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With the advance of mobile technologies, mobile devices such as unmanned aerial vehicle (UAV) become more important in
video surveillance. By applying mobile person re-identification (re-id), mobile devices can monitor pedestrians in the trans-
portation system from complex environments. Since the computing and storage resources of mobile devices are limited, tra-
ditional person re-id methods are not appropriate for mobile condition. Besides, mobile person re-id task also requires real-time
processing. In this paper, we propose a novel hashing method: online discrete anchor graph hashing (ODAGH) for mobile person
re-id. ODAGH integrates the advantages of online learning and hashing technology. In ODAGH, we propose an online discrete
optimization algorithm to improve the efficiency of anchor graph learning in the online scenario. Experimental results dem-
onstrate the superiority of ODAGH in terms of both effect and efficiency.

1. Introduction

With person re-identification (re-id) technology, it will be
able to find the same identity from different and non-
overlapping cameras. Person re-id can be widely used for
video surveillance; moreover, person re-identification is the
key technology in pedestrian traffic monitoring [1].
Detecting and tracking a person across camera is important
in traffic monitoring system [2]. Also, person re-id tech-
nology can intelligently and efficiently identify and track
pedestrians in streets, airports, or other transportation
systems.

*e task of person re-id is an image retrieval problem.
Given a probe image (query), the purpose of person re-id is
to search the information about established personnel
characteristics in a traffic database for images that contain
the same person [3]. Traditional person re-id technology is
used in the scene where cameras are unable to move, such as
fixed camera networks in different public areas, including
urban transport systems.

In recent years, with the advance of mobile technologies,
mobile systems such as unmanned aerial vehicle (UAV) are

widely used for video surveillance and traffic monitoring [2].
For example, UAV with cameras can play more important
roles in tracking people in transportation system from
complex environments such as rural area, mountain, and
sea, where fixed cameras are lacking or cannot reach, and
they can accomplish dangerous and boring visual infor-
mation gathering tasks with great excellence. *erefore,
mobile person re-id is required. Unlike traditional person re-
id methods, mobile systems have limited computing and
storages resources, and in real-word applications, the
communication bandwidth is also limited. However, image
processing methods usually have high time and space
complexity, and traditional person re-id methods are not
suitable for mobile systems.

*e hashing technique is an efficient image retrieval
method for fast person re-id. It converts high-dimensional
data into short binary code while keeping the data similar.
With the operations including XOR and bit-counting, it will
make it easier to do a fast search. Also, the hashing method
based on machine learning is proved to be superior to the
hashing method based on random projection [4–6]. How-
ever, most existing hashing methods use batch learning
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strategy, and they learn hash functions offline by using
specific training data. If new person images are collected
and added to the database, they also use the pre-trained
model to obtain new hashing codes. If the information of
new images is different to training data, the performance
of offline hashing model will be affected significantly.
Offline hashing methods must accumulate all the data-
bases to retrain new hash functions and recompute all the
hashing codes. *ey are obviously very inefficient, espe-
cially when the database is frequently updated by new
collected images.

Existing hashing methods are not appropriate for the
application of mobile system which requires fast real-time
methods to solve their tasks such as person re-id. To cope
with the real-time demand of mobile systems, a mobile
person re-id method should have two import characteristics:
(1) it should support fast retrieval of images and (2) it should
learn hashing functions from changing training data in
online manner. As an emerging technology, online hashing
technique [7, 8] can be applied to cope with the online
retrieval of changing database.

In the paper, online discrete anchor graph hashing
(ODAGH) is proposed for mobile person re-id. ODAGH
utilized the advantages of graph learning to effectively
preserve the visual correlation of person images. However,
traditional graph learning still requires much storage and
computing resources. In ODAGH, we propose online an-
chor graph learning which first uses anchor graph to reduce
the space cost of graph construction and then uses an online
learning algorithm to optimize the graph model effectively
and efficiently. *e main contributions of this paper are
summarized as follows:

(i) ODAGH integrates the advantages of online
learning and hashing, and as a hashing method, it
can be easily applied to mobile systems with limited
computing and storage resources. By leveraging
online discrete algorithm, ODAGH can efficiently
update hashing functions and learn discrete hashing
codes when new images are collected. It can fulfil the
real-time demand of mobile systems.

(ii) ODAGH is an unsupervised hashing method, so it
requires no training labels which are hard to obtain.
By improving the graph learning, the visual cor-
relation can be effectively preserved in hashing
codes. Moreover, by using a GPI-based online
optimization, quantization loss can be largely
avoided in the hashing process.

(iii) ODAGH only relies on one parameter, which
guarantees its robustness in real applications. Also,
experimental results demonstrate the effectiveness
and efficiency of ODAGH compared to other
person re-id methods.

*e rest of this paper is organized as follows. *e related
work is reviewed in Section 2. We present the details of our
proposed method in Section 3. *e experimental configu-
ration and results are introduced in detail in Section 4.
Finally, the conclusion of the paper is given in Section 5.

2. Related Work

2.1. Image Hashing. In recent years, image hashing has
gained much attention from researchers in image retrieval.
Generally, there are two kinds of hashing types: one is su-
pervised hashing [9–11] and the other is unsupervised
hashing [6, 12]. By learning the class labels or leveraging
other supervised information, the binary hash coding can be
studied in a supervised hashing method. Representative
supervised hashing methods include column sampling-
based discrete supervised hashing (COSDISH) [9], super-
vised discrete hashing (SDH) [10], deep supervised discrete
hashing (DSDH) [13], and fast scalable supervised hashing
(FSSH) [14]. However, because of the extremely expensive
costs to annotated supervised labels, the supervised hashing
methods have limited application range on large-scale image
retrieval.

Unsupervised hashing methods have one obvious ad-
vantage that they can learn hash functions without any label
information. *erefore, the original geometric structure,
including visual information, can be retained in hash coding.
Representative supervised hashing methods include spectral
hashing (SH) [4], iterative quantization (ITQ) [6], angular
reconstructive embeddings (AREs) [15], unsupervised
hashing with binary deep neural network (UH-BDNN) [16],
and similarity-adaptive deep hashing (SADH) [17]. Nev-
ertheless, most unsupervised and supervised hashing
methods learn hash functions in offline manner, and they
cannot cope with the scenario where new data are contin-
uously added to the database.

2.2. Pedestrian Detection and Tracking

2.2.1. Person Re-Identification. Traditional research on
person re-id mainly includes visual feature representation
[18, 19] and distance metric learning [20, 21]. In [22], feature
effectiveness was identified in a query-adaptive manner for
feature fusion. *e method proposed in [23] learns dis-
criminative and robust representations via dictionary
learning. In [24], Fisher vectors were used for person re-id.
Part loss network was proposed in [25] for deep repre-
sentation learning. *ere are also many studies related to
distance metric learning. In [26], person re-identification
problem was formulated as a ranking problem, and En-
semble RankSVM was developed to solve the problem.
KISSME [27] considers the scalability and learns a distance
metric from equivalence constraints. Mahalanobis metric
leaning was also used in several methods [28, 29]. Feature
presentation learning can be regarded as the pre-processing
step of person re-id, and it can be combined with metric
learning or our proposed hashing method.

Recently, several hashing-based person re-id methods
[30–33] were proposed to improve the search efficiency. As
we know, fast indexing is so essential between the raw image
data and the binary hashing codes. In order to realize the
end-to-end fast indexing, the convolutional neural network
(CNN) is always adopted in deep regularized similarity
comparison hashing (DRSCH) [34]. *e spatial information
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is integrated with part-based deep hashing (PDH) by repre-
senting horizontal parts to binary codes for feature discrimi-
nation [35]. A novel coarse-to-fine (CtF) method [36]
complementarily learns short and long codes in a pyramid
structure from CNN. Most of existing hashing-based person
re-id methods use deep network for feature representation
learning, and they ignore the preservation of visual correlation
in hashing codes. Moreover, deep learning [37, 38] methods
cost many computing and storage of resources, so they are not
appropriate for the mobile person re-id task which is always
performed on mobile systems with limited resources.

3. Proposed Method

In this section, we introduce online discrete anchor graph
hashing (ODAGH) in detail. *e overall framework of
ODAGH is shown in Figure 1. If a mobile device (e.g., UAV)
collects new images of a person, then visual features are
extracted for online discrete anchor graph learning.
ODAGH can efficiently update hashing functions by only
new features and training variables with small sizes. *en
hashing codes of new images are added to database. In the
query step, users can use a query image of specific person to
search images of this person from database.

3.1. Problem Setting. Suppose the database consists of
streaming images. When new images come in, we update the
hash functions. We define X ∈ RN×d as image matrix, where
N is the number of all training images in database and d is
the dimension of image feature. In the online learning
process, image matrix X can be represented as [XT

old, XT
new]T,

where Xold ∈ RNold×d denotes old images in the database and
Xold ∈ RNnew×d denotes new images, N � Nnew + Nold. Our
goal is to learn hashing functions and hashing codes
H ∈ RN×k for all images, where k is the code length. In order
to guarantee efficiency, we directly use linear projection to
reduce time cost. *us, the formulation of hashing function
is defined as

H � sgn(XW), (1)

where W ∈ Rd×k is the weight matrix. *e main notations
used in this paper are summarized in Table 1.

3.2. Basic Formulation. We use graph learning [39] to
preserve the visual information in hashing codes. However,
traditional graph learning costs many computing and
storage resources, and it is hard to design an online algo-
rithm for graph learning. *erefore, we use anchor graph
learning which constructs anchor graph to approximate a
graph.

For constructing the anchor graph, Na anchors xa
j |Na

j�1
firstly can be randomly selected from the training data, and
later we can approximate the data neighbourhood structure.
*en, the truncated similarity matrix Z ∈ RN×Na can be
achieved as

Zij � e
−dist xi−xa

j /σ
, (2)

where dist(xi − xa
j ) is the distance between image xi and

anchor xa
j (in this paper, we use L2 distance for similarity

matrix) and σ is the mean of all distances. In addition, we can
approximate the graph matrix of each modality by A � ZZT.

Based on the construction of anchor graph, we can
formulate anchor graph learning for hashing as

min Tr HTLH 

s.t. H ∈ 0, 1{ }
n×l

.

⎧⎪⎨

⎪⎩
(3)

*e above formulation is similar to traditional graph
learning. *e biggest difference is that the Laplacian matrix
should be computed as L � I − A, and A is approximated
graph matrix. Tr(·) denotes trace operator.

It is unavailable to directly solve the discrete constraint
of hashing matrix H in equation (3). *erefore, we relax the
hard discrete constraint by introducing a continuous matrix
F � XW to replace H in equation (3). We also add the term
‖F − H‖2F to make H close to F. *en, we can obtain the
overall basic formulation as

min Tr WTXTLXW  + α‖XW − H‖
2
F

s.t. WTW � I, H ∈ 0, 1{ }
n×l

,

⎧⎪⎨

⎪⎩
(4)

where α is the parameter for the second term.*e constraint
WTW � I is used to avoid the trivial solution of W.

*e objective function (4) can be solved by an alternate
iteration method. At each step, we optimize one variable and
fix other variables. When we fix H and optimize W, the
objective function can become

Feature
Extraction

Hashing 
Function

Online Discrete
Achor Graph

Learning

Collect Images Visual feature

Hashing codes

Updating

Database

New data

ODAGH for Mobile Device

Query Image

Search

Pedestrain

Training variables

Figure 1:*e overall framework of OAGH formobile person re-id.

Table 1: Summary of main notations.

Notations Explanations
N Size of whole database
d Feature dimension
k Hashing code length
X Image feature matrix
H Hashing code matrix
Z Truncated similarity matrix
W Weight matrix for hashing
Xnew Feature matrix of new images
Xold Feature matrix of old images
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max Tr WTBW  + 2αTr WTXTH 

s.t. WTW � I,

⎧⎪⎨

⎪⎩
(5)

where

B � XTZZTX − XTX. (6)

It is obvious that equation (5) is a quadratic problem on
the Stiefel manifold [40], and the Lagrangian function of this
objective function is

L(W, Λ) � Tr WTBW  + 2αTr WTXTH 

− Tr WTW − nI Λ .
(7)

By setting the derivative of equation (5) w.r.t W to 0, we
have

zL(W, Λ)

zW
� 2BW + 2αXTH − 2WΛ. (8)

We can use generalized power iteration (GPI) [40] to
solve W, and the detailed algorithm of GPI is shown in
Algorithm 1.

*en, we fix W and optimize H, and (4) becomes

min ‖XW − H‖
2
F

s.t. H ∈ 0, 1{ }
n×l

.

⎧⎨

⎩ (9)

*e solution of (4) can be easily obtained by

H � sgn(XW). (10)

3.3. Online Algorithm. In this section, we consider the
online optimization of (4). In the online learning process,
image matrix X can be represented as [XT

old, XT
new]T.

Similarly, hashing matrix H can be represented as
[HT

old, HT
new]T, where Hold denotes the hashing codes of old

images and Hnew denotes the hashing codes of new
images.

*en, we consider the online improvement of GPI, and
we can obtain that

Cnew � XTX � Cold + XT
newXnew, (11)

where Cold � XT
oldXold, and we can find that Cold is only

related to old images; it can be preserved in previous
learning. So, in the online process, we only need to compute
XT
newXnew, whose time complexity is O(Nnew). *e time of

computing Cnew is linear to the size of new images, and it is
irrelevant to size of the database.

*e truncated similarity matrix Z also can be represented
as [ZT

old, ZT
new]T.*erefore, we can obtain that

Dnew � ZTX � Dold + ZT
newXnew, (12)

where Dold � ZT
oldXold. Similar to (8), we can find that the

time complexity of computing D is also linear to the size of
new images, and it is irrelevant to the size of the whole
database.

Based on (11) and (12), we can obtain online updation of
Bnew with linear time complexity which is irrelevant to the
size of the database:

Bnew � DT
newDnew − Cnew. (13)

Similarly, when we compute M, its term XTH can be
computed in an online manner:

Enew � XTH � Eold + XT
newHnew, (14)

where Eold � XT
oldHold, and the time complexity of com-

puting Enew is linear to the size of new data.
According to the above division for online updating, we

propose an online optimization algorithm based on GPI to
solve W and optimize H. *e detailed procedure is sum-
marized in Algorithm 2.

In Algorithm 2, according to above analysis, we can find
that the time complexities of steps 1–5 and steps 7–8 are all
O(Nnew), and Nnew is the size of new images. *e time
complexity of steps 9 and 11 is O(d2k), d is the dimension of
image features, and k is the code length. Since the size of M is
d × k, performing SVD on M costs O(d2). d and k are ir-
relevant to the new data size Nnew, and thus they can be
ignored in the computation of whole time complexity. As a
result, the overall time complexity of Algorithm 2 is
O(Nnew). *e time complexities of the steps in Algorithm 1
are all irrelevant to the size of the database. *us, even when
the database is very large, our algorithm is constantly
efficient.

3.4. Overall Process. Suppose the initial database has NI

images XI, and it becomes larger when new images come in.
*e overall process of our OAGH is described in
Algorithm 3.

Suppose that the database size is N currently. We can
easily find that the time complexity of Algorithm 1 is O(NI),
and the time complexity of Algorithm 2 is O(Nnew).
*erefore, the time cost of our overall iterative online
process is linear to the size of all images. Also, it is equivalent
to the time cost of one-round learning of offline hashing.

4. Experiments

4.1. Datasets. We use Market-1501 dataset [41] to evaluate
the performance of our method. *ere are 32,668 bounding
boxes of 1,501 identities in Market-1501 dataset. It has the
largest person re-id dataset with 14.8 cross-camera ground
truths for each query on average. Also, it is closer towards
realistic situations than previous ones. Market-1501 dataset
can better show the effectiveness of onlinemethods. Since we
mainly focus on the efficiency of person image retrieval and
do not focus on feature learning, we directly use IDE_R-
esNet_50 features.

4.2. Experimental Settings. We compared our methods with
two non-hashing methods: Euclidean [41] and KISSME [27],
and two supervised offline hashing methods: COSDISH [9]
and SDH [10]. We set NI � 1000, which means that the
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database contains 1000 images at the beginning. *en, we set
Nnew � 1000, which means that at each round, 1000 new
images are added to the database. Finally, the database contains
32668 images; at the last round, 668 images are added. Since
COSDISH and SDH are offline methods and it is obviously
time-consuming to train in every round, to be consistent with
real applications, we only train hash functions at first round for
COSDISH and SDH. Deep learning-based hashing methods
[34–36] usually require many computing and storage re-
sources, which are not appropriate for mobile embedded
systems. *erefore, we do not use them for comparison.

Our method only relies on one parameter α. We select a
proper value of α from a candidate set
0.1, 1, 10, 102, 103, 104, 5 × 104, 105 , and we finally choose

the best α � 5 × 104. *e hashing code length for all hashing
methods is set to 512.

Non-interpolated mean average precision (MAP) score
is utilized [42] to evaluate the performance of all compared
methods. Given a query, the average precision (AP) is de-
fined as

AP �
1
p



N

i�1
pre(i)rel(i), (15)

where p is the number of relevant images, pre(i) is the
precision of top i retrieved images, and rel(i) � 1 if the image
is relevant to i − th query; otherwise, rel(i) � 0. *e MAP
score is the mean of AP scores from all queries. Besides

(i) Input: B, X, H
(ii) Output: W
(1) Initialize an orthogonal matrix W;
(2) for iter<max_iter do
(3) Update H according to equation (10);
(4) Compute M � 2BW + 2αXTH;
(4) Perform the compact SVD M � USVT;
(6) Compute W �

�
n

√
UVT;

(7) end for

ALGORITHM 1: Generalized power iteration for solving W and H.

(i) Input: Cold, Dold, Eold, Hold, Xold, Xold
(ii) Output: W, Cold, Dold, Eold, H
(1) Compute truncated similarity matrix Znew;
(2) Compute Cnew according to (11);
(3) Compute Dnew according to (12);
(4) Compute Bnew according to (13);
(5) Initial an orthogonal matrix W;
(6) for iter<max_iter do
(7) Compute Hnew � sgn(XnewW) ;
(8) Update Enew according to (14);
(9) Compute M � 2BnewW + 2αEnew;
(10) Perform the compact SVD M � USVT;
(11) Compute W �

�
n

√
UVT;

(12) end for
(13) Update Cold � Cnew, Dold � Dnew, Eold � Enew;
(14) Add new hashing codes by H � [HT

old, HT
new]T

ALGORITHM 2: Online optimization algorithm based on GPI.

(i) Input: XI, Xnew
(ii) Output: W, H
(1) Using XI as training data, compute Wol d, Hol d according to Algorithm 1;
(2) While new images Xnew come in
(3) Update W, Cold, Dold, Eold, H by Algorithm 2;
(5) End While

ALGORITHM 3: Overall process of ODAGH.
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MAP, precision-recall (PR) curves are also used to measure
the performance of all methods.

4.3. Experimental Results. Table 2 shows the MAP score of
all compared methods on Market-1501 dataset. *e results
of Euclidean and KISSME are reported in [41], and we
carefully tune the parameters of COSDISH and SDH to
report best results. From Table 2, we can find that OAGH
performs best. Although OAGH is an unsupervised method,
it can effectively preserve visual correlation of images in
hashing codes. *e performance of two offline hashing
methods is much worse than other methods, even though
they are supervised methods. *e main reason is that they
cannot support online learning of new images, and they only
use 1000 initial images for training. *e MAP scores ob-
tained by the non-hashing method KISSME are very close to
OAGH. *e main reason is that hashing will introduce
quantization loss. It is reasonable that hashing methods
perform even worse than non-hashing methods.

Figure 2 shows the PR curves of all compared methods,
and we can further observe the retrieval performance of
them. We can obtain similar results as MAP scores. OAGH
and two non-hashing methods significantly outperform
other two hashing methods. Also, the yellow curve of
KISSME is very close to blue curve of OAGH.

Both MAP scores and PR curves demonstrate the su-
periority of our ODAGH. It can easily outperform offline
hashingmethods. Also, it can even outperform classical non-
hashing methods. *e above results prove that the proposed
online discrete anchor graph learning process has good
applicability and makes the process effective.

At last, we also evaluate the total training time of ODAGH.
Table 3 shows the comparison of training time, and the ex-
periment described in Table 3 is conducted on a PCwithCore i5
2.11GHz CPU and 16GB memory. For offline hashing, we use
SDH as representative. When new images come in, offline
hashing trains the whole database, while ODAGHonly needs to
process new data. As a result, in our experiment, ODAGH
totally processes 32668 images, and SDH processes 560668
images in fact. *erefore, the training time of ODAGH is
significantly less than SDH. If new data continue to come in and
the database continues to be enlarged, the superiority of our
method in total training time will be much more significant.

4.4. Influence of Code Length. Traditional graph-based
hashing methods cannot directly solve the discrete con-
straint of hashing codes, which will introduce much
quantization loss. When code length increases, the

quantization loss will also increase, and thus their perfor-
mance cannot be improved and even deteriorates when the
code length increases [43].

Figure 3 shows the performance of ODAGH with in-
creasing code length, and we can observe that the perfor-
mance increases constantly with the increase of code length.
*e main reason is that ODAGH uses the GPI-based online
discrete optimization procedure which can effectively avoid
the quantization loss. We can also find that when that code

Table 2: Comparison of MAP results on Market-1501 dataset.

Method MAP
Euclidean 0.5422
KISSME 0.5677
COSDISH 0.3829
SDH 0.2989
OAGH 0.5723
*e best result is highlighted in bold.
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Figure 2: PR curves of all compared methods on Market-1501
dataset.

Table 3: Comparison of total training time.

Method Time (seconds)
Offline hashing (SDH) 1964.8
ODAGH 141.4
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Figure 3: MAP variations with code length of 64, 128, 256, 512, and
1024.
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length is larger than 512, the increase of MAP score is not
significant, which indicates that 512 bits are sufficient for this
person re-id task.

4.5. Parametric Analysis. In this section, we analyse the
influence of parameter on our method. Figure 4 shows the
MAP scores with different values of α, where α varies from 1
to 105. We can observe that the performance of ODAGH is
stable with the variation of α, and thus our method is not
sensitive to the parameter and is robust in person re-id.
Moreover, we can find that MAP score achieves relatively
high value when α> 104, which has the samemagnitude with
image number. *is phenomenon indicates that we can
easily set the parameter α according to database size.

5. Conclusions

In this paper, we propose online discrete anchor graph
hashing (ODAGH) for mobile person re-id. We first in-
troduce the basic formulation of discrete anchor graph
learning which can effectively preserve visual correlation of
images and avoid quantization loss. *en, we derive a novel
online optimization algorithm to update hashing functions
and compute discrete hashing codes in online manner. *e
time complexity of online optimization algorithm is linear to
the size of new images and irrelevant to the database size.
Experimental results on real-world dataset Market-1501
demonstrate both effectiveness and efficiency of ODAGH
compared to several state-of-the-art non-hashing and offline
hashing person re-id methods.

In future work, we will continue to improve ODAGH to
make it more suitable for the real-world application of
mobile person re-id. For example, several UAVs usually
work together with each other, and distributed hashing [44]
is required for the person re-id of UAV swam.

Data Availability

*eMarket-1501 data used in this study are from previously
reported study which has been cited, and they are publicly

available on https://github.com/zhunzhong07/IDE-
baseline-Market-1501. *e experimental result data used
to support the findings of this study are available from the
first author upon request.
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+ere are various means of monitoring traffic situations on roads. Due to the rise of artificial intelligence (AI) based image
processing technology, there is a growing interest in developing traffic monitoring systems using camera vision data. +is study
provides a method for deriving traffic information using a camera installed at an intersection to improve the monitoring system
for roads.+emethod uses a deep-learning-based approach (YOLOv4) for image processing for vehicle detection and vehicle type
classification. Lane-by-lane vehicle trajectories are estimated by matching the detected vehicle locations with the high-definition
map (HDmap). Based on the estimated vehicle trajectories, the traffic volumes of each lane-by-lane traveling direction and queue
lengths of each lane are estimated. +e performance of the proposed method was tested with thousands of samples according to
five different evaluation criteria: vehicle detection rate, vehicle type classification, trajectory prediction, traffic volume estimation,
and queue length estimation.+e results show a 99% vehicle detection performance with less than 20% errors in classifying vehicle
types and estimating the lane-by-lane travel volume, which is reasonable. Hence, the method proposed in this study shows the
feasibility of collecting detailed traffic information using a camera installed at an intersection. +e approach of combining AI and
HD map techniques is the main contribution of this study, which shows a high chance of improving current traffic
monitoring systems.

1. Introduction

Urban road traffic is a complex phenomenon caused by
interactions among various moving entities, such as vehicles
and pedestrians. +e growth in urban population during the
past decades has raised the severity of urban traffic con-
gestion, leading to socioeconomic and environmental
problems in modern cities. To mitigate this issue, brisk trials
have been conducted to apply intelligent transportation
systems (ITS) in urban roads. In this regard, traffic moni-
toring is one of the most valuable functions of traffic
management systems (TMSs). Particularly in advanced
TMSs (ATMSs), real-time collection of precise information
through traffic monitoring plays a crucial role for traffic
managers when they develop various control strategies
[1–3]. Furthermore, the detailed numerical status of real-
time traffic such as lane-by-lane travel volume and queue

length can be used as supplementary information for co-
operative intelligent transportation system (C-ITS) opera-
tions based on autonomous vehicles [4, 5].

Traffic monitoring systems have been developed in
various ways, and traffic information is collected indirectly
or directly depending on the characteristics of a specific
monitoring system. Indirect methods estimate traffic status
such as travel volume and travel time within a road section
based on the data samples collected via roadside units (RSU)
or global positioning systems (GPS), which are instances of
automatic vehicle identification (AVI) technologies [6–8].
However, the estimation performance of these methods is
highly dependent on the market penetration rate (MPR) of
equipped vehicles for vehicle-to-infrastructure (V2I) com-
munication. On the contrary, direct methods measure the
traffic conditions using point sensors such as loop detectors
[9–11], radars [12–14], and video cameras [15, 16]. Loop
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detectors have been widely used for traffic monitoring due to
relatively higher reliability in collecting travel volume, oc-
cupancy, and spot speed, but their installation and main-
tenance complexity is higher because they are normally
installed on road surfaces [17]. Radar-based monitoring
systems are relatively easier to install, but the cost of the
hardware itself is more expensive [18]. Moreover, the
common limitation of both loop detectors and radar is
difficulty in classifying vehicle types. However, cameras are
relatively cheaper than radars, and camera-based moni-
toring systems are able to classify vehicle types [19].+ey can
also distinctively obtain traffic information in each lane of a
road spot [17]. +ey have a high potential for extracting
more detailed traffic information at a specific location, but it
requires advanced image processing techniques to obtain
reliable information, which is problematic. Automatic traffic
data collection via camera-based monitoring systems can be
operated at lower costs only when proper image processing
techniques support the system.

Various methods have been proposed in several studies
related to automatic image processing techniques. Some
studies from the early 2000s had focused on improving the
poor performance with respect to vehicle detection owing to
several technical issues, such as segmentation of objects in
the background and shadows [20], difficulties in detecting
dark-colored vehicles [21], differences in day- and night-
vision data [22], and influences of weather conditions [23].
An attempt to develop a technique to detect accidents au-
tomatically was also reported [24].

Recently, studies began to focus on using machine-
learning or deep-learning techniques, and one of the most
popular examples is the application of You Only Look Once
(YOLO) to process traffic vision data [25]. YOLO has high
applicability to real-time traffic monitoring based on its
capability to process multiple images faster than conven-
tional region-based convolutional neural networks (R-
CNNs). With the aid of deep-learning techniques such as
YOLO or faster R-CNN, the performance of detecting ve-
hicles using real-time traffic vision data has been tried to
improve in several studies. +eir common purpose was to
accurately count vehicles for estimating traffic conditions in
specific road spots [26]. Some of them specifically focused on
detecting vehicles in captured scenes with several objects
(vehicles) with high density [27], while others focused on
detecting small objects (vehicles) in complex scenes [28, 29].
Some studies have also attempted to distinctively detect road
vehicles and pedestrians [30, 31].

Such object detection techniques have evolved into real-
time visual object tracking approaches. Several studies have
proposed methods for tracking multiple objects in time
series based on convolutional neural networks (CNNs)
[32–34]. +ere are also some examples of using kernelized
correlation filter (KCF) for high-speed tracking of objects on
roads and even in waterway traffic [35, 36]. Within the
context of object tracking on roads, there were a few studies
related to tracking moving vehicles particularly for the
purpose of collecting more detailed traffic behaviors [37].
+ey have proposed methods for extracting and analyzing
trajectories of multiple vehicles within a specified road spot

for capturing lane-change events [38] or measuring the
speeds of individual vehicles [39]. However, till now, only
rough estimations have been conducted on trajectories
without accurately measuring vehicle positions over time.
For example, with the current machine-learning-based
image processing techniques, a possibility of detecting
multiple vehicles as a single object arises when they travel
through similar paths and speeds, even though on different
road lanes. Hence, it is still difficult to obtain an accurate
trajectory of a vehicle by tracking the exact position of the
road lane where the vehicle is located. Obtaining accurate
trajectories of multiple vehicles would be advantageous to
traffic managers intending to improve the accuracy of col-
lecting travel volume or queue length values in each traveling
direction at an intersection. Furthermore, it would enable us
to obtain information on different road lanes, which can be
useful for deeper analysis of traffic flow behavior and sup-
porting autonomous vehicle operations.

+erefore, we present a method for deriving traffic in-
formation using a camera installed at an intersection for
improving monitoring performance. +e method uses a
deep-learning-based approach for image processing for
vehicle detection and vehicle type classification. +en, the
method estimates lane-by-lane vehicle trajectories by
matching the detected vehicle locations with the high-def-
inition map (HD map). While estimating the vehicle tra-
jectories, we attempt to reduce the error of estimating the
center points of the bounding boxes in the images of vehicles
to ensure proper performance of the HD map-matching
process. Based on the estimated vehicle trajectories, the
traffic volumes of each lane-by-lane traveling direction and
queue lengths of each lane were estimated as well. In fact,
this is not the first attempt to increase the accuracy of
trajectory estimation to the lane level.+e work in [40] had a
similar purpose and approach but differs from the present
study in that recent deep-learning techniques and HD map
technology are combined for estimating vehicle positions
accurately.

+e remainder of this paper is organized as follows.
Section 2 provides a description of the method of vehicle
detection and classification, along with the method of
matching the detected vehicle positions with the HDmap for
lane-by-lane trajectory estimation. Section 3 describes the
settings for testing the performance of the proposed method,
and Section 4 presents the test results. Section 5 concludes
this paper and offers suggestions for further work.

2. AI-Based Vehicle Detection
System at Intersection

2.1. Data Flow Framework. In fact, the image processing
technology these days can easily identify a vehicle in a
captured image, as long as the image resolution is sufficient.
However, the focus of this study is on how to precisely
extract traffic information upon multiple vehicles on roads
rather than a single vehicle and how to deal with the
extracted data from the traffic monitoring perspective.
Hence, it is necessary to consider the data flow framework of
the camera-based vehicle detection system.
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Figure 1 shows the data flow framework of the arti-
ficial intelligence (AI) based vehicle detection system for
C-ITS. As shown, the system consists of four compo-
nents: roadside sensor, traffic monitoring center, RSU for
communication, and an on-board unit (OBU) in vehicles.
In this study, traffic cameras installed at intersections
were considered as the main roadside sensors. First, the
vision data of the traffic status at an intersection were
collected in real-time via a roadside sensor and sent to a
data collecting server in the traffic monitoring center.
+en, using the vision data, the center conducted the
vehicle detection task using the AI-based image pro-
cessing technique. +e information gathered from the
vehicle detection task was then used to extract and predict
the trajectories of vehicles. +en, the trajectory data
information underwent the HD map-matching task to
improve the prediction accuracy. +e information mes-
sage of the detected vehicles and their predicted trajec-
tories were sent to the OBU in a subject vehicle via RSU
using infrastructure-to-vehicle (I2V) communication.
When a message was received, the collision risk of the
subject vehicle could be calculated based on the predicted
trajectories and also be displayed to the vehicle moni-
toring system. +e status of the subject vehicle could be
sent back to the traffic monitoring center via the RSU
using V2I communication.

+e framework described above provides two major
advantages in terms of C-ITS operations. +e first is that
vehicle-to-vehicle collisions can be prevented by pro-
viding vehicles with their detection information traveling
through intersections. Implementing a service that pro-
vides detailed information, such as vehicle location, speed,
and abnormal status, is possible. In addition, it provides
predictive information in seconds using the previously
detected information. Second, a more detailed road status
can be provided by extracting lane-by-lane traffic con-
ditions near intersections. It is possible to provide a
service that provides information on the traffic volume
and vehicle queue of each lane. Furthermore, a service that
detects illegally parked vehicles on streets can also be
implemented. In this study, we aim to improve the ad-
vantages of the framework. +e focus of this study is to
develop methodologies for AI-based vehicle detection and
HD map matching, which are the tasks of the traffic
monitoring center described above.

2.2. AI-Based Vehicle Detection and Trajectory Prediction.
In this study, a deep-learning algorithm is adopted using
roadside sensors to extract object information such as ve-
hicle location, movement trajectory, and vehicle speed at
intersections and surrounding areas, and useful traffic in-
formation, such as traffic volume and queue length, is es-
timated. +e proposed algorithm is based on vision data
transmitted from the roadside sensors to a vision data
collecting server located in the traffic monitoring center, and
the predicted data are stored in a real-time database for real-
time data communication. As shown in Figure 2, the pro-
posed algorithm consists of (1) vehicle detection and

classification with deep learning, (2) trajectory extraction,
(3) trajectory correction, and (4) trajectory prediction, and
the details are outlined as follows.

2.2.1. Vehicle Detection and Classification with Deep
Learning. We used a deep-learning-based algorithm for
vehicle detection as it has higher applicability to real-time
traffic monitoring compared to other image processing
techniques such as traditional labeling due to its capability
of processing multiple images faster than others. +e
proposed system performs real-time detection of vehicle
location and speed from the vision data sent from the
vision data collecting server based on the YOLOv4 deep-
learning algorithm and performs vehicle type classifica-
tion. +e YOLOv4 algorithm uses the state-of-the-art
deep-learning method and is optimized, showing 10%
improved performance for the detection accuracy index
(MAP: mean average prediction) and a 12% improved
detection speed index (FPS: frame per second) compared
to YOLOv3, the previous version of the algorithm. In
particular, YOLOv4 can process vision data with effi-
ciency, enhancing its applicability in the traffic safety
sector where detection, preprocessing, and warning
message generation must be performed within 0.1
seconds.

In the process of vehicle detection and classification with
deep learning, the algorithm processes vision data in frames
and primarily generates vehicle type information such as
cars, trucks, and buses and vehicle location information
based on pixels. As for vehicle type information, data derived
from YOLOv4 can be directly used, and additional separate
training was performed based on the target site data to
improve the accuracy of vehicle type information. Vehicle
location information was generated based on the informa-
tion of each vertex and the center point of the bounding box.
+is information was then converted into longitude and
latitude coordinates based on the center point of the vehicle’s
bottom through correction.

2.2.2. Trajectory Extraction. +e vision data collected from
the roadside are distorted when converting 3D real-world
images into 2D images. Because of this distortion, a sig-
nificant error occurs between the actual physical coordinates
and the image coordinates depending on the degree of vision
data distortion when the location information detected in
pixel units is converted directly into longitude and latitude
coordinates. In this study, to remove this error, the corrected
vision data were generated from the distorted vision data by
inverse application of the camera intrinsic parameters
extracted through its calibration. Note that the focal length,
principal point, and distortion are the intrinsic parameters
of the camera. +e values of the intrinsic parameters were
determined by projecting a 2D image into 3D world space.
Also, note that an existing method is used for the distortion
correcting process in this study. For a better understanding
of the details of the distortion correcting method, refer to the
work by Seong et al. [40]. +e equation for correcting the
vision data distortion is as follows:
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where xp, yp are the pixel coordinates of an image, xpu, ypu
are the pixel coordinates of the image corrected for dis-
tortion, xn, yn are the normalized planar coordinates with
distortion, and xv, yv are the normalized planar coordinates
with corrected distortion. Focal length: fx � 664.821;
fy � 668.333. Principal point: cx � 350.377; cy � 350.377.

Distortion: k1 � 0.278027, k2 � 0.058863, p1 � 0.000278,
and p2 � −0.001996.

+e vehicle location information detected from each
image frame was expanded to a continuous frame for
extracting the vehicle trajectory information and data for use
in vehicle location correction. In the video images captured
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Figure 1: Data flow of AI-based Vehicle Detection system for C-ITS.
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by a camera, the similarity between the feature information
of the object in the image frame is used to track the location
change of the objects. To track the vehicle’s location, its
location and size in the previous frame were compared with
those of the vehicle object detected in the next frame. As a
result, the vehicle with the largest intersection of union
(IOU) was classified as an identical vehicle to the vehicle
existing in the previous frame; based on this classification,
the continuous movement of the vehicle was tracked. In
addition, if there was no intersection of union where the
location and size of the detected object for a set frame (0.2 s)
overlapped with that in the previous frame, the object was
recognized as a new object, and a new vehicle tracking ID
was assigned.

+e pixel coordinates extracted from an image are cal-
culated based on a matrix transformed using Transverse
Mercator coordinates of four designated points in the HD
map. +e transformed matrix is derived by using homog-
raphy that generalizes transformation relationships after
obtaining coordinates corresponding to sample image co-
ordinates. If there are four points (x1, y1), (x2, y2), (x3, y3),
and (x4, y4) in a plane and these points are projected to
another plane as (x1′, y1′), (x2′, y2′), (x3′, y3′), and (x4′, y4′),
there exists a 3 by 3 homography matrix H satisfying re-
lationship among these corresponding points. +e camera
image coordinates are converted to real-world coordinates
using such a mechanism.

2.2.3. Trajectory Correction. In general, deep-learning-based
vehicle detection extracts information in the form of a
bounding box, and the central point of the bounding box
represents the overall vehicle location information. How-
ever, as shown in the example in Figure 3, when vehicle
location information is extracted with reference to the center
point of the bounding box, the result differs from the lo-
cation with reference to the center point of the vehicle
bottom, which is the actual required information for traffic
monitoring. In addition, when the center point is estimated

based on the bounding box, an error occurs in the estimated
position according to the heading shown (by captured angle)
in the vehicle image. +is type of error can lead to another
error in trajectory prediction. +is subsequent error can
lower the performance of the HD map-matching process,
which deals with extracting lane-by-lane traffic information
later. Furthermore, if we assume that the trajectory pre-
diction with such an error is utilized in a vehicle’s collision
warning or avoidance system, it can also lead to insufficient
performance of the safety system. Hence, it is necessary to
give an effort in reducing the errors while estimating the
center point of the bounding box.

In this study, to reduce the error in center point esti-
mation, real-time correction of vehicle location was per-
formed through the following two steps: (1) extracting the
heading and determining the traveling direction of the
vehicle and (2) estimating the shape of the vehicle bottom
and correcting the location.

For the first task, the vehicle heading was obtained using
the pixel coordinates detected in the vision data collected
from the road (the bounding box center point value) and the
pixel coordinates of the previous frame, as shown in Fig-
ure 4. +e heading of a vehicle is extracted through the
following steps: (1) +e vehicle position of the previous
image frame and the position of the current image frame are
converted into coordinates using a transformation matrix.
(2)+e angle formed by the two positions is calculated using
the Pythagorean equation, and the distance between the two
positions is calculated using the coordinate values. +e
extracted heading for each frame was corrected based on the
low-pass filter as follows:

zn � σ · zn−1 +(1 − σ) · zn, (2)

where zn is the corrected heading, zn−1 is the heading at
previous time, zn is the heading at current time, and σ is the
weight.

+e vehicle traveling direction and the vertical direction
are derived using the heading obtained from the real-time
estimation and the detected pixel coordinates. Figure 4(a)
shows the corrected results of the low-pass filter. In
Figure 4(b), the orange and blue colored lines represent the

Figure 3: Comparison before (red-colored dot) and after (orange-
colored dot) the trajectory correction.

Vehicle detection and
classification with deep learning

Trajectory extraction

Correction of image distortion

Extraction of vehicle heading and
determination of vehicle travelling

direction

Estimation of vehicle bottom shape
and correction of vehicle location

Tracking of vehicle location

Trajectory correction

Trajectory prediction

Figure 2: Algorithm for vehicle detection and trajectory prediction
with deep learning.
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filtered and raw data, respectively. Noisy data points and
variation in heading information are smoothed using a low-
pass filter.

Based on the previously derived information of vehicle
traveling direction and vehicle type, the shape of the vehicle
bottom was estimated, as shown in Figure 3. Because the
vehicle height varies depending on the type, the shape of the
bottom surface within the bounding box is estimated by
applying the average vehicle height per vehicle type. +e
bottom surface information is estimated based on the fol-
lowing steps: (1) +e center points of the bounding boxes in
the previous image frame and in the current image frame are
converted into Transverse Mercator coordinates. (2) Since
the vector formed by the two center points is the moving
direction of the vehicle, a hypothetical vector perpendicular
to the moving direction is drawn to create a rectangular
vehicle bottoms shape (assuming that vehicles have a
rectangular shape from the top view). (3) Let hcamera be the
height between camera and ground surface, hvehicle be the
height of a vehicle, d1 be the distance on the surface between
camera and vehicle, and d2 be the distance on the surface
between the camera and point where the line connecting
between the camera and the top of the vehicle meets the
surface. Here, hcamera, hvehicle, and d2 are directly obtained
from image data, and d1 then can be calculated by the
triangle proportional theorem. Note that the height of the
vehicle is assumed to be half of the actual height because the
center point of the bounding box detected in the image is
half the actual height in usual. Based on this method, the four
corner points (in 3D coordinates) of the vehicle bottom are
estimated. (4) +e 3D coordinates of the vehicle bottom
(a′, b′, c′, d′) are then converted into the image coordinates
(a″, b″, c″, d″) using an inverse transformation matrix, and
this finalizes estimating the vehicle bottom.+e center point
information of the vehicle’s bottom surface is extracted
based on the estimated pixel information of the bottom

surface, and the final pixel-based location information of the
vehicle is derived based on this information.

2.2.4. Trajectory Prediction. Using the previously derived
real-time trajectory data of the vehicle, the upcoming vehicle
trajectory information from 1 to 3 seconds was estimated.
Location information for each time slot was used to estimate
the future trajectory of the vehicle. In addition, a polynomial
curve fitting algorithm was used, as shown in the following
equation, by applying a linear equation if the past data is a
vehicle traveling forward or a quadratic equation for a
turning vehicle, to extract the future location of the vehicle.
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(3)

When estimating the future location of the vehicle based
on the detected vehicle location information alone, the result
showed that the prediction performance is decreased at the
intersection approach where a fewer number of points exist
in the trajectory data. To address this limitation, the HDmap
previously built at the intersection was used, as shown by the
solid black lines in Figure 5. Using the location information
per link in the HD map, the future vehicle location was
estimated assuming that the vehicle trajectory will follow the
shape of the HD map link, and the estimated result is shown
in Figure 5. +e blue solid line represents the ground truth,
the green- and blue-dotted lines represent the link of the HD
map where the detected vehicle is assigned, and the red-
dotted line represents the estimated future location of the
vehicle.
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Figure 4: Example of vehicle heading estimation. (a) Example image. (b) Correction result (example).
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2.3. Provision of V2X Communication-Based Detection
Information

2.3.1. Generation of HD Map-Based Information. +e cur-
rent C-ITS provides information such as unforeseen inci-
dents or accidents via messages that include longitude and
latitude data. For such type of information, C-ITS has an
advantage in terms of general use of information but is
disadvantageous when the number of messages increases
sharply with the increase in the number of related pieces of
information. Furthermore, in the case of existing C-ITS
based on location information, the computational load in-
creases rapidly as the number of messages increases when
matching the predicted vehicle trajectory information and
point of event occurrence for each event. What is worse in
the case of predicting trajectory based on the past trajectory
is that the accuracy decreases at curved sections and in-
tersections, leading to reduced accuracy when matching
events.+erefore, in this study, to overcome the limitation in
sending location information based on longitude and lati-
tude, the AI-based detection and prediction information
provided in the previous subsection was combined with the
HD map link information, as shown in Figure 6(a).

Figure 6(b) shows the HDmap link allocation algorithm.
First, in the process of extracting HD map link information,
information such as the length, linearity, and type of link and
the longitude and latitude of the start and end points are
extracted from the link attribute information of the HDmap.
+is information of the HD map is compared with the
detected location coordinates of the vehicle, and matching is
performedwith the nearest link, extracting the lane on which
the vehicle is currently traveling. Figure 7 shows an example
of the HDmap link allocation based on the trajectories of the
forward-traveling vehicle and turning vehicle. As shown in

the figure, information on whether the vehicle travels for-
ward or turns is extracted based on the vehicle trajectory for
the past 1 s. Based on this information, if the vehicle is
determined to be traveling forward, links with forward-type
traveling are extracted from the HD map links, and the
extracted candidate links and vehicle trajectory for 1 s are
matched based on the start and end points, thereby
extracting the HD map link with the closest matching. Fi-
nally, the HD map link extracted based on the distance is
compared with the heading of the vehicle traveling direction,
and when the latter shows consistency within a set threshold,
the HD map link is allocated.

To enhance the applicability of the extracted information
based on AI, the information extracted from the vision
sensor is allocated in HD map link units. +en, the number
of vehicles present in the link representing density, the most
necessary information in traffic management, and queue
length information are generated by the link. +e density is
calculated as the difference (nin − nout) between the number
of vehicles entering the starting point (nin) and that leaving
the end point of the link (nout). As for the queue length of a
vehicle, when the average speed over the last 1 s is smaller
than the set speed for each HD map link, the corresponding
vehicle is classified as the vehicle in the queue. To improve
the applicability of the information, the queue length is
expressed based on the offset of the HDmap. For example, if
the length of the HD map link is 50m, the start point of the
link is set to 0, and the end point of the link is set to 50 based
on the vehicle traveling direction. Based on these values,
when the vehicle queue length is 20m from the end point of
the link, the start point of the queue is offset by 30, and the
end point by 50.

2.3.2. Data Design for V2X Communication-Based Infor-
mation Provision. Data converted based on the link format
of the HD map are stored in the server in the format
shown in Tables 1 and 2 to be utilized in messages in C-ITS
in the future. Table 1 shows the storage format of vehicle
information, which is used for storing and sharing object
information (vehicle type, longitude, and latitude coor-
dinates) extracted from AI. However, to improve the
applicability of the information and accuracy of matching
with the vehicle trajectory, the information allocated to
the HD map link is combined. In addition, providing
predicted information of vehicle objects based on the HD
map link ID facilitates the calculation of the probability of
collision in the future traveling direction of an autono-
mous vehicle.

Table 2 shows the storage format of data, primarily
processed to facilitate the application of the information
extracted from AI-based detection information to the traffic
management field. As described above, information of the
number of vehicles present in the link (density), queue
length information, and average speed information is gen-
erated with reference to the HD map link. Similar to the
storage format of vehicle information (Table 1), the pre-
dicted information is provided to facilitate the calculation of
the collision probability in the future traveling direction of

Figure 5: Example of vehicle location prediction.
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an autonomous vehicle. As shown in Tables 1 and 2, not only
does the proposed system enhance the applicability of in-
formation by actively utilizing HD map links, but also the
object extraction and traffic-related information are pro-
vided in combination with a similar format considering the
need for other information attributes depending on the
situation.

3. Target Site for Application of the Proposed
Method and Evaluation

3.1. Target Site. Figure 8 shows the target site for applying
the AI-based vehicle detection and prediction technique
proposed in this study. +e proposed system was evalu-
ated using data collected for three days, and data for
accuracy verification were generated in two steps as

follows. First, the ground truth data for calculating the
accuracy of vehicle location information were generated
using a drone, by capturing the same area as the image
data collected from the roadside vision sensor and col-
lecting vertical images. Second, information such as the
vehicle type, number of vehicles in a link, and queue
length was generated based on a field survey, and the
vehicle type and the number of vehicles were manually
counted from visual observation of image data. To prevent
human errors in counting, a cross-check and final check
were performed using labeled image data.

3.2. Accuracy Evaluation. Descriptions of how we evaluate
the performance of the proposed methodologies are pro-
vided in this subsection, which is based on five different
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Figure 7: Example of road lane allocation for a vehicle traveling forward and a turning vehicle.
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Figure 6: HD map example for generation of HD map-based information of the target site (a) and HD map link allocation algorithm (b).
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evaluation criteria: vehicle detection rate, vehicle type
classification, trajectory prediction, traffic volume estima-
tion, and queue length estimation.

3.2.1. Accuracy of Vehicle Detection and Classification.
To evaluate the vehicle detection performance, the detection
rate was calculated to determine whether all vehicles were

Table 2: Traffic information storage format including the number of vehicles on the link and queue length.

Field name Description
LinkID Serial number of link ID in road central line of HD map in the detection area
Timestamp Vehicle detection time (present)
Avgspeed Average speed of vehicles with link ID
Linktraveltime Difference between the entry and exit time of vehicle
Numvehicle Number of vehicles for the applicable link (present)

Object status ObjectID ID of an object with abnormal driving
Offset Offset of event point for link ID

Queue
QueueID Queue event ID
Offsetstart Start point of offset of event point for link ID
Offsetend End point of offset of event point for link ID

Road prediction

Index Index (0–29 for 3 s prediction in units of 0.1 s)
Timestamp Vehicle detection time (prediction)
Numvehicle Number of vehicles for the applicable link (prediction)
Avgspeed Average vehicle speed (prediction)

(a) (b)

Figure 8: (a) Example of roadside sensor screenshot. (b) Example of HD map.

Table 1: Vehicle information storage type.

