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Alex E.-Zúñiga, Mexico
Fouad Erchiqui, Canada
Anders Eriksson, Sweden
Vedat S. Erturk, Turkey
Hua Fan, China
Ricardo Femat, Mexico
Jose R. Fernandez, Spain
Thierry Floquet, France
George Flowers, USA
Tomonari Furukawa, USA
Zoran Gajic, USA
Ugo Galvanetto, Italy
Xin-Lin Gao, USA
Zhong-Ke Gao, China

Laura Gardini, Italy
Alessandro Gasparetto, Italy
Oleg V. Gendelman, Israel
Paulo Batista Gonalves, Brazil
Rama S. R. Gorla, USA
Oded Gottlieb, Israel
Quang Phuc Ha, Australia
Masoud Hajarian, Iran
Zhen-Lai Han, China
Thomas Hanne, Switzerland
Xiao-Qiao He, China
Katica R. Hedrih, Serbia
M. Isabel Herreros, Spain
Wei-Chiang Hong, Taiwan
Jaromir Horacek, Czech Republic
Muneo Hori, Japan
Feng-Hsiag Hsiao, Taiwan
Fu-Shiung Hsieh, Taiwan
Changchun Hua, China
Zhenkun Huang, China
Chiung-Shiann Huang, Taiwan
Chuangxia Huang, China
Gordon Huang, Canada
Huabing Huang, China
Hai-Feng Huo, China
Asier Ibeas, Spain
Giacomo Innocenti, Italy
Nazrul Islam, USA
Reza Jazar, Australia
Khalide Jbilou, France
Linni Jian, China
Bin Jiang, China
Zhongping Jiang, USA
Jun Jiang, China
Jianjun Jiao, China
Ningde Jin, China
J. Joao Judice, Portugal
Tadeusz Kaczorek, Poland
T. Kalmar-Nagy, Hungary
T. Kapitaniak, Poland
Haranath Kar, India
C. Masood Khalique, South Africa
DoWan Kim, Republic of Korea
Nam-Il Kim, Republic of Korea
Kyung Y. Kim, Republic of Korea



Manfred Krafczyk, Germany
V. Kravchenko, Mexico
Jurgen Kurths, Germany
Kyandoghere Kyamakya, Austria
Hak-Keung Lam, UK
Wen-Chiung Lee, Taiwan
Marek Lefik, Poland
Yaguo Lei, China
Valter J. S. Leite, Brazil
Stefano Lenci, Italy
Roman Lewandowski, Poland
Ming Li, China
Jian Li, China
Qing Q. Liang, Australia
Yan Liang, China
Teh-Lu Liao, Taiwan
Panos Liatsis, UK
KimM. Liew, Hong Kong
Yi-Kuei Lin, Taiwan
Shueei M. Lin, Taiwan
Jui-Sheng Lin, Taiwan
Wanquan Liu, Australia
Yan-Jun Liu, China
Yuji Liu, China
Xian Liu, China
Peter Liu, Taiwan
Peide Liu, China
Paolo Lonetti, Italy
Vassilios C. Loukopoulos, Greece
Junguo Lu, China
Chien-Yu Lu, Taiwan
Jianquan Lu, China
Jinhu Lü, China
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In the last decades noninteger differentiation became a
popular tool formodeling the complex behaviours of physical
systems from diverse domains such as mechanics, electricity,
chemistry, biology, and economics. Numerous studies have
validated the novel perspective demonstrating fractional
order models that better characterize many real-world phys-
ical systems by means of differential operators of noninte-
ger order. The long-range temporal or spatial dependence
phenomena inherent to the fractional order systems (FOS)
present unique and intriguing peculiarities, not supported
by their integer-order counterpart, which raise exciting
challenges and opportunities related to the development of
modelling, control, and estimation methodologies involving
fractional order dynamics.

The purpose of this special issue is to draw attention to the
scientific community to some recent advances and possible
applications of fractional order systems and to ensure the
corresponding dissemination. The issue includes a collection
of papers in the area of FOS and some leading and emerging
specialists in the area present their latest results.

A short description of the addressed topics is as follows.

(i) Forest fires are studied in the perspective of dynamical
systems, describing the global dynamics along several
decades. The time is modelled as Dirac impulses with
amplitude proportional to the burnt area.

(ii) A systematic form of the existing formulations of
fractional derivatives and integrals is presented.

(iii) The asymptotic stability of the two-step Runge-
Kutta methods for neutral delay integrodifferential-
algebraic equations with many delays is developed.
It has been proved that A-stable two-step Runge-
Kutta methods are asymptotically stable for neu-
tral delay integrodifferential-algebraic equations with
many delays.

(iv) An efficient iteration method for Toeplitz-plus-band
triangular systems is presented with 𝑂(𝑀 log(𝑀))
computational complexity and 𝑂(𝑀) memory com-
plexity. The proposed method is compared with the
regular solution with (𝑀2) computational complexity
and 𝑂(𝑀2)memory complexity.

(v) The fundamental solutions to time-fractional advec-
tion diffusion equation in a plane and a half-plane are
obtained using the Laplace integral transform with
respect to time 𝑡 and the Fourier transforms with
respect to the space coordinates 𝑥 and 𝑦. The Cauchy,
source, and Dirichlet problems are also investigated.

(vi) A novel watermarking method associated with the
linear canonical transform is proposed. The linear
canonical transform, which can be looked at as the
generalization of the fractional Fourier transform and
the Fourier transform, has received much interest
and proved to be one of the most powerful tools in
fractional signal processing community.

(vii) A finite series representation of the inverse Mittag-
Leffler function is formulated for a range of the
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parameters 𝛼 and 𝛽, specifically, 0 < 𝛼 < 1/2 for
𝛽 = 1 and for𝛽 = 2, showing also that this finite series
representation of the inverse Mittag-Leffler function
greatly expedites its evaluation.

(viii) The sparse prior in fractional order gradient domain
as texture-preserving strategy to restore textured
images degraded by blur and/or noise is introduced.
The unknown variables in proposed model using
method based on half-quadratic splitting byminimiz-
ing the nonconvex energy functional are also solved.

(ix) A new general and systematic coupling scheme is
developed to achieve the modified projective syn-
chronization (MPS) of different fractional order sys-
tems under parameter mismatch via the open-plus-
closed-loop (OPCL) control. Based on the stability
theorem of linear fractional order systems, sufficient
conditions for MPS are proposed.

(x) Several nanodiamond preparations for Raman spec-
troscopic studies have been studied. These nanodia-
monds have been exposed to increasing temperature
treatments at constant heating rates (425–575∘C)
aiding graphite release. Changes in the nanodiamond
surface and properties with Raman signal which
could be used as a detection marker are correlated.

(xi) The discrete wavelet transform via local fractional
operators is structured and applied to process the
signals on Cantor sets. An illustrative example of
the local fractional discrete wavelet transform is also
given.

Riccardo Caponetto
Josè A. Tenereiro Machado

Juan J. Trujillo
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It is time consuming to numerically solve fractional differential equations. The fractional ordinary differential equations may
produce Toeplitz-plus-band triangular systems. An efficient iterationmethod for Toeplitz-plus-band triangular systems is presented
with 𝑂 (𝑀log (𝑀)) computational complexity and 𝑂 (𝑀) memory complexity in this paper, compared with the regular solution
with 𝑂 (𝑀2) computational complexity and 𝑂 (𝑀2) memory complexity. 𝑀 is the discrete grid points. Some methods such
as matrix splitting, FFT, compress memory storage and adjustable matrix bandwidth are used in the presented solution. The
experimental results show that the presentedmethod compares well with the exact solution and is 4.25 times faster than the regular
solution.

1. Introduction

Fractional differential equation (FDE) plays an important
role in dynamical systems [1] and has more than 300 years of
research history [2]. Many analytical solutions and numerical
solutions [3–6] have been proposed for FDE, such as finite
difference method [7, 8], finite element method [9], and
spectral method [10, 11]. In recent times, interest in fractional
ordinary differential equations (FODE) has increased [12–
15]. The derivatives in the FODE are approximated by linear
combinations of function values at the discrete grid points.
Compared with integer ordinary differential equations, the
FODE has nonlocal effect, whichmeans a grid point may rely
on the grid points far away from its position. And a grid point
of the classical integer equations may only rely on its several
neighboring grid points.

For integer order equations, the coefficient matrices are
often sparse. Because of the nonlocal property of fractional
differential operators, the numerical methods for fractional
diffusion equations often generate dense or even full coef-
ficient matrices [16]. This nonlocal property makes the
computation of FODE and FDE much heavier than that of

the traditional integer equations.The shortmemory principle
[17], parallel computing [18–21], fast Fourier transformation
(FFT) [22, 23], multigrid method [24], and preconditioner
technologies [25, 26] are used to overcome this heavy com-
putation. Gong et al. presented many parallel algorithms for
different FDEs on both traditional and heterogeneous parallel
platforms [16, 18]. Diethelm [19] proposed a parallel second-
order Adams-Bashforth-Moultonmethod for a FODE.Wang
and Du [26] proposed a superfast-preconditioned iterative
method for steady-state two-side space-fractional diffusion
equations.

The fractional ordinary differential equations may pro-
duce Toeplitz-plus-band triangular systems. Toeplitz-plus-
band systems were studied by professors Chan and Ng [27].
They considered the solutions of Hermitian Toeplitz-plus-
band systems (𝐴

𝑛
+ 𝐵
𝑛
)𝑥 = 𝑏, where 𝐴

𝑛
are 𝑛-by-𝑛 Toeplitz

matrices and 𝐵
𝑛
are 𝑛-by-𝑛 band matrices with bandwidth

independent of 𝑛. 𝐴
𝑛
and 𝐵

𝑛
are both Hermitian matrix.

The authors proved that if 𝐴
𝑛
is generated by a nonnegative

piecewise continuous function and 𝐵
𝑛
is positive semidef-

inite, then there exists a band matrix 𝐶
𝑛
, with bandwidth
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independent of 𝑛, such that the spectra of 𝐶−1
𝑛
(𝐴
𝑛
+ 𝐵
𝑛
) are

uniformly bounded by a constant independent of 𝑛.The band
preconditionerwas developed forHermitianToeplitz systems
[28]. The recursive blocked algorithms were proposed for
triangular systems and the recursive algorithms lead to an
automatic variable blocking that has the potential ofmatching
the memory hierarchies of today’s HPC (high performance
computing) systems [29, 30].

This paper focuses on the fractional ordinary differential
equation [13]:

𝑢

(𝑡) + 𝑎 (𝑡)

0
𝐷
𝛼

𝑡
𝑢 (𝑡) + 𝑏 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) , 𝑢 (0) = 0,

(1)

where 0 < 𝛼 < 1, 0 < 𝑡 < 𝑇 < +∞, 𝑎(𝑡) > 0, and 𝑏(𝑡) > 0.
The fractional derivative is in the Caputo form [31].

Define 𝑡
𝑖
= 𝑖𝜏 for 0 ≤ 𝑖 ≤ 𝑀, where 𝑀 is a positive

integer, and 𝜏 = 𝑇/𝑀 are step size. Assume 𝑢
𝑖
to be

the numerical approximation to 𝑢(𝑡
𝑖
) and 𝑓

𝑖
the numerical

approximation to 𝑓(𝑡
𝑖
). Using the Grünwald approximation,

the finite difference scheme for (1) is shown as follows:

𝑢
𝑖
− 𝑢
𝑖−1

𝜏
+ 𝑎
𝑖
𝜏
−𝛼

𝑖

∑

𝑘=0

𝑤
𝑘
𝑢
𝑛

𝑖−𝑘
+ 𝑏
𝑖
𝑢
𝑖
= 𝑓
𝑖
, 𝑢
0
= 0, (2)

where the normalized Grünwald weight 𝑤 is defined by

𝑤
0
= 1, 𝑤

𝑖
= (−1)

𝑖𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑖 + 1)

𝑖!
,

𝑖 = 1, 2, 3, . . . .

(3)

Equation (2) results in a linear system of equations

𝐴𝑈 = 𝐹, (4)

where 𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑀
)
𝑇 and 𝐹 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑀
)
𝑇. If

𝑢
0
̸= 0, the term should be included in 𝐹. 𝐴 = (𝑎

𝑖𝑗
)
𝑀×𝑀

is the
coefficient matrix. 𝐴 is defined by

𝑎
𝑖,𝑗
=

{{{{{{{{{{{

{{{{{{{{{{{

{

0 for 𝑖 < 𝑗
1

𝜏
+
𝑎
𝑖
𝑤
0

𝜏𝛼
+ 𝑏
𝑖

for 𝑖 = 𝑗

−1

𝜏
+
𝑎
𝑖
𝑤
1

𝜏𝛼
for 𝑖 = 𝑗 + 1

𝑎
𝑖
𝑤
𝑖−𝑗

𝜏𝛼
for 𝑖 > 𝑗 + 1.

(5)

2. Method

2.1. Analysis. In a more explicit format, matrix 𝐴 can be
represented as

𝐴 =
(
(
(

(

1

𝜏
+
𝑎1𝑤0

𝜏
𝛼
+ 𝑏1 0 ⋅ ⋅ ⋅ 0

−1

𝜏
+
𝑎2𝑤1

𝜏
𝛼

1

𝜏
+
𝑎2𝑤0

𝜏
𝛼
+ 𝑏2 ⋅ ⋅ ⋅ 0

...
... d

...
𝑎𝑀𝑤𝑀−1

𝜏
𝛼

𝑎𝑀𝑤𝑀−2

𝜏
𝛼

⋅ ⋅ ⋅
1

𝜏
+
𝑎𝑀𝑤0

𝜏
𝛼
+ 𝑏𝑛

)
)
)

)

.

(6)

input:𝑀,𝐹,𝐴
output: 𝐹

(1) for 𝑖 = 1 to 𝑀 by 1 do
(2) 𝑓

𝑖
← 𝑓
𝑖
/𝑎
𝑖,𝑖

(3) for 𝑗 = 𝑖 + 1 to 𝑀 by 1 do
(4) 𝑓

𝑗
← 𝑓
𝑗
− 𝑎
𝑖,𝑗
𝑓
𝑗

Algorithm 1: Forward substitution for lower triangular matrix.

The linear system (4) can be solved with computational
complexity 𝑂(𝑀2), shown in Algorithm 1. The output 𝐹
equals 𝑈.

From (6), we can see that 𝐴 has some properties.

(1) 𝐴 is a low triangular, diagonal dominant matrix.
(2) One has |𝑎

𝑖,𝑗+1
| > |𝑎

𝑖,𝑗
| for 1 ≤ 𝑖 ≤ 𝑀, 𝑗 < 𝑖. This

property is determined by the normalized Grünwald
weight 𝑤

𝑖
and is the mathematical background of

short memory principle.This property means that for
grid point 𝑝, if the distance of grid point 𝑝

1
is smaller

than that of grid point 𝑝
2
, 𝑝
1
has more impact on 𝑝

than 𝑝
2
.

(3) If 𝐴 is split into two matrices 𝐵 and 𝐶, 𝐴 = 𝐵 − 𝐶.
𝐵 is a banded matrix and the bandwidth (number
of diagonals) 𝜂 > 2. Matrix 𝐶 can be factorized
into a product 𝐶 = 𝐷𝑇. 𝐷 is a diagonal matrix
diag{𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑀
}. 𝑇 is a Toeplitz matrix with𝑀−𝜂

nonzero diagonals on its left-bottom part.
(4) The Toeplitz matrix 𝑇 can be stored with 𝑀 − 𝜂

memory space compared with (𝑀 − 𝜂)(𝑀 − 𝜂 + 1)/2
for a general low triangular matrix with order𝑀− 𝜂.

2.2. Efficient Iteration Method. Equation (4) evolves as fol-
lows:

(𝐵 − 𝐶)𝑈 = 𝐹 (7)

𝐵𝑈
𝑛+1
= 𝐶𝑈

𝑛
+ 𝐹 (8)

𝐵𝑈
𝑛+1
= 𝐷𝑇𝑈

𝑛
+ 𝐹 (9)

𝐵𝑈
𝑛+1
= 𝐷 (𝑇𝑈

𝑛
) + 𝐹. (10)

So the linear algebra can be solved iteratively, shown in
(10). Because 𝐷 is a diagonal matrix, 𝐷 keeps associative
law and commutative law for matrix-matrix multiplication.
The rate of convergence associated with (10) depends on the
eigenvalues of the iteration matrix [32]:

𝐻 = 𝐵
−1
𝐷𝑇 = 𝐵

−1
𝐶. (11)

Assuming error 𝑒𝑛+1 = 𝑈𝑛+1 −𝑈 with𝑈 satisfies𝐴𝑈 = 𝐹,
then

𝑒
𝑛+1
= 𝐵
−1
𝐶𝑒
𝑛
= 𝐻𝑒
𝑛
= 𝐻
𝑛
𝑒
1 (12)
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input:𝑀, 𝜂, 𝐹, 𝐴
output: 𝑈

(1) 𝜖 ← 10−6, 𝛿 = 1.0
(2) while 𝛿 > 𝜖 do
(3) set V𝑏

1→𝑀−𝜂
with 𝑢𝑎

𝑀−𝜂→1

(4) 𝑉1 ← FFT(V𝑏)
(5) 𝑉2 ← FFT(V𝑎)
(6) V← 𝑉1⨀𝑉2

(7) 𝑢
1→𝑀

← 𝑓
1→𝑀

(8) for 𝑖 = 1 to 𝑀− 𝜂 by 1 do
(9) 𝑢

𝜂+𝑖
← 𝑢
𝜂+𝑖
+ V
2(𝑀−𝜂)−𝑖

(10) for 𝑗 = 1 to 𝑀 by 1 do
(11) 𝑢

𝑗
← 𝑢
𝑗
𝑑
𝑗

(12) for 𝑖 = 𝑗 + 1 to min {𝑗 + 𝜂 − 1,𝑀} by 1 do
(13) 𝑢

𝑖
← 𝑢
𝑖
− 𝑏
𝑖−𝑗+1

𝑢
𝑗

(14) 𝛿 ← max (𝑢1→𝑀 − 𝑢𝑎1→𝑀
)

(15) 𝑢𝑎
1→𝑀

← 𝑢𝑎
1→𝑀

Algorithm 2: The efficient iteration method for FODE.

with norm ‖ ∗ ‖ [32]:

𝑒
𝑛+1

=

𝐺
𝑛
𝑒
1
=
𝐺
𝑛 ×


𝑒
1
. (13)

So the spectral radius of 𝐻 (𝜌(𝐻)) determines the
asymptotic behavior of𝐻𝑛. FromTheorem 11.2.1 of [32], we
can conclude that if and only if 𝜌(𝐻) < 1, (10) will converge
to𝐴−1𝐹. Generally speaking, the iteration is expected to work
well with small 𝜌(𝐻).

Assume the bandwidth of matrix 𝐵 is 𝜂 and 𝑉 =

𝐷(𝑇𝑈
𝑛
) + 𝐹. Solving 𝐵𝑈𝑛+1 = 𝑉 needs about𝑀𝜂 arithmeti-

cal operations. If 𝜂 is near log
2
𝑀, there are about 𝑀log

2
𝑀

arithmetical operations with forward substitution. So the
computational complexity of 𝐵𝑈𝑛+1 = 𝑉 is 𝑂(𝑀log

2
𝑀).

Assume 𝐸1 = 𝑇𝑈
𝑛, 𝐸2 = 𝐷𝐸

1
, and 𝑉 = 𝐸2 +

𝐹. The computation of 𝐸2 and 𝑉 needs 𝑀 multiplications
and 𝑀 additions, respectively. Because 𝑇 only has nonzero
𝑀 − 𝜂 diagonals on its left-bottom part, only the front𝑀 −

𝜂 elements of 𝑈𝑛 are effective for the multiplication 𝑇𝑈𝑛.
The back 𝜂 elements of 𝐸1 are zero. So 𝐸1 = 𝑇𝑈

𝑛 can
be regarded as a Toeplitz matrix vector multiplication 𝑇

1
𝑈
𝑛

1

with order 𝑀 − 𝜂. It is well known that Toeplitz matrix
vector multiplication with order 𝑀 − 𝜂 can be finished
with 𝑂(𝑀log

2
𝑀) = 𝑂((𝑀 − 𝜂)log

2
(𝑀 − 𝜂)) operations

[33]. The Toeplitz matrix vector multiplication 𝑇
1
𝑈
𝑛

1
can be

computed by FFTs by first embedding 𝑇
1
into a 2(𝑀− 𝜂)-by-

2(𝑀−𝜂) circulant matrix.The cost of circulant matrix vector
multiplication is𝑂(2(𝑀−𝜂)log

2
(2(𝑀−𝜂))) by using FFTs of

length 2(𝑀 − 𝜂).
So the cost of each iteration of (10) is𝑂(𝑀log

2
𝑀). If𝐴 is

a diagonal dominant matrix, we can expect (10) can converge
with not too many iterations. The efficient iteration method
is shown in Algorithm 2.

In Algorithm 2, 𝑢𝑎
1→𝑀

stands for the value of previous
iteration and 𝑢

1→𝑀
stands for the current iteration. 𝑉1⊙𝑉2

stands for V1
𝑖
V2
𝑖
with 1 ≤ 𝑖 ≤ 2(𝑀 − 𝜂) − 1. 𝑑

𝑖
equals the

reciprocal of 𝑎
𝑖,𝑖
with 1 ≤ 𝑖 ≤ 𝑀. 𝑏

𝑖
stands for 𝑎

𝑖,1
with 1 ≤ 𝑖 ≤

𝜂. V𝑎 and V𝑏 are 2(𝑀− 𝜂) − 1 arrays. V𝑎
𝑀−𝜂−𝑖+1

equals −𝑎
𝜂+𝑖,1

.
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Figure 1: Comparison of exact solution to the solution of the fast
solution at time 𝑡 = 1.0.

The value of 𝜂 can affect the performance of Algorithm 2
shown in Table 1.

Algorithm 2 has five features/advantages compared to
Algorithm 1.

(1) Split the coefficient matrix and solve the triangular
system iteratively.

(2) Use FFT to compute matrix vector multiplication.
(3) Precompute 𝑑

𝑖
.

(4) Compress storage.
(5) Adjust parameter 𝜂.

3. Numerical Example

The experiment platform is a laptop with Intel(R) Core (TM)
i3-3110MCPU, 2GBmainmemory, andWindows 7 operating
system. The CPU clock frequency is 2.40GHz. The code is
developed withMATLAB R2012a and runs on default double
precision floating point operations.

The following fractional (𝛼 = 0.8) ordinary differential
equation [13] was considered:

𝑢

(𝑡) +
0
𝐷
𝛼

𝑡
𝑢 (𝑡) + (1 + 𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) , 𝑡 > 0, 𝑢 (0) = 0,

(14)

where 𝑓(𝑡) = (14/Γ(3.8))𝑡1.8 + (5/2)𝑡2 + (5/Γ(3.8))(1 + 𝑡)𝑡2.8.
The exact solution of (14) is

𝑢 (𝑡) =
5

Γ (3.8)
𝑡
2.8
. (15)

The efficient iteration method of Algorithm 2 compares
well with the exact solution to the FODE in the test case of
(14), shown in Figure 1.The 𝜏 is 1.0/100.Themaximum abso-
lute error is 9.78 × 10−3. The difference between the efficient
iteration method and the forward substitution Algorithm 1
is only 2.37 × 10−10. The efficient iteration method and
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Table 1: Impact of 𝜂.

Procedure Big 𝜂 Small 𝜂
Iterations Less More
𝐵𝑈
𝑛+1
= 𝑉 Slow Fast

𝑉 = 𝐷(𝑇𝑈
𝑛
) + 𝐹 Fast Slow

Table 2: Performance comparison between regular solution and the
presented efficient iteration method.

𝑀 Presented method Regular solution Speedup
5 × 10

3 0.14 0.27 1.96
1 × 10

4 0.41 1.10 2.67
2 × 10

4 1.37 4.39 3.20
4 × 10

4 4.51 17.74 3.93
8 × 10

4 14.30 60.71 4.25

Table 3: Impact of 𝜂 for𝑀 = 4 × 10
4.

𝜂 Number of iterations Runtime
1(⌈log

2
𝑀⌉ + 1) 93 7.95

2(⌈log
2
𝑀⌉ + 1) 57 4.62

3(⌈log
2
𝑀⌉ + 1) 43 5.61

4(⌈log
2
𝑀⌉ + 1) 36 4.51

5(⌈log
2
𝑀⌉ + 1) 31 4.93

6(⌈log
2
𝑀⌉ + 1) 28 5.01

the regular forward substitution solution have no noticeable
artifacts.

The performance comparison between regular forward
substitution solution of Algorithm 1 and efficient iteration
method of Algorithm 2 is shown in Table 2. Columns 2 and
3 of Table 2 are the runtime and the runtime is recorded in
seconds. With𝑀 = 8 × 10

4, the maximum speedup is 4.25.
Because the speedup increases with𝑀, the bigger𝑀 is, the
higher the speedup that can be expected is. Because of the
2GB memory limitation, the compress memory usage is also
used in Algorithm 1.

The impact of 𝜂 on the performance of Algorithm 2 is
shown in Table 3. The runtime of the presented method
varies with 𝜂. So 𝜂 is a key parameter for the performance
of Algorithm 2. In real fractional ordinary applications, the
proper 𝜂 should be chosen.

The presented iteration method should be regarded as
an iteration method to solve not only the system generated
from FODE but also the more general Toeplitz-plus-band
triangular systems. The technology of parallel computing is
very useful, but with less mathematical background. Parallel
computing is attractive for fractional differential equations
[34]. As a part of futurework, first, wewould like to parallelize
the presented solution on shared memory or distributed
memory systems. Second, accelerating the presented effi-
cient iterationmethod on heterogeneous architecture [35–38]
should also be interesting.
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[30] I. Jonsson and B. Kågström, “Recursive blocked algorithm
for solving triangular systems. II. Two-sided and generalized
Sylvester and Lyapunov matrix equations,” ACM Transactions
on Mathematical Software, vol. 28, no. 4, pp. 416–435, 2002.

[31] I. Podlubny, Fractional Differential Equations, vol. 198, Aca-
demic Press, San Diego, Calif, USA, 1999.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations, vol.
3, Johns Hopkins University Press, Baltimore, Md, USA, 4th
edition, 2013.

[33] R. H.-F. Chan and X.-Q. Jin,An introduction to iterative Toeplitz
solvers, vol. 5, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa, USA, 2007.

[34] C. Gong,W. Bao, G. Tang, B. Yang, and J. Liu, “An effcient paral-
lel solution for Caputo fractional reaction-diffusion equation,”
The Journal of Supercomputing, 2014.

[35] X. J. Yang, X. K. Liao, K. Lu,Q. F.Hu, J. Q. Song, and J. S. Su, “The
TianHe-1A supercomputer: its hardware and software,” Journal
of Computer Science and Technology, vol. 26, no. 3, pp. 344–351,
2011.

[36] Q. Wu, C. Yang, T. Tang, and L. Xiao, “Exploiting hierarchy
parallelism for molecular dynamics on a petascale hetero
geneous system,” Journal of Parallel and Distributed Computing,
vol. 73, no. 12, pp. 1592–1604, 2013.

[37] C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU
accelerated simulations of 3D deterministic particle transport
using discrete ordinates method,” Journal of Computational
Physics, vol. 230, no. 15, pp. 6010–6022, 2011.

[38] C. Gong, J. Liu, H.Huang, and Z. Gong, “Particle transport with
unstructured grid onGPU,”Computer Physics Communications,
vol. 183, no. 3, pp. 588–593, 2012.



Review Article
A Review of Definitions for Fractional Derivatives and Integral

Edmundo Capelas de Oliveira1 and José António Tenreiro Machado2

1 Department of Applied Mathematics, IMECC-UNICAMP, 13083-859 Campinas, SP, Brazil
2 Institute of Engineering, Polytechnic of Porto, Department of Electrical Engineering, Rua Dr. Antonio Bernardino de Almeida 431,
4200-072 Porto, Portugal
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This paper presents a review of definitions of fractional order derivatives and integrals that appear in mathematics, physics, and
engineering.

1. Introduction

In 1695, l’Hôpital sent a letter to Leibniz. In his message,
an important question about the order of the derivative
emerged: What might be a derivative of order 1/2? In a
prophetic answer, Leibniz foresees the beginning of the area
that nowadays is named fractional calculus (FC). In fact, FC
is as old as the traditional calculus proposed independently
by Newton and Leibniz [1–4].

In the classical calculus, the derivative has an important
geometric interpretation; namely, it is associated with the
concept of tangent, in opposition to what occurs in the case
of FC. This difference can be seen as a problem for the slow
progress of FCup to 1900.After Leibniz, it was Euler (1738) [3]
that noticed the problem for a derivative of noninteger order.
Fourier (1822) [3, 5] suggested an integral representation
in order to define the derivative, and his version can be
considered the first definition for the derivative of arbitrary
(positive) order. Abel (1826) [3, 5] solved an integral equation
associatedwith the tautochrone problem,which is considered
to be the first application of FC. Liouville (1832) [3, 5]
suggested a definition based on the formula for differentiating
the exponential function. This expression is known as the
first Liouville definition. The second definition formulated
by Liouville is presented in terms of an integral and is
now called the version by Liouville for the integration of
noninteger order.After a series ofworks by Liouville, themost
important paper was published by Riemann [6], ten years

after his death.We also note that both Liouville and Riemann
formulations carry with them the so-called complementary
function, a problem to be solved. Grünwald [7] and Letnikov
[8], independently, developed an approach to noninteger
order derivatives in terms of a convenient convergent series,
conversely to the Riemann-Liouville approach, that is given
by an integral. Letnikov showed that his definition coincides
with the versions formulated by Liouville, for particular
values of the order, and by Riemann, under a convenient
interpretation of the so-called noninteger order difference.
Hadamard (1892) [5] published a paper where the noninteger
order derivative of an analytical function must be done in
terms of its Taylor series.

After 1900, the FC experiences a fast development and,
in an attempt to formulate particular problems, other def-
initions were proposed. We mention some of them. Weyl
[9] introduced a derivative in order to circumvent a prob-
lem involving a particular class of functions, the periodic
functions. Riesz [10, 11] proved the mean value theorem for
fractional integrals and introduced another formulation that
is associated with the Fourier transform. Marchaud (1927)
[3, 5] introduced a new definition for noninteger order of
derivatives. This definition coincides with the Liouville ver-
sion for “sufficiently good” functions. Erdélyi-Kober (1940)
[3, 5] presented a distinct definition for noninteger order of
integration that is useful in applications involving integral
and differential equations. Caputo (1967) [12] formulated
a definition, more restrictive than the Riemann-Liouville
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but more appropriate to discuss problems involving a frac-
tional differential equation with initial conditions [13–21].

Due to the importance of the Caputo version, we will
compare this approach with the Riemann-Liouville formula-
tion. The definition as proposed by Caputo inverts the order
of integral and derivative operators with the noninteger order
derivative of the Riemann-Liouville. We summarize the dif-
ference between these two formulations. In the Caputo: first
the calculate derivative of integer order and after calculate the
integral of noninteger order. In the Riemann-Liouville: first
calculate the integral of noninteger order and after calculate
the derivative of integer order. It is important to cite that the
Caputo derivative is useful to affront problems where initial
conditions are done in the function and in the respective
derivatives of integer order.

After the first congress at the University of New Haven,
in 1974, FC has developed and several applications emerged
in many areas of scientific knowledge. As a consequence,
distinct approaches to solve problems involving the derivative
were proposed and distinct definitions of the fractional
derivative are available in the literature. This paper presents
in a systematic form the existing formulations of fractional
derivatives and integrals.We shouldmention also that we can
have several alternative expressions for the same definition.
Therefore, we present only those more representative and
we cite particular papers [22–32] and books [33–40] that we
believe are the most relevant. Furthermore, the paper does
not focus on the pros and cons of each definition and does not
address the support of the function that is to be differentiated
or integrated.

The paper is organized as follows. Section 2 presents the
adopted notation. Sections 3 and 4 list the proposed defi-
nitions of fractional derivatives and integrals, respectively.
Finally, Section 5 outlines some brief remarks.

2. Notation

The following remarks clarify the notation used in the sequel
in Sections 3 and 4.

(i) Let 𝛼 ∈ C : R(𝛼) ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ N, where R(⋅)
denotes the real part of complex number.

(ii) Let [𝑎, 𝑏] be a finite interval in R, 𝑘 ∈ N, ] > 0, and
f(0) ≡ 𝑓(0+) − 𝑓(0−).

(iii) The floor function, denoted by ⌊⋅⌋, is defined as ⌊𝑥⌋ =
max{𝑧 ∈ Z : 𝑧 ≤ 𝑥}.

(iv) [𝛼] is the integer part of number 𝛼 and {𝛼} the
fractional part, 0 ≤ {𝛼} < 1, so that 𝛼 = [𝛼] + {𝛼}.

(v) Δ𝛼[𝑓(𝑥) − 𝑓(𝑥
0
)] ≃ Γ(1 + 𝛼)Δ[𝑓(𝑥) − 𝑓(𝑥

0
)].

(vi) 𝛼(⋅, ⋅) is the variable fractional orderwith 0 < 𝛼(𝑥, 𝑡) <
1 and (𝑥, 𝑡) ∈ [𝑎, 𝑏]. 𝛼(𝑥) is a continuous function on
(0, 1].

(vii) C(𝑎, 𝑧+) is a closed contour, in the complex plane,
starting at 𝜉 = 𝑎, encircling 𝜉 = 𝑧 once in the positive
sense, and returning to 𝜉 = 𝑎. 𝜇, ] ∈ R/0, with
0 < 𝜇 < 1 and 0 ≤ ] ≤ 1.

(viii) Consider 𝑧 ∈ C and 𝑘 ∈ R. The so-called 𝑘-gamma
function, denoted by Γ

𝑘
(𝑧), is related to the classical

gamma function by means of Γ
𝑘
(𝑧) = 𝑘

𝑧/𝑘−1
Γ(𝑧/𝑘).

(ix) The so-called 𝑘-Pochhammer symbol yields (𝑧)
𝑛,𝑘

=

Γ
𝑘
(𝑥 + 𝑛𝑘)/Γ

𝑘
(𝑥).

(x) The 𝑘-fractionalHilfer derivative recovers, as particu-
lar cases, the fractional Riemann-Liouville derivative
if ] = 0 and 𝑘 = 1 and the fractional Caputo derivative
if ] = 1 = 𝑘 [41].

3. Definitions of Fractional Derivatives

Liouville derivative:

D𝛼 [𝑓 (𝑥)] = 1

Γ (1 − 𝛼)

d
d𝑥

∫

𝑥

−∞

(𝑥 − 𝜉)
−𝛼
𝑓 (𝜉) d𝜉,

− ∞ < 𝑥 < +∞.

(1)

Liouville left-sided derivative:

D𝛼
0
+ [𝑓 (𝑥)] =

1

Γ (𝑛 − 𝛼)

d𝑛

d𝑥𝑛
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼+𝑛−1

𝑓 (𝜉) d𝜉,

𝑥 > 0.

(2)

Liouville right-sided derivative:

D𝛼
−
[𝑓 (𝑥)] =

(−1)
𝑛

Γ (𝑛 − 𝛼)

d𝑛

d𝑥𝑛
∫

∞

𝑥

(𝑥 − 𝜉)
−𝛼+𝑛−1

𝑓 (𝜉) d𝜉,

𝑥 < ∞.

(3)

Riemann-Liouville left-sided derivative:

RLD𝛼
𝑎
+ [𝑓 (𝑥)] =

1

Γ (𝑛 − 𝛼)

d𝑛

d𝑥𝑛
∫

𝑥

𝑎

(𝑥 − 𝜉)
𝑛−𝛼−1

𝑓 (𝜉) d𝜉,

𝑥 ≥ 𝑎.

(4)

Riemann-Liouville right-sided derivative:

RLD𝛼
𝑏
− [𝑓 (𝑥)] =

(−1)
𝑛

Γ (𝑛 − 𝛼)

d𝑛

d𝑥𝑛
∫

𝑏

𝑥

(𝜉 − 𝑥)
𝑛−𝛼−1

𝑓 (𝜉) d𝜉,

𝑥 ≤ 𝑏.

(5)

Caputo left-sided derivative:

∗
D𝛼
𝑎
+ [𝑓 (𝑥)] =

1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝜉)
𝑛−𝛼−1 d𝑛

d𝜉𝑛
[𝑓 (𝜉)] d𝜉,

𝑥 ≥ 𝑎.

(6)

Caputo right-sided derivative:

∗
D𝛼
𝑏
− [𝑓 (𝑥)] =

(−1)
𝑛

Γ (𝑛 − 𝛼)
∫

𝑏

𝑥

(𝜉 − 𝑥)
𝑛−𝛼−1 d𝑛

d𝜉𝑛
[𝑓 (𝜉)] d𝜉,

𝑥 ≤ 𝑏.

(7)
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Grünwald-Letnikov left-sided derivative:
GLD𝛼
𝑎
+ [𝑓 (𝑥)]

= lim
ℎ→0

1

ℎ𝛼

⌊𝑛⌋

∑

𝑘=0

(−1)
𝑘 Γ (𝛼 + 1) 𝑓 (𝑥 − 𝑘ℎ)

Γ (𝑘 + 1) Γ (𝛼 − 𝑘 + 1)
,

𝑛ℎ = 𝑥 − 𝑎.

(8)

Grünwald-Letnikov right-sided derivative:
GLD𝛼
𝑏
− [𝑓 (𝑥)]

= lim
ℎ→0

1

ℎ𝛼

⌊𝑛⌋

∑

𝑘=0

(−1)
𝑘 Γ (𝛼 + 1) 𝑓 (𝑥 + 𝑘ℎ)

Γ (𝑘 + 1) Γ (𝛼 − 𝑘 + 1)
,

𝑛ℎ = 𝑏 − 𝑥.

(9)

Weyl derivative:

𝑥
D𝛼
∞
[𝑓 (𝑥)] = D𝛼

−
[𝑓 (𝑥)] = (−1)

𝑚
(
d
d𝜉
)

𝑛

[
𝑥
W𝛼
∞
[𝑓 (𝑥)]] .

(10)

Marchaud derivative:

D𝛼
+
[𝑓 (𝑥)] =

𝛼

Γ (1 − 𝛼)
∫

𝑥

−∞

𝑓 (𝑥) − 𝑓 (𝜉)

(𝑥 − 𝜉)
1+𝛼

d𝜉. (11)

Marchaud left-sided derivative:

D𝛼
+
[𝑓 (𝑥)] =

𝛼

Γ (1 − 𝛼)
∫

∞

0

𝑓 (𝑥) − 𝑓 (𝑥 − 𝜉)

𝜉1+𝛼
d𝜉. (12)

Marchaud right-sided derivative:

D𝛼
−
[𝑓 (𝑥)] =

𝛼

Γ (1 − 𝛼)
∫

∞

0

𝑓 (𝑥) − 𝑓 (𝑥 + 𝜉)

𝜉1+𝛼
d𝜉. (13)

Hadamard derivative [42]:

D𝛼
+
[𝑓 (𝑥)] =

𝛼

Γ (1 − 𝛼)
∫

𝑥

0

𝑓 (𝑥) − 𝑓 (𝜉)

[ln (𝑥/𝜉)]1+𝛼
d𝜉
𝜉
. (14)

Chen left-sided derivative:

D𝛼c [𝑓 (𝑥)] =
1

Γ (1 − 𝛼)

d
d𝑥

∫

𝑥

c
(𝑥 − 𝜉)

−𝛼
𝑓 (𝜉) d𝜉,

𝑥 > c.

(15)

Chen right-sided derivative:

D𝛼c [𝑓 (𝑥)] = −
1

Γ (1 − 𝛼)

d
d𝑥

∫

c

𝑥

(𝜉 − 𝑥)
−𝛼
𝑓 (𝜉) d𝜉,

𝑥 < c.

(16)

Davidson-Essex derivative [15]:

D𝛼
0
[𝑓 (𝑥)] =

1

Γ (1 − 𝛼)

d𝑛+1−𝑘

d𝑥𝑛+1−𝑘

× ∫

𝑥

0

(𝑥 − 𝜉)
−𝛼 d𝑘

d𝜉𝑘
[𝑓 (𝜉)] d𝜉.

(17)

Coimbra derivative [43–45]:

D𝛼(𝑥)
0

[𝑓 (𝑥)]

=
1

Γ (1 − 𝛼 (𝑥))

× {∫

𝑥

0

(𝑥 − 𝜉)
−𝛼(𝑥) d

d𝜉
[𝑓 (𝜉)] d𝜉 + f (0) 𝑥

−𝛼(𝑥)
} .

(18)

Canavati derivative:

𝑎
D]
𝑥
[𝑓 (𝑥)] =

1

Γ (1 − 𝜇)

d
d𝑥

∫

𝑥

0

(𝑥 − 𝜉)
𝜇 d𝑛

d𝜉𝑛
[𝑓 (𝜉)] d𝜉,

𝑛 = ⌊]⌋ , 𝜇 = 𝑛 − ].

(19)

Jumarie derivative, 𝑛 = 1:

D𝛼
𝑥
[𝑓 (𝑥)] =

1

Γ (𝑛 − 𝛼)

d𝑛

d𝑥𝑛

× ∫

𝑥

0

(𝑥 − 𝜉)
𝑛−𝛼−1

[𝑓 (𝜉) − 𝑓 (0)] d𝜉.
(20)

Riesz derivative:

D𝛼
𝑥
[𝑓 (𝑥)] = −

1

2 cos (𝛼𝜋/2)
1

Γ (𝛼)

d𝑛

d𝑥𝑛

⋅ {∫

𝑥

−∞

(𝑥 − 𝜉)
𝑛−𝛼−1

𝑓 (𝜉) d𝜉

+∫

∞

𝑥

(𝜉 − 𝑥)
𝑛−𝛼−1

𝑓 (𝜉) d𝜉} .

(21)

Cossar derivative:

D𝛼
−
[𝑓 (𝑥)] = −

1

Γ (1 − 𝛼)
lim
𝑁→∞

d
d𝑥

∫

𝑁

𝑥

(𝜉 − 𝑥)
−𝛼
𝑓 (𝜉) d𝜉.

(22)

Local fractional Yang derivative [40]:

D𝛼
−
[𝑓 (𝑥)]

𝑥=𝑥
0

= lim
𝑥→𝑥

0

Δ
𝛼
[𝑓 (𝑥) − 𝑓 (𝑥

0
)]

(𝑥 − 𝑥
0
)
𝛼

. (23)

Left Riemann-Liouville derivative of variable fractional
order:

𝑎
D𝛼(⋅,⋅)
𝑥

[𝑓 (𝑥)] =
d
d𝑥

∫

𝑥

𝑎

(𝑥 − 𝜉)
−𝛼(𝜉,𝑥)

𝑓 (𝜉)
d𝜉

Γ [1 − 𝛼 (𝜉, 𝑥)]
.

