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1Department of Software Technologies, University of Pardubice, Faculty of Electrical Engineering and Informatics, Studentská 95,
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Railway systems should be resilient to play a key role in creating sustainable development. Single-track railway lines are seen as
potential bottlenecks due to limited capacity. More advanced railway interlocking systems (such as ETCS or satellite-based control
systems) are being developed. On the other hand, the installation of these interlocking systems is a complex and time-consuming
and costly task. For this reason, it is necessary to recognize the impact of potentially installed system with capacity, stability of
timetable, quality, and other associated effects. ,e assessment is based on a set of simulation experiments using stochastic
microscopic simulation model in the OpenTrack software tool. ,e focus is on railway operation with automatic block and
automatic line blocking systems. If these two systems will have positive capacity effects, it is a basic presumption also for systems
such as moving block (e.g., ETCS L3) to be effective. Research has shown that the significance of such measures can be best
supported by linking to a matching timetable concept that will make full use of the benefits offered by these interlocking systems.
,e results reached in this research should be potentially applied, for example, by prioritizing of single-track railway lines for
possible installation of such interlocking system. It can be achieved based on the capacity and operational effects examined.

1. Introduction

Railway industry plays a key role within an effort to create a
sustainable environment. ,e issue is that there are many
single-track railway lines. For illustration, 78.3% of railway
network in the Czech Republic is single track (7324 km),
whereas this situation corresponds with European context,
where backbone lines are usually double track and single-
track lines are considered for supplementary connections.
Single-track lines are beneficial from the economic aspect,
but they are associated with several operational problems.
Occupation time is relatively long and trains often have to
wait for crossing and clearing of a segment at stations, what
is leading, for example, to decrease of travel speed.

Although this question has been known for years, it is
becoming increasingly acute today. All railway lines are in a
competitive environment with road traffic. Railway

transport must be resilient to be a successful and punctual
passenger and freight transport system. Qualitative demands
are increasing due to this. ,e lines with relative limited
extent of operation are not an exception. Maximal number
of operated trains on a railway line is not a crucial factor as it
used to be in the past. Reduction of dwell and travel time as
well as increasing speed are important features nowadays at
almost all single-track lines including lines with relative low
number of operated trains. Infrastructure of many single-
track lines itself is considered a bottleneck in this point of
view.

Another associated issue is that the relation between
infrastructure extent, traffic volume, and operational quality
must be balanced. Improving the interlocking system should
be part of this process. ,e concept of “interlocking system”
applied in this article integrates traffic control system, sig-
naling system together resulting into options how the line
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segment can be operated by trains. Line sections are more
important than railway stations, but the two parts are
interconnected.

,e selection of the appropriate level of interlocking is
determined by understanding of the capacity and operational
effects associated with the interlocking system. In the railway
sector, there is currently an extensive development of
interlocking systems called as moving block that allow the
presence of more than one train on a single track on a section
of a railway line (e.g., European Train Control System (ETCS
level) L2, L3, or satellite location-based systems). Some of
these systems are based on cab signaling that do not use
wayside signals, some combine cab and wayside signals.
Specific way of technical solution is not crucial for this article.

,e cost of these systems is significant. For this reason, it
is necessary to select which railway lines and their line
sections between stations are suitable for installation of such
a system. Outputs of this research should be applied by
prioritizing the railway lines to determine the order in which
these systems should be installed. ,ese priorities can be set
after understanding how these systems will affect the ca-
pacity of railway lines and how they can contribute to the
quality of operation on these lines.

It is necessary to define what are the possibilities of
interlocking on single-track lines and how they will be
covered in this article. In terms of the presence of multiple
trains that run consecutively in a line section, line inter-
locking systems can be divided into four levels.

(1) (I1) Basic level represents trains that run according
to sections between neighbor stations and the
presence of a single train in them (line sections are
not divided into spatial sections)

(2) (I2) ,e section is divided into a limited number of
spatial sections by one block (the most common
configuration). A larger number is possible but
rather rare, whereas there can be one train in each.
State-of-art blocks work automatically, so they are
assumed in the article.

(3) (I3) ,e equipment forming several spatial sections
is adapted to the operating conditions on the line
(speed and braking distances) so that the inter-
locking system with associated signals can maximize
the capacity of the line section. ,is is achieved by
allowing multiple trains to follow each other on the
track with minimized space separation. ,is is re-
ferred to as an automatic line block in the Czech
Republic and in some other countries.

(4) (I4) ,is progressive level is so-called moving block.
Trains can follow each other at different spatial in-
tervals, the size of which corresponds to the speed of
the train and the operating situation. Such a system is
foreseen in ETCS L3 applications, but this principle
may also be present in some other systems for re-
gional lines or underground metro systems.

(5) (I5) Double-tracked line segment. ,is variant is
applied as supplementary only for possibility to have
regard to next step of infrastructure extent.

,e technical solution of the line interlocking system
determines the technological times important for timetable
design. Levels I1 to I3 are assumed in the article, especially in
the configuration of automatically operating devices (shorter
technological time).

Interlocking systems at level I5 can locate a train on the
infrastructure considerably more accurately and precisely
than ever before. ,is opens up new opportunities in the
traffic control area. In both instances, the cost and technical
possibilities of the application of such new interlocking
systems are an issue—in other words, not all lines or line
sections can be equipped with such systems in the short term
at least. ,is is the reason why it is needed to conduct this
research to get some information for the decision-making
process how to select the lines for the installation of such a
system.

,e inclusion of the moving block (I4) in the article is
indirect. A small volume of traffic is usually operated on
single-track lines. Necessity to alternate both directions is
also there. It means that usually a small number of trains run
together in fleets (platoons). Although moving blocks can
shorten headway times, this can be replaced with data ob-
tained from the research focused on automatic line block as
an interlocking system. ,is is an acceptable model sim-
plification, but for evaluation of the relation between ca-
pacity and quality of single-track lines.

For completeness of the solution and comparability, one
line section is applied as a double track in one scenario
(Sc08).,is infrastructure variant is systematically labeled as
I5.

,e authors have long been engaged in research into the
capacity of the railway infrastructure based on the use of
stochastic simulation models. ,e aim of the research is to
identify technological operational indicators that can be
used to facilitate the description and assessment of this
capacity.

Until now, the capacity of railway infrastructure has
been determined mainly by time aspects of its use. ,e
maximum (theoretical) capacity nmax can thus be deter-
mined according to the following formula:

nmax �
T

tavg

�
TNt

i∈I′toccupi

[− ].

(1)

,is is the basic principle, the available time T[min] is
divided by the average time of occupation by one train or
operation tavg[min]. Alternatively, this can also be expressed
by the total number of trains Nt � |I′|, where I′ is the set of
trains under investigation and the occupation time of each
train or operation toccupi[min].

,e second basic indicator is the occupation degree
Doccup formula (2). It is the proportion of time used and the
total available time T[min].

Doccup �
i∈I′toccupi

T
[− ]. (2)
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,ese indicators will continue to be used. However, they
need to be complemented by qualitative perspectives and by
perspectives that are more reflective of the prevailing nature
of traffic and of the costs. ,e aim is to find a scale of in-
frastructure that is efficient, proportionate to operational
requirements, and enables rail transport to be organized in
the required quality. ,e main indicator that describes
quality is delay, as confirmed, for example, by Börjesson and
Eliasson [1].

Simulation models are inherently descriptive. ,e
results only provide information on the replications
performed, that is, on the assessed traffic variants. On
the other hand, simulations are rather complex and time--
consuming processes, and so, theoretical considerations
must be also devoted to the simulation procedure itself. One
of the additional objectives of this research is to recommend
procedures performing such assessments effectively with
modest demands on complexity and time.

2. Train Fleeting (Platooning)

Fleeting of trains means that two or more trains run in one
line section in the same direction and at the same time. ,is
is a prerequisite for an interlocking system that allows the
presence of more trains on one track (by division into spatial
sections) to be efficient.

For instance, in the city agglomeration of Hradec
Králové-Pardubice in Eastern Bohemia, there are four cases
where train fleeting can be applied because line sections are
shared by two ormore lines of passenger transport. Trains can
be fleeted at these sections due to coordination at inter-
changing nodes. ,ese sections are highlighted by the arrows
in Figure 1 that illustrates the frequency of such cases in
practice.

3. Hypothesis and Aim

Specific objective is to assess the effect of a railway line
interlocking system on the traffic occurring on a single-track
line, using stochastic experiments in a simulation model.
Changing interlocking system can be a way how the capacity
as well as the quality of operation can be improved.

Specifically, various interlocking systems are looked
upon as measures to increase the railway track’s capacity,
with emphasis on qualitative rather than quantitative ben-
efits. ,e goal is to find the background for a future
methodology for efficiently selecting interlocking systems
for low- and medium-traffic lines, where the quantitative
aspect does not play a major role and to prioritize the
equipment of the line sections.

,e research hypothesis can be formulated as follows.
Stochastic simulation can be successfully applied for the
determination of the new analytical indicators of railway
capacity as well as a tool that is able to identify the con-
tribution of individual types of interlocking systems.

Traffic stability as the qualitative aspect of capacity can be
applied as the main indicator.

Traffic stability will be calculated by formula (3) as the
average change of delay Δ d[s].

Δd �
j∈Ji∈I′ d

OUT
ij − d

IN
ij 

Nt · Nr

. (3)

It is computed as the difference between the delay at the
output from simulation dOUT

i [s] and the delay at input to
simulation dIN

i [s] by a train of i ∈ I′ within a replication of
j ∈ J. Trains are coming from the subset of I′. Number of
assessed trains is marked as Nt � |I′| and the number of
replications as Nr � |J|.

4. State-of-the-Art

Effect of various interlocking systems on the capacity has
been discussed previously [2]. Emphasis was on the
European train control system level 2 (ETCS L2), which was
compared to the interlocking system NS′54/ATB. For this,
the authors used the compression method as per UIC 406,
accentuating only the quantitative aspect of capacity. ,e
criterion used by us in our research is the value of the delay,
whereby we attempt to accentuate the qualitative aspect, that
is, to look at the problem from another side. Simulation as an
adequate tool for the assessment of railway interlocking as
well as for the organization of railway operation is seen also
[3, 4].

Overview of studies (25 various studies) focused on
railway capacity assessments is presented previously [5],
where various approaches are discussed—analytical, simu-
lation, and combined approach. ,ere are also listed
commonly used software tools for capacity assessment. ,e
differences between the United States and European ap-
proaches are also outlined and studies are also broken into
several categories and there are also highlighted key simi-
larities and differences between the United States and Eu-
ropean rail systems, where 14 U.S. studies and 11 European
studies are considered. Our approach could be incorporated
into timetable-based simulation software as is common in
Europe, whereas in the United States the predominant
approach is without considering timetables.

In the article by Abril et al. [6], there is pointed dif-
ference between theoretical and practical capacity with an
introduction of Spanish MOM system that contains opti-
mization module for obtaining feasible and optimized
timetables. ,ere is also comparison of various parameters
of timetable (e.g., headway times, line sections length, train
speed) and its impact on capacity. ,e article evaluates the
relationship between the subsequent intermediate period
and capacity on single-track and double-track lines, and
attempts to tabulate this relationship. In our article, this
principle is translated into schedule modifications in each
scenario.

Method for designing a single-track rail line for a reliable
high-speed passenger train service is presented in the article
by Petersen and Taylor [7]. ,e operation under consider-
ation is planned as homogeneous with one type of train-
s—high-speed passenger transport. Among other constraints
that are relevant to our research, the primary focus is on the
location and length of double-track inserts, with no fleeting
considered. Different scenarios of double-track line lengths,
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the amount of delayed trains, as well as delay values were
evaluated using computer simulation in this article.

We employ the OpenTrack tool for our simulations.,is
is a widely used software enabling discrete and continuous
approaches to simulation to be combined [8]. It can be used
in the modeling of both high-speed lines [9] and conven-
tional lines [10] as well as suburban lines [11, 12].

Interactions of trains running at different speeds, in-
cluding the capacity aspect, have been addressed previously
[13], providing evidence of the importance of this topic. ,e
author also pointed to the fact that railway traffic is a
phenomenon that is affected by a number of external factors.

,e same idea dominates the article by Mussone and
Calvo [14]. ,e authors also discussed the potential of a
comprehensive analytical assessment of the railway capacity.
,e topic is still actual, perhaps also in a new context—with
respect to the question as to how to effectively select the need
for and scope and method of setting up detailed microscopic
simulation models.

Very often, the capacity issue in the context of an applied
interlocking system is addressed for highly burdened lines in
efforts to attain the maximum capacity. ,e article by
Dicembre and Ricci [16] is an example of such a solution [12]

Unlike that solution, our research focuses on the issue of
how a more advanced interlocking system can contribute to
traffic quality on low- and medium-traffic intensity lines,
where more importance is attached to the highest possible
traffic quality than to attaining the maximum capacity.

,e economic aspect is frequently stressed in the context
of current railway market liberalization. Capacity assign-
ment is a topic discussed previously [16].

Timetable-oriented point of view on the interaction
between railway operation and infrastructure is presented by
Široký et al. [17].

Railway capacity assessment in the international context
is currently governed by the UIC 406 code. Still, despite the
existence of the code, much space remains for additional
research in this area. ,e compression method and (once
again) the stochastic approach to traffic are discussed pre-
viously [18], where the application in Sweden is also de-
scribed. Application in Slovakia is the topic analyzed by Šulko
et al. [19].

5. The Simulation Model and Its Application to
the Assessment of Infrastructure and
Timetable Variants

In our research, a microscopic simulation model of a single-
track line was set up in OpenTrack software tool. ,e model
contains all needed data for research on microscopic level,
including details about infrastructure, rolling stock, time-
table, and behavior of trains in stochastic conditions.

,e line is 50-km long and encompasses five interstation
line sections. Input delays are stochastically generated. Train
delays are generated based on the discrete probability dis-
tributions obtained through a surveymade by the authors on
the railway network in the Czech Republic.

We realize 200 replications for each scenario (scenarios
are listed in Table 1), while replication contains traffic peak
of 4 hours. To be able to collect data for delayed trains, we
consider a replication time of 6 hours.

,e primary objective of the research is the need to find
the appropriate scale of the infrastructure and the techno-
logical equipment of the transport infrastructure to match
the required volume of traffic. In addition to being cost-
effective, this scale will also allow for reliable operation
within the given options. ,e concept of the simulation

Heřmanův
Městec 

Chrudim
město

Chrudim

ChoceňMoravany
Pardubice hl.n.

Pardubice-
Rosice n. L.

Hradec Králové hl.n. Týniště n. O.

Rychnov n. K./Solnice

LetohradČastolovice

Borohrádek

Holice

Přelouč

Figure 1: Simplified scheme of the railway network in Hradec Králové-Pardubice agglomeration with parallel regional train lines (marked
with arrows).
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assessment is carried out as shown in Figure 2—we address
all possible options of interlocking systems (I1–I4) in our
research. Moving block, as it was stated earlier, is not shown
in the individual scenarios, as a necessary condition for its
effectiveness is the effectiveness of both the automatic block
and the automatic line block, as it is essentially a higher level
of both. It is not necessary to model moving block itself due
to this. Moving block is replaced by automatic block and
automatic line block.

,e set of applied simulation scenarios is based on the
logic shown in Figure 2. Variants of the types of line
interlocking systems and various timetable variants were
considered. ,e need of different timetables is caused by the
fact that certain types of interlocking systems will only have a
positive capacity effect in combination with a timetable that
takes this into account.

As can be seen in Figure 3, the 50 km long line consists of
five line sections connecting six stations marked A–F. Sig-
naling devices enabling the presence of more trains in the
spatial section are primarily inserted in the middle section
C-D, in some cases in the outermost sections A-B and E-F.
,e timetable is based on 14 trains running throughout the
line. ,e traffic is then reinforced in the last (suburban)
section E-F by four or eight trains depending on the sce-
nario. Further reinforcement is then added in scenarios
Sc01–Sc05 and Sc07–1 in sections C-D, where eight section
trains are added.,is range of services covers a time window
of 4 hours and consists of two types of trains—regional
(slow) trains and long-distance (fast) trains. An overview of
the simulation scenarios comprising this study is given in
Table 1. ,e symbols I1–I5 stand for individual variants of
infrastructure. ,e scope and infrastructure configuration
are shown in Figures 3–8.

Scenario Sc07-1 is complementary and works with a
higher mean value of stochastically generated delay of
12min. ,us, a situation of relatively unstable traffic is
created by this scenario. All other scenarios work with a
mean delay value of 4min.

6. Features of the Stochastic Modeling

Stochastic modeling provides the possibility to assess and
evaluate not only the quantitative view, but also the

qualitative aspects. ,ese are very important for resilient
railway systems.

Different train delay characteristics were applied in the
scenarios:

(a) Typical delay: 63% trains at the input meet the ex-
ponential distribution patterns with a mean delay
time of 255 s, the longest delay generated was 1200 s.

(b) Larger delays due to rebuilding or other building
works on the adjacent sections: 80% trains at the
input obey the exponential distribution with a mean
time of 720 s, the longest delay generated was 1200 s.

,e output parameters obtained from the above sce-
narios are described in the sections that follow.

,ere were calculated 200 replications for all considered
scenarios (values about 5 seconds for half widths of the
arithmetic means with 95% confidence interval as
presented).

Unless otherwise stated, delay values represent average
value over all 200 replications.

7. Simulation Scenarios and Results Obtained

Basic timetables can be modified in individual scenarios
accordingly to be suitable for the applied interlocking sys-
tems as well as to be suitable for the assessed effects.

7.1. Scenario Sc01: Single-Track Layout along theEntire Length
of the Line without Further Organization of Train Movements
in Spatial Sections. ,e initial situation is a single-track line
on which the traffic is organized according to line sections.
Related train diagram (timetable) is attached in Appendix
Figure 14.

,ere are four extra suburban trains of Direction 1
inserted in the final spatial section E-F. However, the
timetable design has shown the limited capacity imposed by
this traffic organization, which has necessitated the need to
connect these trains in Direction 2 with the basic trains. ,is
effect does not occur in some other scenarios when using the
automatic block.

Figure 4 shows that the line tends to reduce the input
delay in both directions during the run. In Direction 2 at

Table 1: Simulation scenarios.

Scenario Infrastructure Number of trains (full length of
the line/C-D/E-F)

Train fleeting in line
sections Role in the study

Sc01 I1—trains are organized
between stations 14/14/18 None Basic (input) state

Sc02 I2 at sections C-D 13/15/18 C-D Role of automatic block (I2)Sc03 I2 at sections A-B, E-F 14/14/22 A-B, E-F
Sc04

I3 at sections C-D
13/15/18 C-D Role of automatic line block (I3)

Sc05 14/22/14 None Role of I3 without fleeting
Sc06 14/22/14 C-D Role of I3 with fleeting
Sc07 I3 at C-D, E-F 14/22/22 None I3 extended to two sections

Sc08 I5 C-D double track
(operated by I2) 14/22/14 C-D Middle section C-D double track (I5)

Sc07-1 I3 at C-D, E-F 14/22/22 None I3 at 2 sections together with increased
mean value of delay
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Figure 2: Concept of the simulation assessment within performed scenarios.
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Figure 3: Infrastructure layout for scenarios with highlighted changes in line sections.
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station D, there is a significant reduction in delay, however,
this is due to the crossing of trains at station E where
passenger trains are scheduled to stay for 8.5min. Trains
7800 and 7802 increase delay in the last section B-A due to
the fact that they cross with oncoming trains at station B and
depart (for the crossing operating interval) only 1.5min after
the oncoming train arrives.

,e conclusion on this scenario is that a lower capacity
can be expected in the interstation sections of the single-
track line with the given mode of traffic organization.

7.2. ScenarioSc02: Single-TrackLayoutalong theEntireLength
of the Linewith anAutomatic Block in Sections . ,is scenario
is principle based on the situation in scenario Sc01, which is
extended by the introduction of an automatic block in the
middle of section C-D, that is, in the middle of the entire
modeled line. ,e placement of this section to the middle
section of the line is based on a general judgment rather than
an analysis of the timetable and traffic volume. ,e concept
and the traffic volume are the same as in scenario Sc01,
however, the timetable is modified to consider the option to
run planned trains as fleeted on the section with the block.
Trains are fleeted in a fast-slow sequence. Train diagram is in
Appendix Figure 15.

,e results for this scenario are shown in Figure 5. In
Direction 1, train 1701 runs alone in sections A–D, so there
is a noticeable attempt to reduce the stochastically generated
input delays. At stations D and E, it crosses closely with
oncoming trains, the average delay values start to increase.
Another interesting effect is that for trains 1703, 1705, and
1707, the average delay values increase in the C-D section,
while they decrease for trains 7803, 7805, and 7807. ,is is
because the regional trains 78xx are overtaken at station C by
the express trains 17xx. ,erefore, the 78xx regional trains
stay there for 16.5min, which causes the delay to decrease,
and the situation is similar in the opposite direction. ,ese
stays cause an almost absolute reduction of generated entry
delays to zero for the price of unattractive stays for pas-
sengers and taking advantage of the fleeting opportunity.

7.3. Scenario Sc03: Single-TrackLayoutalong theEntireLength
of the Line with Automatic Block in Sections A-B, E-F. In
contrast to the previous Sc02 scenario, there is an attempt to
adapt the location of the automatic block to the extent of
traffic, so one is placed in the last section of E-F, where the
extent of suburban traffic is increased.,e second automatic
block is then inserted in section A-B (allowing a shorter
interval between trains departing from both terminal
stations).

,e timetable was also adapted to the introduction of
automatic blocks (see Appendix Figure 16). Train fleeting is
used on both sections A-B and E-F. A significant change is
the fact that the inserted trains 178xx in the (suburban)
section E-F are introduced in both directions on the hourly
interval and are thus no longer coupled in Direction 2 with
the basic trains running on the entire line.

,e evolution of delay of individual basic trains (op-
erating on the entire line) is shown in Figure 6.

As in the previous cases, two basic elements affecting the
stability of the timetable are evident in this operational
scenario. ,e first one is the influence of the length of stay in
the station (for traffic reasons), where its extension has a
positive effect (see trains 78xx in Direction 1 with a stay in
station C of 8min). ,e second is that crossing with an
oncoming train (almost) at the crossing interval can have a
negative effect on stability (trains 17xx and crossing at
stations B, D, and E in Direction 1). Train 1707 lacks a
crossing at E at the end of the analysis period, which is
reflected in the figure.

Subconclusion from the Sc01 to Sc03 scenarios: the
introduction of an automatic block may not have a clear
impact on the increase in capacity (analytically determined),
whereas it depends on the constructed timetable. It also has
been shown that the automatic block has benefits in terms of
introducing some operational concepts (e.g., the possibility
of running embedded commuter trains in the E-F section
separately in both directions). On the other hand, a certain
paradox has emerged, namely, that unattractive long stays in
stations for traffic reasons can lead to increased timetable
stability from the passengers’ point of view.
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Figure 4: Evolution of average delay on arrival at individual stations in scenario Sc01.
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For complexity, the segment E-F was assessed in an
analytical way using Sc0–Sc03, as given in Table 2.

7.4. Scenario Sc04 Is Focused on the Comparison between
Automatic Line Block and Automatic Block. ,e first im-
portant thing is to decide whether to use an automatic line
block or an automatic block (or a more advanced inter-
locking system). Two (side) variants are compared. Where
an automatic block is used, section C-D, that is in the middle
of the line, is divided into two spatial sections.,e automatic
line block divides the same section into partial spatial sec-
tions 1 km each.

Four couples of long-distance trains and three couples of
regional trains with longer running times are used. ,e
timetable has been set up so that fleeted traffic is practiced in
the middle section with an automatic line block, which
means a long-distance train and a regional train running one
after the other so that the division of the section into two
spatial sections is deliberately used. ,e same timetable
(Appendix A2) is used in the variant with an automatic
block, though the latter would enable the ensuing interval to
be shortened.

,e simulation revealed that the mean delay of the trains
arriving at the destination station (F or A), except for the
regional trains in Direction 1 was shortened by the intro-
duction of the automatic block (Table 3).

From Table 3, it is clear that the introduction of the
automatic block is most beneficial to the long-distance trains
in Direction 1, where the mean delay at the arrival at the
destination station at the end of the 50 km line was 80
seconds. ,e largest increase in the delay, on the other hand,
was found for the regional trains in the same direction where
the mean delay is 73 seconds. ,is is kind of paradoxical,
because the regional trains run tightly following the long-
distance trains, and so one would expect that the change of
the interlocking system enables more trains to move within
the interstation section.

At this point, it can be concluded that the replacement of
an automatic line block with an automatic block in one

“isolated” section is qualitatively beneficial to some (small)
extent.

7.5. Scenarios Sc05 and Sc06: Train Fleeting. Fleeting was
assessed on the middle section C-D of the single-track line
model—the only section that is equipped with an automatic
block with 1-km long spatial sections. For emphasizing, the
traffic in this section was made denser by inserting addi-
tional trains running only in this section of the model. ,e
rate is one couple of added trains per hour. ,e traffic
concerns six trains per hour (three in either direction: long-
distance, regional, and added train sets).

Two timetable variants (named as scenario Sc05 and
scenario Sc06) were set up and compared: the number of
trains was identical, but the added train running patterns
were different. Scenario Sc05 included alternating train runs,
the automatic block being thus virtually unused, as shown in
Figure 7. Train diagram for scenario Sc05 is attached as
Appendix Figure 17 and train diagram for Sc06 as
Appendix 18.

,e scenario Sc06 includes running the trains as
fleeted to use the section division into spatial sections. To
preserve the real aspects of traffic on medium burdened
lines, only two trains in the same direction are considered
in a fleet, but the interlocking systems allow even more.
Moreover, the trains are fleeted in the odd direction only,
whereas this approach provides the opportunity to
compare group traffic (Direction 2, trains with even
numbers) and fleeted traffic (Direction 1, trains with odd
numbers).

First, the development of the mean delay times at the
arrival to the stations (A–E) is compared for the entire line
applying alternating traffic of the added trains as shown in
Figure 7. ,is development is shown in Figure 9.

,is can also be compared to the development of the
delay of the same trains with additional trains being run
within sections C-D in the fleeted mode in one direction and
in the group mode in the other direction (Figure 8). ,e
results are shown in Figure 10.
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Figure 5: Evolution of average delay on arrival at individual stations in scenario Sc02.
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For the trains with odd number (in Direction 1), the
delay decreased slightly, by 10.0 s in average, for the long-
distance trains (1701, 1703) and increased by 1.6 s for the
regional trains (7801, 7803, 7805) that run along the entire
line.

,e patterns for the long-distance trains and regional
trains are also different from the even trains (in Direction 2).
,e delay of the regional trains (7800, 7802, 7804) decreases
continuously along the entire line. Compared to the alter-
nating traffic mode, the mean delay is 2.6 s lower. ,is traffic
model is inconvenient for long-distance trains, the delay is
5.3 s longer. ,is is due to the structure of the timetable
(timetable composition), where the regional traffic trains are
run within section F-E 15minutes after the preceding trains,
whereas the long-distance trains leave station F after a tight
crossing (to the interval) the passenger train in the opposite
direction.,e regional trains pass the long-distance trains in
E, the latter reducing their delay.

,e situation of the added trains (22xxx series) running
within the middle section C-D only is as follows. ,e sto-
chastically generated delay is increased in both traffic var-
iants—by 18.1 s (in average) in the odd Direction 1 and 9.2 s

in the even direction for the alternating traffic mode. If the
traffic is organized in the fleeted/group mode, the delay also
increases, but only by 4.8 s in the odd Direction 1 and 1.3 s in
the even Direction 2.

,e simulation indicates that the installation of an au-
tomatic block in the middle section is beneficial to some
extent but not very much from the global aspect. What is
found to be significant is the link to the timetable structure in
cases when timetable is designed, so that it respects infra-
structure specifics.

Scenario Sc07: assessment of the extended application of
automatic block on one of the suburban line sections with
increased volume of suburban traffic: impact of different
delay values.

Automatic block in two sections within the railway line is
considered. ,e first one is sections C-D in the middle of the
line.,e second one is the suburban section E-F at the end of
the line in Direction 1. ,ere are eight more suburban trains
inserted to this section. Average train delay values on arrivals
at individual stations for average delay of 4min are in
Figure 11. Train diagram is in Appendix Figure 19.

7.6. Scenario Sc08: Assessment of Double-Track Line Sections
C-D in the Middle of the Line. Double-track section C-D is
used for crossing trains by moving both trains. ,e aim is to
assess whether this approach can be effective also for the
improvement of operational stability (reliability). For that
reason, regular crossing of trains moving in the section is not
planned in timetable. Train diagram attached in Appendix
A5 is applied also for this scenario.

When the results in Figures 10 and 12 are compared, it is
obvious that more significant change occurred in the Di-
rection 2 only. Average delay of long-distance trains de-
creased from the span 120–160 s to values slightly less than
100 s.,is positive effect is related to the fact that these long-
distance trains cross with a pair of added and long-distance
trains that run in the opposite directions. If these trains are
delayed, they cross at double-track line sections.

Partial conclusion: considering double-track line only in
one of the line sections is beneficial for operational stability

Station

Direction 1

B C D E F
0

50
100
150
200
250
300
350

D
el

ay
 [s

]

1701
1703
1705
1707

7801
7803
7805

(a)

E D C B A
Station

Direction 2

0
50

100
150
200
250
300

D
el

ay
 [s

]

1700
1702
1704
1706

7800
7802
7804

(b)

Figure 6: Evolution of average delay on arrival at individual stations in scenario Sc03.

Table 2: Analytical assessment in segments E-F.

Scenario Sc01 Sc02 Sc03
nmax(trains/4h) 27 27 31
Doccup[− ] 0.648 0.648 0.708

Table 3: Comparison of an automatic line block and an automatic
block in sections C-D.

Average delay at
arrival (s)

Direction 1 Direction 2

Type of trains Line
block

Automatic
block

Line
block

Automatic
block

Regional 32 105 29 26
Long distance 235 155 67 51
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Figure 9: Evolution of average delay on arrival at stations in scenario Sc05.
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Figure 10: Evolution of average delay on arrival at stations in scenario Sc06.
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Figure 11: Evolution of average delay on arrivals at stations in scenario Sc07.
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Figure 12: Evolution of average delay on arrivals at stations in scenario Sc08.
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Figure 13: Evolution of average delay on arrival at individual stations in scenario Sc07-1.

Journal of Advanced Transportation 11



when crossing by moving is possible due to the structure of
the timetable and due to a delay.

7.7. Scenario Sc07-1: Assessment of the Influence of Increased
Delay. ,e assumptions are the same as for the scenario
Sc07, including the use of the train diagram in Appendix A6.
,e goal of the scenario Sc07-1 is to simulate an operation
with high variability in the timetable (with almost random
operation)—mean value of train delay is 12min. Average
delay reached on arrival to stations is shown in Figure 13.

Automatic block in the line sections E-F supports the
operation of suburban traffic, but the resulting values of
delay increases due to the high volume of traffic. ,ere is a
registered decrease of delay values for regional trains in
Direction 1 in sections C-D. On the other hand, delay
increases for long-distance trains. ,erefore, a close re-
lation to the time positions of individual train routes is

evident. No substantial impact of automatic block ap-
plication can be found in Direction 2 in the line sections
C-D.

Partial conclusion: automatic block can be helpful, but
significant contributions are more related to the opportunity
to realize the defined operational concepts (e.g., train
fleeting) than to operational reliability in general. Impact of
timetable composition is more important.

8. Discussion

8.1. Comparison of Scenarios. From the mutual comparison
of the scenarios Sc01, Sc02, Sc03, we can perceive certain
connections with the application of the automatic block and
automatic line block as basic measures enabling the presence
of multiple trains running in the same direction. Not only
the link to the timetable has been demonstrated, but also the
fact that sometimes unattractive train sojourn times due to
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Figure 14: Sc01.
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crossing can paradoxically lead to increased timetable
stability.

,e Sc04 scenario was focused on comparison of the
automatic block and automatic line block as a measure
against each other. ,e automatic line block leads to a re-
duction in the magnitude of the delay (Table 2). ,e delay
was reduced by 10.3–34.0%, but in one case even increased
more than threefold.,is is because the automatic line block
allows to shorten the subsequent headway. On the contrary,
however, the case of increased delay again shows the par-
ticularistic nature of the solution and the link to the
timetable. If a decision must be made on which type of

interlocking system allows the presence of more trains in a
section should be chosen on a particular line (e.g., due to the
difference in investment costs), a more in-depth assessment
with a simulation model can only be recommended.

,e comparison of the Sc05 and Sc06 scenarios is
interesting in terms of the influence of planned fleeting,
which is a prerequisite for the effectiveness of such
interlocking systems, in this case an automatic line block,
where alternating and fleeting modes of train passing are
compared. ,e results show similar delay values for
individual trains in Direction 1, while in Direction 2 the
delay values are slightly higher in the case of fleeting. On
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Figure 15: Sc02 and Sc04.
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one hand, the increments are about 20 s per train, which
does not indicate a very significant problem, but it is fully
consistent with the technological interpretation of the
issue that fleeted traffic can be expected to be more
susceptible to delay increments. It should be noted that
in both scenarios the extent of traffic in the C-D section
under consideration is increased to almost full occu-
pancy by running the newly added trains only in this
section.

When comparing the Sc05 and Sc07 scenarios, where the
Sc07 scenario assumes automatic line block in two sections
(C-D, E-F), it was found that greater delays are experienced
in the Sc07 scenario. However, this is due to the change in
train sequence on departure from terminus F. Again, this
points to the context of the chosen timetable and practical
conditions.

,e impact of unstable, but in a way irregular, traffic was
monitored by comparing the Sc07 and Sc07-1 scenarios,
where mean input delay values of 4 and 12min, respectively,
are applied. ,e achieved (output) delay values were higher,
but the trend of stability was the same—in Direction 1, with
a tendency of delay reduction for selected trains in the part of

line A–D and instability at station F. While the opposite
direction 2 was slightly asymptotically stable in the Sc07
scenario (delay decreased throughout the line), in the Sc07-1
scenario there is also a slight increase in delay for some
trains.

From a comparison of the Sc05 and Sc08 scenarios,
where the Sc05 scenario assumes an automatic line block in
the C-D section and the Sc08 scenario assumes the C-D
section as double track and equipped with automatic block,
there is no significant difference in terms of the achieved
delay values.

,e comparison has shown that the benefit of inter-
locking systems enabling the presence of multiple trains
running consecutively on one section of a single-track line
must be seen primarily in the context of the applied time-
table. Such interlocking system is beneficial in sections
where it is necessary to reduce the subsequent interval
between trains. ,is can be recommended, for example, in
the first sections after stations that are the hub of an inte-
grated timetable so that a slower regional train can leave
earlier to follow a fast train or in the case that there are
running trains of two lines of passenger transport (which are
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divided in some of the next stations). Naturally, the appli-
cation should also be considered if the number of trains
carried needs to be increased—capacity in the classical
quantitative sense. However, it should be pointed out, and
the results of the simulation assessments carried out show
this, that it is advisable to verify the positive effect in every
practical case, at least in the form of timetable design. ,ere
may be a problem of trains crossing such a route in other
sections of the line and this may require additional support
measures.

8.2. General Discussion. Performed simulation experiments
presented in the article are atypical. ,e simulation is not
focused on busy lines where it is needed to maximize the

number of trains. Simulation was focused on single-track
lines where qualitative aspects and individual types of
interlocking systems were assessed at first. ,e main aim is to
create a base for recommendation on what type of inter-
locking systems to install on railway lines with medium or
small density of traffic and how to evaluate designed
solutions.

,e second atypical feature is that the interlocking
system is applied only in one of the sections between
stations. ,e issue is whether such an individualized
installation can be beneficial or if it is needed to install it
in more extended sets (e.g., on the entire railway line).

Generalized recommendation based on individual
partial simulation assessments is that the installation of
an automatic block (or more advanced line interlocking
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system) contributes to stability (quality) only for a small
part. Benefit cannot be expected automatically in
comparison with stochastic aspects of operation
assessed with the simulation model. However, almost all
partial assessments have shown that if the measure is
linked to a timetable concept that would support the
positive effects of the facility, its effectiveness can be
increased, even if it is installed only in selected sections.
,e results and recommendations are that the scope of
the infrastructure must be planned together with the
operational concept.

Research hypothesis has not been rejected. It was
recognized that stochastic simulation can also assess the
possible benefits of the selected types of line interlocking
system on operational quality and stability on moderately
loaded lines. ,e performed simulation assessments
resulted in some recommendations that can be techno-
logically justified and possibly generalized. Naturally, es-
pecially in extreme cases, if the expected benefit of the
device is ambiguous, it is only possible to recommend the
application of a microscopic simulation model focused on
the assessed line in specific (and thus more precise)
conditions.

9. Conclusions

,e research shows that there are several other possibilities
and conditions in this area which could be the subject of
similar assessments using stochastic simulation to create a
comprehensive view of the issue. ,is provides the possi-
bility of further research in this area and clarification or
extension of conclusions.

,e research presented in the article confirmed that the
issue of capacity of railway lines in the context of quality
(stability) of traffic is an interesting topic even in the case of
railway lines with a medium level of traffic. ,e application
of microscopic simulation in the OpenTrack tool can be
beneficial not only for the assessment of specific railway
lines, but also at the theoretical level.

Specific results of the research are mentioned above in
the discussion part of the article. In general, the relation
between train fleeting and the presence of interlocking
system that allows the presence of multiple trains in a single
line section was assessed as key aspect. As a result, a rec-
ommendation is made to consider the installation of such
interlocking systems on single-track line sections where
multiple passenger services are operated as a priority. It was
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confirmed that train delay in simulation should be a qual-
itative indicator of capacity also in this specific issue, which
is the subject of this article. For a comprehensive assessment,
it is still recommended to build a specific simulation model
containing all local specifics. On the other hand, this re-
search forms the basis for finding ways to use single-track
lines in a resilient railway transport system.

Appendix

Timetables for Individual Scenarios

A1: Timetable for the Scenario Sc01—initial state: trains are
organized only between stations. Automatic block (I2) and
automatic line block (I3) are not applied at any section
(Figures 14–19).

Figure 15: Timetable for the Scenarios Sc02 and Sc04.
Figure 16: Timetable for the Scenario Sc03—automatic

block (I2) applied in the border sections A-B and E-F.
Figure 17: Timetable for the Scenario Sc05.
Figure 18: Timetable for the Scenarios Sc06 and Sc08.
Figure 19: Timetable for the Scenarios Sc07 and Sc07-

1—automatic block (I2) applied in the border sections A-B
and E-F, even-spacing operation in section C-D (also with
automatic block).
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in ŽSR conditions,” Trans Motauto World, vol. 3, no. 4,
pp. 181–184, 2018.

18 Journal of Advanced Transportation



Research Article
Improvement of Multiclass Classification of Pavement Objects
Using Intensity and Range Images

Elham Eslami and Hae-Bum Yun

Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA

Correspondence should be addressed to Hae-Bum Yun; haebum@mac.com

Received 25 February 2022; Accepted 23 June 2022; Published 9 August 2022

Academic Editor: SeyedAli Ghahari

Copyright © 2022 Elham Eslami and Hae-Bum Yun. )is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Automated recognition of road surface objects is vital for efficient and reliable road condition assessment. Despite recent advances
in developing computer vision algorithms, it is still challenging to analyze road images due to the low contrast, background noises,
object diversity, and variety of lighting conditions. Motivated by the need for an improved pavement objects classification, we
present Dual Attention Convolutional Neural Network (DACNN) to improve the performance of multiclass classification using
intensity and range images collected with 3D laser imaging devices. DACNN fuses heterogeneous information in intensity and
range images to enhance distinguishing foreground from background, as well as to improve object classification in noisy images
under various illumination conditions. DACNN also leverages multiscale input images by capturing contextual information for
object classification with different sizes and shapes. DACNN contains an attention mechanism that (i) considers semantic
interdependencies in spatial and channel dimensions and (ii) adaptively fuses scale-specific and mode-specific features so that
each feature has its own level of contribution to the final decision. As a practical engineering project, dataset are collected from
road surfaces using 3D laser imaging. DACNN is compared with four deep classifiers that are widely used in transportation
applications. Experiments show that DACNN consistently outperforms the baselines by 22–35% on average in terms of the
F-score. A comprehensive discussion is also presented regarding computational costs and how robustly the investigated classifiers
perform on each road object.

1. Introduction

Automation in road condition assessment is a crucial yet
challenging task in smart transportation management. )e
goal is to label various road objects in pavement images and
to establish appropriate maintenance and repair strategies to
ensure road serviceability and safety. Manual road assess-
ment, however, is labor intensive, time-consuming, and
inconsistent. Automated road object detection is an alter-
native way for objective and scalable assessment of road
networks. Fast and accurate automated road assessment can
be used as quantitative data for optimal maintenance and
rehabilitation practices to improve road performance and
decrease the overall life-cycle cost.

To automate the road condition assessment, data are
usually collected by surveying vehicles equipped with digital
cameras that acquire images from pavement surfaces at high

speed. )ere are two main high-resolution imaging tech-
niques frequently used in road survey projects: (i) two-di-
mensional (2D) imaging technology in which line-scanning
cameras are used to generate 2D intensity images; (ii) three-
dimensional (3D) imaging technology that provides addi-
tional range (depth) images in addition to the intensity
images. Recently, the 3D imaging technology has been in-
creasingly adopted by state and local transportation agencies
for data collection of road networks [1, 2]. )e 3D imaging
equipment employs high-resolution laser imaging devices
associated with a high-precision inertial measurement unit
(IMU) to capture 3D pavement surface profile data at
highway speed. One of the main advantages of the 3D
technology is that it is less sensitive to light effects and less
prone to noises coming from oil or water stains, dirt or sand,
skid marks, etc. Furthermore, the combination of intensity
and range images provides additional information to model
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object boundaries and global layouts and to better recognize
pavement defects.

Despite those advantages of new 3D imaging technology,
existing kinds of literature [3–6] lack investigations to
quantify improved performance in road object detection due
to 3D technology using additional range images, compared
to traditional 2D technology relying on intensity images
only. Existing studies address the recognition of pavement
defects, mostly cracks, using intensity images by employing
deep convolutional neural networks (CNNs) [7–9]. CNNs
have been successfully employed for various visual recog-
nition tasks including image classification [10, 11], object
detection [12], and semantic segmentation [13]. Although
CNNs have demonstrated good performance on pavement
defects recognition using intensity images, the performance
tends to be degraded when detecting defects in complex
scenes. )e complexity comes from intensity inhomoge-
neity, low contrast, background noises, objects diversity in
terms of shape and size, variety of lighting conditions, etc.,
when using intensity images only. For example, when there
exists low contrast between cracks (as the foreground) and
asphalt (as the background) or when dealing with thin
cracks, it is difficult to distinguish between background and
foreground based on only intensity data. In the case of
objects with similar color and texture (such as crack seals
and patches), it is easy to misclassify those objects into the
same categories. Moreover, intensity-based features
extracted from pavement 2D images are sensitive to illu-
mination differences among images. )e abovementioned
limitations motivate the joint use of range and intensity
images to enhance the classification of pavement objects.
Figure 1 shows a surveying vehicle installed with a 3D laser
imaging device developed by Korea Institute of Civil En-
gineering and Building Technology (KICT) used in this
study, and a sample of intensity and range images collected
by the system.

We present the novel Dual Attention Convolutional
Neural Network (DACNN) to utilize additional range of
input images along with intensity images to improve
pavement objects classification. In this paper, DACNN
classifies pavement tiles into 8 classes, including crack, crack
seal, patch, pothole, marker, manhole, curbing, and asphalt.
DACNN leverages multiscale input tiles that capture scale-
sensitive information for multiclass classification of various
road objects with different sizes and shapes. Furthermore,
DACNN adopts two attention modules to effectively fuse
heterogeneous features in terms of (i) scales (multiscale
input tiles) and (ii) modes (range and intensity tiles). )e
scale and mode attention modules focus on spatial and
channel-related informative features and suppress the
noninformative ones for performance improvement. )e
dual attention mechanism is designed to identify semantic
image regions relevant to specific pavement objects. Pruning
feature maps in both spatial and channel dimensions en-
hance the quality of feature representation, contributing to
more accurate and efficient object classification.

)e contribution of this study is not only limited to the
architectural design of DACNN. We also evaluate the ef-
fectiveness of the additional range of data in 3D technology

over 2D technology through quantitative comparison using
different CNN models, including VGG16, VGG19,
ResNet50, DenseNet121, as well as the DACNN. )e goal of
the above comparisons is (i) to understand the effects of the
additional range data to improve object classification, (ii) to
understand how the scale and mode attention modules can
effectively fuse heterogeneous information to improve ob-
jects classification, and (iii) to understand the effects of CNN
model selection to the number of trainable variables,
training time, inference time, and classification accuracy.
Our main contributions in this paper are summarized as
follows:

We present the new DACNN framework to system-
atically utilize both intensity and range images collected
with 3D imaging devices for multiclass classification of
pavement images. Considering the variety of pavement
objects and surveying field conditions, DACNN ex-
tracts scale-specific and mode-specific features from
images robustly. )e dual attention mechanism used in
DACNN is designed to adaptively fuse multiscale
multimodal features, helping the network to capture
discriminative object-specific features related to their
spatial and channel information.
)e classification performance comparison is con-
ducted for 8 different pavement objects using CNN
models. )e results show that our DACNN outper-
forms other models for all road object classes. We also
present quantitative comparisons to understand how
the additional range of images in 3D technology can
improve object classification performance for com-
pared CNN models.

2. Related Works

2.1. Deep Learning in Pavement Assessment. Conventional
image processing and more recent deep learning methods
are two main approaches for automated pavement image
analysis. )e image processing methods can be considered
as feature engineering techniques in which images are
represented with human-specified feature vectors. )ey
can be sorted into intensity-thresholding [14], edge de-
tection [15], wavelet transforms [16, 17], and texture-
analysis [18, 19]. A major problem with the conventional
methods is that the prediction performance mainly relies
on the validity of human-specified features. Extracting
those features can be subjective, domain-specific, and
inefficient, which makes the detection process ungener-
alizable and tedious. Especially in pavement applications,
hand-crafted features are not robust enough to detect
distresses in the complex background with high varia-
tions. For instance, thresholding approaches for crack
detection only achieve acceptable results under certain
scenarios. If there exists a complex background or the
illumination changes, either the parameters should be
adjusted or the method is not applicable to the new scene.

Deep learning methods overcome the drawbacks of
conventional image processing methods by automatically
capturing complex structures of data with multiple
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processing layers. CNNs are the most studied deep
learning models using vision-based input data in which
automated feature learning is done at many different
levels of abstraction to catch the topology of input images.
Partial connections, sharing weights, and pooling layers in
CNNs not only decrease the computations but also
demonstrate state-of-the-art results in computer vision
tasks [20, 21]. Detection, classification, and segmentation
of pavement distress, especially cracks, are the main three
branches of deep learning research in automated pave-
ment assessment. Alfarrarjeh et al. [22] employed YOLO
[23] as the object detection method to detect distresses,
including cracks, potholes, and rutting, in pavement
images. Maeda et al. [24] adopted SSD [25] as the training
algorithm to detect the same defects on pavement sur-
faces. Song et al. [26] utilized Faster R–CNN [27] algo-
rithm to detect pavement distresses, including cracks,
potholes, and bleeding. Li et al. [28] presented a CNN
model to classify pavement tiles into different types of
cracks including longitudinal, transverse, alligator, and
block cracks. Gopalakrishnan et al. [29] utilized a pre-
trained VGG16 [30] on ImageNet and then fine-tuned it
on a pavement dataset for a binary crack classification.
Lau et al. [31] proposed a U-Net [32] based model in
which the encoder is a pretrained ResNet34 [33] to seg-
ment pavement crack images. Inspired by SegNet [34],
Chen et al. [35] proposed a fully convolutional neural
network (FCNN) to detect pavement cracks at pixel level.

