ξ2 + Pr
2
f Tf + c

2
5􏼐 􏼑 + Prf 2c5c7 − c6 ϵRf􏼐 􏼑􏽨 􏽩ξ + Pr

2
f c7 Tf + c

2
5􏼐 􏼑 − c5c6 ϵRf􏽨 􏽩 � 0. (62)

From this equation, the fixed point of the stationary
solution is stable if and only if c5c6 ϵRf < c7(Tf + c2

5).,us,
the critical value of the rescaled Rayleigh number of the base
fluid at which the fixed point of the stationary solution loses
its stability and that of the convection solution takes over is
expressed by

Rfc1 �
c7

ϵc5c6
Tf + c

2
5􏼐 􏼑. (63)

,is expression is a function of the thermophysical
properties of the hybrid nanofluid and the rescaled Taylor
number, so the transition from conduction to stationary
convection depends on the volume fraction of the nano-
particles and the effect of rotation as shown in Figure 2.

Data analysis of the curves constructed in Figure 2 shows
that when the value of Taylor number is less than about 0.33,
0.315, 0.30, and 0.293 for φ1 � φ2 � 0.01, 0.02, 0.03, and
0.04, respectively, Rfc1 decreases but increases for higher
values of Tf. Taking Tf � 0 for example, we found Rfc1 �

1.2 like Gupta [10] for the ordinary fluids (φ � 0). But when
φ1 � φ2 � 0.01, 0.02, 0.03, 0.04; we have Rfc1 ≈ 1.176, 1.157,

1.142, 1.13. ,us, it is then possible to reduce or increase
conduction in a heat transfer fluid using hybrid nano-
particles under the effect of rotation. Using the same test
solutions of the form exp(ξt), ξ ∈ C, the stability of the fixed
points corresponding to the convection solution is con-
trolled by the roots of the following characteristic polyno-
mial equation:

ξ4 + c7(1 + λ) + 2c5Prf􏽨 􏽩ξ3 +
λc5c6c7εRf

Tf + c
2
5􏼐 􏼑

+ 2c5c7Prf(1 + λ) + Prf Prf −
c7

c5
􏼠 􏼡 Tf + c

2
5􏼐 􏼑⎡⎢⎣ ⎤⎥⎦ξ2

+
2λc

2
5c6c7εRf

Tf + c
2
5􏼐 􏼑

+ λc7Prf Prf −
2c7

c5
􏼠 􏼡 Tf + c

2
5􏼐 􏼑 + c6εRf􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭ξ � 0.

(64)

,is equation is solved numerically for different values of
the parameters to study the stability of the fixed points of the
convection solutions.

4.3.2. He Case of Cf ≠ 0. In the presence of the thermal
relaxation time, the elimination of a quadratic factor, which
is not associated with the beginning of the instability,
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allowed us to find the characteristic polynomial equation of
the fixed point corresponding to the immobile support at the

origin whose roots control its stability, which is presented as
follows:

ξ4 + 2c5Prf + δ􏼐 􏼑ξ3 + δ 2c5Prf + δ􏼐 􏼑 − Prf c6ϵRf − Prf Tf + c
2
5􏼐 􏼑􏽨 􏽩􏽮 􏽯

ξ2 + 2c5c7δPrf − c6Prf 2c5Prf − c7􏼐 􏼑 ϵRf − δPrf c6ϵRf − Prf Tf + c
2
5􏼐 􏼑􏽨 􏽩􏽮 􏽯

+ δPr
2
f c7 Tf + c

2
5􏼐 􏼑 − c5c6 ϵRf􏽨 􏽩 � 0.

(65)

When ξ � 0, a stability exchange occurs and stationary
convection takes over. ,e corresponding critical rescaled
Rayleigh number of the base fluid from which this phe-
nomenon is observed is equivalent to equation (63).

5. Results and Discussion

We performed numerical simulations to investigate the
influence of hybrid nanoparticles and rotation on the dy-
namic behavior of thermal convection in a base fluid (water)
in the presence of thermal relaxation time. Using free
boundary conditions, we determined the analytical ex-
pressions of Rayleigh numbers of the base fluid for stationary
and oscillatory convection as a function of the thermo-
physical properties of the hybrid nanofluid. We observe that
the stationary Rayleigh number of the base fluid does not
depend on the Prandtl number and the Cattaneo number.
Figure 3 shows the variation of the stationary Rayleigh
number of the base fluid as a function of wavelength for
different values of the volume fraction of the hybrid
nanoparticles (alumina-copper) with a fixed value of Taylor
number. From these plotted curves, we find that the sta-
tionary Rayleigh number increases with the value of the
volume fraction of hybrid nanoparticles. ,us, the addition
of the hybrid nanoparticles (alumina-copper) to the base
fluid (water) subjected to the rotation stabilizes the

stationary convection. Figure 4 shows the variation of the
stationary Rayleigh number of the base fluid as a function of
the wavelength for different values of the Taylor number
with a fixed value of the volume fraction of the hybrid
nanoparticles (alumina-copper).

From these plotted curves, it can be seen that the sta-
tionary Rayleigh number increases with an increasing Taylor
number. ,us, the rotation stabilizes the stationary con-
vection in the hybrid nanofluid.

,e fourth-order Runge–Kutta method, the polynomial
companion matrix, and the standard eigenvalue solver of the
Lapack method are used to numerically solve systems equa-
tions (54) and (55). We took the initial conditions U(0) �

Y(0) � 0.8, Z(0) � 0.92195, P(0) � 0.8, S(0) � 0.92195 and
V(0) � 0.8. In order to guarantee the results, our different
numerical simulations are compared with the results obtained
by Dèdèwanou et al. [42] and Gupta [10]. We present in
Figures 5–8, the bifurcation diagrams representing the minima
andmaxima of the posttransient regimes of the solutions of the
amplitude Z(t) as a function of function of Rf when the-
thermal relaxation time is zero using Prf � 10 and λ � 8/3.
,ese diagrams show that system equation (55) can have
chaotic, periodic, or multiperiodic behavior depending on
the parameter values chosen. By comparing the diagrams
in Figures 5–7, we notice that, for Tf � 0.2, when the
volume fraction of the hybrid nanoparticles increases, the

10

8
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4

2

0

Rfc1

0 1 2
Tf

3 4 5

φ1 = φ2 = 0
φ1 = φ2 = 0.01
φ1 = φ2 = 0.02

φ1 = φ2 = 0.03
φ1 = φ2 = 0.04

Figure 2: Variation of the critical Rayleigh number of the stationary solution as a function of the Taylor number with increasing
nanoparticle volume fraction.

12 Complexity



domain of the chaotic behavior chaotic behavior decreases
with the increase of the values of the rescaled Rayleigh
number of the number of the base fluid. On the other
hand, comparison of the plots in Figures 6 and 8 shows
that, for φ1 � φ2 � 0.02, increasing the values of the Taylor

number increases the domain of chaotic behavior with
increasing values of the rescaled Rayleigh number of the
base fluid.
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Figure 3: Variation of the stationary Rayleigh number of the base fluid as a function of the volume fraction of hybrid (aluminum-copper)
nanoparticles.
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Figure 4: Variation of the stationary Rayleigh number of the base
fluid as a function of the Taylor number.
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Figure 6: Bifurcation diagram of Z versus Rf representing maxima
and minima of the posttransient solution of Z(t) for hybrid
nanofluid φ1 � φ2 � 0.02) with Tf � 0.5.
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To confirm this prediction of the bifurcation diagrams,
we constructed in Figure 9, the chaotic behavior of the
system in the base fluid case by choosing Rf � 80 and

Tf � 0.5. As shown in Figure 10, we set the values of the
rescaled Taylor and Rayleigh numbers by varying the volume
fraction of the hybrid nanoparticles to construct the in-plane
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Figure 9: Phase portrait and its corresponding time story for φ1 � φ2 � 0), Rf � 80 and Tf � 0.5.
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phase spaces with their corresponding time evolutions. For
φ1 � φ2 � 0, 0.02 and 0.04, the system is chaotic in period 2
and period 1, respectively. ,erefore, by analyzing these
curves shown in Figure 10, it can be deduced that the ad-
dition of the hybrid nanoparticles in a heat transfer fluid
makes the convection periodic. On the other hand, in the
case of Figure 11, we have fixed the values of the volume
fraction of hybrid nanoparticles and the rescaled Rayleigh
number of the base fluid by varying the value of the rescaled
Taylor number. ,e analysis of these curves shows that the
system leaves the chaotic regime to the periodic regime when
the value of the rescaled Taylor number decreases.,erefore,
increasing the rescaled Taylor number increases the peri-
odicity of the system.

Furthermore , we present in Figures 12–15, the bifurcation
diagrams representing the minima and maxima of the post-
transient regimes of the solutions of the amplitude Z(t) as a
function of Rf when the thermal relaxation time exists using
Prf � 5 like Layek and Pati [41]. ,ese diagrams show that
system 63 can also have chaotic, periodic, or multiperiodic
behavior depending on the parameter values chosen. Com-
paring the diagrams in Figures 12–14, it can be seen that, for

Tf � 0.2 and Cf � 0.001, increasing the volume fraction of the
nanoparticles hybrid nanoparticles decreases the domain of
chaotic behavior with the increase of the Rayleigh number
values of the base fluid. On the other hand, the comparison of
the diagrams in Figures 13 and 15 show that, forφ1 � φ2 � 0.02
and Tf � 0.2, increasing the values of the Cattaneo number
largely increases the range of chaotic behavior with increasing
values of the Rayleigh number of the base fluid. Referring to
Figure 14, for φ1 � φ2 � 0.04, Tf � 0.2 and Cf � 0.001, the
system is chaotic for 14<Rf < 16.

In Figures 16 and 17, we have constructed the phase
spaces in the X − Z plane for different values of the control
parameters of system equation (54). When we set Tf � 0.2
and Cf � 0.001 (see Figure 16), we notice in the base fluid
case (φ1 � φ2 � 0) that the system is in period 4 for
Rf � 166. For φ1 � φ2 � 0.02, the system is in period 2 and
for φ1 � φ2 � 0.04, the system has quasi-chaotic behavior.
For φ1 � φ2 � 0.02 and Rf � 100 fixed, the system is in
period 1 for Tf � 0.2 and Cf � 0.001. On the other hand, for
Tf � 0.2 and Cf � 0.003, Tf � 0.2 and Cf � 0.005, Tf � 0.3
and Cf � 0.005, Tf � 0.5 and Cf � 0.001, and Tf � 1.7 and
Cf � 0.005, the system is chaotic.
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6. Conclusions

We have studied the occurrence of thermal convective in-
stabilities and chaos in a rotating infinite horizontal hybrid
nanofluid layer heated from below with the Cattaneo–
Christov heat flux model and subjected to unconstrained
boundary conditions. ,e linear study of the mass, mo-
mentum, energy, and heat flow equations governing natural
convection allowed us to find the general expression for the
stationary Rayleigh number of the base fluid that can be used
for the nonlinear dynamic analysis of thermal convection in
nanofluids. We noticed that the rotation and the addition of
nanoparticles in the base fluid have stabilizing effects on the
stationary convection. With the obtained low-dimensional
dynamical systems, we notice that the addition of hybrid
nanoparticles in the heat transfer fluid subjected to rotation
and/or in the presence of the thermal relaxation time reduces
the domain of chaos and enlarges the domain of periodicity
with the increase of the Rayleigh number of the base fluid.
On the other hand, the increase of the Taylor number and
Cattaneo number increases the chaotic domain with the
increase of the Rayleigh number of the base fluid. ,e
obtained nonlinear system depends on the parameters of the
base fluid and the thermophysical properties of the hybrid
nanofluid; it will be very useful to predict or control the
chaotic behaviour of thermal convection in dynamic and
biological systems. ,us, the hybrid nanofluid confers a
great advantage for chaos control in many industrial ap-
plications like food processing, chemical processes, solidi-
fication and centrifugal casting of metals, and rotating
machines to achieve the desired results. Obtained results and
comparative studies show that the use of hybrid nano-
particles can be useful to control the small thermal relaxation
time due to thermal inertia for thermal transport in bio-
logical tissues and surgical operations.

Latin symbols

A11: Stream function amplitude
B11, B02: Temperature amplitude
C: Cattaneo number
Cp: Specific heat at constant pressure

(J.kg− 1: K− 1)
d/dt: Material derivative
e

→
n: Unit vector normal to the boundary

h(x; y): Plane tiling function
g
→, g: Acceleration vector of gravity, gravity

intensity (m.s− 2)
k: ,ermal conductivity (W.m− 1.K− 1)
m: Particle shape factor
M: Matrix associated to the origin fixed point
P: Pressure (Pa)
Pr: Prandtl number
Q: Heat flux
Ra: ,ermal Rayleigh number
Rf: Rescaled Rayleigh number of the base fluid
t: Time (s)
Ta: Taylor number
Tf: Rescaled Taylor number

Tc: Hot temperature (K)
T0: Cold temperature (K)
T: Temperature at time t (K)
U; Y; Z; P; S; V: Rescaled amplitudes
v
→: velocity vector
W: Velocity eigenfunction
(x, y, z): Cartesian coordinates

Greek symbols

α: ,ermal diffusivity of the fluid (m− 2.s− 1)
β: Coefficient of thermal expansion (K− 1)
ci: Nanofluid parameters
δ: Rescaled Cattaneo number
ϵ: Parameter related to nanofluid properties
ζ: Vorticity
ϑ: Volume
κ: Wavenumber
μ: Dynamic viscosity (kg.m− 1.s− 1)
ξ: Eigenvalues
ρ: Density (kg.m− 3)
τ: ,ermal relaxation time
φ1: Alumina volume fraction
φ2: Copper volume fraction
χ: Temperature gradian
ω: Oscillatory frequency
Θ: Temperature eigenfunction
Φ: Heat-flux eigenfunction
ψ: Stream function
Ω: Angular velocity

Subscripts

∗ : Dimensionless
∼ : Small quantity

b: Basic solution
c: Critical
f: Base fluid
hf: Hybrid nanofluid
s: Nanoparticle
0: Reference.
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(is work identifies the influence of chaos theory on fractional calculus by providing a theorem for the existence and stability of
solution in fractional-order gyrostat model with the help of a fixed-point theorem. We modified an integer order gyrostat model
consisting of three rotors into fractional order by attaching rotatory fuel-filled tank and provided an iterative scheme for our
proposed model as a working rule of obtained analytical results. Moreover, this iterative scheme is injected into algorithms for a
system of integer order dynamical systems to observe Lyapunov exponents and a bifurcation diagram for our proposed fractional-
order dynamical model. Furthermore, we obtained five equilibrium points, including four unstable spirals and one saddle node,
using local dynamical analysis which acted as self-exciting attractors and a separatrix in a global domain.

1. Introduction

System of ordinary differential equations [1]
_x � f(x, β). (1)

Is called the dynamical system, and a parameter β ∈ R in
the velocity vector field is termed as bifurcation parameter if
system (1) changes its topological structure with the vari-
ation in parameter values, whereas the process of changing
in qualitative structures is known as bifurcation. (ere are
several types of bifurcation including saddle node [2], Hopf
[3–7], and zero-Hopf [8–11]. (e bifurcation diagram [12]
for the parameter makes it easy for predicting the type of
bifurcation and existence of chaos in system (1). Chaos has a
vital role in engineering [13–17], medical [18–20], aero-
nautics [14, 21] and fluid dynamics [22–24]. Apart from the
above cited applications, its great influence can also be found
in fractional calculus [25–27] and reference therein. Dy-
namical systems based on ordinary differential equations
with an integer order, c � 1, describe velocity vectors, but for
fractional order, c ∈ (0, 1), researchers aim to target velocity

vectors and replace it by differential equation with order
between 0 and 1. Several discretization techniques such as
fractional linear multistep [28], Adam [29], predictor-cor-
rector [30], and Adam–Bashforth/Moulton [31] are used to
solve fractional-order dynamical systems since decade, but
the most flexible scheme with fast convergence in solving
nonlinear problems is the variation iteration method (VIM).
(is technique was used for integer order dynamical sys-
tems, but later on modified for fractional-order systems by
introducing Lagrangian multiplier [32] into it. Many re-
searchers have enhanced its importance by using it in several
engineering-based complex problems, such as in 2006, the
variation iteration scheme was utilized for fractional-order
systems by Odibat and Momani [33], whereas new develop-
ment in the VIM was carried by Wu and Baleanu [32] in 2013
to overcome its limitation. Recently in 2021, Kumar and Gupta
[34] worked on application of theVIM in a fuzzy-based system.

It has been observed from the above-cited work and our
knowledge from the literature that dynamical systems re-
lated to spacecrafts or its attached devices such as beam and
gyrostat have never been considered for the existence of
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solution and self-exciting attractors in a fractional-order form.
(erefore, we have restructured the gyrostat chaotic system
[35] into a fractional order along with the addition of a rotatory
liquid-filled tank to discuss its unique solution, bounds, and
stability using the fixed point theory. Moreover, for bringing
novelty into our work, a variation iteration scheme has been
used in our proposed fractional-order system to observe chaos
into it. For this purpose, several algorithms such as by Wolf
et al. [36] and the bifurcation diagram [37] were modified by
injecting the VIM iteration scheme into these algorithms.
Finally, analyzing local dynamics of our proposed model,
trajectories around five equilibrium points with four unstable
spirals and a single saddle node motivated us to search for self-
exciting attractors with a separatrix in a global domain.

(e following pattern can be followed for understanding
the rest of the paper. In Section 2, the gyrostat chaotic system is
remodeled by adding rotatory liquid-filled tank and modified
into fractional order. Several theorems have been proved in
Section 3 for the existence of solution and stability. An iteration
scheme for our proposedmodel has been introduced in Section
4, while several applications of this scheme related to dynamical
analysis are discussed in Section 5. Finally, Section 6 comprises
concluding remarks and future target.

2. Modeling of Gyro Chaotic System
Attached with Fuel-Filled Tank

Gyrostat is a device consisting of rotors, used as an at-
tachment in larger objects for bringing stability in their
dynamics with the passage of time. (e system of three-
dimensional ordinary differential equations for the gyrostat
model is designed by Qi et al. [35]:

Ix _x � Iy − Iz􏼐 􏼑yz − yhz + zhy − Tx + Lx,

Iy _y � Iz − Ix( 􏼁zx − zhx + xhz − Ty + Ly,

Iz _z � Ix − Iy􏼐 􏼑xy − xhy + yhx − Tz + Lz,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where X � [xyz]T is the angular velocity vector,
I � [Ix, Iy, Iz] are the principal moments of inertia of the
gyrostat in the body axis frame, H � [hx, hy, hz] are con-
stants of total angular momentum, whereas L � [Lx, Ly, Lz]

and T � [Tx, Ty, Tz] are external and disturbed torques
applied on the gyrostat, respectively.

A tank, rotating about an angle θ at desired point
(x, y, z) (shown in Figure 1), is attached with an originally
disturbed gyrostat system given in (2). It is observed that
L � (Lx, Ly, Lz) is a vector of external forces applied on the
gyrostat. (erefore, we have attached a tank containing fuel
which exert external forces on the gyrostat due to rotation of
the attached tank with respect to z− axis about angle θ at
desired point (x, y, z). Hence, we replaced L with

R � Rz(θ)d(x), (3)

where R � (Rx, Ry, Rz), Rz(θ) is the rotation matrix for z−

axis and d(x) is a desired point about which one can rotate
the attached tank. (erefore, using vector T in ((2) [38]) and
R given in (3) into (2), we obtain the following equation:

I
C
xD

c
x � Iy − Iz􏼐 􏼑yz − yhz + zhy − μxx + x cos(θ) − ysin(θ),

I
C
yD

c
y � Iz − Ix( 􏼁zx + xhz + μyy + xsin(θ) + ycos(θ),

I
C
z D

c
z � Ix − Iy􏼐 􏼑xy − xhy − μzz + z,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

System (4) is a fractional-order mathematical represen-
tation of the model given in Figure 1 in which c is the
fractional number between 0 and 1 exclusive, u= (ux, uy, uz)

is a damping constant vector, while X, I, and H are defined in
equation (2).Moreover, system (4) shows chaotic behavior for
X � [0.1, 0.1, 0.1], I � [0.85, 0.45, 0.2], u � [6, 6.42, 5.8],
H � [0, 0.57416 ,2, 38], and R � [− 20, 2, 20]. (e phase por-
trait of system (4) with given initial and parameter values can
be seen in region 10 of Figure 2.

3. Existence and Stability of Solution

In this part of our paper, we determined results based on the
existence theory for system (4) using the fixed point theorem
with Banach space. (erefore, basic definitions and important
lemmas are considered for the understanding of this work.

Definition 1 (see [39]). (e integral of fractional order c0 for
a function ϖ is given by

I
cϖ(t) �

1
Γ(c)

􏽚
t

0
(t − η)

c− 1ϖ(η)dη . (5)

Definition 2 (see [39]). (e Caputo fractional derivative of
order c0 of a continuous function ϖ is given by

C
D

c
ϖ(t) �

1
Γ(n − c)

􏽚
t

0
(t − η)

n− c− 1ϖ(n)
(η)dη , (6)

where n � [c] + 1.
Following two lemmas have importance in achieving the

solutions of the systems consisting of fractional differential
equations.

z

Spacecra�

Y

X

Ro
to

r 3

Rotor 2
Fuel

Rotor 1

Figure 1: Spacecraft attached with partially filled fuel tank and
three rotors. (is figure is reproduced from the work of Sabir et al.
[7] with the assumption that the third rotor is rotating about z-axis.
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Lemma 1 (see [39]). Assume ϖ ∈ C(0, 1), then the solution
of fractional differential equation

C
D

c
ϖ(t) � 0, (7)

Of order c0 is

ϖ(t) � c0 + c1t + · · · + cn− 1t
n− 1

, ci ∈R, i � 0, 2, . . . , n − 1.

(8)

Lemma 2 (see [39]). Let us consider ϖ ∈ C(0, 1), with a
derivative of fractional order c, then

I
cC
D

c
ϖ(t) � ϖ(t) + c0 + c1t + · · · + cn− 1t

n− 1
, ci ∈R, i � 0, 2, . . . , n − 1. (9)

We begin our work by introducing ϖ1, ϖ2, and ϖ3 on the
right side of equation (4) and for convenience, we use the
following notions:

χ(t) �

x(t),

y(t),

z(t),

χ0 �

x(0),

y(0),

z(0),

Ψ(t, χ(t)) �

ϖ1(t, x, y, z),

ϖ2(t, x, y, z),

ϖ3(t, x, y, z),

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎨

⎪⎪⎩

(10)

and

Ψ0 �

ϖ1(0, x(0), y(0), z(0)),

ϖ2(0, x(0), y(0), z(0)),

ϖ3(0, x(0), y(0), z(0)),

⎧⎪⎪⎨

⎪⎪⎩
(11)

System (4) can be rewritten, using (5) as
C

D
c

t [χ(t)] � Ψ(t, χ(t)), t ∈ [0, τ],

χ(0) � χ0.
(12)

According to Lemma 2, problem (12) can be converted
into an integral equation

χ(t) � χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη . (13)

Definition 3. Let us consider X � C([0, τ] a Banach space
under the suitable norm

‖χ‖ � sup
t∈J

|χ|: χ ∈ X􏼈 􏼉, (14)

and the operator is defined as

τχ(t) � χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη , (15)

where 0≤ t≤ τ〈∞ and J � [0, τ]. (en, the following as-
sumptions are true:

[(A1)] (ere exists a positive constant Ψ〉0 such that

Ψ(t, χ(t)) − Ψ(t, χ(t)) ≤ Ψ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌χ(t) − χ(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (16)

[(A2)] (e following inequality holds for positive
constants MΨ, GΨ〉0:

|Ψ(t, χ(t))|≤MΨ|χ| + GΨ. (17)

Theorem 1. Let us consider that Ψτc〈Γ(c + 1) and as-
sumption (A2) is satisfied.*en, there exists a unique solution
of system (4) with the contraction of operator τ.

Proof. Let χ, χ∈ X, then one has

‖τχ − τχ‖ � sup
t∈J

|χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη

− χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη􏼠 􏼡|

≤
1
Γ(c)

􏽚
τ

0
(t − η)

c− 1
|Ψ(η, χ(η)) − Ψ(η, χ(η))|dη

≤
1
Γ(c)

􏽚
τ

0
(t − η)

c− 1
dη Ψ|χ(η)) − χ(η)|

≤ Ψ
τc

Γ(c + 1)
‖χ − χ‖.

(18)
(is shows that τ is a contraction. Hence, our desired

result is obtained, that system (4) has a unique solution. □

Theorem 2. *e integral equation (8) has at least one so-
lution if Ψ〈G(c) under the assumptions of A1 and A2.

Proof. For existence of a solution for operator τ, it is enough
to show that τ is completely continuous, and there exists an

1

2

3

4

56
7

8

9

10

Figure 2: Existence of chaos in clockwise and anticlockwise directions.

Complexity 3



element χ ∈ X such that χ � δτ(χ) for δ ∈ (0, 1). (erefore,
our proof will pass through three steps for achieving our
desired results. □

Step 1. Let us consider a sequence χn⟶ χ in X and for
each t ∈ J, we have

τχn − τχ
����

���� � sup
t∈J

|χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ η, χn(η)( 􏼁dη

− χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη􏼠 􏼡|

≤
1
Γ(c)

􏽚
τ

0
(t − η)

c− 1 Ψ η, χn(η)( 􏼁 − Ψ(η, χ(η))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dη .

(19)

Hence, τχn approaches τχ as time t tends to infinity

τχn − τχ
����

����⟶ 0asn⟶∞. (20)

Equation (20) identifies continuity of an operator τ.

Step 2. Let us consider a bounded set Br � χ ∈ X: ‖χ‖􏼈 ≤ r},
where r is a positive real number. (en, for any χ ∈ Br, we
have

‖τχ‖ � sup
t∈J

χ0 +
1
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ χ0 +
1
Γ(c)

􏽚
τ

0
(τ − η)

c− 1
|Ψ(η, χ(η))|dη

≤ χ0 +
MΨ|χ| + GΨ
Γ(c)

􏽚
τ

0
(τ − η)

c− 1
dη

≤ χ0 +
MΨr + GΨ( 􏼁τc

Γ(c + 1)
� l.

(21)

Hence, τ maps a bounded set into a bounded set.

Step 3. (e image of a bounded set under τ is equi-
continuous in X.

Let t1〈t2 in J and χ ∈ Br, we have

τχ t2( 􏼁 − τχ t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |χ0 +
1
Γ(c)

􏽚
t2

0
t2 − η( 􏼁

c− 1Ψ(η, χ(η))dη

− χ0 +
1
Γ(c)

􏽚
t1

0
t1 − η( 􏼁

c− 1Ψ(η, χ(η))dη􏼠 􏼡|

� |
1
Γ(c)

􏽚
t1

0
t2 − η( 􏼁

c− 1Ψ(η, χ(η))dη􏼠

+ 􏽚
t2

t1

t2 − η( 􏼁
c− 1Ψ(η, χ(η))dη− 􏽚

t1

0
t1 − η( 􏼁

c− 1Ψ(η, χ(η))dη􏼡|

≤
1
Γ(c)

􏽚
t1

0
t2 − η( 􏼁

c− 1
+ t1 − η( 􏼁

c− 1Ψ(η, χ(η))dη􏼠 + 􏽚
t2

t1

t2 − η( 􏼁
c− 1Ψ(η, χ(η))dη

≤
MΨr + GΨ
Γ(c + 1)

􏽚
t2

0
t2 − η( 􏼁

c− 1
dη − 􏽚

t1

0
t1 − η( 􏼁

c− 1
dη􏼨 􏼩≤

MΨr + GΨ
Γ(c + 1)

t
c
2 − t

c
1􏼈 􏼉.

(22)

As t2⟶ t1, then |τχ(t2) − τχ(t1)|⟶ 0, and thus, τ is
continuous and bounded. Hence, ‖τχ(t2) − τχ(t1)‖⟶ 0
shows uniform continuity of τ. (erefore, steps 1 − 3 show
that τ is completely continuous.

Step 4. Finally, we have to show that B � χ ∈ X: χ �􏼈

δτ(χ)} for some δ ∈ [0, 1], is bounded. Let χ ∈B and for any
t, we have

‖χ‖ � sup
t∈J

|δT(χ)|

� sup
t∈J

|δχ0 +
δ
Γ(c)

􏽚
t

0
(t − η)

c− 1Ψ(η, χ(η))dη|

≤ χ0 +
1
Γ(c)

􏽚
τ

0
(τ − η)

c− 1
|Ψ(η, χ(η))|dη , asδ ≤ 1,

≤ χ0 +
MΨ|χ| + GΨ
Γ(c)

􏽚
τ

0
(τ − η)

c− 1
dη ,

‖χ‖≤ χ0 +
MΨ‖χ‖ + GΨ( 􏼁τc

Γ(c + 1)
.

(23)
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Simplifying inequality (19) yields

‖χ‖≤
χ0Γ(c + 1) + GΨτ

c

Γ(c + 1) − MΨτ
c . (24)

(is shows that the defined set B is bounded. Hence
using Schaefer’s theorem [40], system (4) has at least one
solution.

For achieving stability, a negligible perturbation pa-
rameter θ(t) can be included in CF

0 D
c

t χ(t) such that

(i) CF
0 D

c

t χ(t) � Ψ(t, χ(t)) + θ(t)

(ii) |θ(t)|〈ε for ε0

Lemma 3. Solution of the perturbed problem
CF
0 D

c

t χ(t) � Ψ(t, χ(t)) + θ(t)χ(0) � χ0, (25)

Satisfies the following relation:

χ(t) − χ0 + Ψ(t, χ(t)) − Ψ0􏼂 􏼃
(1 − c)

G(c)
+

c

G(c)
􏽚

t

0
Ψ(η, χ(η))dη􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤LΨε. (26)

Theorem 3. Gyrostat system (4) achieves Ullam–Hyers
stability if LΨ〈1 and assumption A2, together with Lemma 3 is
satisfied.

Proof. Let χ ∈ X be any solution and χ∈ X is a unique
solution, then

|χ(t) − (Y)(t)| � χ(t) − χ0 + Ψ(t, χ(t)) − Ψ0􏼂 􏼃
(1 − c)

G(c)
+

c

G(c)
􏽚

t

0
Ψ(η, χ(η))dη􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ χ(t) − χ0 + Ψ(t, χ(t)) − Ψ0􏼂 􏼃
(1 − c)

G(c)
+

c

G(c)
􏽚

t

0
Ψ(η, χ(η))dη􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ | χ0 + Ψ(t, χ(t)) − Ψ0􏼂 􏼃
(1 − c)

G(c)
+

c

G(c)
􏽚

t

0
Ψ(η, χ(η))dη􏼠 􏼡

− χ0 + Ψ(t, χ(t)) − Ψ0􏼂 􏼃
(1 − c)

G(c)
+

c

G(c)
􏽚

t

0
Ψ(η, χ(η))dη􏼡􏼠 􏼡|

≤ LΨε + LΨ‖χ − χ‖.

(27)

(is implies that

‖χ − χ‖≤
LΨ

1 − LΨ
ε. (28)

Hence, solution of the proposed system (4) is
Ullam–Hyers stable. □

4. Variational Iterative Scheme for System (4)

An iterative scheme, variational iterative method (VIM), is
introduced in this section using successive approximations
of the solution for rapid convergence and analytical results
discussed in Section 2.

4.1.Working Rule. To express the VIM, we consider general
nonlinear differential equation as

Lχ(t) + Nχ(t) � h(t), (29)

where L, N, and h are linear, nonlinear, and source
functions, while the corrector function for (29) is considered
as

χn+1(t) � χn(t) + 􏽚
t

0
Λ(η)(Lχ(η) + 􏽥Nχ(η) − h(η))dη .

(30)

Λ in (30) is defined as (− 1)n(t − η)n− 1/Γ(n), whereas 􏽥N

is used as a restricted value with σ 􏽥N � 0. (en, the exact
solution can be obtained as

χ(t) � lim
n⟶∞

χn(t). (31)

System (4) can be discretized using VIM as
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xn+1 � xn − I
c

I
C
xD

c
xn − Iy − Iz􏼐 􏼑ynzn + ynhz − znhy + μxxn − xcos(θ) + ysin(θ)􏼐 􏼑,

yn+1 � yn − I
c

I
C
yD

c
yn − Iz − Ix( 􏼁znxn − xnhz − μyyn − xsin(θ) − ycos(θ)􏼐 􏼑,

zn+1 � zn − I
c

I
C
zD

c
z − Ix − Iy􏼐 􏼑xnyn + xnhy + μzzn + z􏼐 􏼑,

(32)

where x(0) � x0, y(0) � y0, and z(0) � z0. For n � 0, 1

x1 � x0 +
x

cκx1

Γ(c + 1)
,

y1 � y0 +
y

cκy1

Γ(c + 1)
,

z1 � z0 +
z

cκz1

Γ(c + 1)
,

x2 � x0 +
κx2

Γ(c + 1)
x

c
−

μxκx1

Γ(2c + 1)
x
2c

,

y2 � y0 +
κy2

Γ(c + 1)
y

c
+

κy1

Γ(2c + 1)
y
2c

,

z2 � z0 +
κz2

Γ(c + 1)
z

c
−

μz − hy􏼐 􏼑κz1

Γ(2c + 1)
z
2c

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where

κx1 � − Iy − Iz􏼐 􏼑y0z0 + y0hz − z0hy + μxx0 − xcos(θ) + ysin(θ),

κx2 � κx1 1 + Ix( 􏼁 − Iy − Iz􏼐 􏼑y1z1 + y1hz − z1hy + μxx0 − xcos(θ) + ysin(θ),

κy1 � − Iz − Ix( 􏼁z0x0 − x0hz − μyy0 − xsin(θ) − ycos(θ),

κy2 � Ly 1 + Iy􏼐 􏼑 − Iz − Ix( 􏼁z1x1 − x1hz − μyy0 − xsin(θ) − ycos(θ),

κz1 � − Ix − Iy􏼐 􏼑x0y0 + x0hy + μzz0 − z,

κz2 � Lz 1 + Iz( 􏼁 − Ix − Iy􏼐 􏼑x1y1 + x1hy + μzz1 − z.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

For n � 2, we have

x3 � x0 +
ρ1/x
Γ(c + 1)

x
c

−
ρ2/x
Γ(2c + 1)

x
2c

+
ρ3/x
Γ(3c + 1)

x
3c

,

y3 � y0 +
1/y
Γ(c + 1)

y
c

+
2/y
Γ(2c + 1)

y
2c

+
3/y
Γ(3c + 1)

y
3c

,

z3 � z0 +
ς1/z
Γ(c + 1)

z
c

−
ς2/z
Γ(2c + 1)

z
2c

+
ς3/z
Γ(3c + 1)

z
3c

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

(e values of ρi
x, ϱiy and ςi

z, i � 1, 2, 3 in (35) are given in
Appendix A. In the next section, we have discussed system
(4) analytically and qualitatively. For numerical simulations,
our designed algorithm is used to plot Lyapunov exponents
and bifurcation diagram in integer order as well as frac-
tional-order chaotic systems.

5. Dynamical Analysis

(e fractional-order dynamical system exhibits chaos for some
values of fractional term, c, but using a hit and trial method for
such purpose is difficult to investigate chaos in dynamical
systems. (erefore, we plotted the bifurcation diagram for
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system (4) with respect to fractional term, c. A noisy dense area
is observed in Figure 3 that illustrates occurrence of chaos in
the fractional-order gyrostat system beginning with c � 0.86.

In section 2, we used the concept of the fixed point
theory to obtain at least one solution of system (4). Hence,
for fixed points, we consider the following function ϖi, i �

1, 2, 3 equals to zero:

ϖ1 � Iy − Iz􏼐 􏼑yz − yhz + zhy − μxx + xcos(θ) − ysin(θ) � 0,

ϖ2 � Iz − Ix( 􏼁zx + xhz + μyy + xsin(θ) + ycos(θ) � 0,

ϖ3 � Ix − Iy􏼐 􏼑xy − xhy − μzz + z � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(36)

After fixing all parameters given in section (1), then we
solve equation (36) to get the following five equilibrium
points:

E1 � [− 0.819, 3.141, 3.352]
T
,

E2 � [− 11.078, 14.8464, − 6.79773]
T
,

E3 � [12.445, − 15.8945, − 11.4255]
T
,

E4 � [11.5523, 22.4277, 20.1731]
T
,

E5 � [− 12.4328, − 23.1278, 24.5096]
T
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

In (eorem 4 local dynamical analysis of system (4) is
used for observing trajectories around equilibrium points
(27).

Theorem 4. A gyrostat chaotic system (4) is composed of five
equilibrium points, in which E1 is the saddle node and E2,3,4,5
are all unstable saddle spirals. Moreover, these spirals lead to
four attractors and one saddle node E1 that act as a separatrix
as t extends.

Proof. Five equilibrium points are calculated in equation
(27). (e Jacobian matrix plays a vital role in the system of
differential equations for local dynamical analysis. (ere-
fore, the Jacobian matrix of system (4) is

J �

− 120
17

5z

17
−
14
5

5y

17
+

7177
10625

238
45

−
(13z)

9
214
15

−
(13x)

9

2y −
7177
2500

2x − 29

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

And the Jacobian matrix for fixed parameter values at E1
is

J|E1
�

− 7.0588 − 1.8142 1.5993

0.4473 14.2667 1.1842

3.4111 − 1.6397 − 29.0000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (39)

(e characteristic equations of the Jacobian matrix (29)
is

λ31 + 21.79λ21 − 312.44λ1 − 2796.9. (40)

Solution of (40) results into single positive and two
negative eigenvalues:

λ11 � − 29.21, λ12 � − 6.75, λ13 � 14.17. (41)

Equation (41) illustrates that two states will move away
from E1, while a single state will move inward towards
equilibria: E1, and such information shows occurrence of the
saddle. (e Jacobian matrix at E2 is

J|E2
�

− 7.0588 − 4.7993 5.0421

15.1078 14.2667 16.0016

26.8220 − 22.1560 − 29.0000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (42)

And the corresponding characteristic equation is

λ32 + 21.79λ22 − 17.93λ2 + 7361.79. (43)

Solution of (43) gives three eigenvalues with one negative
real and two complex numbers with positive real part:

λ21 � − 30.37,

λ223 � 4.2871 ± 14.9684ι.
(44)

Equation (44) describes occurrence of the unstable
spiral. In a similar fashion, one can achieve

λ31 � − 30.4682,

λ323 � 4.3380 ± 19.4641ι,

λ41 � − 35.8534,

λ423 � 7.0306 ± 17.3188ι,

λ51 � − 35.8109,

λ523 � 7.0094 ± 20.5301ι.

(45)

Eigenvalues of E3, E4, and E5. In view of (45), equi-
librium points, E3,4,5 are also unstable spirals.

Analytical results (29–35) are explained in Figure 4,
which illustrate trajectories of system (4) around their
equilibrium points. Five different colors are used for each
equilibrium point, which are also highlighted as a legend in
Figure 4. It is observed that E2,3,4,5 are unstable spirals
plotted in green, brown, blue, and black colors, while red
color shows the saddle node. In detail, we can see that the red
trajectory starts from E1 and passes through the regions of
E2, E3, E4, and E5 with the passage of time.(e trajectory for
E2 shows a spiral emerging from its equilibrium point and is
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moving away from it. After some time it has been observed
that the green trajectory is acting as a heteroclinic orbit: E5.
(e same theory can be observed between E2 and E3, when a
brown colored orbit starts with high unstable oscillations
and approaches to a region occupied by E2. Apart from these
four unstable spirals, one can also locate saddle node
equilibria E1 in the red color, in which its trajectory passes
through regions acquired by unstable spirals and act as a
separatrix between them. For further analysis, we have
extended time for observing the trajectories around five
equilibrium points in the greater domain. It has been an-
alyzed that four unstable equilibrium points are self-exciting
attractors and occupy four basins. Moreover, the combi-
nation of all these four regions leads to the concept of a
strange attractor in system (4). Studying in more depth, it
has been also observed that the saddle node in the global
domain is busy in separating regions of self-exciting
attractors. For getting more knowledge about chaoticity in
the fractional-order gyrostat system (4), some basic results
are used for the possibility and detection of chaos. □

5.1. Lyapunov Exponents. (e Lyapunov exponent is one of
the fundamental results, which help researchers in pointing

out existence of unpredictability in trajectories of their
corresponding systems. Moreover, in a three-dimensional
autonomous system of ordinary differential equations, there
exist three Lyapunov exponents λi, i � 1, 2, 3. Now, if
(λ1, λ2, λ3) � (+ive, 0, − ive), then it shows existence of chaos,
whereas (− ive, − ive, +ive) illustrates the existence of periodic
solutions. In Figure 5, three Lyapunov exponents can be
observed, emerging from (− 9, 11, − 30) and leading to
(− 26.51, 0, 4.87), which motivated us to work further on it
and find out chaotic trajectories in it. For further investi-
gation, we have used the concept of the bifurcation diagram
[12].

5.2. Bifurcation Leading to Chaos. For confirmation of ex-
istence of chaos in our proposed model (4), we fixed all other
parameter values except for μy. For damping coefficient, μy,
it is observed in Figure 6 that there seems no bifurcation in
system (4) for μy ∈ (1, 3.6).(e single bifurcation emerges at
μy � 3.6 and continues till μy � 5, which changes into period
doubling bifurcation (PDB) for 5≤ μy ≤ 5.2. Trajectories of
our proposed system jump into the chaotic region for μy

lying in interval (5.2, 6.5). One can observe symmetric
behavior in sense of bifurcation leading to chaos in Figure 6.
If we start from μy � 11, two lines can be observed that are

30
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Z 
(t)

0

-10

-20

γ = 0.92
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focus
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Saddle Node

Figure 4: Trajectories of system (4) around equilibrium points.
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Figure 3: Bifurcation diagram of system (4) with respect to c.
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converted into period doubling bifurcations, then period
2⟶ period 4⟶ 8⟶ chaotic region. (is concept is
also explained with the aid of a series of phase portraits,
which confirms chaotic behavior in our proposed system.
(erefore, we have divided bifurcation diagram 5 in nine
regions and plotted phase portraits to their corresponding
values.

Figure 2 is validation of Figure 6, which explains existence
of chaos in detail by moving clockwise or anticlockwise.
(erefore, we have an indexed sequence of phase portraits for
μy. If we start from region 1, a spiral trajectory can be ob-
served and is expanding in regions 2 and 3. (is trajectory is
converted into period doubling and period 4 bifurcations in
region 4 and 5 for μy � 4 to 5.1, respectively. In region 6,
chaotic movement of trajectories can be observed, which
gradually declines to period 8⟶ period 4⟶ period 2
bifurcations by moving in the anticlockwise direction from

region 6 to 9. Similarly, if we begin in the clockwise direction,
region 9 to 1, one can see trajectory starts with period
doubling bifurcation for μy � 9.6 is gradually increasing to
period 4⟶ period 8⟶ chaos from region 9 to 6, then
decline in a symmetric way is observed from chaos to the
period doubling bifurcation till region 4 which finally shrinks
into spiral and bifurcation disappearing in region 3 to 1.

Figure 7 is the series of Lyapunov exponents corre-
sponding to each subregion of the bifurcation diagram
(plotted in Figure 6). In Figure 2, the existence of chaos in a
symmetrical way is thoroughly discussed, but in
Figures 7(a)–7(h) the same concept is explained in more
detail where for each value of the damping coefficient μy;
there exist different values of Lyapunov exponents. More-
over, it is also observed that the Lyapunov exponent of
system (4) tends to (− ive, 0, +ive) as the damping coefficient
μy approaches to 6.43.

150
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50

0

-50

-100

-150
1 2 3 4 5
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Bifurcation diagram for damping coefficent in y-direction

Figure 6: Bifurcation diagram for damping coefficient, μy in system (4).
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6. Conclusion and Future Work

An integer ordered dynamical system of the gyrostat was
considered by researchers since decade, and a variety of
work related to chaos was achieved with the help of sen-
sitivity in its initial conditions. But we have analyzed the
gyrostat model with modification by attaching a rotatory
cylinder and conversion into fractional order for the first
time. Several theorems were proved in this work for the
existence of solution and Ullam–Hyers stability. Moreover,
dealing with the fractional-order system does not work on
ODE45; therefore, an iterative scheme was designed for
system (4) to attain chaos in the fractional order. Studying
local dynamics of system (4) leads to five solutions with four
unstable spirals and one saddle node, but observing tra-
jectories around these equilibrium points in global domain

acted as a self-exciting attractor and separatrix. In future, we
aim to target fractional-order dynamical systems for codi-
mension 2 bifurcations, which itself is a tedious task due to a
large number of involved parameters. Apart from bifurca-
tion, our future aim also involves application of (integer and
fractional) ordered chaotic systems in strategy-based mobile
gaming.

Appendix

Our discretization scheme is based on an iterative technique;
therefore, for n � 0 and 1, analytical work is presented in
Section 3. But increasing the number of n leads to tedious
analytic. Hence, for n � 2, the leftover calculation in
equation (25) is done here:

ρ1x � κx2 1 − Ix( 􏼁 + Iy − Iz􏼐 􏼑ρxρx1 − ρx hz − hy􏼐 􏼑 − μxx0 + xcos(θ) − ysin(θ),

ρ2x � μxκx1 −
Ixμxκx1

Γ(c + 1)
+
ρxκx1 Iy − Iz􏼐 􏼑 Ix − Iy􏼐 􏼑y1 − hy􏽨 􏽩 hz + 1( 􏼁

(Γ(c + 1))
2 z

c

+
ρxκx1 Iy − Iz􏼐 􏼑 Iz − Ix( 􏼁z1 − hy􏽨 􏽩 hy + 1􏼐 􏼑

(Γ(c + 1))
2 y

c
−

μxκx2

Γ(c + 1)
,

ρ3x �
Iz − Ix( 􏼁z1 − hy􏽨 􏽩 Ix − Iy􏼐 􏼑y1 − hy􏽨 􏽩κ2x1

(Γ(c + 1))
4 y

c
z

c
+

μxκx1

Γ(2c + 1)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.1)
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Figure 7: Lyapunov exponents corresponding to each subregion in Figure 6.
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where

ρx �
κy1 1 + Iy􏼐 􏼑 − Iz − Ix( 􏼁z1x0 + x0hy − μyy0 − xsin(θ) − ycos(θ)

Γ(c + 1)
y

c
+ y0 +

κy1

Γ(2c + 1)
y
2c

,

ρx1 �
κz1 1 + Iz( 􏼁 − Ix − Iy􏼐 􏼑y1x0 + x0hy − μz − hy􏼐 􏼑z0 − z

Γ(c + 1)
z

c
+ z0 +

μz − hy􏼐 􏼑κz1

Γ(2c + 1)
z
2c

.

(A.2)

In a similar way, the values of ϱiy are calculated as

ϱ1y � κy2 1 − Iy􏼐 􏼑 + Iz − Ix( 􏼁~ny~ny1 − ~ny1hz + μyy0 + xsin(θ) + ycos(θ),

ϱ2y � κy1 −
κy1

Γ(c + 1)
−
ϱy Iy − Iz􏼐 􏼑z1 − hz􏽨 􏽩κy1

(Γ(c + 1))
2 x

c
−

μyκy2

Γ(c + 1)
−
ϱy1 Iz − Ix( 􏼁 Ix − Iy􏼐 􏼑x1κy1

(Γ(c + 1))
2 z

c
,

ϱ3y �
Ix − Iy􏼐 􏼑 Iz − Iy􏼐 􏼑 Iy − Iz􏼐 􏼑z1 − hz􏽨 􏽩κy1

(Γ(c + 1))
4 x

c
y

c
+

μyκy1

Γ(2c + 1)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.3)

With

ϱy �
κz1 1 + Iz( 􏼁 − Ix − Iy􏼐 􏼑x1y0 + x1hy + μz − hy􏼐 􏼑z0 + z

Γ(c + 1)
z

c
+ z0 −

μz − hy􏼐 􏼑κz1

Γ(2c + 1)
z
2c

,

ϱy1 �
κx1 1 + Ix( 􏼁 − Iy − Iz􏼐 􏼑z1y0 + y0hz − z1hy − μxx0 − xcos(θ) + ysin(θ)

Γ(c + 1)
y

c
+ x0 −

μxκx1

Γ(2c + 1)
x
2c

.

(A.4)

Finally, the values of ςi
z are

ς1z � κz2 1 − Iz( 􏼁 + Ix − Iy􏼐 􏼑Czςz1 − ςz − ςz1 μz − hy􏼐 􏼑 − z,

ς2z � μz − hy􏼐 􏼑Lz +
μz − hy􏼐 􏼑IzLz

Γ(c + 1)
−

x1κz1 Iz − Ix( 􏼁 ςz Ix − Iy􏼐 􏼑 + μz − hy􏼐 􏼑􏽨 􏽩

(Γ(c + 1))
2 y

c
−
κz1 Iy − Iz􏼐 􏼑y1 + hy􏼐 􏼑 ςz1 Ix − Iy􏼐 􏼑 + hy􏽨 􏽩

(Γ(c + 1))
2 x

c
,

ς3z �
x1κ

2
z1 Ix − Iy􏼐 􏼑 Iz − Ix( 􏼁 Iy − Iz􏼐 􏼑 + hy􏽨 􏽩

(Γ(c + 1))
4 x

c
y

c
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.5)

where

ςz �
Ixκx1 + μxx0 + y2hz − Iy − Iz􏼐 􏼑y1 + hy􏼐 􏼑z0 − xcos(θ) + ysin(θ)

Γ(c + 1)
x

c
+ x0 −

μx

κx1
Γ(2c + 1)x

2c
,

ςz1 �
Ly 1 + Iy + x1hy − μyy0 − Iz − Ix( 􏼁x1z0 − xsin(θ) − ycos(θ)􏼐 􏼑

Γ(c + 1)
y

c
+ y0 +

κy1

Γ(2c + 1)
y
2c

.

(A.6)
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For further iterations, things were very tedious; there-
fore, we used MATLAB for further numerical calculations.
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,e appearance of nonlinear equations in science, engineering, economics, and medicine cannot be denied. Solving such
equations requires numerical methods having higher-order convergence with cost-effectiveness, for the equations do not have
exact solutions. In the pursuit of efficient numerical methods, an attempt is made to devise a modified strategy for approximating
the solution of nonlinear models in either scalar or vector versions. Two numerical methods of second-and sixth-order con-
vergence are carefully merged to obtain a hybrid multi-step numerical method with twelfth-order convergence while using seven
function evaluations per iteration, resulting in the efficiency index of about 1.4262. ,e convergence is also ascertained the-
oretically, and the asymptotic error constant is computed. Furthermore, various numerical methods of varying orders are used to
compare the numerical results obtained with the proposed hybrid method in approximate solution, number of iterations, absolute
error, absolute functional value, and the machine time measured in seconds. ,e obtained results outperformed the chosen
methods when applied models arising from physical and natural fields were solved. Finally, to observe the convergence
graphically, some complex polynomials are plotted as polynomiographs, wherein the rapid convergence of the proposed method
is guaranteed.

1. Introduction

Computing the approximate zeros of the nonlinear scalar
and vector functions is one of the most important and
interesting research areas in the modern age. ,ere are
many applications of the root-finding methods in dif-
ferent disciplines of science as well as in arts and eco-
nomics. With the help of several mathematical techniques,
a variety of complex problems in different applied sciences
can be modulated in the form of nonlinear equations and
then can be readily solved via different root-finding
techniques. A root-finding method in mathematics and
computer technology is a method for finding zeros,
commonly known as ”roots” of continuous functions. A
zero of a real-valued or a complex-valued function f, is a

value r such that f(r) � 0. Mostly, the root-finding
techniques give approximations to zeros, expressed either
as floating-point integers or as tiny isolating intervals, or
discs for real or complex roots, because the zeros of a
function cannot be calculated accurately with available
analytical techniques.

Most numerical approaches for root-finding rely on the
iteration process, which generates a series of discrete points
that should converge towards the root as a limit. ,ese it-
eration schemes start with one or more estimations of the
root as initial inputs, and every iteration of the process
generates a more accurate estimation of the exact root [1–4].

Since iterations must be ended at some point, these
approaches yield estimation to the root rather than a precise
solution. Many approaches compute successive
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approximations by considering an auxiliary function on the
values that came before them. ,erefore, the limit is a fixed
point of the function f, which is selected to have the solution
of the original equation as fixed points and to converge to
these fixed points quickly. In pursuing accurate and efficient
roof-finding techniques, several techniques have been
proposed in the past and current literature from the Newton
method through the techniques proposed in the ongoing
year.

Perhaps, the most commonly used root-finding method
is the Newton Rahpson method N2 [5] with quadratic
convergence. Its computational step is shown below that
uses two function evaluations: 1 for the function f(x) itself
and 1 for the first-order derivative f′(x):

xi+1 � xi −
f xi( 􏼁

f′ xi( 􏼁
􏼠 􏼡, i � 0, 1, 2, (1)

where f′(xi)≠ 0.
,e researchers in [6] devised a modified version of an

existing algorithm aiming at the removal of first-order
derivatives. ,ey came up with a two-step method with
fourth-order convergence abbreviated by N4. One of the
advantages of the algorithmwas the use of only four function
evaluations per iteration, as depicted in the following
computational scheme:

yi � xi −
f xi( 􏼁

κ xi( 􏼁
,

xi+1 � yi −
f yi( 􏼁

κ yi( 􏼁
−

f
2

yi( 􏼁f xi.yi( 􏼁

2f
3

yi( 􏼁
, i � 0, 1, . . . ,

(2)

where

κ xi( 􏼁 �
f xi + f xi( 􏼁( 􏼁 − f xi( 􏼁

f xi( 􏼁
,

κ yi( 􏼁 �
f yi + f yi( 􏼁( 􏼁 − f yi( 􏼁

f yi( 􏼁
,

f xi, yi( 􏼁 �
κ yi( 􏼁 − κ xi( 􏼁

f yi( 􏼁 − f xi( 􏼁
.

(3)

,e researchers in [7] devised a three-step method
having eighth-order convergence as denoted by W8. Despite
being eighth-order convergent, one of the advantages of the
algorithm was the use of only four function evaluations per
iteration, as depicted in the following computational
scheme:

yi � xi −
f(x)i

f′ xi( 􏼁
,

zi � xi −
f xi( 􏼁

f′ xi( 􏼁

4f xi( 􏼁
2

− 5f xi( 􏼁f yi( 􏼁 − f yi( 􏼁
2

4f xi( 􏼁
2

− 9f xi( 􏼁f yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � zi −
f zi( 􏼁

f′ xi( 􏼁
1 + 4

f zi( 􏼁

f xi( 􏼁
􏼢 􏼣

8f yi( 􏼁

4f xi( 􏼁 − 11f yi( 􏼁
+ 1 +

f zi( 􏼁

f yi( 􏼁
􏼢 􏼣.

(4)

A ninth-order convergence for a method as denoted by
N9 was proved in [8].,e algorithmmerely needs 5 function
evaluations per iteration, as depicted in the following
computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi − 1 +
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2
⎛⎝ ⎞⎠

f yi( 􏼁

f′ yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � zi − 1 + 2
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2

+ 2
f zi( 􏼁

f yi( 􏼁
⎛⎝ ⎞⎠

f zi( 􏼁

f′ yi( 􏼁
.

(5)

Another higher-order three-step iterative method as
denoted byP10 is in [9].,emethod is shown to be three-step
that requires only 6 function evaluations per iteration, as
depicted in the following computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi −
f yi( 􏼁

f′ yi( 􏼁
,

xx+1 � zi −
f zi( 􏼁f′ zi( 􏼁 + 3f zi( 􏼁f′ yi( 􏼁

5f′ yi( 􏼁f′ zi( 􏼁 − f′
2

yi( 􏼁

⎛⎝ ⎞⎠.

(6)

for
We have also chosen an iterative process with eleventh-

order convergence as denoted by N11 in [10]. ,e process
consists of four steps and requires 7 function evaluations per
iteration, as depicted in the following computational scheme:
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yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi − 1 +
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2
⎛⎝ ⎞⎠

f yi( 􏼁

f′ yi( 􏼁
,

wi � zi − 1 + 2
f yi( 􏼁

f xi( 􏼁
􏼠 􏼡

2

+ 2
f zi( 􏼁

f(y)i

⎛⎝ ⎞⎠
f zi( 􏼁

f′ yi( 􏼁
, i � 0, 1, 2, . . . ,

xi+1 � wi −
f wi( 􏼁

f′ wi( 􏼁
.

(7)

Finally, a three-step iterative method with twelfth-order
convergence as denoted by N12 is in [11, 12]. ,e method
consists of 5 function evaluations per iteration, as depicted in
the following computational scheme:

yi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

zi � yi −
xi − yi( 􏼁f yi( 􏼁

f xi( 􏼁 − 2f yi( 􏼁
, i � 0, 1, 2, . . . .,

xi+1 � zi −
f zi( 􏼁f′ zi( 􏼁

1 − 0.5f zi( 􏼁( 􏼁 f′ zi( 􏼁( 􏼁
2.

(8)

2. Formulation of the Proposed Method

It has been observed in the current literature that new
modified root-finding techniques are being proposed be-
cause of increasing the efficiency of the existing ones. In
search of such algorithms, some researchers have merged
two existing iterative methods of convergence order m and n

to obtain a hybrid method with convergence order mn. In
this respect, the convergence order is improved. Nonethe-
less, the computational aspect was ignored, resulting in an
increased number of function evaluations in most newly
modified hybrid approaches. For example, authors in [13]
proposed an iterative third-order method with five function
evaluations required per iteration, including another algo-
rithm presented in the same research work with a fourth-
order three-step method that requires eight function eval-
uations. Likewise, authors in [14,15] have employed an
excessive number of first-order derivatives, leading to high
computational effort and machine time. ,e primary con-
cern of the present work is to propose a hybrid method with
possible higher-order convergence with the minimum
number of function evaluations so that the computational
cost in terms of arithmetic operations and CPU time be
reduced. ,e proposed method comes from Newton’s
method (m � 2) and a three-step method (n � 6) in [16,17],
leading to produce the proposed approach with convergence
order mn � 12 while using just seven function evaluations
per iteration. ,e four-step proposed method results in the

following computational steps, whose flowchart is depicted
in Figure 1:

wi � xi −
f xi( 􏼁

f′ xi( 􏼁
,

yi � wi −
f wi( 􏼁

f′ wi( 􏼁
,

zi � yi −
f yi( 􏼁

f′ yi( 􏼁
,

xi+1 � yi −
f yi( 􏼁 + f zi( 􏼁

f′ yi( 􏼁
􏼢 􏼣.

(9)

for i � 0, 1, 2, . . ..
,e methods as mentioned earlier, including the one

proposed as the four-step hybrid method in the present
article, are compared in Figure 2 with each other based on
efficiency index (p1/n), order of convergence (p), and the
number of function evaluations (n) used by eachmethod per
iteration.

3. Convergence Analysis of the
Proposed Method

,is section has been divided into two sections wherein the
convergence of the proposed four-step hybrid method in
both scalar and vector form has been discussed in detail. It is
noted that the twelfth-order convergence is theoretically
verified in each case with the aid of Taylor’s expansion.

3.1.Convergence/eorywith Scalar Form. In this subsection,
we theoretically prove the local order of convergence for the
proposed method given in (9).

Theorem 1. Suppose that α ∈ Q be the required simple root
for a sufficiently differentiable function f: Q⊆R⟶ R

within an open real interval Q. /en, the proposed four-step
numerical method (9) possesses twelfth-order convergence
with the error equation given by:
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ζ i+1 � 2
f2

2f1
􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑, (10)

where fi � f(i)(α) and ζ i � xi − α, i � 1, 2, . . .

Proof. Suppose α be a simple root of f(x)i � 0, where xi be
the i th approximation for the root by the proposed method
(9), and ζ i � xi − α be the error term in variable x at the i th

iteration step. Employing the single real variable Taylor’s
series in [9] for f(xi) around α, we obtain

f xi( 􏼁 � f1ζ i +
f2

2!
ζ2i +

f3

3!
ζ3i +

f4

4!
ζ4i + O ζ5i􏼐 􏼑. (11)

Similarly, using the Taylor’s series for 1/f′(xi) around α,
we obtain

1
f′ xi( 􏼁

� f
− 1
1 −

f2ζ i

f
2
1

+
ζ2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
ζ3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O ζ4i􏼐 􏼑. (12)

Multiplying (11) and (12), we obtain

f (w1)
f '(w1)

y1 = w1 —

|E| = |x1 — x0|

Stop

Define f (x), f ' (x)x0 = x1

Yes

No

Is |E| > ζ

print x1

Read x0, ζ

f (x0)
f ' (x0)

w1 = x0 —

x1 = y1 —
f (y1) + f (z1)

f ' (y1) 

f (y1)
f '(y1)

z1 = y1 —

Start

Figure 1: Flow chart for the proposed four-step hybrid method given in (9).
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Figure 2: Comparison of the methods under consideration on the basis of efficiency index, order of convergence, and number of function
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f xi( 􏼁

f′ xi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑ζ4i

12f
3
1

−
2f3f1 − 3f

2
2􏼐 􏼑ζ3i

6f
2
1

−
ζ2i f2

2f1
+ ζ i. (13)

Substituting (13) in the first step of (9), we obtain

ηi �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑ζ4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑ζ3i

6f
2
1

+
ζ2i f2

2f1
, (14)

where ηi � wi − α. Using the Taylor’s series for f(wi)

around α, we obtain

f wi( 􏼁 � f1ηi +
f2

2!
η2i +

f3

3!
η3i +

f4

4!
η4i + O η5i􏼐 􏼑. (15)

Similarly, using the Taylor’s series for 1/f′(wi) around α,
we obtain

1
f′ wi( 􏼁

� f
− 1
1 −

f2ηi

f
2
1

+
η2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
η3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O η4i􏼐 􏼑. (16)

Multiplying (15) and (16), we obtain

f wi( 􏼁

f′ wi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑η4i

12f
3
1

−
2f3f1 − 3f

2
2􏼐 􏼑η3i

6f
2
1

−
η2i f2

2f1
+ ηi. (17)

Substituting (17) in the second step of (9), we obtain

]i �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑η4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑η3i

6f
2
1

+
η2i f2

2f1
. (18)

where ]i � yi − α. Using the Taylor’s series for f(yi) around
α, we obtain

f yi( 􏼁 � f1]i +
f2

2
]2i +

f3

3!
]3i +

f4

4!
]4i + O ]5i􏼐 􏼑. (19)

Similarly, using the Taylor’s series for 1/f′(yi) around α,
we obtain

1
f′ yi( 􏼁

� f
− 1
1 −

f2]i

f
2
1

+
]2i
f1

−
f3

2f1
+

f
2
2

f
2
1

􏼠 􏼡 +
]3i
f1

−
f4

6f1
+

f2f3

2f
2
1

+
f3f1 − 2f

2
2􏼐 􏼑f2

2f
3
1

⎛⎝ ⎞⎠ + O ]4i􏼐 􏼑. (20)

Multiplying (19) and (20), we obtain
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f yi( 􏼁

f′ yi( 􏼁
� −

2f4f
2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑]4i

12f
3
1

⎛⎝ ⎞⎠ −
2f3f1 − 3f

2
2􏼐 􏼑]3i

6f
2
1

⎛⎝ ⎞⎠ −
]2i f2

2f1
􏼠 􏼡 + ]i. (21)

Substituting (21) in the first step of (9), we obtain

ρi �
2f4f

2
1 − 7f3f2f1 + 6f

3
2􏼐 􏼑]4i

12f
3
1

+
2f3f1 − 3f

2
2􏼐 􏼑]3i

6f
2
1

+
]2i f2

2f1
, (22)

where ρi � zi − α. Using the Taylor’s series for f(zi) around
α, we obtain

f(z)i � f1ρi +
f2

2!
ρ2i +

f3

3!
ρ3i +

f4

4!
ρ4i + O ρ5i􏼐 􏼑. (23)

Substituting (19), (20), and (23) in the fourth step of (9),
one obtains

ζ i+1 �
]3i f3

3f1
+

f
4
2]

5
i

2f
4
1

+
f
2
3]

5
i

12f
2
1

−
f
2
3ρ

2
i ]

2
i

2f
3
1

+
f
2
4ρ

2
i ]

3
i

2f
4
1

−
]3i f

2
2

2f
2
1

−
f2ρ

2
i

2f1
+
]2i f2

2f1

+
]4i f4

6f1
+
]4i f

3
2

2f
3
1

+
ρi]

3
i f

3
2

f
3
1

+
f
2
2ρ

2
i ]i

2f
2
1

−
ρi]

2
i f

2
2

f
2
1

+
ρi]

3
i f4

6f1
+

f3]
6
i f

3
2

6f
4
1

+
ρif2]i

f1

+
ρi]

2
i f3

2f1
−
2f

2
2]

5
i f3

3f
2
1

+
f3]

6
i f4

36f
2
1

−
f
2
3]

6
i f2

6f
2
1

−
7]4i f2f3

12f
2
1

+
f2]

5
i f4

12f
2
1

+
f2ρ

2
i ]

3
i f4

12f
2
1

+
f2ρ

2
i ]

2
i f3

4f
2
1

−
ρi]

3
i f2f3

f
2
1

−
f
2
2ρ

2
i ]

3
i f3

2f
3
1

− ρi.

(24)

Finally, using , and (14) and (18), (22) for the above
equation, we obtain

ζ i+1 � 2
f2

2f1
􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑. (25)

Hence, the twelfth-order convergence of the proposed
method P12 given by (9) for the nonlinear functions in single
variable (f(x) � 0) is proved. □

3.2. Convergence /eory with Vector Form.

wi � xi − f′ xi( 􏼁
− 1f′ xi( 􏼁,

yi � wi − f′ wi( 􏼁
− 1f′ wi( 􏼁,

zi � yi − f′ yi( 􏼁
− 1f′ yi( 􏼁,

xi+1 � yi − f′ yi( 􏼁
− 1 f yi( 􏼁 + f zi( 􏼁􏼂 􏼃i i � 0, 1, 2, 3 . . . .

(26)

f i � F(i)(α), i � 1, 2, . . ..

Proof. Suppose α be a simple root of f(xi) � 0, where xi be
the i th approximation for the root by the proposed
method (9), and ζ i � xi − α be the error term in variable x
at the i th iteration step. Employing the multi variable
Taylor’s series given in the theorem [9] for f(xi) around α,
we obtain

f xi( 􏼁 � f1ζi +
f2
2!
ζ2i +

f3
3!
ζ3i +

f4
4!
ζ4i + O ζ5i􏼐 􏼑. (27)

Again, using the Taylor’s expansion for the inverted
Jacobian matrix f′(xi)

− 1 around α, we obtain

f′ xi( 􏼁
− 1

� f − 1
1 −

f2ζi

f21
+
ζ2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
ζ3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f2i􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O ζ4i􏼐 􏼑. (28)
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Multiplying (27) and (28), we obtain

f′ xi( 􏼁
− 1f xi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f32􏼐 􏼑ζ4i

12f31
−

2f3f1 − 3f22􏼐 􏼑ζ3i
6f21

−
ζ2i f2
2f1

+ ζi. (29)

Substituting (29) in the first step of (9), we obtain

ηi �
2f4f

2
1 − 7f3f2f1 + 6f32􏼐 􏼑ζ4i

12f31
+

2f3f1 − 3f22􏼐 􏼑ζ3i
6f21

+
ζ2i f2
2f1

,

(30)

where ηi � wi − α. Using the Taylor’s series for f(wi) around
α, we obtain

f wi( 􏼁 � f1ηi +
f2
2!
η2i +

f3
3!
η3i +

f4
4!
η4i + O, (31)

Again, using the Taylor’s expansion for the inverted Jacobian
matrix f′(wi)

− 1 around α, we obtain

f′ wi( 􏼁
− 1

� f − 1
1 −

f2ηi

f21
+
η2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
η3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f22􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O η4i􏼐 􏼑. (32)

Multiplying (31) and (32), we obtain

f′ wi( 􏼁
− 1f wi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f3i􏼐 􏼑η4i

12f31
−

2f3f1 − 3f22􏼐 􏼑η3i
6f21

−
η2i f2
2f1

+ ηi. (33)

Substituting (33) in the second step of (9), we obtain

νi �
2f4f

2
1 − 7f3f2f1 + 6f22􏼐 􏼑η4i

12f31
+

2f3f1 − 3f22􏼐 􏼑η3i
6f21

+
η2i f2
2f1

,

(34)

where ]i � yi − α. Using the Taylor’s expansion for f(yi)

around α, we obtain

f yi( 􏼁 � f1νi +
f2
2
ν2i +

f3
3!
ν3i +

f4
4!
ν4i + O ν5i􏼐 􏼑. (35)

Again, using the Taylor’s expansion for the inverted
Jacobian matrix f′(yi)

− 1 around α, we obtain

f′ yi( 􏼁
− 1

� f − 1
1 −

f2νi

f21
+
ν2i
f1

−
f3
2f1

+
f22
f21

􏼠 􏼡 +
ν3i
f1

−
f4
6f1

+
f2f3
2f21

+
f3f1 − 2f22􏼐 􏼑f2

2f31
⎛⎝ ⎞⎠ + O ν4i􏼐 􏼑. (36)

Multiplying (35) and (36), we obtain

f′ yi( 􏼁
− 1f yi( 􏼁 � −

2f4f
2
1 − 7f3f2f1 + 6f32􏼐 􏼑ν4i

12f31
−

2f3f1 − 3f22􏼐 􏼑ν3i
6f21

−
ν2i f2
2f1

+ νi. (37)

Substituting (37) in the first step of (9), we obtain ρi �
2f4f

2
1 − 7f3f2f1 + 6f32􏼐 􏼑ν4i

12f31
+

2f3f1 − 3f22􏼐 􏼑ν3i
6f21

+
ν2i f2
2f1

.

(38)
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where ρi � zi − α. Using the Taylor’s series for f(zi) around
α, we obtain

f zi( 􏼁 � f1ρi +
f2
2!
ρ2i +

f3
3!
ρ3i +

f4
4!
ρ4i + O ρ5i􏼐 􏼑. (39)

Substituting (35), (36), and (39) in the fourth step of (9),
one obtains

ζi+1 �
ν3i f3
3f1

+
f42ν

5
i

2f41
+
f23ν

5
i

12f21
−
f23ρ

2
i ν

2
i

2f31
+
f42ρ

2
i ν

3
i

2f41
−
ν3i f

2
2

2f21
−
f2ρ

2
i

2f1
+
ν2i f2
2f1

+
ν4i f4
6f1

+
ν4i f

3
2

2f31
+
ρiν

3
i f

3
2

f31
+
f22ρ

2
i νi

2f21
−
ρiν

2
i f

2
2

f21
+
ρiν

3
i f4

6f1
+
f3ν

6
i f

3
2

6f41
+
ρif2νi

f1

+
ρiν

2
i f3

2f1
−
2f22ν

5
i f3

3f31
+
f3ν

6
i f4

36f21
−
f32ν

6
i f2

6f31
−
7ν4i f2f3
12f21

+
f2ν

5
i f4

12f21
+
f2ρ

2
i ν

3
i f4

12f21

+
f2ρ

2
i ν

2
i f3

4f21
−
ρiν

3
i f2f3
f21

−
f22ρ

2
i ν

3
i f3

2f31
− ρi

(40)

Finally, using , and (30) and (34), (38) for the above
equation, we obtain

ζi+1 � 2
f2
2f1

􏼠 􏼡

11

ζ12i + O ζ13i􏼐 􏼑. (41)

Hence, the twelfth-order convergence of the proposed
multi-step (four-step) hybrid method P12 mentioned by (9)
for the nonlinear functions in multi-variable (f(x) � 0) case
is proved. □ □

4. Polynomiography

Polynomiography is a process that integrates mathematics
and art to create a new type of visual art. ,e produced
graphics result from algorithmic visualization of iterative
approaches for solving a polynomial equation. ,is term
was first introduced by Dr. Bahman Kalantari at the start
of the 21st century [18]. Dr. Bahman Kalantari’s study on
polynomial root-finding, which is an old and traditional
discipline that continues to find new implications with
each generation of mathematicians and scientists, in-
spired the concepts of Polynomiography. Dr. Kalantari
invented the term ”polynomiography,” which is a mixture
of the word ”polynomial” with the suffix ”graphy.” A
”polynomiograph” is a separately produced picture
resulting from Polynomiography. It is defined as ”An
iterative procedure for producing two-dimensional col-
ored pictures (polynomiographs) that represent
polynomials.”

