
International Journal of Geophysics

Landslides and Geophysical 
Investigations: Advantages and 
Limitations

Lead Guest Editor: Stefano Morelli
Guest Editors: Stefano Utili, Veronica Pazzi, Riccardo Castellanza,  
and Xuanmei Fan



Landslides and Geophysical Investigations:
Advantages and Limitations



International Journal of Geophysics

Landslides and Geophysical Investigations:
Advantages and Limitations

Lead Guest Editor: Stefano Morelli
Guest Editors: Stefano Utili, Veronica Pazzi,
Riccardo Castellanza, and Xuanmei Fan



Copyright © 2019 Hindawi. All rights reserved.

This is a special issue published in “International Journal of Geophysics.” All articles are open access articles distributed under the Cre-
ative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original
work is properly cited.



Editorial Board

Marco Bonini, Italy
Yun-tai Chen, China
Angelo De Santis, Italy
Gary Egbert, USA
Semih Ergintav, Turkey
Fabrizio Galadini, Italy
Salvatore Gambino, Italy

Marek Grad, Poland
Libo Liu, China
Francisco Luzon Martinez, Spain
Steve Milan, UK
Veronica Pazzi, Italy
Salvatore Piro, Italy
Ruey-Juin Rau, Taiwan

Sheng-Rong Song, Taiwan
Pantelis Soupios, Greece
Alexey Stovas, Norway
Sándor Szalai, Hungary
Filippos Vallianatos, Greece
Petr Vaníček, Canada
Michael S. Zhdanov, USA



Contents

Landslides and Geophysical Investigations: Advantages and Limitations
S. Morelli , S. Utili, V. Pazzi , R. Castellanza, and X. Fan
Editorial (2 pages), Article ID 8732830, Volume 2019 (2019)

A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies
Veronica Pazzi , Stefano Morelli , and Riccardo Fanti
Review Article (27 pages), Article ID 2983087, Volume 2019 (2019)

3D Mafic Topography of the Transition Zone between the North-Western Boundary of the Congo
Craton and the Kribi-Campo Sedimentary Basin from Gravity Inversion
Sévérin Nguiya, Willy Lemotio , Philippe Njandjock Nouck, Marcelin M. Pemi, Alain-Pierre K. Tokam,
and Evariste Ngatchou
Research Article (15 pages), Article ID 7982562, Volume 2019 (2019)

TheMitla Landslide, an EventThat Changed the Fate of a Mixteco/Zapoteco Civilization in
Mesoamerica
V. H. Garduño-Monroy , A. Figueroa-Soto, N. Magaña-García, A. Ruiz-Figueroa, J. Gómez-Cortés,
A. Jiménez-Haro, and V. M. Hernández-Madrigal
Research Article (14 pages), Article ID 5438381, Volume 2019 (2019)

HVSR Analysis of Rockslide Seismic Signals to Assess the Subsoil Conditions and the Site Seismic
Response
Alessia Lotti, Veronica Pazzi , Gilberto Saccorotti, Andrea Fiaschi, Luca Matassoni, and Giovanni Gigli
Research Article (11 pages), Article ID 9383189, Volume 2018 (2019)

Integrated Geophysical-Geological 3DModel of the Right-Bank Slope Downstream from the Rogun
Dam Construction Site, Tajikistan
Hans-Balder Havenith , Isakbek Torgoev, and Anatoli Ischuk
Research Article (16 pages), Article ID 1641789, Volume 2018 (2019)

https:orcid.org/0000-0001-8069-3609
https:orcid.org/0000-0002-9191-0346
https:orcid.org/0000-0002-9191-0346
https:orcid.org/0000-0001-8069-3609
http://orcid.org/0000-0002-9375-6610
http://orcid.org/0000-0001-7128-992X
http://orcid.org/0000-0002-9191-0346
http://orcid.org/0000-0003-3799-1242


Editorial
Landslides and Geophysical Investigations:
Advantages and Limitations

S. Morelli ,1 S. Utili,2 V. Pazzi ,1 R. Castellanza,3 and X. Fan4

1Department of Earth Sciences, University of Firenze, Firenze, Italy
2Newcastle University, Newcastle upon Tyne, UK
3University of Milano-Bicocca, Milano, Italy
4Chengdu University of Technology, Sichuan, China

Correspondence should be addressed to V. Pazzi; veronica.pazzi@unifi.it

Received 4 July 2019; Accepted 4 July 2019; Published 16 July 2019

Copyright © 2019 S.Morelli et al.�is is an open access article distributed under theCreative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Geohazards processes can damage or increase the risk of
human beings, properties, critical infrastructures, and envi-
ronment itself. �ey also could involve the interruption of
human activities with serious socioeconomic consequences.
Among all the natural occurrences, landslides are regarded as
one of the most destructive types of geohazards. Landslides
are a type of “mass wasting,” which denotes any down-slope
movement of soil and rock under the direct influence of
gravity, which can occur and develop in a large variety of
volumes and shapes. Even though the catastrophic impact of
landslides is not totally unavoidable, it can be significantly
reduced by increasing the capacity to assess and predict the
risks and using different mitigation methods. In the past
decades, many 2D and 3D numerical modelling methods
have been designed and developed to assess slope stability,
to predict slope response to various triggers, to evaluate
the slope deformation and evolution pattern, and to per-
form back-analysis simulations. Nevertheless, such models
still require access to detailed knowledge of the geological,
mechanical, and hydrological properties of landslides and
boundary conditions. �erefore, accurate geological field
surveys have to be integrated by means of low-cost and
noninvasive techniques, like the geophysical ones, to collect
widespread data with the aim of reconstructing a suitable
geological and hydrogeological model of the area, improving
the reliability of deterministic model.

�is special issue is dedicated to the geophysical methods
applied to investigate, characterize, and monitor landslides.

Over the years, both the advantages and limitations of these
techniques have been highlighted, and some drawbacks are
still open. Some papers were submitted to this special issue,
and, a�er a thorough peer review process, only five articles
were selected to be included in this special issue. �is
relatively small number is probably caused by the difficulty in
applying geophysical techniques on slope movements given
hard-operating conditions (e.g., high slopes, distance from
access roads, and lack of security for the technical operator)
and not because the methods limitations are greater than the
advantages.

�e review carried out by V. Pazzi et al. on geophysical
techniques applied in landslides studies analyses the interna-
tional efforts toward overcoming the geophysical technique
limitations highlighted by the 2007 geophysics and landslide
review, focusing on works of the last twelve years (2007-
2018). �e authors carried out the review analysis using a
“material landslide approach” on the basis of the more recent
landslides classification. �e most studied landslides are
those of the flow type for “soil” landslide typology and those
of the fall type for the “rock” category. From the “employed
method” point of view, active and passive seismic methods
are the most employed in landslide characterization and
monitoring. To quantify the efforts performed to overcome
the limitations highlighted in 2007, a three-level scale was
employed (from many/some efforts to non-discussed). �e
limits inherent in each technique and the need to still develop
multisource data integration methods were clear; very o�en
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the main drawbacks depend on the operator who carries
out the survey, the analysis of data, and the interpretation
and the presentation of the results. Finally, independently of
the applied technique/s, a very accurate and high-resolution
survey could be performed only on a small landslide portion,
as it is costly and time-consuming.

V. H. G. Monroy et al. describe the preliminary results
of an integrated geological and geophysical study carried out
to demonstrate that the city of Mitla (Mexico) was covered
by the deposits of a dry landslide. It is a collapsed body
composed of ignimbrite blocks andmatrix from the Sierra La
Calavera, and according to its morphology, the geotechnical
characteristics, and the geophysical data interpretation, the
landslide was provoked by an earthquake of a magnitude in
the range from 6.2 to 7.3 Mw. Unfortunately, until now there
is no a precise age established for the landslide occurrence.
However, the event presumably damaged the pyramids of
Mitla in historical times, and large parts of the pyramids
are probably still located under the avalanche deposit as
evidenced by the outcomes of this preliminary investiga-
tion. �is paper highlights how geophysical exploration, in
particular electrical resistivity tomographies, the study of
earthquakes, and the environmental seismic noise carried
out in synergy with other survey techniques are good and
promising tools in the geoarchaeology field of research.

�e paper by H.-B. Havenith et al. presents the results
of an integrated survey and the 3D geomodel generated for
an ancient mass movement located immediately downstream
from the Rogun Dam construction site (Tajikistan). �e geo-
physical survey includes electrical resistivity tomographies,
seismic profiles, and ambient vibrationmeasurements, as well
as earthquake recordings. �e integrated interpretation of
all results reveals that probably only a relatively small part
of the ancient giant mass movement is really exposed to
slope instability phenomena. Nevertheless, authors highlight
how all the geophysical measurements are affected by a
great variability that affects the final estimated unstable
volume.

Implementing an early warning system (EWS) is a chal-
lenging issue in landslidemonitoring. To verify the usefulness
of seismic noise analysis as part of an EWS, A. Lotti et al.
describe the results of the HV analysis of a 7-month period of
passive seismic data collected by a pilot scale passive seismic
network arranged tomonitor an unstable rockmass. Possible
connection between rainfall/temperature/displacement and
rockslide seismic activity is evaluated, and the hypothesis that
the HV amplitude value is directly related to meteorological
factors can be excluded. On the contrary, the observed
variations potentially reveal changes of subsoil site conditions
and have also implications for the assessment of site response
to seismic shaking.

Finally, S. Nguiya et al., based on the analysis and the
gravity inversion constrained by seismic information, show
the geodynamic implication of the intracrustal mafic discon-
tinuity in the north-western portion of the Congo Craton
and its implication for the occurrence of landslides across
the area. Faults, earthquake, volcanism, and geomorphology
are known as potential triggers of landslides. According to
the authors, by correlating the location of some observed

landslides and the gravity data, new insights into the regional
tectonic can be inferred.
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Landslide deformations involve approximately all geological materials (natural rocks, soil, artificial fill, or combinations of these
materials) and can occur and develop in a large variety of volumes and shapes.The characterization of thematerial inhomogeneities
and their properties, the study of the deformation processes, and the delimitation of boundaries and potential slip surfaces are not
simple goals. Since the ‘70s, the international community (mainly geophysicists and lower geologists and geological engineers) has
begun to employ, together with other techniques, geophysical methods to characterize and monitor landslides. Both the associated
advantages and limitations have been highlighted over the years, and some drawbacks are still open. This review is focused on
works of the last twelve years (2007-2018), and the main goal is to analyse the geophysical community efforts toward overcoming
the geophysical technique limitations highlighted in the 2007 geophysics and landslide review. To achieve this aim, contrary to
previous reviews that analysed the advantages and limitations of each technique using a “technique approach,” the analysis was
carried out using a “material landslide approach” on the basis of the more recent landslides classification.

1. Introduction

Large landslides and smaller-scale mass movements are
natural widespread processes that result in the downward and
outward movement of slope-forming materials, significantly
sculpting the landscape and redistributing sediment and
debris to gentler terrain.The rapid population growth and the
pressure fromhuman activities have strongly influenced their
extension and occurrence so that they have become disasters
causing vast direct and indirect socioeconomic consequences
[1]. These deformations involve approximately all geological
materials (natural rocks, soil, artificial fill, or combinations
of these materials) and can occur and develop in a large
variety of volumes and shapes [2]. Artificial fills are usually
composed of excavated, transported, and placed soil or rock,
but they can also contain demolition debris, ash, slag, and
solid trash. The term rock refers to hard or firm bedrock that
was intact and in place prior to slope movement. Soil, either
residual or transported material, is used for unconsolidated
particles or poorly cemented rock or aggregates. Soil is
usually further distinguished on the basis of texture as debris
(coarse fragments) or earth (fine fragments) according to
the well-established Varnes Classification [3]. Following the

recent updating of [4], more reasonable use of geotechnical
material terminology (clay, silt, sand, gravel, and boulders)
is starting to spread, although some classical terminologies
(mud, debris, earthflow, peat, and ice) are maintained after a
recalibration of their definitions, because they have acquired
a recognized status in landslide science by now. The Hungr
classification includes aggregations of different materials that
have been mixed by geomorphic processes such as weather-
ing, mass wasting, glacier transport, explosive volcanism, or
human activity.Theuse of geotechnical terminology is indeed
most useful, as it relates best to the mechanical behaviour
of the landslide as stated by [4] and even to most common
investigation methods. In any case, the distinction between
different materials is usually based on interpretation of the
main geomorphic characteristics within landslide deposits
but can also be inferred from the geological attributes of
the involved parent material. The type of material is one
of the most important factors influencing the movement of
landslides, which can be categorized as falls, topples, spreads,
slides, or flows according to their behaviour from the source
area to the final deposit through distinctive kinematics [2, 3,
5]. Actually, the most common criterion used in landslides
classification is based on the combination of the materials
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with the type of movement, but it is possible to find many
other classification criteria, including velocities, volumes,
water content, geotechnical parameters, and processes related
to the formation of the mobilized material, among others.
This is because, as stated by [5], engineering geology literature
on landslides is affected by inconsistent terminology and
ambiguous definitions from older classifications and current
key terms for both specialists and the public. Currently, the
most widely accepted and used classification is that of [2],
which enhances the previous system devised by D.J. Varnes
[3, 6]. Since then, only small improvements for specific cate-
gories have occurred, such as that for flow-like landslides by
[5]. In 2014 Hungr et al. [4], by maintaining the consolidated
concepts introduced by [2], redefined some basic elements
(basically typology andmaterial) that still refer to the original
characterization of [3] and, consequently, updated the total
amount of categories (from 29 to 32), along with revisiting
some of their descriptions. This new landslides classification
version (Table 1), which was proposed to simplify landslides
studies, is increasingly circulating in the academic world, and
for this reason, it is used as the reference in the present paper.