2.2. Attention in Deep Learning. )e performance of deep
learning-based approaches has been constantly improving
by developing new architectural designs, and the attention
mechanism is one of them. )e main idea behind an
attention mechanism is to give higher weights to relevant
features while minimizing the irrelevant ones by giving
lower weights. Focusing on the distinctive parts when
processing large amounts of information, the attention

mechanism enhances the quality of feature representa-
tion, contributing to a more accurate and efficient per-
formance of the designed network. Attention was initially
proposed by [36] for machine translation. )en, it was
employed for various tasks, such as action recognition
[37–39], speech recognition [40, 41], image captioning
[42, 43], and recommendation [44, 45]. More specifically,
the attention mechanism is investigated in computer
vision community in three aspects: (i) spatial attention in
which the network learns the locations that should be
focused on [46, 47]; (ii) channel attention in which the
network adaptively recalibrates channel-wise features by
modeling interdependencies between channels [48, 49];
and (iii) Self-attention in which long-range dependencies
are captured by the network [50, 51]. In pavement ap-
plications, attention modules have been also applied for
defect detection. Song et al. [52] presented a channel of
attention to detect and classify different types of cracks in
pavement images. Wan et al. [53] proposed an encoder-
decoder network, called CrackResAttentionNet, con-
taining spatial and channel attention modules after each
block in the encoder to segment pavement cracks. Sim-
ilarly, Qiao et al. [54] proposed CrackDFANet in which a
channel-spatial attention module is designed to increase
the generalization ability of the model in predicting cracks
under different conditions of roads. Wang et al. [55]
proposed using DenseNet121 as an encoder and a spatial
attention module to combine multiscale features. Eslami
et al. [56] designed a channel-spatial attention module to
adaptively fuse multiscale features for pavement image
classification. Zhou et al. [57] presented a VGG16-based
network to predict crack maps, and employed spatial and
channel attention modules to further refine the model. Qu
et al. [58] employed Res2Net [59] along with an attention
module to capture global context and long-range de-
pendency for a better pavement segmentation. Pan et al.
[60] proposed SCHNet with VGG19 as the base net in
which a self-attention module is designed to global as well

INTENSITY
IMAGE

RANGE
IMAGE

Figure 1: 3D laser imaging system developed by Korea Institute of Civil Engineering and Building Technology (KICT); sample of high-
resolution intensity and range road surface images.
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as semantic interdependencies in the channel and spatial
dimensions. Finally, Li et al. [61] proposed a self-attention
module along with a scale-attention module to enhance
feature representation for pavement crack segmentation.

In this study, we propose a dual attention approach to
capture semantic interdependencies in both spatial and
channel dimensions for scale and type of input images. )e
dual attention mechanism achieves a fast focus on more
important features and enhances the representativity of
more relevant features for better classification performance.
)e dual attention approach enables modeling global con-
text as well as multimodal features to improve classification
performance for both small objects (e.g., cracks) and large
objects (e.g., patches), which are in trade-off using other
CNN models.

2.3. 3D Image Data in Pavement Assessment. Most of the
existing deep learning studies were based on only intensity
images using 2D imaging devices in transportation appli-
cations. With 2D intensity input images, CNNs suffer from
some important limitations. )e complexity of scenes, di-
versity of objects, background noises (stains, oil spills, and
tire marks), and surrounding changes (light and shadow)
make it difficult to distinguish foreground objects (defects)
from the background (asphalt) in 2D images. With the
advances in sensor technology, 3D imaging systems are
available and increasingly employed by state and local
transportation agencies for automated road condition as-
sessment. A survey showed that 18 states in the U.S. adopted
a 3D data collection system by 2017, and 17 states intended
to utilize this technology by 2019 [1]. Different approaches
have been studied for transportation applications such as
GPR, LiDAR, Microsoft Kinect, and laser profilers [3]. In
pavement applications, laser profilers are commonly used in
surveying road roughness and megatexture (ASTM E950,
ASTM E1926, and ISO 13473–5) [62–64]. Other techniques
offer limitations such as relatively low resolution (in case of
LiDAR) or low frequency (in case of Microsoft Kinect) to
collect road surface profiles.)e 3D laser imaging technique,
such as Laser Crack Measurement System (LCMS) [65], is
commercially available to collect high-resolution road sur-
face profiles. )is system utilizes surveying vehicles equip-
ped with two laser imaging devices (left and right) and IMU.
Using the 3D imaging system, intensity and range images
can be acquired at speeds up to 100 km/h on on-road lanes
with 4m width under various lighting conditions. )e 3D
laser imaging technology has been used to evaluate crack
[66, 67], pothole [68], raveling [69], rutting [70], joint [71],
and texture [72]. Ghosh et al. [73] employed YOLO and
Faster R–CNN to detect cracks in range images collected by
the 3D imaging system. Yang et al. [74] utilized 3D laser
technology to measure the growth of crack lengths when
they are sealed and non-sealed to quantify the crack sealing
benefit. Li et al. [28] proposed a CNN framework to classify
range images into transverse cracks, longitudinal cracks,
block cracks, and alligator cracks. Lang et al. [67] proposed a
clustering-based algorithm to classify range images into the
same categories of cracks as Li et al. [28]. Fei et al. [75]

presented a deep CNN, called CrackNet-V, to segment
cracks on asphalt range images. Li et al. [76] applied a filter-
based method to segment cracks using 3D pavement images.
Zhang et al. [77] proposed a recurrent neural network
(RNN), called CrackNet-R, to detect pavement cracks at
pixel-level in range images. Gui et al. [78] utilized laser-
scanning 3D to detect pavement cracks by extracting hand-
crafted features. Tsai and Chatterjee [68] proposed a
threshold-based method to detect pavement potholes in
range images collected by 3D laser technology. Zhang et al.
[79] proposed a CNN-based architecture, called CrackNet to
segment cracks in 3D pavement images. Zhang et al. [80]
improved the crack segmentation results on 3D pavement
images by proposing a deeper network, CrackNetII, in which
the need for hand-crafted features is eliminated. Li et al. [81]
presented a frequency analysis to detect pavement cracks
from background texture in range images.

While there are existing studies using 3D laser imaging
technology, they are limited to the use of either range or
intensity images. In this study, we show that extracting
features from both intensity and range (depth) images can
significantly improve the CNN performance. We also show
that by fusing intensity-specific and depth-specific features
systematically, one can robustly and accurately classify not
only cracks but also other pavement objects, including crack
seals, patches, potholes, markers, manholes, and curbing in
multiclass classification.

3. Data Preparation

3.1. Ground-Truth Labeling. )e dataset used in this study
contains 296 intensity images and the same number of range
images with the size of 3700 × 10000 pixels spatial resolution
of 1mm/pixel. )e gray-scale intensity and range images are
collected by the 3D laser imaging device developed by Korea
Institute of Civil Engineering and Building Technology
(KICT) shown in Figure 1. )e technical specifications of
this device are provided in Table 1.

We provide pixel-level annotations of road objects for 8
categories, including 4 distress classes (crack, crack seal,
patch, and pothole), 3 non distress classes (marker, manhole,
and curbing), and 1 pavement class (asphalt) as the back-
ground. We annotate the intensity images using an in-house
developed semiautomated software that makes the anno-
tation process fast yet accurate. )e annotation procedure is
performed in two steps: (i) labeling area objects (all classes
except for cracks) and (ii) labeling linear objects (i.e., cracks).
To label area objects, the original image, shown in
Figure 2(a), is grouped into homogeneous regions, called
superpixels [82, 83]. As shown in Figure 2(b), superpixel
segmentation preserves the edges and boundaries of objects.
)erefore, superpixel-level labeling, rather than pixel-level
labeling, can be performed, which reduces the labeling work
significantly. To further facilitate the annotation process, an
unsupervised mean shift clustering is applied, which groups
the neighboring superpixels into a bigger cluster. )e result
of the superpixel clustering procedure is shown in
Figure 2(c). )en, the human annotator can easily select the
clusters that belong to the same object and label them. Also,
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the annotator is able to define new segments, which are
missed by the clustering algorithm. Figure 2(d) demon-
strates the final pixel-level labeling mask. Although the
superpixel segmentation technique is beneficial for labeling
area objects in the dataset, it is not effective for linear object
labeling such as cracks. To label cracks, a morphological
technique, calledMorphLink-C, is employed to extract crack
pixels in original images. MorphLink-C consists of a series of
morphological operations, which is proposed by Wu et al.
[84]. )e original image in Figure 3(a) is a zoomed-in
pavement image for better visualization of the existing crack.
)e cracks detected by MorphLink are shown in Figure 3(b)
with the bounding boxes. Having the detected cracks, the
human annotator can select the truly detected cracks within
the image, as shown in Figure 3(c).

Figure 4 demonstrates the contents of different objects in
the dataset. We observe that the population of road object
pixels are highly imbalanced, for example, there are more
than three million of asphalt pixels but only more than 4000
crack seal pixels in the dataset. Detecting objects with high
variations in shape and size within a highly imbalanced
dataset is a major challenge in pavement applications.

3.2. Data Preprocessing. In road surveying projects, the
depth information in range images is often used to measure
the macrostructure of pavement surface (ISO 13473–1) [64].
Although the depth resolution of the laser device on an
absolute millimeter scale is important to determine themean
profile depth (MPD) in macrotexture surveying, a small
variation in surface profile (e.g., crack depth) and low
contrast in range images could be a disadvantage in road
objects detection. To enhance the contrast, a histogram
equalization (HE) can be applied to range images. HE en-
hances the contrast by effectively spreading out the most
frequent intensity values (stretching out the intensity range
of the image). It allows for areas with lower local contrast to
obtain a higher contrast. In this study, Contrast Limited
Adaptive Histogram Equalization (CLAHE) [85] is applied
to a range of images. CLAHE differs from ordinary HE
algorithms in two ways: (i) An adaptive HE computes several
histograms, each corresponding to a small region of the
image rather than computing the histogram for the entire
image. )erefore, it improves the local contrast and edges in
each region of the image. (ii) CLAHE sets a threshold to limit
the contrast in each small region. )e contrast limiting

Table 1: Technical specifications of KICT 3D laser imaging device.

Scanning frequency Transverse range Lateral resolution (mm) Vertical resolution (mm) Data rate

5600 profiles per second 4 m
(4096 points per profile) 1 0.5 10.4Gb/km

(720Mb/km compressed)

(a) (b) (c) (d)

Figure 2: Annotation procedures for areal objects. (a) Original image; (b) superpixel segmentation; (c) unsupervised mean shift clustering;
(d) human correction of false clustering and classification.

Journal of Advanced Transportation 5



procedure prevents the over-enhancement and amplifica-
tion of noise in the image. Figure 5(a) shows a range image
with cracks spreading all over the image. Also, the intensity
distribution of the image and the cumulative distribution are
presented for the range image as histogram and cdf, re-
spectively. Figure 5(b) demonstrates the range image after
using CLAHE enhancement and its corresponding histo-
gram and cdf. We can see that the visibility of cracks is
improved by redistributing the lightness values of the image
without introducing noises to the image. Comparing the
histograms before and after applying CLAHE to the image,
the intensity range of the road image is expanded within the
lower range (dark pixels 0–50) by redistribution of the
values, as shown in Figure 5(b).

After the contrast enhancement of range images, we
divide the original images into nonoverlapping 50 × 50 tiles
to conduct multiclass classification experiments on pave-
ment images. )en, each image tile is assigned to one of 8
categories of road objects. When a 50 × 50 tile has more than
one class of pixels, the tile class is determined by a majority
vote between the pixel number of nonbackground classes if
exists, otherwise, the tile is classified as the background
(asphalt). By aggregating the assigned classes for all tiles
generated from an original image, a segmentation mask with
a resolution of 50 × 50mm2 can be produced. )e reason for
50 × 50 tile generation comes from two sources: (i) Due to
the large size of the original images (3700 × 10000), the

segmentation task on the whole image is memory intensive
and not practical; (ii) 50 × 50-pixel tiles, equivalent to 50 ×

50mm2, is small enough to contain only one pavement
object for the classification task. )erefore, assembling the
classification results into the whole image produces a seg-
mentation mask with a high-resolution, which is satisfactory
in pavement applications. Although having small input tiles
results in high-resolution segmentation masks, it sacrifices
the contextual information required from the deep networks
to perform well. Due to the importance of contextual in-
formation for the classification task, we generate 250 × 250,
and 500 × 500 tiles surrounding each 50 × 50 tile with the
same center. Feeding multiscale tiles into the deep networks
improves the classification performance of the smallest tile,
which will be explained in Section 4.1.

4. Method

4.1. Dual Attention Convolutional Neural Network
Architecture. )e Dual Attention Convolutional Neural
Network (DACNN), illustrated in Figure 6, is presented to
classify pavement image tiles into one of the 8 existing
classes in the dataset. )e DACNN provides a systematic
way of data fusion for heterogeneous input images including
(i) intensity and range images (i.e., mode), and (ii) 50 × 50,
250 × 250, and 500 × 500 (i.e., scale), which is more effective
than a simple feature concatenation. For this, the DACNN
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Figure 4: Number of pixels in our pavement classes.

(a) (b) (c)

Figure 3: Annotation procedures for linear objects. (a) Original image; (b) automatic crack detection by MorphLink technique; (c) human
selection of truly detected cracks.
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consists of two main streams of intensity and range modes,
which are merged later by a mid-fusion strategy (i.e., mode-
level attention module). Each mode steam consists of three
scale streams to extract multiscale features, which are
combined later using a mid-fusion strategy (i.e., scale-level
attention module). )e high-level architecture of the
DACNN is shown in Figure 6.

Multiscale Input Tiles. Input tiles are extracted from the
original intensity and range images at three scales, 50 × 50,
250 × 250, and 500 × 500. All the input tiles are resized to 50
× 50 before they are fed to the DACNN.

Feature Extraction (Scale). A conventional to combine
multiscale multimodal input data is directly concatenating
them at the input level. )is approach has a disadvantage in
that only similar patterns will be captured across the scales
and modes. Instead of concatenating heterogeneous input
data in an early fusion, we propose to feed input tiles to 6
separate CNNs to extract scale-specific and mode-specific
features. Each CNN consists of three convolution layers with
the filter numbers 32, 32, and 64, respectively. )e filter size
is 3 × 3 pixels for all convolution layers. Each convolution
layer is then followed by a Batch Normalization layer and a
rectified linear unit activation (ReLU), which are not shown
in Figure 6 because of space limitation. It should be noted
that up to this point the extracted feature maps are processed
independently at each scale and mode level.

Mid-Fusion with Scale-Level Attention Module. )e main
idea of using multiscale input tiles is to allow features
extracted from different levels of spatial context around the
smallest tile (50 × 50) to contribute to the classifying de-
cision. )e level of contribution at each scale for different
objects varies for different objects. For example, scale 1 is
more informative for small objects (e.g., cracks), while scale
3 is more informative for classifying large objects (e.g.,
patches). )erefore, we use a scale-level attention module
that decides how much attention to pay to scale-sensitive
features. Unlike simple concatenation of multiscale features,

the scale-level attention module weights the features from
different input scales at each mode. )e scale-level attention
module consists of three convolution layers of 1 × 1 × 64,
and one sigmoid layer to generate the weight scores for each
scale. )e generated score maps reflect the importance of
scale-specific features at a specific position and scale for
classifying the object in the tile.

Feature Extraction (Mode).After the mid-fusion with the
scale-level attention module, the weighted feature maps get
concatenated in intensity and range modes, separately.)en,
they are passed through three convolution layers with the
filter number of 128 and max-pooling layers. At this stage,
the network is expected to extract more complex multiscale
features in each mode. Depth-specific patterns can com-
plement intensity patterns and help the overall model with
this useful information.

Mid-Fusion with Mode-Level Attention Module. For the
effective mid-fusion of complementary information of in-
tensity and range data, we use amode-level attentionmodule
that weights the mode-sensitive features extracted from
intensity and range images, determining the contribution
level of mode-sensitive features to the final classification
output. In this way, the feature maps can be fused with
different weights based on the contribution levels of road
object classes, instead of being treated uniformly.

Feature Extraction (Classification). For each mode, the
mode-level attention module outputs weight maps that are
multiplied by the feature maps. )e weighted feature maps
get concatenated and passed through shared layers. Four
convolution layers with the filter size of 256, 512, 512, and
1024 with two max-pooling layers are applied to extract
higher-level multimodal features. )en the feature maps are
flattened and passed to six fully-connected layers with the
sizes 2048, 1024, 512, 256, 128, and 8.

Classifier’s Output.)e last fully-connected layer gen-
erates 8 numbers showing the probability of the 50 × 50
tile belonging to the 8 existing classes in the dataset. )e
higher the number is, the more probable the tile belongs
to that specific pavement class. By assembling the pre-
dicted labels for the smallest tiles into the whole image,
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Figure 5: (a) Original range image and (b) CLAHE enhanced range image with corresponding histograms and cumulative histograms.
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the segmentation mask with the spatial resolution of 50 ×

50mm2 is created.

Effects of Range and Intensity Input Image Tiles. Range and
intensity input images provide complementary information
about road objects, which can improve object classification
performance compared to intensity-only input images.
Depth is a key feature for road object classification, such as
cracks and potholes. )ese objects can be small or have a
similar color and texture to the clean asphalt, and it makes
them difficult to detect in gray-scale intensity images.
However, they appear more clearly in range images due to
their depth differences. Other pavement objects, such as
markers, that have a distinct color or texture or do not have a
significant depth can be easier to detect from intensity
images. Figure 7 demonstrates the advantage of using in-
tensity and range images over intensity images only con-
taining markers, patches, and cracks.

4.2. Attention Modules. We design two types of attention
modules as a mid-fusion strategy to adaptively aggregate
multiscale multimodal features extracted from intensity and
range image tiles. )e mechanism of an attention module is
to attend to relevant parts of input features, which is im-
portant for having a robust classification. )e scale-level and
mode-level attention modules enable the deep network to
focus on visual representations that are more informative for
the classification of the object in the input tile. Scale-level

and mode-level modules incorporate both spatial and
channel-wise attention into the network.

As illustrated in Figure 8(a), the scale-level attention
module generates the scoremaps (Sm)with the dimension of
C ×H ×W for each scale, where m ∈ 1, 2, 3{ } is the scale
number, C is the number of channels, W is the width, and H

is the height of the input features (Fm). )e weighted feature
maps, Fm, are generated by the inner product of:

Fm
� Fm

.Sm
, (1)

or

f
m
w,h,c � s

m
w,h,c.f

m
w,h,c, (2)

where f
m

w,h,c is the weighted feature at the spatial position
(w, h) for the channel number c at the scale m; and sw,h,c is
the score corresponding to the input feature fm

w,h,c at the
spatial position (w, h) for the channel number c at the scale
m. )e attention module assigns a score between 0 and 1 to
the feature maps of each scale in each channel and spatial
position. )erefore, each element in the feature map xw,h,c is
revised to xw,h,c, in which scale, channel, and spatial in-
formation is considered. )is module not only localizes the
object spatially but also selects the most discriminative
channel.

)e mechanism of the mode-level attention module,
shown in Figure 8(b), is similar to the scale-level one. In
this module, the shared module among the modes generates
the score maps for each mode to focus on the most
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Figure 6: An overview of the DACNN. Range and intensity image tiles are generated at three scales to capture local and global information
in each mode. )e adaptive fusion of multiscale multimodal features is performed through scale-level and mode-level attention modules.
)e final class prediction for input tiles is assembled into the original image to create a mask.
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discriminative part of visual representations. )e attention
module assigns higher weights to the channel and regions of
the mode features that are more relevant and informative for
the classification step of that particular object.

4.3. ImplementationDetails. We train the classifiers in a fully
supervisedmanner.)e Adam optimizer with a learning rate
of α� 0.0001, β1 � 0.9, β2 � 0.999, and ε� 1e–8 is used, where
β1 and β2 are exponential decay rates, and ε is a constant for
numerical stability. )e Adam optimizer inherits the ad-
vantages of other optimization algorithms, including the
momentum feature of SGD and the adaptive learning feature
of AdaDelta. )e Adam optimizer also provides faster
computation time and requires fewer parameters for tuning.
)e networks are trained for 800 epochs with a mini-batch
size of 200. In each epoch, the network uses 60,000 random
tiles out of more than 6 million tiles in the training dataset.

)e model with the best performance on loss for the vali-
dation dataset is selected as the model used in the testing
mode. )e training is conducted on an NVIDIA TitanX
GPU with a memory configuration of 12GB. )e codes are
implemented in Python 3.7.3 and TensorFlow 1.14.0.

5. Experiments

5.1. Baseline Models with Single-Scale Input Images and
Results. Four different baseline classifiers, widely used in
pavement applications, are trained to classify pavement
image tiles into one of the existing 8 classes in the dataset.
)e deep CNNs compared in this study can be divided into
three categories. (i) VGGNet was proposed by Simonyan
and Zisserman [30] for ImageNet challenge 2014. )e main
idea behind VGGNet is to use filters with a small size (3 × 3),
decreasing the number of parameters, and stack more of
them to achieve the same receptive field as if a larger filter

(a) (b) (c) (d)

Figure 7: Illustration of pavement objects in intensity and range images: (a) markers, (b) marker, patch, and cracks, (c) patch and cracks,
and (d) marker and pothole.
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Figure 8: )e details of (a) scale-level attention module and (b) mode-level attention module.
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were used. VGG16 and VGG19 have a total number of 16
and 19 convolutional and fully-connected layers, respec-
tively.)e deep architecture of VGGs is proved beneficial for
image classification tasks. However, the gradient vanishing
problem has appeared with the deeper architectures. (ii)
ResNet proposed by He et al. [33] for ImageNet challenge
2015, alleviates the gradient vanishing problem by intro-
ducing skip-connections so that the input in each layer is
passed to the next layer. Using identity skip-connections as
well as batch normalization allows for training deep net-
works. ResNet50 has a total number of 50 convolutional and
fully-connected layers. (iii) DenseNet proposed by Huang
et al. [86] in 2017, extends ResNet’s idea by including skip-
connections from all previous layers. )e dense concate-
nation to all subsequent layers preserves the features in
preceding layers and allows for the classification of images in
a wide range of scales. DenseNet121 has a total of 121
convolutional and is fully connected.

Figure 9 shows an overview of the deep networks used
for pavement object classification in this study. )e classi-
fiers are trained with only intensity input tiles as well as
intensity and range input tiles to evaluate the effect of
exploiting depth information along with intensity infor-
mation. As shown in Figure 9(a), 50 × 50 image tiles are
generated and are concatenated as a 3-channel image to train
the deep networks with only intensity images.When training
the networks with both intensity and range images, as shown
in Figure 9(b), 50 × 50 image tiles of each mode are con-
catenated at the input level as a 2-channel image (early
fusion) and fed to the network.

Table 2 summarizes the results for all classifiers using (i)
only intensity and (ii) intensity and range input pavement
tiles. )e performance of each classifier is evaluated on each
pavement object and on average in terms of precision, recall,
and F-score.

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F∗ score �
2TP

2TP + FP + FN
,

(3)

where TP, FP, and FN are true positives, false positives, and
false negatives, respectively. )e precision determines how
many of positive predictions are really positive, while the
recall shows the ability of the network in predicting all the
relevant instances. )e F-score is a harmonic mean of
precision and recall that is a useful measure to find the
balance between these two metrics. )e results show that
using both range and intensity images improves the per-
formance of all classifiers in terms of overall precision, recall,
and F-score.

In more detail, we compare the baseline models’
performances for different classes when they are trained
with intensity-only images and intensity-range images. To
interpret the results, we divide the classes into two cat-
egories: (i) the pavement objects having a height differ-
ence with adjacent pixels including crack, crack seal,

pothole, manhole, and patch; (ii) pavement objects having
no significant height difference with adjacent pixels in-
cluding marker, curbing, and asphalt. Using range-in-
tensity input images improved the performance of
VGG16, VGG19, ResNet50, and DenseNet121 on the first
category of objects, including crack, crack seal, pothole,
manhole, and patch, on average by 18.8%, 20.6%, 11.9%,
and 14.5% in terms of F-score. )e average improvement
of the baseline models on crack, crack seal, patch, pothole,
and manhole are 12.6%, 22.5%, 21.6%, 22.1%, and 3.6% in
terms of F-score. )e lower improvement of manhole
classification compared to the other four objects comes
from the fact that manholes have distinct shapes and
textures in intensity images. )erefore, providing range
data as complementary information to the network has a
milder effect. Incorporating range images into the net-
work barely changes the performance of baseline models
on the classification of pavement objects in the second
category. In fact, the range image of marking, curbing, and
asphalt provide no extra information to the networks for
the classification task.

Providing depth information to the DACNN improves
the classification results on the first category of objects by
3.2% in terms of F-score. In more detail, utilizing range-
intensity images increases the performance of the DACNN
on the classification of crack, crack seal, patch, pothole, and
manhole by 2.4%, 7.8%, 1.2%, 2.6%, and 2.3% in terms of
F-score, respectively. )e improvement of DACNN per-
formance by adding depth information is less than such
improvement in baseline models. )is is because of the high
performance of the trained DACNN with intensity-only
images which creates less capacity for improvements. As
shown in Table 2, the average F-score for DACNN with
intensity-only images is 92.9%while the number for VGG16,
VGG19, ResNet50, and DenseNet121 is 59.9%, 59.9%, 62%,
and 63.4%, respectively. )e DACNN also outperforms
VGG16, VGG19, ResNet50, and DenseNet121 on average by
23.3%, 22%, 25.4%, and 22.4%, respectively, in terms of
F-score when the networks are trained with range-intensity
input data. )e significant improvement of DACNN clas-
sification performance over the baseline models comes from
encoding contextual information to the network and
adaptively fusing the features through the attention mod-
ules. In section (5.2), we show that the performance of
baseline models improves by providing multiscale input tiles
to the networks. However, DACNN still outperforms those
models by having an effective fusion strategy for combining
multiscale multimodal features.

Figure 10 demonstrates sample segmentation at a spatial
resolution of 50 × 50mm2 for different algorithms when
trained with intensity-only and intensity-range pavement
tiles. It can be seen DACNN achieves the best results by
extracting a robust representation of range and intensity
images. In more detail, we can see that cracks at the top left
corner of the image are identified better when the depth
information is encoded into all the networks. Range data
provide more distinctive features helping the networks to
distinguish between foreground and background when in-
tensity values are not distinctive.
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5.2. BaselineModels withMultiscale Input Images andResults.
Figure 11 shows an overview of the deep networks trained
with multiscale input tiles to classify pavement objects. )e
multiscale image tiles are generated at three scales, 50 × 50,

250 × 250, and 500 × 500, for each mode of intensity and
depth. As shown in Figure 11(a), multiscale tiles are con-
catenated as a 3-channel image to train the deep networks
with only intensity images. When training the networks with
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Figure 9: An overview of baseline classifiers trained with single-scale (a) intensity images, and (b) intensity and range images.

Table 2: Comparison of deep CNNs for classification of pavement objects using single-scale intensity and range input tiles.

Metric Method Input image Crack Crack seal Patch Pothole Marker Manhole Curbing Asphalt Avg

Precision

VGG16 Intensity 0.660 0.533 0.676 0.529 0.923 0.850 0.947 0.945 0.758
Intensity + Range 0.732 0.684 0.849 0.637 0.944 0.875 0.956 0.959 0.830

VGG19 Intensity 0.593 0.577 0.653 0.636 0.932 0.840 0.944 0.95 0.766
Intensity + Range 0.670 0.707 0.823 0.570 0.940 0.887 0.955 0.963 0.814

ResNet50 Intensity 0.637 0.702 0.661 0.554 0.928 0.831 0.945 0.949 0.776
Intensity + Range 0.679 0.777 0.793 0.593 0.931 0.879 0.954 0.959 0.821

DenseNet121 Intensity 0.647 0.529 0.688 0.543 0.928 0.850 0.946 0.949 0.760
Intensity + Range 0.737 0.875 0.789 0.608 0.935 0.895 0.952 0.961 0.844

DACNN (ours) Intensity 0.864 0.897 0.965 0.947 0.966 0.919 0.983 0.986 0.941
Intensity + Range 0.887 0.942 0.972 0.953 0.971 0.965 0.993 0.987 0.959

Recall

VGG16 Intensity 0.256 0.018 0.345 0.253 0.917 0.646 0.985 0.988 0.551
Intensity + Range 0.438 0.241 0.563 0.463 0.908 0.669 0.988 0.985 0.657

VGG19 Intensity 0.373 0.033 0.348 0.139 0.904 0.669 0.991 0.981 0.555
Intensity + Range 0.480 0.209 0.596 0.571 0.920 0.727 0.986 0.983 0.684

ResNet50 Intensity 0.33 0.073 0.364 0.271 0.911 0.618 0.990 0.984 0.568
Intensity + Range 0.453 0.163 0.533 0.450 0.925 0.645 0.988 0.984 0.643

DenseNet121 Intensity 0.324 0.100 0.363 0.319 0.912 0.655 0.990 0.984 0.581
Intensity + Range 0.431 0.218 0.648 0.528 0.926 0.676 0.992 0.985 0.676

DACNN (ours) Intensity 0.780 0.837 0.942 0.909 0.957 0.937 0.990 0.991 0.918
Intensity + Range 0.805 0.947 0.958 0.956 0.966 0.937 0.990 0.993 0.944

F-score

VGG16 Intensity 0.369 0.034 0.457 0.343 0.920 0.734 0.966 0.966 0.599
Intensity + Range 0.548 0.356 0.677 0.536 0.926 0.758 0.972 0.972 0.718

VGG19 Intensity 0.458 0.063 0.454 0.223 0.918 0.745 0.967 0.965 0.599
Intensity + Range 0.560 0.323 0.691 0.602 0.930 0.799 0.970 0.973 0.731

ResNet50 Intensity 0.434 0.133 0.469 0.364 0.919 0.709 0.967 0.966 0.620
Intensity + Range 0.543 0.269 0.638 0.512 0.928 0.744 0.971 0.971 0.697

DenseNet121 Intensity 0.432 0.169 0.475 0.402 0.920 0.740 0.967 0.966 0.634
Intensity + Range 0.544 0.349 0.712 0.566 0.930 0.770 0.971 0.973 0.727

DACNN Intensity 0.820 0.866 0.953 0.928 0.961 0.928 0.986 0.988 0.929
Intensity + Range 0.844 0.944 0.965 0.954 0.969 0.951 0.992 0.990 0.951
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both intensity and range images, as shown in Figure 11(b),
the 3-channel image of each mode are merged at the input
level (early fusion) and fed to the network.

Table 3 summarizes the performance of baseline models
on the classification of 8 pavement classes in terms of
precision, recall, and F-score. Comparing the results with the
single-scale version of the networks, incorporating the
contextual information into the networks improves the
average F-score of VGG16, VGG19, ResNet50, and Den-
seNet121 by 28.3%, 29.3%, 24.3%, and 24.4%, respectively,
when trained with intensity-only images. Furthermore,
extracting depth features along with intensity features in-
creases the average F-score of the VGG16, VGG19,
ResNet50, and DenseNet121 by 4.1%, 3.4%, 4%, and 5.1%,
respectively.

Although encoding the contextual information and
incorporating the depth data into the network significantly
enhances the performance of the baseline models, the
DACNN classifies the objects more robustly by having an

effective mid-fusion strategy. )e DACNN outperforms
VGG16, VGG19, ResNet50, and DenseNet121 trained with
multiscale multimodal features by 2.8%, 2.5%, 4.8%, and
2.2%, respectively, on average in terms of F-score. More
specifically, the DACNN improves the crack classification
(as one of the most important distress types in pavement
condition assessment) by 8.8%, 7.2%, 8.7%, and 7% in
terms of F-score compared to VGG16, VGG19, ResNet50,
and DenseNet121, respectively. )is demonstrates the ef-
fectiveness of attention modules for pavement object
classification.

6. Discussion

6.1. Qualitative and Quantitative Analysis of DACNN.
One of the most important comparison metrics to evaluate
the performance of multiclass classification models is their
capability to distinguish between classes. AUC (Area under
the Curve) of ROC (Receiver Operating Characteristics) is

Intensity (I) Depth (D) VGG16 -I VGG16 -I+D VGG19 -I VGG19 -I+D

DenseNet121 - I+DResNet50 - I+DResNet50 - I DenseNet121 - I DACNN - I+DDACNN - I

Figure 10: Classification results of road cracks using different algorithms trained with intensity-only and intensity-range images. Seg-
mentation masks are created by aggregating classification results of 50 × 50 tiles.
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a measure of how strongly the classifier separates the
classes. Higher the AUC, the better the model is capable of
predicting true classes. To evaluate the DACNN perfor-
mance, ROC curves for all investigated methods are plot-
ted in Figure 12. Comparing the AUC values, DACNN

demonstrates a stronger ability to separate classes while
predicting the pavement objects.

Figure 13 shows segmentation samples of DACNN
generated by integrating classified pavement tiles. )e
corresponding heatmaps for the pavement classes are also
demonstrated for qualitative comparisons. A hotter color

Intensity

Deep CNN
Aggregation 

of Labels
Class 
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Multi-Scale 
Input Tiles

50×50×3

(a)

Class 
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Intensity

Depth Aggregation 
of LabelsDeep CNN

Multi-Scale 
Input Tiles

50×50×3

Multi-Scale 
Input Tiles

50×50×3

+

+ Concatenation

(b)

Figure 11: An overview of baseline classifiers trained with (a) multiscale intensity images and (b) multiscale intensity and range images.

Table 3: Comparison of deep CNNs for classification of pavement objects using multiscale intensity and range input tiles.

Metric Method Input image Crack Crack seal Patch Pothole Marker Manhole Curbing Asphalt Avg

Precision

M-VGG16 Intensity 0.755 0.850 0.874 0.865 0.949 0.930 0.982 0.977 0.898
Intensity + Range 0.824 0.966 0.929 0.920 0.958 0.933 0.990 0.982 0.938

M-VGG19 Intensity 0.775 0.883 0.859 0.902 0.959 0.959 0.984 0.977 0.912
Intensity + Range 0.786 0.904 0.92 0.914 0.959 0.910 0.986 0.985 0.921

M-ResNet50 Intensity 0.772 0.894 0.798 0.885 0.952 0.952 0.976 0.975 0.901
Intensity + Range 0.781 0.940 0.932 0.898 0.949 0.917 0.980 0.984 0.923

M-DenseNet121 Intensity 0.756 0.839 0.869 0.883 0.960 0.934 0.981 0.975 0.900
Intensity + Range 0.811 0.889 0.972 0.920 0.961 0.933 0.983 0.984 0.932

DACNN (ours) Intensity 0.864 0.897 0.965 0.947 0.966 0.919 0.983 0.986 0.941
Intensity + Range 0.887 0.942 0.972 0.953 0.971 0.965 0.993 0.987 0.959

Recall

M-VGG16 Intensity 0.640 0.771 0.838 0.854 0.965 0.910 0.985 0.984 0.868
Intensity + Range 0.699 0.831 0.954 0.919 0.967 0.946 0.988 0.989 0.912

M-VGG19 Intensity 0.632 0.773 0.883 0.873 0.959 0.906 0.985 0.986 0.875
Intensity + Range 0.758 0.920 0.952 0.920 0.961 0.966 0.989 0.985 0.931

M-ResNet50 Intensity 0.606 0.617 0.853 0.775 0.961 0.897 0.985 0.984 0.835
Intensity + Range 0.735 0.693 0.918 0.891 0.970 0.927 0.989 0.985 0.889

M-DenseNet121 Intensity 0.636 0.766 0.824 0.810 0.952 0.906 0.984 0.985 0.858
Intensity + Range 0.741 0.929 0.917 0.943 0.962 0.946 0.990 0.988 0.927

DACNN (ours) Intensity 0.780 0.837 0.942 0.909 0.957 0.937 0.990 0.991 0.918
Intensity + Range 0.805 0.947 0.958 0.956 0.966 0.937 0.990 0.993 0.944

F-score

M-VGG16 Intensity 0.693 0.808 0.856 0.859 0.958 0.920 0.984 0.981 0.882
Intensity + Range 0.756 0.893 0.941 0.920 0.961 0.940 0.989 0.985 0.923

M-VGG19 Intensity 0.696 0.824 0.871 0.887 0.959 0.931 0.985 0.982 0.892
Intensity + Range 0.772 0.912 0.936 0.917 0.960 0.937 0.988 0.985 0.926

M-ResNet50 Intensity 0.679 0.730 0.825 0.827 0.956 0.924 0.980 0.980 0.863
Intensity + Range 0.757 0.797 0.925 0.895 0.960 0.922 0.984 0.985 0.903

M-DenseNet121 Intensity 0.691 0.801 0.846 0.845 0.956 0.919 0.982 0.980 0.878
Intensity + Range 0.774 0.908 0.944 0.932 0.962 0.940 0.986 0.986 0.929

DACNN Intensity 0.820 0.866 0.953 0.928 0.961 0.928 0.986 0.988 0.929
Intensity + Range 0.844 0.944 0.965 0.954 0.969 0.951 0.992 0.990 0.951
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means a greater probability that the pixels belong to the
corresponding class. )e heatmaps reveal that the DACNN
predicts the pavement object robustly with a strong sepa-
ration from the rest of the objects.

Figure 14 visualizes the performance of the classifiers in
terms of TP, TN, FP, and FN. Having the networks’ pre-
dictions, we are able to analyze their performance in more
detail. Especially in pavement applications, we care about
not only increasing TPs but also decreasing FNs and FPs
simultaneously.)e reason is coming from: (i) having a high
FN means that positive distresses are missed leading to an
underestimation for road condition assessment, which is
dangerous for safety considerations; (ii) having a high FP
means that pavement tiles are misclassified as distresses
leading to an overestimation, which is not cost-efficient for
road assessment. As we can see in Figure 14, DACNN not
only increases TPs but also significantly reduces FPs and FNs
compared to all other methods. Other than DACNN which
presents the best results, encoding depth information into all
other networks also increases TPs and reduces FPs and FNs.
For the pavement objects with a more distinctive repre-
sentation in range images including cracks, crack seals,
patches, potholes, and manholes, the improvements are
more significant after combining the range data with in-
tensity images. Figure 14 shows that DACNN generates the
largest number of FPs and FNs for the crack classification.
)e reason mainly comes from the low contrast between
cracks and the background within pavement images. Fig-
ure 15 demonstrates examples of DACNN predictions with
FPs and FNs on crack classification.

6.2. Contrast Enhancement. As described in section 3.2, a
histogram equalization technique, CLAHE, is employed to
adjust the intensity values and improve the contrast in range
images. CLAHE is a modified version of adaptive histogram
equalization that limits the contrast to avoid over-
amplification and noises in the images. Cliplimit value is the
threshold defined to apply a limit over the image contrast. In
this study, we conducted a grid search to optimize this
hyperparameter for DACNN algorithm. Table 4 summarizes
the DACNN performance while using different cliplimit
values. Considering the F-score values, cliplimit� 4 is used
as the threshold value for CLAHE.

6.3. Computational Cost. We compare the computational
cost of investigated algorithms in this study in two cases: (i)
)e networks are trained with only intensity input tiles; (ii)
)e networks are trained with both intensity and range input
images. )is way, we can examine how encoding depth
information to the networks affects the computational costs.
To highlight the trade-off between performance and speed,
our proposed method, DACNN is also compared to the
baseline approaches. Table 5 summarizes the computational
costs for different classification approaches used in this
study, in terms of the number of trainable variables, training
time per epoch, and inference time for 100 batches. While
the first column presents the costs for intensity-only trained
networks, including VGG16, VGG19, ResNet50, and Den-
seNet121, the second column presents the costs for the same
networks trained with both intensity and range images.

VGG16-Intensity only (area = 0.949)

VGG16 (area = 0.969)
VGG19 (area = 0.971)

VGG19-Intensity only (area = 0.951)
ResNet50-Intensity only (area = 0.947)

ResNet50 (area = 0.964)

DenseNet121-Intensity only (area = 0.903)

DenseNet121 (area = 0.923)
DACNN-Intensity only (area = 0.966)
DACNN (area = 0.995)
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Figure 12: Receiver Operating Characteristic (ROC) curves. )e presented DACNN achieves the highest area under the curve (AUC).

14 Journal of Advanced Transportation



Comparing the first two columns reveals that the extra
computational costs brought by encoding depth information
to the baseline models were almost negligible. However, the
average F-score increased by 16.5% for objects with dis-
criminative features in the range of images (crack, crack seal,
pothole, manhole, and patch). )e third column shows the

computational costs for DACNN when the depth branch is
removed, and the last column shows the cost for DACNN
trained with both intensity and range images. It can be
concluded that by providing a limited extra source of
computations, we can improve the classification results.
Training with intensity-only, DACNN enhances the
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Figure 13: Classification results of the DACNN. Hotter colors mean a greater probability that the pixels belong to the specified class.
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Figure 14: Normalized (a) TP, (b) FP, and (c) FN of each class using different algorithms.
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Figure 15: Examples of DACNN predictions with FPs and FNs on crack classification.
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classification results by capturing contextual information by
31.6% in F-score compared to the baseline methods (first vs.
third column). Training with both intensity and range,
DACNN improves the classification results by an adaptive
fusion strategy by 23.3% in F-score compared to the baseline
methods (second vs. fourth column). It should be noted that
DACNN is not developed with the goal of having a real-time
classification. In most practices, automated assessments of
road conditions are performed offline where accuracy and
robustness are the most important factors.

7. Conclusions

A deep learning-based model termed DACNN is presented
to improve the performance of multiclass classification for
road objects. Both intensity and range images are fed to the
DACNN to enrich the image representation learned by the
network. Discriminant feature representations obtained by
encoding range images help the network to capture complex
topology and to handle noises and illumination variances.
Furthermore, feeding multiscale input images into the
DACNN enables the network to catch both local and global
fields of view, which is beneficial for classifying pavement
objects with various sizes and shapes. We designed dual
attention modules as an effective way to fuse scale-specific
and mode-specific features to model the semantic interde-
pendencies in spatial and channel dimensions. )e position
attention selectively aggregates the feature at each position
by a weighted sum of the features at all positions, and
channel attention selectively emphasizes interdependent
channel maps by integrating associated features among all
channel maps. )is way, the network learns better the rel-
evant content for each specific object at each scale and mode
contributing to more precise classification results.

)e effectiveness and feasibility of the DACNN were
compared with four baseline CNN models. )e comparison
results showed that the DACNN outperforms all com-
pared CNNs. )e results also showed that encoding depth
information into the networks improves the classification
results of VGG16, VGG19, ResNet50, DenseNet121, and
the DACNN by 11.9%, 13.2%, 7.7%, 9.3%, and 2.2% in
terms of averaged F-score, respectively, compared to

when these models are trained with intensity-only images.
)e classification improvements are even more significant
for pavement objects that are distinctive in range images
by having height differences with neighboring pixels. For
example, incorporating depth data with intensity infor-
mation improves the crack classification by 17.9%, 10.2%,
10.9%, 11.2%, and 2.4% in terms of averaged F-score in
VGG16, VGG19, ResNet50, DenseNet121, and the
DACNN, respectively. In addition to encoding depth data,
DACNN yields more improvements by capturing global
context through multiscale input tiles, as well as focusing
on the most important feature representations through
attention modules. )e DACNN outperforms VGG16,
VGG19, ResNet50, and DenseNet121 by 23.3%, 22%,
25.4%, and 22.4%, respectively, in terms of averaged
F-score, while they are all trained with range-intensity
tiles.

Although the developed DACNN achieves great per-
formance in pavement object classification, some limitations
still exist in our model. )erefore, extra effort is required to
make our model more practical and effective. Firstly, our
model classifies 50 × 50 pavement tiles into different cate-
gories. Although 50 × 50mm2 spatial resolution is acceptable
in most road surveys, a pixel-level segmentation is required
for some pavement applications such as crack width mea-
surements. Secondly, quantifying the severity of pavement
distresses is of necessity for road condition assessment, but it
cannot be obtained directly from our model. Lastly, self-
attentionmechanisms capturing long-range dependencies in
the network can be explored for further improvements.
Furthermore, one can conduct hyperparameter studies for
the training of the network and provide quantitative
comparisons.
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)e data used to support the findings of this study are
available from the corresponding author upon request.
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Table 4: Effect of different threshold values for histogram equalization on DACNN results.

Metric Cliplimit� 2 Cliplimit� 3 Cliplimit� 4 Cliplimit� 5
Precision 0.924 0.973 0.959 0.967
Recall 0.913 0.878 0.944 0.906
F-score 0.918 0.923 0.951 0.936

Table 5: Comparison of computational costs for different classification approaches.

Computational costs Baselines (intensity-only) Baselines (intensity-range) DACNN (intensity-only) DACNN (intensity-range)
Number of parameters 51M 51M 61M 63M
Training time/epoch 67.1 s 82.6 s 175.6 s 247.5 s
Inference time/100 batches 4.2 s 4.3 s 8.7 s 10.2 s
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By predicting and informing the future of traffic through intelligent transportation systems, there is more readiness to avoid traffic
congestion. In this study, an ensemble learning process is proposed to predict the hourly traffic flow. First, three base models,
including K-nearest neighbors, random forest, and recurrent neural network, are trained. Predictions of base models are given to
the XGBoost stacking model and bagged average to determine the final prediction. Two groups of models predict traffic flow of
short-term and mid-term future. In mid-term models, predictor features are cyclical temporal features, holidays, and weather
conditions. In short-term models, in addition to the mentioned features, the observed traffic flow in the past 3 to 8 hours has been
used.'e results show that for both short-term andmid-termmodels, the least prediction error is obtained by the XGBoost model.
In mid-termmodels, the root mean square error of the XGBoost for the Saveh to Tehran direction and Tehran to Saveh direction is
521 and 607 (veh/hr), respectively. For short-term models, these values are decreased to 453 and 386 (veh/hr). 'is model also
brings less prediction error for predicting the first and fourth quartiles of the observed traffic flow as rare events.

1. Introduction

Intelligent transportation systems are one of the leading
efficient tools for transportation network traffic manage-
ment. 'e result of using these systems is achieving or
maintaining the balance between transportation supply and
demand with low cost [1]. Intelligent transportation systems
include various subsystems which one of the most important
of them is the advanced traveler information system. By this
system, available information about the transportation
network is given to travelers to plan their travels with more
awareness. 'is information can be informed for the current
state of the network, but its effectiveness becomes more if it
is predicted and informed for the future of the trans-
portation network [2]. In such circumstances, the traveler is
more prepared to choose the appropriate route and de-
parture time and even to choose to have a trip or cancel it.
Generally, traffic parameters such as traffic volume [3],
average speed [4], and travel time [5] are predicted and
informed by intelligent systems. As the time horizon of these

predictions is limited to the near future compared to the
time horizon of classical 4-step transportation planning
prediction, they are short-term predictions.

Prediction of traffic parameters is made by analyzing the
past observations and discovering effective features on the
variation of traffic parameters. For this purpose, the use of
time-series models as a tool based on statistics and proba-
bility has more antiquity in previous studies. In time-series
models, each traffic parameter’s variation is a function of
that parameter’s previously observed values, independent
effective features, and random term. For example, Kumar
and Vanajakshi [6] have predicted the traffic flow using the
seasonal autoregressive integrated moving average (SAR-
IMA). Results show that the model is more accurate than the
historical average models. In Yan et al.’s study [7], autor-
egressive integratedmoving average (ARIMA) has been used
to predict subway passengers’ flow. Time-series models are
only capable of considering linear relationships between
independent and dependent variables. On the other hand, by
increasing the number of observations and features, traffic
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data are converted to big data. 'ese models are not
compatible with big data characteristics, including volume,
velocity, and variety [8].

Another approach to predict traffic parameters is the
machine learning (ML) approach. ML models are compatible
with big data characteristics and can depict linear and
nonlinear relationships. Lack of interpretability and disability
in discovering causal relationships are themain weaknesses of
ML models, and time-series models are superior to ML
models in this regard [9]. MLmodels are diverse and artificial
neural network (ANN) [10], support vectormachine [11], and
decision tree [12] are some of the widely used ML models. To
predict the traffic flow, Ma et al. [13] use ANN optimized by
genetic algorithms and exponential smoothing. 'e results
show that the optimization of the artificial neural network
improves prediction accuracy. Simple ANN considers con-
secutive observations independently. To capture the rela-
tionship between successive observations, Lu et al. [14] have
used a recurrent neural network (RNN) model. 'e RNN
model emphasizes the importance of the time-series nature of
data by forming neural network blocks at different time
intervals. Each block’s input is the output of another block
related to past times and predictive features. Also, long short-
term memory (LSTM) model is another type of RNN model
that considers the dependency of observations for both short-
term (near past observations) and long-term (far past ob-
servations) pasts. 'is algorithm is used in Farahani et al. [15]
and Chen [16] studies.Wang et al. [17] focus their research on
ANN models’ weakness in interpreting results. After training
a deep neural network model for traffic flow prediction, the
proposed model is interpreted in two different ways: first,
justifying the number of layers and nodes; second, explaining
the causality between historical data and future state of traffic.

