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Combinatorial optimization is one of the most active
branches of operations research. The essence of a combina-
torial optimization problem is to find optimal solutions or
near optimal solutions from a finite set of feasible solutions.
In such problems, the size of feasible solution space usually
increases exponentially with regard to the increase in the size
of the input parameters. This issue, which has an acceptance
rate of less than 30%, compiles six exciting papers.

In the paper “Single Machine Scheduling and Due Date
Assignment with Past-Sequence-Dependent Setup Time and
Position-Dependent Processing Time,” by C.-L. Zhao et al.,
the authors study several objective functions including total
earliness, the weighted number of tardy jobs, and the cost
of due date assignment. They provide polynomial time
algorithms for all the considered problems. In the paper
“Scheduling Jobs and a Variable Maintenance on a Single
Machine with Common Due-Date Assignment,” by L. Wan,
the author derives some properties on an optimal solution
for the problem and proposes an optimal polynomial time
algorithm for a special case with identical jobs. In the
paper “Due-Window Assignment Scheduling with Variable
Job Processing Times,” by Y.-B. Wu and P. Ji, the authors
prove that the problem can be solved in polynomial time.
In the paper “Some Single-Machine Scheduling Problems
with Learning Effects and Two Competing Agents,” by H.
Li et al., the authors investigate three problems arising from
different combinations of the objectives of the two agents.
They provide a polynomial time algorithm for one problem
and two polynomial time algorithms for the other two

problems under certain agreeable conditions. In the paper
“An Order Insertion Scheduling Model of Logistics Service
Supply Chain Considering Capacity and Time Factors,” by
W. Liu et al., the authors analyze order similarity coefficient
and order insertion operation process and establish an order
insertion scheduling model of LSSC with service capacity
and time factors considerations. In the paper “Cooperative
Fuzzy Games Approach to Setting Target Levels of ECs in
Quality Function Deployment,” by Z. Yang et al., the authors
develop a cooperative game framework combined with fuzzy
set theory to determine the target levels of the engineering
characteristics in quality function deployment.

The papers published in this issue contain some interest-
ing, creative, and valuable results and ideas. We do believe
that all these papers will motivate further scientific research
in combinatorial optimization and related areas.

Dehua Xu
Dar-Li Yang

Ming Liu
Feng Chu

Imed Kacem

Hindawi Publishing Corporation
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Volume 2015, Article ID 628265, 1 page
http://dx.doi.org/10.1155/2015/628265
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We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine,
where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating
effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost
function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the
problem can be solved in polynomial time.

1. Introduction

In most scheduling studies, job processing times are treated
as constant numbers; however, in many practical situations,
job processing times are affected by the learning effects
and/or deteriorating (aging) effects. Learning effects and
deteriorating (aging) effects are important for production and
scheduling problems. For details on this line of the scheduling
problems with learning effects (deteriorating effects), the
reader is referred to a comprehensive survey by Biskup [1]
(Gawiejnowicz [2]). Rudek [3] considered single machine
scheduling problemswith position-dependent job processing
times (i.e., learning and aging effects). For the following
objectives, the makespan with release dates, the maximum
lateness, and the number of late jobs, they gave some results.
J.-B. Wang and M.-Z. Wang [4] and Sun et al. [5] consid-
ered flow shop scheduling problems with general position-
dependent learning effects. For some regular objective func-
tions, they proposed heuristics. Sun et al. [6] considered
flow shop scheduling problems with three special position-
dependent learning effects. For the total weighted completion
time minimization problem, they proposed heuristics. Lu et
al. [7] considered single machine scheduling problems with
learning effects and controllable processing times. For two

due date assignment methods, they presented a polynomial-
time optimization algorithm to minimize a multiobjective
cost function.

J.-B. Wang and M.-Z. Wang [8] considered common
due-window single machine scheduling with learning effects
and controllable processing times. For a mule-objective cost
function, they presented a polynomial-time optimization
algorithm. J.-B. Wang and M.-Z. Wang [9] considered single
machine scheduling problems with nonlinear deterioration.
They showed that the makespan minimization problem
can be solved in polynomial time. J.-B. Wang and M.-Z.
Wang [10] considered three-machine flow shop scheduling
with deteriorating jobs. For the makespan minimization
problem, they proposed a branch-and-bound algorithm
and two heuristic algorithms. X.-R Wang and J.-J. Wang
[11] considered single machine scheduling problems with
deteriorating jobs and convex resource dependent process-
ing times. Xu et al. [12] considered single machine group
scheduling with proportional linear deterioration and ready
times. For the makespan minimization problem, they gave
some results. Cheng et al. [13] considered a single machine
common due-window assignment scheduling problem with
deteriorating jobs. For a deteriorating maintenance activity,
they provided polynomial-time solutions for amultiobjective
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cost. Yang et al. [14] considered a single machine multiple
common due dates assignment resource allocation schedul-
ing problems with general position-dependent deterioration
effect. For a multiobjective cost, they proved that the prob-
lems can be solved in polynomial time, respectively. Liu
et al. [15] considered single-machine common due-window
assignment scheduling problemwith deteriorating jobs. If the
width of the common due-window is a given constant, they
proved a mule-objective function cost problem can be solved
in polynomial time. J.-B. Wang and C. Wang [16] and Wang
et al. [17] considered due-window assignment scheduling
problems with learning effects and deteriorating jobs at the
same time.

The recent paper Li et al. [18] addresses single machine
scheduling problemwith deteriorating jobs. For commondue
date assignment (CON) and common flow allowance (i.e., all
jobs have slack due date (SLK)) due date assignmentmethods,
they showed that a multiobjective minimization problem can
be solved in polynomial time, respectively. In this research,
we continue thework of Li et al. [18] but focus on the common
due-window assignment (CONW) scheduling problem (Yin
et al. [19]). Under the learning effect and deteriorating jobs
models, we prove that the CONW due-window assignment
scheduling is solvable in polynomial time, respectively.

2. Problem Formulation

The following notations will be used throughout the paper:

𝐽𝑗: Job 𝑗

𝐽: Set of jobs (i.e., 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛})

𝐶𝑗: Completion time of job 𝐽𝑗

𝑑1: Earliest due date

𝐷: Common due-window size

𝑑2: Latest due date = 𝑑1 + 𝐷

𝐸𝑗: Earliness of 𝐽𝑗 = max{0, 𝑑1 − 𝐶𝑗}

𝑇𝑗: Tardiness of 𝐽𝑗 = max{0, 𝐶𝑗 − 𝑑2}

𝐸: Set of earliest jobs = {𝐽𝑗 | 𝐶𝑗 < 𝑑1}

𝑇: Set of tardy jobs = {𝐽𝑗 | 𝐶𝑗 > 𝑑2}

𝐷: Set of on time jobs (i.e., 𝐷 = 𝐽 \ (𝐸 ∪ 𝑇))

𝑚: Number of set 𝐷 jobs (i.e., 𝑚 = |𝐷|)

𝛾𝑗: The penalty weight if 𝐽𝑗 is tardy (i.e., 𝐽𝑗 ∈ 𝑇)

𝐹(𝑑1, 𝐷, 𝜋) = 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗: The
total cost function, where 𝛼 > 0, 𝛽 > 0, and 𝜃 > 0 are
the unit due-window starting time, due-window size,
and earliness penalties, respectively.

Consider a nonpreemptive single machine setting. There
aren independent jobs 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛} available at zero and
preemption is not allowed. Let𝑃𝑗 denote the actual processing

time for job 𝐽𝑗. In this research, we consider the following
models.

Job Time-Dependent Deterioration Effect Model (See Li et al.
[18]). Consider

𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡, (1)

where 𝑎𝑗, 𝑏 > 0, 𝑡 are the basic (normal) processing time of 𝐽𝑗,
the deteriorating rate, and the starting time of 𝐽𝑗, respectively.

Job-Position-Dependent Learning Effect Model (See Biskup
[20]). Consider

𝑃𝑗 = 𝑎𝑗𝑟
𝑎
, (2)

where 𝑎𝑗, 𝑎 < 0, 𝑟 are the basic (normal) processing time of 𝐽𝑗,
the learning rate, and the position 𝐽𝑗 in a processing sequence,
respectively.

Our task of this paper is to determine the optimal earliest
due date 𝑑1, the common due-window size𝐷, and a schedule
𝜋 which minimizes the following objective function:

𝐹 (𝑑1, 𝐷, 𝜋) = 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑

𝐽𝑗∈𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑇

𝛾𝑗. (3)

Then, using the common three-field notation introduced by
Graham et al. [21], the corresponding scheduling problems
are denoted by

1 | 𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡 | 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑

𝐽𝑗∈𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑇

𝛾𝑗,

1 | 𝑃𝑗 = 𝑎𝑗𝑟
𝑎
| 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑

𝐽𝑗∈𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑇

𝛾𝑗.

(4)

3. Optimal Solutions

3.1. Job Time-Dependent Deterioration Effect Model

Lemma 1 (Li et al. [18]). For a given schedule 𝜋 = (𝐽[1], 𝐽[2],

. . . , 𝐽[𝑛]), if the starting time of the first job is 0, then 𝐶[𝑟] =

∑
𝑟
𝑗=1 𝑎[𝑗](1 + 𝑏)

𝑟−𝑗 and ∑
𝑛
𝑗=1 𝐶𝑗 = ∑

𝑛
𝑗=1 𝑎[𝑗]∑

𝑛−𝑗

𝑖=0 (1 + 𝑏)
𝑖.

Lemma 2. If 𝛼 > 𝛽, an optimal schedule exists in which the
due-window starts at time zero.

Proof. Suppose 𝛼 > 𝛽, and 𝑑1 > 0; we shift 𝑋 units of time
to the left. The change in the total cost is given by Δ𝑍 =

−𝛼𝑋 + 𝛽𝑋 − 𝜃𝑙𝑋, where 𝑙 denotes the number of early jobs.
Cleary,Δ𝑍 < 0.Therefore, a shift of 𝑑1 (until 𝑑1 = 0) can only
decrease the total cost.

Lemma 3. An optimal schedule exists in which the due-
window starting time (i.e., 𝑑1), and the due-window com-
pletion time (i.e., 𝑑2) coincide with job completion times,
respectively.

Proof. Suppose that there exists a schedule starting at time
zero and containing jobs at the 𝑘th and the (𝑘+𝑚)th positions
such that 𝐶𝑘 < 𝑑1 < 𝐶𝑘+1, 𝐶𝑘+𝑚 < 𝑑2 < 𝐶𝑘+𝑚+1.
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When we shift 𝑑2 to𝐶𝑘+𝑚, the change in the total cost
is given by −𝛽(𝑑2 − 𝐶𝑘+𝑚).

When we shift 𝑑1 to 𝐶𝑘, the change in the total cost is
given by (−𝛼 + 𝛽 + 𝑘𝜃)(𝑑1 − 𝐶𝑘).

When we shift 𝑑1 to 𝐶𝑘+1, the change in the total cost
is given by −(−𝛼 + 𝛽 + 𝑘𝜃)(𝐶𝑘+1 − 𝑑1).

Again, a shift of 𝑑1 to 𝐶𝑘 or to 𝐶𝑘+1 does not increase
the total cost.

Therefore, an optimal schedule exists such that both 𝑑1 and
𝑑2 coincide with job completion times.

Lemma 4. An optimal schedule exists in which the index of
the job completed at the due-window starting time is 𝑘 = ⌈(𝛽 −

𝛼)/𝜃⌉.

Proof. Using the classical small perturbation technique (see
J.-B. Wang and C. Wang [16] and J.-B. Wang andM.-Z. Wang
[8]), wemeasure the change in the total cost whenmoving 𝑑1.

We shift 𝑑1, 𝑋 units of time to the left, and the effect of
the total cost is

−𝛼𝑋 + 𝛽𝑋 − 𝜃 (𝑘 − 1)𝑋. (5)

We shift 𝑑1, 𝑋 units of time to the right, and the effect of the
total cost is

𝛼𝑋 − 𝛽𝑋 + 𝜃𝑘𝑋. (6)

Both expressions (5) and (6) are clearly nonnegative due to
the optimality of the original solution.

From −𝛼𝑋+𝛽𝑋−𝜃(𝑘−1)𝑋 ≥ 0 and 𝛼𝑋−𝛽𝑋+𝜃𝑘𝑋 ≥ 0

we have 𝑘 ≤ ((𝛽 − 𝛼)/𝜃) + 1 and 𝑘 ≥ (𝛽 − 𝛼)/𝜃. And from the
integrality of k, it follows that 𝑘 = ⌈(𝛽 − 𝛼)/𝜃⌉.

Lemma 5. For the problem 1 | 𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡 | 𝛼𝑑1 +

𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗, if the job sequence is 𝜋 =

(𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]) and𝑚 = |𝐷|, then the objective function can
be expressed as

𝐹 (𝑑1, 𝐷, 𝜋,𝑚) =

𝑘+𝑚

∑

𝑗=1

𝑤𝑗𝑎[𝑗] +

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗], (7)

where

𝑤𝑗 =

{{{{{{{{

{{{{{{{{

{

{(𝛼 + 𝑘𝜃) + 𝛽 [(1 + 𝑏)
𝑚

− 1]} (1 + 𝑏)
𝑘−𝑗

−𝜃

𝑘−𝑗

∑

𝑖=0

(1 + 𝑏)
𝑖
, 𝑗 = 1, 2, . . . , 𝑘;

𝛽 (1 + 𝑏)
𝑘+𝑚−𝑗

, 𝑗 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑚.

(8)

Proof. By Lemmas 1 and 3, we have

𝑑1 = 𝐶[𝑘] =

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

, (9)

𝐷 = 𝐶[𝑘+𝑚] − 𝐶[𝑘]

=

𝑘+𝑚

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

−

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

=

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

+

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

−

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

=

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

(1 + 𝑏)
𝑚

+

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

−

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

=

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

[(1 + 𝑏)
𝑚

− 1]

+

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

,

𝐹 (𝑑1, 𝐷, 𝜋,𝑚)

= 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑

𝐽𝑗∈𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑇

𝛾𝑗

= 𝛼𝐶[𝑘] + 𝛽
{

{

{

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

[(1 + 𝑏)
𝑚

− 1]

+

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

}

}

}

+ 𝜃

𝑘

∑

𝑗=1

(𝐶[𝑘] − 𝐶[𝑗]) + ∑

𝐽𝑗∈𝑇

𝛾[𝑗]

= (𝛼 + 𝑘𝜃) 𝐶[𝑘] − 𝜃

𝑘

∑

𝑗=1

𝐶[𝑗]

+ 𝛽

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

[(1 + 𝑏)
𝑚

− 1]

+ 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

+ ∑

𝐽𝑗∈𝑇

𝛾[𝑗]
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= (𝛼 + 𝑘𝜃)

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

+ 𝛽

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

[(1 + 𝑏)
𝑚

− 1]

− 𝜃

𝑘

∑

𝑗=1

𝑎[𝑗]

𝑘−𝑗

∑

𝑖=0

(1 + 𝑏)
𝑖
+ 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

+

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗]

=

𝑘

∑

𝑗=1

𝑎[𝑗] (1 + 𝑏)
𝑘−𝑗

{(𝛼 + 𝑘𝜃) + 𝛽 [(1 + 𝑏)
𝑚

− 1]}

− 𝜃

𝑘

∑

𝑗=1

𝑎[𝑗]

𝑘−𝑗

∑

𝑖=0

(1 + 𝑏)
𝑖
+ 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑘+𝑚−𝑗

+

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗]

=

𝑘+𝑚

∑

𝑗=1

𝑤𝑗𝑎[𝑗] +

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗].

(10)

Corollary 6. If 𝑚 = 𝑛 − 𝑘, then

𝐹 (𝑑1, 𝐷, 𝜋, 𝑛 − 𝑘) =

𝑛

∑

𝑗=1

𝑤𝑗𝑎[𝑗], (11)

where

𝑤𝑗 =

{{{{{{{{

{{{{{{{{

{

{(𝛼 + 𝑘𝜃) + 𝛽 [(1 + 𝑏)
𝑚

− 1]} (1 + 𝑏)
𝑘−𝑗

−𝜃

𝑘−𝑗

∑

𝑖=0

(1 + 𝑏)
𝑖
, 𝑗 = 1, 2, . . . , 𝑘

𝛽 (1 + 𝑏)
𝑘+𝑚−𝑗

, 𝑗 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛.

(12)

Equation (11) can be viewed as the scalar product of two
vectors, 𝑤𝑗 and 𝑎[𝑗], respectively, (𝑗 = 1, . . . , 𝑛). It is well
known (from Hardy et al. [22]) that (11) is minimized by
sorting the elements of the 𝑤𝑗 and 𝑎[𝑗] vectors in opposite
orders. This procedure can be done in 𝑂(𝑛 log 𝑛) time. We
refer to this rule as the HLP rule in the rest of the paper.

Theorem 7. If the number of𝐷 jobs is given, then the problem
1 | 𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡 | 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸

𝐸𝑗 + ∑𝐽𝑗∈𝑇
𝛾𝑗 can be

formulated as an assignment problem.

Proof. We define 𝑧𝑗𝑟 as a 0/1 variable such that 𝑧𝑗𝑟 = 1 if
job 𝐽𝑗 is scheduled in position 𝑟, and 𝑧𝑗𝑟 = 0, otherwise. We

can formulate the problem 1 | 𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡 | 𝛼𝑑1 + 𝛽𝐷 +

𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗 as the following assignment problem:

AP (𝑚) Min
𝑛

∑

𝑗=1

𝑛

∑

𝑟=1

𝐶
𝑚
𝑗𝑟𝑧𝑗𝑟

Subject to
𝑛

∑

𝑟=1

𝑧𝑗𝑟 = 1, 𝑗 = 1, 2, . . . , 𝑛

𝑛

∑

𝑗=1

𝑧𝑗𝑟 = 1, 𝑟 = 1, 2, . . . , 𝑛

𝑧𝑗𝑟 = 0 or 1, 𝑗, 𝑟 = 1, 2, . . . , 𝑛,

(13)

where

𝐶
𝑚
𝑗𝑟 =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑎𝑗 [ ((𝛼 + 𝑘𝜃) + 𝛽 ((1 + 𝑏)
𝑚

− 1)) (1 + 𝑏)
𝑘−𝑟

−𝜃

𝑘−𝑟

∑

𝑖=0

(1 + 𝑏)
𝑖
] , 𝑟 = 1, 2, . . . , 𝑘

𝑎𝑗 [𝛽 (1 + 𝑏)
𝑘+𝑚−𝑟

] , 𝑟 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑚

𝛾𝑗, 𝑟 = 𝑘 + 𝑚 + 1, . . . , 𝑛.

(14)

Therefore, based on the above analysis, we can obtain a
polynomial algorithm for the problem 1 | 𝑃𝑗 = 𝑎𝑗 + 𝑏𝑡 |

𝛼𝑑1 + 𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗.

Algorithm 8.
Step 0. By Lemma 4, calculate 𝑘 = ⌈(𝛽 − 𝛼)/𝜃⌉.

Step 1. For 𝑚 from 0 to 𝑛 − 𝑘 − 1, solve the above assignment
problem AP(𝑚) to obtain a local optimal schedule and the
total cost 𝐹(𝑚).

Step 2. For 𝑚 = 𝑛 − 𝑘, first calculate the positional weights
defined by (12) and assign the n jobs to the corresponding
positions according to the HLP rule and then use (11) to
evaluate the objective value 𝐹(𝑛 − 𝑘).

Step 3. The global optimal schedule is the one with the
minimum total cost given by min{𝐹(𝑚) | 0 ≤ 𝑚 ≤ 𝑛 − 𝑘}.

Based on the above analysis, we have the following result.

Theorem 9. The scheduling problem 1 | 𝑝𝑗 = 𝑎𝑗 + 𝑏𝑡 | 𝛼𝑑1 +

𝛽𝐷+𝜃∑𝐽𝑗∈𝐸
𝐸𝑗+∑𝐽𝑗∈𝑇

𝛾𝑗 can be solved byAlgorithm8 in𝑂(𝑛
4
)

time.

Proof. For a given m, our problem becomes identical to the
classical assignment problem and can be solved in𝑂(𝑛

3
) time.

Since 0 ≤ 𝑚 ≤ 𝑛 − 𝑘 ≤ 𝑛, the overall time requirement of
Algorithm 8 is 𝑂(𝑛

4
).
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Example 10. Consider the instance with

𝑛 = 5, 𝛼 = 2, 𝛽 = 4, 𝜃 = 0.5, 𝑏 = 0.3,

𝑎1 = 4, 𝑎2 = 3, 𝑎3 = 6, 𝑎4 = 9, 𝑎5 = 11,

𝛾1 = 6, 𝛾2 = 4, 𝛾3 = 5, 𝛾4 = 3, 𝛾5 = 30.

(15)

Now we apply Algorithm 8 to solve Example 10.

Step 0.Calculate the index 𝑘 = ⌈(𝛽−𝛼)/𝜃⌉ = ⌈(4−2)/0.5⌉ = 4.

Step 1. When 𝑚 = 0, the 𝐶
0
𝑗𝑟 values can be calculated by (14)

and given below:

𝐶
0
𝑗𝑟 = (

22.7780 19.0600 16.2000 14 6

17.0835 14.2950 12.1500 10.5 4

34.1670 28.5900 24.3000 21 5

51.2505 42.8850 36.4500 31.5 3

62.6395 52.4150 44.5500 38.5 30

). (16)

The optimal job sequence is (𝐽2, 𝐽1, 𝐽3, 𝐽5, 𝐽4).
The optimal objective value is 𝐹(0) = 101.9435.

Step 2.When 𝑚 = 1, the 𝑤𝑗 values can be calculated by (12):

𝑤1 = 8.3309, 𝑤2 = 6.7930, 𝑤3 = 5.6100,

𝑤4 = 4.7000, 𝑤5 = 4.0000.
(17)

The optimal job sequence is (𝐽2, 𝐽1, 𝐽3, 𝐽4, 𝐽5).
The optimal objective value is 𝐹(1) = 172.1247.

Step 3. The global optimal objective is min{𝐹(0), 𝐹(1)} =

101.9435. The global optimal schedule is (𝐽2, 𝐽1, 𝐽3, 𝐽5, 𝐽4).

3.2. Job-Position-Dependent Learning Effect Model. By the
same way as in the previous subsection, we consider the
following scheduling problem: 1 | 𝑃𝑗 = 𝑎𝑗𝑟

𝑎
| 𝛼𝑑1 + 𝛽𝐷 +

𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗.

Lemma 11. For a given schedule 𝜋 = (𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]), if the
starting time of the first job is 0, then 𝐶[𝑟] = ∑

𝑟
𝑗=1 𝑎[𝑗]𝑗

𝑎 and
∑
𝑛
𝑗=1 𝐶𝑗 = ∑

𝑛
𝑗=1 𝑎[𝑗](𝑛 + 1 − 𝑗)𝑗

𝑎.

Lemma 12. For the problem 1 | 𝑝𝑗 = 𝑎𝑗𝑟
𝑎

| 𝛼𝑑1 + 𝛽𝐷 +

𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗, if the job sequence is 𝜋 = (𝐽[1], 𝐽[2],

. . . , 𝐽[𝑛]) and 𝑚 = |𝐷|, then the objective function can be
expressed as

𝐹 (𝑑1, 𝐷, 𝜋,𝑚) =

𝑘+𝑚

∑

𝑗=1

𝑤𝑗𝑎[𝑗] +

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗], (18)

where 𝑤𝑗 = {
(𝛼−𝜃+𝜃𝑗)𝑗𝑎 ,

𝛽𝑗𝑎
𝑗 = 1,2,...,𝑘;

𝑗 = 𝑘+1,𝑘+2,...,𝑘+𝑚.

Proof. By Lemmas 3 and 11, we have

𝐹 (𝑑,𝐷, 𝜋,𝑚)

= 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑

𝐽𝑗∈𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑇

𝛾𝑗

= 𝛼𝐶[𝑘] + 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑛−𝑗

+ 𝜃

𝑘

∑

𝑗=1

(𝐶[𝑘] − 𝐶[𝑗]) + ∑

𝐽𝑗∈𝑇

𝛾[𝑗]

= (𝛼 + 𝑘𝜃) 𝐶[𝑘] − 𝜃

𝑘

∑

𝑗=1

𝐶[𝑗] + 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗] (1 + 𝑏)
𝑛−𝑗

+ ∑

𝐽𝑗∈𝑇

𝛾[𝑗]

= (𝛼 + 𝑘𝜃)

𝑘

∑

𝑗=1

𝑎[𝑗]𝑗
𝑎
− 𝜃

𝑘

∑

𝑗=1

𝑎[𝑗] (𝑘 + 1 − 𝑗) 𝑗
𝑎

+ 𝛽

𝑘+𝑚

∑

𝑗=𝑘+1

𝑎[𝑗]𝑗
𝑎
+

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗]

=

𝑘+𝑚

∑

𝑗=1

𝑤𝑗𝑎[𝑗] +

𝑛

∑

𝑗=𝑘+𝑚+1

𝛾[𝑗].

(19)

Corollary 13. If 𝑚 = 𝑛 − 𝑘, then

𝐹 (𝑑1, 𝐷, 𝜋,𝑚) =

𝑛

∑

𝑗=1

𝑤𝑗𝑎[𝑗], (20)

where 𝑤𝑗 = {
(𝛼−𝜃+𝜃𝑗)𝑗𝑎 ,

𝛽𝑗𝑎
𝑗 = 1,2,...,𝑘;

𝑗 = 𝑘+1,𝑘+2,...,𝑘+𝑚.

Equation (20) can be viewed as the scalar product of two
vectors, 𝑤𝑗 and 𝑎[𝑗] vectors, respectively. The procedure can
be done in 𝑂(𝑛 log 𝑛) time by the HLP rule.

Theorem 14. If we fix the number of 𝐷 jobs, then the problem
1 | 𝑝𝑗 = 𝑎𝑗𝑟

𝑎
| 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸

𝐸𝑗 + ∑𝐽𝑗∈𝑇
𝛾𝑗 can be

formulated as an assignment problem.

Proof. It is similar to the proof of Theorem 7.Again, we can
define

𝐶
𝑚

𝑗𝑟 =

{{

{{

{

(𝛼 − 𝜃 − 𝜃𝑟) 𝑟
𝑎
𝑎𝑗, 𝑟 = 1, 2, . . . , 𝑘

𝛽𝑟
𝑎
𝑎𝑗, 𝑟 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑚

𝛾𝑗, 𝑟 = 𝑘 + 𝑚 + 1, . . . , 𝑛,

(21)

as the cost of assigning job 𝐽𝑗 (𝑗 = 1, 2, . . . , 𝑛) to the 𝑟th
(𝑟 = 1, 2, . . . , 𝑛) position in the schedule. Then the problem
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1 | 𝑝𝑗 = 𝑎𝑗𝑟
𝑎

| 𝛼𝑑1 + 𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗 can be
formulated as the following assignment problem:

AP (𝑚) Min
𝑛

∑

𝑗=1

𝑛

∑

𝑟=1

𝐶
𝑚

𝑗𝑟𝑧𝑗𝑟

Subject to
𝑛

∑

𝑟=1

𝑧𝑗𝑟 = 1, 𝑗 = 1, 2, . . . , 𝑛

𝑛

∑

𝑗=1

𝑧𝑗𝑟 = 1, 𝑟 = 1, 2, . . . , 𝑛

𝑧𝑗𝑟 = 0 or 1, 𝑗, 𝑟 = 1, 2, . . . , 𝑛.

(22)

Similar to Section 3.1, we have the following theorem.

Theorem 15. The scheduling problem 1 | 𝑝𝑗 = 𝑎𝑗𝑟
𝑎

| 𝛼𝑑1 +

𝛽𝐷 + 𝜃∑𝐽𝑗∈𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑇

𝛾𝑗 can be solved in 𝑂(𝑛
4
) time.

4. Conclusions

We have considered the single machine due-window assign-
ment scheduling problem with variable job processing times.
The objective is to minimize a linear combination of ear-
liness, tardiness, the window location, window size, and
weighted number of tardy jobs. We proposed a polynomial-
time algorithm, respectively, for the learning effect and the
deteriorating jobs. Obviously, if 𝑎 > 0 (i.e., deterioration or
aging effect) and 𝑏 < 0 (i.e., shortening processing times),
then the results of this paper still hold. In future research,
we plan to explore more realistic settings, such as group
technology scheduling problems, flexible flow shop schedul-
ing problems, and unrelated parallel machines scheduling
problems, or optimize other performance measures with
variable job processing time.
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Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time
scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient
and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and
time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and
maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness
of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase
of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to
be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of
the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is,
the bigger the possible inserting order’s volume will be. Moreover, compared to increasing the completion time delay coefficient,
improving the normal operation capacity of mass service process is more useful.

1. Introduction

Faced with presently growing demand for customized logis-
tics services, many logistics enterprises expand their business
beyond mass service and change logistics service mode to
provide customized service. Specifically, these enterprises
attempt to provide mass customization logistics services
(MCLS) instead of mass logistics services [1]. In order to
meet customized service requirements and achieve necessary
mass service capabilities in the MCLS environment, logistics
enterprises usually organize unions and integration [2]. And
the competitiveness of the LSSC depends on the ability to
offer mass customization service with the cost as low as
possible through reasonable scheduling [3].