Characterizing landslide material inhomogeneities and
their properties, studying the deformation processes, and
delimiting boundaries and potential slip surfaces are not sim-
ple goals.They require the availability of a wide range of data,
observations, and measurements (e.g., kinematic, geomor-
phologic, geological, geotechnical, and petro-physical data
[7]) and the evaluation of geologic and hydrologic conditions
related to phenomena occurrences [8]. To obtain the needed
information, many techniques including both traditional
methods (detailed geomorphological surveys, geotechnical
investigations, local instrumentation, and meteorological
parameters analyses) and more recent methods (remote-
sensing satellite data, aerial techniques, and synthetic aper-
ture radar interferometry) can be employed [[9, 10] and
references within]. Among the latter, geophysical techniques
are also included, since they are very useful in detecting
the petro-physical properties of the subsoil (e.g., seismic
wave velocity, electrical resistivity, dielectric permittivity, and
gravitational acceleration [7]). Even though linking geophysi-
cal parameters and geological/geotechnical properties should
always be supported with direct information (e.g., data
from drillings), geophysical methods can provide the layered
structure of the soil and certain mechanical parameters [11].
Therefore, because almost all of the advantages of geophysical
methods correspond to disadvantages of geotechnical tech-
niques and vice versa, the two investigation techniques can be
considered complementary. Finally, the geophysical inversion
data, and, therefore, the creation of a reliable subsoil model,
is a complex and nonlinear problem that must be evaluated
by taking into account all the available data on the site [11].

It is to be noted that the success of geophysical methods
is mostly dependent on the presence of a significant and
detectable contrast in the physical properties of different
lithological units. However, in landslide characterization,
geophysical contrast (i.e., differences inmechanical and phys-
ical properties) cannot be associated only with a boundary
in mechanical properties (i.e., landslide boundaries) and
therefore be of interest relative to the slope stability. These

measured variations, in fact, could be local anomalies within
the landslide or caused by the rough topography, and as a
result, they could be of no or little interest [12]. This is why
according to [11], the references for landslide investigation
purposes are relatively few, and according to [13], there have
been few landslides in which geophysical techniques were
very useful. Nevertheless, the application of these techniques
has changed over the years thanks to technological progress,
the availability of cheaper computer electronic parts, and
the development of more portable and faster equipment and
new software for data processing [12], allowing the adequate
investigation of 3D structures, which addresses one of the
most ancient geophysical method limitations according to
[11].

This review work, which starts from [11], is focused
on the last twelve years of works (2007-2018) published in
international journals and available online. The main goal
was to analyse the geophysical community efforts in over-
coming the geophysical technique limitations highlighted in
the conclusion section of [11]. The drawbacks pointed out
were as follows: (i) geophysicists have to make an effort
in the presentation of their results; (ii) the resolution and
penetration depth of each method are not systematically
discussed in an understandable way; (iii) the geological
interpretation of geophysical data should be more clearly and
critically explained; (iv) the challenge for geophysicists is to
convince geologists and engineers that 3D and 4D geophysi-
cal imaging techniques can be valuable tools for investigating
and monitoring landslides; and finally, (v) efforts should
also be made towards achieving quantitative information
from geophysics in terms of geotechnical parameters and
hydrological properties. To reach the aim, contrary to the
four geophysics and landslide reviews discussed in section
number 2 [8, 11, 12, 14] that analysed the advantages and
limitations of each technique using a “technique approach,”
the analysis in this paper was carried out on the basis
of a “material landslide approach” according to the recent
landslide classification discussed above [4]. Finally, since it is
beyond the aim of the work, we do not discuss the theoretical
principles of the different geophysical techniques nor how to
perform field surveys in this paper.

2. Geophysical Techniques and Landslides:
The State of the Art of Review Papers

One of the first papers related to the application of geophys-
ical techniques for the investigation of landslides, defined
as a pioneering work by [11], is [8]. Herein, “landslides” are
defined as a sudden or gradual rupture of rocks and their
movement downslope by the force of gravity. In this paper,
the main advantages of applying geophysical methods are as
follows: (a) the rapid investigation of vast areas, collecting
a larger number of sample points than those acquired by
geologic engineering techniques; (b) the determination of
the mechanical properties of wet and dry soils based on the
measurements of large rock volumes directly involved in the
processes; (c) the measured parameters reflect the combined
geological and hydrological characteristics, which sometimes
cannot be identified separately; and (d) the measurements
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Table 1: Nomenclature of the newly proposed landslide classification version according to [4] based on the Varnes classification system.
Words divided by / (slash symbol) have to be used alternatively. In italic movement types that usually reach extremely rapid velocities as
defined by [2], while for the others, the velocity varies between extremely slow to very rapid (for details, refer to [4]).

TYPE OF
MOVEMENT ROCK SOIL

Fall Rock/ice fall Boulder/debris/silt fall

Topple Rock block topple Gravel/sand/silt topple
Rock flexural topple

Slide

Rock rotational slide Clay/silt rotational slide
Rock planar slide Clay/silt planar slide
Rock wedge slide Gravel/sand/debris slide
Rock compound slide Clay/silt compound slide
Rock irregular slide

Spread Rock slope spread Sand/silt liquefaction spread
Sensitive clay spread

Flow Rock/ice avalanche

Sand/silt/debris dry flow
Sand/silt/debris flowslide
Sensitive clay flowslide
Debris flow
Mud flow
Debris flood
Debris avalanche
Earthflow
Peat flow

Slope Deformation

Mountain slope
deformation Soil slope deformation

Rock slope deformation Soil creep
Solifluction

can be repeated any number of times without disturbing the
environment. Four main goals can be reached by applying
vertical electric sounding (VES), seismic refraction (SR),
self-potential (SP), and electromagneticmeasurements (EM),
listed as follows: (i) the investigation of the landslide geo-
logic configuration, (ii) the investigation of the groundwater
(determining the level and its fluctuationwith time) as a land-
slide formation factor, (iii) the study of the physical properties
and status of the landslide deposits and their changes with
time, and (iv) the investigation of the landslide displacement
process. Reference [8] also showed how electrical resistivity
values and seismic waves velocities decrease between the
bedrock and the rocks in the landslide body. Finally, in the
conclusion section of [8], microseismic noise (SN) analysis is
mentioned as a valuable method by which to characterize the
slope soil strata.

Reference [14] conducted a review of the geophysical
methods employed in landslide investigations. They high-
lighted that the selection of the method/s to be applied
depends on its/their suitability for solving the problem. To
estimate this adequacy, there are four main control factors:
(i) the definition/understanding of the geophysical contrasts
that have to be investigated, (ii) the evaluation of the charac-
teristics (penetration depth and resolution) of the geophysical

methods, (iii) the calibration of the acquired data by means
of geological/geotechnical data, and finally, (iv) the signal-
to-noise ratio. In the paper, several case studies are shown
wherein the SR was successfully employed to determine the
lower landslide boundary.

Ten years later, the SR, seismic reflection (SRe), electrical
resistivity (ER), SP, EM, and gravimetry were discussed by
[12] as the most frequently usedmethods in landslide charac-
terization. For each method, the author gives (i) the theoreti-
cal principles, (ii) how to perform themeasurements, (iii) the
sources for those which are active techniques, and, finally, (iv)
some expected results. Moreover, he presents some summary
tables with the physical property ranges (e.g., those of the P-
wave velocity, density, and electrical resistivity) of the most
common soil and rock masses in their crude form (without
taking into account variations caused by different clay con-
tents, weathering, saturation, etc.). Finally, for each discussed
method, [12] synthesizes in one table its suitability for use
in landslide characterization, human artefact (like pipes and
foundations) identification, and physical properties determi-
nation for geotechnical purposes. Overall, the SP method
results are not or only marginally suitable in all fields. Never-
theless, in the same year, [15] and, later, [16–18] showed how
the SP method could be helpfully employed. From the table
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in [12], the seismic tomography and 2D and 3D geo-electric
results correspond to the best methods for use in landslide
characterization.

Reference [11] presents the state of the art of the geophys-
ical techniques applied in landslide characterization based
on papers after 1990. According to this review, the methods
could be divided into seldom, widely, and increasingly used
categories. Among the first methods they enumerate are
SRe, ground penetrating radar (GPR), and gravimetry, while
among the second group are SR, ER VES, or tomographies
(ERT), and SP, and, finally, among the third group are SN,
surface waves (SW), and EM.Moreover, they indicate seismic
tomography (ST) as method useful only for limited site con-
ditions (rock slides). They synthetize in a table (a) the main
geophysical methods used, (b) the measured geophysical
parameters and information type, (c) the geological context,
(d) the landslide classification following [2], (e) the geomor-
phology, and (f) the applications (targets). According to the
review in [11], there are threemain advantages and threemain
limitations in employing geophysics for the subsurface map-
ping of landslides. As benefits of the geophysicalmethods, the
author enumerates (i) the flexibility and the relative efficiency
on slopes; (ii) the noninvasiveness and the generation of
information on the internal structures of soil or rock masses;
and (iii) the allowance of examining large volumes of soil.
As drawbacks, he highlights that (i) the resolution, which is
dependent on the signal-to-noise ratio, decreases with depth;
(ii) the solution for a set of data is nonunique, and the results
must be calibrated; and (iii) these methods yield indirect
information on the subsoil, such as physical parameters
rather than geological or geotechnical properties. One of the
main conclusions of the review is that in landslide char-
acterization, the geophysical survey design is still a much-
debated question, and no unique strategy has arisen from the
literature.

Reference [11] is the last review published in an interna-
tional journal and available online that focused on the advan-
tages and limitations of the geophysical methods applied in
landslides characterization. Reference [19], in fact, discusses,
by means of case studies, benefits and drawbacks of the
most common geophysical techniques (GPR, ER, and SR)
in geomorphological applications. Therefore, in this paper
landslides are just one of the possible fields of application.
Two more recent reviews about geophysics and landslides
are [20, 21]. The first is focused only on the ERT tech-
nique applied in landslide investigations and analyses the
advantages and limitations of 2D-, 3D-, and 4D-ERT (or
time-lapse ERT: tl-ERT) surveys based on papers of the
period from 2000 to 2013. The second is a review of the
current state of the art and the future prospects of the
near surface geophysical characterization of areas prone to
natural hazards (e.g., landslides, rockfalls, avalanches and
rock glaciers, floods, sinkholes and subsidences, earthquakes,
and volcanos) published in a book series (and, therefore,
not freely available online for download), wherein the anal-
ysis of the geophysical techniques applied in landslides
characterization is limited to subsections of the case study
section.

3. Geophysical Techniques and Landslides:
A (Landslide Approach) Analysis

As mentioned in Introduction, this review work is based
on a “material landslide approach” analysis on the basis of
the more recent landslide classification presented by [4] and
discussed in Introduction. Even though this classification is
not widely employed (only 20% of the analysed papers from
the years 2015-2018 adopted it, and these papers are marked
with # in Tables 2 and 3), we decided to use it considering
that the same landslide could assume different names from
paper to paper, though the authors could be more or less the
same. Among the analysed papers, examples are the Super
Sauze landslide and the La Vallette landslides (marked in
Table 2 with (∘) and (∘∘), respectively) or the Randa landslide
(marked with (∘) in Table 3). This means that the analysed
works are clustered and discussed in two groups, “soil” and
“rock,” respectively, on the basis of thematerial landslide type
(columns 2 and 3 of Table 1).

Moreover, we decided to analyse the works starting from
2007 because the review in [20] is focused only on the
ERT technique application; nevertheless, we do not analyse
in detail all references already discussed therein, but we
synthetize the results. The results of the review analysis are
summarized in Tables 2 and 3, where for each work, we
specify: (a) the landslide typology according the authors of
the paper (i.e., how they refer to the landslide in the text) and
(b) according to the classification from [4] (where possible,
since sometimes it is not easy to identify the landslide classes
from [4] on the basis of only the text); (c) the materials
involved in the landslides; (d) which geophysical methods
and (e) which other traditional techniques were employed;
and (f)-(l) howmany efforts were performed to overcome the
five drawbacks highlighted by [11] and listed in Introduction.
To quantify these efforts, a three-level scale was employed,
where +, -, and n.d. mean, respectively, that many/some,
insufficient, and nondiscussed efforts weremade to overcome
the limitations. Unfortunately, we know that the evaluation
of how many efforts were performed could seem subjective.
Therefore, in Table 4, for each drawback, we summarize how
we evaluated the efforts.

3.1. “Soil” Landslides. “Soil” landslides, with respect to “rock”
landslides, are the typology most studied with geophysical
techniques. Among the 120 analysed papers, more than
half (e.g., 66 papers, which means 75 landslides analysed
without considering those reported in [20]) were about “soil”
landslides, and among them, more than half were on the
flow type. As summarized in Table 5, in fact, no one was
focused on falls, topples, or spreads, while 28 landslides
(the 37.3%) were analysed focused on the slide (6 clay/silt
rotational slides, 8 clay/silt planar slides, 11 rotational and
planar slides, 1 debris slide, and 2 clay/silt compound slides),
41 (the 54.6%) on the flows (5 sensitive clay flowslides, 9
debris flows, 5mudflows, and 22 earthflows), and 6 (the 8.1%)
on the slope deformations (soil slope deformation). Only two
of the analysed landslides were marine landslides [33, 35],
indicating that it is not easy to conduct geophysical surveys
to characterize landslides that dive into the sea. It is also
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Table 4: For each drawback, this table explains how the three-level scale (+, -, and n.d., which mean that many/some, insufficient, and
non-discussed efforts were made to overcome the limitations) was applied.

+ - n.d.

Drawback 1

(i) Coloured figures
(ii) 3D figures
(iii) Figures with
interpretations

(i) B&W figures
(ii) Non-interpreted

figures
(iii) Figures too small
(iv) Only raw data

/

Drawback 2

There is wide discussion
about the technique/s

penetration depth and/or
resolution

There are only some
mentions of the technique/s
penetration depth and/or

resolution

There are no mentions of
the technique/s penetration
depth and/or resolution

Drawback 3

There is wide discussion
about the geological
interpretation of the
geophysical data

There are only some
mentions of the geological

interpretation of the
geophysical data

There are no mentions of
the geological

interpretation of the
geophysical data

Drawback 4 3D/4D data are presented
and discussed

3D/4D data are presented
but they are not discussed

in depth

No 3D/4D data are
presented or discussed

Drawback 5

There is wide discussion on
how to link geophysical
data with geotechnical
and/or hydrological

properties

There are only some
mentions of how to link
geophysical data with
geotechnical and/or

hydrological properties

There are no mentions of
how to link geophysical
data with geotechnical
and/or hydrological

properties

Table 5: For each type ofmovement and “soil” landslide typology, the table summarizes howmany papers are focused on it. In italicmovement
types that usually reach extremely rapid velocities as defined by [2], while for the others, the velocity varies between extremely slow to very
rapid (for details, refer to [4]).