(24)

Right Riemann-Liouville derivative of variable fractional
order:

𝑥
D𝛼(⋅,⋅)
𝑏

[𝑓 (𝑥)] =
d
d𝑥

∫

𝑏

𝑥

(𝜉 − 𝑥)
−𝛼(𝜉,𝑥)

𝑓 (𝜉)
d𝜉

Γ [1 − 𝛼 (𝜉, 𝑥)]
.

(25)

Left Caputo derivative of variable fractional order:

𝑎
D𝛼(⋅,⋅)
𝑥

[𝑓 (𝑥)] = ∫

𝑥

𝑎

(𝑥 − 𝜉)
−𝛼(𝜉,𝑥) d

d𝜉
𝑓 (𝜉)

d𝜉
Γ [1 − 𝛼 (𝜉, 𝑥)]

.

(26)



4 Mathematical Problems in Engineering

Right Caputo derivative of variable fractional order:

𝑥
D𝛼(⋅,⋅)
𝑏

[𝑓 (𝑥)] = ∫

𝑏

𝑥

(𝜉 − 𝑥)
−𝛼(𝜉,𝑥) d

d𝜉
𝑓 (𝜉)

d𝜉
Γ [1 − 𝛼 (𝜉, 𝑥)]

.

(27)

Caputo derivative of variable fractional order:

∗
D𝛼(𝑥)
𝑥

[𝑓 (𝑥)] =
1

Γ (1 − 𝛼 (𝑥))
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼(𝜉,𝑥) d

d𝜉
𝑓 (𝜉) d𝜉.

(28)

Modified Riemann-Liouville fractional derivative:

D𝛼 [𝑓 (𝑥)] = 1

Γ (1 − 𝛼)

d
d𝑥

∫

𝑥

0

(𝑥 − 𝜉)
−𝛼
[𝑓 (𝜉) − 𝑓 (0)] d𝜉.

(29)

Osler fractional derivative [46]:

𝑎
D𝛼
𝑧
𝑓 (𝑧) =

Γ (𝛼 + 1)

2𝜋𝑖
∫
C(𝑎,𝑧+)

𝑓 (𝜉)

(𝜉 − 𝑧)
1+𝛼

d𝜉. (30)

𝑘-fractional Hilfer derivative [41]:

𝑘D
𝜇,]
𝑓 (𝑥) = I](1−𝜇)

𝑘

d
d𝑥

I(1−𝜇)(1−])
𝑘

𝑓 (𝑥) . (31)

4. Definitions of Fractional Integrals

Riemann-Liouville left-sided integral:

RLI𝛼
𝑎
+ [𝑓 (𝑥)] =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝜉)
𝛼−1

𝑓 (𝜉) d𝜉, 𝑥 ≥ 𝑎. (32)

Riemann-Liouville right-sided integral:

RLI𝛼
𝑏
− [𝑓 (𝑥)] =

1

Γ (𝛼)
∫

𝑏

𝑥

(𝜉 − 𝑥)
𝛼−1

𝑓 (𝜉) d𝜉, 𝑥 ≤ 𝑏. (33)

Hadamard integral:

I𝛼
+
[𝑓 (𝑥)] =

1

Γ (𝛼)
∫

𝑥

0

𝑓 (𝜉)

[ln (𝜉/𝑥)]1−𝛼
⋅
d𝜉
𝜉
, 𝑥 > 0, 𝛼 > 0.

(34)

Weyl integral:

𝑥
W𝛼
∞
[𝑓 (𝑥)] =

1

Γ (𝛼)
∫

∞

𝑥

(𝜉 − 𝑥)
𝛼−1

𝑓 (𝜉) d𝜉. (35)

Chen left-sided integral:

I𝛼c [𝑓 (𝑥)] =
1

Γ (𝛼)
∫

𝑥

c
(𝑥 − 𝜉)

𝛼−1
𝑓 (𝜉) d𝜉, 𝑥 > c. (36)

Chen right-sided integral:

I𝛼c [𝑓 (𝑥)] =
1

Γ (𝛼)
∫

c

𝑥

(𝜉 − 𝑥)
𝛼−1

𝑓 (𝜉) d𝜉, 𝑥 < c. (37)

Cossar integral [47]:

I𝛼c [𝑓 (𝑥)] =
1

Γ (𝛼)
∫

𝑥

c
(𝑥 − 𝜉)

𝛼−1
𝑓 (𝜉) d𝜉, 𝑥 > c. (38)

Erdélyi (left-sided) integral:

I𝛼
𝜎,𝜂
[𝑓 (𝑥)] =

𝜎𝑥
−𝜎(𝛼+𝜂)

Γ (𝛼)
∫

𝑥

0

(𝑥
𝜎
− 𝜉
𝜎
)
𝛼−1

𝜉
𝜎𝜂+𝜎−1

𝑓 (𝜉) d𝜉.

(39)

Erdélyi (right-sided) integral:

I𝛼
𝜎,𝜂
[𝑓 (𝑥)] =

𝜎𝑥
𝜎𝛼

Γ (𝛼)
∫

∞

𝑥

(𝜉
𝜎
− 𝑥
𝜎
)
𝛼−1

𝜉
𝜎(1−𝛼−𝜂)−1

𝑓 (𝜉) d𝜉.

(40)

Kober (left-sided) integral:

I𝛼
1,𝜂
[𝑓 (𝑥)] =

𝑥
−𝛼−𝜂

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝜉)
𝛼−1

𝜉
𝜂
𝑓 (𝜉) d𝜉. (41)

Kober (right-sided) integral:

I𝛼
1,𝜂
[𝑓 (𝑥)] =

𝑥
𝜂

Γ (𝛼)
∫

∞

𝑥

(𝜉 − 𝑥)
𝛼−1

𝜉
−𝛼−𝜂

𝑓 (𝜉) d𝜉. (42)

Local fractional Yang integral:

𝑎
I𝛼
𝑏
[𝑓 (𝑥)] =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝜉) (d𝜉)𝛼. (43)

Left Riemann-Liouville integral of variable fractional order:

𝑎
I𝛼(⋅,⋅)
𝑥

[𝑓 (𝑥)] = ∫

𝑥

𝑎

(𝜉 − 𝑥)
𝛼(𝜉,𝑥)−1

𝑓 (𝜉)
d𝜉

Γ [𝛼 (𝜉, 𝑥)]
. (44)

Right Riemann-Liouville integral of variable fractional order:

𝑥
I𝛼(⋅,⋅)
𝑏

[𝑓 (𝑥)] = ∫

𝑏

𝑥

(𝑥 − 𝜉)
𝛼(𝜉,𝑥)−1

𝑓 (𝜉)
d𝜉

Γ [𝛼 (𝜉, 𝑥)]
. (45)

𝑘-fractional Hilfer integral:

I𝛼
𝑘
𝑓 (𝑥) =

1

𝑘Γ
𝑘
(𝛼)

∫

𝑥

0

(𝑥 − 𝜉)
𝛼/𝑘−1

𝑓 (𝜉) d𝜉. (46)

5. Some Remarks

Remark 1. If D𝛼 is any fractional derivative, the Miller-Ross
sequential derivative of order 𝑘𝛼, 𝑘 ∈ Z, is given by [3]

D
𝛼
= 𝐷
𝛼
, D

𝑘𝛼
= 𝐷
𝛼
D
(𝑘−1)𝛼

. (47)

Remark 2. Whatever the definition employed, I0𝑓(𝑥) =

D0𝑓(𝑥) = 𝑓(𝑥).

Remark 3. Some authors do not distinguish the definition
employed bymeans of a superscript (GL, RL, C, and L) but use
different fonts for the operator instead (D, 𝐷, D,D, andD).
The particular correspondence between fonts and definitions
varies. Very often no indication at all is given, save perhaps
in the accompanying text, and the reader is presumed to
understand from the context which particular definition is
intended.
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Remark 4. In the literature, several alternative notations for
operator D may be found:

D𝛼
𝑎+
𝑓 (𝑥) = (D𝛼

𝑎+
𝑓) (𝑥) =

𝑎
D𝛼
𝑥
𝑓 (𝑥) =

𝑎
I−𝛼
𝑥
𝑓 (𝑥)

= D𝛼
𝑥−𝑎

𝑓 (𝑥) =
d𝛼𝑓 (𝑥)
d(𝑥 − 𝑎)𝛼

,

D𝛼
𝑏−
𝑓 (𝑥) = (D𝛼

𝑏−
𝑓) (𝑥) =

𝑥
D𝛼
𝑏
𝑓 (𝑥) =

𝑥
I−𝛼
𝑏
𝑓 (𝑥)

= D𝛼
𝑏−𝑥

𝑓 (𝑥) =
d𝛼𝑓 (𝑥)
d(𝑏 − 𝑥)𝛼

.

(48)

Only one of the two operators I and D needs to be used, since
it is all a matter of changing the sign of 𝛼. In practice, D is the
one more often used.

Remark 5. In the expressions for the right and left Liouville
fractional derivatives (2) and (3), respectively, some authors
have a slight distinct expression, instead of 0+ just + and at
the lower limit −∞.

Remark 6. We can mention the “difference of fractional
order,” discussed by Bosanquet [48], and the “Ruscheweyh
Derivative,” presented in [42, 49–51].

Remark 7. The authors’ intention is not to discuss pros and
cons of the list of definitions of fractional derivatives and
integrals in Sections 3 and 4. Having in mind that the reader
can find benefits in applying the correct definition for his/her
specific research interest, it can be said that the most used
definitions are the Riemann-Liouville (e.g., in calculus), the
Caputo (e.g., in physics and numerical integration), and the
Grünwald-Letnikov (e.g., in signal processing, engineering,
and control).The problem of initialization plays an important
role in applied sciences and, consequently, various definitions
are occasionally adopted within the scope of specific topics,
but the overall problem remains to be clarified.

Remark 8. The paper does not focus on particular rela-
tions involving explicit parameters, intervals, or constants,
associated with the distinct derivatives. For example, we
can mention that, for R(𝛼) = 0, with 𝛼 ̸=0, the Liouville
fractional derivatives are of purely imaginary order. Also, for
𝛼 = 𝑛 ∈ N, we recover the derivative of integer order. For
example, D𝑛

+
[𝑓(𝑥)] = 𝑓

(𝑛)
(𝑥) and D𝑛

−
[𝑓(𝑥)] = (−1)

𝑛
𝑓
(𝑛)
(𝑥).
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[11] M. Riesz, “L’intégrale de Riemann-Liouville et le problème
de Cauchy pour l’équation des ondes,” Bulletin de la Société
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This paper studies the asymptotic stability of the two-step Runge-Kutta methods for neutral delay integro differential-algebraic
equationswithmanydelays. It proves thatA-stable two-stepRunge-Kuttamethods are asymptotically stable for neutral delay integro
differential-algebraic equations with many delays.

1. Introduction

The stability of numerical methods for delay differential
equations has been intensively studied in [1–3] for many
years.These equations appeared in a wide variety of scientific
and engineering fields, such as circuit analysis, computer-
aided design power systems, and optimal control. The struc-
ture for these, the order of convergence, and the asymptotic
stability of numerical methods have been studied in [4–
6]. Zhu and Petzold investigated the asymptotic stability of
neutral delay differential equations with 𝜃-methods, Runge-
Kutta methods, BDF methods, and linear multistep methods
[7]. Zhao et al. studied the stability of neutral delay differential
equations with Rosenbrock methods [8]. Yu et al. studied
the general neutral delay differential equations withmultistep
methods [9]. More recently, there is a growing interest in
the analysis of delay integro differential equations. Baker
and Ford [10] studied the asymptotic stability of a class
of linear multistep (LM) methods for scalar linear delay
integro differential equations; Koto [11] dealt with the linear
stability of Runge-Kutta (R-K) methods for systems of delay
integro differential equations; Huang and Vandewalle [12]
gave sufficient andnecessary stability conditions for exact and
discrete solutions of linear scalar delay integro differential
equations, and Luzyanina et al. [13] developed computational

procedures for determining the stability of delay integro
differential equations. Zhang and Vandewalle [14] gave the
stability criteria for exact anddiscrete solution of neutralmul-
tidelay integro differential equations. Although the stability
of numerical methods for delay integro differential equations
has been very intensively studied, the stability of delay integro
differential equations with many delays has not been studied
so far.

In this paper, we focus on the asymptotic stability of
numerical methods for neutral delay integro differential-
algebraic equations with many delays. This paper is struc-
tured as follows. In Section 2 we give asymptotic stability of
the analytical solution and introduce two-step Runge-Kutta
methods and the stability region. In Section 3, we deal with
the asymptotic stability of two-step Runge-Kutta method for
neutral delay integro differential-algebraic equations with
many delays; the theoretical results are proved. In Section 4,
an example is given to illustrate the theoretical results.

2. Asymptotic Stability of
the Analytical Solution

2.1. Asymptotic Stability of the Analytical Solution of Neu-
tral Delay Integro Differential-Algebraic Equation with Many
Delays. In this section, we consider the following linear
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system:

𝐴𝑢

(𝑡) + 𝐵𝑢 (𝑡) +

𝑚

∑

𝑞=1

𝐶
𝑞
𝑢

(𝑡 − 𝜏
𝑞
) +

𝑚

∑

𝑞=1

𝐷
𝑞
𝑢 (𝑡 − 𝜏

𝑞
)

+

𝑚

∑

𝑞=1

𝐺
𝑞
∫

𝑡

𝑡−𝜏
𝑞

𝑢 (𝛿) 𝑑𝛿 = 0, 𝑡 ≥ 0,

𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0) ,

(1)

where 𝐴, 𝐵, 𝐶
𝑞
, 𝐷
𝑞
, 𝐺
𝑞

∈ 𝑅
𝑑×𝑑, 𝐴 is a singular matrix, 𝜏

𝑞

is a given positive delay constant (𝑞 = 1, 2, . . . , 𝑚), and 0 <

𝜏
1

≤ 𝜏
2

≤ ⋅ ⋅ ⋅ ≤ 𝜏
𝑚

= 𝜏. 𝜑(𝑡) denotes a given vector-valued
function and 𝑢(𝑡) is a vector-valued unknown function to be
solved for 𝑡 ≥ 0.

In order to obtain the characteristic equation of system
(1), we focus on the exponential solutions 𝑢(𝑡) = 𝑒

𝑠𝑡
𝑥 of (1);

here 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
)
Τ

∈ 𝐶
𝑑 denotes the unknown vector.

Then we have

𝑢 (𝑡) = (𝑒
𝑠𝑡
𝑥
1
, 𝑒
𝑠𝑡
𝑥
2
, . . . , 𝑒

𝑠𝑡
𝑥
𝑑
)
Τ

, (2a)

𝑢

(𝑡) = 𝑠𝑒

𝑠𝑡
𝑥, (2b)

𝑢 (𝑡 − 𝜏
𝑞
) = (𝑒

𝑠(𝑡−𝜏
𝑞
)
𝑥
1
, 𝑒
𝑠(𝑡−𝜏
𝑞
)
𝑥
2
, . . . , 𝑒

𝑠(𝑡−𝜏
𝑞
)
𝑥
𝑑
)
Τ

,

𝑞 = 1, 2, . . . , 𝑚,

(2c)

𝑢

(𝑡 − 𝜏
𝑞
) = 𝑠𝑒

𝑠(𝑡−𝜏
𝑞
)
𝑥, 𝑞 = 1, 2, . . . , 𝑚. (2d)

Substituting the above results into (1), we have the
following equation:

[𝑠𝐴 + 𝐵 + 𝑠

𝑚

∑

𝑞=1

𝐶
𝑞
𝑒
−𝑠𝜏
𝑞 +

𝑚

∑

𝑞=1

𝐷
𝑞
𝑒
−𝑠𝜏
𝑞

+𝑠
−1

𝑚

∑

𝑞=1

𝐺
𝑞
(1 − 𝑒

−𝑠𝜏
𝑞)] 𝑥 = 0.

(2e)

The existence of a nonzero 𝑥 in (2e) implies the char-
acteristic equation of system (1) holds; that is, the following
equation holds:

det[𝑠𝐴 + 𝐵 + 𝑠

𝑚

∑

𝑞=1

𝐶
𝑞
𝑒
−𝑠𝜏
𝑞

+

𝑚

∑

𝑞=1

𝐷
𝑞
𝑒
−𝑠𝜏
𝑞

+ 𝑠
−1

𝑚

∑

𝑞=1

𝐺
𝑞
(1 − 𝑒

−𝑠𝜏
𝑞)] = 0.

(3)

Definition 1 (see [13]). Equation (1) is said to be asymptoti-
cally stable, if for any continuous differential initial function
and for any delay 𝜏

𝑞
> 0, 𝑞 = 1, 2, . . . , 𝑚 the analytical

solution to (1) satisfies lim
𝑡→∞

𝑢(𝑡) = 0.

We know that the stability of analytical solution can be
studied via the characteristic equation, so we give a criterion
for the asymptotic stability of (1), which is based on the
following lemmas.

Lemma 2 (see [14]). Assume

Sup {Re (𝜆) : 𝑝 (𝜆) = 0} < 0, (4)

where 𝑝(𝜆) = det{𝜆𝐴 + 𝐵 + 𝜆∑
𝑚

𝑞=1
𝐶
𝑞
𝑒
−𝜆𝜏
𝑞 + ∑
𝑚

𝑞=1
𝐷
𝑞
𝑒
−𝜆𝜏
𝑞 +

∑
𝑚

𝑞=1
𝐺
𝑞
𝜏
𝑞
𝜂(𝑒
−𝜆𝜏
𝑞)} is the characteristic polynomial of (1).

Then, system (1) is asymptotically stable.

Where 𝜂(𝑧) is a complex function defined by

𝜂 (𝑧) =

{{{{

{{{{

{

1 − 𝑧

ln 𝑧
, 𝑧 ∈ 𝐶 \ {0, 1}

0, 𝑧 = 0

−1, 𝑧 = 1.

(5)

And ln 𝑧 = ln |𝑧| + 𝑖 arg 𝑧 (𝑧 = 0, 1; −𝜋 < arg 𝑧 ≤ 𝜋)
is the principal branch of the multivalued complex natural
logarithm.

Lemma 3 (see [14]). Function 𝜂(𝑧) is analytic in 𝐶 \ 𝑅
−

0
and

satisfies |𝜂(𝑧)| ≤ 1 for |𝑧| ≤ 1, where 𝑅
−

0
= {𝑥 ∈ 𝑅 : 𝑥 ≤ 0}.

Lemma 4. If the matrix (𝐴 + ∑
𝑚

𝑞=1
𝐶
𝑞
𝑒
−𝜆𝜏
𝑞) is invertible for

Re(𝜆) ≥ 𝑟, where 𝑟 ∈ 𝑅, then the function

𝑝 (𝜆) = det
{

{

{

𝜆
2
𝐼
𝑑
+ (𝐴 +

𝑚

∑

𝑞=1

𝐶
𝑞
𝑒
−𝜆𝜏
𝑞)

−1

× (𝜆𝐵 + 𝜆

𝑚

∑

𝑞=1

𝐷
𝑞
𝑒
−𝜆𝜏
𝑞

+

𝑚

∑

𝑞=1

𝐺
𝑞
(1 − 𝑒

−𝜆𝜏
𝑞))

}

}

}

(6)

has at most a finite number of zeros for Re(𝜆) ≥ 𝑟.

Proof. When Re(𝜆) ≥ 𝑟, the function 𝑝(𝜆) can be expanded
into the following form:

𝑝 (𝜆) = 𝜆
2𝑑

+ 𝜓
2𝑑−1

(𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚1) 𝜆
2𝑑−1

+ ⋅ ⋅ ⋅ + 𝜓
0
(𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚1) ,

(7)

where 𝜓
𝑖
(𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚1), 𝑖 = 0, 1, . . . , 2𝑑 − 1, are

rational functions for the expressions 𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚1 ,

and they have no poles for Re(𝜆) ≥ 𝑟.
Since 𝜏

𝑖
> 0, we have that


𝑒
−𝜆𝜏
𝑖


= 𝑒
−𝜏
𝑖
Re(𝜆)

≤ 𝑒
−𝜏
𝑖
𝑟
, for Re (𝜆) ≥ 𝑟. (8)

Hence, there exist constants 𝐾
𝑖
> 0 such that


𝜓
𝑖
(𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚1)


≤ 𝐾
𝑖
, 𝑖 = 0, 1, . . . , 2𝑑 − 1.

(9)
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Let 𝑀 be a positive number large enough such that

𝐾
2𝑑−1

𝑀
+

𝐾
2𝑑−2

𝑀2
+ ⋅ ⋅ ⋅ +

𝐾
0

𝑀2𝑑
< 1, (10)

which implies that, for Re(𝜆) ≥ 𝑟 and |𝜆| ≥ 𝑀,

𝑝 (𝜆)
 ≥ |𝜆|

2𝑑
[1 −

𝐾
2𝑑−1

𝑀
−

𝐾
2𝑑−2

𝑀2
− ⋅ ⋅ ⋅ −

𝐾
0

𝑀2𝑑
] > 0. (11)

That is, 𝑝(𝜆) ̸= 0 in the set {𝜆 : Re 𝜆 ≥ 𝑟, |𝜆| ≥ 𝑀}.
By the isolation property of the zeros for analytic func-

tions, 𝑝(𝜆) has at most a finite number of zeros in the set
{𝜆 : Re 𝜆 ≥ 𝑟, |𝜆| < 𝑀}; this proves the lemma.

In the following, we denote the spectrum of a square
matrix 𝐴 by 𝜎(𝐴) and introduce the set

𝐶
−
= {𝑧 ∈ 𝐶 : Re (𝑧) < 0} . (12)

Theorem 5. System (1) is asymptotically stable if the following
conditions are satisfied:

(a) det(𝐴 + ∑
𝑚

𝑞=1
𝜉
𝑞
𝐶
𝑞
) ̸= 0 for |𝜉

𝑞
| ≤ 1,

(b) 𝜎(𝐺(𝜉)) ⊆ 𝐶
− for 𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑚
)
Τwith |𝜉

𝑞
| ≤ 1,

where

𝐺 (𝜉) = (𝐴 +

𝑚

∑

𝑞=1

𝜉
𝑞
𝐶
𝑞
)

−1

× (−𝐵 −

𝑚

∑

𝑞=1

𝜉
𝑞
𝐷
𝑞
−

𝑚

∑

𝑞=1

𝜂 (𝜉
𝑞
)𝐺
𝑞
𝜏
𝑞
) .

(13)

Proof. When |𝜉
𝑞
| ≤ 1, 𝑞 = 1, 2, . . . , 𝑚, condition (a) leads to

�̂� (𝜆, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
)

= det(𝜆𝐴 + 𝜆

𝑚

∑

𝑞=1

𝜉
𝑞
𝐶
𝑞
+ 𝐵

+

𝑚

∑

𝑞=1

𝜉
𝑞
𝐷
𝑞

+

𝑚

∑

𝑞=1

𝜂 (𝜉
𝑞
)𝐺
𝑞
𝜏
𝑞
)

= det(𝐴 +

𝑚

∑

𝑞=1

𝜉
𝑞
𝐶
𝑞
) det (𝜆𝐼

𝑑
− 𝐺 (𝜉)) .

(14)

Condition (b) leads to

𝑃 (𝜆) = �̂� (𝜆, 𝑒
−𝜆𝜏
1 , 𝑒
−𝜆𝜏
2 , . . . , 𝑒

−𝜆𝜏
𝑚) ̸= 0

for Re (𝜆) ≥ 0.

(15)

Hence

Sup {Re (𝜆) : 𝑃 (𝜆) = 0} ≤ 0. (16)

Now we will show that the strict inequality in (16) holds.
Define

𝐹 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
) = det(𝐴 +

𝑚

∑

𝑞=1

𝜉
𝑞
𝐶
𝑞
) , (17)

and then 𝐹(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
) is a multivariate polynomial and is

nonzero on the compact domain defined by |𝜉
𝑞
| ≤ 1, 𝑞 =

1, 2, . . . , 𝑚, and equal to 1 at the origin. Hence, its modulus is
bounded; that is,

𝐹 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
)
 ≥ 𝜀 > 0,

when 
𝜉
𝑞


≤ 1, for 𝑞 = 1, 2, . . . , 𝑚.

(18)

By the continuity of 𝐹, there exists a 𝛿 > 0 such that

𝐹 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
)
 > 0,

when 
𝜉
𝑞


≤ 1 + 𝛿, for 𝑞 = 1, 2, . . . , 𝑚.

(19)

It follows from this that

det(𝐴 +

𝑚

∑

𝑞=1

𝜉
𝑞
𝐶
𝑞
) ̸= 0,

when 
𝑒
−𝜆𝜏
𝑞


≤ 1 + 𝛿, for 𝑞 = 1, 2, . . . , 𝑚.

(20)

Let 𝑟 be the strictly positive number 𝑟 = ln(1 + 𝛿)/𝜏; then

det(𝐴 +

𝑚

∑

𝑞=1

𝑒
−𝜆𝜏
𝑞𝐶
𝑞
) ̸= 0 for Re (𝜆) ≥ −𝑟. (21)

Thus, the equation �̃�(𝜆) = 0 has only a finite number of
roots when Re(𝜆) ≥ −𝑟, and it holds true for the equation
𝑝(𝜆) = 0 by condition (a). Combinedwith (16) we get that the
characteristic equation has at most a finite number of roots in
the region {𝜆 : −𝑟 ≤ Re(𝜆) < 0}.

Let

−𝛾 = max
−𝑟≤Re(𝜆)<0

{Re (𝜆)} ; (22)

then 𝛾 > 0.
When Re(𝜆) > −𝛾, the characteristic equation 𝑝(𝜆) =

0 has no root. Hence, a strict inequality holds in (16). By
Lemma 2, the proof is completed.

2.2. The Two-Step Runge-Kutta Methods and the Stability
Region. Consider the two-step Runge-Kutta method:

𝑌
(𝑛)

= ℎ𝐶
11
𝐹 (𝑡
𝑛
, 𝑌
(𝑛)

) + 𝐶
12
𝑦
(𝑛−1)

𝑦
(𝑛)

= ℎ𝐶
21
𝐹 (𝑡
𝑛
, 𝑌
(𝑛)

) + 𝐶
22
𝑦
(𝑛−1)

(23)

for solving the initial value problem (1).
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In order to simplify the analysis, we consider two-step
Runge-Kutta method (TSRK) of the form

𝑢
𝑛+1

= (1 − 𝜃) 𝑢
𝑛
+ 𝜃𝑢
𝑛−1

+ ℎ

𝑠

∑

𝑗=1

�̂�
𝑗
𝑓 (𝑡
𝑗
, 𝑈
𝑗

𝑛
)

+ ℎ

𝑠

∑

𝑗=1

�̃�
𝑗
𝑓 (�̃�
𝑗
, 𝑈
𝑗

𝑛−1
) ,

(24a)

𝑈
𝑖

𝑛
= 𝑢
𝑛
+ ℎ

𝑠

∑

𝑗=1

𝑎
𝑖,𝑗
𝑓 (𝑡
𝑗
, 𝑈
𝑗

𝑛
) 𝑖 = 1, 2, . . . , 𝑠, (24b)

where 𝑡
𝑗
= 𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
𝑗
= 𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑢
𝑖
is an approximation to

𝑢(𝑡
𝑖
), ℎ is a fixed step-size, 𝜃, �̂�

𝑗
, �̃�
𝑗
, 𝑎
𝑖,𝑗
, and 𝑐

𝑗
are coefficients

of the method, 0 ≤ 𝜃 ≤ 1.
These methods are a subclass of general linear methods

introduced byButcher [15] and could be possibly also referred
to as two-step hybrid methods. They generalize 𝑘-step col-
location methods (with 𝑘 = 2) for ordinary differential
equations (ODEs) studied by Lie andNørsett [16] and Lie [17]
and two-step Runge-Kutta methods for ODEs investigated
by Byrne and Lambert [18]. The variable stepsize continuous
two-step Runge-Kutta methods for ODEs were investigated
by Jackiewicz and Tracogna [19]. Here we will represent (24a)
and (24b) by the following table of the coefficients:

𝐶 𝐴

�̂�
T

𝜃

�̃�
T

=

𝑐
1

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑠

𝑐
2

𝑎
21

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑠

...
...

... d
...

𝑐
𝑠

𝑎
𝑠1

𝑎
𝑠2

⋅ ⋅ ⋅ 𝑎
𝑠𝑠

�̂�
1

�̂�
2

⋅ ⋅ ⋅ �̂�
𝑠

𝜃

�̃�
1

�̃�
2

⋅ ⋅ ⋅ �̃�
𝑠

, (25)

where 𝑐
𝑖
= ∑
𝑠

𝑗=1
𝑎
𝑖𝑗
and ∑

𝑠

𝑗=1
(�̂�
𝑗
+ �̃�
𝑗
) = 1 + 𝜃.

Apply (24a) and (24b) to the basic test equation

𝑢

(𝑡) = 𝑎𝑢 (𝑡) 𝑡 ≥ 0, Re 𝑎 < 0, (26)

which gives the following equations:

𝑢
𝑛+1

= (1 − 𝜃) 𝑢
𝑛
+ 𝜃𝑢
𝑛−1

+ 𝛼(

𝑠

∑

𝑗=1

�̂�
𝑗
𝑈
𝑗

𝑛
+ �̃�
𝑗
𝑈
𝑗

𝑛−1
)

𝑈
𝑖

𝑛
= 𝑢
𝑛
+ 𝛼

𝑠

∑

𝑗=1

𝑎
𝑖,𝑗
𝑈
𝑗

𝑛
.

(27)

Rewriting (27) we obtain

𝑢
𝑖+1

= 𝑅 (𝛼, 𝜃) 𝑢
𝑖
+ 𝑆 (𝛼, 𝜃) 𝑢

𝑖−1
, (28)

where

𝑅 (𝛼, 𝜃) = 1 − 𝜃 + 𝛼�̂�
Τ
(𝐼 − 𝛼𝐴)

−1

𝑒,

𝑆 (𝛼, 𝜃) = 𝜃 + 𝛼�̃�
Τ
(𝐼 − 𝛼𝐴)

−1

𝑒,

𝛼 = 𝑎ℎ, 𝑒 = [1, 1, . . . , 1]𝑠
Τ
.

(29)

To investigate the stability properties of (24a) and (24b) with
(26), we must investigate the asymptotic behaviors of the
solution to (28). This is determined by the location of roots
of the characteristic polynomial

𝜑 (𝑧) = 𝑧
2
− 𝑅 (𝑎, 𝜃) 𝑧 − 𝑆 (𝑎, 𝜃) . (30)

The stability region of the two-step Runge-Kuttamethods
(24a) and (24b) is the set of all points 𝛼 for which the roots of
𝜑(𝑧) are inside or on the unit circle with those on the unit
circle being simple. If 𝜑(𝑧) is a Schur polynomial for any
𝛼 with Re𝛼 < 0, the stability of the two-step Runge-Kutta
method contains the negative half plane; the method is said
to be A-stable for ODEs.

3. Asymptotic Stability of TSRK Methods for
Neutral Delay Integro Differential-Algebraic
Equation with Many Delays

In this section, we will confine our discussion to neutral delay
integro differential-algebraic equation with commensurate
delays, that is, systems of the form (1) with 𝜏

𝑞
= 𝑞𝜏, 𝜏 = 𝑀ℎ,

𝑀 is a positive integer, 𝑞 = 1, 2, . . . , 𝑚.

Definition 6 (see [20]). A numerical method for asymptot-
ically stable system (1) is called asymptotically stable if the
numerical solution satisfies

lim
𝑛→∞

𝑢
𝑛
= 0. (31)

Applying the two-step method (24a) and (24b) to (1), we
have

𝑢
𝑛+1

= (1 − 𝜃) 𝑢
𝑛
+ 𝜃𝑢
𝑛−1

+

𝑠

∑

𝑗=1

�̂�
𝑗
𝐾
𝑛,𝑗

+

𝑠

∑

𝑗=1

�̃�
𝑗
𝐾
𝑛−1,𝑗

, (32)

𝐴𝐾
𝑛,𝑖

+ ℎ𝐵(𝑢
𝑛
+

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝑘
𝑛,𝑗

) +

𝑚

∑

𝑞=1

𝐶
𝑞
𝐾
𝑛−𝑞𝑀,𝑖

+ ℎ

𝑚

∑

𝑞=1

𝐷
𝑞
(𝑢
𝑛−𝑞𝑀

+

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝐾
𝑛−𝑞𝑀,𝑗

)

+ ℎ

𝑚

∑

𝑞=1

𝑞𝑀

∑

𝛾=0

𝛾
𝑟
𝐺
𝑞
⋅ (𝑢
𝑛−𝑟

+

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝑘
𝑛−𝑟,𝑗

) = 0

for 𝑖 = 1, 2, . . . , 𝑠,

(33)

where 𝐾
𝑛,𝑖

= [𝐾
1

𝑛,𝑖
, 𝐾
2

𝑛,𝑖
, . . . , 𝐾

𝑑

𝑛,𝑖
]
Τ

, 𝑖 = 1, 2, . . . , 𝑠, are stage
derivatives multiplied by ℎ.

Let

�̂�
T
= [�̂�
1
, �̂�
2
, . . . , �̂�

𝑠
] , �̃�

T
= [�̃�
1
, �̃�
2
, . . . , �̃�

𝑠
] ,

𝐴 = (𝑎
𝑖𝑗
) .

(34)
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We assume that all the eigenvalues of𝐴 have positive real
part. Rearrange the variables of the stage derivatives as

𝐾
𝑛
= [𝐾
1

𝑛,1
, 𝐾
1

𝑛,2
, . . . , 𝐾

1

𝑛,𝑠
, 𝐾
2

𝑛,1
, 𝐾
2

𝑛,2
,

. . . , 𝐾
2

𝑛,𝑠
, . . . , 𝐾

𝑑

𝑛,1
, 𝐾
𝑑

𝑛,2
, . . . , 𝐾

𝑑

𝑛,𝑠
]
Τ

.

(35)

Define

𝑌
𝑛
= (𝐾
Τ

𝑛
, 𝑢
Τ

𝑛+1
)
Τ

, 𝐵 = ℎ𝐵, 𝐷
𝑞
= ℎ𝐷
𝑞
,

𝐺
𝑞
= ℎ
2
𝐺
𝑞
.

(36)

Rewrite (32) and (33) in the form

[
𝐴 ⊗ 𝐼
𝑠
+ 𝐵 ⊗ 𝐴 0

−𝐼
𝑑
⊗ �̂�
Τ

𝐼
𝑑

]𝑌
𝑛

+ [
0 𝐵 ⊗ 𝑒

−𝐼
𝑑
⊗ �̃�
Τ

− (1 − 𝜃) 𝐼
𝑑

]𝑌
𝑛−1

+ [
0 0

0 −𝜃𝐼
𝑑

]𝑌
𝑛−2

+

𝑚

∑

𝑞=1

[
𝐶
𝑞
⊗ 𝐼
𝑠
+ 𝐷
𝑞
⊗ 𝐴 0

0 0
]𝑌
𝑛−𝑞𝑀

+

𝑚

∑

𝑞=1

[
0 𝐷
𝑞
⊗ 𝑒

0 0
]𝑌
𝑛−𝑞𝑀−1

+

𝑚

∑

𝑞=1

𝑀𝑞

∑

𝑟=0

[
𝐶
𝑞
⊗ 𝐼
𝑠
+ 𝐷
𝑞
⊗ 𝐴 0

0 0
]𝑌
𝑛−𝑟

+

𝑚

∑

𝑞=1

𝑀𝑞

∑

𝑟=0

[
0 𝛾
𝑟
𝐺
𝑞
⊗ 𝑒

0 0
]𝑌
𝑛−𝑟−1

= 0.

(37)

The characteristic polynomial of (37) is given by

𝑝 (𝑧) = det [𝑇1 (𝑧) 𝑇
2
(𝑧)

𝑇
3
(𝑧) 𝑇

4
(𝑧)

] , 𝑧 ∈ 𝐶, (38)

where

𝑇
1
(𝑧) = 𝑧

2
[ (𝐴 ⊗ 𝐼

𝑠
+ 𝐵 ⊗ 𝐴)

+

𝑚

∑

𝑞=1

(𝐶
𝑞
⊗ 𝐼
𝑠
+ 𝐷
𝑞
⊗ 𝐴) 𝑧

−𝑞𝑀

+

𝑚

∑

𝑞=1

𝑀𝑞

∑

𝑟=0

𝛾
𝑟
𝐺
𝑞
⊗ 𝐴𝑧
−𝑟

] ,

𝑇
2
(𝑧) = 𝑧 [𝐵 ⊗ 𝑒 +

𝑚

∑

𝑞=1

𝐷
𝑞
⊗ 𝑒𝑧
−𝑞𝑀

+

𝑚

∑

𝑞=1

𝑀𝑞

∑

𝑟=0

𝛾
𝑟
𝐺
𝑞
⊗ 𝑒𝑟
−𝑟

] ,

𝑇
3
(𝑧) = − 𝑧

2
𝐼
𝑑
⊗ �̂�
Τ
− 𝑧𝐼
𝑑
⊗ �̃�
Τ
,

𝑇
4
(𝑧) = 𝑧

2
𝐼
𝑑
− 𝑧 (1 − 𝜃) 𝐼

𝑑
− 𝜃𝐼
𝑑
.

(39)

Following from the theorem on difference equations, we get
that if all the zeros 𝑧 of (38) satisfy |𝑧| < 1, then

lim
𝑛→∞

𝑌
𝑛
= 0. (40)

Hence, we formulate the following lemmas.

Lemma 7 (see [21]). If all the zeros 𝑧 of (38) satisfy |𝑧| < 1,
then numerical method ((32) and (33)) satisfies

lim
𝑛→∞

𝑢
𝑛
= 0. (41)

Lemma 8. Assume that condition (a) of Theorem 5 holds and
assume that [𝐼

𝑠
− 𝜆l(𝑟(𝑧))𝐴] are invertible for |𝑧| ≥ 1, where

𝑟 (𝑧) = (𝐴 +

𝑚

∑

𝑞=1

𝑧
−𝑞𝑀

𝐶
𝑞
)

−1

× (−𝐵 −

𝑚

∑

𝑞=1

𝑧
−𝑞𝑀

𝐷
𝑞
−

𝑚

∑

𝑞=1

𝑞𝑀

∑

𝑟=0

𝛾
𝑟
𝑧
−𝑟

𝐺
𝑞
) ;

(42)

then, det[𝑇
1
(𝑧)] ̸= 0, for |𝑧| ≥ 1.

Proof. Condition (a) in Theorem 5 implies that the matrix
(𝐴 + ∑

𝑚

𝑞=1
𝑧
−𝑞𝑀

𝐶
𝑞
) is invertible for |𝑧| ≥ 1; then 𝑇

1
(𝑧) =

𝑧
2
[(𝐴 + ∑

𝑚

𝑞=1
𝑧
−𝑞𝑀

𝐶
𝑞
) ⊗ 𝐼
𝑠
][𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟(𝑧) ⊗ 𝐴].

We have that

det [𝑇
1
(𝑧)] = 𝑧

2𝑠𝑑
[det(𝐴 +

𝑚

∑

𝑞=1

𝑧
−𝑞𝑀

𝐶
𝑞
)]

𝑠

× det [𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟 (𝑧) ⊗ 𝐴]

= 𝑧
2𝑠𝑑

[det(𝐴 +

𝑚

∑

𝑞=1

𝑧
−𝑞𝑀

𝐶
𝑞
)]

𝑠

×

𝑑

∏

𝑙=1

𝑠

∐

𝑗=1

[1 − 𝜆
𝑙
(𝑟 (𝑧)) 𝜆

𝑗
(𝐴)] .

(43)

The matrix 𝐼
𝑠

− 𝜆
𝑙
(𝑟(𝑧))𝐴 is invertible meaning that

𝜆
𝑙
(𝑟(𝑧))𝜆

𝑗
(𝐴) ̸= 1 for all 𝑙, 𝑗.

Hence, det[𝑇
1
(𝑧)] ̸= 0, for |𝑧| ≥ 1.

Theorem 9. If the system ((32) and (33)) satisfies Lemma 8
and the following conditions,
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(ã) det(𝐴 + ∑
𝑚

𝑞=1
𝜉
𝑞
𝐶
𝑞
) ̸= 0, for |𝜉

𝑞
| ≤ 1;

(b̃) |1 − 𝜃 − 𝑧
−1

𝜃 − (�̂�
Τ
+ 𝑧
−1

�̃�
Τ
)[𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟(𝑧) ⊗ 𝐴]

−1

[𝑒
𝑠
⊗

𝑟(𝑧)]| < 1, for |𝑧| ≥ 1,

then the solution of the TSRK methods for (1) is asymptotically
stable.

Proof. By Lemma 7, we need to prove that all the zeros of (38)
satisfy |𝑧| < 1.

If these were not true, there would exist a 𝑧
0

∈ 𝐶 with
|𝑧
0
| ≥ 1, such that

det [𝑇1 (𝑧0) 𝑇
2
(𝑧
0
)

𝑇
3
(𝑧
0
) 𝑇
4
(𝑧
0
)
] = 0. (44)

By Lemma 8, we have that det[𝑇
1
(𝑧
0
)] ̸= 0.

Hence, (44) is equivalent to

det ⌊𝑇
4
(𝑧
0
) − 𝑇
3
(𝑧
0
) 𝑇
1

−1
(𝑧
0
) 𝑇
2
(𝑧
0
)⌋ = 0. (45)

Using the Kronecker product [5, chapter 4], we have that

det ⌊𝑇
4
(𝑧
0
) − 𝑇
3
(𝑧
0
) 𝑇
−1

1
(𝑧
0
) 𝑇
2
(𝑧
0
)⌋

= det
{

{

{

𝑧
2

0
𝐼
𝑑
− 𝑧
0
(1 − 𝜃) 𝐼

𝑑
− 𝜃𝐼
𝑑

− (𝑧
2

0
𝐼
𝑑
⊗ �̂�
Τ
+ 𝑧
0
𝐼
𝑑
⊗ �̃�
Τ
)

× 𝑧
−2

0
[(𝐴 +

𝑚

∑

𝑞=1

𝑧
−𝑞𝑀

0
𝐶
𝑞
) ⊗ 𝐼
𝑠
]

−1

⋅ [𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟 (𝑧

0
) ⊗ 𝐴]

−1

⋅ 𝑧
0
[𝐵 ⊗ 𝑒 +

𝑚

∑

𝑞=1

𝐷
𝑞
⊗ 𝑒𝑧
−𝑞𝑀

0

+

𝑚

∑

𝑞=1

𝑀𝑞

∑

𝑟=0

𝛾
𝑟
𝐺
𝑞
⊗ 𝑒𝑧
−𝑟

0
]

}

}

}

= 𝑧
𝑑

0
det {𝑧

0
𝐼
𝑑
− [(1 − 𝜃) 𝐼

𝑑
− 𝑧
−1

0
𝜃𝐼
𝑑

− (𝐼
𝑑
⊗ �̂�
Τ
+ 𝑧
−1

0
𝐼
𝑑
⊗ �̃�
Τ
)

× [𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟 (𝑧

0
) ⊗ 𝐴]

−1

× [𝑒 ⊗ 𝑟 (𝑧
0
)] ]} .