In LSSC scheduling, time scheduling is quite important,
and it should balance customer demand and logistics service
capacity. Compared with production supply chain, service
cannot be reserved or buffered in the form of tangible prod-
ucts. Therefore, operation of service supply chain is much
more easily influenced by outside environment, especially

when there is an order insertion. Order insertion refers to
the situation where new orders arrive and are required to be
inserted into a scheduled order sequence when production
capacity is fixed and resources are limited, which is common
in the practice of service industry [4]. The insertion of
new jobs into an existent schedule, as well as most of
the other types of disruptions, may require the total or
partial rescheduling of previously allocated and new jobs.
For example, as one of the biggest express companies in
China, Yuantong Express Company always faces the problem
of insertion scheduling. Normally, at twelve o’clock at noon
every day, Yuantong Express will collect all the packages in
the morning and forward them to customers at transit centre
together. However, some emergent orders happen occasion-
ally, so Yuantong Express will consider the factors of time
and operation cost, judge whether it could carry out insertion
scheduling, and then make a new scheduling planning. Due
to the abruptness and urgency of order insertion, it will be
more difficult to make time schedule in LSSC considering
logistics service capacity limitation, time requirements, and
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increased cost. Thus, how to arrange service capacity and
operation time reasonably becomes a realistic problem every
LSI faces.

While order insertion has been studied by many scholars
in production supply chain scheduling so far, it is still a
relatively new issue in service supply chain. Though some
scholars have become interested in service supply chain
scheduling problem recently, for example, [3, 5, 6], they con-
sider more normal scheduling situation than order insertion.
Obviously, time scheduling with order insertion is much
more complex and thus worthwhile to research.

Based on the literature review and specific practical
observation about logistics enterprises, it is found that under
MCLS environment, LSI needs to focus on solving three
problems during time scheduling within order insertion,
which are the lack of existed research and thus the focus of
paper.

First, due to the abruptness and urgency of order inser-
tion, LSI will change the original order schedule for a
rescheduled one.Therefore, it is necessary to discuss whether
it is feasible to insert new orders with full consideration of
original time schedule.

Second, if the new order to be inserted is similar to
original orders, then how could the LSI make the best use
of this similarity and reschedule the time under the MCLS
environment. Factors such as logistics service capacity, time
requirement from customers, and operation cost caused by
order insertion have to be dealt with properly in the model.

Third, it is of great significance for the LSI managers
to figure out what factors that do have influence on order-
inserting decisions and what are the specific influence rules
in practical scheduling process. With the help of these rules,
LSI could deal with order insertion problem better.

These problems mentioned above would be answered in
this paper. Based on the research of Liu et al. [3] and Liu
et al. [6], this paper has further discussed order similarity
coefficient and the order insertion process in LSSC, which
contributes to two essential constraints. Furthermore, with
full consideration of both capacity and time two factors, an
order insertion scheduling model of LSSC has been estab-
lished, aiming tominimize the average unit volume operation
cost of the LSI and maximize the average satisfaction degree
of FLSPs. All constraints in our model are different from
those in previous researches. Under these conditions, some
interesting findings are obtained. First, whether the new
order could be inserted or not depends on its volume that will
further affect supply chain comprehensive performance. In
particular, supply chain will get the best performance when
the inserted order’s volume is equal to the surplus of the
normal operation capacity of mass service process. Besides,
time requirement from customers will also influence supply
chain comprehensive performance, and some allowable delay
in completion time appropriately will contribute to better
performance. What is more, compared to increasing com-
pletion time delay coefficient, improving normal operation
capacity of mass service process is more useful in increasing
the upper limit of possible inserting order volume.Therefore,
choosing to increase normal operation capacity of mass

service process is a prior strategywhen LSI needs to solve new
order insertion problem.

The rest of the paper is organized as follows. Section 2
systematically reviews the existing researches of order inser-
tion in supply chain scheduling. In Section 3, the problem
and basic assumptions are described in detail and notations
used in model building are listed specifically. Section 4 gives
an order insertion scheduling model of LSSC considering
capacity and time factors. In Section 5, the model solution is
calculated within genetic algorithm. In Section 6, numerical
examples are given to explore the influence of parameters
related to new order on the time scheduling performance.
Section 7 is a concluding section.

2. Literature Review

Our research is mainly concerned about the order insertion
scheduling of LSSC under the environment of MCLC. Thus,
the literature review is mainly related to MC and order inser-
tion scheduling. Our research aims will be proposed after
summarizing the literature development and its deficiencies.

2.1. Researches on MC and Scheduling in LSSC. Since Pine
[7] proposed that mass customization mode would become
the new frontier in business competition in 1993, MC mode
has increasingly become the mainstream mode of operation
after nearly 20 years of development and application. Due
to its significant improvement on operational performance,
mass customization has been extensively studied and applied
in the field of production supply chain. So many scholars
conducted monographic studies. Fogliatto et al. [8] reviewed
the literature on MC production in detail since the 1980s.
From the view of the current domestic and international
research progress, researches on MC were mainly developed
within the MC production mode in manufacturing industry,
including MC mode and its product development; see, for
example, [9], production planning and control technology in
MC; see, for example, [10], cost study ofMC; see, for example,
[11], research on the factors and conditions that influenceMC;
see, for example, [12].

The studies on the supply chain scheduling with the mass
customization production mode was a new upsurge in recent
years. Operation scheduling under MC environment is more
dynamic and of more complexity. Most of the researches
on supply chain scheduling have been focusing on the
manufacturing industry and have achieved further results. In
2003, Hall and Potts [13] published a paper named “Supply
chain scheduling: batching and delivery,” which is an earlier
systematical research on the supply chain scheduling model.
Many earlier studies on supply chain scheduling pay attention
to the job shop scheduling within a single enterprise, for
example, [14]. And they are mainly concerned about the
arrangement of processing procedures and order operation
sequence. Some scholars also are concerned about the coordi-
nation of assembly system in manufacturing enterprise; see,
for example, [15]. However, the studies on the supply chain
scheduling with the mass customization production mode
was a new upsurge in recent years; see, for example, [16].
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Many scholars have carried out targeted researches on
the supply chain scheduling. Cost is the primary factor
considered in many above researches; see, for example,
[17]. And most of these researches assume that the order
completion time required by customers or the delivery time
required by suppliers was fixed. But as an important index
reflecting supply chain agility, customers’ time requirements
might change in a lot of cases [18, 19] or the operation time
requirements to LSPs are not with strict limitation but allow
a certain amount of variation; see, for example, [20]. Thus, it
is necessary to consider the influence of service completing
time ahead of schedule or delay caused by customers or
LSPs on the scheduling results [21]. Besides cost objective,
punctual delivery of service order and FLSP’s satisfaction also
have a direct influence on customer satisfaction. Therefore,
it is necessary to consider the influence of the different
importance degree of different objective functions on the
supply chain performance. However, the current literature
has not addressed this issue.

Although now the research on supply chain scheduling
under MC environment becomes more and more complete,
the one on service supply chain field is still significantly defi-
cient. Similar to the manufacturing supply chain, researches
on service supply chain are mainly focusing on the service
process scheduling; see, for example, [22] and the order
assignment scheduling; see, for example, [2].Themost related
researches to this paper are Liu et al. [3] and Liu et al. [6],
in which time scheduling problem in LSSC is discussed.
But they only focused on the scheduling of a decided set
of orders without taking order insertion situation and the
influence of capacity support on time scheduling result into
consideration. Thus, in general, research on time scheduling
is still far from sufficient. It is necessary to study the time
scheduling problem in service supply chain field (especially
in LSSC field).

2.2. Researches on Order Insertion Scheduling of Supply Chain.
Order insertion is a special and important content in supply
chain scheduling research. In production supply chain field,
order insertion problem has gained much attention. Order
insertion refers to inserting a new arrival order into a
scheduled order sequence on the premise that the production
capacity has been allocated. Sometimes the new inserted
order will replace original ones and form a new order
sequence. Therefore, previous order insertion scheduling
researches mainly focused on two research emphasis. One
is the order insertion method. Since order insertion process
may break original production schedule, it may cause other
original orders to be delayed. Thus, it is necessary and useful
to explore reasonable order insertion methods. At present,
common method of inserting a new order includes “right
shift,” “insertion in the end,” and “total rescheduling.” Some
researches combined order insertion problem with other
disturbance factors such as machine breakdown and boiled
down. Another focus is the problem to decide the priority of
inserting order.

Compared to that in make-to-stock production mode,
order insertion problem in make-to-order mode has gained

some attention as well. To find out the influencing factors
of order insertion decision is very important to build order
insertion models. Some scholars explored these influential
factors under different situations, such as time, cost, schedul-
ing efficiency, and scheduling stability. For example, in order
insertion model, time constraint is often regarded as an
important considering factor and decreasing time delay is
always regarded as a crucial scheduling goal. Duron et al. [23]
used operation time and lead time to characterize different
original orders and assumed that new order insertion opera-
tion may cause delay in original orders’ delivery. Duron et al.
[24] tried to reduce original order delay caused by new order
insertion operation through a real-time approach. Besides,
many scholars regarded minimizing supply chain cost as
a frequently used objective in order insertion model; see,
for example, [25]. Gomes et al. [26] studied order insertion
problem in make-to-order industries. They took scheduling
efficiency and stability index as measures of the influence of
rescheduling process on original schedule and introduced a
reactive scheduling algorithm to update scheduling table.

As can be seen from the above review of the literatures,
the existing researches have three deficiencies. First, in pro-
duction supply chain, research on order insertion is mainly
focused on the priority algorithm of inserting orders, which
aim at finding excellent algorithm to improve optimizing
efficiency. Moreover, many of the literatures assume that
supply chain capacity can afford the new order insertion
requirement and other original orders’ satisfaction degree is
not affected, but real situations are not the same. Second,
new inserting order has its own features both in structure
and required operations. The existing researches do not
consider the factors that whether the new inserting order
can be operated together with original orders considering
these feathers. Meanwhile, it is not be discussed whether
the FLSP’s capacity can afford inserting operation. Third, in
the existing researches on MC service supply chain, order
insertion scheduling research considering time factors is rare.
Thus, based on these three deficiencies, this paper will fully
consider the similarity between original orders and the new
inserting one as well as the influence of service capacity
of supply chain on order insertion decision. In the MC
service environment, this paper will deeply explore decision
problem that whether a new arrival order can be inserted into
original orders to be rescheduled. Furthermore, some useful
references are offered for better study on order insertion
issue.

3. Problem Description and
Model Assumptions

In this section, the problem and basic assumptions are
described in detail. Notations used in model building are
listed as well. In Section 3.1, both the problems involved
in the model and the decision process of order insertion
are described. In Section 3.2, important assumptions in our
model are listed specifically. In Section 3.3, related notions
defined in this paper are provided in detail as well as the
scheduling logic in our model.
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Figure 1: Customer orders’ operation processes schematic diagram of general LSSC.

3.1. Problem Description. In a two-echelon LSSC with one
LSI and many FLSPs, LSI accepts customers’ service orders
and hands them to multiple FLSPs to operate. And LSI
faces multiple customer service orders at the same time
and each logistics service order consists of multiple service
processes, which could be divided into two types, that is,
personalized service process and large-scale service process,
where whether to integrate the large-scale service process of
customer 𝑖 and customer 𝑗 (𝑗 ̸= 𝑖) to be operated together
or not can be chosen. These two kinds of service processes
are called “mass service process” and “customized service
process,” respectively, in this paper.

Since customer orders arrive in sequence, after the
scheduling process of an original set of order has been
finished, new order may occur to be inserted into schedule,
including urgent order and order which asked to be operated
first by customers. At this time, LSI needs to first decide
whether this new arrival order could be inserted while
synthetically considering the characteristic of new orders and
FLSPs’ capacity. Furthermore, scheduling decisionmodel and
method of order insertion problem should be thought over by
LSI.

First, a specific example is used to illustrate this schedul-
ing problem. See Figure 1; there are three original customer
orders (order A, order B, and order C) whose partial service
processes can be operated together in mass mode due to
the similarity in their service content. Service processes after
CODP will be operated in customized mode, respectively.
Upon arrival of new customer order D, LSI needs to decide
whether to insert this new order based on synthetically
consideration of this new order’s and original orders’ char-
acteristic as well as the FLSPs’ operation capacity. For the
convenience of study, it is necessary to simplify the process
as shown in Figure 2. It is assumed that mass process is
operated by FLSP 1 and the customized process of the 𝑗th
customer order is operated by the 𝑗th FLSP of customized

stage, respectively.TheFLSP 1 completes themass process and
it has capacity limit. Namely, in a normal completion time𝑇1,
FLSP 1 can finish an order whose volume is 𝑁. If the FLSP
is required to operate a task whose volume is more than 𝑁,
then order setup time increases or capacity reorganization is
needed to be carried out. We assume that there is no capacity
limit for the 𝑗th FLSP (in this example 𝑗 = 2, 3, 4, 5) because
of customization service.

One thing needs to be noted. Mass customization service
could be normally divided into two stages: mass service
stage and customization service stage. For the mass service
stage, multiple orders are integrated and operated together,
so it is necessary to consider the factors of time, operation
cost, and service process for all the multiple orders. For the
customization service stage, each order is finished by cus-
tomization process; there is no relationship among multiple
orders. Obviously, order insertion scheduling is an activity
that new orders are required to be inserted into a scheduled
order sequence. Thus insertion scheduling always be carried
out in mass service stage but not happens in customization
service stage.

Because the new inserted order is unpredictable, whether
it can be inserted into original schedule should be considered.
Therefore, the judging criteria are proposed in the Figure 3.

Judging criterion 1 is as follows: whether the mass service
process of the new arrival order can be operated together with
that of the existing orders; specifically, whether similarity
between the mass process of new arrival order and the
original ones exists. If the answer is positive, then turn to
judging criteria two.

Judging criterion 2 is as follows: whether the order inser-
tion operated is feasible in terms of time requirement and
economic consideration, namely, use the time scheduling
model proposed in this paper to carry through model
judgment. If this model has solution, then the order insertion
decision is feasible by the model judgment and FLSPs can
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Figure 2: Customer orders’ operation processes schematic diagram of LSSC which is simplified.
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Figure 3: Determining process of new order’s insertion decision.
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carry on order insertion operation according to scheduling
results. If this model has no solution, then this new order
cannot be inserted into the original schedule. For example,
it may not meet time requirement or profit requirement.

In this paper, two judging criteria are proposed in order to
judge whether a new order could be inserted into the original
schedule or not. If it is impossible to insert new order, a
completely new scheduling plan should be put out.

The model parameters and variables are summarized in
Table 1.

3.2. Model Assumptions. In order to build our model conve-
niently, some important assumptions are proposed as follows.

Assumption 1. Customer orders arrive at different time.
Original orders arrive first and the new inserted order
arrives later. Before arrival of new order, original orders have
been scheduled. FLSPs have set their normal operation time
and necessary capacity plan for each process according to
schedule table. The new arrived order needs to go through
two judging criteria mentioned above, but in this paper, we
only focus on the second judging criterion and assume that
the new order have passed the first judging criteria. That
means it is assumed that the new inserted order could be
scheduled with original orders together. If new arrival order
is inserted into the original ones to be operated together, the
normal operation time of original orders may be compressed
or delayed.

Assumption 2. In our model, we assume that there is only
one new arrived order that needs to be inserted and do not
consider multiorder insertion problem. If the new order is
able to be inserted, then in the rescheduling process, we view
all the orders to have the same priority, since all the orders
are operated together but not operated one by one in themass
process.

Assumption 3. If order is delayed, LSIs will be punished by
customer; while if the order is finished in advance, they will
not. Within the endurable time of customer, the unit time
punish cost is 𝐶delay

𝑗 . If the actual completion time is 𝑇𝑗, then
the punish cost is 𝐶

delay
𝑗 [𝑇𝑗 − 𝑇

exp
𝑗 , 0]

+. If the time delay is
beyond customer’s durable time, then customer order cannot
continue being operated and supply chain collapses.

Assumption 4. Each provider can compress or delay their
operation time through increasing input capacity, such as
increasing vehicle or lengthening working time in order
to meet customer’s time requirement. Correspondingly, LSI
needs to pay extra cost for capacity input increase. Extra cost
for unit time compression or delay inmass process is𝐶ext

1 and
that in customized process is 𝐶ext

2𝑗 .

Assumption 5. In mass service process, the case may occur
that service capacity is insufficient due to FLSP’s capacity
limitation. But in customized service process, since each
service order is operated by a specialized provider, service
capacity is assumed to be always sufficient.

Assumption 6. Influence of new inserted order on CODP is
not considered in this paper; that is, the CODP is assumed
unchanged.

3.3. Preparation for Model Building

3.3.1. Order Similarity Coefficient. Similarity between orig-
inal orders and new inserted order must be taken into
consideration when dealing with order insertion problem.
In this paper, 𝜆 is used todenote order similarity coefficient.
Analysis on order similarity is a crucial step to consider order
insertion decision. In production supply chain, clustering
analysis on different orders is often carried out according to
product’s modular construction. But in service supply chain,
different service orders have many differences and it is hard
to choose a modular measure index like tangible products.
Therefore, this paper will focus on the analysis of service
order similarity coefficient.

Take the research findings of order similarity of tangible
product for reference; see [27–30]; and taking service product
features into consideration, a service order similarity coef-
ficient is defined as a product of three indexes, which are
customer demand similarity 𝜆1 (namely, time requirement
similarity coefficient), service procedure similarity coefficient
𝜆2 (such as service standard similarity and service process
similarity), and customer service product similarity coeffi-
cient 𝜆3 (such as function similarity and structure similarity
of service product).The detailed calculation method for each
kind of similarity coefficient will be introduced as follows.

(1) Customer Demand Similarity Coefficient 𝜆1. In the supply
chain time scheduling, time requirement is the most impor-
tant customer requirement. In this paper, time requirements
similarities of different orders are used to denote customer
demand similarity coefficient. The smaller the completion
time requirement gap between original orders and new
inserted order is, the more similar they are. And the average
completion time of all the original orders is regarded as
another benchmark. The closer the completion time require-
ment of new inserted order is, the bigger the similarity is.
Detailed calculation method is shown in

𝜆1 =

{{{{{{

{{{{{{

{

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

𝑇
exp
𝐽0+1

, when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 ≤ 𝑇

exp
𝐽0+1

𝑇
exp
𝐽0+1

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

, when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 > 𝑇

exp
𝐽0+1

.

(1)

(2) Service Procedure Similarity Coefficient 𝜆2. There are
many differences for service procedure of different orders.
Service procedure similarity between original orders and
new inserted order has significant influence on the feasibility
of order-inserting operation when facing order insertion
decision. Generally speaking, similarity of service procedure
consists of three parts. First is service standard similarity,
such as service quality standard and standard for service staff.
Second is service stage similarity, for example, whether there
are some similar service stages between original orders and
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Table 1: Notations for the model.

Notations Description

𝐶1
The normal service cost per unit time per unit quantity of the FLSP in mass process in offering mass operation; this cost is
the normal cost without time compression or delay in the operation when operated according to original schedule

𝐶
ext
1

The extra service cost per unit time per unit quantity of the FLSP in mass process in offering mass operation; this cost is
the extra cost due to inserting new order and rescheduling which caused extra time compression or delay in completion
orders

𝐶2𝑗
The normal service cost per unit time per unit quantity in offering customized operation for the 𝑗th customer order; this
cost is the normal cost without time compression or delay in the operation when operated according to original schedule

𝐶
ext
2𝑗

The extra service cost per unit time per unit quantity of the FLSP in offering customized operation for the 𝑗th customer
order; this cost is the extra cost due to inserting new order and rescheduling which caused extra time compression or
delay in completion orders

𝐶
delay
𝑗

The penalty cost per unit time per unit quantity of the 𝑗th customer order as the order completion time is delayed;
𝑗 = 1, 2, . . . , 𝐽0, 𝐽0 + 1

𝐹 The new order’s price for per unit time per unit quantity offered by new order’s customer

𝑘
Since mass process has capacity limit, new order volume cannot increase infinitely; the new order volume is set to be no
more than 𝑘 times of the FLSP’s normal upper limit capacity in mass service stage; 𝑘 > 0

𝑁

The upper limit of FLSP’s capacity in mass process, which is the upper limit of FLSP’s capacity after scheduling according
to original orders (due to real limitations, this upper limit may just be the sum volume of original orders or may be larger
than the sum volume; if FLSP operates within this limit volume, operation time will not increase)

𝑁𝑗 Volume of the 𝑗th order; 𝑗 = 1, 2, . . . , 𝐽0, 𝐽0 + 1

𝑁𝑗0+1 Volume of the new inserted order, where subscript 𝐽0 + 1 characterizes the new inserted order, the same below

𝑁
max
𝑗0+1

Themaximum of new inserted order’s volume; in our numerical example, there are three original orders and one new
inserted order; thus,𝑁max

𝑗+1 can be replaced by𝑁
max
4

𝑆quantity,1 Service quantity satisfaction (capacity) degree of the mass service provider
𝑆time,𝑖 The 𝑖th FLSP’s service time satisfaction degree, 𝑖 = 1, 2𝑗; 𝑗 = 1, 2, . . . , 𝐽0 + 1

𝑆
0
quantity,1 Initial value of service quantity (capacity) satisfaction degree of the mass service provider

𝑆1 The satisfaction degree of the mass process provider
𝑆
𝐿
1 The lower limit of the satisfaction degree of the mass process provider

𝑆2𝑗 The satisfaction degree of the customized process of the 𝑗th customer order; 𝑗 = 1, 2, . . . , 𝐽0 + 1

𝑆
𝐿
2𝑗 The lower limit of the satisfaction degree of the customized process of the 𝑗th customer order; 𝑗 = 1, 2, . . . , 𝐽0 + 1

𝑆𝑖 Satisfaction degree of the 𝑖th provider, 𝑖 = 1, 2; 𝑗 = 1, 2, . . . , 𝐽0 + 1

𝑇1
The normal operation time of original orders before new order’s arrival in mass process; this normal operation time is
generated by original order’s scheduling result and is input parameter in numerical analysis

𝑇2𝑗
The normal operation time of the 𝑗th original order before new order arrival in customized process. 𝑗 = 1, 2, 3, . . . , 𝐽0, the
same below

𝑇
exp
𝑗 Completion time requirement of the 𝑗th customer order asked by customers; 𝑗 = 1, 2, . . . , 𝐽0, 𝐽0 + 1

𝑇𝑗 Actual completion time of the 𝑗th customer order; 𝑗 = 1, 2, . . . , 𝐽0, 𝐽0 + 1

𝑇
ext
1 Extra operation time of the provider in mass service process

𝑇
ext
2𝑗 Extra operation time of the 𝑗th customer order in customized process

𝑤1 The weight of objective function 𝑍1 in 𝑍

𝑤2 The weight of objective function 𝑍2 in 𝑍

𝑍1 The total cost of LSI
𝑍2 The average satisfaction of all processes in LSSC
𝑍

min
1 Theminimum of 𝑍1 when not considering the objective functions 𝑍2

𝑍 The objective function synthesized by 𝑍1 and 𝑍2, which is also called the comprehensive performance of LSSC
𝑍
∗ The optimal value of 𝑍

𝜆 Similarity coefficient of new inserted order and original orders



8 The Scientific World Journal

Table 1: Continued.

Notations Description
𝜆1 Time requirement similarity coefficient of new inserted order and original orders
𝜆2 Service procedure similarity coefficient of new inserted order and original orders
𝜆3 Customer service product similarity coefficient of new inserted order and original orders
𝛽𝑗 The delay coefficient of the order completion time permitted by the 𝑗th customer for its order
Δpro Profit increase resulted by new inserted order
Note: 𝑇ext1 , 𝑇ext2𝑗 are decision variables.

new inserted order.The third is service process similarity. For
example, if original orders have load or unloadprocess but the
new inserted order does not, then they are relatively different
and the service step similarity coefficient is relatively small.

(3) Customer Service Product Similarity 𝜆3. It mainly refers
to function and structure similarity of service product. For
example, if operation for original orders and new inserted
order are both transportation services for household chem-
icals, then they are of much similarity due to belonging to the
same category. If original orders are transportation for steel
and new inserted order is for cotton, obviously, they have less
similarity.

Note that, since service procedure similarity coefficient𝜆2
and customer service product similarity 𝜆3 are both difficult
to be quantized. Therefore, values of 𝜆2 and 𝜆3 can be
obtained by questionnaire or based on LSI’s experience.Their
value ranges from 0 to 1. Take the previous researches for
[29, 30], the similarity coefficient is denoted as 𝜆 = 𝜆1𝜆2𝜆3.
Thus, the order similarity coefficient can be shown as

𝜆 = 𝜆1𝜆2𝜆3

=

{{{{{{

{{{{{{

{

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

𝑇
exp
𝐽0+1

𝜆2𝜆3, when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 ≤ 𝑇

exp
𝐽0+1

𝑇
exp
𝐽0+1

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

𝜆2𝜆3, when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 > 𝑇

exp
𝐽0+1

.

(2)

3.3.2. Preparation Time for New Order. Different volume of
new inserted order will make different influence on supply
chain scheduling result. Obviously, the more the volume
is, the more the operation stress of supply chain system
will be. Along with the increase of new inserted order’s
volume, resource that needed to be prepared will increase.
For example, FLSPs need to prepare more transportation
vehicles orwarehouses.Therefore, besides the increasing cost,
new inserted order will cause increase of preparation time
to redeploy resource. The influence of new inserted order’s
volume on time scheduling result should be reflected in this
model. In general, increased order preparation time is posi-
tively correlated with three factors.The first one is the normal
operation time of original orders in mass service process
𝑇1. Second one is extra order volume [∑

𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+
. Last

one is the order similarity coefficient 𝜆. 𝑡 is used to denote

the increased order preparation time caused by new inserted
order as shown in

𝑡 =
[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
(1 − 𝜆) 𝑇1

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
(1 −

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

𝑇
exp
𝐽0+1

𝜆2𝜆3)𝑇1,

when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 ≤ 𝑇

exp
𝐽0+1

[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
(1 −

𝑇
exp
𝐽0+1

(1/𝐽0)∑
𝐽0
𝑗=1 𝑇

exp
𝑗

𝜆2𝜆3)𝑇1,

when 1

𝐽0

𝐽0

∑

𝑗=1

𝑇
exp
𝑗 > 𝑇

exp
𝐽0+1

,

(3)

where [∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

= max(∑𝐽0+1𝑗=1 𝑁𝑗 − 𝑁, 0). If

[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

< 0, then it is unnecessary to prepare
for extra logistics service resource, such as vehicle. On the
contrary, if [∑

𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

> 0, it means that the new
inserted order’s volume is more than surplus of supply chain
capacity; then extra preparation of logistics service resource
is necessary and order preparation time will increase.

3.3.3. Order Rescheduling and Operation Time Logic. New
inserted order will cause rescheduling of LSSC on the premise
that the original order has been scheduled. Since the insertion
of new order may cause completion time delay of original
orders, it becomes a focusing goal for LSI to try to meet cus-
tomer orders’ time requirement through possible operation
time compression. It is necessary to not only ensure original
orders to be operated according to customer requirement but
also guarantee profit increased after inserting a new order.

Based on the analysis above, the real completion time
after order insertion could be decided by calculation. Namely,
real completion time of the 𝑗th order is 𝑇𝑗 = order prepa-
ration time (directly influenced by inserted order) + order
operation time (which is able to be compressed or delayed);
𝑗 = 1, 2, . . . , 𝐽0 + 1. Note that preparation time cannot
be compressed, while operation time is compressible. As
reflected in our model, this compressible (or deferrable)
extra operation time is our scheduling content.Therefore, the
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decision variables are FLSP’s extra operation time which aim
at meeting customers’ time requirement after inserting a new
order, that is, 𝑇ext

𝑖 (𝑖 = 1, 2).

4. Model Building

This section will establish an order insertion scheduling
model of LSSC considering capacity and time factors under
order insertion situation. Section 4.1 will describe main
model objectives, which are to minimize LSI’s unit operation
cost and to maximize the average satisfaction degree of all
the providers after order insertion. Section 4.2 will present
themainmodel constraints, which are time constraint, FLSP’s
satisfaction degree constraint, and capacity limit constraint.