TYPE OF MOVEMENT Number of papers SOIL Number of papers
Fall / Boulder/debris/silt fall /
Topple / Gravel/sand/silt topple /

Slide 28

Clay/silt rotational slide 6 11
Clay/silt planar slide 8
Gravel/sand/debris slide 1
Clay/silt compound slide 2

Spread / Sand/silt liquefaction spread /
Sensitive clay spread /

Flow 41

Sand/silt/debris dry flow /
Sand/silt/debris flowslide /
Sensitive clay flowslide 5
Debris flow 9
Mud flow 5
Debris flood /
Debris avalanche /
Earthflow 22
Peat flow /

Slope Deformation 6
Soil slope deformation 6
Soil creep /
Solifluction /

important to point out that in our analysis, we do not consider
papers focused on the geophysical characterization of quick-
clay that could evolve into a sensitive clay flowslide but only
papers focused on those that already occurred [35, 51, 52, 72].

In only 8 works (12.1% of the analysed “soil” landslide
works), it is possible to find a detailed discussion of the theory

applied to landslides, concerning either how to formulate the
inversion problem [41, 46, 52, 55, 68, 83] or how to combine
data from different surveys [7, 42]. All the other papers deal
with the discussion of a case study.

A detailed analysis of the applied techniques is discussed
in Section 4. Below, we present only the main considerations
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from some papers. ERT is an active geophysical method that
can provide both 2D and 3D images of the subsoil. A wide
review of this technique applied to landslides is provided
in [20]. Therefore, here, we limit discussion to saying that
in most papers (29 of 33 that present ERT applications, i.e.,
88.0%), 2D ERTs are shown, while only in 6.0% (2 papers of
33), 3D ERTs are shown, and in the remaining 6.0% (2 papers
of 33), both 3D and 2D applications are presented.

Since the ‘60s, passive seismic techniques have been
developed to monitor and characterize signals triggered
by landslide dynamics and related changes in the material
mechanical properties (i.e., (i) material bending, shearing, or
compression; (ii) fissure opening; (iii) slipping at the bedrock
interface; and (iv) debris flows or mudslides) [22, 55]. They
are of great interest in (a) detecting debris flows [30], (b)
assessing site effects [24, 29], (c) detecting landslide slip sur-
faces [10], and (d) estimating the thickness of a material that
could be mobilized by a landslide [136]. Another advantage
of this method is its ability to detect remote events that
might otherwise go unnoticed for weeks ormonths.Themain
difficulties arise from two issues: (i) the seismic signatures
of landslides and mud/debris flows are very complex and
cannot be effectively identified without a detailed waveform
analysis and (ii) the epicentres of landslides and mud/debris
flows cannot be confidently determined by conventional
earthquake-locating methods, mainly due to the lack of clear
arrivals of P and S phases [44].

3.2. “Rock” Landslides. Among the 120 analysed papers, less
than half (e.g., 54) were about “rock” landslides, and the
majority discussed were of the rock fall type. As summarized
in Table 6 the landslide typology is divided as follows: 41 (the
54.6%) falls, 5 (the 6.7%) topples (5 block topples), 18 (the
24.0%) slides (1 rotational, 2 planar, 1 wedge, 3 compound, 1
irregular), 1 (the 1.3%) spread (rock slope spread), 6 (the 8.0%)
flows (avalanches), and 4 (the 5.4%) slope deformations (3
mountain slope deformations and 1 rock slope deformation).
In all the works that discuss the application of seismic
techniques [26, 55, 84, 86, 87, 89, 91, 93–101, 103–107, 111–
118, 120, 121, 126–128, 130, 131, 133, 134], it is possible to find a
more- or less-detailed discussion on the theory of the seismic
wave analysis carried out to find the “rock” landslide features.

“Rock” landslides are well-known phenomena but are
poorly understood. Contrary to other landslide types, rock-
falls are usually sudden phenomena with few apparent pre-
cursory patterns observed prior to the collapse. A key point
in the prediction of rock slope failure is better knowledge
of the internal structure (e.g., the persistence of joints),
which requires an interdisciplinary research field among
rock mechanics, rock engineering, and mining [98]. This
is why in 64.8% of the analysed papers, the geophysical
technique is carried out along with more traditional methods
(i.e., boreholes, mining, extensometers, and inclinometers).
Moreover, there are at least two limitations in applying
geophysical methods for rock deposits: (a) the difficulty of
deploying sensors (i.e., ER electrodes, geophones, or GPR
antennas) on sharp and blocky ground with a high void ratio
and (b) the low geophysical contrast between the rock deposit
and the underlying layers with comparable properties [[137],

not listed in Table 3 because it was already analysed by [20]].
In [137], there is another limitation in applying geophysics
for rock deposits: the presence of a shallow geophysical
contrast caused by the subsoil water table that could mask
deeper interfaces. Nevertheless, this limitation also has to be
considered for “soil” landslides.

More recently, to overcome these limitations, rock slope
stability characterization and monitoring has been carried
out using passive seismic techniques (see also the discussion
session), implemented initially in open-mine monitoring
[98]. These techniques, in fact, could help in (i) understand-
ing the seismic responses of rock to slope deformation (e.g.,
the release of stored elastic energy under particular condi-
tions) [135, 138], (ii) detecting and locatingmicroearthquakes
generated by fracturing within unstable rock masses (major
effort is required for classifying seismic signals and extracting
those related to landslides [86, 99, 129]), and (iii) identifying
remote events that could otherwise go unnoticed for weeks or
months. Therefore, these methods are applied to avalanches
[26, 84, 101, 126], rock topplings [107, 111, 117, 134], rockslides
[55, 96–99, 103, 116, 126, 127, 130], and rock falls or cliff failures
[86, 88, 89, 91, 93–95, 100, 104–106, 112–115, 118, 120, 121, 126,
128, 131, 133]. Finally, some works are focused on finding
the relation among “rock” landslides, displacement rate mea-
surements, and meteorological (i.e., rain and temperature)
parameters [95, 99, 100].

4. Discussion

Most studies focused on geophysical surveys are applied
(a) to explore the subsoil for mineral deposits or fossil
fuels, (b) to find underground water supplies, (c) for engi-
neering purposes, and (d) for archaeological investigations
[19]. Technological progress and the availability of cheaper
computer electronic parts has allowed the improvement of
more portable equipment and the development of 2D and 3D
geophysical techniques [11, 12]. Therefore, the applicability of
geophysical methods in landslide characterization has grown
over the years. Starting from the state of the art of the
geophysical techniques applied in landslide characterizations
pointed out in [12], this review focused on the papers from
the last twelve (2007-2018) years and tried to understand how
many efforts have been made by the international scientific
community to overcome the drawbacks. These geophysical
techniques limitations are listed in Introduction. To reach
the goal of this paper, contrary to the four reviews discussed
in Section 2 [8, 11, 12, 14], the analyses of the geophysical
method advantages and limitation were carried out on the
basis of the latest landslide classification, which is mainly
based on the involved materials and geotechnical properties
[4]. Therefore, the 120 analysed papers were divided into two
classes: “soil” (in red in the following figures) and “rock” (in
green in the following figures), which account for 66 and 54
works, respectively.

Even though it is well known that it is better to integrate
more than one geophysical technique because of the intrinsic
limitations of each approach, in 68.3% of the analysed
papers (Figure 1), only one geophysical method is presented
and discussed. However, in 64.6% of these works (which
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Table 6: For eachmovement type and “rock” landslide typology, the table summarizes howmany papers are focused on it. In italic movement
types that usually reach extremely rapid velocities as defined by [2], while for the others, the velocity varies between extremely slow to very
rapid (for details, refer to [4]).

TYPE OF MOVEMENT Number of papers ROCK Number of papers
Fall 41 Rock/ice fall 40

Topple 5 Rock block topple 5
Rock flexural topple /

Slide 18

Rock rotational slide 1
Rock planar slide 2
Rock wedge slide 1

Rock compound slide 3
Rock irregular slide 1

Spread 1 Rock slope spread 1
Flow 6 Rock/ice avalanche 6

Slope Deformation 4 Mountain slope deformation 3
Rock slope deformation 1

correspond to 44.1% of the total analysed papers, as indicated
by the bottom/darker part of the blue bar in Figure 1), the
geophysical results are interpreted on the basis of other
techniques. This means that only in 24.2% of the analysed
works (the top/lighter part of the blue bar in Figure 1) is
just one technique presented, and in 80% of these 24.2%
(which means four works out of five), the employed method
is a passive seismic technique. This is probably because these
techniques (a) require quite light equipment, (b) can be
employed to both monitor and characterize seismic signals
triggered by landslide dynamics [55, 133, 134], and (c) can
be useful for overcoming the unpredictable occurrence of
rockfalls [128], even though it is not easy to correlate seismic
signal features with landslide geological properties [120, 134].

In general, active and passive seismic methods are the
most employed in landslide characterization and monitoring
(Figure 2). In “soil” landslides, the three most employed
techniques are ERT, SN (at local and regional scales), and
SR. The last, together with SRe and SW, is largely used in
this kind of landslide typology, and in general, it is easier
to find papers focused on “soil” landslides that integrate the
abovementioned seismic techniques with other less-common
techniques (e.g., MG, IP, SP, and EM). Our analysis of “soil”
landslides confirms the conclusions of [20]; i.e., (a) ERT and
SR integration proves to be the most effective, (b) the joint
application of ERT, SR, andGPR seems to solve and overcome
the resolution problems of each single method, and (c) in the
literature, there are very few examples of ERT combined with
IP to distinguish clayey material or to better interpret ERT.
In “rock” landslides, the three most employed techniques are
SN (at local and regional scales), ERT, and SR, indicating that
passive seismic techniques are preferred over electrical ones.
As mentioned above, this is probably because they can be
employed to both monitor and characterize seismic signals
triggered by landslide dynamics [55, 133, 134]. At the fourth
position is GPR, although the authors highlight both the
difficulty of deployment on cliffs and the limitation of its
applicability to only highly resistive rock slopes [87, 88, 92,
132].

60.6% 77.8%

68.3%

39.4%

22.2%

31.7%

One technique More than one technique
0

10
20
30
40
50
60
70
80
90

SOIL ROCK Total

Figure 1: For each landslide typology (“soil” in red, “rock” in green,
and total in blue), the bar graph shows the number of papers focused
on just one technique or on more than one. Numbers on the top of
the bars are the percentage values with respect to the total number of
analysed papers. The darker colours of the “soil” and “rock” bars of
the “one-technique” group indicate in how many works the passive
seismic technique was employed alone. The dark blue portion of
the “one-technique total bar” indicates in how many works other
nongeophysical techniques were employed.

In Figure 3, for each drawback, the percentages and the
numbers of papers (numbers on the top of the bars) that fall
into each level of the three-level scale (+, -, and n.d., which
mean that many/some, insufficient, and nondiscussed efforts
were made to overcome the limitations, as shown in Table 4)
are summarized. In general, it is possible to observe that
great efforts were made (95 papers out of the 120 analysed,
which is 79.1%, are on the + level of the scale) to improve
the geological interpretation of the geophysical data and to
explain itmore clearly and critically (drawback 3). In contrast,
very few efforts were made to (a) systematically discuss,
in an understandable way, the resolution and penetration
depth of each method (drawback 2: 91 papers out of the
120 analysed, which are 75.8%, are on the n.d. level of the
scale), (b) to convince geologists and engineers that 3D
and 4D geophysical imaging techniques can be valuable
tools for investigating and monitoring landslides (drawback
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Figure 2: For each landslide typology (“soil” in red, “rock” in green, and total in blue), the bar graph shows the number of papers focused
on each geophysical method.
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Figure 3: The bar graph indicates the percentage of efforts made (+ means many/some, - means insufficient, and n.d. means nondiscussed)
to overcome each drawback. The percentages of papers focused on “soil” landslides are in red, those of papers focused on “rock” landslides
are in green, while in blue are the total percentages. The numbers on the top of each bar indicate the numbers of papers.

4: 107 papers for 3D applications and 102 papers for 4D
applications out of the 120 analysed, which are 89.2% and
85.0%, respectively, are on the + level of the scale), and (c)
to obtain quantitative information in terms of geotechnical
parameters and hydrological properties from geophysical
data (drawback 5: 99 papers out of the 120 analysed, which
are 82.5%, are on the n.d. level of the scale). Finally, thanks to
the development of new 2D and 3D imaging software, some
efforts, but still not enough (57 papers out of the 120 analysed,
which is 47.5%, are on the + level of the scale), were made to
show the geophysical results more clearly (drawback 1).

In the following discussion,we analyse point-by-point the
efforts made to overcome each drawback highlighted by [11].

Drawback 1: Geophysicists Have to Make an Effort in the
Presentation of Their Results. According to our analysis (Fig-
ure 3), the efforts to overcome this drawback were performed
more or less in the same way for both “soil” and “rock”
landslides. This means that a tendency to show and present
the results more objectively is beginning to emerge. This
could be possible thanks to the development of new 2D
and 3D software that allow the integration of data from

different sources and surveys (e.g., geophysical, geotechnical,
and borehole data). Nevertheless, the presentation of seismic
data is sometimes still hard, since authors often show the
rough traces or spectra (e.g., [22, 24, 26, 29, 39, 40, 44, 47,
49, 55, 56, 58, 64, 76, 84, 89, 95, 97, 98, 101, 103, 104, 106, 112,
116, 117, 121, 126, 127, 131, 133]) that could be difficult to read
for a nonexpert audience.

Drawback 2: The Spatial Resolution and Penetration Depth of
Each Method Are Not Systematically Discussed in an Under-
standable Way. Each technique has a different resolution and
penetration depth that contribute to the final quality of a geo-
metrical model. According to [7], several preprocessing steps
are needed to carefully check the data quality and, therefore,
the resolution and penetration depth before incorporation
into a 3D model. In total, 75.8% of the analysed papers (47
of those on “soil” landslides and 44 of those on the “rock”
type) do not discuss either the resolution or the penetration
depth of the presented methodology (Figure 3). Additionally,
in the review in [20], none of the cited papers within the
year range (2007-2013) examine these two points. In contrast,
in the remaining 24.2% (Figure 3) of the examined works,
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these two points are discussed more in depth in nine papers
[7, 23, 27, 38, 62, 68, 93, 105, 128], and only few words are
presented in the other twenty [25, 33, 41, 43, 49, 50, 67, 73–
75, 78, 80, 85, 87, 90, 92, 108, 110, 132]. Therefore, most of the
authors who present the results of an integrated survey do not
discuss how to consider and combine these data. It is possible
to conclude that this drawback has still not been overcome
since 2007 and the review in [11].

