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Mem-systems, based on the Memory Circuit Elements
(memristor, memcapacitor, and meminductor), have
received significant attention after the realization of a solid-
state memristor in the Hewlett-Packard laboratories in 2008.
Various mem-systems have been reported in different fields,
ranging from physics and biological models to engineering.
In particular, mem-systems find potential applications in
switching devices, bioinspired electronics, neural networks,
memory elements, and so forth.

In the last few years, we have witnessed the rapid develop-
ments in investigatingmem-systems such as theoreticalmod-
els, complexity, chaos, fundamental fingerprints, numerical
simulations, nonlinear properties, fabrication aspects, and
experimentations. However, there are still different questions,
which invite more discoveries in such systems. The special
issue aims at presenting and discussing advanced topics
of mem-systems with complex dynamic behavior. We had
received a total of 38 submissions. After the review process,
this special issue contains 17 articles, the contents of which
are summarized as follows.

In the article “Fully Integrated Memristor and Its Appli-
cation on Scroll-Controllable Hyperchaotic System” by J. Jin
and C. Li, a fully integrated memristor emulator using oper-
ational amplifiers (OA) and analog multipliers is simulated.

Based on the fully integrated memristor, a scroll-controllable
hyperchaotic system is presented. By controlling the nonlin-
ear function with programmable switches, the memristor-
based hyperchaotic system achieves scroll numbers control-
lably. Moreover, the memristor-based hyperchaotic system is
fully integrated in one single chip, and it achieves lower sup-
ply voltage, lower power dissipation, and smaller chip area.
The fully integrated memristor and memristor-based hyper-
chaotic system are verified with GlobalFoundries’ 0.18𝜇m
CMOS process using Cadence IC Design Tools. The postlay-
out simulation results demonstrate that the memristor-based
fully integrated hyperchaotic system consumes 90.5mWfrom
±2.5V supply voltage, and it takes a compact chip area of
1.8mm2.

In the article “A New Memristor-Based 5D Chaotic
System and Circuit Implementation” by R. Wang et al., a
5D chaotic system with the flux-controlled memristor is
proposed. The dynamics analysis of the new system can also
demonstrate the hyperchaotic characteristics. The design and
analysis of adaptive synchronization for the new memristor-
based chaotic system and its slave system are carried out.
Furthermore, the modularized circuit designs method is
used in the new chaotic system circuit implementation.
The Multisim simulation and the physical experiments are
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conducted and compare and match with each other which
can demonstrate the existence of the attractor for the new
system.

In the article “ANovelMemductor-BasedChaotic System
and its Applications in Circuit Design and Experimental
Validation” by L. Xiong et al., a novel memductor-based
chaotic system is introduced. The local dynamical entities,
such as the basic dynamical behavior, the divergence, the
stability of equilibrium set, and the Lyapunov exponent,
are all investigated analytically and numerically to reveal
the dynamic characteristics of the new memductor-based
chaotic system as the system parameters and the initial
state of memristor change. Subsequently, an active control
method is derived to study the synchronous stability of
the novel memductor-based chaotic system through making
the synchronization error system asymptotically stable at
the origin. Further to these, a memductor-based chaotic
circuit is designed, realized, and applied to construct a
new memductor-based secure communication circuit by
employing the basic electronic components and memristor.
Furthermore, the design principle of the memductor-based
chaotic circuit is thoroughly analyzed and the concept of
“the memductor-based chaotic circuit defect quantification
index” is proposed for the first time to verify whether the
chaotic output is consistent with the mathematical model. A
good qualitative agreement is shown between the simulations
and the experimental validation results.

In the article “New Results on Fuzzy Synchronization
for a Kind of Disturbed Memristive Chaotic System” by B.
Wang and L. L. Chen, the problem on the fuzzy synchro-
nization for a kind of disturbed memristive chaotic system
is studied. First, based on fuzzy theory, the fuzzy model for
a memristive chaotic system is presented; next, based on H-
infinity technique, a multidimensional fuzzy controller and
a single-dimensional fuzzy controller are designed to realize
the synchronization of master-slave chaotic systems with
disturbances. Finally, some typical examples are included to
illuminate the correctness of the given control method.

In the article “Exact Analysis and Physical Realization of
the 6-Lobe Chua Corsage Memristor” by Z. I. Mannan et al.,
a novel generic memristor, dubbed the 6-lobe Chua corsage
memristor, is proposed with its nonlinear dynamical analysis
and physical realization. The proposed corsage memristor
contains four asymptotically stable equilibrium points on
its complex and diversified dynamic routes which reveals
a 4-state nonlinear memory device. The higher degree of
versatility of its dynamic routes reveals that the proposed
memristor has a variety of dynamic paths in response to
different initial conditions and exhibits a highly nonlinear
contiguous DCV-I curve.TheDCV-I curve of the proposed
memristor is endowed with an explicit analytical paramet-
ric representation. Moreover, the derived three formulas,
exponential trajectories of state xn(t), time period tfn, and
minimum pulse amplitude VA, are required to analyze the
movement of the state trajectories on the piecewise linear
(PWL) dynamic route map (DRM) of the corsage memristor.
These formulas are universal, that is, applicable to any PWL
DRM curves for any DC or pulse input and with any number
of segments. Nonlinear dynamics and circuit and system

theoretic approach are employed to explain the asymptotic
quad-stable behavior of the proposed corsage memristor and
to design a novel real memristor emulator using off-the-shelf
circuit components.

In the article “On Designing Feedback Controllers for
Master-Slave Synchronization of Memristor-Based Chua’s
Circuits” by K. Ding, designing feedback controllers for
master-slave synchronization of two chaotic memristor-
based Chua’s circuits is investigated. Thememductance func-
tion of memristor-based Chua’s circuits is a bounded func-
tion with a bounded derivative which is more generalized
than those piecewise constant-valued functions or quadratic
functions in some existing papers.Themain contributions are
that onemaster-slave synchronization criterion is established
for two chaotic memristor-based Chua’s circuits, and the
feedback controller gain is easily obtained by solving a set of
linear matrix inequalities. One numerical example is given to
illustrate the effectiveness of the design method.

In the article “Family of Bistable Attractors Contained
in an Unstable Dissipative Switching System Associated to
a SNLF” by J. L. Echenauśıa-Monroy et al., a multiscroll
generator system is presented, which addresses the issue by
the implementation of 9-level saturated nonlinear function,
SNLF, being modified with a new control parameter that acts
as a bifurcation parameter. By means of the modification
of the newly introduced parameter, it is possible to control
the number of scrolls to generate. The proposed system has
richer dynamics than the original, not only presenting the
generation of a global attractor; it is capable of generat-
ing monostable and bistable multiscrolls. The study of the
basin of attraction for the natural attractor generation (9-
scroll SNLF) shows the restrictions in the initial conditions
space where the system is capable of presenting dynamical
responses, limiting its possible electronic implementations.

In the article “Dynamical Behavior of a 3D Jerk System
with a Generalized Memristive Device” by W. Feng et al.,
a 3D jerk system is proposed by introducing a generalized
memristive device. It is found that the dynamical behavior of
the system is sensitive to the initial conditions even the system
parameters are fixed, which results in the coexistence of mul-
tiple attractors. And there exists different transition behavior
depending on the selection of the parameters and initial
values. Thereby, it is one important type of the candidate
system for secure communication since the reconstruction
of accurate state space becomes more difficult. Moreover,
authors build a hardware circuit and the experimental results
effectively confirm the theoretical analyses.

In the article “Chaos and Symbol Complexity in a
Conformable Fractional-Order Memcapacitor System” by S.
He et al., numerical solution of a conformable fractional
nonlinear system is obtained based on the conformable
differential transform method. Dynamics of a conformable
fractional memcapacitor (CFM) system is analyzed bymeans
of bifurcation diagram and Lyapunov characteristic expo-
nents (LCEs). Rich dynamics is found, and coexisting attrac-
tors and transient state are observed. Symbol complexity of
the CFM system is estimated by employing the symbolic
entropy (SybEn) algorithm, symbolic spectral entropy (Syb-
SEn) algorithm, and symbolic C

0
(SybC

0
) algorithm. It shows
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that pseudorandom sequences generated by the system have
high complexity and pass the rigorous NIST test. Results
demonstrate that the conformable memcapacitor nonlinear
system can also be a good model for real applications.

In the article “An Integer-Order Memristive System with
Two- to Four-Scroll Chaotic Attractors and Its Fractional-
Order Version with a Coexisting Chaotic Attractor” by P.
Zhou andM.Ke, based on a linear passive capacitorC, a linear
passive inductor L, an active-charge-controlled memristor,
and a fourth-degree polynomial function determined by
charge, an integer-order memristive system is suggested.
The proposed integer-order memristive system can generate
two-scroll, three-scroll, and four-scroll chaotic attractors.
The complex dynamics behaviors are investigated numer-
ically. The Lyapunov exponent spectrum with respect to
linear passive inductor L and the two-scroll, three-scroll,
and four-scroll chaotic attractors are yielded by numerical
calculation. Second, based on the integer-order memristive
chaotic system with a four-scroll attractor, a fractional-
order version memristive system is suggested. The complex
dynamics behaviors of its fractional-order version are studied
numerically. The largest Lyapunov exponent spectrum with
respect to fractional-order p is yielded. The coexisting two
kinds of three-scroll chaotic attractors and the coexisting
three-scroll and four-scroll chaotic attractors can be found in
its fractional-order version.

In the article “Dynamic Behaviors in Coupled Neuron
System with the Excitatory and Inhibitory Autapse under
Electromagnetic Induction” by Y. Xu et al., numerical sim-
ulation method is adopted with the aim of investigating the
synchronous behavior in the neuronal system that is coupled
by chemical and electrical synapses under electromagnetic
induction. Within the improved model, the effects of electro-
magnetic induction on neurons are described with additive
memristive current on the membrane variable, and the
memristive current is dependent on the variation ofmagnetic
flow. The simulation results show that the two coupling
modes play an important role in the synchronization of
the system. By increasing the chemical synaptic feedback
gain, authors observe a transition from mixed oscillatory
to periodic state at a critical value. In addition, two Hopf
bifurcation points are found with the change of the external
stimuli, and the state of neuron discharge is influenced by
initial values. Furthermore, there is a domain of coupling
strength and feedback gain values, in which the two-coupled
neuron system is synchronized and longer time lag is not
conducive to the system synchronization.

In the article “Evidence of Exponential Speed-Up in the
Solution of Hard Optimization Problems” by F. L. Traversa
et al., a noncombinatorial approach is applied to hard
optimization problems that achieves an exponential speed-
up and finds better approximations than the current state
of the art. First, authors map the optimization problem
into a Boolean circuit made of specially designed, self-
organizing logic gates, which can be built with (nonquantum)
electronic elements with memory. The equilibrium points of
the circuit represent the approximation to the problem at
hand. Then, authors solve its associated nonlinear ordinary
differential equations numerically, towards the equilibrium

points. Authors demonstrate this exponential gain by com-
paring a sequential MATLAB implementation of authors’
solver with the winners of the 2016 Max-SAT competition
on a variety of hard optimization instances. Authors show
empirical evidence that authors’ solver scales linearly with
the size of the problem, both in time and in memory, and
argue that this property derives from the collective behavior
of the simulated physical circuit. Authors’ approach can be
applied to other types of optimization problems, and the
results presented here have far-reaching consequences in
many fields.

In the article “Analysis and Implementation of a New
Switching Memristor Scroll Hyperchaotic System and Appli-
cation in Secure Communication” by P. Liu et al., a novel
switching scroll hyperchaotic system based on a memristor
device is proposed and applied to secure communication.
The new system could be switched between the double-scroll
chaotic system and themultiscroll one by switch S1 and switch
S2. Authors gave the construction process of the novel system,
its numerical simulations, and dynamical properties, firstly.
Moreover, the memristive circuit implementation of the new
switching system was presented and the results were also
in agreement with those of numerical simulation. Finally,
the new switching memristive system was applied to secure
communication bymeans of the drive-response synchroniza-
tion with chaotic masking. When the voice signal is a rising
waveform, it is encrypted by the double-scroll memristive
system. When the voice signal is a falling waveform, the
multiscroll memristive system works. The voice signal is
completely submerged in the chaotic signal and could not
be distinguished at all. Security analyses show that it is a
successful application to secure communication.

In the article “Investigation of Cortical Signal Propaga-
tion and theResulting Spatiotemporal Patterns inMemristor-
Based Neuronal Network” by K. Ding et al., it is shown
that memristive neuronal network can represent plastic-
ity phenomena observed in biological cortical synapses. A
network of neuronal units as a two-dimensional excitable
tissue is designed with 3-neuron Hopfield neuronal model
for the local dynamics of each unit. The results show that
the lattice supports spatiotemporal pattern formationwithout
supervision. It is found that memristor-type coupling is more
noticeable against resistor-type coupling, while determining
the excitable tissue switch over different complex behaviors.
The stability of the resulting spatiotemporal patterns against
noise is studied as well. Finally, the bifurcation analysis is
carried out for variation of memristor effect. Authors’ study
reveals that the spatiotemporal electrical activity of the tissue
concurs with the bifurcation analysis. It is shown that the
memristor coupling intensities, by which the system under-
goes periodic behavior, prevent the tissue from holding wave
propagation. Besides, the chaotic behavior in bifurcation
diagram corresponds to turbulent spatiotemporal behavior of
the tissue. Moreover, authors found that the excitable media
are very sensitive to noise impact when the neurons are
set close to their bifurcation point, so that the respective
spatiotemporal pattern is not stable.

In the article “Fractional-Order Memristor Emulator
Circuits” by C. Sánchez-López et al., the synthesis of
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fractional-order memristor (FOM) emulator circuits is stud-
ied. To do so, a novel fractional-order integrator (FOI)
topology based on current-feedback operational amplifier
and integer-order capacitors is proposed. Then, the FOI
is substituting the integer-order integrator inside flux- or
charge-controlled memristor emulator circuits previously
reported in the literature and in both versions: floating and
grounded. This demonstrates that FOM emulator circuits
can also be configured at incremental or decremental mode
and the main fingerprints of an integer-order memristor
are also holding up for FOMs. Theoretical results are val-
idated through HSPICE simulations and the synthesized
FOM emulator circuits can easily be reproducible. More-
over, the FOM emulator circuits can be used for improv-
ing future applications such as cellular neural networks,
modulators, sensors, chaotic systems, relaxation oscillators,
nonvolatile memory devices, and programmable analog
circuits.

In the article “Memristor-Based Canonical Chua’s Cir-
cuit: Extreme Multistability in Voltage-Current Domain and
Its Controllability in Flux-Charge Domain” by H. Bao et al.,
authors investigate extreme multistability and its controlla-
bility for an ideal voltage-controlled memristor emulator-
based canonical Chua’s circuit. With the voltage-current
model, the initial condition-dependent extreme multistabil-
ity is explored through analyzing the stability distribution
of line equilibrium point and then the coexisting infinitely
many attractors are numerically uncovered in such a mem-
ristive circuit by the attraction basin and phase portraits.
Furthermore, based on the accurate constitutive relation of
the memristor emulator, a set of incremental flux-charge
describing equations for the memristor-based canonical
Chua’s circuit is formulated and a dimensionality reduction
model is thus established. As a result, the initial condition-
dependent dynamics in the voltage-current domain is con-
verted into the system parameter-associated dynamics in
the flux-charge domain, which is confirmed by numerical
simulations and circuit simulations. Therefore, a control-
lable strategy for extreme multistability can be expediently
implemented, which is greatly significant for seeking chaos-
based engineering applications of multistable memristive
circuits.

In the article “Three-Dimensional Memristive Hind-
marsh–Rose Neuron Model with Hidden Coexisting Asym-
metric Behaviors” by B. Bao et al., a novel three-dimensional
memristive Hindmarsh–Rose (HR) neuron model is pre-
sented to describe complex dynamics of neuronal activities
with electromagnetic induction. The proposed memristive
HRneuronmodel has no equilibriumpoint but can showhid-
den dynamical behaviors of coexisting asymmetric attractors,
which has not been reported in the previous references for
the HR neuron model. Mathematical model based numerical
simulations for hidden coexisting asymmetric attractors are
performed by bifurcation analyses, phase portraits, attraction
basins, and dynamical maps, which just demonstrate the
occurrence of complex dynamical behaviors of electrical
activities in neuron with electromagnetic induction. Addi-
tionally, circuit breadboard based experimental results well
confirm the numerical simulations.
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In this paper, a fully integrated memristor emulator using operational amplifiers (OAs) and analog multipliers is simulated. Based
on the fully integrated memristor, a scroll-controllable hyperchaotic system is presented. By controlling the nonlinear function with
programmable switches, the memristor-based hyperchaotic system achieves controllable scroll numbers. Moreover, the memristor-
based hyperchaotic system is fully integrated in one single chip, and it achieves lower supply voltage, lower power dissipation, and
smaller chip area. The fully integrated memristor and memristor-based hyperchaotic system are verified with the GlobalFoundries’
0.18 μm CMOS process using Cadence IC Design Tools. The postlayout simulation results demonstrate that the memristor-based
fully integrated hyperchaotic system consumes 90.5mW from ±2.5V supply voltage and it takes a compact chip area of 1.8mm2.

1. Introduction

Memristor and multiscroll chaos systems are two research
hotspots in recent years. Although, memristor is not com-
mercially available, many memristive emulators have been
reported [1–5]. Based on these memristive emulators, various
kinds of memristor-based chaotic circuits have been pre-
sented [6–12] and they effectively promote the development
of the memristive circuit theories.

Most of the existingmemristive emulators andmemristor-
based chaotic circuits are realized using commercially avail-
able off-the-shelf discrete components with breadboard or
field programmable gate array (FPGA). The breadboard or
FPGA-based chaotic circuits are difficult to achieve low-
voltage and low-power conditions. As we all know, the fully
integrated circuits have the advantages of lower supply volt-
age, less power consumption, more stable and convenient than
their breadboard-based counterparts. Cruz and Chua [13, 14]
realized fully integrated Chua’s circuit and nonlinear resis-
tor in 1992 and 1993. Elwakil et al. [15] realized another
integrated chaotic system in 2002, which further verified
the advantages of the integrated chaotic circuits. However,

the existing integrated chaotic circuits are very simple; they
could not realize more complicated chaos.

In order to realize more practical and complicated inte-
grated memristor-based chaotic circuits, a fully integrated
memristor emulator and a scroll-controllable hyperchaotic
system are presented and verified in this paper. The Cadence
IC Design Tools post-layout simulation results verify that
the presented fully integrated memresistor and memristor-
based scroll-controllable hyperchaotic system are all feasi-
ble and achievable and the fully integrated method will fur-
ther promote the practical applications of chaotic circuits
and systems.

2. Fully Integrated Scroll-Controllable
Hyperchaotic System and Its
Dynamics Analysis

2.1. Implementation of the Operational Amplifier. In a fully
integrated chaotic system, complex and high-performance
OA is not necessary, and the designed low-voltage and low-
power two-stage OA with simple structure for the fully
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integrated chaotic system is presented in Figure 1 [16]. The
supply voltage of the designed operation amplifier is VCC =
−VSS = 2 5V. The P-channel transistors M7–M9 [17] and
N-channel transistors M10–M11 consist of a double-ended
input single-ended output differential input stage; M12 and
M13 consist of the second common source amplifier stage;
M14 and capacitor C consist of the frequency compensation
network between the two stages; the transistors M1–M6 con-
sist of the bias circuit of the OA.

The simulated amplitude and phase-frequency character-
istics of the operation amplifier are presented in Figure 2.
From the marks M0–M3, it is clear that the voltage gain
of the operation amplifier is about 30 dB, its 3 dB band-
width is 218.5 kHz, and the phase margin is about 86.22°.
Its static power consumption is about 5.85mW with ±2.5V
supply voltage.

2.2. Implementation of the Analog Multiplier. The analog
multiplier used in the memristor is presented in Figure 3.
The classic Gilbert structure [18–20] is adopted. M4 and
M5 consist of the transconductance stage; M6–M9 consist of

the Gilbert switch stage, and M10–M13 consist of the load
stage of the analog multiplier. The supply voltage of the
designed analog multiplier is VCC = −VSS = 2 5V.

The transient responses of the designed analog multi-
plier are presented in Figure 4. V i1 and V i2 are the two input
voltages; their input powers are all −10 dBm, and their
frequencies are 100MHz and 10MHz, respectively. Vout is
the output voltage of the analog multiplier. From the above
simulation results, it is clear that V i1 is the high-frequency
carrier, V i2 is the low-frequency input signal, and the multi-
plication is realized in the output voltage Vout.

2.3. The Fully Integrated Memristor. Memristors could be
classified as flux-dependent and charge-dependent memris-
tors. A fully integrated flux-controlled memristor is adopted
in this work, and its circuit realization using operation ampli-
fier and multipliers is presented in Figure 5.

The voltage and current relation of the flux-controlled
memristor could be expressed as

i =W φ v, φ = v, 1
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Figure 1: The designed OA.
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where W φ is an incremental memductance function [21].
In order to research the characteristics and application
of memristor, various mathematical models and emulator
circuits of memristor have been reported in recent years
[1–3, 22]. According to [6, 23], a quadric nonlinearity is
used to indicate memductance function:

W φ = a + 3bφ2, 2

where a and b are two positive constants.
Figure 6 shows the Cadence simulation results of the

frequency-dependent pinched hysteresis loop of the memris-
tor in Figure 5 operating at various frequencies. The circuit
elements used in the memristor are R1 = 250 kΩ, R2 =
500 kΩ, R3 = 40 kΩ, C1 = 220 pF, and the supply voltages
of the OA and multiplier are all ±2.5V.

Figure 6(a) is the simulation result while the frequency
of the input voltage equals to 100 kHz, and a clear pinched
hysteresis loop is obtained. Figure 6(b) is the simulation
result while the frequency of the input voltage equals to
1MHz; the edges of the pinched hysteresis loop become a
bit blurry, and the center of the pinched hysteresis loop
becomes narrow. Figure 6(c) is the simulation result while
the frequency of the input voltage equals to 5MHz; the edges
of the pinched hysteresis loop become more blurred, and the
center of the pinched hysteresis loop becomes more narrow.
From the simulation results in Figure 6, it is clear that the
fully integrated memristor could operate properly from
1kHz to 1MHz. Compared with the memristor using off-
the-shelf discrete components with breadboard [24–28],
the fully integrated memristor could be used in higher fre-
quency applications.

2.4. The Programmable Staircase Function Circuit. The pro-
posed fully integrated programmable staircase function cir-
cuit is presented in Figure 7, and it is realized using the
designed OA in Figure 2. The circuit elements used in the
memristor are R1 = R4 = R7 = 1 kΩ, R2 = R5 = R8 = 350 kΩ,
R3 = R6 = R9 = 19 8 kΩ, R10 = 2 20 kΩ, and R11 = R12 = 10
kΩ. The programmable MOS switches used in the proposed
programmable staircase function circuit is presented in
Figure 8. The programmable MOS switch consists of a
NMOS and a PMOS transistor, and it can be turned on and
off by controlling the bias voltages V s+ and V s− [29, 30].

By controlling the switches S1, S2, and S3 in Figure 7, the
numbers of stairs could be changed. When the switches S1
and S3 are turned off, a stair is obtained (Figure 9(a) N = 1).
When the switch S2 is turned off, S1 and S3 are turned
on and two stairs are obtained (Figure 9(b) N = 2). When
the switches S1, S2, and S3 are all turned on, three stairs are
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Figure 5: The fully integrated memristor.
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obtained (Figure 9(c)N = 3). As an example, when the switch
S2 is turned off, S1 and S3 are turned on; the simulated stair-
case function circuit with N = 2 is presented in Figure 9(d).

2.5. The Proposed Fully Integrated Scroll-Controllable
Hyperchaotic System and Its Dynamics Analysis. The proposed
fully integrated scroll-controllable hyperchaotic system is pre-
sented in Figure 10. It consists of a classic Jerk system [31–35]
and a flux-controlled memristor in Figure 5. There are three
integrators (OA1, OA2, and OA4) and two reverse propor-
tional operators (OA3 and OA5) in the fully integrated
scroll-controllable hyperchaotic circuit. The circuit elements
used in the chaotic circuit are R1 = R2 = R = 4 9 kΩ, R5 =
R6 = R7 = R8 = Rk = 9 45 kΩ, R3 = R4 = R9 = R10 = 10 kΩ, and
C1 = C2 = C3 = C = 35 pF.

From Figure 10, the following expression could be
obtained:

x = y
RC

,

y = z
RC

−
W φ z

C
,

z = −
x

RkC
−

y
RkC

−
z

RkC
+ f x

RkC
,

φ = z,

3

where W φ is the memductance of the memristor and f x
is the output of the staircase function circuit in Figure 5. The
stairs of f x can be changed by the programmable switches,
and the scrolls of the chaotic system are controllable.

In order to explore the nonlinear dynamics of the
fully integrated hyperchaotic system, the Lyapunov expo-
nents and bifurcation diagrams are investigated using the
MATLAB simulation results.
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The dimensionless equations of the chaotic system could
be expressed as

x = y,
y = z − αW φ z,
z = −β x + y + z + f x ,
φ = z,

4

where W φ = a + 3bφ2 and α and β are two positive
parameters.

Let β = 0 72, the bifurcation diagram is presented in
Figure 11. From Figure 11, it is clear that the system is
chaotic, when α is changing from 0 to 2. The Lyapunov expo-
nents of the system by adjusting α from 0 to 2 are presented
in Figure 12. From Figure 12, it is clear that there are two
Lyapunov exponents more than zero in the system and the
proposed system is a hyperchaotic system. Considering
Figures 11 and 12, both of the Lyapunov exponents and the
bifurcation diagram indicate that the proposed system is cha-
otic and it could generate complex dynamic behaviors.

3. Postlayout Simulation Results of the Fully
Integrated Scroll-Controllable
Hyperchaotic Circuit

The proposed fully integrated scroll-controllable hyperchao-
tic system is verified using the Cadence IC Design Tools
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Figure 13: Chip layout diagram of the chaotic circuit (1.8mm2).
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Figure 14: The phase portrait in the x-y plane (S2 is turned on, S1
and S3 are turned off).
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5.1.41 Spectre simulator with GlobalFoundries’ 0.18μm
CMOS technology. The supply voltage of the OAs and mul-
tipliers is all ±2.5V, and the power consumption of the whole
chaotic system is about 90.5mW. According to the standard
GlobalFoundries’ 0.18μm CMOS process, there are two
problems that should be considered in the full integration
of chaotic circuits. First, the capacitors and inductors should
not exceed 1nF and 1mH, because large capacitors and
inductors cannot be realized in the standard integration pro-
cess. Second, it is difficult to realize complex chaotic systems,
because the supply voltages are very low in integrated circuits
(less than 5V).

The chip layout diagram of the chaotic oscillator is pre-
sented in Figure 13, and it takes a compact chip area of

1.8mm2 including the testing pads. The Mentor Calibre soft-
ware is used for the design rule check (DRC), layout versus
schematic (LVS), and parasitic extraction (PEX) of the cha-
otic system. Based on the chip layout in Figure 13 and con-
sidering the parasitics extracted from the chip layout, the
postlayout simulation results are presented in Figures 14–22.

When the switch S2 is turned on, S1 and S3 are turned off,
a single-stair nonlinear staircase function is added in the cha-
otic system, and the simulation results are presented in
Figures 14–16.

Figures 14–16 are the phase portraits in the x-y, x-z, and
y-z planes. Because the nonlinear staircase function is added
in the x axis, there are two scrolls in the x-y and x-z planes
and one scroll in the y-z plane.

When the switches S1 and S3 are turned on, S2 is turned
off and a two-stair nonlinear staircase function is added in
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Figure 17: The phase portrait in the x-y plane (S1 and S3 are turned
on, S2 is turned off).
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Figure 18: The phase portrait in the x-z plane (S1 and S3 are turned
on, S2 is turned off).
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Figure 19: The phase portrait in the y-z plane (S1 and S3 are turned
on, S2 is turned off).
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the chaotic system, and the simulation results are presented
in Figures 17–19.

Figures 17–19 are the phase portraits in the x-y, x-z, and
y-z planes. Similarly, the nonlinear staircase function is also
added in the x axis, there are three scrolls in the x-y and
x-z planes, and one scroll in the y-z plane.

When the switches S1, S2, and S3 are all turned on, a
three-stair nonlinear staircase function is added in the cha-
otic system, and the simulation results are presented in
Figures 20–22.

Figures 20–22 are the phase portraits in the x-y, x-z, and
y-z planes. Similarly, the nonlinear staircase function is also
added in the x axis, there are four scrolls in the x-y and x-z
planes, and one scroll in the y-z plane.

Obviously, by using programmable switches in the
staircase circuit, it is easy to generate controllable scrolls
in the proposed fully integrated scroll-controllable hyperch-
aotic system.

4. Conclusion

This work proposed a novel fully integrated memristor-based
scroll-controllable hyperchaotic system. The chaotic system
is verified via bifurcation diagram and Lyapunov exponents.
In addition, the new chaotic system is realized using the
designed OA and multiplier and simulated using Cadence
IC Design Tools with the GlobalFoundries’ 0.18μm CMOS
process. It is hoped that the investigation of this work will
lead to more effective and systematic studies of fully inte-
grated low-voltage and low-power chaotic circuits and
enhance the practical applications of chaotic circuits.
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Figure 21: The phase portrait in the x-z plane (S1, S2, and S3 are all
turned on).
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This paper is expected to introduce a novel memductor-based chaotic system. The local dynamical entities, such as the basic
dynamical behavior, the divergence, the stability of equilibrium set, and the Lyapunov exponent, are all investigated analytically
and numerically to reveal the dynamic characteristics of the new memductor-based chaotic system as the system parameters and
the initial state of memristor change. Subsequently, an active control method is derived to study the synchronous stability of the
novel memductor-based chaotic system through making the synchronization error system asymptotically stable at the origin.
Further to these, a memductor-based chaotic circuit is designed, realized, and applied to construct a new memductor-based
secure communication circuit by employing the basic electronic components and memristor. Furthermore, the design principle
of the memductor-based chaotic circuit is thoroughly analyzed and the concept of “the memductor-based chaotic circuit defect
quantification index” is proposed for the first time to verify whether the chaotic output is consistent with the mathematical
model. A good qualitative agreement is shown between the simulations and the experimental validation results.

1. Introduction

With the deep study of the chaotic systems and chaotic
circuits, the concept of memristor was first put forwarded
by Chua in 1971 [1]. Memristor is the fourth circuit compo-
nent after capacitor, resistor, and inductor were coined,
which is actually a nonlinear resistor with natural memory
function. Nevertheless, we did not see significant progress
on relevant research at that time on account of insufficient
attention was paid to the memristor. The immature nanoma-
nufacturing technology and difficult manufacturing of mem-
ristor with real materials all contributed to the slow progress
on memristor [2]. It was not until 2008 that the HP Labora-
tories confirmed the existence of memristor and simulta-
neously a memristor-based real device was coined with its
results published in Nature [3, 4]. Since then, memristor
has become a hot research spot of chaos and it drew much
more eyes from researchers engaged in various areas of

science and engineering [5–10]. It is well known that
memristor has two models, namely, charge control and chain
control. Among them, charge control exports memristor,
while chain control exports memductor. If the memristor is
a constant, it becomes the same concept as resistor. Corre-
spondingly, the physical meaning of memductor is equiva-
lent to conductance. Because the design of memductor is
more convenient than the design of memristor in the design
of chaotic circuits, the model of memductor is studied in
this paper.

As a tunable nonlinear device with small size and low
power consumption, memristor is quite suitable for the
applications of high-frequency chaotic circuit, image encryp-
tion, and chaotic secure communication. It is no wonder that,
in recent years, utilizing memristor to construct chaotic cir-
cuits has attracted close attention of quite a number of
researchers [11–15]. Among them, Itoh and Chua adopted
the memristor with a characteristic curve for the monotone
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rise and piecewise linear to replace the diode in Chua’s circuit
and followed by the chaotic oscillation circuit based on mem-
ristor was derived [6]. Similarly, Muthuswamy and Kokate
replaced the memristor with piecewise linear model instead
of Chua’s diode and analyzed the dynamic characteristics of
the system after replacement. The results indicated that the
chaotic characteristics of the system were more complex than
that of the classical Chua’s [7]. In 2010, Muthuswamy and
Chua proposed the most simple third-order memristor cha-
otic circuit so far and in [8, 9] showed the experimental
results of the corresponding hardware circuit, whose greatest
feature was the simple structure. It was connected in series
simply by a linear inductor, a linear capacitor, and a non-
linear memristor. In addition, Bao et al. carried on the
research on the memristor chaotic circuit and realized a
series of new Chua’s memristor chaotic circuits by using
the smooth model magnetic controlled memristor [10–12].
At present, the proposed memristor chaotic oscillation cir-
cuits of different structure and types [13–23] include the
chaotic circuits with two memristors [16], integer-order
memristor chaotic circuit [18], fractional-order memristor
chaotic circuit [19], and memristor-based circuit for neural
networks [23], whereas most of the researchers focus on
theoretical analysis and numerical simulation for the mem-
ristive chaotic system and the experimental validation of
the hardware circuit is rarely seen because those memristive
chaotic circuits are theoretically established and their feasi-
bility to be implemented by using hardware circuit is still
not known. In particular, it is more difficult to design and
implement a practical circuit for certain more complicated
memductor chaotic systems. Therefore, we construct a novel
memductor-based chaotic circuit and implement the experi-
mental validation of the hardware circuit for above reason.

Moreover, in order to meet the security requirements
of chaotic secure communication, researchers proposed a
method to improve the predictability and complexity of
the system by constructing hyperchaotic systems [24–26]
and memristor-based chaotic systems, since memristor is a
nonlinear component, whose memory ability [27–31] of the
current by convection is not available in conventional chaotic
circuit elements. In this way, it is especially suitable for the
chaotic secure communication field [32–36]. Although the
application research of memristor is just the beginning in
the field of chaotic secure communication, it has great poten-
tials and advantages in improving the confidentiality and
security of chaotic secure communication system. So far,
there is no literature to implement the memductor-based
chaotic secure communication in chaotic modulation way.
In this paper, chaotic modulation is adopted to implement
the memductor-based secure communication based on the
novel memductor-based chaotic circuit.

The contribution of this paper is that a new method
for constructing ordinary chaotic system into memductor-
based chaotic system is proposed by using memristor as
nonlinear term. Then, we perform a detailed analysis, active
control, synchronous stability analysis [37–40], and secure
communication of the novel memductor-based chaotic sys-
tem. The active control is implemented, and the synchroniza-
tion stability results are determined by using Lyapunov

stability theory. The corresponding physical circuit imple-
mentation is also proposed to show the accuracy and effi-
ciency of the memductor-based chaotic circuit. The analog
circuit implementation results match with the Multisim
and MATLAB simulation results. In addition, the concept
of “the memductor-based chaotic circuit defect quantifica-
tion index” is first proposed to verify whether the chaotic
output is consistent with the mathematical model through
deep analysis on the design principle of memductor-based
chaotic circuit. Our research provides important theoretical
and technical basis for the realization of the large-scale inte-
grated circuit with memductor. This paper is expected to
serve as a further step to apply memductor into real-world
secure communication.

This paper falls into 6 parts. In Section 2, a novel
4D memductor-based chaotic system is constructed. In
following Section 3, several qualitative issues about the novel
memductor-based chaotic system, such as the basic dynami-
cal behavior, divergence, stability of the equilibrium set,
bifurcation, Poincaré map, and synchronous stability, are
investigated analytically and numerically. In Section 4,
the proposed memductor-based chaotic circuit is imple-
mented in an analog electronic circuit. After that, a new
memductor-based chaotic secure communication circuit is
proposed based on the novel memductor-based chaotic cir-
cuit in Section 5. Finally, some conclusions and discussions
are drawn in Section 6.

2. The Construction of a Novel Memductor-
Based Chaotic System

2.1. A Specific Memductor Model. Apart from the three basic
circuit components, including capacitor, resistor, and induc-
tor, the fourth circuit component is memristor, which derives
from the magnetic flux and charge in the circuit. And the
resistance value of the memristor varies with the current
flowing through the circuit. When the circuit is powered
down, the resistance value of the memristor still remains
valid before the power is broken. Therefore, memristor is
actually a nonlinear resistor with natural memory function.

The memristor is defined as the relation between the
magnetic flux and the charge quantity, that is,

dϕ =mdq 1

Memristor can be divided into accumulation charge
memristor and magnetic flux-controlled memristor. For a
charge-controlled memristor, ϕ is easily obtained by

ϕ = f q 2

For (2), differentiation can be easily obtained as follows:

dϕ
dt

= df q
dq

dq
dt

3
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Thus, v t can be obtained as follows:

v t = df q
dq

i t 4

According to Ohm’s law, v t is obtained as follows:

v t =m q i t 5

Thus, a memristance value is obtained as follows:

m q = df q
dq

, 6

where m q is the memristance, and its unit is Ohm (Ω). If
the memristance value is a constant, then it becomes the
same concept as resistance. It can also be obtained by a linear
relationship between the current and the voltage.

For the magnetic flux-controlled memristor, q is easily
obtained by

q = f ϕ 7

From i = dq/dt, we can get

i t =w ϕ v t , 8

where w ϕ is the memductance. In the chaotic circuits, the
use of memductor is more extensive. This is because the
design of memductor in chaotic circuits is more convenient
than memristor design.

Here, a magnetically controlled memristor is defined
with a smooth cubic monotonic rise nonlinear characteristic
curve. The model is a nonlinear memductor, and the nonlin-
earity is modeled by using a cubic curve model. The formula
is described as follows:

q ϕ = aϕ + bϕ3 9

Act on the equation ends of the sign with d/dt, that is,

dq ϕ

dt
= d
dt

aϕ + bϕ3 = d
dϕ

aϕ + bϕ3
dϕ
dt

= a + 3bϕ2 dϕ
dt

10

In consideration of dq = idt, dϕ = udt, and ϕ = udt, we
can obtain

i = a + 3bϕ2 u 11

and

i = au + 3bu udt
2

12

Equation (11) is the VAR (volt ampere relation) expres-
sion of the memductor. It makes the physical concept of

memductor more distinct; thus, we can clearly see that the
dimension of a + 3bϕ2 is conductance. Equation (12)
seems useless, but it is very important for engineering design.
The specific circuit of memristor can be directly designed
by (12). Even when the model represented by (10) changes,
we can also design corresponding memductor-based or
memristor-based circuits according to this method.

2.2. Realization Circuit of the Specific Memductor Element.
According to (12), the specific circuit of memristor can be
designed directly. An equivalent memductor-based circuit
consisting of operational amplifier, analog multiplier, resis-
tor, and capacitor is shown in Figure 1.

Here, we assume that the B terminal is connected to
the inverting input of the next-stage operational amplifier,
so the B point has dummy ground and zero level. The A
point is the voltage input, and it is set as uA. The multi-
plier coefficient of analog multiplier is 0.1, and the relation
between input and output voltage is described as uo = 0 1
u2i . It is assumed that the normalized resistance is 10 kΩ.
Then, the output voltage of the operational amplifier is
− 300/RwCw uAdt. And the output voltage of the opera-
tional amplifier after normalization is −300 uAdt. After

the first analog multiplication, the voltage is 30 uAdt
2.

After the second analog multiplication, the voltage is 3uA
uAdt

2. Therefore, the current flowing through Rb is easily
obtained as follows:

iRb
= 3uA uAdt

2

Rb
13

Thus, the current flowing through B point is obtained
as follows:

iB =
uA
Ra

+ 3uA uAdt
2

Rb
14

In the following, the circuit parameter design is car-
ried out.

Rw = 33 3Ω,

Ra =
10 kΩ
a

,

Rb =
10 kΩ
b

15

A

Rw Cw

Ra

Rb

B

−
+

0.1v 2i 0.1v 2i

Figure 1: The alternative circuit of memristor.
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Then, the total current flowing through B is obtained
as follows:

iB = auA + 3buA uAdt
2

16

In this way, the circuit structure and circuit parame-
ter design of the memductance are realized. The equiva-
lent memductor-based circuit with specific parameters is
shown in Figure 2.

2.3. A Novel 4D Memductor-Based Chaotic System. The 3D
chaotic system is described as follows:

x = α y − h x ,
y = x − y + z,
z = −βy,

17

where

h x =m1x +m2 f x =m1x +m2
1
2 x + 1 − x − 1 ,

18

and where x, y, z are the state variables and α, β,m1,m2
are the constant parameters of the 3D system. Here, replace
h x with the memductance w x ; thus, a mathematical
model of a chaotic circuit consisting of a memductor element
is obtained as follows:

x = α y −w x ,
y = x − y + z,
z = −βy,

19

where

w x = ax + 3bx xdt
2

20

Therefore, according to the characteristics of the afore-
mentioned specific memductor element and the specific
realization circuit with memductor, a novel 4D memductor-
based chaotic system is proposed based on the ordinary 3D

chaotic system (17). And the novel 4D memductor-based
chaotic system is presented as follows:

x = α y + ξx − cu − dxu2 ,
y = x − y + z,
z = −βy − γz,
u = x,

21

where x, y, z, u are the state variables and α, β, ξ, γ, c, d are
constant, positive parameters of the novel memductor-
based chaotic system.

When choosing α = 16, β = 15, ξ = 0 25, c = 0 00625,
d = 0 125, and γ = 0 5, there exist typical chaotic attractors
in system (21). That is, after adding 1D memristor to the
ordinary 3D chaotic system, we need to find the appropriate
parameters to satisfy the memductor-based system to pro-
duce new chaotic phenomena. For the constructed novel
memductor-based chaotic system, four parameters ξ, γ, c, d
are added. When the specific parameters are brought in, the
equation becomes

x = 16 y + 0 25x − 0 00625u − 0 125xu2 ,
y = x − y + z,
z = −15y − 0 5z,
u = x

22

However, the numerical solutions of the proposed 4D
memductor-based chaotic system (22) are not able to be
implemented by using general circuit components. There-
fore, in practical applications, it often needs to be varied to
make proper adjustments of these variables. Here, the
method of scale transformation is to replace x, y, z, and u
by 4x, 0 5y, 3z, and u, respectively. After scale transforma-
tion, (22) becomes

x = 4x + 2y + 0 025u − 2xu2,
y = 8x − y + 6z,
z = −2 5y − 0 5z,
u = −4x

23

Thus, the novel 4D memductor-based chaotic system
after scale transformation is easily described as follows:

x = ξx + αy + cu − dxu2,
y = ηx − y + μz,
z = −βy − γz,
u = −ρx,

24

where x, y, z, u are the state variables and α, β, ξ, γ, c, d, η,
μ, ρ are constant, positive parameters of the novel 4D
memductor-based chaotic system. When choosing ξ = 4,

A

33Ω 10kΩ
b

10kΩ
a B

0.1v0.1v 2
i

2
i

Cw = 1

−
+

Figure 2: The alternative circuit of memductor based with specific
parameters.
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α = 2, c = 0 025, d = 2, η = 8, μ = 6, β = 2 5, γ = 0 5, and ρ = 4,
there exist typical chaotic attractors in system (24).

3. Dynamical Analysis of the Novel Memductor-
Based Chaotic System

3.1. Chaotic Attractors. The chaotic attractors with MATLAB
simulation of the novel 4D memductor-based chaotic system
(24) are shown in Figure 3. It can be seen from the numerical
simulation results that the numerical range of each variable
parameter is within −10V to +10V, and it fully conforms
to the requirements of circuit design in practical applications.
That is because the working voltage of electronic components
generally ranges from −15V to +15V in practical electronic
circuits. As a result, it must be the equation of scaling if the
memductor-based chaotic circuit is to be implemented.

3.2. Divergence and Stability of Equilibrium Set. The diver-
gence of the novel 4D memductor-based chaotic system
(24) is easily calculated as follows:

∇ = ∂x
∂x

+ ∂y
∂y

+ ∂z
∂z

+ ∂u
∂u

= ξ − du2 − 1 − γ = 2 5 − 2u2

25

In this way, the system will be dissipative on the condi-
tion that the parameter becomes ∣u∣ > 5/2, because a neces-
sary and sufficient condition for system (24) to be dissipative
is that the divergence of the vector field is negative when the
time tends to infinite. Furthermore, the corresponding
dynamic characteristics will be presented.

Considering x = y = z = u = 0, then the equilibrium equa-
tion of system (24) is easily obtained as follows:

x = ξx + αy + cu − dxu2 = 0,
y = ηx − y + μz = 0,
z = −βy − γz = 0,
u = −ρx = 0

26

Clearly, the set of equilibrium points of the system (24) is
obtained as follows:

E = x, y, z, u ∣ x = y = z = 0, u = σ , 27

where σ is any real constant. That is, the set of points on the u
coordinate is the equilibrium point and the system has an
infinite set of equilibrium points. Through linearizing the
system (24) near the equilibrium point, then the Jacobian
matrix for system (24) at equilibrium point (27) is obtained
as follows:

JE =

ξ − dσ2 α 0 0
η −1 μ 0
0 −β −γ 0
−ρ 0 0 0

, 28

where ξ = 4, α = 2, d = 2, η = 8, μ = 6, β = 2 5, γ = 0 5, and
ρ = 4. Then, the specific Jacobian matrix for system (24)
at equilibrium point is easily obtained as follows:

JE =

4 − 2σ2 2 0 0
8 −1 6 0
0 −2 5 −0 5 0
−4 0 0 0

29

The characteristic polynomial of the Jacobian matrix
(29) is described as follows:

Det JE − λI = 0 30

Therefore, the eigenvalues at the equilibrium point of
the novel memductor-based chaotic system can be
obtained as follows:

λ1 = 5 7332,
λ2,3 = −1 6276 ± 3 0918i,
λ4 = 0 0221,
∣σ∣ > 1 118

31

It can be concluded from (31) that the equilibrium
point set of the system, which accords with the condition
of chaos generation, is unstable.

3.3. Bifurcation, Lyapunov Exponents, and Poincaré Graph.
The calculation of Lyapunov exponent is a method employed
to quantitatively judge the chaos of system. When choosing
ξ = 4, α = 2, c = 0 025, d = 2, η = 8, μ = 6, β = 2 5, γ = 0 5,
and ρ = 4, the initial conditions are chosen as x 0 =
−0 17528, y 0 = −1 0872, z 0 = 1 6368, and u 0 = −3 2852.
The Lyapunov exponents of the novel memductor-based
chaotic system are, respectively, calculated as follows:
L1 = 0 0600, L2 = 0 0065, L3 = −0 0069, and L4 = −10 4012
Figure 4 shows the projection of a chaotic attractor gener-
ated by the novel memductor-based chaotic system on
the x − u plane. It represents the extreme sensitivity of the
memristor-based chaotic system to the initial values [30].
When the initial value varies by 0.00001, there will be such
a prominent difference in the result. It is obvious that the
proposed memductor-based chaotic system is extremely
sensitive to initial values. In Figure 5, the Lyapunov exponent
spectrum of the novel memductor-based chaotic system
is shown. Consequently, it is found that the novel
memductor-based chaotic system is chaotic oscillation from
the chaotic attractors and Lyapunov exponents.

In order to further verify the chaotic dynamical behavior
of the novel memductor-based chaotic system (24), the bifur-
cation diagram and the Poincaré graph are strictly calculated.
Through numerical analysis, the bifurcation diagram with
parameter variation is shown in Figure 6, where α is a vari-
able parameter. It is obvious that the system will undergo a
huge change in topology when α is about 1.1. The Poincaré
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Figure 3: The chaotic attractors of system (24) with MATLAB.
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graph in x − y plane is shown in Figure 7. The law of phase
trajectory can be obtained by Poincaré map. It confirms the
chaotic behavior of the proposed memductor-based chaotic
system for the aforementioned set of parameters.

3.4. Synchronous Stability Analysis Based on Active Control.
Chaotic synchronization means that the trajectory of a
chaotic system converges to another chaotic system and
maintains a consistent dynamic phenomenon from a phys-
ical standpoint [38]. Here, the chaotic drive system or the
transmitter in the secure communication system is defined
as follows:

X =M X, t 32

Then, the chaotic response system or the receiver in
the secure communication system is defined as follows:

Y =M′ Y , t +N , 33

where N is the controller, t is the time, and vectors
are X, Y ∈ Rn. And they have the n-dimensional elements
x1, x2,… , xn and y1, y2,… , yn , respectively. In addition,
the two chaotic systems can be the same or different, but
their initial conditions are different. If the two chaotic sys-
tems are interrelated to some extent through the controller
N , X t ; t0, X0 a and Y t ; t0, Y0 are considered to be the
solutions of system (32) and system (33), respectively,
where they satisfy the smooth condition of the function,
when Rn has a subset of W t0 , and the initial value is satis-
fied to X0, Y0 ∈D t0 , and then when t⟶∞ exists:

ζ ≡ lim
t→∞

X t ; t0, X0 − Y t ; t0, Y0 ⟶ 0 34

Thus, it can be obtained that the chaotic response system
(32) is synchronized with the chaotic drive system (33).

In this way, the active synchronization error system
between the chaotic drive system and the chaotic response
system is defined by e = y − x, which means the asymptotic
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stability at the origin of the synchronization error system
on the basis of the Lyapunov stability theory. It is obvious
that the controller N plays a key role in stabilizing the
synchronization error system at the origin. Consequently,
various synchronization methods will be realized by design-
ing different controllers.

Then, the novel 4D memductor-based system (24) is
rewritten. And we consider the novel memductor-based
drive system which is described as follows:

x1 = ξx1 + αx2 + cx4 − dx1x
2
4,

x2 = ηx1 − x2 + μx3,
x3 = −βx2 − γx3,
x4 = −ρx1

35

When choosing ξ = 4, α = 2, c = 0 025, d = 2, η = 8, μ = 6,
β = 2 5, γ = 0 5, and ρ = 4, the novel memductor-based sys-
tem (35) is chaotic. Thereafter, the novel memductor-based
response system is considered as follows:

y1 = ξy1 + αy2 + cy4 − dy1y
2
4 + u1,

y2 = ηy1 − y2 + μy3 + u2,
y3 = −βy2 − γy3 + u3,
y4 = −ρy1 + u4,

36

where y1, y2, y3, y4 are the states and u1, u2, u3, u4 are the
designed controllers, whereas the synchronization error
based on the active control method is defined as follows:

ei = yi − xi,  i = 1, 2, 3, 4 37

According to (37), the synchronization error system
between the memductor-based drive system (35) and the
memductor-based response system (36) is easily obtained
as follows:

e1 = ξe1 + αe2 + ce4 − d y1y
2
4 − x1x

2
4 + u1,

e2 = ηe1 − e2 + μe3 + u2,
e3 = −βe2 − γe3 + u3,
e4 = −ρe1 + u4

38

Then, the active controller system is designed as follows:

u1 = −ξe1 − αe2 − ce4 + d y1y
2
4 − x1x

2
4 − k1e1,

u2 = −ηe1 + e2 − μe3 − k2e2,
u3 = βe2 + γe3 − k3e3,
u4 = ρe1 − k4e4,

39

where k1, k2, k3, k4 are the control gains, and they are positive
values, respectively. Substituting (39) into (38), the active
synchronization error system is obtained as follows:

e1 = −k1e1,
e2 = −k2e2,
e3 = −k3e3,
e4 = −k4e4

40

Next, the Lyapunov function V is defined as follows:

V = e21 + e22 + e23 + e24
2 41

Thus, it is obvious that V is positively definite. Differen-
tiating V ,

V = e1e1 + e2e2 + e3e3 + e4e4
= e1 −k1e1 + e2 −k2e2 + e3 −k3e3 + e4 −k4e4
= −k1e

2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4

42

According to (42), V = −k1e21 − k2e
2
2 − k3e

2
3 − k4e

2
4 ≤ 0 is

easily obtained. That is to say, V is negatively semidefinite.
Based on the Lyapunov stability theory, if V is positively
definite and V is negatively semidefinite, then the system
is consistent and stable at the origin of the equilibrium state
[38]. Accordingly, the active synchronization error system
(38) is asymptotically stable at the origin. Thus, lim

t→∞
∣e t ∣

⟶ 0 It is proved that the synchronization between the
novel memductor-based drive system and the novel
memductor-based response system is achieved. In the follow-
ing numerical simulations, the initial values of the novel
memductor-based system are chosen as x1 0 = −0 17528,
x2 0 = −1 0872, x3 0 = 1 6368, and x4 0 = −3 2852 The
control gains are chosen as k1 = k2 = k3 = k4 = 10.

The history of the synchronization errors between
the novel memductor-based drive system and the novel
memductor-based response system is shown in Figure 8. It
is clear from Figure 8 that the active synchronization errors
e1, e2, e3, e4 can be asymptotically stabilized at the origin in

2

1.5

1

0.5

Sy
ste

m
 er

ro
r

0

−0.5

−1
0 0.5 1 1.5 2

t
2.5 3 3.5

e1
e2

e3
e4

4

Figure 8: The history of synchronization errors.
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a very short period of time. The active control method is sim-
ple, practical, and easier to be implemented in an electronic
circuit. It can be applied to other complex memductor-
based chaotic systems to implement synchronization and
chaotic secure communication.

4. Circuit Design and
Hardware Implementation

4.1. Circuit Design. Based on the novel 4D memductor-based
chaotic system (23), the normalized resistor is set as
Rnormalization = 100 kΩ in order to design the memductor-
based chaotic circuit. In view of the need for higher accuracy,
the low-power AD633 analog multipliers are chosen in the

chaotic circuits, which enjoy the precision of laser trimming
and remain stable between −10V and +10V. Taking into
considering the convenience of power supply and the feasi-
bility of the circuit, as well as saving components, the selected
operational amplifiers are LF347N and LF353N with the
power supply voltage ranging from −15V to +15V. In
order to prevent the voltage in the circuit from exceeding
the range of operational amplifier, the ranges of the vari-
ables in system (22) have been adjusted appropriately, and
a new memductor-based chaotic system (23) was obtained
after scale transformation. Because the precision provided
by AD633 is 1/10V, the input factor for analog multiplier is
0.1V. Conclusively, the state equation of the memductor-
based chaotic circuit is obtained by rewriting (23):

Thus, the novel memductor-based chaotic circuit sche-
matic is designed as shown in Figure 9 according to (43).
The circuit is divided into two parts: the nonmemristor part
and the independent memristor part. The memristor part is

the red circuit marked in Figure 9. The rest of the circuit is
the nonmemristor part, a linear part. What is seen from
Figure 9 is that the novel memductor-based chaotic circuit
is composed of six operational amplifiers and two analog
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Figure 9: The novel memductor-based chaotic circuit schematic.
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u = −
100 k
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multipliers. It outputs four signal waveforms, six phase por-
traits, and stable fourth-order double vortex chaotic signals.
Accordingly, Figure 10 shows the novel memductor-based
chaotic circuit with Multisim.

All of the electronic components are easily available. The
memductor-based chaotic phase portraits of the novel
memductor-based chaotic circuit by Multisim are shown in
Figure 11. It can be shown from the simulation results that
it outputs six chaotic phase portraits of xy, xz, zy, xu, yu,
and zu. Moreover, the Multisim simulation results are con-
sistent with the MATLAB simulation results as shown in
Figure 3. That is, it fully conforms to the requirements of cir-
cuit design in practical applications.

4.2. Hardware Implementation. Most researchers highlight
the study of memristor chaos theory in numerical simula-
tion; in that case, there is a certain deviation in the physical
memristor circuit system. Based on the correct simulation
results shown in Figure 11, with the purposes to verify that
the novel memductor-based chaotic circuit enjoys high
accuracy and good robustness and further study the chaotic
dynamical characteristics of the novel memductor-based
chaotic system (23), a practical electronic circuit is con-
structed by using some general electronic components such
as operational amplifiers, analog multipliers, resistors, and
capacitors according to the circuit model of Figure 9.

It should be noted that the problems easily occurring in
the process of constructing the memductor-based chaotic
circuit should be tackled. For example, the chaotic circuit is
more sensitive to the initial value because of adding the mem-
ristor, and any minor change will lead to unpredictable
results. Therefore, we chose the values of the resistors closer

to the simulation resistor to construct the circuit and test
whether each module of the circuit works properly in the
process of constructing. Afterwards, input voltage to the sys-
tem and access the oscilloscope, the output phase portrait
photos of the novel memductor-based chaotic circuit are
shown in Figure 12. Figure 13 shows the experimental circuit
board photo.

What should be seen from the experimental results
shown in Figure 12 is that the phase portraits of the novel
memductor-based chaotic attractors displayed by oscillo-
scope coincide with the simulation results of MATLAB and
Multisim. That is, it proves true that the memductor-based
chaotic attractors exist in real. The proposed memductor-
based chaotic circuit design method provides a reliable and
straightforward way for realizing memristive chaotic circuits,
and the method plays a significant role in easily handling and
avoiding the output voltage beyond the limitation of the
amplifier linear region efficiency.

4.3. Experimental Results Analysis. Through careful experi-
ments on the proposed memductor-based chaotic circuit
shown in Figure 9, the following important conclusions can
be obtained:

(i) The impact of switching power seems to exist. Once
the chaotic state is entered, the chaotic attractors
begin to become stable. The memductor-based cha-
otic circuit characteristics of this phenomenon are
presented as follows: when the power is turned on,
two attractors contribute to establish a stable state
of the circuit. One is a chaotic attractor, which tells
the fact that the voltage amplitude is less than the
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Figure 10: The novel memductor-based chaotic circuit with Multisim.
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supply voltage, and no amplitude limiting condition
occurs. The other is the possibility of entering a
state of limiting amplitude and not breaking out
of the limiting amplitude state, but entering the
traditional periodic oscillation, and this oscillation
is a stable oscillation

(ii) The ranges of the physical variables measured in this
experiment are presented as follows: x ranges from
−2.2V to +2.2V, y ranges from −4.4V to +4.4V, z
ranges from −4.4V to 4.4V, and u ranges from
−4.8V to +4.8V. This set of data is easy to be

controlled. So as long as the resistance of the 4K
resistor is adjusted, the amplitude of the chaos var-
ies accordingly and the shape remains unchanged,
which is extremely convenient

(iii) A good memductor-based chaotic circuit must be
designed without defects. One of the defects is the
voltage limit of the regulated power supply. The
defects may appear in designing of the operational
amplifier and inverting integrator. As for the
design defect of operational amplifier, the feedback
resistor of the operational amplifier Rf is greater
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Figure 11: The chaotic attractors of the novel memductor-based chaotic circuit with Multisim.
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than that of the input circuit Rin. That is, the design
defect is presented as

Rf > Rin 44

Moreover, if the operational amplifier is equipped with
two input resistors, the design defect is presented as follows:

Rf >
1

1/Rin1 + 1/Rin2
45

(a) xy phase portrait (b) xz phase portrait

(c) yz phase portrait (d) xu phase portrait

(e) yu phase portrait (f) zu phase portrait

Figure 12: The output phase portrait photos.