In recent years, researchers worked in the field of Pol-
ynomiography along with its implementations in other
fields. In [19], the authors introduced a new mathematical
art with the help of Newton–Ellipsoid method. Gdawiec
et al. in [20], presented the visual analysis of Newton’s
method with fractional-order derivatives. ,e authors
employed the techniques of coloring by roots and coloring

via iterations to study the convergence and dynamical as-
pects of the processes visualized by polynomiographs.

Naseem et al. in [21] presented some new graphical art
with the help of newly suggested ninth-order iteration
schemes. Scot et al. in [22], presented the basin of attraction
for several methods and examined its dependence on their
convergence orders. In [23], the authors introduced a new
family of eighth-order methods and then drew their basins
of attractions by assuming different polynomials. Finally, in
[24], the authors generated some new fractal patterns by
combing two root-finding methods. ,e obtained fractal
patterns were diverse and had many applications in the
textile and ceramic industries.

We use a rectangle R ∈ C along with the dimension
[− 2, 2] × [− 2, 2], accuracy ε � 1 × 10− 3 and the max. no. of
iterations T � 20 to create the polynomiographs over the
complex plane C through the computer software by taking
multiple complex polynomials. ,e color black is allocated
to the spots where the method failed to converge. ,e
partitioning of R determines the pixel density of the created
visual representations; for example, if we partition the
rectangle R into a grid of 2000 × 2000, the plotting poly-
nomiographs will then have better resolution.

For drawing graphical objects in the complex plane, we
use the four complex polynomials listed below:

q1(t) � t
3

− 1, q2(t) � 3t
3

+ 2t
2

− t + 1,

q3(t) � t
4

− 1, q4(t) � t
2

+ 1􏼐 􏼑 t
2

− 2􏼐 􏼑.
(42)

For coloring the iterations, we employ the colormap
given in Figure 3.

Problem 1. Polynomiographs for the Polynomial q1(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iteration schemes
with our presented method by considering the cubic
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polynomial t3 − 1 which possesses three distinct simple
zeros:1, − (1/2) − (

�
3

√
/2)i, − (1/2) + (

�
3

√
/2)i. We executed

all the methods to achieve the simple zeros of the considered
polynomials and the results can be visualized in Figure 4.

Problem 2. Polynomiographs for the Polynomial q2(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iteration schemes
with our presented method by considering the 3rd-degree
polynomial 3t3 + 2t2 − t + 1 which possesses three distinct
simple zeros:

−
2003
1690

,
867
3344
±
1504
3251

i. (43)

We executed all methods to achieve the simple zeros of
the considered polynomials and the results can be seen in
Figure 5.

Problem 3. Polynomiographs for the Polynomial q3(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different methods with our
presented method by considering the 4th-degree polynomial
t4 − 1 which possesses the following simple zeros:1, − 1, i, and
− i. We executed all the methods to achieve the simple zeros
of the considered polynomials and the results are given in
Figure 6.

Problem 4. Polynomiographs for the Polynomial q4(t)

,rough Various Methods
In this example, we investigate and compare the dy-

namical results obtained through different iterationmethods
with our presented method by considering 4th-degree
polynomial (t2 − 1)(t2 − 2) which possesses the simple
zeros:1, − 1, 2, and − 2. We executed all methods to achieve
the simple zeros of the considered polynomials and the
results can be visualized in Figure 7.

In all given examples, a detailed graphical analysis of the
designed algorithm has been provided via polynomigraphs.
For plotting polynomiographs on the complex plane, we take
two cubic-degree polynomials namely: q1(t), and q2(t) and
two quatric-degree polynomials represented by q3(t), and
q4(t) respectively. ,e plotted graphs tell us about the
convergence speed and the iterations performed by the
method for drawing these objects. ,e second characteristic
is the dynamics of the iteration scheme. In each poly-
nomiographs, the individual root has been denoted by the
blue colored dot. ,e black colored zones denote the di-
vergence area or deficiency of the method through which the
polynomiographs has been plotted. ,e darker or brighter
zones in the provided polynomiographs showing less iter-
ations performed to approximate the solution. One can
easily observe the superiority of the proposed method over

the others by examining themore darker or brighter zones of
the polynomiographs drawn by the suggested method.

5. Numerical Simulations: Real-
world Scenarios

,is section of the paper discusses the real-life applications
by applying the newly proposed hybrid method. We also
present a numerical comparison with other existing most
frequently used methods: N2, N4, W8, N9, P10, N11, and
N12, whose computational steps are shown in the intro-
ductory section above. In each applied model, we set the
tolerance to be ε � 10− 100 as the stopping criterion of the
iterative process of every method under consideration:
|xN − xe|< ε. Two additional methods with fifth- and sixth-
order of convergence are also included for the simulations of
a six-dimensional model chosen from the field of neuro-
physiology based on the reason that some of the methods
under discussion in the above introductory section did not
prove to be valuable candidates when it comes to the
simulations of the nonlinear models presented in the system
or vector form.

Problem 5. ,e Plank’s radiation law in physics explains the
spectral density of radiation emitted by a black body in
thermal equilibrium at the temperature T and the condition
that there must not be a flow of energy between the body and
its surroundings. In other words, the law is introduced to
determine the amount of energy density in a black body
based on isothermal properties. Moreover, it is sometimes
used to estimate the maximal radiation’s wavelength. As
described in [25], the maximal wavelength of the radiation
may be written in the form of the following nonlinear
equation in scalar version:

f1(x) � exp(− x) +
x

5
− 1, (44)

where x stands for the maximal wavelength. ,e exact so-
lution of the above equation is as follows: 0.0.

,e Plank’s radiation model described in (44) is simu-
lated with several numerical algorithms while assuming two
different initial guesses. ,e maximum number of iterations
in each case is set to be N � 4. It can be observed in Table 1
that the accuracy is maximum for P12 at the cost of a slightly
higher amount of CPU time, regardless of the initial esti-
mate’s location. ,e eleventh-order method N11 did not
converge with the initial estimate taken to be x0 � 0.49 while
it converges second to P12 when the initial guess x0 � 0.75 is
taken. With this second initial guess, the CPU time con-
sumption also slightly increases for N4 and N11.

Problem 6. Fraction Conversion of Nitrogen-Hydrogen to
Ammonia [26]. ,is nonlinear scalar problem depicts the
fractional conversion of nitrogen-hydrogen to ammonia and
has appeared in several research works conducted in the past
and recent literature. In this experiment, we set the pressure
value to be 250 atmospheric pressure while the temperature
is set to 500 degrees Celsius. In terms of a nonlinear function,

Figure 3: ,e colormap for drawing polynomiographs.
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the model mentioned above has the following polynomial
form:

f2(x) � x
4

− 7.79075x
3

+ 14.744x
2

+ 2.511x − 1.674.

(45)

It has been identified in the recent work [27] that one of
its positive real roots lies in the open unit interval (0, 1)

which is estimated to be 0.2777595428.
For this nonlinear model, the numerical simulations

are shown in Table 2 while the number of iterations for
each method under consideration is set to be 7. Two
different initial guesses, that is, x0 � 0.5 (near to the exact
solution) and x0 � 0.95 (away from the exact solution), are
chosen. It is seen that the fourth-order method N4

converges towards some other solution for the first initial
guess while the method abbreviated as N11 failed after
three iterations while the same is the case for the W8
method, but the method W8 produced the correct ap-
proximate solution till four iterations and failed after that.
,e Newton method N2 has the comparatively most
significant absolute error at the fourth iteration compared
to other methods. Nonetheless, the proposed hybrid
method, in addition to a few more methods, always
converged towards the required solution. More so, the
proposed method has achieved the minor error tolerance
with a reasonable amount of time. Hence, it can be
concluded that the initial location of the estimate does not
matter much when it comes to the proposed hybrid
method devised in this article.

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 4: Polynomiographs for q1(t) using different methods.
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Problem 7. Application of mechanical engineering [28]:
,ere are several fields wherein the use of thermody-
namics is extensively required. ,e particular areas in-
clude mechanical, civil, mechatronics, electronic,

chemical engineering, and many others. ,e fourth-order
polynomial is used to show a relation between the zero-
pressure specific heat of dry air cp (kJ/kgK) to temper-
ature x:

f3(x) � 1.9520 × 10− 14
x
4

− 9.5838 × 10− 11
x
3

+ 9.721510− 8
x
2

+ 1.671 × 10− 4
x − 0.99403 − 1.2, (46)

where cp � 1.2 is used.
As described in [28], the above nonlinear model given in

terms of fourth-order polynomial has two real distinct roots
given as: r1 � 1126.009751 and r2 � − 1289.950382. It can be
observed in Table 3 that each method converges for the

initial guesses chosen to determine the approximate solution
of the above model. ,e eleventh-order method N11 per-
formed better from an accuracy viewpoint, followed by the
proposed hybrid method. Looking at the CPU values, it is
clear that the methods N11 and P12 take the same amount of

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 5: Polynomiographs for q2(t) using different methods.
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time, thereby being equally time-efficient for this particular
fourth-order polynomial. Moreover, the absolute functional
values are identical for both methods, including others such
as N9 and P10.

Problem 8. Neurophysiology Application: As a final ex-
periment, we consider a six-dimensional nonlinear system
first proposed in [29] and later was used by several re-
searchers for the simulation purpose of their newly devel-
oped algorithms. See, for example, [30], and some cited
references therein. ,e nonlinear model consists of the
following six equations:

x
2
1 + x

2
3 � 1,

x
2
2 + x

2
4 � 1,

x5x
3
3 + x6x

3
4 � c1,

x5x
3
1 + x6x

3
2 � c2,

x5x1x
2
3 + x6x

2
4x2 � c3,

x5x
2
1x3 + x6x

2
2x4 � c4.

(47)

,e constants ci in the above model can be randomly
chosen. In our experiment, we considered ci � 0, i � 1, . . . , 4.

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 6: Polynomiograph for q3(t) using different methods.
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(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 7: Polynomiograph for q4(t) using different methods.

Table 1: Comparison of several methods with the same number of iterations (N � 4) for the Plank’s radiation model given in Problem 5.

Method |xN − xe|
|f1(xN)|

Time |xN − xe|
|f1(xN)|

Timef1(x), x0 � 0.49 f1(x), x0 � 0.75

N2 3.80e-04 7.24e-08 4.70e-02 1.91e-02 1.85e-04 4.70e-02
N4 6.34e-52 1.25e-01 1.25e-01 9.98e-35 6.19e-139 9.40e-02
W8 4.32e-254 1.24e-2030 3.10e-02 2.98e-112 6.44e-896 6.30e-02
N9 1.67e-208 7.90e-1872 1.60e-02 2.82e-35 9.01e-313 4.60e-02
P10 7.38e-458 1.00e-3000 3.20e-02 2.18e-247 2.78e-2469 4.70e-02
N11 divergence – – 1.18e-305 1.00e-3000 4.70e-02
N12 5.05e-317 9.90e-2534 7.80e-02 1.12e-210 5.92e-1683 9.40e-02
P12 3.71e-737 0.00e+00 9.30e-02 1.34e-375 2.00e-3000 9.30e-02

Complexity 13



,e simulations for the above neurophysiology appli-
cation system are shown in Table 4 wherein the two columns
represent the absolute error at the last iteration and the CPU
time consumption. Two more methods, including fifth-or-
der Halley’s (HM5) in [6] and a sixth-order Hameer-Muj-
taba method (HM6) in [17], is used for the simulations of the
above system. It is evident from Table 4 that the accuracy is
much higher for the proposed approach in comparison to
other competitive methods, while the CPU time is also
reasonable.

6. Concluding Remarks and Future Directions

A new four-step nonlinear method for solving f(x) � 0
type models is introduced in this research work with
twelfth-order convergence, and seven function evalua-
tions are required per iteration. ,e theoretical order of
convergence for the proposed hybrid method is proved
under both scalar and vector cases, along with an as-
ymptotic error constant. Comparison with various
existing numerical methods discloses the better perfor-
mance of the proposed approach when the absolute errors,

the absolute functional value computed at the last itera-
tion, and the time of machine in seconds are taken into
consideration. ,e proposed method brings out the
slightest absolute error regardless of initial conditions
chosen for the simulations of the nonlinear models that
belong to real-world scenarios from science and engi-
neering. ,e rapid convergence of the proposed hybrid
method is confirmed with the aid of polynomiography
when the method is applied to some complex-valued
polynomials.
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Table 2: Comparison of several methods with the same number of iterations (N � 4) for the Problem 6.

Method |xN − xe|
|f2(xN)|

Time |xN − xe|
|f2(xN)|

Timef2(x), x0 � 0.5 f2(x), x0 � 0.95

N2 2.75e-07 6.60e-13 1.60e-02 1.51e-06 1.99e-11 1.60e-02
N4 other sol. – – 1.29e-02 3.53e-04 9.30e-02
W8 5.37e-333 5.04e-2657 6.20e-02 9.41e-209 4.51e-1663 9.40e-02
N9 1.86e-488 0.00e+00 1.60e-02 7.91e-407 0.00e+00 3.10e-02
P10 3.21e-783 0.00e+00 3.10e-02 4.19e-691 0.00e+00 3.10e-02
N11 failed – – failed – –
N12 8.40e-334 2.10e-2663 1.60e-02 2.04e-224 2.51e-1788 4.60e-02
P12 2.18e-1373 0.00e+00 1.50e-02 1.16e-1213 0.00e+00 7.80e-02

Table 3: Comparison of several methods with the same number of iterations (N � 3) for the Problem 7.

Method |xN − xe|
|f3(xN)|

Time |xN − xe|
|f3(xN)|

Timef3(x), x0 � 1126.0 f3(x), x0 � − 1286

N2 1.83e-18 2.61e-43 3.20e-02 1.84e-07 2.25e-20 3.10e-02
N4 2.44e-47 6.07e-194 7.80e-02 2.10e-07 8.04e-34 1.57e-01
W8 3.41e-331 9.35e-2671 6.30e-02 1.53e-172 7.94e-1402 7.80e-02
N9 2.22e-412 1.00e-3000 3.10e-02 3.22e-188 7.03e-1715 4.60e-02
P10 2.80e-519 1.00e-3000 3.10e-02 2.57e-241 4.58e-2437 3.20e-02
N11 5.53e-1659 1.00e-3000 1.60e-02 2.56e-761 3.00e-3000 4.70e-02
N12 2.42e-331 5.66e-2672 3.10e-02 3.37e-159 1.69e-1293 3.20e-02
P12 1.72e-748 1.00e-3000 1.60e-02 1.06e-345 3.00e-3000 4.70e-02

Table 4: Comparison of several methods with the same number of
iterations (N � 5) while the initial guess is set to be
F(x10, x20, x30, x40, x50, x60) � (1.8, 2.6, 3.5, 1.3, 1.0, 1.1) for the
Problem 8.

Method ε � |xN − xe| Time

N2 8.77e-02 4.70e-02
HM5 8.22e-94 2.34e-01
HM6 1.56e-242 1.57e-01
P10 2.37e-1667 2.03e-01
P12 5.02e-2823 1.57e-01
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Internet of vehicles (IoV) is an emerging area of advanced transportation systems, in which the functionality of traditional
vehicular ad hoc networks (VANET) combined with the Internet of things (IoT). +is technology allows vehicle users and drivers
to interact in real time from anywhere and anytime. However, until recently, the major two problems that authentication and key
management methods may solve are security and privacy. In this study, we offer a privacy-preserving authentication and key
management scheme for the IoV environment that is computationally and communication cost-effective. We conducted a
thorough security analysis, demonstrating that the proposed scheme is resistant to a variety of cryptographic attacks. We have
included a cost analysis that indicates the proposed scheme is more efficient than IoV’s current privacy-preserving authentication
and key management schemes.

1. Introduction

Vehicular ad hoc network (VANET) has emerged as one of
the most significant research fields in recent years,
encompassing things such as vehicles, which include On-
Board Units (OBU), Road-Side Units (RSU), and Trusted
Authority (TA). An OBU is an electromagnetic device that is
usually installed on a vehicle and used to send and receive
data to and from the RSU [1]. It is made up of a resource
command processor and resources, which store and restore
data using a read/write memory [2]. RSUs are permanent
communication gateways that feature an antenna, CPU, and
read/write memory to enable wireless communication
employing IEEE 802.11p radio technology between OBU
and servers or the Internet [3]. +e TA provides numerous
premium Internet services to VANET subscribers through
RSU, as well as protecting the entire vehicular network [4].

+e Internet of things (IoT) allows smart connected objects
to communicate with one another, expanding existing ve-
hicular ad hoc networks (VANETs) into the Internet of
vehicles (IoV) as a result of recent advancements in com-
munication network technology [5].

+e most essential services in IoV are traffic efficiency
and road safety, which share real-time data through the
Internet to reduce road accidents [6]. Figure 1 shows the
usual flow diagram for IoV, which shows the communi-
cation process between entities such as the TA, OBU, and
RSU.

Apart from standard IoV communication, the Fifth
Generation (5G) cellular network is a viable choice for ef-
fectively delivering all of these services. +e basic infra-
structure for constructing a smart IoV environment will be
provided by 5G, which will push vehicle network perfor-
mance and capabilities needs to an acceptable level [7].
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Because the IoT is an open network, there are certain serious
security risks that must be addressed. Indeed, users are
growing increasingly concerned about the impact of modern
technology on their privacy. For example, an attacker
eavesdropping in on communications may exploit private
information to trace down a specific vehicle and its driver’s
movements [8]. +ese malicious activities could jeopardize
users’ privacy as well as lead to robbery and physical injury
[9]. Authentication and key agreement will be the most
effective techniques for dealing with such attacks. Au-
thentication is the process through which two or more
participants in an IoV environment learn about each other
before exchanging data [10]. Furthermore, before commu-
nicating with one another, the key management system
allows all participants (e.g., OBU, RSU, and TA) to validate
the messages by matching the generated keys [11].

Batch verifications [12] are a technique that, in addition
to the two procedures mentioned above, provides for the
authentication of numerous messages at once. +e elliptic-
curve cryptography (ECC) and Rivest Shamir Adleman
(RSA) algorithms, which are well-known public-key
methods and provide the same functions, are used in the
majority of existing schemes, but the computation cost is still
very high because key creation, signing, and decryption are
all extremely slow, making them a little more difficult to
implement securely.

To address the limitations of existing vehicle commu-
nication methods, this study uses hyperelliptic curve cryp-
tography (HECC) to show a 5G vehicular network that is
both safe and efficient while also lowering computational
costs. As a result of the preceding debate, we have made the
following contributions to this work:

(1) We propose an authentication and key management
scheme with the help of HECC

(2) We conducted a thorough security study, which
revealed that the proposed scheme is resistant to a
variety of cyber-attacks

(3) We performed a computational cost study, com-
paring our proposed scheme to previously published
approaches, and the findings demonstrate that the
proposed scheme is more efficient.

1.1. Preliminaries. +is section gives a short overview of the
hyperelliptic curve idea and formal definition.

1.1.1. Hyperelliptic-Curve Cryptography. Hyperelliptic-
curve cryptography was first developed by Miller and
Koblitz, in 1988, which is the extent of an elliptic curve that
depends on discrete logarithm problem in the Jacobian with
genus two. Equation (1) represents the popular form of
hyperelliptic curve of genus two on Jacobian group with
finite field Iq:

B: a
2

+ h(b)a � k(b)modq, (1)

where h(b) ∈ I[b] is a polynomial and degree h(b)≤g and
k(b) ∈ I[b] is a monic polynomial and degree of k(b)≤
2g + 1.

1.1.2. Divisor. +e finite formal sum of points on hyper-
elliptic curve is called divisor and represented in MumFord
form as
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1.1.3. Jacobian Group. +e divisors form an Abelian group
which is called Jacobian group Jc(Iq) and the order of the
Jacobian group o(Jc(Iq)) is defined as
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Figure 1: Basic flow of IoV.
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1.1.4. Hyperelliptic-Curve Discrete Logarithm Problem
(HECDLP). Let Đ be divisor of order n in the Jacobian
group Jc(Iq); find an integer b ∈ Iq, such that

Đ1 � b.Đ. (4)

2. Related Work

Any entity in the IoV that receives relevant traffic messages
must go through an authentication process to guarantee that
the message’s source is trustworthy and that the content is
complete and legitimate. Many researchers have made
contributions to the field of IoV network authentication
methods in this regard. To assure vehicle legitimacy, Lu et al.
[13] proposed a cost-effective conditional privacy-preserving
(ECPP) authentication mechanism based on certificates. A
vehicle can connect to other cars in the transmission range
using its certificate in this scheme; however, if the certifi-
cate’s time slot expires, the vehicle must visit an RSU to
produce a new certificate. Zhang et al. [14] developed an
identity-based batch verification (IBV) system, in which
each vehicle stores crucial parameters and generates pseu-
donyms, allowing numerous messages to be evaluated at the
same time using bilinear pairing characteristics.

Jiang et al. [15] used similar strategies to create an ef-
fective unidentified batch authentication methodology
(ABAH) for effectively authenticating a large number of
communications. Wang et al. [16] proposed a two-factor
lightweight privacy-preserving authentication system
(2FLIP), in which each On-Board Unit (OBU) is equipped
with a perfect tamper-proof device (TPD) that stores a
system key and generates a message authentication code
(MAC) using the system key while signing a message. Each
TPD’s retention of the system key might result in a single
point of failure. In DAPPA, each authorized vehicle gets
two-member secrets from RSUs, and Zhang et al. [17] in-
troduced a distributed aggregate privacy-preserving au-
thentication approach (DAPPA) that can conduct batch
verification without needing the use of an optimum TPD.
Although their multiplications are the identical, these two-
member secrets differ based on the vehicle. +e discovered
member secrets and the one-time identity-based aggregate
signature may then be used by cars to do batch verification.
However, because this DAPPA system includes several
pairing operations, there is a significant verification delay
when a large number of messages need to be validated.

Based on a registration list, Zhong et al. [18] developed a
privacy-preserving conditional authentication approach
(CPPARL). +e proposed CPPARL allows RSU to collect
and validate all messages sent by cars within its transmission
range, after which it encrypts and sends out two bloom
filters, one positive and one negative, using its secret key.

To mitigate failure of service (DoS) attacks, Liu et al. [19]
proposed a puzzle-based pseudonymous authentication
mechanism for a 5G vehicular network. In this scheme, each
vehicle must solve a hash problem before transmitting a
message. However, because messages are not sent at the

proper moment, this approach has a significant commu-
nication cost. To achieve efficient message authentication,
Huang et al. [3] suggested a safe and efficient privacy-
preserving authentication strategy for automotive networks,
which uses a registration list and elliptic-curve public-key
cryptography. +is solution, however, does not define the
service profile identifier (SPID) validation time or the hash
list update rate in order to enhance network performance.

Raja et al. [20] developed an RSU-based group au-
thentication (RGA) system in which each vehicle in its range
is assigned a group ID and group key pair, ensuring more
secure communication while reducing network overhead.
However, their technique has a high total computing cost.
Hashem Eiza et al. [21] established secure video reporting
services for 5G car networks, in which vehicles may quickly
report a road accident by simply sending recorded video
footage, while the reporter’s identity and video data are kept
private. However, because this technology is built for video
transmission services, it is incompatible with other safety-
related apps. Bouchelaghem and Omar [22] proposed a
privacy-preserving pseudonym shifting technique for
VANET; as a result, this scheme has certain security diffi-
culties for OBU and traffic monitoring cameras-based
tracking. Yao et al. [23] developed an enhanced mutual
authentication strategy for VANETs that uses the ECC to
provide forward secrecy; however, their proposed system has
a significant computational cost and communication
overhead owing to the usage of the elliptic curve.

3. Network Model

Figure 2 depicts our proposed IoV network system archi-
tecture, which includes three communication system part-
ners: OBU, Trusted Authority (TA), and RSU, in that order.
We used the substeps below to explain the function of each
entity.

(1) OBU: it encrypts his identity and uses TA’s public
key to do a hash function. +e hash values and the
encrypted identifying text are subsequently trans-
ferred to TA. TA decrypts the encrypted text and
applies the hash function to the decrypted text after
receiving the encrypted text and hash value. It also
analyses both hash values and, if they match, gen-
erates the public and private key for OBU and sends
it via a secure channel. It produces the digital sig-
nature, secret key, and ciphertext of its identification
and sends the authentication message to RSU after
receiving the public and private key.

(2) TA: upon reception of encrypted text and hash value
from OBU or RSU, TA first decrypts the encrypted
text before applying the hash function to it. Fur-
thermore, it compares both hash values and, if they
match, generates the public and private key for OBU
or RSU and delivered it via a secure route.

(3) RSU: it performs two execution processes on its
identification, one of which is encryption using TA’s
public key and the other of which is a hash function.
+en, it sends the encrypted text of identity along
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with the hash values to TA. Upon reception of
encrypted text and hash value, TA first decrypts the
encrypted text and performs the hash function on
the decrypted text. Furthermore, it compares both
the hash values and, if it is matched, then produces
the public and private key for OBU and dispatched it
through a secure channel. When it is received, the
public key and private key, further, received the
authentication message from OBU, it performs the
decryption process for cipher text and verification
process for signature; if both the processes are
performed successfully, then it set the secret key for
further communications.

4. Proposed Mutual Authentication
Scheme for IoV

Table 1 includes the symbols used in this scheme and the
inclusive stages of our mutual authentication scheme for IoV
explained as follows:

(i) Setup: here, the trusted authority (TA) computes
χ � Đ.D and sets χ as his public key and Đ as his
master private key, where Đ has been choose ran-
domly. Furthermore, it makes and publishes F �

χ,HEC,D, FQ, H􏼈 􏼉 as a global parameter set, where
χ denotes the master public key of TA, HEC denotes
a genus 2 hyperelliptic curve, D denotes a 80 bits
devisor, FQ denotes an order Q finite field and its
value will be equal to 80 bits, and H represents a
collision resistant and irreversible hash function.

(ii) Registrations: each Actor (Ai) with IDAi computes
CIDAi � Eχ(IDAi) and HIDAi � H(IDAi), where χ is
the public key of TA and Eχ represent the en-
cryption function that encrypts the value through
the public key of TA. +en, Ai send (CIDAi, HIDAi)
to TA. So, upon reception of (CIDAi, HIDAi), CA
can compute IDAi � DĐ(CIDAi) and
HIDAi/ � H(IDAi), whereĐ is the private key of CA
and DĐ represent the decryption function that
decrypts the value through the private key of TA.
Furthermore, CA compare HIDAi/ � HIDAi; if it is
equal, then it computes ℓAi � βAi.D,

ΩAi � H(IDAi, ℓAi), and φAi � βAi +ΩAi.Đ, where
βAi denotes a random private number that is only
know to CA, φAi denotes the private key of Ai, and
ℓAi represents the public key of Ai. At the end, TA
can delivers (φAi, ℓAi) to Ai utilizing secure network.

(iii) Mutual authentication and secrete management: a
sender Actor (As) with IDAS computes SA1s

�

αA1s
.D, SA2s

� αA2s
.D, K � αA1s

(ℓAr +ΩAsχ), and
SKCAs � EK(IDAS, IDAR), where αA1s

and αA2s

represent the two private numbers which are ran-
domly selected by As, ℓAr denote the public key of
receiver actor (Ar), φAs denotes the private key of
As, and EK denotes the encryption function that
encrypts the identity of As and Ar that are
(IDAS, IDAR) through the secret key which is gen-
erated by As. Furthermore, As can compute ξAs �

H(IDAS, IDAR) and SAs � αA2s
+ ξAs.φAs and send

(ξAs, SAs,SA1s
,SA2s

, SKCAs) to Ar.

When Ar received (ξAs, SAs,SA1s
,SA2s

, SKCAs), it can
compute K � φAs.SA1s

, IDAS, IDAR � DK(SKCAs), and
ξAs/ � H(IDAS, IDAR); it compares ξAs/ � ξAs; if it is equal,
then the identities are not modified, and it is going for
signature authentication as SAs.D � SA2s

+ ξAs(βAs+ ΩAs.Đ)

(Table 1).

4.1. Message Signing. A sender Actor (As), with IDAS, can
compute ξAs � H(IDAS, IDAR) and SAs � αA2s

+ ξAs.φAs;
αA2s

represents randomly selected by As and sends
(SAs,SA2s

) to Ar.

4.2. Message Verifications. When Ar received (SAs,SA2s
), it

can compute for signature authentication as
SAs.D � SA2s

+ ξAs(βAs +ΩAs.Đ).

4.3. Correctness. Here, Ar can verify the received set
(ξAs, SAs,SA1s

,SA2s
, SKCAs) as follows:

SAs.D � SA2s
+ ξAs(ℓAi +ΩAi.χ) � (αA2s

+ ξAs.φAs)D �

(αA2s
D + ξAs.φAsD) � SA2s

+ ξAs.(βAs +ΩAs.Đ)(D �

SA2s
+ ξAs.(βAsD +ΩAs.Đ.D) � SA2s

+ ξAs.(ℓAs +ΩAs.χ).

Hence, it is proved.
Also, it can generate a secret key as K �

φAs.SA1s
� K � αA1s

(ℓAs +ΩAsχ) � αA1s
(βAs.D+

ΩAsĐ.D ) � αA1s
. D(βAs +ΩAsĐ) � SA1s

φAs; hence, it is
proved.

5. Security Analysis

Before we can describe the security aspects of our proposed
scheme, we must first discuss some of the characteristics of
an attacker who would represent a threat to it. We will
explore the Dolev–Yao model, in which the attacker can
conduct a variety of actions. It includes the properties such
as mutual authentication, anonymity, confidentiality of
identities, unforgeability of signature, forward secrecy, se-
crete key leakage, and identity authentication. We explain
the above properties one by one using the following steps.

Trusted Authority

Registration Registration

Roadside UnitInternetOnboard Unit

Figure 2: Network model for our proposed scheme.
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5.1. Mutual Authentication. In the proposed scheme, As

generates a signature as SAs � αA2s
+ ξAs.φAs and sends this

signature to Ar through unsecure network. When Ar re-
ceived SAs, for verification, it can check the equality of the
following equation SAs.D � SA2s

+ ξAs(βAs +ΩAs.Đ); if it is
satisfied, then we can say that this scheme provide mutual
authentication property. If we look into the correctness
analysis section of this study, then we can see the equality of
the above equation is hold.

5.2.Anonymity. If we look into the communicated parameter
of our proposed scheme (ξAs, SAs,SA1s

, SA2s
, SKCAs), where

ξAs � H(IDAS, IDAR) is the hash value with the property of
irreversibility, SAs � αA2s

+ ξAs.φAs is the hyperelliptic-curve
point which does not contain any identity,SA1s

andSA2s
are

also hyperelliptic-curve point, and SKCAs � EK(IDAS, IDAR)

in which both the identity of As and Ar are protected through
encryption function EK with secret key K that is only known
to As and Ar.+e above discussion confirmed the existence of
anonymity property in the proposed scheme.

5.3. Confidentiality of Identities. In the proposed scheme, As

generate the ciphertext of both the identities is SKCAs �

EK(IDAS, IDAR) and send it to through unsecure network,

where secret key as K � αA1s
(ℓAr +ΩAsχ), so if the attacker

tries to decrypt the ciphertext, it is obligatory for him/her to
make secret key first. However, we need αA1s

from SA1s
�

αA1s
.D is equal to find the solution of hyperelliptic-curve

discrete logarithm problem that can be infeasible for the
attacker.

5.4. Unforgeability of Signature. In the proposed scheme, As

generate a signature as SAs � αA2s
+ ξAs.φAs and send this

signature to Ar through unsecure network. If the attacker tries
to make a forge signature, then it will be completely failed
because αA2s

and φAs are the two unknown value so that finding
two unknown variables from the same equation is infeasible.

5.5. Forward Secrecy. In the proposed scheme, the secret key
is renewed for every session so that if the attacker gets access
to the previously communicated messages secret key, then it
will not be able to extract the content of a currently dis-
patched message.

5.6. Secrete Key Leakage. When the attacker wants to gen-
erate the secret key as K � φAs.SA1s

, then it needs φAs from
φAi � βAi +ΩAi.Đ so that it will be completely failed because

Table 1: Symbols used in the proposed algorithm.

Symbol Used for
χ Master public key of TA
Đ Master private key of TA
F Global parameter set
HEC A genus 2 hyperelliptic curve
Ai Each actor
Eχ Represent the encryption function that encrypt the value through the public key of TA
φAi Denotes the private key of Ai

As Sender actor
αA1s

, αA2s
Represents the two private number which is randomly selected by As

ℓAr Denotes the public key of receiver actor (Ar)

EK

Denotes the encryption function that encrypt the identity of As

and Ar that are (IDAS, IDAR) through the secret key which is generated by As

TA Trusted authority
D A hyperelliptic-curve devisor
H Collision resistant and one way hash function
FQ Denotes an order Q finite field and its value will be equal to 80 bits
IDAi Identity of each actor
βAi Denotes a random private number that is only know to TA
ℓAi Represents the public key of Ai

IDAS Identity of sender actor
IDAR Identity of receiver actor
φAs Denotes the private key of As

K Common secret key

Table 2: +e comparison of computation costs in terms of major operations between schemes in IoV.

Schemes Message signing Single message verification Total
Ali and Li 3 Tɱƿ-ECC+ 2TҺ Tƿ+Tɱƿ-ECC+TҺ Tƿ + 4Tɱƿ-ECC + 3TҺ
Zhong et al. 3 Tɱƿ-ECC+Tɱʈƿ+TҺ 3Tƿ+Tɱʈƿ+ 2Tɱƿ-ECC+Tɱƿ-ƿ+TҺ 3Tƿ + 2Tɱʈƿ + 5Tɱƿ-ECC + Tɱƿ-ƿ + 2TҺ
Cui et al. 2 Tɱƿ-ECC+ 2 TҺ TҺ 2 Tɱƿ-ECC + 3 TҺ
M.Yao et al. Tɱƿ-ECC+TҺ 3Tɱƿ-ECC+ 2 TҺ 4Tɱƿ-ECC + 3 TҺ
Our scheme 1 Tɱƿ-HECC+TҺ 3 Tɱƿ-HECC+TҺ 4Tɱƿ-HECC+ 2TҺ
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βAi and Đ are the two unknown values so that finding two
unknown variables from the same equation is infeasible.

5.7. Identity Authentication. In the proposed scheme, As

can encrypt SKCAs � EK(IDAS, IDAR) and generate a hash
value as ξAs � H(IDAS, IDAR); then, send SKCAs and ξAs to
Ar. When Ar received (ξAs, SKCAs), it can compute ξAs/ �

H(IDAS, IDAR) and then compare ξAs/ � ξAs; if it is equal,
then the identities are not modified. So, in our scheme, we
provide the identity authentication in this way.

6. Computational Cost Comparison

+e computational cost is the key component in measuring
the cryptographic scheme’s performance. Here, we start by
defining the notation for the time overhead of some cryp-
tographic operations in the proposed scheme and other
schemes that are Ali et al. [24], Zhong et al. [25], Cui et al.
[26], and Yao et al. [23]. For this purpose, we then explain

that TҺ, Tƿ, Tɱƿ-ƿ, Tɱƿ-ECC, and Tɱʈƿ can denote
consuming time for a hash function, pairing operation,
multiplication over pairing, multiplication over an elliptic
curve, and map-to-point operation, respectively. Further-
more, according to [27–29], TҺ, Tƿ, Tɱƿ-ƿ, Tɱƿ-ECC,
and Tɱʈƿ consume 0.7, 22.4, 3.1, 12.4, and 30.6, respectively.
So, Tables 2 and 3 and Figure 3 are witnessed that the
proposed scheme required fewer computational costs in the
comparisons of Ali et al. [24], Zhong et al. [25], Cui et al.
[26], and Yao et al. [23].

7. Communication Overhead

+is section compares the proposed scheme’s communi-
cation overhead efficiencies to those of Ali et al. [24], Zhong
et al. [25], Cui et al. [26], and Yao et al. [23].+is comparison
is based on extra parameters sent with the message, which
are |T|, |G|, |q|, and |n|, which represent the current time-
stamp size, bilinear pairing parameter size, elliptic-curve
point size, and hyperelliptic-curve divisor size, respectively.

Table 3: +e comparison of computation costs in terms of milliseconds between schemes in IoV.

Schemes Message signing Signature verification Total
Ali and Li 3∗12.4 + 2∗0.7 � 38.6 22.4 + 12.4 + 0.7� 35.5 22.4 + 4∗12.4 + 3∗0.7 � 74.1
Zhong et al. 3∗12.4 + 30.6 + 0.7 � 68.5 3∗22.4+30.6+2∗12.4+3.1+0.7� 126.4 3∗22.4 + 2∗30.6 + 5∗ 12.4 + 3.1 + 2∗0.7 � 194.9
Cui et al. 2∗12.4 + 2∗0.7 � 26.2 0.7 2∗12.4 + 3∗0.7 � 26.9
M.Yao et al. 12.4 + 0.7�13.1 3∗12.4 + 2∗0.7 � 38.6 4∗12.4 + 3∗0.7 � 51.7
Our scheme 1∗6.2 + 0.7 � 6.9 3∗6.2 + 0.7 � 19.3 4∗6.2 + 2∗0.7 � 26.2

Ikram et al Zhong et al. Cui et al. M.Yao et al. Our Scheme
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Figure 3: Computational cost comparison in milliseconds.

Table 4: Communicational cost comparisons with the help of major operations.

Schemes Communication cost Communication cost with bits
Ali and Li |M| + 2|G| + |T| 1200 + 2∗1024 + 34 � 3282 bits
Zhong et al. |M| + 4|G| + |T| 1200 + 4∗1024 + 34 � 5330 bits
Cui et al. |M| + 4|q| 1200 + 4∗160 � 1840 bits
M.Yao et al. |M| + 4|G| + |T| 1200 + 4∗1024 + 34 � 5330 bits
Our scheme |M| + 3|n| 1200 + 3∗80 � 1440 bits
Note. We suppose | M|� 1200 bits, |T|� 34 bits, |G|� 1024 bits, |q|� 160 bits, and |n|� 80 bits.
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We assume |M|� 1200 bits, |T|� 34 bits, |G|� 1024 bits, |q|�
160 bits, and |n|� 80 bits, and we have performed a com-
parative analysis in Table 4 using these assumed values,
which include the extra parameters along with the message
in design and Ali et al. [24], Zhong et al. [25], Cui et al. [26],
and Yao et al. [23] schemes. We can conclude from Table 3
and Figure 4 that our proposed strategy clearly outperforms
the other four designs in both characteristics.

8. Conclusion

+is study proposed a low-cost, privacy-preserving au-
thentication and key management strategy for the IoV
ecosystem. +e proposed solution makes use of the HECC
mathematical concept. In terms of computation and com-
munication costs, the proposed scheme is more cost-ef-
fective than existing privacy-preserving authentication
solutions. Mutual authentication, anonymity, identity con-
fidentiality, signature unforgeability, forward secrecy, secret
key leakage, and identity authentication are among the
security properties offered by the proposed approach. As a
consequence, because the HECC has fewer parameters and
delivers the same level of security as the elliptic curve and
RSA, the proposed scheme may be a better alternative for
IoV system.
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A diffusive predator-prey system with both the additive Allee effect and the fear effect in the prey subject to Neumann boundary
conditions is considered in this paper. Firstly, non-negative and non-trivial solution a priori estimations are shown. Furthermore,
for specific parameter ranges, the absence of non-constant positive solutions is demonstrated. Secondly, we use the linearized
theory to investigate the stability of non-negative constant solutions. -e spatially homogeneous and non-homogeneous periodic
solutions, as well as non-constant steady state solutions, are next investigated by using Allee effect parameters as the bifurcation
parameter. Finally, numerical simulation is used to illustrate some theoretical results.

1. Introduction

-e biodynamics of ecosystems are current hot issues in
biology and ecology. -e intense effort to understand the
pattern formation and mechanisms of spatial diffusion
during the late 20th century, especially in the context of
biological and ecological contexts, has gradually raised more
and more concerns. Especially, in biochemical reactions
characterized by interactions of different species, the study
on predator-prey types has been studied widely in [1–4].

Recently, Allee effect, which was initially introduced by
Allee in 1931 [5], has been studied extensively [6–10]. With
the development of the theory for reaction-diffusion
equations, many scholars have done many mathematical
research to better describe the relationship between different
species. Especially, introducing the Allee effect into the
model makes the dynamic behavior of the model closer to
reality. -e spatiotemporal complexity of a delayed preda-
tor-prey model with double Allee effect was given by [11]. In
[12], P. J. Pal and S. Tapan consider a system with a double
Allee effect in prey population growth, which are very
sensitive to parameter perturbations and position of initial
conditions. H. Molla and S. Sarwardi developed a predator-

prey model that combines these phenomena, considering
variable prey refuge with additive Allee effect on the prey
species, and also investigated the appearance of Hopf bi-
furcations in a neighborhood of the unique interior equi-
librium point of the dynamical system [13]. -e rich
behaviour of the dynamics suggests that both prey refuge
and a strong Allee affect are important factors in ecological
complexity. For a reaction-diffusion system with double
Allee effect induced by fear factors subject to Neumann
boundary conditions, for details, please refer to [2]. -e
dynamical behavior of a reaction-diffusion-advection model
with weak Allee effect type growth has been studied in [9].
Han and Dai investigated the spatiotemporal pattern for-
mation and selection driven by nonlinear cross-diffusion of a
toxic-phytoplankton-zooplankton model with Allee effect.
By taking cross-diffusion rate as bifurcation parameter,
amplitude equations under nonlinear cross-diffusion are
derived that describe the spatiotemporal dynamics [14].

Some researchers have indicated that predators can not
only capture prey directly but also affect the behavior of prey,
even that it could affect the prey more influential than
predation [15, 16]. In fact, all animals show various kinds of
antipredator responses, such as feeling of fear, habitat
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changes, vigilance, foraging, and different physiological
changes ([17–21]).

-e cost of fear is objective, and it should be taken into
consideration when establishing predation and predation
models. For example, Jana et al. [22] have explored the
influence of habitat complexity on a predator-prey system
under fear effect by incorporating self-diffusion. Tiwari et al.
analyzed a predator-prey interaction model with Bedding-
ton-DeAngelis functional response (BDFR) and incorpo-
rating the cost of fear into prey reproduction. For the spatial
system, the Hopf bifurcation around the interior equilib-
rium, stability of homogeneous steady state, direction, and
stability of spatially homogeneous periodic orbits have been
established [23]. For a plankton-fish model with both the
zooplankton refuge and the fear effect, the local and global
dynamics of such a model have been investigated in [24].
Moreover, the investigation in [25] has revealed the
threshold behavior of a stochastic predator-prey system with
fear effect, prey refuge, and non-constant mortality rate.
Sasmal and Takeuchi studied the dynamics of a prey-
predator interaction model using Monod–Haldane type
functional response and provided detailed mathematical
results, including basic dynamical properties, existence of
positive equilibria, asymptotic stability of all equilibria, Hopf
bifurcation, direction, and stability of bifurcated periodic
solutions [26]. Furthermore, they also investigated the role
of predation fear and its carry-over effects in the prey-
predator model. Basic dynamical properties, as well as the
global stability of each equilibrium, have been discussed
[27].

Allee effect comes in different forms, including multi-
plicative Allee effect and additive Allee effect. Furthermore,
Dennis [6] first proposed the equation incorporating ad-
ditive Allee effect:

du
dt

� ru 1 −
u

k
−

m

u + a
􏼒 􏼓, (1)

where m and a are constants, which reflect the degree of
Allee effect; m/u + a denotes the additive Allee effect; r is the
intrinsic growth rate of prey; k presents capacity. We note
that if 0<m< a, then (1) has the weak Allee effect and if
m> a, then it has the strong Allee effect.

Motivated by the previous works above, we further
consider the following reaction-diffusion system with fear
effect and additive Allee effect:

zu

zt
� d1Δu + ru 1 − u −

m

u + a
􏼒 􏼓

1
1 + fv

− buv, x ∈ Ω, t> 0,

zv

zt
� d2Δv + cbuv − dv, x ∈ Ω, t> 0,

z]u � z]v � 0, x ∈ zΩ, t> 0,

u(x, 0) � u0(x)≥ 0, x ∈ Ω,

v(x, 0) � v0(x)≥ 0, x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where Δ is the Laplace operator on domains. d1 > 0, d2 > 0
meanss the diffusion coefficients. -e homogeneous Neu-
mann boundary condition is imposed so that there is no
population flow across the boundary, ] denotes the outward
normal to the boundary zΩ. u, v stand for the density of the
prey and predator, respectively; m and a are constants,
which reflect the degree of Allee effect; f is a constant, which
reflects the degree of fear effect; 1/1 + fv and m/u + a denote
the fear effect and additive Allee effect, respectively; b

represents the modified capture rate; c is the conversion
coefficient; r is the intrinsic growth rate of prey; d is the
death rate of predator. -en, the steady-state system cor-
responding to (2) is

d1Δu + ru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− buv � 0, x ∈ Ω,

d2Δv + cbuv − dv � 0, x ∈ Ω,

z]u � z]v � 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

-e remainder of the paper is structured as follows. In
Section 2, we carry out a priori estimates for (3) and the
requirements for the nonexistence of non-constant positive
solutions. In Section 3, we consider the stability of non-
negative constant steady state solutions for system (3). In
Section 4, we demonstrate the existence of Hopf bifurcation
and steady state bifurcation. In Section 5, we show how the
parameters affect the dynamical behavior of the system.
Furthermore, we verify the analysis results with the nu-
merical simulation results. In section 6, the paper ends with
some conclusions.

2. Preliminaries

In this section, we first present some properties of equi-
librium solutions of (3) including a priori estimates. -en,
we discuss the nonexistence of non-constant positive so-
lutions for certain parameter range. It is an essential part for
analysis of the existence of non-constant positive steady
states and the global bifurcation. We first recall the maxi-
mum principle in [28].

Lemma 1 (see [28]). We suppose that F(x, w) ∈ C(Ω × R).
If w ∈ C2(Ω)∩C1(Ω) satisfies

Δw(x) + F(x, w(x))≥ 0, x ∈ Ω,

zw

z]
≤ 0, x ∈ zΩ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

and w(x0) � maxΩw, then F(x0, w(x0))≥ 0. Similarly, if the
two inequalities are reversed and w(x0) � minΩw, then
F(x0, w(x0))≤ 0.

We note thatΩ is a bounded domain in RN with smooth
boundary. Let λi, i � 0, 1, 2, . . . be the eigenvalues of − Δ
under Neumann boundary condition.

By Lemma 1, we have a prior estimates as follows:
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Theorem 1. Let (u(x)), ](x) be non-negative and non-
trivial solution of (3); we assume that cr/(1 + a)d

(1 + a)4/4 − m + cd1/d2 > 0. 7en, (u(x)), ](x)satisfies

0< u(x)≤ 1, 0< ]≤
cr

(1 + a)d

(1 + a)
2

4
− m􏼠 􏼡 +

cd1

d2
, (5)

where d, r, c, d1, d2, a, m> 0.

Proof. From the strong maximum principle, we have u> 0
and v> 0.-en, by Lemma 1, it follows 0< u(x)≤ 1.-e first
equation of (3) is multiplied by c and adding the two
equations of (3), we obtain

− cd1Δu + d2Δv( 􏼁 � cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− dv

� cr
u

u + a
((1 − u)(u + a) − m)

1
1 + fv

− dv, ≤ cr
u

u + a

(1 + a)
2

4
− m􏼠 􏼡

1
1 + fv

− dv,

≤
cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 − dv, ≤

cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 +

dd1c

d2
−

e

d2
cd1u + d2v( 􏼁,

(6)

which leads to

Δ cd1u + d2v( 􏼁 +
cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 +

dd1c
d2

−
d
d2

cd1u + d2v( 􏼁≥ 0,

(7)

under the condition of m≤ a. -en, by Lemma 1, we obtain

cd1u + d2v≤
crd2

(1 + a)d
(1 + a)

2

4
− m􏼠 􏼡 + cd1, (8)

which implies

v≤
cr

(1 + a)d
(1 + a)

2

4
− m􏼠 􏼡 +

cd1
d2

. (9)
□

Theorem 2. For any fixed d, r, a, b, c, f> 0, there exists
d∗(r, b, c, d, m, a, f,Ω) such that if min d1, d2􏼈 􏼉> d∗, then (3)
has no non-constant positive solution.

Proof. Let (u, v) be a non-negative solution of (3). We
denote (10) as

u � |Ω|
− 1

􏽚
Ω

udx,

v � |Ω|
− 1

􏽚
Ω

vdx,

F(u) � ru 1 − u −
m

u + a
􏼒 􏼓.

(10)

-en,

􏽚
Ω

(u − u)dx � 􏽚
Ω

(v − v)dx � 0. (11)

Multiplying the first equation of (3) by u − u and in-
tegrating on Ω , applying -eorem 1 that

d1􏽚
Ω

|∇(u − u)|
2
dx � 􏽚

Ω
(u − u)F(u)

1
1 + fv

dx − 􏽚
Ω

buv(u − u)dx

� 􏽚
Ω

(u − u) F(u)
1

1 + fv
− F(u)

1
1 + fv

􏼠 􏼡dx − 􏽚
Ω

bv(u − u)
2
dx − 􏽚

Ω
bvu(u − u)dx

≤􏽚
Ω

(u − u) F(u)
1

1 + fv
− F(u)

1
1 + fv

+ F(u)
1

1 + fv
− F(u)

1
1 + fv

􏼠 􏼡 − 􏽚
Ω

bvu(u − u)dx

≤ r 1 +
m

a
2􏼠 􏼡􏽚
Ω

(u − u)
2
dx + 􏽚

Ω
fF(u)

(u − u)(v − v)

(1 + fv)(1 + fv)
dx − 􏽚

Ω
bvu(u − u)dx.

(12)

Similarly, multiplying the second equation of (3) by
v − v, we obtain
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d2􏽚
Ω

|∇(v − v)|
2
dx � cb􏽚

Ω
uv(v − v)dx − 􏽚

Ω
dv(v − v)dx

� cb􏽚
Ω

uv(v − v)dx − 􏽚
Ω

d(v − v)(v − v)dx≤ cb􏽚
Ω

(uv(v − v) − uv(v − v) + uv(v − v) − uv(v − v))dx

� cb􏽚
Ω

u(v − v)
2

+(u − u)(v − v)v􏼐 􏼑dx≤ cb􏽚
Ω

(v − v)
2
dx + cb􏽚

Ω
uv(v − v)dx.

(13)

Multiplying the first equation of (3) by c, added to the
second equations of (3), and integrating on Ω, we obtain

− 􏽚
Ω

cd1Δu + d2Δv( 􏼁dx � 􏽚
Ω

cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− dv􏼠 􏼡dx.

(14)

Subject it to the boundary conditions, we have

d􏽚
Ω

vdx � 􏽚
Ω

cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

dx≤ |Ω|
cr

4
. (15)

Hence,

v �
1

|Ω|
􏽚
Ω

vdx≤
cr

4d
. (16)

By and (16), it follows from -eorem 1 and Young
inequality that

􏽚
Ω

uv(v − v)dx � 􏽚
Ω

v(u − u)(v − v)≤
cr

4d
􏽚
Ω

|u − u‖v − v|dx

≤
cr

8d
􏽚
Ω

(u − u)
2
dx +

cr

8d
􏽚
Ω

(v − v)
2
dx.

(17)

Similarly, we have

􏽚
Ω

− vu(u − u)dx � 􏽚
Ω

(v − v)u(u − u)dx≤
1
2

􏽚
Ω

(u − u)
2
dx +

1
2

􏽚
Ω

(v − v)
2
dx, (18)

􏽚
Ω

fF(u)
(u − u)(v − v)

(1 + fv)(1 + fv)
dx � 􏽚

Ω
fru 1 − u −

m

u + a
􏼒 􏼓

(u − u)(v − v)

(1 + fv)(1 + fv)
dx≤

rf

8
+

mrf

2a
􏼠 􏼡􏽚

Ω
(u − u)

2
dx

+
rf

8
+

mrf

2a
􏼠 􏼡􏽚

Ω
(v − v)

2
dx.

(19)

From (12), (13), (16)–(19) and the Poincaré inequality,
we obtain that

d1􏽚
Ω

|∇(u − u)|
2
dx + d2􏽚

Ω
|∇(v − v)|

2
dx

≤
1
λ1

A􏽚
Ω

|∇(u − u)|
2
dx + B􏽚

Ω
|∇(v − v)|

2
􏼒 􏼓dx,

(20)

where

A � r 1 +
m

a
2􏼠 􏼡 +

bc
2
r

8d
+

rf

8
+

mrf

2a
+
1
2
,

B �
bc

2
r

8d
+

rf

8
+

mrf

2a
+
1
2

+ cb.

(21)

-is shows that if

min d1, d2􏼈 􏼉>
1
λ1

max A, B{ }: � d
∗
, (22)

then

∇(u − u) � ∇(v − v) � 0. (23)

and (u, v) must be a constant solution. □

3. Non-Negative Constant Steady-
State Solutions

In this section, the stability of non-negative constant steady
state solutions of (3) will be investigated by the standard
linearization theory. By [17], under particular situations, (3)
has the non-negative constant steady state solutions as
follows.

(1) the trivial solution E0 � (0, 0) always exists.
(2) if a ∈ (0, 1), there is no boundary constant solution

when a< (a + 1)2/4<m.
(3) if a ∈ (0, 1), then E1(1 − a/2, 0) is unique boundary

equilibria when a<m � (a + 1)2/4.
(4) if a ∈ (0, 1), there is two boundary constant solution

E2(1 − a −

������������

(a + 1)2 − 4m

􏽱

/2, 0) and E3(1 − a+
������������

(a + 1)2 − 4m

􏽱

/2, 0) when a<m< (a + 1)2/4.
(5) if a ∈ (0, 1), there is unique boundary constant so-

lution E3 under the condition of 0<m≤ a< (a+

1)2/4.
(6) if a � 1, there is unique boundary constant solution

E4(
�����
1 − m

√
, 0) only when 0<m< 1.
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(7) if a> 1, there is unique boundary constant solution
E5(1 − a +

������������

(a + 1)2 − 4m

􏽱

/2, 0) when 0<m< a<
(a + 1)2/4.

(8) there is unique positive constant solution E∗(d

/cb, − b +
��
Δ

√
/2bf) � (u∗, v∗) with Δ � b2+ 4bfr

(1 − u∗ − m/u∗ + a) when 1 − u∗ − m/u∗+ a> 0.

Under the no-flux boundary condition, − Δ has eigen-
values 0 � λ0 < λ1 ≤ λ2 ≤ . . . and lim i⟶∞λi �∞. Let X(λi)

be the eigenspace generated by the eigenfunctions corre-
sponding to λi. Let mi be the algebraic multiplicity of λi. Let
ϕij(i≥ 0, 1≤ j≤mi) be the normalized eigenfunctions cor-
responding to λi. -en, the set ϕij(1≤ j≤mi)􏽮 􏽯 forms a
complete orthonormal basis in L2(Ω).

Next, we consider the stability of constant steady state
solutions.

Theorem 3. For all constants a, b, c, d, r, f, d1, d2 > 0, we
have that

(1) For trivial solution E0, if m> a, then E0 is locally
asymptotically stable; if m< a, then E0 is unstable

(2) If 0< a<m � (a + 1)2/4< 1, then E1 is unstable
(3) If 0< a<m< (a + 1)2/4< 1, then E2 is unstable
(4) If cbuj − d< 0, Ej(j � 3, 4, 5) is stable and if

cbuj − d> 0, Ej is unstable
(5) E∗ exists if and only if − m/a + u∗ − u∗ + 1> 0. If

a>
��
m

√
− u∗, then E∗ is stable. If a<

��
m

√
− u∗, then

E∗ is unstable

Proof. We rewrite (3) as

d1Δu + F1(u, v) � 0, x ∈ Ω,

d2Δv + F2(u, v) � 0, kx ∈ Ω,

z]u � z]v � 0, x ∈ zΩ.

⎧⎪⎪⎨

⎪⎪⎩
(24)

-e linearization matrix of (3) at a constant solution
E� (u0,V0) can be expressed by

J �
zuF1 u0, v0( 􏼁 + d1Δ zvF1 u0, v0( 􏼁

zuF2 u0, v0( 􏼁 zvF2 u0, v0( 􏼁 + d2Δ
􏼠 􏼡. (25)

where

zuF1 u0, v0( 􏼁 � − bv +
ru − 1 + m/(a + u)

2
􏼐 􏼑

1 + fv

+
r(1 − u − m/a + u)

1 + fv
,

zvF1 u0, v0( 􏼁 � − bu −
fru(1 − u − m/a + u)

(1 + fv)
2 ,

zuF2 u0, v0( 􏼁 � cbv,

zvF2 u0, v0( 􏼁 � cbu − d.

(26)

We define that Xij � a · ϕij: a ∈ R2􏽮 􏽯, Xi � ⊕mi

j�1Xij, and
X � ⊕∞i�1Xi. Let (Φ(x),Ψ(x)) be a pair of eigenfunction of J

corresponding to an eigenvalue λ. -en, we have

J

Φ

Ψ
⎛⎝ ⎞⎠ �

fu + d1Δfv

gugv + d2Δ
􏼠 􏼡

Φ

Ψ
⎛⎝ ⎞⎠ � λ

Φ

Ψ
⎛⎝ ⎞⎠. (27)

We set

Φ � 􏽘
0≤i≤∞,1≤j≤mi

aijϕij,

Ψ � 􏽘
0≤i≤∞,1≤j≤mi

bijψij.
(28)

-en, we obtain

􏽘
0≤i≤∞,1≤j≤mi

fu + d1λi fv

gu gv + d2λi

􏼠 􏼡
aij

bij

⎛⎝ ⎞⎠

ϕij � 􏽘
0≤i≤∞,1≤j≤mi

Pi

aij

bij

⎛⎝ ⎞⎠

ϕij � λ
aij

bij

⎛⎝ ⎞⎠ϕij.

(29)

From the chapter 5 of [29, 30], we know that if all the
eigenvalues of J have negative real parts, then the constant
solution E is locally asymptotically stable; J is unstable if
there is an eigenvalue of J with positive real part; if all the
eigenvalues have non-positive real parts while some ei-
genvalues have zero real parts, then the stability of E cannot
be determined by the linearization. Furthermore, λ is an
eigenvalue of J if and only if λ is an eigenvalue of the matrix
λI − Pi for some i≥ 0. We have.

λI − Pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � λ2 − Tiλ + Di, (30)

where

Ti � − d1 + d2( 􏼁λi + fu + gv,

Di � d1d2λ
2
i − d2fu + d1gv( 􏼁λi + fugv − fvgu.

(31)

(1) For trival solution E0 � (0, 0),

Ti � − d1 + d2( 􏼁λi + r 1 −
m

a
􏼒 􏼓 − d,

Di � d1d2λ
2
i + dd1 + r

m

a
− 1􏼒 􏼓d2􏼒 􏼓λi + dr

m

a
− 1􏼒 􏼓.

(32)

If m> a, then for all eigenvalues λ, we have Ti < 0 and
Di > 0, which leads to Reλ< 0. Hence, E0 is locally
asymptotically stable. If m< a, then for i � 0, there
exists a positive eigenvalue r(m/a − 1), which im-
plies that E0 is unstable. In addition, if m � a � 1, E0
is stable, else if m � a≠ 1, E0 is unstable.

(2) For E1(1 − a/2, 0), with 0< a<m � (a + 1)2/4< 1,
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Ti � − d1 + d2( 􏼁λi +
cb(a − 1)

2
− d,

Di � d1d2λ
2
i + d1 d +

bc(1 − a)

2
􏼠 􏼡λi.

(33)

For corresponding ordinary system, E1 is unstable,
so for any d1, d2 > 0, E1 is unstable.

(3) For E2(1 − a −

������������

(a + 1)2 − 4m

􏽱

/2, 0) � (u2, v2), with
0< a<m< (a + 1)2/4< 1,

Ti � − d1 + d2( 􏼁λi + ru2 − 1 +
m

u2 + a( 􏼁
2

⎛⎝ ⎞⎠ + cbu2 − d,

Di � d1d2λ
2
i − d2ru2 − 1 +

m

u2 + a( 􏼁
2

⎛⎝ ⎞⎠ + d1 cbu2 − d( 􏼁⎛⎝ ⎞⎠λi + d1d2 cbu2 − d( 􏼁 − ru2 +
mru2

u2 + a( 􏼁
2

⎛⎝ ⎞⎠.

(34)

For i � 0, there exists a positive eigenvalue
ru2(− 1 + m/(u2 + a)2). So, E2 is always unstable.

(4) For j � 3, 4, 5, Ej is stable when cbuj − d< 0, and in
this case, Ti < 0, Di > 0 for any i≥ 0. Additionally, in

other cases, Ej is unstable, so for any d1, d2 > 0, Ej is
unstable.

Ti � − d1 + d2( 􏼁λi + rui − 1 +
m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ + cbui − d,

Di � d1d2λ
2
i − d2rui − 1 +

m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ + d1 cbui − d( 􏼁⎛⎝ ⎞⎠λi + rui − 1 +
m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ cbui − d( 􏼁.

(35)

(5) For positive constant solution, E∗(u∗, v∗)

� (d/cb, 1 / 2bf(− b +
����������������������
b2 + 4bfr(1 − u∗ − m/u∗+

􏽰

a) )). -e Jacobi matrix of (3) at E∗ is

J E
∗

( 􏼁 �

m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

ru
∗

fv
∗

+ 1
− d1λi − −

m

a + u
∗ − u
∗

+ 1􏼒 􏼓
fru
∗

fv
∗

+ 1( 􏼁
2 − bu

∗

cbv
∗

− d2λi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (36)

It is noted that

Ti � − d1 + d2( 􏼁λi + ru
∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

Di � d1d2λ
2
i − d2ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
⎛⎝ ⎞⎠λi + cbv

∗
−

m

a + u
∗ − u
∗

+ 1􏼒 􏼓
fru
∗

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠.

(37)

For E∗ exists if and only if − m/a + u∗ − u∗ + 1> 0, so it is
easy to conclude that Ti < 0, Di > 0 if m/(a + u∗)2

− 1< 0(a>
��
m

√
− u∗), which implies that E∗ is stable. If

a<
��
m

√
− u∗, for i � 0, we obtain that Ti > 0 and Di > 0, so it
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follows that there exist two of the eigenvalues with positive
real parts, which implies that E∗ is unstable. □

4. Existence of Non-Constant Positive Solutions

In this section, we consider the existence of non-constant
positive solutions to (3) in Ω � [0, lπ]. First, the existence of
spatially homogeneous and non-homogeneous periodic
solutions is studied by takingm as the bifurcation parameter.

-en, the structure and the stability of the bifurcation so-
lutions that bifurcate from (u∗, v∗) are shown. From -e-
orem 3, the stability of (u∗, v∗) is determined by the trace
and determinant of J. Furthermore, we will restrict
− m/a + u∗ − u∗ + 1> 0. To put out our discussion into the
context of the Hopf bifurcation, we convert (3) into the
following system by 􏽥u � u − u∗ and 􏽥v � v − v∗ and drop
“ ∼ ” for simplicity. We have

zu

zt
� d1

z
2
u

zx
2 + r u + u

∗
( 􏼁 1 − u + u

∗
( 􏼁 −

m

u + u
∗

( 􏼁 + a
􏼠 􏼡

1
1 + f v + v

∗
( 􏼁

􏼨

− b u + u
∗

( 􏼁 v + v
∗

( 􏼁, x ∈ (0, lπ), t> 0,
zv

zt
� d2

z
2
v

zx
2 + cb u + u

∗
( 􏼁 v + v

∗
( 􏼁 − d v + v

∗
( 􏼁, x ∈ (0, lπ), t> 0,

z]u(0, t) � z]u(lπ, t) � z]v(0, t) � z]v(lπ, t) � 0, t> 0.

(38)

Firstly, we define the real-valued Sobolev space

X � (u, v) ∈ H
2
([0, lπ]) × H

2
([0, lπ]):

zu(0, t)

zx
�

zu(lπ, t)

zx
�

zv(0, t)

zx
�

zv(lπ, t)

zx
� 0􏼨 􏼩, (39)

and the corresponding complexification space is given by
XC � X⊕iX � a + ib: a, b ∈ X{ }.

-e linearized operator of the steady state system of (39)
evaluated at (m, 0, 0) is

L(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 + d1z
2/zx

2
− fru

∗
− m/a + u

∗
− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗

cbv
∗
d2z

2/zx
2

⎛⎝ ⎞⎠, (40)

where XC is the domain of L(m). -e adjoint operator of L(m) is defined by

L
∗
(m) �

ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 + d1z
2/zx

2
cbv
∗

− fru
∗

− m/a + u
∗

− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗
d2z

2/zx
2

⎛⎝ ⎞⎠, (41)

where the domain of L∗(m) is XC.
-e following condition in [31] is crucial to ensure that

the Hopf bifurcation occurs.
(H1) -ere exists a neighborhood O of m0 such that for

m ∈ O, L(m) has a pair of complex, simple, conjugate ei-
genvalues α(m) ± iω(m), continuously differentiable in m,
with α(m0) � 0,ω(m0) � ω0 > 0, and α′(m0)≠ 0, all other
eigenvalues of L(m) have non-zero real parts for m ∈ O.

Motived by [31], we apply the Hopf bifurcation theory to
analyze our system. For the eigenvalue problem

− φ′′ � λφ, x ∈ (0, lπ),

φ′(0) � φ′(lπ) � 0,
(42)

we know that the corresponding (42) eigenvalues are
λn � n2/l2(n � 0, 1, . . .), with corresponding eigenfunctions
φn(x) � cosnx/l. Let

ϕ

ψ
⎛⎝ ⎞⎠ � 􏽘

∞

n�0

an

bn

⎛⎝ ⎞⎠cos
nx

l
, (43)
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be a pair of eigenfunctions of L(m) corresponding to an
eigenvalue ρ(m), that is, L(m)(ϕ,ψ)T � ρ(m)(ϕ,ψ)T. By a
straightforward analysis, we have

Ln(m)
an

bn

􏼠 􏼡 � ρ(m)
an

bn

􏼠 􏼡, n � 0, 1, . . . , (44)

where

Ln(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 − d1n
2/l2 − fru

∗
− m/a + u

∗
− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗

cbv
∗

− d2n
2/l2

⎛⎝ ⎞⎠. (45)

Hence, the eigenvalues of L(m) are given by the ei-
genvalues of Ln(m), (n � 0, 1, . . .). -e characteristic
equation of Ln(m) is

ρ2 − Tn(m)ρ + Dn(m) � 0,

n � 0, 1, . . . ,
(46)

where

Tn(m) � −
d1 + d2( 􏼁n

2

l
2 + ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

Dn(m) �
d1d2n

4

l
4 − d2ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
⎛⎝ ⎞⎠

n
2

l
2 + cbv

∗
fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

T0 � ru
∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

D0 � cbv
∗

fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎡⎣ ⎤⎦> 0.

(48)

-erefore, the eigenvalues are determined by

ρ(m) �
Tn(m) ±

��������������

T
2
n(m) − 4Dn(m)

􏽱

2
,

n � 0, 1, . . .

(49)

If the condition (H1) holds, L(a) has a pair of simple
purely imaginary ±iω0 at a � a0, if and only if there exists a
unique n ∈ N such that ±iω0 are the purely imaginary ei-
genvalues of Ln(m). -e related eigenvector is denoted by
q � qn � (an, bn)Tcosnx/l, with an, bn ∈ C, such that
L(m0)q � iω0q.

We identify the Hopf bifurcation point m0 which sat-
isfies the condition (H1): there exists n ∈ N such that

Tn m0( 􏼁 � 0, Dn m0( 􏼁> 0, Tj m0( 􏼁≠ 0, Dj m0( 􏼁≠ 0forj≠ n, (50)

and for the unique pair of complex eigenvalues near the
imaginary axis α(m) ± iω(m)

α′ m0( 􏼁≠ 0. (51)

It is easy to obtain Tn(m)< 0 and Dn(m)> 0 if
0<m< (a + u∗)2, which implies that the steady state
(u∗, v∗) is locally asymptotically stable. Hence, any potential
bifurcation points must be in the interval [(a

+u∗)2, (a + u∗)(1 − u∗)). -is means that u∗ < 1 − a/2 is
essential for bifurcation condition. For any Hopf bifurcation
point m0 in [(a + u∗)2, (a + u∗)(1 − u∗)), α(m) ± iω(m) are
the eigenvalues of Ln(m), where

α(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1
2

−
d1 + d2( 􏼁n

2

2l
2 ,

ω(m) �

�������������

Dn(m) − α2(m)

􏽱

,

(52)

α′(m)> 0, (53)

for m in [(a + u∗)2, (a + u∗)(1 − u∗)). Hence, the
transversality condition is always satisfied.

From the discussion above, the determination of Hopf
bifurcation points reduces to describing the set

8 Complexity



Γ ≔ m ∈ a + u
∗

( 􏼁
2
, a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏽨 􏼑: for some n ∈ N,which satisfies the condition(H1)􏽮 􏽯. (54)

when a set of parameters d1, d2, l, a, b, c, d, f, r are given.
In the following, for d1, d2, a, b, c, d, f, r> 0 and

0<m< (a + u∗)(1 − u∗) fixed, we choose l appropriately.
mH � (a + u∗)2 is always an element of Γ for any l> 0 be-
cause of T0(mH

0 ) � 0, Tj(mH
0 )< 0 for any j> 1, and

Dk(mH
0 )> 0 for any k ∈ N. -is corresponds to the Hopf

bifurcation of spatially homogeneous periodic solution.
Apparently, mH

0 is also the unique value m for the Hopf
bifurcation of spatially homogeneous periodic solution for
any l> 0.

In the following, we search for spatially non-homoge-
neous Hopf bifurcation points for n≥ 1. As T0(mH

0 ) � 0 and
T0′(m)> 0 for m ∈ [mH

0 , (a + u∗)(1 − u∗)), we obtain that
0<T0(m)<T0((a + u∗)(1 − u∗)) � ru∗(1 − a − 2u∗)/((a +

u∗)(fv∗ + 1)): � M∗ for m ∈ (mH
0 , (a + u∗)(1 − u∗)). We

define

ln � n

������
d1 + d2

M∗

􏽳

, n ∈ N
∗
. (55)

-en for ln < l≤ ln+1, and 1≤ j≤ n, we derive the root of
T0(m) � (d1 + d2)j

2/l2 as mH
j such that mH

0 <mH
j < (a+

u∗)(1 − u∗). Moreover, by T0′(m)> 0 in [mH
0 , (a + u∗)

(1 − u∗)), we derive (56) and (57)

0<m
H
0 <m

H
1 <m

H
2 < . . . <m

H
n < a + u

∗
( 􏼁 1 − u

∗
( 􏼁 (56)

Tj m
H
j􏼐 􏼑 � 0, Ti m

H
j􏼐 􏼑≠ 0fori≠ j. (57)

Since Dj(mH
j )> 0, now we discuss a condition to verify

Dn(mH
j )≠ 0 for j≠ n. For m ∈ [mH

0 , (a + u∗) (1 − u∗)), we
have

Di(m) �
d1d2i

4

l
4 − d2T0(m)

i
2

l
2 + D0(m): � τ

i
2

l
2􏼠 􏼡. (58)

-e quadratic function τ(i2/l2) is positive for all l ∈ R if
the discriminant of τ(i2/l2) � 0 is negative, whichmeans that
(60)

d
2
2T

2
0(m) − 4d1d2D0 � d

2
2 ru
∗ m

a + u∗( )2
− 1􏼠 􏼡

1
fv∗ + 1

􏼠 􏼡

2

, − 4d1d2cbv
∗

fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠. (59)

We note that

f �
r
2
d
2
2u
∗ 4

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑
4

16d
2
1c

2 1 − u
∗

− m/u∗ + a( 􏼁
2 − b

2⎛⎝ ⎞⎠

1
4br 1 − u

∗
− m/u∗ + a( 􏼁

.

