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The study of biomedical imaging and biological surfaces is
a rapidly growing interdisciplinary field that has attracted
considerable interest from mathematical, engineering, and
medicine communities. Many research problems in this field
are application oriented and thus the results have practical
values but are challenging due to physical and biological
constraints and the large scale nature of massive biomedical
and biomolecular data. To efficiently solve these problems,
advanced mathematical models and fast and efficient com-
putational algorithms are indispensable tools. This special
issue was called to address mathematical difficulties and
challenges in image and surface analysis. We would like
to share with the readers the recent advances in topics
such as topological-gradients-based edge/contour detection,
partial differential-equation-transform-based feature sepa-
ration, blind multiple-source reconstruction in biolumines-
cence tomography, partial-differential-equation-based cere-
bral cortex reconstruction, nonlinear elasto-mammography
for characterization of breast tissue properties, and protein
surface characterization.

We would like to thank the authors for their excellent
contributions and patience that make this special issue pos-
sible. The time, effort, and valuable work of all anonymous
reviewers on these papers are also very greatly acknowledged.
This special issue constitutes ten papers.

The paper entitled “Contour detection and completion for
inpainting and segmentation based on topological gradient and
fast marching algorithms” by D. Auroux et al. introduces
a contour functional that is based on topological gradient
and couples it with a fast marching algorithm to determine
the minimal path for the purpose of generating connected
contours. This offers a hybrid scheme for edge detection

and contour completion. Two specific applications are
considered for image processing. For image segmentation,
the topological gradient is shown to be more efficient than
the standard gradient approaches. For image inpainting,
the hybrid scheme particularly improves the quality of the
inpainted images.

The paper entitled “Protein surface characterization using
an invariant descriptor” by Z. Abu Deeb et al. develops a new
invariant descriptor for the characterization of protein sur-
faces. It is suitable for various analysis tasks, such as protein
functional classification and search and retrieval of protein
surfaces over a large database. Its novelty is the combination
of the power of residue-distance cooccurrence-based local
and global surface descriptors. The proposed method not
only reduces the computational complexity of matching 3D
structures, but also facilitates direct comparison between
protein structures of different sizes. The comparison with
other methods on three protein families indicates that this
method is effective.

The paper entitled “Extending local canonical correlation
analysis to handle general linear contrasts for fMRI data”
by M. Jin et al. designs a novel test statistics to enable
canonical correlation analysis (CCA) and to handle general
linear contrasts in more complicated fMRI paradigms. This
approach avoids the reparameterization of the design matrix
and the reestimation of the CCA solutions for each particular
contrast of interest. This test statistics is more powerful
than the traditional t-test in general linear models on the
inference of evoked brain regional activations from noisy
fMRI data, especially for weakly evoked and localized brain
activations. The method improves detection power with
acceptable computation time and has potential to meet the
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needs in recent fMRI where data is enormous, signal is weak,
and the spatial correlation is strong.

The paper entitled “A novel FEM-based numerical solver
for interactive catheter simulation in virtual catheterization”
by S. Li et al. concerns with interactive simulation of the
deformable catheters and guide-wires in virtual vascular
interventional surgeries. The motion of catheters or guide-
wires and their interactions with patients’ vascular system
are mathematically formulated in terms of a total potential
energy, consisting of bending elastic energy, vessel wall
deformation energy, and the work by the external forces. The
minimization of the potential energy functional is numeri-
cally realized via a finite element simulation. Experimental
studies indicate that the proposed method can realistically
model and simulate deformable catheters and guide-wires in
an interactive manner.

The paper entitled “Cortical surface reconstruction from
high-resolution MR brain images” by S. Osechinskiy et al.
presents a new PDE-based approach that readily scales with
imaging resolution for reconstructing the cerebral cortex
from MR images. The scalability virtue of the approach
makes it promising in brain imaging research where high-
resolution MRI becomes more popular. This scalability is
achieved by using an implicit deformable surface model in a
fast marching framework guided by a novel, computationally
efficient model using potential field mapping. The method
requires much lower computational resources and allows
much faster computations than conventional methods.

The paper entitled “Serial FEM/XFEM-based update of
preoperative brain images using intraoperative MRI” by L.
Vigneron et al. aims to overcome the limitation of current
neuronavigation systems that cannot adapt to changing
intraoperative conditions over time. The authors develop
a complete 3D framework for serial preoperative images
updated in the presence of brain shift followed by successive
resections. The key ingredient of the system is a nonrigid
registration technique using a biomechanical model driven
by the deformations of key surfaces tracked in successive
intraoperative images. Numerical results demonstrate that
the present approach significantly improves the alignment of
nonrigidly registered images.

The paper entitled “Selective extraction of entangled tex-
tures via adaptive PDE transform” by Y. Wang et al. presents a
new adaptive algorithm for selective extraction of entangled
textures. Texture characterization and analysis are com-
plicated for images with spatial entanglement, orientation
mixing, and high-frequency overlapping. Based on a recently
developed PDE transform method for functional mode
decomposition, the statistical variance of the local variation
is adaptively incorporated in the PDE transform framework
for separating textures of very similar features. Successful
texture separation is attained for several benchmark images.

The paper entitled “Nonlinear elasto-mammography for
characterization of breast tissue properties” by Z. G. Wang
et al. extends their previous studies by incorporating the
projection of displace information obtained from the con-
ventional X-ray mammography into a nonlinear elastogra-
phy framework. In particular, projection-type displacement

measurements are considered before and after breast com-
pression, and a revised adjoint gradient method is derived
for calculating the gradient of the objective function in
the nonlinear elasto-mammography framework. Simulations
based on a three-dimensional breast phantom involving
normal and cancerous tissues are conducted to validate the
feasibility and robustness of the proposed approach.

The paper entitled “Fracture detection in traumatic pelvic
CT images” by J. Wu et al. presents an automated hierarchical
algorithm for bone fracture detection in pelvic CT scans.
It uses adaptive windowing, boundary tracing, and wavelet
transform, while incorporating anatomical information.
Fracture detection is performed based on the results of
prior pelvic bone segmentation via their registered active
shape model (RASM). The results are promising and show
that the method is capable of detecting fractures accurately.
Once verified with more data, the proposed method has the
potential to be an important component of a larger modular
system to extract features from CT images for a computer-
assisted decision making system.

The paper entitled “A finite element mesh aggregating
approach to multiple-source reconstruction in bioluminescence
tomography” by J. Yu et al. develops a finite element mesh
aggregating algorithm for blind multiple-source reconstruc-
tion in bioluminescence tomography. Without knowing the
number of the sources in advance, an iterative procedure is
utilized to detect multiple sources by exploiting the spatial
structure of the nodes in finite element meshes and the
characteristics of the energy decay. The detecting algorithm
is formulated in a flexible reconstruction framework, where
a variety of regularizers and inversion algorithms can be
chosen by the user. Simulations using a tissue-like phantom
demonstrate an improved performance of the new algorithm
in terms of the automatic estimation of both locations and
densities of multiple sources that differ greatly in power.

Weihong Guo
Lalita Udpa
Yang Wang

Guowei Wei
Shan Zhao
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Reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the
human brain structure, for example, in sulcal morphometry and in studies of cortical thickness. Existing cortical reconstruction
approaches are typically optimized for standard resolution (∼1 mm) data and are not directly applicable to higher resolution
images. A new PDE-based method is presented for the automated cortical reconstruction that is computationally efficient and
scales well with grid resolution, and thus is particularly suitable for high-resolution MR images with submillimeter voxel size. The
method uses a mathematical model of a field in an inhomogeneous dielectric. This field mapping, similarly to a Laplacian mapping,
has nice laminar properties in the cortical layer, and helps to identify the unresolved boundaries between cortical banks in narrow
sulci. The pial cortical surface is reconstructed by advection along the field gradient as a geometric deformable model constrained
by topology-preserving level set approach. The method’s performance is illustrated on exvivo images with 0.25–0.35 mm isotropic
voxels. The method is further evaluated by cross-comparison with results of the FreeSurfer software on standard resolution data
sets from the OASIS database featuring pairs of repeated scans for 20 healthy young subjects.

1. Introduction

Cortical reconstruction, the derivation of a computerized
representation of the cerebral cortical layer based on three-
dimensional (3D) magnetic resonance (MR) images of the
brain, is an important step in quantitative analysis of the
human brain structure, for example, in the analysis of corti-
cal folding patterns, in brain morphometry, and in cortical
thickness studies. Cortical surface models typically serve as
a reference basis for all further analysis and therefore must
be geometrically accurate and topologically correct in order
to provide valid and accurate quantitative measures of brain
structure [1].

The cerebral cortex, considered at the spatial scale of MR
images, is a thin layer of neural tissue, called gray matter
(GM), located on the outer side of the white matter (WM),
and surrounded by the cerebrospinal fluid (CSF). The cortex
has a complex geometry of a highly folded layer with spatially
varying curvature and thickness (thickness range 1–5 mm,
average ≈2.5 mm, see [1]). The cortical layer on a brain

hemisphere can be represented as the inner space between
two cortical surfaces (i.e., an inner surface at the WM/GM
and an outer or pial surface at the GM/CSF interface, see
Figure 1). It is a useful simplification to consider each surface
as topologically equivalent to a 3D sphere. In practice,
limited spatial resolution of MR images, noise, intensity
inhomogeneities, and partial volume effects can all be the
sources of geometrical inaccuracies and topological errors in
the reconstructed cortical model. In particular, the opposite
banks of gray matter in deep sulci are not always resolved as
separate and can appear as fused together (Figure 1), leading
to invalid models of the cortical layer and propagating errors
further into quantitative measurements (e.g., cortical thick-
ness). This may present a particular challenge for an auto-
mated reconstruction algorithm, requiring specific means for
an automatic detection and correction of topologically and
geometrically problematic cases.

Reconstruction of cortical surface models received con-
siderable attention in neuroimaging research. Here, we only
briefly overview some state-of-the-art methods; please refer
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Figure 1: Schematic illustration of a fragment of brain slice.
Contours of the inner and pial surface are marked in red and green.
Due to partial volume effects and limited resolution, adjacent banks
of gray matter in some sulci may appear as fused together, creating
either a “bridged” sulcus or an unresolved sulcal fundus (a “buried”
sulcus). Note that a “bridged” sulcus creates a topological defect, a
handle, which may be corrected by a topology-preserving model,
whereas a “buried” sulcus does not change the topology.

to Han et al. [1] and Kim et al. [2] for additional discussion.
A suite of algorithms for automated cortical reconstruction
is implemented in the popular and freely available FreeSurfer
software [3, 4]. FreeSurfer includes an algorithm for find-
ing and correcting the topological defects in the initial
WM/GM surface [5] and a method to deform the mesh for
reconstructing the inner and pial surfaces. The deformable
model is constrained by a second-order smoothing term
[6] and by a mesh self-intersection prevention routine [3],
which both help to resolve the boundaries between adjacent
banks in tight sulci. The FreeSurfer automated toolchain is
optimized for standard resolution T1-weighted MR images
and conforms input data to 1 mm isotropic voxel size, as
a rule. This is consistent with the fact that mesh self-
intersection detection and prevention is computationally
expensive (see [1, 6]) and does not scale well with increasing
mesh resolution. Xu et al. [7] developed a deformable mesh
model for reconstruction of the central cortical surface.
The model deforms the topology-corrected initial WM/GM
interface by forces derived from a smoothed gradient field [8]
that was computed from a GM class membership function.
The model does not perform a time-consuming check of
mesh self-intersections, which is arguably less critical for
finding the central surface, compared to the pial surface.
Kim et al. [2] presented a different deformable mesh-based
approach for reconstruction of a pial surface, which is
called constrained Laplacian anatomic segmentation using
proximity, or CLASP. The algorithm computes a Laplacian
field mapping between the GM/WM interface and the
skeleton of the partial volume classification of the CSF. The
Laplacian map is then integrated into the deformable model’s
objective function, driving mesh vertices into locations with
higher values of the Laplacian field. Terms for stretch and
self-proximity are included to regularize the deforming
mesh and prevent from mesh self-intersection inside sulci.
The method by Kim et al. depends on accurate extraction
of the CSF skeleton and therefore relies on an elaborate
partial volume tissue classification algorithm. However, the
accuracy of the Laplacian mapping may be compromised at
locations, where the fused GM sulcal banks are not resolved.
In addition, the computational cost of the self-proximity

term may become prohibitive for high-resolution meshes.
Zeng et al. [9] used implicit surfaces in a level set framework
for simultaneous reconstruction of the inner and outer
cortical surfaces coupled by the minimal and maximal
distance constraint. However, this approach did not gain
widespread use, because it does not preserve the topology
of the evolving surfaces and, in some areas, the distance
coupling term may suppress the data attachment term,
resulting in geometrical inaccuracies [10]. Han et al. [1]
described a method for automated reconstruction of cortical
surfaces, called CRUISE, which is built around a geometric
deformable model using level sets. To help resolve the
cortical banks in sulci, a thin digital separating barrier is
constructed using the anatomically consistent enhancement
algorithm ACE [1, 11], which finds a skeleton of the weighted
distance function computed from the Eikonal equation with
a speed function modulated by the CSF class membership.
At the core of the CRUISE method is a topology-preserving
geometric deformable surface model, TGDM [1, 11, 12],
which models the evolution of a level set function under
the influence of signed pressure forces computed from tissue
class membership values and curvature forces defined by
the surface geometry. The central surface of the cortex is
reconstructed by a TGDM with GGVF advection forces
similar to those in Xu et al. [7].

We present a method, henceforth, designated dielectric
layer field mapping, or DELFMAP, for the automated recon-
struction of the cortical compartment from MR images,
which is based on several partial differential equation (PDE)
modeling stages. Our method is inspired by the work of Han
et al. and uses a similar level set framework, but introduces
a different perspective, consolidating all algorithmic stages
around the key mathematical model of a potential field in
an inhomogeneous dielectric medium. Our method scales
well with image resolution and has an advantage over other
existing methods in reconstruction from high-resolution MR
images with submillimeter voxel sizes, because (1) in contrast
to deformable mesh models in FreeSurfer or CLASP, it avoids
the computational cost of testing for mesh self-intersection
and self-proximity; (2) similarly to CRUISE, it uses an
efficient narrow-band algorithm for the level set evolution;
(3) in contrast to CRUISE that requires solving a system of
three second-order PDEs in GGVF, our method solves just
one second-order PDE and does not need an intermediate
step of reconstructing a central cortical surface.

Preliminary results of this work were presented in two
conference publications [13, 14]. This report expands on the
methodology and experimental results and adds a validation
study that performs cross-comparison of our method’s
cortical reconstruction results with those obtained using
FreeSurfer [3, 4] on standard resolution data for 20 healthy
young subjects (test-retest repeated scans) from the OASIS
database [15].

2. Methods

The DELFMAP method proceeds as follows. A potential
field is computed using the mathematical model of an
electric field in an inhomogeneous dielectric medium, where
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the segmented WM poses as a charged conductive object
and the classified GM poses as an inhomogeneous dielectric
layer with permittivity proportional to GM class probability
values. This electrostatic model serves the purpose of
concentrating the flux of the mapping flow in a layer of
voxels classified as GM and helps to identify the separating
barriers between cortical banks in sulci, where the mapping
flow collides. Correspondence trajectories following the
lines of the potential field and geodesic distances from
WM boundary are determined using PDEs, and a digital
skeleton of the sulcal medial surface separating GM sulcal
banks is derived by finding collisions in the correspondence
trajectories and shocks in the distance field. The computed
electric field retains the desired laminar properties of the
Laplacian mapping in the bulk of the cortical layer and is
used as the potential flow that maps the inner surface to the
outer. The outer (pial) cortical surface is reconstructed using
a geometric deformable model level set framework [16] with
an advection along the gradient of the potential field, which
is constrained by the identified skeleton of the sulcal medial
surfaces and (optionally) by a maximal distance/proximity
constraint.

2.1. Image Processing Chain. DELFMAP takes as input a set
of volumetric images containing WM and GM tissue class
probability/membership functions and a refined WM model,
supplied either as a topology-corrected WM binary segmen-
tation or as a WM/GM interface level set function. The
overall chain of general image processing steps is outlined as
follows (Figure 2) (1) A T1-weighted volumetric MR image is
(optionally) aligned with the stereotaxic coordinate system,
interpolated to isotropic voxel size, and is preprocessed with
a brain-peeling algorithm that derives a mask of voxels
related to the cerebral tissues only. (2) The brain image
is corrected for intensity inhomogeneities and is classified
into WM,GM,CSF/background probability images. (3) A raw
WM binary segmentation is derived from the class probabil-
ity images (by thresholding or a maximum-probability rule),
and brain stem and cerebellum are (optionally) removed
from the WM segmentation. (4) A topology-corrected WM
volume is obtained from the raw WM binary segmentation
by an automated algorithm or by manual editing, or a com-
bination of both. (5) DELFMAP uses the output of step 2
and step 4 to reconstruct the inner and outer cortical
surfaces. We note that steps 1–4 are common to many brain
MR image processing workflows, therefore DELFMAP can
be easily integrated with a wide variety of toolchains. More
specifically, we used processing steps described in Yang and
Kruggel [17] in our experiments with 3-Tesla in-vivo images,
and we applied algorithms described in Kruggel et al. [18]
for the analysis of exvivo high-resolution images. In step 4,
for exvivo images, we used manual editing for filling ventri-
cles and correcting large topological defects, and we applied
a topological region-growing algorithm similar to the one in
Kriegeskorte and Goebel [19] to obtain a genus zero WM
binary object. In cross-validation with FreeSurfer on the
OASIS data sets, we used the FreeSurfer’s processing tool-
chain for the initial steps that are common between the two
methods (i.e., steps 1–4 that lead to a topologically-corrected

WM segmentation); therefore, the cross-method compari-
son of cortical reconstructions is not confounded by dif-
ferences in preprocessing approaches. Finally, we emphasize
that, in all our experiments involving DELFMAP, the tissue
classification was performed by a modified version (see [18])
of the adaptive fuzzy clustering algorithm [20] augmented
with a spatial regularization term [1]; this also applies to GM
and WM tissue classification that was used by DELFMAP in
cross-validation study on the OASIS data sets.

2.2. Inner Cortical Surface. The inner cortical surface is
reconstructed by a deformable model (Figure 2, step 5.0) that
smooths the initial WM/GM interface, which is determined
by the corrected WM segmentation. For this purpose, we use
a topology-preserving geometric deformable model (similar
to [12]), which is described in detail in Section 2.6. For
smoothing, we typically run 2-3 iterations of the deformable
model with the mean curvature term only. We will denote
the “inside” region of the level set function representing the
inner cortical surface by Ωw.

2.3. Electric Field Model. A potential field is found as a solu-
tion to the PDE modeling an electric field around a charged
conductive object (WM) insulated by a dielectric layer (GM)
having spatially inhomogeneous electric permittivity, which
is set proportional to GM tissue class probability (Figure 2,
step 5.1). In such a model, the flux of the electric field is
confined in regions of higher permittivity, that is, where GM
class probability is higher; therefore, trajectories following
the lines of the electric field trace through the GM layer
before exiting into the background space. Thus, the flux
of the mapping flow is concentrated in a layer of voxels
classified as GM. Let Ω denote the 3D image domain with
the boundary Γ(Ω). We will denote WM and GM tissue
class probability images by Pw(�r ) and Pg(�r ) (�r ∈ Ω), where
�r = (x, y, z) is a 3D point. Let ϕ(�r ) denote a potential field,
a scalar function defined over Ω. Let ε(�r ) denote another
scalar function, called permittivity and computed from class
probabilities as follows:

ε
(
�r
) = 1 + (εmax − 1)

(
Cd
(
�r
)
Pw
(
�r
)

+ Pg
(
�r
))

, (1)

where εmax is the maximum permittivity of the insulating
layer (εmax should be � 1 in order to emphasize the inho-
mogeneity of the dielectric layer; εmax = 100 was used, and
εmax = 1000 was tested with similar results). Thus, permittiv-
ity is close to εmax when WM and/or GM class probabilities
are high and is close to 1 when they are low. Note that the
WM probability is included above only to ensure a proper
transition of the field near the WM/GM interface, where
some border voxels can be classified with low GM but high
WM probability, for example, because a smoothed interface
can slightly deviate from the initial WM segmentation. The
inclusion of WM probability is therefore limited by the
constraint field Cd, which is computed by thresholding of the
WM chamfer distance transform Dcmf as Cd = {1 if Dcmf <
dmin, 0 otherwise}, where the distance threshold dmin can
be set at the lower bound on cortical thickness (≈1 mm),
just enough to ensure a “high-permittivity” transition via
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T1-weighted MR image

Alignment, interpolation,
brain peeling

Aligned brain image, isotropic voxels

Intensity inhomogeneity correction,
tissue classification

WM, GM, CSF tissue class probability images

WM segmentation

WM binary segmentation image

Topological correction of WM segmentation

Corrected WM segmentation

DELFMAP

Smooth the initial WM/GM interface (geometric deformable model)

Inner cortical surface (level set)

Compute electric field potential in inhomogeneous dielectric layer

Potential field image

Compute distance field and correspondence trajectories,
identify the skeleton of the sulcal medial surfaces

Skeleton of sulcal medical surfaces Distance field

Find the pial interface (geometric deformable model)

Outer cortical surface (level set)

(1)

(2)

(3)

(4)

(5.0)

(5.1)

(5.2)

(5.3)

Preprocessing, generic steps 1–4

Cortical reconstruction, steps 5.0–5.3

Figure 2: Block diagram of the overall image processing chain, where the DELFMAP method addresses the reconstruction of cortical surfaces
(steps 5.0–5.3) after the preprocessing stage (steps 1–4).

boundary WM voxels to the layer of GM voxels. The potential
field is found as a solution of Maxwell’s equation for an
electric field inside inhomogeneous dielectric medium in the
absence of free charges:

∇
(
ε
(
�r
)�E
(
�r
)) = ∇ε∇ϕ + εΔϕ = 0. (2)

Equation (2) assumes that the dielectric medium has
linear and isotropic properties; therefore, ε is a scalar, not a
tensor. Boundary conditions are specified as ϕ(�r ∈ Ωw) = 1
and ϕ(�r ∈ Γ(Ω)) = 0, that is, the potential is set to one
in the WM core and is set to zero on the boundary of the

image volume. The solution of the PDE ϕ(�r ∈ Ω \ Ωw)
can be obtained as a steady-state solution (∂ϕ/∂t → 0) of
a corresponding nonstationary equation:

∂ϕ

∂t
= ∇ε∇ϕ + εΔϕ. (3)

Equation (3) can also be viewed as describing the dif-
fusion in inhomogeneous medium, where ε(�r ) is a spatially
varying but stationary diffusion coefficient and ϕ(�r, t) is the
concentration of the diffusing substance. This allows for a
different physical interpretation of the model: we seek a
steady-state spatial distribution of “particles” diffusing from
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WM source into the medium with a diffusivity proportional
to the GM class probability. Qualitatively, it is expected that
“particles” would diffuse more freely in GM; therefore, the
lines of the gradient field ∇ϕ would tend to concentrate in
the GM compartment. Equation (3) can be discretized and
solved iteratively as described by [21], for example, using the
Jacobi method [22].

2.4. Distance Field and Correspondence Functions. Lines of
the potential field ϕ are defined as a family of curves that are
at each point tangent to the gradient ∇ϕ. Let d(�s,�r ) denote
the length of a line segment originating at some point in WM
boundary �s ∈ Γ(Ωw) and ending in point �r ∈ Ω \ Ωw. If,
for any point �r, there is one and only one streamline passing
through it, then d(�r ) defines a distance field. It is possible
to compute the distance field by integrating trajectories
explicitly in a Lagrangian framework. Alternatively, using the
method described in Yezzi and Prince [23], the distance field
can be found as a solution of a PDE in an Eulerian framework
on a fixed grid. We note that ∇ϕ/‖∇ϕ‖ is the unit tangent
field of the potential field ϕ. Then, it can be shown that the
distance field d must satisfy the following PDE:

∇ϕ
∥∥∇ϕ∥∥ · ∇d

(
�r
) = 1, (4)

with the boundary condition d(�r ∈ Γ(Ωw)) = 0. Correspon-
dences along streamline trajectories can be computed in a
similar way. More specifically, let �ψ = [ψ1(�r ),ψ2(�r ),ψ3(�r )]
denote a vector of correspondence functions, which estab-
lishes a correspondence between a point in the field domain
�r ∈ Ω \ Ωw and a “source” point in the WM boundary
�ψ ∈ Γ(Ωw). These correspondence functions ψi can be found
as solutions of the following PDE (see [24]):

∇ϕ
∥
∥∇ϕ∥∥ · ∇ψi

(
�r
) = 0, (5)

with boundary conditions ψi(�r = [x1, x2, x3] ∈ Γ(Ωw)) = xi,
where i = 1, 2, 3.

The first-order PDEs (4) and (5) can be solved using
the numerical implementation described by Yezzi and Prince
[23]. In principle, finite spatial discretization may violate
the one-to-one correspondence property of the flow by
clamping several streamline paths into one point on a grid,
so the solutions d(�r ) and �ψ(�r ) may experience numerical
convergence problems in some grid locations. In practice,
we found that such problematic points are very sparse and
do not impede numerical convergence in the computational
domain at large. These points are usually detected among
other “shocks” in the distance field by a skeletonization
method (Figure 2, step 5.2), which is described next.

2.5. Skeleton of the Sulcal Medial Surface. Inside sulci,
streamlines originating from opposite cortical banks collide
(due to spatial discretization), which results into shocks in
the distance field and into “discontinuities” in the correspon-
dence functions. Shocks or singularities of a distance field
d are defined as a set of points, where spatial derivatives of

the field are not well-behaved, that is, the gradient ∇d is
not well defined. Such shocks appear as discontinuities or
sinks in the field. Note that even though the potential field in
our model should be, in theory, free from the sinks (because
there are no free charges), they may appear in the distance
field due to spatial discretization. Let S ⊂ Ω \ Ωw, called
a skeleton of the distance field, denote a set of points on a
grid, where shocks are detected by a numerical procedure.
Such numerical procedure can be based on finite difference
approximations to ∇d, as described by Han et al. [1]. The
observation is that a centered finite difference numerical
scheme will produce values of ‖∇d‖ that are significantly
lower than 1 on the shock points and are close to unity
elsewhere. Then, the skeleton can be detected as S = {�r |
(�r ∈ Ω \ Ωw) ∧ (d(�r ) > dmin) ∧ (‖∇d(�r )‖ < T)}, where
dmin is a minimum distance parameter set at the lower bound
on cortical thickness and T is a specified threshold value
(T < 1; values dmin = 1 mm and T = 0.8 can be used,
similarly to ACE in [1]). We found that the skeleton can be
robustly detected by a novel algorithm based on the analysis
of the correspondence function [14]. Recall that �ψ(�r0) is
a vector with coordinates of the streamline’s source point
at WM boundary. A streamline collision can be detected
if, in the neighborhood of �r0, there are correspondences to
source points that are “distant” between themselves. More
formally, the skeleton can be determined as S = {�r | (�r ∈
Ω \ Ωw) ∧maxi‖�ψ(�r) − �ψ(�ri)‖ > Dmin}, where �ri ∈ Nn(�r ).
We used Dmin = 4 voxels and 6 adjacent points N6(�r ) in our
computations.

2.6. Geometric Deformable Model. The geometric deform-
able model uses an implicit representation of a surface,
embedding it into a level set function φ(�r, t)(�r ∈ Ω). The
evolving interface is represented by the zero-level set Φ(t) =
{�r | φ(�r, t) = 0} (see [16]), and it can be retrieved with
subvoxel resolution by an isosurface algorithm (e.g., march-
ing cubes). In our model, evolution of the level set function
is described by the following PDE that has an advection and
a mean curvature term:

∂φ
(
�r, t
)

∂t
+ wα�V

(
�r
) · ∇φ(�r, t

) = wκκ
(
φ
)∥∥∇φ(�r, t

)∥∥,

(6)

where �V is the advection velocity vector field, κ is the
mean curvature, and wκ are weights of the respective terms
(wα,wκ ≥ 0). The mean curvature of the interface embedded
in the level set function is [16]

κ = ∇ ·
( ∇φ
∥∥∇φ∥∥

)

=
(
φ2
xφyy − 2φxφyφxy + φ2

yφxx

+ φ2
xφzz − 2φxφzφxz + φ2

zφxx

+φ2
yφzz − 2φyφzφyz + φ2

zφyy

)
/
∥
∥∇φ∥∥3,

(7)
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Figure 3: Plots of the stopping/reversal factor β (a) and the distance-constraining factor γ (b) at different values of the “steepness” constant
K (solid red line: default K = 40; dashed green line: K = 80; dotted blue line: K = 20).

where the subscripts x, y, z denote partial derivatives. The ad-

vection velocity vector field �V(�r ) is derived from the gradient
of the potential ϕ or distance field d:

�V
(
�r
) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−β(�r )
(∇ϕ(�r )
∥∥∇ϕ∥∥

)

or

β
(
�r
)
(
∇d(�r )
‖∇d‖

)

,

(8)

where β(�r ) is a stopping/direction-reversal factor computed
from the GM/WM class probabilities. For example, this
factor can have a form of a logistic function:

β
(
�r
) = 2

1 + exp
(
−K

[
Pgw

(
�r
)− P0

]) − 1, (9)

where K is the constant controlling the steepness of the slope
of the sigmoid curve and P0 is the GM class probability
threshold value that determines the “set-point” of the
deformable model. Figure 3 illustrates how the factor β
depends on GM and WM probability Pgw. In our experi-
ments, a moderately steep sigmoid curve with K = 40 and
the threshold P0 = 0.8 were used. For spatial regularization,
the combined GM and WM class probability Pgw(�r0) can be
calculated as a weighted sum over the (closed) neighborhood
of the point �r0:

Pgw
(
�r0
) =

∑

�ri∈{�r0,Nn(�r)},�ri /∈S
wi

(
Pg
(
�ri
)

+ Pw
(
�ri
))

,
(10)

where wi are the neighborhood weights (e.g., wi = 0.5/n,
where n = 18 or 26, and for the central point w0 = 0.5),
and the skeleton of the sulcal medial surfaces S is used for

masking of class probability values in separating barriers. As
an option, the stopping factor β in (8) can be modified to
include the distance-constraining factor:

β1 =
∣∣β
(
�r
)∣∣∣∣γ

(
�r
)∣∣ sgn

(
β, γ

)
, (11)

where the sign function is an “OR” combination of two signs:

sgn(a, b) =
{−1, if a < 0 or b < 0,

1, otherwise,
(12)

and the distance-constraining factor γ can also have a form
of a logistic function:

γ
(
�r
) = 2

1 + exp
(−K[1/2−min

(
d
(
�r
)
, 2dmax

)
/2dmax

]) − 1.

(13)

In (13), dmax is a parameter constraining the maximum
distance of advection along the streamlines of the gradient
field (i.e., a proximity constraint that limits the thickness of
the reconstructed cortical layer). We used dmax = 6 mm (see
Figure 3) in the reported cortical reconstructions, that is, the
maximum distance constraint was set above the anatomically
plausible upper bound on cortical thickness and therefore
was affecting only the artefactual or noncortical gray matter
areas.

Our numerical implementation for solving the level set
(6) is based on the narrow-band algorithm [12, 16, 25]. The
initial level set function is computed as a signed-distance
function (SDF) of the initial interface in the corrected WM
image using the fast marching method (FMM, [16, 26]).
By standard convention, “inside” points are represented by
negative values of the SDF. During the evolution, the level set
function φ(�r, t) is maintained close to the SDF by periodic
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{Compute time step for each point in the narrow band}
for all�ri ∈ NarrowBand do

{1. Compute the updated value}
φnew ← φ(�ri, tk) + ΔtΔφ(�ri, tk)
{2. Check if there is a sign change}

if sgn(φnew) == sgn(φ(�ri, tk)) then
{3.1 No sign change}
φ(�ri, tk+1)← φnew{apply the update}

else if �ri ∈ S then {Check if is in the barrier}
{3.2 Is in the barrier, do not allow sign change}
φ(�ri, tk+1)← ε{set to a small positive value}

else {3.3 Is clear; check for topology change}
if IsSimple (φ(�r, tk),φnew,�ri) then
{3.3.1 No change in topology}
φ(�ri, tk+1)← φnew{apply the update}

else {3.3.2 Do not allow topology change}
φ(�ri, tk+1)← ε · sgn(φ(�ri, tk)){set to a small value of the same sign}

end if
end if

end for

Algorithm 1: The level set function update algorithm.

reinitialization with the FMM. The advection term in (6) is
discretized based on the upwind differencing scheme (for
details, see [16]), and the curvature term is discretized along
the lines of (7) using the central differencing scheme [22].
A pseudocode outlining the narrow-band algorithm is
described elsewhere (e.g., in [12, 25]). In Algorithm 1 pseu-
docode we focus on the core part that deals with the time-
step update of the level set function. The update algorithm
is novel in the way it uses the skeleton of the sulcal medial
surface to create barriers for the evolving interface. In
addition, the algorithm has a built-in rule preserving the
digital topology of the deformed model [1, 12] that is based
on the concept of simple points [27] (function IsSimple()
in Algorithm 1, see details in [13]), which guarantees that
the deformed surface retains the same topology as the initial
WM/GM surface.

As already mentioned, the inner cortical surface is
reconstructed by a few iterations of the model with the
curvature term only (wα = 0,wκ = 1) (Figure 2, step 5.0).
In step 5.3 of Figure 2, the outer cortical surface is first re-
constructed by a model using the advection term only (wα =
1,wκ = 0) until convergence (i.e., until the relative amount of
change in the SDF per iteration becomes small, for example,
lower than 10−4) or for a specified number of time steps and
then smoothed by a few iterations with the curvature term,
similarly to the inner surface.

3. Experiments and Results

Our algorithm was implemented in C++ in the Linux
environment and ran on a PC with 2.5 GHz AMD-64 CPU
and 4 GB RAM, unless otherwise noted. The algorithm’s
performance was evaluated on simulated test cases with a
simplified geometry of a sulcus, on simulated MRI datasets,
on standard resolution T1-weighted MR images of human

brains, and on high-resolution (sub-mm) MR images of
extracted brain hemispheres.

3.1. Simulated Data. The first test case is intended to il-
lustrate the effect of the inhomogeneous dielectric model
used in DELFMAP and shows the difference between the
field produced with a nonuniform permittivity and the field
computed with the uniform permittivity (ε = 1, the Lapla-
cian field). Test images simulate a simplified 3D geometry of
a sulcal fold and contain two WM stalks separated by the
sulcal space (with a curvature radius of 10 mm); the WM
is covered by a layer of GM having unequal thickness at
the opposing banks and a smoothly varying thickness at
the fundus (Figure 4(a)). Figure 4 shows the lines of the
Laplacian field (Figure 4(b)) and the lines (Figure 4(d)) and
isocontours (Figure 4(c)) of the field in the DELFMAP mod-
el. It can be seen that the “ridge” (where the field lines con-
centrate and the isocontours converge) of the DELFMAP
field is close to the sulcal center line, whereas the “ridge” of
the Laplacian field is at the geometric center.

The second test case demonstrates how the model re-
solves the barrier separating the two opposing cortical banks
inside a sulcus. Test images simulate a fully resolved sulcus
(with two banks fully separated by background), a sulcus
with an unresolved fundus, and a sulcus with two banks
bridged by unresolved voxels (the top row in Figure 5: left,
middle, and right, resp.). The middle row in Figure 5 shows
the cross-section of the sulcal medial surface (white lines)
that was identified by the DELFMAP method. It can be seen
that the method is capable of reconstructing the boundary
surface separating the two cortical banks and finds a
geometrically plausible solution in incompletely resolved
cases. Side-by-side comparison of the results of our method
and those of ACE (the bottom row in Figure 5) shows
that skeletons produced by DELFMAP have a more regular
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Figure 4: Cross-sections of simulated test images. (a) The input image; (b) field lines in the uniform permittivity model (Laplace equation).
Bottom row: isocontours (c) and field lines (d) in the DELFMAP model with the dielectric layer (dark gray in the input image).

structure, whereas ACE skeletons can have small extraneous
branches and discontinuities. Our method does not produce
spurious detections very close to WM and thus does not
require a minimum distance cut-off parameter, which is
needed in ACE. In addition, our method is more robust with
respect to noise (see [14]): skeletons produced by DELFMAP
show very little degradation even at the highest noise level,
while ACE skeletons are significantly affected by strong levels
of noise.

Cortical reconstruction results for simulated brain phan-
tom MR images [28] showed good reproducibility across
various levels of simulated Gaussian-distributed noise and
intensity inhomogeneity (see [13, 14]).

3.2. High-Resolution MR Images. Our method’s performance
is illustrated by results for high-resolution exvivo images,
where, contrary to FreeSurfer, our method does not need
to conform images to standard 1 mm isotropic voxel size.

The algorithm was evaluated on three high-resolution (0.25–
0.35 mm isotropic voxel size) images of explanted brain
left hemispheres. DELFMAP reconstruction at 0.35 mm
resolution took 67 min on a PC with 2.5 GHz AMD-64 CPU
and 4 GB RAM. We tried to process the same 0.35 mm
data with the recently released CRUISE plugin for MIPAV
[29] on a cluster node with four Opteron 285 2.6 GHz
cores and 32 GB RAM. Reconstruction of the inner surface
took 28 min using 4.9 GB RAM, computation of GGVF
took 32 min using 3.5 GB RAM, while reconstruction of
the central and pial surfaces took 49 and 52 min using
5.3 and 5.1 GB, respectively, but did not produce ade-
quate results with the default settings. DELFMAP compu-
tations at 0.25 mm resolution required 4.7 GB RAM and
were successfully completed after 3 h 20 min. Examples of
the reconstructed cortical surfaces overlaid on orthogonal
cross-sections of a high-resolution MR image are shown in
Figure 6.
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Figure 5: Cross-sections of simulated test images (left: fully resolved sulcus; middle: unresolved fundus; right: bridged sulcus). The white
line shows the location of the identified sulcal medial surface skeleton. Comparison of DELFMAP (middle row) versus ACE (bottom row)
shows that skeletons produced by DELFMAP have a more regular structure compared to ACE skeletons, which can have small extraneous
branches and discontinuities. In the bottom row (ACE), small spurious components are visible at the fundus very close to WM, which in
ACE method have to be suppressed by thresholding the distance from WM.

Lateral views of pial surfaces of three brain samples (3D
rendering of thickness maps) are shown in Figure 7, left
column. Measured thickness values (mean 2.2 mm; stdev
0.7 mm) are in good agreement with the literature. Inflated
maps (Figure 7 middle and right column) are intended for

better visualization of the surface inside sulci; they were pro-
duced with 20 iterations of Laplacian smoothing of the
mesh. Maps in the right column are color-coded with con-
vexity values that were computed as vertex travel distances
during smoothing/inflation, similarly to FreeSurfer [4]. On
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Figure 6: Isocontours of the zero level sets of reconstructed cortical surfaces overlaid on cross-sections of high-resolution MR images (red:
the inner surface; green: the outer surface; top, middle, and bottom rows: examples of axial, sagittal, and coronal sections (not to scale),
resp.).

convexity maps, gyral crowns appear in blue color and sulcal
fundi appear in yellow-orange. Thickness and convexity
maps demonstrate noticeable correlation (Pearson’s corre-
lation coefficient computed over the entire surface mesh is
0.24, 0.22, and 0.28 for the three brain samples shown, that is,
significantly different from zero at the 0.05 level), which is in
good agreement with the known anatomical fact that cerebral

cortex is generally thicker on gyral crowns and thinner in
sulcal depths.

3.3. Cross-Validation with FreeSurfer: Test-Retest Precision.
Our method was validated by cross-comparison of cortical
reconstruction results with those obtained using FreeSurfer.
Standard resolution images for 20 right-handed healthy
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Figure 7: Lateral view of pial surfaces from three high-resolution datasets (left column: thickness maps; middle column: inflated thickness
maps; right column: inflated convexity maps).

young subjects (age 19–34, average 23; 8 males/12 females)
were selected from the cross-sectional OASIS database [15].
For each subject, data are available from two scan sessions
(test and retest) separated by a short delay (1–89, average
21 days), with four T1-weighted standard resolution images
acquired per session. This relatively short delay between
two consecutive scan sessions makes data sets suitable for
the assessment of test-retest reproducibility (i.e., precision)
of the analysis by comparing measurements between scan
sessions.

First, we analyzed data sets using the default automated
pipeline in FreeSurfer and obtained 40 cortical recon-
structions (two per subject), each including a pial and a
white surface mesh. Next, we exported images of extracted
brains (without any intensity normalization/correction) and
corrected WM segmentations from FreeSurfer, ran our tissue
classification algorithm on images of extracted brains, and
used these results in the DELFMAP toolchain to obtain
another set of 40 cortical reconstructions. For a subvoxel res-
olution of a digital skeleton, solutions of PDE in (3)–(6) were

computed on a grid with half-voxel spacing. Implicit level
set surfaces were tessellated using connectivity-consistent
marching cubes algorithm [12], and triangular meshes were
simplified down to 300,000 faces by a topology-preserving
variant of the mesh simplification method [30]. DELFMAP
processing took approximately 30 min per brain hemisphere
(at half-voxel 0.5 mm res. grid) and was twice faster than
FreeSurfer’s deformable model step (mris make surfaces
program, took ≈70 min at 1 mm res.). FreeSurfer computes
cortical thickness at each vertex as the average of the closest-
point distance (Figure 8(a)) measured between the surfaces
both ways using linked vertices [6]. Since vertices on pial
and white surfaces are not linked in DELFMAP, which is
not based on a deformable mesh model, for the cross-
method comparison, we recomputed cortical thickness using
an orthogonal projection distance measure [31] (Figure 8(b)
and the Appendix) that is robust and universally applicable
to results from both methods. We verified that the two
cortical thickness measures were in close agreement on all
40 reconstructions obtained with FreeSurfer.
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Figure 8: Illustration of two different approaches of defining a distance between two surface meshes. (a) The thickness measure defined in
FreeSurfer (2D schematic drawing). (b) The (signed) distance measure defined by closest orthogonal projection.

The geometric precision or test-retest reproducibility
of cortical reconstruction was evaluated independently for
FreeSurfer and for DELFMAP as follows. For each subject,
test and retest MR images (averages of 4 aligned scans from
the first and the second session, resp.) were rigidly registered
to each other using FSL FLIRT [32]. The obtained rigid
transformation was applied to the first set of surface meshes,
aligning the test surfaces to the retest ones. Next, signed
and absolute distances (the Appendix, (A.1) and (A.2)) were
measured between aligned test and retest white/pial surface
meshes, and surface-wise mean and standard deviation were
computed, as well as the group-wise statistics. In addition,
we evaluated the test-retest precision of cortical thickness
measured with FreeSurfer and with our method using the
standard methodology described in the cortical thickness
reproducibility study in Han et al. [33], which consists
of the following four steps: (1) rigid registration of two
repeated scans of each subject; (2) computation of a thickness
difference map for each subject (on the first surface, using
point-correspondences established according to closest
Euclidean distance in registered space); (3) resampling the
thickness difference map to a common template (e.g., any
subject surface or the FreeSurfer’s average template); (4)
computing the group-wise mean and standard deviation of
the differences at every vertex of the template mesh. Resam-
pling to a common template relies on FreeSurfer’s intersub-
ject registration by nonlinear surface morphing [34].

Results of both methods, the absolute distance measure
ADmean and ADstdev between test and retest cortical sur-
faces (the Appendix, (A.3)), per subject hemisphere, were
compared statistically using a Wilcoxon signed rank test,
and results are reported as P values. For FreeSurfer WM
surfaces, reproducibility is characterized by mean absolute
error 0.19(Δ0.06) mm (where the Δ value in parentheses
indicates a statistical spread for the group, equal to two
stdev). For DELFMAP WM surfaces, mean absolute error
is 0.24(Δ0.06) mm (P = 9.5 × 10−5). For DELFMAP pial
surfaces, reproducibility is characterized by a mean absolute
error 0.24/0.25(Δ0.04) mm (L/R) that is similar in FreeSurfer

(L: P = 0.37, R: P = 0.16, see details in Table 1). The stand-
ard deviation of the absolute distance ADstdev is much lower
in DELFMAP than in FreeSurfer (L: P = 8.2 × 10−5, R:
P = 3.2 × 10−4) which can be interpreted as a “tighter”
reconstruction of pial surfaces in DELFMAP. Table 1 sum-
marizes the statistics of the test-retest analysis. The mean
absolute difference of the cortical thickness is similar in both
methods (L: P = 0.10, R: P = 0.28), but the corresponding
standard deviation is again much smaller in DELFMAP than
in FreeSurfer (L: P = 1.9 × 10−6, R: P = 1.0 × 10−4).
To summarize, test-retest precision of cortical thickness
measurement is similar in DELFMAP and FreeSurfer in
terms of the mean error, which is close to a quarter of the
voxel size, but is “tighter” in DELFMAP in terms of surface-
wise variance in absolute differences.

3.4. Cross-Validation with FreeSurfer: Intermethod Accuracy.
The geometric accuracy of our method was evaluated
by cross-comparison with FreeSurfer as follows. For each
cortical reconstruction (two per subject), white (W) and
pial (G) surfaces (Wf, Gf) were exported from FreeSurfer
and a cortical thickness map AGfWf (A.2) was computed
on pial surface. Next, maps of intermethod geometric
differences (DWfWd, DWdWf, DGfGd, DGdGf) were computed
as signed distances (A.1) between white or pial surfaces
reconstructed with FreeSurfer and DELFMAP (Wd, Gd).
On these geometric-difference maps (40 sets, four maps per
set), surface-wise statistics Dmean, Dstdev, ADmean, and ADstdev

(A.3) were computed. In addition, maps of intermethod
thickness differences were built using the cortical thickness
reproducibility analysis steps 2–4 [33] as described in the
previous section, except for using two pial surfaces from both
methods in step 2 (we emphasize that for both FreeSurfer and
DELFMAP, the compared thickness maps were measured by
the same method, that is, as AGW). The 40 individual maps
were resampled to a common template and averaged into
group-wise maps of mean difference and standard deviation.
The group-wise maps of intermethod cortical thickness
measurement differences allow to assess and visualize any
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Table 1: Precision analysis: summary of the group-average statistics for the signed distance (SD) and absolute distance (AD) measure (in
mm) between test and retest surfaces (surface: DF—DELFMAP, FS—FreeSurfer; L/R: left/right hemisphere; mean: a group average of a
surface-wise mean of the distance; stdev: a group average of a surface-wise stdev of the distance; “> X mm (%)”: (group-average) percentage
of surface points where AD was greater than X mm; values in parentheses indicate the statistical spread within the group, measured by the
group-wise stdev).

Surface
L/R Signed distance Absolute distance

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

DF pial
L −0.02 (0.03) 0.35 (0.06) 0.24 (0.02) 0.25 (0.04) 1.4 (0.3) 0.2 (0.1)

R −0.01 (0.04) 0.37 (0.09) 0.25 (0.02) 0.26 (0.06) 1.5 (0.4) 0.2 (0.2)

FS pial
L −0.02 (0.04) 0.37 (0.10) 0.24 (0.02) 0.28 (0.06) 1.9 (0.4) 0.3 (0.2)

R −0.03 (0.04) 0.39 (0.13) 0.24 (0.03) 0.29 (0.08) 2.0 (0.4) 0.3 (0.2)

DF white
L −0.01 (0.07) 0.34 (0.08) 0.24 (0.02) 0.24 (0.05) 1.0 (0.3) 0.2 (0.1)

R +0.02 (0.06) 0.35 (0.11) 0.24 (0.03) 0.24 (0.07) 1.0 (0.3) 0.2 (0.2)

FS white
L +0.02 (0.02) 0.31 (0.10) 0.19 (0.02) 0.23 (0.07) 1.0 (0.3) 0.2 (0.2)

R +0.01 (0.02) 0.31 (0.13) 0.19 (0.03) 0.23 (0.08) 0.9 (0.3) 0.2 (0.2)

Table 2: Intermethod accuracy analysis: summary of the group-average statistics for distances between DELFMAP- and FreeSurfer-generated
surfaces.

Surf. L/R
Signed distance Absolute distance

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

pial
L −0.08 (0.04) 0.49 (0.02) 0.40 (0.02) 0.37 (0.02) 6.8 (1.2) 0.6 (0.2)

R −0.07 (0.04) 0.53 (0.02) 0.42 (0.02) 0.38 (0.02) 7.4 (1.3) 0.6 (0.2)

white
L 0.00 (0.04) 0.28 (0.01) 0.24 (0.01) 0.17 (0.01) 0.1 (0.1) 0.0 (0.01)

R 0.00 (0.04) 0.29 (0.01) 0.24 (0.01) 0.18 (0.01) 0.0 (0.0) 0.0 (0.01)

Table 3: Intermethod accuracy analysis: summary of the group-average statistics for difference in cortical thickness measurement between
DELFMAP and FreeSurfer.