Figure 13: Experimental circuit board photo.
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Therefore, both of these conditions may cause amplitude
limiting distortion, which makes the design of memductor-
based circuits deviates from the original intention of chaotic
mathematical model.

And as for the design defect of the inverting integrator,
the normalized resistance of the inverting integrator is set
as Rnormalization; thus, the possible defect of the memductor-
based circuit design is presented as follows:

Rin < Rnormalization, 46

which is hard to achieve, since in some cases, the mathemat-
ical model itself is involved, and it is not just the circuit
design but also the circuit model involved. Therefore, the
reason why the steady phase portraits have not been
debugged is that the design of the operational amplifier
violates (44) or (45).

(iv) Here, a new concept, called “the memductor-based
chaotic circuit defect quantification index”, is first
proposed. The new concept of quantification con-
sists of two parts logically. First of all, the single-
stage defect coefficient is considered. For a stage
operational amplifier, if the operational amplifier
does not violate (44) and (45), the defect coefficient
of the memductor-based chaotic circuit is equal to
zero. If (44) and (45) are violated, the defect coeffi-
cient of the operational amplifier is defined as

εdefect =
Rf

Rin
− 1 =

Rf − Rin
Rin

47

Secondly, the defect coefficient of the whole memductor-
based circuit system is the sum of the defect coefficient at

all levels of the unit circuit. Physical experiments in this
paper show that the chaotic output of the memductor-
based circuit with the parameters shown in Figure 9 is the
most stable, and they are consistent with the MATLAB and
Multisim simulation results.

5. Application of the Proposed Memductor-
Based Chaotic Circuit

Since the memductor-based chaotic signal is more sensitive to
the initial value than the ordinary chaotic signal, it is especially
suitable for the secure communication field. In order to
improve the security of secure communication system, it is
considered that the novel memductor-based chaotic system
should be selected as the chaotic system. In the proposed
memductor-based chaotic secure communication scheme,
the memristive secure communication circuit is implemented
by using some electronic components containing analog mul-
tipliers, operational amplifiers, resistors, and capacitors with a
novel 4D memductor-based chaotic system as chaos genera-
tor. Based on the proposed memductor-basede chaotic circuit
shown in Figure 9, the memductor-based secure communica-
tion circuit schematic by Multisim is shown in Figure 14. Its
circuit principle is carefully presented as follows:

It consists 14 operational amplifiers together with 4 ana-
log multipliers. Its basic circuit is composed of two proposed
identical memductor-based chaotic circuit units with a little
change. The left side of the circuit is the transmitter and the
right side of the circuit is the receiver. The inverting input
end of transmitter-modulator is connected with the trans-
mitted signal to be transmitted. The same phase input end
is connected with the x output terminal of the novel
memductor-based chaotic circuit. In this way, the receiving
system and the transmitting system are easier to maintain
synchronization, and the robustness of the memductor-
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Figure 14: A novel memductor-based secure communication circuit by Multisim.
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based chaotic circuit is also maintained. This method pre-
vents effective information from being intercepted in the
secure communication process.

In what follows, the simulation experiments are pre-
sented to verify whether two identical parameters of the
memductor-based chaotic circuits can effectively achieve
the signal transmission and reception without distortion.
Suppose an input sine wave with amplitude of 1V and fre-
quency of 1 kHz is given in the circuit simulation, the trans-
mitting and receiving signal waveform by Multisim is shown
in Figure 15. The synchronous phase portrait is shown in
Figure 16. And Figure 17 shows the superimposed signal
waveform of the modulation and demodulation signal. It is
obvious from the simulation results that, no matter what
kinds of signals are input, the two identical memductor-
based chaotic circuits entirely maintain synchronization with
each other if the component parameters of the transmitting
circuit are exactly the same with the receiving circuit. Almost
no distortion can be seen.

Subsequently, the hardware circuit experiments of the
proposed chaotic secure communication circuit based on
the memductor-based chaotic circuit are implemented suc-
cessfully. To verify the above Multisim simulation results,
accordingly, an input sine wave with amplitude of 1V and
frequency of 1 kHz is taken in the practical electronic circuit
experiment. It should be noted that the transmitting and
receiving signal waveform photo is shown in Figure 18.
Figure 19 shows the modulation and demodulation wave-
form subtraction. It is evident that the difference between
the two waves (i.e., noise) is only 10 microvolts when the
most sensitive gear of the oscilloscope is 10μV. The synchro-
nous phase portrait photo is shown in Figure 20. Figure 21
shows the superimposed signal photo of the modulation

3.0

2.0

1.0

0.0

Ch
an

ne
l_

A
 (V

)

−1.0

−2.0

−3.0
0.0 1.6m 2.5m

Time
3.3m 4.1m824.7𝜇

Figure 15: Transmitting and receiving waveforms.

1.5

1.0

500.0m

0.0

Ch
an

ne
l_

A
 (V

)

−500.0m

−1.0

−1.5
−2.5 −1.5 −500.0m 500.0m

Channel_B (V)
1.5 2.5

Figure 16: Synchronous phase portrait.

Figure 18: Transmitting and receiving signal photo.

Figure 19: Modulation and demodulation waveform subtraction.

6.0

4.0

2.0

1.7m 3.3m 5.0m
Time

6.6m 8.3m

0.0

Ch
an

ne
l_

A
+B

 (V
)

−2.0

−4.0

−6.0
0.0

Figure 17: Superimposed signal waveform.

14 Complexity



and demodulation waveform. Figure 22 shows the transmit-
ting modulation signal and the receiving demodulation sig-
nal waveform photo on the oscilloscope. According to the
experimental measurement results of the memductor-based
chaotic secure communication circuit, it is obvious that the
transmitting and receiving signal waveform photo and the
synchronous phase portrait photo displayed by oscilloscope
coincide with the Multisim simulation results.

Nevertheless, the memductor-based chaotic circuits com-
posed of conventional operational amplifiers and analog
multipliers still have some limitations, mainly because of
the frequency limitations of the operational amplifiers. As
already shown in [38], the operational amplifiers allow us
to implement any type of circuit that is useful in analog

processing applications. However, its performance in realiz-
ing chaotic circuits is limited. In work [38], the signals can
be transmitted from 1Hz to 500 kHz without distortion for
the hyperchaotic secure communication circuit. When the
signal frequency exceeds 500 kHz, the signal distortion will
be very obvious. Thus, in order to transmit high-speed data,
the chaotic attractors should work at high frequency. In addi-
tion, high frequency should be enhanced from the aspect of
improving the security and confidentiality of chaotic secure
communication circuits.

6. Conclusion

In this paper, a novel memductor-based chaotic system is
proposed by adding a one-dimensional memristor equation
to a particular three-dimensional chaotic system according
to the physical nonlinear characteristics of memductor
through looking for suitable parameters. And this paper is
an attempt to investigate the dynamical behaviors and syn-
chronous stability of the novel memductor-based chaotic
system and realize these dynamics in a new physical circuit.
What can be seen from the simulation results and experi-
mental results is that they do not only output six phase
portraits but also output stable fourth-order double vortex
chaotic signals, respectively. In order to enhance the secu-
rity performance of transmission signal and improve the
vulnerability of the novel memristive system, the novel
memductor-based chaotic circuit is applied to construct a
new memductor-based chaotic secure communication cir-
cuit. Comparisons among Multisim simulation, MATLAB
simulation results, and physical experimental results show
that they are consistent with each other, and the attractors
of the novel memductor-based chaotic system exist. What
is more, the concept of “the memductor-based chaotic cir-
cuit defect quantification index” is proposed for the first
time to verify whether the chaotic output is consistent
with the mathematical model, which provides a powerful
theoretical basis for the successful design and implementa-
tion of memductor-based chaotic circuits. These proposed
circuit design methods can also be applied in other complex
memristor-based chaotic systems.

Nevertheless, the conventional operational amplifiers
have somewhat performance limitations in implementing
memductor-based chaotic circuits. It is quite hard to improve
the frequency response for analog implementation of chaotic
oscillator when it is designed with integrated circuits. Per-
haps the implementation based on FPGA can be used as a
solution to observe memductor-based attractors at higher
frequencies. Thus, our future research will devote to the cir-
cuit realization of memductor-based systems by using FPGA.
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This paper proposes a new 5D chaotic systemwith the flux-controlledmemristor.The dynamics analysis of the new system can also
demonstrate the hyperchaotic characteristics. The design and analysis of adaptive synchronization for the new memristor-based
chaotic system and its slave system are carried out. Furthermore, the modularized circuit designs method is used in the new chaotic
system circuit implementation.TheMultisim simulation and the physical experiments are conducted, compared, andmatchedwith
each other which can demonstrate the existence of the attractor for the new system.

1. Introduction

Memristors are the fourth kind of circuit elements except
for resistors, capacitors, and conductors and are conceived
by Chua in 1971 through the basic symmetric principle
[1]. Furthermore, the corresponding theory was applied to
memristive devices in 1976 [2]. It took a long time to develop
the hardware memristor model. Until 2008 HP labs first
realized the memristor of nanoscale in the form of crossbar
array [3]. Since memristors have the potential applications in
the wide range of fields, memristor study becomes hotter, and
a huge amount of researchers have paid immense attention on
memristor studies from industry and academics, respectively
[4, 5]. The typical examples include nonvolatile memories
of nanoscale [6], memristor-based synapse in neuromorphic
systems [7, 8], logic operations through material implication
[9–12], and nonlinear dynamics in chaotic system [13–17].

With rapid development of memristor models, some
studies combine thememristor and chaotic systems including
dynamics analysis, image encryption applications and circuit
implementations which have grown up quickly in recent
years [18–22]. One of the typical early memristor-based

chaotic systems was developed by Itoh and Chua in 2008
[19]. This paper developed some nonlinear oscillators by
using memristors based on Chua’s oscillators. Petráš derived
and investigated a fractional-order memristor-based Chua’s
circuit in [20]. Chua and Muthuswamy also discussed circuit
topology and developed the simplest memristor-based cir-
cuits [21].These papers demonstrate that thememristor oscil-
lators own the special nonlinear dynamics due tomemristors’
extinguished characteristics. One of these significant charac-
teristics is that the behaviors are dependent on initial states
and circuit parameters. Li et al. proposed a scroll chaotic
system circuit implementation by using HP memristor [22].
Ma et al. developed a four-wing hyperchaotic system by
using a memristor adding over a three-dimensional chaotic
system [16]. Dimitrios et al. found a new 4-D memristive
chaotic system and investigated the behavior with hidden
attractors of the system through numerical simulations [23].
Wang et al. proposed a flux-controlled memristor model
and established a 4-D chaotic system with this model. The
numerical analysis and circuit implementation simulation
verification were conducted [24]. Mou et al. discussed the
characteristics of dynamical behaviors of a fractional-order
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4D hyperchaotic memristive system and circuit simulation
verification [25]. Other memristor-based hyperchaotic sys-
tems were also investigated such as numerical analysis about
a four-dimensional hyperchaotic system with memristor and
conducted circuit simulation verifications [26–29]. There are
also some other chaotic systems developed by memristive
models and its applications [30–32].

The above memristor-based chaotic system literatures
focus on four or lower-dimensional chaotic systems and
investigate the detailed numerical analysis and the cor-
responding numerical and circuit implementation simu-
lation verifications. However, the higher-dimensional (5-
D or above) memristor-based hyperchaotic systems and
the corresponding physical hardware experiments are not
found. Therefore, the paper analyzes a new memristor-
based hyperchaotic system and develops a circuit physical
implementation method by using the modularized design
method. This method is used to design the circuit without
dimensions for chaotic circuit designs and is easy to be
implemented in the circuit by using less circuit parts [33–38].

The novelty of this paper is to develop a new memristor-
based 5D hyperchaotic system, design and analyze the
adaptive synchronization of this new system, implement
the physical experiment circuit hardware, and verify the
existence of system attractors. The improved modularized
design method is used to implement the circuit of the system
to verify the existence of attractors.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the fundamental characteristics of the new
memristor-based chaotic system. Section 3 investigates the
adaptive synchronization of the newmemristor-based hyper-
chaotic system. Section 4 discusses the circuit implementa-
tion of the new system and verifies the existence of attractors.
Conclusions are presented in Section 5.

2. Analysis of a New Memristor-Based
Hyperchaotic System

In this section, numerical analyses are conducted for a flux-
controlled memristor-based new 5D hyperchaotic system
derived fromWang’s 4D hyperchaotic system.

As illustrated in [16], memristor model is based on the
fundamental characteristics of a flux-controlled memristor
described below.

𝑖 = 𝑊(𝜑) V (1)

where 𝑖 and V are the current and the voltage of the device
terminal, respectively.𝑊(𝜑) is the incremental memductance
defined as

𝑊(𝜑) = 𝑑𝑞 (𝜑)𝑑𝜑 (2)

This demonstrates that the characteristics of a memristor
are a nonlinear function reflecting the relationship among the
charge and flux across and through the device.

Furthermore, this paper consistently uses the smooth
cubic monotone-increasing continuous nonlinearity
described as follows [20–22, 33].

𝑑𝑞 (𝜑) = 𝑚𝜑 + 𝑛𝜑3 (3)

where𝑚, 𝑛 > 0.
Then the memductance is shown below

𝑊(𝜑) = 𝑑𝑞 (𝜑)𝑑𝜑 = 𝑚 + 3𝑛𝜑2 (4)

This paper develops a 5D memristor-based chaotic sys-
tem which is derived from four-wing autonomous chaotic
dynamics systems reported by Wang et al. [34, 37]

̇𝑥 = 𝑎 (𝑦 − 𝑥) + 4𝑦𝑧𝑦̇ = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −𝑏𝑧 + 𝑥𝑦𝑤̇ = −10𝑦 + 0.15𝑥𝑧𝑢̇ = −𝑥
(5)

This system has four state variables 𝑥, 𝑦, 𝑧, and 𝑤, and 𝑎, 𝑏 ∈
R+.

Substitute (4) into (5), a 5D memristor-based system is
obtained. 𝑥̇ = 𝑎 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥𝑊 (𝑢)̇𝑦 = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −𝑏𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤𝑤̇ = −10𝑦 + 0.15𝑥𝑧 − 𝑔𝑧𝑢𝑢̇ = −𝑥

(6)

where

𝑊(𝑢) = 𝑚 + 3𝑛𝑢2, (7)

and 𝑘,𝑚, 𝑛, 𝑔 are positive parameters.

2.1. Equilibria and Stability. Theequilibriumpoints of System
(6) can be calculated by solving the equations as shown below

𝑎 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥𝑊 (𝑢) = 0−𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤 = 0−𝑏𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤 = 0−10𝑦 + 0.15𝑥𝑧 − 𝑔𝑧𝑢 = 0−𝑥 = 0
(8)

where𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3.
System (6) has only one real equilibrium point with (0, 0,

0, 0, 0) and has typical characteristics with a line equilibrium
in (0, 0, 0, 0, 𝛿), given 𝛿 a real constant.
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First, analyze the zero equilibrium point (0, 0, 0, 0, 0).The
Jacobian matrix of System (6) on the zero equilibrium point
is

𝐽0 = ((
(

−𝑎 − 0.1𝑘 𝑎 0 0 0−1 16 0 1 00 0 𝑏 0 00−1 −100 00 0 00 0
))
)(0,0,0,0,0)

(9)

and the corresponding polynomial is

𝑓 (𝜆) = 𝜆 (𝜆 − 𝑏) 𝑓1 (𝜆) (10)

and

𝑓1 (𝜆) = 𝜆3 + (𝑎 − 16 + 0.1𝑘) 𝜆2 + (10 − 15𝑎 − 1.6𝑘) 𝜆+ 10𝑎 + 𝑘 (11)

It is obvious that 0 and −𝑏 are eigenvalues of System(6) for
the (0, 0, 0, 0, 0) equilibrium point. According to Routh-
Hurwitz condition, if and only if 𝑎 − 16 + 0.1𝑘 > 0, 10 −15𝑎 − 1.6𝑘 > 0, (10𝑎 + 𝑘) > 0, and (𝑎 − 16 + 0.1𝑘)(10 −15𝑎 − 1.6𝑘) − (10𝑎 + 𝑘) > 0 coexist, 𝑓1(𝜆) has the negative
real number. However, the above four inequalities are not
able to be realized simultaneously. Then not all real parts
of the eigenvalues are negative. Therefore, it is not a stable
equilibrium point.

Second, analyze the eigenvalues of Jacobian matrix of
System (6) on the line equilibrium in (0, 0, 0, 0, 𝛿).
𝐽1
= ((
(

−𝑎 − 𝑘 (0.1 + 0.03𝛿2) 𝑎 0 0 0−1 16 0 1 0−𝛿 0 −𝑏 0 00−1 −100 −0.3𝛿0 0 00 0
))
)

(12)

Typically, when 𝑎 = 14 and 𝑏 = 78, 𝐽1∗ is calculated as shown
below

𝐽1∗

= ((
(

−14 − 𝑘 (0.1 + 0.03𝛿2) 14 0 0 0−1 16 0 1 0−𝛿 0 −78 0 00−1 −100 −0.3𝛿0 0 00 0
))
)

(13)

Two of the five eigenvalues of 𝐽1∗ are complex conjugates;
therefore, it is difficult to determine the stability of the line
equilibria.

2.2. Symmetry. System (6) is symmetric with respect to𝑧 axis since it is invariant when applying the coordinate
transformations.(𝑥, 𝑦, 𝑧, 𝑤, 𝑢) ←→ (−𝑥, −𝑦, 𝑧, −𝑤, −𝑢) (14)

2.3. Dissipativity. Furthermore, dissipative characteristics
analysis of System (6) is shown below.The system divergence
is given by

∇𝑉 = 𝜕𝑥̇𝜕𝑥 + 𝜕 ̇𝑦𝜕𝑦 + 𝜕𝑧̇𝜕𝑧 + 𝜕𝑤̇𝜕𝑤 + 𝜕𝑢̇𝜕𝑢= −𝑎 − 𝑘𝑊 (𝑢) + 16 − 𝑏
= −𝑘 (𝑚 + 3𝑛𝑢2) + 16 − 𝑎 − 𝑏

(15)

when 𝑘 > 0,𝑚 > 0, 𝑛 > 0, 16− 𝑎− 𝑏 < 0, −𝑘(𝑚+3𝑛𝑢2) + 16−𝑎− 𝑏 < 0, System (6) is dissipative. The paper selects𝑚 = 0.1,𝑛 = 0.01 for equation (7), and 𝑘 = 0.02 for System (6).

2.4. Lyapunov Spectrum and Bifurcation Diagram. Fix
parameters 𝑎 = 14, 𝑏 = 78 and vary the parameter 𝑘, and the
graphs about the Lyapunov exponents versus 𝑘, bifurcation
diagram, and phase portraits are shown in Figure 1.

Figure 1 shows that the Lyapunov exponents vary with the
parameter 𝑘 changes. In the five Lyapunov exponents, three
of them are obviously negative when 𝑘 ∈ [0, 5.9]. The top
two lines in Figure 1(b) demonstrate that these two kinds of
Lyapunov exponents are bigger than zero, and systems are
hyperchaotic systems when 𝑘 lies in this range. In this paper,𝑘 will be selected in this range.

When 𝑎 = 14, 𝑏 = 78, 𝑘 = 0.02, 𝑚 = 0.1, 𝑛 = 0.01, and𝑔 = 0.3, the Lyapunov exponents are calculated as L1 = 1.0241,
L2 = 0.0137, L3 = -0.1735, L4 = -2.3787, and L5 = -70.3244.This
system is a hyperchaotic system with two positive Lyapunov
exponents.Therefore, the Kaplan-Yorke dimension of System
(6) can be found below

𝐷�퐾�푌 = 4 + 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4󵄨󵄨󵄨󵄨𝐿5󵄨󵄨󵄨󵄨 = 3.978466 (16)

3. Adaptive Synchronization of a New
Memristor-Based Hyperchaotic System

In this section, the adaptive controller was designed for
the new memristor-based hyperchaotic system which was
derived by Lyapunov stability theory inspired by [39].

First, consider the master System (6) with 𝑎 = 14, 𝑏 = 78,𝑘 = 0.02,𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3 shown as below

𝑥̇ = 14 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥 (0.1 + 0.01𝑢2)
̇𝑦 = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −78𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤𝑤̇ = −10𝑦 + 0.15𝑥𝑧 − 0.3𝑧𝑢𝑢̇ = −𝑥

(17)



4 Complexity

0 1 2 3 4 5 6
−80

−60

−40

−20

0

20

k

ly
ap

un
ov

 ex
po

ne
nt

s

L1
L2
L3

L4
L5

(a)

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

k

ly
ap

un
ov

 ex
po

ne
nt

s

L1
L2

L3
L4

(b)

0 1 2 3 4 5 6
−300

−200

−100

0

100

200

300

400

k

x

(c)

100

50

0

−50

−100

y

−300 −200 −100 0 100 200

x

(d)

−300 −200 −100 0 100 200

x

100

80

60

40

20

0

−20

−40

−60

z

(e)

Figure 1: Lyapunov exponents versus the parameter 𝑘: (a) the full five exponents, (b) Lyapunov exponents L1-L4 of System (6), (c) the
bifurcation diagram of 𝑥 vs. 𝑘 for System (6) when 𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3. (d)-(e) The phase portraits 𝑥-𝑦 and 𝑥-𝑧 for System (6)
when 𝑘 = 0.02,𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3.
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Figure 3:𝑊(𝑢) function-memristor channel.

Figure 4: The relationship between 𝑥 and 𝑊(𝑥) for the circuit as
shown in Figure 3.

Second, consider the slave system shown as below

̇𝑥�耠 = 14 (𝑦�耠 − 𝑥�耠) + 4𝑦�耠𝑧�耠 − 𝑘𝑥�耠 (0.1 + 0.01𝑢�耠2) + 𝑢1
̇𝑦�耠 = −𝑥�耠 + 16𝑦�耠 − 𝑥�耠𝑧�耠 + 𝑤�耠 + 𝑢2

𝑧̇�耠 = −78𝑧�耠 + 𝑥�耠𝑦�耠 − 𝑥�耠𝑢 − 𝑦�耠𝑤�耠 + 𝑢3
𝑤̇�耠 = −10𝑦�耠 + 0.15𝑥�耠𝑧�耠 − 0.3𝑧�耠𝑢�耠 + 𝑢4
𝑢̇�耠 = −𝑥�耠 + 𝑢5

(18)

where 𝑢�푖 (𝑖 = 1 ⋅ ⋅ ⋅ 5) are adaptive controller, and 𝑥�耠, 𝑦�耠, 𝑧�耠,𝑤�耠, 𝑢�耠 are the new state variables.
Therefore, the synchronization errors among the Systems

(17) and (18) are defined as follows.

𝑒1 = 𝑥�耠 − 𝑥
𝑒2 = 𝑦�耠 − 𝑦
𝑒3 = 𝑧�耠 − 𝑧
𝑒4 = 𝑤�耠 − 𝑤
𝑒5 = 𝑢�耠 − 𝑢

(19)

Then the dynamics of the error can be calculated by
substituting the master and slave systems as shown below

̇𝑒1 = 𝑎 (𝑒2 − 𝑒1) − 0.1𝑘𝑒1 + 4 (𝑦�耠𝑧�耠 − 𝑦𝑧)
− 0.03𝑘 (𝑥�耠𝑢�耠2 − 𝑥𝑢2) + 𝑢1̇𝑒2 = −𝑒1 + 16𝑒2 + 𝑒4 − 𝑥�耠𝑧�耠 + 𝑥𝑧 + 𝑢2̇𝑒3 = −𝑏𝑒3 + 𝑥�耠𝑦�耠 − 𝑥�耠𝑢�耠 − 𝑦�耠𝑤�耠 − 𝑥𝑦 + 𝑥𝑢 + 𝑦𝑤 + 𝑢3̇𝑒4 = −10𝑒2 + 0.15𝑥�耠𝑧�耠 − 0.15𝑥𝑧 − 0.3𝑧�耠𝑢�耠 + 0.3𝑧𝑢+ 𝑢4̇𝑒5 = −𝑒1 + 𝑢5

(20)

where the adaptive controller 𝑢�푖 are defined by

𝑢1 = −𝑎 (𝑡) (𝑒2 − 𝑒1) + 0.1𝑘𝑒1 − 4 (𝑦�耠𝑧�耠 − 𝑦𝑧)
+ 0.03𝑘 (𝑥�耠𝑢�耠2 − 𝑥𝑢2) − 𝑘1𝑒1𝑢2 = 𝑒1 − 16𝑒2 − 𝑒4 + 𝑥�耠𝑧�耠 − 𝑥𝑧 − 𝑘2𝑒2𝑢3 = 𝑏̂ (𝑡) 𝑒3 − 𝑥�耠𝑦�耠 + 𝑥�耠𝑢�耠 + 𝑦�耠𝑤�耠 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤− 𝑘3𝑒3𝑢4 = 10𝑒2 − 0.15𝑥�耠𝑧�耠 + 0.15𝑥𝑧 + 0.3𝑧�耠𝑢�耠 − 0.3𝑧𝑢− 𝑘4𝑒4𝑢5 = 𝑒1 − 𝑘5𝑒5

(21)

where 𝑘�푖 (𝑖 = 1, . . . , 5) are the positive gains and 𝑎(𝑡), 𝑏̂(𝑡)
are the estimations of the corresponding parameters 𝑎 and 𝑏,
respectively.

Correspondingly, the dynamics of the error is changed
into

̇𝑒1 = (𝑎 − 𝑎 (𝑡)) (𝑒2 − 𝑒1) − 𝑘1𝑒1̇𝑒2 = −𝑘2𝑒2̇𝑒3 = (𝑏 − 𝑏̂ (𝑡)) 𝑒3 − 𝑘3𝑒3̇𝑒4 = −𝑘4𝑒4̇𝑒5 = −𝑘5𝑒5
(22)
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(a) �푥 channel (b) �푦 channel

(c) �푧 channel (d) �푤 channel

Figure 5: Modularized circuit channels for circuit implementation of the new memristor-based 5D hyperchaotic system.

Define the parameters for estimating errors as

𝑒�푎 (𝑡) = 𝑎 − 𝑎 (𝑡)
𝑒�푏 (𝑡) = 𝑏 − 𝑏̂ (𝑡) (23)

Substitute (23) into the dynamics (22), the simplified error
dynamics is described as

̇𝑒1 = 𝑒�푎 (𝑡) (𝑒2 − 𝑒1) − 𝑘1𝑒1̇𝑒2 = −𝑘2𝑒2̇𝑒3 = −𝑒�푏 (𝑡) 𝑒3 − 𝑘3𝑒3̇𝑒4 = −𝑘4𝑒4̇𝑒5 = −𝑘5𝑒5
(24)

Correspondingly,

̇𝑒�푎 (𝑡) = −𝑎 (𝑡)
̇𝑒�푏 (𝑡) = −𝑏̂ (𝑡) (25)

Depending on the master and slave systems definitions and
error dynamics transformations mentioned above, consider
a Lyapunov function defined by

𝑉 = 12 (𝑒21 + 𝑒22 + 𝑒23 + 𝑒24 + 𝑒25 + 𝑒2�푎 + 𝑒2�푏) (26)

Differentiate 𝑉 along the trajectories for equations (24)-(25),𝑉̇ can be obtained as𝑉̇ = 𝑒1 ̇𝑒1 + 𝑒2 ̇𝑒2 + 𝑒3 ̇𝑒3 + 𝑒4 ̇𝑒4 + 𝑒5 ̇𝑒5 + 𝑒�푎 ̇𝑒�푎 + 𝑒�푏 ̇𝑒�푏= −𝑘1𝑒21 − 𝑘2𝑒22 − 𝑘3𝑒23 − 𝑘4𝑒24 − 𝑘5𝑒25
+ 𝑒�푎 [−𝑒21 − 𝑒1𝑒2 − ̇̂𝑎 (𝑡)] − 𝑒�푏 (𝑡) [𝑒23 + ̇̂𝑏 (𝑡)]

(27)

Then, the parameter update law iṡ̂𝑎 (𝑡) = −𝑒21 − 𝑒1𝑒2̇̂𝑏 (𝑡) = −𝑒23 (28)

Theorem 1. The master and slave Systems (17)-(18) for a new
memristor-based hyperchaotic system along with unknown
parameters and positive gains 𝑘�푖 (𝑖 = 1 ⋅ ⋅ ⋅ 5) synchronize
exponentially by using the adaptive controller (21) and the
parameter update law (28).

Proof. Substitute the parameter update law (28) into the
adaptive controller (21), then𝑉̇ = −𝑘1𝑒21 − 𝑘2𝑒22 − 𝑘3𝑒23 − 𝑘4𝑒24 − 𝑘5𝑒25 ≤ −𝑘�耠 ‖𝑒‖2≤ 0 (29)

where 𝑘�耠 = min{𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 | 𝑘�푖 ∈ R+, 𝑖 = 1 ⋅ ⋅ ⋅ 5}.
It is obvious that 𝑒(𝑡) 󳨀→ 0 exponentially as time goes

to infinite for all initial conditions of 𝑒(0). According to
Lyapunov stability theory, two systems are synchronized.



8 Complexity

(a) (b)

(c) (d)

(e) (f)

Figure 6: Multisim implementation of the chaotic System (17): (a) x-y plane with scales 5V/div and 2 V/div, (b) x-z plane with scales 2 V/div
and 1 V/div, (c) x-w plane with scales 2 V/div and 1 V/div, (d) z-w plane with scales 2 V/div and 1 V/div, (e) y-w plane with scales 2 V/div and
1 V/div, and (f) y-u plane with scales 2 V/div and 2 V/div.

Figure 2 is the simulation verification of synchronization
for the master and the slave memristor-based hyperchaotic
Systems (21) and (22) when selecting 𝑘�耠 = 𝑘�푖 = 4 (𝑖 =1 ⋅ ⋅ ⋅ 5), and the systems choose the initial conditions for both
systems, respectively, such that 𝑥(0) = 4, 𝑦(0) = 1.2, 𝑧(0) =0.5, 𝑤(0) = −3.6, 𝑢(0) = 6 and 𝑥�耠(0) = −5, 𝑦�耠(0) = 2,𝑧�耠(0) = 1, 𝑤�耠(0) = −0.8, 𝑢�耠(0) = 5.These figures demonstrate
the synchronization of the master and slave Systems (21) and
(22).

4. A New Memristor-Based Hyperchaotic
System Circuit Implementation

In this section, modularized design methods will be imple-
mented in the new memristor-based hyperchaotic systems

mentioned above. Multisim software is used to generate the
circuit simulation results, and the corresponding physical
circuit experiments are conducted to verify the hyperchaotic
attractor existences of this hyperchaotic system.

(A1) Memristors Circuit Implementation. Figure 3 shows the
circuit configuration of memristor inspired by [16].

In this memristor circuit, a factor 0.1/V multiplier
AD633JN is used. Therefore, 𝑚 = 𝑅�푓/𝑅�푚 = 0.1, 𝑛 =(100𝑅�푓/𝑅�푛)(0.01/𝑉) = 0.01, and

𝑊 = 𝑅�푓𝑅�푚 + 3 ⋅ 100𝑅�푓𝑅�푛 (0.01𝑉 ) ⋅ 𝑢2 (30)

where 𝑅�푓 is the feedback resistor of the amplifier.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Physical circuit implementation hardware and digital oscilloscope diagrams of the chaotic System (17): (a) x-y plane with scales
2 V/div and 1 V/div, (b) x-z plane with scales 2 V/div and 1 V/div, (c) x-w plane with scales 2 V/div and 1 V/div, (d) z-w plane with scales 1
V/div and 1 V/div, (e) y-w plane with scales 1 V/div and 1 V/div, and (f) y-u plane with scales 1 V/div and 2 V/div.

Parameter 𝑘 represents the strength of a memristor.

𝑘 = 𝑅�푓𝑚𝑅�푚 = 𝑅�푓300𝑛𝑅�푛 (31)

In Figure 4, select the following resistors and the capacitor,𝑅�푓 = 2𝑘Ω, 𝑅�푚 = 1𝑀Ω, 𝑅�푛 = 66𝑘Ω, 𝑅15 = 200𝑘Ω, 𝑅�푐 = 1𝑘Ω,𝐶4 = 10𝑛𝐹.

Figure 4 is theMultisim simulation for the flux-controlled
memristor with 𝑥 input with sinusoid signal. This demon-
strates the typical closed loop characteristics of thememristor
developed by equation (7) and part of equation (6).

(A2) Memristor-Based Chaotic System Circuit Analysis. The
implementation of memristor-based chaotic system uses the
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modularized design method applied on System (17). After the
time-scale transformation method is applied on System (17),
System (17) becomes System (32).

𝑑𝑥𝑑𝑡 = − 1𝜏0𝑅1𝐶1 𝑥 − 1𝜏0𝑅2𝐶1 (−𝑦)
− 110𝜏0𝑅3𝐶1 (−𝑦) 𝑧 − 110𝜏0𝑅4𝐶1 𝑘𝑥𝑊 (𝑢)

𝑑𝑦𝑑𝑡 = − 1𝜏0𝑅5𝐶2 𝑥 − 1𝜏0𝑅6𝐶2 (−𝑦) − 110𝜏0𝑅7𝐶2𝑥𝑧
− 1𝜏0𝑅8𝐶2 (−𝑤)

𝑑𝑧𝑑𝑡 = − 1𝜏0𝑅9𝐶3 𝑧 − 110𝜏0𝑅10𝐶3 𝑥 (−𝑦)
− 110𝜏0𝑅11𝐶3 𝑥𝑢 − 110𝜏0𝑅12𝐶3𝑦𝑤𝑑𝑤𝑑𝑡 = − 1𝜏0𝑅13𝐶4𝑦 − 110𝜏0𝑅14𝐶4 𝑥 (−𝑧)
− 110𝜏0𝑅15𝐶4 𝑧𝑢𝑑𝑢𝑑𝑡 = − 1𝜏0𝑅16𝐶5𝑥

(32)

where 𝜏0 = 100.
Therefore,

𝑑𝑥𝑑𝑡 = −1400𝑥 − 1400 (−𝑦) − 400 (−𝑦) 𝑧
− 100𝑘𝑥𝑊 (𝑢)𝑑𝑦𝑑𝑡 = −100𝑥 − 1600 (−𝑦) − 100𝑥𝑧 − 100 (−𝑤)

𝑑𝑧𝑑𝑡 = −7800𝑧 − 100𝑥 (−𝑦) − 100𝑥𝑢 − 100𝑦𝑤
𝑑𝑤𝑑𝑡 = −1000𝑦 − 15𝑥 (−𝑧) − 30𝑧𝑢
𝑑𝑢𝑑𝑡 = −100𝑥

(33)

Furthermore, the paper employs the unified compression
coefficient, 𝑠 = 1/20, for each variable in order not to exceed
the range of the oscilloscope used to the circuit. Then

𝑠𝑥 󳨀→ 𝑥𝑠𝑦 󳨀→ 𝑦𝑠𝑧 󳨀→ 𝑧𝑠𝑤 󳨀→ 𝑤
(34)

Substituting (34) into (33), we can obtain

𝑑𝑥𝑑𝑡 = −1400𝑥 − 1400 (−𝑦) − 8000 (−𝑦) 𝑧
− 100𝑘𝑥𝑊 (𝑢)𝑑𝑦𝑑𝑡 = −100𝑥 − 1600 (−𝑦) − 2000𝑥𝑧 − 100 (−𝑤)

𝑑𝑧𝑑𝑡 = −7800𝑧 − 100𝑥 (−𝑦) − 2000𝑥𝑢 − 2000𝑦𝑤
𝑑𝑤𝑑𝑡 = −1000𝑦 − 300𝑥 (−𝑧) − 600𝑧𝑢
𝑑𝑢𝑑𝑡 = −100𝑥

(35)

Comparing equations (35) to (32), parameters R and C
in the circuit can be calculated when using the factor of
0.1 multiplier. R1=R2=75kΩ, R3= 1kΩ, R4=1MΩ, R5=1MΩ,
R6=68kΩ, R7=5.1kΩ, R8=1MΩ, R9=13kΩ, R10=5.1kΩ, R11=
R12=1MΩ, R13= 100kΩ, R14= 33.3kΩ, R15= 330kΩ, R16=
220kΩ.

In the modularized circuit design for System (17), there
are five channels for each variable. The circuit implementa-
tion uses analog amplifiers LF347N andAD633JNmultipliers
to implement the addition and the integral operations. Some
additional R and C components are also selected in the circuit
implementation. R17 = R18 = R19 = R20=10kΩ, R21 = R22 = R23
= R24 = 20kΩ, C1 = C2 = C3 = C4 = C5 = 10nF, Rf=2.2kΩ,
Rc=1kΩ, Rm=1MΩ, Rn=68kΩ.

The circuit channels for first four variables are shown in
Figure 5, and the fifth one is shown in Figure 3.

(A3) Circuit Implementation for the New 5D Chaotic Systems.
According to the circuit design, the Multisim simulation
implementation for the memristor-based hyperchaotic Sys-
tem (17) is demonstrated in Figure 6.That shows the attractor
phases graphs of different planes for System (17).

Attractor phases of System (17) as shown in Figure 6
own similar hyperchaotic characteristics with those of System
(5) which are elaborated in [37]. It is known that practical
analog devices are not ideal. Therefore, in reality, the voltages
added on the amplifiers are not exceeding ±13.5V in order
to guarantee the system variable outputs do not exceed the
amplifier linear region. This paper employs ±12.5V across
the amplifier in the physical circuits hardware, and the
corresponding attractor phases graphs are shown in Figure 7.

Comparing Figure 6 to Figure 7, it is shown that the physi-
cal experiment attractor phase results match those conducted
byMultisim and demonstrate the existence of the memristor-
based hyperchaotic attractor for System (17). Furthermore,
the memristor-based Wang hyperchaotic system has similar
characteristics with those of the original Wang hyperchaotic
system which is verified by the Multisim simulation and
physical experimental results. The improved modularized
method with compression coefficients is flexible, reliable,
and straightforward to realize the physical implementation.
The memristor-based hyperchaotic system has potential and
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bright application physically. For example, it can realize
the physical communication encryptions more reliably and
easily. Future works will focus on the physical applications for
communication encryptions by using the memristor-based
hyperchaotic system.

5. Conclusions

The paper developed a new 5D memristor-based chaotic
system with a flux-controlled memristor. The dynamics
analysis of the system showed that the new system is a
hyperchaotic system.The adaptive controller and update laws
for the synchronization of the new system were designed and
conducted. Furthermore, the modularized designmethod for
the physical circuit experiment implementation is applied
to realize the circuit by Multisim and physical experiments
hardware. After the implementation of these circuits, then
the comparisons between Multisim simulation and results
from the physical experiments showed that these two kinds
of results matched with each other and verified the existence
of the attractors from the phase plane graphs. Furthermore,
this new higher-dimensional chaotic system with memristor
owns more complex dynamics and can be applied in a wide
range of applications such as encryptions. This is also the
future work for this work.
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This paper concerns the problem on the fuzzy synchronization for a kind of disturbed memristive chaotic system. First, based on
fuzzy theory, the fuzzy model for a memristive chaotic system is presented; next, based on H-infinity technique, a multidimensional
fuzzy controller and a single-dimensional fuzzy controller are designed to realize the synchronization of master-slave chaotic
systems with disturbances. Finally, some typical examples are included to illuminate the correctness of the given control method.

1. Introduction

Since May 2008, by using nanotechnology physical tech-
niques, HP laboratory research team successfully obtain the
resistance with memory characteristic [1], which confirmed
the concept of memristor proposed by Chua [2, 3]. As the
fourth basic passive device, memristor establishes the rela-
tionship between the magnetic flux and the charge. It has
been reported that memristor can be applied in the field of
computer science [4], biological engineering [5], and elec-
tronic engineering [6]. Especially, memristor can be used to
construct the chaotic circuits.

For chaotic circuits, the nonlinear device is the key com-
ponent. In 2008, Itoh and Chua built the first memristor-
based chaotic system by replacing the diode with a piecewise
linear magnetron Chua’s memristor [7]. Compared with the
conventional nonlinear-device-based chaotic circuits, the
memristor-based circuit has two main characteristics: first,
the memristor-based circuit can produce the complicated
dynamical behavior, which is different from the general
chaotic dynamical behavior; secondly, the memristor-based
circuit is more suitable to generate the high-frequency
chaotic signal and have potential applications in chaotic
secure communication, signal generator, and image process
[8–12]. Hence, up to now, a number of memristor-based

chaotic circuit with different structures are proposed. For
example, the chaotic circuit with one memristor is studied
in [13, 14], the chaotic circuit with two memristor is con-
cerned in [15, 16], the integer-order chaotic memristor cir-
cuit is investigated in [17, 18], and the fractional chaotic
memristor circuit are researched in [19, 20].

Chaos synchronization is a common phenomenon and
can be found in biological systems, chemical reactions, power
converters, secure communication system, and so on. Fuzzy
technique is a powerful tool [21–27] and especially suitable
for the chaos synchronization in the case that disturbances
exist. For general fuzzy control, the control input is multidi-
mensional and requires all system state information. How-
ever, in practical engineering, it is not easy to get all system
state information. The multidimensional control can not
only increase the control cost but also result in disturbance
input problem. Hence, it is meaningful to design a single-
dimensional fuzzy controller which is just based on one sys-
tem state variable. In addition, disturbance inputs exist in
actual system widely, which should be considered in syn-
chronization control. All these motivate our research.

The paper is schemed as follows: the fuzzy model for a
memristor-based chaotic circuit is constructed and the
preliminary knowledge will be given in Section 2; a multi-
dimensional fuzzy controller and a single-dimensional
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fuzzy controller will be designed to achieve the chaos syn-
chronization of the master-slave systems in Section 3; the
typical simulation example will be included to validate
the correctness of the scheme in Section 4; and finally,
the paper will be concluded in Section 5.

Notations used in this paper are fairly standard. diag
… represents a block diagonal matrix, Rn is the n-dimen-

sional Euclidean space, Rn×m denotes the set of n ×m real
matrix, the superscript T stands for matrix transposition,
⋅ 2 refers to the Euclidean vector norm or the induced

matrix 2-norm, and λmin ⋅ represents the maximum
eigenvalue.

2. System Description and Preliminaries

First, consider a memristor-based circuit as Figure 1.
One can get the equivalent dynamic system as

C1
dVC1

t

dt
= iL1 t −W φ t VC1

t ,

L1
diL1 t

dt
=VC2

t −VC1
t + R1iL1 t ,

C2
dVC2

t

dt
= 1
R

VC3
t −VC2

t − iL1 t ,

C3
dVC3

t

dt
= 1
R

VC2
t −VC3

t − iL2 t ,

L2
diL2 t

dt
=VC3

t − R2iL2 ,

dφ t
dt

=VC1
t

1

Define the state variable as

x1 t =VC1
t ,

x2 t = RiL1 t ,
x3 t =VC2

t ,
x4 t =VC3

t ,
x5 t = RiL2 t ,
x6 t = φ t

2

One can obtain the equivalent dynamical equation as

x1 t = r1 x2 t −W x6 t x1 t ,
x2 t = r2 x3 t − x1 t + r7x2 t ,
x3 t = r3 x4 t − x3 t − x2 t ,
x4 t = r4 x3 t − x4 t − x5 t ,
x5 t = r5 x4 t − r6x5 t ,
x6 t = x1 t ,

3

with

W x6 t = RW φ t =
a, x6 t ≤ 1,
b, x6 t > 1

, 4

where xi, i = 1, 2,… , 7 is the state variable of the system and
ri > 0, i = 1, 2,… , 7 is the system parameter. The memristive
system will possess the chaotic dynamical behavior when
the system parameters are r1 = 5, r2 = 2, r3 = 2, r4 = 4, r5 =
3, r6 = 0 1, r7 = 0 8, a = 0 1, and b = 6.

Next, consider the fuzzy modeling of the memristive
chaotic system.

For x1 t = r1 x2 t −W x6 x1 t

Rule 1. If x1 t is H11, then

x1 t = r1 x2 t − ax1 t , 5

where H11 means x6 t ≤ 1, and define

M11 =
1, x6 t ≤ 1,
0, x6 t > 1

6

Rule 2. If x1 t is H12, then

x1 t = r1 x2 t − bx1 t , 7

where H12 means x6 t > 1, and define

M12 =
0, x6 t ≤ 1,
1, x6 t > 1

8

Hence, the fuzzy model of the memristive chaotic system
is defined as

x1 t

x2 t

x3 t

x4 t

x5 t

x6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11

L2

R2

C2C3 C1

−R1

MR

L1R

Figure 1: The memristor-based chaotic circuit.
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r1 x2 t − ax1 t

r2 x3 t − x1 t + r7x2 t

r3 x4 t − x3 t − x2 t

r4 x3 t − x4 t − x5 t

r5 x4 t − r6x5 t

x1 t

+

M12 0 0 0 0 0
0 M12 0 0 0 0
0 0 M12 0 0 0
0 0 0 M12 0 0
0 0 0 0 M12 0
0 0 0 0 0 M12

r1 x2 t − bx1 t

r2 x3 t − x1 t + r7x2 t

r3 x4 t − x3 t − x2 t

r4 x3 t − x4 t − x5 t

r5 x4 t − r6x5 t

x1 t

9

Above model can be rewritten as

x t = 〠
2

i=1
ΘiAix t , 10

where

Θi = diag M1i,M1i,M1i,M1i,M1i,M1i ,

A1 =

−ar1 r1 0 0 0 0
−r2 r2r7 r2 0 0 0
0 −r3 −r3 r3 0 0
0 0 r4 −r4 −r4 0
0 0 0 r5 −r5r6 0
1 0 0 0 0 0

,

A2 =

−br1 r1 0 0 0 0
−r2 r2r7 r2 0 0 0
0 −r3 −r3 r3 0 0
0 0 r4 −r4 −r4 0
0 0 0 r5 −r5r6 0
1 0 0 0 0 0

11

System (3) is supposed as the master system, and the slave
system is constructed as

y1 t = r1 y2 t −W y6 t y1 t + u1 t +w1 t ,
y2 t = r2 y3 t − y1 t + r7y2 t + u2 t +w2 t ,
y3 t = r3 y3 t − y4 t − y2 t + u3 t +w3 t ,
y3 t = r4 y4 t − y3 t − y5 t + u4 t +w4 t ,
y5 t = r5 y4 t − r6y5 t + u5 t +w5 t ,
y6 t = y1 t + u6 t +w6 t ,

12

where y t = y1 t , y2 t , y3 t , y4 t , y5 t , y6 t T is the
state variable vector of the slave system and w t =
w1 t ,w2 t ,w3 t ,w4 t ,w5 t ,w6 t T is the disturbance
input of the slave system.

Hence, the fuzzy model of the slave system can be repre-
sented as

y t = 〠
2

i=1
ΘiAiy t +w t + u t , 13

where u t = u1 t , u2 t , u3 t , u4 t , u5 t , u6 t T is the
synchronization fuzzy controller.

Define the synchronization error vector of the master-
slave systems as

E t = y t − x t , 14

where E t = e1 t , e2 t , e3 t , e4 t , e5 t , e6 t T .
One can get the error dynamic system as

E t = y t − x t = 〠
2

i=1
ΘiAiy t − 〠

2

i=1
ΘiAix t

+w t + u t = 〠
2

i=1
ΘiAiE t +w t + u t

15

In this paper, the following lemmas are concerned:

Lemma 1 (see [28]). If f t ∈ L∞ ∩ L2 and f t ∈ L∞, one
can get

lim
t→+∞

f t = 0 16

Definition 1. For nonzero w t ∈ L2 t0,∞ and under the
assumption of zero initial condition, if there exists a posi-
tive scalar γ such that

E t 2 ≤ γ w t 2 17

Then, the slave system will synchronize to the master sys-
tem with H∞ norm bound γ.
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3. Main Results

Based on fuzzy theory and Lyapunov theory, a controller is
presented as follows.

Theorem 1. If there exist scalar Kj
i > 0, i = 1, 2, j = 1,… , 6,

design the multidimensional fuzzy controller with following
control regulation

u t = −〠
2

i=1
ΘikiE t , 18

with

k1
1 = K1

1 − r1a + 2,

k2
1 = K2

1 + r1 − r2
2

4 + r2r7 + 1,

k3
1 = K3

1 + r2 − r3
2

4 − r3 + 1,

k4
1 = K4

1 + −r3 − r4
2

4 − r4 + 1,

k5
1 = K5

1 + r5 − r4
2

4 − r5r6,

k6
1 = K6

1 + 1
4 ,

k1
2 = K1

2 − r1b + 2,

k2
2 = K2

2 + r1 − r2
2

4 + r2r7 + 1,

k3
2 = K3

2 + r2 − r3
2

4 − r3 + 1,

k4
2 = K4

2 + −r3 − r4
2

4 − r4 + 1,

k5
2 = K5

2 + r5 − r4
2

4 − r5r6,

k6
2 = K6

2 + 1
4 ,

19

I − 〠
2

i=1
ΘiKi

I
2

∗ −γ2I

< 0, 20

ki = diag k1
i, k2i, k3i, k4i, k5i, k6i , 21

Ki = diag K1
i, K2

i, K3
i, K4

i, K5
i, K6

i 22

Then, the slave system (12) can synchronize to the master sys-
tem (3) with H∞ norm bound γ.

Proof 1. With (18), the error dynamic system can be trans-
formed as

e1 t

e2 t

e3 t

e4 t

e5 t

e6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11
r1 e2 t − ae1 t − k1

1e1 t +w1 t

r2 e3 t − e1 t + r7e2 t − k2
1e2 t +w2 t

r3 e4 t − e3 t − e2 t − k3
1e3 t +w3 t

r4 e3 t − e4 t − e5 t − k4
1e4 t +w4 t

r5 e4 t − r6e5 t − k5
1e5 t +w5 t

e1 t − k6
1e6 t +w6 t

+

M12 0 0 0 0 0

0 M12 0 0 0 0

0 0 M12 0 0 0

0 0 0 M12 0 0

0 0 0 0 M12 0

0 0 0 0 0 M12
r1 e2 t − be1 t − k1

2e1 t +w1 t

r2 e3 t − e1 t + r7e2 t − k2
2e2 t +w2 t

r3 e4 t − e3 t − e2 t − k3
2e3 t +w3 t

r4 e3 t − e4 t − e5 t − k4
2e4 t +w4 t

r5 e4 t − r6e5 t − k5
2e5 t +w5 t

e1 t − k6
2e6 t +w6 t

23

Choose the Lyapunov function candidate as

V t = 1
2 e1

2 t + e2
2 t + e3

2 t

+ e4
2 t + e5

2 t + e6
2 t

24

One can get the time derivative of V t as

V t = e1 t M11 r1 e2 t − ae1 t − k1
1e1 t +w1 t

+M12 r1 e2 t − be1 t − k1
2e1 t +w1 t
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+ e2 t M11r2 e3 t − e1 t + r7e2 t − k2
1e2 t

+w2 t +M12 r2 e3 t − e1 t + r7e2 t

− k2
2e2 t +w2 t + e3 t M11 r3 e4 t

− e3 t − e2 t − k3
1e3 t +w3 t

+M12 r3 e4 t − e3 t − e2 t − k3
2e3 t

+w3 t + e4 t M11 r4 e3 t − e4 t

− e5 t − k4
1e4 t +w4 t +M12 r4 e3 t

− e4 t − e5 t − k4
2e4 t +w4 t

+ e5 t M11 r5 e4 t − r6e5 t − k5
1e5 t +w5 t

+M12 r5 e4 t − r6e5 t − k5
2e5 t +w5 t

+ e6 t M11 e1 t − k6
1e6 t +w6 t

+M12 e1 t − k6
2e6 t +w6 t

= −r1 M11a +M12b e1
2 t + r1 − r2 e1 t e2 t

+ r2r7e2
2 t + r2 − r3 e2 t e3 t − r3e3

2 t

+ r3 + r4 e3 t e4 t − r4e4
2 t

+ r5 − r4 e4 t e5 t − r5r6e5
2 t + e1 t e6 t

− 〠
6

j=1
M11kj

1ej
2 t +M12kj

2ej
2 t +wT t E t

≤ − r1 M11a +M12b − 2 +M11k1
1 +M12k1

2 e1
2 t

− e1 t − r1 − r2 e2
t
2

2
− −

r1 − r2
2

4

− 1 − r2r7 +M11k2
1 +M12k2

2 e2
2 t

− e2 t − r2 − r3 e3
t
2

2
− −

r2 − r3
2

4 − 1 + r3

+M11k3
1 +M12k3

2 e3
2 t − e3 t − r3 + r4 e4

t
2

2

− −
r3 + r4

2

4 − 1 + r4 +M11k4
1 +M12k4

2 e4
2 t

− e4 t − r5 − r4 e5
t
2

2
− −

r5 − r4
2

4 + r5r6

+M11k5
1 +M12k5

2 e5
2 t − e1 t − e6

t
2

2

− −
1
4 +M11k6

1 +M12k6
2 e6

2 t +wT t E t

25

With (19), one can conclude that

V t ≤ −ET t 〠
2

i=1
ΘiKiE t +wT t E t 26

Consider the H∞ performance index as

J =
tT

t0

ET t E t − γ2wT t w t dt

=
tT

t0

ET t E t − γ2wT t w t +V t dt

+V t0 − V tT

27

For V t0 = 0 and V tT ≥ 0,

J ≤
tT

t0

ET t E t − γ2wT t w t +V t dt

=
tT

t0

ηT t Ωη t dt,
28

where

η t = ET t ,wT t
T ,

Ω =
I − 〠

2

i=1
ΘiKi

I
2

∗ −γ2I

29

Consider (20), it can be concluded that J ≤ 0. Based on
Definition 1, slave system (12) can synchronize to master sys-
tem (3) with H∞ norm bound γ.

Next, consider the design for the single-dimensional
fuzzy synchronization controller.

Construct the slave system as

y1 t = r1 y2 t −W y6 t y1 t ,
y2 t = r2 y3 t − y1 t + r7y2 t +w t + u t ,
y3 t = r3 y4 t − y3 t − y2 t ,
y3 t = r4 y3 t − y4 t − y5 t ,
y5 t = r5 y4 t − r6y5 t ,
y6 t = y1 t ,

30

where u t is the single-dimensional synchronization fuzzy
controller.

Theorem 2. If there exist scalar ki > 0, i = 1, 2, design the
single-dimensional fuzzy controller with following control
regulation

u t = −〠
2

i=1
M1ikie2 t , 31
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where

ki = ki + r7 r2

− M11a +M12b 0 0 0

0 1 − M11k
1 +M12k

2 0 1
2r2

0 0 −r6 0

0 1
2r2

0 −γ2

≤ 0

32

Then, slave system (30) with any initial conditions can syn-
chronize to master system (3) with H∞ norm bound γ.

Proof 2. With (31), the error dynamic system can be trans-
formed as

e1 t

e2 t

e3 t

e4 t

e5 t

e6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11

r1 e2 t − ae1 t

r2 e3 t − e1 t + r7e2 t +w t − k1e2 t

r3 e4 t − e3 t − e2 t

r4 e3 t − e4 t − e5 t

r5 e4 t − r6e5 t

e1 t

+

M12 0 0 0 0 0
0 M12 0 0 0 0
0 0 M12 0 0 0
0 0 0 M12 0 0
0 0 0 0 M12 0
0 0 0 0 0 M12

r1 e2 t − be1 t

r2 e3 t − e1 t + r7e2 t +w t − k2e2 t

r3 e4 t − e3 t − e2 t

r4 e3 t − e4 t − e5 t

r5 e4 t − r6e5 t

e1 t

33

Choose the Lyapunov function candidate as

V0 t = 1
2r1

e1
2 t + 1

2r2
e2

2 t + 1
2r3

e3
2 t

+ 1
2r4

e4
2 t + 1

2r5
e5

2 t
34

One can get the time derivative of V0 t as

V0 t = 1
r1
e1 t e1 t + 1

r2
e2 t e2 t + 1

r3
e3 t e3 t

+ 1
r4
e4 t e4 t + 1

r5
e5 t e5 t

= e1 t M11 e2 t − ae1 t +M12 e2 t − be1 t

+ e2 t M11 e3 t − e1 t + r7e2 t

+M12 e3 t − e1 t + r7e2 t +w t /r2 + u t /r2
+ e3 t M11 e4 t − e3 t − e2 t

+M12 e4 t − e3 t − e2 t

+ e4 t M11 e3 t − e4 t − e5 t

+M12 e3 t − e4 t − e5 t

+ e5 t M11 e4 t − r6e5 t +M12 e4 t − r6e5 t

= e1 t M11 e2 t − ae1 t +M12 e2 t − be1 t

+ e2 t M11 e3 t − e1 t − k1e2 t

+M12 e3 t − e1 t − k2e2 t

+ e3 t M11 e4 t − e3 t − e2 t

+M12 e4 t − e3 t − e2 t

+ e4 t M11 e3 t − e4 t − e5 t

+M12 e3 t − e4 t − e5 t

+ e5 t M11 e4 t − r6e5 t

+M12 e4 t − r6e5 t + e t 2w t /r2
= − M11a +M12b e1

2 t − M11k
1 +M12k

2 e2
2 t

− e3 t − e4 t 2 − r6e5
2 t + e2 t w t /r2

35
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Figure 2: Attractor of the memristive chaotic system.
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With (31), one can conclude that

V0 t ≤ −ET t 〠
2

i=1
ΘiKiE t + 1

r2
w t e2 t , 36

where

K1 = diag a, k1, r6 ≥ 0,

K2 = diag b, k2, r6 ≥ 0,

E = e1 t , e2 t , e5 t T ,
Θi = diag M1i,M1i,M1i

37

Consider the H∞ performance index as

J =
tT

t0

e2
2 t − γ2wT t w t dt

=
tT

t0

e2
2 t − γ2wT t w t +V0 t dt

+V t0 − V tT

38

For V t0 = 0 and V tT ≥ 0,

J ≤
tT

t0

e2
2 t − γ2wT t w t +V0 t dt =

tT

t0

ηT t Ωη t dt,

39

where

η t = ET t ,wT t
T
,

Ω =

− M11a +M12b 0 0 0

0 1 − M11k
1 +M12k

2 0 1
2r2

0 0 −r6 0

0 1
2r2

0 −γ2

40

Consider (32), it can be concluded that J ≤ 0. Based on
Definition 1, slave system (30) can synchronize to master sys-
tem (3) with H∞ norm bound γ.

4. Example and Simulation

First, consider the dynamics of the memristive chaotic sys-
tem, and the simulation result is shown in Figure 2.

