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Artificial evolution has emerged as a powerful computational
strategy for solving complex problems in the biological
and biomedical sciences. Inspired by biological evolution,
artificial evolution is attractive because it employs stochastic
search algorithms that are inherently parallel. As such, these
novel approaches are ideal for biological and biomedi-
cal problems that are high-dimensional, noisy, and very
complex. The papers that appear in this special issue of
the Journal of Artificial Evolution and Applications were
rigorously peer reviewed and represent a wide range of
different algorithms and application areas. As such, the
papers in this special issue represent both the depth and
breadth of artificial evolution and its potential applications.
Papers in this volume cover a range of artificial evolution
algorithms including, for example, genetic algorithms and
genetic programming. Application areas span multiple dif-
ferent areas including the classification of microarray data,
classification and diagnosis of cancer, multiple sequence
alignment, ecological simulation, population genetics, and
neurological discrimination.

The application of artificial evolution to problems in
medicine is particularly exciting. The use of evolutionary
algorithms such as genetic programming is becoming more
common and the paper “Classification of oncologic data
with genetic programming” by Leonardo Vannesci et al. is
a particularly good example in which the critical fitness
function employed is based on a clinical evaluation, in this
case the area under the receiver operating characteristic
curve and a measure of correctly classified instances. Senhua
Yen and Dipankar Dasgupta describe the development of

a novel algorithm inspired by the immune system in their
paper “Conserved self pattern recognition algorithm with
novel detection strategy applied to breast cancer diagnosis.”
The aim is to aid breast cancer diagnosis by analysing
the cytological characteristics of breast fine needle aspirates
using this novel pattern recognition approach. Although the
methods and algorithms employed are very different, these
papers demonstrate the potential impact of applying artificial
evolution to the whole spectrum of medical applications.

The biological and biomedical sciences may be the ideal
application areas for artificial evolution given the complexity
of the data and the complexity of the processes and patterns
being studied. This special issue provides a sampling of the
state of the art in the field and should provide many novel
ideas for readers to try with their own problem-solving
efforts.

Jason H. Moore
Janet Clegg

Elena Marchiori
Marylyn Ritchie

Stephen Smith



Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2009, Article ID 725049, 13 pages
doi:10.1155/2009/725049

Research Article

Underdominance, Multiscale Interactions, and
Self-Organizing Barriers to Gene Flow

Margaret J. Eppstein,1 Joshua L. Payne,1 and Charles J. Goodnight2

1 Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
2 Department of Biology, University of Vermont, Burlington, VT 05405, USA

Correspondence should be addressed to Margaret J. Eppstein, maggie.eppstein@uvm.edu

Received 11 March 2009; Accepted 1 June 2009

Recommended by Stephen Smith

Understanding mechanisms for the evolution of barriers to gene flow within interbreeding populations continues to be a
topic of great interest among evolutionary theorists. In this work, simulated evolving diploid populations illustrate how mild
underdominance (heterozygote disadvantage) can be easily introduced at multiple loci in interbreeding populations through
simultaneous or sequential mutational events at individual loci, by means of directional selection and simple forms of epistasis
(non-linear gene-gene interactions). It is then shown how multiscale interactions (within-locus, between-locus, and between-
individual) can cause interbreeding populations with multiple underdominant loci to self-organize into clusters of compatible
genotypes, in some circumstances resulting in the emergence of reproductively isolated species. If external barriers to gene flow
are also present, these can have a stabilizing effect on cluster boundaries and help to maintain underdominant polymorphisms,
even when homozygotes have differential fitness. It is concluded that multiscale interactions can potentially help to maintain
underdominant polymorphisms and may contribute to speciation events.

Copyright © 2009 Margaret J. Eppstein et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Charles Darwin referred to speciation as the “mystery of
mysteries” [1] and nearly 150 years later the mechanisms
involved in speciation remain an important topic of debate
in evolutionary biology (for recent reviews of this topic, see
[2–8]). Historically, models of speciation have commonly
invoked geographical isolation as a means for divergent evo-
lution [9–11]. However, empirical evidence [12–14] suggests
that speciation can also occur in the absence of geographical
barriers to gene flow, and there has been a recent flurry of
theoretical models providing support for these observations
[15–24]. These models typically assume divergent evolution
leading to speciation, subsequent to some form of premating
reproductive isolating mechanism. For example, disruptive
natural selection toward use of different parts of the available
resource spectrum [17, 19] could alter the timing and/or
location of mating events, resulting in two or more effectively
reproductively isolated subpopulations that then continue
to diverge, despite continuing to share the same geographic
range. Similarly, assortative mating (due to sexual selection,

e.g., where like prefers to mate with like) has also been
proposed as a premating isolating mechanism [15, 18, 20],
with several models employing a combination of these
factors [15, 16, 21–24].

Spatially localized breeding interactions have been
observed in a variety of both plant (e.g., [25–29]) and animal
(e.g., [30–32]) populations, and the spatially explicit nature
of these interactions has often been recognized as potentially
important in speciation processes. Wright [33] derived statis-
tical predictions that showed how spatially localized mating
within interbreeding populations leads to nonadaptive dif-
ferentiation in different parts of the population which are
isolated from each other by distance. He felt that this process
could be important for evolution within a species, but would
only rarely represent first steps toward speciation itself.
Subsequent spatially explicit individual-based models with
localized mating have been employed to show how patches
with distinct gene frequencies become quickly established
and persist for many generations, even in the absence of
selection [34, 35]. When selection is present, such evolving
spatial self-organization of genotypes can help maintain high
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levels of genetic variation at multiple loci, when multiple
genotypes have the same fitness [36]. Similarly, when male
dispersal is dependent on mating success, theoretical models
have demonstrated that populations will self-organize into
groups of similar genotypes, promoting the evolution of
assortative mating and thus facilitating the emergence of
reproductively isolated groups [37]. Further, computational
simulations have shown that environmental heterogeneity,
such as the presence of gradual environmental gradients, can
facilitate evolution of reproductive isolation [16]. Even with
no assortative mating or environmental heterogeneity, simu-
lated two-locus haploid populations experiencing disruptive
selection (which are functionally equivalent to diploid
populations with inviable heterozygotes, a.k.a. complete
underdominance) will self-organize into two reproductively
isolated species [38]. However, this occurs only if the hybrids
are completely inviable, and such models have often been
dismissed as unrealistic on the grounds that it is difficult to
explain how the incompatible alleles became established in
the same population in the first place.

If an ancestral diploid population is homozygous for a
single allele at a given locus, it is difficult to envision how
a new mutant allele with even mild underdominance (i.e.,
slight heterozygote disadvantage) could become established
in the gene pool. In panmictic populations, the probability
that an underdominant mutation becomes fixed decreases
exponentially with both population size and the degree of
underdominance [7], since this requires crossing a mal-
adaptive valley in moving between fitness “peaks”. However,
several possible mechanisms for the successful introduction
of underdominance have been put forth. Conceivably, envi-
ronmental changes could alter the fitness effects of previously
fixed alleles so that they later become underdominant [38].
Alternatively, if there is strong disruptive selection toward
different niches within the habitat, then a mutant hybrid
may experience a transient fitness advantage by exploiting
underutilized resources in a new niche, but then exhibit
underdominance once the population stabilizes [39, 40].
Bateson [9], Dobzhansky [10], and Muller [11] proposed
a means by which hybrid incompatibilities could evolve
via epistatic (i.e., nonlinear gene-gene) interactions between
mutations occurring at separate loci in allopatric (i.e.,
geographically isolated) populations, and Kondrashov [41]
showed how this same process could also occur if mutations
arise nearly simultaneously in different regions in a single
interbreeding population where individuals have limited
movement. Despite the theoretical difficulties regarding the
introduction of underdominance, there is no question that
natural populations do maintain a great deal of genetic
variation, and there is ample empirical evidence of under-
dominance and even complete hybrid sterility [42–45]. For
example, in a recent comprehensive genetic study in maize,
direct evidence was found for several types of within locus
nonadditivity, including allelic underdominance at multiple
loci [46].

Epistasis has long been recognized as important in
evolutionary processes [9], and our rapidly growing under-
standing of the complex interconnectedness of genetic [47–
49] and metabolic [50] regulatory networks is spawning

a new appreciation for the ubiquity of nonlinear gene-
gene interactions [51, 52]. Empirical evidence suggests that
epistasis may be an important factor leading to speciation
[44] and some form of epistasis is a common assumption in
theoretical models of speciation [9–11, 21]. Recent molecular
evidence indicates that the distribution of genetic polymor-
phisms associated with complex diseases (i.e., diseases that
are caused by epistatic interactions of many genetic polymor-
phisms) is not significantly different from the distribution
of normal human variation (comprising apparently neutral
polymorphisms) [53], indicating that some polymorphisms
may be individually nearly neutral but become significantly
deleterious only in certain combinations, or in response to
certain environmental conditions.

In this paper, we use simulated diploid populations
evolving on two-dimensional spatial grids to explore the
specific question as to whether the cumulative effects of
incomplete underdominance (mild heterozygote disadvan-
tage) at multiple epistatically interacting loci can potentially
drive speciation events, even in the absence of other premat-
ing isolation mechanisms, such as allopatry, environmental
heterogeneity, or assortative mating. Two primary questions
are tackled: (1) how can underdominant alleles become
initially established in a single interbreeding population in
a homogeneous environment?, (2) assuming that multiple
mildly underdominant alleles exist in a population, can
self-organization of genotypes result in a coalescence of
mild incompatibilities such that two reproductively isolated
species emerge?

2. Methods

2.1. Discrete Population Model. Populations of diploid indi-
viduals were modeled using two-dimensional stochastic
cellular automata, wherein each lattice cell could be occu-
pied by at most one individual at any discrete time step.
Evolution was simulated in synchronous (nonoverlapping)
generations. At each generation, each cell was repopulated
by the offspring of two parents, stochastically selected using
fitness proportionate selection from the parent population
in the mating neighborhood centered on the cell. That is, the
probability Pi of selecting parent i, from this neighborhood,
was computed as

Pi =
fi

∑n
j=1 f j

, (1)

where j represents each of the n individuals in the mating
neighborhood used for repopulating cell i, and fi is the
fitness of the ith individual. Individuals were not permitted
to mate with themselves. For each pair of selected parents,
a single offspring was produced to occupy cell i in the
next generation. Genotypes of individuals comprised L bi-
allelic loci, for L in the range 2 to 10, depending on the
experiment in question. Loci were treated as unlinked, so
parents donated alleles to their offspring via independent
assortment (uniform recombination). If the offspring of
selected parents was inviable ( fi = 0), then the cell was
treated as empty for the subsequent generation. Reported
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experiments were conducted on a 100 × 100 cell lattice with
nonperiodic boundary conditions (local neighborhoods
were simply truncated at domain boundaries). Separate
experimentation in our laboratory, not otherwise reported,
showed that lattice size (at least for lattices of 100 × 100
or larger), boundary conditions (nonperiodic, periodic),
selection mechanism (tournament, fitness proportionate),
crossover strategy (uniform, single point), and asynchronous
versus synchronous updates did not qualitatively affect the
results, although the time scale of self-organizing events
varied with these control parameters.

2.2. Interaction Topologies. Two different types of population
structures were used for the determination of the individuals
in the mating neighborhoods used in (1): (a) panmixia,
wherein the mating neighborhood for each individual com-
prised the entire population, and (b) localized mating within
overlapping 3 × 3 cell “Moore” neighborhoods centered
on each cell i. Similar spatially localized interactions are
variously referred to elsewhere by such phrases as nearest
neighbor [54], isolation by distance [33, 34, 36], local
neighborhoods [38], or absence of long-range interactions
[41].

2.3. Fitness Models. Several different fitness models are
discussed in this study, incorporating various types and
degrees of additivity (linear within-locus fitness, where the
heterozygote has fitness intermediate to that of the two
homozygotes), dominance (nonlinear within-locus fitness),
and epistatic (nonlinear between-locus fitness) interactions,
including the two-locus fitness tables shown in Figure 1.
In these fitness tables, a value of 0 means inviability, and
positive values simply indicate relative fitnesses of the various
genotypes. Before discussing the fitness functions used in our
experiments, we briefly review two fitness functions used in
related literature, for comparison.

2.3.1. Review of Fitness Models of Goldstein and Holsinger.
Goldstein and Holsinger [36] employed two types of mul-
tilocus fitness functions in their study exploring the effects
of self-organization in populations with localized mating,
as exemplified by the two-locus fitness functions shown
in Figures 1(a) and 1(b). These functions actually exhibit
within-locus overdominance (i.e., the average fitness of each
single-locus heterozygote (Aa or Bb) is higher than either
single-locus homozygote (AA, aa, BB, or bb), for both
loci), so polymorphism is maintained through selection,
even though directional selection will favor homozygotes aa
in combination with BB, or bb in combination with AA.
Our study differs from theirs in that they were exploring
self-organization under this form of stabilizing selection
(due to heterozygote advantage), while we explore self-
organization under disruptive selection (due to heterozygote
disadvantage).

2.3.2. Review of Bateson, Dobzhansky, Muller Incompati-
bilities. Bateson [9], Dobzhansky [10], and Muller [11]
proposed a mechanism for the introduction of hybrid

incompatibilities between allopatric populations (commonly
referred to as BDM incompatibilities). An example of a BDM
type incompatibility is illustrated by the two-locus fitness
table shown in Figure 1(c). If a common ancestral population
includes only AABB, it is easy to see that mutations to a
and b are each individually beneficial and so could each
become fixed if they arise in allopatric populations, resulting
in only aaBB in one population and AAbb in the other.
The hybrid between these two populations AaBb is inviable,
so speciation has occurred, even if the geographic barriers
between the two populations are subsequently removed. This
model is extendible to multiple loci with cumulative effects
[56]. However, BDM incompatibilities require multiple
allopatric mutations (or nearly simultaneous mutations in
populations with localized mating [41]), and so cannot
be used to explain the introduction of underdominance at
individual bi-allelic loci. In this study, we demonstrate the
introduction of within-locus underdominance at multiple loci
in interbreeding populations with localized mating, from
individual mutational events that may be simultaneous or
sequential.

The remainder of the specific fitness models shown in
Figure 1 are discussed in the next section in the context of
the relevant experiments.

3. Experiments

3.1. Introducing within-Locus Underdominance

3.1.1. Additive by Dominance Epistasis. Goodnight [55]
suggested, but did not demonstrate, that certain types of two-
locus epistasis could result in the introduction of complete
within-locus underdominance with a single mutation. For
example, consider the fitness table for two loci shown in
Figure 1(d) (which exhibits what Goodnight [55] refers to
as pure “additive by dominance” epistasis). An ancestral
population with only A, B, and b alleles will experience
stabilizing selection, since the hybrid AABb genotype is the
most fit, so both B and b alleles will be maintained in the
population. As long as randomly interbreeding populations
remain in Hardy-Weinberg equilibrium (where both alleles
B and b have equal frequency, so the relative frequencies
of diploid genotypes BB : Bb : bb are 1 : 2 : 1) a
newly introduced a allele will be selectively neutral and could
become fixed due to drift. However, any deviation away from
a frequency of 0.5 at the B locus will result in directional
selection for the a allele. In a panmictic population, either
aaBB or aabb will take over the population, depending on
which of B or b is most prevalent as a result of drift.
However, in a population with localized mating, both aaBB
and aabb can become established in different parts of the
population, causing disruptive selection and subsequent self-
organizing reproductive isolation (speciation) of these two
genotypes. We have confirmed that such events can occur
in simulated populations that were randomly initialized
with spatially uncorrelated distributions of equal numbers
of the B and b alleles but only a single randomly located a
allele in a sea of A alleles, as illustrated by a representative
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1
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0.92 0.5

0.5

1

0

1
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BB Bb bb

Aa

aa

(h)

Figure 1: Sample fitness tables for various two-locus, bi-allelic genotypes referred to in this study, where fitness ranges from 0 (inviable) to
1 (most fit). (a) and (b) Two locus examples of the fitness functions described in Goldstein and Holsinger [36]; see text for details, (c) an
example of one form of BDM incompatibilities, (d) “additive by dominance” epistasis [55], (e) an instantiation of the formulas in (2) with
η = 0.6, α = 0.5, β = 0.3, δ = 0.0, and γ = 0.1, (f) an instantiation of the formulas in (2) with η = 1.0, α = 0.9, β = 0.5, δ = 0.2, and γ = 0.5,
(g) an instantiation of fitnesses via (3) with L = 2 and ε = 0.0, and (h) an instantiation of fitnesses via (3) with L = 2 and ε = 0.1.

simulation depicted in Figure 2. If the mutant a allele is
not lost due to early drift, it quickly begins to increase
due to directional selection in its local environment, which
almost inevitably leads to patches of reproductively isolated
species with genotypes aaBB and aabb. In a 100 × 100
grid, such speciation events were observed in 30% of 20
trials when using 3 × 3 localized mating neighborhoods,
whereas fixation to either aabb or aaBB occurred 100% of
the time when mating was panmictic. This example is of
interest because of the fact that complete underdominance
at the B locus is the result of a single mutational event,
resulting in speciation when mating is localized, despite the
fact that all alleles and loci have identical average effects when
the population is in Hardy-Weinberg equilibrium. However,
the existence of perfect transient “additive by dominance”
epistasis (Figure 1(d)) in natural populations is expected to
be very rare, at best, given the very specific requirements
that the B locus exhibit perfect underdominance, perfect
neutrality, and perfect overdominance in AA, Aa, and aa
backgrounds, respectively.

3.1.2. Directional Selection for within-Locus Underdominance
at a Single Locus. It actually turns out to be quite simple to

introduce within-locus underdominance into interbreeding
populations via single mutational events and directional
selection, when we allow for both additive and epistatic
genetic variance. Consider a two-locus fitness table, where
the (nonnegative) entries are calculated by the formulas
below:

BB Bb bb
AA η − α η − α η − α
Aa η − β η − β η − β
aa η − δ η − δ − γ η

(2)

where η > α > β > δ ≥ 0 and η ≥ δ + γ. This fitness
table has the following properties: (i) polymorphisms at the
B locus are neutral when in AA or Aa backgrounds, (ii)
the maximum fitness is η, (iii) the predominant component
of fitness variance at the A locus is additive (i.e., there is
directional selection for the a allele, since η − α < η − β <
η−δ), and (iv) there are varying degrees of epistatic additivity
and underdominance at the B locus in combination with
aa, depending on the values of δ (the degree of asymmetry
in fitness between aaBB and aabb) and γ (the degree of
underdominance of aaBb relative to aaBB), respectively.
Two example instantiations of the fitness formulas in (2)
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t = 273t = 150t = 50t = 1

aabb
Background of AABb sprinkled with lethals AABB and AAbb

Single AaBb 
introduced here

aaBB

Figure 2: Self-organized speciation upon introduction of a single a allele (introduced location shown by small circle), with “additive by
dominance” epistasic fitness as shown in Figure 1(d). Inviable genotypes (AaBb) are shown in white.

are shown in Figure 1(e) (δ = 0, so there is no additive
component to fitness at the B locus, so bb and BB have equal
fitness) and Figure 1(f) (δ = 0.2, so there is an additive
component for the B locus, with bb being more fit than BB).

To illustrate how easily within-locus underdominance,
even when asymmetric (i.e., δ > 0), can be introduced,
we ran the following experiments using η = 1.0, α =
0.9, β = 0.5, γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and δ ∈
{0, 0.1, 0.2, 0.3, 0.4}. Populations of 100 × 100 individuals
were randomly initialized in spatially uncorrelated Hardy-
Weinberg frequencies for the B and b alleles, but initially
contained only the A allele at the A locus, so all genotypes
in the ancestral population were of equal fitness. A single
beneficial mutant a allele was then introduced into each
population in a random location and the population was
allowed to evolve until one of three events occurred: (i) the
a allele was lost due to early drift (unsuccessful trial), (ii)
only one genotype remained, usually aaBB but occasionally
aabb, (unsuccessful trial), or (iii) the A allele was lost due
to directional selection and both B and b remained, so
that within-locus asymmetric underdominance has been
established at the B locus (successful trial). The probability
that the mutant a allele will become fixed is governed by α−β
(i.e., how immediately beneficial the mutation is). However,
once the a allele starts to increase in frequency, directional
selection takes over and the A allele is soon lost, after which
time either outcome (ii) or (iii) will occur.

In Figure 3 we show how the proportion of successful
introductions (out of 20 attempts at each parameter com-
bination) of within-locus underdominance varies with 3× 3
localized mating on a 100 × 100 grid, as a function of γ and
δ, where the probability of fixation of the a allele is close
to 1 (because α − β = 0.4, so directional selection for a is
strong). Somewhat surprisingly, the success of introduction
of underdominance at the B locus is essentially independent
of the degree of underdominance γ (Figure 3(b)). Indeed,
even with complete underdominance (i.e., heterozygote
inviability at η − δ − γ = 0) shown by the asterisks in
Figures 3(b) and 3(c), a single mutational event can cause
speciation into reproductively isolated populations of aaBB
and aabb. This is similar to the speciation event caused by
the table in Figure 1(d) and shown in Figure 2, although in

this case speciation can occur even when the aaBB genotype
is less fit than the aabb genotype, because boundaries of
inviable hybrids between clusters of these two genotypes
act as barriers to gene flow that help to protect the less fit
species. Thus, perfect genetic redundancy, where multiple
homozygotes are equally fit, is not a strict requirement for
self-organized speciation to occur. However, the frequency
of successful trials is reduced as the asymmetry in fitness (δ)
between aaBB and aabb is increased, because this increases
the probability that the entire population converges on
aabb (Figure 3(c)). In summary, when mating is localized,
even strong underdominance with mild asymmetry between
homozygotes can be easily introduced into the population
through a single mutational event, when simple and biologi-
cally feasible forms of additivity and epistasis are considered.
The fitness formulas in (2) are just one of many forms of
epistatic fitness that can have this effect, as long as there is
directional selection toward the newly introduced allele.

When mating is panmictic, weak underdominance and
asymmetry can still be introduced in this manner, but
the frequency of success is very sensitive to both γ and
δ and unless these are both very weak the population
rapidly converges to either aaBB or aabb, resulting in the
failure to introduce within-locus underdominance at the B
locus. This is shown by the results of an identical set of
experiments to those described above, except where mating
was panmictic (Figure 4). Even when underdominance is
successfully introduced, it is not likely to persist for long in
panmictic populations, as discussed later.

3.1.3. Directional Selection for Introducing Underdominance
at Multiple Loci. The method described in Section 3.1.2
for introducing underdominance within loci can be easily
extended to introducing both within-locus and epistatic
underdominance at two or more loci. For example, consider
the 4-locus fitness table shown in Figure 5, where the
ancestral population is in Hardy-Weinberg proportions for
alleles A, a, B, and b but has only alleles C and D present.

Introduction of a mutant c allele will introduce under-
dominance at the A locus, through the directional selection
process described in Section 3.1.2, and illustrated in the first
column of 2-locus tables of Figure 5. Similarly, introduction
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Figure 3: (a) Proportion of successful introductions (out of 20 trials on a 100×100 grid for each parameter combination, using 3×3 localized
mating) of underdominance at the B locus via a single mutation to a at the A locus, using the fitness table shown in (2), as a function of the
underdominance (γ) of aaBb relative to aaBB, and the fitness disadvantage (δ) of aaBB relative to aabb, for γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
and δ ∈ {0, 0.1, 0.2, 0.3, 0.4}, (b) success rate as a function of δ over all γ tested, and (c) success rate as a function of γ over all δ tested. In
plots (b) and (c), open circles are the proportions of successful trials (out of 20) at each given parameter combination; solid lines are means
and error bars are ± one standard deviation (averaged across all δ and γ, for plots (b) and (c), resp.), and the asterisk inside an open circle
indicates the one case in each plot where aaBb is inviable.
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Figure 4: (a) Proportion of successful introductions (out of 20 trials on a 100 × 100 grid, using panmictic mating) of underdominance at
the B locus via a single mutation to a at the A locus, using the fitness table shown in (2), as a function of the underdominance (γ) of aaBb
relative to aaBB, and the fitness disadvantage (δ) of aaBB relative to aabb, for γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and δ ∈ {0, 0.1, 0.2, 0.3, 0.4},
(b) success rate as a function of δ over all γ tested, and (c) success rate as a function of γ over all δ tested. In plots (b) and (c), open circles are
the proportions of successful trials (out of 20) at each given parameter combination; solid lines are means and error bars are ± one standard
deviation (averaged across all δ and γ, for plots (b) and (c), resp.).

of a mutant d allele will introduce underdominance at the
B locus, as illustrated in the first row of 2-locus tables of
Figure 5. Introduction of both c and d alleles can lead the
population to the fitness table shown in the lower right 2-
locus table of Figure 5, which is equivalent to Figure 1(g)
(if δ = 0) or Figure 1(h) (if δ = 0.08). In order to test
how frequently this occurs, we performed the following set
of experiments, using the fitness table shown in Figure 5
with δ = 0.08. In each case, a 100 × 100 population
was randomly initialized in spatially uncorrelated Hardy-
Weinberg proportions for A, a, B, and b but with only C
and D alleles present. Then, c and d alleles were introduced
in random locations; in one set of experiments, these

two mutations were introduced simultaneously, whereas in
another set of experiments the c allele was introduced first
and, if it became fixed (i.e., if it replaced the C allele
entirely), then the d allele was subsequently introduced.
Both simultaneous and sequential introductions were tested
in conjunction with both 3 × 3 localized mating and with
panmixia, in 100 random trials for each of these four possible
combinations. A trial was considered successful if and only if
both C and D alleles disappeared while all of the A, a, B, b,
c, and d alleles remained, so that the resulting fitnesses were
as shown in Figure 1(h). In the case of panmixia, none of the
trials were successful. However, with 3 × 3 localized mating
80% of the simultaneous introduction trials were successful



Journal of Artificial Evolution and Applications 7

AA

DD

Initial population

Directional selection
for c and d

Underdominance at
 A in cc background

Underdominance at both A 
and B in ccdd background

CC

BB

0.1

0.1

0.1 0.1

0.10.10.1

0.1 0.1

Bb bb

Aa

aa

Cc

AA

 Dd

BB

0.3

0.3

0.3 0.3

0.30.30.3

0.3 0.3

Bb bb

Aa

aa

AA

 dd

BB

0.6

0.6

0.5 0.6

0.60.50.6

0.6 0.5

Bb bb

Aa

aa

AA

BB

0.8

0.8

0.5 0.8

0.80.50.8

0.3 0.5

Bb bb

Aa

aa

AA

BB

1

1

0.5

0.500.5

0.5

Bb bb

Aa

aa

Final population

AA

BB

0.3

0.3

0.3 0.3

0.30.30.3

0.3 0.3

Bb bb

Aa

aa

AA

BB

0.5

0.5

0.5 0.5

0.50.50.5

0.5 0.5

Bb bb

Aa

aa

AA

BB

0.8

0.8

0.8 0.8

0.50.50.5

0.8 0.8

Bb bb

Aa

aa

cc

AA

BB

0.6

0.6

0.6 0.6

0.50.50.5

0.6 0.6

Bb bb

Aa

aa

1 − δ

1 − δ

Underdominance at
 B in dd background

Figure 5: A four-locus fitness table to illustrate how within-locus underdominance can be introduced and fixed at two loci. Starting from an
ancestral population containing neutral alleles A, a, B, b, C, D (fitness as in upper left), independent simultaneous or sequential mutations
to c and d alleles are both likely to become fixed via directional selection, resulting in a final population containing alleles A, a, B, b, c, d
(fitness as in lower right), wherein both the A and B loci exhibit underdominance. Note that the resulting fitness shown in the lower right is
equivalent to the fitness tables shown in Figures 1(g) and 1(h), for δ = 0 and δ = 0.08, respectively.

and 32% of the sequential introduction trials were successful
in introducing the two-locus underdominance, even though
in this example the underdominance is fairly strong and
the homozygotes in the resulting population are not all
equally fit. This process is easily generalizable to introducing
underdominance at more than two loci, especially when the
underdominance is mild.

3.2. Self-Organization in 2 Locus Systems Due to Multiscale
Interactions. In the previous section, we established that
underdominant polymorphisms, such as shown in Figures
1(g) and 1(h), can be easily introduced into populations with
localized mating interactions. In this section, we tackle the
question as to what happens in populations with multiple
underdominant loci. Specifically, we wanted to see if self-
organization of the genotypes would occur in spatially
structured populations and if so, how this would affect the
evolutionary dynamics.