Drawback 3: The Geological Interpretation of Geophysical
Data Should Be More Clearly and Critically Explained.
The 3D internal structural characterization of a slope/cliff
is essential to any landslide stability analysis and to
hydro-mechanical modelling [7]. Nevertheless, interdisci-
plinary aspects between geomorphological and geophysical
data/results are poorly addressed [19]. According to our
review (Figure 3), in 79.2% of the analysed papers (47 of
those on “soil” landslides and 48 of those on the “rock”
type), many efforts have been made to interpret, show, and
explain the geophysical data in a more clear and critical
way. However, almost 50.0% of these works (those marked
with +∗ in Tables 2 and 3, which total 11 of 47 for “soil”
landslides and 36 of 48 for the “rock” type) involve passive
seismic monitoring and data analysis and interpretation to
(a) provide information on slope dynamics and (b) identify
landslide features. Moreover, it is worthwhile to note that
the geophysical data interpretations are still not indisputable.
In many papers, in fact, the discussion of the results is
accompanied by words such as “suspect,” “suppose,” “specu-
late,” “probably/probable,” “potential,” “our preferred inter-
pretation,” and “provide important information on possible”
[9, 22, 25–27, 35, 38–40, 42–44, 46, 48–53, 57, 58, 63, 68,
72, 74, 75, 77, 85, 86, 96, 99, 101, 102, 104, 106, 108–110,
112, 114, 115, 118, 122, 126, 134]. Without close collaboration
between geophysicists and geomorphologists, the accurate
and effective use of geophysical techniques, as well as the
corresponding data interpretation, is often very limited [19].

Drawback 4: The Challenge for Geophysicists Is to Convince
Geologists and EngineersThat 3D and 4DGeophysical Imaging
Techniques Can Be Valuable Tools for Investigating and Moni-
toring Landslides. In the hydrocarbon industry, the best strat-
egy for reconstructing a high-resolution model is acquiring
a 3D data set [31]. On the other hand, there are interesting
results from the noninvasive time-lapse monitoring of the
hydrological behaviour of a mountain slope [139]. However,
in 89.2% of the analysed works (Figure 3) 3D geophysical
imaging is not discussed. Even though the 3D volumetric
reconstruction of a landslide is a suitable target with new
technologies [46, 60, 65, 92], a 3D survey could be very tiring,
exhausting, and time-consuming, since it is still difficult to
carry and move the equipment over the slope [18, 20]. To
overcome this limitation, the acquisition is usually performed
by means of 2D parallel profiles, and the results are shown in
a 3D fence diagram [[20] and references within, [27, 51, 52,
57, 86, 92, 124]]. Thus, this drawback highlighted by [11] has
not been overcome and is still a challenge for geophysicists.

Passive seismic monitoring could be considered a 4D
technique, but none of the authors refer to thismethod in this

way. Therefore, in our analysis, we also have not considered
it as a 4D technique, and the results show that in 85% of the
works (Figure 3), 4D geophysical imaging is not discussed.
In general, 4D ERT has been more frequently employed
thanks to the development of ER multichannel measuring
systems that significantly reduced the acquisition time [20,
140]. These systems [such as those employed in [141, 142]],
in fact, (i) are able to simultaneously acquire a number of
potential measurements for a single pair of current electrodes
and (ii) can be set up to provide ERT at specific times
during the day. Nevertheless, even though tl-ERTs could be
helpfully employed in landslide monitoring, since they could
provide information about the water content changes (i.e.,
the data could be related to pore water pressure variations
and, therefore, to landslide triggeringmechanisms), there are
still few examples of 4D ERTs in landslide areas [60, 65, 92].
Moreover, it is still needed to improve software such that it is
able to (i) continuously (or very frequently) process acquired
data (e.g., ErtLab by Geostudy Astier, [140]), (ii) to link ER
variations with hydrological parameter changes, and (ii) to
take into account that the positions of the electrodes could
change over the time because of the landslide movement
[38, 65].

Drawback 5: Efforts Should Also Be Made towards Obtain-
ing Quantitative Information from Geophysics in Terms of
Geotechnical Parameters andHydrological Properties. Authors
agree that seismic wave velocities and soil ER could be useful
in identifying anomalies related to structural (faults, fissures,
and stability), lithological (sand to clay or calcareous varia-
tions) and hydrological (moisture, water flow) conditions [42,
123, 143]. However, drillings and inclinometer measurements
are still crucial to providing a reliable idea of landslide
structures and slip surfaces and to validate any geophysical
measurements. This is probably because the geophysical
property ranges cover several orders of magnitude, and a
measured parameter cannot be directly assigned to a sure
substrate. Currently, themajor difficulty of applying geophys-
ical techniques to landslides, as also highlighted by [11], is still
the complex relationship between the measured geophysical
parameters and the desired geotechnical and hydrogeological
properties, which prevents the provision, in terms of engi-
neering properties, of a straightforward interpretation.More-
over, a very accurate and high-resolution survey can still only
be done on a small landslide portion [23, 24, 27, 28, 38, 40,
46, 60, 78, 86, 92], as it is costly and time-consuming. As also
pointed out by [143], this complexity in obtaining quantitative
information from geophysical data is probably also caused
by (a) the lack of knowledge about geophysics techniques in
the geotechnical engineering/geological community and (b)
engineers inclination to believe in soil and rock that they can
see visually (borehole log), rather than in what they cannot
see (geophysical signal).

These abovementioned limitations are confirmed by our
analysis. In total, 82.5% of the works (99 of 120, Figure 3), in
fact, do not discuss how to obtain quantitative information on
geotechnical and hydrogeological properties from geophysi-
cal data. In the remaining 17.5% (21works, 14 of those on “soil”
landslides and 7 of those on the “rock” type), both seismic
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and electrical methods are used in the same percentage (9
works focused on seismic methods, 8 on ER, and 4 on
both seismic and ER methods). Thus, this drawback has still
not been overcome, and laboratory surveys to establish a
link between rock properties and geophysical data, as well
as interdisciplinary communication and discussion, are the
primary keys [90].

5. Conclusion

This review work analysed the papers published in open-
access journals from 2007 until today, focusing on the
application of geophysical techniques to landslides. It was
based on a “material landslide approach” analysis and
evaluated how many efforts were performed to overcome
the five drawbacks highlighted by the last review, which
dates to 2007, concerning geophysical techniques applied
to landslide monitoring and characterization. To quan-
tify these efforts, a three-level scale was employed (from
many/some efforts to nondiscussed). In general, it is possible
to observe that (i) many efforts were made to improve the
geological interpretation of geophysical data and to explain
the interpretations more clearly and critically (drawback
3); (ii) some efforts, but still not enough, were made to
show geophysical results more clearly (drawback 1); and
(iii) very few efforts were made to (a) systematically dis-
cuss, in an understandable way, the resolution and pene-
tration depth of each method (drawback 2), (b) to con-
vince geologists and engineers that 3D and 4D geophysical
imaging techniques can be valuable tools for investigating
and monitoring landslides (drawback 4), and (c) to obtain
quantitative information in terms of geotechnical param-
eters and hydrological properties from geophysical data
(drawback 5).

The most studied landslides are those of the flow type
for “soil” landslide typology and those of the fall type for
the “rock” category. From the “employed method” point
of view, active and passive seismic methods are the most
employed in landslide characterization and monitoring. The
latest method is also able to remotely detect events that might
otherwise go unnoticed for weeks or months, and therefore,
it is widely employed. The three more frequently applied
techniques, regardless the typology (“soil” or “rock”), are
ERT, SN and SR, which are to both characterize and monitor
the slope deformation. Finally, independently of the applied
technique/s, a very accurate and high-resolution survey could
be performed only on a small landslide portion, as it is costly
and time-consuming.
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Séchilienne rockslide (French Alps): Analysis of seismic signals
and their correlation with rainfalls,” Journal of Geophysical
Research: Atmospheres, vol. 115, no. F3, Article ID F03016, 2010.
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M. Št’astný, “Deep-seated gravitational slope deformations in
the highest parts of the Czech Flysch Carpathians: Evolutionary
model based on kinematic analysis, electrical imaging and
trenching,” Geomorphology, vol. 129, no. 1-2, pp. 92–112, 2011.

[110] D. Amitrano, S. Gruber, and L. Girard, “Evidence of frost-
cracking inferred fromacoustic emissions in a high-alpine rock-
wall,” Earth and Planetary Science Letters, vol. 341-344, pp. 86–
93, 2012.

[111] J. Burjánek, J. R. Moore, F. X. Yugsi Molina, and D. Fäh,
“Instrumental evidence of normal mode rock slope vibration,”
Geophysical Journal International, vol. 188, no. 2, pp. 559–569,
2012.

[112] C. Occhiena, V. Coviello, M. Arattano et al., “Analysis of
microseismic signals and temperature recordings for rock
slope stability investigations in high mountain areas,” Natural
Hazards and Earth System Sciences, vol. 12, no. 7, pp. 2283–2298,
2012.

[113] F. Panzera, S. D&amp;apos;Amico, A. Lotteri, P. Galea, and G.
Lombardo, “Seismic site response of unstable steep slope using
noisemeasurements: the case study of Xemxija Bay area,Malta,”
Natural Hazards and Earth System Sciences, vol. 12, no. 11, pp.
3421–3431, 2012.

[114] M. Walter, C. Arnhardt, and M. Joswig, “Seismic monitoring of
rockfalls, slide quakes, and fissure development at the Super-
Sauze mudslide, French Alps,” Engineering Geology, vol. 128, pp.
12–22, 2012.

[115] M. Walter, U. Schwaderer, and M. Joswig, “Seismic monitoring
of precursory fracture signals from a destructive rockfall in the
Vorarlberg Alps, Austria,” Natural Hazards and Earth System
Sciences, vol. 12, no. 11, pp. 3545–3555, 2012.

[116] K. Allstadt, “Extracting source characteristics and dynamics
of the August 2010 Mount Meager landslide from broadband
seismograms,” Journal of Geophysical Research: Earth Surface,
vol. 118, no. 3, pp. 1472–1490, 2013.

[117] P. Bottelin, D. Jongmans, L. Baillet et al., “Spectral analysis
of prone-to-fall rock compartments using ambient vibrations,”
Journal of Environmental & Engineering Geophysics, vol. 18, no.
4, pp. 205–217, 2013.

[118] A. Burtin, N. Hovius, D. T. Milodowski et al., “Continuous
catchment-scale monitoring of geomorphic processes with a 2-
D seismological array,” Journal of Geophysical Research: Earth
Surface, vol. 118, no. 3, pp. 1956–1974, 2013.

[119] R. P. Singh, C. S. Dubey, S. K. Singh et al., “A new slope mass
rating inmountainous terrain, Jammu andKashmir Himalayas:
applicationof geophysical technique in slope stability studies,”
Landslides, vol. 10, no. 3, pp. 255–265, 2013.

[120] P. Bottelin, D. Jongmans, D. Daudon et al., “Seismic and
mechanical studies of the artificially triggered rockfall atMount
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[143] W. Wai-Lok Lai, X. Dérobert, and P. Annan, “A review of
Ground Penetrating Radar application in civil engineering: A
30-year journey from Locating and Testing to Imaging and
Diagnosis,” NTD and E International, vol. 96, pp. 58–78, 2018.



Research Article
3D Mafic Topography of the Transition Zone between the
North-Western Boundary of the Congo Craton and the
Kribi-Campo Sedimentary Basin from Gravity Inversion

Sévérin Nguiya,1 Willy Lemotio ,2 Philippe Njandjock Nouck,2 Marcelin M. Pemi,2,3

Alain-Pierre K. Tokam,2 and Evariste Ngatchou2

1Faculty of Industrial Engineering, University of Douala, P.O. Box 2701, Cameroon
2Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
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The structure of the transition zone between the north-western boundary of the Congo Craton and the Kribi-Campo sedimentary
basin is still a matter of scientific debate. In this study, the existing gravity data are interpreted in order to better understand the
geodynamics of the area.Qualitatively, results show that themajor gravity highs are associatedwith long-wavelength shallow sources
of the coastal sedimentary basin, while large negative anomalies trending E-W correlate to low dense intrusive bodies found along
the northern limit of the Congo Craton. For the delineation of the causative sources, the gravity anomalies have been inverted
based on the Parker-Oldenburg iterative process. As inputs, we used a reference depth of 20 km obtained by spectral analysis and
successively, the density contrasts 0.19 g/cm3 and 0.24 g/cm3, deduced from available 1D shear wave velocity models. The results
reveal an irregular topography of the mafic interface characterized by a sequence of horst and graben structures with mafic depths
varying between 15.6 km and 23.4 km. The shallower depths (15.6-17 km) are associated with the uprising of the mafic interface
towards the upper crust. This intrusion may have been initiated during the extension of the Archean Ntem crust resulting in a
thinning of the continental crust beneath the coastal sedimentary basin. The subsidence of the mafic interface beneath the craton
is materialized by 2 similar graben structures located beneath both Matomb and Ebolowa at a maximum depth of 23.4 km. The
intermediate depths (18-22 km) are correlated to the suture zone along the Pouma-Bipindi area. The location of some landslides
across the area matches within the northern margin of the Congo Craton and suggests that this margin may also impact on their
occurrence. This work provides new insights into the geodynamics, regional tectonics, and basin geometry.

1. Introduction

South Cameroon region is known to be an interesting area of
mining research and oil exploration. All mining experts agree
that the area is a hidden treasure in terms of the substantial
mining resources it possesses. The use of spectral methods to
investigate the crustal density structure in the south region
of Cameroon remains among many mathematical tools the
most employed approach in geophysical data analysis and
the interpretation of tectonic structure. One such application
is the spectral estimation of the depth to the bottom of the
gravity sources due to the variation of crustal layers beneath

the north-western margin of the Congo Craton [1–3]. The
depth estimation of density interfaces from potential fields
beneath the Congo Craton was done by means of the gravity
power spectra [4], which showed that the slopes of logarithms
of energy spectra are linked to the thickness of the anomalous
gravity sources.

