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Purpose. The complex etiological variables and high heterogeneity of bladder cancer (BC) make prognostic prediction challenging.
We aimed to develop a robust and promising gene signature using advanced machine learning methods for predicting the
prognosis and therapy responses of BC patients. Methods. The single-sample gene set enrichment analysis (ssGSEA) algorithm
and univariable Cox regression were used to identify the primary risk hallmark among the various cancer hallmarks. Machine
learning methods were then combined with survival and differential gene expression analyses to construct a novel prognostic
signature, which would be validated in two additional independent cohorts. Moreover, relationships between this signature and
therapy responses were also identified. Functional enrichment analysis and immune cell estimation were also conducted to
provide insights into the potential mechanisms of BC. Results. Epithelial-mesenchymal transition (EMT) was identified as the
primary risk factor for the survival of BC patients (HR=1.43, 95% CI: 1.26-1.63). A novel EMT-related gene signature was
constructed and validated in three independent cohorts, showing stable and accurate performance in predicting clinical
outcomes. Furthermore, high-risk patients had poor prognoses and multivariable Cox regression analysis revealed this to be an
independent risk factor for patient survival. CD8+ T cells, Tregs, and M2 macrophages were found abundantly in the tumor
microenvironment of high-risk patients. Moreover, it was anticipated that high-risk patients would be more sensitive to
chemotherapeutic drugs, while low-risk patients would benefit more from immunotherapy. Conclusions. We successfully
identified and validated a novel EMT-related gene signature for predicting clinical outcomes and therapy responses in BC
patients, which may be useful in clinical practice for risk stratification and individualized treatment.

1. Introduction

Bladder cancer (BC) is the most common type of urinary
system cancer, with over 570,000 new cases and 210,000
deaths globally in 2020 [1]. Based on the tumor (T) stage,
BC patients have been classified into non-muscle-invasive
BC (NMIBC) and muscle-invasive BC (MIBC). After trans-
urethral resection of bladder tumor, tumor recurrence and
progression were observed in 63% and 11% of NMIBC
patients, respectively [2]. Similarly, about half of MIBC
patients who underwent radical cystectomy developed local
recurrence or distant metastases, and 34% died within a 5-
year follow-up period [3]. Individual treatment options for

BC patients are currently determined primarily by cancer
characteristics such as tumor-node-metastasis (TNM) stag-
ing and pathological grade [4]. However, the complex etio-
logical variables and the high heterogeneity BC result in
significantly different prognoses, making prognostic predic-
tion difficult [5]. Therefore, a reliable and accurate bio-
marker in the prognosis of BC and prediction of therapy
responses is highly beneficial in directing BC care.

The epithelial-mesenchymal transition (EMT) is a cellular
process that allows epithelial cells to acquire mesenchymal
characteristics and behaviors with down-regulated epithelial
features, most notably the loss of E-cadherin [6, 7]. EMT acti-
vation is thought to enhance tumor invasiveness, metastasis,
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and drug resistance, referring to aggressive tumor type [8, 9].
Several studies demonstrated an association between EMT
and progression and survival outcomes in patients with BC
[10, 11]. Furthermore, EMT in solid tumors has been shown
to correlate with chemotherapy and immunotherapy
responses [12–14]. Therefore, EMT-associated characteristics
and EMT-based gene signatures have the potential to predict
clinical outcomes and responses to chemotherapy and immu-
notherapy of BC patients.

We identified EMT as a leading risk factor for the sur-
vival of BC patients in this study. Advanced machine learn-
ing methods were then used to screen prognostic genes,
resulting in constructing an EMT-related gene signature val-
idated in multiple cohorts. Moreover, we performed com-
prehensive analyses of the tumor microenvironment
(TME), immune cell infiltration, and therapeutic responses
of BC patients to investigate their relationship with EMT
and identify potential mechanisms.

2. Materials and Methods

2.1. The Collection and Pretreatment of Data. Gene expres-
sion and relevant clinicopathological data of 405BC speci-
mens and 19 adjacent normal specimens were obtained
from TCGA (https://cancergenome.nih.gov/). After elimi-
nating ineligible samples with overall survival (OS) of less
than 30 days, the TCGA dataset including 393BC patients
was used as the training cohort. Subsequently, after screen-
ing the GEO database, two datasets were selected for this
study based on the following inclusion criteria: (1) histologi-
cally confirmed BC samples with gene expression information;
(2) samples with complete clinical data; (3) more than 100
samples. The GSE13507 dataset (Illumina human-6 v2.0
expression beadchip) containing 165BC samples was utilized
as validation I cohort. The GSE32894 dataset (umina
HumanHT-12V3.0 expression beadchip) comprising 221BC
samples was utilized as validation II cohort. The detailed infor-
mation of the above three cohorts is shown in Table 1. All
RNA-seq data involved in this study were normalized and
log2 transformed.

2.2. Study Design. As illustrated in Figure 1, three phases
including the discovery, training and validation, and further
exploration phases were included in this research. In the dis-
covery phase, EMT was identified as the leading risk factor
for BC prognosis among various cancer hallmarks. Subse-
quently, prognostic differentially expressed genes (DEGs)
in EMT-related genes were included for random survival
forest analysis and stepwise Cox regression to construct a
novel EMT-related gene signature, and its prognostic value
was also validated in another two independent validation
cohorts. Furthermore, we performed functional enrichment
analysis, estimation of immune cell infiltration, and thera-
peutic responses prediction (chemotherapy and immuno-
therapy) in the above three cohorts.

2.3. Identification of the Leading Risk Hallmark for BC
Prognosis. Briefly, the single-sample gene set enrichment
analysis (ssGSEA) was employed to measure the perfor-

mance of various confirmed cancer hallmarks in the training
cohort using the “gsva” R package. This algorithm was based
on gene expression profiles and hallmark annotation gene
sets acquired from the Molecular Signatures Database
(MSigDB) [15]. Then univariable Cox regression analysis
identified EMT with the highest hazard ratio as the leading
risk factor for the OS of BC patients and meta-analysis was
also applied to compute the pooled hazard ratio of EMT
among multiple cohorts to confirm its prognostic role.
Moreover, we also applied gene set enrichment analysis
(GSEA) to detect the significantly enriched cancer hallmarks
in BC samples in comparison with adjacent normal samples
using “clusterProfiler” R package [16, 17].

2.4. Generation and Verification of the EMT-Related
Prognostic Gene Signature. We searched the MSigDB data-
base using the search keyword (Epithelial-mesenchymal
transition) and collected 359 EMT-related genes. DEGs
between BC specimens and adjacent normal specimens were
screened from EMT-related genes using the “limma” R
package when the criteria jlogFCj > 1 and false discovery
rate (FDR < 0:005) were met [18]. With a p value threshold
of 0.005, we utilized univariable Cox regression analysis to
detect prognostic genes among EMT-related genes. Over-
lapped genes between DEGs and prognostic genes were
included for the random survival forest (RSFs) for further
selection using the ‘randomForestSRC’ R package. The RSFs
are an adaptation of random forests for follow-up data analy-
sis, which are tree-based ensemble machine learning algo-
rithms. Feature importance aligned with variable importance
measure (VIMP) was applied to select real predictors [19].
Then, the genes identified by RSFs were applied for stepwise
Cox regression to construct the EMT-related gene signature
using the Akaike information criterion (AIC). Kaplan–Meier
and time-independent receiver operating characteristic
(ROC) survival assessments using “survminer” and “survival-
ROC” R packages were applied to comprehensively evaluate
the prognostic prediction of EMT-related gene signature in
BC prognosis, and two external cohorts GSE13507 and
GSE32894 were used for further validation. Lastly, we demon-
strated the independent prognostic value of the EMT-related
gene signature based on univariable and multivariable Cox
regression analysis.

2.5. Functional Enrichment Analysis. We utilized the “com-
bat” function from R package “sva” to get rid of the batch
effect across GSE13507 and GSE32894 cohorts and merged
them into the merged validation cohort. BC patients in both
the training and merged validation cohort were classified
into high- and low-risk groups based on the optimal cutoff
value of EMT-related risk score (ERS) produced by X-tile
software. Then, GO and KEGG gene sets were acquired from
MSigDB, which were used for the functional annotation of
DEGs between risk groups. In the functional enrichment
analysis, the input gene list was derived from DEGs between
high- and low-risk groups divided by ERS.

2.6. TME and Immune Cell Analysis in BC. TME is mainly
composed of stromal and immune cells, and it plays a crucial
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role in tumor prognosis [20]. ESTIMATE algorithm was
used to calculate the stromal score, immune score, ESTI-
MATE score, and tumor purity of each patient using the
“estimate” R package [21]. Then, the scores mentioned
above were compared between risk groups. Furthermore,
the infiltration of various immune cell types in BC was
investigated by the CIBERSORT algorithm [22]. To be spe-
cific, based on the gene expression feature set of 22 immune
cell subtypes, the simulation calculation was performed 1000

times, and the relative composition ratio of the 22 immune
cells in each sample was finally obtained. The abundance
of 22 immune cell types across risk groups was evaluated
and compared.

2.7. Evaluation of Therapy Responses. Genomics of Drug
Sensitivity in Cancer (GDSC), the largest public pharmaco-
genomics database, contains gene expression data of many
human cancer cell lines and corresponding drug response

Table 1: Clinical characteristics of BC patients in three independent cohorts.

Characteristics TCGA GSE13507 GSE32894 Overall

Total 393 165 221 779

Application Training Validation I Validation II

Age (%)

<60 85 (21.6) 42 (25.5) 38 (17.2) 165 (21.2)

≥ 60 308 (78.4) 123 (74.5) 183 (82.8) 614 (78.8)

Sex (%)

Female 103 (26.2) 30 (18.2) 60 (27.1) 193 (24.8)

Male 290 (73.8) 135 (81.8) 161 (72.9) 586 (75.2)

T stage (%)

Ta 24 (14.5) 109 (49.3) 133 (17.1)

T1 3 (0.8) 80 (48.5) 61 (27.6) 144 (18.5)

T2 113 (28.8) 31 (18.8) 43 (19.5) 187 (24.0)

T3 190 (48.3) 19 (11.5) 7 (3.2) 216 (27.8)

T4 54 (13.7) 11 (6.7) 1 (0.5) 66 (8.5)

Unknown 33 (8.4) 33 (4.2)

N stage (%)

N0 227 (57.8) 149 (90.3) 376 (67.4)

N1 44 (11.2) 8 (4.8) 52 (9.3)

N2 74 (18.8) 6 (3.6) 80 (14.3)

N3 7 (1.8) 1 (0.6) 8 (1.4)

Unknown 41 (10.4) 1 (0.6) 45 (8.1)

M stage (%)

M0 188 (47.8) 158 (95.8) 346 (62.0)

M1 10 (2.5) 7 (4.2) 17 (3.0)

Unknown 195 (49.6) 195 (34.9)

Grade (%)

High 372 (94.7) 60 (36.4) 91 (41.2) 523 (67.1)

Low 18 (4.6) 105 (63.6) 128 (57.9) 251 (32.2)

Unknown 3 (0.8) 2 (0.9) 5 (0.6)

Clinical outcomes

Overall survival (%)

Alive 219 (55.7) 96 (58.2) 196 (88.7) 511 (65.6)

Deceased 174 (44.3) 69 (41.8) 25 (11.3) 268 (34.4)

Cancer-specific (%)

Alive 274 (69.7) 133 (80.6) 407 (72.9)

Deceased 119 (30.3) 32 (19.4) 151 (27.1)

Progression-free (%)

Censored 222 (56.5) 222 (56.5)

Event 171 (43.5) 171 (43.5)

Follow-up time (months, mean ± SD) 27.81 (27.93) 48.38 (37.70) 40.44 (25.33) 35.75 (30.74)
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data [23]. We used the “oncoPredict” package to predict the
responses of each patient to various chemotherapeutic drugs
based on GDSC [24]. Besides, the IMvigor210 dataset [25]
with metastatic urothelial cancer patients treated with anti-
programmed death-ligand (PDL)-1 drug (atezolizumab)
and the GSE176307 dataset with metastatic urothelial cancer
patients treated with anti-PD-1 or anti-PD-ligand-1 were
included in our study. According to gene expression data
acquired from the above two datasets, we calculated the
ERS of each patient and then divided these patients into
high- and low-risk groups. Then, the differences in immuno-
therapy responses were evaluated.

2.8. Statistical Analysis. The D’Agostino and Pearson omni-
bus normality tests were applied to determine whether each
comparison had a normal distribution. Once data met the
assumptions of parametric tests, we conducted contrasts
using a two-tailed unpaired t-test, and the Pearson correla-
tion. The Mann–Whitney U test and Spearman correlation
were employed when parameters were not normally distrib-
uted. Results are considered statistically significant at the
level of 5% (p < 0:05) except for differential gene expression
analyses and univariate Cox regression analysis.

3. Results

3.1. Identification of EMT as the Leading Risk Factor for
Prognosis. In the training cohort, EMT demonstrated a
higher HR for overall survival (HR = 1:281, p = 0:002) than
other cancer hallmarks, which are glycolysis, angiogenesis,
etc. (Figure 2(a)). Among all three cohorts, EMT was consis-
tently identified as a risk factor with a pooled HR of 1.43
(Figure 2(b), Supplementary Table 1). GSEA further
showed that EMT was significantly annotated in BC

patients (Figure 2(c), Supplementary Table 2). Besides,
we found that patients in the late clinicopathological
stages (tumor stage, node stage, metastasis stage, and
pathological grade) had higher ssGSEA scores than
patients in the early stage (Figure 2(d)–2(e)). In addition,
the Kaplan–Meier survival curves and the log-rank test
demonstrated that BC patients with high ssGSEA scores
had significantly worse survival outcomes, including OS
(HR = 1:295, p = 0:009), DSS (disease-specific survival, HR
= 1:276, p = 0:017), and DFI (disease-free interval, HR =
1:218, p = 0:044) (Figure 2(f)–2(h)). All findings mentioned
above strongly demonstrated the great influence of EMT on
the prognosis of BC patients.

3.2. Establishment of the EMT-Related Prognostic Signature.
We acquired EMT-related genes (n = 359) from MSigDB for
differential gene expression analyses. Then, the intersection
of 66 DEGs (13 upregulated and 53 downregulated genes)
(Figure 3(a)) and 26 prognostic genes (2 protective and 24 risk
genes) (Figure 3(b)) screened 13 candidate genes for further
analysis (Figure 3(c)), and the network illustrated a tight rela-
tionship among those 13 genes (Figure 3(d)). When all 13
genes were jointly considered by RSF, OS was mainly corre-
lated with 9 genes (EMP1, ANLN, MSX1, NRP2, ID2, FGFR1,
WNT5B, LATS2, and TGFB1I1) (Figure 3(e)). Subsequently,
these 9 genes were applied to stepwise Cox regression to form
the EMT-related gene signature (Figure 3(g)). Among four
genes involved in the novel gene signature, three genes
(MSX1, ANLN, and EMP1) were risk factors and the remain-
ing one (ID2) was a protective factor (Figure 3(f)). The
EMT-related signature was calculated as EMT-related risk
score= (−0:12119 × ID2) + (0:33044 ×MSX1) + (0:19928 × A
NL N) + (0:24620 × EMP1).

Discovery

Training
&

validation

Further
exploration

Functional
enrichment analysis

Estimation of
immune cell infltration

Association with
therapy responses

Immunotherapy

Chemotherapy

EMT-related genes

Diferential
expression analysis Univariate cox analysis

Random survival
forest analysis

Multivariate cox analysis

Estabilshment of an EMT-related prognostic signature

External cohorts
validation

Independent
prognostic factors

ssGSEA

EMT was identifed as the leading risk factor for prognosis

GSEAClinicopathological parameters

Figure 1: Flowchart of this study. GSEA: gene set enrichment analysis. EMT: epithelial-mesenchymal transition.
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3.3. ERS Served as an Independent Prognostic Factor with
Promising Value in each Cohort. Based on the optimal cutoff
of ERS value produced by X-tile software, the patients were
categorized into high- and low-risk groups in all three train-
ing and validation cohorts. Kaplan–Meier curves showed

that high-risk patients had significantly lower survival prob-
ability in OS (HR = 4:429, p < 0:001), DSS (HR = 6:622, p
< 0:001), and DFI (HR = 3:074, p < 0:001) (Figures 4(a),
4(c), and 4(e)). For ERS, the AUC of the predictions for 1,
3, and 5 years was illustrated in Figures 4(b), 4(d), and 4(f
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Figure 2: Identification of EMT as the leading risk factor for the prognosis of BC patients. The forest plots show that EMT has the highest
HR among various cancer hallmarks in the training cohort (a) and multiple cohorts calculated by meta-analysis (b). (c) GSEA plot illustrates
that EMT is significantly enriched in BC samples than adjacent normal samples. (d) The heatmap exhibits the distribution of EMT scores
and the patient information of grade, M stage, N stage, and T stage in the training cohort. (e) Violin plot displays that patients with higher T
stage, N stage, and pathological grade have higher EMT scores. Kaplan–Meier survival curves depict that high-risk patients divided by EMT
scores have worse OS (f), DSS (g), and DFI (h) compared with low-risk patients. HR: hazard ratio. BC: bladder cancer. OS: overall survival.
DSS: disease-specific survival. DFI: disease-free interval. ∗p < 0:05; ∗∗∗ P < 0:001; ns, no significance.
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). The highest AUC values of OS, DSS, and DSI were 0.686,
0.768, and 0.687. In the validation I cohort, the survival ben-
efits of low-risk patients were significantly better than low-
risk patients (OS: HR = 1:399, p = 0:002; DSS: HR = 2:311,
p = 0:005) (Figures 4(g) and 4(i)). The maximum AUC
values of OS and DSS in the validation I set were 0.657
and 0.703 (Figures 4(h) and 4(j)). Similarly, ERS also per-
formed well in prognostic prediction in the validation II
cohort (HR = 10:606, p < 0:001, highest AUC = 0:821)
(Figures 4(k) and 4(l)). Overall, ERS was accurate and robust
in evaluating the prognosis of BC patients.

In univariable Cox regression analysis, the T stage, N
stage, M stage, and ERS were significantly correlated with
OS, while ERS was demonstrated as the only independent
prognostic factor for OS by multivariable Cox regression
analysis (HR = 3:831, p < 0:001) in the training cohort
(Table 2). Similar results can also be obtained in two valida-
tion cohorts (Supplementary Table 3-5).

3.4. Functional Enrichment and Immune Cell Infiltration
Analyses. According to functional enrichment analysis,
DEGs between risk groups exhibited significant enrichment
in EMT-associated pathways, including extracellular exo-
somes, epithelial cell differentiation, and wound healing
(Figure 5(a)). Besides, as shown in Supplementary Figure 1,
the EMT scores representing the performance of EMT

process were consistently correlated with expression levels of
four genes and ERS (R = 0:59, p < 0:0001). Moreover, the
comparison of TME components showed that high-risk
patients had significantly greater stromal scores (p < 0:05),
immune scores (p < 0:01), ESTIMATE scores (p < 0:05), and
lower tumor purity (p < 0:01) than the low-risk patients
(Figure 5(b)). Similar results can also be observed in the
merged validation cohort (Figure 5(c)). Besides, by analyzing
the infiltration of immune cells, we found that CD8+ T cells,
Tregs, Macrophages M1, and Macrophages M2 were higher
infiltrated, and B naïve cells were lower infiltrated in the
TME of high-risk patients in both training and merged
validation cohorts (Figures 5(d) and 5(e)).

3.5. Role of ERS in Predicting Chemotherapeutic Sensitivity
and Immunotherapeutic Response. Chemotherapies are
extensively used for BC treatment in clinical practice. There-
fore, we estimated the therapy responses of each patient to
six commonly used drugs (Cisplatin, Vinblastine, Gemcita-
bine, Methotrexate, Paclitaxel, and Doxorubicin) by evaluat-
ing their IC50 values based on the GDSC database. As a
result, the IC50 values of Cisplatin (p < 0:001), Vinblastine
(p < 0:001), Gemcitabine (p < 0:001), Methotrexate
(p < 0:05), Paclitaxel (p < 0:001), and Doxorubicin
(p < 0:001) in the high-risk group was significantly lower
than that in the low-risk group (Figures 6(a)–6(f)).
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Figure 3: Construction of EMT-related gene signature. Volcano plots show DEGs (a) between BC and adjacent normal samples, and
prognostic genes (b) calculated by the univariable Cox regression. Red dots are upregulated genes or risk genes, and blue dots present
downregulated genes or protective genes. (c) Venn diagram shows 13 intersected genes between DEGs and prognostic genes. (d) The
correlation of 13 EMT-related genes in BC. Upregulated genes and downregulated genes are represented with grey and red colors. Risk
genes are described in blue and protective genes are colored in green. The p values of the Cox regression test for 13 genes are
represented by the size of circles. Correlation analysis is performed on 13 genes, depicted by the connecting lines between each gene. Red
and blue lines present positive and negative correlations. (e) Variable importance plot based on random forest survival analysis for 13
genes. Blue color indicates predictive variables, whereas red color represents nonpredictive variables. (f) Forest plot based on univariable
Cox regression analysis shows that four genes in this signature are all significantly associated with overall survival. (g) The coefficient of
each gene in the gene signature is depicted by bar plots. DEGs: differentially expressed genes.
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Moreover, the results of correlation analysis also showed
that ERS was negatively related with the IC50 values of Cis-
platin (r = −0:19, p = 0:00012), Gemcitabine (r = −0:47, p <
2:2e − 16), and Doxorubicin (r = −0:34, p < 3:2e − 12)
(Figure 6(g)–6(i)). These results indicated that patients with
higher ERS are more sensitive to chemotherapy.

Anti-PD1/PDL1 drugs were currently approved by the
FDA for the treatment of BC, with 3 anti-PDL-1 drugs (ate-
zolizumab, durvalumab, and avelumab), and 2 anti-PD-1
drugs (nivolumab and pembrolizumab). Thus, we evaluated

whether the ERS might be utilized for the prediction of ther-
apy responses to immunological checkpoint blockade (ICB)
treatment based on the above two cohorts. As a result,
responders displayed lower ERS compared with non-
responders in both IMvigor210 (p < 0:01, Figure 6(j)) and
GSE176307 (p < 0:001, Figure 6(l)). Furthermore, through
allocating patients into high- and low-risk groups based on
ERS, we found that high-risk patients had significantly lower
percentages of responses (complete response, CR/partial
response, PR) and higher percentages of nonresponses
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Figure 4: The gene signature serves as a robust and promising predictive factor for survival prediction. Kaplan–Meier survival curves
illustrate worse survival outcomes in high-risk patients in the TCGA training cohort (a, c, e), validation I cohort (g, i), and validation II
cohort (k). ROC curves for 1-year, 3-year, and 5-year survival prediction depict that this gene signature has a promising and stable
predictive performance for BC patients in the training cohort (b, d, f), validation I cohort (h, j), and validation II cohort (l).
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(stable disease, SD/progressive disease, PD) in both IMvi-
gor210 (p < 0:001, Figure 6(k)) and GSE176307 (p < 0:001,
Figure 6(m)) cohorts.

4. Discussion

EMT is the process by which epithelial cells transform into
mesenchymal-like cells with decreased expression of epithe-
lial markers, such as E-cadherin, and upregulation of mesen-
chymal markers expressions [7, 26, 27]. Decreased
expression of epithelial markers in BC patients was corre-
lated with disease progression (higher grade and stage),
and EMT-related molecules (β-catenin or plakoglobin) were
associated with poor DSS [9]. Sayan et al. found a link
between EMT expression regulator Zeb-1 and enhanced
urothelial cancer cell invasion and migration [11]. Further-
more, there was an association between EMT levels in solid
tumors and their responses to chemotherapy and immuno-
therapy [12–14]. The above studies suggested that EMT
has significant prognostic and therapeutic potential in solid
tumors. However, there is a lack of EMT-related gene signa-
tures for predicting prognosis and therapeutic response in
BC.

We developed an EMT-related gene signature for pre-
dicting survival outcomes (OS, DSS, and DFI) of BC
patients. The robustness and applicability of this gene signa-
ture were verified by two independent cohorts from two dif-
ferent RNA-seq platforms. Our findings indicated that
patients designated as high-risk using the novel signature
had poor survival outcomes than low-risk patients. Further-
more, multivariable Cox analysis revealed that the gene sig-
nature was the only independent predictor of OS after

adjusting for clinical factors. No gene overlap was observed
between these two signatures, in contrast to a previous study
that used seven EMT-linked genes to predict the prognosis
of patients with MIBC [28]. Our gene signature with only
four genes performed well across all three cohorts, and the
AUC values were higher than the previous one. Moreover,
we comprehensively analyzed the relationship between
EMT and chemotherapeutic and immunotherapeutic
responses, providing the foundation for further research.

Functional enrichment analyses were performed to bet-
ter understand the potential mechanisms of different clinical
outcomes among patients. Our results revealed that DEGs
between these two groups were significantly enriched in
extracellular exosomes, cell proliferation, epithelial cell dif-
ferentiation, wound healing, BC, and other variables. Shan
et al. demonstrated that exosomes produced by cancer-
associated fibroblasts might induce metastasis of BC cells
by increasing their EMT [29]. Wang et al. reported that
increased UCA1 expression in BC-derived exosomes pro-
motes tumor growth via EMT [30]. McConkey et al. pro-
posed that EMT is essential for the cell proliferation
required for wound healing [31]. Moreover, the expression
levels of four genes and ERS were significantly correlated
with the EMT score, indicating that the novel signature
was associated with the EMT process in BC. Our findings
indicate that EMT-related characteristics may be closely
associated with the development and progression of BC,
and the EMT-related gene signature has great potential for
prognostic gene-function-based prediction.

TME plays a vital role in cancer formation and treatment
resistance [20]. TME dysregulation promotes BC progres-
sion and metastasis [32]. This study reported that high-risk

Table 2: Univariate and multivariate Cox regression analysis of clinical characteristics and ERS with overall survival in TCGA cohort.

Variables No. of Patients
Univariate Multivariate

HR 95% CI p value HR 95% CI p value

Age 162 1.023 0.997–1.049 0.078

Gender 162

Female 36 Reference

Male 126 0.61 0.363–1.022 0.061

T stage 162

T1+2 53 Reference

T3 87 2.27 1.167–4.416 0.016 1.669 0.842–3.311 0.142

T4 22 3.138 1.419–6.941 0.005 2.133 0.916–4.965 0.079

N stage 162

N0 112 Reference

N1 21 1.99 1.033–3.836 0.04 1.364 0.676–2.754 0.386

N2+3 29 2.745 1.582–4.761 < 0.001 1.627 0.855–3.097 0.138

M stage 162

M0 155 Reference

M1 7 2.532 1.01–6.346 0.048 1.354 0.492–3.725 0.558

Grade 162

High 147 Reference

Low 15 0.272 0.037–1.979 0.199

ERS 162 4.429 2.534–7.741 < 0.001 3.831 2.138–6.865 < 0.001
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patients had a higher immune score, stromal score, and
lower tumor purity, suggesting a potential role of ERS in
TME and was consistent with previous research [33]. The
prognostic and predictive potential of immune cell infiltra-
tion in BC have been investigated, and several immunologi-
cal markers have been linked with treatment outcomes [34].
Some studies reported that higher CD8+ T cell infiltration in
the epithelium and invasive margin indicated a longer OS or
DSI in BC patients [35–37]. However, one study reported a
negative correlation between stromal CD8+ cell infiltration
and survival outcomes [38]. CD8+ T cells were found to be
more infiltrated in the tumors of high-risk patients, suggest-

ing that we should pay more attention to this interesting
phenomenon. Tumor-infiltrating Tregs are important sup-
pressors of antitumor immunity. A meta-analysis study
showed that Tregs were associated with poor OS in many
solid tumors, consistent with our results [39]. Macrophages
are essential components of innate immunity and can be
classified into proinflammatory macrophages (M1) and
anti-inflammatory macrophages (M2). In a previous study,
the higher density of M2 macrophages was associated with
higher pathological and histological grades in BC patients
[40, 41]. Furthermore, there was a tendency for patients with
high macrophage levels to have poor survival [34]. Our
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Figure 5: Functional enrichment and immune cell infiltration analyses based on the gene signature. (a) Bar graph displays significantly
enriched pathways in high-risk patients. Violin plots show higher immune score, stromal score, ESTIMATE score, and lower tumor
purity in the high-risk patients compared with low-risk patients in the training (b) and merged validation cohorts (c). Box plots depict
that CD8+ T cells, Tregs, M1 macrophages, and M2 macrophages are higher infiltrated and B naïve cells are lower infiltrated and in
high-risk patients in both training (d) and merged validation (e) cohorts. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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results revealed that M2 macrophage infiltration was signif-
icantly higher in high-risk patients, consistent with previous
research.

We selected six representative chemical drugs and found
that high-risk patients were more sensitive to these drugs.
Negative correlations between ERS and drug sensitivity were
found in three chemotherapeutic drugs, including gemcita-
bine, cisplatin, and doxorubicin. The above results revealed
that high-risk patients divided by ERS might be more likely
to benefit from chemotherapy. Immune checkpoint inhibi-
tors were approved for clinical use in metastatic BC in
2017. Unfortunately, only 21.1% of metastatic BC patients

responded to ICB treatment (pembrolizumab) [42]. There-
fore, predictive biomarkers are required to identify a specific
subset of patients who may respond to immunotherapy. Our
analysis indicated that low-risk patients showed a better
response in two cohorts, suggesting that our model may be
useful for identifying patients who may benefit from immu-
notherapy. These findings indicate that the gene signature
can potentially guide clinical treatment decisions regarding
chemotherapy and immunotherapy.

Although this is an original signature with promising
clinical applications, this study has some limitations. Despite
the robust performance of our gene signature in prognostic
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Figure 6: EMT-related gene signature predicts chemotherapeutic and immunotherapeutic benefits. Box plots display lower IC50 values of six
commonly used chemical drugs in high-risk patients (a-f). Scatter plots illustrate negative correlations between ERS and the estimated IC50
values of cisplatin (g), gemcitabine (h), and doxorubicin (i). Violin plots show that ERS of nonresponders is significantly higher than that of
responders in the immunotherapy cohort of IMvigor210 (j) and GSE176307 (l). High-risk patients present significantly lower percentages of
responses (CR/PR) and higher percentages of nonresponses (SD/PD) in both IMvigor210 (k) and GSE176307 (m). IC50: half-maximal
inhibitory concentration. ERS: EMT-related risk score. CR: complete response. PR: partial response. SD: stable disease. PD: progressive
disease. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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prediction, more prospective studies with larger sample sizes
are required to validate its general application. Moreover, an
interesting phenomenon observed in this study, particularly
regarding the underlying mechanisms of biological functions
and immune cell infiltration, requires further experimental
investigation. Furthermore, the lack of experimental and
clinical evidence for verifying drug responses is also a limita-
tion that should be addressed in the future.

5. Conclusion

In summary, we identified and verified a novel EMT-related
gene signature with high prognostic prediction efficacy
across multiple independent cohorts. Moreover, it was asso-
ciated with the chemotherapeutic and immunotherapeutic
responses of BC patients. This novel signature had great
potential for predicting prognosis and guiding clinical
therapies.
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Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies
mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed “RNA
language.” However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal
cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed
lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues
obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational
algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found
between normal renal tissues and ccRCC (fold change > 4 and false discovery rate < 0:01). A ceRNA network that comprised of
46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA
interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC
patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients’
clinical characteristics and overall survival (log-rank P < 0:05), indicating their potential important roles in ccRCC. HOTTIP
may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a
comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and
prognosis biomarkers for ccRCC.

1. Introduction

Renal cell carcinoma (RCC) is the most lethal urinary sys-
tem malignancy in adults with an increasing morbidity glob-
ally [1]. It is estimated that 76,080 new cases and 13,780
deaths from kidney malignancies occurred in the world in
2021 [2]. RCC, as a heterogeneous group of disease, is subdi-
vided into several histological subtypes according to the dif-
ferent nephron cell types that tumors derived from,
including clear cell RCC (ccRCC, ~75%), papillary RCC
(pRCC, ~15%), and chromophobe RCC (chRCC, ~5%) [3].

ccRCC is the predominant and most malignant subtype of
renal carcinoma. Although the diagnosis of ccRCC
improved mainly due to the advanced imaging detection
technologies, the clinical behaviors of ccRCC patients are
aggressive, especially the high rate of metastatic progression
[4]. Therefore, identification of the molecular mechanisms
underlying ccRCC for developing diagnostic markers and
therapeutic targets becomes urgently needed.

Noncoding RNAs (ncRNAs) are categorized into long
ncRNAs and short ncRNAs according to their length. The
noncoding RNA transcripts more than 200 nucleotides long
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are generally termed as “long noncoding RNAs” (lncRNAs)
[5]. lncRNAs have been recognized to involve in the patho-
genesis of multiple cancers by disrupting various biological
processes [6]. The abnormal expressions of microRNAs
(miRNAs, 20-22 nucleotide in length) participate in the
oncogenesis and cancer progression [7]. In recent years,
lncRNAs were verified to function as competing endogenous
RNAs (ceRNAs) to communicate with other RNAs via shar-
ing miRNA-binding sites. This lncRNA-miRNA-RNA inter-
action was a subclass of ceRNAs, called lncRNA-associated
competing triplets (lncACTs) [8]. In 2014, Xia et al. firstly
constructed a lncACT cross-talk network in gastric cancer
and also established a bioinformatics-based approach to pre-
dict cancer-associated ceRNA network [9]. Subsequently,
several cancer-specific ceRNA networks have also been
revealed in various cancers, including hepatocellular carci-
noma [10], bladder cancer [11], and thyroid carcinoma [12].

However, there are only limited studies so far on
lncACTs in RCC. lncRNA MALAT1 has been identified to
function as a ceRNA by mediating the MALAT1/mir-200s/
ZEB2 pathway to facilitate ccRCC proliferation and metasta-
sis [13]. lncRNA HOTAIR, an oncogene in various tumors,
was also reported to act as a ceRNA to promote HIF-1α/
AXL cascade by binding mir-217 in RCC [14]. A drug
resistance-related lncRNA lncARSR disseminated sunitinib
resistance by sponging mir-34/mir-449 to increase target
genes expression in RCC cells [15]. Fan et al. constructed
lncRNA-related ceRNA network and discovered the nomo-
grams and related infiltrating immune cells to predict prog-
nosis of pRCC patients [16]. However, huge genetic
heterogeneity exists among different histologic subtypes of
RCC [17]. In this study, differentially expressed lncRNAs,
miRNAs, and mRNAs (DElncRNAs, DEmRNAs, and
DEmiRNAs) were screened out of the expression profiles
of a 420 ccRCC patient cohort from The Cancer Genome
Atlas (TCGA). A ccRCC specific ceRNA regulatory network
was also built based on the potential competing triplets of
lncRNA/miRNA/mRNA predicted by computational algo-
rithms and databases. We also identified several key
lncRNAs to be associated with ccRCC progression and
prognosis.

2. Materials and Methods

2.1. Patient Dataset. TCGA is a public database providing
researchers open access to the multiple cancer genomic pro-
files for analyses and publications [18]. This study meets the
freedom-to-publish criteria announced on TCGA website
(https://cancergenome.nih.gov/publications/
publicationguidelines). A cohort of 537 ccRCC patients
obtained from TCGA was downloaded for this study. The
exclusion criteria included the following: (1) patients with-
out complete clinicopathological data, including age, gender,
race, TNM stage, and pathologic stage (12 cases); (2)
patients with follow-up data over 2000 days (84 cases); and
(3) patients with incomplete RNA-seq or miRNA-seq data
(21 cases). In total, 420 ccRCC patients (cohort T) and 71
normal samples (cohort N) were enrolled in this study.
The RNA and miRNA expression data (level 3) were pro-

duced from IlluminaHiseq_RNASeq and IlluminaHiseq_
miRNASeq sequencing platform and prenormalized by
TCGA archive (http://cancergenome.nih.gov).

2.2. Construction of lncACT Cross-Talk Network. We carried
out differential expression analysis with edgeR package in
Bioconductor [19]. Stringent filtering criteria were all set as
jlog2FCj > 2 and FDR < 0:01 (FC: fold change; FDR: false
discovery rate). Among these differentially expressed genes
(DEGs), the putative interactions of miRNA-lncRNA were
collected from miRcode [20]. Different miRNA-target pre-
diction algorithms, including experimentally validated data-
base TargetScan (http://www.targetscan.org/mamm_31/)
[21], miRanda (http://www.microrna.org/microrna/home
.do) [22], and miRTarBase (http://mirtarbase.mbc.nctu.edu
.tw/) [23], were used to predict the miRNA target mRNAs.
These tools provide miRNA-target interactions with com-
prehensive annotation and experimental validation. Finally,
the lncRNA-associated ceRNA network of ccRCC was inte-
grated and visualized based on the above competing triplets
using Cytoscape v3.5.1 (http://www.cytoscape.org/) [24].

2.3. Functional Enrichment Analysis. To access functional
roles of the genes in the ceRNA network, Gene Ontology
(GO) was performed using Database for Annotation, Visual-
ization and Integration Discovery (DAVID, https://david
.ncifcrf.gov/) (P value < 0.05). Meanwhile, pathway analysis
was conducted using Kyoto Encyclopedia of Genes and
Genomes (KEGG) by KOBAS 3.0 (P value < 0.01).

2.4. Coexpression Analysis. Correlation test was conducted
by the R software to figure out the coexpressed genes associ-
ated with HOTTIP (jcorj>0:3 and P value < 0.001).

2.5. Drug Sensitivity Analysis. Drug sensitivity analysis was
carried out with pRRophetic package in Bioconductor to dis-
cover the drugs with significant differences in sensitivity
between HOTTIP high and low groups (P value < 0.05).

2.6. Statistical Analysis. Unpaired t-test was applied to iden-
tify DEGs and the difference of DElnRNAs between different
pathological subgroups. The associations between DElncR-
NAs expression and patients’ overall survival (OS) were ana-
lyzed by univariate Cox proportional hazards regression
(log-rank P < 0:05). Kaplan-Meier method was employed
to generate overall survival curves.

3. Results

3.1. Patient Characteristics. A total of 420 patients who were
pathologically diagnosed as ccRCC and 71 normal samples
were enrolled in this study. The clinicopathological informa-
tion of study population is summarized in Table 1. The
median age was 60 years. Consistent with a previous report
[25], white male individuals appeared to be the majority of
RCC patients with the gender ratio (male/female) of 1.9/1
and white race ratio of 86.7%.

3.2. Screening Results of DEGs in ccRCC. After screening the
RNA and miRNA expression profiles by the threshold of j
log2FCj > 2 and FDR < 0:01, we found 1491 DElncRNAs,
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2368 DEmRNAs, and 53 miRNAs that aberrantly expressed
between ccRCC tumor tissues and normal tissues. Among
them, 989 lncRNAs, 1610 mRNAs, and 32 miRNAs were
upregulated, while 502 lncRNAs, 758 mRNAs, and 21 miR-
NAs were downregulated in cohort T compared with cohort
N. The total upregulated and downregulated lncRNAs,
mRNAs, and miRNAs were listed in Table S1-6.
Hierarchical clustering was further used to identify
expression patterns of DEGs between two cohorts. The top
50 overexpressed and top 50 downexpressed lncRNAs were
visualized in the heatmap, which showed that ccRCC
tumor tissues had significantly different expression patterns
from normal tissues (Figure 1 and Table S7).

3.3. lncACT Cross-Talk Network in ccRCC. The ceRNA
hypothesis is described as a complex posttranscriptional reg-
ulatory mechanism between lncRNAs and other RNAs
mediated by miRNAs through sharing miRNA response ele-
ments [26]. Therefore, further analysis was performed to
establish lncACT cross-talk network based on the above
DEGs in ccRCC. We got 11 specific DEmiRNAs that tar-
geted on 46 DElncRNAs by miRcode online tools, which is
a lncRNA-miRNA interaction prediction database

(Table 2). To further analyze these DEmiRNAs, we compre-
hensively considered the miRNA-mRNA interactions
obtained from TargetScan, miRTarBase, and miRanda data-
bases to enhance the predictive reliability. A total of 55 tar-
geted mRNAs were predicted to interact with 7
DEmiRNAs and were also involved in the above 2368
DEmRNAs (Table 3). By integrating these lncRNA/miRNA
and miRNA/mRNA interactions into lncACTs, the ceRNA
network is constructed and visualized in Figure 2, containing
46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs.

3.4. Functional Enrichment Analysis. To identify the func-
tions of the 55 DEmRNAs involved in the ceRNA network,
functional analysis was performed. GO analysis revealed 26
enriched GO categories in the “biological processes” (P value
< 0.05), top 15 of which are visualized in Figure 3. There
were two apoptotic processes significantly enriched in GO
terms (GO:1902042 and GO:0043065). According to P value
< 0.01, 27 KEGG categories were selected as significantly
enriched KEGG pathways. The top ten enriched pathways
are listed in Table 4, including four cancer-related pathways
(microRNAs in cancer, bladder cancer, transcriptional mis-
regulation in cancer, and pathways in cancer). Cyclin D1
(CCND1) was notably involved in six of the top ten path-
ways, indicating its complex roles in the progress of the
tumor.

3.5. The Clinical Relevance of DElncRNAs in ccRCC.We next
analyzed the association between the 46 DElncRNAs in the
ceRNA network and clinicopathological features. A total of
eight lncRNAs were discriminatively expressed in different
clinical feature subgroups (jlog2FCj > 2 and FDR < 0:01)
(Table 5). We found six downregulated lncRNAs
(C12orf77, TCL6, C8orf49, PCGEM1, and ERVMER61-1),
and two upregulated lncRNAs (HOTTIP and LINC00200)
were significantly related to the progression of ccRCC. Both
C12orf77 and TCL6 not only could inhibit tumor growth
(T3+T4 vs. T1+T2) but also downexpressed in individuals
with high levels of the pathologic stage, implying their neg-
ative roles in tumor development of ccRCC. HULC was
identified to promote lymph node metastasis; however, low
expression of HULC seemed to be correlated with high levels
of tumor size, distant metastases, and pathologic stage.

Subsequently, the Kaplan-Meier analysis was applied to
investigate overall survival time for DElncRNAs in ccRCC
patients. Among the 46 DElncRNAs involved in the lncACT
network, five lncRNAs (TCL6, PCGEM1, FGF12-AS2,
LINC00443, and LINC00472) were found positively associ-
ated with overall survival by univariate Cox regression anal-
ysis (log-rank P < 0:05), while another eight lncRNAs
(HOTTIP, HULC, PVT1, WT1-AS, C20orf203, NALCN-
AS1, TRIM36-IT1, and LINC00299) were negatively corre-
lated with survival. The Kaplan-Meier curves of HOTTIP,
HULC, TCL6, and PCGEM1, which also differentially
expressed in clinical feature comparisons, are shown in
Figure 4(a). The Kaplan-Meier curve analysis was also
employed to investigate overall survival for the DEmiRNAs
associated with this four lncRNAs. Notably, increased
expression of mir-144, which was predicted to interact with

Table 1: Clinical characteristics of 420 patients with ccRCC in
cohort T.

Parameter Cohort T (n = 420) (%)
Age (mean ± SD1) 60:4 ± 12:1
Gender

Male 275 (65.5)

Female 145 (34.5)

Race

Asian 8 (1.9)

White 364 (86.7)

Black or African American 48 (11.4)

Pathologic stage

Stage I 199 (47.4)

Stage II 43 (10.3)

Stage III 106 (25.2)

Stage IV 72 (17.1)

Tumor size

T1 205 (48.8)

T2 51 (12.1)

T3 153 (36.5)

T4 11 (2.6)

Lymph node

N0 181 (43.1)

N1 14 (3.3)

NX 225 (53.6)

Metastasis status

M0 326 (77.6)

M1 67 (16.0)

MX 27 (6.4)
1Standard deviation.
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TCL6, was positively associated with prognosis. The high
expression of mir-155, which potentially targeted HULC
and PCGEM1, was correlated with poor prognosis
(Figure 4(b)).

3.6. High Expression of HOTTIP Associated with Decreased
Drug Sensitivity. To further understand the expression of
HOTTIP in ccRCC patients, transcriptome sequencing data
of 420 ccRCC and 71 normal samples were extracted from
the TCGA database. HOTTIP expression level was signifi-
cantly higher in ccRCC patients than in normal controls
(Figure 5(a)). Coexpression analysis showed that 55 genes
were associated with HOTTIP expression, including 7 nega-
tively correlated genes and 48 positively correlated genes
(Table S8). The correlation circle diagram showed that
HOXA13, SERPIND1, ALDH1L2, AADAC, ADAM33, and
OSBPL6 were positively correlated with HOTTIP, and
BCL2, EDNRB, AQP1, ENPP4, and FBXL3 were negatively
correlated with HOTTIP (Figure 5(b)). Drug sensitivity
analysis identified that the half maximal inhibitory
concentration (IC50) of gemcitabine, pazopanib, sunitinib,
and XL-184 in ccRCC patients with high HOTTIP
expression was significantly higher than those in patients
with low HOTTIP expression, indicating that patients with
high HOTTIP expression were less sensitive to these
treatments (Figure 6).

4. Discussion

Previous reports have shown that lncRNAs participated in
tumorigenesis, cancer progression, and metastasis of RCC
and functioned as oncogenes or tumor suppressors. Several
studies have conducted genomic microarrays to reveal the
expression patterns of lncRNAs based on small sample size
[27, 28]. The tumor-specific lncACT cross-talk network
has been previously described in chRCC [29]. However, dif-
ferent RCC histological subtypes encompass a wide diversity
of molecular mechanisms for their tumorigenesis. Thus,
there is an urgent to explore the lncRNA-associated ceRNA
network in ccRCC. In the current study, we analyzed the
expression profile data of ccRCC patient cohort in TCGA
archive to comprehensively identify the landscape regarding
how tumor-specific lncRNAs function in ccRCC. We suc-
cessfully built the lncRNA-associated ceRNA network in
ccRCC according to the predicted competing triplets among
DElncRNAs, DEmRNAs, and DEmiRNAs.