Next, we study the synchronization control of the
master-slave systems. In the simulation, the system initial
values are y 0 = 1, −1, 0 5, −1, 2, −1 T and x 0 = 0 001 ×
1, 1, 1, 1, 1, 1 T . The disturbance input is w t =wi t = 2
sin 2t sin et/ t + 1 , t ≥ 20s. Let γ = 0 4, and based on
Theorem 1, the control parameters for the multidimensional
fuzzy controller are k1 = diag 4 06, 7 41, 1 56, 8 56, 2 21,
2 81 and k2 = diag −35 43, 7 41, 1 56, 8 56, 2 21, 2 81 ;
the simulation result is shown in Figure 3. Then, based
on Theorem 2, the control parameters for the single-
dimensional fuzzy controller are k1 = 9 73 and k2 = 7 38;
the simulation result is shown in Figure 4.
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Figure 3: Time response of synchronization error variables with multidimensional fuzzy controller.
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Remark 2. Figure 3 depicts the time response of the synchro-
nization error variables of the memristive master-slave sys-
tems with the multidimensional fuzzy controller. Figure 4
depicts the time response of the synchronization error vari-
ables of the master-slave systems with the single-dimensional
fuzzy controller. It can be seen that although there exists just
one disturbance w t for single-dimensional fuzzy control,
the disturbance has impact on all error synchronization
variables. In addition, it can be seen that both controllers
can be able to realize the synchronization of the master-
slave systems; the multidimensional fuzzy controller has
the better control performance and realizes the chaos syn-
chronization during 2.0 seconds. However, the possession
of the good control performance is at the cost of the
acquirement of all system state information. In addition,
multidimensional control may introduce more disturbance
input. The single-dimensional synchronization controller
has the general control performance but requires just one
system state information, which can decrease the control
cost and the disturbance input. Hence, two kinds of con-
trollers are useful and recommended for the different
applied cases.

Remark 3. For the nonlinear disturbed chaotic system, the
fuzzy modeling technique is adopted to realize the exact lin-
earization control, which can eliminate the constraint on the
system nonlinear term, compared with the general nonlinear
control method; in addition, H-infinity approach is intro-
duced to deal with the case that disturbances exist.

5. Conclusion

This paper focuses on the fuzzy synchronization for a new
memristive chaotic system with disturbances. Based on fuzzy

theory and Lyapunov stability theory, we have built the fuzzy
model for the memristive chaotic system. Then, by using H-
infinity technique, we have presented two kinds of fuzzy con-
trollers for the possible application in chaos synchronization
of slave-master systems. Finally, we have included some
example to demonstrate the effectiveness of the given fuzzy
controllers. In addition, the proposed results can be extended
to the memristive chaotic control system with daelay or event
trigger, which is our future work.
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A novel generic memristor, dubbed the 6-lobe Chua corsage memristor, is proposed with its nonlinear dynamical analysis and
physical realization. The proposed corsage memristor contains four asymptotically stable equilibrium points on its complex and
diversified dynamic routes which reveals a 4-state nonlinear memory device. The higher degree of versatility of its dynamic
routes reveal that the proposed memristor has a variety of dynamic paths in response to different initial conditions and exhibits
a highly nonlinear contiguous DC V-I curve. The DC V-I curve of the proposed memristor is endowed with an explicit
analytical parametric representation. Moreover, the derived three formulas, exponential trajectories of state xn t , time
period t f n, and minimum pulse amplitude VA, are required to analyze the movement of the state trajectories on the
piecewise linear (PWL) dynamic route map (DRM) of the corsage memristor. These formulas are universal, that is,
applicable to any PWL DRM curves for any DC or pulse input and with any number of segments. Nonlinear dynamics and
circuit and system theoretic approach are employed to explain the asymptotic quad-stable behavior of the proposed corsage
memristor and to design a novel real memristor emulator using off-the-shelf circuit components.

1. Introduction

Memristor, the acronym of memory resistor, is one of the
most propitious elements in the emerging memory sector
due to its exclusive attributes under DC or AC excitations,
as well as its miniature nanoscale physical dimension. Exten-
sive research is ongoing on memristors and the memristive
system after the seminal paper published by hp in 2008 [1].
Memristor, the fourth basic circuit element, was postulated
by Chua [2] and later generalized to a broader class of
dynamical devices which exhibit interesting and valuable
circuit-theoretic properties [3].

Recently, several researchers investigated the multistate
phenomena in generic and extended memristors [4–7]. This
important research direction could lead to another stage of
technical innovation in the memristor area. The principle

of the multistate memristor can be explained using the
nonlinear dynamics theory as well as circuit and system
theoretic concepts [4–6]. For example, the locally active
generic Chua corsage memristor exhibits an asymptotical
stability via the supercritical Hopf bifurcation [8–9]. Once
an initial state is set, the state alters following its nonlinear
dynamic route. The state changing is repeated until the state
reaches a particular state which is termed as an “attractor.” In
this type of memristors, the state space contains various
attractors and each attractor has its own basin of attraction
[10]. When inputs or noises are applied at a stable equilib-
rium state of the generic corsage memristor, the equilibrium
state is moved by the amount of time integral of the inputs.
However, unless the state moves beyond the boundary of
current basin of attraction, the state returns back to its
original equilibrium state (attractor) [8, 9]. Therefore, it can

Hindawi
Complexity
Volume 2018, Article ID 8405978, 21 pages
https://doi.org/10.1155/2018/8405978

http://orcid.org/0000-0002-3321-5695
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/8405978


become a robust memory device. Since a part of the previous
programming history of the corsage memristor is lost in this
procedure, the phenomenon is known as “local fading
memory” in bistable and multistate memory devices [4].

Another feature of this type of multistate corsage
memristor is the alteration of the stable equilibrium states.
In this case, a sufficiently large amplitude with short pulse
width or a minimum pulse amplitude with lengthy pulse
width is applied across the memristor to switch the state
from one stable equilibrium state to another stable state
by converging into the basin of a new stable attractor. In
this way, the equilibrium state of a multistate corsage
memristor is changed to a new stable state where the
resistances or conductances of each stable equilibrium
state are distinguishably different from each other [7].
The alteration of the stable equilibrium states of corsage
memristors is determined by the function of its input
and initial condition, and henceforth, the corsage memris-
tors exhibit multistability and eventually can be used as
multistate memory devices.

In this paper, we demonstrate a novel quad-stable generic
memristor, dubbed the 6-lobe Chua corsage memristor. The
dynamic routes of the 6-lobe corsage memristor have four
asymptotically stable equilibrium points and three unstable
equilibrium points at the DC input voltage V=0V. The four
asymptotically stable equilibrium points of the proposed
memristor define the corresponding four distinct resistance
levels and can be used to develop a multibit-per-cell memory
device similar to the unidirectional spin Hall magnetoresis-
tance [11]. The multistable memory states are distinguishable
by resistance levels in accordance to stable equilibrium points
where the memory states can be defined with a pair of
bits. To ease the demonstration of the switching kinetics
of multistable memory states of the proposed memristor,
we derived three universal formulas regarding the expo-
nential state xn t , the time period t f n, and the minimum
pulse amplitude VA.

In addition to the theoretical insights, we have
designed and built a real emulator circuit of the proposed
corsage memristor. For the physical realization of the
piecewise linear 6-lobe Chua corsage memristor, we use
the Graetz bridge [12] circuit in parallel with an active
and locally active resistor [5]. Concepts from circuit and
system theory, and techniques from nonlinear dynamics
theory, are employed in this paper to elucidate the key
mechanisms underlying the emergence of switching strate-
gies of quad-stable memory.

The rest of the paper is organized as follows: the 6-lobe
corsage memristor is designed and introduced in Section 2.
The parametric representation and DC V-I curve are
analyzed in Section 3. The switching kinetics and the physical
implementation of the proposed corsage memristor are
described in Sections 4 and 5, respectively, followed by the
concluding remarks in Section 6.

2. 6-Lobe Chua Corsage Memristor Model

The 6-lobe Chua corsage memristor is an extension of the
1st-order locally active Chua corsage memristor [8]. It is a

piecewise linear (PWL) memristor whose state-dependent
Ohm’s law and state equation are as follows:

i = G x v, 1

where

G x =G0x
2, 2

and

dx
dt

= f x + v, 3

where

f x = 33 − x + x − 6 − x − 12 + x − 20 − x − 30
+ x − 42 − x − 56 ,

4

and x, i, and v denote the memristor state, current, and
voltage, respectively. In practice, G0 is a scaling constant
chosen to fit the intrinsic memductance scale of the memris-
tor. In this paper, we choose G0 = 10−6 so that the current
of the 6-lobe Chua corsage memristor can be measured in
milliamperes (mA) [7].

2.1. Frequency-Dependent Pinched Hysteresis Loops. The
frequency-dependent pinched hysteresis loops of a device,
when driven by any periodic input current or voltage source
with a zero DC component, are a signature of a memristor or
memristive system [13]. The 6-lobe Chua corsage memristor
defined in (1), (2), (3), and (4) exhibits frequency-dependent
pinched hysteresis loops when it is driven by a sinusoidal
input signal v t = A sin ωt where A = 5V, as shown in
Figure 1. The input voltage v t and the corresponding
memristor current i t are shown in the upper-right side of
Figure 1(a), and the memristor state x t and memductance
G t are shown in the lower-right side of Figure 1(a), whereas
the left side of Figure 1(a) shows the memristive circuit
diagram with AC excitation. The frequency-dependent
pinched hysteresis loops are shown in Figure 1(b) for fre-
quencies ω = 1 rad/s, 10 rad/s, 20 rad/s, and 100 rad/s. The
lobe area of the pinched hysteresis loops shrinks as the fre-
quency increases and tends to a straight line for ω ≥ 100 rad
/s as shown in Figure 1(b) [14]. It follows that the proposed
corsage memristor is a generic memristor [15].

2.2. Dynamic Routes with Their Phase Portrait. The dynamic
route of a nonlinear system prescribes the dynamics of non-
linear differential equations [14]. The dynamic route of the
short-circuited (v=0V), namely, the power-off-plot (POP),
6-lobe Chua corsage memristor is shown in Figure 2 where
(5) is used to plot the loci of dx/dt∣v=0 versus x.

dx
dt v=0 = f̂ x = 33 − x + x − 6 − x − 12 + x − 20

− x − 30 + x − 42 − x − 56
5
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The arrowheads in Figure 2 indicate the direction of
motion of the state variable x from any initial state x 0 .

Figure 2 shows that for any initial state x 0 on the upper
half of the POP, where dx/dt > 0, the state variable x t
must move to the right as x t increases with time,
depicted by the purple arrowheads pointing to the right
in Figure 2. On the contrary, for any initial state x 0 on
the lower half of the POP, where dx/dt < 0, the state variable
x t decreases with time and must move to the left, depicted
by the black arrowheads pointing to the left in Figure 2. In the

theory of nonlinear dynamics [16], the stationary points
where dx/dt = 0 or f̂ x intersects the x-axis; are known as
equilibrium points. Figure 2 shows that f̂ x intersects the
x-axis at seven points, namely, x = XQ1 = 3 (Q1), x = XQ2
= 9 (Q2), x = XQ3 = 15 (Q3), x = XQ4 = 25 (Q4), x = XQ5 =
35 (Q5), x = XQ6 = 49 (Q6), and x = XQ7 = 63 (Q7). The
equilibrium points Q1, Q3, Q5, and Q7 are stable whereas
Q2, Q4, and Q6 are unstable equilibrium points because
the state variable x t diverges away from Q2, Q4, and
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Figure 1: Frequency-dependent pinched hysteresis loop fingerprint of the 6-lobe Chua corsage memristor, calculated with initial state
x(0) = 5: (a) the input voltage v(t) (in red), corresponding memristor current i(t) (in blue), memristor state x(t) (in magenta), and
memconductance G(t) (in green) of the 6-lobe Chua corsage memristor; (b) frequency-dependent pinched hysteresis loops for zero-mean
periodic input v(t) =Asin(ωt) where A= 5V and frequency ω= 1 rad/s, 10 rad/s, 20 rad/s, and 100 rad/s.
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Q6. Moreover, the equilibrium points Q1, Q3, Q5, and Q7

in Figure 2 are stable as the corresponding eigenvalues
of those equilibrium points are negative real numbers
whereas Q2, Q4, and Q6 are unstable as the eigenvalues
are positive [17].

Figure 2 shows that for any initial state x 0 > XQ + δx,
where XQ ∈ XQ2, XQ4, XQ6 , the unstable equilibrium points
Q2, Q4, and Q6 converge to stable equilibrium points Q3, Q5,
and Q7, respectively, to their right as shown with purple
arrowheads. In contrast, for any initial state x 0 < XQ − δx,
Q2, Q4, and Q6 converge to stable equilibrium points Q1,
Q3, and Q5, respectively, to their left as shown with
black arrowheads.

The phase portrait of stable equilibrium states Q1, Q3, Q5,
and Q7 is shown in Figure 3 where the dotted straight lines
represent the separatrices between two stable equilibrium
states and pass through the unstable equilibrium points Q2,
Q4, and Q6, respectively. Similar to Figure 2, Figure 3 also
shows that for any x 0 > XQ2 orXQ4 orXQ6 , the trajecto-
ries of x t converge toQ3,Q5, andQ7, respectively, as shown
with purple arrowheads. Conversely, for x 0 < XQ2 orXQ4
orXQ6 , x t converges to Q1, Q3, and Q5, respectively, as
shown with black arrowheads.

The dynamic routes in Figure 2 and the phase portrait
in Figure 3 illustrate that the proposed memristor can be
used as a 4-state or multibit-per-cell (2-bit) memory device
at v=0V.

The more stable equilibrium states of the 6-lobe
corsage memristor increases the memory efficiency per
device 50% and 25% compared to 2-lobe and 4-lobe corsage
memristors, respectively, and eventually enhance the

capability to represent a desired function more closely than
2-lobe or 4-lobe corsage memristors.

3. Parametric Representation and the DC
V-I Curve

In mathematics, parametric representation of an object is a
collection of parametric equations which are used to express
the coordinates of the points that make up a geometric object
[18] where those parametric equations are defined by a group
of quantities based on a function of one or more independent
variables [19].

3.1. Parametric Representation. The parametric representa-
tion of the 6-lobe Chua corsage memristor can be
derived by equating state (3) to zero (dx/dt = 0) and
solving for the following equilibrium points (6) for
each DC input voltage v =V , at the DC equilibrium
state x = X V :

dx
dt

= 33 − x + x − 6 − x − 12 + x − 20 − x − 30

+ x − 42 − x − 56 + v = 0
6

The DC voltage of the proposed corsage memristor
is given explicitly by

V = − 33 − x + x − 6 − x − 12 + x − 20 − x − 30
+ x − 42 − x − 56 ≜ v̂ X

7

v = 0 V
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Figure 2: Dynamic route map of the 6-lobe Chua corsage memristor at V= 0V is called the power-off-plot (POP).
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The parametric representation of the DC current of the
6-lobe corsage memristor can be derived by substituting
V given by (7) for v in (1) with G0 = 10

−6, namely,

I = −G0X
2 33 − x + x − 6 − x − 12 + x − 20 − x − 30

+ x − 42 − x − 56 ≜ î X

8

The parametric representations of the proposed
corsage memristor are shown in Figure 4 where
Figures 4(a) and 4(b) show the loci of the parametric
representation of V = v̂ x versusX and I = î x versusX,
respectively. The loci of the parametrically represented
V = v̂ x versus I = î x are shown in Figure 4(c).

For convenience of readers, several points of the
parametric representation of V = v̂ x and I = î x of the
6-lobe Chua corsage memristor over the range χ = X:
− 12 ≤X ≤ 78 are listed in Table 1.

3.2. DC V-I Plot. A circuit-theoretic approach is used to
derive the DC V-I loci of the voltage-controlled 6-lobe Chua
corsage memristor. Each DC value of voltage V and current
I is computed using the following steps:

(1) For each value of V listed in Table 1, we calculate
all equilibria x = Xk, 1 ≤ k ≤ 7, of the proposed
memristor using state (3) where dx/dt = 0

V = − 33 − x + x − 6 − x − 12 + x − 20
− x − 30 + x − 42 − x − 56 ≜ v̂ X

9

(2) Then we determine the DC current i = I of the
memristor corresponding to each equilibrium point
X = X1, X2,… , XN , 1 ≤N ≤ 7:

I = −G0X
2 33 − x + x − 6 − x − 12

+ x − 20 − x − 30 + x − 42
− x − 56 ≜ î X

10

(3) Finally, we draw the DC V-I curve by plotting
the coordinates (V, I) on the V-I plane for each
value of X.

The DCV-I loci of the 6-lobe corsage memristor is shown
in Figure 5 over the input voltage range −10V≤V≤ 10V
where the solid curves correspond to stable equilibrium states
and the dash curves correspond to unstable equilibrium
states. Since the DC V-I curve contains six contiguous lobes,
henceforth call it the “six lobe corsage V-I curve.” The seven
different colored DC V-I branches in Figure 5 represent the
equilibrium points of the corresponding colors in Figure 3.
At v = 0V, the state variables are x = 3 (red DC V-I curve
Q1), x = 9 (fluorescent green DC V-I curve Q2), x = 15 (blue
DC V-I curve Q3), x = 25 (magenta DC V-I curve Q4), x =
35 (cyan DC V-I curve Q5), x = 49 (brown DC V-I curve
Q6), and x = 63 (green DC V-I curve Q7). As the values of
the state variable of each DC V-I branch at the origin are
different, their slopes (i.e., conductances G x ) at the origin
are also different according to (2), as tabulated in the
upper-left inset of Figure 5. The tabulated upper-left inset
shows that the red DC V-I curve represents the lower
conductance state (higher resistance state) whereas the green
DC V-I curve represents the higher conductance state (lower
resistance state). Moreover, the lower-right inset of Figure 5
shows a zoomed portion of the red DC V-I curve over

0 1 2 3 4 5 6 7 8 9 10

−10
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40
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80
x(t)

t

Q1 (XQ1
 = 3)

Q2 (XQ2
 = 9)

Q3 (XQ3
 = 15)

Q4 (XQ4
 = 25)

Q5 (XQ5
 = 35)

Q6 (XQ6
 = 49)

Q7 (XQ7
 = 63)

Figure 3: Phase portrait of the stable equilibrium states Q1, Q3, Q5, and Q7. The horizontal dotted lines are the separatrices and pass through
the unstable equilibrium states Q2, Q4, and Q6, respectively.
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the range −5V≤V≤ 2V. The zoomed red DC V-I curve
contains a negative-slope region over the voltage range
−3V<V<−1V which affirms that the proposed corsage
memristor is locally active over the −3V<V<−1V range as
ReZ iω < 0 forDC input voltage (ω = 0) [8]. The locally active
negative slope region of the 6-lobe Chua corsage memristor is
significant in circuit theory as it might give rise to complex-
ity through which complex phenomenon and information
processing might emerge [20, 21].

One of the most important features of the 6-lobe corsage
memristor is the contiguousness of its DC V-I curve which is

different from many other published nonlinear DC V-I
curves which exhibit several disconnected branches [14].

Another impressive feature is that the parametric
representation and the DC V-I curve of the proposed
corsage memristor has an explicit analytical equation, which
rarely happens.

4. Switching Strategies of Memory States

The power-off-plot in Figure 2 shows that the 6-lobe Chua
corsage memristor can be used as a 4-state or 2-bit
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Figure 4: Parametric representations of the 6-lobe Chua corsage memristor (a) voltage V = v̂ X versus state variable X and (b) current
I = î X versus state variable X, for each value of χ = X: − 12 ≤ X ≤ 78 . (c) DC V-I plot, where the coordinates (V, I) of each point are
extracted from (a) and (b), for each value of χ = X: − 7 ≤ X ≤ 73 for better illustration.
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memory device at v = 0V. Conceptually, the simplest way
to switch the memory states of the 6-lobe corsage
memristor is to apply a square pulse with an appropriate
pulse amplitude VA and pulse width Δw. For a successful
switching between the memory states of the proposed cor-
sage memristor, the square pulse should have a minimum
pulse width for an appropriate pulse amplitude, VA. Any
square pulse with less than the minimum pulse width
results in switching failure.

The switching kinetics of the 6-lobe Chua corsage
memristor can be represented through its dynamic route
map (DRM). The solution of each straight-line segment of
the dynamic route map of our corsage memristor is an
exponential function where the complete solution x(t) is
made of a sequence of the exponential waveforms, joined at
the various breakpoints in the dynamic routes. In this paper,
we derived the following universal exponential state vari-
able xn t formula related to a straight-line segment around
an equilibrium point Qn of the piecewise linear DRM
(detailed derivation of xn t , t f n, and VA are provided in the
supplementary document (available here).):

xn t =Qn −mv t 1 − em t−t0n − Qn − x t0n em t−t0n ,

11
where m represents the sign value of the straight-line slope,

m = sgn dx/dt start − dx/dt end
xstart − xend

, 12

and t0n is the initial time of the segment whereas x t0n repre-
sents the initial state at t0n. The universal formula of the time,
t f n, required for the trajectory of xn t to move from any ini-
tial point x t0n to the end of the straight-line segment is also
derived as follows:

t f n = t0n +
1
m

ln
Qn −mv t − x t f n
Qn −mv t − x t0n

Δt f n

13

The appropriate pulse amplitude VA is computed by
replacing t = t f n in (11) and substituting the value of t f n
from (13) to (11) where the resultant equation is shown
as follows:

VA >Qn−1 – x t0 n−1 , 14

where Qn−1 and x t0 n−1 represent, respectively, the imme-
diate before equilibrium point and the initial state of the
resultant memory state Qn.

The derived universal formulas in (11), (12), (13),
and (14) are applicable for any piecewise linear DRM
curve of any number of segments and any DC or pulse
input v t . Such exponential analytical solutions can be
derived from no nonlinear functions other than the
PWL functions.

The dynamic route map (DRM) in Figure 6(a) shows an
application of successful switching for an appropriate pulse
amplitude VA and pulse width Δw where the 6-lobe corsage
memristor switches from high-resistance (low conductance)
state Q1 to low-resistance (high conductance) state Q5. To
switch from Q1 to Q5, we choose the pulse amplitude VA =
5 5V which satisfies the condition VA > Q4 − x t04 = 5 .
To compute the appropriate pulse width Δw, we choose
the final state (with input VA) xΔw t = 26 5 for a square
pulse v t by satisfying the condition xΔw t >Q4, as
shown in Figure 6(a). For xΔw t ≤Q4, the proposed corsage
memristor fails to switch from memory state Q1 to Q5 and
converges to memory state Q3. However, pulse width Δw is
equal to the time required for the trajectories to move from
x1(t01) to xΔw t and can be computed by summing the time
needed for each individual straight-line segment to reach the
terminal points and express as

Δw = Δt f 1 + Δt f 2 + Δt f 3 + Δt f 4 15

The total time period t f required to move from memory
state Q1 to Q5 is expressed as

t f = Δw + Δt f 4wv + Δt f 5, 16

as shown in Figure 6. The sequence of exponential x(t)
obtained from (11) is shown as follows:

Table 1: Numerical values of the 6-lobe corsage memristor
obtained from parametric representation over −12≤X≤ 78.

X V = v̂ X (V) I = î X (mA)

−12 −15 −2.16
0 −3 0

3 0 0

6 3 0.11

9 0 0

10 −1 −0.1
12 −3 −0.43
15 0 0

20 5 2

25 0 0

30 −5 −4.5
35 0 0

40 5 8

42 7 12.35

49 0 0

50 −1 −2.5
56 −7 −21.95
60 −3 −10.8
63 0 0

70 7 34.3

78 15 91.26
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and by inserting the initial states, equilibrium points,
and time period for the trajectories to move from

initial states to final states, the x(t) can be expressed
as follows:

The memory state switching from Q1 to Q5 in Figure 6(a)
shows that the applied square pulse with VA=5.5V is equiv-
alent to translating the red curve f x upwards by 5.5 units,
as shown by the blue curve. The dynamic route starting from
Q1 (x = 3), at t = 0−, would jump abruptly from Q1 on the red
curve to a point directly above Q1 on the blue curve (yellow
circle) at t = 0+ (shown with the upward green arrow) as
the pulse input increases from 0V to 5.5V. Since the blue
curve is located above the x-axis (where dx/dt > 0) over the
range of interest, its motion can only move to the right, until
time t = Δw. When the square pulse returns to zero at t = Δw,
the point (shown with the green circle) on the blue curve
reverts back abruptly to the point xΔw t = Δw = 26 5 on
the red curve (shown with the light cyan circle followed by
the downward green arrowhead), whereupon the dynamics
must continue to move along the dynamic route indicated
by the black arrowheads, until it converges to the low-
resistance memory state Q5 (x = 35).

The exponential trajectories of the x t related with
the individual piecewise linear segments are shown in
Figure 6(b). Observe from Figure 6(b) that the total time
period (t f ) needed for the x t trajectories to reach Q5 from
Q1 is the summation of all the time periods needed for an
individual trajectory to propagate through the piecewise
linear segments which is t f = Δw + Δt f 4wv + Δt f 5 = 17 2 s.

To switch back from the low-resistance (high conduc-
tance) state Q5 to the high-resistance (low conductance) state
Q1 of our corsage memristor, we simply applied a negative
voltage pulse with amplitude VA=−5.5V and pulse width
Δwb = 7 684 s where Δwb is computed using (15). The
dynamic route and the state trajectories x t of switching
back kinetics from memory states Q5 to Q1 is shown in
Figures 7(a) and 7(b), respectively. In Figure 7(a), at tb =
Δwb, the state variable xΔwb tb = Δwb = 8 9 and the slope
dx/dt < 0 at that linear segment for which the state vari-
able x t must move to the right and eventually converge

x t =

x1 t =Q1 + v t 1 − e− t−t01 − Q1 − x1 t01 e− t−t01 , t01 ≤ t < t f 1,

x2 t =Q2 − v t 1 − e t−t02 − Q2 − x2 t02 e t−t02 , t02 ≤ t < t f 2,

x3 t =Q3 + v t 1 − e− t−t03 − Q3 − x3 t03 e− t−t03 , t03 ≤ t < t f 3,

x4 t =Q4 − v t 1 − e t−t04 − Q4 − x4 t04 e t−t04 , t04 ≤ t < t f 4,

x4wv t =Q4 − v t 1 − e t−t04wv − Q4 − x4wv t04wv e t−t04wv , t04wv ≤ t < t f 4wv ,

x5 t =Q5 + v t 1 − e− t−t05 − Q5 − x5 t05 e− t−t05 , t05 ≤ t,

17

x t =

x1 t = 3 + v t 1 − e− t−t01 , t01 = 0 ≤ t < t f 1 = 0 778 ,

x2 t = 9 − v t 1 − e t−t02 − 3e t−t02 , t02 = t f 1 = 0 778 ≤ t < t f 2 = 2 008 ,

x3 t = 15 + v t 1 − e− t−t03 − 3e− t−t03 , t03 = t f 2 = 2 008 ≤ t < t f 3 = 4 841 ,

x4 t = 25 − v t 1 − e t−t04 − 5e t−t04 , t04 = t f 3 = 4 841 ≤ t < t f 4 = 7 48 ,

x4wv t = 25 − v t 1 − e t−t04wv + 1 5e t−t04wv , t04wv = t f 4 = 7 48 ≤ t < t f 4wv = 8 684 ,

x5 t = 35 + v t 1 − e− t−t05 − 5e− t−t05 , t05 = t f 4wv = 8 684 ≤ t

18
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to the equilibrium memory state Q1 (x = 3). The similar
phenomenon with exponential trajectories of x t is shown
in Figure 7(b) where the x t decreases as the time
increases and converges to x t f 1b = 3 where x t f 1b = 3 is
regarded as the Q1 memory state. To switch back from
Q5 to Q1, the total time t f b = 20 701 s is needed as shown
in Figure 7(b).

The pulse amplitude VA and the pulse width Δw play a
crucial role in the switching kinetics of the memory states
of the 6-lobe Chua corsage memristor. An inappropriate
pulse amplitude or pulse width may result in switching
failures. To choose the appropriate pulse amplitude VA, we
already provided (14) whereas we illustrate the inappropriate
pulse width scenario in Figure 8. In Figure 8, we provide the
same pulse amplitude VA = 5 5V to switch from memory
state Q1 to Q5 with a different pulse width Δw = 7 s. Observe
from Figure 8(b) that the exponential trajectories are
converging to memory state Q3 (x = 15) rather than converg-
ing to memory state Q5 (x = 35). The reason behind such
switching failure is the pulse width as at t = Δw and the state
variable xΔw t = Δw = 23 812 which lies in the left-hand side
of Q4 (x = 25), as shown in Figure 8(a). According to Section
2.2, any point that lies in the left side of Q4 (x=25) follows
the dynamic route dx/dt < 0 (as shown with the black

arrowhead in Figure 2) and converges to equilibrium state
Q3, and in this case, the state variable x t follows the same
route dx/dt < 0 and converges to Q3 (x=15) as
xΔw(t=Δw)<Q4.

For convenience of the readers, we plotted the
hyperbolic relationship between the pulse amplitude VA
versus the pulse width Δw of the switching memory states
betweenQ1 andQ5 of our 6-lobe corsage memristor as shown
in Figure 9.

5. Physical Realization of the 6-Lobe Chua
Corsage Memristor

For physical realization of the 6-lobe Chua corsage
memristor, we modified the circuit in Figure 1(a) with
the switching kinetics closer to the behavioral attributes
of our 7-segment PWL hypothetical memristor which is
shown in Figure 10. The novel circuit consists of the cas-
cade between a passive nonlinear-resistive two-port and a
dynamic first-order one-port [5]. The passive nonlinear-
resistive two-port is composed of parallel connected
Graetz bridges [12] with opposite diode directions whereas
the dynamic first-order one-port is made up of a C-R par-
allel circuit.

Slope at origin = 9 𝜇S (red DC V-I curve)

Slope at origin = 81 𝜇S (fluorescent green DC V-I curve)

Slope at origin = 225 𝜇S (blue DC V-I curve)

Slope at origin = 625 𝜇S (magenta DC V-I curve)

Slope at origin = 1.225 mS (cyan DC V-I curve)

Slope at origin = 2.401 mS (brown DC V-I curve)

Slope at origin = 3.969 mS (green DC V-I curve) 
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Figure 5: DC V-I plot of the 6-lobe corsage memristor over input voltage −10V≤V≤ 10V. The left inset shows the conductance values at
V= 0V. The right inset shows the zoomed portion of the red DC V-I curve over the voltage range −5V≤V≤ 2V.
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Figure 6: Memory state switching kinetics of the 6-lobe Chua corsage memristor from memory state Q1 to Q5 for an input square pulse
VA = 5 5V and Δw = 7 48 s. (a) Dynamic routes of the switching kinetics of the 6-lobe Chua corsage memristor. The two magenta-color
vertical line segments indicate an instantaneous jump between the red and the blue piecewise-linear plots in the dynamic route map. (b)
Movement of the exponential trajectories of x t with respect to time t.

10 Complexity



t f
2b
w
v =

 3
.4
01

t f
1b

 =
 9
.6
16

Δ
t f

3b
 =

 1
.4
35

Δ
t f

4b
 =

 3
.0
45

t f
2b

 =
 0
.8
06

Δ
t f

5b
 =

 2
.3
98

−5.5 V

v(t)
t(s)

20.701
0 7.684

−15−10−505101520253035404550556065707580

−15

−10

−5

5

10

15

−20

xQ7 Q3Q5 Q1Q6 Q4 Q2

xΔwb(tb = Δwb) = 8.9

dx
dt

(a)

0 10 20
−10

0

10

20

30

40

t f
2b
w
v =

 3
.4
01

tf1b = 9.616

Δ
t f

4b
 =

 3
.0
45

t f
2b

 =
 0
.8
06

Δ
t f

5b
 =

 2
.3
98

Δ
t f

3b
 =

 1
.4
35

x(tf1b) = 3

xΔwb(tb = Δwb) = 8.9

x(tf3b) = 12

x(tf4b) = 20

x(tf5b) = 30

x(tf2bwv) = 6

x(t05b) = 35

2.398

6.878

7.684

107.02580.11

x
(t

)

Time (t(s))

Δwb = 7.684

5.443

(b)
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(a) Dynamic routes of the switching-back kinetics of the proposed corsage memristor. (b) Movement of the exponential trajectories of
x t with respect to time t.
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The active and locally active resistor R0 in Figure 10
should exhibit the contiguous six breakpoints on its DC V-
I curve similar to the 6-lobe Chua corsage memristor. To
design the nonlinear resistor R0, we applied the circuit-
theoretic analysis on an op-amp circuit [22] to obtain the
desired DC V-I breakpoints at specific voltages. According
to [22], the driving-point characteristic of a single positive
and negative feedback op-amp circuit provides two break-
points on its piecewise linear DC V-I curve. To obtain a
six-breakpoint piecewise linear DC V-I curve, we combine
three op-amp circuits in parallel as shown in Figure 11.

The current i coming out from the parallel op-amp circuit
in Figure 11 provides a piecewise linear DC V-I curve with
six breakpoints when plotted in the V-I plane.

The active and locally active two-port (marked with
the black box) in Figure 11 consists of three op-amp cir-
cuits (marked with red, blue, and magenta boxes) in paral-
lel. The circuit parameters and the components of the three
op-amp circuit in Figure 11 are similar for each box except
the negative feedback resistances (R41, R42, and R43) which
determine the effective saturation voltage Esat of an individ-
ual op-amp circuit. The saturation voltage Esat along with
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Figure 8: Switching failures of the 6-lobe corsage memristor from Q1 to Q5 for a pulse amplitude VA = 5 5V and pulse width Δw = 7 s. (a)
Dynamic routes of the switching kinetics and (b) movement of the exponential trajectories of x t with respect to time t. The switching
failure happens due to insufficient pulse width.
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the negative feedback resistance play a key role to achieve
the V-I breakpoints at specified voltages such as V = 3V,
V = 5V, and V = 7V. The op-amp circuits in Figure 11 also
contain a positive feedback path where the difficulty arises
with the driving-point and transfer function. To resolve this
problem, we replace the op-amp circuit in the red box (in
Figure 11) by its three ideal models, such as the “Linear
region,” “+Saturation region,” and “−Saturation region” as
shown in Figures 12(a)–12(c), respectively.

The Linear region of the op-amp circuit in Figure 12(a)
shows that the potential difference between the noninverting
terminal (v+) and the inverting terminal (v−) is zero, so
the differential voltage vd = v+ − v− = 0 and eventually
inverting terminal voltage,

v− = v+ = vx = v 19

The following relation between output voltage v03 and
inverting terminal voltage v− can be computed by the
voltage divider rule

v− = vx =
R33

R33 + R43
v03 = βv03, 20

where β = R33/ R33 + R43 and henceforth

v = βv03 21

Pedagogically, in the linear region, the relation
between the saturation voltage (±Esat) and output voltage
v03 is as follows:

−Esat < v03 < Esat, 22

for which, in the Linear region, the relation between the
input voltage v and saturation voltage (±Esat) is

−βESat < v < βEsat 23

The loop

 4 3 1 4 24

provides linear region current ilin as

ilin =
1
R73

v 1 + R73
R63

− v03 25

For the +Saturation region shown in Figure 12(b), the
relation between the output voltage v03 and the saturation
voltage Esat is as follows:

v03 = Esat, 26

and the differential voltage vd > 0, so that v+ − v− > 0,
and eventually the relationship between input voltage
and saturation voltage is

v ≥ βEsat 27

The current for the +Saturation region i+sat is
computed as follows:

i+sat =
1
R73

v 1 + R73
R63

− Esat 28

For the −Saturation region shown in Figure 12(c), the
relation between the output voltage v03 and the saturation
voltage Esat is

v03 = −Esat, 29

and vd < 0, so that v+ − v− < 0, and henceforth, the
relationship between the input voltage and saturation
voltage is

v ≤ −βEsat, 30

and the −Saturation region current is computed as

i−sat =
1
R73

v 1 + R73
R63

+ Esat 31
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Figure 9: Relationship between the pulse amplitude VA and pulse
width Δw for the switching kinetics of the 6-lobe corsage memristor.
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The current i3 flowing out of the op-amp circuit in
Figure 11 is computed by adding all currents (ilin, i+sat,
and i−sat):

i3 =
1
R73

v 1 + R73
R63

− v0 3

−βEsat≤v≤βEsat

Linear region

+ 1
R73

v 1 + R73
R63

− Esat

v≥βEsat

+Saturation region

+ 1
R73

v 1 + R73
R63

+ Esat

v≤−βEsat

−Saturation region

32

Plotting the output voltage v03 and input current i3
with respect to the input voltage v of the op-amp circuit
with positive and negative feedback paths over the speci-
fied ranges of all the three regions provides a piecewise
linear curve as shown in Figure 13(a). The op-amp cir-
cuit enclosed in the red box in Figure 11 exhibits two
breakpoints at V=±7V with circuit parameters R33 = 1K,
R43 = 1K, R63 = 100K, R73 = 1K, and Esat = 14V over the
input voltage range −14V≤V≤ 14V. The mathematical
simulation results shown in Figure 13 shows that the
linear region of the op-amp circuit lies in the range
−7V≤V≤ 7V (as βEsat = 7V) whereas the positive and
negative saturation regions lie at V > 7V and V < −7V,
respectively. Moreover, the output voltage v03 at the
positive and negative saturation regions are v03 = +Esat =
+ 14V and v03 = −Esat = −14V, respectively, and in the
linear region, v03 increases proportionately to the input
voltage v. However, the current i3 of the op-amp circuit
increases linearly in the saturation region and decreases in
an inversely proportional manner to the input voltage v in
the linear region.

Similarly, following the circuit-theoretic concepts
mentioned above, the input currents i2 and i1 of the op-
amp circuits in Figure 11 are computed as

i2 =
1
R72

v 1 + R72
R62

− v02

−βEsat≤v≤βEsat

Linear region

+ 1
R72

v 1 + R72
R62

− Esat

v≥βEsat

+Saturation region

+ 1
R72

v 1 + R72
R62

+ Esat

v≤−βEsat

−Saturation region

,

33

and

i1 =
1
R71

v 1 + R71
R61

− v0 1

−βEsat≤v≤βEsat

Linear region

+ 1
R71

v 1 + R71
R61

− Esat

v≥βEsat

+Saturation region

+ 1
R71

v 1 + R71
R61

+ Esat

v≤−βEsat

−Saturation region

34

The loci of v02 versus v and i2 versus v and v01 versus
v and i1 versus v are shown in Figures 13(b) and 13(c),
respectively.

The total current i flowing out of the 3 parallel connected
op-amp circuits in Figure 11 is equal to the summation of the

D4
D1

D2D3

D5
D8

D7D6

vm

+

−

+

−

vi ≡ v1

im ii ii1

ii2

+

−

v2

v′1

v′2 ≡ v0

+

−

+

−

i01 i02

iR0

iC0

vC0
R0 vR0

i0

+

−

+

−

C

Figure 10: Circuit diagram of the real 6-lobe Chua corsage memristor emulator with quad-stable input dynamics.
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three currents (i1, i2, and i3) of the individual op-amp circuits
and computed as

i = i1 + i2 + i3 35

The six-breakpoint V-I curve of nonlinear resistor R0 is
shown in Figure 14. Mathematical simulation results of

current i and the equivalent nonlinear resistance R0 are
shown in Figure 14(a) with the parameters (the measured
resistor values of circuit implementation are used in mathe-
matical and SPICE simulations) R31 = R32 = R33 = 0 985K,
R61 = R62 = R63 = 100 5K, R71 = R72 = R73 = 1 001K, R41 =
3 888K, R42 = 1 797K, R43 = 0 987K, and Esat = 14V. The
plots of the current i and the active and locally active
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Figure 11: Circuit diagram of nonlinear resistor R0 of the real 6-lobe corsage memristor using off-the-shelf components.
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resistance R0 obtained by SPICE simulation and the actual
circuit implementation are shown in Figures 14(b) and
14(c), respectively.

The mathematical simulation presented in Figure 14(a)
shows that the V-I curve and the resistance value of the non-
linear resistor R0 has six breakpoints at V=±6.99V, ±4.95V,
and ±2.82V. The slope of R0 is different between these
breakpoints and hence defines different memory states.
Similar to the mathematical model, the plots of the V-I curve
and the nonlinear resistance R0 obtained by SPICE simula-
tion and the circuit implementation also have six breakpoints
at V=±6.9V, ±4.89V, and ±2.77V and V=±5.74V, ±4.05V,
and ±2.15V, respectively. The insets in Figures 14(a)–14(c)
show the zoomed figure of R0 near the origin and show that
R0 = 0 at input voltage V = 0V.

The nonlinear resistance waveform obtained from the
SPICE modelling in Figure 14(b) shows that the R0 is

constant at resistance 147.47Ω for an input voltage range
−2.77V<V< 2.77V, except for a tiny interval at the origin
(V=0V). However, for 2.77V<V< 4.89V and 4.89V<V<
6.9V, the R0 increases linearly from 147.47Ω to 216.07Ω
and from 216.07Ω to 336.10Ω, respectively, whereas for
V> 6.9V, R0 increases almost linearly. Due to the linear
increment of R0 with a constant slope over the above-
mentioned voltage range, it can be acclaimed that the real
6-lobe corsage memristor emulator contains four differ-
ent memory states, namely, R01, R02, R03, and R04 where
R01 = (R0 = 147.47Ω), R02 = (147.47Ω<R0≤ 216.07Ω), R03 =
(216.07Ω<R0≤ 336.10Ω), and R04 = (R0> 336.10Ω).

Similar to the SPICE model, the mathematical and the
circuit implementation plots of R0 also contains the four
different memory states as shown in Figures 14(a) and 14(b),
respectively. The fluctuation of R0 at the −2.16V<V<2.16V
voltage range in Figure 14(c) is negligibly small and can be
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regarded as R0 = 137Ω. The fluctuation was induced due to
computational difficulties at V=0V in the oscilloscope.
Although the resistance R0 of the mathematical model of
the 6-lobe corsage memristor and the real emulator are quan-
titatively different, they are also qualitatively identical.

The breakpoints of the V-I curve of the nonlinear resistor
R0 in mathematical simulation, shown in Figure 14(a) and
the SPICE simulation shown in Figure 14(b), are slightly
different. This deviation happens due to the nonideal circuit
components of the SPICE module. Moreover, the V-I curve
breakpoints of R0 measured from the circuit implementation
is further deviated from the mathematical and SPICE simula-
tion. The reason behind such deviation is the nonideal char-
acteristic of the op-amp circuit as well as the noise induced
from the DC power supply and the oscilloscope probe.
Another reason for such deviation is the used op-amp’s rated
saturation voltage (Esat = 13 7V) which is slightly less than
the mathematical and SPICE saturation voltage Esat = 14V.

Although the breakpoints of the DC V-I curve in Figure 5
and the breakpoints of Figure 14 are quantitatively different,
they are qualitatively similar. In this artifact, one of our

primary motives is to show that the basic method explained
in [4, 5] and [14] can be used to convert the DC V-I curve
of any real nonlinear resistor into a memristor. We prove this
analogy by analyzing the parallel connected op-amp circuit
in Figure 11 which has the capabilities to emulate the attri-
butes of the 6-lobe Chua corsage memristor as it exhibits
a 7-segment PWL DC V-I curve as shown in Figure 14.

The SPICE simulation of switching of memory states of
the real 6-lobe Chua corsage memristor emulator (in
Figure 10) is shown in Figure 15. Figure 15(a) shows the
example of successful switching between the memory states
R01 and R03. To switch from R01 to R03, a pulse input VA =
5 5V with a pulse width Δw = 7 5 s is applied across our real
emulator circuit in Figure 10. Observe from Figure 15(a) that
the resistance R0 = 147 47Ω at t = 0+, and it gradually
increases during the pulse period Δw and saturated at R0 =
216 5Ω and remained there although the input voltage
become zero for t ≥ Δw. The saturated resistance R0 =
216 5Ω lies over the memory state R03 = (216.07Ω<R0≤
336.10Ω) which confirms the successful switching from
memory state R01 to R03 for an input pulse VA = 5 5V
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Figure 14: DC current I versus DC voltage V and DC resistance R0 = V/I derived and measured from the 6-lobe corsage memristor
emulator. (a) I versus V and R0 versus V plot of mathematical model, (b) I versus V and R0 versus V plot of spice circuit simulation, and
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and Δw = 7 5 s. However, to fit the resistance scale, we
truncated the t ≤ 0 part of the R0 in Figure 15(a) as that
part is insignificant because at t = 0+, R0 immediately rises
from R0 = 0Ω to R0 = 147 47Ω.

In this paper, we also demonstrate the switching failure
scenario of the real 6-lobe Chua corsage memristor as shown
in Figure 15(b). In Figure 15(b), a pulse input VA = 5 5V
with a pulse width Δw = 7 s is applied across our real emula-
tor. The nonlinear resistance R0 is saturated at R0 = 215 6Ω
and remained there as the time increases although the voltage
becomes v t = 0 for t ≥ Δw. The resultant resistance R0 =
215 6Ω lies over the memory state R02 = (147.47Ω<R0≤
216.07Ω) which confirms the failure of switching as our
intention is to switch from memory state R01 to R03 for an
input pulse VA = 5 5V and Δw = 7 s, but we converge on
memory state R02.

The switching failure scenario gives us the insights that
the emulator circuit of our proposed corsage memristor is
also dependent on the appropriate pulse amplitude and the
pulse width like its mathematical model. To illustrate the
relationship of pulse amplitude and the pulse width in our
real emulator circuit, we plot the pulse amplitude VA versus
pulse width |Δw| curve as shown in Figure 16. The hyperbolic
relationship in Figure 16 shows that the maximum pulse
amplitude VA requires less pulse width Δw to switch from
one memory state to another state whereas the minimum
pulse amplitude requires maximum pulse width.

6. Conclusion

The recent interest in inherently nonlinear memristor
devices is bringing to a new life to the theory of nonlinear

circuits and systems. In this paper, we design and build a
highly nonlinear novel device, namely, the 6-lobe Chua cor-
sage memristor, and its real emulator circuit using the non-
linear circuit theory. The proposed generic memristor can
be used as a multistate, specifically 4-state, memory device
with an increased efficiency of 50% compared to the 2-lobe
and bistable extended memristor whereas the efficiency of
the proposed memristor increased by 25% compared to the
4-lobe corsage memristor. Moreover, due to the presence of
more equilibrium points compared to the 2-lobe or 4-lobe
corsage memristors, the proposed corsage memristor
exhibits a higher variety of dynamic routes in response to dif-
ferent initial conditions x 0 which enhance the capability to
represent a desired function more closely than 2-lobe or 4-
lobe corsage memristors. Due to the diversified dynamic
routes and the enhancement in stable memory states, the
proposed corsage memristor is more versatile and effective
than its predecessor 2-lobe and 4-lobe corsage memristors.
Moreover, the diversified dynamic routes reveal a contiguous
highly nonlinear DC V-I curve with six distinct contiguous
hysteresis lobes, unlike the most published highly nonlinear
disconnected DC V-I curves. Furthermore, the universal for-
mulas, derived in Section 4, ease the demonstration of the
switching kinetics of the 6-lobe corsage memristor and assist
to switch the memory states preciously with an appropriate
pulse amplitude and pulse width in accordance to an initial
condition x 0 . The universal formulas are applicable to
any device which exhibits a PWL dynamic route map with
any number of segments for any DC or pulse input. Following
the introduction of a purely mathematical memristor model
with quad stability (2-bit memory system) at DC and pulse
input, this paper elucidates the mechanisms behind the
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Figure 15: Switching kinetics of the memory states of real 6-lobe Chua corsage memristor emulator. (a) Successful switching: the corsage
memristor emulator switches from memory state R01 to R03 with a resultant resistance R0 = 216 5Ω for an input pulse VA = 5 5V and
pulse width Δw = 7 5 s. (b) Switching failure: the proposed corsage memristor emulator fails to switch from R01 to R03 for an input pulse
VA = 5 5V and pulse width Δw = 7 s as the resultant resistance R0 = 215 6Ω lies in the memory state range R02.
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emergence of the first real emulated 6-lobe Chua corsage
memristor using off-the-shelf elements. Nonlinear system
theoretic concepts were applied to the model of the two-
port memristive element to gain a deep insight into the
quad-stable characteristic of its dynamics where the quanti-
tative attributes of the real emulator might not be similar to
the mathematical model but they are qualitatively same.
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This paper is concerned with designing feedback controllers for master-slave synchronization of two chaotic memristor-based
Chua’s circuits. The memductance function of memristor-based Chua’s circuits is a bounded function with a bounded derivative
which is more generalized than those piecewise constant-valued functions or quadratic functions in some existing papers. The
main contributions are that one master-slave synchronization criterion is established for two chaotic memristor-based Chua’s
circuits, and the feedback controller gain is easily obtained by solving a set of linear matrix inequalities. One numerical example
is given to illustrate the effectiveness of the design method.

1. Introduction

Since the memristor, a missing circuit element, was first
introduced by Chua in 1971 [1] and was realized in 2008
[2], memristor-based Chua’s circuits have received some
attention, see, for example, [3–5].

When some equipment of circuits in oscillators were
replaced by memristors, complex and dynamical properties
were revealed in the circuits. Chaotic attractors have been
studied in memristor-based Chua’s circuits in which the
memductance functions of memristors were characterized
by a piecewise constant-valued function [3, 6, 7] or a qua-
dratic function [4, 5, 8, 9]. It should be pointed out that
the memductance function of memristor can be represented
by a bounded function with a bounded derivative [2],
which is more generalized than those piecewise constant-
valued functions or quadratic functions in some existing
papers [3, 4]. However, to the best of author’s knowledge,
there is no result available in the existing published literature
to study memristor-based Chua’s circuits with abovemen-
tioned memductance function, which is the first motivation
of this paper.

Chaotic synchronization and chaos control have received
much attention due to its theoretical importance and practi-
cal applications [10–33]. Due to the existence of memristors,
the product of the memductance function and voltage can
give rise to chaotical behaviors in circuits. Most research
efforts [3–5, 7–9, 17–19] were made to chaotic behaviors
of memristor-based circuits, rather than master-slave syn-
chronization and chaos control for two memristor-based
circuits. Zhang et al. [6] conducted stability analysis for a
single circuit with a piecewise constant-valued memduc-
tance function, but they did not consider the synchroniza-
tion problem of two circuits. In [15, 16], synchronization
of memristor-based Chua’s circuits has been investigated,
in which the memductance elements were piecewise linear
functions. In addition, the memristor with a passive nonline-
arity and a piecewise constant-valued memductance function
is essential to generate the high signal-to-noise ratio which is
not suitable for achieving the secure communication [5].
Therefore, the memristor with nonlinear memductance
function which is suitable for secure communication should
be worth studying. The memristor in which the memduc-
tance function is a bounded function with a bounded
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derivative can satisfy this criterion, but the mathematical
model of corresponding circuit is a set of nonlinear differen-
tial equations as well as the corresponding error systems
derived by the master-slave scheme. Thus, how to derive
master-slave synchronization criteria for two memristor-
based Chua’s circuits in which the memductance function
is a bounded function with a bounded derivative and how
to design a feedback controller matrix gain to achieve syn-
chronization is the second motivation of this paper.

In this paper, we will deal with the problem of the con-
troller design for master-slave synchronization of chaotic
memristor-based Chua’s circuits. The master-slave scheme
will be constructed by using an error state feedback control.
We will derive one synchronization criterion. Based on the
obtained synchronization criterion, we will give the sufficient
conditions on the existence of an error state feedback con-
troller. Moreover, we will obtain the controller gain. We will
also use one numerical example to illustrate the effectiveness
of the synchronization criterion and the design method.

Notation 1. ℝn denotes the n-dimensional Euclidean space.
ℝm×n is the set of all m × n real matrices. For symmetric
matrices P and Q, the notation P >Q (respectively, P ≥Q)
means that matrix P −Q is positive definite (respectively,
positive semidefinite). λmax P and λmin P are the maxi-
mum andminimum eigenvalues of the matrix P, respectively.

2. Memristor-Based Chua’s Circuits

The memristor in Chua’s circuits is a two-terminal element.
The magnetic flux of memristor between the terminals is a
function of the electric charge which passes through the
device [1]. A flux-controlled memristor can be characterized
by the incremental menductance function ω ϕ describing
the flux-dependent rate of change of charge [2], i.e., ω ϕ =
dq ϕ /dϕ. Therefore, the voltage v t across and the cur-
rent i t through the memristor can be described as i t =
ω ϕ v t [3].

Figure 1 shows a smooth flux-controlled memristor-
based Chua’s circuit, where v1 and v2 are the voltages across
capacitors C1 and C2, respectively; iL is the current through
the inductances L; R is a linear resistor; the Chua’s diode is
replaced by a memristor. The mathematical model of the

Chua’s circuit with the memristor can be described as

dv1 t
dt

=
1
C1

v2 t − v1 t
R

−w ϕ t v1 t ,

dv2 t
dt

=
1
C2

v1 t − v2 t
R

− iL t ,

diL t
dt

=
1
L
v2 t ,

dϕ t
dt

= v1 t ,

1

with the initial condition v1 0 = v10 , v2 0 = v20 , iL 0 = iL0 ,
ϕ 0 = ϕ0.

Let f · and g · : ℝ→ℝ be two differentiable functions.
In this paper, we mainly focus on the following nonlinearity,
i.e., q ϕ t = aϕ t + bg ϕ t , ω ϕ t = a + bf ϕ t , dg
ϕ /dϕ = f ϕ , and i t = a + bf ϕ t v t , where a and b
are the parameters of electronic equipment. Besides f ϕ is
differentiable, we assume that f ϕ is a bounded function
and df ϕ /dϕ is a bounded function where, i.e., there exist
two scales μf > 0 and μf ′ > 0 such that

f ϕ ≤ μf ,
df ϕ

dϕ
≤ μf ′, ∀ϕ ∈ℝ 2

Rescaling the parameters of the circuit as x1 t = v1 t ,
x2 t = v2 t , x3 t = iL t , x4 t = ϕ t , τ = t/RC2, α = C2/
C1, β = C2R/L, γ = C2R, ν1 = aR, and ν2 = bR, we obtain
the following dimensionless form for system (1):

dx1 τ

dτ
= α x2 τ − 1 + v1 x1 τ − v2x1 τ f x4 τ ,

dx2 τ

dτ
= x1 τ − x2 τ − Rx3 τ ,

dx3 τ

dτ
= βx2 τ ,

dx4 τ

dτ
= γx1 τ ,

3

where the initial condition is x1 0 = v10 , x2 0 = v20 , x3
0 = iL0 , and x4 0 = ϕ0. Let x τ = x1 τ , x2 τ , x3 τ ,
x4 τ T ∈ℝ4, and

A =

−α 1 + v1 α 0 0

1 −1 −R 0

0 β 0 0

γ 0 0 0

4

L

i

Li

2V 2C 1C

Flux-controlled
memristor

1V V

R

Figure 1: The memristor-based chaotic Chua’s circuit.
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Then, system (3) can be rewritten as

dx τ

dτ
= Ax τ + φ x τ , 5

where φ x τ = ν3x1 τ f x4 τ and ν3 = −αν2.

Remark 1. In [3–5, 7–9, 17–19], dynamical behaviors of the
single memristor-based Chua’s circuit have been studied. In
this paper, the synchronization of two memristor-based
Chua’s circuits is investigated.

Remark 2. In [6, 15, 16], the memductance elements of
memristor-based Chua’s circuits were either piecewise lin-
ear functions or piecewise constant-valued memductance
functions. It is well known that the memristor with a passive
nonlinearity or a piecewise constant-valued memductance
function is easy to generate the high signal-to-noise ratio
which is not suitable for achieving the secure communica-
tion [5]. Thus, the memristor with nonlinear memductance
function should be investigated. The memristor with
bounded memductance functions and bounded derivatives
which is suitable for secure communication can satisfy this
criterion. Moreover, the mathematical model of corre-
sponding circuit is easily to set up. Thus, it is worth study-
ing master-slave synchronization for two memristor-based
Chua’s circuits in which the memductance function is a
bounded function with a bounded derivative. It is also
worth designing a feedback controller matrix gain to
achieve synchronization.

3. Master-Slave Synchronization

Let z τ = z1 τ z2 τ z3 τ z4 τ T ∈ℝ4. We construct a
master-slave synchronization scheme for system (5).

ℳ
dx τ

dτ
= Ax τ + φ x τ , 6

S
dy τ

dτ
= Ay τ + φ y τ + u τ , 7

C u τ = K x τ − y τ , 8

with master system ℳ , slave system S , and controller C .
Defining a signal e t = x t − y t = e1 τ e2 τ e3 τ e4

τ T ∈ℝ4 with ei t = xi t − yi t , i = 1, 2, 3, 4, we have the
error system

de τ

dτ
= A − K e τ + φ e τ , 9

where

φ e τ = φ x τ − φ y τ 10

The initial values of (6) and (7) are x 0 = x1 0 , x2
0 , x3 0 , x4 0 T and y 0 = y1 0 , y2 0 , y3 0 , y4 0 T,
respectively. Thus,

e 0 = e1 0 , e2 0 , e3 0 , e4 0 T, 11

with ei 0 = xi 0 − yi 0 , i = 1, 2, 3, 4
It follows from (10) and the differential mean value theo-

rem that

φ e τ = φ x τ − φ y τ

= v3 x1 τ f x4 τ − y1 τ f y4 τ
12

where ξ ∈ min x4 τ , y4 τ , max x4 τ , y4 τ . Notice
that the error system (9) can be rewritten as

de τ

dτ
= A + B τ − K e τ , 13

where

B τ =

b11 τ 0 0 b14 τ

0 0 0 0

0 0 0 0

0 0 0 0

, 14

with

b11 τ = v3 f y4 τ , b14 τ

= v3x1 τ
df ς

dς s=ξ,ς

∈ min x4 τ , y4 τ , max x4 τ , y4 τ

15

Choosing the proper parameters of system (3), there exist
some chaotic attractors which indicate that for any initial
condition x0 within the domain of system (3), there are
bounds μi x0 > 0, i = 1, 2, 3, 4, such that

xi t, x0 ≤ μi x0 , ∀t > 0, i = 1, 2, 3, 4 16

From inequalities (2) and (16), we know that

b11 τ ≤ ν3 μf , b14 τ ≤ ν3 μ1 x0 μf ′ 17

Therefore, the error system (13) can be modeled as a
polytopic system.

3Complexity



Let

B1 =

v3 μf 0 0 v3 μ1 x0 μf ′

0 0 0 0

0 0 0 0

0 0 0 0

,

B2 =

− v3 μf 0 0 v3 μ1 x0 μf ′

0 0 0 0

0 0 0 0

0 0 0 0

,

B3 =

v3 μf 0 0 − v3 μ1 x0 μf ′

0 0 0 0

0 0 0 0

0 0 0 0

,

B4 =

− v3 μf 0 0 − v3 μ1 x0 μf ′

0 0 0 0

0 0 0 0

0 0 0 0

18

It is clear that Bi i = 1, 2, 3, 4 are the vertices of B τ .
This paper intends to derive synchronization criteria for

two memristor-based Chua’s circuits and to design the con-
troller (8), i.e., to find the controller gain K , such that the sys-
tem described by (13) is asymptotically stable, which means
that the system described by (6), (7), and (8) synchronizes.