(60)

For (a + u∗)2 ≤m< (a + u∗)(1 − u∗), we can choose
f>f such that the discriminant of τ(i2/l2) � 0 is negative.
-en, τ(i2/l2)> 0 for i ∈ N such that Di(mH

j )> 0.

We summarize our analysis above and apply -eorem 2
in [31]. -e existence of both spatially homogeneous and
non-homogeneous periodic solutions bifurcation from
(u∗, v∗) can be obtained as follows:

Theorem 4. For any l in (ln, ln+1] and f>f, system (2)
undergoes Hopf bifurcation at each m � mH

j (1≤ j≤ n).
Moreover, the bifurcation periodic solutions near (m, u, v) �

(mH
j , u∗, v∗) can be parameterized as (m(s), u(s), v(s)) so

that m(s) ∈ L∞ in the form of m(s) � mH
j + o(s) for

s ∈ (0, δ) for some small δ > 0, (61) and (62)

u(s)(t, x) � u
∗

+ s ane
i2πt/T(s)

+ ane
− i2πt/T(s)

􏼐 􏼑cos
nx

l
+ o s

2
􏼐 􏼑,

v(s)(t, x) � v
∗

+ s bne
i2πt/T(s)

+ bne
− i2πt/T(s)

􏼐 􏼑cos
nx

l
+ o s

2
􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(61)

where (an, bn) is the corresponding eigenvector, and
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T(s) �
2π
ω0

1 + τ2s
2

􏼐 􏼑 + o s
4

􏼐 􏼑,

τ2 � −
1
ω0

Im c1 m
H
j􏼐 􏼑􏼐 􏼑 −

Re c1 m
H
j􏼐 􏼑􏼐 􏼑

α′ m
H
j􏼐 􏼑

ω0′ m
H
j􏼐 􏼑⎛⎝ ⎞⎠,

(62)

T′′(0) �
4π
ω0

τ2 � −
4π
ω2
0

Im c1 m
H
j􏼐 􏼑􏼐 􏼑 −

Re c1 m
H
j􏼐 􏼑􏼐 􏼑

α′ m
H
j􏼐 􏼑

ω0′ m
H
j􏼐 􏼑⎛⎝ ⎞⎠.

(63)

Furthermore, we notice that

(1) 7e bifurcating periodic orbits from m � mH
0 are

spatially homogeneous, which coincide with the pe-
riodic orbits of the corresponding ODE system

(2) 7e bifurcating periodic orbits from m � mH
j are

spatially non-homogeneous.

-en, we consider the direction and stability of spatially
homogeneous Hopf bifurcation.

Theorem 5. For system (2), if all other eigenvalues of
Ln(mH

0 ) have negative real parts and Re(c1(mH
0 ))<

0 (resp.> 0), the spatially homogeneous periodic solutions
bifurcating from m � mH

0 are locally asymptotically stable

(resp. unstable). Moreover, the Hopf bifurcation at mH
0 is

supercritical (resp. subcritical) if 1/α′(mH
0 )Re(c1

(mH
0 ))< 0(resp.> 0).

Proof. Here, the notations and calculations in [31] are used
in the same way. For the sake of simplicity, we denote 1 −

u∗ − m/u∗ + a by M. -en, we introduce

q ≔
a0

b0
􏼠 􏼡 �

1

− − cb + c

����������

b
2

+ 4bfrM

􏽱

/2fω0i
⎛⎝ ⎞⎠,

q
∗ ≔

a
∗
0

b
∗
0

􏼠 􏼡 �

1/2πl

− ω0f/ − cb + c

����������

b
2

+ 4bfrM

􏽱

􏼒 􏼓πli
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(64)

such that 〈q∗, q〉 � 1, 〈q∗, q〉 � 0, L(mH
0 )q � iω0q and

L∗(mH
0 )q∗ � − iω0q

∗, where

ω0 � 2b

�����������������

u
∗
cM

����������

b
2

+ 4bfrM

􏽱􏽲

b +

����������

b
2

+ 4bfrM

􏽱 . (65)

And 〈u, v〉 � 􏽒
lπ
0 uTvdx denotes the inner product in

L2(0, lπ) × L2(0, lπ). -en, we get the derivatives at
(u∗, v∗, mH

0 ) as follows:

fuu � −
2r a

3
+ 3a

2
u
∗

− am + 3au
∗ 2

+ u
∗ 3

􏼐 􏼑

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
, guu � 0,

fuv �
fr a

2 2u
∗

− 1( 􏼁 + a m + 2u
∗ 2u
∗

− 1( 􏼁( 􏼁 + u
∗ 2 2u

∗
− 1( 􏼁􏼐 􏼑

a + u
∗

( 􏼁
2

fv
∗

+ 1( 􏼁
2 − b, guv � cb,

fvv �
2f

2
ru
∗
M

1 + fv
∗

( 􏼁
3, gvv � 0,

fuuu � −
6amr

a + u
∗

( 􏼁
4 1 + fv

∗
( 􏼁

, guuu � 0,

fuuv �
2fr a

3
+ 3a

2
u
∗

− am + 3au
∗ 2

+ u
∗ 3

􏼐 􏼑

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
2 , guuv � 0,

fuvv � −
2f

2
r a

2 2u
∗

− 1( 􏼁 + a m + 2u
∗ 2u
∗

− 1( 􏼁( 􏼁 + u
∗ 2 2u

∗
− 1( 􏼁􏼐 􏼑

a + u
∗

( 􏼁
2

fv
∗

+ 1( 􏼁
3 , guvv � 0,

fvvv � −
6f

3
ru
∗
M

1 + fv
∗

( 􏼁
4, gvvv � 0.

(66)

In addition, we note
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Qqq �

cn

dn

⎛⎝ ⎞⎠cos2
nx

l
,

Qqq �
en

fn

⎛⎝ ⎞⎠cos2
nx

l
,

Qqqq �

gn

hn

⎛⎝ ⎞⎠cos3
nx

l
,

(67)

where cn, dn, en, fn, gn, hn are defined as the same with [31].

cn � fuua
2
n + 2fuvanbn + fvvb

2
n,

dn � guua
2
n + 2guvanbn + gvvb

2
n,

en � fuu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ fuv anbn + anbn􏼐 􏼑 + fvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

fn � guu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ guv anbn + anbn􏼐 􏼑 + gvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

gn � fuuu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
an + fuuv 2 an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
bn + a

2
nbn􏼐 􏼑 + fuvv 2 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
an + b

2
nan􏼐 􏼑 + fvvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
bn,

hn � guuu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
an + guuv 2 an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
bn + a

2
nbn􏼐 􏼑 + guvv 2 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
an + b

2
nan􏼐 􏼑 + gvvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
bn.

(68)

For n � 0, by calculation, we derive (69)

c0 � −
2cf

2
r
3
M

2

fv
∗

+ 1( 􏼁
3

����������

4bfrM + b
2

􏽱 +
2r m/ a + u

∗
( 􏼁

2
− 1􏼐 􏼑

fv
∗

+ 1
−

2mru
∗

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁

−
i2crM − frM/ fv

∗
+ 1( 􏼁

2
− fru

∗
m/ a + u

∗
( 􏼁

2
− 1􏼐 􏼑/ fv

∗
+ 1( 􏼁

2
− b􏼐 􏼑

�����������������

cu
∗
M

����������

4bfrM + b
2

􏽱􏽲 ,

d0 � −
i2c

2
brM

������������������

cu
∗
M

�����������

b(4frM + b)

􏽱􏽲 ,

e0 �
2cf

2
r
3
M

2

fv
∗

+ 1( 􏼁
3

����������

4bfrM + b
2

􏽱 −
2rmu

∗

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
+

2r m − a + u
∗

( 􏼁
2

􏼐 􏼑

a + u
∗

( 􏼁
2 1 + fv

∗
( 􏼁

,

g0 �
r

32 fv
∗

+ 1( 􏼁
4

192ic
3
f
3
r
3
u
∗
M

4

cu
∗
M

����������

b2 + 4bfrM

􏽱

􏼒 􏼓
3/2 +

64cf
2
r
2
M

2
ma + 2u

∗
− 1( 􏼁 a + u

∗
( 􏼁

2
􏼐 􏼑 fv

∗
+ 1( 􏼁

u
∗

a + u
∗

( 􏼁 a + u
∗

( 􏼁 u
∗

− 1( 􏼁 + m( 􏼁

����������

b
2

+ 4bfrM

􏽱
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
64icfrM a + u

∗
( 􏼁

3
− am􏼐 􏼑 fv

∗
+ 1( 􏼁

2

a + u
∗

( 􏼁
3

�����������������

cu
∗
M

����������

b
2

+ 4bfrM

􏽱􏽲 +
192mu

∗
fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
4 −

192m fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f0 � h0 � 0.

(69)
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-en, we can obtain (70)

〈q∗, Qqq〉 � bc −
cf

2
r
3
M

2

fv
∗

+ 1( 􏼁
3

����������

b
2

+ 4bfrM

􏽱 −
mru
∗

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
+

r m − a + u
∗

( 􏼁
2

􏼐 􏼑

a + u
∗

( 􏼁
2 1 + fv

∗
( 􏼁

+
icrM b − fr a + u

∗
( 􏼁

2 2u
∗

− 1( 􏼁 + am􏼐 􏼑/ a + u
∗

( 􏼁
2 1 + fv

∗
( 􏼁

2
􏼐 􏼑􏼐 􏼑

�����������������

cu
∗
M

����������

b
2

+ 4bfrM

􏽱􏽲 ,

〈q∗, Qqq〉 �
cf

2
r
3
M

2

fv
∗
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(70)

And, we note

ω20 � 2iω0I − L m
H
0􏼐 􏼑􏽨 􏽩

− 1
H20,

ω11 � − L m
H
0􏼐 􏼑􏽨 􏽩

− 1
H11,

H20 �
c0

d0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 � 0,

H11 �
e0

f0
􏼠 􏼡 − 0〈q∗, Qqq〉

a0

b0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 � 0.

(71)

Hence, ω20 � ω11 � 0, 〈q∗, Qω20q〉 � 〈q∗, Qω11q〉 � 0. By
further calculation, we obtain that
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3
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(72)

From above analysis, we know that α′(mH
0 )> 0. Hence,

by -eorem 2 in [31], the bifurcating solutions bifurcated
from (mH

0 , u∗, v∗) are locally asymptotically stable (resp.
unstable) if Re(c1(mH

0 ))< 0(resp.> 0) and Tj(mH
0 )< 0,

Dj(mH
0 )> 0 for j≥ 1, and the Hopf bifurcation at mH

0 is
supercritical (resp. subcritical) if 1/α′(mH

0 )Re(c1(mH
0 ))

< 0(resp.> 0). -e proof is complete.

Inspired by [31, 32], we take m as the bifurcation pa-
rameter and also restrict (a + u∗)2 ≤m< (a + u∗)(1 − u∗).
We suppose that Ω � (0, lπ). -e non-negative steady state
solutions of (72) satisfy the elliptic problem corresponding
to

d1
z
2
u

zx
2 + r u + u

∗
( 􏼁 1 − u + u

∗
( 􏼁 −

m

u + u
∗

( 􏼁 + a
􏼠 􏼡

1
1 + f v + v

∗
( 􏼁

− b u + u
∗

( 􏼁 v + v
∗

( 􏼁 � 0, x ∈ (0, lπ), t> 0,

d2
z
2
v

zx
2 + cb u + u

∗
( 􏼁 v + v

∗
( 􏼁 − d v + v

∗
( 􏼁 � 0, x ∈ (0, lπ), t> 0, z]u(0, t) � z]u(lπ, t) � z]v(0, t) � z]v(lπ, t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(73)

From -eorem 3, we know that (u∗, v∗) is locally as-
ymptotically stable for 0<m< (a + u∗)2 and unstable for
(a + u∗)2 <m< (a + u∗)(1 − u∗).

-e steady state bifurcation point m0 satisfies the steady
state bifurcation condition (H2) in [31]:

Dn m0( 􏼁 � 0, Tn m0( 􏼁≠ 0, andTj m0( 􏼁≠ 0, Dj m0( 􏼁

≠ 0 forj≠ n ∈ N0.

(74)

d
dm

Dn m0( 􏼁≠ 0. (75)

It means that the potential steady state bifurcation points
m shall satisfy conditions (74) and (75). Recall that for
m ∈ (0, mH

0 ], Tn(m)≤ 0 and Dn(m)> 0. -en, any potential
bifurcation point m0 must be in the interval
(mH

0 , (a + u∗)(1 − u∗)). Hence, the steady state bifurcation
points reduces to the set

Λ: � m ∈ m
H
0 , a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏼐 􏼑: for some n ∈ N, (74) and(75)are satisfied􏽮 􏽯, (76)

when a set of parameters (d1, d2, a, b, c, d, f, r, l) are
fixed.

Recall that Dn(m) � d1d2ρ2 − d2T0(m)ρ + D0, where
ρ � n2/l2. By solving Dn(m) � 0 , we have

ρ � ρ±(m): �
d2T0(m) ±

��������������������

d22T
2
0(m) − 4d1d2D0(m)

􏽱

2d1d2
. (77)

We define that
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z(m) � d2r
2
u
∗ 2 m

a + u∗( )2
− 1􏼠 􏼡

2

− 4d1cr 1 − u
∗

−
m

u
∗

+ a
􏼒 􏼓

�����������������������

b
2

+ 4bfr 1 − u
∗

−
m

u
∗

+ a
􏼒 􏼓

􏽲

,

B(m) � d
2
2T

2
0(m) − 4d1d2D0(m) �

4b
2d2u
∗

b +

�������������������������

b2 + 4bfr 1 − u∗ − m/u∗ + a( )

􏽱

􏼒 􏼓
2 z(m).

(78)

For z(m), we have z′(m)> 0 and z(a + u∗)2 < 0, z((a +

u∗)(1 − u∗))> 0 for (a + u∗)2 ≤m< (a + u∗)(1 − u∗).
Hence, there exists a unique root of z(m) � 0 denoted by

mB, which implies that B(mB) � 0 and ρ±(m)> 0 exists only

for mB ≤m< (a + u∗)(1 − u∗). -erefore, the potential
steady state bifurcation points reduces to the set (79).

Θ: � m ∈ m
B
, a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏽨 􏼑: for some n ∈ N, (74) and (75)are satisfied􏽮 􏽯. (79)

-en, the properties of ρ±(m) can be summarized as
follows: □

Lemma 2. We assume that d1, d2, f> 0, u∗ < 1 − a/2. 7en,
for any m ∈ [mB, (a + u∗)(1 − u∗)), ρ±(m) exists. Moreover,
ρ+(m) is increasing and ρ− (m) is decreasing.

lim
m⟶mB

ρ+(m) � lim
m⟶mB

ρ− (m) �
T0 m

B
􏼐 􏼑

2d1
,

lim
m⟶mB

ρ+
′(m) � +∞, lim

m⟶mB
ρ−
′(m) � − ∞,

ρ+ a + u
∗

( 􏼁 1 − u
∗

( 􏼁( 􏼁 �
1
d1

ru
∗ 1 − u

∗

a + u
∗ − 1􏼠 􏼡,

ρ− a + u
∗

( 􏼁 1 − u
∗

( 􏼁( 􏼁 � 0.

(80)

Proof. -e first limit equation is trivial, so we omit here. We
mainly analyze the monotonicity result on ρ±((a + u∗)(1 −

u∗)) with respect to m for m ∈ (mB, (a + u∗)(1 − u∗)].
Differentiating Dn(m) with respect to m, it follows that

2d1d2ρ±(m)ρ ±′(m) − d2T0(m)ρ±(m) − d2T0ρ ±′(m) + D0′ � 0.

(81)

Hence, ρ ±′(m) � d2T0′(m)ρ±(m) − D0′(m)/2d1d2ρ±
− d2T0(m). It is easy to get 2d1d2ρ+(m) − d2T0(m)> 0 and
2d1d2ρ− (m) − d2T0(m)< 0 from (77). In addition, by cal-
culation, we obtain that for m ∈ (mB, (1 − u∗)(a + u∗)),
d2T0′(m)ρ±(m) − D0′(m)> 0. -e proof is completed.

It follows from Lemma 1 that the curve (m, ρ±) forms a
smooth connected curve which connects (m, ρ) �

(mB, T0(mB)/2d1), ((1 − u∗)(a + u∗), 1/d1ru∗(1 − u∗/a +

u∗ − 1), and (m, ρ) � (m, 0).
By the properties of ρ±, if

0<
n
2

l
2 <

1
d1

ru
∗ 1 − u

∗

a + u
∗ − 1􏼠 􏼡, (82)

then there exists mB
n ∈ [mB, (1 − u∗)(a + u∗)) such that

ρ+(mB
n ) � n2/l2 or ρ− (mB

n ) � n2/l2, and thus Dn(mB
n ) � 0.

We define l � n/
����������������������
1/d1ru∗(1 − u∗/a + u∗ − 1)

􏽰
. -en, for any

l> l, there exists a mB
n such that Dn(mB

n ) � 0.
Next, we verify dDn(mB

n )/dm≠ 0. We recall that
Dn
′(m) � − d2n

2/l2T0′(m) + D0′(m). Moreover, we know that
T0′(m)> 0 and D0′(m)< 0 . It follows that dDn(mB

n )/
dm< 0. □

5. Numerical Simulations

In this section, in order to reveal the influence of fear effect,
Allee effect, and other factors on the predator-prey model, a
numerical method is used to analyze the effect of parameters
on the asymptotic behavior of system (2) so as to verify and
supplement the theoretical results mentioned before.

In Figure 1, we choose d1 � 0.1, d2 � 0.1, a � 0.5, b � 1,

c � 1, d � 0.2, r � 1, f � 15. Varying the parameter m and
choosing the initial data near (u∗, v∗), we indicate the
following numerical results on the effects of parameter m:

(1) Take 0<m � 0.3< a. Since m< (d/bc + a)2,
(u∗, v∗) ≈ (0.2000, 0.1275) is locally asymptotically
stable by -eorem 3. -e simulation results indicate
that system (2) converges to the equilibrium (see
Figures 1(a) and 1(b)).

(2) Taking m � 0, there is no Allee effect on prey. Since
m< (d/bc + a)2, (u∗, v∗) ≈ (0.2000, 0.2000) is lo-
cally asymptotically stable by -eorem 3. -e sim-
ulation results indicate that system (2) converges to
the equilibrium (see Figures 1(c) and 1(d)).

(3) Taking 0< (d/bc + a)2 <m � 0.495< a< (d/bc+

a)(1 − d/bc), it satisfies the condition of the weak
Allee effect and Hopf bifurcation condition by
-eorem 4. -e simulation results indicate that
system (2) undergoes Hopf bifurcation (see
Figures 1(e) and 1(f )).

(4) Taking 0< (d/bc + a)2 < a<m � 0.51< (d/bc + a)

(1 − d/bc), it satisfies the condition of the strong
Allee effect and Hopf bifurcation condition by
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-eorem 4. -e simulation results indicate that
system (2) undergoes Hopf bifurcation (see
Figure 1(g) and 1(h)).

In Figure 2, we choose d1 � 0.1, d2 � 0.1, a �

0.5, b � 1, c � 1, d � 0.2, r � 1, m � 0.51. Varying the pa-
rameter f and choosing the initial data near (u∗, v∗), it
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Figure 1:-e effects of parameter m forT � 800, l � 2.-e values of parameter m are as follows: (a, b)m � 0.3; (c, d)m � 0; (e, f ) m � 0.495;
(g, h) m � 0.51. -e right column is the L1 norm of u and v.
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shows that when f is small, system (2) has obviously pe-
riodic oscillation (see Figure 2(a)). When f increases, the
maximum L1 norms of u are almost the same. However, the
maximum L1 norms of v decrease with f increasing (see
Figures 2(a)–2(d)). -is means that the fear has a negative
impact on predators. Moreover, the period of periodic so-
lutions becomes larger as f increases. (see Figures 2(a)–
2(d)).

In Figure 3, we choose d1 � 0.1, d2 � 0.1, a � 0.5, b � 1,

c � 1, r � 1, f � 15, m � 0.51. Varying the parameter d and
choosing the initial data near (u∗, v∗), it indicates that when
d increases, the period of periodic solution is decreasing.
Furthermore, with d increasing, the amplitude of periodic
solutions is also decreasing. (see Figures 3(a)–3(c)). As d

continues to increase, system (2) converges to an equilib-
rium (see Figure 3(d)).
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Figure 2: -e effects of parameter f for T � 800 , l � 2. -e values of parameter f are as follows: (a) f � 5; (b) f � 50; (c) f � 500;
(d) f � 5000.
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6. Conclusion

In this paper, a diffusive predator-prey model with additive
Allee effects induced by fear factors is considered, in which
prey can represent the antipredator behavior due to fear
factors. Analytical results indicate that the upper bound of v

depends on the diffusion rates d1, d2, the death rate of the
predators d, the Allee effects parameters m, a, the conversion
rate c, and the level of fear f. -ere exists d∗, which depends
on a, b, c, d, r, m, f,Ω, such that if min d1, d2􏼈 􏼉>d∗, the
system have only constant positive solution. Furthermore,
the dynamic behavior near E∗ � (u∗, v∗) is of more con-
cerned. -en, we indicate the existence of non-constant
positive solutions. Taking m as a bifurcation parameter,
system undergoes Hopf bifurcation at each m � mH

j

(0≤ j≤ n). Furthermore, for d1, d2, a, b, c, d, r, f> 0,

0<m< (1 − d/bc)(d/bc + a) are fixed, and there is a smooth
curve Γn of non-constant positive solutions bifurcating from
(u∗, v∗).

We observe that the Allee effect is essential to the dy-
namical behavior of system (2) by numerical simulations.
-e amplitude in the strong Allee effect is increasing with m

increasing. On the other hand, numerical simulations reveal
that the fear effect have an impact on the dynamical behavior
of system (2). With the fear effect increasing, the period of
periodic solutions is increasing, but the maximum L1 norm
of u is almost the same. On the contrary, the maximum L1
norm of v decreases with f increasing. From a biological
standpoint, the prey survives by adopting antipredator be-
havior as a result of the fear effect, and the predator is
impacted by the prey’s antipredator behavior. At last, we
show how the death rate d affects system (2) with the strong
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Figure 3: -e effects of parameter d for T � 800, l � 2. -e values of parameter d are as follows: (a) d � 0.18; (b) d � 0.2; (c) d � 0.22;
(d) d � 0.3.
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Allee effect. As d increases, the amplitude of periodic so-
lution is decreasing, and the period of periodic solution is
also decreasing.

It is extremely important to construct animal interaction
models in the incorporation of these different types of
factors. Considering the different ways of introducing the
Allee effect and the interaction with the fear effect, further
analysis of the bifurcating solutions of (2) remains a chal-
lenging problem. From our discussion before, we conjecture
that Turing-Hopf bifurcation, Hopf-Hopf bifurcation is
likely to exist in the system, which reveals more complex
dynamic behavior and potential biological significance.
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In this paper, some novel analytical and numerical techniques are introduced for solving and analyzing nonlinear second-order
ordinary differential equations (ODEs) that are associated to some strongly nonlinear oscillators such as a quadratically damped
pendulum equation. Two different analytical approximations are obtained: for the first approximation, the ansatz method with the
help of Chebyshev approximate polynomial is employed to derive an approximation in the form of trigonometric functions. For
the second analytical approximation, a novel hybrid homotopy with Krylov–Bogoliubov–Mitropolsky method (HKBMM) is
introduced for the first time for analyzing the evolution equation. For the numerical approximation, both the finite difference
method (FDM) and Galerkin method (GM) are presented for analyzing the strong nonlinear quadratically damped pendulum
equation that arises in real life, such as nonlinear phenomena in plasma physics, engineering, and so on. Several examples are
discussed and compared to the Runge–Kutta (RK) numerical approximation to investigate and examine the accuracy of the
obtained approximations. Moreover, the accuracy of all obtained approximations is checked by estimating the maximum residual
and distance errors.

1. Introduction

Duffing-type equation is one of the most important second-
degree differential equations that is used to describe many
different phenomena [1–6]. &e Duffing equation can be
used for describing a nonlinear oscillator with a cubic
nonlinearity, and the standard form of this equation reads as
€x(t) + f(x) � 0, with f(x) � 􏽐

∞
i�1 αix

i being the only odd
polynomial where i � 1, 3, 5, . . .. George Duffing, a German
engineer, is the first person who did arrive at this equation
and used it in the study of many different oscillators [3]. He
also prepared a book in this regard and explained in it many
applications that use this equation in the interpretation of
many natural phenomena. Since then, there has been a

tremendous amount of research works done about this
equation of motion and some related equations, including
(un)damped Duffing oscillator €x(t) + β _x(t) + f(x) � 0,
forced Duffing oscillator €x(t) + f(x) � F(t), forced damped
Duffing oscillator €x(t) + β _x(t) + f(x) � F(t), and many
other oscillators with odd polynomials and complicated
damping term [7–10]. Moreover, there is another type of
oscillator that combines both odd and even polynomials,
which is called the Helmholtz–Duffing (HD) oscillator
€x(t) + f(x) + g(x) � 0 (here, f(x) � 􏽐

∞
i�1 αix

i is only odd
polynomial where i � 1, 3, 5, . . . and g(x) � 􏽐

∞
i�2 cix

i is only
even polynomial where i � 2, 4, 6, . . .) and some related
oscillators such as (un)damped HD oscillator
€x(t) + β _x(t) + f(x) + g(x) � 0, forced HD oscillator
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€x(t) + f(x) + g(x) � F(t), forced damped HD oscillator
€x(t) + β _x(t) + f(x) + g(x) � F(t) and many other HD
oscillators with complicated damping term and complicated
polynomials [11–15]. All these oscillations have several
applications in various fields of science, e.g., oscillations in
electronic circuits, oscillations in different plasma models,
pendulum oscillator, etc. Due to the importance of these
equations, many studies have been conducted to find some
analytical and numerical solutions to accurately describe the
engineering and physical systems associated with these
oscillations [17–19].

As a contribution to the literature, in this article, we
present some novel analytical and numerical solutions to the
complicated dampedHD-type oscillator for a given arbitrary
initial conditions by means of both elliptic (exact solution)
and trigonometric functions (approximate solution). First,
we follow the work of Sugie [20] where the author obtained
the equation of motion of underwater pendulum and studied
the stability of this oscillator. &is equation is called the
quadratically damped pendulum equation [20]:

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 sin θ � 0, (1)

where ε represents the coefficient of the damping term and
ω0 indicates restoring coefficient per unit of the moment of
inertia. For small θ, equation (1) can be approximated as
follows:

θ
..

+ 2εθ
.

|θ
.

| + ω2
0θ � 0. (2)

Numerous oscillators with quadrature damping have
been investigated over a wide range of different fields
[21–26]. &ere are many methods for solving nonlinear
differential equations. &ere are many analytical and nu-
merical methods that dealt with solving different differential
equations, and some of these methods can be found in Refs.
[28–34]. In this paper, we will consider four different
methods for solving and analyzing equation (1). First, we will
solve this equation using the effective ansatz method in order
to find some analytical approximations. In the second
method, the hybrid homotopy Kry-
lov–Bogoliubov–Mitropolsky method (HKBMM) will be
employed to find an approximate solution with high ac-
curacy. On the other hand, two highly accurate numerical
schemes which are called the finite difference method
(FDM) and Galerkin Hats method (GHM) will be intro-
duced for analyzing evolution equation (1).

2. Analytical Approximations

In this section, two different approximations will be ob-
tained. For the first approximation, the ansatz method with
the help of Chebyshev approximate polynomial is employed
to obtain an approximation in trigonometric form. For the
second approximation, the new HKBMM is introduced.

2.1. First Approach: Ansatz Method and Trigonometric
Solution. Let us rewrite evolution equation (1) in the form of
the initial value problem (i.v.p.):

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 sin θ � 0,

θ(0) � θ0 and θ′(0) � θ
.

0.

⎧⎪⎨

⎪⎩
(3)

Based on Chebyshev polynomial approximation, the
value of sin θ can be expanded as

sin θ ≈ θ − λθ3,

θ
.

|θ
.

| ≈ r0θ
.

+ r1θ
. 3

, for|θ
.

|≤M,
(4)

where

r0 �
M

2

������

1 −
1
�
2

√

􏽳

,

r1 �
1

M

������

2 −
�
2

√􏽱

,

λ �
2
13

.

(5)

Other possible choices for (r0, r1, λ) can be considered as

r0 �
5M

16
,

r1 �
3
5
48M,

λ �
1
6
.

(6)

For (ω0, θ
.

0) � (1, 0), the following approximation is
obtained:

M � −0.900775εθ0 + 0.240105ε + 0.905583θ0. (7)

Next, we replace the original i.v.p. (3) by the following
approximate i.v.p.

R ≡ θ
..

+ 2ε r0θ
.

+ r1θ
. 3

􏼒 􏼓 + ω2
0 θ − λθ3􏼐 􏼑 � 0,

θ(0) � θ0θ′(0) � θ
.

0.

⎧⎪⎪⎨

⎪⎪⎩
(8)

Assume that the solutions to the i.v.p. (8) have the
following formulas:

θTrigon � c0 exp(−ρt)cos f(t) + cos− 1 θ0
c0

􏼠 􏼡􏼠 􏼡,

θTrigon � c0 exp(−ρt)sin f(t) + sin− 1 θ0
c0

􏼠 􏼡􏼠 􏼡,

(9)

with the initial conditions (ICs)

f(0) � 0,

θ(0) � θ0,

θ′(0) � θ
.

0,

(10)

where the number ρ and the function f ≡ f(t) are chosen in
order to get the smallest possible residual error R(t):
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R(t) � θ″ + 2ε θ′ θ′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ω2
0 θ − λθ3􏼐 􏼑. (11)

Now by substituting ansatz (9) into the i.v.p. (8), we get

R � 51 sin(ϕ) + 52 cos(ϕ) + 53 sin(3ϕ)

+ 54 cos(3ϕ),

�������

b
2

− 4ac

􏽱

,

(12)

with

51 �
1
2
c0e

− 3ερt
−3c

2
0ε f′( 􏼁

3
r1 − 3c

2
0ε

3ρ2r1 + 4εr0e
2ερt

􏼐􏽨

−4ερe
2ερt

􏼑f′ − 2f″e
2ερt

],

52 �
1
4
c0e

− 3ερt
− 6c

2
0ε

2ρr1 + 4e
2ερt

􏼐 􏼑 f′( 􏼁
2

− 3c
2
0λω

2
0 − 6c

2
0ε

4ρ3r1

−8ε2ρr0e
2ερt

+ 4ε2ρ2e2ερt
+ 4ω2

0e
2ερt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

53 � −
1
2
c
3
0εr1e

− 3ερt 3ε2ρ2 − f′( 􏼁
2

􏼐 􏼑f′,

54 � −
1
4
c
3
0e

− 3ερt
−6ε2ρr1 f′( 􏼁

2
+ λω2

0 + 2ε4ρ3r1􏼐 􏼑,

(13)

where ϕ � f(t) + cos− 1(θ0/c0).
For 52 � 0, we get

f′( 􏼁
2

�
4e

2ερt ε2 ρ ρ − 2r0( 􏼁 + ω2
0􏼐 􏼑 − 3c

2
0 λω2

0 + 2ε4ρ3r1􏼐 􏼑

6c
2
0ε

2ρr1 + 4e
2ερt

� A +
B

1 + C exp(2ρεt)
,

(14)

with

A � ε2ρ ρ − 2r0( 􏼁 + ω2
0,

B � −2ε2ρ2 − ω2
0

λ
2ε2ρr1

+ 1􏼠 􏼡 + 2ε2ρr0,

C �
2

3c
2
0ε

2ρr1
.

(15)

Integrating equation (14) leads to

f � F(t) − F(0), (16)

with

F(t) �
1
ερ

��
A

√
tanh− 1

�������������
A + B/Ce

2ερt
+ 1

􏽰

��
A

√⎛⎝ ⎞⎠⎡⎢⎢⎣

−
�����
A + B

√
tanh− 1

�������������
A + B/Ce

2ερt
+ 1

􏽰

�����
A + B

√⎛⎝ ⎞⎠⎤⎥⎥⎦.

(17)

Inserting the value of f given in equation (16) into ansatz
(9) and applying the ICs θ′(0) � θ

.

0, the value of c0 can be
determined from the following quartic equation:

4 2ε2ρ2θ20 − 2ε2ρr0θ
2
0 + θ20ω

2
0 + 2ερθ0θ

.

0 + θ
. 2
0􏼒 􏼓

+ −4ε2ρ2 + 8ε2ρr0 − 4ω2
0 − 3λθ20ω

2
0􏼐

+12ε3ρ2r1θ0θ
.

0 + 6ε2ρr1θ
. 2
0􏼓c

2
0

+ 3 2ε4ρ3r1 + λω2
0􏼐 􏼑c

4
0 � 0.

(18)

Solution (9) θTrigon is presented in Figures 1(a) and 1(b)
for θ0 � 0 and θ0 � π/6 at (ε,ω0, θ

.

0) � (0.2, 1, 0.1). More-
over, in the same figure, solution (9) is compared to the RK
numerical approximation and the maximum distance error
according to the following relation is calculated:

Error ≡ L∞ � max0≤t≤T RK − θTrigon
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (19)

&e maximum distance error according to relation (19)
for θ0 � 0 and θ0 � π/6 at (ε,ω0, θ

.

0) � (0.2, 1, 0.1) is, re-
spectively, estimated as

L∞|θ0�0 � 0.00515945,

L∞|
θ0�

π
6

� 0.0511852.
(20)

It is noted that the accuracy of solution (9) becomes good
and acceptable for small θ0, but for large value of θ0, the
accuracy of solution (9) reduces as shown in Figure 1.

Also, the maximum residual error is defined as

ET(θ) � max
0≤t≤T

θ″(t) + 2ε θ′(t) θ′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ω2
0 sin(θ(t))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (21)

&is is another form for the error to check the accuracy
of the obtained approximations.

2.2. Second Approach: HKBMM. Let us consider the i.v.p.

€x + ω2
0x � F(t, x, _x), x(0) � x0 andx′(0) � _x0 for 0≤ t≤T.􏽮

(22)

Suppose that the physical problem described by (22)
involves some small parameters ε1, ε2,. . .., εr. Let x ≡ x(t) be
the solution to the i.v.p. (22) and assume that

F(t, x, _x) ≡ 0when ε1 � ε2 � . . . � εr � 0. (23)

&e solution x ≡ x(t) depends not only on t but also on
the parameters ε1, ε2, . . . , εr, so that we can rewrite x ≡ x(t)

as

x � x t; ε1, ε2, . . . , εr( 􏼁. (24)

Let us multiply each parameter by some other parameter
p and consider the following p−parametric solution:

xp � xp t; pε1, pε2, . . . , pεr( 􏼁. (25)

Accordingly, the function xp may be written in a power
series as follows:

xp � u0 + pu1 + p
2
u2 + · · · , (26)
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where uk depends on t only, say uk � uk(t).
Based on Krylov–Bogoliubov–Mitropolsky method

(KBMM), the solution of equation (22) is assumed to be

xp � a cos(ψ) + 􏽘
N

n�1
p

n
un(a,ψ) + O p

N+1
􏼐 􏼑, (27)

where each un is a periodic function of ψ and a and ψ are
assumed to vary with time according to

da

dt
≡ _a � 􏽘

N

n�1
p

n
An(a) + O p

N+1
􏼐 􏼑, (28)

dψ
dt
≡ _ψ � ω0 + 􏽘

N

n�1
p

nψn(a) + O p
N+1

􏼐 􏼑, (29)

where a ≡ a(t) and ψ ≡ ψ(t).
Moreover, the hybrid homotopy KBMM (HKBMM) is

suggested to be

H xp, t􏼐 􏼑 � €xp + ω2
0xp − pF t, xp, _xp􏼐 􏼑. (30)

&e next step is to write the residual Hp(x, t) as a power
series in p:

H xp, t􏼐 􏼑 � €xp + ω2
0xp + pΥ1 + p

2Υ2 + p
3Υ3 + · · · . (31)

For the determination of the unknown functions un, ψn,
An, and a, we equate to zero the coefficients Υn in equation
(22) and then we can get a system of ODEs. To avoid the so-
called secularity, we choose only the solutions that do not

contain cos ψ nor sin ψ. For N � 2 (the first approxima-
tion), we may use the following formulas (we neglected all
terms containing pj for j≥ 2):

_x � p ω0u1,ψ − aψ1 sin(ψ) + A1 cos(ψ)􏼐 􏼑 − aω0 sin(ψ),

x � p ω2
0u1,ψ,ψ − 2aψ1ω0 cos(ψ)􏼐

−2A1ω0 sin(ψ)􏼁 − aω2
0 cos(ψ),

x
2

�
1
2
a
2 cos(2ψ) +

a
2

2
+ 2apu1 cos(ψ),

x
3

�
3
4
a
3 cos(ψ) +

1
4
a
3 cos(3ψ) + p

3
2
a
2
u1 cos(2ψ) +

3a
2
u1

2
􏼠 􏼡,

x
4

�
1
2
a
4 cos(2ψ) +

1
8
a
4 cos(4ψ) +

3a
4

8

+ p 3a
3
u1 cos(ψ) + a

3
u1 cos(3ψ)􏼐 􏼑,

x
5

�
5
8
a
5 cos(ψ) +

5
16

a
5 cos(3ψ) +

1
16

a
5 cos(5ψ)

+ p
5
2
a
4
u1 cos(2ψ) +

5
8
a
4
u1 cos(4ψ) +

15a
4
u1

8
􏼠 􏼡,

(32)

and

x _x � p

aω0 cos(ψ)u1,ψ + a
2ψ1 sin(ψ)(−cos(ψ))

+
1
2

aA1 cos(2ψ) +
aA1

2
− au1ω0 sin(ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, −a

2ω0 sin(ψ)cos(ψ),

Error = 0.00515945
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20 40 60 80 1000
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RK4
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Error = 0.0511852
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Figure 1: Both trigonometric solution (9) and RK numerical approximation are plotted in (θ, t)−plane.
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_x
2

� p
−2aω2

0 sin(ψ)u1,ψ + a
2ψ1ω0

+a
2ψ1ω0(−cos(2ψ)) − aA1ω0 sin(2ψ)

⎛⎝ ⎞⎠ −
1
2
a
2ω2

0 cos(2ψ) +
1
2
a
2ω2

0,

_x
3

� p

3
2
a
2ω3

0u1,ψ −
3
2
a
2ω3

0 cos(2ψ)u1,ψ

−
9
4
a
3ψ1ω

2
0 sin(ψ) +

3
4
a
3ψ1ω

2
0 sin(3ψ)

+
3
4
a
2
A1ω

2
0 cos(ψ) −

3
4
a
2
A1ω

2
0 cos(3ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
3
4
a
3ω3

0 sin(ψ) +
1
4
a
3ω3

0 sin(3ψ),

x
2

_x � p

1
2
a
2ω0u1,ψ +

1
2
a
2ω0 cos(2ψ)u1,ψ −

1
4
a
3ψ1 sin(ψ)

−
1
4
a
3ψ1 sin(3ψ) +

3
4
a
2
A1 cos(ψ)

+
1
4
a
2
A1 cos(3ψ) − a

2
u1ω0 sin(2ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1
4
a
3ω0 sin(ψ) −

1
4
a
3ω0 sin(3ψ), (33)

with

u1,ψ,ψ � z
2
ψu1,

u1,ψ � zψu1.
(34)

&e approximate analytical solution is obtained by
putting p � 1. However, we may keep the parameter p and
then we may use it as a residual minimization parameter.
&e optimal value to p will be near p � 1.

Now, the proposed method can be applied for investi-
gating the i.v.p. (8):

θ
..

+ ω2
0θ � F(t, θ, θ

.

),

θ(0) � θ0 and θ′(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(35)

where in our case, x � θ and

F(t, θ, θ
.

) � −2ε r0θ
.

+ r1θ
. 3

􏼒 􏼓 + λω2
0θ

3
. (36)

Observe that when ε1 � ε⟶ 0 and ε2 � λ⟶ 0, we get
F � 0.

In equations (27)–(29), for N � 1 and λ � 2/13, we have

xp � a cos(ψ) + pu1(a,ψ),

_a � A1(a),

_ψ � ω0 + ψ1(a).

(37)

&e homotopy to equation (35) is written as

Hp(θ, t) � θ
..

p + ω2
0θp − p −2ε r0θ

.

+ r1θ
. 3

􏼒 􏼓 +
2
13
ω2
0θ

3
􏼔 􏼕. (38)

&e substitution of equation (37) into equation (38) leads
to

Hp(θ, t) �
1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0􏼐 􏼑􏼔

+
1
4

−3a
3λω2

0 − 8aψ1ω0􏼐 􏼑cos(ψ)

+
1
4

−6a
3εr1ω

3
0 − 8aεr0ω0 − 8A1ω0􏼐 􏼑sin(ψ)

−
1
4
a
3λω2

0 cos(3ψ) +
1
2
a
3εr1ω

3
0 sin(3ψ)􏼕p + · · · . (39)

We must have
1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0􏼐 􏼑

+
1
4

−3a
3λω2

0 − 8aψ1ω0􏼐 􏼑cos(ψ)

+
1
4

−6a
3εr1ω

3
0 − 8aεr0ω0 − 8A1ω0􏼐 􏼑sin(ψ)

−
1
4
a
3λω2

0 cos(3ψ) +
1
2
a
3εr1ω

3
0 sin(3ψ) � 0.

(40)

&e coefficients of cos(ψ) and sin(ψ) must be vanished
to eliminate the secularity. Accordingly, we have

ψ1(a) � −
3
52

a
2ω0,

A1(a) � −
3
4
a
3εr1ω

2
0 − aεr0.

(41)

&us, equation (40) reduces to

1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0􏼐 􏼑 +

1
4
a
3λω2

0 cos(3ψ)

+
1
2
a
3εr1ω

3
0 sin(3ψ) � 0.

(42)

Solving equation (42), the following particular solution
without any secularity terms is obtained:

u1(a,ψ) � −
1
208

a
3 cos(3ψ) − 13εr1ω0 sin(3ψ)( 􏼁. (43)

From equations (37) and (41), the functions a ≡ a(t) and
ψ ≡ ψ(t) can be determined:
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_a � −
3
4
εr1ω

2
0a

3
− εr0a,

_ψ � ω0 −
3
52
ω0a

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(44)

By solving system (44), we get

a �
2

�����
r0/3r1

􏽰

����������������������
1 + 4r0/3A

2
r1ω

2
0􏼐 􏼑e

2tεr0 − 1
􏽱

· ω0

, (45)

and

ψ � ω0 +
r0

13ω0r1
􏼠 􏼡t + B −

1
26εr1ω0

log

e
2ερr0t

+
3A

2
r1ω

2
0

4r0
e
2tεr0t

− 1􏼐 􏼑􏼠 􏼡.

(46)

We finally get the analytical approximation in its first
approximation (p � 1).

θ � a cos(ψ) −
1
208

a
3 cos(3ψ) − 13εr1ω0 sin(3ψ)( 􏼁. (47)

We now introduce three optimization parameters by
replacing (ε,ψ) � (ρε, κψ) and then the approximation (47)
can be modified to be

θ(p, ρ, κ) � aρ cos ψρ,κ􏼐 􏼑 −
p

208
aρ

3

cos 3ψρ,κ􏼐 􏼑 − 13εr1ω0 sin 3ψρ,κ􏼐 􏼑􏼐 􏼑,

(48)

with

aρ �
2

�����
r0/3r1

􏽰

�����������������������
1 + 4r0/3A

2
r1ω

2
0􏼐 􏼑e

2tερr0 − 1
􏽱

ω0

, (49)

and

ψρ,κ � κ ω0t + B −
log e

2ερr0t
+ 3A

2
r1ω

2
0/4r0 e

2tερr0t
− 1􏼐 􏼑􏼐 􏼑 − 2ερr0t

26ερr1ω0

⎛⎝ ⎞⎠. (50)

&e numbers ρ, κ, and p are free parameters that we
choose in order to minimize the residual error

R(t) � θ″(t) + 2ε θ′(t) θ′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ω2
0 sin θ(t). (51)

&e default parameter values are ρ � κ � p � 1. &e
constants A and B are determined from the initial conditions
(ICs) θ(0) � θ0 and θ′(0) � θ0.

Following the same procedure above, we can get some
higher-order approximations. For example, for N � 3, the
following solution is obtained:

θ � a cos(ψ) + S1a
3

+ S2a
5

+ S3a
7
, (52)

where the coefficients S1,2,3 are defined in Appendix. &e
values of (a,ψ) associated to this solution can be determined
from the following equations:

_a � −εr0a −
3
52

ε r0 + 13r1ω
2
0􏼐 􏼑a

3
−
3ε 5r0 − 16r1ω

2
0 + 429ε2r0r

2
1ω

2
0􏼐 􏼑

1664
a
5

−
27εr1ω

2
0 21 + 2197ε2r21ω

2
0􏼐 􏼑

173056
a
7
, (53)

and

_ψ � ω0 −
ε2r20
2ω0

+
3 ε2r20 − 2ω2

0􏼐 􏼑

104ω0
a
2

+
3ω0 494ε2r0r1 + 507ε2r21ω

2
0 − 5􏼐 􏼑

10816
a
4

+
3ω0 37687ε2r21ω

2
0 − 41􏼐 􏼑

2249728
a
6
. (54)

&e approximate solution of the i.v.p. (35) using the
HKBMM is introduced in Figures 2(a) and 2(b) for θ0 � 0
and θ0 � π/6. Also, the maximum distance error L∞ is es-
timated for the two cases as follows:

L∞|θ0�0 � 0.00145602,

L∞|
θ0�

π
6

� 0.0209098.
(55)
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It is observed that approximate solution of the i.v.p. (35)
using the HKBMM is characterized by high accuracy and
more stability for long time and for arbitrary values of θ0.
Also, this approximation is better than the trigonometric
solution (9) θTrigon as shown from Figures 1 and 2 as well as
from the values of the errors.

3. Numerical Solution

In this section, some effective and highly accurate numerical
schemes will be introduced for analyzing evolution equation
(3). Both the finite difference method (FDM) and Galerkin
Hats method (GHM) are presented below.

3.1. Numerical Approximation via FDM. First, let us discuss
and apply the FDM on the general second-order ODE.&us,
the following general second-order is introduced:

€x � F(t, x, _x), x(0) � x0, x′(0) � _x0 and 0≤ t≤T.􏼈 (56)

Choose some positive integer n≥ 6 and divide the in-
terval [0, T] into n-subintervals by means of the knots
ti � ih, where h � T/n/(i � 0, 1, 2, . . . , n). &en, the first and
second-order derivatives can be approximated as follows:

x′ ti( 􏼁 ≈
−12xi−5 + 75xi−4 − 200xi−3 + 300xi−2 − 300xi−1 + 137xi

60h
,

x″ ti( 􏼁 ≈
−10xi−5 + 61xi−4 − 156xi−3 + 214xi−2 − 154xi−1 + 45xi

12h
2 .

(57)

Consequently, the following discrete version to ODE
(56) for i � 5, 6, . . . is obtained:

−10xi−5 + 61xi−4 − 156xi−3 + 214xi−2 − 154xi−1 + 45xi

12h
2

� F ti, xi,
−12xi−5 + 75xi−4 − 200xi−3 + 300xi−2 − 300xi−1 + 137xi

60h
􏼒 􏼓.

(58)

&e values of x1, x2, x3, and x4 are obtained from some
numerical or approximate analytical solution to the i.v.p.
(56). System (58) may be solved recursively.

&e above algorithm can be applied for analyzing the
i.v.p. (note here θ(t) ≡ x(t) without loss of generality):

θ
..

� F(t, θ, θ
.

),

θ(0) � θ0&θ′(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(59)

with

F(t, θ, θ
.

) � −2ε θ
.

|θ
.

| − ω2
0 sin θ. (60)

&e numerical approximation using FDM is plotted in
Figures 3 and 4 for different values of (n, θ0). In Figures 3(a)
and 3(b), the FDM numerical approximation is plotted
against n � 150 and n � 300, respectively. Moreover, the
effect of θ0 on the numerical approximation is illustrated in
Figures 4(a) and 4(b) for θ0 � 0 and θ0 � π/6, respectively.
Furthermore, the maximum distance error is calculated for
all mentioned cases as follows:

Error = 0.00145602

–0.10

–0.05

0.00

0.05

0.10

θ

10 20 30 40 50 600
t

RK4
HKBMM

(ε, ω0, θ0, θ·0) = (0.2, 1, 0, 0.1)

(a)

Error = 0.0209098

–0.4

–0.2

0.0

0.2

0.4

θ

10 20 30 40 50 600
t

RK4
HKBMM

(ε, ω0, θ0, θ·0) = (0.2, 1, π/6, 0.1)

(b)

Figure 2: &e approximate solutions using both HKBMM and RK numerical method are plotted in (θ, t)− plane.
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L∞ � 0.0279013, for n, θ0( 􏼁 � (150, 0),

L∞ � 0.00173893, for n, θ0( 􏼁 � (300, 0),

L∞ � 0.0429752, for n, θ0( 􏼁 � 150,
π
6

􏼒 􏼓,

L∞ � 0.00284604, for n, θ0( 􏼁 � 300,
π
6

􏼒 􏼓.

(61)

It is clear that the accuracy of the FDM numerical ap-
proximation increases with increasing n. Also, this ap-
proximation is stable against the long time intervals and

arbitrary angle θ0. Moreover, this approximation is better
than the trigonometric solution (9) θTrigon.

3.2. Numerical Approximation via Galerkin Hats Method.
First, let us consider a polynomial second-order forced
damped i.v.p.

€x + 2ε _x + P(x) � 0, x(0) � 0andx′(0) � _x0,􏼈 (62)

where x ≡ x(t).
Let us consider the i.v.p.

Error = 0.0279013

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, 0, 0.1)

(a)

Error = 0.00173893

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (300, 0.2, 1, 0, 0.1)

(b)

Figure 3: &e approximate solutions using both FDM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, 0) and
(b) (n, θ0) � (300, 0).

Error = 0.0429752
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t

RK4
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(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, π/6, 0.1)

(a)

Error = 0.00284604
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0.0
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θ
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t

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (300, 0.2, 1, π/6, 0.1)

(b)

Figure 4: &e approximate solutions using both FDM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, π/6) and
(b) (n, θ0) � (300, π/6).
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€y + 2ε _y + P(y) � 0, y(0) � y0 andy′(0) � _y0.􏼈 (63)

Suppose that x � x(t; c1) is the solution to the i.v.p.

€x + 2ε _x + P(x) � 0, x(0) � 0 andx′(0) � c1.􏼈 (64)

Define
y(t) � x t + c0; c1( 􏼁. (65)

&e constants c0 and c1 are determined from the system

x 0 + c0; c1( 􏼁 � y0 andx′ 0 + c0; c1( 􏼁 � _y0. (66)

&us, problemproblem (61) reduces to (60) by problem
(63) reduces to (62).

Some particular cases to the i.v.p. (62) are defined as

€x + 2ε _x + n(t) + p(t)x � f(t), €x + 2ε _x + n(t) + p(t)x + q(t)x
2

􏽮

� f(t), €x + 2ε _x + n(t) + p(t)x + q(t)x
2

+ r(t)x
3

� f(t).

(67)

We will use the same idea for the linear case.
Here, we start to discuss the linear case in system (67):

€x + 2ε _x + p(t)x � 0, x(0) � 0 and x′(0) � _x0.􏼈 (68)

An approximate solution to the i.v.p. (68) is assumed to
be in the following ansatz form:

x � 􏽘
n

k�1
ckφk(t), (69)

where the functions φk(t) are the so-called linear Galerkin
hats.

Let us investigate the present problem in the interval
0≤ t≤T and by choosing some positive integer n≥ 2 and
define the step h � T/n and let ξj � jh � jT/n for
j � 0, 1, 2, · · ·. &e functions φk(t) for k � 1, 2, . . . , n are
defined as

φk(t) �

c
t − ξk−1

h
, if ξk−1 ≤ t≤ ξk,

−
t − ξk+1

h
, if ξk ≤ t≤ ξk+1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(70)

For an illustration, see Figure 1.
Figure 1 Galerkin hats for n � 7 and T � 5.
Some properties of these functions can be illustrated as

follows:

φj(t)φk(t)dt � 0, (71)

for |j − k|≥ 2 and t ∈ [0, T], and

􏽚
T

0
φp

j (t) �
2T

(p + 1)n
, (72)

for j≥ 1 and p � 1, 2, 3, . . ..
In general, for |j − k| � 1 and r, s � 0, 1, 2, 3, · · ·, we have

􏽚
T

0
φr

j(t)φs
k(t) �

Tr!s!
n(r + s + 1)!

. (73)

Using the formula

􏽚
T

0
φj(t)x(t)

N
dt �

h

(N + 1)(N + 2)

􏽘

N−1

k�0
(k + 1) c

N−k
j−1 + c

N−k
j+1􏼐 􏼑c

k
j + 2(N + 1)c

N
j

⎛⎝ ⎞⎠,

(74)

for any N≥ 0 and c0 � cn+1 � 0, and assuming that
aj(t) ≡ aj � const, we may evaluate easily the following
integration:

􏽚
T

0
P(x)φj(t)dt � 􏽘

m

N�0
aN 􏽚

T

0
φj(t)x(t)

N
dt for any j,

􏽚
T

0
x″(t)φj(t)dt � − 􏽚

T

0
x′(t)φj
′(t)dt

�
cj−1 − 2cj + cj+1

h
for any j,

􏽚
T

0
x′(t) x′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌φj(t)dt �

n

2T

������������

cj− 1 − cj− 2􏼐 􏼑
2

􏽲

+

����������

cj − cj− 1􏼐 􏼑
2

􏽲

􏼢 􏼣.

(75)

Now, let us return to the original i.v.p. (3):

θ
..

+ 2εθ
.

|θ
.

| + ω2
0 sin θ � 0,

θ(0) � 0and θ′(0) � θ
.

0.

⎧⎪⎨

⎪⎩
(76)

Using the Chebyshev approximation,

sin θ ≈ θ −
4
0
241θ3 +

θ5

131
for |θ|≤

π
2

. (77)

Another approximation may be obtained by minimizing
the integral

􏽚

π
2
−π
2

aθ + bθ3 + cθ5 − sin θ􏼐 􏼑
2
dθ ⟶ min . (78)

&e minimization procedure yields the values

min �
π
2

−
3360 11975040 − 2661120π2 + 171720π4

− 2664π6 + 13π8􏼐 􏼑

π11
≈ 5.5 × 10− 9

, (79)
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with

a �
105 23760 − 2592π2 + 19π4􏼐 􏼑

π7 � 0.99977,

b � −
2520 18480 + 17π2 π2

− 120􏼐 􏼑􏼐 􏼑

π9
� −0.16583,

c �
166320 1008 − 112π2 + π4

􏼐 􏼑

π11 � 7.5742 × 10− 3
,

sin θ ≈ θ −
1
6
θ3 +

θ5

132
.

(80)

&en, i.v.p. (76) can be reduced to the following ap-
proximate i.v.p.

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 θ −

4
0
241θ3 +

θ5

131
􏼠 􏼡 � 0,

θ(0) � 0andθ′(0) � θ
.

0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(81)

Assume that the solution to i.v.p. (81) is given by

θ � 􏽘
n

k�1
ckφk(t). (82)

&e Galerkin method solves the following algebraic
system of nonlinear equations:

n

T
cj−2 − 2cj−1 + cj􏼐 􏼑 +

n

T

������������

cj− 2 − cj− 1􏼐 􏼑
2

􏽲

+

����������

cj − cj− 1􏼐 􏼑
2

􏽲

􏼠 􏼡ε + ω2
0Sj � 0,

(83)

with

Sj �
Tω2

0
5544n

c
5
j +

Tω2
0cj−1

2772n
c
4
j +

Tω2
0 5c

2
j−1 − 77􏼐 􏼑

9240n
c
3
j

+
Tω2

0cj−1 10c
2
j−1 − 231􏼐 􏼑

13860n
c
2
j +

Tω2
0 25c

4
j−1 − 693c

2
j−1 + 4620􏼐 􏼑

27720n
cj

+
Tω2

0
27720n

5c
5
j−2 + 10cj−1c

4
j−2 + 3 5c

2
j−1 − 77􏼐 􏼑c

3
j−2

+ 20c
3
j−1 − 462cj−1􏼐 􏼑c

2
j−2 + 25c

4
j−1 − 693c

2
j−1 + 4620􏼐 􏼑cj−2

+12cj−1 5c
4
j−1 − 154c

2
j−1 + 1540􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(84)

for j � 2, 3, . . ., where c0 � 0 and c1 � T/nθ
.

0. System (83)
can be solved recursively.

For j � 2, the value of c2 can be determined from the
following quintic equation:

2310n
6ε θ

.

0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 4620n
6θ

.

0∓2310n
6εθ

.

0 + 1540n
4
T
2ω2

0θ
.

0 − 154n
2
T
4ω2

0θ
. 3
0 + 5T

6ω2
0θ

. 5
0

2310n
6

+
27720n

6 ± 27720n
6ε + 4620n

4
T
2ω2

0 − 693n
2
T
4ω2

0θ
. 2
0 + 25T

6ω2
0θ

. 4
0

27720n
5
T

c2 −
T
2ω2

0θ
.

0 231n
2

− 10T
2θ

. 2
0􏼒 􏼓

13860n
4 c

2
2

−
Tω2

0 77n
2

− 5T
2θ

. 2
0􏼒 􏼓

9240n
3 c

3
2 +

T
2ω2

0θ
.

0

2772n
2c

4
2 +

Tω2
0

5544n
c
5
2 � 0.

(85)
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We choose the real root to equation (86) that is closest to
c1. Suppose we already found the values c2, c3,. . ., ck−1 for
some k≥ 2. &en, the value of ck is found by solving the
quintic in equation (82) by letting j � k. However, since����������

(ck − ck− 1)
2

􏽱

� ±(ck − ck−1), we must solve two quintics in
ck. We choose the real root to the two quintics that is closest
to ck−1. Let us introduce the quintic

λ5c
5
k + λ4c

4
k + λ3c

3
k + λ2c

2
k + λ1ck + λ0 � 0, (86)

Any of the two quintics (82) for j � k. &en, for suffi-
ciently large n, the value of ck may be estimated by means of
the formula

z ≈ z0 −

λ1 + 5λ5z
4
0 + 4λ4z

3
0 + 3λ3z

2
0 + 2λ2z0􏼐 􏼑

λ0 + λ5z
5
0 + λ4z

4
0 + λ3z

3
0 + λ2z

2
0 + λ1z0􏼐 􏼑

λ21 − λ0λ2 + 15λ25z
8
0 + 24λ4λ5z

7
0 + 10λ24z

6
0

+17λ3λ5z
6
0 + 15λ3λ4z

5
0 + 9λ2λ5z

5
0 + 6λ23z

4
0

+9λ2λ4z
4
0 + 8λ2λ3z

3
0 + 2λ1λ4z

3
0

−10λ0λ5z
3
0 + 3λ22z

2
0 + 3λ1λ3z

2
0

−6λ0λ4z
2
0 + 3λ1λ2z0 − 3λ0λ3z0

(87)

where z0 � ck−1.
For arbitrary ICs, i.e., for any values to (θ0, θ

.

0), the
following ansatz is assumed:

θ(t) � θ0φ0(t) +
T

n
θ
.

0φ2(t) + 􏽘
n

k�2
ckφk(t). (88)

&en, we get

􏽚
T

0
φj(t)θ″(t)dt �

n cj−2 − 2cj−1 + cj􏼐 􏼑

T
, (89)

and

2ε􏽚
T

0
φj(t)θ′(t) θ′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt �

εn
T

cj − cj− 1􏼐 􏼑
2
sgn cj − cj−1􏼐 􏼑􏼒

− cj− 2 − cj− 1􏼐 􏼑
2
sgn cj−2 − cj−1􏼐 􏼑􏼓.

(90)

Using the approximation

sin θ ≈ θ −
1
6
θ3 +

1
132

θ5, (91)

gives

􏽚
T

0
φj(t)sin(θ(t))dt ≈

Tω2
0

27720n

5c
5
j−2 − 231c

3
j−2 + 4620cj−2 + 60c

5
j−1 + 5c

5
j − 231c

3
j + 4620cj+

25c
4
j−1 cj−2 + cj􏼐 􏼑 + 4c

3
j−1 5c

2
j−2 + 5c

2
j − 462􏼐 􏼑+

3c
2
j−1 5c

3
j−2 − 231cj−2 + 5c

3
j − 231cj􏼐 􏼑+

2cj−1 5c
4
j−2 − 231c

2
j−2 + 5c

4
j − 231c

2
j + 9240􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (92)

&e following definitions are used in our analysis:

c0 � θ0,

c1 � θ0 +
T

n
θ
.

0,

cj � 0for j< 0or j> n.

(93)

&e algebraic system to be solved for j � 2, 3, . . . , n reads
as

n cj−2 − 2cj−1 + cj􏼐 􏼑

T
+
εn
T

cj − cj− 1􏼐 􏼑
2
sgn cj − cj−1􏼐 􏼑 − cj− 2 − cj− 1􏼐 􏼑

2
sgn cj−2 − cj−1􏼐 􏼑􏼒 􏼓

+
Tω2

0
27720n

5c
5
j−2 − 231c

3
j−2 + 4620cj−2 + 60c

5
j−1 + 5c

5
j − 231c

3
j + 4620cj+

25c
4
j−1 cj−2 + cj􏼐 􏼑 + 4c

3
j−1 5c

2
j−2 + 5c

2
j − 462􏼐 􏼑+

3c
2
j−1 5c

3
j−2 − 231cj−2 + 5c

3
j − 231cj􏼐 􏼑+

2cj−1 5c
4
j−2 − 231c

2
j−2 + 5c

4
j − 231c

2
j + 9240􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(94)
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&e Galerkin numerical approximation to i.v.p. (3) is
introduced in Figures 5 and 6 for different values of
(n, θ0, θ

.

0). Also, themaximum distance error is estimated for
different values of (n, θ0, θ

.

0) as follows:

L∞ � 0.0198616, for n, θ0( 􏼁 � (150, 0),

L∞ � 0.000434117, for n, θ0( 􏼁 � (1000, 0),

L∞ � 0.105879, for n, θ0( 􏼁 � 150,
π
6

􏼒 􏼓,

L∞ � 0.0146958, for n, θ0( 􏼁 � 1000,
π
6

􏼒 􏼓.

(95)

It is clear that increasing the number of hats n leads to
the increase of approximation accuracy, i.e., the error
shrinks with the enhancement of the number of hats n.
Moreover, it is observed that the Galerkin numerical ap-
proximation is characterized by high accuracy compared to
RK numerical approximation.

4. Conclusion

In this paper, the quadratically damped pendulum equation
with strong nonlinearity has been solved and analyzed using
some novel and effective analytical and numerical tech-
niques. In the beginning, the ansatz method was devoted to

Error = 0.0198616

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, 0, 0.1)

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
Galerkin

(a)

Error = 0.000434117

(n, ε, ω0, θ0, θ·0) = (1000, 0.2, 1, 0, 0.1)

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
Galerkin

(b)

Figure 5: &e approximate solutions using both GM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, 0) and
(b)(n, θ0) � (1000, 0).

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, π/6, 0.1)

Error = 0.105879

–0.4

–0.2

0.0

0.2

0.4

0.6

θ

10 20 30 40 50 600
t

RK4
Galerkin

(a)

(n, ε, ω0, θ0, θ·0) = (1000, 0.2, 1, π/6, 0.1)

Error = 0.0146958

–0.4

–0.2

0.0

0.2

0.4

θ

10 20 30 40 50 600
t

RK4
Galerkin

(b)

Figure 6: &e approximate solutions using both GM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, π/6) and
(b)(n, θ0) � (1000, π/6).
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find an analytical approximation to the mentioned equation
in the form of trigonometric functions. Also, in this study,
for the first time, a new hybrid homotopy with Kry-
lov–Bogoliubov–Mitropolsky method (HKBMM) was ap-
plied for analyzing the evolution equation and deriving an
analytical approximation with high accuracy. Moreover,
both the finite difference method (FDM) and Galerkin
method (GM) were employed for analyzing the present
evolution equation as well as some related oscillators. &e
obtained approximations were graphically compared with
each other. Furthermore, the maximum residual error for
each approximation was estimated. In the GM, we derived
the iterative schemes for finding the coefficients that appear
in the linear Galerkin hat combination in the ansatz form
solution for the evolution equation. &ese coefficients may
be found iteratively. It was found that the numerical ap-
proximations are more accurate than analytical ones, but
both give good accuracy. Also, it was observed that the
obtained results become reasonably good for small initial

speed. One of the most important features of Galerkin
method is that it gives more stable approximations for any
values to the physical parameters and for long time. &us,
this method can be devoted for studying and investigating
different pendulum oscillators for any nonlinearity [16, 27].

4.1. Future Work. &ere are many oscillators that may be
solved using the proposed method. Examples include

€x + 2ε _x + αx + βx
2

+ cx
3

� F cos(Ωt),

x + 2ε _x + αx + βx + cx
5

� F cos(Ωt),

x − ε 1 − x
2

􏼐 􏼑 _x + αx + βx
2

+ cx
3

� F cos(Ωt),

x + 2ε _x + α − Q0 cos(ct)( 􏼁sin(x) � F cos(Ωt).

(96)

Appendix

&e coefficients S1,2,3 of solution (46):

S1 � −
1
208

cos(3ψ) − 13ε sin(3ψ)r1ω0( 􏼁 +
312εr0
43264ω0

−sin(3ψ) + 13ε cos(3ψ)r1ω0( 􏼁

−
97344ε2r20
26996736ω2

0
−cos(3ψ) + 13ε sin(3ψ)r1ω0( 􏼁,

S2 �
1

43264

−52ε(6 sin(3ψ) + sin(5ψ))r1ω0

+cos(5ψ) 1 − 507ε2r21ω
2
0􏼐 􏼑

+3 cos(3ψ) −7 + 1521ε2r21ω
2
0􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

104εr0
26996736ω0

−567 sin(3ψ) + 19 sin(5ψ)

+5616ε cos(3ψ)r1ω0 + 52ε cos(5ψ)r1ω0

+31941ε2 sin(3ψ)r
2
1ω

2
0 + 8619ε2 sin(5ψ)r

2
1ω

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

S3 �
3

26996736

−cos(7ψ) − 10647ε sin(3ψ)r1ω0 − 195ε sin(5ψ)r1ω0

+130ε sin(7ψ)r1ω0 + 3549ε2 cos(7ψ)r
2
1ω

2
0

+731601ε3 sin(3ψ)r
3
1ω

3
0 + 336141ε3 sin(5ψ)r

3
1ω

3
0

−26364ε3 sin(7ψ)r
3
1ω

3
0 + cos(5ψ) 43 + 3211ε2r21ω

2
0􏼐 􏼑

+3 cos(3ψ) −139 + 8957ε2r21ω
2
0􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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(e mathematical model of physical problems interprets physical phenomena closely.(is research work is focused on numerical
solution of a nonlinear mathematical model of fractional Maxwell nanofluid with the finite difference element method. Addition
of nanoparticles in base fluids such as water, sodium alginate, kerosene oil, and engine oil is observed, and velocity profile and heat
transfer energy profile of solutions are investigated. (e finite difference method involving the discretization of time and distance
parameters is applied for numerical results by using the Caputo time fractional operator.(ese results are plotted against different
physical parameters under the effects of magnetic field. (ese results depicts that a slight decrease occurs for velocity for a high
value of Reynolds number, while a small value of Re provides more dominant effects on velocity and temperature profile. It is
observed that fractional parameters α and β show inverse behavior against u(y, t) and θ(y, t). An increase in volumetric fraction
of nanoparticles in base fluids decreases the temperature profile of fractional Maxwell nanofluids. Using mathematical software of
MAPLE, codes are developed and executed to obtain these results.

1. Introduction

Partial differential equations (PDEs) are the best way to
express physical phenomena mathematically. PDEs are
widely used in many fields of engineering like bioengi-
neering, chemical engineering, and oceanography. Few years
earlier, the main focus of researchers was the integral order
of these PDEs. But, for the last few decades, the fractional
order of PDEs is a hot topic among scientists. (is is because
the fractional modeling of natural phenomena gave a new

direction to solutions of real-world problems, including
diffusion, chaos, chemical reactions, dynamics, and visco-
elasticity [1–3]. Approximately, all the polymeric matters
have a viscoelastic behavior and conventional derivatives do
not interpret such trend. Most of the fractional fluid
problems are solved analytically due to the linearity of the
problems. But, for the nonlinear problem, analytical tech-
niques are complex to use. Fractional modeling of such
physical problems can describe the heredity aspects and
memory effect of problems. Nowadays, this idea of fractional
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modeling has been published in several articles of applied
mathematics, fluid dynamics, and thermal engineering.
(esemodels are formulated by using various differentiation
operators such as Caputo, Caputo-Fabrizio, and Atanga-
na–Baleanu derivatives [4, 5]. An analytical solution has
been obtained via Laplace transformation, and it is con-
cluded that fractional results are better rather than using
classical derivation for temperature and velocity profile
[6, 7]. (ese operators are used to investigate mass con-
centration, heat flow, and momentum along different ge-
ometries. (ese theories have been applied to various fluids
including Cassin fluids, Brickman type fluids, Oldroyd-B
fluids, and Maxwell fluids as well [8, 9]. Recently, the
Maxwell models have gained much attention from re-
searchers as it is the first and one of the simplest rate type
models (RTMs). (e Maxwell model is widely used to
represent the response of polymeric liquids. But, this model
does not express the typical relation between shear strain
and shear stress [10, 11]. (e research work which has al-
ready been done for fractional Maxwell fluid (FMF) mod-
eling (particularly on analytical side) has various bounds for
momentum transfer only [12–17]. An investigation has been
done for FMF flow, by introducing some suitable variables to
make the irregular boundary of the stretching sheet and the
regular one in [18]. It can be seen [19] that Brownianmotion,
mass concentration, and temperature profile as well are
studied for FMF flow near a moving plate by using L1-al-
gorithm i.e., numerically. By applying Laplace and Henkel
transformation jointly, flow of FMF was investigated in [20].
(e recent development in modeling of FMF rather than
that of simple Maxwell fluids may be seen in [21–23]. In
recent days, fractional modeling of Maxwell fluids with
nanomaterials is the hot issue in nanotechnology. Nano-
materials are the nanoparticles of size range from 1nm to
100 nm.(ese nanosized particles are helpful to enhance the
thermal conductivity of base fluids (water, sodium alginate,
kerosene oil, engine oil, etc.). (is idea was given for the first
time by Choi and Eastman in [24], and later on, the size and
shapes of different nanoparticles were investigated in a
square cavity in [25]. Since the addition of nanoparticles in
base fluids increases the surface area of the fluid, it conse-
quently enhances the heat conduction of the system, .i.e.,
control the entropy generation of heat. Analytical study has
been done using Laplace transform for Caputo time de-
rivatives of convective flow. Under the effects of magnetic
field, exact solutions were obtained in [26]. Shamushuddin
and Eid [27] examined heat transfer in water-based nano-
fluids containing ferromagnetic nanoparticles flowing be-
tween parallel stretchable spinning discs with variable
viscosity influences and variable conductivities through the
Chebyshev spectral collocation procedure. Unsteady flow
was investigated under the effect of pressure gradient and
magnetic field by using Laplace transformation as in [28].
Developing a fractional, coupled but linear PDEs model, the
results were plotted against different physical parameters in
[29, 30]. Similarly, it can be seen that solutions of many
PDEs models are obtained analytically. After many as-
sumptions, the models are turned into linear ones for
simplicity of the problems. In [31–33], the analytical

approach is used to find the solutions of mathematical
models. Also, mostly results are driven by analytical tech-
nique by many assumptions to make the model a linear one
for simplicity.