Recent researches have demonstrated that lncRNAs
could communicate with miRNAs and indirectly regulate
miRNA targets via competing interactions. The lncACT
interactions might actively function as valuable prognostic
indicators in cancers [8]. Hence, we speculate that some spe-
cific lncACT cross-talks comprising lncRNA, miRNA, and
mRNA may affect ccRCC progression. We utilized stringent
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Figure 1: Heatmap of top 50 upregulated and top 50 downregulated DElncRNAs in clear cell renal cell carcinoma (ccRCC). Blue and red
stripes represent normal samples and tumor samples, respectively. Descending normalized expression level is colored from red to green.
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criteria to identify DElncRNAs, DEmiRNAs, and DEmR-
NAs between ccRCC tumor tissues and normal tissues and
then applied several bioinformatics strategies to increase
the predictive accuracy of RNA-RNA interactions. Finally,
46 DElncRNA, 11 DEmiRNAs, and 55 DEmRNAs consti-
tuted the lncACT coexpression network in ccRCC. To
explore the biological functions of these ceRNA network-
involved genes, KEGG pathway analysis showed that the
key DEmRNAs were significantly enriched in cancer-

related pathways, implicating their vital roles in tumorigen-
esis. Among the 46 key DElncRNAs, four lncRNA (TCL6,
HOTTIP, HULC, and PCGEM1) not only had correlations
with clinical features but could also affect ccRCC patients’
outcome, strongly suggesting their important roles as prog-
nostic biomarkers for ccRCC. Consistent with our results, a
recent study also verified that low expression of TCL6 was
correlated with advanced clinicopathological features and
poor prognosis of ccRCC patients. Furthermore, preliminary

Table 2: The 11 specific DEmiRNAs and 46 target DElncRNAs in ccRCC.

lncRNA miRNAs lncRNA miRNAs

ARAP1-AS2 mir-122 LINC00461 mir-122, mir-137, mir-141, mir-144, mir-216b, mir-508

ARHGEF26-AS1 mir-141 LINC00472 mir-155, mir-216b, mir-506

BPESC1 mir-216b, mir-506, mir-508 LINC00473 mir-142, mir-210

C12orf77 mir-137, mir-216b LINC00487 mir-216b, mir-506

C15orf56 mir-144, mir-216b, mir-506 LINC00507 mir-216b

C20orf197 mir-122, mir-137, mir-144, mir-508 LMO7-AS1 mir-122, mir-137

C20orf203 mir-506 LY86-AS1 mir-137, mir-141, mir-142, mir-155, mir-216b, mir-506

C8orf49 mir-122 MIAT mir-141, mir-155, mir-216b

CDRT7 mir-142 MIR155HG mir-155

CHL1-AS1 mir-137 NALCN-AS1 mir-21, mir-508

DLEU7-AS1 mir-142 NLGN1-AS1 mir-122, mir-155

ERVMER61-1 mir-21 PCGEM1 mir-155, mir-506

FGF12-AS2 mir-506 PVT1 mir-216b

FRY-AS1 mir-122 PWRN1 mir-122

HOTTIP mir-137, mir-506 SFTA1P mir-122, mir-216b

HULC mir-155 SLC25A5-AS1 mir-122, mir-144

LINC00200 mir-506 SLC6A1-AS1 mir-508

LINC00284 mir-141 SPATA13 mir-137, mir-506

LINC00299 mir-137, mir-21 TCL6 mir-122, mir-144

LINC00343 mir-142, mir-506 TRIM36-IT1 mir-155

LINC00410 mir-216b TSSC1-IT1 mir-137

LINC00426 mir-216b VCAN-AS1 mir-141

LINC00443 mir-141, mir-144 WT1-AS mir-141, mir-155, mir-216b

Table 3: The 7 DEmiRNAs and 55 target DEmRNAs in ccRCC.

miRNA mRNAs targeted by miRNA

mir-
137

CIDEC, LHFPL2, LYPD6

mir-
141

NR0B2, PRELID2, RASSF2

mir-
142

CDC6, DEPDC1, GFI1, HMGA2, KIF5A, SCD

mir-
144

BTG2, FGA, FGB, GRIK3, IL20RB, SIX4, TGFBI

mir-
155

ADAMTS4, CARD11, CCND1, CD36, CTLA4, E2F2, ERMP1, GATM, GPM6B, HAL, ITK, KIF14, LY6K, MMP16, PCDH9,
SPI1, TYRP1, ZIC3, ZNF98

mir-21
BTG2, CCL20, CXCL10, E2F2, FASLG, GXYLT2, HAPLN1, KLK2, MOXD1, MRAP2, NCAPG, NETO2, PPFIA4, ST6GAL1,

TOP2A

mir-
506

CD1D, QRFPR, SLC16A1, VIM
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experiments have indicated TCL6 as a potential antionco-
gene by inhibiting proliferation and promoting apoptosis
of ccRCC cell lines [30]. We predicted that TCL6 might
interact with mir-144, of which the potential target genes
included an antiproliferative gene BTG2. BTG2 was reported
to participate in cell cycle regulation and subsequently
involved in cell proliferation in carcinogenesis [31]. There-
fore, it deserves further experiments to elucidate the mecha-
nism underlying the effects of TCL6-associated competing
triplets on ccRCC.

The upexpression of HOXA transcript at the distal tip
(HOTTIP), as a critical oncogenic lncRNA, has been corre-
lated with poor overall survival in various malignancies
[32, 33]. We predicted that the high expression of HOTTIP
with an approximate 12-fold change in ccRCC tumor tissues
may promote tumor growth and a statistic shorter overall
survival, which is consistent with previous studies [34, 35].
We found a significant positive correlation between HOT-
TIP and HOXA13 expression in ccRCC patients. It was
demonstrated that HOTTIP transcriptionally regulates
HOXA13 in esophageal squamous cell carcinoma cells to
promote carcinogenesis and metastasis [36]. Because of the

physical contiguity of HOTTIP with HOXA13, we hypothe-
sized that HOTTIP and HOXA13 may closely coordinate to
regulate the occurrence and development of ccRCC [37].
More importantly, we found that patients with high HOT-
TIP expression were less sensitive to clinical therapeutic
drugs, including gemcitabine, pazopanib, sunitinib, and
XL-184, than patients with low HOTTIP expression, indicat-
ing that high HOTTIP expression may lead to drug resis-
tance in ccRCC patients.

HULC, a universal oncogenic lncRNA in human can-
cers, was reported to be strongly overexpressed in several
cancer types, including hepatocellular carcinoma, gastric
cancer, pancreatic cancer, and osteosarcoma [38]. However,
the role of HULC in ccRCC still remains largely unclear. We
predicted that the increased expression (~6 folds) of HULC
in ccRCC tumor tissues might promote lymphatic metastasis
and poor prognosis. CCND1 might be regulated by HULC
through the interaction with mir-155 in ccRCC. Similarly,
it has been previously revealed that HULC knockdown
induced cell growth arrest and apoptosis through inhibiting
CCND1 expression in diffuse large B-cell lymphoma cells
[39]. The overexpression of PCGEM1, as a prostate-specific

Up-regulated mRNA
Down-regulated mRNA
Up-regulated miRNA

Down-regulated miRNA

Down-regulated lncRNA
Up-regulated lncRNA

Figure 2: The ceRNA regulatory network of ccRCC. Expression levels and different RNA types are represented by different colors and
different shapes, respectively. ceRNA: competitive endogenous RNA.
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lncRNA, was correlated with high risk of prostate cancer [40,
41]. On the contrary, we found that the downregulation of
PCGEM1 might prolong metastasis status and shorten sur-

vival time of ccRCC patients. To the best of our knowledge,
this study firstly reported the potential functions of HULC,
HOTTIP, and PCGEM1 in ccRCC to date. Furthermore,
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signaling pathway via death domain receptors
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Figure 3: Top 15 enriched Gene Ontology biological process terms of DEmRNAs in the ceRNA network. The size of balls represents gene
number, and different colors represent P value.

Table 4: KEGG1 pathway analysis of the DEmRNAs involved in the ceRNA network.

Pathway ID Description P value Numbers of DEmRNAs

hsa05206 MicroRNAs in cancer 6.39E-05 CCND1, E2F2, MMP16, VIM, HMGA2

hsa04660 T cell receptor signaling pathway 4.60E-04 ITK, CTLA4, CARD11

hsa04060 Cytokine-cytokine receptor interaction 5.30E-04 FASLG, IL20RB, CXCL10, CCL20

hsa04110 Cell cycle 7.37E-04 CCND1, CDC6, E2F2

hsa04152 AMPK signaling pathway 7.54E-04 SCD, CCND1, CD36

hsa00514 Other types of O-glycan biosynthesis 9.62E-04 GXYLT2, ST6GAL1

hsa05161 Hepatitis B 1.17E-03 FASLG, CCND1, E2F2

hsa05219 Bladder cancer 1.63E-03 CCND1, E2F2

hsa05202 Transcriptional misregulation in cancer 2.10E-03 SPI1, SIX4, HMGA2

hsa05200 Pathways in cancer 2.31E-03 SPI1, FASLG, CCND1, E2F2
1KEGG: Kyoto Encyclopedia of Genes and Genomes.

7Disease Markers



we also verified lncRNA PVT1 to be an oncogenic lncRNA
in ccRCC. It has been reported that ccRCC has the strongest
upregulated expression of PVT1 among all cancer types and
served as a prognostic factor of renal cancer [42, 43].

However, since our study was conducted based on
TCGA cohort by computational analysis, future studies
should be designed to verify these lncACT cross-talks and

their multiple functions in ccRCC progression. In conclu-
sion, our study has built a newly identified ceRNA network
of ccRCC based on hundreds of clinical specimens from
TCGA. The ceRNA network discloses that many oncogenes
and antioncogenes might contribute to ccRCC development,
which can expand our understanding of the roles of
lncACTs in tumorigenesis. Importantly, we have identified

Table 5: The lncRNAs tightly correlated with ccRCC patients’ clinical characteristics.

Comparisons Downregulated Upregulated

Tumor size (T3 +T4 vs. T1 +T2) C12orf77, HULC, TCL6 HOTTIP

Lymph node (N1 vs. N0) HULC

Metastasis status (M1 vs. M0) C8orf49, PCGEM1, HULC ERVMER61-1 LINC00200

Pathologic stage (stage III + IV vs. stage I + II) C12orf77, HULC, TCL6
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Figure 4: Kaplan-Meier curves for five DElncRNAs (a) and two DEmiRNAs (b) associated with overall survival. Horizontal axis, overall
survival time (years); vertical axis, survival function. Patients were divided into “high” group (≥median) and “low” group (<median)
according to the gene expression levels.

8 Disease Markers



several lncRNAs to be potential prognostic factors and
molecular targets for ccRCC patients.
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gene names are labeled outside the circle, and the line colors indicate the relationships between genes. Red and green lines represent positive
and negative relationships, respectively.
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Figure 6: The half maximal inhibitory concentration (IC50) of gemcitabine (a), pazopanib (b), sunitinib (c), and XL-184 (d) in “HOTTIP
high” group (≥median) and “HOTTIP low” group (<median) in ccRCC patients.
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82071738) and Innovation and Entrepreneurship Training
Program for College Students in Jiangsu Province
(2021102991051X).

Supplementary Materials

Table S1: the list of upregulated lncRNAs in ccRCC. Table
S2: the list of downregulated lncRNAs in ccRCC. Table S3:
the list of upregulated mRNAs in ccRCC. Table S4: the list
of downregulated mRNAs in ccRCC. Table S5: the list of
upregulated miRNAs in ccRCC. Table S6: the list of down-
regulated miRNAs in ccRCC. Table S7: the list of top 100
dysregulated (50 upregulated and 50 downregulated)
lncRNAs in consistent with Figure 1. Table S8: the list of
genes coexpressed with HOTTIP in ccRCC.
(Supplementary Materials)
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Background. The epithelial mesenchymal transition (EMT) gene has been shown to be significantly associated with the prognosis
of solid tumors; however, there is a lack of models for the EMT gene to predict the prognosis of AML patients. Methods. First, we
downloaded clinical data and raw transcriptome sequencing data from the TCGA database of acute myeloid leukemia (AML)
patients. All currently confirmed EMT-related genes were obtained from the dbEMT 2.0 database, and 30% of the TCGA data
were randomly selected as the test set. Univariate Cox regression analysis, random forest, and lasso regression were used to
optimize the number of genes for model construction, and multivariate Cox regression was used for model construction. Area
under the ROC curve was used to assess the efficacy of the model application, and the internal validation set was used to assess
the stability of the model. Results. A total of 173 AML samples were downloaded, and a total of 1184 EMT-related genes were
downloaded. The results of univariate batch Cox regression analysis suggested that 212 genes were associated with patient
prognosis, random forest and lasso regression yielded 18 and 8 prognosis-related EMT genes, respectively, and the results of
multifactorial COX regression model suggested that 5 genes, CBR1, HS3ST3B1, LIMA1, MIR573, and PTP4A3, were
considered as independent risk factors affecting patient prognosis. The model ROC results suggested that the area under the
curve was 0.868 and the internal validation results showed that the area under the curve was 0.815. Conclusion. During this
study, we constructed a signature model of five EMT-related genes to predict overall survival in patients with AML; it will
provide a useful tool for clinical decision making.

1. Introduction

Acute myeloid leukemia (AML) is the most common type of
acute leukemia in adults, characterized by a low remission rate,
high relapse rate, high disease-specific mortality, and poor

prognosis. The incidence of AML increases with age, and more
than 20,000 cases are diagnosed per year in the United States,
and over 50% of patients died from this disease [1, 2]. Although
advances in immunology, cytogenetics, and molecular biology
have laid the groundwork for stratified and precise treatment
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of AML, up to 50% of patients with normal karyotype have a
wide range of clinical outcomes [3]. Thus, it is crucial to
develop more risk standards and predictive models for predict-
ing the prognosis and directing treatments of AML.

AML is a highly heterogeneous group of diseases with
uncontrolled proliferation and differentiation of abnormally
clonal myeloid stem cells. The application of next-generation
sequencing (NGS) technology and bioinformatic analysis has
provided systemically studies of genome and transcriptome
data to unravel the mutational spectrum, epigenetic landscape,
and RNA interaction network of these clonal leukemia cells
[4], which help to construct different models to predict progno-
sis and discover potential biomarkers of AML [5, 6]. Epithelial
to mesenchymal transition (EMT) is a dynamic process with
the transition of epithelial cells to mesenchymal cell phenotype,
which has played important roles in embryonic development
and wound healing, and this process is also thought to be
involved in cancer progression and therapy resistance [7, 8].
The overexpression of EMT markers and EMT transcription
factors (TFs) has been proved to correlate with tumor aggres-
siveness and poor prognosis [9, 10]. In addition, recent studies
have shown that cancer cells with the EMT process may con-
tribute to immune escape and drug resistance, thereby reducing
the effect of immunotherapy and chemotherapy [11–13]. As in
hematological malignancies, previous studies already indicated
a correlation between some EMT markers and poor prognosis.
For example, the upregulation of vimentin, one of the EMT
markers, was found associated with poor clinical outcome in
AML patients [14], and downregulation of ZEB1 in AML cells
can inhibit the invasive ability [15]. Taken together, all these

indicate that EMT markers and EMT-TFs involve in the pro-
gression of AML, and EMT-related signatures could be used
as potential target for predicting prognosis. However, more of
its specific biological function still needs to be explored.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. A total of 173 AML
samples were obtained from the The Cancer Genome Atlas
(TCGA) database, a landmark cancer genomic program, which
contains more than 20,000 primary cancer and matched nor-
mal samples spanning 33 cancer types. The corresponding
transcriptome sequencing data of the AML dataset were down-
loaded and normalized to FPKM format. EMT-related genes
were obtained from the dbEMT2.0 database, which contains
a total of 1184 experimentally confirmed EMT-related genes.
Then, we extracted the expression profiles of EMT-related
genes from the normalized matrix based on the obtained
EMT-related gene names. Finally, the expression profiles were
combined with clinical information to generate a new matrix,
and 30% of the data were randomly extracted from this matrix
and set as the test set. For clinical data, it is necessary that the
enrolled patients have a complete follow-up time, those sam-
ples with missing survival time and survival status are excluded
from the cohort, and overall patient survival is defined as the
endpoint event.

2.2. Batch Univariate COX Regression Screening for Prognosis-
Associated EMT Genes. Not all EMT-associated genes affect
patient survival; therefore, further screening of EMT-

Table 1: Top 20 candidate genes of univariate Cox regression analysis results.

Candidate genes
Univariate Cox regression

HR
95% CI

P value
Low High

PTP4A3 1.021726223 1.014321763 1.029184734 6.96E-09

CBR1 1.03820974 1.025067827 1.051520139 7.96E-09

ROR1 8.179147658 3.372478696 19.83658384 3.33E-06

ETS2 1.005307794 1.00295453 1.00766658 9.55E-06

HIP1 1.014075523 1.007666162 1.020525653 1.56E-05

PLA2G4A 1.021276597 1.011531433 1.031115646 1.68E-05

SRC 1.041105298 1.021883572 1.060688587 2.27E-05

KRT7 2.305624508 1.5494694 3.43079016 3.80E-05

HOXB7 1.017736146 1.008665558 1.026888302 0.000118629

PEBP4 9.238964316 2.976207974 28.68027449 0.000119556

UCP2 1.001228192 1.00059024 1.001866551 0.000160359

CDK5 1.025260006 1.011990418 1.03870359 0.000174577

CCL22 1.521162335 1.219639632 1.897228318 0.000198028

RNF8 1.147867946 1.066800293 1.235096044 0.000223934

LIMA1 1.073789995 1.033493977 1.115657159 0.00026414

SPRR2A 18025860.7 2044.952808 1.58894E+11 0.000312518

BMP2 1.363657752 1.150470944 1.616348917 0.000348845

LYPD3 1.593586359 1.231965357 2.061354624 0.000387329

STIM2 1.04818812 1.021292087 1.075792468 0.000387406

BAG3 1.030482529 1.013356191 1.047898312 0.000445426
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associated genes that affect patient prognosis is necessary. We
included 1184 EMT-related genes from the EMT database in
a univariate COX regression model with p < 0:05 as a filtering
condition in order to screen for risk factors that affect the prog-
nosis of AML patients.

2.3. Machine Learning to Screen Prognosis-Associated EMT
Genes. Randomized survival forest and lasso regression are
machine learning algorithms that are often used for dimen-
sionality reduction analysis. The prognostic genes obtained
from the above analyses were included in the random sur-
vival forest, which was performed by the R package “random
forest”, and the importance threshold of the variables was set
to 0.45. Variables above this threshold were included in the
lasso regression for further dimensionality reduction.

2.4. Multivariate Cox Regression and Model Construction.
We first included the prognostic factors obtained from the
lasso regression into the multivariate Cox regression to
screen the independent risk factors affecting the prognosis
of AML patients and then constructed a multigene prognos-
tic model based on the coefficients of the regression model.

2.5. Model Efficacy Assessment and Internal Validation. We
assessed whether there was a difference in the prognosis
of patients in the high- and low-risk groups using the log
rank test and then assessed the applied efficacy of the
model using the area under the ROC curve. In addition,
to validate the stability of the model, 30% of the randomly
selected data from the original data were used as the test set
for this evaluation.
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Figure 1: Random survival forest select candidate EMT-related prognosis genes. The error estimate probability (a), the bar plot of genes (b),
and candidate important genes (importance >0.45) (c).
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3. Results

3.1. Training Set Prognosis-Related EMT Gene Screening and
Model Construction. The results of the univariate batch COX
regression analysis suggested that 212 EMT-related genes
were associated with prognosis in AML patients. Top 20
prognosis-related genes are presented in Table 1. These
212 genes were included in the random survival forest
model, and a total of 18 prognosis genes were selected when
the gene importance was set greater than 0.45 (Figures 1(a)–
1(c)), and these 18 genes were subsequently included in the
lasso regression model for dimensionality reduction analysis,
and a total of 8 genes were selected (Figures 2(a) and 2(b)).
Further, we included these 5 genes into the multifactorial
COX regression model, and a total of 5 genes were selected,
and they were considered as independent risk factors affect-
ing the prognosis of patients (Table 2). These 5 genes were
CBR1, HS3ST3B1, LIMA1, MIR573, and PTP4A3. Five
EMT-associated genes were further modeled for signature
based on COX regression coefficients.

3.2. Performance of EMT-Associated Signature.We first calcu-
lated the risk score for each patient based on this model. To
evaluate the performance of the signature model, patients were
divided into high and low groups according to the median
value of risk score expression, and the results suggested that

the disease-specific survival rate of high-risk patients was sig-
nificantly lower than that of low-risk patients, and the com-
parison between groups was statistically different (p < 0:001)
(Figures 3(a)–3(c)), and the ROC results suggested that the
predictive efficacy of the model was likewise. The area under
the curve was 0.868 (Figure 3(d)). In addition, to verify the sta-
bility of the model, 30% of the total sample was selected for the
internal validation of the test set. The results suggested that the
same between-group survival differences existed in the test set
(Figures 4(a)–4(c)). In addition, the results suggest that the
model has strong stability with an area under the ROC curve
of 0.815 (Figure 4(d)). This result suggests that the model
has a strong stability.

4. Discussion

AML is a deadly and highly heterogeneous disease due to exten-
sive genomic changes and molecular mutations, which have
been incorporated in the updated 2017 European LeukemiaNet
(ELN) risk stratification guidelines [16]. Breakthroughs in NGS
technology have not only explored the molecular mechanisms
of this disease but also bring the AML into the era of small mol-
ecule inhibitor therapy. More studies are devoted to exploring
new prognosticmodels based on the genetic andmolecular pro-
filing to uncover more potential therapeutic targets [4–6]. In the
present study, we constructed a predictive model based on the
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Figure 2: Lasso regression model select candidate EMT-related prognosis genes. Lambda takes the minimum value; a total of eight
candidate genes are selected (a), and (b) demonstrates the prognostic value of these eight genes.

Table 2: Multivariate Cox regression analysis of candidate genes.

Candidate genes
Multivariate Cox regression

Coef HR
95% CI

P value
Low High

CBR1 0.0286 1.0290 1.0147 1.0436 6.62E-05

HS3ST3B1 −0.0458 0.9552 0.9131 0.9993 0.0466

LIMA1 0.0415 1.0423 1.0078 1.0781 0.0160

MIR573 −0.0134 0.9867 0.9716 1.0020 0.0888

PTP4A3 0.0145 1.0146 1.0064 1.0228 0.0004
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EMT-related signature to provide a visual predictive tool for
AML, which might lay the foundation for exploring the role
of EMT in hematological malignancies.

Epithelial cells provide intercellular adhesion by cell-cell
cohesion and are essential for maintaining the integrity and
barrier function of multicellular structures. However, epithe-
lial cells transform into mesenchymal cells to acquire more
complex structures and functions of organs during embryonic
development and wound healing, which is termed EMT [17,

18]. The quiescent epithelial cells in adults reactivated and
primed for the EMT under various internal and external
changes, which facilitate tumor cells to invade the extracellular
matrix and evade the immune elimination [19]. The downreg-
ulation of the cell adhesion protein E-cadherin and cytoskele-
tal rearrangements, including downregulation of keratin and
upregulation of vimentin, are themain features of EMT, which
cause ultimately tumor progression and metastasis. Several
EMT-TFs have been well identified to coordinate the process,
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Figure 3: Construct model in training data set, based on the Cox regulation model, a five EMT-related gene signature was constructed: the
risk score and the survival status distribution (a) and the heat map of five genes in high- and low-risk group (b). The survival curve show
high-risk score patients with a worse outcome, compared with low-risk score patients (c). The area under the receiver operating
characteristic of model was 0.868 (d).
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such as SNAIL/SNAI1, SLUG/SNAI2, and TFs of the TWIST
and ZEB families [20]. Given that EMT is associated with
tumor invasiveness and metastasis, as well as its molecular
properties, some EMT-related signatures have been developed
to predict the prognosis of cancers and the response to immu-
notherapy. A recent study reported an EMT-related gene sig-
nature for the prognosis of human bladder cancer [21], and
Chae et al. [22] analyzed the immune landscape of NSCLC
(nonsmall cell lung cancer) patients based on EMT scores to
predict the response of patients to immunotherapy. Although
some previous studies have shown the role of EMT makers

and EMT-TFs in AML, no EMT signature has been applied
to predict the prognosis of AML [14, 15].

As shown in our study, five EMT-related genes (CBR1,
HS3ST3B1, LIMA1, MIR573, PTP4A3) were selected by ran-
dom forest algorithm as the prognostic in TCGA-LAML cohort
as a training set. Then, AML patients were divided into high-
risk and low-risk groups based on the EMT-related signature
risk score. The results demonstrated that patients in the low-
risk group have longer OS than in the high-risk group, which
were also validated in internal datasets. Carbonyl reductase 1
(CBR1) belongs to the short dehydrogenase (SDR) family,
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which could promote AML cell resistance to daunorubicin and
be a risk gene in AML patients [23]. However, it is still unclear
whether CBR1 can lead to progression and drug resistance
through EMT in AML. A previous study has shown that hepa-
ran sulfate D-glucosamine 3-O-sulfotransferase 3B1
(HS3ST3B1) participates in the biosynthetic steps of heparan
sulfate (HS) and positively contributed to acute AML progres-
sion by induction of VEGF expression, which also involves in
the regulation TGF-beta-mediated EMT in NSCLC [24, 25].
LIMA1 (LIM domain and actin binding 1), also known as
epithelial protein lost in neoplasm (EPLIN), has been known
to play differential roles in the progression and metastasis of
certain cancers [26, 27]. Downregulation or phosphorylation
of EPLIN can alter the expression of some EMT elements such
as E-cadherin and ZEB1 via Wnt-catenin signaling pathway,
thus promotes the EMT process. While the exact mechanism
of LIMA1 in AML remains unknown [27]. The role of
MIR573 in EMT of tumors is still controversial. Wang et al.
[28]. revealed that MIR573 can inhibit TGFβ1-induced EMT
in prostate cancer, while another study indicated MIR573 asso-
ciated with the EMT in cervical cancer cell growth andmetasta-
sis [29]. As so far, the expression ofMIR573 has been confirmed
in AML cell line (HL-60) and thought as a regulator in respon-
siveness to inorganic substances [30]. Protein tyrosine phospha-
tase of regenerating liver 3 (PRL-3), encoded by PTP4A3 gene,
has been proved to promote EMT through PI3K/AKT pathway
and Src-ERK1/2 pathways in a variety of tumors [31, 32], which
is also a hazard factor with poor survival in AML [33]. All these
hint the prognostic role of EMT-related gene signature in AML.
Furthermore, given that the general condition of the patients is
also included in the risk stratification of the disease in addition
to the genomic profile [16], a predictive model was constructed
based on the EMT-related genes, which demonstrated powerful
predictivity.

5. Conclusion

During this study, we constructed a signature model of five
EMT-related genes to predict overall survival in patients
with AML; it will provide a useful tool for clinical decision
making. However, our study still has some limitations. First,
more datasets need to be included for better validation. Sec-
ond, further function experiments regarding of the core
genes are required to clarify the role of EMT-related genes
in AML.
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Background. Neoadjuvant chemoradiotherapy (neo-CRT) in combination with surgery increases survival compared to surgery
alone, as indicated by the esophageal squamous cell carcinoma (ESCC) treatment recommendations. However, the benefits of
neo-CRT are diverse among patients. Consequently, the development of new biomarkers that correlate with neo-CRT might be
important for the treatment of ESCC. Methods. The differentially expressed genes (DEG) between responsive and resistant
samples from the GSE45670 dataset were obtained. On the TCGA dataset, survival analysis was performed to identify
prognosis-related-EMT-genes. For EMT score model construction, lasso regression analysis in the TCGA cohort was used to
identify the genes. In the TCGA-ESCC cohort, age, stage, and EMT score were used to construct a nomogram. Results. In total,
10 prognosis-related-EMT-genes were obtained. These 10 genes consisted of 6 risky genes and 4 protective genes. Based on the
lasso analysis and univariate Cox regression, an EMT score model consisting of 7 genes (CLEC18A, PIR, KCNN4, MST1R,
CAPG, ALDH5A1, and COX7B) was identified. ESCC patients with a high EMT score have a worse prognosis. These genes
were differentially expressed between responsive and resistant patients and had a high accuracy for distinguishing resistant and
responsive patients. Conclusions. The identified genes have the potential to function as molecular biomarkers for predicting
ESCC patients’ resistance to neo-CRT. This research may aid in the elucidation of the molecular processes driving resistance
and the identification of targets for improving the prognosis for ESCC.

1. Introduction

There will be 20,640 new cases of esophageal cancer diagnosed
in the United States in 2022, and 16410 people will die from
esophageal cancer, according to the 2022 Cancer Statistics for
the United States [1]. ESCC, a major histological subtype of
EC, accounts for roughly 90% of EC occurrences [2, 3]. A num-
ber of factors contribute towards the development of ESCC,
including smoking, alcohol abuse, and hot water [4, 5]. ECSS
can be difficult to diagnose because there are no specific symp-
toms and a lack of early detection methods that allow an early
diagnosis [6]. Only 15-25% of patients with ESCC survive five
years after they were initially diagnosed with the disease [7]. To

increase the survival time of ESCC, it is urgently necessary to
discover the genetic changes of ESCC and identify new
biomarkers.

The most common treatment for locally advanced ESCCs
is surgery [7]. It is important to note that disease recurrences
are common after surgery, and that the prognosis has not chan-
ged significantly over the past few decades [8]. The use of neo-
CRT in conjunction with surgery improves prognosis greatly as
compared to surgery alone, and it is suggested in treatment rec-
ommendations [9]. In a trial including 113 patients with esoph-
ageal cancer, the addition of neo-CRT increased the 3-year
survival rate from 6% to 32% [10]. It should be mentioned,
however, that neo-CRT had two major disadvantages. Initially,
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the outcomes of neo-CRT treatment are variable. Some
patients could be resistant to neo-CRT and have a worse prog-
nosis in terms of survival [11]. In addition, studies have
revealed that neo-CRT is linked with an increased risk of post-
operative complications [12]. Therefore, it would be beneficial
to ESCC patients if novel biomarkers could be identified that
would predict their response to neo-CRT.

It is quite common for cancer cells to activate diverse sig-
naling pathways and develop chemotherapy resistance,
which helps them stay alive in spite of chemotherapy [13].
In studies, it has been observed that chemotherapy resis-
tance can be caused by the epithelial–mesenchymal transi-
tion (EMT) [14–16]. EMT is generally defined as the loss
of epithelial characteristics in a cell and the acquisition of
mesenchymal characteristics in that same cell [17]. There
is increasing evidence that EMT is linked to tumorigenesis,
cancer invasion, and drug resistance [18, 19]. It has been
found that there is a significant association between EMT
genes and metastatic disease, as well as the clinical stage of
ESCC [20]. However, more studies are needed to investigate
the role of EMT in ESCC.

The expression data of responsive and resistant samples
was obtained from different databases. The differentially
expressed EMT-related genes that are correlated with neo-
CRT responsiveness were identified. Using lasso regression
analysis, 7 genes (CLEC18A, PIR, KCNN4, MST1R, CAPG,
ALDH5A1, and COX7B) were used to obtain the EMT score
for estimating the ESCC prognosis. Besides, EMT score, age,
and stage were used for the construction of a nomogram for
predicting the 1-, 3-, and 5-year overall survival (OS) of ESCC.
For diagnosis (resistant and responsive), the EMT score
showed a more accurate value than genes.

2. Patients and Methods

2.1. Gene Expression Data. GSE45670 expression data was
downloaded from the GEO [21] by the GEOquery package
[22]. This dataset consisted of 28 esophageal squamous cell
carcinoma (ESCC) samples and 10 normal samples. In those
28 patients who had ESCCs, neoadjuvant chemoradiation
therapy (neo-CRT) that included cisplatin and vinorelbine
was given. 11 of them responded completely to the therapy,
while 17 others were resistant to treatment. Aside from that,
the TCGAbiolinks package was used to download expression
information and clinical records of 185 ESCC patients from
the TCGA database [23]. GSE86099 used paclitaxel resistant
cells and used mRNA transcription files to identify the crucial
genes for developing paclitaxel resistance [24]. The detailed
information of samples from GSE45670 and TCGA-ESCC is
shown in Supplementary Table 1 and Supplementary Table 2.

2.2. DEG Identification and Enrichment Analysis. In order to
more clearly illustrate the distribution of 11 responsive and
17 resistant samples, a principal component analysis was
applied. In order to increase the quality of samples and the
number of DEG, the low-quality samples were then removed
by the PCA results. We used the edgeR package to detect
DEG between responsive and resistant samples based on log2-
foldchange ðFCÞ > 0:5 and p value < 0.05 as cutoff criteria

[25]. The enrichment analysis was conducted using the R
package “clusterProfiler” [26]. The p value < 0.05 was used
to distinguish significantly enriched terms.

2.3. Survival-Related EMT Gene Identification. A total of 3600
EMT-related genes were retrieved from EMTome [27]. We
determined the genes that were substantially linked with prog-
nosis by samples from TCGA-ESCC. Among these survival-
related genes, genes with “Coef > 0” were defined as risky
genes, and genes with “Coef < 0” were defined as protective
genes. A Venn diagramwas used to show the overlap of DEGs,
EMT genes, and survival-related genes. The overlapped genes
were selected as the survival-related EMT genes.

2.4. Construction of EMT Score Model. We have determined
the candidate prognostic genes by applying lasso regression
analysis in the TCGA-ESCC cohort by using the glmnet pack-
age [28]. We then used univariate Cox regression analysis to
calculate the coefficients for each gene. The mRNA expression
and the coefficients associated with these genes were used in
the calculation of the EMT score. ESCC patients from the
TCGA dataset were divided into low and high subgroups
based on the median value. The prognosis difference between
low and high groups was compared, and the prognosis predic-
tion ability of the EMT score was calculated.

2.5. Development of Nomogram. The TCGA-ESCC cohort
included data on age, stage, and EMT score, which were used
to construct a nomogram. Calibration curves were generated
so that the concordance between the actual survival rate, and
the anticipated survival rate could be evaluated. Addition-
ally, the concordance index (C-index) was calculated to
assess the capacity of models to forecast prognosis. These
analyses were conducted by the package rms.

2.6. Immune Score and Immune Cell Infiltration Analyses. By
expression profiles, the immune score and the stromal score
were calculated using the “estimate” package [29]. By pack-
age GSVA [30], the infiltration levels of immune cell popu-
lations were determined.

2.7. Diagnostic Ability in the Classification of Resistant and
Responsive Patients. In this study, we used the pROC pack-
age to estimate the area under curve (AUC) to evaluate the
prediction ability of drug response to therapy. Then, we also
calculated the AUC values of EMT score and genes in classi-
fying ESCC and normal samples.

3. Results

3.1. DEG Identification. The flowchart of this study was shown
in Figure 1(a). Principal component analysis (PCA) was
applied to classify 11 responsive and 17 resistant samples in
Figure 1(b). Then, 4 responsive samples (GSM1111699,
GSM1111694, GSM1111695, and GSM1111693) and 4 resis-
tant samples (GSM1111677, GSM1111680, GSM1111682,
and GSM1111688) were removed since they were outliers
(Figure 1(c)). We compared the gene expression between the
7 responsive and 13 resistant samples using the edgeR package.
The log2foldchange ðFCÞ > 0:5 and p value < 0.05 accepted to
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Figure 1: Continued.
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consider genes to be differentially expressed, identifying a total
of 2604 genes (1142 upregulated and 1462 downregulated in
the resistant group) above this cut-off (Figures 1(d) and 1(e)).
Then, we investigated the biological processes and pathways
by enrichment analysis. External encapsulating structure orga-

nization (GO: 0045229), extracellular matrix organization
(GO: 0030198), and extracellular structure organization (GO:
0043062) are the main biological processes in DEGs (Table 1).
Besides, ECM-receptor interaction (hsa04512), human papillo-
mavirus infection (hsa05165), glycosaminoglycan biosynthesis-
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Figure 1: Principal component analysis (PCA) in resistant versus responsive samples. (a) The flowchart of this study. (b) Before removing
the outliers, the PCA was performed on the gene expression data. (c) After removing the outliers, the PCA was performed on the gene
expression. (d) Volcano plot of DEG by log2 foldchange ðFCÞ > 0:5 and p value < 0.05. (e) Clustering heat map of the DEG. The
expression data for DEG was normalized.

Table 1: The GO enrichment analysis results of DEG.

ID Description p value Count

GO: 0045229 External encapsulating structure organization <0.01 118

GO: 0030198 Extracellular matrix organization <0.01 117

GO: 0043062 Extracellular structure organization <0.01 117

GO: 0006023 Aminoglycan biosynthetic process <0.01 40

GO: 0031589 Cell-substrate adhesion <0.01 86

GO: 0042476 Odontogenesis <0.01 41

GO: 1903034 Regulation of response to wounding <0.01 49

GO: 0006024 Glycosaminoglycan biosynthetic process <0.01 37

GO: 0061041 Regulation of wound healing <0.01 42

GO: 0001503 Ossification <0.01 90

GO: 0001667 Ameboidal-type cell migration <0.01 100

GO: 0050818 Regulation of coagulation <0.01 27

GO: 0042493 Response to drug <0.01 81

GO: 0010810 Regulation of cell-substrate adhesion <0.01 56

GO: 0001501 Skeletal system development <0.01 101

GO: 0034329 Cell junction assembly <0.01 91

GO: 0060348 Bone development <0.01 51

GO: 0022612 Gland morphogenesis <0.01 35

GO: 0002576 Platelet degranulation <0.01 38

GO: 0006022 Aminoglycan metabolic process <0.01 46
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chondroitin sulfate dermatan sulfate (hsa00532), and focal
adhesion (hsa04510) were the main pathways in DEGs
(Table 2).

3.2. Survival-Related EMT Gene Identification. Based on the
survival analysis that was conducted on an R loop, among all
17468 genes, 939 genes were significantly related to survival.
Among 939 survival-related genes, 118 were protective
genes, and 821 were risky genes. The Venn map shows that
6 EMT genes (PIR, EID3, COX7B, CLEC18A, ALDH5A1,
and DYNC1I1) are generally upregulated in resistant sam-
ples and are risky genes (Figure 2(a)). Besides, the Venn
map shows that 4 EMT genes (CAPG, MST1R, KCNN4,
and VDR) are generally downregulated in resistant samples
and are protective genes (Figure 2(b)). These ten genes were
defined as prognosis-related EMT genes (PREMTs).

3.3. Construction of EMT Score. After that, we performed a
lasso analysis on the TCGA-ESCC samples to analyze these
ten PREMTs (Figure 2(c)). Via the process of cross-validation,
it was shown that 7 PREMTs were capable of producing a supe-
rior effect in the model (Figure 2(d)). Then, the univariate Cox
regression method was adopted to obtain the coefficient values
of genes. An EMTmodel consisting of 7 genes (CLEC18A, PIR,
KCNN4, MST1R, CAPG, ALDH5A1, and COX7B) was identi-
fied. The EMT score of individuals using coefficients and gene
expression was ð4:96Þ ∗ CLEC18A + ð0:36Þ ∗ PIR + ð−0:18Þ
∗KCNN4 + ð−0:24Þ ∗MST1R + ð−0:50Þ ∗ CAPG + ð0:39Þ
∗ALDH5A1 + ð0:54Þ ∗ COX7B.

Patients with ESCC who were included in the TCGA were
classified as having either a high or low EMT score based on
the median value. In the course of our research, we examined

the rates of mortality in two different EMT groups. We made
the startling discovery that the group at high EMT had a sur-
vivability that was much lower than the group at low EMT
(Figure 3(a)). The expression values of CLEC18A, PIR,
KCNN4, MST1R, CAPG, ALDH5A1, and COX7B between
groups were illustrated in Figure 3(b). The expression values
of CLEC18A, PIR, ALDH5A1, and COX7B were higher in
the group at high EMT. The expression values of KCNN4,
MST1R, and CAPG were lower in the group at high EMT.
There is a substantial difference in OS between groups (p value
< 0.001, Figure 3(c)). In addition, the AUC value was dis-
played to assess the EMT signature’s predictive abilities.
AUC values of the EMT score for 1, 3, and 5 years of survival
were 0.662, 0.729, and 0.760, respectively (Figure 3(d)).

3.4. The Nomogram for OS Prediction. Typically, a nomo-
gram is used to quantify the risk of people in a therapeutic
environment by combining various variables. By combining
the EMT score, age, and stage, we developed a nomogram to
estimate the survival rates of 1-, 3-, and 5-year OS of ESCC
(Figure 4(a)). Each component in the nomogram is assigned
points according to its contribution. The majority of contri-
butions came from the EMT score, and the C-index for the
nomogram was 0.70. Calibration curves of 1-, 3-, and 5-
years were used to evaluate the accuracy of the model pre-
dictions (Figures 4(b)–4(d)). And the findings suggested that
actual and anticipated survival were highly concordant, par-
ticularly for three-year survival (Figure 4(b)).

3.5. Estimation of the EMT Score with Immunity. Using
ESTIMATE, the immune and stromal scores were calculated
in order to examine the influence of EMT score on tumor

Table 2: The KEGG enrichment analysis results of DEG.

ID Description p value Count

hsa04512 ECM-receptor interaction <0.01 28

hsa05165 Human papillomavirus infection <0.01 73

hsa00532 Glycosaminoglycan biosynthesis-chondroitin sulfate dermatan sulfate <0.01 11

hsa04510 Focal adhesion <0.01 49

hsa04974 Protein digestion and absorption <0.01 29

hsa04933 AGE-RAGE signaling pathway in diabetic complications <0.01 28

hsa05222 Small cell lung cancer <0.01 26

hsa05146 Amoebiasis <0.01 27

hsa00480 Glutathione metabolism <0.01 18

hsa05205 Proteoglycans in cancer <0.01 45

hsa04151 PI3K-Akt signaling pathway <0.01 69

hsa04621 NOD-like receptor signaling pathway <0.01 40

hsa05144 Malaria <0.01 15

hsa05169 Epstein-Barr virus infection <0.01 42

hsa00620 Pyruvate metabolism <0.01 14

hsa05225 Hepatocellular carcinoma <0.01 36

hsa04360 Axon guidance <0.01 38

hsa05204 Chemical carcinogenesis - DNA adducts <0.01 18

hsa04068 FoxO signaling pathway <0.01 29

hsa05230 Central carbon metabolism in cancer <0.01 18
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immunity. According to the data, the immune score of those
with a low EMT score was noticeably higher than those with
a high EMT score (p value = 0.011, Supplementary
Figure 1A). There was an inverse relationship between the
EMT score and the tumor immunity (R = −0:22, p < 0:0001
, Supplementary Figure 1B). Patients with a high EMT
score, on the other hand, tended to have tumor purity that
was greater (Supplementary Figure 1A), but the difference
was not significant (p value = 0.14).

In addition, the proportions of immune cells were com-
pared across groups (Supplementary Figure 2). The fraction
of immune cells such as CD8-T cells, dendritic cells, and
natural-killer cells in the low EMT score subgroup was
higher than those in the high EMT score subgroup.

3.6. Evaluate the Power of Signatures for Distinguishing
Resistant and Responsive Patients. The expression values of
genes were compared between resistant and responsive
patients (Figure 5(a)). To evaluate the power to distinguish
resistant and responsive patients, we measured the AUC of
genes and EMT score (Figures 5(b)–5(i)). For diagnosis (resis-
tant and responsive), the EMT score showed the highest AUC
value (AUC = 0:89) than genes.

An independent dataset (GSE86099) contains the expres-
sion profiles of the cells associated with paclitaxel resistance.
For diagnosis (resistant and responsive), all genes and EMT
score showed perfect AUC values (AUC = 1:0) (Supplemen-
tary Figure 3A–3H).

3.7. Evaluate the Power of Signatures for Distinguishing
ESCC and Normal Samples. The gene expression levels of
CAPG, CLEC18A, and MST1R were higher in the tumor
samples (Figure 6(a)). We drew the ROC curve of survival-
related ECM genes to clarify the diagnostic value for distin-
guishing ESCC and normal samples (Figures 6(b)–6(i)). The
results showed MST1R (AUC = 0:811), CAPG (AUC 0.743),
CLEC18A (AUC = 0:714), and EMT score (AUC = 0:700)
had significant diagnostic values.

3.8. Validates Prognostic Feature Genes. Then, the correlation
between EMT genes expression and patient survival was
confirmed (Supplementary Figure 4A–4J). The findings
demonstrated that patients with elevated levels of ALDH5A1,
PIR, and COX7B had a significantly lower OS.
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Figure 2: Identification of PREMTs in ESCC. (a, b) Venn diagrams for identifying PREMTs. (c) Lasso coefficient profiles of the 10 PREMTs.
(d) Selection of the number of genes for EMT score by lasso analysis.
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4. Discussion

ESCC is a kind of cancer that is aggressive and poses a signifi-
cant threat to human health as a result of its high incidence rate
as well as its low survival rate after 5 years [31]. Currently, there
are few effective biomarkers that can be used to diagnose, prog-
nosis, and treatment of ESCC. Expression data was utilized to
discover EMT genes linked with chemoradiotherapy resistance,
as well as their connection with ESCC prognosis. Finally, 6
risky genes (PIR, EID3, COX7B, CLEC18A, ALDH5A1, and
DYNC1I1) and 4 protective genes (CAPG, MST1R, KCNN4,

and VDR) were identified. Based on lasso analysis, an EMT
score model was constructed by the expression values of 7
genes (CLEC18A, PIR, KCNN4, MST1R, CAPG, ALDH5A1,
and COX7B). Patients with an elevated EMT score for ESCC
had a worse prognosis.

Earlier research has analyzed the difference in gene expres-
sion between nCRT responder and nonresponder samples in
order to predict nCRT response [32]. Among the identified
genes, five genes could accurately predict the response to
nCRT. In our study, among the 7 identified genes, ALDH5A1,
CLEC18A, COX7B, and PIR were upregulated in resistant
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Figure 5: Continued.
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patients. CAPG, KCNN4, and MST1R were upregulated in
responsive patients. In the predictive models, all seven genes
and EMT score could achieve a high accuracy (>80%) in
predicting the response to therapy of patients. Besides,
MST1R (AUC = 0:811), CAPG (AUC = 0:743), CLEC18A
(AUC = 0:714), and EMT score (AUC = 0:700) also had
significant diagnostic accuracy in distinguishing tumor and
normal samples.

By analyzing expression profiles, we predicted the immune
score and the values of immune subpopulations. According to
the findings, the group with the high EMT score had a consid-
erable reduction in the number of immune cells. It is possible
that this is the reason why people with high EMT scores have a
poorer prognosis. EMT may interact with immunosuppres-

sion either directly or indirectly, as shown by the results of a
prior study [33]. Since immune cells are important biomarkers
for immunotherapy, the influence of EMT on immunity is
important and needs more studies.