Field name Description
LinkID Serial number of link ID in road central line of HD map in the detection area
Timestamp Vehicle detection time: Unix timestamp (UTC) of accuracy in milliseconds
ObjectID Object ID
Vehicletype Vehicle type
Vehicletypeprob Vehicle type probability
Objectstatus Normal/abnormal traveling status (abnormal when not in motion for a certain period of time)
Offset Offset of event point for link ID
Posdistance Distance between the present HD map link and the extracted coordinates in longitude/latitude
Poslong Longitude
Poslat Latitude
Speed Speed of detected vehicle (km/h)
Heading Heading (°)

Object prediction

Index Index (0–29 for 3 s prediction in units of 0.1 s)
Timestamp Vehicle detection time (prediction)
Poslong Longitude
Poslat Latitude
Speed Speed (km/h)

Heading Heading (°)
LinkID Link ID of predicted location at the timestamp of the detected object
Offset Offset of link ID of predicted location at the timestamp of the detected object
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successfully detected regardless of vehicle type. As in
equation (4), it is defined as the ratio of the total number of
detected objects to that of ground truths:

detection rate �
total number of detected objects
total number of ground truths

. (4)

Vehicle classification performance is evaluated through
MAP, which is a performance evaluation index widely used
in the field of computer vision. MAP is the mean of the
average precision (AP) values of each vehicle type. +e AP
represents the performance of the classification algorithm as
a single value, and it is calculated as the area below the graph
line in the precision-recall graph. As in equation (5), the
precision is calculated as the ratio of the number of correct
answers for vehicle type classification (true positives) to that
of all detected vehicles (sum of true and false positives). +e
recall is calculated as the ratio of the number of correct
answers (true positives) to that of all ground truths (sum of
true positives and false negatives), as shown in equation (5).
Precision and recall are inversely related to each other.

Hence, the changes in such a relationship are analyzed to
properly evaluate the overall performance of the proposed
method.

Precision �
TP

TP + FP
�

TP
all detection

, (5)

Recall �
TP

TP + FN
�

TP
all ground truths

. (6)

3.2.2. Accuracy of Vehicle Trajectory Estimation. +e per-
formance of the vehicle trajectory prediction was evaluated
by comparing the predicted and actual trajectories. +e
predicted trajectory is the set of coordinates within an in-
tersection derived by the AI-based detection technique,
while the actual trajectory is that directly generated from the
image data. +e average Euclidean distance is used for
calculating the prediction accuracy, as shown in the fol-
lowing equation:

average Euclidean distance �

���������������������������


N
t�1 xa,t − xp,t 

2
+ ya,t − yp,t 

2


N
, (7)

where N is the number of sets of t for the comparison,
(xa,t, ya,t) are the actual coordinates of the vehicle location
at t, and (xp,t, yp,t) are the predicted coordinates at t.

3.2.3. Accuracy of Traffic Volume Estimation. Traffic volume
was estimated by comparing the number of vehicles counted
by the image processing (estimated value) technique and
that counted manually (actual value). +e evaluation was
performed by calculating the root mean square error
(RMSE) and mean absolute percentage error (MAPE). +e
former is used to check the degree of difference between the
estimated and actual values, which can be calculated using
the following equation:

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




, (8)

where n is the number of data points for the comparison, yi

is the i-th predicted value, and yi is the i-th actual value of
the traffic volume.

However, RMSE is highly influenced by the size of the
estimation subject (scale-dependent errors), and it may
emphasize only greater errors than the small ones. Hence, we
calculate MAPE as well, which is independent of the scale of
the estimation subject and can be calculated using equation
(9):

MAPE �
100
n



n

i�1

Ai − Fi

Ai




, (9)

where n is the number of data points for the comparison, Ai

is the i-th predicted value, and Fi is the i-th actual value of
the traffic volume.

3.2.4. Accuracy of Queue Length Estimation. +e evaluation
of the performance of the queue length estimation is similar
to that of the traffic volume estimation. +is is done by
comparing the queue length in meters derived by the image
processing (estimated value) technique and that collected
from a drone image (actual value). Here, we calculate the
RMSE of the queue length estimation using equation (8),
where yi is the i-th actual value of queue length. We also
calculate the MAPE of the queue length estimation using
equation (9), where Fi is the i-th actual value of the queue
length.

4. Result of Applying AI-Based Vehicle
Detection and Trajectory Prediction

4.1. Accuracy of Vehicle Detection and Classification.
Figure 9 shows an example of vehicle detection using the
proposed training model based on YOLOv4. +e system
detects vehicles within the detection range and saves the
results of the vehicle classification and coordinates of the
bounding box as an image file (∗ .jpg) and data files (∗ .txt),
using the same filename. By using the data collected by the
drone (considered as actual data) and that extracted by the
classification model, the performance evaluation is per-
formed with the detection rate and MAP described in the
previous section. +e number of tested samples was 6,804.
As a result, the detection rate was 99%, indicating that it
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could judge the detected objects as vehicles very well. In
terms of vehicle type classification, the MAP value was 95%
for cars, 87% for trucks, and 81% for buses.

4.2. Accuracy of Vehicle Trajectory Extraction. In vehicle
trajectory extraction, during preprocessing, the locations of
a vehicle are extracted at each frame by the proposed
method. +en, the locations of the vehicles are projected
onto the drone image. By matching the vehicle locations of
the drone image and those from the proposed method to the
same coordinates, it is determined that the vehicle area
overlaps the most with the same vehicle. As shown in the
figure, the vehicle locations extracted by the proposed
method (red box area) are projected onto the drone image,
where the actual vehicle locations are displayed in the drone
image (blue box area) to determine them as the same vehicle.
+e performance of vehicle trajectory prediction is evaluated
using these two different vehicle trajectories, as described in
the previous section. +e number of tested samples was
60,531. As a result, the average Euclidean distance was
1.138m.

4.3. Accuracy of Traffic Volume Estimation. Figure 10 shows
an example of comparing drone and camera images for the
performance evaluation of traffic volume estimation. +e
test area is the blue box area within an intersection. As
shown in the figure, the identification names are assigned for
each in/out lane, and the pairs of the lane-by-lane travel
directions of the vehicles can be seen in Tables 3 and 4.+en,
the number of vehicles in each lane-by-lane traveling di-
rection is counted from the drone images manually to obtain
the actual data. On the contrary, the proposed method
extracts the number of vehicles in each lane traveling di-
rection based on the camera images to obtain the estimated
data. Table 3 shows the traffic volume in each traveling
direction counted from the drone images, and Table 4 shows
that extracted from the camera data. In these tables, the
notations in the second column represent the identification
numbers of departure lanes (from I_1 to I_12) in
approaching roads (from Road_1 to Road_4). However,
those in the second row are the identification numbers of
arrival lanes (from O_1 to O_12) in the roads in each di-
rection. For example, if some vehicles pass through the

intersection from the right-most lane of Road_1 (I_1) to the
left-most lane of Raod_3 (O_5) and they are counted as 5, we
record the counted number as shown in the tables. Hence,
the entire table represents the lane-by-lane vehicle count
values (travel volumes) of all departure and arrival pairs.+e
unknown in the latter table is the case when the camera-
based system fails to detect a vehicle. When comparing the
results of the two, the RMSE is 4.20 vehicles, and the MAPE
is 16.41%.

4.4. Accuracy of Queue Length Derivation. Figure 11 shows
an example of a drone image for queue length derivation,
which was also performed manually. A person selects the
starting and ending points of the vehicles within the delayed
section on the road.+en, data containing the bounding box
information of the vehicles at the starting and end points,
map coordinates, and queue length within the image are
saved. Using the information from these data, the true value
of the queue length is calculated by converting the values
into the real-world scale, which is considered the actual
queue length. However, the proposed method directly de-
rives the queue length through HD map matching to obtain
the estimated data, which is compared with the actual queue
length from the drone image. +e number of tested samples
was 62,205. Comparing the two, the RMSE is 2.37m, and the
MAPE value is 13.25%.

4.5. Comprehensive Evaluation. +e overall performance of
the proposed method is presented in Table 5. As described in
the previous subsections, the detection rate is the total
number of detected objects over the total number of ground
truths, and a successful detection performance of 99% for
6,804 attempts is achieved, which can be judged to be highly
consistent. +e performance of the vehicle classification is
performed in terms of MAP. With 6,804 test samples, the
MAP values were 95%, 87%, and 81% for cars, trucks, and
buses, respectively. Hence, the proposed method also shows
reasonable performance in classifying the vehicle types. In
terms of trajectory prediction, the average Euclidean dis-
tance was 1.138m when 60,531 samples were tested. Such a
low degree of error indicates the high performance of the
proposed method. In terms of both traffic volume and queue
length estimations, the absolute differences are only 4.20
vehicles for vehicle counting and 3.08m in queue length
estimation upon the RMSE values for more than 60,000 test
samples. +e MAPE values are less than 20%, which means
that the performance of the proposed method is reasonable,
particularly when estimating the lane-by-lane traffic infor-
mation. Overall, based on the analyses of the five different
evaluation criteria, the method proposed in this study shows
the feasibility of collecting detailed traffic information with a
camera installed at an intersection. In addition, the average
time taken from image collection, data processing, and data
storage in the server is 0.034 seconds, showing that the
performance of the entire process can be completed within
0.1 seconds in general. Considering the results of this study,
the proposed method is a highly optimistic technology to be
applied to the fields of ITS and C-ITS.

Figure 9: Vehicle detection by the proposed method based on
YOLOv4.
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Figure 10: An example of comparing drone image and camera image for traffic volume estimation.

Table 3: Traffic volume in each direction counted from drone images.

Out Road_1 Road_2 Road_3 Road_4
Total

In O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8

Road_1
I_1 N/A N/A 0 0 5 93 0 8 106
I_2 N/A N/A 0 0 117 1 0 0 118
I_3 N/A N/A 74 0 0 0 0 0 74

Road_2
I_4 0 26 N/A N/A 0 0 1 9 36
I_5 0 0 N/A N/A 0 0 39 0 39
I_6 0 0 N/A N/A 47 0 0 0 47

Road_3
I_7 1 59 0 18 N/A N/A 0 0 78
I_8 82 1 0 0 N/A N/A 0 0 83
I_9 0 0 0 0 N/A N/A 29 0 29

Road_4
I_10 0 0 0 3 0 35 N/A N/A 38
I_11 0 0 32 1 0 0 N/A N/A 33
I_12 23 0 0 0 0 0 N/A N/A 23

Total 106 86 106 22 169 129 69 17 704

Table 4: Traffic volume in each direction extracted through camera data.

Out Road_1 Road_2 Road_3 Road_4
Unknown Total

In O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8

Road_1
I_1 N/A N/A 0 0 5 87 0 8 7 107
I_2 N/A N/A 0 0 109 1 0 0 3 113
I_3 N/A N/A 74 0 0 0 0 0 0 74

Road_2
I_4 0 23 N/A N/A 0 0 1 8 3 35
I_5 0 0 N/A N/A 0 0 37 0 2 39
I_6 0 0 N/A N/A 43 0 0 0 3 46

Road_3
I_7 1 49 0 7 N/A N/A 0 0 12 69
I_8 79 0 0 0 N/A N/A 0 0 2 81
I_9 0 0 0 0 N/A N/A 25 0 0 25

Road_4
I_10 0 0 0 3 0 32 N/A N/A 1 36
I_11 0 0 31 0 0 0 N/A N/A 2 33
I_12 22 0 0 0 0 0 N/A N/A 1 23

Unknown 6 11 0 5 10 6 6 1 0 45
Total 108 83 105 15 167 126 69 17 36 726
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5. Conclusion

In this study, we considered a method for deriving traffic
information using a camera installed at an intersection to
improve the monitoring system for roads.+emethod uses a
deep-learning-based approach for image processing for
vehicle detection and vehicle type classification. +e method
then estimates the lane-by-lane vehicle trajectories using the
detected locations of vehicles. Based on the estimated vehicle
trajectories, the traffic volumes of each lane-by-lane trav-
eling direction and queue lengths of each lane were esti-
mated. +e performance of the proposed method was tested
with thousands of samples according to five different
evaluation criteria: vehicle detection rate, vehicle type
classification, trajectory prediction, traffic volume estima-
tion, and queue length estimation. As a result, the method
shows the feasibility of collecting detailed traffic information
with a camera installed at an intersection.

+e proposed method has two research values. It has
shown high accuracy in (1) real-time vehicle detection and
classification based on deep-learning-based image process-
ing and (2) estimating lane-by-lane vehicle trajectories by
matching the detected vehicle locations with the HD map.
While estimating the vehicle trajectories, this study has
attempted to reduce the error of estimating the center points

of the bounding boxes in the images of vehicles to ensure
proper performance of the HD map-matching process.
Hence, the approach of combining AI and HD map tech-
niques is the main contribution of this study. +is study
shows a high chance of improving current traffic monitoring
systems.

Although the proposed method has shown reasonable
performance, this study is not without limitations. +e error
rates for both lane-by-lane traffic volume and queue length
estimations are greater than 15% even though the vehicle
detection showed a 99% performance, which is reasonable
but not sufficient in terms of the reliability of traffic in-
formation. +is is due to intermittent mismatches between
the vehicle locations of the camera images and the HD map
coordinates. Hence, further studies should consider en-
hancing the matching performance between camera image-
based data and map data. Furthermore, the results of this
study confirmed that the error increased with the distance
between the camera and vehicle. +us, investigating the
minimum required distance between the camera and the
intersection area can be a topic for future studies. In ad-
dition, for road lanes, additional research is required to
develop a vehicle location correction algorithm. It is also
necessary to perform training with trucks and buses to
further improve the detection rate. Subsequent studies

Figure 11: An example of comparing drone image for queue length derivation.

Table 5: Overall performance.

No. Evaluation item Number of samples (frame) Subitems Value Unit Evaluation method
1 Object detection 6804 — 99 % Detection rate

2 Object classification 6804
Car 95 % MAP
Truck 87 % MAP
Bus 81 % MAP

3 Trajectory location 60531 — 1.138 Meter Mean Euclidean distance

4 Traffic volume 60531 — 4.20 Number of vehicles RMSE
16.41 Error rate MAPE

5 Queue length 62205 — 3.08 Meter RMSE
18.28 Error rate MAPE
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should consider these limitations for the further develop-
ment of image processing-based traffic monitoring systems.
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Automatic recognition of traffic signs in complex, real-world environments has become a pressing research concern with rapid
improvements of smart technologies. Hence, this study leveraged an industry-grade object detection and classification algorithm
(You-Only-Look-Once, YOLO) to develop an automatic traffic sign recognition system that can identify widely used regulatory
and warning signs in diverse driving conditions. Sign recognition performance was assessed in terms of weather and reflectivity to
identify the limitations of the developed system in real-world conditions. Furthermore, we produced several editions of our sign
recognition system by gradually increasing the number of training images in order to account for the significance of training
resources in recognition performance. Analysis considering variable weather conditions, including fair (clear and sunny) and
inclement (cloudy and snowy), demonstrated a lower susceptibility of sign recognition in the highly trained system. Analysis
considering variable reflectivity conditions, including sheeting type, lighting conditions, and sign age, showed that older en-
gineering-grade sheeting signs were more likely to go unnoticed by the developed system at night. In summary, this study
incorporated automatic object detection technology to develop a novel sign recognition system to determine its real-world
applicability, opportunities, and limitations for future integration with advanced driver assistance technologies.

1. Introduction

Traffic signs are used to regulate, warn, and guide traffic on
roadways and facilitate coordinated road usage [1], and their
placement, orientation, and visibility are crucial for road
operation and safety. Given their importance, automatic
recognition of roadway signs by smart transportation
technology is a current research interest with numerous
potential applications [2]. Automatic sign recognition could
facilitate the interpretation of information received from the
detected signs by assisted and autonomous driving systems.
For instance, traffic operation and maintenance authorities
could develop traffic sign inventories and conveniently
identify traffic sign maintenance needs with the help of such
automated systems [3, 4]. In addition, rapid and accurate
recognition of traffic signs is important for improving traffic
safety, the primary goal of Intelligent Transportation Sys-
tems and Vision Zero initiatives [5–7].

While significant effort to develop a robust sign rec-
ognition system has been made by both academics and
industry practitioners [8–15], the sensitivity of the developed
systems to recognize signs in varying real-world conditions
is still hypothetical. Our descriptive research, then, con-
centrates on the question: how does the diversity of weather
and reflectivity conditions of the physical world influence
the recognition performance of a TSR system, given that the
system is developed by incremental training resources? To
address this crucial research question, our study leveraged a
state-of-the-practise object detection algorithm to develop a
robust TSR system that can successfully recognize a wide
range of traffic signs. *e objective was to measure the
recognition efficiency of the developed TSR system in
various weather and reflectivity conditions with the aim of
assessing the implications of those variations on the rec-
ognition performance. *e scope of this research is limited
to identifying the changes of performance pattern due to
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variations in real-world weather and reflectivity conditions
resulting from an industry-level object detection system.
Hence, comparing the detection performance in comparison
to other state-of-the-art TSR system in standard lighting,
weather and reflectivity conditions are beyond the scope of
this study. Additionally, our study emphasised on detection
sensitivity to TSR system training resources (i.e., images of
traffic signs from favourable environmental conditions)
which restrained us from analyzing asymmetrical impact
due to training resources with varying lighting and envi-
ronmental features.

*e findings presented here will contribute to the overall
body of knowledge in several ways. *e key contributions of
this study are listed below:

Besides intrinsic features of traffic signs (i.e., size, shape,
and color), which are mostly focused on earlier studies,
this study paid attention to external factors and their
influence on sign identification efficiency.
Traffic sign images collected from favourable lighting
and weather conditions are used as training resources
in the development phase of the TSR system and ex-
pected to establish a more proficient system with
gradually increased resources. *e identified pattern of
progression will facilitate future research by providing a
benchmark for the correlation between training data-
sets and the expected efficiency of a TSR system that is
developed with the same system architecture.

As mentioned before, the TSR system was only trained
with images from favourable environmental condition
which implies the proficiency of the developed system
in identifying the signs in unfavourable condition
without being trained for such conditions.

2. Literature Review

Researchers and practitioners have attempted to establish
automatic traffic sign detection systems over the last few
decades that have increased in complexity as technology has
advanced. *e most conventional form of research has fo-
cused on systems that attempt to extract signs from their
environments for identification based on colour and shape.
In terms of colour-based recognition, a valuable set of in-
vestigations used RGB space [16–18]. A clustering method in
a colour space was developed by Tominaga [19] for sign
detection. Ohlander et al. [20] also used a recursive region
splitting method to achieve colour segmentation and applied
Hue, Saturation, Intensity (HSI), and sign area. In terms of
shape-based recognition, studies used the basic sign shapes
of circles, triangles, or rectangles [9, 11, 21–26]. *is method
does overcome brightness issues found with colour-based
methods. However, a significant difficulty for shape-based
detection is the rotation angle and distortions of signs. All
road signs in this method require a nonzero angle between
the optical axis of each camera and the normal vector to the
sign surface and should be as high as 30°, depending on the
distance between the sign and the cameras. *e complexity
of automatic shape-based detection increases for signs with

acute viewing angles as well as signs with torn corners and
occluded parts.

Methods based on statistical machine learning and ar-
tificial intelligence (AI) have become prevalent, providing
researchers with new tools to develop more efficient and
reliable TSR systems using classification techniques, such as
artificial neural networks (ANNs) [27, 28] k-nearest
neighbour (KNN) [13, 29], support vector machine (SVM)
[8, 18], and random forest [30, 31]. In 2005, Gil-Jimenez
et al. [32] explored shape classification algorithms using
SVMs for TSR.*ey found that using statistical classification
methods such as SVM, colour, and shape, traffic signs can be
roughly recognized. In 2006, Gao [33] did further research
on shape and colour using human vision models, testing on
98 British traffic signs in various viewing conditions. *e
results were that the recognition rate increased to as high as
95%, especially for immobile traffic signs. In another study
[34], unified visual saliency with Histograms of Oriented
Gradients (HOG) featured learning for TSR. Here, the
authors combined SVM with the HOG feather learning
method and were able to achieve a high recognition rate. In
2010, Prisacariu et al. [35] proposed a real-time system that
introduced region-based 3D tracking to single view detec-
tion, followed by adaptive boosting cascades and SVM to
improve accuracy. Huang et al. [36] developed a method for
detecting and recognizing speed-limit signs using only gray-
level information. Hechri and Mtibaa [37] proposed and
tested road sign detection using shape-filtering methods,
with a multilayer, perception neural network classification
model. Other studies have refined the details of real-time
TSR. Sheng et al. [38] proposed treatment for recognizing
signs of different colours, such as red/yellow/blue versus
grayscale, and a probabilistic neural network to achieve final
recognition. Li et al. [39] proposed a fuzzy shape recognizer
to improve the robustness of traffic sign detection. Although
it highlighted some success in sign detection and recogni-
tion, the authors emphasised the need to investigate and
improve the overall performance in different weather and
light conditions. However, while these studies were focused
on developing TSR systems with higher accuracy through
advanced techniques of machine learning and artificial in-
telligence, they were often silent on the implications of real-
world variables on sign recognition.

A few examples of recent studies do couple the application
of statistical machine learning and artificial intelligence with
the influence of exogenous factors on sign detection and
recognition. For instance, Sajjad et al. [40] developed a deep
learning-based sign detection system as a part of an auton-
omous driving demonstration. Although the developed sys-
tem performed well in a controlled environment, the
detection and navigation accuracy are yet to be tested in real-
world scenarios with complex challenges.Wang et al. [41] also
developed an AI-based lightweight sign detection system that
outperformed the Microsoft COCO benchmark [42]. How-
ever, the developed system was tested solely on images
extracted from diverse real-world settings and not continuous
detection from real-world driving condition videos that
would include the added complexity from continuous sign
tracking.*e analysis performed byMuhammad et al. [43] on
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multiple state-of-the-art approaches for sign detection from
Swedish Traffic Sign Dataset [44] also suffered from similar
limitations. Tabernik and Skocaj developed a convolutional
neural network- (CNN-) based system capable of recognizing
200 categories of signs. While the literature demonstrated
excellent performance on the tested dataset, the pair did not
compare the developed TSR system’s performance variations
for different lighting and weather conditions. Garcia-Garrido
et al. [45] tested a sign detection, classification, and tracking
system under different weather and light conditions
employing an algorithm designed to use a camera mounted
on a vehicle’s windscreen. While the authors stated that the
developed TSR system was tested in different weather and
reflectivity conditions, additional information regarding
recognition performance in varying environmental scenarios
was absent in the paper. Phu and Lwin Oo [46] introduced an
RGB colour-based thresholding technique for sign detection
and recognition, using an adaptive neuro-fuzzy inference
system (ANFIS) to recognize different features points. Al-
though they concluded that the system yields good results in
sunny, cloudy, and rainy weather conditions, supporting
analysis for this claimwas not provided in the paper. Lim et al.
[47] proposed a system for real-time recognition of speed
limit signs in different illumination conditions using modified
census transform (MCT) and support vector machine (SVM).
High detection and recognition rates were obtained. How-
ever, the influence of incremental training on TSR system
performance remained unaddressed. Hassaballah et al. [48]
presented their conceptually similar research on detecting
objects (i.e., vehicles) in adverse weather conditions. *ey
restored visibility by improving raw image quality before
object detection and tracking. *e user’s perspective of the
testing dataset was static for all the different weather con-
ditions collected from images. In real-world driving scenarios,
the adverse weather conditions introduce added challenges of
uninterrupted detection and tracking with continuously
changing environments and backgrounds.

From our review, it is evident that numerous studies have
been proposed to detect and recognize road traffic signs.
While plenty of proposed methods rely on computer vision
and artificial intelligence tools, challenges still exist in the
field, including the effects of weather, reflectivity variations,
limited classes of sign recognition, and human-machine
interactivity. More importantly, the majority of established
TSR systems have not been tested for real-world environ-
mental challenges. To address these research gaps in sign
recognition systems, we introduce a YOLO-based TSR system
for detection and recognition of key regulatory and warning
traffic signs in real time. Our study measured its performance
in a variety of weather and reflectivity conditions and con-
sidered their influence on recognition ability. We contribute
to the existing TSR system foundations by pairing it with an
industry-level detection system and evaluating its perfor-
mance in complex real-world scenarios. Furthermore, we
developed several editions of the TSR system by training the
system, introducing increasing numbers of traffic sign images
to its training process. We went on to measure each edition’s
ability to provide direction on the necessary resources re-
quired to attain a certain level of success from TSR systems.

3. Data Collection

*e data collection process played a pivotal role in our re-
search progress as the diversity of collected data mandated the
individuality of this research. In the beginning, a subset of
available on-road traffic signs, coupled with signs used in
earlier studies, was selected for investigation. Our initial se-
lection criteria covered the majority of basic regulatory signs
while expanding to include common warning signs. Ulti-
mately, eight types of signs from two sign classes (i.e., reg-
ulatory andwarning) were used, as listed in Table 1. Signs with
different specifications (i.e., age and sheeting types) were
collected from across Canada. Altogether, a total of twenty-
eight signs were used for data collection. Fifteen of these signs
were made of ASTM D4956 Type XI (usually known as and
will be referred as diamond grade) sheeting with high
reflectivity, and the remaining thirteen signs were made of
Type I (usually known as and will be referred as engineering-
grade) sheeting with low reflectivity. Out of twenty-eight
signs, fifteen signs were new (age ≤1-year), while thirteen
signs were three years or older. Although the collected sign
inventory was diverse with respect to these features, we were
unable to acquire each sign type in the different ages and
sheeting types, proving to be an analysis limitation con-
cerning reflectivity in sign recognition.*erefore, the analysis
of reflectivity was performed by grouping signs into sign
classes and comparing the performance of each sign class.

Once procured, the signs were installed on an access-
controlled roadway segment (with a length of 750 meters in
each direction) specifically built for research purposes at the
University of Alberta, Edmonton, Alberta, Canada (Figure 1).
A total of ten signposts were evenly spaced at designated spots
on the test track, five for each direction of traffic. Each
signpost was equipped with an adjustable holding mechanism
to facilitate the placement and removal of traffic signs. On
each round of data collection, ten signs were installed on the
signposts. After installation, a vehicle equipped with a video
recording camera drove along the roadway segment at 40 km/
h recording the installed traffic signs. Although only ten signs
were installed on the test track at any given time, all the
available signs for this study were used by changing and/or
moving them after each recording, thus generating different
combinations for every round. For each combination of traffic
signs, three recordings were made on each round to ensure
the availability of superior quality videos for any given sce-
nario. To maintain a standard recording environment, the
elevations of the signs on their posts, as well as the position
and angle of video camera inside the car, were kept consistent.

All videos recorded in the afternoon underwent weather
impact analysis to filter for the influence of light. In total, 795
videos were recorded covering different weather and
reflectivity conditions. Ninety seven (12%) of those were
unusable due to exogenous factors (e.g., placement errors
and obscured visuals). From the remaining videos, 15%, all
with favourable conditions (i.e., daytime and sunny
weather), were set aside for the image extraction required for
TSR system development. *e remaining videos were la-
belled and batched according to the weather and reflectivity
conditions during recording.
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4. Sign Recognition System Development
and Testing

In order to overcome the inherent limitations of self-created
TSR systems, the search for an established system architecture
based on artificial intelligence led us to YOLO. YOLO is an
industry-grade object detection system that is extremely fast
and accurate [49]. We chose version 3 (v3) for our study as it
includes a new object classifier network that has outperformed
earlier versions in different types of object detection. We then
trained that classifier network to detect the traffic signs listed in
Table 1 and subsequently tested its sign recognition ability in
varying weather and reflectivity conditions.

Since adequate training datasets are the most important
input for a deep learning approach, initial efforts went to-
wards the extraction of video frames containing traffic signs,
with the intention to gradually increase the number of

images in the dataset. Each extracted image was labelled
using Labellmg software [50] to extract individual regions of
an image, create a bounding box, and generate annotation in
a YOLOv3 compatible format, with a total of 4,445 anno-
tations generated from the extracted frames. Once the an-
notations were generated, a python script was written to find
corresponding images since image labelling software only
develops individual annotations. Without finding the image
for a specific annotation, the training process could not be
executed. After developing a set of images with annotations,
the images were further augmented to simulate potential
variations of light, weather conditions, and physical
distortions.

Using a python script, shape-based modification included
rotating the captured frames at specific angles (i.e., 0°, 15°, 30°,
and 45°) to imitate possible physical distortion of traffic signs
that might be experienced on the video. Colours were also
modified using the python script, to replicate various light
scenarios by changing hue, saturation, and contrast of
extracted image frames. While it would be impractical to
account for all possible shape and colour-based inconsis-
tencies experienced in real world, the augmented dataset
provided some primary criterion for the algorithm to learn.
Examples of data acquisition and shape and colour-based
augmentation of image frames are provided in Figure 2.

Once the preprocessing of training data was finished, the
images were fed into the YOLOv3 object detection system
with a Darknet-53 feature extractor to develop our TSR
system. YOLOv3 used a variant of Darknet [51] that orig-
inally had a 53-layer convolutional neural network (CNN)
trained on ImageNet [52]. For the task of recognition, 53
additional CNN layers were stacked onto it, making it a 106-
CNN layer underlying architecture for YOLOv3. As a result,
the residual skip connection and upsampling features of the
TSR systemwere enhanced. YOLOv3 performed recognition
on feature maps of three different sizes at three different
places in the network. Object recognition from images in
different scales is a unique feature of YOLOv3, making it
ideal for this study since traffic signs are small in relation to
the larger image. Its recognition uses a detection kernel
shaped as 1 × 1 × [B × (5 + C)]. Here, B is the number of
possible predicted bounding boxes on a cell of the feature
map, 5 is the four bounding box attributes and one object
confidence, and C is the number of sign classes.

*e first detection was made by the 82nd layer. For the
first 81 layers, the image was down sampled by the network,
such that the 81st layer had a stride of 32. For instance, if we
had an image of 416 × 416 pixels, the resultant feature map
would be 13 × 13. If one detection is made here using the
1 × 1 detection kernel, this gives us a detection feature map
of 13 × 13 × 48. *e default value of B � 3 for YOLOv3 as it
predicts 3 bounding boxes for every cell, where each
bounding box specialises in detecting a certain kind of
object; C is the number of classes, 11 in our case reflecting
the number of detection signs. Hence, the kernel size is 1 ×

1 × 54 for each region on the image.
*e feature map from layer 79 was subjected to a few

convolutional layers before being upsampled by two-
times to dimensions of 26 × 26. *e map was then depth

Table 1: Selected traffic signs for this study.

Sign class Sign type Sign image

Regulatory signs

Speed limit

Stop

Yield

Warning signs

Speed limit change ahead

Signal ahead

Stop ahead

Yield ahead

Curve ahead
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concatenated with the feature map from layer 61 and
subjected to a few 1 × 1 kernel convolutional layers to fuse
the features. *e second detection was made on the 94th
layer, yielding a detection feature map of 26 × 26 × 255. A
similar procedure was followed where the feature map
from layer 91 was subjected to convolutional layers before
being depth concatenated with a feature map from layer
36. Like before, a few 1 × 1 kernel convolutional layers
followed to fuse the information. *e final detection was
made at 106th layer, yielding a feature map of
52 × 52 × 255. YOLOv3 used nine anchor boxes, three for
each image scale. Training YOLO on a custom dataset
required using K-means clustering to generate these nine
anchors. *e anchors were arranged in descending order

of dimension, assigning the three biggest anchors for the
first scale, the next three for the second scale, and the last
three for the third scale.

Training the TSR system began by feeding the annotated
training images into the YOLOv3 network. Training images
used for all versions of the TSR system were collected from
favourable lighting (i.e., daylight) and weather (i.e., sunny)
conditions. Continuous monitoring of average loss for each
epoch was made from the beginning of the training process.
*e objective of observing the average loss value was to stop
the training after it reached a certain threshold or a point
where the loss value became stationary, and it could be
assumed that the network had converged. *e training
usually converged at a loss rate of 0.03 over a certain number

(a) (b)

(c)

Figure 1: (a) Plan of data collection test track. (b) Vehicle. (c) Camera used for recording videos of traffic signs.
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of epochs (130 − 200 epochs). *e training process involved
iteratively updating the weights of the neural network based
on the number of mistakes made on the training dataset.
Weights represent the strength of the connection between
neuron units, which helped to determine how much in-
fluence the input would have on the output. Every neuron of
the network was given an input value and a bias value and
was then multiplied by a weight value that was adjusted
during each iteration of training.

Once the training task was completed by attaining a
target average loss rate of 0.03, the most recent weight
generated by the system was executed on Darknet to analyse
the testing video dataset. *ese recorded videos contained
the chosen traffic signs in different light, weather, and
reflectivity scenarios. In order to obtain labelled videos,
screenshots were captured during analysis by the developed
TSR system. Additionally, a .csv file containing the infor-
mation pertaining to the recognized traffic signs and image
frames of labelled traffic signs from the analysed video was
automatically stored in a secure server after each test video
analysis was completed. An overview of the entire sign
recognition system development and testing process is
summarized in Figure 3.

In this study, five versions of the TSR system were de-
veloped by gradually increasing the number of training
images, allowing us to explore the impact of training datasets
on recognition performance. Each version, therefore, had a
different training dataset but maintained the same param-
eters as outlined in Table 2. Training datasets for each
version were prepared from extracted images recorded in
bright, sunny conditions to maintain a standard training
environment. In each version of the TSR system, 20%
training images contained traffic signs and reminder of the
training data were images without traffic signs. *e number

of annotated and augmented images of traffic signs used for
the training and validation of each system version is listed in
Table 2.

5. Analysis of TSR System Performance
and Progress

To perform analysis of system performance, a set of pa-
rameters was chosen from the literature. A combination of
these parameters was used exclusively to evaluate the
identification accuracy of different versions of the developed
TSR system. *e recognition performance of each sign type
was evaluated using three parameters: precision, recall, and
F1-score. To measure these parameter values, the recogni-
tion criterion was defined by measuring the number of True
Positives, False Positives, and False Negatives on each
dataset. *e analysis was based on the following definitions
of the parameters.

True Positive: TSR system successfully recognized (i.e.,
identified and classified) the presence of a test sign
False Positive: TSR system incorrectly recognized (i.e.,
identified and/or classified) the presence of a test sign
False Negative: TSR system failed to recognize (i.e.,
identify and recognize) the presence of a test sign

Using the above definitions, three key parameter values
were calculated, and the following definitions were used to
determine the parameter values:

Precision is the fraction of correct recognition instances
out of total successful recognitions (equation (1)).
Recall is the fraction of correct recognition instances
retrieved over total expected recognitions (equation (2)).

0° rotation 15° rotation 30° rotation 45° rotation

Grayscale Dark Bright High saturation

Figure 2: Different stages of data preprocessing.
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F1-score is the weighted average of precision and
recall. Since this takes both False Positives and Neg-
atives into account, the F1-score provides a more
useful interpretation of recognition performance
(equation (3)).

Precision �
True Positive

True Positive + False Positive
, (1)

Recall �
True Positive

True Positive + FalseNegative
, (2)

F1 − score � 2 ×
Precision × Recall
Precision + Recall

. (3)

6. Implications of Weather Variations on TSR
System Performance

*e automatic sign recognition system’s competence when
introducing varyingweather conditionswas analysed by testing
the videos through the established TSR system. Out of 370

videos considered (based on lighting conditions), 193 videos
were recorded in varying weather conditions, but consistent
daylight was chosen to keep results clear of any impact from
variations in light conditions. As already outlined, the com-
parison of recognition performance was between fair and
inclement weather conditions. Fair weather was represented on
104 videos among the tested datasets. Figure 4(a) primarily
compared the recall performance of tested sign types in in-
cremental versions of the developed TSR system for two types
of weather scenarios, inclement weather and fair weather. Each
horizontal bar represents the recall value of a specific sign for a
specific version of the TSR system.*e incremental intensity of
green/blue color represents the higher version of the TSR
system. For instance, the bottom-most horizontal bar of
Figure 4(a) illustrated the recall value of Speed Limit signs for
version 1 of the TSR system, which was much higher in fair
weather (57.43%) than in inclement weather (17.77%). Table 3
outlines the version-specific parameter values irrespective of
sign types. Since the impact of weather conditions was not clear
from this illustration, we carried out several significance tests
on the evaluation parameters.
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Alteration

0° rotation
15° rotation
30° rotation
45° rotation

Gray Scale
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Generate corresponding images from 
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Figure 3: Flow chart of the developed TSR system.

Table 2: Information on training traffic sign image datasets for each version of the TSR system.

Groups
Number of images

Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5
Max. 30 km/h 264 808 1594 1978 2232
Max. 70 km/h 120 502 750 1146 1408
Max. 80 km/h 291 963 1673 2257 2435
Stop 622 1388 2512 3732 4454
Yield 1272 3178 4408 5476 6046
Max. 30 km/h ahead 388 984 1578 2006 2192
Signal ahead 686 1724 2722 3232 3482
Stop ahead 932 2038 2962 4370 5014
Yield ahead 310 550 852 1192 1456
Right curve ahead 848 2196 4072 5138 5726
Left curve ahead 560 1078 1634 2110 2264
Annotated and unannotated image 5054 10231 18258 23215 26714
Training and validation annotated image 6293 15409 24757 32637 36709
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Figure 4: (a) Comparison of recall metric on studied weather conditions. (b) Progression of average recall values with an increasing number
of training images. (c) Unidentified signs proportion of compared weather scenarios.
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Significance test (two-sample t-test) results found that the
recall parameter in fair weather was significantly higher, at
95% confidence level, than in inclement weather conditions
for versions 1 and 2 of the TSR system. Based on the chi-
square contingency table test, the precision metric was found
to be significantly different in versions 1 through 3, whereas
an insignificant difference was observed on the F1-score for
versions 3 through 5. Hence, it can be stated that the devised
TSR system did not experience significant performance
variations due to weather on versions that were trained with
more than 20,000 training and validation images.

Additional analysis of the average recall metric of dif-
ferent versions revealed a pattern of recognition perfor-
mance progression as the number of images increased. *is
pattern revealed that the system required a higher number of
images to be trained when faced with scenarios such as
imperfect conditions (i.e., inclement weather) to match the
performance for perfect conditions. For instance, to attain
an 80% recall on signs in inclement weather, the TSR system
required training on more than 17,000 images. By contrast,
approximately 9000 training images would be adequate to
attain a similar performance for signs in fair weather con-
ditions. Finally, the analysis on the percent of unidentified
signs in imperfect conditions (%USIC) revealed that the
majority were set within inclement weather conditions
(average� 56.46% and standard deviation� 41.34%). With
the developed versions of the TSR system, the proportions of
unidentified signs were evenly distributed between fair and
inclement weather (Figure 4(c)), and several sign types were
completely identified with the higher numbered versions,
irrespective of weather conditions.

Since different inclement weather types bring different
identification challenges, the TSR system performance was
further analysed based on both inclement weather types (i.e.,
cloudy and snowy) compared to 89 videos. Figure 5(a)
showed the comparative performance of recall parameters
by the developed TSR systems in cloudy and snowy weather
conditions. Figures 5(b) and 5(c) illustrate sample identi-
fication snapshots of one sign in cloudy and snowy weather
conditions, respectively. *e average recall value in cloudy
weather conditions (84.11%) was slightly higher than snowy
weather conditions (81.93%), considering all versions of the
TSR system. Most of the signs showed similar performance
in both inclement weather conditions, except signs with

white backgrounds (i.e., speed limit signs and speed limit
ahead signs). On average, identification of speed limit signs
was 9.43% higher in cloudy weather conditions. Similarly,
speed limit ahead signs in cloudy weather conditions ex-
perienced 5.06% higher identification rates.

7. Implications of Sign Reflectivity
Variations on TSR System Performance

*e analysis of sign reflectivity was designed to compre-
hensively consider the reflectivity factors that influence
recognition performance. Hence, the signs were initially
compared based on two sheeting categories, namely, engi-
neering grade and diamond grade. Each sheeting type was
further divided into two lighting conditions, daytime and
night-time, presuming lighting conditions would play a
significant role in detectability. Finally, two more categories
for sign age were also taken into account, i.e., signs less than
one year old and signs three years or older, presuming that
reduction in reflectivity accumulates over the year due to
weathering, natural abrasion, and other factors. *e goal in
this portion of the analysis was to establish the effect of these
factors on the TSR system’s accuracy.

*e classification of the tests for this section was not made
sign-specific but was rather classed in a higher-order due to the
lack of availability of some specific signs in one of the two
sheeting types or different age groups. As a result, signs were
divided into two classes, namely, warning signs (e.g., curve ahead
and signal ahead) and regulatory signs (e.g., stop and speed
limit). Figure 6 shows the distribution of data samples in the
testing dataset that contained characteristics related to sheeting
type, lighting conditions, and sign age. *e two sheeting types
selected for this study possess considerably different reflectivity
features. Engineering grade orType I sheeting typicallymeets the
requirements of ASTM D4956 and contains some basic
reflectivity properties. On the other hand, diamond grade or
Type XI sheeting is designed to reflect close to 50% of the
available light to the driver, enabling them to better recognize
signs and at a greater distance [53]. Lighting conditions were
considered for the second level of reflectivity factors. All the
videos for daytime lighting conditions were collected between 10
am to 4 pm, andnight-time datawere collected from1hour after
sunset till 10 pm. Finally, the signs were sorted based on two
predominant age groups of available signs.

Table 3: Version-specific parameter values (i.e., mean and standard deviation) at different weather conditions.

Ver.
Precision Recall F1-score

Fair Inclement Fair Inclement Fair Inclement

1 90.98%
(7.15%)

80.14%
(5.47%)

77.23%
(20.98%)

63.75%
(38.49%)

83.54%
(12.67%)

71.01%
(8.87%)

2 87.52%
(10.68%)

75.18%
(8.45%)

84.79%
(11.80%)

86.72%
(18.57%)

86.13%
(13.21%)

80.54%
(13.86%)

3 88.05%
(13.98%)

67.70%
(14.92%)

95.36%
(6.24%)

77.08%
(37.47%)

91.56%
(10.63%)

72.09%
(16.55%)

4 81.49%
(16.16%)

58.19%
(18.09%)

99.38%
(1.77%)

94.86%
(7.89%)

89.55%
(5.19%)

72.13%
(24.40%)

5 71.23%
(24.76%)

40.02%
(23.48%)

98.75%
(3.54%)

92.68%
(10.01%)

82.76%
(8.93%)

55.90%
(11.81%)
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*e performed analysis is summarized in Figure 7, which
shows enhanced performance for the newer and diamond
grade signs in night conditions. Figure 7(a) shows a com-
parison of recall parameters for both sheeting types obtained
from different versions of the developed TSR system. A sig-
nificance test on the recall metric for this part of the analysis

showed a significant difference at a 95% confidence level for all
versions of the developed TSR system, irrespective of sign class.
Further analysis was performed to associate the influence of
lighting on sign recognition for the two distinct sheeting types.
In general, diamond grade signs were found to be similarly
identifiable as engineering-grade signs in daylight (Figure 7(b)).

Cloudy WeatherSnowy Weather

Version 1

Version 5 

Version 1

Version 5

50 0100
%

50 1000
%

Speed Limit

Stop

Yield

Speed Limit ahead

Signal Ahead

Stop ahead

Yield Ahead

Curve ahead

(a)

(b) (c)

Figure 5: (a) Performance comparison in studied inclement weather scenarios and sample sign identification by the TSR system in (b) cloudy and
(c) snowy weather.
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Figure 6: Share of samples according to sign age, sheeting type, and lighting conditions.
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Figure 7: Recall parameter comparison between (a) sheeting types, (b) sheeting types with daytime lighting, and (c) sheeting types with
night time lighting.
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Version 1 (Z value� 2.28) for regulatory signs and version 1 (Z
value� 2.23), 2 (Z value� 2.01), and 3 (Z value� 2.08) for
warning signs showed significantly higher levels of recognition
for diamond grade signs during daytime. However, at night,
diamond grade signs showed significantly enhanced recog-
nizability for both sign classes in all versions (Figure 7(c)).

Figures 8 outlines daytime and night-time performance,
respectively, via sign class-specific recall values in each version
of the developed TSR system for the two sheeting type sce-
narios under scrutiny and further divided by sign age. At first
glance, the daylight recall results seem to outperform night-
time results, although both types of sheeting seem to produce
a comparable outcome with slight favouring of diamond
grade signs. Generally, the significance test results showed a
significant difference between the two sheeting types, irre-
spective of sign class and age, for an earlier version of the TSR
system at daylight condition (Figure 8(a)). More evolved
forms of the TSR system varied less in responses to sign age. A
striking difference in sign recognition performance was ob-
served at night. For night-time samples (Figure 8(b)), the

diamond grade signs provided all versions with a significantly
higher recall rate. *e comparison between different ages of
engineering-grade signs showed significantly higher levels of
recognition of new signs (age ≤1 year) as compared to older
signs (age ≥3 years) in both sign classes (i.e., regulatory and
warning). On the contrary, sign recognition was less sensitive
to age for both sign classes when using diamond grade
sheeting. *is part of the analysis proved beyond a reasonable
doubt that sheeting types of signs could play a significant role
in recognition by the TSR system, exclusively during the
night. Furthermore, older engineering-grade signs were more
likely to bemissed by a well-developed TSR system at night, in
comparison to new engineering-grade signs, diamond grade
signs of both age groups, and sign images taken in daylight.

8. Conclusion and Future Research

*is study has contributed to the development of a new,
robust automatic TSR system through the unique integra-
tion of industry-ready technology with an experimental

EngineeringDiamond Daytime

Regulatory
Age ≤ 1-year

Regulatory
Age ≥ 3-year

Warning
Age ≤ 1-year

Warning
Age ≥ 3-year

50 0100
%

50 1000
%

(a)

EngineeringDiamond Nighttime

50 0100
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50 1000
%

Regulatory
Age ≤ 1-year

Regulatory
Age ≥ 3-year

Warning
Age ≤ 1-year

Warning
Age ≥ 3-year

(b)

Figure 8: Recall parameter comparison between (a) sheeting types in daytime lighting and (b) sheeting types in night time lighting with
different age groups.
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investigation of the TSR system’s limitations and oppor-
tunities. *e primary objective of the research was to study
the influence of weather and reflectivity variations on the
TSR system’s performance, particularly as the system was
improved consistently through the gradual increase in the
number of training images. *e results from the recognition
performance analysis found that the impact of reflectivity
conditions was far more significant than that of weather
variations. However, scenarios with high reflectivity, fair
weather, and generous lighting proved to perform better
than their counterparts. Comprehensive significance testing
was conducted on the evaluation parameters to identify
statistically significant differences between the compared
scenarios. *is study also revealed that, even if the TSR
system was trained with sign images from amenable natural
conditions, it could attain a relatively comparable level of
recognition based on imperfect real-world conditions.
Furthermore, this research provides a benchmark for the
resources required to train a TSR system of similar archi-
tecture with a specific level of accuracy. Our study not only
developed a real-time TSR system with the capability of
recognizing several sign types situated in real-world sce-
narios with varying environmental conditions but it also
specified the scope and restrictions of the established system.

While this study focused primarily on the performance
variations caused by changes of two factors (i.e., weather and
reflectivity), the implications of other factors such as rec-
ognition distances, deterioration due to damage, and other
exogenous variations will be explored in future studies. We
believe that this study will assist in the sustainable and
consistent growth of TSR system development as a part of
advanced driver assistance systems. In the broader field,
interested industry partners can work towards overcoming
the identified limitations of TSR systems, while researchers
can identify additional applications of this technology to
improve traffic operation and the safety of all road users.
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Moving camera-based object tracking method for the intelligent transportation system (ITS) has drawn increasing attention. )e
unpredictability of driving environments and noise from the camera calibration, however, make conventional ground plane
estimation unreliable and adversely affecting the tracking result. In this paper, we propose an object tracking system using an
adaptive ground plane estimation algorithm, facilitated with constrained multiple kernel (CMK) tracking and Kalman filtering, to
continuously update the location of moving objects. )e proposed algorithm takes advantage of the structure from motion (SfM)
to estimate the pose of moving camera, and then the estimated camera’s yaw angle is used as a feedback to improve the accuracy of
the ground plane estimation. To further robustly and efficiently tracking objects under occlusion, the constrained multiple kernel
tracking technique is adopted in the proposed system to track moving objects in 3D space (depth). )e proposed system is
evaluated on several challenging datasets, and the experimental results show the favorable performance, which not only can
efficiently track on-road objects in a dashcam equipped on a free-moving vehicle but also can well handle occlusion in the tracking.

1. Introduction

Currently, video-based traffic surveillance plays an impor-
tant role in intelligent transportation systems (ITSs). And as
more and more people use the dashcam during driving,
video analysis based on dascam has thus become a very
important research area, and object tracking such as pe-
destrians and vehicles is a crucial and unavoidable task in
this field. By tracking pedestrians or vehicles, their move-
ment trajectories can be collected in the video for advanced
analysis, such as human or vehicle flow estimation, collision
avoidance of abnormal behavior, and criminal tracking.
)erefore, researchers are motivated to develop an effective
tracking system, which not only can track objects in the
scene but also is able to collect the information for higher-
level analysis.

Tracking vehicle and pedestrian in moving cameras is
quite challenging due to several reasons. First, the appear-
ance of these objects may change greatly due to nonrigid
deformation, different viewing perspectives, and other visual
attributes. Second, frequent occlusion by other objects in the
scene will cause severe identity switches. Last but not least,
object tracking in moving camera is more challenging than
that in static cameras, because of the combined effects of
rapidly changing lighting conditions, blur, and the issues
mentioned above. Moreover, many robust and effective
object tracking techniques used in static cameras cannot be
directly applied in moving camera, such as background
subtraction and constant ground plane assumption, thus
making the problem more difficult. Unlike using back-
ground-based methods to extract moving objects blobs
under static cameras, object detection is widely used in video

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 8153474, 15 pages
https://doi.org/10.1155/2021/8153474

mailto:tony6@uw.edu
https://orcid.org/0000-0002-3672-3599
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8153474


analysis under moving camera. )erefore, the challenge
becomes to successfully detect objects in themoving cameras
and then apply tracking techniques to track the detected
ones, which are so-called tracking-by-detection schemes.
However, when the object is partially or fully occluded, the
detection cannot work well and thus affect the tracking
result. Hence, the constrained multiple kernel (CMK)
tracking technique was further adopted in the proposed
system and facilitated with the estimated ground plane and
Kalman filter, to overcome the occlusion issue during the
tracking.

In this paper, we extend our previous work [1] and
propose an efficient and robust 3D object tracking system
based on adaptive ground plane estimation, which also
successfully integrates structure from motion (SfM), object
detection, CMK tracking, and Kalman filter framework. )e
proposed system begins with object detection and structure
from motion for estimating camera pose. )en, the adaptive
ground planes are estimated based on the camera motions,
and the 3D location of the objects relative to the cameras can
be inferred. By taking 3D information into account, the
CMK tracking method is used to overcome the occlusion
issue during the tracking. Hence, the proposed system can
not only handle the occlusion but also estimate a reliable
ground plane simultaneously. Figure 1 shows an example of
the tracked objects on the estimated ground plane (the red
squares on the ground). )e number above the bounding
box represents the distance of the detected objects from the
camera.