'e ML models used to predict traffic variables are not
limited to the neural network-based modes and traffic flow
prediction problem. As an example of other ML models and
other traffic parameters, Xu et al. [18] predict the nominal
traffic state by using the Kalman filter, Zheng et al. [19] predict
traffic speed by K-nearest neighbours (KNNs), Liu et al. [20]
predict traffic congestion by random forest (RF), and Yang
et al. [21] predict travel time by Markov chain method.

Variety of short-term prediction methods, and on the
other hand, lack of a technique that has the highest accuracy
for all situations has led researchers to the use of ensemble
learning process. In this process, the base models’ output is
used and to provide one unique final prediction. In general,
the ensemble learning process is divided into three cate-
gories: bagging, boosting, and stacking. In the bagging
process, the base models are trained with the same training
dataset, and by averaging or voting, the final prediction is
determined. In the boosting process, the base models are
trained sequentially to improve the old model’s prediction
accuracy in the current model. In the stacking process,
predictions of base models are introduced as inputs of a
supermodel that can be an ML model, the supermodel’s
output is the final prediction [22]. By using bagging en-
semble modeling, Moretti et al. [23] combine predictions of
statistical and neural network models to predict traffic flow.
Yenru and Haghani [24] use a gradient boosting regression

tree model to predict travel time. Ma et al. [25] use a
contextual convolutional recurrent neural network to rec-
ognize inter- and intra-day traffic patterns. Lin et al. [26]
propose a stacking ensemble learning process to predict
public bicycle traffic flow. In all of these three studies, using
ensemble learning modeling leads to more accuracy of
predictions than base models.

In this study, hourly traffic flow is predicted using three
ML basemethods, including KNN, RF, and RNN. Outputs of
these models are given to XGboost as a stacking supermodel
and bagged averaging to predict the final output in the
ensemble learning process. 'e predictive models are di-
vided into two categories: short-term and mid-term. In the
short-term models, in addition to the external predictive
features including cyclical temporal features, holidays, and
weather conditions, the observed traffic flow in the previous
3 to 8 hours has also been used, and these models can only
predict the traffic flow only for one and two hours of the
future. In mid-term models, only use external predictive
features, and there is no time horizon limitation. Finally, the
accuracy of these two sets of models is evaluated and
compared. 'e data used in this study are related to traffic
data of Tehran-Saveh, a rural road in Iran, for both direc-
tions. In general, identifying the dominant pattern of traffic
parameters in rural roads is more complicated than the
urban roads because in contrast to urban trips, a significant
part of rural trips is nonroutine.

'is study’s contribution is to propose a stacking and
bagging ensemble learning process consisting of three baseML
algorithms, including KNN, RF, and RNN, alongside the
XGboost as a supermodel that puts predictions of base models
together. Although previous studies use ensemble learning
process for traffic parameter prediction, but designed archi-
tecture used in this study is unique. XGboost is a significant
part of this structure which is recommended to be used as a
stacking supermodel which is not used in the architecture of
previous studies related to traffic parameter prediction. Also,
short-term and mid-term models with different time horizons
and different predictive features are trained and evaluated in
this paper for rural road that less investigated before. Finally,
employing cyclical feature which are related to temporal
features is another novel idea for traffic flow prediction.

2. Data

'is study’s traffic data is collected for one section of the
Saveh–Tehran rural road for both directions by loop de-
tectors. Data collection has been carried out for about three
years, from 21 March 2017 to 10 March 2020. Data are
divided into three sections: first, two years of observations
are used to train base models, the next six months, and
related predictions of base models are used to train the
stacking model. 'e last six months are used to test the base
models and stacking model performances. We called these
datasets train 1, train 2, and test. Also, total observations for
the ensemble learning process, including train 1 and train 2
datasets, are named train datasets. 'e raw data includes
hourly traffic flow and date. After exploring the relationship
between hourly traffic flow and calendar attributes such as
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holidays and their type, new features related to the calendar
are added to the dataset. Since holidays in Iran are based on
two lunar and solar calendars, and as these two calendars are
not fixed together, both of them are considered. Also, many
passengers start their trips before the holiday and continue it
until after the holiday, so it is necessary to consider the
effects of holidays on the traffic flow of the days before and
after it. Weather condition is another important factor af-
fecting the traffic flow, which is extracted and added to the
features. Table 1 describes the candidate features to predict
traffic flow in the dataset.

In Table 1, season, solar and lunar months, day of solar
and lunar months, day of the week, and time of day
(temporal features) are essentially cyclical and varied in
particular intervals. For instance, hour 23 and hour 0 are
close to each other. 'is also refers to the spring and winter,
the first month of the year and the last month of the year and
the first day of the week, and the last day of the week. 'e
biggest problem is letting the algorithms know that these
features varied in cycles. Calculating the components of the
sinus and cosine and introducing cyclical characteristics is
the best way to deal with this problem. For this purpose, the
following sinus and cosine transformations are used [27].

xsin � sin
2∗ π ∗x

max(x)
 ,

xcos � cos
2∗ π ∗ x

max(x)
 .

(1)

'e scatter graph of temporal features after these
transformations is shown in Figure 1.

Season, solar and lunar months, day of solar and lunar
months, day of the week, and time of day are used cyclically
in this study.

'e introduced features in Table 1 are used to train the
mid-term models with the unlimited prediction time ho-
rizon. In short-term models, in addition to the features in
Table 1, the traffic flow observed at intervals 3 to 8 hours ago
is also used as predictor features and these models are only
able to predict one and two hours of the future.

Figure 2 depicts the traffic flow histogram for the en-
semble learning train dataset (train 1 + train 2) and the test
dataset. Table 2 presents a statistical summary description of
traffic flow.

In current study, to prepare and select predictive fea-
tures, cyclical features have been used. 'ere are several
input data selection methods for this purpose. For example,
genetic algorithm, forward or backward feature selection,
and recursive feature elimination [28]. In the rest of this
paper, the effect of using cyclical features have been
presented.

3. Methods

'is study proposes a stacking and bagging ensemble learning
process consisting of three base ML algorithms, including
KNN, RF, and RNN, alongside the XGboost as a supermodel.
We choose base models based on their accuracy and selected

base model outperforms other models. For example, we tried
to employ LSTM algorithm as a deep learning base model but
the resulted predictions have not enough accuracy to consider
LSTM in ensemble learning process.

3.1. K-Nearest Neighbors. 'e KNNmodel is an ML method
used for both classification and regression problems. 'e
main objective of the KNN is to find some labeled obser-
vations in the training dataset which have the smallest
distance with nonlabeled observations in the test data. Using
the averaging or voting, the new label is assigned to new data
[29]. 'e four main steps of this approach are as following:

Step 1: the train dataset is given in an n-dimensional
coordinate system (n is the number of features).
Step 2: Euclidean distance between any new observa-
tion and training data observations is calculated.
Step 3: k is the number of observations that have the
smallest distance from any new observation.
Step 4: the average of K observation labels is selected as
the new observation label.

Euclidean distance between observations p and q is
defined according to equation (2) [30].

d(p, q) �

���������������������������������

q1 − p1( 
2

+ q2 − p2( 
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+ · · · + qn − pn( 
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qi − pi( 

2




.

(2)

3.2. Random Forest. Similar to the KNN, the RF is an ML
model used for regression and classification problems. 'e
RF consists of a large number of decision trees. In this
model, the training data are divided between decision tree
models, and after training them, predictions are made for
each decision tree. 'e average of predictions is determined
as the RF’s final prediction [31]. 'e following steps indicate
how the algorithm works.

Step 1: start with the select random samples from the
training dataset
Step 2: using each sample to train a decision tree.
Step 3: the prediction of each decision tree model is
made for the test data.
Step 4: the average of predictions is selected as the final
prediction.

RF starts with a node and branches to another node.'is
paper uses the entropy formula to determine how the dataset
branches from each node. Equation (3) presents the entropy
formula [31].

Entropy � 
c

i�1
−pi ∗ log2(pi), (3)

where pi is the relative frequency of label i, i is the index of
labels, and c is the total number of labels.
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3.3. RecurrentNeuralNetwork. RNN is a kind of deep neural
network. Since the successive observations are dependent on
each other, the use of the RNN can help improve the ac-
curacy of predictions.�ese ANNs are particularly useful for
time-series analysis, where each neuron can maintain in-
ternal information of the connected nodes. �is attribute of
maintaining the internal state or the memory capability
helps the network to understand and discover the link be-
tween di�erent successive observations [32].

Let denote the input time series with D variables of
length T as X � (X1, X1, . . . , XT), where Xt is the t-th
observation. ct is a memory cell, contains information at
time step t, and is controlled by three gates. �ese gates
control whether to forgot the current cell value (forget gate
ft) to read its input (input gate it) and to output the new cell
value (output gate ot) [33]. Also, c̃t is an input modulation
gates. All these gates, cell update, and output are computed
in the following formulas [34]:

Table 1: Description of candidate features to predict tra�c �ow.

Feature name Description
Season Including spring, summer, fall, and winter
Solar month Including 12 solar months
Lunar month Including 12 lunar months
Day of a solar month Including 29–31 days of a solar month
Day of a lunar month Including 29–30 days of a lunar month
Time of day Including 24 hours a day
6 hour before the holidays Equal to 1 if it is 1 to 6 hour before holidays
6 hour after the holidays Equal to 1 if it is 1 to 6 hour after holidays
Day or night Including day and night
Number of holidays �e number of sequential holidays
Holidays Includes 1 for holidays and 0 for other days
Holiday type Type of holidays
Holiday in three days later Equal to 1 if three days later is a holiday
Type of holidays in three days later Including the holiday type of three days later if it is a holiday, otherwise equals 0.
Holiday in three days ago Equal to 1 if three days ago is a holiday
Type of holidays in three days ago Including the holiday type of three days ago if it is a holiday, otherwise equals 0.
Holiday in two days later Equal to 1 if two days later is a holiday
Type of holidays in two days later Including the holiday type of two days later if it is a holiday, otherwise equals 0.
Holiday in two days ago Equal to 1 if two days ago is a holiday
Type of holidays in two days ago Including the holiday type of two days ago if it is a holiday, otherwise equals 0.
Holiday in a day later Equal to 1 if a day later is a holiday
Type of holidays in a day later Including the holiday type of a day later if it is a holiday, otherwise equals 0.
Holiday in a day ago Equal to 1 if a day ago is a holiday
Type of holidays in a day ago Including the holiday type of a day ago if it is a holiday, otherwise equals 0.
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Figure 1: Cyclical features in the dataset. (a) Cyclical seasons, (b) Cyclical solar and lunar months, (c) Cyclical days of a solar or a lunar
month, (d) Cyclical days of a week, (e) Cyclical hours of a day.
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it � σ WxiXt +Whiht−1( ),

ft � σ WxfXt +Whfht−1( ),

ot � σ WxoXt +Whoht−1( ),
c̃t � ϕ WxcXt +Whcht−1( ),
ct � ft ⊙ ct−1 + it ⊙ c̃t,
ht � ot ⊙ ϕ ct( ),

(4)

where ⊙ indicates scalar product, W s are the network
parameters matrices, ht is the hidden state, ϕ is the hy-
perbolic tangent function, and σ denotes the standard lo-
gistics sigmoid transfer function.

3.4. Bagged Averaging. After training KNN, RF, and RNN,
the predicted tra�c �ow is given to the ensemble learning

algorithms to determine the �nal prediction. Bagged aver-
aging is one of these algorithms that can be done weighted or
simple. In the weighted method, each model’s prediction
weight is inversely related to the model’s root mean square
error (RMSE). Equation (5) shows how weights in bagged
averaging are calculated.

Wi �
1/RMSEi
∑Ii�1 RMSEi

, (5)

where Wi is prediction weight of model i, I is the total
number of models, and RMSEi is the root mean square error
of model i.

3.5. Stacking XGBoost. XGBoost is an optimized variant of
the ensemble learning model that has improved and ex-
panded from the tree model of gradient boosting. Under the
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Figure 2: Tra�c �ow histograms for train and test datasets of Saveh–Tehran road. (a) Histogram of train dataset for Tehran to Saveh. (b)
Histogram of test dataset for Tehran to Saveh. (c) Histogram of train dataset for Saveh to Tehran. (d) Histogram of test dataset for Saveh to Tehran.

Table 2: Statistical summary description of tra�c �ow.

Direction Dataset Number of observations Average (veh/hr) Standard deviation (veh/hr) Minimum (veh/hr) Maximum
(veh/hr)

Tehran to Saveh Train 19908 2750 1500 8 7069
Test 3658 2578 1447 130 6058

Saveh to Tehran Train 19901 2907 1455 19 6880
Test 3686 3270 1439 29 6079
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gradient boosting paradigm, it applies ML algorithms.
XGBoost o�ers a parallel tree boost that easily and reliably
addresses several data science issues [35]. �e boosting tree
is de�ned as follows:

ŷi � ∑
n

k�1
fk xi( ), fk ∈ F, (6)

where F is the set of decision trees, ŷi is model prediction, xi
is a set of predictor features, and n is the number of trees.�e
loss function of the model is as follows:

L(t) �∑
n

i�1
l yi, ŷi( ) +∑

k

k�1
Ω fk( ), (7)

where L is the di�erence between the predicted and actual
values, named di�erentiable function. Popular loss functions
include square, logarithmic, and exponential function
functions.Ω is used to regulate the complexity of the model.

Ω � cT + λ, (8)

where c and λ are penalty coe�cients. XGBoost aims to
minimize the di�erentiable function. By rewriting the dif-
ferentiable function and Taylor expansion, the formula is as
follows:

L(t) �∑
n

i�1
l yi, ŷi + ft xi( )( ) +∑

k

k�1
Ω fk( ) ,

≈ ∑
n

i�1
l yi + ŷ

(t−1)
i( ) + gift xi( ) +

1
2
hif

2
t xi( )[ ] +∑

k

k�1
Ω fk( ),

(9)

where gi and hi are the �rst and second derivatives of the loss
function, respectively [36].

4. Results and Discussion

4.1. Base Models Results. In the �rst step to train the KNN,
RF, and RNN, selecting proper values for model parameters
has a signi�cant e�ect on the �nal accuracy of prediction.
�ese parameters include the number of neighbors (K) in the
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Figure 3: Parameter tunning of short-termmodels. (a) K in KNN for Saveh to Tehran. (b) K in KNN for Tehran to Saveh. (c) NTand NV in
RF for Saveh to Tehran. (d) NT and NV in RF for Tehran to Saveh. (e) N in RNN for Saveh to Tehran. (f ) N in RNN for Tehran to Saveh.
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KNN, the number of trees (NT), and the number of variables
randomly sampled as candidates at each split (NV) in RF, and
the number of hidden layers (N) in the neural networkmodel.
To �nd the optimal value of these parameters after assigning

di�erent values to them, models are trained. Accuracy for the
test dataset is evaluated based on the RMSE. Equation (10)
represents how to calculate the RMSE. Figures 3 and 4 show
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Figure 4: Parameter tunning of mid-term models. (a) K in KNN for Saveh to Tehran. (b) K in KNN for Tehran to Saveh. (c) NTand NV in
RF for Saveh to Tehran. (d) NT and NV in RF for Tehran to Saveh. (e) N in RNN for Saveh to Tehran. (f ) N in RNN for Tehran to Saveh.

Table 3: Selected optimal values for models parameters.

Time horizon Model Road Optimal parameters

Mid-term

RF Tehran to Saveh NV� 9 NT� 75
Saveh to Tehran NV� 45 NT� 375

KNN Tehran to Saveh K� 4
Saveh to Tehran K� 1

RNN Tehran to Saveh N� 8
Saveh to Tehran N� 12

Short-term

RF Tehran to Saveh NV� 30 NT� 250
Saveh to Tehran NV� 30 NT� 250

KNN Tehran to Saveh K� 3
Saveh to Tehran K� 1

RNN Tehran to Saveh N� 8
Saveh to Tehran N� 11

Table 4: Error metrics for the �nal models.

Time horizon Model Road RMSE MAPE

Mid-term

RF Tehran to Saveh 775 27.14
Saveh to Tehran 729 21.23

KNN Tehran to Saveh 1060 33.58
Saveh to Tehran 1315 33.58

RNN Tehran to Saveh 845 42.22
Saveh to Tehran 1080 34.12

Short-term

RF Tehran to Saveh 453 16.61
Saveh to Tehran 535 15.25

KNN Tehran to Saveh 914 34.59
Saveh to Tehran 1229 34.47

RNN Tehran to Saveh 538 25.03
Saveh to Tehran 671 21.60
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the sensitivity analysis performed to �nd optimal values of the
short-term and mid-term models’ parameters.

RMSE �

������������
∑nt�1 ŷt − yt( )2

n

√

, (10)

where ŷt and yt are predicted and actual values, and n is the
number of observations.

Table 3 shows selected optimal values for �nal models.
After training the �nal models to assess the accuracy of

predictions on the test dataset, in addition to the RMSE,
the mean absolute percentage error (MAPE) is used.
Equation (11) shows how MAPE is calculated. Table 4
presents the obtained values of error metrics for the �nal
models.

MAPE �
100%
n

∑
n

t�1

ŷt − yt
yt

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣. (11)

Results in Table 4 shows that for both short-and mid-
term models and both directions of Saveh–Tehran road, the
lowest error prediction is achieved by the RF, and then the
KNN has the highest prediction error. �e MAPE of the
mid-term RF for the Saveh to Tehran and Tehran to Saveh is
21.23 and 27.14, respectively. Also, in the short-term model,
theMAPE of RF for the Saveh to Tehran and Tehran to Saveh
is 15.25 and 16.61.

Figure 5 shows the di�erence between the RMSE of the
short-term and mid-termmodels. �e accuracy of the short-
term models is higher than the mid-term models, and using
previously observed tra�c �ows had increased the accuracy
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Figure 5: RMSE of short-term and mid-term models. (a) Saveh to Tehran. (b) Tehran to Saveh.

Table 5: Error metrics for the ensemble learning methods and the most accurate base model.

Time horizon Model Road RMSE MAPE

Mid-term

RF Tehran to Saveh 775 27.14
Saveh to Tehran 729 21.23

Max Tehran to Saveh 687 35.20
Saveh to Tehran 578 21.92

Min Tehran to Saveh 1054 33.09
Saveh to Tehran 1386 42.49

Bagged simple averaging Tehran to Saveh 705 27.03
Saveh to Tehran 868 26.96

Bagged weighted averaging Tehran to Saveh 683 26.62
Saveh to Tehran 832 26.05

XGBoost Tehran to Saveh 607 24.59
Saveh to Tehran 521 20.48

Short-term

RF Tehran to Saveh 453 16.61
Saveh to Tehran 535 15.25

Max Tehran to Saveh 696 41.03
Saveh to Tehran 639 26.46

Min Tehran to Saveh 957 30.74
Saveh to Tehran 1214 35.79

Bagged simple averaging Tehran to Saveh 638 26.86
Saveh to Tehran 748 24.52

Bagged weighted averaging Tehran to Saveh 595 26.11
Saveh to Tehran 683 22.57

XGBoost Tehran to Saveh 386 14.07
Saveh to Tehran 453 14.61
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of the prediction. �e limited-time horizon of these models
is considered as their weakness.

4.2. Bagging and Stacking Ensemble Models Results. After
receiving the base models’ predictions, the ensemble
learning process is performed by using the bagging and
stacking methods, and the �nal results are obtained. In
addition to the bagging and stackingmethods, the maximum
and minimum predicted tra�c �ow values are analyzed as
the �nal prediction. Like the base models, the ensemble
learning process has also been examined for short-term and
mid-term predictions that their inputs are the short-term
and mid-term output of base models. Table 5 shows the
results obtained by ensemble learning and the RF as themost
accurate base model.

Table 5 indicates that for both the short-term and mid-
term models and both directions of Tehran–Saveh road,
based on the RMSE and the MAPE, using the XGBoost,
decreases the prediction error and stacking ensemble

learning by using XGBoost has the lowest prediction error.
Based on the RMSE, in the mid-termmodel, the predictions
through maximum and minimum values of the predicted
tra�c �ow values have higher and lower accuracy com-
pared to the RF, respectively. It can be concluded that the
base models underestimate tra�c �ow. Bagged averaging
only increases the accuracy of predicting for Tehran to
Saveh. In the short-term models, only the XGBoost model
has reduced the tra�c volume prediction error, and other
methods have no positive e�ects on the accuracy of tra�c
�ow prediction.

Another critical point in the tra�c �ow prediction is
predicting maximum and minimum tra�c �ow values that
indicate rare tra�c events. Generally, informing hours with
high and low tra�c �ow is more worthwhile for users and
system operators than normal tra�c �ows. To determine
the models’ performance in predicting rare events, the
RMSE has been calculated separately for the �rst and fourth
quartiles of the observed tra�c �ow and presented in
Figures 6 and 7.

592

424
465

410 415

640

421 388

KN
N RF

RN
N

Ba
gg

ed
 w

ei
gh

te
d…

Ba
gg

ed
 si

m
pl

e… M
ax

M
in

XG
Bo

os
t

Models

0

100

200

300

400

500

600

700
RM

SE

(a)

534

276

441

305 314

503

358
295

KN
N RF

RN
N

Ba
gg

ed
 w

ei
gh

te
d…

Ba
gg

ed
 si

m
pl

e… M
ax

M
in

XG
Bo

os
t

Models

0

100

200

300

400

500

600

700

RM
SE

(b)

585

327

636

414 420

722

395
287

KN
N RF

RN
N

Ba
gg

ed
 w

ei
gh

te
d…

Ba
gg

ed
 si

m
pl

e… M
ax

M
in

XG
Bo

os
t

Models

0
100
200
300
400
500
600
700
800
900

1000

RM
SE

(c)

887

272
357 357 391

844

435

266

KN
N RF

RN
N

Ba
gg

ed
 w

ei
gh

te
d…

Ba
gg

ed
 si

m
pl

e… M
ax

M
in

XG
Bo

os
t

Models

0
100
200
300
400
500
600
700
800
900

1000

RM
SE

(d)

Figure 6: RMSE of base, bagging, and stacking models for the �rst quartiles of the observed tra�c �ow. (a) Mid-term models of Tehran to
Saveh. (b) Mid-term models of Saveh to Tehran. (c) Short-term models of Tehran to Saveh. (d) Short-term models of Saveh to Tehran.

Journal of Advanced Transportation 9



Figures 6 and 7 show the lowest RMSE for the �rst and
fourth quartiles are achieved by XGBoost and Max methods,
respectively. �e exciting point is less prediction error of the
XGBoost than the Min method in predicting the �rst
quartile.�e XGBoost could predict both the �rst and fourth
quartile more accurately than the base models, whereas the
Max method only predicts the fourth quarter more accu-
rately than the base models. Among the base models, the RF
model predicts the tra�c �ow for two quadrants more
accurately than the two other base models.

5. Conclusion

One of the applications of intelligent transportation
systems is predicting the future state of tra�c while the
traveler will have more proper planning to choose travel,
departure time, and route choice. Also, the transportation
network operator will be more prepared to deal with tra�c
congestion. In this study, tra�c �ow as a parameter shows

the state of tra�c is predicted using three base methods
based on ML, including KNN, RF, and RNN for a rural
road in Iran for both directions. �en, using the bagging
and stacking methods, the most important of them is the
XGBoost, and the �nal tra�c �ow is predicted. Pre-
processing is performing by adding predictor features
related to cyclical temporal features, holidays, types of
holidays, and weather in the �rst step. In the second step,
to �nd optimal values of the parameters of short-term and
mid-term models, models are trained by di�erent values
of parameters, and optimal values are selected based on
the accuracy of prediction on the test data. After training
the base models with optimal values of parameters, the
initial predictions are evaluated and compared. In the next
step, by using base models’ predictions, the ensemble
learning process is applied to make the �nal prediction,
which is expected to be more accurate than base models
predictions. �e results show that the highest accuracy of
prediction for both short-term and mid-term is achieved
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Figure 7: RMSE of the base, bagging, and stacking models for the fourth quartiles of the observed tra�c �ow. (a) Mid-term models of
Tehran to Saveh. (b) Mid-term models of Saveh to Tehran. (c) Short-term models of Tehran to Saveh. (d) Short-term models of Saveh to
Tehran.
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using the XGBoost model in the stacking learning process.
'is model predicts the first and fourth quartiles of the
observed traffic flow more accurately than the base
models. In general, the prediction error of short-term
models is lower than the mid-term models. However,
these models can only predict the traffic flow of one and
two hours of the future.

In the end, the predicted traffic flow by short-term and
mid-term models can be informed to passengers via ad-
vanced traveler information systems. To use the predic-
tion accuracy of the short-term models and have the
prediction time horizon of mid-term models, future one
and two hours will be predicted by short-termmodels, and
for the next hours, prediction by mid-term models can be
used.

Data Availability

'e traffic data used in this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest

'e authors declare no conflicts of interest.

Authors’ Contributions

A. R. contributed to software analysis, validation, formal
analysis, data curation, original draft preparation, and vi-
sualization. S. S. contributed to conceptualization, meth-
odology, supervision, and review and editing.

References

[1] A. Merenkov, “Digital economy: transport management and
intelligent transportation systems,” E-management, vol. 1,
no. 1, pp. 12–18, 2018.

[2] A. Boukerche and J. Wang, “Machine learning-based traffic
prediction models for intelligent transportation systems,”
Computer Networks, vol. 181, Article ID 107530, 2020.

[3] S. Manne, E. L. Lydia, I. V. Pustokhina, D. A. Pustokhin,
V. S. Parvathy, and K. Shankar, “An intelligent energy
management and traffic predictive model for autonomous
vehicle systems,” Soft Computing, vol. 25, pp. 1–13, 2021.

[4] M. Simunek and Z. Smutny, “Traffic information enrichment:
creating long-term traffic speed prediction ensemble model
for better navigation through waypoints,” Applied Sciences,
vol. 11, p. 315, 2021.

[5] N. Chiabaut and R. Faitout, “Traffic congestion and travel
time prediction based on historical congestion maps and
identification of consensual days,” Transportation Research
Part C: Emerging Technologies, vol. 124, Article ID 102920,
2021.

[6] S. V. Kumar and L. Vanajakshi, “Short-term traffic flow
prediction using seasonal ARIMA model with limited input
data,” European Transport Research Review, vol. 7, no. 3, p. 21,
2015.

[7] D. Yan, J. Zhou, Y. Zhao, and B. Wu, “Short-term subway
passenger flow prediction based on ARIMA,” in Proceedings
of the International Conference on Geo-Spatial Knowledge and

Intelligence, pp. 464–479, Chiang Mai, 'ailand, December
2017.

[8] A. M. Nagy and V. Simon, “Survey on traffic prediction in
smart cities,” Pervasive and Mobile Computing, vol. 50,
pp. 148–163, 2018.

[9] J. Barros, M. Araujo, and R. J. Rossetti, “Short-term Real-Time
Traffic Prediction Methods: A Survey,” in Proceedings of the
2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pp. 132–139,
IEEE, Budapest, Hungary, June 2015.

[10] R. More, A. Mugal, S. Rajgure, R. B. Adhao, and
V. K. Pachghare, “Road traffic prediction and congestion
control using Artificial Neural Networks,” in Proceedings of
the 2016 International Conference on Computing, Analytics
and Security Trends (CAST), pp. 52–57, IEEE, Pune, India,
December 2016.

[11] C. Luo, C. Huang, J. Cao et al., “Short-term traffic flow
prediction based on least square support vector machine with
hybrid optimization algorithm,” Neural Processing Letters,
vol. 50, no. 3, pp. 2305–2322, 2019.

[12] W. Alajali, W. Zhou, S. Wen, and Y. Wang, “Intersection
traffic prediction using decision tree models,” Symmetry,
vol. 10, no. 9, p. 386, 2018.

[13] C. Ma, L. Tan, and X. Xu, “Short-term traffic flow prediction
based on genetic artificial neural network and exponential
smoothing,” Promet - Traffic & Transportation, vol. 32, no. 6,
pp. 747–760, 2020a.

[14] S. Lu, Q. Zhang, G. Chen, and D. Seng, “A combined method
for short-term traffic flow prediction based on recurrent
neural network,” Alexandria Engineering Journal, vol. 60,
no. 1, pp. 87–94, 2021.

[15] M. Farahani, M. Farahani, M. Manthouri, and O. Kaynak,
“Short-term Traffic Flow Prediction Using Variational LSTM
Networks,” 2020, https://arxiv.org/abs/2002.07922.

[16] X. Chen, “Research on short-term traffic flow forecasting
model based on LSTM,” World Scientific Research Journal,
vol. 6, pp. 191–200, 2020a.

[17] W. Wang, H. Zhang, T. Li et al., “An interpretable model for
short term traffic flow prediction,” Mathematics and Com-
puters in Simulation, vol. 171, pp. 264–278, 2020.

[18] D.-W. Xu, Y.-D. Wang, L.-M. Jia, Y. Qin, and H.-H. Dong,
“Real-time road traffic state prediction based on ARIMA and
Kalman filter,” Frontiers of Information Technology & Elec-
tronic Engineering, vol. 18, no. 2, pp. 287–302, 2017.

[19] L. Zheng, H. Huang, C. Zhu, and K. Zhang, “A tensor-based
K-nearest neighborsmethod for traffic speed prediction under
data missing,” Transportation Business: Transport Dynamics,
vol. 8, no. 1, pp. 182–199, 2020.

[20] X. Li, T. Pang, B. Xiong, W. Liu, P. Liang, and T. Wang,
“Convolutional Neural Networks Based Transfer Learning for
Diabetic Retinopathy Fundus Image classification,” in Pro-
ceedings of the 2017 10th International congress on Image and
Signal Processing, Biomedical Engineering and Informatics
(CISP-BMEI), pp. 1–11, Shanghai, China, October 2017.

[21] H. Yang, Y. Zou, Z. Wang, and B. Wu, “A hybrid method for
short-term freeway travel time prediction based on wavelet
neural network and Markov chain,” Canadian Journal of Civil
Engineering, vol. 45, no. 2, pp. 77–86, 2018.

[22] M. H. D. M. Ribeiro and L. Dos Santos Coelho, “Ensemble
approach based on bagging, boosting and stacking for short-
term prediction in agribusiness time series,” Applied Soft
Computing, vol. 86, Article ID 105837, 2020.

Journal of Advanced Transportation 11

https://arxiv.org/abs/2002.07922


[23] F. Moretti, S. Pizzuti, S. Panzieri, and M. Annunziato, “Urban
traffic flow forecasting through statistical and neural network
bagging ensemble hybrid modeling,” Neurocomputing,
vol. 167, pp. 3–7, 2015.

[24] Y. Zhang and A. Haghani, “A gradient boosting method to
improve travel time prediction,” Transportation Research Part
C: Emerging Technologies, vol. 58, pp. 308–324, 2015.

[25] D. Ma, X. Song, and P. Li, “Daily traffic flow forecasting
through a contextual convolutional recurrent neural network
modeling inter-and intra-day traffic patterns,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 22, no. 5,
pp. 2627–2636, 2020b.

[26] F. Lin, J. Jiang, J. Fan, and S. Wang, “A stacking model for
variation prediction of public bicycle traffic flow,” Intelligent
Data Analysis, vol. 22, no. 4, pp. 911–933, 2018.

[27] A. Rasaizadi, A. Ardestani, and S. Seyedabrishami, “Traffic
management via traffic parameters prediction by using ma-
chine learning algorithms,” International Journal of Human
Capital in Urban Management, vol. 6, pp. 57–68, 2021a.

[28] A. Rasaizadi, S. Seyedabrishami, and M. Saniee Abadeh,
“Short-term prediction of traffic state for a rural road applying
ensemble learning process,” Journal of Advanced Trans-
portation, vol. 2021, Article ID 3334810, 14 pages, 2021b.

[29] D. Cheng, S. Zhang, Z. Deng, Y. Zhu, and M. Zong, “kNN
algorithm with data-driven k value,” in Proceedings of the
International Conference on Advanced Data Mining and
Applications, pp. 499–512, Guilin, China, December 2014.

[30] A. Rasaizadi, E. Sherafat, and S. Seyedabrishami, “Short-term
Prediction of Traffic State,” Statistical Approach versus Ma-
chine Learning Approach, 2021c.

[31] G. Biau and E. Scornet, “A random forest guided tour,” Test,
vol. 25, no. 2, pp. 197–227, 2016.

[32] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent Neural
Network Regularization,” 2014, https://arxiv.org/abs/1409.
2329.

[33] Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “LSTM-based
traffic flow prediction with missing data,” Neurocomputing,
vol. 318, pp. 297–305, 2018.

[34] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for
large-scale transportation network speed prediction,” Sensors,
vol. 17, no. 4, 818 pages, 2017.

[35] Y. Chen, “Short-Term Traffic Flow Prediction Based onMulti-
Model by Stacking Ensemble Learning,” in Proceedings of the
20th COTA International Conference of Transportation
Professionals, Xi’an, China, December 2020.

[36] A. Rasaizadi, I. Farzin, and F. Hafizi, “Machine learning
approach versus probabilistic approach to model the depar-
ture time of non-mandatory trips,” Physica A: Statistical
Mechanics and Its Applications, vol. 586, Article ID 126492,
2022.

12 Journal of Advanced Transportation

https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1409.2329


Research Article
Resilience of Urban Road Network toMalignant Traffic Accidents

Yiding Lu ,1 Zhan Zhang ,2 Xinyi Fang,1 Linjie Gao,1 and Linjun Lu1

1Department of Traffic Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
2School of Design, Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Zhan Zhang; zhanzhang@sjtu.edu.cn

Received 7 February 2022; Revised 30 March 2022; Accepted 18 April 2022; Published 6 May 2022

Academic Editor: Seyed Ali Ghahari

Copyright © 2022 Yiding Lu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malignant traffic accidents are typical devastating events suffered by the urban road network. ,ey cause severe functional loss
when loading on the urban road network is high, exerting a significant impact on the operation of the city. ,e resilience of a road
network refers to its ability to maintain a certain level of capacity and service when disturbed by external factors and to recover
after a disturbance event, which is a crucial factor in the construction of transportation infrastructure systems. A comprehensive
understanding of the adverse effects of malignant traffic accidents on the urban road network is imperative, and resilience is a
concept employed to systematically explain this. ,is study investigates the impact of malignant traffic accidents on the resilience
of the urban road network. A simulation is carried out focusing on an ideal urban road network, describing the temporal and
spatial distribution of the average speed of road sections in the network. Inspired by the simulation experiment results, the ideal
resilience curve is summarized, and the theory of resilience concept portrayal is innovatively developed into “6R” (redundancy,
reduction, robustness, recovery, reinforcement, and rapidity). Combining the topological and “6R” resilience attributes of the
urban road network, the urban road network resilience evaluation system is constructed, which yields an all-round and full-
process evaluation for the urban road network with malignant traffic accidents. Results show that under malignant traffic
accidents, the resilience of high-class surface roads, such as primary roads, is the poorest, suggesting that more attention and
resources must be devoted to high-class surface roads. ,is study on the urban road network deepens the understanding and
portrayal of its resilience and proposes an evaluation method to analyze its performance under disruption events.

1. Introduction

,e continuous development of the urban road network has
significantly boosted the construction of transportation
infrastructure systems, and at the same time, it has inevitably
caused numerous traffic problems. ,e occurrence of un-
anticipated disruptive events often has serious consequences
[1, 2]. Malignant traffic accidents are typical devastating
events, which often cause loss of life and property. Although
malignant traffic accidents are not very common, once they
occur, they provoke considerable adverse impacts. For ex-
ample, on January 16, 2014, a large traffic accident occurred
on China’s Beijing-Shenyang Expressway. More than one
hundred vehicles collided, and a flour truck exploded into
flames, killing two people, injuring five others, and dam-
aging forty-five vehicles. With the growing development of

the urban road network, the impact of malignant traffic
accidents on it is attracting increasing interest.

Resilience originally refers to the ability of a material to
absorb energy during plastic deformation and rupture.
Holling [3] introduced the concept of resilience to the field
of ecology in 1973. Since, the concept has been gradually
extended to various fields, such as socio-economy and en-
gineering [4, 5]. Hansen and Sutter’s [6] study of the effects
of road closures caused by the Loma Prieta earthquake
initiated the research field of road traffic system resilience. In
recent years in the field of transportation, resilience has
become a hot research topic. ,e urban road network forms
the basic network for urban transportation activities. ,e
resilience of the urban road network refers to the ability to
maintain a certain level of capacity and service when dis-
turbed by external factors and to recover after a disturbance
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event. Research on the resilience of the urban road network
helps us better manage the operation of urban road traffic.

,e urban road network with better resilience has a
stronger ability to resist the adverse impacts of malignant
traffic accidents and quickly recover from them. Improving
the ability to respond to and handle malignant traffic ac-
cidents enhances the resilience of the urban road network,
and in turn, developing the portrayal of the resilience
concept helps us better understand the mechanism of ma-
lignant traffic accidents. ,e impact of malignant traffic
accidents on the resilience of the urban road network is a
problem that involves both temporal and spatial dimensions.
Its propagation mechanism is difficult to capture, and the
spatiotemporal mechanism is difficult to portray, which
reveals the lack of research about the impact of malignant
traffic accidents on the urban road network. Furthermore, it
is difficult to make an all-round and full-process evaluation
of the resilience of the urban road network with malignant
traffic accidents. ,erefore, the study of the impact of
malignant traffic accidents on the resilience of the urban
road network is extremely necessary.

,is studycombines trafficsimulation technologywith the
study of the resilience of the urban road network. Focusing on
an ideal urban road network, the entire process is simulated
from before the occurrence of malignant traffic accidents to
after the implemented recoverymeasures, obtaining temporal
and spatial distributions of the average speed of road sections
in the network. Inspired by the results of simulation experi-
ments, the ideal resilience curve is obtained, and the theory of
resilience concept portrayal is innovatively developed. Based
on the topological and resilience attributes of the urban road
network, the resilience evaluation system is established,
yielding a full-process evaluation of the resilience under
malignant traffic accidents. From the perspective of the
government, based on the spreading characteristics of the
congestion phenomenon, corresponding policy suggestions
are made to improve the resilience of the urban road network
when facing malignant traffic accidents.

,e remainder of this paper is organized as follows.
Section 2 reviews the relevant literature and highlights the
identified research gaps. ,e parameters and flow of the
simulation experiments are described in detail in Section 3.
Section 4 shows and analyses the results of the simulation
experiment and proposes the ideal resilience curve. Section 5
innovatively discusses the resilience evaluation system and
provides corresponding policy suggestions for the urban
road network from the perspective of the government. Fi-
nally, conclusions are presented in Section 6. ,e structure
of the paper is shown in Figure 1.

2. Literature Review

2.1. Impact of Emergency Events on Traffic Networks.
Research on the impact of emergencies on urban road net-
works have attracted the interest and attention of researchers
in the past decade.,e day-long traffic jams inNewYork City
after 9/11 caused massive disruptions in the city’s trans-
portation network, demonstrating its vulnerabilities and their
negative consequences and prompting research on this topic.

Berdica [7] was the first to define the degree of impact on
the traffic network of such sudden events that lead to a
significant reduction in the network service capacity as the
vulnerability of the traffic network. Vulnerability focuses on
the weaknesses of the network and the consequences of
failure. According to [8–10], the vulnerability of urban road
networks could be viewed in a similar manner to measure
the risk. ,e concept of vulnerability can be separated into
two parts, using both the product of the probability of an
event occurring and the outcome. Murray et al. [11] clas-
sified the current methods for assessing disturbance events
on road networks into four broad categories: the scenario-
specific, attack strategy-specific, simulation, and mathe-
matical model.

,e scenario-specific assessment method examines the
impact on the road network in the case of a specific edge or
node disruption and evaluates its possible consequences
[12–15]. ,e attack strategy-specific assessment method in-
volves the study of the sensitivity of different network
structures to external stimuli and attacks. ,e method sets up
an attack strategy and then applies statistical methods to study
the vulnerability of the infrastructure network [16, 17]. ,e
simulation assessment method analyses the factors affecting
network performance using simulation software to simulate
macro or micro road networks, such that the consequences of
the impact can be evaluated [7, 18]. ,e mathematical model
assessment method focuses on the methodology and model
and uses mathematical expressions or models to determine
the consequences of network unit failure [19].

,e above four methods do not conflict with each other
and can be used to study the impact of unexpected events on
the road network, identify critical points and key locations,
and assess the vulnerability of the network. In practice,
several of these methods can be used in combination.

,e emergency event that is the focus of current studies
is a broad and abstract concept. It has not been refined to
specific events. Furthermore, because the consequences of
malignant traffic accidents are generally measured in terms
of human or property damage, there are little data about the
impact of malignant traffic accidents on the urban road
network. Moreover, few studies have been conducted on the
impact of malignant traffic accidents on the urban road
network.

2.2. Resilience of Road Traffic System. ,e resilience of the
road traffic system refers to the ability of the road traffic
system to maintain a certain capacity and level of service
when disturbed by external factors and to recover after a
disturbance event. Research related to road traffic system
resilience began in 1990 with Hansen and Sutter’s [6] study
of the effects of road closures caused by the Loma Prieta
earthquake. ,is study inaugurated the field of road traffic
system resilience research. Research on traffic system
resilience has gone through three main stages: the stage of
conceptual framework research, the stage of metrics, and the
stage of quantitative evaluation.

In the stage of conceptual framework research, Bruneau
and Chang [20] proposed the classical conceptual
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framework of resilience, which is de�ned as the ability of a
system to mitigate the e
ects of a disaster and maintain its
own function. �is was measured by a resilience triangle
consisting of robustness, rapidity, redundancy, and re-
sourcefulness. Cutter and Barnes [21] de�ned resilience as
the ability of a system to cope with and recover from a
disaster, including the ability of the system to absorb and
resist its adverse e
ects. Mattsson and Jenelius [22] argued
that the concept of resilience aimed to capture the ability to
maintain its functionality and the speed to return to a
normal state after a large-scale disruption or disaster.
According to Qiliang et al. [23], resilient city construction
requires that cities not only have the ability to absorb disaster
disturbances by engineering measures but also have the
ability of self-adaptation and rapid recovery. Based on the
existing research results, three consensus points of the
concept of road tra�c system resilience are summarized.
First, resilience refers to the ability of the system to with-
stand, respond to, and recover from disasters, rather than a
state or outcome of the system. Second, resilience empha-
sizes the adaptability of the system in the face of disasters
rather than stability. �ird, resilience emphasizes the ca-
pacity of the system throughout the process of disaster
occurrence and encompasses numerous aspects, rather than
one attribute.

In the stage of metrics, there has been signi�cant growth
in the metric study of road tra�c system resilience in recent

years. Faturechi and Miller-Hooks [24] provided a com-
prehensive overview of the performance of transportation
infrastructure systems in disasters and found that resilience
was often measured by characteristics such as risk, vul-
nerability, reliability, robustness, mobility, and survivability.
Murray-Tuite [25] classi�ed tra�c resilience into ten met-
rics: cooperation, redundancy, diversity, e�ciency, safety,
self-organization, strength, adaptability, mobility, and ability
to recover quickly. In the stage of quantitative evaluation,
Bruneau and Chang’s research [20] on resilience provided a
solid basis for quantitative evaluation of the resilience of
urban road tra�c systems. Ip and Wang [26] de�ned the
independent paths between every two nodes of an urban
road tra�c network and measured the resilience of the road
network in terms of the number of independent paths across
the whole network. Wang et al. [27] introduced the degree of
nodes as a measure of node resilience with the help of the
entropy method in physics. Furthermore, some researchers
use mathematic models to perform the evaluation and
optimization work in transportation systems from the
perspective of resilience [28, 29].

Notably, most current research on resilience involves
static evaluation studies, focusing on proposing a metric
system and conducting a static evaluation for an urban road
system under a certain state. Few studies have been per-
formed on the whole dynamic process of perturbation
events.
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To solve the research gaps mentioned above, this study
speci�es the unexpected event as malignant tra�c accidents
and uses tra�c simulation technology to obtain data about
the impact of malignant tra�c accidents on the road net-
work. �e dynamic impact on the urban road network
resilience of the whole process from before the occurrence of
malignant tra�c accidents to after the recovery measures
have been implemented is explored. Based on the topological
attributes and resilience attributes of the urban road net-
work, the urban road network resilience evaluation system is
established, which renders a full-process evaluation of the
resilience of the urban road network under malignant tra�c
accidents conditions.

3. Simulation Method

In this study, SUMO (Simulation of Urban MObility), a
microscopic tra�c simulation software, was used to conduct
simulation experiments. SUMO is an open-source tra�c
simulation software that enables the control of tra�c �ow.

In SUMO, we draw an ideal urban road network with a
scale of 5× 5 km, including three types of urban roads,
namely secondary roads, primary roads, and expressways.

�e three types of urban roads have a regular distribution, as
shown in Figure 2. Each intersection on secondary and
primary roads is a level intersection with tra�c signals
within it. �e expressways intersection is treated as a sep-
arate grade to simulate three-dimensional crossings in real
scenarios. Connections are set between primary roads and
expressways to simulate ramps.

As shown in Figure 2, there are eight secondary roads,
four primary roads, and two expressways in the ideal urban
road network. An ideal tra�c �ow with a uniform and
symmetrical distribution of vehicles was added to these
fourteen roads to make them operate in the network. �e
speci�c tra�c �ow setting is as follows. Each of the twenty-
eight endpoints of the fourteen roads is used as the origin of
the tra�c �ow. Each origin corresponds to all twenty-eight
endpoints, that is, the twenty-eight endpoints are the des-
tinations of this origin. �e interval of tra�c generation and
tra�c �ow volume is well designed and adjusted according
to pre-repeated experiments such that the tra�c generated
in the network and the arriving tra�c are basically in a level
state, making it possible for the tra�c to be evenly and
symmetrically distributed in the network in a stable manner.
We set the volume based on this principle: the tra�c runs
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Figure 2: Ideal urban road network in SUMO.
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smoothly in normal conditions, and when malignant traffic
accidents happen, there will occur congestion.

Some specific parameters and model settings of the
simulation experiment are shown in Table 1.

In the simulation experiment, there are three scenarios
where malignant traffic accidents occur: at secondary and
primary roads intersections and at the expressways inter-
section. ,e process of the simulation experiment is de-
scribed as follows.

During the first 30min, the traffic flow is gradually
distributed to the whole network, reaching a balanced and
stable state. According to our repeated tests, it takes more
than 20 minutes for the traffic flow to spread throughout the
network and reach a stable running state. In order not to
interfere with the later experiments, the traffic flow runs
freely for the first 30 minutes of the simulation. At 30min,
malignant traffic accidents occur at an intersection, causing
damage to the intersection and making it impassable. Ve-
hicles are stalled on the roads connected to the intersection,
but other road users in the network are unaware of the
malignant traffic accidents and continue to follow the
originally planned path, resulting in gradual congestion on
the roads connected to the intersection where the accidents
occur. According to daily experience, the road repair de-
partment needs some time to arrive at the scene of the
accident, and it also takes some time to notify other road
users of the accident through the news and radio broadcast.
Here, we set the time interval as 15 minutes. So, at 45min,
the roads connected with the intersection are closed for road
repair. At the same time, initial recovery measures are taken.
,ere are two initial recovery measures. First, when the road
is closed, the original signalized intersection becomes a
T-intersection. ,e capacity of the intersection can be op-
timized by extending the green signal ratio on the long side
of the T-intersection and shortening the green signal ratio
on the short side. Second, repairing or opening emergency
lanes on roads around the disrupted intersection improves
the capacity. In the simulation, each vehicle in the network
chooses the path with the shortest total travel time at every
iteration. After the roads connected to the intersection are
closed, each vehicle will reroute between the OD and choose
the route with the shortest travel time among all the
remaining alternative routes according to the calculation
results at every iteration. Statistics show that the average
time to deal with a traffic accident in the city is about 30

minutes. ,erefore, we set the time for the roads closed for
emergency repairs as 30 minutes. At 75min, the accidents
are handled, the road repair is completed; the intersection
damaged by the accident resumes traffic; and the traffic light
phase returns to normal. To relieve the congestion on the
surrounding roads due to the malignant traffic accident, the
emergency lane remains open. After the accidents are
handled, it takes another 30minutes for the traffic flow to
reach a new stable state, so the simulation is allowed to run
for another 30min to reach a new equilibrium stable state,
after which it ends. ,e flow of the whole simulation ex-
periment is shown in Figure 3.