MST1R was related to cellular motility and matrix inva-
sion that are the predictive indications of a tumor phenotype
with the ability to metastasize [34]. MST1R was significantly
highly expressed in 74% of gastroesophageal samples, and
overexpression predicted poor survival [34]. For other genes,
their roles in ESCC need more studies.

There were some limitations to our study. These seven key
EMT genes have the potential to be used not only in ESCC
resistance prediction but also as possible prognostic biomark-
ers. However, the association between seven important EMT
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Figure 5: (a) The expression pattern of genes between responsive and resistant patients. ROC curves of genes and EMT score. (b) ROC
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genes and ESCC prognosis may not be robust. Therefore, in
order to discover the precise biological behaviors of these seven
genes (CLEC18A, PIR, KCNN4, MST1R, CAPG, ALDH5A1,
and COX7B) that are involved in the formation of ESCC,
experimental validation has to be carried out. Meanwhile, there
were just a few ESCC specimens available. In order to evaluate
the potential predictive utility of these genes for illness, more
validation in more samples is required.

5. Conclusions

Using different datasets, 7 genes that play essential roles in
ESCC chemotherapy resistance, namely, CLEC18A, PIR,
KCNN4, MST1R, CAPG, ALDH5A1, and COX7B, were
selected. The findings of this research may help to clarify the
molecular processes of chemotherapy resistance in ESCC
and assist us in identifying prospective targets for predicting
chemotherapy resistance.
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Background. A rising amount of data demonstrates that the epithelial-mesenchymal transition (EMT) in clear cell renal cell
carcinomas (ccRCC) is connected with the advancement of the cancer. In order to understand the role of EMT in ccRCC, it is
critical to integrate molecules involved in EMT into prognosis prediction. The objective of this project was to establish a
prognosis prediction model using genes associated with EMT in ccRCC. Methods. We acquired the mRNA expression profiles
and clinical information about ccRCC from TCGA database. In this study, we measured differentially expressed EMT-related
genes (DEEGs) by two comparison groups (tumor versus normal tissues; “stages I-II” versus “stages III-IV” tumor tissues).
Based on classification and regression random forest models, we identified the most important DEEGs in predicting prognosis.
Afterwards, a risk-score model was created using the identified important DEEGs. The prediction ability of the risk-score
model was calculated by the area under the curve (AUC). A nomogram for prognosis prediction was built using the risk-score
in combination with clinical factors. Results. Among the 72 DEEGs, the classification and regression random forest models
identified six hub genes (DKK1, DLX4, IL6, KCNN4, RPL22L1, and SPDEF), which exhibited the highest importance values in
both models. Through the expression of these six hub genes, a novel risk-score was developed for the prognosis prediction of
ccRCC. ROC curves showed the risk-score performed well in both the training (0.749) and testing (0.777) datasets. According
to the survival analysis, individuals who were separated into high/low-risk groups had statistically different outcomes in terms
of prognosis. Besides, the risk-score model also showed outstanding ability in assessing the progression of ccRCC after
treatment. In terms of nomogram, the concordance index (C-index) was 0.79. Additionally, we predicted the differences in
response to chemotherapy drugs among patients from low- and high-risk groups. Conclusion. Gene signatures related to EMT
could be useful in predicting ccRCC prognosis.

1. Introduction

RCC accounts for 2 to 3% of all cancers worldwide [1]. Almost
403,000 people are diagnosed with RCC each year, and 175,000
people die from it [2]. There is a range of histological classifica-
tion groups, but kidney renal clear cell carcinoma (KIRC,
ccRCC) is the most prevalent and contributes to the majority
of renal cancer-related deaths. KIRC can remain clinically
occult in the absence of significant clinical symptoms, and
patients are initially diagnosed when they are already at a late
stage of the TNM. In general, cases of late diagnosis are associ-
ated with lower survival rates, which results in a lower five-year

survival rate for KIRC patients. In stage I, the five-year disease-
specific survival for RCC patients ranges from 80 to 95 percent,
but it will drop to less than 10% for stage IV patients [3]. For
these RCC patients who had a lower survival rate and high risk,
more elaborate and customized treatment plans were neces-
sary. As a result, prognostic models that are capable of accu-
rately identifying patients at high risk are urgently needed.

The EMT process describes the transition of epithelial
cells to mesenchymal cells in a series of steps, and it is char-
acterized by a loss of polarity, a breakdown in the integrity
barrier, and an increase in invasion [4]. Many studies have
highlighted the significance of EMT in cancer metastasis
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and pharmaceutical resistance [5]. The abnormal EMT signa-
ture is associated with various acquired capabilities, such as
resistance to chemotherapy and immunotherapy, in addition
to migration and invasion [6]. Recently, an EMT signature
was shown to be linked to immune cell signaling, providing
novel insights into the link between EMT and immune activa-
tion [7]. There are potential therapeutic opportunities because
of the association between EMT and immune cells. Although
EMT-related signatures have been linked to ccRCC metastasis
and prognosis, limited studies have been conducted to deter-
mine if they can be employed as indicators for early detection
and prognosis assessment.

In the current study, random forest models were devel-
oped to identify the most important genes associated with
KIRC patient survival time and survival status. A prognostic
risk-score model for KIRC was developed by the expression
of six important genes. The AUC values and survival analysis
results demonstrated the feasibility and accuracy of the risk-
score model. A nomogram was constructed to predict overall
survival (OS) in KIRC after incorporating the risk-score and
clinical data parameters. Together, our findings demonstrate
the importance of risk-score and nomogram for the prediction
of survival for patients with KIRC.

2. Materials and Methods

2.1. Data Collection. Level three of mRNA sequencing data of
cancer patients with KIRC was collected from TCGA (https://
tcga-data.nci.nih.gov/tcga/). The expression data of 539 KIRC
and 72 normal kidney samples were chosen for further investi-
gation. The form of the downloaded gene expression data was
“fragments-per-kilobase-million” (FPKM). The original data
was then converted into “transcript-per-million” (TPM).
Among 539 KIRC samples, the numbers of stage I, stage II,
stage III, and stage IV were 268, 57, 123, and 83.

2.2. Identification of Differentially Expressed Genes (DEGs).
The R package “edgeR” was chosen to obtain DEGs between
KIRC and normal tissues [8]. The DEGs filtering criteria
were established at a p value of less than 0.05 and a jlog 2
FoldChangej greater than 0.5. Similarly, DEGs between early
stage (“stages I-II”) and advanced stage (“stage III-IV”)
tumor tissues were obtained by the same method and
screening criteria. We downloaded 1184 genes related to
EMT from the dbEMT online database [9], and then we
obtained the DEEGs by integrating the DEGs and EMT-
related genes through the R package “VennDiagram” [10].

2.3. Analysis of Pathways. Enrichr (https://maayanlab.cloud/
enrichr/enrich) [11] was performed to identify significantly
enriched pathways. Results from modules, including “GO_
Biological_Process_2021,” “GO_Molecular_Function_2021,”
“GO_Cellular_Component_2021,” “KEGG_2021_Human,”
and “MSigDB_Hallmark_2020” were downloaded and pre-
sented in this work. Pathways with a p value of less than 0.05
were recognized as significant pathways.

2.4. Selection of Biomarkers by Machine Learning. In order to
construct a model that has perfect prediction performance,
we used machine learning models to select the genes that are

significantly correlated with prognosis. The expression values
of DEEGs were normalized by the “log2ðx + 1Þ” and “min-
max” normalizationmethods. A classification and a regression
model were constructed by the random forest (RF) algorithm.
The classification RF (cRF) was built for the assessment of the
survival status of KIRC patients. The regression RF (rRF) was
built for the prediction of the survival time of KIRC patients.
The importance values of genes in twomodels were calculated,
and the six genes with the greatest importance values were
chosen for further study as hub genes.

2.5. Construction of the Risk Model. The expression profiles
of TCGA-KIRC were separated randomly into training
(70%) and testing (30%) datasets. In the training of KIRC
patients, univariate Cox analysis was performed to assess
the coefficients of genes. The risk-score was evaluated by
the equation: risk − score = ðcoefficient × expression of gene
1Þ + ðcoefficient × expression of gene 2Þ +⋯ + ðcoefficient ×
expression of geneXÞ. KIRC individuals were separated into
low and high groups by the median risk-score, respectively.
With the log-rank test, survival curves for low- and high-
risk individuals were compared, including OS and
progression-free interval events (PFI). The “survivalROC”
R package was selected to calculate the AUC value to evalu-
ate the predictive ability.

2.6. Stratification Analysis. TCGA-KIRC individuals were
stratified into subgroups by age (≥60 years vs. <60 years),
gender (female vs. male), and TNM stages (T1/T2 vs. T3/
T4, N0 vs. N1, and M0 vs. M1). The “Wilcoxon rank-sum”
test was selected to discover the risk-score distribution with
the R package “ggpubr.”

2.7. Nomogram Development. A nomogram including clini-
cal variables (age and stage) and the risk-score was designed
to estimate the likelihood of one, three, and five-year OS. C-
index values vary between 0.5 and 1.0, representing no dis-
criminating ability and excellent discriminating capacity,
respectively. The fit of the generated and reference lines indi-
cates the high accuracy of the nomogram model.

2.8. Chemotherapeutic Response Prediction. The responses to
chemotherapeutic drugs were predicted for samples by the R
package “pRRophetic” [12]. With a prediction model based
on Genomics of Drug Sensitivity in Cancer (GDSC) data
and expression profiles of TCGA-KIRC samples, the package
could predict the IC50 of each drug for each patient. The
IC50 refers to the dosage required for halving the number of
viable cells, and it is a measure of the drug’s therapeutic effec-
tiveness and can also be used for assessing the tolerance of
tumor cells to drugs.

2.9. Evaluation of the Tumor Microenvironment (TME). ESTI-
MATE [13] and CIBERSORT [14] were utilized in R to deter-
mine each KIRC sample’s TME status. For example,
ESTIMATE predicted the level of stromal, immune, and tumor
is scored based on the expression profiles of TCGA-KIRC sam-
ples. The relative levels of 22 tumor-infiltrating lymphocytes
(TILs) in KIRC samples were predicted by the CIBERSORT
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algorithm. To ensure the prediction results are credible, p value
< 0.05 was used as the selection criterion.

3. Results

3.1. Identification of DEEGs and Functional Enrichment
Analysis. A total of 8905 significantly DEGs were identified
between KIRC and normal kidney samples, of which 5660
were upregulated and 3245 were downregulated in KIRC
samples than in normal samples (Figures 1(a) and 1(b)).
Similarly, 2052 significantly DEGs were found between early
stage (“stages I-II”) and advanced stage (“stages III-IV”)
tumor tissues, of which 1453 were upregulated and 599 were
downregulated in the advanced stage than in early stage
KIRC samples (Figures 1(b) and 1(c)). After an intersection

of EMT-related genes and DEGs by Venn diagram, 72
DEEGs were found (Figure 2(a)).

Following that, functional enrichment analysis was used to
investigate the probable molecular processes behind DEEGs.
The enriched biological process (BP) terms were “inflamma-
tory_response” and “cytokine_mediated_signaling_pathway”
(Supplementary Table 1). The enriched molecular function
(MF) was the terms of “cytokine_activity” and “receptor_
ligand_activity” (Supplementary Table 2). The significant
cellular component (CC) terms were “collagen_containing_
extracellular_matrix” and “secretory_granule_lumen”
(Supplementary Table 3). Furthermore, the KEGG analysis
indicated that DEEGs were strongly linked to pathways in
“IL17_signaling” and “viral_protein_interaction_with_
cytokine_and_cytokine_receptor” (Supplementary Table 4).
Besides, the hallmark pathway analysis showed that
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Figure 1: Identification of DEGs in TCGA-KIRC cohort. (a) The volcano of DEGs between KIRC and normal kidney samples. (b) The
heatmap of DEGs between KIRC and normal kidney samples. (c) The volcano of DEGs between “stages I-II” and “stages III-IV” tumor
tissues. (d) The heatmap of DEGs between “stages I-II” and “stages III-IV” tumor tissues. In volcano plots, red dots indicate
downregulation genes in KIRC or “stages III-IV,” whereas blue dots indicate upregulation genes. In heatmap plots, red indicates high-
expression values, whereas blue indicates low-expression values.
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“epithelial_mesenchymal_transition” and “inflammatory_
response” (Supplementary Table 5).

3.2. Selection of EMT-Related Genes by Machine Learning
Models. We built a classification and a regression model to
identify the appropriate biomarkers. The classification ran-
dom forest (cRF) model was built to predict the survival sta-
tus (dead or alive) of KIRC patients. The importance values
of genes in the cRF are shown in Table 1. Similarly, a regres-
sion random forest (rRF) model was built to predict the sur-
vival time of KIRC patients. The importance values of genes
in two models were calculated (Table 1). The six genes with
the highest importance values were selected as hub genes for
further analysis. Among those 72 DEEGs, KCNN4, DKK1,
DLX4, SPDEF, IL6, and RPL22L1 were considered hub
genes since they have the highest importance values.

3.3. Construction of Risk-Score for KIRC. The datasets were then
separated into training (70%) and testing (30%) datasets. Based
on coefficients from the multivariate Cox analysis, we estab-
lished the risk-score by the expression of the 6 genes by the
equation: risk − score = ð2:57 × KCNN4Þ + ð0:14 × DKK1Þ +
ð1:27 × DLX4Þ + ð1:0 × SPDEFÞ + ð0:69 × IL6Þ + ð0:92 × RPL
22L1Þ. The risk-score distributions, survival status, survival
time, and transcriptomic levels of individuals were ordered
using the risk-score (Figures 2(b)–2(d)). KIRC patients were
classified as the high or low group, respectively. The AUC of

the risk-score was 0.749, suggesting a high prognostic predic-
tion ability (Figure 2(e)). According to the survival curve
(OS), there was a substantial difference in OS between groups
(p value < 0.001) (Figure 2(f)).

We then validated the 6 gene model in the testing dataset.
The risk-score distributions, survival status, survival time, and
transcriptomic levels of individuals were ordered using the
risk-score (Supplementary Figure 1A-C). 79 and 80 KIRC
individuals were classified as high or low-risk, and the AUC
value was 0.777 (Supplementary Figure 1D). According to the
survival curve (OS), there was a substantial difference in OS
between groups (p value = 0:0011) (Supplementary Figure 1E).

We then validated the 6 genes to predict the progression
of KIRC patients. The distributions of risk-scores, prognosis,
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Figure 2: Assessment and DEEGs signature in the training dataset. (a) Intersection of DEGs and EMT-related genes by the Venn plot. (b)
Risk-score distributions, (c) survival time/statuses, and (d) heatmap of the hub DEEGs expression in the training dataset. (e) The AUC value
of the risk-score in the training dataset. (f) Survival curves (OS) of risk-score groups in the training dataset.

Table 1: The selected hub differentially expressed EMT-related
genes (DEEGs) by importance values.

Gene Importance (cRF) Importance (rRF) Importance

KCNN4 57.1 80.5 137.6

DKK1 26.2 100 126.2

DLX4 73.3 52.5 125.8

SPDEF 100 18.2 118.2

IL6 49.5 65.4 114.9

RPL22L1 83.7 25.6 109.3
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and gene expression values of patients were ranked by risk-
scores (Supplementary Figure 2A-C). 254 and 255 KIRC
patients were labeled as high or low risk, respectively, and the
AUC was 0.722 (Supplementary Figure 2D). Discrepancies in
PFI were found between high and low groups (p value <
0.001) (Supplementary Figure 2E). These results suggest that
our risk-score model could be an accurate indicator for OS
and PFI prediction.

3.4. Relationship between Prognostic Signature and
Clinicopathological Features. A correlation between the prog-
nostic signature and clinical and pathological characteristics

was then examined. The results indicated a positive correla-
tion between the risk core and poor prognosis. For example,
risk-score was found in the advanced stages of KIRC, such as
stage IV (Figure 3(a)), T4 (Figure 3(b)), N1 (Figure 3(c)),
and M1 (Figure 3(d)). In contrast, the correlations of the
risk-score with age (Figure 3(e)) and laterality (Figure 3(f))
were not significant.

3.5. Stratification Analysis. In the groups of “stages I-II” and
“stages III-IV,” patients with higher risk had worse OS (Sup-
plementary Figure 3A-B). Similarly, we demonstrated that
risk-score could predict the OS of T1-T2 or T3-T4 patients
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Figure 3: Relationship between risk-score and clinical factors, including (a) stage IV, (b) T stage, (c) N stage, (d) M stage, (e) Age, and (f)
laterality.
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Figure 4: (a) The prognostic nomogram was constructed by age, stage, and risk-score. The calibration curve diagrams for (b) 1-year, (c) 3-
year, and (d) 5-year had good agreement between the predicted probability and the actual probability.
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(Supplementary Figure 3C-D), patients with TNM stage N0
(Supplementary Figure 3E), KIRC individuals with TNM
stage M0 and M1 (Supplementary Figure 3G-H), patients
with laterality of “left” and “right” (Supplementary Figure 3I-
J), and patients with “>60” and “<60” (Supplementary
Figure 3K-L). The difference in risk groups in patients with
TNM stage N1 was not significant since the number of
patients is low (Supplementary Figure 3F).

Afterward, we conducted the univariate/multivariate
Cox regression to validate the independent prognostic role
of risk-score. Univariate analysis calculated the p values of
age (p value < 0.01), laterality (p value = 0:994), stage (p
value < 0.01), and risk-score (p value < 0.01). Subsequent
multivariate analysis demonstrated that age (coefficients:
0.037, p value < 0.01), stage (coefficients: 0.52, p value <
0.01), and risk-score (coefficients: 0.76, p value < 0.01) were
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Figure 5: Box plot of estimated IC50 values for (a) axitinib, (b) bortezomib, (c) cisplatin, (d) gefitinib, (e) sorafenib, (f) sunitinib, (g)
temsirolimus, and (h) Vinblastine in low and high risk-score groups.
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negatively correlated with OS. These findings suggest that
the risk-score is an independent predictor of survival in
KIRC patients.

3.6. Construction of a Predictive Nomogram. By combining the
risk-score and various clinical indicators, a nomogram was cre-
ated to assess the survival rate (Figure 4(a)). The nomogram
has a C-index of 0.79, and the risk-score clearly demonstrated
greater importance than age and stage did. The prediction
and reference calibration curves showed a great fit in predicting
one, three, and five years of OS (Figures 4(b)–4(d)), which
proves the prediction ability of the nomogram.

3.7. Difference in Sensitivity to Chemotherapies.The responsive
predictive values of the risk-score for chemotherapy drugs
(Figures 5(a)–5(h)) were calculated by IC50 values. Bortezo-
mib, cisplatin, sunitinib, temsirolimus, and vinblastine all
had lower IC50 values in the high-risk group, indicating that
patients with a higher risk-score were more responsive to these
medications. In the low-risk group, however, the IC50 value of
sorafenib was much lower, indicating that individuals with a
lower risk-score were more susceptible to it.

3.8. Correlation between the Risk-Score and TME. The
CIBERSORT method was used to determine the percentage
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of 22 immune cells in each TCGA-KIRC sample. The cells
with low mean values were deleted, and 14 cells were selected
for the plot. A total of 423 samples were analyzed and found to
be statistically significant. Fractions of “follicular_helper_T”
and “Tregs” were higher among high-risk TCGA-KIRC sam-
ples (Figure 6(a)), while the values of “CD4_memory_T”
and “NK” cells were higher among low-risk TCGA-KIRC

samples (Figure 6(b)). Using the ESTIMATE technique, we
also examined the differences between risk categories in terms
of TME scores (Figure 6(b)). The Wilcoxon rank-sum test
suggested that the immune and stromal scores in TCGA-
KIRC samples were significantly higher, while the tumor
purity was higher in the lower risk-score TCGA-KIRC sam-
ples. Using the Kaplan-Meier method, the prognosis of
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Figure 7: Overall survival analyses of the identified genes, including (a) DKK1, (b) DLX4, (c) IL6, (d) KCNN4, (e) RPL22L1, and (f) SPDEF
in TCGA dataset. Red lines indicate patients with the high expression, whereas blue lines indicate patients with the low expression.
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patients with higher DKK1 (Figure 7(a)) or lower DLX4
(Figure 7(b)), IL6 (Figure 7(c)), KCNN4 (Figure 7(d)),
RPL22L1 (Figure 7(e)), and SPDEF (Figure 7(f)) was greatly
lower.

4. Discussion

KIRC is particularly prone to invasion and metastasis, which
may explain its poor prognosis. About 25-30% of KIRC
patients have metastases at the time of diagnosis [15], and
about 60% have metastases within the initial 2–3 years after
diagnosis [16]. EMT is critical for tumor invasion, tumor
metastasis, and tumor cell proliferation [17]. As a result,
we developed a prognostic risk model for six EMT-related
genes and evaluated its reliability and relationship with sur-
vival. Additionally, we checked the link between risk and
response to the pharmacological therapy.

Currently, Cox regression [18] and LASSO regression [19]
analyses are prevalent for identifying prognostic genes and
constructing prediction models. In our study, we used machine
learning models to identify the prognostic genes. Machine
learning has many advantages since it can achieve a higher
accuracy value with fewer genes, and it also gains the preva-
lence of inmultiple studies [20–22]. For example, in breast can-
cer, a machine learning model was provided to predict the
immune subtype of breast cancer [21]. The major obstacle to
using machine learning models on survival data is that it con-
tains two variables: survival status and time. Thus, we built a
classification model and a regression model for predicting the
survival status and time, respectively. The necessary data for
these two models were the expression values of DEEGs after
normalization. Based on the prediction results of these two
models, we could precisely plot the survival curve for each
patient. Through this method, we also successfully identified
themost important genes for predicting the prognosis of KIRC.

Through the EMT process, tumors including kidney cancer
could gain the potential for aggressiveness and metastasis. The
activation of the EMT process is complex, but our study found
that immune cells may make a significant contribution to EMT
in a variety of ways. For example, some kinds of immune cells
may secrete immunosuppressive molecules, hence promoting
cancer progression. In our study, we discovered that Tregs were
more abundant in high-risk than in low-risk samples. Tregs
have been shown to impair anticancer immunity by impairing
protective immunosurveillance and thwarting efficient antitu-
mor immune responses [23]. Among high-risk samples that
were linked to invasion and negative prognosis, we found that
immune and stromal cells were increased but tumor purity was
decreased. These results suggest that the number of immune
and stromal cells might exert crucial roles in tumor develop-
ment. Together, we suppose that the stromal cells and Tregs
among TME increase the migration of tumor cells, which leads
to a worse prognosis.

DKK1 is a Wnt signaling pathway suppressor, and its dys-
regulation has recently been identified as a possible biomarker
for cancer development and prognosis in a variety of malig-
nancies [24]. The amount of DKK1 expression is inversely
related to the number of CD8+ T cells. DLX4, often referred
to as BP1, may play a crucial role in tumor development by

supporting proliferation and EMT [25]. A previous study con-
firmed that DLX4 contributed to the proliferation and migra-
tion of KIRC [25]. In RCC patients, high levels of interleukin-6
(IL-6) are linked to a poor prognosis [26]. IL-6 is a key diver
that promotes EMT and enhances migration and invasion in
KIRC tissues [27]. KCNN4 expression is higher in KIRC than
in normal tissues, and its level is linked to the tumor stage and
grade [28]. RPL22L1 is a ribosomal protein, and previous
studies have confirmed that RPL22L1 expression is greater in
cancer tissue and is linked to a worse prognosis [29, 30].
SPDEF has a complex correlation with the prognosis of cancer
patients. For example, upregulation of SPDEF is associated
with poor prognosis in prostate cancer [31], but it could also
serve as a suppressor in colorectal cancer [32].

There are some strengths in this study. Firstly, DEEGs
were derived from two comparison groups (tumor versus nor-
mal tissues; “stages I-II” versus “stages III-IV” tumor tissues)
and EMT-related genes, which guarantee the clinical signifi-
cance of DEEGs. Secondly, machine learning models have
the ability to predict both survival time and status. Thirdly,
we selected the hub DEEGs by machine learning, which
increased the prediction ability of these DEEGs. For example,
ROC curves showed the risk-score performed well in both
the training (0.749) and testing (0.777) datasets. In terms of
nomogram, the concordance index (C-index) was 0.79.
Numerous limitations should be noted in our research as well.
To begin with, the risk-score and nomogram were constructed
using a publicly available dataset. More datasets that contain
the expression data and clinical information of KIRC samples
are needed to validate our results. Then, the underlying mech-
anisms between 6 DEEGs and KIRC progression should be
clarified. Prior to clinical usage, further laboratory experiments
on the six-gene signature are required.

5. Conclusion

In summary, EMT is critical for the advancement of cancer
and is linked with worse survival in individuals with KIRC.
We developed a risk-score model and a nomogram using
the EMT-related genes for predicting OS in KIRC, which
might enable tailored therapy and clinical decision-making
for KIRC patients.
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Background. The current high mortality rate of female breast cancer (BC) patients emphasizes the necessity of identifying
powerful and reliable prognostic signatures in BC patients. Epithelial-mesenchymal transition (EMT) was reported to be
associated with the development of BC. The purpose of this study was to identify prognostic biomarkers that predict overall
survival (OS) in female BC patients by integrating data from TCGA database. Method. We first downloaded the dataset in
TCGA and identified gene signatures by overlapping candidate genes. Differential analysis was performed to find differential
EMT-related genes. Univariate regression analysis was then performed to identify candidate prognostic variables. We then
developed a prognostic model by multivariate analysis to predict OS. Calibration curves, receiver operating characteristics
(ROC) curves, C-index, and decision curve analysis (DCA) were used to test the veracity of the prognostic model. Result. In
this study, we identified and validated a prognostic model integrating age and six genes (CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1). C-index values for BC patients were 0.672 (95% CI 0.611–0.732) and 0.692 (95% CI 0.586–0.798) in
the training cohort and test set, respectively. The calibration curve and the DCA curve show the good predictive performance
of the model. Conclusion. This study offered a robust predictive model for OS prediction in female BC patients and may
provide a more accurate treatment strategy and personalized therapy in the future.

1. Introduction

Breast cancer is one of the most prevalent malignancies in
women worldwide and the leading cause of most cancer-
related deaths, although early-stage BC is considered curable
[1, 2]. In 2018, BC was the most commonly diagnosed can-
cer (24.2% of all cancer cases) and the leading cause of
cancer-related deaths (15% of all cancer deaths) in women
worldwide. Among these, metastatic BC accounted for more

than 90% of BC-related deaths [3]. At present, the main
treatment strategies for BC include surgery, chemotherapy,
radiotherapy, immunotherapy, and hormonal therapy [4].
Although nanomedicine has been developed this year to tar-
get progesterone and estrogen receptors (PR and ER),
human epidermal growth factor receptor 2 (HER2), and
microRNA (miRNAs) and long chain non-coding RNAs,
the incidence of BC remains high, with previous studies sug-
gesting that the number of new cases worldwide will be

Hindawi
Disease Markers
Volume 2022, Article ID 1289445, 15 pages
https://doi.org/10.1155/2022/1289445

https://orcid.org/0000-0001-6089-8041
https://orcid.org/0000-0003-3812-3164
https://orcid.org/0000-0002-4046-2643
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1289445


2,261,419 women in 2020, and this number is expected to
increase to 30.2 million by 2040 [5, 6].

Epithelial-mesenchymal transition (EMT) is widely
known to occur during mammalian development, wound
healing, and cancer metastasis [7]. In recent years, EMT
has received increasing attention for its role in cancer drug
resistance [8]. Many studies have shown that EMT is associ-
ated with tumorigenesis, invasion, metastasis, and resistance
to treatment, especially in BC [9, 10]. Saotome et al. demon-
strated that GATA3 truncation mutants affected ductal BC
development by altering EMT-related gene expression
through partial motif recognition in luminal BC cells [11].
Parthasarathi and his colleagues found that EMT-related
genes were associated with dysregulated ion channels in
BC-associated tumorigenesis and could potentially be used
to determine the prognosis of BC patients. Therefore, in this
study, we evaluated the relevance of the EMT genes in
female BC patients to explore the mechanisms of EMT in
BC [12].

The new 8th edition of a related Union for International
Cancer Control (UICC) and American Joint Committee on
Cancer (AJCC) publication updates the description of BC
staging for tumor lymph node metastasis (TNM) [13]. Yet,
it is not sufficient to simply predict the prognosis of BC
based on the TNM staging system. Some of the factors that
influence BC include age, genes, reproductive factors, estro-
gen, and lifestyle [14]. Hence, a multifactorial predictive

model is essential. Predictive modeling is a more advanced
approach as it can be visualized using a nomogram and it
can estimate individualized risk based on a more compre-
hensive set of gene signatures and clinical characteristics.
In previous studies, we constructed a clinical prediction
model based on the clinical data of metastatic colon cancer
patients extracted from the SEER database. The nomogram
developed with high prognosis prediction accuracy to evalu-
ate the 1-, 3-, and 5-year survival of metastatic colon cancer
patients, which will help clinical decision-making of metas-
tatic colon cancer patients after surgery and individualized
treatment [15].

In this study, we identified EMT-related genes with inde-
pendent prognostic value to establish a prognostic model for
predicting the overall survival (OS) at 1-, 3-, and 5-year of
female BC patients and generating new insights about BC
progression.

2. Materials and Methods

2.1. Data Collection. We downloaded gene expression data
from The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov) of 1109 BC patients and 113 nontu-
mor breast tissues. Clinical data were also acquired, but the
clinical data of 12 male BC patients were removed because
the study population in this paper was female. EMT-
related genes were collected from the Molecular Signature

TCGA-BRCA cohort (Hiseq-Counts)
(1109 breast cancer tissues and 113 non-tumor breast tissues) EMT-related genes

Training set

Differential expression analyses

Univariate cox regression analyses

Multivariate cox regression analyses

Validation of the prognostic model

Prognostic model of breast cancer

Calibration plots
ROC curves and C-index

DCA plots
survival analyses

Seven factors related to prognosis
(P < 0.1)

Test set and overall internal validation set

The expression matrix of EMT-related genes

78 differentially expressed EMT -related genes (|LogFC | > 1, FDR < 0.05)

Figure 1: Flow chart of this study.
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Figure 2: Heat map (a) and volcano map (b) of differentially expressed gene related to EMT.
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Figure 3: Forest plot analyzed by univariate Cox regression.

Table 1: Genes contained in the prognostic model of breast cancer.

Factors coef HR HR_95L HR_95U P

Age 0.030655 1.031129 1.015051 1.047463 0.000132

CD44 3:35E − 05 1.000033 0.999994 1.000073 0.098155

P3H1 0.000142 1.000142 0.999283 1.001002 0.74605

SDC1 3:76E − 05 1.000038 0.999966 1.000109 0.304272

COL4A1 1:60E − 05 1.000016 1.000008 1.000024 0.000149

TGFBI 2:04E − 05 1.00002 0.999884 1.000156 0.768605

SERPINE1 0.000247 1.000247 0.999911 1.000583 0.149765
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database v7.1 (MSigDB) (http://www.broad.mit.edu/gsea/
msigdb/).

2.2. Identification of Differentially Expressed EMT-Related
Genes. Combining the gene expression data obtained from
TCGA database with EMT-related genes by using the
“edgeR” package of R software, the expression data of the
target genes could be obtained. After that, the “limma” pack-
age was utilized to derive differentially expressed EMT-
related genes according to False Discovery Rate (FDR)
values less than 0.05 and the absolute value of fold change
above 1.

2.3. Statistical Analysis

2.3.1. Univariate Cox Regression Analysis for Independent
Prognostic Factors. The expression matrix of the obtained
EMT-related genes was further analyzed by incorporating
the matrix with the survival time and survival status. Based
on previous studies, age had an impact on the prognosis of
female BC patients, so we included age as a study variable
[16]. Using the “caret” package in R software (version
4.1.0) to randomly divide the overall cohort into two groups
in the ratio of 7 : 3. The subgroup containing 70% of female

BC patients was used to construct the prediction model,
while the remaining 30% of patients were examined for the
accuracy and reliability of the model. Also, the whole cohort
was used as the overall internal validation set. The basic
values of patients were listed (Table S1).

Univariate Cox regression analysis was used to screen for
independent prognostic factors. Factors with a cutoff value
of P < 0:1 were defined as candidates associated with OS.

2.3.2. Prognostic Nomogram Construction. The genes filtered
by univariate Cox regression were then analyzed in the mul-
tivariate Cox regression for the risk scoring model. The risk
score for each patient can be calculated by the following for-
mula: risk score = Expðx1Þ ∗ β1 + Expðx2Þ ∗ β2 +⋯+Expðx
nÞ ∗ βn, where n is the number of selected variables, Exp is
the expression level of the variable, and β is the regression
coefficient of the variable. Then, the nomogram was devel-
oped using R software. According to the scores calculated
from the nomogram, the patient’s OS at 1, 3, and 5 years
can be predicted. Subsequently, according to the median risk
scores, patients with risk scores greater than the median
value were divided into the high-risk group and otherwise
into the low-risk group.
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Figure 4: Nomogram for predicting 1-, 3-, and 5-year overall survival (OS) for BC patients in the training cohort.
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2.3.3. Prognostic Nomogram Evaluation and Validation. In
order to improve the reliability of the prediction model
and thus its clinical application, 30% of the patients and
the overall cohort were used as an internal validation cohort
to test the validity of the prediction model.

The discriminative power of the nomogram was calcu-
lated using the concordance index (C-index). We also mea-
sured the area under the curve (AUC) at 1, 3, and 5 years,
which was derived from a ROC analysis. The C-indexes
and AUCs take values ranging from 0.5 to 1.0, where 1.0
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Figure 5: (a, c, e) Distribution of risk score in patients with BC. The black dotted line serves as the dividing line between the high-risk group
and the low-risk group. (b, d, f) Diagram of the relationship between risk score and patient survival time. The result of (a, b) is based on
training set, the result of (c, d) is based on test set, and the result of (e, f) is based on the overall internal validation set.
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represents the perfect ability to correctly distinguish the
results from the model and 0.5 represents random chance.
The calibration curve of the nomogram was evaluated
graphically by plotting the ratio of the predicted probability
to the observed ratio of the nomogram. Overlapping with
the reference line indicated that the model was perfectly con-
sistent. Finally, decision curve analysis was performed to
evaluate the clinical benefits. A flow chart of the study pro-
cess of this article was presented (Figure 1).

3. Results

3.1. Identification of Differentially Expressed EMT-Related
Genes. To describe our study more clearly, we developed a
flowchart of the analysis procedure. First, we obtained data
from TCGA database for 1109 tumor tissues and 113 nontu-
mor tissues. After taking intersection with EMT-related
genes, a matrix of 200 EMT-related genes (Table S2)
expression values was acquired. Then, after differential
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Figure 6: Overall survival (OS) Kaplan-Meier curves for patients in the low- and high-risk groups: (a) training set; (b) test set; (c) overall
internal validation set.
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Figure 7: Continued.
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analyses, a total of 78 differentially expressed EMT-related
genes were identified. (logFC > 1 or logFC < −1, FDR < 0:05
). The results were expressed in heat maps and volcano
plots (Figures 2(a) and 2(b)).

3.2. Prognostic Nomogram Construction. Since age is associ-
ated with prognosis in female BC patients, we included age
and 78 differentially expressed genes in univariate Cox
regression to investigate the correlation between the
included variables and prognostic value in BC patients and
finally identified seven variables significantly associated with
OS in BC patients at P value < 0.1 (Figure 3). The model was
then constructed with age, CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1 by multivariate Cox regression:
risk score = ð0:030655 ∗ age levelÞ + ð3:35E − 05 ∗
expression level of CD44Þ + ð0:000142 ∗ expression level of
P3H1Þ + ð3:76E − 05 ∗ expression level of SDC1Þ + ð1:60E −
05 ∗ COL4A1 expression levelÞ + ð2:04E − 05 ∗ TGFβ1
expression levelÞ + ð0:000247 ∗ SERPINE1 expression levelÞ
(Table 1).

The nomogram was then constructed and consisted of a
total of seven variables (Figure 4), and the total score could
be obtained by summing the scores of each variable. The
total score can be used to predict the survival rate of individ-
ual patients at 1, 3, and 5 years. For example, a BC patient

aged 65 years (20 points) with CD44 expression of 0 (20
points), P3H1 expression of 0 (21 points), SDC1 expression
of 0 (20 points), COL4A1 expression of 80000 (43 points),
TGFβ1 expression of 0 (21 points), and SERPINE1 expres-
sion of 0 (21 points) gets a sum-point of 166, corresponding
to predicted 1-, 3-, and 5-year OS of 94.8%, 76.0%, and
57.4%, respectively.

Patients in TCGA group were divided into a low-risk
group and a high-risk group using the median risk score as
the threshold value. Figures 5(a), 5(c), and 5(e) show the dis-
tribution of the risk scores of BC patients from high to low
in the training set, the internal validation set, and the overall
internal validation set. The relationship between risk score
and patient survival time in the training set, test set, and
overall internal validation set is also shown (Figures 5(b),
5(d), and 5(f)). Patients with high-risk scores tended to have
poorer clinical outcomes compared with those with low-risk
scores. The survival analyses indicated the high-risk group
had worse OS than that of the high-risk group (P < 0:05)
(Figures 6(a)–6(c)).

3.3. Nomogram Calibration and Validation. The small angle
between the survival probability and the actual survival out-
come in the calibration curve indicates a strong agreement
between them (Figure 7).
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Figure 7: (a–c) Calibration plots to predict 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) calibration plots to predict 1-, 3-,
and 5-year; overall survival (OS) in the test set; (g–i) calibration plots to predict 1-, 3-, and 5-year overall survival (OS) in the overall internal
validation set.
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The C-index values for BC patients were 0.672 (95% CI
0.611–0.732), 0.692 (95% CI 0.586–0.798), and 0.679 (95%
CI 0.626–0.732) in the training cohort, test set, and overall
internal validation set, respectively. The time-dependent
ROC curves were used to measure the sensitivity and speci-
ficity of the prediction model for predicting OS. Signifi-
cantly, the AUC values were all greater than 0.63, except
for the overall internal validation set with a 5-year predicted
survival rate of 0.56, indicating that the model has high sur-
vival outcome prediction performance (Figure 8). The DCA
curves also revealed better clinical applications for the risk
scoring model (Figure 9).

The results based on C-index, ROC curves, calibration
curves, and DCA curves indicated that the nomogram in
our study demonstrated favorable predictive accuracy for
the survival prognosis of female BC patients.

4. Discussion

BC is one of the most common cancers in females, with over
1,300,000 new cases and 450,000 deaths worldwide each year
[16, 17]. Treatment of BC has advanced considerably,
mainly through surgery, neoadjuvant chemotherapy, adju-
vant chemotherapy, radiotherapy, systemic therapy, targeted
therapy, and so on, with initial conventional surgery no lon-

ger being the best option for all patients [1]. However, BC
remains one of the leading causes of cancer deaths in women
worldwide, largely due to delayed diagnosis and unsuccessful
treatment strategies [18]. Therefore, it is crucial to diagnose
BC at an early stage and propose a personalized treatment
plan based on the characteristics of the women patient’s
condition to predict their prognosis.

The TNM staging system is still the most widely used
prognosis method to predict the survival of patients with
BC. Although the American Joint Committee on Cancer
(AJCC) updated BC staging in 2016 to include T, N, M,
tumor grade, and expression of estrogen and progesterone
receptors and HER2 [19], the current TNM staging system
still has its undeniable deficiencies. For instance, it does
not take into account other pathophysiological characteris-
tics of the patient that have an impact on the prognosis of
the tumor: age, gender, exercise, and overweight [20–22].
In addition, gene signature is an important factor in deter-
mining the prognosis of BC patients, as BC is a highly het-
erogeneous disease with different subtypes with different
biological, molecular, and clinical processes. Gene expres-
sion profiling can identify genetic features to predict progno-
sis and guide the use of adjuvant therapy [23]. Among
others, EMT genes regulate tumor proliferation, invasion,
and metastasis [24, 25]. There are many prognostic models

1.0

0.8

0.6

0.4Se
ns

iti
vi

ty
0.2

0.0
0.0 0.2 0.4

1 – specificity

0.6 0.8 1.0

AUC at 1 year: 0.81

(g)

1.0

0.8

0.6

0.4Se
ns

iti
vi

ty

0.2

0.0
0.0 0.2 0.4

1 – specificity

0.6 0.8 1.0

AUC at 3 year: 0.66

(h)

1.0

0.8

0.6

0.4Se
ns

iti
vi

ty

0.2

0.0
0.0 0.2 0.4

1 – specificity

0.6 0.8 1.0

AUC at 5 year: 0.66

(i)

Figure 8: (a–c) ROC curves to predict 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) ROC curves to predict 1-, 3-, and 5-
year; overall survival (OS) in the test set; (g–i) ROC curves to predict 1-, 3-, and 5-year overall survival (OS) in the overall internal validation
set.
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on BC; however, this is the first gene signature constructed
by EMT-related genes. Moreover, considering the role of
age and gender in the onset and progression of BC, we chose
to study the prognosis of patients in women and used age as
one of the predictors. Compared to previous studies, this
nomogram was more accurate.

EMT is a cellular process in which cells lose their epithe-
lial characteristics and acquire mesenchymal characteristics,
such as quiescent adnexal cells gaining the ability to migrate
[26]. EMT has been associated with a variety of tumor func-
tions, including tumor initiation, malignant progression,
tumor stemness, tumor cell migration, intravascular infiltra-
tion, metastasis, and resistance to therapy [9]. Most notably
in this context, previous studies have shown that both cancer
stem cell-like properties and drug resistance are associated
with EMT [27]. Given the close link between oncogenic sig-
naling and EMT blockers, EMT has emerged as a therapeu-
tic target or goal in cancer therapy [28]. The relationship
between EMT-related genes and breast cancer is also
increasingly being investigated by researchers. The major
focus of current studies is the regulatory mechanisms and
therapeutic approaches of EMT for breast cancer in metasta-
sis and invasion, mainly including miRNA and signaling
pathways such as Wnt, Notch, TNF-α, NF-κB, and RTK.
Investigators suppress breast cancer by attempting to thera-
peutically target or inhibit key/auxiliary players in these
pathways [8, 29–31]. Most notably, upregulation of pro-
grammed death ligand 1 (PD-L1) expression is associated
with EMT cell phenotype activation, and the control of the
interaction between p53 and EMT master regulators is of
importance in breast cancer. These two mechanisms have
also been studied in other types of cancer and play a key role
in the development and metastasis of cancer [30, 32].

This study was based on TCGA database. Differential
analysis was firstly performed to find differential EMT-

related genes. Univariate regression analysis was then con-
ducted to identify candidate prognostic variables. We then
developed a prognostic model by multivariate analysis to
predict OS. Calibration curves, receiver operating character-
istics (ROC) curves, C-index, and decision curve analysis
(DCA) were used to test the veracity of the prognostic
model. In addition to the training cohort of 70% BC patients,
the remained cohort was treated as the test set. In the end,
we derived that patient’s age, CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1 were independent prognostic factors
for overall survival in female BC patients and constructed
predictive models. The accuracy of the model has also been
verified using various methods.

In accordance with our findings, in stage I and IV BC
tumors, excess mortality increased linearly with age [33].
Recent studies have shown that a novel positive feedback
loop between IL1β and CD44 promoted malignant progres-
sion in triple-negative BC (TNBC) and that CD44 was a
potential target for inhibiting PD-L1 function in TNBC
[34, 35]. Sayyad et al. demonstrated the role of Sdc1 in pro-
moting brain metastasis in BC [36]. Several studies have
demonstrated that COL4A1 expression could be used as a
biomarker for superior prognosis in BC patients receiving
neoadjuvant chemotherapy [37], while epigallocatechin-3-
gallate (EGCG) exerted antitumor effects by restoring nine
key genes, including COL4A1, in myeloid-derived suppres-
sor cells (MDSCs) [37]. TGFβ1-activated cancer-associated
fibroblasts (CAFs) promote BC growth and metastasis in
part through autophagy [38]. The evolutionary branch E
member 1 (SERPINE1) is a molecule involved in a variety
of human malignancies. Zhang et al. showed that SERPINE1
served as an oncogene for PTX resistance in BC, and Xu
et al. identified a functional pathway linking miR-1185-2-
3p, GOLPH3L, and SERPINE1, which played an essential
role in glucose metabolism in BC. Both of their studies
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Figure 9: (a–c) DCA analysis predicting 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) DCA analysis predicting 1-, 3-, and
5-year; overall survival (OS) in the test set; (g–i) DCA analysis predicting 1-, 3-, and 5-year overall survival (OS) in the overall internal
validation set.
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revealed that it may serve as a possible target for the treat-
ment of BC [39, 40]. No studies have yet explored the mech-
anisms by which P3H1 affects BC development, progression,
and metastasis, but an algorithm-based meta-analysis of
genome-wide and proteomic data identified P3H1 as a
potential biomarker for CRC. Our study indicates a direction
of research for subsequent basic studies [41].

In this endeavor, some limitations need to be acknowl-
edged. To begin with, the population races in TCGA data-
base are primarily limited to whites and blacks, and
extrapolation of findings to other racial groups needs to be
validated. Second, a robust nomogram should be externally
validated across cohorts; therefore, our nomogram needs to
be further validated in multicenter clinical trials and pro-
spective studies. Finally, some of the genes identified in this
paper are relatively rarely reported in the academic litera-
ture. Therefore, more evidence including sample collection
with complete experimental and clinical information should
be performed for future validation is needed to elucidate the
intrinsic association between age and six-gene signature and
prognosis of BC patients.

However, our study also has some advantages. To our
knowledge, this is the first study to additionally combine
age as a prognostic variable with EMT-related genes to pre-
dict the prognosis of BC patients. Prognostic models may
predict patient prognosis more accurately than conventional
indicators.

In conclusion, we have developed and validated a rela-
tively effective predictive model to predict the survival out-
come of female BC patients at 1, 3, and 5 years. The
accuracy and reliability of the prognostic model have also
been verified. The results of our research need to be further
validated in subsequent clinical practice.
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Colorectal cancer (CRC) is one of the most aggressive cancers with poor prognosis and high mortality. The study of the
pathogenesis of CRC is a top priority in providing effective diagnostic and prognostic strategies for CRC. COPS3 protein is a
subunit of the COP9 signaling body (CSN), which is closely associated with the development of multiple types of tumors.
However, there are few studies on the role of COPS3 in colon adenocarcinoma (COAD). This study investigated the effects of
COPS3 on proliferation, motility, and EMT of colorectal cancer cells and related mechanisms. COPS3 was highly expressed in
COAD. The depletion of COPS3 suppressed the viability and stimulated the apoptosis of COAD cells. Depletion of COPS3
suppressed the motility and EMT process of COAD cells. Mechanically, we found that COPS3 could mediate MEK/ERK
pathway and therefore affected the process of COAD cells. We thought that COPS3 could serve as a promising COAD target.