Populations of 100 × 100 individuals with two bi-allelic
loci were subject to fitnesses according to either the table
shown in Figure 1(g) (within-locus underdominance with
no epistasis) or the table shown in Figure 1(h) (within-
locus underdominance with mild epistasis). The populations
were randomly initialized in Hardy-Weinberg equilibrium,
with all alleles having initially equal frequencies and spatially
uncorrelated random uniform distribution across the spatial
domain (e.g., Figure 6(a)), to preclude the introduction of

initial bias in average effects or spatial organization. The
random Hardy-Weinberg initialization is conservative when
examining self-organization, since any initial clustering or
local biases in fitness will only serve to nucleate cluster
formation more quickly and speed up the process of self-
organization. Groups of individuals are considered different
species only if all hybrids between the groups are inviable.
Experiments consisted of 10 random replications from each
of 10 random starting domains, for both 3 × 3 localized
mating and panmictic mating neighborhoods.

With panmixia, populations without epistasis (fitness
as in Figure 1(g)) became completely fixed to one of the
four possible homozygotes, with equal probability. With
epistasis (fitness as in Figure 1(h)), panmictic populations
became fixed to one of the two fittest homozygotes, with
equal probability. These results are consistent with mean field
predictions that underdominance cannot be maintained in
populations with random mating.

When populations experience 3 × 3 localized mating,
however, the results are more interesting. Without epis-
tasis (fitness as in Figure 1(g)), the populations quickly
self-organize into a patchy structure of the four possible
homozygotes and the sizes of these clusters coarsens over
time (e.g., Figures 6(b), 6(c), and 6(d)). In this case,
speciation does not occur since gene flow remains possible
between all four homozygotes (Figure 1(g)). In contrast, with
disruptive epistasis present (where the most fit genotypes



8 Journal of Artificial Evolution and Applications

t = 250t = 150t = 50

t = 1

(a)

(b) (c) (d)

(e) (f) (g)

ε = 0

ε = 0.1

Figure 6: (a) A representative two-locus, bi-allelic, diploid population initialized in Hardy Weinberg equilibrium. (b)–(d) With no epistasis
(per fitness table in Figure 1(g)), the population self-organizes into clusters of the four possible homozygotes separated by hybrid zones,
most of which are permeable, so no speciation occurs. (e)–(g) With epistasis (per fitness table in Figure 1(h)), the boundaries coalesce into
impermeable hybrid zones, leaving reproductively isolated populations (i.e., species) of the two most fit homozygotes (AABB and aabb). The
variable t refers to the number of generations. Inviable genotypes (AaBb) are shown in white.

are genetically incompatible with each other, such as with
fitness in Figure 1(h)), populations with localized mating
invariably self-organize into reproductively isolated clusters
of the two fittest genotypes (e.g., Figures 6(e), 6(f), and 6(g)),
despite the absence of any environmental heterogeneity,
externally imposed barriers to gene flow, or assortative
mate preference. Thus, multiscale interactions comprising
within-locus underdominance, between-locus epistasis, and
localized mating interactions between individuals can result
in self-organized speciation.

It should be noted that if allowed to run indefinitely,
stochastic events in these finite and homogeneous simulated
spatial domains ultimately favor one or the other species.
However, real ecological domains are heterogeneous and
once reproductive isolation has occurred, it is likely that
two species will continue to diverge and, therefore, may not
continue to be in direct competition for the same set of
resources.

3.3. Extension to More than 2 Loci. For speciation to occur
due to self-organization of only two underdominant loci, the
degree of underdominance must be significant, so that the
double heterozygote is completely inviable. However, we now
consider a more biologically realistic scenario in which mild
underdominance exists at several loci. Will such populations
still exhibit self-organized speciation? In order to tackle this
question we created a generalized fitness function exhibiting
underdominance with optional epistasis, as follows:

fi = 1− Ui + Ei
1 + Emax

, (3)

where fi is the fitness of individual i. Genotypes of indi-
viduals comprised L bi-allelic underdominant loci, where
the two alleles at a given locus are identified by uppercase

or lowercase letters. In (3) a maximum potential fitness of
1 is reduced by an underdominance penalty U, increased
by an epistatic bonus E, and then renormalized so that
the maximum possible fitness is brought back to 1. The
underdominance penalty U is computed as the proportion
of underdominant loci that are heterozygous. Thus, the
more loci in the genotype, the milder the underdominance,
and only genotypes heterozygous at all underdominant loci
are inviable. Note that this strict inverse dependence of
the degree of individual within-locus underdominance on
the number of interacting loci is the most conservative
approach for examining whether speciation will occur, since
we construct these genomes so that, in all cases, there
is only one possible genotype that is completely inviable.
Speciation would be more likely to occur if there were
multiple inviable genotypes, and would never occur if the
within-locus underdominance penalty U were less than 1.0
for all genotypes. The epistatic bonus E is computed as
the product of an epistatic coefficient ε and the maximum
of the number of homozygous loci with the same case
(upper or lower), such that only the two most genetically
distinct homozygous genotypes (e.g., AABBCC and aabbcc)
experience equal and maximal fitness.

This simple fitness function was employed because it
allows easy control of both the degree of underdominance
(by changing the number of loci) and the degree of epistasis
(by changing ε) being modeled, while still maintaining
identical average effects for each locus and each allele in
the initial populations (which were randomly initialized
in spatially uncorrelated Hardy-Weinberg equilibrium for
all alleles). Note that for a 2-locus system, the fitnesses
for the 9 genotypes shown in the tables in Figures 1(g)
and 1(h) can be generated from (3), where ε = 0 and
ε = 0.1, respectively (note that these same fitnesses could
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a single genotype (with panmixia and ε = 0.1). Each data point
represents the mean of 100 trials (10 random runs from each of 10
random initial conditions), with vertical bars representing standard
deviations.

have resulted from the evolutionary process described in
Section 3.1.3 and illustrated in Figure 5). Experiments were
performed with L ∈ {2, 4, 6, 8, 10} underdominant loci and
epistasic coefficients of ε ∈ {0.01, 0.1}, with both panmixia
and 3× 3 localized mating. Each experimental configuration
was run for 100 trials (10 random runs from each of 10
random initial populations).

As before, when mating is panmictic, the population
rapidly fixes to one of the two fittest genotypes with equal
probability, and speciation does not occur (Figure 7, bottom
line). However, with 3 × 3 localized mating, speciation
was observed in 100% of the trials for both values of
epistasis tested, (Figure 7, top two lines). As the number
of loci increases (and consequently the degree of within-
locus underdominance decreases) the fitness valleys of het-
erozygotes at each locus become less pronounced, allowing
increasingly easy traversal of fitness valleys and enabling
underdominant polymorphisms to persist longer in the
population. For example, with mild epistasis (ε = 0.1),
the number of generations to speciation events increased
exponentially (R2 = 0.72) with the number of interacting
loci L (Figure 7, middle line). Decreasing the epistasis
coefficient by an order of magnitude (to ε = 0.01) increased
the mean of the log of time to speciation by an order of
magnitude (P < .0001, ANOVA) but also increased the
variance (P < .0001, O’Brien’s test), with a corresponding
drop in correlation (R2 = 0.11, Figure 7, top line). In
the latter case, the asymmetry in fitness between any of
the homozygotes is almost negligible, enabling the under-
dominant polymorphisms to persist longer before speciation
occurs.

The results of these experiments demonstrate that, with
localized mating and mild underdominance, clusters of
homozygous genotypes spontaneously form and can coexist

No barrier 50% barrier
1

10

100

1000

10000

evoekaT
r

e
mit

(a)

aa
(f = 0.92)

AA
(f = 1)

Aa
(f = 0.5)

Impermeable
barrier

(b) t = 1500

(c) t = 5000

Figure 8: (a) Takeover times for AA when there is no barrier (red
circles) or a 50% barrier (blue asterisks); see text for details. (b) and
(c) Snapshots of population structure of a representative run with a
50% barrier at 1500 and 5000 generations, respectively.

for long periods of time. With even a small amount of
disruptive epistasis, leaky genetic boundaries between these
clusters tend to coalesce over time to form impermeable
genetic barriers to gene flow, even when individual loci are
nearly neutral. Thus, speciation can occur as an emergent
property from the self-organization of multiple underdom-
inant polymorphisms in populations with localized mating.

3.4. The Effect of External Barriers to Gene Flow. As shown
in Figure 7, underdominant alleles and less fit genotypes can
persist for long periods in a single interbreeding population,
if mating is spatially localized, even when the domain
is completely homogeneous and no niche differentiation
occurs. However, the presence of external barriers to gene
flow can further enhance the persistence of underdominance
and less fit genotypes in an interbreeding population. If
even partial external (e.g., geographic) barriers to gene flow
are present, self-organized cluster boundaries will tend to
become stabilized at external boundaries [57]. Consider a
simple single-locus 20 × 20 population, where the left half
of the domain is initially populated with the homozygote
AA with fitness 1.0, while the right half is populated with
the homozygote aa with fitness 0.92, and the heterozygote
Aa has fitness 0.5 (i.e., fitness is as in column 1 of the table
shown in Figure 1(h)). When there is no physical barrier
between them, the more fit AA takes over the entire domain
in an average of only 224 generations (10 trials, standard
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deviation = 25), whereas when 10 of the 20 cells are blocked
by an impermeable external boundary, leaving a 10-cell
window in the center, the takeover time increases by over
an order of magnitude to an average of 3777 (10 trials,
standard deviation = 2809), with one takeover time as high as
9254 generations (Figure 8(a)). The reason for this dramatic
slowdown in takeover by the more fit genotype is illustrated
by snapshots from a representative run. At 1500 generations
(Figure 8(b)), the more fit AA genotype has made a bulge
into the half if the domain initially occupied by aa. However,
the fitness advantage of AA is countered by the fact that the
local mating neighborhoods at the convex cluster boundary
have a larger proportion of aa genotypes, which increases
their probability of being selected by (1). In fact, the bulge
tends to grow and shrink in size over time; in this example
it was much smaller at 5000 generations (Figure 8(c)) than
it was at 1500 generations (Figure 8(b)). Ultimately, if given
enough time, a fitter genotype will “break through” the
barrier and then rapidly take over the rest of the domain (this
particular run took 7166 generations for complete takeover).

4. Discussion and Conclusions

Underdominance can conceivably enter the genome of an
interbreeding population via a variety of potential mech-
anisms. Previously proposed mechanisms include environ-
mental change [38], disruptive selection caused by niche
differentiation [39, 40], and “additive by dominance” epis-
tasis [55]. Here, we demonstrate a simple alternative and
biologically reasonable mechanism by which within-locus
underdominance can easily become established at one or
more loci, either simultaneously or sequentially. Specifically,
the proposed mechanism requires (i) an initial condition
comprising a preexistent neutral polymorphism at a locus
(ii) an advantageous mutation at a second locus (which
thus becomes fixed by directional selection), and (iii) an
epistatic interaction between the two loci, such that the first
(previously neutral) locus becomes underdominant in the
background of the newly fixed favorable allele at the second
locus. We note that these requirements are consistent with
the existence of a large amount of observed neutral polymor-
phism, occasional advantageous mutations, and pervasive
epistatic genetic interactions in biological organisms [47].
Our simulations show that, if mating is panmictic, then only
mild underdominance can be introduced in this manner and
is not likely to persist for long. However, when mating is
spatially localized, even strong underdominance with mild
asymmetry can be easily introduced and maintained in
interbreeding populations for long durations. Our model
thus illustrates how underdominance at multiple loci can
easily be introduced into interbreeding populations with
localized interactions.

We also demonstrate that in locally mating populations
exhibiting mild underdominance at multiple loci, the popu-
lations self-organize into clusters of compatible genotypes.
Gene flow persists between clusters unless the hybrids
between clusters are completely inviable. Even in the extreme
case, where boundaries for different underdominant loci are

initially independent of each other, over time they become
aligned. Thus, leaky genetic boundaries coalesce to form
harder genetic boundaries (deeper fitness valleys). When
certain forms of mild epistasis are present, speciation can
be an emergent property in this model, arising as the result
of multiscale interactions (within-locus, between-locus, and
between individuals) without any geographic, niche-based,
mate preference, or other premating isolating mechanisms.
In contrast, self-organization cannot occur when mating is
panmictic, in which case the populations invariably converge
on a single genotype.

Just as localized mating can promote maintenance of
genetic polymorphisms at multiple diploid loci in patchy
structures when selection is stabilizing [36], we have shown
that a similar process can occur when selection is disruptive.
In both cases, genetic redundancy (where multiple genotypes
have the same fitness) help to stabilize the polymorphisms.
However, under disruptive selection even clusters of unequal
fitness can persist long enough for speciation to occur, since
the fitness valleys in the hybrid zones between unequally
fit genotypes slow the takeover by the fitter genotype. If
external barriers to gene flow are also present, then these
can increase persistence of even asymmetric underdominant
polymorphisms by further stabilizing cluster boundaries.

In the experiments reported here, mating interactions
were either panmictic or used overlapping 3 × 3 localized
mating neighborhoods. However, even when mating is
generally localized in natural populations, there are still likely
to be occasional long range interactions (e.g., long range
migration events in animals or unusually long dispersal of
pollen or seeds in plants). In a separate set of experiments
reported elsewhere [58], we assessed the sensitivity of
simulated self-organized speciation to relaxations in the
assumption of strictly localized mating. Specifically, we
altered the interaction topology from nearest neighbor
interactions to panmictic interactions in two ways: (i) by
increasing the size of the contiguous mating neighborhoods
and (ii) by allowing for long-distance dispersal of individuals
with increasing probability. The results of that study [58]
show self-organized speciation to be robust to mating
neighborhood sizes significantly larger than nearest neighbor
interactions (relative neighborhood size to domain size is
actually shown to be the governing parameter, as in cellular
evolutionary algorithms [59]) and to probabilities of long-
distance dispersal that fall well into the range of so called
“small-world” [60] interaction topologies.

Spatially explicit models, such as employed here, are
not generally analytically tractable, and the lack of closed
form solutions has led some to claim that this limits
the generality of theoretical conclusions [6]. However, in
complex biological systems, the generality of theoretical
conclusions may be even more severely limited by the
assumptions necessary for analytical tractability, and by the
principle of computational irreducibility [61] simulations
can be necessary in order to gain insight into complex
multiscale spatiotemporal evolutionary processes. We do
not dispute that analytical solutions based on assumptions
such as panmixia or haploidy can certainly lead to useful
generalizations in some circumstances. Yet, as demonstrated
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in this contribution as well as a variety of other studies
of both simulated and natural populations (e.g., [16, 34,
36, 38, 54, 57, 62–65]), essential evolutionary dynamics
often emerge as a consequence of spatially-constrained
interactions. While the model employed herein is highly
idealized, it nonetheless manifests properties observed in
natural populations, while removing the confounding effects
of differences in initial average effects of different alleles
or different loci, heterogeneity in the environment, or pre-
mating isolation of similar genotypes due to mate selection
or geographic isolation. The three primary assumptions in
our model of self-organized speciation are that populations
can exhibit (i) underdominant polymorphisms, (ii) epistatic
genetic interactions, and (iii) spatially localized mating, all of
which have been widely observed in natural populations, as
discussed in the introduction. These simulations yield poten-
tially useful generalizations and insights, demonstrate the
sensitivity of evolutionary processes to spatial and multiscale
aspects of interactions, and underscore the importance of
taking these complexities into account.

The degree to which epistatic underdominance is a
significant driving force in natural evolution is difficult to
say. Certainly, hybrid zones of reduced fitness are commonly
observed between closely related species, but when and
how these hybrid incompatibilities evolved is impossible to
determine in retrospect. However, while this study cannot
answer the question of whether or not recombination and
self-organization of many nearly neutral underdominant
alleles has led to emergent intrinsic barriers to gene flow
in natural systems, we argue that it does indicate that such
processes may be feasible and even parsimonious mecha-
nisms for genetic divergence without premating isolation.
We conclude that multiscale interactions can potentially
help to maintain underdominant polymorphisms and may
contribute to speciation events. This model shows one
way that the emergent properties in complex biological
communities can drive evolutionary change. It is probable
that, in natural systems, many mechanisms are operating
simultaneously to cause speciation.
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1. Introduction

The use of DNA (deoxyribonucleic acid) or protein
sequences for different purposes has greatly increased as the
technology for DNA and protein sequencing has improved
with the consequent cost reduction. A proof for this is the
enormous amount of information available in the Protein
Data Bank [1] or in GenBank [2]. The exponential growth
in size of these data repositories goes in parallel with
the increasing need for tools to manage and analyze the
valuable information therein contained. The first step to
make this information manageable is to device tools to
identify comparable proteins or DNA fragments, as well
as comparable protein or DNA sequence units (amino
acids and nucleotides, resp.). This process is referred to
as sequence alignment. By aligning sequences, phylogenetic
analyses can be carried out, PCR (polymerase chain reac-
tion) primers constructed, secondary or tertiary structures
predicted, among other applications. Being such a central
topic, algorithms to tackle sequence alignment have already

been developed. Nevertheless, as we explain more thoroughly
in Section 2.2.1, sequence alignment is not a trivial problem.
To reduce this complex issue to trackable problems, most
available softwares consider at once pairs of sequences.
Measures for alignment quality that globally use the entire
data sets (matrices consisting of more than two sequences)
are currently unavailable.

In this paper, we thoroughly present a Global Criterion
for Sequence Alignment (GLOCSA) that uses a scoring
function to globally rate multiple alignments aiming to
indirectly use the parsimony criterion. We also propose
an evolutionary computation technique suitable to opti-
mize it. So this novel objective function is coupled with
a Genetic Algorithm (GA), the GLOCSA-Guided Genetic
Algorithm (GGGA), which uses a compact representation
of the alignments and five different mutation operators to
explore the solution landscape. Although GGGA can be
used for completely unaligned data sets, it is more efficient
for refining alignments previously generated by additional
existing tools. Using GLOCSA as the scoring parameter,
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GGGA is capable of improving alignments generated by
other tools (MUSCLE (multiple sequence comparison by
log-expectation) v3.6 [3] was used in this work to prealign
the matrices).

2. Sequences and Alignments

2.1. Sequences. DNA consists of a unique sequence of
repeated four nucleotides. Each nucleotide is characterized
by a corresponding nitrogenous base representing the pri-
mary structure of a real or hypothetical DNA molecule
or strand, with the capacity to carry information. Such
sequences analogously exist for RNA (ribonucleic acid) and
proteins [4, 5].

In biochemistry, the primary structure of a biological
molecule is the exact specification of its atomic composi-
tion and the chemical bonds connecting those atoms. For
molecules of DNA, RNA, or proteins, the primary structure
is equivalent to specify the sequence of its monomeric
subunits, that is, the nucleotides or aminoacids sequence
[4, 5].

2.2. Sequence Alignment. DNA sequences, RNA sequences
and the protein sequences encoded change through time,
evolving mainly under the action of mutation. The simplest
types of mutation are point mutations, which are substitu-
tions of nucleotides or aminoacids, and insertions/deletions,
also known as indels. When one or two comparable
sequences suffered insertion and/or deletion mutations, they
will differ in length (i.e., they will have a different number
of nucleotides or amino acids). Because these mutations are
normally not observable, it is necessary to deduce where they
occurred in order to identify which nucleotides or amino
acids originally occupy the same position (which ones are
homologous). This is the alignment process. Although this
could appear trivial, it is a complex task due to the fact
that a limited and a priori known number of minimum
observable units exist for each aligned position (e.g., in the
case of DNA only four nucleotides) and that all positions
have the same potential alternative conditions (e.g., in DNA
each unaligned position needs to have one of the four
nucleotides). In this way, a gap (an inferred indel) in a
sequence can be placed in many positions without making
a big difference with respect to the comparable sequence. To
align two or more sequences, they are put together in a (S·C)
matrix, where S is the number of sequences, and C is the
maximum number of residues in a sequence(positions in the
alignment); the shorter sequences are filled at the end with
gap codifications (“−”) to fit the matrix perfectly. With a
sequence in each line of the matrix, the process of alignment,
represents the insertion of − in the sequences (see Table 11).
In order to choose the best alignment, it is considered that, in
biological terms, the process of alignment has the objective
to align homologous residues (having the same evolutionary
origin). Assuming that evolution is parsimonious, when
performing an alignment the aim is to minimize the number
of evolutionary changes (events of substitutions or indels)
that the alignment implies [6].

Alignments can be either pairwise, two sequences only,
or multiple, more than two sequences up to an arbitrary
number. For pairwise alignments dynamic programming
algorithms have been developed to address this problem,
such as Needleman-Wunsch [7] and Smith-Waterman [8]
algorithms. Pairwise alignments might be regarded as special
cases of multiple alignment. In practice, however, the com-
putational complexity of aligning multiple sequences is such
that the corresponding algorithms are usually not straight
extensions of the pairwise approaches. Instead, multiple
alignments are often constructed by repeatedly merging
pairwise alignments (progressive alignment) [6].

2.2.1. The Number of Possible Alignments of Two Sequences.
In order to define the complexity of finding an optimal
alignment given an objective function, the number of
possible alignments can be computed.

Having two sequences S1 = S1[1]S1[2] · · · S1[m] and
S2 = S2[1]S2[2] · · · S2[n] of size m and n, respectively,
f (m,n) can be defined as the number of alignments that can
be formed between them.

Any possible alignment of S1 and S2 ends in one of these
specific ways [6]:

(
S1[m]
−

)

,
(
S1[m]
S2[n]

)

, or
( −
S2[n]

)

. (1)

That is, the last residue of S1 aligned with a gap
codification −, the last residue of S1 and S2 aligned, or the
last residue of S2 aligned with a gap codification −.

Considering the effect of these three possible ends on
the number of alignments that can be formed out of the
remaining residues in the alignment, the ending (S1[m]/−)
removes one residue from S1, (S1[m]/S2[n]) removes one
residue from both sequences and (−/S2[n]) removes one
residue from S2. Following this, the next recursion can be
written [6]:

f (m,n) = f (m− 1,n) + f (m− 1,n− 1) + f (m,n− 1).
(2)

Each of the terms in the righthand side of (2) represents
a possible end. In addition to this recursion, a stop criterion
or boundary condition is needed:

f (m, 0) = f (0,n) = f (0, 0) = 1. (3)

Using the recursion in (2) and the stop criterion in
(3), the number of possible alignments of two sequences
of equal length from 1 to 10, m = n = 1, 2, . . . , 10,
can be computed (Table 1), where it is obvious that the
number of alignments grows exponentially as the length
of the sequences increments. Then, it is straightforward to
assume that, with more sequences involved in an alignment,
the number of possibilities grows even faster.

3. Previous Work

3.1. Sequence Alignment and Evolutionary Computation.
Evolutionary Computation (EC) has been previously used
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Table 1: Number of possible alignments for two sequences; m and
n are the respective sizes of two given sequences.

m,n No. of possible alignments

1,1 3

2,2 13

3,3 63

4,4 321

5,5 1683

6,6 8989

7,7 48639

8,8 265729

9,9 1462563

10,10 8097453

in the problem of multiple sequence alignment (MSA) [5],
from Genetic Algorithms [9–11] to Evolutionary Program-
ming [12, 13]. From these applications, SAGA (sequence
alignment by genetic algorithm) is considered [10] the most
relevant to the topic of this paper’s research.

One of the main advantages of EC is to allow a
good separation between the optimization process and the
evaluation criterion (objective function). It is the objective
function that defines the aim of any optimization procedure
and in the case of sequence alignment, it is also the objective
function that summarizes the biological knowledge that is
intended to be projected into the alignment.

3.1.1. Objective Functions. An alignment is considered to
be correct if it reflects, at least in the case of DNA, the
evolutionary history of the species of the sequences being
aligned. But, at the time of assessing the quality of an
alignment, such evolutionary information is not frequently
available, or even more, not known. It may also be the
case that aligning a set of sequences is an intermediate step
to produce an evolutionary hypothesis. Hence, alternatives
must be sought, and measures of sequence similarity are an
useful option. It is assumed that similar sequences share the
same evolutionary origin [14], as long as the level of identity
is outside the twilight zone (more than 30% identity over
100 positions). Nevertheless, to assess sequence homology by
similarity has also been questioned [15, 16].

Existing measures of similarity are obtained using sub-
stitutions matrices ([17] for proteins). A substitution matrix
assigns a cost for each possible substitution or conservation
accordingly to the probability of occurrence, computed from
data analysis. In this approach insertions and deletions are
penalized (gap penalty). The most common scheme for that
purpose is giving a cost for gap opening and gap extension
(affine gap penalties model), in order to favor alignments with
smaller numbers of indels (each gap can be regarded as an
indel event). The main disadvantage of these substitutions
matrices is that they are intended to rate the similarity
between two sequences at a time only, and in order to extend
them to multiple sequences, it is common to find that they
are scaled by adding up each pairwise similarity to obtain the
score for the multiple sequence alignment [5].

Every objective function defines a mathematical opti-
mum (or a set of them), which is not necessarily the same
as the biological optimum that is sought when aligning
genetic sequences. This biological optimum can be said that
arises as a consequence of the evolutionary history of the
sequences in the alignment. An objective function is only as
good as its mathematical optimum resembles the biological
one. In order to make this two optima converge, biological
knowledge must be integrated to the objective function [5].

SAGA [10] was used to optimize two different objective
functions. A brief description of them are given as follows.

Weighted Sums of Pairs. Weighted Sums of Pairs is the
objective function used by MSA [18]. The sums-of-pairs
principle associates a cost to each pair of aligned codifications
in each column of an alignment (substitution cost) and
another, similar cost to the gaps (gap cost). The sum of these
costs yields the global cost of the alignment. Major variations
involve using (1) different sets of costs for substitutions
(PAM Matrices [17], BLOSUM tables [19]), (2) different
schemes for the cost of gaps (quasinatural and natural [20]),
and (3) different sets of weights associated with each pair of
sequences due to evolutionary distance [21].

SAGA was first used to optimize the sums of pairs with
quasinatural gap penalties.

COFFEE Score. COFFEE stands for Consistency-Based Objec-
tive Function For alignment Evaluation and is a measure
of the level of consistency between multiple alignments of
a set of sequences and a library of all possible pairwise
alignments of the same set of sequences. Evaluation is made
by comparing each pair of aligned residues observed in
the multiple alignments with the list of residue pairs that
constitute the library. The consistency score is equal to the
number of pairs of residues that are found simultaneously in
the multiple alignment and in the library, divided by the total
number of pairs observed in the multiple sequence alignment
[5].

The main difference between the COFFEE function and
the Weighted Sum of Pairs is the use of the library instead of
the substitution matrix.

4. GLOCSA—A New Objective Function

The Global Criterion for Sequence Alignment (GLOCSA) is
a new proposed function to assess the quality of multiple
sequence alignments of DNA. It has been build from the
ground up with simplicity and a global approach in mind. By
global it is understood that it rates the alignment as a whole,
that is, all sequences considered simultaneously, not taking
pairs of sequences to score their corresponding alignment. It
also takes into account the gaps, seeking to favor parsimony.

GLOCSA is composed of three individual criteria: Mean
Column Homogeneity (MCH), Reciprocal of Gap Blocks (RGB)
and Columns Increment (CI). These are combined in a
polynomial with a set of corresponding weights (wmch, wrgb,
and wci). These weights are set by default to the values
shown in Table 2. This default values were determined
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Table 2: GLOCSA weights.

wmch = 1000

wrgb = 20

wci = −20

Table 3: Nucleic acid codifications supported.

A Adenosine

C Cytosine

G Guanine

T Thymine

R G A (puRine)

Y T C (pYrimidine)

K G T (Ketone)

M A C (aMino group)

S G C (Strong interaction)

W A T (Weak interaction)

B G T C (not A) (B comes after A)

D G A T (not C) (D comes after C)

H A C T (not G) (H comes after G)

V G C A (not T, not U) (V comes after U)

N A G C T (aNy)

− Gap

? Any base or gap

empirically, adjusting them to assign better scores to better
alignments using a set of artificial examples and some real-
world alignments:

GLOCSA = wmchMCH +wrgbRGB +wciCI. (4)

The main problem faced when scoring alignments is that
the exact evolutionary history of the involved sequences is
never known. Theories can be stated about which alignment
reflects the more plausible or probable evolutionary history
(which is what produces the differences in the sequences) but
certainty cannot be guaranteed.