(46)

Combining (45) and (46) gives that

det {𝑧
0
𝐼
𝑑
− [ (1 − 𝜃) 𝐼

𝑑
− 𝑧
−1

0
𝜃𝐼
𝑑

− (𝐼
𝑑
⊗ �̂�
Τ
+ 𝑧
−1

0
𝐼
𝑑
⊗ �̃�
Τ
)

⋅[𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟 (𝑧

0
) ⊗ 𝐴]

−1

[𝑒 ⊗ 𝑟 (𝑧
0
)]]} = 0,

(47)

which implies |1−𝜃−𝑧
−1

0
𝜃−(�̂�
Τ
+𝑧
−1

0
�̃�
Τ
)[𝐼
𝑑
⊗ 𝐼
𝑠
− 𝑟(𝑧
0
) ⊗ 𝐴]

−1

[𝑒 ⊗ 𝑟(𝑧
0
)]| ≥ 1.

This contradicts the assumption that (�̃�) for |𝑧
0
| ≥ 1.

Hence, the theorem is proved.

4. Numerical Experiments

Example 1. Consider the following linear system:

𝐴𝑢

(𝑡) + 𝐵𝑢 (𝑡) +

𝑚

∑

𝑞=1

𝐶
𝑞
𝑢

(𝑡 − 𝜏
𝑞
)

+

𝑚

∑

𝑞=1

𝐷
𝑞
𝑢 (𝑡 − 𝜏

𝑞
)

+

𝑚

∑

𝑞=1

𝐺
𝑞
∫

𝑡

𝑡−𝜏
𝑞

𝑢 (𝛿) 𝑑𝛿 = 0, 𝑡 ≥ 0,

𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0) ,

(48)

with 𝑚 = 2, 𝜏
1
= 1, 𝜏
2
= 2, and 𝜑(𝑡) = (cos(𝑡), sin(𝑡), cos(𝑡))Τ

for 𝑡 ∈ [−2, 0], where

𝐴 = [

[

1 0 0

0 0 0

0 1 0

]

]

, 𝐵 = [

[

1.5 0 0

0 0 −0.4

0 0.8 0.5

]

]

,

𝐷
1
= [

[

0.2 0.4 0

0 0 0.1

0 0.2 −0.2

]

]

, 𝐷
2
= [

[

0.1 0 0

0 0 0.1

0 0.15 0.8

]

]

,

𝐺
1
= [

[

0.2 0 0

0 0 −0.2

0 0.1 0.25

]

]

, 𝐺
2
= [

[

0.1 0 0

0 0 −0.2

0 0.05 0.25

]

]

,

(49)

and 𝐶
1
= −0.3𝐴 and 𝐶

2
= −0.5𝐴.

Here thematrix coefficients satisfyTheorem 9.Hence, the
system is asymptotically stable.

We choose the A-stable TSRK methods as follows [22]:

𝐶 𝐴

�̂�
T

𝜃

�̃�
T

=

51

32

5151

9760

2601

2440

103

256
−

10609

156160

73439

156160

636886846889

1074516737280

61448158637

134314592160
16977449

36697976
21872982199

1074516737280

52658918227

134314592160

,

(50)

where

𝑐
𝑖
=

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
,

𝑠

∑

𝑗=1

(�̂�
𝑗
+ �̃�
𝑗
) = 1 + 𝜃. (51)
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It can be easily seen that the A-stable TSRK method is
asymptotically stable, which illuminates the conclusion of
Theorem 9.

5. Conclusions

This paper develops the asymptotic stability of the two-step
Runge-Kutta methods for neutral delay integro differential-
algebraic equations with many delays. It studies the asymp-
totic stability of the analytical solution and introduces
two step Runge-Kutta methods and the stability region. It
also deals with the asymptotic stability of two-step Runge-
Kutta method for neutral delay integro differential-algebraic
equations with many delays and proves that the A-stable
two-step Runge-Kutta methods are asymptotically stable for
neutral delay integro differential-algebraic equations with
many delays.
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Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and
time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest
fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events
are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the
system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane
(PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools.
The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the
phenomena.TheMDS approach generates maps where objects that are perceived to be similar to each other are placed on the map
forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires
behaviour.

1. Introduction

Forest fires, being caused by natural factors, human negli-
gence, or human intent, consume every year vast areas of
vegetation. Fire compromises ecosystems, has direct impact
upon economy due to the destruction of property and
infrastructures, raises the carbon dioxide emissions to the
atmosphere, affects the water cycle, contributes to soil ero-
sion, and has long-term economic implications associated
with the climate change. In many regions and countries,
like the United States, Australia, Russia, Brazil, China, and
the Mediterranean Basin, fire is a major concern nowadays,
demanding efficient policies for fire prevention and suppres-
sion and recovery of the affected areas.

Climate conditions, terrain orography, and type of vegeta-
tion are important factors that condition fire propagation and
the total burnt area.The efficacy of detection and suppression
strategies is fundamental in order to mitigate fire impact.
However, fires caused by incendiaries contribute to increasing
the complexity of the phenomena. Understanding forest

fires behaviour and the underlying patterns in terms of fire
size and spatiotemporal distributions may help the decision
makers to take preventive measures beforehand, identifying
possible hazards and deciding strategies for fire prevention,
detection, and suppression.

Classical statistical tools have been used to investigate
forest fires. However, those methods do not capture neither
all characteristics underneath forest fires dynamics nor the
fire dynamics along the years [1]. Forest fires are complex
phenomena that exhibit intricate correlations in terms of fire
size, location, and time. Forest fires dynamics unveil long
range memory, self-similarity, and absence of a characteristic
length-scale [2–10], which are features also found in frac-
tional order systems [11–18].

In this paper we look at forest fires from the perspective
of dynamical systems. A public domain forest fires catalogue
containing data of events that occurred in Portugal, in
the period from 1980 up to 2012, is tackled. The data is
analysed in an annual basis, modelling the occurrences as
sequences of Dirac impulses with amplitude proportional to
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Figure 1: Yearly evolution of the burnt area, corresponding to forest
fires registered in Portugal in the time period 1980–2012 (they are
considered events with burnt area equal to or greater than 10 ha).

the events. Therefore, we are not modelling the dynamics of
each particular forest fire. Otherwise, we are describing the
global fire dynamics along several decades. The time series
are viewed as the output of a dynamical system and are
interpreted as a manifestation of the system dynamics. In the
first phase, we use the pseudo phase plane (PPP) technique.
The optimal time delay for the PPP is determined bymeans of
the autocorrelation function.The PPP portraits are compared
using an appropriate metric and the results are visualized
through phylogenetic trees, generated by hierarchical cluster-
ing algorithms. In the second phase, the multidimensional
scaling (MDS) tools are adopted to compare and extract
relationships among the data.

Having these ideas in mind, the paper is organized
as follows. In Section 2 we briefly describe the forest fire
catalogue used in this work. In Section 3 we address the
problem by means of the PPP and visualization of trees
generated by hierarchical clustering algorithms. In Section 4
we use the MDS method. The approach is applied to the data
and the main results are interpreted and analysed. Finally, in
Section 5, we outline the main conclusions.

2. Forest Fires Dataset

Data of forest fires collected at the Portuguese Institute of
Nature and Forest Conservation (INCF), available online
at http://www.icnf.pt/portal/florestas/dfci/inc/estatisticas, is
used [19]. The INCF dataset contains events since 1980 and
up to 2012. Ignitions might have different sources, as natural
causes, human negligence, or human intentionality, among
others. The data was retrieved in December, 2013. Each data
record contains information about the events date, time (with
one minute resolution), geographic location, and size (in
terms of burnt area).We discard small size events, as those are
prone to measurement errors. Moreover, some small events
may be missing because probably they were not reported.
For that purpose we adopt a cutoff threshold value of 10
hectares for the burnt area. Experiments showed this value as
a good trade-off between catalogue completeness and results
accuracy.

The evolution of the burnt area and the number of
occurrences are depicted in Figures 1 and 2, respectively. In
Figure 3we depict the Lorenz curve relating to the cumulative
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Figure 2: Yearly evolution of the number of forest fires, registered
in Portugal in the time period 1980–2012 (they are considered events
with burnt area equal to or greater than 10 ha).
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Figure 3: Lorenz curve corresponding to forest fires registered in
Portugal in the time period 1980–2012 (they are considered events
with burnt area equal to or greater than 10 ha).

burnt area and the cumulative number of events. The Gini
coefficient, given by the double of the Gini area, measures the
inequality among values of burnt area, being equal to 0.5968.

The time series representative of the occurrences is shown
in Figure 4, where we can note the yearly periodicity of the
events, with the peaks of burnt area occurring in summer.
During the period covered by the catalogue, stronger fire
activity has been verified around the middle of the decade
2000–2009.

Using the Fourier transform (FT), the forest fires data
is analyzed in the frequency-domain. For each annual time
series (33 in total) the amplitude spectra are computed and
approximated by a power law (PL) function.The PL parame-
ters are interpreted as the signature of the system dynamics.
For example, Figure 5 depicts the amplitude spectra for year
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Figure 4: Burnt area versus time of the occurrences registered in
Portugal in the time period 1980–2012, with burnt area equal to or
greater than 10 ha.
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Figure 5: Amplitude spectra, |FT
2000

|, of the time series correspond-
ing to year 2000 and PL approximation.

2000, |FT
2000

|. In this case, the PL approximation is |FT
2000

| =

2.28 × 10
5
𝜔
−0.17, unveiling fractional order characteristics.

However, the FT characterizes the global dynamics and may
not constitute the best tool to depict the time-varying artifacts
present in response of complex system. This means that
different approaches are needed to better understand forest
fires.

3. Analysis of Forest Fires by means of PPP

The PPP is a particular case of the pseudo phase space (PPS),
which is justified by Takens’ embedding theorem [20]. The
PPS allows the representation of system dynamics in a higher
dimensional space, by taking a smaller sample of signals
representing measurements of the system time history [21–
23]. The PPS is useful in analysing signals with nonlinear
behaviour and systems where complete information about
all system states is unavailable. When compared to the
classical phase space technique, the PPS reconstruction has
the advantage of being more robust to signal noise.

In practical terms, we construct a 𝑛-dimensional phase
space, 𝑈(𝑡):

𝑈 (𝑡) = [𝑠 (𝑡) , 𝑠 (𝑡 + 𝜏) , 𝑠 (𝑡 + 2𝜏) , . . . , 𝑠 (𝑡 + (𝑛 − 1) 𝜏)] ,

(1)

where 𝑛 ∈ N and 𝜏 ∈ R+ represent the time delay and
embedding dimension, respectively. The matrix 𝑈(𝑡) is usu-
ally plotted in a 𝑛-dimensional diagram. For 𝑛 = 2 a two-
dimensional time delay space is obtained and the PPS reduces

to the PPP. In this case we have𝑈(𝑡) = [𝑠(𝑡), 𝑠(𝑡+𝜏)] related to
the model given by the state vectors [𝑠(𝑡), ̇𝑠(𝑡)]. The choice of
the time delay 𝜏 is critical andmust be accomplished adopting
some criterion.

In this section we analyse forest fires in an annual basis,
representing the events of the 𝑖th year (𝑖 = 1980, . . . , 2012) by

𝑥
𝑖
(𝑡) =

𝑇

∑

𝑘=1

𝑆
𝑘
𝛿 (𝑡 − 𝑡

𝑘
) (2)

leading to 33 one-year length time series.
This means that the events are modelled as Dirac

impulses, where 𝑆
𝑘
represents fire size, 𝑡

𝑘
is the instant of

occurrence, parameter 𝑡 represents time, and 𝑇 is the total
time length, in minutes, corresponding to year 𝑖.

The signals 𝑥
𝑖
(𝑡) are then normalized according to the

following equation:

𝑥
𝑖
(𝑡) =

𝑥
𝑖
(𝑡) − 𝜇

𝜎
, (3)

where 𝜇 and 𝜎 represent the global mean and standard
deviation values, that is, the values calculated for thewhole set
of events registered during the time period 1980–2012, with
minimummagnitude equal to 10 ha.

To implement the PPP, we firstly integrate the signals
𝑥
𝑖
(𝑡), (to be denoted 𝑋

𝑖
(𝑡) = ∫

𝑡

0
𝑥
𝑖
(𝑢)𝑑𝑢, 0 ≤ 𝑡 ≤ 𝑇, where

𝑡 = 0 corresponds to the first minute of each year, 𝑖) that
represent the normalized time series of the occurrences in
every year (𝑖 = 1980, . . . , 2012). The correlation function,
𝑟
𝑖𝑖
[𝑋
𝑖
(𝑡), 𝑋
𝑖
(𝑡−𝜏)], is then used to correlate𝑋

𝑖
(𝑡)with its time

delayed version𝑋
𝑖
(𝑡 − 𝜏):

𝑟
𝑖𝑖
(𝜏) =

∑
𝑇

𝑡=1
𝑋
𝑖
(𝑡) ⋅ 𝑋

𝑖
(𝑡 − 𝜏)

√∑
𝑇

𝑡=1
𝑋
𝑖
(𝑡)
2
⋅ ∑
𝑇

𝑡=1
𝑋
𝑖
(𝑡 − 𝜏)

2

,

𝑖 = 1980, . . . , 2012.

(4)

For each case, values within the interval 𝜏 ∈ [1440,

288000] minute (i.e., 𝜏 ∈ [1, 200] days) are tested and the
optimal time delay, 𝜏

𝑚
𝑖

, is computed, corresponding to the
time at which the correlation function has its first point of
inflection.

Figure 6 depicts, for example, the signals 𝑥
2000

(𝑡) and
𝑋
2000

(𝑡), representative of the events that occurred in
year 2000. The normalized time series, 𝑥

2000
(𝑡), reveals a

“noisy” nature, while the corresponding integral, 𝑋
2000

(𝑡), is
much smoother, showing more clearly possible correlations
between multiple points. The larger discontinuities observed
in the amplitude correspond to instants of sudden increase in
fire activity.

In Figure 7, the correlation function for year 𝑖 = 2000,
𝑟
𝑖𝑖
[𝑋
2000

(𝑡), 𝑋
2000

(𝑡−𝜏)] versus the time delay, 𝜏 is presented.
In this case, the optimal time delay yields 𝜏

𝑚
2000

= 106 days.
The optimal time delays calculated for the 33 one-year length
time series are summarized in Table 1.

Figure 8 gives a global perspective of the PPP portraits,
𝑋
𝑖
(𝑡−𝜏
𝑚
𝑖

) versus𝑋
𝑖
(𝑡), for the 33 time series. Figure 9, serving
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Figure 6: Graphical representation of the events that occurred in
year 2000: (a) normalized time series, 𝑥

2000
(𝑡), and (b) normalized

time series integral, 𝑋
2000

(𝑡). The cutoff threshold value 𝑆
𝑘
= 10 ha

was adopted.

as an example, details the results obtained for the initial and
final time series, that is, years 1980 and 2012, respectively.
Both figures reveal complex patterns that resemble those
found in chaotic systems, demonstrating the rich dynamics
of forest fires.

To compare the 33 PPP patterns we calculate a 33 × 33

similarity matrix E = [𝑒
𝑖𝑗
], based on the 2-dimensional

correlation, 𝑑
𝑖𝑗
(𝑖, 𝑗 = 1980, . . . , 2012), between the PPP

curves, defined by

𝑑
𝑖𝑗
=



(

𝑇

∑

𝑡=1

[𝑋
𝑖
(𝑡) ⋅ 𝑋

𝑗
(𝑡)

+ 𝑋
𝑖
(𝑡 − 𝜏
𝑚
𝑖

) ⋅ 𝑋
𝑗
(𝑡 − 𝜏

𝑚
𝑗

)])

× (

𝑇

∑

𝑡=1

[𝑋
2

𝑖
(𝑡) + 𝑋

2

𝑖
(𝑡 − 𝜏
𝑚
𝑖

)]
2

⋅

𝑇

∑

𝑡=1

[𝑋
2

𝑗
(𝑡) + 𝑋

2

𝑗
(𝑡 − 𝜏

𝑚
𝑗

)]
2

)

−1/2

,

𝑒
𝑖𝑗
=

𝑑
𝑖𝑗

max {𝑑
𝑖𝑗
}

.

(5)

Table 1: Optimal time delays for the 33 time series during the period
1980–2012.

Year 𝜏
𝑚
𝑖

(days) 𝑟
𝑖𝑖
(𝜏
𝑚
𝑖

)

1980 99 0.7926
1981 99 0.8577
1982 97 0.8503
1983 146 −0.1871
1984 129 0.6520
1985 112 0.7487
1986 48 0.8941
1987 155 0.5918
1988 106 0.5567
1989 163 0.3985
1990 34 0.6606
1991 163 0.3458
1992 122 0.7998
1993 114 0.7617
1994 101 0.7726
1995 116 0.9506
1996 117 0.7622
1997 98 0.9423
1998 172 0.0907
1999 100 0.6130
2000 106 −0.0433
2001 173 0.7722
2002 158 −0.2180
2003 165 −0.8656
2004 168 −0.7299
2005 165 −0.9852
2006 62 0.1518
2007 40 0.9445
2008 111 0.9682
2009 111 0.8566
2010 144 −0.8174
2011 55 0.9683
2012 200 −0.8595

Figure 10 depicts E as a contour map. To facilitate the
comparison, the cases 𝑖 = 𝑗 (i.e., those with maximum
correlation value) are removed from the graph, due to their
higher values.

The map reveals strong correlations between certain
years, corresponding to extreme values of 𝑒

𝑖𝑗
. This is well

noted, for example, for the groups of years {1998, 1999},
{1998, 2000}, {1998, 2001}, {1999, 2001}, {1999, 2006},
{1999, 2007}, {1999, 2012}, {2001, 2008}, {2002, 2006},
{1993, 2008}, {2002, 2012}, and {2006, 2012}. Nevertheless,
the comparison requires a considerable amount of work and
is based on pairwise comparisons.

As an alternative method to visualize and to compare
results, a hierarchical clustering algorithm is adopted [24–
26]. A phylogenetic tree and circular phylogram are gen-
erated, using the successive (agglomerative) clustering and
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Figure 8: The PPP portraits for the 33 time series.

average-linkage method (Figure 11). The software PHYLIP
was used for generating both graphs (http://evolution.genet-
ics.washington.edu/phylip.html).

Figure 11 unveils groups of objects (years) in such a way
that objects in the same group (cluster) are more similar
to each other than to those in other groups. For example,
we can easily identify clusters composed by years A =

{1998, 2002, 2006, 2012}, B = {1999, 2000, 2007}, C =

{2004, 2010}, and D = {1991, 2003, 2005}. Years in the
same cluster have identical time-amplitude fire pattern. Both
representations of Figures 10 and 11 can be used to visualise
the clusters of forest fires, on an annual basis. Figure 11 leads
to a result that is easier to interpret, as it identifies groups of
objects that are similar, while Figure 10 just maps similarities
between pairs of objects.

4. MDS Analysis and Visualization

In this section we adopt the MDS tool to visualize the rela-
tionships between forest fires events. An appropriate metric
is proposed and the generated MDS graphs are analysed.

The MDS is a statistical technique for visualizing data.
The MDS approach generates maps where objects that are
perceived to be similar to each other are placed on the map
forming clusters. The maps are indeterminate with respect
to translation, rotation, and reflection and the axes have no
special meaning. The algorithm requires the definition of
a similarity measure (or, inversely, of a distance) and the
construction of a 𝑠 × 𝑠 symmetric matrix of similarities (or
distances) between each pair of 𝑠 objects. MDS reproduces
the observed similarities by assigning a point to each object
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Figure 9:The PPP portraits for the initial and final time series, years
(a) 1980 and (b) 2012.
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in a 𝑚-dimensional space. For 𝑚 = 2 or 𝑚 = 3 dimensions
the points may be displayed on a “map” [27–33].

We adopt the 33 × 33 similarity matrix E = [𝑒
𝑖𝑗
],

defined by (5). The MDS map for 𝑚 = 3 is depicted in
Figure 12. A shorter (larger) distance between two points
on the map means that the corresponding objects are more
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Figure 11: Similarity matrix, E, between yearly time series in the period 1980–2012. The cutoff threshold value 𝑆
𝑘

= 10 ha was adopted:
(a) phylogenetic tree and (b) circular phylogram.
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similar (distinct). Figures 13 and 14 depict the Shepard and
stress plots, respectively, that assess the quality of the MDS
maps.The Shepard diagram shows an acceptable distribution
of points around the 45 degree line, which means a good
fit of the distances to the dissimilarities. On the other hand,
the stress plot reveals that a three dimensional space well
describes the locus of the points. Often, the maximum
curvature point of the stress line is adopted as the criterion
for deciding the dimensionality of the MDS map.

The MDS map of Figure 12 exposes the clusters that
were previously identified by the hierarchical clustering
(Figure 11). Comparing the MDS maps and the visualization
trees, we conclude that both allow easy interpretation of the
results and that there is no multiannual pattern. The MDS
maps have the advantage of being more intuitive, mainly
when dealing with a large number of objects.
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5. Conclusion

This paper analysed forest fires data, adopting tools normally
used in dynamical systems analysis. The data consisted in
a public domain forest fires catalogue, containing informa-
tion for Portugal and covering 33 years during the period
1980–2012. The events were modelled as time series of Dirac
impulses with amplitude proportional to the burnt area.
The data was analysed in an annual basis using the PPP
and MDS tools. The PPP was used to model forest fires
dynamics. Based on an appropriate correlation index, the
MDS was adopted to compare annual patterns. Those tools
allow different perspectives over forest fires that may be used
to better understand such a complexity phenomenon.
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Image restoration problem is ill-posed, somost image restoration algorithms exploit sparse prior in gradient domain to regularize it
to yield high-quality results, reconstructing an image with piecewise smooth characteristics. While sparse gradient prior has good
performance in noise removal and edge preservation, it also tends to remove midfrequency component such as texture. In this
paper, we introduce the sparse prior in fractional-order gradient domain as texture-preserving strategy to restore textured images
degraded by blur and/or noise. And we solve the unknown variables in the proposed model using method based on half-quadratic
splitting by minimizing the nonconvex energy functional. Numerical experiments show our algorithm’s robust outperformance.

1. Introduction

Mathematically, the image degradation is modeled as

y = x ⊗ h + n, (1)

where x is the original latent image and y is an observed
image degraded by blur and/or noise, which is produced by
convolving xwith a blur point-spread-function (a.k.a. kernel)
h and adding zero mean Gaussian noise n. Image restoration
is recovering latent image from observed image.

Image restoration is ill-posed problem, so many methods
introducing priors based on natural image statistics can
regularize it. Total variation regularization is originally used
for noise reduction [1, 2] and has also been used for image
deblurring [3]. Chan and Wong [4] introduced total varia-
tional blind deconvolution method for motion blur kernel
and out-of-focus kernel. Heavy-tailed natural image priors
[5, 6] and hyper-Laplacian priors [7–10] were also extensively
introduced. Numerous regularization approaches have been
proposed too. Wang et al. [7] presented a fast total variation
deconvolution algorithm to compute TV image deconvo-
lution. Krishnan and Fergus [8] take a novel approach to
the image restoration problem arising from the use of a

hyper-Laplacian prior. Xu and Jia [11] developed a fast TV-𝑙
1

deconvolution method based on half-quadratic splitting.
While image reconstructed by algorithms above sup-

presses noise and preserve edges, it has piecewise smooth
characteristic that the mid-frequency components such as
textures are removed too.

In digital images, the gray values between neighboring
pixels have high correlation. This highly self-similar fractal
information of image fractal information is usually repre-
sented by complex textural features, and the works in [12–
18] showed that fractional-order gradient is more suitable to
deal with fractal-like textures. It has been proved in [12] that
the fractional-order derivative satisfies the lateral inhibition
principle of biologic visual system better than the integer-
order derivative. The fractional-order derivative operators
have been used in texture enhancement [13], image denoising
[14, 15], and image inpainting [16, 17]. Jun and Zhihui [14]
replaced the first-order derivative in the regularized term of
ROFmodel with the fractional-order derivative. Bai and Feng
[15] designed fractional-order anisotropic diffusion equation
to remove noise. Zhang et al. [16] exploited fractional-order
TV sinogram inpainting model to reduce metal artifacts
for X-ray computed tomography. In [18], fractional total
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Figure 1: (a) A textured image. (b) The 𝑥-direction log distribution of gradient magnitudes. (c) The 𝑦-direction log distribution of gradient
magnitudes.

variation method was introduced to restore textured image.
This work shows that the fractional-order derivative not only
nonlinearly preserves the textural details but also eliminates
the staircase effect caused by low integral-order derivative
in image processing. Different from work in [18], the sparse
prior in fractional-order gradient domain is considered in our
work, which is more suitable for the texture of image. It is
explained clearly in Figures 2 and 3.

This paper presents fractional-order regularization for the
restoration of textured image degraded by blur and/or addi-
tive noise. R. Tony uses the Laplacian prior in fractional-order
gradient domain for 𝛼 = 1 to preserve the texture. According
to our analysis in the next section, hyper-Laplacian image
prior in fractional-order gradient domain for 0 < 𝛼 ≤ 1 is
more suitable to keep different texture for different texture
image.

The outline of this paper is as follows. In Section 2, we
analyze the reason why integral-order regularization fails
to restore image texture. In Section 3, our fractional-order
regularizationmodel is proposed and based on half-quadratic
splitting, we solve model using efficient alternating mini-
mizationmethod. Numerical experiments and comments are
provided in Section 4 and the paper is concluded in Section 5.

2. Motivation

The prior 𝑝(x) favors natural image, usually based on the
observation that their heavy-tailed gradient distribution is
sparse. For example, Figure 1 shows textured image and a
histogram of its gradient magnitudes in x-direction and y-
direction, respectively. The distribution shows that the image
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Figure 2: Analysis of restoration on 1D signal using gradient prior. ((a) and (c)) Sharp and blurred signal; ((b) and (d)) sum of gradients
− log 𝑝(x) = ∑

𝑖
|𝐺
𝑖
(x)|𝛼 as a function of 𝛼.

contains primarily small or zero gradients, but a few gradients
have large magnitudes. A common measure [19] is

log 𝑝 (x) = −∑

𝑖

𝐺𝑥,𝑖 (x)


𝛼

+

𝐺
𝑦,𝑖
(x)
𝛼

+ constant, (2)

where 𝐺
𝑥,𝑖
(x) and 𝐺

𝑦,𝑖
(x) denote the horizontal and vertical

derivatives at pixel 𝑖 (here, the simple [−1 1] and [−1 1]
𝑇

filters are used) and exponent value 𝛼 ∈ (0, 2]. 𝛼 < 1 leads
to sparse prior and natural images usually correspond to 𝛼 in
the range of [0.5, 0.8] [19]. 𝛼 = 1 and 𝛼 = 2 are Laplacian
prior and Gaussian prior, respectively.

The image restoration methods use the sparse prior term
as a regularized term of variational energy functional [19],
which is

minx 𝜆 (x ⊗ h − y) +
𝐼

∑

𝑖=1

(
𝐺𝑥,𝑖x



𝛼

+

𝐺
𝑦,𝑖
x
𝛼

) . (3)

The failure of restoring texture with the sparse gradient
prior depends on the fact that the value of energy does not
always decrease during restoration process, so the no-blur
explanation is usually favored. To understand this, consider
the 1D signals in Figure 2.

For sharp edge in Figure 2(a), while Gaussian prior favors
the blurry explanation, the sparse prior (𝛼 < 1) favors the cor-
rect sharp explanation in Figure 2(b). The signal considered
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Figure 3: Analysis of restoration on 1D signal: (a) sharp versus blurred signal; (b) sum of gradients − log 𝑝(x) = ∑
𝑖
|𝐺
𝑖
(x)|𝛼 as a function of

𝛼; (c) sum of gradients − log 𝑝(x) = ∑
𝑖
|𝐺

V
𝑖
(x)|𝛼 as a function of 𝛼 (the value of V is 0.3).

in Figure 2(c) illustrates that natural image contains a lot of
mediumcontrast textures, which dominate the statisticsmore
than step edges. As a result, blurring natural image reduces
the overall contrast which cannot be restored by Gaussian
prior or even sparse priors as in Figure 2(d).

The reason is that the gradient profile in fractal-like
textures is close to Gaussian distribution and these small
values are severely penalized by the sparse gradient prior.

A fractional-order gradient log distribution can be
expressed as follows [18]:

log 𝑝 (x) = −∑

𝑖


𝐺
V
𝑥,𝑖
x
𝛼

+

𝐺
V
𝑦,𝑖
x
𝛼

+ constant, (4)

where 𝐺
V
𝑥,𝑖
x and 𝐺

V
𝑦,𝑖
x denote the horizontal and vertical

fractional-order derivatives at pixel 𝑖 and V is the fractional
order V ∈ (0, 4]. The exponent value is the same as 𝛼 value in
(2).

Compared with result in Figure 3(b), the sharp explana-
tion in Figure 3(c) is favored by sparse prior even byGaussian
prior in fractional-order gradient domain.

3. The Proposed Model and Algorithm

The corresponding energy functional is as follows [18]:

minx 𝜆 (x ⊗ h − y) +∑

𝑖=1

(

𝐺
V
𝑥,𝑖
x
𝛼

+

𝐺
V
𝑦,𝑖
x
𝛼

) , (5)
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4: Deblurring: (a) clear image; (b) synthesized blurred image with PSF (fspecial(“motion”,10,20)); (c) image restoration by Lucy-
Richardson algorithm; (d) image restoration by IOR; (e) image restoration by [18]; (f) image restoration by FOR (g) closeups of (d), (e), and
(f).

where 𝑖 is the pixel index and ⊗ is the 2-dimensional
convolution operator, and a weighting term 𝜆 = 3𝑒

3 controls
the strength of the regularization. 𝐺V

𝑥,𝑖
x and 𝐺

V
𝑦,𝑖
x denote the

horizontal and vertical fractional-order derivatives at pixel 𝑖
defined by our coauthor as Tables 1 and 2 [16].

The coefficients of the operator in Tables 1 and 2 are

𝐶𝑠
−1

=
V
4
+
V2

8

𝐶𝑠
0
= 1 −

V2

2
−
V3

8

𝐶𝑠
1
= −

5V
4

−
5V3

16
+
V4

16

...

𝐶𝑠
𝑘
=

1

Γ (−V)
[
Γ (𝑘 − V − 1)

(𝑘 + 1)!
⋅ (

V
4
+
V2

8
)

+
Γ (𝑘 − V)

𝑘!
⋅ (1 −

V2

4
)

+
Γ (𝑘 − V − 1)

(𝑘 − 1)!
⋅ (−

V
4
+
V2

8
)] ,

...

𝐶𝑠
𝑛−2

=
1

Γ (−V)
[
Γ (𝑛 − V − 1)

(𝑛 − 1)!
⋅ (

V
4
+
V2

8
)
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(a) (b)

(c) (d)

Figure 5: Deblurring and denoising: (a) clear image; (b) synthesized blurred image and adding white Gaussian noise (its standard variance
is 0.003); (c) image restoration by IOR; (d) image restoration by FOR.

+
Γ (𝑛 − V − 2)

(𝑛 − 2)!
⋅ (1 −

V2

4
)

+
Γ (𝑛 − V − 3)

(𝑛 − 3)!
⋅ (−

V
4
+
V2

8
)] ,

...

𝐶𝑠
𝑛−2

=
Γ (𝑛 − V − 1)

(𝑛 + 1)!Γ (−V)
⋅ (1 −

V2

8
)

+
Γ (𝑛 − V − 2)

(𝑛 − 2)!Γ (−V)
⋅ (−

V
4
+
V2

8
)

𝐶𝑠
𝑛
=

Γ (𝑛 − V − 1)

(𝑛 − 1)!Γ − V
⋅ (−

V
4
+
V2

8
) .

(6)

Equation (5) contains nonlinear penalties for regularization
term, so we propose alternatingminimization (AM)method,

based on a half-quadratic splitting to solve it [18, 20]. We
introduce auxiliary variables𝑢 andw = (𝑤

𝑥
, 𝑤
𝑦
) at each pixel,

so the energy functional in (5) can be modified as

minx,w
𝜃

2
(x ⊗ h − y)2 + 𝜆 |𝑢|

+∑

𝑖=1

(
𝛽

2
(

𝐺
V
𝑥,𝑖
x − 𝑤
𝑥,𝑖



2

2
+

𝐺
V
𝑦,𝑖
x − 𝑤
𝑦,𝑖



2

2
)

+
𝑤𝑥,𝑖



𝛼

+

𝑤
𝑦,𝑖



𝛼

) ,

(7)

where the first two terms are used to ensure the similar-
ity between the measures and the corresponding auxiliary
variables. As 𝛽 → ∞ and 𝜃 → ∞ the solution of (6)
converges to that of (5). Equation (7) can be solved by AM
method through fixing other variables to solve x,w, and 𝑢

independently.
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(a) (b) (c)

(d)

Figure 6: Testing our algorithm with real-life blurry images. (a) Blurry image. (b) Restored image by using the algorithm in [9]. (c) Restored
image by our algorithm. (d) Comparison of details of image window. Left: details in (a), middle: details in (b), and right: details in (c).

3.1. x Subsolution. Given fixed values of 𝑢 and w from the
previous iteration, (7) is quadratic in x. So we compute x by
minimizing

𝐸 (x; 𝑢,w) = x ⊗ h − y − 𝑢


2

+∑

𝑖=1

(
𝛽

𝜃
(

𝐺
V
𝑥,𝑖
x − 𝑤
𝑥,𝑖



2

2
+

𝐺
V
𝑦,𝑖
x − 𝑤
𝑦,𝑖



2

2
)) .

(8)

The optimal x is

(
𝜃

𝛽
H𝑇H + 𝐺

V
𝑥

𝑇
𝐺
V
𝑥
+ 𝐺

V
𝑦

𝑇
𝐺
V
𝑦
) x

= 𝐺
V
𝑥

𝑇
𝑤
𝑥
+ 𝐺

V
𝑦

𝑇
𝑤
𝑦
+
𝜃

𝛽
H𝑇 (y + 𝑢) ,

(9)

where Hx = h ⊗ x. According to Parseval’s theorem after
the Fourier transform, (8) has the closed form solution in
minimization, which enables us to find the optimal x directly:

x = 𝐹
−1
((𝐹 (𝐺

V
𝑥
)
∗

𝐹 (𝑤
𝑥
) + 𝐹(𝐺

V
𝑦
)
∗

𝐹 (𝑤
𝑦
)

+
𝜃

𝛽
𝐹(H)
∗
𝐹 (y + 𝑢) )

× (𝐹(𝐺
V
𝑥
)
∗

𝐹 (𝐺
V
𝑥
) + 𝐹(𝐺

V
𝑦
)
∗

𝐹 (𝐺
V
𝑦
)

+
𝜃

𝛽
𝐹(H)
∗
𝐹 (H) )

−1

) ,

(10)

where 𝐹(⋅) and 𝐹(⋅)
−1 denote the fast Fourier transform and

inverse fast Fourier transform, respectively. ∗ is the complex
conjugate operator.

3.2. 𝑢 Subsolution. Here, 𝑢 and w belong to different terms.
They are not coupled with each other in the functional, so
their optimization is independent. Given fixed value of x, we
compute 𝑢 by minimizing

𝐸 (𝑢; x) = 1

2

𝑢 − (x ⊗ h − y) +
𝜆

𝜃
|𝑢| . (11)

According to shrinkage formula [21], the optimal 𝑢 is

𝑢 = sign (x ⊗ h − y)max(x ⊗ h − y −
𝜆

𝜃
, 0) . (12)

3.3. w Subsolution. We have the following:

̇𝐸(𝑤
𝑥
; x) = 𝑤𝑥



𝛼

+
𝛽

2
(
𝐺

V
𝑥
x − 𝑤
𝑥



2

2
) ,

𝐸 (𝑤
𝑦
; x) = 

𝑤
𝑦



𝛼

+
𝛽

2
(

𝐺
V
𝑦
x − 𝑤
𝑦



2

2
) .

(13)
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Input: observed image y, PSF h, penalty parameters 𝜆, exponent 𝛼 and fractional-order V
Input: 𝛽

0
, 𝛽Max, 𝜃0, 𝜃Max

Initialize x = y, 𝜃 = 𝜃
0
, 𝛽 = 𝛽

0

while 𝜃 < 𝜃Max, do
solve for 𝑢 using (12)

while 𝛽 < 𝛽Max do
Given x, solve for w according to our discussion
Given w, solve for x using (10)
𝛽 = 2𝛽

end while
𝜃 = 2𝜃

end while
Output: Estimated image x

Algorithm 1: Fractional-order regularization.

Table 1: Operator of 𝑥-direction: 𝐺V
𝑥
x.

(a)

...
...

...
...

...
...

...

0 0 0 ⋅ ⋅ ⋅ 0
... 0 0 0

𝐶𝑠
−1

𝐶𝑠
0

𝐶𝑠
1

⋅ ⋅ ⋅ 𝐶𝑠
𝑘

⋅ ⋅ ⋅ 𝐶𝑠
𝑛−2

𝐶𝑠
𝑛−1

𝐶𝑠
𝑛

0 0 0 ⋅ ⋅ ⋅ 0
... 0 0 0

...
...

...
...

...
...

...

(b)

...
...

...
...

...
...

...

0 0 0 ⋅ ⋅ ⋅ 0
... 0 0 0

𝐶𝑠
𝑛

𝐶𝑠
𝑛−1

𝐶𝑠
𝑛−2

⋅ ⋅ ⋅ 𝐶𝑠
𝑘

⋅ ⋅ ⋅ 𝐶𝑠
1

𝐶𝑠
0

𝐶𝑠
−1

0 0 0 ⋅ ⋅ ⋅ 0
... 0 0 0

...
...

...
...

...
...

...
7

For 𝛼 = 2 case, the subproblem about 𝑤
𝑥
and 𝑤

𝑦
is

quadratic.
For 𝛼 = 1 case, the optimal solution for𝑤

𝑥
and𝑤

𝑦
can be

derived by shrinkage formula too:

̇𝑤
𝑥
= sign (𝐺V

𝑥
x) ∗max(abs (𝐺V

𝑥
x) − 1

𝛽
, 0) ,

𝑤
𝑦
= sign (𝐺V

𝑦
x) ∗max(abs (𝐺V

𝑦
x) − 1

𝛽
, 0) .

(14)

For the other 𝛼 case, setting the derivative of (13) with
regard to 𝑤

𝑥
and 𝑤

𝑦
to zero gives

̇𝛼
𝑤𝑥



𝛼−1 sign (𝑤
𝑥
) + 𝛽 (𝑤

𝑥
− 𝐺

V
𝑥
x) = 0,

𝛼

𝑤
𝑦



𝛼−1

sign (𝑤
𝑦
) + 𝛽 (𝑤

𝑦
− 𝐺

V
𝑦
x) = 0.

(15)

Two special 𝛼 cases are discussed here.

Table 2: Operator of 𝑦-direction: 𝐺V
𝑦
x.

(a)

⋅ ⋅ ⋅ 0 𝐶𝑠
𝑛

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
𝑛−1

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
𝑛−2

0 ⋅ ⋅ ⋅

...
...

...
⋅ ⋅ ⋅ 0 𝐶𝑠

𝑛
0 ⋅ ⋅ ⋅

...
...

...
⋅ ⋅ ⋅ 0 𝐶𝑠

1
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
0

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
−1

0 ⋅ ⋅ ⋅

(b)

⋅ ⋅ ⋅ 0 𝐶𝑠
−1

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
0

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
1

0 ⋅ ⋅ ⋅

...
...

...
⋅ ⋅ ⋅ 0 𝐶𝑠

𝑘
0 ⋅ ⋅ ⋅

...
...

...
⋅ ⋅ ⋅ 0 𝐶𝑠

𝑛−2
0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
𝑛−1

0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐶𝑠
𝑛

0 ⋅ ⋅ ⋅

For 𝛼 = 1/2 case, about 𝑤
𝑥
, (15) becomes

1

2

𝑤𝑥


−1/2 sign (𝑤
𝑥
) + 𝛽 (𝑤

𝑥
− 𝐺

V
𝑥
x) = 0, (16)

𝑤
3

𝑥
− 2 (𝐺

V
𝑥
x) 𝑤2
𝑥
+ (𝐺

V
𝑥
x)2𝑤
𝑥
−
sign (𝑤

𝑥
)

4𝛽2
= 0. (17)

Because 𝐺V
𝑥
x is fixed and 𝑤

𝑥
lies between 0 and 𝐺

V
𝑥
x, we

can replace sign(𝑤
𝑥
) with sign(𝐺V

𝑥
x). Equation (17) can be

rewritten as

𝑤
3

𝑥
− 2 (𝐺

V
𝑥
x) 𝑤2
𝑥
+ (𝐺

V
𝑥
x)2𝑤
𝑥
−
sign (𝐺V

𝑥
x)

4𝛽2
= 0. (18)
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Table 3: PSNR and SSIM of image restoration by IOR and FOR.

Image 𝛼 PSNRIOR SSIMIOR V 𝛼 PSNRFOR SSIMFOR

Barbara (256 ∗ 256) 0.8 — 0.8411 0.4 0.3 — 0.8580
Bubble (512 ∗ 512) 0.4 2.5249 0.6949 1.8 0.4 2.7343 0.6987

So we can get the cubic polynomials about 𝑤
𝑥
and 𝑤

𝑦
:

̇𝑤
3

𝑥
− 2 (𝐺

V
𝑥
x) 𝑤2
𝑥
+ (𝐺

V
𝑥
x)2𝑤
𝑥
−
sign (𝐺V

𝑥
x)

4𝛽2
= 0,

𝑤
3

𝑦
− 2 (𝐺

V
𝑦
x)𝑤2
𝑦
+ (𝐺

V
𝑦
x)
2

𝑤
𝑦
−

sign (𝐺V
𝑦
x)

4𝛽2
= 0.

(19)

The value of 𝑤
𝑥
and 𝑤

𝑦
is either 0 or the root of cubic

polynomial in (19).
For 𝛼 = 2/3 case, we can get the quartic polynomials

about 𝑤
𝑥
and 𝑤

𝑦
:

̇𝑤
4

𝑥
− 3 (𝐺

V
𝑥
x) 𝑤3
𝑥
+ 3(𝐺

V
𝑥
x)2𝑤2
𝑥
− (𝐺

V
𝑥
x)3𝑤
𝑥
+

8

27𝛽3
= 0,

𝑤
4

𝑦
− 3 (𝐺

V
𝑦
x)𝑤3
𝑦
+ 3(𝐺

V
𝑦
x)
2

𝑤
2

𝑦
− (𝐺

V
𝑦
x)
3

𝑤
𝑦
+

8

27𝛽3
= 0.