4. Controller Design

4.1. A Synchronization Criterion. This subsection aims to
derive a synchronization criterion for two memristor-based
Chua’s circuits. Choose the quadratic Lyapunov function.

V τ, e τ = eT τ Pe τ , 19

where P ∈ℝ4 × 4, P = PT > 0.
Applying Lyapunov’s direct method, we obtain the fol-

lowing result.

Proposition 1. The error system described by (11) and (13)
is asymptotically stable if there exists a matrix P = PT > 0
such that

P A + Bi − K + A + Bi − K TP < 0, i = 1, 2, 3, 4 20

Proof 1. Taking the derivative of V τ, e τ with respect to
τ along the trajectory of (13) yields

dV τ, e τ

dτ
= eT τ P A + B τ − K e τ

+ eT τ A + B τ − K TPe τ

21

A sufficient condition for the asymptotic stability of sys-
tem (13) is that there exists a matrix P = PT > 0 such that

P A + B τ − K + A + B τ − K TP < 0 22

It is easy to see that LMI (22) can be ensured by LMIs
(20). This ends the proof.

If the menductance function is a linear piecewise
constant-valued function, i.e.,

w ϕ t = κ1, forϕ t ≥ 1,

w ϕ t = κ2, forϕ t ≥ 1,
23

we obtain the following dimensionless form for system (1):

dx τ

dτ
= Âix τ , i = 1, 2, 24

by rescaling the parameters of the circuit as (3), where

Â1 =

θ1 α 0 0

1 −1 R 0

0 β 0 0

γ 0 0 0

,

Â2 =

θ2 α 0 0

1 −1 R 0

0 β 0 0

γ 0 0 0

,

25

θ1 = −α 1 + κ1R , θ2 = −α 1 + κ2R , and the initial condi-
tion is x1 0 = v10 , x2 0 = v20 , x3 0 = iL0 , and x4 0 = ϕ0.

The switched rule is if x4 ≥ 1, then dx τ /dτ = Â1x τ ; if
x4 < 1, then dx τ /dτ = Â2x τ . The chaotical behaviors of
model (24) have been studied in [3, 6, 7].

We construct a master-slave synchronization scheme for
system (24).

ℳ
dx τ

dτ
= Âix τ , i = 1, 2,

S
dy τ

dτ
= Âiy τ + ui t , i = 1, 2,

C ui τ = Ki x τ − y τ , i = 1, 2,

26

with master system ℳ , slave system S , and controller C .
Defining an error signal e τ = x τ − y τ , we obtain the
error system.

de τ

dτ
= Bie τ , i = 1, 2, 3, 4, 27

where B1 = B2 = 0, B3 = Â1 − Â2, B4 = −B3, C1 = C4 = −Â1 +
K1, and C2 = C3 = −Â2 + K2. The initial value is the same as
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that defined in (11). The switched rule is if x4 ≥ 1, y4 ≥ 1, then
de τ /dτ = B1x τ − C1e τ ; if x4 < 1, y4 < 1, then de τ /
dτ = B2x τ − C2e τ ; if x4 ≥ 1, y4 < 1, then de τ /dτ = B3x
τ − C3e τ ; if x4 < 1, y4 ≥ 1, then de τ /dτ = B4x τ − C4
e τ .

We choose the quadratic Lyapunov function.

V τ, e τ = eT τ e τ 28

Taking the derivative of (28) with respect to τ along
the trajectory of (27), we can derive the following state
estate which can be stated as the error system described
by (27) and (11) converges exponentially to the following
ball M with a convergence rate r/2, where M = e ∈ℝ4 ∣
e 2 ≤ q/r with q =max q1, q2, q3, q4 , qi = λmax ρTBT

i Bi

ρ , ρT = μ1 x0 , μ2 x0 , μ3 x0 , μ4 x0 , r =min r1, r2, r3,
r4 , and ri = λmin CT

i + Ci − I4 , i = 1, 2, 3, 4.

4.2. The Controller Design. In this subsection, we will design
the controller (8) based on the synchronization criterion
derived in Section 4.1.

Applying Proposition 1, we establish the following result.

Proposition 2. The error system described by (11) and (13) is

asymptotically stable if there exists a matrix P = P
T > 0 and a

matrix Y of appropriate dimensions such that

A + Bi P + P A + Bi
T − Y − YT < 0, i = 1, 2, 3, 4 29

Moreover, the feedback controller gain matrix is given by

K = YP
−1
.

Proof 2. Pre- and postmultiplying both sides of (20) with
P−1 gives

A + Bi P
−1 + P−1 A + Bi

T − KP−1 − P−1K < 0, i = 1, 2, 3, 4
30

Setting P = P−1 and Y = KP−1 yields (29).

5. Simulation Results

In this section, in order to illustrate the effectiveness of the
derived results, we consider a memristor-based Chua’s cir-
cuit (1) in which the parameters are chosen as R = 2 × 103
Ω, C1 = 6 8 × 10−9nF, C2 = 6 8 × 10−8nF, and L = 1 8 × 10−2
mH. Thus, we have α = 10, β = 7 5 × 10−3, γ = 1 36 × 10−4.

For the initial value (0.11, 0.11, 0, 0) of (6), we give
Figures 2 and 3 for system (3) with f x4 τ = arctan x4 τ
and f x4 τ = sin2x4 τ to illustrate the chaotic attractors
in the x4 − x1 plate. We can also obtain the values for μ1
x0 , μf , μf ′, b11, and b14, respectively. If f x4 τ = arctan
x4 τ , then a = −1 3550 × 10−4, b = 6 0930 × 10−4, μf = 1,
μf ′ = π/2 μ1 x0 = 400, b11 = nu3 arctan y4 t , and b14 = v3
x1 τ /1 + ξ2. If f x4 τ = sin2x4 τ , then a = −5 9900 ×

−90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
−400

−300

−200

−100

0

100

200

300

400

St
at

e v
ar

ia
bl

e x
1(
�휏

)

State variable x4(�휏)

Plot of x4(�휏) vs. x1(�휏)

Figure 2: The chaotic attractors of system (3) with f x4 τ =
arctan x4 τ .
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Figure 3: The chaotic attractors of system (3) with f x4 τ = sin2
x4 τ .

Table 1: The feedback gain matrix derived by Proposition 2.

f x4 τ K

arctan x4 τ

−10 10 0 691750

10 0 −1000 0

0 −1000 0 0

−40 0 0 9360

sin2x4 τ

0 0 0 6959000

0 0 −1000 0

0 −1000 0 0

−1620 0 0 200
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10−4, b = 6 0930 × 10−4, μf = 1, μf ′ = 1μ1 x0 = 6, b11 = ν3
sin2y4 τ , and b14 = ν3x1 τ sin 2ξ .

We choose the initial condition of master system (6) as
x10 , x20 , x30 , x40 = 0 11, 0 11, 0, 0 and the initial condition
of slave system (7) as y10 , y20 , y30 , y40 = 0 12, 0 12, 0 01,
0 01 . From Proposition 2, we obtain the feedback gain
matrix K for f x4 τ = arctan x4 τ and f x4 τ = sin2x4
τ , respectively, which are listed in Table 1.

The simulation results for master, slave, and error sys-
tems for f x4 τ = arctan x4 τ and f x4 τ = sin2x4 τ
and the feedback controller gain derived by Proposition 2
are illustrated in Figures 4 and 5, from which one can clearly
see that the master and slave systems are synchronized,
which means that the design method is effective.

6. Conclusions and Future Works

We have addressed the problem of the controller design for
master-slave synchronization of memristor-based Chua’s
circuits and constructed a master-slave scheme by using

an error state feedback control. We have derived a master-
slave synchronization criterion and provided the sufficient
conditions on the existence of an error feedback controller.
Moreover, we have obtained the error state feedback control-
ler gain by solving a set of LMIs. The effectiveness of the syn-
chronization criterion and the design method has been
illustrated through one numerical example. It should be
pointed out that we only consider the state feedback control
for synchronization of memristor-based Chua’s circuits in
this paper. To design the time-delayed controller is our future
research focus.
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Figure 4: (a) Simulation result for master system with f x4 τ = arctan x4 τ and K derived by Proposition 2. (b) Simulation result for slave
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This work presents a multiscroll generator system, which addresses the issue by the implementation of 9-level saturated nonlinear
function, SNLF, being modified with a new control parameter that acts as a bifurcation parameter. By means of the modification of
the newly introduced parameter, it is possible to control the number of scrolls to generate. The proposed system has richer
dynamics than the original, not only presenting the generation of a global attractor; it is capable of generating monostable and
bistable multiscrolls. The study of the basin of attraction for the natural attractor generation (9-scroll SNLF) shows the
restrictions in the initial conditions space where the system is capable of presenting dynamical responses, limiting its possible
electronic implementations.

1. Introduction

Over the last few years, the development and implementation
of chaotic oscillators have been extensively studied, taking a
special interest in the generation of systems with multiscrolls
in their phase space, such as the Lorenz [1] and Chua [2]
systems, which present a double-scroll attractor. There are
several methods to obtain multiscroll behavior, for example,
by adding breakpoints to Chua’s function [3, 4], by using a
system with hysteresis [5, 6], implementing step functions,
using sine/cosine functions, or by generating piecewise linear
functions [7–10]. The disadvantage of these methods is that
the systems have more fixed points than scrolls generated,
so increasing the number of scrolls in the phase space turns
into a more complex task to address. As an alternative to this
dilemma arises, the conception of a saturated nonlinear func-
tion, SNLF, which is based on the operational amplifiers
performance [11, 12], which guarantees to find as many

scrolls as segmentation points the function possesses, being
a simpler way to approach the topic in the scrolls generation.

An example of this kind of systems can be described
within the theory of unstable dissipative systems, UDS
[13, 14], which characterizes the systems of three differen-
tial equations based on the location of the eigenvalues that
it possesses. UDS’s are classified as type I or type II, where
the order of the type represents the number of eigenvalues
with negative real part. In general, any three-dimensional
dynamic system is considered an UDS if and only if it has a
combination of eigenvalues that coincide with the definition
of a hyperbolic saddle-node, and the sum of these compo-
nents is negative, i.e., the dissipation condition is fulfilled
[15]. Examples of these systems are found in Rössler [16],
Lorenz [1], and Chua [2], among some other systems
[17–19]. This kind of combination in the eigenvalues favors
the appearance of multiscroll behavior, by means of the
implementation of the appropriated nonlinear function.
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In recent years, the design and control of systems with
multiple scrolls have been a subject of interest for the scien-
tific community, having a great impact in their application,
such as secure communication systems, neuronal modeling,
and generation of pseudorandom systems [20–23]. In this
work, the modification in a multiscroll dynamics by means
of controlling the associated nonlinear function is pre-
sented, introducing a new control parameter. This new
control parameter helps to generate a specific number of
scrolls, generating regions of coexisting attractors, as well
as the generation of attractors with double-wing and three
equilibrium points.

This work is structured as follows: the first section
contains an introduction that describes previous works
and theoretical principles of the system. The second
section shows the UDS definition and the description of
the multiscroll generator system. In the third section, the
methodology and results of the studied system are shown.
The analysis of the bifurcation diagrams exhibits the coex-
istence of two attractors for fixed set parameters, bistabil-
ity, which is illustrated by the construction of the
corresponding basins of attractions. The main conclusions
are shown in the last section.

2. Theoretical Background

2.1. Unstable Dissipative Systems Theory. In the same spirit as
[13, 24, 25], it is considered as a system of autonomous differ-
ential equations of third order,

X =AX + Bf x , 1

where X = x, y, z T ∈ℝ3 is the state vector, A = ai,j ∈ℝ3×3 is

a constant matrix, B = b1, b2, b3 T ∈ℝ3 is a constant position
vector, and f x is a nonlinear function. The behavior of the
system is governed by the eigenvalues of the matrix A, which
generates a great variety of characteristic values, presenting
special attention to those saddle-node points that have a sta-
ble and an unstable variety. This kind of eigenvalues is
responsible for both stretching and successive folding in the
dynamic of the system, which favors the generation of multi-
scrolls [14, 26].

A system can be considered as an UDS type I if their
equilibrium points correspond to a hyperbolic-saddle-node,
i.e., one eigenvalue is negative real (dissipative component)
and the other two are complex conjugated with positive real
part (unstable and oscillatory component), where the sum
of the components must be less than zero. By other side, an
UDS type II, eq. (1), is described in the opposite way, i.e.,
one eigenvalue is positive real (unstable component) and
the other two are complex conjugated with negative real part
(dissipative and oscillatory component), and the sum of them
must be less than zero [13].

2.2. Multiscroll Generator. The multiscroll generator system
studied is described by a set of three coupled differential
equations that makes use of the definition of a saturated
nonlineal function, SNLF, as a method for the scroll gen-
eration [12, 27], eq. (2).

x = y,
y = z,
z = −α1x − α2y − α3z + α4 f x, q ,

2

where x, y, z are the state variables, f x, q is the SNLF, q is the
upper limit of scrolls to generate, and α1,2,3,4 are the system
parameters that define the behavior of the dynamic. This
work is focused on the region for which the system is defined
as a UDS I. Within this proposition, the multiscroll appear-
ance is possible, by generating a conservative component that
causes the oscillation of the system over an equilibrium point,
while the other two dissipative components favor the visit to
other fixed points, resulting in the dynamics of a multiscroll
system. The operation region of the system is defined by the
combination of the system parameters, in this case, the fol-
lowing consideration is contemplated: α = α1 = α2 = α3 = α4.

Considering the previous condition, it is possible to
examine the behavior of the equilibrium points by sweeping
the control parameter and finding the operation zone where
their eigenvalues are consistent with an UDS I definition. The
control parameter variation is developed by means of the
characteristic polynomial of the system described in eq. (2),
λ3 + α λ2 + λ + 1 = 0, and are plotted by considering the
split of the real and imaginary component of each eigenvalue,
λj = σ j + iωj, j = 1, 2, 3, being σj the real part, and ωj the
imaginary part. Figure 1 shows the analysis of the eigenvalues
over a range value defined as α = −2, 2 , Figure 1(a) shows
the operation zone delimited by 0 < α < 1. Figures 1(b) and
1(c) confirm the conditions for the UDS I definition. λ1 the
real negative eigenvalue, and λ2,3 the complex conjugated
eigenvalues with positive real part.

It is well known [11, 12, 27] that it is possible to
define a series of saturated functions, based on the behav-
ior of an operational amplifier (op-amp) configured as
voltage comparator, in order to generate as many plateaus
(commutation surfaces) as desired, and thus guarantee the
generation of the same number of scrolls. In general, the
mathematical construction of a SNLF is defined as

f xk,h,p,q = 〠
q

m=−p
f m xk,h , 3

where k > 0 is the slope that connects the plateaus in the satu-
rated function, h > 2 is the delay time of the saturated func-
tion, defined by the op-amp switching speed, p and q are
positive integers defined as the smallest integer that result
from dividing the number of scrolls by 2, m = 1, 2, 3,… , n,
where n defines the number of scrolls to generate. The func-
tion f x is defined as follows

f m xk,h =
2k,  f x >mh + 1,
k x −mh + k,  if x −mh ≤ 1,
0,  f x <mh − 1,

4

2 Complexity



and

f m−1 xk,h =
0,  if x >mh ± 1,
k x ±mh − k,  if x ±mh ≤ 1,
−2k,  if x < −mh − 1

5

Figure 2 shows the graphical representation of eq. (4)
and (5) (green) and their corresponding attractor (blue).
The breakpoints are plotted with a red dotted line,
where the system switches between the different gener-
ated commutation surfaces. At the middle of each
switching surface, the equilibrium point is located, where
each scroll oscillates. Figure 2(a) SNLF generated with
n = 5, whereas Figure 2(b) shows a SNLF with n = 9.
Notice the relation between the number of switching
surfaces and generated scrolls.

The SNLF contemplated for this study is constructed
based on [11], eq. (4) and (5), for the generation up to
nine scrolls as in Figure 2(b), but it is studied with a
new bifurcation parameter ζ, modifying the original sys-
tem, eq. (2) [28, 29]. This new parameter works as an
individual control gain for the nonlinear function. This
allows the possibility to study the bifurcation diagrams
for a defined set of parameters in the model and generates
more than one single attractor. The modified system is
described by

x = y,
y = z,
z = −α x + y + z − ζf x, q ,

6

where α is a control parameter and ζ is the bifurcation
parameter. This modification allows to analyze the

NO UDS
UDS I

0

0.2

0.4

0.6

0.8

1

U
D

S 
ty

pe

−1 0 1 2−2
Control parameter, 𝛼, a.u

(a)

𝜎1
𝜎2
𝜎3

0.2 0.4 0.6 0.8 10
Control parameter, 𝛼, a.u

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Re
al

 p
ar

t, 
𝜎

, a
.u

(b)

𝜔1
𝜔2
𝜔3

0.2 0.4 0.6 0.8 10
Control parameter, 𝛼, a.u

−1

−0.5

0

0.5

1

Im
ag

. p
ar

t, 
𝜔

, a
.u

(c)

Figure 1: Eigenvalues analysis as a function of the control parameter α. (a) Control parameter analysis showing the UDS I region. (b) and (c)
real and imaginary parts for the UDS I, respectively.
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Figure 2: (a) Saturated nonlineal function with n = 5 and its corresponding attractor of five multiscrolls. (b) Saturated nonlineal function with
n = 9 and its corresponding attractor of nine multiscrolls.
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behavior of the system through numerical simulation in a
better way. In this case, the implementation of an Rk4
integrator is used.

3. Methodology and Results

Considering the restrictions of the system, eq. (6), given the
region of operation under the conditions of an UDS I, the
control parameter is analyzed in the interval 0 05 ≤ α ≤ 0 95
with a step size Δα = 0 05.

The dynamical system, eq. (6), is analyzed by a gradual
change of the bifurcation parameter ζ for the different α
values. For this purpose, the construction of bifurcation
diagrams of local maximums of the state variable x t ,
are calculated by means of randomly changing the initial
condition of the three state variables.

Analyzing the dynamical system, Figure 3, it is observed
that the behavior of the different bifurcation diagrams has a
dependence on the control parameter α, but obtaining in
each one of them a control in the generation of multiscrolls.
However, it is more interesting to describe the dynamical
evolution that the system exhibits for a value α = 0 45 in
Figure 3(a). This is because the scrolls generation is produced
gradually, obtaining a greater number of generated dynam-
ics, unlike the behavior displayed in other values of the con-
trol parameter.

The 9-scroll natural attractor region Δζ is shown in
Figure 4. At the left top of this figure, the last largest Lyapu-
nov exponent (MLE) is shown, corresponding to the same
bifurcation diagram. Notice that it is always a positive value,
in concordance with UDS I definition. This bifurcation dia-
gram is plotted by a color combination, where each color
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−10

−5

0

5

10

15

20

Lo
ca

l m
ax

. x
 v

ar
ia

bl
e, 

a.u
.

0.04 0.05 0.06 0.07 0.080.03
Bifurcation parameter 𝜁, a. u.

(a)

−10

0

10

20

Lo
ca

l m
ax

. x
 v

ar
ia

bl
e, 

a.u
.

0.080.05 0.06 0.070.04 0.090.03
Bifurcation parameter 𝜁, a. u.

(b)

−10

−5

0

5

10

15

20

Lo
ca

l m
ax

. x
 v

ar
ia

bl
e, 

a.u
.

0.05 0.06 0.07 0.080.04
Bifurcation parameter 𝜁, a. u.

(c)

Figure 3: Bifurcation diagram for the dynamical control parameter (a) α = 0 45, (b) α = 0 70, (c) α = 0 90.

4 Complexity



represents a different behavior in the system, related to the
corresponding attractors displayed in Figure 5.

Table 1 describes the different behavior of the bifurcation
diagram of Figure 4 as well as the corresponding attractors of
Figure 5. The bistability referred in Table 1 indicates the
coexistence of two identical attractors located at symmetrical
equilibrium points. Notice that from Figures 5(j)–5(o) the
bistable attractors are shown in the same phase space and
plotted with different colors for easier visualization, i.e., in
Figure 5(m) the pink scroll represents the lower part of the
bifurcation diagram, while the red scroll is the upper part
in the same diagram for 0 0670 < ζ < 0 0690.

4. Discussion

With the premise that every UDS I system has large basins of
attraction [30], the analysis of the dynamical system, eq. (6),
is determined for each value of the dynamical parameter α,

by means of the exploration of the bifurcation parameter ζ,
being α = 0 05 the first explored value.

An analysis of the dynamical response of the natural
system attractor (nine multiscrolls) in a bidimensional
space αvsxci = yci = zci, where ci represents the initial condi-
tion, is shown in Figure 6. It can clearly be seen that
meanwhile the α value is increased, the area of initial con-
ditions grows (green points), while the nonexistence of the
dynamical response is shown by every blue point. As a
result, α = 0 3 is the minimum value in which it is possible
to perform the characterization of the system, eq. (6), as
defined in the previous section. This fact limits the possi-
ble electronic implementation of the model.

As in [28, 29], in this work, the bifurcation parameter ζ is
dependent on the dynamical parameter α, as shown in
Figure 3. This effect can be visualized in Figure 7(a) that
shows the ration Δζ/ζ α . As a result, the ration has a
maximum point for α = 0 3. The operation region relative
size, ζ α , is normalized to its ζ α max to improve the
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Figure 5: Space phase for each attractor identified into the bifurcation diagram, Figure 4, for the control parameter α = 0 45.
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visualization, ζ α /ζ α max, Figure 7(b). The values α < 0 3
are omitted due to the results shown in Figure 6.

As a result of the bifurcation diagrams shown in
Figures 3 and 4 and to the bistable attractors shown in
Figure 5, an analysis is developed in search of bistable
behavior in all the control parameters of the system for
which its response is defined as an UDS I. The study in
search of bistable dynamics is developed in the following
way: given a control parameter α, the bifurcation parame-
ter ζ is fixed, and the basins of attraction of the system,
eq. (6), are calculated under the modification of two of
the three state variables for the space of initial conditions
defined as x, y = −4, 4 , z = 0. The results shown by the
basins of attraction confirm the bistable behavior for any
α value and are validated by analyzing the attractors gen-
erated for different explored initial conditions, Figure 8,
where each column corresponds to a α value.
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Table 1: Behavior analysis of Figures 4 and 5.

ζ interval Attractor type Bistability Fig.

0.0310–0.0320 Single-wing deformed No Figure 5(a)

0.0320–0.0335 Single-wing No Figure 5(b)

0.0335–0.0350 Single-wing deformed No Figure 5(c)

0.0350–0.0420 Single-wing with 3 equilibrium points No Figure 5(d)

0.0420–0.0500 3-scroll No Figure 5(e)

0.0500–0.0510 5-scroll No Figure 5(f)

0.0510–0.0520 7-scroll No Figure 5(g)

0.0520–0.0530 8-scroll No Figure 5(h)

0.0530–0.0570 9-scroll (natural attractor) No Figure 5(i)

0.0570–0.0590 Single-wing Yes Figure 5(j)

0.0590–0.0610 Coherent single-wing Yes Figure 5(k)

0.0610–0.0670 Single-wing Yes Figure 5(l)

0.0670–0.0690 Single-wing Yes Figure 5(m)

0.0690–0.0740 Coherent single-wing Yes Figure 5(n)

0.0740–0.0780 Coherent single-wing Yes Figure 5(o)

0.0780–0.0820 Double-scroll with 3 equilibrium points No Figure 5(p)
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Figure 8: (a–c) Basins of attraction for the coexisting coherent single-wing attractor. (d–i) Coexisting attractors for each basin of attraction.
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Figures 8(a)–8(c) shows three different basins of attrac-
tion calculated for different α values under the conditions
for the generation of a coexisting coherent single-wing
attractor. The corresponding coexisting attractors are
plotted in Figures 8(d)–8(i), where the color of the
attractor is related to the color in their corresponding
basin of attraction.

Analyzing the resulting basins of coexisting attractors,
Figures 8(a)–8(c), it is evident that while the dynamical
parameter of the system is increased, the basin tends to
look more defined, where the state borders are better dis-
tinguished. This means that for small values in α, the sys-
tem requires a very small variation in the initial condition,
or a very low noise level, to leave the actual state and con-
verge to another coexisting equilibrium point. Meanwhile,
for larger values in the dynamical parameter, the system
obtains robustness by requiring significantly larger changes
to leave one state and converge to another one. This phe-
nomenon can be visualized if the return times of the
attractor are calculated via the Poincaré section, from the
natural attractors of each analyzed α value, Figures 8(j)–
8(o). The distribution of these return times tends to gain
some order similar to a normal distribution, Figure 8(o),
becoming in softer transitions between each of the equilib-
rium points.

5. Conclusions

In this work, a multiscroll system of three-dimensional
autonomous equations with a parameter ζ has been pre-
sented and studied. The parameter ζ controls the number
of generated scrolls, being up to nine the maximum
number of scrolls using a saturated nonlineal function.
The studied system exhibits the generation of emergent
behaviors from a single-wing up to a 9-scroll attractor.
On the other hand, bistable states such as a single scroll,
coherent single-wing, and a monostable double-scroll
attractor with three equilibrium points are also obtained.
The understanding of the UDS I systems has also been
extended, proving that these systems have considerably
large basins of attraction, but not at every value where
the system fully satisfies the requirements established by
the UDS theory.

The described model, in addition to involving a relatively
easy implementation [27, 31], is able to control the number
of scrolls to be generated, with the additional advantage of
having bistable dynamics. This factor increases the potential
technological applications, as in secure communication sys-
tems, neuronal systems, and control of electric motors with
variable torque. The corresponding analogical implementa-
tion, in order to compare the presented results, is proposed
as future work.
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As a new type of electronic components, a memristive device is receiving worldwide attention and can enrich the dynamical
behaviors of the oscillating system. In this paper, we propose a 3D jerk system by introducing a generalized memristive device.
It is found that the dynamical behaviors of the system are sensitive to the initial conditions even the system parameters are
fixed, which results in the coexistence of multiple attractors. And there exists different transition behaviors depending on the
selection of the parameters and initial values. Thereby, it is one important type of the candidate system for secure communication
since the reconstruction of accurate state space becomes more difficult. Moreover, we build a hardware circuit and the experimental
results effectively confirm the theoretical analyses.

1. Introduction

As the fourth basic circuit element besides resistance, induc-
tance, and capacitance, the memristor was postulated by
Chua in 1971, to link the charge with the flux [1]. And the
concept of the memristive system was further extended by
Chua and Kang [2]. However, research on the memristor
had not been received much interest until 2008, when the
solid-state realization of the memristor was reported by
the scholars in Hewlett-Packard Laboratory [3]. The mem-
ristor belongs to a nonvolatile two-terminal passive device
with variable quantity called memristance, which connects
the electric flux applied to the device with the electric
charge passing through in a particular direction. When the
electrical field in the memristor is removed, the memristance
may remain unchanged, thus holding memory characteristic
[4, 5]. It was proved that the memory characteristic of the
memristor could not be reproduced by any combination of
the other three fundamental elements. Therefore, the mem-
ristor could be in fact considered as a new electronic element
in electrical circuit theory, which is generally called as the
fourth element [1].

In 2009, Chua put forward the other two hypothetical cir-
cuit elements called memcapacitor and meminductor from
the nanoworld [6–8], which have closely the same character-
istics as the memristor depending on the past states through
which the system has evolved, so they are all called to be
memory circuit elements.

As the new circuit element, the memristor has poten-
tial applications in the construction of the new generation
of computers and memories and has been found to have
significant applications in memristor oscillators, memristor-
based neural networks, and memristor-based charge pump
locked loops [9, 10]. Additionally, a memristive circuit is
propitious to generate chaotic signal for the intrinsic non-
linearity and plasticity properties [11–13]. Different from
the conventional nonlinear systems, the most significant
feature of the memristor-based nonlinear system is that
the long-term dynamical behaviors extremely rely on the
initial state of the memristor, which leads to the emergence
of multistability or coexisting many attractors [14, 15]. The
phenomenon of multistability has attracted a lot of research
enthusiasm recently. Inmany cases, themultistability exists in
dynamical systems with stable equilibrium, no-equilibrium,
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or a line of equilibrium, in which one cannot use the Shilnikov
method to explain the chaos [14–18].

In this paper, we introduce a generalized memristive
device by extending the definition of the memristor and pro-
pose a 3D jerk system based on the memristive element. Basic
dynamical properties of the jerk system are displayed and
studied. Specially, the coexistence of multiple attractors is
investigated by analyzing the bifurcation map, spectrum of
Lyapunov exponent, and distribution of the stable region in
the initial value space. And there exist different transition
behaviors depending on the selection of the parameters and
initial values. Thereby, this system exhibits a rich and com-
plex dynamics relying on the system parameters, initial
values, and time evolution, which are of significance for
secure communication since the reconstruction of accurate
state space becomes more difficult. Moreover, we build a
hardware circuit and the experimental results effectively con-
firm the theoretical analysis.

2. Generalized Memristive Device

By extending the definition of thememristive system [2, 19–21],
we introduce a generalized memristive device, depicted by
the following relation:

dx
dt

= y,

r = x2 − 2 y

1

In relation (1), x t denotes the internal state variable
of the memristive element; y t and r t are complemen-
tary constitutive variables representing the input and out-
put, respectively.

To study the fingerprint, we consider a sinusoidal stimu-
lus y = h sin ωt = h sin 2πf t with the amplitude h and

the frequency ω or f , connected across the terminals of
the memristive element [22–24]. Thus, we have

x t =
t

−∞
y τ dτ =

0

−∞
y τ dτ +

t

0
y τ dτ

= x 0 + h
2πf 1 − cos 2πf t

2

And we further obtain the output of the memristive ele-
ment, as

r = x2 − 2 y = x 0 + h
2πf 1 − cos 2πf t

2
− 2 h sin 2πf t

3

As we know that the resulting output not only depends
on the initial state of the memristive element but also
depends on the frequency and amplitude of the sinusoidal
input. Figure 1(a) depicts the relations of input and output
of the memory element for sinusoidal stimulus at different
frequencies, when h = 1 and x 0 = 1. Figure 1(b) shows
the corresponding time domain waveform of f = 0 2.
Figure 2(a) depicts the relations of input and output of
the memory element with h = 1 and f = 0 2 under different
initial states. Figure 2(b) depicts the relations of input and
output of the memory element with x 0 = 1 and f = 0 2
under different amplitudes of the sinusoidal signal.

From the simulation results in Figures 1 and 2, it can be
seen that the memory device is not passive and behaves as a
linear negative commutator in the limit of infinite frequency.
Besides, there exist at most two values of the output r t for
any designated input y t [20].
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Figure 1: (a) Relationship curves of input and output under different frequencies and (b) the time-domain waveforms when f = 0 2Hz.
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3. Model of a Memristor-Based Jerk System

Jerk system is of interest within the nonlinear dynamics
domain for the simple mathematical form yet rich dynam-
ics. A jerk system is depicted by the third-order ordinary
differential equation as d3x/dt3 = J d2x/dt2, dx/dt, x , in
which the function J · is nonlinear. From the point of
view of mechanics, the function J · corresponds to the
first-time derivative of acceleration; thus, it is called to be a
jerk or jolt [25–27].

In this work, we introduce a 3D jerk system which pos-
sesses the generalized memristive element of (1):

dx
dt

= y,

dy
dt

= dz,

dz
dt

= −az + bx − cx3 + kr,

4

where r = x2 − 2 y, x, y, z are the state variables, and a, b, c, k
are the positive system parameters.

The volume contraction of system (4) can be described by
the Lie derivative:

∇V = ∂x
∂x

+ ∂y
∂y

+ ∂z
∂z

= −a 5

This signifies that the dissipativity of system (4) is nega-
tive. Thereby, the limit sets of system (4) will infinitely con-
verge to zero volume, and the asymptotic motion at time
through the flow will settle onto an attractor.

We obtain the three equilibrium points of system (4) as
E0 0, 0, 0 , E1 b/c, 0, 0 , and E2 − b/c, 0, 0 , by simple
mathematical derivation. When letting the parameter set

P = a, b, c, d, k = 0 5, 0 8, 0 6, 3 0, 1 , we get the typical
equilibrium points and the corresponding characteristic
roots, as below

E0 0, 0, 0 : λ1 = −1 12415 − 1 88224i,
λ2 = −1 12415 + 1 88224i, λ3 = 1 2483,

E1,2 ±1 1547, 0, 0 : λ1 = −2 54216, λ2 = 0 771078 − 2 03122i,
λ3 = 0 771078 + 2 03122i

6

Therefore, the equilibrium point E0 is a saddle node
of index 1, and the equilibrium points E1 and E2 are both
saddle-focus points of index 2. Accordingly, the three
equilibrium points are all instable.

With the parameter set P, we get the Lyapunov exponents
as 0.165274, 0, and −0.662735 and the Kaplan-Yorke dimen-
sion as 2.2494, implying a fractional feature with chaotic
behavior, as depicted in Figure 3.

4. Dynamics of a Memristor-Based Jerk System

4.1. Impact of System Parameters.We first select the param-
eter set P except let b vary in the region (0.6, 0.82), the
bifurcation diagram and the Lyapunov exponent spectrum
are displayed in Figure 4. It is known from Figure 4 that
the system trajectory evolves from a fixed point to multi-
ple period-doubling bifurcations, finally falls into a chaotic
state. And there exists an obvious periodic window near
b = 0 75. The Feigenbaum’s constant can be acquired by
Fn = ρn − ρn−1 / ρn+1 − ρn , where ρn is the critical parame-
ter value at which a period-doubling bifurcation emerges. It
is agreed that the ratio Fn will converge to the ideal value
4.669 as n increases. Thus, the ratio on the parameter b is reck-
oned as 0 7241 – 0 6782 / 0 7341 – 0 7241 = 4 59, which
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approximately equals to 4.669 with a relative deviation
(decline) of 1.69%.

Figure 5 depicts the bifurcation diagram and the Lya-
punov exponent spectrum when selecting parameter set
P except d varying in the region [2, 7]. It is obvious that
the dynamics of system (4) switch among the chaotic state
and periodic orbit by inverse period-doubling Feigenbaum
tree, with the increase of parameter d. And the Feigenbaum’s
constant is reckoned as 5 732 – 4 666 / 4 666 – 4 445 =
4 8235, which is approximately equal to 4.669 with a relative
deviation (rise) of 3.31%.

4.2. Coexisting Attractors. We assign the parameters of sys-
tem (4) as a = 0 5, b = 0 8, c = 0 6, d = 3, and k = 0 95 and take
the initial conditions y 0 = 0 3 and z 0 = 0 015. When let

x 0 as the bifurcation parameter varying in the region
(−0.02, 0.1), the bifurcation diagram and its Lyapunov expo-
nent spectra are plotted in Figure 6. It is found that when ini-
tial value of x increases from −0.02, system (4) starts from a
chaotic state and abruptly breaks into a periodic state via
tangent bifurcation at −0.005, and system turns into the nor-
mal chaotic state at 0.0035 then degrades into a periodic state
at 0.0065 via chaos crisis; the periodic state continues until
the tangent bifurcation at x 0 = 0 012. As depicted by the
enlarged view in Figure 6(b), similar switching process will
happen in other ranges or smaller local ranges, showing a
multifractal process.

When assigning the same parameters and x 0 = 0 01,
the dynamic dependence on both initial conditions y 0
and z 0 is also studied by the dynamical map, through

Table 1: Multistable behavior of system (4) with a = 0 5, b = 0 8, c = 0 6, d = 3, and k = 0 95.

Initial condition Lyapunov exponent Dynamical behavior

(0.01, 0.2, 0.09) 0.173334, 0.009299, −0.682633 2-Scroll chaotic attractor

(0.01, 0.23, 0.09) 0.0017705, −0.062944, −0.484761 Period-3 mode

(0.01, 0.4, 0) 0.050191, −0.0047652, −0.502539 1-Scroll chaotic attractor

(0.01, 0.4, 0.022) 0.148570, −0.001767, −0.646803 2-Scroll chaotic attractor
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Figure 9: (a) Time-domain waveform of variable z in the region of (0 s, 250 s); (b) the phase portrait in time interval of (0 s, 136 s); (c) the
phase portrait in time interval of (140 s, 250 s).
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numerical simulation, as shown in Figure 7. In the dynamical
map, the system is chaotic in the cyan region, stable in the
pink region, and periodic in the blue region.

All these results of initial sensitivity indicate that there
exists palpable feature of coexisting attractors in system (4).
As the representative examples, Figure 8 displays the attrac-
tors on x-y plane with a = 0 5, b = 0 8, c = 0 6, d = 3, and
k = 0 95 and different initial conditions. Figure 8(a) displays
that the initial condition (0.01, 0.2, 0.09) leads to a 2-scroll
chaotic mode and the initial condition (0.01, 0.23, 0.09) leads
to a period-3 mode. Figure 8(b) displays that the initial con-
dition (0.01, 0.4, 0) leads to a 1-scroll chaotic attractor and
the initial condition (0.01, 0.4, 0.022) leads to a 2-scroll cha-
otic attractor. The typical multistable behaviors are summa-
rized in Table 1.

4.3. Transient Dynamics. As discussed above, the dynamic
mode of the reported system strongly depends not only on
the parameters but also on the initial conditions. Another
important phenomenon is that the dynamic mode also
strongly depends on state evolution time, called to be the
transition behavior.

Taking a = 0 5, b = 0 8, c = 0 6, d = 5, k = 1 and the initial
condition (0.01, 0.2, 0.01), we depict the time trajectory in the

region of (0 s, 250 s) and the phase portraits in time intervals
of (0 s, 136 s) and (140 s, 250 s), as shown in Figure 9. As we
find that the dynamics convert from transient chaos to
period-2 behavior.

Taking a = 0 5, b = 0 8, c = 0 6, d = 6 6, k = 1 and the ini-
tial condition (0.01, 0, 0.1), we depict the time trajectory in
the region of (0 s, 160 s) and the phase portraits in time inter-
vals of (0 s, 60 s) and (100 s, 160 s), as shown in Figure 10,
from which we find the dynamics transition from transient
period-3 to period-1 behaviors.

Figure 11 depicts the case of a = 0 5, b = 0 8, c = 0 6, d = 3,
k = 0 95 and the initial condition (0.01, 0.26, 0.01). As we
find that the system (4) is chaotic in the region of (0 s,
1050 s) and is in the mode of period-4 in the region of
(1050 s, 2000 s).

5. Circuit Realization of a Memristor-Based
Jerk System

The circuit realization is important for the chaotic system,
especially by adopting commercially common electronic
components [28–30]. In this section, we build an electronic
circuit to physically realize the reported system for differ-
ent cases, based on the improved module-based technique
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Figure 10: (a) Time-domain waveform of variable z in the region of (0 s, 160 s); (b) the phase portrait in time interval of (0 s, 60 s); (c) the
phase portrait in time interval of (100 s, 160 s).

7Complexity



[31–34]. The electronic circuit is designed as the jerk form by
using the dimensionless state equations, as depicted in
Figure 12, which is simple with less circuit elements. In this
design, the operations of integral, addition, and inverse are
realized by the operational amplifier TL082 chip and the
multiply operation is realized by the AD633JN chip. More-
over, time-scale transformation is considered in our experi-
ment to guarantee capturing of the wave effectively, which
is determined by the time constant R0C0 in the integrator.
Accordingly, we obtain the circuit state equation from
Figure 12, as follows

dx
dt

= 1
R2C0

y,

dy
dt

= 1
R1C0

z,

dz
dt

= −
1

R3C0
z + 1

R7C0
x −

1
100R6C0

x3

+ 1
100R5C0

x2y −
1

R4C0
y

7
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Figure 11: (a) Time-domain waveform of variable z in the region of (0 s, 2000 s); (b) the phase portrait in time interval of (0 s, 800 s); (c) the
phase portrait in time interval of (1400 s, 2000 s).
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We first select the system parameter as a = 0 5, b = 0 8,
c = 0 6, d = 3, k = 1. When setting R0 = 10 kΩ and C0 = 500
nF, the other resistances are derived as R1 = 33 3k, R2 = 100
k, R3 = 200k, R4 = 50k, R5 = 1k, R6 = 1 667k, and R7 = 125k.
The experimental result of the 2-scroll chaotic attractor on
x-y plane captured from the analog oscilloscope is depicted
in Figure 13(a), which agrees well with the numerical simula-
tion in Figure 3.

To experimentally confirm the coexisting attractors, we
consider the system parameters as a = 0 5, b = 0 8, c = 0 6,
d = 3, and k = 0 95. In this case, the parameter values of cir-
cuit element in Figure 12 are invariable except for R4 =
52 63k and R5 = 1 053k. We switch on and off the power sup-
ply for randomly selecting the initial states, the experimental
results in Figures 13(b) and 13(c) show the period-3 mode
and 1-scroll chaotic attractor, which, respectively, agrees well
with the numerical simulations in Figure 8 of initial condi-
tions (0.01, 0.23, 0.09) and (0.01, 0.4, 0).

6. Conclusions

As the fourth basic circuit element, the memristor builds the
missing bridges between flux and charge. The memory char-
acteristic of memristor will lead to complicated dynamical
behaviors of oscillating systems. The jerk system is of interest
within the field of nonlinear dynamics for the simple mathe-
matical form. Therefore, it is worth to study the dynamics of
the memristor-based jerk system. In this paper, we propose a
3D jerk system by introducing a generalized memristive
device. The dynamical behavior of the system is sensitive
to the initial conditions, which results in the coexistence
of multiple attractors. And there exist different transition
behaviors depending on the selection of the parameters
and initial values. Thereby, it is difficult for the third party
to reconstruct the accurate state space of the reported system
since the dynamics extremely rely on the system parameters,
initial values, and time evolution, which are significant for
secure communication.
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Application of conformable fractional calculus in nonlinear dynamics is a new topic, and it has received increasing interests in
recent years. In this paper, numerical solution of a conformable fractional nonlinear system is obtained based on the
conformable differential transform method. Dynamics of a conformable fractional memcapacitor (CFM) system is analyzed by
means of bifurcation diagram and Lyapunov characteristic exponents (LCEs). Rich dynamics is found, and coexisting attractors
and transient state are observed. Symbol complexity of the CFM system is estimated by employing the symbolic entropy
(SybEn) algorithm, symbolic spectral entropy (SybSEn) algorithm, and symbolic C0 (SybC0) algorithm. It shows that
pseudorandom sequences generated by the system have high complexity and pass the rigorous NIST test. Results demonstrate
that the conformable memcapacitor nonlinear system can also be a good model for real applications.

1. Introduction

In 1971, Chua postulated the concept of memristor that
describes a relationship between flux and charge [1]. In
2008, researchers in Hewlett-Packard announced that a
solid-state implementation of memristor has been success-
fully fabricated [2]. Since then, designing memory circuits
has received significant attention of researchers, and many
different kinds of memristor-based circuits have been
designed [3–5]. In 2009, Ventra et al. [6] reported memcapa-
citors and meminductors. Compared with memristors, mem-
capacitors and meminductors have received much less
attention. Currently, memcapacitor and meminductor can
be designed based on the memristor. For example, Biolek
and Biolkova [7] designed a memcapacitor model based on
memristor by means of off-the-shelf circuits. As a matter of
fact, memory electronic elements are usually designed nonli-
nearly. Thus, chaos can be easily found in those memory

electronic element-based circuits [8–16]. Bao et al. [8–11]
presented many valuable works on chaotic memristor cir-
cuits. For instance, their most recent work reported quasipe-
riodic behavior and chaotic busting in a third-order
autonomous memristive oscillator [11]. Moreover, Mou et
al. [12] designed a memory circuit with two memcapacitors
that exhibited complex phenomena of state transition and
transient chaos accompanied with time evolution and coex-
isting states. Fractional calculus has been studied for about
300 years, and there are a large number of literatures reporting
chaos in the fractional-order nonlinear systems [17–20].
Moreover, fractional-order memory electronic element-based
systems increasingly attracted attention of scholars [21, 22].
Since not much research exists about the fractional-order
memcapacitor system, a fractional-order system with two
memcapacitors is considered in this paper.

All of the abovementioned systems are integer-order
systems or fractional-order chaotic systems under Caputo
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definition or Riemann-Liouville (R-L) definition [23]. In
2014, Khalil et al. [24] proposed a new fractional derivative,
and it is called the conformable fractional (CF) derivative.
Since the CF definition is prominently compatible with the
integer-order derivative, it has been widely studied in differ-
ent research fields [25–28]. For example, İskender Eroğlu et
al. [26] proposed an optimal boundary temperature control
for a time-conformable fractional heat conduction equation.
However, to our best knowledge, there are only two litera-
tures reporting numerical analysis of CF chaotic systems.
He et al. [29] firstly solved the nonlinear CF equations by
the conformable Adomian decomposition method (CADM)
and found chaos in the CF simplified Lorenz system. Later,
Ruan et al. [30] investigated dynamics of a CF memristor sys-
tem based on CADM, and rich dynamical behaviors were
found. It shows that the CF nonlinear systems also generate
chaos, and it is an interesting topic to explore complexity in
these systems. Recently, Ünal and Gökdoğan [31] modified
the differential transform method (DTM) and applied this
method to solve CF nonlinear equations. But it has not been
used to solve CF chaotic systems. Thus, in this paper, we will
use conformable DTM to solve the CF memcapacitor system
and analyze this system numerically.

Meanwhile, measuring complexity is also an important
method to analyze dynamics of chaotic systems. It reflects
the security of the system to some extent. When a system
has higher complexity, it means that the time series generated
by the system is more random. Currently, there are several
methods to measure complexity of time series, such as the
permutation entropy (PE) [32], sample entropy (SampEn)
[33], spectral entropy (SE) [34], and C0 algorithms [35]. It
should be noted out that complexity of chaotic systems is
mainly estimated based on the original time series, and com-
plexity analysis of nonlinear symbol sequence has aroused
interests of researchers [36, 37]. Meanwhile, there are many
kinds of pseudorandom sequence generation algorithms.
How complexity and dynamics of a chaotic system are deter-
mined by the pseudorandom quantization algorithms should
be investigated. And whether the CFM system can be actually
used in real applications should be verified.

The rest of the article is organized as follows. In Section 2,
definitions of conformable fractional derivative and a numer-
ical solution algorithm are proposed. Solution of the CFM
system is obtained. In Section 3, dynamics of the CFM system
is analyzed by means of Lyapunov characteristic exponents
(LCEs), bifurcation diagram, and phase portraits. In Section
4, three different symbol complexity measuring algorithms
are designed and the complexity of the CFM system is ana-
lyzed. Meanwhile, the NIST test is carried out. Finally, we
summarize the results in Section 5.

2. Definitions and Numerical
Solution Algorithm

In this section, the system model and definitions about con-
formable fractional derivative are presented. A numerical
solution algorithm for conformable fractional nonlinear sys-
tems is designed based on the differential transform method.

2.1. The Conformable Fractional Memcapacitor System. Mou
et al. [12] proposed a circuit with memcapacitor, and it is
denoted by

x = cf 1 z ,
y = d − e f2 y + ef 1 z ,
z = e f2 y − f1 z − x,

1

where c, d, and e are the system parameters, x, y, and z are the
state variables, and f1 z = a1z + b1z

3 and f2 y = a2y + b2y
3

represent the two memcapacitors in the circuit in which a1,
b1, a2, and b2 are the intrinsic parameters of the two memca-
pacitors. In [12], c = 8 96, d = 4, and e is the bifurcation
parameter. Moreover, there are three different sets of intrin-
sic parameters for different types of attractors. The three sets
of intrinsic parameters are shown in Table 1.

By introducing the conformable fractional derivative to
the system, the conformable fractional memcapacitor
(CFM) system is defined as

Tq1
t0
x = cf 1 z ,

Tq2
t0
y = d − e f2 y + ef 1 z ,

Tq3
t0
z = e f2 y − f1 z − x,

2

where Tq
t0
is the conformable fractional derivative and 0 <

q1, q2, q3 ≤ 1. Definitions and characteristics of the conform-
able fractional derivative are given as follows.

Definition 1 [24]. For a given function f 0,∞ → R, its
conformable fractional derivative of order α is defined by

Tq
t0
f t = lim

ε→0

f t + εt1−q − f t

ε
, 3

where t > t0 ≥ 0 and q ∈ 0, 1 .
Let q ∈ 0, 1 and f , g be q-differentiable at a point t > t0 ≥ 0.
Then,

(1) Tq
t0
af + bg = a Tq

t0
f + b Tq

t0
g , for all a, b ∈ℝ;

(2) Tq
t0
tp = ptp−q, for all p ∈ℝ;

(3) Tq
t0
λ = 0, for all constant functions f t = λ;

(4) Tq
t0

f g = f Tq
t0
g + g Tq

t0
f ;

(5) Tq
t0

f /g = g Tq
t0
f − f Tq

t0
g /g2;

(6) Tq
t0
f t = t1−q df /dt t .

Table 1: Parameters for the three kinds of chaotic attractors.

Type (a1, b1) (a2, b2)

I (−0.17, 10) (0.25, 0.6)

II (0.15, 10) (−0.2, 0.6)
III (−0.17, 10) (−0.2, 0.6)
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Definition 2 [24]. The conformable fractional integral of
function f q,∞ →ℝ is defined by

Iqt0 f t =
t

t0

f x

x − t0
1−q dx, 4

where t > t0 ≥ 0, q ∈ 0, 1 , and f is q-differentiable at t0, t .

2.2. Conformable Fractional Differential Transform Method.
The differential transformmethod is one of the most effective
methods for semianalytic analysis of differential equations.
Here, the conformable fractional differential transform
method (CFDTM) is introduced to solve the conformable
fractional chaotic system.

Assume that f is an infinitely q-differentiable function,
for 0 < q ≤ 1 at a neighborhood of a point t0. Then, f has
the fractional power series expansion [31].

f t = 〠
∞

k=0

Tq
t0
f t0 t − t0

qk

qkk
, 5

where t0 < t < t0 + R1/q, R > 0, and Tq
t0
f k t0 denotes the

conformable fractional derivative for k times. Define the con-
formable fractional differential transform of f t as

Fq k = 1
qkk

Tq
t0
f k t

t=t0
, 6

where Tq
t0
f

k
t denotes the application of the fractional

derivative for k times. Thus, the inverse conformable frac-
tional differential transform of F k is defined as

f t = 〠
∞

k=0
Fq k t − t0

qk 7

Lemma 1 [31]. If f t = u t ± v t , then Fq k =Uq k ±
Vq k .

Lemma 2 [31]. If f t = αu t , then Fq k = αUq k .

Lemma 3 [31]. If f t = u t 3 = u t u t u t , then Fq k =
∑k

i=0∑
i
j=0∑

j
l=0Uq l Uq j − l Uq k − j .

The multistep CFDTM method is proposed to solve
the CFM system. Divide the time interval 0, T into small
subintervals tn, tn+1 , where n = 0, 1, 2,… ,N , tN = T , and
tn+1 − tn = h. According to (7), the solution of the system
over interval tn, tn+1 is given by

x tn+1 ≈ 〠
D

k=0
X k hkq1 ,

y tn+1 ≈ 〠
D

k=0
Y k hkq2 ,

z tn+1 ≈ 〠
D

k=0
Z k hkq3 ,

8

where

X k + 1 = 1
q1 k + 1 cFk

1,

Y k + 1 = 1
q2 k + 1 d − e Fk

2 + eFk
1 ,

Z k + 1 = 1
q3 k + 1 e Fk

2 − Fk
1 − X k ,

9

and

Fk
1 = a1Z k + b1 〠

k

i=0
〠
i

j=0
〠
j

l=0
Z l Z j − l Z k − j ,

Fk
2 = a2Y k + b2 〠

k

i=0
〠
i

j=0
〠
j

l=0
Y l Y j − l Y k − j

10

It should be pointed out that

X 0 = x tn ,
Y 0 = y tn ,
Z 0 = z tn

11

It means that x tn+1 , y tn+1 , and z tn+1 can be obtained
based on x tn , y tn , and z tn , and the solution can be given
as x tn+1 = F x tn . As for the contribution of this section,
there are two aspects that could be specified. Firstly, it is the
first time that the solution of the conformable fractional-
order chaotic (memcapacitor) system is obtained by employ-
ing DTM. Secondly, we modified the method as the multistep
CFDTM method by dividing the solution into subintervals
tn, tn+1 , and the obtained solution can be represented as x
tn+1 = F x tn . Thus, the numerical solution of the con-
formable fractional-order chaotic system can be obtained in
MATLAB.

In addition, we chooseD = 3 for the approximation of the
system. Let e = 6 9; phase diagrams with different derivative
orders are shown in Figure 1. As shown in Figure 1, type I
and type III attractors do not change much with the decrease
of derivative orders while type II attractor is changed from
chaos to periodical circle. Obviously, these three types of
attractors are different. According to [12], there is no steady
state in the type I system and type III system, but the type
II system is steady when 0 < e < 4.
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3. Dynamical Analysis of the CFM System

3.1. LCE Calculation Algorithm. As mentioned above, the
solution of the CFM system can be written as x tn+1 = F
x tn ; thus, it is actually shown as a given map x n + 1 =
F x n . Here, the QR decomposition method is employed
to calculate the LCEs of the system. The computational pro-
cess is denoted as

qr JnJn−1 ⋯ J1 = qr JnJn−1 ⋯ J2 J1Q0 =QnRn ⋯ R2R1,
12

where qr · represents the QR decomposition function, J is
the Jacobian matrix of the given map, Q is an orthogonal
matrix, and R is an upper triangular matrix. All LCEs are cal-
culated according to the upper triangular matrix, and they
are given by [38]

λη =
1
Mh

〠
M

i=1
ln Ri η, η , 13

where η = 1, 2, 3 (dimension of the system) and M is the
maximum iteration number. Here, the Jacobian matrix is
obtained by the MATLAB symbolic operation function J =
Jacobian ⋅ . LCEs of attractors in Figure 1 are calculated,
and the results are shown in Table 2.

3.2. Bifurcation and Chaos. As with [12], we also treat
parameter e as a bifurcation parameter. Meanwhile, dynam-
ics with the variation of fractional derivative orders q1, q2,
and q3 is also analyzed. Since type II attractor changes more
with the decrease of derivative orders, it is chosen as the rep-
resentation of the three kinds of chaotic attractors for further
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Figure 1: Different types of chaotic attractors in the CFM system with different fractional derivative orders: (a) type I attractor with q1 =
q2 = q3 = 0 95; (b) type I attractor with q1 = q2 = q3 = 0 9; (c) type I attractor with q1 = q2 = q3 = 0 8; (d) type II attractor with q1 = q2 = q3 =
0 95; (e) type II attractor with q1 = q2 = q3 = 0 9; (f) type II attractor with q1 = q2 = q3 = 0 8; (g) type III attractor with q1 = q2 = q3 = 0 95;
(h) type III attractor with q1 = q2 = q3 = 0 9; (i) type III attractor with q1 = q2 = q3 = 0 8.

Table 2: LCEs of the CFM system with different derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.0987, 0, −3.4849 0.1290, 0, −4.7279 0.2287, 0, −8.4289
II 0.1099, 0, −6.422 0.0855, 0, −7.1556 0, 0, −16.1767
III 0.0531, 0, −9.0147 0.0789, 0, −12.4373 0.2831, 0, −28.5537
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analysis. When plotting bifurcation diagrams, the initial
condition for the blue dots is x t0 , y t0 , z t0 = 0 1, 0, 0 ,
while the initial condition for the red dots is x t0 , y t0 ,
z t0 = −0 1, 0, 0 .

Case 1. Fix q1 = q2 = q3 = 0 95 and vary parameter e from 6.7
to 7.05 with a step size of 0.0007. The bifurcation diagram
and LCEs with parameter e varying are shown in Figure 2.
It shows that dynamical behaviors of the CFM system change
with the variation of parameter e. The system is chaotic when
q ∈ 6 7, 0 7561 U 0 7617, 6 9974 , while the system is peri-
odical when q ∈ 0 7561, 0 7617 U 6 9974, 7 05 .

Case 2. Let e = 6 9 and q1 = q2 = q3 = q. Vary q from 0.72 to
1 where the variation step size is 0.002. As shown in
Figure 3(a), the system is divergent when q < 0 75. When
q ∈ 0 7568, 0 802 U 0 817, 0 8496 , the system is periodical
while the chaotic interval is q ∈ 0 75, 0 7568 U 0 802,
0 817 U 0 8496, 1 . LCE curves agree well with the analysis
results. It shows that rich dynamics is found with the
decrease of q.

Case 3. Let e = 6 9 and q2 = q3 = 1, and vary q1 from 0.995 to 1
with a step size of 0.00056. The bifurcation diagram and its
corresponding LCEs are shown in Figure 4. The system is
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Figure 2: Dynamics of the CFM system with parameter e varying: (a) bifurcation diagram; (b) LCEs.
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Figure 3: Dynamics of the CFM system with derivative order q1 = q2 = q3 = q varying: (a) bifurcation diagram; (b) LCEs.
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Figure 4: Dynamics of the CFM system with derivative order q2 = q3 = 1 and q1 varying: (a) bifurcation diagram; (b) LCEs.

5Complexity



chaotic when q ∈ 0 9958, 0 9975 U 0 9984, 1 , while the
system is nonchaotic for the rest values of q1.

Case 4. Let e = 6 9 and q1 = q3 = 1, and vary q2 from 0.995
to 1 with a step size of 0.00001. The bifurcation diagram
and its corresponding LCEs are shown in Figure 5. When
q2 < 0 9959, the transient state is found. The system is cha-
otic at the beginning and then becomes divergent finally.
The system is periodical when q ∈ 0 9967, 0 9982 , while
for the rest range, the system is chaotic.

Case 5. Let e = 6 9 and q1 = q2 = 1, and vary q3 from 0.995 to 1
with a step size of 0.00001. The bifurcation diagram and its
corresponding LCEs with derivative order q3 are shown in
Figure 6. The system is chaotic when q ∈ 0 942, 0 95 U
0 961, 1 , and the system is periodical when q ∈ 0 85, 0 942
U 0 95, 0 961 .

As shown above, after introducing the conformable frac-
tional derivative, the system still has rich dynamical behav-
iors like parameter e and derivative orders q1, q2, and q3.
Moreover, when varying one derivative order and the other
two to be equal to 1, the chaotic region shrinks much, com-
pared with that when all derivative orders are varied simulta-
neously. The minimum order for chaos in the CFM system is
2.25, when the system is solved by CFDTM. Meanwhile,
according to Figures 3–6, the system is chaotic when q1 =

q2 = q3 = 1. However, when the derivative orders become
smaller, the periodical state can be observed. It means that
derivative orders can change the dynamics of the system dis-
tinctly. Thus, the conformable derivative orders q1, q2, and q3
are also the bifurcation parameters. Chaotic pseudorandom
sequence (CPRS) has been widely used in real applications.
In the next section, complexity of the CPRS generated by
the CFM system is measured and the potential application
values of the system are discussed.