1. Introduction

Colorectal cancer (CRC), as one of the most aggressive can-
cers with poor prognosis, causes a large number of deaths
worldwide and affects millions of people every year [1, 2].
CRC mainly affects the distal rectum, sigmoid colon, and
descending colon [3]. More and more CRC risk factors have
been reported recently, such as ageing, unhealthy diet,
smoking, obesity, physical inactivity, inflammatory bowel
disease, and genetic factors [4]. Treatment for CRC includes
surgery, chemotherapy, and radiotherapy [5, 6]. However,
because the detailed mechanism of CRC development is
not fully understood, the 5-year survival rate for CRC is
low, especially in the later stages [7]. Therefore, a better
understanding of the pathogenesis of CRC is a top priority
in providing effective diagnostic and prognostic strategies
for patients with CRC.

COPS3 protein is a subunit of the COP9 signaling
body [8], located in chromosome region 17p11.2 and plays
a role in deubiquitination and protein kinase activity in a
variety of processes [9]. COPS3 is closely associated with
tumor development [10, 11]. Knockdown of COPS3 signif-
icantly reduced lung metastasis of osteosarcoma cells in

mouse models, downregulated MEK and ERK signaling,
and inhibited EMT by 90 kDa ribosomal S6 kinase (RSK),
reducing metastasis of osteosarcoma cells [12]. In addition,
COPS3 depletion inhibited tumor growth in nude mice by
blocking cell cycle progression [13]. However, there are few
studies on the role of COPS3 in colorectal cancer, particularly
colon adenocarcinoma (COAD).

MEK/ERK cell signaling pathway plays an important
role in various human tumors and is involved in cell prolif-
eration, survival, metabolism, and cell migration [14]. For
example, sophorine inhibits tumorigenesis in colorectal can-
cer by downregulating the MEK/ERK/VEGF pathway [15].
Epithelial mesenchymal transformation (EMT) is a biologi-
cal process in which cancer cells lose their epithelial features
and acquire mesenchymal markers, which make tumor cells
more mobile and invasive [16]. EMT is marked by decreased
E-cadherin expression and increased N-cadherin or Vimen-
tin expression [17]. The process of EMT is controlled by
transcription factors and certain pathways.

This study investigated the effects of COPS3 on prolifer-
ation, migration, invasion, and EMT of colorectal cancer
cells and related mechanisms. Our data revealed that COPS3
was highly expressed in human COAD cells and affected the
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viability, motility, and EMT of COAD cells via MEK/ERK
pathway. We thought that COPS3 could serve as a promis-
ing COAD target.

2. Materials and Methods

2.1. Antibodies, Primers, and Plasmids. The antibodies used
were anti-COPS3 (1 : 500 dilution, ab231344, Abcam), anti-
E-cadherin (1 : 1000 dilution, ab76055, Abcam), anti-N-
cadherin (1 : 1000 dilution, ab76011, Abcam), anti-Vimentin
(1 : 500 dilution, ab8978, Abcam), anti-MEK (1 : 1000 dilution,
178876, Abcam), anti-p-MEK (1 : 1000 dilution, ab278564,
Abcam), anti-ERK (1 : 1000 dilution, ab184699, Abcam),
anti-p-ERK (1 : 500 dilution, ab201015, Abcam), and anti-β-
actin (1 : 2000 dilution, 60008-1-Ig, Proteintech).

The quantitative PCR primer sequences of COPS3 are for-
ward, 5′-GCGAGGAAUUGGCAUCCUUTT-3′ and reverse,
5′-AAGGAUGCCAAUUCCUCGCTT-3′. The quantitative
PCR primer sequences of GAPDH are 5′-TCCGCCGTGTG
TACGTCATT-3′ and 5′-TCCGCCGTGTGTACGTCATT-3′.

siRNA of COPS3 and control siRNA was bought from
Riobio (China).

2.2. Cell Culture. The normal cell line NCM460 and 4
COAD cell lines, including SW480, HCT116, LoVo, and
DLD-1, were all purchased from ATCC. Both of the cells
were maintained in DMEM, supplemented with 10% of fetal
bovine serum, and incubated at 37°C in a 5% CO2 incubator.

2.3. Immunoblot Assay. The samples were lysed with the
lysis buffer (RIPA, Beyotime, China) and then separated by
a 10% SDS-PAGE experiment; sequentially, the total pro-
teins were transferred onto PVDF membranes (Millipore,
USA). Then, the PVDF membranes were blocked by the
use of 5% dry milk in TBST buffer and antibodies. After
washing with TBST for 3 times, the membranes were treated
with the secondary antibodies for 45min. Each blot was then
visualized using the ECL kit (GE, SA).

2.4. Cell Viability Assays. For CCK-8, COAD cells were
plated into the 96-well plates (1000 cell per well) and main-
tained in complete growth media for 24h at 37°C. The cells
were exposed to CCK-8 reagent at 37°C for 1.5 h. The rela-
tive cell viability was assessed with microplate spectropho-
tometer at 450nm (Bio-Rad, U.S.A.).

For colony formation assay, COAD cells were plated into
24-well plates (1000 cell per well) and maintained in com-
plete growth media for 14 d at 37°C. Subsequently, the cells
were incubated with 0.2% crystal violet and washed, and
then, the cells were photographed by a fluorescence micro-
scope (Zeiss, Germany).

2.5. Cell Apoptosis Assay. The cells after transfection for 48 h
were washed with PBS. Subsequently, the cells were fixed
with precooled 70% ethanol at -20°C for 1 h. Subsequently,
the cells were stained with propidium iodide (PI) and
FITC-labelled Annexin V at 4°C for 10min, and the apopto-
sis levels were measured by BD FACS caliber.
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Figure 1: COPS3 was highly expressed in COAD tissues and cell lines. (a) TCGA database showed the levels of transcript per million
(TPM) in 286 tumor tissues compared to the 41 normal tissues. (b) qPCR assays showed the mRNA levels of COPS3 in normal cell
line NCM460 and 4 COAD cell lines, including SW480, HCT116, LoVo, and DLD-1. (c and d) Immunoblot assays showed the
protein levels of COPS3 in normal cell line NCM460 and 4 COAD cell lines, including SW480, HCT116, LoVo, and DLD-1. Data
are presented as mean± SD. ∗∗p < 0:01 and ∗∗∗p < 0:001.
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2.6. Tumor Growth In Vivo Assay. All experimental proce-
dures were according to the criteria outlined in the Regula-
tions of Experimental Animal Administration (http://www
.most.gov.cn). Female BALB/c nude mice (8-week-old;
weight, ~20 g) were obtained from Beijing Vital River Labo-
ratory Animal Technology Co., Ltd. None of the mice died
during the study. A total of 10 athymic nude mice were ran-
domly divided into control (n = 5) and transfection (n = 5)
groups. HCT116 cells which were stably transfected with
shRNA plasmids were injected into the right flank of female
nude mice. After 2 weeks, the volume of tumors was esti-
mated every week, and the tumor growth curves of 7 consec-
utive weeks were calculated. The final tumor volume was
calculated according to the equation: Tumor volume ðmm3Þ
= tumor length ðmmÞ × tumorwidth ðmmÞ2/2.

2.7. Statistics. Data were represented as mean ± SD. The
statistical significance of the difference was evaluated by
Student’s t test, and p < 0:05 was considered significant.

3. Results

3.1. COPS3 Was Highly Expressed in COAD. We first
detected the expression levels of COPS3 in COAD tissues
through the analysis in TCGA database. We noticed that
the transcript per million of COPS3 in primary tumor tis-
sues (n = 286) was higher than normal (n = 41), suggesting
the high expression in COAD (Figure 1(a)). COPS3 mRNA
level increased, indicating that COPS3 high expression may
be transcriptional. We then detected the expression of
COPS3 in normal cell line NCM460 and 4 COAD cell lines,
including SW480, HCT116, LoVo, and DLD-1, through

qPCR and immunoblot assays. We found that COPS3 was
highly expressed in COAD cell lines at mRNA and protein
levels (Figures 1(b) and 1(d)). We therefore thought that
COPS3 was highly expressed in COAD.

3.2. COPS3 Depletion Suppressed the Viability of COAD Cells
and Stimulated Apoptosis. Then, the effects of COPS3 on the
viability and apoptosis of COAD cells were evaluated by the
transfection of its siRNA in COAD cells including SW480
and HCT116. qPCR and immunoblot confirmed that the
transfection of its siRNA decreased the expression of
COPS3, compared to the control and NC-siRNA groups in
these cells at mRNA and protein levels (Figures 2(a) and
2(b)). Through CCK-8 assays, we found that COPS3 abla-
tion decreased the OD value at 450nm wavelength, suggest-
ing the inhibition of cell viability (Figure 2(c)). Further
through colony formation, we found that the knockdown
of COPS3 also decreased colony number in SW480 and
HCT116 cells (Figures 2(d) and 2(e)). In addition, FCM
assays showed that the depletion of COPS3 contributed to
the apoptosis of SW480 and HCT116 cells, with the
increased percentage of apoptosis cells (Figures 2(f) and
2(g)). We further detected the expression of cleaved
caspase-3 and Bcl-2 in control and COPS3 siRNA cells and
further confirmed the previous conclusion (Figure 2(h)).
Therefore, COPS3 depletion suppressed the viability of
COAD cells and stimulated apoptosis.

3.3. The Knockdown of COPS3 Suppressed the Motility of
COAD Cells. We then detected the effects of COPS3 on the
motility of COAD cells. We found that its ablation increased
the wound width at 24th hour time point, in SW480 and
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Figure 2: COPS3 ablation suppressed the viability of COAD cells and stimulated apoptosis. (a) qPCR assays showed the mRNA levels of
COPS3 in SW480 and HCT116 cells upon the transfection of control or COPS3 siRNAs or without transfection (control). (b)
Immunoblot showed the expression of COPS3 in SW480 and HCT116 cells upon the transfection of control or COPS3 siRNAs or
without transfection (control). (c) CCK-8 assays showed the OD value at 450 nm wavelength of SW480 and HCT116 cells upon the
transfection of control or COPS3 siRNAs or without transfection (control). (d and e). Colony formation assays showed the colony
number of SW480 and HCT116 cells upon the transfection of control or COPS3 siRNAs or without transfection (control). The
quantification was in panel (e). (f and g). Flow cytometry (FCM) assays showed the apoptosis percentage of SW480 and HCT116 cells
upon the transfection of control or COPS3 siRNAs or without transfection (control). The quantification was in panel (g). (h)
Immunoblot showed the expression of the indicated proteins in control or COPS3 siRNAs or without transfection (control). Data are
presented as mean ± SD. ∗∗∗p < 0:001, siCOPS3 vs. siControl.
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HCT116 cells (Figures 3(a) and 3(b)). We therefore thought
depletion of COPS3 suppressed COAD cell migration. Fur-
ther, we found its knockdown suppressed the invasion of
SW480 and HCT116 cells, with the decreased number of
invasive cells (Figures 3(c) and 3(d)). Therefore, COAD3
knockdown inhibited the motility of COAD cells.

3.4. Knockdown of COPS3 Suppressed the EMT in COAD
Cells. Since previously we showed the effects of COPS3 on
COAD3 cell viability and migration, we then investigated

its role in the COAD cell EMT process. We detected the
expression of several EMT markers. Through immunoblot
assays, we found that COPS3 knockdown increased the pro-
tein levels of E-cadherin and downregulation of N-cadherin
and Vimentin, in both SW480 and HCT116 cells (Figure 4).
Therefore, depletion of COPS3 suppressed the EMT process
in COAD cells.

3.5. COPS3 Mediated the MEK/ERK Pathway in COAD Cells.
Then, we investigated the possible mechanism underlying
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Figure 3: COPS3 knockdown inhibited the migration as well as invasion of COAD cells. (a and b) Wound closure assays showed the wound
healing degree of SW480 and HCT116 cells upon the transfection of control or COPS3 siRNAs or without transfection (control). The
representative images were shown in (a). The wound width was shown in (b). (c and d). Transwell assays showed the invasive SW480
and HCT116 cells upon the transfection of control or COPS3 siRNAs or without transfection (control). The representative images were
shown in (c). The invasive cell number was shown in (d). Data are presented as mean ± SD. ∗∗p < 0:01 and ∗∗∗p < 0:001, siCOPS3 vs.
siControl.
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Figure 4: Depletion of COPS3 suppressed the EMT process in COAD cells. Immunoblot assays showed the expression of E-cadherin, N-
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Data are presented as mean ± SD. ∗∗p < 0:01 and ∗∗∗p < 0:001, siCOPS3 vs. siControl.

⁎⁎

Contro
l

siR
NA-N

C

si-
COPS3

2.5
2.0
1.5
1.0
0.5

0

HCT116

HCT116

⁎⁎⁎

Contro
l

siR
NA-N

C

si-
COPS3

p-
M

EK
1/

2/
M

EK
1/

2
re

lat
iv

e e
xp

re
ss

io
n

p-
M

EK
1/

2/
M

EK
1/

2
re

lat
iv

e e
xp

re
ss

io
n

⁎⁎⁎

Contro
l

siR
NA-N

C

si-
COPS3

6

4

2

0

HCT116

p-
M

EK
1/

2/
M

EK
1/

2
re

lat
iv

e e
xp

re
ss

io
n

0.6

0.4

0.2

0

SW480

SW480

⁎⁎⁎

Contro
l

siR
NA-N

C

si-
COPS3

p-
M

EK
1/

2/
M

EK
1/

2
re

lat
iv

e e
xp

re
ss

io
n 1.5

1.0

0.5

0

SW480
p-MEK1/2

p-ERK1/2

ERK1/2

GAPDH

MEK1/2

p-MEK1/2

p-ERK1/2

ERK1/2

GAPDH

MEK1/2

Control siRNA-NC si-COPS3

Control siRNA-NC si-COPS3

Figure 5: COPS3 mediated the MEK/ERK pathway in COAD cells. Immunoblot assays showed the expression of phosphorylated MEK and
ERK and expression of these proteins in SW480 and HCT116 cells upon the transfection of control or COPS3 siRNAs or without
transfection (control). Data are presented as mean ± SD. ∗∗p < 0:01 and ∗∗∗p < 0:001, siCOPS3 vs. siControl.

6 Disease Markers



COPS3 affecting COAD progression. The previous study
indicated the effects of COPS3 on the MEK/ERK pathway,
which could mediate the proliferation, motility, and EMT
in several types of tumor cells [12]. We then detected
whether COPS3 could mediate this pathway in COAD cells.
Through immunoblot assays, the knockdown of COPS3
decreased the phosphorylation levels of MEK and ERK in
both SW480 and HCT116 cells (Figure 5). Therefore, we
thought COPS3 could mediate the MEK/ERK in COAD
cells.

3.6. COPS3 Depletion Suppressed Tumor Growth In Vivo. To
further confirm whether COPS3 deficiency was able to
repress tumor growth, the in vivo assays were constructed.
Through injection of COPS3 deficiency HCT116 cells into
nude mice, we measured and calculated the growth curves
of tumors. Consistent with our hypothesis, the volumes of
tumors in COPS3-depleted groups were markedly smaller
than the negative control groups (Figure 6(a)). To ulteriorly
identify the silencing efficiency of COPS3 siRNA, we
detected the expression of COPS3 in tumor tissues of mice
via IHC and immunoblot assays, and the data revealed that
compared with the negative groups, the protein levels of
COPS3 were efficiently restrained by COPS3 siRNA in the
COPS3 depletion groups (Figures 6(b) and 6(c)). We further
detected the expression of E-cadherin, Erk, p-Erk, Mek, and
p-Mek through immunoblot, and the data further confirmed

our previous conclusion (Figure 6(d)). Therefore, COPS3
depletion suppressed tumor growth in vivo.

4. Discussion

CRC is a common gastrointestinal malignancy occurring in
the colon [18]. CRC inchoate symptom is more not apparent
and often already was in progress period when seeing a doc-
tor, right now commonly used remedial measure [2]. To
improve the resection rate, reduce the recurrence rate, and
improve the survival rate, the treatment of intermediate
and advanced CRC is based on surgery, supplemented by
chemotherapy, immunotherapy, traditional Chinese medi-
cine, and other supportive therapies [18]. Recently, targeted
therapy has made a series of positive progress and has great
potential to improve the survival rate of patients with
advanced colorectal cancer [19]. However, there are new
and more therapeutic targets for the CRC treatment. Here,
we noticed that COPS3 was highly expressed in COAD. It
affected the viability, motility, and EMT of COAD cells.
We thought it could act as a target of COAD.

Through a series of in vitro assays, we concluded that
COPS3 was highly expressed in human COAD cells. We fur-
ther confirmed its effects on the viability, motility, and the
process of EMT in COAD cells. COPS3 is an important
oncogene involved in metastasis of osteosarcoma [9].
COPS3 depletion could inhibit the growth of lung cancer
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Figure 6: COPS3 depletion suppressed tumor growth in vivo. (a) The representative images of tumors in control and COPS2 siRNA
transfection mice and the tumor growth curve. (b) IHC assays showed the expression of COPS2 in tumors in control and COPS2 siRNA
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and liver cancer cells and induce apoptosis [13, 20]. A previ-
ous study also revealed that COPS3 played a vital role in
linking Raf-1/MEK/ERK pathway and autophagic regulation
in osteosarcoma [12]. Depletion of COPS3 could suppress
the progression of prostate cancer through reducing phos-
phorylated p38 MAPK and impairs the EMT [21]. In addi-
tion, the overexpression of COPS3 could contribute to the
progression of clear cell renal cell carcinoma (ccRCC) via
regulation of phospho-AKT, Cyclin D1, and Caspase-3
[22]. The ablation of COPS3 suppressed the proliferation
of lung cancer cells via induction of cell cycle arrest and
stimulation of apoptosis [13]. These studies with our find-
ings confirmed that COPS3 could serve as a promising target
of cancers.

The multiple biological functions of COPS3 have been
widely revealed [10]. COP9S3 played a role in regulating
mouse oocytes meiosis by regulating MPF activity and
securing degradation [23]. The COPS3 is necessary for early
embryo survival by way of a stable protein deposit in mouse
oocytes [24]. COPS3 is also poised to facilitate communica-
tion between the extracellular matrix and the nucleus [25].
Therefore, we guess that COPS3 could induce the deubiqui-
tination of the downstream proteins or the protein kinase
activity and therefore mediate the progression of COAD.
However, the precise mechanism needs further study.

MEK/ERK signaling pathway can promote the progres-
sion of multiple types of cancers, including COAD [26].
The MEK/ERK pathway has been revealed to affect the pro-
liferation, apoptosis, and motility of tumors and affect the
EMT progression [12]. Multiple proteins or drugs affected
COAD progression via this pathway. For example, Verticil-
lin A could increase the BIM/MCL-1 ratio to overcome
ABT-737 resistance in COAD cells by this pathway [27].
These studies all confirmed that MEK/ERK pathway could
serve as a promising target of COAD.

In summary, we noticed the high expression of COPS3
in COAD cells. COPS3 contributed to the viability, motility,
and EMT of COAD cells via MEK/ERK pathway. We there-
fore thought COPS3 could serve as a target of COAD.
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Evodiae fructus (EF) is a traditional Chinese medicine which is widely used for the treatment of obesity, inflammation,
cardiovascular disease, and diseases of the central nervous system. Recent studies have demonstrated the anticancer property of
EF, but the active compounds of EF against prostate cancer and its underlying mechanism remain unknown. In this study, a
network pharmacology-based approach was used to explore the multiple ingredients and targets of EF. Through protein-
protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses, the potential targets and corresponding ingredients of EF against prostate cancer cells were obtained.
CCK8 and colony formation assays were performed to evaluate the antiproliferative effect of the active compounds on DU145
cells. Cell cycle analysis, Annexin V-FITC/PI staining assay, and Hoechst 33258 staining assay were used to explore the way of
evodiamine-induced cell death. The capacities of cell migration after evodiamine treatment were evaluated by wound-healing
assay. PharmMapper database was used to predict the potential targets of evodiamine against cancer cell migration. Western
blot assay was performed to investigate the signaling pathway through which evodiamine inhibits cell proliferation and
migration. The binding of evodiamine to PI3K and AKT was verified by molecular docking. As a consequence, 24 active
compounds and 141 corresponding targets were obtained through a network pharmacology-based approach. The results of PPI
analysis, GO enrichment, and KEGG pathway enrichment indicated that molecules in the PI3K/AKT/NF-κB signaling pathway
were the potential targets of EF against prostate cancer, and evodiamine was the potential active compound. In vitro study
demonstrated that evodiamine displays antiproliferative effect on DU145 cells obviously. Evodiamine induces G2/M cell cycle
arrest by Cdc25c/CDK1/cyclin B1 signaling. Additionally, evodiamine also promotes mitochondrial apoptosis and inhibits cell
migration through PI3K/AKT/NF-κB signaling in DU145 cells. In conclusion, evodiamine is the active compound of EF to
inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway, indicating that evodiamine
may serve as a potential lead drug for prostate cancer treatment.
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1. Introduction

Prostate cancer remains a huge challenge to men’s health
worldwide. It is reported that the incidence and mortality
of prostate cancer ranks the second in males [1]. The treat-
ments of prostate cancer include radiotherapy, chemother-
apy, surgery, and hormonal therapy [2]. However, these
treatments, particularly the standard androgen deprivation
therapy (ADT), are not curative and easily result in resis-
tance to therapeutic interventions [3]. Therefore, seeking
efficient drugs with low toxicity is an urgent task for prostate
cancer treatment.

Herbal medicine plays a major role in the prevention
and treatment of cancers and other diseases worldwide,
especially in Asian countries [4]. Numerous studies have
demonstrated that a wide spectrum of traditional Chinese
medicines (TCMs) possess anticancer properties, such as
Scutellariae Barbatae Herba, Andrographis Herba, and
Panax Ginseng C. A. Mey [5]. Screening natural compounds
from TCM has attracted extensive attention. More and more
promising compounds with potential anticancer activity,
such as podophyllotoxin, camptothecin, and berberine, have
been isolated from TCM [6, 7]. In recent years, “integrated
pharmacology” (IP) has come into sight. It uses a network
pharmacology approach to explore the synergistic effects of
multiple ingredients, targets, and mechanisms of diseases
based on multiple databases, which is perfect for TCM
research [8]. Evodiae fructus (EF), a fruit of Tetradium
ruticarpum, has been used in traditional Chinese herbal
formulas for a long time. Numerous studies have revealed
the therapeutic potential of EF on various diseases including
obesity, inflammation, cardiovascular disease, cancers, and
diseases of the central nervous system [9]. However, the
active compounds of EF against prostate cancer and its
underlying mechanism remain unknown.

Inhibiting cancer cell growth and metastasis constitute
the major aspects in anticancer strategies. Cell migration is
essential for tumor metastasis to colonize remote sites,
frequently resulting in cancer deaths [10]. The phosphoino-
sitide-3-kinase/protein kinase B (PI3K/AKT) signaling path-
way participates in various biological processes including
cell growth, survival, metabolism, invasion, and migration
[11, 12]. PI3K/AKT signaling is aberrantly activated in a
high proportion of prostate cancer patients [13]. PI3Ks are
a class of heterodimers consisting of a catalytic subunit and
a regulatory subunit [14]. AKT, a serine/threonine kinase,
modulates the function of multiple substrates such as
mTOR, NF-κB, MDM2, and Bad [15]. Nuclear factor kap-
paB (NF-κB), a transcription factor, translocates to the
nucleus to facilitate oncogene transcription after activation
in response to various stimuli [16]. Augmented phosphory-
lation of PI3K/AKT/NF-κB signaling pathway has been con-
firmed to correlate to prostate cancer progression [17].

In this study, we identified evodiamine as the active com-
pound of EF through a network pharmacology approach and
evaluated the antiproliferative effects of evodiamine on pros-
tate cancer DU145 cells. Further mechanistic study demon-
strated that evodiamine induces mitochondrial apoptosis and
inhibits migration of prostate cancer cells through PI3K/

AKT/NF-κB signaling pathway. This study will provide a
rationale for using evodiamine as the potential lead drug for
prostate cancer treatment.

2. Materials and Methods

2.1. Reagents and Antibodies. The chemical compounds evo-
diamine, rutaecarpine, berberine, quercetin, and β-sitosterol
were purchased from Baoji Herbest Bio-Tech Co., Ltd.
(Baoji, Shanxi, China). The Cell Counting Kit-8 (CCK8)
was obtained from Good Laboratory Practice Bioscience
(California, Montclair, USA). The Hoechst 33258 was sup-
plied by Beijing Solarbio Science & Technology Co., Ltd.
(Beijing, China). The Annexin V-FITC/PI staining assay
kit was purchased from Dalian Meilun Biotechnology Co.,
Ltd. (Dalian, Liaoning, China). Propidium iodide, crystal
violet, and RNase were obtained from Sigma-Aldrich (St.
Louis, MO, USA). The BCA protein quantitation assay kit
was supplied by KeyGEN BioTECH (Nanjing, Jiangsu,
China). The primary antibodies against CDK1, p-
CDK1Thr14, cyclin B1, p-Cdc25CSer216, Bax, Bcl-2, AKT, β-
actin, p-AKTSer473, NF-κB, PARP, and PI3K were purchased
from Proteintech (Wuhan, Hubei, China). The anti-PI3K
p85 (phospho Y458)+PI3 kinase p55 (phospho Y199) anti-
body [PI3KY458-1A11] was supplied by Abcam (Shanghai,
China). The primary antibodies against pro- and cleaved-
caspase 3/9 were obtained from Abscitech (Shanghai,
China). The primary antibodies against p-NF-κBSer536 and
the secondary antibodies anti-rabbit IgG and antimouse
IgG were obtained from Cell Signaling Technology (Dan-
vers, MA, USA). Other reagents were obtained from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Compounds and Targets Screening of EF. The traditional
Chinese medicine system pharmacology (TCMSP) database,
a unique system pharmacology platform of Chinese herbal
medicines [18], was used to search for the ingredients and
targets of EF. To obtain the active compounds of all the
ingredients according to ADME (absorption, distribution,
metabolism, and excretion) properties, we selected the com-
pounds which meet the requirements of both oral
bioavailability ≥ 30% [15] and drug − likeness ðDLÞ ≥ 0:18.
The information of the active compounds and their related
targets was collected for further research. UniProt (https://
www.uniprot.org) was used to convert protein names to
gene symbols.

2.3. Prediction of Potential Targets of EF on Prostate Cancer.
The known therapeutic targets of prostate cancer were
obtained from the GeneCards database (https://www
.genecards.org). Key terms “prostate cancer,” “prostate ade-
nocarcinoma,” and “prostatic cancer” were retrieved, and
the requirement of relevance score ≥ 5 was set. After getting
the disease-related genes, we selected the target genes at
the intersection of EF and prostate cancer (E&P), which
were regarded as potential target genes of EF against prostate
cancer. The chemical compounds corresponding to E&P tar-
gets were considered as therapeutic components of EF
against prostate cancer.
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2.4. Drug-Compound-Target-Disease Network Construction.
Based on the active compounds and corresponding targets
of E&P, we employed cytoscape (v3.8.0, Agilent Technolo-
gies Company, USA) to visualize the drug-compound-tar-
get-disease network. Each node in the network represents a
drug, disease, target, or compound. Each line in the network
represents the connection of drug-compound, compound-
target, and target-disease.

2.5. Protein-Protein Interaction (PPI) Network Analysis. The
PPI network of E&P targets was obtained from the STRING
database (https://string-db.org/). Gene symbols of the tar-
gets were submitted to the STRING database, and the
required interaction score is high confidence (≥0.700). The
bitmap image and simple tabular text output were down-
loaded from this website. After enrichment of all the nodes,
the top 20 targets, which were considered to be of signifi-
cance in the PPI network, were selected.

2.6. Gene Ontology (GO) Enrichment and KEGG Pathway
Enrichment. GO enrichment and KEGG pathway enrich-
ment analyses were based on the Bioconductor software
(http://bioconductor.org/). We used the R statistical pro-
gramming language (cluster-profiler version 4.1) to load
the Bioconductor source and gene symbols of E&P. The
results of GO enrichment and KEGG enrichment were con-
sidered significant when P value < 0.05. The top 20 targets in
GO and KEGG enrichment were displayed in barplot and
dotplot.

2.7. Cell Line and Cell Culture. The human prostate cancer
cell line DU145 was obtained from the Chinese Academy
of Sciences Cell Bank (Shanghai, China). Cells were cultured
in RPMI 1640 supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin (PS) in 5% CO2 con-
taining incubator at 37°C. The DU145 cell line was identified
by short tandem repeat (STR) profiling and tested for myco-
plasma (Genetic Testing Biotechnology Inc., Suzhou,
Jiangsu, China).

2.8. Cell Viability Assay. Viability of DU145 cells was mea-
sured using the Cell Counting Kit-8 (CCK8) assay. Cells
(5,000/well) were seeded into 96-well plates and cultured
overnight. After treatment with different concentrations of
evodiamine, rutaecarpine, berberine, quercetin, and β-sitos-
terol for 72 h, the cells were exposed to 100μL/well-diluted
CCK8 solution. Then, the light absorbance was detected at
450nm by a microplate reader (Beckman Coulter Inc.,
USA).

2.9. Colony Formation Assay. DU145 cells were cultured in
6-well plates (2000 cells/well) for 24 h. Then, the cells were
exposed to evodiamine at the concentrations of 0, 1.25, 2.5,
and 5.0μM for 48h. After washing with phosphate-
buffered saline (PBS), cells were cultured in the fresh
medium which was replaced every three days. After ten days,
the cells were fixed in 75% alcohol for 10min at 4°C and
stained with 1% crystal violet for 30min. After washing
twice with PBS, the number of colonies > 0:5mm in diame-

ter was counted manually, and the images of colonies were
photographed.

2.10. Cell Cycle Analysis. DU145 cells (2 × 105/well) were
seeded in 6-well plates and cultured overnight. After treat-
ment with evodiamine at the concentrations of 0, 1.25, 2.5,
and 5.0μM for 24 h, cells were fixed and permeabilized with
precooled 75% ethanol at 4°C overnight. Then, cells were
incubated with PI (0.2mg/mL) and RNase (0.1mg/ml) for
15min in the dark at room temperature. The Epics XL Flow
cytometry (Beckman Coulter, USA) was used to detect the
PI fluorescence. The phase distribution of cell cycle was ana-
lyzed by the ModFit LT v3.1 software (Verity Software
House, Inc.)

2.11. Annexin V-FITC/PI Staining Assay. Cell apoptotic rate
was measured by Annexin V-FITC/PI staining assay. Cells
(1 × 105/well) were seeded in 6-well plates and cultured
overnight. After treatment with evodiamine at the concen-
trations of 0, 1.25, 2.5, and 5.0μM for 24 h, DU145 cells were
collected and stained with Annexin V-FITC for 15min and
PI for 5min in darkness at room temperature. Then, Epics
XL flow cytometer (Beckman Coulter Inc.) was used to mea-
sure the cell apoptotic rates (excitation = 488nm and
emission = 525nm for Annexin V-FITC; excitation = 488
nm and emission = 620nm for PI). The data was quantified
using the FlowJo v7.6 software (FlowJo LLC).

2.12. Hoechst 33258 Staining Assay. DU145 cells (2 × 105
/well) were seeded into 6-well plates. After culture for 24 h,
cells were treated with evodiamine at the concentrations of
0, 1.25, 2.5, and 5.0μM for 24 h. Then, PBS was added to
wash the cells. After fix for 30min, the cells were stained
with Hoechst 33258 (1mg/mL) for 30min at 37°C. A fluo-
rescence microscope (Carl Zeiss, Jena, Germany) was
applied to observe the nuclear morphology of DU145 cells.

2.13. Western Blot Analysis. Following treatment with differ-
ent concentrations of evodiamine for 24 h, DU145 cells were
collected using trypsin. Then, the RIPA lysis buffer (contain-
ing 1mM PMSF, 1× phosphatase inhibitor, and 1× protease
inhibitor) was added to obtain the total cellular protein. The
BCA assay was performed to quantify the protein concentra-
tion. Proteins (30μg/lane) were separated by 12% SDS-
PAGE gels and then transferred to PVDF membranes. The
membranes were blocked with 5% skimmed milk at room
temperature for 1 h. After incubation with primary antibody
overnight at 4°C and secondary antibody for 1 h at room
temperature, the protein bands were visualized by ECL
detection kit (Millipore, Merck KGaA) and quantified using
the ImageJ software v1.8.0 (National Institutes of Health). β-
Actin was used as the loading control.

2.14. Wound-Healing Assay. DU145 cells (2 × 105/well) were
seeded into 6-well plates and cultured. After reaching 80%
confluency, cells were scratched in a straight line with
200μL pipette tips. Then, different concentrations of evodia-
mine (0.5 and 1.0μM) in serum-free medium were added.
Images of cells treated with different time (0, 6, 12, and

3Disease Markers

https://string-db.org/
http://bioconductor.org/


24 h) were acquired with an Olympus IX70 inverted micro-
scope (Shinjuku, Tokyo, Japan).

2.15. Prediction of Potential Targets of Evodiamine on Cell
Migration. The potential targets of evodiamine were
obtained from PharmMapper database (http://www.lilab-
ecust.cn/pharmmapper/), an updated integrated pharmaco-
phore matching platform that can be used to identify poten-
tial target candidates for given small molecules using a
pharmacophore mapping approach [19]. The chemical
structure of evodiamine submitted to the PharmMapper
website was downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov). The known therapeutic
targets of cancer metastasis were obtained from the Gene-
Cards database. Key term “cancer cell migration” was
retrieved, and the requirement of relevance score ≥ 20 was
set. After getting the cell migration-related genes, we selected
the targets at the intersection of evodiamine and cell migra-
tion (E&M), which were regarded as potential target genes of
evodiamine against cell migration.

2.16. Molecular Docking. PDB database (https://www.pdbus
.org/) was used to search for the conformational information
of PIK3CG (PDB ID: 6AUD) and AKT1 (PDB ID: 4GV1).
After removing irrelevant small molecules in the crystal
structure by the Pymol 2.1 software and adding with Koll-
man atom charges, solvation parameters, and polar hydro-
gens by AutoDock Tools (1.5.6 software), PIK3CG and
AKT1 were used as the receptors. The PubChem database
(https://pubchem.ncbi.nlm.nih.gov) was used to obtain the
chemical structure of evodiamine. Then, we minimized the
energy of evodiamine by Chem3D and converted it into
mol2 format. After adding with atomic charge and assigning
an atomic type by AutoDock Tools, evodiamine was used as
the ligand. Then, the ligand and receptors were imported
into AutoDock 4.2 to start the docking process. The free
energy of binding in the receptor was calculated through
Lamarckian genetic algorithm. Then, Pymol 2.1 was used
to visualize the binding of evodiamine to PIK3CG and
AKT1.

2.17. Statistical Analysis. All experiments were performed in
triplicate. Results are presented as the mean ± standard
deviation ðSDÞ. For the statistical analysis, GraphPad Prism
7.0 (GraphPad Software Inc.) was used to evaluate one-way
analysis of variance (ANOVA) followed by Tukey’s post
hoc test. P < 0:05 was considered statistically significant.

3. Results

3.1. Screening of Active Compounds and Potential Targets of
EF against Prostate Cancer. After retrieval in TCMSP, 176
compounds of EF and 1504 related targets were obtained.
We selected 30 active compounds that met the requirements
of both oral bioavailability ≥ 30% [15] and drug − likeness ð
DLÞ ≥ 0:18, as well as 197 corresponding targets. They form
501 compound-target connections. After retrieval in the
GeneCards database, 11719 prostate cancer-related targets
were collected and 2340 of them met the requirement of
relevance score ≥ 5. We obtained the intersections between

197 drug targets and 2340 disease targets, resulting in 141
E&P targets corresponding to 24 compounds (Figure 1(a)).
These 141 genes were regarded as potential targets through
which EF exerts its antiprostate cancer effects, and 24 com-
pounds were regarded as candidate components. Then, the
cytoscape software was used to establish drug-compound-
target-disease network. As shown in Figure 1(b), 24 drug-
compound, 346 compound-target, and 141 target-disease
connections were created in a network, which integrally
illustrated the anticancer activity of EF characterized by
multi-ingredients, multitargets, and synergistic effects. The
PPI analysis of E&P targets was performed by STRING.
Totally, 141 target genes of E&P were searched in the
STRING database, and a total of 1126 PPI connections were
generated (Figure 1(c)). According to the frequency of each
node and the combined score between two nodes, the top
30 enriched targets were displayed in a barplot
(Figure 1(d)). The results demonstrated that AKT1, TP53,
MAPK1, and other targets are associated with the antipros-
tate cancer effects of EF.

3.2. Prediction of Antiprostate Cancer Mechanism by GO and
KEGG Enrichment. The results of GO functional enrichment
were displayed in a barplot (Figure 2(a)) and a dotplot
(Figure 2(b)). According to the results, the main molecular
functions of the targets include DNA-binding transcription
factor, nuclear receptor, and ligand-activated transcription
factor. The results of KEGG pathway enrichment in a bar-
plot (Figure 2(c)) and a dotplot (Figure 2(d)) showed that
PI3K/AKT and AGE-RAGE signaling pathways were the
potential pathways mediating the antiprostate cancer effects
of EF. The “prostate cancer” listed in the second in
Figure 2(c) and the seventh in Figure 2(d) also confirmed
the cancer type which EF is more likely to influence on.
Since AKT is the most significant target protein in the PPI
network (Figure 1(d)), we focused on the PI3K/AKT signal-
ing pathway, which is closely related to prostate cancer initi-
ation and progression [20]. From the results of PI3K/AKT
signaling pathway enriched in KEGG (Figure 2(e)), we pre-
dicted that PI3K/AKT/NF-κB signaling pathway may partic-
ipate in the inhibitory effects of EF on prostate cancer since
NF-κB is a key transcription factor downstream of PI3K/
AKT to mediate prostate carcinogenesis [21], which is also
consistent with the results of GO enrichment featuring tran-
scription factor binding (Figures 2(a) and 2(b)). Based on
these results, we suggested that evodiamine, which targets
PI3K, may be the active ingredient of EF for prostate cancer
treatment.

3.3. Evodiamine Displays Obvious Antiproliferative Effect on
DU145 Cells. Among the 24 potential active compounds of
EF against prostate cancer, 5 of them were selected to evalu-
ate their cytotoxicity on DU145 cells. As shown in
Figure 3(a), evodiamine (chemical structure in Figure 3(b))
displays more potent antiproliferative effect than rutaecar-
pine, berberine, quercetin, and β-sitosterol on DU145 cells.
Evodiamine, an indoloquinazoline alkaloid isolated from
EF, was reported to display cytotoxicity on various types of
cancers [22, 23]. Subsequently, the antiproliferative effect
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Figure 1: The construction of drug-compound-target-disease network and PPI network. (a) Venn diagram displays the overlap between the
prostate cancer-related targets and the potential targets of EF. (b) The construction of drug-compound-target-disease network. The orange
rhombus represents diseases. The blue hexagon represents drugs. The purple ovals represent active compounds. The yellow rectangles
represent target genes. (c) PPI network of 141 target genes of E&P. Each node represents the E&P targets. Each line represents the
interaction between two targets. (d) The top 30 enriched targets in the PPI network were displayed in a barplot.
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of evodiamine on DU145 cells was further examined. As
shown in Figure 3(c), the viability of DU145 cells was signif-
icantly inhibited in a dose-dependent manner after treat-
ment with evodiamine for 24h, with the IC50 value of
1:94 ± 0:23μM. The evodiamine-induced cell morphology
changes under the microscope were presented in
Figure 3(d), which indicated that evodiamine has potent
cytotoxicity on DU145 cells. In addition, the long-term effi-
cacy of evodiamine on DU145 cell survival was evaluated by
colony formation assay. The results demonstrated that evo-
diamine inhibits the cell proliferation in a dose-dependent
way (Figures 3(e) and 3(f)).

3.4. Evodiamine Induces G2/M Cell Cycle Arrest in DU145
Cells. To determine whether the inhibitory effect of evodia-
mine on DU145 cells is related to cell cycle arrest, flow
cytometry was used to analyze the content of DNA in vari-
ous stages of DU145 cells. As shown in Figures 4(a) and
4(b), compared with the control group, the cell population
in G2/M phase significantly increased from 24.48% to
44.61% following 5μM evodiamine treatment, suggesting
that evodiamine induces G2/M cell cycle arrest in DU145
cells. CDK1 and cyclin B1 are key regulators involved in
the G2/M transition by forming the CDK1/cyclin B1 com-
plex [24]. Cdc25C activates the CDK1 complex through
CDK1Tyr15 and CDK1Thr14 dephosphorylation [25]. As

shown in Figures 4(c) and 4(d), evodiamine decreased the
level of p-Cdc25CSer216 in a dose-dependent manner, indi-
cating that the activation of Cdc25c is inhibited by evodia-
mine. As a consequence, the inactive Cdc25C can no
longer dephosphorylate p-CDK1Thr14, which makes p-
CDK1Thr14 and cyclin B1 accumulation to block the G2/M
transition. These results indicated that evodiamine induces
G2/M cell cycle arrest in DU145 cells through regulating
Cdc25c/CDK1/cyclin B1 signaling pathway.

3.5. Evodiamine Induces Mitochondrial Apoptosis in DU145
Cells. To investigate whether evodiamine-induced cell death
is attributed to cell apoptosis, the Annexin V-FITC/PI stain-
ing assay was performed using flow cytometry. Figures 5(a)
and 5(b) demonstrated that evodiamine treatments at differ-
ent concentrations (1.25, 2.5, and 5.0μM) increased the
number of apoptotic cells. The apoptotic cell ratio (early
apoptotic stage plus late stage) in the 5.0μM treatment
group is almost 4 times of that of the control group. In addi-
tion, the Hoechst 33258 staining assay was performed to
observe nuclear morphological changes in DU145 cells. As
shown in Figure 5(c), following different concentrations of
evodiamine treatment for 24h, cells emit bright blue fluores-
cence representing nuclear condensation and DNA frag-
mentation which are the typical characteristics of cell
apoptosis. The fluorescence intensity in evodiamine-treated

(e)

Figure 2: The GO functional enrichment and KEGG pathway enrichment. (a) The barplot of top 20 items identified by GO functional
enrichment. (b) The dotplot of top 20 items identified by GO functional enrichment. (c) The barplot of top 20 items identified by KEGG
pathway enrichment. (d) The dotplot of top 20 items identified by KEGG pathway enrichment. The color of the bubble and column is
associated with the P value, and the size of bubble is related to the ratio of target gene. (e) PI3K/AKT signaling pathway enriched in
KEGG pathway analysis.
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cells is significantly higher than that of the control group.
These results provided evidence for the induction of apopto-
sis by evodiamine. A Western blotting assay was applied to
detect the expression levels of apoptosis-related proteins.
Figures 5(d) and 5(e) displayed that evodiamine upregulates
the ratio of cleaved-caspase 3/procaspase 3, cleaved-caspase
9/procaspase 9, and cleaved PARP/PARP. Moreover, evodia-
mine significantly changed the ratio of Bax/Bcl-2. It is well
recognized that the interaction between apoptotic promotor
Bax and apoptotic inhibitor Bcl-2 determines the fate of cell
towards mitochondrial apoptosis [26]. These results demon-
strated that evodiamine induces mitochondrial apoptosis in
DU145 cells.

3.6. Evodiamine May Inhibit DU145 Cell Migration through
PI3K Signaling Pathway. To evaluate the capacity of cell
migration, the wound-healing assay was applied. As shown
in Figures 6(a) and 6(b), evodiamine treatments at different
concentrations (0.5 and 1.0μM) inhibited wound closure in
a time-dependent manner. To further predict the targets of
evodiamine against cell migration, we used PharmMapper
database to obtain targets of evodiamine and GeneCards
database to obtain cell migration-related targets. As a result,
170 drug targets and 1774 cancer cell migration targets
which met the requirement of relevance score ≥ 20 were col-
lected. The 85 targets (E&M) at the intersection between
drug targets and migration targets were regarded as potential
antimigration targets of evodiamine (Figure 6(c)). The PPI
analysis of E&M targets was performed by STRING. Totally,
85 gene symbols of E&M were searched in the STRING
database, and a total of 844 PPI connections were generated
(Figure 6(d)). According to the frequency of each node and
the combined score between two nodes, the top 20 enriched
targets were displayed in a barplot (Figure 6(e)), which rep-
resent the most probable antimigration targets of evodia-
mine. Since PI3K turned out to be both antiprostate cancer

and antimigration targets of evodiamine, we predicted that
evodiamine may inhibit DU145 cell migration through
PI3K signaling pathway.