L/R
Signed difference Absolute difference

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

L 0.12 (0.07) 0.47 (0.03) 0.35 (0.03) 0.34 (0.03) 4.4 (1.5) 0.4 (0.1)

R 0.11 (0.08) 0.46 (0.03) 0.34 (0.03) 0.33 (0.03) 4.1 (1.4) 0.3 (0.1)

regional patterns of agreement/disagreement between the
two methods. The intermethod geometric accuracy analysis
statistics is summarized in Table 2 (averaged over 40 image
sets, two per subject). It can be seen from the mean signed
distance SDmean that, on average, DELFMAP has a very
small outward bias in pial surfaces (−0.08/−0.07(Δ0.08)
mm, L/R; negative sign means FreeSurfer’ surface is “inside”
w.r.t. DELFMAP’ surface). The intermethod accuracy can
be characterized by the mean absolute distance ADmean

(0.40/0.42(Δ0.04) mm, L/R), which is less than a half of the
voxel size. The share of pial surface vertices where the AD
was larger than 1 mm is less than 10%; less than 1% of pial
vertices had an AD larger than 2 mm.

The intermethod accuracy analysis of cortical thickness
measurements, summarized in Table 3, is in good agreement
with the above observations. On average, there is a small
bias towards thicker values in DELFMAP (mean signed
difference: 0.12/0.11(Δ0.16) mm, L/R; positive sign here
means that DELFMAP-measured thickness is larger w.r.t.
FreeSurfer). The intermethod accuracy, characterized by the
mean absolute difference (0.35/0.34(Δ0.06) mm, L/R), is
less than a half of the voxel size. The share of pial surface

vertices where the absolute difference between thickness
measurements was larger than 1 mm is less than 6%, and less
than 1% of pial vertices had an absolute difference larger than
2 mm. An example comparing DELFMAP and FreeSurfer
pial surface reconstructions side-by-side, for one subject,
is shown in Figure 9 (colored with cortical thickness; see
colorbar for color map and range of values). Overall, a good
correspondence is visible, but some patterns of thickness
difference are noticeable: (1) for FreeSurfer, thickness is
larger (indicated as yellow) in the superior region of the
frontal lobe and in some temporal regions (lateral view);
(2) for DELFMAP, thickness is larger (indicated as orange)
in the inferior occipitotemporal region (medial view, where
the cerebellum is found); (3) for FreeSurfer, thickness is
smaller (indicated as blue) in the medial orbitofrontal cortex
(mOFC) region (medial view). These differences can be
attributed and traced to the following segmentation trends
in either of the two methods: (1) oversegmentation, by
FreeSurfer, into meningeal space in superior frontal region
and in temporal region (see Figure 10); (2) oversegmenta-
tion, by DELFMAP, into cerebellar gray matter in the inferior
occipitotemporal region; (3) too conservative segmentation,
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Figure 9: Example of side-by-side comparison of DELFMAP (column 1 and 3) and FreeSurfer (column 2 and 4) thickness maps
(OAS1 202 1, on pial surfaces, left/right hemisphere in the left/right two columns, resp.; 1st row: lateral surface; 2nd row: medial surface;
colorbar range 0–5 mm).

by FreeSurfer, in the mOFC region (too thin, less than
1.5 mm).

Regional patterns of intermethod geometric differences
in pial cortical reconstructions are visible on group-average
maps of geometric (Figure 11) and cortical thickness differ-
ences (Figure 12), where the above outlined three trends are
also noticeable.

4. Discussion

We presented a novel PDE-based approach for reconstruct-
ing the cerebral cortex from MR images. We developed an
accurate and scalable method that works on MR images
with a high spatial resolution. Because high-resolution MRI
begins to attract considerable attention in brain imaging
research, a method that readily scales with imaging resolu-
tion is highly valuable. This scalability is achieved by using
an implicit deformable surface model in a fast marching
framework guided by a novel, computationally efficient
model using potential field mapping. Our method requires
much lower computational resources and has a much
faster computation times than conventional methods. These
demonstrated advantages come not only from an efficient
practical implementation, but also from the design of our
algorithms. For instance, other existing approaches that are
based on deformable mesh models incur a significant com-
putational cost associated with the mesh self-intersection
(e.g., FreeSurfer) or mesh self-proximity (CLASP) term,
which does not scale linearly with increasing mesh resolu-
tion. Although the computational cost of the straightforward
mesh self-proximity term [2], which is quadratic O(N2/2) on
the number of faces N , is significantly reduced in a mesh self-
intersection prevention algorithm utilizing a spatial cache
[3], it nevertheless remains supralinear. Similarly, the cost of
another known efficient algorithm for mesh self-intersection
detection, which is based on intersection of bounding boxes,

is O(N log3
2N) [35]. In contrast to this, the computational

complexity O(Nk) of the narrow-band level set algorithm
used in our method (and in CRUISE) is linear with respect
to the size of the interface N (k is the width of the narrow
band). This difference between a linear and a quadratic or
supralinear algorithmic complexity, which can be tolerated
when dealing with standard resolution images and meshes,
becomes quite large at high resolutions. As to the comparison
with the available CRUISE MIPAV software, our method’s
dramatic gain in speed is most likely due to differences in
implementation but, at least in part, can be attributed to
a smaller algorithmic cost of our method (e.g., solving one
second-order PDE in DELFMAP versus a system of three
second-order PDEs in GGVF, and not using an intermediate
step of reconstructing a central cortical surface).

Although some algorithmic building blocks of our meth-
od were previously known to the medical image processing
community (e.g., [1, 21, 23]), the central aspect of our
method, that is, the use of the model of the potential field in
the inhomogeneous dielectric layer introduced here, is novel
and has attractive advantages. The novelty of our method
is also in the newly introduced skeletonization algorithm
that is based on the analysis of correspondence trajectories
and in several novel aspects of the geometric deformable
model (e.g., the constraint of the evolution by the medial
surfaces, the maximal distance constraint of the advection,
and the novel form of the advection stopping/direction-
reversal factor β and the distance-constraining factor γ).
We note that most of the design parameters introduced in
Section 2 remain fixed, and the method is sensitive only to
two settings, which can be easily tuned: the GM probability
threshold P0 (a “set-point”) and the maximal distance dmax

(which has strong influence only if set below the upper
bound on cortical thickness).

The results from three high-resolution data sets demon-
strate that the method is capable of reconstructing the outer
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Figure 10: Contours of reconstructed cortical surfaces overlaid on the axial (left) and coronal (right) slice (red: inner surface; green:
DELFMAP pial surface; yellow: FreeSurfer pial surface; note that the yellow contour appears jagged because it is displayed from FreeSurfer’s
volumetric signed distance function sampled at 1 mm grid, whereas red and green contours are from level set functions sampled at a finer
resolution; left and right images are not to scale). On the left image at the cross-line cursor position (superior frontal region), the yellow
contour of FreeSurfer’s pial reconstruction oversegments into meningeal space, and a similar trend is noticeable next to cursor on the right
image (temporal region).

cortical boundary with good geometric precision and accu-
racy, while guaranteeing the preservation of the initial surface
topology. The method’s performance is illustrated on syn-
thetic images and on standard resolution MR brain images,
where it compares favorably to existing methods in both
quality and speed.

The precision and accuracy of our method was assessed
by cross-validation in standard resolution datasets with
the widely accepted approach implemented in the available
FreeSurfer software. Using a database of consecutive exam-
inations in healthy subjects, the precision of both methods
was evaluated using pointwise geometric distances of recon-
structed surfaces and differences in cortical thickness. Both
methods are similar in terms of the mean absolute error in
position and mean absolute error in cortical thickness. How-
ever, DELFMAP has a much lower variance than FreeSurfer.
In a second study, we evaluated the accuracy of our method

by quantifying the intermethod reproducibility of recon-
structed cortical surfaces, measured by pointwise geometric
distances and differences in cortical thickness measurement
between the two methods. Results demonstrate that the
accuracy of our method, using FreeSurfer as a reference, is
better than half of a mm in terms of both mean absolute error
in geometric position and mean absolute error in measured
cortical thickness. Group-average analysis of the spatial
distribution of geometric and thickness differences between
the two methods reveals some surface regions, where one
of the two methods has a tendency to systematically over-
or undersegment the cortical ribbon, resulting in patterns
of small (subvoxel) but measurable differences. Thus, cross-
comparison of the two methods allows detection of existing
regional patterns in intermethod differences, benefiting the
study of accuracy of both approaches and highlighting some
potentially problematic areas for further improvement of
both methods.
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Figure 11: Group-average maps of intermethod (DELFMAP-FreeSurfer) geometric differences in pial surface reconstructions, resampled to
FreeSurfer’s average template (left column: signed distance mean, colorbar range±1 mm, negative/positive values mean FreeSurfer’ surface is
inside/outside of DELFMAP’ surface, resp.; middle column: absolute distance mean, colorbar range 0-1 mm; right column: absolute distance
stdev., colorbar range 0-1 mm; rows 1–4: lateral/medial surface of left/right hemisphere, resp.).
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Figure 12: Group-average maps of intermethod (DELFMAP-Freesurfer) cortical thickness differences, resampled to FreeSurfer’s average
template (left column: signed difference mean, colorbar range ±1 mm, negative/positive values mean thickness measured with DELFMAP
is smaller/larger than measured with FreeSurfer, resp.; middle column: absolute difference mean, colorbar range 0-1 mm; right column:
absolute difference stdev., colorbar range 0-1 mm; rows 1–4: lateral/medial surface of left/right hemisphere, resp.).
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Appendix

Distance Measure between Two Surfaces

The orthogonal projection method [31] was adapted to
define a measure of geometric distance between two meshes
that was used throughout our validation study. We note that
a similar approach was proposed in Tosun et al. [36] for
accuracy and precision analysis of cortical surface recon-
structions. The signed distance between two triangulated
meshes M1 = {V1, F1}N1 and M2 = {V2, F2}N2 was meas-
ured as:

D12=
{
d12,i=

(
�p12,i· �n1,i

)∥∥
∥�p12,i

∥
∥
∥ :�p12,i = �v1,i −PF2

(
�v1,i
)}

N1
,

(A.1)

where PF2 (�v1,i) is the closest orthogonal projection operator
projecting a vertex �v1,i from the first mesh onto one of the
triangles F2 in the second mesh, along the normal to that
triangle (Figure 8(b)). The sign of the distance measure is
determined by the innerproduct of the projection difference
vector �p12,i with the first surface outward normal�n1,i at vertex
�v1,i; thus, a positive/negative value signifies that the second
surface is outside/inside of the first surface, respectively. For
the signed distance, mean and standard deviation (stdev) are
computed on d12,i values. We define the absolute distance
measure as:

A12 =
{
a12,i =

∥
∥
∥�p12,i

∥
∥
∥ :
(
a12,i =

∣∣d12,i
∣∣)
}

N1
. (A.2)

In this notation, the cortical thickness measure of Kruggel
and von Cramon [31] is defined as the absolute distance from
GM to WM mesh AGW; this orthogonal projection measure
should not be confused with the distance along surface
normal [37], which was shown to be less reliable compared to
other distance measures [38]. For the absolute distance, two-
way mean and standard deviation are computed (see also
[36]) as:

ADmean = 1
N1 + N2

⎛

⎝
N1∑

i=1

a12,i +
N2∑

j=1

a21, j

⎞

⎠,

ADstdev =
⎛

⎝ 1
N1 + N2

⎛

⎝
N1∑

i=1

a2
12,i +

N2∑

j=1

a2
21, j

⎞

⎠− AD2
mean

⎞

⎠

1/2

.

(A.3)
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Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine
activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI.
A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has
not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using
the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference
of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without
reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients
of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data
than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from
fMRI data were used to demonstrate the advantage of this novel test statistic.

1. Introduction

The General Linear Model (GLM) is a widely used mass
univariate analysis method to determine brain activations
in functional magnetic resonance imaging (fMRI) because
of its simplicity in both estimation and inference and its
greater sensitivity to regional effects than global multivariate
analyses [1]. The least-squares (LS) solution of the GLM
is the minimum variance unbiased (MVU) estimator when
Gaussian white noise assumption is satisfied, otherwise the
weighted LS solution (using the inverse of the noise covari-
ance matrix) becomes the best linear unbiased estimator
(BLUE) [2]. The estimated parameters and their variances
are used to construct various contrast statistics, either t or
F, to test the null hypothesis of effects of interest. Another
popular approach to analyze fMRI time series uses the
correlation coefficient [3]. The statistical significance of the
correlation coefficient is equivalent to a t-statistic testing
for a regression on one single regressor [4]. The correlation

coefficient is more restricted in assessing the significance
of regional effects than the t-test in fMRI data analysis
because the correlation coefficient does not allow more than
one regressor to be included for a direct calculation. It is
known, however, that the partial correlation coefficient is
also equivalent to a t-test and thus could potentially be
used instead. However, each contrast of interest need be
constructed and the residuals, after removing effects of no
interest, have to be calculated for each contrast. This process
is generally less computationally efficient than the t-test used
in the GLM.

While univariate (single voxel) analysis is extensively
applied in fMRI, and temporal correlations are the focus
of most investigations, only a few applications investigate
the spatial dependence of fMRI data. Univariate analysis
deals only with a uniform nonlocal spatial approach and
uses fixed isotropic spatial Gaussian smoothing routinely
to achieve more homogeneous regions of activation and
to control the family-wise error parametrically, based on
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the theory of random fields [5, 6]. These methods do
not utilize local spatial information in fMRI data, and
fixed spatial smoothing causes unnecessary blurring of the
edges of activation. More severely, if the fixed isotropic
filter kernel is larger than the activated area, it could
potentially miss the detection of activated regions. Small
focal regions of low contrast-to-noise ratios are rather
common in episodic memory paradigms where the task is to
detect activation in the medial temporal lobes (hippocampus
and parahippocampus). Therefore, fixed Gaussian spatial
smoothing can potentially result in missing important (but
subtle) focal activations. This is especially troublesome for
high-resolution fMRI data where the intrinsic point spread
function of the imaging sequence is not much larger than the
dimension of a voxel and there are sharp boundaries between
grey matter and surrounding cerebrospinal fluid (CSF) and
blood vessels (see, e.g., [7]).

A more effective method than fixed Gaussian spatial
smoothing uses locally adaptive spatial filter kernels. Using
the spatial dependence of fMRI data, local multivariate
methods such as canonical correlation analysis (CCA) [8]
and its variants [9–13] have the ability to significantly
increase the detection power of fMRI activations. However,
there are several drawbacks that prevent CCA methods from
being widely used in fMRI analysis. First, the original uncon-
strained CCA method [8] increases the number of false
positives due to more freedom in finding favorable linear
combinations with nonactive voxel time series leading to a
decrease in specificity. This drawback can be addressed by
either enforcing some constraints on the spatial coefficients
[10, 12, 13] or adaptively assigning the canonical correlation
to the most significant voxel [11]. Second, these modified
CCA methods [10, 11, 13] usually require much more com-
putation time than the GLM and the unconstrained CCA
method. Jin et al. [12] proposed a region-growing strategy to
solve the constrained CCA (cCCA) problem in a much faster
fashion than the traditional branch-and-bound method [10,
13, 14]. Third, in the form of previous implementations,
CCA applications in fMRI data analysis were very limited
because test statistics used were based on the significance of
the maximum canonical correlation coefficient, thus limiting
the analysis to a simple model accommodating only one
temporal regressor (i.e., on-off experimental design). This
drawback prevents researchers from using CCA for more
complicated paradigms with multiple explanatory variables
and nuisance covariates in fMRI. Though reparameterization
based on the linear contrast of interest can provide a
solution for this drawback [15, 24], the computational cost
is high because, for each different reparameterization, the
constrained CCA problem needs to be solved. The major goal
of this research is to find a suitable test statistic for CCA that
allows the testing of general linear contrasts and that is also
fast.

In this paper, we first establish the connection between
the multivariate multiple-regression (MVMR) model and
CCA. Although this is not totally new in statistics, we
found that there is lack of awareness for the development
of CCA methods in the fMRI data analysis community. By
treating the estimated spatial filter kernel of constrained CCA

as a linear transformation of the original MVMR model,
we further derive a novel univariate test statistic similar
to a t-statistic based on general hypothesis tests of the
MVMR model. This extension will allow CCA to be used
for inference of general linear contrasts in more complicated
fMRI designs without solving the constrained CCA problem
for each particular contrast of interest.

In the following, we start from the MVMR model and
its hypothesis test for general linear contrasts under a linear
transformation of the original model. Then, the simultane-
ous estimation of spatial and temporal parameters using the
LS rule in the MVMR model is derived and proved to be the
same as the CCA solution. By treating the adaptive spatial
smoothing as a linear transformation of the original MVMR
model, a novel directional statistic for CCA similar to a t-
statistic can be derived to allow for testing of general linear
contrasts. Using receiver operating characteristic (ROC)
techniques [16–18] on pseudoreal fMRI data [11, 19–21], we
quantitatively compare the sensitivity and specificity of the
proposed novel CCA statistic with the t-statistic of the GLM
without and with fixed Gaussian spatial smoothing. We also
apply a nonparametric approach [22] to estimate the family-
wise error rate for all methods using resampled resting-state
data and show the activation maps for real fMRI data for a
simple visual cortex activation paradigm and also for a more
complicated memory paradigm.

2. Theory

2.1. The MVMR Model. Considering a group of K local
neighborhood voxels, the MVMR model can be written as

Y = XB + E, (1)

where X is fixed (i.e., the n × p design matrix), Y =
(y1, y2, . . . , yK ) is the matrix containing K neighboring
voxels, B = (β1,β2, . . . ,βK ) is the parameter matrix to be
estimated, and E = (ε1, ε2, . . . , εK ) is the error matrix. With-
out of loss of generality, X and Y are column centered and
there is no constant column in X. When the error matrix
satisfies (i) E(E) = 0, (ii) cov(εi) = Σ for i = 1, . . . ,n, and
(iii) cov(εi, ε j) = 0 for i /= j, the LS solution of the model
(1) is equivalent to the BLUE, which is just the matrix
form of the univariate GLM estimator leading to equivalent
solutions, but a multivariate test need be adopted. Note that
conditions (i)–(iii) may not be true for fMRI data, but may
be reasonably satisfied using temporal whitening.

The hypothesis tests in the MVMR model can be
conducted using the error matrix and the hypothesis matrix
for any estimable general linear contrast matrix C′. For a
linear transformation of the original MVMR model, say M,
Wilks’ Λ and other test statistics (e.g., Roy’s largest root)
can be used for testing the null hypothesis C′BM = O
[23]. In addition to the fixed linear transformation of the
MVMR model, we will introduce estimation of the spatial
filter kernel (leading to an adaptive smoothing) and treat it
as a spatially variable linear transformation in the following
development. This linear transformation can be estimated
from the data using CCA. Utilizing the spatial and temporal
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coefficients from CCA and the hypothesis test on the linear
transformation of the MVMR model, a directional (one-
sided) statistical test for CCA can be derived that is similar
to a t statistic in the GLM. This novel statistic allows
CCA to test hypothesis on general linear contrasts of an
fMRI design without reparameterization of the design matrix
and without reestimation of the CCA solutions for each
particular contrast of interest.

2.2. Adaptive Filtering through Canonical Correlation Analysis
(CCA). To increase detection power of weak activations,
local spatial filtering is usually applied to decrease the noise
variance. Let α be the vector containing the spatial filtering
coefficients, then multiplication of both sides of the MVMR
model of (1) with α gives

Yα = Xβ + ε, (2)

where β ≡ Bα, ε ≡ Eα, and multiplication by α defines a
linear transformation of the original MVMR model in (1).

When both Y and α are fixed and treated as known, such
as in conventional fixed Gaussian smoothing, β can be easily
estimated by linear regression as

β̃ = (X′X)−1X′Yα. (3)

Given a general linear contrast C′, the null hypothesis of
C′Bα = C′β = 0 can be tested using Wilks’ Λ likelihood ratio
test (assuming independent identical normal distribution of
noise both spatially and temporally) by

Λ = |E|
|E + H| , (4)

where the error matrix is E = (Yα−Xβ̃)
′
(Yα − Xβ̃) and

the hypothesis matrix is H = (C′β̃)
′
[C′(X′X)−1C]

−1
(C′β̃).

Note that both matrices reduce to a scalar due to the linear
transformation of the original MVMR model by vectors α.

A fix-sized and isotropic smoothing kernel, such as a
Gaussian kernel, is not optimal, especially for weak and
small activations. Our goal is to increase detection power
by pooling the neighboring voxels with similar activation
pattern and by determining the spatial weights α from the
data as well. This adaptive smoothing can be achieved by
minimizing the square of fitting error (i.e., LS) for the model
in (2), which leads to the equivalent solution in CCA.

Assuming that the optimal configuration of Y is known
(please see [10, 12] for how to find this configuration), the
vectors α and β can be estimated by LS:

(
α̃, β̃

)
= arg min

α,β

∥
∥Yα−Xβ

∥
∥2
. (5)

There is a trivial solution for (5): α̃ = β̃ = 0, which can be
avoided by enforcing some normalization condition, such as
α̃
′Syyα̃ = 1 or α̃′α̃ = 1. Taking the partial derivative of the

square of fitting error over α, we get

∂
∥
∥Yα−Xβ

∥
∥2

∂α
= 2

(
Y′Yα− Y′Xβ

)
. (6)

The solution α̃ requires (6) equal to zero so that

α = (Y′Y)−1Y′Xβ. (7)

Meanwhile, the relationship in (3) is still valid. Therefore,
only one vector needs to be estimated and the other can be
determined by (3) or (7). Substituting (3) in (7), we get

α = (Y′Y)−1Y′X(X′X)−1X′Yα

= S−1
yy SyxS−1

xx Sxyα,
(8)

where the sample covariance matrices are Syy = (1/(n −
1))Y′Y, Sxx = (1/(n − 1))X′X, and Sxy = S′yx = (1/(n −
1))X′Y. This is an eigenvalue problem for α with eigenvalue
1, whose solution may not exist because the eigenvalue
of S−1

yy SyxS−1
xx Sxy is not necessarily identical to 1. Thus, a

conventional method to solve (8) is to write it as an LS
problem by

α̃ = arg min
α

∥∥
∥α− S−1

yy SyxS−1
xx Sxyα

∥∥
∥

2
. (9)

Given that α /= 0 by enforcing the normalization condition
mentioned previously, the expression ‖α− S−1

yy SyxS−1
xx Sxyα‖2

can be minimized if α̃ is the eigenvector of S−1
yy SyxS−1

xx Sxy

which has the eigenvalue λm closest to 1 (or in other words,
the largest eigenvalue of S−1

yy SyxS−1
xx Sxy because its upper

bound is 1), that is,

S−1
yy SyxS−1

xx Sxyα̃ = λmα̃. (10)

Equation (10) results in the same solution for CCA, where
λm = r2 and r is the maximal canonical correlation. This is
not totally unexpected because

(
α̃, β̃

)
= arg min

α,β

∥
∥Yα−Xβ

∥
∥2

= arg min
α,β

∥
∥
∥∥
∥
∥

Yα
√
α′Syyα

− Xβ
√
β′Sxxβ

∥
∥
∥∥
∥
∥

2

= arg min
α,β

(n− 1)C1

+ (n− 1)C2 − 2(n− 1)
α′Syxβ

√
α′Syyα

√
β′Sxxβ

,

(11)

where C1 = α′Syyα and C2 = β′Sxxβ are nonzero constants.
Therefore, we can use CCA, which maximizes the third term
in the above equation, to find solutions for the model in (2).
Once α̃ has been determined, the temporal coefficients β̃ can
be obtained by (3) accordingly.

Normally, we can achieve a desired filtering effect by
adding constraints on the components of α in a constrained
CCA (cCCA) form. In this work, we constrain all com-
ponents of α to have the same sign. This constraint not
only enforces a smoothing effect, bus also has an optimal
solution through searching CCA solutions of the possible
configurations of Y in a prescribed local region to satisfy
this constraint [10, 12, 14]. In addition we add a center
voxel significance constraint by requiring that the spatial
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weight of the center voxel be at least 20% of the maximum
spatial weight in each 3 × 3 neighborhood [12]. Although
this introduces some nonlinearity to the optimization [24],
in the current implementation, this additional constraint
was found empirically to be effective in producing the best
performance. A similar approach was used in [10] to increase
the spatial specificity.

Generally, we suggest scaling the solution α̃ of cCCA to
have a sum of magnitudes to be one. Although this is not
required because the scaling factor will be cancelled out in
calculating the novel CCA test statistic (refer to (14) in next
section), this treatment can keep the error term comparable
with GLM methods. A region-growing method [12] allowing
a much faster implementation than the traditional branch-
and-bound method [10, 14] will be used to obtain α̃.

Several advantages of the current implementation of
cCCA over the method proposed in [10] are listed here. (1) In
[10], a spatial Gaussian filter was divided into one isotropic
central part and three oriented parts. The weights for these
parts can be estimated using CCA to achieve anisotropic
filtering (steerable spatial filtering). In our method, we search
for the optimal voxel combinations and weights in a 3 × 3
neighborhood because the cortical layer in a typical fMRI
scan is less than 5 mm and spans only a couple of voxels. Our
smaller filter size can help better define activations leading
to higher specificity (2) A rather slow branch-and-bound
(BB) method was used in [10], which is not efficient to
search optimal combinations for the center voxel in a 3 ×
3 area (see Section 5). Our region-growing method takes
24 s for a 2D slice with 6317 in-brain pixels and is much
faster than the BB method (308 s) [12] (3) The statistic used
in [10] was the maximum canonical correlation coefficient,
which can only be used for simple on-and-off paradigms but
not for arbitrary linear functions (contrasts) in complicated
paradigms. The new statistic proposed in our work can
be applied for complicated paradigms without reestimating
for each contrast of interest. Although it would be an
interesting followup to compare different CCA methods,
such a comparison is beyond the scope of the current paper.

2.3. Novel Directional Test Statistic for CCA. As a simple
treatment, the estimated components of α̃ can be used
as local spatial filter coefficients to smooth the original
data. Then, the same univariate inference as the GLM can
be applied to get a statistical map for any general linear
contrast. However, this procedure has two drawbacks: (1) the
GLM estimation of β on the smoothed images adds extra
unnecessary computation time; (2) the resulting statistics
will be biased because it does not account for the loss of
degrees of freedom caused by the size of the spatial filter
kernel. For example, a single voxel configuration is more
significant than a multiple-voxel configuration having the
same value of the test statistic. To overcome these two
drawbacks, we derive the test statistic directly from the CCA

coefficients α̃ and β̃ and account for the spatial kernel size by
changing the degrees of freedom.

Given the general linear contrast C′, the null hypothesis:

H0 : C′Bα̃ = C′β̃ = 0 can be tested by Wilks’ Λ in (4),

where α in the error matrix is replaced by α̃. In this paper, we
are particularly interested in a directional test statistic when
the contrast matrix C′ reduces to a vector c′. Thus, the test
statistic on c′β̃ reduces to a univariate case with a signed
value and can be defined by

Λ± = sign
(

c′β̃
)
Λ = sign

(
c′β̃
) |E|
|E + H| , (12)

where Λ+ indicates the positive statistic for values c′β̃ > 0

and Λ− indicates the negative statistic for values c′β̃ < 0.
Going one step further, we can define a statistic tc bearing

a similar form as the conventional t-statistic by writing

Λ± = sign
(

c′β̃c
) 1

1 + t2
c /DF

, (13)

where DF = n−p−K specifies the degrees of freedom (DOF)
given that the number of observations is n, the number of
(nonconstant) regressors is p (linear equations for β), and
the size of voxel configuration in CCA is K (constraints
for α). As we will discuss next, tc is not a real t-statistic,
but rather using the concept of DOF to account for the
voxel configuration size similar to t-statistic. Thus, a non-
parametric estimation method [22] is essential to assess its
statistical significance. Since the right sides of (12) and (13)
are equal, this statistic can be written by using the definition
of E and H as

tc = c′β̃
√

DF
√

c′(X′X)−1c
√(

Yα̃−Xβ̃
)′(

Yα̃−Xβ̃
) . (14)

Note that the voxel configuration size has been accounted for

in (14) so that the same c′β̃ values with less voxels become
more significant. The new statistic reduces to a traditional t-
statistic for the single voxel (K = 1) case (when the noise is
white and Gaussian distributed) given by

t = c′β̃
√
n− p − 1

√
c′(X′X)−1c

√(
y −Xβ̃

)′(
y −Xβ̃

) . (15)

Generally, (14) will not follow a t-distribution even
under the assumption of independent identical normal
distribution of noise in both space and time because of
the constrained CCA estimation for α. Without spatial
correlation in the single voxel case (K = 1), (15) can
approximate fairly well a t-distribution when prewhitening
is applied to decorrelate the temporal serial correlations.
Moreover, the spatial correlation of fMRI data will pose
a tricky problem for approximating a true t-distribution.
To deal with these difficulties, a non-parametric estimation
method [22] is adapted to assess the significance of the CCA
statistic of (14). The distribution of this novel statistic on null
data will be shown to deviate from the true t-distribution in
Section 4.

From (14), we can see the advantage of the newly
developed test statistic. First, if activations exist at the
center voxel and its neighbors, we get a more accurate
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estimate of β̃ (as shown in simulations in Section 4) by
pooling these voxels in the estimation. Second, the error term

(Yα̃−Xβ̃)
′
(Yα̃ − Xβ̃) is always smaller than (y −Xβ̃)

′
(y −

Xβ̃). Therefore, no matter what contrast vector c is used, tc
has a larger value than the univariate t. It would be expected
that tc values of active voxels increase more than tc values
of voxels in the null state, which will lead to an increased
sensitivity. Third, the better model fitting by pooling more
voxels is penalized by the degrees of freedom DF = n −
p − K . This penalty will cause considerable bias when n is
comparable to p+K . However, this scenario is not practically
meaningful because the length of the fMRI sequence is
usually much greater than the sum of the number regressors
and the size of the filter kernel (i.e., n� p + K).

Note that the proposed test statistic may not necessarily
be the optimal test for an arbitrary contrast because we
only minimize the square of fitting error in (2) that is
independent of the contrast [24]. Nevertheless, the new
statistic allows us to improve the detection power without
reparameterization of the design matrix and without re-
estimating each particular contrast of interest as shown in
Section 4.

3. Methods

3.1. Imaging Data. Functional MRI (fMRI) was performed
at the Brain Imaging Center of the University of Colorado
Denver in a 3.0T GE HDx MRI scanner equipped with
an 8-channel head coil and parallel imaging technology.
Stimulus presentation was done with a rear projection system
(AVOTEC, Inc.). Two different paradigms (visual paradigm
and memory paradigm) were performed on two and eight
healthy adult subjects, respectively, and fMRI data were
collected according to local IRB approval. The pulse sequence
to collect fMRI data was EPI with the following parameters:
ASSET = 2, ramp sampling, TR = 2 sec, TE = 30 ms, FA =
70 deg, FOV = 22 cm × 22 cm, slice thickness = 4 mm, gap =
1 mm, 25 slices, and in-plane resolution 96 × 96. For the
visual paradigm we prescribed axial slices and collected 150
volumes, whereas for the memory paradigm we prescribed
coronal oblique slices perpendicular to the long axis of the
hippocampus and collected 288 volumes. The first 5 volumes
were discarded to establish signal equilibrium of the imaging
sequence.

To obtain an accurate gray matter mask that has
equivalent features of the echo-planar data (same geometry
and distortions), we collected for each subject an additional
coplanar IR-SE-EPI scan to get inverted T1 contrast with
the following parameters: TI = 505 ms, ASSET = 2, ramp
sampling, TR = 6 sec, TE = 30 ms, FOV = 22 cm × 22 cm,
slice thickness = 4 mm, gap = 1 mm, 25 slices, and in-plane
resolution 96× 96. This imaging sequence yields unique high
signals for gray matter so that we can easily threshold them to
get accurate gray matter masks. The IR-SE-EPI images were
first aligned to the mean EPI images using six-parameter
affine transformation and then were thresholded to get gray
matter masks. Visual inspection of masks for faithfulness was
conducted before calculating the activation voxels in gray
matter.

Furthermore, we acquired a coplanar standard high-
resolution T2-weighted anatomical scan (FOV 22 cm, resolu-
tion 256× 256, TR 3000 ms, TE 85 ms, NEX 2, slice thickness
4 mm, gap 1 mm). The mean EPI functional image of each
individual was coregistered to its corresponding T2 image,
and the same transformation was applied on all functional
images. The resultant activation map shown in Section 4 was
overlaid on the individual T2 image.

3.1.1. Visual Paradigm. For each subject we acquired two
fMRI data sets. The first data set was collected during
resting state where the subject tried to relax and refrained
from executing any overt task with eyes closed. The second
data set was collected while the subject was looking at a
flashing checkerboard (10 Hz flashing frequency, duration
2 sec) which alternated with a fixation period of random
duration (2 sec to 10 sec, uniformly distributed). During the
fixation period a black screen containing in the center a small
white cross (about 1 inch in size) was shown and the subject
was instructed to focus on this cross. The corresponding
design matrix using the canonical hemodynamic response
function (HRF) model is shown in Figure 1(a). The left
column in this figure represents the regressor for the fixation
and the right column represents the regressor for the visual
activation.

3.1.2. Memory Paradigm. Also here, we acquired two fMRI
data sets for each subject. The first set contained resting-state
data, and the second set was acquired while the subject per-
formed a memory task. Behavioral responses were collected
during the memory paradigm with button response pads that
the subject had in each hand. The memory paradigm started
with a fixation period of 16 sec followed by six identical
89 sec long cycles of “5 sec instruction,” “21 sec encoding,”
“5 sec instruction,” “11 sec control,” “5 sec instruction,” and
“42 sec recognition”. It ended with another fixation period of
16 sec. The short “instruction period” consisted of a single
sentence and reminded the subject of the following task to
be performed. The “encoding” task consisted of a series of
novel pictures, where each picture was displayed for 3 sec,
and the subject was instructed to memorize each picture.
During the “control” task the subject saw the letters “Y”
or “N” which appeared in random order every 100 ms on
the display screen. The subject was instructed to press, as
fast as possible, the right button when “Y” appears or the
left button when “N” appears. The purpose of the “control”
task was twofold. First, it served as a distraction task to
keep attention away from the just learned pictures. Second,
due to its simplicity it did not produce any activation in
regions associated with the memory circuit (hippocampal
complex, posterior cingulate cortex, precuneus, and fusiform
gyrus). During the “recognition” task the subject saw a series
of pictures where half of the pictures were novel and the
other half of the pictures were identical to the pictures from
the previous “encoding period.” The arrangement of these
pictures was random. Each picture was displayed on the
screen for 3 sec. The subject was instructed to press the
right button if the picture was seen before in the previous
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encoding period and to press the left button if the picture was
identified to be novel and not seen in the previous encoding
period. The design matrix using the canonical HRF model is
shown in Figure 1(b). The four conditions of “instruction,”
“encoding,” “recognition,” and “control” are denoted as “I,”
“E,” “R,” and “C,” respectively.

Due to the complexity of the memory paradigm, all sub-
jects were trained on a computer in a quiet room with
the paradigm using a different set of images before fMRI
scanning. The stimuli presentations were programmed in
EPRIME and all button presses were recorded.

3.2. Preprocessing. All data were preprocessed in SPM5 using
realignment to correct for motion artifacts, slice timing
correction to correct for differences in image acquisition
time between slices, and high-pass filtering using T = 150 sec
to remove low-frequency components and signal drifts.
The classic two-gamma HRF was used to construct the
design matrix. In the next section, we give examples for the
contrasts “Visual minus Fixation” (denoted as “V-F”) for
visual data and “Encoding minus Control” (denoted as “E-
C”) for memory data and ignore other possible contrasts of
interest.

3.3. Methods of Data Analysis. Three methods were investi-
gated using the statistics defined in (14) and (15). The first
two using (15) are (i) the GLM without smoothing, denoted
as “GLM-NS” and (ii) Gaussian smoothing followed by the
GLM, denoted as “GLM-GS.” The third one is cCCA with the
region-growing method [12] using (14), denoted as “cCCA-
RG.” The full width at half maximum (FWHM) of Gaussian
smoothing in the GLM was chosen as 2.24 pixels. This
number is not only falling in the generally recommended
smoothing size (2-3 times of the spatial resolution) in fMRI
data analysis, but is also equal to the average size of all
possible 256 configurations within a 3 × 3 pixel area that
includes the center pixel [24].

3.4. Construction of Simulated and Pseudoreal Data. In
demonstrating the estimation and detection performance
of different methods, real fMRI data, where the subject
performed a certain paradigm, are difficult to use since
the ground truth about the activated regions is unknown.
To draw any firm conclusions about the performance of a
method, it is better to use simulated/pseudoreal data, where
the important parameters are known and can be tested for
and the data features (especially the noise characteristics)
are similar to real fMRI data [11, 17]. In this work, we
always use the resampled resting-state fMRI data as the noise
background to preserve the noise characteristics of real data
and superimpose either artificial activations or activations
extracted from real activation fMRI data. Even though the
difference between simulated/pseudoreal data and real data
cannot be avoided, the evaluation provides a ranking of the
estimation and detection performance of difference methods
that is unlikely to change for real data.

To quantitatively determine the performance of different
methods, we constructed both simulated and pseudoreal
data by defining

x =
{(

1− f
)

xact + f xnull, x ∈ active set,

xnull, otherwise.
(16)

In this equation x is the vector representing the time
series of a voxel with activation contribution xact and noise
contribution xnull. The noise fraction parameter f is a scalar
number to adjust the noise level in the data vector x given
that xact and xnull have the same power. For null data
xnull, Fourier resampling [25] of resting-state fMRI data was
used to randomize the phase of each time series without
destroying the inherent temporal and spatial correlations
in the data. Note that there are other resampling methods
for fMRI data, such as wavelet resampling [26, 27] and
whitening resampling [28–31], and some comparisons have
been made based on different criteria [27, 31–33]. Compared
to whitening resampling, both Fourier and wavelet resam-
plings do not assume a specific model (such as AR(p) or
ARMA(p,q)) to do model fitting and are thus more general
since different voxels may follow different whitening models.
To avoid complicating our simulation, we chose Fourier
resampling with the same phase permutation for all time
series to preserve the spatial correlations of resting-state
fMRI data. This resampling method is least computationally
demanding and was demonstrated to have a similar ROC
performance to that of wavelet resampling [33].

To define different spatial patterns of activations for
simulated data, 100000 randomly shaped activations within
a 3 × 3 grid of pixels having a size of 2 to 9 pixels were
generated. The center pixel was always assigned to be active.
The corresponding time courses for the activated pixels xact

were simulated to be linear combinations of the 4 random
temporal regressors with random amplitudes β1, β2, β3, and
β4 uniformly distributed in [0, 1]. Different levels of noise
introduced by resampled 3 × 3 patches of resting-state fMRI
were used for xnull. Both xnull and xact were normalized to
have unit variance before the mixture.

To quantitatively evaluate both sensitivity and specificity
of the novel CCA test statistic of (14) in comparison with
a GLM-based t-test in a more realistic setting using ROC
techniques [16–18], we constructed pseudoreal data [11]
using a combination of activation data and resting-state data.
First, GLM-NS was applied on the activation data. Next, the
groups of highly active voxels using an unadjusted P value
threshold of 10−8 for the t-maps of V-F in visual data and
of E-C in memory data were labeled as active, that is, xact.
Finally, we generated, by Fourier resampling of resting-state
data, the null data xnull and constructed the final pseudoreal
data according to (16).

To find the proper noise fraction parameter f in (16),
we applied GLM-NS on pseudoreal data for f ∈ (0, 1)
with step size 0.01. The median of corresponding t-values
of activations was compared with the median of t-values
with significance level in [10−8, 10−3] by applying GLM-NS
on real (non simulated) fMRI activation data. We plotted t-
values of contrasts V-F and E-C in Figures 2(a) and 2(b),
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Figure 1: Design matrices for visual (a) and memory (b) paradigms. From left to right, the regressors are fixation (F) and visual activation
(V) for the visual paradigm (a), and instruction (I), encoding (E), recognition (R), and control (C) for the memory paradigm (b). The SPM-
type two-gamma function was used as the HRF. Note that with centered data, (a) can be modeled by a single centered activation column and
(b) can be modeled by three centered columns. The redundant presentation was used to show all experimental conditions.

respectively. As can be seen, f = 0.6 is a value that two
medians match. Therefore, we picked two values for f :
0.55 representing the low noise case and 0.65 representing
the high noise case. By normalizing the peak variances of
noise and signal to be the same, these two values for f
correspond to a peak signal-to-noise ratio of 67% and 29%,
respectively. The logic of choosing these significance levels
for determining a proper f is the following. Voxels with
significance level P < 10−8 are signals with very high SNR
(which are almost certainly true activations), those with
significance level in the interval [10−8, 10−3] are the majority
of signals with medium or low SNR and of interests of
detection (whose median of the t-statistic was used to find
a matching f ), and those with significance level P > 10−3 are
dominated by noise and are therefore ignored.

The advantage of constructing pseudoreal data using real
activation data and resampled resting-state data is that the
spatial and temporal correlations of both the activations and
the noise are similar to real data and the locations of active
and nonactive voxels are known by construction. This type
of simulation then allows conventional ROC techniques to
be applied.

3.5. Determination of Proper P-Value. To compare different
test statistics using real visual and memory activation data, it
is necessary to get the proper P-values for the corresponding
t- or novel CCA statistic that is adjusted for multiple
comparisons. In this work, we used a non-parametric
technique [22]. A non-parametric technique is suitable for
a reliable comparison between different analysis methods
because the parametric distribution of the CCA statistic is
intractable due to the data-adaptive spatial filtering kernel.
In the following we outline how the family-wise error rate
(FWE) is being calculated using Fourier resampled resting-
state data using bootstrapping of the order statistics. For
more details, please see the publication [22].

The multiple comparison problem is relevant when we
have a family of hypotheses {Hω : ω ∈ Ω} at voxel ω.
Let the test statistics at voxel ω be denoted by Yω. Then
FWE is determined by the maximum statistic (maxYω),
and for any threshold u, we can calculate the P-value that
automatically adjusts for multiple comparisons. To estimate
the null distribution of {maxYω}, we use the bootstrap
method applied to the k largest order statistics {Y 1, . . . ,Yk}
from Fourier resampled resting-state data. This method is
quite general and may be applied to a broad class of test
statistics in fMRI. In the present context of CCA, the relevant
test statistic is given by (14) or (15). Although it is not
strictly necessary, it is preferable to make a transformation of
the test statistic using the known (approximate) distribution
or the kernel density estimation. We calculate the negative
logarithm of the P-value corresponding to the test statistic to
obtain our transformed variables. Due to the monotonous
nature of the transformation, without loss of generality, we
can assume that Y is already transformed. Define {di =
i(Yi − Yi+1), i = 1, . . . , k} as normalized sample spacings
for the k largest order statistics. If the observed samples at
the voxels are exponential i.i.d then so are the normalized
sample spacings [34]. This is true since the transformed test
statistic is an exponential random variable. The k largest
order statistics can then be expressed as a linear function of
the normalized sample spacings and Yk+1 as follows:

Y j = Yk+1 +
k∑

i= j
i−1di, j = 1, . . . , k. (17)

Since {di, i = 1, . . . , k} are i.i.d., we can use the bootstrap
method to obtain resamples of normalized spacings {d∗i ,
i = 1, . . . , k}. The latter can be used to generate resamples
{Y∗1, . . . ,Y∗k} of the k largest order statistics from which
the distribution of {maxYω} can be obtained numerically.
Since Fourier resampled resting-state data are considered to
be null, the obtained distribution can be considered to be the
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Figure 2: Determination of the proper value for the noise fraction f for pseudoreal data. The solid horizontal lines represent the medians
of t-statistics at the significance level 10−8 < P < 10−3 (uncorrected) for the contrasts V-F (a) and E-C (b) by applying GLM-NS on real
fMRI activation data. The dashed curves are the medians of the t-statistics of activation-defined voxels for the contrasts V-F (a) and E-C
(b) by applying GLM-NS on pseudoreal data where the true activations were defined by thresholding real activation data using a very high
significance level (P < 10−8 uncorrected) and adding resampled noise according to (16) for different noise fractions f ∈ [0, 1]. The medians
of the t-value matched at around f = 0.6. Therefore, we picked two values for f : f = 0.55 representing the low noise case and f = 0.65
representing the high noise case.

null distribution of {maxYω}. It can be shown that, under
certain regularity conditions, for a suitably chosen k, the
normalized spacings are i.i.d. asymptotically [35]. Due to
the large number of voxels in consideration, the asymptotic
result is applicable in the present context. The chosen value
for k was 100 for the bootstrap method and FWE was
computed for P = 0.05.

4. Results

4.1. Estimation of Temporal Coefficients for Simulated Data.
We computed the mean square errors (MSE) between the
estimated temporal coefficients of the linear combination
and the original ones generating the simulated data (Table 1)
for a random noise fraction parameter f uniformly dis-
tributed in [0, 1]. The GLM-GS method is inferior to GLM-
NS due to the small and irregular defined activations. The
cCCA-RG method performs best and has an improvement
of more than 25% of MSE in estimating the temporal
coefficients. This experiment demonstrates the superior
estimation performance of temporal coefficients β̃ by the
adaptive smoothing capability of cCCA.

4.2. Null Distribution of the Proposed Test Statistic. Although
the proposed novel CCA test statistic has a similar form as the
t-statistic in the GLM, its null distribution deviates signifi-
cantly from the theoretical t-distribution as we mentioned
previously. To shed more light on this issue, we applied
different methods using Fourier resampled resting-state data
and the contrast vector for the memory paradigm to get

Table 1: Mean square errors (MSEs) of estimated coefficients for
different methods. To define different spatial patterns of activations,
100000 randomly shaped activations within a 3 × 3 grid of pixels
having a size of 2 to 9 pixels were generated. The corresponding
time courses for the activated voxels were simulated to be linear
combinations of the 4 random temporal regressors with random
amplitudes. Different levels of noise were introduced by resampling
3 × 3 patches of resting-state fMRI data. The mean square errors
between the originally simulated amplitudes of regressors and
estimated ones are shown. The cCCA-RG method achieves more
than 25% less MSE compared to GLM-NS. The GLM-GS method
is worse than GLM-NS due to the small and irregularly defined
activation patterns.

Δβ2
1 Δβ2

2 Δβ2
3 Δβ2

4

GLM-NS 0.1331 0.1837 0.2200 0.1488

GLM-GS 0.1627 0.2047 0.2336 0.1769

cCCA-RG 0.0979 0.1339 0.1538 0.1091

the null distributions of the contrast E-C. The results were
plotted in Figure 3. The theoretical t-distribution with a DOF
of 278 is also plotted for reference. It can be seen that all
distributions are wider than the theoretical t-distribution,
even for the GLM methods. Meanwhile, since n is much
greater than p and K in this case, the adjustment induced
by K in (14) is almost negligible. Since the distribution
of the novel CCA test statistic has a complicated structure
and is difficult to parameterize, it is necessary to use
non-parametric methods to determine significance values
accurately.



International Journal of Biomedical Imaging 9

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Value of test statistics

P
ro

ba
bi

lit
y 

de
n

si
ty

 fu
n

ct
io

n
 (

pd
f)

Theoretical t

GLM-NS t
GLM-GS t
cCCA-RG novel

Figure 3: Distributions of the proposed CCA statistic (“cCCA-
RG novel”) along with the conventional t-statistic used in the
GLM using resampled resting-state data and contrast E-C for the
memory paradigm. The difference of the GLM-based t-statistic
from a theoretical t-distribution (blue solid curve, DOF = 278) was
mainly caused by the temporal correlation in fMRI signal. The novel
CCA statistic has the widest profile because of the additional spatial
modeling.

4.3. Area under the ROC Curve for Pseudoreal Data. We
computed the area under the ROC curve (called “AUR”)
for a false positive fraction (FPF) less than 0.1 as an index
of detection performance. The AUR quantity provides a
weighted measure of detection power for specificities larger
than 0.9 (which is the most interested range for fMRI data).

The AUR quantities for the contrast V-F of the visual
data and for the contrast E-C of memory data are shown in
Figure 4. Since the induced activations at the visual cortex
are spatially extended, Gaussian smoothing (GLM-GS) yields
better detection performance than GLM-NS. However, when
activations are more irregular in shape and spatially localized
as in the memory task, Gaussian smoothing produces adverse
effects and GLM-GS consequently performed worse than
GLM-NS. As can be seen, cCCA-RG always yields the top
performance in all cases. The biggest advantage of cCCA-
RG is in detecting small activations from a high noise
background (“MEM 0.65”).

In addition, we plotted the curves for the total false
fraction (TFF) (including both false positives and false
negatives) versus the false positive fraction (FPF) in Figure 5
(for the contrast V-F of the visual data) and Figure 6 (for
the contrast E-C of the memory data). This measurement
provides another perspective on the detection performance
of different methods. For the extended activations of the
contrast V-F, cCCA-RG achieves the smallest TFF at f =
0.55 (Figure 4(a)), followed by GLM-NS and GLM-GS.
The GLM-GS method is effective in the high noise case
(Figure 4(b) f = 0.65) and performs similar to cCCA-RG. In
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Figure 4: Detection performance of different data analysis methods
showing the area under the ROC curve (AUR), integrated over
FPF∈ [0, 0.1], using pseudoreal data. The AURs for the contrast V-F
of the visual paradigm (“VIS 0.55” and “VIS 0.65”) and the contrast
E-C of the memory paradigm (“MEM 0.55” and “MEM 0.65”) are
shown for the low noise case ( f = 0.55) and the high noise case
( f = 0.65), respectively. The cCCA-RG achieves the greatest AUR
values in all cases.