3.3. Coexisting Attractors and Transient State. As shown in
the above bifurcation diagrams, when the initial conditions
are different, the red and blue dots show two different
routes to chaos. Moreover, the coexistence of multiple
attractors is produced mainly due to the reason that sym-
metry and invariance exist in the system. For the CFM
system, it is symmetric and invariant under the transforma-
tion x, y, z → −x, −y, −z for all values of parameter e.
Thus, the coexistence of multiple attractors should be
observed. As mentioned above, two different sets of initial
conditions are chosen which are x t0 , y t0 , z t0 = 0 1,
0, 0 and x t0 , y t0 , z t0 = −0 1, 0, 0 . Coexisting attrac-
tors under different orders are shown in Figure 7. Obvi-
ously, the phase portraits of the CFM system with two
symmetric initial values are symmetric, and the system
can generate coexisting periodical cycles, chaotic attractors.

In some cases, there is no steady state in the system, and
dynamical behaviors of the system are different under certain
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Figure 5: Dynamics of the CFM system with derivative order q1 = q3 = 1 and q2 varying: (a) bifurcation diagram; (b) LCEs.
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Figure 6: Dynamics of the CFM system with derivative order q2 = q2 = 1 and q3 varying: (a) bifurcation diagram; (b) LCEs.
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parameters when starting from a different initial state. As
mentioned above, when e = 6 9, q1 = q3 = 1, and q2 < 0 9959,
the system has a transient state. Here, phase diagrams with
q2 = 0 9955 and 0.9958 are shown in Figure 8, where initial
conditions are the same as those mentioned above. The coex-
isting state and transient state are observed as shown in
Figure 8. The system becomes divergent through different
directions with different initial conditions, and it is chaotic
at the beginning and becomes divergent finally.

4. Complexity Analysis of the CFM System

In this section, complexity of the CFM system is analyzed by
means of symbolic complexity measures. Generally, if the
system has higher complexity, it means that the system is
securer in practical applications. Besides, it is more

convenient to calculate complexity since it just needs a seg-
ment of time series. Thus, complexity analysis result provides
a basis for parameter choice of chaotic systems.

4.1. Symbolic Complexity Measures. In real application, a
chaotic time series should be discretized as a pseudorandom
sequence or symbolic sequence, which usually varies between
0 and 1 (0-1 time series) or varies from 0 to 255 (8-bit num-
bers). Here, complexity of chaotic symbolic time series is
analyzed using different algorithms including the symbolic
entropy (SybEn) algorithm, symbolic spectral entropy (Syb-
SEn) algorithm, and symbolic C0 (SybC0) algorithm. These
three complexity algorithms are defined as follows.

Step 1 (pseudorandom process). Here, suppose that there is a
chaotic series defined as x n , n = 0, 1, 2,… ,N − 1 ; it is
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Figure 7: Coexisting attractors of the CFM system where e = 6 9. The blue line is obtained with the initial condition x t0 , y t0 , z t0 =
0 1, 0, 0 , and the red line is obtained with the initial condition x t0 , y t0 , z t0 = −0 1, 0, 0 : (a) q1 = q2 = q3 = 0 79; (b) q2 = q3 = 1,
q1 = 0 95; (c) q1 = q3 = 1, q2 = 0 997; (d) q1 = q2 = 1, q3 = 0 948.
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Figure 8: Transient state in the CFM system where the blue line is obtained with the initial condition x t0 , y t0 , z t0 = 0 1, 0, 0 and the
red line is obtained with the initial condition x t0 , y t0 , z t0 = −0 1, 0, 0 : (a) q2 = 0 9955; (b) q2 = 0 9958.
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discretized as s n , n = 0, 1, 2,… ,N − 1 by employing the
following method:

s n =

0, if min x ≤ x n < Δx,
1, if Δx ≤ x n < 2Δx,
⋮

255, if 255Δx ≤ x n ≤max x ,

14

where Δx = max x −min x /256. Thus, s n , n = 0, 1,
2,… ,N − 1 is an 8-bit number time series.

Step 2 (calculating SybEn). Count the number of each symbol
(from 0 to 255), and obtain the probability of each symbol as

Pi =
# i : s n = i, n = 0, 1,… ,N − 1

N
, 15

where # stands for number and i = 0, 1,… , 255. Thus, SybEn
is defined by

SybEn = −〠
255

i=0
Pi log Pi 16

Step 3 (discrete Fourier transformation (DFT)). Before the
DFT, the following normalization is employed to the symbol
time series, and it is denoted as

S n = s n −mean s
std s

, 17

where mean s and std s are the mean value and the stan-
dard deviation of the time series s, respectively, and n = 0,
1,… ,N − 1. Thus, the mean value of the new time is zero
and there is no direct current signal. DFT is carried out
on time series S, and it is given by

X k = 〠
N−1

n=0
S n e− j2πnk/N , 18

where k = 0, 1,… ,N − 1 and j is the imaginary unit.

Step 4 (calculating SybSEn). If the power of a discrete power
spectrum with the kth frequency is X k 2, then the “proba-
bility” of this frequency is defined as

ρk =
X k 2

〠N/2−1
k=0 X k 2 19

When the DFT is employed, the summation runs from
k = 0 to k =N/2 − 1. The normalization of SybSEn is denoted
by [34]

SybSEn = −
1

ln N/2 〠
N/ 2−1

k=0
ρk ln ρk 20

ln N/2 is the entropy of the completely random signal.

Step 5 (inverse DFT). Define the mean square value of X k
as

GN = 1
N

〠
N−1

k=0
X k 2 21

Let

X k =
X k , if X k 2 > rGN ,
0, if X k 2 ≤ rGN ,

22

where r r > 0 is the control parameter. The inverse DFT of
X k is

S n = 1
N

〠
N−1

k=0
X k ej2πnk/N , 23

where n = 0, 1,… ,N − 1. S n reflects the regular part of the
time series with detailed information removed.

Step 6 (calculating SybC0). SybC0 complexity is defined as
[35]

SybC0 = 〠
N−1

n=0

S n − S n
2

Ω
24

where Ω =∑N−1
n=0 S n 2.

The three complexity measuring algorithms estimate
complexity of an 8-bit symbol time series from different
aspects. Firstly, SybEn analyzes complexity in the time
domain while SybSEn and SybC0 are defined in the frequency
domain. Secondly, SybEn and SybSEn are defined based on
the definition of the Shannon entropy while SybC0 reflects
the ratio of an irregular part in the time series. Let e = 6 9
and q1 = q2 = q3 = 0 95; we obtain a type II chaotic time series
x. The time series is shown in Figure 9(a), and the symbol
time series is illustrated in Figure 9(b). By employing (15)
and (19), plots of the two different “probabilities” are shown
in Figures 9(c) and 9(d), respectively. According to (22) and
(24), we illustrate the irregular part of the time series with
r = 10, where the red line represents S n 2 and the green

line represents S n − S n
2
which shows the “difference”

or “irregular part.”
As shown in Figure 9, the principles of different algo-

rithms are different. For SybEn and SybSEn, if the probability
density is more uniform, values of entropy are larger, while if
the proportion of the green part is larger, values of SybC0 are
larger. As a result, larger values of SybEn, SybSEn, and SybC0
mean that the system has higher complexity. In this paper, to
analyze the complexity of the CMF system, the time series
x with a length of 55000 is sampled with τ = 10; thus, x = x
1 10 55000 . Finally, the sampled time series is changed
into a symbol time series. For SybC0 complexity, we choose
r = 10.

4.2. Complexity Analysis. Complexity of the CFM system is
analyzed by means of SybEn, SybSEn, and SybC0. Firstly,
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SybEn, SybSEn, and SybC0 of different types of CFM systems
with different derivative orders are analyzed, and the results
are shown in Tables 3–5, respectively. As with Figure 1 and
Table 2, values of derivative orders are set as q1 = q2 = q3 =
0 95, 0 90, and 0 80 and e = 6 9. It shows that complexity

analysis results agree well with the LCE analysis results.
When the system is chaotic, higher complexity can be found.
Moreover, the system has relative higher complexity when
the derivative orders are smaller. It should be pointed out
that SybEn cannot distinguish the chaotic state and periodi-
cal state well similar to SybSEn and SybC0. Actually, it is also
one of the reasons why we furtherly design complexity anal-
ysis methods in the frequency domain.

Complexity of the CFM system with parameter e varying
is analyzed, and results are shown in Figure 10. Here, q1 =
q2 = q3 = q equals to 0.95, and parameter e varies from 6.7
to 7.05 with a step size of 0.0007. As shown in Figure 10, Syb-
SEn and SybC0 agree with the maximum LCEs better than
SybEn, and they identify more periodical windows which
show relative lower complexity.
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Figure 9: Analysis of complexity algorithms: (a) original time series x; (b) pseudorandom sequence s; (c) probability of each symbol Pi; (d)
probability of the frequency ρi; (e) irregular part in the SybC0 algorithm.

Table 4: SybSEn complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.4497 0.5131 0.5589

II 0.5635 0.6135 0.3190

III 0.3580 0.3776 0.5386

Table 5: SybC0 complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.1263 0.1756 0.2885

II 0.1913 0.2424 0.0776

III 0.1795 0.1963 0.3128

Table 3: SybEn complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 5.4834 5.4646 5.4868

II 4.7810 4.7422 4.6255

III 4.8680 4.8711 4.9467
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Complexity of the type II CFM system with parameter
e = 6 9 and derivative orders q1, q2, and q3 varying is ana-
lyzed, and the analysis results are shown in Figure 11. Let
q1 = q2 = q3 = q and let it vary from 0.75 to 1. Complexity
analysis results are shown in Figures 11(a)–11(c). As
shown in Figures 11(b) and 11(c), complexity of the sys-
tem increases with the decrease of order q, which means
that the system has higher complexity with smaller values
of q. Thus, the system has a good application value in the
engineering field. Fix q2 = q3 = 1 and vary q1 from 0.995 to
1, and the complexity results are shown in Figures 11(d)–
11(f). Fix q1 = q2 = 1 and vary q2 from 0.996 to 1, and the
complexity results are displayed in Figures 11(g)–11(i).
Moreover, let q1 = q2 = 1 and vary q3 from 0.85 to 1, and
the complexity results are illustrated in Figures 11(j)–11(l).
As shown in those figures, complexity of the CFM system
does not increase with the decrease of derivative order q1,
q2, or q3. When q1 = q2 = q3 = 1, the integer-order system is
chaotic with high complexity, but the low-complexity region
can be found when the fractional derivative orders decrease.
In real application, one should choose those orders with
which the system generates high-complexity time series.

According to Figures 11 and 12, SybEn, SybSEn, and
SybC0 complexity analysis results are consistent with the
corresponding maximum LCEs to a certain degree. Overall,
SybSEn and SybC0 analysis results agree better with the cor-
responding maximum LCE results than with those of SybEn.
Compared with calculating LCEs, calculating SybEn, SybSEn,
and SybC0 needs much less time and it is more convenient
in real application since results can be obtained with a time
series. On the one hand, it shows that the system has a poten-
tial application value in practice. On the other hand, it pro-
vides a basis for parameter choice of the CFM system in
real applications.

SybSEn and SybC0 complexity in the q-e parameter plane
is calculated, and the results are shown in Figure 12. Here, the
parameter varies from 6.7 to 7.05 similar to that mentioned
above, while derivative order q varies from 6.5 to 1, simulta-
neously. As shown in Figure 12, the minimum order for
chaos is about 0.65 when e = 6 7. Meanwhile, it shows that
the system has higher complexity.

The pseudorandom time series s n by (14) fluctuates
with the original system variables. As we all know that a
chaotic system is a good source for entropy. There are
many different kinds of chaotic systems that can be used

for designing a pseudorandom sequence generator (PRSG),
such as the Lorenz system [39], logistic map, sine map, and
2D-SIMM [40]. And these PRSGs are widely used in real
application fields such as image encryption [41], speech
encryption [42], and chaotic watermark [43]. The quantiza-
tion algorithms used in this applications are more complex
than the method given in (14). One of the most commonly
used methods is designed by expressing the original num-
ber or its converted number as a 64-bit binary number as
DB63-DB0; then, one can obtain a new 8-bit number by
choosing DB7-DB0. The details of this method are given
as follows.

The original number is converted as

φ n = round x n × 10w , 25

where n = 0, 1, 2,… ,N − 1 and w is a control number. Here,
in this paper, w = 10. Thus, φ n is an integer number and it
can be expressed as

φ n = DB63DB62 ⋯DB1DB0 26

By choosing the first 8-bit number, a new symbol time
series s n is given as

s n = DB7 ⋯DB1DB0 27

Obviously, s n can be expressed as a decimal integer
number varying from 0 to 255, as mentioned above. By using
this quantization algorithm, complexity of pseudorandom
sequences generated by different chaotic systems is calculated
and the results are shown in Table 6. The length of each seg-
ment symbol time series is 5000, and complexity of such 100
time series is calculated. The results are given as mean± std of
complexity values in these windows. As shown in Table 6,
entropy or complexity of different chaotic pseudorandom
sequences is at about the same high level. It shows that as
with other different chaotic systems, the CFM system is also
a good system for high entropy.

According to Table 6, complexity of the CFM system is
high as other systems. Thus, it is necessary to check whether
the pseudorandom sequence generated by this system passes
the test suite of NIST. The package used for the NIST test is
sts-2.1.2 which can be downloaded from the website. Two
indicators, which are p values and the proportion of passing
sequences, are used to show whether the sequence passes
the test or not. The minimum value for p value is 0.0001. It
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Figure 10: Complexity analysis results of the CFM system with parameter e varying: (a) SybEn; (b) SybSEn; (c) SybC0.
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means that when the p value is larger than 0.0001 and the
confidence interval satisfies

1 − η − 3 1 − η η

M
, 1 − η + 3 1 − η η

M
, 28

where M is the sample size and η is the given significance
level, then the pseudorandom bit generator passes the test
successfully. In our test, the length of the pseudorandom
sequence is 106, and η = 0 01 with a confidence interval given
by 96 015%, 1 . The test result is illustrated in Table 7. For
those items including C. Sums (2 times), N.O. Temp (148

0
1

2

3

4

5
Sy

b 
En

0.75 0.8 0.85 0.9 0.95 1
q

(a)

0.75 0.8 0.85 0.9 0.95 1
q

0

0.2

0.4

0.6

0.8

Sy
bS

En

(b)

0.75 0.8 0.85 0.9 0.95 1
q

0
0.1

0.2

0.3

0.4

0.5

Sy
bC

0

(c)

Sy
bE

n

0.995 0.996 0.997 0.998 0.999 1
q1

4.4

4.5

4.6

4.7

4.9

4.8

(d)

0.995 0.996 0.997 0.998 0.999 1
q1

0.1

0.2

0.3

0.4

0.5

0.6

Sy
bS

En

(e)

Sy
bC

0

0.995 0.996 0.997 0.998 0.999 1
q1

0

0.05

0.1

0.15

0.2

(f)

0

1

2

3

4

5

Sy
bE

n

0.996 0.997 0.998 0.999 1
q2

(g)

0.996 0.997 0.998 0.999 1
q2

0

0.2

0.4

0.6

Sy
bS

En

(h)

Sy
bC

0

0.996 0.997 0.998 0.999 1
q2

0

0.05

0.1

0.15

0.2

(i)

4.4

4.5

4.6

4.7

4.9

Sy
bE

n

0.85 0.9 0.95 1
q3

4.8

(j)

0.85 0.9 0.95 1
q3

0.1

0.2

0.3

0.4

0.5

0.6

Sy
bS

En

(k)

Sy
bC

0

0.85 0.9 0.95 1
q3

0

0.05

0.1

0.15

0.2

(l)

Figure 11: Complexity analysis results of the CFM system with derivative orders varying: (a) SybEn with q1 = q2 = q3 = q varying; (b) SybSEn
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times), R. Excur. (8 times), R. Excur. V. (18 times), and Serial
(2 times), we only illustrate the lowest values of p value and
proportion. It is shown in Table 7 that all p values are larger
than 0.0001 and the computed proportion for each test lies
inside the confidence interval. Hence, the tested binary
sequences generated by the proposed pseudorandom bit gen-
erator are random.

In this section, two different pseudorandom quantization
algorithms are designed. As shown in Figures 9(a) and 9(b),
fluctuation of pseudorandom sequence obtained by the first
method given (14) agrees well with the original time series.
Thus, it is the reason why complexity analysis results match
well with the corresponding maximum LCEs. It provides a
good symbol sequence for complexity analysis of chaotic
systems when analyzed by complexity measuring methods.
However, according to Table 6, pseudorandom sequences
generated by different systems by employing the second
method have the same level of high complexity. Mean-
while, the pseudorandom sequence passes all the NIST
tests. It means that the obtained sequence is random. As
with other chaotic systems, the CFM system is also a good
secret key generator for real applications including infor-
mation encryption, secure communication, and chaotic
digital watermark.
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Figure 12: Complexity analysis results of the CFM system in the e-q parameter plane: (a) SybSEn; (b) SybC0.

Table 6: Complexity measuring results of different chaotic pseudorandom sequences with the second quantization method.

Systems Equations SybEn SybSEn SybC0

CFM system

Tq1
t0
x = cf 1 z

Tq2
t0
y = d − e f2 y + ef 1 z

Tq3
t0
z = e f2 y − f1 z − x

5.4825± 0.0036 0.9466± 0.0014 0.9995± 0.0014

Lorenz system
x = 10 y − x

y = 28x − xz − y
z = xy − 8z /3

5.5206± 0.0012 0.9583± 0.0003 0.9995± 4.4× 10−4

Logistic map x n + 1 = 4x n 1 − x n 5.4962± 0.0053 0.9461± 0.0012 0.9994± 0.0015
Sine map x n + 1 = 4 sin πx n 5.4966± 0.0043 0.9459± 0.0013 0.9992± 0.0019

2D-SIMM
x n + 1 = 10 sin πy n sin 10/x n

y n + 1 = 10 sin πx n + 1 sin 10/y n 5.4966± 0.0046 0.9461± 0.0014 0.9996± 0.0013

Table 7: NIST test result of binary sequences generated by the CFM
system.

Tests p value Proportion Success

Frequency (1) 0.3345 97/100 ✓

B. Frequency (1) 0.6163 100/100 ✓

C. Sums (2) 0.9558 99/100 ✓

Runs (1) 0.1816 99/100 ✓

Longest Run (1) 0.2133 99/100 ✓

Rank (1) 0.3191 99/100 ✓

FFT (1) 0.1968 99/100 ✓

N.O. Temp (148) 0.0288 97/100 ✓

O. Temp (1) 0.7197 97/100 ✓

Universal (1) 0.5341 99/100 ✓

App. Entropy (1) 0.8165 57/58 ✓

R. Excur. (8) 0.010 57/58 ✓

R. Excur. V. (18) 0.0179 58/58 ✓

Serial (2) 0.5544 99/100 ✓

L. Complexity (1) 0.1025 99/100 ✓
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Finally, it is necessary to explain why we choose 8-bit or
256-quantization-level symbols to form the numbers and
how complexity analysis result is determined by the quanti-
zation levels. Let e = 6 9 and q1 = q2 = q3 = 0 95. A segment
of type II chaotic time series is used to calculate the complex-
ity. The relation between the number of quantization levels
and its complexity measuring results is shown in Figure 13,
where SybEn is normalized via dividing ln m . Here, m is
the number of bits or 2m is the quantization levels. It shows
that the values of the two frequency domain methods,
namely, SybC0 and SybSEn, do not change with the quantiza-
tion levels. However, values of SybEn (the time-domain
method) increase but tend to become stable with the quanti-
zation levels. Meanwhile, the 8-bit number is widely used in
real applications. Thus, 8-bit or 256-quantization-level sym-
bol sequences are employed for complexity analysis.

5. Conclusions

In this work, we introduced the conformable fractional
calculus in a nonlinear system with two memcapacitors
(CFM system). The conformable fractional differential trans-
formmethod is employed to solve the nonlinear conformable
differential system for the first time. The ALCE calculation
algorithm is designed based on the obtained solution, and
bifurcation and chaos in the CFM system are explored. It
shows that the CFM system has rich dynamics with the
variation of system parameter and derivative orders.
Meanwhile, coexisting attractors and transient state were
observed under some specific parameters. Three symbol
complexity measuring algorithms are designed, namely, sym-
bolic entropy (SybEn) algorithm, symbolic spectral entropy
(SybSEn) algorithm, and symbolic C0 (SybC0) algorithm.
Complexity analysis results match well with the corre-
sponding maximum LCE analysis results. Finally, by using
a proper quantization algorithm, the obtained pseudoran-
dom sequence has high complexity as other common chaotic
systems and is randomly verified by the NIST test. It shows

that the memory electronic element-based systems have a
potential engineering application value.
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First, based on a linear passive capacitor C, a linear passive inductor L, an active-charge-controlled memristor, and a fourth-degree
polynomial function determined by charge, an integer-order memristive system is suggested. The proposed integer-order
memristive system can generate two-scroll, three-scroll, and four-scroll chaotic attractors. The complex dynamics behaviors are
investigated numerically. The Lyapunov exponent spectrum with respect to linear passive inductor L and the two-scroll, three-
scroll, and four-scroll chaotic attractors are yielded by numerical calculation. Second, based on the integer-order memristive
chaotic system with a four-scroll attractor, a fractional-order version memristive system is suggested. The complex dynamics
behaviors of its fractional-order version are studied numerically. The largest Lyapunov exponent spectrum with respect to
fractional-order p is yielded. The coexisting two kinds of three-scroll chaotic attractors and the coexisting three-scroll and
four-scroll chaotic attractors can be found in its fractional-order version.

1. Introduction

Chaos is an interesting phenomenon in nonlinear systems.
High irregularity, unpredictability, and complexity are the
typical characteristics of chaotic systems [1, 2]. These typical
characteristics have great applications in the following fields:
data encryption [3], secure communication [4–7], power grid
protection [8, 9], and so on [10–16]. Therefore, more and
more attentions have been attracted on the study of chaotic
systems in the last few decades [17–20]. In 1971, Chua
reported the fourth circuit element named memristor [21],
and a solid-state implementation of a memristor has been
successfully realized in Hewlett-Packard in 2008 [22]. After
then, the applications of a memristor have caught many
attentions in nonlinear science [23–28]. Meanwhile, chaotic
and hyperchaotic attractors have been found in many
memristor-based circuits [21, 23–26]. For example, Muthus-
wamy and Chua provided a memristor-based circuit with a

single-scroll chaotic attractor [24], Bao et al. reported a
memristor-based circuit with a double-scroll chaotic attrac-
tor [25], Teng et al. found a memristor-based circuit with
double-scroll and four-scroll chaotic attractors [26], and so
on [27, 28]. On the other hand, many real physical systems
such as electromagnetic wave propagation, dielectric polari-
zation, and heat conduction can be described by fractional-
order differential equations [29, 30]. Meanwhile, chaotic
phenomenon has been discussed in many fractional-order
nonlinear systems such as the fractional-order electronic
circuits [31], the fractional-order gyroscopes [32], the
fractional-order chaotic brushless DC motor [12], the
fractional-order microelectromechanical system [33], and
the fractional-order neural networks [34, 35]. So, more
attentions have been paid to research the chaotic behaviors
of fractional-order nonlinear systems.

Motivated by the above considerations, first, based on a
memristor-based chaotic circuit reported by Muthuswamy
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and Chua [24], Bao et al. [25], and Teng et al. [26], an
integer-order memristive chaotic system with two-scroll,
three-scroll, and four-scroll chaotic attractors is provided in
this paper. It is noticed that there is only a single-scroll cha-
otic attractor in [24], only a double-scroll chaotic attractor
in [25], and only double-scroll and four-scroll chaotic attrac-
tors in [26]. However, there are two-scroll, three-scroll, and
four-scroll chaotic attractors in our memristive system.
Meanwhile, the Lyapunov exponent spectrum, and phase
diagram for our memristive chaotic system are obtained.
Second, based on the proposed integer-order memristive
chaotic system with a four-scroll chaotic attractor, a
fractional-order version chaotic system is suggested. We find
that the coexisting three-scroll and four-scroll chaotic attrac-
tors and coexisting two kinds of three-scroll chaotic attrac-
tors are emerged in the fractional-order version. To the best
of our knowledge, this result is rarely reported.

The outline of this paper is organized as follows. In
Section 2, the concept of a memristor and some memristor-
based system are briefly reviewed. Based on the review,
we present an integer-order memristive chaotic system
with two-scroll, three-scroll, and four-scroll chaotic attrac-
tors and some basic dynamics behaviors are obtained. In
Section 3, based on the integer-order memristive chaotic sys-
tem with a four-scroll chaotic attractor, we present its
fractional-order version and we find that there are coexisting
chaotic attractors in its fractional-order system. In Section 4,
the conclusion is given.

2. An Integer-Order Memristive Chaotic System

The charge-controlled memristor [24, 26] is described by
a nonlinear I-V characteristic as VM =M q IM and q =
F q, IM . Here, VM , IM , and q are the voltage, current,
and charge associated to the device, respectively. M q is
the memristance, and F q, IM is the internal state function.
In [24, 26], two schematics of the simplest memristor-based
chaotic circuit with a linear passive inductor, linear passive
capacitor, and a nonlinear active memristor have been
reported. The state equations represent the current-voltage
relation for the linear passive capacitor, and the inductor is
described as

CdVC

dt
= IL,

LdIL
dt

= − VC +M q IL ,
1

where VC denotes the voltage of the linear passive capac-
itor C and IL denotes the current of the linear passive
inductor L.

In [24], the memristance M q is defined as M q =
β q2 − 1 , and the internal state function F q, IM is
defined as F q, IM = IM − α + IM q, where IM = −IL. The
memristor-based circuit in [24] has a single-scroll chaotic
attractor (for more details, see [24]), and its dynamics
are described by

CdVC

dt
= IL,

LdIL
dt

= − VC + β q2 − 1 IL ,

dq
dt

= −IL − α − IL q

2

In [26], thememristance is chosen asM q = δq4 + γq2 − β
and the internal state function is chosen as F q, IM = IM −
α − I2M q, where IM = −IL. The memristor-based circuit in
[26] has double-scroll and four-scroll chaotic attractors (for
more details, see [26]), and its dynamics are shown as

CdVC

dt
= IL,

LdIL
dt

= − VC + δq4 + γq2 − β IL ,

dq
dt

= −IL − α − I2L q

3

Now, based on [24, 26], an integer-order memristive sys-
tem is suggested in our paper. The memristance is defined as
M q = δq4 − β, and the internal state function is defined as
F q, IM = IM − α − I2M q. So, the integer-order memristive
chaotic system in this paper is suggested as

CdVC

dt
= IL,

LdIL
dt

= − VC + δq4 − β IL ,

dq
dt

= −IL − α − I2L q,

4

where C = 1F, δ = 0 5, β = 2 4, α = 0 75, and 1H ≤ L ≤ 8H.
The equilibrium points of system (4) can be calculated by

IL = 0,
− VC + δq4 − β IL = 0,

−IL − α − I2L q = 0
5

Obviously, only IL, VC , q = 0, 0, 0 is the equilibrium
point in system (4). The Jacobian matrix J at this equilibrium
point is

J =

0 1 0

−
1
L

2 4
L

0

0 −1 −0 75

, 6

and its eigenvalues are λ1 = 0 5 2 4/L + 2 4/L 2 − 4/L,

λ2 = 0 5 2 4/L − 2 4/L 2 − 4/L, and λ3 = −0 75. If

2 4/L 2 − 4/L ≥ 0, then λ1,2 > 0. If 2 4/L 2 − 4/L < 0, then
Re λ1,2 > 0. So, the equilibrium point IL, VC , q = 0, 0, 0
in system (4) is unstable.
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By numerical calculation, the Lyapunov exponent spec-
trum of integer-order memristive system (4) with respect to
linear passive inductor L can be obtained and is displayed
in Figure 1.

According to Figure 1, the maximum Lyapunov expo-
nent λ1 is positive for the suitable L. The positive Lyapunov
exponent λ1 indicates that the chaotic attractor is emerged
in system (4). Next, some results are shown as follows:

2.1. Two Kinds of Three-Scroll Chaotic Attractors Are
Emerged in System (4). Letting L = 1 734, the Lyapunov
exponents are λ1 = 0 0168, λ2 = 0, and λ3 = −0 3275. The
Lyapunov dimension is DL = 2 + λ1/ λ3 = 2 051; so, system
(4) is fractal. The chaotic attractor is shown in Figure 2.
The result in Figure 2 indicates that the three-scroll chaotic
attractor is emerged in system (4).

Letting L = 1 8, the Lyapunov exponents are λ1 =
0 0246, λ2 = 0, and λ3 = −0 3152. The Lyapunov dimension
is DL = 2 + λ1/ λ3 = 2 078; so, system (4) is fractal. The
chaotic attractor is shown in Figure 3. The result in
Figure 3 indicates that the three-scroll chaotic attractor is
emerged in system (4).

According to Figures 2 and 3, we find that two kinds of
three-scroll chaotic attractors are emerged in our integer-
order memristive chaotic system.

2.2. The Four-Scroll Chaotic Attractor Is Emerged in System
(4). Letting L = 1 4, the Lyapunov exponents are λ1 = 0 0663,

λ2 = 0, and λ3 = −0 3593. The Lyapunov dimension is DL =
2 + λ1/ λ3 = 2 1845; so, system (4) is fractal. The chaotic
attractor is displayed in Figure 4. The result in Figure 4
indicates that the four-scroll chaotic attractor is emerged in
system (4).

2.3. The Two-Scroll Chaotic Attractor Is Emerged in System
(4). Letting L = 4, the Lyapunov exponents are λ1 = 0 0397,
λ2 = 0, and λ3 = −0 3364. The Lyapunov dimension is DL =
2 + λ1/ λ3 = 2 1180; so, system (4) is fractal. The chaotic
attractor is displayed in Figure 5. The result in Figure 5
indicates that the two-scroll chaotic attractor is emerged in
system (4).
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Figure 1: The Lyapunov exponent spectrum varies as linear passive
inductor L.
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Figure 2: Three-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 3: Three-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 4: Four-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 5: Two-scroll chaotic attractor in integer-order memristive
system (4).
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According to the above results, the proposed integer-
ordermemristive chaotic system (4) in this paper can generate
two- to four-scroll chaotic attractors. This result is different
with many previous results [21, 23–28].

3. A Fractional-Order Memristive Chaotic
System with Coexisting Chaotic Attractors

In this section, based on integer-order memristive chaotic
system (4), a fractional-order version with coexisting chaotic
attractors is given.

According to Figure 4 in Section 2, the four-scroll chaotic
attractor is emerged in integer-order memristive system (4)
with C = 1F, δ = 0 5, β = 2 4, α = 0 75, and L = 1 4. Now,
based on this case, a fractional-order version memristive
system is suggested, which is shown as follows:

dpVC t

dtP
= IL t ,

dpIL t

dtP
= −

VC t + 0 5q4 t − 2 4 IL t

1 4 ,

dpq t

dtP
= −IL t − 0 75 − I2L t q t

7

Here, 0 92 ≤ p ≤ 1 is the fractional-order version and
dpVC t /dtp = t

0 t − τ −pdVC τ /Γ 1 − p , dpIL t /dtp = t
0

t − τ −pdIL τ /Γ 1 − p , and dpq t /dtp = t
0 t − τ −pdq τ /

Γ 1 − p .
Now, by the improved version of Adams-Bashforth-

Moulton numerical algorithm [36], nonlinear fractional-
order system (7) with initial condition (IL 0 , VC 0 , q 0 )
can be discretized as follows:

VC n + 1 =VC 0 + τp

Γ p + 2 IsL n + 1 + 〠
n

j=0
α j,n+1IL j ,

IL n + 1 = IL 0 + τp

Γ p + 2
− Vs

C n + 1 + 0 5 qs n + 1 4 − 24 IsL n + 1
1 4

+ 〠
n

j=0

αj,n+1 − VC j + 0 5 − q j 4 − 24 IL j

1 4 ,

q n + 1 = q 0 + τp

Γ p + 2

IsL n + 1 − 0 75 − IsL n + 1 2 qs n + 1

+ 〠
n

j=0
αj,n+1 −IL j − 0 75 − IL j 2 q j ,

8

where

The approximation error is as follows:

VC tn −VC n = o τ1+p ,

IL tn − IL n = o τ1+p ,

q tn − q n = o τ1+p

10

In this numerical algorithm, T is the total time length
of numerical calculation, N is the iterative calculation

time, and τ = T/N is the step length. So, tn = nτ n = 0, 1,
2,… ,N .

Next, we study the dynamical behaviors for fractional-
order system (7) by the improved version of Adams-
Bashforth-Moulton numerical algorithm [36]. First, using
numerical calculation, the largest Lyapunov exponents
(Largest LE) of fractional-order system (7) with respect to
fractional-order p can be obtained, which is shown in
Figure 6.

Vs
C n + 1 =VC 0 + 1

Γ p
〠
n

j=0
βj,n+1IL j ,

IsL n + 1 = IL 0 + 1
Γ p

〠
n

j=0
βj,n+1

− VC j + 0 5 q j 4 − 2 4 IL j

1 4 ,

qs n + 1 = q 0 + 1
Γ p

〠
n

j=0
βj,n+1 −IL j − 0 75 − IL j 2 q j ,

αj,n+1 =
np+1 − n − p n + 1 p,  j = 0,
n − j + 2 p+1 + n − j p+1 − 2 n − j + 1 p+1,  1 ≤ j ≤ n,
1,  j = n + 1,

βj,n+1 =
τp n − j + 1 p − n − jp

p
, 0 ≤ j ≤ n

9
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According to Figure 6, the largest Lyapunov exponent is
larger than zero for 0 92 ≤ p ≤ 1. The positive largest Lyapu-
nov exponent indicates that the chaotic attractor is emerged
in fractional-order system (7). Next, some results are shown
as follows:

3.1. Coexisting Three- and Four-Scroll Chaotic Attractors in
System (7) for p = 0 935. Letting p = 0 935, the Largest LE is
0.3251. Therefore, fractional-order system (7) has chaotic
behavior. The chaotic attractor can be obtained by numerical
calculation. Here, we find that there are coexisting three-
scroll and four-scroll chaotic attractors which depend on
the initial conditions. For example, let the initial condition
be (−2,−1,−1) and (−2,1,1). The four-scroll chaotic attractor
(black line) and three-scroll chaotic attractor (red line) are
shown in Figure 7.

3.2. Coexisting Two Kinds of Three-Scroll Chaotic Attractors
in System (7) for p = 0 94. Letting p = 0 94, the Largest LE is
0.3864. Therefore, fractional-order system (7) has chaotic
behavior. The chaotic attractor can be obtained by numerical
calculation. Here, we find that there are coexisting two kinds
of three-scroll chaotic attractors which depend on the initial
conditions. For example, let the initial condition be
(−2,−1,−1) and (−2,1,1). The two kinds of three-scroll
chaotic attractors (black line, red line) are shown in Figure 8.

3.3. Four-Scroll Chaotic Attractor in System (7) for p=0.99. Let-
ting p = 0 99, the Largest LE is 0.2247. Therefore, fractional-
order system (7) has chaotic behavior. By numerical

calculation, we find that the four-scroll chaotic attractor is
emerged in fractional-order system (7). The four-scroll
chaotic attractor is shown in Figure 9.

According to Figure 9, four-scroll chaotic attractor is
emerged in fractional-order system (7). This result is just
as that of integer-order memristive chaotic system (4) with
L = 1 4.

According to Figure 8, the coexisting two kinds of three-
scroll chaotic attractors are obtained in fractional-order sys-
tem (7) and the two kinds of three-scroll chaotic attractors
do not exist in integer-order memristive chaotic system (4)
with L = 1 4. So, two kinds of three-scroll chaotic attractor
are newly produced.

According to Figure 7, the coexisting three-scroll and
four-scroll chaotic attractors are emerged in fractional-order
system (7). But, there is only a four-scroll chaotic attractor
in integer-order memristive chaotic system (4) with L = 1 4.
So, the three-scroll chaotic attractor is newly produced.

In summary, for integer-order memristive chaotic system
(4) with L = 1 4, there is only a four-scroll chaotic attractor.
However, for its fractional-order version, it can produce
two kinds of new three-scroll chaotic attractors and has coex-
isting three-scroll and four-scroll chaotic attractors. These
results in Section 3 are rarely reported in the previous
literature.

4. Conclusions

By a linear passive capacitorC, a linear passive inductor L, and
an active-charge-controlled memristor, an integer-order
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Figure 6: The Largest LE varies as fractional-order p.
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Figure 7: The coexisting three-scroll and four-scroll chaotic
attractors in system (7).

−4

4

−2

2

0

q
(t

)

−4 −2 0
IL(t)

2 4

(−2, 1, 1)

( −2, −1, −1)

Figure 8: The coexisting two kinds of three-scroll chaotic attractors
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memristive system is devised in this paper. The memristance
M q is defined as a fourth-degree polynomial function deter-
mined by charge, that is,M q = δq4 − β. By numerical calcu-
lation, the Lyapunov exponent spectrum of the proposed
memristor-based chaotic circuit with respect to linear passive
inductor L is yielded. The proposed integer-order memristive
system can generate two-scroll, three-scroll, and four-scroll
chaotic attractors for suitable linear passive inductor L.

Furthermore, based on the proposed integer-order mem-
ristive system with a four-scroll chaotic attractor for L = 1 4,
a fractional-order version memristive system is given. By
numerical calculation, we obtain the largest Lyapunov expo-
nent with respect to fractional-order p. This fractional-order
version memristive system can newly produce two kinds of
three-scroll chaotic attractors, and the coexisting three-
scroll and four-scroll chaotic attractors are obtained.
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The induced current produced by electromagnetic induction can adjust the membrane potential of neuron through the feedback of
a magnetic flux-controlled memristor. We adopt the numerical simulation method with the aim of investigating the synchronous
behavior in the neuronal system that is coupled by chemical and electrical synapses under electromagnetic induction. Within the
improved model, the effects of electromagnetic induction on neurons are described with additive memristive current on the
membrane variable, and the memristive current is dependent on the variation of magnetic flow. The simulation results show
that the two coupling modes play an important role in the synchronization of the system. By increasing the chemical synaptic
feedback gain, we observe a transition from mixed oscillatory to periodic state at a critical value. In addition, two Hopf
bifurcation points are found with the change of the external stimuli, and the state of neuron discharge is influenced by initial
values. Furthermore, there is a domain of coupling strength and feedback gain values, in which the two coupled neuron system
is synchronized and longer time lag is not conducive to the system synchronization.

1. Introduction

A neural system, which is made up of a large number of neu-
rons, is a complex information network. Different types of dis-
charge patterns can be switched under the control of external
stimulation or bifurcation parameter. In order to understand
the regulating function of the nervous system, many models
of neuronal electrical activity have been proposed. Commonly
used models include the FitzHugh-Naguma model [1],
Morris-Lecar neuron model [2], Hindmarsh-Rose model [3,
4], Nagumo-Sato neuron model [5], and Wilson-Cowan neu-
ron model [6]. These models that describe neuron dynamics
with a set of differential equations are almost derived from
the Hodgkin-Huxley [7] model or the simplified version.
Some results from biological experiments [8–10] can be
explained by theoretical neuron models, such as the Morris-
Lecar neuron model. In this model, the membrane potential
exhibits quiescent, spiking, or bursting state by changing the

external forced current [11]. Neurons do not work in isolation,
but they interact to affect the processing of information. There
are two forms of synaptic coupling found in the real nervous
system, namely, electrical synapse and chemical synapse. The
synchronization phenomena are a typical manifestation of
the rhythms of groupmovement; that is, all neurons in the sys-
tem have a certain connection at the same time or rhythm
[12–14]. Bazhenov et al. [15] designed a coupled linear chain
of Hindmarsh-Rose model neurons with reciprocal inhibition
between neighboring neurons that exhibited synchronous
oscillations. Zhang et al. [16] proposed a class of synchroni-
zation problems of nonlinear time-delay dynamic networks
with a nonuniform impulse effect. Burić et al. [17] studied
the synchronization of Hindmarsh-Rose neurons with a
time-delayed fast threshold modulation synapse. Xu et al.
[18] analyzed the synchronization behavior and mode selec-
tion in neural networks under the coupling of chemical or
electrical synapses. Yao et al. [19] investigated the influence of
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coupling strength, time delay, and network topology on syn-
chronization behavior in delay-coupled networks of chaotic
pendulums. Gokul and Kapitaniak [20] studied the synchrony
of coupling multistable systems which have hidden attractors
with eachother. In coupled oscillators or coupledneurons, syn-
chronization may occur because of the appropriate coupling
effect [21–24]. Interestingly, the stochastic and coherence reso-
nance [25–27] of the nervous system is induced by appropriate
noise intensity and external periodic stimulus. The synchroni-
zation of the coupling system is an interesting research filed. It
is challenging to analyze thedynamicmechanism causedby the
variation of the coupling parameters and modes of the system.
The synchronization phenomena in Hindmarsh-Rose (HR)
neurons that are connected by electrical coupling and chemical
coupling, moreover, complete synchronization, phase syn-
chrony, and antisynchrony of neurons are realized [28, 29].
The neural electrical activity has also been widely studied and
verified in the circuit [30–35]. For example, Vaidyanathan
et al. [36–38] designed electronic circuits to study the feasibility
of the 3D novel jerk chaotic system with hyperbolic sinu-
soidal nonlinearity. Conti and Turchetti [39] performed a
circuit to realize approximate identity neural network for the
analog synthesis nonlinear dynamical system. Pham et al.
[40] proved the existence of chaotic behavior in a three-
dimensional autonomous chaotic system with a circular equi-
librium by using OrCAD PSpice software and experimental.

It is necessary to study the effects of electromagnetic
induction on neuronal cells [41–44]. The changes of mem-
brane potential can induce electromagnetic induction
between neurons. As reviewed in [45, 46], the effects of elec-
tromagnetic radiation in Homo sapiens include electrical
activity of neurons, energy metabolism, genomic responses,
neurotransmitter balance, blood-brain barrier permeability,
cognitive function, sleep, brain tumors, and other encepha-
lopathy. Lu et al. [47–49] investigated the effects of high-
and low-frequency signal stimulus on neural activity under
electromagnetic radiation. According to Faraday’s law of
induction, the magnetic field is a result of fluctuations in
the action potential. That is, the distribution of electromag-
netic field both inside and outside neurons can be changed
by the fluctuation of the membrane potential. Therefore, a
new three-variable ML neuron model is established by intro-
ducing an additional variable as magnetic flux which adjusts
the membrane potential via a memristor [50, 51].

The following study is based on the proposed Morris-
Lecar neuron model with consideration of magnetic flux, in
which the dynamic characteristics of the neurons are studied
by using bifurcation diagrams and time series of the discharge.
A preliminary synchronization analysis was conducted in the
excitatory and inhibitory neural system. The study revealed
that excitatory and inhibitory neurons can be synchronized
under the appropriate coupling strength. The synchronization
behavior of the system is also affected by the time lag when the
coupling strength and the feedback gain are maintained.

2. Model and Scheme

The Morris-Lecar (ML) equations were originally developed
as a mathematical model of muscle fiber. For the neuron,

the effect of electromagnetic induction should be considered
during the discharge process of the membrane potential. The
electric activity will change because of the fluctuation of elec-
tromagnetic induction and ion concentration in the process
of ion exchange. We modify the basic ML model, including
the impact of the electromagnetic radiation. The improved
ML neuronal model [44] contains three variables, and the
dynamic properties are described as follows:

c
dV
dt

= gCam∞ V VCa −V + gKω VK − V + gL VL −V

− kρ φ V + Iext,
dω
dt

= λω V ω∞ V − ω ,

dφ
dt

= k1V − k2φ,

1

with

m∞ V = 0 5 + 0 5 tanh V − V1
V2

,

ω∞ V = 0 5 + 0 5 tanh V − V3
V4

,

λ∞ V = ϕ cosh V −V3
2V4

,

2

where V and ω denote the variables for the membrane poten-
tial (mV) and gate channel, respectively. Parameter c is the
capacitance of the membrane (μF/cm2). The gCa, gK, and
gL denote the maximum conductance (mS) of calcium ion,
potassium ion, and leak ion, respectively. VCa, VK, and VL
are the reversal potential (mV) corresponding to these chan-
nels. m∞ V and ω∞ V define the value of the opening
probability for the calcium ion channel and the potassium
ion channel in the steady state, where V1, V2, V3, and V4
are the parameters of the steady system, and λω V defines
the rate constant for the opening of potassium ion channel.
The parameter ϕ is marked as the variation between the fast
and the slow scales of neurons.

As described in [52, 53], the variations of the intercellular
and extracellular ion concentration can induce electromag-
netic induction, which can be expressed by magnetic flux
according to Faraday’s law of electromagnetic induction.
The induced current produced by electromagnetic induction
can adjust the membrane potential by the feedback of the
memristor. The memristor in model (1) can be divided into
two ways: the charge controlled and the magnetic controlled.
For the potassium ion-channel memristor, the second term
in the right of (1) can be rewritten as iK =GK ω vK with vK
⇔V −VK and GK⇔gKω, and GK is the potassium memduc-
tance function. The fourth term in the right of (1) can be
rewritten as iφ =Gφ φ vφ with vφ⇔V and Gφ⇔kρ φ , which
defines another first-order memristor, and the conductance
value of the memristor depends on the input current. The
expression of ρ φ = α + 3βφ2 denotes the memory conduc-
tance of a magnetic flux-controlled memristor [54], it is
used to calculate the effect of feedback regulation on the
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membrane potential when the magnetic flux is changed,
and α and β are fixed parameters. Therefore, as in [54],
the induced current and electromagnetic induction can be
described by

i = dq φ

dt
= dq φ

dφ
dφ
dt

= ρ φ
dφ
dt

= dφ
dt

α + 3βφ2 ,  dφ
dt

= kV

3

The variable i′ represents induction current. The term −
kρ φ V represents the inhibitory modulation of membrane
potential, and it describes the induced current induced by
electromagnetic induction. The parameter k is the induction
coefficient, and its value depends mainly on the medium
itself. Iext is the external forcing current. The terms k1x and
k2φ in the (1) mean the influence of membrane potential
on magnetic flux and leakage of magnetic flux, respectively.

For the analysis of the possibility and stability of the syn-
chronized dynamics between two neurons under bidirec-
tional coupling, the dynamic equations are given by

c
dVα,β
dt

= gCam∞ Vα,β VCa −Vα,β + gKωα,β VK −Vα,β

+ gL VL −Vα,β − kρ φα,β Vα,β + Iext + Isyn

+ C Vα,β − Vβ,α ,
dωα,β
dt

= λω Vα,β ω∞ Vα,β − ωα,β ,

dφα,β
dt

= k1Vα,β − k2φα,β,

4

where the subscripts α and β are a pair of coupled ML neu-
rons under electromagnetic radiation. C denotes coupling
intensity between adjacent neurons.

In order to simulate the chemical synapse feedback of
neurons, we shall use the so-called fast threshold modulation
scheme proposed by Somers and Kopell [55] and often used
by others, for example, [56, 57]. This chemically feedback
form, which clearly combines the time lag of the synapse, is
provided by the following functions:

Isyn = −
Hsyn Vαβ −V syn

1 + exp ‐σ Vαβ t − τ − θ
5

The variable parameterHsyn is the feedback gain at time t
with itself connected at time t − τ. The symbol τ indicates the
time lag (ms) of the signal propagation.C is coupling strength
between two neurons. V syn represents the synaptic reversal
potential (mV), which depends on the presynaptic neurons
and receiver. The chemical coupling is characterized by the
difference between the synaptic reversal potential and the
synaptic potential. A positive or negative sign of the difference
corresponds to an excitatory or inhibitory effect of the syn-
apse. If the synapsis is excitatory, V syn = 15 mV, and if the
synapsis is inhibitory, V syn = −10 mV. The parameter θ is a
synaptic threshold. Considering that the neuron membrane

potential value of the improved ML model is between
−17mV and 15mV, θ = 4 mV is selected to ensure that
the spike of the V is over the threshold, and the quiescent
state of the V is less than the threshold. That is, the mem-
brane potential of the presynaptic neuron is more than θ,
and it can play a role in the postsynaptic neuron [58, 59].
σ is the ratio constant to the start of excitement or inhibi-
tion. In this paper, we focus on the collective behavior of
the two coupled neuron system driven by the excitatory
and inhibitory autapse, and the schematic diagram is shown
in Figure 1. Parameters of the improved ML neuronal
model are given as c=20μF, VCa =120mV, VK =−84mV,
VL =−60mV, gCa =4 mS, gK =8mS, gL =2mS, V1 =
−1.2mV, V2 =18mV, V3 =12mV, V4 =17.4mV, ϕ=0. 067,
k1 =0.1, k2 =0.01, and σ=−1.

To characterize the synchronization in the system of
coupled spiking neurons, a method of calculating the error
function is introduced in the following [24]:

e = Vα −Vβ
2 + ωα − ωβ

2 + φα − φβ

2
6

Equation (6) indicates that the lower the value of e corre-
sponds with the better synchronization in the system.

3. Results and Discussion

In this section, first of all, the bifurcation is theoretically ana-
lyzed to reveal the dynamic mechanism of the discharge
mode in the improved model (1). Then the fourth-order
Runge-Kutta method is used to calculate the improved ML
neuronal model, the step of time h is selected as 0.01, and
the transient period for calculating is 5000 time units.

Let

dV
dt

= f V , ω, φ ,

dω
dt

= g V , ω, φ ,

dφ
dt

= h V , ω, φ ,

7

and (Vs, ωs, φs) is the equilibrium point; that is,

f Vs, ωs, φs = g Vs, ωs, φs = h Vs, ωs, φs = 0 8

If the parameter k=0.1, the system (8) can be written in
the form

4m∞ Vs 120 − Vs + 8ωs −84 − Vs + 2 −60 − Vs − 0 1 0 1
+ 0 03φs

2 Vs + Iext = 0,

ωs = ω∞ = 0 5 + 0 5 tanh V s + 12
17 4 ,

φs = 10Vs,
9
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and thus,

2 1 + tanh Vs + 1 2
18 − 4 1 + tanh Vs − 12

17 4 − 2 60 +Vs

− 0 1Vs 0 1 + 3V2
s + Iext = 0

10

Obviously, the expression of the equilibrium point
(Vs, ωs, φs) can be obtained by (10). Then we analyze the
stability of the equilibrium point with Iext as the bifurca-
tion parameter. It is noted that the stability of the equilib-
rium point is determined by the eigenvalue of its Jacob
matrix; that is, when all the eigenvalues are a negative real
part, then the equilibrium point is stable; otherwise, it may
be marginally stable or unstable [60]. The appearance of a
pair of pure imaginary eigenvalues signifies Hopf bifurca-
tion [61].

At the equilibrium point (V s, ωs, φs), the linearization
Jacobi matrix of the improved model is that

Therefore, the characteristic determinant of this system
at the equilibrium point is

where

∂m∞
∂V

= 19
36 −

1
2 tanh2 Vs + 1 2

18 ,

∂ω∞
∂V

= 46
87 −

1
2 tanh2 Vs − 12

17 4 ,

∂ω∞
∂V

= 46
87 −

1
2 tanh2 Vs − 12

17 4

13

If the Jacobi matrix has one eigenvalue of the negative
real part and two zero real parts at a critical value of the
bifurcation parameter, then we usually say that a Hopf
bifurcation occurs [61]. According to the relationship
between λ and Iext, we calculate the branch of the equilibrium
point which undergoes two Hopf bifurcations at parameter
Iext1 = −27 99 and Iext2 = 23 79. Obviously, they correspond
to the bifurcation points HB in Figure 2(b). Similarly, the

corresponding bifurcation points can be obtained by chang-
ing the parameter k.

The results of the bifurcation analysis for the system with
the electromagnetic effect described by (1) are numerically
simulated. In the bifurcation analysis, the influence of the
external forcing current Iext on the discharge behavior of
the neuron under different electromagnetic effects known
as induction coefficient k is investigated. The system will have
the process of “resting-exciting-silent” by increasing the
external forcing current. In Figure 2, several typical bifurca-
tion diagrams for the different external forcing currents,
without (k = 0) and with (k ≠ 0) the electromagnetic effects,
are plotted, respectively.

Figure 2 shows the bifurcation with Iext as the bifurcation
parameter for six different values of the induction coefficient.
The equilibrium point of the system has undergone five
changes without electromagnetic radiation, as shown in
Figure 2(a). In the beginning, the system has only a stable
equilibrium point, and the action potential of the neuron will

J Vs, ωs, φs =

1
c

−4m∞Vs + 480 − 4Vs
∂m∞
∂V

− 8ωs − 2 01 − 0 003φ2
s

8
c
84 + Vs −0 006Vsφs

c

ω∞ − ωs
∂λ∞
∂V

+ λ∞
∂m∞
∂V

−λ∞ 0

0 1 0 0 01

11

J Vs, ωs, φs − λI =

1
c

−4m∞Vs + 480 − 4Vs
∂m∞
∂V

− 8ωs − 2 01 − 0 003φ2
s − λ −

8
c
84 +Vs −0 006Vsφs

c

ω∞ − ωs
∂λ∞
∂V

+ λ∞
∂m∞
∂V

−λ∞ − λ 0

0 1 0 0 01 − λ

= 0,

12

Vsyn = 15

Neuron (𝛼)
c

Neuron (𝛽)

Vsyn = −10

Figure 1: A schematic diagram of the coupled neuron system.

4 Complexity



eventually converge to a fixed value. When Iext >−9.93μA,
there exist three equilibrium points, of which two are unsta-
ble, and the action potential of the neuron will still converge
to a fixed value. As the external current increases, the excit-
ability of neurons in the saddle node bifurcation threshold
is obtained, the threshold is Iext =40μA, and at this time,
the membrane potential of the neuron is periodic discharge.
On further increased Iext, bistable state can be generated at
Iext =70.4μA, which corresponds to a subcritical Hopf bifur-
cation point. The limit cycle vanishes Iext =82.5μA, and the
system has only a stable state. The properties and positions
of the bifurcation points have changed thoroughly, consider-
ing the neuron system after the electromagnetic effect, and
the results are found in Figures 2(b)–2(f). There are two
Hopf bifurcation points of the ML neuron system with the
electromagnetic effect. The results in Figure 3(b) confirm the
Hopf bifurcation points at Iext =−28.48μA and 23.55μA. As
the induction coefficient k increases, a similar phenomenon
is observed and the corresponding bifurcations are summa-
rized in Table 1.

It can be noted from Table 1 that parameters describe the
interaction between membrane potential and magnetic flux
which is further increased to k=0.6, the threshold of excit-
ability is increased to a higher value corresponding to Iext =
−11.39μA (see Figure 1 and Table 1). However, the position
of the second bifurcation point was reduced from 23.55mV

to 9.0mV. That is to say, with the increase of the induction
coefficient k, the region of the limit cycle in the system is
gradually compressed. It should be pointed out that the sys-
tem has a Hopf bifurcation point HOPF1 with a negative
value of parameter Iext (see Table 1), which will not be con-
sidered in the following text since it loses the biophysical
meaning. At the same time, in the numerical simulation, we
find that when Iext >HOPF2, the selection of the initial value
of the system is as important as the external current. Based
on the analysis of the bifurcation diagram of Vmax and Vmin
for the improved ML neuronal model, the external forcing
currents Iext =40μA, Iext =50μA, Iext =60μA, Iext =70μA,
and Iext =80μA are chosen to impose on the neuron. The
type of membrane potential discharge at different initial
values is calculated in Figure 3.

The results in Figure 3 show that the initial values of V0
and ω0 have a great influence on the discharge of neurons
in the improvedMLmodel. The oscillating areas of the mem-
brane potential are reduced by the increase of the external
stimulation current; that is, the red area in the picture
becomes smaller. The oscillating region of the membrane
potential is found to be banded, which indicates the changes
in the initial value of φ0 with little effects on the discharge of
neurons as shown in Figure 3, a2–e2 and a3–e3.

The results in Figure 4 show that the initial value region
that produces the oscillations of the membrane potential is
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reduced by the increase of the external stimulation current.
Most interesting, the study found that the selection of the ini-
tial value will also be influenced by the induction coefficient k
under the same external stimulus current. This discovery is in
accordance with the bifurcation diagram of Figure 2. There-
fore, it is very important to choose the appropriate initial
value with the different induction coefficients k. According
to the initial value area shown in Figures 3 and 4, sampled
time series for membrane potential and phase portraits are
plotted in Figure 5.

The improved ML neural model can exhibit several kinds
of oscillations. When the initial value is determined, the elec-
tric activity depends on the external forcing current. The
change of electrical activity between the quiescent state and
the spiking state can be observed by selecting different exter-
nal forcing currents. The phase portraits of the external forc-
ing currents (μA) are chosen as 0, 10, 20, 30, 40, and 80 in
Figure 5(a). And Figures 5(b) and 5(c) show the time series
of the membrane potential for Iext =0, 40, and 80.

The numerical results in Figure 5(a) show that the
regions of limit cycles become larger with increasing the
external forcing current. There exist some thresholds in the
system, which determines the conversion of the discharge

mode of the neuron membrane potential. In the absence of
external excitation, the neuron can still be discharged under
the electromagnetic effect, as shown by the blue curve in
Figure 5(b). With increasing the external forcing current,
the amplitude of the neuron membrane potential will
increase gradually; in other words, the amplitude of the peri-
odic oscillation is related to the area size of the limit cycle.
When the external forcing current is increased to a certain
threshold, the system will change from the oscillating state
to the resting state, as depicted in Figure 5(c).

Meanwhile, we studied the collective behavior of the two
neurons driven by the excitatory autapse and inhibitory
autapse in the case of electric coupling. The initial values
are V0 =100mV, ω0 =−1.5μA, and φ0 =0.1, and the external
forcing current Iext =40μA is chosen for its simplicity; the
induction coefficient is k = 0 1. At first, the inter-spike inter-
val of the β-neuron membrane potential (as in ISI represen-
tation) at different feedback gain Hsyn is calculated, and the
results are plotted in Figures 6 and 7.