3.7. Evodiamine Exerts Antiprostate Cancer Effects through
PI3K/AKT/NF-κB Signaling Pathway. Previous studies dem-
onstrated that AKT plays a central role in mediating the
antiprostate cancer effect of EF, and PI3K was predicted to
be the potential target of evodiamine to inhibit proliferation
and migration of prostate cancer. In addition, the activation
of PI3K/AKT/NF-κB signaling pathway was confirmed to be
closely related to pathogenesis of prostate cancer [21].
Therefore, the molecular docking of evodiamine to PI3K
and AKT was performed. As shown in Figure 7(a), the bind-
ing free energy of evodiamine to PI3K is -6.77 kcal/mol, indi-
cating a good binding affinity. The interaction type includes
hydrogen bonds, hydrophobic interactive, and π-stacking.
Evodiamine binds to active amino acid residues of PI3K
including ILE-963, MET-953, and VAL-882. Evodiamine
belongs to a type of polycyclic compound with potent
hydrophobic property, which interacts with hydrophobic
residues of PI3K including ILE-963, ILE-879, MET-804,
TRP-812, and ILE-831 through hydrophobic effect. More-
over, evodiamine binds to MET-953 and VAL-882 residues
of PI3K through hydrogen bond interaction. The average
hydrogen bond distance is 3.4Å and 2.4Å, which is lower
than the conventional hydrogen bond distance 3.5Å. As
shown in Figure 7(b), the binding free energy of evodiamine
to AKT is -6.82 kcal/mol, indicating a good binding affinity.
Evodiamine binds to active amino acid residues of AKT
including LYS-179, PHE-161, and ASP-292. Evodiamine is
an indoloquinazoline alkaloid with six-membered rings that
can form strong hydrophobic interactions with the pocket
amino acids of AKT such as ILE-963, ILE-879, MET-804,
TRP-812, and ILE-831. Additionally, evodiamine can bond
to ASP-292 residues of AKT through hydrogen bond
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Figure 3: Evodiamine displays antiproliferative effect on DU145 cells. (a) DU145 cells were treated with 5 potential active compounds at
different concentrations (0, 0.625, 1.25, 2.5, 5.0, and 10.0μM) for 72 h. The cell viability was detected by CCK8 assay. Among these
compounds, evodiamine (chemical structure in Figure 3(b)) displays the most potent cytotoxicity. Data are presented as mean ± SD
(n = 3). ∗∗P < 0:01 and ∗∗∗P < 0:001 versus the control group. (c) DU145 cells were treated with different concentrations of evodiamine
for 24 h. The cell viability was detected by CCK8 assay. The curve indicated that E2 exerts antiproliferative effect on DU145 cells in a
dose-dependent manner. (d) Representative images of CCK8 assay. Original magnification: 100x; scale bar: 100μm. (e) DU145 cells were
exposed to evodiamine at the concentrations of 0, 1.25, 2.5, and 5.0 μM for 48 h and then cultured in fresh medium which was replaced
every three days. After ten days, the colonies of DU145 cells were visualized by crystal violet staining. (f) The numbers of colonies of
DU145 cells were counted and presented as mean ± SD (n = 3). ∗∗∗P < 0:001 versus the control group.
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Figure 4: Evodiamine induces G2/M cell cycle arrest in DU145 cells. (a) After treatment with evodiamine (0, 1.25, 2.5, and 5.0 μM) for 24 h,
the cell cycle distributions were analyzed by flow cytometry. The cell population in the G2/M phase significantly augmented in a dose-
dependent manner. (b) The cell populations were quantified using Prism. Each column represents the cell population in different phases
(n = 3). (c) DU145 cells were treated with evodiamine (0, 1.25, 2.5, and 5.0μM) for 24 h. The protein expression levels of CDK1, p-
CDK1Thr14, cyclin B1, and p-Cdc25CSer216 were detected by Western blot. β-Actin was used as the loading control. Evodiamine-induced
G2/M cell cycle arrest is associated with upregulation of p-CDK1Thr14/CDK1 and cyclin B1 and downregulation of p-Cdc25CSer216. (d)
Quantitative analysis of the relative protein expression. Data are presented as the mean ± SD (n = 3). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P <
0:001 versus the control group.
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interaction. The average hydrogen bond distance is 2.92,
which is much lower than the conventional hydrogen bond
distance 3.5Å. The results of molecular docking demon-
strated that evodiamine is a potential active molecule target-
ing PI3K and AKT. The results of Western blot also
confirmed the inhibition of PI3K/AKT/NF-κB signaling
pathway by evodiamine. As shown in Figures 7(c) and
7(d), the expression levels of p-PI3K/PI3K, p-AKTSer473/
AKT, and p-NF-κBSer536/NF-κB were decreased following
evodiamine treatment, indicating that inhibition of PI3K/
AKT/NF-κB signaling by evodiamine may result in prolifer-
ation and migration inhibition of DU145 cells.

4. Discussion

TCM, which is widely used in clinics especially in Asia
and Africa, has displayed the great potential in the preven-
tion and treatment of cancers and other diseases [4]. Iso-
lation of active compounds from TCM is an important
strategy for drug discovery [27]. The discovery of vinblas-
tine and vincristine was the beginning of developing anti-
cancer drugs from natural resources [28]. It has been
reported that approximately 80% of small molecule anti-
cancer drugs are natural products and their derivatives
[29]. The multiple pharmacological properties of natural

compounds provided a basis for the mechanistic study of
their biological functions. TCMSP is a unique system
pharmacology platform of Chinese herbal medicine that
captures the relationships among drugs, targets, and dis-
eases [18]. Through target prediction in TCMSP and PPI
analysis in STRING database, AKT was identified as the
most central target in antiprostate cancer effects of EF.
Through GO and KEGG enrichment, PI3K/AKT was pre-
dicted as the most likely signaling pathway by which EF
displays its antiprostate cancer effects. From 5 potential
active compounds of EF, evodiamine was verified to pos-
sess the most potent cytotoxicity against DU145 cells. In
addition, the results of target prediction showed that
PI3K is the potential target of evodiamine against prostate
cancer and cell migration. Hence, we suggested that evo-
diamine is the active compound of EF to inhibit prolifera-
tion and migration of prostate cancer through PI3K/AKT
signaling pathway. To predict the downstream substrates
of AKT, we focused on the transcription factor NF-κB,
which is closely related to tumorigenesis and tumor pro-
gression [30]. The results of molecular docking demon-
strated a good binding affinity between evodiamine and
PI3K, as well as evodiamine and AKT. The inhibition of
PI3K/AKT/NF-κB by evodiamine in vitro was also verified
by Western blot. However, evodiamine was selected as the
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Figure 5: Evodiamine induces mitochondrial apoptosis in DU145 cells. (a) After evodiamine treatment (0, 1.25, 2.5, and 5.0 μM) for 24 h,
the apoptotic rate of DU145 cells was measured by PI/Annexin V-FITC staining assay. Representative images are shown. Evodiamine
induces cell apoptosis in a dose-dependent manner. (b) Quantitative data of evodiamine-induced apoptotic cells. Data are presented as
the mean ± SD (n = 3). ∗∗∗P < 0:001 versus the control group. (c) Apoptotic morphological changes observed by Hoechst 33258 staining
assay after evodiamine treatment (0, 1.25, 2.5, and 5.0 μM) for 24 h. Original magnification: 200x; scale bar: 20μm. (d) After evodiamine
treatment (0, 1.25, 2.5, and 5.0 μM) for 24 h, the expression levels of apoptosis-related proteins including pro- and cleaved-caspases 3/9,
PARP, cleaved-PARP, Bax, and Bcl-2 were detected by Western blotting. β-Actin was used as the loading control. (e) The quantitative
data of relative protein expression shown as the mean ± SD (n = 3). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the control group.
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Figure 6: Evodiamine may inhibit DU145 cell migration through PI3K signaling pathway. (a) The migratory properties of DU145 cells were
analyzed by wound-healing assays. Original magnification: 100x. (b) The relative wound width was analyzed using GraphPad Prism 7.0.
Data are presented as the mean ± SD (n = 3). ∗P < 0:05, #P < 0:05, and ##P < 0:01 versus the control group. (c) Venn diagram displays the
overlap between the migration-related targets and the potential targets of evodiamine. (d) PPI network of 85 target genes of E&M. Each
node represents the E&M targets. Each line represents the interaction between two targets. (e) The top 20 enriched targets in the PPI
network were displayed in a barplot.
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most active ingredient of EF against prostate cancer but not
the only one. The active ingredients of herbal medicine are
multiple and complex. TCM exerts effects on disease through
multi-ingredients, multitargets, and synergetic way. Hence,
the complex connections between EF and prostate cancer
indicate that multiple possible mechanism participate in this

process, which need further investigation. This research pro-
vides an example for the exploration of pharmacological
mechanism of TCM. However, in vivo studies are needed to
further confirm the inhibitory effects of evodiamine on tumor
growth and tumor metastasis through PI3K/AKT/NF-κB sig-
naling pathway.
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Figure 7: Evodiamine exerts antiprostate cancer effects through PI3K/AKT/NF-κB signaling pathway. (a) The binding mode of evodiamine
with PI3K (left: 3D structure; right: 2D structure). The yellow structure is evodiamine, and the green structure represents the binding site of
PI3K. (b) The binding mode of evodiamine with AKT (left: 3D structure; right: 2D structure). The yellow structure is evodiamine, and the
green structure represents the binding site of AKT. (c) After evodiamine treatment (0, 1.25, 2.5, and 5.0 μM) for 24 h, the expression levels of
p-PI3K, PI3K, p-AKTSer473, AKT, p-NF-κBSer536, and NF-κB were detected by Western blotting. β-Actin was used as the loading control. (d)
The quantitative data of relative protein expression shown as the mean ± SD (n = 3). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the
control group.
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Natural compounds and their derivatives exert antican-
cer effects via multiple mechanisms. In traditional herbal
medicine, EF has been used for the treatment of headaches,
abdominal pain, and menorrhalgia [31]. Through activity
screening and mechanistic study, evodiamine was identified
as one of the major bioactive components of EF against var-
ious types of cancers including colon cancer [32], hepatocel-
lular carcinoma (HCC) [33], lung cancer [34], and
melanoma [35]. It is reported that different mechanisms
are involved in the anticancer effects of evodiamine such as
induction of apoptosis, cell cycle arrest, inhibition of inva-
sion and metastasis [36]. The targets of evodiamine include
topoisomerases, aryl hydrocarbon receptor (AhR), and tran-
sient receptor potential cation channel subfamily V member
1 (TRPV1) in the treatment of different types of cancers
[37]. Various signaling pathways participate in the
evodiamine-induced cancer cell apoptosis such as mTOR
signaling [38], STAT3 signaling [39], and Bax/Bcl-2 [40].
Meanwhile, evodiamine repressed the EMT of gastric cancer
stem cells by inhibiting Wnt pathway [41]. The inactivation
of the PI3K/AKT signaling pathway induced by evodiamine
was previously verified to result in cell apoptosis in pancre-
atic cancer [42, 43], glioma [44], and melanoma [45], which
is consistent with our present study. This is the first time to
report that inhibition of PI3K/AKT/NF-κB signaling path-
way is associated with the antiprostate cancer effect of evo-
diamine, making it a promising therapeutic lead drug for
prostate cancer treatment. Currently, numerous efforts have
been made to explore small molecular inhibitors targeting
the PI3K/AKT signaling pathway to block cancer growth
and metastasis. However, the clinical efficacies of these
inhibitors are limited since the activation of the PI3K family
occurs through complex mechanisms [46]. Hence, combina-
tion of PI3K/AKT inhibitors and other cancer treatments
has been proposed to solve the therapeutic dilemma [47].
Future research may focus on the combination of evodia-
mine and other cancer therapies to improve the treatment
efficacy.

However, the poor bioavailability and potential toxicity
limit the clinical application of evodiamine. Evodiamine
inhibits the activities of metabolic enzymes such as cyto-
chrome P450, leading to cytotoxic effects [48]. Moreover,
the safety concern exists as the precise target of evodiamine
is unknown and the excessive inhibition of PI3K/AKT/NF-
κB pathway may bring about side effects. Hence, evodiamine
treatment may be more potent but not necessarily more
effective than EF treatment, which needs further evaluation.
Currently, a number of novel drug delivery systems have
been designed to improve the bioavailability and minimize
side effects of low-solubility natural medicines [49]. Further
research aiming to enhance the anticancer effects of evodia-
mine would prove beneficial.

5. Conclusion

In conclusion, this study demonstrated that evodiamine is
the active compound of Evodiae fructus to inhibit prolifera-
tion and migration of prostate cancer through PI3K/AKT/
NF-κB signaling pathway. This study provides a rationale

of using evodiamine as the potential lead drug for prostate
cancer treatment.
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T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematological tumor derived from early T-cell progenitors, which is
extremely resistant to chemotherapy. Classically, doxorubicin (DOX) is an effective first-line drug for the treatment of T-ALL;
however, DOX resistance limits its clinical effect. The DEK proto-oncogene (DEK) has been involved in neoplasms but
remains unexplored in T-ALL. We silenced DEK on Jurkat cells and detected cell proliferation with cell counting and colony
formation assay. Then, we detected DEK’s drug sensitivity to DOX with CCK-8, cell cycle, and apoptosis with DOX treatment.
Western blot analysis was performed to determine protein expression of apoptosis and cell cycle-related genes, including
BCL2L1, caspase-3, and cyclin-dependent kinases (CDK). Finally, the tumorigenic ability of DEK was analyzed using a BALB/
C nude mouse model. In this study, DEK was highly expressed in Jurkat cells. Inhibition of DEK can lead to decreased cell
proliferation and proportion of S-phase cells in the cell cycle and more cell apoptosis, and the effect is more obvious after
DOX treatment. Western blot results showed that DOX treatment leads to cell cycle arrest, reduction of cyclin-dependent
kinase 6 (CDK6) protein, accumulation of CDKN1A protein, and DOX-induced apoptosis accompanied by reductions in
protein levels of BCL2L1, as well as increases in protein level of caspase-3. Furthermore, DEK-silenced Jurkat cells generated a
significantly smaller tumor mass in mice. Our study found that DEK is a novel, potential therapeutic target for overcoming
DOX resistance in T-ALL.

1. Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a serious
hematological tumor that is metastatic, aggressive, and resis-
tant to chemotherapy [1], accounting for approximately 15%
of ALL cases in children and 25% in adults [2]. With the
advances in induction therapy, the event-free survivals of
T-ALL patients have exceeded 85% in recent clinical trials
[3]. However, about 20% of children and 40% of adults with
T-ALL will relapse after intensive chemotherapy, leading to
a 5-year overall survival of 50%–60% [4]. Chemoresistance
is considered a major cause of recurrence and death of T-
ALL [5]. Thus, resensitizing drug-resistant leukemia cells
to chemotherapy may improve the prognosis of T-ALL
patients.

Recently, the systematic gene expression has been
emphasized [6]. The DEK proto-oncogene (DEK) is prefer-
entially expressed in malignant cells [7]. DEK facilitates the
tumorigenesis of different types of cancer cells by promoting
cell proliferation and modulating cell cycle transition, as well
as inhibiting cell apoptosis and senescence [8]. Furthermore,
apoptosis induced by DEK deletion was accompanied by an
increase in TP53 activity and its upregulation of CDKN1A
and Bax [9]; this effect may be related to growth retardation
and activation of TP53 function. CDKN1A mediates cell
cycle arrest in the G1 and G2 phase and leads to cell apopto-
sis, and it can effectively inhibit CDK2, CDK3, CDK4, and
CDK6 [10–12]. In melanoma, the downregulation of DEK
significantly increased cell apoptosis and senescence through
DOX treatment and had no effect on TP53 and CDKN2A
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levels but had a significant effect on CDKN1A and caspase-3
levels [13]. DEK overexpression has been seen in many neo-
plasms, including chronic lymphocytic leukemia and acute
myeloid leukemia [14, 15]. However, the involvement of
DEK in T-ALL remains unexplored. It has been reported
that DEK silencing may increase cancer cell sensitivity to
DOX treatment in nonsmall cell lung cancer and metastatic
colorectal cancer [16, 17]. Thus, we hypothesized that DEK
silencing might enhance the sensitivity of leukemia cells.

Doxorubicin (DOX) is an anthracycline chemotherapeu-
tic agent that is commonly used to treat ALL [18, 19].
Anthracyclines such as DOX, a topoisomerase II, kill leuke-
mia cells by inhibiting cellular RNA and DNA synthesis [20,
21]. However, the efficacy of DOX is limited by the develop-
ment of chemoresistance in leukemia cells [22]. DEK defi-
ciency in different tumor cells has been shown to increase
their sensitivity to DOX [13, 20]. Based on these studies,
we supposed that the downregulation of DEK can enhance
the sensitivity of Jurkat cells to DOX chemotherapy in T-
ALL cells.

In this study, we determined DEK expression in different
leukemia cell lines and found that DEK is highly expressed
in Jurkat cells. Thus, we inhibited DEK expression in Jurkat
cells to investigate the role and the underlying mechanism of
DEK in the cellular response to DOX. We also explored the
role of DEK in the tumorigenicity of Jurkat cells in a murine
model. Our results suggest that DEK silencing may increase
the sensitivity of Jurkat cells to DOX treatment, serving as a
promising therapeutic approach for the management of
DOX-resistant T-ALL.

2. Materials and Methods

2.1. Cell Lines. 293T, Raji, SU-DHL-4, Daudi, Nalm6, Jurkat,
Panc-1,U937, PC-3, and MCF-7 cell lines (Shanghai Cell
Bank). High glucose DMEM (SH30022.01B, Hyclone) was
used to culture the 293T, Panc-1, and MCF-7 cell line. The
remaining hematological tumor cell lines were cultured in
RPMI-1640 medium (SH30809.01B, Hyclone). All cell lines
were incubated at 37°C with 5% CO2.

2.2. Gene Knockdown. shRNAs targeting DEK and negative
control (scramble, SCR) vectors were purchased from Geno-
meditech. The shRNA sequences were as follows: shDEK-1,
5′-GCCAGTGCTAACTTGGAAGAA-3′; shDEK-2, 5′-
GCCTGAAATTCTGTCAGATGAA-3′; and Scramble, 5′-
GTTCTCCGAACGTGTCACGT-3′. The Jurkat cell line
was infected with lentiviral supernatant and then analyzed
in vitro for proliferation, cell viability, colony formation, cell
cycle, and apoptosis.

2.3. RT-PCR. Total RNA was extracted from Jurkat cells at
48h after transduction, using a Quick-RNA™ Microprep Kit
(Zymo, Irvine, CA, USA). PCR was performed on a LightCy-
cler 96 PCR system (Roche Life Science, Indianapolis, IN,
USA). The primers were as follows: GAPDH, forward, 5′-
CTCTGATTTGGTCGTATTGGG-3′, and reverse, 5′-
TGGAAGATGGTGATGGGATT-3′; DEK, forward, 5′-
AACTGCTTTACAACAGGCCAG-3′, and reverse, 5′-

ATGGTTTGCCAGAAGGCTTTG-3′. The relative expres-
sion of DEK was calculated using the 2-ΔΔCt method [24].

2.4. Colony Formation Assay. Jurkat cells were seeded into a
12-well plate coated with agarose (1.2% at the bottom and
0.6% on the top) at a density of 1 × 103 cells per well and
transduced with lentiviral vectors expressing scramble
shRNA or shDEK. After 14 days of culture, the number of
colonies was counted at a magnification of 4x using an
inverted microscope (AE2000; Motic, China).

2.5. Cell Counting Kit-8 (CCK-8) Assay. Jurkat cells were
seeded in a 96-well plate at 5 × 103 cells per well and trans-
duced with lentiviral vectors expressing scramble shRNA
or shDEK. Cell viability was determined at 72h after trans-
duction using CCK-8 (Dojindo, Japan). Then, a microplate
reader was used at an optical density of 450 nm.

2.6. Cell Apoptosis Analysis. We seed 1 × 106 cells per well in
a 6-well plate and grow them at 37°C in a medium contain-
ing DOX or PBS for 4 hours. Then, the cells were washed 3
times with PBS and continued to be cultured in a cell incu-
bator. Cells were washed 3 times with PBS and collected,
then resuspended in 100μl 1x binding buffer, stained with
annexin V-APC at room temperature for ten minutes, and
then stained with propidium iodide (PI) at room tempera-
ture for 5 minutes in the dark (BD Biosciences).

2.7. Cell Cycle Analysis. Bromodeoxyuridine (BrdU, BD bio-
sciences, USA) and PI double staining was performed to
detect cell cycle distribution. 1 × 106 cells were seeded and
incubated with 3μg/ml BrdU for 2 hours in 6-well plates.
Cells were then harvested, mixed with 70% ethanol, and
fixed overnight at -20°C. Samples were treated according to
APC-BrdU antibody (BioLegend), and PI solution was
added 5minutes before flow cytometry analysis.

2.8. Western Blotting. Jurkat cells were harvested 5 days
after lentiviral infection after transduction and lysed in
RIPA lysis buffer (PC101, Epizyme Biotech). Then, the
protein samples were mixed with 1x SDS (LT101S; Epi-
zyme Biotech), boiled for 10 minutes, and then subjected
to PAGE gel electrophoresis. The primary antibody used
in the experiment includes DEK (E4S5J; Cell Signaling
Technology), GAPDH (D16H11; Cell Signaling Technol-
ogy), TP53 (DO-7; Cell Signaling Technology), c-Myc
(ab32072; Abcam), CDK4 (A11136; ABclonal), CDK6
(13331; Cell Signaling Technology), CDKN1A (A1483;
ABclonal), CDKN2A (ab151303; Abcam), caspase-3
(9662; Cell Signaling Technology), BCL2L1 (A19703;
ABclonal) at 4°C, and HRP-conjugated secondary antibody
(anti-rabbit,7074S, anti-mouse; 7076S,Cell Signaling Tech-
nology) at room temperature for 2 h. The target protein
was detected by using Omni-ECL™-enhanced chemilumi-
nescent liquid (SQ101; Epizyme Biotech) and quantified
using ImageQuant LAS 4000 mini (GE).

2.9. Animal Model. 107 Jurkat cells from the SCR group or
DEK knockdown (KD) group were injected into the subcu-
taneous tissue of female adult BALB/c nude mice in a

2 Disease Markers



volume of 100μl for in vivo tumor growth studies. Thirty
days after transplantation, euthanizing mice in each group,
the tumor volume was calculated as follows: tumor volume
= length × ðwidth2Þ/2, and tumor sizes were analyzed [23].
All animal experiments were performed in accordance with
the standards of Tongji University School of Medicine.

2.10. Statistical Analysis. All quantitative data are displayed
asmean ± SEM, and analyses were executed using Prism 8.0.

Unpaired two-tailed Student’s t-test is used for data
analysis. FCS Express 10 Flow software analyzes flow cytom-
etry data. Differences were considered statistically significant
at P < 0:05.

3. Results

3.1. DEK Is Highly Expressed in Jurkat Cells. To determine
DEK expression in leukemia, assays were performed in dif-
ferent leukemia cell lines using RT-PCR and western blot-
ting. The Raji cell line expressing the lowest DEK was
selected as a control among the acute leukemia and lym-
phoma cell lines tested. The Jurkat cell line showed the high-
est level of DEK mRNA and protein (Figure 1). Of these cell
lines, these results suggested that DEK is highly involved in
T-ALL development. Results of the human protein analysis
(https://www.proteinatlas.org/ENSG00000124795-DEK/
tissue) showed the level of DEK mRNA transcripts in differ-
ent cancer cell lines and normal tissues (Supplemental
Figure S1). Therefore, experiments for DEK phenotypic
and functional validation were performed using Jurkat cells.

3.2. shRNA-Mediated DEK Knockdown Efficiently Suppresses
Cell Proliferation. We used the DEK-KD group and SCR
group to conduct cell proliferation experiments in Jurkat
cell. As shown in Figures 2(a) and 2(b), shDEK effectively
suppressed DEK mRNA and protein expression of Jurkat
cells compared with scramble shRNA. The cell proliferation
assay showed that knockdown of DEK significantly inhibited
Jurkat cell proliferation compared with SCR group starting 2
days after transduction (day 2: P < 0:0001, day 4 and day 6:
P < 0:001; Figure 2(c)). Colony formation assay showed that
the number of colonies formed by DEK-silenced cells was
dramatically less than the number of colonies formed by
the SCR group (28 ± 6 and 39 ± 4 vs. 135 ± 7; P < 0:0001;
Figure 2(d)). Consistent results were observed in the size of
colonies (Figure 2(e)). These data suggest that knockdown
of DEK suppresses leukemia cell proliferation and colony
formation. Thus, DEK is a novel target of T-ALL treatment.

3.3. DEK Inhibition in Jurkat Cells Increases the Response to
DOX. We treated SCR Jurkat cells and DEK-silenced Jurkat
cells with DOX and then performed cell viability, apoptosis,
and cell cycle distribution. The results of CCK-8 analysis
further showed that compared with the negative control,
knockdown of DEK significantly reduced the cell viability
of Jurkat cells in the presence of DOX ranging from 0 to
10μM (IC50 of SCR group: 9.306 nM, IC50 of shDEK group:
3.744 nM; Figure 3(f)). The apoptotic rates of Jurkat cells in
the DEK-KD groups were 13:02 ± 0:58% and 9:53 ± 0:91%,

compared with 4:95 ± 0:41% in the SCR group as shown in
Figures 3(a) and 3(b) (shDEK-1: P < 0:05, shDEK-2: P <
0:0001). Following DOX treatment, the apoptotic rates of
DEK KD groups were 19:3 ± 0:49% and 17:58 ± 0:23% com-
pared with 10:38 ± 0:92% in the SCR group (shDEK-1: P <
0:05, shDEK-2: P < 0:01; Figures 3(a) and 3(b)). In brief,
these results proved that DEK silencing increased the induc-
tion of apoptosis via DOX in Jurkat cells.

BrdU is a synthetic thymidine analog that is incorpo-
rated during the S phase of cellular DNA replication [25].
After the DNA is denatured, the cells are stained to allow
BrdU incorporation, and any other target cell surfaces and/
or intracellular targets are stained. The rates of S-phase cells
in the DEK KD Jurkat cells were 37:67 ± 1:53% and 42:53
± 0:47% versus 73:3 ± 0:73% in the SCR cells, the rates of
G0/G1 phase cells in the DEK KD groups were 52:03 ±
2:67% and 48:93 ± 0:83% versus 21:83 ± 0:36% in the SCR
cells in Figures 3(c) and 3(d) (∗∗∗∗P < 0:0001), and the pro-
portions of G2/M-phase cells in the DEK KD groups were
9:06 ± 1:53% and 7:67 ± 1:61% versus 4:47 ± 0:17% in the
SCR Jurkat cells (shDEK-1: P < 0:01, shDEK-2: P < 0:05).
With DOX treatment, the proportions of S-phase cells were
7:41 ± 0:47% and 14:1 ± 0:9% in the KD groups and 26 ±
2:9% in the SCR group (Figures 3(c) and 3(e), shDEK-1: P
< 0:001, shDEK-2: P < 0:01). These results indicate that
under normal growth conditions, DEK silencing leads to
reduced cell distribution in the S phase, cell arrest in the
G0/G1 phase, and cell cycle arrest in the G2/M phase with
DOX treatment.

3.4. DEK Regulates Apoptosis and Cell Cycle-Related Genes.
The contribution of DEK in cancer progression involves
the alterations in TP53, CDKN1A, c-Myc, and other apopto-
sis- and cell cycle-related genes [13, 26]. In melanoma, DEK
silencing considerably increased cell apoptosis and senes-
cence through DOX treatment and had no effect on TP53
and CDKN2A levels but had a significant effect on CDKN1A
and caspase-3 levels [13]. As shown in Figures 4(a)–4(d),
DEK silencing did not affect the protein expression of
TP53, c-Myc, or CDKN2A regardless of the presence or
absence of DOX, compared with SCR group. However,
DEK silencing significantly suppressed BCL2L1 protein
expression under normal conditions (P < 0:001) and further
attenuated BCL2L1 protein expression repressed by DOX
(P < 0:0001). In contrast, knockdown of DEK further
enhanced DOX-induced caspase-3 protein expression
(P < 0:01; Figures 4(a) and 4(c)). Regarding cell cycle-
related genes, knockdown of DEK significantly suppressed
CDK6 expression in the presence of DOX, respectively,
compared with the SCR group (both P < 0:05). DEK silenc-
ing also further enhanced DOX-induced upregulation of
CDKN1A expression (P < 0:001; Figures 4(b) and 4(d)).
These data suggest that DEK silencing enhances the DOX
sensitivity of Jurkat cells by modulating some apoptosis-
and cell cycle-related genes in a TP53/CDKN2A/c-Myc-
independent manner.

3.5. DEK Silencing Reduces the Tumorigenesis Ability of
Jurkat Cells. To investigate the effect of DEK silencing
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in vivo, we established a tumor model by subcutaneously
injecting DEK-silenced Jurkat cells or control cells into
female adult BALB/C nude mice. The tumor volume in the
DEK KD group was 82 ± 13mm3 and the tumor weight
was 0:708 ± 0:248 g, whereas the tumor volume in the SCR
group was 194:4 ± 24:4mm3 and the tumor weight was
2:28 ± 0:42 g (Figures 5(a)–5(c), ∗∗∗∗ P < 0:0001). The
DEK KD mice were less aggressive and showed smaller
tumor sizes than the mice we injected with SCR Jurkat cells.

4. Discussion

T-ALL is a serious hematological tumor and is highly resis-
tant to chemotherapy, occurs in both adults and children,
and has a high rate of recurrence [27, 28]. DEK plays a
potential role in hematopoiesis and is dysregulated in acute
myeloid leukemia and chronic lymphocytic leukemia [14,
15]; however, the involvement of DEK in T-ALL remains
unknown.

Many studies have focused on the expression of cyto-
kines [29]. Of note, it has been reported that DEK is overex-

pressed in most tumors of different origins, and
tumorigenesis is promoted by promoting cell self-renewal
and proliferation while inhibiting apoptosis, differentiation,
and senescence of malignant cells [8, 9]. DEK-targeted inhi-
bition has been considered as an effective treatment strategy
of different malignancies due to its frequent upregulation in
human malignancies which is considered to be an onco-
gene [30].

In this study, Jurkat cells were treated with DOX to
induce apoptosis, decreased cell viability, and cell cycle
arrest. Compared with negative control, knockdown of
DEK promoted DOX-induced cell apoptosis while further
reducing S-phase cells and cell proliferation of Jurkat cells
with DOX, accompanied by significant alterations in the
expression of apoptosis- and cell cycle-related genes. DEK
silencing has no effect on TP53-related apoptosis and
CDKN2A-induced senescence in Jurkat cells with DOX
treatment. Therefore, DEK overexpression may inhibit the
activity of TP53 and CDKN2A in Jurkat cells through alter-
native mechanisms. DEK acts as a transcriptional corepres-
sor to inhibit NF-κB signaling, and NF-κB can participate
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Figure 1: DEK is highly expressed in Jurkat T-ALL cells. (a) DEK mRNA expression in Jurkat, Daudi, Nalm6, SU-DHL-4, and Raji cells was
analyzed by RT-PCR. (b) Protein expression levels of DEK and GAPDH in Jurkat, Daudi, Nalm6, SU-DHL-4, and Raji cells. (c)
Quantification of DEK protein level by densitometric analysis. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 3: Knockdown of DEK promotes doxorubicin- (DOX-) induced apoptosis and cell cycle arrest of Jurkat cells. (a, b) Cells were treated
with vehicle or DOX for 72 h at 5 days after lentiviral infection, and then, we examined cell apoptosis via flow cytometry. (c–e) Flow
cytometry analysis was carried out to examine cell cycle phase distribution of Jurkat cells. (f) Cell viability in SCR and DEK KD groups
was detected by CCK-8. Data are expressed as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001; shDEK-1 and
shDEK-2 vs. SCR or shDEK-1+DOX and shDEK-2+DOX vs. SCR+DOX; n = 3. SCR: scramble RNA.
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in the apoptosis process of malignant hematopoietic cell
lines by acting on CDKN1A [28]. CDKN1A effectively
inhibits cyclins with direct roles in G1/S transition, includ-
ing CDK2, CDK3, CDK4, and CDK6, but it inhibits other
known CDKs poorly [11, 12]. Therefore, further research is
needed to determine whether DEK acts on CDKN1A in Jur-
kat cells through NF-κB.

Apoptosis is a complex biological process, and chemo-
therapy drugs are often used to kill tumor cells to treat
tumors. With the widespread application of anticancer
drugs, dysregulation of apoptotic pathways has been
shown to play an irreplaceable role in chemoresistance.
Antiapoptotic protein BCL2L1 regulates apoptotic cell
death through Bcl-2. Increased expression of BCL2L1 is
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Figure 4: Expression of apoptosis- and cell cycle-related proteins in Jurkat cells. (a, b) Western blot analysis was conducted to measure the
protein levels of SCR, shDEK-1, or shDEK-2 as indicated. (a, b) Representative blots are shown. (c) Quantification of (a). (d) Quantification
of (b). GAPDH was used as an internal control. Data are expressed as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001
vs. SCR; n = 3. SCR: scramble RNA.
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associated with chemoresistance in T-ALL [31]. Consistent
with our results, knockdown of DEK attenuated the
BCL2L1 expression of Jurkat cells, and the effect was more
pronounced with DOX. These results suggest that DEK
silencing enhances the sensitivity of Jurkat cells to chemo-
therapeutic drugs.

Caspase-3 is a well-known proapoptotic marker. Proa-
poptotic caspase-3 is frequently activated during apoptosis.
DEK silencing induces apoptosis of tumor cells by activation
of caspase-9 and subsequent cleavage and activation of pro-
caspase-3, which then cleaves different cellular endogenous
substrates leading to cell death [32, 33]. Therefore, DEK
silencing may enhance DOX-induced apoptosis by activat-
ing the mitochondrial pathway through activating caspase-
9 and then caspase-3 in Jurkat cells. Consistent with the
in vitro data, knockdown of DEK also suppressed the growth
of Jurkat cell-derived tumors in mouse model, suggesting
that DEK is a promising therapeutic target in T-ALL
treatment.

In brief, the deletion of DEK under DOX treatment leads
to the overexpression of caspase-3 and the downregulation
of BCL2L1, indicating its role in regulating cell apoptosis;
the level of CDK6 decreases, and the expression of CDKN1A
increases, indicating its role in regulating cell cycle. These
results indicate that the inhibition of DEK expression com-
bined with DOX treatment is a possible therapeutic strategy
for T-ALL. In general, all these data suggest that DEK silenc-
ing in T-ALL cells increases their sensitivity to DOX and
may work as a novel therapeutic target to T-ALL.

5. Conclusion

In summary, DEK is highly expressed in Jurkat cells and
promotes cell proliferation and colony formation in vitro.
DEK silencing may promote DOX-induced cell apoptosis
and cell cycle arrest, thus increasing the sensitivity of Jurkat
cells to DOX treatment. Although the underlying mecha-
nisms and effects of DEK on normal cells require further
study, our results suggest that knockdown of DEK is a novel,
potential therapeutic approach to overcome DOX resistance
in T-ALL treatment.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Ethical Approval

All experiments and procedures were conducted in compli-
ance with the ethical principles of Tongji University School
of Medicine and received ethical approval from the Animal
Ethics Committee of Tongji University.

Consent

Written informed consent was obtained from all partici-
pants at the time of obtaining consent to participate.

SCR

KD

(a)

3

2

1

0

W
eig

ht
 o

f t
um

or
 (g

)

SCR KD

⁎⁎⁎⁎

(b)

250

200

150

100

50

Tu
m

or
 vo

lu
m

e (
m

m
3 )

0
SCR KD

⁎⁎⁎⁎

(c)

Figure 5: In vivo tumorigenesis ability study. Knockdown of DEK suppressed the growth of Jurkat cell-derived tumors in mice. (a) Image of
tumors derived from Jurkat cells. (b, c) Tumor weights and volumes at 30 days after inoculating Jurkat cells transduced with negative control
or shDEK. ∗∗∗∗P < 0:0001 vs. SCR, n = 5. SCR: scramble RNA; KD: knockdown.

8 Disease Markers



Conflicts of Interest

The authors have no conflicts of interest to declare.

Authors’ Contributions

WZ, AL, and JX provided biological materials and reagents,
and GM and ZZ revised the manuscript. XT was responsible
for designing and conducting the experiments and analyzing
the data for article writing. All authors read and approved
the final manuscript.

Acknowledgments

We thank the research staff at Tongji University School of
Medicine for assistance in performing experiments. This
study was supported by the Ministry of Science and Tech-
nology of the People’s Republic of China (Grant no.
2021YFA1100800) and the National Natural Science Foun-
dation of China (Grant no. 81770151).

Supplementary Materials

Supplemental Figure S1: DEK is highly expressed in tumor
cell lines. (Supplementary Materials)

References

[1] E. A. Raetz and D. T. Teachey, “T-cell acute lymphoblastic leu-
kemia,”Hematology 2014, the American Society of Hematology
Education Program Book, vol. 2016, no. 1, pp. 580–588, 2016.

[2] M. R. Litzow and A. A. Ferrando, “How I treat T-cell acute
lymphoblastic leukemia in adults,” Blood, vol. 126, no. 7,
pp. 833–841, 2015.

[3] K. P. Dunsmore, S. S. Winter, M. Devidas et al., “Children's
oncology group AALL0434: a phase III randomized clinical
trial testing nelarabine in newly diagnosed T-cell acute lym-
phoblastic leukemia,” Journal of Clinical Oncology, vol. 38,
no. 28, pp. 3282–3293, 2020.

[4] A. Moricke, M. Zimmermann, M. G. Valsecchi et al., “Dexa-
methasone vs prednisone in induction treatment of pediatric
ALL: results of the randomized trial AIEOP-BFM ALL
2000,” Blood, vol. 127, no. 17, pp. 2101–2112, 2016.

[5] E. Follini, M. Marchesini, and G. Roti, “Strategies to overcome
resistance mechanisms in T-cell acute lymphoblastic leuke-
mia,” International Journal of Molecular Sciences, vol. 20,
no. 12, p. 3021, 2019.

[6] J. Wu, Z. P. Chen, A. Q. Shang et al., “Systemic bioinformatics
analysis of recurrent aphthous stomatitis gene expression pro-
files,” Oncotarget, vol. 8, no. 67, pp. 111064–111072, 2017.

[7] M. Devany, F. Kappes, K. M. Chen, D. M. Markovitz, and
H. Matsuo, “Solution NMR structure of the N-terminal
domain of the human DEK protein,” Protein Science, vol. 17,
no. 2, pp. 205–215, 2008.

[8] V. Alexiadis, T. Waldmann, J. Andersen, M. Mann,
R. Knippers, and C. Gruss, “The protein encoded by the
proto-oncogene DEK changes the topology of chromatin and
reduces the efficiency of DNA replication in a chromatin-
specific manner,” Genes & Development, vol. 14, no. 11,
pp. 1308–1312, 2000.

[9] T. M. Wise-Draper, H. V. Allen, E. E. Jones, K. B. Habash,
H. Matsuo, and S. I. Wells, “Apoptosis inhibition by the
human DEK oncoprotein involves interference with p53 func-
tions,” Molecular and Cellular Biology, vol. 26, no. 20,
pp. 7506–7519, 2006.

[10] J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi, and S. J.
Elledge, “The p21 Cdk-interacting protein Cip1 is a potent
inhibitor of G1 cyclin-dependent kinases,” Cell, vol. 75, no. 4,
pp. 805–816, 1993.

[11] J. W. Harper and S. J. Elledge, “Cdk inhibitors in development
and cancer,” Current Opinion in Genetics & Development,
vol. 6, no. 1, pp. 56–64, 1996.

[12] A. L. Gartel and A. L. Tyner, “Transcriptional regulation of the
p21(WAF1/CIP1) gene,” Experimental Cell Research, vol. 246,
no. 2, pp. 280–289, 1999.

[13] M. S. Khodadoust, M. Verhaegen, F. Kappes et al., “Melanoma
proliferation and chemoresistance controlled by the DEK
oncogene,” Cancer Research, vol. 69, no. 16, pp. 6405–6413,
2009.

[14] D. M. Wang, L. Liu, L. Fan et al., “Expression level of DEK in
chronic lymphocytic leukemia is regulated by fludarabine and
Nutlin-3 depending on p53 status,” Cancer Biology & Therapy,
vol. 13, no. 14, pp. 1522–1528, 2012.

[15] S. Casas, B. Nagy, E. Elonen et al., “Aberrant expression of
HOXA9, DEK, CBL and CSF1R in acute myeloid leukemia,”
Leukemia & Lymphoma, vol. 44, no. 11, pp. 1935–1941,
2003.

[16] X. Liu, D. D. Qi, J. J. Qi et al., “Significance of DEK overexpres-
sion for the prognostic evaluation of non-small cell lung carci-
noma,” Oncology Reports, vol. 35, no. 1, pp. 155–162, 2016.

[17] J. Martinez-Useros, M. Rodriguez-Remirez, A. Borrero-Pala-
cios et al., “DEK is a potential marker for aggressive phenotype
and irinotecan-based therapy response in metastatic colorectal
cancer,” BMC Cancer, vol. 14, no. 1, 2014.

[18] C. F. Thorn, C. Oshiro, S. Marsh et al., “Doxorubicin path-
ways: pharmacodynamics and adverse effects,” Pharmacoge-
netics and Genomics, vol. 21, no. 7, pp. 440–446, 2011.

[19] G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni,
“Anthracyclines: molecular advances and pharmacologic
developments in antitumor activity and cardiotoxicity,” Phar-
macological Reviews, vol. 56, no. 2, pp. 185–229, 2004.

[20] D. A. Gewirtz, “A critical evaluation of the mechanisms of
action proposed for the antitumor effects of the anthracycline
antibiotics adriamycin and daunorubicin,” Biochemical Phar-
macology, vol. 57, no. 7, pp. 727–741, 1999.

[21] B. X. Pang, X. H. Qiao, L. Janssen et al., “Drug-induced histone
eviction from open chromatin contributes to the chemothera-
peutic effects of doxorubicin,” Nature Communications, vol. 4,
no. 1, p. 1908, 2013.

[22] B. S. Sorensen, J. Sinding, A. H. Andersen, J. Alsner, P. B. Jen-
sen, and O. Westergaard, “Mode of action of topoisomerase II-
targeting agents at a specific DNA sequence: uncoupling the
DNA binding, cleavage and religation events,” Journal of
Molecular Biology, vol. 228, no. 3, pp. 778–786, 1992.

[23] S. Naito, A. C. Voneschenbach, R. Giavazzi, and I. J. Fidler,
“Growth and metastasis of tumor cells isolated from a human
renal cell carcinoma implanted into different organs of nude
mice,” Cancer Research, vol. 46, no. 8, pp. 4109–4115, 1986.

[24] K. J. Livak and T. D. Schmittgen, “Analysis of relative gene
expression data using real-time quantitative PCR and the 2(-
ΔΔC(T)) method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.

9Disease Markers

https://downloads.hindawi.com/journals/dm/2022/9312971.f1.docx


[25] L. Harris, O. Zalucki, and M. Piper, “BrdU/EdU dual labeling
to determine the cell-cycle dynamics of defined cellular sub-
populations,” Journal of Molecular Histology, vol. 49,
pp. 229–234, 2018.

[26] K. H. Kim, C. W. Han, S. H. Yoon et al., “The fruit hull of Gle-
ditsia sinensis enhances the anti-tumor effect of cis-diammine
dichloridoplatinum II (cisplatin),” Evidence-Based Comple-
mentary and Alternative Medicine, vol. 2016, Article ID
7480971, 10 pages, 2016.

[27] Y. Liu, J. Easton, Y. Shao et al., “The genomic landscape of
pediatric and young adult T-lineage acute lymphoblastic leu-
kemia,” Nature Genetics, vol. 49, no. 8, pp. 1211–1218, 2017.

[28] J. Savickiene, G. Treigyte, K. E. Magnusson, and
R. Navakauskiene, “p21 (Waf1/Cip1) and FasL gene activation
via Sp1 and NFκB is required for leukemia cell survival but not
for cell death induced by diverse stimuli,” The International
Journal of Biochemistry & Cell Biology, vol. 37, no. 4,
pp. 784–796, 2005.

[29] Y. Wang, J. Wu, J. Xu, and S. Lin, “Clinical significance of high
expression of stanniocalcin-2 in hepatocellular carcinoma,”
Bioscience Reports, vol. 39, no. 4, 2019.

[30] H. H. Guo, M. Prell, H. Konigs et al., “Bacterial growth inhibi-
tion screen (BGIS) identifies a loss-of-function mutant of the
DEK oncogene, indicating DNA modulating activities of
DEK in chromatin,” FEBS Letters, vol. 595, no. 10, pp. 1438–
1453, 2021.

[31] H. E. Broome, A. L. Yu, M. Diccianni, B. M. Camitta, B. P.
Monia, and N. M. Dean, “Inhibition of Bcl-xL expression sen-
sitizes T-cell acute lymphoblastic leukemia cells to chemother-
apeutic drugs,” Leukemia Research, vol. 26, no. 3, pp. 311–316,
2002.

[32] J. Wu, J. R. Zhang, and J. Qin, “Clinical significance of methyl-
ation of E-cadherin and p14ARF gene promoters in skin squa-
mous cell carcinoma tissues,” International Journal of Clinical
and Experimental Medicine, vol. 7, no. 7, pp. 1808–1812, 2014.

[33] M. X. Jiang, L. Qi, L. S. Li, and Y. Li, “The caspase-3/GSDME
signal pathway as a switch between apoptosis and pyroptosis
in cancer,” Cell Death Discovery, vol. 6, no. 1, p. 112, 2020.

10 Disease Markers



Research Article
The Effect of Artificial Liver Support System on Prognosis of
HBV-Derived Hepatorenal Syndrome: A Retrospective
Cohort Study

Xinyu Sheng ,1 Jiaqi Zhou ,2 Xiuyu Gu ,3 and Hong Wang 1

1Department of Infectious Disease, Zhejiang Hospital, Hangzhou, China
2Department of Respiration, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, China
3Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China

Correspondence should be addressed to Xiuyu Gu; 1352117185@qq.com and Hong Wang; hongwang71@yahoo.com

Received 4 February 2022; Revised 23 March 2022; Accepted 25 April 2022; Published 1 June 2022

Academic Editor: Chia-Jung Li

Copyright © 2022 Xinyu Sheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hepatorenal syndrome (HRS) could occur when patients get decompensated liver cirrhosis. Meanwhile, hepatitis B virus (HBV)
infection raises the risk of mortality of the end-stage liver diseases. As the artificial liver support system (ALSS) has been applied in
liver failure, whether ALSS could benefit HBV-derived HRS remains uncertain. We retrospectively enlisted eligible HRS patients
and compared the baseline characteristics and prognosis between HBV-derived HRS and non-HBV-derived HRS. Furthermore,
propensity score matching (PSM) and Cox regression analyses were used to assess the beneficial effect of ALSS on HBV-
derived HRS. In addition, a stratified analysis was carried out according to the degree of acute kidney injury (AKI) and the
number of organ failures to observe in which populations ALSS can obtain the most excellent therapeutic effect. 669 patients
were diagnosed as HRS, including 298 HBV negative and 371 HBV positive. Baseline characteristics were different between
patients with HBV positive and HBV negative. HBV-derived HRS has higher 28-day mortality, though without a statistical
difference. After PSM, 50 patients treated with ALSS and 150 patients treated with standard medical treatment (SMT)
constituted a new cohort for the following analysis. We found that ALSS could significantly benefit HRS patients (P = 0:025).
Moreover, the median survival time of patients treated with ALSS was longer than those treated with SMT. INR, neutrophil
percentage, and treatment with ALSS were independent predictive factors for short-term mortality in HBV-derived HRS. The
stratified analysis showed that ALSS could reduce the 28-day mortality of patients with HBV-derived HRS, especially those in
AKI stage 3 and with organ failure ≥ 2. Additionally, serum bilirubin was significantly lower after ALSS, and the alteration of
INR and creatinine were independent predictive elements for the mortality of HBV-derived HRS. HBV-derived HRS is more
severe than non-HBV-derived HRS and has a worse prognosis. ALSS could reduce the short-term mortality of patients with
HBV-derived HRS, especially those in AKI stage 3 and with organ failure ≥ 2. INR and the change of creatinine and INR could
predict the prognosis of HBV-derived HRS. ChiCTR2200060123.