4.1. Optimization Objectives of the Scheduling Model

4.1.1. Objective 1: To Minimize LSI’s Unit Operation Cost
after Order Insertion. The objective to minimize LSI’s unit
operation cost after order insertion could be expressed as

Min 𝑍1 =
(𝑓1 + 𝑓2 + 𝑓3)

∑
𝐽0+1

𝑗=1 𝑁𝑗

, (4)

where𝑓1 is the total cost of normal operation inmass process
and customization process. Consider

𝑓1 = 𝐶1𝑇1

𝐽0+1

∑

𝑗=1

𝑁𝑗 +

𝐽0+1

∑

𝑗=1

(𝐶2𝑗𝑇2𝑗𝑁𝑗) . (5)

𝑓2 is the extra operation cost in mass process and customized
process. Consider

𝑓2 = 𝐶
ext
1

󵄨󵄨󵄨󵄨󵄨
𝑇
ext
1

󵄨󵄨󵄨󵄨󵄨

𝐽0+1

∑

𝑗=1

𝑁𝑗 +

𝐽0+1

∑

𝑗=1

(𝐶
ext
2𝑗

󵄨󵄨󵄨󵄨󵄨
𝑇
ext
2𝑗

󵄨󵄨󵄨󵄨󵄨
𝑁𝑗) . (6)

𝑓3 is punishment cost for order completion time delay.
Consider

𝑓3 =

𝐽0+1

∑

𝑗=1

[𝐶
delay
𝑗 (𝑇𝑗 − 𝑇

exp
𝑗 )
+
] ,

𝑇𝑗 = 𝑇1 + 𝑇
ext
1 + 𝑇2𝑗 + 𝑇

ext
2𝑗 +

[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
(1 − 𝜆) 𝑇1,

(7)

where [𝑓(𝑥)]
+

= max{0, 𝑓(𝑥)}, the same below. 𝑇𝑗 is actual
completion time of the 𝑗th customer order which consists
of three parts, that is, completion time of mass process
𝑇1 + 𝑇

ext
1 , completion time of customized process 𝑇2𝑗 + 𝑇

ext
2𝑗 ,

and increased order preparation time caused by new order
insertion ([∑

𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+
/𝑁)(1 − 𝜆)𝑇1.

4.1.2. Objective 2: ToMaximize the Average SatisfactionDegree
of All the Providers. FLSP’s satisfaction degree is quite hard to
be quantized in reality, but it is very important in scheduling.

Here, two aspects are chosen to measure FLSP’s satisfaction
degree, which are the product of quantity satisfaction degree
of service capacity and service time satisfaction degree [3].

(1) FLSP’s Satisfaction Degree of Mass Process. (1) Quantity
satisfaction degree of service capacity 𝑆quantity,1 reflects FLSP’s
utilization status in terms of service quantity in mass ser-
vice process. When order volume is less than the upper
service capacity limit, the bigger the utilization of service
capacity is, the more satisfied the provider is. But when
order volume exceeds the upper limit of service capacity,
satisfaction degree will decrease because of the overload
operation status. According to Assumption 4 and Liu et al.
[2], FLSP’s satisfaction degree of mass process 𝑆quantity,1 can
be presented as follows:

𝑆quantity,1

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑆
0
quantity,1 +

1

𝑁

𝐽0+1

∑

𝑗=1

𝑁𝑗 (1 − 𝑆
0
quantity,1) ,

when 0 <

𝐽0+1

∑

𝑗=1

𝑁𝑗 ≤ 𝑁

𝑁

∑
𝐽0+1

𝑗=1 𝑁𝑗

, when
𝐽0+1

∑

𝑗=1

𝑁𝑗 > 𝑁,

(8)

where 𝑆
0
quantity,1 means the initial satisfaction degree of

provider in mass process when order volume is more than
0. It differs with different providers. 𝑁 is the upper limit of
FLSP’s normal capacity in mass process.

(2) Service time satisfaction degree 𝑆time,1 reflects the
satisfaction degree of provider for the service time schedule
made by LSI. Generally speaking, when providers are operat-
ing as the schedule appointed in advance, their satisfaction
degree is the highest. If LSI asks them to compress or
delay their completion time suddenly, indeed, providers will
become less satisfied. Therefore, the degree of closeness
between actual completion time and normal operation time
is used to denote FLSP’s service time satisfaction degree.
Consider

𝑆time,1 =

{{{

{{{

{

𝑇1

𝑇1 + 𝑇ext
1

, 𝑇
ext
1 ≥ 0

𝑇1 + 𝑇
ext
1

𝑇1
, 𝑇

ext
1 < 0.

(9)

Thus, FLSP’s satisfaction degree of mass process is shown
as 𝑆1 = 𝑆time,1 × 𝑆quantity,1.

(2) FLSP’s Satisfaction Degree of Customized Process. Accord-
ing to Assumption 4, for customized process, operation vol-
ume of original orders is not affected by new order insertion.
Thus, it is unnecessary to redeploy capacity. The 𝑗th FLSP’s
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satisfaction degree is only related to service time factor.
Consider

𝑆2𝑗 = 𝑆time,2𝑗

{{{{{

{{{{{

{

𝑇2𝑗

𝑇2𝑗 + 𝑇ext
2𝑗

, when 𝑇
ext
2𝑗 ≥ 0

𝑇2𝑗 + 𝑇
ext
2𝑗

𝑇2𝑗
, when 𝑇

ext
2𝑗 < 0,

𝑗 = 1, 2, . . . , 𝐽0 + 1.

(10)

With the satisfaction time of mass and customized process
integrated, the average satisfaction degree for all providers
could be calculated as

Max𝑍2 =
𝑆1 + ∑

𝐽0+1

𝑗=1 𝑆2𝑗

1 + 𝐽0 + 1
=

𝑆time,1𝑆quantity,1 + ∑
𝐽0+1

𝑗=1 𝑆2𝑗

1 + 𝐽0 + 1
. (11)

4.2. Constraints of the Scheduling Model

4.2.1. Constraint 1: To Meet Customers’ Time Requirement.
It is required that each customer order’s completion time
cannot be longer than the upper limit 𝑇exp

𝑗 (1 + 𝛽𝑗) set by the
corresponding customer. Consider

𝑇𝑗 = 𝑇1 + 𝑇
ext
1 + 𝑇2𝑗 + 𝑇

ext
2𝑗 +

[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
𝜆𝑇1

≤ 𝑇
exp
𝑗 (1 + 𝛽𝑗) ,

(12)

where 𝛽𝑗 indicates the delay coefficient of the order comple-
tion time permitted by the 𝑗th customer for its order.

4.2.2. Constraint 2: LSI’s Increased Profit Resulted by New
Order Insertion Is Larger than 0. This constraint shows the
necessary condition that LSI is willing to carry out order
insertion decision. In other words, the price paid by customer
for its inserted order must exceed order insertion cost of LSI.
Then constraint 2 can be presented as follows:

Δpro = 𝑁𝑗+1𝐹 − [

[

(𝑓1 + 𝑓2 + 𝑓3)

−(𝐶1𝑇1

𝐽0

∑

𝑗=1

𝑁𝑗 +

𝐽0

∑

𝑗=1

(𝐶2𝑗𝑇2𝑗𝑁𝑗))
]

]

> 0,

(13)

where (𝑓1 + 𝑓2 + 𝑓3) stands for the total cost of all the orders
after new order inserted into original ones.

4.2.3. Constraint 3: Each FLSP’s Satisfaction Degree Is Larger
than Its Lower Limit. Consider

𝑆1 = 𝑆time,1𝑆quantity,1 ≥ 𝑆
𝐿
1 ,

𝑆2𝑗 = 𝑆time,2𝑗 ≥ 𝑆
𝐿
2𝑗.

(14)

4.2.4. Constraint 4: The Upper Limit of Capacity in Mass
Process. According to Assumption 4, due to the existence
of capacity constraint in mass process, it is impossible to
increase new inserted order’s volume infinitely. Here we set
the new inserted order’s volume as not more than 𝑘 times of
upper limit of FLSP’s normal capacity in mass process. Please
see the following formula:

𝑁𝐽0+1
≤ 𝑘𝑁. (15)

Besides, in actual scheduling process, a FLSP’s com-
pressed time cannot be longer than the normal operation
time itself; namely, 𝑇ext

1 + 𝑇1 > 0, 𝑇ext
2𝑗 + 𝑇2𝑗 > 0 should be

fulfilled.
Based on the optimization objectives and constraints

above, the whole model established in this paper is as follows:

Min 𝑍1 =
1

∑
𝐽0+1

𝑗=1 𝑁𝑗

(𝑓1 + 𝑓2 + 𝑓3)

Max 𝑍2 =
𝑆1 + ∑

𝐽0+1

𝑗=1 𝑆2𝑗

1 + 𝐽0 + 1

=
𝑆time,1𝑆quantity,1 + ∑

𝐽0+1

𝑗=1 𝑆2𝑗

1 + 𝐽0 + 1

subject to 𝑇1 + 𝑇
ext
1 + 𝑇2𝑗 + 𝑇

ext
2𝑗

+
[∑
𝐽0+1

𝑗=1 𝑁𝑗 − 𝑁]
+

𝑁
𝜆𝑇1 ≤ 𝑇

exp
𝑗 (1 + 𝛽𝑗)

Δpro = 𝑁𝑗+1𝐹 − [

[

(𝑓1 + 𝑓2 + 𝑓3)

− (𝐶1𝑇1

𝐽0

∑

𝑗=1

𝑁𝑗

+

𝐽0

∑

𝑗=1

(𝐶2𝑗𝑇2𝑗𝑁𝑗))
]

]

>0

𝑆1 ≥ 𝑆
𝐿
1 , 𝑆2𝑗 ≥ 𝑆

𝐿
2𝑗,

𝑁𝐽0+1
≤ 𝑘

𝐽0

∑

𝑗=1

𝑁𝑗, 𝑇
ext
1 + 𝑇1 > 0

𝑇
ext
2𝑗 + 𝑇2𝑗 > 0, 𝑗 = 1, 2, . . . , 𝐽0 + 1.

(16)

5. Model Solution

5.1. Simplifying the Multiobjective Programming Model. The
LSSC order insertion scheduling model has two objectives
and seven constraints. It is a typical multiobjective program-
ming problem. In this paper, the typical linear weighting
method is chosen to solve our model. Objective 𝑍1 should
dimensionally be transformed into a number in the range
of [0, 1]. After the mathematical transformation, the synthe-
sized objective function is shown as follows:

max𝑍 = 𝑤1
𝑍
min
1

𝑍1
+ 𝑤2𝑍2, (17)
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Table 2: Basic data (1).

Parameter 𝑇1 𝐶1 𝐶
ext
1 𝑁 𝑆

0
quantity,1 𝑆

𝐿
quantity,1 𝐹 𝜆2 𝜆3 𝑘

Value 29 10 18 110 0.3 0.5 3000 0.6 0.7 3

where𝑤1,𝑤2 represent the weights of𝑍1 and𝑍2, respectively.
𝑤1 ≥ 0, 𝑤2 ≥ 0, and 𝑤1 + 𝑤2 = 1. 𝑍min

1 is the minimum of
𝑍1 when not considering other objective functions. 𝑍 is also
called the comprehensive performance objective of LSSC.

5.2. Using the Genetic Algorithm to Solve the Model. The
genetic algorithm is an effectivemethod used to search for the
optimal solution by simulating the natural selection process.
As it uses multiple starting points to begin the search, it has
a satisfactory global search capacity. For the combinatorial
optimization problem, the genetic algorithm is quite effective
to the solve NP problem, such as the production scheduling
problem [31], travelling salesman problem [32], knapsack
problem [33], and bin packing problem.

In this paper, instead of comparing or selecting a best
method among different kinds of solution methods, we just
choose an appropriate method. Given the superiority of the
genetic algorithm in solving programming problems and the
successful application to scheduling problems [31], this paper
uses the genetic algorithm to solve the proposed model.

6. Numerical Analysis

By conducting a numerical analysis, this section illustrates the
validity of model, explores the influence of relevant parame-
ters on the scheduling results and further gives some effective
recommendations for supply chain scheduling and optimiza-
tion. Section 6.1 presents the basic data of the numerical
example. Section 6.2 shows the scheduling results. Section 6.3
discusses the influence of the timedelay coefficient𝛽𝑗 of order
completion on the scheduling results of the LSSC. Section 6.4
presents the influence of the new inserted order’s volume
𝑁𝑗0+1

on order insertion decision. Section 6.5 presents the
influence of 𝛽𝑗 on 𝑁

max
𝑗0+1

. Section 6.6 shows the influence of
𝑁 on𝑁

max
𝑗0+1

.

6.1. Numerical Example Description and Basic Data. The
parameter values used in our model are shown in Tables 2
and 3.

6.2. Numerical Example Results. Genetic algorithm is
adopted to solve the problem. It is assumed that the genetic
population should be 800 and the hereditary algebra should
be 800. And the program for our model is written within
MATLAB 7.8 software and run on a PC with 1.6GHz quad-
core processor and 4GB memories. Computer system is
windows 7.0. Let 𝑤1 = 𝑤2 = 0.5 and based on the data in
Tables 2 and 3, the calculation result is as follows.

Theoptimal solution is𝑍 = 0.9627 and the corresponding
scheduling results are as follows.

Mass service operation stage: 𝑇ext
1 = −3.0044.

Table 3: Basic data (2).

Parameter 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 (new inserted order)
𝑇2𝑗 24 31 36.5 30
𝑇
exp
𝑗 53 60 65.5 55

𝐶
delay
𝑗 19 22 17 20

𝑁𝑗 20 30 40 40
𝛽𝑗 0 0 0 0
𝐶2𝑗 28 22 37 32
𝐶

ext
2𝑗 35 41 44 35

Customized operation stage:

[𝑇
ext
21 𝑇

ext
22 𝑇

ext
23 𝑇

ext
24 ]

= [−0.0043 0.0012 0.0018 −3.9113] .

(18)

According to the calculation results above, it is found
that operation time in mass process needs to be compressed
when order inserted, and the compressed time is 3.0044 units.
Among customized processes of these four orders, the first
customer order and the fourth customer order need to be
operated in time compressed status, and the second and third
customer order need to be delayed a little.

6.3. Effects of 𝛽𝑗 on the Scheduling Performance of the LSSC.
Generally speaking, customers’ requirement for a service
order’s completion time may change, and time compression
and delay requirement are both possible, which demands a
certain degree of time flexibility in scheduling from the LSI.
In model building, 𝛽𝑗 < 0means that the service order needs
to be finished ahead of time; accordingly, 𝛽𝑗 > 0 means
that the service time needs to be delayed. In this section,
the influence of the delay (or compression) coefficient of
order completion time 𝛽𝑗 on 𝑍 is discussed. With other
model parameters unchanged, the results of 𝑍 are calculated
corresponding to the changing 𝛽𝑗. For the convenience of
calculation, let all𝛽𝑗 be the same value; namely, the time delay
coefficient of order completion 𝛽 of all the customer orders
are the same. The results are shown in Table 4.

With the data in Table 4 plotted, Figure 4 is obtained.
Based on Table 4 and Figure 4, the following conclusions

could be obtained.
(1) With the increase of 𝛽𝑗 (from negative to positive),

𝑍 first increases and then tends to be stable, which means
that a reasonable positive tolerance coefficient contributes
to achieving the maximal value of comprehensive perfor-
mance (i.e., in this numerical example, when 𝛽𝑗 = 0.2,
comprehensive performance reaches the maximum 𝑍 =

0.9846). Conversely, if 𝛽𝑗 is negative, the maximal value of
comprehensive performance cannot be reached. Moreover,
a smaller time delay tolerance coefficient (i.e., the service
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Table 4: The influence of 𝛽𝑗 on comprehensive performance of
LSSC 𝑍.

𝛽𝑗 𝑍

[−0.4 −0.4 −0.4 −0.4] No solution
[−0.3 −0.3 −0.3 −0.3] 0.8243
[−0.2 −0.2 −0.2 −0.2] 0.9022
[−0.1 −0.1 −0.1 −0.1] 0.9463
[0 0 0 0] 0.9627
[0.1 0.1 0.1 0.1] 0.9793
[0.2 0.2 0.2 0.2] 0.9846
[0.3 0.3 0.3 0.3] 0.9846

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.8

0.84

0.88

0.92

0.96

1

𝛽j

Z

Figure 4: Curve of 𝑍 changed with 𝛽𝑗.

should be operated in time compression) results in poorer
comprehensive performance. Therefore, it could be inferred
that comprehensive performance may deteriorate when cus-
tomers request shortening the order completion time of
FLSP.

(2) If 𝛽𝑗 < −0.3, the model has no solution, which
means that the LSSC cannot operate in time compression
without limit. Furthermore, the LSSC scheduling has certain
restriction, and the order cannot be completed as early as the
customer wants it.

(3) After 𝛽𝑗 reaches a certain level (in this example, it
is 𝛽𝑗 > 0.2), 𝑍 tends to be stable. It has no contribution
to improve the total performance of supply chain if LSSC
continues to increase 𝛽𝑗. Therefore, in practice, it makes no
sense to blindly negotiate with customer to reach the biggest
value of 𝛽𝑗.

6.4. Effects of𝑁𝑗0+1 on the Order Insertion Decision. It is easy
to understand that the order insertion decision is affected by
the volume of new inserted order, which is denoted by𝑁𝑗0+1.
In Section 6.4, the effect of𝑁𝑗0+1 on the order insertion deci-
sion is discussed in detail. Keep other parameters unchanged,
just change new inserted order’s volume𝑁𝑗0+1 and try to find
solution to our model. If solution exists, then calculate the
corresponding value of 𝑍 and go on to increase 𝑁𝑗0+1

until
model has no solution. The calculation result is shown in
Table 5.

Table 5: Effect of𝑁𝑗0+1 on comprehensive performance of LSSC 𝑍.

𝑁𝑗0+1 Max𝑍 𝑍1 𝑍2

1 0.9743 1.2690𝑒 + 003 0.9491
5 0.9769 1.2737𝑒 + 003 0.9540
10 0.9802 1.2795𝑒 + 003 0.9605
20 0.9865 1.2896𝑒 + 003 0.9732
30 0.9734 1.3247𝑒 + 003 0.9472
40 0.9627 1.3580𝑒 + 003 0.9256
50 0.9521 1.3940𝑒 + 003 0.9079
60 0.9446 1.4253𝑒 + 003 0.8930
70 0.9384 1.4516𝑒 + 003 0.8777
80 0.9089 1.5218𝑒 + 003 0.8180
90 0.8720 1.6059𝑒 + 003 0.7440
100 0.8348 1.6890𝑒 + 003 0.6698
110 0.7977 1.7709𝑒 + 003 0.5955
112 0.7902 1.7874𝑒 + 003 0.5805
113 No solution
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Figure 5: Curve of 𝑍 varied with𝑁𝑗0+1.

With the data in Table 5 plotted, Figure 5 is obtained.
Figure 5 and Table 5 indicate the following conclusions.
(1) Along with the increase of 𝑁𝑗0+1

, comprehensive
performance of LSSC 𝑍 first increases and then tends to
be stable. The inflection point of the curve occurs at the
point whose value is the difference between normal operation
capacity of mass process and the volume of original orders,
which is called capacity surplus of mass process in this paper.
Therefore, supply chain performance reaches the optimal
when the new inserted order’s volume is equal to the capacity
surplus of mass process. It is easy to understand that in the
situation above, new inserted order can be operated together
with original orders without increase of extra order prepara-
tion time. Moreover, FLSP’s normal operation capacity, such
as the maximum loading capacity of truck or the maximum
capacity of warehouse, is fully utilized in this situation.
Hence, FLSP’s satisfaction degree of service time and service
quantity are both in high level. In this numerical example, it
is reflected by the maximum value of 𝑍2 = 0.9732.

(2) Along with the continuous increase of 𝑁𝑗0+1
(here

𝑁𝑗0+1
> 20), comprehensive performance of LSSC 𝑍

decreases due to two reasons. On the one hand, with the
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Table 6: Effect of 𝛽𝑗 on𝑁
max
𝑗0+1

.

𝛽𝑗 𝑁
max
4

Compared with benchmark value,
the growth proportion of𝑁max

4

[−0.3 −0.3 −0.3 −0.3] 52 −53.6%
[−0.2 −0.2 −0.2 −0.2] 72 −35.7%
[−0.1 −0.1 −0.1 −0.1] 92 −17.9%
Benchmark [0 0 0 0] 112 —
[0.1 0.1 0.1 0.1] 130 16.1%
[0.2 0.2 0.2 0.2] 130 16.1%
[0.3 0.3 0.3 0.3] 130 16.1%
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Figure 6: Curve of𝑁max
4 varied with 𝛽𝑗.

increase of 𝑁𝑗0+1, original orders’ preparation time of mass
process increases and resulted in time compression operation
in each process. Apparently, extra cost will increase accord-
ingly as well as 𝑍1. On the other hand, FLSP’s satisfaction
degree 𝑍2 will be decreased when their operating order
volume exceeds the original schedule. Considering these
two factors together, comprehensive performance of LSSC 𝑍

decreases gradually.
(3) Along with the continuous increase of 𝑁𝑗0+1 (which

is more than 113 units in our example), supply chain cannot
operate anymore. In other words, new order cannot be
inserted.

6.5. Effects of 𝛽𝑗 on the Upper Limit of New Order’s Insertable
Volume 𝑁

max
𝑗0+1

. In our numerical example, there are three
original orders and one new inserted order. Thus, 𝑁max

𝑗0+1
can

be replaced by 𝑁
max
4 . Keep other parameters unchanged and

change the value of 𝛽𝑗. In each value of 𝛽𝑗, only change
the value of 𝑁𝑗+1 and calculate the upper limit of new
order’s insertable volume 𝑁4 (which is denoted as 𝑁max

4 ). As
described above, set the benchmark value 𝛽𝑗 = [0 0 0 0]

and calculate the corresponding 𝑁
max
4 when 𝛽𝑗 is taken

different values. Then the results are shown in Table 6.
With the data in Table 6 plotted, Figure 6 is obtained.
According to Figure 6, it is found that 𝛽𝑗 has significant

influence on new order’s insertable volume 𝑁
max
𝑗0+1

. From the
view of the overall trend, along with the increase of 𝛽𝑗, new
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Figure 7: Curve of𝑁max
4 varied with 𝑅.

order’s insertable volume 𝑁
max
4 increases and tends to be

stable.

6.6. Effects of 𝑁 on 𝑁
max
𝑗0+1

. In this section, the effect of upper
limit of normal operation capacity ofmass process𝑁on𝑁

max
𝑗0+1

is explored. Keep other parameters unchanged and set 𝑁0 =
110 as benchmark. And𝑅 is used to be denoted as adjustment
coefficient of normal operation capacity of mass process. In
calculation, 𝑁 can be presented as 𝑁 = 𝑁0 × (1 + 𝑅),
𝑅 ∈ (−1, +∞). Then change the value of 𝑅 and calculate
corresponding upper limit of𝑁𝑗+1, which is denoted by𝑁

max
𝑗+1 .

This upper limit is the upper limit of insertable volume.
Results are shown in Table 7. Basic data 𝑁 = 𝑁0 = 110 and
corresponding𝑁

max
4 = 112, which is benchmark value.

With the data in Table 7 plotted, Figure 7 could be
obtained.

According to Figure 7, the following conclusions could be
made.

(1) 𝑁 has significant influence on new order’s insertable
volume𝑁max

𝑗0+1
. From the view of the overall trend, new order’s

insertable volume 𝑁
max
𝑗0+1

increases along with the increase of
𝑁.

(2) See from the view of quantitative relation, the increas-
ing (or decreasing) proportion of new order’s insertable
volume𝑁max

𝑗0+1
is larger than that of normal operation capacity

ofmass process𝑁. As shown in Table 7, in this example, if the
adjustment coefficient increases (or decreases) 0.1 time based
on the benchmark, namely, increasing (or decreasing) 112 ×

0.1 = 11.2 units, absolute value of the increase (or decrease)
in 𝑁

max
4 is approximately 20 units, compared to benchmark

value.The latter number can be calculated by the subtraction
between the former item and the latter item in second column
of Table 7. Therefore, intuitively, if 𝑁 increases per unit,
the 𝑁

max
𝑗0+1

increases more than one unit. In this example,
the number is approximately 20 ÷ 11.2 = 1.79 units. In
consequence, it can contribute to inserting relatively more
extra orders for customers to choose a supply chain whose
upper limit of normal operation capacity of mass process
𝑁 is relatively large. Furthermore, for LSI, increasing 𝑁

significantly significantly contributes to improving its order
insertion capacity.
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Table 7: Effect of𝑁 on𝑁
max
𝑗0+1

.

Adjustment coefficient 𝑅 𝑁
max
4 Compared with benchmark value, the growth proportion of𝑁max

4 𝑍 𝑍1 𝑍2

−0.3 51 −54.5% 0.7925 1.7713𝑒 + 003 0.5849
−0.2 72 −35.7% 0.7885 1.7849𝑒 + 003 0.5770
−0.1 92 −17.9% 0.7896 1.7861𝑒 + 003 0.5791
0 (benchmark) 112 — 0.7902 1.7874e + 003 0.5805
0.1 132 17.9% 0.7910 1.7881𝑒 + 003 0.5821
0.2 152 35.8% 0.7916 1.7889𝑒 + 003 0.5831
0.3 173 54.5% 0.7892 1.7956𝑒 + 003 0.5784

(3) Supply chain comprehensive performance 𝑍 is rarely
affected by 𝑅 and remains stable. It is found that when
operating in capacity limiting conditions (namely, when the
new inserted order’s volume is the upper limit that supply
chain can support), supply chain performance is almost the
same. No matter if the upper limit of normal operation
capacity of mass process is large or small, there is not big
difference in overall performance.This conclusion is opposite
to what we guessed and thus very interesting. Generally, it
is usually guessed that a supply chain with larger operation
capacity in mass process has greater performance when
operating in capacity limit conditions. Obviously, any supply
chain will show a relatively bad performance when operating
in capacity limit conditions, since unit cost is high and FLSP’s
satisfaction degree is low.

(4) Combined with conclusions in Section 6.5, it is found
that both𝑁 and 𝛽𝑗 will significantly influence the maximum
volume of insertable order. By comparison, improving the
normal operation capacity of mass service process𝑁 is more
useful in increasing maximum volume of insertable order.
The reason is that after reaching a certain level (in our
example it is 0.1 time of normal completion time), continuous
increase in 𝛽𝑗 makes no contribution in increasing insertable
order volume. However, even if 𝑁 increases to 0.3 time of
benchmark, it still makes contribution to increasing maxi-
mum insertable order volume. This conclusion is relatively
useful for LSI.

7. Main Conclusions and Management Insights

This section summarizes main conclusions and further
explains related insights for researchers. And management
insights for LSI are also discussed, which offers useful
recommendations for scheduling decisions.

7.1.MainConclusionsDerived from the SchedulingModel. The
following conclusions are based on the previous analysis.

(1) On the one hand, the smaller the time delay coefficient
𝛽𝑗 of order completion is, the worse the supply chain
performance will be.When 𝛽𝑗 is less than a certain value, this
scheduling model has no solution, which indicates operation
time could not be compressed infinitely. On the other hand, if
customers permit completion time delay, increase in 𝛽𝑗 could
improve supply chain comprehensive performance. However,
supply chain performance will stop improving but remain

stable after increasing to a certain level. Thus, it makes no
sense to negotiate with customer blindly for the biggest value
of 𝛽𝑗 in practice.

(2) The delay coefficient of order completion time 𝛽𝑗
permitted by customer obviously influences insertable order
volume. Generally, along with the increase of 𝛽𝑗, order
insertable volume gradually increases and tends to be stable
after reaching a certain level.

(3) With inserted order’s volume increasing, the com-
prehensive performance of LSSC 𝑍 first increases and then
decreases. The curve of 𝑍 inflects at the point representing
the difference between normal operation capacity of mass
process and the volume of original orders, which is called
capacity surplus ofmass process in this paper.Therefore, sup-
ply chain performs bestwhen the new inserted order’s volume
is equal to the capacity surplus of mass process. With 𝑁𝑗0+1
continuously increasing, the comprehensive performance of
LSSC𝑍 decreases. Furthermore, supply chain cannot operate
anymore after new inserted order’s volume reaches a certain
level.

(4) The upper limit of normal operation capacity 𝑁 has
significant influence on new order’s insertable volume𝑁max

𝑗0+1
.

Generally, alongwith the increase of𝑁, new order’s insertable
volume 𝑁

max
𝑗0+1

increases. Seen from the view of quantitative
relation, the increasing (or decreasing) proportion of new
order’s insertable volume 𝑁

max
𝑗0+1

is larger than that of normal
operation capacity of mass process 𝑁; that is 𝑁max

𝑗0+1
increases

more than one unit when 𝑁 increases one unit. Therefore, it
is useful for customers to choose a supply chain whose has
large normal operation capacity of mass process when it is
expected to insert relatively more extra orders. Furthermore,
it is quite effective to increase 𝑁 when LSI plans to improve
its capacity in order insertion.

(5) Both 𝑁 and 𝛽𝑗 will significantly influence the maxi-
mum volume of insertable order. With comparison, improv-
ing the normal operation capacity of mass service process 𝑁
is more useful in increasing maximum volume of insertable
order.