(e research work which has already been discussed has
various research gaps in the field of nanofluids. As numerical
study had not been performed, fractional behavior of
mathematical models was not discussed properly with the
basic tensor form. (erefore, this article deals with nu-
merical solutions of unsteady flow of MHD-based fractional
Maxwell nanofluids. (is will provide the basis for further
in-depth study while investigating the dynamics of FMF
within a bounded channel instead of other geometric
properties. Rather than the analytical technique, the strong
numerical technique of the finite difference method FDM is
applied to obtain solution of the FMF which involves dis-
cretization of spatial and time derivatives. (e velocity
profile and temperature profile have been plotted against
various physical parameters by using MAPLE software. By
developing and executing MAPLE coding against different
physical parameters, results are obtained graphically.

2. Mathematical Modeling

(e boundary layer flow within a channel is considered in this
article, taking water-based nanofluids (Cu and Al2O3) in a
vertical channel. Both the plates are separated by a distance d.
One of the plates is fixed along the x-axis, vertically upward,
i.e., x-axis is parallel to the plates and y-axis is normal to the
plates, with B0 strength of magnetic field. At the start, for
t � 0, plates as well as fluids are supposed to have temperature
θd. For some time t> 0, the temperature is raised to θ0,
causing the free convection flow as illustrated in Figure 1.

Hence, the velocity field is of the form
V(x, y, t) � V[u(y, t), 0, 0]. Considering the unsteady flow
of water-based nanofluid in this vertical channel, the as-
sumptions for the mathematical formulation of PDEs of the
coupled and nonlinear fractional Maxwell nanofluid model
is as follows:

(i) Flow is incompressible, viscoelastic, and nonlinear
(ii) Flow is unsteady
(iii) Pressure gradient is neglected, i.e., zP/zx � 0
(iv) A uniform magnetic field is applied along the

vertical direction (alongy − direction), neglecting
induced magnetic field

(v) Viscous dissipation is absent

We know that the tensor for the Maxwell fluid given in
[34] is

T � − pI + S,

S + λ1
δS
δt

� μA1,

(1)

where S, I, p,T, λ1, andA1 are the extra stress tensor, identity
tensor (matrix tensor), dynamic pressure, Cauchy stress
tensor, time relaxation, and first Rivlin–Ericksen tensor, re-
spectively. And, DS/Dt is given in [35] and defined as
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δS
δt

�
DS
Dt

− LS − SLT
, (2)

where D/Dt is the material time derivative and A1 is the first
Rivlin–Ericksen tensor defined as

A1 � gradV +(gradV)
T

. (3)

Using all of the above-discussed results, the constitutive
relation for Maxwell fluid model is obtained [15].

1 + λα1D
α
t( 􏼁Sxy � μ

zu

zy
with 0< α< 1, (4)

where Sxy is the nonzero component of extra stress tensor, μ
is the coefficient of viscosity, λ1 is the time relaxation, andDα

t

is Caputo time fractional differentiation operator of order α,
defined in [36].

C
0 D

α
t f(t) �

1
Γ(1 − α)

􏽚
t

0
(t − η)

− α zf(η)

zη
dη, 0< α< 1, (5)

where Γ(.) is the Gamma function defined in [36].

Γ(z) � 􏽚 ηz− 1
e

− ηdη, zϵC, Re(z)> 0. (6)

Under the aforementioned assumptions, the mathe-
matical model of this problem is as follows. (e equation of
continuity [37] is

zρ
zt

+ ρ(∇.V) � 0, (7)

where ρ is the density, ∇ is the gradient operator, and V is a
velocity field.

Here, we neglect v component of velocity along
y − direction, in both momentum and energy equations.
Also, taking into account the Boussinesq approximation, the
momentum equation is given as in [38]

ρnf

zu

zt
�

zSxy

zy
+ g ρβθ( 􏼁nf θ − θ0( 􏼁 − σnfB

2
0u, (8)

where ρnf is the dynamic viscosity of the nanofluid and
g, (βθ)nf, σnf, andB0 are acceleration due to gravity, coef-
ficient of thermal expansion of nanofluid, and coefficient of
electrical conductivity for nanofluids, and magnetic field
strength, respectively.

Multiplying (1 + λα1Dα
t ) on both sides of (7),

1 + λα1D
α
t( 􏼁ρnf

zu

zt
� 1 + λα1D

α
t( 􏼁

zSxy

zy
+ g ρβθ( 􏼁nf 1 + λα1D

α
t( 􏼁 θ − θ0( 􏼁 − σnfB

2
0 1 + λα1D

α
t( 􏼁u. (9)

Using (1 + λα1Dα
t )Sxy � μnfzu/zy, the constitutive rela-

tion for Maxwell fluid in [39] is

1 + λα1D
α
t( 􏼁ρnf

zu

zt
� μnf

z
2
u

zy
2 + 1 + λα1D

α
t( 􏼁g ρβθ( 􏼁nf θ − θ0( 􏼁 − 1 + λα1D

α
t( 􏼁σnfB

2
0u. (10)

x-axis

y-axis

B0

B0

B0

u (0, t)=0
0 (0, t)=00

u (d, t)=0
θ (d, t)=θd

Nanofluid

Figure 1: Geometry of the problem.
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Also, the energy equation in the presence of Joule’s
heating effect in [38] is

ρCp􏼐 􏼑
nf

zθ
zt

􏼠 􏼡 � −
zq

zy
+ σnfB

2
0u

2
. (11)

Applying (1 + λβ2D
β
t ) on both sides of (10),

1 + λβ2D
β
t􏼐 􏼑 ρCp􏼐 􏼑

nf

zθ
zt

􏼠 􏼡 � −
z

zy
1 + λβ2D

β
t􏼐 􏼑q + σnfB

2
0 1 + λβ2D

β
t􏼐 􏼑u

2
. (12)

But, by fractional Cattaneo’s Law [40],

1 + λβ2D
β
t􏼐 􏼑q � − knf

zθ
zy

. (13)

Hence, (11) becomes

1 + λβ2D
β
t􏼐 􏼑 ρCp􏼐 􏼑

nf

zθ
zt

􏼠 􏼡 � knf

zθ2

zy
2 + σnfB

2
0 1 + λβ2D

β
t􏼐 􏼑u

2
.

(14)

It has the following initial and boundary conditions:

u(y, 0) � 0,

u(0, t) � 0,

u(d, t) � 0,

θ(y, 0) � θ0,

θ(0, t) � θ0,

θ(d, t) � θd.

(15)

Employ the following transformation for the channel
flow:

u
∗

�
d

]f

u,

x
∗

�
x

d
,

t
∗

�
]f

d
2 t,

θ∗ �
θ − θ0
θd − θ0

,

λ∗1 �
]f

d
2λ1,

λ∗2 �
]f

d
2λ2,

y
∗

�
y

d
,

M
∗

�
σfB

2
0]f

ρCp􏼐 􏼑
f
θd − θ0( 􏼁

,

Ha
2

� M �
d
2σfB

2
0

μf

,

Pr �
μCp􏼐 􏼑

f

Kf

,

Gr �
d
3
g βθ( 􏼁f θd − θ0( 􏼁

]2f
,

1
Re

�
μ

ρU0d
.

(16)

Here, Ha � M, Pr, M∗, and Gr given in [41] are the
square of Hartmann number, Prandtl number, Joule’s
heating parameter, and Grashof number, respectively. (e
following governing equations for velocity and temperature
profile are obtained after omitting “∗” notation for the sack
of brevity of mathematical modeling:

1 + λα1D
α
t( 􏼁

zu

zt
􏼠 􏼡 � b1

z
2
u

zy
2 + 1 + λα1D

α
t( 􏼁b2Grθ − b3M 1 + λα1D

α
t( 􏼁u, (17)

1 + λβ2D
β
t􏼐 􏼑

zθ
zt

􏼠 􏼡 � b4
1

Pr

z
2θ

zy
2 + b5M

∗ 1 + λβ2D
β
t􏼐 􏼑u

2
. (18)

Here, b1 � a3/a1, b2 � a2/a1, b3 � a6/a1, b4 � a5/
a4, and b5 � a6/a4. But, thermophysical properties for
nanofluids in [42, 43] are known.
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ρnf

ρf

� a1 � (1 − ϕ) + ϕ
ρs

ρf

􏼢 􏼣,
ρβθ( 􏼁nf

ρβθ( 􏼁f

� a2 � (1 − ϕ) + ϕ
ρβθ( 􏼁s

ρβθ( 􏼁f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

μnf

μf

� a3 �
1

(1 − ϕ)
2.5,

ρCp􏼐 􏼑
nf

ρCp􏼐 􏼑
f

� a4 � (1 − ϕ) + ϕ
ρCp􏼐 􏼑

s

ρCp􏼐 􏼑
f

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

knf

kf

� a5 �
ks + 2kf􏼐 􏼑 − 2ϕ kf − ks􏼐 􏼑

ks + 2kf􏼐 􏼑 + ϕ kf − ks􏼐 􏼑
,

(σ)nf

(σ)f

� a6 � 1 +
3 σs/σf − 1􏼐 􏼑ϕ

σs/σf − 2􏼐 􏼑 − σs/σf − 1􏼐 􏼑ϕ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

By using nondimensional parameters, the initial and
boundary conditions are as follows:

u(y, 0) � 0,

u(0, t) � 0,

u(1, t) � 0,

(20)

θ(y, 0) � 0,

θ(0, t) � 0,

θ(1, t) � 1.

(21)

(us, governing equations (17) and (18) for the velocity
and temperature profile of fractional Maxwell nanofluid
with initial and boundary conditions represented in (20)-
(21) express the physical phenomena of the coupled non-
linear model. Also, physical properties of nanoparticles
presented in (17) with some thermophysical properties of
base fluids and nanoparticles given in Table 1 are used for
numerical results.

3. Skin Friction and Nusselt Number

For measuring shear stress and heat transfer effects in an
ordinary integer order system, local skin friction and Nusselt
number are defined in [44] as follows:

Cf �
μ

ρU
2
0

zu

zy
􏼠 􏼡

y�0
,

Nu �
− kd

θw − θ0

zθ
zy

􏼠 􏼡
y�0

.

(22)

(e skin friction coefficient and local Nusselt number for
(FMF) can be written by using (3) that is the fractional stress
tensor for Maxwell fluid on the plate with fractional time
Caputo derivative (details can be seen in [45]).

Cf + λα1
z
α
Sf

zt
α �

μ
ρU

2
0

zu

zy
􏼠 􏼡

y�0
, (23)

Nu + λβ1
z
β
Nu

zt
β � −

kd
θd − θ0

zθ
zy

􏼠 􏼡
y�0

. (24)

(e nondimensional form of (23)-(24) is given as

Cf + λα1
z
α
Sf

zt
α �

1
Re

2
zu

zy
􏼠 􏼡

y�0
. (25)

Nu + λβ1
z
β
Nu

zt
β � −

knf

kf

zθ
zy

􏼠 􏼡
y�0

. (26)

4. Numerical Procedure

(e discretization of the method for fractional-order model,
C
0 Dα

t u, C
0 D1+α

t u when 0< α≤ 1, ut and uyy, is specified as
follows:

C
0 D

α
tj+1

u yi, tj+1􏼐 􏼑 �
λα1t

− α

Γ(2 − α)
u

j+1
i − u

j
i􏽨 􏽩 +

λα1t
− α

Γ(2 − α)
􏽘

j

l�1
u

j− l+1
i − u

j− l
i􏼐 􏼑dαl , (27)

C
0 D

1+α
tj+1

u yi, tj+1􏼐 􏼑 �
λα1t

− (1+α)

Γ(2 − α)
u

j+1
i − 2u

j
i + u

j− 1
i􏽨 􏽩 +

λα1t
− (1+α)

Γ(2 − α)
× 􏽘

j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i􏼐 􏼑dαl , (28)
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z

zt
u yi, tj+1􏼐 􏼑|t�tj+1

�
1
Δt

u
j+1
i − u

j
i􏽨 􏽩,

z2

zy2 u yi+1, tj􏼐 􏼑|y�yi+1
�

1
Δy2 u

j+1
i+1 − 2u

j+1
i + u

j+1
i− 1􏽨 􏽩.

(29)

(e nonlinear term is approximated by means of the fol-
lowing concept:

u
2

yi, tj􏼐 􏼑 � u yi, tj+1􏼐 􏼑u yi, tj􏼐 􏼑. (30)

In (27)-(28), dαl � − l1− α + (1 + l)1− α when l � 1, 2, 3,

. . . , j. A rectilinear grid is considered for investigating the
numerical solution of the deliberated fluid model through

grid spacing Δt> 0 and Δy> 0 in time and space directions
separately; here, Δy � L/M and Δt � T/N where
Δy,Δt ∈ Z+. (e inner grid points (yi, tj) in the considered
domain Ω � [0, T] × [0, L] are defined as iΔy � yi and
jΔt � tj. Discretization of the discussed problem at each
inner grid point is given as

1/Δt u
j+1
i − u

j

i􏼐 􏼑 +
λα1Δt

− (1+α)

Γ(2 − α)
u

j+1
i − 2u

j

i + u
j− 1
i􏼐 􏼑 +

λα1Δt
− (1+α)

Γ(2 − α)

× 􏽘

j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i􏼐 􏼑b

α
l �

b1

Δy2 u
j+1
i+1 − 2u

j+1
i + u

j+1
i− 1􏼐 􏼑 + b2Grθj+1

i

+
b2GrΔt− α

Γ(2 − α)
θj+1

i − θj

i􏼐 􏼑 +
b2GrΔt− α

Γ(2 − α)
􏽘

j

l�1
θj− l+1

i − θj− l

i􏼐 􏼑b
α
l

−
b3Ha

2Δt− α

Γ(2 − α)
u

j+1
i − u

j
i􏼐 􏼑 +

b3Ha
2Δt− α

Γ(2 − α)
􏽘

j

l�1
u

j− l+1
i − u

j− l
i􏼐 􏼑b

α
l .

(31)

Also,

1
Δt

θj+1
i − θj

i􏼐 􏼑 +
λβ1Δt

− (1+β)

Γ(2 − β)
θj+1

i − 2θj
i + θj− 1

i􏼐 􏼑

+
λβ1Δt

− (1+β)

Γ(2 − β)
􏽘

j

l�1
θj− l+1

i − 2θj− l
i + θj− l− 1

i􏼐 􏼑b
β
l �

b4

PrΔy2 θj+1
i+1 − 2θj+1

i + θj+1
i− 1􏼐 􏼑

+ b5M
∗
u

j

i u
j+1
i +

λβ1Δt
− β

Γ(2 − β)
u

j+1
i − u

j

i − 􏽘

j

l�1
u

j− l+1
i − u

j− l

i􏼐 􏼑b
α
l

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(32)

for j � 1, 2, 3, . . . , N − 1 and i � 1, 2, 3, . . . , N − 1.
(e simplest form of the above discretization is given as

Table 1: (ermophysical properties of some base fluids and nanoparticles.

Materials ρ(kgm− 3) Cp(Jkg− 1k− 1) k(Wm− 1k− 1) β∗ 10− 5(k− 1) σ(Ωm)− 1

Water 997 4197 0.613 21 0.05
Copper 8933 385 400 1.67 5.96∗ 107
Alumina 3970 765 40 0.85 2.6∗ 106
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−
b1

Δy2u
j+1
i+1 +

1
Δt

−
λα1Δt

− 1− α

Γ(2 − α)
+
2b1

Δy2 +
b3Ha

2Δt− α

Γ(2 − α)
􏼠 􏼡u

j+1
i −

b1

Δy2u
j+1
i− 1

− b2Gr 1 +
Δt− α

Γ(2 − α)
􏼠 􏼡θj+1

i �
1
Δt

+
2λα1Δt

− 1− α

Γ(2 − α)
+

b3Ha
2Δt− α

Γ(2 − α)
􏼠 􏼡u

j

i −
b2GrΔt− α

Γ(2 − α)
θj

i

−
λα1Δt

− 1− α

Γ(2 − α)
u

j− 1
i � Fi,j,

−
b4

PrΔy2θ
j+1
i+1 +

1
Δt

+
λβ1Δt

− 1− β

Γ(2 − β)
+

2b4

PrΔy2
⎛⎝ ⎞⎠θj+1

i −
b4

PrΔy2θ
j+1
i− 1 � 1/Δt −

2λβ1Δt
− 1− β

Γ(2 − β)
⎛⎝ ⎞⎠θj

i

−
λβ1Δt

− 1− β

Γ(2 − β)
θj− 1

i + Gi,j + Ni,j,

(33)

with the following initial and boundary conditions

u
0
i � 0,

u
1
i � u

− 1
i ,

θ0i � 0,

θ1i � θ− 1
i , for i � 0, 1, 2, 3, . . . , M,

u
j
0 � 0,

u
j
M � 0,

θj
0 � 0,

θj

M � 1, for j � 0, 1, 2, 3, . . . , N − 1,

(34)

where

Fi,j � −
λα1Δt

− (1+α)

Γ(2 − α)
􏽘

j

l�1
u

j− l+1
i − 2u

j− l
i + u

j− l− 1
i􏼐 􏼑b

α
l +

b2GrΔt− α

Γ(2 − α)
􏽘

j

l�1
θj− l+1

i − θj− l
i􏼐 􏼑b

α
l +

b3Ha
2Δt− α

Γ(2 − α)
􏽘

j

l�1
u

j− l+1
i − u

j− l
i􏼐 􏼑b

α
l ,

Gi,j � −
λβ1Δt

− (1+β)

Γ(2 − β)
􏽘

j

l�1
θj− l+1

i − 2θj− l

i + θj− l− 1
i􏼐 􏼑b

β
l ,

Ni,j � b5M
∗
u

j
i u

j+1
i +

λβ1Δt
− β

Γ(2 − β)
u

j+1
i − u

j
i − 􏽘

j

l�1
u

j− l+1
i − u

j− l
i􏼐 􏼑b

α
l

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(35)

5. Numerical Analysis and Discussion

5.1. Test Problem. Consider the following problem:
C
0 D

α
t U(y, t) �

z
2

zy
2U(y, t) −

z

zy
U(y, t) + h(y, t). (36)

Here, the conditions are given as follows and source term
can be selected against the choice of fractional-order derivative:

U(y, 0) � U(0, t) � U(d, t) � 0. (37)

(e exact solution of this problem is U(y, t) � y(y −

t)t2. Various simulations have been performed to check
the accuracy of the proposed scheme. Figures 1(a) and
1(b) are plotted for maximum absolute error (MAE) and
computational order of convergence (COC) given as
follows when N � 10, 20, 40, 80, 160, 320, 640:
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MAE � max
1≤i≤M
1≤j≤N

U yi, tj􏼐 􏼑 − U
j
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

COC � log
(MAE(k)/MAE(k + 1))

log(N(k + 1)/N(k))
.

(38)

It is noted that the scheme is convergent against the
selection of each fractional-order derivative and its con-
vergence order increases as α⟶ 1. Figures 2(c) and 2(b)
contain the L∞-norm between consecutive solutions, i.e.,
|Uj+1 − Uj|∞ and |Ui+1 − Ui|∞ when 0≤ i, j≤N, and
M� 500. Again, it is found that the proposed scheme is very
efficient, accurate, and reliable for this problem. It is also
demonstrated that the solution is stable against the selection
of fractional-order parameters and mesh parameters.

6. Results and Discussion

(is section of our research work deals with a detailed
overview of the key numerical findings and physical in-
terpretations of different emerging parameters such as
Pr, M, α, β, M∗, andϕ which are the Prandtl number, mag-
netic field parameter, fractional parameters, Joule’s heating
parameter, and volumetric fraction of nanoparticles, re-
spectively. (e behavior of the velocity profile u(y, t) and
temperature profile θ(y, t) and the effects of aforementioned
physical parameters are deliberated, as well as graphical
illustration is made via MAPLE. Discretization of time and
spatial derivatives is done using finite difference methods.
(e coupled, nonlinear, and fractional model has been
solved numerically by using finite difference method (FDM)
which is a dominant tool to deal with such kind of problems.

Results are obtained by solving (17)-(18) with initial and
boundary conditions illustrated in (20)-(21) and physical
properties of nanoparticle in (17) and Table 1. Various
suitable ranges of physical parameters (0.01≤ λα1 ≤ 0.5),

(0≤Ha � M≤ 5), (1≤Gr≤ 5) , (0.01≤ ϕ ≤ 0.2), and (0.2
≤ ]≤ 1) for dimensionless velocity profile and
(0.01≤ λβ1 ≤ 0.2), (0≤M∗ ≤ 2), (6.2 ≤Pr≤ 35), (0.01
≤ ϕ≤ 0.2), and (0.2≤ ]≤ 1) for heat transport are consid-
ered, and also particular exertion has been given on the
effects of these parameters on the velocity and temperature
profile.

Figure 3 depicts the impact of time relaxation parameter
λα1 on momentum u(y, t) of the fractional Maxwell fluids.
With increase in fractional parameter α, momentum and
thermal boundary layers decrease and even become their
thinnest for α � 1. (erefore, increasing relaxation param-
eters with range (0.01≤ λα1 ≤ 0.5) has inverse impact on the
velocity profile of the system, i.e., decrease occurs in the
velocity profile.

Figure 4 shows the influence of magnetic field Ha � M

(the square of Hartmann Number) parameters on velocity
profile u(y, t). Both are inversely related, i.e., increasing value
of Hartmann number Ha decreases the velocity profile. Since
the increase in magnetic field parameter (Ha) gives hype to a
well-known Lorentz force as this is the resistive force which

works against the flow direction, consequently it shows de-
crease in all the velocity components.

Figure 5 displays the behavior of Grashof number Gr

on velocity profile u(y, t) of fractional Maxwell fluids
(FMFs) under the effects of magnetic field. Since Grashof
number Gr is the ratio of buoyancy force to viscous force
and is alsoknown as buoyancy parameter, motion is
resisted by the viscous force. So it was expected that an
increase in Gr leads to an increase in the velocity profile of
the bounded system, specifically near the wall of the
bounded channel.

In Figure 6, results are drawn for volumetric fraction of
nanoparticles against flow of fractional Maxwell fluids
(FMFs). Addition of nanoparticles in base fluids increases
their thickness (viscosity) which causes the internal resis-
tance between the layers of flowing fluids, consequently
decreasing the velocity u(y, t) of the fluid. (is is clearly
deliberated in Figure 6.

Finally, the velocity profile against α � β � ] (fractional
parameters) is plotted in Figure 7, and results are verified as
expected. (e consequences of fractional order on fluid
motion have an inverse relation. (at is, for increasing
values of fractional parameter α, the velocity profile de-
creases. However, u(y, t) decreases for increasing values of α
and attains its peak at α � 1.

(e heat transfer capability of the coupled and nonlinear
model is illustrated in Figure 8. Here, the results for the
temperature profile against time relaxation parameter λβ2 are
drawn and found as expected. Time relaxation is the key
parameter used for characterization of the viscoelastic fluids,
and it is the time in which a system relaxes under certain
external conditions. (erefore, by the increase in λβ2, there
results a decrease in the collision of particles within the
fluids. (is decreases the temperature profile θ(y, t) of
fractional Maxwell nanofluids.

Figure 9 displays that magnetic field parameter impacts
directly the temperature of the system because the en-
hancement in magnetic field parameter Ha � M∗ gives rise
to a Lorentz force.(is results in increase in the temperature
profile θ(y, t) of the system.

Since Prandtl number Pr is the dimensionless number
and is the ratio of momentum to thermal diffusivity. Since it
is a fluid property, it does not have any dependence on flow
type, as viscous forces exert a uniform effect on heat transfer
for the whole of location of the channel. So, increase in Pr

means heat transfer is favored to occur by momentum, not
conduction. (erefore, increase in Pr decreases the tem-
perature profile θ(y, t) of fractional Maxwell fluids (FMFs)
as expressed in Figure 10.

Figure 11 gives the graphical results for influence of
volume fraction of nanoparticles in base fluids on heat
transfer capability of the system. Addition of nanoparticles
in base fluids has a direct impact on enthalpy of the system.
(is results in entropy control of fluids during flow that is
enhancement of thermal conductivity of fluids. (e figure
shows that increasing volume fraction ϕ enhances the
thermal conductivity of the FMF with decrease in the
temperature profile θ(y, t).

8 Complexity



Finally, Figure 12 depicts the effect of (α � β � ]) on the
temperature profile of the fractional Maxwell fluids. (e frac-
tional-order parameter and temperature profile are inversely
proportional. It was expected and we obtained that increase in
(α � β � ]) decreases the heat transfer capability of the system.

(e variations of skin friction coefficient and local
Nusselt number are deliberated in Tables 2 and 3. It is noted

that the coefficient of skin friction increases with the increase
in the physical parameters Gr, λα1 , and ϕ . (e reverse be-
havior is observed against the variation of Hartmann
number. Nusselt number impact against Pr, M∗, λβ2, and ϕ
seems increasing. On the other hand, dominant impact of
the fractional-order parameters α � β � ] can be seen in
Tables 2 and 3.

N

CO
C

80 160 240 320 400 480 560 640
1.1

1.2

1.3

1.4

1.5

1.6

1.7

α=0.3
α=0.6
α=0.9

(a)

N
80 160 240 320 400 480 560 640

α=0.3
α=0.6
α=0.9

M
A

E

10-6

10-5

10-4

10-3

(b)

α=0.3
α=0.6
α=0.9

j

IU
j+
1 -
U
j I ∞

100 200 300 400 500

10-7

10-6

10-5

(c)

α=0.3
α=0.6
α=0.9

i

IU
i+
1-
U
iI ∞

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

10-6

10-5

10-4

(d)

Figure 2: Code validation of the proposed scheme and varying time mesh sizes against (a) computational order of convergence (COC) and
(b) maximum absolute error (MAE) and varying mesh sizes for (c) time and (d) space against L∞-norm between consecutive solutions.
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Figure 3: Influence of λα1 on u when α � β � 1, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 4: Influence of Ha on u when α � β � 1, λα1 � 0.5, Gr � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 5: Influence of Gr on u when α � β � 1, λα1 � 0.5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 6: Influence of ϕ on u when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, andM∗ � 0.5.
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Figure 7: Influence of α � β � ] on u when λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 8: Influence of λβ2 on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.
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Figure 9: Influence of M∗ on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, and ϕ � 0.1.
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Figure 10: Influence of Pr on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, M∗ � 0.5, and ϕ � 0.1.
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Figure 11: Influence of ϕ on θ when α � β � 1, λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, andM∗ � 0.5.
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Figure 12: Influence of α � β � ] on θ when λα1 � 0.5, Gr � 5, Ha � 5, λβ2 � 0.1, Pr � 6.2, M∗ � 0.5, and ϕ � 0.1.

Table 2: Skin friction analysis against different physical parameters when λβ2 � 0.1, Pr � 6.8, M∗ � 0.5, andRe � 10.

Gr M λα1 ϕ ] � 0.4 ] � 0.7 ] � 1

0.1 10 0.5 0.1 0.0047 0.0051 0.0058
2 0.0934 0.1016 0.1160
5 0.2316 0.2519 0.2877

0 1.0966 0.6819 0.4058
2 1.0730 0.7047 0.4348
5 1.0600 0.7500 0.4882

0.1 0.4177 0.4119 0.4058
0.3 0.4513 0.4445 0.4348
0.5 0.5166 0.5044 0.4882

0.01 0.3642 0.4105 0.3778
0.15 0.3753 0.4429 0.4049
0.25 0.4063 0.4910 0.4304

Table 3: Nusselt number analysis against different physical parameters when λα1 � 0.5, M � 10, Gr � 5, andRe � 10.

Pr M∗ λβ2 ϕ ] � 0.4 ] � 0.7 ] � 1

3.94 0.5 0.1 0.1 0.9142 0.7511 0.2134
6.2 0.9710 0.8129 0.2105
15 0.9999 0.8817 0.2038
3.94 0.1 0.7087 0.6799 0.6384

2 0.7687 0.7363 0.6894
5 0.8458 0.8070 0.7505
0.5 0.01 0.7543 0.7024 0.6552

0.1 0.7601 0.7617 0.7558
0.2 0.7672 0.8374 1.3188

0.01 0.4582 0.7967 0.9335
0.15 0.4928 0.8582 0.9823
0.25 0.5854 0.9140 0.9957
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7. Conclusion

An unsteady flow and heat transfer for the coupled and
nonlinear model of fractional Maxwell fluids is solved by
using power law kernel. Findings are done under the
effects of magnetic fields within a channel. Codes are
developed and executed to obtain the numerical results by
applying the finite difference method for discretization of
spatial and time derivatives. Some key finding are illus-
trated as follows:

(a) Fractional-order parameters α and β have a direct
impact on velocity profile and inverse impact on
temperature profile.

(b) (e velocity and temperature are enhanced for a
high value of the unsteadiness parameter. Velocity is
slightly decreasing for higher values of Reynolds
number Re, while a smaller value of Reynolds
number has more prominent impact on velocity and
temperature.

(c) Addition of the nanoparticles to base fluids enhances
the thermal conductivity by increasing the surface.
Consequently, volumetric concentration of nano-
particles ϕ in base fluids results in decrease in the
temperature profile of the FMF.

(d) Finally, the chosen numerical technique of the finite
difference method shows stable results and gives new
direction to such investigation.

(e) (is method can be extended for more numerous
types of physical sciences with complex geometries.

(is simplified research problem can be generalized to
express the effects of viscosity (viscous dissipation), variable
thermal conductivity, and multidimensional MHD flow
regime and temperature profile of non-Newtonian nano-
fluids. Many opportunities for further investigation exist in
this direction for detailed study.

Abbreviations

u(m/s): Velocity
θ(K): Temperature
ρnf(kg/m3): Density
μnf(kg/ms): Dynamic viscosity
knf(W/mK): (ermal conductivity of nanofluid
βθ(K− 1): Volumetric thermal expansion coefficient
g(m/s2): Gravitational acceleration
(Cp)nf: Heat capacity of nanoparticles
σnf(S/m): Electrical conductivity of nanoparticles
]nf(m2/s): Kinematic viscosity of nanoparticles
ϕ: Volume fraction of nanoparticles.
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)is paper is reporting on electronic implementation of a three-dimensional autonomous system with infinite equilibrium point
belonging to a parabola. Performance analysis of an adaptive synchronization via relay coupling and a hybrid steganography chaos
encryption application are provided. Besides striking parabolic equilibrium, the proposed three-dimensional autonomous system
also exhibits hidden chaotic oscillations as well as hidden chaotic bursting oscillations. Electronic implementation of the hidden
chaotic behaviors is done to confirm their physical existence. A good qualitative agreement is shown between numerical
simulations and OrCAD-PSpice results. Moreover, adaptive synchronization via relay coupling of three three-dimensional
autonomous systems with a parabolic equilibrium is analysed by using time histories. Numerical results demonstrate that global
synchronization is achieved between the three units. Finally, chaotic behavior found is exploited to provide a suitable text
encryption scheme by hidden secret message inside an image using steganography and chaos encryption.

1. Introduction

It is widely recognized that mathematically simple systems
of nonlinear differential equations can exhibit chaos. With
the advent of fast computers, it is now possible to explore
the entire parameter space of these systems with the goal
of finding parameters that result in some desired char-
acteristics [1].

Recent research has involved categorizing periodic and
chaotic attractors as either self-excited or hidden [2–10]. A
self-excited attractor has a basin of attraction that is as-
sociated with an unstable equilibrium, whereas a hidden
attractor has a basin of attraction that does not intersect
with small neighbourhoods of any equilibrium points. )e
classical attractors of Lorenz, Rössler, Chua, Chen, and
Sprott systems (cases B to S) and other widely known
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attractors are those excited from an unstable equilibrium.
From a computational point of view, this allows one to use a
numerical method in which a trajectory started from a
point on the unstable manifold in the neighbourhood of an
unstable equilibrium and reaches an attractor, to identify it
[2]. Hidden attractors cannot be found by this method and
are important in engineering applications because they
allow unexpected and potentially disastrous responses to
perturbations in structures like a bridge or an airplane
wing.

)e chaotic attractors in dynamical systems without any
equilibrium points, with only stable equilibria, or with
infinite number of equilibria are hidden attractors. )at is
the reason why such systems are rarely found. However,
recently, such systems have been reported in literatures
[11–47]. Especially, systems with infinite number of equi-
libria are rare and challenging to find. )ere are three
families of chaotic systems with infinite number of equi-
libria: systems with line equilibria [33–37], systems with
closed-curve equilibria [38–41], and systems with open-
curve equilibria [42, 43]. Recently, systems with infinite
number of equilibria have been studied as an exciting re-
search subject [26, 30, 44, 45]. However, there is still a
necessity and challenge to discover new chaotic systems with
different opened-curve equilibria [23, 46].

A three-dimensional autonomous system with hidden
attractors and a parabolic curve of equilibria is introduced
in this paper. )e proposed chaotic system has one
positive control parameter and six terms among which
four are nonlinear. Its simplicity is remarkable while it is
capable of displaying chaotic oscillations and chaotic
bursting oscillations depending solely on the control
parameter. It is worth noting that chaotic bursting os-
cillations are usually found in systems with self-excited
attractors [47–52]. To the best of our knowledge, there is
no three-dimensional system with hidden attractors
exhibiting chaotic oscillations and chaotic bursting os-
cillations. However, some questions arise: Can the three-
dimensional autonomous system with parabolic curve of
equilibria synchronize? Can chaotic behavior found in the
three-dimensional autonomous system with parabolic
curve of equilibria be exploited to provide suitable steg-
anography and chaos encryption?

)e rest of this paper is organized as follows. In Section
2, fundamental properties of the proposed three-dimen-
sional system are investigated by means of equilibrium
points, eigenvalue structures, phase portrait, time series,
basin of attraction, bifurcation diagram, and Lyapunov
exponents. )e physical existence of the chaotic behavior
found in the proposed system is verified using electronic
implementation in Section 3. An adaptive synchronization
via relay coupling of three three-dimensional autonomous
systems with parabolic curve of equilibria is investigated in
Section 4. An application to steganography and chaos en-
cryption is performed in Section 5. Finally, the paper is
concluded in Section 6.

2. Analysis of the Three-Dimensional
Autonomous System with a
Parabolic Equilibrium

Inspired by the method and structure proposed in [41], a
three-dimensional autonomous system with a parabolic
equilibrium is introduced in this section:

dx

dt
� − z,

dy

dt
� xz

2
,

dz

dt
� x − y

2
+ z ay

2
− z

2
􏼐 􏼑,

(1)

where x, y, and z are state variables, t is the time, and a is a
positive parameter. System (1) has only one parameter a.
System (1) has a parabolic equilibrium given by

E �
(x, y, z) ∈ R

3

x � y
∗

( 􏼁
2 , y � y

∗
, z � 0

⎧⎨

⎩

⎫⎬

⎭. (2)

)e characteristic equation of system (1) evaluated at the
parabolic equilibrium is

λ λ2 − a y
∗

( 􏼁
2λ + 1􏼐 􏼑 � 0. (3)

)e roots of equation (3) depend on the sign of
a2(y∗)4 − 4. If a2(y∗)4 − 4> 0, the roots of equation (3) are
λ1 � 0 and λ2,3 � (a(y∗)2 ±

����������

a2(y∗)4 − 4
􏽱

)/2. )e charac-
teristic equations have at least a positive real root; therefore,
E is unstable. For a2(y∗)4 − 4< 0, the roots of equation (3)
are λ1 � 0 and λ2,3 � (a(y∗)2 ± i

�����������

|a2(y∗)4 − 4|

􏽱

)/2. Since
a> 0, equation (3) has a pair of complex conjugate eigen-
values with positive real root, so E is unstable. )us, E is
always unstable for a> 0.

To investigate the dynamical behaviors of system (1),
Lyapunov exponents (LEs) and bifurcation diagram
depicting maxima of x(t) versus the parameter a for the
initial conditions (x(0), y(0), z(0))� (0, 0.1, 0.2) are plotted in
Figure 1.

By increasing the parameter a from 3.0 to 3.5, system (1)
exhibits chaotic behavior followed by a reverse period-
doubling leading to period-1-oscillation as shown in
Figure 1(c). Depending on the value of the amplitude of the
output x(t), the chaotic region can be divided into two
regions: chaotic bursting oscillations for 3.0≤ a≤ 3.127 and
chaotic oscillations for 3.127< a< 3.198. Chaotic behavior is
confirmed by the LE shown in Figure 1(b). Chaotic be-
haviors found in the bifurcation diagram of Figure 1(a) are
further detailed in Figure 2 which presents the time series of
x(t), y(t), and z(t) and the corresponding phase portraits
for specific values of parameter a.

In the left panel of Figure 2, we can see that the variables
x(t) and z(t) show a fast changing processes, while the
variable y(t) describes a relatively slowly changing quantity.
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�e fast-slow variables are con�rmed by the corresponding
phase portraits in the right panel of Figure 2. �e signals x(t)
and z(t) alternate between a silent and an active phase. �ese
latter are thus called chaotic bursting oscillations. Chaotic
behaviors found in Figure 1 for 3.127< a< 3.198 are
depicted in Figure 3.

In the time domain, Figure 3(a) shows chaotic oscilla-
tions, and in Figure 3(b), the phase portraits display chaotic
attractors. �e basin of attraction of system (1) in the plane
z � 0 for a � 3.0 is shown in Figure 4.

In Figure 4, the initial conditions in the white region lead
to unbounded orbits, those in the light blue region lead to
the strange attractor, and those on the red curve are the
parabolic equilibrium. From Figure 4, one can notice that

the proposed three-dimensional autonomous system with a
parabolic equilibrium belongs to chaotic systems with
hidden attractors [2–6, 9, 47] since the basin of attraction of
the strange attractor intersects only a limited portion of the
curve of equilibria.

3. Electronic Circuit Simulation of the Three-
Dimensional Autonomous System with a
Parabolic Equilibrium

�ree state variables x, y, and z of system (1) are rescaled to
overcome the di�culties in realization [53–55]. �erefore,
system (1) is rewritten as
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Figure 1: (a) Local maxima of (x) showing a typical reverse period-doubling route to chaos and (b) LE.
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dX
dt

� − Z,

dY
dt
�
XZ2

102
,

dZ
dt
� X −

Y2

10
+ a

Y2Z

102
−
Z3

102
,

(4)

where X� 10x, Y� 10y, and Z� 10z. �e circuit in Figure 5 is
designed to realize system (4).�is circuit has been designed
using a multiplier’s inherent characteristics [56, 57].

�e circuit of Figure 5 consists of resistors, operational
ampli�ers, analogue multipliers, and capacitors. From
Figure 5, the circuital equations are derived as
dVX
dt

� −
1

R1C1
VZ,

dVY
dt

�
1

R2C2k
2
m

VXV
2
Z,

dVZ
dt

�
1

R3C3
VX −

1
R4C3km

V2
Y +

1
R5C3k

2
m

V2
YVZ −

1
R6C3k

2
m

V3
Z,

(5)

where VX, VY, and VZ are the output voltages of the op-
erational ampli�ers (see Figure 5). �e �xed constant of the
multipliers is denoted as km, and km� 10V. Normalizing

circuital equations (5) by using the dimensionless states
variables

X �
VX
1.0V

, Y �
VY
1.0V

, Z �
VZ
1.0V

, t′ � τt � 100μs · t, (6)

and inserting equations (6) in (5), the following system is
obtained:

dX
dt′

�
τ
C1

−
1
R1
Z( ),

dY
dt′

�
τ
C2

1
R2k

2
m

( )XZ2,

dZ
dt′

�
τ
C3

1
R3
X −

1
R4km

Y2 +
1

R5k
2
m

Y2Z −
1

R6k
2
m

Z3( ).

(7)

Obviously, system (7) is equivalent to system (4) with the
following conditions:

τ
R1C1

�
τ

R2C2
�

τ
R3C3

�
τ

R4C3
�

τ
R6C3

� 1,
τ

R5C3
� a. (8)

�e resistor R5 is used to vary the value of the parameter
a. As a result, the values of circuit components are selected as
R1�R2�R3�R4�R6�R� 10 kΩ, C1�C2�C3�C� 10 nF,
and R5� 3.333 kΩ (for a� 3) or R5� 3.165 kΩ (for a� 3.16).
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Figure 3: (a) Time series of x(t), y(t), and z(t) while the (b) phase portraits in the di�erent planes for a� 3.16.
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Phase portraits in Figure 6 are obtained by using the elec-
tronic simulation package OrCAD-PSpice.

�ere is a good agreement between the numerical
simulations and OrCAD-PSpice results when comparing the
phase portraits of Figures 2 and 3 with Figure 6.

4. Adaptive Synchronization between the Relay
Coupling of Three Three-Dimensional
Autonomous Systems with a
Parabolic Equilibrium

�e relay coupling topology of three three-dimensional
autonomous systems with a parabolic equilibrium used in
this paper is represented in Figure 7.

In Figure 7, outer 1 is de�ned by the state variables
(xm, ym, zm), outer 2 by the state variables (xs, ys, zs), and

relay by the state variables (xr, yr, zr). �e variables u1 and
u2 are the control signals between outer 1 and relay whereas
u3 and u4 are the control signals between outer 2 and relay.
Based on Figure 7, the rate-equations describing the three
units coupled in relay are given by the following.

Outer 1 oscillator:

_xm � − zm
_ym � xmz

2
m + u1

_zm � xm − y
2
m + zm ay2m − z

2
m( ) + u2.

(9)

Outer 2 oscillator:

_xs � − zs
_ys � xsz

2
s + u3

_zs � xs − y
2
s + zs ay

2
s − z

2
s( ) + u4,

(10)

and relay oscillator:

_xr � − zr,

_yr � xrz
2
r + u5,

_zr � xr − y
2
r + zr ay

2
r − z

2
r( ) + u6,

(11)

where ui(i � 1, . . . , 6) are the controller law de�ned as
follows:

u1 � − k(t) ym − yr( )
u2 � − k(t) zm − zr( )
u3 � − k(t) ys − yr( )
u4 � − k(t) zs − zr( )
u5 � − u1 + u3( ) � − k(t) 2yr − ym − ys( ),
u6 � − u2 + u4( ) � − k(t) 2zr − zm − zs( ).

(12)

�e coupling strength k(t) is updated with the law as
follows:

_k(t) � c 2yr − ym − ys( )2 + 2zr − zm − zs( )2[ ] (13)

�e global error states are de�ned as follows:

e1(t) � xm + xs − 2xr,

e2(t) � ym + ys − 2yr,

e3(t) � zm + zs − 2zr.

(14)

After some mathematical simpli�cations, the dynamical
error system is given by

_e1(t) � − e3,
_e2(t) � f(x, y, z) − 3k(t)e2,
_e3(t) � e1 + g(x, y, z) − 3k(t)e3,
_k(t) � c e22 + e

2
3( ),

(15)

where f(x, y, z) � xmz2m + xsz2s − 2xrz2r and g(x, y, z) �
− (y2m + y2s − 2y2r) +zm(ay2m − z2m) + zs(ay2s − z2s ) − 2zr(ay2r
− z2r).
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the curve of equilibria which proves that the equilibrium is un-
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Assumption. . Since systems (9) to (11) exhibit chaotic
behavior, the nonlinear functions f(x, y, z) and g(x, y, z)
are bounded, so we can set ‖f(x, y, z)‖≤ η1‖e2‖ and
‖g(x, y, z)‖≤ η2‖e3‖ where η1 and η2 are positive
parameters.

Theorem. . Systems (9) to (11) achieve the global synchro-
nization under the controller ui(i � 1, . . . , 6) and the update
law (13) of the coupling strength if the following condition is
satis�ed:

k≥
max η1, η2( )

3
. (16)

Proof. �e candidate Lyapunov function is chosen:

V � 0.5 e21 + e
2
2 + e

2
3( ) +

3
2c
(k(t) − k)2. (17)

�e derivation of this Lyapunov function along the
trajectories of system (15) gives

_V � e1 _e1 + e2 _e2 + e3 _e3 +
3 _k(t)
c

(k(t) − k) � f(x, y, z)e2

+ g(x, y, z)e3 − 3k e22 + e
2
3( ).

(18)

By using the above assumption, equation (18) becomes

_V≤ − 3k − η1( )e22 − 3k − η2( )e23. (19)

From equation (19), one can conclude that systems (9) to
(11) achieve global synchronization if and only if
k≥max(η1, η2)/3. �is completes the proof.

Figure 8 depicts the global errors of synchronization
between the three coupled oscillators (Figures 8(a)–8(c)) and
the update law of coupling strength (Figure 8(d)). �e initial
condition of the adaptive law is k(0) � 0. �e initial con-
ditions of the coupled systems are set at values other than the
equilibrium points. �e synchronization between the three
coupled oscillators is shown in Figure 9 which plots the
times series of outer1 oscillator (in red) and those of outer 2
oscillator (in blue).

Figure 8 shows that the global errors described by
equation (15) converge at zero from t � 450; at this time, the
updated law stabilizes around a value k � 0.097. It is noted
that this result is not enough to guarantee the synchroni-
zation between the outer 1 and outer 2 because X + Y −
2Z � 0 does not necessarily lead to X � Z and Y � Z, i.e.,
X � Y. �e time series of the states variables of outer 1 and
outer 2 is illustrated in Figure 9.

From Figure 9, when t � 450, the outer 1 oscillator (in
red) and outer 2 oscillator (in blue) converge to the same
dynamic.�is last result con�rms the global synchronization
between the three coupled oscillators outer 1, outer 2, and
relay. By comparison with results found in the litterature on
relay coupled oscillators [58–64], this result is more inter-
esting because the coupling strength is not manual but it is
adapted as a function of the changes in the environment
[65]. □

5. Application to Steganography and
Chaos Encryption

�e ¡owchart of steganography and chaos encryptions is
depicted in Figure 10.

(a)

(b)

Figure 6: Phase portraits of the designed circuit obtained by using OrCAD-PSpice for (a) chaotic bursting oscillations and (b) chaotic
oscillations.
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Figure 7: Schematic diagram of the relay coupling of the three
three-dimensional autonomous systems with a parabolic
equilibrium.

6 Complexity



A cover image and text �le secret image are used in
Figure 10. �e text �le secret message is �rstly encrypted by
using an a�ne cipher based on adaptive synchronization
between the relay coupled three three-dimensional autono-
mous systems with a parabolic equilibrium with the support
of the date of birth (DOB) keys. �e DOB keys enable to
construct a key by using birth day, month, and year of the
sender (S) and receiver (R), respectively. �en, the least

signi�cant bit (LSB) algorithm is applied to hide the
encrypted text �le secret message in the cover image �le by
embedding the encrypted text �le in the LSB of pixel values of
the cover image. �e color image considered is decomposed
into 3 subimages component (red, green, and blue). Each
pixel of components assumes a value between [0, 255] and
represented with 8 bit. �e LSB of some pixels of components
is replaced by each bits of the text �le secret message.
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Figure 8: Global synchronization errors (a) to (c) and adaptive coupling strength (d) for c � 0.035 and a � 3. �e initial conditions are
(0, 0.1, 0.2), (0, 0.15, 0.25), and (0.3, 0.2, 0.4), respectively, for the outer 1, outer 2, and relay oscillators.
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Figure 9: Time series of the state variables of outer 1 and outer 2 for c � 0.035 and a � 3. �e initial conditions are (0, 0.1, 0.2),
(0, 0.15, 0.25), and (0.3, 0.2, 0.4), respectively, for the outer 1, outer 2, and relay oscillators.
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�e encryption E(.) and decryption D(.) processes of
a�ne cipher for a given text �le secret message M are
expressed [66] as follows:

E(M) �(l ×M) +m(modp),
D(M) � l′ ×(E(M) − m)(modp),

(20)

where l and m are parameters of a�ne cypher key k (k�(l,
m)) and l’ is inverse of lmodulo p and p is a positive integer.
To exchange the text �le secret message M, S and R have to
generate their own secret key pair by using the DOB and
three-dimensional chaotic autonomous system with a par-
abolic equilibrium. �e DOB of S is
D1 � D D − MM − YY, and the DOB of R is D2 � d d −
mm − yy where D � (D1, D2) is a pair of the DOB of S and
R.

5.1. S and R Key Generation.

(i) S solves the outer 1 of system (9) at time t and
generates equations (21) and (22):

K1 � D D × xm(t) +MM × ym(t)
+ YY(i) × zm(t)(modp),

(21)

K2 � d d × xm(t) +mm × ym(t)
+ yy(i) × zm(t)(modp),

(22)

with i � 1, . . . , 4 and j � 3, . . . , 6.
(ii) R solves the outer 2 of system (10) at time t and

generates equations (23) and (24):

L1 � D D × xs(t) +MM × ys(t)
+ YY(i) × zs(t)(modp),

(23)

L2 � d d × xs(t) +mm × ys(t)
+ yy(i) × zs(t)(modp).

(24)

5.2. Encryption and Decryption Message.

(i) S sends the text �le secret message M to R secretly,
and it encrypts M using E(.) function as follows:

E(M) � M ×K1( ) +K2(modp). (25)

(ii) When the R receives the text �le secret message M
from S and recovers an original message M, it uses
the decryption function D(.):

D(M) � E(M) − L2( ) × L1
− 1(modp). (26)

Figure 11 presents the 2 covers images with size
[512× 512] used to hide the secret message encrypted and
the stegano images. �e secret message is chosen as M�MY
NAME IS STEGANO. By applying the encryption E(.) to the
message M with the following parameters:
D D � 10;MM � 06;YY � [1, 9, 9, 0]; d d � 22;MM �
10;YY � [1, 9, 8, 4];p � 128;xm � − 24.67;ym �
− 75.42; zm � − 4.381; xs � − 24.67;ys � − 75.42; zs � − 4.381,
the encrypted message obtained is M’�刮儇��”�ੜ瑑.

From Figure 11, it is noted that the ¡ower and Lena cover
images have the same visual aspect with ¡ower and Lena
stegano images. �anks to the Peak Signal to Noise Ratio
(PSNR), the di�erence between cover and stegano images is
expressed [67, 68] as follows:

PSNR � 10 log10
2552

MSE
( ), (27)

where MSE is the mean squared error. By using the chosen
text �le secret message M, the PSNR of Lena and ¡ower is
59.28 dB and 62.01 dB, respectively. Figure 12 shows the
evolution of PSNR between cover and stegano images versus
the length of the text �le secret message M.

In Figure 12, the PSNR increases with the increase in the
message length and it reaches a maximum at the message
length of 150. By further increasing the message length, the
PSNR decreases slowly. �ese results unveil the practica-
bility and superiority of the proposed steganography and

Stegano key
generation

EmbeddingCover image Stegano image

Encrypted
message

Chaotic key
generation

Text file secret
message

Figure 10: Schematic diagram of the proposed steganography and chaos encryption process.
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chaos encryption algorithms. Note that, implementing such
an encryption system may also be designed with a discrete
chaotic/hyperchaotic card [69].

6. Conclusion

�is paper was devoted to the dynamical analysis, adaptive
synchronization via relay coupling, and applications to
steganography and chaos encryption of a three-dimensional

autonomous system with a parabolic equilibrium. �e dy-
namical behaviors of the three-dimensional chaotic au-
tonomous system with a parabolic equilibrium were
analysed both analytically and numerically, and it was found
that the proposed system can generate chaotic oscillations
and chaotic bursting oscillations.�en, an analog circuit was
designed to realize the di�erential equations of the chaotic
system under study. �e designed circuit was implemented
and tested using the OrCAD-PSpice software to verify the

(a)

(b)

Figure 11: (a) Cover and (b) stegano images.
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Figure 12: Variation of the PSNR of Lena and ¡ower versus the length of message M.
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numerical simulations results. Comparison of the results
obtained from the analog circuit and numerical simulations
showed good qualitative agreement. Furthermore, it was
demonstrated analytically and numerically that it is possible
to achieve a global synchronization between a relay coupled
three three-dimensional chaotic autonomous systems with
parabolic equilibrium through an adaptive synchronization.
Finally, a text message hidden inside an image was suc-
cessfully realized by using steganography and chaos
encryption.
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implementation of multi-wing butterfly chaotic attractors via
Lorenz-type systems,” International Journal of Bifurcation
and Chaos, vol. 20, no. 01, pp. 29–41, 2010.

[55] S. Yu, J. Lu, X. Yu, and G. Chen, “Design and implementation
of grid multiwing hyperchaotic Lorenz system family via
switching control and constructing super-heteroclinic loops,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 59, no. 5, pp. 1015–1028, 2012.

[56] J. Wu, C. Li, X. Ma, T. Lei, and G. Chen, “Simplification of
chaotic circuits with quadratic nonlinearity,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 69, 2021.

[57] R. Kengne, M. Motchongom Tingue, A. Kammogne Souop
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In this work, we study a stochastic SIS epidemic model with Lévy jumps and nonlinear incidence rates. Firstly, we present our
proposed model and its parameters. We establish sufficient conditions for the extinction and persistence of the disease in the
population using some stochastic analysis background. We illustrate our theoretical results by numerical simulations. We
conclude that the white noise and Lévy jump influence the transmission of the epidemic.

1. Introduction and Preliminary

For a long time, infectious diseases have been the cause of
disappointment of many people in the world, and only very
few of these diseases have disappeared, despite the devel-
opment of medicine and the change in the lifestyle of human
beings. *erefore, several scientists have concentrated their
research on the study of the transmission mechanisms of
these diseases and have proposed relevant solutions in order
to reduce the contamination by these infectious diseases.
Also, several mathematical epidemic models are proposed to
describe the dynamics of infectious diseases in human
populations and to study the complex behavior of these
diseases. Among the models proposed, the classic SIR epi-
demic model of Kermack andMcKendrick is widely used [1]
which divides the population into three classes, namely,
susceptible (S), infected (I), and recovered (R). As a result,
other works have generalized the Kermack–McKendrick
(see, for example, [2–8]) model. On the other hand, for some
diseases such as bacterial diseases and some sexually
transmitted diseases, the SIR model is not suitable because
the individuals infected with these diseases start to be
susceptible, at a certain stage get the disease, and after a short
infectious period become susceptible again [9, 10]. *ere-
fore, the SIS epidemic model [11–13] is often used to model

the dynamics of these specific diseases. *en, the SIS epi-
demic model is represented by the following ordinary dif-
ferential equations:

dS(t)

dt
� A − ρS − βSI + δI,

dI(t)

dt
� βSI − (ρ + θ + δ)I,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (1)

where S(t) and I(t) represent the number of susceptible and
infected individuals, respectively. A represents the recruit-
ment rate of susceptible, β denotes the transmission coef-
ficient of diseases, ρ represents the natural death rate for
susceptible and infected classes, θ is the disease-related death
rate, and δ denotes the recovery rate.

*e quantity βSI is the disease incidence rate, which
represents the number of new cases per unit of time. Many
authors have used the bilinear incidence to model disease
transmission. But, in many cases, the bilinear incidence is
not preferable (for example, when the population is satu-
rated [14]). So, the nonlinear incidence can better model the
nonlinear transmission of epidemics. Swati in [15] proposed
a fractional-order epidemic model and modeled the trans-
mission of disease by the Beddington–DeAngelis incidence
rate. In [16], Lu et al. introduced a nonmonotone incidence
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rate into an epidemic model composed of three classes of
individuals (susceptible, infectious, and recovered). Raja-
sekar and Zhu [17] examined the impact of media coverage
on a SIRS epidemic model with relapse. *erefore, several
nonlinear incidences have been proposed (see Table 1). In
the present paper, we model the disease transmission by a
nonlinear incidence βϕ(S, I), where ϕ satisfies the following
conditions.

(C)ϕ(S, I) is two-order continuously differentiable for
any S(t), I(t)≥ 0. For each fixed I≥ 0, ϕ(S, I) is increasing
for S> 0 and for each fixed S≥ 0, ϕ(S, I)/I is decreasing for
I> 0. ϕ(S, 0) � ϕ(0, I) � 0 for any S, I> 0, and
zϕ(S0, 0)/zI> 0, with S0 � A/ρ.

In mathematical modeling, the stochastic systems show
more precisely the reality by including the environmental
effects, which are an essential aspect in biological envi-
ronments. So, epidemic models are often subject to random
noises (see [4]). For this reason, many works have studied
the effect of white noise on deterministic systems. Tornatore
et al. in [22] studied the effect of white noise on the SIR
epidemic model, and they presented the model by a sto-
chastic differential system. In [23], the author has examined
the effect of environmental fluctuations on an epidemic
model by affecting some parameters in the model by the
white noise. Hussain et al. [24] investigated a stochastic
epidemic model with white noise for the transmission of
coronavirus. *ey showed sufficient conditions for the ex-
tinction and existence of stationary distribution by
employing some stochastic calculus background. To rea-
sonably measure the influence of environmental noise on
disease transmission, we assume that parameter β is per-
turbed by the white noise as follows:

β⟶ β + σ _MB(t), (2)

where MB(t) is a standard Brownianmotion and σ represent
the intensities of white noise. *en, we represent the sto-
chastic model corresponding to deterministic model (1) by
the following stochastic differential equation system:

dS(t) � (A − ρS − βϕ(S, I) + δI)dt − σϕ(S, I)dMB(t),

dI(t) � (βϕ(S, I) − (ρ + θ + δ)I)dt + σϕ(S, I)dMB(t).
􏼨

(3)

Stochastic differential equations with white noise rep-
resent many advantages in modeling infectious diseases. But,
in reality, the biological systems are frequently attacked by
abrupt and massive disturbances such as natural disasters:
volcanoes, tsunamis, earthquakes, and pandemics (SARS,
COVID-19, Ebola, and so on). *ese events may break the
continuity of the solution [4, 25, 26]. *en, to describe these
events, it is necessary to integrate a jump process [27] in the
stochastic system (3).

*us, to properly describe the reality, we use the Lévy
jump process which can well model the sudden and massive
fluctuations; also, we perturb the parameter β by two en-
vironmental noises (white noise and Lévy noise) as follows:

β⟶ β + σ _MB(t) + Y
.

(t), (4)

where MB(t) is an independent standard Brownian motion,
σ is the intensity of MB(t), and Y

.

(t) � 􏽒
t

0 􏽒
E
η(t) 􏽥N(dt, dl).

*en, we present the stochastic version corresponding to
model (3) by the following stochastic differential equation
system driven with Lévy jumps:

dS(t) � (A − ρS − βϕ(S, I) + δI)dt − σϕ(S, I)dMB(t) − 􏽚
E
η(l)ϕ(S((t− ), I(t− ) 􏽥N(dt, dl)),

dI(t) � (βϕ(S, I) − (ρ + θ + δ)I)dt + σϕ(S, I)dMB(t) + 􏽚
E
η(l)ϕ(S(t− ), I((t− )) 􏽥N(dt, dl),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (5)

where S(t− ) and I(t− ) are the left limits of S(t) and I(t),
respectively. 􏽥N(dt, dl) � N(dt, dl) − ](l)dt, N is a Poisson
counting measure with characteristic measure ] on mea-
surable subset E of [0,∞), with ](E)<∞, and
η: E ×Ω⟶ R represents the effect of random jumps; it is
bounded and continuous with respect to ] and
B(E) × Ft-measurable.

*roughout this paper, let (Ω,F, F{ }t≥0,P) be a
complete probability space with a filtration F{ }t≥0 satisfying
the usual conditions (i.e., it is right continuous and F0
contains all P-null sets), and we suppose that the Brownian
motion MB(t) is defined on the complete probability space
(Ω,F, F{ }t≥0,P).

For equation (5) to admit a unique global solution, it
must satisfy the linear growth condition and the local
Lipschitz condition [28]. In effect, equation (5) satisfies the
local Lipschitz condition and not the linear growth condi-
tion. *erefore, the solution of system (3) will explode in

finite time. So, to ensure the global existence and uniqueness
of the solution, we propose as in [4] the following
assumptions:

(C1) For each N> 0, there exists LN > 0 such that

􏽚
E
|K(x, α) − K(y, α)|

2](dl)≤LN|x − y|
2
, (6)

and |x|∨|y|≤N, with K(x′, l) � η(l)x′ for
x′ � S(t− )I(t− ).
(C2) 0≤A/ρη(l)< 1, for l ∈ E.

*e following region:

I � (S, I) ∈ R2
+: S + I≤

A

ρ
􏼨 􏼩, (7)

is almost surely positively invariant by stochastic system (3),
namely, if (S(0), I(0)) ∈ I, then (S(t), I(t)) ∈ I∀t≥ 0 a.s.
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Theorem 1. For any initial condition (S(0), I(0)) ∈ I,
there exists a unique positive solution
(S(t), I(t)) ∈ I∀t≥ 0 a.s.

Let Vm � inf
(S,I)∈T

ϕ(S, I)/I.

Definition 1. System (3) is said to be persistent in the mean,
if

liminf
t⟶∞

1
t

􏽚
t

0
I(r)dr> 0 a.s. (8)

Lemma 1. Let f ∈ C([0,∞) × tΩn; q(0,∞)). If there exist
positive constants m1, m2, and T, such that

lnf(t)≥m1t − m2 􏽚
t

0
f(x)dx + F(t) a.s. forall t≥T,

(9)

where F ∈ ([0,∞) ×Ω;R) and lim
t⟶∞

F(t)/t � 0 a.s., then
liminf
t⟶∞

〈f(t)〉≥m1/m2 a.s.

Lemma 2 (see [29]). Suppose that (C) hold. For all s> z> 0,
define

H � (S, I) ∈ R2
+|z≤ S + I≤ s􏽮 􏽯. (10)

<en,

max
(S,I)∈H

ϕ((S, I))

S
,
ϕ((S, I))

I
􏼨 􏼩<∞,

max
(S,I)∈H

1
I

zϕ(S, I)

zI
−
ϕ(S, I)

I
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
1
I

zϕ(S, I)

zS

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼨 􏼩<∞.

(11)

The differential operatorL (see [30]) associated with the
following stochastic differential equation with Lévy process:

dx(t) � f(x(t), t)dt + g(x(t), t)dMB(t) + 􏽚
E
h(x(t− ), l) 􏽥N(dt, dl), (12)

is defined by

Lx(t− ) �
zx(t− )

zt
+ 􏽘

n

i�1

zx(t− )

zxi

fi(x, t) +
1
2

􏽘

n

i,j�1

z
2
x(t− )

zxizxj

g
T
(x, t)g(x, t)􏽨 􏽩

ij

+ 􏽚
E

(x(t− ) + h(x(t− ), l)) − x(t− ) −
zx(t− )

zxi

h(x(t− ), l)􏼢 􏼣](dl).

(13)

If L acts on a function F ∈ C1,2(Rn × R+;R+), then

LF(x(t)) � Ft(x(t− )) + Fx(x(t− ))f(x(t− ), t)

+
1
2
trace g

T
(x(t− ), t)Fxx(x(t− ))g(x(t− ), t)􏽨 􏽩

ij

+ 􏽚
E

F(x(t− ) + h(x(t− ), l) − F(x(t− )) − Fx(x(t− ))h(x(t− ), l)􏼂 􏼃](dl),

(14)

where Ft � zF/zt, Fx � (zF/zx1, . . . , zF/zxn),
Fxx � (z2F/zxizxj)nn.

Then, generalized Itô’s formula (for more details, see
[31]) is presented by

Table 1: Some nonlinear incidence rates.

Incidence name Expression Reference
Standard incidence rate βSI/N [18]
Saturated incidence rate βSI/1 + kI [14]
Beddington–DeAngelis functional response βSI/1 + k1S + k2I [19]
Crowley–Martin functional response βSI/1 + k1S + k2I + k1k2SI [20]
Incidence with media coverage effect β1 − β2I/I + m [21]
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dH(x(t)) � LF(x(t− ))dt + Fx(x(t− )g(x(t), t)dMB(t)

+ 􏽚
Z

[F(x(t− ) + h(x(t− ), l)) − F(x(t− ))] 􏽥N(dt, dl).

(15)

The goal of this work is the proposition of conditions for
the extinction and persistence of diseases. For this, we define
a threshold number that coincides with the basic repro-
duction number of the deterministic model when the sto-
chastic terms are absent and determine the extinction or
persistence of disease. Moreover, it is important to note that
our system (3) generalizes many models existing in the
literature (for example, see [32–34]). In addition, our model
(3) represents the impact of massive events on the trans-
mission of disease and gives an additional degree of realism
compared with the deterministic model and stochastic
model with white noise. *e organization of this paper is as
follows. In Section 2, we give sufficient conditions for the
extinction of the disease. Persistence in mean results is
explored in Section 3. In Section 4, the analytical results are
illustrated with the support of numerical examples. Finally,
we close the article with a conclusion.

2. Extinction

In this section, we show sufficient conditions for the ex-
tinction of the disease of system (3) with the Lévy process.

We know that for deterministic systems, we should
determine the extinction or persistence of disease according
to the value of R0 (basic reproduction number). *at is, if

R0 is less than one, the disease dies out. In contrast, ifR0 is
greater than one, the disease persists. Likewise, we express
the following threshold of our stochastic SIS epidemic model
(3) with Lévy jumps as follows:

Rlj � β
zϕ S0, 0( 􏼁

zI

1
(ρ + θ + δ)

− η
zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2 1
(ρ + θ + δ)

� R0 − η
zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2 1
(ρ + θ + δ)

,

(16)

where η � (σ2/2 + 􏽒
E
η2(l)/2(1 + η(l)zϕ(S0, 0)/zI)2](dl)).

Remark 1. *e threshold Rlj coincides with the basic re-
production number R0 of the corresponding deterministic
system in the absence of the noise coefficient.

Theorem 2. Under the assumptions (C). Let (S(t), I(t)) be
the solution of model (3) with any initial value
(S(0), I(0)) ∈ I:

(i) If Rlj < 1 and zϕ(S0, 0)/zI≤ β/η, then

limsup
t⟶∞

log I(t)

t
≤ (ρ + θ + δ) Rlj − 1􏽨 􏽩< 0 a.s. (17)

(ii) If σ2/2 + 􏽒
E
η2(l)/2(1 + η(l)zϕ(S0, 0)/

zI)2](dl)> β2/2(ρ + θ + δ), then

lim sup
t⟶∞

log I(t)

t
≤
β2

2
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁
2](dl)⎛⎝ ⎞⎠

− 1

− (ρ + θ + δ) < 0 a.s. (18)

In others word, I(t) will go to zero almost surely.*at is,
the disease will be extinct almost surely.

Proof

(i) Using generalized Itô’s formula, one can see that

d log I � β
ϕ(S, I)

I
− (ρ + θ + δ) −

σ2

2
ϕ(S, I)

I
􏼠 􏼡

2
⎡⎣ ⎤⎦dt

+ 􏽚
E

log 1 + η(l)
ϕ(S, I)

I
􏼠 􏼡 − η(l)

ϕ(S, I)

I
􏼢 􏼣](dl)

+ σ
ϕ(S, I)

I
dMB(t) + 􏽚

E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dt, dl).

(19)

Integrating both sides from 0 to t and dividing by t,
we get

log I(t)

t
�
log I(0)

t
+
1
t

􏽚
t

0
β
ϕ(S(r), I(r))

I(r)
􏼢

− (ρ + θ + δ) −
σ2

2
ϕ(S(r), I(r))

I(r)
􏼠 􏼡

2
⎤⎦dr

+
1
t

􏽚
t

0
􏽚
E

log 1 + η(l)
ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡􏼢

− η(l)
ϕ(S(r− ), I(r− ))

I(r− )
􏼣](dl)dr

+
1
t

􏽚
t

0
􏽚
E
log 1 + η(l)

ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡 􏽥N(dr, dl)

+
1
t

􏽚
t

0
σ
ϕ(S(r), I(r))

I(r)
dMB(r).

(20)
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Using the Taylor–Lagrange formula, one can see that

log 1 + η(l)
ϕ(S, I)

I
􏼠 􏼡 − η(l)

ϕ(S, I)

I
� −

η2(l)(ϕ(S, I)/I)
2

2(1 + η(l)ϕ(S, I)/I)
2

≤ −
η2(l)

2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁
2

ϕ(S, I)

I
􏼠 􏼡

2

.

(21)

*erefore,

log I(t)

t
≤
log I(0)

t
+
1
t

􏽚
t

0
β
ϕ(S(r), I(r))

I(r)
− (ρ + θ + δ)􏼢

−
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(0)zϕ S0, 0( 􏼁/zI( 􏼁
2](dl)⎛⎝ ⎞⎠

ϕ(S(r), I(r))

I(r)
􏼠 􏼡

2
⎤⎥⎥⎦dr

+
1
t

􏽚
t

0
􏽚
E
log 1 + η(l)

ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡 􏽥N(dr, dl)

+
1
t

􏽚
t

0
σ
ϕ(S(r), I(r))

I(r)
dMB(r).

(22)

Since the function

h(z) � − (ρ + θ + δ) + βz −
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁
2](dl)⎛⎜⎜⎝ ⎞⎟⎟⎠z

2
, (23)

is monotone increasing for all z ∈ [0, β/(σ2/2 + 􏽒
E
η2

(l)/2(1 + η(l)zϕ(S0, 0)/zI)2](dl))], employing
condition (i) and the inequality
ϕ(S, I)/I≤ zϕ(S0, 0)/zI, we obtain

log I(t)

t
≤
log I(0)

t
+
1
t

􏽚
t

0
β

zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ)􏼢

−
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2
⎤⎥⎥⎦dr

+
M(t)

t
+
G(t)

t
,

(24)

where

M(t) � 􏽚
t

0
􏽚
E
log 1 + η((l))

ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡 􏽥N(dr, dl),

G(t) � 􏽚
t

0
σ
ϕ(S(r− ), I(r− ))

I(r− )
dMB(r).

(25)

*en,

〈M(t),M(t)〉 � 􏽚
t

0
􏽚
E

log 1 + η(l)
ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡􏼢 􏼣

2

](dl)dr

≤ t log 1 + η(l)
zϕ S0, 0( 􏼁

zI
􏼠 􏼡􏼢 􏼣

2

](E)<∞,

(26)
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and

〈G(t),G(t)〉 � 􏽚
t

0
σ
ϕ(S(r), I(r))

I(r)
􏼢 􏼣

2

dr≤ t σ
zϕ S0, 0( 􏼁

zI
􏼢 􏼣

2

<∞. (27)

According to the strong law of large numbers for
martingales [28], we have

lim
t⟶∞

M(t)

t
� 0,

lim
t⟶∞

G(t)

t
� 0 a.s.

(28)

Taking the limit superior on the both sides of (24)
and combining with (28), we get

limsup
t⟶∞

logI(t)
t

≤ β
zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ) −

σ2

2
+ 􏽚

E

η2(l)
2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁

2](dl)⎛⎝ ⎞⎠
zϕ S0, 0( 􏼁( 􏼁

zI
􏼠 􏼡

2

≜ (ρ + θ + δ) Rlj − 1􏽨 􏽩< 0 a.s,

(29)

which implies that

lim
t⟶∞

I(t) � 0 a.s. (30)

(ii) Using (4), we have

log I(t)

t
≤
log I(0)

t
+
1
t

􏽚
t

0
β
ϕ(S(r), I(r))

I(r)
− (ρ + θ + δ)􏼢

−
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁
2](dl)⎛⎝ ⎞⎠

ϕ(S(r), I(r))

I(r)
􏼠 􏼡

2
⎤⎥⎥⎦dr

+
1
t

􏽚
t

0
􏽚
E
log 1 + η(l)

ϕ(S(r− ), I(r− ))

I(r− )
􏼠 􏼡 􏽥N(dr, dl)

+
1
t

􏽚
t

0
σ
ϕ(S(r), I(r))

I(r)
dMB(r)

�
log I(0)

t
+
1
t

􏽚
t

0
−
1
2
ξ Z −

β
ξ

􏼠 􏼡

2

+
β2

2ξ
− (ρ + θ + δ)⎡⎣ ⎤⎦dr,

(31)

where ξ � (σ2/2 + 􏽒
E
η2(l)/2(1 + η(l)zϕ(S0, 0)/zI)2](dl))

and Z � ϕ(S, I)/I. *en,
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log I(t)

t
≤
log I(0)

t
+
β2

2ξ
− (ρ + θ + δ)

+
1
t

􏽚
t

0
􏽚
E
log 1 + η(l)

ϕ((S(r− ), I(r− ))

I(r− )
􏼠 􏼡 􏽥N(dr, dl)

+
1
t

􏽚
t

0
σ
ϕ(S(r), I(r))

I(r)
dMB(r).