)e remaining of this paper is organized as follows:
Section 2 gives a brief survey on the related work. In Section
3, we describe the proposed tracking system. )e depth
CMK tracking which includes depth map construction,
CMK tracking, hypothesized association, and Kalman filter
are described in Section 4, and Section 5 depicts the adaptive
ground plane estimation algorithm.)e experimental results
are demonstrated in Section 6. Finally, the conclusion of this
work is given in Section 7.

2. Related Work

Recently, ground plane estimation-based tracking methods
[2–6] have attracted a lot of attention. By applying the
ground plane estimation method to each frame of a video
sequence for detecting a reliable ground plane, the relative
3D location of the camera and the objects can be inferred,
thereby making the object tracking more robust.

In general, the existing ground plane estimation ap-
proaches can be roughly divided into two categories: 2D or
3D approaches based on the sensor type. Within 2D ap-
proaches, homography is the most popular approach for
ground plane estimation, which based on feature corre-
spondence to calculate every pair of consecutive frames and
the first requisite is to find a set of reliable feature points
lying on the ground plane. Usually, corner detectors such as
Harris are used to extract features, followed by a robust
estimation technique in which the dominant homography is
estimated. Arróspide et al. [7] used Kalman filtering and
Conrad and DeSouza [8] used modified expectation

maximization to build confidence in the ground plane
transformation across successive frames. Both of the two
methods assumed the camera can only see the ground plane
with objects above it, and the roll angle of sensors is zero.
With the homography decomposition results combined with
contour searching [9] or a Bayes filter [10] to estimate the
ground plane in 2D images, homography has also been
successfully used as a first step. However, again the ground
plane is assumed to be the area in front of the camera, or the
single color ground plane is assumed to occupy the majority
of the FOV.)e other 2D approaches used depth-image data
or histogram of the disparity map [11] instead of traditional
RGB image data [12, 13], and Jin et al. [14] proposed a
ground plane detection method based on depth map driven,
which grows a plane from the largest area having similar
depth values in the depth map, and the largest plane is
considered to be the ground plane. Kircali and Tek [15]
estimated the ground plane by comparing the depth map of
new coming frame with a precalibrated depth map in which
the ground plane was predefined. Skulimowski et al. [16]
used the gradient of the V-disparity pixel values to detect
ground plane which has an arbitrary camera roll angle.
Furthermore, Cherian et al. [6] reconstruct the depth map
from a single RGB image by applying multiple texture-based
filters with a Markov random field and estimate the ground
plane based on texture-based searching segmentation. Due
to the intrinsic features of the algorithm, this approach
assumed the ground plane has a unique texture and the
camera is parallel to the ground plane. Dragon et al. [17, 18]
formulate the ground plane estimation problem as a hidden
Markov model (HMM) based on temporal sampling and
decomposing of homography. )e decomposition of the
homography with the highest probability indicates the
orientation and ego motion of the camera’s movement. Man
et al. [19] develop a ground plane estimation approach based
on monocular images with a predefined region of interest,
which requires a known pitch angle of the camera.

)e ground plane estimation method in 3D commonly
utilizes the depth sensors as LIDAR [20] or TOF [21] to get
the 3D point cloud data, which can provide the 3D structure
of the environment and then be used as an effective way to
estimate the ground plane. Borrmann et al. [22] use all
points of 3D point cloud to calculate, which has high
computation cost. RANSAC-like approaches [23, 24], which
can then be used as an effective way to estimate the ground
plane, are unlimited to number of iteration.)us, processing
time cannot be guaranteed. A less expensive alternative to

Figure 1: )e ground plane estimation and 3D tracking of pe-
destrians and vehicles based on our system.
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generate 3D point clouds is the use of a stereo camera in
which the ground plane can be estimated from disparity
[25]. Assuming that the scene is static, monocular ap-
proaches for simultaneous localizing and mapping (SLAM)
can also be used to extract the 3D shape and then the ground
plane can be estimated [26, 27]. Zhang and Czarnuch [28]
proposed a perspective ground plane estimation approach
which combines the robustness of 2D and 3D data analysis.
Other 3D approaches [29–31] use the 3D normal vector for
each raw data point rather than estimation of the raw points
directly. However, we assume that the camera roll and pitch
angles are zero. More recently, machine learning technique
has been used in ground plane estimation, which requires
minimal orientation variations (i.e., 0 ∼ 15∘) [32].

Although the above approaches can successfully detect
the ground plane and achieve good experimental results,
they are specifically designed to only produce one single
ground plane based on the available data and not suitable for
the unpredictability of dynamic road conditions. In addi-
tion, these approaches do not utilize the estimated camera
pose information. In addition, the camera’s pose is the most
significant factor for representing the ground plane in the
scene. )e reliability and accuracy of the ground plane
estimation can thus be improved by taking advantage of the
camera pose information.

Our proposed tracking system is inspired by the ap-
proach in [33], which also has mounted the monocular
dashcam on a free-moving vehicle. However, due to the
driving road condition is continuously changing, if the
ground plane is only estimated in the beginning may not be
applicable for the entire video sequence, therefore, it is very
useful to take advantage of the camera’s pose information
estimated from the essential matrix calculation phase. In
contrast to the most existing ground plane estimation
methods, our approach introduces the estimated camera yaw
angle as a feedback to estimate ground plane adaptively,
which aims to overcome the deficiency of the previous
methods caused by fixed frame window for smoothing the
results. Based on the reliably estimated ground plane, we can
locate the detected objects in 3D space and combine CMK
tracking with the 3D information, so as to deal with the
partial or fully occlusion issues during tracking.

3. Overview of the Proposed System

)e proposed tracking system is shown in Figure 2. After
converting the video from the dashcam to image sequences,
there are two parallel procedures launched simultaneously.
In the structure from motion phase, the proposed system
extracts the Harris corner features in the current image at
time step t and matches them to the features observed in the
previous N frames. By using the singular value decompo-
sition (SVD), we can estimate the camera’s essential matrix
for each image frame. )en, according to the camera es-
sential matrix, the ground plane for the entire image se-
quences can thus be estimated adaptively, where we assume
the dashcam is mounted on the vehicle with a fixed height.
Meanwhile, a pretrained object detector is adopted to detect
desired objects such as vehicle and pedestrian in the image

sequences. In the pose estimation stage, the 2D locations of
detected objects can be back-projected to 3D locations by
using the estimated ground plane. Once the 3D locations of
the detected objects is obtained from the pose estimation
stage, the depth CMK tracking is applied to track them in the
Kalman filter framework. First, for each target, the 3D lo-
cations of its candidate are predicted by the Kalman filter
predication. )en, the CMK tracking is applied to relocate
the candidate’s 3D locations by maximizing the similarity
between candidates and target.)e Kalman filter continually
updates and finally gets the reliable tracking result. Besides,
based on the object’s 3D information relative to the camera
motion, a depth map can be constructed to represent the
relative 3D locations of all the detected objects. )erefore,
with the help of depth information between the targets, the
proposed system not only is able to effectively track objects
but also can overcome occlusion during the tracking.

3.1. Robust Feature Extraction. )e ideal ground plane es-
timation largely depends on the selected image feature
detector, which should contain the invariance of rotation,
scale, and image noise. Scale-invariant feature transform
(SIFT) [34] feature is a very effective scale-space feature, but
it can be very time-consuming for real-time applications. As
for the speeded-up robust features (SURFs) with lower
computational complexity, its stability is a major problem
because it often detects unstable features even after edge
suppression as a post treatment. )e Harris corner feature
detector is thus introduced to solve the above issues, which
has also been widely studied in the previous works [35–38].
Firstly, its feature extraction execution speed can be used in
real-time applications with reasonable robustness in accu-
racy. Secondly, to robustly estimate the ground plane, more
corner points on the ground plane are welcome to partic-
ipate in the calculation of the camera parameters. Figure 3
shows an example of using the Harris corner feature detector
to extract feature points. )e detected feature points in the
current image are marked with green crosses. Feature points
that are detected as outliers during the processing are
marked with red crosses. )ese points can be matched from
one image frame to the next by choosing matches that have
the highest cross-correlation of image intensity for regions
surrounding the points. )e paths of the feature points are
drawn in orange here.

3.2. Essential Matrix Calculation. Camera pose plays a
crucial role in the ground plane estimation for the entire
image sequences, and the computation of the camera yaw
angle θ is the key to calculate camera pose. According to the
study in [39], there are three camera parameters used to
describe two relative poses of a camera moving on a planar
surface, i.e., the polar coordinates (ρ,φc) and yaw angle θ of
the second position c2 relative to the first position c1 (see
Figure 4).

In addition, we can set ρ � ] · Δt, where ] is the velocity
of the vehicle and Δt is the transition time between the two
end positions c1 and c2. )erefore, only two parameters
(φ, θ) need to be calculated. In addition, according to the
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Ackermann steering principle, a circular motion called the
instantaneous center of rotation (ICR) can be used to de-
scribe the motion of a camera mounted on a vehicle. )e
linear driving can be represented along with a circle of
infinite radius. With this assumption, we can easily get
φ � θ/2. )us, there is only one parameter, and the camera
yaw angle θ needs to be calculated.

As we all know, the essential matrix can be represented
by the rotation matrix R and the translation matrix T, which
are related to the camera pose. )en, we have

R �

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

T � ρ ·

cos φ

sin φ

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

where we consider the camera moves on the (x, y) plane and
rotates around the z axis. Given two coplanar points, p and
p′, which are represented as p � x y z 

T and
p′ � x′ y′ z′ 

T in the image coordinates, they must meet
the epipolar constraint:

p′
T
EP � 0, (2)

where E is the essential matrix defined as E � [T]×R. Note
that R is the rotation matrix defined in (1) and [T]× denotes
the skew symmetric matrix:

[T]× �

0 − Tz Ty

Tz 0 − Tx

− Ty TX 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

)en, using the constraint φ � θ/2 and equations (1) and
(3), we can obtain the expression of the essential matrix of
the camera moving on a planar surface:

E � ρ ·

0 0 sin
θ
2

0 0 − cos
θ
2

sin
θ
2

cos
θ
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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Figure 2: Overview of the proposed system.

Figure 3: Example of Harris corner feature point extraction.
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Figure 4: Rotation between camera axes in circular motion.
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By replacing (4) into (2), we can notice that every image
points contribute the following homogeneous equation:

sin
θ
2

· x′z + z′x(  + cos
θ
2

· y′z − z′y(  � 0. (5)

)e rotation angle θ between a pair of successive images
can be obtained from (5) as

θ � − 2 arctan
y′z − z′y
x′z + z′x

 . (6)

Conversely, given m consecutive image points, θ can be
estimated indirectly by solving linearly for the vector
[sin(θ/2), cos(θ/2)] using SVD. To this end, a m × 2 data
matrix D is first formed, where each row is formed by the
two coefficients of equation (5), as follows:

x′z + z′x( , y′z − z′y(  . (7)

)en, the matrix D is decomposed by using SVD:

Dm×2 � Um×2Λ2×2V2×2, (8)

where the columns of V2×2 contain the eigenvectors ei of
DTD. And the eigenvector e∗ � [sin(θ/2), cos(θ/2)] cor-
responding to the minimum eigenvalue minimizes the sum
of squares of the residuals, subject to ‖e∗‖ � 1. Finally, the
yaw angle of the camera θ can be estimated from e∗.

3.3. Object Detection. Object detection is the first step in the
tracking-by-detection schemes, and accurate object detec-
tion can roughly determine the quality of the tracking
system. Unlike detecting objects under static camera, object
detection under moving cameras is more challenging due to
the dynamic background, illumination changes, and so on.
Because the background is constantly changing, the method
based on background extraction is no longer applicable for
mobile cameras. )erefore, the pretrained object detectors
are widely studied in recent years.)e work in [40] proposes
a human detector by using histogram of gradient (HOG) as
the features, which can effectively represent the shape of
human. )e deformable part model (DPM) [41] extends the
concept of [40], which uses a root and several part templates
to describe different partitions of the object, and the part
templates are spatially connected with the root template
according to the predefined geometry, thereby accurately
depicting the object. In the latest research, the convolution
neural network (CNN)-based object detector has drawn
increasing attention and has achieved favorable perfor-
mance, which can detect hundreds of objects with a high
detection accuracy.

In this paper, the objects to be detected and tracked are
mainly focusing on the pedestrians and vehicles, which
should move on the estimated ground plane. In fact, these
objects can be any objects on the road, such as bicycles and
animals. In order to avoid detecting other false objects in the
field of view, we adopt the state-of-the-art pretrained
YOLOv3 detector [42], which uses the most advanced CNN

technology to help detecting pedestrians and vehicles. )e
detector can be embedded independently in the proposed
system, so as to functionally perform object detection. To
efficiently track the object, the tracking procedure is
launched only when the object has been detected in five
consecutive image frames; otherwise, the detection is con-
sidered as a false alarm. Furthermore, the detected objects
are refined by morphological operations to accurately locate
their positions.

4. Depth CMK Tracking

In this section, we mainly describe how to track objects with
constrained multiple kernels (CMKs) in 3D space under the
framework of the Kalman filter. )e depth CMK tracking is
triggered to track the objects when its 3D locations are
obtained from the pose estimation stage (see Figure 2). In
other words, we associate the objects in the current frame
with the detected objects in the next frame facilitated with
the Kalman filtering. On the other hand, with the help of the
depth information, we can get the relative 3D locations
between the objects to overcome the occlusion in the
tracking. By effectively combining depth information and
CMK tracking into the Kalman filter framework, the pro-
posed system can not only track objects effectively but also
well handle occlusion problems during tracking.

4.1. Depth Map Construction. A depth map can be con-
structed based on the 3D location of the detected objects,
which represent the relative 3D location of all the tracked
objects. Figure 5 shows an example of the depth map, where
Figure 5(a) shows the result of detect objects and Figure 5(b)
shows the corresponding depth map. )e depth map depicts
the relative distance between the detected object and the
camera. )e higher intensity (brighter) means that the de-
tected object is closer to the camera. By using the depth map,
we can roughly assess whether an object is occluded by other
objects based on the visibility vi ∈ [0, 1]:

vi �
visible area of the i

th target
total area of the i

th target
, (9)

and if vi � 1, it means the ith target is totally visible; if
0< vi < 1, it implies the ith target is partially occluded;
otherwise, it is fully occluded by other targets. As shown in
Figure 5(a), all of the five objects are totally visible. So, the
visibility should be set to vi � 1.

4.2. CMK Tracking. In traditional kernel-based tracking, a
histogram including spatial and color information is usually
used to represent the target and candidate model. During the
histogram extraction, the contribution of a pixel is deter-
mined by the distance between the pixel and the kernel
center. In [43], the tracking problem for maximizing the
similarity simi(x) is formulated as locating x that maximizes
the probability density function (pdf) f(x):
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f(x) �


Nh

i�0 ωik x − zi( /h
����

����
2

 


Nh

i�0 k x − zi( /h
����

����
2

 

, (10)

where x is the kernel center; the subscript i represents each
pixel location inside the kernel; k(·)is a kernel function with
a convex and monotonic decreasing kernel profile. zi and ωi

are the position to be considered and the weight of a pixel,
respectively; h is the bandwidth of the kernel.

After back-projecting the 2D locations to 3D locations of
the detected object in the pose estimation stage, we use the
depth CMK tracking technique to track them. )e objective
of depth CMK tracking is to find the candidate model that
has the highest similarity to the target model, which is
composed of multiple kernels with prespecified constraints
in 3D space. For an object described by Nk kernels, the total
cost function J(X) is defined as the sum of Nk individual
kernel cost functions Jk(X), which is inversely proportional
to the similarity:

J(X) � 

Nk

k�1
Jk(X),

Jk(X)∝ 1

simik(X)
, (11)

where simik(X) is the similarity function at the location
X ∈ R3. In addition, the constraint function C(X) is used to
confine the kernels according to their spatial interrela-
tionships, and in order to maintain the relative location of
each kernel, the constraint function needs to be set by
C(X) � 0. )us, the problem is further formulated as

X � argminXJ(X), subject toC(X) � 0. (12)

However, when the object is occluded by other objects,
not all the kernels in the object can be used for matching. To
overcome this issue, we assigned an adaptively adjustable
weight wk to each kernel within the object. So, the cost
function for the ith target is as follows:

J
i
(X) � 

Nk

k�1
w

i
k · J

i
k(X). (13)

Taking the depth information into account, the visibility
of each object can be set as a weight to handle global op-
timization. In other words, the total cost function in (11)
becomes to

J(X) � 

Nq

i�1
vi · J

i
(X) � 

Nq

i�1
vi · 

Nk

k�1
w

i
k · J

i
k(X)⎛⎝ ⎞⎠, (14)

where Nq is the number of the objects in the qth image frame
and wi

k is a weight which is proportional to the similarity for
the ith target of each kernel Nk.

At the same time, the constraint functions C(X) � 0
must be considered to maintain the relative locations of the
kernels. Figure 6(a) shows an example of the object was
described by 2-kernel layouts in 2D space.

Unlike the work in [44] sets the constraints in 2D space,
the constraints set in this paper are based on the 3D ge-
ometry. Without loss of generality, we discussed the 2-kernel
case as shown in Figure 6(b), but it can be easily extended to
the multikernel case. To represent an object in the 3D space,
we define an object plane (− nq, πq) for the object in the qth

image frame, where nq is the normal vector of the qth image
frames, and πq for the offset of the plane. In order to set the
constraints properly, we start to estimate two auxiliary
vectors, which are uq � − nq × gq and u1,2 � X1 − X2. First,
the distance between two kernel centers should be remained
the same initial distance L, which implies

u1,2
����

����
2

� (L)
2
. (15)

Second, the angle ϕq between the vector uq and u1,2 and
the angle ςq between − nq and u1,2 should be kept constant as
well:

uq · u1,2

uq

�����

����� u1,2
����

����
� cos ϕq ,

− nq · u1,2

− nq

�����

����� u1,2
����

����
� cos ςq .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

)ese constraints can bind the kernels of the object to
each other in the 3D space during the tracking. As shown in
Figure 7(a), the constraint ϕq restricts the left-right move-
ment of the kernels, and the constraint ςq restricts the
forward-backward movement of the kernels which is shown
in Figure 7(b).

In order to gradually decrease the total cost function and
maintain the constraints satisfied during the candidate
model searching, the projected gradient method in [45] is

(a) (b)

Figure 5: Example of the depth map, showing (a) tracked objects and (b) the relative depth map.
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adopted to iteratively solve the constrained optimization
problem. )e basic concept of the method is to project the
movement vector δX, i.e., the gradient vector of the J(x),
onto two orthogonal spaces. One is associated with de-
creasing the total cost function, and the other is responsible
for satisfying the constraint function C(X) � 0:

δX � α − I + CX C
T
XCX 

− 1
C

T
X VWJX

+ − CX C
T
XCX 

− 1
CX 

� δA
X + δB

X,

(17)

where α is the size of searching step; I is a 3Nq × 3Nq

identity matrix,C(x) � [c1(x), . . . , cm(x)]T consists of m

constraint functions, and cj(X): R3·Nq ·Nk⟶ R is the jth

constraint function; V �

v1Iv · · · 0
⋮ ⋱ ⋮
0 · · · vNq

Iv

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, where Iv is an

3Nk × 3Nk identity matrix, which represents the visibility of

kernels in the object; W �

w1Iw · · · 0
⋮ ⋱ ⋮
0 · · · wNk

Iw

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, where Iw is

an 3Nq × 3Nq identity matrix, which represents the simi-
larity of the object.

As proved in [44], δA
x and δB

x have the following three
characteristics. )e first one is that δA

x and δB
x are orthogonal

to each other. )e second one is that moving along the δA
x

will decrease the total cost function J(X) while keeping the
same values of the constraint function C(x). )e last one is
that moving along the δB

x can lower the absolute values of

constraint function C(x). Owing to these three character-
istics, the optimal solution can be reached in an iterative
manner. )e iteration is stopped until either the cost
function and the absolute values of constraint are both lower
than some given thresholds εj and εc, respectively, or the
iteration count is larger than a threshold T (Algorithm 1 in
[44]).

4.3. Hypothesized Association. Due to the occlusion or
unreliable detection, objects may not be detected within a
few frames. )erefore, some tracked targets cannot be
successfully associated with the detections in subsequent
frames. A hypothesized association which has been located
by the CMK tracking with the best color similarity was
inserted to consistently track a nonassociated target. By
inserting hypothetical associations, it not only can improve
the detection rate, but it also helps to continuously track the
target. When an object is occluded, we can predict the 3D
location by taking advantage of its 3D information, and a
hypothesized association is thus used to pretend a possible
detection. On the other hand, if a tracked target cannot be
successfully associated to detection for several frames
(empirically set as five frames in this work), then this target is
considered as a missed target.

4.4. Kalman Filter Prediction and Update. Kalman filter is a
traditional unscented transform-based state estimation
method, which is used to approximate the mean and co-
variance of random variables after a nonlinear conversion.
Most of tracking problems can be formulated as a state
estimation problem.)e tracking target can be regarded as a

xmin xmax

ymin

ymax

Kernel 1

Kernel 2

(a)

X1

X2

u1,2

–nq

uq

gq

L

(b)

Figure 6: (a) Layout of an object with two kernels in 2D space. (b) Illustration of the 3D-based constraints in a 2-kernel layout.
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Figure 7: Constraints for binding two kernels in 3D space along the (a) left-right direction and the (b) forward-backward direction.
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state, and the tracking problem is to predict and locate where
the target (state) will appear in the next time. For this reason,
the Kalman filter is widely used to solve tracking problems.
)e traditional Kalman filter is defined as follows:

xt � Ftxt− 1 + wt− 1,

yt � Htxt + vt,
(18)

where xt ∈ Rn and yt ∈ Rm denote the state and measure-
ment vector at the time step t, respectively; Ft is the state
transition matrix; Ht is measurement matrix;
wt− 1 ∼ N(0, Q) and vt ∼ N(0, R) are the system and mea-
surement noise, and these two random variables are un-
correlated Gaussian white-noise sequence, with their
covariance matrix Q and R, respectively.

In the stage of prediction, the predictions for state and
error covariance are as follows:

xt � Ftxt− 1, (19)

Pt � FtPt− 1F
T
t + Qt− 1. (20)

After completing the measurement, the Kalman filter
will be updated as follows:

Kt � PtH
T
t Ht

PtH
T
t + Rt 

− 1
,

xt � xt + Kt yt − Htxt( ,

Pt � I − KtHt( Pt.

(21)

)e implementation of the Kalman filter algorithm is
formulated as follows.

4.4.1. Initialization. For each object, the state vector is
defined as xt � ut vt _ut _vt at bt 

T and the measurement
vector is defined as yt � ut vt at bt 

T, where
(ut, vt), ( _ut, _vt), and (at, bt) denote the object position,
velocity, and size, respectively. Hence, the initial for the state
transition matrix Ft and the measurement matrix Ht are
defined as

Ft �

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ht �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

4.4.2. State Transition Matrix Update. In addition, the size
of object in the image sequence will probably change when it
is moving toward or away from the camera, and the
extracted color histogram used for similarity measurement is
highly dependent on the kernel size. On the other hand,
when the multiple kernel tracking is performed, the result of
segmentation might be no longer reliable for estimating the
similarity due to occlusion. Hence, the state transition
matrix needs to be modified adaptively to reflect the po-
tential size changes. So, we embed the factor of kernel size
into the matrix Ft:

Ft �

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 +
β∇f hx( 

at− 1
0

0 0 0 0 0 1 +
β∇f hy 

bt− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Input:
Output: (gk,φk)

(1) Initial frame number N� 30.
(2) Load a new frame fk, k is the number of input frames.
(3) If k<N, set D � [(g1,φ1)

T, . . . , (gk,φk)], go to step 6.
(4) If θrotation � |θk− 1 − θk− N|> θthreshold, using N∗ � |1 − (2/π) · θrotation| · N frames to estimate ground plane. Set

D � [(gk− N∗ ,φk− N∗ )
T, . . . , (gk− 1,φk− 1)

T] else set D � [(gk− N,φk− N)T, . . . , (gk− 1,φk− 1)
T]. Go to step 6.

(5) If the θrotation > (π/2) go to step 1.
(6) Input the D to RPCA and output the final (gk,φk).

ALGORITHM 1: Adaptive ground plane estimation.
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where β is the step size which also contains the smoothing
factor; ∇f(h) is the derivative of the pdf with the kernel
bandwidth h. Hence, the predict size of the object becomes
to

at

bt

  �
at− 1 + β∇f hx( 

bt− 1 + β∇f hy 
⎡⎢⎣ ⎤⎥⎦. (24)

If the object is occluded so much that the average
similarity value of all the kernels is lower than a certain
threshold, the mechanism of state transition matrix update
stops and Ft returns to the default setting as (22).

4.4.3. Measurement Noise Covariance Matrix Update.
Weuse the object tracking result as a measurement to update
the Kalman filter during the tracking. Although the system is
robust under occlusion by using multiple kernels tracking, it
still needs a mechanism to avoid the errors caused by in-
correct measurements. It can be seen from (19) and (20) that
not only does the Kalman gain Kt control the tradeoff be-
tween using the prediction and the measurement, but also it
is inversely proportional to the measurement noise co-
variance matrix R. Hence, we can adaptively adjust the
portion measurement contribution to avoid errors by
changing the covariance matrix as follows:

R �

σ2 × J(X) 0 0 0

0 σ2 × J(X) 0 0

0 0 w
2

× J(X) 0

0 0 0 h
2

× J(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where J(X) is the total cost function of all kernels; σ2 is the
predefined variance value, and w and h are the width and
height of the kernel, respectively. With the help of the
adaptively covariance matrix, if the total similarity between
the candidate and the target is high, the diagonal term of the
covariance matrix will be small. In this way, the Kalman gain
will have a larger value, which will make the updated state
closer to a reliable measurement.

5. Adaptive Ground Plane Estimation

Due to the unpredictability of driving road conditions, the
ground plane estimated in the beginning may not be suitable
for the entire image sequences. )erefore, the ground plane
needs to be continuously reestimated based on the dynamic
road conditions. In [33], the ground plane is reestimated and
parameter smoothened every fg � 200 frames to mitigate
the adverse impact by the camera calibration noises.
However, using a fixed number of frames for estimating the
ground plane can affect the measurement accuracy when the
camera is moving on a curve. In this paper, we propose to
update the ground plane every single frame, based on an
adaptively chosen N frames for parameter smoothing, by
taking advantage of the camera rotation yaw angle calculated
in the essential matrix calculation phase. )e adaptive
ground plane estimation algorithm is shown as follows.

In the algorithm, θk is the camera yaw angle at the kth

frame; (gk,φk) is the ground plane at the kth frame;gk ∈ R is
the normal vector; and φk ∈ R is the offset of the plane. D is a
single 4 × fN matrix, and its elements are fN ground planes,
which is estimated by each pair of consecutive frames:

D � gq,φq 
T
, . . . , gq+fN

,φq+fN
 

T
 . (26)

Due to the noisy camera calibrations and the unpre-
dictability of road conditions, some ground planes (gq,φq)

may be unreliable; therefore, the robust principle compo-
nent analysis (RPCA) [46] is applied to decompose a low-
rank 4 × fN matrix A from D. )e low-rank matrix’s mean
vector (gk,φk) is considered to be our final ground plane,
which is more robust to the noise contributed from the
camera calibration and essential matrix calculation stage (see
Section 3.2), derived from those fN consecutive frames.
Figure 8 shows an example of using a set of ground
planes (gq,φq)T|q � 1, . . . , fN  to estimate the final ground
plane (gk,φk). )e gray planes are the image sequences
converted from the driving recorder, and H is the camera
height. )e final ground plane for fN consecutive frames
(dot-line plane) is obtained from a set of ground planes
(solid planes).

6. Experiment Results

In this section, we show experimental results of the proposed
system on the Kitti datasets [47], which are taken with high
quality dash cameras with motion pose ground truth and
GPS information available. We test eight sequences (see
Figure 9(a)), which are relatively short, and most of them are
driving on a curvy road. Figure 9(b) shows the relative
ground plane estimation results by applying our proposed
method. We also test two of self-recorded video sequences
captured around the University of Washington (UW)
campus using a driving recorder mounted on a fixed height
1650mm. And a more complex scenario in the ETHMS
dataset, which includes multiple pedestrians on one scene, is
also tested, and Table 1 shows the configurations of the
tested videos.

6.1. Be Relative Angular and Distance Errors. To demon-
strate the accuracy of our proposed adaptive ground esti-
mation, we compare the performance on the Kitti dataset
with the following three different methods: the method in [4]
is a stereo algorithm based on graphical model; the method
in [17] formulates the ground plane estimation as a state
continuous hidden Markov model where the hidden state
contains ground plane; the method in [33] adopted the
simultaneous localization and mapping (SLAM) technique
to estimate the ground plane by using constant frames.

As in the method [17], the average relative angular error
and distance error of the camera’s motion are applied to
evaluate the accuracy of the ground plane estimation. For the
performance measurement, we calculate the camera poses
and compare them with the given camera pose ground truth.
)e average relative angular and distance errors, which are
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normalized by the path length, are given in Tables 2 and 3
separately.

Tables 2 and 3 show that the performance of our ap-
proach is better than the method [33] in both relative
angular errors and comparable relative distance errors.
)at is because the estimated ground plane becomes more
reliable after applying the adaptive ground plane estima-
tion algorithm. Unlike the method in [33] that uses a
constant number of frames to estimate the ground plane,
our proposed method takes advantage of the estimated yaw
angle in the camera pose to fight the adverse effects of the
changing road conditions. Compared to the method used

in [17], our proposed scheme also shows better perfor-
mance, except for the angular error in datasets 1 and 5,
similarly except for the distance error in dataset 6 when
compared with the method used in [4]. )e major reason of
the better performance is that our method can be well
contributed by the noise reduction from the camera cali-
bration and the unpredictability of road conditions as
facilitated by taking advantage of the characteristics of
adaptive-length RPCA.

6.2. Detection Performance. To demonstrate the detection
performance of our proposed system, we compared it with
three methods [33, 48, 49] with different human detectors on
the ETHMS dataset, in terms of the detection rate and false

Table 1: Configurations of the datasets.

Sequence Resolution #Frames Frame per second
Dataset seq#1 1242 × 375 77 15
Dataset seq#2 1242 × 375 155 15
Dataset seq#3 1242 × 375 447 15
Dataset seq#4 1242 × 375 233 15
Dataset seq#5 1242 × 375 154 15
Dataset seq#6 1242 × 375 384 15
Dataset seq#7 1242 × 375 87 15
Dataset seq#8 1242 × 375 106 15
UWcamp#1 1920 × 1080 1100 30
UWcamp#2 1920 × 1080 200 30
ETHMS #4 640 × 480 450 15

(g1, φ1)

(g2, φ2)
(gk, φk)

(gfN, φfN)

Figure 8: Example of the ground plane estimation.

(a)

(b)

Figure 9: Overview of the 8 sequences from the Kitti dataset and their relative ground plane estimation results: (a) the sequences 1–8 (row-
wise starting top left), taken from the Kitti dataset; (b) the relative ground plane estimation result.

Table 2: )e average relative angular errors (DEG).

Dataset Our method Method [33] Method [17] Method [4]
1 0.06 0.11 0.02 0.8
2 0.05 0.20 0.07 1.22
3 0.03 0.08 0.04 0.27
4 0.01 0.03 0.23 0.92
5 0.06 0.06 0.01 0.41
6 0.03 0.08 0.07 0.39
7 0.05 0.10 0.20 3.06
8 0.10 0.59 0.11 1.68
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positive per image (FPPI). )is shows the performance of
inserting hypothesized association during tracking. )e test
results of the ETHMS dataset are shown in Table 4. )e
result shows that both the proposed method and the method
in [33] are superior to the method in [48, 49]. Both methods
further utilize the 3D information of the detected object,
instead of only using 2D information in [48, 49]. )ey can
effectively handle the occlusion issues. When compared with
the method [33] with the DPM detector, the proposed
method performs much better because it performs better in
the tracking with the adaptive ground plane estimation,
which results in increasing the detection rate and decreasing
the FPPI. And compared with DPM and YOLOv3 detectors,
the proposed method with YOLOv3 has a better perfor-
mance due to the low false positive detection rate in the
YOLOv3. )anks to the proper insertion of hypothesized
associations and the successive tracking, the detection rate of
the proposed method can achieve about 78%. )is implies
that missing detection can be improved by the tracking
techniques, and thus better detection results benefit the
tracking performance.

6.3. Multiple Object Tracking Result. To demonstrate the
tracking performance of our proposed system, we compare
the performance with the following three different tracking
methods: the method in [44] is a kernel-based human-
tracking system which tracks a human in 2D space and
without estimating the ground plane. )e method in [50]
uses the tracking-by-detection scheme to associate the de-
tected objects by calculating their similarity. )e method in
[33] is a human tracking system which uses a constant
number of frames to estimate the ground plane. To fairly
evaluate the tracking performance for each method, we
manually labeled 7302 locations as ground truth which
includes 31 moving vehicles and 89 pedestrians across 3393
frames and also adopt the followingmetrics which are widely
used in multiple object tracking (MOT) challenge [51].

(i) Multiple object tracking accuracy (MOTA): the
measurement of tracking accuracy combines three
sources of errors: false positive, false negative, and
identity switches.

(ii) Multiple object tracking precision (MOTP): the
measurement of object localization precision.

(iii) False positive (FP): the number of times of the
system detects an object but the ground truth is not
present in the image frame.

(iv) False negative (FN): the number of times of the
system failed to detect an object but the ground
truth is present in the image frame.

(v) ID switches (IDSs): the number of times two tra-
jectories switch their IDs.

)e comparison of the experimental results is shown in
Table 5. )e proposed method achieved the best perfor-
mance in all of the metrics except for FN.)e reason is that
the CNN-based tracking by detection retains more fore-
ground around the object regions. However, the extra
extracted background information will also cause the in-
crease in FP and IDS. )e ability of the proposed depth
CMK to deal with occlusion issues can be learned from the
fact that there is less identity switching, while the other
methods are tending to generate new object identities when
occlusion occurs. To facilitate the comparison of experi-
mental results, the red entries in Table 5 indicate that the
best results in the corresponding columns and blue italics
are the second best.

An additional typical example of performance com-
parison is shown in Figures 10 and 11, which both extract
five continuous frames from 175 to 179 from the UW
campus sequence 1. Figure 10 shows the tracking results in
the method [33], which use a constant number to estimate
ground plane. Figure 11 shows the tracking result in the
proposed method, which takes advantage of the yaw angle
from the camera pose to estimate the ground plane adap-
tively. From Figure 10, we can see that the camera mounted
on the driving vehicle starts to change direction in the frame
175, and in the frame of 177, the distance of the vehicle to the
camera sharply changed from 10.31 to 7.98, and then back to
8.31 in the frame 179. )e estimated ground plane remains
the same even when the vehicle starts to turn. Figure 11
shows the tracking performance of the proposed method
using adaptive ground plane estimation, we can see that the
distance of the vehicle gradually reduces from 10.51 to 8.44,
and the ground plane keeps changing with the direction of
the vehicle adaptively. It can be observed that the proposed
method can track objects more continuously and effectively
by using the adaptive ground plane estimation. Several
object tracking results with estimated ground plane are
shown in Figures 12–14, which show the tracking results on
the UW campus sequence 2, Kitti datasets, and ETHMS
datasets, respectively. )e results show favorable perfor-
mance of the proposed system, which not only can suc-
cessively track objects but also estimate a reliable ground
plane adaptively.

Table 3: )e average relative distance errors (%).

Dataset Our method Method [33] Method [17] Method [4]
1 0.01 0.01 0.59 0.69
2 0.02 0.02 0.75 0.40
3 0.03 0.03 0.72 0.23
4 0.01 0.01 1.99 0.33
5 0.01 0.01 0.34 0.41
6 0.40 0.40 0.74 0.28
7 0.01 0.01 1.65 4.95
8 0.01 0.01 2.13 1.11

Table 4: Comparison of detection rate and FPPI.

Method Detector Detection rate (%) FPPI
Method [48] ISM 47 1.5
Method [48] HOG 67.5 1
Method [49] DPM 49.53 0.93
Method [49] SP 51.86 0.92
Method [33] DPM 75.58 0.89
Our method DPM 75.71 0.82
Our method YOLOv3 78.10 0.19
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6.4. Runtime Performance. Apart from the detectors, all the
experiments are processed on a laptop with an Intel Core i7,
2.2GHz CPU with 8GB DDR. )e implementation is
constructed by C/C++, and the experimental settings are
described as follows: in the structure frommotion phase, the
proposed system uses the Harris corner detector to extract
1000 features initially, which are tracked by a KLT tracker.
And these corresponding feature points are used to estimate
the camera pose. In object detection, the pretrained YOLOv3
detectors are independently used in the proposed system to
detect objects such as human and vehicle. In the depth CMK
tracking, a depth map is constructed to describe the relative
3D locations of all the tracked objects firstly, and the his-
togram of objects is constructed based on the HSV color

space with a roof kernel; then, the K-L distance is used for all
the similarity-related measurements. Table 6 shows the
running time of the proposed system on different datasets
with different image resolutions.

6.5. Discussion. In this paper, we proposed an adaptive
ground plane estimation algorithm-based tracking system.
Existing ground plane estimation methods are required to
meet significant assumptions, such as the ground plane is the
largest plane in the scene and the ground plane is constant in
color or texture. )ese assumptions are not practical in
cluttered or dynamic environments, especially not suitable
for driving environments. Our method can robustly estimate

Table 5: )e tracking performance between different methods.

Methods MOTA (%) MOTP (%) FP FN IDS
Our method 79.7 95.8 143 1313 29
Method [33] 76.2 92.1 268 1416 53
Method [44] 63.9 82.6 590 1955 91
Method [50] 7.8 90.7 316 1223 82

(a) (b) (c) (d) (e)

Figure 10: Tracking results in the method [33] without adaptive ground plane estimation on UW campus sequence #1. (a) Frame 175.
(b) Frame 176. (c) Frame 177. (d) Frame 178. (e) Frame 179.

(a) (b) (c) (d) (e)

Figure 11: Tracking result in ourmethod with adaptive ground plane estimation on UW campus sequence #1. (a) Frame 175. (b) Frame 176.
(c) Frame 177. (d) Frame 178. (e) Frame 179.

(a) (b) (c) (d)

Figure 12: Tracking results with the estimated ground plane on UW campus sequence #2. (a) Frame 3. (b) Frame 4. (c) Frame 5. (d) Frame 6.
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the ground plane on a moving camera with nonrestrictive
assumption: the camera is mounted on a fixed height of the
vehicle.

Combining the adaptive ground plane estimation, object
detection, Kalman filter framework, and efficient depth
CMK tracking techniques, the proposed tracking system can
not only track the object effectively but also robustly handle
occlusion during tracking. Nevertheless, several limitations
are still existed. First, the proposed approach adopts the
tracking-by-detection scheme to detect and then track ob-
jects, and this implies that the method highly relies on the
detection results. However, if the quality of video sequences
is not sufficient for the object detectors, the proposed
tracking system is not able to perform well on the poor
detection results. More specifically, the positive detection of
a target can always trigger the tracking of a specific object. In
other words, the proposed method may not work well at
night or some cases of insufficient lighting. Second, the
proposed method effectively estimates ground planes based
on certain video frames when the vehicle moves on flat
roads, but if the roads are severely bumpy, it will produce less
reliable estimation, resulting in larger error of the object
back-projection and impacting accuracy of the reprojected
3D information. Hence, the proposed method is not reliable
for the unmanned aerial vehicle, because its height dy-
namically changes and then infers unreliable 3D informa-
tion of objects.

In the future, we will focus on improving the perfor-
mance of the algorithm by enhancing the accuracy of the

object detection algorithms. In addition, we will also test our
algorithms on video sequences that have higher outdoor
complexity and more objects visible in the scene.

7. Conclusion

We propose a robust object tracking system and ground
plane estimation simultaneously in a dashcammounted on a
free-moving vehicle. )e proposed system effectively inte-
grates the object detection, ground plane estimation, CMK
tracking, and Kalman filter framework to relocate the objects
in 3D space, and the estimated camera yaw angle has been
adopted into the adaptive ground plane estimation.With the
depth CMK tracking, the 3D positions of the detected targets
are updated on the more reliable ground plane and occlusion
issue is also handled in the tracking system. )e experi-
mental result shows that the proposed method greatly im-
proved the tracking performance. Such tracking system can
be regarded as a key component for high-level applications,
such as video analysis in a large scale of the mobile network.
Besides, the proposed framework can also be futher applied
to the advanced driver assistance system (ADAS).

Data Availability

)e Kitti dataset used to support the findings of this study
may be released upon application to the KITTI Vision
Benchmark Suite, which is a project of Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago.
)e dataset can be downloaded for free at this web page
http://www.cvlibs.net/datasets/kitti/raw_data.php. )e
ETHMS dataset can be downloaded on the following web
page https://data.vision.ee.ethz.ch/cvl/aess/dataset/#pami09.
Requests for self-recorded UW data, 6/12 months, after the
publication of this article, will be considered by the corre-
sponding author.

(a) (b) (c) (d)

Figure 13: Tracking results with the estimated ground plane on the Kitti datasets. (a) Kitti dataset 2. (b) Kitti dataset 5. (c) Kitti dataset 6.
(d) Kitti dataset 8.

(a) (b) (c) (d)

Figure 14: Tracking results with the estimated ground plane on the ETHMS datasets. (a) Frame 175. (b) Frame 185. (c) Frame 191. (d) Frame 196.

Table 6: Runtime on different image resolutions.

Dataset Resolution Average runtime (fps)
Kitti 1242 × 375 0.87
UW campus 1920 × 1080 0.65
ETHMS 640 times 480 0.95
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Automotive intelligence has become a revolutionary trend in automotive technology. Complex road driving conditions directly
affect driving safety and comfort. .erefore, by improving the recognition accuracy of road type or road adhesion coefficient, the
ability of vehicles to perceive the surrounding environment will be enhanced..is will further contribute to vehicle intelligence. In
this paper, considering that the process of manually extracting image features is complicated and that the extraction method is
random for everyone, road surface condition identification method based on an improved ALexNet model, namely, the road
surface recognition model (RSRM), is proposed. First, the ALexNet network model is pretrained on the ImageNet dataset offline.
Second, the weights of the shallow network structure after training, including the convolutional layer, are saved and migrated to
the proposed model. In addition, the fully connected layer fixed to the shallow network is replaced by 2 to 3, which improves the
training accuracy and shortens the training time. Finally, the traditional machine learning and improved ALexNet model are
compared, focusing on adaptability, prediction output, and error performance, among others. .e results show that the accuracy
of the proposedmodel is better than that of the traditional machine learning method by 10% and the ALexNet model by 3%, and it
is 0.3 h faster than ALexNet in training speed. It is verified that RSRM effectively improves the network training speed and
accuracy of road image recognition.

1. Introduction

As car ownership has risen continuously, traffic jams, delays,
and accidents spiraled upward. According to statistics [1, 2],
16.12% of traffic accidents on highways are attributed to
slippery road conditions and the driver’s response to
changes in terrain caused by road damage. To improve
vehicle safety, research on vehicle safety control has grad-
ually changed focus from passive safety to active safety. As
an important part of the vehicle’s perception of the sur-
rounding environment, road surface type recognition plays
an important role not only in the power, smoothness, and
comfort of intelligent driving vehicles, but also in vehicle
safety.

In the 1960s, Wiesel and Hubel [3] found that their
unique network structure could effectively reduce the
complexity of the feedback neural network when they

studied the neurons used for local sensitivity and direction
selection in the cortex of cats and proposed a convolutional
neural network (CNN). Lecun et al. [4] made a great
breakthrough in optical character recognition and computer
vision by using a CNN, which promoted the development of
computer vision. In recent years, CNNs have been widely
used in many fields and have shown excellent performance
in image target detection [5–7] and classification [8, 9]. .e
appearance of a CNN also provides a new solution for road
condition recognition.

Several researchers and institutions have focused on
pavement type identification and adhesion coefficient pre-
diction. Chen [10] extracted the feature parameters of the
gray-level cooccurrence texture matrix of the pavement
image, studied the selection of pavement texture features,
and achieved certain results. However, this method has the
disadvantages of fewer image features and lower recognition
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accuracy. Bekhtike and Kobayashi [11] used a camera to
collect pavement images and evaluated the texture attributes
obtained from the fractal dimension using Gaussian process
regression for function approximation and predicted road
types by fusing road texture features and vibration data
received from motion. .is method still has some limita-
tions. For instance, when the background lighting changes
obviously, motion blur occurs, or if the road is covered by
rain, snow, or ice, it is difficult to accurately identify the road
type.

Ward and Iagnemma [12] successfully classified asphalt,
paved, and gravel roads with acceleration sensors. .is
method has drawbacks when the road surface roughness is
similar, and it is obviously insufficient to use acceleration
data to distinguish the road type. Alonso et al. [13] proposed
a real-time acoustic pavement state recognition system based
on tire noise, using a noise measurement system and a signal
processing algorithm to classify the pavement state, and
achieved accurate classification of wet and dry pavement
states.

Neupane and Gharaibeh [14] proposed a method for
detecting pavement types based on heuristic lidar and
identified the pavement type by the mean and variance of the
laser reflection intensity. .is method is mainly used for
asphalt pavement. Jonsson et al. [15] proposed road clas-
sification based on near infrared camera image spectral
analysis, using KNN and support vector machine (SVM)
methods to classify dry, wet, icy, and snowy roads and
achieved certain results. Bystrov et al. [16] used automotive
ultrasonic sensors to analyze reflected ultrasonic signals for
road classification, with a recognition accuracy of up to 89%.

Meng [17] proposed a method based on the basic
principles of machine learning to classify pavement types by
combining data from vertical acceleration sensor signals and
camera features. .e accuracy of using an acceleration
sensor or image data to identify road type was only 62% and
88%, respectively. When the two were combined, because of
the small sample size, accuracy reached only 90%.Wang [18]
classified and discriminated road images based on high-
dimensional features and RBF neural networks and per-
formed recognition experiments on eight different road
images with an accuracy of approximately 78.4%. Based on
the SVM, Zhao et al. [19] obtained the best classification
model by PSO parameter optimization, classified the road
types, and improved the recognition accuracy of the test
image, achieving an accuracy rate of over 90% for the five
basic road types.

Casselgren et al. [20] studied the light performance of
asphalt pavements covered by water, ice, or snow. .ey
conducted a detailed study on the changes in light in-
tensity with the angle of incidence and spectrum changes
and proposed two different wavebands to classify road
conditions. Linton and Fu [21] described a networked
vehicle-based winter road condition (RSC) monitoring
solution that combines vehicle-based image data with
data from road weather information systems. Jokela et al.
[22] presented a method and evaluation results to
monitor and detect road conditions (ice, water, snow, and
dry asphalt).

.e developed device is based on light polarization
changes when reflected from the road surface. .e recog-
nition capability has been improved with texture analysis,
which estimates the contrast content of an image, but the
results show that the proposed solution does not currently
adapt to different conditions perfectly well. Yeong [23] and
Yu and Salari [24] developed a pothole detection system and
method using 2D LiDAR. Caltagirone [25] developed a
method for road detection in point cloud top-view images
using fully CNN. However, according to the material pre-
sented in [26, 27], even LIDAR, which is the safest laser, can
cause damage to the human eye during longer exposure (e.g.,
cataracts and burn of the retina). In the future, with the
popularity of smart cars, this type of laser may be a problem.
We consider a method to improve road condition recog-
nition through image vision.

To summarize, most road recognition algorithms are
based on traditional machine learning. Traditional machine
learning extracts artificial image features as algorithm input.
It was found that the process had a certain randomness, and
the whole process including the classification algorithm was
complex. To solve these problems, this paper proposes a road
surface condition identification method based on an im-
proved ALexNet model, namely, the road surface recogni-
tion model (RSRM).

.erefore, the main contributions of this paper can be
summarized as follows:

(1) .e ALexNet [28] network model is pretrained on
the ImageNet [29] dataset offline. .e weights of the
shallow network structure after training, including
the convolutional layer, are saved and migrated to
the proposed model. In addition, the fully connected
layer fixed to the shallow network is replaced by 2 to
3, which improves the training accuracy and
shortens the training time.

(2) .e traditional machine learning and improved
ALexNet model are compared, focusing on adapt-
ability, prediction output, and error performance,
among others.

2. Research Method for Identifying Road
Surface Conditions Based on Improved
ALexNet Model (RSRM)

.e traditional road type identification method has some
limitations, such as a complex extraction process, weak
adaptability, poor light robustness, low recognition accu-
racy, and difficulty in practical application. Meanwhile, the
rapid development of artificial neural networks has also
given birth to the progress of deep learning [30] in recent
years. Common deep learning networks include autoen-
coders [31], deep belief networks [32], and CNNs. In deep
learning, CNNs play a key role in image recognition. Road
condition recognition belongs to the field of image recog-
nition; therefore, in this study, the road image recognition
model is built by combining CNNs and deep learning theory.
With the help of CNN’s self-learning and training of road
image features, the actual road types can be identified.
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2.1. Convolutional Neural Networks (CNN). CNN [33] has
high efficiency and accuracy in image recognition, which is
due to the shared parameters of convolutional kernels in the
hidden layer and sparsity of interlayer connections. A CNN
model is generally formed by alternately stacking con-
volutional layers and pooling layers, and the specific op-
eration for input data is saved in the weight of this layer. .e
loss function is used to evaluate the difference between the
output and target values. .e optimizer uses the difference
between the target value and the output value as the feedback
signal to update the weight value through the back-
propagation algorithm [34] and finally reduces the loss value
corresponding to the current target, which makes the net-
work prediction more accurate. .e feature values of the last
layer of the pooling layer generate a list of vectors through
the fully connected layer and input them to SoftMax [35], for
classification and recognition. .e CNN training process is
shown in Figure 1.

2.1.1. Convolutional Layers. .e convolutional layers
principally perform convolution operation on the image
or feature map, which is input into the convolution layer,
to extract feature and output the convoluted feature map.
.erefore, as shown in equation (1), each feature map of
convolution layer is obtained by combining and calcu-
lating multiple feature maps output from the previous
layer:

X
l
n � f 

i∈Mn

X
l−1
i ∗K

l
in + b

l
n

⎛⎝ ⎞⎠, (1)

where Mn is the feature map set filtered from the input
feature map, Xl

n is the n th feature map in the l th layer, Kl
in is

the i th element of the n th convolution kernel in the l th
layer, bl

n is the n th offset of the l th layer, and “∗ ” is the
process of convolution.