Figure 5, for the small activations of the contrast E-C, cCCA-
RG remains the optimum and yields much more improved
performance over other methods in the high noise case ( f =
0.65). The GLM-GS method works poorly even in the high
noise case. This demonstrates that it is destructive to apply
fixed Gaussian spatial smoothing on the data with small
activations. Constrained CCA combined with the proposed
test statistic is more reliable and thus a better alternative to
detect these activations.

4.4. Activation Maps Using Real Data (with Corrected P <
0.05). In the following, we show the activation maps with
corrected P < 0.05 that are overlaid on their corresponding
T2 images. Images in the figures are in radiological con-
vention (left is right and vice versa). We only show them
in 2D slices because the current application of cCCA-RG
was in 2D, so was GLM-GS for a fair comparison and the
(coregistered) activation maps were laid on each individual
co-planar T2 image. In Figure 7, we show the activation
maps of the contrast V-F of visual data for different methods
from one representative subject. It can be seen that GLM-GS
yields the smoothest activation map at the expense of loss
of the visual cortex structures and GLM-NS preserves these
folded structures much better but with some unappealing
broken links. The activation map of cCCA-RG provides a
good compromise between the smoothness of activations
and preservation of fine cortical structure.

The activation maps of the contrast E-C of memory data
from another representative subject are shown in Figure 8.
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Figure 5: The total false fraction (TFF) (including false positives and false negatives) versus the false positive fraction (FPF) for the contrast
V-F of the visual paradigm for pseudoreal data: (a) the low noise case ( f = 0.55) and (b) the high noise case ( f = 0.65). Note that all TFF
curves have minima in the interval [0.001, 0.01]. The cCCA-RG performs nearly optimal in both cases by achieving the minimum value of
TFF.
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Figure 6: The total false fraction (TFF) (including false positives and false negatives) versus the false positive fraction (FPF) for the contrast
E-C of the memory paradigm for pseudoreal data: (a) the low noise case ( f = 0.55) and (b) the high noise case ( f = 0.65). Note that all TFF
curves have minima in the interval [0.001, 0.01]. The cCCA-RG method is optimal in both the low and high noise cases.

The slices shown in the upper row contain an anterior por-
tion of the hippocampal complex. Symmetrical activations
in hippocampus and parahippocampal gyrus are detected by
GLM-NS and cCCA-RG. The missing activation at the left
hippocampus (see white arrows) of GLM-GS demonstrates
the undesirable effects of a fixed isotropic Gaussian spatial
smoothing on localized weak activation patterns. A more

posterior slice is shown in the bottom row. Memory encoding
activation is obtained in the posterior cingulate cortex and
precuneus. Using the GLM-GS method, activations appear
overly bulgy and have some unlikely connections through
white matter (shown by the black arrow). Also, small and
weak activations in the posterior cingulate cortex (see white
arrows) are not shown in the activation map of GLM-GS.
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Figure 7: Activation maps for the contrast V-F of the visual paradigm using corrected P-values (P < 0.05). The GLM-GS method yields the
smoothest activation map at the expense of showing activations reaching outside of gray matter. The GLM-NS method preserves activations
in gray matter much better but with unappealing broken links among activated voxels. The activation map using cCCA-RG provides a
compromise between the smooth appearance of activations and preservation of fine cortical structure.
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Figure 8: Activation maps for the contrast E-C of the memory paradigm using corrected P-values (P < 0.05). Upper row: activations in the
anterior portion of the hippocampal complex; lower row: activations in the posterior and middle cingulate cortex and in the precuneus. Note
that GLM-NS and cCCA-RG lead to symmetric (left and right) activation patterns in the hippocampus and parahippocampal gyrus and also
to weak and localized activations in the posterior/middle cingulate cortex (see white arrows). Using GLM-GS, strong activation patterns
become overly bulgy (see black arrow). Compared to GLM-NS, cCCA-RG yields more activated voxels and better connected activations
confined to gray matter.

The GLM-GS method leads not only to missing activations
but also to artifactual activations where a large fraction of
false activations show up in white matter and CSF regions
due to the spherical (nondirectional) smoothing kernel. The
cCCA-RG method yields more activated voxels and better
connected activations in gray matter than GLM-NS.

To make a quantitative comparison of the locations of
activations of different methods, we used the gray matter
mask from the acquired IR-SE-EPI scan and calculated the
ratio of the number of activated voxels detected in gray
matter and the number of activated voxels detected outside of
gray matter (listed in Table 2). This ratio reflects the degree
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Table 2: Ratio of activations in gray matter and outside of gray
matter for different analysis methods. The number in the table
is the ratio of the number of voxels detected in gray matter and
the number of voxels detected outside of gray matter. Note that
the GLM-NS has the highest value because there is no smoothing
involved. Compared to fixed Gaussian spatial smoothing (GLM-
GS), cCCA-RG yields higher ratios demonstrating less blurring and
better confinement to gray matter.

GLM-NS GLM-GS cCCA-RG

V−F 6.21 2.84 3.35

E−C 1.81 1.32 1.53

of activations confined to gray matter. As expected, GLM-
NS has the highest value because of no smoothing involved.
Compared to fixed Gaussian smoothing (GLM-GS), cCCA-
RG yields higher ratios, which demonstrates that the adaptive
smoothing suffers less blurring outside of gray matter than
fixed Gaussian spatial smoothing.

5. Discussion

Using the newly developed directional test statistic for cCCA
of fMRI data, we are able to compare cCCA with traditional
GLM methods for a more complicated memory paradigm.
The quantitative results from the simulated and pseudoreal
data and the qualitative results from real fMRI data clearly
demonstrate that the proposed method (directional test
with cCCA) outperformed the conventional GLM with and
without Gaussian smoothing. This work paves the way for
applying CCA methods for testing general linear contrasts in
a more complicated fMRI experimental design.

Our comprehensive evaluation study also provides valu-
able insights for applying smoothing in fMRI data analysis.
The pseudoreal data used in this study can be divided into
four situations: (1) spatially extended and strong activation
(VIS 0.55); (2) spatially extended and weak activation (VIS
0.65); (3) focal and strong activation (MEM 0.55); (4) focal
and weak activation (MEM 0.65). As expected, the smooth-
ing does not provide much benefit for detecting strong
activations. The Gaussian smoothing is only effective for
the second situation—spatially extended and weak activation
(Figures 4 and 5) because the smoothing helps little for
detection of strong signals and the isotropic smoothing
adversely eliminates the small or irregular weak activation
patterns. The adaptive smoothing by cCCA always per-
formed best in all four situations and the biggest advantage
takes place for the last situation—focal and weak activations
(Figures 4–6). For real fMRI data, the Gaussian smoothing
can yield a large block of smooth activations, which are
appealing to human visual perception. However, there is a
risk of overlooking important subtle activations as well as
overestimating the extent of strong activations (Figure 7).
As can be seen in Figures 7 and 8, the adaptive smoothing
by cCCA yields activation maps that are not only visually
appealing (smoothness) but also well localized (along the
gyri and sulci of gray matter).

The improved detection performance of cCCA is at the
expense of computation. If an exhaustive search is used for

the optimization of constrained CCA, the number of CCA
computations will be equal to the number of possible voxel
configurations in the chosen neighborhood. This number is
of the order O(2N−1), where N is the number of voxels in the
search area [12, 24]. That means 256 CCA computations for
a 3 × 3 in-plane neighborhood and 226 for a 3 × 3 × 3 voxel
volume. Heuristic search methods, such as the branch-and-
bound algorithm [10, 14] and a region-growing algorithm
[12], were used to reduce the computational cost and to
maintain the detection performance. The current implemen-
tation of cCCA-RG in 2D [12] is feasible for routine fMRI
data analysis. For the estimation of a 2D slice with 6317 in-
brain pixels, using MATLAB on a computer equipped with
Intel Core 2 2.4 GHz CPU and 4 GB memory, cCCA-RG takes
about 24 seconds. Although it is about 10 times slower than
GLM-NS and GLM-GS, a fully 3D brain volume sequence
can be processed within 10 minutes. On the other hand, the
rapid evolving computer hardware and parallel computing
techniques, for example, GPU computing, can dramatically
shorten the time for cCCA in future applications.

Besides CCA [8–13, 24], there exist other methods that
use adaptive smoothing techniques for fMRI data analysis
(e.g., [36–38]). A quite different method is used in [38],
where a propagation-separation procedure is applied on
contrast and residual images, obtained by the GLM, to
achieve adaptive smoothing of the estimated parameters.
The final activation detection is based on random field
theory [6]. However, the advantage of preserved shape and
geometry of the activation areas and increased signal-to-
noise ratio was only demonstrated by simulated data and
real motor data, thus the effectiveness of this postestimation
smoothing on focal weak activations is unclear. Another test
statistic similar to canonical correlation, proposed in [36],
is defined as a ratio between the energy of signal space and
the energy of residuals. Its power relies on the optimal spatial
weighting based on different signal spaces. This method is
equivalent to conventional CCA. However, the maximum
energy ratio, in its current formulation, does not allow for
a more general contrast design, as well as a directional test.
Moreover, the estimate and inference have to be done for
each signal space, which is computationally expensive. Our
test statistics is more general and outperforms the GLM
with or without Gaussian smoothing. In addition to its
improved sensitivity, advantages are that general contrasts
can be defined after the estimation and a directional test
is readily available. It is worthwhile to note that adaptive
smoothing can also be achieved through spatial priors
defined in a Bayesian framework (e.g., [39, 40]), which
produces posterior probability maps instead of statistical
parametric maps as in classical inference. Though Bayesian
methods hold some advantages over classical inference, such
as capability of inferring an effect size and no need for
multiple comparison correction, the specification of the
priors and the likelihood functions may have a large impact
on the final results and the computation is usually more
complex and time consuming. For comparing all these
adaptive smoothing methods, a thorough study needs to
be conducted to evaluate their performance from detection
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performance of different types of brain activations to their
computational cost.

It is important to keep in mind that the advantage of
adaptive smoothing may diminish in conventional group
analysis, where isotropic smoothing is necessary to improve
correspondence of imperfectly registered homologous areas.
Nevertheless, the usefulness of adaptive smoothing will be
greatly appreciated for fMRI-aided neurosurgical planning
[41] and region-of-interest analysis of localized brain func-
tions [42].

One issue that this paper has not addressed is the tempo-
ral correlation of the noise and a possible correction of the
test statistic by prewhitening, as usually done in data analysis
using the GLM. Based on the Gauss-Markov theorem, the LS
solution of the GLM is the MVU estimator when Gaussian
white noise assumption is satisfied, otherwise the weighted
LS solution (using the inverse of the noise covariance matrix)
becomes the BLUE. For cCCA, a BLUE does not exist
because the optimization of the spatial constraints leads to
a nonlinear model even though the spatial constraints can
be linear [24]. Therefore, unbiasedness of constraint CCA by
prewhitening is not possible and non-parametric methods
need to be used to obtain accurate P-values.

The purpose of this research is to develop a simple
directional test statistic for cCCA similar to a t-statistic.
Given that the HRF is modeled perfectly, a t-test, as a
likelihood ratio test in the univariate case, is the most
sensitive test. For block designs, the canonical 2-gamma
function is a good choice for the temporal modeling of the
BOLD response. However, in event-related designs, more
complicated temporal regressors may be useful (such as
first and second derivative of the HRF function) to model
the delay and dispersion of the BOLD response. In such a
scenario, an unsigned test statistic, for example, F-statistic, is
preferred to test for the evoked regional effects. A test statistic
for CCA similar to F-statistic can be derived from Wilks’ Λ
as

F
(
vH̃, vẼ

) = 1−Λ

Λ

vẼ

vH̃
, (18)

where vH̃ and vẼ are the degrees of freedom of the hypothesis
matrix and the error matrix, respectively. The delay and
dispersion regressors can be included in our proposed
CCA method in the same way as for the GLM since the
temporal modeling of the HRF response is the same for both
methods.

6. Conclusions

In this paper, we derived a novel directional test statistic
for CCA so that CCA can handle general linear contrasts
in more complicated fMRI paradigms. Using this novel test
statistic, different contrasts can be tested after model fitting
without reparameterization of the design matrix and reesti-
mating each individual contrast of interest. With the proper
constraints on the spatial coefficients of CCA, this CCA
statistic can yield a more powerful test than the traditional
t-test in the GLM, especially for weakly evoked and localized
brain activations. This behavior was demonstrated not only

by superior performance using simulations and traditional
ROC techniques but also by activation maps of real fMRI
applications. Since the trend in fMRI is to move toward
high-resolution imaging where the signal is weak, the spatial
correlation is strong, and the amount of data is enormous,
we envision that our method with improved detection power
and computation time will be important for future fMRI data
analysis.
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Texture and feature extraction is an important research area with a wide range of applications in science and technology. Selective
extraction of entangled textures is a challenging task due to spatial entanglement, orientation mixing, and high-frequency
overlapping. The partial differential equation (PDE) transform is an efficient method for functional mode decomposition. The
present work introduces adaptive PDE transform algorithm to appropriately threshold the statistical variance of the local variation
of functional modes. The proposed adaptive PDE transform is applied to the selective extraction of entangled textures. Successful
separations of human face, clothes, background, natural landscape, text, forest, camouflaged sniper and neuron skeletons have
validated the proposed method.

1. Introduction

Texture is one of the important features characterizing many
natural and man-made images. Texture characterization and
analysis are usually performed according to the spatial as
well as frequency variations of brightness, pixel intensities,
color, and texture orientation in the different regions of
the image corresponding to different types of textures. For
example, the roughness or bumpiness of an image usually
refers to variations in the intensity values, or gray levels.
Texture segmentation, recognition, and interpretation are
critical for human visual perception and processing. As a
result, research on texture analysis has received considerable
attention in recent years. A large number of approaches has
been proposed for texture classification and segmentation
[1–16]. In general, texture analysis methods fall into two
categories: statistical methods which analyze the Fourier
power spectrum, gray level values, and various variance
matrices of the input image, and structural methods which
are knowledge-based algorithms with an emphasis on the
structural primitives and their placement rules. Some exam-
ples of such methods include Markov random field mod-
els [17, 18], simultaneous autoregressive model [19], and
fractal models [20]. Among many existing approaches, local

variation minimization has been a popular and powerful
technique in image analysis [21] with applications to the
texture modeling [22]. Multiphase segmentation approaches
are based on the structural division of gray scales [23]. More
recently, multiresolution approaches have become more
important in texture analysis [19, 24–26], where fixed-size
neighborhood and window size are used to derive features at
varying scales corresponding to the input image at different
resolutions.

In general, the total texture extraction has become a
mature technique in real applications. However, despite the
progress in the past few decades, selective extraction of
entangled textures encounters a number of difficulties. One
difficulty is due to spatial entanglement, including orienta-
tion mixing of various textures. Another difficulty is due
to gray-scale entanglement, especially the near-continuous
merging of various textures. The other difficulty is due
to frequency entanglement when two similar but different
textures share overlapping frequency band in the frequency
domain. This difficulty would especially plague texture anal-
ysis when many high-frequency textures coexist.

In this work, we propose an adaptive partial differential
equation (PDE) transform approach for selective extraction
of entangled textures. By using arbitrarily high-order PDEs,
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the PDE transform is able to decompose signals, images,
and data into functional modes, which exhibit appropriate
time-frequency localizations [27–31]. Additionally, the PDE
transform is able to provide a perfect reconstruction. Unlike
wavelet transform or Fourier transform, the PDE trans-
form offers results in the physical domain, which enables
straightforward mode analysis and secondary processing.
Based on the image mode functions generated by the PDE
transform method, the adaptive PDE transform algorithm
calculates the variance of the local variation of the image
mode functions followed by the corresponding thresholding
analysis.

2. PDE Transform Method

In the past two decades, PDE-based image processing
approaches have raised a strong interest in the image process-
ing and applied mathematical communities and have opened
new approaches for image denoising, enhancement, edge
detection, restoration, segmentation, and so forth. The use of
PDEs for image analysis started as early as 1980s when Witkin
first introduced diffusion equation for image denoising [32].
The time evolution of an image under a diffusion operator
is formally equivalent to the lowpass filter. After Perona
and Malik introduced anisotropic diffusion equation in 1990
[33], nonlinear PDEs have found great applications for a
variety of image processing tasks such as edge detection and
denoising. Two important advances in the history of image
processing, namely, the Perona-Malik equation and the total
variation methods [21], employ second-order nonlinear
PDEs for image analysis. The Willmore flow, proposed in
1920s, is a fourth-order geometric PDE and has also been
used for surface analysis. In the past decade, fourth-order
nonlinear PDEs have attracted much attention in image
analysis [34–36].

Arbitrarily high-order nonlinear PDEs were introduced
by Wei in 1999 to more efficiently remove image noise in
edge-preserving image restoration [34]:

ut(r, t) =
∑

q

∇ ·
[
dq(u, |∇u|)∇∇2qu

]

+ e(u, |∇u|),
(
q = 0, 1, . . .

)
,

(1)

where u ≡ u(r, t) is the image function, dq(u(r), |∇u(r)|, t)
and e(u(r), |∇u(r)|, t) are edge-sensitive diffusion coeffi-
cients and enhancement operator, respectively. The Perona-
Malik equation is recovered at q = 0 and e(u(r), |∇u(r)|, t) =
0. As in the original Perona-Malik equation, the hyperdiffu-
sion coefficients dq(u(r), |∇u(r)|, t) in (1) can be chosen in
many different ways. For instance, one can set

dq(u(r), |∇u(r)|, t) = dq0 exp

[

−|∇u|
2

2σ2
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]
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where the values of constants dq0 depend on the noise level,
and σ0 and σ1 are chosen as the local statistical variance of u
and∇u:

σ2
q (r) = ∣∣∇qu−∇qu

∣
∣2 (

q = 0, 1
)
. (3)

The notation Y(r) above denotes the local average of Y(r)
centered at position r. In this algorithm, the statistical mea-
sure based on the variance is important for discriminating
image edges from noise. As such, one can bypass the image
preprocessing, that is, the convolution of the noise image
with a test function or smooth mask.

In general, the nonlinear PDE operators described above
serve as lowpass filters. PDE-based nonlinear highpass filters
were introduced by Wei and Jia [37] in 2002. They con-
structed two weakly coupled PDEs to act as a highpass filter.
Recently, this approach has been combined with Wei’s earlier
arbitrarily high-order nonlinear PDE operator to give [29]
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where εum ≡ εum(|∇um|) and εun ≡ εun(|∇vn|) are made
edge sensitive. As lowpass filters, both duj ≡ duj(|∇um|) ≥ 0
and dv j ≡ dv j(|∇vn|) ≥ 0 when j is even. Similarly, both
duj(|∇um|) ≤ 0 and dv j(|∇um|) ≤ 0 when j is odd. We can
define a PDE transform as

wm,n(r, t) = um(r, t)− vn(r, t) = Hmn(r, t)X(r), (5)

where Hmn(r, t) can be regarded as a coupled nonlinear
PDE operator. In order for (5) to work properly, we choose
|dv j(|∇vn|)| � |duj(|∇um|)|. As shown in our earlier work,
by increasing the order of the highest derivative, one can
increase frequency localization and accuracy of the PDE
transform for mode decomposition [29]. The frequency
selection of wm,n(r, t) also depends on the evolution time.
High-order PDEs are integrated by using the Fourier pseu-
dospectral method [29].

In the PDE transform, intrinsic mode functions wk are
systematically extracted from residues Xk, that is,

wk
mn = HmnX

k
mn, ∀k = 1, 2, . . . , (6)

where wk
mn is the kth mode function. Here, the residue

function is given by

Xk
mn = X1

mn −
k−1∑

j=1

w
j
mn, ∀k = 2, 3, . . . , (7)

where X1
mn = X(r). Therefore, X = ∑k−1

j=1w
j
mn + Xk

mn is
a perfect reconstruction of X in terms of all the mode
functions and the last residue. The mode decomposition
algorithm given in (6) is inherently nonlinear, even if a linear
PDE operator might be used.

The PDE transform is applied to Figure 1(a) to extract
the three textures in Figures 1(b), 1(c), and 1(d). Note that
only one texture is isolated at each time, which means the
proposed PDE transform is able to perform a controlled or
selective segmentation of textures. The PDEs of up to order
200 have been used for the selective texture segmentation.
Numerically, such high-order linear PDE needs to be solved
in the frequency domain [29]. Due to the ideal frequency
localization, three textures are separated with clear boundary
sharpness.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Extraction of various embedded textures using the PDE transform. (a) shows the original image composed of various horizontal
and vertical textures. (b)–(d) show the three texture patterns extracted by applying the PDE transform, one at each time. (e) shows the edge
mode obtained by applying the PDE transform to (a). (f) shows the variance of the local variation of the image mode function (e). (g) and
(h) show the projection, or average, of the variance in (f) along x- and y-direction, respectively.

3. Adaptive PDE Transform Algorithm

The separation of textures that are highly entangled in spatial
locations, frequency ranges, and gray scales become a
challenge, and conventional segmentation techniques are in
general not applicable for such cases. For example, highly
oscillatory textures can be separated from slowly varying
background but cannot be separated from another texture
with overlapping frequency distribution purely based on
frequency fingerprints. To selectively distinguish such entan-
gled textures of high frequency, one needs a mode decom-
position algorithm that is able to be highly localized in
frequency. Second-order PDEs are poorly localized in the
frequency domain [29]. Whereas, the PDE transform with
high-order PDEs provides desirable frequency localization
[29]. However, the PDE transform by itself does not perform
well for the separation of entangled textures. To this end,
we introduce an adaptive PDE transform algorithm for
selective texture extraction. The essence of the adaptive PDE
algorithm lies in the realization that features of various
textures are closely correlated with both the magnitude and
smoothness of the gray-scale values, or, equivalently, the local
variation of the image mode functions. Similar ideas have
been implemented in other methods such as total variation
[21].

Nonlinear PDEs have been widely applied to detect
images with noises. However, despite better image edge pro-
tection, the nonlinear anisotropic diffusion operator may
still break down when the gradient generated by noise is
comparable to image edges and features [38]. Application
of a preconvolution with a smoothing function to the image

can practically alleviate the instability and reduce gray-scale
oscillation, but the image quality is often degraded. One
alternative solution introduced by Wei [34] is to statistically
discriminate noise from image edges by a measure based on
the local statistical variance of the image or its gradient. Such
a local statistical variance based edge-stopping algorithm was
found to work very well for image restoration.

Similar statistical analysis can be employed to perform
selective texture extraction for images containing highly
entangled and overlapping textures. In the present approach,
we first compute the local variation of each pixel of the image
mode functions obtained by the high-order PDE transform.
Unlike the total variation, the local variation is still a
function, of which the variance can be calculated:

E(X(r)) =
∣∣
∣
∣
∣∇Xk(r)

∣
∣− ∣∣∇Xk(r)

∣
∣
∣∣
∣

2
, (8)

where Xk(r) is the kth mode function obtained by the
PDE transform (7), and |∇Xk(r)| is evaluated locally
over the neighbor pixels. Equation (8) yields a statistical
analysis which is used for various texture separation and
segmentation with appropriate threshold values. Various
threshold values need to be chosen to select the range
of the variance corresponding to the particular texture of
interest. All the previously classified textures are registered
for sequential/recursive texture extractions. A flowchart of
the adaptive algorithm of PDE transform is shown in
Figure 2.

Figure 1(e) shows the edge mode obtained by applying
the PDE transform to Figure 1(a). Figure 1(f) shows the
variance of the local variation of gray scale calculated using
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Figure 2: Algorithm of adaptive PDE transform for entangled texture separation.

the adaptive PDE transform. Figures 1(g) and 1(h) show the
projection, or average, of the variance in Figure 1(f) along x-
and y-direction, respectively. By slicing out different domain
of the variance in Figure 1(f), three different textures in
Figures 1(b)– 1(d) are then perfectly separated from each
other.

4. Applications

In this section, the adaptive PDE transform is applied to three
different cases to illustrate its superior capability of selective
texture separation. The three images feature different types of
entangled textures. Figure 3(a) contains textures overlapping
in the physical space with entangled frequency fingerprints.
Figures 5(a) and 6(a) contain spatially segmented textures
overlapping in the frequency domain. Figure 7 contains
textures with overlapping textures highly entangled in both
the frequency and spatial domains.

4.1. Text-Image Separation. The adaptive PDE transform
method employing the variance of the local variation of the
image mode functions is applied to several benchmark test
cases. In particular, separation of text and texture can be
regarded as a generalized type of texture analysis. In Figure 3,
texts of various fonts are imprinted on the background
image. Additional background watermark in Chinese is also
presented in Figure 3(a). The separation of English title
from both background image and Chinese characters is a
challenging task in terms of texture analysis because of the
high degree of entanglement of very similar textures. Due to
the font size difference in this application, high-order PDE
transform plays an extremely important role in differentiat-
ing modes with slightly different frequency characteristics. In
Figure 3(b), the PDE transform successfully suppresses the
low-frequency parts and extracts the mode with frequency
band mainly corresponding to texts. Such a procedure is
similar to the edge detection in a general image processing.
Statistical segmentation is then performed on the high-
frequency mode. A suitable threshold value is used to cut
off the region with low variance and yields only the texts as
shown in Figure 3(c).

4.2. Selective Texture Extraction. The present algorithm of
selective texture extraction is also tested on one of the most

widely used images, the Barbara, in Figure 5. Barbara image
is a benchmark test for edge detection and denoising. It
contains fine details of different textures such as the table
cloth, curtain behind Barbara, scarf, and clothes on her. Dis-
tinctions between all these textures and the background
are much larger than those among these textures, which
leads to the difficulty of selective texture separation and
segmentation. Due to the tiny difference between the fre-
quency or spectrum features of different textures mentioned
above, a highly frequency-selective separation method is
required. However, the conventional Fourier method is not
applicable for this case since the textures are entangled in
the frequency domain. Moreover, conventional statistical
segmentation approaches do not perform well for this case
due to the gray-scale entanglement. The present adaptive
PDE transform method performs well for the selective
texture extraction in the Barbara image. The total texture,
or image edge, is extracted from the high-frequency mode of
the PDE transform as shown in Figure 5(b). The variance of
the local variation is shown in Figure 4, which is calculated
and employed for selective texture extraction and separation
with appropriate thresholding values. The resulting textures
are shown in Figures 5(c)–5(f) which correspond to those
of clothes, curtain, and table cloth, respectively. The four
textures in Figure 5 are superimposed on the original image
for the purpose of a clearer visualization.

In Figure 6, the present adaptive PDE transform is
applied to detect a sniper hidden in the forest (Figure 6(a)).
The whole image is composed of highly entangled textures.
The boundaries between these textures are very challenging
to be identified appropriately. In our approach, variance of
the local variation is calculated and used for texture sep-
aration as in the previous examples. By appropriate thresh-
olding, the variance can be decomposed into three regions
corresponding to those of the forest, the tree trunk, and the
sniper. The resulting texture modes are shown in Figures
6(b)–6(d).

4.3. Natural Neuron Skeleton Analysis. In the previous in-
troduction to the adaptive PDE transform algorithm and
applications, local variation is defined and calculated for
the intensity of image mode functions to selectively extract
textures beyond the total texture extraction. The selective
texture extraction can be generalized to indicate any spatial
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(a) (b) (c)

Figure 3: Extraction and separation of texts, background watermark, and textures of (a). Shown in the 3(b) and 3(c) are the image mode
function and extracted texture using the proposed adaptive PDE transform.
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Figure 4: Adaptive PDE transform for selective texture extraction in the Barbara image. The variance of the local variation is shown in the
top chart.

parts of the image characterized with specific (and usually
functionally important) spatial orientation and/or frequency
oscillation, such as different parts in the neuron synapses,
brain cells, and retina vasculatures. In Figure 7(a), the image
of a typical neuron is shown. With advanced imaging
techniques made available, research scientists have been able
to obtain more and clearer 2D images and 3D data of
various neuron cells and networks, whose study will be
important for identifying the relation between phenotype
and genotype patterns in physiology and molecular biology.
Closely related to the advancement in the experimental
imaging techniques, various improved computational image
processing techniques have been proposed to better analyze
neuron images. Neuron morphology study has become more

and more important since the shape and branching of
dendrites in neurons are closely related to the structure
and functioning of the neuron network. Advancements in
both experimental imaging techniques and computational
image enhancements have led to better visualization and
exploration of neuron morphology [39–45]. In the study
of neuron morphology, image processing and segmentation
of cultured neuron skeletons provide details of how neuron
grow and branches. In this work, we apply the adaptive
PDE transform to the study of “natural” neuron skeleton to
segment and classify neuron skeletons into desirable classes
according to the spatial extension and frequency oscillation
of neuron dendrites, very much like the way of dividing a
total image texture into several selective fine textures. Such
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(a) Original image (b) Image mode function (c) Texture 1

(d) Texture 2 (e) Texture 3 (f) Texture 4

Figure 5: PDE transform is applied on (a) to extract edges of all textures into 5(b). Adaptive PDE transform is then applied to extract
different textures from 5(b). In 5(c)–5(f), all the textures are superimposed on the original image for better viewing.

(a) Original image (b) Texture 1 (c) Texture 2 (d) Texture 3

Figure 6: Sniper detection by using adaptive PDE transform method. Textures 1, 2, and 3 are, respectively, from the forest, the tree trunk,
and the sniper.

(a) Original neuron image (b) Class 1 of the selective neuron
skeleton

(c) Class 2 of the selective neuron
skeleton

(d) Class 3 of the selective neuron
skeleton

Figure 7: Neuron image classification by using the adaptive PDE transform.
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Table 1: Classification of natural neuron skeletons.

Neuron skeleton class Physical meaning Percentage of the total neuron surface area

Class 1 shown in Figure 7(b) Soma (neuron cell body) 22%

Class 2 shown in Figure 7(c) Major (root of) dendrite 24%

Class 3 shown in Figure 7(d) Fine (tips of) dendrite 54%

separation and classification enable secondary processing
and analysis of neuron morphology, such as the computation
of surface areas (for 2D images) or volumes (for 3D data) for
different classes of neuron skeletons. Specifically, we aim to
separate different parts, or textures, such as soma, dendrites,
axon, terminal or lobe, and numerous ramifications, from
the neuron imaging as shown in Figures 7(b)–7(d), where
three classes of neuron parts are separated according to the
spatial extension and frequency oscillation. Surface area of
each class is listed in Table 1. Ratios of these surface areas
and many other geometric ratios of neuron morphology are
related, on both molecular and cellular levels, to the many
physiological diseases as well as the classification of neuron
synapses.

5. Conclusion

Selective extraction and separation of image textures involv-
ing spatial entanglement, gray-scale mixing, and high-
frequency overlapping are challenging tasks in image anal-
ysis. In this work, we introduce an appropriate adaptation
to our earlier partial differential equation (PDE) transform
[29] to construct an adaptive PDE transform algorithm. The
adaptation is realized via a proper thresholding with the
statistical variance of the local variation of image functional
mode functions. The present PDE transform enables one to
decompose and separate modes with entanglement in both
spatial and frequency domains. The proposed method is
applied to several challenging benchmark images. Textures
of very similar features in the same image are successfully
decomposed and separated using the present adaptive PDE
transform method.
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2 Department of Aerospace and Mechanical Engineering, University of Liège, 4000 Liège, Belgium
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Current neuronavigation systems cannot adapt to changing intraoperative conditions over time. To overcome this limitation,
we present an experimental end-to-end system capable of updating 3D preoperative images in the presence of brain shift and
successive resections. The heart of our system is a nonrigid registration technique using a biomechanical model, driven by the
deformations of key surfaces tracked in successive intraoperative images. The biomechanical model is deformed using FEM or
XFEM, depending on the type of deformation under consideration, namely, brain shift or resection. We describe the operation
of our system on two patient cases, each comprising five intraoperative MR images, and we demonstrate that our approach
significantly improves the alignment of nonrigidly registered images.

1. Introduction

Neurosurgery is characterized by the delicate balance be-
tween surgical success and potential for devastating side
effects. Thanks to multiple technological improvements, the
morbidity of neurosurgical interventions has substantially
decreased over the last decades, allowing for the resection
of previously inoperable lesions. In particular, image-guided
neurosurgery (IGNS) devices allow the use of coregistered
and fused multimodality 3D images to guide the surgeon’s
hand and help define preoperatively the boundaries of
pathological and predefined functional structures [1]. Mean-
while, new modes of medical imaging have also improved
the localization of pathological lesions and their charac-
terization. Medical imaging nowadays includes a wealth
of different techniques, such as computed tomography
(CT), structural and functional magnetic resonance imaging
(sMRI and fMRI), diffusion tensor imaging (DTI), and
positron emission tomography (PET). Although the overall

accuracy of IGNS is estimated to be 1–2 mm [2], current
neuronavigation systems cannot, however, adapt to changing
conditions over time. Skull-opening brain shift, brain retrac-
tion, cerebrospinal fluid suction, lesion resection, perfusion,
and pharmacological manipulation during surgery indeed
all alter the 3D morphology of the structures [2–5]. These
changes can lead to localization errors that are one order
of magnitude larger that IGNS accuracy [1, 2, 6] and may
result in incomplete resections or unexpected damage to
normal brain. Such inaccuracies could be reduced if one
could acquire, throughout surgery, fresh images of the same
modalities and quality as the preoperative ones. However,
these images are still major challenges. Intraoperative images
such as intraoperative MR (iMR) images are—with the
exception of a handful surgical facilities—usually acquired
using low-field MRI scanners that provide lower resolution
and contrast than their preoperative counterparts, and, to
this date, several useful imaging modalities, such as PET
and possibly MEG, cannot be acquired intraoperatively. One
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solution is to “bring over” the high-quality preoperative
multimodality images into the intraoperative configuration
of the brain using a nonrigid registration technique [7–10].
One category of nonrigid registration techniques uses
physics-based models, where landmarks are tracked in
successive reduced-quality intraoperative images, and their
displacement fields drive the deformation of a biomechanical
model. The computation is typically based on the finite ele-
ment method (FEM). So far, most of the mechanical condi-
tions of the brain cannot be estimated in the operating room,
such as the volume of cerebrospinal fluid flowing out of the
skull cavity, intercellular fluid volume changes that result
from mannitol injection, or changes in blood volume and
vessel permeability. The fact that an intraoperative image can
provide the knowledge of the current state of the brain after
some deformation partly eliminates the need for a complete
evaluation of these mechanical conditions. The nonrigid
registration technique replaces them with the landmark dis-
placements evaluated from successive intraoperative images.

Using a nonrigid registration technique based on a
biomechanical model, three types of brain deformations
have been identified that require specific modeling, although
they depend on common parameters, such as CSF suction,
perfusion, or pharmacological manipulation. The first defor-
mation is the brain shift, which appears at the beginning
of surgery with the opening of the skull and dura. The
suction or leakage of CSF, as well as the release of intracranial
pressure caused by tumor growth, generally cause such shift
of the brain (note that in this work, we name “brain shift” the
specific shift of the brain that occurs after the opening of the
skull and dura, before any other surgical act has happened).
The brain also shifts with the two other deformations
mentioned below. However, for these deformations, we will
consider that the shift is a part of these two deformations.
The second deformation is the retraction; when target tissues
are located deep inside the brain, the surgeon incises brain
tissues and inserts a retractor to spread out the tissues, and
to create a path towards the target. The third deformation
is the resection, that is, the removal, of lesion tissues. Both
resection and retraction de facto imply a cut of tissues. In
addition, the resection implies that part of tissues is removed.
Three deformations can thus be defined in terms of the two
elemental actions that change the topology of the brain: the
introduction of a discontinuity and the removal of some
tissues.

Most studies of brain deformation based on biomechani-
cal models have focused on shifts (the topology of the brain is
not modified), that occurs just after the opening of the skull
and dura [11–25]. A good review of these different studies
can be found in [24, 26–28]. Resection and retraction are
more complex to model than (brain) shift. Until recently,
their modeling for the specific application of preoperative
image update has received much less attention. One of the
difficulty for modeling resection and retraction is that both
induce a topological change of the brain because some
tissue are cut. A method of mesh adaptation [29–31] or
remeshing [32–35] must be used in conjunction with FEM
if an accurate representation of the location of the cut, for
example, the resection cavity or retraction path, is needed

to deform the model. Indeed, FEM cannot directly handle
discontinuities that go through the FEs, and requires to
realign the discontinuity with FE boundaries.

In the field of fracture mechanics, which studies the
growth and propagation of cracks in mechanical parts, some
methods were developed to avoid using FEM in conjunction
with mesh adaptation or remeshing [36]. The extended finite
element method (XFEM or X-FEM) appeared in 1999 [37]
and has been the object of considerable research since then
[38]. XFEM works by allowing the displacement field to be
discontinuous within some FEs of the mesh. The mesh does
not have to conform to the discontinuities, so that these can
be arbitrarily located with respect to the underlying FE mesh.
Because XFEM allows an accurate representation of the
discontinuities while avoiding mesh adaption or remeshing,
and because of the similarity between cracks in mechanical
parts and cuts in tissue, we proposed the use of XFEM
for handling cut, resection, and retraction in the updating
of preoperative images. This paper presents a complete 3D
framework for updating multimodal preoperative images
with respect to surgical brain deformations, due to brain shift
and successive resections, followed and quantified using iMR
images. Our approach is modular, and is applied iteratively
each time a new intraoperative image is acquired. We take
into account successive deformations based on a linear elastic
biomechanical model which is deformed using FEM or
XFEM, depending on the type of deformation occurring
between the pair of iMR images under consideration,
namely, brain shift or resection. Some 2D results were
presented in [39]. While some 3D results have already been
presented for brain shift [40], and initial 3D results for
resection [41] modelings, this paper is the first complete
and detailed account of the generalization to 3D of our 2D
previous work.

The structure of the paper is as follows. In Section 2,
we present the state-of-the-art of resection modeling for
preoperative image update. In Section 3, we describe our
basic strategy for updating preoperative images based on
successive intraoperative images. In Section 4, we give detail
about our methods and algorithms. In Section 5, we consider
two patient cases that illustrate our approach for handling
brain shift followed by successive resections. In Section 6, we
validate our results. In Section 7, we conclude and discuss
future work.

2. State-of-the-Art

Among studies that take into account resection for preoper-
ative image update, one should distinguish two categories.
The first category of studies models brain deformation
using two time-point images, the first image being acquired
before surgery has started, the second image being acquired
after resection. In this category, the methods that existed
for a second image showing some brain shift are adapted
for a second image showing some resection. However, the
resection is not explicitly modeled. The second category of
studies models brain deformation using more than two time-
point images, and models at least two successive resections.
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Among the first category of studies, Hagemann et al. [42]
developed a 2D method for modeling brain deformation
between a preoperative MR image and a postoperative
MR image, the postoperative image showing a complete
resection. The 2D mesh of the biomechanical model corre-
sponded to the underlying pixel grid of the 2D image. The
biomechanical model included four different linear elastic
laws for the skull/skin region, the whole-brain region, the
CSF region, and the image background. They computed
the correspondence of the skull boundary, the whole-brain
region boundary in the neighborhood of the tumor, and
the posterior midline between the two images. They also
computed the correspondence between the internal tumor
region boundary visible in the preoperative image, and the
resection cavity boundary visible in the postoperative image,
both boundaries corresponding under the assumption that
the resection is complete. The displacements fields of these
landmarks drove the deformation of the biomechanical
model. As a result, the biomechanical model presented high
deformation in the tumor region, which is not physically
plausible. However, the resection was complete, and, thus,
they were not interested by the displacement field of the
biomechanical model in the tumor region itself.

Clatz et al. [12] developed a 3D method for modeling
the brain deformation between a preoperative MR image
and an iMR image, the latter showing partial or complete
resection. The biomechanical model was deformed based
on a sparse volume displacement field evaluated from the
two images, using a block matching algorithm. In their
algorithm, blocks of voxels that presented discriminant
structures were selected in the preoperative image. The
blocks were then matched to blocks in the iMR image using a
similarity criterion, for example, a coefficient of correlation.
The value of the similarity criterion was used as a value
of confidence in the displacement measured by the block
matching algorithm. The biomechanical model was then
deformed iteratively, driven by the sparse displacement field
of the matched blocks, where a block rejection step was
included for measured block displacements initially selected
but considered as outliers. In the iMR image, a part, or
the totality, of the tumor tissues were resected. The blocks
were thus selected and matched in only the healthy-brain
region of the two images. They tested their algorithm on
six patient cases, and used for validation nine landmarks
picked up manually in each image. They found a mean
and maximum error on displacements of 0.75 mm and
2.5 mm, respectively. The error increased as one approached
the tumor region. They explained this phenomenon by the
fact that a substantial number of block matchings were
rejected in the tumor neighborhood. The deformation of the
biomechanical model in the tumor neighborhood was thus
essentially governed by the linear elastic law, and the result
might show the limitation of this model. Archip et al. [7] also
tested the nonrigid registration method presented in [12] on
eleven patient cases, and used the 95% Hausdorff distance
[43] for evaluating the alignment of the nonrigidly registered
images. As a result, they obtained a mean error of 1.82 mm.

Among the second category of studies, Miga et al. [44]
simulated two successive resections. They built a linear

poroelastic biomechanical model and preoperatively tagged
the tetrahedron FEs that were going to be removed to
simulate the brain deformation due to successive resections.
The modeling of resection was performed in two steps.
First, the preoperatively tagged FEs were removed. This
consisted in duplicating the nodes at the boundary of the
resection cavity. The nodes were actually not eliminated,
which avoids the cost of remeshing operations. Second, a
boundary condition was applied to the new boundary of
the resection cavity, in order to model the relaxation of
strain energy, induced by preoperative tumor growth or
surgery acts, stored in the resected tissues, and released after
their removal. In this approach, the tissue discontinuity was
represented as best as possible with a jagged topology defined
by the FE facets defining the boundary of the resection cavity.
Forest et al. [45, 46] also modeled the removal of tetrahedra
in order to model the action of an ultrasonic aspirator in the
context of real-time surgery simulation.

Ferrant et al. [13, 47, 48] modeled successive resections
based on several time-point iMR images. Between two
successive images, they deformed the biomechanical model,
in its current state of update, to take into account the (partial)
resections(s) that took place between these two images. The
modeling of resection was performed in two steps. First,
the biomechanical model, in its current state of update, was
deformed in accordance with the displacement field of the
healthy-brain boundary between the pair of images under
consideration. Second, the FEs that fell into the resection
cavity in the second image of the pair were removed, while
the FEs that laid across the resection-cavity boundary were
cut. To ensure the link between the successive deformed
configuration of the biomechanical model, their algorithm
kept track of the topology modification between FEs and
nodes of the mesh before and after the removal of FEs. They
tested their algorithm on one patient case including five iMR
images (the first two iMR images being used for brain shift
modeling), and used for validation thirty-two landmarks
picked up manually in each image. They found a mean
and maximum error on the displacements of 0.9 ± 0.7 mm
(mean ± standard deviation) and 3.7 mm, respectively. The
error increased as one approached the tumor region. They
explained this phenomenon by the limited accuracy in the
process of picking landmarks in that region, and because the
retraction occurring between the second and third images
was modeled as a resection, that is, a removal of tissues, even
though the tissues were not removed but simply spread out.

The methods described above have been all developed
using an FEM-based biomechanical model for intraoperative
image registration. Surgical simulation is another research
field that broadly uses FEM-based biomechanical model. The
objective of a surgical simulator is to provide an interactive
manipulation with force feedback of the anatomical part to
be operated using various surgical instruments. In order to
model a large range surgical procedures, a real-time inter-
active cutting method should be included in the simulator.
Jeřábková and Kuhlen [49] have applied nonlinear XFEM for
simulating cut, and have shown that XFEM is successfully
efficient for such purpose.
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Figure 1: Block diagram of our serial preoperative image-update system dealing with successive brain deformation for a linear formulation.

3. Basic Strategy for Serial Preoperative
Image Update

The block diagram of Figure 1 shows our global approach for
updating preoperative images using successive iMR images
acquired at different critical points during surgery. Although
the principles of the approach are quite general, they are
tailored for use based on images acquired with a 0.5 Tesla
intraoperative GE Signa scanner, which guarantees that the
full volume of brain tissues is included in the image field
of view. In our present strategy, the preoperative images
are updated incrementally. At the end of each update, the
preoperative images should be in the best possible alignment
with the last iMR image acquired. The actual algorithms and
equations used to this end are described in Section 4.

Prior to surgery, a patient-specific biomechanical model
is built from the set of preoperative images. Because the
patient does not necessarily lie in the same position during
the acquisition of each of the preoperative images, one may
need to perform a rigid registration (involving translations,
rotations, and scales) to bring these images into correspon-
dence, assuming, in first approximation, there is no local,
that is, nonuniform, brain deformation between preopera-
tive images. Once the 1st iMR image has been acquired prior
to the opening of the skull, the set of registered preoperative
images and the biomechanical model are registered to the
1st iMR image via a rigid transformation. In the present
situation, it is assumed that the patient’s brain imaged in
the 1st iMR image has the same physical shape as the
brain imaged in the preoperative images (note that in the
following, when an iMR image is defined by a number, this
number is the index of the iMR image in the series for a

specific patient case. The 1st iMR image thus corresponds to
the very first iMR image of the series).

As each iMR image is acquired, this new image and the
preceding iMR image are used to estimate the deformation
of the brain. The update of the preoperative images is done
incrementally with each new pair of successive iMR images.
For each pair, we proceed as follows. A set of common
anatomical landmarks are tracked between the two iMR
images. In our approach, we use as landmarks the surfaces of
key brain structures. The use of surface structures rather than
volume structures [12] seems more appropriate given the
reduced-quality of typical intraoperative images, and would
be more easily adapted to intraoperative modalities other
than iMR, such as iUS. The landmark surface displacement
fields resulting from the matching are then applied to the
biomechanical model, which is deformed using FEM or
XFEM, depending on the type of deformation occurring
between the acquisition times of the iMR images in the
pair under consideration, namely, brain shift, or resection.
The resulting displacement field of the biomechanical model
is finally used to warp the set of preoperative images in
their current state of updating. This process is repeated
with each new acquisition of an iMR image. Note that, for
each deformation modeling, the biomechanical model is
deformed in accordance with the landmark displacements
tracked between the pair of successive iMR images under
consideration. Because intraoperative deformation can fol-
low a reverse direction [5], it is important to track the
landmarks between the next-to-last and the last acquired
iMR images, rather than track the landmarks between the
first and the last acquired iMR images.
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For the patient cases treated in Section 5, we assume
that the brain undergoes relatively small deformations (small
strains and small displacements), and we use a linear finite-
element formulation in the biomechanical model. A conse-
quence of using this linear formulation (linear elasticity) is
that the equations of solid mechanics can be solved based on
the initial configuration of the solid.

Actually, knowing the displacement field increment
Δun+1

n = un+1 − un at the anatomical landmarks between
configuration n and increment n + 1, one can apply this
constrained displacement field increment Δun+1

n to the initial
configuration, and the finite element analysis will lead
to the deformation tensor increment Δεn+1

n between the
configuration n and n+1. The final deformation tensor or the
body is thus simply obtained from εn+1 = ∑n

k=0ε
k+1
k . Remark

that rigorously, the increment of constrained displacement
field at the landmark should be applied to the balanced
solution of the solid reached after increment n, but as we
are using a linear elasticity model, this step can be skipped
owing to the superposition principle: if σn+1 = Cεn+1, then
σn+1 = ∑n

k=0Δσ
k+1
k = C

∑n
k=0ε

k+1
k = Cεn+1, where C is the

Hooke tensor. As a summary, with this approach, the process
of deformations is modeled as a succession of deformations
Δεk+1

k , for example, brain deformation composed of shift fol-
lowed by successive resections and the current configuration
of the brain biomechanical model, after a specific deforma-
tion can then be recovered by adding the computed volume
displacements for all successive incremental deformations.
Remark that this is not a limitation of the method as we
could easily extend it to nonlinear model by simply keeping
in memory the previous deformed configuration n and
adding the constrained displacement field increment Δun+1

n

to compute the new deformed configuration at increment
n + 1, simply this would be less computationally efficient.

Because we use a linear formulation (and, thus, the
incremental volume displacement fields can be added to
recover the current configuration of the biomechanical
model), we could theoretically obtain an identical deformed
configuration of the biomechanical model using the two
following approaches. The first one would consist of com-
puting and adding the successive incremental deformations
of the biomechanical model based on the landmarks tracked
between the next-to-last and the last acquired iMR images.
The second approach would consist in computing directly
the deformed configuration of the biomechanical model
based on the landmarks tracked between the first and the
last acquired iMR images. However, the landmarks selected
to drive the deformation of the biomechanical model vary
depending on the type of deformation, namely, brain shift
or resection. In addition, part of the biomechanical model
is “cut,” using XFEM, to model resection. Consequently, we
would not get an identical deformed configuration of the
biomechanical model by these two approaches. In order to
use a maximum of information from the iMR images, we
track, as explained for the first approach, the landmarks
between the next-to-last and the last acquired iMR images.