7.2. Implications for Researchers. This study establishes the
LSSC order insertion model considering capacity and time
factors and analyzes the order insertion problem in theMCLS
environment, which could be referred to by other researchers.
First, this study provides theoretical basis for further studies
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on the scheduling methods and performance optimization
methods of LSSCs in theMCLS environment. For example, it
is found that both the order completion time delay coefficient
permitted by customer and the volume of new inserted order
have influence on supply chain comprehensive performance
andwill further affect the order insertion decisions. Although
both the normal operation capacity of mass process and
the delay coefficient of order completion time permitted by
customer will significantly influence the maximum volume
of insertable order, improving the former one is more useful
in increasing themaximum volume of insertable order.These
conclusions could be useful for further studies on order
insertion scheduling models. Second, the order similarity
coefficient proposed by this paper provides reference for
other researches on supply chain order insertion model.
Third, researchers could develop integrated study on order
insertion decision and CODP based on our model, and
empirical research on that issue could also be conducted. In
short, this study could offer a basic theoretical foundation for
further studies on LSSC scheduling.

7.3. Implications for Managers. This research is developed on
the background of MCLS, and the conclusions presented in
this paper could serve as reference for the participants in
LSSC, especially LSI. Specifically, three important points are
shown as follows.

(1) For customers, it is useful to choose a supply chain
whose normal operation capacity of mass process
is relatively large for inserting relatively more extra
orders.Thus, LSI shouldmake efforts to improve their
service capacity in mass process to face the challenge
from newly increased order’s demand.

(2) Supply chain performance reaches the optimal when
the new inserted order’s volume is equal to the
capacity surplus of mass process. Besides, when a
certain level is achieved, new order cannot be inserted
and supply chain operation breaks down. Hence, it
is sensible for LSI to choose the new order whose
volume matches the capacity surplus of mass process
to reach optimal supply chain performance.

(3) The insertable volume of new inserted order is
affected by both order completion time requirements
from customers and FLSP’s normal operation capac-
ity in mass process. And to increase service capacity
in mass process is more useful for improving order
insertion capacity. Therefore, LSI had better enhance
the operation capacity instead of asking customer’s
permission for delaying completion time.

7.4. Research Limitations and Directions for Future Research.
With full consideration of service capacity and time factor,
an order insertion scheduling model of LSSC is established,
aiming to minimize the average unit volume operation cost
of the LSI and maximize the average satisfaction degree of
FLSPs. And in order to verify the viability and effectiveness
of our model, a specific example is numerically analyzed with
MATLAB 7.8 software. Furthermore, effects that the order

completion time delay coefficient permitted by customer
and the new inserted order’s volume have on supply chain
comprehensive performance are discussed, as well as effects
that the new inserted order’s volume and the upper limit of
normal operation capacity in mass process have on order
insertion decisions. Many useful conclusions are obtained to
improve LSI’s time scheduling decision. However, this paper
has several limitations. For example, the model solution and
analysis are obtained with a numerical example, which may
not represent all situations in reality. Besides, the influences
of order insertion scheduling on CODP is not considered
in our model. In practice, insertion of new order may cause
CODP changing, which could be researched in future work.
What is more, in our model, we assume that there is only
one new arrived order that needs to be inserted and do not
consider multiorder insertion problem. In the future, the
multiorder insertion problem could be explored based on the
order priority.
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discrete time reactive schedulingmodel for new order insertion
in job shop, make-to-order industries,” International Journal of
Production Research, vol. 48, no. 24, pp. 7395–7422, 2010.

[27] M. Wang and M. Rosenshine, “Scheduling for a combination
of made-to-stock and made-to-order jobs in a job shop,”
International Journal of Production Research, vol. 21, no. 5, pp.
607–616, 1983.

[28] H. Tsubone, Y. Ishikawa, and H. Yamamoto, “Production plan-
ning system for a combination of make-to-stock and make-to-
order products,” International Journal of Production Research,
vol. 40, no. 18, pp. 4835–4851, 2002.

[29] Y. C. Wang, X. F. Yu, L. Shi, and Z. Y. Huang, “Isolation
and manufacturing orders based on the combined research,”
Machinery Design & Manufacture, vol. 11, pp. 245–247, 2010
(Chinese).

[30] A. D. Brack and M. Benkenstein, “Responses to other similar
customers in a service setting—analyzing the moderating role
of perceived performance risk,” Journal of Services Marketing,
vol. 28, no. 2, pp. 138–146, 2014.

[31] G. Meja, C. Montoya, J. Cardona, and A. L. Castro, “Petri nets
and genetic algorithms for complex manufacturing systems
scheduling,” International Journal of Production Research, vol.
50, no. 3, pp. 791–803, 2012.

[32] L. D. Giovanni, G. Massi, and F. Pezzella, “An adaptive genetic
algorithm for large-size open stack problems,” International
Journal of Production Research, vol. 51, no. 3, pp. 682–697, 2013.

[33] H. Yang and S. Wang, “Solving the 0/1 knapsack problem
using rough sets and genetic algorithms,” Journal of the Chinese
Institute of Industrial Engineers, vol. 28, no. 5, pp. 360–369, 2011.



Research Article
Single Machine Scheduling and Due Date Assignment with
Past-Sequence-Dependent Setup Time and Position-Dependent
Processing Time

Chuan-Li Zhao,1 Chou-Jung Hsu,2 and Hua-Feng Hsu2

1 College of Mathematics and Systems Sciences, Shenyang Normal University, Shenyang, Liaoning 110034, China
2Department of Industrial Management, Nan Kai University of Technology, Nantou 542, Taiwan

Correspondence should be addressed to Chou-Jung Hsu; jrsheu@nkut.edu.tw

Received 23 July 2014; Accepted 14 August 2014; Published 27 August 2014

Academic Editor: Dehua Xu

Copyright © 2014 Chuan-Li Zhao et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the
length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job’s processing
time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and
the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the
model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved
that the problems can be solved in 𝑂 (𝑛

4
) time. For the model with job-independent position effects, we proved that the problems

can be solved in 𝑂 (𝑛
3
) time by providing a dynamic programming algorithm.

1. Introduction

In many realistic scheduling environments, a job’s processing
time may be depending on its position in the sequence [1].
Two well-known special cases of this stream of research are
(i) positional deterioration (aging effect), where the processing
time of a job increases as a function of its position in
a processing sequence and (ii) learning effect, where the
processing time of a job decreases as a function of its position
in a processing sequence. Biskup [2] andCheng andWang [3]
independently introduced the learning concept to scheduling
research. Other studies include Mosheiov and Sidney [4],
Mosheiov [5, 6], Wu et al. [7, 8], and Yin et al. [9, 10].
Biskup [11] presented an updated survey of the results on
scheduling problems with the learning effect. Mosheiov [6]
first mentioned the aging effect in scheduling research. Other
studies include Mosheiov [12], Kuo and Yang [13], Janiak and
Rudek [14], Zhao and Tang [15], and Rustogi and Strusevich
[16], among others.Moreover, some studies consider schedul-
ing problems with general position-dependent processing
time. Mosheiov [17] considered a scheduling problem with
general position-dependent processing time.The polynomial

algorithm is derived for makespan minimization on an m-
machine proportionate flow shop. Zhao et al. [18] studied
scheduling and due date assignment problem.They provided
a unifiedmodel for solving the single machine problems with
rejection and position-dependent processing time. Rustogi
and Strusevich [19] presented a critical review of the known
results for scheduling models with various positional effects.

Koulamas and Kyparisis [20] first introduced a schedul-
ing problem with past-sequence-dependent (p-s-d) setup
time. They assumed that the job setup time is proportional
to the sum of processing time of all already scheduled jobs.
It is proved that the standard single machine scheduling with
p-s-d setup time can be solvable in polynomial time when the
objectives are the makespan, the total completion time, and
the total absolute differences in completion time, respectively.
Wang [21] studied the single machine scheduling problems
with time-dependent learning effect and p-s-d setup time
considerations. He showed that the makespan minimization
problem, the total completion time minimization problem,
and the sum of the quadratic job completion time minimiza-
tion problem can be solved in polynomial time, respectively.
Yin et al. [22] considered a single machine scheduling model
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with p-s-d setup time and a general learning effect. They
showed that the single machine scheduling problems to
minimize the makespan and the sum of the kth power
of completion time are polynomially solvable under the
proposed model. Hsu et al. [23] presented a polynomial-
time algorithm for an unrelated parallel machine scheduling
problem with setup time and learning effects to minimize the
total completion time. Lee [24] proposed a model with the
deteriorating jobs, the learning effect, and the p-s-d setup
time. He provided the optimal schedules for some single
machine problems. Huang et al. [25] considered some single
machine scheduling problems with general time-dependent
deterioration, position-dependent learning, and p-s-d setup
time.They proved that the makespan minimization problem,
the total completion time minimization problem, and the
sum of the 𝜇th power of job completion time minimization
problem can be solved by the SPT rule.

Meeting due dates is one of themost important objectives
in scheduling (Gordon et al. [26]). In some situations, the
tardiness penalties depend on whether the jobs are tardy,
rather than how late they are. In these cases, the number of
tardy jobs should be minimized (Yin et al. [27]). Kahlbacher
and Cheng [28] considered scheduling problems tominimize
costs for earliness, due date assignment, and weighted num-
ber of tardy jobs.They presented nearly a full classification for
the single and multiple machine models. Shabtay and Steiner
[29] studied two single machine scheduling problems. The
objectives are to minimize the sum of weighted earliness, tar-
diness, and due date assignment penalties and minimize the
weighted number of tardy jobs and due date assignment costs,
respectively. They proved that both problems are strongly
NP-hard and give polynomial solutions for some important
special cases. Koulamas [30] considered the second problem
of Shabtay and Steiner [29]. He presented a faster algorithm
for a due date assignment problem with tardy jobs. Gordon
and Strusevich [31] addressed the problems of singlemachine
scheduling and due date assignment problems in which a
job’s processing time depends on its position in a processing
sequence. The objective functions include the cost of the
due dates, the total cost of discarded jobs that cannot be
completed by their due dates, and the total earliness of the
scheduled jobs. They presented polynomial-time dynamic
programming algorithms for solving problems with two due
date assignment methods, provided that the processing time
of the jobs is positionally deteriorating. Hsu et al. [32]
extended part of the objective functions proposed by Gordon
and Strusevich [31] to the positional weighted earliness
penalty and showed that the problems remain solvable in
polynomial time.

2. Problem Formulation and Preliminaries

This paper studies the single machine scheduling problems
with simultaneous consideration of due date assignment, p-
s-d setup time, and position-dependent processing time.

The problem can be described as follows.
A set 𝑁 = {𝐽1, 𝐽2, ..., 𝐽𝑛} of 𝑛 jobs has to be scheduled on

a single machine. All jobs are available for processing at time

zero and preemption is not permitted. Each job 𝐽𝑗 has a basic
processing time 𝑝𝑗. The actual processing time of job 𝐽𝑗, if
scheduled in position 𝑟 of a sequence, is given by

𝑝
𝐴
𝑗 = 𝑔 (𝑗, 𝑟) 𝑝𝑗, (1)

where 𝑔(𝑗, 1), 𝑔(𝑗, 2), . . . , 𝑔(𝑗, 𝑛) represent an array of job-
dependent positional factors.

Each job 𝐽𝑗 ∈ 𝑁 has to be assigned a due date 𝑑𝑗, by which
it is desirable to complete that job. Given a schedule, denote
the completion time of job 𝐽𝑗 by 𝐶𝑗. Job 𝐽𝑗 is called tardy if
𝐶𝑗 > 𝑑𝑗, and it is called nontardy if 𝐶𝑗 ≤ 𝑑𝑗. Let 𝑈𝑗 = 1 if job
𝐽𝑗 is tardy and let 𝑈𝑗 = 0 if job 𝐽𝑗 is nontardy. The earliness
of 𝐽𝑗 is defined as 𝐸𝑗 = 𝑑𝑗 − 𝐶𝑗, provided that 𝐶𝑗 ≤ 𝑑𝑗. In all
problems considered in this paper, the jobs in set 𝑁 have to
be split into two subsets denoted by 𝑁𝐸 and 𝑁𝑇. We refer to
the jobs in set 𝑁𝐸 as “nontardy,” while the jobs in set 𝑁𝑇 are
termed “tardy.” A penalty 𝛽𝑗 is paid for the tardy job 𝐽𝑗 ∈ 𝑁𝑇.
Given a schedule 𝜋 = [𝐽[𝑖], 𝐽[2], . . . , 𝐽[𝑛]], we assumed that the
p-s-d setup time of 𝐽[𝑗] is given as Koulamas and Kyparisis
[20] did, as follows:

𝑠[𝑗] = 𝛿

𝑗−1

∑

𝑖=1

𝑝
𝐴
[𝑖], 𝑗 = 2, 3, . . . , 𝑛, 𝑠[1] = 0, (2)

where 𝛿 ≥ 0 is a normalizing constant.
The purpose is to determine the optimal due dates and

the processing sequence such that the following function is
minimized:

𝐹 (d, 𝜋) = 𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝜑 (d) , (3)

where 𝜋 is the sequence of jobs, 𝛼 is the positive unit earliness
cost, d is the vector of the assigned due dates, and 𝜑(d)
denotes the cost of assigning the due dates that depends on
a specific rule chosen for due date assignment.We denote the
problem as

1
󵄨󵄨󵄨󵄨󵄨
𝑝
𝐴
𝑗 = 𝑝𝑗𝑔 (𝑗, 𝑟) , 𝑆psd

󵄨󵄨󵄨󵄨󵄨
𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝜑 (d) . (4)

Most of the presented results hold for a general positional
effect, that is, for any function 𝑔(𝑗, 𝑟) that depends on both
position 𝑟 and job 𝐽𝑗. For each individual model, there is a
particular rule that defines 𝑔(𝑗, 𝑟) and explains how exactly
the value of 𝑝𝑗 changes, for example.

(i) Job-Dependent Learning Effect (Mosheiov and Sidney [4]).
The actual processing time of a job 𝐽𝑗, if scheduled in position
𝑟 of a sequence, is given by

𝑝
𝐴
𝑗 = 𝑝𝑗𝑟

𝑎𝑗 , (5)

where 𝑎𝑗 ≤ 0 is a job-dependent learning parameter (include
𝑎𝑗 = 𝑎 as a special case, i.e., 𝑝𝐴𝑗 = 𝑝𝑗𝑟

𝑎, Biskup [2]).

(ii) Job-Dependent Aging Effect (Zhao and Tang [15]). The
actual processing time of a job 𝑗, if scheduled in position 𝑟

of a sequence, is given by

𝑝
𝐴
𝑗 = 𝑝𝑗𝑟

𝑎𝑗 , (6)
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where 𝑎𝑗 ≥ 0 is a job-dependent aging parameter (include
𝑎𝑗 = 𝑎 as a special case, i.e., 𝑝𝐴𝑗 = 𝑝𝑗𝑟

𝑎, Moshieov [17]).

(iii) Positional Exponential Deterioration (Wang [33]). The
actual processing time of a job 𝑗, if scheduled in position 𝑟

of a sequence, is given by

𝑝
𝐴
𝑗 = 𝑝𝑗𝑎

𝑟−1
, (7)

where 𝑎 ≥ 1 is a given positive constant representing a rate of
deterioration, which is common for all jobs.

We study our problem with the two most frequently used
due date assignment methods.

(i) The Common Due Date Assignment Method (usually
referred to as CON). Where all jobs are assigned the same
due date, such that is 𝑑𝑗 = 𝑑 for 𝑗 = 1, 2, . . . , 𝑛 and 𝑑 ≥ 0 is a
decision variable.

(ii) The Slack Due Date Assignment Method (usually referred
to as SLK). Where all jobs are given an equal flow allowance
that reflects equal waiting time (i.e., equal slacks), such that
is 𝑑𝑗 = 𝑝

𝐴
𝑗 + 𝑞 for 𝑗 = 1, 2, . . . , 𝑛 and 𝑞 ≥ 0 is a decision

variable.

We first provide some lemmas.

Lemma 1 (Hardy et al. [34]). Let there be two sequences
of numbers 𝑥𝑖 and 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑛). The sum ∑

𝑛
𝑖=1 𝑥𝑖𝑦𝑖

of products of the corresponding elements is the least if the
sequences are monotonically ordered in the opposite sense.

It is not difficult to see that the following property is valid
for both the variants of our problem.

Lemma 2. There exists an optimal schedule in which the
following properties hold: (1) all the jobs are processed consec-
utively without idle time and the first job starts at time 0 for
both the variants of the problem; (2) all the nontardy jobs are
processed before all the tardy jobs for both the variants of the
problem.

3. The CON Due Date Assignment Method

In the CON model, 𝑑𝑗 = 𝑑 (𝑗 = 1, 2, . . . , 𝑛). We choose 𝛾𝑑 as
the cost function 𝜑(d), where 𝛾 is a positive constant. Thus,
it follows from function (3) that our problem is to minimize
the objective function:

𝐹 (d, 𝜋) = 𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑. (8)

The problem denotes

1
󵄨󵄨󵄨󵄨󵄨
𝑝
𝐴
𝑗 = 𝑝𝑗𝑔 (𝑗, 𝑟) , 𝑆psd, 𝐶𝑂𝑁

󵄨󵄨󵄨󵄨󵄨
𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + 𝛼 ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑.

(9)

Kahlbacher and Cheng [28] provide an 𝑂(𝑛
4
) time

algorithm for the problem 1|𝐶𝑂𝑁|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑. In this section, we consider a generalization of the
basic model with p-s-d setup times and position-dependent
processing times. As a result of Lemma 2, we can restrict our
attention to those schedules without idle times and search for
the optimal schedule only among the schedules in which one
of the jobs is on time.

Let 𝜋 = [𝐽[𝑖], 𝐽[2], . . . , 𝐽[𝑛]]; then

𝐶[1] = 𝑔 ([1] , 1) 𝑝[1],

𝐶[2] = 𝐶[1] + 𝑠[2] + 𝑔 ([2] , 2) 𝑝[2]

= 𝑔 ([1] , 1) 𝑝[1] + 𝛿𝑔 ([1] , 1) 𝑝[1] + 𝑔 ([2] , 2) 𝑝[2]

=

2

∑

𝑘=1

[1 + (2 − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘],

.

.

.

𝐶[𝑗] =

𝑗

∑

𝑘=1

[1 + (𝑗 − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘],

.

.

.

𝐶[𝑛] =

𝑛

∑

𝑘=1

[1 + (𝑛 − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘].

𝑛

∑

𝑗=1

𝐶[𝑗] =

𝑛

∑

𝑗=1

(𝑛 − 𝑗 + 1)(1 +
𝛿 (𝑛 − 𝑗)

2
)𝑔 ([𝑗] , 𝑗) 𝑝[𝑗].

(10)

Note that we need only to consider the schedule in which
all the nontardy jobs are processed before all the tardy jobs.

Lemma 3. For the problem

1
󵄨󵄨󵄨󵄨󵄨
𝑝
𝐴
𝑗 = 𝑝𝑗𝑔 (𝑗, 𝑟) , 𝑆psd, 𝐶𝑂𝑁

󵄨󵄨󵄨󵄨󵄨
𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑,

(11)

if the number of jobs in𝑁𝐸 is ℎ (denote |𝑁𝐸| = ℎ), there exists
an optimal schedule 𝜋 = [𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]], such that 𝑑 = 𝐶[ℎ].

Proof. Suppose 𝜋 = [𝐽[𝑖], 𝐽[2], . . . , 𝐽[𝑛]] is an optimal schedule.
Since jobs 𝐽[𝑖], 𝐽[2], . . . , 𝐽[ℎ] are nontardy, then 𝑑 ≥ 𝐶[ℎ]. Let
Δ = 𝑑 − 𝐶[ℎ]. Moving the due date Δ units of time to the
left such that 𝑑 = 𝐶[ℎ], the objective value will be decreasing
(𝛼𝑗 + 𝛾)Δ, which is nonnegative. This means we can find a
schedule with 𝑑 = 𝐶[ℎ] that is at least as good as 𝜋.

As a consequence of Lemma 3, we consider the schedule
𝜋 = [𝐽[𝑖], 𝐽[2], . . . , 𝐽[𝑛]] with 𝑑 = 𝐶[ℎ].
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Thus,

𝐹 (d, 𝜋) = 𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑

= 𝛼

ℎ

∑

𝑗=1

𝐸[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗] + 𝛾𝑑

= 𝛼

ℎ

∑

𝑗=1

[𝐶[ℎ] − 𝐶[𝑗]] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗] + 𝛾𝐶[ℎ]

= (𝛼ℎ + 𝛾)(

ℎ

∑

𝑗=1

[1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗])

− 𝛼

ℎ

∑

𝑗=1

(ℎ − 𝑗 + 1) (1 +
1

2
𝛿 (ℎ − 𝑗)) 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗]

=

ℎ

∑

𝑗=1

{𝛼 (𝑗 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑗) (ℎ + 𝑗 − 1)

+ [1 + 𝛿 (ℎ − 𝑗)] 𝛾} 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗]

=

ℎ

∑

𝑗=1

𝑤𝑗𝑔 ([𝑗] , 𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗],

(12)

where

𝑤𝑗 = {𝛼 (𝑗 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑗) (ℎ + 𝑗 − 1)

+ [1 + 𝛿 (ℎ − 𝑗)] 𝛾} , 𝑗 = 1, 2, . . . , ℎ.

(13)

Let 𝑥𝑗,𝑟 be a binary variable such that 𝑥𝑗,𝑟 = 1 if job
𝐽𝑗 is scheduled in the rth position and 𝑥𝑗,𝑟 = 0; otherwise,
𝑗, 𝑟 = 1, 2, . . . , 𝑛. From (12), we can formulate the problem
with objective (8) as the following assignment problemA1(h),
which can be solved in 𝑂(𝑛3) time:

Min
𝑛

∑

𝑗=1

𝑛

∑

𝑟=1

𝑐𝑗,𝑟𝑥𝑗,𝑟

s.t.
𝑛

∑

𝑟=1

𝑥𝑗,𝑟 = 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝑥𝑗,𝑟 = 1, 𝑟 = 1, 2, . . . , 𝑛,

𝑥𝑗,𝑟 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛, 𝑟 = 1, 2, . . . , 𝑛,

(14)

where

𝑐𝑗,𝑟 = {
𝑤𝑟𝑔 (𝑗, 𝑟) 𝑝𝑗 for 𝑟 = 1, 2, . . . , ℎ

𝛽𝑗 for 𝑟 = ℎ + 1, ℎ + 2, . . . , 𝑛,

𝑤𝑟 = {𝛼 (𝑟 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑟) (ℎ + 𝑟 − 1)

+ [1 + 𝛿 (ℎ − 𝑟)] 𝛾} , 𝑟 = 1, 2, . . . , ℎ.

(15)

Note that 𝑐𝑗,𝑟 is the cost of assigning job 𝐽𝑗 (𝑗 = 1, 2, . . . , 𝑛)
in the rth (𝑟 = 1, 2, . . . , 𝑛) position in the schedule.

In order to derive the optimal solution, we have to solve
the above assignment problem A1(h) for any ℎ = 1, 2, . . . , 𝑛.
We summarize the results of the above analysis and present
the following solution algorithm.

Algorithm 4.

Step 1. For ℎ = 0 (𝑑 = 0, all the jobs are tardy), calculate
𝐹(0) = ∑

𝑛
𝑗=1 𝛽𝑗.

Step 2. For ℎ from 1 to 𝑛, solve the assignment problem A1(h)
and calculate the corresponding objective value 𝐹(ℎ).

Step 3. The optimal value of the function 𝐹 is equal to
min{𝐹(ℎ) | ℎ = 0, 1, 2, . . . , 𝑛}.

As a result, we obtain the following theorem.

Theorem 5. Problem 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑗, 𝑟), 𝑆psd, 𝐶𝑂𝑁|𝛼∑𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇
𝛽𝑗𝑈𝑗 + 𝛾𝑑 can be solved in 𝑂(𝑛4) time.

We demonstrate our approach using the following exam-
ple.

Example 6. Consider the problem 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑗, 𝑟), 𝑆𝑝𝑠𝑑,

𝐶𝑂𝑁|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑.
Let 𝑛 = 5, ℎ = 3.Theweights are𝛼 = 1, 𝛾 = 2, and 𝛿 = 0.1.
The processing times are 𝑝1 = 7, 𝑝2 = 6, 𝑝3 = 5, 𝑝4 = 2,

and 𝑝5 = 1.
The tardy penalties are 𝛽1 = 10, 𝛽2 = 8, 𝛽3 = 4, 𝛽4 = 5,

and 𝛽5 = 6.
The positional effects are

𝑔 (𝑗, 𝑟) =

[
[
[
[
[

[

2 1 3 2 4

1 3 2 2 3

2 3 1 4 3

1 2 3 1 3

2 1 2 3 4

]
]
]
]
]

]

,

𝑤1 = 2.7, 𝑤2 = 3.4, 𝑤3 = 4.

(16)
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The assignment problem A1(3) is

Min
𝑛

∑

𝑗=1

𝑛

∑

𝑟=1

𝑐𝑗,𝑟𝑥𝑗,𝑟

s.t.
𝑛

∑

𝑟=1

𝑥𝑗,𝑟 = 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝑥𝑗,𝑟 = 1, 𝑟 = 1, 2, . . . , 𝑛,

𝑥𝑗,𝑟 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛, 𝑟 = 1, 2, . . . , 𝑛,

(17)

where

𝑐𝑗,𝑟 =

[
[
[
[
[

[

𝑤1𝑔 (1, 1) 𝑝1 𝑤2𝑔 (1, 2) 𝑝1 𝑤3𝑔 (1, 3) 𝑝1 𝛽1 𝛽1
𝑤1𝑔 (2, 1) 𝑝2 𝑤2𝑔 (2, 2) 𝑝2 𝑤3𝑔 (2, 3) 𝑝2 𝛽2 𝛽2
𝑤1𝑔 (3, 1) 𝑝3 𝑤2𝑔 (3, 2) 𝑝3 𝑤3𝑔 (3, 3) 𝑝3 𝛽3 𝛽3
𝑤1𝑔 (4, 1) 𝑝4 𝑤2𝑔 (4, 2) 𝑝4 𝑤3𝑔 (4, 3) 𝑝4 𝛽4 𝛽4
𝑤1𝑔 (5, 1) 𝑝5 𝑤2𝑔 (5, 2) 𝑝5 𝑤3𝑔 (5, 3) 𝑝5 𝛽5 𝛽5

]
]
]
]
]

]

=

[
[
[
[
[

[

37.8 23.8 84 10 10

16.2 61.2 48 8 8

27 51 20 4 4

5.4 13.6 24 5 5

5.4 3.4 8 6 6

]
]
]
]
]

]

.

(18)

The solution is

𝑥𝑗,𝑟 =

[
[
[
[
[

[

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

]
]
]
]
]

]

. (19)

The optimal sequence is 𝜋∗ = [𝐽4, 𝐽5, 𝐽3, 𝐽1, 𝐽2], 𝑑
∗
= 8.5.

The total cost is 46.8.

4. The SLK Due Date Assignment Method

In the SLKmodel, 𝑑𝑗 = 𝑝
𝐴
𝑗 +𝑞 (𝑗 = 1, 2, . . . , 𝑛).We choose 𝛾𝑞

as the cost function 𝜑(d), where 𝛾 is a positive constant.Thus,
it follows from function (3) that our problem is to minimize
the objective function

𝐹 (d, 𝜋) = 𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑞. (20)

The problem denotes 1|𝑝𝐴𝑗 = 𝑝𝑗𝑔(𝑗, 𝑟), 𝑆psd, 𝑆𝐿𝐾|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑞.
Similar to the CON model, if the number of jobs in𝑁𝐸 is

given, we have the following solution.

Lemma 7. For the problem 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑗, 𝑟), 𝑆psd, 𝑆𝐿𝐾

|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑞, if |𝑁𝐸| = ℎ, there exists an
optimal schedule 𝜋 = [𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]], such that the slack
time 𝑞 = 𝐶[ℎ−1] + 𝑆[ℎ].

Proof. The proof is similar to that of Lemma 3.
Let 𝜋 = [𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]], 𝑞 = 𝐶[ℎ−1] + 𝑆[ℎ]. Thus,

𝑞 =

ℎ−1

∑

𝑗=1

[1 + (ℎ − 𝑗 − 1) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+ 𝛿

ℎ−1

∑

𝑗=1

𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

=

ℎ−1

∑

𝑗=1

[1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗],

𝐸[𝑗] = 𝑑[𝑗] − 𝐶[𝑗]

= 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗] + 𝑞 − 𝐶[𝑗]

= 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗] +

ℎ−1

∑

𝑘=1

[1 + (ℎ − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘]

−

𝑗

∑

𝑘=1

[1 + (ℎ − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘]

= 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗] +

ℎ−1

∑

𝑘=𝑗+1

[1 + (ℎ − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘],

1 ≤ 𝑗 ≤ ℎ − 1.

(21)

Consequently,

ℎ−1

∑

𝑗=1

𝐸[𝑗] =

ℎ−1

∑

𝑗=1

{

{

{

𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

ℎ−1

∑

𝑘=𝑗+1

[1 + (ℎ − 𝑘) 𝛿] 𝑔 ([𝑘] , 𝑘) 𝑝[𝑘]

}

}

}

=

ℎ−1

∑

𝑗=1

𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

ℎ−1

∑

𝑗=2

(𝑗 − 1) [1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗].