2.1.2. Pooling Layers. .e pooling layer, also known as the
lower sampling layer, is mainly used to reduce the calcu-
lation amount of feature extraction..e pooling layer retains
the number of feature maps but changes the size of the
feature maps; equation (2) represents the calculation process
of the sampling layers.

X
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n � f βl

n down X
l−1
n  + b

l
n , (2)

where down(·) is the lower sampling (pooling) function, βl
n

is the n th multiplication offset of the l th layer, and bl
n is the n

th offset of the l th layer.
.e lower sampling function is largely divided into

mean-pooling and max-pooling. Mean-pooling is to cal-
culate the average of all elements in the pooling area.

pn �
1

Rn





i∈Rn

cn. (3)

.e max-pooling is to select the maximum element in
the pool area.

pn � max
i∈Rn

ci, (4)

where Rn is the n th pooling area in the feature map and ci is
the i th pixel value in Rn.

2.1.3. Fully Connected Layers. .e fully connected layers
generally locate at the last part of the hidden layers in CNN.
.e fully connected layers form a multilayer perceptron like
the shallow neural network, which nonlinearly combines the
feature vectors output by the convolutional layer and the
pooling layer to get the output.

2.1.4. Output Layers. .e output layers in CNN are usually
behind the fully connected layers. For image classification
problems, the output layers use a logical function or a
normalized exponential function (SoftMax function) to
output classification labels. .e range of the multi-
classification label y in SoftMax regression is y≥ 2. .e
training sample set is composed of k labeled samples:

T � x(1), y(1)  x(2), y(2) , . . . , x(k), y(k)  , (5)

where y(i) ∈ 1, 2, . . . , k{ } is the classification labels, and x(i)

is the sample set. j represents different classifications, and it
is estimated probability value. .e probability that a single
sample is classified into class K is

P(y � j|x), (j � 1, 2, . . . , k). (6)

.e regression sample set is transformed into a k-di-
mensional probability vector, and it is given by
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Figure 1:.e training process of road surface image based on deep
learning.
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normalize the probabilities and make the sum of the
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.rough the training of sample set, the optimizer adjusts
parameters to minimize model loss function value, and its
loss function formula is defined as
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2.2. ALexNet Network. .e typical CNN models usually
include GoogLeNet [36], VGG-16 [37], and ALexNet.
GoogLeNet and VGG-16 have 22 and 16 layers, respectively.
.eoretically, the deeper the number of model layers, the
better the classification effect.

As a classic model, ALexNet accelerates the development
of deep learning, which is a milestone in image recognition.
Before the research, we have done the comparison between
ALexNet and VGG, GoogleNet, and other networks, and
ALexNet network can reach a higher recognition accuracy in
a shorter time.

Second, theoretically, the deeper the model layer is, the
better the classification effect is. However, the training
process of deep convolution network is extremely difficult.
For example, many parameters lead to the disappearance of
backpropagation gradient and overfitting. At the same time,
the deeper network often needs to consumemore computing
resources. ALexNet can meet the accuracy of road image
recognition, while reducing computer resources. So, the
diversity of road images is low, and ALexNet can achieve
higher recognition accuracy and occupy less computer
resources.

.ird, the road image is relatively simple, and the latest
network is usually to solve more complex image classifi-
cation problems. ALexNet has been able to solve the
problem of road condition image recognition extremely
well.

.is is due to several advantages of the ALexNet
network:

(1) In the training process, dropout is used to randomly
ignore some neurons to avoid overfitting the model.

(2) Samples are data augmented [38] to expand the
samples with insufficient training images.

(3) Rectified Linear Units (ReLUs) [39] are used as the
excitation function of the network, which improves
its nonlinearity and solves the problem of gradient

dispersion. To solve the problem of gradient dis-
persion, ALexNet adopts the ReLU activation
function. ReLU is defined as follows:

ReLU(x) � max(x, 0). (9)

In Figure 2, comparing ReLU and sigmoid [40] acti-
vation function curves, it shows that when x is greater than 0,
the ReLU gradient value is always a constant of 1. .e
derivative of the sigmoid function is like the curve shape of
the Gaussian function, but not constant. .e derivative at
both ends of the sigmoid curve becomes smaller. .erefore,
the network with ReLU as an activation function converges
quickly, which is helpful in accelerating training.

Figure 3 and Table 1 show the structure and parameters
of ALexNet. .e model is mainly composed of five con-
volutional layers and three fully connected layers. .e
number of convolution kernels in five convolution layers is
96, 256, 384, 384, and 256, respectively. .e role of the
pooling layer is mainly to reduce the size of the feature image
after convolution. .e nodes of the three fully connected
layers are 4096, 4096, and 1000, respectively. SoftMax can
classify 1000 categories.

2.3. Road Surface Recognition Model Based on RSRM. .e
ALexNet network was pretrained on the ImageNet database
with at least one million images offline, and the weights and
parameters of each layer were obtained after training. .e
trained network has a strong ability to learn features, es-
pecially curves, edges, and contours of an image. To improve
the efficiency of network training and reduce the training
time, this study takes the trained ALexNet network as the
pretrained model and transfers its parameters to the RSRM
using fine-tuning transfer learning [41]. ALexNet, SVM, and
BP use the classic structure. SVM algorithm is based on the
characteristics of the road image for road color and texture
feature extraction experiments.

Similarly, RSRM consists of a convolutional layer,
pooling layer, fully connected layer, and SoftMax classifi-
cation layer. By analyzing the characteristics of actual
pavement images, nine typical pavement types are selected,
as shown in Figure 4, focusing on nine typical road surface
types; therefore, 9-label SoftMax is used to replace the
original classifier in the ALexNet network. In addition, as
shown in Figure 5, two fully connected layers are trained on
the actual road pavement test set and to replace the original
three fully connected layers. .e number of nodes in the two
fully connected layers are 4096 and 1000, respectively.
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.rough the above steps, the problem of road surface image
classification and recognition is solved.

3. Experimental Settings

3.1. Road Surface Data Acquisition System. .e road col-
lection test vehicle was a sedan with a length of 3564mm,
width of 1620mm, and height of 1527mm. Its wheelbase
was 2340mm. .e camera model was LeTMC-520. As
shown in Figure 6, the camera was installed at the air intake
grille in the front of the vehicle, at an angle of −10° from the
horizontal grille. .e installation height from the ground
was 350mm. In this study, considering the complex weather
conditions in the actual driving process, three typical
weather conditions, namely, cloudy, sunny, and rainy, were
selected for road image data collection. Note that the images
of the actual road test set are all taken by the vehicle during
driving.
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Figure 2: Activation function. (a) ReLU function image. (b) Sigmoid function image.
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Figure 3: .e structure of ALexNet network models.

Table 1: ALexNet structure parameters.

Name Parameter Stride Number of convolution kernels
Conv 1 11× 11× 3 4 96
Pool 1 1× 3× 3×1 2 —
Conv 2 5× 5× 48 1 256
Pool 2 1× 3× 3×1 2 —
Conv3 3× 3× 256 1 384
Conv4 3× 64× 384 1 384
Conv5 3× 3× 384 1 256
Pool5 1× 3× 3×1 2 —
Fc6 4096 — —
ReLU6 ReLU — —
Dropout 0.5 — —
Fc7 4096 — —
ReLU7 ReLU — —
Dropout 0.5 — —
Fc8 1000 — —
Prob SoftMax — —
Output 1000 — —

Journal of Advanced Transportation 5



Rain
samples

Asphalt
samples

Concrete
samples

Grass
samples

Mud
samples

Rock
samples

Soil
samples

Figure 4: Image samples of road surface state.

6 Journal of Advanced Transportation



Training data Test data

Road image database

Input

Improved road 
recognition model

Softmax 
classification layer

2 fully connected
layers

Convolutional layer

Imagenet database

ALexNet

ccc ccc

Image recognition

Figure 5: Structure of the road surface recognition model.

Figure 6: Camera installation and data acquisition.

Journal of Advanced Transportation 7



In addition, a road surface data analysis system server
configuration was performed on a desktop computer with a
64 bit operating system, 16GB of memory, an AMD Ryzen 5
3600 6-Core Processor, and a GeForce GTX 1660 graphics
processing unit.

3.2. Establishment of Road Surface Image Database. .e
image standards were selected according to the typical
pavement types: asphalt, concrete, grass, mud, rain, rock,
soil, wet asphalt, and wet concrete, and the images with clear
quality were used for the road surface image database
(RSID). .e sample size of each pavement was 2000, in
which the training set and test set were divided in a ratio of
7 : 3.

3.3. Experimental Procedure

Step 1: Image preprocessing.
Scaling and cropping operations are performed on all
road surface images to ensure a uniform image size,
which can meet the requirements of the neural network
module in MATLAB.
Step 2: Building the training set and test set.
RSID is divided into the training set and test set in a
ratio of 7 : 3.
Step 3: Building the RSRM.
Focusing on nine typical road surface types, the 9-label
SoftMax is used to replace the original classifier in the
ALexNet network. .e next step is to use the trained
ALexNet network as the pretrained model and transfer
its parameters to the RSRM using fine-tuning transfer
learning.
Step 4: Model training
Model training that uses the stochastic approach ini-
tializes the model parameters; sets the momentum
parameters, learning rate, and training time; and
freezes the parameters of the five convolutional layers
and pooling layers. .rough the above, we replace the
parameters of the two fully connected layers and 9-label
SoftMax with a fresh new one.
Step 5: Model testing.
.e remaining 30% of the RSID was used as a test set to
verify the accuracy and speed of the RSRM.

4. Results and Analysis of Experiment

4.1.ExperimentofRoadImageFeatureExtraction. .e role of
the convolution layer is to extract features by performing a
convolution operation on the image or feature map. First, we
pretrained the improved ALexNet network model (5 con-
volutional layers) on the ImageNet dataset. Second, the
weights of the shallow network structure after training were
saved and transferred to the RSRM. Finally, to observe the
feature extraction effect of RSRM more clearly, taking the
mud image as an example, the output features of each

convolution layer were visualized. Figure 7 shows the mud
pavement image after preprocessing.

As shown in Figure 8(a), the preprocessed mud image is
extracted with 96 feature maps through Conv1. .e con-
volution layer mainly extracts edges and details of the image.
After several convolution kernel operations in the convo-
lution layer, the image retains most of the information of the
original image. As shown in Figure 8(b), the convolved
image is processed by the ReLU1 activation function, and the
edge information and detailed information of the mud
surface road image are more obvious. Figures 8(c) and 8(d)
show the feature map after Conv3 and relu3. It can be seen
from the figure that the convolution kernel can extract more
edge information, and the outline of the mud road surface
image is clearer. Figures 8(e) and 8(f) show the feature map
after Conv5 and relu5. It also reveals that as the number of
convolutional layers increases from the first layer to the fifth
layer, the resolution ratio of the image decreases, and the
image output from the convolutional kernel becomes in-
creasingly abstract.

According to the above image feature extraction ex-
periments, the convolution layer integrates shallow features
or underlying features to form more abstract features. .is
makes the expression of road information more compre-
hensive and can also use high-level abstract features for
pavement classification and recognition.

4.2. Experiments of Road Surface Type Recognition Based on
RSRM. RSID contains 18000 images of nine pavement
types, such as asphalt, wet asphalt, rain, concrete, wet
concrete, soil, mud, grass, and rock. To verify the validity of
the RSRM proposed in this paper, 70% of RSID were ran-
domly selected as the training set, with a total of 12600
pieces, and the remaining 30% was used as the test set. .ere
were 600 images for each type of pavement in the test set, for
a total of 5400 pavement images.

Table 2 shows the RSRM training parameter setting. .e
test tolerance is the number of iterations that the loss of test
set before network training stops can be greater than or
equal to the previously smallest loss. .is can stop training
by setting the test tolerance when test loss is no longer

Figure 7: Image of mud pavement after preprocessing.
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Figure 8: Feature extraction results of different Conv and ReLu for mud pavement images. (a) Conv1. (b) ReLu1. (c) Conv3. (d) ReLu3.
(e) Conv5. (f ) ReLu5.

Journal of Advanced Transportation 9



reduced, to avoid overfitting, save computer memory and
improve training speed.

Table 3 shows the classification results of test samples
based on RSRM in this research. Table 4 lists the recognition
results of some image based on RSRM.

According to Step 2, there are 600 samples per category
in the test set; this is true for the asphalt pavement type. As
can be seen in Table 3, an asphalt pavement image (600
samples) was misidentified, and the recognition accuracy
was 99.8%. .is is because part of the asphalt pavement
presents a dry-wet state, which makes it extremely similar to
the image characteristics of asphalt pavement; thus, it is
misidentified as wet asphalt. A total of 598 concrete pave-
ment samples were correctly identified, and the remaining
two were identified as soil and mud pavements, with an
accuracy rate of 99.7%. .e reason is that the color and
image texture of some concrete, soil, andmud pavements are
similar under dry conditions. .e number of rain pavement
samples correctly identified is 598, with the remaining two
misidentified as wet asphalt and wet concrete pavements;
meanwhile, the identification accuracy rate was 99.7%. For
soil pavement, 599 samples were correctly identified, and the
remaining one was classified as mud. A wet soil road surface
often forms the mud surface, and the high probability of
these two pavement features cooccurring in a single image is
themain factor leading to false positives..e total number of
wet concrete surfaces is 600, of which 580 are correctly
recognized, 9 are identified as soil, one is identified as rock
pavement, and the last 10 are identified as mud pavement.
.us, the recognition accuracy of wet concrete pavement is
96.7%. .is is because the color of the wet concrete pave-
ment is brown-gray after being wet. .e recognition ac-
curacy of grass, rock, and wet asphalt are higher than other
surfaces, which is due to the significant difference in color
and texture features compared to other road images.

4.3. Experiments of Classification Method Comparison. In
this study, RSRM is compared against the ALexNet model,
support vector machines (SVM), and backpropagation (BP)
neural networks..e results are shown in Table 5. According
to previous research, color and texture are the main features
of road images. .e SVM [42] classification model needs to
extract road image features manually. In the three-color
spaces of HSV, RGB, and YCM, there are nine color
components of the road image, namely H, S, V, R, G, B, Y, C,
and M..e gray-level cooccurrence matrix is used to extract
four texture similar information of road surface images, such
as contrast, correlation energy, and entropy. .e BP neural
network [43–45] has five layers, the number of nodes in each
layer is 100, and the optimization algorithm uses stochastic
gradient descent.

In this section, RSRM is compared with the BP neural
network, SVM, and ALexNet models, focusing on the

analysis of model prediction output, error performance,
training time, and detection time.

As shown in Figures 9 and 10 , RSRM significantly
improves accuracy of road surface identification compared
to ALexNet. Specifically, RSRM converged at 216 iterations,
realizing an accuracy of 96.38%. However, the ALexNet
network has yet to converge after 500 iterations. .erefore,
transfer learning and optimization of the fully connected
layer can effectively improve the training efficiency and
accuracy of the model..e ALexNet model requires a longer
training time and larger dataset to match the accuracy of
RSRM.

Figure 11 and Table 5 illustrate the identification
accuracy of different methods. .e average recognition
accuracy of BP, SVM, ALexNet, and RSRM was 92.84%,
89.59%, 97.57%, and 99.48%, respectively. .e accuracy
of RSRM and ALexNet is more than 95%, which shows
the superiority of deep learning methods. Traditional
machine learning methods, such as SVM and BP neural
networks, are not suitable for representing variations in
illumination intensity due to their manual features. .e
SVM classifier is suitable for small datasets, which is why
it has not achieved good results in road datasets. Table 6
shows the average time taken by each learning model to
classify a test image. .e test times of all models for a
given road image are almost the same. .e results show
that the accuracy of the deep learning model is higher
than that of the traditional machine learning method.

Table 2: Training parameter setting.

Verification frequency Minibatch size Epoch Learning rate Test tolerance
20/iteration 128/images 25 0.001 5/iteration

Table 3: .e classification results of test samples based on RSRM.
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SVM is effective in dealing with small-scale datasets,
which is difficult to implement for large-scale training
samples. In the process of image classification based on
BP, the upper layer of neurons and the next layer of
neurons are fully connected, which leads to excessive

Table 4: Results of the test sample classification.

Asphalt Wet concrete Wet asphalt

Rock Rain Mud

Concrete Grass Soil

Table 5: .e accuracy of different model identification.

Model (%) SVM BP ALexNet RSRM
Training accuracy 91.72 93.36 98.36 100
Test accuracy 89.59 92.84 97.57 99.48
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Figure 9: Accuracy during validation.
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Figure 10: Loss during validation.
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training weight and overfitting. However, a CNN can
effectively reduce the training weight and improve the
training speed using a convolution operation.

In addition, this study proposes a method for testing
tolerance thresholds to stop model training and reduce the
number of fully connected layers. Based on this, the SoftMax
classifier for nine labels is designed..e training time for the
proposed method was 1.6 h, BP was 2.2 h, ALexNet was 1 h,
and RSRM required 0.4 h (RSRM does not include pre-
training time), and it took 0.14 s to classify a test image. .e
training speed of RSRM is four times that of SVM and five
times that of BP. Meanwhile, the recognition accuracy was
1.91% higher than that of ALexNet, 6.64% higher than BP,
and 9.89% higher than SVM. RSRM can effectively improve
the training efficiency and accuracy of the model.

In summary, the BP neural network is not suitable for
recognizing multiple ranges of road image databases because
of the large number of neurons, the number of network
layers cannot be too large, and the computing time is long,
which can easily lead to overfitting and inconvenience in
processing high-dimensional data. SVM feature extraction is
complex and only suitable for small datasets. .e proposed
method not only achieves fast and high-precision recogni-
tion of road surface types in a short training time but also
meets the perception requirements of actual road
conditions.

5. Conclusion

.is paper presents a pavement identification method based
on an improved ALexNet model. First, the ALexNet network
model is pretrained on the ImageNet dataset offline. Second,
the weights of the shallow network structure after training,
including the convolutional layer, are saved, and migrated to
the proposed model. In addition, the fully connected layer
fixed to the shallow network is replaced by 2 to 3, which

improves the training accuracy and shortens the training
time, and the 9-label SoftMax replaces the original classifier
in the ALexNet network. In addition, the proposed method
is compared with the BP neural network, SVM, and ALexNet
models, focusing on the prediction output, error perfor-
mance, and rapidity of the model. .e results show that the
recognition accuracy of RSRM is 99.48%, which is higher
than that of ALexNet, BP, and SVM by 1.91%, 6.64%, and
9.89%, respectively. Moreover, this paper proposes a method
for testing tolerance thresholds to stop model training and
reduce the number of fully connected layers, which can save
0.6 h of training time and increase the training speed to four
times that of SVM and five times that of BP. In conclusion,
the deep learning model not only has higher accuracy than
the traditional machine learning method but also can
achieve higher recognition accuracy in a shorter time, which
can meet the perception requirements of actual road con-
ditions. .e research method is not only suitable for road
recognition, but also suitable for human-vehicle-road col-
laborative perception of the vehicle environment.
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Maritime images captured under haze environment often have a terrible visual effect, making it easy to overlook important
information. To avoid the failure of vessel detection caused by fog, it is necessary to preprocess the collected hazy images for
recovering vital information. In this paper, a novel CNN-enabled visibility dehazing framework is proposed, consisting of two
subnetworks, that is, Coarse Feature Extraction Module (C-FEM) and Fine Feature Fusion Module (F-FFM). Specifically, C-FEM
is a multiscale haze feature extraction network, which can learn information from three scales. Correspondingly, F-FFM is an
improved encoder-decoder network to fuse multiscale information obtained by C-FEM and enhance the visual effect of the final
output. Meanwhile, a hybrid loss function is designed for monitoring the multiscale output of C-FEM and the final result of
F-FFM simultaneously. It is worth mentioning that massive maritime images are considered the training dataset to further adapt
the vessel detection task under haze environment. Comprehensive experiments on synthetic and realistic images have verified the
superior effectiveness and robustness of our CNN-enabled visibility dehazing framework compared to several state-of-the-art
methods. Our method preprocesses images before vessel detection to demonstrate our framework has the capacity of promoting
maritime video surveillance.

1. Introduction

1.1. Background and RelatedWork. It is well known that the
maritime surveillance system is an indispensable part of
vessel traffic services [1]. As an efficient, convenient, and
intuitive monitoring method, Closed Circuit Television
(CCTV) is thus widely applied to critical regions, for ex-
ample, ports and waterways. As shown in Figure 1, signif-
icant information in the images, however, is easily buried
under the haze. +erefore, it is difficult for maritime reg-
ulatory authority to effectively extract detailed information
(e.g., monitoring targets and water traffic conditions) from
degraded images, which seriously affects maritime super-
vision efficiency. Besides, the low-quality images collected
under haze environment have also brought severe challenges
to intelligent surveillance methods based on vessel detection,
recognition, and tracking [2–5]. To improve the maritime
safety surveillance capability under haze environment, it is

necessary to restore images under CCTV monitoring. In
current literature, dehazing methods can be categorized into
image enhancement-based methods, physical model-based
methods, and deep learning-based methods.

1.1.1. Image Enhancement-Based Methods. Early research
mainly enhanced the contrast of hazy images to highlight the
scene characteristics of the interest region. Histogram
Equalization (HE) [6] is a classic enhancement method
devoted to enhancing the contrast by stretching the dynamic
range of image pixel values. In current literature, HE-based
methods can be divided into two categories, that is, global
and local histogram equalization. Since the global histogram
equalization can enhance the entire image by single map-
ping, it has the characteristics of simple principle and fast
calculation. However, these methods often ignore the local
information, resulting in the haze-free images having poor
performance. To solve this problem, Stark et al. [7] proposed
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an adaptive local histogram equalization method. Subse-
quently, Kim et al. [8] proposed a nonoverlapping subblock
histogram equalization method to reduce the blocky effect
and computational complexity. Retinex theory-based image
dehazing method is devoted to separating the illumination
and reflection from the hazy image and enhancing the image
by reducing the illumination impact. Jobson et al. [9] first
used the Gaussian filter to obtain a smooth illumination
according to the Retinex theory and thus proposed a single-
scale Retinex (SSR). To avoid color distortion, Rahman et al.
[10] proposed a multiscale Retinex algorithm with color
restoration (MSRCR) by introducing a color compensation
factor. To sum up, the image generated by these methods has
higher contrast and color fidelity, but the halo often appears
on the edge of the interest object.

1.1.2. Physical Model-Based Methods. +ese methods are
proposed based on a certain physical model that describes
the process of image degradation under haze weather. Be-
cause these methods use mathematical methods to describe
the haze formation process based on light scattering, the
final restored target is clear and natural. Physical model-
based methods include the following categories, that is,
depth-based method and prior-based method. +e depth-
based methods mainly obtain depth information through a
specific method and then get stable model parameters. Fi-
nally, the potentially clear image can be obtained by the
atmospheric scattering model. For instance, Oakley et al.
[11] first used radar and other types of equipment to
measure the shooting scene depth. Hautiere et al. [12]
proposed an image dehazing algorithm based on the 3D
geographic model for vehicle vision systems. Although these
methods have an excellent dehazing effect, they heavily rely

on distance measuring equipment. +erefore, Liu et al. [13]
proposed a dehazing method to estimate the depth map
through a second-order variational framework. In contrast,
the prior-based method mainly analyzes haze formation and
relies on specific prior information to achieve image
dehazing. Dark channel prior (DCP) [14] and its im-
provements [15–17] have an excellent performance in the
image dehazing task. +rough numerous statistics on out-
door haze-free images, He et al. proposed DCP based on the
assumption that most local color blocks contain some pixels
with very low intensity in at least one color channel. Zhu
et al. proposed a novel linear color attenuation prior [18],
based on the difference between the brightness and the
saturation of pixels within the hazy image. Subsequently, a
nonlocal prior dehazing method [19] is employed to obtain
the nonlocal transmission map from the haze-line property.
To reduce halo and unnatural artifacts, a low-complexity
color ellipsoid prior [20] is designed to accurately and swiftly
estimate the transmission map. In current literature, several
variational model-based transmission estimation methods
[15, 21, 22] are also proposed. Although prior-based
methods have verified excellent dehazing performance, they
may cause a loss in color fidelity under certain circumstances
and fail to obtain pleasing visual effects on maritime images.

1.1.3. Deep Learning-Based Method. Affected by the excel-
lent results of machine learning technology in computer
vision, the CNN-enabled dehazing method has gradually
become a new research direction. For instance, Tang et al.
[23] proposed a learning-based approach to systematically
investigate different haze-relevant features and identify the
best feature combination for image dehazing. Zhu et al. [18]
designed the color attenuation prior model to estimate the

(a) (b) (c)

(d) (e) (f )

Figure 1: Maritime images captured under haze environment.
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scene depth. Meanwhile, a supervised learning method is
used to obtain the scene depth and the atmospheric scat-
tering model parameters. However, this method fails to
estimate the scene depth in the white environment. To
further improve the deep learning-based dehazing methods
performance, Cai et al. [24] first constructed a convolutional
neural network (DehazeNet) to learn the mapping rela-
tionship between hazy images and transmission. DehazeNet
employed artificially synthesized hazy images of different
concentrations as the dataset. +e trained DehazeNet can
directly estimate the corresponding transmission and restore
the potentially clear image according to the traditional at-
mospheric light scattering model. Ren et al. [25] proposed a
Multiscale Convolutional Neural Network (MSCNN).
MSCNN used the New York University indoor image depth
database [26] to synthesize different hazy images as the
dataset, making the hazy image more realistic. Subsequently,
Zhao et al. [27] used outdoor scenes synthetic images and
proposed a fully convolutional neural network model to
estimate the transmission. Compared with DehazeNet and
MSCNN, this network has better visual performance.
However, it produces more parameters and calculations. To
simplify the calculation, Li et al. [28] designed an end-to-end
light-weight convolutional neural network (AOD-Net) that
effectively balances calculation speed and visual effects.
Inspired by image denoising, Du et al. [29] proposed a Deep
Residual Learning (DRL) network to reconstruct the po-
tential image. Besides, Chen et al. [30] proposed an end-to-
end gated context aggregation network to directly restore the
final haze-free image. It is worth noting that if the training
datasets do not contain the geometric features presented in
the haze-free target, it is usually difficult to produce satis-
factory image quality. +erefore, it is necessary to design a
CNN-enabled visibility enhancement framework for vessel
detection under haze environment to further improve
maritime video surveillance efficiency.

1.2. Contributions. +is paper presents a CNN-enabled
framework for practically solving vessel detection problem
under haze environment. +e main contribution of our
method differs from others in the following aspects:

(i) A CNN-enabled visibility dehazing framework is
proposed to improve the visibility of maritime
images. Specifically, this framework includes a
Coarse Feature Extraction Module (C-FEM) for
capturing multiscale features and Fine Feature
Fusion Module (F-FFM) for information fusion and
enhancement.

(ii) To improve the generalization of the proposed
network, we design a novel hybrid loss function to
supervise the multiscale outputs of C-FEM and the
final output of F-FFM simultaneously.

(iii) Image dehazing and vessel detection experiments
under haze conditions are conducted to verify our
superior performance compared to several state-of-
the-art methods.

1.3. Construction. +e remainder of this paper is divided
into the following sections. Section 2 mainly describes the
problem formulation related to the imaging model. In
Section 3, a CNN-enabled visibility enhancement frame-
work is proposed to improve the visual effect of hazy images.
Implementation details and experiments are implemented in
Section 4. Finally, we conclude our main contributions in
Section 5.

2. Problem Formulation

2.1. Atmospheric Scattering Model. Video images collected
by maritime video surveillance system under haze condi-
tions often have poor visual quality. As shown in Figure 2,
Narasimhan et al. [31] proposed the atmospheric scattering
model to divide the light irradiance into the incident light
attenuation part J(x)e− βd(x) and the atmospheric light
imaging part A∞(1 − e− βd(x)). +e incident light attenua-
tion model considers that the reflected light by the vessel
surface is scattered and attenuated by particulate impurities
in the air, reducing the intensity of light reaching the im-
aging system. Note that as the propagation distance in-
creases, the reflected light intensity decays exponentially. On
the contrary, the atmospheric light imaging model believes
that light intensity scattered by natural light enters the
imaging system to participate in imaging. As the propaga-
tion distance increases, the scattered light intensity will
gradually increase. Finally, the images collected by the
imaging system under haze environments exhibit degra-
dation phenomena such as low contrast, blurred images, and
color distortion under the combined action of these two
models. Mathematically, the atmospheric light scattering
model can be expressed as

I(x) � J(x)e
− βd(x)

+ A∞ 1 − e
− βd(x)

 , (1)

where J and I, respectively, denote the hazy image and haze-
free image, A∞ and β represent the atmospheric light value
and scattering coefficient, x is the image pixel index, and d is
the distance between the scene point and the imaging sys-
tem, that is, field depth. When we set t(x) � e− β d(x),
equation (1) can thus be rewritten as follows:

I(x) � J(x)t(x) + A∞(1 − t(x)), (2)

with t being the transmission. According to equation (2), the
restoration haze-free image can be easily obtained by

J(x) �
I(x) − A∞

t(x)
+ A∞. (3)

2.2. Transformed Formula. According to equation (3), we
can obtain a satisfactory haze-free image J by accurately
estimating A∞ and t. However, it is intractable to estimate
two parameters simultaneously. For the sake of better
performance of the end-to-end network, Li et al. [28]
proposed the transformed atmospheric scattering model,
which can be given by
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J(x) � K(x)I(x) − K(x) + 1, (4)

whereK is a particular parameter to integrateA∞ and t; that
is, K(x) � ((1/t(x))(I(x) − A∞) + A∞ − 1/I(x) − 1). It is
worth noting that hazy maritime images usually contain
background (i.e., sky and water regions). Many statistical
features-based methods, for example, DCP and maximum
local contrast, often fail to obtain ideal transmission maps.
Deep learning-based methods do not rely on these statistical
features and can learn the mapping of hazy and haze-free
images.+erefore, we will propose the CNN-enabled visibility
enhancement network to effectively improve the quality of
hazy maritime images and improve vessel detection accuracy.

3. CNN-Enabled Visibility
Enhancement Framework

In this section, a CNN-enabled visibility enhancement
framework is proposed to process hazy maritime images
shown in Figure 3. +is framework consists of two sub-
networks, that is, Coarse Feature Extraction Module (C-
FEM) and Fine Feature Fusion Module (F-FFM). In this
work, C-FEM is introduced to learnmultiscale hazy features.
Meanwhile, F-FFM, an improved encoder-decoder network,
is proposed to fuse and enhance the hazy image and the
multiscale output obtained by C-FEM. Once our method
gets the sharp image, it can easily detect the vessel containing
the image by any target detection method.

I∗w(t) � 
p+q�t

I(p)w(q), (5)

I∗dw(t) � 
p+lq�t

I(p)w(q),
(6)

3.1. C-FEM. C-FEM is a module for initial extracting the
features of the hazy image. In particular, C-FEM can per-
form mapping learning on three scales (i.e., 1, 1/4, and 1/16)
to obtain coarse feature information with different resolu-
tions simultaneously. Figure 4 shows the network archi-
tecture of C-FEM under one resolution, which is only
composed of six convolutions. In this work, dilated con-
volution is embedded to increase the reception field of
C-FEM. According to our research, dilated convolution can

reduce the loss of spatial features without reducing the
receptive field. However, the use of dilated convolution may
increase the risk of spatially continuous information loss,
destroying image feature information (especially edges). To
alleviate the interference caused by dilated convolution, we
combine standard convolution (Conv) [32] and dilated
convolution (DConv) with improving the detailed infor-
mation extraction ability. DConv can effectively solve this
difficult problem with different receptive fields by adjusting
the dilation rate value. Formally, standard convolution and
dilated convolution are, respectively, defined as follows:
where I is the discrete signal, w is convolution kernel,
subscript (·) is the position of a discrete signal, d ∈ Z+ is the
dilation factor, and ∗d is dilated convolutions with a factor d.
+e only difference between standard convolution and di-
lated convolution is the influence of the dilation factor d on
the multiplication position of I(p) and w(q). Dilated
convolution benefits from w(q) are no longer limited to a
fixed receptive field, and the dilation factor d can be adjusted
to have a larger receptive field. In this work, the method of
fusing Conv and DConv can reduce the loss of spatial in-
formation caused by the excessive dilated rate and fully
consider long- and short-distance information to present a
better visual effect. Furthermore, Instance Normalization
(IN) [33] and Rectified Linear Unit (ReLU) [34] are
deployed after each Conv layer. Meanwhile, the feature map
channels of the first five convolution outputs are set to 32.

L
MAE

(J, J) � |J − J|. (10)

According to our research, most deep learning-based
dehazing methods rely on more complex network models to
obtain better visual effects.When themodel is relatively simple,
it is usually hard to learn the fog feature, causing information
damage to potential images. In contrast, the imaging model
J(x) � K(x)I(x) − K(x) + 1 reduces the algorithm com-
plexity, making it easier for the network to extract information.
+e introduction of this model makes it possible for a simple
networkmodel to extract potential multiscale features from the
original image. It is worth noting that the output of C-FEM
only introduced to provide a prior is not used as the final result.
Simultaneously, it has a faster calculation speed and can satisfy
the needs of real-time processing.

3.2. F-FFM. Coarse feature maps of three resolutions (i.e., 1,
1/4, and 1/16) have been obtained by C-FEM, which

CameraHazeVessel

Sun

Outscattering

Incident light attenuation

Atmospheric light imaging

Hazy image

Figure 2: +e principle of the atmospheric scattering model.
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contains most of the potentially clear image information.
+e feature map information obtained by a standard en-
coder-decoder CNN is usually found irregularly. When the
prior information obtained by C-FEM is introduced to the
encoder, we believe that F-FFM can obtain better parameters
and accelerate the convergence speed. When the feature
maps are fused at different scales, the deep network can
further extract edge detail information. Table 1 shows that
the architecture of Fine Feature Fusion Modul (F-FFM) is a
special encoder-decoder structure. Specifically, F-FFM only
performs two downsampling operations and merges with
the corresponding output of C-FEM. Both the encoder and
the decoder consist of the same module, that is, a 3 × 3
convolution filter (Conv) [32], Instance Normalization (IN)
[33], and Rectified Linear Unit (ReLU) [34]. Maximum
pooling and bilinear interpolation are exploited to perform
down- and upsampling operations on the feature map, re-
spectively. Different from traditional encoder-decoder
structures, our F-FFM encoder integrates the output of
C-FEM.+is strategy can guide F-FEM to learn the mapping
of hazy images and haze-free targets. To better preserve the
boundary details of the input, we adopt a global skip con-
nection strategy to further ensure the details of the output
image. In other words, the output of the last convolution and
the input image is directly added as the output of F-FFM,

and we find that it can significantly improve the dehazing
effect through comparative experiments.

3.3. Loss Function. To robustly learn the multiscale mapping
relationship between hazy image and haze-free image, a
specific loss function LC− FEM is proposed. As shown in
Figure 3, C-FEM has three scale outputs (i.e., J1, J2, and J3).
+ese three images sequentially have 1, 1/4, and 1/16 of the
original image size. Subsequently, the maximum pooling
operation is used to obtain clear images with three scales
named J1, J2, and J3, which, respectively, correspond to the
scale of J1, J2, and J3. In this work, Mean Square Error
(MSE) loss function is employed to constrain each scale
output of C-FEM; that is,

L
C− FEM

� λ1L
MSE J1, J1  + λ2L

MSE J2, J2  + λ3L
MSE J3, J3 ,

(7)

whereLMSE(J∗, J∗) � (J∗ − J∗)
2, λ1, λ2, and λ3 are trade-off

parameters of corresponding loss functions. To further
preserve the high-frequency details of the potential haze-free
image while eliminating boundary artifacts, a hybrid loss
function LF− FFM is introduced to limit the ground truth J

and the predicted restored image J; that is,
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Figure 3: +e flowchart of our method. From top to bottom in C-FEM: subimages reduced to 1, 1/4, and 1/16 of the original image,
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L
F− FFM

� λ4L
MS− SSIM

(J, J) + λ5L
MAE

(J, J)

+ λ6L
Edge

(J, J) + λ7L
TV

(J),
(8)

with λ4, λ5, λ6, and λ7 being the penalty weights. Multiscale
structural similarity (MS-SSIM) [35] is firstly employed to
constrain the structure, brightness, and contrast of the
image.+eMS-SSIM loss function can be defined as follows:

L
MS− SSIM

(J, J) � 1 − MSSSIM(J, J), (9)

with MSSSIM being the calculation operation of the mul-
tiscale structural similarity index between two images. +e
hazy image inevitably has a low contrast phenomenon in
local regions, resulting in color distortion. To solve this
problem, the Mean Absolute Error (MAE) loss function
LMAE is introduced as a part ofLF− FFM, which can reduce
the color distortion problem to a certain extent. In partic-
ular,LMAE is defined as

+e high-frequency detail information is easily
destroyed in the process of image dehazing. To further
improve the fidelity and authenticity of details, we propose
an additional edge loss function [36] to limit the high-fre-
quency components, for example, edge and texture. LEdge

can be written as

L
Edge

(J, J) �

�������������������

(Lap(J) − Lap(J))
2

+ ε2


, (11)

where Lap(J) and Lap(J) represent edge maps extracted
from J and J via the Laplacian operator, respectively. +e
penalty coefficient ε is empirically set to 10− 3. In addition,
the Total Variation (TV) loss function [37] is exploited to
suppress the pixel-jump problem, which can be given
bywhere ∇h and ∇v represent the operators of the horizontal
and vertical gradients, respectively. We refer interested
readers to [35–37] for more details on calculations of MS-
SSIM, edge loss, and TV. To sum up, the total loss function
can be written as follows:

L
Total

� c1L
C− FEM

+ c2L
F− FFM

, (13)

where c1 and c2 are the penalty coefficient of LC− FEM and
LF− FFM. By comparative experiment, we manually selected
the optimal weight of all loss functions; that is, λ1 � 1, λ2 � 1,
λ3 � 1, λ4 � 0.8, λ5 � 0.2, λ6 � 0.05, λ7 � 0.05, c1 � 1, and
c2 � 1.

4. Experimental Results and Analysis

+is section will describe all the implementation details of
network training, including dataset construction and net-
work parameter settings. We will compare our method with
several state-of-the-art dehazing methods on both synthetic
and realistic hazy maritime images. To prove that our
method can improve detection accuracy, our proposed
framework will be employed in vessel detection tasks under
haze environment.

4.1. Comparison Methods and Evaluation Indicators. Our
method will be compared with four handcrafted prior-based
methods and three deep learning-based methods. For the
sake of fair comparison, the parameters of other competing
dehazing methods are provided by the authors’ code.

(1) DCP: Dark Channel Prior-Based Method [14].
+rough numerous statistics on outdoor haze-free
images, DCP is proposed based on the assumption
that most local color blocks contain some pixels with
very low intensity in at least one color channel.
According to this statistic prior and the haze imaging
model, a high-quality haze-free image can be directly
obtained.

(2) GRM: Gradient Residual Minimization-Based
Method [16]. +is method first proposes the depth-
edge-aware smoothing algorithm to refine the
transmission map generated by local priors. Mean-
while, Gradient Residual Minimization (GRM) is

Table 1: Network architecture of F-FFM.

Input Layers Type Channels Filter Stride Output Size
I + J1 1 Convolutional 64 3 × 3 1 ↓1 128 × 128
↓1 3 Convolutional 64 3 × 3 1 ↓2 128 × 128
↓2 Max pooling 64 3 × 3 2 ↓3
↓3 + J2 1 Convolutional 128 3 × 3 1 ↓4 64 × 64
↓4 3 Convolutional 128 3 × 3 1 ↓5 64 × 64
↓5 Max pooling 128 3 × 3 2 ↓6
↓6 + J3 1 Convolutional 256 3 × 3 1 ↓7 32 × 32
↓7 5 Convolutional 256 3 × 3 1 ↓8 32 × 32
↓8 Bilinear interpolation ↓9
↓9 +↓4 Skip connection 128 1 × 1 1 ↓10 64 × 64
↓10 1 Convolutional 128 3 × 3 1 ↓11 64 × 64
↓11 3 Convolutional 128 3 × 3 1 ↓12 64 × 64
↓12 Bilinear interpolation ↓13
↓13 +↓1 Skip connection 64 1 × 1 1 ↓14 128 × 128
↓14 1 Convolutional 64 3 × 3 1 ↓15 128 × 128
↓15 3 Convolutional 64 3 × 3 1 ↓16 128 × 128
↓16 + I Global residual 3 3 × 3 1 J 128 × 128
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introduced during the image recovery process. By
comparison, the GRM-based method can jointly
recover the haze-free image and explicitly minimize
possible visual artifacts in it.

(3) HL: Haze-Lines-Based Method [38]. +is method
finds that the pixel values of a hazy image can be
modeled as lines intersecting at the air light. Based
on this prior condition, a novel haze-lines-based
method is proposed to restore the hazy image better.
It is worth noting that the complexity of HL is linear
in the number of pixels, having higher computa-
tional efficiency.

(4) F-LDCP: Fusion of Luminance and Dark Channel
Prior-Based Method [39]. To make the sky region
more natural in long-shot images, a Fusion of Lu-
minance and Dark Channel Prior (F-LDCP) method
is proposed. +e transmission maps estimated by the
brightness model and the DCP model are fused
through a soft segmentation.

(5) MSCNN: Multiscale Convolutional Neural Networks
[25]. To learn the practical features of a hazy image, a
multiscale deep network (MSCNN) is designed to
address the image dehazing problem. MSCNN can
be divided into the coarse-scale network and fine-
scale network. +e coarse-scale network can learn a
holistic estimation of the scene transmission, and the
fine-scale network is used to optimize the obtained
transmission. Finally, the haze-free image can be
obtained by the atmospheric scattering model.

(6) AOD-Net: All-in-One Dehazing Network [28]. AOD-
Net, a light-weight CNN, is designed according to
the reformulated atmospheric scattering model. +is
network replaces the atmospheric light value and
transmission with one parameter. It is worth men-
tioning that AOD-Net has been embedded in other
deeper models (e.g., Faster R-CNN) to improve the
advanced tasks of hazy images.

(7) GCA-Net: Gated Context Aggregation Network
[30]. GCA-Net is an end-to-end Gated Context
Aggregation Network. In particular, the latest
smoothed dilation technology is designed to
eliminate gridding artifacts caused by the exten-
sive-used dilated convolution with negligible ad-
ditional parameters.

L
TV

(J, J) � ∇h
J 

2
+ ∇v

J 
2
, (12)

In synthetic and realistic experiments, we will compare
these methods with our proposed method. In addition, three
full-reference indicators, that is, Peak-Signal-to-Noise Ratio
(PSNR) [40], SSIM [41], and Feature Similarity (FSIM) [42],
are introduced to evaluate the dehazing performance in the
synthetic experiment. Meanwhile, one popular no-reference
image quality assessment method, that is, Natural Image
Quality Evaluator (NIQE) [43], is also exploited to perform
dehazing quality evaluation in the real experiment.

+eoretically, higher values of PSNR, SSIM, FSIM, and lower
values of NIQE indicate better visual performance.

4.2. Experimental Datasets and Settings. To guarantee high-
quality dehazing results, we tend to select 7000 haze-free
maritime images as the dataset and randomly cropped these
images into 34000 patches of size 256 × 256. In this work,
our network is trained for 80 epochs.+e learning rate of the
first 40 epochs is 10− 3 and the learning rate of the last 40
epochs is 10− 4 to increase the convergence rate. In each
epoch, the hazy synthetic versions are obtained by equation
(2), that is, atmospheric scattering model. In particular, the
transmission t and atmospheric light value A∞ are random
constants ranging between (0.2, 0.6) and (0.8, 0.9). All
numerical experiments and model training are conducted in
Python 3.7 and Matlab2019a environment running on a PC
with Intel(R) Core (TM) i7-9750H CPUa 2.60GHz and a
Nvidia GeForce GTX 2080Ti GPU. It takes about 10 hours to
train our network with the Pytorch package [44].+e Python
source code is available at https://github.com/LouisYuxuLu/
JAT_Dehazing.

4.3. Experiments on Synthetic Maritime Datasets. +is sub-
section is devoted to comparing our proposed method with
seven popular dehazing methods, that is, DCP [14], GRM
[16], HL [38], F-LDCP [39], MSCNN [25], AOD-Net [28],
and GCA-Net [30]. In this work, six clear maritime images
are exploited to conduct synthetic experiments shown in
Figure 5. In particular, we tend to produce 36 degraded
images by setting t ∈ 0.2, 0.4, 0.6{ } and A∞ ∈ 0.8, 0.9{ }

according to equation (2). To quantitatively evaluate the
dehazing performance, three full-reference metrics (i.e.,
PSNR, SSIM, and FSIM) are employed in this experiment.

For the sake of better visual comparisons, the dehazing
versions of hazy images with different degrees obtained by
various methods are shown in Figure 6. It can be clearly
observed that DCP and HL often make the color unnatural.
Meanwhile, due to the incomplete dehazing, the results
obtained by DCP easily suffer from the interference of
boundary artifacts around the object. Although GRM can get
satisfactory visual effects, it requires complex calculations
and has the risk of excessive smoothness. F-LDCP can ex-
cellently solve the blocking artifacts and halo problems in the
sky regions, but the color fidelity in the water regions needs
improvement. MSCNN and AOD-Net can handle the low-
concentration hazy image. However, the restored versions of
the high-concentration hazy images (i.e., hazy images with
t � 0.2) usually have a poor visual effect. GCA-Net fails in
the synthetic experiment, resulting in a nonuniform dis-
tribution of fog remaining in the results. By comparison, our
method can not only make the restored image visually more
natural but also ensure the color reproduction of the sky and
water regions.

To further confirm the superiority of our method, the
quantitative results of PSNR, SSIM, and FSIM are shown in
Figure 7 and Table 2. PSNR, SSIM, and FSIM values are
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illustrated using box-plot in Figure 7. It can be seen that
our method has higher index values in most cases. Par-
ticularly for high-concentration hazy images, our method
can stably obtain high-quality restored versions. Besides,
Table 2 shows three metrics value comparisons of various
image enhancement methods on 36 hazy images. In
particular, we display the best result of each metric in
bold. Due to the highest values of PSNR, SSIM, and FSIM,
our method has the best dehazing performance. Mean-
while, the standard deviation calculated by the SSIM and
FSIM is the smallest, which verifies that our method has
excellent robustness.

4.4. Experiments on Realistic Maritime Datasets. +is sub-
section will verify the reliability of several methods in re-
alistic hazy maritime images due to the distinctness between
synthetic and realistic versions. Meanwhile, NIQE is in-
troduced to describe the naturalness of visual effects
quantitatively, and our proposed method will be compared
with seven dehazing methods, that is, DCP [14], GRM [16],
HL [38], F-LDCP [39], MSCNN [25], AOD-Net [28], and
GCA-Net [30]. Figure 8 shows several dehazing results to
reflect the imaging performance more intuitively.

From the visual comparisons, DCP and HL have serious
color distortion problems and blocking effects in the sky
regions. Recovery results obtained by GRM have the risk of

low contrast, especially in the recovery task of Image 9.
F-LDCP and AOD-Net fail to correct the color of the image.
GCA-Net not only has the problem of overexposure in the
sky region but also has nonuniform fog remaining in the
image. AlthoughMSCNN has better visual effects than other
methods, our method has pleasing color and can remove fog
more fully. Our superior performance can be further con-
firmed by the quantitative results NIQE shown in Table 3.

4.5. Experiments on Vessel Detection under Haze
Environment. In the maritime imaging system, the harsh
imaging environment severely restricts the regular operation
of the visible light imaging sensor, reduces vessel detection
accuracy, and leads to incorrect identification. To prove this
phenomenon, we, respectively, used YOLOv4 [45] and
Faster-RCNN [46] to detect vessels in haze and haze-free
images. As shown in Figure 9, it is easily found that the haze
image has low contrast and massive useful information is
obscured, which leads to problems, for example, identifi-
cation errors or missing identification during the target
detection process. After dehazing, the vessel target is ef-
fectively captured and recognized, and the recognition ac-
curacy is significantly increased. +erefore, dehazing the
degraded hazy image by our method can improve vessel
detection performance. +e computer and the related
workers can make correct decisions in time.
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Figure 5: Six different original sharpmaritime images selected to generate synthetic hazy images. From left to right: (a) original images; hazy
images with (b) A∞ � 0.8/t � 0.6, (c) A∞ � 0.9/t � 0.6, (d) A∞ � 0.8/t � 0.4, (e) A∞ � 0.9/t � 0.4, (f ) A∞ � 0.8/t � 0.2, and (g) A∞ �

0.9/t � 0.2, respectively.
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Figure 6: Comparisons of synthetic experiments on six typical hazy images in Figure 5. Each column represents the hazy image synthesized
by different combinations of A∞ and t, the original image corresponding to the hazy image, and the dehazing results obtained by all
methods. From left to right in the second line: (a) hazy Image 1 with A∞ � 0.8/t � 0.6, (b) hazy Image 2 with A∞ � 0.9/t � 0.6, (c) hazy
Image 3 with A∞ � 0.8/t � 0.4, (d) hazy Image 4 with A∞ � 0.9/t � 0.4, (e) hazy Image 5 with A∞ � 0.8/t � 0.2, and (f) hazy Image 6 with
A∞ � 0.9/t � 0.2, respectively.
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Figure 7: Continued.
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Figure 7: +e box-plot of PSNR, SSIM, and FSIM values of various methods on all hazy images shown in Figure 5. From top to bottom: the
synthetic hazy experiment with A∞ � 0.8/t � 0.6, A∞ � 0.9/t � 0.6, A∞ � 0.8/t � 0.4, A∞ � 0.9/t � 0.4, A∞ � 0.8/t � 0.2, and A∞ �

0.9/t � 0.2, respectively. Note that IQR represents interquartile range.

Table 2: PSNR, SSIM, and FSIM comparisons (mean± std) of various image enhancement methods on all test images shown in Figure 5.
+e best results are highlighted in bold.