(32)

By taking the superior on both sides of (32), we obtain

limsup
limits

t
⟶∞

log I(t)

t
≤
β2

2
σ2

2
+ 􏽚

E

η2(l)
2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁

2](dl)⎛⎝ ⎞⎠

− 1

− (ρ + θ + δ) a.s. (33)

*is completes the proof of the theorem. □

3. Persistence

In this section, we present sufficient conditions for the
persistence in mean of disease in model (3). So, we have the
following result.

Theorem 3. Assume that (C) hold. If Rl′j > 1, then for any
given initial value (S(0), I(0)) ∈ I, the solution of (3)
satisfies

liminf
t⟶∞

1
t

􏽚
t

0
I(r)dr≥K− 1

3 (ρ + θ + δ) Rl′j − 1􏽨 􏽩> 0 a.s., (34)

where K3 is a positive constant.

Proof. From system (3), we have

A

ρ
−
1
t

􏽚
t

0
S(r)dr �

(ρ + θ)

ρ
1
t

􏽚
t

0
I(r)dr +

ϖ((t))

ρ
, (35)

where ϖ(t) � S(t) − S(0)/t + I(t) − I(0)/t. Using Itô’s for-
mula and the fact that ϕ(S, I)/I≤ zϕ(S0, 0)/zI, we get

d log I≥ β
ϕ(S, I)

I
− (ρ + θ + δ) −

σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦dt

+ σ
ϕ(S, I)

I
dMB(t) + 􏽚

E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dt, dl)

� β
zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ) −

σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦dt

+ β
ϕ(S, I)

I
− β

zϕ S0, 0( 􏼁

zI
􏼢 􏼣dt + σ

ϕ(S, I)

I
dMB(t)

+ 􏽚
E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dt, dl).

(36)

Using Lagrange’s mean value theorem, we obtain
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ϕ(S(t), I(t))

I(t)
−

zϕ S0, 0( 􏼁

zI
�

1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zI
−
ϕ Λ1(t),Λ2(t)( 􏼁

Λ22(t)
􏼢 􏼣I(t)

+
1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zS
S(t) − S0( 􏼁,

(37)

with Λ1(t) ∈ (S(t), S0) and Λ2(t) ∈ (0, I(t)). Consequently,
from (37), one can derive that

dlog I≥ β
zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ) −

σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2
⎡⎢⎢⎣

+ β
1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zI
−
ϕ Λ1(t),Λ2(t)( 􏼁

Λ22(t)
􏼠 􏼡I(t)

+β
1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zS
S(t) − S0( 􏼁􏼣dt + σ

ϕ(S, I)

I
dMB(t)

+ 􏽚
E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dt, dl).

(38)

According to Lemma 2 and since(Λ1(t),Λ2(t)) ∈ I a.s.,
then

1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zI
−
ϕ Λ1(t),Λ2(t)( 􏼁

Λ22(t)
≥ − K1,

1
Λ2(t)

zϕ Λ1(t),Λ2(t)( 􏼁

zS
S(t) − S0( 􏼁≤K2,

(39)

with

max
(S,I)∈L

1
I

zϕ(S, I)

zI
−
ϕ(S, I)

I

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼨 􏼩 � K1, (40)

and

max
(S,I)∈L

1
I

zϕ(S, I)

zS

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼨 􏼩 � K2. (41)

Injecting (11) in (10), we get

dlog I≥ β
zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ) −

σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2⎧⎨

⎩

− β K1I(t) + K2 S0 − S(t)( 􏼁􏼂 􏼃􏼉dt + σ
ϕ(S, I)

I
dMB(t)

+ 􏽚
E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dt, dl).

(42)

Integrating both sides of the above inequality from 0 to t

and dividing by t, we have
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log I(t)

t
−
log I(0)

t
≥ β

zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ)

−
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2

− β K1
1
t

􏽚
t

0
I(r)dr + K2 S0 −

1
t

􏽚
t

0
S(r)dr􏼠 􏼡􏼢 􏼣

+
1
t

􏽚
t

0
σ
ϕ(S, I)

I
dMB(r) +

1
t

􏽚
t

0

􏽚
E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dr, dl).

(43)

In view of (35), we obtain

log I(t)

t
≥ β

zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ)

−
σ2

2
+ 􏽚

E

η2(l)

2 1 + η(l)Vm( 􏼁
2](dl)⎛⎝ ⎞⎠

zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2

− β K1 + K2
ρ + θ
ρ

􏼢 􏼣
1
t

􏽚
t

0
I(r)dr + π(t),

(44)

where

π(t) � −
βK2

ρ
ϖ(t) +

log I(0)

t
+
1
t

􏽚
t

0
σ
ϕ(S, I)

I
dMB(r)

+
1
t

􏽚
t

0
􏽚
E
log 1 + η(l)

ϕ(S, I)

I
􏼠 􏼡 􏽥N(dr, dl).

(45)

According to the large number theorem for local mar-
tingales [28] and the fact that S, I ∈ I, we have

4 14 188 10 122 200 6 16
Time

0.6
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1
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1.4

1.6
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2

S 
(t)

5 10 15 20 25 30 35 400
Time

0

0.05

0.1

0.15

0.2

0.25

I (
t)

Deterministic
Stochastic

Deterministic
Stochastic

Figure 1: Comparison of the trajectory in stochastic system (3) (I(t): blue graph and S(t): green graph) and deterministic system (1) (I(t):
black graph and S(t): black graph) for the extinction case.
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lim
t⟶∞

π(t) � 0 a.s. (46)

According to Lemma 1, we obtain the following
inequality:

liminf
t⟶∞

1
t

􏽚
t

0
I(r)dr≥K− 1

3 β
zϕ S0, 0( 􏼁

zI
− (ρ + θ + δ)􏼢

−
σ2

2
+ 􏽚

E

η2(l)
2 1 + η(l)Vm( 􏼁

2](dl)⎛⎝ ⎞⎠
zϕ S0, 0( 􏼁

zI
􏼠 􏼡

2
⎤⎥⎥⎦,

(47)

where K3 � β[K1 + K2ρ + θ/ρ]. Hence,

liminf
t⟶∞

1
t

􏽚
t

0
I(r)dr≥K− 1

3 (ρ + θ + δ) Rl′j − 1􏽨 􏽩> 0 a.s. (48)
□

Remark 2. *e condition Rl′j > 1 implies that the repro-
duction number is also greater than one, and this means that
when the disease in stochastic system (3) persists, it can also
persist in deterministic system (1).

4. Numerical Application

In this section, we give some simulations to support the
theoretical results presented in this paper. For this, we use
the Euler scheme described in [35]. In the figures, the black
lines represent solutions of a deterministic system (1), the
blue lines are the paths of S(t) for stochastic system (3) with
Lévy jumps, and the green lines are the paths of I(t) for
stochastic system (3) with Lévy jumps. In model (3), we take
ϕ(S, I) � βSI/1 + kI, which is the saturated incidence rate
introduced by Capasso and Serio [14]. We can easily show
that ϕ satisfies the assumptions (C). *en, we have

0.6

0.8

1
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1.4

1.6

1.8
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(t)

2010 5040 60 7030 800
Time

Deterministic
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0.14

0.16

0.18

0.2

0.22

I (
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10 20 30 40 50 600
Time

Deterministic
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Figure 2: Comparison of the trajectory in stochastic system (3) (I(t): blue graph and S(t): green graph) and deterministic system (1) (I(t):
black graph and S(t): black graph) for the persistence case.
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Rlj �
βS0

(ρ + θ + δ)
− ηS

2
0

1
(ρ + θ + δ)

� R0 − ηS
2
0

1
(ρ + θ + δ)

.

(49)

Hence, we have the following corollary of *eorem 3.

Corollary 1. Under the assumptions (C), let (S(t), I(t)) be
the solution of model (3) with any initial value (S(0), I(0)) ∈:

(i) If Rlj < 1 and zϕ(S0, 0)/zI≤ β/η, then

limsup
t⟶∞

logI(t)
t
≤ (ρ + θ + δ) Rlj − 1􏽨 􏽩< 0 a.s. (50)

(ii) If σ2/2 + 􏽒
E

η2(l)/2(1 + η(l) zϕ(S0, 0)/zI)2](dl)>

β2/2(ρ + θ + δ), then

limsup
t⟶∞

logI(t)
t
≤
β2

2
σ2

2
+ 􏽚

E

η2(l)
2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁

2](dl)⎛⎝ ⎞⎠

− 1

− (ρ + θ + δ)< 0 a.s. (51)

In others word, I(t) will go to zero almost surely.*at is,
the disease will be extinct almost surely.

4.1. Extinction Case. Take the parameters in stochastic
system (3) as follows: A � 0.66, ρ � 0.34, β � 0.7, k � 0.1,
θ � 0.65, δ � 0.35, σ � 0.7, and η(l) � 0.05. By simple
computation, we obtain Rlj � 0.8295< 1 and R0 � 1.0140.
*en, the condition of *eorem 2 holds. Hence, one can
observe that disease is extinct. Figure 1 demonstrates this
result. From a comparative point of view, we remark that in
Figure 1, epidemic I tends to zero for the stochastic system
(blue graph) and not for the deterministic system (black
graph). *us, the epidemic does not disappear from the
population if there is no Lévy process effect. Deduce that
Lévy jumps can significantly influence the properties of the
system and can drive the disease to disappear (see Figure 1).

4.2. Persistence Case. In this case, we save the same pa-
rameter values employed in the extinction case. Also, we
choose the noise values as follows: σ � 0.1 and η(l) � 0.02.
By calculation, we getRl′j � 1.2998> 1.*erefore, it follows
from *eorem 3 that disease I(t) persists in the mean with

probability one. Figure 2 shows this result. So, the disease
disappears when the values of the noise terms are not
interesting.

Finally, the numerical simulation in Figures 1 and 2
clarifies the dynamics of the diseases as a function of time for
two different values of the noise parameters. *en, you can
see that the large value of noises parameters can remove the
disease from the population.

5. Conclusion

*is paper studies a stochastic SIS epidemic model with
nonlinear incidence rate and Lévy jumps. Under assumption
(C), we prove the following results:

(1) If Rlj < 1 and zϕ(S0, 0)/zI≤ β/η, then

limsup
t⟶∞

log I(t)
t
≤ (ρ + θ + δ) Rlj − 1􏽨 􏽩< 0 a.s. (52)

*us, the diseaseI dies out with probability one.
(2) If σ2/2 + 􏽒

E
η2(l)/2(1 + η(l) zϕ(S0, 0)/zI)2](dl)>

β2/2(ρ + θ + δ), then

limsup
t⟶∞

log I(t)

t
≤
β2

2
σ2

2
+ 􏽚

E

η2(l)
2 1 + η(l)zϕ S0, 0( 􏼁/zI( 􏼁

2](dl)⎛⎝ ⎞⎠

− 1

− (ρ + θ + δ)< 0 a.s. (53)

*us, the disease I dies out with probability one.

(3) If Rl′j > 1, then the disease persists in mean.

For our epidemic model (3), we have established the
generalized basic reproduction number noted Rlj and
concluded that the noise coefficient can eliminate the

disease, that is, if the white noise value is large and
η(l)> 0, the disease goes extinct. On the other hand, if the
value of the noise parameters is very low, the
disease persists in the population. So, white noise and
Lévy noise can control the spread of disease in the
population.
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(e aim of this article is to present a chaotic fruit fly algorithm (CFFA) as an optimization approach for solving engineering design
problems (EDPs). In CFFA, the fruit fly algorithm (FFA), which is recognized for its durability and efficiency in addressing
optimization problems, was paired with the chaotic local search (CLS) method, which allows for local exploitation. CFFA will be
set up to work in two phases: in the first, FFA will be used to discover an approximate solution, and in the second, chaotic local
search (CLS) will be used to locate the optimal solution. As a result, CFFA can address difficulties associated with the basic FFA
such as falling into local optima, an imbalance between exploitation and exploration, and a lack of optimum solution acquisition
(i.e., overcoming the drawback of premature convergence and increasing the local exploitation capability). (e chaotic logistic
map is employed in the CLS because it has been demonstrated to be effective in improving the quality of solutions and giving the
best performance by many studies. (e proposed algorithm is tested by the set of CEC’2005 special sessions on real parameter
optimization and many EDPs from the most recent test suite CEC’2020. (e results have demonstrated the superiority of the
proposed approach to finding the global optimal solution. Finally, CFFA′s results were compared to those of earlier research, and
statistical analysis using Friedman and Wilcoxon’s tests revealed its superiority and capacity to tackle this type of problem.

1. Introduction

(e engineering design problems (EDPs) are extremely sig-
nificant from both the manufacturing and scientific perspec-
tive, where it is a very important and challenging area,
especially in the field of engineering for getting designs that
have efficient form and are more accurate. Generally, these
problems are treated as nonlinear constrained optimization
problems (NCOPs). NCOPs are very difficult, and the problem
feasible region may be a thin subset of the search domain [1].

Traditionally, NCOPs are solved by some efficient methods
such as recursive quadratic programming, projection method,
generalized reduced gradient method, penalty method, and a
multiplier method [2]. (ese methods are not efficient since
they may only compute local optima, and it is very hard to
apply these methods to problems as its feasible region is not
convex or the objective function is not differentiable [3].

Because of the drawbacks of traditional optimization
approaches, the meta-heuristic optimization algorithm for
tackling NCOPs emerged. Meta-heuristic algorithms are
considered the best optimization algorithms, where they
have several advantages such as resilience, performance
reliability, simplicity, ease of implementation, and so on.
Meta-heuristic algorithms are divided into several cate-
gories, including:

(1) Evolutionary-based algorithms:(ese algorithms are
based on evolutionary theory.

(2) Swarm-based algorithms: (ese algorithms mimic
the social behavior and collective decision-making
of different social groups. (e reason for achieving
a specific goal in these algorithms is typically based
on bio-community intelligence and collective
action.
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(3) (e rules of natural physics have been used for the
emergence of physics-based algorithms.

(4) Algorithms influenced by human social behavior:
Recently, optimization algorithms inspired by hu-
man social behavior have been suggested in the
literature.

Table 1 contains examples of several classifications of-
fered in the literature.

Swarm intelligence-based algorithms are regarded as one
of the most essential types of meta-heuristic algorithms.
(ese algorithms emulated the behavior and features of
swarms’ systems, for which Gerardo Beni and Jing Wang
coined the term “swarm intelligence” (SI) in 1989 [62], the
notion of which is critical in computer science and artificial
intelligence. As a result, they have been dubbed swarm
intelligence algorithms (SIAs). Swarm intelligence algo-
rithms (SIAs) are connected to the study of swarms, or
colonies of social creatures, where studies of social behavior
in swarms of organisms influenced the development of many
effective optimization algorithms. (e simulation of bird
flocks, for example, resulted in the particle swarm optimi-
zation (PSO) method, while studies of ant behavior in the
construction of the ant colony optimization (ACO) algo-
rithm [62]. SIAs, on the other hand, are simple in concepts,
have a low probability to fall into local optima, and require
simple information about the optimization problem without
requiring that the objective function or the constraints are
derivable or continuous [63]. Due to the drawbacks of
traditional approaches, SIAs were commonly employed to
solve engineering design problems (EDPs).

Many SIAs are presented today to tackle complex op-
timization problems. Although they can find promising
solutions to optimization problems, they frequently become
caught in local optima when the problem is complicated and
contains several local optima. Creating hybrid SIAs has the
potential to dramatically improve this issue. Most of the
time, hybrid SIAs are more resilient and efficient than the
basic versions since they may benefit from the advantages of
different algorithms that are used in hybrid SIAs [64, 65].
Many researchers sought to design hybrid SIAs to produce
more efficient global optimization algorithms. (e most
popular hybrid SIAs are hybrid cultural-trajectory-based
search [66], hybrid of the ant colony and firefly algorithms
(HAFA) [67], hybrid harmony search-cuckoo search (HS/
CS) algorithm [68], hybrid particle swarm optimization-
genetic algorithm (PSO/GA) [69], hybrid krill herd-bioge-
ography-based optimization (KHBBO) algorithm [70], hy-
brid cat swarm optimization (CSO) [71], hybrid tissue
membrane systems (TMS) and the evolution strategy with
covariance matrix adaptation (CMA-ES) [72], hybrid
grasshopper optimization algorithm-local search (GOA/LS)
[73], krill herd-differential evolution (KHDE) [74], hybrid
grasshopper optimization algorithm-genetic algorithm
(GOA/GA) [75], hybrid bat algorithm with harmony search
(BHS) [76], etc.

Recently, hybrid SIAs have become the most widely used
method for solving EDPs such as a penalty-guided artificial
bee colony (ABC) algorithm [77], hybrid Nelder–Mead

simplex search and particle swarm optimization [78],
Gaussian quantum-behaved particle swarm optimization
[79], hybrid Lévy flight-chaotic local search-whale optimi-
zation algorithm (LF-CLS-WOA) [80], self-adaptive strat-
egy-based firefly algorithm [81], hybrid genetic algorithm-
particle swarm optimization-sequential quadratic pro-
gramming (GA-PSO-SQP) [82], sine-cosine grey wolf op-
timizer [83], and improved moth-flame optimization
algorithm (IMFO) [84]. It is now obvious that engineering
design problems are a significant problem that scholars are
focusing on to offer new hybrid methods for solving it and
determining the best solutions.

Fruit fly algorithm (FFA) is a novel SI approach based on
the foraging behaviors of fruit flies that competes with
current swarm algorithms like particle swarm optimization
(PSO). However, the FFA still has certain drawbacks, such as
its necessitating long CPU times, which are impractical from
an engineering standpoint, and limited convergence accu-
racy, which makes it easy to get stuck at a local optimal value
during the evolution process [85]. As a result, the application
of chaos theory to overcome these shortcomings is being
researched. In recent years, the chaos theory has been ap-
plied to several fields of optimization science. As a new
method of global optimization, chaos algorithms have
garnered a lot of attention. (e characteristics inherent in
chaos can enhance algorithms of optimization by avoiding
local solutions and enhancing convergence to reach a global
solution.

Many researchers [86–97] proposed merging chaos
theory and optimization algorithms to overcome these
limitations, increase solution quality, and reach the ideal
solution. For example, in [86], the chaos algorithm was
included in the evolutionary process of the fundamental FFA
to tackle the difficulties of poor convergence accuracy and
quickly relapsing into the local extremum in the funda-
mental FFA. (at is, in the case of local convergence, the
chaos algorithm was used to search for the global optimum
in the convergent area’s outer space, leap out of the local
extremum, and continue to optimize. Also, in [88], the
conventional FFA was improved by including a new pa-
rameter that was integrated by chaotic to solve global op-
timization; overall study findings reveal that FFA with
Chebyshev map outperforms FFA without Chebyshev map
in terms of global optimality reliability and algorithm
success rate. In addition, a novel version of FFA with
Gaussian mutation operator and chaotic local search
strategy (MCFFA) was proposed in [90]. To avoid premature
convergence and enhance the algorithm’s exploitative ten-
dencies, the Gaussian mutation operator was first included
in the basic FFA (MFFA). (e chaotic local search approach
was then used to improve the swarm of agents′ capacity to
search locally (CFFA). MCFFA was used to handle issues
involving benchmark functions with various properties and
feature selection. MCFFA effectively increased FFA’s per-
formance and achieves optimal classification accuracy,
according to the findings. Furthermore, chaotic fruit fly
optimization [92] was presented as a novel learning tech-
nique for early detection and effective evaluation of sepsis,
where two new mechanisms, chaotic population initiation
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and chaotic local search strategy, were added to the original
FFA. (e positive results showed that the approach devel-
oped may be a valuable diagnostic tool for clinical decision
assistance. A novel support vector machine (SVM) opti-
mization approach, on the other hand, was given in [95], that
is based on an upgraded chaotic fruit fly algorithm (FFA)

with a mutation strategy to execute SVM parameter setting
turning and feature selection simultaneously. (e chaotic
particle in the enhanced FFA initializes the fruit fly swarm
location and substitutes the distance expression for the fruit
fly to find the food source. (is strategy has been proved to
be more resilient and successful than other well-known

Table 1: Meta-heuristic algorithms classification [4].

Category Algorithm name References

Evolutionary-based algorithms [5–8]
Genetic algorithm (GA) [5, 6]

Differential evolution (DE) [7]
Evolutionary strategy (ES) [8]

Swarm-based algorithms [9–41]

Particle swarm optimization (PSO) [9–11]
Ant colony optimization (ACO) [12]

Fruit fly algorithm (FFA) [13]
Bacterial foraging (BF) [14]

Glowworm swarm optimization (GSO) [15]
Grey wolf optimizer (GWO) [16]

Whale optimization algorithm (WOA) [17]
Firefly algorithm (FA) [18]

Moth-flame optimization (MFO) [19]
Salp swarm optimization (SSA) [20]

Grasshopper optimization algorithm (Goa) [21]
Artificial bee colony algorithm (ABCA) [22]

Bat algorithm (BA) [23]
Monkey algorithm (MA) [24]

Cuckoo search algorithm (CSA) [25]
Spherical search algorithm (SSA) [26]
Social spider optimization (SSO) [27]

Marine predators algorithm (MPA) [28]
Crow search algorithm (CSA) [29]
Krill herd algorithm (KHA) [30]

Chimp optimization algorithm (COA) [31]
Squirrel search algorithm (SCA) [32]

Flower pollination algorithm (FPA) [33]
Manta ray foraging optimization (MRFO) [34]

Sailfish optimizer (SO) [35]
Emperor penguin optimizer (EPO) [36]
Spotted hyena optimizer (SHO) [37]
Slime mould algorithm (SMA) [38]
Coyote optimization algorithm [39]

Harris hawks optimization (HHO) [40]
Colony predation algorithm (CPA) [41]

Human behavior-based algorithms [42–48]

Group teaching optimization (GTO) [42]
Imperialist competitive algorithm (ICA) [43]

Teaching-learning based optimization (TLBO) [44]
League champion algorithm (LCA) [45]

Political optimizer (PO) [46]
Poor and rich optimization (PRO) [47]

Hunger games search (HGS) [48]

Physics-based algorithms [49–61]

Gravitational search algorithm (GSA) [49]
Simulated annealing (SA) [50]

Artificial electric field optimization (AEFO) [51]
Sine-cosine algorithm (SCA) [52, 53]

Magnetic optimization algorithm (MOA) [54]
Turbulent flow of water-based optimization (TFWBO) [55]

Henry gas solubility optimization (HGSO) [56]
Archimedes optimization algorithm (AOA) [57]

Fireworks algorithm (FA) [58]
Mine blast algorithm (MBA) [59]

weIghted meaN oF vectOrs (INFO) [60]
RUNge Kutta optimizer (RUN) [61]
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optimization methods, especially when it comes to tackling
medical diagnosis and credit card problems. Finally, in [97],
a new method for parameter identification of a bidirectional
inductive power transfer (BIPT) system was proposed uti-
lizing a chaotic-enhanced FFA, which used a chaotic se-
quence to improve the original FFA′s global optimization
capabilities. Simulations demonstrated that the suggested
approach is efficient for measuring noise and changes in
operating conditions, making it ideal for practical use.

From the above, it is clear that introducing chaos to
improve FFA has received wide attention from many re-
searchers. From this motivation, this paper proposed a
chaotic fruit fly algorithm (CFFA). CFFA combines the fruit
fly algorithm (FFA) with a chaotic local search (CLS)
method to expedite optimum seeking and find the optimal
solution. In addition, combining FFA global search and
procedures of CLS offers the benefits of both methods of
optimization, while compensating for their disadvantages to
ensure the proposed algorithm’s robustness. (e main
contributions to this paper are:

(1) For solving EDPs, a new algorithm called chaotic
fruit fly algorithm (CFFA) is presented and tested.

(2) Demonstrating that combining the fruit fly algo-
rithm (FFA) with a chaotic local search (CLS)
strategy in CFFA accelerates optimum seeking and
finds the EDPs’ best solutions.

(3) Testing the robustness and reliability of CFFA and
the ability for finding global solutions by using the
test suite (CEC’2005) and many EDPs from the most
recent test suite (CEC’2020).

(4) Validating by the numerical analysis results that the
proposed algorithm has high performance and prove
that statistically.

(e following is how this paper is structured: the for-
mulation of the nonlinear constrained optimization problem
is discussed in Section 2. (e proposed methodology is
presented in Section 3. (e computational experiment is
shown in Section 4. Finally, the conclusion is provided in
Section 5.

2. Nonlinear Constrained
Optimization Problem

Mathematically, the generic nonlinear constrained optimi-
zation problem (NCOP) is expressed as:

Minimize/maximize: f(x).
Subject to:

gj ≤ 0 for j � 1, . . . , m,

he ≤ 0 for e � 1, . . . , l,
(1)

where f, g1, . . . , gj, h1, . . . , he are functions defined onRn, x
is a subset of Rn, and is a vector of n components x1, . . . , xn.
(e above problem must be solved for the values of the
variables x1, . . . , xn that satisfy the restrictions andminimize
or maximize the function f. (e function f is the objective
function or criterion function. An unconstrained problem is

one in which there are no constraints. If there are con-
straints, the problem is called a constrained problem, and
each of the constraints gj ≤ 0 ∀ j � 1, . . . , m is called an
inequality constraint, and each of the constraints
he ≤ 0 ∀ e � 1, . . . , l is called equality constrain [98].

At solving the optimization problem, we are looking for
a global solution and not stock on a local solution. An
optimal solution (either maximum or minimum) within a
neighboring set of candidate solutions is referred to as a local
solution of an optimization problem. A global optimum
solution is the best solution among all feasible solutions, not
simply those within a neighboring set of candidate solutions
[98]. Definition 1 introduces the difference between a local
solution and a global solution. Figure 1 illustrates this
definition.

Definition 1. Let x � (x1, x2, . . . , xn) be a feasible solution
to a minimization problem with objective function f(x)

[98]. (en, x is:

(i) A global minimum if f(X)≤f(Y) for every feasible
point y � (y1, y2, . . . , yn).

(ii) A local minimum if f(X)≤f(Y) for all feasible
points y � (y1, y2, . . . , yn) sufficiently close to x.

3. The Proposed Methodology

In this section, we provide a brief overview of both the fruit
fly algorithm (FFA) and the chaos theory. (e proposed
algorithm is then thoroughly described.

3.1. Fruit fly Algorithm. (e FFA [99] is a fruit fly-inspired
swarm-based intelligence approach that mimics the fruit
fly′s foraging behavior. Fruit flies use their keen sense of
smell and eyesight to locate food sources. During foraging,
fruit flies can detect the aromas of food sources from a long
distance away, and swarms fly towards the food source with
the highest concentration of the scent.When the fruit fly gets
near enough to the food source, it may use its better vision to
pinpoint the exact position of the food supply.

(e procedure of foraging is emulated in the FFA by
exploring the solution space iteratively.(e search technique
is divided into two parts: smell-based search and vision-
based search. (e FFA technique may be characterized as
follows, according to the fruit fly′s characteristics:

Step 1:(e algorithm′s parameters are set, as well as the
swarms′ center position.
Step 2: Smell-based search.

Step 2.1: Determine a suitable position for the food
supply towards the center of the swarms at random for
each fruit fly.
Step 2.2: (e concentration of smell at each site of the
fruit fly is determined.

Step 3: Search-based vision.

Step 3.1: With the greatest concentration of smell, the
most likely location is determined.
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Step 3.2:(e fruit fly swarms flock to this location, and
the location of the swarm centers is updated.

Step 4: (e algorithm is terminated if the stopping
condition is fulfilled; otherwise, repeat steps 2 and 3.

3.2. Chaos 0eory. By employing extremely unpredictable
chaotical sequences, chaos theory (CS) enhances swarm
intelligence algorithms [100] and increases convergence and
variety of solutions. CS is seen as irregular behavior in
nonlinear systems. (ese maps are meant to represent
particles moving in a restricted range of nonlinear dynamic
systems, with no knowledge of how the particles move.

To improve solution quality, many researchers proposed
combining the CS and optimization algorithms, such as
hybrid chaos-PSO [101, 102], chaotic genetic algorithm
[103], the combined evolutionary algorithm with chaos
[104], chaotic differential bee colony optimization algorithm
[105], chaotic DE algorithm [106], chaotic WOA [107],
chaotic artificial bee colony (ABC) [108], chaotic harmony
search algorithm [109], and chaotic artificial neural net-
works [110]. (ere are many well-known chaotic maps, such
as the sinusoidal map, Chebyshev map, singer map, tent
map, sine map, circle map, Gauss map, logistic map, to be
found in the literature [94].

3.3. Chaotic Fruit fly Algorithm. In this section, the chaotic
fruit fly algorithm (CFFA) is proposed, which is an inte-
gration between the fruit fly algorithm (FFA) and chaos local
search (CLS) strategy. (e suggested approach is divided
into two parts. In the first, FFA is used to discover an ap-
proximate solution.(en, in the second stage, CLS is used to
speed up convergence, increase solution quality, and reach
the optimal solution. (e description of the essential idea of
the suggested method is as follows:

3.3.1. Phase I: FFA.

Step 1 (Initialization). Define the fly group population
size i � 1, . . . , N, the iteration termination condition
Tmax, and the starting fruit fly swarm center position
(Xaxis, Yaxis).
Step 2 (Determination of individual locations). (e
position of each fruit fly (Xi, Yi) is assigned at random
as:

Xi � Xaxis + RandomValue,

Yi � Yaxis + RandomValue.
(2)

Step 3. (e judgment value of smell concentration Si is
set as the reciprocal of the distance between the fruit fly
and the origin (Disti):

Si �
1

Disti

�
1

�������

X
2
i + Y

2
i

􏽱 ,

(3)

Step 4 (Repairing infeasible solutions). A repair ap-
proach [111] will be used to deal with the constraint
violation at each generation and before the solutions
Si∀i � 1, . . . , N are assessed, which will segregate and
repair any infeasible solution in the population. (e
proposed algorithm′s repairing procedure provides a
new feasible solution y instead of an infeasible one q on
a segment defined by two points: an initial feasible
reference point R and any infeasible solution q. A user-
specified parameter μ ∈ [0, 1] can be used to expand
this segment equally on both sides. (erefore, the new
feasible solution is produced as:

y1 � cq +(1 − c)R. (4)

If y1 is infeasible, the feasible individual is produced by:

y2 � cR +(1 − c)q. (5)

where c � (1 + 2μ)δ − μ and δ ∈ [0, 1] is a random
number. Figure 2 depicts a schematic representation of
a probable sample location for the produced solution.
Step 5 (Evaluation). (e judgment function of smell
concentration (fitness function) of the corresponding
position is determined by substituting Si in the ob-
jective function as:

Smelli � function Si( 􏼁. (6)

Step 6 (Determine the best). Calculate the minimal
concentration of smell and its corresponding location
as follows:

[best Smell, best Index] � min(Smell) ∀i. (7)

Step 7(Update swarm center location). (e swarm
center position is replaced with the minimum smell
location:

Smell best � best Smell,

Xaxis � X(best Index),

Yaxis � Y(best Index).

(8)

Step 8. Do optimization by repeating Steps 2–6 to
determine if the current smell concentration is better

Local minimum
Global minimum

Figure 1: Global minimum and local minimum.
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than the previous smell concentration; if so, go to Step
7. Otherwise, proceed to Step 2 and iterate again.
Step 9. If the stopping criteria are met, the proposed
algorithm is stopped. Otherwise, do optimization, and
repeat Steps 2 to 8.

For either of the following two conditions, the proposed
algorithm is stopped:

(i) Reaching the full predetermined number of gener-
ations Tmax.

(ii) When the individuals of the population converge,
i.e., when solutions in the population are identical.

3.3.2. Phase II: Chaotic Local Search. Optimization by using
the above-formulated FFA yields an approximate solution
x∗ � (x∗1 , x∗2 , . . . , x∗n ). To discover the optimal solution,
chaotic local search (CLS) can disturb and explore the local
region of the solution x∗. (e following is a more extensive
description of CLS:

Step 1 (Determine the boundary range of CLS). (e
range of CLS [ad, bd], d � 1, 2, . . . , n for x∗ is deter-
mined by x∗d − ε< ad, x∗d + ε> bd ∀d � 1, . . . , n,

where ε is a specified radius of CLS and set m � 1,

where m is the CLS iterations m � 1, 2, . . . , M.
Step 2. Create chaotic variables: A chaotic number σm

is generated by the logistic map as:

σm
� 4 × σm− 1

× 1 − σm− 1
􏼐 􏼑, σ0 ∈ (0, 1), σ0 ∉ 0, 0.25, 0.5, 0.75, 1{ }. (9)

According to the findings in [94], the logistic map
increases the quality of solutions and delivers the best
performance. (erefore, it was employed in this study.
Step 3. Generate a new solution: By using the chaos
variable σm and the variance range [ad, bd], the new
solution is generated as:

x
∗
d( 􏼁

m
� ad + bd − ad( 􏼁σm ∀d � 1, . . . , n. (10)

Step 4. Check feasibility: If the new solution (x∗)m is
feasible, update the approximate solution x∗ as follows:
if f(x∗)m <f(x∗) , then set x∗ � (x∗)m, otherwise, set
m � m + 1 and go to Step 2.
Step 5. Stopping CLS: If m � M, stop the CLS and
put out x∗ as the optimal solution. Otherwise, go to
Step 2. Figure 3 depicts the suggested algorithm’s
flowchart.

4. Computational Experiment

In this section, CFFA is evaluated by the set of CEC’2005
special sessions on real parameter optimization to evaluate the
performance of the proposed method for global optimization
[112]. In addition, the CFFA′s applicability in real-world ap-
plications is evaluated in this section using three constrained
engineering design problems from the most current test suite
CEC’2020 [113]. (ese problems are common challenges that
have been explored by other researchers. (e suggested ap-
proach is compared to current meta-heuristic algorithms such
as simulated annealing (SA) [114], continuous genetic algo-
rithm (CGA) [115], grey wolf optimizer (GWO) [116], moth-
flame optimization (MFO) [19], whale optimization algorithm
(WOA) [117], Lévy-flight moth-flame optimization (LMFO)
[118], water-cycle moth-flame optimization (WCMFO) [119],
chimp optimization algorithm (ChOA) [31], arithmetic

Reference point
(R)

Infeasible point
(q)

μ.d d μ.d

Figure 2: Probable sample location for the produced solution by repairing infeasible solutions.
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optimization algorithm (AOA) [120], sine-cosine moth-flame
optimization (SMFO) [121], and improved moth-flame opti-
mization (IMFO) [122].

(e suggested method was coded in MATLAB (R2012b)
and tested on a PC with an Intel(R) Core(TM) i7-6600U
processor running at 2.60GHz, 16GB of RAM, and a
Windows 10 operating system. Table 2 shows the parameter
settings of comparing algorithms as they were in their
original articles. (e algorithms were running 20 times with
the population size (N) 20 and maximum iterations Tmax �

(D × 104)/N to ensure a fair comparison. (e nonpara-
metric Friedman test, on the other hand, is used to analyze
the results statistically. Also, the Wilcoxon signed-rank test
is employed to ensure that valid comparisons between all
algorithms are made.

4.1.ComputationalExperiment forCEC’2005. In this part, 25
unconstrained test problems of dimension 10 from the
CEC’2005 special session on real parameter optimization are
used to evaluate CFFA. (e following are the specifics of
these functions:

(i) 5 unimodal functions:

F1 : Shifted sphere, F2 : Shifted Schwefel’s, F3 :
Shifted rotated high conditioned elliptic, F4 :
Shifted Schwefel’s with noise in fitness, and F5 :
Schwefel’s with global optimum on bounds.

(ii) 20 multimodal functions:

7 basic functions ⟶ F6 : Shifted Rosenbrock’s,
F7 : Shifted rotated Griewank without bounds, F8 :
Shifted rotated Ackley’s with global optimum on
bounds, F9 : Shifted Rastrigin’s, F10 : Shifted rotated
Rastrigin’s, F11 : Shifted rotated Weierstrass, and
F12 : Schwefel’s.
2 expanded functions ⟶ F13 : Expanded ex-
tended Griewank’s plus Rosenbrock’s (F8F2) and
F14 : Shifted rotated expanded Scaffers F6.
11 hybrid functions. Each one (F15 to F25) is created
by combining ten of the fourteen preceding
functions (different in each case).

All functions are displaced to guarantee that their op-
timum is never discovered in the search space′s center.
Furthermore, the optima cannot be identified inside the
initialization range in two functions, and the search scope is
not limited.

(ese test functions are solved by PSO [123], IPOP-
CMA-ES [124], CHC [125], SSGA [126], SS-BLX [127], SS-
Arit [128], DE-Bin [129], DE-Exp [129], SaDE [130], and the
proposed algorithm CFFA. For each test function, all of the
algorithms were performed 50 times. Each run ends when
the obtained error is less than 10−8 or at the maximum
number of evaluations (10−5), whichever comes first. Table 3
presents a comparison of the average error achieved by
CFFA and 9 continuous optimization techniques. Table 3
confirms that, on average, CFFA produces better solutions
than all nine continuous optimization techniques.

Start

Initialization

DEtermine the distance from the fruit fly to the
origin: (Dist)

Set the smell concentration judgment value: Si

Repairing infeasible solutions Si i = 1,...,N

Evaluation: Smelli = function (Si)

Determine the best solution

Exit condition?
Yes

Determinie the range of CLS

Generate chaotic numbers

Generate new solution

Is the new
solution
feasible?

Stopping
CLS?

No

No

YesUpdate the
Approximate
solution x*

Yes

End Optimal solution

Approximate
solution x*

No
Replace the swarm center location by

the minimun smell location
Xaxix = X (bestIndex)
Yaxix = Y (bestIndex)

Individual location assignment:
Xi = Xaxix + Random Value
Yi = Yaxix + Random Value

Figure 3: (e suggested algorithm′s flowchart.
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4.1.1. 0e Nonparametric Friedman Test for CEC′2005
Results. (e Friedman test is used to statistically rank the
significance of algorithms [131]. Table 4 summarizes the
outcomes obtained by this test. According to this statistical
analysis, the CFFA ranks top, and because the obtained P

value is less than 0.05 (α � 0.000), there are substantial
variations in the performances of the CFFA and the other
algorithms tested. Figure 4 includes the chart that depicts the
ranking of the CFFA and competitor algorithms. (e
smallest bar on the graph represents the best algorithm,
while the largest represents the worst. (e chart reveals that
the CFFA obtained the shortest bar with a mean rank equal
to 2.12, while PSO obtained the largest bar with a mean rank
equal to 7.76. As a result, the chart reveals that the CFFA
beats other algorithms by obtaining the first rank (shortest
bar).

4.1.2. 0e Nonparametric Wilcoxon Signed-Rank Test for
CEC’2005 Results. To demonstrate the substantial differ-
ences between the CFFA and the other algorithms, the
Wilcoxon signed-rank test is performed [132]. (e Wil-
coxon signed-rank test results are shown in Table 5. R+ is the
sum of positive ranks, whereas R− is the sum of negative
ranks. Table 5 shows that CFFA beats other algorithms by
achieving R+ values larger than R− values in all compari-
sons. As a consequence, we may conclude that the suggested
CFFA is a significant algorithm that outperforms the others.

4.2. Computational Experiment for Engineering Design
Problems. (e proposed method and rival algorithms
compete in this evaluation to solve three different problems:
a gas transmission compressor design problem, a three-bar

Table 2: (e CFFA and other competing algorithms′ parameter settings.

Parameter Settings for Algorithms
SA T0 � 10.

CGA IPMut � 0.9, PXcross � 0.5.

GWO (e parameter a is linearly decreased from 2 to 0.
MFO b� 1, a is decreased linearly from −1 to −2.
WOA α variable decreases linearly from 2 to 0, b � 1.
LMFO β � 1.5, µ and v are normal distributions, Γ is the gamma function
WCMFO (e number of rivers and sea � 4.
ChOA f decreases linearly from 2 to 0.
AOA µ� 0.5, α� 5.
SMFO r4 � random number between interval (0, 1).
I-MFO δ1 � 2.02, δ2 � 1.08, NF � random number between 1 and D.
CFFA (e specified radius ε is 0.1, σ0 � 0.001, and M � 100

Table 3: (e average error of the 25 CEC’2005 benchmark functions as determined by CFFA and comparing algorithms.

Function PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE CFFA
F1 1.234E-4 0 2.464 8.420E-9 34.02 1.064 7.716E-9 8.260E-9 8.416E-9 0
F2 0.02595 0 0.0118 8.719E-5 1.730 5.282 8.342E-9 8.181E-9 8.208E-9 0
F3 51740 0 269900 79480 184400 253500 42.33 99.35 6560 20.8036
F4 2.488 2932 91.9 2.585E-3 6.228 5.755 7.686E-9 8.350E-9 8.087E-9 0
F5 409.5 8.104E-10 264.1 134.3 2.185 14.43 8.608E-9 8.514E-9 8.640E-9 2.600E-5
F6 731 0 1416000 6.171 114.5 494.5 7.956E-9 8.391E-9 0.01612 0.635
F7 26.78 1267 1269 1271 1966 1908 1266 1265 1263 4.831
F8 20.43 20.01 20.34 20.37 20.35 20.36 20.33 20.38 20.32 14.54
F9 14.38 28.41 5.886 7.286E-9 4.195 5.960 4.546 8.151E-9 8.330E-9 0.000
F10 14.04 23.27 7.123 17.12 12.39 21.79 12.28 11.18 15.48 4.541
F11 5.590 1.343 1.599 3.255 2.929 2.858 2.434 2.067 6.796 3.094
F12 636.2 212.7 706.2 279.4 150.6 241.1 106.1 63.09 56.34 5.732
F13 1.503 1.134 82.97 67.13 32.45 54.79 1.573 64.03 70.70 1.052
F14 3.304 3.775 2.073 2.264 2.796 2.970 3.073 3.158 3.415 2.501
F15 339.8 193.4 275.1 292 113.6 128.8 372.2 294 84.23 0
F16 133.3 117 97.29 105.3 104.1 113.4 111.7 112.5 122.7 83.85
F17 149.7 338.9 104.5 118.5 118.3 127.9 142.1 131.2 138.7 107.3
F18 851.2 557 879.9 806.3 766.8 657.8 509.7 448.2 532 479.2
F19 849.7 529.2 879.8 889.9 755.5 701 501.2 434.1 519.5 458.1
F20 850.9 526.4 896 889.3 746.3 641.1 492.8 418.8 476.7 335.1
F21 913.8 442 815.8 852.2 485.1 500.5 524 542 514 394.5
F22 807.1 764.7 774.2 751.9 682.8 694.1 771.5 772 765.5 632.7
F23 1028 853.9 1075 1004 574 582.8 633.7 582.4 650.9 594.7
F24 412 610.1 295900 236 251.3 201.1 206 202 200 210.5
F25 509.9 1818 1764 1747 1794 1804 1744 1742 1738 274.3
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truss design problem, and a tension/compression spring
design problem.

(1) P1: Design of gas transmission compressor problem.
(e basic purpose of the gas transmission compressor design
challenge is to minimize the objective function utilizing four
design variables which are length between compressor
stations L � x1, compression ratio that denotes the inlet
pressure to the compressor r � x2, and inner diameter of the
pipe D � x3. Figure 5 and (11) depict and formulate this
problem.

Minf(x) � 8.61 × 105x0.5
1 x2x

−2/3
3 x

−0.5
4 + 3.69 × 104x3 +

7.72 × 108x0.219
2

x1
−
765.43 × 106

x1
,

Subject to: x4x
−2
2 + x

−2
2 − 1≤ 0, 20≤ x1 ≤ 50, 1≤x2 ≤ 10, 20≤x3 ≤ 45, 0.1≤ x4 ≤ 60.

(11)

(2) P2: 0ree-bar truss problem. (e three-bar truss
design is an engineering optimization problem to evaluate
the optimal cross-sectional areas A1 � A3 � x1 and A2 � x2
such that the volume of the statically loaded truss structure
f(x) is minimized while stress constraints σ are taken into

consideration. (e mathematical model of this problem is
formulated using three constraints and two variables. Fig-
ure 6 and (12) show the formulation and schematic of this
problem.

Minf(x) � H x2 + 2
�
2

√
x1( 􏼁,

Subject to:
x2

2x1x2 +
�
2

√
x
2
1

P − σ ≤ 0,
x2 +

�
2

√
x1

2x1x2 +
�
2

√
x
2
1

P − σ ≤ 0,
1

x1 +
�
2

√
x2

P − σ ≤ 0,

H � 100cm, P �
2KN

cm
2 , σ �

2KN

cm
2 , 0≤ x1, x2 ≤ 1.

(12)

(3) P3: Tension/compression spring design problem. (e
tension/compression spring design challenge′s purpose is to
lower the tension/compression spring′s weight by consid-
ering three variables and four constraints. Wire diameter

(d � x1), mean coil diameter (D � x2), and the
number of active coils (N � x3) are the variables (as indi-
cated in Figure 7). (13) describes the problem and its
constraints.

Table 4: Friedman test results for the 25 CEC′2005 benchmark
functions.

Test Statistics
N 25
Chi-square 66.126
df 9
Asymp. Sig. 0.000

Ranks
Algorithm Mean rank
PSO 7.76
IPOP-CMA-ES 5.36
CHC 7.20
SSGA 6.60
SS-BLX 5.80
SS-Arit 6.40
DE-Bin 4.60
DE-Exp 4.28
SaDE 4.88
CFFA 2.12
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Table 5: (e results of Wilcoxon′s signed-rank test for the 25 CEC′2005 benchmark functions.

Test Statistics Ranks
N Mean Rank Sum of Ranks

SaDE – CFFA R− 3a 7.00 21.00 a. SaDE<CFFA
Z −3.807ab R+ 22b 13.82 304.00 b. SaDE>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0c c. SaDE�CFFA
ab. Based on negative ranks. Total 25
DE-Exp - CFFA R− 7d 10.29 72.00 d. DE-Exp<CFFA
Z −2.435ab R+ 18e 14.06 253.00 e. DE-Exp>CFFA
Asymp. Sig. (2-Tailed) 0.015 Ties 0f f. DE-Exp�CFFA
ab. Based on negative ranks. Total 25
DE-Bin - CFFA R− 4g 7.00 28.00 g. DE-Bin<CFFA
Z −3.619ab R+ 21h 14.14 h. DE-Bin>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0i i. DE-Bin�CFFA
ab. Based on negative ranks. Total 25
SS-Arit - CFFA R− 3j 6.00 18.00 j. SS-Arit<CFFA
Z −3.888ab R+ 22k 13.95 307.00 k. SS-Arit>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0l l. SS-Arit�CFFA
ab. Based on negative ranks. Total 25
SS-BLX - CFFA R− 2m 6.00 12.00 m. SS-BLX<CFFA
Z −4.049ab R+ 23n 13.61 313.00 n. SS-BLX>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 00 o. SS-BLX � CFFA
ab. Based on negative ranks. Total 25
SSGA - CFFA R− 1p 6.00 6.00 p. SSGA<CFFA
Z −4.211ab R+ 24q 13.29 319.00 q. SSGA>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0r r. SSGA � CFFA
ab. Based on negative ranks. Total 25
CHC - CFFA R− 3s 3.67 11.00 s. CHC<CFFA
Z −4.076ab R+ 22t 14.27 314.00 t. CHC>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0u u. CHC � CFFA
ab. Based on negative ranks. Total 25
IPOP-CMA-ES - CFFA R− 4v 4.25 17.00 v. IPOP-CMA-ES<CFFA
Z −3.680ab R+ 19w 13.63 259.00 w. IPOP-CMA-ES>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 2x x. IPOP-CMA-ES�CFFA
ab. Based on negative ranks. Total 25
PSO - CFFA R− 0y 0.00 0.00 y. PSO<CFFA
Z −4.372ab R+ 25z 13.00 325.00 z. PSO>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0aa aa. PSO � CFFA
ab. Based on negative ranks. Total 25
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Figure 4: (e Friedman test′s mean -ranking on CFFA and its 9 competitors.
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Subject to: 1 −
x
3
2x3

71785x
4
1
≤ 0

4x
2
2 − x1x2

12566 x
3
1x2 − x

4
1􏼐 􏼑

+
1

5108x
2
1

− 1≤ 01 −
140.45x1

x
2
2x3
≤ 0,

x1 + x2

1.5
− 1≤ 0,

0.05≤ x1 ≤ 2, 0.25≤x2 ≤ 1.3, 2≤x3 ≤ 15.

(13)

4.2.1. Engineering Design Problems Results. (e suggested
CFFA and comparative algorithms are compared. (e re-
sults of these experiments are summarized in Table 6, which
demonstrates that the CFFA technique outperforms other

algorithms in obtaining a good approximation to the best
values for low-weight variables.

Figures 8–10 also illustrate the convergence curves of the
best function values obtained by CFFA before and after CLS
for the gas transmission compressor design problem, the
three-bar truss design problem, and the tension/compres-
sion spring design problem, respectively. Figures 8–10 show

••• •••

r (X2): Compression ratio denoting inlet
Pressure to the compressor

D (X3): Pipe inside diameter

L (X1): Length between compressor stations

Compressor
station

Compressor
station

Figure 5: Gas transmission compressor problem design.

H

H H

P

A1

A2

A1 = A3

Figure 6: (ree-bar truss problem design.

d

N

D

Figure 7: Design of tension/compression spring problem.
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Table 6: Results of the engineering design problems.

Algorithms
Gas transmission compressor: Tmax � 2000 (ree-bar truss problem:

Tmax � 1000 Tension/compression spring: Tmax � 1500

Optimal values Optimal
weight

Optimal values Optimal
weight

Optimal values Optimal
weightx1 x2 x3 x4 x1 x2 d D N

SA 46.76 1.62 25.79 0.55 4390311 0.768630 0.474232 264.82456 0.075935 0.993094 3.879891 0.033670
CGA 49.97 20.01 31.47 49.83 17350230 0.792428 0.397752 263.90770 0.071031 1.019975 1.726076 0.019749
GWO 20.00 7.81 20.00 60.00 2964974 0.787771 0.410872 263.89619 0.051231 0.345699 11.970135 0.012676
MFO 50.00 1.18 24.57 0.39 2964902 0.789186 0.406806 263.89603 0.053064 0.390718 9.542437 0.012699
WOA 50.00 1.18 24.86 0.39 2965002 0.787713 0.410977 263.89653 0.050451 0.327675 13.219341 0.012694
LMFO 49.46 1.18 24.64 0.39 2965456 0.791713 0.399909 263.92114 0.050000 0.317154 14.107156 0.012771
WCMFO 50.00 1.18 24.61 0.39 2964897 0.788472 0.408822 263.89589 0.051509 0.352411 11.545969 0.012666
ChOA 50.00 1.19 24.24 0.41 2966828 0.787802 0.410724 263.89653 0.051069 0.341746 12.251078 0.012702
AOA 50.00 1.23 20.00 0.51 3014615 0.792789 0.396906 263.92526 0.050000 0.310475 15.000000 0.013195
SMFO 23.66 1.09 23.66 0.19 3052254 0.792044 0.398859 263.90973 0.050000 0.314692 14.696505 0.013136
I-MFO 50.00 1.18 24.60 0.39 2964896 0.788792 0.407919 263.89585 0.051710 0.357217 11.259785 0.012665
FFA 49.8660 1.1832 23.5344 0.3999 2966272 0.779348 0.435289 263.96190 0.0538558 0.405526 10.106720 0.014240
CFFA 49.9999 1.1782 24.5936 0.3882 2964895 0.788661 0.408286 263.89584 0.051813 0.359726 11.114753 0.012665

x 106

x 106

 

 

200 400 600 800 1000 1200 1400 1600 1800 20000
Iteration

2

3

4

5

6

7

8

9

10

Fu
nc

tio
n 

va
lu

es

19901985 20001995
2.9649

2.9649

2.9649

FFA
CLS

Figure 8: CFFA′s convergence curve of gas transmission compressor design problem before and after CLS.
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Figure 9: CFFA′s convergence curve of the three-bar truss design problem before and after CLS.
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how the basic FFA (before CLS/blue line) stuck in the local
minimum for a long time. Figures, on the other hand, show
how CLS disturbs and explore the local region of the ap-
proximate solution obtained by FFA and how it accelerates
convergence, enhances solution quality, and finds the op-
timal solution (after CLS/red line). So, we can conclude that
the convergence curves showed the importance of the in-
troduction of the chaotic local search (CLS) on fruit fly
algorithm (FFA) which improves the FFA results of FFA and
help it to exit from the local optimal solution (blue line) and
access to the globally optimal solution (red line).

(1) 0e nonparametric (Friedman & Wilcoxon signed-rank)
tests for engineering design problems results. (e findings of
the Friedman test for engineering design problems are
displayed in Table 7. (e CFFA ranks top in this statistical
study, and because the calculated p -value is less than 0.05
(α � 0.001), there are significant differences between the
CFFA and the other comparing algorithms. Figure 11 also
shows a chart that shows the CFFA and rival algorithms’
rankings. As previously stated, the best algorithm is rep-
resented by the shortest bar on the graph, while the poorest
is represented by the biggest bar. (e CFFA has the smallest
bar, with a mean rank of 1.17, while SA has the largest bar,
with a mean rank of 11.67.(e basic FFA, on the other hand,
obtains the 10th rank among all algorithms. As a conse-
quence, the chart shows that the CFFA outperforms other
algorithms by having the first rank (shortest bar).

(e Wilcoxon signed-rank test findings for engineering
design problems, on the other hand, are presented in Table 8. In
all comparisons, CFFA outperforms other algorithms, as
shown in Table 8, by reaching R+ values greater than R− values.
We can see that the statistical results of engineering design
problems do not differ from the results of problems CEC’2005,
as the presented method CFFA outperformed the rest of the
other algorithms. As a consequence, we may conclude that the
suggestedCEGA is a significant algorithm that outperforms the
others in the computational experiment.

4.3. Discussions. Table 3 displayed the average error for all
algorithms for the CEC′2005 benchmark functions, whereas
Table 6 showed the best solution for all algorithms for the
engineering design issues. Tables 3 and 6 indicated that
CFFA beat other algorithms in terms of producing better
results. Statistically, the Fridman test, as shown in Tables 4
and 7, demonstrated that the Asymp. Sig. (P value) is less
than 0.05, suggesting that there are differences in the results
obtained by all algorithms. Furthermore, as demonstrated in
Tables 4 and 7 and Figures 4 and 11, CFFA beat the other
algorithms by obtaining the lower mean rank. Tables 5 and 8,
on the other hand, presented the Wilcoxon signed-rank test
findings to investigate the major differences between the
comparison methods.(ey proved that CFFA outperformed
other algorithms by achievingmore positive rank values (R+)
than negative rank values (R−) in each of CEC’2005
benchmark functions and engineering design problems. (e
convergence curves also showed the importance of the
proposed method, as the introduction of the chaotic local
search (CLS) on fruit fly algorithm (FFA) proved its im-
portance and the ability of the CLS to improve the results of
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Figure 10: CFFA’s convergence curve of tension/compression spring design problem before and after CLS.

Table 7: Friedman test′ results for the engineering design problems.

Test Statistics
N 3
Chi-square 31.25
df 11
Asymp. Sig. 0.001

Ranks
Method Mean rank Method Mean rank
SA 12.67 CGA 11.00
GWO 4.67 MFO 4.67
WOA 5.83 LMFO 8.33
WCMFO 3.00 ChOA 7.50
AOA 10.33 SMFO 9.67
I-MFO 1.83 FFA 10.33
CFFA 1.17
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Figure 11: (e Friedman test′s mean-ranking on CFFA and its 11 competitors.

Table 8: (e results of Wilcoxon′s signed-rank test for the engineering design problems.

Test statistics Ranks
N Mean rank Sum of ranks

SA - CFFA R− 0a 0.00 0.00 a. SA<CFFA
Z −1.604ak R+ 3b 2.00 6.00 b. SA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0c c. SA � CFFA
ak. Based on negative ranks Total 3
CGA - CFFA R− 0d 0.00 0.00 d. CGA<CFFA
Z −1.604ak R+ 3e 2.00 6.00 e. CGA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0f f. CGA � CFFA
ak. Based on negative ranks Total 3
GWO - CFFA R− 0g 0.00 0.00 g. GWO<CFFA
Z −1.604ak R+ 3h 2.00 6.00 h. GWO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0i i. GWO�CFFA
ak. Based on negative ranks Total 3
MFO - CFFA R− 0j 0.00 0.00 j. MFO<CFFA
Z −1.604ak R+ 3k 2.00 6.00
Asymp. Sig. (2-Tailed) 0.109 Ties 0l l. MFO�CFFA
ak. Based on negative ranks Total 3
WOA - CFFA R− 0m 0.00 0.00 m. WOA<CFFA
Z −1.604ak R+ 3n 2.00 6.00 n. WOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0° o. WOA � CFFA
ak. Based on negative ranks Total 3
LMFO - CFFA R− 0p 0.00 0.00 p. LMFO<CFFA
Z −1.604ak R+ 3q 2.00 6.00 q. LMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0r r. LMFO�CFFA
ak. Based on negative ranks Total 3
WCMFO - CFFA R− 0s 0.00 0.00 s. WCMFO<CFFA
Z −1.604ak R+ 3t 2.00 6.00 t. WCMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0u u. WCMFO � CFFA
ak. Based on negative ranks Total 3
ChOA - CFFA R− 0v 0.00 0.00 v. ChOA<CFFA
Z −1.604ak R+ 3w 2.00 6.00 w. ChOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties x. ChOA�CFFA
ak. Based on negative ranks Total 3
AOA - CFFA R− 0y 0.00 0.00 y. AOA<CFFA
Z −1.604ak R+ 3z 2.00 6.00 z. AOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0aa aa. AOA�CFFA
ak. Based on negative ranks Total 3
SMFO - CFFA R− 0ab 0.00 0.00 ab. SMFO<CFFA
Z −1.604ak R+ 3ac 2.00 6.00 ac. SMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0ad ad. SMFO � CFFA
ak. Based on negative ranks Total 3
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FFA and help it to exit from the local optimal solution (blue
line) and access to the globally optimal solution (red line).

From the above, CFFA showed several advantages,
which we mention as follows:

(i) CFFA is a versatile and adaptable strategy for
solving a broad variety of optimization issues.

(ii) Due to the combination of the advantages of the
CLS and FFA, CFFA has a good solution quality.

(iii) Unlike traditional approaches, CFFA searches
across a population of points to find the globally
optimal solution.

(iv) Because CFFA only employs objective function
information, it can handle any realistic optimiza-
tion issue, including noncontinues, nonsmooth,
and nondifferentiable functions.

(v) Computational trials have demonstrated the su-
periority of CFFA above those published in the
literature where it outperforms other comparison
approaches substantially.

(vi) (e importance of the CFFA findings was dem-
onstrated using Wilcoxon and Friedman tests.

(vii) Finally, the results of the engineering design
problems show that the proposed CFFA is suitable
for addressing real-world issues such as problems of
cost-effective load transfer, resource allocation,
wind farm turbine optimization, unit commitment,
and real-time applications.

Finally, without prejudice, the proposed technique
CFFA, like previous meta-heuristics algorithms, has the
potential drawback of not ensuring an increase in computing
speed or accuracy when addressing any optimization
problem. Because meta-heuristics methods are random
approaches, the CFFA’s computational efficacy and solution
quality are dependent on the problem’s nature and
complexity.

5. Conclusion

A chaotic fruit fly algorithm (CFFA) to solve engineering
design problems (EDPs) was proposed in this paper. (e
fruit fly algorithm (FFA), recognized for its resilience and
efficacy in addressing optimization problems, was merged
with the chaotic local search (CLS) method, which is known
for its ability to identify the global optimal solution. CFFA

was used in two stages. In the first, FFA was used to get an
approximate solution. (e optimal solution was then found
using chaotic local search (CLS) in the second phase. (e
proposed approach was tested utilizing a set of CEC’2005
special sessions on actual parameter optimization as well as,
three restricted engineering design problems from the most
recent test suite, CEC’2020. (e experimental outcomes
demonstrated the superiority of the proposed technique to
finding the global optimal solution and reveal that the
suggested CFFA may be utilized to address real-world en-
gineering problems. Furthermore, the convergence curves of
the best function values obtained by CFFA before and after
CLS showed how CLS disturbed and explored the local
region of the approximate solution and how it was utilized to
speed convergence, improve solution quality, and find the
ideal solution. Finally, the statistical efficiency of the CFFA
was investigated by the Friedman test and Wilcoxon signed-
rank test, which revealed that the proposed CFFA out-
performed other algorithms.

A multi-objective version of CFFA can be developed in
future works to solve continuous multi-objective issues.
Furthermore, adapting CFFA to a discrete version for
handling discrete optimization challenges like the com-
munity discovery problem is a promising direction.
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With the increasing volume of data transmission through insecure communication channels, big data security has become one of
the important concerns in the cybersecurity domain. To address these concerns and keep data safe, a robust privacy-preserving
cryptosystem is necessary. Such a solution relies on chaos encryption algorithms over standard cryptographic methods that
possess multistage encryption levels, including high speed, high security, low compute overheads, and procedural power, among
other characteristics. In this work, a secure image encryption scheme is proposed using linear feedback shift register (LFSR) and
chaos-based quantum chaotic map. (e focus of the scheme is mainly dependent on the secret keys from the input of the
algorithm. (e threat landscape, the statistical test analysis, along critical comparisons with other schemes indicate that the
presented algorithm is significantly secure and is resistant to a wide range of different attacks such as differential and statistical
attacks. (e proposed method has sufficiently higher sensitivity and security when compared to existing encryption algorithms.
Several security parameters validated the security of proposed work such as correlation coefficient analyses among the
neighboring pixels, entropy, the number of pixels change rate (NPCR), unified average change intensity (UACI), mean square
error (MSE), brute force, key sensitivity, and peak signal to noise ratio (PSNR) analyses. (e randomness of the ciphers produced
by the proposed technique is also passed through NIST-800-22. (e results of NIST indicate that the ciphers are highly random
and do not produce any type of periodicity or pattern.

1. Introduction

With the fast progression of data technology, a high volume
of multimedia data, comprising digital images, video, and
audio, is produced and distributed across various networks.
Multimedia data, particularly digital images, is one of the
most extensively used data formats in modern times. Since
digital images contain information that can be sensitive at
times, unauthorized access to a secret image can result in
serious information security incidents. As a result, it is

critical to add a security layer to protect sensitive digital
images. Researchers in this area have recently established
numerous methodologies to securely communicate digital
images, such as information hiding, data encryption, steg-
anography, and digital watermarking. Contents in an image
can be protected via image encryption algorithms. An image
data encryption algorithm converts meaningful information
into cipher data that is unrecognizable, thus preventing the
potential intruders from extracting the original information.
(e original data can be fully retrieved by using the proper
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key. (e sensitive data cannot be retrieved by using the
wrong key. Among all image encryption techniques, chaos
theory is the most extensively utilized and operational
technique that provides security to the data without in-
troducing considerable overheads. (is is because chaos
theory shares many properties with image encryption
principles [1–3].

On the other hand, chaos deprivation occurs due to
precision limitations when a chaotic system is employed in a
digital stage. As a result, image encryption methodologies
that rely solely on chaotic schemes have numerous security
flaws. Combining chaotic systems with other techniques is
one effective way to solve this problem. Furthermore, several
image encryption procedures based on other methodologies,
such as frequency domain transformation and compressive
sensing, have been suggested in the literature [2, 3].

Encrypted multimedia information such as chaos-based
image security plays an essential role in the upcoming
quantum computers era. With the introduction of quantum
systems, concerns regarding chaos-based classical systems
have drawn the attention of the cyber security community.
As time passes, the classical chaos-based dynamical system
becomes quantized; thus, researchers need to study the
combined effect of quantum and chaotic systems. (e
quantum chaotic map with the bifurcation explanation was
initially proposed in [4]. After that, the quantized baker’s
transformation was studied in [5]. (e structure of the trace
formula for quantum maps on a compact phase space was
analyzed in [6]. Many other aspects of quantum chaos were
discussed in [7–10].(e new version of the study is known as
the quantum version of the classical chaotic system. (e
innovative quantized version of the chaos-based system
using chaotic quantum system possesses better properties
and provides deep insight into the nature of quantum chaos.
(e sensitive dependence of chaotic systems gives rise to
chaos for some specific initial conditions. (e new map, the
quantized version (chaotic quantum map), is based on ca-
nonical transformation; however, there is no proper tech-
nique for quantizing the classical map. Many cryptographers
and researchers are working on using quantum maps for
image encryption in the context of quantum chaos
combination.

Numerous image data encryption technique has been
examined and concluded that symmetric cipher-based en-
cryption systems require limited options and have larger
bandwidth, making them appropriate for multimedia data
security. Chai et al. proposed an image encryption technique
based on DNA encryption and chaos [11]. Praveen et al.
developed a new cryptosystem for medical image Trans
receiving based on the chaos [12]. Kadir et al. utilized the
concept of a hyperchaotic system of 6th order CNN and skew
tent map for color image encryption [13]. Masood et al.
employed the combination of chaos and DNA genetic
encoding for the construction of a secure encryption scheme
[14]. Fawad et al. offered a secure medical encryption al-
gorithm based on Brownian motion, Henon chaotic map,
and Chen’s chaotic system with elevated security [15]. Shah
et al. proposed a privacy-preserving mechanism using Dy-
namic Newton Leipnik andModified logistic maps [16]. Butt

et al. applied the combination of Lucas series and Pseudo
Quantummap to offer a digital image confidentiality scheme
[17]. Private key ciphers are further categorized into two
types: stream ciphers and block ciphers. Numerous existing
block and stream ciphers produce high randomness that
might be resistant to different classical attacks. However, it
has been discovered that stream ciphers are slow as they
encrypt one bit or one byte at a time. (e stream cipher’s
basic operation is to yield a high-quality long pseudorandom
keystream, which is then used to encode the image data. (e
output from several Linear Feedback Shift Register (LFSRs)
can be fed into an appropriate nonlinear Boolean function to
create a stream cipher. Furthermore, the utilization of bit-
positioned operations in the LFSR-based algorithm, this
image encryption has higher bandwidth. Because of its high
throughput and low computational resource requirements,
arbitrary number initiation may be a promising method for
data encryption. Moreover, current workstations support
the word process, and the price of creating a one bit is the
equivalent as that of producing a w-bit word, where w is the
machine processor’s word size [18, 19]. (e block size of a
processor can range from 16 to 64 bits. (e current review
encourages us to use word-LFSR based on nonlinear
functions for data encryption. Many encryption schemes
based on the quantum chaotic map along with some other
structures have been proposed in the literature [20–22]. But
the key generation procedures in the recent quantum-based
chaotic structures are independent of the plaintext which
makes it vulnerable against the differential and classical
attacks. (erefore, our proposed encryption structure in-
cludes the key generation based on plaintext and changes
concerning the change in the input.

In this work, the combination of LFSR and quantum
chaotic map has been utilized to offer an efficient image
encryption approach. (e suggested system is completely
key-dependent. (e input of the algorithm generates the
initial seeds to LFSR and quantum chaotic map. (e pro-
posed encryption technique comprises confusion-diffusion
architecture. Some cryptographic analysis ensures the se-
curity of the offered system. (e simulation results of
performance analysis indicate that the suggested encryption
technique yields ciphers with high randomness and low
correlation. (erefore, the proposed encryption structure is
robust and secure for data transmission. (e contributions
of this work can be summarized as follows:

(i) A novel multistage encryption scheme using a linear
feedback register and a chaos-based quantum map
is proposed

(ii) Security of the proposed methodology against
known attacks is extensively analyzed

(iii) A comparison of the proposed methodology against
competing approaches found in the literature is
conducted

(is manuscript is structured as follows: Section 2 offers
basic concepts about cryptosystem; Structure of offered
approach is defined in Section 3; In Section 4, security
analyses are performed; Section 5 presents comparative
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analysis; Finally, Section 6 concludes our work while giving
some pointers for future work.

2. Some Basic Concepts

2.1. Linear Feedback Shift Register. LFSR is based on a logic
circuit that works in a sequential order used in digital cir-
cuits to store digital data. It is built up in a linear form with
inputs/outputs coupled. (e process of data starts once the
circuit is triggered. (e input bit of LFSR yields a linear
function of two or further of its preceding states, also known
as taps. An LFSR of size n is made up of n stages as,
0, 1, . . . , n − 1, each of which may store one bit, and a clock
that controls data interchange. (e shift register would be
initialized with a vector containing elements p0, . . . , pn−1.
(e following operations are carried out at time i.

(i) (e output includes pi (the content of stage 0)
(ii) (e data of stage i is relocated to phase i − 1, for

1≤ i≤ n − 1
(iii) (e new data (the feedback bit) of stage n − 1 is

acquired by XORing a subsection of the n stages’
data

An LFSR’s initial input is referred to as a seed. Because
any register can only have a restricted number of taps, it
must ultimately become periodic. An LFSR with a carefully
designed feedback function and seed, on the other hand, can
generate a structure of bits that seems random (and has
strong statistical features) and has a long period. Pseudo-
random numbers, rapid digital counters, pseudo-noise se-
quences, cryptography, whitening sequences, and other
applications can all benefit from LFSRs, which can be
employed in hardware and software. (ere are many al-
ternative setups such as Figure 1 illustrates a simple setup
that starts with an input of all 1’s and is very simple to
employ in hardware and software. An LFSR of this category
will never encompass only 0’s and will stop if a binary string
containing only 0’s is input into it. Only certain tap com-
binations (i.e., the nonzero coefficients ci described below)
will result in a maximum sequence with a period of 2n − 1
series. If the initial (left) 4 bits are given to the LFSR, the
subsequent sequence will be generated:

1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1,
0, 1, 0, 0, 1.

If the content of the phase pi is pi, 0≤ i≤m − 1, then
[pm−1, . . . , p1, p0] is known as the initial state of the LFSR.
From the description of an LFSR, the yielded sequence
p0, p1, . . . will satisfy the subsequent recursion

pj � 􏽘
m

i�1
cipj−i, j≥m. (1)

(e polynomial C(x) � 1 + c1x + · · · + cmxm is the
feedback (or connection) polynomial of the sequence
cj􏽮 􏽯

j
� pj: j � 0, 1, . . .􏽮 􏽯. (e LFSR is nonsingular if cm � 0,

that is, the degree of its feedback polynomial is m .
As the powers in the linear feedback function are 16, 14,

13, 11, the bits at these situations are XORed. (e bits are

shifted by 1, and then the XORed value is maintained as the
first bit. (e pseudoalgorithm explaining the general sce-
nario of the linear feedback shift register is presented in
Algorithm 1.