(22)

Therefore,

𝐹 (d, 𝜋, ℎ) = 𝛼 ∑

𝐽𝑗∈𝑁𝐸

𝐸𝑗 + ∑

𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑞

= 𝛼

ℎ−1

∑

𝑗=1

𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]
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+ 𝛼

ℎ−1

∑

𝑗=2

(𝑗 − 1) [1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗] + 𝛾𝑞

= 𝛼

ℎ−1

∑

𝑗=1

𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+ 𝛼

ℎ−1

∑

𝑗=2

(𝑗 − 1) [1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

+

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗] + 𝛾

ℎ−1

∑

𝑗=1

[1 + (ℎ − 𝑗) 𝛿] 𝑔 ([𝑗] , 𝑗) 𝑝[𝑗]

=

ℎ

∑

𝑗=1

𝑤𝑗𝑔 ([𝑗] , 𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗],

(23)

where

𝑤𝑗

=

{{

{{

{

𝛼 + 𝛾 (1 + (ℎ − 𝑗) 𝛿) for 𝑗 = 1,

𝛼 + [𝛼 (𝑗 − 1) + 𝛾] [1 + 𝛿 (ℎ − 𝑗)] for 𝑗 = 2, . . . , ℎ − 1,

0 for 𝑗 = ℎ.

(24)

Since the objective functions for CON and SLK due date
assignment methods have the same structure, we have the
following solution.

Let 𝑥𝑗,𝑟 be a binary variable such that 𝑥𝑗,𝑟 = 1 if job
𝐽𝑗 is scheduled in the rth position and 𝑥𝑗,𝑟 = 0; otherwise,
𝑗, 𝑟 = 1, 2, . . . , 𝑛. If |𝑁𝐸| = ℎ, then we can formulate
the problem with objective (20) as the following assignment
problem A2(h), which can be solved in 𝑂(𝑛3) time:

Min
𝑛

∑

𝑗=1

𝑛

∑

𝑟=1

𝑐𝑗,𝑟𝑥𝑗,𝑟

s.t.
𝑛

∑

𝑟=1

𝑥𝑗,𝑟 = 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝑥𝑗,𝑟 = 1, 𝑟 = 1, 2, . . . , 𝑛,

𝑥𝑗,𝑟 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛, 𝑟 = 1, 2, . . . , 𝑛,

(25)

where

𝑐𝑗,𝑟 = {
𝑤𝑟𝑔 (𝑗, 𝑟) 𝑝𝑗 for 𝑟 = 1, 2, . . . , ℎ,

𝛽𝑗 for 𝑟 = ℎ + 1, ℎ + 2, . . . , 𝑛,

𝑤𝑟

=

{{

{{

{

𝛼 + 𝛾 (1 + (ℎ − 𝑟) 𝛿) for 𝑟 = 1,

𝛼 + [𝛼 (𝑟 − 1) + 𝛾] [1 + 𝛿 (ℎ − 𝑟)] for 𝑟 = 2, . . . , ℎ − 1,

0 for 𝑟 = ℎ.

(26)

In order to derive the optimal solution, we have to solve
the above assignment problem A2(h) for any ℎ = 1, 2, . . . , 𝑛.

As a result, we obtain the following theorem.

Theorem 8. The problem 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑗, 𝑟), 𝑆psd, 𝑆𝐿𝐾|𝛼

∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑 can be solved in 𝑂(𝑛4) time.

5. Job-Independent Position Effects Case

In this section, we explore the model with job-independent
position effects; that is, the actual processing time of job 𝐽𝑗,
if scheduled in position 𝑟 of a sequence, is given by 𝑝𝐴𝑗 =

𝑝𝑗𝑔(𝑟), where 𝑔(1), 𝑔(2), . . . , 𝑔(𝑛) represent an array of job-
independent positional factors. In Section 4, we have shown
that the general version (job-dependent position effects) can
be solved in𝑂(𝑛4) time. In the following, we present an𝑂(𝑛3)
time dynamic programming algorithm for solving the special
version with job-independent position effects. The main idea
that will be used in the development of our algorithm is
similar to that of Shabtay et al. [35].

Based on the properties proved in Section 4, we have the
following solutions.

For the CON model, if |𝑁𝐸| = ℎ, 𝜋 = [𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]],
and 𝑑 = 𝐶[ℎ], then

𝐹 (d, 𝜋, ℎ) =
ℎ

∑

𝑗=1

{𝛼 (𝑗 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑗) (ℎ + 𝑗 − 1)

+ [1 + 𝛿 (ℎ − 𝑗)] 𝛾} 𝑔 (𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗]

=

ℎ

∑

𝑗=1

𝑤𝑗𝑔 (𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗],

(27)

where

𝑤𝑗 = {𝛼 (𝑗 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑗) (ℎ + 𝑗 − 1)

+ [1 + 𝛿 (ℎ − 𝑗)] 𝛾} , 𝑗 = 1, 2, . . . , ℎ.

(28)
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For the SLK model, if |𝑁𝐸| = ℎ, 𝜋 = [𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]],
and 𝑑 = 𝐶[ℎ−1] + 𝑆[ℎ], then

𝐹 (d, 𝜋, ℎ) = [𝛼 + 𝛾 (1 + (ℎ − 𝑗) 𝛿)] 𝑔 (1) 𝑝[1]

+

ℎ−1

∑

𝑗=2

{𝛼 + [𝛼 (𝑗 − 1) + 𝛾] [1 + 𝛿 (ℎ − 𝑗)]}

× 𝑔 (𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗]

=

ℎ

∑

𝑗=1

𝑤𝑗𝑔 (𝑗) 𝑝[𝑗] +

𝑛

∑

𝑗=ℎ+1

𝛽[𝑗],

(29)

where

𝑤𝑗

=

{{

{{

{

𝛼 + 𝛾 (1 + (ℎ − 𝑗) 𝛿) for 𝑗 = 1,

𝛼 + [𝛼 (𝑗 − 1) + 𝛾] [1 + 𝛿 (ℎ − 𝑗)] for 𝑗 = 2, . . . , ℎ − 1,

0 for 𝑗 = ℎ.

(30)

Using (27) and (29), and with any of the two previously
mentioned due date assignments methods, let 𝑤𝑗 = 𝑤𝑗𝑔(𝑗);
the objective function can be formulated as 𝐹(d, 𝜋) =

∑
𝑛
𝑗=1 𝑤𝑗𝑝𝜋(𝑗) for the special case of𝑁𝐸 = 𝑁, where no jobs are

tardy. FromLemma 1, the optimal job sequence is obtained by
matching the largest 𝑤𝑗 value to the job with the smallest 𝑝𝑗
value, the second largest 𝑤𝑗 value to the job with the second
smallest 𝑝𝑗 value, and so on. The index of the 𝑤𝑗 matched
with𝑝𝑗 specifies the position of job 𝑗 in the optimal sequence.
For example, first renumber the jobs in the LPT order such
that 𝑝1 ≥ 𝑝2 ≥ ⋅ ⋅ ⋅ ≥ 𝑝𝑛, and then reorder the positional
weights such that 𝑤𝑖1 ≤ 𝑤𝑖2

≤ ⋅ ⋅ ⋅ ≤ 𝑤𝑖𝑛
(𝑖1, 𝑖2, . . . , 𝑖𝑛 is a

permutation of 1, 2, . . . , 𝑛), schedules job 𝑗 in the position
𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛).

We now consider the due date assignment problem to
minimize the objective function (3). Since the objective
functions for all two due date assignment methods have the
same structure, we provide a generic algorithm to solve these
problems with two due date assignment methods. If set𝑁𝐸 is
given, (|𝑁𝐸| = ℎ), then we can reorder the positional weights
such that𝑤𝑖1 ≤ 𝑤𝑖2

≤ ⋅ ⋅ ⋅ ≤ 𝑤𝑖ℎ
.Thus, an optimal job sequence

of𝑁𝐸 is obtained in𝑂(ℎ log ℎ) time.However, in order to find
the optimal solution for the due date assignment problem, the
contribution of the total cost of the tardy jobs must be taken
into account. Below, we present a new dynamic programming
algorithm. For a given ℎ, the idea of a dynamic programming
algorithm to minimize the function (3) is as follows. We
define the states of the form (𝑖, 𝑟), where 𝑖 means that jobs
𝐽1, 𝐽2, . . . , 𝐽𝑖 have been considered and 𝑟, (1 ≤ 𝑟 ≤ min{𝑖, ℎ}),
represents how many of these jobs have been sequenced as
nontardy jobs. A state (𝑖, 𝑟) is associated with 𝑓(𝑖, 𝑟), the
smallest value of the objective function in the class of partial
schedules for processing 𝑖 jobs, provided that 𝑟 of the these
jobs has been sequenced nontardy. This method works by
either each job tardy or nontardy. Next, all 𝑓(𝑖, 𝑟) values can

be calculated by applying the recursion for 𝑖 = 1, 2, . . . , 𝑛 and
𝑟 ≥ max{1, ℎ − (𝑛 − 𝑖)}. The condition is that 𝑟 ≥ ℎ − (𝑛 − 𝑖) is
necessary to ensure that we do not consider states that might
lead to a solution which has fewer than 𝑟 jobs in set 𝑁𝐸:
since |𝑁𝐸| = ℎ and there are 𝑟 jobs that have been sequenced
nontardy among the first 𝑖 jobs, the remaining ℎ− 𝑟 nontardy
jobs needed to be selected from the last 𝑛 − 𝑖 jobs. The formal
statement of the algorithm is below.

Algorithm 9.

Step 0. Renumber the jobs in the LPT order such that 𝑝1 ≥
𝑝2 ≥ ⋅ ⋅ ⋅ ≥ 𝑝𝑛.

Step 1. Calculate positional weights 𝑤𝑗 = 𝑤𝑗𝑔(𝑗) where

𝑤𝑗 = {𝛼 (𝑗 − 1) +
1

2
𝛼𝛿 (ℎ − 𝑗) (ℎ + 𝑗 − 1)

+ [1 + 𝛿 (ℎ − 𝑗)] 𝛾} , (𝑗 = 1, 2, . . . , ℎ)

(31)

for the CON model and 𝑤1 = 𝛼 + 𝛾[1 + (ℎ − 1)𝛿], 𝑤𝑗 = 𝛼 +

[𝛼(𝑗 − 1) + 𝛾][1 + 𝛿(ℎ − 𝑗)], (𝑗 = 2, . . . , ℎ − 1), and 𝑤ℎ = 0

for the SLK model. Reorder the positional weights such that
𝑤𝑖1

≤ 𝑤𝑖2
≤ ⋅ ⋅ ⋅ ≤ 𝑤𝑖ℎ

. Initialize 𝑓(0, 0) = 0, 𝑓(𝑖, 𝑟) = ∞ for
𝑟 > 𝑖.

Step 2. For 𝑖 from 1 to 𝑛 calculate

𝑓 (𝑖, 0) = 𝑓 (𝑖 − 1, 0) + 𝛽𝑖, (32)

𝑓 (𝑖, 𝑟) = min {𝑓 (𝑖 − 1, 𝑟) + 𝛽𝑖, 𝑓 (𝑖 − 1, 𝑟 − 1) + 𝑤𝑖𝑟𝑝𝑖} ,

max {1, ℎ − (𝑛 − 𝑖)} ≤ 𝑟 ≤ min {𝑖, ℎ} .
(33)

Step 3. Compute the optimal value of the function 𝑓
∗
(ℎ) =

𝑓(𝑛, ℎ).

For a given ℎ value, calculating all possible 𝑓(𝑛, ℎ) values
using the above recursion relation requires𝑂(𝑛ℎ) time. Since
the value of positional weights (and the order of positional
weights) can be altered by changing the ℎ value, we must
repeat the entire programming procedure for each ℎ =

0, 1, 2, . . . , 𝑛. Thus the minimal objective value, 𝐹∗, is given
by

𝐹
∗
= min
ℎ=0,1,...,𝑛

{𝑓
∗
(ℎ)} . (34)

Therefore, the following statement holds.

Theorem 10. Both the problems 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑟), 𝑆psd,

𝐶𝑂𝑁|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑 and 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑟),

𝑆psd, 𝑆𝐿𝐾|𝛼∑𝐽𝑗∈𝑁𝐸 𝐸𝑗+∑𝐽𝑗∈𝑁𝑇 𝛽𝑗𝑈𝑗+𝛾𝑑 can be solved in𝑂(𝑛
3
)

time.

Example 11. Consider the problem 1|𝑝
𝐴
𝑗 = 𝑝𝑗𝑔(𝑟), 𝑆psd,

𝐶𝑂𝑁|𝛼∑𝐽𝑗∈𝑁𝐸
𝐸𝑗 + ∑𝐽𝑗∈𝑁𝑇

𝛽𝑗𝑈𝑗 + 𝛾𝑑.
Let 𝑛 = 5 and ℎ = 3. The weights are 𝛼 = 1, 𝛾 = 2, and

𝛿 = 0.1.
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The processing times are 𝑝1 = 7, 𝑝2 = 6, 𝑝3 = 5, 𝑝4 = 2,
and 𝑝5 = 1.

The tardy penalties are 𝛽1 = 10, 𝛽2 = 8, 𝛽3 = 4, 𝛽4 = 5,
and 𝛽5 = 6.

The positional effects are 𝑔(1) = 8, 𝑔(2) = 7, 𝑔(3) = 3,
𝑔(4) = 4, and 𝑔(5) = 7.

Positional weights are𝑤1 = 21.6,𝑤2 = 23.8, and𝑤3 = 12.
Positional weights are reordered such that 𝑤𝑖1 ≤ 𝑤𝑖2

≤

𝑤𝑖3
; that is, 𝑤𝑖1 = 𝑤3, 𝑤𝑖2 = 𝑤1, and 𝑤𝑖3 = 𝑤2:

𝑓 (0, 0) = 0,

𝑖 = 1,

𝑓 (1, 0) = 𝑓 (0, 0) + 𝛽1 = 10,

𝑓 (1, 1) = 𝑓 (0, 0) + 𝑤𝑖1
𝑝1 = 84,

𝑖 = 2,

𝑓 (2, 0) = 𝑓 (1, 0) + 𝛽2 = 18,

𝑓 (2, 1) = min {𝑓 (1, 1) + 𝛽2, 𝑓 (1, 0) + 𝑤𝑖1𝑝2}

= min {92, 82} = 82,

𝑓 (2, 2) = 𝑓 (1, 1) + 𝑤𝑖2
𝑝2 = 203.6,

𝑖 = 3,

𝑓 (3, 0) = 𝑓 (2, 0) + 𝛽3 = 22,

𝑓 (3, 1) = min {𝑓 (2, 1) + 𝛽3, 𝑓 (2, 0) + 𝑤𝑖1𝑝3}

= min {86, 78} = 78,

𝑓 (3, 2) = min {𝑓 (2, 2) + 𝛽3, 𝑓 (2, 1) + 𝑤𝑖2𝑝3}

= min {207.6, 190} = 190,

𝑓 (3, 3) = 𝑓 (2, 2) + 𝑤𝑖3
𝑝3 = 322.6,

𝑖 = 4,

𝑓 (4, 0) = 𝑓 (3, 0) + 𝛽4 = 27,

𝑓 (4, 2) = min {𝑓 (3, 2) + 𝛽4, 𝑓 (3, 1) + 𝑤𝑖2𝑝4}

= min {195, 121.2} = 121.2,

𝑓 (4, 3) = min {𝑓 (3, 3) + 𝛽4, 𝑓 (3, 2) + 𝑤𝑖3𝑝4}

= min {327.6, 237.6} = 237.6,

𝑖 = 5,

𝑓 (5, 0) = 𝑓 (4, 0) + 𝛽5 = 33,

𝑓 (5, 3) = min {𝑓 (4, 3) + 𝛽5, 𝑓 (4, 2) + 𝑤𝑖3𝑝5}

= min {243.6, 145} = 145.

(35)

Therefore, 𝑓(3) = 𝑓(5, 3) = 145.

The optimal sequence is 𝜋∗ = [𝐽4, 𝐽5, 𝐽3, 𝐽1, 𝐽2], 𝑑
∗
= 41.9.

The total cost is 145.

6. Conclusions

Scheduling problems involving position-dependent process-
ing time have received increasing attention in recent years.
In this paper, we considered single machine scheduling
and due date assignment with setup time in which a job’s
processing time depends on its position in a sequence. The
setup time is past-sequence-dependent (p-s-d).The objective
functions include total earliness, the weighted number of
tardy jobs, and the cost of due date assignment. The due date
assignment methods used in this problem include common
due date (CON) and equal slack (SLK). We have presented
an 𝑂(𝑛

4
) time algorithm for the general case and an 𝑂(𝑛

3
)

time dynamic programming algorithm for the special cases.
In the paper, the model with position-dependent effects
is considered. However, in some other situations, a job’s
processing time may be time-dependent or both position-
dependent and time-dependent. Therefore, it is worthwhile
for future research to investigate the model in which a job’s
processing time depends both on its position in a sequence
and its start time. It is also interesting for future research
to investigate the model in the context of other scheduling
settings, including multimachine and job-shop scheduling.
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We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is
to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem.
For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example.

1. Introduction

Recently, as a competitive strategy to provide high quality
service for customer demand, just-in-time (JIT) production
has received considerable attention from the manufacturing
enterprises [1]. In JIT production, jobs should be completed
as close as possible to their due-dates. A job which is
completed earlier or later than its due-date will incur penalty.
Thus, both earliness and tardiness are discouraged in JIT
production. Motivated by the JIT production, in the last two
decades scheduling problem with due-date assignment has
been extensively investigated. For the related surveys, we refer
the readers to Cheng and Gupta [2], Baker and Scudder [3],
and Gordon et al. [4]. For some recent related models on the
due-date assignment scheduling, see Xu et al. [5], Gerstl and
Mosheiov [6], Yin et al. [7], and Janiak et al. [8].

On the other hand, to prevent production disruption
caused by machine breakdown, machine maintenance needs
to be performed to perserve production efficiency. Since 1996,
researchers begun to take maintenance into consideration
in scheduling (see Lee [9], Lee and Chen [10], Kubzin and
Strusevich [11],Mosheiov and Sidney [12], andZhao andTang
[13]). For amaintenance (which is optional ormandatory), we
usually use two parameters to define it. One is its starting time
and the other is its duration. In some papers, the occupied
period by maintenance was also called nonavailable interval.
For the recent related survey, we refer the readers to Ma et al.
[14].

In the papers by Kubzin and Strusevich [11] andMosheiov
and Sidney [12], they considered a more realistic case on the
duration of maintenance. In their models, they assume the
duration of maintenance is variable; that is, the duration of
maintenance depends on its starting time in that the later
maintenance is performed, the longer time is needed to
perform the maintenance. Such maintenance can be called a
variable maintenance or a deteriorating maintenance.

Another popular topic in recent years is that of scheduling
with simultaneous considerations of due-date assignment
and maintenance. Mosheiov and Oron [15] studied a single-
machine scheduling problem jointly with rate-modifying
activity and common due-date assignment considerations to
minimize the total of earliness, tardiness, and due-date costs.
X. Y. Wang and M. Z. Wang [16] addressed a single-machine
slack due-date scheduling with a rate-modifying activity for
minimizing the objective function which contains the total
earliness, tardiness, and the common slack time costs. Yang
et al. [17] investigated single-machine common due-date
assignment and scheduling problems with an aging effect
under a deteriorating maintenance consideration simultane-
ously. Yin et al. [18] considered a common due-date assign-
ment and scheduling problem with a rate-modifying activity
to minimize the due-date, earliness, tardiness, holding, and
batch delivery cost.

In this paper we introduce a new scheduling model
which combines the due-date assignment and the machine
maintenance. We assume that the duration of maintenance is
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variable and the maintenance must be started prior to a given
deadline.

As a practical example for the proposed model, we may
consider the steel-making process in the steel plant [19]. In the
steel-making process, a charge, that is, a concurrent smelting
in the same converter, is regarded as a “job.” A refining
furnace is used to refine the charges. Naturally, the refining
furnace is regarded as “the machine.” In the refining process,
there will be some garbage. Before a given deadline, we must
clear the garbage to maintain the production efficiency and
thus the clearing operation can be regarded a maintenance.

In the second section we provide the notation and
formulation on our model. The third section derives some
important properties on an optimal solution. In Section 4, we
propose an optimal polynomial time algorithm for a special
case with identical jobs, followed by a numerical example.
Concluding remarks are discussed in the last section.

2. Problem Statement

Our problem can be described as follows. There are 𝑛 inde-
pendent jobs 𝐽1, 𝐽2, . . . , 𝐽𝑛 to be nonpreemptively processed
on a single machine, all of which are available at time zero.
A mandatory maintenance must be started before a given
deadline on the machine and the duration of maintenance
depends on its starting time; that is, the duration is a
nonnegative and nondecreasing function of the starting time.
Let 𝑝𝑗 and 𝑑𝑗 denote the processing time and the due-date
of job 𝐽𝑗, 𝑗 = 1, 2, . . . , 𝑛, respectively. For a given schedule,
we use 𝐶𝑗 to denote the completion time of job 𝐽𝑗, 𝑗 =

1, 2, . . . , 𝑛. We define the earliness and tardiness of job 𝐽𝑗 as
𝐸𝑗 = max{𝑑𝑗−𝐶𝑗, 0} and𝑇𝑗 = max{𝐶𝑗−𝑑𝑗, 0}, 𝑗 = 1, 2, . . . , 𝑛,
respectively. The unit earliness and tardiness penalties are
denoted by 𝛼 (>0) and 𝛽 (>0), respectively. In the case of a
common due-date (i.e., 𝑑𝑗 = 𝑑, which is a decision variable),
we denote the penalty per unit time of delaying the due-
date by 𝛾 (>0). Furthermore, we denote the given deadline of
maintenance with 𝑠𝑔 and the duration of maintenance with 𝑙.
Then according to our previous assumption, we can denote
𝑙 = 𝑓(𝑠), where 𝑠 (≤ 𝑠𝑔) is the starting time of maintenance
and 𝑓 is a nonnegative and nondecreasing function.The goal
is to find an optimal sequence of all the jobs, the common
due-date, and the staring time of maintenance such that the
objective ∑

𝑛
𝑗=1(𝛼𝐸𝑗 + 𝛽𝑇𝑗) + 𝛾𝑑 is minimized. Following

the three-field notation proposed by Graham et al. [20], we
denote our problem as 1,VM ‖ ∑

𝑛
𝑗=1(𝛼𝐸𝑗 + 𝛽𝑇𝑗) + 𝛾𝑑, where

VM in the first field stands for a variable maintenance.

3. The Properties on an Optimal Solution

The classical due-date assignment scheduling problem (with-
out maintenance) was introduced by Panwalkar et al. [21].
In their model, in addition to the traditional job sequencing
decisions, the common due-date is a decision variable. Both
earliness and tardiness incur penalty cost. The goal is to
find an optimal sequence of the jobs and the due-date that
minimizes the total earliness, tardiness, and due-date cost. By
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Figure 1: Idle time between jobs 𝐽𝑖 and 𝐽𝑗.

Ji

Ci s

VM

Figure 2: Idle time between job 𝐽𝑖 and the maintenance VM.
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Figure 3: Idle time between the maintenance VM and job 𝐽𝑗.

using the small perturbations technique, Panwalkar et al. [21]
proposed a polynomial time algorithm.

In order to solve our problem, we first derive some
properties on an optimal solution. We also use the small
perturbations technique.

Lemma 1. There exists an optimal solution in which the
schedule starts at time zero and contains no idle time among
the jobs, and the maintenance is scheduled between the two
consecutive jobs without idle time.

Proof. First we show that there is no idle time between the
jobs.

Assume that there exists idle time between the jobs 𝐽𝑖 and
𝐽𝑗, as shown in Figure 1, where 𝐶𝑖 denotes the completion
time of job 𝐽𝑖 and 𝑆𝑗 denotes the starting time of job 𝐽𝑗. Clearly
we have 𝐶𝑖 < 𝑆𝑗. If 𝑑 < 𝐶𝑖, we move job 𝐽𝑗 by (𝑆𝑗 − 𝐶𝑖) units
of time to the left without increasing the objective value. If
𝑑 > 𝑆𝑗, we may move job 𝐽𝑖 by (𝑆𝑗 − 𝐶𝑖) units of time to the
right without increasing the objective value. If 𝐶𝑖 ≤ 𝑑 ≤ 𝑆𝑗,
we maymove job 𝐽𝑖 to the right and job 𝐽𝑗 to the left such that
job 𝐽𝑖 just finishes at time 𝑑 and job 𝐽𝑗 starts at time 𝑑without
increasing the objective value. In the end, by clearing the idle
time between the jobs we always obtain a better solution.

Next, we show that themaintenance is scheduled between
the two consecutive jobs without idle time.

Assume that there exists idle time between the job 𝐽𝑖 and
the maintenance, as shown in Figure 2, where 𝐽𝑖 is scheduled
before the maintenance and 𝑠 denotes the starting time of the
maintenance. Clearly, we have 𝐶𝑖 < 𝑠. If 𝑑 < 𝐶𝑖, we move
the maintenance by (𝑠 − 𝐶𝑖) units of time to the left without
increasing the objective value. If 𝑑 > 𝑠, we may move job 𝐽𝑖
by (𝑠 − 𝐶𝑖) units of time to the right without increasing the
objective value. If 𝐶𝑖 ≤ 𝑑 ≤ 𝑠, we may move job 𝐽𝑖 to the right
and themaintenance to the left such that job 𝐽𝑖 finishes at time
𝑑 and the maintenance starts at time 𝑑without increasing the
objective value.

Assume that there exists idle time between the mainte-
nance and the job 𝐽𝑗, also shown in Figure 3, where 𝐽𝑗 is
scheduled after the maintenance and 𝑡 denotes the finishing
time of the maintenance.
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Clearly, we know 𝑡 < 𝑆𝑗. If 𝑑 < 𝑡, wemove job 𝐽𝑗 by (𝑆𝑗−𝑡)
units of time to the left without increasing the objective value.
If 𝑑 > 𝑆𝑗, we may delay the starting time of maintenance such
that themaintenance finishes at time 𝑆𝑗. If 𝑡 ≤ 𝑑 ≤ 𝑆𝑗, wemay
delay the starting time of maintenance andmove job 𝐽𝑗 to the
left such that the maintenance finishes at time 𝑑 and job 𝐽𝑗
starts at time 𝑑.

By the above analysis, we can treat all the jobs and the
maintenance as a consecutive whole without idle time.

Finally, we show that the schedule starts at time zero.
Assume that there exists a solution which does not start at
time zero. Then we move the whole to the left by some times
to assure that the new schedule starts at time zero and reset
a smaller common due-date than the original due-date to
obtain a new solution, which does not increase the objective
value.

With the above argument, we conclude Lemma 1 holds.

Lemma 2. The optimal common due-date is the completion
time of the job in position𝑚, where𝑚 = ⌈(𝑛𝛽 − 𝛾)/(𝛼 + 𝛽)⌉.

Proof. First we show that in an optimal solution the common
due-date 𝑑 is the completion time of some job.We distinguish
two cases.

Case 1. Consider a solution with 𝐶𝑖 < 𝑑 < 𝐶𝑖+1, where 𝑖

denotes the job scheduled in the 𝑖th location. Let 𝑍 be the
corresponding objective value. Define 𝑥 = 𝑑 − 𝐶𝑖 and 𝑦 =

𝐶𝑖+1 − 𝑑. Let 𝑍1 and 𝑍2 be the objective value for 𝑑 = 𝐶𝑖 and
𝑑 = 𝐶𝑖+1. Then

𝑍1 = 𝑍 + 𝛽 (𝑛 − 𝑖) 𝑥 − 𝛼𝑥𝑖 − 𝛾𝑥

= 𝑍 + 𝑥 (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) ,

𝑍2 = 𝑍 − 𝛽 (𝑛 − 𝑖) 𝑦 + 𝛼𝑖𝑦 + 𝛾𝑦

= 𝑍 − 𝑦 (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) .

(1)

Thus, we have 𝑍1 ≤ 𝑍 if 𝛽(𝑛 − 𝑖) − 𝛼𝑖 − 𝛾 ≤ 0 and 𝑍2 ≤

𝑍 otherwise. This implies that an optimal solution exists in
which 𝑑 is equal to the completion time of some job.

Case 2. Consider a solution with 𝑠 ≤ 𝑑 ≤ 𝑠 + 𝑓(𝑠), where 𝑠
denotes the starting time ofmaintenance and𝑓(𝑠)denotes the
duration of maintenance. Similar to Case 1, using the small
perturbations technique we can show that the objective value
can reduce by resetting 𝑑 = 𝑠 or 𝑑 = 𝑠 + 𝑓(𝑠). Since the case
𝑑 = 𝑠 is shown in Case 1, thus we only need to consider the
case 𝑑 = 𝑠 + 𝑓(𝑠). Let 𝑍 be the corresponding objective value
with 𝑑 = 𝑠 + 𝑓(𝑠) and 𝑍1 and 𝑍2 the corresponding objective
values for 𝑑 = 𝐶𝑖 and 𝑑 = 𝐶𝑖+1, where the maintenance is
scheduled between the job 𝐽𝑖 and the job 𝐽𝑖+1; that is, 𝑠 = 𝐶𝑖
and 𝑠 + 𝑓(𝑠) = 𝐶𝑖+1 − 𝑝𝑖+1, as shown in Figure 4.