Methods PSNR SSIM FSIM
Hazy 13.17± 2.90 0.727± 0.138 0.830± 0.105
DCP 15.23± 2.93 0.789± 0.086 0.933± 0.022
GRM 18.96± 3.21 0.845± 0.070 0.912± 0.046
HL 19.46± 1.71 0.874± 0.042 0.937± 0.027
F-LDCP 20.58± 3.00 0.933± 0.032 0.972± 0.011
MSCNN 19.71± 5.19 0.890± 0.091 0.940± 0.055
AOD-net 18.70± 3.30 0.848± 0.113 0.889± 0.079
GCA-net 21.26± 1.38 0.899± 0.027 0.947± 0.012
Ours 25.80± 3.01 0.954± 0.014 0.982± 0.003
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Figure 8: Comparisons of realistic experiments on three hazy maritime images. (a) Hazy, (b) DCP, (c) GRM, (d) HL, (e) F-LDCP,
(f ) MSCNN, (g) AOD-Net, (h) GCA-Net, and (i) ours.
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5. Conclusion

In this paper, a novel CNN-enabled visibility dehazing
framework was proposed, which could significantly improve
the visual effect of images captured by the maritime camera
under haze environment. In particular, this framework is
composed of two subnetwork named Coarse Feature Ex-
traction Module (C-FEM) and Fine Feature Fusion Module
(F-FFM). C-FEM is an initial multiscale feature extraction
network containing three simple six-layer convolutional
networks, that is, Single C-FEM. C-FEM can obtain coarse
feature maps from 1, 1/4, and 1/16 of the original image pixel
size. F-FFM is a special encoder-decoder structure used to
fuse and enhance the multiscale information obtained by
C-FEM and original hazy image. To further improve the
network performance, a corresponding loss function is
proposed to simultaneously supervise the multiscale output
of C-FEM and the final result of F-FFM. Furthermore, our
dataset contains massive maritime images to complete the
vessel detection task under haze environment successfully.
Both qualitative and quantitative experiments have illus-
trated the effectiveness of our proposed framework.
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Image dehazing has become a fundamental problem of common concern in computer vision-driven maritime intelligent
transportation systems (ITS). +e purpose of image dehazing is to reconstruct the latent haze-free image from its observed hazy
version. It is well known that the accurate estimation of transmission map plays a vital role in image dehazing. In this work, the
coarse transmission map is firstly estimated using a robust fusion-based strategy. A unified optimization framework is then
proposed to estimate the refined transmission map and latent sharp image simultaneously. +e resulting constrained mini-
mization model is solved using a two-step optimization algorithm. To further enhance dehazing performance, the solutions of
subproblems obtained in this optimization algorithm are equivalent to deep learning-based image denoising. Due to the powerful
representation ability, the proposed method can accurately and robustly estimate the transmission map and latent sharp image.
Numerous experiments on both synthetic and realistic datasets have been performed to compare ourmethod with several state-of-
the-art dehazing methods. Dehazing results have demonstrated the proposed method’s superior imaging performance in terms of
both quantitative and qualitative evaluations. +e enhanced imaging quality is beneficial for practical applications in maritime
ITS, for example, vessel detection, recognition, and tracking.

1. Introduction

Maritime video surveillance system has always been an
indispensable part of maritime supervision. Affected by
small droplets in the air, the image captured by the maritime
surveillance system’s imaging equipment always tends to be
of low quality. +ere are phenomena such as poor visibility,
edge degradation, color distortion, and texture distortion.
+is negative impact will directly affect the implementation
of advanced vision tasks, such as ship detection and tracking
[1, 2]. With vigorous computer vision development, many
enhancement methods for maritime images have been
proposed [3, 4]. Since haze is easily generated in the mar-
itime environment and seriously affects the visual effect, it is
also necessary to research the dehazing of maritime images.
Starting from the correlation of haze images, Tang et al. [5]
discovered some features, including Local Max Contrast,
Local Max Saturation, and Hue Disparity, different from
dark channel prior (DCP). In [5], features that significantly

impact the dehazing effect are obtained by comparison and
selection. +e model is constructed using these combined
features and trained using the synthetic dataset to optimize
the parameters. However, it easily leads to noise amplifi-
cation and distortion when dealing with those haze images
with relatively high concentration. By proposing a new prior
named color attenuation prior, Zhu et al. [6] created a linear
model to estimate the scene depth under the new prior. It
solved the atmospheric scattering model to obtain potential
clear images. +e algorithm’s defect lies in that the esti-
mation of the scene depth of hazy white images is biased,
affecting the dehazing effect. Subsequently, many variations-
based image dehazing methods have been proposed [7–10].
Although these methods can perform well in some situa-
tions, they cannot robustly process maritime images due to
huge texture structure differences.

Based on Tang et al. [5] and Zhu et al. [6], Cai et al. [11]
constructed a convolutional neural network (CNN) called
DehazeNet for learning the mapping relations between hazy
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images and their medium transmission maps. As the first
successful usage of deep learning for image dehazing,
DehazeNet is trained by building a training dataset with
synthesized hazy images. +e trained DehazeNet takes a
hazy image as input and outputs its medium transmission
map to acquire a haze-free result by a simple traditional
method. Similar to DehazeNet, Ren et al. [12] developed a
multiscale CNN (i.e., MSCNN) to learn the relations be-
tween hazy images and their transmission maps and syn-
thesized an indoor dataset with different hazy images based
on the NYU Depth dataset [13]. Zhao et al. [14] proposed a
deep fully convolutional network for more accurate trans-
mission estimation and developed a new outdoor synthetic
training set. Compared with DehazeNet and MSCNN, the
dehazing effect in [14] is improved, but it needs broad
parameters, and the computational cost that results in the
speed of dehaze is slow. Li et al. [15] reformulated the at-
mospheric scattering model and proposed a light-weight
CNN, called AOD-NET. Unlike most previous indirect
CNN-based works that first estimate medium transmission
maps based on CNN and recover haze-free images by tra-
ditional physical methods, AOD-NET can directly dehazed
images from their hazy ones. Motivated by image denoising,
Du et al. [16] converted a dehazing problem into a denoising
one and proposed a deep residue learning network to
remove haze from hazy images. Chen et al. [17] proposed a
gated context aggregation network for image dehazing and
deraining and applied the smoothed dilated convolution to
avoid the gridding artifacts. Most CNN-based methods le-
verage haze-free images to synthesize hazy datasets [17, 18].
However, some researchers thought that it could not rep-
resent the data distribution of real hazy images correctly, and
some deficiencies existed in those models trained with
synthesized datasets.

Recently, generative adversarial net (GAN), proposed by
Goodfellow et al. [19], has been proven potent in image-to-
image translation. Typically, GAN includes two subnet-
works, that is, generator and discriminator, which are
adversarially trained at the same time to acquire expected
results. Besides, GAN cannot rely on any synthetic hazy
image pairs. Yang et al. [20] proposed an end-to-end dis-
entangled dehazing network trained by unpaired hazy im-
ages and clean images and generated haze-free images.
Zhang et al. [21] proposed a new dehazing architecture,
called densely connected pyramid dehazing network
(DCPDN), that could jointly learn to estimate transmission
map, atmospheric light, and dehazed images. Furthermore, a
joint discriminator within DCPDN was designed to opti-
mize dehazed images and transmission maps. Suarez et al.
[22] proposed a stacked conditional GAN to dehaze each
color channel of RGB image independently and applied
multiple loss functions to optimize the network over a
conditional probabilistic model. Generally, GAN-based al-
gorithms need extensive data to train, but the training is
toughed and requires higher equipment requirements. Al-
though many dehazing methods based on the physical
model and deep learning have been proposed, these methods
do not consider the characteristics of maritime images. It
cannot be well applied to maritime supervision tasks.

+erefore, it is necessary to propose a method for enhancing
the hazy maritime image.

In this work, our contribution can be described as
follows:

We propose a dehazing method based on the atmo-
spheric scattering model. Specifically, we use a fusion
strategy to estimate the transmission. +en, a two-step
optimization method based on deep learning is
designed to optimize the transmission.
+e solution to the subproblem obtained by our pro-
posed two-step optimization algorithm is equivalent to
image denoising based on deep learning.
Our method has the best performance in synthetic and
real dehazing experiments compared with other
methods.

+e remainder of this paper is organized into the fol-
lowing several sections. Section 2 briefly introduces the
problem formulation related to image dehazing.+e optimal
estimation of the transmission map is presented in Section 3.
Section 4 proposes the CNN-enabled variational optimi-
zation method and its numerical optimization algorithm.
Numerous experiments on synthetic and realistic datasets
are performed in Section 5. Finally, we end this paper by
summarizing the main contributions in Section 6.

2. Problem Formulation

2.1.DCP. Based on the statistical analysis of massive images,
He et al. [23] discovered the dark channel phenomenon and
proposed the DCP. DCP believes that some pixel values in
the nonsky local region of any clear image are always low in a
specific color channel, even approaching zero. Figure 1
shows various maritime images and corresponding dark
channel images. It is evident that the dark channel value in
most regions tends to zero. In this work, the mathematical
expression of DCP can be written as

J
dark

(x) � min
c∈ r,g,b{ }

min
y∈Ω(x)

J
c
(y)(  ⟶ 0, (1)

where J and Jdark, respectively, indicate the outdoor haze-
free image and the corresponding dark channel image, Jc

represents the single-channel image corresponding to J in
the color channel c ∈ r, g, b , and Ω(x) is the local region
centred on the pixel point x.

2.2. Image Dehazing. To achieve image dehazing, we first
describe the formation of hazy images. Narasimhan et al.
[24] explained the hazy images’ imaging process by estab-
lishing the mathematical model named atmospheric scat-
tering model. +is model can be exploited to describe the
hazy image production process; that is,

I(x) � J(x)t(x) + A(1 − t(x)), (2)

where I denotes the hazy image, t represents the trans-
mission map, and A is the global atmospheric light value.
Assuming that A is known, we can take minimization
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operation on both sides of equation (2) to obtain equation
(3), which can be given by

min
c

min
y∈Ω(x)

I
c
(y)

A
c  � min

c
min

y∈Ω(x)

J
c
(y)

A
c t(x) − (1 − t(x)).

(3)
According to equation (1), we can approximate

minc(miny∈Ω(x)J
c(y)/Ac) ≈ 0. +erefore, equation (3) can

be rewritten as follows:

t(x) � 1 − ωmin
c

min
y∈Ω(x)

I
c
(y)

A
c , (4)

where ω is an adjustment parameter, indicating the degree of
dehazing of the image. +e parameter’s introduction can
preserve a certain haze in the sky region to make the dehazed
image more natural. +e value of ω is determined by the
actual situation. In general, a better result can be obtained
with ω � 0.95.

In the atmospheric light value estimation, the traditional
approach selects the pixel with the highest brightness in the sky
region as the value of A. However, the pixels’ inability with the
highest brightness to be accurately distributed in the sky re-
gions will result in a failed estimation of atmospheric light.
+erefore, He et al. [23] selected the pixels with the 0.1%
highest brightness in the dark channel image of the hazy image
and used the maximum value of these pixels corresponding to
the hazy image as the estimated value of atmospheric light.

It can be seen from equation (3) that the transmission map
obtained by DCP has the same value in the local regions, and
the transmission changes significantly when the brightness
changes suddenly. +erefore, the image restored by this
transmission map will have a blocking effect. To obtain a more
refined transmission map, He et al. adopt the soft matting

algorithm to optimize the initial transmission map. After
obtaining the atmospheric light A and transmission map t, the
potentially clear image can be restored according to the
inverted atmospheric scattering model; that is,

J(x) �
I(x) − A

max t(x), t0( 
+ A, (5)

where t0 represents the lower boundary of the transmission
map. In our experiments, we set t0 � 0.1 generally.

However, the above dehaze method based on trans-
missionmap estimation needs to ensure that the DCP theory
is valid. When the DCP theory fails, the inaccurate trans-
mission map estimated will lead to the restored image’s poor
visual effects. +eoretically, in the dark channel image
corresponding to the clear maritime image, the sky and
water regions’ pixel value fails to approximate 0.+erefore, it
is unreasonable to directly estimate the transmission map of
the hazy maritime image with DCP.

3. Optimal Estimation of Transmission Map

Images captured on the water usually contain large sky
regions that generally do not satisfy the DCP. +e con-
ventional algorithm introduced in Section 2 is easy to lead to
inaccurate transmission estimation. To improve the
dehazing effect of the proposed method in haze image on the
water with sky region, we also use the soft segmentation
method [15] to correct the initial transmission map in this
section.

Firstly, we estimate the haze image’s initial transmission
map on the water based on the DCP. Secondly, we use the
soft segmentation method to process the initial transmission
map to obtain the transmission weight map. +irdly, we use
the brightness model proposed in [25] to estimate the sky
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Figure 1: +e hazy image on the water with sky region (a) and the corresponding initial transmission (b).
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region’s transmission map. Finally, we combine the trans-
mission weight map to merge the transmission map of the
nonsky region and the sky region to obtain the corrected
initial transmission map. +e revised initial transmission
map in this section will help to calculate the joint optimi-
zation model.

3.1. Weight Function of Transmission Map. As for a hazy
image on the water I, we can calculate the initial trans-
mission map based on the DCP mentioned in Section 2. +e
initial transmission map td(x) can be given by

td(x) � 1 − ωmin
c

min
y∈Ω(x)

I
c
(y)

A
c , (6)

where ω � 0.95 and Ω(x) represents a 21 × 21 region cen-
tred on x. +e atmospheric light A can be estimated by the
DCP directly.

As shown in Figure 1, the sky region’s values are obviously
smaller than the values of other regions in the transmission
map estimated by the DCP theory. +erefore, we can roughly
distinguish the sky region and other hazy images based on the
transmission value in the initial transmission map. +e
methods proposed in [25] can obtain the possibility that each
pixel of a hazy image belongs to the sky region and other
regions, that is, transmission weight map, based on the above
transmission map. In the transmission weight map, the pixels
close to 0 are considered sky region, while pixels close to 1 are
considered other regions. To distinguish the sky region and
other hazy image regions more accurately, we use a sigmoid
function to stretch the transmission. Specifically, the trans-
mission weight function of the initial transmission is obtained
as follows:

w(x) �
1

1 + e
− θ1 td(x)− θ2( 

, (7)

where td(x) is the initial transmission obtained using the
DCP theory, θ1 is the parameter to adjust the slope of the
sigmoid curve, θ2 is the centre of the horizontal coordinate
set according to the td(x) range, and θ1 and θ2 can be,
respectively, given as follows:

θ1 �
20

max td(x)(  − min td(x)( 
, (8)

θ2 � − 10 − θ1 min td(x)( . (9)

+is section uses the sigmoid function to stretch the initial
transmission to get the transmission weight map, shown in
Figure 2. +e soft segmentation method can easily distinguish
the sky region and other regions. Because the water surface
condition is complicated, the transmission weightmap of some
hazy image on the water obtained by the soft segmentation
method may have deviations, which will result in insufficient
transmission after mergence. +erefore, the transmission after
mergence is further optimized to obtain the optimal value.

3.2. Transmission Estimation with Sky Regions. +e trans-
mission of the sky region estimated by the DCP theory is not
accurate because the white regions (such as the sky) do not

conform to the DCP theory, which will result in the failure of
dehazing the hazy image on the water with a large sky region.
In order to estimate the transmission of the sky region more
accurately, we estimate the transmission of the sky region
based on the brightness model.

According to the hazy image degradation model de-
scribed in Section 2, the relationship between the trans-
mission of the scene and the depth information of the object
is as follows:

t(x) � e
− β(λ)d

, (10)

where d represents the distance between the object and the
imaging device. β is the dissipation coefficient of the
medium.

+e above formula shows that the scene transmission
could be estimated if the depth information of the image can
be obtained. In [25], Zhu et al. found that the brightness
distribution in HSL color space in the hazy image is usually
related to depth information through the statistics of a large
number of hazy images, and the brightness of the sky region
is much larger than other regions. +erefore, we can sim-
ulate the scene depth according to the brightness of the hazy
image and then estimate the scene transmission as follows:

tL(x) � e
− β(λ)L(x)

, (11)

where tL(x) is the transmission estimated from the
brightness model, L(x) is the corrected brightness, and β is
the dissipation coefficient of the medium. Different wave-
lengths of light have different dissipation coefficients under
the same medium. According to the Mie Scattering Model,
the dissipation coefficients of red, green, and blue light are
taken as 0.3324, 0.34333, and 0.3502, respectively.

To better simulate the real scene depth, the brightness is
stretched as follows:

L(x) �
τ

L
∗ L(x), (12)

where L(x) is the brightness of the hazy image, L∗ takes the
value at the 95% quantile of brightness, and τ represents the
depth range of the real scene. +e value of τ can be selected
according to the haze density in the hazy image. +e greater
the haze, the greater the value of τ, and vice versa. In this
paper, τ � 3.4.

By combining equations (11) and (12), we can see that
the transmission obtained based on the brightness model is

tL(x) � e
− β(λ)

τ
L∗

L(x)
.

(13)

3.3. Combination of Transmission Map. +e brightness
model can simulate the depth of the sky region well but
cannot accurately simulate the depth of other regions, which
will result in the inaccurate transmission of other regions
estimated. On the contrary, the initial transmission esti-
mated based on DCP theory can better estimate the
transmission of other regions. +erefore, in this section, we
merge the transmissions that are, respectively, estimated
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using the above methods through the transmission weight
map to obtain a more accurate result. +e corrected initial
transmission t0 is expressed as follows:

t0 � w(x)td +(1 − w(x))tL(x), (14)

where td represents the initial transmission of other regions,
tL represents the initial transmission of the sky region, w(x)

represents the weight function of other regions’ transmis-
sion, and 1 − w(x) represents the weight function of the sky
region transmission.

4. CNN-Enabled Variational
Optimization Method

4.1.5eUnifiedTransmissionEstimation and ImageDehazing
Framework. In the previous section, the weight map of
transmission is obtained by the soft segmentation and
fuses the initial transmission by the weight map. Because
the soft segmentation method only uses the sigmoid
function to stretch the initial transmission to obtain the
weight map, transmission obtained by fusion of this

weight map is still inaccurate. According to the process of
image dehazing, accurate estimation of transmission is a
crucial step for image dehazing to obtain satisfactory
results. To estimate the transmittance as accurately as
possible and restore the potential clear image, we pro-
posed a joint optimization model that simultaneously
optimizes the transmittance and the potential clear image
within a unified framework. +e joint optimization model
is given by

(J,t) � argmin
J,t

I − Jt − A(1 − t)
2
2 + αt − t

2
02 + λ1φ(J) + λ2ψ(t),

(15)

where J is the haze-free image to be restored, I is the
captured hazy image, A is the atmospheric light, t is the
transmission of hazy image, and t0 represents the corrected
initial transmission. I − Jt − A(1 − t)22 and t − t202 are data
fidelity terms to constraint haze-free image and its trans-
mission. φ(J) and ψ(t) are the regularization terms repre-
senting the prior information of J and t, respectively. α, λ1,
and λ2 are positive parameters.
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Figure 2: +e result of the sky region segmentation. (a)-(c) From top to bottom: the hazy image on the water with a large sky region, the
corresponding initial transmission, and the transmission weight map.
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4.2. Numerical Optimization. Since the haze-free image J
and the transmission t are independent, we tend to propose a
two-step optimization method to decompose equation (15)
into the following two subtasks.

4.2.1. Estimation of Haze-Free Image J. If tk is fixed, the
optimization solution of haze-free images is as follows:

Jk+1
� argmin

J

I − A
t
k

+ A  − Jk2
2 + λ1φ Jk

 . (16)

4.2.2. Estimation of Transmission t. In a similar way, if Jk is
fixed, transmission t optimization subtask is solved by

t
k+1

� argmin
J,t

I − Jt − A(1 − t)
2
2 + αt − t

2
02 + λ1φ(J) + λ2ψ(t)

� argmin
t

I − A
Jk − A

− t
2
2 + αt

k
− t

2
02 + λ2ψ t

k
 

� argmin
t

(1 + α)
I − A/Jk

− A + αt0

1 + α
− t

k2
2 + λ2ψ t

k
 .

(17)

+e above two subtasks need to define appropriate
regularization terms φ(J) and ψ(t) to be solved. In other
words, the solution of the above subtasks is limited by the
regularization terms φ(J) and ψ(t). Considering that deep
learning has a strong prior learning ability, the deep learning
method is used in this paper to solve these two subtasks. It
can be found that the two subtasks have the same form.
According to the Bayesian probability, the above two sub-
tasks can be equivalent to Gaussian denoising tasks [26, 27].

Firstly, equations (16) and (17) are transformed into the
following form:

Jk+1
� argmin

J

I − A
t
k

+ A  − Jk22 + λ1φ Jk 

� argmin
J

1

2
����

λ1/2


 
2

I − A
t
k

+ A  − Jk22 + φ Jk ,

(18)

t
k+1

� argmin
t

(1 + α)
I − A/Jk

− A + αt0

1 + α
− t

k2
2 + λ2ψ t

k
 

� argmin
t

1

2
����������

λ2/2(1 + α)



 
2
I − A/Jk

− A + αt0

1 + α
− t

k2
2 + ψ t

k
 .

(19)

According to the research in [22], the images I − A/tk +

A in equation (13) and I − A/Jk − A + αt0/1 + α in equation
(14) can both be considered as the denoising tasks whose
noise levels are

����
λ1/2


and

����������
λ2/2(1 + α)


, respectively.

+erefore, any image denoiser can be solved by equations
(18) and (19).

Jk+1
� Denoiser1

I − A
t
k

+ A ,

��
λ1
2



 , (20)

t
k+1

� Denoiser2
I − A/Jk

− A + αt0

1 + α
,

�������
λ2

2(1 + α)



⎛⎝ ⎞⎠, (21)

where Denoiser1 and Denoiser2 are image denoisers.

4.3. CNN-Based Blind Denoising. In Section 4.2, a dehazing
model is proposed to jointly optimize transmission and

restore haze-free image, and the joint optimization model is
converted into two subtasks. In this section, we mainly
introduce a CNN-based blind denoising model to solve the
above two subtasks.

4.3.1. Image DenoisingModel. +e image noise model can be
expressed by

y � x + v, (22)

where y is observed noisy image, x is noise-free image to be
restored, and v is white Gaussian noise (AWGN) with
standard deviation σ.

Because image denoising is an ill-posed inverse problem,
previous works generally adopt the prior knowledge or
regularization terms to constrain variables to solve the
problem. In the Bayesian framework, equation (22) can be
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solved by solving the following maximum posterior
problem:

x � arg max
x

logp(y|x) + log p(x), (23)

where log p(y|x) is log-likelihood of observed noise image
and log p(x) is prior information of x.

According to equation (23), recovering a high-quality
noise-free image from a noise image can be regarded as a
problem of minimizing the energy function as follows:

x � arg min
x

1
2
y − x2 + λΦ(x), (24)

where 1/2y − x2 is data fidelity term, Φ(x) is regularization
item related to image prior information, and λ is positive
parameter.

4.3.2. CBDNet Structure. After decades of research, many
image denoising methods have been proposed. +ese
methods can be divided into two categories: model opti-
mization-based methods and supervised learning-based
methods. Model optimization-based methods mainly in-
clude total variation, Gaussian mixture model, and BM3D.
Most of these algorithms are computationally complex and
time-consuming. Supervised learning-based methods
mainly contain denoising algorithms based on deep learning
such as DnCNN and FFDNet. +is denoising method has
the advantages of fast speed, excellent performance, and
strong robustness [28]. Because deep learning has strong
prior learning capabilities and deep learning-based
denoising methods have better denoising performance, we
adopt the convolutional blind denoising network (CBDNet)
proposed by Guo et al. [29] to solve equations (20) and (21).
CBDNet benefits from its two subnetworks and provides a
blind denoising solution for image denoising. +erefore, we
use CBDNet as an optimization algorithm to eliminate haze
of different concentrations. As shown in Figure 3, the
CBDNet consists of two parts: the noise estimation sub-
network (CNNE) and the nonblind denoising subnetwork
(CNND). +e noise estimation subnetwork firstly estimates
the corresponding noise level image according to the noise
image. +e nonblind denoising subnetwork obtains the final
denoising image according to the noise image and the es-
timated noise level image. +e noise estimation subnetwork
includes five fully convolutional layers. Each convolutional
layer comprises 32 convolution kernels with size 3×3, fol-
lowed by the ReLU nonlinear activation function. +e
nonblind denoising subnetwork is a 16-layer U-Net struc-
ture, and the input layer and output layer of the network are
connected by skip connection to obtain final denoised
images. Equation (20) is equivalent to denoising color im-
ages, while equation (21) is equivalent to grayscale images.
+erefore, two CBDNet models denoted as FΘ1(·) and FΘ2(·)

need to be trained with the color dataset and the grayscale
dataset, respectively. Θ1 and Θ2 are the parameters of the
networks, respectively. +e two CBDNet models share the

same structure, except that their input and output channel
are different.

4.4.RestorationofLatentHaze-Free Images. In summary, the
process of the joint optimization dehazingmodel is shown in
Algorithm 1.

Although the haze image can be restored directly
according to the proposed model, experiments show that
the haze-free image restored with the optimized trans-
mission has better visual effects in structure and texture.
In this work, the coarse transmission map is firstly es-
timated using a robust fusion-based strategy. A unified
optimization framework is then proposed to simulta-
neously estimate the refined transmission map and latent
sharp image. +e resulting constrained minimization
model is solved using a two-step optimization algorithm.
To further enhance dehazing performance, the solutions
of subproblems obtained in this optimization algorithm
are equivalent to deep learning-based image denoising.
+erefore, according to the model, we restore the haze-
free image after obtaining the optimized transmittance.
In summary, the flow of this algorithm is shown in
Figure 4.

5. Experimental Results and Analysis

5.1. Experimental Datasets and Settings

5.1.1. Training Data. As mentioned above, we need to train
two CBDNet denoising networks (i.e., FΘ1 and FΘ2) to
remove the unwanted noise in the original image and
transmission map, respectively.

Because the denoising network FΘ1 mainly focuses on
denoising color images, we choose the SeaShips dataset to
build a training set for FΘ1. We randomly select 500 clear
images that are high-quality and noise-free from the
SeaShips dataset and synthesize noisy images with different
noise levels according to equation (17). FΘ2 aims to opti-
mize the transmittance map, so the depth map in the NYU
Depth dataset is used to make the corresponding training
set. Similarly, we firstly select 500 depth maps from the
NYU Depth dataset, use equation (17) to transform them
into corresponding transmissionmaps, and then synthesize
transmission maps with different noise levels according to
equation (17). +en, these synthesized images and their
source images are cropped into many image blocks whose
sizes are 128 × 128.

5.1.2. Experimental Settings. We use the Adam Optimizer
to optimize the network weight parameters in the network
training stage. +e batch size is set to 64, and the number
of iterations (epoch) is set to 40. For the first 20 epochs,
we set the learning rate to 10− 3, for the last 20 epochs, we
set the learning rate to 10− 4. +e network weight pa-
rameters are all initialized with a Gaussian distribution
with a mean value of 0 and a variance of 0.01. +e loss
functions of the two denoising networks are shown in
equations (20) and (21). +e parameter settings in the
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algorithm are as follows: the maximum number of iter-
ations of the joint optimization model maxiter � 6, and
the adjustment parameter mathrm α � 0.5. +e experi-
ment is conducted in Python 3.7 environment with
PyTorch package and an Ubuntu 18.04 system, Intel(R)
Core(TM) i9-9900X processor, and NVIDIA GeForce
RTX 2080Ti GPU. +e training of a single model can be
done in about one day.

+e loss function of the denoising network FΘ1 is as
follows:

loss �
1
q



q

i�1
FΘ1 Ji(  − J

∗
i

�����

�����
2
, (25)

where FΘ1(Ji) is the potentially noise-free clear image, Ji is
the input noisy image, J∗i is the corresponding original
noise-free image, and q is the number of training images.

CNNE CNND

32 64
128

256

Figure 3: CBDNet structure.

(1) Input: haze image I, atmosphere light A, maximum number of iterations maxiter, adjustment parameter α。
(2) Init: t0 � t0, J0 � I − A/t0 + A.
(3) While k<maxiter:

Assuming that tk is a constant, Jk+1 � FΘ1(tk),
Assuming that Jk+1 is a constant, tk+1 � FΘ2(J

k)。
Output: optimized transmission t∗ � tk+1, haze-free image J∗ � Jk+1

ALGORITHM 1: Deep learning-enabled variational optimization method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Our dehazing framework. From top-left to bottom-right: (a) input hazy image, (b) DCP-based transmission map td, (c) weight
map of transmission, (d) luminance-based transmission map tL(x), (e) initial transmission t0, (f ) optimized transmission t∗, (g) dehazing
result with td, and (h) dehazing result with t∗.
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+e loss function of the denoising network FΘ2 is as
follows:

loss �
1
q



q

i�1
FΘ2 ti(  − t

∗
i

�����

�����
2
, (26)

where FΘ2(Ji) is output transmission map of FΘ2, ti is the
input transmission map, and t∗i is the noise-free transmis-
sion map of ti.

5.2. Experiments on Synthetic Datasets. In this section,
comparison and analysis are made between the proposed
method and three classic image dehazing methods on
synthetic images. To verify the effect of the proposed al-
gorithm on removing different haze concentrations, we have
selected three transmissions (i.e., t� 0.1, 0.3, 0.5), and three
atmospheric light values (i.e., A� 0.7, 0.8, 0.9). A total of 9
kinds of different degrees of haze are synthesized on twelve
test images shown in Figure 5 to validate the performance of
the proposed method. As shown in Tables 1 and 2, we have
calculated the PSNR and SSIM objective evaluation indi-
cators of our proposed method and the other three methods.
It can easily be seen that our method has the best perfor-
mance in most cases, the hazy concentration is more ex-
tensive, and there are more obvious indicator differences.

As shown in Figures 6–8, we have conducted subjective
visual analysis experiments. It is obvious that the sky area of
the DCP [23] recovery results has different degrees of color
distortion and artificial vignetting. +e restoration results in
RIVD [30] and MSCNN [12] still have a certain degree of
haze, and some color distortions appeared in the sky and
water. In contrast, the overall effect of the restoration results

of the algorithm in this paper is the best; while maintaining
the best visual effect, it virtually eliminates the haze.

5.3. Experiments on Realistic Datasets. In this section, we
choose some real hazy images to verify the superiority of our
proposed method. Figure 9 shows the dehazing results of
different dehazing methods on three maritime video sur-
veillance images. It can be seen from the comparative ex-
perimental results in Figure 9 that DCP dehazing algorithm
can effectively remove haze. However, at the same time, it
also causes artifacts, blocking effects, and color distortion in
the restoration results. RIVD and MSCNN dehazing algo-
rithms have individual dehazing capabilities and can avoid
artifacts, blocking effects, and so on. However, haze still
exists in the restoration results. In contrast, the algorithm in
this paper can effectively eliminate the haze, and the res-
toration results have richer colors, details, and other pieces
of information.

+e comparison experiment results in other on-water
scenes containing hazy images in Figure 10 further prove the
effectiveness of the proposed method. It can be seen from the
experimental results in Figure 10 that the restoration results
of DCP have noticeable artifacts, blocking effects, and color
distortion. What is more, the restoration of the sky area is
lacking.+ere is still an apparent haze in RIVD andMSCNN
restoration results, resulting in unclear details of some
objects. Evidently, the proposed method has an excellent
dehazing effect on both sky and nonsky areas. +e detailed
information of the restoration result is more affluent, and the
color is more natural.

It can be seen from the above visual experiments that the
proposed method can better recover potentially clear images
from hazy images in different water scenes. +e restored

Figure 5: Twelve different clear test images.
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Table 2: SSIM comparisons (mean± std) of various dehazed methods on all test images shown in Figure 5.

PSNR
A � 0.7 A � 0.8 A � 0.9

t � 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
Haze 12.22± 2.08 10.59± 2.29 8.77± 2.08 14.40± 2.08 12.78± 2.29 10.96± 2.08 17.30± 2.09 15.72± 2.29 13.87± 2.08
DCP 11.92± 2.25 9.86± 2.30 7.53± 1.83 13.39± 2.42 10.94± 2.11 8.87± 1.79 15.23± 2.11 12.90± 1.80 10.96± 1.59
RIVD 14.82± 1.84 13.32± 2.52 11.09± 2.36 17.44± 2.25 19.92± 2.04 21.94± 3.86 16.08± 4.02 17.64± 3.03 19.10± 2.53
MSCNN 13.91± 1.97 12.26± 2.44 10.17± 2.23 18.70± 1.55 18.08± 2.87 15.68± 2.90 21.28 ± 1.76 22.70 ± 2.15 22.20± 3.91
Ours 17.71 ± 2.02 16.93 ± 3.33 14.10 ± 3.20 19.63 ± 2.13 22.77 ± 2.79 24.27 ± 5.16 18.86± 2.91 20.56± 2.30 22.29 ± 2.07

(a) (b) (c) (d) (e)

Figure 6: Continued.
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(f )

Figure 6: Visual comparisons of synthetic experiments on six images with transmittance value� 0.1 and atmospheric light value� 0.7. From
left to right: (a) synthetic haze image and dehazed images generated by (b) DCP [23], (c) RIVD [30], (d) MSCNN [12], (e) ours, and
(f) original clear images, respectively.
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(a) (b) (c) (d) (e)

Figure 7: Continued.
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(f )

Figure 7: Visual comparisons of synthetic experiments on six images with transmission value� 0.3 and atmospheric light value� 0.8. From
left to right: (a) synthetic haze image and dehazed images generated by (b) DCP [23], (c) RIVD [30], (d) MSCNN [12], (e) ours, and
(f) original clear images, respectively.
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(a) (b) (c) (d) (e)

Figure 8: Continued.
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(f )

Figure 8: Visual comparisons of synthetic experiments on six images with transmission value� 0.5 and atmospheric light value� 0.9. From
left to right: (a) synthetic haze image and dehazed images generated by (b) DCP [23], (c) RIVD [30], (d) MSCNN [12], (e) ours, and
(f) original clear images, respectively.

(a) (b) (c) (d) (e)

Figure 9: Visual comparisons of realistic experiments on three haze images. From left to right: (a) real haze image and dehazed images
generated by (b) DCP [23], (c) RIVD [30], (d) MSCNN [12], and (e) ours, respectively.
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images have richer detailed information, which shows the
effectiveness and stability of the proposed method.

6. Conclusion

Image dehazing is an important preprocessing problem,
which has great practical value in various applications in
maritime ITS. In this work, a deep learning-enabled
variational optimization method is proposed to recon-
struct the latent haze-free image from the observed hazy
version. Compared to several competing dehazing tech-
niques, the proposed method is capable of generating
superior image restoration results in terms of visual image
quality and qualitative evaluation. +e main benefit of our
method is that it takes full advantage of the unified
dehazing framework and the strong representation ability
of deep learning. In practical applications, the effective-
ness and robustness of vessel detection, recognition, and
tracking could be significantly enhanced with the en-
hanced image quality.
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When agricultural vehicles operate in the field, the soft road excitation makes it difficult to measure the vehicle vibration. A
camera-accelerator system can solve this issue by utilizing computer vision information; however, the relationship between the
field road surface and the vehicle vibration response remains an unsolved problem. .is study aims to investigate the correlation
of the soft road excitation of different long-wave surfaces with the vehicle vibration response. Vibration equation between the
vehicle and soft road surface systemwas established to produce an effective roughness model of the field soft road surface. In order
to simulate the vehicle vibration state under different long-wave road surfaces, the soil rectangular pits with 21 kinds of different
spans and depths were applied to the road surfaces, and a tractor vibration test system was built for vibration test. .e frequency
spectrum analysis was performed for the vibration response and the roughness signals of the road surfaces..e results showed that
coefficient (R2) of frequency correlation between the roughness excitation and the original unevenness at the excitation point at
the rear end of the rectangular soil pit fell within 0.9641∼0.9969. .e main frequency band of the vibration response fell within
0∼3Hz, and the phenomenon of quadruple frequency existed. .e correlation of roughness excitation with quadruple frequency
fell within 0.992165∼1. .e primary excitation points were located at the rear end of the rectangular soil pit. In addition, it also
indicated that when the vehicle was driven without autonomous power, the vehicle vibration frequency mainly depended on the
excitation frequency of the field road surface and the frequency at the maximum vehicle vibration intensity was 2 or 3 times of that
at the maximum field soft road excitation. .ese findings may provide a reference for optimal design of vibration reduction and
control for agricultural vehicles.

1. Introduction

In recent years, agricultural mechanization in china has been
improved to a new higher level, followed by an increase in
the application of agricultural vehicles [1]. Vehicle vibration
will be caused by soil excitation during its operation, which
will cause damage of parts, reduce the service life of vehicles
[2], and also cause damage to the driverʼs body [3].
Meanwhile, it will aggravate soil compaction, affect the
growth of crop roots [4], and ultimately reduce the yield [5].
As the road surface will be compressed and deformed during
the vehicle is driven in the field, a wheel envelope will be
formed on the soft road surface if it is featured with short

wavelength. .is will increase the relative damping between
wheel and ground to form buffer [6], making it difficult to
cause vehicle vibration. .erefore, long-wave road surface
(such as gully and ridge road surface) in field is an important
factor causing vehicle vibration [7]. .us, it is of practical
significance to exploring the correlation between different
excitation features of long-wave road surface and vehicle
vibration response.

.e features of road surface excitation mainly depend on
road roughness. .e excitation features of highway hard
road surface can be evaluated by measuring the shape and
size of the road surface [8]. .e measurement methods
generally include contact measurement method, noncontact
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measurement method, and dynamic response measurement
method [9]. For example, Bidgoli [10], Kheirati [11], and
Putra [12] all measured the road surface with a noncontact
measuring device and analyzed excitation features of the
road surface, which provided a reference for the measure-
ment of roughness of the hard road surface. Xue [13] and Shi
[14] established vibration equation of vehicle-road surface
system, analyzed vehicle vibration response signal under
pothole road surface by using dynamic response measure-
ment method, and calculated the size of pothole in the road,
which provided great help for road maintenance. However,
soil is a combination of solid, liquid, and gas phases [15].
When it is under pressure, it will be deformed. So, the shape
of field soft road surface cannot be directly used as an ex-
citation source for measurement. In the 1990s, research
results of Zheng Research Group of Jilin University showed
that interaction between soft road surface and wheels will
make soft road surface deformed [16, 17], which makes soft
road surface at different roughnesses before, at the moment
of, and after compression by tires. Domestic scholars call
displacement excitation of soft road surface to wheels in the
form of a certain roughness as effective roughness. It is
generally believed that effective roughness is the real exci-
tation to vehicle [18–20]. Meanwhile, a set of soft road
surface roughness test device was designed for measuring
original roughness, effective roughness, and rutting
roughness [18]..e empirical formula of effective roughness
was obtained by combining the features of soil and wheels
[20].

.ere are many researchers who take the effective
roughness of soft soil pavement as the excitation input to
explore the vibration characteristics of tractors. For ex-
ample, Zhao [7] designed a set of vibration test system to
measure the nonuniformity of paddy field bottom layer
combined with rice transplanter. .e results show that the
nonuniformity of paddy field bottom layer is grade A
pavement. .e vibration characteristics of tractor are an-
alyzed, which provide a new way for the design of paddy
field agricultural machinery and the research of interaction
mechanism between agricultural machinery and soil. Fan
[21] selected a small sugarcane harvester combined with a
vibration test system for vibration test with the random
road surface in the field as the input, analyzed the vibration
signals of the sugarcane harvester, and solved the excitation
characteristics of the effective roughness of the road surface
in the field. It is verified that the effective roughness of the
soft road surface in the field has a great influence on the
vibration of the harvesting cutter head of the sugarcane
harvester. Zhu designed a test system of irregularity to
measure the ups and downs of the hard bottom layer under
paddy fields [22]. A tire-wet and soft paddy field soil system
model is established to analyze the vibration characteristics
of tractors. .e results show that compared with the dirt
road without vegetation coverage, the displacement
transmission rate of front and rear wheels, pitch vibration,
and vertical vibration of the fuselage all decrease [23].
Cutini [24] selected three tractors to install three-axis

acceleration sensors at the seats and carried out vibration
test combined with six kinds of field roads..e results show
that the X, Y, and Z axes responses of the sensor are all in
the low-frequency range, and the longitudinal vibration
response is highly correlated with the vertical displace-
ment. It shows that the longitudinal comfort depends to a
large extent on the vertical motion of the tractor. .e above
scholars have all taken random soft road surface as input
excitation to explore the characteristics of tractor vibration
and provided basis for the design of tractor vibration
absorption system and real-time detection of road surface
excitation characteristics. However, the tractor has too
many degrees of freedom, which would lead to mutual
interference in the actual movement process and reduce the
accuracy in the vibration test process. At the same time, the
frequency domain distribution of random soft road exci-
tation is wide, which makes it difficult to accurately express
the vibration characteristics of tractors under specific
wavelength excitation.

In this study, a test method of tractor vibration is used to
explore the correlation between the excitation characteristics of
field soft pavement with different wavelengths and tractor
vibration by the abovementioned concept of effective rough-
ness. We firstly use the vibration acceleration sensor to explore
the vehicle responses and then use the subjective evaluation to
find the correlation. Vibration tests are carried out on a specific
pavement by setting up rectangular pit with various sizes in the
soil tank laboratory, simulating soft soil pavements with dif-
ferent wavelengths, and a single-degree-of-freedom vibration
test system is used to avoid the interference caused by the
negative effect of unexpected degrees of freedom of the tractor.
An effective roughness model is established based on the vi-
bration equation of the tractor-ground system. .e frequency
spectrum and relevant statistical analysis of the effective
roughness and vibration acceleration signals are carried out to
obtain the excitation frequency band of the soft pavement, the
vibration frequency band of tractor, and the excitation char-
acteristics of the vibration intensity and effective roughness, in
order to reveal the correlation between the ground excitation
characteristics and tractor vibration characteristics. When
driving on a soft road, the longer and shorter wavelengths can
cause the space movement of the vehicle, which makes it hard
to determine the effective wavelength range from the vibration
sensors. .erefore, the binocular event camera is fixed on the
vibration test system to perform vibration test on the con-
structed field road, combining with the three-dimensional
spatial motion signal measured by the visual mileage calcu-
lation method to synthesize and analyze the one-dimensional
vertical displacement signal of the vehicle. By combining the
image and vibration measurements, it is possible to obtain the
short-wave and long-wave ranges of the pavement and explain
the vehicle-soft road interaction. .is paper will focus on the
correlation between the excitation of the soft pavement and
vehicle vibration. .e contribution of this work is to provide a
basis for real-time detection of the excitation characteristics
and determine the wavelength range of the soft pavement,
which will provide a basis for effective vehicle vibration control.
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2. Materials and Methods

2.1. Test Materials

2.1.1. Test Instruments and Equipment. .e single-degree-
of-freedom (SDOF) vibration test system is shown in Fig-
ure 1. .e tire is 825R16 all-steel radial tire of Mountaintech
with an air pressure of 0.5MPa. .e acquisition instrument
model is WS-5291, the signal amplifier model is WS-2401,
the signal acquisition software is VibʼSYS, and the accel-
eration sensor model is BZ1124, all of which are produced by
BeijingWavespectrum Science and Technology Co., Ltd..e
sensitivity of the acceleration sensor in the Z-axis direction
(vertical direction) is 6.234 pc/ms−2, the frequency response
range is 0.2∼8 kHz, and the total mass m in the vertical
direction of the wheel is 103.5 kg.

.e test site is the soil trough laboratory of Tarim
University (longitude: 81.297248, latitude: 40.544428), and
the soil is aridisols [25]. .e area of the soil tank is 5× 30m2,
and the soil firmness of the trimmed site is measured. .e
model of the soil firmness instrument is TJSD-750-II. .e
test site is evenly divided into 7 columns and 3 rows, with a
total of 21 sampling points. Each point is measured three
times. .e depths of the three measurements are 10 cm,
20 cm, and 30 cm, respectively..emeasured data are shown
in Table 1.

Set the depth and span of the rectangular pit as variables.
.e depth is 10 cm, 20 cm, and 30 cm, respectively, which is
used to change the amplitude of excitation. .e spans are
10 cm, 20 cm, 30 cm, 40 cm, 50 cm, 60 cm, and 70 cm, re-
spectively, which are used to change the excitation wave-
length. .e width is fixed at 30 cm, and the distance between
the two pits is fixed at 60 cm. Ten rectangular pits with the
same depth and span are one kind of pavement, which is
divided into 21 kinds, as shown in Figure 2.

When a vehicle travels on a rectangular pit road surface,
assuming that the rear end of the rectangular pit is the
excitation point, the wavelength λ of road surface excitation
is defined as the sum of the spacing between the two pits and
the span of the rectangular pit. .erefore, the equation
[7, 27] for solving the excitation frequency of the actual
rectangular pit pavement is

f � n × v, (1)

where f is the spatial frequency, which is the reciprocal of
the wavelength λ, and v is the vehicle speed.

2.2. Test Methods

2.2.1. Vibration Test Method. In this paper, the tractor is
used as the power to drive the vibration test bench.
According to ISO5008, too slow speed of agricultural ve-
hicles causes the phenomenon that it is difficult to cause
excitation and too fast speed causes the nonlinear phe-
nomenon [26]. .erefore, the vehicle speed is kept at 2 km/h
during the test process to ensure that the resonance of the
test bench can be caused [24]. .e excitation frequency is
changed by changing the original pavement wavelength, and

the vibration intensity is analyzed by test bench vibration
acceleration signal..e sampling frequency is set to 2000Hz,
and the flow diagram is shown in Figure 3.

In order to be able to evaluate the vibration intensity of
21 kinds of pavement test, vibrating test bench intensity of
soft soil pavement, the weighted root mean square value
statistical calculation of vibration acceleration signals is,
respectively, selected..e equation for solving the root mean
square value of acceleration aw is shown in the following
equation [24, 27]:

aw �
1
T


T

0
a
2
w(t)dt 

1/2

, (2)

where aw(t) is the weighted acceleration time history
function and T is the duration of the measurement.

2.2.2. Establishment of Effective Roughness Excitation Model.
In this paper, the test bench response is taken as the output
to reverse the effective roughness of soft soil pavement. It
mainly includes three parts: (1) establishing the vibration
model of the vehicle-soft pavement system, obtaining the
effective roughness model, and finding out the parameters
that affect the effective roughness, including the stiffness and
damping of the system and the displacement, speed, and
acceleration of the wheel in the vertical direction. (2)
Obtaining equivalent stiffness and equivalent damping by
hammering experiment and modal parameter identification.
(3) Carrying out one-time integration and two-time inte-
gration on the acceleration signal to obtain the vertical speed
and displacement signals of the wheel.

(1) Effective Roughness Model. In the process of test, the
wheels are set to be evenly and symmetrically excited by the
ground, and the stiffness and damping of the soil itself would
also affect the vibration characteristics of the vehicle.
.erefore, the stiffness and damping of the vehicle-ground
system are equivalently superimposed in the vertical di-
rection [22, 27]. .e simplified process of the vibration
system is shown in Figure 4.

Figure 4(a) is the actual vibration system model.
Figure 4(b) is the simplified vibration model. In the model,
K � k1 + k2, C � c1 + c2. q(t) is the effective ground
roughness input excitation, and the vibration differential
equation [13, 27] is established as shown in the following
equation:

m €x(t) + C[ _x(t) − _q(t)] + K[x(t) − q(t)] � 0. (3)

In the equation, x(t) is the vertical vibration displace-
ment of wheels; _x(t) is the vertical vibration speed of wheels;

€x(t) is vertical vibration acceleration of wheels; q(t) is the
effective ground roughness input displacement.

.e vertical displacement can be solved by

q(t) � x(t) +
m

K
€x(t) +

C

K
_x(t). (4)

Here, the mass m � 103.5 kg and vehicle acceleration
signal is €x(t). Measured by vibration test that, in order to be
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able to evaluate the road excitation intensity of 21 kinds of
pavement test, the power spectral density method of pavement
effective roughness is, respectively, selected. .e equation for
solving the spectral density of effective roughness rate is shown
in equation (4). Since the function curve of effective roughness
is already known, the power spectral density [5] can be cal-
culated by using a computer, as follows:

P �
1
N



N−1

k�0
[Q(k)]

2
. (5)

Here, P is the power spectral density of the effective
roughness and Q(k) is the spectral function of the effective
roughness time domain signal q(t) after Fourier transform,
wherein, k � 1，2，3 . . ..

(2) Test of Mechanical Parameters of Vehicle-Ground System.
At present, the method of experimental modal analysis is
relatively mature. Generally, it includes single-point exci-
tation, multipoint excitation, and single-point partition
excitation [28]. In this paper, the hammering method is used

(9) (8) (7) (6)

(5)(4)(3)(2)(1)

Figure 1: Test system. (1) Wheel assembly, (2) single wheel frame, (3) connection bearing, (4) computer, (5) acceleration sensor, (6) tractor,
(7) signal amplifier, (8) data acquisition instrument, and (9) fixing device.

Table 1: Test statistics of solidarity (unit: kg/cm2).

Depth (cm) Columns
Rows

1 2 3 4 5 6 7

10
1 10.2 13.8 12.6 12.4 13.7 13.8 8.8
2 15.8 12.6 14.7 13.8 14.8 15.9 16.2
3 14.6 9.2 10.7 12.5 10.4 11.3 10.6

20
1 16.9 21.9 18.3 16.9 16.9 18.8 16.8
2 19.0 20.1 21.0 21.1 21.2 22.8 19.3
3 17.0 20.3 23.1 21.5 19.8 20.0 19.4

30
1 38.2 32.5 30.1 29.7 30.1 36.5 47.0
2 41.7 50.7 38.8 32.0 23.1 33.9 39.2
3 37 36 33.1 21.5 29.8 20.9 29.4

Distance

(a)

W
id

th

Span

Depth

(b)

Figure 2: Sample of the rectangular pit.
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for testing, and the signal generated by hammering is taken
as the excitation force signal and the signal measured by the
acceleration sensor is taken as the response signal. .e ratio
of Laplace transform of the acceleration response signal to
Laplace transform of the excitation signal is taken as system
response, i.e., transfer function [29]. .e transfer function
signal curve is used to identify the parameters and obtain the
mechanical parameters of the system. In this paper, a single-
point hammer test method is selected. .e force sensor
model is LC-50 piezoelectric sensor (produced by Beijing
Wavespectrum Science and Technology Co., Ltd.). .e
sampling frequency is 5000Hz, and the sampling time is 0.2
seconds, as shown in Figure 5.

After modal analysis, the natural frequency ωn, damping
ratio ξ, equivalent stiffness K, and equivalent damping C of
the system can be obtained.