4. Results and Analysis

From the SUMO data output, we select the average speed of
each road section in the network during each one-minute
period as ameasure of its function.,e ideal road network in
SUMO is a directed graph. To facilitate data visualization, we
process it to be an undirected graph. ,e average speed of
road sections closed due to malignant traffic accidents is set
to zero, and the average of the road sections’ speed in two
directions is calculated.,en, we obtain the average speed of
each road section in the road network per minute (undi-
rected graph).

4.1. Time Distribution. With the horizontal axis depicting
time and the vertical axis depicting the network average
speed, we plot a graph of network average speed changing
with time. ,en, we use a polynomial to fit the curve and
obtain the time distribution of network average speed for the
whole process under the three accident scenarios.

,e temporal distribution of the network average speed
under three accident scenarios is shown in Figure 4.
Figure 4(a) represents the temporal distribution of the
network average speed when malignant traffic accidents
occur at the secondary roads intersection. Figure 4(b) shows
the temporal distribution of the network average speed when
malignant traffic accidents occur at the primary roads in-
tersection. Figure 4(c) shows the temporal distribution of the
network average speed when malignant traffic accidents
occur at the expressways intersection. ,e blue line in
Figure 4 depicts the processed simulation experiment data,
and the red dashed line depicts the polynomial fitted curve.

Table 1: Parameters and model settings of simulation experiment.

Parameter/model Scenario Description

Number of lanes
Secondary roads Two lanes in both directions
Primary roads Four lanes in both directions
Expressways Six lanes in both directions

Speed limit
Secondary roads 60 km/h
Primary roads 60 km/h
Expressways 100 km/h

Traffic volume between each OD (origin-destination) pair All 24 vehicles
Car-following model All Krauss
Lane-changing model All LC2013
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Figure 4 shows that the time distribution of the network
average speed can be divided into five periods: the initial
stable period (0–t1), disruption period (t1–t2), stable period
after disruption (t2–t3), recovery period (t3–t4), and stable
period after recovery (t4–t5). Before the accidents (initial
stable period), the entire network is in a normal operating
state, and the network average speed is generally stable with
slight fluctuations. After malignant traffic accidents occur
(disruption period), the network average speed gradually
decreases. Dropping to the lowest value (stable period after a
disruption), it reaches a stable period with a low service level,
and the network average speed is at a low, slightly fluctuating
stable period. After implementing the recovery measures
(recover period), the network average speed gradually in-
creases. A new stable period (stable period after recovery) is
reached after the network average speed rises to a certain
value. Because we simulate a short-term recovery, the net-
work average speed in the stable period after recovery is
lower than that in the initial stable stage.

4.2. Spatial Distribution. Each road section is assigned a
color according to its average speed, such that the spatial
distribution of the average speed of the whole network can
be plotted.

We select the spatial distribution graphs of the average
speed of each road section at a representative moment of
each period and plot them on the time axis. ,us, the spatial
distribution pattern of road sections’ average speed over
time is revealed, as shown in Figure 5.

Figures 5(a)–5(c) show the spatial distribution of the
average speed of road sections over time under the scenarios
of malignant traffic accidents occurring at the secondary
roads, primary roads, and expressways intersections, re-
spectively. t1 denotes a certain moment in the initial stable
period. ,e traffic runs smoothly throughout the network,
and the speed of the expressways is higher than that of the
surface roads. Due to the phase of the traffic lights, the
average speed on the road sections near the signalized in-
tersection is slightly lower. t2 is a certain moment in the
disruption period. Malignant traffic accidents occur at a
certain intersection (circled part in Figures 5(a)–5(c)).
Herein, we define the road sections whose average speed is
lower than 80% of the speed limit, that is, 13m/s, as con-
gested road sections. At this time, traffic on the four road
sections connected to the intersection generates congestion,
whereas the rest of the network is not affected. t3 denotes a
certainmoment in the stable period after a disruption.When
malignant traffic accidents occur at the secondary roads
intersection, the roads connected to the intersection close.
Because traffic volume is not very high on secondary roads,
the traffic congestion only gradually spreads to several roads
around this intersection. When malignant traffic accidents
occur at the primary roads intersection, the roads connected
to the intersection are closed, and the traffic congestion
gradually spreads along with the horizontal and vertical
directions northwest and southeast of the network. ,e
entire network is at a low level of service. When malignant
traffic accidents occur at the expressways intersection, the

roads connected to the intersection close. However, because
expressways are equipped with ramps, their good connec-
tivity with primary roads stops the traffic congestion phe-
nomenon from spreading, making the congestion only
generates on the roads connected to the intersection. t4
denotes a certain moment in the recovery period. Owing to
the completion of road repair, the intersection suffering
malignant traffic accidents resumes traffic, and the con-
gestion on the connected and impacted roads is eased.
However, some impact on the network remains. t5 marks a
certain moment in the stable period after recovery. ,e
entire network enters a new state of stable operation, but the
overall level of service is slightly lower than that in the initial
stable stage.

4.3. Ideal Resilience Curve. Using the network average speed
per minute as a functional measure of the road network
resilience, we obtain the time distribution of road network
resilience in the whole process of malignant traffic accidents.
,e ideal resilience curve of the road network is proposed
according to the time distribution of network average speed,
which is shown above. Based on the classical “4R” resilience
theory [20], the conceptual portrayal of resilience is further
extended to “6R.”

,e ideal curve of road network function with respect to
time is shown in Figure 6. ,e horizontal axis represents
time, and the vertical axis represents the functional attributes
that can characterize the resilience of the road network. ,e
ideal resilience curve can be divided into five periods: initial
stable period, disruption period, stable period after disrup-
tion, recovery period, and stable period after recovery. Before
the malignant traffic accidents, the road network is in a stable
state with slight fluctuations. After the malignant traffic
accidents, the functional level of the road network gradually
decreases and then enters a lower functional level with slight
fluctuations. After the recovery measures are taken, the
functional level of the road network gradually rises and then
enters a new stable state with slight fluctuations. Notably, the
duration of the three stable periods can be extended or
shortened, mainly depending on when malignant traffic
accidents happen and when recovery measures are taken.

Compared with the resilience curve proposed by Bru-
neau and Chang [20], the ideal resilience curve presented
here has several differences. First, we believe that the three
stable periods are not completely stable states but stable
states with slight fluctuations. Second, we suggest that the
damage caused by malignant traffic accidents to the function
of the road network is not instantaneous but takes some time
to gradually impose on the road network.,erefore, the road
network function does not decline instantaneously when the
damage occurs but experiences a gradual decline process.
,ird, we suggest that the road network function does not
recover immediately after the disruption but enters a stable
state with a low level of service. It gradually recovers only
after the intervention of recovery measures. Fourth, in the
ideal resilience curve, we describe a short-term recovery
such that the functional level of the road network after
recovery is lower than that in the initial stable period.
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Figure 5: Spatial distribution of average speed with malignant accidents at (a) secondary roads intersection, (b) primary roads intersection,
and (c) expressways intersection.
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After deriving the ideal resilience curve, we can de�ne
relevant “6R” resilience attributes.�ere are four baselines in
Figure 6. �e blue dashed line indicates the initial function;
the green dashed line indicates the minimum functional
requirements; the red dashed line indicates the lowest
function, and the purple dashed line indicates the function
after recovery. Redundancy refers to the di
erence between
the initial function and the minimum function require-
ments, re�ecting the part of the initial function that is
higher than the requirement. Reduction refers to the dif-
ference between the initial f-function and the lowest
function, indicating the loss of the road network’s function
due to the damage. Robustness refers to the lowest func-
tion, indicating the remaining function of the road network
after the damage. Recovery refers to the di
erence between
the function after recovery and the lowest function, indi-
cating the degree of road network recovery. Reinforcement
refers to the di
erence between the initial function and the
function after recovery, indicating the lack of function in
the stable period after recovery compared to the initial
stable period. Rapidity refers to the rate at which the
function level of the road network decreases and increases.
To facilitate the calculation and subsequent use, we conduct
normalization for the “6R” resilience attributes. �e cal-
culation of the “6R” resilience attributes is shown in the
following equations:

Redundancy �
IF −MFR

IF
, (1)

Reduction �
IF − LF
IF

, (2)

Robustness �
LF

IF
, (3)

Recovery �
FAR − LF

IF
, (4)

Reinforcement �
IF − FAR

IF
, (5)

Rapidity1 �
To D

TT
, (6)

Rapidity2 �
ToR

TT
, (7)

where IF denotes the initial function, depicted by the blue
dashed line in Figure 6; MFR denotes the minimum function
requirements, depicted by the green dashed line; LF denotes
the lowest function, depicted by the red dashed line; FAR
denotes the function after recovery, depicted by the purple
dashed line; ToD denotes the time of disruption period; ToR
denotes the time of recovery period; and TTdenotes the total
time of the whole process of malignant tra�c accidents.

Among the “6R” attributes, redundancy, robustness,
recovery, and rapidity1 are positively correlated with
resilience, that is, the larger the Rs the better the resilience.
Reduction, reinforcement, and rapidity2 are negatively
correlated with resilience, that is, smaller Rs indicate better
resilience. �e “6R” attributes together re�ect the resilience
of the road network under the scenarios of malignant tra�c
accidents.

Based on the results obtained from the simulation ex-
periments, we can calculate the values of “6R” under three
scenarios of malignant tra�c accidents, as shown in Table 2.

�e three classes of roads have their own advantages and
disadvantages in termsof “6R” attributes under the scenario of
malignant tra�c accidents. According to the correlation be-
tween “6R” and resilience, three classes of roads intersections
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Figure 6: Ideal resilience curve.
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under the condition of malignant tra�c accidents are ranked
based on the simulation experiment data. �e higher the
ranking, the higher the score, indicating better resilience
performance under a certain R attribute. �e radar diagram
shows the resilience performance of three classes of roads
intersectionsunder the“6R”attribute intheeventofmalignant
tra�c accidents, as shown in Figure 7. �e secondary roads
intersection performs best in terms of redundancy and ra-
pidity and worst in terms of recovery. �e primary roads
intersection performs best in recovery and worst in redun-
dancy, reduction, robustness, and reinforcement. �e ex-
pressways intersection performs best in redundancy,
reduction, robustness, and reinforcement and worst in
rapidity.

5. Discussion

In this section, by combining the topological and resilience
attributes of the urban road network, the evaluation system
of urban road network resilience is constructed. Based on the
spreading characteristics of the congestion phenomenon,
from the perspective of government management, we
propose relevant policy suggestions about how the urban
road network resists and responds to malignant tra�c
accidents.

5.1. Evaluation System. Combining the topological and “6R”
resilience attributes of the urban road network, its resilience
evaluation system can be established.

Among the topological attributes, degree centrality,
closeness centrality, and betweenness centrality, which
characterize the importance of node locations, are selected as
the topological evaluation metrics of the network. Degree
centrality is the most direct metric to portray the centrality
of a node. A large degree of a node indicates a higher
centrality. In the ideal urban road network, the degree
centrality of a node is characterized by the number of lanes
of one road connected to it. Closeness centrality indicates the
closeness between a node and other nodes in the network.
�e inverse of the sum of the shortest path distance from a
node to all other nodes indicates closeness centrality. Be-
tweenness centrality is the sum of the ratio of the number of
times a node lies on the shortest path between any two other
nodes to the number of all paths between the two nodes. �e
calculations of the three topological attributes are shown in
the following equations:

Cd(i) �
d(i)
n − 1
∗ nl, (8)

Cc(i) �
n − 1
∑jdij

, (9)

Cb(i) �
2∑j<kgjk(i)/gjk
(n − 1)(n − 2)

, (10)

where n is the number of nodes,Cd(i) is the degree centrality
of node i, d(i) is the degree of node I, nl is the number of
lanes on one road connected to node i, Cc(i) is the closeness
centrality of node i, dij is the shortest path distance between
node i and j, Cb(i) is the betweenness centrality, gjk is the
number of shortest paths between node j and k, and gjk(i) is
the number of shortest paths between node j and k through
node i.

Among “6R” resilience attributes, since the reduction is
negatively correlated with robustness and reinforcement is
negatively correlated with recovery, four attributes that are
independent of each other are selected. Redundancy, ro-
bustness, recovery, and rapidity1, which are positively
correlated with resilience, and rapidity2, which is negatively
correlated with resilience, are selected as the resilient

Table 2: Values of “6R” under three scenarios of malignant tra�c accidents.

Secondary roads intersection (%) Primary roads intersection (%) Expressways intersection (%)
Redundancy 6.10 5.18 6.10
Reduction 6.41 8.32 5.98
Robustness 93.59 91.68 94.02
Recovery 4.37 4.60 4.47
Reinforcement 2.04 3.72 1.51
Rapidity1 7.77 6.67 4.44
Rapidity2 7.77 8.33 11.11

Reduction

Redundancy

Rapidity

Reinforcement

Recovery

Robustness

secondary roads intersection
primary roads intersection
expressways intersection

Figure 7: Radar diagram of “6R” resilience performance for three
classes of roads.
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evaluation metrics. ,e calculation of redundancy, robust-
ness, recovery, rapidity1, and rapidity2 is depicted as
equations (1), (3), (4), (6), and (7).

,e resilience index refers to the integral of the resilience
function curve over time during the whole process of ma-
lignant traffic accidents, reflecting the overall resilience
performance of the urban road network under a certain
damage scenario. ,e calculation of the resilience index is
improved from the calculation of resilience loss in the lit-
erature [20]. ,e resilience index is positively related to
resilience, as shown in the following equation:

RI �


T

0 F(t)dt

T∗F0
, (11)

where RI is the resilience index, T is the duration of the
whole process of malignant traffic accidents, F(t) is the
resilience function curve with respect to time, and F0 is the
initial function of the road network.

,e resilience evaluation system includes the above-
mentioned topological attributes, resilience attributes, and
the resilience index.,e resilience evaluation system is given
in the form of a resilience score of the road network under a
certain damage scenario, which is shown in the following
equation:

RS � RI∗ e
Cd(i)+Cc(i)− Cb(i) ∗ ,

e
Redundancy+Robustness+Recovery+Rapidity1−Rapidity2

,
(12)

where RS denotes the resilience score.
Equation (12) indicates that the road network resilience

score is approximately between the interval (0, e2). A higher
resilience score indicates better resilience performance of the
road network. ,eoretically, equation (12) can be used to
evaluate the resilience of any road network under the oc-
currence of any event.

Based on the data obtained from simulation experi-
ments, the resilience scores under three scenarios of ma-
lignant traffic accidents can be calculated, as shown in
Table 3.

Table 3 indicates that under this evaluation system, the
road network resilience is optimal when malignant traffic
accidents occur at an expressways intersection, and the road
network resilience is poorest when malignant traffic acci-
dents occur at the intersection of the primary roads. ,e

main reason is that in this ideal urban road network, the
betweenness centrality of primary roads intersection is
relatively high, resulting in more vehicles passing through
this intersection. Furthermore, this has a low resilience index
and relatively poor resilience attributes, thus resulting in the
lowest resilience score.

5.2. Policy Suggestions. According to “6R” resilience attri-
butes and the resilience evaluation system, based on the
spreading characteristics of the congestion phenomenon, we
propose policy suggestions for the urban road network to
resist and cope with malignant traffic accidents from the
perspective of government managers.

First, the resilience performance of low-class surface
roads, such as secondary roads, is good under the conditions
of malignant traffic accidents. ,e congestion on low-class
surface roads has a tendency to spread to surrounding roads
in the event of malignant traffic accidents. Small-scale
spreading must be prevented, and traffic control and con-
gestion dispersal on surrounding roads must be strength-
ened. Consistently, the current level of service on low-class
surface roads must be maintained and steadily improved.

Second, the resilience performance of high-class surface
roads, such as primary roads, is poor under the conditions of
malignant traffic accidents. ,e congestion on high-class
surface roads has a tendency to spread to the entire network.
Large-scale spreading must be prevented, and the traffic
control and congestion dispersal on roads in horizontal and
vertical directions, where the accidents occur, must be
strengthened to prevent the proliferation of congestion. ,e
investment of human and material resources for high-class
surface roads must be increased; the traffic control must be
strengthened; and the resistance and recovery ability of high-
class surface roads against damage caused by malignant
traffic accidents must be improved.

Finally, expressways, urban interchanges, elevated roads,
and other high-class roads are more resilient under the
conditions of malignant traffic accidents owing to good
connectivity. ,ere is no tendency for congestion on high-
class roads to spread. However, the speed at which the high-
class roads recover from malignant traffic accidents is rel-
atively low. ,e efficiency of the handling of traffic accidents
must be improved to accelerate the speed of recovery from
malignant traffic accidents. ,e capacity construction must

Table 3: Resilience score for three scenarios of malignant traffic accidents.

Secondary roads intersection Primary roads intersection Expressways intersection

Topology attributes
Degree centrality 0.006 0.012 0.018

Closeness centrality 0.029 0.0398 0.0403
Betweenness centrality 0.0968 0.207 0.0087

Resilience index 0.958 0.936 0.96

Resilience attributes

Redundancy 0.061 0.052 0.061
Robustness 0.936 0.9168 0.9402
Recovery 0.0437 0.046 0.0447
Rapidity1 0.0777 0.0667 0.0444
Rapidity2 –0.0777 –0.833 –0.1111

Resilience score 2.54974282 1.027532398 2.685798309
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be strengthened, enabling high-class roads to better with-
stand the impact of reduced capacity due to the occurrence
of malignant traffic accidents. ,e current management
efforts must be maintained without slackening, and the
maintenance of high-class roads must be strengthened to
ensure their connectivity and smoothness.

6. Conclusion

Focusing on an ideal urban road network, we conducted
traffic simulations to evaluate the impact of malignant traffic
accidents on the resilience of the urban road network. ,e
simulation experiments simulate the whole process from
before the occurrence of malignant traffic accidents to after
the recovery and obtain the temporal and spatial distribu-
tions of the average speed of road sections in the road
network. ,e results show that in terms of temporal dis-
tribution, the network average speed under the scenario of
malignant traffic accidents goes through five periods: initial
stable period, disruption period, stable period after dis-
ruption, recovery period, and stable period after recovery. In
terms of spatial distribution, with the passage of time in five
periods, congestion due to malignant traffic accidents first
becomes aggravating, then gradually eases, and finally
returns to normal. It has the tendency to spread outward
during the disruption period.

Inspired by simulation experiments, the ideal resilience
curve is summarized as follows. It can be divided into five
periods: initial stable period, disruption period, stable period
after disruption, recovery period, and stable period after
recovery. Based on the classical “4R” resilience theory [20],
we further refine it into the “6R” resilience theory, including
redundancy, reduction, robustness, recovery, reinforcement,
and rapidity, improving the portrayal of the resilience
concept. ,e “6R” resilience attributes together reflect the
resilience of the road network under malignant traffic ac-
cidents. Combining the topological attributes and resilience
attributes of the urban road network, we establish an urban
road network resilience evaluation system to obtain an all-
round evaluation of the urban road network under malig-
nant traffic accidents. Results show that when malignant
traffic accidents occur at expressways intersection, the road
network’s resilience performance is optimal, and when
malignant traffic accidents occur at primary roads inter-
section, the road network’s resilience performance is the
poorest. ,erefore, more resources and attention must be
devoted to high-class surface roads to help improve the
resilience in dealing with malignant traffic accidents. Finally,
from the perspective of government management, based on
the spreading characteristics of the congestion phenomenon,
we propose relevant policy suggestions for urban road
networks to resist and respond tomalignant traffic accidents.

,emajor contributions of this work are as follows. First,
we propose the ideal resilience curve for the urban road
network under the scenario of malignant traffic accidents to
describe the time distribution of the road network resilience,
which is more detailed compared with previous studies. We
plot the spatial distribution of the average speed of the whole
network and find the propagation characteristics of

congestion when malignant traffic accidents occur at dif-
ferent classes of intersections. Second, we develop the
classical resilience theory into “6R” (redundancy, reduction,
robustness, recovery, reinforcement, and rapidity), im-
proving the theory of resilience concept portrayal. ,ird, we
establish an evaluation system based on the topological and
resilience attributes of the urban road network, which can
make an all-round and full-process resilience evaluation
under the scenario of malignant traffic accidents.

Several limitations persist in this work. We use an ideal
urban road network and set ideal traffic flow in the simu-
lation, which differs from actual situations. Furthermore, we
only qualitatively describe the spreading characteristics of
the congestion phenomenon without any quantitative ex-
pression. Subsequent research will focus on the real road
network in cities and quantify the propagation of the
congestion phenomenon.
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LiDAR-based localization has been widely used for the pose estimation of autonomous vehicles. Since the localization requires a
sustainable map reflecting environment changes, a map update framework based on crowd-sourcing measurements has been
researched. Unfortunately, a point cloud map occupies too large data size to transmit data in the uploading and downloading of
the map update framework. To realize the LiDAR map update framework by reducing the data size, we proposed a novel map
update framework using a Geodetic Normal Distribution (GND)map that compresses the point cloud to the normal distributions.
'e proposed GND map update framework comprises two parts: map change detection based on crowd-sourcing vehicles and
map updating based on a map cloud server. GND map changes are detected based on an evidence theory considering geometric
relationships between the GND map and crowd-sourcing measurements and uploaded to the map cloud server. Uploaded map
changes reproduce representative map changes based on a similarity-based clustering, which are updated into the GNDmap.'e
proposed framework was evaluated in simulations and real environments on construction sites. As a result, although partial map
changes occurred, the GND map was kept up-to-date through the proposed framework and the localization for autonomous
driving was performed successfully.

1. Introduction

Recently, map-matching localization has been globally
researched for localization of autonomous vehicles [1–3].
After a high-definition (HD) map has been constructed by a
mapping vehicle equipped with a mobile mapping system
(MMS), autonomous vehicles with affordable sensors can
estimate their poses (position and heading) by matching
their measurements with HD map information. One of the
widely used sensors for precise positioning based on map-
matching is an LiDAR sensor [4–6]. Localization can be
achieved by matching geometric shapes measured by the
LiDAR sensor with a LiDAR map which is constructed by
the mapping vehicle. Since the LiDAR sensor provides a

three-dimensional precise point cloud within 10 cm accu-
racy and the LiDAR map provides precise surrounding
information within 20 cm accuracy, a localization accuracy
within 30 cm can be achieved [7].

Although LiDAR sensors can offer very accurate local-
ization performance, they do encounter a critical problem.
'e problem is an adaptation to changes in real environ-
ments. High-accuracy LiDAR-based localization can be
achieved in environments with no changes in their geo-
metric shapes. However, it is easy for the geometric shapes in
the environments to be changed. For example, vegetation,
such as trees, plants, and grass, can be grown; semistatic
objects, such as parked vehicles, can be moved; and con-
struction sites can appear. Accordingly, for LiDAR-based
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localization, it is essential for environment changes to be
periodically updated into the existing HD map for mini-
mization of the differences between the environments and
the map.

However, change updates based on conventional map-
ping methods using a mapping vehicle with precise sensors
have several problems: (1) Mapping vehicles must be
redriven on all roads to acquire new data, which has a
substantial cost. (2) Latency necessarily occurs in map
updates because it takes lots of time for a few mapping
vehicles to acquire all necessary data. 'erefore, a novel
approach to update road environment changes is required.

To solve the problems for the adaptation to environment
changes, numerous companies (HERE [8], TomTom [9],
Mobileye [10], Bosch [11], and Daimler [12]) and academies
([13–15]) have researched a map update framework based on
crowd-sourced features (i.e., lanes and traffic control de-
vices), which are measured from camera sensors of intel-
ligent vehicles driven on roads. After crowd-sourced features
are uploaded into a map cloud server, the features are
merged into the representative changes, and the represen-
tative changes are updated into the existing HD map. As a
result, the updated HDmap information is downloaded and
used in intelligent vehicles. 'e sequential map update
framework has tried to overcome the inaccuracy of the
features measured by camera sensors through the merging of
crowd-sourced information. As a result, the framework
based on crowd-sourcing vehicles on roads can provide
some advantages such as reducing costs and rare latency for
map updates.

Unfortunately, while concepts of map update frame-
works based on visual features such as lanes and traffic
control devices have been open to the public, most
frameworks have not clearly provided performances and
results for the HDmap and vehicle pose estimation based on
the cameras yet. In addition, the camera-based map update
frameworks cannot be performed either in the alleys or in
the large intersections without lanes and traffic control
devices.

Different from the camera-based localization and map
update framework, the LiDAR-based localization and
map update framework has two advantages. 'e LiDAR-
based approach provides good positioning performances
and map accuracy due to the accuracy of the LiDAR
sensors. Next, the approach enables vehicle positioning
wherever regardless of the absence of visual features such
as lanes and traffic control devices. However, it is difficult
for the framework to be directly applied for an update of
the LiDAR map because map-relevant LiDAR data are too
large to be uploaded into the map cloud server and
downloaded to intelligent vehicles. While map-relevant
information based on camera sensors occupies 10 kB/km
[10], raw point cloud map data occupies over 500MB/km
on real roads [7]. Accordingly, a LiDAR map structure for
the map update framework based on crowd-sourced
measurements is required to occupy a low data size. In
addition, researches such as change detection and
merging of crowd-sourced measurements are required for
the map update framework to adopt the map structure.

To compress the map-relevant LiDAR data between the
crowd-sourcing vehicles and themap cloud server, a concept
of a Normal Distribution Transform (NDT) map is used in
the paper. Especially, a Geodetic Normal Distribution
(GND) map structure [16], which is extended from the NDT
map in our previous research, is adopted because it supports
a unified map structure for multiple vehicles. Based on the
worldwide management property of the GND map, the map
data are interpreted in the same manner in individual ve-
hicles regardless of the coordinate conversion errors. In
order to update the GND map periodically, the paper
proposes a cloud update framework of the GND map based
on crowd-sourcing detection of road environment changes.
'ere are two problems for the GNDmap update framework
to be considered for realization in the real roads. First, map
changes must be detected in crowd-sourcing vehicles. In
order to detect map changes, each change probability in each
cell of the GND map is estimated based on the evidence
theory and the ray-casting approach between the measured
points and the normal distributions. Second, it is essential to
merge and reproduce representative changes from crowd-
sourced map changes, and then the representative changes
are updated into the existing GND map. In order to merge
the crowd-sourced map changes, a similarity-based clus-
tering algorithm is applied.

'e objective of this paper is to keep the GND map up-
to-date for continuous localization of autonomous driving.
To achieve the objective, the contributions of the paper are
the following:

(i) 'e proposed framework reduces the map-relevant
data size by applying the GND map structure in the
overall map update process

(ii) 'e change detection algorithm based on the evi-
dence theory and the ray-casting approach between
the measured points and the normal distributions
detects the GNDmap changes from crowd-sourcing
vehicles

(iii) After the GND map changes detected by crowd-
sourcing vehicles are merged into representative
map changes based on the clustering algorithm
using a similarity of map changes, the representative
map changes update the existing GND map in the
map server

To explain the framework of the GND map update,
this paper is organized as follows. Section 2 explains some
works related to map update system based on the LiDAR
sensor. Section 3 describes an overall framework to
update the existing GND map. In Section 4, crowd-
sourcing vehicles can detect changes from GND map
structure. Section 5 explains extraction of a representa-
tive change from the crowd-sourcing map changes in the
map cloud server. In Section 6, the performance of the
proposed framework is evaluated in simulation envi-
ronments. In Section 7, experiments are performed for
analyzing the performance of the proposed framework in
real environments. Finally, the paper is concluded with
Section 8.
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2. Related Works

In an autonomous driving field, there are mainly three
LiDAR map structures: point cloud (PCD) map [17–20],
grid map [21–24], and geometric map [25–28]. Since the
PCDmap is constructed easily by accumulating point clouds
acquired by LiDAR sensors based on the vehicle moving
trajectory, it is widely applied as a fundamental map type for
LiDAR. 'e grid map is also widely used as the map
structure for LiDAR. In particular, since the occupancy grid
map consists of lots of grids with occupancy probabilities
distinguishing based on the probability theory and the Li-
DAR ray-casting, the map type can remove the moving
objects in the mapping process easily. Finally, the geometric
map structure, such as the NDTmap [25, 26] and Gaussian
mixture map [27, 28], can be used for the LiDAR map. To
reduce the map size, after points in the PCD map are split
into lots of voxels similar to the grid map, the points are
converted to the normal distribution or the Gaussian
mixture distribution.

Map update approaches can be generally determined
based on the properties of the map structure. As shown in
Table 1, the approaches to updating map changes can be split
into two categories: standalone-based and crowd-sourcing-
based. In researches on standalone-based map update, there
are two main parts: map change detection/update and in-
stant map update. 'e PCD map structure can be generally
updated after changes have been detected because the PCD
map structure has definite point information around en-
vironments. 'e first approach to map change detection for
the PCD map involves determining the minimum distances
between sensor points and map points [29, 30]. 'e other
approach determines changes by checking whether map
points are traversed by sensor points [31–34]. Among them,
Xiao et al. applied the Dempster–Shafer theory to integrate
multiple inferences from multiple rays to estimate the
change states of map points precisely [33, 34].

An occupancy grid map can be updated based on the
instant map update strategy because the map structure
models the occupied probabilities in spaces that do not
contain definite information. In addition, the occupancy
grid map structure supports a basic function to instantly
update the occupied and free probabilities of cells based on
the ray-casting of LiDAR measurements. In this way, the
occupancy grid map can be easily updated in a map-
changing environment [35]. Particularly noteworthy is the
frequency map enhancement platform proposed by Krajnı́k
et al., which provides and updates the occupancy grid map
frequently [36, 37]. However, the occupancy grid map
cannot distinguish the unknown grids (no measurement
region) and conflict grids (different measurements in the
same region) explicitly. In order to solve the problem,
Trehard et al. applied the evidence theory to the occupancy
grid map [38, 39].

A NDT map has been researched for both the change
detection/update strategy and instant map update strategy.
Katsura et al. detected changes in the NDT map by com-
paring the normal distributions in the NDT map with the
normal distributions constructed by measurements [40]. To

determine the differences of distributions from two sources,
they compared geometric shapes consisting of sheets, planes,
and lines determined by eigendecomposition. However, this
approach cannot distinguish deleted cells and unmeasured
cells because the changes cannot distinguish free space based
on ray-casting. On the other hand, an NDTmap integrated
with an occupancy grid map can be updated using the in-
stant map update strategy [41–43]. 'is approach instantly
updates the occupied probability in the cells of the NDTmap
based on ray-casting. Simultaneously, the normal distri-
bution in the cell is updated based on the recursive co-
variance sample update. However, in this approach, the cell
information is not definite within the transient state, which
is different from the deterministic state in a real environ-
ment, where one state must be allocated. In addition, be-
cause all measurements are required to update the map, they
may occupy too large size.

On the other hand, a crowd-sourced map update system
for LiDAR has been widely researched. 'e approach used
crowd-sourced sensor information transmitted to a cloud
server. To update the PCD map structure, Kim et al. applied
both probabilistic and evidential theories to the map update
based on the ray-casting approach [44]. In addition, Xue
et al. used the infrastructure units for point cloud map
update [45]. However, the PCD map structure still occupies
a too large size to upload and download the map data. For
the probabilistic occupancy grid map structure, there are
several ways to update the map based on crowd-sourced data
[46–48]. However, the occupancy grid map cannot explicitly
deal with unknown states that are not measured from the
sensors. To overcome this problem, Jo et al. proposed
updating a worldwide 3D environment based on an evi-
dential occupancy grid map using multiple vehicles [49].
However, to the best of our knowledge, no crowd-sourced
data-based map update systems currently exist for other
geometric map structures.

3. Framework of GND Map Update Based on
Crowd-Sourcing Detection

Figure 1 illustrates an overall framework of the GND map
update system based on crowd-sourced data in changing
environments. 'e system has two physical parts: a col-
lection of intelligent vehicles and a map cloud server. In-
telligent vehicles detect differences between a GNDmap and
point clouds measured by in-vehicle LiDAR sensors, which
are denoted as map changes. 'e map changes detected by
multiple vehicles are uploaded to the map cloud server. 'e

Table 1: Categorization for researches of LiDAR map update.

Agent Map type Methodology Research

Standalone

PCD Change detection/update [29–34]
Grid Instant map update [35–37]

NDT Change detection/update [40]
Instant map update [41–43]

Crowd-
sourcing

PCD Change detection/update [44, 45]
Grid Map merging [46–49]
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server merges the crowd-sourced map changes into repre-
sentative map changes, which update the existing GNDmap,
denoted as the base GND map. 'e process of the crowd-
sourced map update framework has five steps, which are
conducted as follows:

(i) Download. 'e GND map, which stores the geo-
metric shape information about road environments
as multiple normal distribution models, is used as
the LiDAR map for the localization of intelligent
vehicles. Because the vehicle approximately knows
its location from its GNSS, the GND map infor-
mation around the location of the ego-vehicle can
be downloaded to the vehicle in advance before the
vehicle enters into the region through vehicle
wireless networks. By the characteristics of the GND
map structure compressing the map data, the
burden on the wireless network is reduced over the
PCD map widely used.

(ii) Robust Localization. 'e pose of the vehicle is es-
sential for detecting the map changes between the
GND map and the measured point cloud. 'e ve-
hicle’s pose can be estimated based on map-
matching localization using the geometric matching
relationship between measurements and the base
GND map. However, changes in the environments
may cause poor performance of geometric matching
for localization. To reduce the degradation of lo-
calization, this paper applies an off-line hierarchical
approach based on a submap concept into the GND
map-matching process [44]. Because the map up-
date framework does not require the vehicle pose in
real-time but the precise vehicle pose, the off-line
approach is used for the elaborate vehicle
localization.

(iii) Change Detection. Based on the pose estimated from
robust localization, point clouds measured by in-

vehicle LiDARs are used to detect changes within
the downloaded GNDmap. To detect these changes,
this paper considers the geometric relationship
between LiDAR beam characteristics and normal
distributions in the GND map. To estimate the
normal distribution changes precisely, an evidence
theory is employed. 'e process of map change
detection is explained in Section.

(iv) Upload. 'e map changes detected by multiple
intelligent vehicles are uploaded to the map cloud
server by vehicle wireless networks. To reduce
network costs by minimization of the transmitted
data, only changed parts are uploaded. In addition,
because the changed parts are formatted by the
GND map structure, the data size can be reduced
more than the PCD map changes [44].

(v) Update. 'e map changes uploaded by multiple
intelligent vehicles merge representative map
changes, which update the base GND map in the
map cloud server. Because the map changes de-
tected by the vehicles may have some errors due to
their low-cost sensors and inaccurate positioning
(tens of centimeter level), rules for merging the
crowd-sourced data are required. 'is paper pro-
poses similarity check methods and merging rules
between crowd-sourced data based on linear alge-
bra; this is explained in Section.

To implement the proposed GND map update system
based on crowd-sourced data, the initial GND map must be
constructed by a mapping vehicle equipped with an MMS in
advance. 'e inaccurate crowd-sourcing data measured by
affordable sensors cannot be used for the precise mapping
but for the map update framework. In addition, dynamic
points reflected against dynamic objects (including moving
pedestrians, bikes, and vehicles) are classified. In order to
classify the moving states of the points, a LiDAR point

Cloud server

UploadingGND map

+

Updating

Robust localization Change detection

Downloading

Measurement

Crowd-sourcing vehicles

Normal
New
Modified
Deleted

Figure 1: Overall framework of map update system based on crowd-sourced data.
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motion segmentation algorithm based on a combination of
probabilistic and evidential approaches is used [50]. In
addition, it is assumed that real-time updates to the GND
map are not necessary; the map update is performed peri-
odically (e.g., daily). It is also assumed that Partial map
changes in the interval between periodic map updates can be
supported by robust localization. Based on preliminaries and
assumptions, the paper mainly focuses on steps of Change
detection and Update processes in section and, respectively.

4. GND Map Change Detection in
Individual Vehicles

'e major objective of this paper is to keep the base GND
map up-to-date based on crowd-sourced data from multiple
intelligent vehicles. 'e map change update algorithm has
two parts: map change detection in individual vehicles and
map change updating based on crowd-sourced data in the
cloud. First of all, differences between the base GND map
and the real environment, which are defined as map changes,
are detected from the intelligent vehicles to keep the base
GND map up-to-date. In this section, the change detection
algorithm for the GNDmap structure based on ray-casting is
presented.

4.1. Voxel-to-Voxel (V2V) Comparison-Based Map Change
Detection. As shown in Figure 2(a), a GND map structure,
m, is composed of multiple GND tiles mq|1≤ q≤Q  split by
the same angle in geodetic coordinates, where Q represents
the maximum tile id. As shown in Figure 2(b), the tile mq is
the union of GND voxels vq,i|1≤ i≤ I , where I is the
maximum voxel index within the tile mq. 'e GND voxel vq,i

includes the number of points nq,i, and the normal distri-
bution N(p|μq,i,Σq,i) with mean μq,i and covariance Σq,i.
Because each GND voxel vq,i is split by each spatial
boundary, the probability of a point pq,i being located in the
voxel vq,i is only related to N(p|μq,i,Σq,i). Accordingly, all
voxels in the GND map are independent of each other. Due
to the independency of each voxel, the change of the GND
map can be determined within each voxel. Accordingly, in
this section, the GND voxel vq,i is simply denoted as vmap
with nmap, μmap, and Σmap.

As shown in Figure 3, the map change class cmap⟶real
can be defined by five classes: normal, empty, new, modified,
and deleted by comparison between GND map voxel vmap
and real environment voxel vreal. 'e blue normal class
indicates that normal distributions of the voxels in the GND
map and real environment are the same. 'e gray empty
class indicates that the voxel does not have any confident
normal distributions in both the map and real environment.
'e normal and empty classes are not map changes between
the GNDmap and real environment. On the other hand, the
red-colored new class indicates that the voxel has a new
normal distribution that is not in the map. 'e orange-
colored modified class indicates that the voxel has a normal
distribution with a different shape to that of the normal
distribution in the GND map. 'e green deleted class in-
dicates that the normal distribution in the GND map is

deleted in the real environment. 'e new, modified, and
deleted classes can be determined as map changes from the
GND map.

'e voxel-to-voxel (V2V) comparison-based map
change detection may detect the map change classes cmap⟶i

by comparing voxels of the GNDmap with voxels of the real
environment constructed by point clouds of an intelligent
vehicle i [40]. Unfortunately, in contrast to the definition of
the map change class, the algorithm encounters some
problems in the real road environment because it does not
consider the measurement limitations. In a moving and
changing environment with moving and parked vehicles,
point clouds measured by an intelligent vehicle can be
occluded by other objects, as shown in Figure 4(c). 'e
occlusion of measurements in Figure 4 can cause two
problems: (1) incomplete normal distributions and (2)
ambiguity in unknown regions. First, even with no changes
in the real environment, the occluded measurements can
construct incomplete normal distributions, as shown in (1)
of Figure 4.'e incomplete normal distributions distinguish
voxels as being modified incorrectly. In addition, unknown
voxels (not measured by LiDAR in (2) of Figure 4) and
deleted voxels (passed by the rays in (3) of Figure 4) cannot
be distinguished from each other in the algorithm because
both types of voxels have no points measured by LiDAR.
'is problem causes the deleted class to be assigned in-
correctly, as shown in Figure 4(b).

4.2. Map Change Detection Algorithm Based on Ray-Casting.
To solve two problems with V2V comparison-based map
change detection, a novel change detection algorithm based
on ray-casting is proposed in this paper. Different from the
previous map change algorithm comparing with the con-
structed map, the new change detection algorithm estimates
the map change state smap⟶i,j using vehicle i’s individual
point pj.

'e change state smap⟶i,j can be inferred by a geometric
relationship between the voxel in the GNDmap vmap and the
individual point pj measured by vehicle i. When the point is
measured in the voxel by being blocked by a normal dis-
tribution, the normal distribution may be estimated as
sustained, as shown in voxels (1) of Figure 5. Next, when the
ray is traversed inside the normal distribution in the voxel,
the geometric relationship can provide an inference for the
voxel to be changed, as shown in voxels (2) of Figure 5. In
addition, as the point is measured in the empty voxel, the
voxel can be estimated as changed, as shown in voxels (3) of
Figure 5. Accordingly, the geometric relationship between
the voxel and the point can provide inference to determine
whether the state is changed or sustained.

As shown in Figure 6, there are six cases for the geo-
metric relationship between a point and a voxel, which are
distinguished based on three criteria: whether there is a
normal distribution or not in the voxel, whether a point is
blocked or passed in the voxel, and whether the ray or point
intersects the normal distribution or not. 'e first criterion
can be checked by finding the normal distribution in the
voxel.'e second criterion, which is about whether the point
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is blocked or passed in the voxel, is straightforwardly de-
termined by localizing the point in the voxel and ray-casting
towards that point. In the blocked case, the point pj is stored

in the temporary point storage P with the same size as the
map. �e �nal criterion related to the intersection between a
point and a normal distribution is explained as follows.

(a) (b) (c)

GND map, Mmap Map changes, Cmap→real Real environment, Mreal

New Empty Modified Empty

Empty Normal Normal Empty

Empty Normal Normal Normal

New Deleted Normal Normal

Figure 3: De�nition of �ve map change classes including normal, empty, new, deleted, and modi�ed.

GND map, Mmap Map changes, Cmap→i Constructed map, M′i
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Figure 4: V2V comparison-based map change detection compared with map constructed by intelligent vehicles.
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Figure 2: GND map structure in (a) geodetic tiles and (b) Cartesian voxels at the sea-level �oor (1209 voxels).
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4.2.1. Intersection between Point and Normal Distribution.
To evaluate the intersection between a point and a normal
distribution, we can check whether the measured point pj

is located inside or outside the normal distribution
N(p|μmap,Σmap). Unfortunately, the normal distribution
does not have a boundary because it is a three-dimen-
sional probability density function, as shown in Figure 7.
To determine whether the point pj is located inside
or outside the normal distribution, a confidence
interval is employed. 'e confidence interval ηbound to
determine the boundary is the physically expected
probability that a sample in the voxel is located within the
normal distribution. When the confidence interval ηp

computed by the point pj is smaller than ηbound, the point
pj is located within the boundary of the normal distri-
bution determined by the confidence interval ηp, as de-
scribed by

ηbound ≥ ηp: point is located inside distribution,

ηbound < ηp: point is located outside distribution.

⎧⎨

⎩ (1)

To compute the confidence interval ηp at the point pj,
the cumulative distribution function of the normal distri-
bution is defined as the probability that a sample lies inside
the ellipsoid determined by its Mahalanobis distance r from
the normal distribution in (2). Accordingly, the problem of
finding the confidence interval ηp is converted to the
problem of finding the cumulative function of r2. Because
the square of the Mahalanobis distance r2 is represented as
the sum of the squares of three independent normally
distributed Gaussian variables, the cumulative function of r2

can be converted to a chi-square cumulative distribution
function, as shown in (3).

r
2

� pj − μmap 
T



−1

map
pj − μmap . (2)

ηp � 
r2

0

t
(k− 2)/2

· e
− t/2

2k/2
· Γ(k/2)

dt, (3)

where Γ(·) is the Gamma function, and k is set to 3 in
accordance with the three-dimensional normal distribution.
'e confidence interval ηp is determined by the chi-square
cumulative distribution function, as described by equation
(3). As a result, it is determined whether the point pj is
located inside or outside the normal distribution.

4.2.2. Intersection between Ray and Normal Distribution.
To check whether the ray by the measured point pj is
traversed into the normal distribution N(p|μmap,Σmap), a
maximum likelihood point pML is used. As shown in
Figure 8, the maximum likelihood point pML indicates a
point with the maximum likelihood on the ray against the
normal distribution N(p|μmap,Σmap). 'e maximum like-
lihood point pML can be calculated analytically [41]. When
the confidence interval ηML computed by the maximum
likelihood point is smaller than the boundary confidence
interval ηbound, the ray is confirmed to have passed into the
normal distribution, as shown in

ηbound ≥ ηML: ray is passing the distribution,

ηbound < ηML: ray is not passing the distribution.
 (4)

4.3. EvidenceModeling forGeometricRelationship. As shown
in Figure 6, the six cases from the geometric relationship
between the measured point pj and the voxel vmap can
provide inference to determine whether the change state
smap⟶i,j of the voxel vmap is changed (C) or sustained (S).
However, if the voxel vmap is not measured by any points and
passed by any rays, the map change state of the voxel cannot
be estimated. To handle the unknown state issue explicitly,
evidence theory is applied. In evidence theory, the two states
form a frame of discernmentΩ � S, C. Additional statesΩ,ϕ
can be managed explicitly by extending the frame of dis-
cernment Ω to the power set 2Ω � S, C,Ω, ϕ, which is the set
of all subsets ofΩ � S, C. 'e stateΩmeans that the voxel is
sustained (S) or changed (C). However, because the state
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Figure 5: Map change inference by ray-casting.
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Figure 6: Geometric relationship between a measured point and a
voxel.
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cannot be sustained (S) and changed (C) simultaneously, the
state Ω represents an unknown state. 'e state ϕ represents
that the voxel is not both sustained (S) and changed (C).
However, because this scenario is physically impossible, the
state ϕ represents a conflict situation. To quantify the evi-
dence of each element of the power set, a mass function,
denoted by m, is applied. Given a point pj measured by
intelligent vehicle i, the mass functions of mmap⟶i,j(S) and
mmap⟶i,j(C) represent the beliefs of the voxel being sus-
tained (S) and changed (C), respectively. 'e mass function
mmap⟶i,j(Ω) is the union of the beliefs of sustained and
changed, and the mass function mmap⟶i,j(ϕ) represents the
belief that the voxel is conflicted by different measurements.
'e sum of all masses in the power set must be one based on
its definition in evidence theory. 'e mass function
mmap⟶i,j(state), including mmap⟶i,j(S), mmap⟶i,j(C),
mmap⟶i,j(Ω), and mmap⟶i,j(ϕ), can be modeled by the
geometric relationship between the voxel vmap and point pj

measured by intelligent vehicle i.

4.3.1. Case 1: Blocking inside Normal Distribution (BI).
In the BI case, the measured point in the voxel vmap is
blocked inside a normal distribution. When the point is
judged to be located inside the normal distribution by (1),
the map change class can be either normal or modified, as
shown in Figure 9. 'e measurement can provide a hy-
pothesis for the map change state to be converted as sus-
tained (S) or changed (C) for the map change model. 'e
mass mBI

map⟶i,j(state) in the BI case can be modeled by

m
BI
map⟶i,j(ϕ) � 0,

m
BI
map⟶i,j(S) � λs,block,

m
BI
map⟶i,j(C) � λc,block,

m
BI
map⟶i,j(Ω) � 1 − 

A ∉ Ω
m

BI
map⟶i,j(A),

(5)

where the parameters λs,block and λc,block are configuration
parameters. λs,block represents the probability that the map
change state is sustained, and λc,block represents the

probability that the voxel is changed by the blocked point
information. Practically, λs,block is higher than λc,block.

4.3.2. Case 2: Blocking outside Normal Distribution (BO).
In the BO case, the point is blocked outside a distribution. If
the point is judged not to be located inside the distribution
by (1), the situation is determined as the BO case. When the
point is located outside the distribution, there is only the case
that the map change class is modified, as shown in Figure 9.
Accordingly, the measurement can provide a hypothesis on
the map change state to be changed. 'e mass
mBO

map⟶i,j(state) can be modeled by

m
BO
map⟶i,j(ϕ) � 0,

m
BO
map⟶i,j(S) � 0,

m
BO
map⟶i,j(C) � λc,block,

m
BO
map⟶i,j(Ω) � 1 − 

A ∉ Ω
m

BO
map⟶i,j(A),

(6)

where the parameter λc,block is equal to the equivalent pa-
rameter in the BI case.

4.3.3. Case 3: Passing inside Normal Distribution (PI). In the
PI case, the point is not located in the voxel and the ray is
passing the distribution, as shown in Figure 9. 'e voxels
passed by the ray are detected by the modified ray-casting
algorithm [51]. Because Bresenham’s algorithm [51] assumes
that the width, length, and height of all voxels are same, the
algorithm is modified for variant voxel sizes in the GND
map. In detected voxels passed by the ray, the passing of the
distribution can be confirmed by (4). If the ray is judged to
intersect the distribution, the voxel is treated as the PI case.
In the PI case, there are two cases, where the map change
class can be modified or deleted, as shown in Figure 9.
Because both cases cause the map change state to be changed,
the measurement can provide a hypothesis for the voxel to
be changed. 'erefore, the mass mPI

map⟶i,j(state) in the PI
case can be derived by

m
PI
map⟶i,j(ϕ) � 0,

m
PI
map⟶i,j(S) � 0,

m
PI
map⟶i,j(C) � λc,pass,

m
PI
map⟶i,j(Ω) � 1 − 

A ∉ Ω
m

PI
map⟶i,j(A),

(7)

where parameter λc,pass represents a probability for a passed
voxel to be changed.