Compared to the other schemes of sequence alignment
evaluation rating them on a pair basis, such as weighted sum
of pairs [18], GLOCSA has the advantage of rating the whole
alignment at a time (with the Mean Column Homogeneity
criterion). It also has the advantage of considering parsi-
mony, favoring more concentrated gaps (with Reciprocal of
Gap Blocks) and smaller alignment matrices (with Columns
Increment).

At the moment it is intended to rate only multiple
sequences of DNA composed of the standard IUB/IUPAC
codifications for nucleic acids, shown in Table 3.

To score an alignment of multiple sequences, a matrix
with C columns and S lines is considered, where C is the
maximum number of positions in a sequence, and S is the
number of sequences in the alignment. Initially, to perfectly
fit all the sequences in the matrix, gap positions are appended
(“−”) at the end of the shorter sequences.

4.1. Mean Column Homogeneity. In the alignment matrix
each position is represented in a column, and the column
homogeneity has the purpose of rating the grade of diversity
in the elements of a given position, scoring higher the more
homogeneous columns.

The basic idea is that the occurrences of each of the four
bases in a column are counted. A, C, G, and T are counted
with a weight of 1.0 while polymorphisms are counted as an
equal fraction of a unit for each base they represent (e.g., A
counts 1.0 for A while R is either G or A, so it counts 0.50
for G and 0.50 for A). Gaps are also counted, with a unit for
each. Using these counts the column homogeneity for each
column is computed.

The count of bases and gaps are computed in wcjt ∀0 ≤
t ≤ 4, where t is the index for a base or gap which is being
counted and j is the column. These weighted counts are
the result of adding up to wcjt the corresponding weight
(shown in Table 4) for the codification of each sequence in
the column. This can be expressed as,

wcjt =
∑

i

Tw
(
t, am

(
i, j
))

, (5)

where am(i, j) is a function that retrieves the codification in
the sequence i at column j of the alignment, and the function
Tw(t,Pc) looks up the weight associated with the base t and
the codification Pc (in this case Pc is given by am(i, j)) in
Table 4.

After counting, the column homogeneity of a given
column is computed using the following formula:

CH j =
∑3

t=0 (wcjt)
2

(
∑4

t=0 wcjt)
2 . (6)

It is to be noted that in the numerator of the fraction only
the four bases are considered (A, C, G, and T indexed by 0, 1,
2, and 3), and in the denominator the gap (−, indexed by 4) is
considered along with the bases. This is considered in order
to penalize the insertion of gaps, assuming that as the gaps
are not counted in the numerator but they are counted in the
denominator, the column homogeneity value decreases when
there are more gaps.

In the case that a position in a sequence has a ?
codification, that position for that sequence is discarded
(as it was not observed) for the computing of that column
homogeneity value. This is because a ? implies that in that
position the sequence has no information.

A special consideration is taken when all the elements in
a column are gap codifications (−) in that case the column
homogeneity is given a value of zero, to penalize the existence
of such columns.

When the column homogeneity value for all the columns
has been computed, the mean value is obtained and that is
the Mean Column Homogeneity.

This criterion gives higher scores to more homogeneous
columns, penalizing diversity of bases in a column (as shown
in the examples of Table 5).

4.2. Reciprocal of Gap Blocks. The gap codifications (“−”)
which are contiguous are grouped into blocks, and the
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Table 4: Base count weights matrix.

t A C G T R Y K M S W B D H V N −
0 A 1 0 0 0 1/2 1/2 0 1/2 0 1/2 0 1/3 1/3 1/3 1/4 0

1 C 0 1 0 0 0 0 0 1/2 1/2 0 1/3 0 1/3 1/3 1/4 0

2 G 0 0 1 0 1/2 0 1/2 0 1/2 0 1/3 1/3 0 1/3 1/4 0

3 T 0 0 0 1 0 1/2 1/2 0 0 1/2 1/3 1/3 1/3 0 1/4 0

4 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5: Column Homogeneity evaluation examples.

Column

0 1 2 3 4 5 6 7 8 9 10 11 12

seq0 A A A A A A A A A A − A A

seq1 A A A A A A A A A A − − G

seq2 A A A A A A A A A G − − −
seq3 A A A A A A A A A G − − −
seq4 A A A A A A A A G T − − −
seq5 A A A A A A A A G T − − −
seq6 A A A A A A A G T T − − −
seq7 A A A A A A G G T C − − −
seq8 A A − A G G T T C C − − −
seq9 A − − G G T C T C C − − −
CH 1.00 0.81 0.64 0.82 0.68 0.66 0.52 0.44 0.28 0.26 0.00 0.01 0.02

reciprocal of the number of gap blocks is calculated, as shown
in the next equation:

RGB = 1
GB

, (7)

where GB is the number of gap blocks in the alignment.
If there are no gap blocks, the Reciprocal of Gap Blocks
criterion is given a value of 1.0.

This criterion serves the purpose of rewarding the
alignments where the gap codifications are located in a more
concentrated manner, that is, where there are fewer larger
blocks of gap codifications rather than more blocks of smaller
length. Fewer blocks imply less evolutionary events to be
explained and a more parsimonious alignment.

In Tables 6, 7, and 8 three alignments of a hypothetical
set of sequences are shown. The three alignments have the
same number of “−”, but the example in Table 6 has them
in 3 blocks, the example in Table 7 in 2 blocks, and finally
the example in Table 8 in just 1 block, a difference which
is noticeable in the reciprocal gap blocks criterion, and
thus favoring the alignment which implies less evolutionary
events (parsimony).

4.3. Columns Increment. Inserting gaps to align a set of
sequences is common, and the number of columns increases.
Columns Increment is the ratio of this augmentation, defined
by

CI = C

C0
− 1, (8)

where C is the number of columns after aligning, and C0 the
number of columns before aligning, which is equivalent to
the number of nucleotides of the longest sequence.

An example of a hypothetical set of sequences for
which two different alignments are shown in Tables 9 and
10. Each alignment has a different value for the Columns
Increment criterion. A smaller alignment is preferred because
a smaller matrix probably implies less evolutionary events
(parsimony).

5. GGGA—a GA Using GLOCSA

Having a new objective function to evaluate the quality of
multiple sequence alignments, and considering the complex-
ity of the problem (as it is explained in Section 2.2.1), using
a genetic algorithm to optimize alignments and its GLOCSA
score was considered a viable option.

GGGA, GLOCSA-Guided Genetic Algorithm is the
Genetic Algorithm implemented to optimize the GLOCSA
value. GGGA is a variant of the Simple Genetic Algorithm
where a custom representation is proposed, along with a
specific mutation operator. There is no crossover opera-
tor, selection is performed by tournament, and elitism is
used.

The initialization of the population is done using the
mutation operator and a seed alignment which is an input
to the algorithm. To produce each individual of the next
generation, an individual is selected from the previous
generation, using the tournament selection operator and
then submitted to the mutation operator to generate the new
individual (under a mutation probability).
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Table 6: Alignment to exemplify the Reciprocal of Gap Blocks criterion. RGB = 0.33.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

seq0 A A A A G G C A T C A T C A T C A G G A A A A

seq1 A A A A G G — — — C — — — A — — — G G A A A A

Table 7: Alignment to exemplify the Reciprocal of Gap Blocks criterion. RGB = 0.50.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

seq0 A A A A G G C A T C A T C A T C A G G A A A A

seq1 A A A A G G — — — — — — C A — — — G G A A A A

5.1. Representation of Individuals. Each individual in the
population represents a possible alignment. The alignment
matrix (described in Section 4, e.g., in Table 11) used to rate
an alignment with GLOCSA is the base for the representation
of individuals. But not everything in the matrix is necessary
to reconstruct any given alignment. Therefore it is processed
to obtain a much more manageable representation.

Since the solution space explored by the algorithm
consists of the possible alignments of a given set of sequences
which do not change, the only piece of information which
is necessary to represent any alignment, is the location of
every gap codification. Furthermore, if gap codifications
are grouped into gap blocks (groups of contiguous gap
codifications), the position and size of these blocks are the
only information needed to reconstruct an alignment.

If the bases in every sequence of the alignment are
indexed with consecutive numbers, starting from 0 for the
first base to ease its implementation, the position of the gap
blocks can be determined by the base index it precedes.

Thus, the alignment can be represented by having for
each sequence a list of the positions and sizes of every
gap block in them, that is, each gap block represented as
two nonnegative integers (position and size). As a simple
illustrative example the alignment matrix of Table 11 is
transformed to its corresponding representation in Table 12.
In this example, the sequence 0 has only one gap block of size
2, before the A with index 2 (the third one), hence the list of
gap blocks for this sequence only has one element which is
[2, 2]; sequence 1 has two gap blocks [2, 2], [3, 1]; sequence
2 has only one [0, 2], the two gap codifications at the end of
the sequence were appended to fit it in the alignment matrix;
so there is no need to include them in the representation
(trailing gaps are a consequence of the different lengths of
the sequences); sequence 3 has just one gap block [3, 3].

5.2. Mutation Operator and Suboperators. The mutation
operator is basically in charge of changing the gap cod-
ification appearances in the alignment represented by an
individual, in order to explore the solution space. It works
with a mutation probability, which determines the number
of expected mutations in an individual when the operator
is applied to it. As it is more manageable to refer to the
mutation probability in terms of the number of mutations
expected per individual, as it is more informative in the
context of the problem, this approach will be used in the
results.

For each mutation operation five types of changes to
the gap codification appearances are proposed: insertion
of new gap blocks, increment of the size of a gap block,
decrease of the size of a gap block, shift of positions
of gap blocks and deletion of a gap block. These five
types of changes are denominated suboperators, and the
selection of which one will be applied is determined by
its individual probability, dynamically adapted throughout
the generations. These suboperators were selected because
in the opinion of the authors they make the algorithm
capable of searching the solution space in a relatively efficient
way. A crossover operator (interchanging entire sequences
between alignments) was also considered but was discarded
in early stages because it gave no apparent advantage to the
algorithm.

It is noteworthy that while performing these changes
to the alignments no penalization is done other than the
modification in the GLOCSA score these changes imply.

5.2.1. Insertion Suboperator. This suboperator chooses ran-
domly a sequence and inserts a gap block in it. The size of
the new gap block is also random, but with an exponential
distribution with mean fitted from the gap block sizes in the
seed alignment.

The size of the new gap blocks to insert is biased toward
small sizes; this is because large gap blocks are not very
common, but still exist.

5.2.2. Increment Suboperator. The Increment Suboperator
chooses a sequence at random and an existing gap block from
it, increasing in one unit its size. If the selected sequence
does not have any gap block at all, this operator leaves the
sequence without change.

5.2.3. Decrease Suboperator. As the previous operator, it
chooses randomly a sequence and a gap block from it, whose
size will decrease by one; if the size is 1 gap codification, this
operator deletes the gap block totally. Again if the selected
sequence does not have any gap block at all, it remains
unchanged.

5.2.4. Shift Suboperator. In a sequence chosen at random,
this operator selects first a gap block in it, then a position
is selected randomly in that sequence; if a gap block exists
in that position, the sizes of them are interchanged. If there
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Table 8: Alignment to exemplify the Reciprocal of Gap Blocks criterion. RGB = 1.0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

seq0 A A A A G G C A T C A T C A T C A G G A A A A

seq1 A A A A G G C — — — — — — — — — A G G A A A A

Table 9: Alignment to exemplify the Columns Increment criterion.
In this case, the number of columns remains the same after aligning.
CI = 0.

0 1 2 3 4 5 6 7 8

seq0 A T C A T C A T C

seq1 A T C A T C A T C

seq2 A T C A T C A T C

is not a gap in the selected position, the position of the
first selected gap is set to the other position. If the selected
sequence does not have any gap block at all, no modification
is done. This operator mixes information within a given
sequence in a single alignment (individual) it does not
recombine information from two individuals as a crossover
operator.

5.2.5. Deletion Suboperator. This operator selects randomly a
sequence and then a gap block. This gap block is completely
deleted from the list of gap blocks. If no gap block exists in
the selected sequence, it remains without any change.

5.2.6. Adaptation of Mutation Suboperators Probability. The
probability of applying each of the subopertors is dynami-
cally adapted as the generations pass; it is changed accord-
ingly to their effect in the GLOCSA score of the alignments
represented by the individuals.

This adaptation is done once at the end of every
generation, and the procedure is as follows.

For the first generation of the genetic algorithm the five
suboperators have the same probability, each with 0.20 of
probability of being used. Every time the mutation operator
is applied, in a record are stored the GLOCSA scores before
and after the mutation and a vector which represents the use
count of each suboperator (e.g., in Table 13).

After generating the entire new population, the attributed
difference by suboperator (dSO) is computed by dividing the
suboperators use count by the total number of mutations
performed, and then multiplying it by the difference between
the after and before scores of GLOCSA. This is shown in (9),
where dSOs is the attributed difference for a given suboperator
s, sOUCs is the use count for suboperator s, tM is the total
number of mutations performed (tM = ∑

sOUCs), and aS
and bS are the GLOCSA scores after and before the mutation
suboperators action:

dSOs=
(

sOUCs

tM

)

(aS− bS) ∀s={mutation suboperators
}
.

(9)

Then, the attributed difference by suboperator for all the
records is summed up in the total attributed difference by
suboperator (tDSO, see (10)):

tDSOs =
∑

R

dSOs ∀s = {mutation suboperators
}
. (10)

These tDSOs values are then normalized by dividing
them by the largest absolute value of them:

tDSOs = dSOs

max({|dSOs|∀s})
. (11)

Afterward, the probability (ps) of each suboperator is
added pS · SCh · tDSOs:

ps = ps +
(
pS · SCh · tDSOs

)
, (12)

where SCh is a constant which sets how big the steps of the
adaptation are. It was set for the experiments to the value of
0.10.

Finally the values of ps are scaled to make the sum of all
the probabilities equal to 1:

ps =
ps

∑
S ps

. (13)

5.3. Population Initialization. To initialize the population a
given alignment is used as a starting point. The individuals
of the initial generation are mutations of it, obtained by
applying the mutation operator. The mutation operator is
applied discarding the adaptation stage; therefore the five
suboperators have the same probability while initializing the
population.

6. Tests with Real Data

6.1. Test Bench. To test the ability of GGGA to optimize the
GLOCSA scoring function, three multiple sequence align-
ment problems were proposed, which are shown in Table 16
along with relevant information. The set of sequences
exmpl17 is a subset of exmpl19; the two shortest sequences
were eliminated, thus presumably reducing the complexity
of the alignment.

6.2. GA Test Parameters. Each set of sequences was first
aligned with MUSCLE [3], a popular progressive alignment
tool. The resulting alignment was seeded as a starting point
for the initialization of the population; thus the aim of the
test is to see if further improvements to the alignment of
MUSCLE can be performed, guided by the GLOCSA scoring
function.

The genetic algorithm for all the experiments was run
over 1000 generations with a population of 100, with
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Table 10: Alignment to exemplify the Columns Increment criterion. Here, the number of columns increased to 6 after aligning. CI = 0.66.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seq0 A T C A T C — — — A T C — — —

seq1 A T C — — — A T C A T C — — —

seq2 A T C — — — — — — A T C A T C

Table 11: Alignment matrix example.

Sequence #

0 G A — — A C A G

1 G A — — A — A G

2 — — T C A C — —

3 G A T — — — A G

Table 12: Alignment matrix example—GA representation.

Sequence #

0 [2, 2]

1 [2, 2], [3, 1]

2 [0, 2]

3 [3, 3]

Table 13: Sample records used for adaptation.

Suboperator GLOCSA score

0 1 2 3 4 Before score After score

· · ·
15 0 1 1 0 0 34.9 34.5

16 1 0 1 0 0 34.9 35.1

· · ·

5 individuals of elitism. Selection is performed using a
tournament of 5 individuals.

The GLOCSA Scoring function used as the objective
function has the default weights defined in Table 2.

The rate of the mutation was in the range of [0.1, 3]
number of expected mutations with increments of 0.1. For
each of this combination of values (the previously mentioned
parameters and the number of expected mutations) 30
experiments were performed.

The only parameter tested within a range was the number
of expected mutations. Because it was considered the most
important and performing a parameter sweep across all
parameters would have been too computationally expensive.

6.3. Experiments Results. Results of these experiments are
shown in Figures 1, 2, and 3, using box and whiskers plots;
the box has lines at the lower quartile, median, and upper
quartile values; whiskers extend from each end of the box to
the minimum and maximum scores obtained.

It was observed that the GLOCSA-Guided Genetic
Algorithm always improved (at least slightly) the solution
previously found by MUSCLE (the score of the initial
alignment is the lower range of the GLOCSA Scores in
the chart), and as expected the amount of improvement is

Table 14: Default Test Parameters. For each experiment these
default parameters were used.

GLOCSA weights
wmch = 1000

wrgb = 20

wci = −20

Number of generations 1000

Individuals in population 100

Elite individuals 5

Individuals in tournament 5

Table 15: Test Experiments. Using the default test parameters listed
in Table 14, the number of expected mutations were tested in the
range of [0.1,3] with increments of 0.1, performing 30 experiments
for each configuration, for each alignment in the test bench.

Alignment No. of expected mutations Experiments performed

exmpl19

0.1 30

0.2 30
...

...

2.9 30

3.0 30

exmpl17
0.1 30

...
...

3.0 30

exmpl29
0.1 30

...
...

3.0 30

strongly related with the number of expected mutations; lower
(near zero) and higher (close and beyond three mutations
per individual) numbers of expected mutations produce less
improvements while values in or in the vicinity of the range
of [0.5, 1.0] produce the higher optimization values. This
trend is certainly due to the exploration/exploitation balance,
with fewer mutations there is not enough exploration, and
with too many mutations there is excess exploration in
detriment of exploitation.

It is important to notice that the range of the GLOCSA
values in Figures 1, 2, and 3 is different for each of them.
This is because GLOCSA values are relative to the alignment
they are scoring, prominently the column homogeneity.
In particular this criterion would have a value of 1000
(multiplied by its default weight) when aligning a set of
copies of a single sequence (every column will score 1.0).

While the improvements for the alignments exmpl17 and
exmpl19 are about the same, for exmpl29 these are bigger.
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Exmpl17-optimized with GGGA
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Figure 1: Box and whisker plot of the results of the experiments of
exmpl17.

Exmpl19-optimized with GGGA
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Number of expected mutations per individual
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Figure 2: Box and whisker plot of the results of the experiments of
exmpl19.

Table 16: Test Bench.

No. of seq. max. no. of pos. Total no. of bases

exmpl19 19 649 10908

exmpl17 17 649 10149

exmpl29 29 245 6150

This is explained by the fact that exmpl29 is less complex than
exmpl17 and exmpl19, which are about the same difficulty
(exmpl17 easier that exmpl19, as the sequences in the first
are a subset of those in the second, but not enough to make a
noticeable difference).

In Table 17, the mean elapsed times for the 30 experi-
ments of each alignment are shown. All the experiments were
performed in a personal computer with an Intel Pentium D
CPU 2.80 GHz processor (though not using its two cores for
a single experiment) with 2 GB in RAM.

Exmpl29-optimized with GGGA

G
LO
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Initial
score

590

600

610

620

630

640

650

660

670

Number of expected mutations per individual

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

Figure 3: Box and whisker plot of the results of the experiments of
exmpl29.

Table 17: Tests elapsed times.

Test Elapsed time (minutes)

exmpl19 12.37

exmpl17 11.25

exmpl29 7.03

7. Conclusions

For the assessment of the quality of multiple sequence
alignments, scoring functions have been previously defined,
but in the opinion of the authors, the results obtained so
far are not satisfactory enough, and therefore the GLOCSA
measure was devised. It aims to be considered an alternative
scoring function for multiple sequence alignments, one with
the advantages of being simple, of rating the whole alignment
at once, and being parsimonious.

Given the complexity of the problem of multiple
sequence alignment, the techniques of Evolutionary Com-
putation—Genetic Algorithms in particular—seem useful for
optimizing this new proposed scoring function. Although it
is not efficient, compared with the fast progressive alignment
heuristics (e.g., MUSCLE, a run of it over the larger
alignment tested in this work takes less than 4.5 seconds in
the same machine) the GGGA has the ability to optimize
GLOCSA as the objective function. In the light of performing
it as a refinement over previously aligned data with more
efficient methods (as in the test experiments where MUSCLE
alignments were inserted as starting points) is a promising
application.

Even though a set of sequences can be aligned from
scratch optimizing its GLOCSA score with the GA, it would
be too time consuming. Then, an initial starting point given
by another tool seems like a good idea, in the light that
progressive alignment delivers good results, but these can
be further refined. The seed alignment can be the product
of any alignment tool, which gives this approach additional
flexibility.
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8. Future Work

Currently GLOCSA only rates DNA sequence alignments; the
next step would be to extend its application scope to protein
sequences.

GLOCSA as a quality measure has been validated empir-
ically, but tests to assess its reliability are still pending.
This will be done with the aid of defined sets of reference
alignments such as BALiBASE (protein sequence alignments)
[22, 23] and the GLOCSA-Guided Genetic Algorithm, thus
resulting in the assessment of both, the scoring function and
the genetic algorithm implementation.

A new crossover operator (across columns) will also be
implemented in the Genetic Algorithm, and its adaptation
mechanism will be explored further. The performance of the
Genetic Algorithm will be compared to a Random Search,
to see how much the evolutionary nature of the algorithm is
contributing to the results.
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1. Introduction

Microarray technologies provide an unprecedented oppor-
tunity for uncovering the molecular basis of cancer and
other pathologies. Any microarray experiment assays the
expression levels of a large number of genes in a biological
sample. These assays provide the input to a wide variety
of computational efforts aiming at defining global gene
expression profiles of pathological tissues and comparing
them with corresponding normal tissues. Generally, this
process is carried on by selecting a small informative set
of genes that can distinguish among the various classes of
pathology, by choosing an appropriate mathematical model
(i.e., a classifier), by estimating the parameters of the model
based on a training set of samples whose classification is
known in advance.

A relevant problem in microarray data classification, and
in machine learning in general, is the risk of “overfitting”
that arises when the number of training samples is small
and the number of attributes or features (i.e., the genes)
is comparatively large. In such a situation, we can easily
learn a classifier that correctly describes the training data but
performs poorly on an independent set of data. In order to
improve the performance of learning algorithms [1–3], it is

of paramount importance to reduce the dimensionality of
the data by deleting unsuitable features [4].

Indeed, the selection of an optimal subset of features
by exhaustive search is impractical and computationally
intensive when the number of attributes is high, as it is for
microarray data, and a proper learning strategy must thus be
devised. The relevance of good feature selection methods has
been discussed by [5], but the recommendations in literature
do not give evidence for a single best method for either the
feature selection or the classification of microarray data [6].

Recent studies on evolutionary algorithms (EAs) have
revealed their success on microarray classification. Partic-
ularly, these methods not only converge to high quality
solutions, but also search for the optimal set of features on
complex and large spaces of possible genes [7, 8]. One of the
most influential factors in the quality of the solutions found
by an evolutionary algorithm is a suitable definition of the
search space of the potential solutions.

This paper proposes an evolutionary approach that com-
bines results from different ranking methods to assess the
merits of the individual features by evaluating their strength
of class predictability. This gives us the ability to find feature
subsets with small size and high classification performance
that we call feature pools (FPs). Each FP is assumed as an
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initial set of informative genes and is further refined by a
wrapper approach involving a genetic algorithm (GA) and
SVM classifier. Specifically, the GA explores the space defined
by each FP looking for solutions that balance the size of the
feature subsets and their classification accuracy.

Our extensive experiments on a public microarray data-
set, namely the Leukemia dataset (Available at http://www
.broad.mit.edu/cgi-bin/cancer/publications/.), demonstrate
that the proposed approach is highly effective in select-
ing features and outperforms some proposed methods in
literature.

The rest of the paper is organized as follows. In Section 2,
we provide background information on microarray data
analysis and discuss some related works. Section 3 illustrates
the rationale for the proposed approach and describes the
adopted evolutionary algorithm. We provide our extensive
results and their interpretations in Section 4. Section 5
contains a detailed discussion as well a comparison with the
results of different state-of-art methods from the literature.
Finally, in Section 6 we conclude with some final remarks and
suggest future research directions.

2. Background and Related Work

The “curse of dataset sparsity” [9, 10] is a major concern
in microarray analysis, since microarray data include a large
number of gene expression values per experiment (several
thousands of features), and a relatively small number of
samples (a few dozen of patients). Giving a large number of
features to learning algorithms can make them very ineffi-
cient for computational reasons. In addition, irrelevant data
may confuse algorithms making them to build inefficient
classifiers while correlation between feature sets causes the
redundancy of information and may result in the counter
effect of overfitting [5]. Therefore, it is more important
to explore data and utilize independent features to train
classifiers, rather than increase the number of features we
use.

The problem of feature selection has received a thorough
treatment in machine learning and pattern recognition. Most
of the feature selection algorithms approach the task as a
search problem, where each state in the search specifies
a distinct subset of the possible features [11]. The search
problem is combined with a criterion in order to evaluate
the merit of each candidate subset of features. There are a lot
of possible combinations between each search procedure and
each feature evaluation measure [12].

Based on the evaluation measure, feature selection algo-
rithms can broadly fall into the filter model and the wrapper
model [13]. The filter model relies on general characteristics
of the training data to select predictive features (i.e., features
highly correlated to the target class) without involving any
mining algorithm. Conversely, the wrapper model uses the
predictive accuracy of a predetermined mining algorithm
to give the quality of a selected feature subset, generally
producing features better suited to the classification task at
hand. However, it is computationally expensive for high-
dimensional data [11, 13]. As a consequence, the filter model

is often preferred in gene selection due to its computational
efficiency.

Hybrid and more sophisticated feature selection tech-
niques have been explored in recent microarray research
efforts [14]. Among the most promising approaches, evolu-
tionary algorithms have been applied to microarray analysis
in order to look for the optimal or near optimal set of
predictive genes on complex and large search spaces [15].
For example, references [16–18] address the problem of
gene selection using a standard genetic algorithm which
evolves populations of possible solutions, the quality of
each solution being evaluated by an SVM classifier. Genetic
algorithms have been employed in conjunction with different
classifiers, such as k-Nearest Neighbor in [19] and Neural
Networks in [20]. Moreover, evolutionary approaches enable
the selection problem to be treated as a multiobjective
optimization problem, minimizing simultaneously the num-
ber of genes and the number of misclassified examples
[18, 21].

3. The Evolutionary Method

Most of the evolutionary algorithms approach the task of
microarray classification as a search problem where each
state in the search specifies a distinct subset of the possible
relevant features. If the search space is too large, it is possible
that the evolutionary algorithm cannot discover the most
selective genes within the search space. Moreover, having too
many redundant or irrelevant genes increases computational
complexity and cost and degrades estimation in classification
error. On the other hand, if the initial gene space is too small,
it is possible that some predictive genes are not included in
the search space.

Feature ranking (FR) is a traditional evaluation criterion
that is used by most popular search methods for assessing
individual features and assigning them weights according
to their relevance to the target class. Often the top-ranked
genes are selected and evaluated by search algorithms in
order to find the best feature subset. Although several
search strategies exist, most of them cannot be applied
to microarray datasets due to the large number of genes.
Furthermore FR algorithms cannot discover redundancy and
correlation among genes.

These limitations suggest us to pursue a hybrid method
that attempts to take advantage from the combination of
FR and evolutionary algorithms by exploiting their best
performance in two steps. First, different FR methods are
used for ranking genes. Since it is unfeasible to search for
every possible subset of genes through the search space, only
the top ranked genes are considered; they provide distinct
lists of ordered genes that are combined in subsets, namely
feature pools, of potentially “good” features. Second, each
feature pool is further reduced by a genetic algorithm (GA)
that tries to discover gene subsets having smaller size and/or
better classification performance.

The use of different ranking methods promotes the selec-
tion of important subsets without losing informative genes
while reducing the search space for the genetic algorithm.
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INPUT: D—Dataset ofN features
M—Number of ranking methods to be considered
Met—Ranking method
T—Threshold

OUTPUT: FeaturePools—A list ofMsets of features
———————————————————–
(1) list RankedSets = { }
(2) AllFeatures = { }
(3) for k = 1 to M
(4) Setk = {}
(5) for each feature fi ε D
(6) score = rank( fi, Metk , D)
(7) append fi to Setk according to score
(8) end for
(9) Setk = top (Setk , T)
(10) AllFeatures = AllFeatures ∪ Setk
(11) append Setk to RankedSets
(12) end for

(13) list FeaturePools = { }
(14) FP0 = {}
(15) list Combinations = { }
(16) for k =M to 2
(17) Combinations = Combine(M, k)
(18) shared = CommonFeatures(RankedSets,

Combinations)
(19) FPM+1−k = shared∪ FPM−k
(20) append FPM+1−k to FeaturePools
(21) end for
(22) FPM = AllFeatures
(23) append FPM to FeaturePools

Algorithm 1: Pseudocode describing the first step of the proposed
evolutionary method.