1. Introduction

Patients with cirrhosis are more prone to acute kidney injury
(AKI). According to reports, 20% of the hospitalized patients
with cirrhosis may get AKI [1]. Hepatorenal syndrome
(HRS) means a progressive renal dysfunction in cirrhosis
patients and high mortality in a brief time, which is one of
the severe complications of decompensated cirrhosis [2, 3].
The probability of patients with liver cirrhosis and ascites
developing to HRS within five years is up to 40% [4]. Given

the unclear diagnosis, treatment strategies for HRS are inac-
curate, which may result in high mortality of HRS. Hepatitis
B virus (HBV) has been threatening health for many years.
There are more than 350 million HBV carriers all around
the world.

Millions of people suffer from HBV-related liver diseases
every year [5]. Although the number of HBV-related liver
diseases has been decreasing with the prevalence of HBV
vaccines, it still brings significant challenges to many coun-
tries’ medical and health services, including China. HBV
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infection has been proved to be associated with hepatitis, cir-
rhosis, and even hepatocellular carcinoma, which could
cause an unwell prognosis [6–8]. A multicenter descriptive
study has revealed that the original characteristics of
COVID-19 cases combined with HBV infection were a
higher rate of liver injury, coagulation disorders, severe/crit-
ical tendency, and increased susceptibility [9]. Considering
the unique pathophysiology of HRS with extrahepatic man-
ifestations, it is essential to pay more attention to HBV-
related HRS. The most effective treatment for HRS is liver
transplantation, but due to insufficient donors and economic
constraints, the proportion of liver transplantation is small.
Thus, finding a cost-effective treatment that can effectively
improve the survival of HBV-derived HRS has become the
top priority.

Various artificial liver support systems (ALSSs) have
been widely used during past decades [8, 9]. ALSS could
remove harmful substances from the patient’s body and sup-
plement the substances needed in the body through physical
means, using the unique biofilm and the adsorption of
chemical substances [10]. ALSSs have several types, and Pro-
fessor Li’s team launched a novel ALSS named Li’s artificial
liver system (Li-ALS) which includes plasma exchange, char-
coal hemoperfusion, plasma bilirubin absorption, charcoal
plasma perfusion, hemofiltration, and hemodialysis and
has been applied in China since the 1980s [11]. Many kinds
of research have proved that it could benefit patients with
end-stage liver diseases, especially HBV-related acute-on-
chronic liver failure. However, studies on the effect of ALSS
on HRS, especially HBV-derived HRS, are not abundant and
whether ALSS could benefit this part of patients has been
uncertain.

We conducted a multicenter, retrospective, and long-
term study to evaluate the association between ALSS and
HBV-derived HRS. And we use propensity score matching
(PSM) to balance confounding variables.

2. Materials and Methods

2.1. Study Population and Data Collection. In this cohort
study, we screened patients from four general hospitals from
January 2011 to March 2021, including the First affiliated
Hospital of Zhejiang University, Shulan Hospital, People’s
Hospital of Zhejiang Province, and People’s Hospital of
Shengzhou City. The patients with decompensated cirrhosis
and acute renal injury were enrolled at admission. Demo-
graphic data and vital signs were obtained from medical
records. And follow-up was tracked by phone or address.
Considering the rapid progress of HRS, we recorded 28-
day mortality as our primary outcome and change of labora-
tory indexes as a secondary outcome. All assays for serum
biochemical parameters were operated with the same testing
equipment. The study was approved by the Ethics Commit-
tee of the First Affiliated Hospital, Zhejiang University (No.
2019-1449-1), and developed according to the ethical guide-
lines of the Declaration of Helsinki.

2.2. Inclusion and Exclusion Criteria. HRS was identified
according to the standard from the International Club of

Ascites (ICA) in 2015. An increase in sCr ≥ 26:5mmol/L
(≥0.3mg/dL) within two days or 1.5 times the baseline was
AKI. Detailed stage information was listed. AKI stage 1:
increase in sCr ≥ 26:5mmol/L (≥0.3mg/dL) or an increase
in sCr ≥ 1:5-fold to 2-fold from baseline. AKI stage 2:
increase in sCr > two to threefold from baseline. AKI stage
3: increase of sCr > threefold from baseline or sCr ≥ 353:6
mmol/L (4.0mg/dL) with an acute increase ≥ 26:5mmol/L
(≥0.3mg/dL) or received renal replacement therapy. HBV
positive was defined as HBV surface antigen positive ≥ six
months, serum HBV-DNA ≥ 20000 IU/mL, or liver biopsy
indicating chronic hepatitis.

Exclusion criteria are as follows: (1) absence of ascites,
(2) any benign or malignant carcinoma (37), (3) chronic
renal injury, (4) liver transplantation or severe immunosup-
pression, (5) age < 18 years, (6) hospital stay was less one
week, and (7) incomplete information. Also, patients lost
to follow-up were excluded.

For ACLF grade 1, patients include those with single
organ failure, mainly coagulation, circulatory, respiratory
systems or kidney failure. For ACLF grade 2, patients
include those with two organ failures. ACLF grade 3: in
patients include those with 3 or more organ system failures.

Decompensated cirrhosis 
with acute kidney injury

(n = 2430)

Exclusion criteria:
(i) Absence of ascites; 
(ii) Hepatocellular carcinoma; 
(iii) Other types of tumors; 
(iv) Chronic renal diseases; 
(v) Liver transplantation; 
(vi) Age <18 years; 
(vii) Thyroid diseases; 
(viii) Severe immunosuppression; 

713 cases included

(i) Hospital stay <1 week; 
(ii) Incomplete information. 
(iii) Lost to follow-up. 

Enrollment (n = 669)

HBV group (n = 371) non-HBV group (n = 298)

SMT group (n = 321) ALSS group (n = 50)

Figure 1: Screening and enrollment of patients. ALSS: artificial
liver support system; SMZ: standard medical treatment.
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Model 1 was adjusted for age and sex. Model 2 was
adjusted for age, sex, neutrophils, alanine aminotransferase
(ALT), albumin, serum bilirubin, COSSH-ACLFs, and inter-
national normalized ratio (INR).

Liver failure was defined as serum bilirubin ≥ 12mg/dL,
coagulation failure as INR ≥ 2:5, brain failure as hepatic

encephalopathy grade ≥ 3 (West Haven criteria), and circu-
latory failure as the need for vasopressor therapy to maintain
blood pressure [12].

2.3. Treatment. According to ICA-AKI diagnostic criteria,
standard medical treatment (SMT) was applied according

Table 1: Characteristics between HBV-derived HRS and non-HBV-derived HRS.

Variates Non-HBV-derived HRS HBV-derived HRS P value

n 298 371

Age (year) 62:54 ± 11:66 57:82 ± 12:38 <0.001
Male sex 208 (69.80) 282 (76.00) 0.086

Degree of HE 0.998

Without HE (%) 164 (55.0) 202 (54.4)

I 42 (14.1) 55 (14.8)

II 26 (8.7) 34 (9.2)

III 22 (7.4) 26 (7.0)

IV 44 (14.8) 54 (14.6)

Ascitic (%) 0.222

Grade 1 54 (18.10) 70 (18.90)

Grade 2 84 (28.2) 110 (29.6)

Grade 3 120 (40.3) 122 (32.9)

Missing data 40 (13.4) 69 (18.6)

MAP (mmHg) 93:01 ± 16:06 95:97 ± 16:76 0.021

HR 85:43 ± 15:57 87:14 ± 16:10 0.166

INR 1.75 (1.40-1.99) 1.84 (1.51-2.42) <0.001
Neutrophil (%) 74:27 ± 11:83 74:80 ± 11:93 0.566

Albumin (g/L) 28:50 ± 5:59 29:25 ± 5:46 0.079

Globulin (g/L) 29:44 ± 9:09 28:81 ± 8:98 0.368

ALT (U/L) 36.50 (21.00-106.00) 50.50 (24.00-125.00) 0.053

AST (U/L) 63.50 (34.50-98.75) 80.50 (41.00-164.50) 0.006

Hemoglobin (g/L) 93:41 ± 26:13 101:05 ± 26:88 <0.001
Cystatin C (mg/L) 2.16 (1.56-3.53) 1.95 (1.34-3.24) 0.197

Urea (mmol/L) 14.53 (9.05-24.40) 13.30 (7.77-23.10) 0.284

Creatinine (mg/dL) 1.83 (1.03-2.71) 1.62 (0.93-2.64) 0.656

Serum bilirubin (mg/dL) 11.75 (2.28-22.28) 13.68 (3.17-24.88) 0.073

GGT (U/L) 70.00 (32.00-152.00) 59.00 (34.00-122.00) 0.107

Potassium (mmol/L) 4:20 ± 0:81 4:63 ± 0:72 0.281

Sodium (mmol/L) 134:45 ± 6:12 133:95 ± 6:70 0.049

MELDs 26:21 ± 8:09 27:55 ± 9:21 0.742

iMELD 50:86 ± 10:24 51:14 ± 11:21 0.179

CTP 10:95 ± 1:92 11:18 ± 1:92 0.122

CLIF-ACLFs 50:57 ± 10:14 49:69 ± 10:57 0.278

CLIF-SOFAs 10:01 ± 3:49 10:14 ± 3:56 0.620

COSSH-ACLFs 7:13 ± 1:63 7:19 ± 1:85 0.648

Liver failure 146 (49.0) 198 (53.4) 0.295

Coagulation failure 42 (14.1) 84 (22.6) 0.007

Cerebral failure 66 (22.1) 80 (21.6) 0.930

ALT: alanine aminotransferase; CLIF-SOFA: Chronic Liver Failure-Sequential Organ Failure Assessment; COSSH-ACLF: Chinese Group on the Study of
Severe Hepatitis B-Acute-on-Chronic Liver Failure; HBV: hepatitis B virus; INR: international normalized ratio; MAP: mean arterial pressure; MELD:
Model for End-Stage Liver Disease.
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to the stage of AKI, including treatment of infections,
plasma volume expansion, withdrawal of nephrotoxic or
nonsteroidal anti-inflammatory drugs, and basic life sup-
port. ALSS treatment adopted Li-ALS. Li-ALS includes
plasma exchange (PE), hemodialysis (HD), hemofiltration
(HF), and hemoperfusion (HP). PE uses hollow fiber mem-
brane separation technology to filter the toxin-containing
plasma components (mainly protein-binding toxins) in the
blood out of the membrane and discard them and place
equal amounts of fresh frozen plasma and albumin with
the blood in the membrane and return to the body together.
HF uses a membrane with a larger pore size and relies on the
pressure difference between the liquids on both sides of the
membrane as the transmembrane pressure, mimicking the
principle of glomerular filtration function and removing
excess water and toxic substances from the blood by convec-
tion. HP uses a cylindrical perfusion device containing spe-
cial activated carbon or resin particles to remove toxins or

drugs in the blood by adsorption, and the perfused blood
returns to the body through a catheter. HD mainly relies
on the concentration gradient dispersion on both sides of
the membrane to precipitate small water-soluble substances
such as blood Cr and urea nitrogen, to correct water and
electrolyte disorders and acid-base balance disorders.
Patients receive Li-ALS treatment approximately 1-2 times
a week until TB ≤ 5mg/dL or persistent hyperbilirubinemia
and coagulopathy improve, or until liver transplantation.
When active bleeding or circulatory failure occurs, it needs
to be stopped.

2.4. Statistical Analysis. Clinicopathological features were
summarized using medians with interquartile ranges (IQRs)
or frequencies with percentages, and biochemical parame-
ters were compared using the Wilcoxon rank-sum, chi-
squared, and Fisher exact test. The propensity score (PS)
for ALSS was estimated using a logistic regression model
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Figure 2: Kaplan–Meier curves of HBV-derived HRS and non-HBV-derived HRS. HRS: hepatorenal syndrome; HBV: hepatitis B virus.
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Table 2: Characteristics between SMT and ALSS before PSM.

Variates SMT ALSS P value

n 321 50

Age (year) 58:46 ± 12:17 53:70 ± 13:05 0.011

HBV-DNA (log copies/mL) 5:1 ± 1:5 5:1 ± 1:6 0.986

Male sex 240 (74.80) 42 (84.00) 0.213

Degree of HE 0.322

Without HE 179 (55.80) 23 (46.00)

I 49 (15.30) 6 (12.00)

II 27 (8.40) 7 (14.00)

III 20 (6.20) 6 (12.00)

IV 46 (14.30) 8 (16.00)

Ascitic (%) 0.003

Grade 1 58 (17.00) 12 (24.00)

Grade 2 87 (27.10) 23 (46.00)

Grade 3 115 (35.80) 7 (14.00)

Missing data 61 (19.00) 8 (16.00)

MAP (mmHg) 95:83 ± 17:02 96:88 ± 15:14 0.682

HR 87:40 ± 16:47 85:46 ± 13:45 0.428

INR 1.84 (1.46-2.33) 2.08 (1.74-2.63) 0.137

WBC (109/L) 7.40 (4.98-11.40) 6.55 (5.05-9.58) 0.072

Neutrophil (%) 75:29 ± 12:04 71:68 ± 10:79 0.047

Albumin (g/L) 29:21 ± 5:60 29:55 ± 4:54 0.686

Globulin (g/L) 28:73 ± 8:99 29:30 ± 8:97 0.677

ALT (U/L) 44.50 (22.00-104.20) 114.00 (54.75-253.50) 0.060

AST (U/L) 70.00 (39.00-154.20) 144.50 (92.50-282.00) 0.202

Hemoglobin (g/L) 98:80 ± 26:44 115:22 ± 25:51 <0.001
Cystatin C (mg/L) 2.14 (1.53-3.41) 1.24 (0.92-1.70) 0.002

Urea (mmol/L) 14.40 (8.50-23.75) 7.95 (4.23-14.50) 0.006

Creatinine (mg/dL) 1.75 (1.01-2.75) 0.93 (0.71-1.61) 0.001

Serum bilirubin (mg/dL) 12.61 (2.51-24.09) 20.07 (10.64-28.13) 0.011

GGT (U/L) 59.00 (33.00-123.00) 61.50 (45.75-99.50) 0.393

Potassium (mmol/L) 4:30 ± 0:91 4:19 ± 0:74 0.627

Sodium (mmol/L) 133:77 ± 6:91 135:06 ± 5:10 0.208

MELDs 27:55 ± 9:54 27:59 ± 6:72 0.979

iMELD 51:44 ± 11:53 49:15 ± 8:74 0.179

CTP 11:08 ± 1:96 11:82 ± 1:52 0.011

CLIF-ACLFs 49:87 ± 10:71 48:54 ± 9:65 0.408

CLIF-SOFAs 10:09 ± 3:67 10:46 ± 2:79 0.499

COSSH-ACLFs 7:19 ± 1:89 7:20 ± 1:51 0.988

Liver failure 163 (50.80) 35 (70.00) 0.017

Coagulation failure 68 (21.20) 16 (32.00) 0.129

Cerebral failure 66 (20.60) 0 (0.00) 0.315

28-day mortality 190 (59.20) 24 (48.00) 0.182

ALT: alanine aminotransferase; CLIF-SOFA: Chronic Liver Failure-Sequential Organ Failure Assessment; COSSH-ACLF: Chinese Group on the Study of
Severe Hepatitis B-Acute-on-Chronic Liver Failure; HBV: hepatitis B virus; INR: International normalized ratio; MAP: Mean arterial pressure; MELD:
Model for End-Stage Liver Disease.
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Table 3: Characteristics between SMT and ALSS after PSM.

Variates SMT ALSS P value

n 150 50

Age (year) 54:21 ± 11:59 53:70 ± 13:05 0.796

HBV-DNA (log copies/mL) 5:1 ± 1:7 5:1 ± 1:6 0.990

Male sex 124 (82.70) 42 (84.00) 1.000

Degree of HE 0.109

Without HE 81 (54.00) 23 (46.00)

I 24 (16.00) 6 (12.00)

II 7 (4.70) 7 (14.00)

III 9 (6.00) 6 (12.00)

IV 29 (19.30) 8 (16.00)

Ascitic (%) 0.007

Grade 1 30 (20.00) 12 (24.00)

Grade 2 37 (24.70) 23 (46.00)

Grade 3 52 (34.70) 7 (14.00)

Missing data 31 (20.70) 8 (16.00)

MAP (mmHg) 95:82 ± 16:05 96:88 ± 15:14 0.683

HR 87:65 ± 16:61 85:46 ± 13:45 0.399

INR 2.01 (1.68-2.82) 2.08 (1.74-2.63) 0.536

WBC (109/L) 7.15 (4.70-10.38) 6.55 (5.05-9.58) 0.241

Neutrophil (%) 72:88 ± 13:18 71:68 ± 10:79 0.563

Albumin (g/L) 29:30 ± 5:68 29:55 ± 4:54 0.777

Globulin (g/L) 28:66 ± 8:66 29:30 ± 8:97 0.654

ALT (U/L) 57.00 (25.50-127.00) 114.00 (54.75-253.50) 0.273

AST (U/L) 90.50 (49.75-205.00) 144.50 (92.50-282.00) 0.511

Hemoglobin (g/L) 99:82 ± 26:30 115:22 ± 25:51 <0.001
Cystatin C (mg/L) 2.14 (1.44-3.44) 1.24 (0.92-1.70) 0.007

Urea (mmol/L) 14.81 (6.75-23.82) 7.95 (4.26-14.50) 0.001

Creatinine (mg/dL) 1.80 (1.01-2.95) 0.93 (0.71-1.61) <0.001
Serum bilirubin (mg/dL) 14.12 (3.95-25.28) 20.07 (10.64-28.13) 0.079

GGT (U/L) 50.00 (33.00-119.00) 61.50 (45.75-99.50) 0.501

Potassium (mmol/L) 4:39 ± 0:95 4:19 ± 0:74 0.480

Sodium (mmol/L) 132:97 ± 7:69 135:06 ± 5:10 0.074

MELDs 29:91 ± 9:54 27:59 ± 6:72 0.113

iMELD 53:09 ± 12:04 49:15 ± 8:74 0.034

CTP 11:47 ± 1:98 11:82 ± 1:52 0.259

CLIF-ACLFs 49:90 ± 11:41 48:54 ± 9:65 0.450

CLIF-SOFAs 10:83 ± 3:84 10:46 ± 2:79 0.527

COSSH-ACLFs 7:56 ± 2:10 7:20 ± 1:51 0.260

Liver failure 84 (56.00) 35 (70.00) 0.114

Coagulation failure 50 (33.30) 16 (32.00) 1.000

Cerebral failure 38 (25.30) 14 (28.00) 0.852

28-day mortality 96 (64.00) 24 (48.00) 0.067

ALT: alanine aminotransferase; CLIF-SOFA: Chronic Liver Failure-Sequential Organ Failure Assessment; COSSH-ACLF: Chinese Group on the Study of
Severe Hepatitis B-Acute-on-Chronic Liver Failure; HBV: hepatitis B virus; INR: international normalized ratio; MAP: mean arterial pressure; MELD:
Model for End-Stage Liver Disease.
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with ALSS as the outcome. All 371 HBV-positive patients
were included in the PS analytical cohort. The associations
between ALSS and overall survival were evaluated using
Cox regression models and summarized as hazard ratios
(HRs) with 95% confidence intervals (CIs). The PS tech-
niques employed propensity score matching (PSM). A pro-
pensity score matching (PSM) method was applied to
compare the mortality between the patients treated with
ALSS and SMT. Patients treated with ALSS were matched
in a 1 : 3 ratio to patients treated with SMT only using a
method based on the logit of the PS. Statistical analyses were
performed with the aid of R ver. 4.0.5 (R Foundation for Sta-
tistical Computing, Vienna, Austria). All tests were two-
sided, and a P value < 0.05 was considered statistically
significant.

3. Results

3.1. HBV-Derived HRS Is More Severe than Non-HBV-
Derived HRS. A total of 669 patients were diagnosed as
HRS used by inclusion and exclusion criteria. 669 HRS
patients, including 298 HBV negative and 371 HBV positive,
were enrolled for the subsequent analysis (Figure 1). The
baseline characteristics of both cohorts are listed in
Table 1. No significant differences in the heart rate, neutro-
phil percentage, globulin, cystatin C, urea, potassium, kidney
failure, and other indexes were found between the HBV-
derived HRS and non-HBV-derived HRS groups. However,
the age of onset of the HBV-derived HRS cohort was lower,
and the proportion of male patients was higher. Also, the
coagulation and liver function of the HBV-derived HRS
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Figure 3: Kaplan–Meier curves of HBV-derived HRS treated with ALSS and SMT only after PAM. ALSS: artificial liver support system;
HBV: hepatitis B virus; HRS: hepatorenal syndrome; SMZ: standard medical treatment.
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cohort were worse, along with elevated serum bilirubin,
ALT, and AST levels. Thus, it could be inferred that the
pathology is different between the HBV-derived HRS cohort
and non-HBV-derived cohort. In this way, patients with
HBV-derived HRS should be paid more attention. More-
over, KM curves showed that HBV-derived HRS has higher
28-day mortality, though with no statistical differences

(P = 0:340) (Figure 2). Considering worse liver function
and prognosis, HBV-derived HRS deserves further research.

3.2. Baseline Characteristics of Patients with HBV-Derived
HRS after PSM. 321 patients received SMT, and 50 patients
received ALSS treatment in the whole HBV-derived HRS
cohort. Generally, there were significant differences in ascitic

Table 4: Univariate and multivariate Cox regression.

Variates
Univariate cox regression Multivariate cox regression

HR (95% CI) P value HR (95% CI) P value

Age (year) 0.99 (0.99-1.02) 0.329 1.02 (1.00-1.03) 0.069

Male sex 1.01 (0.62-1.63) 0.981 1.24 (0.76-2.03) 0.396

Degree of HE

Without HE Ref.

I 1.57 (0.92-2.66) 0.096

II 1.42 (0.70-2.90) 0.329

III 2.40 (1.28-4.52) 0.007

IV 2.67 (1.69-4.21) <0.001
Ascitic (%)

Grade 1 Ref.

Grade 2 0.41 (0.19-0.86) 0.019

Grade 3 0.48 (0.23-1.00) 0.051

Missing data 0.46 (0.21-0.99) 0.049

MAP (mmHg) 0.99 (0.98-1.00) 0.180

HR 1.02 (1.01-1.03) <0.001
INR 1.82 (1.56-2.02) <0.001 1.61 (1.37-1.89) <0.001
WBC (109/L) 1.09 (1.06-1.12) <0.001 1.03 (0.99-1.07) 0.104

Neutrophil (%) 1.05 (1.04-1.07) <0.001 1.03 (1.01-1.05) 0.003

Albumin (g/L) 0.98 (0.94-1.01) 0.168 0.98 (0.94-1.02) 0.257

Globulin (g/L) 1.01 (0.99-1.03) 0.463

ALT (U/L) 1.00 (1.00-1.00) 0.003

AST (U/L) 1.00 (1.00-1.00) 0.001

Hemoglobin (g/L) 1.00 (1.00-1.01) 0.219

Cystatin C (mg/L) 1.25 (1.05-1.49) 0.012

Urea (mmol/L) 1.01 (1.00-1.02) 0.012

Creatinine (mg/dL) 1.00 (1.00-1.00) 0.046

Serum bilirubin (mg/dL) 1.00 (1.00-1.00) <0.001 1.00 (1.00-1.00) 0.104

GGT (U/L) 1.00 (1.00-1.00) 0.952

Potassium (mmol/L) 0.99 (0.96-1.02) 0.535

Sodium (mmol/L) 0.96 (0.94-0.98) <0.001
MELDs 1.10 (1.07-1.12) <0.001
iMELD 1.08 (1.06-1.10) <0.001
CTP 1.48 (1.32-1.67) <0.001
CLIF-ACLFs 1.08 (1.06-1.10) <0.001
CLIF-SOFAs 1.22 (1.16-1.28) <0.001
COSSH-ACLFs 1.47 (1.35-1.60) <0.001

Organ failure

Liver failure 2.07 (1.40-3.07) <0.001
Coagulation failure 2.87 (1.99-4.13) <0.001
Cerebral failure 2.27 (1.55-3.31) <0.001
With ALSS 0.60 (0.39-0.95) 0.027 0.59 (0.38-0.94) 0.025
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grade, urea, creatinine, serum bilirubin, CTP score, etc.,
between HRS patients who received SMT and ALSS treat-
ment (Table 2). Considering the selection bias of the retro-
spective study, we adopted the PSM method to balance the
confounding factors. Patients with SMT and ALSS treatment
were matched in a ratio of 3 to 1 and then integrated into a
new cohort. Several indexes were balanced between two
cohorts while the other indexes still differed, indicating that
the baseline characteristics are quite different (Table 3).

3.3. ALSS Reduce the Mortality of HBV-Derived HRS. To fur-
ther evaluate the effect of ALSS on the prognosis of HBV-
derived HRS, we conducted KM curves in a new cohort after
PSM. Finally, we found ALSS could significantly benefit HRS
patients (P = 0:025). The median survival time of patients in
SMT group was 13 days, while those treated with ALSS were
more than 28 days (Figure 3).

Additionally, in univariate analysis, HE degree III,
ascitic, ALT, AST, cystatin C, urea, creatinine, iMELD,
MELDs, CLIF-ACLFs, CLIF-SOFAs, COSSH-ACLFs, organ
failures, and treated with ALSS were associated with 28-
day mortality. When combined with multivariate analysis,
eventually, INR, neutrophil percentage, and treated with
ALSS were independent predictive factors for 28-day mor-
tality in HBV-derived HRS. The mortality of patients treated
with ALSS was 0.6 times that of those without ALSS, which
could considerably prolong the life of patients (Table 4).

3.4. ALSS Could Acquire More Survival Benefit in AKI Stage
3. According to the definitions of diagnosis of HRS from the
International Club of Ascites (ICA-AKI), the severity of AKI
could be classified into three stages. In this way, patients
could be divided into three stages, namely, AKI stage 1,
AKI stage 2, and AKI stage 3. The baseline characteristics
of AKI stage 1, AKI stage 2, and AKI stage 3 are shown in
Table S1. Similarly, some indexes were different between
patients with ALSS and those without ALSS. The Cox
regression model was developed to figure out the effect of
ALSS on prognosis in different AKI stages. Here, we
developed three kinds of models, crude model, model 1,
and model 2. Finally, in all three models, ALSS could
acquire survival benefit in AKI stage 3, and the mortality
of patients treated with ALSS was 0.37, 0.34, and 0.29
times that of those without ALSS in the crude model,
model 1, and model 2, respectively (Table 5). In other

words, ALSS could reduce the population’s mortality rate
by 2/3 in the AKI stage 3 cohort. Nevertheless, in other
patients, the 28-day mortality remained similar between
patients with/without ALSS, especially in the AKI stage 1
cohort. Both the results of KM curves and Cox regression
analysis support this conclusion (Figure 4). The mortality
of patients with ALSS was much lower than that of
patients without ALSS in the AKI stage 3 cohort (P = 0:006
). The median survival time was 10 days in patients
without ALSS, while the median survival time was more
than 28 days in patients with ALSS. In total, ALSS could
greatly benefit patients in severe HBV-derived HRS.

3.5. ALSS Could Acquire More Survival Benefit with Organ
Failure ≥ 2. According to the number of organ failures,
patient with HBV-derived HRS could be divided into two
groups; the number of organ failures ≤ 1 and ≥2. The base-
line characteristics are listed in Table S2. In patients with 0
or 1 organ failure, ALT, AST, creatinine, and urea were
different between patients with and without ALSS. In
patients with more organ failures, those two groups
differed in heart rate, cystatin C, iMELD, MELDs, and
COSSH-ACLFs. Given the variety, the effect of ALSS on
prognosis was evaluated in Table 5. Finally, ALSS could
reduce the mortality in patients with more than two organ
failures by almost half in all three models. From Figure 5,
we could find that patients with more organ failures are at
high risk of mortality (P = 0:002) but could benefit from
ALSS. Combined with the results in different AKI stages,
ALSS could significantly reduce the mortality of severe
HBV-derived HRS patients.

3.6. Patients Treatment with ALSS Have Lower Scores and
Mortality. Figure 6 displayed various score systems, includ-
ing iMELD, CLIF-ACLFs, CLIF-SOFAs, and COSSH-
ACLFs, after patients were treated with ALSS or SMT only.
The iMELDs was much higher in patients treated with
SMT rather than ALSS, while nonsurvivors were concen-
trated in the higher iMELD part. Consistently, this trend
remained the same when patients were evaluated by CLIF-
ACLFs, CLIF-SOFAs, and COSSH-ACLFs. As all the four
scores were found to be associated with mortality of HBV-
derived HRS, generally, it can be inferred that ALSS might
help reduce the scores and benefit the prognosis of HBV-
derived HRS.

Table 5: Summary of the results of multivariate analyses of 28-day mortality in HBV-derived HRS patients after PSM who received ALSS
versus SMT treatment with risk stratification by number of organ failures or AKI degree.

Analysis Treatment
Crude model Model 1 Model 2

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

AKI stage 1 ALSS (SMT as reference) 1.03 (0.60-1.79) 0.908 1.04 (0.60-1.80) 0.892 0.76 (0.43-1.35) 0.352

AKI stage 2 ALSS (SMT as reference) 0.41 (0.13-1.35) 0.143 0.47 (0.14-1.64) 0.238 0.24 (0.03-1.90) 0.175

AKI stage 3 ALSS (SMT as reference) 0.37 (0.16-0.88) 0.024 0.34 (0.14-0.83) 0.018 0.29 (0.12-0.70) 0.006

Organ failure (≤ 1) ALSS (SMT as reference) 0.72 (0.36-1.43) 0.345 0.72 (0.36-1.43) 0.344 0.68 (0.32-1.43) 0.307

Organ failure (≥ 2) ALSS (SMT as reference) 0.41 (0.23-0.74) 0.003 0.42 (0.23-0.76) 0.004 0.52 (0.28-0.95) 0.033

Model 1 was adjusted for age and sex. Model 2 was adjusted for age, sex, neutrophils, alanine aminotransferase (ALT), albumin, serum bilirubin, COSSH-
ACLFs, and international normalized ratio (INR). AKI: acute kidney injury; SMT: standard medical treatment; ALSS: artificial liver support system.
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3.7. The Change of INR and Creatinine Were Independent
Predictive Factors for the Mortality of HBV-Derived HRS.
The ALT, serum bilirubin, creatinine, INR, and neutrophil
were monitored both pre-ALSS and post-ALSS treatment.
Serum bilirubin was significantly decreased after ALSS treat-
ment (P = 0:004), while ALT, creatinine, INR, and neutro-
phil percentage remained at the same level (Table 6). To
further assess the effect of the change of indexes on 28-day
mortality, we included the change of serum bilirubin, ALT,
neutrophil percentage, INR, and creatinine into Cox regres-
sion analysis. We found that the change of INR and creati-
nine were independent predictive factors for the prognosis
of HBV-derived HRS (P = 0:020 and 0.016, respectively)
(Table 7).

4. Discussion

This study retrospectively enrolled HRS patients from multi-
ple centers in the past ten years and obtained 28-day mortal-
ity through telephone follow-up. From the total patients, we
found the distinct characteristics between HBV-derived HRS
and non-HBV-derived HRS and worse prognosis in those
with HBV positive. Then, we balanced the selection bias
through PSM and concluded that ALSS could improve the
prognosis of HBV-derived HRS whenever in various Cox
regression models. As for hierarchical analysis, ALSS could
greatly benefit patients in AKI stage 3 and with ≥ two organ
failures. Finally, serum bilirubin was reduced after ALSS
treatment, and the change of INR and creatinine could pre-
dict the 28-day mortality of HBV-derived HRS. Eventually,

ALSS could improve the prognosis of HBV-derived HRS,
especially severe HRS.

The HBV infection rate has been high in China [13, 14].
Although newborns are generally vaccinated against HBV,
the current situation of HBV infection is still severe. Specif-
ically, HBV infection still accounts for a large proportion of
the causes of HRS; 371 out of 669 patients were HBV posi-
tive in this study. Patients with HBV positive had higher
INR, ALT, AST, serum bilirubin, and proportion of coagula-
tion failure than those with HBV negative, which is not con-
ducive to the prognosis of the HRS. Consistent with the
previous study, patients with HBV positive are at risk of
higher mortality in the KM curve. The previous view
believed that HRS is only a kind of renal dysfunction and
the structure of the kidney is normal. However, electron
microscopy studies on kidneys obtained from HRS patients
shortly after death have demonstrated renal tubular tears
and the presence of dark bodies in mitochondria [15].
Besides, a particular lesion involving reflux of the proximal
convoluted tubule epithelium into the Bowman space has
also been described in autopsy specimens from patients with
HRS [16]. Like hepatitis C virus (HCV) infection, the path-
ogenetic role of HBV infection has been documented pri-
marily by the demonstration of hepatitis B antigen-
antibody complexes in the renal lesions via immunofluores-
cence microscopy [4, 17]. In this way, HBV-derived HRS is
recommended for more attention.

Several indexes were different, including ascitic, hemo-
globin, cystatin C, urea, creatinine, serum bilirubin, and
CTP score between patients treated with ALSS and SMT
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Figure 4: Kaplan–Meier curves of mortality of ALSS in different AKI degrees. (a) The effect of ALSS in AKI stage 1. (b) The effect of ALSS in
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only. After being balanced by PSM, some of them remained
at the same level between the two groups, indicating the
PSM method’s efficacy. To figure out the association
between ALSS and prognosis of HBV-derived HRS, we did
survival analysis, and it showed that the median survival
time of patients with ALSS is longer than those treated only
with SMT, and ALSS could reduce mortality.

We enrolled various indexes into univariate Cox regres-
sion analysis to further reveal ALSS and predictive factors
for 28-day mortality. Then, we found different degrees of
ascitic, heart rate, INR, neutrophil percentage, ALT, AST,
cystatin C, urea, and creatinine were associated with the
prognosis of HBV-derived HRS [18]. Liver function, includ-
ing the degree of ascitic, ALT, AST, and cystatin C, and renal
function, including urea and creatinine, account for the most
factors related to prognosis [19]. Additionally, standard
score systems, MELDs, iMELD, CTP, CLIF-ACLFs, CLIF-
SOFA, and COSSH-ACLFs, were calculated according to
mainly liver function. Thus, it is reasonable that these score
systems are related to the prognosis [20–23]. When selected
for multivariate Cox regression, INR and neutrophil per-
centage are independent predictive factors for 28-day mor-
tality. One of the elements to assess the severity of
advanced liver diseases is INR for decades [24]. Usually,
higher INR means blood coagulation dysfunction and may
result in an unwell prognosis of advanced liver diseases,
including HRS. Neutrophil percentage is positively corre-
lated with the severity of systemic inflammation. Advanced
liver disease is often accompanied by bacterial infections,

increasing the percentage of neutrophils [25, 26]. We found
that it can predict the mortality of HRS. As it is convenient
and readily available, neutrophil percentage could serve as
a monitor factor. Moreover, ALSS could significantly reduce
mortality. In this way, we could treat patients with ALSS and
use INR and neutrophil percentage as monitor factors to
give more survival benefits to patients with HBV-derived
HRS.

According to the definition of AKI from the Interna-
tional Club of Ascites (ICA-AKI), there are three stages of
AKI [12]. As the degree of AKI could influence the outcome,
we wonder whether ALSS could benefit all degrees of AKI.
We developed three models adjusted by various variables.
Finally, ALSS greatly benefits patients in AKI stage 3. This
may result from the working principle of ALSS, which can
take away metabolic waste and replace it with normal
plasma. This can quickly correct the fluid balance and
restore liver and kidney functions. Patients in AKI stage 1
and AKI stage 2 may regulate their internal environment
disorders through their adjustment ability.

ACLF is also a common advanced liver disease with
rapid liver dysfunction and high mortality [27]. There are
many similarities between HRS and ACLF; for example,
ACLF patients often have kidney damage, continued collec-
tion of various metabolites and toxins and systemic inflam-
mation, which means that treatment for ACLF could also
help patients with HRS. Non-HBV-ACLF patients were con-
firmed to have a good prognosis [14, 28, 29]. The effect of
ALSS on HRS has been uncertain before; however, ALSS
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Figure 5: Kaplan–Meier curves of mortality of ALSS in patients with organ failures ≥ 2 and ≤1. (a) The effect of ALSS in patients with organ
failure ≤ 1. (b) The effect of ALSS in patients with organ failure ≥ 2. (c) The effect of the number of organ failures on mortality. ALSS:
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could significantly reduce mortality of ACLF [30–33]. A
study of 132 patients with HBV-ACLF revealed that ALSS
could better improve the short-term survival of HBV-
ACLF patients than SMT alone, especially in those with
HBV-ACLF with infection [34, 35]. This is consistent with
our results that ALSS could significantly promote survival
of patients with HBV-derived HRS, especially those in AKI
stage 3.

ACLF degree is defined mainly according to the degree
of organ failures. It is artificially separated into ACLF-1,
ACLF-2, and ACLF-3 according to the number of organ fail-
ures, and this classification is significantly associated with
the prognosis of ACLF. Similarly, we divided our patients
into 2 groups in the same way. Finally, ALSS could give great
benefit to those with ≥2 organ failures. The mortality of
patients treated with SMT only is about 3 times that of
patients treated with ALSS. As described before, organ fail-
ures were associated with the severity and outcome of ACLF
[32, 36]. Also, according to the mechanism of ALSS, it could
rapidly improve organ function. The consistency of the
above two stratified analyses illustrates the reliability of the
results. We can conclude that ALSS can reduce the mortality
of HRS patients, especially those with multiple organ failures
and severe renal dysfunction.

MELDs has been developed to evaluate the liver function
of liver diseases. It contains total serum bilirubin, INR, and
creatinine. INR and the change of creatinine and INR could
predict the prognosis of HBV-derived HRS. Patients with
higher INR and creatinine may get a worse outcome.
According to the bee swarm plot related to iMELD, CLIF-
SOFAs, CLIF-ACLF, and COSSH-ACLF, the scores of all
four systems are higher in patients treated with SMT only.

Although scoring systems above could predict the mortality
of HRS, the severe complication of decompensated cirrhosis,
a novel predictive tool that specifically predicts the mortality
of HRS is needed. Our team has launched a novel tool
named GIMNS, which combines neutrophil percentage
and INR, to predict mortality of HRS [37].

Indexes including ALT, serum bilirubin, creatinine, INR,
and neutrophil percentage were reassessed after ALSS treat-
ment. The level of serum bilirubin decreased while the
others remained the same. The small sample size of patients
could cause this as some information was missing due to ret-
rospective data. But the change of INR and creatinine are
proved to be predictive factors for 28-day mortality in
patients treated with ALSS. Decreased creatinine and INR
after ALSS treatment may represent a better prognosis of
HBV-derived HRS. Our study also has some limitations.
First, this is a retrospective cohort study, and some selection
biases exist. In this way, we adopted PSM analysis to balance
the confounding variables and enrolled four general hospi-
tals to increase the sample size. Second, we diagnosed HRS
according to the latest criteria from ICA-AKI to improve
the accuracy of diagnosis. But definitions for the diagnosis
of HRS have not been clear. The patients we enrolled may
contain those with acute tubular necrosis (ATN). Thus,
more clinical trials on HRS should be carried out to define
HRS better. Finally, our study cohort did not adopt urine
output as a diagnostic indicator. We would add this index
in the following prospective cohort study.

5. Conclusions

In summary, HBV-derived HRS is more severe than non-
HBV-derived HRS and has a worse prognosis. ALSS could
reduce the 28-day mortality of patients with HBV-derived
HRS, especially those in AKI stage 3 and with organ failure
≥ 2. INR and the change of creatinine and INR could predict
the prognosis of HBV-derived HRS.

Data Availability

The original contributions presented in the study are
included in the article/Supplementary Material; further
inquiries can be directed to the corresponding authors.

Table 6: Patients characteristics before and post-ALSS treatment.

Variates Pre-ALSS Post-ALSS P value

ALT (U/L) 147.00 (73.00-377.00) 103.00 (44.50-235.00) 0.120

Serum bilirubin (mg/dL) 20.07 (10.64-28.12) 7.51 (1.47-27.75) 0.004

Creatinine (mg/dL) 0.93 (0.71-1.61) 1.51 (0.70-2.36) 0.213

INR 2.08 (1.74-2.63) 2.21 (1.55-3.26) 0.533

Neutrophil (%) 73.50 (63.58-81.15) 83.60 (76.08-86.60) 0.068

ALT: alanine aminotransferase; INR: international normalized ratio.

Table 7: Univariate and multivariate analysis of the difference of
variates between post- and pre-ALSS groups as risk factors on 28-
day mortality in patients treated with ALSS.

Variates

Univariate Cox
regression

Multivariate Cox
regression

HR (95% CI)
P

value
HR (95% CI)

P
value

ΔSerum
bilirubin

1.00 (1.00-1.00) 0.301

ΔALT 1.00 (1.00-1.00) 0.581

ΔNeutrophil 0.99 (0.98-1.00) 0.075

ΔINR 1.49 (1.12-1.98) 0.006 1.42 (1.06-1.90) 0.020

ΔCreatinine 1.00 (1.00-1.00) 0.003 1.00 (1.00-1.00) 0.016

ALT: alanine aminotransferase; INR: international normalized ratio.
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Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin
plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed
metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on
chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we
demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4
expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the
migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4
could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin
displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells.
Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4
expressions for NSCLC therapy.

1. Introduction

Lung cancer has become the leading cause of cancer-related
deaths worldwide, especially in non-small-cell lung cancer
(NSCLC), which accounts for about 85% of all lung cancer
cases [1–4]. The burden of lung cancer has become one of
the major public health problems in the world. In recent
years, various studies on lung cancer and its drugs have
made some progress, but the five-year survival rate of
patients caused by factors such as adverse drug reactions
has not been effectively improved. Thus, the treatment of
lung cancer patients is still a big medical problem [3–5].

In recent years, a number of studies have shown that
herbal extracts have become a new strategy for the treatment
of tumors. For example, the Chinese herbal extract of degue-
lin, derived from Lonchocarpus, Derris, or Tephrosia, can
effectively inhibit the proliferation, invasion, and metastasis

of a variety of tumors (e.g., colon cancer, human pancreatic
cancer, breast cancer, and lung cancer) [6, 7]. Importantly,
deguelin can enhance the sensitivity of tumor cells to che-
motherapy drugs and radiotherapy and has no obvious tox-
icity and inhibitory effect on the growth of normal cells [6].
The main antitumor effects of deguelin include inhibiting
the proliferation, invasion, and metastasis of tumor cells;
promoting the apoptosis of tumor cells; delaying the tumor
cell cycle; and inducing DNA damage of tumor cells
[8–13]. However, the molecular mechanisms of deguelin in
antitumor effects remain completely unclear, a situation that
needs to be explored in the future.

The activation of tumor suppressor genes and onco-
genes, including phosphatase and tensin homologue deleted
on chromosome 10 (PTEN) and Krüppel-like factor 4
(KLF4), plays a key role in regulating the occurrence and
development of tumors. PTEN is a tumor suppressor gene
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that is closely related to tumorigenesis, and its functional
defect exists widely in many kinds of tumors [14–16].
KLF4 plays a dual role in both oncogenes and tumor sup-
pressor genes, and its expression is tissue or cell specific
[17–20]. Studies have shown that PTEN and KLF4 are less
active in NSCLC, and their high expression can effectively
inhibit the proliferation of NSCLC [6, 7, 17, 18]. However,
the relationship between PTEN and KLF4 in NSCLC
remains unclear, and whether the deguelin affect the expres-
sion of PTEN or KLF4 has not been reported.

Numerous studies have shown that epithelial-
mesenchymal transition (EMT) of tumor cells plays an
important role in tumorigenesis and invasion [21, 22]. In
studies of pancreatic cancer, researchers found that deguelin
prevented epithelial cells from transforming into mesenchy-
mal cells by inhibiting EMT [8, 23]. Moreover, deguelin
inhibited the invasion, metastasis, and EMT transformation
of NSCLC, colorectal cancer, and pancreatic tumors
[24–26]. Therefore, the inhibition of the EMT process is an
important measure in the treatment of tumors. These find-
ings imply that deguelin plays important roles in pathogen-
esis of the tumors by inhibiting the EMT level. Currently, the
accumulated evidence suggests that inactivation or loss of
PTEN promotes the poor prognosis and metastasis of can-
cers by upregulating EMT expression including lung cancer
[27, 28]. Similarly, KLF4 can negatively regulate the expres-
sion of EMT that is closely associated with the proliferation,
invasion, and metastasis of cancer cells including breast can-
cer and colorectal cancer [29, 30]. These findings imply a
possible relation between PTEN and KLF4 in invasion and
metastasis of cancer cells that are involved with EMT expres-
sion. However, the relation in NSCLC still was completely
unclear.

Therefore, this study was done to analyze the regulation
of PTEN and KLF4 expressions in NSCLC cells by deguelin
in vitro and in mice and to improve the mechanism of
deguelin inhibiting the proliferation of NSCLC to explore
the potential value of deguelin in the treatment of NSCLC.

2. Materials and Methods

2.1. Cell Culture. Human lung cancer cell lines A549 and
PC9, purchased from the Committee on Type Culture Col-
lection of Chinese Academy of Sciences (Shanghai, China),
were cultured in PRMI-1640 medium, containing 10% fetal
bovine serum (FBS), 100U penicillin, and 100μg streptomy-
cin, and then, the cells were cultured in cell incubator at
37°C with 5% CO2.

2.2. Quantitative Real-Time PCR. Total cellular RNA was
extracted by RNeasy Mini Kit (74106, Qiagen, Germany),
based on the manufacturer’s protocol, the concentration of
which was measured by NanoDrop 2000 (Thermo Scientific,
USA). The total RNA was reverse transcribed into comple-
mentary DNA (cDNA) by PrimeScript 1st Strand cDNA
Synthesis Kit (D6110A, Takara, China); then, real-time
quantitative polymer chain reaction (qPCR) for cDNA
amplification was carried out by QuantiFast SYBR Green
PCR Kit (Qiagen, Germany). The relative levels of messen-

ger RNA (mRNA) expression were calculated by the com-
parative Ct method (2-ΔΔCt). The glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was considered as an
internal control of gene expression [8]. The specific primers
of real-time qPCR are shown in Table 1.