In order to explain the geodynamic process of density
layers from the uppermost mantle to the lower crust, the
fluctuation of the power spectrum function permitted [1–
3] and Owona et al. [5] to delineate the frequency limits
corresponding to the major crustal discontinuities; the mean
depth results obtained for those authors reveal a crustal
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thickness around 45 km beneath the Congo Craton area and
about 28 km thick for the continental part of the Kribi-
Campo area. Despite a good correlation with the estimation
of the crustal thickness within the transition zone between
the Congo Craton and the Kribi-Campo subbasin derived
from seismological studies [6], there is no consensus with
the presence of the mafic composition for the lower crust
[1, 3, 5]. Therefore, works of Tokam et al. [6], based on the
joint inversion of the Rayleigh wave group velocities and P-
receiver functions, reveal the presence of mafic formations
that occupy almost the entire lower crust, with thicknesses
varying from 10 km under the continental basin to nearly 25
kmbeneath theCraton.Moreover, results obtained byOwona
et al. [5], by joining other geophysical data analyses, have
pointed the similar conclusion.

This paper aims to provide a map showing the spatial
distribution of the intracrustal mafic discontinuity in the
transitional zone between the north-western edge of the
Congo Craton (CC) and the Kribi-Campo area. In order to
improve the knowledge of the mafic structure beneath the
region, a 2D spectral analysis of existing gravity data is carried
out.This spectral method is applied in a rectangular grid size
of 157 km × 201 km expanded using the maximum entropy
prediction which is useful in minimizing edge effects when
working with data containing systematic high frequency [7–
10]. Then, a code for 3D inversion of gravity data [11] has
been used to obtain the 3D topographical image caused by
the mafic interface density considering the density contrast
between two media. The main purpose of this paper is to
show the geodynamic implication of the intracrustal mafic
discontinuity in the north-western portion of the Congo
Craton based on the analysis and the gravity inversion
constrained by seismic information and its implication to the
occurrence of landslides across the area. Factors as faults,
earthquake, volcanism, and geomorphology are known as
potential triggers of landslides. By correlating the location of
some observed landslides and the gravity data, new insights
on the regional tectonic can be inferred.

2. Geological and Tectonic Settings

The study area lies between latitudes 2.32∘ and 4.20∘N and
longitudes 9.85∘ and 11.3∘E (Figure 1); three major tectonic
features characterize the region (Figure 2): the Kribi-Campo
subbasin, located in the Gulf of Guinea, is the littlest coastal
basin in Cameroon and constitutes the southern part of the
Douala/Kribi-Campo basin [12], the north-western portion
of the Congo Craton (CC), known in Cameroon as the Ntem
Complex, is mostly composed of Archean rocks including
intrusive rocks with a predominance of magmatic rocks, and
metasediments and mafic-ultramafic intrusive rocks and the
Pan-African Belt of Central Africa (CAPB), situated between
the West African and Congo Craton, represent the Yaoundé
group in our study area [13–17].

The region of interest bears traces of the different tectonic
events that have marked the African continent. The more
prominent tectonic feature is the north-western part of
the Congo Craton which is known in Cameroon as the
Ntem Complex. This complex is divided into two main

structural units: the Nyong unit, to the northwest end,
and the Ntem unit, in the south-central region [18, 19].
The Archean Ntem unit is dominated by gneisses intrusive
complexes primarily consisting of Tonalite Trondhjemites
and Granodiorites (TTG) suite rocks [20–22]. The intrusive
rocks of the tectonic unit have a charnockitic character with
predominance of granitic, tonalitic, and syenitic formations.
The Archean terranes in the Ntem Complex are mostly
formed of Horst and Graben tectonics linked to diapiric
movements in the mid to lower crust [23]. The whole unit
appears to have been coaxially strained [23]. Some authors
reveal that the presence of dome and basin structures is the
result of gravitational instabilities [24–27]. Thus, works from
Owona et al. [5] confirmed this theory by proposing a 2D
1/2 gravity modelling showing that the interface separating
the lower mafic crust and the upper crust is undulating.
They supposed that the mafic layer also contributes to the
variation of the gravity field along the gravity profile crossing
the transition zone between the Congo Craton and the Kribi-
Campo basin. The Ntem Complex is also marked by the past
magmatic activities with several bodies of dense rocks such as
amphibolites, gabbros, charnockites, and granodiorites [5, 6].

The last mafic event, dated at the period before 2.1 Ga, is
marked by the rifting of the Archean Ntem crust [5, 28, 29]
and has resulted in the emplacement of swarms of mafic
doleritic dykes [5, 28–31]. The continental crust of our study
area is mainly composed of Nyong unit formations. Accord-
ing to some geologist, the Nyong unit may be relict features
from the collision between the Congo Craton and the Sao
Francisco (Brazil) Craton in the lower Proterozoic [21, 32].
The Nyong unit also carries imprints of past magmatic event,
which are characterized by the neoproterozoic intrusion of
nepheline syenites in the sinistral shear zone [29, 33]. Apart
from the Douala basin, the Kribi-Campo subbasin is the only
sedimentary coastal basin in the south region of Cameroon.
It constitutes the northern limit of the Gabo-Equato Guinean
basin [34]. The Archean basement is mostly composed of
green rocks belt, charnockites, and potassic granitoids [35].
Ntamak-Nida et al. [12] mentioned that the western limit of
the subbasin appears to be widely defined by a major oceanic
fracture zone, the Kribi Fracture Zone (noted KFZ) [36, 37];
the continental sector of the KFZ, known as the Kribi-Campo
fault (KCF), is the major fault that crosses the transition zone
between the Congo Craton and the Kribi-Campo area. The
interpretation of geophysical model shows that this resulting
suture may be assimilated to the thrusting of the central
Africa mobile belt rocks onto the Congo Craton (CC) [5].

3. Data and Method

3.1. Data Acquisition. The data were collected during gravity
campaign operated in Cameroon between 1963 and 1990 by
various organizations and researchers [5]. The earliest data
were those carried out by ORSTOM (Office de la Recherche
Scientifique et Technique d’Outre-Mer); to these data have
been added those acquired by [39], Société E.L.F. (Essences
et Lubrifiants Français), IRGM (Institut de la Recherche
Géologique et Minière) and University of Leeds (1984-1985
and 1986). GravimetersWorden (N∘ 313, 600, 69, and 135) and
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Figure 1: Topographic map showing the study area (landslide document is taken from Tchindjang, [38]).

Lacoste & Romberg (model G, N∘ 471 and 828) were used for
the gravity measurement with a resolution of 0.01 mGal.

The gravity measurements were done along roads and
trails and the space between stations varied from 4 to 5 Km
including base stations. The coordinates of gravity stations
have maximum error ranging between 200 and 2000 m and
the measurement accuracy of gravity values was about 0.2
mGal. The data were uniformly reduced to Earth-tide effects
and instrumental drift, free air reduction was also applied
to the data, and a reduction density of 2,67 g/cm3 was used
for the Bouguer correction.The Hammer (1939) method [41]
was used for the terrain corrections [42].The available dataset
used in this study derived from 256 gravity stations covering
an area of about 157 km× 201 km size.The study includes only
terrestrial data because of the difficulties to access data from
the sea. The Kriging method was used in order to achieve
a meaningful spatial distribution of gravity data within the
region. The kriging interpolation process was executed using
Surfer 13 software. The Bouguer values were then plotted to
obtain the Bouguer anomaly map, with a grid spacing of

2,02 km giving a total grid size of 100 rows by 79 columns
(Figure 3).

3.2. Method. To better characterize the mafic structure along
the transition zone between the Kribi-Campo and the Congo
Craton, the methodology along the paper is based on the 2D
spectral analysis followed by the regional/residual separation
and the 3D inversion of the regional gravity map.

3.2.1. Power Spectrum Analysis. The Fast Fourier Transform
method was commonly used in geophysical studies for the
depth estimation of the causative bodies.Thepower spectrum
graph was obtained by a careful choice of the gravity profiles
crossing the significant anomalies on the Bouguer anomaly
map computed [3, 5, 43]. Herein, the 2D spectral analysis
was applied to the gravity grid data and allows calculation
of an average depth to a set of causative anomaly sources
[10, 44, 45]. The method proves to be an appropriate technic
where the calculation of the power spectrum should not be
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dominated by biases and it should be statistically meaningful
[45–48].

The 2D power spectrum energy is obtained by averaging
over the set of independent computed power spectra energy;
then the current two-dimensional problem was transformed
to one dimension, and we can compute the logarithm of the
energy spectrum that provides the mean depth of density
interfaces [45, 49, 50].

Prior to spectra calculation, data grids need to be
expanded in order to avoid edge effects [7]. The maximum
entropy method (MEM) is a powerful tool to minimize
boarding effects.TheMEM samples the original data near the
grid edges to determine its spectral content. It then predicts
a data function that would have the same spectral signature
as the original data and computes the extrapolated data of the
same nature and the real data adjacent to it. Furthermore, the
predicted grid data will not significantly modify the energy
spectrum that would result only from the original data. This
process runs along lines in several directions and applied
weighting along adjacent lines to eliminate line divergences.

Errors on the depth estimation of causatives sources
increase with depth, but also depend on the size of the grid.
Thus, for simple shape structures used for two-dimensional
gravity models, Naidu [51] considers that the size of a grid

must be 10-20 times greater in extent than the mean depth of
the anomaly source sought. In our case, the Bouguer anomaly
map has been expanded to a square grid of 225 km × 225 km
by using the MEM (Figure 4). It is preferable to use a square
grid to compute the radially averaged spectrum (this is to use
the same frequency in both x- and y-directions, so the radial
average spectrum is not biased by a frequency different from
the other). For the determination of the mafic discontinuity,
assuming a value of 16 to 20 km for its mean depth, our
expanded grid has the required size for these estimates. The
aim of spectral analysis is to determine the mean depth of the
mafic discontinuity for the grid in order to study its spatial
distribution in the crust. Once power spectrum is computed,
the top depth of the density interface is estimated as half of
the slope of the straight line adjusted to the natural log of
energy spectrum versus the radial frequency by considering
the theory of Spector and Grant [4].

3.2.2. Regional/Residual Separation. The observed gravity
anomalies are the sum of gravity effects of density fluctua-
tions at different depths in the basement half space. Before
inverting the mafic density interface, the target anoma-
lies should first be separated from the Bouguer anomaly
map. In the literature, there are several filtering methods
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Figure 3: Gravity data distribution and Bouguer gravity anomaly map of the study area (Contour interval: 5 mGals; color-scale unit: mGal;
projection: Mercator). Data are recorded at stations shown here as black cross and were collected following all available roads and tracks.

where regional/residual separationwas performed [4, 52–54].
Herein, an Upward Continuation filtering method was used.
It is the suitable method to dissociate the regional gravity
anomaly resulting from deep sources from the observed
gravity.The regional/residual separation by using theUpward
Continuation method consists of selecting a height at which
the continuation is most closely linked to the known regional
anomaly at a standard observation. The spectral analysis
permits us to get the average depth estimate at which the
mafic discontinuity was located; the obtained depth will be
taken as the optimum continuation height for the regional-
residual separation [55, 56].Theupward continuation process
by attenuating the shallow source anomalies allows a better
accentuation of deeper anomaly sources with the increase of
the upward continuation height [57].

3.2.3. 3D Gravity Inversion. At the aim of producing a full
map showing the spatial distribution of the intracrustal mafic
formation within the crust, a 3D gravity inversion will be
performed on the regional gravity data. The method allows
computing the geometry of a three-dimensional density
interface from the gravity anomaly data. The inversion
procedure is based on the Parker and Oldenburg iterative
process [58, 59] and it can be established as follows:

𝐹 [ℎ (𝑥)] = −𝐹 [�𝑔 (𝑥)] 𝑒
(−𝑘𝑧0)

2𝜋𝐺𝜌 −
∞

∑
𝑛=2

𝑘𝑛−1
𝑛! 𝐹 [ℎ

𝑛 (𝑥)] (1)

where 𝐹(�𝑔) is the Fourier transform of the gravity field,𝐺 is
the gravitational constant, 𝜌 is the density contrast between
two layers, 𝑘 is the wave number, ℎ(𝑥) is the depth to the
interface (considered positive downwards), and 𝑧0 is the
average depth of the density interface.

The relation (1) is the fundamental theory used by [11]
that permits them to develop a 3DINVER MATLAB code
for the computation of the depth interfaces related to the
gridded gravity anomaly. By considering the mean depth
interface, the density contrast between two media, and the
input filtered gravity anomaly, the depth interface values are
iteratively computed and the inversion procedure ends when
the difference between two consecutive topography interfaces
is less than a given error level used as convergence criterion
or until a maximum of iterations is accomplished.

The instability of the inversion operation (1) due to high-
frequency anomaly sources allowed Oldenburg [59] and
Nagendra et al. [60] to introduce a high-cut filter𝐻𝐶𝐹(𝑘) in
order to achieve the convergence of series. Two other filter
parameters𝑊𝐻 and 𝑆𝐻 are used for the adjustment during
the convergence process. The filter is defined by
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Figure 4: Grid map expanded using the Maximum Entropy Method (Burg, 1967) conserving the same spectral signature as the previous
Bouguer anomaly map.

𝐻𝐶𝐹 (𝑘) = 12 [1 + cos(
𝑘 − 2𝜋𝑊𝐻
2 (𝑆𝐻 −𝑊𝐻))] (2)

For middle frequencies, there is a rectangular window with a
value of 1 for low frequencies (𝑊𝐻) and 0 for high frequencies
(𝑆𝐻) equivalent to a hamming window. 𝑘 is the wavenumber
expressed as 1/𝜆, where 𝜆 is the wavelength in kilometers.

TheMATLAB function 3DINVER performed by [11] was
used in this paper to study the 3D geometry of the intracrustal
mafic discontinuity in the area. So this study was carried out
on a rectangular filtered gravity map with a size of 157 km ×
201 km, made up of 256 gravity stations irregularly spaced.
Before initiating the inversion procedure, it is recommended
to expand the grid because the Fast Fourier transform (FFT)
function introduces some edge effects during filtering, then
invert the data, and finally remove the grid extension in order
to retain only the original grid size. So any edge effects are
removed from the study area. Herein, the previous original
grid map was extended to a square grid size of 225 km ×
225 km by applying the MEM [7]. Usually, a 10% expansion

of the grid is enough to avoid boarding effects. Two other
parameters are important for the inversion process: the mean
depth reference of the interface and the density contrast
across the interface. The iteration is at which the inversion
process is stopped and the RMS is also displayed by the
function. After convergence has been obtained, the best way
to determine if the inverted interface is an acceptable solution
is to compare the observed filtered gravity anomaly with the
computed gravity data associated with the inverted interface.
If the differences between both gravity maps are only a few
mGal, the model can be validated; if not, some parameters
of the inversion should be changed. The data processing was
conducted by following the procedure summarized on the
chart (see Figure 8).