Being hard to apply evolutionary methods directly to high-
dimensional datasets [22], reduced feature pools provide
the possibility of putting into practice genetic algorithms,
usually effective for small or middle scale datasets, for micro-
array data classification. In the rest of this section, we give a
description of these steps.

3.1. First Step: Ranking Genes and Building Feature Pools.
Algorithm 1 describes the first step that aims to reduce the
dimensionality of the initial problem by identifying pools of
candidate genes to be further selected by the GA.

Firstly, the genes are ranked using M ranked methods
(lines 1–8). Ranking is carried out separately by each method
and results inM ranked sets of genes each of ones contains all
the genes in descending order of relevance. Then, we reduce
the dimensionality by considering only the T top-ranked
genes from each set (line 9), where T is a fixed threshold.
This process results in a list of M ranked sets (line 11).

The basic idea of our approach is to absorb useful
knowledge from these M sets and to fuse their information
by considering the features they share (lines 13–23). In
more detail, given a positive integer k (2 ≤ k ≤ M), we
build a list of all possible k-combinations of the first M

integers starting from 1 (line 17). For example, if M =
4 and k = 2, the list of combinations is as follows:
{(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)}. Each integer indexes a
ranked set and we use these combinations (line 18) for
determining the features shared by M, M − 1, . . . , 2 of the
M sets, respectively.

Next (lines 19–23), the shared features are employed for
building a list of nested feature pools FP1 ⊆ FP2 · · · ⊆ FPM ,
where FP1 contains the features shared by all the M sets, FP2

the features shared by at least M − 1 of the M sets, FP3 the
features shared by at least M − 2 of the M sets, . . ., FPM−1

the features shared by at least 2 of the M sets. Finally, FPM
contains all the features belonging to the M sets.

3.2. Second Step: Gene Selection by GA/SVM. In the second
step, we implement a wrapper model that combines GA
and SVM. The latter is a popular classification technique,
however other classifiers could be incorporated in our
approach. To sum up, the GA selects some features as an
individual and SVM evaluates them by classification, and the
result is used for estimating the fitness of the individual. The
possible choices of feature pools FPi define the evolutionary
search space.

Figure 1 shows the whole structure of this second step.
This is carried out separately on each FPi. At the start of
the search, a population of individuals (i.e., feature subsets)
is randomly initialized from the feature pool FPi. Each
individual of the current population is evaluated according
to a fitness function. Each time the fitness is evaluated, an
SVM classifier is built and tested on the feature subset under
investigation. Then, a new population is generated by apply-
ing genetic operations (selection, crossover and mutation)
and the fitness is again evaluated until a prespecified number
of generations G is reached. This evolution process results in
a best individual that we try to further refine by initializing
from it a new population that is used as a starting point of a
new evolution process. The refinement is iterated until a pre-
specified stopping criterion is met. When the entire round of
search is completed, the final feature subset is returned.

The basic components of our GA are as follows.

3.2.1. Representation of Individuals. Generally, a genetic
algorithm represents the individual as a string or a binary
array. Considering the large number of genes, if we represent
all the genes as a binary vector, this results in a very
long chromosome. Since the pre-processing step reduces the
dimensionality of initial gene set, we limit the maximum
size of each individual, that is, the length of chromosome,
to a predetermined parameter size M ∗ T that denotes the
maximum cardinality of a feature pool. The individuals are
encoded by n-bit binary vectors. If a bit is “1” it means that
the corresponding feature is included in the gene subset,
while the bits with value 0 mean the opposite.

3.2.2. Fitness Function. The fitness function is a key factor
which affects the performance of GAs. Our aim is to define
a function to scale the merit of a feature subset in terms
of both classification accuracy and degree of dimensionality
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Figure 1: The architecture of the GA/SVM algorithm.

in order to see how good your approach is in situations
where there is a large number of genes. The main idea is to
achieve a tradeoff between the accuracy and the size of the
obtained feature subsets. As a compromise between these two
evaluation criteria, the fitness is defined as follows:

F = w · C(x) +
1−w
S(x)

, (1)

where w is a parameter between 0 and 1, x is a feature vector
representing an individual, C(x) is the classification accuracy
of a classifier built on x, and S(x) is the x size, that is, the
number of genes included into x.

Here, the first term measures the weighted classification
accuracy from a classifier and the second one evaluates the
weighted size of the feature subset x. The parameter w is a
fitness scaling mechanism for assessing the relevance of each
term. Increasing the value of w will give more relevance to
accuracy and reducing it will set more penalties on the size.

This multiobjective fitness makes it possible to obtain
diverse solutions of high accuracy, while conventional
approaches tend to be converged to a local optimum. We will
analyze systematically the usefulness of the adopted function
in our experiments.

3.2.3. Genetic Operators

Selection. Roulette wheel selection is used to probabilistically
select individuals from a population for later breeding. The
probability P(hi) of selecting the individual hi is proportional
to its own fitness F(hi) and inversely proportional to
the fitness of other competing hypotheses in the current
population. It is defined as follows:

P(hi) = F(hi)∑
iF(hi)

. (2)

Crossover. We use the single point crossover, which is
enough for our application. One crossover point i is chosen
at random so that the first i bits are contributed by one parent
and the remaining bits by the second parent.

Mutation. Each individual has a probability pm to mutate.
We randomly choose a number of n bits to be flipped in every
mutation stage.

3.2.4. Stopping Criteria. A single evolution process is ter-
minated when a predefined number of generations G is
reached or an individual of maximum accuracy (100%)
and minimum size (1) is obtained. The best individual
produced by the evolution is iteratively refined by starting
a new evolution process (Figure 1) until the fitness cannot
be further improved (or a predefined number of iterations I
is reached): the results show the possibility of improvement
even if in few cases.

P trails of search are carried out using the GA/SVM
approach previously described. The resulting gene subsets,
as well as the partial results of the refinement process in
each trail of search, are recorded in an archive for further
analysis. All recorded gene subsets will be used in further
evaluation and compared with respect to dimensionality
and classification accuracy. This allows the identification of
optimal subsets along with summary information such as
the average classification accuracy and the average size of the
gene subsets selected in different rounds of search.

4. Experimental Results

We verify the proposed method with Leukaemia [2] which
is a popular public microarray dataset. Leukemia contains
72 samples among which 25 samples are collected from
acute myeloid leukaemia (AML) patients and 47 samples are
from acute lymphoblastic leukaemia (ALL) patients. Gene
expression levels of 7129 genes are reported.

4.1. Methods and Parameters Settings. In the first step (see
Section 3.1) we used the following ranking methods:

(i) information Gain (IG),

(ii) chi-squared (CHI),

(iii) symmetrical Uncert (SU),

(iv) one Rule (OR).

CHI measures the degree of independence between the
feature and the target class. Inspired by information theory,
IG evaluates the reduction of uncertainty (entropy) in
classification prediction when knowing the feature. SU
allows the discriminatory power of each feature to be found
and OR operates by using a one rule classifier to evaluate each
feature.

For genetic operations (see Section 3.2) the parameters
were set as follows:

(i) population size: 25,

(ii) number of generations: G = 10, G = 20, G = 30,
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(iii) probability of crossover: 1,

(iv) probability of mutation : 0.001,

(v) number of refinement iterations: I = 10.

SVM error estimation was by using leave-one-out cross
validation (LOOCV). That is, one of the samples was left
out to be a pseudotest data and the classifier was built
based on all but the left out sample. This evaluation was
repeated for each sample, and the estimated accuracy is a
mean over all considered samples. We notice that LOOCV
is a straightforward technique for estimating error rates and
it is also an almost unbiased estimator.

The ranking methods and the SVM classifier were
provided by the Weka library [4]. In particular, we must take
account that in the Weka library SVM is trained using the
SMO algorithm [23].

The evolutionary algorithm is run using GALib [24],
a C++ library of genetic algorithm objects. The library
includes tools for using genetic algorithms to do optimiza-
tion in any C++ program using any representation and any
genetic operators.

4.2. First Step. As already mentioned, the first step is done
over ranking genes and, in the experiments, four (M =
4) ranking methods (IG, CHI, SU, OR) were used for it.
First, each ranking method was applied to Leukemia and
four ranked lists were generated. Then, we carried through
preliminary experiments to compare the effectiveness of the
considered methods.

Specifically, we ordered features according to their pre-
dictive power within each list and studied the behavior of
SVM classifier on nested subsets of top-ranked features (i.e.,
top-2, top-4, top-8, etc.) from each list. Table 1 shows the
LOOCV accuracy of SVM, respectively, by each nested subset
and each ranking method. We note the similarity between
results obtained with the four methods. The maximum
accuracy (i.e., 98,6%) was reached by running SVM on
1024 features, except for CHI method where a peak was
achieved on 32 features. We observe that when the number
of selected features further increases, the accuracy does not
improve, due to the inclusion of uninformative or redundant
genes.

Results in Table 1 seem to suggest that no single feature
selection criterion is optimal in identifying a small subset
of highly discriminative features. This may be caused by the
complex interactions, correlations, and redundancy between
features and the biases embedded in the feature ranking
criteria. On this premise, our experimental study aims to
explore the effectiveness of combining useful outcomes from
different methods, according to the methodology presented
in Section 3.

As a first step, we cut off the T = 20 top ranked genes
from each list, where the threshold of 20 is chosen based
on a common practice in microarray studies. Table 2 shows
the index of the 20 top-ranked genes (i.e., features) ordered
by the relevance that each gene is assigned by each single
ranking method. As we can see, some genes are shared by

Table 1: LOOCV accuracy (%) of different groups of top ranked
features.

Top-ranked features IG CHI SU OR

2 93.1 93.1 93.1 91.7

4 93.1 93.1 93.1 88.9

8 93.1 93.1 93.1 94.4

10 94.4 93.1 93.1 93.1

16 94.4 94.4 94.4 95.8

20 94.4 94.4 95.8 97.2

25 95.8 97.2 97.2 95.8

32 97.2 98.6 97.2 97.2

64 95.8 97.2 97.2 97.2

128 94.4 97.2 97.2 97.2

256 97.2 97.2 97.2 97.2

512 97.2 97.2 97.2 97.2

1024 98.6 98.6 98.6 98.6

2048 98.6 98.6 98.6 98.6

4096 98.6 98.6 98.6 98.6

7129 98.6 98.6 98.6 98.6

Table 2: The 20 top-ranked genes from each ranking method.

Top-20 IG Top-20 CHI Top-20 SU Top-20 OR

1 3252 1834 1834 4847

2 4847 4847 4847 760

3 1834 1882 1882 6041

4 1882 3252 3252 1882

5 6041 6855 760 1685

6 2288 2288 2288 6376

7 760 760 6041 6855

8 6855 6041 6855 2288

9 1685 1685 1685 3252

10 1779 6376 6376 1834

11 2128 4373 2354 1779

12 6376 2128 4373 4366

13 2354 4377 4377 4328

14 4366 2354 4366 2402

15 4377 1779 2402 4196

16 4373 2402 758 1745

17 4328 1144 4328 1144

18 758 4366 1144 2020

19 1144 6281 3320 1928

20 2642 2121 2642 6347

two or more ranking methods while some genes are specific
to a single method.

Table 3 shows the composition of the feature pools FPi
(i = 1, . . . , 4) as well as the LOOCV accuracy of the SVM
classifier trained on each FPi (baseline model). The letter
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Table 3: FPi composition and accuracy of the corresponding
baseline model.

FP1 FP2 FP3 FP4

1 3252r 3252r 3252r 3252r

2 4847r 4847r 4847r 4847r

3 1834r 1834r 1834r 1834r

4 1882r 1882r 1882r 1882r

5 6041r 6041r 6041r 6041r

6 2288r 2288r 2288r 2288r

7 760r 760r 760r 760r

8 6855r 6855r 6855r 6855r

9 1685r 1685r 1685r 1685r

10 6376r 6376r 6376r 6376r

11 4366r 4366r 4366r 4366r

12 1144r 1144r 1144r 1144r

13 1779b 1779b 1779b

14 2354b 2354b 2354b

15 4377b 4377b 4377b

16 4373b 4373b 4373b

17 4328b 4328b 4328b

18 2402b 2402b 2402b

19 2128g 2128g

20 758g 758g

21 2642g 2642g

22 6281y

23 2121y

24 3320y

25 4196y

26 1745y

27 2020y

28 1928y

29 6347y

Accuracy 94.4% 94.4% 94.4% 98.6%

following each feature denotes the corresponding feature
colour defined as follows:

(i) r marks the red features, that is, genes selected by all
methods;

(ii) b marks the blue features, that is, genes selected by
three methods;

(iii) g marks the green features, that is, genes selected by
two methods;

(iv) y marks the yellow features, that is, genes selected by
just one method.

The choice of different colours is a useful heuristic we
adopted for revealing the features shared by different ranking
methods.

4.3. Second Step. Starting from the different feature pools
obtained in the previous step, we performed a further gene
selection according to the evolutionary approach described
in Section 3.2. Specifically, we studied the behavior of

Table 4: Performance of GA on the feature pool FP1.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 94.2 95.8 4 3

20 94.2 95.8 4 3

30 93.3 95.8 3 2

0.75
10 94.4 97.2 4 3

20 94.4 97.2 3 2

30 93.9 97.2 3 2

0.80
10 96.4 98.6 5 4

20 95.5 97.7 4 4

30 95.0 97.2 4 2

0.85
10 95.0 97.2 4 3

20 96.7 98.6 4 4

30 95.8 98.6 4 2

0.90
10 96.9 98.6 4 3

20 96.4 97.2 6 3

30 96.9 98.6 5 3

0.95
10 95.8 97.2 4 3

20 96.9 98.6 4 2

30 97.2 98.6 4 3

Table 5: Performance of GA on the feature pool FP2.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 95.3 97.2 6 5

20 98.1 100 6 4

30 97.5 98.6 5 4

0.75
10 97.2 98.6 7 5

20 97.2 98.6 7 6

30 96.9 97.2 5 3

0.80
10 95.8 97.2 6 4

20 96.1 97.2 5 3

30 96.9 98.6 6 3

0.85
10 97.2 98.6 6 3

20 97.8 98.6 5 3

30 98.1 98.6 6 3

0.90
10 98.3 100 4 3

20 97.5 98.6 4 3

30 97.2 100 4 3

0.95
10 97.8 98.6 4 3

20 97.5 98.6 4 3

30 98.1 98.6 4 3

the proposed algorithm in four ways: with respect to the
parameter w (ranging from 0.70 to 0.95), with respect to
the number of generations (G = 10,G = 20,G = 30), with
respect to the classification accuracy, and with respect to the
dimensionality of the feature subset.
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Table 6: Performance of GA on the feature pool FP3.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 96.7 98.6 6 3

20 96.4 97.2 6 3

30 97.8 100 7 5

0.75
10 96.7 98.6 8 7

20 97.8 100 8 4

30 97.8 100 10 5

0.80
10 96.9 98.6 7 3

20 98.9 100 5 3

30 98.1 98.6 10 5

0.85
10 97.8 100 5 3

20 98.3 100 5 3

30 98.9 100 6 4

0.90
10 98.6 100 6 3

20 98.6 100 4 3

30 98.9 100 4 3

0.95
10 99.4 100 5 3

20 98.3 100 4 3

30 98.6 100 4 3

Table 7: Performance of GA on the feature pool FP4.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 98.6 98.6 12 11

20 98.3 98.6 12 6

30 98.3 98.6 9 4

0.75
10 98.6 100 10 6

20 98.9 100 9 6

30 98.6 98.6 11 10

0.80
10 98.6 98.6 12 7

20 98.6 98.6 9 3

30 98.6 98.6 8 5

0.85
10 98.6 98.6 7 5

20 98.6 98.6 9 3

30 98.6 98.6 9 6

0.90
10 98.9 100 5 5

20 99.2 100 9 4

30 98.9 100 6 3

0.95
10 98.3 98.6 10 7

20 98.6 98.6 5 4

30 98.9 100 6 3

Since the evolutionary algorithm performs a stochastic
search, we consider the average accuracy and the average
dimensionality of the selected subsets over a number P = 5

Table 8: The proposed method versus seven state-of-art methods.

The proposed method 100 (3)

[25] 94.10 (-)

[27] 100 (8)

[16] 100 (6)

[26] 95.0 (-)

[21] 100 (4)

[3] 100 (2)

[17] 100 (25)

of trials. Within each FPi (i = 1, . . . , 4), Tables 4, 5, 6, and 7
report the accuracy (average and maximum) and the number
of selected genes (average and minimum), respectively, by
each value of w and the number of generations.

Compared with the baseline model of FP1 (red features
in Table 3), whose accuracy is 94,4% on 12 features, we can
see from Table 4 that the proposed evolutionary approach
results in gene subsets of smaller size for each combination of
w and number of generations. As well, the average accuracy
outperforms the baseline model only if w ≥ 0.80, meaning
that we should give more priority on the classification
accuracy over the size when evaluating the fitness of each
feature subset. Moreover, the number of generations seems
to not significantly affect the performance of the algorithm,
suggesting that few generations are sufficient for GA to
converge on the best individual.

Compared with the baseline model (accuracy: 94,4%,
size: 18) of FP2 (red and blue features in Table 3), Table 5
shows a clear improvement in terms of both classification
accuracy and dimensionality for each combination of w and
number of generations. Interestingly enough, increasing w
(that means the fitness is evaluated giving more priority on
the accuracy over the size) does not significantly increase the
accuracy of the selected subset, while the size of the selected
subset tends to decrease as w increases. This seems to suggest
that the optimization of the accuracy (first term in the fitness
function) implies optimizing the dimensionality too. As in
the case of FP1, the performance does not improve when
increasing the number of generations.

Our GA achieves the best results on the feature pool
FP3 (red, blue, and green features in Table 3), as we can see
in Table 6. Indeed, the comparison with the baseline model
(accuracy: 94,4%, size: 21) shows an improved performance
for each combination of w and number of generations.
Moreover, for 13 different settings of parameters, a classifier
with 100% accuracy is identified by the algorithm. Higher
values of w, in particular w ≥ 0.85, lead to the best
performance not only in terms of accuracy but also in terms
of dimensionality, confirming that optimizing the accuracy
means automatically reducing the size of the selected subset.
Again, the number of generations seems to be not important,
especially for higher values of w.

Finally, in the case of FP4 (red, blue, green, and yellow
features in Table 3), each combination of parameters results
in the selection of gene subsets whose classification accuracy
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Table 9: Features belonging to the perfect predictors in Table 10.

FP Selected feature Frequency

FP2

1144r 3 (3)

6855r 2 (3)

1834r 1 (3)

6376r 1 (3)

2354b 3 (3)

4377b 2 (3)

4373b 1 (3)

FP3

1144r 15 (18)

1834r 10 (18)

6855r 5 (18)

1685r 4 (18)

760r 3 (18)

1882r 1 (18)

2288r 1 (18)

6376r 1 (18)

2354b 12 (18)

4377b 9 (18)

4373b 7 (18)

2402b 1 (18)

4328b 1 (18)

2642g 8 (18)

758g 7 (18)

FP4

1685r 3 (7)

6855r 3 (7)

1144r 2 (7)

1834r 2 (7)

4366r 2 (7)

1882r 1 (7)

2288r 1 (7)

6041r 1 (7)

2354b 6 (7)

4377b 3 (7)

2402b 2 (7)

4373b 1 (7)

2642g 4 (7)

758g 2 (7)

2128g 1 (7)

2020y 5 (7)

6281y 5 (7)

6347y 5 (7)

1928y 4 (7)

2121y 1 (7)

4196y 1 (7)

is, on average, the same as the baseline model (98,6%) and
no further improvement was achieved by the evolutionary
algorithm in terms of accuracy. On the other hand, the
dimensionality of the selected subsets is much lower than the
initial number of features (29), which reveals a high degree
of correlation and redundancy between the genes belonging
to FP4.

5. Discussion

A basic question is to discuss the change in accuracy
when varying the number of selected features and their
combinations. In general, we believe that there is not a
rule to determine an optimal number of features to get
the best accuracy even for a specific classifier since that
number may change from data to data and also may vary
from different feature selection methods as our experiments
demonstrate.

The threshold of 20 used to cut off top-ranked features is
an arbitrary number, though it is based on our experience as
we consider that biologists like a small number of features
to separate two classes of cells and building a classifier
would need a long time if many discriminatory features are
selected.

However, this arbitrary choice does not pay when we
simply consider use SVM on the 20 top-ranked features
(baseline model) or on nested subsets of top-ranked features
(i.e., top-2, top-4, top-8, etc.): accuracy is poor but this
is not surprising and means that many features interact
closely.

Our method demonstrated its efficiency in discovering
the size of optimal subsets selected on the subsets of common
features. Results show that the SVM classifier performs better
on these optimal subsets. However, features common to all
ranking methods (i.e., the red features belonging to FP1)
define a search space that is too small and the performance
of the classifier did not increase when the search was refined
by an additional number of generations. When this search
space was enlarged by adding blue, green, and yellow features
our approach shows an excellent performance, not only at
providing a very good average accuracy, but also with respect
to the number of selected features and the computational
cost. Resulting from the union of red, blue, and green features,
the pool FP3 seems to define the most effective search space
for the GA.

Table 8 summarizes our results with the results of seven
state-of-art methods from the literature. The conventional
criteria are used to compare the results, the classification
accuracy in terms of the rate of correct classification (first
number) and the number of used genes (the number in
parenthesis, “-” indicating that the number of genes is
not available). For our approach, the classification rate we
presented is the maximum accuracy obtained on FP3 and the
corresponding number of genes (see Table 6 for details). As it
can be observed, we obtain a maximum classification rate of
100% using 3 genes (the corresponding average accuracy was
99,4%) which is much better than that reported in [25, 26].
This same performance is achieved by [3, 16, 17, 21, 27].
However, the number of genes selected by [16, 17, 21, 27]
is greater than the one obtained by our method whose
number of selected genes is greater than the one reported in
[3].

We also observe that increasing the number of gen-
erations does not greatly affect the performance of the
algorithm. This may be because the size of the initial gene
pool FP3 gives search space enough to the evolutionary
algorithm. As well, the performance increases within high
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Table 10: Perfect predictors identified by the proposed approach.

FP Size Features

FP2

4 1144r 2354b 4373b 4377b

4 1144r 1834r 6855r 2354b

5 1144r 6855r 6376r 2354b 4377b

FP3

3 1144r 1834r 2642g (4times)

4 1144r 2354b 4373b 4377b (3times)

4 1144r 1834r 2354b 758g (2times)

4 1834r 2354b 4328b 2642g

4 1834r 1685r 2354b 2642g

5 1144r 1834r 1685r 4373b 758g

5 1144r 1834r 2354b 4377b 758g

6 2288r 6855r 2354b 4377b 758g 2642g

6 1144r 1685r 6855r 2354b 4373b 4377b

7 760r 1144r 6376r 6855r 2354b 4373b 4377b

8 760r 1144r 1685r 1882r 6855r 4373b 4377b 758g

8 760r 1144r 6855r 2354b 2402b 4377b 758g 2642g

FP4

5 2354b 4377b 2020y 6281y 6347y

5 2354b 2642g 2020y 6281y 6347y

5 1685r 2354b 1928y 2020y 6347y

6 2354b 2128g 2642g 2020y 6281y 6347y

6 6855r 2354b 2402b 4377b 2642g 1928y

14 1144r 1834r 1882r 1685r 4366r 6855r 2354b 2402b 4373b 758g 2642g 1928y 2121y 6281y

14 1144r 1685r 1834r 2288r 4366r 6041r 6855r 4377b 758g 1928y 2020y 4196y 6281y 6347y

values of the parameter w. This means that the tradeoff
between the two objectives of the fitness function is best
represented when we give more importance to the accuracy
since a high level of accuracy was automatically reached with
a low number of features.

Another topic to address is the number of features subsets
that reach the 100% accuracy (perfect predictors) and the
frequency of selection of the genes that are member of
the best predictors. Table 10 shows the perfect predictors
discovered by the proposed approach. Interesting, no perfect
predictor was discovered on the search space defined by
FP1. It seems to confirm that this space is not large enough
and contains groups of correlated features. Blue and green
features mitigate the presence of this correlation by enlarging
the search space. As well, the presence of yellow features in
FP4 seems to influence the size of the optimal predictors
since there is a notable difference when we consider the
size of optimal predictors originated by FP2 and FP3. We
observe that all features belonging to a perfect predictor are
multicoloured, that is, they denote top-ranked genes shared
by different groups of ranking methods. This indicates that
combinations of features are beneficial.

Table 9 shows the frequency of the genes belonging to
the optimal predictors (the number in parenthesis indicates
the total number of perfect predictor within each feature
pool). These results can be used by biologists for further
evaluation.

6. Conclusions

We presented a new evolutionary approach to select relevant
features subsets in order to use them for the classification
task. With respect to speeding-up the EA evaluation, we
worked in proposing the combination of different ranking
methods with two goals: to incorporate information to the
GA to be used by genetic operators, and to reduce the
computational time of the classification process by means
of a pre-processing step from the data. The EA incorporates
information in the early stage, when different ranking meth-
ods are applied before running the classification process,
by organizing the top-ranked features into different feature
pools. The main concern is the formulation of the feature
selection issue as an optimization problem so that the pre-
dictors with maximum accuracy and minimum size can be
found. We demonstrated that the proposed approach solves
this optimization problem in efficient way and experimental
results show that our method outperforms different state-
of-art methods for the classification of microarray data. As
future work, we will apply the proposed method to a variety
of datasets and study the feature overlapping.
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two kinds of leukemia (acute myeloid leukemia and acute lymphoblastic leukemia). We report experimental results obtained using
two different fitness criteria: the receiver operating characteristic and the percentage of correctly classified instances. These results,
and their comparison with the ones obtained by three nonevolutionary Machine Learning methods (Support Vector Machines,
MultiBoosting, and Random Forests) on the same data, seem to hint that Genetic Programming is a promising technique for this
kind of classification.
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1. Introduction

High-throughput microarrays have become one of the most
important tools in functional genomics studies, and they
are commonly used to address various biological questions,
like disease classification and treatment prognosis. Although
cancer detection and class discovery have often been studied
over the past years, no general way to work out this problem
has been found yet, probably because there can be many
pathways causing cancer, and a tremendous number of
varieties exist. Recently, array technologies have made it
straightforward to measure and monitor the expression levels
of thousand of genes during cellular differentiation and
response. It has been shown that specific patterns of gene
expression occur during different biological states such as
embryogenesis, cell development, and during normal phys-
iological responses in tissues and cells [1]. The expression
of a gene provides a measure of its activity under certain
biochemical conditions. The key problem of evaluation of
gene expression data is to find patterns in the apparently
unrelated values measured. With increasing numbers of

genes spotted on microarrays, visual inspection of these
data has become impossible, and, hence, the importance
of computer analysis, in particular by means of Machine
Learning, has substantially increased in recent years. Well-
studied datasets of different phenotypes are publicly available
to train and evaluate supervised pattern analysis algorithms
for classification and diagnosis of unknown samples. There-
fore, there is a strong need to build molecular classifiers made
of a small number of genes, especially in clinical diagnosis,
where it would not be practical to have a diagnostic assay to
evaluate hundreds of genes in one test.

In this study, we present an application of Genetic
Programming (GP) [2] for molecular classification of cancer.
In particular, we study two publicly available oncologic
datasets: the first one contains data from healthy colon tissues
and colon tissues affected by cancer; the second one contains
data from patients affected by two different kinds of leukemia
(acute myeloid leukemia and acute lymphoblastic leukemia).
Four versions of GP are studied on those datasets; those GP
variants differ by the way of handling the training set and
by the fact that they may or may not affect training data
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with noise. We test the usefulness of GP using two different
fitness functions: the receiver operating characteristic (ROC)
area under curve (AUC) and the measure of correctly
classified instances (CCIs). For both these performance
measures, results returned by GP are compared with the ones
returned by three well-known nonevolutionary Machine
Learning methods: Support Vector Machines, MultiBoosting
and Random Forests.

Even though (as described in the next section) GP has
been previously applied by other authors to microarray data,
we believe that the present manuscript contains the following
interesting sources of novelty: it contains a study of various
different GP versions with two different fitness measures on
two different datasets, and it compares the results returned
by GP with the ones of other, nonevolutionary, Machine
Learning methods.