The problem of updating preoperative images between
more than two critical points during surgery, that is, based

on more than two iMR images, is addressed in only a small
number of studies. In our previous work [39, 41], and in
[13], the biomechanical model was successively deformed,
and this was done using a linear formulation. The framework
proposed here, where the initial biomechanical model is
always used, instead of using it in its successive states of
deformation, has the important advantage of using a good
quality mesh for each deformation modeling rather than
using a mesh whose quality progressively deteriorates with
each successive deformation modeling, and which would
require remeshing or mesh adaptation for getting back good
FE quality.

To summarize, for each deformation, the landmarks
are tracked between the two successive iMR images under
consideration. Because we use a linear formulation, the
displacement fields of these landmarks are applied to the ini-
tial, rather than current, configuration of the biomechanical
model. The resulting volume displacement field corresponds
to the deformation that the brain undergoes between the
two iMR images. This volume displacement field is used
to deform the preoperative images in their current state
of update, that is, registered (at the previous step, if any)
to the first iMR image of the pair. After the deformation,
the preoperative images are thus in as good as possible
registration to the second iMR image of the pair.

In all the rest of this work, we make a simplification of
the approach just presented, by using the 1st iMR image as
a substitute for the preoperative images. The biomechanical
model is thus built based on structures visible in the 1st
iMR image, instead of in the preoperative images, and the
structures used in the model are limited to the ones visible
in the intraoperative image. Except for the rigid registration
between the preoperative images, the biomechanical model,
and the 1st iMR image, this simplified approach allows us to
discuss, illustrate, and test all key aspects of the system. The
1st iMR image is also updated instead of the preoperative
images. The above strategy allows us to focus on the main
issue of this paper, that is, the estimation and handling of
3D deformations. Even though the issues involved in the
update of preoperative images will need to be addressed in
a operational image update system, the present strategy of
deforming the iMR images remains useful for calibration
purpose, even in the operating room.

4. Methods

This section details the different methods that are com-
monly used for updating preoperative images in presence
of brain shift and resection. More specifically, the block
diagram of Figure 2(a) shows the building of the biomechan-
ical model from the preoperative images. Specific regions
from the preoperative images are segmented, meshed, and
assigned appropriate constitutive laws. The block diagram of
Figure 2(b) shows, for any pair of successive iMR images, a
detailed view of the calculation of the volume displacement
field of the initial biomechanical model that corresponds to
the deformation that has occurred between the acquisition
time of these images.
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Figure 2: Detailed block diagram of the three subsystems of our serial preoperative image-update system. (a) Building of the biomechanical
model from the preoperative images. (b) Calculation of the volume displacement field of the initial biomechanical model using the
displacement fields of surface landmarks tracked between a pair of successive iMR images. The updated iMR images are used for validation.
For each subsystem, inputs are in green, outputs are in red, and steps related to the definition and use of a discontinuity are in blue.

4.1. Rigid Registration of Intraoperative Images. All along
surgery, the patient is lying inside the 0.5 Tesla intraoperative
GE Signa scanner. Although the patient’s head is fixed, one
cannot totally rule out the possibility of slight head motion.
iMR images thus have to be rigidly coregistered to take into
account this potential rigid motion. The rigid registration
that we use is the point-based landmark transform available
in vtk (http://www.vtk.org/). The corresponding landmark
points are manually selected in the successive iMR images.

4.2. Segmentation of Intraoperative Images. The segmen-
tation of iMR images into specific regions, for example,
healthy-brain and tumor regions, is first performed manually
using 3D slicer (http://www.slicer.org/) and then smoothed
to minimize the dependance of the results on segmentation
roughness. It is clear that performing a manual segmentation
in the operating room is not acceptable, and that this process
needs to be automated as completely as possible to test the
feasibility of our framework online. However, while there
exist sophisticated segmentation algorithms that could be
used [50–52], in particular for extracting the whole-brain
region (skull and external cerebrospinal fluid masked out),
the segmentation of the tumor region is still challenging.

4.3. Building of Biomechanical Model. As mentioned above,
the biomechanical model is built, in the present context,
from the 1st iMR image rather than from the preoperative
images. Thanks to the use of XFEM instead of FEM for
modeling discontinuities, this biomechanical model can be
built offline before the operation starts and does not need
to be repeated (through remeshing) during the surgery.

With respect to FEM-based approaches, the execution
time thus ceases to be a limiting parameter, which is a
remarkable advantage of our approach. The object to be
meshed is defined as a segmented region from an image.
It thus requires specific techniques, and we use the mesh-
ing software tool isosurf (http://svr-www.eng.cam.ac.uk/
∼gmt11/software/isosurf/isosurf.html). Our goal is to model
the boundaries of healthy-brain and tumor regions as two
connected surfaces meshes. However, isosurf can only mesh
the boundaries of one or several separate regions, and, thus,
does not allow one to mesh connected region boundaries
with common nodes at their intersections. We thus start
by building two separate surfaces meshes that we connect
using our own routines based on vtk. We then smooth
the two surface meshes using the software simmetrix
(http://www.simmetrix.com/). The two connected triangle
surfaces are then jointly meshed into a single volume mesh
of tetrahedra that conform to the two surface meshes using
gmsh (http://www.geuz.org/gmsh/) [53]. Further details on
the building of the biomechanical model, in particular the
building of the connected surface meshes, can be found in
[40]. A linear elastic law is assigned to the biomechanical
model, with Young modulus E = 3000 Pa and Poisson ratio
ν = 0.45 [13]. Because displacements, rather than forces, are
applied to the model using a linear formulation, the FEM or
XFEM solution is independent of Young modulus E [54].

4.4. Evaluation of Surface Landmark Displacement Fields. We
choose as surface landmarks the whole-brain and internal
tumor region boundaries. To evaluate the surface deforma-
tions of these region boundaries between two iMR images,
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we use an active surface algorithm [55, 56]. Because these
region boundaries to match must be closed surfaces, we thus
use as surface landmarks the whole-brain and healthy-brain
region boundaries. The surface deformation of the internal
tumor region boundary will be derived from the active
surface algorithm of the healthy-brain region boundary. In
our active surface algorithm coming from [13, 47, 48], the
external forces F(x) are computed using a gradient descent
on a distance map of the region boundary. With such
external forces, the active surface algorithm is not able to
take correctly into account local rigid motion due, as an
example, to lateral or tangential movement depending on
the head orientation. For the whole-brain region, any rigid
transformation that could have occurred has already been
taken into account by the rigid registration of the iMR images
(Section 4.1). However, for the healthy-brain region, it can
happen that the internal tumor region boundary moves
partly in a rigid way. Therefore, the active surface, initialized
from the healthy-brain region boundary in the first iMR
image, is first locally transformed in a rigid way along the
internal tumor region boundary using the iterative closest
point transform available in vtk. Then, this resulting surface
is deformed using the active surface algorithm as explained
above. Further details on the local rigid registration of
the healthy-brain region boundary can be found in [40].
Before applying the displacements whole-brain and internal
tumor region boundaries to the biomechanical model nodes,
the two surface displacement fields are smoothed based
on a weighted-distance average, that is, the displacement
of each node is averaged with the displacements of its N
closest neighbor nodes. This smoothing will make them
consistent with each other, and compatible with the volume
mesh in order to avoid element flipping, in particular at
the intersections between whole-brain and internal tumor
region boundaries. Depending on the brain deformation
modeling, five to ten neighbor nodes are used.

4.5. FEM- or XFEM-Based Biomechanical Model Defor-
mation. The displacement fields of the surface landmarks
are applied to the biomechanical model, which deforms
according to the laws of solid mechanics. The equations
of solid mechanics are solved using FEM or XFEM,
depending upon the type of circumstances, namely, brain
shift or resection. We use the FEM-software tool metafor
(http://metafor.ltas.ulg.ac.be/) developed in our mechanical-
engineering department, to which we have added an XFEM
module. The initial stress state of the brain is unknown and
is thus set to zero for each FEM or XFEM computation, as in
[10, 13].

FEM discretizes the solid of interest into a mesh, that is,
into a set of FEs interconnected by nodes, and approximates
the displacement field u(x) by the FEM displacement field
uFEM(x) defined as

uFEM(x) =
∑

i∈I
ϕi(x)ui, (1)

where I is the set of nodes, the ϕi(x)’s are the nodal shape
functions (NSFs), and the ui’s are the nodal degrees of

freedom (DOFs). Each ϕi(x) is defined as being continuous
on its compact support ωi, which corresponds to the union
of the domains of the FEs connected to node i [57]. In our
approach, we use linear NSFs.

FEM requires its displacement field uFEM(x) to be con-
tinuous over each FE. In contrast, XFEM handles a disconti-
nuity by allowing the displacement field to be discontinuous
within FEs [37, 58–60]. Arbitrarily-shaped discontinuities
can then be modeled without any remeshing. The XFEM
displacement field generalises the FEM displacement field (1)
with

uXFEM(x) =
∑

i∈I
ϕi(x)ui +

∑

i∈J
ϕi(x)

nEi∑

j=1

gj(x)a ji. (2)

The first term corresponds to the FEM displacement field (1),
where I is the set of nodes, the ϕi(x)’s are the FEM NSFs,
and the ui’s are the nodal FEM DOFs. The heart of XFEM
is the “enrichment” that adds a number, nEi , of DOFs a ji

to each node i of the set J , which is the subset of nodes
of I whose support is intersected by the discontinuity of
interest. These DOFs are multiplied by the NSFs ϕi(x) and
the discontinuous functions gj(x).

The use of specific XFEM enrichment functions gj(x)
for a node i ∈ J depends on the type of discontinuity,
for example, crack, hole, material interface, and so forth,
to be modeled. Suppose that our goal is to model a crack,
characterized by a discontinuity in the displacement field (as
opposed to a material interface for instance, characterized by
a discontinuity in the derivative of the displacement field).
When the crack fully intersects the support of the node,
a simple choice is a piecewise-constant unit function that
changes sign at the boundary across the crack, that is, the
Heaviside function

H(x) =
⎧
⎨

⎩

1 for (x − x∗) · en > 0,

−1 for (x − x∗) · en < 0,
(3)

where x is again the position of a point of the solid, x∗ is the
position of the point on the crack that is the closest to x, and
en is the outward normal to the crack at x∗ [37]. In case of
resection deformation, the goal is to model a discontinuity
such that the part of tissues corresponding to tissue removed
by the resection has no influence on the deformation of the
remaining part of the tissues. One is actually interested in the
deformation of the remaining part of the tissues only. In that
sense, the hole function [61] as the following equation:

V(x) =
⎧
⎨

⎩

1 for (x − x∗) · en > 0,

0 for (x − x∗) · en < 0,
(4)

could be used as XFEM enrichment function, instead of
the Heaviside function, and would be totally sufficient. The
results that we would obtain on the remaining part of the
tissues would be identical. However, because the Heaviside
function is necessary for retraction modeling, we have used
the same function for the resection modeling even if it was
not strictly necessary.
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When minimizing the total deformation energy, the
resulting XFEM equations remain sparse and symmetric
as for FEM. Whereas FEM requires a remeshing and the
duplication of the nodes along the crack to take into account
any discontinuity, XFEM requires the identification of the
nodes whose support is intersected by the crack and the
addition of DOFs: (1) any node whose support is not
intersected by the discontinuity remains unaffected and
thus possesses three DOFs; (2) any node whose support is
fully intersected by the discontinuity is enriched with three
Heaviside DOFs and thus possesses six DOFs.

4.6. Evaluation of Deformation Modeling. To qualitatively
estimate the similarity between two images, we compare
the edges extracted from these images using the Canny
edge detector available in itk (http://www.itk.org/). Indeed,
although potentially useful for the sake of comparing
methods on a mathematical basis and defining unique
correspondences, landmark-based target analysis presents
several relevant limitations in the present setting.

(i) Having experts picking landmarks introduces signif-
icant intra- and interobserver variability.

(ii) Picking landmark points, as Ferrant et al. [13] did, is
rather difficult when it comes to define enough visible
landmarks—especially in the tumor region—on the 5
different images (and not 2 images only, as majority
of studies focusing on brain shift are using).

(iii) Rather than point targets, linear tumor contours,
and limits between structures and potential eloquent
structures matter most in the practical case of tumor
ablation neurosurgery.

These are the reason why we chose to use the canny edges
in order to evaluate the registration. Besides, while it is true
that these edges do not necessarily physically correspond
between the successive iMR images, these images have been
acquired with the same image protocol (MR sequence, voxel
size, grayscale value range), which should limit this problem.

To quantitatively estimate the similarity of the two edge
maps, we compute the modified Hausdorff distance between
the sets of edge points, that is, voxels representing the
edges, in these two images. The modified Hausdorff distance
H(A,B) [43] between two sets of points A and B is defined
as

H(A,B) = max(h(A,B),h(B,A)) with

h(A,B) = 1
Na

∑

a∈A
d(a,B),

(5)

where the directed Hausdorff distance h(A,B) is a measure
of the distance of the point set A to the point set B, Na is
the number of points in set A, and d(a,B) is the distance
of point a ∈ A to the closest point in B, that is, d(a,B) =
minb∈B‖a − b‖, where ‖a − b‖ is the Euclidean distance.
The directed Hausdorff distance h(A,B) thus computes the
average distance of points of A to points of B. The averaging
minimizes the effects of outlier points, for example, due to

image noise. The value of the modified Hausdorff distance
H(A,B) increases with the amount of difference between
the two sets of edges points. In the following, we denote
by H(Ia, Ib) the modified Hausdorff distance of the edges
extracted from the whole-brain region of the images Ia and
Ib, that is, with the skull and external cerebrospinal fluid
masked out from them.

5. Results

In this section, we apply our methods, respectively, of brain
shift and resection (iMR images are acquired with the
0.5 Tesla intraoperative GE Signa scanner of the Brigham and
Women’s Hospital, Boston, USA. iMR image size is 256 ×
256× 60 voxels, and voxel size is 0.9375× 0.9375× 2.5 mm).
All computations are done off-line. Two patient cases, each
including five iMR images, are treated to illustrate our
modeling and brain shift followed by successive resections.
In both cases, the 1st iMR image was acquired prior to
the opening of the skull; the 2nd iMR image was acquired
after the opening of the skull and dura, and shows some
brain shift; the 3rd, 4th, and 5th iMR images were acquired
after successive resections. The modelings of brain shift,
1st, 2nd, and 3rd resection are performed using different
techniques, as detailed below. Except where otherwise noted,
the following discussion applies to both patient cases (the
result of each deformation modeling is shown for the two
patient cases at the end of Section 5.2.3).

5.1. Modeling of Brain Shift. To model brain shift based
on the 1st and 2nd iMR images, we estimate the surface
displacement fields of the whole-brain region boundary and
the internal tumor region boundary from the two iMR
images. No tissue discontinuity is involved in the brain shift
deformation, so the biomechanical model is deformed using
FEM. This results in the volume displacement field of the
biomechanical model, which is illustrated in Figure 3 for the
first patient case. This volume displacement field is used to
warp the part of the 1st iMR image corresponding to the
whole-brain region.

5.2. Modeling of Successive Resections. In the following
sections, the three successive resections are modeled sep-
arately, because they require different types of processing.
Nevertheless, a common remark can be made for each
resection modeling. Matching two region boundaries to get
a displacement field makes sense only if they correspond to
the same physical entity. Once the resection has started, we
can no longer rely on the entirety of the whole-brain region
boundary, since a part of it is now missing. For modeling the
successive resections, we thus evaluate the displacement field
for the boundary of the healthy-brain region only.

5.2.1. Modeling of 1st Resection. The 1st resection occurs
between the times the 2nd and 3rd iMR images are acquired.
However, since the corresponding removal of tissues is
most likely accompanied by deformation, one cannot exactly
determine what tissue is removed based just on the two iMR
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Figure 3: Result of the biomechanical model deformation for brain shift modeling (first patient case). (a) External surface mesh of the
biomechanical model with the location of the slice considered in (b). (b) Selected slice of the biomechanical model with color levels
corresponding to the displacements along the y-axis, which is the main direction of the brain shift for this patient case.

images. We thus decided to model the 1st resection by still
relying on the displacement fields of key surfaces, here the
healthy-brain region boundary, to deform the biomechanical
model. This indeed appears to be the only reliable informa-
tion concerning the deformation due to resection that we can
extract from the 2nd and 3rd iMR images. Consequently,
we do not model explicitly the removal of tissue, but we
model directly the deformation resulting from it, without
introducing any tissue discontinuity. Using the surface
displacement field of the healthy-brain region boundary, we
compute the deformation of the biomechanical model via
FEM. Then, using the resulting volume displacement field,
we warp the part of the 2nd iMR image corresponding to
the whole-brain region, in the same way as we did in the
case of for brain shift. The image resulting from the 1st
resection modeling is now registered to the 3rd iMR image,
except outside of the healthy-brain region boundary, that is,
for the tumor region. Finally, we alter the resulting image
to reflect the effect of resection. For this, we assign the
background color to the voxels corresponding to the resected
tissue volume “absent” in the 3rd iMR image.

5.2.2. Modeling of 2nd Resection. The significant feature
of the 2nd resection is that some tissue has already been
removed by the 1st resection, which means that this
tissue cannot have any physical influence on subsequent
brain deformations because it does not “exist” anymore.
Consequently, the 1st resection must be reflected in the
biomechanical model. Recall that the biomechanical model
has been deformed to model the brain shift and the 1st
resection and is thus registered to the 3rd iMR image. So,
using the 3rd iMR image, we can define the boundary of the
1st resection, that is, the tissue discontinuity to include in
the deformed biomechanical model (Figures 4(a) and 4(b)).
We then enrich the nodes whose supports are intersected
by the discontinuity with Heaviside DOFs. Consequently,
when the XFEM-based biomechanical model deforms, the

part corresponding to tissue removed by the 1st resection
has no influence on the deformation of the remaining
part of the brain. For the first patient case illustrated in
Figure 4, the tetrahedron mesh consists of 3, 317 nodes,
which corresponds to 9, 951 FEM DOFs. Enrichment adds
873 Heaviside DOFs.

As for the modeling of the 1st resection, the biomechan-
ical model is deformed in accordance with the displacement
field of the healthy-brain region boundary evaluated from
the 3rd and 4th iMR images. Figure 4(d) shows the deformed
mesh, result of the XFEM computation. The bottom part
of the mesh, representing the tissue remaining after the 1st
resection, has been deformed according to the displacement
field of the healthy-brain region boundary, while the top
part, representing the tissue removed by the 1st resection,
has been subjected to a translation, but only for visualization
purposes. Even though the mesh is displayed as two separate
parts, it is, in fact, a single entity. Indeed, a main feature of
XFEM is its ability to handle the effect of a discontinuity
without modifying the underlying mesh, that is, without
remeshing. For modeling the 2nd resection, the edges of FEs
straddling the discontinuity have been made discontinuous
and their nodes moved apart. Using the XFEM volume
displacement field, we warp the part of the 3rd iMR image
corresponding to the whole-brain region. The resulting
image is then masked out with the whole-brain region
segmented out from the 4th iMR image.

5.2.3. Modeling of 3rd Resection. One significant feature of
the procedure described for modeling the 2nd resection
is that it can be applied repetitively for each subsequent
resection visible on successive iMR images, no matter how
many there are. The modeling of the 3rd resection is thus
identical to the modeling of the 2nd resection. The tissue
discontinuity due to the 2nd resection is defined from the
4th iMR image, and used to appropriately enrich the nodes of
the biomechanical model. Then, this biomechanical model is
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Figure 4: Definition of tissue discontinuity for 2nd resection modeling (first patient case). (a) External surface mesh (of the biomechanical
model) with the location of the slice considered in (b). (b) External surface mesh superposed to the healthy-brain region (light gray)
and tumor region (white) segmented out from the 3rd iMR image. This superposition allows one to define the tissue discontinuity
(red boundary). (c) Surface meshes describing the healthy-brain region boundary (gray) and the tissue discontinuity (red). This tissue
discontinuity gives an idea of the part of tumor tissue that was removed by the 1st resection. The gap that appears “between” the gray and
red surfaces corresponds to the remaining tumor tissues. (d) Final mesh resulting from the modeling of the 2nd resection using XFEM. The
tetrahedra that were added to display separately the two parts of the mesh are only for visualization purposes.

deformed using XFEM, in accordance with the displacement
field of the healthy-brain region boundary evaluated from
the 4th and 5th iMR images.

For the first patient case, a simplification for the model-
ing of the 3rd resection can be made because, by the time
the 5th iMR image is acquired, the resection is complete.
This means that we only need to compute the volume
displacement field of the healthy-brain region. Since we apply
displacements exactly to the boundary of the healthy-brain
region, the results obtained with FEM and XFEM will be
identical. Using the FEM (for the first patient case) or XFEM
(for the second patient case) volume displacement field, we
warp the part of the 4th iMR image corresponding to the
whole-brain region. The resulting image is then masked out
with the whole-brain region segmented out from the 5th
iMR image.

Figures 5 and 6 show the results of warping the iMR
images, as well as the edges extracted from them, after brain
shift and each successive resection modeling for the two
patient cases.

5.2.4. Comparison of FEM and XFEM for Modeling of
Resection. As explained in Section 5.2.3, since we apply
displacements exactly to the boundary of the healthy-brain
region, the results obtained with FEM and XFEM are

identical in the healthy-brain region. One can deduce that
using XFEM for modeling resection is interesting when the
neurosurgeon needs to have an accurate displacement field of
the remaining tumor tissues. In this case, it is interesting to
evaluate the impact of using FEM, instead of XFEM, to model
the resection as if no resection was performed before. Using
FEM for modeling resection is equivalent to ignoring the
presence of resection on intraoperative images. To illustrate
the comparison between FEM and XFEM results, we choose
the 3rd resection modeling of the second patient case.
Indeed, it is the deformation with remaining tumor tissues
that shows the largest magnitude, and, thus, that is likely to
give a maximum difference between the two computations.
Figure 7 compares the results obtained using FEM and
XFEM. The healthy-brain and tumor regions segmented
out from the 4th and 5th iMR images are respectively
shown in Figures 7(a) and 7(b). The volume displacement
fields of the biomechanical model using XFEM and FEM
are respectively shown in Figures 7(c) and 7(d). The part
of the 4th iMR image corresponding to the whole-brain
region is warped, first with the volume displacement field
obtained via FEM, and then with that obtained via XFEM.
The difference between the two warped images is shown in
Figure 7(e). As expected, there is a visible difference in the
remaining tumor tissue. However, the difference between the
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Figure 5: First patient case. (a) Sequence of five input iMR images rigidly registered to the first one. (1b) Whole-brain region extracted from
(1a). (2b) Deformation of (1b) computed using FEM for brain shift modeling. (3b) Deformation of whole-brain region extracted from (2a)
computed using FEM for 1st resection modeling. (3c) Masking of (3b) with whole-brain region segmented from the 3rd iMR image (3a).
(4b) Deformation of whole-brain region extracted from (3a) computed using XFEM for 2nd resection modeling. (4c) Masking of (4b) with
whole-brain region segmented from 4th iMR image (4a). (5b) Deformation of whole-brain region extracted from (4a) computed using FEM
for 3rd resection modeling. (d) Juxtaposition of Canny edges of images rigidly registered. The edges of the first (second) image of the pair
under consideration are in green (red). (e) Ditto for (d) when images are nonrigidly registered.

two volume displacement fields is smaller than the image
resolution (although the difference between the two volume
displacement fields is smaller than the image resolution, the
difference between the images resulting of the warping using
these two volume displacement fields is nonzero. This is
explained by the fact that the (gray) value of each voxel of
the warped image is defined as a weighted-value of voxels
of the original image. The weights are defined based on the
overlapping ratio of the voxel of the warped image, with
voxels (determined using the volume displacement field)
of the original image). In addition, the deformed 4th iMR
images, using the XFEM- and the FEM-based deformations
of the biomechanical model, show the same similarity,
computed based on the modified Hausdorff distance, with
the 5th iMR.

Two reasons explain that the differences between the
FEM and XFEM results are so small. First, the brain defor-
mation itself due to the 3rd resection is small, and, thus, it is
expected to obtain small differences between the two result-
ing brain deformations. Second, in the case the remaining
tumor tissues are close to the healthy-brain region boundary,
it implies that they are close to the boundary where surface
displacement fields are applied to drive the deformation

of the biomechanical model. This proximity decreases the
influence of the modeling of already resected tissues with
XFEM. Although this comparison between FEM and XFEM
should be done on more patient cases, we suggest that, in first
approximation, FEM could be used for modeling resection
cases with small brain deformations. Nevertheless, the
presentation of the successive resections using XFEM shows
the generality of our framework, and details how XFEM is
implemented. Note that in Section 6 devoted to validation,
the warped images are the ones deformed with XFEM.

6. Validation

For each deformation modeling based on a pair (Ik, Ik+1) of
two successive iMR images that are already rigidly registered,
we compare the similarity between these Ik and Ik+1 images,
as well as the similarity between the Iwk and Ik+1 images,
where Iwk is the result of warping Ik. This gives us an estimate
of how well we are able to capture, and compensate for,
the local deformations between Ik and Ik+1. The goal of the
nonrigid registration is, however, to deform the preoperative
images. By warping Ik for each deformation modeling, we do
not take into account the fact that an error of alignment after
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Figure 6: Second patient case. (a) Sequence of five input iMR images rigidly registered to the first one. (1b) Whole-brain region extracted
from (1a). (2b) Deformation of (1b) computed using FEM for brain shift modeling. (3b) Deformation of whole-brain region extracted from
(2a) computed using FEM for 1st resection modeling. (3c) Masking of (3b) with whole-brain region segmented from the 3rd iMR image
(3a). (4b) Deformation of whole-brain region extracted from (3a) computed using XFEM for 2nd resection modeling. (4c) Masking of (4b)
with whole-brain region segmented from 4th iMR image (4a). (5b) Deformation of whole-brain region extracted from (4a) computed using
XFEM for 3rd resection modeling. (5c) Masking of (5b) with whole-brain region segmented from 5th iMR image (5a). (d) Juxtaposition of
Canny edges of images rigidly registered. The edges of the first (second) image of the pair under consideration are in green (red). (e) Ditto
for (d) when images are nonrigidly registered.

each deformation modeling could propagate and amplify
through the successive deformation modelings. To evaluate
the effect of this error amplification on the results, we also
perform the required succession of warpings on I1, and we
denote the resulting image by Iw1,k. We then compare, for each
deformation modeling, the similarity between I1 and Ik+1,
together with the similarity between Iw1,k and Ik+1. This allows
one to evaluate the propagation, that is, the amplification,
of alignment error on the results. The modified Hausdorff
distance computed for each pair of iMR images are given in
Tables 1 and 2.

Table 1 shows, for each deformation modeling based on a
pair (Ik, Ik+1) of two successive iMR images, the values of the
modified Hausdorff distances H(Ik, Ik+1) and H(Iwk , Ik+1).
These values are computed using the Canny edges extracted
from the pair of images (Ik, Ik+1) (Figures 5 (d) and 6 (d))
and (Iwk , Ik+1) (Figures 5 (e) and 6 (e)). We observe that
the values for the images nonrigidly registered are relatively
constant, that is,∼1 mm, for each deformation modeling. Six
out of eight deformation modelings give smaller modified
Hausdorff distances when the iMR images are (rigidly and
subsequently) nonrigidly registered. However, the modified

Hausdorff distance increases for the 3rd resection modeling
of the first patient case, as well as for the brain shift
modeling of the second patient case. To understand if
the nonrigid registration is responsible for the increase of
the misalignment of the two iMR images everywhere in
the whole-brain region, or if this effect is localized, we
compute the modified Hausdorff distance in the region
and neighborhood of the tumor only (volume region that
extents by 25 mm the tumor region segmented in I1 for both
patient cases). The modified Hausdorff distance decreases
from H(I4, I5) = 1.70 mm to H(Iw4 , I5) = 1.37 mm for
the first patient case, while it decreases from H(I1, I2) =
1.36 mm to H(Iw1 , I2) = 1.28 mm for the second patient
case. This indicates that the nonrigid registration enhances
the alignment of the two iMR images within the tumor
region and its neighborhood, which is in fact the location
requiring the best modeling accuracy. This behavior could be
explained by the fact that a maximum of information from
the iMR images is used in this region, that is, one or two (in
case of brain shift modeling) surface displacement fields are
applied around it. The increase of misalignment elsewhere in
the brain volume could be explained by two reasons. First,
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Figure 7: Difference of results using XFEM and FEM for 3rd resection modeling (second patient case). (a) Healthy-brain (gray) and tumor
(white) regions segmented out from the 4th iMR image. (b) Healthy-brain and tumor regions segmented out from the 5th iMR image.
(c) Volume displacement field of biomechanical model using XFEM. The part of tissue falling within the resection cavity is modeled as
being removed. Color levels correspond to the magnitude of the displacement field. (d) Same as (c), but for FEM. The part of tissue falling
within the resection cavity is present in the deformation modeling even though it no longer exists. Difference of magnitude between volume
displacement fields using XFEM (c) and FEM (d) does not exceed 0.36 mm. (e) Difference in the warping of the part of the 4th iMR image
corresponding to the whole-brain region using XFEM and FEM.

Table 1: Values of H(Ik , Ik+1) and H(Iwk , Ik+1), k = 1, . . . , 4, for each deformation modeling based on a pair (Ik , Ik+1) of two successive iMR
images. First value gives measure of similarity of images rigidly registered, while second value gives measure of similarity of images both
rigidly, and (subsequently) nonrigidly registered. For each Ik , only the whole-brain region is taken into account for edge extraction.

Modified Hausdorff distance (mm) between Brain shift 1st resection 2nd resection 3rd resection

edges extracted from two iMR images H(I1, I2) H(Iw1 , I2) H(I2, I3) H(Iw2 , I3) H(I3, I4) H(Iw3 , I4) H(I4, I5) H(Iw4 , I5)

Patient 1
Whole-brain region 1.24 1.07 0.84 0.69 1.10 0.97 0.96 0.97

Tumor region and
neighborhood

1.70 1.37

Patient 2
Whole-brain region 1.01 1.04 1.07 1.04 1.02 0.93 1.23 1.06

Tumor region and
neighborhood

1.36 1.28

the landmarks tracked from the iMR images are surfaces.
As a consequence, the nonrigid registration is expected to
give better results near the tracked surfaces than far from
them in the volume [13]. Second, the volume displacement
field strongly depends on the constitutive laws. The volume
misalignment could point out the need for better parameters
values and/or other constitutive laws.

Table 2 shows, for each deformation modeling based
on a pair (Ik, Ik+1) of two successive iMR images, the
values of the modified Hausdorff distances H(I1, Ik+1) and
H(Iw1,k, Ik+1). So far, IGNS systems allow one to rigidly
register preoperative and successive iMR images. H(I1, Ik+1)
thus represents the navigation accuracy that we can obtain
with an IGNS system at the present time. The comparison
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Table 2: Values of H(I1, Ik+1) and H(Iw1,k , Ik+1), k = 1, . . . , 4, for each deformation modeling based on a pair (Ik , Ik+1) of two successive
iMR images. In contrast with Table 1, I1 is successively warped, rather than Ik , for each deformation modeling. First value gives measure of
similarity of images rigidly registered, while second value gives measure of similarity of images both rigidly and (subsequently) nonrigidly
registered. For each Ik , only the whole-brain region is taken into account for edge extraction.

Modified Hausdorff distance (mm) between Brain shift 1st resection 2nd resection 3rd resection

edges extracted from two iMR images H(I1, I2) H(Iw1 , I2) H(I1, I3) H(Iw1,2, I3) H(I1, I4) H(Iw1,3, I4) H(I1, I5) H(Iw1,4, I5)

Patient 1
Whole-brain region 1.24 1.07 1.50 1.21 1.80 1.31 1.78 1.38

Tumor region and
neighborhood

Patient 2
Whole-brain region 1.01 1.04 1.10 1.16 1.36 1.31 1.68 1.42

Tumor region and
neighborhood

1.36 1.28 1.76 1.44

of H(I1, Ik+1) with H(Iw1,k, Ik+1) gives the improvement that
could be practically achieved in the alignment with our
approach. As expected, Table 2 shows that the IGNS accuracy
decreases through the successive deformations. Indeed, the
modified Hausdorff distance increases from H(I1, I2) =
1.24 mm to H(I1, I5) = 1.78 mm for the first patient case,
and from H(I1, I2) = 1.01 mm to H(I1, I5) = 1.68 mm
for the second patient case. Six out of eight deformation
modelings give smaller modified Hausdorff distances when
the iMR images are nonrigidly registered. To understand
if the modified Hausdorff distance increases everywhere in
the whole-brain region for the brain shift and 1st resection
modeling of the second patient case, we compute the
modified Hausdorff distance in the neighborhood of the
tumor region (in the same way as explained for Table 1), and
observe the improvement of the alignment within the tumor
region and its neighborhood. As opposed to the values of
the modified Hausdorff distances in Table 1, the values for
the images nonrigidly registered in Table 2 increase through
the successive resection modeling. This amplification error is
due to the fact that, after having modeled brain deformation
between a pair of iMR images, the deformed biomechanical
model is not in perfect alignment with the second image of
the pair. Since, for the subsequent deformation modeling,
the surface landmarks are initialized based on the deformed
biomechanical model, this can thus ampliy a misregistration
error.

7. Conclusions and Future Work

We developed a complete 3D framework for serial preoper-
ative image update in the presence of brain shift followed
by successive resections. The results were presented for two
patient cases, each containing five iMR images. The nonrigid
registration technique used an homogeneous linear elastic
biomechanical model, driven by the deformations of whole-
brain and internal tumor region boundaries for brain shift
modeling, and healthy-brain region boundary for resection
modelings, tracked between successive iMR images. The
biomechanical model was deformed using FEM for brain
shift modeling, and FEM or XFEM for resection modeling,
depending upon whether some brain tissues were previously
resected or not. We showed that our approach was modular,
and could be applied each time a new iMR image is acquired.

We used a linear formulation to characterize the defor-
mation of the brains of both patients because the brains
underwent relatively small deformations and displacements.
While nonlinear biomechanical models have proven effec-
tive to decrease—yet do not abolish—the inaccuracies of
FEM-based modeling methods of large brain deformations,
the deformations observed in our patients during surgery
remained moderate (4–7 mm), thus reducing the theoretical
benefit of using nonlinear models. This allowed us to use
simpler linear models and focus on the added value of
XFEM to simultaneously account for surgical deformations,
namely, shift and resection. Using a linear formulation
implied that, for each new deformation modeling, one
could use the initial configuration rather than the last-
deformed configuration of the biomechanical model. This
had the important advantage of using a good quality mesh
for each deformation modeling rather than using a mesh
whose quality progressively degraded with each successive
deformation modeling. This also had the advantage that we
did no longer need to reconnect the deformed mesh for
each new XFEM calculation, which was one drawback of our
previous method, presented in [39, 41], where the biome-
chanical model was successively deformed. We also showed
how XFEM could handle a discontinuity for modeling
resection without any remeshing or mesh adaptation while
the representation of the discontinuity remained accurate,
that is, the representation of the discontinuity was not based
on a jagged topology using FE facets. XFEM thus also avoided
making the mesh resolution richer in the neighborhood of
the resection-cavity boundary for improving the accuracy of
the representation of the discontinuity for that purpose only.

We showed that our nonrigid registration technique
improved the alignment of the successive iMR images for
most of the deformation modeling of both patient cases.
When our nonrigid registration failed, it still improved the
alignment locally, that is, within the tumor region and its
neighborhood. We tested the explicit modeling of the lateral
ventricles’ region with a soft, compressible law in addition
to the whole-brain region law used in the homogeneous
biomechanical model. However, it did not have a significative
impact on the result.

In addition to the validation that is usually performed
for successive deformation modelings, that is, validation
between pairs of successive intraoperative images, shown
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in Table 1 of Section 6 or in the work of Ferrant et al.
[13, 47, 48], we also evaluated the fact that an error of
alignment after each deformation modeling could propagate
and amplify through the successive deformation modelings.
As a result, shown in Table 2 of Section 6, we showed that
our approach suffered from the propagation of misregis-
tration through the successive deformation modelings. We
expected that this was due, at least partly, to the algorithms
used to evaluate intraoperative surface displacements fields
from the whole-brain and healthy-brain region boundaries.
These boundaries were first manually segmented, and then
smoothed. The surface displacement fields were computed
using active surface algorithms, and smoothed to make them
compatible with the biomechanical model. Because of these
two smoothings, the deformed biomechanical model was
likely to not be in a perfect alignment with the iMR image
to which it was registered. Because the surface displacement
fields evaluated for the next deformation modeling were
initialized based on the deformed biomechanical model, we
expected to observe an amplification of the misregistration,
which was confirmed by our quantitative evaluation. At the
present time though, commercial IGNS systems allow one to
register preoperative images and successive iMR images, but
in a rigid way only. Consequently, although the effect of error
amplification exists, our technique still enhances the current
capabilities of commercial IGNS systems.

Future work on modeling of brain shift followed by
successive resection is required in five main areas. First, the
effect of error amplification through the successive brain
deformation modelings calls for further research. Conse-
quently, the segmentation, and the subsequent smoothing, as
well as the evaluation of surface displacement fields, should
be improved to minimize the effect of error amplification.
Second, further research is required to include additional
structures in the biomechanical model in general, and to
study the best way to include the lateral ventricles in
particular. The use of a poroelastic model in order to
model the cerebrospinal fluid filling the ventricles could be
considered [17, 18]. Third, the fact that we use iMR images
could be further exploited. Indeed, these images provide
volume information (rather than surface information only),
are of good quality in comparison to other intraoperative
modalities, and possess a field of view that includes the full
volume of brain tissues (for the 0.5 Tesla GE Signa scanner).
These images thus allow one to evaluate what, and how,
new structures of the brain could be used, to enhance the
modeling of brain shift. Some regions, for example, the
lateral ventricles’ region, could be extracted from the two
iMR images, and used as surface landmarks to drive the
deformation of the biomechanical model [13, 62]. Indeed,
the workflow presented in this paper has the advantage of
being easily adaptable. In case the tumor region would not
be visible (enough) on the iMR images, these new structures,
easier to segment, could also adequately replace the tumor
for driving the deformation. Fourth, our global approach
should no longer be based on the 1st iMR image used as a
substitute for preoperative images, but on the preoperative
images themselves. Fifth, we should implement, for the
surgery cases involving large deformations of the brain, a

nonlinear formulation of FEM [63, 64], and, particularly,
a nonlinear formulation of XFEM, which is the subject of
recent research [65, 66].
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Fracture detection in pelvic bones is vital for patient diagnostic decisions and treatment planning in traumatic pelvic injuries.
Manual detection of bone fracture from computed tomography (CT) images is very challenging due to low resolution of the
images and the complex pelvic structures. Automated fracture detection from segmented bones can significantly help physicians
analyze pelvic CT images and detect the severity of injuries in a very short period. This paper presents an automated hierarchical
algorithm for bone fracture detection in pelvic CT scans using adaptive windowing, boundary tracing, and wavelet transform
while incorporating anatomical information. Fracture detection is performed on the basis of the results of prior pelvic bone
segmentation via our registered active shape model (RASM). The results are promising and show that the method is capable of
detecting fractures accurately.

1. Introduction

Pelvic fractures are high energy injuries that constitute a
major cause of death in trauma patients. According to the
Centers for Disease Control and Prevention (CDC), trauma
injury kills more people between the ages of 1 and 44 than
any other disease or illness. Among different types of trauma
with a high impact on the lives of Americans, traumatic
pelvic injuries, caused mainly by sports, falls, and motor
vehicle accidents, contribute to a large number of mortalities
every year [1, 2]. Traumatic pelvic injuries and associated
complications, such as severe hemorrhage multiple organ
dysfunction syndrome (MODS), result in the mortality rate
from 8.6% to 50% [3]. When combined with other injuries in
the body, for instance, the abdomen, the chance of mortality
is even higher [4]. In general, a pelvic fracture can be asso-
ciated hemorrhage, neurologic injury, vascular injury, and
organ damage, as all of the vital structures run through pel-
vis. Pain and impaired mobility are normally the results of

nerve and internal organ damage associated with the pelvic
fracture [5–7].

Patient data, in particular, medical images such as
computed tomography (CT) images, contain a significant
amount of information, and it is crucial for physicians to
make diagnostic decisions as well as treatment planning on
the basis of this information and other patients’ data. Cur-
rently, a large portion of the data is not optimally and com-
prehensively utilized, because information held in the data is
inaccessible through visual observation or simple traditional
computational methods. Information contained in pelvic CT
images is a very important resource for the assessment of the
severity and prognosis of the injuries. Each pelvic CT scan
consists of several slices; each slice contains a large amount of
data that may not be thoroughly and accurately analyzed via
visual inspection. In addition, in the field of trauma, physi-
cians frequently need to make quick decisions based on large
amount of information. Hence, a computer-assisted pelvic
trauma decision-making system is crucial and necessary for
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assisting physicians in making accurate diagnostic decisions
and determining treatment planning in a short period.

Automated fracture detection from segmented bones in
traumatic pelvic injuries can help physicians examine the
pelvic CT images and to detect the injury severity within a
short period. Extraction of features such as presence and lo-
cation of fracture, hemorrhage, and displacement between
the fractured bones in an automated fashion is vital for such
injuries. Identification of fracture alone is not sufficient to
assess the injury severity. Therefore, details of the fracture
such as distance and angle between the fractured bones must
be taken into account. However, the task of pelvic bone seg-
mentation and fracture detection is very challenging due to
low resolution of CT images, complex pelvic structures, vari-
ations in bone shape, and size from patient to patient. Adding
to these complexities, the presence of noise, partial volume
effects, and in-homogeneities in the CT images make the task
of fracture detection very challenging. The objective of this
study is to design a computer-assisted system that helps radi-
ologists better and further assess the bone fractures in pelvic
region. It also illustrates the fracture bones in a clearer and
more visible manner. In particular, mild and small fractures,
while still partially visible in the CT images, are sometimes
considered as “irregularities” that need further investigation
by the radiologists in the first read, as radiologists may not be
able to reliably label them as fractures due to the quality of
the CT as well as the volume of the data to be processed. For
these situations, it normally takes multiple reads to identify
and determine the confirmation on the existence and/or de-
tails of fracture. A machine-based analysis can consider and
process detailed information from several neighboring slices
to provide radiologists with clues as to whether one partic-
ular slice contains a fracture and if so extract details such as
the separation among the pieces.

While there have been few studies directly focusing on
fracture detection in pelvic CT images, there are many closely
related work. Moghari and Abolmaesumi [8] utilized a global
registration method for multifragment fracture fixation in
femur bone. However, the method suffers from initial align-
ment errors, and the dataset includes only femur bone gener-
ated randomly from 3D data points. Moghari and Abolmae-
sumi [9] proposed a technique to automatically register mul-
tiple bone fragments of a fracture using a global registration
method guided by a statistical anatomical atlas model. Due
to the limited number of bone models, the method is unable
to capture all variations of femur. Winkelbach et al. [10]
presented an which is approach based on a modified version
of Hough Transformation and registration techniques for
estimating the relative transformations between fragments
of a broken cylindrical structure. This method is designed
for computer-aided bone alignment, such as fractured long
bones and fracture reduction in surgery. However, the ap-
proach is not fully automatic and requires a significant
amount of human supervision. Another work, by Ryder et al.
[11] explored using nonvisual methods to detect fractures.
In addition, there are image processing methods for fracture
detection applies to X-ray images [12–14]. Douglas et al. [12]
focused on early detection of fractures with low-dose dig-
ital X-ray images in a pediatric trauma unit. Tian et al. [13]

determined the presence of femoral fracture by measuring
the neck-shaft angle of the femur. Lum et al. [14] used three-
texture features combined with a classifier to detect radius
and femur fractures. This method may suffer from the im-
balanced dataset. The majority of these X-ray image process-
ing methods may not be applicable to fracture detection in
CT images because of the variation in image intensities and
resolution between X-ray and CT images.

Even though few studies have been conducted on frac-
ture detection from pelvic CT scans, several segmentation
techniques have been created for medical images of various
regions of human body, that is, brain, abdomen, and so forth.
These methods include threshold-based techniques, region
growing, classifiers, clustering, Markov random field models,
artificial neural networks, deformable models, atlas-guided
methods, knowledge-based methods. Thresholding tech-
niques segment an image by creating a binary partition on
the basis of the image intensities [15]. The drawback is that
they cannot be effectively applied to multichannel images.
The deformable model approaches start with the initial con-
tour placement near the desired boundary, and then, the con-
tour is improved through an iterative relaxation process [16–
18]. The disadvantage is that these methods require manual
interaction for the selection of initial position and appropri-
ate parameters of the model. Atlas-guided methods utilize a
standard atlas or template for segmentation [19]. The atlas
used as the reference frame is generated on the basis of the
previously known anatomical information. However, due to
anatomical variability across individuals, accurate segmenta-
tion of complex structures remains as a challenging task.
Clustering algorithms, also referred to as unsupervised meth-
ods [20, 21], while successful in some applications, they can
be sensitive to noise and variations in intensity. In addition,
the calculation can become computationally expensive when
the clusters have a large number of pixels.

This study develops an automated hierarchical algorithm
to detect fracture in pelvic bones using a hierarchical method
combining several of the above-motioned methods in differ-
ent steps. Fracture detection is performed using the proposed
automated segmentation method, called registered active
shape model (RASM), along with wavelet transformation,
adaptive windowing, boundary tracing, and masking.

The rest of the paper is organized as follows. Section 2
provides the methods used for pelvic bone segmentation and
fracture detection. Section 3 includes the results obtained us-
ing the proposed methods and discusses the obtained results.
Section 4 concludes the proposed methods and provides the
future work of the study.

2. Methods

Automated fracture detection is important for making fast
and accurate decisions and treatment planning. In order
to successfully detect pelvic bone fractures, utilizing the
bone information contained in pelvic CT images is crucial.
Figure 1 illustrates the overall process of the proposed auto-
mated fracture detection. The proposed fracture detection
method involves automated bone segmentation using reg-
istered active shape model (RASM), adaptive windowing,
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Figure 1: Schematic diagram of pelvic bone fracture detection.

2D stationary wavelet transform, masking, and boundary
tracing. Each step in the process is explained in detail in the
following subsections.

2.1. Multilevel Segmentation of Bone in Pelvic CT Scans. Seg-
mentation is a vital step in analyzing pelvic bones in CT
images and the first step in fracture detection. Specifically,
bone segmentation helps extract the bones from the images
that are later used for detecting fractures. Our previous work
was focused on the segmentation of pelvic bones in CT
scans [22]. In this paper, a new segmentation algorithm for
multilevel pelvic CT scans was developed. This is shown in
Figure 2. This new segmentation technique consists of four
main parts: preprocessing, edge detection, shape matching
and Registered Active Shape Model (RASM) with automatic
initialization.

The presence of surrounding artifacts and noise in the
original pelvic CT images make bone segmentation a chal-
lenging task. Therefore, preprocessing is performed to re-
move the surrounding artifacts (e.g., CT table, cables, hands,
and lower extremities) present in the original image. This is
the first step in segmentation. The preprocessing is carried
out using blob analysis. Later, high-frequency speckle noise
is removed from the images using a 2D Gaussian filter. The
image is then enhanced to emphasize the features of interest,
that is, pelvic bones. This enhancement is done using bright-
ness contrast stretching. Later, the bone edges are detected
using Canny edge detection technique. However, some weak
edges may remain unconnected, and as such, morphological
operations are applied to remove spurious edges and subedge
connections and removal.

The obtained preliminary segmentation results are then
used to detect the best matching template using a shape
matching algorithm [23]. This helps with the automation of

Preprocessing

Edge detection

Image registration

Finding
best

matching
template

RASM

Original image

Final segmentation

Figure 2: Schematic diagram of pelvic bone segmentation.

the segmentation process and therefore contributes to min-
imizing human errors during the diagnostic process. 100
bone templates are created from the Visible Human Project
dataset manually. These templates are then compared to each
CT slice in order to determine the best-matched template.
Determining best-matched template enables the application
of corresponding training shape models of each best-
matched template to the preprocessed image during bone
segmentation phase.

The last step in the segmentation process is the extraction
of pelvic bones. Standard active shape model (ASM) is one
of the popular techniques that is generally used for bone seg-
mentation. Standard ASM uses training images labeled with
landmark points to generate statistical shape and intensity-
level models of a desired object. The shape model can be
iteratively deformed to locate the object in a test image [24].
The landmarks are points selected by an expert for the bone
region in each registered image during the training phase.
The pelvic bones in each original training image have dif-
ferent sizes, rotation angles, and locations which may lead
to unstable and unreliable shape models for inaccurate bone
segmentation. In addition, standard ASM is highly sensitive
to initialization and requires an initial position to be correctly
assigned to the training model in order to detect a target
object in the image. The algorithm then attempts to fit the
shape model to the object. If the shape model is not accu-
rately placed, the standard ASM may fail to detect the target
object accurately.