Presented results show clearly that feedback gain Hsyn as
well as coupling strengths plays an important role in the
modes of electrical activities. When the value of Hsyn is
smaller, the rich discharge modes are observed in Figure 6.
The value of the bifurcation point is also affected by the cou-
pling intensity. It is found that the mode of β-neuron dis-
charge does not exhibit periodicity, unless larger feedback
gain could be applied. In essence, there may be two types of
autapse in the system, and the increase ofHsyn makes the dif-
ference in the discharge of the two neurons increasing; that is,
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Figure 3: The regional distribution diagram of resting state and oscillating state under different initial values, for (a1–e1) φ0 = 0 1 and
Iext = 40, 50, 60, 70, and 80; for (a2–e2) V0 = 80 and Iext = 40, 50, 60, 70, and 80; and for (a3–e3) ω0 = −1 5 and Iext = 40, 50, 60, 70, and 80.

Table 1: Summary of the type and position of bifurcation point.

k 0.1 0.2 0.4 0.5 0.6

Iext (μA)
HOPF1 −28.48 −20.75 −13.74 −12.27 −11.39
HOPF2 23.55 17.40 10.97 10.17 9.0
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the inhibitory neurons tend to be quiescent and hence cannot
affect the excitatory neurons. However, it can be observed
that the modes of electrical activities depend significantly
on the values of the synaptic feedback gain.

Within a certain coupling strength, if the error e tends to
zero with the time increased, the coupled neurons are fully
synchronized. According to the analysis of the results of
Figure 6, the sampled time series for membrane potential
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and phase portraits of the coupling strength C =0.5 are calcu-
lated with different feedback gains Hsyn; the results are plot-
ted in Figure 8.

The phase portraits and time series of the membrane
potential of two coupled neurons are illustrated in Figure 8.
The limit cycle is shown in Figure 8(a1), indicating that the
β-neuron is periodic discharge. The region of the two limit
cycles is different in Figure 8, (a2), and the value of the V is
within the range of −20mV to 20mV. The phase portrait of
(Vβ, Vα) is located near the corner line of the first quadrant,
which means the occurrence of approximate synchroniza-
tion. The error e (blue line) is found to exhibit periodic

oscillations in Figure 8, (a3). Interestingly, when the coupling
strength C is further increased, the phase portrait of (Vβ, Vα)
tends to have a straight line, and the results are shown in
Figure 9.

The results in Figure 9 confirmed that the phase portrait
of (Vβ, Vα) coincides with a straight line, which is located on
the angle bisector of the first quadrant. With appropriate
time lag and feedback gain, the two coupled neuron system
will synchronize with the increase of the coupling strength
between neurons. For the improved model in this paper,
the numerical results show that phase synchrony can be
achieved by selecting the appropriate coupling intensity of
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Figure 6: Bifurcation diagram associated with feedback gainHsyn for different coupling strengths. The time lag τ = 50, (a) C = 0 1; (b) C = 0 5;
and (c) C = 1.
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the two neurons with electromagnetic radiation. The effect of
time lag in autapse should also be considered; for example,
the time lag is increased to 100ms, and some results are
found in Figures 7 and 10.

Results presented in Figure 7 reveal that the oscillatory
pattern is largely influenced by the synaptic delay. For suit-
ably long values of τ, a complex oscillatory pattern can be
observed. Interestingly, however, if the Hsyn is sufficiently
high, we can observe the emergence of a periodic firing,
which implies that there is a transition from chaos to periodic
discharge in the system. Theoretically, under sufficiently long
synaptic delay condition, neurons have enough time to fire
more than once during a whole periodic cycle, before the

synaptic currents caused by the first synchronous spiking
within the same periodic cycle start to affect their firing [62].

It is found in Figure 10 that spiking and bursting dis-
charge behaviors of β-neuron reappear depending on the
gain and delay of the autapse. The error e is observed to
increase obviously through the time lag from 50ms to
100ms. But what is more interesting is that the increment
of τ makes the amplitude of the membrane potential of α-
neuron (excitatory) decrease in Figure 10, (a3). This trend
may be that the role of the autapse is suppressed in the appro-
priate feedback gain and time lag. Therefore, the time lag
plays a crucial role in the dynamics of the coupled system.
Numerical studies on the synchronization of the two coupled
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neuron system are affected with time lag, and the results are
shown in Figure 11.

The trajectories when Hsyn =0.03 indicate that the sys-
tem of the two coupled neuron system is in the oscillation
in Figure 11. When the time lag is 0.1, the membrane
potential error e of the neurons is smaller. Although the
electrical coupling plays a dominant role in the synchroni-
zation of the system, the feedback gain from the synapse
and time lag are equally important. The increment of time
lag is not conducive to the synchronization of the coupling
neuron system. This conclusion is consistent with the result
of Figure 10.

4. Conclusions

In this paper, the dynamics of the improved Morris-Lecar
neuron model under electromagnetic induction were investi-
gated using bifurcation diagrams and time series of dis-
charge; phase portraits of the neuron under different
conditions are investigated in a numerical manner as well.
By analyzing the simple numerical simulation of the
improved model, the basic dynamic behaviors are obtained
by introducing an external forcing current. In the case of
the electromagnetic induction, the mechanism of neuron fir-
ing has been changed. That is, two Hopf bifurcation points
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are found with changing the external forcing current.
Comparing these results with a previous work [33, 58], the
bifurcation diagram has an obvious difference due to the con-
sideration of electromagnetic induction based on the ML
neural model. In fact, the fluctuation in membrane potential
and signal propagation in the neuronal system can generate
an induced electrical field and additive current in the media
due to electromagnetic induction. As a result, the membrane
potential of a neuron can be adjusted slightly by induction
field and induced current associated with the variation of
magnetic flux. By analyzing the interspike interval series of
neural firing, we find that the improved model can generate
electrical activity with multiple modes. These results are con-
sistent with the observation observed in the experiment [8].
Meanwhile, the preliminary synchronization analysis of a
system of excitatory and inhibitory neurons was conducted.
In this aspect, it was unveiled that the neurons in the system
can be synchronized by selecting an appropriate coupling
strength. A longer time lag is not conducive to the system
synchronization, and the higher the feedback gain Hsyn and
the longer the time lag τ are, the more obvious the electrical
mode changes in the two coupled neuron system; this con-
clusion is in accordance with previous experiments [63]. Syn-
chronization phenomena are associated with either brain
functions [64] or pathological brain states in the neural sys-
tem. For example, Stam and Bruin used synchronization like-
lihood to characterize statistical interdependencies between
EEG and MEG (magneto encephalography) signals in early
and mild Alzheimer’s disease [65, 66]. Rubchinsky et al.
[67] presented extensive experimental documentation of
the relevance of synchronized oscillations to motor behavior
in Parkinson’s disease, and they confirmed that the real path-
ological state is not completely synchronous but showed a
complex weak synchronization and highly intermittent
dynamics. These results could provide potential theoretical
supports for the treatment of neurological diseases.
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Optimization problems pervade essentially every scientific discipline and industry. A common form requires identifying a solution
satisfying the maximum number among a set of many conflicting constraints. Often, these problems are particularly difficult to
solve, requiring resources that grow exponentially with the size of the problem. Over the past decades, research has focused on
developing heuristic approaches that attempt to find an approximation to the solution. However, despite numerous research
efforts, in many cases even approximations to the optimal solution are hard to find, as the computational time for further
refining a candidate solution also grows exponentially with input size. In this paper, we show a noncombinatorial approach to
hard optimization problems that achieves an exponential speed-up and finds better approximations than the current state of the
art. First, we map the optimization problem into a Boolean circuit made of specially designed, self-organizing logic gates, which
can be built with (nonquantum) electronic elements with memory. The equilibrium points of the circuit represent the
approximation to the problem at hand. Then, we solve its associated nonlinear ordinary differential equations numerically,
towards the equilibrium points. We demonstrate this exponential gain by comparing a sequential MATLAB implementation of
our solver with the winners of the 2016 Max-SAT competition on a variety of hard optimization instances. We show empirical
evidence that our solver scales linearly with the size of the problem, both in time and memory, and argue that this property
derives from the collective behavior of the simulated physical circuit. Our approach can be applied to other types of optimization
problems, and the results presented here have far-reaching consequences in many fields.

1. Introduction

In real-life applications, it is common to encounter problems
where one needs to find the best solution within a vast set of
possible solutions. These optimization problems are routinely
faced in many commercial segments, including transpor-
tation, goods delivery, software packages or hardware
upgrades, network traffic and congestion management,
and circuit design, to name just a few [1, 2]. Many of these
problems can be easily mapped into combinatorial optimiza-
tion problems, namely, they can be written as Boolean for-
mulas with many constraints (clauses) among different
variables (either negated or not, i.e., literals) with the con-
straints themselves related by some logical proposition [1].

It is typical to write the Boolean formulas as conjunctions
(the logical ANDs, also represented by the symbol ∧) of
disjunctions (the logical ORs, represented by the symbol ∨),
in the so called conjunctive normal form (CNF). The CNF
representation is universal in that any Boolean formula can
be written in this form [3].

A simple example of a CNF formula ϕ x is

ϕ x = ¬x1∨x2 ∧ ¬x2∨¬x3∨x4 ∧ x1∨¬x2∨x3∨¬x4
∧ ¬x1∨x4 ∧ x1∨x2∨¬x4 ,

1

in which we have four variables, xj, with j = 1, 2, 3, 4, five
clauses, and fourteen literals (the symbol ¬ indicates
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negation). The problem is then to find an assignment sat-
isfying the maximum number of clauses, that is, in which
as many clauses as possible have at least one literal that is
true. Such a clause is then said to be satisfied, otherwise
it is unsatisfied [3], and the problem itself is known as
Max-SAT (maximum satisfiability).

A Max-SAT problem whose CNF representation has
exactly k literals k ≥ 2 per clause is called Max-EkSAT.
Max-EkSAT is a ubiquitous optimization problem with
widespread industrial applications. We will focus on its
solution as a test bed in the main text and refer the reader
to the appendix where we have applied our approach to a
wide range of optimization problems, including weighted
Max-SAT, [4] for its application to machine learning and
[5] for the solution of the worst cases of a satisfiable problem
known as the subset sum.

Max-EkSAT lies in the NP-hard class, meaning that
any problem in NP can be reduced to it in polynomial
time [1]. More informally, we expect that worst case
instances will require resources which grow (at least)
exponentially in the input size to solve, and additionally,
problems in this class generally also require exponential
resources in order to check a proposed solution. Due
to this, complete algorithms that attempt to solve Max-
EkSAT instances quickly become infeasible for large prob-
lems. Much research has instead focused on incomplete
solvers that perform a stochastic local search, by generat-
ing an initial assignment and iteratively improving upon
it. This approach has proven effective at approximating
and sometimes solving large instances of SAT and other
problems. For instance, in recent Max-SAT competitions
[6], incomplete solvers outpace complete solvers by two
orders of magnitude on random and crafted benchmarks.
However, they too suffer from the same exponential time
dependence as complete solvers for sufficiently large or hard
instances [7–9].

It has further been shown, using probabilistically
checkable proofs [10], that many classes of combinatorial
optimization problems (including the Max-EkSAT) have
an inapproximability gap. This means that no algorithm
can overcome, in polynomial time, a fraction of the opti-
mal solution, unless NP=P [10, 11]. In other words, for
heuristics to improve on their approximation beyond this
limit would require exponentially increasing time. For
example, for the Max-E3SAT, it has been proved that if
NP ≠ P, then there is no algorithm that can give an
approximation better than 7/8 of the optimal number of
satisfied clauses [11].

Despite these difficulties, it is often necessary to solve or
approximate optimization problems such as these as
quickly as possible, and the quality of the approximation
can have direct outcomes on the cost to businesses, the
speed of our internet connections, or the efficiency of our
shipping, to name a few important cases. In what follows,
we outline a novel approach to generating approximations
to Max-EkSAT and demonstrate its efficacy on a variety
of instances both generated to provide the worst cases within
the inapproximability gap and drawn from Max-SAT
competitions [6].

2. The Memcomputing Approach

In this work, we consider a radically different noncombi-
natorial approach to hard optimization problems. Our
approach is based on the simulation of digital memcomputing
machines (DMMs) [5, 12, 13]. A brief introduction of these
machines is provided in the appendix. The reader inter-
ested in a more in-depth discussion is urged to look at
the extensive papers [5, 12]. The practical realization of
DMMs can be accomplished using standard circuit elements
and those with memory (time nonlocality, hence the name
“memcomputing” [14]).

Time nonlocality allows us to build logic gates that self-
organize into their logical proposition, irrespective of whether
the signal comes from the traditional input or output [12].
We call them self-organizing logic gates (SOLGs), and circuits
built out of them, self-organizing logic circuits (SOLCs). Our
approach then follows these steps.

(1) We first construct the Boolean circuit that repre-
sents the problem at hand (e.g., the Max-EkSAT
of Figure 1).

(2) We replace the traditional (unidirectional) Boolean
gates of this Boolean circuit with SOLGs.

(3) We feed the appropriate terminals with the required
output of the problem (e.g., the logical 1 if we are
interested in checking its satisfiability).

(4) Finally, the electronic circuit built out of these SOLGs
can be described by nonlinear ordinary differential
equations, which can be solved to find the equilib-
rium (steady-state) points. These equilibria represent
the approximation to the optimization problem [12].

The procedure of how we transform a combinatorial
optimization problem into an electronic circuit as well as a
sketch of its numerical solution is discussed further in the
appendix (see also [12]). The important point to note is that
SOLGs and SOLCs manifest long-range order due to the
presence of instantons [15]. Instantons connect topologically
inequivalent critical points in the phase space, hence generat-
ing nonlocality in the system. This translates into a collective
dynamical behavior that allows gates at an arbitrary distance
to correlate very efficiently so that, when a terminal of one
gate needs to change its truth value to satisfy that gate’s
logical proposition, a terminal at any other gate may pro-
vide the correct truth assignment while satisfying its own
logical proposition [5]. As we will explain later, this is the
key feature that allows these memcomputing machines to
solve complex problems efficiently, without the need to
explore a vast space of possibilities, as standard combinato-
rial approaches would do.

3. Results and Discussion

This radical change of perspective manifests its power
already in comparing simulations of DMMs with those
performed by the winners of the 2016 Max-SAT competition
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[6] on the competition benchmarks. When run on similar
hardware, our solver, which we named Falcon [12, 16, 17],
performs orders of magnitude faster than the winners in
the incomplete track of the competition, and in some cases
it finds the solution when the best solvers did not.

Since a direct comparison is difficult across hardware and
implementations (our solver is written in MATLAB which
is notoriously inefficient compared with the compiled lan-
guages of the competition solvers). Nevertheless, these tests
already provide strong indication of the advantages of our
approach using digital memcomputing machines over tradi-
tional combinatorial optimization.

However, in order to form a direct comparison and
more clearly show the exponential speed-up of our
approach, we have crafted three Max-SAT problems with
increasing levels of difficulty. We then compared our
memcomputing solver against two of the best solvers of
the 2016 Max-SAT competition (CCLS [18] and DeciLS
[19]—a new version of CnC-LS—kindly provided by
their developers) which are specifically designed to solve
these types of problems, but employing very different
solution strategies.

Random 3-SAT instances may be generated by selecting 3
variables out of n, joining them in a 3-SAT clause where each
is randomly negated and then repeating this for the desired
number of clausesM. These instances are known to undergo
a SAT/UNSAT transition when the ratio of clauses to vari-
ables, M/n = ρ (hereafter the “density”), crosses the critical
value ρc ≈ 4 3 [20, 21]. Exponential time is required to dem-
onstrate that an instance is UNSAT [22] and thus must also
be required to solve the corresponding Max-SAT, offering a
simple way to generate benchmarks.

However, the difficulty of computing approximations for
these instances varies widely. This can be partially attributed

to the fluctuations in variable occurrences and their nega-
tions [23] leading to “fields” which point towards the optima.
More balanced instances may be produced by starting with a
Random-XORSAT instance (also called hyperSAT [24]), that
is, a set of Boolean formulas defined by the XOR of Boolean
variables (the XOR symbol is ⊕ ) and converting it to a
Max-SAT instance.

Each XORSAT clause may be converted to a block of four
SAT clauses, for example,

x ⊕ y ⊕ z = 1→ x∨y∨z ∧ x∨¬y∨¬z ∧ ¬x∨¬y∨z ∧ ¬x∨y∨¬z ,
2

in which a variable and its negation appear symmetrically.
The special structure of XORSAT gives rise to a global algo-
rithm when the instance is satisfiable, allowing for a solution
in polynomial time using Gaussian elimination [24]. How-
ever, when unsatisfiable, occurring for ρ > 4 ⋅ 0 918 ≈ 3 7, this
same structure makes these problems very difficult for local
search solvers [22, 25]. In addition, the choice of instances
out of XORSAT clauses makes them particularly difficult also
for algorithms based on message passing [26].

A basic understanding of this difficulty can be obtained
by considering that changing a variable assignment affects
positively (namely, contributes a true literal to) the same
number of clauses as those affected negatively (where the
literal is false), because of the balanced occurences of the
variables. Therefore, for any combinatorial approach, when
a certain amount of satisfied clauses is reached, any further
improvement requires many simultaneous variable flips,
which is a nonlocal type of assignment. In other words, the
distance between two assignments at successive approxima-
tions becomes of the same order of the input length ∣x∣. This
means that going from an assignment x to a better one y, if
they have a distance d x, y =∑ j xj − yj

2 =O x , would

l4l1 l2

Boolean circuit representation of Max-SAT

CNF formula
(¬x1 < <

< x2 )  (¬ x2  ¬ x3 < < < < < < <x4)  ( x1 x2 x3 x4)  (¬ x1 x4)  (x 1 x2¬   ¬   ¬ x4)

l3 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14

x2
x1

x3

x4Boolean circuit

Multiterminal
OR gate

NOT
gate

< < <

Figure 1: Example of the mapping between a Boolean satisfiability formula in conjunctive normal form and a Boolean circuit made of
multiterminal OR and NOT gates. Each clause of the SAT formula is mapped into an OR with as many terminals as the literals in the
clause (the satisfiability of this multiterminal OR requires that at least one terminal has a truth value of 1). The global optimum of the
SAT formula, that is, the maximum number of satisfied clauses, corresponds to the maximum number of OR gates with output one. This
Boolean circuit is then transformed into a self-organizing logic circuit by substituting each standard Boolean gate with a self-organizing
logic gate [12], and each OR output is fed with a DC voltage generator representing the logic value of 1.
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require checking O 2d x,y variable flips, which is the num-
ber of configurations that is exponential with respect to the
distance d x, y (the actual calculation requires the enumera-
tion of all possible flips of 1, 2,… , d x, y literals because the
distance d x, y is not known a priori. Hence, the actual

number of flips is ∑d x,y
k=0

∣x∣
k ≥ 2d x,y ).

While more difficult, these instances also display some
variation in resolution time. In order to obtain instances of
more predictable difficulty, we impose a further constraint
requiring all variables to appear the same number of times
(or as near as possible while remaining consistent with the
number of clauses M = ρN), that is, the variable occurrences
are distributed as a δ-function. This variant is harder than the
previous one because of the additional balance induced by
the variable distribution, and our results indicate that they
display much lower variability in their difficulty.

In the following, we will call “random-Max-E3SAT” a
Max-E3SAT completely generated at random. This will
be used as an “easy” problem to test the performance of
all solvers. We refer to “hyper-Max-E3SAT” as the Max-
E3SAT generated from a random Max-E3XOR and finally

to “delta-Max-E3SAT” as a problem generated by the Max-
E3XOR with δ-function distribution of variables.

As it is evident in Figure 2, while the balanced structure of
Max-XORSAT poses a challenge to local search algorithms,
our memcomputing solver easily overcomes these limits
because, due to the collective (instantonic) behavior of the
circuit, the dynamics evolve towards deep minima very close
to the global optimum (see also the appendix). The reason is
that, as already anticipated, the collective state of the machine
allows simultaneous, nonlocal change of literals belonging to
gates arbitrarily far from each other [15]. This change is
consistent with the physics and the topology of the memcom-
puting circuit that naturally drive the system towards the
maximum number of satisfied SOLGs, without recourse to
any combinatorial selection scheme.

The optimum for all problems can be estimated using an
ensemble of small instances for which it is easier to find a
fairly good approximation. For example, instances of about
300 variables and density (clauses/variables) of ρ = 5 provide
a good indication of the global optimum in terms of percent-
age of unsatisfied clauses. We found that for the random-
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Figure 2: Simulation time comparison between incomplete solvers CCLS and DeciLS against our solver, Falcon, for the balanced and
constrained delta-Max-E3SAT. A threshold of 1 5% of unsatisfiable clauses has been set. We have then tested how long CCLS, DeciLS,
and our solver Falcon take to overcome this limit with increasing number of variables. All calculations have been performed on a single
thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads. The local solvers require an exponentially increasing time
to reach that limit already visible at a few hundred variables for the CCLS and a few thousands for the DeciLS. Our solver has been tested
up to 2 × 106 variables and required order of 104 seconds for that maximum number of variables. We show also the estimate of time that
would have been required these local solvers to run up to 2 × 106 variables. The estimated time (dashed and dashed-dotted lines) has been
calculated using a linear regression of the log10 time versus the number of variables.
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Max-E3SAT, the optimum is expected at about 0 4% of
unsatisfied clauses, while for both the hyper- and delta-
Max-E3SAT, this value is about 1 3%. The difference between
these values is not surprising. As mentioned previously, it
is well known that for the latter two problems the transi-
tion from satisfiable to unsatisfiable is around a density of
ρ ≈ 3 7, while for random-Max-E3SAT, it is around ρ ≈ 4 3.
We have then chosen the same density of ρ = 5 for the
random-, hyper-, and delta-Max-E3SAT.

In order to prove the superior efficiency of our noncom-
binatorial approach for this class of hard problems, we have
evaluated their scaling properties up to 2 × 106 variables
(while keeping the density constant). We recall that the sim-
ulations of DMMs have been done using a MATLAB code,
while CCLS and DeciLS are compiled codes. Therefore, the
level of optimization is expected to be higher in the compiled
codes, making a direct performance comparison harder,
although for large problem sizes, our solver has much better
performance compared to CCLS and DeciLS. Nevertheless,
we are more interested in the scaling of the approximation
time. Specifically, for hard cases where incomplete solvers
diverge exponentially in time, our solver diverges linearly.
This is the most important test and the central result of our
paper. It is shown in Figure 2.

The hard inapproximability limit and its exponential
nature for both the combinatorial heuristics CCLS and
DeciLS is clearly visible in Figure 2, where we have set a
threshold of 1 5% of unsatisfiable clauses for the delta-Max-
E3SAT. We have then tested how long CCLS, DeciLS, and
our solver Falcon take to overcome this limit with increasing
number of clauses. All calculations have been done on a
single core of an Intel Xeon E5-2680 v3.

The exponential blowup of CCLS and DeciLS is already
evident for small instances of the problem, while our non-
combinatorial approach performs linearly, in both time and
memory, for any number of variables we have tested so far.
In fact, we have tested our solver up to 2 × 106 variables,
requiring ∼104 seconds to reach the target 1 5% threshold.
The heuristic solvers, if they could run up to the same
number of variables, would require, in the best case, about
∼102500 seconds, which is ∼102480 times the estimated age
of the universe.

To better highlight the linear scaling of our solver, we
compare it in Figure 3 with CCLS (qualitatively, all other
incomplete solvers should perform similarly). Each plot
of Figure 3 displays the percentage of unsatisfied clauses
versus time, normalized with respect to the number of
variables n. Clearly, linear scaling for these hard problems
is a very desirable feature and very difficult to achieve with
combinatorial approaches. However, the reason for such
linear scaling is subtle.

Regarding memory, since we simulate (integrate) differ-
ential equations in time, and the circuit scales linearly with
the number of literals, the linear scaling in memory require-
ments of our simulations is easy to understand (see also the
appendix). On the other hand, linear scaling in simulation
time implies constant scaling, namely, independent of the
problem size, when we look at the “machine time,” which is

the number of (differential equation discretized time) steps
for the simulation to reach equilibrium. The reason for
this unexpected machine time constant scaling can be
found again in the long-range order of the dynamics of
the system [15] (see also the appendix). As we have shown
analytically in [15] using topological field theory, this
long-range order leads to nondecreasing spatial (and tem-
poral) correlations in memcomputing machines. In fact,
Figure 3 clearly shows that self-organizing logic circuits
relax close to the predicted global minimum, while the
CCLS does so only for the (“easy”) random-Max-E3SAT.
This is further illustrated in Figure 4 of the appendix for
random-, hyper-, and delta-Max-E3SAT.

4. Conclusions

In conclusion, we have shown empirical evidence that a non-
combinatorial approach—based on the simulation of digital
memcomputing machines—to the solution of hard combi-
natorial optimization problems outperforms exponentially
heuristics specifically designed to solve such problems. In
particular, with our approach, we were able to find far better
approximations to hard instances with millions of variables
in a few hours on a single core, with linear scaling both in
time and memory of the processor. For the same sizes,
winners of the 2016 Max-SAT competition would require
several orders of magnitude more than the age of the universe
to find the same approximations. Of course, these numerical
results are not intended to prove that there are polynomial
solutions to NP-hard problems. Rather, they show that
physics-inspired approaches can help tremendously in
solving some of the most complex problems faced in acade-
mia and industry. We thus hope that this work will motivate
further research along these lines.

Appendix

Methods

The noncombinatorial approach we discuss here is based
on the concept of universal memcomputing machines
(UMMs) [13] introduced by two of us (Fabio L. Traversa
and Massimiliano Di Ventra). UMMs are a class of com-
puting machines composed of interconnected memory
units. The topology of such network is chosen to solve the
specific problem at hand. UMMs use the collective state of
the interconnected memory units to perform computation
[12, 27], so they can take advantage of long-range correla-
tions that can significantly boost the efficiency of the compu-
tation [12, 15]. If the input and output of UMMs can be
mapped into strings of integers, belonging to a limited subset
of N, we obtain the digital (hence scalable) version of UMMs
(DMMs) [12]. In particular, we consider DMMs whose input
and output can be mapped into Z2.

A possible, practical realization of DMMs is self-
organizing logic circuits (SOLCs) composed of SOLGs [12].
SOLGs are logic gates that can accept inputs from any termi-
nals and self-organize their internal state to satisfy their logic
relations. For example, a self-organizing OR (SO-OR) is
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Figure 3: Comparison between the incomplete solver CCLS versus our noncombinatorial solver, Falcon, for (a) random-Max-E3SAT,
(b) hyper-Max-E3SAT, and (c) delta-Max-E3SAT. In these plots, the percentage of unsatisfied clauses versus the time normalized with
respect to the number of variables is shown to highlight the linear scaling of our solver. All calculations have been performed on a single
thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.
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Figure 4: Comparison between the CCLS solver versus our solver, Falcon, for (a) random-Max-E3SAT, (b) hyper-Max-E3SAT, and (c) delta-
Max-E3SAT. In these plots, the percentage of unsatisfied clauses versus the number of variables is shown. Different curves are for different
simulation time-outs (in seconds) following the relation tout = kn with n = ∣x∣ and k an integer given in the legend. All calculations have
been performed on a single thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.
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a 3-terminal gate whose internal machinery drives the
terminal states to satisfy the relation x0 = x1∨x2, where x0 is
the state of the conventional output terminal, and x1 and x2
are the states of the conventional input terminals. Therefore,
unlike conventional logic gates, the SO-OR can be fed also at
the output terminal. If we set x0 to some state, the SO-OR
then will self-organize to give logically consistent states x1
and x2.

We can use SOLCs to solve combinatorial problems by
expressing them in Boolean format and then mapping the
latter onto logic circuits. As a relevant example for this work,
we can take the Max-SAT problem written in CNF. When we
transform the SAT into a Boolean circuit, we have multiter-
minal OR gates connected together in order to represent a
logic formula (see Figure 1 of the main text). Hence, we can
substitute conventional logic gates by SOLGs and set all
output of the SO-ORs to logical 1. We now let the SOLC to
self-organize to satisfy the largest number of SO-ORs.

We have previously shown [12] that SOLCs can be
realized via standard (nonquantum) electronic components
(we employ the realization described in [12], just slightly
modified to deal with CNF formulas).

One of the key components of SOLGs is the dynamic
correction module we have designed to correct the inconsis-
tent logic gate configurations. While the design and details
of this component can be found in [12], we recall here its
working principle. The error correction module dynamically
reads the voltages at the terminals of the gate and injects a
large current when the gate is in an inconsistent configu-
ration, a small current otherwise.

The nonquantum electronic nature of SOLCs can be
fully described by a system of nonlinear ordinary differential
equations of the type

x t = F x t , 3

where x = vj, xi ∈ X (X is the phase space) is the collection
of voltages, vj, at the terminals and the internal state
variables, xi, of the electronic elements with memory; F is a
system of nonlinear ordinary differential equations, repre-
senting the flow vector field [12]. We can then efficiently sim-
ulate them by numerical integration. Therefore, SOLCs are
nothing other than dynamical systems. In this case, a solution
of the problem we want to solve (e.g., the Max-SAT) employ-
ing a DMM is mapped into an equilibrium point of the
dynamical system. The system is engineered in such a way
that, starting from any initial condition (generally chosen at
random), it evolves to converge into an equilibrium.

We have discussed in [12] (see also [5]) the relevant
properties that the dynamical systems representing DMMs
should have to behave in this way. Among them, an impor-
tant feature, fundamental to guarantee the convergence, is
that they are point dissipative [28]. This implies that the
dynamical system has bounded orbits (no divergences), and
it is endowed with an asymptotically stable global attractor,
that is, a compact set in the phase space that attracts any
other point. This feature has also allowed us to prove that
no chaotic behavior can emerge if equilibrium points are
present [29], as well as absence of periodic orbits [30].

Finally, the point dissipative property guarantees conver-
gence to equilibrium irrespective of the initial conditions.

We can finally summarize the power of these machines
with the following hierarchical picture. DMMs use the topol-
ogy of the internal connectivity of its elements to represent
the problem to solve (this is called information overhead
in [12]). Then, the collective state of the machine can
manipulate all inputs, outputs, and connecting variables
in a massively parallel fashion (intrinsic parallelism [12]).

In addition, the nonlinearity of the dynamical system
equations induces a transient instantonic phase with long-
range order, both in space and time [15]. This long-range
order allows the system to converge exponentially fast to
the equilibrium points that are associated to the approxima-
tions of optimization problems, by exploring a subspace (that
scales at most polynomially with input size) of the phase
space. This subspace is considerably smaller than the entire
phase space itself [15].

In fact, as briefly discussed in the main text, the particular
realization of DMMs we have presented in this work (similar
to the ones in [12]) supports infinite-range correlations in the
infinite input size limit, as shown in [15]. This enables an
ideal scale-free behavior (namely, one where the correlations
do not decay) of the SOLC. This was derived analytically
using topological field theory in [15] and can also be
supported numerically from Figure 5 as follows.

In order to simulate the system, we have employed a
time step size-controlled forward-integration scheme for
the differential equations that describe it [31]. Since the
number of variables of the problem grows linearly with the
input size because the number of gates grows only linearly,
each time step to be simulated requires only a linear number
of floating point operations and a memory linearly growing
with input size. Then, the simulation time is just a linear
function of the machine time. In Figure 5, it is reported
the same as in Figure 3 of the main text but with the SOLC
time (not normalized) on the x-axis. It is evident that the
relaxation of the system is independent of the input size
(ideal scale-free scaling). This is a very interesting and rare
result for an extensive interconnected system. All these
ingredients are necessary for the correct, efficient operation
of a DMM.

The approximations to an optimization problem found
by DMMs are very close to the global minimum of the prob-
lem, and this is guaranteed by the topology of the connectiv-
ity. This is clearly demonstrated in Figure 4 where the
unsatisfied clauses are plotted versus variables for different
simulation times, scaled linearly by the number of variables.
While for the random-Max-E3SAT, both our solver and the
CCLS approach the 0 4% minimum; in the case of the
hyper-Max-E3SAT, CCLS reaches a hard inapproximability
limit of about 2% for large instances. As expected, the
delta-Max-E3SAT, instead, is a much worse case, and the
inapproximability limit for CCLS is at about 3%.

In contrast, our noncombinatorial approach directly
reaches the global minimum in all cases. Interestingly, our
solver shows slightly better performances for the delta-
Max-E3SAT (the most difficult of the three cases) as can be
seen by taking a closer look at Figure 4.
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Figure 5: Percentage of unsatisfied clauses versus the machine time (i.e., simulated time steps) is shown to highlight the linear scaling of our
solver, Falcon, for (a) random-Max-E3SAT, (b) hyper-Max-E3SAT, and (c) delta-Max-E3SAT. All calculations have been performed on a
single thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.
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A Brief Survey on Max-SAT Solvers

Asmentioned in the main text, there are two main (combina-
torial) approaches to solve or approximate the Max-SAT
problem. The first is based on the exhaustive exploration of
the solution space and leads to the so-called “complete”
solvers [7, 22]. The complete solvers use algorithms typically
based on the branch-and-bound approach [1, 19] in which a
greedy bound is first put on the optimum and then this is
used to prune the resulting search tree. Despite this pruning,
they still scale exponentially with input size ∣x∣ because they
exhaustively search a space ZO ∣x∣

2 = 0, 1 O ∣x∣ . However,
when the computation is finished, complete solvers are guar-
anteed to have found the global optimum of the Max-SAT.

Incomplete solvers [7, 8], in comparison, cannot guaran-
tee the optimality of their solution as they do not explore the
entire solution space. Instead, they proceed by generating an
initial assignment and iteratively improving upon it. This
trade-off allows them to find solutions, when they do, much
more quickly than complete algorithms. In the most recent
Max-SAT competition [6], incomplete track solvers found
solutions of two orders of magnitude faster than complete
track solvers in random and crafted benchmarks.

The quintessential incomplete solver is WalkSAT [8]
which proceeds through a stochastic local search. After an
initial assignment is generated, an unsatisfied clause is
selected and one variable from the clause has its assignment
flipped. This will leave this clause satisfied but may alter the
state of other clauses in which the variable occurs. The proce-
dure is continued for a specified number of steps or until a
solution is found. Most current local search solvers work
similarly with various heuristics to select the next variable flip
and utilize restarts and/or noise and a host of other features.

We compared our solver, Falcon, with two of the best
solvers from the 2016 Max-SAT competition, CCLS [18]
and DeciLS [19]. CCLS won the crafted track for unweighted

Max-SAT and performed near the top of the random track. It
performs a local search (LS) with configuration checking
(CC), and the binary provided took no tuning parameters.
Local search solvers will often retrace flips many times lead-
ing to an inefficient search. Configuration checking keeps
track of when neighboring variables have been flipped and
only allows a variable to be flipped again when at least one
of its neighbors has changed its assignment. DeciLS is an
updated version of CnC-LS which won the industrial track
for unweighted Max-SAT and combines a unit propagation
based decimation (Deci) and local search (LS) with restarts.
An assignment is first generated through unit propagation-
based decimation [22] in which conflicts are allowed, and
the result is given to a local search for a specified number
of steps. The process is then restarted, and the best result of
the previous search is used to guide the subsequent decima-
tion and resolve conflicts. This allows the solver to explore
very different reasoning chains and areas of the solution
space. We used the parameters values recommended in [19]
for good performance across a range of instances, and subse-
quent tuning has indicated that the results are insensitive to
changes in this range.

Weighted Partial Max-SAT

In order to more efficiently map a large number of maximi-
zation problems into Max-SAT, it is sometimes useful to
consider a variant: weighted partial Max-SAT [1, 19].
Weighted partial Max-SAT is a version of Max-SAT for
which a subset of clauses must be satisfied (“hard” clauses),
while the remaining clauses (“soft” clauses) may be weighted,
and the sum of the weights of satisfied clauses must be
maximized. The Max-SAT is a particular case of the weighted
partial Max-SAT in which all clauses are soft and have the
same weight.
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Figure 6: Results from the 2016 Max-SAT competition for the random Max-2SAT problem compared with our memcomputing
solver, Falcon.
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Because of the presence of hard clauses, the weighted
partial Max-SAT is, in general, harder than the Max-SAT
for all kind of solvers. In fact, this is one of the main reasons
heuristics are often unable to find even approximations to
those problems (see, e.g., Figures 8 and 9).

Including weights and hard clauses in self-organizing
logic circuits (SOLCs) is simple. Recalling that each OR gate
representing a clause has attached at each terminal a dynamic
correction module that injects a large current when the gate is
in an inconsistent configuration, we can tune the maximum
current allowed for each correction module in the following
way. We set the maximum current injected by the dynamic
correction modules connected to the SO-OR gates propor-
tionally to the weights of the clauses. For the hard clauses,
we can set the maximum current injected by the dynamic
correction modules connected to the hard SO-OR gates,
larger than the sum of all maximum currents injected by

the dynamic correction modules connected to all soft
SO-OR gates connected to that hard SO-OR gate. This will
guarantee that the hard clauses will have always the priority
on the soft clauses.

Comparison from the 2016
Max-SAT Competition

We have tested SOLCs on problems taken from the 2016
Max-SAT competition and compared them against the
results of the winners of each category of that competition.
Even if the comparison is not completely fair because our
code is written in MATLAB while the other codes are written
in compiled languages, and the benchmark is not the same
because we ran on different processors (we ran all our
simulations on an Intel Xeon E5-2680 v3 but used the same
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Incomplete solver (dsat-wpm3-in-pms)
Complete solver (Open-WBO16)
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Figure 8: Results from the 2016 Max-SAT competition for the forced random binary problem compared with our memcomputing
solver, Falcon.
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number of threads allowed in theMax-SAT competition), the
results are still interesting.

In Figures 6 and 7, we compare the random Max-
2SAT and random Max-CUT instances, which are non-
weighted problems [1]. In those cases, the scaling is
similar to the heuristics, but the absolute time is orders
of magnitude lower.

Of more interest are the results of Figures 8 and 9. These
correspond to two problems (called forced random binary
and Max Clique [1]) that, when mapped, become weighted
partial Max-SAT instances. As discussed, these are especially
hard. In fact, oftentimes, the best heuristics could not even
find approximations because they were not able to satisfy
all hard clauses, while our solver always does.

Data Availability

All calculations reported here have been performed by one of
us (Pietro Cicotti) on a single processor of the Comet cluster
of the San Diego Supercomputer Center, which is an NSF
resource funded under award number 1341698. Apart from
the instances freely available from the 2016 Max-SAT com-
petition [6], the authors would be delighted to provide, upon
request, all instances of the constrained delta-Max-E3SAT
used to generate Figure 2 and those related to all the other
figures in this work.
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This paper proposed a novel switching scroll hyperchaotic system based on a memristor device and explored its application to
secure communication. The new system could be switched between the double-scroll chaotic system and multiscroll one by
switch S1 and switch S2. We gave the construction process of the novel system, its numerical simulations, and dynamical
properties, firstly. Moreover, the memristive circuit implementation of the new switching system was presented and the results
were also in agreement with those of numerical simulation. Finally, the new switching memristive system was applied to secure
communication by means of the drive-response synchronization with chaotic masking. When the voice signal is a rising
waveform, it is encrypted by the double-scroll memristive system. When the voice signal is a falling waveform, the multiscroll
memristive system works. The voice signal is completely submerged in the chaotic signal and could not be distinguished at all.
Security analyses show that it is a successful application to secure communication.

1. Introduction

Chaotic systems based on memristor have widely attracted
attention recently. It has many applications such as in
secure communication [1–4], neural network [5–9], and
chemical route [10]. A lot of researches on memristive cha-
otic (hyperchaotic) system have been reported, for example,
global synchronization [11], state estimation [12], time
delay [13], and adaptive synchronization [14] of the memris-
tive chaotic system. On the other hand, scroll chaotic systems
have been explored in many papers extensively. For
instance, Ma et al. introduced simulation and circuit imple-
mentation of 12-scroll chaotic system in [15]. Chen et al.
investigated the generation of grid multiscroll chaotic attrac-
tors in [16]. In [17], Chen et al. studied the fractional-order
multiscroll chaotic system. And in [18-19], García-Martínez
et al. and Liu et al. discussed the multiscroll hyperchaotic
system and its application to secure communication, but
the memristor has not been introduced to chaotic system
to produce multiscroll.

With respect to the chaotic system based on memrister,
its application to secure communication has been studied in
many works, such as in [1–4], since memristors are nonlinear
elements with memory function, which are different from
resistors, capacitors, and inductors. So the applications to
secure communication based on chaotic system with mem-
ristor have become a hot topic. Meanwhile, researches on
application of the scroll chaotic system have also existed.
Whether the memristive chaotic (hyperchaotic) system or
the scroll system, application to secure communication has
been very common. Till now, secure communication based
on the switching memristor scroll hyperchaotic system has
not been explored. Thus, it has a great significance to investi-
gate the switching memristive scroll hyperchaotic system and
its application to secure communication.

The rest of the paper was organized as follows. Section 2
introduced the construction, numerical simulations, and
dynamic analysis of the switching scroll hyperchaotic system
based on a memristor. The circuit implementation was given
in Section 3. In Section 4, application to voice encryption was
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discussed using the drive-response synchronization with
chaotic masking and some conclusions are given in the last.

2. System Construction and Dynamic Analysis

2.1. System Construction. The Chua’s circuit is composed of a
linear resistor, a linear inductor, two linear capacitors, and a
nonlinear Chua’s diode as shown in Figure 1.

Based on Figure 1, the differential equation [20] could be
obtained as

dx
dt

= a y − x + f x ,

dy
dt

= x − y + z,

dz
dt

= −by,

1

where f x = −5x − 1 5 x + 1 + x − 1 /7, when taking
system parameters a = 10 and b = 15 with initial values
x 0 = y 0 = z 0 = 0 1, we can get the projection on the
x − z phase plane of the double-scroll attractors shown in
Figure 2.

In Figure 1, the resistor R and the Chua’s diode are
replaced by a magnetically controlled memristorM and a lin-
ear function, respectively. So, we can get a new hyperchaotic
memristive circuit demonstrated by Figure 3. The memristor
is the fourth kind of basic passive circuit element which is
proposed by Professor Chua. There are two mathematical
definitions of memristor, which are charge-controlled mem-
ristor and flux-controlled memristor, respectively [21]. The
expression of a charge-controlled memristor is

v t =M q t i t ,

M q t = dφ q
dq
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Figure 2: A projection of the double-scroll attractor onto the x, z
plane.

The flux-controlled memristor could be expressed as

i t =W φ t v t ,

W φ = dq φ

dφ

3

And basic model of the memristor can be found in [22].
The definition of memristor was extended in [23],

y t = g z, u, t u t ,
dz
dt

= f u, z, t ,
4

where u t and y t are the input signal and output signal of
the memristor, respectively. z is the system state variable. The
input of the magnetically controlled memristor is voltage u,
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the output is the current i following through the memristor,
and flux ϕ is the state variable.

According to the definition of memristor, we obtain a
novel expression as

i =W ϕ u,
dϕ
dt

= u2 − u1 − cϕ,
5

where W ϕ is called memory conductance, let W ϕ =
0 1ϕ2. According to the Kirchhoff’s law and component
parameter constraints, circuit dynamic equation could be
obtained as

C1 dv1
dt

= W ϕ V2 −V1 + g V1 ,

C2 dv2
dt

=W ϕ V1 −V2 + Ii,

L
dIi
dt

= −V2,

RC
dϕ
dt

=V2 −V1 − cϕ,

6

where τ0 = RC is the time constant. Dimensionless time τ =
t/τ0 could be obtained by the scaling time and state space.
The dimensional state variable x = V1, y = V1, z = Ri, w = ϕ,
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Figure 3: The new hyperchaotic memristive circuit.
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a = C/C1, C = C2, b = cR2/L, f w =W ϕ /R, and g x =
g V1 /R, so we can obtain

dx
dt

= a f w y − x + g x ,

dy
dt

= f w x − y + z,

dz
dt

= −by,

dw
dt

= y − x − cw,

7

where f w = dw2, g x = 0 9x, and a, b, c, and d are system
parameters. The simulation results are given in Figure 4 by
taking initial values x 0 = 1, y 0 = z 0 =w 0 = 0, and
parameters a = 10, b = 60, c = 10, and d = 0 1. Then, based
on (7), the N-scroll is realized in y direction by using the
step function.

There are two forms of step function, when

h y = A 〠
M

i=1
sgn y + 2i − 1 A + 〠

M

i=1
sgn y − 2i − 1 A ,

 M ≥ 1,
8

2M + 1 scrolls could be generated in y direction.
When

h y = A −sgn y + 〠
N−1

i=0
sgn y + 2i A + 〠

N−1

i=0
sgn y − 2i A ,

 N ≥ 0,
9

2N scrolls could be generated in y direction.

N-scroll could be obtained by a reasonable set of step
function parameters. For example, when M = 1, A = 12,

h y = 12 sgn y − 12 + sgn y + 12 10

The 2× 3 multiscroll hyperchaotic system based on a
memristor device is obtained as

dx
dt

= a f w y − x − h y + g x ,

dy
dt

= f w x − y + h y + z,

dz
dt

= −b y − h y ,

dw
dt

= y − x − h y − cw

11

When system parameters are a = 10, b = 60, c = 10, and
d = 0 1 with initial values x 0 = 3 and y 0 = z 0 =w 0 =
0, simulation results are presented in Figure 5.

Similarly, 2× 5 and 2× 6 multiscroll hyperchaotic system
could be also obtained by taking M = 2, A = 12, and N = 3,
A = 12, and

h y = 12 sgn y + 12 + sgn y − 12
+ sgn y + 36 + sgn y − 36 ,

h y = 12 sgn y + sgn y − 24 + sgn y + 24
+ sgn y − 48 + sgn y + 48 ,

12

respectively.
When selecting system parameters a = 10, b = 60, c = 10,

and d = 0 1 with initial values x 0 = 3 and y 0 = z 0 =
w 0 = 0, the numerical simulations of 2× 5 and 2× 6 multi-
scroll hyperchaotic system are shown in Figures 6 and 7.
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Figure 5: Projections of the 2× 3 multiscroll hyperchaotic attractors onto the y,w and x, y plane. (a) y,w plane. (b) x, y plane.
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2.2. Dynamic Analysis

2.2.1. The Double-Scroll Memristive System Is Taken as an
Example to Analyse the Dynamic Properties

(1) Lyapunov Exponents. When selecting system parameters
a = 10, b = 60, c = 10, and d = 0 1 with initial values x 0 = 1
and y 0 = z 0 =w 0 = 0, we can get the Lyapunov expo-
nents diagram as shown in Figure 8.

From Figure 8, we can see that the chaotic system has two
positive Lyapunov exponents. So, the system is a hyperchao-
tic system and has two scrolls.

(2) Bifurcation Diagram. Lyapunov exponents and bifurca-
tion diagram of the system due to the variation of parameter

b is displayed in Figure 9. We could see that when 35 < b < 43
and 54 < b < 70, the system shows chaotic behavior.

(3) Dissipation. Generation of chaotic behavior is decided by
whether the system has a dissipative structure or not [24].
The dissipative formula of the system is

∇V = ∂x
∂x

+ ∂y
∂y

+ ∂z
∂z

+ ∂w
∂w

= 0 9a − c < 0, 13

so the system is dissipative, converging at an exponential rate
e0 9a−c until it becomes 0. When t→∞, every volume ele-
ment which contains trajectories of the system shrinks to
zero with the rate of exponential convergent.

−60 −40 −20 0 20 40 60 80−80
y

−5

−4

−3

−2

−1

0

1

2

3

4

5
w

(a)

−60 −40 −20 0 20 40 60 80−80
x

−80

−60

−40

−20

0

20

40

60

80

y

(b)

Figure 6: Projections of the 2× 5 multiscroll hyperchaotic attractors onto the y,w and x, y plane. (a) y,w plane. (b) x, y plane.
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(4) Equilibrium Points and Stability. The Jacobian matrix of
the system is

9 −w2 w2 0 2w y − x

0 1w2 −0 1w2 1 0 2w x − y

0 −60 0 0
−1 1 0 −10

14

The equilibrium points of the system could be calculated
by making (7) as 0. We could get three equilibrium points as

S0 = 0,0,0,0 ,
S1 = 30, 0, −27, −3
S2 = −30,0,27,3

15

The Jacobian matrix at point S0 becomes

9 0 0 0
0 0 1 0
0 −60 0 0
−1 1 0 −10

16

Eigenvalues at point S0 are λ1 = −10, λ2 = 9, λ3 = 7 746i,
and λ4 = −7 746i. The Jacobian matrix at point S1 and S2
becomes

0 9 0 180
0 9 −0 9 1 −18
0 −60 0 0
−1 1 0 −10

17

The Equilibria S1 and S2 could have eigenvalues λ1 =
−5 9483 + 13 6659i, λ2 = −5 9483 − 13 6659i, λ3 = 0 4983 +
6 9549i, and λ4 = 0 4983 − 6 9549i, which are called saddle
points of index 2 since the two complex conjugate eigen-
values have positive real parts[25, 26]. It is clear that S0 is
the first type saddle point since the real eigenvalue is positive
[25, 26]. It is noticed that the scrolls are generated only
around the equilibria of saddle points of index 2 [25, 26].
Moreover, equilibria S1 and S2 correspond to the two satu-
rated plateaus, which are responsible for generating the two
scrolls in the double-scroll attractor. However, the equilib-
rium point S0 corresponds to the saturated slope and is
responsible for connecting these two symmetrical scrolls.

2.2.2. The Dynamic Analysis of 2× 3 Multiscroll Hyperchaotic
System. The dynamic analysis of 2× 3 multiscroll hyperchao-
tic system is introduced briefly as follows. Let

dx
dt

= dy
dt

= dz
dt

= dw
dt

= 0 18

Equation of equilibrium points could be obtained as

a f w y − x − h y + g x = 0,
f w x − y + h y + z = 0,

−b y − h y = 0,
y − x − h y − cw = 0

19

From (19), we could get the coordinate of system equilib-
rium points in the y-axis as y = h y , that is, y = 0, ±12, ±24,
x = ±30. The figures of equilibrium points and chaotic attrac-
tors of the multiscroll hyperchaotic system are demonstrated
in Figure 10. Therefore, the number of equilibrium points in
the y-axis direction is 5× 2. The solid points represent the
second type saddle point, which correspond to the six
saturated plateaus and are responsible for generating the six
scrolls in the 2× 3-scroll attractors. The hollow points rep-
resent the first type saddle point, which correspond to the
saturated slope and are responsible for connecting these
six symmetrical scrolls.

3. The Circuit Implementation of the Switching
Scroll Hyperchaotic System

3.1. The Circuit Implementation of the Double-Scroll
Hyperchaotic System. Circuit diagram of the double-scroll
hyperchaotic system is displayed in Figure 3. With respect
to the memristor shown in Figure 11(a), its internal circuit
structure could be obtained in [27], shown in Figure 11(b).
Circuit implementation results are shown in Figure 12,
which are in agreement with numerical simulation results
in Figure 4.

Symbolic function circuit is designed by the saturated
output voltage of the operational amplifier to achieve step
function. The saturated voltage of the operational amplifier
in Figure 13 is E.
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Vout = −
R3
R2 × R5

R4 × E × sgn V in +V5 + sgn V in −V8

20

The step function circuit designed by the method is
easy to expand and achieve, that is, more complex function
could be realized by increasing the number of correspond-
ing comparison circuit. In the following part, we choose the
2× 3 scroll system as an example to discuss the multiscroll
system. Based on Figure 13, step function is connected
between the capacitor C1 and the ground to get the circuit

diagram of the multiscroll hyperchaotic system shown in
Figure 14, and its circuit simulation results are displayed
in Figure 15 which are in accordance with the numerical
simulation results.

4. Applications to Secure Communication

4.1. Drive-Response Synchronization of the Switching Systems.
The synchronization of the switching systems is briefly stated
as follows. The drive system from (11) is
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x1 = a f w1 y1 − x1 − h y1 + g x1 ,
y1 = f w1 x1 − y1 + h y1 + z1,
z1 = −b y1 − h y1 ,
w1 = y1 − x1 − h y1 − cw1,

21

where f w1 = dw1
2, g x1 = 0 9x1, a, b, c, and d are system

parameters, a = 10, b = 60, c = 10, and d = 0 1, and initial
values x1 0 = 1 and y1 0 = z1 0 =w1 0 = 0.

And the response system is

x2 = a f w2 y2 − x2 − h y2 + g x2 + u1,
y2 = f w2 x2 − y2 + h y2 + z2 + u2,
z2 = −b y2 − h y2 + u3,
w2 = y2 − x2 − h y2 − cw2 + u4,

22

where f w2 = dw2
2, g x2 = 0 9x2, a, b, c, and d are system

parameters, a = 10, b = 60, c = 10, and d = 0 1, and initial
values x2 0 = 1 and y2 0 = z2 0 =w2 0 = 0.

The state error is defined as

e = P − εQ, 23

where ε is diagonal matrix, P = x1, y1, z1,w1
T , and Q =

x2, y2, z2,w2
T . ε = diag ε1, ε2, ε3, ε4 is scaling function

matrix (if ε = diag 1,1,1,1 , ε = diag −1, −1, −1, −1 , ε =
diag α, α, α, α (α is a constant), and ε = diag α1, α2, α3,
α4 , respectively, then the synchronization is called as com-
plete synchronization, antisynchronization, projective syn-
chronization, and modified projective synchronization). In
this paper, we choose ε = diag −1, −1, −1, −1 , that is to
say, the synchronization type is antisynchronization.

The synchronization controller of the response system
is designed as

u1 = −w2
2 y2 − x2 − h y2 −w1

2 y1 − x1 − h y1
− 9x2 − 9x1 − μ1e1,

u2 = −0 1w2
2 x2 − y2 + h y2 − z2

− 0 1w1
2 x1 − y1 + h y1 − z1 − μ2e2,

u3 = 60 y2 − h y2 + 60 y1 − h y1 − μ3e3,

u4 = −y2 + x2 + h y2 + 10w4 − y1 + x1
+ h y1 + 10w1 − μ4e4

24

According to the systems (21), (22), (23), and control-
ler (24), we could obtain the final expression of the error
system as

e1 = −μ1e1,
e2 = −μ2e2,
e3 = −μ3e3,
e4 = −μ4e4 25

Let μ1 = 2, μ2 = 9, μ3 = 7, and μ4 = 4, it is obvious that
all roots of the error system have negative real parts. When
t→∞, the error system (25) converge to 0 and therefore
the synchronization between the drive system and the
response system is realized.

Next, we illustrate the validity of the proposed controller
by MATLAB 2010a. Selecting initial values x1 0 = 3, y1 0
= 0, z1 0 = 0, w1 0 = 0, x2 0 = 3, y2 0 = 1, z2 0 = 2, and
w2 0 = 2, we could get those of the error system as e1 0 =
6, e2 0 = 1, e3 0 = 2, and e4 0 = 2. Keeping the system
parameters, the initial values, the scale factors, and synchro-
nization controllers unchanged, simulation results are illus-
trated in Figure 16. One can see that the error dynamic
system is stable asymptotically by using the designed control-
lers, which implies that the drive system and the response
system could achieve synchronization well.
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4.2. Drive-Response Circuit Synchronization of the Switching
Systems. Drive-response synchronous circuit of the multi-
scroll hyperchaotic system is demonstrated in Figure 17.

The x1 − T and y1 − T waveforms of the drive system and
the x2 − T and y2 − T waveforms of the response system are,
respectively, shown in Figures 18(a) and 18(b). The x1 − x2
waveform at the time of synchronization is shown in
Figure 19. From the simulation results, we could see that
voltage signal waveforms of the drive and response system
are exactly the same, and the synchronous phase diagram
of the corresponding state is a straight line through the origin
point with 45 degrees, indicating that the corresponding
state variables in the two circuits achieve a good synchro-
nization. When it is applied to the secure communication,

the synchronization method is simple and the circuit imple-
mentation is convenient.

The drive-response synchronous circuit of the double-
scroll hyperchaotic system is similar to that of the multiscroll
one and will be omitted here.

4.3. Application to Secure Communication. In the circuit
implementation, the double-scroll and multiscroll circuits
are encapsulated, respectively, so as to simplify the circuit
structure.

4.3.1. Description of Encryption and Decryption Algorithm.
In this subsection, the synchronization circuit above is
applied to secure communications. A voice signal m t =

(a) (b)

Figure 15: Circuit implementation of the multiscroll hyperchaotic system. (a) y,w plane. (b) x, y plane.
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0 5 0 1 sin t + 1 carrying the message to be transmitted
could be masked by the chaotic sequence x1 t , which is
a key sequence from the double-scroll and multiscroll
hyperchaotic system. And

x1 =
x1d , 2nπ ≤ t ≤

2nπ + π

2 ,

x1m, 2nπ + 3π
2 ≤ t < 2n + 1 π,

n = 0,1,2,…

26

The chaotic synchronous circuit given above could be
applied to extract the message at the receiver. Some strategies
could be used to make the actual transmitted signal s t as
broadband as possible, that is, to make its detection through
spectral techniques difficult. In general, three strategies are
proposed in chaotic secure communications [28]. One is
signal masking, where s t = x1 t + αm t ; the second is

modulation, s t = x1 t +m t ; the third is a combination
of masking and modulation, s t = x1 t + αm t . Here,
chaotic masking is used to encryption. The transmitted
signal is s t = x1 t + αm t and injected into the transmitter
and, simultaneously, transmitted to the receiver. By the above
synchronous circuit, a chaotic receiver is then derived to
recover the voice signal at the receiving end, that is,

m t = 1
α
limt→∞ x2 t + s t

= 1
α
limt→∞ x2 t + x1 t + αm t =m t

27

The switching encryption circuit is shown in Figure 20.
System 1 and system 2 represent the double-scroll and multi-
scroll hyperchaotic circuit, respectively. When the voice
signal is a rising waveform, switch S1 connects to k1, and
switch S2 connects to k3. At this time, x1d is used as the key
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sequence in the encryption, that is to say, the double-scroll
hyperchaotic system works. When the voice signal is a falling
waveform, switch S1 connects to k2, and switch S2 connects
to k4. At this point, x1m is used to encrypt the voice signal,
and the multiscroll hyperchaotic system does. With the voice
waveform changes, the connection mode of the switch S1 and
switch S2 is different. Finally, the switching between the
double-scroll and the multiscroll hyperchaotic system is real-
ized. In the decryption process, the chaotic signal generated
by the response system is used to decrypt the signal. The

(a) (b)

Figure 18: The x1 − T and y1 − T waveforms and the x2 − T and y2 − T waveforms.
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Figure 19: The x1 − x2 waveform at the time of synchronization.
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schematic diagram is shown in Figure 21. The key sequence
generated by the drive system is used to cover the voice signal
and that generated by the response system works in remov-
ing the cover of the encrypted signal.

Results of encryption and decryption are displayed in
Figure 22. We can know that the voice signal is completely
covered by the chaotic signal, and the original shape could
not be seen at all after the voice signal and the chaotic signal
generated by the driving system is superimposed. The
cracker could not get any information of the voice signal
from the channel [29-30]. It has proved that the switching
encryption method has pretty good privacy.