The paper is structured as follows. Section 2 presents an
overview of previous and related contributions. Section 3
presents the datasets that we have used, describes the four
presented GP frameworks, and also introduces the three
nonevolutionary Machine Learning methods whose results
have been compared with the GP ones. Section 4 reports
experimental results. In Section 5 we present the genotype
of some of the best solutions found by GP. Finally, Section 6
concludes the paper and proposes some ideas for future
research. The paper is terminated by two appendices where
the most recurrent genes contained in the best solutions
found by GP are defined.

2. State of the Art

Given the large amount of data coming from DNA microar-
ray analysis, in the last few years researchers have started
paying a growing attention to cancer classification using gene
expression. Studies have shown that gene expression changes
are related with different types of cancers. Many different
stochastic Machine Learning methods [3] have already been
applied for microarray data analysis, like k-nearest neighbors
[4], hierarchical clustering [5], self-organizing maps [6],
Support Vector Machines [7, 8], or Bayesian networks [9].
All this different classification methods share some common
issues that make classification a nontrivial task applied on
gene expression data. In fact, the attribute space, or the
number of genes, of the data is often huge: there are usually
thousands to hundred thousands of genes present in each
dataset. Also, if the samples are mapped to points in the
attribute space, they often can be viewed as very sparse
points in a very high dimensional space. Most of existing
classification algorithms were not designed with this kind
of data characteristics in mind. Thus, such a situation
represents a challenge for most classification algorithms.
Overfitting is a major problem due to the high dimension,
and the small number of observations makes generalization
even harder. Furthermore, most genes are irrelevant to
cancer distinction: some researchers proposed to perform a
gene selection prior to cancer classification to reduce data
size, thus improving the running time and remove a large
number of irrelevant genes which improves the classification
accuracy [3].

In the last few years Evolutionary Algorithms (EAs)
[10] have been used for solving both problems of selection
and classification in gene expression data analysis. Genetic
Algorithms (GAs) [11] have been employed for building
selectors where each allele of the representation corresponds
to one gene, and its state denotes whether the gene is selected
or not [12]. GP on the other hand has been shown to work
well for recognition of structures in large datasets [13]. GP
has been applied to microarray data to generate programs
that reliably predict the health/malignancy states of tissue
or classify different types of tissues. An intrinsic advantage
of GP is that it automatically selects a small number of
feature genes during the evolution [14]. The evolution of
classifiers from the initial population seamlessly integrates
the process of gene selection and classifier construction. In
fact, in [15] GP is used to cancer expression profiling data to
select potentially informative feature genes, build molecular
classifiers by mathematical integration of these genes, and
classify tumour samples. Furthermore, GP has been shown
a promising approach for discovering comprehensible rule-
based classifiers from medical data [16] as well as gene
expression profiling data [17]. Results presented in those
contributions are encouraging and pave the way to a further
investigation of GP for this kind of datasets, which is the goal
of this paper.

3. Material and Methods

3.1. Dataset. We test our methods on two publicly available
oncologic datasets: the first one contains data from healthy
colon tissues and colon tissues affected by cancer and will be
called Colon Dataset from now on; the second one contains
data from patients affected by two different kinds of leukemia
(acute myeloid leukemia and acute lymphoblastic leukemia)
and will be called Leukemia Dataset from now on. These two
datasets are described as follows.

3.1.1. Colon Dataset. The Colon Dataset is a collection
of expression measurements from colon biopsy samples
reported in [5]. The dataset consists of 62 samples of
colon epithelial cells collected from colon-cancer patients.
In particular the “tumour” biopsies were extracted from
tumours, and the “normal” biopsies were collected from
healthy parts of the colons of the same patients. The final
assignments of the status of biopsy samples were made by
pathological examination. Gene expression levels in these 62
samples were measured using high-density oligonucleotide
arrays. Of the about 6000 genes represented in these arrays,
2000 genes were selected based on the confidence in the
measured expression levels. The dataset, 62 samples over
2000 genes, is available at http://microarray.princeton.edu/
oncology/affydata/index.html.

3.1.2. Leukemia Dataset. The Leukemia Dataset (first
introduced in [18]) contains data from 72 patients, half of
which affected by acute myeloid leukemia and the remaining
ones affected by lymphoblastic leukemia. For these patients,
7070 genes have been monitored. For measuring the
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expression level of those genes, oligonucleotides microarrays
produced by Affimetrix have been used. Thus, the dataset
is composed by 7070 columns and 72 lines, each of which
labelled with “myeloid” or “lymphoblastic” in order to
separate these two kinds of leukemia. This dataset and a
detailed description of it can be found at http://genecruiser
.broadinstitute.org/cgi-bin/cancer/publications/pub paper
.cgi?mode=view&paper id=43.

3.2. Classification Methods. After a discussion of our GP
framework and variants, the Machine Learning methods
used for comparing results, that is, Support Vector Machines
(SVM), MultiBoosting, and Random Forests, are described
here in a deliberately synthetic way, since they are well-
known and well-established techniques. References to master
those methods are quoted.

3.2.1. Genetic Programming for Classification. Candidate
classifiers (individuals) that are evolved by GP are Lisp-like
tree expressions built using the function set F = {+, ∗,−, /}
and a terminal set T composed by M floating point variables,
where M is the number of columns in the dataset (i.e., M =
2000 for the Colon Dataset and M = 7070 for the Leukemia
Dataset). Thus, GP individuals are arithmetic expressions
(exactly the same method as in [19] has been used to
avoid expressions containing divisions with a denominator
equal to zero). These expressions can be transformed into
binary classifiers (class “normal” for healthy tissues and class
“tumour” for ill ones for the Colon Dataset; class “myeloid”
for acute myeloid leukemia and class “lymphoblastic” for
acute lymphoblastic leukemia for the Leukemia Dataset) by
using a threshold. Here, we use two fitness functions: ROC-
AUC and CCI. In the first case each classifier is evaluated by a
fitness function defined as the area under the ROC curve [20,
21]. In this work, the ROC curve is obtained by considering
20 different threshold values uniformly distributed in the
interval [−1, 1]. For each one of these threshold values, a
point is drawn having as abscissa the false positive rate and
as ordinate the true positive rate obtained by the candidate
classifier using that threshold. The area is calculated using
the trapezoids method. The second type of fitness function is
instead obtained by fixing a particular threshold value (equal
to 0.5 in this work, following [14]) and calculating the CCI.
CCI is defined as the correctly classify instances rate, that
is, CCI = (TP + TN)/N , where TP indicates True Positives,
TN specifies True Negatives, and N is the number of rows in
the dataset.

For calculating both these fitness values during the
presented GP simulations, we have considered a static and
a dynamic way of handling the training set, and we have
considered training data as they are (i.e., without any explicit
modification) or perturbing them with noise. These different
strategies, used for improving GP generalization ability as
suggested in [19], are described as follows.

Static Training Set Handling. Fitness has been calculated
using each line in the training set at each generation for all
individuals in the population.

Dynamic Training Set Handling. The training set is parti-
tioned into 5 subsets, and at each generation only 4 of those
subsets are used to calculate fitness, while one of them is
not used. At each 5 generations, one of the 4 used subsets
is selected and replaced by the subset that was previously
left unused. In this way, the training set is modified in a
cyclic way at each 5 generations. The number of subsets in
which the dataset has been partitioned (5) and the period of
training set modifications (5 generations) have been chosen
by means of a set of experiments, whose results are not
reported here.

No Noise Added to Data. When calculating fitness, each GP
terminal symbol xi has been replaced exactly by the values in
the ith column of the training set.

Gaussian Noise Added to Data. Data have not been used
exactly as they are in the original dataset, but a Gaussian
noise (with average equal to zero and with a standard
deviation equal to the datum value divided by 100) has been
added to them. Each time a GP terminal symbol has to
be evaluated, a new Gaussian perturbation of the original
value is generated (in this way, the same variable is likely
to have two slightly different values in two different fitness
evaluations).

Combining these different methods of handling training
set and data have lead us to define four different versions of
GP, that we call GP0, GP1, GP2, and GP3 for simplicity.

(i) GP0 uses the static training set handling and data
with no noise. This corresponds to standard GP.

(ii) GP1 uses the static training set handling and data
perturbed with Gaussian noise.

(iii) GP2 uses the dynamic training set handling and data
with no noise.

(iv) GP3 uses the dynamic training set handling and data
perturbed with Gaussian noise.

The other parameters we have used in our GP exper-
iments are population size of 200 individuals, ramped
half-and-half initialization, tournament selection of size 7,
maximum tree depth equal to 10, subtree crossover rate pc =
0.95; subtree mutation rate pm = 0.1, maximum number
of generations equal to 500; furthermore, we have used
generational tree-based GP with elitism, that is, unchanged
copy of the best individual on the training set into the next
population at each generation.

3.2.2. Other Machine Learning Methods. In this paragraph we
briefly describe the other machine learning methods used for
our tests. For more details on these algorithms and their use,
the reader is referred to the respective references quoted here
and after.

Support Vector Machines. Support Vector Machines (SVMs)
were originally introduced in [22]. Their aim is to device a
computationally efficient way of learning separating hyper-
planes in a high dimensional feature space. In this work we
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use the implementation of John Platt’s [23] sequential mini-
mal optimization (SMO) algorithm for training the support
vector classifier. Training an SVM requires the solution of a
large quadratic programming (QP) optimization problem.
SMO works by breaking this large QP problem into a series
of smallest ones. Parameter values used in this work are
complexity parameter c equal to 1.0, size of the kernel cache
equal to 1000003, epsilon value for the round-off error equal
to 1 · 10−12, exponent for the polynomial kernel equal to 1.0,
and tolerance parameter equal to 0.001. All these parameter
values correspond to the standard values offered by the Weka
software [24]. These parameters are defined, for instance, in
[23].

MultiBoosting. MultiBoosting is an extension to the clas-
sification method Adaptive Boosting (AdaBoost) [25].
AdaBoost is a meta-algorithm and can be used in con-
junction with other learning algorithms to improve their
performance. AdaBoost is adaptive in the sense that subse-
quent classifiers built are tweaked in favor of those instances
misclassified by previous classifiers. Multiboosting can be
viewed as combining AdaBoost with wagging. It is able to
harness both AdaBoost’s high bias and variance reduction
with wagging’s superior variance reduction. Using C4.5 as
the base learning algorithm, multiboosting is demonstrated
to produce decision committees with lower error than either
AdaBoost or wagging significantly more often than the
reverse over a large representative cross-section of data-
sets. It offers the further advantage over AdaBoost of
suiting parallel execution. For more information, see [26].
Parameter values used in this work are 100 iterations, 3
subcommittees, and weight threshold for weight pruning
equal to 100. All these parameter values correspond to the
standard values offered by the Weka software [24].

Random Forests. Random Forests is an improved Classifica-
tion and Regression Trees method [27]. It works by creating a
large number of classification trees or regression trees. Every
tree is built using a deterministic algorithm, and the trees
are different owing to two factors. First, at each node, a
best split is chosen from a random subset of the predictors
rather than all of them. Secondly, every tree is built using
a bootstrap sample of the observations. The out-of-bag
data, approximately one-third of the observations, are then
used to estimate the prediction accuracy. Unlike other tree
algorithms, no pruning or trimming of the fully grown tree
is involved. In this work we use the Breiman implementation
presented in [28]. A number of trees equal to 300 have been
used in this work. All the other parameters that we have used
have been set to the standard values offered by the Weka
software [24].

4. Experimental Results

Results obtained by the nonevolutionary methods and by
the different GP variants on the Colon Dataset and on
the Leukemia Dataset are reported in Sections 4.1 and 4.2,
respectively.

To obtain these results, we have generated 10 different
partitions of the dataset into training and test set. For each
one of these partitions, 70% of the lines in the dataset chosen
at random (with uniform probability distribution) form the
training set and the remaining 30% the test set (we have
explicitly checked that the same training-test partition does
not appear more than once). To report results in this paper,
for each one of these partitions we have proceeded as follows.

(i) For nondeterministic methods such as GP, Multi-
boosting and Random Forest, we have performed 100
independent executions, and we have retained the
best values of CCI and ROC found on the test set.

(ii) For SVM, which is deterministic in this work, we have
retained the values of CCI and ROC on the test set of
the returned solution.

Thus, we have 10 values of CCI and 10 values of ROC for
each method. We finally report the best, the average, and the
standard deviation of these 10 solutions, both for CCI and
ROC.

Furthermore, we have also randomly generated 500
different training-test set partitions (also in this case 70%
of the lines in the dataset chosen at random with uniform
probability distribution form the training set and the
remaining 30% the test set, where we have explicitly checked
that the same training-test partition does not appear more
than once), and we have executed one run of each one of
the studied methods (both nonevolutionary ones and GP)
for each one of these partitions. Results of these further
experiments are reported in Section 4.3.

Note on Computational Time. We have calculated the com-
putational time for all the executions whose results are
reported in Section 4.3. (i.e., 500 different executions for
each Machine Learning method, each one with a different
training-test partition) on a dedicated machine Intel Pen-
tium III-500 with 128 M RAM, and we have calculated the
averages of all these computational times. The various GP
runs returned an average time of about 153 seconds; approx-
imately the same average amount of time was requested by
Boosting (about 155 seconds). Random Forests requested
a larger average amount of time for one run (about 260
seconds); finally SVM was the fastest method (one run of
SVM requested about 12 seconds on average).

4.1. Results on the Colon Dataset. Table 1 summarizes the
experimental results obtained by the non-evolutionary
methods on the Colon Dataset.

SVM is the method that returns the best average results,
both for CCI and ROC, while the best CCI results are
returned by Random Forests and SVM, and the best ROC
results are returned by Random Forests. We point out
that we have applied these classification methods to our
datasets without any explicit feature selection algorithm nor
preprocessing. The motivation for this is that we wanted to
compare these results with the ones obtained by GP, pointing
out that GP is able to perform an automatic feature selection,
while the other non-evolutionary methods do not have this
capability.
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Table 1: Results returned by the nonevolutionary methods on the
Colon Dataset. 10 different partitions of the dataset into training
and test set have been considered. The best, average and standard
deviations of the best CCI and ROC results obtained on each one of
these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9444 0.7417 0.0810 1 0.8250 0.0755

SVM 0.9444 0.8778 0.0438 0.9545 0.8525 0.0874

Multi
Boosting

0.8889 0.7850 0.0577 0.9861 0.8152 0.0488

Table 2: Results returned by the studied GP variants on the Colon
Dataset. The same 10 partitions of the dataset into training and
test set as in Table 1 have been considered. The best, average and
standard deviations of the best CCI and ROC results obtained on
each one of these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8926 0.038 1 0.9437 0.0472

GP1 1 0.8946 0.042 1 0.9444 0.0455

GP2 1 0.8947 0.039 1 0.9437 0.0455

GP3 1 0.895 0.042 1 0.9555 0.0466

Table 2 reports the results obtained by the different GP
variants studied using the same 10 training-test partitions
as in Table 1. Comparing the results reported in Table 2
with the ones reported in Table 1, we can remark that all
GP variants are able to find an ideal solution both for CCI
and ROC, which is not the case for the non-evolutionary
methods (with the exception of Random Trees for ROC).
Also comparing the average values, we can remark that all
GP variants outperform all non-evolutionary methods, and
the respective standard deviations seem to hint that the
difference between GP performances and the ones of the
other methods is statistically relevant.

Differences between the various GP variants seem
marginal, which hints that both the dynamic dataset han-
dling and the use of Gaussian noise are not useful to improve
GP generalization ability, at least for this application. By the
way, it has to be remarked that performances of standard
GP (GP0) are already (informally) rather “high”, and thus
difficult to improve. In the future, we plan to investigate
the gain in using GP1, GP2, and GP3 for more complex
problems, where GP0 is not able to find good solutions.

4.2. Results on the Leukemia Dataset. Results obtained by
the studied non-evolutionary methods are summarized in
Table 3. For the Leukemia Dataset, MultiBoosting is the
method that has returned both the best results and the best
average results, both for CCI and ROC.

Table 4 reports the results obtained by the different GP
variants studied using the same 10 training-test partitions
as in Table 3. Also in this case, all GP variants outperform
all non-evolutionary methods, and standard deviation values

Table 3: Results returned by the nonevolutionary methods on the
Leukemia Dataset. 10 different partitions of the dataset into training
and test set have been considered. The best, average, and standard
deviations of the best CCI and ROC results obtained on each one of
these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9048 0.7191 0.0939 0.9500 0.6999 0.1270

SVM 0.8571 0.7476 0.0552 0.8375 0.7274 0.0924

Multi
Boosting

0.9524 0.7548 0.0733 1 0.7500 0.0895

Table 4: Results returned by the studied GP variants on the
Leukemia Dataset. The same 10 partitions of the dataset into
training and test set as in Table 3 have been considered. The best,
average and standard deviations of the best CCI and ROC results
obtained on each one of these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8323 0.0390 1 0.8491 0.0047

GP1 1 0.8592 0.0425 1 0.8777 0.0400

GP2 1 0.8325 0.0395 0.9778 0.8500 0.0392

GP3 1 0.8607 0.0407 0.9904 0.8778 0.0381

seem to hint that the differences between the average results
obtained by GP and the average ones obtained by the best
non-evolutionary method on this dataset (MultiBoosting)
are statistically relevant.

All GP variants have been able to produce ideal solutions
for CCI, while only GP0 and GP1 have been able to generate
ideal ROC values. We finally remark that, also for the
Leukemia Dataset, perturbing data with Gaussian noise or
handling the training set in a dynamic way is not beneficial.

4.3. Further Experiments. In Sections 4.1 and 4.2, 10 different
training-test set partitions were considered and, for each
partition, 100 independent runs of each one of the nondeter-
ministic methods (random forests, multiboosting and GP)
were executed.

In this section we present the results that we have
obtained by considering 500 different training-test partitions
and executing one run of each method for each different
partition. Best, average, and standard deviations of the
obtained results are reported. The other used parameters are
exactly the same as the ones used to produce the results of
Sections 4.1 and 4.2.

Table 5 shows the results obtained by the nonevolution-
ary methods on these 500 different training-test partitions
for the Colon dataset. The method that returns the best
average results is SVM, both for CCI and ROC, even though
SVM is the only method that is not able to obtain 1 as the
best ROC.

Results obtained by the GP variants on the same 500
training-test set partitions are shown in Table 6. All the
GP variants have returned better average CCI and ROC
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Table 5: Results returned by the non-evolutionary methods on the
Colon Dataset. 500 different partitions of the dataset into training
and test set have been considered. The best, average, and standard
deviations of the CCI and ROC results obtained on each one of these
500 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9444 0.8368 0.0688 1 0.8578 0.0627

SVM 0.9444 0.8567 0.0396 0.9545 0.864 0.075

Multi
Boosting

0.9444 0.8295 0.051 1 0.823 0.0436

Table 6: Results returned by the studied GP variants on the
Colon Dataset. The same 500 partitions of the dataset into
training and test set as in Table 5 have been considered. The best,
average, and standard deviations of the best CCI and ROC results
obtained executing one run on each one of these 500 partitions
are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8999 0.0497 1 0.9472 0.0440

GP1 1 0.9038 0.0499 1 0.9596 0.0345

GP2 1 0.9042 0.0446 1 0.9528 0.0385

GP3 1 0.9017 0.0454 1 0.9600 0.0368

than the non-evolutionary methods. Furthermore, all the
GP variants have returned a best CCI and best ROC equal
to 1. The differences between the GP variants seem to be
marginal. Finally, all the GP variants show a rather stable
behavior given by the relatively small values of the standard
deviations.

Table 7 reports the values returned by the non-
evolutionary methods on 500 different training-test par-
titions of the Leukemia dataset. This time, the method
that has returned the best average ROC and CCI results is
MultiBoosting.

The results returned by the GP variants on the same
500 training-test set partitions of the Leukemia dataset are
presented in Table 8. Also in this case, all the studied GP
versions overcome all the studied non-evolutionary methods
both for the average CCI and the average ROC. A best CCI
and a best ROC value equal to 1 is found by each GP variant,
and standard deviations are rather small, thus confirming
that also on this dataset the studied GP variants have a rather
stable behavior.

5. The Best Solutions Found by GP

In this section, we report the genotype of some of the best
solutions found by GP in the form of expressions in infix
notation, and successively we describe the most recurrent
genes contained in them (Appendices A and B). These
expressions are reported here to allow the reader to have
an idea of how the best solutions found by GP on the test
sets look like; we do not pretend them to necessarily be the

Table 7: Results returned by the non-evolutionary methods on
the Leukemia Dataset. 500 different partitions of the dataset into
training and test set have been considered. The best, average, and
standard deviations of the CCI and ROC results obtained on each
one of these 500 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9048 0.7728 0.0747 1 0.7581 0.0873

SVM 0.9444 0.8153 0.0438 0.8375 0.7368 0.0835

Multi
Boosting

0.9444 0.8267 0.0611 1 0.7974 0.081

Table 8: Results returned by the studied GP variants on the
Leukemia Dataset. The same 500 partitions of the dataset into
training and test set as in Table 7 have been considered. The best,
average, and standard deviations of the best CCI and ROC results
obtained executing one run on each one of these 500 partitions are
reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8348 0.0419 1 0.8469 0.0488

GP1 1 0.8569 0.0427 1 0.8890 0.0481

GP2 1 0.8304 0.0477 1 0.8406 0.0413

GP3 1 0.8560 0.0392 1 0.8871 0.0470

model explaining the relationships between gene expressions
and the studied pathologies. In order to build such a model,
collaborations with domain experts are needed (and we are
planning them in our future activity). Nevertheless, we hope
that reporting those expressions here may be a starting point
for this new and challenging research. Furthermore, we also
report scatterplots of the Z-scores of the different genes
contained in the best solutions found by GP (like, e.g., in
[15]), and we show how those values are correlated when
ROC and CCI are used as fitness functions.

5.1. Colon Dataset. We first report a solution with CCI = 1
on the test set found by GP0. Reported as an expression in
infix notation, this solution is found in Algorithm 1.

We remark that GP has performed an automatic feature
selection; in fact, this solution contains only 15 over the 2000
possible genes. This fact distinguishes GP from the other
studied Machine Learning, that can use a subset of features
only if an explicit feature selection algorithm is executed
before training (preprocessing).

One of the solutions with area under the ROC curve on
the test set equal to 1 returned by GP0 is

K03460%X59131∗ (X66924 + H20709)
- (T74896 + U28963)∗ (R61359 + T86444)
- (U20659 - T81460)∗ R53941.

In this case, GP’s feature selection has been even stronger:
only 11 of the 2000 available genes are used by GP.
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IF ((X51416+R99200∗X06614)%(H23544∗X61123
-T47213+M34344+(H79575-R50864)∗U18920
+R46739%(U20659+H04333)

-R53941+L09604)>0.5)
THEN Class = "tumour"

ELSE Class = "normal"

Algorithm 1

IF (X05409%M28130+(U94855-M84526)%(U04270

∗X55668%D28473

-(D38498-Z37976)%M96326)> 0.5)

THEN Class = "tumour"

ELSE Class = "normal"

Algorithm 2

It is a widely agreed upon idea that only a restricted
number of genes are correlated with tumour pathologies
(those genes are often identified by domain experts as
biomarkers). For this reason, the ability of GP to retain
a limited number of genes into the proposed solutions is
interesting. In order to identify and study the most important
genes found by GP, for each one of the 4000 GP independent
runs that we have performed to obtain the results reported
in this paper (100 independent runs for each one of the 10
training-test different partitions and for each one of the 4 GP
variants), we have retained the best solution found on the
test set, both for CCI and ROC. In all those 8000 solutions,
we have counted the number of occurrences of each gene in
the dataset. We finally have extracted the 30 most recurrent
genes. A detailed description of those genes is contained in
Appendix A.

Furthermore, we have considered all the genes that have
appeared in at least one best solution found by GP using
CCI and in at least one best solution found by GP using
ROC (i.e., we have considered the set of genes contained
in the best solutions found by GP using CCI, set of genes
contained in the best solutions found by GP using ROC, and
we have considered the intersection between these two sets).
In Figure 1 we show the normalized Z-Score of these genes.

Gene’s normalized Z-Score has been studied, for
instance, in [15], and it is defined as follows: for a given gene
i, Z-Score = (Si − E(Si))/σ , where Si denotes the number of
times genes i being contained in the studied GP solutions,
E(Si) is the expected number of times for gene i being
contained in those solutions, and σ denotes the square root
of the variance. The calculation of E(Si) is ESi = (number
of genes contained in the studied GP solutions)/(number of
genes in the initial gene pool).

Figure 1 shows the correlation between gene’s normal-
ized Z-Score for the two fitness criteria for the four versions
of GP that we have studied. For all these GP versions,
normalized Z-scores seem positively correlated (Figure 1

also reports the axis bisector, which represents the ideal
correlation).

5.2. Leukemia Dataset. The genotype of one of the solutions
with CCI = 1 found by GP0 is found in Algorithm 2.

Also in this case, GP has operated an automatic feature
selection, given that this solution contains only 10 of the 7070
possible genes.

The genotype of a solution with area under the ROC
curve on the test set equal to 1 returned by GP0 is

(U15782 - J04990)%X04707
+ X62822 - M27891∗ M96326.

It contains only 6 of the 7070 possible genes.
Also for the Leukemia dataset for each one of the 4000

GP independent runs, we have retained the best solutions
found on the test set, both for CCI and ROC. In all those
8000 solutions, we have counted the number of occurrences
of each gene in the dataset. We finally have extracted the 30
most recurrent genes. A detailed description of those genes is
contained in Appendix B.

In Figure 2 we report the correlation between the nor-
malized Z-Scores of the genes that appear at least once in
the best solutions found by GP using CCI and at least once
in the best solutions found by GP using ROC. Also in this
case, Z-Scores seem positively correlated (we also report
the axis bisector in figure, to give an intuition of the ideal
correlation).

6. Conclusions and Future Work

Four different variants of Genetic Programming (GP) for
classification have been presented in this paper. The differ-
ence between these four versions is that they may/may not
use a cyclic algorithm to dynamically handle the training set
and they may/may not perturb input data with (Gaussian)
noise. These GP variants have been applied to two publicly
available biomedical microarray datasets representing a
collection of expression measurements from colon biopsy
experiments and leukemia. One the main characteristic of
these datasets is that they both contain a large number
of features—that is, information about gene expressions—
(2000 in the case of the colon dataset and 7070 in the case
of the leukemia dataset) and a low number of samples (62
in the case of the Colon dataset and 72 for the leukemia
one). We believe that GP may be a suitable method to mine
these datasets, given the ability of GP to deal with complex
expressions and structures and to perform an automatic
feature selection.

GP experiments have been executed using two different
fitness functions: the ROC and the CCI. The first one of
these fitness measures is calculated using a set of threshold
values (20 uniformly distributed values in the range [−1, 1]
in this work), while the second one is obtained by fixing
a predefined threshold value (0.5 in this work, following
[14]). Both those fitness measures have received a note-
worthy attention in past literature, but (to the best of our
knowledge) they have never been studied together before in
GP applications.
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Figure 1: Normalized Z-score of the most recurrent common genes in the best solutions found by GP using CCI and ROC as fitness functions
for the Colon dataset. (a): GP0, (b): GP1, (c): GP2, (d): GP3.

The experimental results returned by GP have been
compared with the ones of three non-evolutionary Machine
Learning methods (Support Vector Machines, MultiBoost-
ing, and Random Forests). They show that GP is able to find
better CCI and ROC results than the best non-evolutionary
methods for both datasets. Even more interestingly, average
results returned by GP (over a number of runs performed
with different training-test partitions of the dataset) are
better than the best ones returned by all the other non-
evolutionary methods.

Furthermore, the reported results have shown no clear
difference in the performances of the different GP variants,
and this seems to hint that using the proposed dynamic
algorithm to handle the training set or perturbing input
data with Gaussian noise is not helpful to improve GP
generalization ability, at least for this particular applica-
tion.

We suspect that this is due to the fact that “standard GP”
has good performances on these datasets, which are difficult

to improve. The other GP variants deserve to be further
tested on more difficult problems, where standard GP fails
to find good quality solutions or requests too large amounts
of computational resources.