.e relationship between each parameter is shown in
equations 6 and (7) [27, 29]:

ω2
n �

K

m
, (6)

ξ �
C

2mωn

. (7)

In order to obtain the wheel vertical displacement signal
x(t) and the wheel vertical speed signal _x(t), it is necessary
to carry out one-time integration and two-time integration

on the measured wheel vertical acceleration signal €x(t). For
signal integration, there are mainly two methods: time
domain integration and frequency domain integration. As
time domain integration will cause the generation of DC
component and trend term of signal, it will lead to inte-
gration error, while frequency domain integration can
convert integration operation into division operation, which
can better avoid the generation of error [29, 30]. As a result,
the frequency domain primary integration of the accelera-
tion signal is performed to obtain the frequency spectrum of
the velocity signal as follows:

V(K) �
A(K)

jω


N

n�0

1
j2πkΔf

H(K)ane
− j2πkn/N

. (8)

.e frequency spectrum of the displacement signal
obtained by quadratic integration is

S(K) �
A(K)

ω2
k



N

n�0

1
(2πkΔf)

2 H(K)ane
− j2πkn/N

. (9)

Here,

H(K) �
1, fd < kΔf<fu,

0, otherwise,
 (10)

whereΔf is frequency resolution; fd is the lower limit of the
cutoff frequency; fu is the upper limit of cutoff frequency;N
is the number of sampling points of the data; and ωk is the
frequency corresponding to the Fourier component.

3. Vibration Test Analysis

.e acceleration signal in the vertical direction of the wheel
is collected through the vibration test system, and the col-
lected voltage signal value is imported into them file written
by MATLAB and converted into the acceleration signal
value. .e vibration response data of 21 kinds of pavements
are divided into 7 groups by span, and each group contains
pavement data of 3 different depths for comparison and
display, as shown in Figure 6. It can be seen that each group
of data can see 10 peaks, proving that each rectangular pit
constructed can cause vehicle vibration.

MATLAB is used to write a program to calculate the
power spectral density of the signal, as shown in Figure 7. It
can be seen that the frequency band range in the power

Take the constructed
pavement as the excitation

input

The tractor is used as a
dynamic driving vibration

testing system for
vibration tests

The AC signal generated
by the BZ1124 acceleration

sensor is amplified by a
WS-2401 signal amplifier

Acquisition is carried
out by WS-5291

acquisition instrument

The collected information
is processed by the upper
computer Vib ′SYS-5291

software

The information processed
by Vib ′SYS-5291 software is

imported into MATLAB software
for further analysis

Figure 3: Vibration test flow.

m

k1 k2 c1 c2
q (t)

x (t)

K C q (t)

x (t)
m

(a) (b)

Figure 4: Simplified schematic diagram of the vehicle-ground
system model. k1: soil vertical stiffness; k2: tire vertical stiffness; c1:
soil vertical damping; c2: tire vertical damping; x(t) : wheel up and
down displacement; q(t): effective ground displacement input; K:
system vertical equivalent stiffness sum; C: system vertical
equivalent damping sum.
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spectral density is 0∼13Hz, and the most active part of the
vibration power value is 0∼3Hz. It is close to the test fre-
quency band of tractor vibration in references
[21, 24, 31–33], and the frequency band range does not
change significantly with the change of rectangular pit size.
.is shows that, under the excitation of soft soil pavement,
the vehicle vibration is mainly in the low-frequency range,
and the SDOF vibration test system can reflect the overall
vibration characteristics of the tractor. .e vibration re-
sponse signal is analyzed within 0∼3Hz, and four peak
points appear. Taking the data with a span of 10 cm and three
different depths as an example, the data rules are consistent.

3.1. Effective Roughness Model Parameters. .e transfer
function of the vehicle-ground system is obtained through
hammering test, as shown in Figure 8. Both the real part and
the imaginary part of the transfer function curve have 5 peak
points. .e first-order natural frequency [28, 29] is obtained
by selecting the peak frequency with the real part being 0 and
the imaginary part being the highest and carrying out modal
parameter identification. A total of 7 hammering tests were
carried out (test has the same law for 7 times), and the 7 test
data of the first-order natural frequency were averaged. .e
results are shown in Table 2.

.e first-order natural frequency is selected as the
dominant frequency of the system, and the ωn value is
211.8998Hz. Modal parameters of the first-order natural
frequency are identified to obtain damping ratio ξ � 1.16%.
Combining equations 6 and (7), the vertical equivalent
stiffness K is 4647307.86Nm−1 and the equivalent damping
coefficient C is 508.8138N sm−1.

3.2. Vertical Wheel Displacement and Speed Signals. .e
frequency domain integration program is written byMATLAB,
and the vertical vibration acceleration signal of the axle is

integrated first and second in the frequency domain..e upper
and lower limit cutoff frequencies are 100Hz and 0.3Hz [34],
respectively, and the vertical speed signal _x(t) and displace-
ment signal x(t) of the axle are obtained, as shown in Figure 7
(the data are data with a depth of 10 cm and a span of 10 cm).
Combining equations 8 and (9), it can be seen that frequency
domain integration is equivalent to division operation in
frequency domain, so the amplitude would be amplified when
the frequency is in the range of 0∼1Hz, and the amplitude
would decrease when it is greater than 1Hz, and the amplitude
would increase and decrease as the frequency value increases.
As a result, the signal shows a smooth trend in the time domain
with the increase of the number of frequency domain inte-
grations, as shown in Figure 9(a). As the number of frequency
domain integrations increases in the frequency domain, the
amplitude of the signal gradually increases in the lower fre-
quency range and gradually decreases in the higher frequency
range, as shown in Figure 9(b).

3.3. EffectiveRoughness Signal. .e vertical speed signal _x(t)

and displacement signal x(t) of the axle, as well as the
stiffness K and damping C are obtained, and the time do-
main signal of the effective roughness is obtained by solving
equation (4). Since the effective roughness of soft soil
pavement is the superposition of the vertical displacement
and velocity of test bench and the product of acceleration
and various mechanical parameters, as well as the value of
vertical stiffness K is much larger than the value of vertical
damping C and vertical mass m, the product of speed and
acceleration and various mechanical parameters is smaller,
and the sum of tire deformation is smaller, due to relatively
small stiffness of soil compared to tire. So, the effective
roughness value basically depends on the vertical dis-
placement of the wheel. As shown in Figure 10, the span is
10 cm. .e data of rectangular pit pavement with depths of
10 cm, 20 cm, and 30 cm show that the amplitude of effective
roughness changes irregularly with the increase of depth.
.e rest of the data are consistent with the above. Fourier
transform is performed on the effective roughness time
domain signal to obtain a frequency domain diagram. As
shown in Figure 10(b), the excitation frequency band range
is from 0 to 3Hz, and that frequency values corresponding to
the two peak points of each group of data are different. .e
resulting difference has a linear multiple relationship with
the frequency corresponding to the first peak point. .e
vertical displacement of the peak point decreases with the
increase of frequency, which is similar to the nonsinusoidal
periodic signal [35]. .e rest of the data are consistent with
the above.

4. Discussion

4.1. CorrelationAnalysis of Effective Roughness,Original Road
Roughness, and Main Frequency Band of Vibration Response.
.is experiment includes 21 kinds of rectangular pit pavements
with 7 different wavelengths. Because the constructed rect-
angular pit pavement is similar to a nonsinusoidal periodic
signal, there will be frequency doubling. Since there are 4 peak

(1)

(2)

(3)

(4)

Figure 5: Schematic diagram of hammering test. (1) Acceleration
sensor; (2) force hammer sensor; (3) signal amplification and
acquisition equipment; (4) computer display.
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points in the spectrum diagram of the effective roughness
signal, the four frequency doubles of the original road
roughness excitation signal are counted, andTable 3 is drawn in
combination with the spatial frequency n and time frequency f
corresponding to different wavelengths, as follows.

Linear regression analysis is carried out on the peak
point frequency of the effective roughness model signal, the
excitation point frequency of the original pavement
roughness, and the four peak point frequencies of the main
frequency band of the vibration signal, respectively. .e
results show that the coefficients of the linear regression
equation between the effective roughness model signal and
the excitation point frequency of the original pavement
roughness are close to 1, and the R2 value ranges from 0.9641 to

0.9969. .e coefficients of the frequency linear regression
equation of the four peak points of the main frequency band of
the effective roughness model signal and the vibration accel-
eration signal are all around 1, and the R2 value range is
0.992165∼1, as shown in Table 4. It is shown that the effective
irregularity excitation frequency is highly correlated with the
original irregularity excitation point frequency of rectangular
pit pavement..e feasibility of the effective roughness solution
method is verified. It is proved that the excitation point of the
vehicle when driving on the soft road surface is the rear end of
the rectangular pit. At the same time, it is shown that the main
frequency band of vehicle vibration is highly correlatedwith the
excitation signal of the road surface and basically depends on
the excitation characteristics of the ground.
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Figure 6: Time-domain diagram of the vibration acceleration signal.
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Linear fitting is carried out on the frequency value of the
original road roughness excitation, and the actual measured
peak frequencies of the effective roughness are compared
with the four peak frequencies of the main frequency band of
the vibration signal, as shown in Figure 11. It can be seen that
the difference between the three is small, and with the
change of rectangular pit depth, the excitation frequency and
vibration frequency values do not change significantly. With
the increase of the rectangular pit span, the excitation fre-
quency and vibration frequency values decrease. .is shows
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Figure 8: Hammer test: (1) 5-order mode shape; (2) transfer function curve.

Table 2: Statistics of first-order natural frequency of the vehicle-
ground system (unit: Hz).

Number of hammers First order natural frequency Average
1 211.128

211.8998

2 211.792
3 212.235
4 211.885
5 212.127
6 211.787
7 211.838
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Figure 7: Frequency domain diagram of the vibration acceleration signal.
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that the change of rectangular pit span is the main reason to
change the road wavelength, indirectly changing the exci-
tation frequency of effective uneven and vibration frequency
value of vehicles. At the same time, the frequency of effective
roughness excitation points is slightly lower than that of the
original pavement excitation points. .ere are mainly two
reasons: (1) systematic errors will occur when the application
of measuring tools and shovels cannot be completely unified
when the road surface is constructed manually. (2) In the
process of test, tires and soil will deform and increase the

wavelength of the original road surface, resulting in the
effective roughness excitation frequency (consistent with the
vibration frequency) being smaller than the original road
surface roughness excitation frequency value.

4.2. Correlation Analysis of Vibration Acceleration Intensity
and Effective Roughness Intensity. MATLAB combination
equation (2) is used to solve and make statistics on the root
mean square value of acceleration of 21 kinds of road surface
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Figure 9: Primary and secondary frequency domain integration and time and frequency correspondence diagram of vibration acceleration
signal. (a) Time domain diagram. (b) Frequency domain diagram.
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Figure 10: Time-frequency correspondence diagram of effective roughness. (a) Time domain diagram. (b) Frequency domain diagram.
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data, as shown in Figure 11(a). Combined with equation (5),
the effective irregularity power spectral density value is
solved and counted, as shown in Figure 11(b). It can be seen
from the test data of 7 spans with a depth of 30 cm and the
depth of 10∼20 cm and the span of 10∼40 cm that, with the
increase of the span, the weighted root mean square value of
vibration acceleration and the power spectral density value
of effective roughness of road surface increase. .is is due to
the increase of rectangular pit size, which leads to the in-
crease of wheel vertical displacement and effective roughness
power value. At the same time, the vertical displacement of
the wheels increases, which results in an increase in the shear
force given to the wheels by the soil [6]. As a result, an
increase in the vertical moving load on the vibration test
bench occurs when driving on the road [34], so the in-
stantaneous excitation suffered by the wheels when passing
through the rear end of the rectangular pit increases, thus
enhancing the vibration intensity of the vehicle. As shown in
Figure 12(b), with this increase of the depth of the rect-
angular pit, the amount of subsidence at the front and rear
end of the rectangular pit increases, so that the effective
roughness power spectral density value increases accord-
ingly. However, with the increase of the depth of the rect-
angular pit, the weighted root mean square value of the
vibration acceleration signal does not change significantly, as
shown in Figure 12(a). It is mainly because the effective
roughness is basically equal to the vertical displacement of

the wheel, and it shows that the acceleration signal is
mainly noise at 4∼13Hz since the amplitude of the ac-
celeration signal and the effective roughness signal are
mainly concentrated in 0∼3Hz, as well as the coupling
between the vibration acceleration signal frequency and the
effective roughness excitation frequency. .erefore, there
are errors in the acceleration signal measured by the vi-
bration testing system, resulting in irregular changes in the
root mean square value of the acceleration signal with the
increase of the depth of the road rectangular pit. At the
same time, two integrals are carried out in the process of
solving the effective roughness, which will reduce the noise
part and improve the prediction accuracy of the effective
roughness of soft pavement. .erefore, with the increase of
the depth of rectangular pit, the power spectral density
value of the effective roughness increases obviously. When
the depth is 10∼20 cm and the span is 50 cm, 60 cm, and
70 cm, the vibration amplitude is small because the wheel
collapses too fast when passing through the front end of the
rectangular pit. In the meantime, the wheel will contact the
bottom of the rectangular pit, the collapsed soft soil will fall
on the bottom of the rectangular pit as a buffer, and the rear
end of the rectangular pit cannot directly give excitation,
resulting in the process which cannot generate large ex-
citation. It shows that, in the complete excitation of the
rectangular pit (in this paper, the test data of 7 spans with a
depth of 30 cm and the test data with a depth of 10∼20 cm

Table 3: Statistics of calculation results of excitation point wavelength, spatial frequency, and quadruple frequency of original pavement
roughness signal.

Span (unit: cm) Wavelength, λ (unit: m) Spatial frequency, n (unit: m−1)
Quadruple frequency time frequency (unit: Hz)
Fundamental Double Triple Quadruple

10 0.7 1.429 0.794 1.588 2.382 3.176
20 0.8 1.250 0.694 1.388 2.082 2.776
30 0.9 1.111 0.617 1.234 1.851 2.464
40 1.0 1.000 0.556 1.112 1.668 2.224
50 1.1 0.909 0.505 1.010 1.515 2.020
60 1.2 0.833 0.463 0.928 1.391 1.854
70 1.3 0.769 0.427 0.854 1.281 1.708

Table 4: Regression analysis of effective roughness peak point frequency and original roughness excitation point and vibration signal main
frequency band peak point frequency.

Depth (cm) Peak point
Frequency regression analysis of effective

roughness and original roughness
Regression analysis of effective roughness and

main frequency band of vibration signal
Regression equation Standard error R2 Regression equation Standard error R2

10

First peak point y� 1.0009x− 0.0482 0.027790 0.964080 y� 0.9730x+ 0.0174 0.012979 0.992165
Second peak point y� 1.0619x− 0.1499 0.034771 0.987183 y� 0.9772x+ 0.0309 0.007792 0.999356
.ird peak point y� 1.0736x− 0.2628 0.057738 0.983743 y� 0.9639x+ 0.0704 0.025687 0.996959
Fourth peak point y� 0.8164x+ 0.1873 0.095525 0.976495 y� 1.0134x− 0.0394 0.034624 0.996912

20

First peak point y� 0.8768x+ 0.0110 0.007053 0.996882 y� x 0 1
Second peak point y� 0.8730x+ 0.0407 0.032586 0.983410 y� 0.9867x+ 0.0124 0.003107 0.999849
.ird peak point y� 0.9124x− 0.0119 0.035318 0.992006 y� 0.9872x+ 0.0177 0.004976 0.999841
Fourth peak point y� 0.6540x+ 0.5266 0.047584 0.991348 y� 0.9846x+ 0.0364 0.02293 0.997991

30

First peak point y� 0.8768x+ 0.0110 0.007053 0.996882 y� x 0 1
Second peak point y� 0.9117x− 0.0033 0.036182 0.981283 y� x 0 1
.ird peak point y� 0.9431x− 0.0654 0.035183 0.992572 y� x 0 1
Fourth peak point y� 0.7153x+ 0.3941 0.035697 0.995736 y� x 0 1
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and a span of 10∼40 cm are called complete excitation of
rectangular pit, and the rest data are called incomplete
excitation of rectangular pit), the increase of rectangular pit
span is the main reason for the increase of vehicle vibration
power.

We continue to carry out statistical analysis on the vertical
displacement corresponding to the four peak points of the
power value of the four peak points of the first band of the
vibration signal and the four peak points of the effective
roughness. Figure 13 is a rectangular pit road surface with a
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Figure 11: Comparison of the frequency value of original road roughness excitation point, frequency value of effective roughness peak
point, and frequency value of vibration peak point. (a) Depth: 10 cm. (b) Depth: 20 cm. (c) Depth: 30 cm.
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Figure 12: Vibration response and road excitation law. (a) RMS of vibration acceleration, (b) Average of effective irregularity power spectral density.

Journal of Advanced Transportation 11



span of 10 cm and a depth of 10 cm, 20 cm, and 30 cm. It can be
seen that, with the increase of the peak point, the vibration
power value increases first and then decreases..e highest peak
is the second peak point and the third peak point. .e vertical
displacement of the effective roughness excitation point de-
creases in turn. .e maximum value is at the first peak point,
which conforms to the excitation law of the constructed
pavement, and the other data laws are consistent. .e main
reason is that the effective irregularity excitation characteristics
mainly depend on the vertical displacement of the wheel, and
the first peak point is amplified in turn and the other peak
points are reduced in turn in the two integration processes. It
shows that the double frequency and triple frequency of road
excitation are the main frequencies that cause the maximum
vibration power of vehicles. Moreover, in the frequency do-
main, the output signal is the product of the frequency response
function of the system and the input signal [29], indicating that
the frequency response function of the system is themost active
in the excitation of frequency doubling 2 and frequency
doubling 3. At the same time, the vibration generated by the
ground excitation of the whole tractor is in the low frequency
band (0∼3Hz) [21, 24, 31–33]. When the acceleration signal is
integrated in the frequency domain, the signal in the 0∼1Hz
frequency band would be amplified, and the signal in the
1∼3Hz frequency band would be reduced, which results that
the soil soft road excitation corresponding to the highest peak
of the vehicle vibration response is not the fundamental fre-
quency. At the same time, it provides a reference for the
prediction of soft soil pavement excitation and the design of
tractor vibration reduction.

5. Conclusions

In this paper, the constructed rectangular pit pavement is
used to simulate the field soft pavement with different

wavelengths, and the test is carried out in combination with
the vibration test system. .e effective roughness model is
established through the vibration equation of the vehicle-
ground system, and the effective roughness of soft pavement
is obtained, which is used as the excitation characteristic of
pavement. In order to explore the correlation between the
excitation characteristics of different long-wave roads in the
field and the vibration response of vehicles, the following
conclusions are drawn.

(1) In the full excitation of the rectangular pit, the increase
of the span of the rectangular pit leads to the increase of
the effective irregularity excitation wavelength and the
decrease of the excitation frequency given to the wheel.
At the same time, the increase of rectangular pit span
leads to the increase of vertical moving load during the
driving process of the vehicle, resulting in the increase
of vehicle vibration intensity. In the incomplete exci-
tation of the rectangular pit, the collapse of the front
end of the rectangular pit will form a buffer zone. .e
wheel cannot directly contact the rear end of the
rectangular pit due to the contact with the bottom of
the rectangular pit, which is difficult to cause large
excitation.

(2) .e correlation coefficient (R2) between the fre-
quency of the peak point of effective roughness and
the frequency of the excitation point at the back end
of the rectangular pit is 0.9641∼0.9969, and the
frequency range is 0∼3Hz. .is shows the effec-
tiveness of the method for solving the effective
roughness of soft soil pavement and determines the
rear end of rectangular pit as the main excitation
point. .e correlation coefficient (R2) between the
main frequency band frequency of the vibration test
bench response acceleration signal and the effective
roughness excitation frequency ranges from
0.992165 to 1. It indicates that the vibration fre-
quency generated by agricultural vehicles traveling
on soft pavement is mainly determined by the ex-
citation frequency of soft pavement, which provides
a basis for predicting the excitation characteristics of
soft pavement.

(3) Due to the periodic characteristics of the arrange-
ment of rectangular pit excitation points, the vi-
bration acceleration signal and the effective
roughness excitation signal have the generation of
double frequency band. .e highest point of vehicle
vibration acceleration power value is concentrated at
the frequency doubling and frequency doubling
points, and the fundamental frequency amplitude of
effective roughness excitation on soft road surface in
the field is the highest. .e results show that the
maximum value of vehicle vibration acceleration
response and the maximum value of field soft
pavement excitation have a relationship of 2 or 3
times in frequency distribution, which provides
reference for the prediction of pavement excitation
frequency and the design of vehicle shock
absorption.
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effective roughness corresponding to peak point.
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In this paper, the vehicle vibration response is used to
evaluate the correlation between the excitation character-
istics of the soft road surface and the vehicle vibration, but it
is difficult to determine the effective wavelength range.
Future plan will solve this issue by using the binocular visual
odometer algorithm to obtain the spatial motion of the
vehicle. A computer vision system will be developed to
reduce the agriculture vehicles in the soft-filed roads.
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Dynamic path flows, referring to the number of vehicles that choose each path in a network over time, are generally estimated with
the partial observations as the input. ,e automatic vehicle identification (AVI) system and probe vehicle trajectories are now
popular and can provide rich and complementary trip information, but the data fusion was rarely explored. ,erefore, in this
paper, the dynamic path flow estimation is based on these two data sources and transformed into a feature learning problem. To
fuse the two data sources belonging to different detection ways at the data level, the virtual AVI points, analogous to the real AVI
points (turning movements at nodes with AVI detectors), are defined and selected to statically observe the dynamic movement of
the probe vehicles. ,e corresponding selection principles and a programming model considering the distribution of real AVI
points are first established. ,e selected virtual AVI points are used to construct the input tensor, and the turning movement-
based observations from both the data sources can be extracted and fused. ,en, a three-dimensional (3D) convolutional neural
network (CNN) model is designed to exploit the hidden patterns from the tensor and establish the high-dimensional correlations
with path flows. As the path flow labels commonly with noises, the bootstrapping method is adopted for model training and the
corresponding relabeling principle is defined to purify the noisy labels. ,e entire model is extensively tested based on a realistic
road network, and the results show that the designed CNN model with the presented data fusion method can perform well in
training time and estimation accuracy. ,e robustness of a model to noisy labels is also improved through the bootstrapping
method. ,e dynamic path flows estimated by the trained model can be applied to travel information provision, proactive route
guidance, and signal control with high real-time requirements.

1. Introduction

Unlike the static path flows, which represent the average
path flows during a long period, the dynamic path flows
represent the real-time path flows in a relatively small time
interval and the corresponding estimation problem becomes
more challenging. ,e dynamic path flow data have a wide
range of applications, such as the analysis of user travel
patterns, large-scale traffic network simulation, and traffic
planning and management. ,e path flow and OD matrix
estimates are sometimes similar and interdependent. ,e
OD flows can be assigned to obtain path flows and the sum
of several path flows can be used to obtain one specific OD
flow. Due to the high cost and less efficiency of manual

survey for directly observing path flows, a typical way has
been widely used to indirectly estimate them from observed
link flows.

For this way, numerous mathematical programming
models have been established to solve the OD demands that
are most consistent with observed link flows under certain
assumptions, but the results remain unsatisfactory. ,e
major reason is that the information provided by the ob-
served links is limited. It is common for a network that the
number of OD pairs is much larger than the number of
observed links [1, 2], which is often referred to the under-
specified problem. More information such as prior OD
matrices is needed and the bi-level programming framework
is mostly applied among existing studies [3, 4]. At the upper
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level, optimal solutions are searched according to certain
objectives that minimize the distance between the possible
estimates and observed values, including generalized least
squares, entropy maximization, etc. At the lower level where
dynamic traffic assignment (DTA) is usually conducted,
estimated OD flows are mapped to observed link flows.
Unfortunately, without observed trip information as con-
straints, the assumptions related to path choice and the
driving behavior of a traveler using the DTA model may be
inconsistent with realistic conditions [5].

Compared with link traffic counts, the AVI data and
probe vehicle trajectories can provide more information
about trips. ,e current AVI system is generally composed
by radio frequency identification device-based detector,
Bluetooth detector, and video-based detector. ,e unique
vehicle’s ID and passing time can be recorded with the
vehicle passing the detector. By matching vehicles’ IDs, the
traffic counts and travel time of partial paths can be further
obtained. In the current studies concerning path and OD
flow estimations, the AVI information is generally incor-
porated in the following three ways: matched volume as
prior observed OD data [6, 7] or observed counts of partial
complete paths [2, 8]; the link choice [4] or lagged obser-
vation proportion based on travel time [6]; and recorded link
volume [2, 8]. Compared with the AVI data, the probe
vehicle trajectories are collected by GPS-enabled devices and
the prior OD matrices and users’ path choice behaviors
could be further discovered based on the sampled and
complete trajectories. Several researches have been con-
ducted using either vehicle trajectories alone or as fused with
the observed link flows [9, 10]. ,e information provided by
the AVI system and the probe vehicles has different char-
acteristics. Taking the video-based AVI system widely ap-
plied in China as an example, every vehicle passing the
detector can ideally be detected, but the coverage rate and
matched vehicles may still rapidly degenerate when the
network size increases [8]. Recently, with the rapid devel-
opment of online car-hailing market, more vehicle trajec-
tories can be collected and the spatial coverage is
considerably wide [7], but the comparatively low penetra-
tion rate remains a problem [11]. From the discussion, it is
evident that the AVI and the probe vehicle systems have
complementary characteristics in both spatial coverage and
vehicle collection. Hence, fusing these two types of data is
promising for dynamic path flow estimation but has rarely
been explored.

Typically, dynamic path flow estimation is regarded as an
optimization problem that searches for the most consistent
path flow estimates and the solution is a high-dimensional
time-dependent path flow matrix [12]. For mathematical
programming models, the trip information obtained by
fusing these two data is supposed to be described analyti-
cally. And the model accuracy may improve as rich infor-
mation is added, yet the solving capacity of the model may
become more difficult and inefficient. Considering the rich
and implicit travel features stored in the AVI and the probe
vehicles data, the path flows estimation can potentially be
transformed from an optimization problem to a data-driven
feature learning problem. Neural networks (NNs) have long

been proven as an effective measure to learn hidden patterns
from given samples and make further predictions.

Recently, with the emergence of deep learning algo-
rithms, the NN has undergone a transition from shallow NN
to deep NN (NN with multiple layers), which is much more
powerful in learning complex and abstract features. Several
researchers have explored the use of deep NNs for OD flow
estimation. Huang et al. [7] used the long short-term
memory model with time sequence of trajectory OD flows as
the input. ,e temporal dependency between successive
time steps is considered. ,e labels of partial OD pairs are
provided by AVI data and the label propagation is adopted
to infer uncovered OD pairs. An improved 3D-CNN model
(Res3D), which can capture the features along both spatial
and temporal dimensions, was designed by Tang et al. [13].
,e model input is a cube of three stacked matrices, and for
eachmatrix, the set of links installed by AVI detectors is used
to represent the segment volume, matched volume, and
matched travel time. ,e training samples are provided by a
parallel simulation system and the model can be applied
through transfer learning. In these two models, the AVI and
trajectory data are still used separately as model inputs. ,e
success of deep NNs relies heavily on supervised training
and sufficient labeled data samples. ,e OD flow labels used
by Huang et al. [7] and Tang et al. [13] are, respectively,
obtained from AVI data and an exogenous simulator.
However, it is difficult to guarantee that the label data are
without noises, which is also common in the field of image
recognition. And the label noise is potentially more harmful
than feature noise, which affects the observed values of the
feature [14]. It is inevitable to consider how to learn samples
with noisy labels.

As suggested by Tang et al. [13], the 3D-CNN structure is
effective for capturing the spatial-temporal patterns in link
observation-based tensor. In this paper, the 3D convolutions
are also introduced to design a deep NN for estimating the
dynamic path flows, but the input tensor is constructed
based on the turning movements of network nodes to ex-
press and fuse the multiple types of AVI and probe vehicle
observations. ,e contributions of this study are highlighted
below:

(1) ,e AVI and probe vehicle data produced by dif-
ferent detection ways are fused and the mobile de-
tection of probe vehicles is changed to stationary
detection by properly arranging the virtual AVI
points. ,e principles for selecting the turning
movements as virtual AVI points and a corre-
sponding programming model are established, and
with the distribution of real AVI points, data-driven
feature learning characteristics and input tensor size
related to model efficiency are comprehensively
considered.

(2) Based on the selected virtual AVI points, the turning
volumes, matched volumes, and matched travel time
provided by AVI and probe vehicle data are repre-
sented and hierarchically combined in the input
tensor to implicitly represent the travel patterns of
networks. ,e concrete architecture of the 3D-CNN
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model is designed to automatically recognize the
hidden patterns behind these observations and es-
tablish a high-dimensional mapping to dynamic path
flows.

(3) To cope with noisy path flow labels, especially with
systematic errors, a self-correcting algorithm boot-
strapping commonly applied for image classification
tasks is extended to variable regression problem. ,e
key is the re-labeling process gradually purifying the
noisy labels, and the relationship between the gen-
erated path flows and the observed turning flows is
used to determine whether to correct the original
labels with model outputs.

2. Problem Statement

In this paper, we use the characters lowercase (a), bold
lowercase (a), uppercase (A), bold uppercase (A), and
uppercase calligraphy (A) to represent scalar, vector, set,
matrix, and tensor, respectively. Each set has an attribute of
length that can be expressed by |A|.

Figure 1 illustrates the research background and relevant
definitions and variables. We consider an urban road net-
work specified by a directed graph G � (N, L), where N

denotes the node set of the network, N � 1, . . . , n{ }, n ∈ N,
and L denotes the link set of the network, L � 1, . . . , l{ },
l ∈ L. P is the path set of the network, P � 1, . . . , k{ }, k ∈ P.
,e nodes in N which directly connect to traffic zones are
attracting or generating nodes and constitute the node set
Nse. ,e remaining nodes are cross nodes that represent the
real intersections and constitute the node set Nc. For each
link of node, there are three circles. Along the approaching
direction, the three circles represent left, straight, and right
turns, from left to right. ,e white circle means this ap-
proach has no this turningmovement; otherwise, the circle is
filled with gray. A is the set of all turning movements,
A � 1, . . . , a{ }, a ∈ A. Ase is a subset of A and contains the
turning movements of nodes in Nse. ,e purple circle
represents a real AVI point where the turning vehicles can be
detected by a video-based AVI system. Taking the link l as an
example, several activated lines are drawn near the stop line
in the shooting screens of cameras to automatically detect
and record the passing vehicles’ license plate numbers and
time. ,e set of real AVI points is denoted by Ar.

,e vehicle turning information for each a in Ar can be
directly obtained, and Alibabai and Mahmassani [15] point
out that using intersection turning movements as the basic
field observation instead of links can result in more reliable
estimates of dynamic OD matrices. Hence, the turning
movements of nodes are selected as the basic network el-
ements to construct the input tensor and represent the AVI
and probe vehicle observations. However, compared with
the stationary AVI detection points, the occurrence and
movement of the probe vehicle are dynamic. It is necessary
to study as to how to select the turningmovements fromA to
constitute the virtual AVI point set denoted by Av. For the
virtual AVI point (circle filled with green), it can be thought
that a virtual AVI detector is installed to specially detect the
probe vehicles. ,e turning movement and passing time at

the node for each probe vehicle with unique ID can also be
got through the mapping between the GPS coordinates and
links. ,e real and virtual AVI points can overlap (circles
filled with yellow). Hence, for one network G, the selection
of Av based on the distribution of Ar is important not only
for the representation of probe vehicle data but also for the
fusion with AVI data.

,e 3D-CNN is generally used to process consecutive
video frames for action recognition. ,e corresponding
input is a cube formed by stacking multiple contiguous
frames together. For each frame, like a still image, it is
represented by a three-dimensional tensor involving the
height, width, and channels of the image. For CNNs applied
to the transportation engineering field, in addition to the
model architecture design, the first problem is to organize
the traffic data based on the requirements of CNN. In the
network traffic state estimation, it is common but a little
“rough” to grid the network and use the heatmap as the
input. Based on the virtual AVI point set Av, the selection
and combination of the turning movement-based obser-
vations provided by AVI and probe vehicle systems in input
tensor of NN is important for the implicit representation of
the road network.

,e prior path flows commonly used in traditional
mathematical models can be taken as one of the sources of
path flow labels. From the viewpoint of estimation accuracy,
it is desirable that the prior path flows should be a close
estimate of the true path flows. However, Yang et al. [3]
pointed out that prior OD flows may have random and
systematic errors compared with the true values. ,is is also
true for path flows. Some methods have been developed to
deal with the problem of noisy labels and can be approxi-
mately divided into three categories: (1) noise-robust
models, (2) data cleaning methods, and (3) noise-tolerant
learning algorithms [14]. ,e noise-robust models rely on
initializing the start point of gradient descent and early
stopping mechanism to avoid (over) fitting to noisy labels.
,e second category aims to improve the quality of training
data by identifying and removing the samples with incorrect
labels. Considering the difficulties of obtaining training
samples paired with labels and the desire to make full use of
each sample’s information, the third category’s methods are
focused and the bootstrapping method which has been used
by Reed et al. [16] and Wu et al. [17] is extended from the
classification problem to the variable regression problem.

3. Methodology

To address the problems summarized in the previous sec-
tion, the modeling process is illustrated in Figure 2 and there
are three main steps. In Step 1, the principles of optimally
selecting the turning movements as virtual AVI points to
fuse the AVI and the probe vehicle data is specified and
modeled as a binary linear programming model. In Step 2,
the AVI and probe vehicle observations based on turning
movements are selected and organized in the input tensor.
And the architecture of the designed 3D-CNN model and
working process are explained. Finally, for path flow labels
with errors, the bootstrapping method which can re-label
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and gradually purify the noisy labels is used to train the
model.

Step 1. Virtual AVI Point Selection
,e selected virtual AVI points are directly used to

construct the input tensor of NN. Hence, except for the trip
information of probe vehicles, the distribution of real AVI
points, feature learning characteristics, and tensor size
should also be considered.

Based on the algorithm proposed by Castillo et al. [2]
about selecting links to be scanned for predicting path flows,
a revised binary linear programming model is established.
,e model is shown as follows:

minZ � 
a∈A
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v
a + pa

max ∗ u
v
a ∗ u

se
a − 0.5∗ u
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a ∗ u
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Figure 1: Illustration of the research problem.
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where uv
a is the binary decision variable such that it takes the

value 1 when the turning movement a is selected as the
virtual AVI point, and 0, otherwise; use

a and ur
a are 1 when a

belongs to Ase and Ar, and 0, otherwise; pamax is the
maximum number of turning movements traversed by one
path; bk

a belongs to B, which describes the relationship
between the turning movements and each path of P.

,e algorithm proposed by Castillo et al. [2] minimizes
the number of scanned links with respect to two principles.
Here, three principles are presented as follows:

(1) Any path k of P contains at least one virtual AVI
point;

(2) For any two paths k1 and k2of P, each path can differ
from the other through theminimum selected virtual
AVI points of itself;

(3) Attempt to select the minimum virtual AVI points
that are not in Ase set and make the selected points
overlap more real AVI points.

,e first principle is similar to that given by Castillo et al.
[2] and realized by Constraint (2). For the second principle,
Castillo et al. [2] allowed the scanned link which is in path k1
and not in path k2 or vice versa to distinguish the two paths.
,is means that for the two pairs of paths (k1, k2) and
(k2, k1), the selected links can be the same.,is is reasonable
because the relationship between the path flows and ob-
served counts is expressed by mathematical formulations
and each path is guaranteed to have at least one scanned link.
However, too many scanned links can potentially be
assigned to several paths or paths with low demands. For the
deep NN used in this study, the information of each path
should be independent and integrated. Hence, each path
should depend on the turning movements of itself to differ
from other paths and for (k1, k2) and (k2, k1), the selected
turning movements are different. Equations (3) and (5) can
ensure this principle.

,e last principle is reflected in the objective function (1),
which includes all the three terms. To minimize the number
of selected virtual AVI points, the decision variable uv

a must
be added as the first term.,e second term is to constrain the
selected virtual AVI points not from Ase, except in the cases
where only the turning movements that belong to Ase can
distinguish the two paths. ,is setting can help focus on the
operation of probe vehicles in real intersections. ,e third
term urges more overlaps between the virtual and the real
AVI points. When the real AVI points are also selected as
virtual AVI points, the objective value can be further re-
duced while satisfying the first two principles.

After solving the optimization model above, only a small
part of Ase is selected and the dependency of paths and the
passed turning movements cannot be completely expressed
in the input tensor. ,is information is also important and
useful for the estimation problem. ,us, the residual virtual
points ofAse are also added toAv.,en each path has its own
start and terminal virtual points and the number of probe
vehicles between the start/terminal point and each of the
other passed points is the same. Please note that this se-
lection method relies on the exogenous and static path

information (path set P and turning movement-path matrix
B), which can be obtained through other data sources (e.g.,
the probe vehicle trajectories) or methods (e.g., the path flow
assignment from known OD flows). It is suitable for stable
network with not heavy traffic congestions [1, 3, 18]. If the
effect of traffic congestion on travel time is significant, the
path flow dynamics should be considered inside the model
through the flow-related constraints.

Step 2. Input Tensor Construction and Model Architecture
Design

3.1. Data Fusion and Input Tensor Construction. ,ere are
several uniform and continuous time intervals for estima-
tion denoted by H � 1, . . . , h{ }, h ∈ H. ,e operation of
network traffic within one time interval h can be seen as a
video frame (also a still color image). ,e corresponding
abstract expression is the three-dimensional tensor with the
AVI and probe vehicle trajectory data merged, as shown in
Figure 3. To implicitly express the travel patterns of one
network, we define three main types of observations based
on turning movements from these two data sources: turning
volumes, matched volumes, and matched travel time. ,e
last two observations can represent the local and global end-
to-end trip information. As for the turning volumes, it helps
to express richer information.

From Figure 3, we can see that there are three square
matrices like the three channels of one color image and for
each matrix, the rows and columns represent the selected
turning movements of Av. ,e matrix in channel 1, turning
and matched volumes from AVI data, is represented by
Qh ∈ R|Av|×|Av|, where the diagonal element
Qa,a,h(Q ∈ R|Av|×|Av |×|H|) denotes the number of detected
vehicles passing turning movement a during time interval h

and the off-diagonal element Qa,a′,h denotes the number of
matched vehicles from turning movement a to a′. Similar to
Qh, the matrix Qh

′ ∈ R|Av|×|Av| in channel 2 represents the
sampled turning vehicles and matched vehicles from the
probe vehicle data. ,e matrix in the last channel, matched
travel time, is represented by Th ∈ R|Av|×|Av |, where only the
off-diagonal elements may be nonzero, and
Ta,a′ ,h(T ∈ R|Av|×|Av|×|H|) denotes the average travel time for
the matched vehicles from the turning movement a to a′
during interval h. Here, it is assumed that the travel time
measured by the AVI system is more accurate than that of
probe vehicles, because the AVI system can detect more
regular vehicles. If the travel time from a to a′is positive, the
reverse travel time and the number of matched vehicles are
negative.

,e stack of these three matrices forms a temporal cell
Δh ∈ R|Av |×|Av|×3. Considering the complementary charac-
teristics of AVI and the probe vehicle data in vehicle col-
lection, the matrices Qh and Qh

′ are placed in adjacent
channels. ,e travel time obtained from these two data
sources is combined in one matrix Th to avoid possible
inconsistency between them. From the first channel to the
last channel of Δh, we can see the matched regular vehicles
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from the AVI data, the matched probe vehicles, and the
corresponding average travel time between any two turning
movements in order. ,e trip information contained in the
collected AVI and the probe vehicle data within interval h

can be well organized and expressed hierarchically.

3.2. 3D-CNN Architecture Design. For one network, the
prior and estimated path flow matrices are represented by
Y ∈ R|H|×|P| and Y′ ∈ R|H|×|P|. In a dynamic estimation
problem, the generated Yh,k vehicles in the origin of path k

will be observed in the following time intervals h, h, . . .,
h + w′, and (w′ + 1) is the maximum number of time in-
tervals required to travel any path of the network [18].
Hence, for the estimate of one row vector Yh,:, the temporal
cells from h to h + w′ are needed and can be seen as a se-
quence of video frames of network operation.

Referring toVGG-Net, which is a powerful two-dimensional
CNNmodel presented by Simonyan and Zisserman [19], a 3D-
CNN model is designed and shown in Figure 4. ,e VGG-Net
has a very deep convolutional (conv.) architecture and themodel
capability is increased as the network becomes deeper, but it
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leads to a heavier computational cost. Considering this tradeoff
and experimental analysis, the number of 3D conv. blocks and
weight layers (including conv. and fully connected (FC) layers)
are reduced to 4 and 9, respectively. Each block has two conv.
layers, and the corresponding parameters are denoted as “Conv
(kernel size: depth, height, width, channels)–(number of ker-
nels)–(conv. stride: depth, height, width)”. Besides the first conv.
layer, the conv. stride in the height andwidth directions, which is
(1, 1) in VGG-Net, is changed to (2, 2). As the number of conv.

layers decreases, the pooling players used in VGG-Net are
completely removed, which may destroy the spatial features of
maps.

,e input of 3D-CNN containing several temporal cells
Δh is denoted by X ∈ R|H|×|Av |×|Av|×3. As shown at the top of
Figure 4, the 3D convolution kernel is also a cube and can
move not only in height and width but also in depth. ,e
kernel size on height and width (3, 3) is consistent with
VGG-Net to extract spatial features. However, on depth, the
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kernel size is set as (w′ + 1) in the first conv. layer and 1 in
the other conv. layers. Combining the moving stride on
depth set as 1, it means that every (w′ + 1) time interval of X

is treated as a group to extract the spatial-temporal features
and estimate the path flows in the first interval. In addition,

the number of feature maps for each group gradually in-
creases in late conv. block with the rise of convolution
kernels. ,e data-processing procedure in each block can be
formulated as follows:

R
|H|− w′,...,16( ) � Conv 3 d 1 X

(|H|,...,3)
 ,

R
|H|− w′,...,128( ) � Conv 3 d 4 Conv 3 d 3 Conv 3 d 2 R

|H|− w′ ,...,16( )   ,
(6)

where R is the output tensor of each conv. block.
After hierarchical feature extraction, combination, and

transformation, multiple local and spatial-temporal traffic
patterns are recognized and finally mapped to prior path
flows through a single FC layer.

Step 3. Robustness to Noisy Labels
,e key to bootstrapping is the designed judgment and

the re-labeling process, which can be placed in the outer loop
or incorporated in the loss function [17]. ,rough re-labeling
the samples while training, more accurate labels may lead to a
better model, which allows for further label clean-up, and the
learner bootstraps itself in this way. An established framework
of bootstrapping with the re-labeling process in the outer loop
is described in Figure 5.

From Figure 5, you can see that there are two parts (2-1
and 2-2) in the training phase. For the pretraining part (2-
1), its existence is not necessary and depends on whether
the defined relabeling principle heavily relies on the output
of the NN model itself. Taking the multi-class classification
task of the NNmodel as an example, in the work of Liu et al.
[20], a confidence policy curve, which is independent of the
model output (the probabilities that the input sample
belongs to each given class), is defined to determine the
selection of training and prediction labels. But for the self-
error-correcting CNN model proposed by Wu et al. [17],
the label of one training sample would be re-labeled if the
probability of the predicted label given by the model is
greater than the threshold probability. In this case, the
pretraining part is needed and the mini-batch stochastic
gradient descent (SGD) algorithm is used. Combining the
right part of Figure 5 and ignoring the elements marked in
red, you can see there are t e epochs and for each epoch,
m b samples are first randomly selected. ,en the input
tensor Xs and label matrix Ys of each sample are stacked to
form X and Y, respectively. Finally, the SGD can optimize
the model parameters based on the batch-size input tensor
X and label dataY. ,rough the pretraining with data
sample set S3 (the size of S3 is not big but the labels of
samples are of higher quality), the model parameters are
initialized to enable the model to find the correct gradient
descent direction during the next iterative training process.

In this study, the bootstrapping algorithm is used to
handle the prior path flow labels with noises. Yang et al. [3]
presented two indexes α and ρ, which indirectly measure the
systematic and the random variations between the true OD

matrix and the prior one. Compared with the random error,
the systematic error may have a significant influence on
model learning. ,e labels belong to different volume levels,
similar to the images belonging to different classes. α is also
used in OD matrix estimation to guarantee that the current
flow levels are reproduced on an average [21]. And with the
mini-batch SGD algorithm used, the gradient descent di-
rection can still be found among the training samples whose
labels contain random errors through iterative training.
Hence, α is selected as the re-labeling indicator and con-
sidering the dynamic path flow estimation and the traffic
counts of turning movements directly obtained from AVI
system, the calculation of α within time interval h is changed
as follows:

αh �
1
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where qh
a is the measured traffic counts of turning movement

a within interval h; yw
k is the flow of path k departing the

origin in interval w; δwk
ha is defined as the contribution of yw

k

passing the turning movement a during interval h and the
calculation can refer to the research of Ashok and Ben-Akiva
[18].

,e elements marked in red in Figure 5 represent the re-
labeling process of part 2-2, which is key to the boot-
strapping method. Combining equation (7), the calculation
of α includes two steps: (1) estimate the flows of the turning
movements (selected in Xs and with AVI detectors installed)
based on the prior path flows Ys and forward result of NN
Y′s , respectively; (2) compare the estimated turning
movement flows and the corresponding measured values in
Xs, and calculate the average ratio α. For theYs andY′s, if the
α′s is closer to 1 than αs, the original path flow labels are
replaced by the estimated labels. It is noted that to use α, the
number of temporal cells Δh of Xs must be larger than
(2 × w′ + 1). Only in this way, the path flows of more than
(w′ + 1) time intervals in Y′s can be estimated and α of at
least one time interval can be calculated. For the α of several
time intervals, the corresponding average value can be used
in the re-labeling process.

3.3. Case Study. In this section, a realistic urban road net-
work in Qingdao, China, is used to validate the proposed
model. Considering the designed 3D-CNN model as the
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basis of the entire model, the architecture of deep NN is not
separately tested. ,e method of turning movement selec-
tion and the robustness of the model with bootstrapping
algorithm to noisy labels are focused.

3.4. Network and Dataset Description. ,e topology of the
validating network is shown in Figure 6. ,e network
contains 297 turning movements and the number of real
AVI points is 70, accounting for 31.5% of the cross nodes’
turns. To generate the large dataset required for model
testing, the study of Tang et al. [13] was referred to and the
micro-simulation model of validating the network is first
established and calibrated to prepare the basic dataset. ,e
model calibration process commonly includes four steps
[22]: (1) ensuring key input data (e.g., digital road network,
traffic management and control plan) are accurate; (2)
calibrating the traffic demands; (3) correcting the related
parameters of the simulation model (e.g., car-following,
lane-changing parameters, and the distribution of desired
speeds); and (4) selecting the evaluation indexes for vali-
dation. Steps 1 and 2 are the base and are completed by using
the macro and micro simulation software VISUM and
VISSIM together. ,e VISUM is good at modeling a large
network and has the TFlowFuzzy module [23], which can
correct the OD and path demand matrix based on the
observed traffic data. Except for the road network image with
high resolution for network modeling, the AVI data for the
real AVI points in validating the network were also collected

from 7:30 AM to 8:30 AM from November 25 to December
1, 2016. ,e average flows of these turning movements were
used as observed values in the VISUM and the improved
static OD matrix and assigned path flows were be obtained.
,e established macro-VISUM model can be directly im-
ported into VISSIM to further complete the Steps 1, 3, and 4.
Considering the micro-simulation model in this paper
mainly used to validate the path flow estimation method, the
related operational parameters like the distribution of de-
sired speeds are focused and calibrated in Step 3. ,e errors
between the estimated and the actual turning flows are used
in Step 4 to evaluate the accuracy of the simulation model.
,e calculated average relative error is 6.26% less than 15%,
and it can be accepted based on the work of Antoniou et al.
[22].

,en, the calibrated dataset during the morning peak
period is taken as the basis to generate rich scenarios
covering noncongested and more congested periods, by
adjusting the input volumes and adding the Gaussian noises.
,ere are six levels of the VISSIM input volumes from −0.3
to 0.2 at 0.1 intervals. And the positive or negative volume
level represents the corresponding ratio the basic input
volumes will increase or decrease by. Under each level, the
Gaussian noises (ranging from 5% to 30%) are superimposed
on the input volumes and path choice probabilities eight
times. For each time, the simulation model with added
noises will run five times with different random seeds.
Hence, there are 40 scenarios for each level and the total
number of scenarios is 240. ,e number of paths is 311 and

1. Input

3. Testing

Input tensor Xs

m_b samples randomly selected from S2

Label dataYs 

NN model

Estimates Y′
s

Forward

Y

N
End

Start

YN

Y

N

2. Training

e = 1

s = 1, X = [], Y = []

Re-labeling index α
calculation

|α′s – 1| < |αs – 1|

Ys = Y′
s

Train the NN model using stochastic gradient descent
algorithm based on (X, Y) 

e = e + 1

e ≤ t_e

s ≤ m_b

X.stack (Xs), Y.stack (Ys), s = s + 1

Data sample sets: S1 pre-
training set, S2 training set, S3
testing set. �e number of
samples in S1 and S3 is less
than that of S2, but their labels
are of higher quality.
Model parameters: t_e
training epochs, m_b batch
size, learning rate, activation
functions.

2-1.
Pre-training

2-2.
Training with

re-labeling

�e performance of NN
model is evaluated using S3.

Figure 5: Framework of model training using bootstrapping algorithm.
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the market penetration for probe vehicles is set as 10%. ,e
expanded dataset may be not real, but it is valid for model
integrity training and testing.

Here, we define the estimation time interval to be 10
minutes and the one hour simulation period of any scenario
can be divided into 6 intervals. ,e longest trip time among
all scenarios is 17 minutes and the value of (w′ + 1) is thus 2.
Considering at least (2 × w′ + 1) temporal cells of input
required for bootstrapping, the X ∈ R3×|Av|×|Av|×3 and the
corresponding true path flows Y+ ∈ R2×311 can be paired to
form a sample, and each scenario can produce four samples.
,e total number of samples is 960, and the sample size of
pretraining, training, and testing sets are, respectively, 120,
720, and 120 samples.