Then

𝑍1 = 𝑍 + 𝑓 (𝑠) (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) ,

𝑍2 = 𝑍 − 𝑝𝑖+1 (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) .

(2)

Ji Ji+1

Ci+1s s + f(s)

VM

Figure 4: The case 𝑠 ≤ 𝑑 ≤ 𝑠 + 𝑓(𝑠).
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Figure 5: The maintenance starts at time 𝑠 (>0).
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Figure 6: The maintenance starts at time 0.

Thus, we have 𝑍1 ≤ 𝑍 if 𝛽(𝑛 − 𝑖) − 𝛼𝑖 − 𝛾 ≤ 0 and 𝑍2 ≤ 𝑍

otherwise.
With the above discussion, we conclude that in an optimal

solution the optimal common due-date 𝑑 is the completion
time of some job.

Now, we assume that the common due-date 𝑑 is the
completion time of job in the 𝑚th location; that is, 𝑑 = 𝐶𝑚.
To prove that 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉, let 𝑍 be the objective
value of optimal solution. Applying𝑍1 and𝑍2 to the situation
that 𝑥 = 𝑑−𝐶𝑚−1 and 𝑦 = 𝐶𝑚+1−𝑑, respectively, we conclude
that

𝛽 (𝑛 − 𝑚 + 1) − 𝛼 (𝑚 − 1) − 𝛾 ≥ 0,

𝛽 (𝑛 − 𝑚) − 𝛼𝑚 − 𝛾 ≤ 0.
(3)

Thus, we have𝑚 = ⌈(𝑛𝛽 − 𝛾)/(𝛼 + 𝛽)⌉.

Lemma 3. In an optimal solution, the maintenance is sched-
uled either at time 0, or after the common due-date.

Proof. Suppose that there exists a solution in which themain-
tenance starts at time 𝑠, where 𝑠 > 0 and is scheduled before
the common due-date 𝑑. Then the maintenance occupies the
time interval [𝑠, 𝑠 + 𝑓(𝑠)] with 𝑠 ≤ 𝑠𝑔 and 𝑠 + 𝑓(𝑠) ≤ 𝑑.
Furthermore, we assume that the job 𝐽𝑖 is just prior to the
maintenance and the completion time of job 𝐽𝑚 is equal to
the due-date, as shown in Figure 5.

Now we construct a new solution as follows. Starting
the maintenance at time zero and scheduling all the jobs
according to their original order just after the maintenance.
Setting the common due-date to the new completion time of
job 𝐽𝑚. As shown in Figure 6, then we have the following.

(i) The duration of the maintenance decreases as it starts
earlier.

(ii) The earliness of jobs 𝐽𝑖 and its predecessors are
reduced.

(iii) The common due-date 𝑑 is reduced.

The above (i), (ii), and (iii) imply that the total earliness cost of
job 𝐽𝑖 and its predecessors and the due-date cost are reduced,
and the earliness and tardiness cost of other jobs remain
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unchanged. Thus, we conclude that the maintenance should
be scheduled either at time 0, or after the due-date.

4. A Special Case 1,

VM|𝑝𝑗 = 𝑝|∑𝑗(𝛼𝐸𝑗 + 𝛽𝑇𝑗) + 𝛾𝑑

In this section we consider a special case for our problem.
We assume all the jobs are identical; that is, 𝑝𝑗 = 𝑝. Next,
we propose a polynomial time algorithm for this special case
based on the previous properties on an optimal solution.

Recall that the due-date is the completion time of job in
the 𝑚th location, where 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉. Because
the jobs are identical jobs, by Lemma 3 we claim that the
maintenance must be started at time 0 if 𝑑 = 𝑚𝑝 > 𝑠𝑔 and
the maintenance is started after the due-date otherwise.Then
there are at most 𝑛−𝑚+1 choices for the starting time of the
maintenance.

With the above analysis, we propose our algorithm as
follows.

Algorithm H.

Step 1. If 𝑑 = 𝑚𝑝 > 𝑠𝑔, where 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉,
construct schedule 𝜋 = (VM, 𝐽1, 𝐽2, . . . , 𝐽𝑛). Output it as our
solution by setting the due-date as the completion time of job
𝐽𝑚 and stop. Otherwise go to Step 2.

Step 2. Compute 𝑘 such that 𝑝𝑘 ≤ 𝑠𝑔 ≤ 𝑝(𝑘 + 1). Construct a
series of schedules 𝜋0 = (VM, 𝐽1, 𝐽2, . . . , 𝐽𝑛), 𝜋

𝑖
= (𝐽1, 𝐽2, . . . ,

𝐽𝑖,VM, 𝐽𝑖+1, . . . , 𝐽𝑛), 𝑖 = 𝑚,𝑚 + 1, . . . , 𝑘.

Step 3. Output the schedule with the minimal objective value
from all the constructed schedules 𝜋0, 𝜋𝑖, 𝑖 = 𝑚,𝑚 + 1, . . . , 𝑘,
and denote it as 𝜋, where 𝑍(𝜋) = Min𝑖=0,𝑚,𝑚+1,...,𝑘𝑍(𝜋

𝑖
).

From the properties on an optimal solution as shown in
Lemmas 1, 2, and 3, we conclude that Algorithm H is correct
since all the possible cases are tried and we select the best
one. For a given schedule, the computation of objective value
requires 𝑂(𝑛) time. There are at most 𝑛 + 1 schedules to be
considered; thus the total running time is 𝑂(𝑛2). Finally we
obtain the following.

Theorem 4. The 1, 𝑉𝑀|𝑝𝑗 = 𝑝|∑𝑗(𝛼𝐸𝑗 + 𝛽𝑇𝑗) + 𝛾𝑑 problem
can be solved in 𝑂(𝑛

2
) time.

A Numerical Example. To illustrate Algorithm H, a solution
of an instance of 10 jobs is demonstrated in the following.

The job processing times are identical with 𝑝𝑗 = 3, 𝑗 =

1, 2, . . . , 10.The deadline of maintenance 𝑠𝑔 is equal to 25 and
the duration ofmaintenance 𝑙 is equal to 2+𝑠/3, where 𝑠 (≤𝑠𝑔),
as a decision variable, is the starting time ofmaintenance.The
penalty parameters are as follows: 𝛼 = 2, 𝛽 = 3, and 𝛾 = 4.

Applying Algorithm H, we first compute the parameters
as follows:𝑚 = ⌈(𝛽𝑛−𝛾)/(𝛼+𝛽)⌉ = ⌈(3 × 10−4)/(2+3)⌉ = 6,
𝑑 = 𝑚𝑝 = 6 × 3 = 18, and 𝑘 = 8with 3×𝑘 ≤ 𝑠𝑔 ≤ 3×(𝑘+1).

Because 16 < 25, that is, 𝑑 < 𝑠𝑔, we construct a series of
schedules as follows:

𝜋
0
= (VM, 𝐽1, 𝐽2, . . . , 𝐽10) ,

𝜋
6
= (𝐽1, 𝐽2, . . . , 𝐽6,VM, 𝐽7, 𝐽8, . . . , 𝐽10) ,

𝜋
7
= (𝐽1, 𝐽2, . . . , 𝐽6, 𝐽7,VM, 𝐽8, . . . , 𝐽10) ,

𝜋
8
= (𝐽1, 𝐽2, . . . , 𝐽6, 𝐽7, 𝐽8,VM, 𝐽9, 𝐽10) .

(4)

Their corresponding objective values are 𝑍(𝜋
0
) = 260,

𝑍(𝜋
6
) = 348, 𝑍(𝜋7) = 324, and 𝑍(𝜋8) = 300.

When comparing the costs in 𝜋
0, 𝜋6, 𝜋7, and 𝜋

8, we
conclude that the global optimum is obtained in 𝜋

0, the
maintenance starts at time zero, the common due-date 𝑑 is
equal to 20, six jobs are early, and four jobs are tardy.The total
cost is 𝑍(𝜋0) = 260.

5. Concluding Remarks

In this paper we consider the common due-date assignment
scheduling problem with a variable maintenance on a single
machine.The goal is tominimize the total earliness, tardiness,
and due-date cost. We derive some properties on an optimal
solution for our problem. For a special casewith identical jobs
we propose an optimal polynomial time algorithm running in
𝑂(𝑛
2
) time.
For the general case with nonuniform processing times of

jobs, whether problem is NP-hard or not is open and deserves
the further research.
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Quality function deployment (QFD) can provide a means of translating customer requirements (CRs) into engineering
characteristics (ECs) for each stage of product development and production.Themain objective of QFD-based product planning is
to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap
between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product
is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game
framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the
model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership
functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated
example is cited to demonstrate the application and performance of the proposed approach.

1. Introduction

Game theory is the discipline which studies multiple individ-
uals implementing the corresponding strategy according to
related strategies of other individuals under some situations.
Sometimes we need to seek for the best strategies of each
player taking into account that the others will also behave
searching for their best. In this case, we call it as noncoop-
erative games model. On the other hand, players just want to
deal with the cooperation issues of the problem and consider
how the agents allocate the benefits of their cooperation.
This approach is called as the cooperative game [1, 2]. A
cooperative game often assumes that each player is a part of a
team and is willing to compromise his own payoff to improve
the goal as a whole. A cooperative game proceeds with the
intent that the team wants to allocate resources such that all
players are as better off as possible, and an improvement in
the payoff for one player does not result in a loss for other
players. The bargaining scheme postulated by Nash yields a
unique and optimal distribution of resources such that the
arbitrated outcome is Pareto-optimal [1, 2].

Classical game theory is based on binary logic and the
fully rational behavior assumption. Fuzzy logic is able to
accommodate many of the binary-logic related dilemmas
in classical game theory. In general, the players do not be
having as fully rational decision makers in real games. Fuzzy
logic is a tool for a formal representation of such behavior.
Moreover, one of the outstanding limitations of the classical
game theory is that it assumes that all the data are known
exactly by all players. This assumption is often restrictive. In
real world, it often happens that the players are not able to
evaluate exactly the outcomes of different strategy profiles
and their own preferences or the preferences of other players
[3]. Therefore, to characterize the bounded rational behavior
and games with imperfect or incomplete information, it is
necessary to employ fuzzy logic into the game theory. Fuzzy
logic was initiated by Zadeh for dealing with uncertainties
[4]. From then on, fuzzy theory was extensively applied in
many areas, such as decision sciences [5], control theory [6–
8], and games theory [3, 9, 10].

Aubin [9] first studied the problem of fuzzy cooperative
games. Dhingra andRao [10] integrated the cooperative game
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theory and fuzzy set theory to yield a new optimization
method. In this paper, the cooperative fuzzy game model,
which was proposed by Dhingra and Rao [10], will be
employed to QFD-based new product planning.

In the current economic globalization situation,more and
more companies pay more attention to listen to the voice of
customers. For many enterprises, the key to win competitive
advantage is to develop the product with higher customer
satisfaction, lower cost, and shorter product development
cycle.The purpose of product innovation is that the designers
can develop new products, which can attract customers and
satisfy the demand of customers. Planning becomes essential
in designing and manufacturing a new product efficiently at
competitive cost within a short period of time [11]. As far
product planning and development decisions are concerned
extensively; the application of quality function deployment
(QFD) has been applied in many areas. Originated in Japan
in the late 1960s, QFD is a planning and problem-solving tool
for translating customer requirements (CRs) into engineering
characteristics (ECs) of a new product or service [12, 13].
QFD can help the designers systematically to determine
ECs for developing a new product with maximum customer
satisfaction. The QFD process includes four sets of matrices
called houses of quality (HOQ) to relate CRs to product
planning, parts deployment, process planning, andmanufac-
turing operations [12, 13]. QFD is a breakthrough tool which
can effectively reduce the gap betweenCRs and a newproduct
or service.

The determination of the target levels of ECs is the core
problem inQFD.The problem that setting target levels of ECs
can be viewed as a game in which each player corresponds
to the membership function of EC. Each player bargains
with others to improve the payoff subjected to the limited
resource. In the proposed methodology, the bargaining func-
tion is formulated as the geometric mean of the membership
functions of ECs, and the development budget for the new
product is fuzzified. Indeed, setting target levels of ECs is an
optimization problem, in which the set of feasible solutions
can be reduced to discrete, and the goal is to maximize the
overall customer satisfaction. So setting target levels of ECs
in QFD is also a combinatorial optimization problem.

The rest of this paper is organized as follows. Section 2
reviews some related work about the determination of target
levels of ECs in QFD. Section 3 recalls the cooperative fuzzy
gamemodeling approach proposed by Dhingra and Rao [10].
In Section 4, the fuzzy programming approach based on the
fuzzy cooperative game model is put forward to determine
the target levels of ECs. In Section 5, a motor car design
is cited to illustrate the proposed methodology. Finally, the
conclusions in this work are summarized in Section 6.

2. Related Work about QFD

In traditional QFD, the objective value of ECs is usually
determined by the subjective experience of the QFD team.
In order to determine the target levels of ECs objectively and
accurately, the QFD team should develop the optimization
model by taking the final importance of ECs and various

constraints (cost, development time, technical feasibility, etc.)
into account, where the goal is to help theQFD team to realize
the overall customer satisfaction of new products catching up
with or exceeding the competitors in the target market.

The determination of target levels of ECs under a fuzzy
environment has gained extensive attention. Using a fuzzy
ranking procedure, Zhou [14] investigated a mixed-integer
linear programming model to optimize the target values of
ECs. Fung et al. [15] developed a fuzzy inference model
that features a fuzzy rule base to setting the target levels of
ECs. Kim et al. [16] proposed a fuzzy multicriteria modeling
approach to QFD planning in which fuzzy linear regression
with symmetric triangular fuzzy numbers is used to estimate
the functional relationships between CRs and ECs as well
as among ECs. Taking into account the financial factors
in the product design process, Tang et al. [17] developed
a fuzzy formulation combined with a genetic-based inter-
active approach to QFD planning. To determine the target
values of ECs, Bai and Kwong [18] proposed an inexact
genetic algorithm approach to solve the model that takes
the mutation along the weighted gradient direction as a
genetic operator. Karsak [19] developed a fuzzy multiple
objective programming approach that incorporates imprecise
and subjective information inherent in the QFD planning
process to determine the level of fulfillment of ECs.

There are two types of uncertainties in input in the QFD
process: human perception and customer heterogeneity. To
tackle the two types of uncertainties simultaneously, Chen et
al. [20] developed two fuzzy expected value models to deter-
mine target values of ECs. By using dynamic programming
proposed by Lai et al. [21], limited resources are allocated
to the technical attributes. Y. Chen and L. Chen [22] devel-
oped a nonlinear-programming-based possibilistic regres-
sion approach. Fung et al. [23] developed a pair of hybrid
linear programming models with asymmetric triangular
fuzzy coefficients to estimate the functional relationships for
product planning under uncertainties. Chen and Weng [24]
proposed fuzzy goal programming models to determine the
fulfillment levels of the ECs. Chen and Ngai [25] employed
the method of imprecision (MoI) to perform multiple-
attribute synthesis to generate a family of synthesis strategies
by varying the value of 𝑠, which indicates the different
compensation levels among ECs. A nonlinear-programming-
based fuzzy regression approach was investigated in [26] to
setting target levels of ECs. Chen and Ko [27] proposed fuzzy
nonlinear-programming models based on Kano’s concept
to determine the fulfillment levels of parts characteristics
with the aim of achieving the determined contribution
levels of ECs for customer satisfaction. Delice and Güngör
(2009) [28] investigated an approach to QFD processes to
obtain the optimal solution from a limited number of design
requirements alternatives with discrete value. Kwong et al.
[29] investigated a generalized fuzzy least-squares regression
approach to model customer satisfaction. Güngör et al. [30]
used fuzzy analytic-network process (FANP) to determine
the fulfillment levels of ECs. Liu [31] integrated fuzzy QFD
and the prototype product selection model to develop a
product design and selection approach that can substantially
benefit developers in new product programming. Sener
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and Karsak [32] investigated an approach for determining
target levels of ECs by integrating fuzzy linear regression
and fuzzy multiple objective programming. Yang and Chen
[33] employed fuzzy soft set theory to prioritize CRs and
ECs in QFD. Jiang et al. [34] put forward a chaos-based
fuzzy regression approach tomodel the relationships between
customer satisfaction and ECs. Delice and Güngör (2013)
developed a fuzzy mixed-integer goal programming model
to setting the optimal discrete values of ECs [35]. Ko and
Chen [36] established a newnormalized relationship between
CRs and ECs to improve the existing models’ drawbacks and
developed a fuzzy linear programming model to determine
the optimal fulfillment levels of ECs. Considering several
goals such as new product development time and cost,
technological advancement, and manufacturability, Mungle
et al. [37] proposed dynamical multiobjective evolutionary
algorithm along with FANP and QFD to resolve product
planning problem. Yuen [38] presented a hybrid framework
of fuzzy cognitive network process, aggregative grading
clustering, and QFD for the criteria evaluation and analysis
in QFD.

The usefulness of these approaches is seriously limited
because the performance of a complex product depends
on some different, often conflicting, criteria that cannot be
combined into a single measure of performance. Henceforth,
a consideration of pursuing the maximization of the overall
satisfaction of customers becomes a challenging problem to
the design team.The process of setting the target levels of ECs
is accomplished in a subjective adc manner or in a heuristic
way. Due to many tradeoffs that may exist among implicit or
plicit relationships between CRs and ECs and among ECs,
these relationships cannot be identified using engineering
knowledge. Due to cost and other resource constraints,
tradeoffs are always needed. The purpose to setting target
levels of ECs is to maximize the overall customer satisfaction.
Therefore, there may be room for cooperation among ECs.
In this study, the cooperative fuzzy game model, integrating
the fuzzy set theory with the cooperative game theory, is
employed to complex product planning.

3. Cooperative Games with Fuzzy Constraint

In this section, we recall the cooperative fuzzy gamemodeling
approach proposed by Dhingra and Rao [10].

3.1.The Formulation of the Bargaining Function. Assume that
there exists payoff functions 𝑓𝑖( ⃗x), ⃗x ∈ 𝑆 associated with each
player 𝑖, where the set of alternatives 𝑆 is convex and compact;
the payoff of player 𝑖 will be 𝑓𝑖( ⃗x). These players bargain with
each other and hope a trade such that the payoff functions
are maximized. The bargaining function 𝐵(⋅) should satisfy
the following inequality:

min (𝑓1, 𝑓2, . . . , 𝑓𝑚) < 𝐵 (𝑓1, 𝑓2, . . . , 𝑓𝑚)

< max (𝑓1, 𝑓2, . . . , 𝑓𝑚) ,
(1)

where𝐵(⋅) is a suitable operator that models a tradeoff among
the goals 𝑓𝑖 = 𝑓𝑖( ⃗x), 𝑖 = 1, 2, . . . , 𝑚. In this study, the operator

𝐵(⋅) is set as the geometric mean with weight. Therefore, to
determine a solution accepted by all players, the bargaining
function 𝐵( ⃗x) is formulated as follows:

𝐵 ( ⃗x) =
𝑚

∏

𝑖=1

(𝑓𝑖( ⃗x) − 𝑓𝑖 ( ⃗x𝑤))
1/𝑚 (2)

for ⃗x ∈ 𝑆∗ = {𝑋 ∈ 𝑆 | 𝑓𝑖( ⃗x) − 𝑓𝑖( ⃗x𝑤) ≥ 0} ⊂ 𝑆, where 𝑓𝑖( ⃗x𝑤)
is the worst value of the payoff function 𝑓𝑖( ⃗x) that player 𝑖 is
willing to accept.

The weights of all payoff functions in the bargaining
function above are assumed to be equal. The generalized
bargaining function is expressed as

𝐵 ( ⃗x) =
𝑚

∏

𝑖=1

(𝑓𝑖 ( ⃗x) − 𝑓𝑖 ( ⃗x𝑤))
𝑤𝑖
, (3)

where𝑤𝑖 denotes the weight of the payoff function𝑓𝑖( ⃗x), such
that ∑𝑚𝑖=1 𝑤𝑖 = 1, 0 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚.

3.2. The Fuzzification of the Constraint. The constraint of
an optimal problem often includes some crisp inequality
and crisp equality. However, in some practical problem,
these inequality and equality are often expressed vaguely.
For example, the upper bound of the budget for a project is
often expressed as “about one million dollars.”Thus the fuzzy
logic is employed to characterize these inequality or equality.
Assume that there are 𝑛𝑓𝑔 fuzzy inequalities and 𝑛𝑓ℎ fuzzy
equalities:

𝑔𝑖 ( ⃗x) ≤̃ 𝑎𝑖, 𝑖 = 1, 2, . . . , 𝑛𝑓𝑔 (4)

ℎ𝑗 ( ⃗x) ≅ 𝑏𝑗, 𝑗 = 1, 2, . . . , 𝑛𝑓ℎ. (5)

The fuzzy inequality (4) can be characterized by the
membership function as follows:

𝜇𝐺𝑖
( ⃗x) =

{{{{

{{{{

{

0, 𝑔𝑖 ( ⃗x) ≥ 𝑎𝑖 + 𝛿𝑎𝑖 ,
𝑎𝑖 + 𝛿𝑎𝑖

− 𝑔𝑖 ( ⃗x)
𝛿𝑎𝑖

, 𝑎𝑖 < 𝑔𝑖 ( ⃗x) < 𝑎𝑖 + 𝛿𝑎𝑖 ,

1, 𝑔𝑖 ( ⃗x) ≤ 𝑎𝑖,

(6)

where 𝛿𝑎𝑖 denotes the index that the upper bound of 𝑔𝑖( ⃗x) can
be improved.

The fuzzy equality (5) can be characterized by the mem-
bership function as follows:

𝜇𝐻̃𝑗
( ⃗x) =

{{

{{

{

1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ𝑗 ( ⃗x) − 𝑏𝑗
𝜏𝑏𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, 𝑏𝑗 − 𝜏𝑏𝑗
< ℎ𝑗 ( ⃗x) < 𝑏𝑗 + 𝜏𝑏𝑗 ,

0, others,
(7)

where 𝜏𝑏𝑗 denotes the index that the bound of ℎ𝑗( ⃗x) can be
improved. The values of 𝛿𝑎𝑖 and 𝜏𝑏𝑗 can all be determined by
the decision maker according to the experience or in a trial
and error manner.
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According to Bellman and Zadeh [5], let 𝜆 =

min𝑖,𝑗{𝜇𝐺𝑖( ⃗x), 𝜇𝐻̃𝑗( ⃗x)}; then the model to determine the
value of 𝜆 is formulated as follows:

max 𝜆 (8a)

subject to

𝜆 ≤ 𝜇𝐺𝑖
( ⃗x) , 𝑖 = 1, 2, . . . , 𝑛𝑓𝑔 (8b)

𝜆 ≤ 𝜇𝐻̃𝑗
( ⃗x) , 𝑗 = 1, 2, . . . , 𝑛𝑓ℎ. (8c)

3.3. The Formulation of the Cooperative Fuzzy Game Model.
Combined the model (8a), (8b), and (8c) with the bargaining
function expressed as (3), a cooperative fuzzy game model is
formulated as follows:

max𝐵 ( ⃗x) + 𝑝𝜆 (9a)

subject to

𝜆 ≤ 𝜇𝐺𝑖
( ⃗x) , 𝑖 = 1, 2, . . . , 𝑛𝑓𝑔 (9b)

𝜆 ≤ 𝜇𝐻̃𝑗
( ⃗x) , 𝑗 = 1, 2, . . . , 𝑛𝑓ℎ (9c)

⃗x ∈ 𝑆∗ = {𝑋 ∈ 𝑆 | 𝑓𝑖 ( ⃗x) − 𝑓𝑖 ( ⃗x𝑤) ≥ 0} ⊂ 𝑆, (9d)

where 𝐵( ⃗x) = ∏𝑚𝑖=1(𝑓𝑖( ⃗x) − 𝑓𝑖( ⃗x𝑤))
𝑤𝑖 and the parameter “𝑝”

in formula (9a) is determined by the decision maker.
As pointed out by Dhingra and Rao [10], the objective

function max 𝐵( ⃗x) + 𝑝𝜆 can reflect the tradeoff between the
value of 𝐵( ⃗x) and the degree of constraint violation 1 − 𝜆.

3.4. Fuzzy Pareto-Optimality. The cooperative game is based
on the concept of a Pareto-optimal solution. Considering a
multiobjective problem as follows:

max 𝑓 ( ⃗x) = (𝑓1 ( ⃗x) , 𝑓2 ( ⃗x) , . . . , 𝑓𝑚 ( ⃗x))
𝑇
, (10a)

subject to

⃗x ∈ 𝑆 = { ⃗x ∈ 𝑅𝑛 | 𝑔𝑖 ( ⃗x) ≤ 𝑎𝑖, ℎ𝑗 ( ⃗x) = 𝑏𝑗} , (10b)

where 𝑓1( ⃗x), 𝑓2( ⃗x), . . . , 𝑓𝑚( ⃗x) are objective functions, ⃗x is
the vector of decision variables, and 𝑆 is the set of feasible
solutions.

For amultiple objective optimization problemwith partly
fuzzy constraints, the concept of Pareto-optimality used for
optimization problems with crisp constraints needs to be
revised to introduce the concept of a fuzzy Pareto-optimal
solution. Thus Dhingra and Rao [10] extended the definition
of Pareto-optimality as follows.

Let 𝑓𝑖 : 𝑅
𝑛
→ 𝑅, 𝑖 = 1, 2, . . . , 𝑚, be the objective

functions, 𝜇𝐺𝑖 : 𝑅
𝑛
→ [0, 1], 𝑖 = 1, 2, . . . , 𝑛𝑓𝑔, and 𝜇𝐻̃𝑗 :

𝑅
𝑛
→ [0, 1]; 𝑗 = 1, 2, . . . , 𝑛𝑓ℎ be the membership functions

of fuzzy constraints. A solution ⃗x∗ ∈ 𝑆 is said to be fuzzy
Pareto-optimal if and only if, for any ⃗x0 ∈ 𝑆, 𝑓𝑖( ⃗x0) ≤
𝑓𝑖( ⃗x∗), 𝑖 = 1, . . . , 𝑚 with at least one stringent inequality,

𝜇𝐺𝑖
( ⃗x0) ≥ 𝜇𝐺𝑖( ⃗x

∗
), 𝑖 = 1, 2, . . . , 𝑛𝑓𝑔 with at least one stringent

inequality, and 𝜇𝐻̃𝑗( ⃗x0) ≥ 𝜇𝐻̃𝑗( ⃗x
∗
), 𝑗 = 1, 2, . . . , 𝑛𝑓ℎ with at

least one stringent inequality.
As pointed out by Dhingra and Rao [10], since the set of

alternatives 𝑆 is convex and compact, there exists an optimal
solution of the problem (9a), (9b), (9c), and (9d) ⃗x∗ ∈ 𝑆 and
it is fuzzy Pareto-optimal for the parameter 𝑝 ≥ 0.

4. Programming Model Formulation

4.1. Notation. Thenotation used in this study can be summa-
rized as follows:

CR𝑖 is the 𝑖th customer requirement, 𝑖 = 1, 2, . . . , 𝑚;
EC𝑗 is the 𝑗th engineering characteristic, 𝑗 =

1, 2, . . . , 𝑛;
𝑟𝑖𝑗 is the strength of the correlation measure between
CR𝑖 and EC𝑗;
𝑅 = (𝑟𝑖𝑗) is the strength matrix between CRs and ECs;
𝑤𝑖 is the relative importance of CR𝑖, 𝑖 = 1, 2, . . . , 𝑚;
w = (𝑤1, 𝑤2, . . . , 𝑤𝑛) is the vector of the relative
importance of CRs;
𝑝𝑗𝑘 is the strength of the correlationmeasure between
EC𝑗 and EC𝑘;
p𝑗 = (𝑝𝑗1, 𝑝𝑗2, . . . , 𝑝𝑗𝑛) is the jth row vector of the
matrix 𝑃 = (𝑝𝑗𝑘)𝑛×𝑛, 𝑗 = 1, 2, . . . , 𝑛;
𝑙𝑗 is the value of EC𝑗, 𝑗 = 1, 2, . . . , 𝑛;
𝑥𝑗 is the level of attainment of EC𝑗, 0 ≤ 𝑥𝑗 ≤ 1, 𝑗 =
1, 2, . . . , 𝑛;
V𝑗 is the relative importance of EC𝑗, 𝑗 = 1, 2, . . . , 𝑛;
𝐶( ⃗x) is the total cost of product development, and it is
a function varying with the vector ⃗x = (𝑥1, 𝑥2, . . . 𝑥𝑛);
𝐶𝐹 is the fixed part of the development cost;
𝐶V is the variable part of the development cost;
𝑐𝑗 is the unit cost for 𝑥𝑗, 𝑗 = 1, 2, . . . , 𝑛;
𝑇 is the budget of the product development; and
𝑡 is the index that the upper bound of 𝑇 can be
improved.