In order to overcome these shortcomings, a new image
registration algorithm, that is, registered active shape model
(RASM), is developed using enhanced homogeneity feature
extraction [15], correlation coefficient calculation for simi-
larity measure, affine transformation, and Powell algorithm
application [25]. This algorithm, that is, RASM, is developed
to create a set of more robust training models which will re-
sult in more accurate segmentation. This includes two stages:
training stage in which registered training models are created
and testing stage which includes automatic initialization.
Figure 3. provides the flowchart for the RASM algorithm.
After the creation of training models, segmentation is per-
formed on the test images. As mentioned earlier, manual
initialization may fail to segment the targeted objects accu-
rately. Hence, an automated hierarchical initialization algo-
rithm is used in the study. The proposed initialization process
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involves image registration, bone extraction, and edge detec-
tion to automatically and sequentially place the training
models of each individual object for the test images to extract
the bone from the background.

2.2. Fracture Detection in Pelvic CT Images. After bone seg-
mentation, a multistage process is used for fracture detection
in pelvic CT scans. Fracture detection of pelvic bones in-
cludes several steps. First, pelvic bone segmentation is con-
ducted using the proposed RASM algorithm, as described
in Section 2.1. The extracted bone boundaries are utilized
to create a series of adaptive windows. Later, 2D stationary
wavelet transform (SWT) is applied to each window to test
the contour discontinuities in each window using boundary
tracing. If there is a contour discontinuity in a window, then
it is considered as a potential bone fracture.

2.2.1. Adaptive Window Creation. Discontinuities around
the bone boundary help identify the presence of fracture.
Therefore, a detailed view of bone boundary is required
through the formation of windows around the bone whose
sizes are adaptively adjusted to include the bone borders.
Creation of these adaptive windows around the bone bound-
ary will facilitate the process of identifying the discontinu-
ities. In this study, a systematic method is proposed to form
adaptive windows around the bone boundary to include and
detect possible discontinuities associated with fractures. The
appearance of bone fractures in a pelvic CT scan depends on
the injury severity. Major fractures are usually visible, while
minor fractures may not severely distort the edge of the bone;
instead, they may appear as dual edges or a single subedge
that is slightly blurred compared to the neighboring edges.
Therefore, it is important to refine the blurred boundary of
each bone in order to achieve accurate fracture detection.
The refinement is done using a wavelet transform which is
later described in the following subsections. However, due
to local intensity variations, it may be difficult to achieve
practical and desirable results by applying wavelet transform
to the entire bone structure. Hence, the detected bone
boundary is divided into a series of windows. The size and

location of each window is determined by the area of the
bone and boundary detected using the RASM. This is called
adaptive windowing. The adaptive windowing algorithm is
explained in detail as follows.

On the basis of the segmentation formed by the RASM
algorithm, the landmarks are placed on the boundary of each
segmented bone. The windows are created starting from the
first segmented pelvic bone region. The adaptive window is
created on the basis of each landmark placed on the seg-
mented bone boundary.

Let {(xp1, yp1), (xp2, yp2), . . . , (xpl, ypl)}, p = 1, 2, . . . ,N ,
be the coordinates of the landmarks of each bone in the
image. N is the number of bones, and l is the number of
landmarks for each pelvic bone. The landmarks are located
at the center position (Cp,Dp) of each window. The area of
the window Wl is determined using

Wl = Al

6
, (1)

where Ap is the area of the corresponding piece of bone,
The determined empirical constant 1/6 has been selected to
ensure that the size of the window is appropriately selected.
The side length of the each leg of the cubicle (square) window
is identified using

Sl =
√

Al

6
. (2)

Since the area of each adaptive window is small, in order
to obtain more suitable virtualization effects, each window
is scaled to the size of 256 × 256 by applying the bilinear
interpolation technique [14]. As shown in Figure 4, sample
adaptive windows are created. Each landmark is located at
the center of each window.

2.2.2. The 2D Stationary Wavelet Transform. After adaptive
windowing, 2D stationary wavelet transform (SWT) is ap-
plied on each window in order to refine the blurred boundary
of pelvic bone. The classic discrete wavelet transform (DWT)
suffers a shortcoming that the DWT of a translated version
of a signal/image is not, in general, the translated version
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Figure 4: Example windows around the boundary of pelvic bone,
positioned according to landmarks.

of the DWT of the signal/image. To overcome this, SWT is
applied in our work, as it is designed to overcome any shift
variation [26]. The wavelet transform algorithm is explained
as follows.

The wavelet transform decomposes an input signal into
different frequency components using a series of filtering
operations. A wavelet ϕa(t) is a function with a zero average

∫

ψ(t)dt = 0. (3)

The wavelet generates a family of wavelets by scaling ψ(t) by
a and translating it by θ:

ϕθ,a(t) = 1√
a
ϕ
(
t − θ

a

)
. (4)

The wavelet transform of a signal s(t) at time θ and scale a
can be represented as

Ws(θ, a) = 〈s(t),ϕθ,a(t)
〉

,

Ws(θ, a) =
∫ +∞

−∞
s(t)

1√
a
ϕ∗
(
t − θ

a

)
dt.

(5)

The convolution computes the wavelet transform of the in-
put signal with dilated band-pass filters. Two sets of coef-
ficients are obtained through wavelet transform, one is
approximation coefficients, cAj , and the other is detail coef-
ficients, cDj , where j is the level of decomposition, including
horizontal, vertical, and diagonal coefficients. Decimation
makes wavelet transform a shift-variant process. To over-
come this, a stationary discrete wavelet transform is used in
this study.

The scaled window W is first decomposed using a 2D
Stationary Discrete Wavelet Transform. The classical Discrete
Wavelet Transform (DWT) is not a space-invariant trans-
form. The SWT is an algorithm which does not decimate the
coefficients at every level of decomposition [26]. The filters at

level i are upsampled versions of those at level (i−1). As with
the 2D DWT, decomposition outputs approximation, hori-
zontal, vertical, and diagonal coefficients. In this application,
three levels of decomposition are applied to window W using
the Haar wavelet. The level 3 detail coefficients, cDj+1

(h),
cDj+1

(ν), and cDj+1
(d), are then extracted and used to recon-

struct detail arrays Dh, Dv, and Dd of horizontal, vertical, and
diagonal coefficients. Figure 5 represents decomposition of
2D SWT.

The accuracy and running speed of the SWT algorithm
are compared when extracting the upsampled coefficients
separately at 1st, 2nd, 3rd, and 4th levels. The algorithm runs
on the computer with 2.80 GHz Intel(R) Core(TM) i7 pro-
cessor, 64-bit Operating System, 6.0 GB memory. For each
CT slice, it takes approximately 0.15 seconds more for the
2nd level of stationary wavelet decomposition than the 1st
level decomposition. While the 3rd level of decomposition is
only 0.1 second slower than the 2nd level of decomposition
in terms of running speed, more noise is filtered out, and
edges are clearer in the 3rd level of decomposition compared
to other two levels; this improves the accuracy of the fracture
detection algorithm. Going to the 4th level adds another 0.15
second of additional delay while not adding much to the
filtering performance. Hence, in order to achieve a suitable
balance between the running speed and accuracy, the 3rd
level of SWT is used in this work.

2.2.3. Masking. The next step in the fracture detection is to
create a binary version of the chosen detail array Wb from
the wavelet transform. This binary version not only contains
the pelvic bone contour, but also includes other redundant
and unnecessary edges. A mask is formed to filter these
redundant edges out. The mask Wm is formed by converting
the smoothed window to a binary image using Otsu’s thresh-
old [27]. The threshold is computed to minimize the intra-
class variance, defined as a weighted sum of variances of two
classes, black and white pixels.

σ2
w(t) = w1(t)σ2

1 (t) + w2(t)σ2
2 (t). (6)

Weights wi are probabilities of the two classes separated by
a threshold t and σ2

i variances of these classes. Minimizing
the intraclass variance is the same as maximizing interclass
variance

σ2
b (t) = σ2 − σ2

w(t) = w1(t)w2(t)
[
μ1(t)− μ2(t)

]2, (7)

where wi are probabilities of the two classes and μi is the class
mean.

The contour is then extracted from the binary image.
The unwanted edges are removed from the binary image to
create an edge window. Later, a precise edge window We is
obtained by removing the extra edges in the image using the
pelvic bone contour and the mask. The process is defined as
a combination of Wb and Wm. This edge window is used for
the boundary tracing as described in next step

We =Wb ×Wm. (8)
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Figure 5: Decomposition steps of 2D SWT.

Figure 6: Example of pelvic bone segmentation results via RASM.
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Figure 7: Example results of pelvic bone segmentation via standard ASM without initialization.

(a) (b) (c) (d)

Figure 8: Example of a detected broken boundary of pelvic bone, which may indicate a fracture.

2.2.4. Boundary Tracing. After masking, the last and final
step in fracture detection is the detection of discontinuities.
This is achieved by tracing the extracted bone edges. Small
artifacts surrounding the extracted bone edges may interfere
with the boundary tracing. Therefore, these artifacts must be
removed. These are removed by applying morphologic open-
ing to all the objects in the image with area below a specific
threshold, which is predefined as 1% of the window area in
the testing step. The remaining edges are then traced using
the 8-neighborhood of each pixel and are returned as a ma-
trix of pixel positions. The traced edges represent the pelvic
bone contours. The window will therefore contain a single
continuous boundary if there is no fracture. In the presence
of fracture, multiple boundaries are present in the window,
depending on the type and severity of fracture.

3. Results and Discussion

3.1. Dataset. The dataset has been obtained from the Vir-
ginia Commonwealth University Medical Center. Data have
been collected from twelve patients with traumatic pelvic
injuries. Forty-five to seventy-five images are collected from
each patient. Axial CT images with five millimeter slice thick-
ness are used for the study. Images collected from five pa-
tients are used for training, and the other seven patients’
images are used for testing. For fracture detection, a total of
12 patients are used, out of which 8 patients exhibit small to
very severe bone fractures.

3.2. Results of Bone Segmentation. Figure 6 shows a sam-
ple segmentation of pelvic bones using RASM. Figure 7
shows the compared results of pelvic bone segmentation via

standard ASM without initialization. The main reason of
inaccurate bone segmentation is that the initial positions of
training models are not correctly assigned. As given in [8],
total segmentation accuracy for both good and acceptable
classes is 95.77%. These results were evaluated by expert ra-
diologist as ground truth for assessment.

3.3. Results of Fracture Detection. Figures 8 through 10 show
the results obtained at various stages of fracture detection.
In these figures, (a) is the original image, (b) is the extracted
adaptive window after being scaled, and (c) is the enhanced
window after brightness contrast stretching. This is done for
better visualization effect. And, (d) shows the final fracture
detection results. In Figure 8, the patient suffers from a mi-
nor fracture in right iliac wing. Figure 8(d) indicates the frac-
ture detected in the right iliac wing. Figure 9 is the “no frac-
ture” case. The result in Figure 9(d) shows that the bone
appears smooth with no fracture. Figure 10 illustrates a pa-
tient with a very severe fracture in the right ilium bone.
Fractures are detected from the windows of this bone region.
Example of detected fractures shown in Figure 10(d) indi-
cates fractures in three different regions of the right ilium
bone. These results are evaluated by an expert radiologist and
are considered acceptable. For 8% of the cases, the method
was unable to capture the fracture. The few cases that the
algorithm gave false alarms in fracture detection may be
either due to the algorithm needing further refinement or
other factors such as the poor quality of these particular CT
images.

The results show that the method can successfully detect
bone fracture. Table 1 presents the performance of the
method detecting fractures. The proposed method is highly
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(a) (b) (c) (d)

Figure 9: Example of a detected nonbroken boundary of pelvic bone, which may indicate no fracture.

(a) (b) (c) (d)

Figure 10: Example of a detected broken boundary of pelvic bone, which may indicate three fractures.

Table 1: Performance of pelvic bone fracture detection.

Statistical Results Accuracy Sensitivity Specificity

Rate % 91.9821 93.3333 89.2617

sensitive to the discontinuities present in the bone and is
capable of detecting fractures.

3.4. Discussion. The results were validated on the basis of the
assessment and evaluation made by radiologists on the CT
scans in the above mentioned database. As shown in the re-
sults, the designed algorithm is able to detect the fractures

relatively accurately. Using the proposed algorithm, fractured
bone may be further highlighted in the processed images;
this could help the radiologists better analyze the scans and
increase the chances of capturing the fractures. Additionally,
as it can be seen in the results, our designed method may
help quantify the fracture separation distance and the angle
between the broken bone pieces as well as other quantitative
assessment of the fractures, which may not be easily accessi-
ble and measurable through visual inspection. The designed
algorithm provides these clues and recommendations on the
fracture detection in an automated fashion and with relative-
ly high speed (the processing time is less than one second for
each slice). This helps physicians reduce the decision-making
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and diagnostic time, which is highly important for traumatic
pelvic injuries.

4. Conclusion and Future Work

This paper presents a method for detecting fractures in pel-
vic bones using automated bone segmentation, adaptive win-
dowing, boundary tracing, and 2D stationary wavelet Trans-
form while including anatomical information. The results
show that the proposed method is capable of detecting frac-
tures in pelvic bones accurately. Automated fracture detec-
tion, once verified with more data, will be an important com-
ponent of a larger modular system to extract features from
CT images for a computer-assisted decision-making system.
Future work will focus on the quantitative measurement of
fracture on the basis of a larger dataset, for example, hori-
zontal displacement, as well as the determination of fracture
type.
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Quantification of the mechanical behavior of normal and cancerous tissues has important implication in the diagnosis of
breast tumor. The present work extends the authors’ nonlinear elastography framework to incorporate the conventional X-ray
mammography, where the projection of displacement information is acquired instead of full three-dimensional (3D) vector. The
elastic parameters of normal and cancerous breast tissues are identified by minimizing the difference between the measurement
and the corresponding computational prediction. An adjoint method is derived to calculate the gradient of the objective function.
Simulations are conducted on a 3D breast phantom consisting of the fatty tissue, glandular tissue, and cancerous tumor, whose
mechanical responses are hyperelastic in nature. The material parameters are identified with consideration of measurement
error. The results demonstrate that the projective displacements acquired in X-ray mammography provide sufficient constitutive
information of the tumor and prove the usability and robustness of the proposed method and algorithm.

1. Introduction

Breast cancer is a major threat to public health in the
world. In USA and Europe, approximately 10% of women
develop breast cancer during the course of their lives. While
the specific causes of breast cancer are unknown, early de-
tection and characterization of breast tumors is the key to
successful treatment. Currently, X-ray mammography, a low-
dose X-ray imaging modality, is the primary diagnosis meth-
od in clinics [1]. While being more efficient in detecting
malignancies as age increases or the breast becomes fatty,
mammography fails to identify small cancers in dense
breasts. Furthermore, mammography may not be specific
in terms of tumor benignity and malignancy. About 80%
of suspicious masses referred by mammography for surgical
breast biopsy are in fact not malignant [2–4]. These false-
positive mammograms may induce patients’ anxiety, distress,
and intrusive thoughts.

A number of techniques have been attempted to address
these problems associated with mammography. From the

viewpoint of mechanics, the tissue stiffness is an important
index for diagnosis of breast cancers, as tumors are stiffer
than the surrounding breast tissues and malignant tumors
are much stiffer than benign ones [5–7]. In other words,
in vivo identification of the mechanical parameters of
normal and abnormal tissues should improve the accuracy
of cancer diagnosis. Correspondingly, elastography has been
proposed as a method to image the tissues’ elasticity in a
quantitative manner. The general basis of elastography is
to induce motion within tissue by mechanical stimulation.
Conventional medical imaging modalities are then used to
measure the spatial deformation, from which the mechanical
properties can be extracted. Based on the imaging modal-
ities used, elastography has two major classes: ultrasound
elastography (USE) and magnetic resonance elastography
(MRE). USE, developed in the 1990s, is the first modulus-
imaging modality. It computes the lap between the pre-
and postcompression radio frequency ultrasound signals to
estimate the tissue’s axial displacement and strain under
quasistatic loading [8, 9]. While providing new information
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for detecting pathological tumors, USE suffers from limited
stiffness range as imposed by the minimum resolvable
wavelength. The computed image in USE is also restricted
by the angular resolution of the transducer and its ability
to separate signals from artifacts and noise [9]. Magnetic
resonance elastography (MRE) is a second-generation elas-
tography modality that provides higher resolution images
and is capable of producing sufficient 3D spatial and
contrast resolution [10, 11]. MRE is, however, significantly
more costly as a result of the MR imaging procedure and
hence is not generally applicable for all patients. From the
viewpoint of solid mechanics, the current USE and MRE
are insufficient, because both are based on infinitesimal-
strain linear elasticity and only very few are capable of
considering anisotropic tissue properties. In other words, the
large deformation, nonlinear, and anisotropic behaviors of
breast tissues (fat and glandular tissues) and tumor have not
yet been taken into consideration by USE or MRE. Therefore,
the outcomes of USE and MRE may not be sufficiently
accurate for the diagnostic purpose.

Motivated by the significance of early detection of breast
tumors and the current limitations of mammography and
elastography modalities, we have developed a nonlinear
elasto-mammography method that takes into consideration
of the finite-strain nonlinear properties of breast tissues, in
combination with mammography visualization. The devel-
opment has experienced two stages.

First, a linear elasto-mammography framework was devel-
oped to generate the elastograms of breast tissues, by com-
bining the conventional low-dose X-ray mammography
with linear elastography framework [12]. Instead of apply-
ing ultrasound or magnetic resonance as in the previous
elastography research, elasto-mammography uses displace-
ment information extracted from mammography projec-
tions before and after breast compression. Incorporating the
displacement measurement, an elastography reconstruction
algorithm was specifically developed to estimate the elastic
moduli of heterogeneous breast tissues. Case studies with
numerical breast phantoms showed that the displacement
measurement obtained from mammography is sufficient to
identify the material parameters of breast tissues and tumors
within the framework of linear elasticity.

Then, a nonlinear elastography method was proposed
[13]. As discussed above, the current elastography (USE or
MRE) reconstruction framework is based on the assumption
of linear elasticity theory. The mechanics of biological soft
tissues, however, require nonlinear continuum mechanics
description [14, 15]. While tissue models based on linear
elasticity have been broadly used, they are reliable only when
the tissue strain is less than 5% [16], which is much lower
than the deformation of soft tissues. Thus, consideration of
nonlinearity is essential for elastography in clinical applica-
tions. Our development of nonlinear elastography method,
for the first time, enables identification of the mechanical
properties of soft breast tissues and tumor. To improve
the computational efficiency and enhance the stability, a
nonlinear adjoint method was introduced. The phantom
study demonstrated that the complex nonlinear mechanics

of soft breast tissues and tumors can be quantified from 3D
displacement and force measured on the surface of the breast.

The objective of the present study is to develop a
nonlinear elasto-mammography framework that combines
the simplicity of projective X-ray mammography mea-
surement with the accuracy of nonlinear elastography. In
Section 2, we present the mathematical derivation, where an
adjoint gradient method is modified to consider the pro-
jective displacement measurements. Finite-element- (FE-)
based numerical simulations are conducted in Section 3 to
reconstruct the material parameters of a 3D heterogeneous
breast phantom from mammography displacement. Two
types of mammography compressive loadings are applied,
and the displacements at key points on the tissue interfaces
are extracted from mammography projections before and
after deformation. In Section 4, the results are presented and
the effect of experiential error is investigated.

2. Methods

2.1. Finite-Strain Deformation Equations. Let Ω0 be a bio-
logical object subjected to body force b and surface force
t on boundary Γ0

t . Here, we consider general problems
that the body force b and surface force t are deformation
dependent. Following the standard finite-element method,
the displacement u is discretized as nodal displacement
vector {u} = {u1, u2}T , where u2 corresponds to u pre-
scribed on Γ0

u and u1 is to be solved from nonlinear
equations; that is, on surface Γ0

u (Γ0
u∪Γ0

t = ∂Ω0), as described
in [13], the FE description of the finite-strain equilibrium
equation is
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The internal nodal force f in corresponds to the stress of the
tissue; that is, it changes with u1 and material parameters
p but not u2 as it is prescribed. The external nodal force
f out
1 is due to the prescribed surface force t and body force

b in biological object Ω0. It changes with the displacement
in large deformation. The nodal force f out

2 is the unknown
constraint force on Γ0

u.
A classic quasi-Newton method [17] is employed to solve

(1) for u1. Let u(n)
1 be the trial solution of the unknown

u1 at the nth iterative step. An improved solution u(n+1)
1 =
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where the matrices are evaluated at u(n)
1 .
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2.2. Nonlinear Elasto-Mammography Algorithm. We consider
that the biological object Ω0 is discretized into FE mesh,
and the displacement and force are discretized consistently
into nodal displacement and nodal force. Experimental
measurement for elasto-mammography is displacement. We
catalog the measurements as the following. (i) If the force
at a node is known, it will be included into f out

1 which
is considered “prescribed” in (1). The corresponding nodal
displacement will be considered as unknown u1 in the FE
equation (1). (ii) All the other nodal displacements will be
in u2, and the corresponding unknown nodal force will be in
f out
2 . For category (ii), u2 must be considered “prescribed”

to fulfill the requirement of the well poseness of a solid
mechanics problem.

In our previous elastography method [13], displacements
are also measured at some of the nodes associated with
u1 and are denoted as UM

1 . Given material parameters p,
the unknown displacement u1 and constraint force f out

2

(which depends on p) will be solved from the FE equation
(1). The elastography method thus seeks p so that the
overall difference between measured UM

1 and computed u1

is minimum; that is, to minimize objective function:

Φ
(

p
) =

(
u1 −UM

1

)T
Λ

(
u1 −UM

1

)
, (4)

where diagonal weight matrix Λ = diag(a1, a2, . . . , aj , . . .),
with component aj = 1 when the jth component of UM

1 is
experimentally measured, or aj = 0 otherwise.

In mammography, however, the measurement of dis-
placement is limited by the projection; that is, only the
two components perpendicular to the projection direction
are obtainable. Correspondingly, the computed displace-
ment u1 should be projected in the same direction as in
mammography and then compared with the mammography
measurement UM

1 . As derived in Appendix A, the projection
can be represented by a linear translation of u1, as Ru1, where
R is a global projection matrix. The objective function for
nonlinear elasto-mammography is then

Φ
(

p
) =

(
Ru1 −UM

1

)T
Λ

(
Ru1 −UM

1

)
. (5)

2.3. Nonlinear Adjoint Method. Efficient and robust opti-
mization-based elastography reconstruction schemes request
user-supplied gradient ∂Φ/∂p. Direct calculation of the gra-
dients ∂Φ/∂p involved in the minimization-based parametric
identification is difficult, because u1 is an implicated function
of p. Recently, an adjoint method was introduced to com-
pute the gradient analytically [18–21]. The corresponding
nonlinear finite element formulas are shown in Appendix B.
Briefly, given a trial p,u1 will be solved from FE equations
(2) and (3), the objective function will calculated by (5),
and the material parameters p will be updated by large-scale
limited memory BFGS (L-BFGS) method with user supplied
gradients readily obtained as:
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where the virtual adjoint displacements w1 and w2 are solved
from linear equations:

K eff
11w1 = −2RTΛ

(
Ru1 −UM

1

)
,

w2 = 0,
(7)

with the tangent stiffness matrix K eff
11 defined in (3). The

most significant features of the adjoint method are the
analytical formulation, high accuracy, and computational
efficiency [22]. Since K eff

11 and its LU factorization have
been calculated when solving the FE equation (2), the
additional computational expense for w1 in (7) is minimal.
Furthermore, it only needs to solve one linear equation (7)
regardless of the number of unknown parameters in p.

The reconstruction procedure is illustrated in Figure 1.
We first establish a numerical FE model of the breast tissue
on which external loadings are applied. In order to measure
displacement, we compare the mammography projections
before and after the deformation. Then, initial guess of
the distribution for material parameters (λ,μ, γ) is given.
Given the external loadings and material parameters, the
displacement filed u1 is solved from (1) and is projected
to Ru1 according to the mammography direction. The
difference between prediction Ru1 and measurement UM

1 are
evaluated by the objective function (5). The adjoint field w
is calculated by (7), and gradients ∂Φ/∂p are obtained by
(6). The material parameters could be updated by limited-
memory BFGS (L-BFGS) optimization subroutine [23]. The
iteration continues until a minimization is reached.

3. Numerical Simulations

3.1. Breast Phantom and Forward Problem. We establish a
3D typical breast FE phantom, shown in Figure 2, consisting
of the fatty and glandular tissues and a ductal carcinoma
(tumor). Boundaries of these regions are described with sets
of splines. The mechanical properties of these tissues are
described with Fung-type isotropic hyperelastic model [14],
whose strain energy function reads

W(E) = γ

2

[
exp

(
λ(I : E)2 + 2μE : E

)
− 1

]
, (8)

where E is the Green strain and {λ,μ, γ} are material param-
eters. The parameters {λ,μ, γ} are previous determined [13]
from ex vivo experimental data of Samani and Plewes [24] as
λd = 80, μd = 35, γd = 1.5 (λ and μ are dimensionless, γ is in
kPa) of ductal carcinoma, λ f = 35, μ f = 12.5, γ f = 0.4 of
fatty tissue, and λg = 50, μg = 25, γg = 0.25 glandular tissue.

Motivated by the breast compression in X-ray mammog-
raphy, we designed two loadings as detailed in [13]. In the FE
model, the base of the breast phantom is fixed. Two paddles
are used to apply displacement on the upper surface of the
breast. The paddle close to tumor applies tilted compression,
and another paddle is fixed to restrict the breast.

3.2. Acquisition Projection Data. For each loading, mam-
mography projections for 3D heterogeneous breast phantom
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Figure 1: Overall flowchart for nonlinear reconstruction of material parameters of breast tissues.

Fatty tissue
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Glandular
tissue

Figure 2: Mammography projections for 3D heterogeneous breast
phantom after deformation. Fatty tissue, glandular tissue, and a
tumor are shown.

are taken before and after deformation (Figure 2). To mimic
the displacement obtainable from mammography, we extract
the displacement components in the projection plane at
some discrete material points (Figure 3), denoted as UM

1 .
We select three mammography projection directions. With
each direction, one projection is made at undeformed state,
and one is made at deformed configuration (Figure 2).
Then, the displacement components on the projection plane
are extracted from a set of landmarks in the tissues by
comparison their position in undeformed and deformed
projections, as shown in Figures 3 and 4. The landmarks
include the top vertex on the upper breast surface (point A
in Figure 3), four vertexes of the tumor surface (points B–
E in Figure 3), and ten material points on the fat-glandular
interface (points A–J in Figure 4). It is noted that the surfaces
of tumor and glandular tissue are not smooth so that there
are plenty of landmarks that can be used to track the
deformation.

To explain the procedure, we use a mammography
compression as example. Figure 2 shows mammography
projection taken in the same direction with compression
applied on the breast. The boundary of the fatty tissue,
glandular tissue, and a tumor can be seen in the projection.

Undeformed
fatty tissue

Undeformed
tumor

Deformed
fatty tissue

Deformed
tumor

A A

B B

C C
E E

D D

Figure 3: Overlapped mammography-type projections of the fatty
tissue and tumor in deform and undeformed configuration. In
the projections, vertexes A–E in underformed projection move to
A′–E′ in deformed projection, respectively, giving the projected
displacements of these points.

Then, displacement components on the projection plane can
be extracted by comparing the undeformed and deformed
projections (Figures 3 and 4). More specifically, the unde-
formed and deformed projections of fatty tissue and the
tumor are registered and shown together for the comparison.
The top vertex of fatty tissue, point A, moves to vertex A′

after deformation. Points B–E are vertexes of the tumor in
undeformed projection, and they move to vertexes B′–E′

after deformation (Figure 3). On the fat-glandular surface,
we select additional ten landmarks that move from A–J to
A′–J′, respectively (Figure 4). Thus, by measuring the vector
from a point to its deformed position, for example, A→
A′, the projective displacement components are obtained
and recorded as UM

1 . In addition, it is assumed that there
is no slip between the paddles and breast surface during
mammography compression. Therefore, the displacement of
the material points directly compressed by the paddles is
considered known and is added to the measurement UM

1 .
In summary, we have obtained the following displace-

ment measurements from mammography compression:
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Undeformed
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tissue

Deformed
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Figure 4: Overlapped mammography-type projections of
deformed and undeformed glandular tissue. In the projections, ten
nodes A–J on the surface of glandular in underformed projection
move to A′–J′ in deformed projection, respectively, giving the
projected displacements of these nodes.

(i) the top vertex on the upper breast surface and four vertex-
es of the tumor; (ii) ten nodes on the fat-glandular interface;
(iii) material points directly compressed by the paddles.
These displacement measurements are denoted as UM

1 and
will be used to identify the material parameters of the tissues.

3.3. Identification of Material Parameters from Displace-
ment Measurements. Having obtained measurement UM

1

from mammography compression, the inverse problem will
be conducted to identify the material parameters p =
{λ f ,μ f , γ f , λg ,μg , γg , λd,μd, γd} of the breast tissues and
tumor, with use of an iterative optimization procedure
(Figure 1). A homogeneous initial guess of λ0 = 20, μ0 =
10, γ0 = 1 (λ and μ are dimensionless, γ is in kPa) is
used for all the materials. With a trial p, the displacement
field u1 is solved from the FE equation (1) and is pro-
jected to Ru1 according to the mammography direction.
The difference between prediction Ru1 and measurement
UM

1 is evaluated by the objective function Φ(p) (5). The
gradients ∂Φ/∂p are computed with the proposed nonlinear
adjoint method. Then, a modified trial p will be obtained
according to the present Φ and ∂Φ/∂p by using L-BFGS
minimization subroutine [23]. The iteration continues until
a minimization is reached, which corresponds to identified
material parameters.

4. Results and Discussion

4.1. Ideal Input. Table 1 shows the initial estimate and
reconstructed results, together with the real values for
comparison. The results in the first part are based on the
ideal input. It is demonstrated that the reconstructed results
are very close to the real values. The maximum error is 0.3%
(γ for tumor) since the effect of the tumor on surface force
measurement is the smallest. Reconstructions using different
initial estimates have been conducted and very similar results
are found, which indicates the efficiency and uniqueness of

the proposed nonlinear elasto-mammography using projec-
tive measurements. In our study, all numerical experiments
reached convergence and had similar convergent profiles.
The iteration speed is related with initial estimations. In
clinical practice, the initial estimates could be selected based
on data of previous patients and experiments. The more
reasonable the initial estimates are, the faster the solver got
convergence.

In nonlinear elastography [13] and this study, the same
nonlinear material model and properties are applied. For
ideal input, both frameworks can get convergence and the
reconstructed results are very close to the real values. For
input with noises, both frameworks could get convergence
and have the similar profiles. The parameters in fatty and
glandular tissues get convergence faster than these in tumors
because the fatty and glandular tissues have bigger impact on
surface deformation and measurement.

Convergent loci of the elastic parameters (λ,μ, γ) is
plotted in Figure 5. It is observed that elastic parameters of
fatty tissue and glandular tissue approach the real values
rapidly. After about 50 iteration steps, their relative errors
are well within the range of 5%. Then, they experience some
minor adjustment. In contrast, elastic parameters of the
tumor converge slower. They start to fall to the real values
after 300 steps. After 350 steps, all parameters are accurately
identified. Reconstructions using different initial estimates
have been conducted. Very similar convergent profiles are
found, and equally accurate results are obtained. This
indicates uniqueness of the proposed elasto-mammography
for nonlinear breast tissue properties and efficiency of the
reconstruction algorithm.

The slower convergent speed of elastic parameters of the
tumor is explained by the roles they play in the deformation
due to the applied loadings, as discussed by Liu et al. [18].
In general, parameters with the most significant influence
on the deformation are those most easy to identify. The
influence of a parameter depends on size and location of the
material region it belongs to, as well as characteristics of the
deformation. For the present simulations, elastic parameters
of fatty tissue and glandular tissue are dominant; those
of tumor are much less influential, due to the small size
and deep location of the tumor. So parameters of fatty
tissue and glandular tissue are more accurately and easily
identified than those of the tumor (Figure 5). Therefore,
for successful characterization of the tumor, it is critical
to apply deformation modes and acquire displacement
data that are most affected by the tumor. In this elasto-
mammography simulation, displacements of key points on
the tumor are extracted from mammography projections,
which increase the accuracy and efficiency to reconstruct the
elastic parameters, especially for the tumor.

4.2. Multiple Sets of Measurements. Because of the nonuni-
queness nature of most inverse problems, it is important
to obtain sufficient measurements to reduce the likelihood
of nonuniqueness. For 2D isotropic elastography, Barbone
and Bamber [25] have shown that one set of displacement
and force measurement, especially when measured only on
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Table 1: Initial guess and nonlinear elasto-mammography reconstruction results of the fatty tissue, glandular tissue, and tumor in a 3D
breast. The reconstructions are based on ideal mammography measurement, mammography measurement with ±5% and ±10% random
noise, respectively. (λ and μ are dimensionless, γ is in kPa.)

Fatty Glandular Tumor

λ f μ f γ f λg μg γg λd μd γd
Real 35 12.5 0.4 50 25 0.25 80 35 1.5

Guess 20 10 1 20 10 1 20 10 1

Ideal Input

Reconstruction 35.00 12.50 0.40 50.00 25.00 0.25 79.83 34.93 1.51

5% Noise (I)

Reconstruction 32.95 11.76 0.44 51.82 26.15 0.23 77.12 31.10 1.69

5% Noise (II)

Reconstruction 34.82 12.35 0.41 51.62 26.10 0.23 66.14 29.57 1.88

5% Noise (III)

Reconstruction 35.9 12.69 0.39 49.67 25.08 0.25 83.75 37.27 1.40

10% Noise (I)

Reconstruction 35.14 12.68 0.40 48.87 24.40 0.26 107.59 35.56 1.41

10% Noise (II)

Reconstruction 31.89 11.69 0.46 52.17 25.39 0.24 90.29 31.01 1.69

10% Noise (III)

Reconstruction 36.75 12.89 0.37 48.30 24.54 0.26 107.20 48.89 0.92
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Figure 5: Convergent loci of elasto-mammography reconstruction
for elastic parameters (λ,μ, γ) of fatty tissue, glandular tissue, and
tumor, normalized with respect to the real values correspondingly.

the boundaries, may not provide sufficient information for
reconstruction of the distribution of elastic modulus. To
enhance the uniqueness of inverse problems, Barbone and
Gokhale [26] proposed the feasibility of using multiple
displacement fields, and Liu et al. [18] further discussed
the use of multiple sets of measurements in 3D anisotropic
media. In our previous nonlinear elastography study [13],
measurements from four independent titled compression
loadings were used to insure stable and unique material

parametric reconstruction. In this work, we applied only
projective measurements from two breast compression tests
and found that the acquired displacement and force data
are sufficient for stable parametric reconstruction, even for
the small and deeply embedded tumor. This is a significant
reduction, as it increases the clinical efficiency, reduces X-ray
dose and operation cost, and benefits the patients.

The reduction of necessary loadings is possible because
mammography projection provides displacement on the
surface of the tumor, which contains direct information
of the mechanics of the tumor. Our previous nonlinear
elastography study [13] takes only measurement on the
breast surface as input. The lack of necessary constitutive
information of the tumor in the surface measurement must
be compensated by increasing the number of required load-
ings. In case that the measurement may contain experimental
errors, we must use four loadings in the elastography study,
instead of two in the present elasto-mammography.

4.3. Iteration Steps. The nonlinear elasto-mammography
reconstruction uses an iterative optimization procedure
(Figure 1), which is controlled by user-defined criteria. This
study employs more strict criteria than in our previous work
[13], and it takes about 590 steps to reach the converged
reconstruction results. To demonstrate the intermediate
results, the uniaxial tensile strain-stress curves of the tumor
predicted by the updated material parameters are plotted
in Figure 6 at the 1st, 100th, 200th, 300th, and 592nd
iterative steps and compared to the real one. It is observed
that the reconstructed strain-stress curve approaches the
real one rapidly in first 300 iterative steps. After that, the
reconstruction only applies some minor adjustment.
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Figure 6: Nonlinear tensile strain-stress curves of the tumor as
reconstructed at different iteration steps.

In clinical practice, a more tolerable criterion may be
applied to control the iterative reconstruction procedure
to save computational expense and time. It has been
recognized that tissue stiffness plays an important role for
diagnosis of breast cancers, as tumors are stiffer than that
surrounding breast tissues, and malignant tumors are much
stiffer than benign ones [6]. In another word, the stiffness
ratio between fatty tissue and tumor, instead of real material
parameters, could be used to determine the character of
tumors. It is observed in Figure 6 that, starting from the
100th iterative step, the stiffness ratio of tumor to fatty
tissue (the lowest curve) increases rapidly, indicating that
the predicted mechanical properties of the tumor are well
distinguished from the normal tissues for characterizing the
tumor. Therefore, from clinical point of view, the iterative
reconstruction procedure could be stopped after about 100
steps.

4.4. Input with Noise. The above elasto-mammography
reconstructions are conducted using ideal inputs. However,
noise is unavoidable in experimental data. To investigate the
capability of the proposed nonlinear elasto-mammography
modality and algorithm to handle imperfect experimental
data, we conduct reconstruction using noisy input, where a
randomly selected relative error between ±5% or ±10% is
added to each displacement data in UM

1 . For each noise level,
three case studies are conducted. The results are shown as
noise 5% (I)–(III) and noise 10% (I)–(III) in Table 1, and
the reconstructed tensile strain-stress curves of the tumor are
plotted in Figure 7.

It is observed that the strain-stress curves reconstructed
with noisy input have similar shape to the ones with ideal
input. It is not surprising that curves with 5% noise are
closer to the real one than these curves with 10% noise. It
demonstrated that, in order to get robust results, we need
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Figure 7: Nonlinear tensile strain-stress curves of the tumor as
reconstructed from inputs with 5% and 10% noise.

to make effort to decrease the noise in displacement
measurements. It is noted that all the predicted strain-
stress curves of tumor, with or without measurement noise,
are well distinguished from the curve of fatty tissue (the
lowest curve in Figure 7); that is, being much stiffer. That
is, even though measurement noise exists, the tumor can be
identified by recognizing the difference of stiffness between
tumors and the surrounding tissues. This demonstrates
that the nonlinear elasto-mammography results are accurate
enough for diagnosis of tumors in clinical application.

The previous nonlinear elastography based on surface
measurement [13] fails to reconstruct material parameters
when ±5% random noise is added to the input. A reg-
ularization is required to provide additional constrain. In
comparison, the present elasto-mammography yields accu-
rate enough material parameters even with ±10% random
noise. The reason is, as mentioned in Sections 4.1 and 4.2,
that the displacements extracted on the surface of the tumor
from mammography projections contain direct information
of the mechanical properties of the tumor, which enhances
the robustness of reconstruction and increases the accuracy,
in particular of the tumor’s parameters.

4.5. Advantages of Nonlinear Elasto-Mammography. In this
study, a nonlinear elasto-mammography framework is devel-
oped to incorporate the conventional X-ray mammography
for characterization of breast tissue properties. This work
extends our previous study linear elasto-mammography [12]
and nonlinear elastography [13]. Comparing with previous
study, nonlinear elasto-mammography has the following
three major advantages.

Imaging techniques: an imaging technique should be
selected to measure deformation in elastography. In the
proposed nonlinear elasto-mammography, the deformation
is measured by conventional X-ray mammography while
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[x, y, z]. The relation between direction vectors is dependent on ψ, α, and θ.

USE or MRI is applied in nonlinear elastography. Traditional
X-ray has advantages of low cost and high resolution,
compared with USE and MRI.

Deformation theory: the linear elasto-mammography
framework is based on infinitesimal strain deformation the-
ory. However, it is well known that the mechanical behavior
of biological soft tissue is nonlinear. In nonlinear elasto-
mammography, nonlinear material model and deformation
theory are applied so that more accurate results could be
obtained.

Inversion techniques: once displacements are measured,
an inversion technique is applied to reconstruct elastic prop-
erties. In linear elasto-mammography, an adjoint method is
applied and then a nonlinear adjoint method is developed for
nonlinear elastography. In this study, the nonlinear adjoint
method is further improved to enhance the numerical
efficiency and stability of reconstruction of elastic properties.

Therefore, the proposed nonlinear elasto-mammography
framework has advantage of imaging techniques, defor-
mation theory, and inversion techniques. It combines the
simplicity of projective X-ray mammography measurement
with the accuracy of nonlinear elastography.

5. Summary

This study presents a nonlinear elasto-mammography meth-
od that combines elastography reconstruction and X-ray
mammography imaging for the purpose of diagnosis of
breast tumors by identification of the finite-strain mechan-
ical parameters of breast tissues and tumors. The displace-
ment information of selected material points is extracted
from mammography projections before and after breast
compression. Correspondingly, the previously developed
nonlinear elastography algorithm has been adjusted with a
revised adjoint gradient method to incorporate projection-

type displacement measurement. The simulations with het-
erogeneous breast phantom proved the feasibility of elasto-
mammography and tested the efficiency and robustness of
the reconstruction algorithm. The simulations show that
the deformation of the tumor, depicted by the projected
displacement on the surface of the tumor extracted from
mammography images, is critical for the success of elasto-
mammography reconstruction.

Appendices

A. Displacement Transition between
Coordinate Systems

This appendix presents the transition of a displacement vec-
tor between global coordinates and projection coordinates.
The outcome is the projection matrix R in formulas (5) and
(7).

To be consistent with computational geometry, we call
the projection coordinates as eye coordinates. As illustrated
in Figure 8, the global coordinates are denoted as [X ,Y ,Z]
and eye coordinates are [x, y, z]. Their direction vectors
are [eX , eY , eZ]T and [e′x, e′y , e′z]

T , respectively. As shown in
Figure 8, the eye coordinates rotate from global coordinates
by three angles: Z-axis tilt angle ψ, twist angle about
eye/original ray α, and rotation angle about Z-axis θ. It can
be shown that

⎛

⎜
⎜
⎝

e′x
e′y
e′z

⎞

⎟
⎟
⎠ = [Q]

⎛

⎜
⎜
⎝

ex

ey

ez

⎞

⎟
⎟
⎠, (A1)

where the rotation matrix Q is
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[Q] =

⎡

⎢
⎢
⎢
⎣

cosα · cos θ · cosψ − sinα · sin θ cos θ · sinα + cosα · cosψ · sin θ cosα · sinψ

− cos θ · cosψ · sinα− cosα · sin θ cosα · cos θ − cosψ · sinα · sin θ − sinα · sinψ

cos θ · sinψ sin θ · sinψ − cosψ

⎤

⎥
⎥
⎥
⎦
. (A2)

Now, consider a displacement vector u of a material point
from undeformed position to deformed position. The global
coordinates of u are {uX , vY ,wZ}, the eye coordinates are
{ux, vy ,wz}, and their relationship can be derived as

⎛

⎜
⎜
⎝

ux

vy

wz

⎞

⎟
⎟
⎠ = [Q]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠. (A3)

In mammography projection, the displacement component
in e′z direction, wz, is not obtainable, and only ux and vy are
measured. Therefore, (A3) reduces to

⎛

⎝
ux

vy

⎞

⎠ =
⎡

⎣
cosα · cos θ · cosψ − sinα · sin θ cos θ · sinα + cosα · cosψ · sin θ cosα · sinψ

− cos θ · cosψ · sinα− cosα · sin θ cosα · cos θ − cosψ · sinα · sin θ − sinα · sinψ

⎤

⎦

︸ ︷︷ ︸
[Q′]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠ = [Q′]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠. (A4)

Finally, the FE solution of displacement field u1, when
projected, becomes Ru1 where R is the assemble of [Q′]
according to the FE discretization and assembling methods.

B. Adjoint Method for Gradients of
Objective Function

Direct calculation of the gradients ∂Φ/∂p of the objective
function involved in the minimization-based parametric
identification is difficult, because u1 is an implicated function
of p. An adjoint method will be derived here for efficient and
analytical calculation of the gradients. To release the implicit
coupling between u1 and p, we introduce the constraint (1)
into the objective function (5) and obtain a Lagrangian:

L =
(

Ru1 −UM
1

)T
Λ

(
Ru1 −UM

1

)
+

{
w1

w2

}T{
f in
1 − f out

1

f in
2 − f out

2

}

,

(B1)

where w1 and w2 are arbitrary virtual displacements. In this
Lagrangian, u1 and p are explicit variables and are no longer
coupled. It is noted that Φ = L and δΦ = δL for arbitrary
w1 and w2 under the constraint (1). The variation δL can be
expressed as

δL = 2
(

Ru1 −UM
1

)T
Λ(Rδu1)

+

(

wT
1 K

in
11 −wT

1 K
out
11 + wT

2
∂ f in

2

∂u1
−wT

2
∂ f out

2

∂u1

)

δu1

+ wT
1
∂ f in

1

∂p
δp + wT

2
∂ f in

2

∂p
δp−wT

2
∂ f out

2

∂p
δp

(B2)

for which the equality constraint (1) has been applied. Note
that the prescribed external force f out

1 is independent of
p. Equation (B2) can be further simplified by letting the
arbitrary virtual displacement w2 = 0, as

δL =
{

2
(

Ru1 −UM
1

)T
ΛR + wT

1 K
in
11 −wT

1 K
out
11

}
δu1

+ wT
1
∂ f in

1

∂p
δp.

(B3)

If we select a w1 to let {2(Ru1 − UM
1 )TΛR + wT

1 K
in
11 −

wT
1 K

out
11 }δu1 = 0 for arbitrary δu1, we obtain a simplest form

of δL, as

δL = wT
1
∂ f in

1

∂p
δp =

(

wT
1
∂ f in

1

∂p
+ wT

2
∂ f in

2

∂p

)

δp (w2 = 0).

(B4)

Consider that δΦ = δL for arbitrary w1 and w2, we obtain
(6) in the text with the following selection of w1 and w2:

(
K in

11 − Kout
11

)
w1 = K eff

11w1 = −2RTΛ
(

Ru1 −UM
1

)
,

w2 = 0
(B5)

which is (7) in the text.
By introducing the adjoint method, it seems that more

equations (B5) and variables (w1 and w2) are involved. But
the solution of (B5) is straightforward and the computa-
tional cost is minimal, because K eff

11 has been computed and
factorized when solving for the displacement u1 as in (3).

The gradients ∂Φ/∂p can also be calculated directly as

∂Φ

∂p
= 2

(
Ru1 −UM

1

)T
ΛR

∂u1

∂p
, (B6)
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in which ∂u1/∂p can be computed numerically using finite-
different method:

∂u1

∂p
≈ u1

(
p + δp

)− u1
(

p
)

δp

(
δp is a small change of p

)

(B7)

or analytically by solving linear equations:

K eff
11
∂u1

∂p
= −∂ f

in
1

∂p
. (B8)

For finite-strain nonlinear problem, the finite-different
method is unaffordable due to the high computational
expense to solve (1) for u1. Solving (B8) is straightforward
and is much less expensive for K eff

11 has been computed
and factorized. However, (B8) needs to be solved for every
material parameters involved; for example, in the exemplar
simulations in this work, it needs to be solved nine times
because each material has three parameters. In comparison,
the proposed adjoint method (B5), (B6) requires only
one solution for w1, regardless of the number of material
parameters involved.
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Correspondence should be addressed to Didier Auroux, auroux@unice.fr

Received 30 May 2011; Revised 12 September 2011; Accepted 12 September 2011

Academic Editor: Shan Zhao

Copyright © 2011 Didier Auroux et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a
variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis
of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g.,
inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to
find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours.
We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm.

1. Introduction

Contour detection is a major issue in image processing. For
instance, in classification and segmentation, the goal is to
split the image into several parts. This problem is strongly re-
lated to the detection of the connected contours separating
these parts. It is quite easy to detect edges using local image
analysis techniques, but the detection of continuous contours
is more complicated and needs a global analysis of the image.

Several image processing problems like image inpaint-
ing and denoising (or enhancement) are classically solved
without detecting edges and contours. The goal of image
enhancement is to denoise the image without blurring it. A
classical idea is to identify the edges in order to preserve them
and to smooth the image outside them. In this particular
case, contour completion is not prerequisite, as the quality
of the result is not too much related to the completeness of
the identified edges, but missing edges may lead to blurred
boundaries. For most of the other image processing problems
(segmentation, inpainting, classification), the detection of
connected contours can drastically simplify the resolution
and improve the quality of the results. For instance, the image
segmentation problem is a very good example, as the goal is

to split the image into its characteristic parts. In other words,
one has to find connected contours, which define different
subsets of the image.

For solving all these problems, various approaches have
been considered in the literature. We can cite here the most
commonly used models: the structural approach by region
growing [1], the stochastic approaches [2–4], and the vari-
ational approaches, which are based on various strategies like
level set formulations, minimizing the total variation of a
quantity or the Mumford-Shah functional, active contours
and geodesic active contours methods, snakes, wavelet trans-
forms, or shape gradient [5–19, 19–24].