(20)

The value of 𝑤
𝑥
and 𝑤

𝑦
is either 0 or the root of cubic

polynomial in (20).
Given the roots of cubic and quartic polynomials and zero

solution, we need to determine which one corresponds to
the global minima of (12), which can be confirmed by the
following scheme.

Let 𝑟 be the nonzero real root. If 0 value is the optimum
solution of (13), for 𝐺V

𝑥
x, this implies

|𝑟|
𝛼
+
𝛽

2
(𝑟 − 𝐺

V
𝑥
x)2 >

𝛽(𝐺
V
𝑥
x)2

2
, (21)

sign (𝑟) |𝑟|(𝛼−1) +
𝛽

2
(𝑟 − 𝐺

V
𝑥
x) ≶ 0, 𝑟 ≶ 0. (22)

We can use (15) to eliminate sign(𝑟)|𝑟|(𝛼−1) from (15) and (22),
yielding the condition

𝑟 ≶ 2𝐺
V
𝑥
x𝛼 − 1

𝛼 − 2
, (23)

since sign(𝑟) = sign(𝐺V
𝑥
x). So 𝑤

𝑥
= 𝑟 if 𝑟 is between 2𝐺

V
𝑥
x/3

and𝐺V
𝑥
x in the 𝛼 = 1/2 case or between𝐺V

𝑥
x/2 and𝐺V

𝑥
x in the

𝛼 = 2/3 case. Otherwise,𝑤
𝑥
= 0. The same scheme applies to

𝐺
V
𝑦
x.
For other 𝛼 cases,𝑤

𝑥
and𝑤

𝑦
can be computed byNewton

method.

3.4. Algorithm. 𝛽 and 𝜃 are positive values to enforce the
similarity between the auxiliary variables and the respective
terms. We empirically set 𝛽

0
= 1, 𝛽Max = 256 and 𝜃

0
= 1,

𝜃Max = 𝜆.
The algorithm of this fractional-order regularization

model is shown in Algorithm 1.

4. Numerical Experiments

We consider the restoration of a blur- and noise-
contaminated test image represented by 255 × 255 pixels.
In order to compare the accuracy of FOR (fractional order
regularization) and IOR (integer order regularization) more
precisely, we list in Table 3 the peak signal-to-noise ratio
(PSNR) and gray-scale structural similarity (SSIM) as quality
metric. PSNR is most easily defined via the mean squared
error (MSE). Given a noise-free 𝑀 by 𝑁 image 𝐼 and its
noisy approximation 𝐼, MSE is defined as

MSE =
1

𝑀𝑁

𝑀,𝑁

∑

𝑚=1,𝑛=1

[𝐼 (𝑚, 𝑛) − 𝐼 (𝑚, 𝑛)] . (24)

PSNR is defined as

PSNR =
1

10
log(255

2

MSE
) (dB) , (25)

and SSIM is defined as

SSIM =
(2𝜇
𝐼
𝜇
𝐾
+ 𝑐
1
) (2𝜎
𝐼𝐾

+ 𝑐
2
)

(𝜇
2

𝐼
+ 𝜇
2

𝐾
+ 𝑐
1
) (𝜎
2

𝐼
+ 𝜎
2

𝐾
+ 𝑐
2
)
, (26)

where 𝐼 and𝐾 are different images, 𝜇
𝐼
and 𝜇
𝐾
are the average

of 𝐼 and 𝐾, respectively, 𝜎2
𝐼
and 𝜎

2

𝐾
are the variance of 𝐼 and

𝐾, respectively, and 𝜎
𝐼𝐾

is the covariance of 𝐼 and𝐾. 𝑐
1
and 𝑐
2

are constant.
The desired blur- and noise-free image is depicted in

Figure 4. The image is contaminated by motion blur gen-
erated by Matlab function (fspecial(“motion”,10,20)). The
resulting image is displayed in Figure 4(f). In Table 3 the sec-
ond column, with header PSNR and SSIM values for images
that have been corrupted by motion blur, is characterized by
V = 0.4 and 𝛼 = 0.3.

The desired blur- and noise-contaminated image is
depicted in Figure 5. The image is contaminated by motion
blur, adding white Gaussian noise (its standard variance
is 0.003). The resulting image is displayed in Figure 5(d).
In Table 3 the third column, with header PSNR and SSIM
values for images that have been corrupted by motion blur,
is characterized by V = 1.8 and 𝛼 = 0.4.

Figure 6 shows the result of deconvolving a real blurry
image. We estimate the blur kernel using the algorithm in
[9]. Again, textured regions are better reconstructed using
our method in visual quality. Figure 6(b) is restored by total
variation. Figure 6(c) is restored by fractional-order total
variation. Figure 6(d) shows the details in Figure 6(b) and
Figure 6(c).



10 Mathematical Problems in Engineering

5. Conclusion

By introducing sparse prior in fractional-order gradient
domain,we propose a fractional-order regularizationmethod
for the restoration of textured image degraded by blur and/or
noise. The regularizer is constructed by using fractional-
order derivatives, where the choice of the fractional-order is
driven by different textured image. This makes the proposed
model an efficient tool to preserve texture well. Numerical
results show that the proposed model yields better SSIM
and PSNR value and visual effects than using integral-order
regularization method.

Our following work is to use an automatic texture
detection procedure for textured image restoration. Different
parameters are applied for different textures.
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A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS) of different
fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL) control. Based on the stability
theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations
on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical
analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is
selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key
space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.

1. Introduction

Fractional calculus, which is a mathematical topic with
more than 300-year history, was not applied to physics
and engineering until recent decades. A fractional-order
system is characterized as a dynamical system described by
fractional derivatives and integrals. It is demonstrated that
some fractional-order differential systems behave chaotically
or hyperchaotically, such as the fractional-order Lorenz
system [1], fractional-order Lü system [2], fractional-order
Rössler system [3], and fractional-order Arneodo system [4].
Recently, the control and synchronization of the fractional-
order chaotic systems start to attract a great deal of attention
due to their potential applications in secure communication
and control processing. Some approaches have been pro-
posed to achieve chaos synchronization between fractional-
order chaotic systems, such as adaptive control [5], a scalar
transmitted signal method [6], sliding mode control [7], and
fuzzy logic constant control [8].

Other than the above studies, the Open-Plus-Closed-
Loop (OPCL) control method is a more general and phys-
ically realizable coupling scheme that can provide stable

synchronization in identical and mismatched oscillators [9,
10].The advantage of the OPCL coupling includes the follow-
ing two aspects. First of all, OPCL coupling provides synchro-
nization in all systems without restrictions on the symmetry
class of a dynamical system. Secondly, in the synchronization
regimes, the OPCL coupling can realize stable amplification
or attenuation in identical and mismatched systems. Until
now, many researchers have achieved their synchroniza-
tion scenarios for integer-order or fractional-order systems
through OPCL control [11–13]. It should be noted that most
of the existing works focus on synchronization between
identical chaotic systems. However, in practice applications,
most systems are nonidentical and parametermismatches are
inevitable because of noise or other uncertain factors. Our
coupling strategies need to be formulated to ensure stable
synchronization in the presence of mismatch. As a matter of
fact, OPCL control can be utilized to achieve synchronization
of fractional-order chaotic systems with different structure.

Specially, wewill realizemodified projective synchroniza-
tion (MPS) of two different fractional-order systems with
parameter mismatches. In MPS, the states of the drive and
response systems synchronize up to a constant scaling matrix
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with the complete synchronization, antisynchronization, and
projective synchronization as the special cases. Based on
the OPCL control, a general coupling method is proposed
for MPS of two nonidentical fractional-order systems. The
proposed coupling scheme is theoretically proved based on
stability theory of linear fractional differential equations
and its effectiveness is verified by two groups of numerical
simulations. Finally, based on the realized MPS, an image
encryption scheme with diffusion and confusion is designed.
Both the unpredictability of scaling matrix and the use of
fractional-order systems will raise the security level of the
encryption scheme. According to the analysis of simulations,
really satisfactory results are obtained, with large key space,
high sensitivity to initial conditions, and high security.

2. The MPS through OPCL Coupling

2.1. Theory Analysis. There are several definitions of frac-
tional derivatives. The Caputo derivative is more popular
in the real applications, because the inhomogeneous initial
conditions are allowed, if such conditions are necessary. The
Caputo definition of the fractional derivative [15], which
sometimes is called smooth fractional derivative, is defined
as

𝑑
𝑞
𝑓 (𝑡)

𝑑𝑡𝑞
≡ 𝐷
𝑞
𝑓 (𝑡)

=
1

Γ (𝑚 − 𝑞)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝑞−1

𝑓
(𝑚)
(𝜏) 𝑑𝜏,

(1)

where 𝑚 is the smallest integer larger than 𝑞, 𝐷𝑞 denotes the
Caputo definition of the fractional derivative, 𝑓(𝑚)(𝑡) is the
𝑚-order derivative in the usual sense, and Γ stands for gamma
function.

As to the fractional-order chaotic systems, we will briefly
describe how to synchronize two different systems via the
OPCL couplingmethod. Assume the fractional-order chaotic
system in the drive part is as follows:

𝐷
𝑞
𝑥 = 𝑓 (𝑥) + Δ𝑓 (𝑥) , (2)

where 𝑥 ∈ 𝑅𝑛, 𝑓 : 𝑅𝑛 → 𝑅
𝑛 is a continuous vector function,

andΔ𝑓(𝑥) containsmismatch parameters. If the system para-
meters are not disturbed in the theory, we set zero to the value
ofΔ𝑓(𝑥). 𝑞 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
)
𝑇 for 0 < 𝑞

𝑖
< 1 (𝑖 = 1, 2, . . . , 𝑛) is

the order of fractional-order system. If 𝑞
1
= 𝑞
2
= ⋅ ⋅ ⋅ = 𝑞

𝑛
, we

call the system (2) a commensurate fractional-order system,
otherwise an incommensurate fractional-order system [16].

Then, the controlled response system is constructed as

𝐷
𝑞
𝑦 = 𝑔 (𝑦) + 𝑢 (𝑡) , (3)

where 𝑦 ∈ 𝑅𝑛, 𝑔 : 𝑅𝑛 → 𝑅
𝑛 is a continuous vector function,

and 𝑢(𝑡) is the controller to be designed.

Definition 1 (MPS). For the drive system (2) and controlled
response system (3), it is said to be modified projective
synchronization (MPS), if there exists a constant matrix 𝑘 =
diag(𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
), such that lim

𝑡→+∞
‖𝑒‖ = lim

𝑡→+∞
‖𝑦 −

𝑘𝑥‖ = 0.

Remark 2. Due to the vector function 𝑓 ̸=𝑔, the systems (2)
and (3) are nonidentical chaotic systems.

Remark 3. Complete synchronization, antisynchronization,
and projective synchronization are the special cases of MPS,
where 𝑘

1
= 𝑘
2
= ⋅ ⋅ ⋅ = 𝑘

𝑛
= 1, 𝑘

1
= 𝑘
2
= ⋅ ⋅ ⋅ = 𝑘

𝑛
= −1, and

𝑘
1
= 𝑘
2
= ⋅ ⋅ ⋅ = 𝑘

𝑛
, respectively.

According to the OPCL control [9, 10], we design the
controller 𝑢(𝑡) as in the form of

𝑢 (𝑡) = 𝐷
𝑞
𝑘𝑥 − 𝑔 (𝑘𝑥) + (𝐻 − 𝐽𝑔 (𝑘𝑥)) (𝑦 − 𝑘𝑥) , (4)

where 𝐽 = 𝜕/𝜕(𝑘𝑥) is the Jacobian matrix of the dynamic
system and𝐻 ∈ (𝑛× 𝑛) is an arbitrary constant matrix.Then,
𝑔(𝑦) can be written, using the Taylor series expansion, by

𝑔 (𝑦) = 𝑔 (𝑘𝑥) + 𝐽𝑔 (𝑘𝑥) (𝑦 − 𝑘𝑥) + ⋅ ⋅ ⋅ . (5)

Keeping the first order terms in (5) and putting (5) and
(4) into (3), the error dynamics between systems (2) and (3)
is then obtained to be

𝐷
𝑞
𝑒 = 𝐷

𝑞
𝑦 − 𝐷

𝑞
𝑘𝑥 = 𝐻 (𝑦 − 𝑘𝑥) = 𝐻𝑒. (6)

In order to research the synchronization stability of the
two incommensurate or two commensurate fractional-order
systems by OPCL coupling, we provide the following two
theorems.

Theorem 4 (see [17]). Consider incommensurate fractional-
order dynamical system 𝐷

𝑞
𝑥(𝑡) = 𝐴𝑥(𝑡) with 𝑞 = (𝑞

1
, 𝑞
2
, . . . ,

𝑞
𝑛
)
𝑇, 0 < 𝑞

𝑖
< 1, (𝑖 = 1, 2, . . . , 𝑛), 𝑥 ∈ 𝑅𝑛, and 𝐴 ∈ 𝑅

𝑛×𝑛. Set
𝑀 to be the lowest common multiple of the denominators 𝑢

𝑖
of

𝑞
𝑖
, where 𝑞

𝑖
= V
𝑖
/𝑢
𝑖
and gcd(𝑢

𝑖
, V
𝑖
) = 1. The zero solution of

the system is asymptotically stable if all roots 𝜆 of the equation
Δ(𝜆) = det(diag(𝜆𝑀𝑞1 , 𝜆𝑀𝑞2 , . . . , 𝜆𝑀𝑞𝑛) − 𝐴) = 0 satisfy the
condition | arg(𝜆)| > 𝜋/2𝑀.

Theorem 5 (see [18]). For commensurate fractional-order
dynamical system 𝐷

𝑞
𝑥(𝑡) = 𝐴𝑥(𝑡) with 0 < 𝑞 < 1, 𝑥 ∈ 𝑅𝑛,

and 𝐴 ∈ 𝑅𝑛×𝑛, the system is asymptotically stable if and only if
| arg(𝜆)| > 𝑞𝜋/2 is satisfied for all eigenvalues 𝜆 of𝐴. Also, this
system is stable if and only if | arg(𝜆)| ≥ 𝑞𝜋/2 is satisfied for
all eigenvalues 𝜆 of 𝐴 with those critical eigenvalues satisfying
| arg(𝜆)| = 𝑞𝜋/2 having geometric multiplicity of one.

From the two theorems,we can easily obtain the following
two corollaries.

Corollary 6. When system (2) and system (3) are incommen-
surate fractional-order systems, set 𝑀 as the lowest common
multiple of the denominators 𝑢

𝑖
of 𝑞
𝑖
, where 𝑞

𝑖
= V
𝑖
/𝑢
𝑖
,

gcd(𝑢
𝑖
, V
𝑖
) = 1. The zero solution of the error system (6) is

asymptotically stable if all roots 𝜆 of the equation Δ(𝜆) =

det(diag(𝜆𝑀𝑞1 , 𝜆𝑀𝑞2 , . . . , 𝜆𝑀𝑞𝑛) − 𝐻) = 0 satisfy the condition
| arg(𝜆)| > 𝜋/2𝑀.

Corollary 7. When system (2) and system (3) are commen-
surate fractional-order systems, the error system (6) is asymp-
totically stable if and only if | arg(𝜆)| > 𝑞𝜋/2 is satisfied for all
eigenvalues 𝜆 of𝐻.
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Remark 8. According to the original OPCL control method
[9, 10], the controlmatrix𝐻 can be designed as simple as pos-
sible as long as the condition | arg(𝜆)| > 𝑞𝜋/2 or | arg(𝜆)| >
𝜋/2𝑀 holds. For example, when [𝐽𝑔(𝑘𝑥)]

𝑖𝑗
is a const-

ant, we then set𝐻
𝑖𝑗
= [𝐽𝑔(𝑘𝑥)]

𝑖𝑗
such that [𝐻− 𝐽𝑔(𝑘𝑥)]

𝑖𝑗
= 0.

When [𝐽𝑔(𝑘𝑥)]
𝑖𝑗
is a variable, we choose𝐻

𝑖𝑗
= 𝑝
𝑖𝑗
, where 𝑝

𝑖𝑗

are control parameters.

2.2. Numerical Method for Solving Fractional-Order Systems.
An efficient method for solving fractional-order differential
equations is the improved predictor-corrector algorithm [19],
which will be used in numerical simulation section. The
algorithm can be interpreted as a fractional variant of the
classical second-order Adams-Bashforth-Moulton method.

Consider the following differential equation:

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇. (7)

The initial values are 𝑥(𝑘)(0) = 𝑥(𝑘)
0
, 𝑘 = 0, 1, . . . , 𝑚 − 1,

and𝑚 = [𝑞]. It is equivalent to the Volterra integral equation.
Consider

𝑥 (𝑡) =

𝑚−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘

𝑘!
+

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝜏)
𝑞−1
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏. (8)

Set ℎ = 𝑇/𝑁, 𝑡
𝑛
= 𝑛ℎ, 𝑛 = 0, 1, . . . , 𝑁 ∈ 𝑍

+. Then, (8) can be
discretized as follows:

𝑥
ℎ
(𝑡
𝑛+1
)

=

𝑚−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘

𝑛+1

𝑘!
+

ℎ
𝑞

Γ (𝑞 + 2)
𝑓 (𝑡
𝑛+1
, 𝑥
𝑞

ℎ
(𝑡
𝑛+1
))

+
ℎ
𝑞

Γ (𝑞 + 2)

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) ,

(9)

where,

𝑎
𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞+1
− (𝑛−𝛼) (𝑛 + 1)

𝑞
, 𝑗 = 0

(𝑛 − 𝑗 + 2)
𝑞+1

+(𝑛−𝑗)
𝑞+1

− 2(𝑛−𝑗+1)
𝑞+1

, 1 ≤ 𝑗 ≤ 𝑛

1, 𝑗=𝑛 + 1.

(10)

The preliminary approximation 𝑥𝑝
ℎ
(𝑡
𝑛+1
) is called predic-

tor and is given by

𝑥
𝑝

ℎ
(𝑡
𝑛+1
) =

𝑚−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘

𝑛+1

𝑘!
+

1

Γ (𝑞)

𝑛

∑

𝑗=0

𝑏
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) ,

(11)

where 𝑏
𝑗,𝑛+1

= (ℎ
𝑞
/𝑞)((𝑛 − 𝑗 + 1)

𝑞
− (𝑛 − 𝑗)

𝑞
).

The error estimate is max |𝑥(𝑡
𝑗
) − 𝑥
ℎ
(𝑡
𝑗
)| = 𝑂(ℎ

𝑝
) (𝑗 =

0, 1, . . . , 𝑁), where 𝑝 = min(2, 1 + 𝑞).

2.3. Numerical Examples. In this section, to demonstrate the
effectiveness of the proposed OPCL based MPS scheme for

different fractional-order systems, we provide two groups
of numerical examples. Firstly, fractional-order Arneodo
system and fractional-order Lü system are used to verify
the incommensurate synchronization. Secondly, fractional-
order Lorenz system and fractional-order financial system are
introduced to validate the commensurate case.

2.3.1. MPS between Fractional-Order Arneodo System and
Fractional-Order Lü System. The fractional-order incom-
mensurate Arneodo system with parameter perturbation is
defined as

𝐷
𝑞
1𝑥
1
= 𝑥
2
,

𝐷
𝑞
2𝑥
2
= 𝑥
3
,

𝐷
𝑞
3𝑥
3
= (𝛼 + Δ𝛼) 𝑥

1
+ (𝛽 + Δ𝛽) 𝑥

2
+ (𝛾 + Δ𝛾) 𝑥

3
+ 𝑥
3

1
,

(12)

where Δ𝛼, Δ𝛽, and Δ𝛾 are the mismatches in parame-
ters. When (𝛼, 𝛽, 𝛾) = (5.5, −3.5, −1) and (𝑞

1
, 𝑞
2
, 𝑞
3
) =

(0.9, 0.92, 0.96), the Arneodo system exhibits chaotic behav-
ior.

The fractionalized version of Lü system reads

𝐷
𝑞
1𝑦
1
= 𝑎 (𝑦

2
− 𝑦
1
) ,

𝐷
𝑞
2𝑦
2
= 𝑐𝑦
2
− 𝑦
1
𝑦
3
,

𝐷
𝑞
3𝑦
3
= 𝑦
1
𝑦
2
− 𝑏𝑦
3
.

(13)

It has been shown that system (13) will exhibit chaotic
behavior when 𝑎 = 36, 𝑏 = 3, 𝑐 = 20, and (𝑞

1
, 𝑞
2
, 𝑞
3
) =

(0.9, 0.92, 0.96).
From system (13), we can obtain the Jacobian matrix:

𝐽𝑔 (𝑘𝑥) =
𝜕𝑔 (𝑘𝑥)

𝜕 (𝑘𝑥)
= (

−𝑎 𝑎 0

−𝑘
3
𝑥
3

𝑐 −𝑘
1
𝑥
1

𝑘
2
𝑥
2
𝑘
1
𝑥
1

−𝑏

) . (14)

The constant matrix𝐻 for response Lü system is selected
as

𝐻 = (

−𝑎 𝑎 0

𝑝
1
𝑐 𝑝
2

𝑝
3
𝑝
4
−𝑏

) . (15)

On the basis of Definition 1, the error vector of MPS can
be expressed by

𝑒 = 𝐻𝑒 = (𝑒
1
, 𝑒
2
, 𝑒
3
)
𝑇

= (𝑦
1
− 𝑘
1
𝑥
1
, 𝑦
2
− 𝑘
2
𝑥
2
, 𝑦
3
− 𝑘
3
𝑥
3
)
𝑇

.

(16)

Consequently, define (12) as the drive system and the
response system controlled by OPCL coupling is obtained as

𝐷
𝑞
1𝑦
1
= 𝑎 (𝑦

2
− 𝑦
1
) + 𝑘
1
𝑥
2
− 𝑎 (𝑘

2
𝑥
2
− 𝑘
1
𝑥
1
) ,

𝐷
𝑞
2𝑦
2
= 𝑐𝑦
2
− 𝑦
1
𝑦
3
+ 𝑘
2
𝑥
3
− (𝑐𝑘
2
𝑥
2
− 𝑘
1
𝑥
1
𝑘
3
𝑥
3
)

+ (𝑝
1
+ 𝑘
3
𝑥
3
) 𝑒
1
+ (𝑝
2
+ 𝑘
1
𝑥
1
) 𝑒
3
,



4 Mathematical Problems in Engineering

0 0.5 1 1.5 2

×10
4

0 0.5 1 1.5 2

×10
4

0 0.5 1 1.5 2

×10
4

−5

0

5

t

t

t

−20

0

20

−50

0

50

x
1

y
1

x
2

y
2

x
3

y
3

Figure 1: The time evolutions of states for coupled system (12) and
system (17).

𝐷
𝑞
3𝑦
3
= 𝑦
1
𝑦
2
− 𝑏𝑦
3
+ 𝑘
3
( (𝛼 + Δ𝛼) 𝑥

1
+ (𝛽 + Δ𝛽) 𝑥

2

+ (𝛾 + Δ𝛾) 𝑥
3
+ 𝑥
3

1
)

− (𝑘
1
𝑥
1
𝑘
2
𝑥
2
− 𝑏𝑘
3
𝑥
3
)

+ (𝑝
3
− 𝑘
2
𝑥
2
) 𝑒
1
+ (𝑝
4
− 𝑘
1
𝑥
1
) 𝑒
2
.

(17)

Thus, by choosing appropriate 𝑝
1
, 𝑝
2
, 𝑝
3
, and 𝑝

4
, we can

stabilize the error vector (16). Now we choose 𝑝
1
= −30,

𝑝
2
= 0, 𝑝

3
= 0, and 𝑝

4
= 0, where 𝑝

1
decides the rate

of achieving synchronization. Let us determine the stability
of (16) for these 𝑝

𝑖
’s. According to Corollary 6, we constitute

Δ(𝜆) for (15) as follows:

Δ (𝜆) = det(diag (𝜆45, 𝜆46, 𝜆48) − (
−36 36 0

−30 20 0

0 0 −3

)) = 0.

(18)

Solving this equation for 𝜆, we can see that
min(| arg(𝜆

𝑖
)|) = 0.0452 which is greater than 𝜋/2𝑀 =

0.0314. Therefore, based on Corollary 6, we conclude the
stability of (16), implying that the MPS between frac-
tional-order system (12) and system (17) can be achieved
theoretically.

In numerical simulation, for further reduction in cou-
pling complexity, we set the parameter mismatches in drive
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Figure 2: The time evolutions of MFPS errors between system (12)
and system (17).

system (12) as Δ𝛼 = 1, Δ𝛽 = 0, and Δ𝛾 = 0. Then, choose
scale constant vector as 𝑘 = (1, −2, 3), the initial conditions as
(𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (2, −1, 1, ), (𝑦

1
(0), 𝑦
2
(0), and 𝑦

3
(0)) =

(1, −2, 3). The corresponding numerical results are shown in
Figures 1 and 2. Figure 1 depicts the time evolutions of state
variables in the drive system (12) and the response system (17)
with the scaling matrix 𝑘.

Figure 2 displays the error state trajectories of the two
systems. And the error state trajectories asymptotically con-
verge to zero, which implies that the MPS between the
incommensurate system (12) and system (17) is realized.

2.3.2. MPS between Fractional-Order Lorenz System and
Fractional-Order Financial System. The fractional-order
Lorenz system with parameter perturbation is expressed as

𝐷
𝑞
𝑥
1
= (𝛼 + Δ𝛼) (𝑥

2
− 𝑥
1
) ,

𝐷
𝑞
𝑥
2
= (𝛽 + Δ𝛽) 𝑥

1
− 𝑥
1
𝑥
3
− 𝑥
2
,

𝐷
𝑞
𝑥
3
= 𝑥
1
𝑥
2
− (𝛾 + Δ𝛾) 𝑥

3
,

(19)

where Δ𝛼, Δ𝛽, and Δ𝛾 are the mismatches in parameters.
When (𝛼, 𝛽, 𝛾) = (10, 28, 8/3) and 𝑞 ≥ 0.993, the Lorenz
system exhibits chaotic behavior.

The fractional-order financial system reads

𝐷
𝑞
𝑦
1
= 𝑦
3
+ (𝑦
2
− 𝑎) 𝑦

1
,

𝐷
𝑞
𝑦
2
= 1 − 𝑏𝑦

2
− 𝑦
2

1
,

𝐷
𝑞
𝑦
3
= −𝑦
1
− 𝑐𝑦
3
.

(20)

It has been shown that system (20) will exhibit chaotic
behavior when 𝑎 = 3, 𝑏 = 0.1, 𝑐 = 1, and 𝑞 ≥ 0.85.
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Therefore, we can obtain the Jacobian matrix of system
(20):

𝐽𝑔 (𝑘𝑥) =
𝜕𝑔 (𝑘𝑥)

𝜕 (𝑘𝑥)
= (

𝑘
2
𝑥
2
− 𝑎 𝑘

1
𝑥
1
1

−𝑘
1
𝑥
1

−𝑏 0

−1 0 −𝑐

) . (21)

The constant matrix𝐻 for response system is selected as

𝐻 = (

𝑝
1
𝑝
2
1

𝑝
3
−𝑏 0

−1 0 −𝑐

) . (22)

According to the error vector defined by (16), if system
(19) is considered as drive system, the response system
controlled by OPCL coupling is obtained as

𝐷
𝑞
𝑦
1
= 𝑦
3
+ (𝑦
2
− 𝑎) 𝑦

1
+ 𝑘
1
(𝛼 + Δ𝛼) (𝑥

2
− 𝑥
1
)

− 𝑘
3
𝑥
3
− (𝑘
2
𝑥
2
− 𝑎) 𝑘

1
𝑥
1

+ (𝑝
1
− 𝑘
2
𝑥
2
+ 𝑎) 𝑒

1
+ (𝑝
2
− 𝑘
1
𝑥
1
) 𝑒
2
,

𝐷
𝑞
𝑦
2
= 1 − 𝑏𝑦

2
− 𝑦
2

1

+ 𝑘
2
((𝛽 + Δ𝛽) 𝑥

1
− 𝑥
1
𝑥
3
− 𝑥
2
) − 1

+ 𝑏𝑘
2
𝑥
2
+ (𝑘
1
𝑥
1
)
2

+ (𝑝
3
+ 𝑘
1
𝑥
1
) 𝑒
1
,

𝐷
𝑞
𝑦
3
= −𝑦
1
− 𝑐𝑦
3

+ 𝑘
3
(𝑥
1
𝑥
2
− (𝛾 + Δ𝛾) 𝑥

3
) + 𝑘
1
𝑥
1
+ 𝑐𝑘
3
𝑥
3
.

(23)

Thus by choosing appropriate 𝑝
1
, 𝑝
2
, and 𝑝

3
, we can

stabilize the error vector (16). Here, we choose 𝑝
1
= −30,

𝑝
2
= −10, and𝑝

3
= 10, where 𝑝

1
decides the rate of achiev-

ing synchronization. In numerical simulation, for further
reduction in coupling complexity, we set the parameter
mismatches in drive system (19) as Δ𝛼 = 0.01, Δ𝛽 = 0,
and Δ𝛾 = 0. Then, set the fractional-order of two systems as
𝑞 = 0.998 and choose scale constant vector as 𝑘 = (2, −1, −3)
and the initial conditions as (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (2, −1, 1)

and (𝑦
1
(0), 𝑦
2
(0), 𝑦
3
(0)) = (1, 1, −2). The corresponding

simulation results for the time evolutions of state errors are
shown in Figure 3, from which we can see that the MPS
between two commensurate fractional-order chaotic systems
can also be achieved.

The simulation results of the two examples demonstrate
that the nonidentical fractional-order chaotic systems with
mismatches can achieve the MPS under the OPCL coupling.

3. A Novel Image Encryption Scheme
Based on MPS

3.1. Scheme Description. Based on the MPS between frac-
tional-order Arneodo system and fractional-order Lü system,
an image encryption scheme is designed for the sake of higher
security.

Sender 𝐴 has the drive system (12) and the response
system (17). Receiver 𝐵 only holds the drive system (12) and
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Figure 3: The time evolutions of MFPS errors between system (19)
and system (23).

scaling matrix 𝑘. 𝐴 and 𝐵 share the initial conditions of
system (12) and a symmetric key set. Consider

𝐻
𝑠
= {ℎ
1
, ℎ
2
, . . . , ℎ

12
} . (24)

Here, ℎ
1
= 𝛼, ℎ

2
= 𝛽, and ℎ

3
= 𝛾 are parameters of drive

system (12), ℎ
4
= 𝑞
1
, ℎ
5
= 𝑞
2
, and ℎ

6
= 𝑞
3
are fractional

derivatives of drive system (12), ℎ
7
∼ ℎ
9
are initial conditions

of system (12), and ℎ
10
∼ ℎ
12
are the main diagonal elements

of scaling matrix 𝑘.
The typical image encryption framework is used to

encrypt plain image, which is illustrated in Figure 4.
The image cryptosystem in Figure 4 includes two stages,

chaotic confusion and pixel diffusion, where the former
process permutes a plain image and the latter process changes
the value of each pixel one by one. As shown in Figure 4, the
confusion and diffusion processes are both repeated several
times to enhance the security of this cryptosystem. Suppose
that the size of image is𝑀 × 𝑁 and the detailed encryption
algorithm is described as follows.

(1) 𝐴 first selects the initial conditions and scaling matrix
𝑘 and then uses them and systems (12) and (17) to generate
chaotic data; set the chaotic stream after synchronous time 𝑡

0

as 𝑆 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), 𝑦
1
(𝑡), 𝑦
2
(𝑡), 𝑦
3
(𝑡)), 𝑡 > 𝑡

0
.

(2) In the confusion process, 𝐴 utilizes the discrete data
of system (17) to permute the position of pixel; set 𝑟

𝑥
=

abs(fix(𝑦
3
(𝑡
1
))) and 𝑟

𝑦
= abs(fix(𝑦

3
(𝑡
1
+ 𝑡
2
))), where fix (⋅)

is the function to obtain the integer part, 𝑡
1
> 𝑡
0
, and 𝑡

2
is the
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Figure 4: Block diagram of the image cryptosystem.

time interval of the two parameters; the position of pixel is
permuted as follows:

𝑥
𝑖+1
= (𝑥
𝑖
+ 𝑦
𝑖
+ 𝑟
𝑥
+ 𝑟
𝑦
) mod𝑀,

𝑦
𝑖+1
= (𝑦
𝑖
+ 𝑟
𝑦
+ 𝐶 sin

2𝜋𝑥
𝑖+1

𝑁
) mod 𝑁,

(25)

where (𝑥
𝑖
, 𝑦
𝑖
) and (𝑥

𝑖+1
, 𝑦
𝑖+1
) are considered as the positions

of image pixel before and after permutation.
(3) In the diffusion stage, the pixel value of image is

substituted with its position information by 𝐴; according
to the chaotic stream 𝑆, we can obtain two substitution
parameters:

𝑐 = abs (10𝑙𝑦
1
− round (10𝑙𝑦

1
)) × 10

3
,

𝑑 = abs (10𝑙𝑦
2
− round (10𝑙𝑦

2
)) × 10

3
,

(26)

where round( ) is rounding function and 𝑙 is a positive integer;
the biggest value of the parameter 𝑙 relates to the precision of
the computer; therefore, the range of parameter 𝑙 is from 1 to
14 in current experiment, which can be used as secret key; the
substitution of pixel value is in the form of

V = 𝑝 ⊕ (𝑐 × 𝑥
𝑖
+ 𝑑 × 𝑦

𝑖
) mod 𝐿, (27)

where 𝑝 and V are the pixel values of image before and after
substitution and 𝐿 is the grey level of pixel.

The decryption procedure is similar to that of encryption
processwith reverse operational sequences to those described
above. When 𝐵 receives the cipher image, it uses the chaotic
stream 𝑆

1
= (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)), 𝑡 > 𝑡

0
, generated by the

system (12) and the initial condition of system (12) and scaling
matrix 𝑘 to generate 𝑆

2
= (𝑦
1
(𝑡), 𝑦
2
(𝑡), 𝑦
3
(𝑡)), 𝑡 > 𝑡

0
, by

𝑦
1
(𝑡) = 𝑘

1
𝑥
1
(𝑡), 𝑦
2
(𝑡) = 𝑘

2
𝑥
2
(𝑡), and 𝑦

3
(𝑡) = 𝑘

3
𝑥
3
(𝑡). Firstly,

substitute the grey values in cipher image back to original
ones, namely, for every position (𝑥

𝑖
, 𝑦
𝑖
) and corresponding

grey value V of cipher image; compute original grey value as
follows:

𝑝 = V ⊕ (𝑐 × 𝑥
𝑖
+ 𝑑 × 𝑦

𝑖
) mod 𝐿, (28)

where substitution parameters 𝑐 and 𝑑 can be computed by
(26). After all pixels return to original grey values, then, the

pixel in position (𝑥
𝑖+1
, 𝑦
𝑖+1
) should be moved back to the

original position (𝑥
𝑖
, 𝑦
𝑖
) by following inverse operation:

𝑦
𝑖
= (𝑦
𝑖+1
− 1 − 𝑟

𝑦
− 𝐶 sin

2𝜋𝑥
𝑖+1

𝑁
+ 2𝑁) mod 𝑁,

𝑥
𝑖
= (𝑥
𝑖+1
− 1 − 𝑦

𝑖
− 𝑟
𝑥
− 𝑟
𝑦
+ 2𝑀) mod𝑀,

(29)

where the values of 𝑟
𝑥
and 𝑟

𝑦
are the same as they are in

(25). After the two steps are followed, the plain image can be
resumed and the process of decipher is over.

3.2. Experimental Results and Security Analysis. To demon-
strate the validity and efficiency of our scheme, a group of
experiments for gray Lena image (256 × 256) is carried out
with results shown in Figure 5. Here, the key set is selected
the same as Section 2.2. Figure 5(b) is the cipher image for
original image in Figure 5(a). The histograms of plain image
and cipher image illustrated in Figures 5(c) and 5(d) demon-
strate that although the grey distribution of original images
is not uniform, the grey values of cipher images become
uniformly distributed and their statistical property is abso-
lutely changed. A good encryption should be able to resist all
kinds of known attacks and some security analyses have been
performed on the proposed image encryption scheme.

3.2.1. Key Space. The key space of a good image encryption
algorithm should be sufficiently large to make brute-force
attack infeasible. The key space of the proposed method is
much larger than those of previous methods because system
parameters, fractional derivative, and initial conditions of
drive system (12) and diagonal elements of scaling matrix 𝑘
are all cipher key ones; moreover, the mismatch parameters
Δ𝛼, Δ𝛽, and Δ𝛾 of drive system (12), time point 𝑡

1
, time

interval 𝑡
2
, and positive integer 𝑙 are all also secret keys. So

this is enough to resist all kinds of brute-force attacks.

3.2.2. Key Sensitivity. A good encryption scheme should
be sensitive to cipher keys in process of both enciphering
and deciphering. Namely, when an image is encrypted, tiny
change of keys should receive two completely different cipher
images and, when an image is decrypted, tiny change of keys
can cause the failure of deciphering.
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Figure 5:The encrypted results for Lena image: (a) plain Lena image; (b) histogram of Lena image; (c) cipher image; (d) histogram of cipher
image.

(1)Key Sensitivity in Encryption.The following key sensitivity
tests in encryption have been performed based on the 256 ×
256 gray Lena image.

Test 1.One of the initial conditions of the drive system (12) is
changed a bit; here, we let the first initial condition of system
(12) be changed, using 𝑥

1
(0) = 𝑥

1
(0) + 10

−4.

Test 2. One of the system parameters of the drive system (12)
is changed slightly; here, we alter the second parameter, using
𝛽 = 𝛽 + 10

−4.

Test 3. One of the fractional derivatives of the drive system
(12) is changed, using 𝑞

1
= 𝑞
1
+ 0.01.

Test 4.One element of the scalingmatrix is altered, using 𝑘
1
=

𝑘
1
+ 1.

Table 1: Percentage difference between cipher images.

Test 1 Test 2 Test 3 Test 4
Two cipher images 99.56% 99.60% 99.59% 99.51%

The differences of the two cipher images for the four tests
are given in Table 1. From the table, it can be concluded that
the proposed method is very sensitive to the key; a small
change of the key will generate a different decryption result
and one cannot get the correct plain image.

(2) Key Sensitivity in Decryption. In the encryption scheme,
small changes to key can lead to completely incorrect image.
For the image of gray Lena shown in Figure 5(a), the decryp-
tion result with right key is shown in Figure 6(a) and the
incorrect decrypted image is shown in Figure 6(b) when the
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Table 2: The comparison of NPCR and UACI between proposed method and literature [14].

(𝑚, 𝑛) NPCR UACI
Our method Literature [14] Our method Literature [14]

(1, 2) 0.0016 0.0002 0.0004 0.00004
(2, 2) 0.1260 0.0110 0.0440 0.0027
(2, 3) 0.4697 0.0173 0.1628 0.0046
(3, 2) 0.8840 0.4388 0.3006 0.1195
(3, 3) 0.9866 0.5662 0.3326 0.1554
(4, 4) 0.9959 0.9899 0.3358 0.3109
(6, 4) 0.9961 0.9961 0.3351 0.3346

Table 3: The comparison of correlation coefficients between two adjacent pixels.

Gray Lena image Encrypted image
with our method

Encrypted image in
literature [14] Random image

Horizontal 0.965 0.002952 0.002453 0.001562
Vertical 0.941 −0.001829 0.004864 0.005962
Diagonal 0.915 0.001236 0.007525 0.004006

value of 𝑥
0
has tiny change (10−14). That is, tiny deviation of

decryption key can lead to completely meaningless image.

3.2.3. Differential Attack. One of the security requirements
of an effective image encryption scheme is its ability to
resist differential attacks. To measure the influence of one-
pixel change on the cipher image, two common quantitative
measures are adopted.

NPCR (number of pixels change rate);

NPCR =
∑
𝑖𝑗
𝐷(𝑖, 𝑗)

𝑀 × 𝑁
× 100% (30)

UACI (unified average changing intensity):

UACI = 1

𝑀 ×𝑁
∑

𝑖𝑗

𝐶1 (𝑖, 𝑗) − 𝐶2 (𝑖, 𝑗)


255
× 100%, (31)

where 𝐶
1
and 𝐶

2
are the pixel value matrices of two different

cipher images, respectively; 𝐷 is the change of the corre-
sponding pixel value, which is defined as

𝐷(𝑖, 𝑗) = {
0 𝐶
1
(𝑖, 𝑗) = 𝐶

2
(𝑖, 𝑗)

1 𝐶
1
(𝑖, 𝑗) ̸=𝐶

2
(𝑖, 𝑗) .

(32)

Next, two plain images are considered: one is the original
image shown in Figure 5(a); the other is a changed image that
adds 1 to the pixel value in the lower right corner of original
image. When we encrypt the two plain images with the same
encryption key, we can obtain two different cipher images 𝐶

1

and𝐶
2
. Several comparisons ofNPCRandUACI between our

method and literature [14] with different values of 𝑚 and 𝑛
are given in Table 2. Compared with the results of literature
[14], we can achieve a much more better performance NPCR
> 0.996 and UACI > 0.334 with 𝑚 = 𝑛 = 4, which can be
obtained with𝑚 = 6 in literature [14].

3.2.4. Statistical Analysis. To test the correlation between two
adjacent pixels, the following procedures are carried out. The
correction coefficients 𝑟

𝑥𝑦
of two horizontally, vertically, and

diagonally adjacent pixels in the plain image and the cipher
image are calculated according to the following formulas:

𝑟
𝑥𝑦
=
𝐸 ((𝑥 − 𝐸 (𝑥)) (𝑦 − 𝐸 (𝑦)))

√𝐷 (𝑥)√𝐷 (𝑦)

,

𝐸 (𝑥) =
1

𝑆

𝑆

∑

𝑖=1

𝑥
𝑖
,

𝐷 (𝑥) =
1

𝑆

𝑆

∑

𝑖=1

[𝑥
𝑖
− 𝐸 (𝑥)]

2

,

(33)

where 𝑥 and 𝑦 are pixel values of two adjacent pixels in the
image, 𝐸(𝑥) is the mean value of 𝑥, and 𝐷(𝑥) is the variance
of 𝑥, 𝑆 = 𝑀 ×𝑁/2.

Here, we use the 256 × 256 gray Lena image, encrypted
image with our method, encrypted image in literature [14],
and random image for simulation. The results are given in
Table 3.

Meanwhile, we randomly select 2000 pairs of two hori-
zontally adjacent pixels from the Lena image. The correla-
tion distribution of the pixels in the plain image and the
cipher image is illustrated in Figure 7. Both the correlation
coefficients and the figures justify that neighboring pixels of
the plain image can be decorrelated by the proposed crypto-
system effectively. Therefore, the proposed algorithm has
high security against statistical attacks.