2.3. Immunoblotting. Immunoblotting was performed as
previously described [8]. Briefly, the cells were washed twice
using cold phosphate buffered saline (PBS) and lysed with lysis
buffer, supplied with protease and phosphatase inhibitors, at
4°C for 30min. The lysate supernatants were harvested and
boiled in loading buffer. Protein concentration was tested by
Pierce BCA Protein Assay Kit (23227, Thermo Scientific,
USA). Cell lysates were followed by SDS–PAGE gel electro-
phoresis and then transferred to polyvinylidene fluoride
(PVDF) membrane (Millipore, USA) for immunoblotting
analysis and antibody hybridization. The target protein bands
were visualized by an enhanced chemiluminescence system
(Bio-Rad, California, USA). The antibodies PTEN (9559),
KLF4 (4038), Claudin-1 (4933), Cyclin D1 (2978), E-
cadherin (3195), N-cadherin (13116), survivin (71G4B7),
Vimentin (Cat#5741), and β-actin (3700) were obtained from
Cell Signaling Technology (Danvers, MA, USA).

2.4. Cell Transfection. NSCLC cells were transfected with
PTEN or KLF4 small interfering RNA (siRNA) sequences
(or overexpression plasmids) or negative control, purchased
from RiboBio (Guangzhou, China), by Lipofectamine 2000
(11668019, Invitrogen, USA), according to the protocols, to
determine PTEN or KLF4 knockdown (or overexpression)
in the two cell lines, respectively. After transfection, the cells
were collected for further experimentation. The transfection
efficiency was confirmed by immunoblotting to analyze the
expression levels of PTEN or KLF4 protein.

2.5. Cell Scratch Assay. A cell scratch assay was performed to
evaluate cell motility. The transfected cells were seeded and
cultured in six-well plates. The wound healing was scratched
by a 100μL sterile pipette tip, and the cells were washed
three times with PBS. The wound healing width was
observed in five different areas at 48 h by an inversion fluo-
rescence microscope (Olympus, Japan).

2.6. Cell Invasion Assay. The invasion experiment was car-
ried out in a transwell. The NSCLC cells in a serum-free
medium were inoculated into the upper chamber of the
transwell, and the 24-well plate in the lower chamber was
filled with RPMI 1640 culture medium. The cells in the

Table 1: Specific primers used for real-time PCR in this study.

Primer name Sequences (5′ to 3′)
PTEN-F 5-TGGATTCGACTTAGACTTGACCT-3

PTEN-R 5-GGTGGGTTATGGTCTTCAAAAGG-3

KLF4-F 5-TCGGACCACCTCGCCTTACA-3

KLF4-R 5-TCGGACCACCTCGCCTTACA-3

GAPDH-F 5-GGAGCGAGATCCCTCCAAAAT-3

GAPDH-R 5-GGCTGTTGTCATACTTCTCATGG-3
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upper chamber were wiped out after 48 h, and those in the
lower chamber were stained with 1% crystal violet. The
chamber was precoated with Matrigel (BD Bioscience,
USA) to evaluate cell invasion. The cells were counted in
at least three random fields.

2.7. Animal Experiments. Six-week-old female BALB/c-nude
mice were obtained from Shanghai Experimental Animal
Center (Chinese Academy of Sciences, China) for human
tumor models. After two-week acclimatization, they were

randomized into groups of six mice. The control group
was injected with 2 × 106/cells with PC9 cells per mouse.
The experimental group were injected with an equal number
of PC9 cells. When palpable tumors (~50-100mm3) arose,
the control group was orally treated with physiological
saline, and experimental group were treated with deguelin
(4mg/kg) by oral gavage on 1, 3, and 5 days of each week
for three weeks. Tumor size was tested by caliper through
measurements of the two perpendicular diameters every
three days using the formula: TumorVolume = ðwidth2 ×

A549 PC9(a) (b)

PTEN

KLF4PBS

Deguelin

β-actin

β-actin

PTEN

KLF4

0 24 48 72h 0 24 48 72h

Figure 1: Deguelin upregulates PTEN and KLF4 expression in NSCLC cells. (a) The expression levels of PTEN and KLF4 in A549 cells
induced by deguelin (25 μM) at different times compared to controls treated by PBS. (b) The expression levels of PTEN and KLF4 in
PC9 cells induced by deguelin at different times compared to controls treated by PBS. β-Actin was used as an internal control. All
experiments were repeated at least in triplicate.

A549 PC9

PTEN-over

PTEN-siR

KLF4-over
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β-actin

β-actin

β-actin
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Figure 2: Determination of PTEN-siR/overexpression and KLF4-siR/overexpression in NSCLC cells at different times. (a) The expression
levels of PTEN and KLF4 in A549 cells treated by PTEN-siR/overexpression and KLF4-siR/overexpression at different times compared to
controls treated by PBS, respectively. (b) The expression levels of PTEN and KLF4 in PC9 cells treated by PTEN-siR/overexpression and
KLF4-siR/overexpression at different times compared to controls treated by PBS, respectively. β-Actin was used as an internal control.
All experiments were repeated at least in triplicate.
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lengthÞ/2. All procedures were performed according to the
Regulations for the Administration of Affairs Concerning
Experimental Animals. The experiments were approved by
the Experimental Animal Ethics Committee of the First
Affiliated Hospital, Zhejiang University School of Medicine.

2.8. Statistical Analysis. The experimental data were ana-
lyzed by GraphPad 6.04 software (GraphPad Software Inc.,
La Jolla, USA). All the experiments were independently
repeated three times. The results were expressed by mean
± standard deviation (SD), t-test, and analysis of variance
between groups of samples; P value < 0.05 was considered
to be statistically significant.

3. Results

3.1. Deguelin Upregulates the Expressions of PTEN and KLF4.
To investigate the effect of deguelin on the expressions of
PTEN and KLF4, we added 25μmol (μM) deguelin into
A549 and PC9 cells and detected the changes of PTEN and
KLF4 proteins by immunoblotting assay at different time
points (0, 24, 48, and 72h). The results showed that compared
to controls, deguelin significantly upregulated the expressions
of PTEN and KLF4 in a time-dependent manner in A549 cells
and PC9 cells, respectively (Figures 1(a) and 1(b)). Moreover,
significant differences of PTEN and KLF4 gene expressions
were observed at 48h by PCR assay (Fig. 1S).
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Figure 3: Deguelin inhibits migration and invasion of NSCLC. (a and c) The cell scratch assay for A549 and PC9 cell migration after cells were
transfected by PTEN-siR/overexpression, KLF4-siR/overexpression, and deguelin (25μM), respectively. The migration area was counted. (b and
d) The cell invasion assay for A549 and PC9 cells after cells were transfected by PTEN-siR/overexpression, KLF4-siR/overexpression, and
deguelin (25μM), respectively. The numbers of invasion cells were counted. Scale bar represents 100μm. All experiments were repeated at
least in triplicate. The data are presented as the mean ± SD. Significant differences are indicated by ∗∗∗P < 0:001.
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3.2. Determination of Time Point of Target Gene
Overexpression and Interference Experiment. To determinate
the appropriate time point of target gene expression, we
determined the time point (0, 24, 48, and 72h) of overex-
pression and siRNA in the experiment on PTEN and KLF4
genes in A549 cells and PC9 cells to facilitate the follow-up
experiment. The best time point for overexpression and
siRNA of PTEN and KLF4 genes was 48 h in A549 cells
and PC9 cells, respectively (Figures 2(a) and 2(b)). More-
over, significant changes of PTEN and KLF4 gene expres-
sions were observed at 48 h by PCR assay (Fig. 1S).

3.3. Deguelin Inhibits the Migration and Invasion of NSCLC
Cells. To investigate the effect of deguelin on the migration
and invasion of NSCLC cells, we added deguelin (25μM)
into A549 and PC9 cells for 48 h. The results of the scratch
analysis showed that deguelin could effectively inhibit the
migration of A549 and PC9 cells, the migration effect of
PTEN and KLF4 induced by their overexpression was simi-
lar to that of deguelin, and the effect on siRNA of PTEN and
KLF4 was similar to that of normal control (NC) but con-
trary to the effect on deguelin (Figures 3(a) and 3(c)). The
invasive effect of PTEN and KLF4 on NSCLC cells was sim-
ilar to that of deguelin, and the effect on siRNA of PTEN and
KLF4 in NSCLC cells was similar to that of NC but different
from that of deguelin (Figures 3(b) and 3(d)).

3.4. Relationship between PTEN and KLF4. To determine
whether PTEN affects the expression of KLF4 in NSCLC
cells, siRNA and overexpressions of PTEN and KLF4 were
analyzed in this study. The results showed that the overex-
pression or siRNA of KLF4 had no significant effect on
PTEN expression in A549 cells and PC9 cells (Figures 4(a)
and 4(c)). Interestingly, both overexpression and siRNA of
PTEN positively regulated KLF4 expression in A549 cells
and PC9 cells (Figures 4(b) and 4(d)).

3.5. Effect of Deguelin on EMT Expression by PTEN and
KLF4. To determine the effect of deguelin, PTEN, and
KLF4 on EMT in NSCLC cells, deguelin, siRNA, and overex-

pressions of PTEN and KLF4 were analyzed in this study.
The results showed that deguelin can effectively inhibit
EMT in A549 cells and PC9 cells by decreasing vimentin
protein expression and promoting E-cadherin level, an effect
that was similar to that of PTEN and KLF4 overexpressions
on the EMT in A549 cells and PC9 cells (Figures 5(a) and
5(b)). However, the effect of deguelin was different from that
of PTEN and KLF4 siRNA, which promotes EMT expres-
sions in A549 cells and PC9 cells (Figures 5(c) and 5(d)).

3.6. Effect of Deguelin on Tumor Size in Tumor-Bearing
Mice. To further analyze the effect of deguelin on tumor size
and expressions of PTEN and KLF4, we inoculated PC9 cells
subcutaneously into BABL/c mice and injected deguelin.
After 2 weeks, the tumor size was measured, and the
expressions of PTEN and KLF4 were detected. The results
showed that deguelin could effectively inhibit tumor growth
and upregulate the expressions of PTEN and KLF4 in tumor
tissues (Figure 6).

4. Discussion

NSCLC is the most common lung cancer and is a major
cause of cancer-related deaths worldwide. The metastasis
of NSCLC is the key factor for its poor prognosis [3–5,
31]. The burden of disease with NSCLC has become one of
the major public health problems in the world. Here, we
observed that deguelin could significantly upregulate PTEN
and KLF4 expressions in NSCLC cells, including A549 and
PC9 cells in this study. Interestingly, PTEN could positively
upregulate KLF4 expression in A549 and PC9 cells. More-
over, overexpressions of PTEN and KLF4 or deguelin could
inhibit the migration and invasion of NSCLC cells, which
were involved into EMT expressions in NSCLC cells. Addi-
tionally, deguelin displayed a significant antitumor ability
by upregulating PTEN and KLF4 expressions in mice model
with NSCLC cells. Together, these results indicated that
deguelin was considered to be a potential therapeutic target
for the treatment of NSCLC.
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Figure 4: PTEN upregulates KLF4 expression in NSCLC cells. (a) The expression levels of PTEN in A549 cells transfected with KLF4-siR/
overexpression were detected by immunoblotting assay. (b) The expression levels of KLF4 in A549 cells transfected with PTEN-siR/
overexpression were detected by immunoblotting assay. (c) The expression levels of PTEN in PC9 cells transfected with KLF4-siR/
overexpression were detected by immunoblotting assay. (d) The expression levels of KLF4 in PC9 cells transfected with PTEN-siR/
overexpression were detected by immunoblotting assay. β-Actin was used as an internal control. All experiments were repeated at least
in triplicate.
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In recent years, deguelin, a rotenoid of the flavonoid
family, extracted from Lonchocarpus, Derris, or Tephrosia,
can effectively inhibit the proliferation, invasion, and
metastasis of many kinds of tumors, including colon can-
cer, human pancreatic cancer, breast cancer, and lung can-
cer, and is a promising chemopreventive agent for cancer
therapy [6, 7]. Deguelin promotes apoptosis of NSCLC
by inhibiting galectin-1 protein expression [8]. Deguelin
derivatives block the development of NSCLC by interfer-
ing with the binding of adenosine triphosphate (ATP) to
heat shock protein 90 (HSP90); its analogue SH-1242 also
exerts its antitumor effect by inhibiting HSP90 [32, 33].
Researchers found that deguelin could inhibit the prolifer-
ation, invasion, metastasis, and autophagy of tumor cells
by regulating many signal pathways (e.g., EGFR/IGF1R-

Akt, MAPK, and mTOR). Our study also confirmed that
deguelin can effectively inhibit the invasion, migration,
and growth of NSCLC cells [6–10, 34, 35]. In the xeno-
graft mouse model, orally treated with deguelin (4mg/kg/
three times a week) significantly prevented tumor growth,
according to the dose conversion [36], the 4mg/kg degue-
lin dose used in mouse is equivalent to the dose of 19.5mg
deguelin dose for a 60 kg person, which is certainly within
the range of a number of plant extracts. These data pro-
vide a strong basis for the future clinical translational
research of deguelin.

Studies show that PTEN, as a tumor suppressor gene,
its functional defect plays a key role in the development
of various cancers, including prostate cancer, lung cancer,
hepatocellular carcinoma (HCC), and pancreatic cancer
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Figure 5: EMT-associated proteins were regulated by deguelin, PTEN, and KLF4. (a) EMT-associated proteins were detected in A549 cells
and PC9 cells by deguelin and PTEN-siR/overexpression. (b) EMT-associated proteins were detected in A549 cells and PC9 cells by deguelin
and KLF4-siR/overexpression. β-Actin was used as an internal control. All experiments were repeated at least in triplicate.
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[14, 37–40]. The low expression or loss of function of
PTEN in patients and animal models with NSCLC could
not effectively inhibit the proliferation and migration of
NSCLC [41–43]. These results indicated that increased
PTEN will contribute to inhibition of tumors. Our study
also showed that deguelin could effectively promote the
expression of PTEN to inhibit the invasion and migration
of NSCLC cells in vitro, which was associated with inhi-
bition of EMT, and suppressed tumor growth with upreg-
ulation of PTEN expression in tumor tissue from mice
model with NSCLC. These findings further confirmed
the important value of deguelin as an antitumor agent
for NSCLC by upregulating PTEN expression to decrease
the EMT.

Previous reports showed that KLF4, a zinc finger-type
transcription factor, played a pivotal and different role in
the development of various cancers, including lung cancer,
HCC, and pancreatic cancer [44–48]. However, low

expression of KLF4 promoted the growth, invasion, and
metastasis of NSCLC, but high expression of KLF4 dis-
played a valuable role for therapy of NSCLC [49–51]. In
our study, the results showed that increased expression
of KLF4 could effectively inhibit the growth, invasion,
and metastasis of NSCLC, which was associated with inhi-
bition of EMT in cell lines. Interestingly, deguelin could
significantly promote the expression of KLF4 in cell lines
and mouse tumor tissue of NSCLC to play an important
antitumor role. These findings indicated that deguelin
could effectively suppress the growth, invasion, and metas-
tasis of NSCLC by upregulating KLF4 expression to reduce
the EMT. Importantly, deguelin could suppress the inva-
sion and metastasis of NSCLC by upregulating PTEN
and KLF4 expressions to reduce the EMT, which indicated
an important relation between PTEN and KLF4 in
NSCLC. Our results demonstrated the value of the
hypothesis about the relation between PTEN and KLF4
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Figure 6: Deguelin inhibited tumor growth by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. (a) On day 21,
the tumors were carefully dissected from the mice, and the tumor size was measured. (b) The expression levels of KLF4 and PTEN proteins
in tumors were detected. (c and d) The relative band intensity of KLF4 and PTEN in tumors were detected. β-Actin was used as an internal
control. All experiments were repeated at least in triplicate. ∗∗∗P < 0:001 and ∗∗∗∗P < 0:0001.
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in NSCLC. Overexpressed PTEN could promote KLF4 expres-
sion to inhibit the EMT, and siPTEN attenuated KLF4 expres-
sion to restore the EMT. However, overexpressed KLF4 (or
siKLF4) could not enhance (or decrease) PTEN expression
but could affect the EMT in NSCLC cell lines. These findings
confirmed that PTEN could promote KLF4 expression to sup-
press EMT in NSCLC and deguelin is a promising agent for
NSCLC therapy. However, how does deguelin regulate the
PTEN/KLF4/EMT process is explored in the future study.

5. Conclusion

In summary, deguelin effectively promoted the expression of
PTEN and KLF4 in NSCLC cells in vitro, and upregulated
PTEN could increase the expression of KLF4 to suppress
the EMT to further attenuate the invasion and migration
of NSCLC cells. In vivo experiments also showed that degue-
lin could upregulate the expression of PTEN and KLF4 in
tumor-bearing mice and then significantly inhibit the
growth of NSCLC in mice. These findings further improved
the important molecular mechanism of deguelin inhibiting
the invasion and migration of NSCLC and established an
important foundation for exploring the potential value of
deguelin as a promising drug for NSCLC therapy.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare no conflict of interests.

Authors’ Contributions

GL and XZ performed the experiments, drafted the manu-
script, and designed the figures and tables. YY revised the
manuscript. JZ conceived the topic and revised the manu-
script. All authors contributed to the article and approved
the submitted version.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Nos. 81670017, 81472171, and
81871709) and Zhejiang Provincial Key Research and Devel-
opment Program (No. 2019C03042).

Supplementary Materials

Fig. 1S: expression levels of PTEN and KLF4 mRNAs in
NSCLC cells at 48h. (A and B) The relative levels of PTEN
mRNA in A549 cells and PC9 cells treated with deguelin and
transfected with PTEN-siR/overexpression. (C and D) The
relative levels of KLF4 mRNA in A549 cells and PC9 cells
treated with deguelin and transfected with PTEN-siR/overex-
pression. GAPDH was used as an internal control. All experi-
ments were repeated at least in triplicate. ∗P < 0:05, ∗∗P < 0:01
, and ∗∗∗P < 0:001. (Supplementary Materials)

References

[1] C. de Martel, D. Georges, F. Bray, J. Ferlay, and G. M. Clifford,
“Global burden of cancer attributable to infections in 2018: a
worldwide incidence analysis,” The Lancet Global Health,
vol. 8, no. 2, pp. e180–e190, 2020.

[2] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: a Cancer Jour-
nal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[3] W. Cao, H. D. Chen, Y. W. Yu, N. Li, and W. Q. Chen,
“Changing profiles of cancer burden worldwide and in China:
a secondary analysis of the global cancer statistics 2020,” Chi-
nese Medical Journal, vol. 134, no. 7, pp. 783–791, 2021.

[4] W. T. Iams, J. Porter, and L. Horn, “Immunotherapeutic
approaches for small-cell lung cancer,” Nature Reviews. Clini-
cal Oncology, vol. 17, no. 5, pp. 300–312, 2020.

[5] H. Cheng and R. Perez-Soler, “Leptomeningeal metastases in
non-small-cell lung cancer,” The Lancet Oncology, vol. 19,
no. 1, pp. e43–e55, 2018.

[6] Z. Y. Lin, Q. Z. Yun, L. Wu, T.W. Zhang, and T. Z. Yao, “Phar-
macological basis and new insights of deguelin concerning its
anticancer effects,” Pharmacological Research, vol. 174, article
105935, 2021.

[7] H. S. Tuli, S. Mittal, M. Loka et al., “Deguelin targets multiple
oncogenic signaling pathways to combat human malignan-
cies,” Pharmacological Research, vol. 166, article 105487, 2021.

[8] B. Yan, D. Zhao, Y. Yao, Z. Bao, G. Lu, and J. Zhou, “Deguelin
induces the apoptosis of lung squamous cell carcinoma cells
through regulating the expression of galectin-1,” International
Journal of Biological Sciences, vol. 12, no. 7, pp. 850–860, 2016.

[9] F. Gao, X. Yu, M. Li et al., “Deguelin suppresses non-small cell
lung cancer by inhibiting EGFR signaling and promoting
GSK3β/FBW7-mediated Mcl-1 destabilization,” Cell Death &
Disease, vol. 11, no. 2, p. 143, 2020.

[10] Y. Wang, W. Ma, and W. Zheng, “Deguelin, a novel anti-
tumorigenic agent targeting apoptosis, cell cycle arrest and
anti-angiogenesis for cancer chemoprevention,” Mol Clin
Oncol, vol. 1, no. 2, pp. 215–219, 2013.

[11] W. Li, X. Yu, X. Ma et al., “Deguelin attenuates non-small cell
lung cancer cell metastasis through inhibiting the CtsZ/FAK
signaling pathway,” Cellular Signalling, vol. 50, pp. 131–141,
2018.

[12] K. B. Lokhande, S. Nagar, and K. V. Swamy, “Molecular inter-
action studies of deguelin and its derivatives with cyclin D1
and cyclin E in cancer cell signaling pathway: the computa-
tional approach,” Scientific Reports, vol. 9, no. 1, p. 1778, 2019.

[13] W. Li, X. Yu, Z. Xia et al., “Repression of Noxa by Bmi1 con-
tributes to deguelin-induced apoptosis in non-small cell lung
cancer cells,” Journal of Cellular and Molecular Medicine,
vol. 22, no. 12, pp. 6213–6227, 2018.

[14] F. Conciatori, C. Bazzichetto, I. Falcone et al., “PTEN function
at the interface between cancer and tumor microenviron-
ment: implications for response to immunotherapy,” Inter-
national Journal of Molecular Sciences, vol. 21, no. 15,
p. 5337, 2020.

[15] A. Naguib, G. Mathew, C. R. Reczek et al., “Mitochondrial
complex I inhibitors expose a vulnerability for selective killing
of Pten-null cells,” Cell Reports, vol. 23, no. 1, pp. 58–67, 2018.

[16] S. Vallabhaneni, J. Liu, M. Morel, J. Wang, F. J. DeMayo, and
W. Long, “Conditional ERK3 overexpression cooperates with

8 Disease Markers

https://downloads.hindawi.com/journals/dm/2022/4090346.f1.docx


PTEN deletion to promote lung adenocarcinoma formation in
mice,” Molecular Oncology, vol. 16, 2022.

[17] M. C. Fadous-Khalifé, N. Aloulou, M. Jalbout et al., “Krüppel-
like factor 4: a new potential biomarker of lung cancer,” Mol
Clin Oncol, vol. 5, no. 1, pp. 35–40, 2016.

[18] V. Vaira, A. Faversani, N. M. Martin et al., “Regulation of lung
cancer metastasis by Klf4-Numb-like signaling,” Cancer
Research, vol. 73, no. 8, pp. 2695–2705, 2013.

[19] V. K. Xie, Z. Li, Y. Yan et al., “DNA-methyltransferase 1
induces dedifferentiation of pancreatic cancer cells through
silencing of Krüppel-like factor 4 expression,” Clinical Cancer
Research, vol. 23, no. 18, pp. 5585–5597, 2017.

[20] L. Yang, P. Shi, G. Zhao et al., “Targeting cancer stem cell path-
ways for cancer therapy,” Signal Transduction and Targeted
Therapy, vol. 5, no. 1, p. 8, 2020.

[21] A. Dongre and R. A. Weinberg, “New insights into the mech-
anisms of epithelial-mesenchymal transition and implications
for cancer,” Nature Reviews. Molecular Cell Biology, vol. 20,
no. 2, pp. 69–84, 2019.

[22] E. D. Williams, D. Gao, A. Redfern, and E. W. Thompson,
“Controversies around epithelial-mesenchymal plasticity in
cancer metastasis,” vol. 19, no. 12, pp. 716–732, 2019.

[23] A. W. Lambert and R. A. Weinberg, “Linking EMT pro-
grammes to normal and neoplastic epithelial stem cells,”
Nature Reviews. Cancer, vol. 21, no. 5, pp. 325–338, 2021.

[24] D. Zhao, W. Han, X. Liu, D. Cui, and Y. Chen, “Deguelin
inhibits epithelial-to-mesenchymal transition and metastasis
of human non-small cell lung cancer cells by regulating
NIMA-related kinase 2,” Thorac Cancer, vol. 8, no. 4,
pp. 320–327, 2017.

[25] N. Zhang, A. S. Ng, S. Cai, Q. Li, L. Yang, and D. Kerr, “Novel
therapeutic strategies: targeting epithelial-mesenchymal tran-
sition in colorectal cancer,” The Lancet Oncology, vol. 22,
no. 8, pp. e358–e368, 2021.

[26] S. R. Boreddy and S. K. Srivastava, “Deguelin suppresses pan-
creatic tumor growth and metastasis by inhibiting epithelial-
to-mesenchymal transition in an orthotopic model,” Onco-
gene, vol. 32, no. 34, pp. 3980–3991, 2013.

[27] H. Rajabi, M. Hiraki, and D. Kufe, “MUC1-C activates poly-
comb repressive complexes and downregulates tumor sup-
pressor genes in human cancer cells,” Oncogene, vol. 37,
no. 16, pp. 2079–2088, 2018.

[28] F. Luongo, F. Colonna, F. Calapà, S. Vitale, M. E. Fiori, and
R. De Maria, “PTEN tumor-suppressor: the dam of stemness
in cancer,” Cancers (Basel), vol. 11, no. 8, p. 1076, 2019.

[29] J. Cui, M. Shi, M. Quan, and K. Xie, “Regulation of EMT by
KLF4 in gastrointestinal cancer,” Current Cancer Drug Tar-
gets, vol. 13, no. 9, pp. 986–995, 2013.

[30] J. L. Yori, D. D. Seachrist, E. Johnson et al., “Kruppel-like fac-
tor 4 inhibits tumorigenic progression and metastasis in a
mouse model of breast cancer,” Neoplasia, vol. 13, no. 7,
pp. 601–IN5, 2011.

[31] A. A. Thai, B. J. Solomon, L. V. Sequist, J. F. Gainor, and R. S.
Heist, “Lung cancer,” Lancet, vol. 398, no. 10299, pp. 535–554,
2021.

[32] S. Y. Hyun, H. T. Le, C. T. Nguyen et al., “Development of a
novel Hsp90 inhibitor NCT-50 as a potential anticancer agent
for the treatment of non-small cell lung cancer,” Scientific
Reports, vol. 8, no. 1, p. 13924, 2018.

[33] S. C. Lee, H. Y. Min, H. Choi et al., “Deguelin analogue SH-
1242 inhibits Hsp90 activity and exerts potent anticancer effi-

cacy with limited neurotoxicity,” Cancer Research, vol. 76,
no. 3, pp. 686–699, 2016.

[34] M. Miller and N. Hanna, “Advances in systemic therapy for
non-small cell lung cancer,” BMJ, vol. 375, article n2363, 2021.

[35] F. D. Dimitrakopoulos, A. E. Kottorou, M. Kalofonou, and
H. P. Kalofonos, “The fire within: NF-κB involvement in
non-small cell lung cancer,” Cancer Research, vol. 80, no. 19,
pp. 4025–4036, 2020.

[36] S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation
from animal to human studies revisited,” The FASEB Journal,
vol. 22, no. 3, pp. 659–661, 2008.

[37] G. Xun, W. Hu, and B. Li, “PTEN loss promotes oncogenic
function of STMN1 via PI3K/AKT pathway in lung cancer,”
Scientific Reports, vol. 11, no. 1, p. 14318, 2021.

[38] D. Tang, J. He, Y. Dai et al., “Targeting KDM6A suppresses
SREBP1c-dependent lipid metabolism and prostate tumori-
genesis,” Cancer Research, p. canres.1825.2021, 2021.

[39] C. Zhao, B. Wang, E. Liu, and Z. Zhang, “Loss of PTEN
expression is associated with PI3K pathway-dependent met-
abolic reprogramming in hepatocellular carcinoma,” Cell
Communication and Signaling: CCS, vol. 18, no. 1, p. 131,
2020.

[40] Z. Niu, X. Li, S. Dong et al., “The E3 ubiquitin ligase HOIP
inhibits cancer cell apoptosis via modulating PTEN stability,”
Journal of Cancer, vol. 12, no. 21, pp. 6553–6562, 2021.

[41] H. Chen, W. Wang, C. Xiao, D. Xia, F. Li, and S. Liu, “ACY1
regulating PTEN/PI3K/AKT signaling in the promotion of
non-small cell lung cancer progression,” Ann Transl Med,
vol. 9, no. 17, p. 1378, 2021.

[42] Y. He, S. Jiang, C. Mao et al., “The deubiquitinase USP10
restores PTEN activity and inhibits non-small cell lung cancer
cell proliferation,” The Journal of Biological Chemistry,
vol. 297, no. 3, article 101088, 2021.

[43] M. Zhao, P. Xu, Z. Liu et al., “RETRACTED ARTICLE: Dual
roles of miR-374a by modulated c-Jun respectively targets
CCND1-inducing PI3K/AKT signal and PTEN-suppressing
Wnt/β-catenin signaling in non-small-cell lung cancer,” Cell
Death & Disease, vol. 9, no. 2, p. 78, 2018.

[44] A. Taracha-Wisniewska, G. Kotarba, S. Dworkin, and
T. Wilanowski, “Recent discoveries on the involvement of
Krüppel-like factor 4 in the most common cancer types,”
International Journal of Molecular Sciences, vol. 21, no. 22,
p. 8843, 2020.

[45] Y. Li, S. Yu, L. Li et al., “KLF4-mediated upregulation of CD9
and CD81 suppresses hepatocellular carcinoma development
via JNK signaling,” Cell Death & Disease, vol. 11, no. 4,
p. 299, 2020.

[46] M. Karabicici, S. Alptekin, Z. Fırtına Karagonlar, and E. Erdal,
“Doxorubicin-induced senescence promotes stemness and
tumorigenicity in EpCAM-/CD133- nonstem cell population
in hepatocellular carcinoma cell line, HuH-7,” Molecular
Oncology, vol. 15, no. 8, pp. 2185–2202, 2021.

[47] L. Feng, J. Wang, J. Zhang et al., “Comprehensive analysis of
E3 ubiquitin ligases reveals ring finger protein 223 as a
novel oncogene activated by KLF4 in pancreatic cancer,”
Frontiers in Cell and Development Biology, vol. 9, article
738709, 2021.

[48] K. Ganguly, S. R. Krishn, S. Rachagani et al., “Secretory mucin
5AC promotes neoplastic progression by augmenting KLF4-
mediated pancreatic cancer cell stemness,” Cancer Research,
vol. 81, no. 1, pp. 91–102, 2021.

9Disease Markers



[49] X. Wang, S. Xia, H. Li et al., “The deubiquitinase USP10 regu-
lates KLF4 stability and suppresses lung tumorigenesis,” Cell
Death and Differentiation, vol. 27, no. 6, pp. 1747–1764, 2020.

[50] Y. Wu, L. Lin, X. Wang et al., “Overexpression of Krüppel-like
factor 4 suppresses migration and invasion of non-small cell
lung cancer through c-Jun-NH2-terminal kinase/epithelial-
mesenchymal transition signaling pathway,” Frontiers in Phar-
macology, vol. 10, p. 1512, 2020.

[51] W. Feng, Q. Xie, S. Liu et al., “Krüppel-like factor 4 promotes
c-met amplification-mediated gefitinib resistance in non-
small-cell lung cancer,” Cancer Science, vol. 109, no. 6,
pp. 1775–1786, 2018.

10 Disease Markers



Research Article
A Prognosis Marker Dynein Cytoplasmic 1 Heavy Chain 1
Correlates with EMT and Immune Signature in Liver
Hepatocellular Carcinoma by Bioinformatics and
Experimental Analysis

Yanhong Wang ,1,2 Jiyu Han ,1,2 Haichao Zhou ,1,2 Songtao Ai ,3

and Daqian Wan 1,2

1Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
2Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai 200065, China
3Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai 200011, China

Correspondence should be addressed to Songtao Ai; aistss1024@sjtu.edu.cn and Daqian Wan; wdqwdq1986@126.com

Received 8 March 2022; Revised 17 April 2022; Accepted 25 April 2022; Published 11 May 2022

Academic Editor: Zhen-Jian Zhuo

Copyright © 2022 Yanhong Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Liver hepatocellular carcinoma (LIHC) has had a continuous increase in incidence and mortality rates over the last
40 years. Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) is a protein coding gene which encodes the cytoplasmic dynein heavy
chain family. This is the first investigation into the expression of DYNC1H1 and its mechanisms of action in LIHC patients.
Methods. Based on the DYNC1H1 expression data from the TCGA database, we performed the DYNC1H1 expression,
clinicopathological data, gene enrichment, and immune infiltration analysis. TIMER and CIBERSORT were used to assess
immune responses of DYNC1H1 in LIHC. GEPIA, K-M survival analysis, and immunohistochemical staining pictures from
the THPA were used to validate the results. In order to evaluate the diagnostic value of DYNC1H1, GEO datasets were
analyzed by using ROC analysis. And quantitative real-time polymerase chain reaction was also carried out to evaluate the
expression of DYNC1H1. Results. DYNC1H1 expression levels were associated with T classification, pathologic stage, histologic
grade, and serum AFP levels. DYNC1H1 is an independent factor for a poor prognosis in patients with LIHC. Further study
showed that high expression of DYNC1H1 was enriched in epithelial–mesenchymal transition (EMT) and the TGF β signaling
pathway by GSEA analysis enrichment, indicating that DYNC1H1 might play a key role in the progression of CRC through
EMT and immune response, which also had been validated by the experimental assays. Conclusions. DYNC1H1 will provide a
novel and important perspective for the mechanisms of LIHC by regulating EMT. This gene will be able to act as an
efficacious tool for the early diagnosis and effective intervention of LIHC.

1. Introduction

LIHC is one of the few prevalent solid organ tumors in
which a continuous increase in incidence and mortality rates
has been observed over the last 40 years [1]. The 2020 Global
Cancer Statistics showed that LIHC new cases were approx-

imately 906,000 and the death cases were 830,000, of which
more than 50% occurred in China. Hepatocellular carcinoma
(HCC) represents the predominant histological subtype (75–
85%) of primary liver cancer [2]. Currently, several risk fac-
tors have been indicated to contribute for developing LIHC,
such as hepatitis B, hepatitis C, excessive consumption of
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alcohol, exposure, tobacco use, and aflatoxin [3–5]. At pres-
ent, ultrasonography (US), computed tomography (CT),
magnetic resonance imaging (MRI), and the serum alpha-
fetoprotein (AFP) value are the most common noninvasive
methods used to detect and diagnose LIHC, but all of them
are not always sufficiently sensitive in early diagnosis [6].
Therefore, the identification of a more specific biomarker
and potential target for treatment is critical for improving
the prognosis of LIHC.

Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) is a
protein coding gene which encodes the cytoplasmic dynein
heavy chain family. This family links engulfment and execu-
tion of apoptosis to prevent several pathologies including
cancer, neurodegenerative diseases, and autoimmune disor-
ders [7–9]. The DYNC1H1 plays a dominant role in the
assembly of the mitotic spindle and the congression of the
metaphase plate [10]. DYNC1H1 also controls microtubule
binding [11]. Therefore, DYNC1H1 involved in microtubule
dynamics and mitotic spindle orientation could be a possible
factor in the pathophysiology and progression of tumors
[12]. They are closely linked to tumor pathogenesis [13, 14].

Although DYNC1H1-associated immune responses have
been identified among various types of cancer, comprising
gastric and lung cancer, the role of DYNC1H1 in immune
infiltration and prognosis is still underexplored [11, 15].
To address this challenge, we analyzed DYNC1H1 in LIHC
through using RNA expression sequencing data from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih
.gov/) database. We used R language software to compare
the interrelationship between DYNC1H1 and some clinico-
pathological parameters. In order to better confirm the path-
ogenic effect of DYNC1H1 and understand the regulatory
mechanisms, we constructed protein–protein interaction
(PPI) networks, Gene Ontology (GO) analyses, and gene
set enrichment analysis (GSEA) analyses. The correlation
between DYNC1H1 and EMT pathway scores was analyzed.
Using the Tumor Immunoassay Resource (TIMER) and
CIBERSORT algorithm, we further investigated the interrela-
tionship between DYNC1H1 and Tumor-Infiltrating Immune
Cells (TIICs). The association of DYNC1H1 and prognosis
was subsequently analyzed by using the Gene Expression
Profiling Interactive Analysis (GEPIA), Kaplan–Meier (K-M)
survival analysis, and the Human Protein Atlas (THPA). In
order to assess the diagnostic value of DYNC1H1, a receiver
operating characteristic (ROC) curve was established. Finally,
we further validated DYNC1H1 using qPCR, which will help
us further elucidate the potential pathogenesis of LIHC.

Despite certain previous studies involving the potential
role of this gene in LIHC [16, 17], the association of TIICs
and poor prognosis did not present an exhaustive analysis
and lacked an in-depth discussion. The development and
pathogenesis of LIHC is an extremely complex process con-
sisting of multiple causative aspects and risk factors involved
in the etiology. Our study has suggested that higher
DYNC1H1 expression is strongly associated with T classifi-
cation, pathologic stage, histologic grade, AFP, and overall
survival (OS) event, generally indicating a poor prognosis.
In addition, the correlation between DYNC1H1 and TIICs
was explored. In this paper, the function of DYNC1H1 in

LIHC was analyzed in detail to explore effective molecules
for LIHC diagnosis and treatment.

2. Materials and Methods

2.1. Data Acquisition and Mining. The TCGA database was
utilized to find the gene expression data (workflow type:
HTSeq-TPM), immune system infiltrates, and corresponding
clinical information [18]. In addition, for any missing, insuf-
ficient, or unclear data source, the sample will be excluded
from the research. We used both RNA-sequence and clinical
data, which was used for analysis and investigation. Both
RNA-sequence and relevant clinical data were used to guide
further studies. Among these 424 cases, 374 cases of LIHC
tissue and corresponding 50 cases of normal healthy liver
tissues were included in our research. For investigation of
the underlying molecular mechanism of the DYNC1H1
expression, patients with LIHC were clustered into 2 groups,
the high or low expression level group based on patients’
expression level and the median value of the DYNC1H1
gene. Our research was performed in conformity with the
publication guidelines offered by TCGA [19]. Moreover, in
order to verify the expression and diagnostic value of
DYNC1H1 in LIH, we collected 2 gene expression profiling
datasets (GSE14520 and GSE63898) from the Gene Expres-
sion Omnibus (GEO) database [20–22] (Table 1).

2.2. Validation of DYNC1H1 Expression. We analyzed the
TCGA dataset to validate and verify the potential prognostic
role of DYNC1H1 genes in LIHC. To analyze difference in
DYNC1H1 genes between LIHC samples and normal liver
tissues, we utilized independent sample t-tests for nonpaired
samples and paired t-test for paired samples. The results
were generated with boxplots. And using the ggplot2 R pack-
age [23], boxplots were plotted.

2.3. Survival Analysis Based on DYNC1H1 Expression. In
short, using the R packages survival and survminer to graph
K-M survival curves, survival analysis was carried out. It was
the K-M survival curves that were used to represent the OS
and progression-free interval (PFI) distributions between
the high and low DYNC1H1 groups. By the OS and PFI time
derived from TCGA, the relations of the DYNC1H1 expres-
sion level with patients’ survival outcome was computed.
Following that, in order to further appraise the upshots of
the K-M survival analysis, receiver operating characteristic
(ROC) curves were generated by using the pROC package
[24] in R language [24].

2.4. Construction of the Predicted PPI Network. Using the
DESeq2 R package [25], the samples were split into 2
expression groups in LIHC: low DYNC1H1 group (0–
50%) and high DYNC1H1 group (50–100%). STRING, a
well-known online biological tool for the prediction of
PPI, comprises direct (physical) and indirect (functional)
associations [26]. With the help of the version 11.0 of
the PPI database STRING, we identified the differentially
expressed genes (DEGs) involved in the PPI with the thresh-
old values of jlog 2 fold − changeðFCÞj > 2:0 and adjusted p
value ðp:adjustÞ < 0:05. In this PPI network, the required
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interaction score for determining a significant interplay
was medium confidence (0.400) as cut-off criteria. Second,
the PPI network was visualized with Cytoscape (version
3.8.2) [27].

2.5. GO Pathway Enrichment Analysis of DEGs. GO analysis
comprises a biological process (BP), cellular component
(CC), and molecular function (MF). The GO enrichment
analysis of DEGs in samples of LIHC was performed by
the clusterProfiler [28] R package. Afterwards, we used the
org.Hs.eg.db (version 3.4.0) and GOplot R (version 1.0.2)
packages for analysis and visualization of the results by gen-
erating cluster plots [29].

2.6. Gene Set Enrichment Analysis. For GSEA, we chose nor-
malized RNA-seq datasets from the TCGA data portal [30].
Herein, gene set permutations were set to 1000 with default
parameters. Hallmark pathway enrichment analyses were
performed to determine the possible biological function of
DYNC1H1 by using GSEA. Enrichment results with 2 con-
ditions (p:adjust < 0:05 and q-value <0.25) were considered
as statistically significant.

2.7. Immune Infiltrate Analysis. TIMER is a comprehensive
and publicly available resource for systemic analysis of
immune infiltrates across various types of tumor (https://
cistrome.shinyapps.io/timer/) [31]. We investigated the
interrelation between the DYNC1H1 expression and the
tumor using TIMER. The TIMER correlation module was
also used to evaluate and visualize the interrelation between
the gene and the tumor-infiltrating immune cell profile in
LIHC. TIMER employs a previously released deconvolution
statistical method to investigate associations among infiltrat-
ing immune cells and DYNC1H1 genes. We assessed the
correlation between the expression of DYNC1H1 and the
abundance of immune infiltrates (CD4+ T cells, dendritic
cells, B cells, CD4+ T cells, B cells, neutrophils, and macro-
phages) in LIHC by the gene modules. The pictures of the
gene against tumor purity were drawn using TIMER [32].
After that, to assess the relative gene expression, we chose
a deconvolution algorithm called CIBERSORT (http://
cibersort.stanford.edu/) on the basis of gene expression
[33]. By evaluating the association between immune cell
infiltration and DYNC1H1 expression in LIHC to uncover
correlations between TIICs, we assessed the immune
response of 24 TIICs by using CIBERSORT. We chose stan-
dard annotation files to build gene expression datasets by
setting the default signature matrix at one thousand permu-
tations. To determine the confidence of the deconvolution
method, CIBERSORT derived a p value through Markov
chain Monte Carlo (MCMC) methods. The three hundred
and seventy-four tumor samples were classified into two

groups to assess the significant effects of the DYNC1H1
expression on the microenvironment of the immune system.
To identify the species of lymphocytes influenced by
DYNC1H1, the p value < 0.05 was set up.

2.8. Comprehensive Analysis. The online database GEPIA
analyzes the RNA-sequencing expression data of 8587 nor-
mal and 9736 tumor samples of 33 malignant tumors from
TCGA and GTEx by using a standard processing pipeline
[34]. OS with the DYNC1H1 expression in LIHC was ana-
lyzed by using GEPIA. Furthermore, a boxplot was generated
to calculate the differential DYNC1H1 expression by using
the tumor or normal state as a variable. Kaplan–Meier anal-
ysis of survival curve was performed using K-M survival
analysis (http://kmplot.com/analysis/) to analyze interaction
relationships between the DYNC1H1 expression and survival
information with LIHC [35]. DYNC1H1 was fed into the
database to graph K-M survival plots. The hazard ratio
(HR) and the log-rank p value were calculated. Values with
p value < 0.05 (p < 0:05) were considered to be statistically
significant.

2.9. Immunohistochemistry-Based Validation of Hub Genes
in THPA. THPA, a public database which includes over 5
million immunohistochemically stained tissues and cell dis-
tribution information for 26,000 human proteins, was a pro-
gram supported by a grant from Sweden. THPA can examine
normal and LIHC tissues via antibody proteomics, which is
often used for the validation of the hub target genes’ expres-
sions. Therefore, we used this pathology tool to evaluate
expression levels of DYNC1H1 between liver tissues and
LIHC tissues from THPA.

2.10. Cell Culture. The human normal liver cell lines (L02)
and hepatocellular carcinoma cell lines (Hep3B, HepG2,
SMMC7721, and MHCC97H) were obtained from the Chi-
nese Academy of Sciences (Shanghai, China). All cells were
cultured in Dulbecco’s modified eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS). Then after, cells
were maintained in a humidified incubator containing
37°C and 5% CO2.

2.11. Quantitative Reverse-Transcription Polymerase Chain
Reaction. According to the manufacturer’s instructions, the
total amount of RNA was extracted from the cell lines using
a TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Inc.)
and subjected to reverse transcription using the Prime-
Script™ RT Reagent Kit (Takara, Shiga, Japan). Quantitative
Reverse-Transcription Polymerase Chain Reaction (qRT-
PCR) was analyzed and performed using the Applied Biosys-
tems® 7500 Fast Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA) and accompanying Applied Bio-
systems® 7500 Software (version 2.0.6) to measure the

Table 1: Basic information of the microarray datasets.

ID Platform Data type Author Update date Country Sample type n (N) n (LIHC)

GSE14520 GPL3921 mRNA Xin Wei Wang et al. Oct 06, 2021 USA Human tissues 220 225

GSE63898 GPL13667 mRNA Augusto Villanueva et al. Apr 14, 2020 USA Human tissues 168 228
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mRNA expression levels of DYNC1H1. The following primer
sequences were used: DYNC1H1 forward primer: TTGGGC
ACTAGGAAATTGATGC; DYNC1H1 reverse primer:
GCAGGGTTGATACGCCACA.

2.12. Statistical Analysis. All statistical analyses were con-
ducted using R statistical software (R Core Team, version
3.6.3). The univariate and multivariate models of the Cox
analysis were used to show the multivariate HR and 95%
confidence intervals (95% CI). We then evaluated the
DYNC1H1 expression and other clinical and pathological
features affecting OS. The significance threshold was set as
probability (p) value < 0.05. Logistic regression was used to
evaluate the associations between the DYNC1H1 expression
and clinical characteristics (T stage, pathologic stage, histo-
logic grad, AFP, and OS event). A p value of less than 0.05
was considered to be statistically significant.