4.3.4. Case 4: Passing outside Normal Distribution (PO).
In the PO case, the point is not located in the voxel and the
ray is not passing the distribution, as represented by Fig-
ure 9. 'is case can be determined by (4). 'is case causes
three candidates: normal, modified, and deleted. 'e three
cases are the same as all possible changes in a voxel with a
normal distribution. 'is means that the PO case cannot

N (p | μmap, ∑map)

μmap

pML

xs

p

Figure 8: Maximum likelihood point in normal distribution.
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provide any inference to detect map changes based on the
measurement. Accordingly, the mass mPO

map⟶i,j(state) in the
PO case is modeled by

m
PO
map⟶i,j(ϕ) � 0,

m
PO
map⟶i,j(S) � 0,

m
PO
map⟶i,j(C) � 0,

m
PO
map⟶i,j(Ω) � 1.

(8)

4.3.5. Case 5: Blocking in Empty Voxel (BE). 'e point is
measured in the empty voxel in the BE case, as shown in
Figure 9. In this case, only the new class is inferred. Ac-
cordingly, the mass mBE

map⟶i,j(state) of the BE case is de-
scribed by

m
BE
map⟶i,j(ϕ) � 0,

m
BE
map⟶i,j(S) � 0,

m
BE
map⟶i,j(C) � λc,block,

m
BE
map⟶i,j(Ω) � 1 − 

A ∉ Ω
m

BE
map⟶i,j(A),

(9)

where the parameter λc,block represents the probability for the
voxel to be changed. 'e parameter is the same as the pa-
rameter in the BI case because it is modeled such that the
effect of the blocked point provides the same inference for
the map change.

4.3.6. Case 6: Passing through Empty Voxel (PE). When the
ray is passing the empty voxel, the voxel is placed in the PE
case. As shown in Figure 9, the candidates of the map change
class are composed of the empty or new classes. Because the

map change class of the voxel without a normal distribution
must be either empty or new, the measurement does not
provide any inference for the voxel. As a result, the mass
mPE

map⟶i,j(state) of the PE case can be represented by

m
PE
map⟶i,j(ϕ) � 0,

m
PE
map⟶i,j(S) � 0,

m
PE
map⟶i,j(C) � 0,

m
PE
map⟶i,j(Ω) � 1.

(10)

4.4. Map Change Detection Based on Integrating Masses of
Map Changes. 'e six cases for the geometric relationship
provide the mass mmap⟶i,j(state) for map change states as
shown in Figure 5. Because the voxel vmap is measured it-
eratively by points pj|1≤ j≤Nj  from intelligent vehicle i,
the voxel vmap has multiple masses mmap⟶i,j(state) to
provide inference for the map change. To detect the map
change precisely, the measured masses mmap⟶i,j(state) are
integrated into one mass. To integrate the masses, Demp-
ster–Shafer’s combination rule is applied, as described by

m1∩2(A) � 
B∩C�A|B,C⊆Ω

m1(B) · m2(C),

m1⊕2(A) �
m1∩2(A)

1 − m1∩2(ϕ)
, ∀A⊆Ω, A≠ ϕ,

m1⊕2(ϕ) � 0.

(11)

To merge the masses to the change state in each voxel,
the masses in each voxel must be initialized. All voxels are
initialized as unknown states as (12) because voxels do not
have any inferences at first.

Case of
geometric
relationship

Map change
class
candidate

Map change
state inference

Case 4

Modified

Deleted

Normal

Case 6

Empty

New

Case 1

Normal

Modified

Deleted

Case 2

Modified

Normal

Deleted

Case 3

Modified

Deleted

Normal

Case 5

New

Empty

Sustained

Changed

ChangedUnknown

Sustained

Unknown

Changed

Unknown

Changed

Unknown Unknown

Changed

Unknown

Figure 9: Evidence modeling based on six cases for geometric relationship.
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mmap(ϕ) � 0,

mmap(S) � 0,

mmap(C) � 0,

mmap(Ω) � 1.

(12)

'e result of all mass integration measured by in-
telligent vehicle i is denoted by mmap⟶i(state), which
includes mmap⟶i(S), mmap⟶i(C), mmap⟶i(Ω), and
mmap⟶i(ϕ). 'e mass mmap⟶i(ϕ) must be 0 by (11).
Finally, the maximum value within three masses
mmap⟶i(state) determines the ray-casting-based map
change state smap⟶i composed of sustained, changed, and
unknown.

Figure 10 shows the examples of six map change
classes (unmeasured, empty, normal, new, modified, and
deleted), which can appear in the situation for the map
change detection. 'e unmeasured class is added into the
basic five map change classes to consider the unmeasured
situation due to limited LiDAR ranges. 'e unmeasured
class is classified as the unknown state by the initial masses
(12) because any rays do not reach the voxel. For the empty
class, there is no normal distribution and no points are
blocked in the voxel. It means that all measurements are
allocated to the PE case. Accordingly, after the merging
(11), the merged mass can be propagated to the unknown
state. 'e two map change classes are not distinguished as
map changes because the change states of the two cases are
unknown state. On the other hand, for the normal class,
the measurements from the LiDAR points are mostly the
BI cases. Although there may be some mis-measurements
such as the PE and BO cases, the merged mass can be
propagated to the sustained state by evidence merging
(10). 'erefore, the normal class is not also distinguished
as map changes. Different from the unmeasured, empty,
and normal classes, the remained three classes (new,
modified, and deleted) must be detected as map changes.
For the new class, most of points are blocked at the voxel
(BE case); therefore, the voxel can be classified as the
changed state. 'e voxel with the modified case has three
BO cases, one BI case, and two PI cases as measurements.
'e result of merging of six measurements propagates the
voxel to the changed state. 'e deleted case can be esti-
mated as the changed state based on four PI cases and two
PE cases.

As shown in Figure 11, the proposed ray-casting-based
algorithm can solve two problems caused by the V2V
comparison-based change detection algorithm in Figure 4.
Voxel (1) is estimated as the sustained state updated by the
measurements in the BI case, which means that the voxel is
classified as the normal class different to voxel (1) of Figure 4.
On the other hand, voxels (2) and (3) can be distinguished
based on the ray-casting approach. Voxel (2) is classified as
the unmeasured class because no measurement is reached in
the voxel. Voxel (3) is estimated as changed state due to the
measurement update in the PI case. Since there are no
blocked points in the voxel, the voxel can be classified as the
deleted class.

4.5. Uploading of Map Changes. When the voxel vmap is
estimated as the changed state (new, modified, or deleted
classes), the voxel vmap is uploaded to themap cloud server as
map change information. 'e map change voxels are cat-
egorized into two groups: a new normal distribution group
and no normal distribution group. If the voxel is classified as
changed state by the blocking points as shown in new and
modified cases of Figure 10, a new normal distribution is
constructed and uploaded to the map cloud server with the
voxel index information. On the other hand, if the voxel does
not have any blocked points, the only voxel index is
uploaded to the map server as the no normal distribution
part. 'e regions to be uploaded are determined by the
position of the ego-vehicle. When the vehicle has escaped
from the boundary of a geodetic tile of the GND map, the
map changes are serialized and stored in a file based on
Google Protocol Buffers. 'e file with the map changes can
be uploaded to the map cloud server through network
protocols such as the http, FTP, WebDAV, and SAMBA.

5. GND Map Update Based on Crowd-Sourced
Changes in Cloud Server

5.1. Clustering Based on Crowd-Sourced Data. When the
differences between the environments and the GND map,
the Ni intelligent vehicles can detect and upload the map
change voxels vi|1≤ i≤Ni  for the voxel vmap. 'e map
change voxel vi detected by i-th vehicle consists of the ex-
istence of the normal distribution εi, the number of points ni,
mean μi, and covariance Σi. If the map change voxel includes
a normal distribution as a new normal distribution group, ni,
μi, and Σi are defined. Otherwise, the parameters are not
defined. However, because the map change voxels have been
detected by low-cost sensors, they are not always precise, and
inaccurate information can be uploaded. 'erefore, it is
essential to avoid inaccurate voxels from crowd-sourced
voxels and to merge crowd-sourced voxels into an accurate
voxel to update the base map. To process two functions
simultaneously, density-based spatial clustering of applica-
tions with noise (DBSCAN) is applied [52]. 'e DBSCAN
algorithm generates clusters based on the distance between
two points. Unfortunately, because the targets of the algo-
rithm in the map change merging process are not points but
crowd-sourced map change voxels (new, modified, and
deleted classes), the distance-based DBSCAN algorithm
cannot be directly applied. To solve this problem, the
similarity between two voxels is applied instead of the
distance between two points.

'e similarity di,j between two voxels vi and vj is
composed of three parts: existence similarity dε

i,j, L2 dis-
tance-based similarity dL2

i,j , and geometric similarity d
g

i,j. 'e
existence similarity dε

i,j evaluates the existences between two
voxels. 'e L2 distance-based similarity dL2

i,i+1 and geometric
similarity d

g
i,i+1 evaluate the similarities between two dis-

tributions of two voxels. If at least one of the two distri-
butions does not exist, the L2 distance-based similarity dL2

i,i+1
and geometric similarity d

g
i,i+1 are not calculated. Since the

three similarities take values from 0 to 1, the total similarity
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is represented as the product of three similarities to apply the
DBSCAN algorithm in

di,j � d
ε
i,j × d

L2
i,j × d

g
i,j. (13)

�e voxel without a normal distribution has an existence
εi of false. To re�ect the voxel without a normal distribution,

the existence similarity is considered. �e existence simi-
larity compress the two existences εi and εj between two
uploaded voxels vi and vj according to

dεi,j �
1, if εi � εj � true,

0, otherwise.
{ (14)

Normal Normal

New Normal Normal

New Deleted Normal

(a) (b)

Sensor

(2)

(3)

Unmeasured Empty

Empty

Empty

Empty Empty Empty Empty

(1)

Vehicle

Vehicle

Building

GND map, Mmap Map changes, S′map→i

Figure 11: Map change detection based on ray-casting approach.
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'e L2 distance-based similarity is calculated only in
case that the two uploaded voxels have two distributions.
'e L2 distance-based similarity, used as a constraint for
optimization of an distribution-to-distribution matching
[25], is represented by the likelihood of the Mahalanobis
distance between two distributions in

d
L2
i,j � exp

− μj − μi 
T
Σj + Σi 

− 1
μj − μi 

2
⎛⎝ ⎞⎠. (15)

'e similarity dL2
i,j takes a value from 0 to 1, with the value

1 representing the best similar relationship between two
distributions.

Although the L2 distance-based similarity dL2
i,j can

provide a straightforward distance between two distribu-
tions, it encounters a problem. Although the two means μi

and μj are located near each other and two shapes are very
different from each other, the L2 distance-based similarity
dL2

i,j is approximately 1 because the difference μj − μi ≈ 0
makes the similarity to be 1. To solve this problem, geometric
similarity, which is based on geometric shape evaluation, is
applied [53]. Based on linear algebra, the geometric simi-
larity can classify a distribution as one of three types: sphere,
plane, and line. By the eigenvalues λ1, λ2, and λ3
(λ1 < λ2 < λ3) of normal distribution N(μi,Σi) derived by
eigendecomposition of the covariance Σi, the type ti can be
determined by

ti �

SPHERE, λ3 ≈ λ2 ≈ λ1≫ 0,

PLANE, λ3 ≈ λ2≫ λ1 ≈ 0,

LINE, λ3≫ λ2 ≈ λ1 ≈ 0.

⎧⎪⎪⎨

⎪⎪⎩
(16)

When the ratio of λ2 to λ1 is larger than 10, λ2≫ λ1 is
achieved. If two distributions have different types, the
geometric similarity must be 0. Even if distributions have the
same type, the geometric shapes are compared. 'e normal
vector ni at the PLANE type and the direction vector di at the
LINE type are used as feature vectors to compare geometric
shapes. When the shapes of two distributions are different,
the dot product of feature vectors of two distributions is
lower. Using this concept, the geometric similarity can be
derived through

d
g
i,j �

0, ti ≠ tj,

ni · nj, ti � tj � PLANE,

di · dj, ti � tj � LINE.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

5.2. Merging of Crowd-Sourced Map Information. 'e
DBSCAN algorithm based on the similarity in (13) derives
multiple clusters cj|1≤ j≤Nj  from multiple map change
voxels vi|1≤ i≤Ni , as shown in Figure 12. Each cluster cj is
a union of multiple map change voxels. 'ere are two types
of clusters: empty type and distribution type. An empty type
cluster example is c1 in Figure 12, which means that all map
change voxels in the cluster are empty voxels, i.e., εi � false.
'ere can be only one cluster grouped as the empty type in a
voxel because the empty voxel always has similarity 1 with

other empty voxels. Accordingly, the representative cluster
with the empty type is always set to an empty voxel. On the
other hand, the distribution type clusters represented by
clusters c2 and c3 in Figure 12 mean that clusters are grouped
by the map change voxels with the distributions. 'e rep-
resentatives of the clusters with distribution type can be
derived by the recursive update of sample mean and co-
variance [54].

5.3. Publication of Definite Changed Map Information.
'ere are several representatives constructed from each
cluster, as shown in Figure 12(c). To publish the updated
map information to the base map, there are several pro-
cesses. First, the numbers of map change voxels in the
clusters are compared, as shown in Figure 13. As a result, the
representative normal distribution with the maximum
number of merged map change voxels is selected as the final
map candidate to be updated. Secondly, validation based on
the ratio of uploaded information is evaluated. 'e ratio of
the number of merged voxels to the number of information
uploads must be higher than the configured parameter
ξupdate in Figure 13(b) to update the base map. 'e final
process is a comparison of the final map candidate with the
base map. 'e voxel in the base map and the voxel in the
final map candidate are compared based on the similarity
dmap,candidate in (13), as shown in Figure 13. When the
similarity is larger than dupdate, as shown in Figure 13(b), the
map candidate is published to the base map.

6. Simulations

6.1. Simulation Environments. To evaluate the map update
framework, the environments with large changes such as
construction sites are required. 'e site must also make the
high-precision GNSS/INS information provide the precise
position without any noises due to evaluation of robust
localization in changing environments. Unfortunately, it is
difficult to find the sites to satisfy both conditions for
evaluation in practice.'erefore, the map update framework
was evaluated in the simulations to construct the changing
environments.

'e simulation environments consisted of virtual per-
ception data and real data measured by a test vehicle.'e test
vehicle installed with on-board sensors (yaw rate and wheel
speed sensors), a low-cost GNSS receiver within 2.5m po-
sitioning errors (U-Blox EVK-6T), and a high-precision
GNSS/INS within 0.01m positioning errors (OXTS RT3002)
acquired the vehicle motion and positioning data as real
data. 'e motion and positioning information measured by
the on-board sensors and the low-cost GNSS receiver was
used as input data of a vehicle part performing the map
change detection algorithm in the proposed framework. In
order to construct virtual perception data, an in-house Li-
DAR simulator generated some point cloud measurements
based on a ray-casting approach from the vehicle pose to the
virtually modeled environments. 'e positioning informa-
tion measured by the high-precision GNSS was used as the
ground truth of the vehicle pose to construct the LiDAR
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measurements. As shown in Figure 14(a), the base GND
map was constructed by the simulated LiDAR measure-
ments along with the vehicle poses. In order to simulate the
changing environments, the virtually modeled environ-
ments were modified by manual editing including adding/
removing/transforming some objects. Accordingly, the
editing of the environments provided the changed GND
map after environment changes in Figure 14(b).

In the simulator, the LiDAR measurements were
modeled considering the LiDAR specifications such as
the number of layers, the horizontal resolution, and the
vertical resolution. In order to simulate the crowd-
sourcing information measured from various vehicles,
various sensor configurations including Velodyne VLP-
16, HDL-32E, and HDL-64E, Robosense RS-LiDAR-16,
RS-LiDAR-32, and Valeo Scala were applied in the
simulations. For evaluating the accuracy of the GND map
updated by the proposed framework, the simulations
were accomplished in a local computer without a cloud
computing system.

6.2. Robust Localization in Map-Changing Environments.
For detecting map changes in the GND map, the exact pose
of the vehicle is very important. In order to estimate the
vehicle pose in changing environments, we applied a hier-
archical algorithm [44, 55]. In the first process of the hi-
erarchical architecture, a submap, which models the present
environments in real-time, is constructed based on the
Graph SLAM algorithm. Since the submap plays a role as a
single LiDAR measurement measured from larger areas by
summing continuously sequential measurements, the per-
formance of the map matching in the second process of the
hierarchical architecture can be robust in changing envi-
ronments. Since our previous work [44] evaluated the
performance of the algorithm in the PCD map only, we
evaluated the performance of the localization with the
submap approach in the GND map. To estimate the precise
pose, we applied a Graph SLAM algorithm because the
algorithm generally provides better performances than the
Kalman filter algorithm and themap update does not require
real-time processing.

Voxel Voxel

Published
Uploaded voxels: 6

Uploaded
voxels: 3

Voxel in
base map

Similarity > dupdate

Ratio: 60% > ξupdate

(a) (b)

Figure 13: Publication of map changes into the base map.
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Figure 12: Clustering of map change voxels.
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Figure 15 shows the localization performances of the
general Graph SLAM algorithm and the Graph SLAM with
the submap concept through errors to the longitudinal,
lateral, and heading directions. 'e errors were evaluated by
the ground truth of the vehicle pose measured by the high-
precision GNSS/INS. 'e differences between the GND
maps as shown in circles (1)–(3) of Figure 14 are represented
from 9 to 17 seconds in Figure 15. 'e hierarchical Graph
SLAM algorithm with the submap concept had better
performances than the general Graph SLAM algorithm
without the submap concept because a matching ratio,
which represents the ratio of matched regions over the
measurements in the map-matching process, was higher by
the submap.

To judge whether the localization can be used in the map
update framework or not, localization performances were
validated through localization requirements for autonomous
driving proposed by Ford [56]. 'e Ford localization re-
quirements consist of two criteria in three directions:
maximum error boundary and 95% error boundary. In order
to satisfy the maximum error boundary criterion, the lon-
gitudinal, lateral, and heading errors have to be located
within the 0.44m, 0.44m, and 0.50° represented by yellow
rectangles of Figure 15, respectively. On the other hand, to
satisfy the 95% error boundary, the longitudinal, lateral, and
heading errors, located in 95% error position from ascending
ordering arrays, must be lower than the 0.15m, 0.15m, and
0.17° represented by green rectangles of Figure 15,
respectively.

'e maximum and 95% errors to the longitudinal, lat-
eral, and heading directions from the general Graph SLAM
and the hierarchical Graph SLAM are represented in Table 2.
If the criterion is satisfied, the blank of the table is filled with
the green color. Otherwise, the black is filled with the red
color. Since the general Graph SLAM without the submap
concept cannot satisfy the lateral and heading requirements,
the algorithm cannot be used to the map update framework.
On the other hand, the hierarchical Graph SLAM with the
submap concept can be used to the map update framework
because all criteria in Ford requirements are satisfied.

6.3. Map Change Detection and Map Update. 'e proposed
map change detection algorithm can detect map changes
from the base GND map using the relationship between the
map and the measurements. 'e map changes, which are
estimated as change states including new, modified, and

deleted classes, are uploaded to the map cloud server. 'e
map change information makes the changed map infor-
mation be inferred as shown in Figure 16(a). 'e new,
modified, and deleted classes are represented as red, yellow,
and green ellipsoids, respectively. 'e normal class, repre-
sented by blue ellipsoids, is not uploaded to the map cloud
server. 'e uploaded crowd-sourced map changes, detected
by crowd-sourcing vehicles, are merged into the represen-
tative map changes through the map update algorithm in the
proposed framework. As a result, the updated map can be
represented in Figure 16(b). In order to validate the per-
formance, the ground truth of map changes are represented
in Figure 16(c), which is constructed by comparing the
previous GND map (a) and the present GND map (b) of
Figure 15.

By comparing with the ground truth of map changes,
the performances of proposed algorithms are represented
in confusion matrices, which are generally used to eval-
uate a classification problem, as shown in Table 3. 'e
confusion matrices to represent performances of map
changes include five map change classes: normal, new,
modified, deleted, and empty. Since the outputs of the
algorithm are compared with the ground truth of map
changes, higher diagonal values mean better perfor-
mances. Table 3 includes three confusion matrices,
comparisons with (1) the base map, (2) results of map
change detection, and (3) results of map update. 'e first
one represents the confusion matrix compared with the
base map without map change consideration, as shown in
Figure 15(a). Since the base map has been not updated,
there is no prediction for map changes (new,modified, and
deleted) in the confusion matrix. 'e second one means
the confusion matrix compared with the map inferred by
the map change detection based on single driving, as
shown in Figure 16(a). Although map changes can be de-
tected, some errors still occur due to two reasons.'e parked
vehicles cause the inaccurate estimate from the true empty
class to the predicted new class. Also, occlusion regions by
parked vehicles cause misclassification from the true deleted
class to the predicted normal class. 'e third one is the
confusion matrix compared with the map updated by the
map change update, as shown in Figure 16(b). 'e errors
caused in the second confusion matrix are reduced to zero
based on the crowd-sourcing measurements.

F1 � 2 ×
precision × recall
precision + recall

. (18)

(1)

(2)

(3)

(a)

(1)

(2)

(3)

(b)

Figure 14: GND maps (a) before environment changes and (b) after environment changes. 'e circles (1)–(3) indicate the differences
between two maps.

14 Journal of Advanced Transportation



Table 2: Table of robust localization performance in simulations.

Experiments
Longitudinal (m) Lateral (m) Heading (°)

95%: 0.15 Max: 0.44 95%: 0.15 Max: 0.44 95%: 0.17 Max: 0.5
Without submap 0.08412 0.2002 0.30124 1.4518 1.1388 6.2191
With submap 0.031013 0.054553 0.012499 0.030573 0.052715 0.094034
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Figure 15: Performance of robust localization in map-changing simulations.
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Figure 16: Map change information (a) detected by the map change detection algorithm based on single driving, (b) updated by the
proposed framework based on crowd-sourced data, and (c) representing ground truth information.
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To evaluate the overall performance based on a unit
index, we adopt the F1-score (18). 'e F1-score is widely
used in the situation that the number of voxels in each class
is not balanced (i.e., empty ≫ normal ≫ new, modified,
deleted). 'e F1-score by the base map, results of map
change detection, and results of map update are represented
to 37.36%, 88.05%, and 99.62%, respectively.

Figure 17 represents the effects of the number of vehicles
to join the map update. 'e blue line of Figure 17 means the
F1-score by the base map. 'e yellow line represents the F1-
score by results of the map change detection based on single
driving. 'e green line represents the results of the map
update based on the number of crowd-sourcing vehicles.
More crowd-sourcing vehicles construct a more precise map
by considering more map change information, and the
performance of the map update is saturated after 9 vehicles.

7. Experiments

7.1. Experimental Environments. 'e test vehicle, used in the
simulations, was also used in the experiments. Differently
with the usage of the virtual perception sensors in simu-
lations, the experiments used two real LiDAR sensors
(Velodyne VLP-16). Although two LiDAR sensors were used
to construct the base map, only one LiDAR sensor was used
to update the map information based on the proposed
system. 'e high-precision GNSS/INS information was not
used for the proposed system but used for the base map
construction and ground truth positioning. 'e low-cost
GNSS was only used to solve the kidnapped problem for
localization.

As the paper said in Section 6.1, there were two re-
quirements from a test site for evaluation of the proposed
map update system. In order to evaluate the map update
system, the environment must be changed from the base
map. In addition, to use the high-precision GNSS/INS as
ground truth information, the quality of the GNSS must
be good in the test site. 'e chosen place that met the
requirements was Wangsimni-ro in Korea, as shown in
Figure 18. In the test site, the test vehicle was driven to
construct the base map on August 1, 2019. Next, the test
vehicle was driven 38 times on the same road to update the
base map on October 12, 2019.

'e raw PCD map was constructed by accumulating
point clouds measured by two LiDAR sensors based on the
trajectory of the ego-vehicle measured by high-precision
GNSS/INS. To convert the PCD map to the GND map, the
points in the PCDmap were allocated to each voxel with 1m
basic size. Based on the points, the normal distribution in
each voxel could be constructed to form the GND map
structure.

7.2. Robust Localization in Map-Changing Environment.
'e real environment confronts the changes of the road over
time, such as the construction site, growing trees, and parked
vehicles. Accordingly, it is essential to estimate the precise
pose considering the map-changing situations. To reflect the
map-changing environments, postprocessing localization

based on hierarchical Graph SLAM with the submap con-
cept is applied [44].

To evaluate variations regarding the submap, the errors
of localization algorithms without the submap and with the
submap are shown in Figure 19. 'e brown and red lines
represent the localization performance without and with the
submap, respectively. 'e yellow and green rectangles in
Figure 19 represent the maximum and 95% error boundaries
for the localization requirements, respectively. As shown in
Figure 19, the notable environment changes occur from 20
to 31 seconds.

Localization without the submap has particularly vary-
ing errors in the partial map changes because incorrect map-
matching constraints can be constructed by mismatching
between the LiDAR measurements and the unmodified
GND map. Although precise accuracy of localization is
essential for map change detection that meets the locali-
zation requirements, the general Graph SLAM without the
submap does not satisfy the requirements. To relieve the
LiDAR mismatching between measurements and the GND
map, the hierarchical Graph SLAM algorithm is applied with
the submap concept. After applying hierarchical Graph
SLAM, localization error can be reduced.'emaximum and
95% errors are represented in Table 4.

'e 95%/maximum errors of hierarchical Graph SLAM
to the longitudinal and lateral directions are 0.1478/
0.19742m and 0.13104/0.20154m, respectively. Since the
errors are located within 0.15/0.44m, the localization with
the submap can satisfy the localization requirements. In
addition, the 0.14799/0.2351° of 95%/maximum heading
errors satisfy the localization requirements. 'erefore, the
robust localization algorithm based on hierarchical SLAM
with the submap meets the requirements for localization,
and it means that the localization algorithm can be used for
the proposed framework.

7.3. Map Change Detection in GND Map Structure. 'e
proposed map change detection and map update processes
were evaluated in real environments. Different from sim-
ulations, the real environments, which have more noise, can
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Figure 17: F1-scores by the number of crowd-sourcing vehicles in
simulations.
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generate more positioning errors in the robust localization
process. Especially, the rotation errors can affect the per-
formance of the map change detection and the map update
processes rather than the translation errors. In order to
relieve effects of rotation errors, the map change detection is
performed within 50m from the ego-vehicle. 'e results
based on the map change detection and the map update are
represented in Figures 20(a) and 20(b). Figure 20(c) rep-
resents the ground truth of map changes constructing by
comparison between the previous GNDmap and the present
GND map.

'e performances of proposed algorithms are evaluated
using the confusion matrices compared with the ground
truth of map changes (Figure 20(c)), as shown in Table 5.'e
evaluation was performed in the region from the ground to a
height of 1.5m because most of the changes are in that
region. 'e first confusion matrix represents the results of

comparison with the base map. Because the base map does
not have any map change information, the precision rates
and the recall rates related with the map change classes (new,
modified, and deleted) were set to 0. 'erefore, the F1-score
based on the base map was 37.36%, which is a very low value.
'e second confusion matrix means the results of the map
inferred by the map change detection based on single
driving, as shown in Figure 20(a). 'e F1-score of map
change detection was 78.34%. 'ere are several reasons for
degrading the accuracy of the map change detection algo-
rithm. First, the precision rate of the new class is 35.92%
because the dynamic points that are misclassified as static are
propagated to the new class, as shown in the circles of
Figure 20(a). Secondly, the precision rate of the modified
class is 25.37% because the true normal class is misclassified
as modified class. Because low precision rate is caused by
incorrectly constructed new normal distributions in the map

Table 4: Table of robust localization performance in experiments.

Experiments
Longitudinal (m) Lateral (m) Heading (°)

95%: 0.15 Max: 0.44 95%: 0.15 Max: 0.44 95%: 0.17 Max: 0.5
Without submap 0.2299 0.36875 0.28506 0.66626 0.41892 0.94196
With submap 0.1478 0.19742 0.13104 0.20154 0.14799 0.2351
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(a)

Normal
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Modified
Deleted

(b)

Normal
New

Modified
Deleted
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Figure 20: Map change information (a) detected by the map change detection algorithm based on single driving, (b) updated by the
proposed framework based on crowd-sourced data, and (c) representing ground truth information.
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change detection process, the misclassification can be
overcome after the crowd-sourced data-based evaluation
process in the map cloud server. 'e third reason is the
83.7% precision rate of the deleted class, which is low. 'is
means that the normal states in the previous base map are
incorrectly removed. 'e misclassified voxels can be over-
come by applying the change ratio ξupdate to the merging
process.

Based on the crowd-sourcing detection, the confusion
matrix, representing the results of the map update based on
crowd-sourcing detection (Figure 20(b)), made the F1-score
be 92.8%. 'e precision rate of the new class increases
dramatically from 32.92% to 85.67% due to the merging
process in themap update. Similarly, the precision rate of the
modified class compared with the precision rate of the map
change detection algorithm increases from 25.37% to
80.95%. Because the class predicted as modified by the map
change detection algorithm is compared with each other,
only clear voxels remain. 'e precision rate of the deleted
class also increases from 83.7% to 99.61%.

7.4. Comparison with the PCD Map Update. In order to
compare the performance of the GND map update over the
other approach, the framework of the PCD map update
based on crowd-sourcing detection was used [44]. 'e PCD
map, used for constructing the base GND map, was used as
the base map. 'e changed information can be detected by
the ray-casting approach in each vehicle. 'e detected map
changes, which were composed of only changed points (new
and deleted points), were uploaded to the map cloud server.
Using the map change information, the PCDmap was finally
updated, as shown in Figure 21(a). For the fair evaluation,
the same indicator, F1-score based on comparison of normal
distributions, was used. Accordingly, the updated PCD map
was converted to the updated GND map, as shown in
Figure 21(b). 'e updated GND map was evaluated by
comparing with the ground truth of map changes
(Figure 20(c)).

Figure 22 shows the results of the PCD map update and
the GND map update. 'e blue line represents the F1-score
by the base map.'e F1-scores of the base PCDmap and the
base GND map are the same. 'e yellow and green lines

represent the F1-scores from the map change detection and
the map update based on the GND map. On the other hand,
the orange and purple lines represent the F1-score detected
by the map change detection and the map update based on
the PCD map. In using single driving data, the F1-score
based on PCDmap update is higher than the F1-score based
on the GND map update because the ray-casting based on
the PCD map can check the changes more in detail than the
ray-casting based on the GND map. Although the degra-
dation of the change detection based on the single driving
data, the results of the map update were similar to each other
after 16 vehicles due to the crowd-sourcing data.

7.5. Traffic of Wireless Network Communications. 'e
uploaded size is dramatically reduced by 96.06% in the
proposed framework.

'e analysis of the traffic of the wireless networks is
represented in Figure 23. 'e blue, orange, yellow lines in
Figure 23 mean the data size which can be transmitted
during the vehicle driving through average speeds of 3G, 4G,
and 5G wireless networks in Korea. 'e purple and green
lines in Figure 23(a) show the downloaded sizes of the PCD

Normal
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Deleted

(a)

Normal
New

Modified
Deleted

(b)

Figure 21:'e framework of PCDmap update constructed (a) the updated PCDmap.'emapwas converted to (b) the updated GNDmap.
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Figure 22: F1-scores by the number of crowd-sourcing vehicles in
experiments.
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map and the GNDmap during the vehicle driving.While the
downloaded PCD map size was 19.37MB, the downloaded
GND map size is 3.36MB, due to the compression based on
the normal distributions. 'e map size was compressed by
82.6% using the GNDmap. Since the green line for the GND
map is always lower than the blue line of the 3G wireless
network, the 3G network can be used for downloading the
GND map. 'e purple and green lines in Figure 23(b)
represent the uploaded size of map changes based on the
PCDmap and the GNDmap during the vehicle driving. 'e
sky-colored line represents all measurement data (in-vehicle
sensors, the low-cost GNSS, and the LiDAR measurements)
used to update the map changes similar to the conventional
camera-based map update approaches. 'e size of uploaded
PCDmap changes, which were composed of new and deleted
points, was 2.06MB, which was lower than all measure-
ments. In the map change uploading, the adaptation of
normal distributions with new, modified and deleted classes
dramatically reduced 2.06MB to 0.11MB. A similar ten-
dency was represented in Figure 23(c), which shows the total
uploaded data from crowd-sourcing vehicles. While the data

size for uploading all measurements and PCD map changes
were used until 1713MB and 89.24MB during driving of 38
vehicles, the proposed framework used only 3.511MB.
Compared with the PCD map update framework, the
uploaded size is dramatically reduced by 96.06% in the
proposed framework.

7.6. Localization Performance after Map Update. 'e final
goal of the GND map update is to perform precise online
localization by keeping the GND map up-to-date. To
evaluate the online localization performance, two data are
compared, as shown in Figure 24. 'e brown line is the
same as the brown line in Figure 19. Online localization
with the previous map cannot satisfy the localization
requirements. On the other hand, the red line represents
the online localization performance based on the
matching with the GND map after the map update. 'e
results of localization before and after the map update
were reinterpreted as Table 6. 'e maximum longitudinal
and lateral errors were 0.17868m and 0.20133m,
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respectively, which were within the maximum boundary
of 0.44m. 'e maximum heading error was 0.20966°,
which was within the maximum boundary of 0.5°. In
addition, the longitudinal, lateral, and heading 95% errors
were 0.11053m, 0.14431m, and 0.20966°, respectively.
Since the online localization algorithm with the updated
map can satisfy the localization requirements, the local-
ization based on the proposed framework can be used for
autonomous driving.

8. Conclusion

'ere are some problems that LiDAR-based localization has
a critical issue to be solved in order to realize autonomous
driving in the future. Since LiDAR-based localization uses
the LiDAR map modeling static environments, it can be
fragile by the environment changes of static information
(i.e., parked vehicle and construction site). Accordingly, it is
essential for changes in the real environment to be peri-
odically updated in the LiDAR map for minimization of the
difference between the environment and the LiDAR map.
However, it is difficult to apply directly to the periodic
update because the LiDAR map is too large to be down-
loaded or uploaded.

In order to solve the problems, the paper proposed the
GNDmap update framework based on crowd-sourcing data.

'e proposed framework consists of five steps: downloading,
robust localization, change detection, uploading, and map
update. 'e main contributions of the proposed framework
are summarized as follows:

(1) 'e paper proposed a GND map update frame-
work based on crowd-sourcing detection. Based on
the framework, the LiDAR map can be kept up-to-
date to support the localization for autonomous
driving. While the performance of the proposed
framework is similar to the performance of the
state-of-the-art framework based on crowd-
sourcing data [44], the data size transmitted in the
proposed framework is dramatically reduced by
82.6% in the downloading process and 96.06% in
the uploading process. Using the updated map, the
online LiDAR localization was successfully per-
formed in changing environments.

(2) 'e proposed change detection algorithm finds the
probability that the environments are changed based
on the relationship between the normal distribution
and the LiDAR measurements. Accumulation of
change information based on the evidence approach
detects the deterministic map changes to be uploa-
ded into the map server. Since the only map changes
(new,modified, and deleted normal distributions) are
uploaded into the map server, the uploaded data size
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Figure 24: Online localization performance after GND map update.

Table 6: Table of localization performance before and after map update.

Experiments
Longitudinal (m) Lateral (m) Heading (°)

95%: 0.15 Max: 0.44 95%: 0.15 Max: 0.44 95%: 0.17 Max: 0.5
Before map update 0.2299 0.36875 0.28506 0.66626 0.41892 0.94196
After map update 0.11053 0.17868 0.14431 0.20133 0.13136 0.20966
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is reduced than the data size of uploading the
changed points.

(3) 'e proposed map merging algorithm detects the
representative map changes from the crowd-sourc-
ing change information through a DBSCAN algo-
rithm based on the proposed normal-distribution
similarity. 'e representative map changes can up-
date the GNDmap in themap server by replacing the
changing parts.

'is framework keeps map information up-to-date
without the additional costs generated by professional
mapping vehicles with mobile mapping systems. In addition,
the map update framework reduced the wireless network
burdens dramatically. Despite these innovations, there are
some limitations that should be resolved as future works.
First, the data size to update the map based on a camera
(10 kB/km) is still less than the uploaded data size of the
GND map changes (56.32 kB/km). To compress the size of
the GND map more, the authors plan to research the GND
map compression based on the deep learning approach.
Second, the map update framework does not consider the
semantic segmentation information of point clouds
researched in deep learning fields. To improve the perfor-
mance of the map update framework, the authors plan to
research a map update approach considering the semantic
information.
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+e Yolov4 detection algorithm does not sufficiently extract local semantic and location information.+is study aims to solve this
problem by proposing a Yolov4-based multiscale feature fusion detection system for high-speed train wheel tread defects. First,
multiscale feature maps are obtained from a feature extraction backbone network.+e proposedmultiscale feature fusion network
then fuses the underlying features of the original three scales. +ese fused features contain more defect semantic information and
location details. Based on the fused features, a path aggregation network is used to fuse feature maps at different resolutions, with
an improved loss function that speeds up the convergence of the network. Experimental results show that the proposed method is
effective at detecting defects in the wheel treads of high-speed trains.

1. Introduction

High-speed train fault diagnosis is crucial for the safe op-
eration and maintenance of high-speed trains. As an im-
portant support and running component of high-speed
trains, wheelsets incur tread wear, scratches, and other
damages caused by rolling contact between the wheel and
rail. +e deterioration can easily cause serious damage, such
as wheelset tread fractures. +erefore, it is essential to di-
agnose wheelset tread damage to ensure the safety of high-
speed trains.

Current defect detection methods include magnetic
particle detection, ultrasonic detection, and machine vision
detection [1]. In recent years, many scholars have studied
machine vision methods [2–5], owing to their wide appli-
cation range and high precision. Such methods are efficient
at inspecting the damage and unaffected by the contour of
the inspection part. Moreover, machine vision inspection
can proceed automatically. Traditional defect detection
methods based on machine vision for railway components
begin from the perspective of image processing. On the one
hand, they use low-level grayscale features [6], textures,

colors, frequencies, and other features to detect defects, yet
such artificial features must be selectedmanually and require
rich expert knowledge. On the other hand, the damage is
automatically located after image enhancement [7–9], al-
though the images are susceptible to noise. Given the
complex operating scenarios of high-speed rail, changing
working conditions, and the nonlinearity of the sensor itself,
the signals collected by the sensors often contain foreground
interference, noisy backgrounds, and nonlinear character-
istics such as corrosion, stains, uneven reflection, a low
signal-to-noise ratio, excessive illumination, and uneven
illumination. It is difficult for traditional machine vision
defect detection methods to effectively extract small fault
features under foreground interference and noise. Fur-
thermore, the differences between wheelset tread defects are
not obvious under these two conditions.

1.1. Defect Detection Based on a Deep Convolutional Neural
Network (DCNN). Considering that deep learning has
exhibited superiority in feature extraction and pattern
recognition, an increasing number of scholars have

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 1172654, 13 pages
https://doi.org/10.1155/2022/1172654

mailto:hejing@263.net
https://orcid.org/0000-0002-9800-3984
https://orcid.org/0000-0002-8400-3473
https://orcid.org/0000-0002-3650-3270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1172654


attempted to apply deep learning methods to defect de-
tection [10]. Deep learning based on convolutional neural
networks is widely used to detect railway component
damage [11–13]. Faghih-Roohi et al. [14] proposed a DCNN
with multiple structures and activation properties for rail
damage detection. High-speed train wheelset tread defect
detection requires scene analysis at the regional level.
Current regional-level target detection methods based on
DCNNs are generally divided into two types. One type is
two-stage detection based on the region, such as the Regions
with CNN (R-CNN) features [15] and Faster R-CNN [16].
Liu et al. [12] integrated the feature extraction module
isoelectric line network (ILNET) in the Faster R-CNN and
used the segmentation method intersecting the cortical
model/maximization of the posterior marginal based on a
Markov random field to locate and divide loose strands of
isoelectric lines. He et al. [17] proposed an end-to-end two-
step defect detection method for steel rolling defects and
explored the trade-off between detection speed and accuracy
for different numbers of regions. However, the detection
speed of two-step algorithms is still slower than that of
single-step detection algorithms, and it is difficult to deal
with the problem of the short maintenance operation time
for China’s high-speed railways. +e other type is a series of
single-step detection algorithms, including the you only look
once (YOLO) series [18], which includes single-shot mul-
tibox detector (SSD) [19] and RetinaNet [20]. Kou et al. [21]
introduced the DenseNet module in Yolov3 for strip defects
and proposed a strip defect detection method based on
Yolov3. Based on RetinaNet, Cheng et al. [22] proposed a
retinal network (DEA RetinaNet) defect detection model
based on differential channel attention and adaptive spatial
feature fusion. Cui et al. [23] proposed an SSDNet for defect
detection, which solved the problem of large texturing and
small size defect detection by introducing feature retention
blocks and skip dense connection modules. Considering that
the YOLO series of target detection algorithms use fast
detection frameworks, this study focuses on the application
of Yolov4 [24] in wheelset tread defect detection.

+e YOLO series includes Yolov4. Yolov1 locates targets
based on the last convolution map. Yolov2–Yolov4 [25,26]
only locate large, medium, and small targets from three-scale
high-level feature maps. Generally, a CNN acts as a filter in
deep neural networks. Semantic information and location
details of the wheelset tread image change layer by layer with
the filter. Shallow features are rich in location information,
but their discrimination is inadequate. Deep features contain
ample semantic information but at the cost of location
details.

1.2. Multiscale Feature Fusion (MFF). Some scholars have
proposed using high-quality feature learning for networks
by combining the features of different scales. Yang et al. [27]
designed a multiscale channel compression deep surface
defect detection algorithm that generates multiscale features
through the convolutional layers of different sizes of cores to
address messy backgrounds and defects of various scales.
+e added convolutional layer is compressed to increase the

speed of the network. Hu et al. [28] proposed a spatio-
temporal segmentation model with a hybrid multidimen-
sional feature fusion structure for automatic thermal
imaging defect detection. An attention module was designed
that encourages local interaction between adjacent pixels
and calibrates the feature map self-adaptively to lighten the
model. Gao et al. [29] used feature acquisition and a
compression network for multiscale feature fusion of IBD
defect detection and used Gaussian weighted pooling instead
of ROI pooling.+eir method provides more accurate defect
location information.

1.3. Transfer Learning. Deep neural networks require a large
number of datasets as a drive. For wheelset treads, building a
large target detection dataset is very difficult. If the dataset is
too small, then the performance of the deep neural network
will be limited. +erefore, pretraining the network or
transfer learning is commonly used for small samples. Yang
et al. [30], Zhang et al. [31], Badmos et al. [32], and Sun et al.
[33] used transfer learning to detect Mura defects in LCD
panels, PCB defects, electrode defects in lithium batteries,
and surface defects in metal parts. Kim et al. [34] compared
the effects of fine tuning-based transfer learning and training
the network from scratch on the DAGM defect dataset. +ey
demonstrated that transfer learning outperforms training
the network from scratch.

+e contributions of this study are as follows:

(1) +is study proposes an MFF-Yolov4 high-speed
train wheelset tread defect detection algorithm.
Yolov4 uses only three high-level features to perform
detection tasks, resulting in low detection accuracy.
To address this limitation, we propose a multiscale
feature fusion module. +e proposed module pro-
vides rich semantic information and location details
after the feature extraction stage. Low-level features
are integrated into high-level features, and the fused
features effectively improve the classification and
localization capabilities of the detection network.

(2) A dataset that contains 277 high-speed train wheelset
images is built by collecting data to fine-tune our
pretrained model. In the case of small samples, the
proposed MFF-Yolov4 achieves competitive per-
formance on this dataset.

(3) Based on the two-class detection problem—and
considering that noisy background candidate frames
that are not related to wheelset tread defects con-
tribute to most of the loss—the classification loss
function is optimized, and the adjustment factor α is
added, thereby achieving a better anti-interference
performance of the improved network.

2. Construction of Defect Detection Model for
Wheelset Treads

+e proposed MFF-Yolov4 algorithm is described in this
section (see Figure 1). A single wheelset tread image of any
size is processed by CSPDarknet53 and SPP for feature
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extraction, and a convolutional feature map at each stage is
generated. Four feature maps are extracted and then merged
into three-dimensional feature outputs throughMFF. In this
way, MFF contains both the bottom-level location infor-
mation of the wheelset tread image and the high-level
classification semantics. Subsequently, a path aggregation
network (PANet) [35] is used to perform a secondary fusion
of the three fusion features with underlying location in-
formation. Next, the three fusion features at different scales
are divided into grids to predict the bounding box for each
grid and then return to the basic truth box. Each scale feature
map stores the defect categories (“classes”), regression pa-
rameters of prior boxes (“location”), and confidence scores
(“confidence”) that correspond to the three prior boxes of
each grid.

2.1. Backbone Network. Preprocessing the model on the
VOC2007 dataset can improve the performance of the deep
neural network. +e preprocessing model can be fine-tuned
on a smaller wheelset tread defect dataset. Given that MFF-
Yolov4 is based on the Yolov4 target detection algorithm, the
use of CSPDarknet53 and SPP as the backbone has the
following characteristics:

(1) According to research by the author of Yolov4,
CSPDarknet53 has the following advantages over the
CSPResneXt50 network: a higher input network size,
which is conducive to the detection of small objects; a
larger receptive field that covers a larger input
network; more parameters to improve the model
with single images; and the ability to detect multiple
objects of different sizes.

(2) SPP can significantly increase the receptive field and
isolate important context features. Furthermore, it
will not increase the operating speed of the network.

In this study, CSPDarknet53 and SPP are selected as the
backbone. +e detailed structure of the network is shown in
Table 1 and the output feature of the last layer of each CSP
module is expressed as {F1, F2, F3, F4, F5, F6}.

2.2.Multiscale Feature Fusion. Yolov4 uses only three high-
level scale features for feature extraction. +e evolution of
wheelset tread damage is a coupled development process.
+e network proceeds from shallow to deep, features are
mapped to high-dimensional space, and the overall se-
mantic information is gradually strengthened in abstrac-
tion. However, the hidden positioning information and
local semantic features are gradually weakened layer by
layer. In order to strengthen the detection ability of Yolov4

spp

Backbone MFF PANet

Head

Head

Head

YOLO loss

YOLO loss

YOLO loss

F1

F2

F3

F4

F5

F6

P1

P2

P3

Fusion Feature pyramid

output

input

Figure 1: MFF-Yolov4 framework.

Table 1: Feature extraction backbone network.

Block name Type Filter size Output size
CBM Conv1 3× 3, 32, stride� 1 416 × 416

Csp1(F1)
Conv2 3× 3, 64, stride� 2 208× 208

RS1 1 × 1, 32
3 × 3, 64  × 1

208× 208

Csp2(F2)
Conv3 3× , 128, stride� 2 104×104

RS2 1 × 1, 64
3 × 3, 128  × 2

104×104

Csp3(F3)
Conv4 3× 3, 256, stride� 2 52× 52

RS3 1 × 1, 128
3 × 3, 256  × 8

52× 52

Csp4(F4)
Conv5 3× 3, 512, stride� 2 26× 26

RS4 1 × 1, 256
3 × 3, 512  × 8

26× 26

Csp5(F5)
Conv6 3× 3, 1024, stride� 2 13×13

RS5 1 × 1, 512
3 × 3, 1024  × 4

13×13

CBL Conv7 1 × 1, 512
3 × 3, 1024
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 1

13×13

SPP MaxPool
1 × 1
5 × 5
9 × 9
13 × 13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 1

13×13

CBL(F6) Conv8 1 × 1, 512
3 × 3, 1024
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 1

13×13

Journal of Advanced Transportation 3



to detect wheel tread damage, we need to extend each
single-scale feature to a dual-scale fusion feature. +e
method we use here is to fuse the high-resolution un-
derlying features with high-level features through convo-
lution transformation. Two basic conditions must be met:
the features must be nonadjacent, because adjacent features
must have high similarity [36], and the features of each
scale generated by the backbone network should be taken
into account.