4. Conclusions

In this paper, for the first time, an OPCL coupling scheme is
utilized to achieve the MPS between two different fractional-
order dynamical systems in the presence of mismatch. Based
on the stability theory of fractional-order system, the MPS
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(a) (b)

Figure 6: The decrypted results for Lena image: (a) decrypted image with correct key; (b) decrypted image with wrong key.
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Figure 7: Correlation analysis of two horizontally adjacent pixels in (a) the plain Lena image and (b) the cipher image obtained by the
proposed scheme.

of two incommensurate or commensurate fractional-order
systems can be achieved. Both numerical simulations and
computer graphics show that the developed coupling scheme
works well. Apparently, the proposed method possesses
generality and is still appropriate for the case ofMPS between
two fractional-order systems without parameter mismatch.
Meanwhile, because the complete synchronization, antisyn-
chronization, and projective synchronization are all included
in modified projective synchronization, our results contain
and extend most of the existing works.

In image encryption application, we adopt the data from
the MPS to encrypt the image. Experimental results and
security analysis show that the algorithm can be easily imple-
mented and its encryption effect is satisfactory. Moreover,
the algorithm possesses high security in terms of the resis-
tance to exhaustive attack, statistical attack, and differential

attack.This scheme is particularly suitable for Internet image
encryption and transmission applications.
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The inverse Mittag-Leffler function 𝐸−1
𝛼,𝛽
(𝑧) is valuable in determining the value of the argument of a Mittag-Leffler function given

the value of the function and it is not an easy problem. A finite series representation of the inverse Mittag-Leffler function has been
found for a range of the parameters 𝛼 and 𝛽; specifically, 0 < 𝛼 < 1/2 for 𝛽 = 1 and for 𝛽 = 2. This finite series representation of the
inverse Mittag-Leffler function greatly expedites its evaluation and has been illustrated with a number of examples. This represents
a significant advancement in the understanding of Mittag-Leffler functions.

1. Introduction

The Mittag-Leffler function 𝐸
𝛼,𝛽
(𝑧) is defined by the power

series [1]

𝐸
𝛼,𝛽
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
𝑧 ∈ C. (1)

While the argument 𝑧 and the parameters 𝛼 and 𝛽 can in
general be complex provided Re 𝛼 > 0, in this work 𝑧, 𝛼, and
𝛽 will be restricted to those values most commonly found in
physical problems; namely, the argument 𝑧 will be restricted
to real numbers and 𝛼 and 𝛽 will be restricted to positive real
numbers. The Mittag-Leffler function is a generalization of
the exponential function and arises frequently in the solu-
tions of differential and/or integral equations of fractional
(noninteger) order in much the same way as the exponential
function appears in solutions of differential equations of
integer order. Thus, Mittag-Leffler functions play a funda-
mental role in the theory of fractional differential equations.
Consequently, books devoted to the subject of fractional
differential equations (i.e., Podlubny [2], Kilbas et al. [3],
and Diethelm [4]) all contain sections on the Mittag-Leffler
functions. In addition to their inherentmathematical interest,
Mittag-Leffler functions are also important in theoretical and

applied physics and all the sciences (i.e., Hilfer [5], Mainardi
[6], and Magin [7]). The works of Mainardi and Gorenflo
[8],Magin [9], Berberan-Santos [10], Gupta andDebnath [11],
and Haubold et al. [12] are a few of the numerous articles also
worth noting.

The inverse Mittag-Leffler function 𝐸−1
𝛼,𝛽
(𝑧) is defined as

the solution of (2) [13]

𝐸
−1

𝛼,𝛽
[𝐸
𝛼,𝛽
(𝑧)] = 𝑧. (2)

Despite the inherent importance of Mittag-Leffler functions
in fractional differential equations, with the wealth of analyt-
ical information about 𝐸

𝛼,𝛽
(𝑧), the inverse 𝐸−1

𝛼,𝛽
(𝑧) has been

largely unexplored. The one exception is the excellent work
of Hilfer and Seybold [13] who have determined its principal
branch numerically.

The power series representation of any Mittag-Leffler
function can be inverted yielding an infinite series for the
inverse. However, these infinite series are slow to converge
and terminating the series always introduces error which is
hard to evaluate. This present work identifies regions in the
domain of 𝛼 and 𝛽 where the inverse of the Mittag-Leffler
function can be written as a finite series. This represents the
first time the inverseMittag-Leffler function has been written
as a finite series as opposed to an infinite series which greatly
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expedites its evaluation. Before deriving these expressions
for the inverse Mittag-Leffler function, a brief review of the
theory of power series and their inverses is in order.

2. Theory

Consider the convergent series which expresses the function
𝑤 = 𝑓(𝑧) in terms of powers of (𝑧 − 𝑧

𝑜
) with the

corresponding coefficients 𝑎
𝑘
given by

𝑤 = 𝑓 (𝑧) =

∞

∑

𝑘=0

𝑎
𝑘
(𝑧 − 𝑧

𝑜
)
𝑘

= 𝑎
𝑜
+ 𝑎
1
(𝑧 − 𝑧

𝑜
) + 𝑎
2
(𝑧 − 𝑧

𝑜
)
2

+ ⋅ ⋅ ⋅ .

(3)

The inversion of the function 𝑓(𝑧) requires only the sole
assumption that 𝑎

1
̸= 0. That is, there exists one and only one

function which represents the inverse of the 𝑓(𝑧), 𝑧 − 𝑧
𝑜
=

𝑓
−1
(𝑤), which is expressible by a convergent power series of

the form [14]

𝑧 − 𝑧
𝑜
= 𝑓
−1
(𝑤) =

∞

∑

𝑘=1

𝑏
𝑘
(𝑤 − 𝑎

𝑜
)
𝑘

= 𝑏
1
(𝑤 − 𝑎

𝑜
) + 𝑏
2
(𝑤 − 𝑎

𝑜
)
2

+ ⋅ ⋅ ⋅ .

(4)

The process of finding the series expansion for 𝑓−1(𝑤) is
called reversion of the series. The coefficients 𝑏

𝑘
can be

determined in terms of the coefficients 𝑎
𝑘
by substituting (3)

into (4) and equating coefficients of like powers of (𝑧 − 𝑧
𝑜
)
𝑘

on both sides of the equation yielding

𝑏
1
=
1

𝑎
1

, 𝑏
3
=
1

𝑎
5

1

(2𝑎
2

2
− 𝑎
1
𝑎
3
) ,

𝑏
2
= −

𝑎
2

𝑎
3

1

, 𝑏
4
=
1

𝑎
7

1

(5𝑎
1
𝑎
2
𝑎
3
− 𝑎
2

1
𝑎
4
− 5𝑎
3

2
) .

(5)

The coefficients 𝑏
1
, 𝑏
2
, 𝑏
3
, . . . , 𝑏

7
can be found in the literature

[15–17]. An explicit expression for the coefficients 𝑏
𝑘
can be

derived using the Lagrange inversion theorem. If 𝑓(𝑧) is
analytic at 𝑧 = 𝑧

𝑜
and 𝑓(𝑧

𝑜
) ̸= 0, then the inverse of 𝑓(𝑧)

exists and is analytic about 𝑓(𝑧
𝑜
). Furthermore, if 𝑓(𝑧) =

𝑤, the Lagrange inversion theorem gives the Taylor series
expansion of the inverse function 𝑓−1(𝑤) as [15]

𝑓
−1
(𝑤) = 𝑧 − 𝑧

𝑜
=

∞

∑

𝑘=1

(𝑤 − 𝑎
𝑜
)
𝑘

𝑘!

𝑑
𝑘−1

𝑑𝑧𝑘−1
{

(𝑧 − 𝑧
𝑜
)
𝑘

[𝑓 (𝑧) − 𝑎
𝑜
]
𝑘
}

𝑧=𝑧
𝑜

.

(6)

The coefficients 𝑏
𝑘
are determined by comparing (6) and (4)

yielding

𝑏
𝑘
=
1

𝑘!

𝑑
𝑘−1

𝑑𝑧𝑘−1
{

(𝑧 − 𝑧
𝑜
)
𝑘

[𝑓(𝑧) − 𝑎
𝑜
]
𝑘
}

𝑧=𝑧
𝑜

. (7)

Substituting 𝑓(𝑧) − 𝑎
𝑜
from (3) yields

𝑏
𝑘
=
1

𝑘!

𝑑
𝑘−1

𝑑𝑧𝑘−1
{[𝑎
1
+ 𝑎
2
(𝑧 − 𝑧

𝑜
) + 𝑎
3
(𝑧 − 𝑧

𝑜
)
2
+ ⋅ ⋅ ⋅ ]

−𝑘

}
𝑧=𝑧
𝑜

.

(8)

Factoring out 𝑎𝑘
1
in (8) and defining 𝑥 = 𝑧 − 𝑧

𝑜
yields

𝑏
𝑘
=

1

𝑎
𝑘

1
𝑘!

𝑑
𝑘−1

𝑑𝑧𝑘−1

×{[1 + (
𝑎
2

𝑎
1

)𝑥 + (
𝑎
3

𝑎
1

)𝑥
2
+ (

𝑎
4

𝑎
1

)𝑥
3
+ ⋅ ⋅ ⋅ ]

−𝑘

}

𝑥=0

.

(9)

Using the multinomial expansion and performing the
required differentiation yields the desired result [18]

𝑏
𝑘
=

1

𝑘𝑎
𝑘

1

× ∑

𝑠,𝑡,𝑢,...

(−1)
𝑠+𝑡+𝑢+⋅⋅⋅ (𝑘) (𝑘 + 1) ⋅ ⋅ ⋅ (𝑘 − 1 + 𝑠 + 𝑡 + 𝑢 ⋅ ⋅ ⋅ )

𝑠!𝑡!𝑢! ⋅ ⋅ ⋅

× (
𝑎
2

𝑎
1

)

𝑠

(
𝑎
3

𝑎
1

)

𝑡

(
𝑎
3

𝑎
1

)

𝑢

⋅ ⋅ ⋅ ,

(10)

where 𝑠 + 2𝑡 + 3𝑢 + ⋅ ⋅ ⋅ = 𝑘 − 1 and the numbers 𝑠, 𝑡, 𝑢, . . .
are nonnegative integers and the summation extends over all
partitions of 𝑘 − 1. For example, 𝑏

5
contains 5 terms since

the Diophantine equation 𝑠 + 2𝑡 + 3𝑢 + 4V = 4 has 5 integer
solutions or partitions.The number of partitions for 𝑘 = 11 is
42; for 𝑘 = 51 there are 204226 partitions and for 𝑘 = 101 the
number of partitions is 190569292. Consequently, the explicit
tabulation of the full expression for the coefficients 𝑏

𝑘
rapidly

becomes a rather tedious task. Nevertheless, the coefficients
𝑏
1
, 𝑏
2
, 𝑏
3
, . . . , 𝑏

14
are given in Table 1. An equivalent expression

for the general term 𝑏
𝑘
in the reversion of series is given in a

different form by McMahon [19].
By an appropriate change of variables it is always possible

to write the power series in a form which results in simplified
expressions for the coefficients in the reversed power series.
Equation (3) can be rewritten as

𝑤 − 𝑎
𝑜

𝑎
1

= (𝑧 − 𝑧
𝑜
) [1 +

𝑎
2

𝑎
1

(𝑧 − 𝑧
𝑜
) +

𝑎
3

𝑎
1

(𝑧 − 𝑧
𝑜
)
2

+ ⋅ ⋅ ⋅ ] .

(11)

Defining the new variables𝑊 = (𝑤 − 𝑎
𝑜
)/𝑎
1
, 𝐴
1
= −𝑎
2
/𝑎
1
,

𝐴
2
= −𝑎
3
/𝑎
1
, and so forth, (11) becomes

𝑊 = (𝑧 − 𝑧
𝑜
) [1 −

∞

∑

𝑘=1

𝐴
𝑘
(𝑧 − 𝑧

𝑜
)
𝑘

] (12)

and the reversed series is given by

(𝑧 − 𝑧
𝑜
) = 𝑊[1 −

∞

∑

𝑘=1

𝐵
𝑘
𝑊
𝑘
] . (13)
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Table 1: Coefficients of the inverse function for a power series.

𝑘 Coefficient 𝑏
𝑘

1 1

𝑎
1

2 −
𝑎
2

𝑎
3

1

3 1

𝑎
5

1

(2𝑎
2

2
− 𝑎
1
𝑎
3
)

4 1

𝑎
7

1

(−5𝑎
3

2
+ 5𝑎
1
𝑎
2
𝑎
3
− 𝑎
2

1
𝑎
4
)

5 1

𝑎
9

1

(14𝑎
4

2
− 21𝑎

1
𝑎
2

2
𝑎
3
+ 3𝑎
2

1
𝑎
2

3
+ 6𝑎
2

1
𝑎
2
𝑎
4
− 𝑎
3

1
𝑎
5
)

6 1

𝑎
11

1

(−42𝑎
5

2
+ 84𝑎

1
𝑎
3

2
𝑎
3
− 28𝑎

2

1
𝑎
2
𝑎
2

3
− 28𝑎

2

1
𝑎
2

2
𝑎
4
+ 7𝑎
3

1
𝑎
3
𝑎
4
+ 7𝑎
3

1
𝑎
2
𝑎
5
− 𝑎
4

1
𝑎
6
)

7
1

𝑎
13

1

(132𝑎
6

2
− 330𝑎

1
𝑎
4

2
𝑎
3
+ 180𝑎

2

1
𝑎
2

2
𝑎
2

3
− 12𝑎

3

1
𝑎
3

3
+ 120𝑎

2

1
𝑎
3

2
𝑎
4
− 72𝑎

3

1
𝑎
2
𝑎
3
𝑎
4
+ 4𝑎
4

1
𝑎
2

4
− 36𝑎

3

1
𝑎
2

2
𝑎
5
+ 8𝑎
4

1
𝑎
3
𝑎
5
+ 8𝑎
4

1
𝑎
2
𝑎
6
− 𝑎
5

1
𝑎
7
)

8
1

𝑎
15

1

(−429𝑎
7

2
+ 1287𝑎

1
𝑎
5

2
𝑎
3
− 990𝑎

2

1
𝑎
3

2
𝑎
2

3
+ 165𝑎

3

1
𝑎
2
𝑎
3

3
− 495𝑎

2

1
𝑎
4

2
𝑎
4
+ 495𝑎

3

1
𝑎
2

2
𝑎
3
𝑎
4
− 45𝑎

4

1
𝑎
2

3
𝑎
4
− 45𝑎

4

1
𝑎
2
𝑎
2

4
+ 165𝑎

3

1
𝑎
3

2
𝑎
5

−90𝑎
4

1
𝑎
2
𝑎
3
𝑎
5
+ 9𝑎
5

1
𝑎
4
𝑎
5
− 45𝑎

4

1
𝑎
2

2
𝑎
6
+ 9𝑎
5

1
𝑎
3
𝑎
6
+ 9𝑎
5

1
𝑎
2
𝑎
7
− 𝑎
6

1
𝑎
8
)

9

1

𝑎
17

1

(1430𝑎
8

2
− 5005𝑎

1
𝑎
6

2
𝑎
3
+ 5005𝑎

2

1
𝑎
4

2
𝑎
2

3
− 1430𝑎

3

1
𝑎
2

2
𝑎
3

3
+ 55𝑎

4

1
𝑎
4

3
+ 2002𝑎

2

1
𝑎
5

2
𝑎
4
− 2860𝑎

3

1
𝑎
3

2
𝑎
3
𝑎
4
+ 660𝑎

4

1
𝑎
2
𝑎
2

3
𝑎
4
+ 330𝑎

4

1
𝑎
2

2
𝑎
2

4

−55𝑎
5

1
𝑎
3
𝑎
2

4
− 715𝑎

3

1
𝑎
4

2
𝑎
5
+ 660𝑎

4

1
𝑎
2

2
𝑎
3
𝑎
5
− 55𝑎

5

1
𝑎
2

3
𝑎
5
− 110𝑎

5

1
𝑎
2
𝑎
4
𝑎
5
+ 5𝑎
6

1
𝑎
2

5
+ 220𝑎

4

1
𝑎
3

2
𝑎
6
− 110𝑎

5

1
𝑎
2
𝑎
3
𝑎
6
+ 10𝑎

6

1
𝑎
4
𝑎
6

−55𝑎
5

1
𝑎
2

2
𝑎
7
+ 10𝑎

6

1
𝑎
3
𝑎
7
+ 10𝑎

6

1
𝑎
2
𝑎
8
− 𝑎
7

1
𝑎
9
)

10

1

𝑎
19

1

(−4862𝑎
9

2
+ 19448𝑎

1
𝑎
7

2
𝑎
3
− 24024𝑎

2

1
𝑎
5

2
𝑎
2

3
+ 10010𝑎

3

1
𝑎
3

2
𝑎
3

3
− 1001𝑎

4

1
𝑎
2
𝑎
4

3
− 8008𝑎

2

1
𝑎
6

2
𝑎
4
+ 15015𝑎

3

1
𝑎
4

2
𝑎
3
𝑎
4
− 6006𝑎

4

1
𝑎
2

2
𝑎
2

3
𝑎
4

+286𝑎
5

1
𝑎
3

3
𝑎
4
− 2002𝑎

4

1
𝑎
3

2
𝑎
2

4
+ 858𝑎

5

1
𝑎
2
𝑎
3
𝑎
2

4
− 22𝑎

6

1
𝑎
3

4
+ 3003𝑎

3

1
𝑎
5

2
𝑎
5
− 4004𝑎

4

1
𝑎
3

2
𝑎
3
𝑎
5
+ 858𝑎

5

1
𝑎
2
𝑎
2

3
𝑎
5
+ 858𝑎

5

1
𝑎
2

2
𝑎
4
𝑎
5

−132𝑎
6

1
𝑎
3
𝑎
4
𝑎
5
− 66𝑎

6

1
𝑎
2
𝑎
2

5
− 1001𝑎

4

1
𝑎
4

2
𝑎
6
+ 858𝑎

5

1
𝑎
2

2
𝑎
3
𝑎
6
− 66𝑎

6

1
𝑎
2

3
𝑎
6
− 132𝑎

6

1
𝑎
2
𝑎
4
𝑎
6
+ 11𝑎

7

1
𝑎
5
𝑎
6
+ 286𝑎

5

1
𝑎
3

2
𝑎
7

−132𝑎
6

1
𝑎
2
𝑎
3
𝑎
7
+ 11𝑎

7

1
𝑎
4
𝑎
7
− 66𝑎

6

1
𝑎
2

2
𝑎
8
+ 11𝑎

7

1
𝑎
3
𝑎
8
+ 11𝑎

7

1
𝑎
2
𝑎
9
− 𝑎
8

1
𝑎
10
)

11

1

𝑎
21

1

(16796𝑎
10

2
− 75582𝑎

1
𝑎
8

2
𝑎
3
+ 111384𝑎

2

1
𝑎
6

2
𝑎
2

3
− 61880𝑎

3

1
𝑎
4

2
𝑎
3

3
+ 10920𝑎

4

1
𝑎
2

2
𝑎
4

3
− 273𝑎

5

1
𝑎
5

3
+ 31824𝑎

2

1
𝑎
7

2
𝑎
4
− 74256𝑎

3

1
𝑎
5

2
𝑎
3
𝑎
4

+43680𝑎
4

1
𝑎
3

2
𝑎
2

3
𝑎
4
− 5460𝑎

5

1
𝑎
2
𝑎
3

3
𝑎
4
+ 10920𝑎

4

1
𝑎
4

2
𝑎
2

4
+ −8190𝑎

5

1
𝑎
2

2
𝑎
3
𝑎
2

4
+ 546𝑎

6

1
𝑎
2

3
𝑎
2

4
+ 364𝑎

6

1
𝑎
2
𝑎
3

4
− 12376𝑎

3

1
𝑎
6

2
𝑎
5

+21840𝑎
4

1
𝑎
4

2
𝑎
3
𝑎
5
+ −8190𝑎

5

1
𝑎
2

2
𝑎
2

3
𝑎
5
+ 364𝑎

6

1
𝑎
3

3
𝑎
5
− 5460𝑎

5

1
𝑎
3

2
𝑎
4
𝑎
5
+ 2184𝑎

6

1
𝑎
2
𝑎
3
𝑎
4
𝑎
5
− 78𝑎

7

1
𝑎
2

4
𝑎
5
+ 546𝑎

6

1
𝑎
2

2
𝑎
2

5

−78𝑎
7

1
𝑎
3
𝑎
2

5
+ 4368𝑎

4

1
𝑎
5

2
𝑎
6
− 5460𝑎

5

1
𝑎
3

2
𝑎
3
𝑎
6
+ 1092𝑎

6

1
𝑎
2
𝑎
2

3
𝑎
6
+ 1092𝑎

6

1
𝑎
2

2
𝑎
4
𝑎
6
− 156𝑎

7

1
𝑎
3
𝑎
4
𝑎
6
− 156𝑎

7

1
𝑎
2
𝑎
5
𝑎
6
+ 6𝑎
8

1
𝑎
2

6

−1365𝑎
5

1
𝑎
4

2
𝑎
7
+ 1092𝑎

6

1
𝑎
2

2
𝑎
3
𝑎
7
+ −78𝑎

7

1
𝑎
2

3
𝑎
7
− 156𝑎

7

1
𝑎
2
𝑎
4
𝑎
7
+ 12𝑎

8

1
𝑎
5
𝑎
7
+ 364𝑎

6

1
𝑎
3

2
𝑎
8
− 156𝑎

7

1
𝑎
2
𝑎
3
𝑎
8
+ 12𝑎

8

1
𝑎
4
𝑎
8

+ − 78𝑎
7

1
𝑎
2

2
𝑎
9
+ 12𝑎

8

1
𝑎
3
𝑎
9
+ 12𝑎

8

1
𝑎
2
𝑎
10
− 𝑎
9

1
𝑎
11
)

12

1

𝑎
23

1

(−58786𝑎
11

2
+ 293930𝑎

1
𝑎
9

2
𝑎
3
− 503880𝑎

2

1
𝑎
7

2
𝑎
2

3
+ 352716𝑎

3

1
𝑎
5

2
𝑎
3

3
− 92820𝑎

4

1
𝑎
3

2
𝑎
4

3
+ 6188𝑎

5

1
𝑎
2
𝑎
5

3
+ −125970𝑎

2

1
𝑎
8

2
𝑎
4

+352716𝑎
3

1
𝑎
6

2
𝑎
3
𝑎
4
− 278460𝑎

4

1
𝑎
4

2
𝑎
2

3
𝑎
4
+ 61880𝑎

5

1
𝑎
2

2
𝑎
3

3
𝑎
4
− 1820𝑎

6

1
𝑎
4

3
𝑎
4
+ −55692𝑎

4

1
𝑎
5

2
𝑎
2

4
+ 61880𝑎

5

1
𝑎
3

2
𝑎
3
𝑎
2

4

−10920𝑎
6

1
𝑎
2
𝑎
2

3
𝑎
2

4
− 3640𝑎

6

1
𝑎
2

2
𝑎
3

4
+ 455𝑎

7

1
𝑎
3
𝑎
3

4
+ 50388𝑎

3

1
𝑎
7

2
𝑎
5
− 111384𝑎

4

1
𝑎
5

2
𝑎
3
𝑎
5
+ 61880𝑎

5

1
𝑎
3

2
𝑎
2

3
𝑎
5
− 7280𝑎

6

1
𝑎
2
𝑎
3

3
𝑎
5

+30940𝑎
5

1
𝑎
4

2
𝑎
4
𝑎
5
+ −21840𝑎

6

1
𝑎
2

2
𝑎
3
𝑎
4
𝑎
5
+ 1365𝑎

7

1
𝑎
2

3
𝑎
4
𝑎
5
+ 1365𝑎

7

1
𝑎
2
𝑎
2

4
𝑎
5
− 3640𝑎

6

1
𝑎
3

2
𝑎
2

5
+ 1365𝑎

7

1
𝑎
2
𝑎
3
𝑎
2

5
+ −91𝑎

8

1
𝑎
4
𝑎
2

5

−18564𝑎
4

1
𝑎
6

2
𝑎
6
+ 30940𝑎

5

1
𝑎
4

2
𝑎
3
𝑎
6
− 10920𝑎

6

1
𝑎
2

2
𝑎
2

3
𝑎
6
+ 455𝑎

7

1
𝑎
3

3
𝑎
6
+ −7280𝑎

6

1
𝑎
3

2
𝑎
4
𝑎
6
+ 2730𝑎

7

1
𝑎
2
𝑎
3
𝑎
4
𝑎
6
− 91𝑎

8

1
𝑎
2

4
𝑎
6

+1365𝑎
7

1
𝑎
2

2
𝑎
5
𝑎
6
− 182𝑎

8

1
𝑎
3
𝑎
5
𝑎
6
+ −91𝑎

8

1
𝑎
2
𝑎
2

6
+ 6188𝑎

5

1
𝑎
5

2
𝑎
7
− 7280𝑎

6

1
𝑎
3

2
𝑎
3
𝑎
7
+ 1365𝑎

7

1
𝑎
2
𝑎
2

3
𝑎
7
+ 1365𝑎

7

1
𝑎
2

2
𝑎
4
𝑎
7

+ − 182𝑎
8

1
𝑎
3
𝑎
4
𝑎
7
− 182𝑎

8

1
𝑎
2
𝑎
5
𝑎
7
+ 13𝑎

9

1
𝑎
6
𝑎
7
− 1820𝑎

6

1
𝑎
4

2
𝑎
8
+ 1365𝑎

7

1
𝑎
2

2
𝑎
3
𝑎
8
− 91𝑎

8

1
𝑎
2

3
𝑎
8
+ −182𝑎

8

1
𝑎
2
𝑎
4
𝑎
8
+ 13𝑎

9

1
𝑎
5
𝑎
8

+455𝑎
7

1
𝑎
3

2
𝑎
9
− 182𝑎

8

1
𝑎
2
𝑎
3
𝑎
9
+ 13𝑎

9

1
𝑎
4
𝑎
9
− 91𝑎

8

1
𝑎
2

2
𝑎
10
+ 13𝑎

9

1
𝑎
3
𝑎
10
+ 13𝑎

9

1
𝑎
2
𝑎
11
− 𝑎
10

1
𝑎
12
)



4 Mathematical Problems in Engineering

Table 1: Continued.

𝑘 Coefficient 𝑏
𝑘

13

1

𝑎
25

1

(208012𝑎
12

2
− 1144066𝑎

1
𝑎
10

2
𝑎
3
+ 2238390𝑎

2

1
𝑎
8

2
𝑎
2

3
− 1899240𝑎

3

1
𝑎
6

2
𝑎
3

3
+ 678300𝑎

4

1
𝑎
4

2
𝑎
4

3
+ −81396𝑎

5

1
𝑎
2

2
𝑎
5

3
+ 1428𝑎

6

1
𝑎
6

3

+497420𝑎
2

1
𝑎
9

2
𝑎
4
− 1627920𝑎

3

1
𝑎
7

2
𝑎
3
𝑎
4
+ 1627920𝑎

4

1
𝑎
5

2
𝑎
2

3
𝑎
4
+ −542640𝑎

5

1
𝑎
3

2
𝑎
3

3
𝑎
4
+ 42840𝑎

6

1
𝑎
2
𝑎
4

3
𝑎
4
+ 271320𝑎

4

1
𝑎
6

2
𝑎
2

4

−406980𝑎
5

1
𝑎
4

2
𝑎
3
𝑎
2

4
+ 128520𝑎

6

1
𝑎
2

2
𝑎
2

3
𝑎
2

4
− 4760𝑎

7

1
𝑎
3

3
𝑎
2

4
+ 28560𝑎

6

1
𝑎
3

2
𝑎
3

4
− 9520𝑎

7

1
𝑎
2
𝑎
3
𝑎
3

4
+ 140𝑎

8

1
𝑎
4

4
+ −203490𝑎

3

1
𝑎
8

2
𝑎
5

+542640𝑎
4

1
𝑎
6

2
𝑎
3
𝑎
5
− 406980𝑎

5

1
𝑎
4

2
𝑎
2

3
𝑎
5
+ 85680𝑎

6

1
𝑎
2

2
𝑎
3

3
𝑎
5
− 2380𝑎

7

1
𝑎
4

3
𝑎
5
+ −162792𝑎

5

1
𝑎
5

2
𝑎
4
𝑎
5
+ 171360𝑎

6

1
𝑎
3

2
𝑎
3
𝑎
4
𝑎
5

−28560𝑎
7

1
𝑎
2
𝑎
2

3
𝑎
4
𝑎
5
− 14280𝑎

7

1
𝑎
2

2
𝑎
2

4
𝑎
5
+ 1680𝑎

8

1
𝑎
3
𝑎
2

4
𝑎
5
+ 21420𝑎

6

1
𝑎
4

2
𝑎
2

5
− 14280𝑎

7

1
𝑎
2

2
𝑎
3
𝑎
2

5
+ 840𝑎

8

1
𝑎
2

3
𝑎
2

5
+ 1680𝑎

8

1
𝑎
2
𝑎
4
𝑎
2

5

−35𝑎
9

1
𝑎
3

5
+ 77520𝑎

4

1
𝑎
7

2
𝑎
6
− 162792𝑎

5

1
𝑎
5

2
𝑎
3
𝑎
6
+ 85680𝑎

6

1
𝑎
3

2
𝑎
2

3
𝑎
6
− 9520𝑎

7

1
𝑎
2
𝑎
3

3
𝑎
6
+ 42840𝑎

6

1
𝑎
4

2
𝑎
4
𝑎
6
+ −28560𝑎

7

1
𝑎
2

2
𝑎
3
𝑎
4
𝑎
6

+1680𝑎
8

1
𝑎
2

3
𝑎
4
𝑎
6
+ 1680𝑎

8

1
𝑎
2
𝑎
2

4
𝑎
6
− 9520𝑎

7

1
𝑎
3

2
𝑎
5
𝑎
6
+ 3360𝑎

8

1
𝑎
2
𝑎
3
𝑎
5
𝑎
6
+ −210𝑎

9

1
𝑎
4
𝑎
5
𝑎
6
+ 840𝑎

8

1
𝑎
2

2
𝑎
2

6
− 105𝑎

9

1
𝑎
3
𝑎
2

6

−27132𝑎
5

1
𝑎
6

2
𝑎
7
+ 42840𝑎

6

1
𝑎
4

2
𝑎
3
𝑎
7
− 14280𝑎

7

1
𝑎
2

2
𝑎
2

3
𝑎
7
+ 560𝑎

8

1
𝑎
3

3
𝑎
7
− 9520𝑎

7

1
𝑎
3

2
𝑎
4
𝑎
7
+ 3360𝑎

8

1
𝑎
2
𝑎
3
𝑎
4
𝑎
7
− 105𝑎

9

1
𝑎
2

4
𝑎
7

+1680𝑎
8

1
𝑎
2

2
𝑎
5
𝑎
7
− 210𝑎

9

1
𝑎
3
𝑎
5
𝑎
7
+ −210𝑎

9

1
𝑎
2
𝑎
6
𝑎
7
+ 7𝑎
10

1
𝑎
2

7
+ 8568𝑎

6

1
𝑎
5

2
𝑎
8
− 9520𝑎

7

1
𝑎
3

2
𝑎
3
𝑎
8
+ 1680𝑎

8

1
𝑎
2
𝑎
2

3
𝑎
8
+ 1680𝑎

8

1
𝑎
2

2
𝑎
4
𝑎
8

+ − 210𝑎
9

1
𝑎
3
𝑎
4
𝑎
8
− 210𝑎

9

1
𝑎
2
𝑎
5
𝑎
8
+ 14𝑎

10

1
𝑎
6
𝑎
8
− 2380𝑎

7

1
𝑎
4

2
𝑎
9
+ 1680𝑎

8

1
𝑎
2

2
𝑎
3
𝑎
9
− 105𝑎

9

1
𝑎
2

3
𝑎
9
+ −210𝑎

9

1
𝑎
2
𝑎
4
𝑎
9
+ 14𝑎

10

1
𝑎
5
𝑎
9

+560𝑎
8

1
𝑎
3

2
𝑎
10
− 210𝑎

9

1
𝑎
2
𝑎
3
𝑎
10
+ 14𝑎

10

1
𝑎
4
𝑎
10
− 105𝑎

9

1
𝑎
2

2
𝑎
11
+ 14𝑎

10

1
𝑎
3
𝑎
11
+ 14𝑎

10

1
𝑎
2
𝑎
12
− 𝑎
11

1
𝑎
13
)

14

1

𝑎
27

1

(−742900𝑎
13

2
+ 4457400𝑎

1
𝑎
11

2
𝑎
3
− 9806280𝑎

2

1
𝑎
9

2
𝑎
2

3
+ 9806280𝑎

3

1
𝑎
7

2
𝑎
3

3
− 4476780𝑎

4

1
𝑎
5

2
𝑎
4

3
+ 813960𝑎

5

1
𝑎
3

2
𝑎
5

3
− 38760𝑎

6

1
𝑎
2
𝑎
6

3

−1961256𝑎
2

1
𝑎
10

2
𝑎
4
+ 7354710𝑎

3

1
𝑎
8

2
𝑎
3
𝑎
4
− 8953560𝑎

4

1
𝑎
6

2
𝑎
2

3
𝑎
4
+ 4069800𝑎

5

1
𝑎
4

2
𝑎
3

3
𝑎
4
− 581400𝑎

6

1
𝑎
2

2
𝑎
4

3
𝑎
4
+ 11628𝑎

7

1
𝑎
5

3
𝑎
4

−1279080𝑎
4

1
𝑎
7

2
𝑎
2

4
+ 2441880𝑎

5

1
𝑎
5

2
𝑎
3
𝑎
2

4
− 1162800𝑎

6

1
𝑎
3

2
𝑎
2

3
𝑎
2

4
+ 116280𝑎

7

1
𝑎
2
𝑎
3

3
𝑎
2

4
− 193800𝑎

6

1
𝑎
4

2
𝑎
3

4
+ 116280𝑎

7

1
𝑎
2

2
𝑎
3
𝑎
3

4

+ − 6120𝑎
8

1
𝑎
2

3
𝑎
3

4
− 3060𝑎

8

1
𝑎
2
𝑎
4

4
+ 817190𝑎

3

1
𝑎
9

2
𝑎
5
− 2558160𝑎

4

1
𝑎
7

2
𝑎
3
𝑎
5
+ 2441880𝑎

5

1
𝑎
5

2
𝑎
2

3
𝑎
5
+ −775200𝑎

6

1
𝑎
3

2
𝑎
3

3
𝑎
5

+58140𝑎
7

1
𝑎
2
𝑎
4

3
𝑎
5
+ 813960𝑎

5

1
𝑎
6

2
𝑎
4
𝑎
5
− 1162800𝑎

6

1
𝑎
4

2
𝑎
3
𝑎
4
𝑎
5
+ 348840𝑎

7

1
𝑎
2

2
𝑎
2

3
𝑎
4
𝑎
5
− 12240𝑎

8

1
𝑎
3

3
𝑎
4
𝑎
5
+ 116280𝑎

7

1
𝑎
3

2
𝑎
2

4
𝑎
5

−36720𝑎
8

1
𝑎
2
𝑎
3
𝑎
2

4
𝑎
5
+ 680𝑎

9

1
𝑎
3

4
𝑎
5
− 116280𝑎

6

1
𝑎
5

2
𝑎
2

5
+ 116280𝑎

7

1
𝑎
3

2
𝑎
3
𝑎
2

5
− 18360𝑎

8

1
𝑎
2
𝑎
2

3
𝑎
2

5
− 18360𝑎

8

1
𝑎
2

2
𝑎
4
𝑎
2

5
+ 2040𝑎

9

1
𝑎
3
𝑎
4
𝑎
2

5

+680𝑎
9

1
𝑎
2
𝑎
3

5
− 319770𝑎

4

1
𝑎
8

2
𝑎
6
+ 813960𝑎

5

1
𝑎
6

2
𝑎
3
𝑎
6
− 581400𝑎

6

1
𝑎
4

2
𝑎
2

3
𝑎
6
+ 116280𝑎

7

1
𝑎
2

2
𝑎
3

3
𝑎
6
− 3060𝑎

8

1
𝑎
4

3
𝑎
6
− 232560𝑎

6

1
𝑎
5

2
𝑎
4
𝑎
6

+232560𝑎
7

1
𝑎
3

2
𝑎
3
𝑎
4
𝑎
6
+ −36720𝑎

8

1
𝑎
2
𝑎
2

3
𝑎
4
𝑎
6
− 18360𝑎

8

1
𝑎
2

2
𝑎
2

4
𝑎
6
+ 2040𝑎

9

1
𝑎
3
𝑎
2

4
𝑎
6
+ 58140𝑎

7

1
𝑎
4

2
𝑎
5
𝑎
6
− 36720𝑎

8

1
𝑎
2

2
𝑎
3
𝑎
5
𝑎
6

+2040𝑎
9

1
𝑎
2

3
𝑎
5
𝑎
6
+ 4080𝑎

9

1
𝑎
2
𝑎
4
𝑎
5
𝑎
6
− 120𝑎

10

1
𝑎
2

5
𝑎
6
− 6120𝑎

8

1
𝑎
3

2
𝑎
2

6
+ 2040𝑎

9

1
𝑎
2
𝑎
3
𝑎
2

6
− 120𝑎

10

1
𝑎
4
𝑎
2

6
+ 116280𝑎

5

1
𝑎
7

2
𝑎
7

−232560𝑎
6

1
𝑎
5

2
𝑎
3
𝑎
7
+ 116280𝑎

7

1
𝑎
3

2
𝑎
2

3
𝑎
7
− 12240𝑎

8

1
𝑎
2
𝑎
3

3
𝑎
7
+ 58140𝑎

7

1
𝑎
4

2
𝑎
4
𝑎
7
+ −36720𝑎

8

1
𝑎
2

2
𝑎
3
𝑎
4
𝑎
7
+ 2040𝑎

9

1
𝑎
2

3
𝑎
4
𝑎
7

+2040𝑎
9

1
𝑎
2
𝑎
2

4
𝑎
7
− 12240𝑎

8

1
𝑎
3

2
𝑎
5
𝑎
7
+ 4080𝑎

9

1
𝑎
2
𝑎
3
𝑎
5
𝑎
7
+ −240𝑎

10

1
𝑎
4
𝑎
5
𝑎
7
+ 2040𝑎

9

1
𝑎
2

2
𝑎
6
𝑎
7
− 240𝑎

10

1
𝑎
3
𝑎
6
𝑎
7
− 120𝑎

10

1
𝑎
2
𝑎
2

7

−38760𝑎
6

1
𝑎
6

2
𝑎
8
+ 58140𝑎

7

1
𝑎
4

2
𝑎
3
𝑎
8
− 18360𝑎

8

1
𝑎
2

2
𝑎
2

3
𝑎
8
+ 680𝑎

9

1
𝑎
3

3
𝑎
8
− 12240𝑎

8

1
𝑎
3

2
𝑎
4
𝑎
8
+ 4080𝑎

9

1
𝑎
2
𝑎
3
𝑎
4
𝑎
8
+ −120𝑎

10

1
𝑎
2

4
𝑎
8

+2040𝑎
9

1
𝑎
2

2
𝑎
5
𝑎
8
− 240𝑎

10

1
𝑎
3
𝑎
5
𝑎
8
− 240𝑎

10

1
𝑎
2
𝑎
6
𝑎
8
+ 15𝑎

11

1
𝑎
7
𝑎
8
+ 11628𝑎

7

1
𝑎
5

2
𝑎
9
+ −12240𝑎

8

1
𝑎
3

2
𝑎
3
𝑎
9
+ 2040𝑎

9

1
𝑎
2
𝑎
2

3
𝑎
9

+2040𝑎
9

1
𝑎
2

2
𝑎
4
𝑎
9
− 240𝑎

10

1
𝑎
3
𝑎
4
𝑎
9
− 240𝑎

10

1
𝑎
2
𝑎
5
𝑎
9
+ 15𝑎

11

1
𝑎
6
𝑎
9
− 3060𝑎

8

1
𝑎
4

2
𝑎
10
+ 2040𝑎

9

1
𝑎
2

2
𝑎
3
𝑎
10
− 120𝑎

10

1
𝑎
2

3
𝑎
10

−240𝑎
10

1
𝑎
2
𝑎
4
𝑎
10
+ 15𝑎

11

1
𝑎
5
𝑎
10
+ 680𝑎

9

1
𝑎
3

2
𝑎
11
− 240𝑎

10

1
𝑎
2
𝑎
3
𝑎
11
+ 15𝑎

11

1
𝑎
4
𝑎
11
− 120𝑎

10

1
𝑎
2

2
𝑎
12
+ 15𝑎

11

1
𝑎
3
𝑎
12
+ 15𝑎

11

1
𝑎
2
𝑎
13
− 𝑎
12

1
𝑎
14
)

The resulting coefficients 𝐵
𝑘
for 𝑘 = 1, 2, 3, and 4 are given

by
− 𝐵
1
= 𝐴
1
,

− 𝐵
3
= 𝐴
3
+ 5𝐴
1
𝐴
2
+ 5𝐴
3

1
,

− 𝐵
2
= 𝐴
2
+ 2𝐴
2

1
,

− 𝐵
4
= 𝐴
4
+ 6𝐴
1
𝐴
3
+ 3𝐴
2

2
+ 21𝐴

2

1
𝐴
2
+ 14𝐴

4

1
.

(14)

These can be shown to be equivalent to (5) by setting −𝐵
𝑘
=

𝑏
𝑘+1
𝑎
𝑘+1

1
and 𝐴

𝑘
= −𝑎

𝑘+1
/𝑎
1
. The coefficients 𝐵

𝑘
for 𝑘 =

1, 2, . . . , 7 can be found tabulated in [20], for 𝑘 = 1, 2, . . . , 9

in [21] and for 𝑘 = 1, 2, . . . , 12 they are tabulated in [22] with
a different choice of the sign of 𝐵

𝑘
. Müller [23] has reported

an alternative expression for𝐵
𝑘
and some symmetry relations

for the coefficients.
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3. Application to Mittag-Leffler Functions

ManyMittag-Leffler functions can be represented in terms of
elementary functions. For example,

𝐸
1,1
(−𝑧) =

∞

∑

𝑘=0

(−𝑧)
𝑘

Γ (𝑘 + 1)
= Exp (−𝑧)

𝐸
1/2,3

(−𝑧) =

∞

∑

𝑘=0

(−𝑧)
𝑘

Γ (𝑘/2 + 3)

=

Exp (𝑧2) erfc (𝑧) − 1
𝑧4

−
1

𝑧2
+

4

3𝑧√𝜋
+

2

𝑧3√𝜋
.