3.5. Evaluation Metrics and Loss Function. Four error
metrics are used for our evaluation: mean absolute error
(MAE), relative MAE (%), root mean square error (RMSE),
and relative RMSE (%). For m pairs of the true and estimated
path flows (Y+ ∈ R|H|×|P|, Y′ ∈ R|H|×|P|), the units of MAE
and RMSE are veh/10min, and the calculation formulas are
as follows:

RMSE �

�����������������������


m
s�1 

|H|
h�1 

|P|
k�1 Y+s

h,k − Y′sh,k
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m ×|H| ×|P|
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RMSE


m
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(8)

For a batch including m b samples of which each is with
a prior path flow Y ∈ R|H|×|P|, the mean squared error (MSE)
is used as a loss function and the calculation is as follows:

MSE �


m b
s�1 

|H|
h�1 

|P|
k�1 Ys

h,k − Y′sh,k 
2

m b
,

(9)

3.5.1. Test 1. Turning Movement Selection. For the target
network, 110 virtual AVI points, accounting for 37% of all
the turning movements, are selected by solving the binary
programming model. ,e number of selected turning
movements belonging to cross and noncross nodes is 78 and
32, respectively. ,irt-seven of the virtual AVI points also
belong to Ar and the overlap ratio is 33.6%. ,e selection of
noncross nodes’ turns can reduce the overall overlap ratio.
To completely reflect the dependency of paths and the passed
points, the residual 43 turning movements of noncross
nodes are finally added to the solution set of the pro-
gramming model, as shown in Figure 7.

To evaluate the efficiency of the proposed method, two
sets of virtual AVI points are defined as follows:

(1) A1: the 297 turning movements of network are all
selected

(2) A2: the 153 turning movements selected by the
proposed method

,e designed 3D-CNNmodel is used and only the model
input is changed according to different sets of turning
movements. Hereafter, the 3D-CNNmodels with A1 and A2
sets are denoted as Model-A1 and Model-A2. ,e pre-
training set is added to the training set and the total number
of training samples is 840. During model training, the major
hyper parameters, including the training epochs, learning
rate, and batch size, were determined based on a grid search
experiment. Here, the best combination is used for general
evaluation. ,e number of training epochs, learning rate,
and batch size is 5000, 1e-6, and 80, respectively. ,e train
losses varying with epochs for Model-A1 and Model-A2 are
shown in Figure 8.,e corresponding training durations are
marked next to the lines.

Notably, the A2 set is the subset of A1; therefore, the
input tensor using A1 set naturally provides much more
information. It means that after the same number of training
epochs, the Model-A1 can extract more abstract features
associated with the labels from the input tensor, which
underlies the phenomenon that the train loss of Model-A1
drops faster, as presented in Figure 8. However, because of
the larger size of the input tensor using A1 the set, more time
is needed to complete the convolutional calculations of conv.
layers. Model-A1 and Model-A2 ran in the same environ-
ment. ,e training time needed by Model-A1 is 111min,
which is approximately 4 times that of Model-A2. After 2250
epochs, the drop speed of Model-A2’s train loss is higher
than that of Model-A1. ,e final train loss of Model-A2 is
7.1% lower than that of Model-A1.

For the four evaluation metrics (RMSE, RMSE%, MAE,
MAE%), the testing results of Model-A1 and Model-A2 on
the entire testing set are (3.65 veh/10min, 45.79%, 1.92 veh/
10min, 24.04%) and (3.58 veh/10min, 44.93%, 1.88 veh/
10min, 23.55%), respectively. It can be seen that the four
metrices of Model-A2 are improved compared with those of
Model-A1. ,e results reveal that the turning movement
selection method can identify the critical turning move-
ments for path flow estimation and largely reduce the
computation cost.

3.5.2. Test 2: Model Learning on Noisy Labels. According to
the label noise analysis in Part 3 of Methodology, the path
flow labels may have systematic and random errors. ,e
prior path flow Yh,k with noises can be generated by

Yh,k � Y+
h,k ×(1.0 − η) × 1.0 − cvfσhk , (10)

whereY+
h,k is the true path flow of path k during time interval

h, σhk is the independent normal random variable of N(0, 1),
η is the bias, and cvf reflects the magnitude of random
variation.
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Based on the results of Test 1, Model-A2 is used for
validation here. Without using the bootstrapping training
algorithm, Model-A2 is trained with training samples from

pretraining and training sets whose labels are noisy. ,e
number of training epochs and learning rate are kept the
same, while the batch size is changed to 120. Table 1 presents
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the model performance in the testing set under different
combinations of η and cvf.

Table 1 reveals that the labels with systematic errors
have a great influence on the model performance, while the
model is generally insensitive to random errors. All four
metrics increase significantly with an increase in η.
However, under the same value of η, the variations of the
four metrics are slight when cvf increases from 0.2 to 0.6. It
meets our expectation and the (stochastic) gradient descent
algorithm is immune to training samples with random
errors. However, it should be noted that owing to the over-
parameterized NN, the CNN model has the capacity to
(over) fit a subset of labels with random noises. ,e over-
fitting should be avoided.

Considering the existence of the pretraining phase, the
test for bootstrapping algorithm is divided into two parts.
,e model used in Part 1 is the pretrained Model-A2, while
in Part 2, the pretraining phase is skipped. For the pre-
training set, the labels of samples are just added to the
random errors with the cvf set as 0.2. Based on the model
performance measurements of Table 1, the η and cvf are,
respectively, set as 0.4 and 0.2 to generate noises for the
labels of samples in the training set. As for the percentage of
noisy labels in the training set, 0.1, 0.3, 0.5, 0.7, and 0.9 are
used.

In Part 1 and Part 2, the training sets with different
percentages of noisy labels are used to train Model-A2 and
the corresponding model performances on the testing set are
listed in Table 2.

In Table 2, each parenthesis contains two metric values
separated by a forward slash and the difference lies in
whether the bootstrapping algorithm is used for Model-A2’s
training on the training set. For the pretrained Model-A2
used in Part 1, the corresponding four metrics on the testing
set are 7.03 veh/10min, 88.14%, 2.85 veh/10min, and 35.7%.
From the first values of parentheses in Part 1, it can be
observed that the trained model performs gradually worse as
the percentage of noisy labels in the training set increases.
But for the Model-A2 trained on the training set with the
bootstrapping algorithm, it performs better and the per-
centage of noisy labels has less influence on model per-
formance. ,e trends of the values in Part 2 are similar to
those in Part 1, but the values increase overall. It is not
difficult to understand that the weight parameters are
randomly initialized and the convergence speed is slow
without the pretraining phase.

Take the label noise ratio of 70% as an example. For the
models trained with bootstrapping in Part 1 and Part 2, the
train loss, sample loss distribution within one epoch, and
label replaced ratios are shown in Figure 9.

Figures 9(a) and 9(b) indicate that the loss on the testing
set of Part 1 can converge to a good point within the total
5000 iterations, while that of Part 2 keeps decreasing. It
reveals that the pretraining phase can effectively accelerate
the convergence of the model. Owing to the pretraining
phase, the label replacement ratio for training samples with
noisy labels in Part 1 is nearly 100% within the entire
training process, as shown in Figure 9(e). But in Figure 9(f ),

Table 1: Performance of Model-A2 trained by samples with noisy labels.

η 0 0.2 0.4
cvf 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

RMSE veh/10min 3.58 3.56 3.62 5.49 5.45 5.26 8.87 8.81 8.72
RMSE % 44.90 44.62 45.39 68.84 68.36 65.93 111.28 110.58 109.33
MAE veh/10min 1.88 1.87 1.89 2.39 2.37 2.32 3.56 3.56 3.52
MAE % 23.54 23.48 23.76 29.95 29.73 29 44.69 44.6 44.12
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Figure 9: Continued.

Table 2: Test of bootstrapping algorithm for different percentages of noisy labels.

Percentage 10% 30% 50% 70% 90%

Part 1 (with pretraining)

RMSE (3.63/3.55) (4.29/3.55) (5.37/3.56) (6.57/3.58) (8.08/4.45)
RMSE% (45.56/44.50) (53.84/44.50) (67.35/44.60) (82.37/44.88) (101.35/55.83)
MAE (1.89/1.89) (2.05/1.89) (2.36/1.89) (2.75/1.91) (3.27/2.06)
MAE% (23.73/23.72) (25.67/23.72) (29.64/23.75) (34.50/23.94) (41.07/25.89)

Part 2 (without pretraining)

RMSE (3.71/3.74) (4.36/3.8) (5.43/3.99) (6.57/4.48) (8.12/7.79)
RMSE% (46.60/46.87) (54.72/47.69) (68.18/50.09) (82.42/56.18) (101.89/97.68)
MAE (1.90/1.93) (2.05/1.94) (2.35/1.97) (2.72/2.04) (3.28/2.68)
MAE% (23.86/24.26) (25.7/24.34) (29.52/24.8) (34.14/25.65) (41.14/33.66)
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during the initial iterations, the label replacement ratio for
noisy samples is nearly zero and it increases to 100% after
2000 epochs. For the sample loss distribution at the epoch
No. 250 shown in Figure 9(d), the training samples with
noisy labels are not re-labeled and occupy most of the
training batch; therefore, they become the focus of regres-
sion and the losses of pure samples are naturally higher than
those of Part 1. Figure 9(c) can be used to explain why the
bootstrapping algorithm can reduce the influence of noisy
labels. After resampling the samples and relabeling the
corresponding noisy labels, in the next epoch, the losses for
noisy samples are initially by zero and the start point of
gradient descent is placed in the pure samples. ,e fluc-
tuations of loss in the batch in Figures 9(a) and 9(b) are
reasonable, because the percentages of pure and noisy
samples are different in every resampled sample. With the
improvement in model estimation accuracy, the label re-
placement ratio for pure samples is between 0.2 and 0.4.

4. Conclusions

In this study, to make full use of the rich and complementary
individuals’ trip information provided by AVI and probe ve-
hicle data, and to avoid intractable mathematical program
solution, the dynamic path flow estimation is treated as a data-
driven feature learning problem and these two data sources are
fused at the data level. A 3D convolution-based deep NN is
designed, and the turning movements at network nodes are
used to represent the AVI and the probe vehicle observations in
the input tensor. ,e principles for selecting the key turning
movements and a corresponding programming model are also
proposed. To make the NN robust to the noisy path flow labels
during model training, a self-correcting algorithm named
bootstrapping, which can use the model outputs to correct the
noisy labels based on the defined re-labeling principle, is
established.

In the case study, a realistic urban road network was used
and the correspondingmicroscopic simulationmodel was built

and calibrated by VISSIM to generate large data samples. Two
distinctive tests, numbered 1 and 2, were carried out to validate
the turning movement selection and bootstrapping methods.
In Test 1, the designed 3D-CNN model with the input tensor
constructed by the selected turning movements achieved a
MAE of 1.88 veh/10min, and compared with the model with
all the turning movements used in input tensor, the compu-
tational time and estimation accuracy were both improved.
,is reveals that the designed architecture of 3D-CNN model
presents satisfactory performance, and the virtual AVI point
selection method can retain the key information for each path
and remove redundant information. In Test 2, the path flow
labels were artificially superimposed with systematic and
random errors to test the model robustness. Without over-
fitting, the NN model trained with the gradient descent al-
gorithm is almost immune to the labels with random errors.
Systematic errors were mainly considered and the boot-
strapping can make the model more robust to different per-
centages of labels with errors. ,e pretraining phase is not
necessary in this study, but it can help improve the convergence
speed and estimation accuracy. ,e defined re-labeling criteria
are important and can limit the final estimation accuracy.

Despite the promising results, the study has certain limi-
tations and further works could be focused on three aspects to
extend the topic: firstly, the dynamic path choice in congested
networks should be considered in the virtual AVI points se-
lection model; secondly, the influence of various modes of
market penetration of probe vehicles and feature noises (e.g., the
missing detection phenomenon in AVI system) should be
further investigated; last but not least, a real-world validation
with filed AVI data and probe vehicle trajectories has to be
conducted.

Data Availability

,e AVI and probe vehicle trajectory data used to support
the findings of this study are available from the corre-
sponding author upon request.
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Emergencies have a significant impact on the passenger flow of urban rail transit. It is of great practical significance to accurately
predict the urban rail transit passenger flow and carry out research on its temporal and spatial distributions under emergency
conditions. Urban rail transit operating units currently use video surveillance information mainly to process emergencies and
rarely use computer vision technology to analyze passenger flow information collected. Accordingly, this paper proposes a
passenger flow-based temporal and spatial distribution model for urban rail transit emergencies based on the CPT. First, this
paper clarifies the categories and classification of urban rail transit emergencies, analyzes the factors affecting passenger route
selection, and establishes a generalized travel cost model for passengers under emergencies. Second, this paper establishes a
passenger route choice behavior model for urban rail transit based on the cumulative prospect theory. Finally, taking Beijing as an
example, this paper analyzes passenger travel behavior under emergencies based on multiple logistic regression models and
analyzes the impact of emergencies on rail transit travel behavior. ,e research results show that the cumulative prospect theory
can better describe the route choice behavior of rail transit passengers under emergencies than the existing models, and this model
is of great significance for handling urban rail transit emergencies. ,e model proposed in this paper can provide a theoretical
basis for the government and relevant departments to formulate traffic management measures.

1. Introduction

Urban rail transit, which is intensifying, is characterized by
fast speed, large capacity, high efficiency, and low energy
consumption and has become the main form of urban public
transportation. With the development of urban rail transit
networks, urban rail transit has become the first choice for
commuter passengers, with concentrated passenger flows
during the morning and evening travel peaks. ,e stability
and reliability of rail transit operation are of great signifi-
cance to the stable development of urban transportation.
However, with an increasing number of lines, the strictness
of equipment standards, the aging of equipment and other
reasons, and the types of emergencies that occur are
gradually diversifying, their frequency of occurrence is in-
creasing, and the spatial scope is expanding [1]. Once an

emergency occurs, the normal operation of the train will be
affected. If emergencies are not dealt with in a timely
manner, the transportation capacity of urban rail transit will
be reduced, and traffic paralysis may occur. In the case of
urban rail transit network operation, research is carried out
on the real-time prediction and early warning of the tem-
poral and spatial distributions of passenger flow in the case
of rail transit emergencies to accurately grasp the temporal
and spatial distributions of passenger flow in the rail transit
network. ,e impact of the incident, the improvement of
real-time passenger flow monitoring capabilities and pas-
senger travel information service levels, the effective orga-
nization of subway passenger flow, and the strengthening of
subway passenger flow control are all of great significance.

To predict the temporal and spatial distributions of
urban rail transit under normal operating conditions and to
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provide an early warning of large passenger flows, many
studies have been carried out both at home and abroad
[2–5]. At present, forecasting the temporal and spatial
distributions of passenger flow is mainly aimed at high-
density areas such as major event venues and transportation
hubs. When investigating the route choice behavior of urban
rail transit passengers under normal operating conditions,
researchers generally combine historical data and traditional
model methods. However, it is difficult to predict the se-
lection behavior of urban rail transit passengers under
emergency conditions, and it is difficult to conduct in-depth
research with traditional models and methods. Research on
rail transit passenger flow under emergencies mostly focuses
on the prediction, propagation, evacuation, etc., of emergent
passenger flow [6–13]. Current research mostly analyzes the
impact of sudden passenger flow on urban rail operation
from the perspective of train operation and passenger
transportation organization, whereas relatively few studies
have been conducted on the prediction and early warning of
the temporal and spatial distributions of passenger flow in
rail transit emergencies.

Preston et al. [14] analyzed the impact of train delays on
passenger travel. Barron et al. [15] and Pnevmatikou et al.
[16] considered the characteristics of passenger travel choice
behavior under emergency situations. Tsuchiya et al. [17]
developed a passenger support system to inform passengers
of the best route to their destination in the event of an
emergency. Sun et al. [18] established a model to evaluate the
impacts of urban rail transit interruptions on travel times
and delays based on a Bayesian method. Hong et al. [19]
established a model to evaluate local interruptions in urban
rail transit networks. Li and Liang [20] analyzed the impact
of operating interruptions and proposed a quantitative
calculation method for the scale of affected passengers.
Huang et al. [21] studied the route selection of urban rail
transit passengers under conditions of bounded rationality.
Wang and Wu [22] analyzed the impact of emergencies on
rail transit travel behavior. Wang [23], Luo [24], Qiao [25],
and Wu [26] studied methods to calculate the affected
passenger flows of basically unaffected passengers, bypass
passengers, and passengers who are unable to reach their
destination. Yu [27] proposed a passenger flow assignment
method under interruption based on the MNL model. Liu
[28] established a mathematical model to estimate the af-
fected passenger flow under the interruption of urban rail
transit. Xu et al. [29] established a passenger travel path
selection model under urban rail transit emergencies based
on the normal distribution probability model. Wang et al.
[30] built an emergency logistics path selection model based
on CPT, and the results showed that the parameter setting of
the model has an important impact on the path selection
model. Wang et al. [31] established a cumulative prospect
model and concluded that travelers’ attitudes toward risk are
different under different decision-making behaviors.

In this paper, on the basis of defining the scope of
emergency research, with the help of AFC data, historical
emergency information, and questionnaire survey data, this
paper uses historical emergency passenger selection be-
havior information to carry out data mining. At the same

time, considering the limited rationality of passengers, based
on the path selection model of cumulative prospect theory,
this paper studies the spatial and temporal distributions of
urban rail transit passenger flow under emergencies, carries
out passenger flow guidance information release and early-
warning research, and verifies the effectiveness of the
technology combined with specific cases to provide a ref-
erence for passenger flow organization and evacuation.

2. Establishment of a Generalized Travel
Cost Model

2.1. Definition and Classification of Emergencies. An urban
rail transit emergency refers to an event that occurs suddenly
within the operating scope of urban rail transit that may
damage the personal property and health of passengers or
employees and requires the urban rail transit operation unit
to make responsible decisions to minimize losses.

Different types of urban rail transit emergencies have
different impacts on train operation. Passengers will choose
different routes according to their own conditions, thus
forming different temporal and spatial distributions of
passenger flow in the urban rail transit network.,e scope of
this study is defined as follows: peak hours in the morning
and evening under the occurrence of natural disasters,
equipment failure, passenger transport organization and
management scenarios, and other sudden, temporary large
passenger flow events. In this paper, the types of urban rail
transit emergencies are divided into three categories, as
shown in Table 1.

2.2. Establishment of a Generalized Travel Cost Model

2.2.1. Analysis of Factors Affecting the Passenger Route
Choice. In the urban rail transit network, when passengers
choose a route, they are not only affected by individual
subjective factors, such as individual comfort sensitivity
requirements and familiarity with rail transit networks, but
also by objective factors such as travel time, cost, and dis-
tance. ,e final passenger’s route choice is a result of a
comprehensive consideration. When any one attribute
changes, the path selection may change. ,e influencing
factors of passenger route selection are shown in Table 2.

2.2.2. Establishment of a Generalized Travel Cost Model.
,e urban rail transit network path refers to the connecting
path between any two stations in a transportation network.
,e generalized passenger travel path includes the inbound
channel from the inbound gate to the platform, the starting
station platform, the section, the transfer channel of the
transfer station, the terminating station, the outbound
channel to the outbound gate, and the paths between all
connections. ,e generalized travel cost of passengers refers
to the total cost of travel time and money for passengers
using rail transit, reflecting the comprehensive cost of
passengers choosing a certain route.

,is paper establishes a generalized travel cost model
based on different weights of influencing factors on
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passengers. ,e urban rail transit network route travel time
is the main judgment parameter for route searching in the
simulation model. To search for the path set between any
two stations in the urban rail transit network, this paper
establishes a generalized passenger travel cost model based
on time. In an emergency, the model will dynamically
update the interval of the period and the impedance on the
node before each route search or passenger flow distribution.

C
O D
k � 

o⟶ d

k

Cblock ∗ c + 
o⟶ d

k

Cnode + 
o⟶ d

k

Ctransfer + 
o⟶ d

k

Cdelay.

(1)

In formula (1), CO D
k is the comprehensive impedance

cost function of the k-th path between the OD pair; Cblock is
the impedance cost of all sections of the path; Cnode is the
node impedance cost of all intermediate stations; Ctransfer is
the node impedance cost of all transfer stations; c is the
congestion impedance function of the road section passing
through; and Cdelay is the revised cost function under
emergencies.

Each impedance fee can be expressed as follows:

(1) Section impedance cost Cblock:

Cblock � tblock ∗ cblock. (2)

In formula (2), tblock is the travel time of the section,
and cblock is the travel cost per unit time, RMB/s.

(2) Node impedance cost of the intermediate station
Cnode:

Cnode � tnode ∗ cnode. (3)

In formula (3), tnode is the stop time of the inter-
mediate station, and cnode is the stop cost per unit
time, RMB/s.

(3) Node impedance cost of the transfer station Ctransfer:

Ctransfer � ttransfer + 0.5∗E(h)( ∗f(τ, p)∗ cph. (4)

In formula (4), ttransfer is the travel time of the
transfer station; E(h) is the expected time between
rail transit arrivals; f(τ, p) is the magnification
penalty function on the crowded people and the
number of transfers; τ is the transfer penalty coef-
ficient; p is the number of transfers; and cph is the
transfer fee for passengers at transfer stations per
unit time, RMB/s.

(4) Congestion impedance function c:

c �

1; ω<ω0

1 + ϕ1(ρ)∗ ω − ω0( , ω0 <ω<ω1;

1 + ϕ1(ρ)∗ ω1 − ω0(  + ϕ2(ρ)∗ ω2 − ω( ; ω1 <ω<ω2

1 + ϕ1(ρ)∗ ω1 − ω0(  + ϕ2(ρ)∗ ω2 − ω1(  + ϕ3(ρ)∗ ω − ω2( ; ω2 <ω<ω3

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (5)

In formula (5), ϕ(ρ) is the congestion penalty am-
plification function, and ω is the critical perception

threshold of the full load rate, which can be adjusted
according to the actual situation.

Table 1: Types of urban rail transit emergencies.

Types Examples
Natural disasters Heavy rain, blizzard, strong wind, thunder and lightning, heavy fog, and low temperature
Equipment failure Signal failure, power supply failure, line failure, and vehicle failure
Passenger transport organization and
management

People caught in the door, passengers falling off the platform, passenger conflicts, terrorist
incidents, and transfer channels closed

Table 2: Influencing factors affecting the passenger route choice.

Type Name Description

Subjective
factors

Comfort Passengers will choose a more comfortable route to travel.

Network
familiarity

Passengers who are more familiar with the network will trust their own experience information more
and choose new routes to travel. Passengers who are not familiar with the network will only choose the

more familiar route to travel.

Objective
factors

Time Passengers will choose a route with a short travel time.
Cost Passengers will choose a less expensive route to travel.

Distance Passengers will choose a shorter route to travel.
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(5) Amendment fees for emergencies 
o⟶ d
k Cdelay:

According to statistics, the delay time of emergen-
cies obeys a similar discrete probability distribution.
,e occurrence of emergencies will have certain
impacts on the corresponding lines, stations, and
sections, such as slower trains and delays caused by
congested transfers, which will increase the travel
time of passengers who choose that route.

3. Prediction and Early Warning of the
Temporal and Spatial Distributions of
Passenger Flow

3.1. Passenger Route Choice Model Based on Cumulative
Prospect 5eory. Tversky and Kahneman [32] proposed
cumulative prospect theory based on hierarchy-dependent
utility theory. Cumulative prospect theory focuses on per-
sonal, psychological, and behavioral characteristics and
replaces the decision weight in the prospect theory with a
cumulative decision weight to better solve the problem of
random dominance and the processing of multiple results.

Cumulative prospect theory divides the decision maker’s
risk selection process into two stages: editing and evaluation.
,e editing stage can be divided into setting reference points,
establishing value functions, determining personal subjec-
tive probabilities, and establishing decision weight func-
tions. In the evaluation stage, cumulative prospect theory
considers the sort dependence of the probability of various
possible outcomes of the alternatives and calculates and
compares the prospects of the alternatives.

,e prospect value is an index on which decision makers
rely, as shown in the following formula:

V � v(x)π(p). (6)

In formula (6), v(x) is the value function, and π(p) is the
decision weight function.

(1) Value function:
,e specific expression of the value function v(x) is
as follows:

v(x) �
a x0 − x( 

α
, x0 ≥ x, a> 0, α> 0

−b x − x0( 
β
, x0 < x, b> 0, β> 0

⎧⎨

⎩ (7)

In formula (7), x is the random event result, x0 is the
reference point, a is the profit pursuit coefficient, b is
the loss avoidance coefficient, and 0< a< b.
α and β reflect the risk appetite level of the decision
maker. ,e larger the values of α and β are, the more
likely the decision maker is to take risks, and
0< α, β< 1.

(2) Decision weight function:
According to cumulative prospect theory, a prospect
event result set (x1, x2, . . . , xn) corresponds to a
probability set (p1, p2, . . . , pn), the probability of the
result xi is pi, the result set is arranged in the
descending order as (x1 ≥ x2 ≥ · · · ≥xn), w+

represents the probability weight of the return, and
w− represents the probability weight of loss.
,e expression of the probability weight function is

w
+

pj  �
p

c
j

p
c
j + 1 − pj 

c
 

1/c,

w
−

pj  �
p
δ
j

p
δ
j + 1 − pj 

δ
 

1/δ.

(8)

,e cumulative decision weight function π(p) is
generated by the probability weight function, and the
expression is as follows:

π+
i � w

+
pi + · · · + pn(  − w

+
pi+1 + · · · + pn( , 0≤ i≤ n,

π−
j � w

−
p−m + · · · + pj  − w

−
p−m + · · · + pj−1 , −m≤ j≤ 0.

(9)

,e prospect value of the alternative can be expressed
as

V � 
n

i−1
π+

pi( v xi(  + 
−m

j−1
π−

pj v xj . (10)

(3) Reference point setting:
As a single individual passenger is affected by many
factors, such as personal experience and environ-
ment, different passengers have different feelings
about the same event. According to research, when
the reference point is set to the average value of the
generalized cost of each route, it is more in line with
the passengers’ travel psychology. ,erefore, this
paper proposes using the average value of the gen-
eralized cost as the reference point. ,e calculation
formula of the reference point is as follows:

Trefer �
1
k



k

i�1
C

O D
i . (11)

3.2. Construction of the Multipath Probability Allocation
ModelBasedonUserEquilibrium. In this paper, based on the
prospect value of each scheme calculated by the afore-
mentioned cumulative prospect theory, the allocated pas-
senger flow of each route is calculated according to the
following calculation formula:

f
O D
k � q

O D ∗
exp −θ∗V

O D
k 

l∈k pathexp −θ∗V
O D
l 

. (12)

In formula (12), θ is the randomness of the description
model; qO D is the passenger flow between OD pairs; fO D

k is
the distribution flow of the k-path between OD pairs; and
VO D

k is the cumulative prospect value of the k-path between
OD pairs.
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,is paper uses the MSA algorithm, and the algorithm
steps are as follows:

Step 1: initialization.
Step 2: calculation of impedance based on the gener-
alized travel cost of passengers, use of the logic dis-
tribution method to distribute the passenger flow, and
calculation of the route passenger flow and section
passenger flow.
Step 3: iterative calculation.
Step 4: judge whether the convergence is based on the
convergence function, convergence value, and number
of convergence steps. Step 2 is repeated if the re-
quirements are not met.

3.3. Overall Process of Simulating the Passenger Flow
Deduction. ,e overall process of predicting the passenger
flow within an urban rail transit network in real time is
shown in Figure 1. ,e specific steps are as follows:

Step 1: predict the initial stage
,e data are prepared and connected to the database
before being read into all the infrastructure tables and
parameter tables in the simulation process.
Step 2: prediction phase
,e current state of passenger flow is determined
(normal passenger flow prediction or emergency pas-
senger flow prediction). ,e prediction stage includes
the inbound volume prediction, passenger flow OD
prediction, and the passenger flow multipath distri-
bution prediction. ,is paper employs real-time AFC
statistical data and emergency line and length estimates
by connecting to the database.
Inbound traffic forecast: at the beginning of each
forecast time, based on the historical passenger flow
inbound data table, the inbound traffic at each station is
forecast within each forecasting period.
Passenger flow OD prediction: according to the his-
torical passenger flow OD matrix, the inbound pas-
senger flow is allocated according to the destination,
and the passenger flow of each station’s inbound
passenger flow to the remaining stations, that is, the
predicted passenger flow OD, is predicted in each
forecast period.
Passenger flow multipath distribution prediction: the
proportion of passenger flow that may be allocated for
each route according to the cumulative prospect theory
model is calculated, and the proportion of OD traffic to
each route is allocated.
Step 3: simulation phase
A simulation multiagent model is constructed
according to the interaction among the overall road
network scene, station, and passengers and other agents
with their respective behavior rules, and accurate
simulations are conducted considering the time, dy-
namic deduction, and loading of passenger flow data

according to the time, statistics, and output according
to the demand simulation calculation results within a
certain time range.
Step 4: index calculation and storage of the result stage
After the simulation calculation is completed, the
calculation result data are quickly written into the
database, and a report is generated.
Step 5: forecast end data update phase
In the data update stage, the corrected AFC data and
OD input data are updated in the same period.

3.4. Passenger Flow Impact Index System and Calculation of
Emergencies. After the dynamic passenger flow allocation
and simulation, it is necessary to identify the impact of the
emergency passenger flow and perform an early warning of
passenger flow based on the magnitude of the impact. Based
on the detection of passenger flow anomalies, this paper
establishes an urban rail transit emergency passenger flow
impact index calculation model and then conducts a dy-
namic evaluation of the impacts of different types and levels
of emergency events on passenger flow.

,e index includes three aspects: degree of influence,
scope of influence, and duration of influence. From the
perspective of the severity of passenger congestion, the index
is divided into different levels of congestion, namely,
comfortable, general, and congested; from the perspective of
the scope of influence, the index is divided into three levels,
namely, station, line, and network; and from a time point of
view, the index is divided into real time, short term, long
term, and other levels. ,e influencing factors of the pas-
senger flow impact index of emergencies are shown in
Figure 2.

,ere are four passenger flow data sources for the
emergency passenger flow impact index: inbound passenger
flow, outbound passenger flow, interval passenger flow, and
interchange passenger flow. ,e index calculation method
proposed in this paper is based on the original passenger
flow data. Compared with step-by-step recursive calculation
methods such as the “station-line-network” approach, using
the original flow data avoids an accumulation of errors due
to step-by-step merging and is therefore more accurate. ,e
passenger flow impact index system and calculation process
of urban rail transit emergencies are shown in Figure 3.

4. Case Analysis of Emergencies Based on the
Beijing Rail Transit Network

4.1.Data andPreliminary Processing. Urban rail transit AFC
data include the inbound number, outbound number, line
number, inbound time, and outbound time. ,is paper
extracts and analyzes AFC data to extract the inbound and
outbound passenger flow, sectional flow, and other data.

,is paper selects the three-day normal daily passenger
flow data before and after the emergency day (excluding
special times, such as national statutory holidays and large-
scale events), and the track passenger flow time period is 15
minutes. To ensure the accuracy of the identification of
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emergencies, based on previous experience and research,
within a given period of time (excluding special times, such
as national statutory holidays and large-scale events), the
passenger flow data for a certain period on the same working

day follow a normal distribution. ,is paper cleans the
passenger flow data according to the 3σ principle and
removes the abnormal passenger flow data from the nor-
mally distributed historical passenger flow data.

Time

Range

Degree

Real time
Short term

Long term

Comfortable

General

Crowded

Station

Line

Network

Figure 2: Factors affecting the passenger flow impact index under emergencies.
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Figure 1: Overall process of the real-time prediction of passenger flow in an urban rail transit network.
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4.2. Analysis of Passenger Travel Behavior under Emergencies
Based on a Multiple Logistic Regression Model. During an
emergency, the travel choice behavior of passengers in the
rail transit system will change. Based on questionnaire
survey data and AFC passenger flow data, the study of
passengers’ travel choice behaviors provides basic support
for OD passenger flow analysis and travel delay time esti-
mation. ,is paper considers only the situation when pas-
sengers are already inside the rail transit system when an
emergency occurs.

4.2.1. Multinomial Logistic Travel Choice Behavior Regression
Modeling Principle. ,e choice behavior of passengers after
an emergency is selected as the dependent variable, and the
conditional probability of choosing the i-th choice behavior
is Pi, i ∈ (1, 2, . . . , j − 1, j + 1, . . . , m). ,e choice of the first
passenger choice behavior is selected as the reference level,
and the corresponding choice probability is Pj,
j ∈ (1, 2, . . . , m). ,en, the multiclass logistic regression
model is as follows:

ln
Pi

Pj

  � ln
P(y � i)|x

P(y � j)|x
  � αi + 

n

w�1
βiwxw. (13)

In formula (13), xw is the independent variable; n is the
number of independent variables; m is the number of de-
pendent variables; αi, βiw are the independent variable

regression coefficient vectors; and ln(Pi/Pj) is the occur-
rence ratio of choice to choice.

4.2.2. Design of the Dependent and Independent Variables.
According to the analysis, for the urban rail transit system,
the travel choice behavior of passengers after an emergency
occurs is divided into the following: leaving the station and
changing to a bus, taxi, etc., to reach the destination; leaving
the station and taking the rail transit from other rail stations
but not leaving the station; changing the travel route and
waiting for the incident to resume; and continuing to take
the four types of rail transit travel.,ese behaviors are coded
as shown in Table 3. ,is paper selects 15 candidate inde-
pendent variables and encodes the categorical variables as
shown in Table 4.

4.2.3. Selection Behavior Analysis. According to the pas-
senger choice behavior survey questionnaire, a logistic re-
gression model was used to analyze the travel behavior of
urban rail transit passengers, and the following conclusions
were obtained:

(1) ,e social and economic attributes of passengers
have certain impacts on passengers’ behavior choices
when facing emergencies, but these impacts are
relatively small and can be ignored.

Inbound Outbound

Nontransfer station

Inbound Outbound Transfer amount

Transfer station

Section

Cross-section flow

Inbound Outbound

Nontransfer station

Inbound Outbound Transfer amount

Transfer station

Section

Cross-section flow

Network-level 
emergency passenger 

flow impact index

Station-level emergency
passenger flow impact 

index

Line-level emergency
passenger flow impact 

index

Station-level emergency
passenger flow impact 

index

Section-level 
emergency

passenger flow impact 
index

Figure 3: Passenger flow impact index system and calculation process of urban rail transit emergencies.
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(2) When an emergency occurs, passengers who are
familiar with the urban rail transit network tend to
choose to detour inside the rail transit system. In
contrast, passengers who occasionally take urban rail
transit travel tend to stay and wait for the emergency
to end because the urban rail transit network is
relatively unfamiliar; these passengers are more
flustered during emergencies, and there is a phe-
nomenon of herding.

(3) ,e occurrence time, location, and impact of
emergencies have important impacts on the choice of
passengers. When predicting and guiding the pas-
senger flow of emergencies, priority should be given
to the selection of passengers under different oc-
currence times, locations, and impacts.

(4) In the case of giving passengers a certain amount of
information to consider, most passengers will choose
to change their initial choice behavior, and external
information interference has an important influence
on the choice of passengers.

4.3. Case Analysis of Emergencies Based on the Beijing Rail
Transit Network. ,is article takes the Beijing urban rail
transit network as an example with Tiantandongmen Station

as the starting point and Zhangzizhonglu Station as the end
point to analyze the route. ,e route contains three possible
pathways, as shown in Figure 4.

When no emergencies occur, the attributes of the three
alternative paths are shown in Table 5. It can be seen that the
travel times of paths 2 and 3 are longer than the travel time of
path 1 by 12 minutes, and both have three transfers, which
are time-consuming. ,e probability of choosing path 1 is
100%.

,is article assumes that an emergency occurs in the
section from Chongwenmen Station to Dongdan Station,
and the time to resume traffic cannot be determined. At this
time, path 1 is not accessible, paths 2 and 3 are affected by
emergencies, and the path travel events are delayed to a
certain extent. ,e delay time of each path caused by the
emergencies is set to follow the distribution shown in
Table 6.

According to the calculation of cumulative prospect
theory, the selection probability of path 2 is 54.63%, and the
selection probability of path 3 is 45.37%, which are closer to
the results of the questionnaire survey. According to this
analysis, passengers are more sensitive to losses, and the
occurrence of emergencies makes path 2 lose fewer pas-
sengers than path 3, which leads to different choices of travel
routes for passengers.

Table 3: Description of dependent variables.

Chosen behavior Code
Exit the station and change to a bus, taxi, etc., to reach the destination 1
Exit the station and take the rail transit from other rail stations 2
Do not leave the station and change the travel route 3
Wait for the emergency to end and continue to take the rail transit 4

Table 4: Description of independent variables.

Continuous variable Travel distance

Categorical variables

Passenger socioeconomic attributes

Gender
Age
Job

Monthly income

Passenger travel attributes Travel purpose
Network familiarity

Passenger’s perception of emergencies
Have you encountered an emergency?

,e longest tolerable event
,e remaining travel time of passengers after the emergency

Emergency attributes
Time of the occurrence

Location of the occurrence
Influential impact

Information interference factors Influencing station information
Detour information
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5. Conclusions

To study the travel choice behavior of rail transit passengers
under emergencies in depth, this paper proposes a predic-
tion and early-warning model for the temporal and spatial
distributions of rail transit passenger flow based on a cu-
mulative prospect theory model, which makes up for the
deficiencies of previous studies. Compared with the existing
prediction methods, this method better simulates the travel
decision-making process of rail transit passengers under
emergencies, is closer to reality, and provides strong support
for the accurate prediction of passenger flow between rail
transit stations under emergencies. ,e model provides a
theoretical basis for the government and related depart-
ments to formulate traffic management measures.

Specifically, this paper introduces cumulative prospect
theory to study the route choice of urban rail transit pas-
sengers and performs the following work:

(1) ,e passenger’s route choice preferences are analyzed
under different influencing factors, and a generalized
passenger travel cost model is established.

(2) ,e principle of establishing the reference point in
the cumulative prospect theory model is analyzed,
and a prediction and early-warning model for the
temporal and spatial distributions of passenger flow
during rail transit emergencies is constructed based
on the cumulative prospect theory.

(3) According to the proposed prediction and early-
warning model for the temporal and spatial

Table 5: Path attribute table when no emergencies occur.

ID Path Travel time (s) Number of transfers Transfer time (s) Selection ratio

1 Tiantandongmen-Ciqikou-Chongwenmen-Dongdan-
Dengshikou-Dongsi-Zhangzizhonglu 730 0 0 100%

2
Tiantandongmen-Ciqikou-Chongwenmen-Beijing railway

station-Jianguomen-Chaoyangmen-Dongsi-
Zhangzizhonglu

860 3 1030 0

3
Tiantandongmen-Ciqikou-Chongwenmen-Beijing railway

station-Jianguomen-Dongdan-Dengshikou-Dongsi-
Zhangzizhonglu

924 3 840 0

Table 6: Probability distribution of delay time.

Path Delay time (s) Probability of delay (%)

2 300 80
600 20

3 600 80
900 20

Line 5

Line 6

Line 1

Line 2

ZhangzizhongLu

DongSi

DengShiKou

DongDan

DongShiSiTiao

ChaoYangMen

DongDaQiao

NanLuoGuXiang

WangFuJingTianAnMen East

YongAnLi

Beijing railway station
ChongWenMen

QianMen

CiQiKou

TiantanDongMen

JianGuoMen

Figure 4: Travel route diagram.
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distributions of passenger flow during rail transit
emergencies based on the cumulative prospect
theory, a logistic regression model is used to analyze
the travel behavior of urban rail transit passengers,
and the Beijing urban rail transit network is taken as
an example. ,e results show that the cumulative
prospect theory can more accurately describe the
decision-making behavior of passengers in route
selection and can better reflect the needs of pas-
sengers traveling by rail transit under emergencies.

How to further update the data in the model to obtain
more accurate results, study the changes in passenger be-
havior from day to day after short-term incidents, and
develop a passenger flow organization method of subway
stations when short-term incidents occur are all directions of
future research.
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As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue
mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has
achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been
studied. *is paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path
planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM al-
gorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping
results. To balance path optimality and obstacle avoidance, A∗ algorithm is used for global path planning, and DWA algorithm is
adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated,
and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly
selecting appropriate algorithms to build SLAM systems according to their own demands.

1. Introduction

Mobile robots are capable of moving around in their en-
vironment and carrying out intelligent activities autono-
mously, thus having extensive realistic applications,
including rescue works. A key enabling technology is si-
multaneous localization and mapping (SLAM) which allows
the robot to estimate its own position using onboard sensors
and construct a map of the environment at the same time.
With the SLAM technology, real-time path planning can be
performed to fulfill complex manoeuvring tasks in rescue
works.

SLAM-enabled mobile robots have achieved much
success in various scenarios. Peng et al. [1] studied the
positioning problem and implementation of SLAM for
mobile robots with RGB-D cameras. Shou et al. [2]

employed a Raspberry Pi module as the core controller and
built a mobile robot for map construction and navigation in
indoor environment. Zhang et al. [3] proposed path pre-
diction planning based on the artificial potential field to
improve obstacle avoidance. Liu et al. [4] combined the Q-
learning algorithm with the deep learning algorithm for path
planning, which enabled robots to make reasonable walking
paths under complex environmental conditions. Yu et al. [5]
applied an improved A∗ path planning algorithm to un-
manned underwater survey ships, enabling quick obstacle
avoidance and return to the preset route. However, these
studies did not take into account the impact of the rescue
environment on the SLAM algorithm. If these algorithms are
directly applied to rescue robots, it may deteriorate the
accuracy of path planning and even cause incorrect path
planning results. At present, there are still rare systems that
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can combine SLAM and path planning for indoor rescue.
*erefore, it is necessary to study the impact of the rescue
environment on the SLAM algorithm and path planning
algorithm and evaluate and select the SLAM algorithm
suitable for the rescue environment.

In this paper, we evaluated the results of some commonly
used SLAM algorithms in both simulation and real-world
environment, tested the path planning algorithms (A∗ al-
gorithm and DWA algorithm), and conducted a combined
experiment of mapping and path planning regarding the
RoboCup competition. *ese experiments revealed the
demerits of some algorithms and provided a benchmark for
subsequent algorithm improvement.

*e rest of the paper is organized as follows. Section 2
introduces the basic system structure of mobile robots;
Section 3 presents the rationale of three commonly used
SLAM algorithms; Section 4 briefly describes the A∗ algo-
rithm and DWA algorithm for path planning; Section 5
provides and analyzes the experimental and simulation
results; Section 6 gives the conclusion.

2. System Structure

*e hardware part of the robot studied in this paper is
mainly composed of motion control module, Lidar module,
vision module, power module, and industrial computer
module. *e system structure is shown in Figure 1, and the
physical map of the robot system is shown in Figure 2.

*e main function of the STM32 microcontroller is to
acquire and process wheel encoder data and gyroscope data.
Map information, path planning, depth camera, and Lidar
data are processed by the industrial computer.*e industrial
computer and STM32 are connected via USB cable to ex-
change data and instructions. *e depth camera is calibrated
by using a printed black and white checkerboard. *e
OpenCV function called by the robot operating system
(ROS) is used to extract the corner information from camera
images, and then internal and external parameters are ob-
tained through calculations [6]. *e industrial computer is
fitted with Intel Core i5 processor, 4G memory, 128G access
space, and the ubuntu16.04 system.

3. SLAM Algorithms

For a mobile robot, SLAM involves both localization and
mapping in an iterative manner by continuously fusing
various measurements from the onboard sensors [7, 8]. *e
sensor module in our system includes Lidar and depth
camera to collect environmental information as well as
internal measurements from the IMU. A 2D map is to be
generated after processing by a mapping algorithm.
Depending on the purpose of the map, different SLAM
algorithms are available. For our purpose, we will focus on
the task of path planning in real time. After various con-
siderations, we decide to study in detail three most suitable
SLAM algorithms: GMapping algorithm, Hector-SLAM
algorithm, and Cartographer algorithm. GMapping algo-
rithm is based on particle filter pairing algorithm, Hector-
SLAM is based on scan matching algorithm, Cartographer is

a scan matching algorithm with loop detection, and RGB-D
algorithm is an algorithm for mapping using depth images.
*ese several algorithms are representative and widely used
algorithms.

3.1. GMapping Algorithm. *e GMapping algorithm is a
laser-based SLAM algorithm for grid mapping [9, 10].*is is
probably the most used SLAM algorithm, currently the
standard algorithm on the PR2 (a very popular mobile
manipulation platform) with implementation available on
openslam.org. *e algorithm was initially proposed in [10],
and the main idea is to use Rao–Blackwellized particle filters
(RBPFs) to predict the state transition function. *e algo-
rithm is also known as the RBPF SLAM algorithm, named
after the use of Rao–Blackwellized particle filters. In [11],
two major improvements were made by optimizing the
proposal distributions and introducing adaptive resampling,
making the algorithm much more suitable for practical
applications. It is then dubbed GMapping (G for grid) due to
the use of grid maps.

3.1.1. RBPF. Onboard measurements include sensor data
from Lidar or camera for images and odometer data from
the IMU. A large number of particles are used for state
transition function predictions, with each particle repre-
senting a possible position of the robot.

*e sensor data are denoted by (z1:t � z1, z2, . . . , zt) and
the odometer data by (u1:t � u1, u2, . . . , ut−1) for the time
period from 1 to t. *ey are used to estimate the joint
posterior probability p(x1:t, m|z1:t, u1:t−1) of the robot pose
(x1:t � x1, x2, . . . , xt) and the grip map of the environment,
represented by m. Using the Bayes’ rule, the posterior
probability can be decomposed into

p x1:t, m|z1:t, u1:t−1( 

� p x1:t|z1:t, u1:t−1( p m|x1:t, z1:t( ,
(1)

where p(x1:t|z1:t, u1:t−1) is the positioning problem, whereas
p(m|x1:t, z1:t) is the mapping problem. *e so-called im-
portance sampling is used in the RBPF. *e procedure is as
follows:

(i) Sampling: according to the given (previous) proposal
distribution, particles (x

(i)
t−1) from the previous

generation are sampled. *ey are then improved by
incorporating the most recent observations. *en,
new particles (x

(i)
t ) and proposal distributions are

generated.
(ii) Weights: the weight w

(i)
t of each current particle x

(i)
t

is calculated using

w
(t)
t �

p x
(i)
1:t|z1:t, u1:t 

π x
(i)
1:t|z1:t, u1:t−1 

, (2)

where π(·) is the proposal distribution, which
usually is a probabilistic odometry motion model.
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(iii) Resampling: depending on the weights, particles
with smaller weights are discarded and replaced by
resampled particles, but the total number of par-
ticles in the resampled particle set is unchanged.

(iv) Map updating: the map update is implemented by
the pose represented by each particle in combina-
tion with the current observation. To reduce the
computational complexity, a recursive formula for
weight update is used:

w
(i)
t � w

(i)
t−1η

p zt|x
(i)
1:t, z1:t−1 p x

(i)
t |x

(i)
1:t−1, u1:t−1 

π x
(i)
1:t|z1:t, u1:t−1 

, (3)

where η is a normalisation factor.

3.1.2. Proposal Distribution. A large number of particles will
cause a large amount of calculation andmemory consumption.
In order to reduce the number of particles, a proposal dis-
tribution is used. Our target distribution is the best distribution
of the robot state according to the data of all sensors carried by
the robot. Except for the odometermodel, the laser observation
data is the position information of 360-degree points, which is
difficult to performGaussianmodelling.*us, there is no direct
way to sample the target distribution, and the proposal dis-
tribution is used instead of the target distribution to extract the
robot pose information at the next time instant. *e proposal
distribution considers not only the motion (odometer) in-
formation but also the most recent observation (laser) infor-
mation.*is canmake the proposal distribution more accurate
and closer to the target distribution.

Power supply
system

Motor control
module

STM32 robot
control module IPC Lidar

Encoder Gyroscope RGB-D

WiFi

PC

Figure 1: System structure of our mobile robot. “STM32 robot control module” gets information of motors from “encoder” and motion
from “gyroscope” to control motors and transfer the motion and encoder information to “IPC” which is a microcomputer.*en, “IPC” gets
information from Lidar, “STM32 robot control module,” and RGB-D camera.

(a) (b)

Figure 2: Key modules of the robot. (1) “RGB-D,” used to get RGB image and depth image; (2) “lidar,” used to get 2D lidar point cloud; (3)
“STM32 controller,” used to control the movement of the car; (4) “gyroscope,” used to get the attitude information; (5) “WI-FI,” used to contact
with the host computer; (6) “power supply system”; and (7) “motor and encoder,” used to get the velocity feedback of the car movement.
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*e sensor observation information is added when
calculating the proposal distribution, and the sampling
process is concentrated in the peak region of the like-
lihood function to get the optimal proposal distribution:

p xt|x
(i)
t , m

(i)
t−1, zt, ut−1  �

p zt|xt, m
(i)

 p xt|x
(i)
t−1, ut−1 

p zt|x
(i)
t−1, m

(i)
, ut−1 

.

(4)

*en, the weights are updated according to the above
weight recursion formula:

w
(i)
t � w

(i)
t−1η

p zt|xt, m
(i)

 p xt|x
(i)
t−1, ut−1 

p x
(i)
t |x

(i)
t−1, m

(i)
, zt, ut−1 

,

∝w
(i)
t−1η

p zt|xt, m
(i)

 p xt|x
(i)
t−1, ut−1 

p zt|x
(i)
t−1, m

(i)
, ut−1 

,

� w
(i)
t−1p zt|x

(i)
t−1, m

(i)
, ut−1 .

(5)

*e Gaussian distribution is used to approximate the
approximated peak region of the observation, and
the optimal proposal distribution is obtained. *e
Gaussian distribution parameters, i.e., the means μ(i)

t

and covariances 
(i)
t , are determined using K sampling

points:

μ(i)
t �

1
η(i)



K

j�1
xjp zt|xj, m

(i)
t−1 p xj|x

(i)
t−1, ut−1 ,


(i)

t
�

1
η(i)



K

j�1
p zt|xj, m

(i)
t−1 p xj|x

(i)
t−1, ut−1 ,

· xj − μ(i)
t  xj − μ(i)

t 
T
,

(6)

where the normalising factor η(i) is given by

η(i)
� 

K

j�1
xjp zt|xj, m

(i)
t−1 p xj|x

(i)
t−1, ut−1 . (7)

3.1.3. Adaptive Resampling. Resampling may cause good
particles to be removed from the filter, making the par-
ticles scarce. *erefore, it is necessary to judge the quality
of the particles by the effective sampling scale standard
and judging the time of resampling. *e evaluation for-
mula is as follows:

Neff �
1


N
i�1 w

(i)
 

2, (8)

where N is the number of particles and w(i) is the weight of
the ith particle.*e worse the proposal distribution estimate,
the smaller the Neff is. When Neff < (1/2)N, GMapping
performs resampling.