From Table 1, we know that when the image flows
through the feature extraction backbone network, {F1, F2,
F3, F4, F5, F6} multige1 scale features are generated. +e
original Yolov4 network uses only three high-level feature
maps, {F3, F4, F6}. In order to integrate multiple scale
features to obtain more comprehensive semantic informa-
tion and location details, the proposed MFF module per-
forms a fusion strategy on the underlying feature F2. In
particular, F2 is connected to the same F3, F4, and F6 after
L2 normalization. By modifying the number of filters in the
1× 1 convolution, most MFFs reduce the required param-
eters. +is operation may affect the accuracy but will prevent
overfitting in the case of insufficient training data. Finally, by
stitching the features together, multiscale fusion features
{FF1, FF2, FF3} are generated, as shown in Algorithm 1. Its
structure is shown in Figure 2.

2.3. Path Aggregation Network (PANet). For FFi with more
comprehensive feature information, the three fusion feature
layers of the input are stacked through PANet’s step-by-step
upsampling and downsampling. A second fusion is per-
formed to obtain three effective feature layers, namely, P1,
P2, and P3, as shown in Figure 3.

2.4. Yolo Head. In particular, Yolo head is integrated
through a 3× 3 convolution, and then, a 1×1 convolution is
used to obtain an S× S× 3(4 + 1 +K) tensor, where the four
coordinates of the bounding box, namely, bx, by, bw, and bh,
are stored in “4,” the confidence of the detected object is
stored in “1,” “k” is the detected object category, and the
calculation formula is presented as follows:

bx � σ tx(  + cx,

by � σ ty  + cy,

bw � pwe
tw,

bh � phe
th,

(1)

Confidence � P(object) × IoU
truth
pred , P(object) ∈ 0, 1{ }.

(2)

+e coordinate system is established with the upper-left
corner of the sample as the origin; cx and cy represent the
coordinates from the upper-left corner of the bounding box
to the origin; pw and ph are the width and height of the

anchor box, respectively; tx and ty are the distance from the
center point of the bounding box to the origin; tw and th are
the width and height of the bounding box, respectively; bx

and by are the coordinates of the center point of the pre-
diction box; bw and bh are the width and height of the
prediction box, respectively; and σ(.) is the sigmoid acti-
vation function. In equation (2), P(object) represents the
probability that the prediction frame contains the target
object, and IOUtruth

pred is the intersection and union ratio of the
truth frame and the prediction frame. Given that the Yolo
head can extract thousands of prediction boxes, greedy
nonmaximum suppression (NMS) is often used to eliminate
areas with high overlap. +e threshold of NMS is set to 0.5,
and bounding boxes below 0.5 are discarded. After NMS, the
remaining prediction boxes are used to fine-tune our MFF-
Yolov4 network.

2.5. Improved Loss Function. +e MFF-Yolov4 loss function
can be divided into three parts, as shown in Figure 4. Hence,
the loss function is calculated as follows:

L � Eciou + Ecoord + Ecls, (3)

where Eciou is the location error, Ecoord is the confidence
error, and Ecls is the classification error.

+e proposed algorithm is designed to detect defects in
the tread surface of high-speed train wheels. In the actual
operating environment of high-speed trains, however, the
wheelsets are exposed to natural light, stains, rust, and other
interference in long-term operation under various working
conditions, and the background unrelated to the detected
target contributes more classification loss Ecls in the total
loss. As such, we draw on the idea of focal loss [20] and add
an index adjustment factor α to the classification loss to
improve its ability to distinguish the foreground and
background. +e improved classification loss is expressed as
follows:

Conv 3×3,S=2
l2 norm

L2
norm

Conv 3×3,S=2
l2 norm

Conv 3×3,S=2
l2norm

L2
norm

L2
norm

Conv 1×1

Conv 1×1

Conv 1×1

concate
*

F6

F4

F3

F2

FF3

FF2

FF1

+

+

+

+

Figure 2: MFF structure.
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Ecls � 
S×S

i�0


B

j�0
I
defect
ij 

c∈classes
pi(c)log pi(c)(  + 1 − pi(c)( 

αlog 1 − pi(c)(  , (4)

where S× S represents the number of grid cells divided by
the input image; B represents the number of bounding boxes

generated by the cell; and Idefectij is the locked activation
parameter item. To judge whether the j-th prior box in the i-

(i) Input: Feature map {F2, F3, F4, F6} generated from backbone network
(ii) Preprocessing: Normalize {F2, F3, F4, F6} with L2 normalization
(iii) While epoch >0 and input feature map is not empty do
(iv) Downsample feature map F2 to 52× 52 as F2′ through 3× 3 conv
(v) Concate F2′ and F3 as FF1′
(vi) Get FF1 through 1× 1 conv
(vii) Downsample feature map F2′ to 26× 26 as F2″ through 3× 3 conv
(viii) Concate F2″ and F4 as FF2′
(ix) Get FF2 through 1× 1 conv
(x) Downsample feature map F2″ to 13×13 as F2‴ through 3× 3 conv
(xi) Concate F2‴ and F6 as FF3′
(xii) Get FF3 through 1× 1 conv
(xiii) End
(xiv) Output: Fusion feature {FF1, FF2, FF3}

ALGORITHM 1: Multiscale feature fusion.
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th grid is responsible for predicting the target, Idefectij � 1
when the wheelset tread damage target falls to the j-th
bounding box generated by the i-th mesh; otherwise, Idefectij

� 0. +erefore, only the grid responsible for predicting the
target needs to punish the classification error. pi(c) rep-
resents the true probability of category c, and pi(c) repre-
sents the predicted probability of category c.

3. Experiments

MFF-Yolov4 was evaluated on our self-built dataset, called
WT-DET. +e implementation results show that the model
we designed is feasible and effective.

3.1. Wheelset Tread Defect Dataset

3.1.1. Dataset Collection. +e image samples needed in the
experiment were collected from the wheel axle workshop of
CRRC Group Co., Ltd., Zhuzhou City, Hunan Province,
China. +e collection equipment included a wheel delivery
track, CCD area camera, magnetic steel sensor, and com-
puter for image storage (Figure 5). When the wheelset was
sent into the acquisition area by the wheel delivery track, the
camera waited for the hardware control signal, the loco-
motive wheelset triggered the magnetic steel sensor, and the
camera began collecting images.+e camera collected one or
more wheelset images each time. +e computer was used to
save the collected images and generate the dataset.

3.1.2. Dataset Production. We collected wheelset tread de-
fect images according to actual needs, including defects and
normal samples, with 204 images of defect samples and 74
normal samples. An example of a defect is shown in Figure 6.
Note that a single image may have multiple defects. Our
dataset thus contains 278 samples, of which 204 are wheelset
tread defect samples, 74 are normal samples, and the number
of wheelset tread defects is 218, as shown in Figure 7:

3.2. Defect Detection on WT-DET. For the pretrained
Yolov4, the MFF module is new. +us, we trained Yolov4
and MFF to share the same convolutional features. +e
backbone is essentially a feature extraction network that
generates a single multiscale feature Fi. +e multiscale
features generated by MFF can be fed into the Yolo head
after the second fusion of PANet. +erefore, the pretrained
backbone network was jointly trained with MFF and PANet
for end-to-end training. In particular, the training model
was divided into two stages. In the first stage, the shared
convolutional layer (backbone) was frozen, and on this basis,
the nonshared layer (others) was trained. In the second
stage, the shared convolutional layer was unfrozen and the
network was globally trained.

A defect detection experiment on the WT-DET dataset
was conducted. +e GPU used in the experiment was RTX
2080Ti, the Python version was 3.6, and it was carried out in
Keras 2.1.5 and TensorFlow 1.13.2 environments. +e

improved Yolov4model was used in this study. In the formal
training, the training and the test sets were divided
according to a 7 : 3 ratio. Among them, 193 were training sets
and 84 were test sets. To ensure the reliability of model
training, a ten-fold cross-validation method was used, and
the 193 wheelset tread defects in the training set in one epoch
were randomly divided into ten parts: nine parts as the
training set, and one part as the verification set, to avoid
model overfitting caused by an unreasonable data division in
the case of too few samples. For MFF-Yolov4, the image
input was adjusted to a uniform size of 416× 416× 3. We
used the Adam optimizer and adopted the freezing-based
training procedure described above. +e total number of
epochs was 100. In the first 50 epochs, the backbone network
training fusion network part (MFF and PANet) was frozen.
At this stage, the batch size was set to eight, and the learning
rate was set to 0.001. In the last 50 epochs, the entire network
was trained. At this stage, the batch size was set to two, and
the learning rate was set to 0.0001.

We used the above-divided dataset to fine-tune MFF-
Yolov4. +e MFF-Yolov4 model obtained after the im-
provement of Yolov4 was trained and tested, and an ablation
experiment was carried out for each step of the improve-
ment. Details of this are given in the following sections. +e
training results of the model are given, as shown in Figure 8.

As the epochs of the model increase, the loss value
gradually decreases and finally reaches convergence, indi-
cating that the model is effectively fitting the data. +e loss is
large at the beginning of model training. +us, the first it-
eration is ignored when drawing the loss curve. Figure 8
shows that the loss value after 20 epochs before the start of
training significantly drops, and when the training reaches a
certain stage, the curve tends to stabilize. After 50 epochs,
the loss value is maintained at about 1.3. +e neural network
learning effect is ideal, and the hyperparameter settings are
reasonable in the training phase.

A comparative experiment was carried out on the self-
built dataset with the current mainstream single-step and
two-step target detection models (Table 1). In addition,
unlike defect classification, in the case of defect detection,
only the F1-score is not a suitable performance metric.
+erefore, the accuracy, recall rate, and average precision
(AP) were used to evaluate the results of the detection ex-
periment. +ese indicators are defined as follows:

CCD area wheelset

wheel delivery
track

computer

camera

magnetic steel
sensor

Figure 5: Schematic diagram of wheelset tread defect collection
system.
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

AP �
precision + recall

2
,

F1 �
2 × precision × recall
precision + recall

,

(5)

where TP, FP, and FN represent the number of true posi-
tives, false positives, and false negatives, respectively. +e
mean average precision (mAP) was also calculated to
evaluate the overall performance. Table 2 shows the ex-
perimental results of defect detection. Under the same
conditions, all aspects of the Yolov4 model’s data are different
from those of other models with our self-built dataset.
However, Yolov4 with the embeddedMFFmodule has higher
a recall, mAP, and F1-score than the other models.+e results
comprehensively show that the wheelset tread features
extracted from the multiscale features have more compre-
hensive semantic features and location details. Yolov4 itself is
a multiscale feature detector, but the multiscale features fused
by our method have a more comprehensive feature repre-
sentation, as discussed in detail below.+e detection example
of WT-DET is shown in Figure 9.

(a) (b)

Figure 6: Sample wheelset tread defect dataset, the yellow frame is the ground truth box. (a) Multiple defects. (b) Single defect.
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Figure 7: Sample situation of wheelset tread.
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Figure 8: Loss curve during training.

Table 2: Detection results on WT-DET.

Method Recall (%) Precision
(%)

mAP
(%) Fps F1

SSD [19] 69.70 97.87 77.39 47.11 0.81
CenterNet [37] 65.15 95.56 84.82 63.95 0.77
Faster R-CNN [16] 72.73 48.48 73.36 2.05 0.58
RetinaNet [20] 75.76 90.91 82.67 45.28 0.83
RFB Net [38] 74.24 89.09 78.38 39.96 0.81
M2Det [39] 75.76 98.04 84.57 39.69 0.85
Our method
(α � 1.1)

78.79 94.55 86.25 37.05 0.86
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+e above ablation experiment and detection method
comparison experiment show that MFF can effectively
improve the defect detection mAP of Yolov4. However, it
remains to be shown that the mAP improvement of MFF-
Yolov4 benefits from the location information contained in
the multiscale fusion features extracted by MFF. +e posi-
tioning accuracy performance of MFF is evaluated in the
next section.

3.3. MFF Semantic Analysis. To evaluate the impact of the
MFF module on classification, the results of defect
classification are first reported to show that our method
offers improved accuracy compared to the competition.
Table 3 shows the results of the ablation experiments
before and after the optimization of Yolov4. According to
F1-score in Table 3, we can draw the following conclu-
sions: compared with the original single-scale algorithm,
MFF has better classification capabilities. +us, multi-
scale fusion features still have strong semantic capabil-
ities. When the improved loss function α � 1.1, the
performance index of the proposed method is further
improved on the basis of MFF-Yolov4. In Table 4, we
added a comparative experiment, which replaced the
MFF module part in MFF-Yolov4 with two fusion
modules, FPN [40] and ASFF [41], and conducted two
sets of comparative experiments to demonstrate the
performance of the proposed method.

3.4.MFFPositioningAnalysis. To verify that MFF improves
the positioning accuracy, Yolov4 and MFF-Yolov4 were
compared. If multiscale fusion features have more lo-
cation details, MFF-Yolov4 should have a higher recall

rate under the same IoU. Based on this, different IoU
thresholds were used to evaluate the recall rate on the
self-built dataset, WT-DET. IoU represents the ratio of
the intersection and union of the prediction box and the
underlying true value. Figure 10 shows the defect recall
rate of Yolov4 with different IoU thresholds with and
without the MFF module. +e higher the IoU threshold,
the higher the quality of the prediction box. As expected,
Yolov4 with MFF is better than the original Yolov4.
When 0 < IoU < 0.87, the recall rate of Yolov4 is signif-
icantly lower than that of MFF-Yolov4. +e original
Yolov4 only regressed three high-level features of dif-
ferent scales, and the position information of wheelset
tread defects was filtered by the layers in front of the
network, which reduced the quality of the features. Our
MFF selectively combines the previous layers with less
interference information and rich location information,
as discussed in Section 4. +is gives MFF-Yolov4 stronger
positioning capabilities.

4. Discussion

In this part, to prove the effectiveness of MFF, several hidden
factors that affect the proposed wheelset tread defect de-
tection module are discussed.

4.1. Determining the Connection Layer of MFF. MFF com-
bines features from different levels into multiscale features,
and this effectively improves detection. In Section 3.2,
the kinds of layers that should be combined are briefly
discussed. In MFF-Yolov4, two layers belong to the bottom-
layer features, namely, the last layer of F1 and F2. We
discuss how to integrate these two features into the three

(a) (b)

Figure 9: A visual example of WT-NET’s test results. +e red box is the bounding box indicating its location, and the black word is its
category score.

Table 3: Results of ablation experiments.

Method Recall (%) Precision (%) mAP (%) Fps F1
Yolov4 66.67 88.00 76.06 39.09 0.76
MFF-Yolov4 77.27 94.44 86.21 36.38 0.85
Our method (α � 1.1) 78.79 94.55 86.25 37.05 0.86
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single-scale advanced features: the last layer of F3, F4, and
F6 and whether other combinations of these five layers
will lead to better performance. +erefore, on the WT-
DET dataset, MFF-Yolov4 is trained in three different
combinations, as shown in Figure 11, where ⊕ denotes a
splicing operation.

As shown in Table 5, integrating the second layer into the
other three high-level feature layers is significantly better
than other methods, thereby showing that multiscale fusion
features are effective at improving detection accuracy.

At the same time, the features of the lower level are
integrated into F1. MFF should have stronger detection
performance, but the quantitative indicators show that the
fusion of low-level features in F1 leads to a decline in the
model mAP. In Figure 12, we visualize the feature map F1
(Figure 12(a)) and F2(Figure 12(b)) flowing in the network
in Table 5 and analyze the reasons that lead to the degra-
dation of the model’s performance. Although the F1 feature
has more locational details than the F2 feature, the F1 feature
has more noise and interference because our image comes
from an actual industrial environment, which causes diffi-
culty in the network learning defect details.

MFF unifies the features of different levels of resolution
and channels through 3× 3 convolution and 1× 1 convo-
lution, respectively. To maintain consistency in the number
of channels, a simple method uses 1× 1 convolution to
increase and decrease the number of channels. +is 1× 1
convolution method can be conducted in two ways. A
placement strategy is selected by comparing the two ways of
connecting the multiscale features: before and after placing
the 1× 1 convolution, and before and after multiscale feature

fusion. Front mode refers to placing 1× 1 convolution before
multiscale feature connections, and rear mode refers to
placing 1× 1 convolution after multiscale feature fusion. We
adopted postlocation. +at is, after each two-scale feature is
spliced, the channel is adjusted through a 1× 1 convolution.
Although the use of rear mode increases the number of
parameters, it merely results in a slight drop in network
detection speed (2 FPS), whereas the rear-mode mAP is
higher, as shown in Table 6. Multiple 3× 3 convolutional
cascaded downsampling forms are used to deal with the
fusion between the underlying F2 feature and the three
different scale features, namely, F3, F4, and F6. Compared
with direct downsampling, step-by-step downsampling can
retain more image details.

4.2. Case Analysis of Missed Inspections. Although the im-
proved model is generally better than other methods on
the self-built dataset, there are a few cases of missed de-
tections. As shown in Figure 13, we analyze some failure
cases and the reasons for the failure of detection. On the
one hand, it is difficult to correctly identify damage in the
initial stage of wheelset tread abrasion using MFF-Yolov4,
mainly because of the lack of sample data and insufficient
examples of wheelset tread defects. +us, the network
cannot fully learn the characteristics of wheelset tread
damage. As shown in Figure 13(a), wheelset tread damage
is easily confused with the complex background envi-
ronment, and even experienced people cannot accurately
distinguish them from the background. On the other hand,
in a complex environment, the wheelset tread is

Table 4: Results of different fusion modules in Yolov4.

Method Recall (%) Precision (%) mAP (%) Fps F1
FPN-Yolov4 72.73 96.00 80.63 35.85 0.83
ASFF-Yolov4 43.94 72.50 59.87 36.37 0.55
Our method (α � 1.1) 78.79 94.55 86.25 37.05 0.86
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Figure 10: Recall rate under different IoU thresholds.
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accompanied by oil, sand, and rust during the operation of
the wheelset. +ese interferences are attached to the
surface of the wheelset tread in blocks, and the dataset is
incorrectly marked as a wheelset tread defect, as shown in
Figure 13(b). Although the neural network does not
predict the defect as a defect after learning the charac-
teristics of the wheelset tread defect, in the quantitative

statistics, the missed detection rate of each model is
classified as a classification error, which affects the de-
tection accuracy. Here, we compare the false detection rate
of our model with the other models.

+e log-average miss rate of the proposed model is 19%,
which is lower than that of the six other models, as shown in
Figure 14.
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Figure 11: Multiscale feature fusion methods. (a) Fusion F1 layer. (b) Fusion F2 layer. (c) Fusion F1 and F2 layers.

Table 5: mAP of MFF-Yolov4 on WT-DET: use L2 normalization.

+e connected layer comes from: mAP (%)
F1 F2 F3 F4 F6 Without L2 norm L2 norm
√ √ √ √ 77.19 81.86

√ √ √ √ 83.85 86.21
√ √ √ √ √ 76.70 75.45

(a) (b)

Figure 12: Feature layer visualization. (a) F1 feature map. (b) F2 feature map.
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Table 6: Parameters and mAP in two different placement modes, and parameters and accuracy in two different placement modes.
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5. Conclusions

It is difficult for wheelset tread defect detection algorithms
based on Yolov4 to consider local semantics and location
details while ensuring real-time performance. +erefore, this
study proposed an improved Yolov4 high-speed train
wheelset tread detection algorithm based on multiscale fea-
ture fusion. To obtain more wheelset tread defect categories,
and semantic and location details, we embedded a multiscale
feature fusion module in the Yolov4 model that improves its
detection accuracy. In addition, a valuable wheelset tread
defect detection dataset, WT-DET, was constructed. +e
wheelset tread detection performance of the proposed algo-
rithm was compared to that of current single-step and two-
step detection algorithms on the self-built dataset. +e results
showed that the F1-scores of this algorithm for wheelset tread
defect classification reached 86%, and the mAP of wheelset
tread defect detection reached 86.25%. Moreover, the model
reached speeds of 37.05 FPS. Given that regional-level de-
tection can only obtain the approximate area of the wheelset
tread, it cannot reflect the contour of the damage. In future
research, we will study wheelset tread defect segmentation
technology based on deep learning to obtain finer contour
boundaries of wheelset tread defects.
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Pavement management systems (PMSs) have a primary role in determining pavement condition monitoring and maintenance
strategies. Moreover, many researchers have focused on pavement condition evaluation tools, starting with data collection,
followed by processing, analyzing, and ultimately reaching practical conclusions regarding pavement condition. %e analysis step
is considered an essential part of the pavement condition evaluation process, as it focuses on the tools used to find the most
accurate results. On the other hand, prediction models are important tools used in pavement condition evaluation to determine
the current and future performance of the road pavement. %erefore, pavement condition prediction has an effective and
significant role in identifying the appropriate maintenance techniques and treatment processes. Moreover, pavement performance
indices are commonly used as key indicators to describe the condition of pavement surfaces and the level of pavement deg-
radation.%is paper systematically summarizes the existing performance prediction models conducted to predict the condition of
asphalt pavement degradation using pavement condition indexes (PCI) and the international roughness index (IRI). %ese
performance indices are commonly used in pavement monitoring to accurately evaluate the health status of pavement. %e paper
also identifies and summarizes the most influencing parameters in road pavement condition prediction models and presents the
strength and weaknesses of each prediction model. %e findings show that most previous studies preferred machine learning
approaches and artificial neural networks forecasting and estimating the road pavement conditions because of their ability to deal
with massive data, their higher accuracy, and them being worthwhile in solving time-series problems.

1. Introduction

Road infrastructure facilities have essential and active roles
in the advancement of cities and communities. Road in-
frastructure is considered the most significant factor for the
welfare and comfort of people and roadway users. Also, it is
one of the sectors that determine the socioeconomic de-
velopment of countries [1]. Pavement management systems
(PMSs) play an efficient role in monitoring, planning,
evaluating, managing, and implementing capable recom-
mendations to keep road pavement conditions in an ac-
ceptable health condition [1, 2].

However, in terms of monitoring, high-precision
equipment must be used to monitor changes and any
existing distress or damage on road surfaces. Pavement
monitoring plays an essential role in assessing pavement
conditions. %erefore, the monitoring results and in-filed

collected data are used in formulating prediction models.
After monitoring the pavement condition, pavement as-
sessment strategies should be applied, and field surveys
should be conducted for data collection to evaluate pave-
ment infrastructure. %en, a decision will be made based on
the relevant information of pavement conditions, and
pavement maintenance procedures will be carried out based
on the condition of the paving surfaces and expectations of
pavement performance [1–3].

Moreover, PMSs concern the condition of road pave-
ments after implementing maintenances and rehabilitation.
%erefore, modeling the pavement performance is essential
to transport agencies and governments at all management
levels [4]. Lytton [4] mentioned that the future monitoring
of pavement condition is called “prediction” or “forecast-
ing,” which measures the future performance of pavement
condition over time. After the prediction stage,
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recommendations will be taken regarding the appropriate
maintenance and treatment to be implemented [5]. How-
ever, the challenge is to build the best prediction model by
combining all road pavement and environment parameters
and variables. %us, building any performance model re-
quires a predefined dataset that is divided into three groups,
including (1) training data, (2) testing data, and (3) vali-
dation data [6]. Moreover, the prediction of pavement
performance has been studied extensively by many re-
searchers over the last decade, combined with great efforts
from transport agencies to find and disclose the most ac-
curate evaluation and forecast of pavement performance
[7–9].

%e prediction performance of pavement surfaces has
been developed using field evaluation and experimental
tests. American Association of State Highway and Trans-
portation Officials focused on predicting pavement dis-
tresses and the future failure of the pavement. In addition to
the experiments, prediction models are also required to
assess pavement degradation patterns and possible future
maintenance plans [4]. Many studies have used different
types of prediction models, such as mechanistic models,
empirical models, mechanistic-empirical models, machine
learning models, and neural network models, to predict the
future condition of road pavement [10]. Machine learning
models are the most popular prediction models used to esti-
mate the current and future conditions of road pavement
degradation. Developing any accurate road pavement perfor-
mance prediction model depends on two main factors, in-
cluding accessing accurate databases and correctly identifying
the influencing variables on road pavement degradation.

Developing accurate prediction models mainly depends
on the precision and consistency of the monitoring and
evaluation data. Many monitoring techniques have been
used to evaluate the pavement condition and collect the
information and details on the pavement health statutes.
%ese techniques include vibration-based methods, vision-
based methods, walk and look, and scanning techniques.
Besides, international standard performance indices are
used to inspect and evaluate the pavement condition under
different scenarios, such as pavement condition index, in-
ternational roughness index, present serviceability rating,
and structural index. Each type of performance indices has a
different way to conduct the data of pavement health status.
Pavement condition index (PCI) and international rough-
ness index (IRI) have significant contributions in pavement
monitoring and condition estimation. %erefore, many re-
searchers use the outcomes of these indices in building and
developing their pavement performance prediction models.
PCI is a subjective monitoring index that depends mainly on
the visual inspection and the inspector’s experience.%e PCI
rating system consists of a scale from 0 to 100, where the
worst pavement surface is at 0, while the excellent pavement
condition is at 100. IRI is an indication of the level of surface
smoothness. It can be measured using a profilometer. Also,
there is a part of the IRI that depends on vibration-based
methods and is called IRI (Proxy).

%is paper is structured as follows: the subsequent section
provides a general layout of the paper. It is followed by a general

overview of data sources, while Section 4 reviews the existing
pavement performance prediction models, depending on PCI
and IRI. Section 5 presents the discussion and limitations of the
existing pavement prediction models, followed by the future
direction of the pavement performance prediction.

2. Data Source

%is review paper presents different predictionmodels based on
the database used. Some of the past research papers have fo-
cused on using the results of pavement performance indices as a
database to build their prediction models, while others focused
on using filed measurements or other intelligent techniques,
such as image processing and vibration data, to collect ap-
propriate databases. Several studies have divided the database of
pavement degradation models into two categories, including an
observation database and an online database. In the observation
category, the data collection is conducted using visual inspec-
tions by equipped modes of transport, e.g., automobile, bicycle
[11–16], and intelligent monitoring techniques [17, 18]. In
addition,many pavement predictionmodels used the long-term
pavement performance (LTPP) or short-term pavement per-
formance (STPP) dataset to predict the future pavement per-
formance [19–21].

Pavement performance indices are commonly used as key
indicators to describe the condition of pavement surfaces and
the level of pavement degradation. %us, government and
transport agencies use these performance indicators to define
the required maintenance and rehabilitation measures.
Moreover, since the last decade, many efforts have been made
to develop pavement performance assessment procedures to
be more accurate, cost-effective, and straightforward [2].
Many studies have been conducted to investigate the status
and the level of pavement degradation using pavement
performance indexes, including PCI, IRI, pavement service-
ability index (PSI), and pavement condition rating (PCR).
Moreover, pavement condition indices can be considered
time-dependent variables [10]. To achieve the optimal goals of
the high-precision rating system, IRI and PCI indices are used
as main variables in developing pavement performance
prediction models. Figure 1 shows the field data source of the
pavement condition.

3. Applied Methodology

Researchers agreed that the optimum method to accurately
monitor the pavement condition performance is by fore-
casting and using prediction models [22].%ese models have
the ability to describe the minimum and maximum changes
in road pavement performance. Different types of perfor-
mance prediction models are used to provide ultimate ac-
curacy and precision. %e subsequent sections describe the
prediction models that are used to estimate the performance
of pavement conditions. In the subsequent sections, there
are time-series models that are used to predict pavement
condition performance, which can be divided into two main
categories, including probabilistic reasoning and shallow
machine learning models. Figure 2 shows the selected time-
series modeling.
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3.1. Probabilistic Reasoning. Probabilistic reasoning is a way
of logic exploration and representation according to a series
of uncertain events and situations that depends on proba-
bilities. In prediction performance, probabilistic reasoning
algorithms have been widely used to predict pavement
conditions’ performance for short- and long-term statues.

3.1.1. Mechanistic Empirical Models. %ese models can be
used for the prediction of existing and future pavement
degradation and maintenance activities. Also, mechanistic-
empirical models are able to provide more reliable predic-
tions with the future pavement condition. In addition, these
models focus on the properties and qualities of pavement
material. PCI and IRI are used to provide valuable infor-
mation on pavement health status in this model type [23].

In 1989, George et al. [23] used a mechanistic-empirical
model to predict future pavement performance. An em-
pirical mechanistic model was developed based on PCI
values. %ey used the PCI values over two years and ap-
proximately 2000miles of road inMississippi, USA, for three
categories of asphalt surface state (flexible pavement with no
overlay, with overlay, and composite pavement). Further-
more, the model focused on assessing the different types of
degradation and distress of pavement surfaces and how they
affect maintenance plans. %eir study used six main pa-
rameters to develop a road pavement performance model,

including traffic volume, pavement age, pavement structural
number, material quality, and surface deflection measure-
ments. A performance indicator was developed in their
research to describe the interaction between the pavement
roughness (PR) data and distress rating (DR) as follows:

PCR � PR
0.6

DR
0.4

. (1)

%e following condition performance prediction models
include time-series pavement condition data with no
overlay, with overlay, and the composite pavement is shown
from equations (2) to (4), respectively [23].

PCR(t) � 90 − a exp Ageb
  − 1 log

ESAL

SN
c , (2)

PCR(t) � 90 − a exp Ageb
  − 1 log

ESAL

SN
c ∗T

 , (3)

PCR(t) � 90 − a exp
Age
T

 
B

− 1 log[ESAL], (4)

where a, b, and c are constants and are equivalent single axle
loads ESAL, structural number SN, and the thickness of the
last overlay T, respectively. In their study, George et al. [23]
used the most significant andmost effective variables like the
pavement age.
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Figure 1: Data sources of monitoring road pavement condition.
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Figure 2: Time-series models in predicting road pavement performance.
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Sidess et al. [24] proposed a model based on the com-
bination of the empirical-mechanistic and the regressive
empirical approach to predict IRI. Data were collected from
the pavements, and a total of 165 road segments of 287.5 km
of data were used in this model. %e IRI degradation model
was calculated as follows:

IRI t> tini(  � 1.10 + K∗ W0 + Wt( 
c
, (5)

where K and c are regression coefficients, which are the
functions of subgrade modulus, structural number at the
time of pavement construction, and asphalt thickness. (W0)
is the cumulative number of (130 kN) equivalent single axle
loads ESAL applications leading to the increase of the IRI
from (1.10m/km) to (IRIini), where IRIini is IRI of the section
at the time (tini), andWt is a cumulative number of (130 kN)
equivalent single axle loads ESAL applications applied until
time t. (R2> 0.9) for the predicted and measured data. Sidess
et al. [24] had developed a similar model for predicting PCI
degradation. %e characteristics of mechanistic models are
summarized in Table 1.

3.1.2. Empirical Models. Empirical models mainly depend
on the results of experiments or field observations. Empirical
models are known as models that relate the causes and
effects. %ese models are more accurate at network-level
analysis. In terms of evaluating future pavement perfor-
mance, many studies have been conducted to predict the
performance of pavement conditions. %e online data and
field observation are suitable for developing empirical
models. %e specifications of empirical models are sum-
marized in Table 1. Figure 3 shows the categories of em-
pirical models.

(1) Statistical Models. Statistical models use data from ex-
periments or field measurements to make statements about
the future changes of the experiment outcome. %ese sta-
tistical methods provided real-time solutions to complex
problems. Attoh-Okine [25] and Marcelino et al. [26]
studied statistical predictionmodels to measure and evaluate
the future performance of pavement conditions. Also, the
accuracy of statistical models was compared with artificial
neural networks (ANN) [25].%e results show that statistical
models are capable of generalizing and providing accurate
road pavement performance models. %e R2 value obtained
was approximately 40%, and the standard error of IRI was
1.88.

(2) Recursive Partitioning. It is a part of statistical methods
and nonparametric modeling. It is also used to determine a
group of field measurements with similar parameter values.
%is method uses a decision tree to correctly classify the
number of variables, such as the pavement age, traffic
condition, weather condition, and pavement structure de-
tails. Inkoom et al. [27, 28] performed a model to predict the
cracking condition on pavement surfaces using recursive
partitioning and ANN. Approximately 5,814 pavement
segments were selected in Florida, the U.S., and their eleven
features. %ese features included the age of pavement,

average daily traffic, truck factor, asphalt thickness, maxi-
mum posted speed, the functional class of pavement, and
previous five-year pavement condition rating. 70% of the
dataset was considered to be the training dataset, and the rest
was used as a test dataset. Twomodels were investigated, one
with all these eleven variables and another without the time-
series of a pavement condition rating. %e first model
showed more accurate pavement performance prediction
results than the second model. For the regression tree, R2

was found to be 89%, and for ANN, R2 was found to be
41.4%.

(3) Informative Feature for Prediction. Piryonesi and EL-
Diraby [29] found a computational system for performing
PCI using informative features for prediction. %e results
showed that using more categories of prediction classes and
levels of distress, the accuracy of the pavement performance
prediction model decreases. Using the 7-class scale was less
accurate than using the original 5-class scale in predicting
PCI. %e most accurate prediction model was for three years
with an accuracy of approximately (78± 4%), with a 5-class
scale, and approximately (76± 4%), with a 7-class scale. %e
study concluded that pavement age and climate conditions
were the most effective variables in building this prediction
model [30].

3.1.3. Fuzzy Logic. Several studies focused on developing an
innovative IRI prediction model based on fuzzy-based time-
series and particle swarm optimization (PSO) techniques
[31, 32]. In their study, Li et al. [33] revealed the importance
of using PSO techniques to enhance the results of the
performance models and future IRI prediction models.
Furthermore, in their study, Li et al. [33] used an LTTP
database to extract the IRI values for some urban roads in
Canada. %e methodology of this study focused on dividing
the IRI values into granular spaces. For more illustration,
they divided the IRI data into factors and subfactors. %e
factors section used the average IRI values from the long-
term pavement performance database, while the subfactors
data were measured in the left and right wheel path [34].
Moreover, a second-order fuzzy trend model was used to
predict the performance of the IRI factors and subfactors
data. Consequently, the fuzzy trend model was defined as
follows:

A �
fA(U1)

(U1)
+

fA(U2)

(U2)
+ · · · +

fA(Un)

(Un)
, (6)

where U� {U1, U2, . . ., Un} is defined as a universe of
discourse, A is a fuzzy set, fA is a membership function of the
fuzzy set A, and fA (Un) is a membership degree of Un.

By comparing the innovative IRI predictionmethod with
other modeling approaches, such as polynomial fitting,
autoregression integrated moving average (ARIMA), and
backpropagation neural network (BPNN). %e results
showed that the IRI predictionmodel achieved high accurate
forecasting compared with other modeling approaches. %e
IRI prediction error of the proposed model was identified
using root mean square error (RMSE) and relative error (RE)
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to evaluate the ability of each model to provide accurate
performance prediction. %e results revealed that the IRI
prediction model was accurate enough with the smallest
error values compared with other modeling approaches.

3.1.4. Probabilistic Modeling. Liu and Gharaibeh [35] fo-
cused on using probabilistic models to describe the change
in pavement status and performance with time. %ey mainly
used significant variables, such as average annual daily
traffic, pavement layers thickness, layers air voids, layers
liquid limits, layers asphalt content, and annual rainfall, to
build an accurate predictionmodel. Abed et al. [9] developed
a probabilistic prediction model of flexible pavement, where
the thickness and stiffness of the pavement layers were used
as variables. Besides, the mean values, standard deviations,
and probability distribution functions of these two pa-
rameters were considered to be variables. For this study, a
road section in Nottingham, U.K., was selected as the case
study. %is road had a four-layer pavement, including a
surface course, base course, sub-base course, and a com-
pacted subgrade. %e layer thickness and stiffness variations
and their probability distributions were collected from
previous research.%e random thickness values of each layer
were calculated by the Monte Carlo method. Pavement

temperature and traffic volume were calculated for future
predictions. In their study, KENLAYER software linked with
MATLAB software was used to calculate the bottom-up
fatigue cracking, top-down fatigue cracking, and pavement
deformation as pavement responses at predefined critical
locations of the pavement. %e model was simulated for
thirty years. It was found that the pavement layer thickness
and stiffness had played a significant role in pavement
performance. %e mean values of the predicted performance
indicators were increasing over time, however, the standard
deviations of these were also increasing.

(1) Markovian Models. Different studies developed a proba-
bilistic method using the Markov chain framework to
characterize pavement conditions and predict pavement
performance [36].%e predictionmodel was formed based on
IRI data from the National Department of Transportation in
Costa Rica.%e IRI data were conducted for 2004, 2006, 2008,
and 2010, and then, the prediction model was developed to
predict the pavement performance based on the IRI data in
2020. %e modeling process was divided into three stages,
namely data collection and analysis, model development, and
model validation. Transition probability matrix (TPM) was
used based on the Markov chain process (MCP) to correlate
pavement degradation with explanatory variables.

Table 1: Pavement performance prediction studies in probabilistic reasoning.

Technique used Pavement
indicator

Data
sources Metrics References Strength Weakness

Markovian model IRI
Observed

Porras-
Alvarado et al.

[40]

Capable of evaluating
multiple hypotheses and
accurate with first-order

Markov property

Not suitable in case of
higher-order correlation

and missing data.LTPP RMSE Alimoradi
et al. [41]

Empirical mechanistic PCR Observed George et al.
[23]

It contains features from
statistical and mathematical

elements

Lake sights for pavement
preservation and limited

literature.

Fuzzy logic IRI LTTP RMSE
and RE

Li [33];
Nguyen, et al.

[32]

Simple control, more
robustness, and more
efficiency with control

systems

Have steady-state errors,
weak in real-time response,
and a limited number of

input variables

Deterministic models
(Al Omari–Darter
model and Dubai
model)

IRI
Observed R2

Al-Suleiman
and Shiyab

[34]

Good in decision making by
providing clear information
of the future trends and

challenges.

Easy to misinterpret and
hard to check the validity.

LTTP R2 Chen and
Zhang . [37]

R2: coefficient of determination, RMSE: root mean squared error, MAPE: mean absolute presenting error, CF: correction factor, VAF: variance account for,
MAE: mean absolute error, RE: relative error, MSE: mean squared error, SDMSE: standard deviation of mean squared error.

Empirical
Models

Statistical
Models

Recursive
Partitioning

Informative
Feature for
Prediction

Figure 3: Categories of empirical models.
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Moreover, the importance of using TPMs was to predict
pavement performance in the subsequent specific years. At
the same time, significant variables were used, including the
thickness of pavement layers, structural number, and the
number of wheel passes per unit strength of the pavement.
%e Markov prediction performance model results revealed
that using the probabilistic model in predicting pavement
performance during a specific time is reliable. Moreover, the
TPM results showed more accurate pavement performance
prediction, as the percentage of the errors will be minimized
after applying the optimization techniques. One of the main
advantages of using this probabilistic model is the ease of
modeling pavement degradation and the ability of these
models to help decision-makers for better planning and
management (see Table 1).

3.1.5. Other Deterministic Models. Chen and Zhang [37]
published a research paper on the evaluation of IRI based on
the pavement degradation prediction model, which depends
on four different deterministic models, including the Al
Omari–Darter model, Dubai model, and the Transportation
Research Board’s National Cooperative Highway Research
Program (NCHRP) model. %is comparison between the
models was performed to identify the most accurate de-
terministic model in predicting pavement performance
based on two main effective variables, including pavement
age and thickness of pavement layers. Furthermore, Chen
and Zhang [37] obtained the IRI data and other models
related to data from the LTPP database in New Mexico. %e
IRI-based pavement degradation prediction model is di-
vided into two main classifications, prediction of IRI (Al
Omari–Darter and Dubai models), and prediction of other
performance predictions based on IRI (NCHRP model). In
the selected deterministic models, Al-Suleiman and Shiyab
[34] developed a new prediction model (Dubai model) based
on pavement age. %e IRI data that was conducted in the left
and right wheel path during vehicle movement, and the
following equation (7) presents the Dubai model. %e
goodness of fit, R2, was 0.801, which is relatively high and
provides a good indication of the pavement condition.

IRI � 0.796 exp(0.0539 age). (7)

Furthermore, Al Omari–Darter [38] found a prediction
model based on IRI values and the Rut Depth (RD). Later on,
they tried to elevate the model using the standard deviation
(SD) of RD for higher accuracy.

%e significance of work was measured depending on the
R2 value, which was 0.93 for the IRI-RD model and 0.94 for
the IRI-SD model. %e models are shown in equations (8)
and (9), respectively.

IRI � 57.56R D − 334.28, (8)

IRI � 136.19S D − 116.36. (9)

Moreover, the NCHRP model was developed using an
exponential regression model to predict the pavement

serviceability index (PSI). %e goodness of fit, R2, of this
model was relatively low, as it was 0.73. However, in 2008,
the NewMexico Department of Transport [39] reported this
model as follows:

PSI � 5 exp(−0.26IRI). (10)

Chen and Zhang [37] found that the Dubai and NCHRP
models were accurate for pavement performance prediction
regarding pavement age and thickness. %e Al Omar-
i–Darter model provided less capability to predict the
performance of pavement conditions in terms of pavement
thickness (Table 1).

Table 1 below presents the previous studies that used
probabilistic reassuring to predict pavement performance.
%e table also shows the technique used for each type of
pavement indices to perform the prediction. %e data
sources are provided with the standard matrices used to
measure each developed model’s validation and accuracy.
Besides, the strength and weaknesses of each model are
presented and discussed.

3.2. ShallowMachine Learning. Shallow learning is a branch
of machine learning algorithms that depends on expert-based
descriptions. %e datasets in shallow machine learning need
to be preprepared and predefined with all required features.
Regarding prediction performance, shallow learning algo-
rithms have been widely used to predict and estimate the
condition and performance of pavement health status.

3.2.1. Artificial Neural Network (ANN). %e artificial neural
network (ANN) is a complex model developed to simulate
the thinking ways of the human brain and its ability to solve
problems by offering various alternative solutions.%e use of
ANN in pavement performance prediction became widely
known because of the accurate prediction results. %e
existing ANN models that are used in the literature for
pavement performance prediction are presented in Figure 4.

Alsugair and Al-Qudrah [42] and Serin [31] measured
the future performance of pavement conditions using ANN.
%is technique involves artificial intelligence, and many
researchers favor its use in predicting pavement conditions.
Besides, some researchers utilized a regression model and
ANN to predict the probability of degradation on asphalt
pavement and roughness distress level [43, 44]. %e char-
acteristics of ANN models are summarized in Table 2.

Moreover, some pieces of research focused on predicting
PCI based on different optimizing techniques [45]. For in-
stance, Shahnazari et al. [46] used ANN and genetic pro-
gramming (GP). In their study, PCI data were collected based
on field observation using an automated car for different
urban roads in Iran. %e data collection phase focused on
measuring PCI values for most common pavement distresses,
including cracking (alligator, longitudinal, edge, and trans-
verse), potholes, patching, and bleeding.%e type of pavement
distress was used as an effective variable for the pavement
performance prediction model. In their study, they used 80%
of the dataset as a train set and 20% of the dataset as a test set.
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In addition, Shahnazari et al. [46] assessed the accuracy
of the previously mentioned models by determining R2,
RMSE, and mean absolute error (MAE). %e results showed
that the value of R2 for the ANN and GP models was 0.99.
%erefore, the results indicate that these models are reliable
for predicting pavement performance using PCI values.

Jalal et al. [47] also developed an ANNmodel to predict
PCI based on observed and experimental measurements at
different locations in the Texas University campus. %ey
also applied an optimal ANN model to enhance the ac-
curacy of the conventional ANN model. %ree types of
pavement, including asphalt concrete (AC), hot mixed
asphalt (HMA), and Portland cement concrete (PCC), were
evaluated during the period 2014 to 2016. Furthermore, two
other main variables were used to build the model, namely
the annual average daily traffic (AADT) and traffic loads.
%e study showed that the proposed ANN model was
accurate for the selected types of pavement. After applying
the optimal ANN, the results revealed that there were
improvements and enhancements in model outcomes and
limitations in errors.

%e international roughness index prediction model is a
time-series prediction performance model. %erefore, many
effective variables, such as pavement thickness, cracking
level, traffic volume, resilient deflection modulus, structure
number, climate condition, must be carefully collected. In
2000, a report from the Highway Development and Man-
agement Series [48] stated that the previous variables are
essential variables used to construct a degradation model, as
shown in equation (11) for one year.

ΔIRI � Kgp [ΔIRI s + ΔIRI c + ΔIRI r + ΔIRI t] + ΔIRI e,

(11)

whereΔIRI represents the total rating changes in the IRI values,
IRIs rating changes because of structure deformation, IRIc
rating changes because of cracking, IRIr rating changes because
of rutting, IRI rating changes because of potholing, and IRIe
rating changes because of the environment during a year.

ANNs and a group method for data processing models
were developed by Ziari et al. [49] to predict asphalt
pavement in a short-term performance for a year and two

Table 2: Pavement performance prediction studies in shallow machine learning.

Technique
used

Pavement
indicator

Data
sources Metrics References Strength Weakness

Artificial
neural
network
ANN

IRI

LTPP
R2, RMSE,
MAE, MSE,
CF, and VAF

Abdelaziz, et al.
[64] Able to work with vast

amounts of data and most
challenging problems, change
the structure to the used

parameters, suitable for time-
series problems.

Expensive to train,
requires long training time

and massive data
Observed R2, RMSE,

MAE

Lin et al. [50],
Mallika, et al.

[65]

PCI Observed MAE, RMSE,
and R2

Shahriazari et al.
[46], Jalal, et al.

[47]

Neuro-fuzzy
Model NFM IRI LTPP

observed

R2 and RMSE
correlation
factor R

Soncim et al.
[66], Ngnyen,
et al. [32]

Suitable for complex data
interactions, easy to scale and

have high converge

Requires huge data,
complex and difficult to

debug.

Regression
IRI LTPP R2, MSE,

RMSE

Elhadidy et al.
[22], Piryonesi
and El-Diraby

[29]

Simple, requires a minimum
number of parameters, suitable

in classification and
recognition works

Expensive, not able to
work with a multifeatures

dataset and poor in
presenting the extreme

events.PCI Observed R2 Ahmed, et al.
[63]

Support
Victor
machine

IRI Observed Ransom output
error

Roberts and
Attoh-Okine [57] Training is simple and

relatively easy, suitable in high-
dimensional data

Requires high memory
and more time for training

the model.IRI LTPP MSE MAE and
RMSE

Kargah-Ostadi
and Stoffels [67]

R2: coefficient of determination, RMSE: root mean squared error, MAPE: mean absolute presenting error, CF: correction factor, VAF: variance account for,
MAE: mean absolute error, RE: relative error, MSE: mean squared error, and SDMSE: standard deviation of mean squared error.

Artificial Neural
Network (ANN)

Back propagation
neural network

model

Radial basis function neural
network neural network

Figure 4: Artificial neural networks in pavement performance prediction.

Journal of Advanced Transportation 7



years. Also, the full pavement life cycle prediction was
carried out as the long-term prediction performance. Fur-
thermore, Ziari et al. [49] used the IRI values from the
database of the PMS datasets in the U.S., and they selected
nine effective variables to indicate the performance of
pavement conditions. %e nine variables were selected
carefully to provide clear indications of the condition of
pavement surfaces and the affected factors.

%e R2 and RMSE were used to assess the quality and
ability of the models to provide accurate and validated results.
Furthermore, three more error indicators were examined,
includingmean absolute presenting error (MAPE), correction
factor (CF), and variance account for (VAF) to identify errors
in the proposed models and to provide optimum correlations
for ANNs and group method for data processing models. %e
benefit of using the GMDH is that it focuses on predicting a
complex system without the need for assumptions.

ANN models have specific features compared to other
models. For instance, they have a high ability to work with
and predict complex systems. Moreover, these models are
more efficient and provide high-accuracy pavement con-
dition predictions. Ziari et al. [49] mentioned that the ANN
models always provide minimum error values compared
with other models. Moreover, clear illustrations of the effect
of each variable and parameter on the performance of
pavement conditions are always provided in the modeling
results, which represent one of the many advantages of using
ANN models. Consequently, the results showed that the
ANN model is important and accurate in predicting short-
and long-term performance, while the group method for
data processing model is unable to be used with the IRI
values and the nine significant variables to predict the paving
condition performance in neither the short-term nor the
long-term pavement life cycle.