Another approach is based on the topological asymptotic
analysis and consists of defining edges as cracks [25, 26].
The goal of topological optimization is to look for an opti-
mal design (i.e., a subset) and its complementary. Finding
the optimal subdomain is equivalent to identifying its char-
acteristic function. At first sight, this problem is not differ-
entiable. But the topological asymptotic expansion gives the
variation of a cost function j(Ω) (see Section 2 for examples)
when one switches the characteristic function from one to
zero (or from zero to one) in a small region [27].
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More precisely, we consider the perturbation of the
main domain Ω by the insertion of a small crack (or hole)
σρ : Ωρ = Ω \ σρ, ρ being the size of the crack. The
topological sensitivity theory provides then an asymptotic
expansion of the considered cost function when the size of
the crack tends to zero. It takes the general form: j(Ωρ) −
j(Ω) = f (ρ)g(x) + o( f (ρ)), where f (ρ) is an explicit positive
function going to zero with ρ, and g(x) is the topological
gradient at point x. Then, in order to minimize the criterion
(or at least its first order expansion), one has to insert
small cracks at points where the topological gradient is the
most negative. Using this gradient type information, it is
possible to build fast algorithms. In most applications, a
satisfying approximation of the optimal solution is reached at
the first iteration of the optimization process. A topological
sensitivity framework allowing to obtain such an expansion
for general cost functions has been proposed in [27].

An efficient edge detection technique, based on the topo-
logical gradient, has been introduced in [28, 29]. It is also
shown that edge detection can make all these image proc-
essing problems straightforward to solve [25, 26, 30, 31].
But the identified edges are usually not connected, and the
results can be degraded. Our goal is to improve these results
by replacing dashed discontinuous edges by connected
contours.

In the inpainting problem, we assume that there is a
hidden part of the image, and our goal is to recover this
part from the known part of the image. We assume that
the missing part is a quite large part of the image, we do
not consider the case of random sets or narrow lines. This
problem has been widely studied and the most common
approaches are: learning approches (neural networks, radial
basis functions, . . .) [32, 33], minimization of an energy cost
function based on a total variation norm [34, 35], morpho-
logical component analysis methods separating texture and
cartoon [36]. We also refer to [6, 8] for the description of
several inpainting algorithms.

We now consider the crack detection technique, within
the framework of the identification of the image edges, either
in the hidden part of the image for the inpainting application,
or in the whole image for the segmentation application [26].
The topological asymptotic analysis provides very quickly the
location of the edges, as they are precisely defined by the
most negative points of the topological gradient. The great
advantage of the topological gradient in comparison with
level line completion and TV-based inpainting methods (see
e.g., [6, 8, 12, 13]) is that the identified edges in the unknown
part of the image correspond to a regular extrapolation of
the known edges, and as we will see on a numerical example,
the topological gradient preserves the continuity of the edge
curvature. Thus, the proposed approach is much more than
simple edge detection.

The main issue of the approach based on the topological
gradient is the need for connected complete contours. This
can be easily understood since the hidden part of the image
is filled in using the Laplace operator in each subdomain
of the missing zone, and a discontinuous contour would
lead to some blurred reconstruction. Up to now, one had to
threshold the topological gradient with a not too small value,

in order to identify connected contours, but this leads to
thick identified edges, and also to consider more noisy points
as potential edges. In order to overcome this limitation, we
consider a minimal path technique in order to connect the
edges identified by the topological gradient.

Minimal paths have been first introduced for finding
the global minimum of active contour models, using the
fast marching technique [37, 38]. They have then been
used to find contours or tubular structures and also for
perceptual grouping using a path or a set of paths minimizing
a functional [38–43]. In our case, the energy to be minimized
will be an increasing function of the topological gradient. As
the topological gradient takes its minimal (negative) values
on the edges of the image, the idea is indeed to find contours
for contour completion from the various minima and small
values of the topological gradient.

The energy to be minimized can be seen as a distance
function. The idea is then to compute this distance function
between a given starting point and all other points. For this
purpose, a front propagation equation is considered. Using
the fast marching propagation, the definition of the distance
function is straightforward: the distance between a point x
and the starting point is exactly the time at which the front
reached x. Then, minimal paths between these points can be
identified using a gradient descent. For perceptual grouping,
a set of keypoints is considered as starting points and a set
of minimal paths connecting some pairs of these keypoints
is considered as a contour completion. This approach is
extremely satisfactory in 2D problems, with quite few key
points. It is also extremely fast. In 3D images, minimal paths
find tubular structures, but in order to identify minimal
surfaces, this approach is much more difficult to consider.
It was dealt in the case of a surface connecting two curves in
[44]. We only consider here the 2D case.

The application of the minimal path technique to the
topological gradient allows us to obtain an automatic
identification of the main (missing or not) edges of the
image. These edges will be continuous, by construction, and
will allow us to simply apply the Laplace operator to fill in the
image for inpainting applications, or will directly provide the
segmented image, with very good results. Another advantage
of this technique is to be very fast, as it does not degrade
the O(n · log(n)) complexity of the topological gradient
based algorithm introduced in [26]. We refer to [26, 45] for
the inpainting and segmentation algorithms by topological
asymptotic expansion, and for a detailed presentation of the
topological gradient.

The paper is organized as follows. In Section 2, we
present the edge detection method using the topological gra-
dient, and the corresponding segmentation and inpainting
algorithms. In Section 3, we propose an algorithm based on
the minimal path and fast marching techniques in order to
identify the valley lines of the topological gradient, which
correspond to the main edges of the image. Then, we report
the results of several numerical experiments in Section 4. We
also compare this hybrid scheme with the fast marching algo-
rithm applied to the standard gradient. Two particular image
processing problems are considered: segmentation and
inpainting. Finally, some conclusions are given in Section 5.
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Figure 1: Example of domain and inserted crack (with its orienta-
tion).

2. Edge Detection by Topological
Asymptotic Analysis and Its Application to
Inpainting and Segmentation

2.1. Topological Asymptotic Analysis. Let Ω be an open
bounded domain ofR2 (note that it can easily be extended to
Rn). We consider a partial differential equation (PDE) prob-
lem defined in Ω, and we denote by uΩ its solution (we will
further see under which assumptions it can be considered).
We finally consider a cost function J(Ω,uΩ) to be minimized,
where uΩ is the solution to the PDE in Ω. The idea of
topological asymptotic analysis is to measure the impact of
a perturbation of the domain Ω on the cost function.

For a small ρ ≥ 0, let Ωρ = Ω \ σρ be the perturbed
domain by the insertion of a crack σρ = x0 + ρσ(n), where
x0 ∈ Ω. We denote by σ a fixed bounded straight crack
containing the origin, n is a unit vector, and σ(n) is the result
of the rotation of σ so that n is the normal to σ(n). The
fixed crack σ is rotated (normal n), stretched (size ρ), and
translated (center x0) in order to get σρ (see Figure 1). The
topological gradient theory can also be applied in the case of
arbitrary shaped holes [46–49], but we will only consider the
case of crack perturbations in our applications. The small pa-
rameter ρ will represent the size of the inserted crack. Finally,
we denote by V a Hilbert space on Ω, usually H1(Ω) in our
applications.

We now consider the variational formulation of the PDE
problem on Ω

Find u ∈ V such that

a(u,w) = l(w), ∀w ∈ V,
(1)

and the corresponding variational formulation of the PDE
problem on the perturbed domain

Find uρ ∈ Vρ such that

aρ
(
uρ,w

)
= lρ(w), ∀w ∈ Vρ.

(2)

One should notice that for ρ = 0, the perturbed PDE
problem becomes the original PDE problem.

We assume in the following that aρ is a bilinear continu-
ous and coercive form defined on Vρ, a Hilbert space on Ωρ,
and that lρ is a linear continuous form on Vρ.

We can rewrite the cost function J as a function of ρ by
considering the following map:

j : ρ �−→ Ωρ �−→ uρ, solution of Equation (2) �−→ j
(
ρ
)

:= J
(
Ωρ,uρ

)
.

(3)

In order to apply the topological asymptotic theory, aρ,
lρ, and J have to satisfy the hypotheses of the following result
[50, 51].

If there exist a linear form Lρ defined on Vρ, a function
f : R+ → R+, and four real numbers δJ1, δJ2, δa, and δl
such that

(1) limρ→ 0 f (ρ) = 0,

(2) J(Ωρ,uρ)−J(Ωρ,u0) = Lρ(uρ−u0)+ f (ρ)δJ1+o( f (ρ)),

(3) J(Ωρ,u0)− J(Ω,u0) = f (ρ)δJ2 + o( f (ρ)),

(4) (aρ − a0)(u0, pρ) = f (ρ)δa + o( f (ρ)),

(5) (lρ − l0)(pρ) = f (ρ)δl + o( f (ρ)),

where the adjoint state pρ is solution of the adjoint equation

aρ
(
w, pρ

)
= −Lρ(w) ∀w ∈ Vρ, (4)

and uρ is solution of the direct (2), then the cost function has
the following asymptotic expansion:

j
(
ρ
)− j(0) = f

(
ρ
)
g(x) + o

(
f
(
ρ
))

, (5)

where g(x) is the topological gradient, given by

g(x) = δJ1 + δJ2 + δa− δl. (6)

Indeed, from second and third items, j(ρ) − j(0) =
J(Ωρ,uρ)−J(Ω,u0) = Lρ(uρ−u0)+ f (ρ)(δJ1 +δJ2)+o( f (ρ)).
From the definition of the adjoint state and the direct
equation, Lρ(uρ − u0) = −aρ(uρ, pρ) + aρ(u0, pρ). From
fourth item and direction (2), −aρ(uρ, pρ) + aρ(u0, pρ) =
−lρ(pρ) + a0(u0, pρ) + f (ρ)δa+ o( f (ρ)) = −lρ(pρ) + l0(pρ) +
f (ρ)δa + o( f (ρ)). Finally, from fifth item, this term is equal
to f (ρ)(δa− δl) + o( f (ρ)).

Then, from an asymptotic point of view, as f (ρ) ≥ 0,
the idea is to create cracks in the domain Ω, where the
topological gradient g is the most negative, because

J
(
Ωρ,uρ

)
= J(Ω,u) + f

(
ρ
)
g(x) + o

(
f
(
ρ
))

, (7)

and the cost function corresponding to the perturbed
problem will be smaller than the original one. The main
advantage of this method is that it only requires the
resolution of the direct (2) and adjoint (4) problems.

2.2. Application to Edge Detection. LetΩ be an open bounded
domain of R2, representing the image domain. For a
given function v in L2(Ω) (in our application, v represents
the input image), the initial problem is defined on the
unperturbed domain and reads as follows: find u ∈ H1(Ω)
such that

−div(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(8)
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where n denotes the outward unit normal to ∂Ω and c is a
given function. Note that this problem is equivalent to linear
diffusion restoration.

For a given x0 ∈ Ω and a small ρ ≥ 0, let us now consider
Ωρ = Ω\σρ the perturbed domain by the insertion of a crack
σρ = x0 + ρσ(n), where x0 ∈ Ω, σ(n) is a straight crack, and
n a unit vector normal to the crack. Then, the new solution
uρ ∈ H1(Ωρ) satisfies

−div
(
c∇uρ

)
+ uρ = v in Ωρ,

∂nuρ = 0 on ∂Ωρ.
(9)

Edge detection is equivalent to looking for a subdomain
of Ω in which the energy is small. Indeed, we consider the
image gradient energy function, and the edges correspond to
high variations of the image intensity, and then to high values
of the gradient. So, our goal is to find the most energetic
parts of the image (in order to identify the edges), and we
reformulate this problem as the minimization of the energy
norm outside the edges

j
(
ρ
) = J

(
Ωρ,uρ

)
=
∫

Ωρ

∥
∥∥∇uρ

∥
∥∥

2
. (10)

Then, the cost function j has the following asymptotic
expansion (see, e.g., [52] for more details):

j
(
ρ
)− j(0) = ρ2G(x0,n) + o

(
ρ2), (11)

with

G(x0,n) = −πc(∇u0(x0) · n)
(∇p0(x0) · n)

− π|∇u0(x0) · n|2,
(12)

and where p0 is the solution to the adjoint problem

−div
(
c∇p0

)
+ p0 = −∂uJ(Ω,u0) in Ω,

∂np0 = 0 on ∂Ω.
(13)

The topological gradient could be written as

G(x,n) = (M(x)n) · n, (14)

where M(x) is the 2 × 2 symmetric matrix defined by

M(x) = −πc∇u0(x)∇p0(x)T +∇p0(x)∇u0(x)T

2

− π∇u0(x)∇u0(x)T .

(15)

For a given x, G(x,n) takes its minimal value when n is
the eigenvector associated to the lowest eigenvalue λmin of
M. This value will be considered as the topological gradient
associated to the optimal orientation of the crack σρ(n).

Then, we can define the identified edge set

σ = {x ∈ Ω; λmin(x) < δ < 0}, (16)

where δ is a negative threshold.

We first illustrate this technique on a synthetic two
dimensional image, in grey level, defined by a sigmoid
function in x-coordinate (cumulative distribution function
of a Gaussian). The image is represented in Figure 2(a).
Then, the L2 norm of its standard gradient ‖∇u(x)‖ and its
topological gradient λmin(M(x)) are represented in Figures
2(b) and 2(c), respectively.

One can see that the topological gradient is less sensitive
to a smooth variation of the image intensity than the
standard gradient. The support of the topological gradient is
indeed much smaller. Thanks to the homogeneous Neumann
condition on the crack, the solution of the perturbed
problem is discontinuous along the crack, and the solution
has a much smaller energy if one inserts a crack in the image
near the middle of the x-axis.

We now apply this edge detection technique to the image
represented in Figure 3(a). The opposite of the L2 norm of
its standard gradient is represented in Figure 3(b). Note that
we represent its opposite in order to have comparable images
with the topological gradient, which has negative values.

The topological gradient is represented on Figure 3(c). As
it quantifies in a global way whether a pixel is part of an edge
or not, it is much less sensitive to noise and small variations
of the image than the standard gradient. For instance, the
topological gradient takes much larger absolute values on
the edges than outside, contrary to the standard gradient.
Note also that the time required for the computation of
the topological gradient is not much higher than for the
standard gradient, thanks to the O(n · logn) complexity of
the topological gradient algorithm.

However, for segmentation (or simply edge detection),
the next step of topological gradient algorithms usually
consists of thresholding the topological gradient in order
to define the edge set. Such a threshold is represented in
Figure 3(d). One can see that in order to obtain at least the
main connected edge, the threshold coefficient has been set
to a large value, leading to add many unwanted points to the
edge set, but also to thick edges. And even in this case, the
main contour is not totally continuous. This is why we need
to hybridize this method with the fast marching algorithm
(see Section 3.4) in order to obtain continuous edges for the
segmentation and to remove the isolated unwanted pixels.

We will also see below that the fast marching algorithm
needs a potential function highly related to the edges of
the image, much more than the standard gradient of the
image. Then, we will see that the topological gradient also
improves the fast marching method within the segmentation
framework, as the quality of the segmentation is directly
related to the choice of the potential function.

2.3. Inpainting Algorithm by Topological Asymptotic Analysis.
We also consider the inpainting application. We present here
the topological gradient-based algorithm. Let ω ⊂ Ω be the
missing part of the image and γ its boundary. We still de-
note by v the input image (assumed to be known in Ω \ ω,
and unknown in ω). The algorithm is based on the fact
that two measurements are available on the boundary of the
hidden part of the image: the value of the image (Dirichlet
condition) and its normal derivative (Neumann condition).
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Figure 2: (a) Original image; (b) L2 norm of the (standard) gradient of (a); (c) Topological gradient of (a).

From these two measurements, by considering the standard
crack localization problem (see, e.g., [50]), it is possible to
solve a Dirichlet problem and a Neumann problem for a
given crack σ

ΔuD = 0 in ω \ σ ,

uD = v on γ,

∂nuD = 0 on σ ,

uD = v in Ω \ ω,

(17)

where uD ∈ H1(Ω \ σ), and

ΔuN = 0 in ω \ σ ,

∂nuN = ∂nv on γ,

∂nuN = 0 on σ ,

uN = v in Ω \ ω,

(18)

where uN is in H1(Ω \ σ).

Then, in order to identify the missing edges, one has to
minimize the following cost function:

J(σ) = 1
2
‖uD − uN‖2

L2(Ω). (19)

For the actual cracks (hidden edges), the solutions uD and
uN should be equal, as the actual solution satisfies both
Neumann and Dirichlet conditions. By minimizing this cost
function, one tries to find a solution that is consistent with
both conditions on the boundary.

The topological gradient corresponding to this cost
function is given by

G(x,n) = − [(∇uD(x) · n)
(∇pD(x) · n)

+(∇uN (x) · n)
(∇pN (x) · n)],

(20)

where pN and pD are the two corresponding adjoint states
[25, 50]. As previously, the topological gradient can be
rewritten as G(x,n) = nTM(x)n, where M(x) is a symmetric
matrix, and G takes its minimal value when n is the
eigenvector associated to the lowest eigenvalue of M.
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Figure 3: (a) Original image; (b) L2 norm of the (standard) gradient of (a); (c) Topological gradient of (a); (d) Identified edges by
thresholding the topological gradient.

The inpainting algorithm is then the following:

(i) calculation of uD and uN ,

(ii) calculation of pD and pN ,

(iii) computation of matrix M(x) and its lowest eigen-
value λmin at each point of the missing domain ω,

(iv) definition of the set of cracks: {x ∈ ω; λmin(x) < δ <
0}, where δ is a negative threshold,

(v) dalculation of u solution to the Neumann problem
taking into account the cracks location.

This algorithm has a complexity of O(n · log(n)), where
n is the size of the image (i.e., number of pixels). We refer to
[25] for more details about this algorithm.

We now illustrate this algorithm on two synthetic
examples. We first want to restore a black square, partially
hidden by a red square. The degraded image is represented
in Figure 4(a).

If no edge is inserted in the hidden zone, then the
resolution of a Poisson problem gives a blurred image, as the
Laplace operator provides a smooth reconstruction between

the black square and the white background, as shown in
Figure 4(c). The restored image by the inpainting algorithm
is represented in Figure 4(e). Using the edges identified by
the topological gradient, the reconstruction by the Laplacian
is much better, as there is now an insulating crack between
the black and white zones.

The second synthetic example is the reconstruction of a
black circle, partially hidden by a red square. The degraded
image is represented in Figure 4(b), the restored image
by the Laplacian without any inserted edge is shown in
Figure 4(d), and the restored image the Laplacian using the
edges identified by the topological gradient is represented in
Figure 4(f). As one can see on these two synthetic examples,
the curvature of the reconstructed edges is continuous in
the neighborhood of the boundary of the occlusion. It is
not common that an inpainted image has C1 edges, and for
instance, TV-based methods would connect the boundary
points with a straight line.

We now explain why we also decided to hybridize the
topological gradient and minimal paths methods on a more
realistic case.
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Figure 4: (a) Occluded image, defined by a black square on a white background, the occlusion being represented by a red square; (b)
Occluded image, defined by a black circle on a white background, the occlusion being represented by a red square; (c) Inpainted image by
diffusion (see (a) for the original degraded image), without any inserted edge in the occlusion; (d) Same as (c) in the circle case; (e) Inpainted
image using the missing edges identified by the topological gradient, and then diffusion to fill in the image (see (a) for the original degraded
image); (f) Same as (e) in the circle case.
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Figures 5(a) and 5(b) show an example of image, in
which we added a mask on a quite large part of the image
(
800 pixels). The goal of inpainting is to reconstruct as
precisely as possible the original image from the occluded
image. We also want the inpainted image to have sharp
(unblurred) edges.

Figure 5(c) shows the corresponding topological gradi-
ent, provided by the inpainting algorithm. In this case, the
topological gradient gives some information about the most
probable location of the missing edges. In the inpainting
algorithm presented in [25], the idea is then to threshold
the topological gradient and to define the edge set of the
occluded zone as being the set of points below the threshold.
The main issue is that the identified missing edges must
be connected in order to avoid blurry effects (due to the
Laplacian) in the reconstruction. Then, the threshold is
sometimes set manually in order to have connected contours.
In our example, the identified edge set is represented by white
points in Figure 5(d).

Figures 5(e) and 5(f) show the corresponding inpainted
image. One can see that the reconstruction is not very good,
particularly in the top part. This is mainly due to the fact that
the missing edges identified by the topological gradient are
either connected but thick with a lot of wrong identifications
(if the threshold is too small) or discontinuous (otherwise).

The idea is then to apply the fast marching algorithm
on the topological gradient obtained during the inpainting
process in order to identify connected contours in the hidden
part of the image.

3. A 2D Algorithm Based on the
Minimal Paths and Fast Marching Methods

3.1. Minimal Paths. In this section, we describe the standard
minimal path technique, adapted to our needs. We refer
to [37, 38, 41] for more details about the minimal paths
method.

In the following, let Ω be the considered image domain.
We assume that Ω is a regular subset of R2. In order to
compute some minimal paths, we need to define a potential
function, measuring in some sense for any point of Ω the cost
for a path to contain this point. As we want to identify paths
in the topological gradient image, and considering that this
potential function must be positive, we will define a potential
function as follows:

P(x) = g(x)−min
y∈Ω

{
g
(
y
)}

, ∀x ∈ Ω, (21)

where g is the topological gradient, defined in all the domain
Ω. We simply shift the topological gradient from its minimal
value, in order to obtain a positive function P. We can see
that the points where the topological gradient g reaches
its minimal values are quite costless. This is a way to say
that these points must be on the minimal paths. On the
contrary, if the topological gradient takes high values, then
the corresponding potential values lead to very expensive
paths.

Once each point has a cost (defined by the potential
function), we need to define the corresponding cost of a path.

We denote by C(s) a path, or curve, drawn in the image
domain, where s represents the arc length. We can now define
a functional, measuring the cost of such a path

J(C) =
∫

C
(P(C(s)) + α)ds, (22)

where α is a positive real coefficient that represents regu-
larization. The first part of the cost function measures the
cost itself of the path C(s) simply by summing the value of
the potential function on this path, and the second part is
a regularization term that measures the length of this path.
In our applications, α is usually very small, as the goal is to
connect the most negative parts of the topological gradient,
whatever the Euclidean distance is. Note also that we do not
consider any regularization terms on the curvature of the
contour, as the topological gradient already provides such
regularity on the curvature, contrary to TV-based methods.
Typically, α = 0 would be a good choice, as we really want
the minimal path along the topological gradient values, but
as the minimum of P is 0 (at the minimum of the topological
gradient), one has to set α to a very small value in order to
avoid numerical instability (see (24)).

We now consider a key point x0 ∈ Ω of the image, and
x will represent any point of the image. The energy J(C)
of a given path C can be seen as a distance between the
two endings of C, weighted by the potential function (and
the regularization). The goal is to find the minimal energy
integrated along the path C. We can now define the weighted
distance between key point x0 and point x by

D(x; x0) = inf
C∈A(x,x0)

J(C) = inf
C∈A(x,x0)

∫

C
(P(C(s)) + α)ds, (23)

where A(x, x0) is the set of all paths going from point x0 to
point x in the image. The idea is that finding the minimal
path between points x and x0 is now equivalent to computing
the weighted distance function between these two points.
If x and x0 are on the same contour of the image, then
the minimal path between these two points is obviously a
continuous contour of the image, connecting these points.
The minimal path has indeed the lowest cost, that is, the
points on this path have low topological gradient values. The
goal is now to compute the distance function given by (23).

3.2. Fast Marching. An efficient way to compute this distance
function is to solve a front propagation equation:

∂F (s, t)
∂t

= 1
P(F (s, t)) + α

nF (s, t), (24)

where nF (s, t) is the outer normal unit vector to the front
F . We initialize the propagation with F (s, 0), an infinitely
small circle centered at key point x0. This front evolves
then with a propagation speed inversely proportional to the
potential function. If for example a point in the outer part
of the front has a large potential (i.e., a large cost), then the
propagation speed will be nearly equal to zero, and the front
will not expand much at this point. On the other hand, if
the potential is small (i.e., this point is nearly costless), then
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Figure 5: (a) Occluded image (by a white rectangle); (b) Zoom of the occluded zone (see (a)); (c) Topological gradient of (b); (d) Identified
edges in the occluded zone by thresholding the topological gradient; (e) Inpainted image using the topological gradient; (f) Zoom of the
occluded zone (see (e)).

the propagation speed is large, and the front will quickly
propagate in this direction.

The distance D(x; x0) introduced in (23), between key
point x0 and point x, is then simply the instant t at which
the front, initialized at key point x0, reaches point x. The

algorithm to compute the distance function is called the
fast marching technique and is justified by the fact that the
distance satisfies the following Eikonal equation:

‖∇xD(x; x0)‖ = P(x) + α, (25)
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with the initialization D(x0) = 0. We refer to [37, 38, 44,
53, 54] for more details about the fast marching technique
and the justification of (25). If n is the size of the image,
the complexity of this fast marching method is bounded by
O(n · log(n)), which is also the complexity of the topological
gradient algorithm.

3.3. Multiple Minimal Paths. The main issue is now to extend
this minimal path technique to more than one keypoint in
order to connect several points. This is exactly what we need
in order to connect the identified edges by the topological
gradient, as we have many identified keypoints (e.g., all
negative local minima of the topological gradient) that we
want to connect. As explained in [41], the first point of
a multiple minimal path algorithm is to reduce the set of
keypoints for computational reasons. Moreover, the selected
keypoints should not be too close to each other. One usually
chooses a total number N of keypoints and the first (or main)
one. Then, the N − 1 other keypoints can be chosen for
example as described in [41].

The next step consists of connecting these N points.
One has to compute the distance function from each of
these key points, and the common minimal paths algorithms
provide then the Voronoı̈ diagram of the distance and
the corresponding saddle points (minimal distance along
the edges of the diagram and maximal distance from the
keypoints). The Voronoı̈ diagram defines a partition of the
image in as many subsets as the number of keypoints. Each
subset is defined by the set of points that are closer to the
corresponding keypoint than to all others. The saddle points
minimize the distance function on the edges of the diagram:
minimal distance on the edge and maximal distance to the
keypoints [38]. It is useful to compute these saddle points
to save computation time, since it reduces the domain of
the image where the fast marching computes or updates the
weighted distance map.

Finally, the idea is to consider the saddle points as initial
conditions for minimizing the distance function. For each
saddle point as an initial point, a minimization is performed
towards each of the two corresponding keypoints (recall
that the saddle points are located at the interface between
two subsets of the Voronoı̈ diagram). Each minimization
produces a path between the saddle point (initial condition)
and a keypoint (local minimum of the distance function).
This step is usually called back propagation, as it consists of
a gradient descent from the saddle point, back to the linked
keypoints. The back-propagation step is straightforward, as
there is no local minimum of the distance function, except
the keypoints. The union of all these paths gives a continuous
path, connecting the keypoints together.

The interesting part of the approach introduced in [41]
is that each keypoint should not be connected to all the
others, but only to at most two others, as we are looking for a
set of closed connected paths. Thus, the keypoints have to
be ordered in a way such that they are only connected to
the other keypoints that are closest to them in the energy
sense [41]. For this reason, we sort all the saddle points
from smaller to larger distance, and we first try to connect
the pairs of keypoints corresponding to the saddle points

of smallest distance. These keypoints are indeed more likely
to be connected than distant keypoints, corresponding to
saddle points of large potential. Once the close keypoints
are connected, we repeat the process with the new closest
pairs of keypoints, provided each point remains connected
to at most two other ones. At the end of the process, all
the keypoints are connected to at most two other keypoints,
and the union of all minimal paths between the keypoints
represents one (or several) continuous contour of the image.
An interesting feature of this method is that the key points
are by construction widely distributed around.

If all the selected keypoints are on the same contour of
the image, we are almost sure that at the end, they will all be
connected together, and we will retrieve the corresponding
contour, as the potential function (related to the topological
gradient) is very low on this contour. If, on the contrary,
one keypoint is not part of the contour, the large values of
the topological gradient, and hence of the potential function,
will isolate this keypoint from the other ones, and it will not
disturb the contour completion process.

3.4. Algorithm. The hybrid algorithm we propose is then the
following.

Fast Marching Algorithm Applied to the Topological Gradient

(i) Compute the topological gradient of the image.

(ii) Set N the number of keypoints and choose the N
keypoints: the main one will be for example the
global minimum of the topological gradient, the
other ones being the most negative local minima of
the topological gradient.

(iii) Compute the distance function (23) with all these
keypoints, and the corresponding Voronoı̈ diagram.

(iv) Compute the set of saddle points: on each edge of
the Voronoı̈ diagram, determine the point of minimal
distance.

(v) Sort all these points of minimal distance, from
smaller to larger distance.

(vi) For each of these saddle points, from smaller to larger
distance, check if it will not be used to connect two
keypoints, one of which is already connected to two
other keypoints.

(vii) If this is not the case, perform the back propagation
from this point: use this saddle point as an initializa-
tion for a descent type algorithm in order to connect
the two corresponding keypoints.

It is straightforward to see that this algorithm converges
and that at convergence, all the keypoints are connected to
at most two other keypoints. This provides one or several
continuous contours containing the keypoints. As the first
keypoint is usually the global minimum of the topological
gradient, it is on one of the main edges of the image.
Consequently, using this algorithm, we can identify this edge.
Then, it is possible to restart the algorithm, using other
keypoints that are not on this identified edge, by initializing,
for instance, the first keypoint as the minimum of the
topological gradient outside the neighborhood of this edge.
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Note that for inpainting applications, the number of
keypoints can be set automatically, as the topological gra-
dient takes its minimal values on the edges located on the
boundary of the hidden zone, and all these minima (close to
the global minimal value of the topological gradient) can be
chosen as keypoints.

4. Numerical Experiments

4.1. Numerical Results for 2D Segmentation. We consider
again the grey level image represented in Figure 3(a) for the
segmentation application, and we now present the results
corresponding to the hybrid method.

Using an automatic thresholding for identifying the most
negative values of the topological gradient, Figure 6(a) shows
the set of points (or admissible keypoints, in blue), in which
we will choose the keypoints for the minimal path algorithm.
The first keypoint is set to the minimum of the topological
gradient. Then, we have set the number of keypoints to
N = 3. From the first keypoint, we start the minimal path
algorithm, and we choose the second keypoint as being the
point (in the admissible set) maximizing the distance to the
first keypoint. Then, we start again the minimal path algo-
rithm from these two points, and we set the third keypoint
in a similar way. These three keypoints are represented by
black points in Figure 6(a). Note that the keypoints can also
be (manually) provided by the user, for instance, with the
aim of identifying a specific edge of the image.

From these keypoints, we run the minimal path algo-
rithm in order to compute the distance map. Figure 6(b)
shows this distance function. One can clearly see that the dis-
tance does not correspond to the Euclidean metric in the
plane, as the distance remains very small on the common
edge of the 3 keypoints, whereas it takes much larger values
outside.

The corresponding Voronoı̈ diagram is represented in
Figure 6(c). The three keypoints are still represented by black
points. Each color represents the subset Ωi of points that
are closer to keypoint i than to the others. For instance,
all the points in the green zone are closer to the right
keypoint than to any of the two others. This diagram is
automatically provided during the distance computation by
the fast marching algorithm.

For any i /= j, we consider the interface Γi j = Ωi ∩ Ω j

between two subsets of the Voronoı̈ diagram. Γi j represents
then the set of points equidistant from keypoints i and j. A
saddle point minimizes the distance function on Γi j : same
distance to keypoints i and j, minimal distance on Γi j . These
saddle points are represented by blue points on Figure 6(c).
These saddle points can be found during the fast marching
propagation as the first meeting points of the fronts starting
from each of the keypoints.

From these saddle points, the idea is finally to perform
a descent-type algorithm in order to minimize the distance
function from the saddle points to the keypoints. We
consider a saddle point on an edge Γi j as an initial condition
for two minimizations of the distance function, one towards
each of the corresponding keypoints (i and j). Each of these
two minimizations provides a continuous path from the

saddle point to one of the two keypoints. The union of these
two paths connects the two keypoints. This process is done
for all pairs of keypoints.

The final set of paths is represented in green on the
distance function in Figure 6(d). The three keypoints are
also represented (in white). These paths correspond to the
contour of the original image that contains the 3 keypoints.

The minimal path is also represented on the original
image in Figure 6(e). It also confirms that the identified path
perfectly matches the edge we were looking at.

By applying again this algorithm, with other keypoints
(selected outside the first identified contour), it is possible
to detect other contours of the image. Figure 6(f) shows,
for instance, the first main contour in green and a second
one in red. Contrary to the first one, we can see that this
contour is not perfectly detected, as the algorithm missed
some parts of the contour in the bottom left and top parts of
the red zone. One should probably consider more keypoints,
and maybe a different regularization coefficient, in order
to avoid this phenomenon. But for the application of the
topological gradient to image segmentation, the main issue
was the discontinuity of the identified contours (see, e.g.,
[26]). With this approach, we ensure the continuity of the
contours, and hence, assuming the edges are well identified,
we can obtain a perfectly segmented image.

Finally, we illustrate the fact that the topological gradient
provides better information about the edges of the image
than the standard gradient, as previously observed (see Fig-
ures 3(b) and 3(c)). We have manually selected 3 keypoints
on an edge of the image. These keypoints are represented
in blue on Figure 7(a). From these keypoints, we have run
the fast marching algorithm (see Section 3.4) applied to both
the standard gradient and the topological gradient (hybrid
scheme). The identified paths are represented in Figures 7(b)
and 7(c), respectively.

The topological gradient clearly provides the best iden-
tification of the edge. This can easily be explained by the
bad shape of the standard gradient in this region (see
Figure 3(b)). On the contrary, the topological gradient is less
sensitive to small local variations, and it is more likely to
define a potential function than the standard gradient.

4.2. Numerical Results for 2D Inpainting. We now consider
another application of this hybrid scheme to image inpaint-
ing. We recall that the idea of the topological gradient
algorithm is to identify the missing edges in the occluded
part of the image, and then to reconstruct the image from
the solution of a Poisson problem with Neumann boundary
conditions [25]. In this application also, it is crucial to have
connected contours; otherwise, the reconstruction with the
Laplacian will not be satisfactory.

We first present a comparison between the standard top-
ological gradient approach, a TV-based inpainting method,
and the new hybrid scheme. The original image is a black
rectangle, and we consider various perturbations of this
image. Figure 8(a) shows a first perturbation of the image, in
which the missing region is represented by the red rectangle.
The length of the hidden zone is 20 pixels. As previously
shown, the missing zone is quite large, and as the identified
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Figure 6: (a) Admissible set of points (i.e., most negative values of the topological gradient) in blue, and 3 keypoints automatically selected
in black; (b) Distance function computed from these 3 keypoints with the fast marching algorithm; (c) Corresponding Voronoı̈ diagram,
with the 3 keypoints and saddle points; (d) Identified minimal path between the keypoints represented on the distance function; (e) Minimal
path between the keypoints represented on the original image; (f) Another identified continuous contour from other keypoints.
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Figure 7: (a) Three selected keypoints on the original image; (b) Contours identified by the fast marching algorithm applied to the standard
gradient with the three selected keypoints (see (a)); (c) Contours identified by the fast marching algorithm applied to the topological gradient
with the three selected keypoints (see (a)).

edges have to be connected in order to avoid blurry effects
in the reconstruction, the threshold is set manually to a
quite small negative value. And then, the identified edges
are then quite thick with a lot of wrong identifications. The
reconstructed image by the topological gradient is shown
in Figure 8(b). The reconstruction is not very good, as
many wrong edges are considered in order to connect the
contours. Figure 8(c) shows the identified minimal path
between keypoints (that have been automatically selected,
as being the main edges on the boundary of the missing
zone) in green, represented on a zoom of the perturbed
image. Figure 8(d) shows the corresponding inpainted image
by the hybrid scheme: the image is reconstructed using the
topological gradient method, with the edges identified by
the minimal path technique. In this case, the reconstruction
is perfectly done, and the inpainted image is identical to
the original image. A TV-based inpainting method gives the

same result (see Figure 8(e)), as the missing zone is not too
wide (20 pixels, which is also the size of the black rectangle).

Figure 9 is similar to Figure 8 in the case of a larger
perturbation. The missing zone corresponds now to 40
pixels, twice the size of the black rectangle. In this case, the
topological gradient is much less negative near the middle
of the hidden zone, and the threshold has to be increased
to a smaller negative value in order to have closed contours.
The corresponding inpainted image is not good at all. But
the minimal path technique still identifies correct edges, and
the inpainted image by the hybrid scheme is almost perfect,
whereas a TV-based inpainting method does not connect
anymore the two regions of the rectangle.

Figure 10 is similar to Figures 8 and 9, in the case of a
larger perturbation. The missing zone now corresponds to
80 pixels, which is much larger than the size of the black
rectangle. In this case, the topological gradient still gives
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Figure 8: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

unsatisfactory results, due to badly connected edges. Even if
the topological gradient has strongly negative values along
the missing edges close to the boundary of the perturbation,
the missing zone is too wide, and the minimal path technique

now connects wrong keypoints, and the inpainted image
by the hybrid scheme is no more connected. As before, the
TV-based method does not connect the two parts of the
rectangle.
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Figure 9: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

We now consider again the occluded image given in
Figure 5(a).

After thresholding the topological gradient, several
points (identified by blue circles) have been identified

and define the admissible set of keypoints represented in
Figure 11(a). We choose then the most negative point of
the topological gradient as the first keypoint and then the
further admissible point as the second one. The keypoints
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Figure 10: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

are represented by a large black point on the same image.
They are located on the edge of the domain, as the inpainting
topological gradient always takes its minimal values there.

Then, the minimal path algorithm is run, and it provides
a path between the keypoints, represented in green in

Figure 11(b). We can see that the path follows very well the
valley line of the topological gradient, from one side to the
other. By choosing 3 keypoints instead of 2, there will be
another keypoint on the bottom edge, near the first one, and
it will simply add a small contour located all along on the
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Figure 11: (a) Admissible set of keypoints and selected keypoints on the topological gradient; (b) Minimal path between the keypoints
represented on the topological gradient; (c) Minimal path between the keypoints represented on the occluded image; (d) Corresponding
identified missing edge in white; (e) Inpainted image using the fast marching algorithm for closing the contours identified by the topological
gradient in the hidden part of the image; (f) Zoom of (e).
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edge of the domain, and consequently, there is absolutely no
impact on the reconstruction of the hidden part of the image.

Figure 11(c) shows the same identified path represented
on the occluded image. This allows one to see that the path
clearly gives a good approximation of the missing edge and
also that the topological gradient is very powerful for this
identification problem. The corresponding identified edge
set is represented in Figure 11(d). This image should be
compared with the thresholded edge set of Figure 5(d). From
these two images, we can conclude that the minimal path
algorithm is an excellent tool for extracting the valley lines
of the topological gradient.

Finally, using this minimal path as the set of missing
edges in the occluded zone, the inpainting topological gradi-
ent algorithm produces a much better reconstructed image,
shown in Figures 11(e) and 11(f). The quality of the image is
very good, as the missing edges used for the reconstruction
are connected, and the Laplace operator will not produce
any blurring effect due to a discontinuous contour. Note
that there are some small discontinuities on the top left
boundary due to the fact that we used the Neumann solution
of the perturbed problem. The construction of a Dirichlet
solution would be better, but it is also much more difficult
to solve the Dirichlet problem in this case, as it is ill posed.
This example confirms that the quality of all topological
gradient applications in image processing can be improved
by replacing a simple thresholding technique by a minimal
path algorithm.

As already shown in [25], the topological gradient
extrapolates the edges and their curvature in the missing part
of the image (see also Figure 11(d), in which the identified
edge is not a straight line), contrary to total variation-based
methods. Thus, provided the identified missing edges are
connected (this point is now ensured by the application of
the fast marching algorithm to the topological gradient), the
inpainted image has edges with continuous curvature, which
is not the case with many other inpainting schemes.

5. Conclusions and Perspectives

We have introduced a hybrid scheme, based on one side on
the topological gradient for edge detection, and on the other
side on the fast marching and minimal paths methods for
contour completion. These approaches allow us to extract
connected contours in 2D images and to solve the main
issue of all topological gradient-based algorithms for image
processing problems (discontinuity of the edges). Moreover,
the minimal path algorithm does not degrade the complexity
of the topological asymptotic analysis.

We have considered two specific applications in image
processing: segmentation and inpainting. In the first one
(segmentation), we showed that the topological gradient is
more efficient than the standard gradient for edge detection
and the hybrid scheme provides better results than the fast
marching method applied to the standard gradient of the
image. In the second application (inpainting), we showed
that the hybrid scheme particularly improves the quality of
the inpainted image, as the contour completion ensures a

nonblurred inpainted image and as it also helps removing
the manual thresholding of the topological gradient.

The hybrid scheme is very efficient and quite automatic,
as there is no more thresholding process. The topological
gradient algorithm has been shown in previous inpainting
articles to propagate the main edges inside the hidden zone,
with some continuity of their curvature, and the use of
a minimal path technique helps detect the valley lines of
the topological gradient. The main drawback of the hybrid
scheme is the same as for the standard topological gradient
algorithm: the image is filled in with the Laplacian, and
this part has to be improved in order to also recover
texture information. Some preliminary results show that it
is possible with the same kind of approach, thanks to higher
order operators.

An interesting and natural perspective is to apply this
hybrid scheme to 3D images and movies. The topological
gradient can very easily be extended to 3D images. The
minimal path technique has also been adapted to the iden-
tification of tubular structures in 3D [37]. Another perspec-
tive consists of dealing with the changes of topology of the
edges in order to automatically detect bifurcations and T-
junctions.
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[20] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia, “A
variational model for image classification and restoration,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 5, pp. 460–472, 2000.

[21] A. Tsai, A. Yezzi, and A. S. Willsky, “Curve evolution
implementation of the Mumford-Shah functional for image
segmentation, denoising, interpolation, and magnification,”
IEEE Transactions on Image Processing, vol. 10, no. 8, pp. 1169–
1186, 2001.

[22] L. A. Vese and T. F. Chan, “A multiphase level set framework
for image segmentation using the Mumford and Shah model,”
International Journal of Computer Vision, vol. 50, no. 3, pp.
271–293, 2002.

[23] J. Weickert, “Efficient image segmentation using partial dif-
ferential equations and morphology,” Pattern Recognition, vol.
34, no. 9, pp. 1813–1824, 2001.

[24] A. Yezzi, A. Tsai, and A. Willsky, “A fully global approach to
image segmentation via coupled curve evolution equations,”
Journal of Visual Communication and Image Representation,
vol. 13, no. 1-2, pp. 195–216, 2002.

[25] D. Auroux and M. Masmoudi, “A one-shot inpainting
algorithm based on the topological asymptotic analysis,”
Computational and Applied Mathematics, vol. 25, no. 2-3, pp.
251–267, 2006.

[26] D. Auroux and M. Masmoudi, “Image processing by topolog-
ical asymptotic expansion,” Journal of Mathematical Imaging
and Vision, vol. 33, no. 2, pp. 122–134, 2009.

[27] M. Masmoudi, “The topological asymptotic,” in Computa-
tional Methods for Control Applications, R. Glowinski, H.
Karawada, and J. Périaux, Eds., vol. 16, pp. 53–72, GAKUTO
International Series. Mathematical Sciences and Applications,
Tokyo, Japan,, 2001.

[28] D. Auroux, M. Masmoudi, and L. Jaafar Belaid, “Image res-
toration and classification by topological asymptotic expan-
sion,” in Variational Formulations in Mechanics: Theory and

Applications, E. Taroco, E. A. de Souza Neto, and A. A. Nov-
otny, Eds., CIMNE, Barcelona, Spain, 2006.

[29] L. J. Belaid, M. Jaoua, M. Masmoudi, and L. Siala, “Image
restoration and edge detection by topological asymptotic
expansion,” Comptes Rendus Mathematique, vol. 342, no. 5, pp.
313–318, 2006.

[30] L. Jaafar Belaid, “An overview of the topological gradient
approach in image processing: advantages and inconve-
niences,” Journal of Applied Mathematics, vol. 2010, Article ID
761783, 19 pages, 2010.

[31] H. G. Senel, “Topological gradient operators for edge detec-
tion,” in Proceedings of the IEEE International Conference on
Image Processing (ICIP ’07), vol. 3, pp. 61–64, 2004.

[32] P. Wen, X. Wu, and C. Wu, “An interactive image inpainting
method based on rbf networks,” in Proceedings of the 3rd
International Symposium on Neural Networks, pp. 629–637,
2006.

[33] T. Zhou, F. Tang, J. Wang, Z. Peng, and Q. Wang, “Digital im-
age inpainting with radial basis functions,” Journal of Image
and Graphics, vol. 9, no. 10, pp. 1190–1196, 2004.

[34] T. Chan and J. Shen, “Mathematical models for local deter-
ministic inpaintings,” Tech. Rep. 00-11, CAM Reports—UCLA
Mathematics, 2000.

[35] T. Chan and J. Shen, “Non-texture inpainting by curvature-
driven diffusions (CDD),” Tech. Rep. 00-35, CAM Reports—
UCLA Mathematics, 2000.

[36] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, “Simultane-
ous cartoon and texture image inpainting using morphologi-
cal component analysis (MCA),” Applied and Computational
Harmonic Analysis, vol. 19, no. 3, pp. 340–358, 2005.

[37] L. D. Cohen, “Minimal paths and fast marching methods for
image analysis,” in Mathematical Models in Computer Vision:
The Handbook, N. Paragios, Y. Chen, and O. Faugeras, Eds.,
Springer, New York, NY, USA, 2005.

[38] L. D. Cohen and R. Kimmel, “Global minimum for active con-
tour models: a minimal path approach,” International Journal
of Computer Vision, vol. 24, no. 1, pp. 57–78, 1997.

[39] F. Benmansour and L. D. Cohen, “Tubular structure seg-
mentation based on minimal path method and anisotropic
enhancement,” International Journal of Computer Vision, vol.
92, no. 2, pp. 192–210, 2011.

[40] F. Benmansour and L. D. Cohen, “Fast object segmentation
by growing minimal paths from a single point on 2D or 3D
images,” Journal of Mathematical Imaging and Vision, vol. 33,
no. 2, pp. 209–221, 2009.

[41] L. D. Cohen, “Multiple contour finding and perceptual group-
ing using minimal paths,” Journal of Mathematical Imaging
and Vision, vol. 14, no. 3, pp. 225–236, 2001.

[42] T. Deschamps and L. D. Cohen, “Fast extraction of minimal
paths in 3D images and applications to virtual endoscopy,”
Medical Image Analysis, vol. 5, no. 4, pp. 281–299, 2001.

[43] H. Li, A. Yezzi, and L. Cohen, “3D multi-branch tubular
surface and centerline extraction with 4D iterative key points,”
in Proceedings of the 12th International Conference on Medical
Image Computing and Computer Assisted Intervention (MIC-
CAI ’09), Imperial College, London, UK, 2009.

[44] R. Ardon, L. D. Cohen, and A. Yezzi, “A new implicit method
for surface segmentation by minimal paths in 3D images,”
Applied Mathematics and Optimization, vol. 55, no. 2, pp. 127–
144, 2007.

[45] D. Auroux, “From restoration by topological gradient to medi-
cal image segmentation via an asymptotic expansion,” Mathe-
matical and Computer Modelling, vol. 49, no. 11-12, pp. 2191–
2205, 2009.



20 International Journal of Biomedical Imaging

[46] H. Ammari, M. S. Vogelius, and D. Volkov, “Asymptotic for-
mulas for perturbations in the electromagnetic fields due to
the presence of inhomogeneities of small diameter II. The
full Maxwell equations,” Journal des Mathematiques Pures et
Appliquees, vol. 80, no. 8, pp. 769–814, 2001.

[47] S. Garreau, P. Guillaume, and M. Masmoudi, “The topological
asymptotic for PDE systems: the elasticity case,” SIAM Journal
on Control and Optimization, vol. 39, no. 6, pp. 1756–1778,
2001.

[48] P. Guillaume and K. Sididris, “The topological asymptotic ex-
pansion for the dirichlet problem,” SIAM Journal on Control
and Optimization, vol. 41, no. 4, pp. 1042–1072, 2002.

[49] P. Guillaume and K. Sididris, “The topological sensitivity and
shape optimization for the stokes equations,” SIAM Journal on
Control and Optimization, vol. 43, no. 1, pp. 1–31, 2004.

[50] S. Amstutz, I. Horchani, and M. Masmoudi, “Crack detection
by the topological gradient method,” Control and Cybernetics,
vol. 34, no. 1, pp. 81–101, 2005.

[51] B. Samet, S. Amstutz, and M. Masmoudi, “The topological
asymptotic for the Helmholtz equation,” SIAM Journal on
Control and Optimization, vol. 42, no. 5, pp. 1523–1544, 2004.

[52] L. Jaafar Belaid, M. Jaoua, M. Masmoudi, and L. Siala, “Appli-
cation of the topological gradient to image restoration and
edge detection,” Engineering Analysis with Boundary Elements,
vol. 32, no. 11, pp. 891–899, 2008.