(15)

Applying (10) from the above theory to these functionswhose
values can be determined as accurately as possible using their
alternative representations yields

−𝑧 = 𝐸
−1

1,1
(𝑤) = (𝑤 − 1) −

1

2
(𝑤 − 1)

2
+
1

3
(𝑤 − 1)

3

−
1

4
(𝑤 − 1)

4
+ ⋅ ⋅ ⋅ =

∞

∑

𝑘=1

(−1)
𝑘+1
(𝑤 − 1)

𝑘

𝑘
,

(16)

−𝑧 = 𝐸
−1

1/2,3
(𝑤) =

15√𝜋

8
(𝑤 −

1

2
) −

1125𝜋
3/2

1024
(𝑤 −

1

2
)

2

+
3375𝜋

3/2
(175𝜋 − 256)

458752
(𝑤 −

1

2
)

3

+ ⋅ ⋅ ⋅ .

(17)

A few observations are in order. Equations (16) and (17) are
typical of the inverse of most infinite series; that is, they are
also infinite series and do not converge rapidly. This can be
easily illustrated by the following examples. For𝑤 = Exp(−1),
(16) should yield −𝑧 = −1 (equivalently 𝑧 = 1). However, (16)
requires 20 terms before the value of 𝑧 is as large as 0.99999
(5 nines), 44 terms for 10 nines, 68 terms for 15 nines, and
92 terms for 20 nines. Whereas for 𝑤 = Exp(−10), where
(16) should yield 𝑧 = 10, 156995 terms are required before
the value of 𝑧 is as large as 9.9999 (5 nines), 391895 terms
for 10 nines, 635259 for 15 nines, and 881815 terms for 20
nines. Similarly, for 𝑤 = Exp(−15) where (16) should yield
𝑧 = 15, 16730862 terms are required before the value of 𝑧 is as
large as 14.999 (3 nines), 51041531 terms for 8 nines, 87009540
terms for 13 nines, and 123532970 terms for 18 nines. For 𝑤 =

Exp(−𝑧), as 𝑧 becomes large (or equivalently 𝑤 → 0), the
number of terms in (16) required to yield a value accurate to
a given number of significant digits becomes astronomically
large.

A similar behavior is exhibited in (17). For 𝑤 =

0.30821552131 . . ., (17) should yield 𝑧 = 1. To obtain a value
of 𝑧 as large as 0.99999 (5 nines), 12 terms are required, 24
terms for 10 nines, 36 terms for 15 nines, and 48 terms for 20
nines. For𝑤 = 0.0662592710 . . ., (17) should yield 𝑧 = 10, but

Table 2: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/7,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.93543756289254634824
2 +0.90975389394768139194
3 +0.90540301580659885103
4 +0.90454074680764978103
5 +0.90437439055401830557
6 +0.90434827833630659461
7 +0.90434699795298307168
8 +0.90434836056866111562
9 +0.90434917779666970118
10 +0.90434948952806441367
11 +0.90434957941529405394
12 +0.90434959664285150118
13 +0.90434959619870743701
14 +0.90434959373645610938
15 +0.90434959223258048967
16 +0.90434959159682667227
17 +0.90434959139076386922
18 +0.90434959134523887081
19 +0.90434959134495719874
20 +0.90434959135163221718
21 +0.90434959135628153678
22 +0.90434959135847703425
23 +0.90434959135928171696
24 +0.90434959135949807367
25 +0.90434959135952104631
26 +0.90434959135950171101
27 +0.90434959135948382131
28 +0.90434959135947403392
29 +0.90434959135946990785
30 +0.90434959135946855244
31 +0.90434959135946826616
32 +0.90434959135946829135
33 +0.90434959135946836127
34 +0.90434959135946840959
35 +0.90434959135946843362
36 +0.90434959135946844315
37 +0.90434959135946844604
38 +0.90434959135946844650
39 +0.90434959135946844632
40 +0.90434959135946844609
41 +0.90434959135946844595
42 +0.90434959135946844588
43 +0.90434959135946844585
44 +0.90434959135946844585
45 +0.90434959135946844584
46 +0.90434959135946844585

81 terms are required to obtain a value of 𝑧 as large as 9.9999
(5 nines), 162 for 10 nines, 243 terms for 15 nines, and 324
terms for 20 nines. For 𝑤 = 0.007423646216 . . ., (17) should
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Table 3: Number of terms required in the finite representation of
𝐸
−1

𝛼,𝛽
(𝑧) for 20-significant-digit accuracy.

𝛼 𝛽 = 1 𝛽 = 2

1/100 11 9
1/10 32 25
1/9 35 27
1/8 40 28
1/7 46 33
1/6 52 38
1/5 64 46
1/4 92 63
1/3 156 91
1/2 562 262
4/7 1051 429
3/5 1469 548

Table 4: Index of Mittag-Leffler inverse examples.

𝛼 𝛽 = 1 𝛽 = 2

1/3 Equation (22) and Table 5 Equation (29) and Table 12
1/4 Equation (23) and Table 6 Equation (30) and Table 13
1/5 Equation (24) and Table 7 Equation (31) and Table 14
1/6 Equation (25) and Table 8 Equation (32) and Table 15
1/7 Equation (19) and Table 2 Equation (33) and Table 16
1/8 Equation (26) and Table 9 Equation (34) and Table 17
1/9 Equation (27) and Table 10 Equation (35) and Table 18
1/10 Equation (28) and Table 11 Equation (36) and Table 19

yield 𝑧 = 100, but 770 terms are required to obtain a value
of 𝑧 as large as 99.999 (5 nines) and 1540 terms for 10 nines.
There is, however, one big difference between (16) and (17).
Equation (16) is one of the few inverses of a Mittag-Leffler
function, where the coefficients 𝑏

𝑘
in the inverse given in (10)

and itemized in Table 1 for 𝑏
1
− 𝑏
14

simplify to a tractable
expression; in this case 𝑏

𝑘
= (−1)

𝑘+1
/𝑘. The mathematical

manipulations required to obtain the coefficients 𝑏
𝑘
in (17)

using (10) become algebraically intensive as 𝑘 becomes large.
Whereas 𝑏

14
given in Table 1 contains 101 terms, 𝑏

1000
contains

more than 2.4 × 10
31 terms. Consequently, although the

infinite series given in (17) correctly represents the inverse
Mittag-Leffler function, it is impractical to use for anything
other than small 𝑧 where only a reasonable number of terms
are needed for the required accuracy.This is the case for most
of the inverse Mittag-Leffler functions.

Consider the inverse of the Mittag-Leffler function
𝐸
1/7,1

(−𝑧). The coefficients 𝑏
𝑘
calculated from (10) are given

in Table 2 (truncated to 20 significant digits).
It is obvious in looking at the coefficients 𝑏

𝑘
in Table 2

that they are approaching a constant as 𝑘 becomes large.
In this case, the constant is 1/Γ(6/7). Subsequently, the first
20 significant digits for all coefficients after 𝑏

46
are identical

Table 5: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/3,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.89297951156924921122
2 +0.78878610417460496420
3 +0.75763354875769329328
4 +0.74579778773344787841
5 +0.74098130749558031810
6 +0.73904720310555344414
7 +0.73834522959265981505
8 +0.73816142472165138055
9 +0.73817790739448622896
10 +0.73825511074871374070
11 +0.73833571434942144250
12 +0.73839997927465491398
13 +0.73844449496113714586
14 +0.73847210628873099793
15 +0.73848730878287129409
16 +0.73849432235279002530
17 +0.73849644605470171587
18 +0.73849598893480155549
19 +0.73849442620461442205
20 +0.73849261331276901456
21 +0.73849098486630158241
22 +0.73848971269933349619
23 +0.73848881978568953731
24 +0.73848825605202219473
25 +0.73848794494184281702
26 +0.73848780930951379358
27 +0.73848778373908570968
28 +0.73848781862086802257
29 +0.73848787970874775507
30 +0.73848794558318757255
31 +0.73848800448141685314
32 +0.73848805128840606965
33 +0.73848808504905157547
34 +0.73848810710188503719
35 +0.73848811979412736597
36 +0.73848812567490815232
37 +0.73848812704699497915
38 +0.73848812576600764535
39 +0.73848812319593135382
40 +0.73848812025242302623
41 +0.73848811748639447885
42 +0.73848811517762375779
43 +0.73848811342117360995
44 +0.73848811219849196547
45 +0.73848811143091641775
46 +0.73848811101668555873
47 +0.73848811085420482928
48 +0.73848811085483076012
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Table 5: Continued.

𝑘 𝑏
𝑘

49 +0.73848811094828991640
50 +0.73848811108336786221
51 +0.73848811122590646140
52 +0.73848811135556505150
53 +0.73848811146230003348
54 +0.73848811154312398420
55 +0.73848811159941978280
56 +0.73848811163489404655
57 +0.73848811165413834046
58 +0.73848811166170643685
59 +0.73848811166159371995
60 +0.73848811165700633342
61 +0.73848811165032209352
62 +0.73848811164316504107
63 +0.73848811163653598310
64 +0.73848811163095974872
65 +0.73848811162662488952
66 +0.73848811162350289072
67 +0.73848811162144189450
68 +0.73848811162023502242
69 +0.73848811161966626697
70 +0.73848811161953822181
71 +0.73848811161968617262
72 +0.73848811161998269778
73 +0.73848811162033624249
74 +0.73848811162068634439
75 +0.73848811162099743490
76 +0.73848811162125249050
77 +0.73848811162144729066
78 +0.73848811162158565606
79 +0.73848811162167577734
80 +0.73848811162172758004
81 +0.73848811162175098150
82 +0.73848811162175485904
83 +0.73848811162174654725
84 +0.73848811162173170072
85 +0.73848811162171438724
86 +0.73848811162169730770
87 +0.73848811162168206810
88 +0.73848811162166945421
89 +0.73848811162165967945
90 +0.73848811162165259141
91 +0.73848811162164783248
92 +0.73848811162164495684
93 +0.73848811162164350958
94 +0.73848811162164307502
95 +0.73848811162164330226
96 +0.73848811162164391339
97 +0.73848811162164470224

Table 5: Continued.

𝑘 𝑏
𝑘

98 +0.73848811162164552587
99 +0.73848811162164629360
100 +0.73848811162164695521
101 +0.73848811162164748994
102 +0.73848811162164789692
103 +0.73848811162164818753
104 +0.73848811162164837957
105 +0.73848811162164849309
106 +0.73848811162164854766
107 +0.73848811162164856073
108 +0.73848811162164854687
109 +0.73848811162164851751
110 +0.73848811162164848112
111 +0.73848811162164844359
112 +0.73848811162164840865
113 +0.73848811162164837840
114 +0.73848811162164835374
115 +0.73848811162164833471
116 +0.73848811162164832086
117 +0.73848811162164831146
118 +0.73848811162164830565
119 +0.73848811162164830260
120 +0.73848811162164830154
121 +0.73848811162164830182
122 +0.73848811162164830293
123 +0.73848811162164830447
124 +0.73848811162164830614
125 +0.73848811162164830777
126 +0.73848811162164830923
127 +0.73848811162164831046
128 +0.73848811162164831145
129 +0.73848811162164831220
130 +0.73848811162164831273
131 +0.73848811162164831309
132 +0.73848811162164831331
133 +0.73848811162164831342
134 +0.73848811162164831345
135 +0.73848811162164831343
136 +0.73848811162164831338
137 +0.73848811162164831331
138 +0.73848811162164831323
139 +0.73848811162164831316
140 +0.73848811162164831310
141 +0.73848811162164831304
142 +0.73848811162164831300
143 +0.73848811162164831297
144 +0.73848811162164831294
145 +0.73848811162164831292
146 +0.73848811162164831291
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Table 5: Continued.

𝑘 𝑏
𝑘

147 +0.73848811162164831291
148 +0.73848811162164831291
149 +0.73848811162164831291
150 +0.73848811162164831291
151 +0.73848811162164831291
152 +0.73848811162164831292
153 +0.73848811162164831292
154 +0.73848811162164831292
155 +0.73848811162164831292
156 +0.73848811162164831293

differing only after the first 20 digits. Thus, applying (4) with
𝑧
𝑜
= 0, 𝑎

𝑜
= 1, the inverse for 𝐸

1/7,1
(−𝑧) can be written as

−𝑧 = 𝐸
−1

1/7,1
(𝑤) = −

46

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

∞

∑

𝑘=47

(1 − 𝑤)
𝑘

Γ (6/7)
. (18)

Equation (18) assumes that all coefficients 𝑏
𝑘
for 𝑘 > 46

can be approximated by 1/Γ(6/7). The approximation is
valid provided that an answer accurate to no more than
20 significant digits is sufficient. The last term in (18) is a
geometric series which can be replaced by its corresponding
sum yielding

−𝑧 = 𝐸
−1

1/7,1
(𝑤) = −

46

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (6/7)

(1 − 𝑤)
47

𝑤
. (19)

Equation (19) represents a finite series for the inverse Mittag-
Leffler function for 𝑤 ≤ 1 or equivalently −𝑧 ≤ 0 accurate to
20 significant digits. The series has been tested numerically
and in all cases tested gives the correct answer to at least
20 significant digits 0 ≥ −𝑧 < −∞ or equivalently 0 <

𝑤 ≤ 1. This finite series representation of the inverse Mittag-
Leffler function has at least 3 advantages over the infinite
series representation: (1) the finite series greatly expedites the
evaluation of the inverse, (2) it is not limited to small | − 𝑧|,
and (3) there is no ambiguity concerning the number of terms
needed in the series to obtain a required accuracy in the final
answer.

Note that if the required accuracy is only 10 significant
digits, the first 10 digits of the coefficients 𝑏

𝑘
after 𝑏

17
are

identical differing only after the first 10 digits. In this case,
the equation for the inverse can be written as

−𝑧 = 𝐸
−1

1/7,1
(𝑤) = −

17

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (6/7)

(1 − 𝑤)
18

𝑤
.

(20)

The fact that the coefficients 𝑏
𝑘
approached a constant as 𝑘

becomes large allowed the infinite series to be written as a
finite series. For what other Mittag-Leffler functions do the
coefficients in the inverse approach a constant?

Table 6: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/4,1
(𝑤).

𝑘 𝑏
𝑘

1 0.90640247705547707798
2 0.84026894007589891391
3 0.82351018992990700207
4 0.81828957550795105766
5 0.81660707076917509278
6 0.81610221036029616113
7 0.81598545033147361884
8 0.81598379842062516042
9 0.81600622129819404882
10 0.81602620538545447950
11 0.81603889114688882765
12 0.81604558885224673170
13 0.81604856137343865455
14 0.81604957197906280172
15 0.81604970482268525625
16 0.81604953186530296411
17 0.81604931188945210690
18 0.81604913762546883873
19 0.81604902563306262589
20 0.81604896432490207114
21 0.81604893634591082941
22 0.81604892711529213868
23 0.81604892680747229621
24 0.81604892974411138067
25 0.81604893311589531898
26 0.81604893581695267902
27 0.81604893761527447364
28 0.81604893864655309011
29 0.81604893914547956993
30 0.81604893932600511441
31 0.81604893934331182207
32 0.81604893929407644732
33 0.81604893923044766688
34 0.81604893917568606393
35 0.81604893913673190214
36 0.81604893911270302848
37 0.81604893909990779088
38 0.81604893909439699044
39 0.81604893909300259361
40 0.81604893909356459299
41 0.81604893909479532456
42 0.81604893909603395768
43 0.81604893909701259830
44 0.81604893909767829618
45 0.81604893909807584283
46 0.81604893909827997471
47 0.81604893909836178143
48 0.81604893909837594019
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Table 6: Continued.

𝑘 𝑏
𝑘

49 0.81604893909835900689
50 0.81604893909833251654
51 0.81604893909830737526
52 0.81604893909828785893
53 0.81604893909827462118
54 0.81604893909826667548
55 0.81604893909826254932
56 0.81604893909826086189
57 0.81604893909826054632
58 0.81604893909826087970
59 0.81604893909826142714
60 0.81604893909826196124
61 0.81604893909826238717
62 0.81604893909826268505
63 0.81604893909826287085
64 0.81604893909826297283
65 0.81604893909826301912
66 0.81604893909826303243
67 0.81604893909826302882
68 0.81604893909826301846
69 0.81604893909826300704
70 0.81604893909826299725
71 0.81604893909826298997
72 0.81604893909826298513
73 0.81604893909826298224
74 0.81604893909826298074
75 0.81604893909826298012
76 0.81604893909826298002
77 0.81604893909826298015
78 0.81604893909826298038
79 0.81604893909826298060
80 0.81604893909826298078
81 0.81604893909826298092
82 0.81604893909826298100
83 0.81604893909826298105
84 0.81604893909826298108
85 0.81604893909826298109
86 0.81604893909826298109
87 0.81604893909826298109
88 0.81604893909826298109
89 0.81604893909826298108
90 0.81604893909826298108
91 0.81604893909826298108
92 0.81604893909826298107

4. Inverse Mittag-Leffler Functions for Which
𝑏
𝑘

Approach a Constant

Evaluation of great many inverse Mittag-Leffler functions
reveals several important points. (1) It has been shown that
the Mittag-Leffer function with these 𝛼 and 𝛽 parameters,

Table 7: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/5,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.91816874239976061064
2 +0.87239815820597071525
3 +0.86241404655813210186
4 +0.85979515758722241525
5 +0.85910249498870304439
6 +0.85894043515591457893
7 +0.85891680448152655590
8 +0.85892230156211349359
9 +0.85892962600662844119
10 +0.85893406838573395241
11 +0.85893613453863527233
12 +0.85893690887578873062
13 +0.85893711768226131089
14 +0.85893712714123260150
15 +0.85893708951453251359
16 +0.85893705517782142799
17 +0.85893703407253609369
18 +0.85893702365426492211
19 +0.85893701950167094637
20 +0.85893701834496455469
21 +0.85893701834146563837
22 +0.85893701863535859269
23 +0.85893701890846377513
24 +0.85893701908567480745
25 +0.85893701917914447317
26 +0.85893701921959129502
27 +0.85893701923250482423
28 +0.85893701923367892385
29 +0.85893701923119867846
30 +0.85893701922846356042
31 +0.85893701922650554665
32 +0.85893701922537418952
33 +0.85893701922482812463
34 +0.85893701922461848499
35 +0.85893701922457079400
36 +0.85893701922458522240
37 +0.85893701922461381792
38 +0.85893701922463819190
39 +0.85893701922465413251
40 +0.85893701922466286636
41 +0.85893701922466687324
42 +0.85893701922466827905
43 +0.85893701922466848269
44 +0.85893701922466825732
45 +0.85893701922466796298
46 +0.85893701922466773028
47 +0.85893701922466758222
48 +0.85893701922466750209
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Table 7: Continued.

𝑘 𝑏
𝑘

49 +0.85893701922466746565
50 +0.85893701922466745311
51 +0.85893701922466745162
52 +0.85893701922466745405
53 +0.85893701922466745708
54 +0.85893701922466745948
55 +0.85893701922466746103
56 +0.85893701922466746188
57 +0.85893701922466746229
58 +0.85893701922466746243
59 +0.85893701922466746246
60 +0.85893701922466746244
61 +0.85893701922466746241
62 +0.85893701922466746238
63 +0.85893701922466746236
64 +0.85893701922466746235

namely, 0 < 𝛼 < 1 and 𝛽 > 𝛼, is a completely
monotonic decreasing function [24, 25], and thus the inverse
is guaranteed to be single valued. (2) The coefficients 𝑏

𝑘
in

the inverse approach a constant only when the parameter 𝛽 is
either 1 or 2. (3) The coefficients 𝑏

𝑘
approach a constant only

when the parameter 𝛼 < 1. (4) The coefficients 𝑏
𝑘
approach a

constant given by

lim
𝑘→∞

𝑏
𝑘
=

1

Γ (𝛽 − 𝛼)
. (21)

Consequently, as 𝛼 → 0, the coefficient 𝑏
𝑘
→ 1 for both

𝛽 = 1 and 2.However, for𝛽 = 1 the coefficient 𝑏
𝑘
is always less

than 1 while for 𝛽 = 2, 𝑏
𝑘
is always greater than 1 as 𝛼 → 0.

(5) The smaller the value of 𝛼, the fewer the numerical terms
required in the inverse series to obtain a given significant digit
accuracy.This is illustrated in Table 3 which gives the number
of terms required in the finite representation of the inverse
Mittag-Leffler function for 20-significant-digit accuracy for
various values of 𝛼 with 𝛽 = 1 and 𝛽 = 2.

Extending this logic to its natural conclusion implies that
at 𝛼 = 0 no terms will be required in the series. To see that
this is correct, note that using (1) both 𝑤 = 𝐸

0,1
(−𝑧) and 𝑤 =

𝐸
0,2
(−𝑧) reduce to 𝑤 = 1/(1 + 𝑧) when 𝛼 = 0. Inverting and

solving for −𝑧 yield −𝑧 = −(1 − 𝑤)/𝑤. This is consistent with
(19) which reduces to this same result when the upper limit
on the summation is 𝑘 = 0 (no terms in the summation) and
the factor 1/Γ (6/7) is replaced by the more general equation
(21) which gives unity for 𝛼 = 0 and 𝛽 = 1 or 𝛽 = 2.

Conversely, as 𝛼 approaches 1, an increasingly larger
number of numerical terms are required in the inverse
series to obtain a given significant digit accuracy as Table 3
illustrates. (6) Consequently, as 𝛼 increases above 1/2, the
inverse Mittag-Leffler function described by a finite series
requires more and more terms becoming less practical. For
example, for 𝛼 = 0.74 and 𝛽 = 1, for 𝑏

𝑘
to converge to just

5 significant digits requires 2215 terms while, for 𝛼 = 0.825

and 𝛽 = 2, requiring 1828 terms for the same convergence.

Table 8: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/6,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.92771933363003920070
2 +0.89414577241424278746
3 +0.88773763213642664587
4 +0.88628977973846244289
5 +0.88596635420228565868
6 +0.88590523526021224793
7 +0.88589982030554044972
8 +0.88590275825406298752
9 +0.88590511036557706322
10 +0.88590621213903655148
11 +0.88590660928393383455
12 +0.88590671636180511607
13 +0.88590672946995710075
14 +0.88590672153714995480
15 +0.88590671360108075777
16 +0.88590670912379822800
17 +0.88590670718459732010
18 +0.88590670653013358196
19 +0.88590670638937664049
20 +0.88590670640476657586
21 +0.88590670644420859302
22 +0.88590670647244801433
23 +0.88590670648712373933
24 +0.88590670649321013736
25 +0.88590670649512780068
26 +0.88590670649542543061
27 +0.88590670649526508181
28 +0.88590670649506835081
29 +0.88590670649493875951
30 +0.88590670649487287445
31 +0.88590670649484578753
32 +0.88590670649483743413
33 +0.88590670649483637544
34 +0.88590670649483735333
35 +0.88590670649483843570
36 +0.88590670649483914752
37 +0.88590670649483951597
38 +0.88590670649483967198
39 +0.88590670649483972248
40 +0.88590670649483973021
41 +0.88590670649483972509
42 +0.88590670649483971872
43 +0.88590670649483971430
44 +0.88590670649483971188
45 +0.88590670649483971080
46 +0.88590670649483971040
47 +0.88590670649483971032
48 +0.88590670649483971034
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Table 8: Continued.

𝑘 𝑏
𝑘

49 +0.88590670649483971037
50 +0.88590670649483971040
51 +0.88590670649483971042
52 +0.88590670649483971043

Table 9: Coefficients 𝑏
𝑘
for the inverse Mittag-Leffler function −𝑧 =

𝐸
−1

1/8,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.94174269984970148808
2 +0.92145833616345434435
3 +0.91837205036733785079
4 +0.91782768940815950206
5 +0.91773538138444524775
6 +0.91772307499596115692
7 +0.91772281742094063440
8 +0.91772345536444575339
9 +0.91772376557618704885
10 +0.91772386504763452141
11 +0.91772388849585357984
12 +0.91772389156330350231
13 +0.91772389092194344445
14 +0.91772389025312412600
15 +0.91772388994408363001
16 +0.91772388984022900150
17 +0.91772388981468002747
18 +0.91772388981165650624
19 +0.91772388981289452457
20 +0.91772388981401655984
21 +0.91772388981455209678
22 +0.91772388981474237399
23 +0.91772388981479260777
24 +0.91772388981479946414
25 +0.91772388981479716385
26 +0.91772388981479476203
27 +0.91772388981479352017
28 +0.91772388981479304158
29 +0.91772388981479290058
30 +0.91772388981479287486
31 +0.91772388981479287784
32 +0.91772388981479288351
33 +0.91772388981479288690
34 +0.91772388981479288835
35 +0.91772388981479288884
36 +0.91772388981479288896
37 +0.91772388981479288897
38 +0.91772388981479288896
39 +0.91772388981479288895
40 +0.91772388981479288894

Table 10: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/9,1
(𝑤).

𝑘 𝑏
𝑘

1 0.94696534880216399450
2 0.93053890407728875727
3 0.92827170167793346183
4 0.92791158668373485876
5 0.92785715845937955393
6 0.92785088338236675169
7 0.92785088003507065240
8 0.92785119095520099570
9 0.92785131874466606751
10 0.92785135396452045173
11 0.92785136086263488623
12 0.92785136142419633245
13 0.92785136114025016525
14 0.92785136095166820529
15 0.92785136088086115418
16 0.92785136086138201458
17 0.92785136085777479380
18 0.92785136085772523465
19 0.92785136085805437723
20 0.92785136085823967523
21 0.92785136085830846162
22 0.92785136085832754930
23 0.92785136085833100710
24 0.92785136085833091281
25 0.92785136085833047865
26 0.92785136085833023736
27 0.92785136085833014532
28 0.92785136085833011870
29 0.92785136085833011354
30 0.92785136085833011358
31 0.92785136085833011420
32 0.92785136085833011458
33 0.92785136085833011473
34 0.92785136085833011478
35 0.92785136085833011479

(7) For the same 𝛼, the number of terms in the inverse for a
desired accuracy is less for𝛽 = 2 than for𝛽 = 1. (8)According
to (21), when 𝛼 = 1 and 𝛽 = 1, the coefficients 𝑏

𝑘
in the

inverse for the Mittag-Leffler function 𝐸
1,1
(−𝑧) approach the

constant zero as 𝑘 → ∞ as seen in (16) while for 𝛼 = 1 and
𝛽 = 2 the coefficients 𝑏

𝑘
in the inverse for the Mittag-Leffler

function 𝐸
1,2
(−𝑧) approach 1 as 𝑘 → ∞. (9) As noted above,

according to (21), for 𝛽 = 2 the coefficients 𝑏
𝑘
as 𝑘 → ∞

approach 1 as 𝛼 → 0 and as 𝛼 → 1 and 𝑏
𝑘
is greater than

1 for 0 < 𝛼 < 1. This implies that there exists a relative
maximum value of 𝑏

𝑘
as 𝑘 → ∞ in the range 0 < 𝛼 < 1. This

maximum occurs at 𝛼 = 0.5383678550 . . . and corresponds
to 𝑏
𝑘
= 1.129173885 . . . as 𝑘 → ∞. Illustrating the above

observations are numerous examples in the next section.
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Table 11: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function −𝑧 =

𝐸
−1

1/10,1
(𝑤).

𝑘 𝑏
𝑘

1 +0.95135076986687318362
2 +0.93777687277778653379
3 +0.93606310059788083658
4 +0.93581557876046714164
5 +0.93578185282959558380
6 +0.93577844037062189666
7 +0.93577848991569929215
8 +0.93577864855859718780
9 +0.93577870513836571828
10 +0.93577871876872861069
11 +0.93577872101504047108
12 +0.93577872110471635717
13 +0.93577872099247192203
14 +0.93577872093543535964
15 +0.93577872091738487402
16 +0.93577872091324677459
17 +0.93577872091268732351
18 +0.93577872091275010310
19 +0.93577872091282731969
20 +0.93577872091286047983
21 +0.93577872091287052264
22 +0.93577872091287272009
23 +0.93577872091287295145
24 +0.93577872091287287167
25 +0.93577872091287280852
26 +0.93577872091287278263
27 +0.93577872091287277485
28 +0.93577872091287277316
29 +0.93577872091287277300
30 +0.93577872091287277308
31 +0.93577872091287277314
32 +0.93577872091287277317

5. Results for Specific 𝛼 and 𝛽

In this section, specific examples of various inverse Mittag-
Leffler functions calculated using (10) will be given. Since the
number of terms in the finite series for the inverse increases
dramatically for 𝛼 ≥ 1/2, then all examples will be for
𝛼 < 1/2. All equations for the inverses are written assuming
a desired 20-significant-digit accuracy. This is far greater
accuracy than most requirements might call for; however,
the equations can then be easily modified to any degree
of accuracy less than 20 as outlined in the discussion of
(20). Each Mittag-Leffler inverse −𝑧 = 𝐸

−1

𝛼,𝛽
(𝑤) example

includes the equation of the form given in (19) valid for
0 ≥ −𝑧 < −∞ (equivalently 0 < 𝑤 ≤ 1) representing
the finite series representation of the inverse and a table with
the corresponding coefficients 𝑏

𝑘
truncated to 20 significant

digits. The specific values of 𝛼 and 𝛽 in each example
are itemized in Table 4 which includes references to the

Table 12: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/3,2
(𝑤).

𝑘 𝑏
𝑘

1 1.1906393487589989482
2 1.1218291259372159490
3 1.1091651079345480360
4 1.1070518842541741977
5 1.1071094825114241570
6 1.1074303857224016589
7 1.1076404430424683811
8 1.1077314700191564271
9 1.1077553955944287187
10 1.1077524578488089226
11 1.1077434947715842855
12 1.1077363499227504156
13 1.1077324896384468086
14 1.1077310965875528477
15 1.1077310087501244588
16 1.1077313864890338427
17 1.1077317908641062832
18 1.1077320654748424695
19 1.1077322009818539445
20 1.1077322408861236149
21 1.1077322323951713722
22 1.1077322084738571023
23 1.1077321862732534401
24 1.1077321716839450156
25 1.1077321645662504099
26 1.1077321625611127907
27 1.1077321631931161511
28 1.1077321646957392674
29 1.1077321661093029166
30 1.1077321670760136784
31 1.1077321675814921360
32 1.1077321677525601222
33 1.1077321677362930981
34 1.1077321676460497809
35 1.1077321675494545998
36 1.1077321674764692276
37 1.1077321674332138537
38 1.1077321674142290519
39 1.1077321674107002345
40 1.1077321674147729438
41 1.1077321674210887571
42 1.1077321674267605861
43 1.1077321674307081625
44 1.1077321674329036944
45 1.1077321674337785530
46 1.1077321674338524401
47 1.1077321674335523501
48 1.1077321674331583587
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Table 12: Continued.

𝑘 𝑏
𝑘

49 1.1077321674328171346
50 1.1077321674325809580
51 1.1077321674324479205
52 1.1077321674323926738
53 1.1077321674323855472
54 1.1077321674324019711
55 1.1077321674324254123
56 1.1077321674324467750
57 1.1077321674324623978
58 1.1077321674324719027
59 1.1077321674324764817
60 1.1077321674324777720
61 1.1077321674324772490
62 1.1077321674324759894
63 1.1077321674324746516
64 1.1077321674324735591
65 1.1077321674324728113
66 1.1077321674324723822
67 1.1077321674324721933
68 1.1077321674324721578
69 1.1077321674324722031
70 1.1077321674324722781
71 1.1077321674324723525
72 1.1077321674324724118
73 1.1077321674324724522
74 1.1077321674324724754
75 1.1077321674324724857
76 1.1077321674324724876
77 1.1077321674324724851
78 1.1077321674324724809
79 1.1077321674324724766
80 1.1077321674324724731
81 1.1077321674324724707
82 1.1077321674324724692
83 1.1077321674324724685
84 1.1077321674324724683
85 1.1077321674324724684
86 1.1077321674324724686
87 1.1077321674324724688
88 1.1077321674324724691
89 1.1077321674324724692
90 1.1077321674324724693
91 1.1077321674324724694

corresponding equations and table numbers for each example
inverse.

For 𝛼 = 1/3 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/3,1
(𝑤) = −

156

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (2/3)

(1 − 𝑤)
157

𝑤
,

(22)

Table 13: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/4,2
(𝑤).

𝑘 𝑏
𝑘

1 1.1330030963193463474
2 1.0941001823904933774
3 1.0884969259036715641
4 1.0878558386282093564
5 1.0879299260072536857
6 1.0880196901607404297
7 1.0880580603477134188
8 1.0880679256317365431
9 1.0880681582727259222
10 1.0880666922539625425
11 1.0880656824079111948
12 1.0880652661105853859
13 1.0880651718209129462
14 1.0880651893915501135
15 1.0880652225919339689
16 1.0880652438081294238
17 1.0880652525894990987
18 1.0880652545116835036
19 1.0880652539426656281
20 1.0880652530160160191
21 1.0880652524013356965
22 1.0880652521279001619
23 1.0880652520573054501
24 1.0880652520688854981
25 1.0880652520973313877
26 1.0880652521186658457
27 1.0880652521294678814
28 1.0880652521330822285
29 1.0880652521332880539
30 1.0880652521324663677
31 1.0880652521316757550
32 1.0880652521311980579
33 1.0880652521309915951
34 1.0880652521309409874
35 1.0880652521309543925
36 1.0880652521309814562
37 1.0880652521310025596
38 1.0880652521310142006
39 1.0880652521310188181
40 1.0880652521310196801
41 1.0880652521310191068
42 1.0880652521310183025
43 1.0880652521310177100
44 1.0880652521310173883
45 1.0880652521310172608
46 1.0880652521310172369
47 1.0880652521310172534
48 1.0880652521310172768
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Table 13: Continued.

𝑘 𝑏
𝑘

49 1.0880652521310172946
50 1.0880652521310173047
51 1.0880652521310173090
52 1.0880652521310173101
53 1.0880652521310173098
54 1.0880652521310173091
55 1.0880652521310173086
56 1.0880652521310173082
57 1.0880652521310173081
58 1.0880652521310173080
59 1.0880652521310173080
60 1.0880652521310173080
61 1.0880652521310173080
62 1.0880652521310173080
63 1.0880652521310173081

where 1/Γ (2/3) = 0.73848811162164831293 . . . and the
coefficients 𝑏

𝑘
are given in Table 5.

For 𝛼 = 1/4 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/4,1
(𝑤) = −

92

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (3/4)

(1 − 𝑤)
93

𝑤
,

(23)

where 1/Γ (3/4) = 0.81604893909826298107 . . . and the
coefficients 𝑏

𝑘
are given in Table 6.

For 𝛼 = 1/5 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/5,1
(𝑤) = −

64

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (4/5)

(1 − 𝑤)
65

𝑤
,

(24)

where 1/Γ (4/5) = 0.85893701922466746235 . . . and the
coefficients 𝑏

𝑘
are given in Table 7.

For 𝛼 = 1/6 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/6,1
(𝑤) = −

52

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (5/6)

(1 − 𝑤)
53

𝑤
,

(25)

where 1/Γ (5/6) = 0.88590670649483971043 . . . and the
coefficients 𝑏

𝑘
are given in Table 8.

For 𝛼 = 1/8 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/8,1
(𝑤) = −

40

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (7/8)

(1 − 𝑤)
41

𝑤
,

(26)

where 1/Γ (7/8) = 0.91772388981479288894 . . . and the
coefficients 𝑏

𝑘
are given in Table 9.

Table 14: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/5,2
(𝑤).

𝑘 𝑏
𝑘

1 1.1018024908797127327
2 1.0767885838427981399
3 1.0738409976565079202
4 1.0735918587371880661
5 1.0736317220842957450
6 1.0736613247947013790
7 1.0736705276938335590
8 1.0736719763838959650
9 1.0736717194169915685
10 1.0736714224350730386
11 1.0736712961819915731
12 1.0736712656573585536
13 1.0736712658337183805
14 1.0736712703837243345
15 1.0736712730893571885
16 1.0736712740367576320
17 1.0736712741927198324
18 1.0736712741349301121
19 1.0736712740710214284
20 1.0736712740390593289
21 1.0736712740290815387
22 1.0736712740281108537
23 1.0736712740292769055
24 1.0736712740302628755
25 1.0736712740307308734
26 1.0736712740308721433
27 1.0736712740308820173
28 1.0736712740308614201
29 1.0736712740308445464
30 1.0736712740308363495
31 1.0736712740308337294
32 1.0736712740308334598
33 1.0736712740308337982
34 1.0736712740308341087
35 1.0736712740308342730
36 1.0736712740308343326
37 1.0736712740308343434
38 1.0736712740308343390
39 1.0736712740308343332
40 1.0736712740308343296
41 1.0736712740308343281
42 1.0736712740308343277
43 1.0736712740308343277
44 1.0736712740308343278
45 1.0736712740308343278
46 1.0736712740308343279
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Table 15: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/6,2
(𝑤).

𝑘 𝑏
𝑘

1 1.0823392225683790674
2 1.0649027775627960975
3 1.0631672235921470234
4 1.0630530019556810014
5 1.0630738792005841325
6 1.0630852477868224812
7 1.0630879790229538911
8 1.0630882395356188174
9 1.0630881350924325915
10 1.0630880687069684272
11 1.0630880487821691319
12 1.0630880460752193502
13 1.0630880468406782122
14 1.0630880475089981383
15 1.0630880477592756779
16 1.0630880478102509927
17 1.0630880478069487489
18 1.0630880477988781918
19 1.0630880477949003960
20 1.0630880477937454972
21 1.0630880477936234680
22 1.0630880477937097855
23 1.0630880477937763019
24 1.0630880477938030729
25 1.0630880477938094515
26 1.0630880477938094111
27 1.0630880477938084584
28 1.0630880477938078846
29 1.0630880477938076743
30 1.0630880477938076305
31 1.0630880477938076352
32 1.0630880477938076449
33 1.0630880477938076504
34 1.0630880477938076523
35 1.0630880477938076527
36 1.0630880477938076527
37 1.0630880477938076526
38 1.0630880477938076525

For 𝛼 = 1/9 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/9,1
(𝑤) = −

35

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (8/9)

(1 − 𝑤)
36

𝑤
,

(27)

where 1/Γ (8/9) = 0.92785136085833011479 . . . and the
coefficients 𝑏

𝑘
are given in Table 10.

Table 16: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/7,2
(𝑤).

𝑘 𝑏
𝑘

1 1.0690715004486243979
2 1.0562222079392582146
3 1.0551161172778792415
4 1.0550572191430135037
5 1.0550686438367760540
6 1.0550735765579806638
7 1.0550745305844060375
8 1.0550745824286880798
9 1.0550745442484434695
10 1.0550745270114378657
11 1.0550745231398621545
12 1.0550745229039529066
13 1.0550745231150647888
14 1.0550745232236878646
15 1.0550745232523526379
16 1.0550745232552728533
17 1.0550745232539308640
18 1.0550745232530327777
19 1.0550745232527427584
20 1.0550745232526945061
21 1.0550745232527008669
22 1.0550745232527090401
23 1.0550745232527124342
24 1.0550745232527132611
25 1.0550745232527133099
26 1.0550745232527132427
27 1.0550745232527132021
28 1.0550745232527131884
29 1.0550745232527131859
30 1.0550745232527131861
31 1.0550745232527131865
32 1.0550745232527131867
33 1.0550745232527131868

For 𝛼 = 1/10 and 𝛽 = 1, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/10,1
(𝑤) = −

32

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (9/10)

(1 − 𝑤)
33

𝑤
,

(28)

where 1/Γ (9/10) = 0.93577872091287277317 . . . and the
coefficients 𝑏

𝑘
are given in Table 11.

For 𝛼 = 1/3 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/3,2
(𝑤) = −

91

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (5/3)

(1 − 𝑤)
92

𝑤
,

(29)

where 1/Γ (5/3) = 1.1077321674324724694 . . . and the
coefficients 𝑏

𝑘
are given in Table 12.
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Table 17: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/8,2
(𝑤).

𝑘 𝑏
𝑘

1 1.0594605373309141740
2 1.0495986360361847141
3 1.0488511439374145246
4 1.0488179924913977120
5 1.0488245771415334177
6 1.0488269350920946859
7 1.0488273133611761220
8 1.0488273231954621562
9 1.0488273085970012075
10 1.0488273034622550713
11 1.0488273025690472404
12 1.0488273025660372711
13 1.0488273026212509980
14 1.0488273026418176097
15 1.0488273026458036695
16 1.0488273026458799051
17 1.0488273026456156560
18 1.0488273026455029277
19 1.0488273026454771037
20 1.0488273026454752946
21 1.0488273026454766352
22 1.0488273026454773654
23 1.0488273026454775715
24 1.0488273026454775998
25 1.0488273026454775944
26 1.0488273026454775895
27 1.0488273026454775877
28 1.0488273026454775873

For 𝛼 = 1/4 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/4,2
(𝑤) = −

63

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (7/4)

(1 − 𝑤)
64

𝑤
,

(30)

where 1/Γ (7/4) = 1.0880652521310173081 . . . and the
coefficients 𝑏

𝑘
are given in Table 13.

For 𝛼 = 1/5 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/5,2
(𝑤) = −

46

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (9/5)

(1 − 𝑤)
47

𝑤
, (31)

where 1/Γ (9/5) = 1.0736712740308343279 . . . and the
coefficients 𝑏

𝑘
are given in Table 14.

For 𝛼 = 1/6 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/6,2
(𝑤) = −

38

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (11/6)

(1 − 𝑤)
39

𝑤
,

(32)

Table 18: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/9,2
(𝑤).

𝑘 𝑏
𝑘

1 1.0521837208912933272
2 1.0443758743852848005
3 1.0438473880668843474
4 1.0438274217379570018
5 1.0438314036520292794
6 1.0438326220325679883
7 1.0438327879063812056
8 1.0438327888679432382
9 1.0438327828921939645
10 1.0438327811719258151
11 1.0438327809347620508
12 1.0438327809451382984
13 1.0438327809605757500
14 1.0438327809650783542
15 1.0438327809657296823
16 1.0438327809656925712
17 1.0438327809656403057
18 1.0438327809656237760
19 1.0438327809656210337
20 1.0438327809656210870
21 1.0438327809656212900
22 1.0438327809656213646
23 1.0438327809656213797
24 1.0438327809656213804
25 1.0438327809656213796
26 1.0438327809656213792
27 1.0438327809656213791

where 1/Γ (11/6) = 1.0630880477938076525 . . . and the
coefficients 𝑏

𝑘
are given in Table 15.

For 𝛼 = 1/7 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/7,2
(𝑤) = −

33

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (13/7)

(1 − 𝑤)
34

𝑤
,

(33)

where 1/Γ (13/7) = 1.0550745232527131868 . . . and the
coefficients 𝑏

𝑘
are given in Table 16.