(1) Back Propagation Neural Network Model. Lin et al. [50]
elevated the accuracy of using the backpropagation neural
network model in pavement performance prediction. %e
model showed that there was a variation in correlation
values, and the best value was approximately 0.94. Moreover,
the results indicated that potholes, rutting, and patching
presented the highest correlation coefficient, implying a clear
correlation with IRI values. However, concerning other
types of pavement distress, such as cracking, alligator
cracking, and bleeding, they showed a low correlation with
IRI values, which means less ability to correlate the types of
pavement distress and IRI values. As Lin et al. [50] stated,
this type of model is easy to implement and can simplify
pavement inspection for transport agencies. It also provides
clear information on the relationship between the type of
distress and IRI values during long-term performance
prediction. However, using this model was deficient in re-
lating some type of pavement distresses with the conducted
IRI values. %e characteristics of the backpropagation neural
network model are summarized in Table 2.

(2) Radial Basis Function Neural Network (RBF). Karbal-
laeezadeh et al. [51] proposed a model to predict PCI from
the falling weight deflectometer (FWD) deflection data.

FWD deflection data were collected from selected 236
pavement segments of the Tehran-Qom freeway in Iran. PCI
was calculated in each segment by inspection. Data analysis
were done using five different methods: multilayer per-
ception neural network optimized by Levenberg–Marquardt
(MLP-LM), multilayer perception neural network optimized
by the scaled conjugate gradient (MLP-SCG), radial basis
function neural network optimized by genetic algorithm
(RBF-GA), radial basis function neural network optimized
by the imperialist competitive algorithm (RBF-ICA), and
merging these four with committee machine intelligent
systems (CMIS). Results from these five methods were
compared with four statistical parameters: average percent
relative error (APRE), average absolute percent relative error
(AAPRE), RMSE, and standard error (SE). However, it
showed promising results for the five selected models but
depended only on the accuracy of FWD data (Table 2).

3.2.2. Machine Learning Algorithms. Machine Learning
(ML) methods are an area of artificial intelligence. ML
techniques are widely used in pavement performance pre-
diction because of high-precision results. ML techniques can
be divided into two main categories, including support
vector machine and hybrid machine learning (Figure 5).

Piryonesi and EL-Diraby [29] developed a cost-effective
prediction model using a machine learning algorithm and
LTPP database.%is prediction model focused on estimating
the pavement condition and surface distress using PCI over
2, 3, 5, and 6 years. In the study, different attributes were
used to simplify the proposed model used by transport
agencies and governments with minimum operating costs.
Moreover, the researchers tried to change the PCI rating
scale to be a 7-class scale instead of a 5-class scale. %is
attribute was applied as a trial to enhance the evaluation
procedure of PCI. Furthermore, many attempts were made
to measure the PCI values using the 7-class scale and a
prediction model that was performed to evaluate the PCI
measurements in both class scales over the selected years.
%e study also used influential variables, such as the age of
pavement, type of pavement, AADT, average daily maxi-
mum and minimum temperature, climate condition, and
functional class of the pavement (Table 2).

(1) Support Vector Machine (SVM). Wang et al. [52]
used a combination of grey relation analysis (GRA) and
support the vector machine regression (SVR) for the
prediction of asphalt pavement performance. GRA was
conducted to select major factors affecting pavement
performance, and SVR was done using those factors to
predict pavement performance. Data were collected from
Guangyun Expressway. Road temperature, humidity, and
wind speed data were collected from the installed weather
station. Temperature and humidity sensors were installed
inside pavement layers and on the pavement surface.
During the GRA analysis, twelve factors were found to be
more influential than others. %ese were equivalent single
axle loads, maintenance funds, pavement structure
strength ratio, a mean value of soil moisture, the highest
temperature in the middle surface, the highest temperature
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in the road surface, annual cumulative total radiation,
annual average rainfall, the lowest temperature in the
middle surface, the highest temperature in the upper
surface, the lowest temperature of the upper surface, and
the highest temperature in the lower surface. Finally, GRA-
SVR, grey method (GM), genetic algorithm-back-
propagation (GA-BP), and pavement performance index
(PPI) models were applied to predict the rutting depth
index (RDI). Compared with the other three, GRA-SVR
was found highly accurate and time-independent though
the modeling process was complex.

On the other hand, Ziari et al. [53] performed a support
vector machine model to predict pavement performance
conditions based on IRI measurements and LTPP, and a
mathematical approach was used at the same time to prepare
the existing data to validate the model and to investigate the
interaction between the performance model and the model
variables. %eir research paper used the dataset consisting of
five kernels types of the support vector machine algorithms
and IRI data. %e five kernels were tested, including the
polynomial kernel with degrees 1 to 3, Pearson VII universal
kernel, and the radial basis function. Moreover, the nine
variables include the pavement layers thickness, equivalent
single axle load, annual average daily traffic, average daily
traffic, annual average daily truck traffic, environment
changes, annual average temperature, pavement age, and
annual average precipitation. %ey are formed to build the
prediction model, see Table 2.

%ree nonlinear kernel equations were applied to de-
scribe the prediction model equations (12)–(14). %ese
equations represent the polynomial, radial basis function,
and Pearson VII universal, respectively [54].

K(x, y) � (1 +(x, y))
d
, (12)

K(x, y) � exp −
‖x − y ‖

2

C
 , (13)

K(x, y) �
1

1 + 2
�������

x − y2


 
��������
2(1/ω) − 1


/σ 

2
 ω

.
(14)

%eRMSE and the correlation coefficient were examined
to find an accurate performance model. %ey found that the
Pearson VII universal kernel was the best and significant
kernel of the support vector machine model. Additionally, it

matched the IRI measurements and the health status of
pavement.

(2) Hybrid Machine Learning. Hoang [55] introduced a
model to identify patches on asphalt pavement. Images were
analyzed to get numerical features, and then, with these
features, a hybrid machine learning model determines the
output label as nonpatches and patches. A set of one
thousand images were collected during a pavement survey in
Danang City in Vietnam. %e photos were fixed to be
100×100 pixels. %ey were labeled as nonpatches and
patches by human inspectors for training. From an image, a
total number of thirty-four features were identified. %e
least-squares support vector machine (LSSVM) was used for
training with differential flower pollination (DFP) as a fine
tuner. LSSVMmodel had an accuracy of 95.3% in predicting
the road pavement condition. Compared to previous
models, it can work on color images, though one of the
model’s limitations was that the feature selection algorithms
were not established during the model construction phase
(Table 2).

3.2.3. Regression Models. %e regression modeling measures
the interaction between input (independent) variables and
output (dependent) variables. It is a time-series forecasting
model widely used to predict pavement performance con-
ditions. %ere are various regression models, including
random forest regression RFR, ordinary least squares OLS
regression method, simplified regression model, and step-
wise regression technique, see Figure 6. Madanat and
Ibrahim [56] and Roberts and Attoh–Okine [57] used the
traditional regression technique to evaluate and predict road
pavement degradations.

(1) Random Forest Regression (RFR). Gong et al. [58] de-
veloped a random forest regression (RFR) model to predict
the IRI of asphalt pavement using the training and testing sets.
Pavement distresses, traffic, environmental data, and struc-
tural data were effective variables to estimate IRI. Further-
more, the previous variables and the IRI measurements were
obtained from the LTPP database. %e results revealed that
the RFR model provided high accuracy and excellent indi-
cations on the pavement performance for the training and
testing sets. %e coefficients of determination R2 of the
proposed model were 0.99 and 0.97 for training and testing
sets, respectively. %e R2 values indicate high efficiency in

Machine Learning
Algorithm

Support Vector
Machine

Hybrid Machine
Learning

Figure 5: ML techniques in pavement performance prediction.
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implementing the RFR model. Furthermore, the results in-
dicated that various pavement distresses and pavement age
significantly influenced IRI measurements, such as alligator
cracking, transverse cracking, and rutting. In contrast, others
showed a limited impact on IRI measurements, including
edge fracture, longitudinal cracking, and drilling.

In the same way of research, another study was con-
ducted by Marcelino et al. [26], focused on applying a
random forest algorithm for the development of pavement
condition performance. A long-term pavement performance
data based on the IRI values for five and ten years, as well as
some other indicator factors, such as traffic volume data,
environmental data, and structural data. %e data were
conducted for different urban roads in Canada and the U.S.
(Indiana, Texas, and Saskatchewan).%emain variables used
in this model are annual average precipitation (AAP), an-
nual average temperature (AAT), annual average freeze
index (AAFI), pavement thickness, structural number (SN),
and cumulative annual average daily truck traffic. As
mentioned by Marceline and other authors, this random
forest algorithm can reduce the variance of the prediction
model by combining different models and performing
higher accuracy results. %ree categories, including quan-
titative, qualitative, composite of qualitative, and quantita-
tive, were used to evaluate the prediction models [27, 59–61].
In addition to mean squared error (MSE), the standard
deviation of mean squared error (SDMSE) and K-fold cross-
validation were applied to estimate the number of errors in
the predicted models (Table 2).

(2) Ordinary Least Squares OLS Methods. %e development of
the prediction model focused mainly on the accuracy of data
sources. Arhin and Noel [62] conducted the IRI and PCI data
from the Department of Transport for the selected roads in
Columbia. At the same time, the ordinary least squares (OLS)
regression method was performed to predict the (PCI) from
IRI datasets. Additionally, Arhin and Noel [62] applied a 5%
significance level to identify the significance of the proposed
regression models. Subsequently, an ANOVA test was used to
measure the significance of each regressionmodel for each road
classification and pavement type. %e goodness of fit R2 and
F-test were also tested for each regressionmodel to estimate the
validity of the proposed models. %e best general regression
model was formed as follows:

PCI � A (IRI) + K + ε, (15)

where A, K are constants and ε is an associated error.
%e results showed that this prediction performance

method was accurate and capable of being used in different
monitoring techniques. For more illustration, based on
functional classification, the results revealed that freeways
were a smoother ride than arterial roads, which were
smoother than collectors and local roads. Based on the
pavement type, the composite pavement was smoother than
asphalt and concrete pavement, respectively. %e R2 values
of the functional classification models ranged between 0.56
and 0.74, which was relatively low, while the goodness of fit
R2 values of the pavement type models ranged between 0.72
and 0.74.

(3) Simplified Regression Model. Elhadidy et al. [22] focused
on creating a simplified regression model to predict the re-
lationship between pavement condition index PCI and the
international roughness index IRI. %e proposed model used
a database from the LTPP database in America and Canada.
%ey used variables such as traffic levels, climate conditions,
pavement age, type of pavement, and pavement distresses.
Moreover, Elhadidy et al. [22] evaluated the proposed model
accuracy using the coefficient of determination R2 and RMSE.
%e study results showed that the proposed model was ac-
curate, with a value of R2 0.99, and it could be used to predict
IRI based on PCI for any pavement segment (Table 2).

(4) Stepwise Regression Technique. Ahmed et al. [63] fo-
cused on developing a performance prediction model
based on PCI using the stepwise regression technique. %e
study used field observations to measure the PCI values of
different types of pavement distress in urban roads in
Baghdad. Furthermore, different types of pavement dis-
tress were inspected and investigated to find PCI values,
including fatigue cracking, rutting, potholes, bleeding,
depression, slippage cracking, longitudinal cracking, and
patching, see Table 2. Ahmed et al. [63] developed a
prediction model for PCI depending on the type of
pavement distresses. Equation (16) illustrates the pro-
posed model.

PCI � 85.336 − 0.4415(Slippage) − 2.3254(Pothols) − 37.2875 (Rutting). (16)

Regression
models

Random forest
regression

Ordinary least
squares OLS
regression

Simplified
regression

model

Stepwise
regression
technique

Figure 6: Regression models in pavement performance prediction.
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In the aforementioned model, only three significant
types of distress were mentioned, as these distresses can
provide an effective impact on PCI values. %e coefficient of
determination R2 for the proposed model was 0.80, indi-
cating that the model is adequate and acceptable to transport
agencies and researchers. However, there were limitations to
using this model, as the model can only work with specific
ranges of variables. Moreover, validation based on the mean
and standard deviation of the observed and developed PCI
values was applied to achieve a high-precision prediction
model. T-test and mean levels were also measured at 95% to
determine the accuracy of the proposed model. Equation
(17) presents the relationship between expected and ob-
served PCI.

PCI observed � 0.9903 (PCI predicted) + 3.0149. (17)

%e goodness of fit of the proposed model revealed no
significant difference between the observed and predicted
PCI values.

Table 2 shows the previous studies that applied shallow
machine learning to predict pavement performance. %e
table also shows the technique used for each type of
pavement indices to perform the prediction. %e data
sources are provided with the standard matrices used to
measure each developed model’s validation and accuracy.
Besides, the strength and weaknesses of each model are
presented and discussed.

4. Discussion and Research Gaps

%emain reason for the focus on the limitations of pavement
prediction models is the importance and significance of
these performance models in estimating the health status of
pavement degradation. Once the researchers decided to
develop a performance model, they must be very careful to
find and select an appropriate prediction model. %ey also
must have clear information and adequate knowledge on the
model inputs, outputs, parameters, and affective variables to
be used. Forming model functions and equations is a sig-
nificant step in developing any prediction model. %erefore,
boundary conditions must govern the equations, depending
on the performance models’ purpose.

In pavement prediction, performance models must have
the growth of pavement degradation, distresses, and dam-
ages, or pavement performance indexes such as roughness
index, serviceability index, and pavement condition rating
[4]. Finding appropriate variables to be used in prediction
models is considered one of the main constraints that faced
many researchers. As known, the accuracy of any model is
mainly related to the chosen variables. %e selection of key
variables depends mainly on the type of prediction model
and the forecast condition. Moreover, the pavement con-
dition variables are divided into the following main cate-
gories based on the conditions affecting pavement surfaces:
traffic level, environmental condition, material quality, and
paving structure.

Furthermore, many studies claimed that not all variables
are available in the LTPP database or are easy to obtain. It is

considered a significant problem for the model’s developer
[30, 41, 64, 66]. At the end of the preparation, all elements,
such as physical and mathematical boundaries, dependent
and independent variables, and raw and prepared data, must
be ready to be obtained and used in the developed prediction
models. %is review paper presents the most significant
time-series prediction models, including mechanistic-em-
pirical, empirical, regression, support vector machine, fuzzy
logic, and others.

Figure 7 below presents the accuracy values depending
on each predictionmodel’s confinement of determination R2

value. MEM: mechanistic-empirical models, EM: empirical
models, FL: fuzzy logic, PM: probabilistic modeling, DM:
deterministic models, ANNs: artificial neural network
models, MLAs: machine learning algorithms, and RM: re-
gression models. According to Figure 7, the ANNs, MLA,
and RM accuracy show a high accuracy value in predicting,
classifying, and detecting pavement damage conditions.
Using DM offers low accuracy to predict the actual health
status of pavement, especially the NCHRP models.

Mechanistic and mechanistic-empirical performance
models can estimate and extrapolate the pavement perfor-
mance data. Furthermore, these models need more data to
be calibrated, however, at the same time, they have sim-
plification advantages compared with other prediction
models like the empirical models [10]. However, in empirical
models, George [23] claimed that selecting appropriate
prediction equations is significant for developing the best
performance model. To develop empirical models, the re-
searchers should have a large dataset on pavement condi-
tions and identify mathematical and physical boundaries of
the equations to build a clear and accurate model and avoid
significant errors [26].

In regression models, any equation can be used in re-
gression analysis because of the simplicity of use. %e effi-
ciency of assumed functions or equations for the
development of the regression models can be measured and
evaluated using statistical measures to determine the ability
of the proposed model to fit the observed data [58].
However, many researchers claimed that the coefficient of
determination is a fundamental tool for assessing the ade-
quacy of the prediction model. Still, the goodness of fit can
also be evaluated using other statistical measures based on
the percentage of the conducted error [58, 60, 62].

On the other hand, there are some limitations of using
neural network models to predict pavement performance,
including the availability of data, such as traffic level, climate
condition, and other pavement condition indices in the
long-term pavement performance LTPP database [42].
Furthermore, one of the most significant limitations is the
need for numerical verification and statistical tests to verify
the accuracy of neural network models for artificial neural
networks and neuro-fuzzy models [49]. Moreover, model
developers usually face difficulties in obtaining pavement
condition data, especially data related to PCI, and they are
unable to find suitable flexible pavement with full-service life
details. Ziari et al. [49] discussed another issue in conducting
the data, which is about pavement condition indices. %e
pavement condition index values deteriorate to the worst
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rating class with pavement age. %e pavement surface is
exposed to a different climate, traffic, and other external
factors that cause damages and distress. However, after
applying maintenance and rehabilitation procedures, the
pavement condition indices provide the best rating for
pavement condition. %erefore, finding a pavement in the
LTPP database with no rehabilitation or treatment process
during service life is not easy [67, 68]. Besides, there is no
necessity to start evaluating pavement condition from the
beginning of pavement service life, where pavement age
forms the last overlay.

5. Future Directions

Pavement condition performance is a promising area of
pavement management research and is the future of
monitoring and maintenance systems. Several studies have
been conducted to measure the pavement condition per-
formance and the future health states of road surfaces.
Besides, the research doors are still open for more investi-
gations and innovations to find the competitive ways that
can predict future pavement performance, in addition, to
providing enough information about the short and long
forecasting the pavement condition performance. %e main
future direction should focus on selecting strength variables
to efficiently develop accurate forecasting models.

Another future direction can be focusing on getting
pavement condition data. It is essential to apply advanced
methodologies and use highly accurate equipment to
monitor the pavement condition and apply the most sig-
nificant predictionmodel to diagnose the performance of the
pavement. More clearly, using the dynamic and static
pavement monitoring system to gain accurate assessment
results may provide and enhance the outcomes of prediction
models. For example, using accelerometer sensors with high
frequency and sensitivity can provide consistent vibration
data to develop prediction models. Also, advanced pavement
monitoring instruments, such as probe vehicles with scanner
laser and high-quality line scan cameras, are used to identify
the pavement damages and use the data to validate the
prediction models.

6. Conclusions

%e increase in the number of road users results in minor
and significant damage and the degradation of pavement
surfaces, which mainly affects the safety and comfort of road

users. However, many researchers have conducted studies to
assess the current health condition of pavement degradation
and future changes in the pavement structure under the
recent changes. Moreover, PMS has an essential role in
developing different prediction performance models to es-
timate the condition of the pavement surface and the se-
verity of pavement degradation after a specified time. %is
review paper sets out to the IRI- and PCI-based pavement
degradation prediction model. Various prediction models
have been developed to estimate pavement conditions and
the level of pavement damage at various flexible pavement
sites around the world.

Most previous studies have focused on developing
performance prediction models based on data sets from the
LTTP database and pavement state indices values. In con-
trast, other studies have been performed based on field
observations or data collection. Many performance models
have been developed using ML algorithms and ANN
modeling. Most researchers agreed that both prediction
methods, ML and ANN, have accurate estimation results for
pavement condition, and they are beneficial in dealing with
variables, such as traffic conditions, pavement age, and
weather conditions. In addition, regression models showed
high accuracy in detecting and classifying pavement dam-
ages. At the same time, some deterministic models showed a
deficiency in predicting the actual condition of pavement
surfaces.

In summary, each model has specific features, strengths,
and weak points. %erefore, some prediction models are
strong for multiprediction and multiclassification purposes,
such as ANN, ML, and RE. In contrast, other models are
significant for binary classification and detection, such as the
SVM, Al Omari and Darter model, and Markov model.
Hence, selecting an appropriate prediction model is the first
step to a high-quality prediction performance system [69].
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Intelligent connected vehicles (ICVs) have become the focus and development direction of the automobile industry. As a flexible
intelligent terminal, ICVs will become a necessary part of the intelligent transportation system. ,e routes of developing ICVs
based on “vehicle to X” (V2X) can effectively alleviate the demands of vehicles for intelligent functions and cut related research
costs, accelerating commercialization of ICVs and leading to many social benefits. At present, China has made it clear to develop
ICVs based on V2X, which requires simultaneous intelligent upgrades of vehicles and transportation infrastructure. ,erefore,
intelligent upgrades of transportation infrastructure must match the functional requirements of ICVs. In addition, the investment
in intelligent upgrades of transportation infrastructure is mainly from the government, so the costs must be controlled reasonably
to find the most cost-effective upgrade route. In this paper, the types of intelligent transportation infrastructures were determined
by sorting out the demands of ICVs for transportation infrastructure, and the deployment methods and upgrade routes of
intelligent transportation infrastructures were designed. ,en, the cost evaluation model for intelligent upgrade of transportation
infrastructures was established, based on which, the cost evaluation of different intelligent upgrade routes of transportation
infrastructure was carried out in closed highway and open urban road scenarios to determine the optimal route. Besides, the key
elements affecting the cost of transportation infrastructure upgrades were identified, and their impact degrees on transportation
infrastructure upgraded were analyzed by scenario analysis. ,e results show that the intelligent transportation infrastructure for
advanced ICVsmainly includes communication base stations, roadside units (RSUs), vision sensors, millimeter-wave radars, laser
radars (LiDARs), meteorological sensors, intelligent signal machines, edge computing servers, and cloud computing centers. ,e
route of deploying primary intelligent transportation infrastructure at first and then directly upgrading them to advanced level can
well match the functional requirements of ICVs on the basis of lower costs. ,e costs of RSUs, LIDARS, and edge computing
servers as well as data transmission rate of 5G are key elements affecting the costs of intelligent upgrades of
transportation infrastructure.

1. Introduction

Intelligent connected vehicles (ICVs) based on the new
generation of information and communication technology
have become the recognized development direction of future
vehicles all over the world [1, 2]. Based on the core au-
tonomous driving functions, ICVs can replace human be-
ings to complete driving tasks. It can not only provide
passengers with a safer, more comfortable, and intelligent
driving experience but also improve travel efficiency [3–6],
save energy and reduce emissions [7–9], and reduce the

traffic accident rate [10–12]. At present, the development
route of autonomous driving is gradually changing from
vehicle intelligence to “vehicle to X” (V2X) [13]. In the past,
some automobile and automobile-related industry giants
tried to develop ICVs based on vehicle intelligence, but
industry practice shows that the technical difficulty of re-
alizing autonomous driving on this route is far beyond
expectation, and the costs are high. As a result, there are
increasingly more countries and enterprises attaching im-
portance to the development route of V2X [14]. Among
them, China, whose government has a stronger ability of
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resource coordination, is the most typical one. At present, it
has made it clear that it will promote the coordinated
construction of V2X with Chinese characteristics, that is,
supporting and promoting the accelerated development of
ICVs with intelligent transportation infrastructure.

In the mode of V2X, ICVs can share information with
other connected vehicles as well as high-performance sen-
sors and computing platforms at roadside through high-
speed communication technologies such as 5G so as to
realize multiple perception fusion and decision optimiza-
tion. It can not only provide more comprehensive sensing
information for vehicles to improve safety but also reduce
performance requirements of vehicle hardware, enable re-
dundancy, and reduce costs, which contributes to the im-
provement of the penetration rate of ICVs and the
establishment of a new transportation system with higher
efficiency and more convenience. Furthermore, it is also in
line with the direction of intelligent upgrades of urban and
transportation systems and will drive the upgrade of in-
formation infrastructure [15].

,erefore, the environment of intelligent transportation
infrastructure is a key element supporting the future de-
velopment of ICVs in China. ,e intelligent upgrade of
transportation infrastructure should not only match the
technical progress of ICVs to produce synergies but also be
appropriately ahead of it and reserved to avoid repeated
construction. Since cost performance evaluation is one of the
significant elements to make decisions on the intelligent
upgrade of transportation infrastructure, it is important to
evaluate the upgrade cost of different development paths
based on ICV compatibility of intelligent transportation
infrastructure. At present, some of the scholars have elab-
orated on intelligent transportation infrastructure at the
macrolevel [15–19], and others have optimized and inno-
vated the deployment methods of them, such as commu-
nication environment [20, 21], roadside units (RSUs)
[22–26], and sensors [22, 27–30]. However, there are few
scholars analyzing the deployment costs of them.

Referring to the hierarchical definition of vehicle in-
telligence in China, intelligent transportation infrastructures
were clarified by sorting out the requirements of different
ICVs for them. On this basis, two typical scenarios were
chosen, including open highways and closed urban roads, to
evaluate the cost of intelligent transportation infrastructure
through different deployment routes. In combination with
the predictions of the market penetration rate and technical
development level of ICVs at various levels, the optimal
route for intelligent upgrade of transportation infrastructure
was determined. Finally, some directional suggestions were
put forward for the development of the ICV industry based
on the research results.

2. Setting of Intelligent Levels of
Transportation Infrastructure

2.1.Classificationof IntelligentLevels ofVehicles. In the mode
of V2X, the intelligent levels of vehicles should be evaluated
from two aspects: automation level and connectivity level. As
shown in Figure 1, referring to the classification of

autonomous driving technology by the Society of Auto-
motive Engineers and the classification of vehicle automa-
tion and connectivity levels as set forth in the Energy-Saving
and New Energy Vehicle Technology Roadmap 2.0 released
by China Society of Automotive Engineers in 2020 [31],
vehicle intelligence is divided into three levels: primary,
intermediate, and advanced levels, each of which corre-
sponds to a certain level of automation and connectivity.

2.2. Requirements of ICVs for Transportation Infrastructure.
Considering the functions that need to be realized in au-
tomation and connectivity of ICVs, the functional re-
quirements of ICVs for transportation infrastructure are
divided into five aspects: communication guarantee, infor-
mation transmission, safety warning, driving assistance, and
extended services [16].

In terms of communication guarantee, the data trans-
mission rate of a primary ICV in the mode of V2X is lower
than 100Kbps, and the communication delay should be
controlled within 100ms. Only the LTE communication
network can meet the demand. As for an intermediate ICV,
the data transmission rate is bigger than 10Mbps, and the
communication delay needs to be controlled between 20 and
100ms. LTE communication network can no longer meet
the demand, and only the 5G-NR communication network is
able to guarantee the data transmission rate. As for an
advanced ICV, the data transmission rate is bigger than
100Mbps, and the communication delay must be strictly
controlled within 20ms, which can be guaranteed only by a
complete 5G-NR communication network.

In terms of information delivery, the primary ICVs, on
the one hand, are able to get real-time traffic and road
condition information through RSUs. On the other hand,
they can obtain relevant location and status information for
communication with service areas. On the basis of primary
ICVs, intermediate intelligent vehicles require RSUs to
provide state information of nearby traffic participants to
assist decision-making and update dynamic HDmaps in real
time. On the basis of primary and intermediate intelligent
vehicles, advanced intelligent vehicles need to communicate
with all urban intelligent terminals through the Internet of
,ings so as to realize unified vehicle scheduling and
platooning.

In terms of safety warning, primary ICVs can realize
real-time monitoring of illegal behaviors through RSUs and
roadside sensors. Intermediate ICVs need real-time dan-
gerous driving warning and vehicle violation warning
through RSUs and roadside sensors. Advanced ICVs need
real-time information sharing to avoid risks autonomously.

In terms of driving assistance, primary ICVs require
intelligent transportation infrastructure to provide auxiliary
perception information. In addition to auxiliary perception
requirements, intermediate ICVs also need roadside edge
computing servers to provide partial support of calculation
and decision-making. Advanced ICVs are bound to face
more complex driving tasks, requiring more efficient in-
telligent transportation infrastructure to assist in vehicle
perception, decision-making, and control.
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In terms of service extension, intelligent transportation
infrastructure should support sharing among intelligent
vehicles, smart energy services, and so on.

2.3. Classification of Intelligent Levels of Transportation
Infrastructure. According to the functional requirements
analyzed above, the intelligent transportation infrastructure
is divided into three levels, primary, intermediate, and ad-
vanced levels, as shown in Table 1.

2.4. Architecture of Intelligent Transportation Infrastructure
under Ideal Conditions. Ideally, intelligent transportation
infrastructure can be divided into four layers, as shown in
Figure 2: traffic participants, sensors/actuators, edge com-
puting servers, and cloud computing centers. In the data
collection stage, data generated by people, vehicles, and
roads in traffic activities are collected by sensors such as
vision sensors, LiDARs, and millimeter-wave radars,
transmitted to all edge computing servers for immediate
processing, and finally collected to the cloud computing
centers. After data analysis is completed in cloud computing
centers, execution instructions are transmitted along the
path of “cloud computing center-edge computing server-
actuator-traffic participant,” ultimately affecting the indi-
vidual terminal directly. In this process, communication
base stations provide a reliable communication environment
for information exchange between all levels of infrastructure
so as to truly realize the real-time acquisition and trans-
mission of data as well as update and delivery of instructions.

3. Cost Evaluation Model for Intelligent
Upgrade of Transportation Infrastructure

3.1.KeyAssumptionsof theModel. ,e cost evaluationmodel
of intelligent upgrade of transportation infrastructure is
built based on the following three assumptions:

(1) Due to the possible emergence of new intelligent
transportation infrastructure in the future, the costs
of intelligent upgrade will be evaluated based on the
transportation infrastructure that has been mass-
produced or has not been mass-produced but suc-
cessfully developed; that is, the demand for

improving intelligent levels could be met by in-
creasing the number of related known facilities
deployed.

(2) Advanced intelligent transportation infrastructure
can provide ICVs with integrated services of per-
ception, decision-making, and control. Sensors with
stronger sensing ability and anti-interference ability
are required. ,erefore, it is assumed that the cost of
sensors for primary and intermediate intelligent
transportation infrastructure refers to the current
market price while that of advanced intelligent
transportation infrastructure would increase by 20%
based on the current market price.

(3) Intelligent transportation infrastructure is a com-
bination of hardware and software, and the possible
trend is that the importance of software will grow.
However, the iteration cycle of software is short, and
the cost is often lower than that of hardware and
usually directly included in hardware systems.
,erefore, only the cost of hardware for trans-
portation infrastructure is evaluated. In addition, it is
difficult to estimate the medium cost usually
regarded as fixed expenditure, such as human input,
in the process of deployment and operation man-
agement of transportation infrastructure, which will
not be considered.

(4) ,e change of penetration rates of ICVs at different
levels exerts a direct impact on the demand for in-
telligent transportation infrastructure. ,e aim of
this paper is to compare the maximum construction
costs required to upgrade intelligent transportation
infrastructure at different levels. ,erefore, it is as-
sumed that the penetration rate of ICVs at each level
is 100% in the corresponding scenario.

3.2. Model Construction. In this part, the framework of the
cost evaluation model is built, based on which the research
work is gradually carried out. As shown in Figure 3, firstly,
the required functions of road traffic infrastructure are
inferred based on the intelligent levels of ICVs, based on
which the corresponding levels of intelligent transportation
infrastructure are set. Secondly, the plan for deploying
different levels of intelligent transportation infrastructure

L1/L2 (DA/PA) L3 (CA) L4 (HA) L5 (FA)

First Level

Second Level

Third Level

Connectivity

Automation

Primary Level
• Having the basic functions of automatic 

driving 
• Slightly redundant hardware systems
• Few network information sources
• Low requirements of data transmission rate 

and bandwidth

Intermediate
• Perceptual accuracy improved
• High decision-making demands
• Changed electrical architecture 
• Full access to 5G network,
• Many information sources
• High data transmission rate

Advanced
• Highly redundant hardware systems
• High demands for video and audio 

entertainment
• Centralized electrical architecture
• Diverse network information sources
• Higher data transmission rate

Intelligence

Figure 1: Classification of intelligent levels of vehicles.
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(namely, the types and quantities of specific facilities) under
different scenarios is determined, and the corresponding
one-time upgrade cost is calculated based on the coverage of
various intelligent transportation infrastructure and com-
bined with the transmission rate of road network data.
Finally, the costs of four different routes to complete the
deployment of advanced intelligent transportation infra-
structure are evaluated, and as a result, suggestions for
intelligent upgrade of transportation infrastructure are given
in combination with the actual situation of the industry.

As for specific application scenarios, closed highways
with large traffic flow and open roads in typical large cities in
China are selected for evaluation. On the one hand,

compared with other scenarios, these two scenarios are more
representative and complex, contributing to greater benefits
if the intelligent upgrade of corresponding transportation
infrastructure is realized. On the other hand, they are also
the two scenarios that local governments in China focus on
to promote the development of ICVs and intelligent
transportation systems. In addition, these two scenarios
correspond to the standard of Chinese road classification.
Among them, Beijing-Zhangjiakou Highway is selected as a
closed highway scenario, while the entire road network
within the Fifth Ring Road of Beijing is selected as an open
road scenario. Tables 2 and 3 show the specific attribute
parameters of the two evaluation objects.

Table 1: Classification of intelligent levels of transportation infrastructure.

Intelligent levels of
transportation
infrastructure

Targets Functions

Primary Shares key information with ICVs and replaces them
to complete part of the perception work

(1) Provides ICVs with information on traffic signals,
real-time traffic flows, and other road conditions based
on vehicle-road-cloud communication
(2) Provides traffic management and law enforcement
departments with road information, such as traffic
accidents and violations of laws and regulations, based
on road sensors
(3) Provides ICVs with information of gas stations,
parking lots, and other peripheral service facilities based
on the network of transportation auxiliary
infrastructure

Intermediate
Replaces the ICVs to complete all perception work
and shares a part of the computing decision-making

work through edge computing servers

(1) Provides real-time point-to-point information of
surrounding roads and helps ICVs compute and make
decisions based on vehicle-road-cloud-people
communication and high-precision GPS positioning
(2) Provides traffic participants with more peripheral
service information at a faster pace with the gradual
expansion of the coverage of the 5G communication
environment

Advanced Improves computing ability of ICVs and connects
ICVs to intelligent urban for unified scheduling

(1) Controls traffic participants in a cooperative manner
and makes all decisions for ICVs based on the
communication among vehicles, roads, clouds, people,
buildings, and intelligent devices
(2) Smoothly provides ICVs with more diversified
services, information, and more functions such as
photovoltaic wireless charging

C
om

m
un

ic
at

io
n 

Ba
se

 S
ta

tio
ns

Cloud Computing Centers

Vision Sensors LIDARs Millimeter 
Wave Radars

Meteorological 
Sensors

Actuators
Such as: intelligent signal 

machine

Edge Computing Server 1 Edge Computing Server 2 Edge Computing Server n

Traffic participants: People, Vehicles, Roads

Data Upload Instructions Download

ControlInformation Sources

Data Upload Instructions Download

In
fo

rm
at

io
n 

In
te

ra
ct

io
n

In
fo

rm
at

io
n

In
te

ra
ct

io
n

Communication 
Environment

Communication 
Environment

Communication 
Environment

Communication 
Environment

Figure 2: Architecture of intelligent transportation infrastructure under ideal conditions.
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3.3. Model Inputs. Based on the analysis above of intelligent
function requirements of traffic infrastructure, the main
traffic infrastructure involved is determined to include LTE
base stations, 5G base stations, RSUs, vision sensors, mil-
limeter-wave radars, LiDARs, intelligent signals, meteoro-
logical sensors, edge computing servers, and cloud
computing centers. As shown in Table 4, currently available
or forthcoming transportation infrastructure with relatively
good performance is selected as the model input. Its
functional parameters and costs can be found in e-com-
merce platforms, the manufacturers’ websites, product
manuals, or research reports.

After the types of transportation infrastructure products
are determined, the demand for various products per ki-
lometer is calculated for different intelligent levels of
transportation infrastructure.

,e communication base stations are used to build
communication network so as to provide communication
environment for ICVs and intelligent transportation in-
frastructure. LTE or 5G communication base stations need
to be deployed to meet both requirements of full coverage
and data transmission rates. i represents a closed highway or
an open urban road when it is equal to 1 or 2. On closed
highways, the demand per kilometer for the communication
base stations to fully cover the roads dcom,1 can be calculated
by equation (1), where rcom is the coverage radius of base
stations.

dcom,1 �
1

2rcom
. (1)

On open urban roads, the deployment of communica-
tion base stations to meet requirements of full coverage is

Intelligent Levels of ICVs Requirements of ICVs at Roadside

Existing Transportation 
Infrastructure

Transportation
Infrastructure Functions

Intelligent 
Functions

Data Transmission Rate of a
Vehicle in V2X mode

Data Transmission Rate of Road 
Networks

Coverage Areas of Intelligent 
Transportation Infrastructure

Coverage Density of Intelligent 
Transportation Infrastructure

Coverage 
Density Traffic Volume

Penetration Rates of ICVS Upgrade Routes of Intelligent 
Transportation Infrastructures

Road Length (Density) Costs of Intelligent Transportation 
Infrastructure Upgrade

Upgrade 
Costs

Upgrade Costs of Intelligent 
Transportation Infrastructure 

Level Setting of Intelligent 
Transportation Infrastructures

Upgrade Plans of Intelligent 
Transportation Infrastructures

Costs of Intelligent Transportation 
Infrastructure Upgrades 

Suggestions for Intelligent 
Transportation Infrastructure Upgrades

Model Input Model Output

Figure 3: Cost evaluation model for intelligent upgrade of transportation infrastructure.

Table 2: Attribute parameters of the closed highway scenario.

Parameter Value
Road length (km) 148.2
Traffic flow in one lane (number of vehicles/m) 0.02
Number of lanes (two directions) 6
,e year construction started 1998
Investment ¥3,000,000,000

Table 3: Attribute parameters of the open urban road scenario.

Parameter Value
Road length (km) 3,728.53
Traffic flow in one lane (number of vehicles/m) 0.1
Number of lanes (two directions) 4
Road density (km/km2) 5.59
Average density of road intersections (number of vehicles/km) 2.3
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shown in Figures 4 and 5, respectively. Squares surrounded
by black borders in both of the figures represent urban areas
of 1 km2, while circles (including full circles, semicircles, and
quarter circles) represent areas covered by communication
stations. In Figure 4, four gray quarter circles (1, 2, 3, and 4)
and a cyan full circle (5) cover an urban area of 4 km2

(2 km× 2 km). Each urban area of 1 km2 needs to be covered
by two-quarter circles. Similarly, in the left picture of Fig-
ure 5, four full circles (5, 6, 8, and 9), four semicircles (2, 3, 4,
and 7), and a quarter circle (1) in dark green cover the square
urban area of 1 km2 for the first time. ,en in the right
picture of Figure 5, the blank left by the first coverage was
filled by the four full circles (10, 11, 13, and 14), four
semicircles (12, 15, 16, and 17), and a quarter circle (18) in
cyan. Combined with the road density within the Fifth Ring
Road of Beijing, the demand per kilometer in different
scenarios for communication base stations to realize full
coverage dcom,2 can be worked out by equation (2), where
nqc, nsc, and nfc represent the number of quarter circles,
semicircles, and full circles in square areas separately and ρ
represents the road density.

dcom,2 �
0.25nqc + 0.5nsc + nfc

ρ
. (2)

,en, whether the requirements on data transmission
rates are met has to be verified. If not, the number of base
stations should be added on the basis of the requirements of
full coverage until the requirements of data transmission
rates are met. ,e base station increment per kilometer
Δdcom,i can be calculated by equation (3), where Cdemand
represents the ideal data transmission rate and wcom rep-
resents the data transmission rate of a base station.

Δdcom,i �
Cdemand − wcomdcom,i

wcom
, i � 1, 2. (3)

,e calculation above shows that, on closed highways, as
for the primary intelligent transportation infrastructure,
LTE base stations with full coverage can meet both of the
requirements. On open urban roads, however, the number
of LTE base stations should be increased. In two different
scenarios above, as for the intermediate and advanced in-
telligent transportation infrastructure, 5G base stations

Table 4: Performance parameters and costs of intelligent transportation infrastructure.

Facility Product Performance or cost/unit Value

LTE base station Zte BS8912
Coverage radius/km 1

Transmission rate/Mbps 110
Cost/CNY(¥) 3,000

5G base station No specific product information, estimated according to
relevant literature

Coverage radius/km 0.2
Transmission rate/Mbps 1

Cost/CNY(¥) 30,000

RSU Datang Telecom DTVL3100-RSU Coverage radius/km 1
Cost/CNY(¥) 70,000

Vision sensor Haikang cd7087f/DS - 2V
Coverage radius/km 0.2

Primary and intermediate costs/CNY(¥) 4,630
Advanced cost/CNY(¥) 5,556

Millimeter-wave radar Continent ARS 408–21 77GHz
Coverage radius/km 0.25

Primary and intermediate costs/CNY(¥) 3,500
Advanced cost/CNY(¥) 4,200

LiDAR Velodyne VLP-32C
Coverage/km 0.2

Primary and intermediate costs/CNY(¥) 203,667
Advanced cost/CNY(¥) 244,400

Intelligent signal
machine Hisense SC3101 Primary and intermediate costs/CNY(¥) 46,000

Meteorological sensor TRM-ZS7

Deployment density on highways/
number/km 0.067

Deployment density on urban roads/
number/km2 0.33

Cost/CNY(¥) 75,000

Edge computing server No specific product information, referring to research
reports

Deployment density on highways/
number/km 4

Deployment density on urban roads/
number/cross 2

Cost/CNY(¥) 175,000

Cloud computing
center

No specific product information, referring to research
reports

Deployment density on highways/
number/km 0.01

Deployment density on urban roads/
number/km 0.025

Cost/CNY(¥) 20,000,000
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instead of LTE base stations must be used to meet the re-
quirements of data transmission rate. A possible upgrade
route is clearly indicated then.

Sensors are the “eyes” of smart roads, sensing vehicle
behaviors, traffic flows, emergencies, and even weather
conditions in real time. ,e demand per kilometer for visual
sensors dcam,i and millimeter-wave radars dmwr,i in different
road scenarios can be uniformly calculated by equation (4),
where rcam and rmwr represent the coverage radius of vision
sensors and millimeter-wave radars.

dcam,i � 2 ·
1

rcam
,

dmwr,i � 2 ·
1

rmwr

, i � 1, 2.

(4)

LiDAR selected in this paper is a mechanical rotatable
one, whose coverage area is a circle with the radar as the
center and the coverage radius as the coverage distance.
,erefore, the demand per kilometer for LiDAR in different
road scenarios dLi,i can be calculated by equation (5), where
rli is the coverage radius of LiDAR.

dli,i � 2 ·
1
2rli

, i � 1, 2. (5)

,e coverage range of meteorological sensors refers to
the Chinese national standard [32]. As for closed highways,
the deployment spacing should not be greater than 15 km,
which means the demand for meteorological sensors is 0.067
units per kilometer. As for open urban roads, its coverage
area should not be bigger than 3 km2, which means that the
coverage radius is about 1 km. As a result, its deployment
scheme is basically the same as that of LTE base stations in
Figure 3, with a demand dwt,2 of 0.089 units per kilometer.

Intelligent signal machines are mainly deployed at urban
intersections. Under the control of edge or central cloud control
platforms, it can optimize signal timing in real time according to
the optimization algorithm of traffic flows and road networks.
,e signal status information can also be sent to ICVs to help
them pass through intersections more efficiently. In general,
only one intelligent signal machine is deployed at each inter-
section. Combined with the road density within the Fifth Ring
Road of Beijing, the demand for intelligent signal machines per
kilometer of urban roads dsi,2 is 2.3 units.

RSU is a communication gateway deployed at the
roadside, which is responsible for data exchange between the
ICVs, roads, and clouds. Sensors can upload data to cloud
control platforms of intelligent transportation through
RSUs. ,erefore, in order to eliminate the perceptual blind
area of roads, the number of RSUs should be the same as that
of the type of sensors with the highest deployment density.
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Figure 5: Deployment of 5G base stations on open urban roads.

1 km

1 
km

1 2

3 4

5
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On closed highways, RSUs are mainly used to connect
sensors to the network. Its demand per kilometer dRSU,1 can
be calculated according to the following equation:

dRSU,1 � max dcam,1, dmwr,1, dli,1, dwt,1 . (6)

On open urban roads, RSUs are used to connect sensors
and intelligent signal machines to the network at the same
time. Its demand per kilometer dRSU,2 can be calculated
according to the following equation:

dRSU,2 � max dcam,2, dmwr,2, dli,2, dwt,2  + dsi,2. (7)

Cloud control platforms of intelligent transportation are
composed of basic cloud control platforms and collaborative
applications. Collaborative applications mainly include control
algorithms related to ICVs and intelligent transportation, while
the basic cloud control platforms consist of edge computing
servers and cloud computing centers, providing data, com-
munication, and runtime environment for all kinds of col-
laborative applications. ,erefore, the basic cloud control
platforms are key components of the cyber-physical systems of
intelligent transportation [16]. Due to the difficulty in obtaining
pricing and functional parameters for edge computing servers
and cloud computing centers, the viewpoints of several research
reports are referred to [33, 34]. On closed highways, the demand
for computing servers dMEC,1 and cloud computing centers
dctr,1 per kilometer is 4 units and 0.01 units, respectively. On
open urban roads, the demand for computing servers dMEC,2
and cloud computing centers dctr,2 per kilometer is 2 units and
0.025 units. As primary intelligent transportation infrastructure
is only used to provide ICVs with simple information of traffic
and related services, the demand for edge computing and cloud
computing servers is not urgent. However, intermediate and
advanced intelligent transportation infrastructure are in urgent
need of edge computing servers and cloud computing centers
because they are used to provide sensing and decision-making
services for ICVs and even used to optimize the traffic con-
ditions of road networks, which requires edge computing
servers and cloud computing centers. ,erefore, as for primary
intelligent transportation infrastructure, there is probably no
need to deploy cloud computing centers, and the demand for
edge computing servers should be multiplied by the sum of
current market penetration rates of intermediate and advanced
ICVs in China [35].

Finally, by multiplying the demand per kilometer for
each type of transportation infrastructure product at dif-
ferent intelligent levels and then adding them together, the
costs required to complete the corresponding deployment at
one time can be calculated.

4. Evaluation of the Cost of Intelligent
Upgrades of Transportation Infrastructure

4.1. Evaluation of the Cost of Different Intelligent Upgrade
Routes for Transportation Infrastructure

4.1.1. Cost of One-Time Intelligent Upgrade of Transportation
Infrastructure. In the actual upgrade process, it is unnec-
essary to obey the order of intelligent upgrade of primary,

intermediate, and advanced infrastructure. Instead, a certain
level of transportation infrastructure can be directly
deployed ignoring some levels before it. Let R (l, m, n, i)
represent different construction routes, where i represents
closed highways or open urban roads when it is equal to 1
or 2, respectively. Besides, l, m, n ∈ 1, 2, 3{ } represents the
intelligent levels of transportation infrastructure at the first,
second, and third construction stages, and numbers 1, 2,
and 3 refer to primary, intermediate, and advanced intel-
ligent infrastructure. For instance, R (1, 3, 3, 1) represents the
route of open urban roads in which primary transportation
infrastructure is built in the first place and then directly
upgraded to the advanced level.

Using the model established above, the one-time de-
ployment costs per kilometer of primary, intermediate, and
advanced intelligent transportation infrastructure under
different scenarios are calculated. On closed highways, the
one-time construction costs per kilometer of primary, in-
termediate, or advanced intelligent transportation infra-
structure are ¥895,880, ¥2,772,633, and ¥3,276,160,
respectively, as shown in Figure 6. ,e device with the
highest deployment cost among primary intelligent trans-
portation infrastructure is RSU, whose cost takes about 78%
of the total. ,is is due to its high price and rigid and big
demand for sensors. ,e device with the highest deployment
cost among intermediate and advanced intelligent trans-
portation infrastructure is LiDAR, whose cost takes about
36% and 37% of the total separately. ,is is because the
intermediate and advanced ICVs have urgent demands for
the roadside perception abilities and HD maps, so that
LiDARs with higher perception accuracy and robustness are
needed to cover the whole roads. Meanwhile, the costs of
RSUs and edge computing servers are also high, taking about
25% and 21%, respectively.

On open urban roads, the one-time construction costs
per kilometer of primary, intermediate, or advanced intel-
ligent transportation infrastructure are ¥914,441, ¥4,428,008,
and ¥5,913,908, respectively, as shown in Figure 7. Similar to
the situation of closed highways, the device with the highest
deployment cost of primary intelligent transportation in-
frastructure is RSU, whose cost takes approximately 83% of
the total. As for intermediate and advanced intelligent
transportation infrastructure, the devices with the highest,
second highest, and third highest costs are LiDARs, RSUs,
and edge computing servers, respectively, taking about 44%
and 40%, 19% and 15%, and 18% and 14% of the total in
order.

It is found that the deployment costs per kilometer of
primary, intermediate, and advanced intelligent trans-
portation infrastructure on open urban roads are ¥18,561,
¥1,655,375, and ¥2,637,748 higher than that those on closed
highways, respectively. On the one hand, the geometric
configuration of urban roads is network structure whose
road density is much higher than that of closed highways; on
the other hand, traffic volume of urban roads is much bigger
than that of closed highways. ,erefore, there is a higher
demand for communication base stations, meteorological
sensors, edge computing servers, cloud computing centers,
and RSUs. In addition, intermediate and advanced
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intelligent transportation infrastructure requires intelligent
signal machines at intersections on open urban roads, but
not on closed highways.