[53] J. Dicker, Fast marching methods and level set methods: an im-
plementation, Ph.D. thesis, University of British Columbia,
2006.

[54] J. A. Sethian, Level set methods and fast marching methods,
Cambridge University Press, 1999.



Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 815246, 8 pages
doi:10.1155/2011/815246

Research Article

A Novel FEM-Based Numerical Solver for Interactive Catheter
Simulation in Virtual Catheterization

Shun Li,1 Jing Qin,1, 2 Jixiang Guo,1 Yim-Pan Chui,1 and Pheng-Ann Heng1, 2

1 The Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Hong Kong

Correspondence should be addressed to Shun Li, lis@cse.cuhk.edu.hk

Received 1 July 2011; Revised 12 September 2011; Accepted 13 September 2011

Academic Editor: Shan Zhao

Copyright © 2011 Shun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Virtual reality-based simulators are very helpful for trainees to acquire the skills of manipulating catheters and guidewires during
the vascular interventional surgeries. In the development of such a simulator, however, it is a great challenge to realistically model
and simulate deformable catheters and guidewires in an interactive manner. We propose a novel method to simulate the motion of
catheters or guidewires and their interactions with patients’ vascular system. Our method is based on the principle of minimal total
potential energy. We formulate the total potential energy in the vascular interventional circumstance by summing up the elastic
energy deriving from the bending of the catheters or guidewires, the potential energy due to the deformation of vessel walls, and
the work by the external forces. We propose a novel FEM-based approach to simulate the deformation of catheters and guidewires.
The motion of catheters or the guidewires and their responses to every input from the interventionalist can be calculated globally.
Experiments have been conducted to validate the feasibility of the proposed method, and the results demonstrate that our method
can realistically simulate the complex behaviors of catheters and guidewires in an interactive manner.

1. Introduction

Vascular interventional radiology (VIR) [1] is a minimally
invasive surgery (MIS) procedure. It has been widely used to
cure vascular diseases, such as stroke, angiostenosis, and an-
eurysm. This therapy is performed by using two main kinds
of instruments, catheters, and guidewires (for brevity, we use
“catheters” to represent “catheter, and guidewires” hereafter)
both of which are very flexible cylindrical instruments. In the
procedures, they are inserted in the patient’s vascular system
and driven by the interventionalists to the desired point.
This task is complicated because only 2D X-ray images are
available, and the catheters have to be handled by the tail. It
becomes a challenge to train the novices to let them acquire
the skills for safe and efficient procedures [2].

There are some traditional methods for the training of
catheterization skills, where the trainees practice on animals,
alternative anatomic phantoms, or even actual patients.
Due to distinct anatomical differences between animals’
and human beings’ vascular network, animals are not good
substitutes of human beings for training. On the other hand,
it is very difficult and expensive to produce a phantom with

complex blood vessels the same as real patients. Operating
on real patients directly cannot be acceptable as well, as it
is very dangerous to both patients and trainees. In contrast
to these traditional training methods, virtual reality- (VR-)
based simulation systems provide a promising way for cath-
eterization training with high flexibility, high realism, and
low cost while without risks to patients and trainees, and
there have been some research works on developing such
systems in the last few years [3–6]. In order to provide a vir-
tual training environment, a simulator would be developed
to simulate the behavior of the catheters navigating inside
the patient’s vascular system. Therefore, the position of the
catheter inside the blood vessel and its changes by the oper-
ations from the interventionalists, such as pulling or push-
ing, ought to be figured out by a numerical algorithm.

Several methods have been proposed to simulate the
behaviors of catheters in catheterization procedures. Dawson
et al. [7] firstly employed a set of rigid links connected by
joints to simulate catheters where the catheter was moved
by three forces, such as contact force, injection force, and
forces exerted by users. However, this model cannot realis-
tically simulate the complex behaviors of catheters in
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catheterization. Later, Wang et al. [8] developed a mass-
spring model for catheter simulation dynamically, but it is
not consistent with physics laws of elastic thin objects. Cotin
et al. [9–11] model the catheter with a set of linked deform-
able beams. They proposed an incremental finite element
method (FEM) built on the strain-stress model of the beams
for catheter simulation. Because of the local and incremental
characteristics of their approach, the local errors generated
when calculating the displacements of the beams can also
be translated incrementally, and it is rather difficult to
restrict the total error to an acceptable level. An relatively
accurate model was proposed in the work of Alderliesten
et al. [12, 13], which resorts to the principle of energy mini-
mization to figure out the equilibrium of the catheters, and
a semianalytic method is developed to solve this model.
However, its computational cost is too expensive to be ac-
ceptable for an interactive simulator. Recently, Tang et al.
[14] developed a simulating approach based on the work of
Bergou et al. [15], where the virtual catheter was driven by
elastic forces acted on each node of a discrete catheter. How-
ever, the stability and accuracy of this simulator is restricted
by the time step used in the numerical solver.

Inspired by the methods proposed by Alderliesten et al.
[12, 13], in this paper, we propose a novel method to simulate
the motion of catheters and their interactions with patients’
vascular system based on the principle of minimal total po-
tential energy. We formulate the total potential energy in
the vascular interventional circumstance by summing up the
elastic energy deriving from the bending of the catheters, the
potential energy due to the deformation of the vessel wall,
and the work by the external forces. In order to overcome the
shortcoming of expensive computational costs of the method
by Alderliesten et al., we proposed a novel FEM-based ap-
proach to figure out the deformation of catheters while inter-
acting with the blood vessel wall, which transforms the pro-
blem of minimizing the energies to solving a linear system.
Thus, the motion of the catheter and its responses to
every input from the interventionalist can be calculated glo-
bally. Our method provides a good trade-off between the ac-
curacy and efficiency; that is, our method can achieve rela-
tively accurate simulation while maintaining interactive per-
formance. Comparing with other interactive simulating
methods, since our method is based on the principle of
total energy minimization, it can supply more realistic defor-
mation of the catheters. In contrast to the method proposed
by Alderliesten et al. our method can achieve comparable
accuracy and much faster performance to make the simulator
run in an interactive manner.

The rest of this paper is organized as follows. Section 2
provides the details on the physically based deformable
model and the numerical algorithm for simulating catheters.
Section 3 reports experiments and evaluation results. Finally,
conclusions are drawn in Section 4.

2. Method

2.1. Total Potential Energy of a Catheter. During VIR inter-
ventions, a catheter is confined inside blood vessels and
advanced along vasculature driven by the operations from

the interventionalists. It is observed that a catheter would,
regardless of what operations are performed on it, trend to
reach an equilibrium state and finally be static if there are
no continuing inputs, which can be well explained by the
principle of minimum potential energy. That is the catheters
would deform or displace to a position that minimizes the
total potential energy. Therefore, we can solve the position
and shape of the catheter by minimizing its potential energy.

We can define the total potential energy U of a catheter in
the vascular interventional circumstance as the sum of three
different components: the elastic energy Ue deriving from the
bending of the catheter, the potential energy Up generated by
the interactions with the blood vessel wall, and the work W
by external forces (e.g., the frictions and the forces from the
users) acted on the catheter:

U = Ue + W + Up. (1)

2.2. The FEM-Based Numeric Solver for Interactive Catheter
Simulation. We simulate the dynamics of a catheter during
VIR procedures by employing a FEM- [16] based numerical
solver, where the continuous catheter can be discretized
into a set of elements (segments with two end nodes in
our case), and thus the degree of freedom (DoF) (positions
and tangents of nodes in our case) of the catheter can be
limited. We proposed a series of methods to formulate the
three aforementioned energy terms in the form of quadratic
polynomial functions of the tangents of the discrete catheter.
To minimize the total potential energy, we calculate the
partial derivative of the quadratic polynomial functions with
respect to the tangents and then build a linear system. By
solving this linear system, we achieve the solution with
minimal potential energy.

2.2.1. Formulation of Elastic Energy. First, we formulate
the bending energy based on the Kirchhoff ’s theory of
elastic rod [17, 18]. The Kirchhoff ’s theory is widely used
in mechanics to formulate the elastic energy of deformed
thin objects. In general, the elastic energy includes bending
energy and twisting energy. However, in catheterization pro-
cedures, catheters have excellent torque controls, and it is
usually assumed that the torsion constant of the catheters ap-
proaches infinity [12]. As a result, the twist is not taken into
consideration when we formulate the elastic energy. Thus,
the elastic energy Ue of the catheter can be defined as

Ue = 1
2

∫ L

0
α(x′′(s))2ds, (2)

where the x(s) is the function of the centerline curve of the
catheter with respect to the arc length s, the L is the total
length of the catheter, and the α is the bending constant. To
avoid the difficulty in solving the second-order derivative in
the energy function, we choose the tangent of the catheter’s
centerline to replace the function of the centerline curve. As
the function of tangent t(s) is the derivative of the x(s):

(t(s) = x′(s)), (3)
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Figure 1: the discretized catheter with several elements.

the potential energy Ue can be represented as

Ue =
∫ L

0
α(t′(s))2ds. (4)

To discretize the continuous catheter, we can apply the piece-
wise first-order polynomials to interpolate the function t(s).
We divided the catheter into n elements (−−→s0s1,−−→s1s2, . . . ,−−−→sn−1sn)
as shown in Figure 1.

In the discretization, we make each element has the same
length for computational convenience. The function of t(s)
between nodes si−1 and si can be interpolated on the segment
by the first-order polynomial as follows:

t(s) = s− si
si−1 − si

ti−1 +
s− si−1

si − si−1
ti. (5)

Substituting (5) into (4), we obtain the discretized energy
function:

Ue =
n−1∑

i=0

∫ si+1

si
α(t′(s))2ds. (6)

After figuring out the integral equation, the Ue is actually the
second-order polynomial with respect to ti.

2.2.2. Formulation of Potential Energy Caused by Interactions.
Next, we formulate the potential energy Up generated by
the interactions with vessel walls by employing the method
proposed by Alderliesten et al. [12], which is based on the
Hooke’s law [19]. In our simulation, blood vessels are mod-
eled by triangular meshes [20]. During the interventional
procedures, once a collision is detected, we think of it as a
contact between a node of the catheter and a triangle of the
vessel mesh. There should be a penetration at the contact
node. We can regard the penetration as the deformation of
the blood vessel wall at the contact node. Thus we can con-
struct the formula of the Up at the contact node according to
the Hooke’s Law: Up = (1/2)κp2

j , where j is the number of
the contact nodes, pj is the vertical distance from the contact
node x j to the contact triangle, and κ is the modulus of
elasticity of blood vessel wall. The plane of contact triangle
can be expressed as a linear equation g(x j), so the penetrating
distance can be figured out as: p j = |g(x j)|. Summing up all
contact points, the total energy of Up can be defined as

Up =
∑

j

1
2
κ
∣
∣
∣g
(

x j

)∣∣
∣

2
. (7)

As we can represent the x(s) with the tangent function
t(s) by integrating (3):

x(s) =
∫ s

0
t(s)ds, (8)

if we substitute (5) into (8) and then figure out the integra-
tion, the nodal value xi can be represented by a first-order
polynomial with respect to the ti, i ∈ (0, 1, . . . ,n − 1). Thus,
the Up can be transformed into a quadratic polynomial with
respect to the tangent ti.

2.2.3. Formulation of the Work by External Forces. The ex-
ternal forces in this application may include the frictions and
the forces from the users. However, actually in clinical prac-
tice, in order to avoid the damage to the vessels of patients,
the catheters are usually clothed by some biomedical mate-
rials to reduce the frictions with the blood vessel wall. The
frictions are very small during the catheterization; therefore,
we ignore them in our model. Hence we only take into
account the forces from the users. It can be defined as

W =
∑

i

fi · di, (9)

where fi is the external force exerted on the node i and di is
the difference between current position of node i and its posi-
tion in the last equilibrium state. So the di can be calculated
by xi− xi0, where xi0 is the position of node i in the last equi-
librium state. Also, in terms of (8), theW can be transformed
into a quadratic polynomial with respect to the tangent ti.

2.2.4. The Numerical Solver. In the interventional procedure,
it is necessary to insert a basic sheath into the blood vessels
at first. It provides safe access to the interior of the vascular
network. It can be used to prevent bleeding during the pro-
cedure and restrict the direction of the catheter inserting the
vessels [2]. Therefore, in our model, we regard the constant
initial tangent (i.e., t0) as a boundary condition. Then, to
derive the conditions of energy minimization, we calculate
the partial derivative of the sum of total potential energy U
with respect to each ti, i ∈ (1, 2, . . . ,n − 1) and achieve a set
of linear equations which can be expressed in matrix form as

At = b, (10)

where A is a matrix by 3(n − 1) × 3(n − 1), t is the vector
(tT1 , . . . , tTn−1)T by 3(n − 1) × 1, and b is a constant vector.
During the calculation, we find that the matrix A can be eas-
ily transformed into an upper triangular matrix without zero
element in its diagonal. As a result, it is a nonsingular matrix.

As mentioned previously, the xi can be expressed as the
first-order polynomial of the ti. This relationship can be
represented in matrix form:

Bt = x, (11)

where B is a lower triangular matrix by 3(n−1)×3(n−1), and
there is no zero element in its diagonal, so it is a nonsingular
matrix. Substituting (11) into (10), we obtain a linear system
which can be expressed in matrix form:

AB−1x = b. (12)

For every input from an interventionalist, we can reach the
new equilibrium state of the catheter by solving (12).
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(1) Initialize the positions xi(i ∈ [0, . . . ,n]) of the catheter in an equilibrium state.
(2) Translate each node of the virtual catheter a displacement by the operation from

the motion sensor of our simulator xnew
i = xold

i + disp.
(3) Detect the collisions to create the set of colliding nodes and triangular meshes.
(4) Build or update the matrix A, the matrix B−1 and the vector b.
(5) Solve the linear system AB−1x = b.
(6) Update the positions xi of the virtual catheter to the new equilibrium state.

Algorithm 1: The overall algorithm of the proposed numerical solver.

Table 1: Timing performance of our method.

Number of node Average execution
time (ms)

Frames per second

50 9.2 109

100 15.4. 65

150 24.8 40

200 36.7 27

300 58.4 17

In terms of the specific shape of the matrix B, the
inverse matrix of B can be determined easily. In order to
speed up our simulation, after assembling and calculating
the matrix AB−1, we employ a commercial library named
CUBLAS [21], which is an implementation of BLAS (basic
linear algebra subprograms) on top of the NVIDIA CUDA
(compute unified device architecture) driver, to solve the
linear equations in our method.

2.2.5. The Overall Algorithm. The overall algorithm of our
solver is shown in Algorithm 1.

3. Experiments and Results

3.1. Implementation. We have integrated the catheters simu-
lation into a virtual reality-based training system. It is based
on a PC with a Intel Core2 6700 CPU, 4 GB memory and a
NVIDIA GeForce 8800 GPU, and a hardware device made
by ourself for motion sensing of the catheter. There are two
views for the trainees in the system: one is the 3D navigation
view, the other is the fluoroscopic view (Figure 2).

3.2. Experiment 1: Time Performance. In this experiment,
we tested the time performance of our method for the
virtual catheters with different number of nodes when they
advanced in a virtual tubular blood vessel. We show the
results in Table 1. As shown in the table, it takes about 36
milliseconds to complete a calculation of our algorithm for
a catheter with 200 nodes. The FPS (frames per second) can
be maintained about 30, which is suitable for an interactive
system. Even when the number of the nodes increased to 300,
the system can still reach a frame rate of 17 FPS.

3.3. Experiment 2: Catheters Navigation in Vascular System.
In this set of experiment, we evaluated the capability of our
method in simulating the catheters’ navigation in various

vascular structures. The virtual catheters modeled by our
method are pushed or pulled by the interventionalist and
constrained inside the vascular system. We employed the
method reported in the work [22] to detect the collisions
between a discretized catheter and blood vessels wall made
up of triangular meshes. Under the acting force from the
interventionalist and the reacting force from blood vessel
walls, the catheter advances in various vascular structures.
We show the snapshots of catheters’ navigation in the
different areas of vascular system in Figure 3.

3.4. Experiment 3: Behaviors of Catheters in a Vessel. We
further conducted an experiment to evaluate the simulated
behaviors of a catheter when moving within a blood vessel.
A transparent plastic tube was used in our experiment to act
like a tubular blood vessel. In this experiment, a real catheter
was inserted into the plastic tube. Here, we mainly emulated
a common operative situation, where the catheter would be
distorted during its moving forward when its soft tip was
looped back inside the blood vessel wall.

Figure 4 shows the results of the experiment comparing
the real situation to the simulated one. From these four
consecutive pictures, we can find that the distortion of
the floppy region of the catheter becomes larger along its
advancement. It was due to the fact that when the tip of
the catheter collides with the tube, the tip was stopped from
advancing so that a loop was formed. This is a very common
situation which occurred in real operations. We can observe
that our method can mimic this phenomenon well.

3.5. Experiment 4: Comparison of the Deformation between
the Simulated Catheter and the Real One. Finally, we
conducted a set of experiments to compare the simulated
catheter advanced in the curved virtual vessel and the real
one in the plastic tubular phantom to validate the realism
of the deformation of the catheter in our method. The
experiment for real catheter was performed to insert a real
catheter into a curved plastic tube and advance it to a desired
position as shown in Figure 5(a). The size of the curved
plastic tube is also labeled in the figure. The shape and the
position of the real catheter were acquired as the ground
truth. In the virtual environment, we create a 3D model as
the virtual blood vessel according to the size and the shape of
the real plastic tube, and then the virtual catheter simulated
by our method was inserted and advanced to the same
position as shown in Figure 5(b). We acquire the position of
the virtual catheter and compare them with the ground truth.
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(a)

(b)

Figure 2: Visualization of our simulator: (a) fluoroscopic view to
simulate the X-ray imaging (b) 3D anatomic view with the virtual
vascular system, skin, and catheters.

We used the root-mean-square (RMS) error to measure
the difference of deformation between the real catheter
and the simulated one. The RMS is computed from the
distances between the nodal positions in the simulated
catheter and a set of reference nodes in the ground truth. We
acquired those reference points by resampling the catheter
in the ground truth with the segment length used for each
specific experiment. For n nodes, the formula of RMS is

RMS =
√

(1/n)
∑n−1

i=0 (disti)
2, where disti = ‖xsi − xri ‖, xsi is

the simulated nodal position and xri is the corresponding
reference nodes. In addition, we also list the maximum
displacement among all of the disti to measure the difference
of deformation. In Table 2, besides RMS and the maximum
displacement, we also list the total runtime in seconds of the
whole procedure of the experiments.

(a)

(b)

Figure 3: The virtual catheter navigating in different area of
vascular system: (a) cardiovascular structure and (b) hepatic arterial
structure.

The results can be compared with the experiment data in
the work of Alderliesten et al. [13]. It can be observed that
the error of our method is slightly bigger than their results,
but the time performance is much better than their method.
For example, when the segment length is 1 mm and the ratio
of the stepsize to the segment length is 1/10, the runtime
of our results is 41.4 seconds, while the runtime in the
work of Alderliesten et al. [13] is 2117.3 seconds. According
to our experimental results, We can find that the errors
are becoming smaller with the reduction of the segment
length, however the runtime is increasing correspondingly.
Therefore, there is a trade-off between the accuracy and
efficiency. We should choose the segment length as small as
possible, at the same time make the simulator run in the real-
time interactive manner.

4. Conclusion and Discussion

The VR-based surgical simulator is widely applied to teach
and train the medical students. It is indispensable to make
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(a)

(b)

Figure 4: Advancement of a catheter within a tube: (a) real situation and (b) simulated results.

Table 2: The comparison of the deformation between the simulated catheter and the real one: for different combinations of segment length l
and stepsize of each input (pulling or pushing) h, the RMS error (mm) (left value), the maximum displacement error (mm) (middle value),
and the total runtime of the whole procedure of the experiments in seconds (right value) are listed.

h/l
l

1 mm 2 mm 3 mm

1/40 1.38 2.32 180.7 1.54 2.42 49.7 1.76 2.74 29.5

1/20 1.16 2.12 84.5 1.47 2.24 23.2 1.66 2.38 15.4

1/10 1.12 2.16 41.4 1.35 2.36 11.5 1.86 2.45 6.9

1/5 0.96 1.52 20.5 1.26 1.88 5.9 1.44 2.56 3.9

1/3 1.05 1.76 11.6 1.24 2.13 3.5 1.62 2.22 2.1

the simulator interact with the trainees with real-time re-
sponse. Beyond that, the simulator should provide an as
realistic virtual environment as possible in which trainees
can fully immerse themselves as if they were in real operating
scenarios. In the catheterization, the simulation of behaviors
of catheters is a very important and relatively complex com-
ponent of a VR simulator. In this paper, we are dedicated to

building the physically deformable model for the simulation
of the catheters and simulating the interaction between the
catheters and the blood vessel wall. In our method, we
regard the motion of the catheter as the transition from
an equilibrium state to another; therefore, we formulate the
potential energy function relevant to the elastic property of
the catheter, the deformation of the blood vessel wall, and
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(a)

(b)

Figure 5: The comparison of the deformation between the simu-
lated catheter and the real one.

the work by external forces. We resort to the concept of the
FEM to construct and solve a linear system to achieve the
new equilibrium state of the catheter with responses to each
input from the interventionalist. Our method is integrated
into a simulator for the training of VIR surgeries, and the
behavior of the catheter simulated by our method can make
the training process realistic.

However, in our proposed method we do not take into
consideration the twisting problem of the catheter which
is useful for the simulation of some other VIR procedure,
such as embolization. Therefore, we will adopt the concept
of the frames to represent the twisting state of the catheter
and adapt our potential energy function for involving the

twisting energy in the future. Furthermore, by improving our
deformable model, we will extend our method to simulate
other devices such as coils as well as the embolization pro-
cess which is performed to cure the arterial aneurysm by
deploying the coils in the aneurysm.

In the future, another work of us is to evaluate our virtual
system by means of empirical study approach. In details, we
will design a set of specific training subject in our virtual sys-
tem based on the real catheterization procedure. And the
virtual angiography procedure will also be integrated into
our system, so that the trainees can practice the catheter-
ization procedure under the guide of the simulated 2D X-
ray imaging. We will invite the medical students and some
specialists of interventionalists to participate our experi-
ments. Then, we will let them complete a series of experi-
ments and analyze the results to estimate the validity for
training of our virtual system.
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Aim. To develop a new invariant descriptor for the characterization of protein surfaces, suitable for various analysis tasks, such
as protein functional classification, and search and retrieval of protein surfaces over a large database. Methods. We start with a
local descriptor of selected circular patches on the protein surface. The descriptor records the distance distribution between the
central residue and the residues within the patch, keeping track of the number of particular pairwise residue cooccurrences in the
patch. A global descriptor for the entire protein surface is then constructed by combining information from the local descriptors.
Our method is novel in its focus on residue-specific distance distributions, and the use of residue-distance co-occurrences as the
basis for the proposed protein surface descriptors. Results. Results are presented for protein classification and for retrieval for three
protein families. For the three families, we obtained an area under the curve for precision and recall ranging from 0.6494 (without
residue co-occurrences) to 0.6683 (with residue co-occurrences). Large-scale screening using two other protein families placed
related family members at the top of the rank, with a number of uncharacterized proteins also retrieved. Comparative results with
other proposed methods are included.

1. Introduction

The Protein Data Bank (http://www.pdb.org/pdb/home/
home.do) (PDB) currently has more than 3000 protein struc-
tures classified as uncharacterized or as proteins of unknown
function. This is about 5% of the total structures in PDB.
The Pfam database was recently reported to contain over
2200 gene families with unknown function [1]. It has been
argued that there are even more local regions on the protein
structures that are not completely characterized, and whose
functions are not known [2]. Therefore, with the increasing
rate at which protein structures are being generated, the
problem of protein function annotation has become a major
challenge in the postgenomic era [3–5]. The function of a
given protein is largely determined by its three-dimensional
structure [6]. The specific shape and orientation of a protein
in 3D space are key elements that determine how the protein
interacts with its environment, and hence the function of
the protein. Although related proteins often have similar
functions, it is well known that sequence similarity between

proteins does not always lead to functional similarity [7, 8].
Even different functions have been observed for structures
with the same fold [9]. Conversely, sequences have been
observed with low sequence similarity, but highly structural
and functional similarity [10]. The trypsin-like catalytic triad
[9] is one example of proteins with different folds, but
similar functions. A similar argument can be made between
sequence and surface, and between surface and fold. While
residues on the protein surface typically make up a small
percentage of the total residues in a protein, they often
represent the most conserved functional elements of the
protein [11]. Therefore, analyzing protein structures using
information about their 3D surfaces is essential in the quest
for protein function annotation, especially in the study of
functional similarities between nonhomologous proteins.

At the core of most activities in the analysis of protein
structures and protein function is similarity measurement
between structures. Such measurements must deal with dif-
ferent levels of structural similarity, arbitrary mutations,
deletions, and insertion of residues, local surface similarities,
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and so forth. When the problem is similarity measurement
between protein surfaces, a major issue becomes how the
protein surface is represented, and how the representation
can be used for the required similarity measurement.
Another problem is that of computation. Structure align-
ment, the basis for most approaches to protein 3D structure
analysis is known to be NP-hard [12]. A major diffi-
culty in comparing protein surfaces locally is the problem
of matching 3D structures, since structures need to undergo
an exhaustive amount of rotation and translation in order
to obtain an adequate structural alignment and to perform
an accurate matching [8]. Clearly, a method that avoids the
step of local structural alignments can have a significant
advantage, especially in screening of similar surfaces over a
large database.

In this paper, we introduce an invariant descriptor for the
characterization of protein surfaces. We then use this charac-
terization to study the problem of classifying proteins into
their functional families based primarily on their surface
characteristics. This is a challenging problem, but one that
is important in the quest for functional annotation of pro-
teins, using information from potentially nonhomologous
proteins. We also show how we can use such a descriptor in
various related analysis activities, such as in effective retrieval
of similar protein surfaces from very large databases, such as
the Protein Data Bank (PDB).

2. Background and Related Work

2.1. Protein Sequences, Structure, and Surface. Although pro-
teins could vary significantly in their functions and 3D
shapes, they also share a general common structure. Proteins
are composed of 20-amino acids that are connected via
peptide bonds [13]. Each protein is composed of an ordered
sequence of amino acids. The order in which these amino
acids are connected is called the protein sequence, or the
primary structure of the protein [14]. This primary sequence
determines the 3D structure of the protein. All proteins
are composed of four common structural types: primary
structure, secondary structure, tertiary structure, and qua-
ternary structure. The primary structure is simply the amino
acid sequence. The secondary structure is formed by patterns
of intermolecular bonding of hydrogen and is determined
primarily by the location and the directions of these patterns
[14, 15]. This is often described in terms of secondary
structural elements (SSEs), such as α-helixes, β-sheets, and
turns. The overall 3D shape of the secondary structures
determines the tertiary structure of the protein. When two or
more chains combine to form a larger molecule, the whole
structure is called the quaternary structure. Figure 1 shows an
example of some of the common protein structural types (the
sequence is not included).

A common method for protein function prediction is
by annotation transfer from known homologous proteins
[17]. Functions of novel proteins can be determined by se-
quence comparisons, for instance using sequence alignment.
When proteins evolve, the protein structure remains more
highly conserved when compared to the sequence. Protein

sequences change more easily during evolution due to re-
sidue mutations, for instance by substitution, insertion, or
deletion. Hence, proteins that belong to the same family
(homologous proteins) may not be identified using se-
quences alone. Orengo et al. [17] reported that proteins
related to the same family could share fewer than 15%
identical residues. The protein structure retains a significant
portion of similarity even between distant homologs. In
general, the degree of structural or sequence similarity varies
substantially between protein families. Some families can
handle more changes than others. This so-called structural
plasticity [17] has a considerable impact on the functionality
of some proteins, or members of a protein family. A consid-
eration of the protein structure and its variability becomes
important in such situations for further analysis of functional
similarity between proteins.

A classical approach for deriving the protein function is
by first determining its 3D structure, which can then provide
some ideas about its function [17]. Protein 3D structures
provide information about the binding sites, active sites,
and how proteins interact with each other, and thus could
provide an insight into the function of the protein [17]. How
proteins interact with each other and with other molecules
(e.g., ligands) is determined primarily by the amino acids on
the protein surface [18]. Therefore, knowledge of the protein
surface residues could help in a better understanding of what
molecules are binding together, and in some cases, why they
bind [18]. The protein surface could also provide significant
information about protein functions which cannot be easily
detected, even in the presence of sequence or fold simi-
larity. Therefore, the analysis of protein surfaces is impor-
tant in the study of intermolecular interactions. Clearly,
advances in our understanding of protein surfaces could have
important implications in various biomedical fields, such as
personalized medicine, drug discovery, drug design, and so
forth.

2.2. Protein Surface Characterization Methods. Given the
foregoing, it is not surprising that different methods have
been proposed to characterize the protein surface. Popular
examples include those based on surface shape distributions
[19], Gauss integral [20], Fourier transform [21], spherical
harmonics [22, 23], alpha-shapes [2, 24], and Zernike poly-
nomials [7]. Contact maps between protein surfaces were
studied in [25], while similarity networks between surface
patches from protein binding sites were studied in [26,
27]. Protein surface similarity using varying resolutions of
structural data have also been studied, for instance, using
medium-resolution Cryo-EM maps in [26] and low resolu-
tion protein structure data in [28]. SHARP [29] provides a
mechanism to predict protein-protein interaction by analyz-
ing overlapping protein 3D surface regions. SURFACE [5] is
a database of protein surface regions that can be useful for
annotation.

Much earlier, Jones and Thornton [30] analyzed protein-
protein interaction by using surface patches, where patches
are defined based on the Cα atoms that have a predetermined
accessible surface area, and adhere to defined constraints
on the solvent vectors. Each patch is then described using
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Figure 1: Protein structures for a sample protein (PDB id: 2UDI). (a) Secondary structure elements—α-helixes (magenta), β-sheets (gold),
and turns (gray); (b) two chains: chain E (blue), chain I (green); (c) surface and 3D shape for chain E; (d) surface and 3D shape for chain I;
(e) quaternary structure for the protein. Figures are produced using PMV [16].

six parameters, namely, solvation potential, residue inter-
face propensity, hydrophobicity, planarity, protrusion, and
accessible surface area. Ferrè et al. [5] analyzed locally
similar structures by matching surface patches composed of
subsets of amino acids. Each residue on the protein surface
is represented using a vector joining its Cα atom and the
centroid of its side chain atoms. Surface patches are then
compared for similarity by comparing the residue vectors for
all possible pairs of residues from the query and target surface
patch. Matches are determined based on the root mean
square distance, and the residue similarity as determined
using a standard substitution matrix. The results of using this
method on a nonredundant list of protein chains as recorded
in the SURFACE database [5], a collection of protein surface
regions that can be useful for annotation. Below, we describe
three approaches that are more closely related to our work.
See [28, 31] for reviews on surface comparison methods.

Distance Distributions. Distances, geometry, and topology
have for long been used in the analysis of general protein
3D structures [32]. Residue distances have been used in
standard texture-based analysis of 2D textures (distance
matrices) formed by the distances between residues in a
protein structure [33]. The use of topological invariants, as
captured using Gaus integrals for the automated analysis
and representation of general protein 3D structures was
described in [20]. Much earlier, Connolly [19] proposed
the analysis of protein surfaces using the notion of surface
shape distributions. Essentially, surface shapes correspond
to different geometric configurations defined on the protein
surface. Binkowski and Joachimiak [11] proposed the use
of surface shape signatures (SSSs) as a method to describe
protein surfaces by exploiting global shape and geometrical
properties of the surfaces. Shape signatures are computed
based on the distances measured between each unique atom
pairs on the surface. Distances are then sorted based on
which their distributions are generated. With the distri-
butions, the problem of matching between two surfaces
is now reduced to that of comparing their distributions.
Comparison between two distributions is performed using
the Kolmogorov-Smirnov (KS) test. The use of the shape
distribution is fast and relatively resilient to scale, rotation,
and mirroring. However, the discrimination ability is still a
problem, as the SSS tends to lose important surface details.

Zernike Polynomials. Following earlier work by Canterakis
[34] on the use of 3D Zernikes for the analysis of general 3D
objects, Sael et al. [7] introduced 3D Zernike to the area of
protein structural similarity matching. Here, the protein 3D
structure is represented as a series expansion of 3D Zernike
functions. The triangulated Connolly surface of the protein
is computed, and subsequently the protein is placed into
a 3D cubic grid and voxelized. Each voxel has a value of
1 or 0, depending on whether the voxel is on the protein
surface or in the interior. The 3D Zernike function is then
applied to the voxelized 3D protein shape to obtain the 3D
Zernike descriptors. Therefore, the problem of comparison
of 3D surfaces is reduced to that of comparing two vectors
representing the 3D Zernike descriptors for each protein
surface. Several distance measures were tried, such as the
Euclidean distance, Manhattan distance, and a correlation-
based distance defined as the complement of the correlation
coefficient between two Zernike descriptors. Venkatraman
et al. [23] studied the use of both spherical harmonics
and 3D Zernike descriptors in the retrieval of functionally
similar proteins. In a more recent work, Sael and Kihara
[28] used the Zernike descriptor to study protein surfaces
in low resolution data. Computation of the required Zernike
polynomials is, however, known to be a major computational
huddle [35]. This problem is even worse for the 3D Zernike
polynomials needed for protein surfaces. Thus, the required
preprocessing before matching is performed may be a
problem for indexing and real-time search of large-scale
datasets.

Fingerprints. A recent work [8] used the idea of extracting
invariant fingerprints from patches on the protein surface.
Patches are obtained by generating the dot surface of the
protein and constructing a graph to approximate the protein
surface. Afterwards, circular patches are generated as a
contiguous surface area from a center point, where the radius
of the patch is within a predetermined cutoff. Patches are
created for each single point on the surface, after which
a fingerprint representation of the patch is computed as
a geodesic distance-dependent distribution of directional
curvature. Geodesic distances are computed from the central
vertex in each patch. Comparisons between fingerprints were
performed using the average fingerprint similarity score
(AFSS) and the direct fingerprint similarity score (DFSS).
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Final scores are computed after an alignment procedure
based on the AFSS. Clearly, computational complexity will
be a major problem here, especially given the computation
of the patch representation for each vertex on the surface
graph (number of vertices is much more than the number of
surface residues). The need for a later stage of alignment for
the final computation of matching scores only compounds
the computational burden (see [12], for example).

The key difference in our method is the use of the local
patch descriptors as defined by the distribution of distances
between Cα atoms within each surface patch, conditioned on
the specific residue at the center of the patch, and the partic-
ular residues found within the patch. Our method computes
the residue-specific distance distributions, and residue-
distance cooccurrences for the protein surface patches using
only the Cα atoms on the protein surface. Residues in the
interior of the protein are discarded. Unlike the approach
in [8], we avoid the time complexity of generating a graph
representation of the surface before the surface can be
scanned to generate the patches and then compute the
distance distribution. Further, ours does not depend on the
time-consuming process of initial surface alignment.

3. Methods

We present an invariant descriptor for characterizing protein
surfaces. We start with a local descriptor of selected circular
patches on the protein surface. For a given surface patch, the
local descriptor is computed based on the residue distances
from the center of the patch. The descriptor records the
distance distribution between the central residue and the
residues within the patch, keeping track of the number of
particular pairwise residue cooccurrences in the patch. A
global descriptor for the entire protein surface is then con-
structed from the local descriptors by combining informa-
tion from local descriptors with similar central residues. The
proposed descriptor is invariant to rotations of the surface
and mirroring.

Using a fixed patch size, we obtain a descriptor for the
protein surface, independent of the size of the protein struc-
ture. Thus, the descriptor can facilitate the rapid matching of
protein chains, and will eliminate the need for the exhaustive
alignment of the protein 3D structures. For a given protein
structure or protein chain from a database, such as the PDB,
the proposed method can be summarize in the following
steps:

(1) generate the Connolly surface [36] for the protein
chain;

(2) generate the surface patches and compute the local
invariant descriptor for each patch on the surface;

(3) compute the global invariant surface descriptor for
the protein chain, by combining information from
the local patch descriptors;

(4) perform surface matching and comparison using the
descriptors;

(5) classify the protein into its potential functional fam-
ily, or perform protein surface retrieval using the in-
variant descriptors.

Figure 2 shows a schematic diagram of the general approach.
The method has been applied on three protein families:
uracil-DNA glycosylase, estrogen receptor, and cell division
protein kinase 2. These are the same protein families used in
a recently published work [8]. We also tested on epidermal
growth factor (EGF) and cyclooxygenase-2 (COX-2), two pro-
tein families that are known to play a role in cancer. Below,
we provide more details on the steps enumerated above.

3.1. Surface Generation. For a given protein, we first generate
its Connolly surface [36] at a given atomic radii, using the
MSMS program [37], based on which the dot surface is
generated. This dot surface is stored in a vertex file. We have
used a probe radius of 1.4 Å in all our experiments. Next,
MATLAB Bioinformatics Toolbox (Mathworks Inc, Natick,
Mass, USA) was used to extract the protein chains and to
generate the residue coordinates in each chain. In this step,
the chains are extracted while preserving the coordinates of
the Cα atoms and their respective residue types by extracting
the information from the PDB and the vertex files.

3.2. The Invariant Descriptor

3.2.1. Surface Patches. To capture protein structure similarity
and to avoid the computational complexity and the time-
consuming problem of aligning 3D protein structures, we
propose the use of a global rotational-invariant descriptor
to represent overlapping patches on the protein surface. A
patch is defined as a circular region with a specified radius,
centered on the Cα position of a surface residue. For each
residue on the surface (the central residue), we construct a
surface patch by recording its residue type, and consider all
residues within a certain distance threshold (τp) as part of the
patch (see Figure 2). Thus, the proposed surface descriptor
is composed of 20 distinct descriptions, one for each protein
residue type. For the local descriptor, this is constructed from
only information from the patch. For the global descriptor,
this is constructed by combining information from patches
with the same central residue.

The local invariant descriptor for the patch is created by
calculating the distribution of distances between the central
residue and all other surface residues within the patch.
Additionally, the residue cooccurrences within the patch are
also recorded as a part of the local descriptor. Each local
descriptor is represented in a matrix DA of size (20 + 1) ×
(b + 1), where the rows correspond to the 20 distinct protein
residue types, plus an extra row to describe the summary dis-
tance distribution within the patch. The columns represent
the individual bins used to capture the distance distributions
(total of b bins), plus an extra column to represent the
summary of the residue cooccurrences. To reduce the
computational time and space requirement, unlike in [8] we
define patches only for surface residue positions, rather than
for each vertex on the dot surface (the number of vertexes
is much more than the number of residues). Therefore, for
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Figure 2: Schematic diagram for the protein surface characterization using an invariant descriptor. Protein structures in the figure are
produced using PMV [3].

a given chain, the number of local invariant descriptors will
be equal to the number of surface residues. Yet, this number
can vary from tens to hundreds and sometimes to thousands
of surface residues. Using a huge number of local invariant
descriptors for one chain to perform matching will be
very time-consuming. To further reduce the computational
requirements, for a given chain, we compute a global rota-
tional-invariant descriptor by combining the 20 distinct
residue-specific descriptors. For a given residue type, the
global descriptor is constructed by taking the average of all
patch descriptors with a given residue type as the central
residue (see Figure 2). We consider three ways to represent
and use the global surface descriptor, as explained below.

3.2.2. Distance Distribution (DD2). The basic idea of using
the distance distribution is that similar functional proteins
should have a similar distribution of distances between the
residues on their surfaces. The patch descriptor captures
the distribution in two forms. The first form is a detailed

distance distribution between the central residue in the
surface patch and each of the other residues on the patch.
To achieve this, a uniform distribution of the distances is
assumed and the total number of bins b is used to estimate
the probability distribution of finding a pair of residues at
one of the b ranges. The second form is the global distance
probability distribution. In this form we estimate the prob-
ability of observing any given residue within a patch in a
particular distance range from the central residue. In this
paper, we study the use of the global distance distribution
in identifying similar protein surfaces, and possibly pro-
teins with similar functions. Consequently, the question to be
answered is, given a central residue of a specific type, what is
the distance distribution for the residues around this central
residue? That is, we seek Pr{d | Rc}, the probability of
observing distance d between a central residue of type Rc and
any other residue. We expect that the distance distribution
should be similar for surface patches from functionally
similar proteins.
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3.2.3. Residue Cooccurrences (RCs). Given that surface struc-
tures are more conserved than sequence over evolution [15,
17], we expect that functionally similar proteins are likely
to have similar surface residues, even though the order of
such residues may have changed. This intuition is captured
using residue cooccurrences on the protein surface. Using
the distance distribution globally provides an idea of how
the distances from the central residue are distributed in the
protein surface patch. However, there is no constraint on, or
indication of, which residues are involved in the formation
of these distributions. The co-occurrence of a given residue
with the central residue is calculated as the number of times
the residue occurs on a patch with the same central residue.
Thus, the main problem would be to find the probability
of observing residue say, Ri, given a central residue, say Rc.
Again, we expect the probability Pr{Ri | Rc}, to be similar
for protein surfaces from functionally similar proteins. We
note that the surface co-occurrence does not depend on the
specific distance between the residues involved, as far as Ri is
within the patch.

3.2.4. Distance-Residue Cooccurrences (DRCs). The above
have considered the distance and the co-occurrence sepa-
rately. The DRC combines the general distance distribution
(represented as a row vector, sum C in matrix DA) and
the residue cooccurrences (represented as a column vector,
sum R in matrix DA) in describing the protein surface
(see Figure 2). The residue-distance co-occurrence vector is
defined as follows: DRC = (sum C ◦ sum RT), where ◦ is the
concatenation operator and XT stands for the transpose of
X. DRC is used to compute the conditional probability Pr{d |
Rc,Ri}, that is, the probability of observing the distance d
between residues Rc and Ri given that Rc is the central residue
in the patch. We expect that the residue co-occurrence
(sum R, or RC) should carry more distinctive functionally
relevant information than the general distance distribution
(sum C, or DD2), since surface residue cooccurrences are
likely to be more conserved over evolution. By combining
both vectors, we can account for both the geometry of
the protein surface and the distribution of specific residues
within specific distances on the surface. Using both vectors
brings in some biological relevance in the analysis and is
likely to lead to improved results in the identification of
functionally similar protein surfaces.

3.3. Matching and Classification. Given two proteins, say
Protein 1 and Protein 2 we characterize them using their
global descriptors, say Dg1 and Dg2 respectively. In this
work, the global descriptor could be the distance distribution
(DD2), residue cooccurrences (RCs), or the distance-residue
cooccurrences (DRCs).

Distance Distribution. For matching using the distance dis-
tribution we create a vector Dg1d that is composed of the 20
global distance distributions represented by all sum C vectors
from each descriptor. Dg1d is defined as Dg1d = (Dd1 ◦
Dd2 ◦ · · · ◦ Dd20), where Dd1,Dd2, . . . ,Dd20 are the distance
distributions from each residue type on the surface of Protein

1. Repeat the same process for Protein 2 to create Dg2d. Then
we perform matching using the simple Euclidean distance:

D12 =
√∑n

i=1 [Dg1d(i)−Dg2d(i)]2 .

Residue Cooccurrences. For Protein 1 we create a vector
Dg1c that combines the 20 residues co-occurrence vectors
(denoted sum R), defined as Dg1c = (DT

c1◦ DT
c2◦· · ·◦DT

c20),
where DT

c1,DT
c2 , . . . ,DT

c20 represents sum RT
1 , sum RT

2 , and
sum RT

20. Similarly, we compute Dg2c. Matching is performed
using the Euclidean distance between Dg1c and Dg2c.

Distance-Residue Cooccurrences. Here, we create a vector
DRC that is comprised of all of the distance distributions
as well as the residue cooccurrences. For Protein 1, we have
DRC1 = (Dd1 ◦ DT

c1 ◦ Dd2 ◦ DT
c2 ◦ · · · ◦ Dd1 ◦ DT

c1).
Similarly we obtain DRC2 for Protein 2. Again for simplicity,
matching is performed using the Euclidean distance. Clearly,
other distance measures could be used.

Classification. Having computed the surface descriptors and
the distance between protein surfaces using the descriptors,
one may be interested in determining whether a given
unknown protein belongs to some known protein family.
Using some training data, we can compute surface descrip-
tors for the known family, and based on these perform
the required classification. Classification is performed using
Weka [38, 39], an open-source software for machine leaning
that provides a suite of classification algorithms.

4. Results and Discussion

4.1. Datasets and Environment. We performed experiments
to test the performance of the proposed protein surface
descriptor in two protein structure analysis tasks, namely,
classifying proteins into their most likely functional groups,
and ranking and retrieval of protein surfaces. We used two
datasets for the experiments. DATASET-A contained infor-
mation from three protein families: uracil-DNA glycosylase,
cell division protein kinase 2, and estrogen receptor. This
was created by scanning the PDB and selecting the protein
structures with protein chains belonging to one of the three
families. We were able to extract 416 chains that belong to
243 proteins in the PDB. The dataset is distributed as follows:
91 chains from 46 distinct proteins for uracil-DNA glycosylase
(Group1), 186 chains from 95 distinct proteins for estrogen
receptor family (Group2), and 139 chains from 102 distinct
proteins from cell division protein kinase 2 (Group3). We used
DATASET-A basically to train the system, and perform initial
testing. DATASET-B contained protein structures from two
families, namely cyclooxygenase-2 (COX-2) (51 proteins, 95
chains) and epidermal growth factor (EGF) (67 proteins,
71 chains). We then extracted protein structures from the
PDB that have 10 or less chains and ignored the rest. This
resulted in a total of 15,386 protein chains form 6,261 unique
proteins. DATASET-B included all structures in DATASET-A.
We used DATASET-B for a more comprehensive scan of the
PDB, in the quest for potentially novel structures that may
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Figure 3: Variation of classification rate (CR) with size of training set using the proposed descriptors DD2 (a), RC (b), and DRC (c). Results
are shown for the average over 10 runs, using logistic regression as the classifier.

be related to the two families. Experiments were performed
using a SONY VAIO personal computer, with Intel Core
2 Duo Processor T8100, running at 2.10 GHz, with 2 GB
of main memory. Programs were written using Matlab
(Mathworks Inc, Natick, Mass, USA) with the Bioinformatics
Toolbox. We set probe radius = 1.4 Å and patch distance
threshold τp = 10 Å. For distance distributions, we used a
fixed number of bins, b = 5. Classification was performed
based on algorithms implemented in Weka [38, 39] version
3-6-4.

4.2. Classification Performance. We divide DATASET-A into
training and testing sets and apply different classifiers on the
different descriptors proposed. In all our experiments, the
training sets were kept very separate from the testing sets,
with no overlap between the two. Classification performance
is measured in terms of classification rate based on the three
protein families in the dataset. We tested the method using
various classifiers implemented in Weka, such as Naı̈ve Bayes,
logistic regression, and simple logistic classifier. We report
results mainly for the logistic regression. First, we explore the
impact of the size of the testing set and of the training set on
the classification performance using the proposed approach.
We varied the size of the training set (from 50 to 300), while
keeping the size of the testing set fixed. We then checked the
performance using fixed testing sets of size 100, 200, and 300.
Figure 3 shows the results.

The figure shows that applying the distance distribution
(DD2) alone resulted in the lowest performance accuracy
as compared to using the residue cooccurrences (RCs) or
distance-residue cooccurrences (DRCs). Yet, our definition
of the distance distribution shows encouraging results. A
steady improvement in performance with increasing training
set size can be observed when using DD2 alone, peaking at

about 87% with a training size of 200 and testing size of
100. The distinctiveness of our approach is the use of residue
cooccurrences on the protein surface. This approach assumes
that functionally similar surface proteins have similar residue
cooccurrences within a small local surface region. Figure 3
(middle plot) shows that classification using residue cooc-
currences (RCs) provided a significant improvement in the
classification rate. A similar improvement was observed
using other classifiers, such as Naı̈ve Bayes. Using the RC
descriptor, we can achieve an accuracy rate of 94% using a
small training set (50 samples) and six times larger testing
set (300 chains). This shows the robustness of the residue
cooccurrences, even when using a few training samples. We
observe that the performance using DD2 was not as robust
(about 81% using small training set, peaking at about 87%
using 200 training samples).

The use of distance-residue co-occurrence presents a
steadier improvement in the classification rate. Using the
DRC raised the accuracy rate to 99% using the simple logistic
classifier on a training set of 150 and testing set of 100
(data not shown). We can observe the significant difference
between the results of DD2 (which did not use information
on residue cooccurrences) and RC and/or DRC (both of
which used residue cooccurrences). Figure 4 shows a cor-
responding performance measurement with varying size of
the testing set, while keeping the training set size fixed. As
expected, there is a general slight decrease in performance
with increasing size of the test set. The case of DRC using
a training set size of 100 seemed to increase slightly with
increasing testing set size. The increase is however within a
small range (from 0.91 to 0.93). This shows a steady perfor-
mance over increasing size of the testing set. Overall trends
are similar to Figure 3, with RC and DRC performing much
better than DD2. Similar trends were also observed using



8 International Journal of Biomedical Imaging

50 100 150 200 250 300 350
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
C

R
Logistic on DD2

Size of testing set

Train = 100
Train = 200
Train = 300

(a)

Logistic on RC

50 100 150 200 250 300 350
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
R

Size of testing set

Train = 100
Train = 200
Train = 300

(b)

Logistic on DRC

Train = 100
Train = 200
Train = 300

50 100 150 200 250 300 350
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
R

Size of testing set

(c)

Figure 4: Variation of classification rate (CR) with size of testing set using the proposed descriptors DD2 (a), RC (b), and DRC (c). Results
are shown for the average over 10 runs, using logistic regression as the classifier.

other classification algorithms. The overall classification per-
formance is summarized in Figure 5, which shows the results
of the three proposed schemes using n-fold cross validation,
for different values of n.