4. Results

4.1. Analysis of the Bouguer Anomaly Map. The Bouguer
anomaly map (Figure 3) reflects the combined effects of
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shallower and deeper crustal basement due to the lateral
variations in the density of unknown subsurface materials.
A global look of this map shows a couple of positive and
negative anomalies delineated by strong NE-SW gradients.
The appearance of these gradients could be associated with
the fault network that occurs in the Precambrian oceanic area
and extends to the continental domain crossing the Kribi
Campo and the Congo Craton regions. This fault system,
known as the Kribi-Campo Fault (KCF), resulted from the
frontal collision between the two large structures, the Congo
Craton (CC) and the Pan-African Mobile Belt (PMB) [61].

The Lolodorf zone and the Pouma-Matomb area are
marked by long wavelength gravity anomalies with low
amplitude of about -65 mGal. Both anomalies seem to be
linked to the large gravity low observed in the eastern part
of the Bouguer map with a minimum amplitude of -69 mGal
and N-S trend. The gravity low seem to be caused by a
downwarp in the basement and can be attributed to the
crustal thickening due to the granitic intrusion with the
low density contrast within the Northern portion of the
Congo Craton [3]. This explanation corroborates well with
the isostasy theory, in comparison with the topographic map
(Figure 1), showing that elevated area is generally linked to
the low anomaly sources constituting the crust. The Bouguer
map shows a relative high (amounting to -10 mGal) around
the Kribi-Edea region. The high values can be attributed to
the intrusion of magmatic formations and their subsequent
metamorphism (granulites body) or the uprising of some
mantle materials (syenitic, mafic formations). Thus, geolog-
ical studies indicate an important mafic magmatic activity
during the rift extension [62].The isoanomaly contours in the
map going from the coastal area to the continental domain
follow almost the NE-SW trend and reflect the onshore
transition of the continental crust.

4.2. Mean Depth Estimation of Density Interfaces. The power
spectrum graph of Figure 5 illustrates a sketch of the natural
logarithm of the power spectrum versus the frequency. The
graph is divided into three frequency domains. The first
one, domain A, in the low frequency ranging from 0.02 to
0.22 km−1, represents the deeper density interface with a
mean depth of 20.01 ± 0.9 km. The second one, domain B,
corresponds to the high frequency ranging from 0.25 to 0.75
km−1 and belongs to the shallower sources with amean depth
value of 5.7 ± 0.3 km. The final part of the power spectrum
graph does not have a geological meaning and corresponds
to the white noise. Depth estimates of 20.01 ± 0.9 km
may possibly correspond to the intracrustal mafic interface
beneath the transitional zone between the Kribi-Campo and
the Congo craton area. This result is in good agreement with
seismic studies from Tokam et al. [6] revealing that the crust
is divided into several layers with a lower thick mafic layer at
depth below 18 km beneath the region.The shallower sources’
depths of 5.7 ± 0.3 km may be attributed to the dense mantle
formations within the sedimentary coastal basin responsible
for the observed positive gravity anomalies in the coastal area.

After identifying the main sources responsible for the
observed gravity anomalies of the study area, the study will
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Figure 5: Power spectrum graph of the gridded Bouguer data
showing 2 frequency domains. The first one with blue circles
represents the regional source, the second domain with orange
circles corresponds to residual source, and the gray circles represent
white noise.

be now focused on the anomaly sources situated in the low
frequencies associated with the deeper mafic formation. We
will apply a filter to the Bouguer map to isolate the gravity
signatures corresponding to the 20 kmmean depth interface.

4.3. Regional andResidual GravityMaps. Theregional gravity
map (Figure 6) shows anomalies ranging from -56 to -24
mGal; the anomalies consist of a western gravity high and
an eastern gravity low almost oriented N-S and separated
by strong gradients. The gravity highs are observed in the
Kribi-Dehane area with a slight extension towards Campo
and a maximum amplitude of -25 mGal. These anomalies
are enclosed by gravimetric gradients which extend towards
the Pouma-Bipindi area.The enhancement of these gradients
on the central part of the regional map confirmed the
presence of fault system in the area and also revealed that
the major faults crossing the transitional zone between the
Kribi-Campo and Congo Craton area had a deep origin and
in the same way could explain the seismicity of the zone. The
upward continuedmap also illustrates the change in anomaly
character with aminimum value of -56mGal along Ebolowa-
Matomb axis.This can suggest that the lower crust formations
are deepening towards the east of the region. As such, the
20 km upward continued data present a suitable regional
map for gravity inversion studies to help define the basement
characteristics of the mafic discontinuities and associated
intrusive bodies from the Pan-African belt.

To highlight local anomalies, the regional component of
the gravity anomaly field is commonly subtracted from the
Bouguer anomaly map, generating a residual map (Figure 7)
that shows exactly shallow density structures. The com-
puted residual gravity map is characterized like the Bouguer
anomaly map by a broad positive anomaly zone with a NE-
SW orientation. This zone can be related to the shallow
response of mafic rocks such as gabbros [5, 30]. Gravity lows
with a ring shape observed at Pouma, Matomb, and Bipindi-
Lolodorf area appear to be the signature of intrusive igneous
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Figure 6: Regional gravity map obtained by applying the upward continuation filtering method to the Bouguer anomaly map (contour
interval: 2.5 mGals; color-scale unit: mGal; and projection: Mercator).

rocks in the upper crust such as granits, syenites, and Tonalite
Trondhjemites andGranodiorites (TTG) formations [30, 63].

4.4. 3D Topography of the Mafic Interfaces. Taking into
account the importance of the inversion parameters such as
the density contrast between the two media (the lower mafic
crust and the upper crust) and the mean reference depth of
the mafic interface, we considered a mean depth of 20 km
derived from the results of the spectral analysis.We alsomade
the choice to vary the density contrast depending on whether
we are in coastal area or beneath the craton (Table 1).

For each density contrast, we compute the corresponding
mafic depths in order to obtain the topography of the
underlying mafic interfaces (Figure 9). The constraints from
the shear wave velocity model [5, 6] helped to compute the
density contrast beneath the Kribi-Campo area and within
the Congo Craton. The convergence criterion was set at 0.02
km; the RMS errors between the two consecutive topography
values and the iteration at which the inversion process is
stopped are presented in Table 1. We denote that for both

geological terrains the iterative procedure was achieved at
the third iteration and that the change in density contrast
does not significantly alter the depth variation of the mafic
interface; this allows us to deduce that we are practically
under the same tectonic unit. Regarding the mafic depth
map, when increasing the density contrast from 0.19 to 0.24
g/cm3, the magnitude of the upper crust thickness increases
around 0.95 km within the coastal area, while it decreases
about 1.68 km beneath the Congo Craton. The MATLAB
function also displays the gravity anomaly associated with
the inverted mafic interfaces and the residual error between
the observed gravity anomalies and the computed anomalies
(Figure 10).

This later appears to be very close to the input gravity
signal with a residual error map revealing that the differences
are minor and are in the range of -2.5 to 1.8 mGal. So we can
rely on the estimate of the resulting inverted mafic interface.

The resulting mafic depth map represents the depth
variations of the boundary between the upper crust and the
lowermafic body.Theupper crust thickness seems to increase
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Figure 7: Residual gravity map of the study area obtained by subtracting the regional gravity map from the Bouguer anomaly map (contour
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Figure 9: (a) Computed contour map of the mafic depth by using the 3D gravity inversion of the study area. Density contrast Δ𝜌 = 0.24
g/cm3. (b) Computed contour map of the mafic depth by using the 3D gravity inversion of the study area. Density contrast Δ𝜌 = 0.19 g/cm3,
contour interval 0.1 mGal. Geographical coordinates.

Table 1: Inversion efficacy by geological unit.

Mean depth reference: Z0 Density contrast
Z0 = 20 Km Kribi-Campo terrain Congo Craton terrain

�𝜌= 0.19 g/cm3 �𝜌 = 0.24 g/cm3

ITER=3 ITER=3
RMS=0.0031 Km RMS=0.0015 Km

eastwards from approximately 16 km (coastal sedimentary
basin) to about 22 km (continental craton), with dominated
N-S strong gradients that cover the Pouma-Bipindi area. The
lower mafic depths are observed in the western part of the
area precisely in the Kribi-Edea axis. This area is marked by
dome structures with a minimum depth of about 15 and 16
km observed both in Dehane and Kribi regions. Despite the
poor data coverage beneath the coastal sedimentary basin,
the mafic depth distribution is in agreement with previous
studies [5, 6]. The authors revealed a depth of 18 km for
the mafic formations beneath the basin, while in this study,
we find a depth varying from 15.6 to 17 km. The dome
structures observed in some coastal regions show that the
mafic discontinuity is uprising toward the upper crust (see
Figure 11). The mafic interface becomes deeper from the
center region to the eastern edge of the study area where
a depth of up to 23 km is reached at Ebolowa and in the
vicinity of Matomb. These collapse zones seem to describe
two grabens structure of the same nature. Although the

two depressions seem to be a bit similar in their shape,
magnitude, and strike direction, it is difficult to link the
two tectonic features because they could have been put in
place at different geologic period. Furthermore, geological
studies reveal that the Ebolowa sector is dominated by low
Archean terrain with occurrence of low syenitic intrusion
[24, 40, 64]. This Archean period of deformation can explain
the presence of the large basin structure in the Ebolowa area
and its gravitational incidence in our gravity model. At a first
glance, the intermediate depth going from 18 to 22 km in the
central part of the inverted interface map defines contours
patterns identical to those of gravity anomaly derived from
the computed data.

The linear characteristics, crossing the Pouma-Bipindi
area, follow almost the N-S trend direction and correspond
to the faults network which correlate well with the geological
map. These faults features may be responsible of the sub-
sidence of the lower mafic interface beneath the Matomb-
Ebolowa area.
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5. Discussion

The investigation of the intracrustal mafic discontinuity
beneath the transition zone between the Congo Craton and
the Kribi-Campo area by using gravity data analysis and 3D
gravity inversion method has allowed a better understanding
of the mafic interfaces behavior within the continental crust.
The results prove that the lower/upper crust boundary is not
homogeneous andpresent discrepancies due to lateral density
variation in Earth interior. To achieve this, a rectangular
grid size of 157 km × 201 km was selected to perform
the two-dimensional (2D) spectral analysis. Prior to this
transformation, the gridded data was expanded to a square
grid size of 225 km × 225 km to avoid side effects and to
obtain more reliable source depth estimations. Poudjom et
al. [1] used the same process to build the crustal thickness
contour map of the West central Africa; they have selected
33 subgrids to estimate the crustal thickness (Tc) and studied
its variation beneath the area by spectral analysis of the
gravity data. The power spectrum graph allows us to identify
two density domains: one situated in the high frequencies
and a mean depth value of 5.7 km, another located on the
low frequencies and an average depth of 20.01 km. The
first estimate corresponds to dense formations within the
Kribi-Campo subbasin. Tadjou et al. [65], by investigating
the anomalous density structure beneath the Kribi-Campo
sedimentary subbasin, have estimated the dense bodies in the
same area at 6.5 km depth; so just a minor difference of 0.8
km was obtained; this can be explained by the permanent
tectonic activity affecting the basin and the gravity effect of
the other dense materials within the upper-crust layer. In
order to elucidate ambiguities on the dense bodies origin
and to bring out more explanation about the gravitational
instabilities observed along the above transition zone, the
20 km mean depth interface attributed to the intracrustal
mafic discontinuities was chosen as a fundamental parameter
for the 3D gravity inversion. The inversion procedure con-
strained by seismic information was applied on the filtered
gravity data with the aim to construct a mafic depth map.
Themafic interface is uplifted in the Kribi-Edea area with the
crust thinning beneath the continental basin where theMoho
is found at about 28 km [5, 6, 65].

This result suggests that the observed dense materials
have a mantle origin during the past magmatic event as
Tadjou et al. [65] mentioned in their gravity studies, but
our model reveals shallow mafic intrusion beneath the
Kribi-Campo area which could be the consequence of the
relamination process during the Archean subduction [66–
68]. The mafic intrusion also influences the deformation of
the sedimentary rocks and exhibits some control on the basin
geometry. The mafic depth becomes deeper from the center
map to the east with a slight extension in the Matomb-
Ebolowa area. The computed topography contour map also
reveals clearly a linear characteristic of N-S trend along
the Pouma-Bipindi axis which approximately corresponds
to the faults feature. Geological studies reveal that this area
is characterized by a faulting deformation responsible for
development of blastomylonitic shear zones [29, 30]. The
resulting deformation may be interpreted from the model

as the thrusting of mafic interfaces onto the east side of the
Lolodorf region. The symmetric graben structure observed
both in Ebolowa and in the vicinity of Matomb resulted
from the subsidence of the mafic intrabasement with a major
depth of 23.4 km, so 3.4 km below the reference depth.
The fact that the south-central part of the Congo Craton is
dominated by low-density Archean rocks could explain the
presence of these graben tectonic structures. Our results also
provide new insights concerning the geodynamic behavior of
the top of the lower mafic crust along the transition zone.
It appears to be shallower in the Kribi-Campo area and
deeper beneath the Congo Craton. The same process was
observed for the Moho discontinuity where seismic work of
Tokam et al. [6] demonstrates that the Moho is shallower
beneath the coastal basin and becomes deeper within the
CongoCraton. In addition, the results of our gravity inversion
correlate well with those obtained by Owona et al. [5], but we
noticed some discrepancies. Indeed, our model integrates a
thin upper/middle-crust layer in the Kribi-Campo domain
where the lower limit is located at almost 15 km and a
thicker upper/middle-crust layer∼ 23 km beneath the CC.
Otherwise, since our study was based on the processing of
the long wavelength gravity signal; the undulation of the
mafic interface going from the coastal plain to the Archean
continental crust plays a crucial role on the gravity instability
on the surface geology and its geodynamic process has been
better highlighted in this study.