4.1.2. Evaluation of the Cost of Different Intelligent Upgrade
Routes for Transportation Infrastructure. Transportation
infrastructure should be upgraded to the advanced level
eventually to meet the demands of advanced ICVs, so there
are four possible upgrade routes, as shown in Figure 8, which
need upgrades one to three times.

R (1, 2, 3, i) represents the route in which infrastructure
is sequentially upgraded from primary to intermediate to
advanced level. When primary intelligent infrastructure is
upgraded to an intermediate one, RSUs and sensors can
continue to be used. But in order to satisfy intermediate
ICVs on perception, decision-making, communication, and
other higher requests, LTE base stations should be replaced
by 5G base stations and LiDARs, and intelligent signal
machines and cloud computing centers should be deployed.
Besides, the number of edge computing servers should be
increased. When intermediate intelligent infrastructure is
upgraded to an advanced one, existing 5G base stations,
RSUs, intelligent signal machines, meteorological sensors,
edge computing servers, and cloud computing centers can
continue to be used, but there are necessary needs to add 5G
base stations and replace exiting sensors with those that have
higher performance. So, the costs of single-stage deployment
on the step-by-step upgrade route are equal to the costs of
the incremental components of the intelligent trans-
portation infrastructure between two stages, which are less
than the deployment costs of a one-time upgrade to the
corresponding level. ,ere are similar situations existing in
R (1, 3, 3, i) and R (2, 3, 3, i), which are separately considered
in corresponding cost evaluations.

Figures 9 and 10 depict the total costs per kilometer of
different upgrade routes on closed highway and open urban
road scenarios, respectively. On closed highways, the costs of
R (1, 2, 3, 1), R (1, 3, 3, 1), R (2, 3, 3, 1), and R (3, 3, 3, 1) are
¥4370293, ¥3351960, ¥4368793, and ¥3276160. Compared
with R (3, 3, 3, 1), R (1, 2, 3, 1), R (1, 3, 3, 1), and R (2, 3, 3, 1)
need additional costs of 33.4%, 2.3%, and 33.3% separately.
On open urban roads, the costs of R (1, 2, 3, 2), R (1, 3, 3, 2), R
(2, 3, 3, 2), and R (3, 3, 3, 2) are ¥7,944,499, ¥5,989,299,
¥7,943,408, and ¥5,913,908. Compared with R (3, 3, 3, 2), R
(1, 2, 3, 2), R (1, 3, 3, 2), and R (2, 3, 3, 2) need additional costs
of 34.3%, 1.3%, and 34.3% separately.

What is more, a comparison was made between the cost
evaluation results above and the costs of ordinary roads
(replaced by investment amount). As for closed highways,
Beijing-Zhangjiakou Highway spanning 148 kilometers
began to be built at the end of 1998, which was invested
¥3,000,000,000 then. Considering the inflation of RMB from
1999 to 2020, the total investment now is about
¥4,680,000,000, that is, ¥31,621,622 per kilometer. It is
concluded that for Beijing-Zhangjiakou Highway, the in-
telligent upgrade cost per kilometer is only 13.8% of the

original construction cost per kilometer, even if the route
with the highest costs is chosen.

As for open urban roads, it is difficult to estimate the
construction costs per kilometer of urban roads due to the
differences among different cities in land prices, labor costs,
geographical features, and construction plans. However,
because the prices of urban land are generally much higher
than those of the suburban areas through which the highway
passes, and the complex urban traffic conditions have high
requirements for the advanced and complete degree of in-
frastructure, it is inferred that the cost per kilometer of urban
roads is probably higher than that of highways. In addition,
the deployment of intelligent transportation infrastructure
on open city roads is expected to bring higher benefits since
traffic volume there is far greater than that on highways.

All in all, although intelligent upgrade of transportation
infrastructure leads to higher costs, it is far from being
difficult to bear the burden. In other words, the V2Xmode is
cost-feasible at the roadside.

4.1.3. Selection of Intelligent Upgrade Routes for Trans-
portation Infrastructure. As is shown above, there is no
doubt that R (3, 3, 3, i) is the route with the lowest costs. But
in practice, the feasibility of one-step deployment is very low.
Firstly, advanced ICVs are still under research and devel-
opment, and their market penetration rate is almost zero, so
the payback and accumulation of advanced intelligent
transportation infrastructure would be limited. Secondly,
replacement is necessary when service time is beyond in-
frastructure life, so advanced deployment is likely to lead to
serious waste. ,irdly, current advanced ICVs and trans-
portation infrastructure are still of much uncertainty. Driven
by technological progress and business model innovation,
new transportation infrastructure products with higher cost
performance may appear in the future. As a result, it is not
appropriate to directly deploy advanced intelligent trans-
portation infrastructure based on existing products.

Taking into account the costs of intelligent upgrading of
transportation infrastructure and the expected market
penetration rates of ICVs at different levels, it is concluded
that R (1, 3, 3, i) is likely to be the best choice at present. First
of all, it has a cost advantage. Costs of R (1, 3, 3, 1) and R (1, 3,
3, 2) are only 2.3% and 1.3% higher than R (3, 3, 3, 1) and R
(3, 3, 3, 2), respectively, lower than R (1, 2, 3, i) and R (2, 3,
3, i). Next, at present, intermediate ICVs are likely to play
only a continuing role in the technological transition stage.
In fact, under specific application scenarios, there is no
essential difference between L4 and L5autonomous driving,
which means that advanced ICVs will also be qualified for
mass production when intermediate ICVs are fully indus-
trialized. At last, both intermediate and advanced ICVs need
a 5G communication environment, and advanced intelligent
transportation infrastructure can meet the demands of in-
termediate and advanced ICVs. ,erefore, it is reasonable to
deploy intelligent infrastructure ignoring the intermediate
stage.
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4.2. Key Elements Affecting the Cost of Intelligent Upgrade of
Transportation Infrastructure

4.2.1. Identification of Key Elements. Figures 11 and 12
depict the share of cost components of one-time intelli-
gent upgrade of transportation infrastructure in closed
highway and open urban road scenarios. ,e cost compo-
nents of the two scenarios are similar. In the primary stage,
RSUs account for the highest cost ratio and far exceed other
components due to their high costs and great demands. In
the intermediate and advanced levels, LiDARs’ costs are the
highest, followed by RSUs’ and edge computing servers’,
which are all due to their high costs. In addition, because the
data transmission rate of 5G base stations has not yet
reached the standard, the costs of 5G base stations in the
advanced stage increase apparently compared to those in the
intermediate stage. So, a large number of base stations have
to be added to meet the demand for data transmission rate of
every advanced ICV, which is approximately 100Mbps. In
summary, the data transmission rate of 5G base stations, as
well as the costs of RSUs, LiDARs, and edge computing
servers, are key factors affecting the total costs of intelligent
transportation infrastructure.

4.2.2. Impact of Key Elements on the Upgrade Cost. Due to
the lack of maturity and popularity of some new technol-
ogies, much transportation infrastructure is currently ex-
pensive. As the technologies gradually mature, the prices of
related transportation infrastructure are expected to decline
in the future [36]. ,erefore, scenario analysis is adopted to
analyze the sensitivity of the four key elements recognized
above. ,ere are four scenarios set for analysis:

(1) As for an RSU, it is assumed that the mature
technology will reduce its cost by 50% to ¥35,000.

(2) As for an edge computing server, it is assumed that
the mature technology will reduce its cost by 50% to
¥87,500.

(3) For LiDAR, it is assumed that the mature technology
will reduce its cost by 50% of the primary and in-
termediate costs, reaching ¥101,834.

(4) As for 5G base stations, it is believed that the data
transmission rate of 5G will eventually meet the
standard, that is, be upgraded from 1Gbps to
10Gbps.

,e results of the scenario analysis of the impact of key
elements on the upgrade cost for both scenarios are shown in
Tables 5 and 6. It is obvious that the total cost of intelligent
upgrade of transportation infrastructure has changed sig-
nificantly. 50% cost reduction of a LiDAR has the greatest
impact on the costs of all four routes, saving 21.3% to 28.0%
of the total cost on closed highways and 22.9% to 29.5% on
open urban roads. 50% cost reduction of an RSU can save
8.0% to 10.7% of the total cost on closed highways and 5.4%
to 7.3% on open urban roads. Similar to RSUs, 50% cost
reduction of an edge computing server results in cost savings
of 8.0% to 10.7% on closed highways and of 5.1% to 6.8% on
open urban roads, respectively.,e data transmission rate of

standard-compliant 5G has a great impact on the upgrade
cost on open urban roads, which can reduce cost by 13.6% to
18.3%.,is is due to the higher traffic volume on open urban
roads, which requires a higher data transmission rate.

As a result, faced with the upgrade demand of advanced
intelligent transportation infrastructure in the future, it is of
great significance to promote the development of RSUs and
edge computing servers and accelerate the technological
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Figure 11: Share of cost components of one-time intelligent up-
grade of transportation infrastructure in closed highway scenario.
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improvement and deployment process of 5G, which is ex-
pected to effectively reduce the cost of intelligent upgrade of
intelligent transportation infrastructure.

5. Conclusion and Discussion

In this study, intelligent levels and corresponding functions
of transportation infrastructure were defined based on ICVs
with different intelligent levels and relevant demands of ICV
intelligent upgrade. Based on the existing intelligent
transportation infrastructure products, the possible upgrade
routes were analyzed, and the types and quantities of the
required intelligent transportation infrastructure products
were determined. ,en the cost evaluation model of intel-
ligent upgrade of transportation infrastructure was estab-
lished, based on which the costs of four intelligent upgrade
routes of transportation infrastructure were evaluated under
closed highway and open urban way scenarios. Furthermore,
combined with actual industry situation, the best route was
recommended. At last, key elements that affect the upgrade
costs were identified, and their impacts were evaluated
through scenario analysis.

Several conclusions could be drawn from the study. First
of all, on closed highways and open urban roads, the costs of
completed intelligent upgrade of transportation infra-
structure are ¥3,276,160 to ¥4,370,293 and ¥5,913,908 to
¥7,944,499, respectively. Next, considering the practical
feasibility, the optimal route is to first build primary in-
telligent transportation infrastructure and then directly
upgrade them to the advanced level, ignoring the inter-
mediate level. ,en, the costs of intelligent transportation
infrastructure upgrade are less than one-seventh of the
construction costs of ordinary road, which are not hard to
afford, and it is possible to promote ICV development in
V2X mode. At last, the costs of RSUs, edge computing
servers, LiDARs, and data transmission rate of 5G trans-
mission rate are four key elements exerting apparent impacts

on the upgrade costs. ,erefore, in the future, relevant
technology maturation should be accelerated to reduce the
costs of intelligent transportation infrastructure upgrades.

According to the evaluation results, it is feasible to accelerate
the development of ICVs based on V2X mode so as to suffi-
ciently obtain multiple benefits such as traffic efficiency, driving
safety, energy conservation, and environmental protection. So,
automobile, transportation, and information industries should
paymore attention to V2X, especially the construction of future
transportation systems, and match the intelligent functional
requirements of ICVs on their own. In fact, the future human
society is expected to present a new situation in which ICVs,
smart transportation, and smart city develop and work in a
coordinated and integrated way. As the only flexible mobile
tool, vehicles are much likely to become the link and key
terminal of smart transportation and smart city with the support
of the Internet of ,ings. Hence, intelligent upgrades of
transportation infrastructure based on ICV demands can
generate important value to improve the overall operational
efficiency and governance of a city and are expected to share the
cost of V2X construction.

,ere are still some points to be optimized in this study.
On the one hand, the cost evaluation model of intelligent
upgrades of transportation infrastructure did not consider
the costs of software algorithms, device operation and
maintenance, manual labor, device transportation, and so
on. On the other hand, only two scenarios were considered
in this study, and it is necessary to analyze them in detailed
road classification according to Chinese standards so as to
get more comprehensive and accurate results. In addition,
limited by the reliability and availability of data, the new
devices which are still in the conceptual or research stage
were not considered. As a matter of fact, the current pace of
technological progress in the field of ICVs and smart
transportation is very fast, so it is necessary to carry out the
research on a rolling basis to make conclusions fit the latest
situation of the industries at any time.

Table 5: Scenario analysis: impact of key elements on the total upgrade cost per kilometer on closed highways.

Scenario
Route of closed highways

R (1, 2, 3, 1) R (1, 3, 3, 1) R (2, 3, 3, 1) R (3, 3, 3, 1)
50% cost reduction of an RSU −8.0% −10.4% −8.0% −10.7%
50% cost reduction of an edge computing server −8.0% −10.4% −8.0% −10.7%
50% cost reduction of a LiDAR −28.0% −21.3% −28.0% −21.8%
,e data transmission rate of standard-compliant 5G −6.5% −8.5% −6.5% −8.7%

Table 6: Scenario analysis: impact of key elements on the total upgrade cost per kilometer on open city roads.

Scenario
Route of open urban roads

R (1, 2, 3, 2) R (1, 3, 3, 2) R (2, 3, 3, 2) R (3, 3, 3, 2)
50% cost reduction of an RSU −5.4% −7.2% −5.4% −7.3%
50% cost reduction of an edge computing server −5.1% −6.7% −5.1% −6.8%
50% cost reduction of a LiDAR −29.5% −22.9% −29.5% −23.1%
,e data transmission rate of standard-compliant 5G −13.6% −18.0% −13.6% −18.3%
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)is work presents a new method for sleeper crack identification based on cascade convolutional neural network (CNN) to
address the problem of low efficiency and poor accuracy in the traditional detection method of sleeper crack identification. )e
proposed algorithm mainly includes improved You Only Look Once version 3 (YOLOv3) and the crack recognition network,
where the crack recognition network includes two modules, the crack encoder-decoder network (CEDNet) and the crack residual
refinement network (CRRNet). )e improved YOLOv3 network is used to identify and locate cracks on sleepers and segment
them after the sleeper on the ballast bed is extracted by using the gray projection method. )e sleeper is inputted into CEDNet for
crack feature extraction to predict the coarse crack saliencymap.)e prediction graph is inputted into CRRNet to improve its edge
information and local region to achieve optimization.)e accuracy of the crack identificationmodel is improved by using a mixed
loss function of binary cross-entropy (BCE), structural similarity index measure (SSIM), and intersection over union (IOU).
Results show that this method can accurately detect the sleeper crack image. During object detection, the proposed method is
compared with YOLOv3 in terms of directly locating sleeper cracks. It has an accuracy of 96.3%, a recall rate of 91.2%, a mean
average precision (mAP) of 91.5%, and frames per second (FPS) of 76.6/s. In the crack extraction part, the F-weighted is 0.831,
mean absolute error (MAE) is 0.0157, and area under the curve (AUC) is 0.9453. )e proposed method has better recognition,
higher efficiency, and robustness compared with the other network models.

1. Introduction

China’s total railroad mileage is expected to exceed
128,000 km by the end of 2020, prompting researchers to
improve maintenance techniques for railroad infrastructure
[1]. In Figure 1, the sleeper is used to support the rail and
transfer the huge impact brought by the train to the roadbed.
Accordingly, the sleeper needs to have a certain degree of
flexibility and can be slightly deformed to cushion the
pressure. However, the cracks and other damage generated
within it will undermine the integrity of the sleeper and
diminish the support force provided by the sleeper to the
train above when the load bending moment is greater than
the cracking strength. )is situation poses a safety hazard to

trains passing at a high speed. In recent years, nondestructive
testing techniques, such as those in the literature [2], have
been widely used in the maintenance of track facilities. )is
method of sleeper cracking can be quick and efficient in
preventing accidents.

At present, the main method of sleeper crack detection
has shifted from manual identification to a series of physical
detection means, such as ultrasonic, eddy current detection,
and ray detection. Although this method has been devel-
oped, it still has the limitations of the use methods and the
common problem of poor crack detection. )e efficiency
and accuracy of crack detection have been enhanced with the
development of the computer vision technology. )e main
methods applied to this field are as follows: image
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processing-based methods [3], machine learning-based
methods [4], and deep convolutional neural network
(DCNN)-based methods [5]. )e methods represented by
DCNNs are subdivided into methods based on image
classification [5], object detection [6], and pixel-level seg-
mentation [7], depending on the way the crack detection
problem is handled. )e network used to detect cracks in
sleepers in this cascade is based on the latter two types of
methods.

)e main crack detection methods based on object
detection include Faster R-CNN [8], single-shot multibox
detector (SSD) [9], and YouOnly Look Once (YOLO) [10] to
determine the location of cracks in the input image and
localize them with bounding boxes. Cha et al. [11] proposed
a concrete crack detection method based on Faster R-CNN.
)e network is improved to quickly detect and locate
multiple types of cracks in real time, allowing for more
accurate detection results. Mandal et al. [12] proposed an
automated detection method based on DCNNs for road
concrete cracks. However, the achieved detection accuracy is
low. Li et al. [13] proposed an improved YOLO network to
improve the detection accuracy of track plate cracks.
However, the method is less versatile due to the single
background information of the track plate. Bao et al. [14]
proposed a triplet graph reasoning network for the problem
of insufficient samples of metal surface defects.

Crack detection methods based on pixel-level segmen-
tation mainly include fully convolutional networks (FCNs)
[15], U-Net [16], and Seg-Net [17]. Labels can be assigned to
crack pixel points to determine the presence of cracks and to
obtain important features, such as the location, size, and
shape of cracks. Cheng et al. [18] proposed an automatic
U-Net-based road crack detection method and tested it in a
crack dataset to obtain a high pixel-level segmentation ac-
curacy. Islam and Kim [19] proposed a full CNN-based
concrete crack detection method. )is network consisting of
encoder and decoder patterns is tested and exhibits good
detection results on publicly available crack datasets. Dung
[20] designed a full CNN with Visual Geometry Group-16
(VGG-16) based on a codec framework. )is network
further improves the accuracy of crack detection. Literature
[21] compared three U-Net algorithms of different depths
for automatic pavement crack detection systems. )e ob-
jective is to verify whether a model architecture with greater

depth necessarily results in better detection accuracy. Ex-
periments prove that choosing a network architecture with
the right depth can guarantee the detection accuracy and
improve the detection speed.

Although great progress has been made in the field of
crack detection based on DCNNs, how to obtain more
detailed crack features still needs to be explored. For the
sleeper crack detection, the crack is small, similar to the
background of the sleeper, the boundary is unclear, and the
regional information is incomplete. )is paper proposes a
new cascade network for crack detection. YOLOv3 is used as
one of the mainstream frameworks for object detection. )e
YOLO series is improved on the basis of YOLOv3. Given
that YOLOv3 uses a residual network in the feature ex-
traction part, three feature layers of different depths are
simultaneously extracted, and a stacked stitching approach is
used to obtain the prediction results [22]. )e aforemen-
tioned method can be used to detect cracks of different sizes.
However, the crack detection effect is unsatisfactory for the
complex background of the rail sleeper. Accordingly, we add
the squeeze and excitation (SE) module at the end of the
YOLOv3 backbone network to improve the crack region
extraction accuracy. Further quantitative parameter detec-
tion of cracks is needed to complete high-precision crack
identification and provide more scientific detection data.
Crack encoder-decoder network (CEDNet) and crack re-
sidual refinement network (CRRNet) are used to extract and
optimize the features of rail sleeper cracks. )e shallow
information of the crack image can be passed to the cor-
responding decoding process after the feature extraction of
the input rail cracks by the coding part of CEDNet. Con-
sequently, the low-level detail features are fused with the
high-level complex semantics to improve the network fea-
ture extraction performance. CRRNet is added because the
coarse saliency map obtained in the previous step has de-
ficiencies, such as blurred crack boundaries and missing
important regions. CRRNet can be optimized by learning the
residuals between the coarse saliency map and the ground
truth.

)e main contributions of this paper are summarized as
follows:

(1) A two-level cascade network based on DCNN is
proposed. )is network fuses CEDNet and CRRNet,
which can play the role of crack feature extraction
and optimization in one step. Its F-weighted is 0.831,
mean absolute error (MAE) is 0.0157, and area under
the curve (AUC) is 0.9453.

(2) An improved YOLOv3 network is proposed to lo-
calize the cracks, and the attention mechanism, SE
module, is added at the end of the backbone network.
)e mean average precision (mAP) is improved by
6.9% compared with YOLOv3.

(3) )e optimization effects of loss functions binary
cross-entropy (BCE), intersection over union (IOU),
and structural similarity index measure (SSIM) on
crack recognition are superimposed to propose a
new hybrid loss function for the crack recognition.
Particularly, our method improves Fweighted by

Sleeper Railway Fastener

Figure 1: Railway track line.
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68.4%, 74.8%, 84.1%, and 99.0% on lbce + liou, lbce,
liou, and lssim, respectively.

)e rest of this paper is organized as follows: Section 2
introduces the method overview, including the overall steps
and the specific theory for each step. Section 3 shows some
experimental results of our method and compares them with
other methods. Section 4 gives the conclusion and outlook.

2. Method Overview

In the acquired image of rail sleeper cracks, the edge of
ballast can interfere with the recognition of rail sleeper
cracks because the imaging of ballast and concrete rail
sleeper is similar. Given that the edge of the rail sleeper has
obvious features, a strict size regulation, and differs from the
grayscale of the ballast, the rail sleeper area can be first
segmented.)e cracks on the rail sleeper can then be located
and identified by using the network. )e proposed crack
detection algorithm is divided into two parts: crack locali-
zation and crack identification. )e crack recognition part
incorporates a feature extraction network and a boundary
refinement network. )e overall methodological flow is
shown in Figure 2. In the first step, we choose the gray
projection method to extract the sleeper area first because
the large amount of ballast in the background of the sleeper
affects the crack detection. In the second step, a modified
YOLOv3 is used to locate and segment the cracks on the
basis of the extraction of the rail sleeper area. In the third
step, further quantitative parameter detection of cracks is
needed to complete high-precision crack identification and
provide more scientific detection data; hence, CEDNet is
used for feature extraction. A boundary refinement network
is designed for further optimization because the extracted
cracks have partial boundary and region information
incompleteness:

(1) )e location of the sleeper is extracted by using the
gray projection method [23] combined with the
empirical value of the sleeper pixels, and then, SE
[24] and spatial pyramid pooling (SPP) [25] are
added at the end of the YOLOv3 backbone network
to locate the sleeper cracks

(2) CEDNet, a crack coarse saliency feature extraction
network, is used to obtain more detailed saliency
information by fusing low-level features and high-
level features of crack images through the network
structure of codec patterns

(3) CRRNet, a crack boundary refinement network, is
used to learn the residuals between the original and
ground truth maps of the crack for optimization
purposes by fusing the outputs of the network feature
layers

2.1. Crack Location Module. )e dimensions are strictly
defined, and they differ from the ballast grayscale because
the sleeper edge features are obvious. )e gray projection
method combined with the empirical values of the sleeper

pixels can be used to locate the position of the sleeper. )e
gray projection method has better results for object edge
detection with complex backgrounds, relying mainly on the
peaks and valleys in the gray projection curve to determine
the coordinates of the object edge position. Assuming that
the image is represented as f(x, y), the gray projection
function in the x-direction is fx(x), the coordinates of the
pixel points in the image are (x, y), and the value of the gray
projection function in the horizontal direction is

fx(x) � 
x

f(x, y). (1)

)e edge coordinates of the horizontal direction of the
sleeper can be obtained in accordance with the gray pro-
jection method. )e pixel width of the edge of the sleeper is
relatively fixed in the captured roadbed images. Figure 3(a)
shows the original drawing of the ballasted roadbed. )e
valley of the horizontal projection in Figure 3(b) depicts the
contact edge between the sleeper and the ballast. Figure 3(c)
presents the segmentation results.

)e prediction results are obtained by stacking and
splicing after simultaneously extracting three feature layers
with different depths because YOLOv3 uses a residual net-
work in the feature extraction part. )erefore, this network
can be used to detect cracks of different sizes. However, in the
complex background of the sleeper, the crack detection effect
is poor. Inspired by the literature [24–26], the SE module

(a)

(b)(c)(d)

CEDNetCRRNet

Crack Recognition Net

Figure 2: Process of the proposed method. (a) Gray projection.
(b) Improved YOLOv3. (c) Feature extraction. (d) Edge refinement.
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suppresses the interference of background and other noises,
and the SPP module can improve the operation efficiency by
relieving the network of the size requirement for input images
while ensuring that the images are not distorted. )e end-to-
end semisupervised object detection method, the object de-
tection head with unified awareness from the attention
perspective, and Composite Backbone Network Version2
(CBNetV2), which eliminates the pretraining process, can
avoid the more complex multistage training approach in the
literature [27–29]. However, the algorithms in the above
documents still have some shortcomings, such as slow de-
tection speed, large consumption of network resources, low
accuracy and recall rate, and poor detection accuracy.
)erefore, we choose to add SE and SPPmodules at the end of
the backbone network to make the model simpler in the
training process and to improve the accuracy of crack region
extraction while minimizing additional overhead. An im-
proved algorithm based on YOLOv3 is designed in this paper,
and its overall structure is shown in Figure 4.

)e SE module belongs to one of the more classical
algorithms of the attention mechanism. )e accuracy of
crack detection can be significantly improved by designing
special parameters capable of removing the invalid infor-
mation extracted by the YOLOv3 network [25]. )is module
compresses the sleeper crack image to a size of 1∗ 1∗ 1024
after a global averaging pooling layer. )e activation is
performed by two modules in fully connected layers and
activation functions. )e crack feature channels are
weighted uniformly. )e designed residual module ensures

effective training so that the network extracts more accurate
information about crack features and suppresses interfer-
ence from other noises in the sleeper images.

When performing prediction of the a priori frame on
three scales of the crack image, YOLOv3 requires consistent
size of the crack feature maps outputted by the backbone
feature extraction network. )e cropping or shape change of
the image tends to cause partial loss of information, resulting
in biased crack detection results. Accordingly, the SPP
module is added after the SE module to remove the limi-
tation of the fixed size of the input image [26]. )e sleeper
crack images outputted from the backbone network of this
module are simultaneously pooled at three scales after one
convolution operation. )e output crack features are fused
and inputted to the fully connected layer. We can obtain a
fixed size crack image output without losing the original
information for any size and scale of the crack image input.

2.2. Crack Recognition Module. After locating and seg-
menting the cracked area of the rail sleeper, this paper
proposes a crack identification module to obtain more
detailed crack characteristics. )e module uses a crack
boundary refinement network to optimize the predicted
saliency map because the extracted crack information is
incomplete. )e final crack saliency map is obtained by
fusing the crack boundary refinement network with the
feature extraction network, and the general block diagram of
this module is shown in Figure 5.

2.2.1. Feature Extraction Module. )e backbone network
used for feature extraction is the crack coarse saliency feature
extraction networkCEDNet, which is a codec network focusing
on crack regions and boundaries. )e network is built on the
basis of ResNet-34 (Residual Network with 34 parameter
layers) [30] using a codec form. After feature extraction of the
input sleeper cracks in the encoding part, the resulting image
features are further optimized and processed by the decoding
part.)e shallow information of the cracked image is passed to
the corresponding decoding process, which enables the fusion
of low-level detailed features with high-level complex semantics
as a method to improve the network feature extraction per-
formance. )e structure is shown in Figure 6.

)e specific structure and operational steps of the net-
work are as follows:

(1) )e coding part consists of an input convolutional
layer and six stages consisting of basic residual blocks,
with a modified ResNet-34 structure for the input
convolutional layer and the first four convolutional
stages. )e improvements mainly include the use of a
3∗ 3 convolution filter and a convolution kernel with a
stride of 1.)e pooling operation is removed after the
input convolutional layer to guarantee that the feature
map in the first stage has the same spatial resolution as
the input image. By contrast, the first feature map in
the original ResNet has only one-quarter of the res-
olution of the input map. )is change allows the
network to obtain higher resolution feature maps in

(a)

(b)

(c)
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Figure 3: Gray projection experimental results. (a) Original image.
(b) Horizontal projection. (c) Segmentation results.
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previous layers although reducing the overall recep-
tive field. Consequently, Conv5 and Conv6, which are
two convolutional stages consisting of 512 filters and
three basic residual blocks, are added to obtain a
greater extent of the object detection region on the
original map and achieve the same receptive field as
the original ResNet.

(2) A bridge connection structure is used to further
obtain the global information of cracks. )e bridge
connection structure contains three modules

consisting of a Conv layer, a batch normalization
(BN) layer [31], and a rectified linear unit (ReLU)
activation function [32], where each convolutional
layer consists of 512 3∗ 3 dilated convolutions [33].

(3) )e input of each level of the decoding section is
cascaded from the previous level and the pooled output
of the corresponding level in the encoding section. A
sigmoid function is added to each layer after using
bilinear up-sampling for mapping the predicted values
to [0, 1]. Seven saliency mappings are generated in this
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Figure 5: Crack recognition module.
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module, containing six postcascade feature mappings
and the final output feature mapping. However, only
the last feature map with the highest accuracy can be
inputted into the CRRNet. )e supervision of the
ground truth map is supervised at the last layer of each
decoding stage to reduce overfitting, as in holistically
nested edge detection [34].

2.2.2. Edge Refinement Module. After the object detection
and feature extraction, the predicted crack coarse saliency
map can be obtained for the sleeper cracks. Figure 7 shows
the original map of cracks, the ground truth map, and the
coarse saliency map after the CEDNet extraction.

In the coarse saliency map, the crack boundary is
blurred, some salient regions are missing, and the back-
ground is incorrectly marked as the object and inaccurately
located. )erefore, the boundary information and local
details of the extracted crack feature map are incomplete.
)erefore, the extracted feature map is fed into CRRNet for
further optimization.

)e network is built in codec form and achieves opti-
mization by learning the residuals between the original and
the ground truth maps, using two 1D filters (i.e., 3∗1 and
1∗ 3 convolutional layers) rather than of 3∗ 3 in size, which
can improve the network optimization performance while
avoiding a large computational effort [35]. Coarse feature
maps of the input and stacked outputs are fused by using
residual module propagation with identity mapping
branches to facilitate training, and iterations are conducted
to optimize coarse saliency map accuracy. )e boundary
refinement map under the sigmoid functionmapping is used
as the final output of the network, as shown in Figure 8.

)e network structure consists of three parts: encoder,
decoder, and bridge connection.

)e coding section consists of four stages with two 1D
filters and a maximum pooling layer for down-sampling and
reduced computational effort. )e order of the built con-
volutional layers is 3∗1 in front and 1∗ 3 convolution in the
back. Only one ReLU layer is added after the former, and a BN
layer and a ReLU layer are placed after the convolutional layer

of the latter [36].)is design allows the network to be built to a
deeper level with less degradation in performance andmitigates
to a certain extent the effect of gradient diffusion on network
training, balancing network optimization performance and
computational efficiency.

)e decoding part is composed of a bilinear interpola-
tion unit for up-sampling to match the feature dimensions
and two 1D filters identical to the encoding part. )e 1D
filter is built in the reverse order of the coding part. )is part
also consists of four stages, and the codec pattern is reflected
in the decoding part, where the 1∗ 3 convolution in each
stage is cascaded with the 3∗1 convolution in the corre-
sponding stage of the coding part.

)e bridge connection part contains a Conv layer, a BN
layer, and a ReLU layer. )e convolutional layer in the
structure has 64 filters and a convolutional size of 3∗ 3.

2.3. Hybrid Loss Function. )e training loss function in this
paper is defined as the sum of the outputs of all saliency
feature mappings:

L � 
k

k�1
αkl

(k)
, (2)

where l(k) is the loss of the kth lateral output and αk is the
weight of each loss. k is taken as 8, indicating the presence of
8 outputs of the supervised sleeper crack detection network,
7 of which are from CEDNet and the rest from CRRNet. A
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hybrid loss function l(k) that mixes three losses of BCE,
SSIM, and IOU is used to obtain a high-quality detection
object with complete information:

l
(k)

� l
(k)
bce + l

(k)
ssim + l

(k)
iou , (3)

where l
(k)
bce, l

(k)
ssim, and l

(k)
iou denote the BCE [37], SSIM [38], and

IOU losses [39], respectively.
BCE is used as a loss function in this network to su-

pervise the training accuracy of object detection from the
pixel level, which can be performed pixel by pixel. )e pixel
points of foreground and background pixel points are
considered equally important and ignore the labeling of the
neighboring regions. Accordingly, all pixel points can be
converged. BCE is mainly applied to binary classification
and segmentation tasks. )e definitions are as follows:

lbce � −
(r,c)

[G(r, c)log(S(r, c)) +(1 − G(r, c))

· log(1 − S(r, c))],

(4)

where G(r, c) ∈ 0, 1{ } is the ground truth label of the pixel
(r, c) and S(r, c) is the predicted probability of the saliency
object.

SSIM is used as a loss function for supervised object
detection from the local domain level to evaluate the image
quality. )is loss function assigns a higher weight to the
boundary making the loss near the boundary higher, that is,
focusing on the attention to the foreground and background
boundaries. Progressively more important background losses
come into play as the prediction of background pixel points
approaches the ground truth, making the boundaries of
cracks in the background prediction clearer. SSIM captures
structural information in the image; therefore, it is integrated
into the blend function to learn the structural information of
the saliency object. )e definition is as follows:

lssim � 1 −
2μxμy + C1  2σxy + C2 

μ2x + μ2y + C1  σ2x + σ2y + C2 
, (5)

where x ∈ xj: j � 1, . . . , N2  and y ∈ yj: j � 1, . . . , N2 

are the pixel values of two corresponding patches cropped

from the predicted probability map S and the binary ground
truth mask G, respectively, μx, μy and σx, σy are the mean
and standard deviations of x and y, respectively, and σxy is
their covariance. C1 � 0.012 and C2 � 0.032 to avoid di-
viding by zero.

IOU is originally used to calculate the similarity between
two sets and extended to a standardmethod for evaluating the
effectiveness of object detection and segmentation. After the
foreground loss is reduced to zero combined with the three
loss functions, the BCE can be used to maintain all pixel point
gradients and make the IOU focus more on the foreground as
the prediction confidence of the foreground network grad-
ually increases. At the featuremap level, the following formula
is used to oversee the training of object detection and ensure
its differentiability in the training loss function.

liou � 1 −


H
r�1 

W
c�1 S(r, c)G(r, c)


H
r�1 

W
c�1[S(r, c) + G(r, c) + S(r, c)G(r, c)]

, (6)

where G(r, c) ∈ 0, 1{ } is the ground truth label of the pixel
(r, c) and S(r, c) is the predicted probability of the saliency
object.

3. Experiment and Results

3.1. Dataset. )e image acquisition device used in the paper
is mainly composed of industrial high-speed line matrix
camera and camera lens used in accordance with the field
design requirements. As shown in Figure 9, the image ac-
quisition system consists of an industrial computer and the
LQ-H3X module, where the LQ-H3X module mainly con-
sists of a laser light source and a line array camera. )e main
parameters of the LQ-H3X module are shown in Table 1.

3.2. Experimental Setup. )emodel in this paper runs under
a Win10 operating system, with dual CPU Intel Xeon Silver
4214 2.2GHz and NVIDIA RTX 2080Ti 11GB graphics
card. )e three networks of object localization, coarse sa-
liency feature extraction, and boundary refinement are built
and run under the integrated development environment of
PyTorch framework and PyCharm.
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Figure 8: CRRNet.
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3.3. Hyperparameter Configuration. For the saliency de-
tection part, several parameters with deeper influence, such
as initial learning rate, batch size, and epochs, are adjusted
during model training. )e initial learning rate is closely
related to the update of the weight parameters. If it is ex-
tremely large, the loss value increases, and the network
model is infinitely divergent. If it is extremely small, the loss
value decreases extremely slowly, and the parameters are
updated extremely slowly. Choosing minibatch stochastic
gradient descent and appropriate epochs can improve the
running speed of neural network, and let the model converge
properly. )e actual situation with different combinations of
important parameters is compared through several experi-
ments to improve the model training speed, and the results
are shown in Table 2.

Initially, with the batch size and epochs unchanged, the
loss value decreases faster and faster with the downward
adjustment of lr. On the basis of determining the lr of 0.001,
the batch size of 4 is selected first in accordance with the
performance of the device graphics card and GPU memory
size. )e epochs are chosen to be adjusted downward from
300 to 100 for the case that the rail crack dataset does not
have data diversity.)e parameter combination of the lowest
loss of 0.046 is established. In consideration of improving the
running speed of the neural network, the epochs are in-
creased from 200 to 300 to achieve the same accuracy when
the batch size was adjusted to 5. )e loss value does not drop
as fast as the former in the whole process.

In summary, the optimal combination of parameters
selected for the crack recognition module in this paper is as

follows: initial learning rate, batch size, and epochs are set to
0.001, 4, and 200, respectively, and the results are shown in
Table 3.

3.4.EvaluationMetric. )e selected evaluationmetrics include
F-measure, mAP, F-weighted [40], MAE [41], and AUC [42].
)e F-measure is a comprehensive index for the evaluation of
the final obtained crack detection results. mAP is used as the
average accuracy rate to measure the recognition accuracy, with
larger values indicating higher accuracy rates. F-weighted is
calculated from the corresponding PR value. )e weight of the
PR value is the percentage of samples in the total number of
samples. )e larger the value, the stronger the network per-
formance. MAE is used to measure the error of the test results.
)e AUC value indicates the high or low performance of the
network in classifying the crack and rail background.)e closer
to 1, the better the network classification.

Its calculation formula is as follows:

LQ-H3X Module

Industrial
Computer

Figure 9: Image acquisition. (a) Special rail inspection vehicle. (b) Picture of image acquisition in high-speed railway line.

Table1: LQ-H3X module parameters.

Characteristics Parameters
Camera resolution 2048/4096 pixels
Scanning frequency 2000 kHz (CL)
Laser power 15W/25W
Laser center wavelength 808/915 nm

Table 2: Hyperparameter configuration.

Initial learning rate Batch size Epochs Loss
0.001 4 200 0.046
0.001 4 100 0.054
0.001 4 300 0.050
0.001 5 200 0.052
0.001 5 300 0.049
0.002 4 200 0.053
0.002 5 300 0.051
0.005 4 200 0.057
0.005 5 300 0.055

Table 3: Combination of parameters.

Parameters Value
Input size 224× 224
Initial learning rate 0.001
Batch size 4
Epochs 200
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Fλ �
1 + λ2 P∗R

λ2 ∗P + R
, (7)

P �
TP−1

TP−1
+ FP−1

∗ω−1 +
TP0

TP0
+ FP0

∗ω0

+
TP1

TP1
+ FP1

∗ω1,

MAE �
1

W × H


W

x�1


H

y�1
|S(x, y) − G(x, y)|,

(8)

where P denotes the precision, R denotes the recall, and λ2 is
0.3, similar to those in reference [40]; ω−1, ω0, and ω1 are the
weight ratios of each precision. After the recall is calculated,
the F-weighted is obtained from Equation (7). W and H are
used to represent the length and width of the input sleeper
crack image to be processed.

3.5. Hybrid Loss Function. )is work compares and verifies
the performance of the proposed hybrid loss function l with
single andmultiple forms of loss function combined with the
network model. As shown in Figure 10, the saliency map
predicted by the proposed algorithm is the closest to the
ground truth. )e integrity of the cracked part of the region
with the clarity of the boundary is shown to be the best
situation compared with the others.

)e quantitative analysis is shown in Table 1. After the
comparison experiments for individual loss functions, the
more effective lbce and liou are then selected for the combined
analysis. Table 4 shows that the network performance can be
optimized only when all three loss functions are simulta-
neously used. Particularly, our method improves Fweighted by
68.4%, 74.8%, 84.1%, and 99.0% on lbce + liou, lbce, liou, and
lssim , respectively.

3.6.ObjectDetection. In this experiment, for the comparison
of YOLOv3, YOLOv4, and YOLOv5, we conduct the cor-
responding experiments. )e settings of our experimental
parameters are shown in Table 5. )e initial parameter
values for input size, initial learning rate, class, batch size,
and epochs for the training of rail crack images are provided.

On the basis of this experimental condition, tests are
performed for Tiny YOLOv3, YOLOv3, YOLOv4, and
YOLOv5.)emodel accuracy is verified in terms of the three
metrics: precision, recall, and MAP, and the model speed is
verified in terms of frames per second (FPS), as shown in
Table 6.

YOLOv3 has a higher recognition accuracy than Tiny
YOLOv3 and a faster recognition speed than YOLOv4 and
YOLOv5. )e recognition accuracy can be optimized with
the help of SE module and SPP module. In accordance with
the experimental results, YOLOv3 can reach the same or
even exceed the level of YOLOv4 and YOLOv5.

)erefore, a preliminary conclusion is that YOLOv3 is a
more ideal target for optimization. )is conclusion can be
verified in the final optimized test results.

)e prediction frame when the network locates cracks is
more accurate compared with the original YOLOv3 by using
the improved YOLOv3 network to complete the detection of
cracks in the sleeper due to the added attention mechanism
to improve the ability to capture the location of cracks. )e
detection effect is shown in Figure 11.

YOLOv3 and the proposed algorithm are used to detect
cracks of the overall roadbed image and the segmented
sleeper image by using gray projection method. )e com-
parison of experimental results is shown in Table 7. )e
comparison of the two inputs of the overall roadbed and
sleeper areas shows that the mAP of crack detection is
improved by 35.4% and 38.8% on YOLOv3 and improved
YOLOv3 after rail sleeper area extraction, respectively,
proving the necessity of sleeper area extraction for crack
detection. )e data entered in the sleeper region column
show that the improved YOLOv3 improves the mAP by
6.9% compared with the original network, proving the
significant superiority of the present algorithm for sleeper
crack detection.

3.7. Feature Extraction. With regard to the sleeper crack
dataset constructed in this work, the results of sleeper crack
saliency detection obtained using the method of this work
are compared with those of several other network models.
)e models include BAS [43], R2Net [44], SOD100k [45],
EDR [46], PFA [47], HED [34], and POOLNet [48]. Fig-
ure 12 shows that the proposed algorithm has a good de-
tection of cracks in a variety of situations, including low
contrast (1st, 4th, and 6th columns), small target (4th and 6th
columns), and complex background (2nd, 3rd, 5th, and 7th
columns).

)e above evaluation metrics are applied to make a
quantitative analysis of all network performance, as shown
in Figures 13 and 14. In terms of AUC, the proposed al-
gorithm improves by 6.0%, 0.2%, 1.2%, 2.8%, 3.8%, 10.4%,
15.5%, and 50.9% compared with CEDNet, EDR, BAS,
POOLNet, R2Net, PFA, SOD 100 k, and HED, respectively.
)is result indicates that the proposed algorithm has better
classification prediction performance. )e MAE value of
this work is 0.015, verifying that the algorithm has a small
error and high accuracy rate compared with the other
networks. )e closer the curve composed of precision and
recall to the upper-right corner, the better the network
classification, and the larger the area enclosed by the F
curve and the horizontal axis, the stronger the performance
of the network.

)e proposed algorithm has better crack integrity and
clarity than other algorithms and depends on the form of
cascade network used herein. A more complete crack
feature can be obtained after cascading the residual net-
works of codec modes (i.e., CEDNet and CRRNet). In
comparison with EDR, the pooling operation after the
input convolutional layer is removed in the feature ex-
traction stage to improve the image resolution in this work,
and Conv5 and Conv6 are designed to restore the network
receptive field. )e crack information obtained in this stage
is more detailed. By contrast with BAS, a 1D filter is used in
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the optimization part to balance the refinement perfor-
mance and computational efficiency. In FPN-based U-Net
structures, such as POOLNet and R2Net, the high-level
semantic features are continuously diluted because of their

structural limitations when fusing with low-level image
features, and the different receptive fields in each layer of
the network lead to the loss of local information in the
crack saliency map.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10: Saliency maps under different loss functions. (a) Image. (b) Ground truth. (c) l. (d) lbce + liou. (e) lbce. (f ) liou. (g) lssim.

Table 4: Performance comparison of different loss functions.

Evaluation metrics F-weighted ↑ MAE ↓
CEDNet +CRRNet + l 0.805 0.015
CEDNet +CRRNet + lbce + liou 0.254 0.038
CEDNet +CRRNet + lbce 0.203 0.039
CEDNet +CRRNet + liou 0.128 0.040
CEDNet +CRRNet + lssim 0.008 0.043

Table 5: Setting of initial parameter values.

Parameters Value
Input size 128× 608
Initial learning rate 0.1
Class 1
Batch size 6
Epochs 200

Table 6: Comparisons of experimental results.

Models Precision Recall MAP FPS
Tiny YOLOv3 0.361 0.452 0.392 146.35
YOLOv3 0.794 0.877 0.856 81.7
YOLOv4 0.866 0.924 0.884 26.23
YOLOv5x 0.932 0.905 0.911 32.52
Ours 0.963 0.912 0.915 76.6
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Figure 12: Comparison of saliency maps. (a) Image. (b) Ground truth. (c) Ours. (d) CEDNet. (e) EDR. (f ) BAS. (g) POOLNet. (h) R2Net.
(i) PFA. (j) SOD 100k. (k) HED.

Table 7: Comparison of crack detection results.

Algorithm model
Enter the overall roadbed area Input sleeper area

Precision Recall mAP Precision Recall mAP
YOLOv3 0.444 0.736 0.632 0.794 0.877 0.856
Ours 0.469 0.792 0.659 0.963 0.912 0.915

Figure 11: Sleeper crack location.
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Figure 13: Performance comparison of each algorithm. (a) AUC. (b) F-weighted. (c) MAE.
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4. Conclusion and Expectations

We propose a method for detecting cracks in rail sleepers
based on DCNN to address the lack of accuracy in crack
detection in crack recognition. )e CNN used consists of a
modified YOLOv3 network for localization and CEDNet
and CRRNet for extracting and optimizing the rail sleeper
crack features, respectively. In locating the rail sleeper crack
region, the crack on the concrete rail sleeper has some
similarity with the ballast edge in the captured images due to
the lighting and other causes. However, a grayscale differ-
ence can be observed between the rail sleeper and the ballast.
Hence, the rail sleeper area is first segmented for the next
step. )e attention module SE is added at the end of the
original YOLOv3 network to extract the cracked areas,
thereby improving the accuracy of the rail sleeper crack
detection while preserving the network computation speed.
CEDNet is constructed to extract more crack information by
fusing the high- and low-level features of crack images. )e
crack boundary refinement network CRRNet is added to
optimize the cracks, and the stacked output of the crack
coarse saliency feature map and the network can be opti-
mized by learning the residuals from the ground truth. A
cascade approach is adopted for the above two networks to
obtain a crack saliency map with more complete boundary
and region information. )e conclusions of this work are as
follows:

(1) A new crack detection method is designed. A cascade
network combining CEDNet and CRRNet is used to
improve the integrity of crack detection. Its
F-weighted is 0.831, MAE is 0.0157, and AUC is
0.9453.

(2) An improved YOLOv3 network is proposed to lo-
calize the cracks, and the attention mechanism SE

module is added at the end of the backbone network.
)emAP is improved by 6.9% compared with that of
YOLOv3.

(3) )e optimization effects of loss functions BCE, IOU,
and SSIM on crack recognition are superimposed to
propose a new hybrid loss function for the crack
recognition. Particularly, our method improves
Fweighted by 68.4%, 74.8%, 84.1%, and 99.0% on
lbce + liou, lbce, liou, and lssim, respectively.

(4) A comprehensive evaluation of the proposed
methodology is conducted. Our method has strong
robustness and high level of crack detection effi-
ciency compared with the seven state-of-the-art
methods.

)e proposed crack recognition module consists of two
parts. In the optimization stage, we perform the crack
boundary refinement process directly on the basis of the first
output. Compared with end-to-end learning, this approach
requiring secondary adjustment of model parameters in-
creases the time cost and requires more manual processing.
)erefore, if the optimization part can be encapsulated into a
plug-and-play module, it will greatly improve the efficiency
of model operation, which is the next optimization intention
of this paper. )is paper effectively improves the accuracy of
the identification of cracks in the rail sleeper but does not
measure the geometric parameters. How to calculate the
actual size of the cracks on the basis of existing data is a
direction for our future efforts, which is extremely helpful
for practical engineering applications.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 14: Performance comparison diagram of each algorithm. (a) Precision-recall curves. (b) F-measure curves.
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