Moreover, the decrypted voice signal and the original
voice signal are identical, indicating that the original signal
could be recovered well by the chaotic signal generated by
the response system. This proves the effectiveness and reli-
ability of the encryption method.

4.3.2. Security Analyses

(1) Key Space Analysis. The size of key space is the total num-
ber of different keys used in the encryption process. The key
space should be large enough to resist attacks. In the
encryption scheme, thirteen key parameters are used, which
are x 0 , y 0 , z 0 , and w 0 from the double-scroll
hyperchaotic system, x 0 , y 0 , z 0 , and w 0 from the
multiscroll hyperchaotic system, scaling function matrix
ε = diag −1, 1, −1, −1 , synchronization controller u, and
system parameters a, b, c, and d. If the precision is chosen
as 10−14, the total key space is (1014)14, which is obviously
larger than that in [31].

(2) Key Sensitivity Analysis. In order to test the sensitivity of
the encryption algorithm, key parameter x 0 = 1 is changed
to x 0 = 1 + 10−4 and others unchanged in the decryption,
the result is shown in Figure 23. We could see that the encryp-
tion scheme in the paper is so sensitive to key parameters that
a small change can lead to a completely different result.

(3) Encryption Speed. For a good encryption algorithm,
running speed is an important reference aspect. MATLAB
2014a is used to run the program that realizes the proposed
algorithm in a personal computer with a Pentium 4 CPU
3.0GHz, 4.0GB RAM, 500GB hard disk, and Microsoft
Windows 7 operating system. The encryption algorithm in
the paper is compared with that in [32] and [33]; results
between different algorithms are shown in Table 1. We could
see that the speed of our encryption algorithm is much faster.
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5. Conclusions

In this paper, a new switching scroll hyperchaotic system was
proposed, which consisted of the double-scroll and multi-
scroll hyperchaotic system. Based on a memristor device,
the double-scroll hyperchaotic system was taken as an exam-
ple to analyse the dynamic properties, such as Lyapunov
exponents, bifurcation diagram, dissipation and equilibrium
points, and stability. Furthermore, circuit implementation
of the system was introduced in detail and the results are con-
sistent with those of numerical simulations. At last, the

switching scroll hyperchaotic system was successfully applied
to voice encryption and showed its effectiveness.
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Complexity is the undeniable part of the natural systems providing them with unique and wonderful capabilities. Memristor is
known to be a fundamental block to generate complex behaviors. It also is reported to be able to emulate synaptic long-term
plasticity as well as short-term plasticity. Synaptic plasticity is one of the important foundations of learning and memory as the
high-order functional properties of the brain. In this study, it is shown that memristive neuronal network can represent plasticity
phenomena observed in biological cortical synapses. A network of neuronal units as a two-dimensional excitable tissue is designed
with 3-neuronHopfield neuronalmodel for the local dynamics of each unit.The results show that the lattice supports spatiotemporal
pattern formation without supervision. It is found that memristor-type coupling is more noticeable against resistor-type coupling,
while determining the excitable tissue switch over different complex behaviors.The stability of the resulting spatiotemporal patterns
against noise is studied as well. Finally, the bifurcation analysis is carried out for variation of memristor effect. Our study reveals
that the spatiotemporal electrical activity of the tissue concurs with the bifurcation analysis. It is shown that thememristor coupling
intensities, by which the system undergoes periodic behavior, prevent the tissue from holding wave propagation. Besides, the
chaotic behavior in bifurcation diagram corresponds to turbulent spatiotemporal behavior of the tissue. Moreover, we found that
the excitable media are very sensitive to noise impact when the neurons are set close to their bifurcation point, so that the respective
spatiotemporal pattern is not stable.

1. Introduction

The brain is composed of an extremely large number of
neurons [1], as the basic and also complex adaptive blocks of
the brain system [2, 3]. Neuronal information transference
is possible via propagation of the electrical and chemical
signals in neuronal network [4, 5]. Indeed, fluctuation of the
membrane potential of the neurons has a specific pattern in
both time domain and space domain within the information
processing [6]. These fluctuations actually bring a functional
coherence and interplay between different parts, so that the
related controlling behaviors are possible [7]. It is confirmed

that emergence of a particular spatiotemporal pattern is in
direct relationship with the intrinsic properties of the system
[6, 8, 9]. Metabolically, generation and transference of the
information and the related signals are costly [4, 10]. How-
ever, theway that the brain is wired hasmade it a nature-made
computer with high level of efficiency in computation and
cognition [4]. Although the human brain is not very quick at
handling complex calculations, it beats a traditional computer
system when it comes to energy efficiency [11]. Therefore,
many efforts have beenmade to build up a hardware structure
and a software design or even employ a mathematical model
to study the brain system [12, 13], regarding some functional
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properties or physical effects [14]. There can be considered
some factors responsible for energy efficiency of neuronal
network including mechanisms of action potential propaga-
tion, synaptic neurotransmitters, and other factors that are
studied in more detail in [4]. In this regard, it is interesting
to investigate the emerged spatiotemporal patterns accom-
panied by the complex dynamics [8]. The recent studies on
neural network and emulator circuit implementations [13–
15] have led to the fourth circuit element called memristor
[16] in addition to resistor, capacitor, and inductor [15, 17, 18].
Memristor (contraction of memory and resistor) is a two-
terminal circuit element with nonlinear characteristics and
high performance [19]. It has attracted much attention in
biological models, adaptive filters, or integrated circuits [20]
due to multistability phenomenon in coexisting attractors
with chaotic demonstrations [21]. For the application of
biological models, it can mimic how neurons in a network
change their behavior when they are activated. Actually, its
respond at each moment does not rely only on the signals it
is receiving at that exact moment but is influenced by its own
recent activity, too.

Many studies prove that biological behaviors are the out-
come of collective activities of the neurons in neural network
[22]. Indeed, the brain activities are not determined by each
individual neuron, separately, but the intrinsic coherence
coming from collective activities and patterns ofmaintenance
or destruction of the local synchronization between the
agents [23, 24]. As a result, it is not only about the components
and their fluctuation pattern, individually, but also about the
connections among them. In other words, neuronal infor-
mation is carried by evolutionary spatiotemporal patterns
indicating a powerful, efficient, and purposeful functional
connectivity. Besides, the connection strength determines
the specific spatial patterns in the network, as well [24].
Actually, what seems to have themost significant and delicate
influence over the ultimate performance of the system is
the interactions between the components, both quantitatively
and qualitatively. Thus, we need to know the spatiotempo-
ral distribution of the brain cells membrane potential and
the pattern of propagated waves in the two-dimensional
space focusing on the connections [8]. However, obviously,
association of a large number of unites within nonlinear
connections and interactions makes it so hard to grasp some
of the concepts and deal with the related topics. Therefore,
some simplifications with acceptable range of reductions are
needed [25]. Regardless of these reductions inwhat is actually
happening in the real neuronal network, this procedure can
help us understand the related complicated occurrence, to
some extent. In this study, the main idea is to notice the
neurons at the level of population and consider a group of
correlated neurons within more realistic interconnections
and communication tools.

The point at which neurons are able to communicate with
each other is called synapse [3], which bridges the neurons
in the neuronal network [26]. In fact, transmission of the
electrical signal in neuronal system can take place through
synapses. It is also found that learning and memory are the
two significant brain abilities attributed to synapses and their
functional properties [3]. From a perspective, learning and

memory are interrelated with each other. Memory is the
internal mental recorded information, while learning is the
ability of modifying the information stored in the memory
based on the new inputs. More precisely, it also can be said
that learning is the first step of memory since the sensory
system sends information to the brain. Synaptic plasticity is
postulated to be one of the important foundations of learning
and memory [27]. Furthermore, plasticity is reported to
be responsible for certain abilities like rapid response to
threat stimuli and localization of the sound source [28]. The
invention of memristor has made it possible to realize some
complex activities which were impeded by lack of an appro-
priate device to model synaptic plasticity. The focus of this
study is to demonstrate the capability of memristive neuronal
network to represent some complex behaviors and large-
scale plasticity which is also well described via experimental
observations in the prefrontal cortex [29], visual cortex [30],
and neocortex [31].

Real cortical tissue has a laminar structure [32]. Indeed,
neurons of cerebral cortex are arranged in characteristic
layers [3]. Primarily, presence or absence of neuronal cell
bodies specifies the layers of cerebral cortex. This laminar
structure of the cortex plays a significant role in organizing
the inputs and outputs of the brain [3]. In fact, different
inputs need to be processed in different ways while the
outputs arise from different cortical regions. Accordingly,
the laminar structure of cerebral cortex helps providing
required circumstances. Considering distribution of the cor-
tical electrical activities, related spatiotemporal patterns arise
from the interface between the levels of activities of neurons
in the surfaces. With given explanations, in this study, we
simplify the case to a two-dimensional network of neuronal
models, expressing an excitable cortical tissue to investigate
the resulting pattern of the wave propagation in the surface.

In order to study the factors affecting wave propaga-
tion, it is interesting to figure out what a memristor-type
synaptic connection exactly does, not only for one limited
agent but also for large number of neuronal units and how
much it affects the spatial distribution of the cell membrane
potential and leads to wave propagation via the complex
demonstrations. Actually, the answer of these questions may
also reflect the influence of memory and learning process in
a neuronal network through the emerged patterns. In other
words, we examine different plasticity levels for the synaptic
connections by means of different memristor contributions.
On the other hand, by noticing differential equation models,
which are used in this study, the initial states of the variables
of a system refer to the result of their past dynamics.
Therefore, we choose a different initial condition for a local
area of the network indicating the different input sensory
signals that have been applied to that specific area in the past.
After that, we investigate the effect ofmemristor-type synapse
against resistor-type synapse on the pattern formation in the
network. Plus, we also expand our computations to noise
considerations in some separated snapshots, because noise
plays an important role in dynamical response of oscillatory
systems.

The results show that different spatiotemporal patterns
take place in the excitable tissue without supervision. As is



Complexity 3

clear through the snapshots, the overall pattern is mostly
determined by memristor-type coupling. In accordance with
some reports on the role of synaptic plasticity in some impor-
tant high-order cortical activities, our results confirm that
synaptic plasticity makes the tissue capable of representing
different complex demonstrations. In fact, the increase and
decrease of the memristor effect greatly changes the ultimate
appearance of the tissue, which, in turn, actually resulted
from the pattern of electrical activity of each neuron interact-
ing with the neighbor neurons in the whole tissue. Moreover,
the resulting patterns are found to be robust against noise for
all the cases except for 𝑘 = 0.9, in which some concentric
circular patterns are formed in the two-dimensional space.
For further study, we sought to realize whether it is possible
to find a meaningful relationship between the qualitative
properties of the coupled neurons and the spatiotemporal
demonstrations from a two-dimensional lattice. Therefore,
the bifurcation analysis is carried out for different inten-
sities of memristor-type coupling. It is revealed that the
spatiotemporal electrical activity of the tissue concurs with
the bifurcation analysis. We show the memristor coupling
intensities by which the system undergoes periodic behavior
and prevents the tissue from holding wave propagation. In
addition, the chaotic-like behavior in bifurcation diagram
corresponds to turbulent spatiotemporal behavior of the
tissue. Moreover, it is found that the excitable media is very
sensitive to noise impact when the neurons are set close to
their bifurcation point, so that the respective spatiotemporal
pattern is not stable.

The rest of the paper is organized as follows.
In the next section, themathematicalmodel is introduced

with description of its variables and parameters. After that, in
the third section, our numerical method is explained and the
results are displayed.The computational analysis for variation
of 𝑘 and 𝐷 can be found in Section 3.1. Sections 3.2 and 3.3
include the noise and the bifurcation analysis, respectively.
Finally, the fourth section concludes our study.

2. Model and Description

There are a number of mathematical neural models capable
of representing complex dynamic behaviors. These models
introduced for a large number of neurons have properties
that benefit investigations on biological neuronal network.
Usually, in thesemodels, it is assumed that the presynaptic fir-
ing rate determines the synaptic input current [33]. Hopfield
neuralmodel is defined as a graded responsemodel [34].This
model has been successful in representing different dynami-
cal behaviors including chaotic behaviors [35, 36] having to
do with nonlinear demonstrations of the brain performance.

Neurons have a selective response to a compact range of
parameters. In our study, the idea is to provide a compact
range of connections and interactions in a neuronal network.
For this purpose, we designed a square array of neuronal
units with nearest neighbor connections. Each unit has a
topology with hyperbolic-type memristor-based connection.
A hyperbolic-type Hopfield neural network is considered for
each agent. In this 3-neuron Hopfield neural network, one
of the connection weights is defined as a memristive-type

weight.TheHopfield equation for the 𝑖-th neuron is described
as follows:

𝐶𝑖 𝑑𝑥𝑖𝑑𝑡 = −𝑥𝑖𝑅𝑖 +
𝑁

∑
𝑗=1

𝑤𝑖𝑗 tanh (𝑥𝑖) + 𝐼𝑖, (1)

where variable 𝑥 denotes the voltage across the capacitor 𝐶,
𝑅 stands for membrane resistance between the inside and
outside of the neuron, 𝐼 is an input bias current, tanh(𝑥𝑗)
is the neuron activation function for voltage input from the
𝑗-th neuron, and 𝑤𝑖𝑗 is synaptic weight that illustrates the
strength of connections between 𝑖-th and 𝑗-th neurons. In our
work, the proposedHopfield network is achieved by replacing
resistive connection with hyperbolic-type memristor, which
is discussed in detail in [35].The set of parameters are𝑁 = 3,
𝐶𝑖 = 1,𝑅𝑖 = 1 (𝑖 = (1 : 3)).Theweightmatrix is considered as

𝑊 = [[
[

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

]]
]
= [[
[

−1.4 1.2 −7
1.1 0 2.8
𝑘𝑤 −2 4

]]
]
, (2)

where 𝑤 is the synaptic weight connecting the first and
the third neurons with the proportion of 𝑘. The parameter
𝑘 is a constant indicating the strength of hyperbolic-type
memristor-type coupling.

The differential equations describing the desired mem-
ristor-type neuronal unit can be expressed as follows:

𝑥̇1 = −𝑥1 − 1.4 tanh (𝑥1) + 1.2 tanh (𝑥2) − 7 tanh (𝑥3)
𝑥̇2 = −𝑥2 + 1.1 tanh (𝑥1) + 2.8 tanh (𝑥3)
𝑥̇3 = −𝑥3 + 𝑘𝑤 tanh (𝑥1) − 2 tanh (𝑥2) + 4 tanh (𝑥3)
𝑥̇4 = −𝑥4 + tanh (𝑥1)
𝑤 = 𝑎 − 𝑏 tanh (𝑥4) .

(3)

After that, we develop the case to a large array network of neu-
ronal units within coupling intensities. Therefore, the equa-
tions for the square array network are represented as follows:

𝑥̇1𝑚𝑛 = −𝑥1𝑚𝑛 − 1.4 tanh (𝑥1𝑚𝑛) + 1.2 tanh (𝑥2𝑚𝑛) − 7
⋅ tanh (𝑥3𝑚𝑛) ,

𝑥̇2𝑚𝑛 = −𝑥2𝑚𝑛 + 1.1 tanh (𝑥1𝑚𝑛) + 2.8 tanh (𝑥3𝑚𝑛) ,
𝑥̇3𝑚𝑛 = −𝑥3𝑚𝑛 + 𝑘𝑤𝑚𝑛 tanh (𝑥1𝑚𝑛) − 2 tanh (𝑥2𝑚𝑛) + 4

⋅ tanh (𝑥3𝑚𝑛) + 𝐷
⋅ tanh (𝑥3𝑚−1𝑛 + 𝑥3𝑚+1𝑛 + 𝑥3𝑚𝑛−1 + 𝑥3𝑚𝑛+1 − 4𝑥3𝑚𝑛) ,

𝑥̇4𝑚𝑛 = −𝑥4𝑚𝑛 + tanh (𝑥1𝑚𝑛) ,
𝑤𝑚𝑛 = 𝑎 − 𝑏 tanh (𝑥4𝑚𝑛) ,

(4)

where the subscript𝑚𝑛 denotes the position of each neuronal
unit in the two-dimensional square array network. 𝐷 is the
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Figure 1: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0 and
𝐷 = 1 at (a) 𝑡 = 2 time units and (b) 𝑡 = 6 time units.

resistor-type coupling intensity. 𝑎 = 1 and 𝑏 = 0.01 are
constant. The reader will pay attention that the parameter 𝐷
denotes the resistor-type coupling strength in this studywhile
parameter 𝑘 shows the memristor-type coupling strength.

3. Numerical Results and Discussions

In our study, we design a square array network consisting of
150×150 neuronal units. Our numerical results are calculated
byRunge-Kutta 4th-ordermethodwith the time stepℎ = 0.01
under no flux boundary. The initial states of the network
except the small central area, which is observable in the
following images, are set as (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, 0.1, 0, 0).
In addition, the initial condition of the central local area is
(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, −0.1, 0, 0).
3.1. Computational Analysis for Variation of 𝑘 and 𝐷. Con-
sidering (2), there are two types of coupling between neurons
in the whole network, namely, the memristor-type coupling
and the resistor-type coupling. We pick different levels of
memristor-type coupling by adjusting parameter 𝑘, and then
we consider two levels of resistor-type coupling intensity by
adjusting parameter𝐷, in each case of 𝑘 adjustments.

It seems that neurons need to have an appropriate
level of memristor effect to be capable of responding to
the received stimulus in a desired pattern leading to wave
propagation. Otherwise, the generated circular wave (in the
central area of the network) will not be developed. Even
though a propagated wave can travel a further distance by
strengthening the resistive coupling intensity between the
agents (which is adjustable by parameter 𝐷), still the lack of
wave propagation remains and the ultimate general pattern
does not change. Moreover, the excitable media are able
to switch over different spatial behaviors by varying the
memristive coupling strength. Hence, from this point of view,
memristor-type coupling is more noticeable against resistor-
type coupling. To put it more clearly, the distribution of
membrane potential in the two-dimensional excitable media
is shown in colored levels. In some cases, the central local
area is maintained for a few seconds or continues to grow

under a particular pattern, while in others the continuity of
the central part is very short.

Firstly, Figure 1 shows the result in two snapshots when
there is no effect of memristor in the network (𝑘 = 0).
Moreover, the neuronal units are connected to each other
with the coupling intensity of𝐷 = 1. As it is observable, there
is no propagation in this case and the generated signals find
no path to travel the tissue. In fact, the generated wave front
dies right at the beginning of its existence. Besides, there is no
sign of propagation even when we choose a higher resistor-
type coupling intensity by 𝐷 = 5 under no memory effect
by 𝑘 = 0 (Figure 2). Here the only difference that can be
seen between the results in Figures 1 and 2 is in the increased
radius of the initiated wave front in Figure 2 in comparison
with Figure 1. In this case, the central concentrated energy
does not flow to the rest of the neurons and vanishes right at
the beginning of its existence.

For the next step, we provide the tissue a nonzeromemory
effect with 𝑘 = 0.5 under resistor coupling strength of 𝐷 = 1
and 𝐷 = 5 displayed in Figures 3 and 4, respectively. In this
case, the membrane potential of the central local area finds
permission to flow beyond the central part but not too far.
The propagated wave is shown in four snapshots for this case.
As it is observable, in this case, the wave front disappears not
right at the beginning but after a limited time before getting
toowide (see Figure 3).Moreover, increasing the resistor-type
coupling intensity from𝐷 = 1 to𝐷 = 5 only brings the time-
limited propagatedwave a greater radius anddoes not prevent
it from disappearing (see Figure 4).

After that, on the way of increasing memory properties,
leading to more synaptic plasticity, we set 𝑘 = 0.7 (Figures
5 and 6). Interestingly, this slight increase from 𝑘 = 0.5 to
𝑘 = 0.7 in the level of memory effects brings out significantly
different dynamics from the tissue. In fact, it makes the tissue
represent a very distinctive pattern for the distribution of
membrane potential in its two-dimensional space.The spatial
fluctuations become so turbulent and great number of very
small rotating seeds can be seen. These countless rotating
seeds result in such turbulent appearance as is clear through
the depicted snapshots in Figures 5 and 6. We investigate
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Figure 2:The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0 and
𝐷 = 5 at (a) 𝑡 = 2 time units and (b) 𝑡 = 6 time units.

20

40

60

80

100

120

140

14012010080604020

(a)

20

40

60

80

100

120

140

14012010080604020

(b)

20

40

60

80

100

120

140

14012010080604020

(c)

20

40

60

80

100

120

140

14012010080604020

(d)

Figure 3: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 20 time units, (c) 𝑡 = 100 time units, and (d) 𝑡 = 200 time units.

this level of memory effects with two resistance coupling
intensities by𝐷 = 1 and𝐷 = 5 and the resulting snapshots are
displayed in Figures 5 and 6, respectively. As before, greater
amounts of parameter 𝐷 cause the radius of the turbulent
propagating wave increase, so that a more extensive area is
covered in the snapshots of the same moments.

Furthermore,we examine a slightly further increase in the
level of memory effects by applying 𝑘 = 0.8 in two modes
of 𝐷 = 1 and 𝐷 = 5. The resulting spatiotemporal patterns

are shown in Figures 7 and 8, respectively. As it is observ-
able, in this case, the regular symmetrical deformations are
surrounded by a growing circular wave front. As soon as the
circular wave front touches the boundaries, it starts getting
into some deformations, too. Eventually, the mixture of the
resulting deformations covers the entire tissue and makes it
represent a completely different appearance (Figure 7(d)).

Considering all the above, we set a higher level of
memristor-type coupling by𝐾 = 0.9, in order to see whether
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Figure 4: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 20 time units, (c) 𝑡 = 100 time units, and (d) 𝑡 = 200 time units.
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Figure 5: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 6: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 7: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 8: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.

the resulting turbulent pattern continues to grow by more
strengthening the memristor-type coupling in the network.
The results are represented for 𝐷 = 1 and 𝐷 = 5 in Figures 9
and 10, respectively.

As is visible in the displayed results in Figures 9 and 10, the
spatial pattern takes a completely different appearance when
we pick the strength of memristor-type coupling beyond
a certain threshold. Besides, there is no sign of any small
rotating seeds either. In this case, with this set of parameters,
the central local area does not vanish and there exist a set
of concentric circles. Unlike the previous cases, these arising
circular wave fronts keep their overall curvature during the
whole time span. Moreover, these circular wave fronts take a
larger radius and findmore expansion when the resistor-type
coupling is increased from 𝐷 = 1 to 𝐷 = 5 (Figure 10). As
a result, this level of memristor effect causes a recognizable
change in the resulting spatiotemporal behavior. Even though
more synaptic plasticity is provided in this case, the turbulent
spatial pattern changes into a circular discipline with no
deformation.

For further investigation, we put the memory influence
of the excitable tissue in a higher level by setting 𝑘 = 1
with 𝐷 = 1 and 𝐷 = 5 in Figures 11 and 12, respectively.
Interestingly, neither partial deformation nor circular pattern
is observable in this case. Besides, the ultimate wave front
stops to grow after reaching a certain length of the radius.

Moreover, by further increase of thememory level by 𝑘 = 1.5,
the propagated wave subsides and finally disappears. For this
level of 𝑘, the snapshots in Figures 13 and 14 show the results
for𝐷 = 1 and𝐷 = 5, respectively.
3.2. Noise Effect. In this part, we expand our computational
analysis to investigate stability of the emerged patterns under
the noise effect. For this purpose, the Gaussian white noise
𝜉(𝑡) is added to the initial conditions, which were defined in
the first paragraph of Section 3. The statistical properties of
Gaussian white noise are defined by [37]

⟨𝜉 (𝑡) 𝜉 (𝑡󸀠)⟩ = 2𝐺𝛿 (𝑡 − 𝑡󸀠) , (5)

where 𝐺 is noise intensity and 𝛿(∗) is Dirac-𝛿 function. Two
levels of noise intensities are applied to the whole tissue by
𝐺 = 0.01 and 𝐺 = 0.1.

The results show that the spatial pattern totality is not
influenced by the noise effect for 𝑘 = 0, 𝑘 = 0.5, 𝑘 = 0.7,
𝑘 = 0.8, 𝑘 = 1, and 𝑘 = 1.5, so that the ultimate spatial pattern
does not change significantly for these cases.These results are
depicted in Figures 15–18, 20 and 21. However, as illustrated
in Figure 19, in the case 𝑘 = 0.9, a remarkable change is
made in the network fluctuations pattern due to the noise
effects. It seems that this level of memristor-type coupling
makes the tissue sensitive to noise and makes it represent a
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Figure 9: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 10: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 11:The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1 and
𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 12: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1
and𝐷 =5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 13: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 14: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 15: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0
and𝐷 = 1 at 𝑡1 = 2 time units and 𝑡2 = 6 time units. ((a), (b)) 𝐺 = 0.01 and ((c), (d)) 𝐺 = 0.1.

different collective behavior. Noticing the results before noise
considerations, the coupling 𝑘 = 0.9 was the only case with
continuity of the central local area accompanied by sustained
circular patterns. Our examination shows that, in opposition
to the other memristor-type coupling levels, in this level the
spatial representation is not robust against noise. Therefore,
as is clear through the snapshots in Figure 19 the circular
wave fronts change into some symmetrical deformations by
increasing the noise intensity (see Figure 19(l)). In other
words, the results reveal that the contribution of memristive
effects denoting the synaptic plasticity determines the robust-
ness of the excitable media against noise.

3.3. Numerical Results of Bifurcation Analysis. Knowing that
the dynamic behavior of a system can be revealed from its
bifurcation analysis, in this subsection, the bifurcation anal-
ysis is carried out by setting different memristor-type cou-
plings for a system of two coupled neuronal units. In this way,
a qualitative analysis of the role of parameter 𝑘 is available.We
set𝐷 = 1. The numerical result can be found in Figure 22.

In Figure 22, it is shown that the system can switch over
completely different dynamical behaviors under variation
of memristor-type coupling. In accordance with the results

represented in Sections 3.1 and 3.2, the whole diagram
confirms that the system starts with periodic behavior, in
which no propagation took place and then goes through some
complicated behaviors, in which the two-dimensional lattice
demonstrated wave propagation withinmultiple tiny rotating
spiral seeds, and finally again it arrives at periodic dynamics,
in which no propagation occurred.

In this paper, it was reported in Section 3.1 that the
coupling intensity of 𝑘 = 0, 𝑘 = 0.5, 𝑘 = 1, and 𝑘 =
1.5 prevents the tissue from supporting wave propagation.
Corresponding to these results, Figure 22 shows that the
system undergoes periodic behavior by these mentioned
memristor coupling intensities. Further, the chaotic behavior
for 𝑘 = 0.7 and 𝑘 = 0.8 in Figure 22 concurs with the results
in Figures 5 and 7, respectively, in which a turbulent electrical
demonstration arose out of the respective memristor-type
coupling intensities. Besides, in the previous subsections, the
coupling intensity 𝑘 = 0.9 was reported to be the only case
significantly affected by the noise perturbation. In accordance
with that, here our bifurcation analysis explains instability
of the system in 𝑘 = 0.9. Actually, the stability of the
spatiotemporal pattern against noise is reduced when the
neurons are set very close to their bifurcation point, which



Complexity 13

G = 0.01

t 1

20

40

60

80

100

120

140

14012010080604020

(a)

G = 0.01

t 2

20

40

60

80

100

120

140

14012010080604020

(b)

G = 0.01

t 3

20

40

60

80

100

120

140

14012010080604020

(c)

G = 0.01

t 4

20

40

60

80

100

120

140

14012010080604020

(d)

G = 0.1

t 1

20

40

60

80

100

120

140

14012010080604020

(e)

G = 0.1

t 2

20

40

60

80

100

120

140

14012010080604020

(f)

G = 0.1

t 3

20

40

60

80

100

120

140

14012010080604020

(g)

G = 0.1

t 4

20

40

60

80

100

120

140

14012010080604020

(h)

Figure 16: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.

is 𝑘 = 0.9 (see Figure 23). At this point, the excitable media
is very sensitive to perturbation. Thus, the media undergoes
completely different dynamics in 𝑘 = 0.9 by the noise impact.

4. Conclusion

In this study, the synaptic plasticity by means of memristor
was investigated and the potential spatiotemporal patterns
were detected. We showed that the memristive neuronal
network is capable of representing plasticity phenomenon
observed in biological cortical synapses. Excitable media
were modeled by a network of 150 × 150 neuronal units
with nearest neighbor connections containing memristor-
type coupling. The 3-neuron Hopfield neuronal model was
defined for the local dynamics of each unit. The tissue
model was postulated to be capable of representing different
dynamic behaviors mostly determined by the memristive
properties. Our study showed that the level of memristive

effect plays a determinative role for the tissue to support wave
propagation and also switch over different complex spatial
demonstrations. In fact, the changes of dynamic law that gov-
ern the neurons within their connections were brought out
from increasing or decreasing the memristor-type coupling
strength. Although the resulting propagated waves could be
expanded by greater amounts of resistor-type coupling, the
total spatial pattern of the neurons did not change under
the variation of resistor-type coupling. Further, we expanded
our computations to investigate the stability of the resulting
complex patterns against noise. It was revealed that all the
spatial patterns were robust against noise impact except one
case, in which the primary circular patterns changed into
symmetrical deformations after the noise impact.

Finally, for further study, we sought to discover whether
it is possible to find a meaningful relationship between the
qualitative properties of the coupled neurons and the spa-
tiotemporal demonstrations from a two-dimensional lattice.
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Figure 17: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 18: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 19: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and 𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, 𝑡4 = 300 time units, 𝑡5 = 450 time units, and 𝑡6 = 600 time units.
((a)–(f)) 𝐺 = 0.01 and ((g)–(i)) 𝐺 = 0.1.

Therefore, first the bifurcation analysis was carried out for
different intensities of memristor-type coupling to see the
possible mutual influence of the coupled neurons under
memristive effects, and then the results were compared to our
two-dimensional analysis. Our study revealed that the spa-
tiotemporal patterns of electrical activity of the tissue concur
with the bifurcation analysis. It was shown that thememristor
coupling intensities, by which the system undergoes periodic
behavior, prevent the tissue from holding wave propagation.
In addition, the chaotic-like behavior in bifurcation diagram
concurs with the turbulent spatiotemporal electrical activity
of the tissue. Moreover, we showed that the excitable media is
very sensitive to noise impact when the neurons are set close

to their bifurcation point, so that the spatiotemporal pattern
is not stable.
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Figure 20: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 21: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 22: Bifurcation diagram of two coupled neurons for different
memristor-type coupling intensities (𝑘 = 0 to 𝑘 = 1.5), while 𝐷 = 1
and other parameters are at their nominal values.
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Figure 23: Bifurcation diagram of two coupled neurons for different
memristor-type coupling intensities (𝑘 = 0.84 to 𝑘 = 0.94), while
𝐷 = 1 and other parameters are at their nominal values.
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This brief leads the synthesis of fractional-order memristor (FOM) emulator circuits. To do so, a novel fractional-order integrator
(FOI) topology based on current-feedback operational amplifier and integer-order capacitors is proposed. Then, the FOI is
substituting the integer-order integrator inside flux- or charge-controlled memristor emulator circuits previously reported in the
literature and in both versions: floating and grounded. This demonstrates that FOM emulator circuits can also be configured
at incremental or decremental mode and the main fingerprints of an integer-order memristor are also holding up for FOMs.
Theoretical results are validated throughHSPICE simulations and the synthesized FOMemulator circuits can easily be reproducible.
Moreover, the FOM emulator circuits can be used for improving future applications such as cellular neural networks, modulators,
sensors, chaotic systems, relaxation oscillators, nonvolatile memory devices, and programmable analog circuits.

1. Introduction

Resistors, inductors, capacitors, and memristors are basic
network elements and the real behavior of each of them is
time-varying and nonlinear [1–3]. For the last three cases,
the real behavior of each element has always been modeled
from integer-order differential equations. However, it is well
known that this kind of modeling is only a narrow subset
of fractional calculus, which is a generalization of arbitrary
order differentiation and integration, and this last approach
can be used to better model the description of natural
phenomena [4–8]. In this context, fractional calculus is
beginning to be used for describing the behavior of memris-
tive elements and systems, i.e., memristors, memcapacitors,
meminductors, and any combination of them. Particularly,
few studies have been realized on fractional-order mem-
ristors (FOM). Thus, [9] analyzes the FOM state equation
behavior when a step signal is applied and demonstrates
that by controlling fractional parameters associated with the
FOM, the saturation time of the resistance can be con-
trolled. In [10], fractional calculus is used to generalize
the memristor and higher-order elements, although without
any physical meaning. From a mathematical point of view,

[11] reports the memfractance concept and according to
the fractional-order, it shows the interpolated characteristics
between different memristive elements. In [12], the relation-
ship between fracmemristance and fractance is discussed.
By combining capacitors together with memristors, net-
grid-type structures were also described to approximate the
capacitive and inductive fracmemristor. In [13], the no ideal
fractional interaction between flux and charge of amemristor
is described. However, a piecewise nonlinear model of the
memristor is considered and as a consequence, the fractional-
order dynamic system is approached but again without any
deep physical understanding. More recently, [14] reports the
use of Valsa-algorithm for approximating a fractional-order
capacitor. Afterwards, this element is substituting the integer-
order capacitor into a memristor emulator circuit, obtaining
the FOM behavior. However, the main disadvantage of [14]
is that not only large RC-circuits are obtained, but the
numerical value of each resistive and capacitive element is not
commercially available and hence, parallel-series networks
must again be used. Despite the FOMconcept has beenmath-
ematically studied and ideal numerical results were shown,
neither physical solid-state device nor emulator circuit has
been developed until today. In this scope, this paper addresses
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Figure 1: FOI circuit synthesis based on CFOA.

the synthesis of FOM emulator circuits from integer-order
memristor emulator circuits previously reported in the liter-
ature [15–18]. The rest of the paper is organized as follows. In
Section 2, a novel fractional-order integrator (FOI) topology
based on current-feedback operational amplifier (CFOA) and
integer-order capacitors is discussed. In Section 3, the FOI
previously designed is replacing the integer-order integrator
(IOI) inside flux- or charge-controlled memristor emulator
circuits, at their floating and grounded versions, and the
FOMs can also be configured for operating at incremental
or decremental mode [2]. Section 4 shows HSPICE simu-
lation results, showing that the fingerprints of an integer-
order memristor are holding up for their fractional versions.
Finally, some conclusions are summarized in Section 5.

2. Fractional-Order Integrator

A challenge at fractional calculus is the building or in best of
cases, the approximation of fractances [19, 20]. In this sense,
several mathematical approximations were researched and
by its quickly convergence, continuous fractional expansion
approach is the most adequate. Thus, the first-order approxi-
mation of an FOI is given by

1
𝑠𝛼 ≈

(1 − 𝛼) 𝑠 + (1 + 𝛼)
(1 + 𝛼) 𝑠 + (1 − 𝛼) =

𝐵𝑠 + 1
𝐵 + 𝑠 ,

𝐵 = 1 − 𝛼
1 + 𝛼 ∀0 < 𝛼 < 1,

(1)

where𝛼 is the fractional-order. It is important tomention that
high-order fractance approximations can also be obtained;
however, the synthesis of them leads to complex and bulky
circuits [21, 22]. A simple circuit able to synthesize (1) is given
in Figure 1, whose transfer function is

V𝑜 (𝑠)
V𝑖 (𝑠) = 𝐴V1𝐴V2𝐴 𝑖𝐵𝑠 + 1𝐵 + 𝑠 ≈ 1

𝑠𝛼 , (2)

where 𝐴V1,2 ≈ 0.98 and 𝐴 𝑖 ≈ 0.98 are the voltage and current
gains of the voltage and current followers associatedwithX-Y,
W-Z, and Z-X terminals of the CFOA, respectively. To design
the FOI, we propose the following design guide:

(1) Given 𝛼, use (1) to compute B.

(2) Choose C = 0.1mF and evaluate 𝑅 = 𝐶−1 = 10 kΩ.
(3) Using the numerical value of 𝐵 obtained in the first

step, evaluate BC and 𝑅𝑓 = (𝐵𝐶)−1 of Figure 1. Resis-
tances with noncommercial values are adjusted with
precision potentiometers and capacitances with series
and parallel connections.

(4) Frequency denormalization is done for 𝐶new = 𝐶/𝑘𝑓,
where kf is the denormalization constant.

Following these steps and from (1), we assume 𝛼 = 0.99, 0.75,
0.50, 0.25, 1m, and as a consequence B = 5m, 0.14, 0.33, 0.60,
0.99; 𝑉𝑑𝑑 = ±10V, V𝑖(𝑡) = 𝐴𝑚 sin(𝜔𝑡), where 𝐴𝑚 = 2V is the
amplitude of the voltage signal source, 𝜔 = 2𝜋𝑓, f = 20 kHz,
and kf = 50 k. According to the third and fourth steps, BC/kf
= 10 pF, 0.28 nF, 0.66 nF, 1.2 nF, 2 nF, 𝑅𝑓 = (𝐵𝐶)−1 = 2MΩ,
70 kΩ, 30 kΩ, 16.6 kΩ, 10 kΩ, and C/f = 2 nF. To make a
fair comparison, an IOI is obtained of Figure 1 by removing
(𝐵𝐶)−1 and BC. In this way, Figures 2(a)–2(e) illustrate the
transient behavior of the FOI for each 𝛼 described above
and one can observe that for 𝛼 = 0.99 (Figure 2(a)), the
behavior of the FOI approximates to IOI, whereas for 𝛼 =
1m, 𝐵 ≈ 1 and hence, Figure 1 becomes a voltage follower,
as described in (2) and depicted in Figure 2(e) [23]. Note
that, for all graphics, HSPICE results are in agreement with
experimental results. Moreover, from point of view of root
locus analysis, the zero and pole of (2) are moved when 𝛼
varies. This is a serious disadvantage, since 𝐶 should quickly
be discharged when 𝑅𝑓 is low. To mitigate this problem, the
pole is set up and fixed for 𝛼 = 0.99 and the FOI behavior is
plotted when the zero is varied. Figures 2(a)–2(e) show that
this assumption can stillmodel the behavior of FOIwith a low
error level. Nevertheless, when 𝛼 = 1m, the error increases
and the pole is not placed on the zero. Hence, Figure 1
becomes again a voltage follower, but with a light phase
shifting, as depicted in Figure 2(e). For convenience, the
magnitude and phase response in the frequency domain of
Figure 1 for the three cases (IOI, FOI, and FOI with 𝑅𝑓 fixed)
and when 𝛼 varies are illustrated in Figure 3. In the former
figure, one can observe that themagnitude response has slope
−20𝛼 dB/dec which decreases when 𝛼 also decreases. Notice
that when 𝛼 = 0.99, the magnitude response of the three cases
is superimposed and with 49.42 dB at DC. Afterwards, when
𝛼 is monotonically decreased, the magnitude and slope of the
second and third case are modified. Thus, for 𝛼 = 0.75, the
magnitude at DC of the second case is 16.45 dB and from
3 kHz, this is superimposed with the magnitude of the first
case. Later, when 𝛼 takes the aforementioned values and from
20 kHz, the frequency responses of the second and third cases
are similar, as shown in Figure 3(a), confirming the previous
analysis [20]. Note that, at low-frequency, the magnitude
of the FOI varies for the different values of 𝛼, whereas the
magnitude at DC of the third case remains at 49.42 dB.
Moreover, Figure 3(b) shows the phase response given by 𝜃 =
−90∘𝛼 or 𝜃 = −𝜋𝛼/2 rad. Similarly as above, when 𝛼 = 0.99
the phase response for all cases is superimposed at −90∘. This
behavior is modified for second and third cases, and when
𝛼 takes different values. Therefore, for FOI, one can observe
in Figure 3(b) that the phase becomes zero when 𝛼 = 1m,
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Figure 2: Transient responses of IOI, FOI, and FOI with 𝑅𝑓 fixed when (a) 𝛼 = 0.99, (b) 𝛼 = 0.75, (c) 𝛼 = 0.5, (d) 𝛼 = 0.25, and (e) 𝛼 = 1m, all
operating to f = 20 kHz.
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Figure 3: Behavior of IOI (black line), FOI for: 𝛼 = 0.99 (blue line), 𝛼 = 0.75 (red line), 𝛼 = 0.5 (green line), 𝛼 = 0.25 (cyan line), and 𝛼 = 1m
(magenta line); and FOI with 𝑅𝑓 fixed for 𝛼 = 0.99 (light blue line), 𝛼 = 0.75 (light red line), 𝛼 = 0.5 (light green line), 𝛼 = 0.25 (light cyan
line), and 𝛼 = 1m (light magenta line): (a) magnitude response and (b) phase response.

Table 1: Numerical values of the phase and magnitude response of IOI, FOI, and FOI with 𝑅𝑓 fixed for 𝛼 ∈ (0, 1) and 𝑓 = 20 kHz.

𝛼 Phase (Deg) Magnitude (dB)
IOI FOI FOI with 𝑅𝑓 fixed Difference IOI FOI FOI with 𝑅𝑓 fixed Difference

0.99 −89.92 −89.91 −89.91 0 −8.25 −8.25 −8.25 0
0.75 - −66.71 −69.89 3.18 - −7.71 −7.70 −0.01
0.5 - −42.27 −49.66 7.19 - −5.93 −5.85 −0.08
0.25 - −20.31 −33.44 13.13 - −3.19 −2.96 −0.23
1m - −0.88 −22.09 21.21 - 0.072 0.541 0.469

whereas a level of error is glimpsed for FOI with 𝑅𝑓 fixed.
From these graphics, we can claim that the proposed topology
is stable until 1MHz, approximately [24]. Table 1 gives the
numerical value of the magnitude and phase response for f
= 20 kHz and different 𝛼. It is important to mention that,
for any design where 𝛼 > 1 is required, the FOI must be
connected in cascade with 𝑞 integer-order integrators, such
that 𝛼̂ = 𝛼 − 𝑞. For instance, let us suppose 𝛼 = 4.35; then
𝑞 = 4 and 𝛼̂ = 4.35 − 4 = 0.35.
3. Fractional-Order Memristor Synthesis

In [15], a flux-controlled floating memristor emulator circuit
which uses four positive second-generation current con-
veyors (CCII+s) and one analog multiplier was reported.
According to Figure 1 in [15], the topology has an IOI circuit
well defined and its memristance equation given by (9) in [15]
is also of integer-order. To obtain an FOM from integer-order
memristor, the integrator circuit of the lattermust be replaced
by FOI circuit, as shown in Figure 4(a). Following the analysis
given in [15, 25], the behavioral model is deduced as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅4
10𝑅2 (𝑅1 −

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑎𝐽

𝛼
𝑡 V𝑚 (𝑡) − 𝑉𝐻

𝑖𝑚 (𝑡) , (3)

where 𝑉𝐻 and 𝑉𝑉 are DC voltage sources to control hori-
zontally and vertically the offset of the dependent-frequency

pinched hysteresis loop on the voltage-current plane, respec-
tively [25], and 𝑎𝐽𝛼𝑡 denotes the fractional-order integral
operator of

(i) Riemann-Liouville and Caputo fractional integral

𝑎𝐽𝛼𝑡 V𝑚 (𝑡) = 1
Γ (𝛼) ∫

𝑡

𝑎

V𝑚 (𝜏)
(𝑡 − 𝜏)1−𝛼 𝑑𝜏, (4)

(ii) or Grunwald-Letnikov fractional integral

𝑎𝐽𝛼𝑡 V𝑚 (𝑡) = lim
ℎ→0

ℎ𝛼
(𝑡−𝑎)/ℎ

∑
𝑝=0

Γ (𝛼 + 𝑝)
𝑝!Γ (𝛼) V𝑚 (𝑡 − 𝑝ℎ) , (5)

where for both fractional integrals, 𝑎 and 𝑡 are the
lower and upper limits of integration.

Defining the fractional-order flux 𝜙𝛼𝑚(𝑡) = 𝑎𝐽𝛼𝑡 V𝑚(𝑡), (3) can
be rewritten as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅4
10𝑅2 (𝑅1 −

𝑉𝑉
𝑖𝑚 (𝑡)) 𝜙

𝛼
𝑚 (𝑡) − 𝑉𝐻

𝑖𝑚 (𝑡)
= 𝑀 (𝜙𝛼𝑚 (𝑡)) ,

(6)

where 𝑀(𝜙𝛼𝑚(𝑡)) is the flux-controlled fracmemristance and
can be controlled by applying a voltage or current signal
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Table 2: Component list of Figure 4(a), Figure 1 in [15], Figure 4(b), and Figure 5 in [18], assuming 𝐶 = 0.1mF, 𝑘𝑓 = 50 e3, 𝛼 ≈ 1, and
𝑓 = 20 kHz.

Element Figure 4(a) Figure 1 in [15] Figure 4(b) Figure 5 in [18] Tolerance
Inc. Dec. Inc. Dec. Inc. Dec. Inc. Dec.

𝑉𝐻 −37mV −75mV −40mV −70mV −49mV −50mV
𝑉𝑉 36mV 76mV 39mV 85mV −50mV −93mV −95mV
𝐴𝑚 2V
±𝑉𝑑𝑑 ±10V
𝑅1 10 kΩ 9 kΩ

±5%
𝑅2 1 kΩ 10 kΩ 11.5 kΩ
𝑅3 - 2.4 kΩ - 9.5 kΩ
𝑅4 10 kΩ - -
𝐶−1 10 kΩ - 10 kΩ -
(𝐵𝐶)−1 2MΩ - 2MΩ -
𝐵𝐶/𝑘𝑓 10 pF - 10 pF -

±20%𝐶/𝑘𝑓 2 nF - 2 nF -
𝐶𝑧 = 𝐶/𝑘𝑓 - 2 nF - 2 nF
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Figure 4: (a) Flux-controlled floating fracmemristor and (b) charge-
controlled grounded fracmemristor.

across the memristor, as depicted in Figure 4(a). Moreover,
charge-controlledmemristor emulator circuits have also been
reported in the literature. According to Figure 5 in [18],
the emulator circuit has also an IOI circuit and if it is

exchanged with Figure 1, then a fractional-order charge-
controlled grounded memristor emulator circuit is obtained,
as shown in Figure 4(b). Hence, following the analysis given
in [18, 25], one obtains

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅2
10 (𝑅2 +

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑎𝐽

𝛼
𝑡 𝑖𝑚 (𝑡) + 𝑉𝐻

𝑖𝑚 (𝑡) (7)

and the fractional-order charge becomes 𝑞𝛼𝑚(𝑡) = 𝑎𝐽𝛼𝑡 𝑖𝑚(𝑡).
Hence, (7) can be written as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅2
10 (𝑅2 +

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑞

𝛼
𝑚 (𝑡) + 𝑉𝐻

𝑖𝑚 (𝑡)
= 𝑀 (𝑞𝛼𝑚 (𝑡)) ,

(8)

where 𝑀(𝑞𝛼𝑚(𝑡)) is the charge-controlled fracmemristance.
Regarding Figure 4, the S switch is used for selecting the kind
of fracmemristor, where I denotes the incremental topology
and D denotes the decremental topology. Note that if 𝑉𝐻 =
𝑉𝑉 = 0 and 𝛼 = 1, then (6) and (8) are reduced to their
original versions given in [15, 18].

4. Numerical Simulations

Once the behavioral model for each floating and grounded
fracmemristor at its incremental and decremental version
has been deduced, numerical simulations can be realized.
Henceforth, numerical results of the incremental topologies
will be shown below in the left-side and for the decremental
topologies will be shown in the right-side. On the one hand,
to design the integer-order floating memristor working at
incremental and decremental mode, the design guideline
reported in [15] was used. Table 2 gives the numerical value of
each element of Figure 4(a) and Figure 1 reported in [15], with
V𝑚(𝑡) = 𝐴𝑚 sin(𝜔𝑡). On the other hand, since it is not possible
to deduce, by now, an analytical model to make a frequency
analysis [15], each design variable of the fracmemristor was
varied in order to adjust the frequency-dependent pinched
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Figure 5: Comparing the frequency-dependent pinched hysteresis loops of the flux-controlled floating memristor (blue line) and
fracmemristor (red line): (a) incremental mode, (b) decremental mode, and for the charge-controlled grounded memristor (blue line) and
fracmemristor (red line): (c) incremental mode and (d) decremental mode.

hysteresis loop behavior with its integer version. In this way,
Figures 5(a) and 5(b) show the pinched hysteresis loops of
the flux-controlled floating memristor and fracmemristor at
each operation mode and one can observe a good agreement
among the graphics for the incremental case. However, a
slight variation is glimpsed for the decremental case and
could be due to the nonlinearities of the analog multiplier.
A similar analysis is done for Figure 4(b) at its integer-
order version and Figure 5 taken from [18]. Table 2 also
gives the numerical value of each element used in numerical
simulations. Thus, Figures 5(c) and 5(d) depict the behavior
of each pinched hysteresis loop at each operation mode.
For Figure 5(c), one can observe that both hysteresis loops

are almost the same and hence, Figure 4(b) becomes an
integer-order memristor [18]. Moreover, when the S-switch
is connected to D-terminal and I-terminal is grounded,
Figure 4(b) is now configured at decremental mode and
Figure 5(d) illustrates the hysteresis loops. On this last figure,
one can observe a good agreement among them. Therefore,
the behavior of Figure 4(b) becomes also an integer-order
memristor. Comparing all graphics of Figure 5, we note that,
for each case, the area of each lobe of the latter figures is
less than the area of each lobe of the former. Nonetheless,
the hysteresis loops of Figures 5(c) and 5(d) can be widened
by adjusting the numerical value of 𝑅1 or 𝑅2. However, this
will have a negative impact, since the hysteresis loops should
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Figure 6: Fractional-order frequency-dependent pinched hysteresis loops of the floating fracmemristor operating at (a) incremental mode
and (b) decremental mode. For the grounded fracmemristor operating at (c) incremental mode and (d) decremental mode. For all cases: 𝛼 =
0.99 (light blue line), 𝛼 = 0.75 (light red line), 𝛼 = 0.5 (light green line), 𝛼 = 0.25 (light cyan line), and 𝛼 = 1m (light magenta line).

be lost with a small variation of 𝛼. It is worth noting that,
unlike [15, 18], the behavior of each frequency-dependent
pinched hysteresis loop and at each operation mode has been
improved, achieving that, after the offset compensation, all
they are operating to 20 kHz and the lobe area of each hys-
teresis loop becomes relatively equal, obtaining frequency-
dependent pinched hysteresis loops almost symmetrical.
Furthermore, the real behavior of Figures 4(a) and 4(b) in
their integer-order versions was experimentally verified in
[15, 18] and Figure 5 shows similar behaviors.

Once obtained the hysteresis loops of the floating and
grounded fracmemristor in both operation modes and
for 𝛼 = 0.99, we can now reduce 𝛼 in order to obtain the

behavior of each fractional-order frequency-dependent
pinched hysteresis loop. Figure 6(a) shows the hysteresis
loops of Figure 4(a) at incremental mode and for five
numerical values of 𝛼, whereas Figure 6(b) illustrates the
fractional hysteresis loops of Figure 4(a) at decremental
mode. In both figures, note that, when 𝛼 = 1m, the hysteresis
loops are seriously deformed and as a consequence, the
emulator circuits do not work. This behavior is due to that
the FOI becomes a voltage follower, as shown in Figure 2(e)
(light green line). Moreover, Figures 6(c) and 6(d) show
the fractional hysteresis loops of Figure 4(b) configured at
incremental and decremental mode, respectively. On these
last figures, we note that when 𝛼 takes different values, the
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Table 3: Component list of Figure 1 when 𝛼 varies, assuming 𝐶 = 0.1mF and 𝑘𝑓 = 50 e3.
Element 𝛼 = 0.99 𝛼 = 0.75 𝛼 = 0.5 𝛼 = 0.25 𝛼 = 1m
𝐶−1 10 kΩ
𝑅𝑓 = (𝐵𝐶)−1 2MΩ
𝐵𝐶/𝑘𝑓 10 pF 0.28 nF 0.66 nF 1.2 nF 2 nF
𝐶/𝑘𝑓 2 nF
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Figure 7: Incremental and decremental fracmemristance variation when a pulse train (bottom graphics) is applied to (a) Figure 4(a) and (b)
Figure 4(b). For the incremental case: 𝛼 = 0.99 (light blue line), 𝛼 = 0.75 (light red line), and 𝛼 = 0.5 (light green line). For the decremental
case: 𝛼 = 0.99 (black line), 𝛼 = 0.75 (light cyan line), and 𝛼 = 0.5 (light magenta line).

range of variation of the hysteresis loops is shorter than
Figures 6(a) and 6(b). Similarly as above, when 𝛼 = 1m,
the emulator circuit does not work. For all graphics of
Figures 5 and 6, V1(𝑡) = 𝑖𝑚(𝑡)𝑅1 was used to indirectly plot
𝑖𝑚(𝑡). At this point, our results indicate that, by selecting
adequately the numerical value of each element of Figures
4(a) and 4(b) for a particular operating frequency, both
emulator circuits are able to generate fractional hysteresis
loops. Table 3 gives the numerical value of each element
of Figure 1 for different values of 𝛼. However, comparing
the linear time-varying parts of (6) and (8) we note that
the former has four design variables and the latter only
two, limiting the performance range of the emulator circuit
when 𝛼 varies and as a consequence, Figure 4(a) has better
performance, as shown in Figure 6. It is worth stressing that
our results are confirming the theory given in [10]. Besides
the fractional pinched hysteresis loops, other fingerprint
of the fracmemristor is when the pinched hysteresis loop
shrinks when increasing the excitation frequency and
although herein is not shown, each fracmemristor behaves
as a time-invariant resistor. Moreover, it is interesting to
research other fingerprints related to the fracmemristance,
which is the nonvolatility of its fracmemristance. This means
that once the fracmemristance is programmed, its last value
must be freezed during a long time and when the input

signal is not applied. Therefore, for Figure 4(a) configured
at incremental and decremental mode, a pulse train with
2V of amplitude, 1.36 𝜇s of pulse width, and 25𝜇s of period
is applied and as illustrated in Figure 7(a) (top graphics),
one obtains the incremental fracmemristance change for 𝛼
= 0.99 (light blue line), 𝛼 = 0.75 (light red line), and 𝛼 = 0.5
(light green line), whereas the decremental fracmemristance
changes for the same values of 𝛼 are also obtained and
given by black line, light cyan line, and light magenta line,
respectively. A similar analysis is done for Figure 4(b) also
configured at incremental and decremental mode but with a
pulse train of 2V of amplitude, 4 𝜇s of pulse width, and 50 𝜇s
of period. In this way, Figure 7(b) (top graphics) shows the
incremental and decremental fracmemristance change for
the same values of 𝛼 and labeled with the same kind of lines
described before. Note that, for all graphics, during nonpulse
period the fracmemristance is nonvolatile and its variation is
negligible. However, an overshoot signal is glimpsed for all
fracmemristances and it is due to the behavior of the FOI.
Nonetheless, after of the overshoot, each fracmemristance for
each 𝛼 is held up. Furthermore, when 𝛼 is near to 1, not only
the fracmemristances are similar to the memristances and
hence, the maximum (17 kΩ for Figure 7(a) and 16 kΩ for
Figure 7(b)) and minimum (4 kΩ for Figure 7(a) and 1.64 kΩ
for Figure 7(b)) fracmemristance are obtained, but the range
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of variation of the former should monotonically be reduced
when 𝛼 decreases and as a consequence, the maximum and
minimum fracmemristance are also reduced, as shown in
Figure 7. It is worth stressing that the proposed synthesis
methodology is only applicable for those integer-order
memristor topologies where the IOI circuit is clearly defined,
and when it is replaced by FOI circuit, the resulting emulator
circuit behavior, in general, is lightly modified.

5. Conclusions

A synthesis methodology for obtaining the behavior of
FOM emulator circuits from integer-order memristor emu-
lator circuits at their versions floating and grounded and
operating at incremental and decremental mode has been
described. Basically, the methodology consists of exchanging
the IOI circuit clearly defined in the integer-order memristor
emulator circuit by an FOI circuit, so that not only an
FOM is obtained, but also the synthesized topology is not
drastically modified with respect to its original topology. In
each fractional topology, amechanismof offset compensation
in order to push or pull the crossing point of the hysteresis
loops towards the origin was used [25] and as a consequence,
both fracmemristors are able to operate at high-frequency.
However, it is important to mention that, at high-frequency,
not only parasitic elements associated with the active devices
affect the performance of the emulators, but also the parasitic
elements associated with the breadboard or printed circuit
board. Therefore, there is a limit on the operating frequency
of the emulators, as has already been reported in [16, 17, 26]. It
has numerically been demonstrated that the fractional-order
frequency-dependent pinched hysteresis loops are reduced
when 𝛼 decreases, but each hysteresis loop becomes a straight
line whether the operating frequency of the signal source also
increases. Furthermore, nonvolatility tests were also shown
and one can observe in Figure 7 that the range of variation
of each incremental and decremental fracmemristance is
reduced when 𝛼 decreases. Finally, it is worth remarking that
to the best knowledge of the authors, solid-state FOMs have
not been still fabricated and therefore, not only the use of
emulator circuits is necessary for researching and improving
future real applications [27, 28], but also FOM emulator
circuits have not been reported in the literature, until today.
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be obtained through a letter sent to first author, explaining
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Electronics and Communications, vol. 73, pp. 23–33, 2017.

[18] A. S. Elwakil, M. E. Fouda, and A. G. Radwan, “A simple model
of double-loop hysteresis behavior in memristive elements,”



10 Complexity

IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
60, no. 8, pp. 487–491, 2013.

[19] A. Charef, “Analogue realisation of fractional-order inte-
grator, differentiator and fractional PID 𝜇 controller,” IEE
Proceedings—Control Theory and Applications, vol. 153, no. 6,
pp. 714–720, 2006.

[20] D. Goyal and P. Varshney, “CCII and RC fractance based frac-
tional order current integrator,”Microelectronics Journal, vol. 65,
pp. 1–10, 2017.
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[27] I. Carro-Pérez, H. Gonzalez-Hernandez, and C. Sanchez-
Lopez, “High-frequency memristive synapses,” in Proceedings
of the 2017 IEEE 8th Latin American Symposium on Circuits &
Systems (LASCAS), pp. 1–4, Bariloche, Argentina, Feburary 2017.
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This paper investigates extreme multistability and its controllability for an ideal voltage-controlled memristor emulator-based
canonical Chua’s circuit.With the voltage-currentmodel, the initial condition-dependent extrememultistability is explored through
analyzing the stability distribution of line equilibrium point and then the coexisting infinitely many attractors are numerically
uncovered in such a memristive circuit by the attraction basin and phase portraits. Furthermore, based on the accurate constitutive
relation of the memristor emulator, a set of incremental flux-charge describing equations for the memristor-based canonical Chua’s
circuit are formulated and a dimensionality reduction model is thus established. As a result, the initial condition-dependent
dynamics in the voltage-current domain is converted into the system parameter-associated dynamics in the flux-charge domain,
which is confirmed by numerical simulations and circuit simulations. Therefore, a controllable strategy for extreme multistability
can be expediently implemented, which is greatly significant for seeking chaos-based engineering applications of multistable
memristive circuits.