3.2. Hector-SLAM Algorithm. *e Hector-SLAM algorithm
[12] differs from other grid-based mapping algorithms, as it
does not require odometer information, but it needs laser
data and a priori map. Hector-SLAM is based on the
Gauss–Newton iteration formula that optimally estimates
the pose of the robot as represented by the rigid body
transformation ξ � [px, py,ψ]T from the robot to the prior
map. *e optimal estimation is done by optimally matching
the laser data and the map in the sense that the optimal ξ∗

below is solved:

ξ∗ � argminξ 

N

i�1
1 − M Si(ξ)(  

2
. (9)

Here, M(Si(ξ)) is the value of the map at Si(ξ), and Si(ξ)

is the world coordinate of scan end points si � (si,x, xi,y)T,
which obeys the following function:

Si(ξ) �
cosψ −sinψ

sinψ cosψ
 

si,x

si,y

⎡⎣ ⎤⎦ +
px

py

⎡⎣ ⎤⎦. (10)

When an initial estimate of the pose ξ is given, an
updated estimate ξ + Δξ is computed by approximating
M(Si(ξ + Δξ)) using first-order Taylor expansion, and the
result is as follows:

Δξ � H
− 1



N

i�1
∇M Si(ξ)( 

zSi(ξ)

zξ
 

T

1 − M Si(ξ)(  , (11)

where H is the Hessian matrix or some approximation of it,
given by

H � ∇M Si(ξ)( 
zSi(ξ)

zξ
 

T

∇M Si(ξ)( 
zSi(ξ)

zξ
 . (12)

3.3. Cartographer Algorithm. When the amount of data to
process becomes too large, particle-based algorithms are not
applicable due to their higher computing requirements on
the processor. In this case, graph optimisation algorithms
are more suitable.

Google’s solution to SLAM, called Cartographer, is a
graph optimisation algorithm. *e Google open source
code1 consists of two parts: Cartographer and Cartogra-
pher_ROS. *e function of Cartographer is to process the
data from Lidar, IMU, and odometers to build a map.
Cartographer_ROS then acquires the sensor data through
the ROS communicationmechanism and converts them into
the Cartographer format for processing by Cartographer,
while the Cartographer processing result is released for
display or storage. Impressive real-time results for solving
SLAM in 2D have been described in [13] by the authors of
the software.

3.4. Considering the Rescue Environment. In rescue envi-
ronment, there are stairs and rugged surface which make the
odometer inaccurate. It means we could not choose
GMapping because it is very rely on odometer. Due to the
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rugged surface, IMU is also inaccurate which means Car-
tographer may get bad results. So, we choose Hector-SLAM.

4. Path Planning

To achieve path planning is to solve three basic problems:

(1) *e robot reaches the desired position
(2) *e obstacle avoidance and completion of the

strategic task are achieved in the moving process
(3) *e optimal path is realized

However, in the actual environment, due to the accuracy
of the robot sensor and the variability of the environment,
the environmental information and location information of
the map construction will be deviated [14]. Global planning
in a static environment can meet the problem requirements,
but to handle the deviation caused by the dynamic envi-
ronment, local path planning needs to be introduced.*at is
to say, the local path planning pays more attention to ob-
stacle avoidance, and the global path planning pays more
attention to the shortest path. *erefore, the combination of
local planning and global planning algorithms can suc-
cessfully achieve accurate navigation of the robot. *e global
planning algorithm studied in this paper is a node-based A∗

algorithm [15, 16], and the local planning algorithm is a
dynamic window algorithm (DWA) [17]. Global path
planning produces a high-level plan for the robot to follow to
reach the goal location. Local path planning is responsible
for generating velocity commands for the mobile unit to
safely move the robot toward a goal. *ese properties are
imbedded in the plan produced by the planners, using the
cost function which takes into account both distance to
obstacles and distance to the path.

4.1.GlobalPathPlanning. Based on the global path planning
of the grid method, the A∗ algorithm is used to study the
path planning.*e A∗ algorithm follows the cost function to
make the robot to directionally search for the path toward
the end point. *e core valuation function of the A∗ al-
gorithm is

f(n) � g(n) + h(n), (13)

where the node n is abstractly understood as the next target
point, f(n) represents the total valuation function of the
current node n, g(n) represents the actual cost of the starting
point to the current point, and h(n) represents the estimated
cost of the current node to the end point. *e value of h(n)

determines the performance of the algorithm. Typically,
h(n) uses the Euclidean distance or Manhattan distance
between the two points in space. In the A∗ algorithm, the

Manhattan distance is used. *e Manhattan distance be-
tween two points (x1, y1) and (x2, y2) is as follows:

DManhattan � x1 − x2


 + y1 − y2


. (14)

4.2. Local Path Planning. *is paper mainly studies the
corresponding action strategy and operation of robot for
path navigation in indoor environment. For this reason, the
DWA algorithm is selected as the main algorithm for local
path planning. *e DWA algorithm requires the robot to
perform numerical simulation calculations on the path of
the robot within a certain speed window.*us, it is necessary
to obtain the model state expression of the robot. *e two-
wheeled robot based on differential drive has no velocity in
the y-axis direction. Since the robot is at the millisecond
level in each sampling period of the program execution, the
motion trajectory of the robot in the two adjacent sampling
periods can be approximated as a straight line. In a period of
time Δ, the robot travels a small distance at speed v, and it is
at an angle θt to the x-axis; then, the movement increments
Δx and Δy of the robot on the x-axis and the y-axis can be
obtained, respectively:

Δx � x + vΔt cos θt( , (15)

Δy � y + vΔt sin θt( . (16)

*e robot’s movement trajectory is then given by

xt+1 � xt + vΔt cos θt( , (17)

yt+1 � yt + vΔt sin θt( , (18)

θt+1 � θt + ωΔt, (19)

where ω is the angular velocity of the robot.
During the speed sampling of the robot, multiple sets of

trajectory velocity values are collected. To make the robot
safely perform path planning, some necessary speed limits
are also needed. *e speed velocity value and angular ve-
locity value of the robot change within a certain range, and
the range needs to be empirically calculated according to the
physical characteristics of the robot and the operating en-
vironment. *e range formula is as follows:

Vm � (v,ω)|v ∈ vmin, vmax ,ω ∈ ωmin,ωmax  . (20)

*e robot has different torque performance parameters
due to different motor models. When the current speed of
the robot vc and the angular velocityωc are known, the actual
speed range for the next sampling time can be computed as

Va � (v,ω)|v ∈ vc − _vdΔt, vc + _vaΔt ,ω ∈ ωc − _ωdΔt,ωc + _ωaΔt  , (21)
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where _va and _ωa are the maximum accelerations and _vd and
_ωd are the maximum decelerations.

When the robot is safely avoiding obstacles in naviga-
tion, the speed (v,ω) during the whole locally planned
trajectory must be within the range of speeds given by

Vd � (v,ω)|

����������

2dis(v,ω) _vd



≥ vc,

�����������

2dis(v,ω))ωd



≥ωc ,

(22)

where dis(v,ω) is the minimum distance from the current
position to the point where the arc trajectory of v and w

intersects the nearest obstacle.
Performing the DWA algorithm for speed selection

needs to satisfy equations (19)–(21) simultaneously. On the
basis of the trajectory that satisfies these speed requirements,
an evaluation function is used to measure a selected tra-
jectory and to aim the selection of the optimal trajectory.*e
evaluation function is as follows:

G(v,ω) � σ(αhead(v,ω)) + βdis(v,ω) + cvel(v,ω), (23)

where head(v,ω) represents the angle difference between the
estimated end of the route and the target; dis(v,ω) is the
minimum distance from the obstacle to the planned tra-
jectory, as explained above; vel(v,ω) indicates the moment
speed evaluation; σ(·) is a smoothing function; and α, β, c> 0
are evaluation coefficients.

5. Experimental Results

5.1. Simulation Experiments

5.1.1. SLAM Simulation. In order to test the aforementioned
algorithms, we carry out simulation experiments using the
Gazebo platform to build the simulation environment
shown in Figure 3.*e virtual environment has real physical
properties, and the simulation results have strong reference
to the actual environment.

*e following simulation experiment was performed
according to the virtual environment. We first use Lidar as a
sensor to simulate the GMapping, Hector-SLAM, and
Cartographer algorithms. We then use depth camera (RGB-
D) as a sensor to simulate the GMapping algorithm. Four
mapping algorithms under the physical simulation platform
of the ROS robot system are tested, and the simulation
results are shown in Figures 4–7. *e purpose of presenting
these diagrams is to give an impression of the algorithms
described above, which are parsed using text and formulas.

Figure 4 shows the robot simulation process using
GMapping. Depth information of the Lidar is required. *e
robot is located in the lower left corner of simulation en-
vironment, the data collected by the Lidar is marked in red,
and the established environment map is in light gray. Fig-
ure 5 shows the robot simulation process using Hector-
SLAM. Figure 6 shows the robot simulation process using
Cartographer. *e area scanned by the Lidar changes from
light gray to white until the whole map is completed.

Figure 7 shows the final grid map constructed using the
RGB-D camera data. *e depth data are first transformed
using depthimage_to_laserscan before being applied to

GMapping.*e simulation results show that the constructed
map is not ideal. *is is because the RGB-D camera is af-
fected by its own structure, causing a limited range of
viewing angle [18]. In addition, the depth camera requires
rich scene features to work. *e simulated environment has
smooth wall surfaces with very few scene features, making
the depth camera unable to perform effective feature
matching. We see that map construction cannot be suc-
cessfully completed.

5.1.2. Path Planning Simulation. After obtaining the envi-
ronment map, the map was loaded under the ROS frame-
work for path planning purposes. We use the rviz package
under the ROS framework for path planning and navigation
simulation. *e constructed map is shown in the left part of
Figure 8. Here, we also see the black dot indicating an
obstacle, and the cyan portion indicates the safe distance
between the robot and the obstacle. *e green arrow points
to the target point and direction of the robot. *e right part
of Figure 8 shows the path planning and navigation results,
as indicated by the green line. *e starting position for the
robot is slightly below the obstacle.We see that the simulated
path not only successfully avoids the obstacle but also is a
nearly straight path.

5.2. Algorithm Verification in Lab Environment

5.2.1. Emulated Rescue Experiment. In this experiment, a
1.25m × 1.25m square wooden structure was used to
splicing the actual environment in an open laboratory, as
shown in Figure 9. *is was built with reference to the
RoboCup rescue venue to simulate an enclosed indoor
rescue environment after a disaster. *e aforementioned
SLAM algorithms are applied, and the results are shown in
Figure 10. Comparing with the simulation results, the maps
constructed in the actual environment using Lidar data
(GMapping, Hector-SLAM and Cartographer) are all sat-
isfactory. In the RGB-D experiment [19, 20], the environ-
mental features are not sufficient for depth measurements,
resulting in an overlapped map. *erefore, the mapping
algorithm based on the depth camera needs further
optimisation.

5.2.2. Lab Office Experiment. Next, we test the SLAM al-
gorithms in a real lab office, as shown in Figure 11. *e map
in Figure 12 is constructed using the Hector-SLAM algo-
rithm. We see that not only desks are clearly identified but
also the chair legs are clearly shown.

Path planning is carried out using the A∗ algorithm for
global path planning and DWA algorithm for local path
planning, and the results are shown in Figure 13. In the
picture on the left, the navigation target point and direction
of the robot are set by the green arrow.*e small green patch
at the bottom shows many arrows representing the particles
(their positions and directions) of the starting pose of the
robot.*e right picture shows that, after the execution of the
path planning and navigation, the robot moves to the target
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(a) (b)

Figure 3: Simulation environment diagram and Gazebo display.

1 2 3 4

Figure 4: Mapping result of gmapping (simulation).

1 2 3 4

Figure 5: Mapping result of Hector-SLAM (simulation).
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point, as indicated by the (smaller) green patch representing
the particles of the final pose. We see that the experimental
results verify the effectiveness of the path planning
algorithms.

5.2.3. RoboCup Competition Test. *e mapping and path
planning algorithms above are used in our entry of the 2019
RoboCup competition for indoor rescue [21]. *e compe-
tition venue is shown in Figure 14. *e competition re-

1 2 3 4

Figure 6: Mapping result of Cartographer (simulation).

Figure 7: Mapping result of RBG-D (simulation).
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Figure 9: Emulated rescue environment.

(a) (b)

Figure 8: Simulation result of path planning.*e green arrow on the left picture means the orientation of the robot when it reaches the end.

(a) (b)

Figure 10: Continued.
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quirements are as follows: robot constructs the map of the
competition venue by self-exploration and completes the
recognition of the doll and the marking of the QR code. *e
robot operates by either remote control or through an au-
tonomous exploration algorithm. In addition, the robot
must avoid obstacles. *e quality of the mapping result is

assessed by the number of closed grids identified in the
constructed grid map. Because GMapping and Cartographer
need IMU to assist positioning, and in uneven terrain in the
competition, IMU data will have very large errors, which
leads to very large errors in these two SLAM algorithms.*e
RGB-D algorithm also does not perform well in flat terrain,

(c) (d)

Figure 10: Constructed map: (a) RGB-D, (b) Hector-SLAM, (c) GMapping, (d) Cartographer.

Figure 11: Lab office environment.

Figure 12: Hector-SLAM map for lab office.
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so we use the Hector-SLAM algorithm for mapping. And we
use the Hector_navigation open source software package
[22] for robot self-exploration. As shown in Figure 15, due to
the complex environment of the competition venue, the
robot is unable to pass some obstacles, such as the 15-degree
slope and stairs, so certain parts of the venue cannot be
scanned by the Lidar, and the constructed map is incom-
plete. Due to the limitation of the robot hardware, it is not
possible to finish all the mapping. But all the places reached
by the robot have been well-mapped. Finally, we scored 14
points (out of 27 points) in the self-exploration session.

5.2.4. China Robot Competition. Compared with the
RoboCup competition venue, the 2019 China Robot
Competition venue has a larger site area and a larger slope,
which means that the terrain is more complicated, as shown
in Figure 16. *e competition requires rescue robots to
independently explore the map of the field and identify the

two-dimensional code on the box in the simulated post-
disaster environment. In this experiment, we continue to use
the Hector_navigation open source software package for
robotic exploration. *e route of the robot’s autonomous
navigation is shown in Figure 17.We used two servos to keep
the Lidar level, which is used to automatically adjust the
Lidar to a horizontal position. However, due to the fact that
the competition field is not flat, which causes the robot to
have large fluctuations during the movement, the Lidar is
unable to adjust the pose in time. As shown in Figure 18, the
yellow arrow indicates the starting point of the rescue robot,
the purple line marks the movement trajectory of the rescue
robot, the dark blue line represents the map constructed by
the SLAM algorithm on the competition venue, and the dark
blue circle with numbers represents the location of the QR
code. However, the robot is navigated outside the wall. As a
result, there is a positioning error. *e map cannot be
quickly updated for corrections, and the navigation algo-
rithm may incorrectly navigate the robot into an obstacle.

(a) (b)

Figure 14: RoboCup venue.

(a) (b)

Figure 13: Path planning for lab office.
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(a) (b)

Figure 16: China robot competition venue.

(a) (b)

Figure 15: Mapping result of Hector-SLAM (RoboCup).

(a) (b)

Figure 17: Continued.
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*erefore, the Hector-SLAM algorithm needs to be im-
proved in the update speed, and the navigation algorithm
should adopt a more cautious strategy according to the
application of the rescue scenario. As shown in Figure 18, an
unnecessary closed point appears on the periphery of the
constructed map. In addition, the number in the figure is the
position information of the recognised QR code.

In the above simulation experiments and field experi-
ments for GMapping, Hector-SLAM, Cartographer, and
RGB-D mapping algorithms, GMapping, Hector-SLAM,
and Cartographer perform better in a flat indoor environ-
ment. *e RGB-D mapping algorithm has poor mapping
effect due to poor lighting conditions and lack of envi-
ronmental features. *erefore, in a relatively flat indoor
rescue environment, it is more appropriate to choose the
first three algorithms as the basis of the SLAM system. In the
RoboCup competition and the China Robot Competition,
the uneven rescue environment seriously interfered with the
IMU data, so the SLAM algorithm (GMapping and Car-
tographer) incorporating IMU data could not perform

SLAM tasks normally. *is causes the path planning algo-
rithm that relies on map information to not work correctly.
*e Hector-SLAM algorithm, which does not rely on IMU
data, can perform tasks in the competition terrain relatively
correctly, but there are still problems with inability to filter
wrong Lidar information and poor stability.

6. Conclusions

In this paper, the problem of indoor rescue using mobile
robots was studied. Comparisons were done on the
GMapping, Hector-SLAM, and Cartographer algorithms for
SLAM. *e path planning was done by combining the A∗

algorithm for global path planning and the DWA algorithm
for local path planning. Simulation, emulation, as well as real
environment experiments were conducted to compare and
validate the results on map construction and path planning.
In the future, further optimisation needs to be carried out in
the mapping algorithms to make them more suitable to the
real rescue environment.

Figure 18: Mapping result of Hector-SLAM (China Robot Competition). Because the level keeping platform of the radar is not sensitive
enough, and it cannot be adjusted and keep the platform in time when the robot crosses obstacles, the radar may scan the walls outside the
field. Hector cannot judge and filter, so it is recorded on the map.

(c) (d)

Figure 17: Mapping result and autonomous navigation route (China robot competition). (a) 1, (b) 2, (c) 3, (d) 4.
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In order to make an accurate prediction of vehicle trajectory in a dynamic environment, a Unidirectional and Bidirectional LSTM
(UB-LSTM) vehicle trajectory prediction model combined with behavior recognition is proposed, and then an acceleration
trajectory optimization algorithm is proposed. Firstly, the interactive information with the surrounding vehicles is obtained by
calculation, then the vehicle behavior recognition model is established by using LSTM, and the vehicle information is input into
the behavior recognition model to identify vehicle behavior. /en, the trajectory prediction model is established based on
Unidirectional and Bidirectional LSTM, and the identified vehicle behavior and the input information of the behavior recognition
model are input into the trajectory prediction model to predict the horizontal and vertical speed and coordinates of the vehicle in
the next 3 seconds. Experiments are carried out with NGSIM data sets, and the experimental results show that the mean square
error (MSE) between the predicted trajectory and the actual trajectory obtained by this method is 0.124, which is 97.2% lower than
that of the method that does not consider vehicle behavior and directly predicts the trajectory. /e test loss is 0.000497, which is
95.68% lower than that without considering vehicle behavior. /e predicted trajectory is obviously optimized, closer to the actual
trajectory, and the performance is more stable.

1. Introduction

Trajectory prediction is an important research direction in
the field of autopilot [1, 2]. /e research on the decision-
making characteristics of the driver shows that factors
such as the relative speed and relative distance between
the car and the surrounding moving vehicles will greatly
affect the driver’s decision [3] and then affect the driving
safety. For static vehicles in the driving environment,
intelligent vehicles can drive safely along the planned
trajectory; for dynamic vehicles, human drivers can use
past experience and intuition to predict the behavior of
other drivers to avoid potential accidents [4]. Intelligent
vehicles need to improve their driving safety by predicting

the trajectories of the moving vehicles around them in real
time.

/e existing methods are basically separate research on
vehicle behavior recognition and vehicle trajectory predic-
tion, and there are not many methods to combine the two to
make a more accurate trajectory prediction [5–10]. Im-
proving the accuracy of vehicle trajectory prediction is the
most urgent problem to be solved. In fact, the accurate
identification of vehicle behavior is very important to im-
prove the accuracy of vehicle trajectory prediction, so this
paper will take vehicle behavior recognition into
consideration.

/ere are many existing trajectory prediction methods,
such as the Markov model [11]. Its advantage is that it can
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calculate the probability of maintenance capability and
multiple degraded state systems, but it is not suitable for
long-term prediction and is easily affected by the external
environment./e advantage of Bayesian model [12] is that it
is not sensitive to missing data but needs to know a priori
probability, and a priori probability often depends on as-
sumptions, and there can be many hypothetical models;
therefore, at some point, the prediction effect is poor due to
the hypothetical a priori model. /e advantage of Kalman
filter [13] is that the prediction in a short time (1 step or 2
steps) can be judged stably and accurately, but the trajectory
prediction for a long time (such as more than 3 seconds or
more than 5 steps) will seriously affect the prediction ac-
curacy due to the increase of prediction error, and the model
is very complex and easy to be affected by external noise.

LSTM has a long-term memory function and can learn
to translate languages; control robots; make image analysis,
document summaries, speech recognition, image recogni-
tion, and handwriting recognition; control chatbots, predict
diseases; click rates and stocks; and synthesize music
[14–17]. Vehicle trajectory prediction is also a time series
problem, and there is a correlation between each track point
and the historical track point, so it is very suitable to use
LSTM to solve the trajectory prediction problem.

In order to solve the problem of vehicle trajectory
prediction, a UB-LSTM vehicle trajectory prediction model
combined with vehicle behavior recognition is proposed in
this paper. Firstly, a many-to-one vehicle behavior recog-
nition model is established based on LSTM, and then a
trajectory prediction model is established based on one
unidirectional LSTM and one bidirectional LSTM. /e
identified vehicle behavior information and the input in-
formation of the vehicle behavior recognition model are
input into the trajectory prediction model to predict the
horizontal and longitudinal speed and coordinates of the
vehicle, and in the follow-up process, based on the predicted
horizontal and longitudinal velocity, an acceleration tra-
jectory optimization algorithm is proposed, and the pre-
dicted trajectory based on the optimization algorithm is
more consistent with the actual trajectory and more stable.
/e contributions of this paper are as follows:

A better trajectory prediction model is proposed, and a
small test loss is obtained. In this paper, the influence of
the surrounding vehicles on the predicted vehicles (that
is, interactive information) is taken into account in the
model, and the prediction effect of the model is
improved.
/is paper considers a method that combines the ve-
hicle behavior recognition model with the trajectory
prediction model; that is, the behavior of the vehicle is
input into the trajectory prediction model as one of the
input information, which can obviously improve the
accuracy of trajectory prediction.
Based on the predicted horizontal and vertical velocity,
an acceleration trajectory optimization algorithm is

proposed, which obviously improves the accuracy and
stability of the predicted trajectory.

2. Related Work

At present, in the aspect of vehicle trajectory prediction, the
main methods are trajectory prediction based on physical
motion model, trajectory prediction based on driving be-
havior, and trajectory prediction based on intention rec-
ognition. Gambs et al. [18] put forward the trajectory
prediction method of high-order Markov model, which has
high accuracy, but high computational overhead, so it is
difficult to meet the real-time requirements of intelligent
vehicles. Chandra et al. [10] proposed a new method based
on the combination of graph analysis and deep learning to
predict vehicle trajectories in urban traffic scenes, and they
learned how to predict future trajectories and behaviors
from the extracted vehicle trajectories. In order to reduce the
error of long-term prediction (3–5 seconds) and improve the
accuracy of prediction, spectral clustering regularization
method was introduced and experiments were carried out
on Argoverse, LYFT, and Apolloscape data sets. Deo and
Trivedi [19] proposed an LSTM encoder-decoder model,
which uses a convolutional social pool as an improvement to
the social pool level to learn the interdependence in vehicle
motion stably. In addition, based on the variability of tra-
jectories, the model also outputs the multimodal prediction
distribution of future trajectories and uses US-101 and I-80
sections of NGSIM data sets to evaluate the model. Chang
et al. [20] proposed the Argoverse data set, which is designed
to support self-driving vehicle perception data including 3D
tracking and motion prediction. Argoverse data set includes
sensor data collected by self-driving teams in Pittsburgh and
Miami, as well as 3D tracking notes, extracting 300000
vehicle tracks and rich semantic maps. Using this data set
can greatly reduce trajectory prediction errors. Chandra
et al. [21] proposed an end-to-end vehicle trajectory pre-
diction algorithm-RobustTP, which uses a tracking algo-
rithm to obtain noise sensor input tracks from RGB cameras
(whether stationary or moving) to predict vehicle trajec-
tories in dense traffic and regards noise as a deviation from
the real track. Firstly, the online motion model and the case
segmentation algorithm based on deep learning are com-
bined to calculate the trajectory. /ese noise tracks are
trained by LSTM-CNN neural network structure, which
simulates the interaction between different traffic objects in
dense and nonuniform traffic. Chandra et al. [22] used a new
LSTM-CNN hybrid network to model the interaction be-
tween different traffic objects for trajectory prediction, in-
cluding buses, cars, scooters, bicycles, or pedestrians. Giuliar
et al. [23] proposed a transformer network for pedestrian
trajectory prediction and achieved good prediction results.
Monti et al. [24] proposed a new recursive generation model
to predict the trajectory of obstacles, which takes into ac-
count not only the future target of a single obstacle but also
the interaction between different obstacles, and in this
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model, a graph neural network based on double attention is
used to collect the interactive information between different
obstacles, which is combined with the possible future tra-
jectory of the obstacles, and a good prediction effect is
obtained in the urban scene. Mohamed [25] proposed the
social space-time graph convolution neural network (Social-
STGCNN), which uses the method of modeling interaction
as a graph instead of the aggregation method. /e experi-
mental results show that the final displacement error (FDE)
is 20% higher than the existing methods, the average dis-
placement error (ADE) is 8.5 times higher, and the reasoning
speed is 48 times faster. Li et al. [26] proposed a universal
generative neural system (Social-WaGDAT) for trajectory
prediction of various obstacles and evaluated the system on
three common trajectory prediction data sets, and the ex-
perimental results show that themodel has a good prediction
effect in terms of prediction accuracy, in which the types of
obstacles include pedestrians, bicycles, and vehicles. Hao
et al. [27] proposed an end-to-end generative model called
attention map encoder network (AMENet), which can ac-
curately and truly realize multipath trajectory prediction and
achieve good prediction results.

In order to make an accurate prediction of moving
vehicle trajectory, a UB-LSTM vehicle trajectory prediction
model combined with vehicle behavior recognition is pro-
posed to obtain a smaller prediction error. Finally, based on
the predicted horizontal and vertical velocity, an accelera-
tion trajectory optimization algorithm is proposed.

3. Methods

Long short-term memory (LSTM) network [28] is a re-
current neural network (RNN) structure proposed by
Hochreitrer and Schmidhuber in 1997. LSTM mainly solves
the problems of gradient explosion and gradient vanishing
of RNN [29]. LSTM mainly adds forgetting gate, input gate,
and output gate on the basis of RNN to realize selective
forgetting and memory of information, thus realizing the
function of long-term memory. LSTM realizes the function
of long-term memory through long-term memory. Because
there is only simple multiplication and addition on the track
of long-term memory, and there is no nonlinear operation,
information flows more smoothly at different times, which
can effectively restrain the problem of gradient dissipation of
long-term memory.

/e process of this method is to first establish a vehicle
behavior recognition model to realize vehicle behavior
recognition and finally input the behavior identified by the
vehicle behavior recognition model and vehicle information
into the established trajectory prediction model to predict
the horizontal and vertical speed and coordinates in the next
3 seconds. /e overall flow chart is shown in Figure 1. /e
concrete realization is to establish a separate vehicle behavior
recognition model and a vehicle trajectory prediction model
and train them separately, in which the training data of the
vehicle trajectory model contains the marked vehicle be-
havior information. /en, the vehicle behavior recognition
model and the trajectory prediction model are tested to-
gether, and finally, the acceleration trajectory optimization

algorithm is used to generate a more accurate prediction
trajectory.

/e following will introduce in detail the vehicle be-
havior recognition model, trajectory prediction model, and
acceleration trajectory optimization algorithm in turn.

3.1. Vehicle Behavior Recognition Model. /e behavior rec-
ognition model proposed in this section is mainly used to
identify the five behaviors of each vehicle trajectory, in-
cluding going straight, turning left and right, and changing
lanes. Not only the state of the vehicle can affect vehicle
behavior but also the surrounding vehicles, pedestrians,
bicycles and so on. For example, avoiding pedestrians and
bicycles will obviously affect the vehicle behavior. /erefore,
the input features of each trajectory point include the vehicle
state (i.e., coordinates, velocity, and acceleration, etc.) and
interactive information features. Before predicting the tra-
jectory, the input characteristics of each trajectory point are
input into the vehicle behavior recognition model to get the
behavior characteristics of the vehicle. /en, the behavior
characteristics, vehicle state characteristics, and interactive
information characteristics are input into the trajectory
prediction model together.

In this paper, a vehicle behavior recognition model is
established based on a many-to-one LSTM classifier, as
shown in Figure 2, where the seq_length is the number of
features of the input data (i.e., the number of LSTM units);
batch training is used to load data, and the batch_size is the
load size; the embedding is the corresponding vector length
of the input LSTM unit, where embedding� 1; the hid-
den_size is the number of LSTM hidden layer nodes; the
output_size is the output category size; the n_layers is the
number of hidden layers of LSTM. Finally, a full connection
layer FC is used to make the classification, and only the last
node yseq_length is taken as the classification result./e output
layer does not use activation functions. /e Adam is used to
update weights. /e loss function is CrossEntropyLoss
Function L, as defined in

L � − 
N

i

y
(i)log y

(i)
+ 1 − y

(i)
 log 1 − y

(i)
 , (1)

where y(i) is the actual value and y(i) is the predicted value.

3.2. Vehicle Trajectory Prediction Model. /e vehicle be-
havior recognition model is shown in Figure 3, which is
mainly used to predict the vehicle trajectory. It can be seen
that not only the state of the vehicle but also the surrounding
vehicles, pedestrians, and bicycles can affect the trajectory of
the vehicle and that the current behavior of the vehicle can
also determine the future trajectory. For example, the tra-
jectories of straight lines and turns are obviously different.
/e behavior characteristics can be marked in advance in the
dataset, or they can be identified by the trained vehicle
behavior recognition model. In this paper, the trajectory
point of the output trajectory includes the characteristics of
horizontal and longitudinal velocity and horizontal and
longitudinal coordinates, that is, to predict the future
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horizontal and longitudinal speed and coordinates of the
vehicle.

Compared with the traditional Unidirectional or Bidi-
rectional LSTM trajectory prediction model, this paper uses
UB-LSTM to establish the trajectory prediction model.

Bidirectional LSTM can make use of not only the previous
information but also some of the latter information to make
the prediction results more accurate. /en, combining the
prediction results of the two LSTM can further improve the
overall prediction accuracy of the model. /e results of the
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Figure 2: Vehicle behavior recognition model.
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Figure 1: /e basic flow of trajectory prediction.
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addition of the two LSTM output layers are input into the
two full connection layers in turn. Because the value range of
the Tanh function is from −1 to 1, the range of the output value
is limited, so the input data is directly input into a full con-
nection layer to get an output data and then process the output

value by the Tanh activation function. Finally, a full connection
layer is used to get the output result. /e pseudo-code of the
trajectory prediction model is as follows: (Algorithm 1).

/e bemodel is the vehicle behavior recognition model
mentioned in Part A of Section 3. /e seq_length is the
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Figure 4: Training process of behavior recognition model. (a) Loss change of behavior recognition model. (b) Accuracy change of behavior
recognition model.

(1) Input: x
(2) Output: out
(3) (batch_size, seq_length, n_feature-1)⟵ x.shape;
(4) behavior⟵ bemodel(x);
(5) x_tra⟵ torch.cat(x, behavior);
(6) (batch_size, seq_length, n_feature)⟵ x_tra.shape;
(7) Linear(n_feature, input_size)⟵ FC1;
(8) LSTM(input_size, hidden_size, n_layers, bidirectional� False, dropout)⟵ LSTM;
(9) Linear(n_feature, input_size)⟵ FC2;
(10) LSTM(input_size, hidden_size//2, n_layers, bidirectional�True, dropout)⟵BILSTM;
(11) LSTM_OUT, hidden⟵ LSTM(FC1(x_tra));
(12) BILSTM_OUT, hidden⟵BILSTM(FC2(x_tra));
(13) Linear(hidden_size, hidden_size∗ 2)⟵ FC3;
(14) Linear(hidden_size∗ 2, hidden_size//2)⟵ FC4;
(15) LSTM_FC_OUT⟵Tanh(FC3(LSTM_OUT+BILSTM_OUT));
(16) fc_out1⟵Tanh(FC4(LSTM_FC_OUT));
(17) Linear(n_feature, hidden_size//2)⟵ FC5;
(18) fc_out2⟵ FC5(x_tra);
(19) Linear(hidden_size//2, output_size)⟵FC6;
(20) out⟵FC6(fc_out1 + fc_out2);
(21) end;
(22) Return out;

ALGORITHM 1: Trajectory prediction model.

Table 1: Test results of the behavior recognition model.

Left_turn Left_change Right_turn Right_change Keep All Test_loss
Correct_n/ALL 9017/9042 8635/8691 1708/1720 1524/1552 152166/152195 173050/17320 0.0026
Accuracy (%) 99.72 99.36 99.30 98.20 99.98 99.91
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number of input trajectory points. /e n_feature is the
number of features contained in the input trajectory points.
/e input_size is the length of the vector input into LSTM
cells, the hidden_size is the number of hidden layer nodes of
LSTM, and the n_layers is the number of hidden layers.
Using dropout method to prevent overfitting, the dropout is
in the discarding rate. /e behavior is the vehicle behavior
identified by the vehicle behavior recognition model, and
bidirectional indicates whether the LSTM is a bidirectional
LSTM./e Tanh is a hyperbolic tangent activation function.
/e loss function uses the mean square error loss function
(MSELoss), as shown in

MSELoss �
1
2n



n

i�1
yi − yi( 

2
, (2)

where n represents the total number of variables,yi repre-
sents the actual value, and yi represents the predicted value.

3.3. Acceleration Optimization Trajectory Algorithm.
Based on the trajectory prediction model, an acceleration
trajectory optimization algorithm is proposed in this paper.
/is algorithm refers to the acceleration and displacement
formula in physics, as shown in

s �
v2 − v20( 

2a
, (3)

where s is the displacement, v is the final velocity, v0 is the
initial velocity, and a is the acceleration at v0. /e transverse
and longitudinal acceleration is calculated according to

axt−1
�

vxt
− vxt−1

 

Δt
,

ayt−1
�

vyt
− vyt−1

 

Δt
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where Δt represents the interval time between two points, vx

and vy represent the horizontal and longitudinal speeds of
the vehicle predicted by the trajectory prediction model, and
t represents the time of the trajectory point. /e horizontal
and longitudinal displacements are calculated according to

sxt−1
�

v2xt
− v2xt−1

2axt−1

,

syt−1
�

v2yt
− v2yt−1

2ayt−1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

/e coordinate values are calculated according to

xt � xt−1 + sxt−1
,

yt � yt−1 + syt−1
,

⎧⎨

⎩ (6)

where xt−1 and yt−1 represent the coordinates of the previous
trajectory point, and xt and yt represent the coordinates of
the trajectory point. In this paper, the last point of the
historical trajectory point is taken as the starting trajectory
point and then calculated in turn until the coordinates of all
the predicted trajectory points are calculated. In this paper,
the time interval of trajectory points is 0.1 s.

4. Experimental Validation

4.1. Experiment Platform. In this paper, the experiment is
carried out on the ubuntu16.04 system, the GPU is Tesla
V100-PCIE-32GB, and the model is built on Jupyter
Notebook based on PyTorch.

4.2. Data Sources and Preprocessing. /is paper uses the
NGSIM data set for experiments. /e NGSIM data set is
derived from the Next Generation Simulation (NGSIM)
program initiated by the Federal Highway Administration of
the United States. /e sampling frequency is 10Hz and
records information including vehicle coordinates, speed,
acceleration, vehicle type, and lane number [30].

4.2.1. Calculate Angle, VEL_X, VEL_Y, and Behavior.
/e vehicle heading angle θ is calculated using

θ � arctan
xi − xi− 1

yi − yi−1 , (7)

where (xi, yi) represents the coordinates of the vehicle at i
time, and (xi−1, yi−1) indicates the coordinates of the vehicle
at i−1 time.

According to the change rate of heading angle θ between
the two trajectory points of the vehicle,ω marks the vehicle
behavior Label, as in formula (8). A total of five behaviors are
marked, including going straight, turning left and right, and
changing left and right lanes, which are represented by 0, 1,
2, 3, and 4, respectively:

0.8

0.6

0.4

0.2

0.0

Lo
ss

Loss_trend

0 1000 2000 3000 4000 5000 6000
Epoches

Valid_loss
Train_loss

Figure 5: Training process of trajectory prediction model without
vehicle behavior.
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ω �
θi − θi−1

Δt
, (8)

where Δt represents the interval time between two points.
/e transverse and longitudinal velocities Vel_x and

Vel_y of the vehicle are calculated according to
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(9)
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(10)

where Δt denotes the interval time between two points, (x, y)
represents the coordinate of the trajectory point, t represents
the time of the occurrence of the trajectory point, and end
represents the last trajectory point of the vehicle.

4.2.2. Acquisition of Interactive Information. /e main
purpose is to obtain the vehicles that may exist in the left-
top, left-bottom, middle-top, middle-bottom, right-top, and

right-bottom positions around the vehicle, which are rep-
resented as L_Top, L_Bot, C_Top, C_Bot, R_Top, and R_Bot,
respectively. Firstly, the lateral coordinate difference dis_x
and the longitudinal coordinate difference dis_y between the
surrounding vehicle and the predicted trajectory vehicle at a
certain time are calculated, and then the position of the
surrounding vehicle relative to the predicted trajectory ve-
hicle is judged according to

relative position �

L Top − 5 < dis x< − 1, 0 < dis y < 5,

L Bot − 5 < dis x< − 1, −5 < dis y < 0,

C Top − 1 < dis x < 1, 0 < dis y < 5,

C Bot − 1 < dis x < 1, −5 < dis y < 0,

R Top 1 < dis x < 5, 0 < dis y < 5,

R Bot 1 < dis x < 5, −5 < dis y < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

/en, we record the id, relative distance, speed, accel-
eration, heading angle, and behavior of the vehicle that
meets the conditions. If there is no vehicle in a certain
position, the above information is all set to 0, so the in-
teractive information of the vehicle is obtained.

4.2.3. Generate Trajectory and Behavior Dataset. In the
experiment, the Savizkg-Golag smoothing algorithm is
firstly used to smooth the coordinates of vehicle trajectory
points to eliminate the noise, then remove the vehicles with
less than 130 trajectory points or two trajectory points with a
distance of more than 5 meters, and at the same time, limit
the maximum number of trajectories of each vehicle to 61.
By doing so, the number of trajectories of each vehicle will
keep consistent. Finally, a total of 17,320 trajectory data are
generated, and each trajectory contains 100 trajectory
points, including a total of 321 vehicles. /e trajectory is
standardized using

x �
x
⌢

− mean
std

, (12)

where x
⌢ represents a single value in each column, x rep-

resents the changed value, mean represents the average of
each column, and std represents the standard deviation.

In the experiment, a total of 26 features are selected as
the input trajectory points. At the same time, a total of four
features including the vehicle horizontal and longitudinal
velocity and coordinates of the trajectory point 3 seconds
behind the input trajectory point are selected as the output
trajectory point.

/e vehicle behavior data is first restored according to
equation (13), then the vehicle behavior feature of each input
trajectory point is separated as a tag, and the rest of 25
features are used as input features:

x � x
⌢∗ std + mean. (13)

In order to better observe the training process, the ve-
hicle trajectory data is divided into a training set, verification
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set, and test set according to the proportion of 8 :1 :1. /e
training set is used to train the model, the verification set is
used to monitor the training process in real time, and the test
set is used to evaluate the effect of the model after the
training.

4.3. Vehicle Behavior Recognition Model Experiment. Set
batch_size� 100, seq_length� 25, embedding� 1,
hidden_size� 256, n_layers� 2, output_size� 5, and learn-
ing rate� 0.0001. Only the model with minimum validation
loss is saved with a total of 100 iterations. /e training
process is shown in Figure 4.

/e training time is 3.943 hours, and the minimum
verification loss is 0.0066. /e accuracy of vehicle behavior
recognition is the ratio of the correct recognition number of
each vehicle behavior to the total number of each vehicle
behavior. /e test results are shown in Table 1. As can be
seen from the test results, the recognition accuracy of each
behavior of the vehicle is higher than 98%.

4.4. Trajectory Prediction Model Experiment. In order to
verify the influence of vehicle behavior, the trajectory pre-
diction accuracy is compared with and without considering
the vehicle behavior in this study. In the experiments, the
trajectory data is restored using equation (13). In order to
reflect the superiority of the acceleration trajectory opti-
mization algorithm proposed in this paper, the trajectory
generated by the coordinate of the predicted trajectory point
is compared with that generated by the trajectory optimi-
zation algorithm.

4.4.1. Trajectory Prediction Model Experiment without Ve-
hicle Behavior. Set batch_size� 128, seq_length� 100,
n_feature� 25, input_size� 256, hidden_size� 256,
n_layers� 2, output_size� 4, dropout� 0.5, and we used the

ReduceLROnPlateau method to adjust the learning rate. /e
initial learning_rate is 0.001. When the verification loss does
not decrease for 20 iterations, the learning rate is adjusted to
10% of the existing rate. Only the model with minimum
validation loss is saved, within a total of 1,000 iterations. /e
training process is shown in Figure 5, where vehicle behavior
is not considered here.

/e training time is 3.944 hours, and the minimum
verification loss is 0.0114. It can be seen from Figure 5 that
the loss decreases slowly during the training. In the testing
process, the test loss is 0.0115, the MSE between the pre-
dicted trajectory and the actual trajectory is 4.3, and theMSE
produced by the optimization algorithm is 2.4. Figure 6
shows the predicted results, where the axis x represents the
lateral coordinates of the predicted trajectory point, and the
axis Y represents the longitudinal coordinates of the pre-
dicted trajectory point. As can be seen from Figure 6, the
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Figure 6: Trajectory prediction results without vehicle behavior. (a) Prediction trajectory 1. (b) Prediction trajectory 2.
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trajectory generated by the optimization algorithm is very
close to the actual trajectory; but the prediction performance
without the optimization algorithm is far away from
satisfactory.

4.4.2. Trajectory Prediction Model Experiment Combined
with Vehicle Behavior. Set batch_size� 128, seq_length� 100,
n_feature� 26, input_size� 256, hidden_size� 256,
n_layers� 2, output_size� 4, dropout� 0.5, and initial
Learning_rate� 0.001. Figure 7 depicts the training result.

/e training time is 7.12 hours, and the minimum
verification loss is 0.00041732. In order to test the fusion
effect of the vehicle behavior model and the trajectory
prediction model, first of all, the trajectory prediction model

is used alone after the behavior recognition model, and then
two models are used in parallel.

/e vehicle trajectory prediction model predicts the
horizontal and longitudinal speed and coordinates of the
vehicle and uses the transverse and longitudinal velocity and
the last trajectory point of the historical trajectory to realize
the acceleration trajectory optimization. First of all, the
experiment is carried out without using the vehicle behavior
recognition model. /e test loss is 0.000486. /e MSE be-
tween the predicted trajectory and the actual trajectory is
1.361. /e MSE generated by the optimization algorithm is
0.122. Figure 8 shows the predicted results, where the axis x
represents the lateral coordinates of the predicted trajectory
point, and the axis Y represents the longitudinal coordinates
of the predicted trajectory point.
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Figure 8: Trajectory prediction results using the two models in the series. (a) Prediction trajectory 1. (b) Prediction trajectory 2.
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Comparing Figures 6 and 8, one can find that the
prediction effect is obviously improved; thus, it is very
necessary to consider vehicle behavior in the prediction
model. /e prediction trajectory obtained by the optimi-
zation algorithm is more consistent with the actual trajec-
tory, which indicates that the usage of the optimization
algorithm makes the prediction performance stable.

When the behavior recognition model and the trajectory
prediction model are integrated, the test loss is 0.000497, the
recognition accuracy of the behavior recognition model is
99.9%, the MSE without the optimization algorithm is 1.36,
and the MSE with the optimization algorithm is 0.124. It can
be found that the MSE and test losses after fusion are slightly
higher than those of the individual use of the prediction
model in Figure 8. Figure 9 shows the predicted results,
where the axis x represents the lateral coordinates of the
predicted trajectory point, and the axis Y represents the
longitudinal coordinates of the predicted trajectory point. It
can be seen from Figure 9 that the trajectory prediction effect
of the proposedmethod is good, which is basically consistent
with the actual trajectory, and is stable, without large
fluctuations, and basically achieves the expected effect. It
shows that the trajectory prediction method proposed in this
paper has high prediction accuracy and good stability.

4.5. Discussion. As can be seen from Figures 5, 7, and 8, the
trajectory generated by the optimization algorithm is much
better, more reasonable, and more consistent with the actual
trajectory than the trajectory directly predicted in this paper.
It shows that the trajectory optimization algorithm proposed
in this paper contributes a very good improvement effect.

In order to examine the behavior recognition effect, the
following comparisons are further conducted. Herein, the
test without considering behavior recognition is abbreviated
as NCB; the test with considering behavior recognition is
abbreviated as CB; the alone test model considering vehicle
behavior is abbreviated as CB_A; the fusion test model
considering vehicle behavior is abbreviated as CB_F; the test
based on the coordinate method without considering be-
havior recognition is abbreviated as NCB_CB; the test based
on optimization algorithm without considering behavior
recognition is abbreviated as NCB_OB; the alone test based
on coordinate method considering vehicle behavior recog-
nition is abbreviated as CB_A_CB; the alone test based on
optimization algorithm considering vehicle behavior rec-
ognition is abbreviated as CB_A_OB; the fusion test based

on coordinate method considering vehicle behavior recog-
nition is abbreviated as CB_F_CB; the fusion test based on
optimization algorithm considering vehicle behavior rec-
ognition is abbreviated as CB_F_OB./e comparison results
are demonstrated as follows.

4.5.1. Minimum Verification Loss. /e minimum verifica-
tion loss is shown in Figure 10 and Table 2. As can be seen,
the minimum verification loss with consideration of be-
havior recognition is much smaller than that without
considering it, which indicates that it is necessary to consider
vehicle behavior.

4.5.2. Test Loss. /e test losses are shown in Figure 11 and
Table 3. It can be seen that the test loss of the model without
considering the behavior recognition is the largest and the
test loss of the individual test model is the smallest when
considering the behavior, which shows the importance of
vehicle behavior recognition. Hence, it suggests that in the
real world application, it is very important to use a vehicle
behavior recognition model to identify vehicle behavior
before predicting the trajectory.

Table 2: Comparison of minimum verification loss.

NCB CB
Min_valid_loss 0.0114 0.000417

0

0.01

0.02

Test_loss

Test_loss

NCB
CB_A
CB_F

Figure 11: Comparison of test losses.

Table 3: Comparison of test losses.

NCB CB_A CB_F
Test_loss 0.0115 0.000486 0.000497

0

5

MSE

MSE

NCB_CB

NCB_OB
CB_A_OB CB_A_CB

CB_F_CB

CB_F_OB

Figure 12: MSE comparison.
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Min_valid_loss

Min_valid_loss
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Figure 10: Comparison of minimum verification loss.

10 Journal of Advanced Transportation



4.5.3. MSE Comparison. /eMSE size under each method is
shown in Figure 12 and Table 4. It can be seen from the
results that the MSE generated by the optimization algo-
rithm is much lower than that of the coordinate method,
which means that the optimization algorithm can greatly
improve the accuracy of trajectory prediction. It can be also
seen that the MSE of the model considering behavior rec-
ognition is always lower than that not considering vehicle
behavior. In addition, by considering vehicle behavior, the
MSE produced by the series configuration of the recognition
model and prediction model is very close to that of the
parallel configuration of the two models, which shows that
combining the two models is feasible.

To sum up, the UB-LSTM based trajectory prediction
model, which combines the vehicle behavior recognition and
acceleration trajectory optimization algorithm, is able to
predict the trajectory accurately and stably.

5. Conclusions and Future Plan

/is paper proposes a UB-LSTM trajectory prediction
model, which inputs vehicle state information, vehicle be-
havior information, and interactive information into the
trajectory prediction model to predict the vehicle transverse
and longitudinal speed and coordinates. A vehicle behavior
recognition model is trained to make a prediction combined
with the vehicle trajectory prediction model. An acceleration
trajectory optimization algorithm is proposed to improve
the trajectory prediction accuracy. Experimental results
show that the model test loss obtained by the proposed UB-
LSTM is 0.000497, and the prediction MSE is 0.124, which is
97.2% lower than that without considering the vehicle be-
havior information. As a result, the proposed UB-LSTM
method is suitable for practical usage.

In the next step, we will consider predicting the tra-
jectory for a longer time and collect more experimental data
to improve the model training effect. Although a real car is
not available at this moment, the real vehicle experiment will
be considered in the near future. /e NGSIM dataset used in
this experiment records the time stamp, id, coordinates,
speed, and acceleration of the vehicles. However, a LIDAR
can also provide the time stamp, id, coordinates, velocity,
and acceleration of the surrounding obstacles, and the types
of obstacles include vehicles, pedestrians, and bicycles. /us,
the interactive information provided by a LIDAR is more
comprehensive. Moreover, environmental information can
be obtained through high-precision maps, so more input
information can be used in the process of real cars. Based on
the above characteristics, the real vehicle dataset, similar to
NGSIM dataset, can be collected by a LIDAR to carry out
real car experiments. /e intelligent car uses the C++ lan-
guage to realize automatic driving, while the training model
in this paper is realized by Python language based on
PyTorch, so we will consider using LibTorch to migrate the

model to the intelligent vehicle. /e basic process is as
follows: the LIDAR is firstly used to collect the vehicle
trajectory dataset, then train the UB-LSTM model, and
lastly, transfer the trained model to the intelligent vehicle for
real vehicle experiments. However, the difference between
the real vehicle experiment and the simulation is that the
data processing should be carried out in real time. /is will
be carried out in the future.

Compared with the physical model method, the disad-
vantage of the proposed method is that the calculation speed
is slower due to a large number of calculations, and it is
basically necessary to use GPU to meet the real-time re-
quirements. In the next work, we will try our best to improve
the real-time performance of the model.
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[14] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural
networks for language modeling,” in Proceedings of the
INTERSPEECH 2012 13th Annual Conference of the Inter-
national Speech Communication Association, Portland, OR,
USA, September 2012.

[15] Z. Wu, O. Watts, and S. King, “Merlin: an open source neural
network speech synthesis system,” in Proceedings of the 9th
ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA,
September 2016.

[16] A. L. Bianne, F. Menasri, R. Al-Hajj, C. Mokbel,
C. Kermorvant, and L. Likforman-Sulem, “Dynamic and
contextual information in HMM modeling for handwriting
recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 10, pp. 2066–2080, 2011.

[17] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and
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