These results are promising, even though they represent
just a first preliminary step of a long term work, in which
we wish to employ GP for cancer classifications in a more
structured way and large scale. Many future activities are
planned. First of all, we will train our GP system in a more
sophisticated way, in order to improve its generalization
ability. For instance, we could use more than one fitness
criteria on the training set, following the idea presented
in [29], where multioptimization on training is shown to
increment GP generalization ability in many applications.
For classification, it would be particularly interesting to use
both ROC and CCI during training. Furthermore, we are
planning to improve GP using more sophisticated methods
for seeding the initial population compared to the standard
ramped half and half method used here.
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Figure 2: Normalized Z-score of the most recurrent common genes in the best solutions found by GP using CCI and ROC as fitness functions
for the Leukemia dataset. (a): GP0, (b): GP1, (c): GP2, (d): GP3.

One of the main limitations of this work is that we
did not use any application specific problem knowledge: a
“semantic” analysis of the best solutions found by GP could
have helped us to generate new and possibly more effective
solutions. We are currently working in this direction: we
are trying to develop a sort of “application-based” feature
selection, and in parallel we are trying to give a biological
interpretation to solutions found by GP, trying to infer
interesting properties.

Appendices

A. Most Recurrent Genes Contained in the Best
Solutions Found by GP for the Colon Dataset

In Table 9 we describe the most recurrent genes con-
tained in the best solutions on the test set of the Colon
Dataset returned by GP. For a more detailed discussion of
these genes, see http://microarray.princeton.edu/oncology/
affydata/index.html.

The first column of this table contains the gene
IDs. They are entries of the GenBank database (see e.g.,
http://www.ncbi.nlm.nih.gov/Genbank/ for a description
of this database of known genes). Other informations
about these genes can be obtained by using these IDs as
entries at the page: http://smd.stanford.edu/cgi-bin/source/
sourceBatchSearch.

B. Most Recurrent Genes Contained in
the Best Solutions Found by GP for
the Leukemia Dataset

In Table 10 we present the most recurrent genes contained
in the best solutions on the test set of the Leukemia Dataset
returned by GP. For a more detailed discussion of these
genes, see http://genecruiser.broadinstitute.org/cgi-bin/can-
cer/publications/pub paper.cgi?mode=view&paper id=43.

Also in this case, as for the table presented in Appendix A,
the first column of this table contains the gene IDs.



10 Journal of Artificial Evolution and Applications

Table 9: Definition of the most recurrent genes contained in the best solutions found by GP for the Colon Dataset.

GENE ID Gene description

H75955
C2H2-type zinc finger proteins, such as ZNF238, act on the molecular level as transcriptional activators or repressors and
are involved in chromatin assembly.

L41268

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and
subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome
19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The KIR proteins are classified by the number of extracellular
immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. The ligands for
several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in
regulation of the immune response.

R99200

The protein encoded by this gene is a beta-amyloid peptide-binding protein. Beta-amyloid peptide has been established to
be a causative factor in neuron death and the consequent dimunition of cognitive abilities observed in Alzheimer’s disease.
This protein may be a target of neurotoxic beta-amyloid peptide and may mediate cellular vulnerability to beta-amyloid
peptide toxicity through a G protein-regulated program of cell death.

R53941
The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins.
Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth,
cytoskeletal reorganization, and the activation of protein kinases.

R51502

This gene encodes one of four subunits of the splicing factor 3B. The protein encoded by this gene cross-links to a region in
the pre-mRNA immediately upstream of the branchpoint sequence in pre-mRNA in the prespliceosomal complex A. It also
may be involved in the assembly of the B, C, and E spliceosomal complexes. In addition to RNA-binding activity, this
protein interacts directly and highly specifically with subunit 2 of the splicing factor 3B.

X61123
The BTG1 gene locus has been shown to be involved in a t(8;12)(q24;q22) chromosomal translocation in a case of B-cell
chronic lymphocytic leukemia. It is a member of a family of antiproliferative genes. BTG1 expression is maximal in the
G0/G1 phases of the cell cycle and downregulated when cells progressed through G1. It negatively regulates cell proliferation.

H05814
This gene encodes a DEAD box protein. DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp
(DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA
secondary structure.

X66363 It may play a role in signal transduction cascades in terminally differentiated cells. This gene is thought to escape X
inactivation.

K03460 Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain
and one at a nonexchangeable site on the alpha-chain.

K02566

The active peptide bradykinin that is released from HMW-kininogen shows a variety of physiological effects: (4A) influence
in smooth muscle contraction; (4B) induction of hypotension; (4C) natriuresis and diuresis; (4D) decrease in blood glucose
level; (4E) it is a mediator of inflammation and causes (4E1) increase in vascular permeability; (4E2) stimulation of
nociceptors (4E3) release of other mediators of inflammation (e.g., prostaglandins); (4F) it has a cardioprotective effect
(directly via bradykinin action, indirectly via endothelium-derived relaxing factor action).

H05978
It could have a dual role in dynein targeting and in ACTR1A/Arp1 subunit of dynactin pointed-end capping. It could be
involved in ACTR1A pointed-end binding and in additional roles in linking dynein and dynactin to the cortical
cytoskeleton.

U20659
This gene encodes the seventh largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger
RNA in eukaryotes. In yeast, the association of this subunit with the polymerase under suboptimal growth conditions
indicates that it may play a role in regulating polymerase function.

X17042

This gene encodes a protein best known as a hematopoietic cell granule proteoglycan. Proteoglycans stored in the secretory
granules of many hematopoietic cells also contain a protease-resistant peptide core, which may be important for
neutralizing hydrolytic enzymes. This encoded protein was found to be associated with the macromolecular complex of
granzymes and perforin, which may serve as a mediator of granule-mediated apoptosis.

Z49269
This gene, CCL14, is one of several CC cytokine genes clustered on 17q11.2. The CC cytokines are secreted proteins
characterized by two adjacent cysteines. The cytokine encoded by this gene induces changes in intracellular calcium
concentration and enzyme release in monocytes.

H41017
Mitochondrial creatine (MtCK) kinase is responsible for the transfer of high-energy phosphate from mitochondria to the
cytosolic carrier, creatine. Many malignant cancers with poor prognosis have shown overexpression of ubiquitous
mitochondrial creatine kinase.

L09159 It regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin
stress fibers.

U31216
L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and
metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function
and can be perturbed in many neuropathologic conditions.
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Table 9: Continued.

GENE ID Gene description

H20709
Myosin is a hexameric ATPase cellular motor protein. This gene encodes a myosin alkali light chain, that is, expressed in
smooth muscle and nonmuscle tissues.

R15876 This gene encodes subunit 3 of the splicing factor 3a protein complex.

R43914

DNA- and RNA-binding protein is involved in several nuclear processes such as pre-mRNA splicing, apoptosis, and
transcription regulation. In association with FUBP1 it regulates MYC transcription at the P2 promoter through the
core-TFIIH basal transcription factor, involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to
repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor
progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells.

H79575
This gene encodes fibronectin, a glycoprotein present in a soluble dimeric form in plasma, and in a dimeric or multimeric
form at the cell surface and in extracellular matrix. Fibronectin is involved in cell adhesion and migration processes
including blood coagulation, host defense, and metastasis.

Table 10: Definition of the most recurrent genes contained in the best solutions found by GP on the Leukemia Dataset.

GENE ID Gene description

M20203

Elastases form a subfamily of serine proteases that hydrolyze many proteins in addition to elastin. Humans have six elastase
genes which encode the structurally similar proteins elastase 1, 2, 2A, 2B, 3A, and 3B. Elastase 2 hydrolyzes proteins within
specialized neutrophil lysosomes, called azurophil granules, as well as proteins of the extracellular matrix following the protein’s
release from activated neutrophils.

M28130

The protein encoded by this gene is a member of the CXC chemokine family. This chemokine is one of the major mediators of
the inflammatory response. This chemokine is secreted by several cell types. It functions as a chemoattractant and is also a
potent angiogenic factor. This gene is believed to play a role in the pathogenesis of bronchiolitis, a common respiratory tract
disease caused by viral infection.

M84526

The protein encoded by this gene is a member of the trypsin family of peptidases. The encoded protein is a component of the
alternative complement pathway best known for its role in humoral suppression of infectious agents. This protein is also a
serine protease, that is, secreted by adipocytes into the bloodstream. Finally, the encoded protein has a high level of expression
in fat, suggesting a role for adipose tissue in immune system biology.

M96326
Azurophil granules, specialized lysosomes of the neutrophil, contain at least 10 proteins implicated in the killing of
microorganisms. The protein encoded by this gene is an azurophil granule antibiotic protein, with monocyte chemotactic and
antibacterial activity. It is also an important multifunctional inflammatory mediator.

Z69881

This gene encodes one of the SERCA Ca(2+)-ATPases, which are intracellular pumps located in the sarcoplasmic or
endoplasmic reticula of muscle cells. This enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium
from the cytosol to the sarcoplasmic reticulum lumen and is involved in calcium sequestration associated with muscular
excitation and contraction. Alternative splicing results in multiple transcript variants encoding different isoforms.

D80006 It may provide positional cues for axon pathfinding and patterning in the central nervous system.

J04990

The protein encoded by this gene, a member of the peptidase S1 protein family, is found in azurophil granules of neutrophilic
polymorphonuclear leukocytes. The encoded protease has a specificity similar to that of chymotrypsin C, and may participate
in the killing and digestion of engulfed pathogens and in connective tissue remodeling at sites of inflammation. Transcript
variants utilizing alternative polyadenylation signals exist for this gene.

U32944

Cytoplasmic dyneins are large enzyme complexes with a molecular mass of about 1200 kD. They contain two force-producing
heads formed primarily from dynein heavy chains and stalks linking the heads to a basal domain, which contains a varying
number of accessory intermediate chains. The complex is involved in intracellular transport and motility. The protein described
in this record is a light chain and exists as part of this complex but also physically interacts with and inhibits the activity of
neuronal nitric oxide synthase. Binding of this protein destabilizes the neuronal nitric oxide synthase dimer, a conformation
necessary for activity, and it may regulate numerous biologic processes through its effects on nitric oxide synthase activity.

X55668
Polymorphonuclear leukocyte serine protease degrades elastin, fibronectin, laminin, vitronectin, and collagen types I, III, and
IV (in vitro) and causes enphysema when administered by tracheal insufflation to hamster.

X74262

This gene encodes a ubiquitously expressed nuclear protein which belongs to a highly conserved subfamily of WD-repeat
proteins. It is present in protein complexes involved in histone acetylation and chromatin assembly. It is part of the Mi-2
complex which has been implicated in chromatin remodeling and transcriptional repression associated with histone
deacetylation. This encoded protein is also part of corepressor complexes, which is an integral component of transcriptional
silencing. It is found among several cellular proteins that bind directly to retinoblastoma protein to regulate cell proliferation.
This protein also seems to be involved in transcriptional repression of E2F-responsive genes.
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Table 10: Continued.

GENE ID Gene description

M26602
Defensins are a family of microbicidal and cytotoxic peptides thought to be involved in host defense. The protein encoded by
this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated
host defense.

M57731
It is produced by activated monocytes and neutrophils and expressed at sites of inflammation. Hematoregulatory chemokine,
which, in vitro, suppresses hematopoietic progenitor cell proliferation. GRO-beta(5-73) shows a highly enhanced
hematopoietic activity.

M27891
This gene is located in the cystatin locus and encodes the most abundant extracellular inhibitor of cysteine proteases, which is
found in high concentrations in biological fluids and is expressed in virtually all organs of the body. A mutation in this gene has
been associated with amyloid angiopathy.

U05259
The B lymphocyte antigen receptor is a multimeric complex that includes the antigen-specific component, surface
immunoglobulin (Ig). Surface Ig noncovalently associates with two other proteins, Ig-alpha and Ig-beta, which are necessary for
expression and function of the B-cell antigen receptor. This gene encodes the Ig-alpha protein of the B-cell antigen component.

U85767

This gene is one of several cytokine genes clustered on the q-arm of chromosome 17. Cytokines are a family of secreted proteins
involved in immunoregulatory and inflammatory processes. The CC cytokines are proteins characterized by two adjacent
cysteines. The cytokine encoded by this gene displays chemotactic activity on resting T lymphocytes and monocytes, lower
activity on neutrophils and no activity on activated T lymphocytes. The protein is also a strong suppressor of colony formation
by a multipotential hematopoietic progenitor cell line.

J04615

The protein encoded by this gene is one polypeptide of a small nuclear ribonucleoprotein complex and belongs to the snRNP
SMB/SMN family. The protein plays a role in pre-mRNA processing, possibly tissue-specific alternative splicing events.
Although individual snRNPs are believed to recognize specific nucleic acid sequences through RNA-RNA base pairing, the
specific role of this family member is unknown.

X17042

This gene encodes a protein best known as a hematopoietic cell granule proteoglycan. Proteoglycans stored in the secretory
granules of many hematopoietic cells also contain a protease-resistant peptide core, which may be important for neutralizing
hydrolytic enzymes. This encoded protein was found to be associated with the macromolecular complex of granzymes and
perforin, which may serve as a mediator of granule-mediated apoptosis.

M63438
HLA-C belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain
and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in
the immune system by presenting peptides derived from endoplasmic reticulum lumen.

X95735

Focal adhesions are actin-rich structures that enable cells to adhere to the extracellular matrix and at which protein complexes
involved in signal transduction assemble. Zyxin is a zinc-binding phosphoprotein that concentrates at focal adhesions and
along the actin cytoskeleton. Zyxin has an N-terminal proline-rich domain and three LIM domains in its C-terminal half. The
proline-rich domain may interact with SH3 domains of proteins involved in signal transduction pathways while the LIM
domains are likely involved in protein-protein binding. Zyxin may function as a messenger in the signal transduction pathway
that mediates adhesion-stimulated changes in gene expression and may modulate the cytoskeletal organization of actin bundles.

M69043

It inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL dimers in the cytoplasm through masking of
their nuclear localization signals. On cellular stimulation by immune and proinflammatory responses, it becomes
phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to tranlocate to the nucleus and
activate transcription.

U49869

This gene encodes ubiquitin, one of the most conserved proteins known. Ubiquitin is required for ATP-dependent,
nonlysosomal intracellular protein degradation of abnormal proteins and normal proteins with a rapid turnover. Ubiquitin is
covalently bound to proteins to be degraded and presumably labels these proteins for degradation. Ubiquitin also binds to
histone H2A in actively transcribed regions but does not cause histone H2A degradation, suggesting that ubiquitin is also
involved in regulation of gene expression. This gene consists of three direct repeats of the ubiquitin coding sequence with no
spacer sequence. Consequently, the protein is expressed as a polyubiquitin precursor with a final amino acid after the last repeat.

M17733
This gene encodes an actin sequestering protein which plays a role in regulation of actin polymerization. The protein is also
involved in cell proliferation, migration, and differentiation. This gene escapes X inactivation and has a homolog on
chromosome Y.

M19507
Myeloperoxidase (MPO) is a heme protein synthesized during myeloid differentiation that constitutes the major component of
neutrophil azurophilic granules.

U46751
It is an adapter protein which binds ubiquitin and may regulate the activation of NFKB1 by TNF-alpha, nerve growth factor
(NGF), and interleukin-1. It may play a role in titin/TTN downstream signaling in muscle cells, may regulate signaling cascades
through ubiquitination, may be involved in cell differentiation, apoptosis, immune response, and regulation of K(+) channels.

X52056
This gene encodes an ETS-domain transcription factor that activates gene expression during myeloid and B-lymphoid cell
development.
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They are entries of the GenBank database (see e.g., http://
www.ncbi.nlm.nih.gov/Genbank/ for a description of this
database of known genes). Other informations about these
genes can be obtained by using these IDs as entries at the page
http://smd.stanford.edu/cgi-bin/source/sourceBatchSearch.
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1. Introduction

Normally, breast cells grow and then rest in cycles. The
periods of growth and rest in each cell are controlled
by genes in the cell’s nucleus. Genes sometimes develop
abnormalities, which cause to lose their ability to control
the cycle resulting in uncontrolled growth of breast cells
(cancer). Breast cancer is the most common cancer and the
second largest cause of cancer deaths among women [1].
Based on the estimation (from www.BreastCancer.org) in
2007, there are about 178 480 new cases of invasive breast
cancer and 62 030 new cases of noninvasive breast cancer
diagnosed in the United States. Early detection of this disease
via accurate diagnosis and treatment can greatly improve the
chances for survival.

Most breast cancers are symptomatic of lump in the
breast but the majority of breast lumps are benign. Therefore,
it is important to distinguish benign lumps from malignant
ones. The methods for diagnosing breast cancer include
mammography, fine-needle aspirates (FNAs) with visual
interpretation, and surgical biopsy. The detection ability of
both mammography and fine-needle aspirates with visual
interpretation to correctly diagnose breast cancer is unstable

[2, 3]. Surgical biopsy, although accurate, is invasive, time
consuming, and costly. The anticipated course of the cancer
not only determines whether chemotherapy is needed but
also affects the mental state and personal goal of the patient.
Therefore, developing an accurate, efficient, and inexpensive
method for breast cancer diagnosis is an important and
challenging goal for the treatment of this disease.

The great economic and social values of breast cancer
diagnosis have attracted many researchers. Some methods
such as linear programming [4, 5], neural network [6, 7], and
ant colony-based system [8] were applied to breast cancer
diagnosis. Over the last decade, immunity-based approaches
have been applied to solve problems in a wide variety of
domains such as anomaly detection, pattern recognition,
data mining, computer security, adaptive control, and fault
detection [9]. The majority of breast lumps are benign,
which could in practice provide a large training data set of
normal class. Hence, Artificial Immune System (AIS) can
be applied to breast cancer diagnosis by taking advantage
of one-class classification. In this paper, we describe an
improved Conserved Self Pattern Recognition Algorithm
(CSPRA) for breast cancer diagnosis. The details of the
algorithm are described in Section 2 and Section 3 outlines
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the breast cancer diagnosis problem. Section 4 describes
how the algorithm can be applied to the breast cancer
diagnosis problem and reports some experimental results.
Section 5 provides discussions on algorithmic parameters
and comparative results. The last section provides conclusive
remarks and future work.

2. A Novel Detection Strategy in Conserved
Self Pattern Recognition Algorithm (CSPRA)

2.1. A Brief Overview of CSPRA. The immune system plays
roles by discriminating self (defined early in life) and nonself
(anything that comes later), tolerating self, and attacking
nonself [10]. This elegantly simple idea, known as the Self-
Nonself model, has dominated the field for over 50 years.
However, it has failed to explain a great number of findings
such as alerted self, pregnancy, and aging [10]. Pattern
Recognition Receptors (PRRs) model was published in 1989
to accommodate incompatible new findings [11]. The PRRs
model suggested that Antigen Presenting Cells (APCs) can
recognize evolving pathogens. The lymphocytes (T cell or B
cell) would die if it recognized antigen (Signal 1) without
the costimulation from APC (Signal 2) but APCs do not
costimulate unless activated via encoded PRRs that recognize
conserved pathogen-associated molecular patterns (PAMPs)
on bacteria [11]. Inspired by the biological PRRs model,
we recently proposed a novel algorithm called Conserved
Self Pattern Recognition Algorithm (CSPRA) [12]. The basic
steps involved in the CSPRA are as follows.

(1) Build up the “Self” training samples from the
collected normal data and store the samples as a
multiset S0 of equal length strings, L over a finite
alphabet.

(2) Establish a model of normal behavior by generating
the set of T detectors (R1) and a specific APC detector
(R2), respectively. The negative selection strategy
[13] is employed in the generation of T detectors.
However, the generation of the specific APC detector
includes two major steps.

(a) Based on the relationship between the antigen
objects and the dimensions of their feature
space, define the conserved self pattern. It can
be predefined from the empirical data based on
the scientists’ lab results. This paper introduces
a new technique for finding conserved self
pattern, as described in Section 4.1.

(b) Within the conserved self pattern consisting of
the features located in loc 1, loc 2, . . . , generate
APC detector R2{〈loc 1, min, max, mean〉,
〈loc 2, min, max, mean〉, . . .} by calculating
maximum, minimum, and mean of all of the
values in the features (or descriptors) of loc 1,
loc 2, . . . , respectively.

(3) Monitor the system by detecting anomaly in the
incoming new data in the testing data set S1 using the
generated T detectors and APC detector in R1 and R2.

The matching rule (Euclidean distance) is used for
T detectors to report anomaly. The distance between
APC detector, and the new sample is calculated by
(1). If it is greater than the predefined threshold, then
the anomaly is detected by APC detector. In (1), w
is the number of the dimensions for the conserved
pattern; mi and ni represent the lower and upper
bounds of the ith attribute in the entire training data,
respectively; p = (p1, p2, . . . , pw), pi is the value of the
ith attribute for the antigen object to be examined;
d = (d1,d2, . . . ,dw),di is the mean of all of the values
in the ith attribute in the entire training data:

Dist
(
p,d

) =
w∑

i=1

∣
∣pi − di

∣
∣

mi − ni
. (1)

(4) The new sample (antigen) is firstly checked with
T detectors. The costimulation of APC detector
is conducted if and only if both of the following
conditions are fulfilled during the phase of T cell
detection.

(a) The affinity between the T cell detector and the
new sample is very low, that is, the Euclidean
distance between the T cell detector and the
incoming sample is greater than predefined
suspicious threshold.

(b) The decision for abnormal (non-self) is made
based on the other antigen epitope instead of
the antigen peptide, where the conserved self
pattern is located.

The new sample satisfying the above conditions
is named suspicious antigen. APC detector finally
determines whether it is anomaly in this case.

Now, we extend the proposal in [12] aiming at resolving
the conflicts in anomaly detection between two types of
detectors in the detection phase of the algorithm. By wisely
using domain knowledge and randomized method, the novel
detection strategy we present in this paper has been proven
to greatly enhance the efficiency for anomaly detection by
the unpublished results when testing with multiple data
sets. In this paper, we center on the application of this
modified Conserve Self Pattern Recognition Algorithm to
breast cancer diagnosis. In this section, we are going to
describe the novel detection strategy, the interesting readers
can refer to [12] for the details of the algorithm.

In biology, the PRRs model added additional layer of
pathogen-associated molecular patterns (PAMPs) to the
self-nonself model. Inspired by this metaphor, our earlier
proposal in [12] combined both APCs Pattern Recognition
and T cell Negative Selection to detect anomalies in new
samples, which had been proven to efficiently reduce high
false positive error rate that often occurred in Negative
Selection Algorithm (NSA). By exploring this idea, a ques-
tion is naturally raised: if the conflicts on anomaly decision
happen when testing the new samples using APC detector
and T cell detector, respectively, for example, T cell detector
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Figure 1: Interpretations of ambiguous boundary on anomaly detection.

recognizes the new sample as “Nonself” whereas the same
sample is classified as “Self” by APC detector, how does
the system make the final decision for the new sample?
The solution in the previous proposal mirrors the biological
metaphor: APCs are quiescent until they are activated via
encoded PRRs that recognize conserved PAMPs [11]. The
costimulation of APC detector will not be conducted until
the detection from T cell detectors becomes unsure, that
is, the suspicious antigen is encountered in the system.
Although this solution shows its strength in terms of algo-
rithmic complexity, its performance relies on the application
domain since the definition of suspicious antigen is not
always in accordance with a specific application. Our recent
work proposes the mathematical methods to resolve the
conflicts.

2.2. Ambiguous Boundary in Anomaly Detection. An impor-
tant concept in our proposal is ambiguous boundary. Figure 1
illustrates the interpretations of ambiguous boundaries for T
cell detection and APC detection, respectively. The represen-
tation for the single T detector in Figure 1(a) is different in
two detection cases.

(i) If the new sample matches with any of the T
detectors, that is, the distance between the new
sample and the current T detector is less than the
predefined threshold, then the new sample is detected
as “non-self.” The single T detector in Figure 1(a)
represents the one in the set of T detectors that
recognizes the new sample that is currently being
tested.

(ii) The new sample is detected as “self” if it does not
match any T detectors. In this case, the single T
detector in Figure 1(a) is the one in the set of T
detectors that is the nearest to the new sample that
is currently being tested. From the viewpoint of
algorithm implementation, the Euclidean distance
between the new sample and each T detector is
calculated while the testing sample is checked against
all T detectors but only the shortest distance is
returned.

Now, it becomes very straightforward to explain the
ambiguous boundary for both T detector and APC detector.
The ambiguous coefficient α in this proposal is applied
to adjust the range of the ambiguous region, that is, to
increase/decrease the shadow area in Figure 1.

(i) As shown in Figure 1(a), the ambiguous region
for T detector is a ring-shaped region contained
between the two circles (upper ambiguous boundary
and lower ambiguous boundary) with the radius of
(1 + αt)

∗t1 (outer circle) and (1− αt)∗t1 (inner cir-
cle), where t1 represents the threshold for T detector
activation and αt is the ambiguous coefficient for T
detector detection.

(ii) Similarly, as shown in Figure 1(b), the ambiguous
region for APC detector is also a ring-shaped region
contained between the two circles with the radius
of (1 + αp)∗t2 (outer circle) and (1− αp)∗t2 (inner
circle), where t2 represents the threshold for APC
detector activation and αp is the ambiguous coeffi-
cient for APC detector detection.

2.3. A Novel Detection Strategy to Resolve the Conflicts
on Anomaly Detection. Once the ambiguous boundary is
defined, the following rules are set to resolve the conflicts in
anomaly decision between T detector and APC detector by
using domain knowledge and randomized method.

2.3.1. Domain Knowledge. When the antigen (the new
incoming sample) is loaded into the system, we check the
matching rule of Euclidean distance against each T detector.
If the matching is found, we keep the matching distance in
record. If the matching is not found after all T detectors are
checked, we only keep the distance to the nearest T detectors
in record. Similarly, the matching distance is also kept in
record when the antigen is checked against the APC detector.
The information from the matching distances for both T
detector and APC detector obtained in the detection phase
is considered as valuable domain knowledge, which is used
in the proposed detection strategy to resolve the conflicts in
the following cases.
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Case 1. The anomaly decision from APC detector is granted
but the results from T detector detection are discarded if and
only if both of the following conditions are fulfilled:

(i) the new sample falls into the ambiguous region that is
predefined by the ambiguous boundary when testing
with T detector;

(ii) the new sample is not in the ambiguous region when
testing with APC detector.

Case 2. It is opposite of Case 1. T detector finally determines
whether the new sample is anomalous but APC detection is
simply ignored if and only if both of the following conditions
are fulfilled:

(i) the new sample is not in the ambiguous region when
testing with T detector;

(ii) the new sample is in the ambiguous region when
testing with APC detector.

2.3.2. Randomized Method. Randomized method is selected
to resolve the conflicts for all other cases rather than Cases 1
and 2 described in Section 2.3.1. In other words, randomized
method is used under one of the following conditions as
(1) the new sample falls into the ambiguous region when it
is matched against with either T detector or APC detector;
(2) the new sample does not fall into the ambiguous region
when it is matched against with either T cell detector or APC
detector.

When implementing this algorithm, a list L(n1,n2,
n3,n4,n5 . . .) is established in which to store these ambigu-
ous testing samples while the system loops through every
testing sample. Another parameter called pattern weight w
is introduced in the algorithm to control the randomized
decision making. When the loop is terminated, the algorithm
randomly picks up n∗w samples, provided that the list
L contains n ambiguous samples, to form a new sublist
l(m1,m2,m3, . . .). For every sample in the sublist l, APC
detector solely determines whether it is anomalous regardless
of the results from T detector decision. Anomaly decision for
the remaining n∗(1− w) samples in the parent list L follows
T detector decision process.

2.4. Pseudocode for the Detection Algorithm. Listed below is
the pseudocode for the detection algorithm that reflects the
novel detection strategy we have outlined in the previous
sections.

As noted in Algorithm 1, in lines 2 and 3, each sample
is examined by T detector and APC detector, respectively.
We keep the distance (dt and dp) in record when we check
the matching rule for both APC detector and T detector,
which are used to determine the resolution of the conflicts,
as seen between lines 9 and 15. In lines 14 and 15, we save
the index (i), T detector detection result (TDecision), and
APC detector detection result (APCDecision) to the defined
struct for each ambiguous testing sample (ambiguousAg),
and then add ambiguousAg to the list of the ambiguous
testing samples (randList). Hence, we no longer loop through
all testing samples again when we determine the anomaly

for the new sample using randomized method in lines 31
and 34, which greatly enhances the algorithm efficiency. As
shown in line 20 in Algorithm 1, in the list of the ambiguous
testing samples, the total number of the samples to be
determined by APC conserved pattern recognition is affected
by the pattern weight w. Line 23 through line 35 show
how to determine the anomalies using randomized method.
The pseudocode shown in Algorithm 1 is only part of the
algorithm implementation showing the difference from our
previous proposal in the detection phase for this algorithm.
Readers interested in this information can refer to [12] for
the entire pseudocode for the algorithm implementation.