4.2. Normalization of the Values of ECs. To cover all types of
inputs, 𝑙𝑗 should be normalized to a scale [0, 1]. The “smaller-
the-better type (S-type)” and “larger-the-better type (L-
type)” ECs can be normalized using the following formulas
(11) and (12), respectively. Consider

𝑥𝑗 =
𝑙
max
𝑗 − 𝑙𝑗

𝑙max
𝑗 − 𝑙min

𝑗

(11)

𝑥𝑗 =
𝑙𝑗 − 𝑙

min
𝑗

𝑙max
𝑗 − 𝑙min

𝑗

. (12)

For L-type, 𝑙min
𝑗 is the minimum value of EC𝑗 that matches

the performance of the main competitors and 𝑙
max
𝑗 is
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the maximized physical limit. Conversely, for S-type, 𝑙min
𝑗

is the minimized physical limit minimum and 𝑙max
𝑗 is the

maximum value of ECj that matches the performance of the
main competitors.

4.3. Calculation of V𝑗. The relative importance of ECs, V𝑗, 𝑗 =
1, 2, . . . , 𝑛, can be calculated as

V𝑗 =
V󸀠𝑗

∑
𝑛
𝑗=1 V󸀠𝑗

, (13a)

V󸀠𝑗 = w𝑅p𝑇𝑗 . (13b)

4.4. The Development Cost with Its Fuzzification. The devel-
opment cost 𝐶( ⃗x) can be viewed as the sum of the fixed
cost 𝐶𝐹 and the variable cost 𝐶V, where 𝐶V is the sum of 𝑥𝑗
with the unit cost 𝑐𝑗. Therefore the calculation formula of the
development cost 𝐶( ⃗x) can be expressed as follows:

𝐶 ( ⃗x) = 𝐶𝐹 + 𝐶𝑉 = 𝐶𝐹 +
𝑛

∑

𝑗=1

𝑐𝑗𝑥𝑗. (14)

If the total cost of product development 𝐶( ⃗x) is con-
strained to a budget 𝑇, it can be expressed as 𝐶( ⃗x) ≤ 𝑇.

In practical problem, the design team often needs to
improve the upper limit of the budget to enhance the levels
of ECs. Considering the budget 𝑇 that can be expanded to
𝑇 + 𝑡 (𝑡 > 0) as it is needed, where 𝑡 denotes the distance by
which the upper bound of the budget can be moved, we can
fuzzify the cost constraint as

𝜇𝐶̃ ( ⃗x) =
{{{

{{{

{

1, 𝐶 ( ⃗x) < 𝑇,
𝑇 + 𝑡 − 𝐶 ( ⃗x)

𝑡
, 𝑇 ≤ 𝐶 ( ⃗x) ≤ 𝑇 + 𝑡,

0, 𝐶 ( ⃗x) > 𝑇 + 𝑡.

(15)

4.5. Development of the Programming Model. In this subsec-
tion, we will develop a model to determine the target values
of ECs, in which the objective of the programming model is
to maximize the overall customer satisfaction and to exceed
the main competitors.

The overall customer satisfaction can be obtained by
aggregating the membership functions of the 𝑥𝑗, 𝑢𝑗(𝑥𝑗), 𝑗 =
1, 2, . . . , 𝑛, and their relative weights V𝑗, 𝑗 = 1, 2, . . . , 𝑛.
Existing research often utilizes the sum with weight to
aggregate 𝜇𝑗(𝑥𝑗) and V𝑗. As introduced in Section 3, the
bargaining function 𝐵( ⃗x) = ∏𝑚𝑖=1(𝑓𝑖( ⃗x) − 𝑓𝑖( ⃗x𝑤))

𝑤𝑖 is similar
to the geometric mean with weight. So we formulate the
bargaining function 𝐵( ⃗x) as

𝐵 ( ⃗x) =
𝑛

∏

𝑗=1

𝑢𝑗(𝑥𝑗)
V𝑗
, (16)

where the payoff function of the player 𝑗 is𝑢𝑗(𝑥𝑗) and itsworst
value is zero. Indeed 𝐵( ⃗x) = ∏𝑛𝑗=1𝑢𝑗(𝑥𝑗)

V𝑗 is the geometric
mean with weight for the membership function 𝑢𝑗(𝑥𝑗), 𝑗 =
1, 2, . . . , 𝑛, and it also can represent the overall customer

satisfaction. This function can realize the tradeoff amongst
ECs. Therefore, the programming model is formulated as
follows:

max 𝐵 ( ⃗x) + 𝑝𝜆 (17a)

subject to

𝜆 ≤ 𝜇𝐶̃ ( ⃗x) (17b)

⃗x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ [0, 1]
𝑛
, (17c)

where 𝐵( ⃗x) = ∏𝑛𝑗=1𝑢𝑗(𝑥𝑗)
V𝑗 and the parameter “𝑝” is deter-

mined by the decision maker.
Since the feasible set [0, 1]𝑛 is convex and compact, there

exists a fuzzy Pareto-optimal solution of the problems (17a),
(17b), and (17c) ⃗x∗ ∈ 𝑆 for the parameter 𝑝 ≥ 0.

5. An Illustrated Example

5.1. Building a HOQ for the Motor Car. In QFD, target
values of ECs identify the definitive and quantitative technical
specifications to satisfy CRs. The main objective of QFD-
based product planning is to determine the target values of
ECs for a new product to maximize the overall customer
satisfaction with the given limited resources. In this section
wewill illustrate the proposedmethodology by using a design
of motor car (Chen et al. 2005, 2008) [20, 25].

A corporation is developing a new type of motor car. As
depicted in Table 1, five CRs are identified to represent the
biggest concerns of the customers. They are “reducing the
noise of the car” (CR1), “enhancing the acceleration” (CR2),
“saving fuel” (CR3), “improving security” (CR4), and “seat
comfort” (CR5). Their relative weights are determined by
analytic hierarchy process (AHP) and listed in the second
column of the Table 1. Once CRs are identified, the ECs are
tabulated in the house of quality in order to satisfy CRs. Based
on the design team’s experience and expert knowledge on this
product, five ECs are determined, that is, “reducing the noise
of the exhaust system” (EC1), “increasing the horsepower
of the engine” (EC2), “reducing the amount of fuel per
mile” (EC3), “increasing the controlling force of the braking
system” (EC4), and “enlarging the space of the seat” (EC5).
These ECs are measured in units of dB, Horsepower, Gallon,
Kg, and M3, respectively. The negative and positive sign on
ECs mean that the design team hopes to reduce and increase
the target values of ECs, that is, EC1, EC3 belong to “S-
type,” and others belong to “L-type”. The QFD team will
identify the strength of the relationship between CRs and
ECs. These relationships are indicated in the relationship
matrix between theCRs andECs.According to formulas (13a)
and (13b), the relative importance of the five ECs is calculated
as (V1, V2, V3, V4, V5) = (0.30, 0.19, 0.24, 0.19, 0.08), which are
shown in the bottom of the HOQ. The level values of ECs of
five main competitors, Comp1, Comp2, Comp3, Comp4, and
Comp5, are shown in the HOQ. The objective of the design
team is to determine the target values of ECs for our product,
so that the overall customer satisfaction of our product can
exceed the main competitors.

The HOQ for the motor car design is shown in Table 1.
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Table 1: The house for the motor car, Chen and Ngai [25].

Correlation matrix

ECs
−

EC1
𝑥1

+
EC2
𝑥2

−

EC3
𝑥3

+
EC4
𝑥4

+
EC5
𝑥5

EC1 1 0 0 0 0
EC2 0 1 0.2 0 0
EC3 0 0.2 1 0 0
EC4 0 0 0 1 0
EC5 0 0 0 0 1

CRs Weights of CRs Relationship matrix
CR1 0.31 1 0 0.2 0 0
CR2 0.25 0 0.6 0 0 0
CR3 0.16 0 0 1 0 0
CR4 0.20 0 0 0 1 0
CR5 0.08 0 0 0 0 1

Technical matrix
Units dB Horsepower Gallon Kg M3

Comp1 80 75 0.042 25 0.18
Comp2 65 65 0.034 24 0.20
Comp3 65 80 0.028 23 0.18
Comp4 75 60 0.032 15 0.14
Comp5 95 80 0.030 20 0.19
min 60 55 0.027 13 0.12
max 100 90 0.044 27 0.21

Relative weights of ECs 0.30 0.19 0.24 0.19 0.08

5.2. Normalizing the Values of ECs. The values of EC1 and
EC3 for the five competitors are normalized by using (11), and
the values of EC2, EC4, and EC5 for the five competitors are
normalized are by using (12). The normalization results for
the five ECs of the five competitors are listed in Table 2.

5.3. Representing Design Uncertainty and Fuzzy Cost. To rep-
resent the design uncertainty, Chen and Ngai [25] defined a
kind ofmembership function for a trapezoidal fuzzy number.
The membership functions of the five ECs formulated by
Chen and Ngai [25] are as

𝑢1 (𝑥1) = 𝑥
0.2
1 , 0 ≤ 𝑥1 ≤ 1

𝑢2 (𝑥2) = 𝑥
2
2, 0 ≤ 𝑥2 ≤ 1

𝑢3 (𝑥3) = 𝑥
0.2
3 , 0 ≤ 𝑥3 ≤ 1

𝑢4 (𝑥4) = 𝑥4, 0 ≤ 𝑥4 ≤ 1

𝑢5 (𝑥5) = 𝑥
4
5, 0 ≤ 𝑥5 ≤ 1.

(18)

The above membership functions of the five ECs are
depicted in Figure 1.

The fixed cost 𝐶𝐹 for the basic design, the unit cost for
the five ECs, the development budget 𝑇, and its telescopic
indicator 𝑡 are listed in Table 3.
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Figure 1: Membership functions of ECs.

Therefore, the development cost 𝐶( ⃗x) for the motor car
design can be expressed as

𝐶 ( ⃗x) = 50 + 25𝑥1 + 10𝑥2 + 15𝑥3 + 10𝑥4 + 8𝑥5. (19)
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Table 2: Normalization of the ECs of the five competitors.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Comp1 0.5000 0.5714 0.1176 0.8571 0.6667
Comp2 0.8750 0.4286 0.5882 0.7857 0.8889
Comp3 0.8750 0.7143 0.9412 0.7143 0.6667
Comp4 0.6250 0.1429 0.7059 0.1429 0.2222
Comp5 0.1250 0.7143 0.8235 0.5000 0.7778

Table 3: The fixed cost, unit cost, and budget (units).

𝐶𝐹 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑇 𝑡

50 25 10 15 10 8 75 5

Table 4: Membership degree for ECs and overall customer satisfac-
tion of the five competitors.

𝜇1(𝑥1) 𝜇2(𝑥2) 𝜇3(𝑥3) 𝜇4(𝑥4) 𝜇5(𝑥5) 𝐵( ⃗x)
Comp1 0.8706 0.3265 0.6518 0.8571 0.1976 0.5969
Comp2 0.7936 0.1837 0.8993 0.7857 0.6243 0.6064
Comp3 0.9736 0.5495 0.9880 0.7143 0.1976 0.7274
Comp4 0.9103 0.0204 0.9327 0.1429 0.0024 0.1946
Comp5 0.6598 0.5102 0.9619 0.5000 0.3660 0.6225

Table 5: Target values of ECs with different value of the parameter
“𝑝.”

𝑝 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝐶( ⃗x)
0 0.0603 0.9490 0.0806 0.4794 1.0000 75
0.05 0.0599 0.9557 0.0804 0.4775 0.9954 75
0.50 0.0609 0.9497 0.0805 0.4832 0.9925 75
1 0.0602 0.9533 0.0796 0.4878 0.9862 75
2 0.0606 0.9621 0.0813 0.4844 0.9749 75
5 0.0600 0.9579 0.0799 0.4738 0.9981 75
20 0.0605 0.9522 0.0805 0.4782 0.9971 75

Considering the upper bound of the budget to be
improved as it is needed, the membership function of the
fuzzy cost can be formulated as

𝜇𝐶̃ ( ⃗x) =
{{{

{{{

{

1, 𝐶 ( ⃗x) < 75,
80 − 𝐶 ( ⃗x)
80 − 75

, 75 ≤ 𝐶 ( ⃗x) ≤ 80,
0, 𝐶 ( ⃗x) > 80.

(20)

5.4. Results and Discussion

5.4.1. Analysis of Results. According to the formulas (16) and
(18), the results about themembership degree for ECs and the
overall customer satisfaction of the five competitors are listed
in Table 4, where the overall customer satisfaction of Comp3
is 0.7274, which is largest amongst five competitors.

Combined the formulas (16), (18), and (20), the solution
for the cooperative fuzzy game models (17a), (17b), and (17c)
with different value of the parameter “𝑝” is tabulated as
Table 5. From Table 5 and Figure 2, it can be seen that the
total cost is still 75, but the varying of the parameter “𝑝” can

Table 6:The overall customer satisfactionwith different value of the
parameter “𝑝.”

𝑝 𝑢1(𝑥1) 𝑢2(𝑥2) 𝑢3(𝑥3) 𝑢4(𝑥4) 𝑢5(𝑥5) 𝐵( ⃗x)
0 0.5702 0.9006 0.6043 0.4794 1.0000 0.6383
0.05 0.5696 0.9133 0.6041 0.4775 0.9817 0.6383
0.50 0.5715 0.9019 0.6041 0.4832 0.9705 0.6383
1 0.5701 0.9088 0.6028 0.4878 0.9458 0.6383
2 0.5709 0.9256 0.6054 0.4844 0.9033 0.6383
5 0.5696 0.9175 0.6033 0.4738 0.9924 0.6383
20 0.5706 0.9067 0.6042 0.4782 0.9883 0.6383
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Figure 2: Membership of the five ECs with different value of “𝑝.”

facilitate the good performance in one EC to compensate for
poor performance in other ECs slightly.

The membership degree for ECs and their overall cus-
tomer satisfaction with different value of the parameter “𝑝”
are shown in Table 6.

From Table 6 it can be seen that the overall customer
satisfaction obtained from the proposed method is always
0.6383 though the value of the parameter “𝑝” varies from 0
to 20. Indeed, as introduced in Section 3, because the feasible
set [0, 1]𝑛 is convex and compact, there exists a fuzzy Pareto-
optimal solution of the problems (17a), (17b), and (17c) ⃗x∗ ∈ 𝑆
for the parameter 𝑝 ≥ 0.

Moreover, the result in Table 6 shows that the overall
customer satisfaction (𝐵( ⃗x) = 0.6383) obtained from the
proposedmethod exceeds four competitors only smaller than
Comp3 (0.7274).

5.4.2. Further Discussion. As discussed in Section 5.4.1, when
the budget is limited as 75, the overall customer satisfaction
𝐵( ⃗x) is 0.6383, which is Pareto-optima. If we hope that the
overall customer satisfaction of our new product exceeds
all competitors, we must improve the budget. So we set
the budget 𝑇 as 70 and 80, respectively, and the telescopic
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Table 7: Results with different budget when 𝑝 = 1.

𝑇 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝐵( ⃗x)
70 0.0480 0.7607 0.0638 0.3824 0.8015 0.5109
75 0.0602 0.9533 0.0796 0.4878 0.9862 0.6383
80 0.0967 1.0000 0.1291 0.7646 1.0000 0.7487

indicator 𝑡 is still set as 5. For comparison, the results with
different budget are listed in Table 7 when the parameter 𝑝 =
1.

From Table 7, it can be seen that the overall customer
satisfaction of our new product can exceed all competitors
when we set the budget as 80.

6. Conclusion

In this study, to enhance the overall customer satisfaction,
a cooperative game fuzzy framework is developed to deter-
mine the target values of the ECs in QFD, where each
player corresponds to the membership function of ECs. The
formulation of the bargaining function is the key in the
proposed approach. A motor car product design is cited
to illustrate the proposed approach. Results show that the
overall customer satisfaction for the ECs obtained from the
proposed methodology can exceed the main competitors.
The advantage of the proposed methodology is that the
solution for the model with limited resources is Pareto-
optimal. Meanwhile, the varying of the parameter “𝑝” can
facilitate the good performance in one EC to compensate for
poor performance in other ECs. It is important to note that
there is no model that employs the cooperative fuzzy game
modeling approach over QFD analysis.

Existing methods for determining the target levels of ECs
in QFD often consider CRs and the relationships between
CRs and ECs acquired previously. Therefore, it is very
difficult that a new product or service fully meets customer
expectations when it is ready to market. In order to tackle
this problem, it is necessary to embed the dynamics customer
requirements into QFD. For future research, we would like to
develop fuzzy game framework to determine the target levels
of ECs of the newproduct by considering future requirements
that meet customer needs.
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This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one
of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two
agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective
is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective
functions addressed in this study include themaximum cost, the total weighted completion time, and the discounted total weighted
completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The
computational complexity of the problems is discussed and solution algorithms where possible are presented.

1. Introduction

In traditional scheduling research, it is commonly assumed
that the processing times of the jobs remain unchanged
throughout the scheduling horizon. However, under certain
circumstances, the job processing times may become short
due to learning effects in the production environment. For
example, Biskup [1] points out that the repeated processing of
similar tasks will improve workers’ efficiency; that is, it takes
workers shorter times to process setups, operate machines
or software, or handle raw materials and components. In
such an environment, a job scheduled later will consume less
time than the same job when scheduled earlier. Jobs in such
a setting are said to be under the “learning effect” in the
literature.

Biskup [1] and Cheng and Wang [2] first introduce the
idea of learning into the field of scheduling independently.
Since then, a large body of literature on scheduling with
learning effects has emerged. Examples of such studies are
Mosheiov [3], Mosheiov and Sidney [4], Bachman and
Janiak [5], Janiak and Rudek [6], Wang [7], and Yin et al. [8].

Biskup [9] provides a comprehensive review of research on
scheduling with learning effects. For more recent studies in
this line of research, the reader is referred to Jiang et al. [10, 11],
Yang [12], S.-J. Yang andD.-L. Yang [13],Wang et al. [14],Wu
et al. [15], Xu et al. [16], and Yin et al. [8].

All the above papers consider the traditional case with
a single agent. In recent years scheduling researchers have
increasingly considered the setting of multiple competing
agents, in which multiple agents need to process their own
sets of jobs, competing for the use of a common resource and
each agent has its own objective to optimize. However, there
is little scheduling research in themultiagent setting in which
the jobs are under learning effects. Liu et al. [17] study two
models with two agents and position-dependent processing
times. They assume that the actual processing time of job 𝐽𝑗
is𝑝𝑗+𝑏𝑟 in the aging-effectmodel, while the actual processing
time of 𝐽𝑗 is 𝑝𝑗 − 𝑏𝑟 in the learning-effect model, where 𝑟

represents the processed position of 𝐽𝑗 and 𝑏 > 0 denotes
the aging or learning index. Ho et al. [18] define the actual
processing time of job 𝐽𝑗 as 𝑝𝑗 = 𝑎𝑗(1 − 𝑘𝑡) if it is processed at
time 𝑡, where 𝑎𝑗 denotes the normal processing time of job 𝐽𝑗
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and 𝑘 ≥ 0 represents a constant such that 𝑘(𝑡0 + ∑
𝑛
𝑗=1 𝑎𝑗 −

𝑎min) < 1 with 𝑎min = min𝑗=1,2,...,𝑛{𝑎𝑗}. Inspired by Ho et
al. [18], Yin et al. [19] consider some two-agent scheduling
problems under the learning effect model proposed in Ho et
al. [18], in which the objective functions for agent 𝐴 include
the maximum earliness cost, the total earliness cost, and the
total weighted earliness cost, and the objective function for
agent 𝐵 is always the same, that is, maximum earliness cost,
and the objective is to minimize the objective function of
agent 𝐴 while keeping the objective function of agent 𝐵 not
greater than a given level. Similar models have been further
studied by Wang and Xia [20], Wang [21], and so on. For
the other related two-agent works without time-dependent
processing times, the reader can refer to Baker and Smith
[22], Agnetis et al. [23, 24], Cheng et al. [25, 26], Ng et al. [27],
Mor andMosheiov [28], Lee et al. [29], Leung et al. [30],Wan
et al. [31], Yin et al. [19, 32], Yu et al. [33], and Zhao and Lu
[34].

This study introduces a new scheduling model in which
both the two-agent concept and the learning effects exist,
simultaneously. We consider the following objective func-
tions: the maximum cost, total completion time, total
weighted completion time, and discounted total weighted
completion time.The structural properties of optimal sched-
ules are derived and polynomial time algorithms are devel-
oped for the problems where possible.

The remaining part of the study is organized as follows:
Section 2 introduces the notation and terminology used
throughout the paper. Sections 3–6 analyze the computa-
tional complexity and derive the optimal properties of the
problems under study. The last section concludes the paper
and suggests topics for future research.

2. Model Formulation

The problem investigated in this paper can be formally
described as follows. Suppose that there are two agents𝐴 and
𝐵, each of whom has a set of nonpreemptive jobs. The two
agents compete to process their jobs on a common machine.
Agent 𝐴 has to process the job set 𝐽

𝐴
= {𝐽
𝐴
1 , 𝐽
𝐴
2 , . . . , 𝐽

𝐴
𝑛𝐴
},

while agent 𝐵 has to process the job set 𝐽𝐵 = {𝐽
𝐵
1 , 𝐽
𝐵
2 , . . . , 𝐽

𝐵
𝑛𝐵
}.

All the jobs are available for processing at time 𝑡0, where 𝑡0 ≥
0. Let𝑋 ∈ {𝐴, 𝐵}. The jobs belonging to agent𝑋 are called𝐴-
jobs. Associated with each job 𝐽

𝑋
𝑗 (𝑗 ∈ {1, 2, . . . , 𝑛𝑋}), there

are normal processing time 𝑎
𝑋
𝑗 and weight 𝑤𝑋𝑗 . Due to the

learning effect, the actual processing time 𝑝𝑗 of job 𝐽
𝑋
𝑗 is

defined as

𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) , 𝑗 = 1, 2, . . . , 𝑛𝑋, (1)

where 𝑡 ≥ 𝑡0 denotes job’s starting time and 𝑘 ≥ 0 represents
constant such that 𝑘(𝑡0 + ∑𝐽𝑋

𝑗
∈𝐽𝐴∪𝐽𝐵 𝑎

𝑋
𝑗 − 𝑎min) < 1, where

𝑎min = min𝐽𝑋
𝑗
∈𝐽𝐴∪𝐽𝐵{𝑎

𝑋
𝑗 } (see Ho et al. [18] for details).

Given a feasible schedule 𝑆 of the 𝑛 = 𝑛𝐴 + 𝑛𝐵 jobs, we
use 𝐶𝑋𝑗 (𝑆) to denote the completion time of job 𝐽

𝑋
𝑗 and omit

the argument 𝑆 whenever this does not cause confusion. The
makespan of agent 𝑋 is 𝐶𝑋max = max𝑗=1,2,...,𝑛𝑋{𝐶

𝑋
𝑗 }. For each

job 𝐽𝑋𝑗 , let𝑓
𝑋
𝑗 (⋅) be a nondecreasing function. In this case, the

maximum cost is defined as 𝑓𝑋max = max𝑗=1,2,...,𝑛𝑋{𝑓
𝑋
𝑗 (𝐶
𝑋
𝑗 )}.

The objective function of agent 𝑋 considered in this paper
includes the following: 𝑓𝑋max (maximum cost), ∑𝐶

𝑋
𝑗 (total

completion time),∑𝑤
𝑋
𝑗 𝐶
𝑋
𝑗 (total weighted completion time),

and ∑𝑤
𝑋
𝑗 (1 − 𝑒

−𝑟𝐶𝑋𝑗 ) (discounted total weighted completion
time).

Using the three-field notation scheme 𝛼|𝛽|𝛾 introduced
by Graham et al. [35], the problems considered in this paper
are denoted as follows: 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max(𝐶

𝐴
) :

𝑓
𝐵
max(𝐶

𝐵
) ≤ 𝑈, 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝐶

𝐴
𝑗 : 𝑓
𝐵
max(𝐶

𝐵
) ≤ 𝑈,

1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓
𝐵
max(𝐶

𝐵
) ≤ 𝑈, and 1 | 𝑝

𝑋
𝑗 =

𝑎
𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤

𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) : 𝑓
𝐵
max(𝐶

𝐵
) ≤ 𝑈.

Note that all the objective functions involved in the con-
sidered problems are regular; that is, they are nondecreasing
in the job completion times. Hence there is no benefit in
keeping the machine idle.

3. Problem 1 | 𝑝
𝑋
𝑗 = 𝑎
𝑋
𝑗 (1−𝑘𝑡) | 𝑓

𝐴
max : 𝑓

𝐵
max ≤ 𝑈

In this section we address the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

𝑓
𝐴
max : 𝑓

𝐵
max ≤ 𝑈 and show that it can be solved optimally in

polynomial time. We first develop some structural properties
of optimal schedules for the problem which will be used in
developing the algorithm.

Lemma 1 (see [19]). For problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝐶max,

the makespan is equal to

(𝑡0 −
1

𝑘
)

𝑛𝑋

∏

𝑗=1

(1 − 𝑘𝑎
𝑋
𝑗 ) +

1

𝑘

= (𝑡0 −
1

𝑘
)

𝑛𝐴

∏

𝑗=1

(1 − 𝑘𝑎
𝐴
𝑗 )

𝑛𝐵

∏

𝑗=1

(1 − 𝑘𝑎
𝐵
𝑗 ) +

1

𝑘
.

(2)

In the sequel, we set 𝑢 = (𝑡0−(1/𝑘))∏
𝑛𝑋
𝑗=1(1−𝑘𝑎

𝑋
𝑗 )+(1/𝑘).

Then the following results hold.

Proposition 2. For the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max :

𝑓
𝐵
max ≤ 𝑈, if there is a B-job 𝐽𝐵𝑘 such that 𝑓

𝐵
𝑘 (𝑢) ≤ 𝑈, then there

exists an optimal schedule such that 𝐽𝐵𝑘 is scheduled last and
there is no optimal schedule where an A-job is scheduled last.

Proof. Assume that 𝑆 is an optimal schedule where the 𝐵-
job 𝐽
𝐵
ℎ is not scheduled in the last position. Let 𝜋 denote the

set of jobs scheduled prior to job 𝐽
𝐵
ℎ . We construct from 𝑆

a new schedule 𝑆
󸀠 by moving job 𝐽

𝐵
ℎ to the last position and

leaving the other jobs unchanged in 𝑆. Then, the completion
times of the jobs processed before job 𝐽

𝐵
ℎ in 𝑆

󸀠 are the same
as that in 𝑆 since there is no change for any job preceding 𝐽

𝐵
ℎ

in 𝑆. The jobs belonging to 𝜋 are scheduled earlier, so their
completion times are smaller in 𝑆

󸀠 by Lemma 1. It follows
that 𝑓𝑋𝑘 (𝐶

𝑋
𝑘 (𝑆
󸀠
)) ≤ 𝑓

𝑋
𝑘 (𝐶
𝑋
𝑘 (𝑆)) for any job 𝐽

𝑋
𝑘 in 𝜋, where

𝑋 ∈ {𝐴, 𝐵}. By the assumption that 𝑓
𝐵
ℎ (𝑢) ≤ 𝑈, job 𝐽

𝐵
ℎ
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is feasible in 𝑆
󸀠, so schedule 𝑆

󸀠 is feasible and optimal, as
required.

For each 𝐵-job 𝐽
𝐵
𝑗 , let us define a deadline 𝐷

𝐵
𝑗 such that

𝑓
𝐵
𝑗 (𝐶
𝐵
𝑗 ) ≤ 𝑈 for 𝐶

𝐵
𝑗 ≤ 𝐷

𝐵
𝑗 and 𝑓

𝐵
𝑗 (𝐶
𝐵
𝑗 ) > 𝑈 for 𝐶

𝐵
𝑗 >

𝐷
𝐵
𝑗 (if the inverse function 𝑓

𝐵
𝑗 (⋅) is available, the deadlines

can be evaluated in constant time; otherwise, this requires
logarithmic time).

Proposition 3. For the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max :

𝑓
𝐵
max ≤ 𝑈, there exists an optimal schedule where the𝐵-jobs are

scheduled according to the nondecreasing order of 𝐷𝐵𝑗 .

Proof. Assume that 𝑆 is an optimal schedule where the𝐵-jobs
are not scheduled according to the nondecreasing order of
𝐷
𝐵
𝑗 . Let 𝐽

𝐵
𝑙 and 𝐽

𝐵
ℎ be the first pair of jobs such that𝐷𝐵𝑙 > 𝐷

𝐵
ℎ .