For 𝛼 = 1/8 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/8,2
(𝑤) = −

28

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (15/8)

(1 − 𝑤)
29

𝑤
,

(34)

where 1/Γ (15/8) = 1.0488273026454775873 . . . and the
coefficients 𝑏

𝑘
are given in Table 17.
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Table 19: Coefficients 𝑏
𝑘
for the inverseMittag-Leffler function−𝑧 =

𝐸
−1

1/10,2
(𝑤).

𝑘 𝑏
𝑘

1 1.0464858468535605019
2 1.0401508480560282303
3 1.0397635665515442126
4 1.0397508768185132109
5 1.0397533885835924940
6 1.0397540594403559415
7 1.0397541383662199550
8 1.0397541376605313080
9 1.0397541350429188308
10 1.0397541344064541458
11 1.0397541343357544813
12 1.0397541343417232130
13 1.0397541343464255068
14 1.0397541343475460327
15 1.0397541343476671587
16 1.0397541343476507388
17 1.0397541343476394778
18 1.0397541343476366678
19 1.0397541343476363331
20 1.0397541343476363726
21 1.0397541343476364046
22 1.0397541343476364135
23 1.0397541343476364148
24 1.0397541343476364147
25 1.0397541343476364146

For 𝛼 = 1/9 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/9,2
(𝑤) = −

27

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (17/9)

(1 − 𝑤)
28

𝑤
,

(35)

where 1/Γ (17/9) = 1.0438327809656213791 . . . and the
coefficients 𝑏

𝑘
are given in Table 18.

For 𝛼 = 1/10 and 𝛽 = 2, the equation for the inverse is
given by

−𝑧 = 𝐸
−1

1/10,2
(𝑤) = −

25

∑

𝑘=1

𝑏
𝑘
(1 − 𝑤)

𝑘
−

1

Γ (19/10)

(1 − 𝑤)
26

𝑤
,

(36)

where 1/Γ (19/10) = 1.0397541343476364146 . . . and the
coefficients 𝑏

𝑘
are given in Table 19.

6. Summary

A finite series representation of the inverse Mittag-Leffler
function has been found for a range of the parameters 𝛼 and
𝛽; specifically 0 < 𝛼 < 1/2 for 𝛽 = 1 and for 𝛽 = 2.
Various properties of the coefficients 𝑏

𝑘
in the finite series

have been examined. In addition, a formula for 𝑏
𝑘
as 𝑘 → ∞

is established and the limiting cases were investigated. These
properties are illustrated in 16 examples of inverse Mittag-
Leffler functions. Determining the value of the argument
of a Mittag-Leffler function given the value of the function
is not an easy problem and the finite series representation
of the inverse Mittag-Leffler function greatly expedites their
evaluation and represents a significant advancement.
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The linear canonical transform, which can be looked at the generalization of the fractional Fourier transform and the Fourier
transform, has received much interest and proved to be one of the most powerful tools in fractional signal processing community.
A novel watermarking method associated with the linear canonical transform is proposed in this paper. Firstly, the watermark
embedding and detecting techniques are proposed and discussed based on the discrete linear canonical transform. Then the Lena
image has been used to test this watermarking technique.The simulation results demonstrate that the proposed schemes are robust
to several signal processing methods, including addition of Gaussian noise and resizing. Furthermore, the sensitivity of the single
and double parameters of the linear canonical transform is also discussed, and the results show that the watermark cannot be
detected when the parameters of the linear canonical transform used in the detection are not all the same as the parameters used
in the embedding progress.

1. Introduction

Over the past several decades, digital watermarking become
more andmore important in the application of copyright pro-
tection for digital media as image, video, and audio [1–3]. A
digital watermark is a codewhich embeds copyright informa-
tion including sequence number, a picture, and text into the
multimedia for copyright protection. The watermark must
be easily detected by the copyright owner, the creator of the
work, and the authorized consumer while is hardly read by
the people who want to counterfeit the copyright of the data
without authorization. Digital watermarking is an emerging
technology in signal processing and communications which
is under active development.Themethods used to embed the
watermark influence both the robustness and the detection
algorithm. One of the hottest directions of the watermarking
method is the watermarking in the transform domain, for
example, in the discrete Fourier transform (DFT) domain [4–
6] and in the discrete cosine transform (DCT) domain [7, 8],
and thewatermark proposed in [7] is twoGaussian sequences
and it is embedded in the magnitude of the DCT transforma-
tion coefficients. A wealth of information and references can
be found on the site of Watermarking World [9].

Recently, with the development of the fractional signal
and processing technologies, the research results of the
fractional Fourier transform (FRFT) and fractional Fourier
operators have shown that the fractional domain signal
processing can be looked at as one of the hottest research
topics for nonstationary signals processing [10–15]. Several
digital watermarking methods are proposed in the FRFT
Domain [16–19] base on these novel results of the FRFT.
A nonsensical watermark embedded in the FRFT domain
was proposed in [16], and it has a more security because of
the free parameter of the FRFT. Bultheel [18] describes the
implementation of a watermark embedding technique in the
FRFT domain in detail and also discusses the embedding
several watermarks at the same time for images.The practical
detecting threshold proposed in [18] is one of the most
important contributions of the paper. All of these results,
which come from the digital watermarking technology in the
FRFT domain, have shown that the watermarking method in
these transform domains can be more secure and hard to be
detected compared to the traditional method in the classical
DFT and DCT domain.

The linear canonical transform (LCT) [20], which can
be looked at as the further generalization of the fractional
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Fourier transform, is introduced in the 1970s with three
free parameters and has been proven to be one of the most
powerful tools for nonstationary signal processing. The well-
known signal processing operations, such as the Fourier
transform (FT), the FRFT, the Fresnel transform, and the
scaling operations, are all special cases of the LCT [20]. The
digital computation methods of the LCT have been proposed
in [21–24], and the sampling theories associated with the
LCT have been studied in [25–29], and the eigenfunction
[30], the convolution and product function [31, 32], and
the uncertainty principle [33] have also been investigated in
detail. Therefore, understanding the LCT may help to gain
more insight into its special cases and to carry the knowledge
gained from one subject to others [20].

However, for the best of our knowledge, there are no
papers published about thewatermarking in the LCTdomain.
So it is interesting and worthwhile to investigate the water-
marking method and technique associated with the LCT.
Focusing on this problem, a novel watermarking technique
based on the discrete LCT proposed in [23] is proposed in
this paper. The experiment results show that the embedded
watermarks are both perceptually invisible and robust to
various image processing techniques. The remaining of this
paper can be divided into the following sections. The LCT
is described in Section 2. Section 3 develops watermark
embedding in LCT domain. Numerical examples and the
discussion of the simulation results are given in Section 4, and
Section 5 is the conclusion.

2. The Linear Canonical Transform

2.1. The Continuous LCT. The continuous LCT of a signal
𝑓(𝑥) with parameter matrix𝐴 = ( 𝑎 𝑏

𝑐 𝑑
) can be defined as [20]

𝑓
𝐴
(𝑦) = 𝐶

𝐴
(𝑓) (𝑦) = ∫

+∞

−∞

𝑓 (𝑥) 𝐶
𝐴
(𝑥, 𝑦) 𝑑𝑥,

𝐶
𝐴
(𝑥, 𝑦)

= √
1

𝑏
𝑒
−𝑗𝜋/4 exp{𝑗𝜋 [(

𝑎

𝑏
) 𝑥
2
− (

2

𝑏
) 𝑥𝑦 + (

𝑑

𝑏
)𝑦
2
]} ,

(1)

where 𝐶
𝐴
is the LCT operator and 𝑎, 𝑏, 𝑐, 𝑑 are real parame-

ters. Furthermore the constraint 𝑎𝑑−𝑏𝑐 = 1must be satisfied
to make the transform unitary. Actually the LCT has three
free parameters; if we let 𝑎 = 𝛾/𝛽, 𝑏 = 1/𝛽, 𝑐 = −𝛽 + 𝛼𝛾/𝛽,
𝑑 = 𝛼/𝛽, the LCT of 𝑓(𝑥) can be rewritten as [23]

𝑓
𝐴
(𝑦) = 𝐶

𝐴
(𝑓) (𝑦) = ∫

+∞

−∞

𝑓 (𝑥) 𝐶
𝐴
(𝑥, 𝑦) 𝑑𝑥,

𝐶
𝐴
(𝑥, 𝑦) = √𝛽𝑒

−𝑗𝜋/4 exp [𝑗𝜋 (𝛾𝑥
2
− 2𝛽𝑥𝑦 + 𝛼𝑦

2
)] ,

(2)

where parameter matrix

𝐴 = (
𝑎 𝑏

𝑐 𝑑
) = (

𝛾

𝛽

1

𝛽

−𝛽 +
𝛼𝛾

𝛽

𝛼

𝛽

) . (3)

Two of interesting and important properties of LCT are
reversibility and index additivity. Index additivitymeans that,
if two LCTs with matrices 𝐴

1
, 𝐴
2
operate in a successive

manner, then the equivalent transform is an LCT with the
matrix𝐴 = 𝐴

1
𝐴
2
. Because of the index additivity, the inverse

of the LCT with matrix 𝐴 is an LCT with the matrix 𝐴
−1.

With the development of the fractional signal processing
method, the properties and applications of the LCThave been
investigated in detail; for more information associated with
the continuous LCT, one can refer to [14, 15, 20].

2.2. The Discrete LCT. Besides the continuous LCT, we often
encounter the computation of the discrete LCT because we
must process discrete data by computer. There are lots of
discrete and the fast LCT methods proposed in the literature
[21, 23, 24]. If we set 𝛿

𝑥
= 𝛿
𝑦
= (𝑁|𝛽|)

−1/2, 𝑥 = 𝑛𝛿
𝑥
, 𝑦 = 𝑚𝛿

𝑦
,

and𝑚, 𝑛 = 0, 1, . . . , 𝑁 − 1, the𝑁 point discrete LCT (DLCT)
of 𝑓(𝑛) can be defined as [23]

𝑓
𝐴
(𝑚) =

𝑁−1

∑

𝑛=0

𝑓 (𝑛) 𝐶
𝐴
(𝑚, 𝑛) , (4)

where

𝐶
𝐴
(𝑚, 𝑛)

=
√𝛽𝑒
−(𝑗𝜋/4)

√𝑁
𝛽


exp[𝑗𝜋
1

𝑁
𝛽


(𝛼𝑚
2
− 2𝛽𝑚𝑛 + 𝛾𝑛

2
)] .

(5)

This kind of DLCT method is available for image processing,
because it is interval-independent and unitary. Moreover, it
also has the property of index additivity.

Following this method, the two-dimensional DLCT of a
size𝐻 × 𝑁 image 𝐼(ℎ, 𝑛) can be rewritten as

𝐼
𝐴
(𝑘, 𝑙) =

𝑁−1

∑

𝑛=0

𝐶
𝐴
(𝑙, 𝑛)

𝐻−1

∑

ℎ=0

𝐼 (ℎ, 𝑛) 𝐶
𝐴
(𝑘,𝑚) (6)

with 𝑘 = 0, 1, . . . , 𝐻 − 1, 𝑙 = 0, 1, . . . , 𝑁 − 1, and 𝐶
𝐴
(𝑘,𝑚),

𝐶
𝐴
(𝑙, 𝑛) being the same as (4). It is shown in [23] that this

kind of DLCT is analogous to the DFT and approximates the
continuous LCT in the same sense that theDFT approximates
the continuous Fourier transform.Wewill use this method to
compute the 2D LCT of an image in the following sections.

3. Watermark Embedding and Detecting

It is well known that the watermarking process contains the
watermark embedding and detecting steps; we propose a new
kind ofwatermarking scheme following the idea of [18] in this
section.

3.1. Watermark Embedding. The watermark itself is a
sequence of𝑀 complex numbers [18], denoted by 𝑠

𝑖
= 𝑐
𝑖
+𝑗𝑑
𝑖
,

𝑖 = 1, 2, . . . ,𝑀, and the real and imaginary parts of 𝑠
𝑖
are

obtained from a normal distribution with mean zero
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and variance 𝜎
2
/2. In order to embed this watermark

into an image 𝐼 of size 𝐻 × 𝑁, we first computed the
DLCT of this image 𝐼 to derive the transform coefficients
{𝑆
𝑖
: 𝑖 = 1 ×𝑁} and then reordered the transform coefficients

in nonincreasing sequence as follows:

𝑆
𝑖
= 𝐶
𝑖
+ 𝑗𝐷
𝑖
:
𝑆𝑖

 ≤
𝑆𝑖+1

 , 𝑖 = 1, 2 . . . 𝐻 × 𝑁. (7)

Similar with the method in [16], we chose the middle
reordered transform coefficients to embed the watermarks;
in other words, we embed the watermark into the coefficients
𝑆
𝑖
, 𝑖 = 𝐿 + 1, 𝐿 + 2, . . . , 𝐿 +𝑀. This is because if we embedded

the watermarks in the lowest coefficients, they would be
sensitive to noise removing or compressing operations, while
if we embedded the watermarks in the highest coefficients,
they would significantly affect the imperceptibility of the
watermarks. So, the watermarks were embedded as follows:

𝑆
𝑤

𝑖
= 𝑆
𝑖
+ 𝑐
𝑖

𝐶𝑖
 + 𝑗𝑑

𝑖

𝐷𝑖
 , 𝑖 = 𝐿 + 1, . . . , 𝐿 + 𝑀, (8)

where 𝑆
𝑤

𝑖
is the watermarked image of 𝐼 and (𝑐

𝑖
, 𝑑
𝑖
) is the

watermarks sequence.

3.2.WatermarkDetecting. When thewatermark is embedded
in the image, then the image is transferred to the watermark
detection process to see whether it contains watermark. The
detection of the watermark can be described like this: given
the watermarked image 𝐼

𝑎, maybe under some attacks such
as low pass and median filtering, addition of Gaussian noise,
and resizing, we compute the DLCT of 𝐼

𝑎 and obtain the
transform coefficients 𝑆

𝑎 and then compute the detection
value [16]:

𝑑 =

𝐿+𝑀

∑

𝑖=𝐿+1

(𝑐
𝑖
− 𝑗𝑑
𝑖
) 𝑆
(𝑎)

𝑖
. (9)

The threshold can be achieved according to the statistical
performance of the proposed algorithm. The expected value
of 𝑑 is

𝐸 [𝑑] =
𝜎
2

2

𝐿+𝑀

∑

𝑖=𝐿+1

(
𝐶𝑖

 +
𝐷𝑖

) . (10)

In [16], Djurovic et al. propose a useful and simple threshold
as𝐸[𝑑]/2; when the value of𝑑 is larger than the threshold, it is
decided that a watermark has been detected. Otherwise, there
is no watermark. However, it is shown in [18] that this kind
of threshold suffers from the false conclusion; therefore we
use an adaptive threshold proposed in [18], because it is more
practical when we deal with the image after some attacks.
Therefore, the threshold can be computed by the following
steps.

(i) First, we compute the value of 𝑑 of all the random
watermarks (maybe 1000 watermarks).

(ii) Then, we compute the average (say 𝜇) and the stan-
dard deviation (say 𝜎) of these 𝑑.

(iii) At last, we can achieve the threshold 𝜏 = 𝜇+𝑝𝜎where
𝑝 is a suitable number.

4. Simulation Examples

4.1. Watermark Embedding and Detecting. The Lena (512 ×

512) was chosen as the test image in the simulations. Accord-
ing to some experiments, the value of 𝑝 in threshold 𝜏 =

𝜇+𝑝𝜎was chosen to be 5.The 2DDLCT parameters are 𝛼
1
=

𝛼
2
= 0.2, 𝛽

1
= 𝛽
2
= 0.6, 𝛾

1
= 𝛾
2
= 0.1 and can be described as

(𝛼
1
, 𝛽
1
, 𝛾
1
, 𝛼
2
, 𝛽
2
, 𝛾
2
) = (0.2, 0.6, 0.1, 0.2, 0.6, 0.1). Therefore,

the 2D DLCT parameter matrixes can be rewritten as

𝐴
1
= 𝐴
2
= (

𝛾

𝛽

1

𝛽

−𝛽 +
𝛼𝛾

𝛽

𝛼

𝛽

) = (

1

6

5

3

−
17

30

1

3

) , (11)

and the 2DDLCT is performed based on (6).The simulations
performed using Matlab version 7.5.0 in Windows 8 system
and the processer of the system is Intel(R) Core(TM) i5-
3337U; the CPU and the RAMof the system are 1.80GHz and
4.00GB, respectively. We chose 𝐿 = 96000,𝑀 = 12000, 𝜎2 =
60 in the simulation. In order to test the performance of the
proposed method, we use the PSNR and the elapsed time of
the process to measure the performance of the watermarking
technology [18].

The original and watermarked images are shown in
Figures 1(a) and 1(b), respectively. It is shown that the water-
marked picture Figure 1(b) is almost the same as the original
Figure 1(a). The detection of the correct watermark from the
watermarked image over the other 1000 different watermarks,
which are also Gaussian white noise with variance 𝜎

2

𝐺
=

𝜎
2
/2 = 30. The detection result is plotted in Figure 2. In this

case, the PSNR and the elapsed time are 39.27 dB and 16.147
seconds, respectively.

In Figure 2, we can easily find that the detection value
of the correct watermark is significantly larger than the
threshold and other false watermarks. So, the watermark can
be detected by the comparison.

4.2. The Robustness. In this subsection, we investigate the
robustness of the algorithmafter the following attacks: adding
noise, upper cropping, central cropping, and central cropping
after adding noise. These experiments have been performed
as the following.

Firstly, Figures 3 and 4 plot the robustness of the
watermarking under the Gaussian noise. Figure 3(a) is the
noisy image of the watermarked image in Figure 1(b) by
adding mean zero and variance 200 Gaussian noise, while
the variance of Figure 4(a) is 600. Figures 3(b) and 4(b)
are detection results of these two situations, the PSNR are
19.76 dB and 15.08 dB, the elapsed times are 9.75 and 26.82
seconds, respectively. This result shows that the method is
robust against noise, because the watermark can be still
detected.

Secondly, we cropped the watermarked image Figure 1(b)
from the size 512×512 to 412×212 and 212×212, and obtain
Figures 5(a) and 6(a), respectively. The detection results are
shown in Figures 5(b) and 6(b), respectively. It is shown in
Figures 5 and 6 that the watermark can also be detected. In
this situation, the PSNR are 1.51 dB and 0.82 dB, the elapsed
time are 28.70 and 29.65 seconds, respectively.
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(a) (b)

Figure 1: (a) The original image of “Lena”, (b) the watermarked image of “Lena”.
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Figure 2: The detection result from the watermarked Figure 1(b).
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Figure 3: (a) The noisy “Lena,” var = 200. (b) The detection of the noisy “Lena.”
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Figure 4: (a) The noisy “Lena,” var = 600. (b) The detection of the noisy “Lena.”
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Figure 5: (a) The upper cropped image of Figure 1(b). (b) The detection of upcropped image.

Thirdly, we perform the upper cropping of the noisy
image in Figures 3(a) and 4(a) in the same way as in Figure
5(a) and obtain Figures 7(a) and 8(a). The detection results
are plotted in Figures 7(b) and 8(b), respectively. It is shown
in Figure 7 that the watermark can also be detected for the
upper cropped noisy watermarked image of variance 200.We
can still detect the watermark for the upper cropped noisy
image of variance 600 as shown in Figure 8. In this situation,
the PSNR are 1.50 dB and 1.48 dB, and the elapsed times are
28.70 and 29.288 seconds, respectively.

Lastly, we central crop the noisy image in Figures 3(a)
and 4(a) in the same way as in Figure 6(a) and obtain Figures
9(a) and 10(a).The detection results are plotted in Figure 9(b)

and Figure 10(b), respectively. It is shown in Figure 9 that the
watermark can also be detected for the central cropped noisy
watermarked image of variance 200. We can still detect the
watermark for the central cropped noisy image of variance
600 as shown in Figure 10. In this situation, the PSNR are
0.8 dB and 0.78 dB, and the elapsed times are 29.45 and 29.03
seconds, respectively.

From these simulations, it can be concluded that the
proposedmethod is robust under the common image attacks,
such as the noise, crops, and the crops of the noisy image.
It should be also noticed from Figures 8 and 10 that the
proposed method still works under the attack of cropping if
the variance of the adding noise is about 600.
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Figure 6: (a) The central cropped image of Figure 1(b). (b) The detection of central cropped image.
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Figure 7: (a) The upper cropped noisy “Lena” of Figure 3(a). (b) The detection of the upcropped noisy “Lena.”

4.3. The Parameters’ Sensitivity. As compared to the tradi-
tional watermarkingmethod, for example, the DFT andDCT
domainmethod [5–8], the advantage of the proposedmethod
is that it has threemore free parameters, and this can enhance
the security and robustness of the watermarking images. It is
well known that the parameters of the LCT are twomore than
the parameters of the FRFT, and for the 2D-LCT there are
six parameters. So, when we need to detect the watermarks,
we not only need the watermarked keys but also need the six
parameters which is three times the number of the FRFT’s
parameter.Therefore, it is more difficult for the unauthorized
person to detect the watermark and destroy it.

In order to show the advantage of the LCT based
watermarking method proposed in this paper, the sensitivity

of the parameter (𝛼
1
, 𝛽
1
, 𝛾
1
, 𝛼
2
, 𝛽
2
, 𝛾
2
) is discussed in this

subsection. We use the watermarked image in Figure 1(b) as
tested image, we set (𝛼

2
, 𝛽
2
, 𝛾
2
) = (0.2, 0.6, 0.1), and do not

know the value of 𝛼
1
, 𝛽
1
, and 𝛾

1
in simulations; the value of 𝑑

is sensitive with the 𝛼
1
, 𝛽
1
, and 𝛾

1
as plotted in Figure 11.

It is shown in Figure 11 that the value of 𝑑 is signif-
icantly larger when the value of 𝛼

1
, 𝛽
1
, and 𝛾

1
are more

correct than the false values of the parameters. For example,
when the unauthorized people know (𝛽

1
, 𝛾
1
, 𝛼
2
, 𝛽
2
, 𝛾
2
) =

(0.6, 0.1, 0.2, 0.6, 0.1), the correct place of the watermark, and
the correct watermark but not sure about the value of 𝛼

1
, the

watermark still cannot be detected because only the 𝑑 value
of correct 𝛼

1
can reach the peak according to Figure 11(a). We

can also see that the sensitivity of 𝛼
1
and 𝛽

1
is good, while



Mathematical Problems in Engineering 7

(a)

0.5

1

1.5

2

2.5

3

3.5

M
ag

ni
tu

de

100 200 300 400 500 600 700 800 900 1000

×10
4

d

(b)

Figure 8: (a) The upcropped noisy “Lena” of Figure 4(a). (b) The detection of the upcropped noisy “Lena.”
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Figure 9: (a) The central cropped noisy “Lena” of Figure 3(a). (b) The detection of the central cropped noisy “Lena.”

the sensitivity of 𝛾
1
is not so gratifying especially when 𝛾

1
is

between 0.25 and 0.5 in Figure 11(c).

5. Conclusion

A novel watermarking technique based on the discrete
LCT is proposed in this paper. In this kind of method,
the watermarks are embedded in the middle coefficients
in the transform domain, and the detecting threshold is
determined adaptively. The simulations for the robustness of
the proposed method under the common image processing
are performed, and the simulation results fit the theories
well. The proposed watermarking is more secure than the
watermarking based on FRFT or DCT domain because it

has more free parameters. We also discussed the parameter’s
sensitivity of the proposed method in the paper and showed
that this kind of watermarking method is sensitive to the
parameters of the LCT.
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Figure 10: (a) The central cropped noisy “Lena” of Figure 4(a). (b) The detection of the central cropped noisy “Lena.”
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The fundamental solutions to time-fractional advection diffusion equation in a plane and a half-plane are obtained using the Laplace
integral transform with respect to time 𝑡 and the Fourier transforms with respect to the space coordinates 𝑥 and 𝑦. The Cauchy,
source, and Dirichlet problems are investigated.The solutions are expressed in terms of integrals of Bessel functions combined with
Mittag-Leffler functions. Numerical results are illustrated graphically.

1. Introduction

The classical advection diffusion equation

𝜕𝑐

𝜕𝑡
= 𝑎Δ𝑐 − k ⋅ ∇𝑐, (1)

where 𝑎 is the diffusivity coefficient, k is the velocity vector,
has several physical interpretations in terms of Brownian
motion, diffusion or heat transportwith external force orwith
additional velocity field, diffusion of charge in the electrical
field on comb structure, transport processes in porousmedia,
groundwater hydrology, and so forth [1–7].

In the case of one spatial coordinate 𝑥, (1) has the
following form:

𝜕𝑐

𝜕𝑡
= 𝑎

𝜕
2
𝑐

𝜕𝑥2
− V

𝜕𝑐

𝜕𝑥
. (2)

Investigation of different physical phenomena in media
with complex internal structure has led to considering dif-
ferential equations with derivatives of fractional order. The
space-fractional [8–19], time-fractional [20–31], and space-
time-fractional [32–39] generalizations of the advection dif-
fusion equation were studied by many authors. In the major-
ity of the abovementioned papers, the fractional generaliza-
tions of one-dimensional equation (2)were considered. In the
papers dealing with space-fractional or space-time-fractional

equations, one term with space derivative was substituted
by the corresponding term with the fractional derivative
[8, 9, 11–19, 33, 39] or both terms with space derivatives
had fractional order [32, 35–38]. Several numerical schemes
were proposed: the implicit difference method based on
the shifted Grünwald-Letnikov approximation [14, 37], the
explicit difference scheme [37], transformation of fractional
differential equation into a system of ordinary differential
equations and using the method of lines [15], the random
walk algorithms [16, 17], the spectral regularization method
[28], the Crank-Nicholson difference scheme [29], Adomian’s
decomposition [26], a spatial and temporal discretization
[30, 39], the fractional variational iteration method [31], and
the homotopy perturbation method [27, 38].

In [24, 25], the analytical solution to one-dimensional
time-fractional advection diffusion equation was obtained in
terms of integrals of the𝐻-function.

In this paper, we study the fundamental solutions to time-
fractional advection diffusion equation

𝜕
𝛼
𝑐

𝜕𝑡𝛼
= 𝑎 Δ𝑐 − k ⋅ ∇𝑐 (3)

in a plane and a half-plane. The Laplace transform with
respect to time and the Fourier transform with respect to
the space coordinates are used. The Cauchy and the source
problems in a plane and theDirichlet problem for a half-plane
are solved. The analytical solutions are expressed in terms of
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integrals of the Mittag-Leffler functions. Numerical results
are illustrated graphically.

In (3) we use the Caputo fractional derivative [40–42]:

d𝛼𝑐 (𝑡)
d𝑡𝛼

=

{{{{{

{{{{{

{

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑛−𝛼−1 d𝑛𝑐 (𝜏)

d𝜏𝑛
d𝜏,

𝑛 − 1 < 𝛼 < 𝑛,

d𝑛𝑐 (𝑡)
d𝑡𝑛

, 𝛼 = 𝑛,

(4)

where Γ(𝛼) is the gamma function. For its Laplace transform
rule, the Caputo fractional derivative requires the knowledge
of the initial values of the function 𝑐(𝑡) and its integer
derivatives of order 𝑘 = 1, 2, . . . , 𝑛 − 1:

L{
d𝛼𝑐 (𝑡)
d𝑡𝛼

} = 𝑠
𝛼
L {𝑐 (𝑡)} −

𝑛−1

∑

𝑘=0

𝑐
(𝑘)

(0
+
) 𝑠
𝛼−1−𝑘

,

𝑛 − 1 < 𝛼 < 𝑛,

(5)

where 𝑠 is the transform variable.

2. The Fundamental Solution to the Cauchy
Problem

Consider the time-fractional advection diffusion equation

𝜕
𝛼
𝑐

𝜕𝑡𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥2
+
𝜕
2
𝑐

𝜕𝑦2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦
,

−∞ < 𝑥 < ∞, −∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(6)

under initial condition

𝑡 = 0 : 𝑐 = 𝑝
0
𝛿 (𝑥) 𝛿 (𝑦) . (7)

In (7) we have introduced the constantmultiplier𝑝
0
to obtain

the nondimensional quantity 𝑐 (see (23)) displayed in Figures.
The zero conditions at infinity are also imposed:

lim
𝑥→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0. (8)

Introducing the new sought function

𝑐 (𝑥, 𝑦, 𝑡) = exp[
V (𝑥 + 𝑦)

2𝑎
] 𝑢 (𝑥, 𝑦, 𝑡) (9)

and taking into account that for the Dirac delta function,
𝑓(𝑥)𝛿(𝑥) = 𝑓(0)𝛿(𝑥), the initial-value problem (6)–(8) is
reduced to the following ones:

𝜕
𝛼
𝑢

𝜕𝑡𝛼
= 𝑎(

𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
) −

V2

2𝑎
𝑢, (10)

𝑡 = 0 : 𝑢 = 𝑝
0
𝛿 (𝑥) 𝛿 (𝑦) , (11)

lim
𝑥→±∞

𝑢 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑢 (𝑥, 𝑦, 𝑡) = 0. (12)

Next, we use the Laplace transform with respect to time
𝑡 (designated by the asterisk) and the double exponential
Fourier transformwith respect to the space coordinates𝑥 and
𝑦 (marked by the tilde). In the transform domain, we get

̃̃𝑢
∗

=
𝑝
0

2𝜋

𝑠
𝛼−1

𝑠𝛼 + 𝑎 (𝜉2 + 𝜂2) + V2/2𝑎
. (13)

Here, 𝑠 is the Laplace transform variable and 𝜉 and 𝜂 are the
Fourier transform variables.

Inversion of the integral transforms gives

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑝
0

4𝜋2
∫

∞

−∞

∫

∞

−∞

𝐸
𝛼
{−[𝑎 (𝜉

2
+ 𝜂
2
) +

V2

2𝑎
] 𝑡
𝛼
}

× cos (𝑥𝜉) cos (𝑦𝜂) d𝜉 d𝜂,

(14)

where the formula [40–42]

L
−1
{

𝑠
𝛼−1

𝑠𝛼 + 𝑏
} = 𝐸

𝛼
(−𝑏𝑡
𝛼
) (15)

has been used with𝐸
𝛼
(𝑧) being theMittag-Leffler function in

one parameter 𝛼:

𝐸
𝛼
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 1)
, 𝛼 > 0, 𝑧 ∈ 𝐶. (16)

Solution (14) is not convenient for numerical calculations.
To obtain the solution amenable to numerical treatment, we
introduce the polar coordinates in the (𝜉, 𝜂)-plane:

𝜉 = 𝜌 cos 𝜃, 𝜂 = 𝜌 sin 𝜃. (17)

Hence,

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑝
0

4𝜋2
∫

∞

0

∫

2𝜋

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) 𝜌 d𝜌 d𝜃.
(18)

Due to periodic properties of the integrand

∫

2𝜋

0

cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) d𝜃

= 4∫

𝜋/2

0

cos (𝑥𝜌 cos 𝜃) cos (𝑦𝜌 sin 𝜃) d𝜃.

(19)

Changing variable 𝑤 = sin 𝜃 and taking into account the
following integral [43]:

∫

1

0

cos (𝑝 √1 − 𝑥2)

√1 − 𝑥2
cos (𝑞𝑥) d𝑥

=
𝜋

2
𝐽
0
(√𝑝2 + 𝑞2) ,

(20)
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Figure 1: Dependence of the fundamental solution to the Cauchy
problem on distance (the classical advection diffusion equation, 𝛼 =

1).

where 𝐽
𝑛
(𝑧) is the Bessel function of the order 𝑛, we arrive at

𝑢 (𝑥, 𝑦, 𝑡) =
𝑝
0

2𝜋
∫

∞

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥2 + 𝑦2𝜌) 𝜌 d𝜌

(21)

and, returning to the quantity 𝑐(𝑥, 𝑦, 𝑡) according to (9), we
get

𝑐 (𝑥, 𝑦, 𝑡) =
𝑝
0

2𝜋
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥2 + 𝑦2𝜌) 𝜌 d𝜌.

(22)

The particular case of solution (22) corresponding to the
time-fractional diffusion equation (V = 0) was considered in
[44, 45].

The results of numerical computations for 𝑦 = 0 are
presented in Figure 1 for 𝛼 = 1 and in Figure 2 for 𝛼 = 0.5.

The following nondimensional quantities:

𝑐 =
𝑎𝑡
𝛼

𝑝
0

𝑐, V =
𝑡
𝛼/2

√𝑎
V (23)

and the nondimensional coordinates (the similarity vari-
ables)

𝑥 =
𝑥

√𝑎𝑡𝛼/2
, 𝑦 =

𝑦

√𝑎𝑡𝛼/2
(24)

have been introduced.
To calculate the Mittag-Leffler function 𝐸

𝛼
(−𝑥) in solu-

tion (22), we applied the algorithm suggested in [46].
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Figure 2: Dependence of the fundamental solution to the Cauchy
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).

3. The Fundamental Solution to the Source
Problem

Consider the time-fractional advection diffusion equation
with the source term

𝜕
𝛼
𝑐

𝜕𝑡𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥2
+
𝜕
2
𝑐

𝜕𝑦2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦

+ 𝑞
0
𝛿 (𝑥) 𝛿 (𝑦) 𝛿 (𝑡) ,

− ∞ < 𝑥 < ∞,

−∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(25)

under zero initial condition,

𝑡 = 0 : 𝑐 = 0 (26)

and conditions (8) at infinity.
The integral transform technique leads to

̃̃𝑢
∗

=
𝑞
0

2𝜋

1

𝑠𝛼 + 𝑎 (𝜉2 + 𝜂2) + V2/2𝑎
, (27)

𝑐 (𝑥, 𝑦, 𝑡) =
𝑞
0
𝑡
𝛼−1

2𝜋
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
0
(√𝑥2 + 𝑦2𝜌) 𝜌 d𝜌.

(28)

Here,𝐸
𝛼,𝛽

(𝑧) is the generalizedMittag-Leffler function in two
parameters 𝛼 and 𝛽:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
, 𝛼 > 0, 𝛽 > 0, 𝑧 ∈ 𝐶, (29)
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and the formula [40–42]

L
−1
{

𝑠
𝛼−𝛽

𝑠𝛼 + 𝑏
} = 𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝑏𝑡
𝛼
) (30)

for the inverse Laplace transform has been used.
The particular case of solution (28) corresponding to the

time-fractional diffusion equation with V = 0 was considered
in [45, 47]. Solutions (22) and (28) coincide for 𝛼 = 1.

The results of numerical computations for 𝑦 = 0 are
presented in Figure 3 for 𝛼 = 0.5 with

𝑐 =
𝑎𝑡

𝑞
0

𝑐. (31)

4. The Fundamental Solution to the Dirichlet
Problem

In this case the time-fractional advection diffusion equation,

𝜕
𝛼
𝑐

𝜕𝑡𝛼
= 𝑎(

𝜕
2
𝑐

𝜕𝑥2
+
𝜕
2
𝑐

𝜕𝑦2
) − V

𝜕𝑐

𝜕𝑥
− V

𝜕𝑐

𝜕𝑦
,

0 < 𝑥 < ∞, −∞ < 𝑦 < ∞,

0 < 𝑡 < ∞, 0 < 𝛼 ≤ 1,

(32)

is considered under zero initial condition

𝑡 = 0 : 𝑐 = 0 (33)

and the Dirichlet boundary condition

𝑥 = 0: 𝑐 = 𝑔
0
𝛿 (𝑦) 𝛿 (𝑡) . (34)

The zero conditions at infinity are imposed as follows:

lim
𝑥→∞

𝑐 (𝑥, 𝑦, 𝑡) = 0, lim
𝑦→±∞

𝑐 (𝑥, 𝑦, 𝑡) = 0. (35)

As above, the new sought function 𝑢 is introduced (see
(9)), and, for (10) in the half-plane 𝑥 > 0, the Laplace
transform with respect to time 𝑡, the exponential Fourier
transform with respect to the spatial coordinate 𝑦, and the
sin-Fourier transform with respect to the spatial coordinate
𝑥 are used. In the transform domain, we get

̃̃𝑢
∗

=
𝑎𝑔
0
𝜉

√2𝜋

1

𝑠𝛼 + 𝑎 (𝜉2 + 𝜂2) + V2/2𝑎
(36)

and, after inversion of the integral transforms,

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎𝑔
0
𝑡
𝛼−1

𝜋2
∫

∞

−∞

∫

∞

0

𝐸
𝛼,𝛼

{−[𝑎 (𝜉
2
+ 𝜂
2
) +

V2

2𝑎
] 𝑡
𝛼
}

× sin (𝑥𝜉) cos (𝑦𝜂) 𝜉 d𝜉 d𝜂.
(37)
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Figure 3: Dependence of the fundamental solution to the source
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).

Introducing the polar coordinates in the (𝜉, 𝜂)-plane gives

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎𝑔
0
𝑡
𝛼−1

𝜋2
∫

∞

0

∫

𝜋

0

𝐸
𝛼
[−(𝑎𝜌

2
+

V2

2𝑎
) 𝑡
𝛼
]

× sin (𝑥𝜌 cos 𝜃)

× cos (𝑦𝜌 sin 𝜃) 𝜌2 cos 𝜃 d𝜌 d𝜃.

(38)

Changing variables𝑤 = sin 𝜃 and taking into account the
following integral [43]:

∫

1

0

sin (𝑝 √1 − 𝑥2) cos (𝑞𝑥) d𝑥

=
𝜋

2

𝑝

√𝑝2 + 𝑞2
𝐽
1
(√𝑝2 + 𝑞2) ,

(39)

we obtain

𝑢 (𝑥, 𝑦, 𝑡) =
𝑎𝑔
0
𝑡
𝛼−1

𝑥

𝜋√𝑥2 + 𝑦2
∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
1
(√𝑥2 + 𝑦2𝜌) 𝜌

2d𝜌,

(40)

𝑐 (𝑥, 𝑦, 𝑡) =
𝑎𝑔
0
𝑡
𝛼−1

𝑥

𝜋√𝑥2 + 𝑦2
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ∫

∞

0

𝐸
𝛼,𝛼

[−(𝑎𝜌
2
+

V2

2𝑎
) 𝑡
𝛼
]

× 𝐽
1
(√𝑥2 + 𝑦2𝜌) 𝜌

2d𝜌.

(41)

The particular case of solution (41) corresponding to the
time-fractional diffusion equation (V = 0) was considered in
[48].
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Figure 4: Dependence of the fundamental solution to the Dirichlet
problem on distance (the classical advection diffusion equation, 𝛼 =

1).

The results of numerical computations according to
solution (41) for 𝑦 = 0 are presented in Figure 4 for 𝛼 = 1

and in Figure 5 for 𝛼 = 0.5 with

𝑐 =
√𝑎𝑡
1+𝛼/2

𝑔
0

𝑐. (42)

Other nondimensional quantities are the same as in (23) and
(24).

5. Conclusions

We have considered the time-fractional advection diffusion
equation in a plane and in a half-plane. The fundamental
solutions to theCauchy problem and to the source problem in
a plane have been obtained as well as to the Dirichlet problem
in a half-plane. It should be emphasized that the fundamental
solution to the Cauchy problem in the case 0 < 𝛼 < 1 has the
logarithmic singularity at the origin:

𝑐 (𝑥, 𝑦, 𝑡) ∼ −
𝑝
0

2𝜋Γ (1 − 𝛼) 𝑎𝑡𝛼
exp[

V (𝑥 + 𝑦)

2𝑎
]

× ln(√1 +
V2𝑡𝛼

2𝑎

√𝑥2 + 𝑦2

√𝑎𝑡𝛼/2
).

(43)

This result is similar to the case of the time-fractional diffu-
sion equation when V = 0 (see [44, 49]). Such a singularity
disappears only for the classical advection diffusion equation
(𝛼 = 1). Due to singularity of the solution at the origin, in
the case of 0 < 𝛼 < 1, drift caused by the quantity V is less
noticeable than in the case of 𝛼 = 1 (compare Figures 1 and
2).
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Figure 5: Dependence of the fundamental solution to the Dirichlet
problem on distance (the time-fractional advection diffusion equa-
tion, 𝛼 = 0.5).
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Detonation nanodiamonds (NDs) have shown to be promising agents in several industries, ranging from electronic to biomedical
applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a
stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique
Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman
spectroscopic studies.We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575∘C)
aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which
could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the
procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the
smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant
set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to
provide better results in biomolecule tracking using nanodiamond base Raman labeling.

1. Introduction

Diamond is an important material for both scientific and
industrial applications due to its extreme physical, chemical,
and biological properties [1]. It is the hardest material
known to science and has widespread applications such
as cutting and drilling tools, thermal dissipation for elec-
tronics, infrared window in harsh environments, filter for
surface acoustic wave device, field emission display device,
electrochemical sensors in harsh/corrosive environments,
biomedical imaging, and so on [2–6]. Diamond exhibits
low toxicity and excellent biocompatibility and therefore has
great potential as a novel material with potential biomedical

applications [6].There is increasing interest for using nanodi-
amond as biosensors and fabricating fluorescent nanoscale
diamond particles for optical labeling and drug or gene
delivery [4–6].

Currently, there are several methods developed for
diamond synthesis in general [7–15]. The most common
are methods based on high-pressure high-temperature
approaches (HPHT) [7] and chemical vapour deposition
methods (CVD) [8, 9]. Other methods include explosive for-
mation (forming detonation nanodiamonds) [10, 11], sonica-
tion of graphite solutions (ultrasound cavitation) [1, 12], laser
ablation [12], high-energy ball milling of HPHT diamond
microcrystals [13], autoclave synthesis from supercritical
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fluids [14], chlorination of carbides [15], ion irradiation of
graphite [16], electron irradiation of carbon “onions” [17]
which were also established.

Diamond’s outstanding physical and chemical proper-
ties when combined with nanostructure form may lead to
hybrid nanodevices with excellent and unique functions and
performance [1, 10, 14]. These nanostructures diamonds are
often referred as nanodiamonds (NDs) with the expecta-
tion of being the next-generation electronic material for
specialized nanoelectromechanical systems (NEMS), nano-
electronic devices, and field emission applications [18]. Fur-
thermore, nanodiamonds also have a potential application
in biology such as carriers for drugs, genes, or proteins;
novel imaging techniques; coatings for implantablematerials;
biosensors and biomedical nanorobots [19].

Diamond nanoparticles were produced for the first time
by detonation method in 1960 [20], but they became popular
only by the end of the 1980s [21]. In 1990, a number of impor-
tant research results led to wider interest in these nanoparti-
cles. For example, colloidal suspended nanodiamonds with
particle size in the range of 4-5 nm became available [22].
Researchers proposed using fluorescent nanodiamonds as
a non-toxic alternative to quantum dots for biomedical
imaging [5, 6]. Nanodiamonds were also developed for
fabricating magnetic sensors [23]. The nanodiamonds have
a good surface chemical reactivity [24–26]; therefore it
is possible to tailor the properties of nanodiamonds for
use in different applications such as composites [27–31]
or attaching drugs and biomolecules when dealing with
biological applications [32–34]. In addition, nanodiamonds
were found to be less toxic than other carbon nanoparticles
such as carbon nanotubes [35–38] and, as a result, are
currently being considered for applications in biomedical
imaging, drug delivery, and other areas of medicine [19,
38].