3. Breast Cancer Diagnosis Problem

This breast cancer database is downloaded from the UCI
machine learning repository [14], which was collected by
Dr. William H. Wolberg from the University of Wisconsin
Hospitals, Madison, USA [4]. The dataset is comprised
of elements that consist of various scalar observations.
The total number of the original samples is 699 but 16
samples with missing values are removed to construct a
new dataset with 683 samples that are actually used in
our experiments. The dataset contains two classes referring
to benign and malignant samples. There are 444 samples
in the dataset that are assigned to benign, and the other
239 samples are malignant. The original dataset contains
11 attributes including both sample id number and class
label, which are removed in the actual dataset that are used
in our experiments. The remaining 9 attributes represent
9 cytological characteristics of breast fine-needle aspirates
(FNAs), as shown in Table 1. The cytological characteristics
of breast FNAs were valued on a scale of one to ten, with one
being the closest to benign and ten the most malignant.

Samples arrived periodically as Dr. Wolberg reported his
clinical cases [4, 5]. The original database therefore includes
the information about this chronological grouping of the
data, having been removed from the data itself. Some brief
statistical analysis is presented in Table 2. The calculation of
class correlation in Table 2 is introduced in Section 4.1.

Prior to the experiments, we normalize the raw data by
columns in the range of [0,1] with max-min normalization,
as shown in

f (x) = x −min(column)
max(column)−min(column)

. (2)

4. Application of CSPRA to
Breast Cancer Diagnosis

In this section we begin by describing the data preprocessing,
then further to discuss the algorithm parameters and report
the experimental results showing that the algorithm is able to
predict the breast cancer quite efficiently.

4.1. Finding Conserved Self pattern. The first task to use
CSPRA is to find the conserved self pattern based on training
data. The Pearson Product Moment Correlation Coefficient
that was developed by Karl Pearson is the most widely used
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//detection phase
S: set of testing samples
t1: T detector threshold
t2: APC detector threshold
αt : ambiguous coefficient for T detector detection
αp: ambiguous coefficient for APC pattern detection
dt : distance between T detector and the current sample
dp: distance between APC detector and the current sample
w: pattern weight used in random decision
Decision∗: bool variable for the final detecting conclusion for the new sample
TDecision∗: bool variable for the detecting conclusion from T detector
APCDecision∗: bool variable for the detecting conclusion from APC detector
ambiguousAg: struct for each new sample to be decided on anomaly with randomized method
randList: list of ambiguousAg
∗For these bool variables, true for anomaly and false for self
(1) for every si in S = {si, i = 1, 2, . . .}
(2) TDecision = CheckWithTDetector(si, t1,dt)
(3) APCDecision = CheckWithAPCDetector(si, t2,,dp)
( 4) if(TDecision && APCDecision)
(5) Decision = true;
(6) else if((!TDecision) && (!APCDecision))
(7) Decision = false;
(8) else
(9) if( ((dt > (1 + αt)

∗t1)‖(dt < (1− αt)∗t1)) &&
((dp > (1− αp)∗t2) && (dp < (1 + αp)∗t2))

(10) Decision = TDecision
(11) else if( ((dt < (1 + αt)

∗t1) && (dt > (1− αt)
∗t1)) &&

((dp > (1 + αp)∗t2)‖(dp < (1− αp)∗t2))
(12) Decision = APCDecision
(13) else
(14) save i, TDecision, and APCDecision to the struct ambiguousAg
(15) Add ambiguousAg to the list randList
(16) end else
(17) end else
(18) end for
(19) int total ambiguous = size of the list randList
(20) int total apc decided = (int) total ambiguous ∗w
(21) APCList: list of the index of the samples to be decided by APC detector in randList
(22) TList: list of the index of the samples to be decided by T detector in randList
(23) while(size of APCList < total apc decided)
(24) int val = rand()%total ambiguous
(25) if(val doesn’t exist in APCList)
(26) Add val to APCList
(27) end while
(28) for(int i = 0; i < total ambiguous; i ++)

if(i doesn’t exist in APCList)
Add i to TList

(29) end for
(30) for(int i = 0; i < size of APCList; i ++)
(31) Decision = randList[APCList[i]].APCDecision
(32) end for
(33) for(int i = 0; i < size of TList; i ++)
(34) Decision = randList[TList[i]].TDecision
(35) end for

Algorithm 1: Detection algorithm with new decision strategy.
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Table 1: Attributes in the breast cancer databases.

No. Attribute

0 Clump thickness

1 Uniformity of cell size

2 Uniformity of cell shape

3 Marginal adhesion

4 Single epithelial cell size

5 Bare nuclei

6 Bland chromatin

7 Normal nucleoli

8 Mitoses

Table 2: Statistical analysis of attribute values in 683 samples.

Attribute no. Mean Standard deviation Class correlation

0 4.44 2.82 0.7148

1 3.15 3.07 0.8208

2 3.22 2.99 0.8219

3 2.83 2.86 0.7063

4 3.23 2.22 0.6910

5 3.54 3.64 0.8227

6 3.44 2.45 0.7582

7 2.87 3.05 0.7187

8 1.60 1.73 0.4234

measure of correlation between two variables X and Y [15].
The correlation coefficient r can be simply described as the
sum of the product of the Z-scores for the two variables
divided by the number of scores as shown in

r =
∑
zXzY
N

. (3)

However, it is fairly difficult to calculate the correlation
coefficient using (3). We use the computational formula that
is mathematically identical but is much easier to use, as
shown in (4), to calculate the Pearsonian r between the values
(X) in the column of each attribute and their corresponding
class labels (Y) in breast cancer data. The corresponding class
correlations for different sample size in breast cancer data are
listed in Table 3

r = N
∑
XY − (

∑
X)(

∑
Y)

√

N
∑
X2 − (

∑
Y)2

√

N
∑
Y 2 − (

∑
Y)2

. (4)

From the results in Table 3, the cytological characteristics
of breast fine-needle aspirates such as uniformity of bare
nuclei, uniformity of cell shape and cell size are ranked
first three places in terms of class correlation. Hence, the
subset from 1st, 2nd, and 5th (zero-based index) dimension
of the original dimensions in training data is considered as
conserved self pattern.

As noted, the abnormal samples (malignant samples for
this application) are required if the conserved self pattern
is defined by computing the class correlation. However, as
shown in Table 3, the same conclusion about conserved self
pattern is obtained when we calculate the class correlation

using 100% currently collected samples, 50% of the samples
from each class, and 25% of the samples from each class. It
indicates that the conserved self pattern can be found with
Pearsonian r method even if the samples from abnormal
behaviors are smaller. With this observation, the Pearsonian
r method to find conserved self pattern becomes more
practical since it does not require the collection of a large
number of the abnormal samples.

4.2. Effectiveness Measurement. It is a step forward from the
previous works that we consider not only to what extent the
system is able to detect the anomalies (malignant samples)
but also to what extent the system possibly misclassifies
the normal samples (benign samples) when we evaluate
the system performance. Two measures of effectiveness for
detecting anomaly are calculated as follows:

DetectionRate = TP

TP + FN
,

FalseAlarmRate = FP

FP + TN
,

(5)

where TP, TN, FP, and FN are the counts of true posi-
tives (anomalous elements identified as anomalous), true
negatives (normal elements identified as normal), false
positives (normal elements identified as anomalous), and
false negatives (anomalous elements identified as normal).

Various system parameters, that is, detector thresholds,
control the sensitivity of the system. By employing various
strategies to change the parameter values, different values for
detection rate and false alarm rate are obtained that are used
for plotting the Receiver Operating Characteristics (ROCs)
curve, which reflects the tradeoff between false alarm rate
and detection rate. Since high detection rate and low false
alarm rate are the two goals between which balance is needed,
the ROC curve is used in this paper to evaluate the influence
of the various parameters on the system performance for
breast cancer diagnosis.

4.3. Experimental Results. The experiments are carefully
designed to objectively evaluate the performance of the algo-
rithm and analyze the experimental results. By combining
the idea of k-fold cross validation and the features of one-
class classification of our method, three groups of training
data, as seen in Table 5, are generated with the following
schema to effectively reduce the ordering effect that perhaps
exists in the original collections.

(i) Scheme 1 for training data of 100% benign samples:
the first training data are obtained by shuffling the
original benign samples; the reordered samples are
shuffled again to output the second training data.
Repeating this step 10 times generates 10 different
training data sets.

(ii) Scheme 2 for training data of 25% benign samples:
pick up 3 training data sets that are generated in
the last three rounds of the scheme 1 to guarantee
that the collected samples have been fully randomly
reordered. Each dataset is partitioned into 4 sub-
samples, and thus total 12 subsamples are obtained.
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Table 3: Attribute class correlation in breast cancer data.

No. Attribute
Class correlation

100% sample 50% sample 25% sample

0 Clump thickness 0.7148 0.7513 0.7184

1 Uniformity of cell size 0.8208 0.8024 0.7598

2 Uniformity of cell shape 0.8219 0.8156 0.7905

3 Marginal adhesion 0.7063 0.6848 0.6241

4 Single epithelial cell size 0.6910 0.6889 0.6665

5 Bare nuclei 0.8227 0.8029 0.7238

6 Bland chromatin 0.7582 0.6823 0.6046

7 Normal nucleoli 0.7187 0.7025 0.6937

8 Mitoses 0.4234 0.4509 0.4439

10 subsamples are randomly selected from the total
12 subsamples to make up 10 training data of 25%
benign samples.

(iii) Scheme 3 for training data of 50% benign samples:
pick up 5 randomly reordered training data sets that
are generated in the last five rounds of the scheme 1.
Each dataset is partitioned into 2 subsamples, and
thus total 10 subsamples are obtained. The 10
subsamples are the actual 10 training data of 50%
benign samples.

When all the available benign samples are used to train the
enhanced CSPRA, the total 683 samples, including the same
benign samples used in the training phase, are considered
as testing data. Although such testing case can demonstrate
the system’s capability to recognize known normal data,
the false alarm rate could be deceptive because the resulted
model may overfit the training data. Therefore, the training
data are removed in our testing with training data of 50%
benign samples and 25% benign samples. When 50% benign
samples are used as training data, the remaining 50% benign
samples and all malignant samples are combined as testing
data. Similarly, if the training data are 25% benign samples,
the testing data include the remaining 75% benign samples
and all malignant samples.

Through repeatedly running the algorithm and observ-
ing the generated results, the parameter settings listed in
Table 4 produce better results. As noted, when 25% benign
samples are used as training data, 10 different randomly
reordered training data with 25% benign samples, known
as subsamples, are generated from the original collections.
The 10 subsamples are used to train our proposed model,
respectively. Since T detectors are randomly generated with
negative selection in the CSPRA, different values for detec-
tion rate and false alarm rates are observed. Therefore, each
subsample undergoes 100 repeated runs, and the statistics
for these repeated experiments is summarized and recorded.
When the experiments with all 10 subsamples are completed,
the average values of the statistics from 10 subsamples
are calculated, which are reported in Table 5. The same
procedures are applied in our experiments when 50% benign
samples and 100% benign samples are used as training data,
respectively.

Table 4: The values of the parameters that are used in the experi-
ments.

Parameters Value

T detector threshold (t1) 0.1

APC detector threshold (t2) 0.5

T ambiguous coefficient (αt) 0.5

APC ambiguous coefficient (αp) 0.4

Pattern weight (w) 0.7

T detector size 300

APC detector size 1

Sliding window size 3

As shown in Table 5, the performance of the enhanced
CSPRA regarding to breast cancer diagnosis is very promis-
ing, which indicates the great potential of the AIS methods
in the area of clinical diagnosis. The experimental results
also show that the detection accuracy with the enhanced
CSPRA is very high even if we use the smaller training
data. Table 6 shows the best experimental results we picked
out from 100 repeated experiments for each training data
of 100%, 50%, 25% benign samples by comprehensively
considering the balance of the detection rate and false alarm
rate. To clarify this, the best result is actually chosen among
the experiments having the highest accuracy rate in the
100 repeated experiments. Because there are 10 randomly-
reordered subsamples for each group of training data, the
values of detection rate and false alarm rate reported in
Table 6 are the average of the best results obtained from
the experiments with 10 subsamples. As seen in Table 6, the
detection rate is 98.74% companying with the false alarm
rate of 2.23% with the training data of 100% benign samples.
When training with 50% benign samples, the detection rate
is 99.54% at the false alarm rate of 4.23%. When we use the
smaller training data (25% benign samples), the result is also
very positive: the detection rate is 99.62% and the false alarm
rate is 6.82%.

By closely observing the influence of unknown normal
data when using our algorithm, less normal training data
only slightly increase the false alarm rate in breast cancer
diagnosis. However, in a negative selection algorithm and its
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Table 5: Detection rate and false alarm rate with different training data.

Training data
Detection rate (%) False alarm rate (%)

Max Min Mean SD Max Min Mean SD

100% benign samples 99.08 95.10 97.15 0.84 3.13 2.05 2.60 0.24

50% benign samples 99.87 96.53 98.40 0.67 7.48 3.69 5.44 0.83

25% benign sample 99.96 97.36 99.08 0.55 10.45 6.67 8.47 0.77

Table 6: Best results picked out from 100 repeated experiments for
each training data of 100%, 50%, 25% benign samples.

Training data Detection rate (%) False alarm rate (%)

100% benign samples 98.74 2.23

50% benign samples 99.54 4.23

25% benign samples 99.62 6.82

variants, the false alarm rate usually increases dramatically
when the normal training data decrease [16]. This phe-
nomenon exactly demonstrates the strength of APC detector
in the CSPRA. By comparison of canonical negative selection
algorithm, the complexity of the proposed algorithm has not
been increased. As shown in Table 4, the size of the APC
detector is only 1. The proposed algorithm acts as adding
only one robust detector (APC detector), which is used to
detect conserved self pattern, to the total size of the detectors
in a negative selection algorithm. The only observed side-
effect for APC detector in the CSPRA is that the system
produces the average false alarm rate of 2.23% even if we use
100% training normal samples whereas the false alarm for
this case is zero in the negative selection algorithm. However,
as already discussed, the false alarm rate is deceptive when all
normal samples are used to train the system and are included
in the testing data.

4.4. Influence of Various Parameters in the Algorithm. To
further explore the effects of various control parameters
in the algorithm on the performance of breast cancer
prediction, experiments are done by changing the values for
a certain parameter while the values for other parameters
remain unchanged as listed in Table 4. The results reported in
this section are obtained from the experiments with training
data set of 50% benign samples randomly selected from the
original collections.

Figures 2, 3, 4, and 5 show that both T detector
threshold and APC detector threshold strongly affect the
system performance. Both detection rate and false alarm rate
increase when the T detector threshold increases. As shown
in Figure 3, the detection rate rises rapidly before the value
for T detector threshold reaches 0.1. However, when the
T detector threshold is over 0.1, the false alarm rate starts
a slow increment. APC detector threshold influences both
the detection rate and false alarm rate along the opposite
direction as seen in Figure 5; that is, both detection rate and
false alarm rate decrease when the APC detector threshold
increases. We find that the false alarm rate drops dramatically
when the APC threshold gradually increases to 0.5 whereas
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Figure 2: Performance (ROC) curve obtained by changing T
detector threshold with the training data of 50% normal samples.

the decrement of the detection rate speeds up when the APC
threshold is greater than 0.5.

The influence of the parameter of pattern weight on the
system performance is also studied. However, the curves of
both detection rate and false alarm rate are close to being a
horizontal line in Figure 6, which indicates that the influence
of the parameter of pattern weight is very slight when the
breast cancer data are tested with the proposed algorithm.
The influence of T detector size on the system performance
is also limited based on the experimental results reported in
Figure 7. The detection rate almost arrives at 100% when
the size of the T detectors increases to 250. The larger T
detector set (greater than 250) does not help the detection
rate. Instead, it sometimes lowers the detection rate. The
Figure 7 also illustrates that the size of the T detectors has
little impact on the false alarm rate.

5. Discussion

5.1. The Sensitivity of Parameters. To make the algorithm
reliable and usable on the application domain, the tradeoff
between the number of the control parameters and the
algorithm performance is worthy of being considered when
we design the algorithm. Less control parameters make the
algorithm simpler but less flexible. On the contrary, if more
control parameters are provided, the algorithm becomes
more flexible and thus makes it possible to maximize
the algorithm performance by tuning various parameters
specific for the application. Providing a good value for the
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Figure 3: Influence of T detector threshold on both detection rate
and false alarm rate with the training data of 50% normal samples.
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Figure 4: Performance (ROC) curve obtained by changing APC
detector threshold with the training data of 50% normal samples.

certain parameter, however, may not be very intuitive. More
control parameters make the algorithm operation more
complicated, so it is hard to make the algorithm work well
if we have poor intuition on the parameters. The results
reported above show that the performance of the modified
CSPRA is very sensitive to the threshold values of both
T detector and APC detector, so both thresholds are key
parameters to balance between sensitivity and generation
and are required to be tuned with the application data to
obtain better performance. The result in Figure 7 indicates
that a good value for the parameter of T detector size could
easily be found because the detection rate quickly reaches
100% with lower false alarm rate when the size of the T
detector increases. We find in our experiments that the
influence of the parameters of both ambiguous coefficient
and pattern weight on the algorithm performance is minor;
so the values for both ambiguous coefficient and pattern
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Figure 5: Influence of APC detector threshold on both detection
rate and false alarm rate with the training data of 50% normal
samples.

weight could be set to 0.5 by default when we start tuning
the proposed algorithm for a specific application. When the
other parameters have been optimized, the ambiguous coef-
ficient and pattern weight can be fine tuned to enlarge the
algorithm performance. Better understanding the sensitivity
of the parameters on the algorithm performance will direct
us to first tune the parameters with higher sensitivity while
ignoring the parameters with lower sensitivity by setting
these parameters with the default values. Therefore, it not
only reduces the workloads of tuning multiple parameters
but also makes full use of the flexibility of multiple param-
eters.

5.2. Comparison with Previous Works. The typical methods
applied to breast cancer diagnosis in previous works include
linear programming [4, 5], neural network [6, 7], and ant
colony-based system [8]. In this section we compare our
approach against these previous works. To make the com-
parison more appropriate, our experiments also calculate the
accurate rate of the breast cancer prediction using (6). The
corresponding results are reported in Table 7

AccurateRate = TP + TN

TP + FP + TN + FN
. (6)

The earliest work on breast cancer diagnosis [4]
employed linear programming as the basic computational
tool to determine two planes in an n-dimensional real
space, as close together as possible, so that only the region
between contains points from both sets of benign samples
and malignant samples. Classification of the two sets is
achieved by checking whether each point lies outside the
region between the first pair of parallel planes. The validity
of the method was tested with 369 samples. When 50% of
the samples (185 samples) were used as a training set, 6.5%
of the testing samples (the remaining 50% of the samples)
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Figure 6: Influence of pattern weight on both detection rate and
false alarm rate with the training data of 50% normal samples.
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Figure 7: Influence of T detector size on both detection rate and
false alarm rate with the training data of 50% normal samples.

were misclassified. This work was later extended in [5] by
replacing 9 cytological characteristics for each sample with
30-dimensional feature vector that are generated by Xcyt
system. The work in [5] used 569 vectors to train a linear
programming-based diagnostic system, and the highest pre-
dicted accuracy, estimated with cross-validation, was 97.5%
with three features (extreme area, extreme smoothness, and
mean texture), a subset of the 30-dimensional feature vector.
Compared to these previous works, we tested the larger
dataset (683 samples) and achieved a better result (the
highest accurate rate is 97.72% with training data of 50%
of benign samples). Moreover, the requirement of ample
malignant samples that are hardly collected in the clinic is
mandatory in the training phase for these previous works
[4, 5], whereas our approach only requires normal samples
(the majority of the clinical cases) to train the system.

Table 7: Accurate rate with different training data.

Training data Max (%) Min (%) Mean (%) SD

100% benign samples 98.11 96.43 97.31 0.36

50% benign samples 97.72 95.21 96.55 0.49

25% benign samples 95.87 93.44 94.69 0.51

Abbass presented an evolutionary artificial neural net-
work approach based on the pareto differential evolution
algorithm augmented with local search for breast cancer
diagnosis [6]. He used the same dataset as the one used in
this paper. He chose the first 400 instances as the training
set and the remaining 283 as the test set and the average test
accuracy for his method is 98.1%. Although Abbass’s method
produces a higher accuracy rate than that obtained in our
experiments, the larger training data used in his experiments
could potentially overtrained the classifier. Because Abbass
used the order of collections (first 400 instances) to define the
training set, there could be ordering effects. Our experiment
design, as described in Section 4.3, takes into account the
problem with ordering effect, so our experiments are more
reliable and reasonable.

In [7], the Wisconsin breast cancer database is used
to train three different feedforward artificial neural net-
work, including Cancer-Bin, Cancer-Norm, and Cancer-
Cont networks. Cancer-Bin is trained with binary input
patterns; Cancer-Norm is trained with normalized input
patterns; Cancer-Cont is trained with the original data
set. Three different rule extraction techniques (Binarized
Rule Extraction, Partial Rule Extraction, and Full Rule
Extraction), along with the rule ordering and integration
mechanism are used to extract rules from these networks.
Total 683 samples are evenly divided into a training set and
a test set. The dimensionality of the breast-cancer input
space is reduced from 9 to 6 inputs. When using the test
set, the match rates for the trained networks of Cancer-
Bin, Cancer-Norm, and Cancer-Cont are 96.20%, 95.91%,
and 95.61%, respectively. By comparison with our method
presented in this paper, the system used in [7] was apparently
complicated. Based on the results in Table 7, our proposed
method outperformed the hybrid symbolic-connectionist
system in [7].

An ant colony-based system was also applied to breast
cancer diagnosis [8]. The artificial Ant Colony System first
specifies how ants construct or modify a solution for the
problem domain, that is, the discovery of classification rules,
in a probabilistic way and then update the pheromone trail
considering the evaporation rate and the quality of the
current solution. The predictive accuracy obtained with this
method is 95.47%. In addition to the poor performance
compared to our proposed method, the ant colony system
was computationally expensive, especially when the search
space (number of predicting attributes) is too large [8].

6. Conclusions

In this paper, a novel strategy on anomaly detection for the
Conserved Self pattern Recognition Algorithm (CSPRA) is
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proposed. To explore the new detection strategy, we first
put forward the concept of ambiguous boundary which
determines a ring-shaped region where unsure antigen
objects reside. The novel detection strategy employs the
domain knowledge and randomized method to resolve the
conflicts in anomaly detection between two types of detectors
(T detectors and APC detectors) during the detection phase
of the algorithm. In particular, when the conflicts emerge,
there are two cases that can be observed in the detection
phase: (1) the new sample falls not only into the ambiguous
region of the T detector but also into the ambiguous region
of APC detector; (2) the new sample falls into neither the
ambiguous region of the T detector nor the ambiguous
region of APC detector. The randomized method is selected
to resolve the conflicts if one of the above cases is observed.
Domain knowledge is used to arrive at the final anomaly
decision for a new testing sample for the observed cases other
than the cases suitable for randomized method.

The improved CSPRA is applied to breast cancer diagno-
sis, and the promising results reported in this paper show that
the potential usage of the CSPRA is an efficient and reliable
technique to diagnose the breast cancer. The total 683 clinic
samples collected by Dr. Wolberg are experimented with
our proposed method after max-min normalization. The
conserved self pattern is discovered by computing Pearsonian
r between the values for each column of the attribute and
the class labels. The experimental results are evaluated by
considering not only the capability of the system to detect
the anomalies (malignant samples) but also the extent of the
system to misclassify the normal samples (benign samples).
When only 25% of the normal benign samples (111 samples)
are used to train the proposed model, the result is still
very promising with the detection rate of 99.62% and the
false alarm rate of 6.82% in the best case. Importantly, the
best detection can remain unchanged because the set of T
detectors and the indices of the randomized method can be
on-line recorded and reused for future detection.

The influence of various control parameters on the
performance of predicting breast cancer is also studied. The
results indicate that the performance of the modified CSPRA
is very sensitive to the threshold parameters of both T
detector and APC detector. By comparison with the results
in the literature from the previous works on breast cancer
diagnosis, our method outperforms the other methods in
addition to the advantage of its one-class classification.
However, there is still a long way to apply our proposed
method to the actual diagnosis in the clinic. There may be
two reasons for immaturity of the proposed approach. One,
the available breast cancer data are unbalanced between the
two cases. The number of benign samples is almost double
than that of malignant samples. Because of this limitation,
we can not exclude that the promising performance of our
method is due to overfitting towards benign cases. Two,
the available data set is too small and the variation of the
attributes is too low. For some attributes in raw breast
cancer data, the same values are observed in most samples.
Therefore, we still question that these observations in the
source data might contribute to the good results generated by
our method and the previous works. These problems could

be lessoned when we can obtain a much larger number of
samples balanced over two cases. Although relatively limited,
the encouraging results of the CSPRA on the available breast
cancer data still give weight to further study this technique
with more data sets and real world applications and compare
this technique with other AIS methods and machine learning
algorithms, which constitutes the direction of our future
work.
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1. Introduction

The traditional way to craft an artificial neural network
(ANN) for a classification task is to hand design a network
topology and to find a set of network parameters using a
gradient-based error-minimization algorithm such as back
propagation [1]. However, in real-world applications, such as
the classification of biomedical signals, the network topology
can be difficult to design by hand. Additionally, in many
cases, it is desirable to minimize the computational cost
of the network, for example, by reducing the number of
inputs used by the classifier. Evolutionary methods for the
design of ANNs can provide an answer to both issues [2]. In
this paper, we study the application of a neuroevolutionary
method called analog genetic encoding (AGE) [3] to the
problem of synthesis and optimization of neural networks
for the processing of biological signals aimed at sleep and
wake classification.

Continuous monitoring of the sleep/wake state of high-
risk professionals such as pilots, truck drivers, or shift work-
ers can potentially decrease the risk of accidents and help

scheduling breaks and resting times. However, implementing
such a classification in a wearable device is a challenging
task. Limited energy and processing resources as well as
the increased noise level due to movement artifacts and a
constantly changing environment put tight restrictions on
the choice of sensors and algorithms. Traditionally, the states
of sleep and wake are classified based on the analysis of brain
wave patterns (EEG) [4]. EEG recording requires gluing
electrodes to the scalp and is typically susceptible to different
sources of noise. Methods relying on EEG measurements
are thus more suited for sleep analysis in controlled hospital
environments than for mobile applications.

For mobile sleep/wake pattern screening, a commonly
used technique is actigraphy [5]. In actigraphy, the accel-
eration of the wrist of the subject is recorded, and phases
of weak activity—as judged by the levels of acceleration—
are classified as sleep. Actigraphy devices can be small,
inexpensive, and low power, which makes them suitable for
mobile applications. However, as the signals provided by
actigraphy devices are not directly linked to physiological
states, it is difficult to derive a reliable prediction from
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them. Activities characterized by low levels of motion, such
as reading or watching TV, are often misclassified as sleep
[6]. In [7, 8], we have suggested to use electrocardiogram
(ECG) and respiratory effort (RSP) signals for wearable
sleep/wake classification (see Figure 1). Both signals depend
on properties of the activity of the autonomous nervous
system, which differ in sleep and wake [9]. Furthermore,
they are measurable with portable sensor systems such as the
Heally system (see Figure 2, Koralewski Industrie Elektronik,
Celle, Germany).

An additional difficulty is that the generation of a set of
labeled data for the training of the classifier is typically a
time-consuming activity for both the subjects from whom
data is collected and the technicians who must label the data
[7]. It is thus desirable to design a classifier that can be
trained on a set of data and can then be used on further
subjects without additional training. In [7], we have shown
that using the frequency content of the ECG and RSP
signals as input features for a single layer ANN, a mean
accuracy of 86.7% can be achieved when the network was
trained and tested on data obtained from different subjects.
A limitation of the hand-designed ANN used in [7] is its
large number of inputs. Some of these inputs are presumably
redundant and might not contribute significantly to the
classifier performance. For the targeted mobile application,
the power consumption of the classifier is critical. In order
to reduce processing time and thus power consumption
for mobile applications, it would be desirable to minimize
the number of inputs. In this paper, we show how to
automatically synthesize networks that use a small subset of
the spectral components associated with the signals as inputs
while maintaining the performance of the classifier.