1. Introduction

Initial condition-dependent extreme multistability, first
encountered in several coupled nonlinear dynamical systems
[1–3], is a coexisting phenomenon of infinitely many
attractors for a given set of system parameters. More recently,
due to the existence of infinitely many equilibrium points, for
example, line equilibrium point or plane equilibrium point,
this special dynamical phenomenon of extrememultistability
is naturally exhibited in a class of ideal flux/voltage-controlled
memristor-based chaotic circuits/systems [4–9], thereby
leading to the emergence of infinitely many disconnected
attractors.

Extrememultistability is a fantastic kind of multistability,
which makes a nonlinear dynamical circuit or system supply
great flexibility for its potential uses in chaos-based engineer-
ing applications [10–12], but also raises new challenges for
its control of the existing multiple stable states [11–14]. Gen-
erally, multistability is confirmed in hardware experiments

by randomly switching on and off experimental circuit sup-
plies [9, 15–21] or by MATLAB numerical or PSPICE/PSIM
circuit simulations [4–8, 22–28]. Consequently, to direct the
nonlinear dynamical circuit or system to a desired oscillating
mode, an effective control approach should be proposed
[12]. To this end, this paper takes an ideal voltage-controlled
memristor emulator-based canonical Chua’s circuit as an
example; a controllable strategy for extreme multistability is
achieved through converting the initial condition-dependent
dynamics in the voltage-current domain into the system
parameter-associated dynamics in the flux-charge domain
[29, 30].

Besides, for a memristor-based circuit or system with
line equilibrium point or plane equilibrium point, its stability
at the equilibrium point is very difficult to be determined
due to the existence of one or two zero eigenvalues [5–9],
which results in the fact that the coexisting infinitely many
attractors’ behaviors can not be precisely interpreted from
the stabilities of the nonzero eigenvalues. As a matter of fact,
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Figure 1: Memristor-based canonical Chua’s circuit. (a) Circuit schematic with simple topology. (b) Ideal voltage-controlled memristor
emulator implemented with discrete components.

the memristor initial condition and other initial conditions
all have dynamical effects on the memristor-based circuit or
system [8, 9]. However, the dynamical effects are implied,
which can not be explicitly expressed in the voltage-current
domain. How about thememristor-based circuit or system in
the flux-charge domain?

Flux-charge analysis method was first postulated as a
tool of dimensionality reduction [31–36], in which the initial
conditions of the memristor-based circuit or system are not
precisely formulated, thereby leading to the absence of the
initial condition-dependent dynamical behaviors [34–36]. In
the last two years, a new flux-charge analysis method is
reported in [29, 30], which judiciously utilizes the incremen-
tal flux and charge to substitute the conventional flux and
charge and efficaciously solves the issue of the original flux-
charge analysis method. Accordingly, based on the voltage-
current relation, an accurate flux-charge relation of the ideal
voltage-controlled memristor emulator is established. With
the accurate constitutive relation, an incremental flux-charge
model for the memristor-based canonical Chua’s circuit is
constructed, upon which all the initial conditions in the
voltage-current model can be explicitly formulated by the
system parameters in the flux-charge model and the multiple
stable states can be consequently controlled by changing the
initial condition-related system parameters.

The rest of the paper is structured as follows. In
Section 2, an ideal voltage-controlled memristor emulator-
based canonical Chua’s circuit is presented. With the voltage-
current model, the initial condition-dependent extreme
multistability is explored and then the coexisting infinitely
many attractors are numerically uncovered. In Section 3,
based on the accurate constitutive relation of the memristor
emulator, a set of incremental flux-charge equations for the
memristor-based canonical Chua’s circuit are formulated and
a dimensionality reduction model is thus established, upon
which the feasibility of the flux-charge analysis method is
verified by MATLAB numerical simulations. In Section 4,
an equivalent circuit of the incremental flux-charge model
is designed and circuit simulations for the initial condition-
dependent behaviors are executed, from which the control-
lability of extreme multistability is physically confirmed. The
conclusions are drawn in the last section.

Table 1: Circuit parameters of memristor-based canonical Chua’s
circuit.

Parameters Significations Values
𝐶0 Capacitance 1 nF
𝐶1 Capacitance 4.7 nF
𝐶2 Capacitance 33 nF
𝐿1 Inductor 30mH
𝑔 Total gain 0.2 V−2

𝑅𝑎 Resistance 4 kΩ
𝑅𝑏 Resistance 1.5 kΩ
𝑅𝑐, 𝑅𝑑 Resistance 2 kΩ
𝑅 Resistance 1.5 kΩ
𝑅1, 𝑅2 Resistance 2 kΩ

2. Extreme Multistability in the
Voltage-Current Domain

Based on a canonical Chua’s circuit and an ideal voltage-
controlled memristor emulator, a new memristor-based
canonical Chua’s circuit is constructed, as shown in
Figure 1(a), which is simple and physically realizable.
The ideal voltage-controlled memristor emulator is
equivalently implemented with an electronic circuit via
op-amp integrators and analog multipliers [5, 6, 34], as
shown in Figure 1(b). In our next work, the considered
circuit parameters remained unchanged and are listed in
Table 1, where 𝑔 is the total gain of two multipliers 𝑀𝑎 and𝑀𝑏.
2.1. Conventional Voltage-Current Model. For the ideal
voltage-controlled memristor emulator in Figure 1(b), the
relationships of the input voltage V, the input current 𝑖, and
the voltage V0 of the capacitor 𝐶0 can be mathematically
described in the voltage-current domain as

𝐶0 dV0d𝑡 = − 1
𝑅𝑎 V,

𝑖 = 𝑊 (V0) V = − 1
𝑅𝑏 (1 − 𝑔V20) V.

(1)
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Thus, for the state variables of V0, V1, V2, and 𝑖3 in Figure 1, the
describing circuit equations are easily given in the voltage-
current domain as

𝐶0 dV0d𝑡 = − 1
𝑅𝑎 V1,

𝐶1 dV1d𝑡 = 1
𝑅𝑏 (1 − 𝑔V20) V1 + 𝑖3,

𝐶2 dV2d𝑡 = V2𝑅 − 𝑖3,
𝐿d𝑖3
d𝑡 = V2 − V1,

(2)

where V = V1.
Introduce four new state variables and scale the circuit

parameters as

𝑥1 = V0,
𝑥2 = V1,
𝑥3 = V2,
𝑥4 = 𝑅𝑖3,
𝜏 = 𝑡

𝑅𝐶2 ,
𝑅𝑏 = 𝑅,
𝑎 = 𝑅𝐶2𝑅𝑎𝐶0 ,

𝑏 = 𝐶2𝐶1 ,

𝑐 = 𝑅2𝐶2𝐿 .

(3)

Model (2) can be reexpressed as

𝑥̇1 = −𝑎𝑥2,
𝑥̇2 = 𝑏 (1 − 𝑔𝑥21) 𝑥2 + 𝑏𝑥4,
𝑥̇3 = 𝑥3 − 𝑥4,
𝑥̇4 = 𝑐 (𝑥3 − 𝑥2) ,

(4)

which indicates that there are only four parameters in the
normalized system model.

With the circuit parameters in Table 1, the normalized
parameters for model (4) are obtained by (3) as

𝑎 = 12.375,
𝑏 = 7.0213,
𝑐 = 2.475,
𝑔 = 0.2.

(5)

I

II

III

IV
2P1N

IV
2P1N

0P3N
III

0P3N

1P2N
II

1P2N

3P0N

−8

−6

−4

−2

0

2

4

Re
al

 (
i)

−4 −2 0 2 4 6−6



1

2

3

4

Figure 2: Stability distributions classified by the real parts of three
nonzero eigenvalues of the line equilibrium point 𝑃 in the region of−6 ≤ 𝜇 ≤ 6, where 𝑖 = 1, 2, 3, 4.

In the following works, the memristor-based canonical
Chua’s circuit modeled by (4) and the typical system param-
eters given by (5) are utilized.

2.2. Stability Distribution of Line Equilibrium Point. Similar
to the memristive Chua’s circuit containing an ideal voltage-
controlled memristor emulator [5, 6], the memristor-based
canonical Chua’s circuit has a line equilibrium point, which
is expressed by

𝑃 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) | 𝑥2 = 𝑥3 = 𝑥4 = 0, 𝑥1 = 𝜇} , (6)

where the constant 𝜇 is uncertain.
At the line equilibrium point 𝑃, the Jacobian matrix is

given as

J𝑃 =
[[[[[
[

0 −𝑎 0 0
0 𝑏 (1 − 𝑔𝜇2) 0 𝑏
0 0 1 −1
0 −𝑐 𝑐 0

]]]]]
]

. (7)

For the Jacobian matrix given in (7), the normalized param-
eters determined in (5), and the constant 𝜇 that increased in
the region [−6, 6], four eigenvalues with a zero root, a real
root, and a pair of conjugated complex roots can be calculated
by MATLAB numerical simulations. The real parts of these
four eigenvalues are drawn in Figure 2, which can be used to
classify the stability distributions. It can be seen fromFigure 2
that the sign of the real parts of three nonzero eigenvalues
varies with the increase of 𝜇, leading to the occurrence of
three kinds of unstable regions marked with I, II, and IV and
a kind of stable region marked with III. Additionally, it can
also be observed that the stability distributions of the nonzero
eigenvalues in the negative region of 𝜇 are symmetrical to
those in the positive region of 𝜇.
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Table 2: Nonzero eigenvalues and attractor types for different memristor initial conditions.

𝑥1(0) Nonzero eigenvalues Stability regions Attractor types

0 2.8804, 2.5704 ± 𝑗2.3364 Region I: 3P0N Double-scroll chaotic
attractor(Unstable node-foci)

2 1.0514, 0.6765 ± 𝑗4.4019 Region I: 3P0N Infinite
(Unstable node-foci)

2.4 0.7591, −0.4132 ± 𝑗4.3865 Region II: 1P2N Chaotic spiral attractor
(Unstable saddle-foci)

3.2 −3.1446 ± 𝑗1.4734, −0.0692 Region III: 0P3N Stable point attractor
(Stable node-foci)

4.3 0.0203 ± 𝑗1.2808, −17.9841 Region VI: 2P1N Stable point attractor
(Unstable saddle-foci)

4.5 0.0800 ± 𝑗1.3134, −20.5750 Region VI: 2P1N Limit cycle with period 1
(Unstable saddle-foci)

4.8 0.1486 ± 𝑗1.3483, −24.6301 Region VI: 2P1N Asymmetric double-
scroll chaotic attractor(Unstable saddle-foci)
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Figure 3: Attraction basin in the 𝑥1(0)-𝑥2(0) plane, where 𝑎 = 12.375, 𝑏 = 7.0213, 𝑐 = 2.475, 𝑔 = 0.2, and 𝑥3(0) = 𝑥4(0) = 0.

Due to the existence of the zero eigenvalue, the stability
of the memristor-based canonical Chua’s circuit can not be
simply determined by the three nonzero eigenvalues of the
line equilibrium point. The following numerical simulations
demonstrate that the zero eigenvalue also has influence on the
dynamics of the circuit under some circuit parameters [6–9].

The initial conditions for numerical simulations of the
coexisting attractors’ behaviors are taken as [𝑥1(0), 10−9,
0, 0]; that is, only the memristor initial condition 𝑥(0) is
variable. For some different values of the memristor initial
condition 𝑥1(0), nonzero eigenvalues, stability regions given
in Figure 2, and the related attractor types numerically solved
by (4) are summarized in Table 2. It is demonstrated that,
for the different values of 𝑥1(0) located in different stability
regions, there exist various attractor types with different
topologies or different periodicities or different locations.
Consequently, coexisting infinitely many attractors’ behavior

or extreme multistability occurs in the memristor-based
canonical Chua’s circuit.

2.3. Coexisting Infinitely Many Attractors. With reference
to the stability distributions in Figure 2 and the initial
condition-dependent attractor types in Table 2, the proposed
memristor-based canonical Chua’s circuit has various stable
states under different initial conditions; that is, its long-term
behavior closely relies on the initial conditions therefore lead-
ing to the emergence of coexisting infinitely many attractors.

For the normalized parameters in (5) and the initial
conditions of 𝑥3(0) = 0 and 𝑥4(0) = 0, the attraction basin
in the plane of the initial conditions of 𝑥1(0) and 𝑥2(0)
is depicted in Figure 3. It should be illustrated that many
more diverse attractor types for different initial conditions
can be certainly observed in the memristor-based canonical
Chua’s circuit; however, for visual effects, only fourteen kinds
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Table 3: Different color regions and the corresponding attractor types.

Colors Coexisting attractor types Examples in Figure 4
Blue and forest green Right- and left-point attractors Figure 4(a)
Cyan and lime green Right- and left-period-1 limit cycles with small size Figure 4(b)
Cadet blue and lawn green Left- and right-period-1 limit cycles with large size Figure 4(c)
Tan and yellow Left- and right-multi-period limit cycles Figure 4(d)
Orchid and coral Left- and right-chaotic spiral attractors Figure 4(e)
Medium slate blue and fuchsia Left- and right-half-baked double-scroll chaotic attractors Figure 4(f)
Red Standard double-scroll chaotic attractor Figure 4(g)
Black Unbounded orbit Figure 4(h)

of color areas are classified by the basin of attraction in
the 𝑥1(0)-𝑥2(0) plane, among which the largest black area
represents the unbounded zone.

Corresponding to different color areas, different types
of coexisting attractors are listed in Table 3. Spontaneously,
for the initial conditions in the different color areas of the
attraction basin, the phase portraits of typical coexisting
attractors are obtained, as shown in Figure 4, where for the
sake of observations two point attractors in Figure 4(a) are
marked by two five-pointed stars. Of course, these gener-
ated coexisting attractors intersect the neighborhood of the
line equilibrium point, implying that the initials-dependent
dynamical system (4) [37] always oscillates in self-excited
states, rather than hidden states [38–40].

It should be mentioned that just like the ideal flux/
voltage-controlled memristor-based chaotic circuits [4–9],
the proposed memristor-based canonical Chua’s circuit has
a line equilibrium point with complicated stability distribu-
tions already depicted in Figures 2–4, whereas most of con-
ventionally nonlinear dynamical systemswith no equilibrium
point [10], with only several determined equilibrium points
[15–21], or with curves of equilibrium points [41–43] have
relatively simple stability distributions with some divinable
nonlinear dynamical behaviors.

3. Controllability of Extreme Multistability in
the Flux-Charge Domain

Due to the existence of the line equilibrium point, the
memristor-based canonical Chua’s circuit can exhibit the
special phenomenonof extrememultistability under different
initial conditions. For seeking the potential uses of the multi-
stablememristive circuit in chaos-based engineering applica-
tions [10–12], an effective controlmethod should be applied to
direct the memristive circuit to the desired oscillation mode
[12]. For this purpose, an incremental flux-charge model is
newly constructed, in which the initial condition-dependent
dynamics in the voltage-current domain is converted into
the system parameter-associated dynamics in the flux-charge
domain.

3.1. Newly Constructed Incremental Flux-Charge Model.
The accurate constitutive relation of the ideal voltage-
controlledmemristor emulator in Figure 1(b) should be firstly

established in the flux-charge domain. Define 𝑞(𝑡; 0) and𝜑(𝑡; 0) as the incremental charge and incremental flux of the
ideal memristor emulator, respectively. According to (1), the
incremental charge within the time interval [0, 𝑡] is deduced
as

𝑞 (𝑡; 0) = ∫𝑡
0

𝑖 d𝜏 = ∫𝑡
0

− 1
𝑅𝑏 (1 − 𝑔V20) V1d𝜉

= 1
𝑅𝑏 ∫
𝑡

0

(1 − 𝑔V20) 𝑅𝑎𝐶0dV0
= 1

𝜅𝑅𝑏 [V0 (𝑡) − V0 (0)] − 𝑔
3𝜅𝑅𝑏 [V

3

0 (𝑡) − V30 (0)]

= 𝑔𝜅2
3𝑅𝑏 [𝜑 (𝑡; 0)]3 − 𝑔𝜅

𝑅𝑏 V0 (0) [𝜑 (𝑡; 0)]2

+ 1
𝑅𝑏 [𝑔V

2

0 (0) − 1] 𝜑 (𝑡; 0) ,

(8)

where 𝜅 = 1/(𝑅𝑎𝐶0), V0(0) stands for the memristor
initial state, and the memristor inner state variable V0(𝑡) =−𝜅𝜑(𝑡; 0) + V0(0). Thus, the initial state V0(0) can be explicitly
represented in the flux-charge domain.

Suppose that 𝜑1(𝑡; 0), 𝜑2(𝑡; 0), and 𝑞3(𝑡; 0) are the incre-
mental fluxes of the capacitors𝐶1 and𝐶2 and the incremental
charge of the inductor 𝐿, respectively, and set V1(0), V2(0),
and 𝑖3(0) as the initial voltages of the capacitors 𝐶1 and𝐶2 and the initial current of the inductor L, respectively.
While connecting the power supply at t = 0, the incremental
flux-charge model of the memristor-based canonical Chua’s
circuit can be yielded by integrating (2) from 0 to 𝑡.

Integrating the second, third, and fourth equations of (2)
from 0 to 𝑡 gives

𝐶1 [V1 (𝑡) − V1 (0)] = −𝑞 (𝑡; 0) + 𝑞3 (𝑡; 0) ,
𝐶2 [V2 (𝑡) − V2 (0)] = 1

𝑅𝜑2 (𝑡; 0) − 𝑞3 (𝑡; 0) ,
𝐿 [𝑖3 (𝑡) − 𝑖3 (0)] = 𝜑2 (𝑡; 0) − 𝜑1 (𝑡; 0) .

(9)

Consider the fact that the fluxes 𝜑1(𝑡) and 𝜑2(𝑡) of the
capacitors 𝐶1 and 𝐶2 and the charge 𝑞3(𝑡) of the inductor 𝐿
can be expressed as

𝜑1 (𝑡) = ∫𝑡
−∞

V1 (𝜉) d𝜉 = 𝜑1 (𝑡; 0) + 𝐾1,
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Figure 4: Phase portraits of coexisting infinitely many attractors in the 𝑥1-𝑥3 plane for different values of 𝑥1(0) and 𝑥2(0). (a) Right- and
left-point attractors. (b) Right- and left-period-1 limit cycles with small size. (c) Left- and right-period-1 limit cycles with large size. (d) Left-
and right-multiperiod limit cycles. (e) Left- and right-chaotic spiral attractors. (f) Left- and right-half-baked double-scroll chaotic attractors.
(g) Standard double-scroll chaotic attractor. (h) Unbounded orbit.
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𝜑2 (𝑡) = ∫𝑡
−∞

V2 (𝜉) d𝜉 = 𝜑2 (𝑡; 0) + 𝐾2,
𝑞3 (𝑡) = ∫𝑡

−∞

𝑖3 (𝜉) d𝜉 = 𝑞3 (𝑡; 0) + 𝐾3,
(10)

respectively, where 𝐾1 = ∫0
−∞

V1(𝜉)d𝜉, 𝐾2 = ∫0
−∞

V2(𝜉)d𝜉,
and𝐾3 = ∫0

−∞
𝑖3(𝜉)d𝜉 represent three arbitrary real constants.

Therefore, the state variables V1(𝑡), V2(𝑡), and 𝑖3(𝑡) in the
voltage-current domain can be signified as

V1 (𝑡) = d𝜑1 (𝑡)
d𝑡 = d𝜑1 (𝑡; 0)

d𝑡 ,
V2 (𝑡) = d𝜑2 (𝑡)

d𝑡 = d𝜑2 (𝑡; 0)
d𝑡 ,

𝑖3 (𝑡) = d𝑞3 (𝑡)
d𝑡 = d𝑞3 (𝑡; 0)

d𝑡 .
(11)

Substituting (11) into (9), the circuit equations of Figure 1 can
be thereby modeled in the flux-charge domain as

𝐶1 d𝜑1 (𝑡; 0)d𝑡 = −𝑞 (𝑡; 0) + 𝑞3 (𝑡; 0) + 𝐶1V1 (0) ,
𝐶2 d𝜑2 (𝑡; 0)d𝑡 = 1

𝑅𝜑2 (𝑡; 0) − 𝑞3 (𝑡; 0) + 𝐶2V2 (0) ,
𝐿d𝑞3 (𝑡; 0)

d𝑡 = 𝜑2 (𝑡; 0) − 𝜑1 (𝑡; 0) + 𝐿𝑖3 (0) .
(12)

Equation (12) is the incremental flux-charge model of the
proposed memristor-based canonical Chua’s circuit.

Analogously, introduce three new state variables and scale
the circuit parameters as

𝑦1 = 𝜑1 (𝑡; 0)𝑅𝐶2 ,
𝑦2 = 𝜑2 (𝑡; 0)𝑅𝐶2 ,
𝑦3 = 𝑞3 (𝑡; 0)𝐶2 ,
𝜏 = 𝑡

𝑅𝐶2 ,
𝑅𝑏 = 𝑅,
𝑎 = 𝑅𝐶2𝑅𝑎𝐶0 ,
𝑏 = 𝐶2𝐶1 ,

𝑐 = 𝑅2𝐶2𝐿 ,
𝜂 = V0 (0) ,
𝜂1 = V1 (0) ,

𝜂2 = V2 (0) ,
𝜂3 = 𝑅𝑖3 (0) .

(13)

Model (12) can be rewritten as

̇𝑦1 = −𝑏𝐹 (𝑦1) + 𝑏𝑦3 + 𝜂1,
̇𝑦2 = 𝑦2 − 𝑦3 + 𝜂2,
̇𝑦3 = 𝑐 (𝑦2 − 𝑦1) + 𝜂3,

(14)

where the normalized memristor constitutive relation is
turned as 𝐹(𝑦1) = (1/3)𝑔𝑎2𝑦31 − 𝑔𝑎𝜂𝑦21 + (𝑔𝜂2 − 1)𝑦1.

It should be emphasized that the initial conditions of (14)
are ensured as 𝑦1(0) = 𝑦2(0) = 𝑦3(0) = 0. The memristor
inner parameter 𝜂 denotes the initial capacitor voltage of
the memristor emulator in the voltage-current domain, and
the system parameters 𝜂1, 𝜂2, and 𝜂3 reflect the three initial
voltages of the canonical Chua’s circuit in the voltage-current
domain.

For the circuit parameters given in Table 1, the nor-
malized parameters 𝑎, 𝑏, 𝑐, and 𝑔 in (14) are the same as
those given in (5). With these determined parameters, the
initial conditions-dependent extreme multistability in the
memristor-based canonical Chua’s circuit can be effectively
controlled by adjusting the system parameters 𝜂, 𝜂1, 𝜂2, and𝜂3.
3.2. System Parameter-Related Stability Distribution. For the
normalized model (14), the equilibrium points are obviously
obtained as

𝐸 = (𝑦
1
, 𝑦
1
− 1

𝑐 𝜂3, 𝑦1 + 𝜂2 − 1
𝑐 𝜂3) , (15)

in which 𝑦
1
can be numerically solved by

𝑦3
1
− 3𝜂

𝑎 𝑦2
1
+ 3

𝑔𝑎2 (𝑔𝜂2 − 2) 𝑦
1

− 3𝑐𝜂1 + 3𝑏𝑐𝜂2 − 3𝑏𝜂3𝑔𝑎2𝑏𝑐 = 0.
(16)

Define 𝑃 and 𝑄 to be

𝑃 = 3
𝑔𝑎2 (𝑔𝜂2 − 2) − 3𝜂2

𝑎2 = − 6
𝑔𝑎2 ,

𝑄 = 𝜂3
𝑎3 −

6𝜂
𝑔𝑎3 −

3𝑐𝜂1 + 3𝑏𝑐𝜂2 − 3𝑏𝜂3𝑔𝑎2𝑏𝑐 .
(17)

According to the classical Cardan discriminant Δ = (𝑄/2)2 +(𝑃/3)3, when Δ < 0, there are three real roots in (16), which
can be given as

𝑦
1,1

= 3√−𝑄
2 + √Δ + 3√−𝑄

2 − √Δ + 𝜂
𝑎 ,
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𝑦
1,2

= −1 − 𝑗√3
2 3√−𝑄

2 + √Δ − 1 + 𝑗√3
2 3√−𝑄

2 − √Δ
+ 𝜂

𝑎 ,
𝑦
1,3

= −1 + 𝑗√3
2 3√−𝑄

2 + √Δ − 1 − 𝑗√3
2 3√−𝑄

2 − √Δ
+ 𝜂

𝑎 ,
(18)

indicating that the model (14) has three equilibrium points.
The Jacobian matrix at equilibrium point 𝐸 is deduced as

J𝐸 = [[[
[

−𝑏𝐹󸀠 (𝑦
1
) 0 𝑏

0 1 −1
−𝑐 𝑐 0

]]]
]

, (19)

where𝐹󸀠(𝑦
1
) = 𝑔𝑎2𝑦2

1
−2𝑔𝑎𝜂𝑦

1
+𝑔𝜂2−1. Consequently, three

eigenvalues of the model (14) at 𝐸 are yielded by solving the
following characteristic polynomial:

𝑃 (𝜆) = det (1𝜆 − J) = 𝜆3 + 𝑝1𝜆2 + 𝑝2𝜆 + 𝑝3 = 0, (20)

in which 𝑝1 = 𝑏𝐹󸀠(𝑦
1
) − 1, 𝑝2 = −𝑏𝐹󸀠(𝑦

1
) + 𝑏𝑐 + 𝑐, and 𝑝3 =𝑏𝑐𝐹󸀠(𝑦

1
) − 𝑏𝑐.

Based on (15)–(20), it can be known that the line
equilibrium point described by (6) in the voltage-current
domain is converted into several determined equilibrium
points represented by (15) in the flux-charge domain, whose
locations and stabilities are decided by the initial condition-
related system parameters 𝜂, 𝜂1, 𝜂2, and 𝜂3. Therefore, the
extreme multistability in the voltage-current domain can
readily be controlled by the system parameters in the flux-
charge domain.

Take 𝜂1 = 𝜂2 = 𝜂3 = 0 as an example. When the
normalized systemparameters a, b, c, and𝑔 for themodel (14)
are fixed as given in (5) and the relationship of −2√10 ≤ 𝜂 ≤2√10 is satisfied, three equilibrium points consisting of one
zero equilibrium point and two nonzero equilibrium points
are solved from (16) as

𝐸0 = (0, 0, 0)
𝐸± = (12𝜂 ± 𝜌

99 , 12𝜂 ± 𝜌
99 , 12𝜂 ± 𝜌

99 ) , (21)

where 𝜌 = 4√120 − 3𝜂2, which means that the nonzero
equilibrium points depended on the initial condition 𝜂 of the
memristor emulator.

For the zero equilibrium point 𝐸0, there exist 𝐹󸀠(𝑦1) =𝑔𝜂2 − 1. In this way, the Jacobian matrix of (19) with the
increase of 𝜂 is identical with the Jacobian submatrix obtained
from (7) by deleting row 1 and column 1 with the increase
of 𝜇. As a consequence, the Jacobian matrix of (19) has
three eigenvalues; their stability distributions are the same
as those of the nonzero eigenvalues of the Jacobian matrix

of (7). Whereas for two nonzero equilibrium points 𝐸±, the
complicated stability distributions can be numerically found
as the memristor initial condition 𝜂 is tuned.
3.3. Controllability of Extreme Multistability. With model
(14), it is demonstrated that the initial condition-dependent
extreme multistability in the memristor-based canonical
Chua’s circuit is transformed into the system parameter-
associated dynamics, therefore leading to the controllability
of extreme multistability through directly adjusting the sys-
tem parameters.

The normalized system parameters a, b, c, and 𝑔 are
given in (5) and the initial conditions for (14) are ensured
as 𝑦1(0) = 𝑦2(0) = 𝑦3(0) = 0. Referring to the initial
conditions in Figure 4, 𝜂2 = 0 and 𝜂3 = 0 in (14)
remained unchanged, whereas 𝜂 and 𝜂1 are assigned as some
different values in the regions [−6, 6] and [−4, 4], respectively.
For different locations of the parameter space constructed
by 𝜂 and 𝜂1, various types of disconnected attractors are
numerically simulated, as shown in Figure 5, where for the
sake of observations two point attractors overlapped together
in Figure 5(a) are marked by two five-pointed stars and
two limit cycles in Figure 5(b) are marked with bold lines.
Obviously, the dynamical behaviors featured by Figure 5
are consistent with those featured by Figure 4, ignoring the
computational errors in MATLAB simulation [44], which
verify the feasibility of the incremental flux-charge model of
the memristor-based canonical Chua’s circuit.

4. Controlling Multiple Stable States in
Physical Circuit

With model (14), the equivalent circuit using analog multi-
pliers and op-amps linked with resistors and/or capacitors
[7, 8, 45] can be handily designed, as shown in Figure 6,
which is composed of the linear calculating circuit with
three integrating channels and the memristor constitutive
relation circuit. In Figure 6, V1, V2, and V3 represent three state
variables of the capacitor voltages, respectively, and𝑅𝐶 stands
for the time constant of the integrators.

According to the fundamental theory of circuit, the
circuit state equations of Figure 6 are expressed as

𝑅𝐶dV1
d𝑡 = −𝑅𝐹 (V1)𝑅𝑏 + 𝑅V3𝑅𝑏 + 𝜂1,

𝑅𝐶dV2
d𝑡 = V2 − V3 + 𝜂2,

𝑅𝐶dV3
d𝑡 = 𝑅 (V2 − V1)𝑅𝑐 + 𝜂3,

(22)

where 𝐹(𝑦1) = 𝑅V31/𝑅1 − 𝑅𝜂V21/𝑅2 + 𝑅𝜂2V1/𝑅3 − V1. Thus,
the circuit parameters can be chosen as 𝑅𝑏 = 𝑅/𝑏, 𝑅𝑐 =𝑅/𝑐, 𝑅1 = 3𝑅/(𝑔𝑎2), 𝑅2 = 𝑅/(𝑔𝑎), and 𝑅3 = 𝑅/𝑔.

The op-amps OP07CP and multipliers AD633JNZ with±15 V power supplies are utilized. The integrating time
constant is selected as𝑅𝐶 = 10 kΩ × 10 nF = 100 𝜇s.Thus, for
the system parameters given in (5), the circuit parameters in
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Figure 5: Phase portraits of various types of attractors distributed in different locations of the parameter space of 𝜂 and 𝜂1. (a) Two point
attractors. (b) Right- and left-period-1 limit cycles with small size. (c) Right- and left-period-1 limit cycles with large size. (d) Right- and
left-multiperiod limit cycles. (e) Right- and left-chaotic spiral attractors. (f) Right- and left-half-baked double-scroll chaotic attractors. (g)
Standard double-scroll chaotic attractor. (h) Unbounded orbit.
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Figure 6: Equivalent circuit of model (14) for controlling multistable states; the upper dashed box is the linear calculating circuit and the
lower dashed box is the memristor constitutive relation circuit.

Figure 6 are calculated as 𝑅𝑏 = 1.4242 kΩ, 𝑅𝑐 = 4.0404 kΩ, 𝑅1
= 0.9795 kΩ, 𝑅2 = 4.0404 kΩ, and 𝑅3 = 50 kΩ. Additionally,
the gains of the multipliers in Figure 6 are all fixed as 1 and
the values of 𝜂2 and 𝜂3 are maintained as 0.

To better present the control effect of the multistable
states generated from the equivalent circuit in Figure 6, the
NI Multisim 12.0 simulation and circuit design software is
utilized, in which the default initial values of three capacitors
are assigned as 0. For several different values of 𝜂 and 𝜂1,
the Multisim intercepted phase portraits are displayed, as
shown in Figure 7. Note that the initial value of 1 × 10−9V can
be achieved by a slightly induced voltage in the equivalent
circuit, so the value of 𝜂1 is set as 0. Comparing the results
of Figure 7 with those of Figure 5, it is concluded that the
circuit simulations agree with the numerical simulations,
further confirming the feasibility of the controllable strategy
for extreme multistability.

5. Conclusion

By replacing Chua’s diode in the canonical Chua’s circuit with
an ideal voltage-controlledmemristor emulator, amemristor-
based canonical Chua’s circuit is presented in this paper.
Because of the existence of a line equilibrium point, the initial
condition-dependent extreme multistability easily emerged
in such a memristive circuit, resulting in the coexistence of
infinitely many attractors. To implement the controllability

of the extreme multistability, an incremental flux-charge
model for the memristive circuit is formulated through
deriving the accurate constitutive relation of the memristor
emulator. Thus, the initial condition-dependent dynamics
in the voltage-current domain is converted into the system
parameter-associated dynamics in the flux-charge domain,
that is, the implicit expression of the initial conditions in the
voltage-current model can be transformed into the explicit
representation of the system parameters in the flux-charge
model, leading to the fact that the multiple steady states
emerging in the memristive circuit can be consequently
controlled by changing the initial condition-related system
parameters. The feasibility of the controllable strategy for
extrememultistability is confirmed by numerical simulations
and circuit simulations, which is greatly significant for seek-
ing the potential uses of the multistable memristive circuits
in chaos-based engineering applications.
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Since the electrical activities of neurons are closely related to complex electrophysiological environment in neuronal system, a novel
three-dimensional memristive Hindmarsh–Rose (HR) neuron model is presented in this paper to describe complex dynamics of
neuronal activities with electromagnetic induction. The proposed memristive HR neuron model has no equilibrium point but can
show hidden dynamical behaviors of coexisting asymmetric attractors, which has not been reported in the previous references
for the HR neuron model. Mathematical model based numerical simulations for hidden coexisting asymmetric attractors are
performed by bifurcation analyses, phase portraits, attraction basins, and dynamical maps, which just demonstrate the occurrence
of complex dynamical behaviors of electrical activities in neuron with electromagnetic induction. Additionally, circuit breadboard
based experimental results well confirm the numerical simulations.

1. Introduction

In the past three decades, numerous simplified neuronmodels
had been fantastically extended from the classical Hodgkin–
Huxley model [1] to reconstruct the main dynamical char-
acteristics of neuronal electrical activities [2–8], among
which the two- and three-dimensional Hindmarsh–Rose
(HR) neuronmodels are effective and available for dynamical
analysis in electrical activities of biological neurons [9, 10].
In the last few years, a wide variety of the HR neuron
models, such as original three-dimensional HR models [10–
16], extended or nonlinear feedback coupled HRmodels [17–
20], time delayed HR models [20–22], fractional-order HR
models [23, 24], and memristor based HR models under
electromagnetic radiations [9, 25–27], have been proposed
and further studied by bifurcation analysis methods for
understanding the dynamics of electrical activities among
neurons [8]. For this reason, bifurcation analysis theory plays
an essential role in describing mode transitions between
spiking and bursting in the neuronal electrical activities [9–
27].

Inspired by the constructing approach of the three-
dimensional HR neuron model [3, 24], a novel three-
dimensional memristive HR neuron model is presented in

this paper, which could be used to better describe complex
dynamical characteristics of neuronal electrical activities
with electromagnetic induction or further exhibit some
undiscovered complex dynamical behaviors in neuronal
electrical activities. Interestingly, our proposed memristive
HR neuron model has no equilibrium point, which can be
classified as a particular dynamical system with hidden oscil-
lating patterns [28–31]. Furthermore, coexisting asymmetric
attractors’ behavior can also be observed in such memristive
HR neuron model as well, indicating the emergence of
bistability dynamics, which has been found in some specified
neuronmodels [32–35].However, the phenomenonof hidden
coexisting asymmetric attractors has not been previously
reported for the HR neuron model.

This paper is organized as follows. In Section 2, based
on the brief reviews on the HR neuron model, a three-
dimensional memristive HR neuron model is presented,
upon which hidden coexisting asymmetric attractors are
numerically revealed by phase portraits and time series and
its bistability dynamics are confirmed by the attraction basins
related to the initial values. In Section 3, hidden coexist-
ing asymmetric attractors’ behaviors are demonstrated by
bifurcation diagrams, Lyapunov exponents, and dynamical
maps, from which numerous types of coexisting asymmetric
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attractors are easily observed. In addition, a physical imple-
mentation circuit is fabricated and breadboard experiments
are carried out to confirm the hidden coexisting asymmetric
attractors in Section 4. The conclusions are summarized in
Section 5.

2. Three-Dimensional Memristive
HR Neuron Model

2.1. Brief Reviews on the HR Neuron Model. Through sim-
plifying the classical Hodgkin–Huxley model [1], the two-
dimensional Hindmarsh–Rose (HR) neuron model was pro-
posed byHindmarsh and Rose [2] in 1982, which is described
by two first-order ordinary differential equations as

𝑥̇ = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 + 𝐼

̇𝑦 = 𝑐 − 𝑑𝑥2 − 𝑦,
(1)

in which two variables 𝑥 and 𝑦 are the membrane potential
and recovery variable (also called spiking variable), respec-
tively, and a term 𝐼 is the externally applied current. The
parameters 𝑎, 𝑏, 𝑐, and 𝑑 are four positive constants, which are
often assumed as 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, and 𝑑 = 5, respectively
[2, 11–14].

To permit numerous dynamical behaviors, for example,
chaotic dynamics, for the membrane potential, an extra third
equation was introduced by Hindmarsh and Rose [3] in 1984
to improve the two-dimensional neuron model (1), which is
expressed by three first-order ordinary differential equations
as

𝑥̇ = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 + 𝐼 − 𝑧

̇𝑦 = 𝑐 − 𝑑𝑥2 − 𝑦

𝑧̇ = 𝑟 (𝑠 (𝑥 − 𝑥1) − 𝑧) ,

(2)

where the variable 𝑧 is the bursting variable and the constant
𝑥1 is the resting potential of the model. The newly added
parameters 𝑟 and 𝑠 are two positive constants but 𝑟 is very
small. Thus, a new variable 𝑧, a slowly evolving current, is
coupled into the first equation of the two-dimensional model
(1) to tune the externally applied current 𝐼. If the three-
dimensional neuron model (2) is in its firing state, the value
of 𝑧 increases [24].

2.2. ConstructedMemristive HRNeuronModel. Motivated by
the above constructing approach of the model (2), a three-
dimensional memristive HR neuron model with electromag-
netic induction effect is proposed through introducing a
flux-controlled ideal memristor into the first equation of the
model (1), which can be mathematically modeled by

𝑥̇ = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 + 𝐼 + 𝑘𝜑𝑥

̇𝑦 = 𝑐 − 𝑑𝑥2 − 𝑦

𝜑̇ = 𝑥,

(3)

where the new variable 𝜑 is the magnetic flux indicating the
time integral of the membrane potential 𝑥. The newly adding
term 𝑘𝜑𝑥 represents the externally applied electromagnetic
induction and 𝑘 is the strength of the electromagnetic
induction.

It is important to stress that the introduced memristor in
(3) is ideal and flux-controlled. According to the definitions
of ideal memristor by state-dependent Ohm’s laws between
the terminal voltage V and terminal current 𝑖 [36, 37], a flux-
controlled ideal memristor𝑊 is thereby given as

𝑖 = 𝑊 (𝜑) V,

𝜑̇ = V,
(4)

where the memductance 𝑊(𝜑) can be interpreted as the
flux-dependent rate of change of charge. Therefore, the
memductance𝑊(𝜑) utilized in (3) can be written by

𝑊(𝜑) = 𝑘𝜑, (5)

in which the coefficient 𝑘 is positive.
To exhibit three characteristic fingerprints of pinched

hysteresis loop of the memristor modeled by (4) and (5) [38],
a sinusoidal voltage source V = 𝐴 sin(2𝜋𝐹𝜏) is connected
at the input terminals of the memristor, where 𝐴 and 𝐹 are
the amplitude and frequency, respectively. Let 𝑘 = 1. When
𝐴 = 4 is maintained unchanged and 𝐹 is assigned as 0.1, 0.2,
and 0.5, respectively, the V − 𝑖 plots are shown in Figure 1(a),
while when 𝐹 = 0.1 is fixed and 𝐴 is determined as 3, 4,
and 5, respectively, the V − 𝑖 plots are shown in Figure 1(b).
It is seen from Figure 1 that the V − 𝑖 plots are the hysteresis
loops pinched at the origin. The hysteresis loop is pinched
regardless of the stimulus amplitudes but shrinks into a linear
function at infinite frequency and its lobe area decreases with
increasing the frequency. The numerical results in Figure 1
indicate that the memristor modeled by (4) can behave three
fingerprints for distinguishing memristors [38].

In the next work, the three-dimensional memristive
HR neuron model given in (3) is considered. It should be
remarked that the adjustable parameters of interest are 𝐼 and
𝑘, and their regions are correspondent to the first quadrant of
the parameter space (𝐼 > 0 and 𝑘 > 0). For any uncertain
parameter 𝐼, the existence of any equilibrium point is not
allowed in the three-dimensional memristive HR neuron
model, neither stable nor unstable. Only if the applied current
𝐼 = −1 will the model show an equilibrium point, which
is not in the considered parameter region. This case is often
encountered in various kinds of nonlinear dynamical systems
that are known to generate the specified hidden attractors
[28–31].

2.3. Coexisting Asymmetric Attractors. When the original
parameters are selected as 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, and
𝑑 = 5, respectively [2], an example for model (3) with
𝐼 = 1 and 𝑘 = 0.9 is given as shown in Figure 2, where
the orbits marked by the red and blue colors emerge from
the initial values (0, 0, −2) and (0, 0, 2), respectively. In
Figure 2(a), the phase portraits in the 𝑥 − 𝜑 plane display
the bistability phenomenon of hidden coexisting asymmetric
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Figure 1: Pinched hysteresis loops of the flux-controlled ideal memristor. (a) 𝐴 = 4 with 𝐹 = 0.1, 0.2, and 0.5. (b) 𝐹 = 0.1 with 𝐴 = 3, 4, and
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Figure 2: Hidden coexisting asymmetric attractors emerged from the initial values (0, 0, −2) and (0, 0, 2). (a) Phase portraits in the 𝑥-𝜑 plane.
(b) Time series of the variable 𝑥.

attractors consisting of chaotic attractor and limit cycle in
the memristive HR neuron model, whereas in Figure 2(b),
the time series of the membrane potential 𝑥 demonstrate the
coexistence of chaotic and periodic spikes in the memristive
HR neuron model as well. Correspondingly, three Lyapunov
exponents for the initial values (0, 0, −2) are 0.0782, 0,
and −3.0684, respectively, while those for (0, 0, 2) are 0,
−0.2717, and −2.8556, respectively. Remark that Wolf et al.’s
method [39] with MATLAB ODE113 algorithm is here used
to calculate three Lyapunov exponents.

For the coexisting asymmetric attractors shown in Fig-
ure 2(a), the corresponding attraction basins in the 𝑥(0)-𝜑(0)
and 𝑥(0)-𝑦(0) planes of the initial values are drawn in
Figures 3(a) and 3(b), where the attraction basins for chaotic
attractors and periodic limit cycles are colored in the fuchsia
and cyan regions, respectively. The results effectively indicate
the emergence of bistability phenomenon in the memristive
HR neuron model.

Particularly, the emerging coexisting asymmetric attrac-
tors do not associate with any equilibrium point, indicating
that the memristive HR neuron model always operates
in hidden oscillating patterns [28–31]. Additionally, it is

interesting to note that, just like the self-excited coexisting
asymmetric attractors in hyperbolic-type memristor based
Hopfield neural network [32], such hidden coexisting asym-
metric attractors in the memristive HR neuron model are
induced by electromagnetic induction also, which illustrates
the occurrence of complex dynamical behaviors of electrical
activities in neuron with electromagnetic induction.

3. Hidden Coexisting Asymmetric
Attractors’ Behavior

When the applied current 𝐼 and electromagnetic induction
strength 𝑘 are considered as two bifurcation parameters,
hidden coexisting asymmetric behaviors of the memristive
HR neuron model are numerically studied by MATLAB
ODE45 algorithm under two sets of the initial values (0, 0,
−2) and (0, 0, 2).

3.1. Bifurcation Behaviors with Increasing 𝑘. Figure 4 gives
the bifurcation diagrams of 𝑥 and the first two Lyapunov
exponents as 𝐼 = 1 and 𝑘 = 0.5∼1.4, where in Figure 4(a)
the orbits marked by the red and blue colors emerge from
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diagrams of 𝑥. (b) First two Lyapunov exponents.

the initial values (0, 0, −2) and (0, 0, 2), respectively, and in
Figure 4(b) the Lyapunov exponents marked by the red and
fuchsia colors correspond to the initial values (0, 0, −2) and
thosemarked by blue and green colors correspond to (0, 0, 2).
It can be seen from Figure 4 that complex dynamics appear in
thememristiveHRneuronmodel, in which chaotic attractors
with different topologies, limit cycles with different periodic-
ities, period-doubling bifurcation routes, tangent bifurcation
routes, crisis scenarios, coexisting bifurcation modes, and so
on can be found. Therefore, the electromagnetic induction
by the introduced memristor induces numerous complex
dynamics for the membrane potential 𝑥, especially including
hidden coexisting asymmetric behaviors.

The concernedly coexisting behaviors of asymmet-
ric attractors mainly locate in two parameter regions
[0.718, 0.736] and [0.754, 0.909], in which some different
types of hidden coexisting asymmetric attractors occur.
When 𝐼 = 1 and 𝑘 = 0.735 and 0.81, respectively, the phase
portraits in the 𝑥-𝜑 plane for the other two types of hidden
coexisting asymmetric attractors are depicted in Figure 5. In
detail, Figure 5(a) exhibits the coexistence of hidden chaotic

attractor and hidden limit cycle, and Figure 5(b) displays
the coexistence of two hidden limit cycles with different
periodicities.

3.2. Bifurcation Behaviors with Increasing 𝐼. Figure 6 demon-
strates the bifurcation diagrams of 𝑥 and the first two
Lyapunov exponents as 𝐼= 0∼2.4 and 𝑘= 0.9, where the initial
values for different colored orbits in Figure 6(a) and different
colored Lyapunov exponents in Figure 6(b) are consistent
with those used in Figures 4(a) and 4(b). In the same way,
it can be observed from Figure 6 that complex dynamics
are coined in the memristive HR neuron model, reflecting
the dynamical effect of the externally applied current 𝐼 in
neurons.

The parameter region [0.98, 1.65] has the benefit for
the coexisting behaviors of asymmetric attractors, in which
several different types of hidden coexisting asymmetric
attractors can be clearly found. When 𝑘 = 0.9 is fixed and 𝐼 is
set to 1.15 and to 1.62, respectively, the phase portraits in the
𝑥-𝜑 plane for the two types of hidden coexisting asymmetric
attractors are plotted in Figure 7, where in Figure 7(a) the
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1 and 𝑘 = 0.81.
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Figure 6: For the initial values (0, 0, −2) and (0, 0, 2), hidden coexisting asymmetric behaviors with 𝐼 = 0∼2.4 and 𝑘 = 0.9. (a) Bifurcation
diagrams of 𝑥. (b) First two Lyapunov exponents.

coexistence of hidden chaotic attractor and hidden period 1
limit cycle is displayed, and in Figure 7(b) the coexistence of
hidden period 2 limit cycle and hidden chaotic attractor with
large size is presented.

3.3. Coexisting Asymmetric Behaviors in the Parameter Space.
For intuitively manifesting the coexisting behaviors of asym-
metric attractors in the memristive HR neuron model,
dynamical maps depicted by the largest Lyapunov exponent
under two sets of the initial values are numerically plotted
in the 𝑘-𝐼 parameter space [40], as shown in Figures 8(a)
and 8(b), where the luminous yellow, red, and black colored
regions stand for the chaotic, periodic, and divergent behav-
iors, respectively. Figure 8 indicates how dynamical evolution
in the electromagnetic induction strength 𝑘 and applied
current 𝐼 affects the coexisting behaviors under different
initial values being considered. When the two parameters
𝑘 and 𝐼 are evolved, some chaotic regions are embedded
in the periodic regions; however, different chaotic regions
appear on the parameter spaces of Figures 8(a) and 8(b),
which are caused by the coexisting asymmetric attractors’
behaviors under different initial values.The numerical results
in Figure 8 illustrate that the dynamical behaviors depicted

by the largest Lyapunov exponent based dynamical maps are
well agreed with those revealed by the bifurcation behaviors
in Figures 4 and 6.

It should be remarkable for the dynamical maps in
Figure 8 that the chaotic attractors in different locations of
the chaotic region have different topologies and the limit
cycles in different locations of the periodic region have
different periodicities. Specifically, except for several types of
coexisting asymmetric behaviors shown in Figures 2, 5, and
7, another type of coexisting asymmetric behaviors of chaotic
attractor and divergent orbit can also be uncovered, which
means that another formof bistability exists in thememristive
HR neuron model.

4. Circuit Design and Breadboard Experiments

4.1. Physical Circuit Designs and Parameter Selections. The
flux-controlled ideal memristor𝑊 characterized by (4) and
(5) and its constructing three-dimensional memristive HR
neuron model expressed by (3) can be physically realized by
using an electronic circuit via analog multipliers and opera-
tional amplifiers connected with resistors and/or capacitors
[41–43], as drawn in Figures 9(a) and 9(b), respectively. Of
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Figure 7: Phase portraits in the 𝑥-𝜑 plane for the other two types of hidden coexisting asymmetric attractors. (a) 𝐼 = 1.15 and 𝑘 = 0.9. (b) 𝐼 =
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course, this three-dimensional memristive HR neuronmodel
also can be digitally implemented in field-programmable gate
arrays (FPGA) as well [44, 45].

The implementation circuit of the flux-controlled ideal
memristor in Figure 9(a) contains an integrator with time
constant 𝑅𝐶, an inverter, a multiplier𝑀0, and a resistor 𝑅𝑘.
For the input voltage V and output current 𝑖, themathematical
model for the memristor emulator can be easily given as

𝑖 = 𝑊(V𝜑) V =
𝑔0
𝑅𝑘𝐶

V𝜑V =
1
𝑅𝐶

⋅ 𝑘V𝜑V

V̇𝜑 =
1
𝑅𝐶

⋅ V,

(6)

where V𝜑 is the inner variable of the memristor emulator and
𝑔0 is the gain of the multipliers𝑀0, 𝑘 = 𝑔0𝑅/𝑅𝑘, and𝑊(V𝜑) =
𝑘V𝜑/𝑅𝐶.

The main circuit of the memristive HR neuron model in
Figure 9(b) has two integrating channels for implementing
the first and second equations of (3). According toKirchhoff ’s

circuit laws and electrical properties of the circuit compo-
nents, the circuit equations of Figure 9(b) are written as

𝑅𝐶dV𝑥
d𝑡

= 𝑅
𝑅2

V𝑦 −
𝑔1𝑔2𝑅
𝑅4

V𝑥
3 +

𝑔2𝑅
𝑅3

V𝑥
2 + 𝑅

𝑅1
𝑉𝐼

+
𝑔0𝑅
𝑅𝑘

V𝜑V𝑥

𝑅𝐶
dV𝑦
d𝑡

= 𝑅
𝑅6
𝑉𝑦0 −

𝑔3𝑅
𝑅5

V𝑥
2 − 𝑅

𝑅7
V𝑦

𝑅𝐶
dV𝜑
d𝑡

= V𝑥,

(7)

where V𝑥 and V𝑦 are two circuit variables, 𝑉𝐼 and 𝑉𝑦0 are
two applied voltages, and 𝑔1, 𝑔2, and 𝑔3 are the gains of the
multipliers𝑀1,𝑀2, and𝑀3, respectively.

Considering that the dynamic amplitude of the recovery
variable 𝑦 in the numerical simulations exceeds the linear
operation ranges of operational amplifier and multiplier, the
following linear transformation

(V𝑥, V𝑦, V𝜑) 󳨀→ (V𝑥, 2.5V𝑦, V𝜑) (8)
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Figure 9: Physical electronic circuit implementation for the memristive HR neuron model. (a) Implementation circuit of the flux-controlled
ideal memristor. (b) Main circuit of the memristive HR neuron model.

should be utilized to reduce the dynamic voltage amplitude
of V𝑦 in the circuit equations of the memristive HR neuron
model. Thus, by comparing (8) with (3), there yields

𝑅1 =
𝑅
𝐼
,

𝑅𝑘 =
𝑔0𝑅
𝑘
,

𝑅2 =
𝑅
2.5
,

𝑅3 =
𝑔2𝑅
3
,

𝑅4 = 𝑔1𝑔2𝑅,

𝑅5 =
𝑔3𝑅
2
,

𝑅6 = 2.5𝑅,

𝑅7 = 𝑅.

(9)

Let the time constant 𝑅𝐶 = 10 kΩ × 33 nF = 330 𝜇s; that is,
𝑅 = 10 kΩ and 𝐶 = 33 nF and the multiplier gains 𝑔0 = 𝑔1 =
0.1 and 𝑔2 = 𝑔3 = 1. According to (9), the circuit parameters
for the breadboard experiments of thememristiveHRneuron
model can be calculated, as listed in Table 1.

4.2. Results Captured from Breadboard Experiments. Accord-
ing to the circuit diagrams in Figure 9 and circuit parameters
in Table 1, a hardware circuit using commercially discrete
components can be welded on a breadboard. The opera-
tional amplifiers AD711JN and analog multipliers AD633JN
supplied by ±15 V voltage modules are chosen. The DC
voltages 𝑉𝐼 and 𝑉𝑦0 are provided by Tektronix PWS 2326 DC
Power Supply and the experimental results are measured by
Tektronix TDS 3054C Digital Phosphor Oscilloscope. The
photograph of the connectedly experimental prototype for
the memristive HR neuron model is displayed in Figure 10.

For experimentally measuring the pinched hysteresis
loops of the memristor emulator given in Figure 9(a),

Table 1: Circuit parameters of thememristive HR neuronmodel for
breadboard experiments.

Parameters Significations Values
𝑅, 𝑅7 Resistance 10 kΩ
𝑅1 Resistance 10 kΩ (adjustable)
𝑅𝑘 Resistance 1.11 kΩ (adjustable)
𝑅2 Resistance 4 kΩ
𝑅3 Resistance 3.3 kΩ
𝑅4 Resistance 1 kΩ
𝑅5 Resistance 5 kΩ
𝑅6 Resistance 25 kΩ
𝐶 Capacitance 33 nF
𝑉𝐼, 𝑉𝑦0 DC voltage 1 V
𝑔0, 𝑔1 Multiplier gain 0.1
𝑔2, 𝑔3 Multiplier gain 1

Figure 10: Photograph of the experimental breadboard and typical
chaotic attractor captured by the digital oscilloscope.

a sinusoidal voltage source V = 𝐴 sin(2𝜋𝑓𝑡) generated byTek-
tronix AFG 3102C Function Generator is linked to the input
terminals of the memristor emulator, where the physical
frequency is calculated by𝑓 = 𝐹/𝑅𝐶. For 𝑘 = 1, the adjustable
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Figure 11: Experimentally measured pinched hysteresis loops of the memristor emulator. (a) 𝐴 = 4V with different frequencies. (b) 𝑓 =
303.03Hz with different amplitudes.
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Figure 12: Experimentally measured hidden coexisting asymmetric attractors while repeatedly switching on and off the experimental power
supply. (a) Phase portraits in the V𝑥-V𝜑 plane. (b) Time series of the variable V𝑥.

resistance 𝑅𝑘 = 10 kΩ. When the amplitudes and frequencies
of the sinusoidal voltage source used during numerical
simulations in Figure 1 are employed, the pinched hysteresis
loops for the corresponding amplitudes and frequencies are
captured, as shown in Figures 11(a) and 11(b), respectively,
which experimentally validate the characteristic fingerprints
of the memristor emulator. It should be addressed that for
better observing the experimental results, all the output
currents sensed by the current probe are magnified by ten
times.

The circuit parameters listed in Table 1 are used and
the different initial voltages of three capacitors are randomly
sensed by repeatedly switching on and off the experimental
power supply [46]. For the typical circuit parameters in
Table 1, two adjustable circuit parameters of 𝑅1 and 𝑅𝑘
correspond to the adjustable model parameters of 𝐼 = 1
and 𝑘 = 0.9. Corresponding to Figure 2, the phase portraits
in the V𝑥-V𝜑 plane and time series of the variable V𝑥 that
emerged from different initial voltages are experimentally

obtained, as shown in Figure 12. The experimental results
indicate that hidden coexisting asymmetric attractors also
can be measured from the breadboard experiments of the
memristive HR neuron model as well.

When the applied current 𝐼 = 1, that is, the resistance
𝑅1 is fixed as 10 kΩ and the resistance 𝑅𝑘 is set to 1.36 kΩ
and to 1.23 kΩ, respectively, the phase portraits in the V𝑥-V𝜑
plane are captured, as shown in Figures 13(a) and 13(b).
Furthermore, when the electromagnetic induction strength
𝑘 = 0.9, that is, 𝑅𝑘 = 1.11 kΩ and 𝑅1 is set to 8.70 kΩ and to
6.17 kΩ, respectively, the phase portraits in the V𝑥-V𝜑 plane
are captured, as shown in Figures 13(c) and 13(d). Ignoring
some tiny differences between numerical simulations and
breadboard experiments due to the computational errors
and parasitic circuit parameters, the experimental results
are almost the same as the numerical simulations, which
imply that the coexisting asymmetric attractors’ behaviors
that emerged from the memristive HR neuron model can be
validated experimentally.
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Figure 13: Experimentally measured phase portraits in the V𝑥-V𝜑 plane for hidden coexisting asymmetric attractors under different circuit
parameters. (a) 𝑅1 = 10 kΩ and 𝑅𝑘 = 1.36 kΩ. (b) 𝑅1 = 10 kΩ and 𝑅𝑘 = 1.23 kΩ. (c) 𝑅1 = 8.70 kΩ and 𝑅𝑘 = 1.11 kΩ. (d) 𝑅1 = 6.17 kΩ and 𝑅𝑘 =
1.11 kΩ.

5. Conclusions

This paper presents a novel three-dimensional memristive
HR neuron model to describe complex dynamics of neu-
ronal activities with electromagnetic induction. The most
prominent feature of this neuron model is that it does not
contain any equilibrium point but can exhibit hidden coex-
isting behaviors of asymmetric attractors.Through executing
bifurcation analyses, phase portraits, attraction basins, and
dynamical maps, hidden coexisting asymmetric attractors
are uncovered from the mathematical model and verified
from the corresponding breadboard experiments. Thus, the
proposedmemristive HR neuronmodel can imitate the com-
plex dynamical behaviors of electrical activities in neuron
with electromagnetic induction. Further investigations will
be performed in our future works.
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