2.2. Quantum Chaotic Map. (is section presents a high-
level summary of the quantum logistic map.(e logistic map
is discussed in [23] when the dissipation parameter is in-
creased. Goggin et al., [24] developed a chaos-based
quantum map that was dissipative by attaching a harmonic
oscillator (quantum kicked) and observing the resulting
dissipation. (ey write p � p + δp to explore the properties
of quantum corrections, where δp signifies a quantum
fluctuation about p [24], and p represents a quantum cor-
rection.(e following differential equations govern this map
with the lower order quantum corrections:

ai+1 � r ai − ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑 − rbi,

bi+1 � −bie
−2β

+ e
−β

r 2 − ai − a
∗
i( 􏼁bi − aic

∗
i − a
∗
i bi􏼂 􏼃,

ci+1 � −cie
−2β

+ e
−β

r 2 1 − a
∗
i( 􏼁ci − 2aibi − ai􏼂 􏼃,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where a � p, b � δa†δa, c � δaδa, and β, r are bifurcation
parameters. In general, ai+1, bi+1, and ci+1 are all complex
numbers, with a∗i signifying the complex conjugate of ai and
c∗i symbolizing the complex conjugate of ci, respectively. If it
is established that the initial values are real numbers, it can
be concluded that all following values will also be real
numbers. (e logistic map with additive noise has the same
shape as in equation (1) a. It should be mentioned that the
noise is generated entirely by the computer system. (e
noise in this circumstance serves as a gauge for the strength
of quantum correlations. (e quantum corrections biand
ci⟶∞reduce equation (1) to the classical, one-dimen-
sional logistic map in the presence of the quantum cor-
rections. (e resilient dissipation limit β⟶∞ of the
quantum logistic map also provides the classical logistic
map, which is a further benefit. (e quantum map depicts a
road to chaos that doubles in length every period. When
using an unsigned binary representation, the fixed point at 1
can be avoided by rounding down, whereas the fixed point at
0 is more difficult to avoid. Options include reseeding the
circuit with a new randomly chosen initial condition (which
must be coordinated with synchronized circuits), adding a
constant value (which leads to known state conditions to
any source that knows the constant and arithmetic preci-
sion), or limiting the valid range of chaotic parameter
values so that the mapping cannot generate a value less than
LSB/2 [25]. Figure 2 shows the bifurcation diagram of
equation (1).

p0 p1 p2 p3 p4

Figure 1: LFSR with five stages pi, and feedback bit p4 � p1 ⊕p3.
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3. Proposed Encryption Algorithm

(e combination of quantum chaotic map and LFSR is
created for use in the encryption system that is being
suggested. Using this function in combination with

word-based LFSR, it is possible to generate extremely high-
quality pseudorandom numbers. In cryptography, devel-
oping a robust LFSR with extraordinary periodicity and
great cryptological characteristics is a current research topic.
(is function can preserve a wide range of cryptographic

Input: key
Output: pseudorandom numbers sequence

(1)while value!� 0 and value is not reiterating,
Do

(2)Bin⟵ attain the binary configuration of the Value.
(3)Pad until bin has 16 bits with leading zeros.
(4)XOR the bits at situations respective to LF function and save it in m.
(5)Bin← shift the bin by one toward the right.
(6)Pad until bin has 16 bits with leading zeros.
(7)(e first bit is replaced with m in the bin.
(8)Value← attain the decimal value of the obtained binary configuration.
(9) End

ALGORITHM 1: Algorithm of Linear Feedback Shift Register.
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characteristics. (e secret key generation, with the addition
presented technique using encryption and decryption, is
structured as follows:

3.1. Key Generation. (e key generation of the proposed
cryptosystem is completely dependent on the input of the
encryption technique. (e private key’s dependency on
plaintext makes it secure against chosen-plaintext attack,
chosen-ciphertext attack, and known-plaintext attack. (e
two parts of encryption diffusion and key-based substitution
depend on the plaintext-based key. (e first part is the
generation of the LFSR sequence for which the plaintext
provides seed value. (e produced LFSR sequences are
diffused with the original image. (e second part is the
production of a quantum chaotic map-based key for key-
based substitution. (e chaotic map key is also plaintext
dependent because the initial values of the differential
equation set are induced by using input values.

Consider the size of the input image M is P × Q × 3.
After separating the image into three layers, R, G, B, we get
each layer of size P × Q. (e seed value for LFSR and initial
conditions for the chaotic map is generated by

I �
􏽐

P
i�1 􏽐

Q
j�1 piqj

P × Q
. (3)

After inserting this value of I for image M the keys K1
and K2 are obtained by the LFSR and chaotic quantum map.

3.2. Encryption and Decryption. (e encryption process of
the presented structure follows the confusion and diffusion
properties. Corresponding to Shannon’s theory [26], a re-
silient cryptosystem must contain confusion and diffusion
effects. To achieve robust security, the system is subjected to
input-dependent key and confusion-diffusion strategies.(e
encryption strides are defined as follows:

Step 1. Read an image input M of size P × Q × 3 and convert
it into a red, green, and blue layer.

Step 2. Diffuse the original image layers secret key K1 ob-
tained by seeding input image to LFSR.

Step 3. (e image layers obtained in Step 2 are stored as
diffused image DI, I � R, G, B.

Step 4. (e key K2 obtained by chaotic quantum map by
using the original image based initial conditions is utilized
for substitution as follows:

Rule 1: if 0≤ k2(ij)≤ 150 then put cI
ij � dI

ij ⊕ k2(ij)

Rule 2: if 151≤ k2(ij)≤ 255 then put cI
ij � dI

ij ⊕ k2(ij)⊕ a

Here, a ∈ Z256, is any fixed constant selected randomly,
dI

ij ∈ DI
ij is the pixel value of diffused image DI, k2(ij) is the

value of K2 and cI
ij ∈ CI

ij is the pixel value of the final cipher
image CI, I � R, G, B, and position i and j, respectively.

(e image CI, I � R, G, B is the diffusion-substitution-
based cipher obtained from the presented strategy.

A clear description of the presented encryption is defined
in Figure 3.

(e decryption of the presented structure is based on a
similar strategy in a reverse manner. (e same key K1 is first
diffused with the encrypted image. After that, the key K2 is
utilized for the process of inverse substitution. (e substi-
tution rules are defined in a reverse manner as:

Rule 1: if 0≤ k2(ij)≤ 150 then putdI
ij � cI

ij ⊕ k2(ij)

Rule 2: if 151≤ k2(ij)≤ 255 then put dI
ij � cI

ij ⊕ k2(ij)⊕ a

Where a ∈ Z256, is any fixed constant selected randomly,
dI

ij ∈ DI
ij is the pixel value of diffused image DI, k2(ij) is the

value of K2 and cI
ij ∈ CI

ij is the pixel value of the final cipher
image CI, I � R, G, B, and position i and j, respectively.

(e inverse of the diffusion process is computed by the
following way:

M � D
I
ij ⊕K1, (4)

where M is the decrypted plain image.

4. Statistical Analysis of Recovered Image

Good encryption procedures should be resistant to a wide
range of different attacks such as the differential, statistical
attacks, and brute force attacks. We carried out a security
analysis of our proposed scheme. (e enciphered images
yielded by the presented encryption structure are illustrated
in Figure 4.

4.1. Entropy. Entropy analysis was performed to examine
the randomness that can be used to define image texture and
information content. It refers to the pixel’s ability to detect
various gray levels. Entropy is high if image pixels are
uniformly scattered, while entropy is low in the case of the
plain image. Scientifically it can be inscribed as

H(S) � − 􏽘
255

i�0
p si( 􏼁log2 p si( 􏼁( 􏼁. (5)

(e numerical outcomes of the information entropy
are displayed in Table 1. (e results were calculated for
plain and encrypted layers of some standard images with
sizes. 512 × 512 × 3 From the listed results, it can be
perceived that the entropies for enciphered images are
near enough to the epitome value that is 8 compared to
the original ones. (erefore, the presented scheme pro-
duces uniform ciphers with a higher value of entropy.

(e entropy calculated above in Table 2 is the global
entropy. (e global Shannon entropy does not always
measure actual randomness. Unlike global Shannon
entropy, local Shannon entropy H(k,TB) can capture local
image block unpredictability, while global Shannon en-
tropy cannot. (e local entropy E(k,TB) can be calculated
as

H(k,TB)(S) � 􏽘
k

i�1

H Si( 􏼁

k
, (6)
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Figure 3: Design of presented encryption scheme.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 4: (a-c), (g-i) Original standard images of size 512 × 512; (d-f), (j-k) Respective cipher images.
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where Si denotes the nonoverlapping blocks of image S, k

shows the number of blocks, TB represents the total size of
the image, and L shows the intensity of the pixels.

(e calculation of local entropy of Lena image for dif-
ferent sizes of the image is shown in Table 2 which depicts
the maximum randomness of the ciphers produced from the
proposed algorithm.

4.2. HistogramAnalysis. (e distribution of pixel numerical
information within any image can be revealed using his-
togram analysis. If the image histogram after the encryption
is distributed uniformly, this is considered a robust en-
cryption system. Featured image histograms show complete
similarity and differ from the dynamic histograms of explicit
images, which is important in resisting any cryptographic
assault. (e similarity to the grayscale of the embedded
image proves that no practical information can be obtained
when performing any mathematical attack on the compiled
image. 3D color histograms for Brain images of size
512 × 512 × 3are depicted in Figure 5. From Figures 5(a)–
5(d), we can perceive the pattern of original data in histo-
gram distribution, and in the case of encrypted ones
Figures 5(e)–5(h), the distribution is uniform.(erefore, the
presented encryption design is robust against all the linear
and differential attacks due to the ideal uniformity in the
encrypted data.

In addition to the visual examination of the encrypted
image histogram distribution, we perform the chi-square
test (χ2) to prove that the encrypted image has a uniform
histogram distribution more precisely. (e p value of the
chi-square test is a real number in the range [0, 1]. For a test
image to pass, the p value must be larger than a significant
level α. Table 3 shows the p values for some standard cipher
images encrypted by the proposed algorithm, using an a
priori of 0.05. (e cipher image has a uniform histogram
distribution based on the results of the chi-square test in

Table 3. (e depicted results show that the proposed ap-
proach accepts null hypotheses and confirms the uniformity
of histograms.

4.3. Correlation Analysis. Pixel correlation is a frequent
approach for measuring the picture encryption algorithm’s
performance. In the image, a secure encryption algorithm
requires a reduction in the correlation of contiguous pixels.
(e subsequent formula is utilized to quantify the corre-
lation between two neighboring pixels:

cxy �
E x − μx( 􏼁 y − μy􏼐 􏼑􏼐 􏼑

����
δxδy

􏽱 , (7)

where μ is the expected value and δ shows variance, the
results obtained from correlation analysis are presented in
Table 4. (e values between two neighboring pixels are
significantly lowered. (e results show that the presented
technique is resilient against different assaults as the cor-
relation value is close to zero, so the scheme meets the
standard criteria.

Figure 6(a)–6(f) depicts the scattering of neighboring
pixels in various directions. (e Lena image in Figures 6(a)–
6(c) displays a substantial correlation among neighboring
pixels for horizontal, vertical, and diagonal of the plain
image.(e correlation diagrams of the enciphered image are
displayed in Figures 6(d)–6(f ). (e dots in the encrypted
image are dispersed randomly, with no evident distribution
features.

4.4. Randomness Analysis

4.4.1. NIST Test. (e NIST-800-22 trial was designed to test
the pseudorandom number generator (PRNG). It can be
examined that a complex binary sequence is appropriate for

Table 1: Entropy measures for different images.

Image
Original image Enciphered image

Color R G B Color R G B
Baboon 7.7624 7.7067 7.4744 7.7522 7.9996 7.9992 7.9995 7.9991
Peppers 7.6698 7.3388 7.4963 7.0583 7.9998 7.9991 7.9983 7.9994
House 7.0686 6.4311 6.5389 6.2320 7.9986 7.9972 7.9986 7.9983
Brain 7.0156 7.0156 7.0156 7.0156 7.9991 7.9986 7.9989 7.9989
X-ray 7.2369 7.2369 7.2369 7.2369 7.9993 7.9993 7.9989 7.9996
Lena 7.7562 7.5889 7.1060 6.8147 7.9995 7.9990 7.9992 7.9993

Table 2: Local entropy measures for different sizes of Lena image.

Lena image Entropy value
k TB R G B
16 32 × 32 5.9635 5.8740 5.9954
32 64 × 64 6.8951 6.0147 6.5214
64 128 × 128 6.0589 5.9959 56.0028
128 256 × 256 6.5230 6.5024 6.5804
256 512 × 512 7.8111 7.8047 7.9852
512 1024 × 1024 7.8974 7.9632 7.9841
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Figure 5: Continued.
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a cryptosystem based on the outcomes of the NIST test. (e
NIST-800-22 trial comprises 15 test approaches, comprising
frequency test, run test, cumulative test, longest run test, etc.
(e number of p can measure the random sequence of the
test sequence. If P≥ 0.01, the sequence is random. If P< 0.01,
the sequence is nonrandom and predictable. If P � 1, the

structure is completely set. If p � 0, the structure is by no
means random. In addition, the greater the p value; the
better the random sequence. (e results of NIST for chaotic
sequences and some standard images are presented in Ta-
ble 5.(e depicted results reflect that the sequence generated
from the chaotic map is highly random and ideal for en-
cryption. (e results can be scrutinized using the presented
encryption algorithm that helps to generate highly random
ciphers with P≥ 0.01.

4.5. Differential Attack. In the plain image, some pixels are
faintly modified to attain the respective enciphered image.
(e opponent recurrently makes the connection between the
encrypted images and the plain ones. If a small modification
in the pixels of the image can significantly disturb the cipher
image, it indicates that the structure has a resilient capability
to withstand differential assaults. Differential attacks are
usually inspected by the number of pixels change rate
(NPCR) and unified average changing intensity (UACI)
values [27, 28]. (ese two gauges are examined as follows:

NPCR is employed to enumerate plaintext sensitivity,
i.e., the outcome of converting a lone pixel in the plain image
into an encrypted image. It also describes the arbitrariness
and modification among the original image and its re-
spective cipher and can be written as

NPCR �
􏽐

M
i�1 􏽐

N
j�1 D(i, j)

w × h
. (8)

(e larger the value of NPCR, is better the original image
sensitivity offered by the encryption algorithm. (e UACI is
defined as

UACI �
􏽐

w
i�1 􏽐

h
j�1 C1(i,j)−C2(i,j)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

28 − 1􏼐 􏼑 × w × h

⎡⎢⎢⎣ ⎤⎥⎥⎦ × 100%, (9)

where C1 is the first encrypted image and C2 is the second
encrypted image, and w and h are the width and height of
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Figure 5: (a–d) 3D histogram of brain original image layers; (e–h) 3D histograms of brain encrypted image layers, respectively.

Table 3: Chi-square test measures for different images.

Image Color R G B
Baboon 0.4561 0.3698 0.4157 0.3687
Peppers 0.5151 0.9002 0.6958 0.2589
House 0.5102 0.0947 0.5179 0.4763
Brain 0.5089 0.8962 0.6527 0.6215
X-ray 0.4011 0.0940 0.8526 0.1258
Lena 0.0647 0.0871 0.9654 0.7521

Table 4: Correlation coefficient measures for enciphered images.

Image Orientation
Encrypted

R G B

Baboon
Diagonal −0.0001 −0.0009 0.0007
Vertical 0.0002 0.0010 0.0010

Horizontal −0.0003 −0.0011 0.0001

Peppers
Diagonal 0.0043 0.0001 −0.0005
Vertical 0.0013 −0.0003 −0.0004

Horizontal −0.0005 0.0002 0.0090

House
Diagonal 0.0014 −0.0015 0.0012
Vertical −0.0043 0.0014 −0.0054

Horizontal 0.0015 −0.0002 0.0003

Brain
Diagonal 0.0032 0.0003 −0.0020
Vertical 0.0011 −0.0002 −0.0010

Horizontal −0.0021 −0.0002 0.0003

X-ray
Diagonal 0.0004 0.0030 −0.0011
Vertical −0.0012 −0.0011 0.0040

Horizontal −0.0007 0.0012 −0.0056

Lena
Diagonal 0.0001 −0.0021 0.0003
Vertical −0.0001 0.0031 −0.0019

Horizontal −0.0031 −0.0011 0.0003
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cipher images C1 and C2. 28 represents the number of bits in
one pixel of red, green, and blue layers in a color image.

It can be observed from Table 6 that the results for NPCR
and UACI are designated as over 99% and 33%, respectively.
(ese results indicate that the suggested scheme can with-
stand differential attacks.

(e strength of the algorithm against differential attack
varies concerning the change in the size of input data [29].
(erefore, we have performed NPCR and UACI measures
for different sizes of images to check the deviation of results.
(e results of NPCR and UACI for various sizes of Lena
images are depicted in Table 7. (e key generation of the
offered encryption algorithm entirely depends on the input
data. (erefore, a minor change in input refers to a large
change in output. (e data in Table 7 indicates that the
algorithm resists differential attacks for various sizes of input
data.

4.6. Key Analysis

4.6.1. Key Sensitivity Test. In the encryption-decryption
process, an ideal cryptographic algorithm must be sensitive
to the private keys. To inspect the key sensitivity test, an
enciphered image is deciphered using the different keys,
which are one bit different from the correct key. Lena’s
standard color image of size 512 × 512 × 3 is evaluated for
the test. Figure 7 depicts the results of this test and one can
see that when the decryption key was only one bit different,
the output (Figures 7(a), 7(b), and 7(c)) shows that it does

not reveal the contents of the original information.
Figure 7(d) shows that decryption is possible only with the
correct key.

4.6.2. Brute Force Attack. Space support is critical in
countering a brute force attack. (e authors of [1] proposed
that the private keys of a cryptographic algorithm be greater
than 2100 to avoid Brute force attacks. To encrypt the plain
image, a chaotic map seed value and a 256 bit key/seed value
of a special LFSR to yield pseudorandom numbers are
utilized. (e proposed encryption system has a key space
greater than 2256 that is sufficient to withstand a Brute force
attack.(e integer value of the chaotic map when computing
key space is not considered.

4.7. Known and Chosen Plain Text Attacks. Any cryptosys-
tem with an excellent diffusion property is capable to
withstand chosen and known-plaintext attacks. Overall, the
opponent selects a distinct set of plaintexts consisting of
sequential 0 and 1 data to demonstrate the algorithm’s
uncertainty. In the aforementioned attacks, plaintext and
their corresponding ciphertext are selected. It permits our
cryptosystem to produce enciphered images that are highly
random.

(e first step of the generation of encryption/decryption
keys depends upon plaintext. (e dependency of the algo-
rithm on plaintext increases its security in contrast to
chosen-plaintext attacks and chosen-ciphertext attacks. (e
substitution part of the suggested algorithm is also sensitive
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Figure 6: Correlation diagram of Lena original image in (a) horizontal direction; (b) diagonal direction; (c) vertical direction; correlation
diagram of Lena encrypted image in (d) horizontal direction; (e) diagonal direction; (f ) vertical direction.
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to initial conditions because it changes with the respective
plaintext. (erefore, in the presented structure, the chosen-
plaintext and the chosen-ciphertext attack do not give any
information about the secret keys of the system. As a result,
the presented cryptosystem can efficiently endure chosen
and known-plaintext attacks.

4.8. Robustness Analysis. While encrypted images are
transported across the public network, one must take care of
the noise issue. (e noise enhancement may seem in
modification, damage, and a condensed procedure of image
data. (e high level of noise creates it meaningfully tricky to
retrieve the original images from the enciphered images.
(erefore, repelling noise is an important benchmark to
examine the strength of the cryptosystem.

To examine the strength of the presented encryption
scheme two types of noises are added. (e decrypted images
are understandable though different types of noises were
provided. From the decrypted image maximum information

Table 6: NPCR and UACI measures for standard images.

Image
NPCR UACI

R G B R G B
Baboon 99.57 99.64 99.60 34.46 33.42 33.14
Peppers 99.62 99.69 99.63 33.43 32.44 33.32
House 99.63 99.64 99.62 32.50 33.43 34.52
Brain 99.74 99.70 99.63 33.49 33.47 33.37
X-ray 98.82 98.64 98.72 32.45 34.03 34.12
Lena 99.60 99.62 99.58 33.49 33.48 34.62

Table 5: NIST measures for chaotic map and different standard color images.

Test name P value
Status

Chaotic sequence Baboon Peppers House
Frequency 0.5632 0.7412 0.8191 0.8421 Pass
Block frequency 0.0125 0.2156 0.0182 0.1355 Pass
Runs 0.9523 0.1534 0.9542 0.9018 Pass
Longest run 0.0357 0.0357 0.0357 0.0357 Pass
Rank 0.2919 0.2919 0.2919 0.2919 Pass
Serial 1 0.9635 0.8261 0.1144 0.6021 Pass
Serial 2 0.8852 0.5963 0.7344 0.3740 Pass
Cumulative sums 0.3562 0.3110 0.5810 0.5520 Pass
Overlapping template 0.8899 0.9568 0.8625 0.8752 Pass
Universal 0.7616 0.9981 0.9987 0.9986 Pass
Approximate entropy 0.9523 0.2082 0.1342 0.7566 Pass
Nonoverlapping template 0.8536 0.9989 0.9685 0.9452 Pass

Random excursions

X � −4 1 0.9971 0.0114 0.1526 Pass
X � −3 0.0563 0.2251 0.2586 0.3698 Pass
X � −2 0.6677 0.3698 0.2589 0.0058 Pass
X � −1 0.5147 0.9962 0.4411 0.6398 Pass
X � 1 0.2431 0.8144 0.6325 0.9990 Pass
X � 2 0.8891 0.0007 0.0081 0.5858 Pass
X � 3 0.6974 0.5222 0.0014 0.0025 Pass
X � 4 0.2547 0.0258 0.9981 0.0097 Pass

X � −7 0.0145 0.1184 0.8894 0.0001 Pass
X � −6 0.0021 0.0215 0.6235 0.0147 Pass

Random excursions variants

X � −5 0.5449 0.0523 0.7412 0.9638 Pass
X � −4 0.1254 0.9632 0.9632 0.9965 Pass
X � −3 0.8025 1 0.5258 0.1963 Pass
X � −2 0.3698 0.0639 0.0258 0.6687 Pass
X � −1 0.2250 0.0259 0.2649 0.2991 Pass
X � 1 0.5896 0.9417 0.3258 0.3447 Pass
X � 2 0.1569 0.2698 0.0143 0.7319 Pass
X � 3 0.0147 0.6943 0.0984 0.7982 Pass
X � 4 0.2589 0.5861 0.9584 0.9963 Pass
X � 5 0.1267 0.9974 0.7463 0.2210 Pass
X � 6 0.0145 0.2255 0.8847 0.0009 Pass
X � 7 0.0012 0.0006 0.3698 0.1717 Pass

Table 7: NPCR and UACI measures for different sizes of Lena
images.

Image
NPCR UACI

R G B R G B
128 × 128 × 3 99.01 98.90 99.30 32.21 32.95 32.01
256 × 256 × 3 99.70 99.60 99.80 33.36 33.58 33.44
512 × 512 × 3 99.66 99.54 99.64 33.40 33.49 33.61
1024 × 1024 × 3 99.67 99.63 99.63 33.95 33.60 33.69
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can be recovered. To check the quality of decrypted images,
various tests are carried out such as peak signal-to-noise
ratio (PSNR), mean-square error (MSE), homogeneity, and
contrast.

4.8.1. Mean Square Error (MSE). MSE is a square measure of
the error (pixel difference) of two images, obtained by taking
a square root of a square error dispersed by the number of
pixels in the image. Mathematically, it can be written as

MSE �
1

H∗W
􏽘

H− 1

y�0
􏽘

W− 1

x�0
f(x, y) − f′(x, y)( 􏼁

2⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, (10)

where MSE is the mean square error, in image cryptography
that means a larger number of MSE possess better image
encryption capability. AverageMSE values greater than 6000
for each channel are shown in Table 5 which depicts that the
presented scheme is highly secure.

4.8.2. Peak Signal to Noise Ratio (PSNR). PNSR is defined as

PSNR � 10 log10
(255)

2

MSE
􏼠 􏼡, (11)

a larger number of PSNR means better-deciphered images,
and a smaller number means better image encryption.

(e results of PSNR consequences of decrypted images
with dissimilar levels of alterations are presented in Table 8.
After incorporating numerous levels of noise concentrations
in the encrypted image, it is perceived that the PSNR value
reduces when noise concentration rises. (e graphic ex-
cellence of the decrypted image is abridged, but the content
is still noticeably predictable.

(e PSNR value increases the fidelity of the encrypted
picture to the original plain image [27]. When the PSNR is
above 30 dB, it becomes difficult to distinguish between the
original and decrypted pictures. (e original Elaine test
picture is encrypted twice. (e resulting cipher pictures are
then subjected to 33% data block loss, 99% data block loss,
0.005% Salt and Pepper noise, and 0.025% Salt and Pepper
noise. Figures 8 show the outcomes for PSNR after including
noise. In the 3× 3 data block loss test, the proposed method
provides a PSNR of slightly under 35 dB (excellent quality).

PSNR lowers to around 21 dB when testing for 9× 9 data
block loss. A PSNR approaching 30 dB is achieved for the
cipher image damaged by 0.005% Salt and Pepper noise.
When the degradation reaches 0.02 percent, the PSNR nears
20 dB. Overall, the findings show that the suggested ap-
proach is somewhat robust to data loss and noise.

4.9. Execution Time Analysis. (e speed at which an en-
cryption-decryption method is executed is one of the most
important quantifiable parameters. To determine the time
for the presented system, three important processes are
taken into consideration: parameter initialization, diffusion,
and key-based substitution operation. Section 4 of this
document contains a description of the presented system
specification. Table 9 depicts the time requirements (in
seconds) for encryption and decryption in this case. (e
demand for encryption and decryption time implies that the
suggested algorithm is well-suited to dealing with a huge
capacity of image data as compared to the existing results
[30, 31].

Both the approximation of rounds as well as operations
are required to achieve the enciphering and deciphering
mechanism which is necessary to determine the computa-
tion difficulty. To estimate the computational complexity,
the plain image had a dimension of M × M is assumed.
Initially, the pixel-level scrambling technique requires
O(M × M) time to complete. Following that, the keystream
size is like the image size, M × M, and O(M × M) is known
as the complexity of generation in nature. Finally, the dif-
fusion operation requires O(M × M). As a result, the en-
cryption approach has a total time complexity O(M2).

(a) (b) (c) (d)

Figure 7: (a–c) Images decrypted from one-bit change key; (d) Image decrypted from the original key.

Table 8: MSE and PSNR measures for different standard images.

Image
MSE PSNR

R G B R G B
Baboon 9231.2 8911.0 8952.3 39.6011 36.7412 39.3691
Peppers 9742.2 10356.1 11652.1 37.0031 48.8523 39.0001
House 7763.2 9954.1 7633.11 38.3737 29.5698 47.1102
Brain 6953.1 7836.2 8951.9 47.0186 37.8142 29.0997
X-ray 8642.2 9214.2 8686.1 39.1796 48.6981 59.1475
Lena 6651.4 9961.0 10029.2 39.7865 49.1345 39.1239
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5. Comparison Analysis

Some of the critical performance measures, including key
space analysis, the NPCR and UACI analysis, the correlation
coefficient test for adjacent pixel analysis, and information
entropy, are used to compare the performance of the sug-
gested encryption scheme to that of current works in this
section. Table 10 illustrates the comparison results between
the given performance metrics of a Lena picture size

256× 256× 3 based on the suggested technique and the
comparison results between existing methods. According to
the tabulated results, the presented strategy outperforms the
competition by a significant margin. One can see from
Table 7 that the correlation in diagonal, horizontal, and
vertical directions shows that the proposed scheme has
significantly low correction values when compared to other
state-of-the-art encryption schemes. (erefore, our pro-
posed algorithm is perfect because it comprises ideal

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 8: Data loss and noise attacks on encrypted images. (a) (e untouched encrypted image and (b) its decrypted image; (c) the
encrypted image with 3× 3 data block loss and (d) its decrypted image; (e) the encrypted image with 9× 9 data block loss and (f) its
decrypted image; (g) the encrypted image deteriorated with 0.005% Salt and Pepper noise and (h) its decrypted image; (i) the encrypted
image deteriorated with 0.02% Salt and Pepper noise and (j) its decrypted image.

Table 9: Time complexity analysis (in seconds) of offered structure.

Image size Parameter initialization Diffusion Key-based substitution Encryption Decryption
128 × 128 × 3 0.050 0.198 0.311 0.559 0.418
256 × 256 × 3 0.191 0.224 0.298 0.713 0.691
512 × 512 × 3 0.283 0.356 0.489 1.128 0.918
1024 × 1024 × 3 0.412 0.517 0.511 1.440 1.3111
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correlation values. NPCR and UACI of the proposed scheme
are greater than 99.6 and 34, respectively. Our offered al-
gorithm possesses perfect values of NPCR and UACI
measures as compared to recently proposed work. (e in-
formation entropy of the proposed scheme is near to the
ideal value of 8 and it is also greater than other schemes. (e
greater value of information entropy as compared to other
schemes indicates the robustness of the offered encryption
algorithm. (rough the comparison table, it is evident that
the proposed scheme security is higher. However, the key
space of the proposed scheme is lower than Reference [32],
Reference [11], and Reference [13]. In the future, we will use
coupled multi-chaotic maps for the higher key space.

6. Conclusion

Ensuring data security during the processes of communi-
cation and storage is mandatory these days as potential
information leakage might have unwanted consequences. In
this work, LFSR and chaos-based quantum map image
encryption algorithm is presented. Both confusion and
diffusion steps are utilized in the presented encryption. (e
proposed methodology can be used to encrypt images of
different sizes. (e entropy values of the encrypted images
are significantly high when compared to the entropy values
of original images. (e presented scheme provides a security
layer for images, and its effectiveness was validated through
various experimental results such as key space and key
sensitivity analysis. Furthermore, the proposed scheme has
low correlation values and higher NPCR, and UACI test

results. (e algorithm is resistant to most known attacks
such as differential and statistical attacks etc. (ese security
metrics prove that the proposed scheme achieved a higher
security level, and it is well suited for digital image en-
cryption for robust communications. (e suggested tech-
nique has a low computing overhead and produces a secure
ciphertext image within a few seconds. Our work can be
further improved and modified to encrypt sensor data,
biomedical data [33, 34] in the future. Furthermore, the
system can be improved using the concept of parallelism to
encrypt massive amounts of multimedia data.
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�e present study addresses the fluid transport behaviour of the flow of gold (Au)-copper (Cu)/biomagnetic blood hybrid
nanofluid in an inclined irregular stenosis artery as a consequence of varying viscosity and Lorentz force. �e nonlinear flow
equations are transformed into dimensionless form by using nonsimilar variables. �e finite-difference technique (FTCS) is
involved in computing the nonlinear transport dimensionless equations. �e significant parameters like angle parameter, the
Hartmann number, changing viscosity, constant heat source, the Reynolds number, and nanoparticle volume fraction on the flow
field are exhibited through figures. Present results disclose that the Lorentz force strongly lessens the hybrid nanofluid velocity.
Elevating the Grashof number values enhances the rate of blood flow. Growing values of the angle parameter cause to reduce the
resistance impedance on the wall. Hybrid nanoparticles have a superior wall shear stress than copper nanoparticles. �e heat
transfer rate is amplifying at the axial direction with the growing values of nanoparticles concentration. �e applied Lorentz force
significantly reduces the hybrid and unitary nanofluid flow rate in the axial direction. �e hybrid nanoparticles expose a supreme
rate of heat transfer than the copper nanoparticles in a blood base fluid. Compared to hybrid and copper nanofluid, the blood base
fluid has a lower temperature.

1. Introduction

In the physiology system, the heart is the primary organ that
plays a vital role in circulating the oxygenated blood to other
organs via arteries. �e active and proper functioning of the
heart is essential for a healthy life cycle. Improper blood
transportation in the circulatory system and cardiac-related
issues have been the cause of most physical illnesses and
death in recent times. Based on the World Health Orga-
nization (WHO) report, 30% of deaths in 2008 were related
to cardiac disease [1–3]. Most cardiac diseases are caused by
cellular waste products, deposits of cholesterol, fibrin, cal-
cium, and buildup of fatty substances in the lumen of the
arteries or the formation of plaques. Such plaque formation

in the arteries contributes to obstructing blood circulation
flow, and this cardiac disease is perceived as stenosis. Be-
sides, the accumulation of fatty substances on the blood
vessels walls leads to heart attacks, blood clots, impeding the
blood supply, myocardial infarction, and cerebral strokes.
Changdar and De [4] scrutinized the impact of inclination
on three different nanoparticles (silver, copper, and gold)
cases in blood nanofluid flow in a multiple stenosis artery
and observed that the wall exhibits low shear stress in the
absence of angle parameter. Zaman et al. [5] reported the
transport behaviour of silver and aluminium oxide hybrid
blood nanofluid flow in a vertical stenotic artery and showed
that the unity nanofluid has a higher temperature than the
hybrid nanofluid. Tripathi et al. [6] utilized the explicit
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forward time step approach to scrutinize the flow of gold
(Ag)-silver (Au)/blood hybrid nanofluid in irregular stenosis
with the variable viscosity and noted that the variable vis-
cosity parameter promotes the hybrid nanofluid axial ve-
locity. Das et al. [7] explained the impacts of Hall current
and inclination on hybrid blood nanofluid flow in a mild
stenosis artery and reported that the growing values of the
Grashof number elevate the blood velocity. Some studies
about the blood fluid flow can be found in references [8–17].

�e physiological fluids that are affected by the external
magnetic field and magnetization are dubbed biomagnetic
fluids. In recent times, researchers give much attention to the
examination of biomagnetic fluid because it has significant
applications in biomedical and bioengineering, including
targeted drug delivery, cell separation, magnetic wound
treatment, reduction of bleeding during surgeries, medical
devices (magnetic tracers and blood pumps), and magnetic
hyperthermia. It is noticed that the blood is one of the
relevant examples of a biomagnetic fluid because it have the
cell membrane, haemoglobin compound interface, and in-
tercellular protein. Besides, the unadulterated blood is ex-
perienced less impact with the magnetic field. �erefore, in
such cases, notable magnetic fields strength is essential to
influence its flow. It is observed that artificially suspending
nanoparticles with magnetic behaviour can greatly promote
the magnetization of the blood. Further, blood containing
such magnetic nanoparticles refuses the diamagnetic ma-
terial or discarding paramagnetic and leads to behaving as a
ferromagnetic fluid; as a result, fluid velocity rises gradually.
Misra and Shit [18] addressed the influence of magnetic
dipole on the flow of viscoelastic biomagnetic fluid past an
extending surface and observed that the ferromagnetic in-
teraction parameter diminishes the biomagnetic axial ve-
locity. Murtaza et al. [19] performed a numerical study with
the aim to express fluid transport behaviour of maxwell
biomagnetic fluid flow over an extending surface and
pointed out the rate of heat transfer is reduced with the
rising values of magnetic field. Maiti et al. [20] employed the
Caputo-Fabrizio (CF) derivative model to examine the
biomagnetic blood fluid flow in a porous vessel and found
that the thermal radiation and the Schmidt number decline
the blood concentration. �e flow of biomagnetic fluid
through a normal duct in the presence of magnetic dipole
and Lorentz force was scrutinized by Mousavi et al. [21] and
noticed that the Lorentz force near the constricted zone
lessens the wall shear stress. Some notable studies on blood
flow with the impact of the magnetic field are exposed
through Refs. [22–29].

Numerous researchers and engineers have paid signif-
icant attention to nanotechnology because it is used in
several practical situations, for instance, biochemical engi-
neering and medical industries. Several nanoparticles like
silver, copper, gold, and ferrite particles are utilized in
proteins, delivery of drugs, nucleic acids, vaccines, and genes
[30–33]. Because these nanoparticles exhibit high biocom-
patibility, magnetic, chemical, unique mechanical, and
thermal effects. It is observed that gold (atomic
number� 79) nanoparticles have much popularity in bio-
medical applications for RNA quantification (via optical

biosensors) and treating malignant tumours owing to
unique quenching efficiencies, targeting ligands, significant
surface modifiability, and imaging probes when comparing
with other nanoparticles [34–38]. Besides, the gold nano-
particles exhibit a nontoxic behaviour in biological media.
Gold nanoparticles have a unique optical behavior, which is
more relevant for several therapeutic applications (photo-
thermal and radiotherapy for eradicating cancer cells) and
diagnostic approaches (cell imaging, computed tomography,
and optical imaging). It is important to mention that the
gold nanoparticles can be remarkably functionalized with
DNA, proteins, antibodies, polyelectrolyte, and ligands.
Koriko et al. [39] examined the heat transfer behaviour of
gold-blood Carreau nanofluid flow with the influence of
partial slip and that the elevating gold nanoparticle con-
centration tends to diminish the rate of heat transfer. Kumar
and Srinivas [40] employed the Maxwell Garnett and
Brinkman models (thermophysical property model) to an-
alyze the flow of gold blood nanofluid in a channel and
found that the gold nanoparticles have a less temperature in
the blood than the aluminium oxide. Khan et al. [41]
conducted a numerical study to determine the impact of
nonlinear radiation on Casson gold–blood nanofluid flow
over an extending spinning disk and noticed that the blood
temperature rises by elevating nanoparticle volume fraction.
Bhatti [42] explored the Jeffrey-gold intrauterine nanofluid
flow through an asymmetric channel by means of linear
thermal radiation and showed that thermal radiation
maximizes Jeffrey blood temperature. Most science and
engineering problems are usually in the form of nonlinear
boundary value problems (BVPs). �e solution of such
nonlinear problems plays a significant role in understanding
science and engineering systems. It is noticed that most of
the nonlinear BVPs are partial differential equations (PDEs).
Numerous numerical and analytical approaches are available
in the literature to solve such PDEs. In that, the explicit
finite-difference FTCS method is one of the notable ap-
proaches, and it is described in Hoffmann’s book [43]. It is
essential to mention that many researchers extensively used
FTCS in fluid mechanical and biomechanical problems
[44, 45]. Further, it is revealed that this scheme is stable,
rapidly convergent, and easy to program.

�e motivation of this current analysis is that for the
applications in targeted nano-drug delivery systems. Besides,
this numerical simulation’s primary purpose is to effectively
carry out the decision-making process during arterial disease
treatment. In recent times, targeting the nano-drugs at the
stenosis region is the trending and influential approach
compared to the conventional treatment method. �e nano-
drug delivery improves the stenosis throat’s clotting for-
mation; further, this computational simulation can also
predict the effects of post-treatment processes. It is witnessed
from the above literature that several studies explore the
blood flow in different types of stenosis arteries with nu-
merous physical aspects. However, no study has focused on
the gold and copper/blood nanofluid flow in an uneven
inclined stenosis artery in the presence of a magnetic field,
viscous dissipation, and heat generation. Further, the gold
and copper [46, 47] nanoparticles have predominant
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applications in drug targeting, wound treatment, cancer
diagnosis, cardiovascular treatment, and chemotherapy.
With these enthused, the current framework focuses on
biomagnetic gold-copper blood hybrid nanofluid flow in an
irregular inclined stenosis artery utilizing varying viscosity
and Lorentz force. By means of nonsimilar variables, the
dimensional flow equations are reduced in dimensionless
form. �e finite-difference approach is executed to compute
the reduced flow equations. �e physical parameters that
arise from the regime equations are projected through
graphs.

2. Mathematical Formulation

�is model considers time-dependent two-dimensional
biomagnetic gold-copper hybrid nanofluid flow in an

inclined irregular stenosis artery, and the schematic model is
exhibited in Figure 1. �e nanoparticle volume fraction
model is utilized to scrutinize the biomagnetic blood flow. It
is noted that the gold and copper nanoparticles are sus-
pended in the biomagnetic blood fluid, and the thermo-
physical properties of the base fluid (blood) and
nanomaterial (gold and copper) are provided in Table 1. �e
strength of Lorentz force is executed in the transverse to the
blood flow direction. For this modelling, the two-dimen-
sional cylindrical coordinate (r, θ, z) system is employed,
and r and z are represented as the artery radial and axial
coordinates (Tripathi et al. [6]).

R(z) �

R0 − 2δ cos
z − d

2
−

l0

4
􏼠 􏼡2π􏼠 􏼡 −

7
100

cos z − d −
l0

2
􏼠 􏼡32π􏼠 􏼡􏼢 􏼣, d< z<d + l0

R0, otherwise

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, (1)

where δ is the stenosis depth, d is the stenosis distance from
origin, z is the axial co-ordinate, and l0 is the stenosis length.

In this model, the blood nanofluid flowing is unsteady
and bidirectionally; the velocity and temperature can be
expressed as

Velocity: V � [u(r, z, t), 0, w(r, z, t)],

Temperature: T � T(r, z, t).
, (2)

where u and w have denoted the of components radial and
axial velocities. With these frameworks, the governing flow
equations are written as follows (Zaman et al. [5], Tripathi
et al. [6, 45], Das et al. [7], and Rathore and Srikanth [16]):
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In the foregoing equation, α is the angle parameter, Q0 is
the constant heat source parameter, B0 is the uniform
magnetic field, ρhnf is the density, t is the time, p is the
pressure, r is the radial coordinate, khnf is the thermal
conductive, μhnf is the dynamic viscosity, T is the temper-
ature, chnf is the thermal expansion, g is the gravitational
acceleration, σhnf is the electrical conductivity, (Cp)hnf is the
specific heat capacity, and subscript hnf is the hybrid
nanofluid.

�e relevant limiting conditions are expressed
as follows:

w(R, t) � 0,
zw(0, t)

zr
� 0, w(r, 0) � 0,

T(R, t) � 1,
zT(0, t)

zr
� 0, T(r, 0) � 0.

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (7)

�e governing nonlinear flow equations are transformed
by suitable nonsimilar variables, which are shown as follows
(Zaman et al. [5] and Tripathi et al. [6, 45]):

r �
r
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z
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R
2
0P

U0l0μf

,
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l0u

δ∗U0
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w
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R
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U0t
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w |r=R = 0, T |r=R = 1

(дw/дr) | r=0 = 0, (дT/дr) | r=0 = 0

α Au Nanoparticles

Cu Nanoparticles

Heat Source

Figure 1: Physical configuration of the problem.

Table 1: Values of the various physical parameters (blood, gold and copper) (Das et al. [7], Koriko [39], and Kumar and Srinivas [40]).

Physical properties Blood Gold (Au) Copper (Cu)
ρ (kg/m3) 1063 19320 8933
Cp (J/kgK) 3594 129 385
c × 10− 5 (K− 1) 0.18 1.4 1.67
k (W/mK) 0.492 314 401
σ (S/m) 6.67 × 10− 1 4.10 × 107 59.6 × 106
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Here, U0 is the reference velocity, Gr � gρfR2
0cf(Tw −

T1)/U0μf is the Grashof number, Tw is the wall temperature,
Ma �

�����
σf/μf

􏽱
B0R0 is the Hartmann number, ε � R0/l0 is the

vessel aspect ratio, Pr � (Cp)fμf/kf is the Prandtl number,

δ � δ∗/R0 is the stenosis height parameter, and
Re � U0ρfR0/μf is the Reynolds number.

By employing the above variables in equations (3)–(6),
the transformed equations are as follows:
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Usually, in a biological system, the viscosity of blood is
not constant in all cases since it varies due to several factors
such as hematocrit ratio, vessel width, temperature, and axial
or radial coordinates. Such a viscosity variation causes
several reality cases, including decreasing blood thickness,
rising of blood circulation, lowering coagulation factors, and
maximizing blood flow. To capture these behaviours, in this
model, the blood nanofluid viscosity is considered depen-
dent on fluid temperature, which is given as (Zaman et al.
[5])

μf(θ) � μ0e
− η0θ, where e

− η0θ � 1 − η0θ, η0≪ 1, (10)

where η0 is the viscosity constant.
�e density, thermal conductivity, electrical conduc-

tivity, thermal expansion, dynamic viscosity, and specific
heat capacity of the nanofluid and hybrid nanofluid are
(Tripathi et al. [6] and Das et al. [7])

ρnf � ϕρs +(1 − ϕ)ρf, σnf � σf
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where μf, σf, (Cp)f, ρf, cf, and kf are the viscosity, elec-
trical conductivity, specific heat capacity, density, thermal
expansion, and thermal conductivity of the base fluid,
(ϕ1,ϕ2) is the nanoparticle volume fraction, subscript
s1, bf , and s2 are the first solid particle, base fluid, and second
solid particle.

It is observed that compared with the artery radius, the
stenosis maximum height is small, and the further length of
the stenotic region and artery radius is of comparable
magnitude. �erefore, the dimensionless flow equations are
minimized with the following hypothesis δ≪ 1 and
ε � O(1). By employing these hypotheses, the reduced
equations are
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ρCp􏼐 􏼑
f

⎛⎝ ⎞⎠
kf

khnf
􏼠 􏼡Pr

zθ
zt

􏼠 􏼡 �
z
2θ

zr
2 +

1
r

zθ
zr

􏼠 􏼡 +
kf

khnf
􏼠 􏼡β,

R(z) �

1 − 2δ∗ cos
(z − d)

2
−
1
4

􏼠 􏼡2π􏼠 􏼡 − cos z − d −
1
2

􏼒 􏼓32π􏼒 􏼓
7
100

􏼒 􏼓􏼢 􏼣, d< z< d + 1

1, otherwise

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(12)

According to Burton [48], the pulsatile pressure gradient
is denoted as

−
zp

zz
� A0 + A1t cos 2πwp􏼐 􏼑, t> 0, (13)
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where A0 represents the mean pressure gradient and A1
represents the amplitude of the pulsatile component that
controls systolic and diastolic pressures.

By employing (8) in (13), the simplified equation is

−
zp

zz
� B1 1 + e cos c1t( 􏼁( 􏼁, (14)

where e � A1/A0, B1 � A0a
2/μ0U0 and c1 � 2π awp/U0.

Incorporating the (14) in the blood hybrid nanofluid
axial velocity, one can get:

Re

ρhnf
ρf

􏼠 􏼡
zw

zt
􏼠 􏼡 � B1 1 + e cos c1t( 􏼁( 􏼁 +

1
r

z

zr

rμhnf(θ)

μ0

zw

zr
􏼠 􏼡􏼠 􏼡

+
(ρc)hnf

(ρc)f

􏼠 􏼡Grθ sin(α) −
σhnf
σf

M
2
aw.

(15)

�e set of equations are transformed in the radial co-
ordinate (x � r/R(z)) form since the governing flow
equations are incorporated with limiting conditions:

Re

ρhnf
ρf

􏼠 􏼡
zw

zt
􏼠 􏼡 � B1 1 + e cos c1t( 􏼁( 􏼁 +

μhnf(θ)

μ0
􏼠 􏼡

1
R
2

z
2
w

zx
2 +

1
x

zw

zx
􏼠 􏼡 +

(ρc)hnf

(ρc)f

􏼠 􏼡

Grθ sin(α) −
σhnf
σf

M
2
aw,

ρCp􏼐 􏼑hnf

ρCp􏼐 􏼑
f

⎛⎝ ⎞⎠
kf

khnf
􏼠 􏼡RePr

zθ
zt

􏼠 􏼡

�
1

R
2

z
2θ

zx
2 +

1
x

zθ
zx

􏼠 􏼡 +
kf

khnf
􏼠 􏼡β.

(16)

�e radial coordinate form of boundary conditions
are

x � 0:
zw(0, t)

zx
� 0,

zθ(0, t)

zx
� 0,

x � 1: w(1, t) � 0, θ(1, t) � 1,

t � 0: w(x, 0) � 0, θ(x, 0) � 0.

(17)

Wall shear stress (τs), the Nusselt number (Nu∗),
volumetric flow rate (QF), and resistance impedance (λ) of
the present model are written as

τs � −
1

R(z)

zw

zx
􏼠 􏼡

x�1
,

Nu∗ � −
1

R(z)

zθ
zx

􏼠 􏼡
x�1

,

QF � (R(z))
22π 􏽚

1

0
wx dx􏼠 􏼡,

λ � L
(zp/zz)

QF

􏼢 􏼣 � L
B1(1 + e cos(2πt))

(R(z))
22π 􏽒

1
0 wx dx􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (18)

3. Numerical Method

�e FTCS (forward time central space) finite-difference
technique is employed to solve the present mathematical
model’s nonlinear coupled dimensionless flow equations
subject to the appropriate initial and boundary condition. A
rectangular region of the flow field is chosen in the explicit
approach.�e region is divided into a grid of lines parallel to
axes, and it is displayed in Figure 2. �e spatial domain is
first discretized in this approach and after that the velocity
and temperature values are obtained from each node xj.
Besides, instant step ti is found over the time. �e first
derivative is discretized by forward differencing and the
second derivative for central differencing. �e N + 1 steps
are used to discretize the spatial variable with the Δx/N + 1
step size. ti expresses the time change, and ti � Δt(i − 1)

finds its value. It is noticed that the Δt is a small difference in
time. �e blood velocity and the temperature are calculated
in a different time step.

zw

zt
�

w
i+1
j − w

i
j

Δt
;
zθ
zt

�
θi+1

j − θi
j

Δt

zw

zx
�

w
i
j+1 − w

i
j−1

2Δx
;
zθ
zx

�
θi

j+1 − θi
j−1

2Δx

z
2
w

zx
2 �

w
i
j+1 − 2w

i
j + w

i
j−1

2Δx
;
z
2θ

zx
2 �

θi
j+1 − 2θi

j + θi
j−1

2Δx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

By employing the above expression, the discretized form
of equations is written as follows:
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w
i+1
j � w

i
j +

Δt
Re 1 − ϕ2 1 − ϕ1( 􏼁 + ϕ1 ρs1

/ρf􏼐 􏼑􏽨 􏽩 + ϕ2ρs2
/ρf􏼐 􏼑

B1 1 + e cos c1t
i

􏼐 􏼑􏼐 􏼑 +
1 − η0θ

i
j􏼐 􏼑

1 − ϕ1( 􏼁
2.5 1 − ϕ2( 􏼁

2.5

1
R
2􏼠 􏼡

z
2
w

zx
2 +

1
x

zw

zx
􏼠 􏼡

+ 1 − ϕ2 1 − ϕ1( 􏼁 + ϕ1
(ρc)s1

(ρc)f

􏼠 􏼡􏼢 􏼣 + ϕ2
(ρc)s2

(ρc)f

􏼠 􏼡

Grθ
i
j sin(α) −

σhnf
σf

M
2
aw

i
j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

θi+1
j � θi

j +
khnf /kf􏼐 􏼑Δt

RePr 1 − ϕ2 1 − ϕ1( 􏼁 + ϕ1 ρCp􏼐 􏼑
s1
/ ρCp􏼐 􏼑

f
􏼒 􏼓􏼔 􏼕 + ϕ2 ρCp􏼐 􏼑

s2
/ ρCp􏼐 􏼑

f
􏼒 􏼓

1
R
2

z
2θ

zx
2 +

1
x

zθ
zx

􏼠 􏼡 +
kf

khnf
􏼠 􏼡β􏼨 􏼩.

(20)

With the boundary conditions are

w
1
j � θ1j � 0, at t � 0,

w
i
j+1 � w

i
j, θ

i
j+1 � θi

j, atx � 0,

w
i
N+1 � 0, θi

N+1 � 1, atx � 1.

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (21)

�e stability of this scheme completely depends on time
increment (Δt) and step size (Δx); thus, Δt � 0.0001 and
Δx � 0.025 are fixed to tackle the stability condition. Several
studies [5, 6, 43, 45, 46] proved that these values are suitable
for stability and convergence of the FTCS approach. Further,
Hoffmann’s book [43] exposed that the above-used time and
spatial values confirm this scheme’s stability and conver-
gence. Figure 3 (a) and Figure 3 (b) shows the local error
and sum of time and space error on the dimensionless
radius, respectively. From these figures, it is observed that
the velocity and temperature of blood maintain 10− 10 error

at each spatial node. As similar, the sum of time and space
error is 10− 6. �is is evidence that the current numerical
approach provides efficient results. �e FTCS approach has
been employed in numerous previous simulations, including
heat transfer enhancement for solar energy absorber in a
permeable annular [49], the blood flow of viscoelastic fluid
in tapered overlapping even stenosed artery [50], and the
exploration of nano-Bingham-Papanastasiou fluid in a
diseased curved artery [51]. �e studies manifest above have
extensively validated that the FTCS approach is efficient for
blood flow computation in complex geometries.

4. Results and Discussion

�is section affords the physical aspects of emerging pa-
rameters like variable viscosity (η0 � 0, 0.1, 0.3, 0.5), con-
stant heat source (β � 0, 0.3, 0.6, 0.9), angle parameter
(α � 0, π/6, π/4, π/2), the Hartmann number

t

i + 2

j – 1

∆t ∆x

x

j + 1j

i + 1

i

Time – marching direction

Properties at level i+1 to be
calculated from known at level i

Properties known at
time level i

Figure 2: Finite difference space grid.
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(Ma � 1, 2, 3, 4), the Grashof number (Gr � 0, 0.1, 0.3, 0.5),
the Reynolds number (Re � 2, 3, 4, 5), and nanoparticle
volume fraction (ϕ1 + ϕ2 � 0.01, 0.02, 0.03, 0.05) on the
biomagnetic blood hybrid nanofluid velocity (w), temper-
ature (θ), resistance impedance (λ), wall shear stress (τs),
the Nusselt number (Nu∗), and volumetric flow rate (QF).
�e parametric values [4, 5, 6, 46] such as B1 � 1.41, d � 0.5,

δ∗ � 0.1, e � 0.5, Pr � 14, c1 � 1, β � 0.1, Gr � 0.5, Re � 2,

Ma � 0.5, α � π/2, η0 � 0.2, ϕ1 � 0.025, and ϕ2 � 0.025 are
considered for computation. In this model, the significance
of gold-copper hybrid nanofluid and copper nanofluid
characteristics is analyzed via graphs. �e system of
equations is reduced with the help of nonsimilar variables,
and FTCS obtains the solution. For obtaining scheme
validation, the present result is compared with earlier re-
sults in Table 2. It is witnessed that the present results are in
valid agreement. It is essential to note that the hybrid
nanofluid turns into a mono nanofluid in the absence of
gold nanoparticles (ϕ1 � 0). To show the variation in fig-
ures, the solid line is used for the hybrid nanofluid case, and
the dashed line is used for the nanofluid case. �e be-
haviour of the base fluid, nanofluid, and hybrid nanofluid
on temperature is compared in Table 3. �is table shows
that the blood base fluid generates a lower temperature
than the nanofluid and hybrid nanofluid cases.

Variation of the Reynolds number (Re) on biomagnetic
blood hybrid nanofluid axial velocity and temperature is
visualised for hybrid nanofluid and Cu nanofluid cases in
Figures 4 and 5, respectively. In this study, due to the laminar
flow case, meagre Reynolds numbers are assumed, so the
viscosity is dominant in the regime. It is clear from these
figures that the biomagnetic blood axial velocity significantly
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Figure 3: (a) Local error on w and θ. (b) Sum of time and space error on w and θ.

Table 2: Validation of biomagnetic blood axial velocity with
Zaman et al. [5] and Tripathi et al. [6].

R Zaman et al. [5] Tripathi et al. [6] Present result
0 0.5859 0.5881 0.58900
0.1 0.5829 0.5845 0.58289
0.2 0.5725 0.5725 0.57170
0.3 0.5540 0.5518 0.55339
0.4 0.5261 0.5215 0.52593
0.5 0.4864 0.4802 0.48727
0.6 0.4323 0.4257 0.43843
0.7 0.3605 0.3549 0.37083
0.8 0.2671 0.2637 0.27891
0.9 0.1483 0.1473 0.15715
1.0 0 0 0

Table 3: Comparison of base fluid, nanofluid, and hybrid nanofluid
on temperature.

R

Temperature
Blood

basefluid
Cu/blood
nanofluid Au-Cu/blood hybrid nanofluid

0 0.060607 0.092054 0.093989
0.1 0.067032 0.099859 0.101855
0.2 0.087374 0.124016 0.126176
0.3 0.124622 0.166525 0.168902
0.4 0.182908 0.229936 0.232505
0.5 0.266231 0.316289 0.318937
0.6 0.376797 0.425898 0.428428
0.7 0.513356 0.556286 0.558456
0.8 0.670114 0.701653 0.703227
0.9 0.836782 0.853146 0.853959
1.0 1 1 1
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reduces while growing values of Re. Further, blood tem-
perature experiences a similar nature. �e lower value of Re

(Re � 2) exhibits less impact on the blood velocity and
temperature; however, its magnitudes variation is higher by
growing Re(Re � 4, 6, 8). Due to stenosis prohibition and
nanoparticles, blood flow reduction occurs in the channel,
even though the Reynolds number promotes the inertial
force. Due to this reason, biomagnetic blood velocity and
temperature are behaving with the impact of Re.

Figures 6 and 7 demonstrate the characteristics of
nanoparticles volume fraction (ϕ1 + ϕ2) on blood

velocity and temperature in hybrid nanofluid and
nanofluid cases. It is seen from Figure 6 that the aug-
mentation of gold-copper (ϕ1 + ϕ2) nanoparticle con-
centration and copper (ϕ2) nanoparticle concentration
from 0.01 to 0.05 tends to promote the blood velocity in
the artery. �is characteristic of hybrid nanofluid is
predominant to clinicians because it may help to pro-
mote the blood flow in the capillary tubes and stenosis
during surgery. Figure 7 is drawn to discuss the be-
haviour of nanoparticles volume fraction (ϕ1 + ϕ2) on
blood temperature. An increment in nanoparticles
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Figure 4: Behaviour of Re on w.
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volume fraction remarkably elevates the blood temper-
ature. Further, coupling the gold nanoparticle (ϕ1) with
copper nanoparticles (ϕ2) highly contributes to blood
temperature growth than copper nanoparticles suspen-
sion in the blood. It is revealed from this figure that the
thermal diffusion of blood rises with nanoparticles in the
stenotic vessel, which leads to elevating the transport
process. �ese results show that the hybrid nanoparticles
and copper nanoparticles help to accelerate the blood
flow in the regular and irregular stenosis artery region.

Figure 8 is plotted to exhibit the influence of the
Hartmann number (Ma) on blood velocity. In the case of
Ma � 0, the biomagnetic blood nanofluid behave as a
nonmagnetic blood nanofluid. It is found that the fluid
momentum has a higher magnitude difference for Ma values
1–5. �e gold and copper nanoparticles are highly dragged
with the strength of Lorentz force in the artery.�is creates a
resistive behaviour in the blood flow. Due to this reason,
blood velocity declines. Further, it is noticed that the present
outcome accords with the results of Das et al. [7].�e greater
diffusion of nanoparticles is the prime objective in medical
applications, so that this characteristic of Ma is remarkable
in synthesising bio-nanomaterials. Also, due to the char-
acteristic of the magnetic field, it is employed to control the
blood flow in the artery. It can be used to treat several
cardiovascular diseases as an effective tool. In particular, this
may be useful in wound treatments and pharmacological, for
instance, healing skin contusions and burns.

Figure 9 explores the changes of the Grashof number
(Gr) on blood hybrid nanofluid axial velocity. An increase in
Gr causes to lift the blood velocity for both the hybrid and
unitary nanofluid cases. It is noted that Gr is the ratio be-
tween buoyancy force and viscous force. �e concentration
differences of nanoparticles tend to grow the diffusion of
nanoparticle species in the blood. �us, the thermal
buoyancy force increases in the channel, whereas viscous
force decreases. As a result, the blood velocity rises. Fig-
ures 10 and 11 demonstrate the nature of constant heat
source (β) on blood velocity and temperature. In the
channel, the generation of energy takes place as a result of
the increase of β. �e gold and copper nanoparticles are
energized with the impact of β. Besides, the heat slightly
triggers the buoyancy force. �erefore, the blood nanofluid
and hybrid nanofluid velocity and temperature increases.
Figure 12 displays the influence of changing viscosity pa-
rameter (η0) on blood velocity. It is observed that it has the
same characteristic as Gr on fluid velocity. Physically, the
viscosity of the blood lessens owing to the rising values of η0.
As a consequence, blood velocity is accelerated. Numerous
values of angle parameter (α) on biomagnetic blood
nanofluid velocity is displayed in Figure 13. It is evident that
the blood velocity augments with the increasing values of α.
In this model, α is incorporated with the thermal buoyancy
term in the momentum equation. �erefore, when α is
absent, it eliminates the thermal buoyancy effect in the
regime. Further, rising the α highly enhances the buoyancy
effect, and it accelerates the blood velocity.

Figures 14–17 depict the influences of the Grashof
number (Gr), angle parameter (α), the Reynolds number
(Re), and the Hartmann number (Ma) on volumetric flow
rate (QF) for hybrid and single nanofluid cases. It is cleared
that the integration of variable blood velocity concerning the
channel radial direction is known as volumetric flow rate.
Besides, the volumetric flow rate reveals the nature of the
axis velocity. �e impacts of Ma and Re on volumetric flow
rate are illustrated in Figures 14 and 15. It is confirmed that
Ma and Re highly reduce the axial blood velocity (see
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Figures 4 and 8). Ma and Re follow the same behaviour
expressed in axial blood velocity on the volumetric flow rate.
�e response in volumetric flow rate to Gr and α parameters
is provided in Figures 16 and 17. From these figures, it is
clear that both the parameters have a similar trend. �e
amplification in Gr and α tends to enhance QF. Further, the
absence of Gr and α expresses a lower QF; however, mag-
nifying these parameters manifests a greater QF in the artery.

�e behaviours of the Grashof number (Gr), angle
parameter (α), changing viscosity parameter (η0), and the
Hartmann number (Ma) on the wall shear stress (τs) are
sketched in Figures 18–21. It is evident that endothelial
proliferation and turbulent flow happen in the system when
low shear stress occurs. Besides, laminar flow happens with
high shear stress. Figure 18 shows the impact of Ma on wall
shear stress. When this term is magnified, the wall shear
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stress is reduced. It is revealed that the magnetic field plays a
major role to maintain a laminar flow in the system.
Figures 19–21 are drawn to explore the influences of Gr, α,
and η0 on wall shear stress. �ese figures show that higher
values of Gr, α, and η0 result in increasing the wall shear
stress for nanofluid and hybrid nanofluid cases. It is cleared

from these figures that wall shear stress (τs) is highly
sensitive to copper (ϕ2) nanoparticles rather than gold-
copper (ϕ1 + ϕ2) hybrid nanoparticles.

Figures 22 and 23 present the effects of the Hartmann
number (Ma) and angle parameter (α) on resistance
impedance. �e resistance impedance is inversely related
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to the flow rate, which is exhibited in (18). Magnifying the
magnetic field (Ma) slowdown the resistance impedance
in the artery, whereas the opposite trend is found for α.

�is flow pattern exhibits that the growing magnetic field
declines the impedance of the blood rheology. Further,

the magnetic field behaves like a controlling parameter to
tune the impedance effects. �is result shows that con-
trolling the blood movement in the artery thus help to
stabilize the patients instantly. Figures 24 and 25 exhibit
the changes in blood flow rate for several values of the
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Hartmann number (Ma) and angle parameter (α). It is
cleared that the flow rate in the axial coordinate is ele-
vated with the increasing values of α, whereas a reverse
trend is found for Ma. �e influences of ϕ1, ϕ2, and β
on the Nusselt number (Nu∗) are depicted in Figures 26

and 27, respectively. It is ascertained that the Nusselt
number is highly improved with the impacts of ϕ1,ϕ2, and
β . Further, it is clear that the hybrid nanofluid has a
supreme heat transfer rate than the copper nanofluid
case.
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5. Conclusions

�e impacts of changing viscosity and Lorentz force on the
biomagnetic hybrid nanofluid flow through an inclined
irregular stenosis artery have been scrutinized in this study.
To exhibit the characteristics of hybrid nanofluid, the vol-
ume fraction model is adopted. �e mild stenosis approx-
imation is considered to simplify governing flow equations.
�e nondimensionalized flow equations are solved by
deploying a finite-difference approach. �e present nu-
merical solution is validated with Zaman et al. [5] and
Tripathi et al. [6] for various axial velocity values, which is

portrayed in Table 2. From this Table 2, it is evident that the
adopted numerical method has a decent agreement. Vari-
ations caused by the influences of growing parameters on
blood hybrid nanofluid velocity, temperature, and physical
quantities (wall shear stress, resistance impedance, flow rate)
are shown through graphs. �e preeminent findings of the
present analysis are itemized as follows:

(I) It is cleared that the hybrid nanoparticles have a
better fluid flow and heat transfer than the unitary
nanoparticles

(II) �e hybrid nanoparticle and copper nanoparticle
volume fraction promote the axial velocity and
temperature of the blood

(III) �e hybrid nanoparticles express a supreme flow
rate than the copper nanoparticles

(IV) In the absence of the Grashof number and angle
parameter, the wall shear stress and flow rate have
similar trends for hybrid nanofluid and copper
nanofluid cases

(V) �e variable viscosity parameter exhibits the peak
magnitude on wall shear stress by magnifying
values

(VI) In the 2.5-to-3.5-time region, the Hartmann
number and angle parameter manifest a greater
resistance impedance on the blood hybrid
nanofluid flow

(VII) Variable viscosity, heat source/sink, and angle
parameter cause to enhance the blood hybrid
nanofluid velocity

(VIII) �e blood axial velocity in the stenosis artery
decreases by means of the growing Reynolds
number
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In this paper, a three-dimensional chaotic system with a line equilibrium is studied, in which a single nonbifurcation parameter is
used to control the amplitude and frequency. A variety of chaotic signals can be modified using the amplitude-frequency control
switch. (e realization of circuit simulation based on multisim further verifies the theoretical analysis. Finally, the method for
encrypting color images is tested, and the process performance is valued. It shows that the novel chaotic oscillation has a
promising application prospect in image encryption.

1. Introduction

Since chaos was first modeled by Edward Norton Lorenz in
1963 [1], great attention has been attracted for the reason
that in such deterministic systems, chaos refers to the
presence of seemingly random irregular motion [2]. In fact,
chaos is a universal phenomenon in nonlinear systems and
an inherent property of nonlinear dynamic systems. Chaos
is a fundamental concept in nonlinear systems, and it is
frequently used to characterize phenomena including bi-
furcation and periodic motion [3, 4]. It is found that a
chaotic system will display bifurcation under specific pa-
rameters and that periodic and aperiodic motion can be-
come entangled. Many famous 3-D chaotic systems have
been proposed, including Arneodo systems, Sprott systems,
Chen systems, Lv-Chen systems, Cai systems, and T sys-
tems [5–8]. A chaotic circuit is a significant research topic
and an important representation of chaos. Chua proposed
the first chaotic circuit in 1984 [9–12], trying to bridge the
gap between chaos theory and chaotic circuits. People have
performed significant research on chaos theory and pro-
duced numerous novel breakthroughs in recent years as a
result of the wide application of chaos [13–17]. For

information encryption, chaotic sequence signals have a
significant application value. Chaos has been extensively
applied for many aspects due to the intricate relationship
between chaos and cryptography, and significant ad-
vancement has been performed in this area. Because of the
irregularities and unpredictability of chaotic signals, chaos
and corresponding fundamental systems have received a lot
of attention [18–24]. A high-dimensional system’s chaotic
dynamics seem to be more complex, and sometimes, they
show hyperchaos for more than two positive Lyapunov
exponents [25, 26]. (erefore, it has been proven that
chaotic signals can contribute to enhancing the security of
chaos-based communication as well as digital encryption.
Furthermore, a hidden chaotic attractor is an important
phenomenon found ten years ago. (e hidden oscillation
has received a lot of attention because of its potential threat
and possible applications. Finding hidden chaotic attrac-
tors in nonlinear dynamical systems has become a major
issue in nonlinear dynamical system research [27–29].
Many hidden attractors have been found in memristive
systems [30] and hyperchaotic systems [31]. However,
there is not much attention on hidden attractors with
amplitude-frequency control. Recently, Wang et al. [32]
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studied the amplitude control and encryption application
of chaotic signal, and they found that modular circuit cells
with systematically configured parameters are useful for
implementing multipiecewise Chua’s diode. Wang et al.
[33, 34] also studied the hidden oscillations in Chua’s
circuit and modified Sprott-A systems, where all the basins
of attraction are not intersected with any equilibrium point
indicating hidden attractor.

In this paper, a chaotic system with a line of equilibrium
points is focused on, where the attractor stands in the region
with negative y, and thus, the basin of attraction does not
intersect with all equilibrium points indicating hidden
attractor. Furthermore, the amplitude and frequency of
hidden oscillation can be controlled by a single knob. Circuit
implementation shows the convenience of amplitude-fre-
quency control of the chaotic signal. Image encryption
proves the merits of this system.(e remaining of this paper
is organized as follows. In Section 2, the system model is
elaborated. In Section 3, the dynamics of the system are
analyzed. In Section 4, the system is implemented in a
simulated circuit. Finally, a chaotic system is applied to
image encryption. (e conclusions are presented in the last
section.

2. A Novel Hidden Attractor

In reference [35], the 3-dimensional chaotic system is ar-
ticulated as

_x � cy + y
2

− ayz,

_y � −z
2

+ byz,

_z � xy.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

(e system state variables are x, y, and z, while the
constants a, b, and c are the real coefficients, with dots

representing a derivative of time t. When a� 0.9, b� 1, c� 1,
and IC� (2, −2, 2), the system (1) exhibits chaos in the region
with negative y, as shown in Figure 1. (ere are six terms in
this new system, with two nonlinear items. (e Lyapunov
exponents are L1 � 0.1314, L2 � 0, and L3 � −0.8453.

3. Dynamical Analysis

3.1. Equilibrium Points. Let _x � _y � _z � 0. (e equilibrium
points of the system can be calculated as

cy + y
2

− ayz � 0,

−z
2

+ byz � 0,

xy � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

EO � x, 0, 0,

E1 � 0, −c, 0,

E2 � 0,
c

ab − 1
,

bc

ab − 1
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where a� 0.9, b� 1, and c� 1. Solving this equation, the
dynamical system (1) has three nontrivial equilibrium points
in (2) which is independent of the value of the parameters a,
b, and c.

J �

0 c + 2y − az −ay

0 bz by − 2z

y x 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (4)

As |J − λI| � 0, the characteristic equation is

det(J − λI) � −aλy
2

+ 2ayz
2

+ bcy
2

+ bλ2z + bλxy + 2by
3

− 2cyz − λ3 − 2λxz − 4y
2
z � 0. (5)

In the Jacobian matrix of system (1), the equilibrium
point E is defined as

J EO( 􏼁 � J E1( 􏼁 � J E2( 􏼁 �

0 c + 2y − az −ay

0 bz by − 2z

y x 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

(e eigenvalues of the matrix at the equilibrium point
can be determined as follows:

EO: λ1 � 0; λ2 � 0; λ3 � 0,

E1: λ1 � −0.7113; λ2 � 0.3556 + 1.1311i; λ3 � 0.3556 − 1.1311i,

E2: λ1 � 0.9911; λ2 � −5.4956 + 8.4079i, λ3 � −5.4956 − 8.4079i.

⎧⎪⎪⎨

⎪⎪⎩
(7)

(e eigenvalues of the system are obtained while a� 0.9,
b� 1, and c� 1. (e obtained all eigenvalues are given in
Equation (7). (e equilibrium E1(0, −c, 0) is a saddle-focus

point of index-2; therefore, this equilibrium point E1 is
unstable, and we can see in E2 that λ1 is a positive real
number, and λ2 and λ3 are a pair of complex conjugate
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eigenvalues with a negative real number. (e equilibrium
E2(0, c/ab − 1, bc/ab − 1) is a saddle-focus point of index-1;
therefore, this equilibrium point E2 is also unstable.

3.2. Dissipativity Analysis. Inference µ is a region in the
horizontal surface A3, and V(t) is set to be the volume of
µ(t).

Here, we obtain

_V(t) � 􏽚
∞

μ(t)
(∇ × F)dxdydz. (8)

(erefore, the dissipativity of the proposed chaotic
system is

∇ × F �
z _x

x
+

z _y

y
+

z _z

z
,

�
z cy + y

2
− ayz􏼐 􏼑

x
+

z −z
2

+ byz􏼐 􏼑

y
+

z(xy)

z

� 0 + bz + 0 � z � c,

(9)

where F is the 3-dimensional chaotic system, and b and z are
the real parameters. (e above equation is rewritten as

_V(t) � 􏽚
∞

μ(t)
cdxdydz � cV(t). (10)

(erefore, we can obtain V(t) � ecV(0); if ∇ × F< 0,
then system (1) is dissipative and the state of the system is
bounded by the state of the system (when a� 0.9, b� 1, and
c� 1).

3.3. Amplitude and Frequent Control. In system (1), pa-
rameter c is a single knob for amplitude and frequency
control. Let x⟶ mx, y⟶ my, z⟶ mz, t⟶ t/m
(m> 0); then, system (1) turns to be

_x �
c

m
y + y

2
− ayz,

_y � −z
2

+ byz,

_z � xy,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

indicating that the parameter c can control the amplitude
and frequency of all variables x, y, and z, as shown in
Figure 2. In Figure 3(a), when the linear coefficient c is
increased, system (1) keeps the chaotic state of all the time
and the chaotic area continue to increase. (e rescaled
amplitude and frequency can also be proved by Lyapunov
exponents, as shown in Figure 3(b).