3. Results

3.1. Survival Outcomes and Variable Analysis. To confirm
the expression levels of DYNC1H1 in various species of
tumors, we firstly analyzed the RNA-seq data from TCGA
datasets using the TIMER tools. Analysis result shows that
the expression level of DYNC1H1 is upregulated in the
majority of tumors involving BLCA, CESC, CHOL, COAD,
ESCA, GBM, HNSC, HNSC-HPV, KICH, KIRC, KIRP,
LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, SKUM, STAD,
THCA, and UCEC (Figure 1(a)). To further validate the
expression level and prognosis role of DYNC1H1 in these
tumors, we checked their expression; we again analyzed the
RNA-seq datasets and characteristics of the patient from

the TCGA database and discovered that DYNC1H1 was
upregulated when compared to all LIHC tissues and normal
liver tissues (Figure 1(b)). We acquired the same outcome in
paired LIHC tissues (N = 50) compared with normal liver
tissues (Figure 1(c)). Meanwhile, the high expression of
DYNC1H1 exhibited poor survival and progression-free
survival of patients with LIHC (Figures 1(d) and 1(e)). As
displayed in Table 2, we performed the Cox analysis to assess
the correlation between the DYNC1H1 expression and over-
all survival, as well as other multivariable characteristics in
LIHC patients. Univariate regression analysis demonstrated
that a number of factors, comprising the pathologic stage
(HR = 2:504, p value < 0.001), T stage (HR = 2:598, p value
< 0.001), M stage (HR = 4:077, p value = 0.017), and
DYNC1H1 expression (HR = 1:709, p value < 0.001), are
highly associated with overall survival. The multivariate anal-
ysis, shown with a forest diagram in Figure 1(f), uncovered
that the DYNC1H1 expression (p value = 0.009) is an inde-
pendent factor for a poor prognosis in patients with LIHC
(Table 2). The distribution of DYNC1H1 expression, survival
status of patients with LIHC, and expression profiles of
DYNC1H1 are depicted in Figure 1(g). The DYNC1H1 level
displayed a robust prognostic value because the ROC curve
indicated that the AUC of the DYNC1H1 expression for pre-
dicting survival was 0.704 (Figure 1(h)).

3.2. Relationship between DYNC1H1 Expression and
Clinicopathology. Our study appraised the association
between DYNC1H1 and clinicopathological characteristics
of LIHC patients. The TCGA database includes 424 LIHC
tissues including gene expression data and clinical character-
istics obtained from LIHC patients. LIHC with increased
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Figure 1: DYNC1H1 serves an oncogenic role in LIHC, and high DYNC1H1 expression predicts poor prognosis. (a) Human DYNC1H1
expression levels in different tumor types from TCGA database were determined by TIMER database (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p <
0:001). (b) The expression of DYNC1H1 in all LIHC samples from TCGA. (c) The expression of DYNC1H1 in paired CRC samples
from TCGA. (d, e) The correlation between DYNC1H1 expression and survival status in TCGA. (f) Multivariate Cox analysis of
DYNC1H1 expression and other clinicopathological variables. (g) DYNC1H1 expression distribution and survival status. (h) ROC curves
of DYNC1H1.
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DYNC1H1 expression was distinctly associated with T stage
(p value < 0.05, Figure 2(a)), pathologic stage (p value < 0.01,
Figure 2(b)), histologic grade (p value < 0.01, Figure 2(c)),
AFP (p value < 0.01, Figure 2(d)), and OS event (p value <
0.001, Figure 2(e)). Results from this study showed that
LIHC patients with high DYNC1H1 levels were more likely
to present with worse T stage, worse pathologic stage, worse
histologic grade, worse AFP, and worse OS event compared
to those with low DYNC1H1 patients.

3.3. PPI Network Construction. In the PPI network, a total of
353 DEGs were included via the STRING database. The aim
of the construction of the PPI network was to further under-
stand the interactions of DEGs correlated with LIHC risk,
including 180 nodes and 313 edges (Figure 2(f)).

3.4. GO Enrichment Analyses. In order to elucidate the
mechanism of DYNC1H1 in the progression of LIHC, we
performed GO enrichment analysis based on single-gene
differential expression with the threshold values of jlog 2 F
Cj > 1:5 and p.adjust value < 0.05. GO functional analyses
revealed these DEGs to be involved in biological processes
including detoxification of copper ion (GO:0010273),
stress response to copper ion (GO:1990169), detoxification
of inorganic compound (GO:0061687), and stress response
to metal ion (GO:0097501). In the molecular functions,
the DEGs were primarily enriched in the receptor ligand

activity (GO:0048018), ligand-gated ion channel activity
(GO:0015276), ligand-gated channel activity (GO:0022834),
and substrate-specific channel activity (GO:0022838). The
cellular components of the DEGs were significantly enriched
in the intrinsic component of the synaptic membrane
(GO:0099240), immunoglobulin complex (GO:0019814),
postsynaptic membrane (GO:0045211), and synaptic mem-
brane (GO:0097060) (Table 3 and Figures 2(g) and 2(h)).
The biological function andmolecular role of DYNC1H1 were
receptor-ligand, membrane, and immunoglobulin complex.

3.5. GSEA of DYNC1H1 in LIHC. In order to elucidate the
mechanism of DYNC1H1 in the progression of LIHC, we
then preformed GSEA to analyze the enrichment of the
Hallmark pathways in the high-expression group and the
low-expression group. Based on the NES, q-value, and p
.adjust, significantly enriched Hallmark pathways were
selected. When using the Hallmark gene set as a reference
gene set, DEGs tended to be enriched in the following Hall-
mark signaling pathways: Hallmark epithelial mesenchymal
transition, Hallmark estrogen response early, and Hallmark
UV response DN, as depicted in Table 4 and Figure 2(i).

3.6. Regulation of the Progression of LIHC through the EMT
Pathway.We found that the hallmark of EMT was the top of
the enriched gene signature when comparing the high-
expression group and the low-expression group from TCGA

Table 2: Correlation between overall survival and multivariable characteristics in TCGA patients via Cox regression and multivariate
survival model.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 373

≤60 177 Reference

>60 196 1.205 (0.850-1.708) 0.295 1.314 (0.809-2.132) 0.270

Gender 373

Female 121 Reference

Male 252 0.793 (0.557-1.130) 0.200 1.062 (0.637-1.773) 0.817

Histologic grade 368

G1 & G2 233 Reference

G3 & G4 135 1.091 (0.761-1.564) 0.636 1.140 (0.709-1.834) 0.589

Pathologic stage 349

Stage I & stage II 259 Reference

Stage III & stage IV 90 2.504 (1.727-3.631) <0.001 0.279 (0.015-5.202) 0.392

T stage 370

T1 & T2 277 Reference

T3 & T4 93 2.598 (1.826-3.697) <0.001 9.921 (0.554-177.718) 0.119

M stage 272

M0 268 Reference

M1 4 4.077 (1.281-12.973) 0.017 2.200 (0.633-7.651) 0.215

N stage 258

N0 254 Reference

N1 4 2.029 (0.497-8.281) 0.324 3.437 (0.450-26.229) 0.234

DYNC1H1 373 1.709 (1.346-2.169) <0.001 1.610 (1.128-2.297) 0.009
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Figure 2: Continued.
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LIHC samples (Figure 2(j)). We next examined whether
overexpression of DYNC1H1 affects EMTmarkers including
SNAIL, SLUG, MMP9, TWIST1, and TWIST2 (Figure 2(k)).
These findings suggest that DYNC1H1 might promote LIHC
progression by regulating the EMT pathway.

3.7. Relationship between DYNC1H1 Expression and Tumor-
Infiltrating Immune Cells. The presence of tumor-infiltrating
lymphocytes (TIL) has emerged as an independent predictor
of cancer sentinel lymph node status and overall survival rate
(Azimi et al. 2012). We therefore chose the TIMER web tool
to analyze the relationship between DYNC1H1 and the
immune infiltration’s level in LIHC. The results are shown

in Figure 3(a). The expression levels of DYNC1H1 were pos-
itively correlated with the levels of B cells (p value = 3:51 ×
10−14), CD8+ T cell (p value = 4:82 × 10−7), CD4+ T cell (p
value = 3:91 × 10−25), macrophage (p value = 1:30 × 10−28),
neutrophil (p value = 2:96 × 10−24), and dendritic cell (p
value = 3:88 × 10−22). The aforesaid results showed that
DYNC1H1 played a meaningful and pivotal role in immune
infiltration. Furthermore, we sought to figure out whether the
tumor immune microenvironment was distinct in LIHC
patients with low DYNC1H1 compared to those with high
DYNC1H1. According to the DYNC1H1 expression, the
424 tumor samples were classified into two groups, with
212 samples in the high expression of the DYNC1H1 group
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Figure 2: DYNC1H1 expression was associated with clinicopathological features of LIHC based on TCGA and GO term/GSEA pathway
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and 212 samples in the low-expression group. In order to
further explore the mechanisms of immune response and the
proportion of 24 immune cell populations in downloaded sam-
ples, we used the computational deconvolution method as
implemented in CIBERSORT. Using the CIBERSORT algo-
rithm, the difference between high and low DYNC1H1 expres-
sion groups in 24 immune cells was analyzed (Figure 3(b)).
Plasmacytoid dendritic cell (pDC), CD56bright NK cells, mac-
rophages, immature dendritic cells (iDC), eosinophils, dendritic
cells (DC), cytotoxic cells, activated dendritic cells (aDC), T
helper cells, central memory T cell (Tcm), effector memory T
cell (Tem), T follicular helper cells (TFH), helper T type 1
(Th1) cells, and helper T type 2 (Th2) cells were influenced by
DYNC1H1 levels, with notable variation existing in the den-
dritic cell and T cell lines between the high and low DYNC1H1
groups. Th2 cells, TFH, T helper cells, aDC, macrophages, and
CD56bright NK cells were increased compared to the group
with the low DYNC1H1 expression (p value < 0.001). Mean-
while, pDC, DC, and cytotoxic cells were decreased in the group
with a high DYNC1H1 expression (p value < 0.001). In addi-
tion, we further examined possible correlations between 24
types of immune cells (Figure 3(c)). Moderate to strong correla-
tions existed between different subpopulations of TIICs as per
the heat map.

3.8. Data Validation. We first analyzed the mRNA expres-
sion of DYNC1H1 by using the GEPIA database. The

DYNC1H1 level was increased in the LIHC group when
compared to the normal control (Figure 4(a)). A significant
interrelation was revealed between the high DYNC1H1 level
and the poor OS for LIHC (p value = 3 × 10−4, Figure 4(b)).
We further verified this finding by performing K-M survival
plots. K-M survival plots showed that the high DYNC1H1
expression group was markedly correlated with poor overall
survival rates (p value = 0.0049, Figure 4(c)). In addition,
representative immunohistochemistry (IHC) images indi-
cated that DYNC1H1 has higher expression levels compared
to nontumor tissues from the THPA (Figure 4(d)).

3.9. DYNC1H1 Possesses a Higher Specificity than AFP for
LIHCDiagnosis. Eventually, in order to evaluate the diagnostic
value of DYNC1H1, GSE14520 and GSE63898 datasets were
analyzed by using ROC analysis. As we know, alpha-
fetoprotein (AFP) is a kind of diagnostic tumor marker that
is commonly associated with LIHC. In GSE14520, the expres-
sion level of DYNC1H1 was significantly higher than that of
the nontumor tissue (Figure 5(a)), and its AUC of 0.866 was
higher than the AUC value of 0.685 for AFP (Figure 5(b)).
In GSE63898, the expression level of DYNC1H1 was signifi-
cantly higher than that of the nontumor tissue (Figure 5(c)),
and its AUC of 0.796 was higher than the AUC value of
0.566 for AFP (Figure 5(d)). In Figure 5(e), the expression of
DYNC1H1 was further validated by qRT-PCR in multiple cell
lines.

Table 3: Functional and pathway enrichment analyses for genes.

Ontology ID Description Gene ratio Bg ratio p value p.adjust q-value

BP GO:0010273 Detoxification of copper ion 10/555 15/18670 1.31e-12 2.41e-09 2.20e-09

BP GO:1990169 Stress response to copper ion 10/555 15/18670 1.31e-12 2.41e-09 2.20e-09

BP GO:0061687 Detoxification of inorganic compound 10/555 17/18670 8.02e-12 7.40e-09 6.74e-09

BP GO:0097501 Stress response to metal ion 10/555 17/18670 8.02e-12 7.40e-09 6.74e-09

MF GO:0048018 Receptor ligand activity 36/527 482/17697 4.32e-07 1.21e-04 1.04e-04

MF GO:0015276 Ligand-gated ion channel activity 17/527 138/17697 7.58e-07 1.21e-04 1.04e-04

MF GO:0022834 Ligand-gated channel activity 17/527 138/17697 7.58e-07 1.21e-04 1.04e-04

MF GO:0022838 Substrate-specific channel activity 33/527 428/17697 6.50e-07 1.21e-04 1.04e-04

CC GO:0099240 Intrinsic component of synaptic membrane 18/583 164/19717 1.83e-06 1.42e-04 1.23e-04

CC GO:0019814 Immunoglobulin complex 20/583 159/19717 5.18e-08 1.95e-05 1.69e-05

CC GO:0045211 Postsynaptic membrane 27/583 323/19717 1.35e-06 1.42e-04 1.23e-04

CC GO:0097060 Synaptic membrane 33/583 432/19717 7.14e-07 1.34e-04 1.16e-04

Table 4: Signaling pathways most significantly correlated with DYNC1H1 expression based on NES, q-value, and p.adjust.

Hallmark pathways Enrichment score NES p.adjust q-values

Hallmark_epithelial_mesenchymal_transition 0.526697402 2.419142251 0.014927601 0.008485163

Hallmark_estrogen_response_early 0.432011711 1.988225556 0.014927601 0.008485163

Hallmark_UV_response_DN 0.443524891 1.954904884 0.014927601 0.008485163

Hallmark_angiogenesis 0.569576131 1.917856809 0.014927601 0.008485163

Hallmark_TGF_beta_signaling 0.521478423 1.906591073 0.01937609 0.011013777

Hallmark_mitotic_spindle 0.407384283 1.874883995 0.014927601 0.008485163
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4. Discussion

LIHC is the 3rd leading reason of cancer death and one of
the five most frequently diagnosed cancer types [36]. During
the past 20 years, LIHC’s prevalence had been increasing
persistently [37]. Cancer progression and metastasis have
been implicated in a range of steps, including cell survival
and proliferation, cell adhesion and migration, cell adhesion,
and cell metabolism [38]. A number of previous biomarker
studies have provided information on LIHC. Microtubule-
associated serine and threonine kinase 2 (MAST2) was ini-
tially identified as a microtubule-associated protein.
Recently, MAST2 is found to be a biomarker of diagnosis
and prognosis of LIHC. The high expression level of MAST2
was correlated with advanced clinical status, for example,
histological type, histologic grade, T classification, N classifi-
cation, survival status, and poor prognosis of patients [39].

We assessed DYNC1H1 as a prognostic biomarker for
LIHC in our current research. We evaluated the prognos-
tic value of DYNC1H1 in patients with LIHC by analyzing
the RNA-seq data from the TCGA database. Through
DYNC1H1 analysis, and its interrelation to multiple tumor
characteristics and immune cell responses, high DYNC1H1
expression served as an independent prognostic factor for
poor OS. Furthermore, high DYNC1H1 expression levels
were remarkably associated with T classification, pathologic
stage, histologic grade, and serum AFP levels. Collectively,
these results indicated that the DYNC1H1 expression level
might influence LIHC initiation, progression, and immune
microenvironment.

Subsequently, GO pathway analyses were performed.
GO functional analyses revealed DYNC1H1 to be involved

in biological processes including detoxification of copper
ion, stress response to copper ion, detoxification of inorganic
compound, and stress response to metal ion. The detoxifica-
tion of inorganic compound like selenium plays a major role
in tumor cell survival [40]. In parallel, these findings also
indicate a close relationship between metal ions and immu-
nity to cancer. This finding was in agreement with prior stud-
ies. Metal ion-activated immunotherapy is considered as an
effective and potential approach in tumor therapy [41]. In
the molecular functions, the DYNC1H1 was primarily
enriched in receptor ligand activity, ligand-gated ion channel
activity, ligand-gated channel activity, and substrate-specific
channel activity. The family of ligand-gated channels war-
rants further investigation in tumor therapy [42–44]. The
cellular components of the DYNC1H1 were significantly
enriched in the intrinsic component of the synaptic mem-
brane, immunoglobulin complex, postsynaptic membrane,
and synaptic membrane. The synaptic membrane is com-
plexed with tubulin which is essential for tumor cell migra-
tion [45].

GSEA was used as a method for determining pathway
enrichment and functional module enrichment in the DEGs.
Based on GSEA enrichment, we found that DYNC1H1 was
involved in the EMT pathway and was positively correlated
with EMT markers. Thus, it demonstrated that DYNC1H1
drove the EMT phenotype and regulated the EMT program
in LIHC. This agreed with reality and was consistent with
the importance of the EMT in HCC invasion and metastasis
[46]. Additionally, the Hallmark results showed an enrich-
ment in estrogen response early. In the literature, it is also
suggested that antiestrogens or reduced estrogen levels may
be linked to liver cancer [47].
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Figure 3: Correlations between DYNC1H1 expression and immune infiltration levels in LIHC by TIMER. (a) Correlations between
DYNC1H1 expression and immune infiltration levels. (b) The varied proportions of 24 subtypes of immune cells in high and low
DYNC1H1 expression groups in tumor samples. (c) Heat map of 24 immune infiltration cells in tumor samples.
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In the present study, by using the TIMER database, we
studied the connection between the DYNC1H1expression
and the immune cell infiltration level in LIHC. It was found
that DYNC1H1 was positively related with B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells. Using the CIBERSORT algorithm, we confirmed that
the high DYNC1H1 expression was related with the upregu-
lation of Th2 cells, TFH, T helper cells, aDC, macrophages,
and CD56bright NK cells and the downregulation of pDC,
DC, and cytotoxic cells. DC serves as one of the functionally
specialized antigen-presenting cells to play essential roles in

initiating specific T cell responses for innate antitumor
immunity [48]. It also regulated humoral immune responses
to inhibit tumor development [49]. Therefore, we hypothe-
sized that the function of DC could be suppressed by the
overexpression of DYNC1H1. Summing up, these studies
demonstrate that DYNC1H1 plays a critical role in modulat-
ing the immune responses of LIHC. However, randomized
controlled trials (RCTs); multicenter randomized, controlled
clinical trials, and mechanism researches are required for a
more accurate understanding of the correlation between
DYNC1H1 and LIHC in vitro and in vivo [50–52].
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levels in normal and LIHC tissues, as obtained from GEPIA. (b) Levels of DYNC1H1 mRNA expression and overall survival based on data
obtained from GEPIA. (c) Further validation of the correlation between DYNC1H1 expression and overall survival, as shown in K-M
survival plot. (d) Hepatic expression of DYNC1H1 protein was visualized using immunohistochemistry via THPA.

14 Disease Markers



9

8

7

Sc
or

e

6

5

Non-tumor Tumor
GSE63898

GSE14520
⁎⁎⁎

(a)

0.0

0.2

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.6

0.8

1.0

0.0 0.2 0.4
1-specificity (FPR)

DYNC1H1 (AUC = 0.866)
AFP (AUC = 0.685)

0.6 0.8 1.0

GSE14520

(b)

10

9

Sc
or

e

8

7

Non-tumor

GSE63898

Tumor

⁎⁎⁎

(c)

0.0

0.2

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.6

0.8

1.0

0.0 0.2 0.4
1-specificity (FPR)

DYNC1H1 (AUC = 0.796)
AFP (AUC = 0.566)

0.6 0.8 1.0

GSE63898

(d)

Figure 5: Continued.

15Disease Markers



Finally, our results are validated by GEO datasets, its
ROC curve analysis, and qRT-PCR. They demonstrated that
the expression level of DYNC1H1 was significantly higher
than nontumor tissue and its AUC was higher than the
AUC value of AFP which was the mainstream biomarker
for LIHC in 2 datasets. Altogether, these results showed that
DYNC1H1 was expected to be the positive predictive tumor
marker for patients with LIHC.

There are still several drawbacks to our research. The
first point concerns data sources which come from public
databases. In the future, we need to collect as many serum
samples as possible from patients with LIHC, in order to val-
idate this biomarkers. This brings us to the second point.
Because the usefulness of biomarkers is mechanism depen-
dent, we require more experimental validation and mecha-
nistic elucidation in cell lines and animal models.

5. Conclusion

To sum up, DYNC1H1 associated with LIHC was identified
using bioinformatic analysis. DYNC1H1 is a novel prognos-
tic biomarker and has correlation with EMT and immune
infiltrates in LIHC. With further study in the future,
DYNC1H1 will provide novel and important perspectives
for the mechanisms of LIHC. This gene will be able to act
as an efficacious tool for the early diagnosis and effective
intervention of LIHC.
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Figure 5: DYNC1H1 shows a higher positive predictive value than AFP in LIHC patients. (a) The violin plot shows DYNC1H1mRNA levels in
patients with nontumor (n = 220) and LIHC (n = 225) from the GSE14520 dataset. (b) ROC curve analysis shows the diagnostic value of
DYNC1H1and AFP in nontumor and LIHC patients from the GSE14520 dataset. (c) The violin plot shows DYNC1H1 mRNA levels in
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Hypopharyngeal squamous cell carcinoma (HSCC) is highly malignant and extremely aggressive, making it one of the worst
prognoses among all kinds of head and neck squamous cell carcinoma (HNSCC); therefore, gaining insight into molecular
mechanisms of HSCC is of profound significance. In the current manuscript, we revealed the elevated expression of long
noncoding RNA (lncRNA) LEF1-AS1 in HNSCC which was associated with the poor prognosis by bioinformatic analysis.
Moreover, we noticed that LEF1-AS1 dramatically accelerated the proliferation, migration, invasion, and epithelial-
mesenchymal transition (EMT) process in HSCC cell line FaDu. Most importantly, we illustrated that LEF1-AS1 played as a
competitive endogenous RNA (ceRNA) via sponging miR-221-5p and thereby positively regulated gap junction protein alpha 1
(GJA1) expression, thus aggravated tumor progression and EMT. In conclusion, for the first time, we demonstrated lncRNA
LEF1-AS1 as a novel biomarker for HNSCC and suggested LEF1-AS1/miR-221-5p/GJA1 axis as promising diagnostic and
therapeutic target for HSCC treatment.

1. Introduction

Although only accounts for ~3–5% of all kinds of HNSCC,
hypopharyngeal squamous cell carcinoma (HSCC) is one
of the most lethal malignancies due to the grievous mortality
(5 years overall survival rate less than 30% in late-stage
patients) [1]. Because of the insidious onset, rapid develop-
ment, and metastasis susceptibility, most patients
(70%~80%) with HSCC were at advanced stage when diag-
nosed, thus missed the optimal timing for surgical treatment
[2]. Therefore, it is necessary to thoroughly elucidate the
precise mechanisms of HSCC.

Recently, long noncoding RNAs (lncRNAs) which are
identified as nonprotein-coding RNAs with over 200 nucle-
otides length have been revealed to play pivotal roles in
molecular diagnosis and pathogenesis in almost all kinds of
diseases including tumorigenesis and metastasis of cancers
[3–5]. In HSCC, it has been proven that lncRNA
HOXA11-AS contributed to the proliferation and migration
via sponging and negatively regulation of miR-155 [6].
Moreover, lncRNA MALAT1 was found overexpressed in
HSCC tissues and sponged miR-429 to stabilize the ZEB1
expression, resulting in the promotion of HSCC progression
[7]. lncRNA AB209630 was shown to be decreased in HSCC
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tissues and identified as a suppressor of HSCC via inhibition
of proliferation, invasion, metastasis, and survival of FaDu
cells [8]. However, the functions of other lncRNAs in HSCC
and potential mechanisms still remain unclear.

In the current manuscript, we illustrated the effect of
lncRNA lymphoid enhancer-binding factor 1 antisense
RNA 1 (LEF1-AS1) on HSCC. Bioinformatic analysis indi-
cated that the increased expression of LEF1-AS1 in HNSCC
tumors which was associated with the poor prognosis. Fur-
thermore, we illustrated that LEF1-AS1 promoted HSCC cell
proliferation, migration, invasion, and EMT process, whereas
repressed cell apoptosis in both gain/loss-of-function experi-
ments. Mechanically, LEF1-AS1 was shown to serve as a
sponge for miR-221-5p to stabilize GJA1 levels. Our findings
identified the oncogenic LEF1-AS1/miR-221-5p/GJA1 axis
for HSCC progression and metastasis and suggested the axis
as a promising target for HSCC therapy.

2. Materials and Methods

2.1. Bioinformatic Analysis. The transcriptome expression
profile of HNSCC in The Cancer Genome Atlas (TCGA)
database (https://cancergenome.nih.gov/) was collected.
Analysis and graphics were created by R software (3.6.3).
RNA22 (https://cm.jefferson.edu/rna22/Precomputed/) was
applied to predict potential miRNA targets of LEF1-AS1,
and TargetScan (http://www.targetscan.org/) was applied to
seek for the candidate targets of miR-221-5p. Differentially
expressed genes (DEGs) in LEF1-AS1 high or low expressed
groups based on TCGA data were identified, and GSEA was
performed using the Hallmark gene set (v.7.2) from MSigDB
(https://www.gsea-msigdb.org/gsea/). Adjust p value<0.05,
FDR < 0:25, and ∣NES ∣ >1 were considered significant
enrichment.

2.2. Cell Culture and Transfection. Human HSCC cell line
FaDu was purchased from Chinese Academy of Sciences

(Shanghai, China), and the cells were cultured in DMEM
medium containing 10% FBS. The siRNA-NC, siRNA-
LEF1-AS1, NC mimics, NC inhibitors, miR-221-5p mimics,
and miR-221-5p inhibitors were all purchased from Gene-
pharma (Shanghai, China) for transfection by using Lipofec-
tamine RNAiMAX reagent (Thermo Fisher Scientific).

2.3. Proliferation Analysis and Apoptosis Analysis. The pro-
liferation of FaDu cells was detected by CCK8 kits (Dojindo
Laboratory, Japan). Briefly, the cells were seeded into 96-well
plates and cultured for the indicated time, followed by the
administration of CCK8 and incubation for another 4 h,
and the absorption at 450nm was examined by microplate
reader (BioTek, San Diego, CA, USA). For colony formation,
the transfected cells were counted, and 1000 cells were
seeded into 6-well plates. 15 days later, the cell colonies were
fixed with 4% paraformaldehyde and stained followed by the
calculation. For cell apoptosis examination, after transfec-
tion for 48 h, the FaDu cell apoptosis was examined by using
Annexin V-FITC/PI Kit (Beyotime, Shanghai, China)
according to the manufacturer’s instructions and detected
by a flow cytometer.

2.4. Metastasis Analysis. For wound scratch assay, after
transfection, scratch wounds were produced on the surface
of overgrown cells by micropipette tip. After 24 h, the
scratches were photographed, and the relative migrative rate
was calculated by ImageJ. Basic transwell chamber (Corn-
ing) or Matrigel (BD Biosciences) precoated transwell cham-
ber was used for the cell migration or invasion evaluation.
Transwell assays were performed as previous described [9].

2.5. Quantitative Real-Time PCR (qRT-PCR) and RNA
Immunoprecipitation (RIP) Assay. RNAs from FaDu cells
were extracted by RNA Purification Kit (GeneJET; Thermo),
and 1μg total RNA was reversely transcribed by cDNA syn-
thesis Kit (TaKaRa, Dalian, China) followed by qRT-PCR
carried out by SYBR Green PCR Mix (TaKaRa). Results were
standardized to GAPDH or U6, and the fold changes were
calculated by the 2−ΔΔCT method [10]. The sequences of
primers were shown in Table 1. Magna RIP Kit (Millipore,
USA) was used for RIP assay, the cell lysates were incubated
with Ago2 antibody or negative control IgG antibody pre-
coated beads (Millipore), and the purified RNA was per-
formed the following qRT-PCR analysis.

2.6. Dual-Luciferase Reporter Gene Assay. The WT or the
mutant-type of LEF1-AS1 or GJA1 was inserted into pmir-
GLO dual-luciferase vector, respectively (Promega, Madison,
WI). FaDu cells were transfected with these vectors, together
with the treatment of negative control or miR-221-5p
mimics. 48 h later, the activities of luciferase were examined
using the dual-luciferase reporter analysis system (Promega,
Madison, WI, USA).

2.7. Western Blot Analysis. After transfection, FaDu cells
were harvested with RIPA Lysis reagent (Sigma-Aldrich),
and protein concentrations were assessed by BCA protein
assay kit (Thermo Fisher). 20μg proteins were performed
12% SDS-PAGE then electrophoretically transferred onto

Table 1: Sequences of primers used in the study.

Gene Sequence (5′-3′)
LEF1-AS1

F AAG GAC GAG AGA AAA GCA C

R CAC ACA AAG GGG AAG ACC

GAPDH

F GTC TCC TCT GAC TTC AAC AGC G

R ACC ACC CTG TTG CTG TAG CCA A

miR-221-5p

F ACACTCCAGCTGGGACCTGGCATACAATGT

R CTC AAC TGG TGT CGT GGA

GJA1

F GGA GAT GAG CAG TCT GCC TTT C

R TGA GCC AGG TAC AAG AGT GTG G

U6

F CTC GCT TCG GCA GCA CA

R AAC GCT TCA CGA ATT TGC GT
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PVDF membrane followed by blocking in 1% BSA. The
membranes were incubated with individual antibodies over-
night at 4°C. After incubating with the corresponding horse-
radish peroxidase- (HRP-) conjugated secondary antibodies,
the band signals were measured by using enhanced chemilu-
minescence kit (Thermo Fisher Scientific). Antibodies for
cleaved caspase 3 (#ab2302; 1 : 500), total caspase 3
(#ab32150; 1 : 1000), GAPDH (#ab8245; 1 : 1000), N-
cadherin (#ab245117; 1 : 1000), and GJA1 (#ab217676;
1 : 1000) were obtained from Abcam, and antibodies for
Bax (#89477; 1 : 1000), Bcl-2 (#15071; 1 : 1000), E-cadherin
(#14472; 1 : 1000), and vimentin (#5741; 1 : 1000) were pur-
chased from Cell Signaling Technology. Appropriate HRP-
tagged secondary antibodies (1 : 2000) were all bought from
Santa Cruz Biotechnology.

2.8. Statistical Analysis. Statistical analysis was performed by
using GraphPad Prism 8.0 (GraphPad, USA) with student’s t

-test and one-way ANOVA together with Tukey Kramer
post-hoc testing. p values <0.05 were considered statistically
significant.

3. Results

3.1. lncRNA LEF1-AS1 Acts as a Novel Biomarker for
HNSCC. To illustrate the effect of LEF1-AS1 on HNSCC,
we performed the bioinformatic analysis in TCGA datasets
and explored the expression and prognosis effect of LEF1-
AS1 at first. As shown in Figures 1(a) and 1(b), we observed
that the LEF1-AS1 expression was obviously elevated in
HNSCC tumor tissues. Furthermore, ROC data suggested
LEF1-AS1 as a potential biomarker for HNSCC
(Figure 1(c)). Kaplan−Meier survival analysis also indicated
that aggravated LEF1-AS1 levels were associated with poorer
overall survival (OS) rate in HNSCC patients (Figure 1(d)).
Due to the extremely low number of HSCC cases in the
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Figure 1: LncRNA LEF1-AS1 acts as a novel biomarker for HSCC. (a) The expression level of LEF1-AS1 in HNSCC tumor tissues (n = 502)
and normal tissues (n = 44) from the TCGA database. (b) Comparison of the expression of LEF1-AS1 between tumor (n = 43) and matched
normal tissues (n = 43) from the TCGA database. (c) ROC curve showed the diagnostic value of LEF1-AS1. (d) Kaplan–Meier curves
revealed overall survival of HNSCC patients with high or low levels of LEF1-AS1 in TCGA. ∗∗∗p < 0:001.
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Figure 2: Continued.
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Figure 2: Effect of LEF1-AS1 on cell proliferation and apoptosis. (a, b) Efficiency of LEF1-AS1 overexpression plasmid (a) or LEF1-AS1
siRNAs (b) in FaDu cells. (c, d) GSEA analysis of P53 (c) and apoptosis (d) gene sets based on LEF1-AS1 expression information in
TCGA. (e, f) CCK8 analysis in LEF1-AS1 overexpressed (e) or silenced FaDu cells (f). (g) Colony formation assay. (h) Relative colony
numbers in (g). (i) Apoptosis of LEF1-AS1 overexpressed or silenced FaDu cells were detected by flow cytometry. (j) Apoptotic cell
percent in (i). (k) Protein levels of apoptosis markers including cleaved caspase 3, Bax, and Bcl-2 in LEF1-AS1 overexpressed or silenced
FaDu cells. Data are presented as means ± SD. ∗∗p < 0:01; ∗∗∗p < 0:001.
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TCGA database, and HSCC and other HNSCC were all
squamous cell carcinomas which shared similar pathological
forms, and we speculated that LEF1-AS1 may also play cru-
cial roles in HSCC tumorigenesis and development.

3.2. Effect of LEF1-AS1 on Cell Proliferation and Apoptosis.
According to the abnormal expression and prognostic value
of LEF1-AS1 in HNSCC datasets of the TCGA database, we
further used HSCC cell line FaDu cells to examine the effect
of LEF1-AS1 on HSCC tumorigenesis abilities. We used
LEF1-AS1 overexpression plasmid and siRNAs for the
gain/loss-of-function experiments, and the efficiency of the
overexpression or silencing of LEF1-AS1 was detected by
qPCR (Figures 2(a) and 2(b)). Gene set enrichment analysis
(GSEA) results showed that LEF1-AS1 associated genes were
enriched in p53 pathway (Figure 2(c)) and apoptosis process
(Figure 2(d)). By using CCK8 experiment, we noticed that

the LEF1-AS1 overexpression obviously increased the viabil-
ity of FaDu cells (Figure 2(e)), and consistent results were
obtained in LEF1-AS1 silenced cells (Figure 2(f)). The over-
expression of LEF1-AS1 also induced elevated colony num-
bers, whereas silencing of LEF1-AS1 alleviated the
formation of colonies (Figures 2(g) and 2(h)). Flow cytome-
try analysis revealed that LEF1-AS1 contributed to the sup-
pression of cell apoptosis (Figures 2(i) and 2(j)), as well as
the altered expression of apoptosis markers such as cleaved
caspase 3, Bax, and Bcl-2 (Figure 2(k)).

3.3. LEF1-AS1 Positively Regulates Cell Migration, Invasion,
and EMT Process. Furthermore, we examined the effect of
LEF1-AS1 on tumor metastasis. As shown in Figures 3(a)
and 3(b), wound scratch assay results indicated that cell
migration ability was enhanced by the LEF1-AS1 overex-
pression, whereas silencing of LEF1-AS1 significantly
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Figure 3: LEF1-AS1 positively regulates cell migration, invasion, and EMT process. (a) Wound healing assays in LEF1-AS1 overexpressed
or silenced FaDu cells. (b) Relative migration rate in (a). (c) Transwell experiments for cell migration and invasion detection. (d, e) Relative
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suppressed FaDu migration. Moreover, we found that LEF1-
AS1 contributed to cell migration and invasion in transwell
experiments (Figures 3(c)–3(e)). Due to the critical role of
EMT process in metastasis, we also performed GSEA enrich-
ment of Hallmark EMT-related gene set, and we found that
LEF1-AS1 was obviously correlated with EMT-related genes
(Figure 3(f)), and western blot data indicated that LEF1-AS1
suppressed the E-cadherin expression, whereas elevated the
expression of N-cadherin and vimentin (Figure 3(g)). In
brief, these data indicated that LEF1-AS1 promotes HSCC
cell migration and invasion and enhanced the process of
EMT.

3.4. LEF1-AS1 Serves as ceRNA to Regulate the miR-221-5p
Expression. Competing endogenous RNA (ceRNA) is one
of the most essential functional mechanisms of lncRNA
[11]. To investigate whether LEF1-AS1 regulates tumor pro-
gression and metastasis through ceRNA mechanism, we pre-
dicted the potential candidate targets of LEF1-AS1 by using
online-tool RNA22, and we identified that LEF1-AS1 existed
complementary binding regions to miR-221-5p
(Figure 4(a)). Dual-Luciferase reporter gene assay data dem-
onstrated that the miR-221-5p overexpression greatly sup-
pressed the luciferase activation of LEF1-AS1-WT plasmid
but failed to repress LEF1-AS1-mutant vector luciferase
activity (Figure 4(b)). To substantiate this binding relation-
ship, we further performed RIP experiment with anti-Ago2
in FaDu cells, and the enrichment effects of LEF1-AS1 or
miR-221-5p together with Ago2 were confirmed
(Figure 4(c)). Moreover, the levels of miR-221-5p were sig-

nificantly suppressed in LEF1-AS1 overexpressed FaDu cells,
whereas silencing of LEF1-AS1 elevated miR-221-5p levels
obviously (Figures 4(d) and 4(e)). In addition, miR-221-5p
was observed to be downregulated in HNSCC tumor tissues
in TCGA-HNSCC datasets (Figure 4(f)). Furthermore, miR-
221-5p was found to be positively correlated with the favor-
able overall survival of patients (Figure 4(g)), and miR-221-
5p levels were shown to be negatively correlated with the
LEF1-AS1 expression (Figure 4(h)). In brief, these data illus-
trated that LEF1-AS1 negatively regulates the miR-221-5p
expression in FaDu cells.

3.5. miR-221-5p Suppresses FaDu Cell Proliferation and EMT
by Targeting GJA1. As shown in Figure 5(a), the efficiencies
of miR-221-5p mimics and inhibitor were detected by qRT-
PCR. For searching the putative targets of miR-221-5p, the
TargetScan database was used which suggested GJA1 as a
potential target (Figure 5(b)). Cotransfection of GJA1-3′
UTR-WT vector together with miR-221-5p mimics resulted
in an attenuated dual luciferase activity, whereas miR-221-
5p mimics had no affection on luciferase activity of GJA1-
3(h)UTR-mutant plasmid (Figure 5(c)). Furthermore, we
observed that the miR-221-5p overexpression suppressed
GJA1 levels, and miR-221-5p inhibition aggravated GJA1
expression significantly (Figures 5(d) and 5(e)). In addition,
miR-221-5p was shown to inhibit FaDu cell proliferation,
whereas rescued the levels of GJA1 abolished the inhibitory
effect of miR-221-5p on proliferation (Figure 5(f)). Consis-
tently, inhibitory functions of miR-221-5p on EMT, cell
migration, and cell invasion were all reversed by GJA1
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Figure 4: LEF1-AS1 acts as ceRNA to regulate the miR-221-5p expression. (a) Presentation of binding sites between LEF1-AS1 and miR-
221-5p by RNA22 online tool. (b) Luciferase activity of LEF1-AS1-WT or LEF1-AS1-Mut plasmid in miR-221-5p overexpressed FaDu cells.
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rescue experiments (Figures 5(g) and 5(h)). In brief, these
data demonstrated that miR-221-5p attenuated FaDu cell
proliferation and EMT process via targeting GJA1.

3.6. LEF1-AS1 Enhances the Growth and Metastasis Abilities
of FaDu Cells via the miR-221-5p/GJA1 Axis. Bioinformatic
analysis revealed that the GJA1 expression was enhanced
in HNSCC tumor tissues (Figures 6(a) and 6(b)), and
Kaplan–Meier survival data demonstrated that the higher
GJA1 expression presented a worse OS rate in HNSCC

patients (Figure 6(c)). Moreover, we noticed that LEF1-
AS1 dramatically enhanced the GJA1 expression
(Figures 6(d) and 6(e)). Importantly, we observed that
LEF1-AS1-induced FaDu cell proliferation and EMT were
all reversed after transfection of miR-221-5p mimics, which
mainly associated with the attenuated expression of GJA1
regulated by miR-221-5p (Figures 6(f)–6(h)). In brief, these
data revealed that LEF1-AS1 acted as a ceRNA to stabilize
the GJA1 expression via competing miR-221-5p, therefore,
enhances the growth and metastasis abilities of FaDu cells.
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Figure 5: miR-221-5p suppresses FaDu cell proliferation and EMT by targeting GJA1. (a) Efficiency of miR-221-5p mimics and inhibitors.
(b) Presentation of binding sites between miR-221-5p and GJA1 by TargetScan online tool. (c) Luciferase activity of GJA1-3′UTR-WT or
GJA1-3′UTR-mutant plasmid in miR-221-5p overexpressed FaDu cells. (d, e) mRNA (d) or protein (e) levels of GJA1 in miR-221-5p
overexpressed or silenced FaDu cells. (f) CCK8 results indicated that the GJA1 overexpression reversed miR-221-5p-induced inhibitory
effect on cell proliferation. (g) Western blot results revealed that GJA1 silencing abolished miR-221-5p inhibitor-induced aggravation of
EMT. (h) In transwell assays, the GJA1 overexpression reversed miR-221-5p-induced inhibitory effect on FaDu cell migration and
invasion. Data are presented as means ± SD. ∗∗∗p < 0:001.
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4. Discussion

In the current manuscript, we demonstrated the functions of
lncRNA LEF1-AS1 in HSCC and illustrated the proonco-
genic effect of LEF1-AS1 via promoting the tumor progres-
sion and metastasis. As far as we known, this manuscript
is the first publication about the functions of LEF1-AS1 in
HSCC and verified the role of the LEF1-AS1/miR-221-5p/
GJA1 axis.

In recent time, accumulating evidences suggested that
the overwhelming majority of lncRNA function as molecular
sponges for miRNAs to weaken the expression of miRNAs,
therefore indirectly regulated miRNAs targets levels in
diverse kinds of diseases. For instance, lncRNA BCRT1
was reported to competitively bind with miR-1303 to pre-
vent the degradation of PTBP3, which induced the progres-
sion of breast cancer [12]. In LPS-induced HK2 cells,
lncRNA NKILA was observed to aggravate LPS-induced
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Figure 6: LEF1-AS1 enhances the proliferation and metastasis abilities of FaDu cells via the miR-221-5p/GJA1 axis. (a) The expression level
of GJA1 in HNSCC tumor tissues (n = 502) and normal tissues (n =44) from the TCGA database. (b) Comparison of the expression of GJA1
between tumor (n = 43) and matched normal tissues (n = 43) from the TCGA database. (c) Kaplan–Meier curves revealed overall survival of
HNSCC patients with high or low levels of GJA1 in TCGA. (d, e) mRNA (d) or protein (e) levels of GJA1 in LEF1-AS1 overexpressed or
silenced FaDu cells. (f) CCK8 results indicated that the miR-221-5p overexpression reversed LEF1-AS1-induced promotion of cell
proliferation. (g) Western blot results revealed that the miR-221-5p overexpression abolished LEF1-AS1-induced aggravation of EMT as
well as the increased GJA1 expression. (h) In transwell assays, the miR-221-5p overexpression reversed LEF1-AS1-induced aggravation
of FaDu cell migration and invasion. Data are presented as means ± SD. ∗∗∗p < 0:001.
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apoptosis and inflammation via miR-140-5p sponging-
associated stabilization of CLDN2 [13]. The lncRNA-
PVT1/miR-619-5p/Pygo2/ATG14 axis was shown to be crit-
ical for the promotion of gemcitabine chemoresistance of
pancreatic cancer [14]. The roles of LEF1-AS1 have been
illustrated in other diseases in previous studies. As examples,
the LEF1-AS1 expression could be induced by CREB1, and
the high expression of LEF1-AS1 promoted tumorigenesis
of colorectal tumor through sponging miR-489 and stabiliz-
ing DIAPH1 [15]. Moreover, LEF1-AS1 was found to aggra-
vate the progression of ovarian cancer [16], retinoblastoma
[17], and lung cancer [18]; however, the effect of LEF1-
AS1 on HNSCC, especially in hypopharyngeal squamous
cell carcinoma, still remains largely unknown. In this
research, we illustrated the function of LEF1-AS1 in HSCC.
We observed that LEF1-AS1 was upregulated in tumor tis-
sues in the TCGA database, which was correlated with the
poor prognosis. In vitro experiments revealed that LEF1-
AS1 significantly enhanced cell proliferation as well as the
suppression of cell apoptosis. Moreover, LEF1-AS1 was
proved to enhance EMT process and improved metastasis
of HSCC cells. Mechanically, it was found that LEF1-AS1
served as a sponge of miR-221-5p thereby alleviated miR-
221-5p induced decreased levels of GJA1.

Antitumor effects of miR-221-5p have been illustrated
previously. Jiang and colleagues demonstrated that the
miR-221-5p expression was suppressed in gastric cancer tis-
sues, overexpression of miR-221-5p reduced cisplatin che-
moresistance of gastric tumor cells, and suppressed cell
proliferation and migration via suppressing DDR1 [19].
Moreover, miR-221-5p was reported to inhibit prostate
tumor cell proliferation and metastasis both in vivo and
in vitro [20]. Consistently, we found that the miR-221-5p
expression was reduced in tumor tissues in HNSCC datasets
of TCGA which was negatively associated with LEF1-AS1
expression, and miR-221-5p was demonstrated as a tumor
suppressor to inhibit cell growth and EMT-associated
migration and invasion. By bioinformatical analysis, we
identified GJA1 as the potential target of miR-221-5p.
GJA1 was shown to be positively correlated with the poor
overall survival of cervical cancer [21]. Moreover, GJA1
was shown to promote hepatocellular carcinoma progres-
sion via TGF-β activation and enhancement of EMT process
[22]. Effect of GJA1 on proliferation and EMT ability was
also confirmed in breast cancer [23], lung cancer [24], and
bladder cancer [25]. Our results indicated that the GJA1
expression was increased in HNSCC tissues and correlated
with the worse prognosis. In addition, we noticed that the
GJA1 overexpression reversed miR-221-5p mimic-induced
EMT inhibition and growth suppression, which confirmed
the assumption that GJA1 was the target of miR-221-5p.
At last, by performing rescue assays, we found that miR-
221-5p mimic administration abolished LEF1-AS1-induced
FaDu proliferation and EMT process and revealed that the
function of LEF1-AS1 on FaDu progression and metastasis
mainly depends upon the LEF1-AS1/miR-221-5p/GJA1 axis.

5. Conclusion

In summary, our manuscript suggested LEF1-AS1 as a novel
biomarker for HNSCC, illustrated the effects of LEF1-AS1,
miR-221-5p, and GJA1 on hypopharyngeal squamous cell
carcinoma for the first time, and revealed that the LEF1-
AS1/miR-221-5p/GJA1 axis may serve as a novel promising
target for HSCC therapy. However, further exploration
about the precise mechanisms by which GJA1 regulates
EMT process and cell proliferation in HSCC is needed in
the further studies.
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