4.3. Ranking and Retrieval. In this section, we explore the
effectiveness of our approach on the problem of search and
retrieval of protein surfaces. Given a query protein, we study
whether our approach has the robustness to place most of the
functionally similar proteins in the top hits of the retrieved
surfaces. Here, a query protein from each of the three groups
is used to screen the entire DATASET-A (416 samples) and
provide a ranking based on the similarity. Thus, each protein
structure is ranked against the query, (from 1 to 416), where
a lower rank (smaller distance) implies more similarity to the
query. After that, we search over the retrieved proteins to find
which ranks the functionally similar proteins (i.e., proteins in
the same functional group) have attained. Table 1 shows the
ranking produced using the proposed descriptor, for three
query samples, one for each group. Results are shown only
for DRC. RC produced a slightly better ranking (especially
for uracil-DNA glycosylase family (Group 1)), while DD2
was worse than both RC and DRC). Overall, for Group 2
and Group 3, the Top 30 ranked proteins belonged to the
corresponding family, while Group 1 was more difficult.

We further measured the performance of our approach
using the enrichment plot. The enrichment plot essentially
measures how well a given ranking or retrieval system per-
forms, when compared with a random selection of the data
samples. At a given percentage of database screening, the en-
richment factor is computed as the ratio Nobs/Nexp, where
Nobs = number of functionally similar proteins observed
or retrieved by the system, and Nexp = number of func-
tionally similar proteins expected by random selection. For

3 5 7 9 10
0.5

0.6

0.7

0.8

0.9

1

C
R

DD2

RC
DRC

Cross validation

Figure 5: Summary classification performance using n-fold cross
validation (the x-axis is for varying n).

an effective system, we expect that most of the functionally
similar proteins should be observed after a small percentage
of screening. That is, the top hits should contain mainly
functionally similar proteins, and hence the enrichment
factor should be high after a small percentage probe of the
database, and gradually decrease towards 1 (which corre-
sponds to random selection). Figure 6(a) shows a plot of the
average enrichment factor using 5 queries from Group 3.



International Journal of Biomedical Imaging 9

Table 1: Ranking the screened proteins according to their similarity
to the query protein. Results are shown for the Top 30 hits for one
query protein from each of the three groups, using DATASET-A
(416 protein chains).

(a) DRC on query protein 1UDI chain I (Group 1)

Protein PDB ID Chain Rank Distance

1UDI I 1 0

2ZHX B 2 2.1306

1LQM B 3 2.3509

1LQG C 4 2.4589

2UUG C 5 2.5353

1EUI C 7 2.5920

2ZHX L 8 2.6104

1UGH I 10 2.6349

2UGI A 15 2.6809

1UGI E 16 2.6872

2ZHX H 19 2.6969

2ZHX D 21 2.7006

2ZHX N 22 2.7017

2ZHX J 23 2.7141

1UGI G 25 2.7261

1EMJ A 42 2.7758

2BOO A 45 2.7808

1UGI D 47 2.7868

2OWR B 50 2.7952

2J8X D 61 2.8129

1LQG D 70 2.8263

1Q3F A 90 2.8533

2UUG D 99 2.8675

1UGI A 101 2.8689

2OWR C 110 2.8749

2ZHX F 116 2.885

2OWQ B 129 2.8977

1SSP E 141 2.9115

1UGI C 142 2.9117

2ZHX A 147 2.915

(b) DRC on query protein 1QKN chain A (Group 2)

Protein PDB ID Chain Rank Distance

1QKN A 1 0

2J7X A 2 1.3769

2J7Y A 3 1.5753

1QKM A 4 1.6793

1NDE A 5 1.7368

2GIU A 6 1.7371

1L2I A 7 1.7460

1U3R B 8 1.7670

3ERD A 9 1.7683

3OS9 A 10 1.7715

(b) Continued.

Protein PDB ID Chain Rank Distance

2IOG A 11 1.7738

3LTX C 12 1.7742

1YIM A 13 1.7854

3ERT A 14 1.7966

1U3Q D 15 1.8009

1YY4 A 16 1.8090

2OUZ A 17 1.8126

1YIN A 18 1.8152

1XP6 A 19 1.8260

2AYR A 20 1.8269

3OS8 D 21 1.8311

2QH6 A 22 1.8312

3OSA A 23 1.8367

1L2J A 24 1.8385

2JJ3 A 25 1.8438

1G50 A 26 1.8490

3OS8 A 27 1.8509

2FSZ A 28 1.8518

2QGW A 29 1.8604

1UOM A 30 1.8683

(c) DRC on query protein 1YKR chain A (Group 3)

Protein PDB ID Chain Rank Distance

1YKR A 1 0

2UZO A 2 1.0396

2R3O A 3 1.0810

3PXY A 4 1.0846

3PY1 A 5 1.0940

2WMA A 6 1.1389

2IW6 A 7 1.1609

3NS9 A 8 1.2043

3IGG A 9 1.2141

2WFY A 10 1.2179

2C5Y A 11 1.2270

3DDP A 12 1.2280

2J9M A 13 1.2284

2R3J A 14 1.2374

2R3L A 15 1.2402

3PXR A 16 1.2422

2DUV A 17 1.2534

1W8C A 18 1.2586

3DOG A 19 1.2793

2V22 A 20 1.2822

2R3P A 21 1.2883

2V22 C 22 1.2963

3IG7 A 23 1.3207

2JGZ A 24 1.3275

2R64 A 25 1.3303
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(c) Continued.

Protein PDB ID Chain Rank Distance

2WHB A 26 1.3381

2VTN A 27 1.3458

3LFN A 28 1.3476

2WIP A 29 1.3514

2BKZ A 30 1.3580

The enrichment plot shows that our proposed method
provides better results as we screen a small percentage of the
dataset. In most of the cases, our method retrieved about
three times better than the expected random retrieval in the
first 10% of screened proteins. As we increase the percent
of screening, the retrieval degrades, since we are more likely
to have retrieved most, if not all of the similar proteins
after a small percentage of the screening. Thus, subsequent
retrievals will lead to spurious results.

4.4. Screening Protein Surfaces in PDB. Encouraged by the
results in classification and ranking using the proposed
descriptors, we now performed a larger scale experiment,
by screening the entire protein structures in PDB, using the
protein chains in DATASET-B, with members of the COX-2
and EGF families as the query. The main objective was to see
how the proposed descriptors will perform on a large scale,
and to see if the methods could predict potentially novel
functional linkages between any of the families and other
proteins in PDB. For this task, we used only PDB files with 10
or less chains, and ignored the rest. This resulted in a total of
15,386 protein chains from 6,261 unique proteins. Table 2(a)
shows the ranking results produced by screening the PDB
files based on the proposed descriptors, using a member of
the EGF family as a query. Table 2(b) shows corresponding
results using a member of COX-2 family. Results are shown
only for the DRC descriptor. Generally, similar results were
obtained using RC. We can notice that some of the unknown
proteins (annotated as “uncharacterized”) were placed in the
Top-50 rankings, implying a possible relationship with the
respective families.

4.5. Comparison with Related Methods. The use of distance
distributions for protein surface analysis was studied by
Binkowski et al. [11]. As earlier discussed, they did not con-
sider the specific residues in constructing the distributions.
Their distance distribution (labeled as DD1 in this work) is
obtained by removing the reference to the specific residue
at the center of the patch (see Figure 2). Our use of surface
residue cooccurrences and combining these with the residue-
specific distance distributions are novel methods introduced
in this paper. Tables 3(a) and 3(b) compare the overall
classification performance using DD1 with those obtained
with the proposed descriptors.

Figure 6 also shows the comparative performance using
both the enrichment plots, and precision and recall. We de-
fine precision and recall at a given distance threshold as
follows: precision = (number of correct retrievals at the
threshold)/(number of total retrievals at the threshold).

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
n

ri
ch

m
en

t
fa

ct
or

Average enrichment

DD1
DD2
RC

DRC
Random

Screened (%)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Average

DD1
DD2

RC
DRC

(b)

Figure 6: Ranking and retrieval performance for the proposed
methods. (a) Enrichment plot for screening protein structures
using the proposed descriptors. Results are average for 5 query
proteins from cell division protein kinase 2 family (Group 3), using
DATASET-A (416 protein chains). (b) Average precision and recall
for three queries, one for each group in DATASET-A. DD1 corre-
sponds to the distance distribution proposed in [11], as described
in Section 2 (see Section 4.5 on comparison with related methods).

Recall = (number of correct retrievals at the threshold)/
(number of total true matches expected at the threshold).
Here, using the ranked results, for a given query and a given
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Table 2

(a) Top 50 hits using DRC for a query protein structure from the EGF family on DATASET-B. Annotations in bold correspond to members of the EGF family,
predicted proteins, or uncharacterized proteins

Protein Chain Distance Protein name annotation Rank

2a2q L 0.0000 COAGULATION FACTOR VII 1

2fir L 1.4925 COAGULATION FACTOR VII LIGHT CHAIN 2

2zp0 L 1.5545 FACTOR VII LIGHT CHAIN 3

1wtg L 1.5628 COAGULATION FACTOR VII 4

1wun L 1.5844 COAGULATION FACTOR VII 5

2b8o L 1.6305 COAGULATION FACTOR VII LIGHT CHAIN 6

2zwl L 1.6379 FACTOR VII LIGHT CHAIN 7

2zzu L 1.6536 FACTOR VII LIGHT CHAIN 8

1wqv L 1.6816 COAGULATION FACTOR VII 9

2ec9 L 1.6832 COAGULATION FACTOR VII 10

1dan L 1.7655 BLOOD COAGULATION FACTOR VIIA 11

1wss L 1.7659 COAGULATION FACTOR VII 12

2puq L 1.7692 COAGULATION FACTOR VII 13

1fak L 1.7934 PROTEIN (BLOOD COAGULATION FACTOR VIIA) 14

2b7d L 1.8024 COAGULATION FACTOR VII 15

6acn A 1.8061 ACONITASE 16

2aer L 1.8120 COAGULATION FACTOR VII 17

2aei L 1.8164 COAGULATION FACTOR VII 18

2flr L 1.8196 COAGULATION FACTOR VII 19

3ela L 1.8668 COAGULATION FACTOR VII LIGHT CHAIN 20

1z6j L 1.8859 COAGULATION FACTOR VII 21

2f9b L 1.9027 COAGULATION FACTOR VII 22

3phs A 1.9169 CELL WALL SURFACE ANCHOR FAMILY PROTEIN 23

3n54 B 1.9263 SPORE GERMINATION PROTEIN B3 24

3qbp B 1.9264 FUMARASE FUM 25

3ma9 L 1.9367 TRANSMEMBRANE GLYCOPROTEIN 26

3mt0 A 1.9921 UNCHARACTERIZED PROTEIN PA1789 27

3lgu A 2.0004 PROTEASE DEGS 28

3m7i A 2.0071 TRANSKETOLASE 29

1qfk L 2.0096 PROTEIN (COAGULATION FACTOR VIIA (LIGHT CHAIN)) 30

3n9t A 2.0169 PNPC 31

3pxz A 2.0235 CELL DIVISION PROTEIN KINASE 2 32

2flb L 2.0257 COAGULATION FACTOR VII 33

3lh1 A 2.0289 PROTEASE DEGS 34

3nlc A 2.0300 UNCHARACTERIZED PROTEIN VP0956 35

3no5 C 2.0302 UNCHARACTERIZED PROTEIN 36

3msq C 2.0347 PUTATIVE UBIQUINONE BIOSYNTHESIS PROTEIN 37

3ryk A 2.0389 DTDP-4-DEHYDRORHSMNOSE 3,5-EPIMERASE 38

3m4a A 2.0444 PUTATIVE TYPE I TOPOISOMERASE 39

3n3n B 2.0444 CATALASE-PEROXIDASE 40

2R3G A 2.0456 CELL DIVISION PROTEIN KINASE 2 41
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(a) Continued.

Protein Chain Distance Protein name annotation Rank

2R3I A 2.0465 CELL DIVISION PROTEIN KINASE 2 42

3o0r L 2.0473 ANTIBODY FAB FRAGMENT LIGHT CHAIN 43

3n3p B 2.0490 CATALASE-PEROXIDASE 44

3nfh A 2.0492 DNA-DIRECTED RNA POLYMERASE I SUBUNIT RPA49 45

3qfk A 2.0501 UNCHARACTERIZED PROTEIN 46

3n5h F 2.0517 FARNESYL PYROPHOSPHATE SYNTHASE 47

3n3o B 2.0529 CATALASE-PEROXIDASE 48

3o78 B 2.0548
CHIMERA PROTEIN OF PEPTIDE OF MYOSIN LIGHT CHAIN
SMOOTH MUSCLE, GREEN FLUORESCENT PROTEIN, GREEN
FLUORESCENT CALMODULIN

49

3luy A 2.0570 PROBABLE CHORISMATE MUTASE 50

(b) Top 50 hits using DRC for a query protein structure from the COX-2 family on Dataset-B. Annotations in bold correspond to members of the COX-2
family, predicted proteins, or uncharacterized proteins

Protein Chain Distance Protein name annotation Rank

2zxw B 0.0000 CYTOCHROME C OXIDASE SUBUNIT 2 1

2eil B 1.3914 CYTOCHROME C OXIDASE SUBUNIT 2 2

2eij B 1.5853 CYTOCHROME C OXIDASE SUBUNIT 2 3

3ag4 B 1.6147 CYTOCHROME C OXIDASE SUBUNIT 2 4

2dys B 1.6991 CYTOCHROME C OXIDASE SUBUNIT 2 5

3ag1 B 1.8159 CYTOCHROME C OXIDASE SUBUNIT 2 6

2eim B 1.8824 CYTOCHROME C OXIDASE SUBUNIT 2 7

3ag2 B 2.0173 CYTOCHROME C OXIDASE SUBUNIT 2 8

2occ B 2.0631 CYTOCHROME C OXIDASE 9

3abl B 2.1404 CYTOCHROME C OXIDASE SUBUNIT 2 10

2eik B 2.1413 CYTOCHROME C OXIDASE SUBUNIT 2 11

3abm B 2.1454 CYTOCHROME C OXIDASE SUBUNIT 2 12

1v55 B 2.1489 CYTOCHROME C OXIDASE POLYPEPTIDE II 13

2dyr B 2.2044 CYTOCHROME C OXIDASE SUBUNIT 2 14

2ein B 2.2628 CYTOCHROME C OXIDASE SUBUNIT 2 15

1v54 B 2.2976 CYTOCHROME C OXIDASE POLYPEPTIDE II 16

3n56 B 2.4226 INSULIN-DEGRADING ENZYME 17

3abk B 2.4502 CYTOCHROME C OXIDASE SUBUNIT 2 18

3p42 A 2.4785 PREDICTED PROTEIN 19

3r2u B 2.4846 METALLO-BETA-LACTAMASE FAMILY PROTEIN 20

3msu B 2.4920 CITRATE SYNTHASE 21

3ag3 B 2.4950 CYTOCHROME C OXIDASE SUBUNIT 2 22

3ntd B 2.5052
FAD-DEPENDENT PYRIDINE NUCLEOTIDE-DISULPHIDE
OXIDOREDUCTASE

23

3ngi A 2.5055 DNA POLYMERASE 24

7xim B 2.5198 D-XYLOSE ISOMERASE 25

3mjy A 2.5206 DIHYDROOROTATE DEHYDROGENASE 26

3nva B 2.5391 CTP SYNTHASE 27

3lm3 A 2.5433 UNCHARACTERIZED PROTEIN 28

3ppn B 2.5511 GLYCINE BETAINE/CARNITINE/CHOLINE-BINDING PROTEIN 29

3o98 B 2.5557
BIFUNCTIONAL GLUTATHIONYLSPERMIDINE
SYNTHETASE/AM

30
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(b) Continued.

Protein Chain Distance Protein name annotation Rank

3pom B 2.5558 RETINOBLASTOMA-ASSOCIATED PROTEIN 31

3nt6 B 2.5656
FAD-DEPENDENT PYRIDINE NUCLEOTIDE-DISULPHIDE
OXIDOREDUCTASE

32

5lym B 2.5690 LYSOZYME 33

3n1y B 2.5728 TOLUENE O-XYLENE MONOOXYGENASE COMPONENT 34

1occ B 2.5772 CYTOCHROME C OXIDASE 35

3lxt D 2.5860 GLUTATHIONE S TRANSFERASE 36

2q70 B 2.5922 ESTROGEN RECEPTOR 37

3l49 B 2.5930
ABC SUGAR (RIBOSE) TRANSPORTER, PERIPLASMIC
SUBSTRATE-BINDING SUBUNIT

38

3pvq A 2.5944 DIPEPTIDYL-PEPTIDASE VI 39

3puf B 2.6032 RIBONUCLEASE H2 SUBUNIT B 40

3mve B 2.6077 UPF0255 PROTEIN VV1 0328 41

3ld2 B 2.6143 PUTATIVE ACETYLTRANSFERASE 42

3ne6 A 2.6160 DNA POLYMERASE 43

3qae A 2.6179 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE 44

3qh8 A 2.6197 BETA-LACTAMASE-LIKE 45

3m3r A 2.6215 ALPHA-HEMOLYSIN 46

3nrb B 2.6234 FORMYLTETRAHYDROFOLATE DEFORMYLASE 47

3n05 B 2.6240 NH(3)-DEPENDENT NAD(+) SYNTHETASE 48

3m2l A 2.6324 ALPHA-HEMOLYSIN 49

3pns B 2.6357 URIDINE PHOSPHORYLASE 50

Table 3

(a) Overall classification rate using different classifiers (300 training sam-
ples, 100 testing samples from DATASET-A)

Classifier
Descriptor

DD1 DD2 RC DRC

Naı̈ve bayes 58% 86% 94% 91%

Logistic 58% 85% 99% 97%

Simple logistic 58% 89% 98% 91%

(b) Overall classification rate using different classifiers (100 training sam-
ples, 300 testing samples from DATASET-A)

Classifier
Descriptor

DD1 DD2 RC DRC

Naı̈ve bayes 55% 74% 94% 93%

Logistic 62% 88% 89% 94%

Simple logistic 63% 85% 91% 90%

rank, the number of expected true matches will be min{rank,
query group size}. This is similar to the definition used in
[28]. We performed queries on DATASET-A using query pro-
teins from each of the three groups and computed the average
precision and recall for each descriptor. We then computed
the area under the curve (AUC) for the average precision-
recall plots. The results were as follows: DD1 (0.501052),

DD2 (0.649412), RC (0.668303), and DRC (0.66759). Al-
though the databases used are different, these results com-
pare well with the results reported by Sael and Kihara [28],
where they evaluated the retrieval performance of four sur-
face characterization methods, based on the Zernike repre-
sentation. The maximum AUC reported using standard reso-
lution surfaces was 0.608 (without length filtering) and 0.628
(with length filtering). Yin et al. [8] proposed a fingerprint-
based method, using surface alignment on selected surface
patches. Their method constructs an initial patch on every
vertex on the dot surface, and requires computation of
geodesic distances on the surface, two very time-consuming
processes. Our method neither requires surface alignment,
nor expensive computations on the surface, beyond the
surface generation process. Patches are generated only on
positions of the surface residues, rather than over all the
vertices on the generated protein surface.

4.6. Computation Time. The most time consuming part was
for preprocessing, as needed to construct the protein surfaces
and extract the protein chains. The construction of the
protein surface from the original PDB files required about
4.065 seconds, running on Cygwin (a version of Linux for
Microsoft Windows). Extraction of the protein chains and
the Cα atoms was performed using Matlab Bioinformatics
Toolbox (Mathworks Inc., Natick, Mass, USA), and required
32 seconds per PDB file. Construction of the descriptors after
the above steps took an average of 0.7 seconds per PDB file.
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Querying DATASET-B (15,386 chains, 6,261 unique PDB
files) using the DRC descriptor required an average time of
0.28 seconds for each query PDB file.

5. Conclusion

We have introduced a novel approach to the description and
characterization of protein surfaces. The proposed approach
captures the surface structure of the protein by utilizing local
patches defined only on the positions of surface residues,
rather than over all surface vertices, or over all the surface
atoms. We make residue cooccurrences on the surface a cen-
tral part of the descriptor. The novelty of this approach can
be observed by the ease of handling both local and global
variation on the surface (using local and global descriptors).
Moving from local to global not only reduces the computa-
tional problem of matching 3D structures, but also facilitates
direct comparison between protein structures of different
sizes. By avoiding the construction of the complete 3D sur-
face and retaining only the surface Cα to do the analysis, the
need for surface alignment of the 3D structure is eliminated.
Further, we do not need to perform any geometrical trans-
formation to insure reliable matching. This is very important
for rapid analysis over a large database, such as the PDB.

We showed results on the performance of the proposed
methods in functional classification of proteins into their
putative families, based on the surface information. We
further compared the results using enrichment plots, and
the standard measures of precision and recall. For the three
protein families used, we obtained an area under the curve
for precision and recall of 0.6494 (DD2), 0.6683 (RC), and
0.6676 (DRC). A screening of the PDB using COX-2 and EGF
family members showed that the proposed methods ranked
related family members in the Top-20 hits, with a number of
uncharacterized proteins also retrieved. It will be interesting
to perform further biological lab experiments to verify if any
of the retrieved uncharacterized proteins are truly related to
the respective families to which they share similar surfaces
(as determined by our surface descriptors).
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A finite element mesh aggregating approach is presented to reconstruct images of multiple internal bioluminescence sources.
Rather than assuming independence between mesh nodes, the proposed reconstruction strategy exploits spatial structure of nodes
and aggregation feature of density distribution on the finite element mesh to adaptively determine the number of sources and
to improve the quality of reconstructed images. With the proposed strategy integrated in the regularization-based reconstruction
process, reconstruction algorithms need no a priori knowledge of source number; even more importantly, they can automatically
reconstruct multiple sources that differ greatly in density or power.

1. Introduction

Bioluminescence tomography (BLT) is a rapidly growing
field of research in optical molecular imaging, which allows
for the visualization of normal and abnormal cellular pro-
cesses in living subjects at the molecular or genetic level
[1–4]. With BLT, we seek to recover the spatial distribution
of bioluminescent light source inside a small animal from
external noninvasive measurements [5]. Generally speaking,
the internal source intensity is closely related to the strength
of the molecular/cellular activity, such as gene expression
[6]. Thus, this imaging modality can provide in-depth
information of the internal biological sources concerned
in longitudinal monitoring and quantitative assessment
changes and efficacy and thus further facilitates our under-
standing of bio-molecular processes as they occur in living
animals.

When using BLT technique to measure efficiency of a
genic therapy or to observe the growth or migration of cancer
cells, accurate detection of different sources that differ greatly
in density or power is instrumental; for example, it may yield
a great deal of information regarding tumor dissemination
and burden in various sites before the development of gross

disease [1, 7, 8]. Therefore, the emphasis of this paper is
multiple-source reconstruction that has not been sufficiently
considered to date in BLT.

Most reconstruction methods for BLT can be classified
to model-based reconstruction [9]. In this case, given a
light propagation model, the flux on the boundary can be
predicted with numerical methods such as the finite element
method (FEM) by combing with the structural information
and optical parameters regarding different organs. And then
the BLT is formulated as an optimization problem of mini-
mizing the discrepancy between the boundary measurements
and the predicted light intensities on the tissue surface [10].

In the reconstruction procedure, the ill posedness of the
BLT problem does pose a challenge for determining a unique
solution of the tomographic problem. Different strategies
have been proposed for coping with the ill posedness of BLT
inverse problems. These studies obtain stable reconstruction
by increasing the amount of independent measurements
with spectrally resolved approaches [11–13], or by reducing
the number of unknowns [10, 14], or with regularization
techniques to incorporate some a priori information regard-
ing the inverse source problem [15–17]. In this paper, we
focus our attention on the multiple-source reconstruction
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with monochromatic boundary measurements where reg-
ularization techniques are inevitable in the reconstruction
process.

The existing regularization-based reconstruction
schemes in bioluminescent imaging to date can be loosely
classified into three categories: l2 regularization, l1 regulari-
zation, and implicit regularization such as TSVD and
LSQR [18, 19]. Through regularization, some constraints
are applied to reconstruction and yield an approximate
solution of the BLT problem. No matter which regularizer
is used, source location and visualization are still needed
for preclinical practice. Most source location schemes are
directly based on the reconstructed density vector and the
larger the density, the more probable the source center.
Specifically, according to a priori knowledge of the number
of sources, several nodes with larger density values are
identified as the promising sources or set a global threshold
by referring to the maximum density and only those nodes
with a density value higher than the threshold will be dis-
played.

In most applications of BLT, for example, monitoring
cancer metastasis, neither the sources number nor an appro-
priate global threshold is easy to determine. This is mainly
due to the fact that bioluminescent lights are usually weak
and diffuse, and consequently the number of potential
sources is hard to estimate only by surface photon distribu-
tions. Moreover, the global threshold strategy is unfeasible
for distinguishing multiple sources with distinct difference
in power. Especially in l2 norm regularization cases, the
obtained solution is usually oversmoothing, and thus a lower
threshold will incur some artifacts in the final images
whereas a higher one will discard some small potential
sources. Consequently, effective reconstruction scheme for
multiple sources with different powers deserves further
investigation.

In this paper, we develop a finite element mesh aggregat-
ing approach for multiple-source reconstruction in BLT. The
contribution of this paper to BLT reconstruction includes
the following. First, we propose a multiple-source detecting
strategy. Rather than assuming independence between mesh
nodes, the proposed reconstruction strategy exploits spatial
structure of the nodes and characteristic of energy decay to
adaptively determine the number of sources and to improve
the quality of reconstructed images. Second, we integrate
the proposed reconstruction strategy with regularization-
based inverse algorithms to build a unified framework for
solving BLT inverse problem. Numerical simulations and
phantom experiments demonstrate the effectiveness of this
framework.

The paper is organized as follows. In Section 2, we
present a multiple-source reconstruction framework with
the emphasis on the finite-element-mesh-aggregating-based
source detection strategy. In Section 3 we evaluate the
proposed method with numerical simulations. Section 4
presents a phantom experiment to further test the effective-
ness of the proposed method. Short discussions and conclud-
ing remarks are given at the end of this paper.

2. Multiple-Source Reconstruction Framework

2.1. FEM-Based Inverse Model. Radiative transfer equation
(RTE) plays an important role in image reconstruction by
predicting the bioluminescence light intensities on the tissue
boundary [20], but solving RTE remains an intractable
task for biological tissue with spatially nonuniform optical
properties and complex tissue geometries [21]. Instead, some
approximations to RTE have been established to overcome
the difficulty of directly solving RTE. Among them, the
diffusion approximation (DA) model has been extensively
used to describe the photon propagation in tissue where
there is scattering dominant absorption [5–14]. Here, we
restrict our discussion to the DA model for simplicity.
The steady state diffusion equation complemented with the
Robin boundary condition can be expressed as follows [10]:

−∇ · (D(r)∇Φ(r)) + μa(r)Φ(r) = S(r), (r ∈ Ω), (1)

Φ(r) + 2A(r;n,n′)D(r)(v(r) · ∇Φ(r)) = 0, (r ∈ ∂Ω),
(2)

where Φ(r) is the photon power density at r ∈ Ω, S(r) is
an isotropic source distribution of gene expression, and D(r)
and μa(r) are the optical diffusion and absorption coefficient,
respectively. In this work, we assumed these two parameters
are constant during the BLT reconstruction procedure. The
term v(r) in (2) denotes the unit outer normal at boundary
∂Ω, A(r;n,n′) ≈ (1 + R(r))/(1 − R(r)) is the boundary
mismatch factor accounting for different refractive indices
across the boundary ∂Ω.

Following the standard finite element analysis [22],
support domain Ω is discretized into T vertex nodes
(N1,N2, . . . ,NT) and Ne mesh elements, denoted as Ωl (l =
1, 2, . . . ,Ne); then Φ(r) and source term S(r) can be approxi-
mately expressed as

Φ(r) ≈ Φh(r) =
T∑

k=1

φkϕk(r), ∀r ∈ Ω,

S(r) ≈ Sh(r) =
T∑

k=1

skγk(r), ∀r ∈ Ω,

(3)

where φk is the approximate nodal value of Φ(r) on the kth
node Nk,ϕk(r) the nodal basis function with support over
the elements Ωl, sk the discretized nodal values of S(r), and
γk(r) the interpolation basis functions, which is usually the
same with ϕk(r).

Based on (1)–(3), a matrix equation of the linear
relationship between source distribution and boundary
measurements can be derived [10, Section 2]:

AS = Φ∗, (4)

where A is a typical ill-conditioned matrix and Φ∗ represents
measurable boundary nodal photon density. In real BLT
experiments, Φ∗ is computed from the surface flux image
captured with a CCD camera.
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2.2. General lp-Norm-Based Regularization. As mentioned in
Section 1, the flux density on the boundary can be predicted
according to a forward model, thereby a natural choice for
source reconstruction is to minimize the misfit between
predicted data and measurements, that is,

S = arg min
S

∥
∥AS−Φ∗

∥
∥2
. (5)

To deal with the ill posedness of BLT inverse problem, per-
missible source region is usually incorporated into the recon-
struction model by spatially constraining the reconstruction
domain to the area of interest [10, 14, 16, 23]. A more
effective approach to reconstruction is using regularization
to act as an algebraic stabilizer in estimating solutions.

Using a general lp (0 < p � 2) norm constraint, we
reformulate the objective function for BLT reconstruction in
(5):

Sreg = arg min
S

{∥∥AS−Φ∗
∥∥2

2 + λ‖S‖p
}

, (6)

where the first term represents reconstruction error and the
second is regularization term that fuses a priori knowledge
or constrains into reconstruction. Regularization parameter
λ > 0 provides a tradeoff between data fitting and constraints
regarding solutions. Obviously, Tikhonov regularization
method is a special case of (6) for p = 2, that is, using
an l2-norm regularizer. For p = 1, l1-norm-based sparse
regularization methods have recently attracted considerable
amount of attention in BLT [17, 23–25] and the reconstruc-
tions results therein witnessed some improvements in image
quality.

2.3. Multiple-Source Detection Strategy. Based on the solu-
tion (a source density vector) obtained in Section 2.2, source
localization and imaging is then performed by combining
with FEM mesh information. Facing the dilemma of thresh-
old choice mentioned in Section 1, we are hoping for an
adaptive method that can avoid the difficulty of threshold
selection while at the same time removing artifacts in the
reconstructed images with relatively lower computational
cost.

Consider that in most applications of BLT, for example,
detecting events that occur during the early stages of disease
progression, the bioluminescent sources we want to recover
are often localized in some small subregions of the domain.
On the other hand, because light intensity is heavily attenu-
ated in biological tissue and falls off exponentially from the
illumination point, the diffusion range of a bioluminescent
source is limited by the source strength. Consequently, when
taking the spatial structure of the mesh nodes into account,
the source density vector should have a spatial aggregation
on the mesh, which is also illustrated in the experiments in
Section 3 (Figure 4). It is found that, in a very small local
region, if a node in the mesh has a maximum density value,
with a very high probability its adjacent nodes are also with
larger density. It is found that in a very small local region,
if a node in the mesh has a maximum density value, with
a very high probability its adjacent nodes are also with a
larger density. We also observe that there are some nodes

Regularization:

Sreg = arg min{∥ −Φ∗
s

Obtain regularized solution S with a specific
reconstruction algorithm

Preprocessing S with a small threshold and define
O = {Si|i εN , Si > 0}

Traverse set O and find out all the elements that have
direct spatial adjacent relationship with Sj according

to the FEM mesh structure information, and move
these elements to set Pk

All the elements in Pk represent the kth reconstructed
source, and the node with the largest density value Sj

is regarded as the source center

No

End

Begin

Build system equation for BLT reconstruction with

FEM: AS = Φ∗

Find j = arg max (
Siε0

Si), and then move the element S to

a new set Pk

Yes

Is set O null

j

∥2
2 + λ∥S∥p}

Initialize the source number k := 1

Final reconstruction result: k subset of the initial set O:
Pi (i = 1, 2, . . . , k), and each subset Pi represents a

reconstructed source

k := k + 1

AS

Figure 1: Flow chart of the regularization framework for multiple-
source reconstruction.

with smaller density in the vicinity of nodes with the larger
density. These observations are helpful for discriminating
pseudosource from a cluster of mesh nodes and removing
artifacts in images. On the basis of the above analysis,
an iterative multiple-source detection strategy (MSDS) is
proposed in the following steps.

Step 1. Obtain the regularized solution (the source density
vector S).

Step 2. Threshold preprocessing. In the presence of inev-
itable noise, the solutions usually have many very small
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Figure 2: (a) 3D view of the heterogeneous phantom with two sphere sources in the left lung. (b)–(e) Different photon distributions
generated, respectively, in power ratio of 1 : 1, 2 : 1, 4 : 1, and 8 : 1 cases.

nonzero components. Consequently, the preprocessing of
solution with a small threshold of cmax (Si) is helpful
to remove pseudosources and reduce the data size to be
processed in the subsequent steps. For all the experiments in
Section 3, the constant c = 0.05.

Step 3. Define a set O = {Si | i ∈ N , Si > 0}.

Step 4. Initial the sources number k = 1.

Step 5. Compute the node index j = arg maxSi∈O(Si). We
move the element Sj to a new set Pk. By traversing set O we
can find out the other elements that directly adjoin the node
j, if any, according to the mesh structure information. Re-
move these elements to Pk.

Step 6. If set O is null, stop; otherwise k := k + 1, and go to
Step 5.

With the steps defined above, we provide an automatic
method to estimate the number of sources from the
reconstruction results iteratively. The final results contain
k sources. Here, k is the number of subsets of the initial
set O obtained at the end of the above iteration. Each
subset corresponds to a reconstructed source. When Pi (i =
1,L, k) has more than one member, we call this situation
“overrepresentation,” the nodes related to these elements will
aggregate to represent a single source and the node with
largest density value Sj is regarded as the source center
for simplicity. Eventually, the cartesian coordinates of the
reconstructed sources are obtained by their node index in the
finite element mesh.

2.4. Regularization Framework for Multiple-Source Recon-
struction. Based on the foregoing reconstruction scheme, we
build a unified regularization framework for multiple-source
reconstruction by integrating the MSDS with the general lp-
norm regularization, as shown in Figure 1.

An appealing property of this framework is its flexibility.
The MSDS is a relatively independent component of the
framework, and hence different regularizer and different
reconstruction algorithms can be utilized according to the
practice of BLT.

Table 1: Optical properties of different organs.

Material Tissue Lung Heart Bone

μa[cm−1] 0.07 0.23 0.11 0.01

μ′s[cm−1] 10.31 20.00 10.96 0.60

3. Numerical Results and Analysis

In this section, we present some numerical experiments
to demonstrate the utility and the effectiveness of the
proposed method in multiple-source settings. Comparison is
performed between the proposed MSDS and the traditional
global threshold strategy (GTS). It should be pointed that
the main theme of this paper is to evaluate the performance
of this framework for multiple-source reconstruction in BLT,
rather than the comparison between specific reconstruction
algorithms. As representatives of algorithms using l1 and
l2 regularization, Tikhonov regularization method [26] and
l1–ls [27] are, respectively, combined with the above two
strategies to recover the interior source distribution from
the synthetically boundary measurements. Consequently,
the reconstruction methods evaluated in the following
experiments include Tikhonov + MSDS, Tikhonov + GTS,
l1–ls + MSDS, and l1–ls + GTS.

It is known that regularization parameter is crucial to
yield a good solution for ill-posed problems, and the choice
of regularization parameter is usually nontrivial. In this
paper, the regularization parameter for Tikhonov method
was determined with the adaptive method proposed in [28].
As for l1–ls, the parameter λ was chosen as suggested in [27],
that is, λ = 0.1‖2ATΦ∗‖∞.

All the experiments were performed on a cylindrical
mouse chest numerical phantom as shown in Figure 2(a).
The heterogeneous model is 30 mm in diameter and 30 mm
high. The specific optical properties of different organs are
listed in Table 1 [14].

3.1. Reconstruction for Double Sources with Different Powers.
In the first study, we consider the ability to resolve sources
with different powers. Two sphere sources with radius of
0.5 mm were positioned in the left lung with the centers at
S1 = (−9,−3.5, 15) and S2 = (−9, 3.5, 15), respectively. They
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Figure 3: From left to right: transverse views of the reconstruction results at z = 15 mm in power ratio of 1 : 1, 2 : 1, 4 : 1, and 8 : 1. From top
to bottom: final results of Tikhonov + GTS, Tikhonov + MSDS, l1–ls + GTS, and l1–ls + MSDS, respectively.
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Figure 4: Top row: regularized solutions by Tikhonov regularization (left) and l1–ls method (right). Middle row: corresponding final
reconstruction results by GTS with a threshold of 0.35 max (Si). Bottom row: final reconstruction results by Tikhonov + MSDS (left) and
l1–ls + MSDS (right).

were uniform in size and shape. To illustrate the point of our
discussion, we consider four cases of experiment settings: (I)
both of the initial source densities were 1 nW/mm3; (II) to
(IV) the densities of S1 were still 1 nW/mm3, but the densities
of S2 were 0.5 nW/mm3, 0.25 nW/mm3, and 0.125 nW/mm3,
respectively, that is, the ratios of the power of source S2 to
that of S1 were 2 : 1, 4 : 1, and 8 : 1.

In the following experiments, the model was discretized
into a fine tetrahedral element mesh and synthetic measure-
ments were generated by solving the forward model with
FEM. To simulate the noise involved in real BLT experiment,
10% Gaussian white noise was added to synthetic data.
Figures 2(b)–2(e) show the forward mesh and the simulated
photon distribution on the surface in the above four source
settings. Obviously, it is difficult to predict the source
number only according to the photon distribution especially
in case (III) and case (IV).

In the reconstruction process, a permissible source region
strategy was also employed as a priori information to
decrease the ill posedness of BLT inverse problem, which was
defined as {(x, y, z) | 8 < (x2 + y2)1/2 < 12, 13.5 < z < 16.5}

[14]. Following the proposed reconstruction framework the
reconstructions were carried out with the aforementioned
four methods under different source settings.

The first row and the third row of Figure 3 show
the final reconstruction results by Tikhonov method and
l1–ls method combined with the proposed MSDS. For
comparison, the second row and the fourth row of Figure 3
present the corresponding reconstructed results rendered
from GTS, where a global threshold (35% of the maximum
density value) was used. It is obvious that the two sources are
accurately detected by the proposed MSDS combined with
different regularization methods in all the cases considered.
On the other hand, for case (III) and case (IV), only the
source with larger power is detected by Tikhonov + GTS and
l1–ls + GTS, whereas the other weaker one is lost in the final
reconstruction results.

To quantitativly assess reconstruction results in dif-
ferent power settings, we summarize location errors and
reconstructed powers by different reconstruction schemes
in Table 2, where the second column represents the actual
initial power ratio of S1 to S2, and SR1 and SR2 denote
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Figure 5: 3D views of reconstruction results with synthetic data generated from four scattered sources with different powers. (a)–(d) are the
results of Tikhonov + GTS, l1–ls + GTS, Tikhonov + MSDS, and l1–ls + MSDS, respectively.

the corresponding reconstructed sources. N/A denotes that
location information is not available.

From Table 2, it is seen that l1-norm-based method l1–ls
generally performs better than l2-norm-based Tikhonov
method in terms of reconstructed powers and locations.

Figure 4 illustrates the mesh aggregating process of
MSDS and compares the final reconstruction results of
MSDS with those of GTS in case (I). We can observe that
there are some nodes with smaller density value in the
vicinity of the two nodes with larger density, as shown

in Figures 4(a) and 4(b). Apparently, retaining all of the
nonzero components of the regularized solution will incur
some artifacts in the final reconstruction image, in particular
for l2 norm solution by Tikhonov regularization method.
The results in Figures 4(c) and 4(d) show that the traditional
GTS directly discards those nodes with density value lower
than the given threshold in the final results to improve the
image quality. Usually, a higher threshold is preferred in
the literature, thus a threshold of 0.35 max (Si) was used
in the experiments for GTS method [16, 29]. As a result,
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Figure 6: (a) Location error under different mesh levels. (b) Reconstructed power under different mesh levels.

Table 2: Reconstruction results in double-source case.

Case
Power
ratio

Reconstruction
method

Reconstructed center and location error (mm) Reconstructed power (nW)

SR1 SR2 SR1 SR2

I 1 : 1

Tikhonov + GTS −8.95, 2.13, 14.83 1.39 −8.98,−3.57, 14.73 0.28 0.65 0.28

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.35 0.28

l1–ls + GTS −8.99, 2.92, 14.77 0.62 −8.98,−3.57, 14.73 0.28 0.502 0.44

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.41 0.44

II 2 : 1

Tikhonov + GTS −9.03, 2.69, 14.65 0.88 −8.98,−3.57, 14.73 0.28 0.48 0.15

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.37 0.14

l1–ls + GTS −8.98, 2.98, 14.81 0.56 −8.98,−3.57, 14.73 0.28 0.51 0.22

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.43 0.22

III 4 : 1

Tikhonov + GTS −9.03, 2.72, 14.66 0.85 N/A N/A 0.49 0

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.38 0.07

l1–ls + GTS −8.97, 3.00, 14.82 0.53 N/A N/A 0.51 0

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98, −3.57, 14.73 0.28 0.4339 0.10

IV 8 : 1

Tikhonov + GTS −9.03, 2.73, 14.67 0.84 N/A N/A 0.49 0

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.38 0.03

l1–ls + GTS −8.97, 3.02, 14.83 0.51 N/A N/A 0.51 0

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.43 0.04

those suspect targets with density lower than threshold will
be omitted in this way. Unlike traditional methods, the
proposed MSDS considers not only density value of a node
but also mesh structure used in reconstruction and thus
it has an ability to remove pseudosources and retain weak
suspect sources in the final reconstruction results, as shown
in Figures 4(e)-4(f) and 3.
3.2. Four-Source Reconstruction. In the second experiment,
we attempt to reconstruct sources with synthetic data gener-
ated from four scattered sources with different initial powers,

which may be a common case in tumor metastasis. Specif-
ically, the power setup was according to ratio of 8 : 4 : 2 : 1
and the maximum power density was 1 nW/mm3. Figure 5
shows 3D views of the results of Tikhonov regularization
method and l1–ls method, respectively, combined with GTS
and MSDS. The global threshold was the same as previous
simulations. Obviously, it is hard for traditional GTS method
to detect multiple sources with lower power density in such
experimental setting, whereas the proposed MSDS accurately
distinguishes all of the sources.
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3.3. Influence of Finite Element Mesh. In view of the idea that
the proposed multiple-source reconstruction approach uti-
lizes underlying mesh structure information, it is necessary
to assess the influence of different FEM discretization on
the proposed method. Therefore, we conducted a set of
double-source experiments under different discretization
level. The results in Figure 6 (where the number of nodes in
reconstruction domain denotes different discretization level
or mesh size) show the influence of finite element mesh
on reconstruction. For Tikhonov regularization method
combined with MSDS, the location error increases slightly
after a decrease along with the increasing of mesh size and
the reconstructed power presents a similar variation trend.
As for l1–ls combined with MSDS, both location error and
reconstructed power vary slightly with mesh changes.

In general, finite element discretization does affect recon-
structed results in the sense that the location error and the
reconstructed power vary with the change of mesh. However,
for all of the discretization levels considered, the proposed
method is able to accurately localize and quantify light source
distribution. These results demonstrate the robustness of the
proposed reconstruction framework against mesh discretiza-
tion.

4. Phantom Study

We further demonstrate the effectiveness of the proposed
reconstruction algorithm with phantom experiments. This
set of BLT experiments were conducted with a dual-
modality BLT/micro-CT system [17, 30]. A backthinned,
backilluminated cooled CCD camera is used to measure the
signal on the phantom surface from four directions at 90-
degree intervals.

The heterogeneous mouse chest phantom with 30 mm
height and 15 mm diameter consists of four parts that
represent muscle, lungs, heart, and bone, respectively [30].
The optical properties of different organs are listed in Table 1.
Two small holes of diameter 2 mm were drilled in the
phantom to place glass capillary with 1 mm inside diameter.
Luminescent solutions of height 2 mm were extracted from
a red luminescent light stick (Glow products, Canada) and
then injected to glass capillary to serve as one testing source.
The generated luminescent light had an emission peak wave-
length of about 650 nm. The real center positions of the two
testing sources were (−9, 2, 16.6) and (−9,−3, 16.6).

It is known that luminescent light intensity will decrease
with the passage of time. We collected 100 gray level images
of the sources, which were taken by the CCD camera every
one minute. Figure 7 shows the fitted decay curve of light
density. According to the decay curve, we can obtain sources
with different intensities by controlling the injection time
of luminescent solutions. Three groups of experiments were
conducted, and the ratios of the intensity of source S2 to that
of S1 were 1 : 1, 2 : 1, and 4 : 1, respectively. Figures 8(a)–8(c)
show the front views of the corresponding measured data
on CCD under different intensity settings. Subsequently, a
permissible source region was roughly determined according
to the surface flux density distribution, which is expressed as
{(x, y, z) | 8 < (x2 + y2)1/2 < 13, 15 < z < 18}.
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Figure 7: Decay curve of light density.

The phantom model was discretized into 4202 nodes and
21721 tetrahedra. After mapping the collected optical data on
the three-dimensional phantom surface, we performed four
rounds of reconstruction with Tikhonov + GTS, l1–ls + GTS,
Tikhonov + MSDS, and l1–ls + MSDS under different source
intensity settings. The normalized reconstruction results of
Tikhonov regularization method are similar to that of l1–ls.
To avoid interminable description, Figure 9 only presents
comparison results between Tikhonov + GTS and Tikhonov
+ MSDS.

For all of the testing cases considered in phantom exper-
iments, Tikhonov + MSDS and l1–ls + MSDS can accurately
detect two sources, and the maximum location error is
1.7 mm. Even for the case of real intensity ratio 4 : 1, the
reconstructed source strength ratios of them were 3.12 : 1
and 2.97 : 1. In stark contrast to the proposed methods,
traditional global threshold methods failed to reconstruct
the weaker of the two sources, as shown in Figure 9(c).
Compared with the results of using GTS (the top row of
Figure 9), the proposed MSDS methods produce fewer
artifacts in the reconstructed images (the bottom row of
Figure 9).

5. Discussions and Conclusion

Accurately reconstructing and distinguishing several sources
with different intensities is a challenge problem in BLT, which
is also an essential ability for serial observation of disease
progression or response to therapy in the same animal
over time. In this work, we present a unified framework
for multiple-source reconstruction by integrating a novel
multiple-source detection strategy with regularization-based
reconstruction process. The effectiveness of this regulariza-
tion framework is validated with numerical simulations and
further confirmed with phantom experiments.

The advantage of this framework is twofold. First, there
is no need for a prior knowledge regarding source number,
which is automatically estimated from the reconstruction
results iteratively. Second, the regularization framework is
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Figure 8: (a)–(c) Front views of measurements by CCD for the case of intensity ratios 1 : 1, 2 : 1, and 4 : 1.
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Figure 9: Normalized reconstruction results in phantom experiments. (a)–(c) are the results of Tikhonov + GTS with power ratio of 1 : 1,
2 : 1, and 4 : 1. (d)–(e) are the corresponding results of Tikhonov + MSDS.

general since it can work with different regularizers and
inverse algorithms. The proposed MSDS is also easily applied
to other finite-element-based reconstruction schemes to
improve the final reconstruction results or image quality.

There are several limitations to the proposed method.
As indicated in the experiment results, sparseness-inducing
regularization method (l1–ls) performs better than l2 norm
method (Tikhonov). This is mainly because l1 norm solution
accords with the sparsity nature of bioluminescent source

distribution in these applications. Consequently, how to
select appropriate regularizer and inverse algorithm for
specific BLT application is very important when using this
framework.

Additionally, other regularizers can also be used in this
unified framework. In fact, lp(0 < p < 1) norm regular-
ized reconstruction has been tried for recovery of signals
with weak sparsity in other image processing fields [31].
So far, related researches have not yet been reported in
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BLT. Based on the proposed regularization framework, our
future studies will investigate the effectiveness of other
forms of regularizer for the ill-posed inverse problem of
BLT.

Although only the DA model is considered for the sake
of simplicity, the proposed BLT reconstruction framework
has no limitation on the forward model. The performance of
our framework might be improved by using more accurate
forward models, which is also the direction of our further
work.
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