The high gravity gradient observed on the Bouguer map
associated with the Kribi-Campo fault (KCF) is part of the
lineaments known as Sanaga fault. Ngatchou et al. [69]
analyzed broadband seismogram and determined the source
mechanism of the March 19, 2005 Monatele earthquake.
Their results show the evidence that the contact between the
Congo Craton and the Pan-African Mobile Belt (PMB) is
still seismically active. Moreover, Owona et al. [70, 71] also
pointed out the existence of some other fault systems in the
area that may be also active. The location of some historical
landslides across the area [38] matches with the location of
somemajor tectonic featureswithin the area and suggests that
this major tectonic element may control the occurrence of
landslides in the study area.

6. Conclusion

By using a 3D gravity inversion program based on the
Parker-Oldenburg method and developed by [11], we carry
out a gravity data analysis, using seismic information as
constraints [6], to build a Mafic depth map showing the
spatial distribution of the mafic density interfaces beneath
the transition zone between the Kribi-Campo and the Congo
Craton. The inversion of the mafic structure generated by
a standard density model was based on the approximating
assumption that the density contrast between the layers above
and below the interface takes a constant value. The study
allows us to deduce that the gravity lows and highs of circular
or semicircular nature observed on the theoretical gravity
map were attributed to mafic intrusions in terms of basement
uplifts and depressions, proving that the mafic interfaces
have a great incidence on the gravity anomalies within the
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region. From a mean reference depth of 20 km, the 3D
view of the mafic depth shows uplifts reaching over 15.6-17
km in both Kribi and Dehane regions and two symmetrical
mafic depressions, while centre parts extend up to a depth
of 23.4 km beneath both Ebolowa and Matomb areas. The
flock of depth contours almost trending N-S direction has
increased values towards the east in the vicinity of Lolodorf.
It suggests the existence of fault systems controlling the
subsidence of mafic interfaces beneath the craton subsurface
and impacting the occurrence of landslides in the area. Thus,
the gravity inversion by using the Parker-Oldenburg 3D
inversion method proves to be a powerful tool for the gravity
data analysis and the tectonic interpretation.
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[28] J. P. Vicat, J.-M. Léger, E. Nsifa et al., “Distinction, au sein
du craton congolais du sud-ouest du Cameroun, de deux
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Before the arrival of the Spanish conquerors, Mitla was the second most important city in the valleys of Oaxaca, México. However,
the ruins that are visible today do not seem to match the size of a city of more than 10,000 inhabitants. Geological and geophysical
studies suggest that part of the city was covered by the deposits of a dry landslide likely to have been caused by an earthquake with a
magnitude that could vary between 6 and 7.This landslide is monolithological, which is why two geophysical methods were used in
order to evaluate its geometrical characteristics and to suggest the possible existence of archeological remains under the landslide.

1. Introduction

Many hypotheses regarding the collapse of Mesoamerican
cultures have been linked to wars, conquests, epidemics,
or climate changes. However, Mesoamerica is located in a
context presenting exceptional seismic, volcanic, and mete-
orological phenomena. Past and current events in México
(Tehuantepec, Pinotepa Nacional or Morelos-Puebla earth-
quakes ∼M8, SSN) indicate that tsunamis, earthquakes,
and volcanic eruptions countered the development of many
important civilizations. For instance, the collapse of Maya
culture is insistently related to a large drought, yet very few
theories associate these human extinctions with exceptional
events. Much of this disaster information was written in
the codices. These documents contain data with place and
time specifications, also providing information on natural
disaster scenarios. For example, in the Telleriano-Remensis
codex, tlacuilos recorded approximately 12 seismic events
that include glyphs that suggest a scale of environmental
effects that appears similar to ESI2007 [1].

The location of Mesoamerica compels us to think that
those cultures witnessed very important seismic and volcanic

events. For instance, the birth of theTarascan empire is clearly
linked to changes in the landscape due to an earthquake and
to the birth of Capaxtiro volcano [2]. Besides the areas tow-
ered by volcanos, earthquakes caused important imbalances
or prophecies, such as the fourth bad omendescribed by León
Portilla [3], which warned the Aztecs about the arrival of the
Spanish conquerors (The burning lake, El Lago en Llamas):
“Texcoco Lake burned, its boiling waters swelled and swept
the houses, killing many”. This description is certainly very
close to an account of the formation of a tsunami caused by
an earthquake.

On the other hand, the ongoing seismic activity in the
State of Oaxaca brought about a particular architectural
practice: in order to resist violent earthquakes, the churches
have very thick walls, huge buttresses, and short towers
(Figure 1).

The study of the effects of important earthquakes can be
carried out according to different environmental or anthro-
pogenic results. In present case the research focuses on the
geophysical analysis of theMitla Landslide. As in this case the
collapse was caused by an earthquake, the techniques selected
were ground-penetrating radar and electrical tomography
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(a) (b) (c)

Figure 1: Churches in Oaxaca City feature short towers and huge buttresses. (a) La Compañı́a Church, (b) Church of Santo Domingo, and
(c) Baśılica of Our Lady of Solitude.

and cross- correlations of seismic ambient noise records. The
two last were those that yielded the best results. Eventually
the use of the radar was not a good option due to the
homogeneity of the landslide and for the little penetration
of this, which in this case is monolithologic. Conversely,
electrical tomography was an adequate method. The use of
seismic noise and the advantage of a regional earthquake
register allowed us to find a clear lithological contrast.

2. Tectonic Setting of Oaxaca

Oaxaca is one of the major earthquake zones of México, due
to the Cocos plate subduction under the North American
plate and the seismic activity related to intraplate structure
that causes shallow quakes, such as the Xalapa earthquake of
1920. Oaxaca has been affected by a large number of seismic
events withmagnitudes above 7 (Table 1, data provided by the
Servicio Sismológico Nacional (SSN), UNAM 2018), so much
so that Fray Juan de Córdova’sVocabulario en lengua zapoteca
(1578) contains words to designate the tremor of the earth:
xoo, but also a name for the deity of earthquakes: Pitao xoo.

Beside subduction earthquakes, Oaxaca presents
intraplate faulting related to the limits of tectonic terranes
expressed in the Central and Tehuacan valleys. The Central
valleys of Oaxaca are part of the Oaxaca fault system, which
is formed at the borders between the Zapoteco and Cuicateco
terranes (Figure 2(a)), and besides its normal component
has always been thought to have a horizontal component in
arguable direction (Figure 2(c), [4].

The seismicity reported by the Servicio Sismológico
Nacional (SSN) and presented in Figure 2(c) corresponds to
the intraplate events zone in the south-east zone of México
named by Zúñiga et al. [5] asNAMandmatches the intraplate
seismicity of the southeastern zone of México that is not
related to the volcanism of the Trans Mexican Volcanic Belt;
its maximum depth has been measured at 20 km.

The focal mechanisms presented in Figure 2(b) corre-
spond to quakes of magnitude over 7 and were taken from
the IRIS (Incorporated Research Institution for Seismology)
consortium. Most of these focal mechanisms are associated
with the zone of strong coupling between the Cocos and
North American tectonic plates (interplate, reverse faulting)
and others to rupture processes of the subducted Cocos plate
(normal faulting).

Recently, in 2017 and 2018, major events occurred again
in Oaxaca, the first on September 7 with magnitude 8.2 Mw

and epicenter located in the Gulf of Tehuantepec, 137 km
southeast of Pijijiapan (Chiapas), and 46 km deep.This event
is mainly related to normal faulting (79∘ dip) that caused
the complete rupture of the lithosphere in a zone related to
the seismic gap of Tehuantepec, in which no event of this
magnitude had taken place since 1787, when an earthquake
of Mw≈8.6 occurred [6].

The second event happened on Friday February 16, 2018,
of magnitude 7.2 Mw and epicenter 11 km from Pinotepa
Nacional, Oaxaca. Both events caused material and human
losses.

It is important to mention that regarding recurrence
periods for the central zone of the State of Oaxaca, Zúñiga
et al. [5] report periods of 6 years for quakes with magnitudes
above 5 occurring in the NAM zone (shallow events with
depth under 20 km), periods of 109 years for magnitudes
above 7 taking place within the subducted Cocos plate
(intraplate events with depths of 40 to 180 km), and periods
of 37 years for quakes of magnitudes above 7.5 occurring in
the coupling zone of the Cocos and North American tectonic
plates (subduction area).

On the other hand, previous refraction and reflection
studies across the Oaxaca fault [7, 8] did not confirm
that it runs as deep as presumed. Supporting this result,
the regional magnetotelluric study by Jödicke [9] did not
detect the expected large electric contrast across the Oaxaca
fault at crustal depths along a transect passing south of
Oaxaca City. By analyzing the electrical impedance along
a regional transect, Jording et al. [10] concluded that the
major structural change at depth in this region is displaced
northeastwards of the Mitla Valley, about 30 km east from
the generally accepted Oaxaca-Juárez terrane boundary. A
more detailed MT study of the region [11] concluded that the
Oaxaca fault system does not appear to penetrate deep into
the crust but remains relatively shallow (5 km). Other results
[12] also suggest that the contact between the Oaxaca and
Juarez terranes at crustal depths occurs along a SW-dipping
interface south of Oaxaca City [13].

3. Study Zone and Landslide

The town of Mitla is located south of Oaxaca City
(16∘55󸀠41.3󸀠󸀠-96∘21󸀠33.8󸀠󸀠-1706m a.s.l.) in a vale of NW-
SE orientation. It presents evident morphological contrasts
that have molded Precambrian, Tertiary, and current rocks,
thereby forming sierra and valleys in the same direction, and
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Table 1: Earthquakes above M7 in Oaxaca from 1787 to 2018 (Servicio Sismológico Nacional, UNAM 2018).

Year Month Day Magnitude Depth Reference

1787 3 28 8.6 ?
Tehuantepec Ridge.

Tsunami in the Coast of
Oaxaca

1916 6 2 7 150.0 42 km south of SAYULA
DE ALEMAN, VER

1928 3 21 7.5 33.0 12 km southeast of
CRUCECITA, OAX

1928 6 16 7.6 33.0 11 km west of
MIAHUATLAN, OAX

1928 8 4 7.4 33.0 49 km south of H
TLAXIACO, OAX

1928 10 8 7.5 33.0 35 km northeast of RIO
GRANDE, OAX

1931 1 15 7.4 40.0 30 km west of
MIAHUATLAN, OAX

1937 12 23 7.4 33.0 46 km southwest of H
TLAXIACO, OAX

1948 1 6 7 80.0 45 km southeast of H
TLAXIACO, OAX

1950 12 14 7.2 33.0 47 km west of H
TLAXIACO, OAX

1951 12 11 7 100.0 59 km east of MATIAS
ROMERO, OAX

1965 8 23 7.5 12.0 53 km northeast of
CRUCECITA, OAX

1968 8 2 7.3 16.0
39 km northeast of

PINOTEPA NACIONAL,
OAX

1973 8 28 7.3 82.0 30 km southwest of
TIERRA BLANCA, VER

1978 11 29 7.6 23.0
32 km northwest of S
PEDRO POCHUTLA,

OAX

1980 10 24 7.1 65.0 19 km west of ACATLAN
DE OSORIO, PUE

1982 6 7 7 19.0 20 km southeast of
OMETEPEC, GRO

1995 9 14 7.3 21.0 29 km northeast of
OMETEPEC, GRO

1996 2 24 7.1 15.0 52 km south of PINOTEPA
NACIONAL, OAX

1999 6 15 7 63.0 29 km southwest of S
GABRIEL CHILAC, PUE

1999 9 30 7.4 39.0
22 km northeast of

PUERTO ESCONDIDO,
OAX

2012 3 20 7.5 18.0 46 km south of
OMETEPEC, GRO

2017 9 7 8.2 45.9 140 km southwest of
PIJIJIAPAN, CHIS

2017 9 19 7.1 38.5
9 km northeast of

CHIAUTLA DE TAPIA,
PUE

2018 2 16 7.2 12.0 11 km south of PINOTEPA
NACIONAL, OAX
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0 and 20 km deep and (c) structural scheme of the Mitla area in Oaxaca.

where sometimes the N-S drainage system is modified by
NW-SE structures (Figure 2(c)).

The word Mitla or Mictlán is nahuátl and means “Place
of the Dead” or “Underworld”. In Zapotec it is called Lyobaa
which means: “place of graves” or “place of burials”, from
the etymology Lio: Place and Baa: grave or burial [14]; in
mexica it remained Mictlán, “Place of the Dead”, or “place
of many corpses”, and was hispanicized to Mitla. Contrary
to Monte Albán, the heyday of Mitla occurred between 950
and 1521 AD.The settlements of Mitla have been estimated to
be over 7,000 km2 large, with a population of around 10,000
inhabitants. One of its main characteristics are constructions
decorated with elaborate mosaic fretwork (grecas) featuring
variations of the same geometric design, and the cross-
shaped tombs that have been found under the palaces, in
which important people and priests were probably buried.
The archeological complex includes several structures, two
of which were covered with Christian buildings, the most
important of which was constructed in 1590. The San Pablo

church was erected in one of the prehispanic courts of
Mitla using stones from the temples themselves. The basic
architectural form of the few pyramids shows paraseismic
techniques, visible both in the Las Columnas site as in the
Grupo Arroyo, where notches appear in the frames of all the
entrances to the rooms.

During our field work the avalanche deposit was identi-
fied for the first time in all the surroundings of the archeo-
logical remains of San Pablo Villa de Mitla. Previous works
mapped the avalanche as part of pyroclasts deposits [15]. Its
distal facies seem to have covered part of the pyramids, as
shown hereunder and on Figure 3.

4. Methodology

Themethodology of this study focused on 5 main guidelines:
(a) the first step was to find previous research on Mitla in
the fields of Archeology and Geosciences; (b) subsequently, a
50 cm-definition terrain model was mapped with a drone; (c)
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geology and all the data regarding geophysical, morphostruc-
tural; (d) stratigraphical characterization, structural geology
in the Sierra Calaveras and (e) the geomechanical study of the
landslide were based upon this model.

Various columns were extracted from the landslide to
study its geology. Once the lithology was understood, the area
was mapped in detail.

Several methodologies were applied regarding geo-
physics, such as ground-penetrating radar (Mala) and elec-
trical and seismic tomography. The first method was not ade-
quate due to insufficient penetration and scarce lithological
contrast. The seismic and electrical tomographies, however,
yielded valuable results.