4. Circuit Implementation

Circuit verification is also an essential step in the imple-
mentation of the proposed chaotic system to ensure its
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Figure 1: Chaotic attractor of system (1) with a� 0.9, b� 1, and c� 1 under initial condition IC� (2, − 2, 2): (a) (x)-(y), (b) (x)-(z), (c) (y)-(z),
and (d) (x)-(y)-(z).
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correctness. Meanwhile, the key issue in the circuit is how to
implement a circuit expression for a 3D chaotic system by
converting and transforming it into a realistic circuit using
electronic devices such as capacitors and resistors. To au-
thenticate the efficiency of our proposed 3-dimensional
chaotic system, the circuit implementation is designed and
simulated with the NI multisim circuit simulation software,
and the simulation results are detailed in this section.

For this circuit construction, it is transformed to be

_x �
1

R1C1
y +

1
R2C1

y
2

−
1

R3C1
yz,

_y � −
1

R4C2
z
2

+
1

R5C2
yz,

_z �
1

R8C3
xy.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

A chaotic system is defined as a system that has several
causes and multiplication, addition, and differentiation, and
differentiation exists in the system equations, and a realistic

expression of this system is obtained utilizing a summation,
an integrator, and a transformer. (e relevant circuit
implementation is depicted in Figure 4 based on the above
explanations. (e state variables x, y, and z in the system (1)
correspond to the state voltages of the capacitors C1, C1, and
C3 in the simplified circuit, and the corresponding circuit
components can be selected as follows: V1 � V2 � 15V,
C1 � C2 � C3 � 10nF,
R1 � R2 � R4 � R5 � R6 � R7 � R8 � 100kΩ, R3 � 106kΩ;
LM741CN is selected as an operational amplifier; there is a
general time scale 1000 for better displaying in the
oscilloscope.

Figure 5 shows the phase trajectory of the system (1) in
the analog oscilloscope. (e area of the phase track will
change with the organization of the resistance R1, as shown
in Figure 5(d).

5. Application in Image Encryption

(e chaotic system with a linear equilibrium in this section
has a higher level of unpredictability, a larger keyspace, and a
higher level of complexity, all of which make the encryption
stronger secure in concept.
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Figure 2: Rescaled attractor of system (1) with a� 0.9, b� 1, and initial values (2, −2, 2) under the parameter c: (a) (x)-(y) and (b) signal x (t).
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5.1. Encryption Application with a Chaotic System. (e
control parameters and initial conditions of the system are
(Table 1) μ� 3.9999 and x0 � 0.6209, respectively, and a
standard color image is chosen for testing, as illustrated in
Figure 6. (e new chaotic system parameters are a� 0.9,
b� 1, and c� 1. (e initial conditions are set as
X0 � 0.7361, Y0 � 0.4663, Z0 � 0.1501, and U0 � 0.7653.
Table 2 describes the selected keys that were chosen. M1 and
N1 are the zeroing parameters used throughout encryption;
k1 is the average gray level of G in the original image, and the
original image k2 is the average gray level of B. Figure 6(b)
shows the encrypted image after simulation. (e image after
encryption is chaotic and fundamentally different from the
image before processing, as it can be observed. (e properly
decrypted image, which can be seen in Figure 6(c), is
identical to the original image (Table 2).

5.2. Security Analysis. Secure analysis is the most essential
and fundamental requirement for an encrypted system. In
general, a chaotic image encryption algorithm requires a
substantial keyspace, reversible encryption and decryption,
strong antiattack characteristics, and the other perfor-
mances, and then the performance of chaos-based en-
cryption is the next to determine by using the following
eligibility requirements: keyspace analysis, histogram anal-
ysis, information entropy analysis, and correlation analysis.

5.3. Keyspace Analysis. (e keyspace can approach
(1016)10 � 10160, satisfying the security level of the keyspace
(greater than 2128) using a 64-bit processor, floating-point
precision up to 10− 16. (e modified system can be observed
to be more resistant to the attacker’s comprehensive attack.
(e decrypted image cannot be acquired accurately when the
algorithm key is changed slightly, as shown in Figure 7. As a
result, the new system has a high level of key sensitivity. (e
images used throughout the investigations are 256× 256
conventional images with a 23 � 8-bit grayscale.

5.4. Histogram Analysis. (e distribution of pixel intensity
values within an image is represented by a histogram. It can
be utilized to defend against statistical attacks.(e frequency
distribution of each gray level pixel can be visually displayed
using a gray histogram, which is a statistical analytical
method. (e histogram of the image becomes smooth even
after encryption, compared to the fluctuation before en-
cryption, thus preventing the attacker from accessing the
original image information through statistical analysis,
resulting in information leakage, and ensuring information.
Figures 8(a)–8(c) are the histograms of the original image,
and Figures 8(d)–8(f ) are the histograms of the encrypted
images. It is clear that the new system can withstand a more
powerful onslaught.

5.5. Information Analysis for Entropy. (e image’s infor-
mation entropy can be used to evaluate the level of
uncertainty and randomness in the image distribution of
its pixel gray value. Typically, the higher the image’s

entropy, the more consistent the image’s gray distribu-
tion. In a grayscale image, each pixel is coded in 8 bits. As
a result, an image’s maximum entropy value is 8. (e
information entropy of the encrypted image should be
near 8, which indicates the best amount of uncertainty,
owing to a decent encryption process. To compute the
information entropy, many users use the method as
follows:

entropyH(m) � − 􏽘
H

i�1
p xi( 􏼁log2 p xi( 􏼁, (13)

where p(xi) represents the probability of the occurrence of
the gray value xi and H indicates the gray level of the image.
(eoretically, for a completely random digital image with a
grayscale of 256 has an evenly distributed pixel value in [0,
255], then p(xi) � 1/256 (i ∈∈[0, 255]), and the estimated
information entropy is 8 bits. If the image is encrypted, the
closer the image’s information entropy is near 8, the better
the encryption features.

5.6. Correlation Statistical Analysis. On the one hand, the
correlation level of adjacent pixels is larger when the cor-
relation coefficient degree of adjacent pixels is higher. On the
other hand, the lower the correlation, the smaller the co-
efficient. As a result, calculating the correlation coefficient
can be justified the algorithm’s security. (e lower the
correlation and the advanced security, the smaller the co-
efficient. (e correlation coefficients were calculated from
the three channels (R, G, and B) with three directions:
horizontal, vertical, and diagonal, to measure the correlation
between the original image and adjacent pixels of the ci-
phertext image; N pairs of adjacent pixels were selected from
the image, and the correlation coefficients were calculated
from the three channels (R, G, B) with three directions:
horizontal, vertical, and diagonal. To equivalence the au-
tocorrelation of an unadorned and encrypted image, we have
calculated the correlation coefficient r of each pair of pixels
by using the following formula:

rXY �
cov(X, Y)
����������
D(X)D(Y)

􏽰 ,

E(X) �
1
N

􏽘

N

i�1
xi( 􏼁,

D(X) �
1
N

􏽘

N

i�1
xi − E(X)( 􏼁,

cov(X, Y) �
1
N

􏽘

N

i�1
xi − E(X)( 􏼁 yi − E(Y)( 􏼁,

(14)

where cov(X, Y) represents the correlation and autocorre-
lation function, X and Y are the grayscale values of two
adjacent pixels in the image, and N denotes the sample. E is
the expected value operator, and D(X) represents the
variance of the variable x. (e values of rXY lie in the range
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Table 1: Algorithm key.

Key μ x0 X0 Y0 Z0 U0 M1 N1 k1 k2

Value 3.9999 0.6209 0.7361 0.4663 0.1501 0.7653 0 0 0.4761 0.1255.

Figure 6: Encryption images: (a) original pepper image; (b) encryption pepper image; (c) decryption pepper image.

Table 2: (e information entropy of the three channels in the original and encrypted on the pepper image.

Image R channel entropy G channel entropy B channel entropy
Original picture 5.6871 7.6856 4.686
Encrypted image 7.9997 7.9997 7.9998

Figure 7: Initial condition perturbation ciphertext.
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Table 3: A correlation coefficient of two adjacent pixels in the original and encrypted on the pepper image.

Image Channel Horizontal Vertical Diagonal

Original image
B 0.98645 0.98782 0.97851
G 0.99529 0.99282 0.98965
R 0.99428 0.99168 0.98792

Encrypted image
B 0.00494 −0.02531 0.00540
G −0.01262 −0.01606 0.00444
R −0.00282 −0.01656 0.00919
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Figure 8: Histogram experiment images. (a–c) Histogram of the original image. (d–f) Histogram of the encrypted image.

Table 4: Correlation coefficient test result [36].

Image Channel Horizontal Vertical Diagonal

Original image
Red 0.97489 0.98660 0.96227
Green 0.97532 0.98731 0.96377
Blue 0.95167 0.97112 0.92931

Encrypted image
Red 0.00070 0.01175 0.01539
Green 0.00855 −0.01537 −0.01660
Blue 0.00122 0.00135 0.01235
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Figure 9: Correlation and autocorrelation of R channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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[−1, 1], with 1 indicating perfect correlation, −1 indicating
anticorrelation, and 0 representing no correlation.

Here, we can see from Table 3 that the correlation co-
efficients of the original image are all very close to 1, whereas
the correlation coefficients of the encrypted image are all

very close to 0, indicating that the encrypted image’s pixel
point distribution is very highly discrete.

If we compare Tables 3 and 4 with each other, we can see
some different points. In Table 3, the original correlation
coefficient values are average horizontal 99.2%, vertical
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Figure 10: Correlation and autocorrelation of G channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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Figure 11: Correlation and autocorrelation of B channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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99.07%, and diagonal 98.54%, and in Table 4, the original
correlation coefficient values are average horizontal 96.72%,
vertical 98.17%, and diagonal 95.18%, that is, the original
points in Table 3 are closer to 1 and the encrypted points are
also closer to 0 than Table 4. So, Table 3 indicates that the
encrypted points of distribution are highly discrete.

(e correlation and autocorrelation plots for each image
are shown in Figures 9–11. In Table 3, horizontal, vertical,
and diagonal directions provide their correlation and au-
tocorrelation coefficients. Table 3 also includes significant
data from references for comparison.

6. Conclusion

(e single nonbifurcation parameter of the system can ef-
fectively modify the amplitude and frequency of the dem-
onstrated three-dimensional chaotic system. Numerical
simulation and circuit experiment based on multisim agree
to each other by proving the phenomenon. As a typical
application, the property of image encryption is exhaustively
analyzed. With the chaotic signal from the new system, a
color image is well encrypted and decrypted in the keyspace.
Histogram and correlation of adjacent pixels are used for
showing the high encryption performance.
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new three-dimensional chaotic system with a cloud-shaped
curve of equilibrium points, its circuit implementation and
sound encryption,” International Journal of Modelling,
Identification and Control, vol. 30, no. 3, pp. 184–196, 2018.

[22] Z.Wei, V. T. Pham, A. J. M. Khalaf, J. Kengne, and S. Jafari, “A
modified multistable chaotic oscillator,” International Journal

10 Complexity



of Bifurcation and Chaos in Applied Sciences and Engineering,
vol. 28, no. 7, Article ID 1850085, 2018.

[23] A. Akgül, S. Kaçar, B. Aricıoğlu, and I. Pehlivan, “Text en-
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)e field programmable gate array (FPGA) implementation of the nonlinear resistor-capacitor-inductor shunted Josephson
junction (NRCISJJ) model and its application to sEMG (Surface ElectroMyoGraphic) signal encryption through image encrypted
technique are reported in this study. )anks to the numerical simulations and FPGA implementation of the NRCISJJ model,
different shapes of chaotic attractors are revealed by varying the parameters.)e chaotic behaviour found in the NRCISJJ model is
used to encrypt the sEMG signal through image encryption technique. )e results obtained are interesting and open up
many perspectives.

1. Introduction

Circuits based on Josephson Junction (JJ) devices received
particular attention in literature during the past two decades.
)is great interest is justified not only by the interesting
characteristics of JJ device including high working fre-
quency, low power consumption, and ultralow noise but also
by their exploitation for constructing important techno-
logical devices such as ultrahigh sensitive detectors, high-
density computer circuits, quantum-computing devices,
superconducting electronic devices (e.g., terahertz pulse
generator), and ultrahigh-speed chaotic signal generators

[1–8]. Concerning the last application, many works have
demonstrated the existence of chaos in several systems using
different models of JJ [9–15]. Among them, linear and
nonlinear resistor-capacitor-inductor shunted JJ models
(LRCISJJ and NRCIJJ) are the most investigated in the
relevant literature. )is is due to their fascinating properties
very suitable for high-frequency applications such as spread
spectrum communication systems. Dana et al. characterized
the chaotic dynamics in such models [9]. )ey reported
some interesting results on the modulation of chaotic os-
cillation in such devices by an external sinusoidal signal as
information. Control and synchronization of the NRCIJJ
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model using the backstepping design method are discussed
in [11, 12]. )e authors demonstrated that the employed
control method is capable to eliminate the chaotic behaviour
displayed by the NRCIJJ model and assureed the global
asymptotic synchronization between drive-response NRCIJJ
models with different system parameters. Remarkable nu-
merical computations were carried out to confirm the fea-
sibility of the developed control technique. Sifeu et al. [16]
studied the dynamics and synchronization of the NRCLJJ
model. )ey used the fractional-order form of the model to
develop an application to digital cryptography. Imple-
menting chaotic models with electronic devices has some
inconveniences due to the limitations of bandwidth of some
electronic devices such as operational amplifiers. To over-
come these limitations, the implementation of chaotic
models is carried out with FPGA and microcontroller de-
vices. In this regard, the authors of [17] analyzed and
implemented with FPGA a fractal JJ with unharmonic
current-phase relation. )ey applied the system under
scrutiny to chaos-based random number generator. Kadjie
et al. [18] discussed the implementation with micro-
controller of a NRCIJJ model and its applications in elec-
tromechanical engineering. )e real electrical signals
obtained from the implementation of the considered JJ
model have been exploited to power an electromechanical
pendulum.)e numerical simulations revealed periodic and
chaotic behaviours in the resulting system. Lai et al. pro-
posed letter reports. In this letter, the authors constructed an
interesting no-equilibrium chaotic system from the Lu
system. )e most striking feature of the new system is that it
has hidden attractors and coexisting attractors [19, 20]. In
[21], the authors investigated a 4D extended Lü system
which coexists multiple attractors with respect to different
initial conditions. Lai et al. [22] reported a new 4D chaotic
system with double memristors. )e numerical simulation
indicated that the system is capable of yielding infinite
coexisting attractors.

In recent years, considerable efforts have been devoted to
the designing and investigation of image encryption systems.
It is well known that image encryption is a useful technique
for secure transmission. )e objective of every image en-
cryption algorithm is to generate a noisy image’s having top-
quality capable to keep information secret [23, 24]. Several
image encryption algorithms have been proposed in relevant
works. For example, some algorithms used single low-di-
mensional chaotic systems, such as logistic map, tent map,
Baker map, and cat map, to encrypt images [25–29]. Wang
and Zhang investigated an image encryption algorithm
based on genetic recombination and 4D Lorenz-like
hyperchaotic systems [30]. Huang et al. [31] developed a
color image encryption algorithm using fractional-order
chaotic sequences.

Motivated by the above discussions, this study designs
and implements on FPGA a chaotic NRCISJJ model and
applies it to secure sEMG signal through image encryption
technique. )e innovation of this study is to show that it is
possible to secure a 1D signal using image encryption tech-
niques. To our knowledge, the literature devoted to securing
signals by encryption does not mention work on the

encryption of EMG signals. On the other hand, this same
literature mentions several works on the encryption of other
electrophysiological signals (EEG and ECG).)is lack of work
on sEMG encryption highlights the originality of this study.

)e study is articulated around four sections presented
as follows.)e FPGA implementation of the NRCISJJ model
is presented in Section 2. Section 3 focuses on its application
to secure surface electromyographic signals through image
encryption technique. Finally, the conclusion of the paper is
presented in Section 4.

2. FPGA Implementation of the NRCISJJ Model

)e NRCISJJ model is described by the following dimen-
sionless rate of equations [11]:

dx

dt
�

1
βc

[i − y − g(x)x − sin(z)],

dy

dt
�

1
βL

(x − y),

dz

dt
� x,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where t, x, y, and z represent the dimensionless time, the
voltage in the junction, the inductor current, and the phase
difference, respectively. )e parameter i is an external direct
current source and βC and βL are capacitive and inductive
parameters, respectively. )e function g(x) is a piecewise
function approximation by current voltage characteristic of
the intrinsic junction shunt resistor defined as

g(x) �
0.366, if |x|> 2.9,

0.061, if |x|≤ 2.9.
􏼨 (2)

System (1), describing the NRCISJJ model, is designed in
Xilinx system generator Simulink integrated in MATLAB.
)e blocks of Xilinx system generator tool kit used to design
system (1) are configured according to IEEE 754 standard as
32 bit (no. of bits) and 16 bit (binary bit) fixed point, where
the latency is set to zero.)e forward Euler’s algorithm is the
digital method used to design the integrator of system (1).

By using the Vivado design tool, the register-transfer
level (RTL) architecture required for implementation of
NRCISJJ model is presented in Figure 1.

Figure 1 is implemented in Kintex 7 XC7K325fFFG676-1
chip.)e discretized state equations of system (1) are given by

xm+1 � xm + h
i − ym−1 − g xm−1( 􏼁xm−1 − sin zm−1( 􏼁􏼂 􏼃

βC

,

ym+1 � ym + h
xm−1 − ym−1( 􏼁

βL

,

zm+1 � zm + h xm−1( 􏼁,

(3)

where βR, βL, βC, andi are the parameter values of system (1)
and the step size h � 0.01.
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)e results of numerical simulations and FPGA
implementation of NRCISJJ model are illustrated in
Figure 2.

Four different shapes of chaotic attractors are depicted
in Figure 2 for given values of parameters i, βC, and βL.
Moreover, in Figure 2, there is a good qualitative agree-
ment between the numerical simulations and FPGA
results.

3. Application of the Chaotic NRCISJJ Model to
Secure sEMG Signal Using Chaotic Logistic
Map Image Encryption Technique

)e proposed encryption technique is based on that used in
image encryption by the chaotic logistics map. Innovation
takes place in the chaotic sequence. Indeed, the chaotic
sequence of the logistic map is replaced in the algorithm by
the chaotic sequence of the NRCISJJ model.

)e NRCISJJ model is used as a chaotic sequence to
apply the sEMG signal encryption technique rather than the
chaotic logistic map sequence due to the sensitivity of its key.
During the simulation, we found that the key of the NRCISJJ
was more sensitive than that of the logistics map. )e
proposed sEMG signal encryption scheme is shown in
Figure 3.

)e method presented in Figure 3 consists in trans-
forming the sEMG signal (sEMG_1D) in the form of an
image (sEMG_2D). Several works have shown that the
manipulation of sEMG in 2D gives better results than sEMG
in 1D [32, 33]. )e 2D sEMG signal is easily manipulated for
pixel swapping. )e process of transforming sEMG_1D into
sEMG_2D used is described in [34, 35]. Once the signal is
transformed into two dimensions as a grayscale image, the
encryption algorithm is applied.

)e following lines summarize step by step the encrypted
proposed scheme of Figure 3.

Step 1 : transform the sEMG_1D signal into sEMG_2D
as a grayscale image

Step 2 : generate the chaotic sequence by the chaotic
NRCISJJ with the parameters: i � 1.15, βL � 3,
and βC � 0.707, and the initial conditions are
(x(0), y(0), z(0))� (0, 0, 0)

Step 3 : generate n-iteration with the NRCISJJ model of
system (1) to have h(i) for different orbits

Step 4 : match the chaotic sequences with the sEMG_2D
image pixels

Step 5 : make a permutation in the lines in N-iteration
Step 6 : make a permutation in the columns in M-iter-

ation and obtain the encrypted sEMG_2D signal
Step 7 : display the encrypted image
Step 8 : transform the sEMG_2D into sEMG_1D and

display.

)e sEMG signals used are the clinical data acquired
from a database. PhysioBank ATM database is used in [36].
In the following, different resolutions of surface EMG_2D
are used in Table 1.

KHEIR1, KHEIR2, and JOUVE3 S_EMG 1D signals be-
long to holy patients, while EMG_MYOPATHY and
EMG_HEALTHY S_EMG 1D signals are for not holy patients.

3.1. Key Sensitivity Analysis

3.1.1. Correlation Analysis. )e formula for the correlation
between two neighboring pixels (w and c, for example) is
given by the following relation:

gateway_out [31:0]

ce_1
z dot [31:0]

lprcissjsintaylor_struct
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z_dot
+
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Figure 1: RTL architecture of the NRCISJJ model.
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cx,y �
E(y − E(y))(x − E(x))

���������
D(y)D(x)

􏽰 ,

E(x) �
1
T

􏽘

T

i�1
xi,

D(x) �
1
T

􏽘

T

i�1
xi − E(x))(

2
,

(4)

where the integer T refers to the total number of adjoining
pixels and D(x) and E(x) are the variance and expectation of
x, respectively.

Table 2 shows the correlation coefficients of the original
sEMG_2D and sEMG_2D encrypted using the proposed
approach.

It can be seen from Table 2 that the correlation coeffi-
cients of the input images are close to 1, while the correlation
coefficients of the cipher images are close to 0, indicating
that the pixels of the cipher images are not correlated. )ese
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Figure 2: 2D phase portraits of numerical simulations and FPGA implementation of the NRCISJJ model for given values of parameter i and
βL: (a) i � 1.36 and βL � 2.07, (b) i � 1.15 and βL � 2.52, (c) i � 1.15 and βL � 2.6, and (d) i � 1.15 and βL � 3. )e other parameter is
βC � 0.707 and the initial conditions are (x(0), y(0), z(0))�(0, 0, 0).
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results confirm that the proposed algorithm can remove the
correlation between adjacent pixels in the encrypted sEMG
signals. )ese results sufficiently show that the encryption
algorithm is well suited to EMG signals. Figures 4–8 show a
visual representation of the correlation coefficients of the
original, encrypted, and decrypted sEMG_2D signal.

From Figures 4 to 8, 200, 300, or even 400 pairs of
adjacent pixels are randomly selected from the images to
show their adjacent pixel distribution maps. )is implies the

strong correlation effect in the input and decrypted
sEMG_2D signals, while there is a weak correlation effect in
the encrypted sEMG_2D signals. )ese figures verify well
that there is no significant correlation between pixels of the
encrypted sEMG_2D signals. In addition to the encouraging
encryption result offered by the proposed algorithm, Fig-
ures 4 to 8 also show that the proposed algorithm gives a
decrypted sEMG_2D image very close to the original
sEMG_2D image.
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Figure 3: Schematic diagram of the proposed encryption scheme.

Table 1: S_EMG 2D and their resolutions.

S_EMG 1D S_EMG 2D RESOLUTION
KHEIR1 KHEIR1_2D 180∗180
KHEIR2 KHEIR2_2D 180∗180
JOUVE3 JOUVE3_2D 180∗180
EMG_MYOPATHY EMG_MYOPATHY_2D 148∗148
EMG_HEALTHY EMG_HEALTHY_2D 53∗ 53
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3.2. Information Entropy. For a grayscale image, the in-
tensity has 28 possible types of values, so its ideal IFE is 8.)e
IFE can be defined by

E(n) � 􏽘
M−1

i�0
p ni( 􏼁log2

1
p ni( 􏼁

􏼠 􏼡, (5)

where M is the total number of samples niεn, p(ni) denotes
the probability of occurrence of the sample ni, and log with
base 2 signifies the entropy expressed in bits.

When the signal sEMG_1D is transformed into
sEMG_2D in the form of an image, the image obtained has
the characteristics of a grayscale image. )us, to have a high

security encrypted image, the entropy of the encrypted
imagemust be as high as possible, i.e., very close to 8 [37, 38].
As can be seen in Table 3, the information entropy of the
various encrypted sEMG_2D signals is close to 8, as shown
in Table 3.

)ese results of Table 3 once again confirm that the data
of the sEMG signals are well encrypted and with a high level
of security.

3.3. Resistance to One Bit Changing Attack. To ensure the
security of an image encryption scheme against differential
scanning, two quantitative measures are used: the NPCR

Table 2: )e correlation coefficient c of signals (S_EMG 2D).

S_EMG 2D c c of input signal Proposed chaotic NRCISJJ

KHEIR1_2D
ch 0.9510 −0.0005
cv −0.0054 0.0028
cd −0.0050 −0.0009

KHEIR2_2D
ch 0.9170 0.0095
cv 0.0017 −0.0012
cd −0.0009 −0.0078

EMG_MYOPATHY_2D
ch 0.4520 −0.0073
cv 0.0158 −0.0069
cd 0.0067 −0.0001

EMG_HEALTHY_2D
ch 0.7484 −0.0021
cv 0.0984 −0.0032
cd 0.0852 −0.0113

JOUVE3_2D
ch 0.9526 −0.0032
cv −0.0368 −0.0032
cd 0.0379 −0.0076
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Figure 4: Correlations of KHEIR1_2D. )e first column is the input signal with its correlation, the second column is the corresponding
cipher signal with its correlation and the third column is the decrypted signal with its correlation.
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Figure 5: Correlations of KHEIR2_2D. )e first column is the input signal with its correlation, the second column is the corresponding
cipher signal with its correlation, and the third column is the decrypted signal with its correlation.
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Figure 6: Correlations of JOUVE3_2D. )e first column is the input signal with its correlation, the second column is the corresponding
cipher signal with its correlation, and the third column is the decrypted signal with its correlation.
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Figure 8: Correlations of HEATHY_2D. )e first column is the input signal with its correlation, the second column is the corresponding
cipher signal with its correlation, and the third column is the decrypted signal with its correlation.
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(number of pixels’ change rate) and the UACI (unified
average changing intensity).)eNPCR represents the rate of
different pixels between the two encrypted images, while the
UACI represents the difference in average intensity [39].

)e formula used to calculate these two percentages is
defined as follows [37]:

NPCR �
1

M × N
􏽘

M

i+1
􏽘

N

j�1
DIF(i, j) × 100,

UACI �
1

M × N
􏽘

M

i+1
􏽘

N

j�1

C2(i, j) − C1(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100(%),

withDIF(i, j) �

0, C2(i, j) � C1(i, j),

1, C2(i, j)≠C1(i, j),

⎧⎪⎨

⎪⎩

(6)

where C2 refers to the crypted image that is encrypted from
the original image by changing only one pixel, while C1
refers to the cipher image encrypted from the same plain
image.

When an NPCR> 99.6094%, a UACI> 33.4635% en-
sures that an image encryption scheme is secure against this
attack [40, 41]. Table 4 depicts the values of NPCR and UACI
obtained on the sEMG_2D signal.

From the results obtained and presented in Table 4, it
appears that all the NPCR values are greater than the op-
timum value of 99.6094%. As for the values of the UACI, we
record two values lower than the optimal value of 33.4635%.
Curiously, these two UACI values are obtained on the sEMG
signals of patients who are not holy. )is observation thus
opens another axis of reflection that will furnish our per-
spective. Apart from these two values, we can conclude that
an image encryption scheme is secure against the differential
attack.

3.4. Quality Metrics Analysis between Plain and Encrypted.
Table 5 shows the analysis of signal quality. After encrypting
the signal in 2D, we transform it into 1D to analyze the effect
of the encryption on it. )e medical personnel who receive
the encrypted signal decrypt it for a diagnosis. To avoid
misdiagnosis, medical personnel should not receive a cor-
rupt signal. )is is why in Table 5 we study the distortion
between the original signal and the decrypted signal. )is
distortion is quantified by the following metrics: the percent
root mean square difference (PRD) (%) and the signal to
noise ratio (SNR).

3.4.1. Mean Square Error (MSE). )e most commonly used
quality measure is mean square error (MSE) and is defined
by

MSE �
1
N

􏽘

N

n�1
yO[n] − yr[n]( 􏼁

2
, (7)

where yO[n] is the original surface EMG signal, yr[n] is the
decrypted surface EMG signal, and N is the number of
samples of the signal.

3.4.2. Signal-to-Noise Ratio (SNR).

SNR � 10Log10
σ2x
σ2e

􏼠 􏼡. (8)

where Log is decimal logarithm. With σ2x as the spectral
power of the original SEMG signal and σ2e as the spectral
power of the decrypted error.

3.4.3. Percent Root Mean Square Difference (PRD). )e PRD
(percent root mean square difference) is defined by

PRD �

�������������������

􏽐
N−1
n�0 yO[n] − yr[n]( 􏼁

2

􏽐
N−1
n�0 yO[n] − μ( 􏼁

2

􏽶
􏽴

· 100%, (9)

where N is the number of samples of the original sEMG
signal, μ is the reference value of the DAC (digital analog
converter) used for data acquisition s(n) (μ� 0 for EMG
signals), yr[n] is the decrypted sEMG signal, and yO[n] is
the original sEMG signal [34].

Analysis of the values in Table 5 shows that the decrypted
sEMG signal resembles the original signal. )is can be seen
through the value of the PRD which must be as small as
possible and that of the SNR must be high. )is statement
can be verified by observing Figures 9–13.

Figures 9 to 13 present the original, encrypted, and
decrypted sEMG signals of the signals KHEIR1, KHEIR2,
JOUVE3, MYOPATHY, and HEALTHY, respectively. For
each figure, the first line is the input signal, the second line is
the corresponding cipher signal, and the third line is the
decrypted signal.

3.5. Encryption Time. In telemedicine, the interaction be-
tween two health specialists can be in real time. So, the
communications must be as fast as possible. )erefore, the
encryption and decryption times should be as small as
possible. Table 6 shows the encryption and decryption time
of the proposed algorithm. )e proposed algorithm is
implemented in MATLAB R2015a and the “run and time”
function is used. )e characteristics of the machine are as
follows:

(i) Name: DESKTOP-FO74VUD
(ii) RAM installed: 8,00 Go (7,85 Go useable)
(iii) Device ID: DD9D7612-CE5F-4069-85ED-6F57D40

3F31C

Table 3: Information entropy performance of cipher S_EMG 2D.

S_EMG 2D Chaotic NRCISJJ
KHEIR1_2D 7.9941
KHEIR2_2D 7.9936
EMG_MYOPATHY_2D 7.9885
EMG_HEALTHY _2D 7.9388
JOUVE3_2D 7.9923
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Table 4: Average performance of NPCR (%) and UACI (%).

S_EMG 2D NPCR (%) UACI (%)
KHEIR1_2D 99.9660 35.5353
KHEIR2_2D 99.9599 34.9161
EMG_MYOPATHY_2D 100 24.5620
EMG_HEALTHY _2D 100 25.3572
JOUVE3_2D 99.9568 35.5353

Table 5: Quality metrics analysis.

S_EMG_1D PRD (%) SNR (dB) MSE
KHEIR1_1D 1.66 35.62 1165.37
KHEIR2_1D 0.87 41.24 317.92
EMG_MYOPATHY_1D 3.00 30.46 859.00
EMG_HEALTHY _1D 1.93 34.28 183.29
JOUVE3_1D 0.14 56.90 8.49
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Figure 9: Input signal, cipher signal, and decrypted signal of KHEIR1_1D. )e first is the input signal, the second is the corresponding
cipher signal, and the third is the decrypted signal.
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Figure 10: Input signal, cipher signal, and decrypted signal of KHEIR2_1D. )e first is the input signal, the second is the corresponding
cipher signal, and the third is the decrypted signal.
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Figure 11: Input signal, cipher signal, and decrypted signal of JOUVE3_1D. )e first is the input signal, the second is the corresponding
cipher signal, and the third is the decrypted signal.
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Figure 12: Input signal, cipher signal, and decrypted signal ofMYOPATHY_1D.)e first is the input signal, the second is the corresponding
cipher signal, and the third is the decrypted signal.
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Figure 13: Input signal, cipher signal, and decrypted signal of HEALTY_2D. )e first is the input signal, the second is the corresponding
cipher signal, and the third is the decrypted signal.

Table 6: Encrypted and decrypted time.

S_EMG 2D Resolution
Proposed chaotic NRCISJJ

Encrypted time (s) Decrypted time (s)
KHEIR1_2D 180∗180 0.336 1.701
KHEIR2_2D 180∗180 0.351 1.676
EMG_MYOPATHY_2D 148∗148 0.223 1.241
EMG_HEALTHY_2D 53∗ 53 0.028 0.169
JOUVE3_2D 180∗180 0.361 1.757

Table 7: Comparison of the proposed encryption scheme with recent schemes reported in literature, where √ means “achieved” and —
means “not achieved.”

[42] [43] [44] [45] Proposed chaotic NRCISJJ
Clinical signals
ECG √ √ — — —
BP √ — — — —
EEG √ — √ √ —
EMG — — — — √
Acquisition method
Live sensing — — — — —
Database technique PhysioBank ATM MIT−BIH UCI KDD NTOU PhysioBank ATM
Encryption √ √ √ √ √
Compression — √ — — —
Chaos specifications
Chaotic map Logistic map Not specified Logistic map Logistic map Chaotic NRCISJJ
Lyapunov exponent √ — — — —
Security analysis
Secret key space √ — — — —
Correlation √ — √ — √
Autocorrelation √ — — — √
Secret key sensitivity √ — — √ √
Plain signal sensitivity √ — — — —
Floating frequency √ — — — —
Information entropy √ — — — √
Mean square error √ — √ — √
Pick signal-to-noise ratio √ — — — —
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(iv) Product ID: 00330-80000-00000-AA798
(v) System type: 64 bits, processor x64

)ese times for all signals show that the proposed algo-
rithm is fast.)e comparison analyses are presented in Table 7.

4. Conclusion

)e field programmable gate array implementation of the
nonlinear resistor-capacitor-inductor shunted Josephson
junction model and its application to secure surface elec-
tromyographic signal were investigated in this study. Dif-
ferent shapes of chaotic attractors were revealed by using
numerical simulations and field programmable gate array
implementation of the nonlinear resistive-capacitive-in-
ductive shunted Josephson junction model. )e aim of this
paper was to show that it is possible to encrypt the surface
electromyographic signal through image encryption tech-
niques which was achieved. For a first experiment on the
encryption of sEMG signals, the results obtained are en-
couraging. However, it appears that the results are not as
powerful as when the encryption technique is applied to
surface electromyographic signal of patients with pathology.
)is can be due to the fact that the signals of holy patients
concentrated more information towards the lower fre-
quencies while the signals of pathological patients con-
centrated the most information towards the higher
frequencies. )is will be the subject of a study in future
works.
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/e aim of this work is the reduction of the throttling noise when the capillary is used as a throttling device. Based on the theory of
bubble dynamics, two-phase flow, and aerated supercavitation, four different sizes of aerated devices used in refrigerator re-
frigeration systems are designed. /rottling noise and the temperature and pressure of inlet and outlet of the capillary are
measured under stable operation. To compare the noise suppression effects in different groups of experiments, we introduced the
cavitation number to analyze, revealed the principle of aerated supercavitation to suppress noise, and combined the results of
Fluent simulations to get the relationship between the noise suppression effect and the aerated quality. /e experimental results
showed that the aerated device can obviously suppress the throttling noise of the capillary outlet, up to 2.63 dB(A), which provides
a new way for reducing the capillary throttling noise.

1. Introduction

In household appliances such as refrigerators that use
capillary throttling, noise caused by refrigerant flow is a
common problem. Although the refrigerant flow rate is low,
it still produces noise that affects the user’s life and work in a
quiet room, and it also brings hidden dangers to food safety
as described by [1]. With the improvement of energy effi-
ciency of household appliances approaching the limit, re-
ducing the noise caused by refrigerant flow to improve
acoustic comfort has gradually become a new research
hotspot. However, the current research mainly focuses on
the fundamental generation mechanism of capillary noise
[2–4], there is less research on the technical measures to
reduce noise.

Refrigeration equipment operates in a cyclic mode, and the
capillary outlet throttling noise determines the overall noise
level, especially the cavitation noise, as described by [5, 6], but it
has not yet attracted attention [7]. Cavitation noise arises from
the transition element between the capillary tube and the
evaporator. Reference [3] observed that the connection of this

transition structure is usually discontinuous, thus creating
conditions for the generation of cavitation noise.

Reference [8] found that the cavitation noise of bubbles
is closely related to the pressure pulsation. With the
deepening of the research on cavitation noise, it was ob-
served that the size of the cavitation noise is determined by
the acoustic characteristics of the bubbles in the tube, as
described by [9] and [10]. During the study, they found that
the flow pattern is affected by the characteristics of the
bubble and established a flow pattern diagram to predict the
noise. Reference [11] also studied the fundamental mech-
anism of capillary outlet noise but did not propose ap-
proaches to reduce the noise emission.

Compared with studying the mechanism of cavitation
noise, how to reduce the noise is more important. Although
[12, 13] achieved the purpose of noise reduction by trans-
forming the transition structure, they did not solve the
cavitation noise emission from the root of the noise gen-
eration. Reference [14] also tried to use structures such as
honeycomb cylinders to adjust flow to reduce noise, but it
has certain limitations.
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Cavitation was also applied to treat aqueous effluents
polluted by organic, toxic, and biorefractory contaminants
(2020) [15]. Hydrodynamic cavitation was used for the
gradual disintegration of activated sludge and the solubili-
zation of the dissolved organic matter (2021) [16]. Giuseppe
Mancuso introduced a hydrodynamic cavitation reactor
(Ecowirl) based on swirling jet-induced cavitation and found
that Ecowirl reactor resulted in being more energy efficient
as compared to hole orifice plates, Venturi and other
swirling jet-induced cavitation devices.

In this paper, a noise reduction device is designed based
on the theory of bubble dynamics, two-phase flow, and
aerated supercavitation, and then the influence of aerated
quality change on the noise reduction performance is
studied. /e fundamental mechanism of noise generation
and suppression was analyzed, the noise emission was
suppressed from the root of noise generation, and effective
noise suppression ideas were innovatively proposed.

2. Theoretical Background for the Root
Cause of at the Capillary Outlet

In this section, the theories of two-phase flow and bubble
dynamics are reviewed for explaining the root causes of the
refrigerant-induced noise that arises at the capillary outlet.

2.1. Two-phase Flow+eory. At any position in the area near
the outlet of the capillary, it may be liquid phase, gas phase,
or an interface between two phases at different moments.

Although the fluid will have inhomogeneities, discontinu-
ities, and uncertainties at any position in the space or in a
certain time domain, in principle, the basic equations of fluid
mechanics can still be used to establish and analyze the
calculation relationship of two-phase flow. Using the split-
phase flow model (Figure 1), it is assumed that the gas phase
and the liquid phase flow completely separately and have
different flow rates. Assuming that the flow is a one-
dimensional flow, the pressure distribution of the flow
section is uniform, and the change of flow velocity and fluid
parameters with the radial direction of the pipeline is ig-
nored, the controlled volume studied is shown in Figure 2,
and the angle between the flow and the horizontal direction
is θ. /e governing equations of the separated-flow model
for unidirectional flow are given in (1)–(4), which are the
continuity equation, momentum equation, and energy
equation, respectively.

Continuity equation is as follows:
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where x is the dryness, vg and vl are the specific volume of
the gas and liquid phases, respectively, G is the mass flux,
and A is the cross-sectional area of the pipeline.

Momentum equation is as follows:
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where p is the pressure, τw is the shear stress, Pw is the wet
perimeter of the control body, α is the cavitation fraction, ρg

and ρl are the density of the gas and liquid phases, and z is
the axial coordinates, respectively.

Energy equation is as follows:
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where E is the internal energy and ρ0 is the density after gas-
liquid is mixed.

When the flow pattern in a pipe is intermittent (slug,
churn (forth), and plug flows), at a specific location in the
pipeline, x and α irregularly changing with time, the time
gradient of pressure drop is a function of dryness and
cavitation fraction as shown in (5) [10]:

d

dt

dp
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􏼠 􏼡 �

d

dt
[f(x(t), α(t), ...)]. (5)

/is indicates that the pressure of the intermittent flow
will fluctuate irregularly, and the pressure fluctuation will act
on the pipe wall and then produce obvious vibration and

noise. When the flow pattern is annular or bubbly flow, the
dryness and cavitation fraction hardly change with time, so
the time gradient of pressure drop is very small, and thus the
resulting noise sound pressure level is small and basically
constant, which is significantly lower than the vibration and
noise level of slug flow [5].

2.2. Bubble Dynamics +eory. Bubble dynamics is the the-
oretical basis for the study of all liquid cavitation phe-
nomena, which has irrelated with cavitation generation
methods, cavitation objects, and cavitation shapes.When the
molecules in the refrigerant liquid produce thermal move-
ment, temporary microscopic voids will be formed, or they
will fracture at the boundary between the solid container
wall and the liquid or the boundary between suspended fine
particles and the liquid. /ese weak voids and points con-
stitute the cavitation nucleus necessary for the burst and
growth of macroscopic bubble. With the refrigerant flows in
the capillary tube, the liquid pressure gradually decreases
because of the friction effect in tube, and the saturated liquid
refrigerant quickly transforms into a gas-liquid two-phase
fluid accompanied by the bubble nucleation process. As the
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superheat of the liquid increases, the nucleation of the inner
wall of the pipe and the inside of the liquid will increase
significantly. When the static pressure inside the liquid is
reduced to a level sufficient to tear the liquid, the cavitation
nucleus will inflate, which is called the incipient cavitation
[11]. According to the mechanical equilibrium conditions,
the pressure in the core can be expressed as

Pg0 � P0 − PV +
2S

R0
, (6)

where PV is the saturated vapor pressure of the liquid at the
corresponding temperature, R0 is the initial radius of the
cavitation nucleus, and S is the surface tension coefficient of
the liquid. Regarding bubble frequency, [17] proposed the
relationship between bubble radius and natural frequency as
showed in

fn �
1

2πR0

���
3kp
ρl

􏽳

. (7)

We can observe that the natural frequency of the bubble
is closely related to the bubble size. Large bubbles contribute
to low frequency, and small bubbles contribute to high
frequency.

With the further growth and expansion of the bubble,
the bubble will collapse; this process is very rapid and vi-
olent. /e energy contained in the bubble is released,
resulting in strong pressure fluctuations and noise. /is
process is called bubble collapse. In the refrigeration system,
cavitation collapse mainly occurs at the outlet of the capillary
tube, and the cavitation noise generated by it makes an
important contribution to the flow noise at the outlet of the
capillary tube. In order to better describe the characteristics
of cavitation, a dimensionless cavitation number σ is in-
troduced in this article:

σ �
P∞ − PV T∞( 􏼁

ρlu
2
∞/2

, (8)

where P∞, T∞, and u∞ are the hydrostatic pressure, tem-
perature, and velocity on the reference section of the flow
field that are not disturbed and ρl and PV are the density of
the cavitation liquid medium and the saturated vapor
pressure at the corresponding temperature, respectively.

/e smaller the cavitation number, the more severe the
cavitation degree, but the cavitation intensity is not nec-
essarily high. /e cavitation intensity is related to the
pressure distribution and flow velocity of the liquid during
the flow process and has a direct impact on the cavitation
noise. /e sound level of the cavitation noise does not rise
but falls when it is in the supercavitation state, as described
by Arndt [18], which provided a theoretical guidance for
reducing capillary flow noise in this paper. /e theoretical
review shows that the noise induced by refrigerant is closely
related to the sound pressure level produced by bubbles.
/e noise measurement results are mainly introduced in
Section 3./e simulation results are combined to analyze the
flow field and the noise reduction effect in Section 4. Finally,
Section 5 summarizes the paper and outlines future
activities.

3. Experimental Methods

3.1. RefrigeratorRefrigerationCycle System. In order to study
the flow noise at the outlet of the capillary tube, the paper
chooses a refrigerator refrigeration system for experiment.
/e refrigerator model is Hair BC/BD 103TS. /e layout of
the refrigeration system is shown in Figure 3. A pressure
sensor (PT210B-G1/4) and a temperature sensor (DS18b20)
are installed. To measure the inlet and outlet status of the
capillary tube, the vortex flow sensor (WL-LWGA-25) is
used to measure the mass flow rate. /e refrigerant evap-
orates in the evaporator, takes away the heat, and returns to
the compressor. /e pressure and temperature of the re-
frigerant are increased by compression and sent to the
condenser. /e condensation in the condenser dissipates the
heat to the surrounding environment. /e refrigerant then
flows through the desiccant and the capillary tube and enters
the evaporator after throttling, completing the entire cycle.
/e measurements accuracy is listed in Table 1.

Table 1 lists the experimental measurement data. /e
data acquisition module is used in conjunction with the
software to collect, display, and save the measurement data.
/e length of the throttling capillary is 3m, and the inner
diameter of the tube is 0.7mm. /e capillary outlet tran-
sition tube is shown in Figure 4(a). At the outlet of the
capillary, the length of the transition tube is 70mm, and the
capillary extends 20mm into the transition tube. At the
capillary tube outlet, the diameter suddenly expands from
0.7mm to 6mm. /e optimized transition pipe is equipped
with aeration device. As shown in Figure 4(b), four different
sizes of aeration devices are designed in this paper, the inner
diameters of which are 0.6mm, 0.8mm, 1.0mm, and
1.2mm, respectively.

Ag ug

A1 u1

Figure 1: Two-phase and separated-flow model.

p

δz

ug

u1

p dp
dz

δz

θ

Figure 2: /e control volume of the momentum equation of the
two-phase and separated-flow model.
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3.2. Noise Measurement System. /e acoustic test system is
shown in Figure 5. /e portable measurement and analysis
system SA-A1 (Japan RION) is used to measure the noise.
/e 1/2-inch free-field microphone is connected to the host
through the preamplifier. /e sensitivity of the microphone
is −27 (dB re 1V/Pa)−1, the frequency measurement range is
10Hz to 20000Hz, and the maximum measurement noise
value is 148 dB. /e system fully meets the measurement
requirements of the experiment. /e data measured in the
experiment is processed by the SA-A1 system host and
supporting software.

/ere is a sound-proof baffle box in the transition area
between the capillary tube and the evaporator, which is
covered with sound-absorbing material and also has good
heat insulation performance. In order to reduce the presence
of moisture that may cause the formation of hoarfrost, the
test area was designed to be as small as possible, and the
detection area inside the box is (100×100×100) mm3. In
addition, silica gel can dehumidify the enclosed air. /e pipe
section in the box is not insulated to achieve a better signal-
to-noise ratio. /e microphone is located 10mm above the
capillary outlet.

For frequencies above 250Hz, the third-octave band
analysis of the background noise measurement corresponds
to the inherent noise of the microphone. Below 250Hz,
acoustic disturbances caused by the compressor affect the
sound measurements. In order to avoid the necessity of a
complex background noise correction, the acoustic analysis
is carried out in frequency band of 250Hz to 16000Hz. To
calculate the A-weighted sound pressure level, the stan-
dardized time weighting span “fast” with an exponential
average aging time of 125ms is used.

In a refrigerator, the refrigerant flow cavitation noise
frequency is basically the same as the natural frequency of
the bubble, and the natural frequency of the bubble can be
calculated by (7) as described in [17]. By measuring the noise
value under different aeration devices, the correlations be-
tween the noise suppression effect and the aeration quality
can be obtained.

3.3. Experimental Setup. /e refrigerator located on a 5-6mm
thick elastic rubber pad make it run under no load, adjust the
thermostat to a medium or strong cold position, and start the

Filter drier

Compressor

Evaporator

Flowmeter Ball valve

Data collector

Capillary
tube Sound baffl

e
box

Subcooler
section

C
ondenser

Ball valve

Temperature
/T1

Pressure
/P1

Temperature
/T2

Pressure
/P2

rr

r r

Figure 3: Refrigerator refrigeration system.

Table 1: /e calculation parameters of the refrigerator.

Measurand Value Uncertainty

Diameter DC 0.7mm ±0.01mm
DS 0.6mm ±0.01mm

Length
lin 450mm ±0.1mm
lhx 800mm ±0.1mm
lc 3050mm ±0.1mm

Temperature T1 37°C ±0.1°C
T2 1°C ±0.1°C

Pressure P1 754740 Pa ±100 Pa
P2 156960 Pa ±100 Pa

Mass flow m 0.3 kg h−1 ±1%
Capillary roughness 0.00000046
Refrigerant R600a
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test after running for at least 30 minutes. During the test,
Because the temperature in the box has reached the set tem-
perature and the machine is stopped, the measurement needs
to be interrupted, and the measurement should be performed
after the compressor restarts for 3 minutes.

Temperature and pressure sensors are installed at the inlet
and outlet of the capillary tube, respectively. Because the re-
frigerant at the outlet of the condenser is in a supercooled state
and single-phase flow, the flowmeter is installed here tomeasure
the refrigerant flow of the refrigeration system. We install
aeration devices of different sizes to optimize the transition
structure of the refrigerator and repeat the above steps to
conduct the experiment. /rough the installation of aeration
devices, local supercavitation is achieved and the purpose of
suppressing refrigerant cavitation is achieved. Four different
sizes of aeration devices are used, the inner diameters of which
are 0.6mm, 0.8mm, 1.0mm, and 1.2mm, respectively.

/e ambient temperature and humidity are 20.5°C/73%,
respectively, and the atmospheric pressure is 1.0118×105 Pa.
/e temperature of the fresh-keeping chamber was set
at 6°C.

3.4. Flow Simulation at the Capillary Outlet. Combined with
the previous experimental results, the commercial simula-
tion software Fluent was used to simulate the flow at the
capillary outlet. As shown in Figure 2, the capillary flow
model was established, the mixture multiphase flow model
and energy equation was selected, the Schnerr and Sauer
cavitation model and the reliable k-e turbulence model were
selected, cavitation properties choose tabular-pt-sat, bubble
number density of model constants setting is 1e8, and
turbulent coefficient setting is 0.39. /e wall function se-
lected Standard Wall Functions and turbulent viscosity is
none. /e refrigerant of R600a was selected as the materials
in fluid and reference temperature was set to 303 k. /e
boundary conditions were selected pressure inlet
(754740 Pa) and pressure outlet (156960 Pa), total temper-
ature of inlet is set to 303.15 k, and total temperature of
outlet is set to 283.15 k. Specification method of turbulence
selected k and epsilon, turbulent kinetic energy was set to
0.02m2/s2, and turbulent dissipation rate was set to 1m2/s3.
/e solution method was set to coupled solution; pseudo
transient was selected at the same time. Moment, turbulent
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Figure 4: Transition pipe of the refrigeration system. (a) Transition pipe and (b) transition pipe equipped with aeration device.
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kinetic energy, turbulent dissipation rate, and energy were
set to second order upwind; others keep the default settings.
Refer to Table 1 for specific parameter settings. Take the
capillary inlet and outlet flow rate and its degree of change as
the judgment standard to judge whether the entire capillary
model calculation process has converged. /e calculated
residual values are all set to less than 10−6, when the capillary
inlet and outlet flow does not change with the time. When
the capillary inlet and outlet flow rate changes less than 5%, it
can be determined that the capillary model calculation re-
sults at this time have converged. /e capillary models with
2.79 million grids, 4 million grids, and 6 million grids were
calculated, and the three simulation results were compared.
/e difference between the latter two was less than 0.5%.
Finally, 4 million grids were selected to complete the
calculation.

4. Results and Analysis

4.1. Noise Reduction of Aerated Supercavitation. A aeration
device (D4� 0.8mm) was selected to verify the noise re-
duction effect, and the time domain and frequency domain
diagrams of the flow noise at the capillary outlet during the
stable operation of the refrigerator were obtained, which can
be observed from the time domain diagram (Figure 6).
When the aeration device was not installed, the overall noise
value of the capillary outlet is relatively large, reaching to
26.4 dB(A). After the aeration device was installed, the flow
noise of the capillary outlet is significantly lower than the
noise of the capillary outlet not equipped with aeration
device./e noise fluctuation is more stable, the noise value is
only 24.4 dB(A), and the noise suppression value is 2 dB(A).
/us, the aeration device has a significant effect on the flow
noise suppression of the capillary outlet.

It can be observed from the frequency distribution
(Figure 7) that the maximum noise frequency of the capillary
outlet is mainly distributed from 200Hz to 2000Hz, indi-
cating that the noise at these frequencies plays a decisive role
in the flow noise of the capillary outlet, as also described by
[13].

When the refrigeration system is operating stably, the
temperature of the capillary outlet was measured with time.
From the temperature time domain diagram (Figure 8), it
can be observed that the inlet and outlet temperatures of the
capillary are 37.5°C/−13.5°C, respectively. After the aeration,
the temperature of the capillary inlet and outlet is also
37.5°C/−13.5°C, respectively, indicating that the aeration
device has no effect on the temperature of the capillary inlet
and outlet, and it does not affect the refrigeration effect of the
entire refrigerator refrigeration system.

4.2.+eCorrelations betweenCavitationNoise Frequency and
AerationQuality. /e frequency range of refrigerant bubble
collapse was calculated to be 200Hz–2000Hz; according to
(7), the influence of the installation of 4 different aeration
devices on the noise frequency of the capillary outlet was
measured, and the frequency distribution diagram was
obtained as shown in Figure 9. /rough analysis, it can be

found that the main noise frequency distribution of the
capillary outlet under the four working conditions is dis-
tributed in 200Hz–2000Hz. Combining Figure 7 to analyze,
it can be known that the noise at these frequencies is mainly
cavitation noise caused by cavitation phenomenon.

By calculating the aeration quality of different aeration
devices, the aeration quality of different aeration devices is
obtained as shown in Table 2. /e size of the aeration device
affects the aeration quality, and the aeration quality increases
from 1.37 × 10− 4 kg s−1 to 5.48 × 10− 4 kg·s−1. Despite
changing the aeration quality, the maximum noise frequency
is still distributed between 200Hz and 2000Hz, indicating
that the aeration device will not affect the frequency range of
cavitation noise.

4.3. +e Correlations between Cavitation Noise Suppression
Effect andAerationQuality. /e experiment was carried out
using the original transition pipe and four transition pipes
with different sizes of aeration devices. Moreover, in order to
ensure the accuracy of the experiment, the experiment was
repeated once. /e noise measurement data was analyzed
and calculated, and the noise suppression value comparison
chart was obtained (Figure 10). Analyzing Figure 10, it can
be observed that the experimental results remain un-
changed when conducting experiments again. When the
aeration quality increases from 1.37 × 10− 4 kg s−1 to
5.48 × 10− 4 kg·s−1, the value of noise suppression first in-
creases and then decreases. When the diameter of the
aeration pipe is D5�1.0mm, the aeration quality is
3.84 × 10− 4 kg·s−1. Under this condition, the noise sup-
pression value is 2.63 dB(A), which had the best noise
suppression effect on the outlet of the refrigerator capillary.

In order to further explain the influence of the aeration
quality on the cavitation noise suppression effect, the cav-
itation number (σ) was introduced to characterize the
cavitation phenomenon. Calculate the cavitation number in
the local area of the capillary outlet according to (8). /e
specific value is shown in Table 2. When the cavitation
number σ is 0.12 to 0.2, it represented the local cavitation
stage. Under this condition, the noise level increases as the
cavitation number decreases. and the sound level of cavi-
tation noise did not rise but fell as the cavitation number
decreased. When the cavitation number (σ) is below 0.12, it
represented the supercavitation status, as confirmed by
[18, 19]. From the cavitation number calculated in the paper,
it can be clearly observed that the local cavitation number is
lower than 0.07 after aeration./us, the supercavitation state
is locally realized, and the noise level decreases with the
decrease of the cavitation number (σ). When D5 �1mm, the
cavitation number (σ) is 0.057 and the noise level is reduced
the most, which is consistent with the results of the previous
experimental measurements.

4.4. Simulation Results. Aeration is performed locally on the
capillary outlet, and the pressure distribution on the axis of
the capillary outlet is shown in Figure 11. /e zero point on
the x-axis represents the capillary outlet. It can be observed
that the aeration device can significantly increase the partial

6 Complexity



pressure of the capillary outlet, and it can also be found that
D6�1.2mm aeration device contributes the most to the
local pressure increase, increasing by 800 Pa from Figure 11,
indicating that the partial pressure of the capillary outlet is
significantly affected by the quality of aeration.

Analyzing the refrigerant gas volume distribution di-
agram on the outlet axis of the capillary tube (Figure 12), at
a position 0m away from the capillary outlet, the local gas
content between the initial transition tube and the four
transition tubes with different aeration devices was com-
pared. It is found that the gas content of the local refrig-
erant at the outlet of the capillary was significantly
increased after aeration. When the diameter of the aeration
devices is D6�1.2mm and the aeration quality is
5.48 × 10− 4 kg·s−1, the vapor rate increase is 0.1 under this

condition, indicating that the greater is the quality of
aeration, the more beneficial it is to increase the local
refrigerant vapor rate.

In order to better explain the vapor rate distribution
diagram (Figure 12), Figure 12 was divided into four areas
I, II, III, and IV. It can be observed that when the aeration
device is not installed, the refrigerant bubble gradually
grows and matures in the area of II, the gas volume
fraction gradually increases from 0.79 to 0.86, then the
refrigerant bubble begins to collapse in the III area, the gas
volume fraction gradually decreases to 0.80, and finally
the collapse is complete in the IV area. /e volume
fraction gradually stabilized to 0.79. When the aeration
amount is 2.43 × 10− 4 kg·s−1, the partial pressure of the
capillary outlet is increased, but the process of bubble
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Figure 6: Time domain diagram of the noise of the capillary outlet before and after aeration.
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growth, maturation, and collapse still occurs, and the gas
volume fraction still changes significantly, but when the
aeration amount is greater than 2.43 × 10− 4 kg·s−1 at this

time, the bubble growth and collapse process was sig-
nificantly suppressed, and the gas phase volume fraction
remained basically steadily, indicating that the cavitation
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Table 2: Aeration quality and cavitation number.

Aeration device pipe diameter D (mm) Aerated amount q (kg·s−1) Cavitation number σ
0.6 1.37 × 10− 4 0.068
0.8 2.43 × 10− 4 0.062
1.0 3.84 × 10− 4 0.057
1.2 5.48 × 10− 4 0.061
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phenomenon was suppressed. /erefore, conclusion can
be made that the aeration devices can effectively reduce
the cavitation noise.

5. Conclusion

Acoustic investigations are carried out at the outlet of a
capillary tube, which serves as a throttling device in a vapor
compression cycle. /e refrigerator refrigeration system was
used to study the flow noise of the capillary outlet, analyze
the characteristics of the noise frequency distribution at the
capillary outlet, and find that the main noise frequency
distribution range of 200Hz to 2000Hz at the capillary
outlet.

Under the same experimental conditions, aeration de-
vices of different sizes were selected for experiments. By
introducing a dimensionless parameter cavitation number σ,
the principle of aeration supercavitation noise suppression
was explained, and the correlations between noise frequency
distribution, noise suppression effect, and aeration quality
were found.

Finally, fluent software was used to simulate the flow at
the capillary outlet to further verify the experimental results.
/rough experimental study and analysis, it is determined
that cavitation noise is the main contributor to the capillary
outlet throttling noise, and the feasibility of noise reduction
of the aeration device is verified. At the same time, the
suppression effect of different sizes of aeration devices on the
noise value was obtained; it can reach up to 2.63 dB(A).
Moreover, the aeration device has no negative influence on
the evaporation temperature and normal operation of the
refrigerator. /e aeration device can significantly increase
the local pressure, form supercavitation, and suppress the
cavitation noise.

/e previous article only proves that the aeration device
can reduce the flow noise at the capillary outlet (2021). Based

on the previous article, this article further studies the in-
fluence of different aeration quality on the noise suppression
effect. /e relationship between aeration quality and noise
suppression lays a theoretical foundation for the application
of aeration devices.

/e noise generation process is very complicated and
cannot be determined according to the given initial
conditions. When the supercavitation state is reached, the
cavitation noise decreases with the decrease of the cav-
itation number. In this paper, the internal diameter
D � 1.0 aeration device is selected to achieve the best noise
suppression effect. However, for different initial condi-
tions, the influence of the aeration device size change on
the cavitation number is different; this is the study of
chaos.

/e research in this article also provided reference value
for noise suppression of other throttling devices.

Abbreviations

E: Internal energy (kJ)
D: Inner diameter (mm)
L: Length (mm)
T: Temperature (°C)
P: Pressure (Pa)
R: Radius (mm)
S: Liquid surface tension coefficient
M: Mass flow (kg s−1)
X: Dryness
U: Velocity (m s−1)
v: Specific volume
G: Mass flux (kg s−1)
A: Pipe cross-sectional area (m2)
Ρ: Density (kgm−3)
Z: Axial coordinates (m)
Q: Aeration amount (kg s−1)
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Greek symbols
Σ: Cavitation number
A: Vacuole share
Τ: Shear stress
Λ: Capillary roughness
Subscripts
C: Capillary
S: Compressor suction pipe
W: Control body
O: Gas-liquid two-phase
V: Liquid saturated steam
∞: Reference section
in: Capillary before exchanging heat with compressor

suction pipe
hx: Capillary exchanging heat with compressor suction pipe
1: Capillary inlet
2: Capillary outlet
3: 0.8mm diameter aeration device
4: 1.0mm diameter aeration device
5: 1.2mm diameter aeration device
6: 1.4mm diameter aeration device.
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We investigate and analyze the dynamics of hepatitis B with various infection phases and multiple routes of transmission. We
formulate themodel and then fractionalize it using the concept of fractional calculus. For the purpose of fractionalizing, we use the
Caputo–Fabrizio operator. Once we develop the model under consideration, existence and uniqueness analysis will be discussed.
We use fixed point theory for the existence and uniqueness analysis. We also prove that the model under consideration possesses a
bounded and positive solution. We then find the basic reproductive number to perform the steady-state analysis and to show that
the fractional-order epidemiological model is locally and globally asymptotically stable under certain conditions. For the local and
global analysis, we use linearization, mean value theorem, and fractional Barbalat’s lemma, respectively. Finally, we perform some
numerical findings to support the analytical work with the help of graphical representations.

1. Introduction

Hepatitis B virus causes inflammation of the liver. It results
from a noncytopathic virus which is called the hepatitis B
virus (HBV). Characteristic of HBV is its high tissue and
species specificity, as well as a unique genomic organization
and replication mechanism. *e infection of HBV has
multiple phases: acute and chronic.*e acute one refers to the
first six months whenever there is an exposure of some one to
the virus. Usually, in this period, the immune system has the
capability to vanish the infection, while for some severe cases,
it may also lead to the serious stage and so results in the
lifelong illness. *is is also known as the chronic stage. It
could be noted that whenever HBsAg is positive for a person
for a period of more than 6 months, it shows that it has a
chronic illness. In case of the chronic stage, often, the

individual has no history of the acute stage. *is infection
may also lead to the scarring of the liver, become liver failure,
and produce liver cancer [1]. Hepatitis B virus is transferred
bymany ways: blood (razors, sharing of blades, tooth brushes,
etc.) and semen and vaginal [2–5]. One of the other key
sources of transmission is from the infected mother to her
child called vertical transmission [6]. Worldwide, there are
millions of infected population according to the WHO, in
which only 93 millions are infected in China [7, 8]. Vaccines
are available to immunize from the HBV which are very
effective and almost provide permanent immunity [9, 10].

Mathematical modeling of infectious diseases has a vast
field and has a rich literature, which plays a significant role to
explore the dynamics and suggest the control mechanism.
Since hepatitis B is one of the life-threatening and leading
causes of death, it obtained the attention of various researches,
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and consequently, many epidemiological models were de-
veloped (see [11–15]). Anderson and May presented a study
in the form of a simple model to investigate the influence of
carriers on the transmission of hepatitis B [16]. Williams et al.
presented and analyzed the hepatitis B dynamics in the
United Kingdom [17]. Moreover, a model was presented by
Medley et al. to forecast amechanism for eliminating hepatitis
B from New Zealand [18]. In a similar way, a model that
evaluates the effectiveness of the vaccination programme with
the effect of age in China was presented by Zhao et al. [19].
Bakare et al. proposed the analysis of control by using an SIR
epidemic model [20]. More epidemic models were inves-
tigated with control strategies by Kamyad et al. [21].
Onyango developed a model to study the multiple endemic
solutions [22]. Similarly, Zhang et al. studied the dynamics
of hepatitis B in Xinjiang [23]. Very recently, Khan et al.
[24, 25] and Nana-Kyere et al. [26] formulated some ep-
idemiological models to study different parameters’ in-
fluences on the disease transmission and to suggest some
control measures for the elimination of the infection. *e
study of fractional calculus obtained the attention of re-
searchers and is growing rapidly. *is analysis has been
used to capture the axioms of inherited and the memory of
various natural and physical phenomena occurring in
different fields of science and technology. Numerous
classical models have been proved with less accuracy in case
of predicting the future dynamics of a system. However,
models having fractional order are more useful to allocate
and detain the missing information [27, 28]. It could also be
stated that the classical derivative does not provide the
dynamics between two different points [29, 30].

It is noted that hepatitis B virus transmission is influ-
enced by different factors, i.e., various phases, routes of
transmission, etc. Especially, the carriers are significant. *e
chronic carriers have no symptoms while transmitting the
infection. Moreover, it could also be noted that the increased
development of fractional calculus and fractional-order
epidemiological models are more suitable than the classical
order epidemic models and complex dynamics of hepatitis
B; we therefore investigate a hepatitis B virus transmission
epidemic model with various infection phases and multiple
routes of transmission. Moreover, we also use the fractional
calculus to fractionalize the model under consideration
which has not yet been studied to the best of our knowledge.
Once we formulate the model, we then study the existence
analysis as well as uniqueness to prove the well-posedness
and biological feasibility of the problem under consider-
ation. For this analysis, the fixed point theory will be used.
We also prove that the solutions of the proposed system are
bounded and positive.We then discuss the steady state of the
proposed model and investigate that the model under
consideration is locally and globally asymptotically stable.
For local stability analysis, we use the method of lineari-
zation, mean value theorem, and fractional Barbalat’s
lemma. Finally, some numerical simulations will be per-
formed to support the analytical work and show the dif-
ference between the classical and fractional order.

2. Preliminaries

Here, we describe the fundamental concepts related to the
fractional calculus which are helpful to obtain our results.

Definition 1 (see [30]). Let us assume a function φ(t) such
that ϕ ∈ H1(0, T), T> 0; if α> 0 and n − 1< α< n, n ∈ N,
then the Caputo and Caputo–Fabrizio derivative of the
fractional order (α) are defined, respectively, as

C
D

α
0,t φ(t)􏼈 􏼉 �

1
Γ(n − α)

􏽚
t

0
(t − x)

n− α− 1φn
(x)dx (1)

and

CF
D

α
0,t φ(t)􏼈 􏼉 �
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(1 − α)
􏽚

t

0
φ′(y)exp

α(y − t)

1 − α
􏼠 􏼡dy. (2)

In equations (1) and (2), C and CF represent, respec-
tively, Caputo and Caputo–Fabrizio, while t> 0 and K(α)

represent the normalization function such that
K(1) � 0 � K(0).

Definition 2 (see [30]). If 0< α< 1 and φ(t) varies with time
t, then the Riemann–Liouville integral of order (α) is defined
as
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0
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while the integral of order (α) in the Caputo–Fabrizio-
Caputo (CF) sense is defined by
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3. Model Formulation

We formulate the model keeping in view the characteristics
of hepatitis B virus and so distribute the total population
symbolized by T(t) into different compartmental pop-
ulation sizes, i.e., susceptible S(t), acute A(t), chronic C(t),
recovered/immune R(t), and vaccinated V(t). We also
define some constraints for the proposed problem:

a1: all the variables (S, A, C, R, and V) and the pa-
rameters (Π, ζ, β, ρ, ϑ, η, σ, p, c, ε, and τ) are non-
negative in the epidemic problem that is under
consideration.
a2: the successfully vaccinated portion η of the sus-
ceptible individuals goes to the recovered class.
a3: the contact of susceptible with acute infected as well
as with chronically infected is, respectively, denoted by
β and ρβ, which lead to the acute portion with prob-
ability p and go to chronic with probability (1 − p),
where this assumption is based on the hypothesis that
some of the individuals have no history of acute illness.
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a4: since some of the individuals got recovery in the
acute stage and it leads to the chronic stage for some
severe cases, therefore, a natural recovery with prob-
ability q has been proposed, while (1 − q) leads to the
chronic stage.
a5: the recovery under treatment (τ) is taken of the
chronic population.

a6: the disease-induced death rate (ε) occurs in the
chronic stage only.
a7: the newborn rate is Π and assumed to be suscep-
tible, while getting successful vaccination (ζ) leads to
the vaccinated class.

In light of these assumptions, we develop a model as
presented in the following:

dS(t)

dt
� (1 − ζ)Π − βS(t)A(t) − ρβS(t)C(t) − (ϑ + η)S(t) + σV(t),

dA(t)

dt
� p βS(t)A(t) + ρβS(t)C(t)􏼈 􏼉 − (ϑ + c)A(t),

dC(t)

dt
� (1 − p) βS(t)A(t) + ρβS(t)C(t)􏼈 􏼉 + qcA(t) − (ϑ + ε + τ)C(t),

dR(t)

dt
� (1 − q)cA(t) + ηS(t) + τC(t) − ϑR(t),

dV(t)

dt
� ζΠ − (ϑ + σ)V(t)
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(5)

with initial population sizes

S(0)> 0, A(0)≥ 0, C(0)≥ 0, R(0)> 0, V(0)> 0, (6)

where ζ is the proportion of successful vaccination indi-
viduals and Π is the newborn rate. Similarly, the trans-
mission rate of hepatitis B is denoted by β, while the reduced
transmission rate is ρ. Moreover, ϑ and η are, respectively,
the natural death rate and permanent recovered individuals’
rate. We also symbolize the recovery rate of acute and
chronic hepatitis B individuals by c and τ, respectively. *e

disease-induced death rate is represented by ε, while those
individuals who lose their immunity are represented by σ.

We extend the reported model by equation (5) to the
associated fractional-order (α< 0< α< 1) version by taking
into account the Caputo–Fabrizio-Caputo (CF) operator.
We therefore replace the derivatives in the problem under
consideration with a fractional derivative to maintain the
dimension of both sides of the equations of the proposed
model taking the α power of each parameter which becomes

CF
D

α
0,t(S(t)) � 1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t),

CF
D

α
0,t(A(t)) � p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c

α
( 􏼁A(t),

CF
D

α
0,t(C(t)) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc

α
A(t) − ϑα + ϵα + τα( 􏼁C(t),

CF
D

α
0,t(R(t)) � (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t),

CF
D

α
0,t(V(t)) � ζαΠα − ϑα + σα( 􏼁V(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We now discuss the existence and uniqueness of the
above fractional-order epidemiological model (7) in the
following section.
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4. Existence and Uniqueness

*is section is devoted to the existence and uniqueness
analysis of the solution of fractional-order epidemiological
model (7). We use the concept of fixed point theory and

prove the solution existence and uniqueness. For this
analysis, transforming the proposed system into an integral
equation, we obtain

S(t) � S(0) +
CF

J
α
0,t 1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t)􏼈 􏼉,

A(t) � A(0) +
CF

J
α
0,t p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c

α
( 􏼁A(t)􏼈 􏼉,

C(t) � C(0) +
CF

J
α
0,t (1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc

α
A(t) − ϑα + εα + τα( 􏼁C(t)􏼈 􏼉,

R(t) � R(0) +
CF

J
α
0,t (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)􏼈 􏼉,

V(t) � V(0) +
CF

J
α
0,t ζαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉.