2. Evolutionary Synthesis of Neural Networks

Neural networks can be described as directed graphs, where
the nodes represent a neuron model, and the edges of the
graph are associated with the weighted connections between
the neurons, the so-called synaptic weights. The design of
a network for a particular task thus involves the choice of
the topology of the graph (i.e., the network architecture)
and a suitable set of numerical parameters (i.e., the synaptic
weights and the parameters of the neuron model). The
automatic synthesis of the topology and parameters of a
neural network requires a computer representation for both
aspects of the network, combined with an algorithm capable
of performing a search in the space defined by this rep-
resentation. Evolutionary algorithms have been extensively
used to evolve neural classifiers because these algorithms can
combine a flexible representation with a high potential of
stochastic exploration of the search space [10–13].

The simplest approach to this, the so-called direct
encoding, represents all the neurons, synaptic connections,
and parameters of the network explicitly (see, e.g. [14–16]).
This has the advantage that the resulting networks can easily
be decoded from the genome. However, with increasing size
of the network, the length of the corresponding genome
grows rapidly, which can affect the evolvability. In order to

mitigate this problem, it has been suggested to encode a
program or a sequence of instructions that, when executed,
builds the network. This developmental encoding can lead
to very compact representations of large networks (see, e.g.,
[17, 18]). However, the definition of a set of mutation and
recombination operators which guarantees that only valid
networks are generated during the search is typically very
difficult.

A promising alternative to direct and developmental
representations that is getting more and more popular is
implicit encoding [19–23]. In this paper, we use an implicit
representation called analog genetic encoding (AGE). AGE
has been shown to be very effective for the automatic
synthesis of various kinds of networks and, in particular, of
neural networks [2, 3, 24–26].

The concept of implicit encodings like AGE is loosely
inspired by the working of biological gene regulatory net-
works (GRNs). In biological GRNs, the interactions between
the genes are not explicitly encoded in the genome but follow
implicitly from the physical and chemical environment
in which the genome is immersed. Simplifying a bit the
picture, the activation of a biological gene depends on
the interaction of molecules produced by another gene
with parts of the activated gene called regulatory regions
(Figure 3(a)). AGE abstracts this picture and defines an
artificial genome composed of sequences of characters, for
example, the uppercase ASCII set (Figure 3(b)). Similar to
the function of promoter and terminal regions in GRNs,
special sequences (the so-called tokens) identify regions
of the artificial genome as artificial genes, which encode
individual neurons. The sequences delimited by the tokens
are interpreted analogous to coding regions and regulatory
regions in biological GRNs. The strength of the connection
between two neurons is implicitly determined by the coding
region of one neuron and the regulatory region of another
neuron via a function called interaction map. The interaction
map can be seen as an abstraction of the biochemical
process of gene regulation. It takes sequences of characters
as arguments and outputs a real-valued connection strength.
In our implementation, this is obtained by mapping the local
alignment score [27] of the two sequences exponentially to
the interval that spans all possible weight values (see [24]).

In summary, the AGE genome can be decoded first
by extracting the neurons with the associated (coding and
regulatory) sequences of characters. This is realized by
scanning the genome for tokens which indicate the presence
of a neuron (GN). Together with predefined terminator
sequences (TE), these tokens delimit the part of the
genome associated with the respective neuron. The enclosed
sequences of characters are interpreted as the coding and
regulatory sequences of the respective neuron. Subsequently,
the interaction map I can be applied to all pairs of coding
and regulatory sequences to obtain the synaptic weights wij

connecting the neurons (see Figure 4).
In this framework, there are several different possibilities

to implement connections from external inputs to external
outputs (see [28] for more details). Here, we encoded the
coding sequences associated to the input neurons and the
regulatory sequences associated to the output neurons in
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Figure 2: Portable Heally recording system mounted on a shirt.
(1) ECG gel electrodes; (2) inductive belt sensor; (3) electronics
modules; (4) NiMH battery.

separated parts of the genome (see Figure 5). In this case,
the connections from the input neurons to the network can
be obtained by applying the interaction map to all pairs of
coding sequences (associated with the input neurons and
the hidden neurons) and regulatory regions (associated to
the hidden neurons and the output neuron). Note that
the interaction map can associate a null weight value, thus
leaving the respective neurons unconnected. When this
feature is applied to the connections stemming from the
input neurons, it gives evolution the freedom to select a
subset of the set of inputs that contains the information
necessary to realize the classification task.

As the sequences which define the strength of the synaptic
connections can have a variable length and the interaction
map is defined to operate on sequences of arbitrary length,
a large class of genetic operators can be used to alter the
network. In particular, we use the biologically plausible
insertion, substitution, and deletion of characters and the
transposition, duplication, and deletion of fragments of

genome. The changes in the genome caused by these muta-
tion operators can reflect both changes in the parameters of
the network as well as changes in the network structure. For
example, the insertion of a character in the genome can lead
to a change of the synaptic weight connecting a particular
input to the output neuron. The deletion of a fragment of
genome associated with an input of the network can lead
to the removal of this particular input from the network.
Furthermore, the number of hidden neurons in the network
can increase (e.g., after a genome fragment duplication) or
decrease (e.g., after a character substitution) over the course
of evolution. Given the fact that parts of the genome can
be noncoding (i.e., they are not part of the description of a
neuron) and that the interaction map is defined to be highly
redundant, many mutations do not have an effect on the
decoded networks. This allows for a high neutrality in the
search space, which can improve evolvability [29].

3. Experiments

To compare the performance of the classical approach to
classifier synthesis and training with the state-of-the-art
neuroevolution method based on AGE, we performed a set
of experiments, where we compared the performance of
a neural network with fixed hand-designed topology and
variable weights trained with back propagation, with that of
neural networks synthesized with an evolutionary algorithm-
based on AGE. As anticipated, we are interested in the
performance in a sleep/wake detection task, where data from
a set of users is available for network synthesis and training,
but the performance is expected to generalize to additional
users. We thus investigated the performance of the two
methods when trained on ECG and RSP data collected on
multiple subjects, and tested on data from a different subject.

3.1. Data. The data used in the following experiments are
identical with those described in [8], where a hand-designed
classifier with back propagation was used. They stem from
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recording sessions with six young healthy male subjects of a
mean(± SD) age of 26(± 3) years. The subjects wore a Heally
recording device (see Figure 2) for a total of 18 recording
sessions which lasted 16 hours each and contained an
overnight sleep. The datasets are composed of ECG and RSP
recordings sampled at 100 Hz and 50 Hz, respectively. The a
priori sleep and wake states of the subjects were determined
by a trained technician who labeled the signals in 10-second
intervals based on electromyogram, electrooculogram, and
video recordings. The data were preprocessed and fed to

the ANN. As in [7], the preprocessing step consisted of
calculating the power spectrum of each signal using a short-
time fast Fourier transform with a window length of 40.96
seconds (see Figure 1(b)). For each of these segments, we
calculated a feature vector as �v = log(Ŝ(ω)), where Ŝ(ω) is
the periodogram of the segment. Experiments described in
[8] revealed that frequency components above 10 Hz for ECG
and 8 Hz for RSP do not contribute to the hand-designed
classifier performance and can be removed. The resulting
two input vectors are thus composed of 409 spectral inputs
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from ECG and 327 spectral inputs from RSP. Together, they
compose the set of 736 inputs that were fed to the ANN
classifier (see Figure 1(c)).

3.2. Experimental Design. In order to evaluate the perfor-
mance of the two classifiers, we divided the data into three
different sets: a training set (TR), a validation set (VA), and a
test set (TE) (see Figure 6). The training set contains a subset

Evolved network

Output neuron

ECG inputs RSP inputs Bias

Figure 7: The neural classifier is automatically synthesized with
analog genetic encoding. The evolved network can connect to an
arbitrary subset of the 409 inputs from the ECG data, the 327 inputs
from the RSP data and a bias unit. As the size of the network is
not fixed, the number of hidden units in the network can increase
or decrease over the course of evolution. The output unit indicates
sleep or wake states using a simple threshold at an activation level
of zero.

of the data from five of the six subjects. The validation set
is composed of 2 hours of data from each subject, randomly
sampled over the two available sessions and containing an
equal amount of samples labeled as sleep and wake. This data
is not used for training or for testing. The test set contains
data from the subject that has not been used in the training.
Five independent runs of each experiment are performed
from different randomly assigned initial conditions. In order
to prevent performance biases due to the choice of sessions,
we repeat each experiment with all possible combinations
of users in the test and trainingsets, making sure that the
same sessions do not appear both in the training and in the
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Figure 9: Histogram of the number of input features used by the
evolved networks in the five repetitions of each of the six training
cases. From the 30 networks, 8 used from 3 to 45 inputs, 2 used from
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282 inputs, 1 used 411 and 1 used 484 inputs, 2 networks used from
522 to 533 inputs, 6 networks used from 602 to 647 inputs, and 3
networks used from 628 to 732 inputs.

testsets. This leads to a total of six different cases with five
independent replications for each case.

3.3. Algorithms

3.3.1. Hand-Designed Fixed Topology Network. As a baseline
for the classification accuracy, we used a feed-forward ANN
with no hidden layers and a single output unit with a
tangent-sigmoid transfer function. Additional experiments
not reported here showed that the use of ANNs with a hidden
layer does not improve the performance of the classifier.
A similar finding has been reported by [30]. The synaptic
weights of this fixed topology network were initialized

with the Nguyen-Widrow method [31] and trained with a
Levenberg-Marquardt back-propagation algorithm [32].

3.3.2. Network Synthesized with AGE. For the automatic
synthesis of the network topology and parameters, the
AGE representation was combined with a standard genetic
algorithm (see [24] for more details). Using the above-
mentioned possibility of feature selection, the evolved
network could connect to an arbitrary subset of the 409
inputs from the ECG data, the 327 inputs from the RSP
data, and a constant bias unit (see Figure 7). Additionally,
the evolutionary process might insert hidden neurons in
the network in order to generate more complex network
structures. The activation yi of the hidden neuron i was
computed as

yi = σi

( N∑

k=1

w(i, k)yk +
M∑

l=1

w(i,N + l)Il +w(i,N +M + 1)

)

,

(1)

where N is the number of hidden neurons in the network,
w(x, y) = wxy are the entries of the weight matrix, M = 736
is the number of available inputs, Il is the value of input l,
and

σi(z) = 2
1 + e−αiz

− 1, (2)

is a sigmoid transfer function with slope parameter αi. The
activation of the output neuron was computed analogously
to the activation of the hidden neurons. The slope parameters
αi for the hidden neurons were encoded using the center of
mass encoding [33].

Selection was performed using tournament selection and
elitism. The algorithm parameters and mutation probabil-
ities are listed in Table 1. In order to prevent bootstrap
problems, the population was initialized with the best 100
networks out of 1000 randomly created genomes. Addition-
ally, to save computation time, only a randomly selected
subset of 10% of each training set was used for training.
However, validation and testingwere always performed using
100% of the respective dataset. For each evolutionary run,
the synthesized network was the network with the best
performance on the validation set, in the collection of all
the best performing networks observed at each of the 1000
generations that compose a run.

For both the back-propagation training and the evolu-
tionary process, the measure of quality of the classifier was
the sum over the data points of the squares of the difference
between the actual and the desired classifier output.

4. Results and Discussion

As shown in Figure 8, the evolved networks and the
fixed topology networks trained with back propagation do
not display a significantly different classification accuracy
(Wilcoxon rank sum test P = .48). However, while the
hand-designed fixed topology networksemploy all of the
736 input features, many of the evolved networks used a
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Table 1: The parameters used in the evolutionary algorithm.

Parameter Value

Population size 100

Tournament size 2

Elite size 1

Recombination probability .1

Probability of character substitution (per character) .001

Probability of character insertion (per character) .001

Probability of character deletion (per character) .0015

Probability of fragment transposition .01

Probability of fragment duplication .01

Probability of fragment deletion .015

Probability of neuron insertion .01
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Figure 10: The performance of the evolved networks in the five
repetitions of each of the six training cases. The horizontal axis
represents the number of input features used by the network and
the vertical axis gives the corresponding classification performance.
The symbols indicate the number neurons in the hidden layer of
the network. A cross indicates 0 hidden neurons, a circle indicates 1
hidden neuron, a star indicates 2 hidden neurons. Both the number
of inputs and the number of hidden neurons are not significantly
correlated with classification accuracy (see text).

drastically reduced set of inputs (see Figure 9, the median of
the number of inputs used is 244.5). Figure 10 shows that
there is no correlation between the number of inputs used
by the evolved networks and their performance (Spearman’s
rank correlation coefficient P = .02, P = .94). This
indicates that many input features are indeed redundant
and that it is possible to synthesize networks with a very
small number of inputs which perform as well as the hand-
designed network using all inputs. However, all networks use
input features from both ECG and RSP data (see Figure 11).
Given the results of [7], it is not surprising that the presence
of both types of data is beneficial for the classification
accuracy and thus selected during evolution. Note that in
the evolutionary experiments, no additional penalty term
was added to the objective function to bias the search
toward small networks. This explains the presence of both
networks using a significantly reduced set of inputs, and
networks using almost the whole set of available inputs in
the evolutionary results.
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Figure 11: The evolved networks for the five repetitions of each
of the six cases, sorted by the number of used input features. All
networks use input features from both ECG and RSP data.

As mentioned above, the fixed topology network has
no hidden layer. Of the 30 evolved networks, 19 feature
no hidden neurons, 7 feature one hidden neuron, and 4
feature two hidden neurons. However, there is no correlation
between the number of hidden neurons and the classification
accuracy (Spearman’s rank correlation coefficient P = −.06,
P = .74). This substantiates the conjecture formulated in [7]
that a hidden layer is not necessary for optimal performance
in this task. Note, however, that this conjecture applies to this
specific problem and does not extend to general classification
applications.

5. Conclusion

Portable devices for biomedical signal analysis, like
sleep/wake classification, have the potential to alleviate
health problems and prevent accidents. Recent advances
in sensor development and miniaturization allow for
the construction of small mobile devices which integrate
biomedical sensors and a microprocessor with sufficient
processing power for many applications. However, one of
the critical challenges, that remains, is the design of efficient
classifiers which can be implemented on these small mobile
systems. While the classification accuracy has to be as high
as possible, the computational effort and thus the energy
requirements for classification have to remain low. The
results presented in this paper demonstrate that analog
genetic encoding (AGE) permits the automatic evolutionary
synthesis of compact neural classifiers for the problem of
sleep/wake classification. Compared to a hand-designed
classifier trained with back propagation, the possibility of
the evolutionary selection of a subset of the available inputs
permits a drastic reduction of the number of inputs without
significant degradation of the classifier performance. For
example, in the experiments presented here, the evolutionary
synthesis with AGE found a classifier with the accuracy of
88.49%, using only 15 of the 736 input features used by
the hand-designed network. The implementation of this
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evolved solution on a digital signal controller of the dsPIC33
product family (Microchip Technology Inc., USA) requires
only 5.13% of the instructions used by an implementation
of the hand-designed network on the same processor. This
is a reduction of the computational cost of almost 95%.
Moreover, the savings in computational cost and energy can
be increased even further by adapting the sensory modalities
and preprocessing steps to the reduced set of input features.
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[25] A. Soltoggio, P. Dürr, C. Mattiussi, and D. Floreano, “Evolving
neuromodulatory topologies for reinforcement learning-like
problems,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’07), P. Angeline, M. Michaelewicz, G.
Schonauer, X. Yao, and Z. Zalzala, Eds., pp. 2471–2478, IEEE
Press, Singapore, September 2007.
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1. Introduction

Computational simulations have been widely used to rep-
resent and simulate genetic processes. Some examples that
fall within the scope of this work include simulations that
were mainly developed for educational purposes, such as
Populus [1], WinPop [2], Sigex [3], and Genup [4]. Others
were developed for practical applications and are used in,
for example, programs for forestry management [5, 6].
Simulations are also used to understand complex adaptive
systems from a “first-principles” approach. Conceptual mod-
els such as Holland’s Echo model are widely used [3, 7].
In this paper we discuss the software Kuri, a simulator of
ecological genetics for tree populations. The program allows
investigation of genetic and microevolutionary phenomena
of tree populations or entire forest communities. Kuri can be
used to study the dynamics of neutral genetic markers under
certain biological factors and environmental constraints,
such as dispersion mechanisms and geographical barriers,
among others. Either real field data or artificial genetic and
environmental parameters can be used for a given simula-
tion. The latter allows creation and testing of hypothetical
situations for theoretical and/or educational purposes.

Along the same lines used in the Sigex simulator [3], Kuri
mechanistically implements low level elementary biological
rules, for example, Mendelian segregation and mating, which

interact to produce patterns that are analogous to those
observed in natural populations, such as Hardy-Weinberg
equilibrium. Thus, population data generated in Kuri is not
obtained from sampling from a distribution, but is instead, a
quantifiable element at the population level which emerges
from the low level mechanistic interactions at the genetic
level.

2. Software Kuri

Kuri was developed using the Delphi programming lan-
guage, an object oriented derivative of Pascal. It uses a
modular construct which allows easy implementation of
new functions and applications and also enables seamless
integration with the other modules. The program needs
limited computational resources and will run on a 1.2 GHz
processor with 512 M RAM and 2 GB free space on the hard
disk. The operating system can be Windows XP or above. The
current version of Kuri consists of three main modules: the
graphical user interface (GUI), a dispersion module, and a
genetic operators (KGOP) module.

In Kuri, environmental factors that affect germina-
tion/viability of seeds are combined to create a heatmap in
which the colors represent different germination probabili-
ties (Figure 1 shows a screenshot of Kuri with a probability
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heatmap based on satellite images). The GUI allows the user
to import images, such as satellite photographs or schematic
pictures to represent features of interest in a given area. Up
to five images at a time can be used to represent different
environmental parameters in a given simulation. Each image
could represent, for example: (1) inhospitable areas where
seeds cannot germinate, (2) areas of human intervention,
(3) soil depth, (4) soil quality, and (5) hydrology. Note that
each environmental parameter can be altered by the user.
For instance, the map of soil depth can be replaced by a
topographic map of the region, if it is more relevant for a
particular research topic. Currently Kuri works with bitmap
image files which are easy to generate or to convert from
other file formats with available imaging software.

For each of these (up to 5) environmental parameters,
probabilities of germination success on its respective map
can be assigned to either discrete features or interval ranges
for continuous features. Probabilities are color coded on the
map and resolved at the pixel level. This means that each pixel
can be assigned its own independent probability, irrespective
of neighboring probabilities, allowing for a discontinuous
probability landscape. The color scheme of probabilities is
user defined which makes it easy to identify features. For
example, areas where the germination of seeds is impossible
such as buildings, streets, water masses, or rocky terrain are
by default represented in black (Figure 1). Since colors and
probabilities are linked, it is simply a matter of changing
the probability associated with a specific color to update all
points in the map to a new probability.

The overall germination probability map (Figure 1) is
generated by multiplying the probabilities for each of these
five environmental parameters at each individual pixel. Thus
probability at pixel pxi is simply

P
(
pxi
) =

5∏

j=1

P
(
epi j

)
, (1)

where ep is an environmental parameter. Color coding is
used to represent the final probabilities on a scale between
0% and 100%. This assumes rather simplistically that
the overall probabilities are independent terms with no
interactions between parameters. To model interactions an
additional proceeding can be used. If one of the parameters
is a map of soil fertility and another map holds hydrology
information, a table can be used to model the interaction
between them, a page control called interaction function. This
could be a simple scaling function, such that

P
(
pxi
) = λP

(
epi1

)
P
(
epi2

)
, (2)

where λ is a scalar (in practice λ is simply a monochromatic
map with a scalar attached to the single color). More
complex nonlinear interactions can be envisioned (e.g., a
mapping interval derived from the order terms of a random
regression) provided (1) holds.

To simulate the dispersion of pollen and seeds, the
total simulation area is divided into cells of user defined
granularity, with height and width in pixels defined by the
user. For each grain of pollen and for each seed in a particular

Figure 1: Graphical user interface of Kuri showing the heatmap of
seeding probabilities based on satellite imagery of Tangua Park in
Curitiba, Brazil. Each color represents the combined probability of
up to five different environmental parameters for each cell in the
grid. Black is used to indicate nonviable regions (roads, rivers, built
up areas, etc.).

0

500

+1000

Figure 2: Heatmap of the dispersion of 1000000 pollen grains
from a common origin in the center of the figure. Darker colors
indicate more pollen in a given cell. In this example the wind
direction probabilities were the same for all coordinates—hence the
symmetric pattern of dispersion.

cell, the probability of dispersing to another cell depends
on the wind. This is achieved through a simple probabilistic
function, where an integer ranging between 0 and n (n is a
user defined parameter between zero and the total number of
grid cells) is randomly sampled from a uniform distribution
and multiplied by the probability of the wind direction
(Figure 2). The value of n effectively sets the dispersion
boundaries. Wind direction is also a user defined parameter
consisting of a set of probabilities for each cardinal point and
a decay rate from the center of dispersion.

The KGOP module is essentially a relational database
that holds information on the biological community, the
various species and their respective biological features, the
genetic features of the species, and the genetic composition
(essentially all allelic frequencies across all genes) of the
population of each species, including the chromosome
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Figure 3: (a) Distribution of organisms in generations 1, 2, 3, 4, 5, 10, 15, 20, and 25 of replicate 1 under the scenario of strong winds. (b)
Distribution of organisms in generations 1, 2, 3, 4, 5, 10, 15, 20, and 25 of replicate 1 under the scenario of mild winds. Each point represents
the area occupied by an organism. Note how wind strength can affect the population structure and promote a shift from panmixia in (a) to
endogamy in (b).

sets for each species with the number of loci in each
chromosome, the linkage map between loci, and the number
of alleles in each locus.

For each species the following biological parameters can
be stored: the individual occupation range (species bound-
aries), the dispersion of pollen and seeds, the maximum
and minimum ages of reproduction and images for each
age group of the specimens. For this last parameter, Kuri’s
image collection can be used, or the user can import and
add his/her own images. All parameters relate directly back
to their original biological meaning and can be used quite
intuitively.

For each new species added to the database, the user
should specify the number of chromosomes that will be used
in the simulation and the number of loci per chromosome.
Up to 26 allele slots are available for each locus. The
chromosomes and genes that will effectively be used in a
simulation can be selected prior to a run. Recombination
frequencies between genes should also be specified by the
user. Mutation rates are the same for all genes/alleles, but
can be changed across runs. Note that mutation in Kuri does
not generate new allelic variants; it simply swaps an allele for
another one from the database with a uniform probability.
Initial populations are by default generated in Hardy-
Weinberg equilibrium based on the given allelic frequencies
(allelic and genotypic frequencies and chi-squared values for
Hardy-Weinberg equilibrium tests are given in Kuri), but
different initial population structures can be defined.

Computationally, the genetic mechanisms of the species
are simulated using a Genetic algorithm (GA) [8]. In
previous work we have [3] detailed how to implement these
genetic processes and shown that they conform to theoretical
predictions of population genetics. But briefly, GAs are the
class of Evolutionary Computation algorithms which most
closely mimic evolutionary processes at the genetic level.
GA organisms are represented as linear strings which are

referred to as chromosomes. The value in each position
of the string is an allele and the position itself is a gene
or locus. The combination of values (alleles) in the string
(chromosome) can be mapped to a phenotypic expression
(note that in Kuri all alleles are neutral). Thus GAs operate
at two structural levels: a genotypic and a phenotypic one.
Crossover swaps chromosome parts between selected parents
to form the offspring while mutation changes the value of
alleles at randomly selected loci.

The practical limits for the software (i.e., number of
individuals, size of geographic area, number of generations,
etc.) relate to the limits of the MySQL database. The effective
size of the tables for the database is normally restricted by
the operating system’s filesystem. The total number of loci
are limited to 128.

3. A Simulation Example: Dispersion Effects

In this section we discuss a simple simulation of seed disper-
sion effects to illustrate the use of Kuri in population genetics.
We created a single species population in a homogeneous
environment with a single locus and two segregating alleles
of interest. Initially all plants were heterozygous. We ran
the simulation under two scenarios with different wind
intensities (strong and mild winds). Wind intensities affect
the dispersion process and, consequently, the distribution of
genetic variability.

For each scenario, five simulation runs of 25 generations
each were performed. In Figure 3(a) the distribution pattern
of the plants across generations is depicted under strong
winds for the first replicate. Note that the distribution pat-
tern remains homogeneous over the generations, meaning
that dispersion occurs with a high level of panmixia, that is,
random matting. Figure 3(b) shows the mild wind scenario
over generations for the first replicate. Note the formation
of endogamic groups, that is, most matings occur within
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Figure 4: Changes in frequencies of heterozygotes observed across 25 generations in 5 repetitions. Initially the entire population was
heterozygous. (a) Frequencies under the influence of strong winds. Equilibrium is reached after the first generation, oscillating around
0.5. (b) Frequencies under the influence of mild winds. Heterozygosity decreases due to population subdivision—Wahlund effect.

subpopulations, which are to be expected in an environment
that does not favor dispersion.

The dynamics over time of the frequencies of heterozy-
gotes for the five repeats are shown in Figure 4(a) (strong
wind) and Figure 4(b) (mild wind). In the former, the
frequencies of the heterozygotes reach equilibrium after the
first generation, oscillating around 0.5. In the second case, a
decrease in heterozygosity is noticeable since the subdivision
creates a new population structure—an example of a genetic
phenomenon known as Wahlund effect. In all strong wind
repeats, equilibrium was reached and maintained across gen-
erations whilst with mild winds the number of homozygotes
increases over time.

Even this simple scenario can provide insights about
natural populations. Jump and Penuelas [9] showed that
habitat fragmentation caused by human activity led to high
levels of inbreeding due to a Wahlund effect. This was the
first study showing that even widespread wind-pollinated
trees are negatively affected by habitat fragmentation. Argu-
mentatively, Kuri could be used to estimate genetic effects
under different scenarios. For example, a satellite image of
a forested area can be artificially fragmented in different
patterns and these used to estimate the genetic effects
of deforestation. This has implications for urbanization
decisions and can assist in finding a solution that minimizes
human impact. Clearly, for realistic results, there has to be
reliable data and detailed knowledge of the ecology of the
species.

For population studies the simulated data can be treated
and analyzed as if it were real data, with the advantage
of having full knowledge of the population structure and
a handle on the mechanisms that yielded the dataset. For
example, data from only the last generation could be used
to make inferences about the evolutionary processes that
were acting on the population. The degree of deviation from
HW equilibrium can be calculated and used to estimate
parameters such as FST [10]. These results can then be

compared to the original experimental model to provide
insights about the dynamics of the system.

Kuri was designed to simulate microevolutionary phe-
nomena which can be detected through molecular markers
which are usually selectively neutral. Neutral markers have
the advantage that since they are not being selected for or
against, any observed fluctuations in allelic frequencies are
only due to population structure and environmental effects.

4. Concluding Remarks

Kuri can be used to simulate a wide range of biological
scenarios. It allows manipulation of the genomes, alleles, and
genotypes of different plant species and the interactions of
these populations with the ecosystem. Kuri’s database can be
used to store different genetic models of species, being these
based on real data of species or virtual organisms tailored
for educational purposes. Alongside the biological parame-
ters, the user can manipulate and/or create environmental
parameters based on field data (such as satellite imagery)
to study how these affect the genetic composition and size
of populations. The software meets theoretical expectations,
but it still has to be tested under realistic scenarios for which
real data is available and results can be compared. Due to the
lack of real data testing it is still unclear how detailed field
data and knowledge of the ecology of the species has to be
able to make valid inferences. Future work and user feedback
may assist in answering these questions.

The software is modular. It was designed so that it can
be modified and expanded to simulate other phenomena.
For example, in the current version all genes/alleles are neu-
tral, but it is straightforward to implement environmental
constrains associated to the genotypes in order to simulate
natural selection, or even simulate molecular evolution by
adding another module that allows handling each allele as a
DNA base pair. Kuri is open source and freely available from
the web address: http://www.allesys.com.br/kuri/.



Journal of Artificial Evolution and Applications 5

References

[1] D. N. Alstad, “Populus: simulations of population biology,”
2007, http://www.cbs.umn.edu/populus.

[2] P. A. S. Nuin and P. A. Otto, “A program for representing
and simulating population genetic phenomena,” Genetics and
Molecular Biology, vol. 23, no. 1, pp. 53–60, 2000.

[3] C. Gondro and J. C. M. Magalhães, “A simple genetic
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