Fluorescent nanodiamonds are emerging as a new type
of nanomaterial that have great promise for biological appli-
cations [37, 39]. The nanodiamonds that contain a high
concentration of nitrogen-vacancy (N-V) defect centers as
fluorophores exhibit several remarkable features such as
emission of bright photoluminescence in the extended red
region, no photobleaching and photoblinking, and easiness of
surface functionalization for specific or nonspecific binding
with nucleic acids and proteins [40, 41]. The capability of
emitting light at 700 nm, where cell autofluorescence signal
is low, [19], makes nanodiamonds suitable for cellular imag-
ing application. These excellent photophysical properties,
together with the good biocompatibility of the material [5],
can enable 3D tracking of a single 35 nm nanodiamond
particle in a live mammalian cell using confocal microscopy
[42].

However, ensuring purity of synthesized nanodiamonds
is paramount to their application to the field of biomedical
imaging in general and Raman tracking in specific. Often
other contaminants such as graphite or similar carbon based
by-products can be found during the synthesis procedure
[7–15]. These impurities can induce fluctuations in the
intrinsic Raman signal and therefore they can have negative
effects when using the Raman signal as a detection marker.

Furthermore, biological molecules can be adsorbed on the
nanodiamond surface providing them a traceable label.
Specifically, synthesized nanodiamonds can be characterized
by their sharp band using Raman spectroscopy. This band
is the characteristic peak of the sp3 structural diamond
[10], mostly observed at around 1430 cm−1. However, syn-
thesized nanodiamonds contain considerable amount of
graphite, which can be detected by Raman spectrum. The
presence of a broad band at around 1590 cm−1 is the in-
plane vibrations of graphite (G band) [18, 43, 44]. Therefore,
Raman spectrum is considered to be a powerful tool to
potential tracking of nanodiamonds. The graphite phase can
be removed with treatment at relatively lower temperatures
in comparison to that of diamonds [44]. This can be seen
clearly in the intensity reduction of the correspondingGband
compared with that of diamonds. However, the obtained
bands/signals have some noise/fluctuations, which might
require further theoretical analysis to observe the actual
trends/variations allowing for accurate and improved signal
tracking.

In this work, we have prepared three nanodiamond sam-
ples, heated at 425∘C, 475∘C, and 575∘C, respectively. Next,
we obtained Raman spectroscopy spectra for all three heated
samples in addition to the untreated “as obtained” nanodia-
monds. Our goal was initiating the release of graphite impu-
rities with these temperature treatments, changing the nan-
odiamond surface/interface properties.We then observed the
changes in the Raman spectra based on this treatment. Since
even minute amounts of graphite can generate a significant
background noise [43, 44], novel signal treatment methods
are required in order to improve the ability of using the
Raman signal as a bioprobe or molecular detection marker.
To tackle these challenges we applied the procedure of the
optimal linear smoothing (POLS) [45] for the measured
Raman spectra of nanodiamonds. Raman spectra for all heat
treated and “as obtained” nanodiamonds were used for anal-
ysis and comparison in this study. We applied the procedure
of POLS in order to eliminate the high-frequency fluctuations
and extract the desired trend (smoothed Raman spectrum),
aiding in assessing potential application of the Raman track-
ing signal produced by the nanodiamonds as a detection
marker.

2. Experimental Details

Detonation nanodiamond particles of size around 6 nm
and purity of more than 98% were obtained from
Nanostructured & Amorphous Materials Inc., USA (http://
www.nanoamor.com/). These samples were used for further
treatments. These nanodiamonds were oxidized at three
different temperatures. Specifically we carried out heating at
425∘C, 475∘C, and 575∘C for equal amounts of time, which
is 60min. The heating rate is 10∘C/min. After heating the
sample at the desired temperature it was slowly cooled
down to room temperature. Raman spectra were measured
and collected using a DXR Raman Microscope, Thermo
Scientific, using a 532 nm laser as the excitation source at
8mW power.
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3. Results and Discussion

3.1. Application of the Procedure of Optimal Linear Smoothing
(POLS). For the measured Raman spectra of nanodiamonds
we applied initially the procedure of the optimal linear
smoothing (POLS) suggested in [45] in order to eliminate
the high-frequency fluctuations and extract the desired trend
(smoothed Raman spectrum). We omit the details of this
procedure because the POLS have been described earlier in
papers [45–48]. In order to decrease the influence of these
fluctuations we applied this procedure to the curves that
are obtained from the initial ones by numerical integration
relatively to its mean value. The usefulness of this procedure
was demonstrated earlier in recent paper [47]. In the result of
application of the POLS we obtain the smoothed trends that
can be analyzed in terms of the secondary Fourier transform
(SFT) described below.

The results of the application of the POLS are depicted in
Figures 1(a), 1(b), 1(c), and 1(d). Each figure shows the desired
trend (smoothed Raman spectrum at the fixed annealing
temperature). Usually the optimal value of the smoothing
window is located in the interval [Δ/10, Δ/1000], where Δ
defines the relative length of the initial interval Δ = 𝑥

𝑁
−

𝑥
0
. For simplicity we use as the independent 𝑥 variable the

normalized value of the wavelength 𝜆; that is, 𝑥 = 𝜆/100. In
order to have more reliable result for calculation of the value
of the optimal smoothingwindow,we used as an independent
criterion the behavior of the generalized Pearson correlation
function (GPCF). The GPCF (based on the statistics of the
fractional moments [49]) was introduced previously in paper
[50] and it is determined as

GPCF
𝑝
=

GMV
𝑝
(1, 2)

√GMV
𝑝
(1, 1) ⋅ GMV

𝑝
(2, 2)

, (1)

where the generalizedmean value function (GMV-function),
in turn, is defined as

GMV
𝑝
(𝑘, 𝑙) = (

1

𝑁

𝑁

∑

𝑗=1


nrm
𝑗
(𝑘) ⋅ nrm

𝑗
(𝑙)


mom
𝑝

)

1/mom
𝑝

,

mom
𝑝
= exp (𝐿𝑛

𝑝
) , 𝐿𝑛

𝑝
= 𝑚𝑛 + (

𝑝

𝑃
) ⋅ (𝑚𝑥 − 𝑚𝑛) ,

𝑝 = 0, 1, . . . , 𝑃.

(2)

Here the values 𝑘 and 𝑙 numerate a couple of compared
sequences. At mom

𝑝
= 1 expression (2) coincides with the

conventional definition of the Pearson correlation coefficient.
The normalized sequences located in the interval 0 <

nrm(𝑦) < 1 are determined below by expression (3).
The value mom

𝑝
determines the current moment from the

interval [0, 𝑃]. The value 𝑃 determines the final value of the
function Ln

𝑝
located in the interval [𝑚𝑛,𝑚𝑥]. The values𝑚𝑛

and𝑚𝑥 define correspondingly to the limits of the moments
in the uniform logarithmic scale. In many practical cases,
these values are chosen as 𝑚𝑛 = −15 and 𝑚𝑥 = 15 and
𝑃 is chosen as integer value from the interval [50–100].

This empirical choice is related to the fact that the transition
region of the random sequences considered expressed in the
form of the GMV-functions are concentrated in the interval
Ln
𝑝
∈ [−5, 5] and the extended interval [−15, 15] is taken for

showing the limiting values of this function in the space of
moments. The initial sequences are chosen in that way: the
minimum of the GMV-function coincides with zero value
while the maximal value of this function coincides with
max (nrm

𝑗
(𝑦)). In (2) the random sequences are supposed to

be normalized to the unit value in accordancewith expression
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) ,

(B) nrm
𝑗
(𝑦) =

Δ𝑦
𝑗

max (Δ𝑦
𝑗
)

, Δ𝑦
𝑗
= 𝑦
𝑗
−min (𝑦

𝑗
) ,

𝑗 = 1, 2, . . . , 𝑁, 0 < nrm (𝑦) < 1.

(3)

Here the set 𝑦
𝑗
defines the initial random sequence that can

contain the trend or can be compared with another sequence
without trend. The symbol | ⋅ ⋅ ⋅ | and index 𝑗 determine
the absolute value and number of the measured points,
correspondingly. The second case (B) in (3) corresponds to
the case when the initial sequence is completely positive. If
the limits 𝑚𝑛 and 𝑚𝑥 in (2) have opposite signs and accept
sufficiently large values then the GPCF function has two
plateaus equaled one at small numbers of𝑚𝑛 (i.e., GPCF

𝑚𝑛
=

1) and another limiting value GPCF
𝑚𝑥

depends on the degree
of correlation between the random sequences compared.This
right-hand limit (defined as 𝐿) is located between two values:

𝑀 ≡ min (GPCF
𝑝
) ≤ 𝐿 ≡ GPCF

𝑚𝑥
≤ 1. (4)

The appearance of two plateaus implies that all information
about possible correlations is complete and further increasing
of the limiting numbers (𝑚𝑥, 𝑚𝑛) figuring in (7) is not
necessary. The numerous test calculations show that the
high degree of correlations between two random sequences
compared is observed when GPCF

𝑚𝑥
coincides with the

unit value, while the lowest correlations are observed when
GPCF

𝑚𝑥
is equaled to its minimal value (𝑀). This sim-

ple observation having general character for all random
sequences allows us to introduce new correlation parameter,
(CC) complete correlation-factor, which is determined as

CC = (
𝐿

𝑀
) ⋅ (

𝐿 −𝑀

1 −𝑀
) . (5)

We would like to stress here that this factor is determined
on the total set of the fractional moments located between
exp (𝑚𝑛) and exp (𝑚𝑥) values (see definition (2)). As it
has been remarked above, in practical calculations for many
cases it is sufficient to put 𝑚𝑛 = −15 and 𝑚𝑥 = +15,
correspondingly.The upper row in (10) is referred to the CCL
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Figure 1: (a) The initial Raman spectrum (before annealing (ba) marked by grey squares) and its optimal trend (black solid line) obtained
by application of the POLS. The optimal value of the smoothing window is shown in Figures 2(a) and 2(b). (b) The initial Raman spectrum
(grey crossed points) measured at 425∘C and its optimal trend (black solid line) obtained by application of the POLS. The optimal value of
the smoothing window is shown in Figures 2(a) and 2(b). (c). The initial Raman spectrum (grey crossed triangles) measured at 475∘C and its
optimal trend (black solid line) obtained by application of the POLS. The optimal value of the smoothing window is shown in Figures 2(a)
and 2(b). (d) The initial Raman spectrum (grey stars) measured at 575∘C and its optimal trend (black solid line) obtained by application of
the POLS. The optimal value of the smoothing window is shown in Figures 2(a) and 2(b).

(with respect to the limiting value 𝐿) while the low row
determines the factor associated with the minimal value𝑀.
In practical calculations, both factors are useful for analysis
but the CCL-factor is less sensitive to the strong correlations
(or small perturbations of the initial sequence) in comparison
with the CCM-factor. In addition, we want to stress also the
following fact. This statistical parameter does not depend on
the amplitudes of the random sequences compared. The pair
random sequences compared should be normalized to the

interval: 0 ≤ |𝑦
𝑗
| ≤ 1. It reflects the internal structure of corre-

lations of the compared random sequences based presumably
on the similarity of the probability distribution functions that
are not known in many cases. In order to see how the high-
frequency fluctuations are separated from the low-frequency
fluctuations (which is conventionally defined as a trend) we
put as initial function initial Raman spectrum (RS(𝑑)) where
𝑑 determines the initial RS before annealing (ba, 𝑑 = 0)

and after annealing measured at three temperatures (425∘C,
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Figure 2: (a) The behavior of the relative error for all Raman spectra with respect to the current smoothing window. The value of the first
minimum is equaled approximately 0.07. (b) The behavior of the complete correlation factor (expression (7)) is shown for all Raman spectra
data. The value of the smoothing window 𝑤 = 0.13 shows approximately the boundary dividing the high-frequency fluctuations from the
low-frequency fluctuations (trend). From these two plots we chose the mean value of the smoothing window 𝑤 = 0.1 which is identified as
the optimal one.

𝑑 = 1), (525∘C, 𝑑 = 2), and (575∘C, 𝑑 = 3), correspondingly.
As a second sequence we use the smoothed spectra obtained
at the fixed value of the current smoothing window 𝑤

𝑘
from

the interval [𝑤min = Δ/1000, 𝑤max = Δ/10]. It is calculated as
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These expressions combined together allow calculating the
complete correlation factorCCM

𝑘
as a function of the current

smoothing window 𝑤
𝑘
. This value 𝑤bound ≈ 𝑤opt separates

the correlations evoked by high-frequency fluctuations from
low-frequency ones. This observation helps to find some
additional arguments that justify the selection of the optimal
trend in accordance with expressions (7). This additional
criterion is important especially in cases when the first local
minimum in the relative error function in expression (8) is
not clearly expressed:

𝑦
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(8)

That is why this optimal trend can be defined as the pseud-
ofitting function which divides the high-frequency fluctua-
tions from a trend. The behavior of the functions (8) and (7)
is shown in Figures 2(a) and 2(b), correspondingly.

3.2. Application of the Secondary Fourier Transform as the
Fitting Function. One can use the secondary Fourier trans-
form as the fitting function based on some significant set of
“frequencies.” In accordance with conventional definition we
determine this transformation of the second order as

SmRS (𝑥
𝑗
; 𝑑) ≅ 𝐹 (𝑥
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)
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𝐿
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) .

(9)



6 Mathematical Problems in Engineering

We suppose that the characteristic inverse length 𝐿
𝑑
(𝑑 =

0, 1, 2, 3 is the type of the RS defined above) coincideswith the
maximal length of the intervalΔ = 𝑥

𝑁
−𝑥
0
= 𝐿 (𝑥 defines the

normalized wave-number/100) and is measured in the same
units as wavelength 𝜆. If the value 𝐿 is supposed to be known
then the unknown decomposition coefficients Ac

𝑘
and As

𝑘

can be found by the linear-least square method (LLSM) and
the limiting value 𝐾 can be found from the condition of
minimization of the value of the relative error:

1% < Re lErr = [
stdev (SmRS (𝑥

𝑗
, 𝑑) − 𝐹 (𝑥

𝑗
, 𝐾)


)

mean (SmRS (𝑥
𝑗
, 𝑑)


)

]

⋅ 100% < 10%,
(10)

which should be located in the reasonable interval (1–10%)
of the calculated errors. It is interesting to note that this
new interpretation of the discrete Fourier transform as the
fitting function of the initial signal does not coincide with
conventional presentation of the Fourier transform as presen-
tation of the function in the frequency space.The coefficients
Ac
𝑘
and As

𝑘
found in the result of the application LLSM do

not coincide with decomposition coefficients found in the
result of application of the conventional program based on
the fast Fourier transformation (FFT) and its modifications.
Initially, we suppose simply that the period is found from the
condition Δ = 𝑥

𝑁
− 𝑥
0
= 𝐿. But further investigations show

that this supposition can be corrected in order to decrease the
value of the fitting error. This observation is illustrated by
the plot depicted in Figure 3. After selection of the optimal
value of 𝐿 one can fit function (9) to the smoothed Raman
spectra for nanodiamonds obtained in Section 3.1. In order
to compare them with each other we chose the limiting value
of modes𝐾 (number of components figuring in (9)) equaled
40. The results of the fitting of the smoothed Raman spectra
corresponding to different annealing temperatures are shown
in Figure 4. The additional fitting parameters are shown in
Table 1. We want to stress here that in the absence of the
microscopic model the application of the secondary Fourier
transform allow us to reduce the 2025 measured points for
each spectrum to 40 fitting parameters 19(Ac

𝑘
) + 19(As

𝑘
)

amplitudes figuring in decomposition (9) plus free fitting
constant 𝐴(𝑑)

0
and 𝐿

𝑑
for 4 types of Raman spectra. This

reduced presentation with the help of the secondary Fourier
transform is very convenient when the actual microscopic
model describing the vibrations in nanodiamond dusts is
absent but the barest necessity of description these RS exits.
So, in brief, with the help of secondary Fourier transform we
can reduce the Raman spectra to its amplitude-“frequency”
response (AFR). Schematically, it can be written as

Spectrum (𝜆,𝑁) → AFR (Ac
𝑘
, As
𝑘
, 𝐾) , 𝐾 ≪ 𝑁. (11)

So, analysis of the Raman spectra can be based on the
additional analysis of the amplitude-“frequency” responses
(AFR) (we should notice again that in our case a “frequency”
coincides with the value 𝜔

𝑘
= 2𝜋𝑘/𝐿). This set of “frequen-

cies” giving the acceptable accuracy should be located in the

9 12 15

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Re
lE

rr
or

al
lR

am
an

sp
ec

tr
a

Current value of L

RelErr RS (ba)
RelErr RS (425∘C)

RelErr RS (475∘C)
RelErr RS

9 12 15

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Re
lE

rr
or

al
lR

am
an

sp
ec

tr
a

Current value of L

RelErr RS (ba)
RelErr RS (425∘C)

RelErr RS (475∘C)
RelErr RS (575∘C)

Figure 3:This plot clearly demonstrates that the relative fitting error
can be essentially decreased (on the half-order ofmagnitude at least)
if the optimal 𝐿 in decomposition (9) can be found.The initial points
located on the left-hand side correspond to the initial selection of 𝐿
from the condition 𝑥

𝑁
− 𝑥
0
= 𝐿. The minimal (optimal) values of

𝐿 are collected in Table 1. The bold vertical lines show the limits of
the optimal values of 𝐿. All these plots are obtained for the limiting
value of𝐾 = 40 in (9), which is chosen as the optimal for the fitting
purposes.

interval [𝜔min = 2𝜋/𝐿, 𝜔max = 2𝜋𝐾/𝐿]. So, we show that
the secondary application of the Fourier transform (used as
a fitting function of the initial signal) gives new possibilities
for the interpretation of the smoothed RS data in terms of
the reduced set of the calculated amplitudes Ac

𝑘
and As

𝑘
.

Figure 4 demonstrates the fitting of the smoothed Raman
spectra in the frame of this secondary Fourier analysis.
The variations of the decomposition parameters (Ac

𝑘
,As
𝑘
)

together with its modulus for all Raman spectra are shown
in Figures 5(a), 5(b), and 5(c). Other additional parameters
are collected in Table 1.

3.3. “Reading” of the Remnant Noise in Terms of the Beta-
Distribution Function. Usually, analysis of experimental data
is finished after selection of the proper fitting function
corresponding to some model and the “remnants” defined
as the difference between the spectra analyzed and its fitting
function is usually not analyzed. However, recent achieve-
ments associated with detection of the universal distribution
function for the strongly correlated sequences allow realizing
the fit of the remnants (noise) to the fitting function corre-
sponding to beta-distribution [51]:

Jb (𝑥) = 𝐴(𝑥 − 𝑥
0
)
𝛼

(𝑥
𝑁
− 𝑥)
𝛽

+ 𝐵 (12)

and express quantitatively the remnant noise in terms of 4
fitting parameters (𝐴, 𝐵, 𝛼, and 𝛽) only. This possibility gives
a unique chance to compare the remnant functions with each
other quantitatively. In order to obtain the bell-like curve
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Table 1: The additional parameters of the secondary Fourier fitting.

Number of Raman
spectrum

The value of 𝐿opt from
decomposition (9)

The value of 𝐴
0
(d) from

decomposition (9)
The value of the fitting

error (%)
Pearson correlation
coefficient (PCC)

RS (ba), 𝑑 = 0 9,97637 56,4327 0,19051 0,99976
RS (425C) 𝑑 = 1 10,0937 40,5278 0,25801 0,9998
RS (475C) 𝑑 = 2 8,92004 28,021 0,35399 0,9996
RS (575C) 𝑑 = 3 9,859 18,0758 0,38478 0,99938
It is interesting to note that the values in columns 3 and 4 have the monotone behavior and so this peculiarity can be used for calibration purposes.
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Figure 4: Here we show the results of the fitting of the secondary
Fourier transform to the smoothed Raman spectra. The value of a
free constant (from (9)) and other parameters (𝐿opt) are collected in
Table 1.

from the remnant function it is necessary to do the following
steps.

(S1) Calculate the difference

Rmf (𝑥, 𝑑) = Spectrum (𝑥, 𝑑) − Fit (𝑥, 𝑑) , (13)

where Rmf (𝑥) defines the remnant function, Spectrum(𝑥)
defines the smoothed spectrum, and Fit(𝑥) is associated with
the corresponding fitting function. Index 𝑑 as before defines
the type of the Raman spectra.

(S2) Then, it is necessary to sort the amplitudes of the
Rmf(𝑥) in descending order (𝑦

1
> 𝑦
2
> ⋅ ⋅ ⋅ > 𝑦

𝑁
),

subtract its mean value, and numerically integrate the
rest:

𝐷𝑦
𝑗
= 𝑦
𝑗
−mean (𝑦) ,

𝐽𝑦
𝑗
= 𝐽𝑦
𝑗−1

+ 0.5 ⋅ (𝑥
𝑗
− 𝑥
𝑗−1
) ⋅ (𝐷𝑦

𝑗
+ 𝐷𝑦
𝑗−1
) ,

𝐽𝑦
0
= 0, 𝑗 = 1, 2, . . . , 𝑁.

(14)

In the results of these manipulations we obtain the bell-like
curve that can be fitted to expression (13) with the help of
Eigen-coordinates (ECs) method [52]. Figure 6 demonstrates
these two steps transforming the desired remnant function
corresponding to the Raman spectrum (𝑑 = 0). In Figure 7
we show the final fit of all bell-like curves to the fitting
function (12).Wewant to stress here that the ECsmethod [52]
allows fitting the sufficient number of the measured points
(2025) and reducing all fit to the conventional LLSM. The
fitting parameters are collected in Table 2. Analysis of these
curves shows clearly that the distribution of their heights
with respect to increasing of the annealing temperature is
not monotonic. The highest curve belongs to the annealing
spectrumwith 475∘C.Then the curves belonging to RS before
annealing and 425∘C follow to monotone behavior and the
lowest curve belongs to the annealing temperature 475∘C.

4. Conclusions

The use of nanodiamonds as potential labels, probes, or
tracers based on Raman specific detection is of great bio-
logical importance. In our study, we used three heat treated
samples and compared them to the “as obtained” nanodia-
mond Raman signal. We showed that inducing the graphite
heat release changes the nanodiamond surface interface that
affected the Raman spectrum. It is clear from our data
that these Raman signals were in need of data treatment
due to their high-frequency fluctuations that could prove
problematic in noisy cellular environments. Based on the four
Raman spectra we are able to extract signal trends in the
Raman signal resulting from the heat induced changes and
finding the optimal for Raman signal fitting. Therefore, this
can aid noise removal that is beneficial for future Raman
based signal tracking based on nanodiamond particles in
biological environments. In general, we were able to improve
access to Raman spectroscopic mapping and signal tracking.
We realized this procedure by application of the additional
Fourier analysis using the finite Fourier decomposition as
an additional fitting function (see expression (9)). This
simple procedure helps decrease the number of the fitting
parameters and gives a possibility to compare the spectra
with each other. We demonstrate also how to read a remnant
noise after elimination of the smoothed spectra. It helps
also compare the noise in terms of the fitting parameters
describing beta-function. Definitely, these new innovation
elements can be applied in different nanotechnologies at
analysis of small amount of materials, when the influence of
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Figure 5: (a) Here we show the variations of the constant Ac(𝑘, 𝑑) figuring in decomposition (9) for all 4 Raman spectra analyzed. (b) The
variations of the constant As(𝑘, 𝑑) from decomposition (9) for all 4 Raman spectra analyzed. (c) Here we demonstrate the variations of the
modulus (Ac(𝑘, 𝑑)2 + As(𝑘, 𝑑)2)1/2 for all 4 Raman spectra analyzed.

Table 2: The fitting parameters of all beta-distribution functions.

Number of Raman
spectrum A, B 𝛼 𝛽

𝑥max
𝑦max

RelErr (%)

RS (ba),
𝑑 = 0

0,18165
−0.01731 0,76645 0,79319

13,5731
2.13296 0,40539

RS (425C),
𝑑 = 1

0,22442
−0.05682 0,64713 0,7052

13,4381
1.8564 0,85344

RS (475C),
𝑑 = 2

0,27183
−0.03377 0,70987 0,70286

13,7273
2.52004 0,61121

RS (575C),
𝑑 = 3

0,12765
−0.01564 0,67151 0,72011 13,5682

1.14542 0,93181

In contrast with Table 1 the values in columns 5 and 6 have the nonmonotone behavior.
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Figure 7: This plot shows the calculated bell-like curves and their
fit to the beta-distribution function (12). The fitting parameters are
collected in Table 2. One can notice that the behavior of these curves
with respect to the values of the annealing temperatures is not
monotone. The highest curve belongs to the annealing spectrum
with 475∘C. Then the curves belonging to RS before annealing and
425∘C have monotone behavior and the lowest curve belongs to the
annealing temperature 575∘C.

noise fluctuations cannot be eliminated easily because of their
quantum character. This current research (applied in the first
time to nanodiamonds Raman spectra) undoubtedly merits a
further research.
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[45] C.-M. Băleanu, R. R. Nigmatullin, S. S. Cetin et al., “New
method and treatment technique applied to interband transi-
tion in GaAs

1−𝑥
P
𝑥
ternary alloys,” Central European Journal of

Physics, vol. 9, no. 3, pp. 729–739, 2011.
[46] M. L. Ciurea, S. Lazanu, I. Stavarache et al., “Stress-induced

traps in multilayered structures,” Journal of Applied Physics, vol.
109, no. 1, Article ID 013717, 2011.

[47] R. R. Nigmatullin, C. Ionescu, and D. Baleanu, “NIMRAD:
novel technique for respiratory data treatment,” Signal, Image
and Video Processing, pp. 1–16, 2012.

[48] R. R. Nigmatullin, C.-M. Ionescu, S. Osokin et al., “Non-
invasive methods applied for complex signals,” Romanian
Reports in Physics, vol. 64, no. 4, pp. 1032–1045, 2012.

[49] R. R. Nigmatullin, “The statistics of the fractional moments:
is there any chance to “read quantitatively” any randomness?”
Signal Processing, vol. 86, no. 10, pp. 2529–2547, 2006.

[50] R. R. Nigmatullin, A. A. Arbuzov, S. O. Nelson, and S. Trabelsi,
“Dielectric relaxation in complex systems: quality sensing and
dielectric properties of honeydew melons from 10MHz to
1.8GHz,” Journal of Instrumentation, vol. 1, no. 1, pp. 1–20, 2006.

[51] R. R. Nigmatullin, “Universal distribution function for the
strongly-correlated fluctuations: general way for description
of different random sequences,” Communications in Nonlinear
Science and Numerical Simulation, vol. 15, no. 3, pp. 637–647,
2010.

[52] R. R. Nigmatullin, “Recognition of nonextensive statistical dis-
tributions by the eigencoordinates method,” Physica A, vol. 285,
no. 3, pp. 547–565, 2000.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 560932, 6 pages
http://dx.doi.org/10.1155/2013/560932

Research Article
Local Fractional Discrete Wavelet Transform for
Solving Signals on Cantor Sets

Yang Zhao,1,2 Dumitru Baleanu,3,4,5 Carlo Cattani,6 De-Fu Cheng,1 and Xiao-Jun Yang7

1 College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
2 Electronic and Information Technology Department, Jiangmen Polytechnic, Jiangmen 529090, China
3Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204,
Jeddah 21589, Saudi Arabia

4Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey
5 Institute of Space Sciences, Magurele, 077125 Bucharest, Romania
6Department of Mathematics, University of Salerno, Via Ponte don Melillo, Fisciano, 84084 Salerno, Italy
7 Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou,
Jiangsu 221008, China

Correspondence should be addressed to De-Fu Cheng; chengdefu@jlu.edu.cn

Received 15 September 2013; Accepted 22 October 2013

Academic Editor: J. A. Tenreiro Machado

Copyright © 2013 Yang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The discrete wavelet transform via local fractional operators is structured and applied to process the signals on Cantor sets. An
illustrative example of the local fractional discrete wavelet transform is given.

1. Introduction

In recent years, the classical wavelet theory [1–7] has played
an important role in many scientific fields such as signal
processing [8], electrical systems [9], image processing [10],
and differential equations [11]. The continuous wavelet trans-
form is applied to handle the analyzing nonstationary signals,
which have some characteristics of instantaneous peaks or
discontinuities, where the mother wavelet met scaling and
translation operations [3]. Two major categories of wavelet
transforms are continuous and discrete [5].When themother
wavelet functions are orthonormal, the discrete wavelet
transform [12] gives multiresolution algorithm decomposing
signals into scales with different time and frequency resolu-
tion, which leads to finite number of wavelet comparisons of
signals, and improves the computational speeds because of
the functions that are stretched or compressed and placed at
many positions along the signals [13].

Based on the fractional Fourier transform [14–17], the
fractional wavelet transform, which was a good tool for

processing transient signals and compressing images, was
structured in [18, 19]. The fractional wavelet transform
has some applications in various branches of science and
engineering [20–23]. For example, the simultaneous spectral
analysis of a binary mixture system was presented in [20]
by using the fractional wavelet transform. Application of
the fractional wavelet transform to the simultaneous deter-
mination of ampicillin sodium and sulbactam sodium in
a binary mixture was considered in [21]. The fractional
wavelet transform for the quantitative spectral resolution of
the composite signals of the active compounds in a two-
component mixture was suggested in [22]. The optical image
encryption based on fractional wavelet transform was given
in [23]. By discretizing continuous fractional wavelet trans-
form, the discrete fractional wavelet transform was reported
and its application to multiple encryptions was considered in
[24].

The wavelet method and its fractional counterpart have
many applications in various branches of science and engi-
neering. However, they are invalid for solving the signals
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defined on Cantor sets. The local fractional calculus theory
[25–34] was applied to handle the functions defined on
Cantor sets, which are local fractional continuous. A natural
question is to generalize signals concepts on the Cantor set,
which are the nondifferentiable functions defined on Cantor
sets [24, 26] and the Cantor function [35]. The mathematical
theory of the local fractional wavelet transform of the local
fractional continuous signal was structured in [25, 36] based
on the basic idea.

One of the open problems in this area is how to improve
the computational speeds of the local fractional wavelet
theory as in the classical one. The aim of this paper is
to structure the discrete version of the local fractional
wavelet transform based on the generalized inner produc-
tion space. The paper has been organized as follows. In
Section 2, we introduce some basic notations and theorems
of the generalized inner product space. In Section 3, we
propose the local fractional discrete wavelet transform. In
Section 4, one example is presented. Finally, Section 5 is
conclusions.

2. Preliminaries

In this section, we give some basic notations and theorems of
the generalized inner product space.

Let [25]

𝐿
2,𝛼 [𝑅]={𝑓 (𝑥) ∈ 𝐶

𝛼 [𝑅] :(
1

Γ (1+𝛼)
∫

∞

−∞

𝑓 (𝑥)


𝑝

(𝑑𝑥)
𝛼
)

1/𝑝

< ∞, 1 ≤ 𝑝 < ∞} .

(1)

Here, the local fractional integral operator𝑓(𝑥) in the interval
[𝑎, 𝑏] was defined in [25–30] as

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(2)

where a partition of the interval [𝑎, 𝑏] is denoted as Δ𝑡
𝑗
=

𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .} and 𝑗 = 0, . . . , 𝑁 − 1,

𝑡
0
= 𝑎, 𝑡

𝑁
= 𝑏. Local fractional operators were applied to

model some nondifferentiable problems [25–32].
From (1) the generalized inner product space of 𝐿

2,𝛼
[𝑅] is

defined as follows [25]:

⟨𝑓, 𝑔⟩
𝛼
=

1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝑔 (𝑥)(𝑑𝑥)
𝛼
. (3)

The two useful theorems are presented as follows.

Theorem 1 (see [25]). Let𝑋 be an inner product space. If {𝑒𝛼
𝑛
}

is an orthonormal system in 𝑋, then one has that

𝑓


2

𝛼
=

∞

∑

𝑖=1

⟨𝑓, 𝑒
𝛼

𝑖
⟩
𝛼



2

, (4)

𝑓 =

∞

∑

𝑖=1

⟨𝑓, 𝑒
𝛼

𝑖
⟩
𝛼
𝑒
𝛼

𝑖
(5)

are equivalent, where ‖𝑓‖2
𝛼
is a norm of the function𝑓 and {𝑒𝛼

𝑛
}

has the following properties:

𝑒
𝛼

𝑛

𝛼 = 1,

⟨𝑒
𝛼

𝑖
, 𝑒
𝛼

𝑗
⟩ = {

0, 𝑖 ̸= 𝑗,

1, 𝑖 = 𝑗.

(6)

Proof. See [25].

Theorem 2 (see [25]). Let 𝑋 be an inner product space and
{𝑒
𝛼

𝑛
} be an orthonormal system in 𝑋. If 𝑥𝛼 ∈ span{𝑒𝛼

1
, . . . , 𝑒

𝛼

𝑛
},

then for all 𝑥𝛼 ∈ 𝑋 one has

𝑥
𝛼
=

𝑛

∑

𝑖=1

⟨𝑥
𝛼
, 𝑒
𝛼

𝑖
⟩
𝛼
𝑒
𝛼

𝑖
, (7)

where span{𝑥𝛼
1
, . . . , 𝑥

𝛼

𝑛
} is the linear subspace of𝑋 of the linear

span of the local fractional vectors [25], namely,

span {𝑥
𝛼

1
, . . . , 𝑥

𝛼

𝑛
} = {𝑥

𝛼
=

𝑛

∑

𝑖=1

𝑎
𝑖
𝑥
𝛼

𝑖
: 𝑎
𝑖
∈ 𝐸} . (8)

Proof. See [25].

3. Local Fractional Discrete Wavelet
Transform for Signals on Cantor Sets

3.1. Local Fractional Continuous Wavelet Transformation
for Signals on Cantor Sets. The local fractional continuous
wavelet transform of the local fractional continuous signal
𝑓(𝑡) was presented in [25, 26, 36] as

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−(𝛼/2)

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼
,

0 < 𝛼 ≤ 1,

(9)

where the local fractional daughter’s wavelets were suggested
in [25, 26, 36] by

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) , (10)

where 𝑎 is the dyadic dilation, 𝑏 is the dyadic position,
and 𝑎

−(𝛼/2) is the normalization Cantor factor. The inverse
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Figure 1: The graph of the local fractional mother wavelet.

formula of local fractional wavelet transform was given in
[25, 36] by

𝑓 (𝑥) =
𝐶
𝜑,𝛼

Γ2 (1 + 𝛼)

× ∫

∞

−∞

∫

∞

−∞

𝑎
−2𝛼

𝑊
𝜑,𝛼

𝑓(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑎)
𝛼
(𝑑𝑏)
𝛼
,

0 < 𝛼 ≤ 1,

(11)

where the parameter is [25, 36]

𝐶
𝜑,𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥)


2

|𝑥|
𝛼

(𝑑𝑥)
𝛼
, 0 < 𝛼 ≤ 1. (12)

We notice that the classical continuous wavelet transform is
the local fractional one in case of fractal dimension 𝛼 = 1.

3.2. Local Fractional Discrete Wavelet Transform for Signals
on Cantor Sets. Let us structure the local fractional daughter
wavelet in the form

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) , (13)

where 𝜑 ∈ 𝐿
2,𝛼

[𝑅].
When 𝑎 = 2

−𝑗 and 𝑏 = 𝑘2
−𝑗, we get

𝜑
𝑎,𝑏,𝛼

(𝑡) = 𝜑
𝑗,𝑘,𝛼

(𝑡) = 𝜑
2
−𝑗
,𝑘2
−𝑗
,𝛼
(𝑡) = 2

𝑗𝛼/2
𝜑 (2
𝑗
𝑡 − 𝑘)

(14)

for integers 𝑗, 𝑘 ∈ Ζ.
Let 𝜑
𝑗,𝑘,𝛼

(𝑡) = 2
𝑗𝛼/2

𝜑(2
𝑗
𝑡 − 𝑘) be orthogonal set of local

fractional wavelets. Then we can obtain

⟨𝜑
𝑗,𝑘,𝛼

, 𝜑
𝑚,𝑛,𝛼

⟩
𝛼
= 𝛿
𝛼

𝑗,𝑚
𝛿
𝛼

𝑘,𝑛
, 𝑗, 𝑘, 𝑚, 𝑛 ∈ Ζ, (15)

where 𝛿𝛼
𝑗,𝑚

and 𝛿
𝛼

𝑘,𝑛
are local fractional Kronecker delta [27].
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Figure 2:The graph of the local fractional integral of local fractional
mother wavelet.

Making use of (7), for 𝑗, 𝑘, 𝑚 ∈ Ζ we have

𝑓 (𝑥) =

∞

∑

𝑗=−∞

∞

∑

𝑚=−∞

𝑎
𝑗,𝑘,𝛼

𝑒
𝛼

𝑗,𝑘
, (16)

where its coefficients are

𝑎
𝑗,𝑘

= ⟨𝑓 (𝑥) , 𝑒
𝛼

𝑗,𝑘
⟩
𝛼
= 𝑊
𝜑,𝛼

𝑓 (2
−𝑗
, 𝑘2
−𝑗
) . (17)

Here, 𝑎
𝑗,𝑘

is called as the local fractional discrete wavelet
transform of the signal 𝑓(𝑥).

4. An Illustrative Example

Local fractional mother wavelet is defined in [26] as

𝜑
𝐻(𝛼)

(𝑡) = 𝑀 (𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2

−1,
1

2
≤ 𝑡 < 1

0, else

(18)

and local fractional integral of local fractionalmother wavelet
reads as

𝜙
𝐻(𝛼)

(𝑡) = 𝑁 (𝑡) =

{{{{{{

{{{{{{

{

𝑡
𝛼

Γ (1 + 𝛼)
, 0 ≤ 𝑡 <

1

2

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
,

1

2
≤ 𝑡 < 1

0, else.

(19)

Figure 1 shows the graph of the local fractional mother
wavelet and Figure 2 shows the graph of the local fractional
integral of local fractional mother wavelet.

When fractal dimension 𝛼 = 1, we have

𝜑
𝐻(1)

(𝑡) = 𝑀 (𝑡) (20)
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Figure 3: The graph of the integral of the mother wavelet.

so that

𝜙
𝐻(1)

(𝑡) = 𝐿 (𝑡) =

{{{{

{{{{

{

𝑡, 0 ≤ 𝑡 <
1

2

1 − 𝑡,
1

2
≤ 𝑡 < 1

0, else.

(21)

Figure 3 shows the graph of the integral of mother wavelet
𝜑
𝐻(1)

(𝑡).
For integers 𝑗, 𝑘 ∈ Ζ, we have [26]

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) = 2

𝑗𝛼/2
𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) , (22)

where

𝜑
𝐻(𝛼)

(𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2
,

−1,
1

2
≤ 𝑡 < 1,

0, else.

(23)

Hence, we have

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)

× ∫

∞

−∞

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 2

𝑚𝛼/2
𝜑
𝐻(𝛼)

× (2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑗+𝑚)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 𝜑

𝐻(𝛼)
(2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑚−𝑗)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑚−𝑗

(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)
𝛼
,

(24)

where 𝑠 = 2
𝑗
𝑡 − 𝑘.

In view of (24), we obtain [15]

1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡)]
2

(𝑑𝑡)
𝛼
= 1,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼
= 0,

(25)

where 𝑗 = 𝑚 and 𝑘 = 𝑛, 𝑗, 𝑘 ∈ Ζ.
When 𝑗 = 𝑚, 𝑗, 𝑘, 𝑚 ∈ Ζ, from (24) we obtain

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑗,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 2
(𝑗+𝑚)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 𝜑

𝐻(𝛼)
(2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑚−𝑗)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑚−𝑗

(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)
𝛼

=
1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(𝑠 + 𝑘 − 𝑛) (𝑑𝑠)
𝛼

= 𝛿
𝛼

0,𝑘−𝑛

= 𝛿
𝛼

𝑘,𝑛
,

(26)

where 𝑠 = 2
𝑗
𝑡 − 𝑘.

When 𝑔 = 𝑚 − 𝑗 > 0, 𝑗, 𝑘, 𝑚, 𝑛 ∈ Ζ, from (24) we have

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼
,

(27)
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where 𝑠 = 2
𝑗
𝑡 − 𝑘 and 𝜂 = 2

𝑔
𝑘 − 𝑛. Consider

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2

[
1

Γ (1 + 𝛼)
∫

1/2

0

𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

−
1

Γ (1 + 𝛼)
∫

1

1/2

𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼
]

= 2
−𝑔𝛼/2

[
1

Γ (1 + 𝛼)
∫

2
𝑔−1
+𝜂

𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

−
1

Γ (1 + 𝛼)
∫

2
𝑔
+𝜂

2
𝑔−1
+𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

] ,

(28)

where
𝑞 = 2
𝑔
𝑠 + 𝜂,

1

Γ (1 + 𝛼)
∫

2
𝑔−1
+𝜂

𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

= 0,

1

Γ (1 + 𝛼)
∫

2
𝑔
+𝜂

2
𝑔−1
+𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

= 0,

(29)

with 𝜂 > 1, 2𝑔−1 + 𝜂 > 1, and 2
𝑔
+ 𝜂 > 1.

Hence, taking 𝑒𝛼
𝑗,𝑘

= 𝜑
𝑗,𝑘

𝐻(𝛼)
gives

𝑓 (𝑥) =

∞

∑

𝑗=−∞

∞

∑

𝑚=−∞

𝑎
𝑗,𝑘,𝛼

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) , (30)

where

𝑎
𝑗,𝑘

= ⟨𝑓 (𝑥) , 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥)⟩
𝛼

= 𝑊
𝜑,𝛼

𝑓 (2
−𝑗
, 𝑘2
−𝑗
)

= 2
𝑗𝛼/2 1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) (𝑑𝑥)

𝛼
.

(31)

Appling (4), we have

𝑓
2
(𝑥) =

∞

∑

𝑖=1


𝑎
𝑗,𝑘



2

(32)

with

𝑎
𝑗,𝑘

= 2
𝑗𝛼/2 1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) (𝑑𝑥)

𝛼
. (33)

Hence, from (32) we find that the energy is conserved.

5. Conclusions

In this work the local fractional discrete wavelet transform
based on the local fractional calculus theory was proposed.
By using the basic theorems of generalized inner product
space, the local fractional discrete wavelet transform and
its reconstruction formula were discussed. We find that
the energy of the signal on Cantor sets is conserved. An
illustrative example for the local fractional wavelet transform
of the signal on Cantor sets was given. It is shown that the
classical discrete wavelet transform is the local fractional one
in case of fractal dimension 𝛼 = 1.
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