(8)

Taking the CF fractional integral of both sides of the
above system leads to the assertions as given in the following:

S(t) � S(0) +
2(1 − α)

K(α)(2 − α)
1 − ςα( 􏼁Πα − βαS(y)A(y) − ραβαS(t)C(t) − ϑ

α
+ ηα􏼐 􏼑S(t) + σαV(t)􏽮 􏽯

+
2α

K(α)(2 − α)
􏽚

t

0
1 − ςα( 􏼁􏼈 􏼉 − βαS(y)A(y) − ραβαS(y)C(y) − ϑ

α
+ ηα􏼐 􏼑S(y) + σαV(y)dy,

A(t) � A(0) +
2(1 − α)

K(α)(2 − α)
p βαS(t)A(t) + p

αβαS(t)C(t)􏼈 􏼉 − ϑ
α

+ c
α

􏼐 􏼑S(t)􏽮 􏽯

+
2α

K(α)(2 − α)
􏽚

t

0
p βαS(y)A(y) + p

αβαS(y)C(y)􏼈 􏼉 − ϑ
α

+ c
α

􏼐 􏼑A(y)􏽮 􏽯dy,

B(t) � B(0) +
2(1 − α)

K(α)(2 − α)
(1 − p) βαS(t)A(t) + p

αβαS(t)C(t)􏼈 􏼉 + qc
α
A(t) − ϑ

α
+ εα + τα􏼐 􏼑C(t)􏽮 􏽯

+
2α

K(α)(2 − α)
􏽚

t

0
(1 − p) βαS(y)A(y) + p

αβαS(y)C(y)􏼈 􏼉 − qc
α
A(t) − ϑ

α
+ εα + τα􏼐 􏼑C(y)􏽮 􏽯dy,

R(t) � R(0) +
2(1 − α)

K(α)(2 − α)
(1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)􏼈 􏼉

+
2α

K(α)(2 − α)
􏽚

t

0
(1 − q)c

α
A(y) + ηαS(y) + ταC(y) − ϑαR(y)􏼈 􏼉dy,

V(t) � V(0) +
2(1 − α)

K(α)(2 − α)
ςαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉

+
2α

K(α)(2 − α)
􏽚

t

0
ςαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉dy.

(9)
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Let ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5 be the kernels, and they are
defined by

ℓ1(S(t), t) � 1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t)􏼈 􏼉,

ℓ2(A(t), t) � p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c
α

( 􏼁A(t)􏼈 􏼉,

ℓ3(C(t), t) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc
α
A(t) − ϑα + εα + τα( 􏼁C(t)􏼈 􏼉,

ℓ4(R(t), t) � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)􏼈 􏼉,

ℓ5(V(t), t) � ζαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉.

(10)

Theorem 1. Ge above kernels ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5 satisfy
axioms of Lipschitz conditions.

Proof. Let us assume that S and S1, A and A1, C and C1, R

and R1, and V and V1 are, respectively, the two functions for
the kernels ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5, so we establish the following
system:

ℓ1(S(t), t) − ℓ1 S1(t), t( 􏼁 � 1 − ζα( 􏼁Πα − βα S − S1( 􏼁A(t) − ραβα S − S1( 􏼁C(t) − ϑα + ηα( 􏼁 S − S1( 􏼁 + σαV(t)􏼈 􏼉,

ℓ2(A(t), t) − ℓ2 A1(t), t( 􏼁 � p βαS(t) A − A1( 􏼁 + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c
α

( 􏼁 A − A1( 􏼁􏼈 􏼉,

ℓ3(C(t), t) − ℓ3 C1(t), t( 􏼁 � (1 − p) βαS(t)A(t) + ραβαS(t) C − C1( 􏼁􏼈 􏼉 + qc
α
A(t) − ϑα + εα + τα( 􏼁C(t)􏼈 􏼉,

ℓ4(R(t), t) − ℓ4 R1(t), t( 􏼁 � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑα R − R1( 􏼁􏼈 􏼉,

ℓ5(V(t), t) − ℓ5 V1(t), t( 􏼁 � ζαΠα − ϑα + σα( 􏼁 V − V1( 􏼁􏼈 􏼉.

(11)

Cauchy’s inequality application leads to the following
system:

ℓ1(S(t), t) − ℓ1 S1(t), t( 􏼁
����

���� � 1 − ζα( 􏼁Πα − βα S − S1( 􏼁A(t) − ραβα S − S1( 􏼁C(t) − ϑα + ηα( 􏼁 S − S1( 􏼁 + σαV(t)
����

����,

ℓ2(A(t), t) − ℓ2 A1(t), t( 􏼁
����

���� � p βαS(t) A − A1( 􏼁 + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c
α

( 􏼁 A − A1( 􏼁
����

����,

ℓ3(C(t), t) − ℓ3 C1(t), t( 􏼁
����

���� � (1 − p) βαS(t)A(t) + ραβαS(t) C − C1( 􏼁􏼈 􏼉 + qc
α
A(t) − ϑα + εα + τα( 􏼁C(t)

����
����,

ℓ4(R(t), t) − ℓ4 R1(t), t( 􏼁
����

���� � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑα R − R1( 􏼁

����
����,

ℓ5(V(t), t) − ℓ5 V1(t), t( 􏼁
����

���� � ζαΠα − ϑα + σα( 􏼁 V − V1( 􏼁
����

����.

(12)

Recursively, we obtain

S(t) �
2(1 − α)ℓ1 Sn− 1(t), t( 􏼁

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ1 Sn− 1(y), y( 􏼁dy,

A(t) �
2(1 − α)ℓ2 An− 1(t), t( 􏼁

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ2 An− 1(y), y( 􏼁dy,

C(t) �
2(1 − α)ℓ3 Cn− 1(t), t( 􏼁

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ3 Cn− 1(y), y( 􏼁dy,

R(t) �
2(1 − α)ℓ4 Rn− 1(t), t( 􏼁

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ4 Rn− 1(y), y( 􏼁dy,

V(t) �
2(1 − α)ℓ5 Vn− 1(t), t( 􏼁

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ5 Vn− 1(y), y( 􏼁dy.

(13)
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*e norm application with majorizing and the difference
between successive terms imply

Un(t)
����

���� � Sn(t) − S1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ1 Sn− 1(t), t( 􏼁 − ℓ1 S1,(n− 2)(t), t􏼐 􏼑

�����

�����

+
2(1 − α)

K(α)(2 − α)
􏽚

t

0
ℓ1 Sn− 1(y), y( 􏼁 − ℓ1 S1,n− 2(y), y􏼐 􏼑􏽨 􏽩dy

�������

�������
,

Wn(t)
����

���� � An(t) − A1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ2 An− 1(t), t( 􏼁 − ℓ2 A1,(n− 2)(t), t􏼐 􏼑

�����

�����

+
2(1 − α)

K(α)(2 − α)
􏽚

t

0
ℓ2 An− 1(y), y( 􏼁 − ℓ2 A1,n− 2(y), y􏼐 􏼑􏽨 􏽩dy

�������

�������
,

Xn(t)
����

���� � Cn(t) − C1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ3 Cn− 1(t), t( 􏼁 − ℓ3 C1,(n− 2)(t), t􏼐 􏼑

�����

�����

+
2(1 − α)

K(α)(2 − α)
􏽚

t

0
ℓ3 Cn− 1(y), y( 􏼁 − ℓ3 C1,n− 2(y), y􏼐 􏼑􏽨 􏽩dy

�������

�������
,

Yn(t)
����

���� � Rn(t) − R1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ4 Rn− 1(t), t( 􏼁 − ℓ4 R1,(n− 2)(t), t􏼐 􏼑

�����

�����

+
2(1 − α)

K(α)(2 − α)
􏽚

t

0
ℓ4 Rn− 1(y), y( 􏼁 − ℓ4 R1,n− 2(y), y􏼐 􏼑􏽨 􏽩dy

�������

�������
,

Zn(t)
����

���� � Vn(t) − S1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ5 Vn− 1(t), t( 􏼁 − ℓ5 S1,(n− 2)(t), t􏼐 􏼑

�����

�����

+
2(1 − α)

K(α)(2 − α)
􏽚

t

0
ℓ4 Vn− 1(y), y( 􏼁 − ℓ5 V1,n− 2(y), y􏼐 􏼑􏽨 􏽩dy

�������

�������
,

(14)

where

􏽘

∞

i�0
Ui(t) � Sn(t),

􏽘

∞

i�0
Wi(t) � An(t),

􏽘

∞

i�0
Xi(t) � Bn(t),

􏽘

∞

i�0
Yi(t) � Rn(t),

􏽘

∞

i�0
Zi(t) � Vn(t).

(15)

Since the kernels ℓ1, . . . , ℓ5 satisfy the Lipschitz
conditions,
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Un(t)
����

���� � Sn(t) − S1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ1 Sn− 1(t) − S1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ2 􏽚

t

0
Sn− 1(y) − S1,n− 2(y)

����
����dy,

Wn(t)
����

���� � An(t) − A1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ3 An− 1(t) − A1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ4 􏽚

t

0
An− 1(y) − A1,n− 2(y)

����
����dy,

Xn(t)
����

���� � Cn(t) − C1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ5 Cn− 1(t) − C1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ6 􏽚

t

0
Cn− 1(y) − C1,n− 2(y)

����
����dy, Yn(t)

����
����

Zn(t)
����

���� � Vn(t) − V1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ9 Vn− 1(t) − V1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ10 􏽚

t

0
Vn− 1(y) − V1,n− 2(y)

����
����dy.

(16)

Theorem 2. Ge solution of fractional-order epidemiological
model (7) exists.

Proof. *e use of equation (15) with the recursive scheme
implies

Un(t)
����

����≤ ‖S(0)‖ +
2τ1(1 − α)

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩 +
2τ2αt

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩,

Wn(t)
����

����≤ ‖A(0)‖ +
2τ3(1 − α)

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩 +
2τ4αt

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩,

Xn(t)
����

����≤ ‖(0)‖ +
2τ5(1 − α)

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩 +
2τ6αt

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩,

Yn(t)
����

����≤ ‖R(0)‖ +
2τ7(1 − α)

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩 +
2τ8αt

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩,

Zn(t)
����

����≤ ‖V(0)‖ +
2τ9(1 − α)

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩 +
2τ10αt

K(α)(2 − α)
􏼠 􏼡

n

􏼨 􏼩.

(17)

We investigate that equation (17) is the solution of model
(7); therefore, we make the following substitutions:

S(t) � Sn(t) − Y1,n(t),

A(t) � An(t) − Y2,n(t),

B(t) � Bn(t) − Y3,n(t),

R(t) � Rn(t) − Y4,n(t),

V(t) � Vn(t) − Y5,n(t),

(18)

Complexity 7



where Y1,n(t), Y2,n(t), Y3,n(t), Y4,n(t), and Y5,n(t) denote the
remainder terms of the series. So,

S(t) − Sn− 1(t) �
2(1 − α)ℓ1 S(t) − Π1,n(t)􏼐 􏼑

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ1 S(y) − Y1,n(y)􏼐 􏼑dy,

A(t) − An− 1(t) �
2ℓ2 A(t) − Y2,n(t)􏼐 􏼑(1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ2 A(y) − Y1,n(y)􏼐 􏼑dy,

C(t) − Cn− 1(t) �
2ℓ3 C(t) − Y2,n(t)􏼐 􏼑(1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ2 C(y) − Y1,n(y)􏼐 􏼑dy,

R(t) − Rn− 1(t) �
2ℓ4 R(t) − Y2,n(t)􏼐 􏼑(1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ4 R(y) − Y1,n(y)􏼐 􏼑dy,

V(t) − Vn− 1(t) �
2ℓ5 V(t) − Y2,n(t)􏼐 􏼑(1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ5 V(y) − Y1,n(y)􏼐 􏼑dy.

(19)

Applying norm on both sides and the Lipschitz axiom,

S(t) −
2(1 − α)ℓ1(S(t), t)

(2 − α)K(α)
− S(0) −

2α
(2 − α)K(α)

􏽚
t

0
ℓ1(S(y), y)dy

�������

�������

≤ Υ1,n(t)
����

���� 1 +
2(1 − α)τ1

(2 − α)K(α)
+

2ατ2t
(2 − α)K(α)

􏼠 􏼡􏼨 􏼩,

A(t) −
2(1 − α)ℓ2(A(t), t)

(2 − α)K(α)
− A(0) −

2α
(2 − α)K(α)

􏽚
t

0
ℓ2(A(y), y)dy

�������

�������

≤ Υ2,n(t)
����

���� 1 +
2(1 − α)τ3

(2 − α)K(α)
+

2ατ4t
(2 − α)K(α)

􏼠 􏼡􏼨 􏼩,

C(t) −
2(1 − α)ℓ3(S(t), t)

(2 − α)K(α)
− C(0) −

2α
(2 − α)K(α)

􏽚
t

0
ℓ3(C(y), y)dy

�������

�������

≤ Υ3,n(t)
����

���� 1 +
2(1 − α)τ5

(2 − α)K(α)
+

2ατ6t
(2 − α)K(α)

􏼠 􏼡􏼨 􏼩,

R(t) −
2(1 − α)ℓ4(R(t), t)

(2 − α)K(α)
− R(0) −

2α
(2 − α)K(α)

􏽚
t

0
ℓ4(R(y), y)dy

�������

�������

≤ Υ4,n(t)
����

���� 1 +
2(1 − α)τ7

(2 − α)K(α)
+

2ατ8t
(2 − α)K(α)

􏼠 􏼡􏼨 􏼩,

V(t) −
2(1 − α)ℓ5(S(t), t)

(2 − α)K(α)
− V(0) −

2α
(2 − α)K(α)

􏽚
t

0
ℓ5(V(y), y)dy

�������

�������

≤ Υ5,n(t)
����

���� 1 +
2(1 − α)τ9

(2 − α)K(α)
+

2ατ10t
(2 − α)K(α)

􏼠 􏼡􏼨 􏼩.

(20)
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Taking lim as t approaches ∞, we get

S(t) �
2(1 − α)ℓ1(S(t), t)

K(α)(2 − α)
+

2α
K(α)(2 − α)

􏽚
t

0
ℓ1(S(y), y)dy + S(0),

A(t) �
2(1 − α)ℓ2(A(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ2(A(y), y)dy + A(0),

C(t) �
2(1 − α)ℓ3(C(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ3(C(y), y)dy + C(0),

R(t) �
2(1 − α)ℓ4(R(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ4(R(y), y)dy + R(0),

V(t) �
2(1 − α)ℓ5(V(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)

􏽚
t

0
ℓ5(R(y), y)dy + V(0),

(21)

which proves the conclusion that the solution of the pro-
posed epidemiological model as reported by equation (7)
exists. □

Theorem 3. Ge proposed epidemiological model described
by equation (7) possesess a unique solution.

Proof. On the contradiction basis, we assume that
(S+(t), A+(t), B+(t), R+(t), V+(t)) is another solution of
model (7); then,

S(t) − S
+
(t) �

2(1 − α) ℓ1(S(t), t) − ℓ1 S
+
(t), t( 􏼁􏼈 􏼉

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ1(S(y), y) − ℓ1 S

+
(y), y( 􏼁􏼈 􏼉dy,

A(t) − A
+
(t) �

2(1 − α) ℓ2(S(t), t) − ℓ2 S
+
(t), t( 􏼁􏼈 􏼉

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ2(A(y), y) − ℓ2 A

+
(y), y( 􏼁􏼈 􏼉dy,

C(t) − C
+
(t) �

2(1 − α) ℓ3(S(t), t) − ℓ3 C
+
(t), t( 􏼁􏼈 􏼉

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ3(C(y), y) − ℓ3 C

+
(y), y( 􏼁􏼈 􏼉dy,

R(t) − R
+
(t) �

2(1 − α) ℓ4(R(t), t) − ℓ1 R
+
(t), t( 􏼁􏼈 􏼉

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ4(R(y), y) − ℓ4 R

+
(y), y( 􏼁􏼈 􏼉dy,

V(t) − V
+
(t) �

2(1 − α) ℓ5(V(t), t) − ℓ5 V
+
(t), t( 􏼁􏼈 􏼉

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ5(V(y), y) − ℓ5 V

+
(y), y( 􏼁􏼈 􏼉dy.

(22)
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Majorizing the above equations, we obtain

S(t) − S
+
(t)

����
���� �

2(1 − α) ℓ1(S(t), t) − ℓ1 S
+
(t), t( 􏼁

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ1(S(y), y) − ℓ1 S

+
(y), y( 􏼁

����
����dy,

A(t) − A
+
(t)

����
���� �

2(1 − α) ℓ2(A(t), t) − ℓ2 A
+
(t), t( 􏼁

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ2(A(y), y) − ℓ2 A

+
(y), y( 􏼁

����
����dy,

C(t) − C
+
(t)

����
���� �

2(1 − α) ℓ3(C(t), t) − ℓ3 C
+
(t), t( 􏼁

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ3(C(y), y) − ℓ3 C

+
(y), y( 􏼁

����
����dy,

R(t) − R
+
(t)

����
���� �

2(1 − α) ℓ4(R(t), t) − ℓ4 R
+
(t), t( 􏼁

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ4(R(y), y) − ℓ4 R

+
(y), y( 􏼁

����
����dy,

V(t) − V
+
(t)

����
���� �

2(1 − α) ℓ5(V(t), t) − ℓ5 V
+
(t), t( 􏼁

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)
􏽚

t

0
ℓ5(V(y), y) − ℓ5 V

+
(y), y( 􏼁

����
����dy.

(23)

Using *eorems 1 and 2, one may obtain

S(t) − S
+
(t)

����
����≤

2τ1ψ1(1 − α)

K(α)(2 − α)
+

2τ2αϕ2t
K(α)(2 − α)

􏼠 􏼡

n

,

A(t) − A
+
(t)

����
����≤

2τ3(1 − α)ψ3
K(α)(2 − α)

+
2τ4αϕ4t

K(α)(2 − α)
􏼠 􏼡

n

,

C(t) − C
+
(t)

����
����≤

2(1 − α)τ5ψ5

K(α)(2 − α)
+

2ατ6ϕ6t
K(α)(2 − α)

􏼠 􏼡

n

,

R(t) − R
+
(t)

����
����≤

2τ7ψ7(1 − α)

K(α)(2 − α)
+

2ατ8ϕ8t
K(α)(2 − α)

􏼠 􏼡

n

,

V(t) − V
+
(t)

����
����≤

2τ9ψ9(1 − α)

K(α)(2 − α)
+

2ατ10ϕ10t
K(α)(2 − α)

􏼠 􏼡

n

.

(24)
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*e inequalities as reported by equation (24) hold for
every value of n; thus, we obtain

S(t) � S
+
(t),

A(t) � A
+
(t),

B(t) � B
+
(t),

R(t) � R
+
(t),

V(t) � V
+
(t).

(25)

We now discuss the positivity as well as the boundedness
of model (7) to show the well-posedness of the problem.

Furthermore, we define a certain region for the dynamics of
the proposed problem which is positively invariant. For this,
the following lemmas have been explored. □

Lemma 1. Since (S(t), A(t), C(t), R(t), V(t)) are the solu-
tions of model (7), let us consider that the model possesses
nonnegative initial conditions; then, the solutions
(S(t), A(t), C(t), R(t), V(t)) are nonnegative for all t≥ 0.

Proof. We assume a general fractional-order (ω) model of
system (7) as

G
D

ω
0,t(S(t)) � 1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t),

G
D

ω
0,t(A(t)) � p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c

α
( 􏼁A(t),

G
D

ω
0,t(C(t)) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc

α
A(t) − ϑα + εα + τα( 􏼁C(t),

G
D

ω
0,t(R(t)) � (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t),

G
D

ω
0,t(V(t)) � ζαΠα − ϑα + σα( 􏼁V(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where G represents the fractional-order operator under
consideration and ω is the order. So, equation (26) becomes

G
D

ω
0,t(S(t))|κ(S) � 1 − ζω( 􏼁Πω > 0,

G
D

ω
0,t(A(t))|κ(A) � p βωS(t)A(t) + ρωβωS(t)C(t)􏼈 􏼉≥ 0,

G
D

ω
0,t(C(t))|κ(C) � (1 − p) βωS(t)A(t) + ρωβωS(t)C(t)􏼈 􏼉 + qc

ω
A(t)≥ 0,

G
D

ω
0,t(R(t))|κ(R) � (1 − q)c

ω
A(t) + ηωS(t) + τωC(t)> 0,

G
D

ω
0,t(V(t))|κ(V) � ζαΠα > 0,

(27)

where κ(ξ) � ξ � 0 and S, A, C, R, V{ contained in C(R+ ×

R+)} and ξ ∈ S, A, C, R, V{ }. By following [31], we conclude
that the solutions (S(t), A(t), C(t), R(t), V(t)) are positive
for all nonnegative t. □

Lemma 2. Let Ω be the region for dynamics of model (7)
within it which is positively invariant; then,

Ω � (S(t), A(t), C(t), R(t), V(t)) ∈􏼨

R
4
+: S + A + C + R + V≤

Π
ϑ

􏼒 􏼓
ω
􏼩.

(28)

Proof. Since N represents the total population, therefore, it
implies that

G
D

ω
0,t(T(t)) + ϑωT(t)≤Πω. (29)

*e solution of equation (29) gives

T(t)≤T(0)Eω − ϑωt
ω

( 􏼁 +
Π
ϑ

􏼒 􏼓
ω

1 − Eω − ϑωt
ω

( 􏼁( 􏼁, (30)

where E(.) is the Mittag-Leffler function such that
Eω(Z) � 􏽐

∞
n�0 Zn/Γ(ωi + 1). Note that, in equation (30),

whenever time increases with no bound, T(t)⟶ (Π/ϑ)ω.
Hence, if T(0)≤ (Π/ϑ)ω, then T(t)≤ (Π/ϑ)ω for all t> 0,
while ifT(0)> (Π/ϑ)ω, then T goes into the feasible regionΩ
and will never leave. So, it could be concluded that the
dynamics of the fractional-order epidemiological model can
be studied in the feasible region Ω. □

5. Steady-State Analysis

*e proposed epidemiological model (7) of the hepatitis B
virus is examined for the equilibria: disease-free and en-
demic states. Let D1 be the disease-free equilibrium of the
proposed model; then, for analyzing this point, the pop-
ulation under consideration is assumed to be infection free.
*us, the system reported by equation (7) has a disease-free
equilibrium D1 � (S0, A0, C0, R0, V0), where S0 �

qα4(1 − ζα)+ σαζα/qα1qα4 , A0 � C0 � 0, R0 � ηαΠαqα4(1 − ζα)+

σαζα/ϑαqα1qα4 , and V0 � ζαΠα/qα4 , and q1 � ϑα + ηα,
q2 � ϑα + cα, q3 � ϑα + εα + τα, and q4 � ϑα + σα. Now, to
calculate the basic reproductive number, we assume
X � (A, C)T; then, system (7) yields

Complexity 11



dX

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌D1

� F − V, (31)

where

F �
pβαS

0
pραβαS

0

(1 − p)βαS
0

(1 − p)ραβαS
0

⎡⎣ ⎤⎦,

V �
q2 0

− qc
α

q3
􏼢 􏼣.

(32)

*erefore, the basic reproductive number is the spectral
radius of ρ(FV− 1), i.e., R0 � R1 + R2 + R3, where

R1 �
pβαS

0

q2
,

R2 �
ραβαS

0
(1 − p)

q3
,

R3 �
pc

αραβαqS
0

q2q3
.

(33)

Let D2 be the endemic equilibrium, and assume that
S � S∗, A � A∗, C � C∗, R � R∗, and V � V∗ at the steady
state of the proposed model; then, the solution of the re-
sultant algebraic equations will lead to the endemic

equilibrium. *us, regarding the local as well as global
analysis of the proposed model, we have the following
stability results.

Theorem 4. If R0 < 1, then the disease-free equilibrium D1 of
the proposed model (7) is locally asymptotically stable, while if
R0 > 1, then the endemic equilibrium D2 is locally asymp-
totically stable.

Proof. *e linearizable version of the proposed hepatitis B
model (7) around D1 leads to a matrix given by

J|D1
�

− q1 − βαS
0

− ραβαS
0 0 σα

0 pβαS
0

− q2 pραβαS
0 0 0

0 (1 − p)βαS
0

+ qc (1 − p)ραβαS
0

− q3 0 0

ηα (1 − q)c
α τα − ϑα 0

0 0 0 0 − q4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)

*e characteristic equation of the matrix J|D1
takes the

following form:

ω5
+ a1ω

4
+ a2ω

3
+ a3ω

2
+ a4ω + a5, (35)

where

a1 � q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁,

a2 � q1q4 + q1 + q4( 􏼁 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉

+ q2q3 1 − R0( 􏼁 + q3ϑ
α 1 − R2( 􏼁 + q2ϑ

α 1 − R1( 􏼁,

a3 � q1 + q4( 􏼁 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼈 􏼉

+ q1q4 ϑα + q2 1 − R1( 􏼁􏼈 +q3 1 − R2( 􏼁􏼉 + q2q3ϑ
α 1 − R0( 􏼁,

a4 � q1q4 q2q3 1 − R0( 􏼁 + q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁􏼈 􏼉 + q1 + q4( 􏼁q2q3ϑ
α 1 − R0( 􏼁,

a5 � q1q4q2q3ϑ
α 1 − R0( 􏼁.

(36)

It could be noted that the real parts of the eigenvalues of
the above matrix J|D1

are negative whenever Routh–Hurwitz
criteria, i.e., H: ai > 0, for i � 1, 2, 3, 4, 5, a1a2a3−􏼈

a2
3 − a2

1a4 > 0 and (a1a4 − a5)(a1a2a3 − a2
3− a2

1a4) − a5(a1a2
− a3)

2 − a1a
2
5 > 0}, hold. So,

a1a2a3 − a
2
3 − a

2
1a4 � q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉 q1q4 + q1 + q4( 􏼁 ϑα + q2 1 − R1( 􏼁􏼈􏼈

+ q3 1 − R2( 􏼁􏼉 + q2q3 1 − R0( 􏼁 + q3ϑ
α 1 − R2( 􏼁 + q2ϑ

α 1 − R1( 􏼁􏼉 q1 + q4( 􏼁 q2ϑ
α 1 − R1( 􏼁􏼈􏼈

+ q3ϑ
α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼉 + q1q4 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁

+ q2q3ϑ
α 1 − R0( 􏼁􏼉 − q1 + q4( 􏼁 q2ϑ

α 1 − R1( 􏼁 + q3ϑ
α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼈 􏼉􏼈

+ q1q4 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉 + q2q3ϑ
α 1 − R0( 􏼁􏼉

2
− q1 + q4 + ϑα(

+ q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼁
2

q1q4 q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁( 􏼁 + q1 + q4( 􏼁q2q3ϑ
α 1 − R0( 􏼁􏼈 􏼉,

(37)
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and

a1a4 − a5( 􏼁 a1a2a3 − a
2
3 − a

2
1a4􏼐 􏼑 − a5 a1a2 − a3( 􏼁

2
− a1a

2
5

�

q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁

q1q4 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁( 􏼁 + q1 + q4( 􏼁q2q3 1 − R0( 􏼁 + q1 + q4( 􏼁q2q3ϑ
α 1 − R0( 􏼁( 􏼁

− q1q4q2q3ϑ
α 1 − R0( 􏼁

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁 q1q4 + q1 + q4( 􏼁 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉 + q2q3 1 − R0( 􏼁 + q3ϑ
α 1 − R2( 􏼁 + q2ϑ

α 1 − R1( 􏼁􏼈 􏼉

q1 + q4( 􏼁 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼈 􏼉 + q1q4 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉 + q2q3ϑ
α 1 − R0( 􏼁􏼈 􏼉

− q1 + q4( 􏼁 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼈 􏼉 + q1q4 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁 + q2q3ϑ 1 − R0( 􏼁􏼈 􏼉
2

− q1 + q4 + ϑ + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉
2

q1q4 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁( 􏼁 + q1 + q4( 􏼁q2q3ϑ
α 1 − R0( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− q1q2q3q4ϑ
α 1 − R0( 􏼁

q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁

q1q4 + q1 + q4( 􏼁 ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁􏼈 􏼉 + q2q3 1 − R0( 􏼁 + q3ϑ
α 1 − R2( 􏼁 + q2ϑ

α 1 − R1( 􏼁􏼈 􏼉

− q1 + q4( 􏼁 q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁 + q2q3 1 − R0( 􏼁􏼈 􏼉 − q1q4 ϑα + q2ϑ
α 1 − R1( 􏼁 + q3ϑ

α 1 − R2( 􏼁( 􏼁

− q2q3ϑ
α 1 − R0( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

− q1 + q4 + ϑα + q2 1 − R1( 􏼁 + q3 1 − R2( 􏼁( 􏼁q
2
1q

2
4q

2
2q

2
3ϑ

2α 1 − R0( 􏼁
2
.

(38)

Clearly, we observe that all the coefficients ai for i �

1, 2, 3, 4, 5 are positive whenever R0 < 1, and if a1a2a3 − a2
3 −

a2
1a4 and (a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4)− a5(a1a2 − a3)

2 −

a1a
2
5 are positive, then it implies that the Routh–Hurwitz

criteria hold, and so, the disease-free state D1 is stable. In a
similar fashion, it can proved that the disease endemic state
D2 of the proposed model (7) is stable. □

Theorem 5. If R0 ≤ 1, then the disease-free equilibrium D1 of
the proposed model (7) is globally asymptotically stable, while
if R0 > 1, then the endemic equilibrium D2 is globally as-
ymptotically stable.

Proof. Let χ(t) � (S(t), A(t), C(t), R(t), V(t)), and we
claim that it has a finite limit whenever t approaches to∞;
then, the last equation of model (7) looks like

CF
D

α
0,tV(t) � ζαΠα − q4V(t). (39)

Since for t≥ 0 and for any φ, φ≤φet, by following the
mean value theorem and the result as stated by *eorem 3.1
in [32], equation (39) implies that

‖V(t)‖≤ aC exp − q4{ }
1/α

+1􏼂 􏼃t
, (40)

where a � ‖V0‖e− T + KTαe− T/αΓ(α) + ζαΠα, t≥T, and C is
a positive constant, and consequently, we obtain

lim
t⟶∞

V(t)≤C(ζΠ)
α
. (41)

Similarly, the first equation of the proposed fractional-
order model (7) can be rewritten as

CF
D

α
0,tS(t)≤ 1 − ζα( 􏼁Πα − q1 S(t) + σαV(t). (42)

Let b � ‖S0‖e− T + KTαe− T/αΓ(α) + (1 − ζα)Πα + σαV(t);
then,

‖S(t)‖≤ bC exp − q1{ }
1/α

+1􏼂 􏼃t
, (43)

which implies that

lim
t⟶∞

S(t)≤C 1 − ζα( 􏼁Πα( 􏼁 + lim
t⟶∞

σα V(t), (44)

or equivalently, equation (44) may take the form after using
equation (41) in equation (44) such that

lim
t⟶∞

S(t)≤CΠα. (45)

In a similar fashion, lim of A(t), C(t), and R(t) can be
shown. Moreover, we assume that

lim
t⟶∞

χ(t) � S∞, A∞, C∞, R∞, V∞( 􏼁, (46)
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and

ϕ(χ) �

ϕ1(χ)

ϕ2(χ)

ϕ3(χ)

ϕ4(χ)

ϕ5(χ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − q1S(t) + σαV(t)

p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − q2A(t)

(1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc
α
A(t) − q3C(t)

(1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)

ζαΠα − q4V(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

*us, in light of the mean value theorem, there exist
positive constants C1 andC2 such that

ϕ(χ) ≤C1 + C2
����

����χ
����

����. (48)

So, *eorems 2.1 and 3.1 in [33] imply that
CFD

α
0,t(S(t), A(t), C(t), R(t), V(t)) is uniformly continuous.

*us, Barbalat’s lemma (for details, see [34]) implies that

lim
CF

t⟶∞
D

α
0,t(χ(t)) � (0, 0, 0, 0, 0). (49)

Consequently,

1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − q1S(t) + σαV(t) � 0,

p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − q2A(t) � 0,

(1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc
α
A(t) − q3C(t) � 0,

(1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) � 0,

ζαΠα − q4V(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

*erefore, (S∞, A∞, C∞, R∞, V∞) is an equilibrium
point of the proposed fractional-order epidemiological
model (7), and by a similar argument as stated by *eorem
3.1 in [35], we conclude that

lim
t⟶∞

(χ(t)) � D1,

lim
t⟶∞

(χ(t)) � D2.
(51)

Hence, the disease endemic state D2 does not exist
whenever R0 < 1, and so, limχ(t) � D1 as t approaches ∞,
and if R0 � 1, then D2 � D1 and limχ(t) � D1 as t ap-
proaches∞, while on the contrary, if R0 > 1, then D2 exists,
and thus, limχ(t) � D2 as t tends to ∞. □

6. Numerical Simulation

In this section, the numerical simulations are carried out to
understand the temporal dynamical behavior corresponding
with hepatitis B virus fractional-order epidemiological
model (7). *is is very important to show the feasibility of
the reported work and investigate the validity of the ana-
lytical work using large-scale numerical simulation. It is
important to point out that, unlike traditional numerical
analysis, there are not as many options to choose schemes for
the numerical analysis of the fractional-order epidemio-
logical model simulations [36]. *us, there is a need of
extensive research in order to develop new schemes and
techniques that are both convergent and robust in the field of
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fractional calculus. By following the numerical schemes as
reported in [37, 38], we assume [0, t] interval of simulation
and h � 10− 3 is the time step for integration, and n � T/h,

n ∈ N, and u � 0, 1, 2, . . . , n. So, the scheme may take the
following structure:

CF
Su+1 � S(0) +(1 − α) 1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t)􏼈 􏼉

+ αh 􏽘
u

k�0
1 − ζα( 􏼁Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( 􏼁S(t) + σαV(t)􏼈 􏼉,

CF
Au+1 � A(0) +(1 − α) p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c

α
( 􏼁A(t)􏼈 􏼉

+ αh 􏽘
u

k�0
p βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 − ϑα + c

α
( 􏼁A(t)􏼈 􏼉,

CF
Cu+1 � C(0) +(1 − α) (1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc

α
A(t) − ϑα + εα + τα( 􏼁C(t)􏼈 􏼉

+ αh 􏽘
u

k�0
(1 − p) βαS(t)A(t) + ραβαS(t)C(t)􏼈 􏼉 + qc

α
A(t) − ϑα + εα + τα( 􏼁C(t)􏼈 􏼉,

CF
Ru+1 � (1 − α) (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)􏼈 􏼉

+ αh 􏽘
u

k�0
(1 − q)c

α
A(t) + ηαS(t)􏼈 +ταC(t) − ϑαR(t)􏼉 + R(0),

CF
Vu+1 � (1 − α) ζαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉 + V(0)

+ αh 􏽘
u

k�0
ζαΠα − ϑα + σα( 􏼁V(t)􏼈 􏼉.

(52)

Furthermore, the parameters’ value is assumed with
biological feasibility; that is, ζ � 0.4, Π � 0.0975,

ϑ � 0.00000456, ε � 0.3454, β � 0.022, ρ � 0.048, p � 0.5,
q � 0.5, c � 0.45, η � 0.8613, τ � 0.1428, and σ � 0.06, and
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Figure 1: *e graph shows the dynamics of the susceptible population (S(t)) for different values of the fractional-order parameter (α), and
the initial population sizes are (100, 90, 80, 70, 60).
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the initial sizes of compartmental populations are
(100, 90, 80, 70, 60).

By the execution of the above scheme with the stated
parameters’ value as above along the initial sizes of pop-
ulations, we obtain the results as depicted in Figures 1–5.
*ese graphs visualize the dynamical behaviors of the

susceptible, the acutely and chronically infected, the re-
covered, and the vaccinated groups of populations. More
precisely, the dynamics of the susceptible individuals for
different values of the fractional-order parameter (α) is
shown in Figure 1, which demonstrates that if the value of α
increases, then the ratio of the susceptible individuals
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Figure 2: *e graph visualizes the dynamics of the acutely infected
population (A(t)) for different values of the fractional-order pa-
rameter (α), and the initial population sizes are (100, 90, 80, 70, 60).
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Figure 3: *e graph demonstrates the dynamics of the chronically
infected population against different values of the fractional-order
parameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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Figure 4: *e graph demonstrates the dynamics of the recovered
population against different values of the fractional-order pa-
rameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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Figure 5: *e graph demonstrates the dynamics of the vaccinated
population against different values of the fractional-order pa-
rameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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decreases. *is shows that the fractional-order parameter
and the susceptible population are inversely proportional to
each other. Similarly, the acutely and chronically infected
population are also inversely proportional to the fractional-
order parameter (α) as shown in Figures 2 and 3, respec-
tively, while the dynamics of recovered individuals reveals
that there is a direct relation between the fractional-order
parameter (α) and the recovered population, i.e., whenever
the value of α increases, the size of the recovered population
also increases as depicted in Figure 4. *e dynamics of the
vaccinated group of population is described in Figure 5,
which demonstrates that the fractional-order parameter (α)
has a negative impact on the dynamics of the vaccinated
population, i.e., whenever the value of α increases, the size of
the population group V(t) decreases. *is analysis reveals
that the CF fractional-order model presents more valuable
outputs regarding the behavior of compartmental pop-
ulations which usually could not be obtained in case of the
classical model.

7. Conclusion

*e work carried out in this study consists of a new epi-
demiological model related to dynamics of hepatitis B virus
transmission. We used the CF operator and investigated the
dynamics of hepatitis B virus. We formulated the proposed
model first and then fractionalized by using the Capu-
to–Fabrizio operator with dimensional balance in respect of
involved epidemic parameters. We used the fixed point
theory and rigorously showed that the model under the CF
operator possesses a unique solution. We also discussed
biological as well as mathematical feasibility of the proposed
model by proving that the solutions of the model are
bounded and positive. Moreover, the basic reproductive
number is calculated, and the stability analysis of the steady
states of the proposed fractional-order epidemiological
model is shown. At the end, we presented some numerical
simulations to show the relation between compartmental
populations and the fractional-order operator. *us, the
major findings of this study show that the CF fractional-
order operator is the best choice instead of the classical
order.
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0e purpose of this research is to study the synchronization of two integrated nonlinear systems with time delay and disturbances.
A nonlinear system is a system in which the difference in output is not relative to the difference in input. A new control
methodology for synchronization of the two chaotic systems master and slave is recognized by means of the unique integrated
chaotic synchronous observer and the integrated chaotic adaptive synchronous observer. 0e instantaneous approximation states
of the master and slave systems are accomplished by means of methods for suggesting observers for every one of the master and
slave systems and by the production of error signals between these approximated states. 0is approximated synchronization error
signal and state approximation errors meet at the origin by means of methods involving a particular observer-based feedback
control signal to ensure synchronization and state approximation. Using Lyapunov stability theory, adaptive and nonadaptive
laws for control systems, and nonlinear properties, the intermingling conditions for state approximation errors and approximated
synchronization errors are established as nonlinear matrix inequalities. A solution to the resulting inequality constraints using
a two-step linear matrix inequality (LMI)-based approach is introduced, giving essential and adequate conditions to extract values
from the controller gain and observer gain matrices. Simulation of the suggested synchronization procedure for Fitz-
Hugh–Nagumo neuronal systems is demonstrated to expand the viability of the suggested observer-based control techniques.

1. Introduction

In nature, most real systems are nonlinear. To better un-
derstand the performance of distinctive nonlinear systems, it
is significant and interesting to study the synchronization
between two systems. Synchronization, perceived as a pro-
cedure that normally happens, has a notable effect in dif-
ferent areas of science, design, and engineering, even in
public activities. Nonlinear system synchronization is an
interesting field amid specialisations in various trains of
thought because of its various uses relating to design and
innovation. Researchers stepped into the universe of non-
linear systems in 1988, and various papers were published on

the subject [1, 2]. Nonlinear systems do not obey the
principle of superposition and their output is not directly
proportional to their input. Pecora and Carroll were re-
sponsible for the earliest effective work on the subject, in-
troducing an experiment for synchronization of nonlinear
systems under various initial conditions. Pecora and Carroll
published a seminal paper [3] in the field of nonlinear
synchronization. In this study, they described that certain
nonlinear chaotic systems can be made to synchronize by
linking them with common signals. 0e criterion for this is
the sign of the sub-Lyapunov exponents. We apply these
ideas to a real set of synchronizing chaotic circuits. Sub-
sequently, scientists have developed numerous nonlinear
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synchronization strategies.0e process of synchronization is
where the determined system (slave system) comes to be in
parallel with the master system (driving system), meaning
that the synchronized system moves in a specific way, fol-
lowing the direction of a synchronizing system [4, 5]. 0e
background of this article outlines that many different
methodologies have been used, including the Runge–Kutta
model-based nonlinear observer [6], linear feedback control
(LFC) [7], and delay-range dependent methodologies [8, 9].
Adaptive schemes using fuzzy disturbance observers [10],
robust adaptive methodology [11, 12], reduced-order and
full-order output-related observers [13], synchronization
with Huygens’ coupling [14], adaptive generalized projective
synchronization (GPS) [15], stepwise sliding mode observer
techniques [16], evolutionary algorithms [17], backstepping
techniques [18], and nonlinear synchronism of undefined
inputs, as well as Takagi–Sugeno fuzzy [19], have all been
implemented for the coordination of chaos systems. All of
these defined methods of synchronization of nonlinear
modules show their robustness to different technologies
such as neural networks [20], biological systems [21], secure
communication [22, 23], robotics [24], optics and lasers [25],
information science [26], and chemical reaction [27]. Ob-
server-based synchronization methods are progressively
pertinent to the condition, where the master and slave
situations are unknown [28]. Research specialists are con-
sistently investigating such methods with various kinds of
observers for different applications, for example, synchro-
nous chaos in coupled systems [29], comprehensive pro-
jective synchronization procedures dependent on state
approximation of hyperchaotic modules without computing
Lyapunov proponents, and nonlinear-based protective
communication, using decreased-order and stepwise sliding
state observers. Nevertheless, previous statements of ob-
server-dependent synchronization methods do not explain
the integrated chaotic synchronized (ICS) observer and
integrated chaotic adaptive synchronized (ICAS) observer-
dependent control strategies shown in this article. 0e
primary disadvantage of the strategies previously men-
tioned, as opposed to the ICS and ICAS observer-dependent
control techniques, is their appropriateness for the lower

degree of synchronization of the two nonlinear modules
with inaccessible state vectors. An error concurrent ob-
server-dependent synchronization method was suggested in
a recent work [30]. However, the technique is only used in
nonlinear modules for which the general error module is
adaptable to a direct composition of several error param-
eters. 0is is widely used in applications to secure com-
munications. 0e numerous forms of chaotic
synchronization include synchronization of Lur’e master
and slave system. 0e work behind this synchronization of
the chaotic Lur’e system was controlled in different ways.
0e absolute stability theory and different circumstances
have been established. 0e objective of this research paper is
to synchronize the unbalanced master pendulum system and
slave system using a robust feedback technique and the LMI-
based method for the synchronization of the chaotic dy-
namical pendulum system and output feedback controller
technique. 0e main contribution and the objectives of the
paper are (i) development of robust adaptive feedback
control for delay containing chaotic systems, (ii) the miti-
gation of the effect of the disturbances using novel integrated
adaptive observers, and (iii) a sufficient condition for the
existence of observer and controller gains for the syn-
chronization of chaotic systems. 0e closed-loop error is
minimized after very little time and the system becomes
stable, so the disturbance input effect reduces. To validate
our research results, we have considered the example of the
phase-locked loop system.

2. System Description

Synchronization of nonlinear systems is a subject matter. It
means that synchronization of the dynamics of those sys-
tems occur, containing nonlinearities in their dynamics.
Mathematical representations of nonlinear systems, which
will be synchronized, contain both types of nonlinearities
mentioned. Following this discussion, it is necessary to
consider the generalized model of nonlinear master and
slave chaotic (nonlinear) system equations (1) and (2), de-
fined by state space representation when disturbance and
adaptation are zero. dm� 0; ds� 0.

_xm(t) � Axm(t) + Adxm(t − τ) + f xm(t)( 􏼁 + fd xm(t − τ)( 􏼁 + Bg xm(t)( 􏼁θm

+ Bgd xm(t − τ)( 􏼁θm,d + dm, ym(t) � Cxm(t),
(1)

_xs(t) � Axs(t) + Adxs(t − τ) + f xs(t)( 􏼁 + fd xs(t − τ)( 􏼁 + Bg xs(t)( 􏼁θs

+ Bgd xs(t − τ)( 􏼁θs,d + ds + Bu(t),

ys(t) � Cxs(t),

(2)

where xm(t) є Rn and xs(t) є Rn are the state vectors for the
master and slave systems, respectively. Similarly, ym(t) є Rm
and ys(t) є Rm are the output vectors. A, є Rn×n, B, є Rn×l,
and C, є R, m× n are real constant matrices. 0e vector

functions f(x(t)) є Rn and g(x(t)) є Rl×p are the nonlinear
functions (τ − t). Nonlinear function time delay, qm(t) є Rp
and qs(t) є Rp are the unknown parameters in the dynamics
of the chaotic oscillators, and u(t) є Rl is the control input.
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3. Integrated Adaptive Observer-
Dependent Synchronization

If unknown parameters such as θm, θs, θm,d, θs,d ∈ Rp are
present in the master (M) and slave (S) nonlinear systems,

then the control law will not be applicable for the syn-
chronization of both systems. In such cases, we will use
adaptation laws with a choice of control law:

u(t) � ψ 􏽢xm(t), 􏽢xs(t)( 􏼁Ψ 􏽢xm(t), 􏽢xs(t)( 􏼁 � F 􏽢xm(t) − 􏽢xs(t)( 􏼁 + g 􏽢xm(t)( 􏼁􏽢θm(t) − g 􏽢xs(t)( 􏼁􏽢θs(t)

+ gd 􏽢xm(t − τ)( 􏼁􏽢θm,d(t − τ) − gd 􏽢xs(t − τ)( 􏼁􏽢θs,d(t − τ),
(3)

where 􏽢θm(t) ∈ Rp, 􏽢θs(t) ∈ Rp, 􏽢θm,d(t − τ) ∈ Rp,
􏽢θs,d(t − τ) ∈ Rp, and θm, θs, θm,d , and θs,d , ∈ Rp are the
unknown parameter estimates. For the estimation of both

system states under unspecified parameters, coupled
adaptive observers are the best to use:

_􏽢xm(t) � A􏽢xm(t) + Ad􏽢xm(t − τ) + f 􏽢xm(t)( 􏼁 + fd 􏽢xm(t − τ)( 􏼁 + Bg 􏽢xm(t)( 􏼁􏽢θm(t) + Bgd 􏽢xm(t − τ)( 􏼁􏽢θm,d(t − τ)

+ Lm ym(t) − 􏽢ym(t)( 􏼁 −
1
2

BF 􏽢xm(t) − 􏽢xs(t)( 􏼁,

(4)

_􏽢xs(t) � A􏽢xs(t) + Ad􏽢xs(t − τ) + f 􏽢xs(t)( 􏼁 + fd 􏽢xs(t − τ)( 􏼁 + Bg 􏽢xs(t)( 􏼁􏽢θs(t) + Bgd 􏽢xs(t − τ)( 􏼁􏽢θs,d(t − τ)

+ Ls ys(t) − 􏽢ys(t)( 􏼁 −
1
2

BF 􏽢xm(t) − 􏽢xs(t)( 􏼁 + Bu(t),
(5)

where Lm ∈ Rn×m and Ls ∈ Rn×m are the observer gain ma-
trices. With the help of equation (3), we can manage the
model structure of the slave (S) observer given as

_􏽢xs(t) � A􏽢xs(t) + Ad􏽢xs(t − τ) + f 􏽢xs(t)( 􏼁 + fd 􏽢xs(t − τ)( 􏼁 + Bg 􏽢xs(t)( 􏼁􏽢θs(t)

+ Bgd 􏽢xs(t)( 􏼁􏽢θs,d(t − τ) + Ls ys(t) − 􏽢ys(t)( 􏼁 +
1
2

BF 􏽢xm(t) − 􏽢xs(t)( 􏼁 + Bug(t),

ug(t) � g 􏽢xm(t)( 􏼁􏽢θm(t) − g 􏽢xs(t)( 􏼁􏽢θs(t) + gd 􏽢xm(t − τ)( 􏼁􏽢θm,d(t − τ) − gd 􏽢xs(t − τ)( 􏼁􏽢θs,d(t − τ),

(6)

where u(t) is a nonlinear element. Also, in addition, we
define

em(t) � xm(t) − 􏽢xm(t),

es(t) � xs(t) − 􏽢xs(t),

e0(t) � 􏽢xm(t) − 􏽢xs(t),

ψ(t) � f(x(t)) − f(􏽢x(t)),

ψd(t, τ) � fd(x(t − τ)) − fd(􏽢x(t − τ)),

ψg(t) � Bg xm(t)( 􏼁θm − Bg 􏽢xm(t)( 􏼁􏽢θm(t),

ψ(g,d)(t, τ) � Bgd(x(t − τ))θd − Bgd(􏽢x(t − τ))􏽢θd(t − τ).

(7)

4. Synchronization Feedback Control

0e (M) and (S) chaotic frameworks can be made clear
through the use of their particular observers.0ese observers
for the (M) and (S) frameworks produce evaluations of the
conditions of the particular framework. 0e two approxi-
mates of the (M) and (S) frameworks are authorized to make
up for a similar performance.0is is finished by applying the
recommended control holding the approximated conditions
of the drive and reaction frameworks. 0e suggested control
coordinates related approximated conditions of the two
frameworks with the end goal that approximated the syn-
chronization error, for example, es(t) � xs(t) − 􏽢xs(t) deals
to zero. When it occurs, the conditions of the (M) and (S)
observers remain synchronized. Subsequently, (M) and (S)
observers are called synchronous observers. Presently,
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taking the derivative of both sides of the master, slave, and
output error equation, we acquire

_em(t) � Aem(t) + Adem(t − τ) + ψm(t) + ψdm(t) + ψgm(t) + ψ(g,d)m(t) − LmCem(t) + dm +
1
2

BFeo(t), (8)

_es(t) � Aes(t) + Ades(t − τ) + ψs(t) + ψds(t) + ψgs(t) + ψ(g,d)s(t) − LsCes(t) −
1
2

BFeo(t) + ds − Bug(t), (9)

where ug(t) is the nonlinear part of the proposed control
law, i.e.,

ug(t) � g 􏽢xm(t)( 􏼁􏽢θm(t) − g 􏽢xs(t)( 􏼁􏽢θs(t) + gd 􏽢xm(t − τ)( 􏼁􏽢θm,d(t − τ) − gd 􏽢xs(t − τ)( 􏼁􏽢θs,d(t − τ), (10)

_eo(t) � Aeo(t) + Adeo(t − τ) + ψo(t) + ψdo(t) + LmCem(t) − LsCes(t) − BFeo(t). (11)

0e assumption considers BTPmC⊥ � 0, BTPsC
⊥ � 0,

and BTPoC⊥ � 0 , where C⊥ stands for the orthogonal
projection on the null of C. If the above assumption holds,
solving BTPm − RmC � 0, BTPs − RsC � 0, and
BTPo − RoC � 0 matrices, Rm, Rs, and Ro can be delegated.
Adaptive controller design is provided using ICAS
observers.

5. Theorem

0e given observer and controller are then able to gain
matrices F ∈ Rl×n, Lm ∈ Rn×m, and Ls ∈ Rn×m an appropriate
state for synchronization of the (M) and (S) systems (1) and
(2) with undefined dynamics θm ∈ Rp, θs ∈ Rp, θm,d ∈ Rp,
and θs,d ∈ Rp which concern with the assumption, applying
the control law and ICAS observers (4)-(5), together with the
law of adaptation:

_􏽢θm(t) � − Θmg
T

􏽢xm(t)( 􏼁Rm ym(t) − C􏽢xm(t)( 􏼁, Θm > 0,

_􏽢θs(t) � − Θsg
T

􏽢xs(t)( 􏼁Rs ys(t) − C􏽢xs(t)( 􏼁, Θs > 0,

_􏽢θm,d(t − τ) � − Θm,dg
T
d 􏽢xm(t − τ)( 􏼁Rmym(t − τ)) − C􏽢xm(t − τ)), Θm,d > 0,

_􏽢θs,d(t − τ) � − Θs,dg
T
d 􏽢xs(t − τ)( 􏼁Rsys(t − τ)) − C􏽢xs(t − τ)), Θs,d > 0.

(12)

0ese are the adaptation rate _􏽢θm,
_􏽢θs,

_􏽢θm,d, and
_􏽢θs,d of

proper quantities, with Pm, Ps, and Po positive-definite
matrices. 0e scalars are α1 > 0, α2 > 0,

α3 > 0, α4 > 0, α5 > 0, α6 > 0, β1 > 0, β12 > 0, β3 > 0, and β4 > 0
so that the inequality matrix is satisfied:

Φ119×9
Φ129×9
Φ139×7

Φ219×9
Φ229×9
Φ239×7

Φ319×9
Φ329×9
Φ337×7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

25∗ 25

, (13)

where

ζ11,m � A
T
Pm + PmA − C

T
L

T
mPm + Rm + R1m + R2m + τ2 − τ1( 􏼁Qm + α1L

2
f + α2L

2
f,d + β1L

2
gm + β2L

2
gm,d,

ζ11,s � A
T
Ps + PsA − C

T
L

T
s Ps + Rs + R1s + R2s + τ2 − τ1( 􏼁Qs + α3L

2
f + α4L

2
f,d + β3L

2
gs + β4L

2
gs,d,

ζ11,o � A
T
Po + PoA − PoB

T
F

T
− PoBF + τ2 − τ1( 􏼁Qo + Ro + R1o + R2o + α5L

2
f + α6L

2
f,d.

(14)
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Proof. 0e balanced state for synchronization of (M) and (S)
modules is adopted as follows. By considering 􏽥θm(t) � θm −
􏽢θm(t) and 􏽥θm(t − τ) � θm − 􏽢θm(t − τ) and assuming
gm(xm(t)) � Bg(xm(t))θm, gs(xs(t)) � Bg(xs(t))θs,

gdm(xm(t − τ)) � Bg(xm(t − τ))θdm, and gds(xs(t − τ)) �

Bg (xs(t − τ))θds and further utilizing some mathematical
manipulation, we can derive

Bg xm(t)( 􏼁θm − Bg 􏽢xm(t)( 􏼁􏽢θm(t) � gm xm(t)( 􏼁 − gm 􏽢xm(t)( 􏼁 + Bg 􏽢xm(t)( 􏼁􏽥θm(t),

Bg xm(t − τ)( 􏼁θm − Bg 􏽢xm(t − τ)( 􏼁􏽢θm(t − τ) � gdm xm(t − τ)( 􏼁 − gdm 􏽢xm(t − τ)( 􏼁 + Bg 􏽢xm(t − τ)( 􏼁􏽥θm(t − τ),

Bg 􏽢xs(t)( 􏼁􏽢θs(t) � gs xs(t)( 􏼁 − gs 􏽢xs(t)( 􏼁 + Bg 􏽢xs(t)( 􏼁􏽥θs(t),

Bg xs(t − τ)( 􏼁θs − Bg 􏽢xs(t − τ)( 􏼁􏽢θs(t − τ) � gds xs(t − τ)( 􏼁 − gds 􏽢xs(t − τ)( 􏼁 + Bg 􏽢xs(t − τ)( 􏼁􏽥θs(t − τ).

(15)

By letting

􏽥ψ
g,m􏽢m(t) � g

T
m xm(t)( 􏼁 − g

T
m 􏽢xm(t)( 􏼁,

􏽥ψ
g,s􏽢s(t) � g

T
s xs(t)( 􏼁 − g

T
s 􏽢xs(t)( 􏼁,

􏽥ψ
(g,d),m􏽢m(t, τ) � gdm xm(t − τ)( 􏼁 − gdm 􏽢xm(t − τ)( 􏼁,

􏽥ψ
(g,d),s􏽢s(t, τ) � gds xs(t − τ)( 􏼁 − gds 􏽢xs(t − τ)( 􏼁,

(16)

we obtain from equation (8)

_em(t) � Aem(t) + Adem(t − τ) + ψm(t) + ψdm(t) + 􏽥ψ
g,m􏽢m(t) + 􏽥ψ

(g,d),m􏽢m(t, τ)

+ Bg 􏽢xm(t)( 􏼁􏽥θm(t) + Bg 􏽢xm(t − τ)( 􏼁􏽥θm(t − τ)

− LmCem(t) + dm +
1
2

BFeo(t).

(17)

0us, it is certain to acquire from equation (9)

_es(t) � Aes(t) + Ades(t − τ) + ψs(t) + ψds(t) + 􏽥ψ
g,s􏽢s(t)

+ 􏽥ψ
(g,d),s􏽢s(t, τ) + Bg 􏽢xs(t)( 􏼁􏽥θs(t) + Bg 􏽢xs(t − τ)( 􏼁􏽥θs(t − τ)

− LsCes(t) −
1
2

BFeo(t) + ds − Bug(t),

(18)
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Using equation (11), we have

_eo(t) � (A − BF)eo(t) + Adeo(t − τ) + ψo(t)

+ ψdo(t) + LmCem(t) − LsCes(t).
(19)

With the help of the Lyapunov function, the theorem is
a proof that

V(t, e) � e
T
m(t)Pmem(t) + 􏽚

− τ1

− τ2
􏽚

t

t+β
e

T
m(α)Qmem(α)dαdβ + 􏽚

0

− τ
e

T
m(t + σ)Rm

× em(t + σ)dσ + 􏽚
0

− τ1
e

T
m(t + σ)R1mem(t + σ)dσ + 􏽚

0

− τ2
e

T
m(t + σ)R2m

× em(t + σ)dσ + 􏽚
− τ1

− τ2
em(t + σ)dσ􏼢 􏼣

T

Wm 􏽚
− τ1

− τ2
em(t + σ)dσ􏼢 􏼣

+ e
T
s (t)Pses(t) + 􏽚

− τ1

− τ2
􏽚

t

t+β
e

T
s (α)Qses(α)dαdβ + 􏽚

0

− τ
e

T
s (t + σ)Rs

× es(t + σ)dσ + 􏽚
0

− τ1
e

T
s (t + σ)R1ses(t + σ)dσ + 􏽚

0

− τ2
e

T
s (t + σ)R2s

× es(t + σ)dσ + 􏽚
− τ1

− τ2
es(t + σ)dσ􏼢 􏼣

T

Ws 􏽚
− τ1

− τ2
es(t + σ)dσ􏼢 􏼣

+ e
T
o (t)Poeo(t) + 􏽚

− τ1

− τ2
􏽚

t

t+β
e

T
o (α)Qoeo(α)dαdβ + 􏽚

0

− τ
e

T
o (t + σ)Ro

× eo(t + σ)dσ + 􏽚
0

− τ1
e

T
o (t + σ)R1oeo(t + σ)dσ + 􏽚

0

− τ2
e

T
o (t + σ)R2o

× eo(t + σ)dσ + 􏽚
− τ1

− τ2
eo(t + σ)dσ􏼢 􏼣

T

Wo 􏽚
− τ1

− τ2
eo(t + σ)dσ􏼢 􏼣

+ 􏽥θ
T

m(t)Θ− 1
m

􏽥θm(t) + 􏽥θ
T

s (t)Θ− 1
s

􏽥θs(t)+

􏽥θ
T

m,d(t − τ)Θ− 1
m,d

􏽥θm,d(t − τ) + 􏽥θ
T

s,d(t − τ)Θ− 1
s,d

􏽥θs,d(t − τ).

(20)

6 Complexity



Taking the time derivative of the Lyapunov energy
function, equation (15) can be written as

_V(t, e) � _e
T
m(t)Pme(t) + e

T
m(t)Pm _em(t) + τ2 − τ1( 􏼁e

T
m(t)Qem(t) − 􏽚

t− τ1

t− τ2
e

T
m(σ)

× Qem(σ)dσ + e
T
m(t)Rem(t) − (1 − _τ)e

T
m(t − τ)Rem(t − τ) + e

T
m(t)R1em(t)

− e
T
m t − τ1( 􏼁R1em t − τ1( 􏼁 + e

T
m(t)R2em(t) − e

T
m t − τ2( 􏼁R2em t − τ2( 􏼁

+ em t − τ1( 􏼁 − em t − τ2( 􏼁􏼂 􏼃
T
W 􏽚

t− τ1

t− τ2
em(σ)dσ􏼢 􏼣 + 􏽚

t− τ1

t− τ2
em(σ)dσ􏼢 􏼣

T

× W em t − τ1( 􏼁 − em t − τ2( 􏼁􏼂 􏼃

_e
T
s (t)Pse(t) + e

T
s (t)Ps _es(t) + τ2 − τ1( 􏼁e

T
s (t)Qes(t) − 􏽚

t− τ1

t− τ2
e

T
s (σ)

× Qes(σ)dσ + e
T
s (t)Res(t) − (1 − _τ)e

T
s (t − τ)Res(t − τ) + e

T
s (t)R1es(t)

− e
T
s t − τ1( 􏼁R1es t − τ1( 􏼁 + e

T
s (t)R2es(t) − e

T
s t − τ2( 􏼁R2es t − τ2( 􏼁

+ es t − τ1( 􏼁 − es t − τ1( 􏼁􏼂 􏼃
T
W 􏽚

t− τ1

t− τ2
es(σ)dσ􏼢 􏼣 + 􏽚

t− τ1

t− τ2
es(σ)dσ􏼢 􏼣

T

× W es t − τ1( 􏼁 − es t − τ1( 􏼁􏼂 􏼃

_e
T
o (t)Poe(t) + e

T
o (t)Po _eo(t) + τ2 − τ1( 􏼁e

T
o (t)Qeo(t) − 􏽚

t− τ1

t− τ2
e

T
o (σ)

× Qeo(σ)dσ + e
T
o (t)Reo(t) − (1 − _τ)e

T
o (t − τ)Reo(t − τ) + e

T
o (t)R1eo(t)

− e
T
o t − τ1( 􏼁R1eo t − τ1( 􏼁 + e

T
o (t)R2eo(t) − e

T
o t − τ2( 􏼁R2eo t − τ2( 􏼁

+ eo t − τ1( 􏼁 − eo t − τ2( 􏼁􏼂 􏼃
T
W 􏽚

t− τ1

t− τ2
eo(σ)dσ􏼢 􏼣 + 􏽚

t− τ1

t− τ2
eo(σ)dσ􏼢 􏼣

T

× W eo t − τ1( 􏼁 − eo t − τ2( 􏼁􏼂 􏼃

+ 2􏽥θ
T

m(t)Θ− 1
m

_􏽥θm(t) + 2􏽥θ
T

s (t)Θ− 1
s

_􏽥θs(t)

+ 2􏽥θ
T

m,d(t − τ)Θ− 1
m,d

_􏽥θm,d(t − τ) + 2􏽥θ
T

s,d(t − τ)Θ− 1
s,d

_􏽥θs,d(t − τ).

(21)

Assume dm � ds � 0.

From equation (21), clearly, _V (t)< 0 is guaranteed if
1< 0 is fulfilled. 0us, the em(t), es(t), and eo(t) error signals
are asymptotically steady. Accordingly, the (M)-(S) systems
in equations (1) and (2) are synchronized, which concludes
the proof. □

Theorem 1. It gives the result of the synchronization problem
for the (M)-(S) nonlinear systems with the requirement that F
is the controller gain matrix and Lm and Ls are the observer
gain matrices. To remove this restriction, we have suggested
a solution for the approximation values of Lm, Ls, and F,
using a convex routine solution. Now, we set out

Complexity 7



a methodology for solving the inequality matrix with the help
of the two-step LMI-based approach:

Φ11 �

ζ11,m AdPm 0 0 0 0 0 0 0

A
T
d Pm − (1 − τ)R 0 0 0 0 0 0 0

∗ ∗ − R1m 0 Wm 0 0 0 0

∗ ∗ ∗ − R2m − Wm 0 0 0 0

∗ ∗ Wm − Wm −
1

τ2 − τ1
Qm 0 0 0 0

∗ ∗ ∗ ∗ ∗ ζ11,s AdPs 0 0

∗ ∗ ∗ ∗ ∗ A
T
d Ps − (1 − τ)R 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − R1s 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − R2s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ22 �

−
1

τ2 − τ1
Qs 0 0 0 0 0 0 0 0

∗ ζ11,o AdPo 0 0 0 0 0 0

∗ A
T
d Po − (1 − τ)R 0 0 0 0 0 0

∗ ∗ ∗ − R1o 0 Wo 0 0 0

∗ ∗ ∗ ∗ − R2o − Wo 0 0 0

∗ ∗ ∗ Wo − Wo −
1

τ2 − τ1
Q0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − α1In 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − α2In 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − β1In

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ33 �

− β2In 0 0 0 0 0 0

∗ − α3In 0 0 0 0 0

∗ ∗ − α4In 0 0 0 0

∗ ∗ ∗ − β3In 0 0 0

∗ ∗ ∗ ∗ − β4In 0 0

∗ ∗ ∗ ∗ ∗ − α5In 0

∗ ∗ ∗ ∗ ∗ ∗ − α6In

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Φ12 �

0 0.5PmBF + L
T
mC

T
Po 0 0 0 0 Pm Pm Pm

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0.5PsBF − L
T
s C

T
Po 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Ws 0 0 0 0 0 0 0 0

− Ws 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ13 �

Pm 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 Ps Ps Ps Ps 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ21 �

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ws − Ws

0.5PmB
T
F

T
+ LmCPo ∗ ∗ ∗ ∗ 0.5PmB

T
F

T
+ LsCPo ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Pm ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Pm ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Pm ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)
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Φ23 �

0 0 0 0 0 0 0
0 0 0 0 0 Po Po

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ31 �

Pm ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ Ps ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ Ps ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ Ps ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ Ps ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ32 �

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ Po ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ Po ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

6. Simulation and Results

Simulation of the suggested methods for the synchroni-
zation of the (M) and (S) systems with undefined pa-
rameters, as planned in 0eorem 1, is shown in the
accompanying simulation outcomes for FHN (Fitz-
Hugh–Nagumo) (M)-(S) designs. 0e suggested meth-
odology was completed with the help of simulation work
using MATLAB software and FHN numerical models.
FHN is generally utilized in genetic systems, such as brain
stimulation therapy, considering the performance of
neurons in electricity. It helps in investigating symptoms
and diseases of the brain, including tremors resulting
from disorders of the brain’s neurons. 0is kind of in-
fection occurs in various parts of the brain. 0e FHN
system is defined below:

Xm1
•

� X
2
m1 − Xm1􏼐 􏼑 1 − R1Xm1( 􏼁 − Xm2 + IoXm2

•

� BXm2,

Xsi

•

� X
2
si − Xsi􏼐 􏼑 1 − RiXsi( 􏼁 − Xsi + IoXsi+1

•

� BXsi+1,

Io �
m

ω
􏼒 􏼓Cos(ωt),

(24)

where Io is the current in the above equation, m� 0.099, ω
� 2πf, and f� 0.128. Chaotic systems are sensitive to initial

conditions. By changing the value of initial conditions, the
phase portrait, i.e., behaviour of nonlinear chaotic systems,
changes. 0e initial conditions for the (M) and (S) systems
are Xs1(0) � 0.399 andXsi+1(0) � 0.099.0e other parameters
are B � 1.01, R1 � 10.09, and R2 � 9.89.

0e phasor picture and individual reactions to the
nonlinear chaotic performance of the (M)-(S) FHN sys-
tem are exposed in Figure 1. For the (M)-(S) systems,
various initial conditions are used. Different error signals
are designed between the master system with its observer
and the slave system with its observer and introduced in
Figures 2(a) and 2(b), for 0eorem 1, respectively.
Figure 3 describes the error signal between the (M) ob-
server state and the (S) observer state. 0e simulation
results are given for a nonadaptive control strategy under
three different conditions. First, neuron behaviour with
the help of the FHN system is generalized. In neurons,
membrane potential is not the same in all living beings. It
can be standardized using methods for an alternative
scaling factor, so this is pertinent for all types of neurons.
Second, the numerical articulations of the FHN system
are, for the most part, dependent on the ordinary
membrane potential. 0ird, standardized potential usage
gain matrices must be controlled to finally synchronize
(M)-(S) systems.

0e FHNmodel is related to the matrices, as indicated by
the nonlinear chaotic master and slave systems:

10 Complexity



Si �

− 1.00 − 1.00

1.00 0.00

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

X �

1.00

0.00

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Y �

1.00

0.00

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

F(x(t)) �

11.00x1
2

+ 10.00x1
3

+
m

ω
􏼒 􏼓Cos(ωt)

0.00

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(25)

By using the adaptive scheme, synchronizing the (M)-(S)
systems according to 0eorem 1, Lm and Ls are the gain
matrices for the observer’s master and slave systems, re-
spectively. By varying the values of these observers gain
matrices Lm and Ls and control gain matrix F, the effec-
tiveness and efficiency of proposed control methodology

may vary. After some empirical analysis, the values of the
observer gain matrices and controller gain matrix are
chosen. 0ese Lm, Ls, and F values are chosen as follows:

Lm �
1.32

0.00
􏼢 􏼣,

Lsi �
1.32

0.00
􏼢 􏼣,

F � [1.000.00],

ξ � F 􏽢xm(t) − 􏽢xsi(t)( 􏼁.

(26)

Figure 4 represents the result of the controller. In
equation (26), ξ is the controlling function, which controls
the behaviour of the (M)-(S) system. 0eorem 1 illustrates
this in Figure 1, which shows the standardized potential of
the (M)-(S) system with its observers. In Figure 5,0eorem 1
illustrates the observer recovery variables for the (M)-(S)
systems. Figure 6 explains the error signals between the (M)
system and its master observer and between the (S) system
and its slave observer. Lm and Ls are the gain matrices for
the observer’s respective master and slave systems, poten-
tially influencing the master error em(t) and slave error es(t).
“F” can clearly affect eoi(t). In the unlikely event where we
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Figure 1: (a) Standardized potential of the master and (b) four slave systems and their respective observers of 0eorem 1.
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change the gain matrices’ standards, these straightforwardly
influence the synchronizing time. In Figure 2, 0eorem 1
shows the error signals between master and slave states.
Finally, Figure 3 describes the error signals between the (M)
observer state and (S) observer states.

For the representation of the degree of synchronization
statistically [31, 32], error-based DOS criteria are defined as
follows:

DOS(􏽥e) � 1 −
􏽥e2

􏽥e2,max

������

􏽒
t

0 􏽥e
2
dt

􏽱

/
������

􏽒
t

0 􏽥e2dt

􏽱

|max􏼒 􏼓

,
(27)

where 􏽥e2 and 􏽥e2,max are the 2-norm of error 􏽥e and the
maximum value of the norm, respectively. Note that the
minimum and maximum values of degree of synchroniza-
tion (DOS(􏽥e)) are 0 and 1, respectively. 0e maxima occurs
for the minimum synchronization error, that is, 􏽥e2 � 0.
While the minima occurs for 􏽥e2 � 􏽥e2,max, when synchroni-
zation error is maximum. It is worth mentioning that the
maximum value 􏽥e2,max can be achieved by selecting either
Lm � Ls � 0 0􏼂 􏼃

Tfor any particular value of F or by utili-
tarian of F � 0 0􏼂 􏼃 with some fixed values of Lm and Ls.
Degree of synchronization is calculated for nonadaptive case
to show the effect of variations in Lm, Ls, and F. Tables 1 and
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Figure 4: Phase portraits of master and slave systems of 0eorem 1.
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Figure 3: (a) Error between the master observer states and (b) that corresponding to the states of slave observers of 0eorem 1.
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2 demonstrate the effect of Lm � Ls and Fon the DOS, re-
spectively. It can be concluded that increase in the entries of
Lm and F can increase the degree of synchronization errors
em1(t) and eo1(t), respectively.

7. Conclusion

Synchronization of the two nonlinear systems, as well as
chaotic frameworks with time delay, uncertainties, and
disturbance, are recognized in this research study. A con-
troller is designed utilizing the robust adaptive input control
hypothesis. Along with the laws of adaptation for the ap-
proximation of boundaries, the planned delay rate-de-
pendent controller ensures the synchronization of chaos,
bringing synchronization errors to zero. 0e simulations
using MATLAB confirm the adequacy of the proposed

strategy. 0is is despite the fact that the model considered is
for complex nonlinear chaotic framework with time delays
with undefined elements. 0e result is also significant for its
moderately simple, nonlinear frameworks with defined el-
ements and consistent delays. As far as the future work is
concerned, the distributed systems’ synchronization of
nonlinear systems can be considered. New methodologies
can be sought for the distributed nonlinear systems having
network delays with varying parameters.
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