In this schedule, job 𝐽
𝐵
𝑙 is processed earlier; then a set of 𝐴-

jobs, denoted as 𝜋, are consecutively processed and then job
𝐽
𝐵
ℎ . In addition, denote by𝜋

󸀠 the set of jobs processed after job
𝐽
𝐵
ℎ . We construct from 𝑆 a new schedule 𝑆

󸀠 by extracting job
𝐽
𝐵
𝑙 , reinserting it just after job 𝐽

𝐵
ℎ and leaving the other jobs

unchanged in schedule 𝑆. Then the completion times of the
jobs processed prior to job 𝐽

𝐵
𝑙 in 𝑆

󸀠 are the same as that in 𝑆.
By Lemma 1, the completion time of job 𝐽

𝐵
ℎ in 𝑆 equals that of

job 𝐽
𝐵
𝑙 in 𝑆

󸀠; that is, 𝐶𝐵𝑙 (𝑆
󸀠
) = 𝐶
𝐵
ℎ (𝑆), so the completion times

of the jobs belonging to𝜋
󸀠 are identical in both 𝑆 and 𝑆

󸀠. Since
𝑆 is feasible, it follows that 𝐶𝐵𝑙 (𝑆

󸀠
) = 𝐶
𝐵
ℎ (𝑆) ≤ 𝐷

𝐵
ℎ < 𝐷

𝐵
𝑙 , so job

𝐽
𝐵
𝑙 is feasible in 𝑆

󸀠.The 𝜋-jobs and job 𝐽
𝐵
ℎ are scheduled earlier

in 𝑆
󸀠, implying that their actual processing times are smaller

in 𝑆
󸀠, so their completion times are earlier in 𝑆

󸀠, and thus they
remain feasible.Therefore, schedule 𝑆󸀠 is feasible and optimal.

Thus, repeating doing this procedure for all the𝐵-jobs not
sequenced according to nondecreasing order of𝐷𝐵𝑗 completes
the proof.

Proposition 4. For the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max :

𝑓
𝐵
max ≤ 𝑈, if 𝑓𝐵𝑘 (𝑢) > 𝑈 for any 𝐵-job 𝐽

𝐵
𝑘 , then there exists an

optimal schedule where the 𝐴-job with the smallest cost 𝑓𝐴𝑘 (𝑢)
is processed in the last position.

Proof. Assume that 𝑆 is an optimal schedule where the 𝐴-job
with the smallest cost 𝐽𝐴ℎ , that is,𝑓

𝐴
ℎ (𝑢) = min𝐽𝐴

𝑗
∈𝐽𝐴{𝑓
𝐴
𝑗 (𝑢)}, is

not processed in the last position. By the hypothesis, the last
job in schedule 𝑆 is an 𝐴-job, say 𝐽

𝐴
𝑙 . This means 𝑓

𝐴
ℎ (𝑢) <

𝑓
𝐴
𝑙 (𝑢). In this schedule, job 𝐽

𝐴
ℎ is scheduled earlier. Let 𝜋

denote the set of jobs scheduled after job 𝐽
𝐴
ℎ and prior to

job 𝐽
𝐴
𝑙 . We construct from 𝑆 a new schedule 𝑆󸀠 by extracting

job 𝐽
𝐴
ℎ , reinserting it just after job 𝐽

𝐴
𝑙 , and leaving the other

jobs unchanged in schedule 𝑆. There is no change for any job
preceding 𝐽

𝐴
ℎ in 𝑆. We claim the following.

(1) Schedule 𝑆
󸀠 is feasible. First, the completion times of

the jobs processed prior to job 𝐽
𝐴
ℎ in 𝑆

󸀠 are the same as
that in 𝑆

󸀠. Since the jobs belonging to 𝜋 are scheduled
earlier in 𝑆

󸀠, their actual processing times are smaller

in 𝑆
󸀠, so their completion times are earlier in 𝑆

󸀠. It
follows that 𝑓𝑋𝑘 (𝐶

𝑋
𝑘 (𝑆
󸀠
)) ≤ 𝑓

𝑋
𝑘 (𝐶
𝑋
𝑘 (𝑆)) for any job 𝐽

𝑋
𝑘

in 𝜋, where𝑋 ∈ {𝐴, 𝐵}, as required.
(2) Schedule 𝑆

󸀠 is a better schedule than 𝑆. By Lemma 1,
the completion time of the last job 𝐽

𝐴
𝑙 in 𝑆 equals that

of the last job 𝐽
𝐴
ℎ in 𝑆

󸀠; that is, 𝐶𝐴𝑙 (𝑆) = 𝐶
𝐴
ℎ (𝑆
󸀠
) = 𝑢.

Thus, to prove that 𝑆󸀠 is better than 𝑆, it suffices to
show that

max {𝑓𝐴𝑙 (𝐶
𝑋
𝑙 (𝑆
󸀠
)) , 𝑓
𝐴
ℎ (𝑢)}

≤ max {𝑓𝐴ℎ (𝐶
𝑋
ℎ (𝑆
󸀠
)) , 𝑓
𝐴
𝑙 (𝑢)} .

(3)

Since 𝑓
𝐴
𝑘 (⋅) is a nondecreasing function of the

completion time of job 𝐽
𝐴
𝑘 and 𝐶

𝑋
𝑙 (𝑆
󸀠
) < 𝑢, we

have 𝑓
𝐴
𝑙 (𝐶
𝑋
𝑙 (𝑆
󸀠
)) ≤ 𝑓

𝐴
𝑙 (𝑢). Thus max{𝑓𝐴𝑙 (𝐶

𝑋
𝑙 (𝑆
󸀠
)),

𝑓
𝐴
ℎ (𝑢)} ≤ 𝑓

𝐴
𝑙 (𝑢), as required.

The result follows.

Summing up the above analysis, our algorithm for prob-
lem 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max : 𝑓

𝐵
max ≤ 𝑈 can be formally

described as in Algorithm 1.

Theorem 5. Algorithm 1 solves problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

𝑓
𝐴
max : 𝑓

𝐵
max ≤ 𝑈 in 𝑂(𝑛

2
𝐴 + 𝑛𝐵 log 𝑛𝐵) time.

Proof. Step 1 requires a sorting operation of the𝐵-jobs, which
takes 𝑂(𝑛𝐵 log 𝑛𝐵) time. Step 2 takes 𝑂(𝑛𝐵) time since the
calculation of the 𝑓

𝐵
𝑗 (⋅) functions in Step 2 can be evaluated

in constant time by the assumption. In Step 3 we calculate
the 𝑓

𝐴
𝑗 (⋅) value for all the remaining unscheduled 𝐴-jobs,

which takes 𝑂(𝑛𝐴) time. Thus, after 𝑛𝐴 iterations, Step 3
can be executed in 𝑂(𝑛

2
𝐴) time. Therefore, the overall time

complexity of the algorithm is indeed 𝑂(𝑛
2
𝐴 + 𝑛𝐵 log 𝑛𝐵).

4. Problem 1 | 𝑝
𝑋
𝑗 = 𝑎
𝑋
𝑗 (1−𝑘𝑡) | ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 :

𝑓
𝐵
max ≤ 𝑈

Leung et al. [30] show that problem 1|| ∑𝑤
𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓
𝐵
max ≤ 𝑈

is NP-hard in the strong sense. Since our problem 1 | 𝑝
𝑋
𝑗 =

𝑎
𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓

𝐵
max ≤ 𝑈 is a generalization of the

problem 1|| ∑𝑤
𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓
𝐵
max ≤ 𝑈, then so is our problem. In

what follows we show that the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 −

𝑘𝑡) | ∑𝑤
𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓
𝐵
max ≤ 𝑈 is polynomially solvable if the 𝐴-

jobs have reversely agreeable weights; that is, 𝑎𝐴𝑖 ≤ 𝑏
𝐴
𝑗 implies

𝑤
𝐴
𝑖 ≥ 𝑤

𝐴
𝑗 for all jobs 𝐽

𝐴
𝑖 and 𝐽

𝐴
𝑗 . It is clear that Propositions 2

and 3 still hold for this problem. We modify Proposition 4 as
follows.

Proposition 6. For the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

∑𝑤
𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓

𝐵
max ≤ 𝑈, if the 𝐴-jobs have reversely agreeable

weights, then there exists an optimal schedule where the𝐴-jobs
are assigned according to the nondecreasing order of 𝑎𝐴𝑗 /𝑤

𝐴
𝑗 ,

that is, in the weighted shortest processing time (WSPT) order.
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Input: 𝑛𝐴, 𝑛𝐵, 𝑈, 𝑝
𝐴
= (𝑝
𝐴
1 , 𝑝
𝐴
2 , . . . , 𝑝

𝐴
𝑛𝐴
) and 𝑝

𝐵
= (𝑝
𝐵
1 , 𝑝
𝐵
2 , . . . , 𝑝

𝐵
𝑛𝐵
).

Step 1. Set ℎ = 𝑛𝐵, 𝐽 = 𝐽
𝐴
, 𝑓
𝐴
max = 0 and 𝑡 = (𝑡0 − 1/𝑘)∏

𝑛𝑋
𝑗=1(1 − 𝑘𝑎

𝑋
𝑗 ) + 1/𝑘,; solve𝐷𝐵𝑗 from

𝑓
𝐵
𝑗 (𝐷
𝐵
𝑗 ) = 𝑈 for 𝑗 = 1, 2, . . . , 𝑛𝐵 and renumber them according to the non-decreasing

order such that𝐷𝐵[1] ≤ 𝐷
𝐵
[2] ≤ ⋅ ⋅ ⋅ ≤ 𝐷

𝐵
[𝑛𝐵]

;
Step 2. If ℎ ≥ 1, then

If 𝑡 ≤ 𝐷
𝐵
[ℎ], then

set ℎ = ℎ − 1, 𝑡 = (𝑡 − 𝑎
𝐵
[ℎ])/(1 − 𝑘𝑎

𝐵
[ℎ]), assign job 𝐽

𝐵
[ℎ] at time 𝑡, and go to Step 2;

Else
go to Step 3;

Else
go to Step 3;

Step 3. If 𝐽 ̸=0, then
select the job 𝐽

𝐴
𝑙 from 𝐽 with the the smallest cost, that is, 𝑓𝐴𝑙 (𝑡) = min𝐽𝐴

𝑗
∈𝐽𝐴{𝑓

𝐴
𝑗 (𝑡)},

set 𝑓𝐴max = max{𝑓𝐴max, 𝑓
𝐴
𝑙 (𝑡)}, 𝑡 = (𝑡 − 𝑎

𝐴
𝑙 )/(1 − 𝑘𝑎

𝐴
𝑙 ), assign job 𝐽

𝐴
𝑙 at time 𝑡, delete 𝐽𝐴𝑙 from 𝐽,

and go to Step 4;
Elseif ℎ ≥ 1

report that the instance is not feasible;
Else
go to Step 4;

Step 4. If 𝐽 is not empty or ℎ ≥ 1, then
go to Step 2.

Else
stop.

Algorithm 1

Proof. Assume that 𝑆 is an optimal schedule where 𝐴-jobs
are not scheduled in the WSPT order. Let 𝐽𝐴𝑙 and 𝐽

𝐴
ℎ be the

first pair of jobs such that 𝑎
𝐴
𝑙 /𝑤
𝐴
𝑙 > 𝑎

𝐴
ℎ /𝑤
𝐴
ℎ . Then 𝑎

𝐴
𝑙 ≥

𝑎
𝐴
ℎ and 𝑤

𝐴
𝑙 ≤ 𝑤

𝐴
ℎ due to the fact that the 𝐴-jobs have

reversely agreeable weights. Assume that, in schedule 𝑆, job
𝐽
𝐴
𝑙 starts its processing at time 𝑇; then a set of 𝐵-jobs are
consecutively processed and then job 𝐽

𝐴
ℎ . In addition, let 𝜋󸀠

denote the set of jobs processed after job 𝐽
𝐴
ℎ . We construct

a new scheduling 𝑆
󸀠 from 𝑆 by swapping jobs 𝐽

𝐴
𝑙 and 𝐽

𝐴
ℎ

and leaving the other jobs unchanged. We conclude the
following.

(1) Schedule 𝑆
󸀠 is feasible. By Lemma 1, the completion

time of job 𝐽
𝐴
ℎ in 𝑆 equals that of job 𝐽

𝐴
𝑙 in 𝑆

󸀠; that is,
𝐶
𝐴
𝑙 (𝑆
󸀠
) = 𝐶

𝐴
ℎ (𝑆), so the completion times of the jobs

belonging to 𝜋
󸀠 are identical in both 𝑆 and 𝑆

󸀠. Since
𝑎
𝐴
𝑙 ≥ 𝑎

𝐴
ℎ , we have𝐶

𝐴
ℎ (𝑆
󸀠
) = 𝑇+𝑎

𝐴
ℎ (1−𝑘𝑇) ≤ 𝑇+𝑎

𝐴
𝑙 (1−

𝑘𝑇) = 𝐶
𝐴
𝑙 (𝑆). Hence the 𝜋-jobs are scheduled earlier

in 𝑆
󸀠, implying that their actual processing times are

smaller in 𝑆
󸀠, so their completion times are earlier in

𝑆
󸀠. Hence 𝑓

𝐵
𝑘 (𝐶
𝐵
𝑘 (𝑆
󸀠
)) ≤ 𝑓

𝐵
𝑘 (𝐶
𝐵
𝑘 (𝑆)) for any job 𝐽

𝐵
𝑘 in

𝜋, as required.

(2) Schedule 𝑆
󸀠 is better than 𝑆. By the proof of (1), it is

sufficient to show that

𝑤
𝐴
ℎ 𝐶
𝐴
ℎ (𝑆
󸀠
) + 𝑤
𝐴
𝑙 𝐶
𝐴
𝑙 (𝑆
󸀠
) ≤ 𝑤

𝐴
𝑙 𝐶
𝐴
𝑙 (𝑆) + 𝑤

𝐴
ℎ 𝐶
𝐴
ℎ (𝑆) . (4)

Since 𝐶𝐴ℎ (𝑆
󸀠
) ≤ 𝐶
𝐴
𝑙 (𝑆) and 𝐶

𝐴
𝑙 (𝑆
󸀠
) = 𝐶
𝐴
ℎ (𝑆), we have

𝑤
𝐴
𝑙 𝐶
𝐴
𝑙 (𝑆) + 𝑤

𝐴
ℎ 𝐶
𝐴
ℎ (𝑆) − (𝑤

𝐴
ℎ 𝐶
𝐴
ℎ (𝑆
󸀠
) + 𝑤
𝐴
𝑙 𝐶
𝐴
𝑙 (𝑆
󸀠
))

≥ 𝑤
𝐴
𝑙 𝐶
𝐴
ℎ (𝑆
󸀠
) + 𝑤
𝐴
ℎ 𝐶
𝐴
𝑙 (𝑆
󸀠
) − (𝑤

𝐴
ℎ 𝐶
𝐴
ℎ (𝑆
󸀠
) + 𝑤
𝐴
𝑙 𝐶
𝐴
𝑙 (𝑆
󸀠
))

= (𝑤
𝐴
𝑙 − 𝑤

𝐴
ℎ ) (𝐶

𝐴
ℎ (𝑆
󸀠
) − 𝐶
𝐴
𝑙 (𝑆
󸀠
))

≥ 0,

(5)

as required.

Thus, repeating this swapping argument for all the𝐴-jobs
not sequenced in the WSPT order yields the theorem.

Based on the results of Propositions 2, 3, and 6, our
algorithm to solve the problem 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

∑𝑤
𝐴
𝑗 𝐶
𝐴
𝑗 : 𝑓

𝐵
max ≤ 𝑈 for the case where the 𝐴-jobs have

reversely agreeable weights can be formally described as in
Algorithm 2.

Theorem 7. The problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤𝑗𝐶

𝐴
𝑗 :

𝑓
𝐵
max ≤ 𝑈 can be solved in 𝑂(𝑛𝐴 log 𝑛𝐴 + 𝑛𝐵 log 𝑛𝐵) time

by applying Algorithm 2 if all 𝐴-jobs have reversely agreeable
weights.

Proof. The correctness comes from the above analysis. Now
we turn to the time complexity of the algorithm. Step 1
requires two sorting operations of the 𝐴-jobs and 𝐵-jobs,
respectively, which take 𝑂(𝑛𝐴 log 𝑛𝐴) time and 𝑂(𝑛𝐵 log 𝑛𝐵)
time, respectively. Both Steps 2 and 3 take 𝑂(2) time.
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Input: 𝑛𝐴, 𝑛𝐵, 𝑈, 𝑤
𝐴
= (𝑤
𝐴
1 , 𝑤
𝐴
2 , . . . , 𝑤

𝐴
𝑛𝐴
), 𝑝𝐴 = (𝑝

𝐴
1 , 𝑝
𝐴
2 , . . . , 𝑝

𝐴
𝑛𝐴
) and 𝑝

𝐵
= (𝑝
𝐵
1 , 𝑝
𝐵
2 , . . . , 𝑝

𝐵
𝑛𝐵
).

Step 1. Set 𝑡 = (𝑡0 − 1/𝑘)∏
𝑛𝑋
𝑗=1(1 − 𝑘𝑎

𝑋
𝑗 ) + 1/𝑘, 𝑙 = 𝑛𝐴, ℎ = 𝑛𝐵, and ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 = 0;

sort the 𝐴-jobs according to the non-decreasing order of 𝑎𝐴𝑗 /𝑤
𝐴
𝑗 , that is,

𝑎
𝐴
[1]/𝑤
𝐴
[1] ≤ 𝑎

𝐴
[2]/𝑤
𝐴
[2] ≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝐴
[𝑛𝐴]

/𝑤
𝐴
[𝑛𝐴]

;
calculate the deadlines of the 𝐵-jobs from 𝑓

𝐵
𝑗 (𝐷
𝐵
𝑗 ) = 𝑈 and renumber them

according to the non-decreasing order such that 𝐷𝐵[1] ≤ 𝐷
𝐵
[2] ≤ ⋅ ⋅ ⋅ ≤ 𝐷

𝐵
[𝑛𝐵]

;
Step 2. If ℎ ≥ 1, then

If 𝑡 ≤ 𝐷
𝐵
[ℎ], then

set ℎ = ℎ − 1, 𝑡 = (𝑡 − 𝑎
𝐵
[ℎ])/(1 − 𝑘𝑎

𝐵
[ℎ]), assign job 𝐽

𝐵
[ℎ] at time 𝑡, and go to Step 2;

Else
go to Step 3;

Else
go to Step 3;

Step 3. If 𝑙 ≥ 1, then
set 𝑙 = 𝑙 − 1, ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 = ∑𝑤

𝐴
𝑗 𝐶
𝐴
𝑗 + 𝑤

𝐴
[𝑙]𝑡, 𝑡 = (𝑡 − 𝑎

𝐴
[𝑙])/(1 − 𝑘𝑎

𝐴
[𝑙]), assign 𝐽

𝐴
[𝑙] at time 𝑡, and go to Step 4;

Elseif ℎ ≥ 1

output that the instance is not feasible;
Else
go to Step 4;

Step 4. If ℎ ≥ 1 or 𝑙 ≥ 1, then
go to Step 2.

Else
stop.

Algorithm 2

Therefore, the overall time complexity of the algorithm is
indeed 𝑂(𝑛𝐴 log 𝑛𝐴 + 𝑛𝐵 log 𝑛𝐵).

5. Problem 1 | 𝑝
𝑋
𝑗 = 𝑎
𝑋
𝑗 (1−𝑘𝑡) | ∑𝑤

𝐴
𝑗 (1−𝑒

−𝑟𝐶𝐴𝑗 ) :

𝑓
𝐵
max ≤ 𝑈

This section address the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

𝑤
𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) : 𝑓
𝐵
max ≤ 𝑈. We show that it is polynomially

solvable if the 𝐴-jobs have reversely agreeable weights. It is
clear that Propositions 2 and 3 still hold for this problem. We
give Proposition 8 as follows.

Proposition 8. For the problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

𝑤
𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) : 𝑓
𝐵
max ≤ 𝑈, if the 𝐴-jobs have reversely

agreeable weights, then there exists an optimal schedule where
the𝐴-jobs are assigned according to the nondecreasing order of
(1 − 𝑒

−𝑟𝑎𝐴𝑗 )/𝑤
𝐴
𝑗 𝑒
−𝑟𝑎𝐴𝑗 , that is, in the weighted discount shortest

processing time (WDSPT) order.

Proof. We adopt the same notation as that used in the
proof of Proposition 6. Assume that (1 − 𝑒

−𝑟𝑎𝐴𝑙 )/𝑤
𝐴
𝑙 𝑒
−𝑟𝑎𝐴𝑙 >

(1 − 𝑒
−𝑟𝑝𝐴ℎ )/𝑤

𝐴
ℎ 𝑒
−𝑟𝑝𝐴ℎ . Since 𝐴-jobs have reversely agreeable

weights, we have 𝑎
𝐴
𝑙 ≥ 𝑎

𝐴
ℎ and 𝑤

𝐴
𝑙 ≤ 𝑤

𝐴
ℎ . Then by the proof

of Proposition 6, we know that 𝐶𝐴ℎ (𝑆
󸀠
) ≤ 𝐶

𝐴
𝑙 (𝑆), 𝐶

𝐴
𝑙 (𝑆
󸀠
) =

𝐶
𝐴
ℎ (𝑆), and 𝐶

𝐴
𝑘 (𝑆
󸀠
) = 𝐶

𝐴
𝑗 (𝑆) for all the other jobs 𝐽

𝐴
𝑘 ∈

𝐽𝐴/{𝐽
𝐴
𝑙 , 𝐽
𝐴
𝑘 } and that schedule 𝑆

󸀠 is feasible. To show that 𝑆󸀠
is better than 𝑆, it is sufficient to show that

𝑤
𝐴
ℎ (1 − 𝑒

−𝑟𝐶𝐴ℎ (𝑆
󸀠)
) + 𝑤

𝐴
𝑙 (1 − 𝑒

−𝑟𝐶𝐴𝑙 (𝑆
󸀠)
)

≤ 𝑤
𝐴
𝑙 (1 − 𝑒

−𝑟𝐶𝐴𝑙 (𝑆)) + 𝑤
𝐴
ℎ (1 − 𝑒

−𝑟𝐶𝐴ℎ (𝑆)) .

(6)

In fact, since 𝑟 ∈ (0, 1), 𝐶𝐴ℎ (𝑆
󸀠
) ≤ 𝐶
𝐴
𝑙 (𝑆), and 𝐶

𝐴
𝑙 (𝑆
󸀠
) = 𝐶
𝐴
ℎ (𝑆),

we have

𝑤
𝐴
𝑙 (1 − 𝑒

−𝑟𝐶𝐴𝑙 (𝑆)) + 𝑤
𝐴
ℎ (1 − 𝑒

−𝑟𝐶𝐴ℎ (𝑆))

− (𝑤
𝐴
ℎ (1 − 𝑒

−𝑟𝐶𝐴ℎ (𝑆
󸀠)
) + 𝑤

𝐴
𝑙 (1 − 𝑒

−𝑟𝐶𝐴𝑙 (𝑆
󸀠)
))

= 𝑤
𝐴
ℎ 𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
+ 𝑤
𝐴
𝑙 𝑒
−𝑟𝐶𝐴𝑙 (𝑆

󸀠)
− 𝑤
𝐴
𝑙 𝑒
−𝑟𝐶𝐴𝑙 (𝑆) − 𝑤

𝐴
ℎ 𝑒
−𝑟𝐶𝐴ℎ (𝑆)

≥ 𝑤
𝐴
ℎ 𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
+ 𝑤
𝐴
𝑙 𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
− 𝑤
𝐴
𝑙 𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
− 𝑤
𝐴
ℎ 𝑒
−𝑟𝐶𝐴𝑙 (𝑆

󸀠)

= (𝑤
𝐴
ℎ − 𝑤

𝐴
𝑙 ) (𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
− 𝑒
−𝑟𝐶𝐴𝑙 (𝑆

󸀠)
)

≥ 0.

(7)

Hence, 𝑤𝐴ℎ (1 − 𝑒
−𝑟𝐶𝐴ℎ (𝑆

󸀠)
) + 𝑤

𝐴
𝑙 (1 − 𝑒

−𝑟𝐶𝐴𝑙 (𝑆
󸀠)
) ≤ 𝑤

𝐴
𝑙 (1 −

𝑒
−𝑟𝐶𝐴𝑙 (𝑆)) + 𝑤

𝐴
ℎ (1 − 𝑒

−𝑟𝐶𝐴ℎ (𝑆)). Therefore, 𝑆󸀠 is not worse than
𝑆. Thus, repeating this swapping argument for all the 𝐴-jobs
not sequenced in the WDSPT order yields the theorem.

Based on the above analysis, our algorithm to solve the
problem 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤

𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) : 𝑓
𝐵
max ≤ 𝑈

for the casewhere the𝐴-jobs have reversely agreeable weights
can be described as in Algorithm 3.
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Input: 𝑛𝐴, 𝑛𝐵, 𝑈, 𝑟, 𝑤
𝐴
= (𝑤
𝐴
1 , 𝑤
𝐴
2 , . . . , 𝑤

𝐴
𝑛𝐴
), 𝑝𝐴 = (𝑝

𝐴
1 , 𝑝
𝐴
2 , . . . , 𝑝

𝐴
𝑛𝐴
) and 𝑝

𝐵
= (𝑝
𝐵
1 , 𝑝
𝐵
2 , . . . , 𝑝

𝐵
𝑛𝐵
).

Step 1. Set 𝑡 = (𝑡0 − 1/𝑘)∏
𝑛𝑋
𝑗=1(1 − 𝑘𝑎

𝑋
𝑗 ) + 1/𝑘, 𝑙 = 𝑛𝐴, ℎ = 𝑛𝐵, and ∑𝑤

𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) = 0;
sort the 𝐴-jobs in non-decreasing order of (1 − 𝑒

−𝑟𝑎𝐴𝑗 )/(𝑤
𝐴
𝑗 𝑒
−𝑟𝑎𝐴𝑗 ),

that is, (1 − 𝑒
−𝑟𝑎𝐴[1] )/(𝑤

𝐴
[1]𝑒
−𝑟𝑎𝐴[1] ) ≤ (1 − 𝑒

−𝑟𝑎𝐴[2] )/(𝑤
𝐴
[2]𝑒
−𝑟𝑎𝐴[2] ) ≤ ⋅ ⋅ ⋅ ≤ (1 − 𝑒

−𝑟𝑎𝐴[𝑛𝐴] )/(𝑤
𝐴

[𝑛𝐴]
𝑒
−𝑟𝑎𝐴[𝑛𝐴] );

calculate the deadlines of the 𝐵-jobs from 𝑓
𝐵
𝑗 (𝐷
𝐵
𝑗 ) = 𝑈 and

renumber them according to the non-decreasing order, that is, 𝐷𝐵[1] ≤ 𝐷
𝐵
[2] ≤ ⋅ ⋅ ⋅ ≤ 𝐷

𝐵
[𝑛𝐵]

;
Step 2. If ℎ ≥ 1, then

If 𝑡 ≤ 𝐷
𝐵
[ℎ], then

set ℎ = ℎ − 1, 𝑡 = (𝑡 − 𝑎
𝐵
[ℎ])/(1 − 𝑘𝑎

𝐵
[ℎ]), assign 𝐽

𝐵
[ℎ] at time 𝑡, and go to Step 2;

Else
go to Step 3;

Else
go to Step 3;

Step 3. If 𝑙 ≥ 1, then
set 𝑙 = 𝑙 − 1, ∑𝑤

𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) = ∑𝑤
𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) + 𝑤
𝐴
[𝑙] (1 − 𝑒

−𝑟𝑡
), 𝑡 = (𝑡 − 𝑎

𝐴
[𝑙])/(1 − 𝑘𝑎

𝐴
[𝑙]),

assign 𝐽
𝐴
[𝑙] at time 𝑡, and go to Step 4;

Elseif ℎ ≥ 1

output that the instance is not feasible;
Else
go to Step 4;

Step 4. If ℎ ≥ 1 or 𝑙 ≥ 1, then
go to Step 2.

Else
stop.

Algorithm 3

Theorem 9. The problem 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | ∑𝑤

𝐴
𝑗 (1 −

𝑒
−𝑟𝐶𝐴𝑗 ) : 𝑓

𝐵
max ≤ 𝑈 can be solved in 𝑂(𝑛𝐴 log 𝑛𝐴 + 𝑛𝐵 log 𝑛𝐵)

time by applying Algorithm 3 for the case that the 𝐴-jobs have
reversely agreeable weights.

Proof. The proof is analogous to that of Theorem 7.

6. Conclusions

This paper introduced a new scheduling model on a single
machine that involves two agents and learning effects simul-
taneously. We studied the problem of finding an optimal
schedule for agent 𝐴, subject to the constraint that the
maximum cost of agent 𝐵 does not exceed a given value.
We derived the optimal structural properties of optimal
schedules and provided polynomial time algorithms for the
problem 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) | 𝑓

𝐴
max : 𝑓

𝐵
max ≤ 𝑈. We

also showed that the problems 1 | 𝑝
𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

∑𝑤𝑗𝐶
𝐴
𝑗 : 𝑓

𝐵
max ≤ 𝑈 and 1 | 𝑝

𝑋
𝑗 = 𝑎

𝑋
𝑗 (1 − 𝑘𝑡) |

∑𝑤
𝐴
𝑗 (1 − 𝑒

−𝑟𝐶𝐴𝑗 ) : 𝑓
𝐵
max ≤ 𝑈 can also be solved in polynomial

time under certain agreeable conditions. Future research
may consider the scheduling model with more than two
agents.
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