Reconnaissance methods, which mainly include remote-
sensing and aerial techniques, geological and geomorpho-
logical mapping, and geophysical and geotechnical tech-
niques, had to be adapted to the characteristics of the land-
slide. According to McCann and Foster [16], a geotechnical
appraisal of the landslide’s stability has to consider the three
following issues: (1) the definition of the 3D geometry of
the landslide with particular emphasis on failure surfaces,
(2) the definition of the hydrogeological regime, and (3) the
detection and characterization of the movement.

The method for seismicity was to obtain velocity profiles
using horizontal-to-vertical spectral ratios (H/V ratios) of
microtremors [17, 18] named Nakamura method, and inver-
sion with the Spatial Auto-correlation Method [19] and with
the H/V [20] based on ambient noise measurements carried
out with 3 long-period Trillium Compact 120s sensors with
frequency responses of 120s to 100Hz, and their respective
RefTek 130S three channel and 24 bits-resolution third
generation recorders. Regarding microtremors, it was taken
into account that the energy sources are multidirectional
[18]; thus, the direction of maximummovement is unknown.
Moreover, the use of this kind of technique does not cause
environmental impact and yields precise results.

Microtremors, also called ambient vibration noise, seis-
mic microtremors, or background seismic noise, are random
vibrations generated by natural or artificial sources. The aim
of the Nakamura method and the SPAC technique was to
determine velocity profiles in the northern region of the
archeological zone of Mitla in order to determine the depth
of the base of the landslide.

The H/V technique was developed by [18] and is used
for obtaining direct estimates of site-specific response during
an earthquake (e.g., [21, 22]), with relating geological and
geophysical properties of Wells together with seismic records
analysis on the various geological site conditions. It was
hypothesized that the vertical component of the ambient
noise at the ground surface keeps the characteristics of
basement ground, is relatively influenced by Rayleigh wave
on the sediments, and can therefore be used to remove both
the source and the Rayleigh wave effects from the horizontal
components. It is effective in identifying the fundamental
resonance frequency of a sedimentary layer, where the depth𝐻 of a soft soil layer with resonance frequency 𝐹 and shear
wave velocity Vs is given by H = Vs/(4∗F).

The H/V spectral ratio of microtremors measured any-
where confirmed its ability to estimate the predominant

frequency and the amplification factor. The result of the
estimation is stable for the measured time and season (Naka-
mura, 1989).

The seismic noise records were visually inspected to select
signals that are complete and that had a good signal-to-noise
ratio. Two software packages were used for data processing:
SAC (Seismic Analysis Code) and Geopsy (Geophysical Sig-
nal Database for Noise Array Processing) (SESAME WP05)
[23]. The results of these programs were compared because
they have a different smoothing function in obtaining H/V
[24].

H/V spectral ratios were calculated for the three com-
ponents of each record. This was done automatically when
estimating the H/V ratio with the Geopsy software. For the
calculation of H/V for each selected window, a smoothing
function was applied with a bandwidth coefficient of b =
40 and a 5% cosine taper-window. This type of smoothing
function employs a different number of points at low andhigh
frequency; its use is strongly recommended for frequency
analysis [25].

Using the SAC (Seismic Analysis Code) software, spectral
ratios were determined in 81.92 seconds windows and a
smoothing with a Von Hann window [26].The results of both
programs did not show significant differences.

The method known as SPAC (spatial autocorrelation
method) was first introduced in 1957 by [27]. The SPAC
method considers the dispersive characteristics of surface
waves in a stratified medium [28]. When only the vertical
component of seismic noise record is used, we can easily
assume that the signal has a high content of Rayleigh waves.

In this method, it is proposed that from simultaneous
microtremor measurements in some geometric arrange-
ments of seismic stations, it is possible to obtain the disper-
sion curve by calculating the coefficient of spatial autocorre-
lation [29].

We represent harmonic wave circular microtremor fre-
quency 𝜔 by u (0, 0, 𝜔, t) and u (r, 𝜃, 𝜔, t), which are observed
in the center C (0,0) of the array and point X (r,𝜃) on the circle
of radius r.Then spatial autocorrelation function is defined as

𝜑 (𝑟, 𝜃, 𝜔) = 𝑢 (0, 0, 𝜔, 𝑡) 𝑢 (𝑟, 𝜃, 𝜔, 𝑡) (1)

where u(t) is the average value in the time domain.The spatial
autocorrelation coefficient for one angular frequency 𝜔, p
(𝜔, r), or simply autocorrelation coefficient is defined as the
power spectrum of one station within a spatial arrangement
(middle circle):

𝜌 (𝑓, 𝑟) = 𝐽
0
(2𝜋𝑓𝑟𝑐 (𝑓)) (2)

Therefore, the spatial autocorrelation coefficient at a fre-
quency 𝑓 is related to the phase velocity c(f) through the
Bessel function of first kind and zero order 𝐽o. The phase
velocity calculated from the argument of the Bessel function
generated (2). For the SPAC technique, we used Geopsy
software [23]. Prior to making rings, correlation graphs were
generated, and the dispersion curve was then adjusted.

Seismic noise measurements were taken during two days
on the archeological site of Mitla. For each day, a triangular
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Figure 4: (a) Seismic array # 1 and (b) seismic array # 2.

array with three seismic stations and with seismic records
with durations of 10 hours (array 1) and 6 hours (array 2) was
built (Figure 4).

5. Geoelectrical Tomography

Geoelectrical imaging is geophysical technique that was
developed on the basis of physical methods that are helpful to

reveal the presence or absence of buried bodies and structures
that cannot be seen with the naked eye, but that can be
detected because of their distinctive physical properties of
being resistive to their surroundings (e.g., [30–32].

The aim of geoelectrical mappings is to determine the
distribution of resistivity in the subsoil through measure-
ments carried out on the surface. The true resistivity of the
subsoil can be estimated from these measurements. In this
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sense, the resistivity of the earth is related to geological
parameters according to its mineral content, fluid saturation,
and rock porosity. Geoelectrical studies have been used for
some decades now for hydrological and mining research
and for geotechnical research. However, more recently, these
methods have become more sophisticated in mapping the
subsoils, and they have increasingly been used to locate
structures and characterize the subsoil.

The aim of this study is to obtain a 2D model of true
resistivities from the pseudosection of apparent resistivities
obtained from the field. This is why an inversion program is
necessary.

On the other hand, samples of the landslide sediments
were submitted to granulometric analysis and evaluation of
their petrophysical properties. Unfortunately, neither organic
soils, nor pieces of carbon were found to date the landslide.

6. Results

6.1. Geology of the Mitla Area. The stratigraphical column of
the Mitla zone is composed of a basement of Precambrian
rocks from the Zapoteco terrane covered by Mesozoic car-
bonated units veiled by pyroclastic flows that constitute Sierra
La Calavera. On these sequences and on the hanging wall,
huge Pleistocene lacustrine basins developed as part of the
large valleys of the study zone, which are actually the hanging
wall of the normal NNW-SSE fault carved by other faults
following the same direction and which could be responsible
for the Mitla Landslide (Figure 3).

The main structures are oriented NNW-SSE and clearly
present the geometry of normal faults with strik-slip sinistral
component. This fault, which we henceforth call Calaveras
fault, is part of the large structures that are the boundaries of
the tectonic terranes, especially those that limit the Zapoteco
and Cuicateco terranes (Figures 2 and 3).

The ignimbrite sequence of rhyolitic composition is
formed of at least two large packages; the inferior package
corresponds to the hanging wall of the normal Calavera or
Mitla fault outcropping at La Fortaleza and Mitla (Figure 3).
The second is the package of Sierra La Calavera and is made
of at least 4 thick ignimbrite packages, some of which are
welded and others crumblier, but all with Q, PL, and mica
crystals; some levels are tightly welded at different points of
the column. These were dated between 14.4 ± 0.4 My and
15.48 ± 0.2 My, Miocene [15].

Above the ignimbrites of the hanging wall of the La
Calavera fault is a thick landslide deposit formed of different
levels but nonetheless of monolithologic composition, i.e.,
formed only of block and rhyolitic rocks matrix. The blocks
range from gravel to blocks of more than 5m in diameter,
some of which are angular and others semirounded. More
data regarding this landslide will be given hereunder.

On top of the landslide and the ignimbrites are lahar
deposits, varying from blocks and matrix to hyperconcen-
trated lahars.

Fluviolacustrine deposits were observed in ŕıo Mitla
formed by conglomerates, sands and clays, all of which
heavily faulted. Large Pleistocene vertebrates were reportedly
discovered in these deposits [15].

6.2. Geometry of the Collapses and Description of the Deposits.
In a detailed elevation model, two large landslide flows can
be seen opening towards the south in the Sierra La Calavera,
which is formed by tabular deposits of ignimbrites tilted
towards the north. Because of its provenance, the most visible
of the flows is the Mitla Landslide. This wide scarp and
deposit bundle is clearly observable and delimited. The main
scarp has a maximum diameter of 1350m and a slope relief
of 390m. The landslide ran over more than 2500m from the
basis of the main scarp to the toe. The second main scarp,
located NNO of Mitla, is less regular, both in its main scarp
and in its body (Figure 5). Both main scarps are located
within the footwall of the normal fault that caused the Mitla
depression.

6.3. Geomechanics and Granulometry. An average per size
was obtained, of samples from the avalanche front, from the
granulometric data using the sizes of the wire mesh cloth of
the sieves used to observe the behavior of one granulometry
(Figure 6). As in the case of individual strata, the line does
not break, which reveals a fair distribution of thematerial and
very little space among particles.

6.3.1. Φ Value. With an elevation model presenting curve
details every 50 cm, we obtained the value of the H/L relation
for a length (L) of 1.633 km, and a drop height of 0.640 km,
yieldingΦ=0.39,whichmeans its value is characteristic of dry
landslides, i.e., of 0.5.

6.4. Slope Mobility. Reference [33] introduced an indicator
regarding the mobility of slopes called excessive travel dis-
tance. This parameter (Le) expresses the horizontal distance
traveled in excess by the event, superior to what could be
expected if the movement was that of a nonlubrified event
of rigid mass, which would move across a tilted plane with a
normal coefficient of friction of tan (32∘).

Le = L – ( H
0.62) (3)

Le = 1033 (4)
As can be observed, the distance covered in excess indicates
the movement of the body in the specific conditions men-
tioned above, and comparing it with the true distance of the
slope we can observe that the difference is small, indicating
scarcity of water. In cases wherein, water is presented as
triggering factor; the difference can be four times higher.

6.5. Geophysics. In order to know the geometry of the land-
slide, three 2D tomography lines were acquired with a= 4m
(Figure 8).Thevertical resolution obtainedwas of 2 mand the
horizontal resolution of 4m. Lines 1 and 2 were 108m long
with NE-SW orientation. Line 3 was 156m long and oriented
SE-NW (Figure 7).

Data obtained so far reveal a landslide body of low
resistivities (11-17) in blue and in the southern part of the
profiles, between 4 and 5 meters from the ground, there is
a body of average resistivity (22) colored green and yellow,
interpreted as part of the ignimbrite basement or possible
remains of pyramids constructed with ignimbrites.
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6.6. Seismic Noise Records. On the assumption that the
derived dispersion function represents the first mode of the
Rayleigh waves, we derived a best-fitting velocity model that
is consistent with the estimated velocity values. Figures 8
and 9 show the Rayleigh waves dispersion function for each
seismic array.

6.7. Inversion of the H/V Spectral Ratio. Figure 10 presents
the H/V spectral ratio for stations 1 and 3 for seismic array
# 1. Here, the H/V rotate tool was used to obtain the H/V
in the horizontal plane, i.e., as azimuth function, from any
type of 3D vibration signals (ambient vibrations, earthquakes,
etc.). The black curve represents H/V geometrically averaged
over all individual colored H/V curves. The two dashed
lines represent the H/V standard deviation. The grey area
represents the average peak frequency and its standard
deviation. The frequency value is at the limit between
the dark grey and light grey areas. The parameters were
frequency sampling from 1Hz to 15Hz, global time range
from T0 to the end of the time series and time windows to
81.92 s.

The inversion of the spectral ratios allows us to obtain
a velocity profile for each measurement site. In Table 2 we
show the fundamental frequencies for each seismological
station and the classification of the type of soil associated with
the site based on the NEHRP (National Earthquake Hazards
Reduction Program) classification [34].

It was determined that the depth of the base of the
landslide is of 50 meters below array 1 (region south of the
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Table 2: Dominant periods and classification of the type of soil for the seismic stations within the different arrays (http://www.nehrp.gov/).

FREQUENCY DOMINANT PERIOD NEHRP CLASSIFICATION
STATION 1. Array #1 and array #2
3.17Hz 0.315 s Solid Ground
STATION 3. Array #1 and array #2
3.35Hz 0.298 s Solid Ground
STATION 4. Array #1
12.74Hz 0.078 s Rock
STATION 2. Array #2
1.2 Hz 0.833 s Soft Ground

archeological site ofMitla) and 70meters below array 2 (north
of the archeological zone).

Supporting these results, the northernmost site can be
classified as ground softer than the southernmost site of
the triangular arrangements. This can be correlated with the
change in the landslide of Mitla.

7. Discussion

The Mitla avalanche opens a great discussion in the field of
Geoarchaeology. The geological investigations give evidence
that this event occurred in historical time that is during
the Postclassic and before the arrival of the Spaniards. The
important city ofMitlawas found in decline during the arrival
of the Spaniards.

The geophysical exploration data show important aspects,
as the electrical tomography studies propose the existence of
an important anomalous structure under the avalanche that
could be part of the remains of the prehispanic Mitla. The
elements that compose it were found between 5 and less of
20m deep. On the other hand, with the earthquakes data

and environmental noise, an avalanche thickness of 60m
was estimated, which allowed a correct calculation of the
area and volume of the material removed (area of 2.79 km2
and volume of 0.1674 km3). In this same field of the relation
between the volume or area removed by the collapse and
the magnitude of the earthquake, two published works have
been analyzed; one was by [35] and the other by [36]. Both
make a great contribution to obtain the relationship between
the destabilized areas and the Ms or Mw. However, in all
these works they analyzed zones of Central America where
the climate and the soils make up very different scenarios
from Mitla. Consequently, it is likely that the magnitude
proposed in our work does not correspond exactly to the
real one, because the avalanche was in dry condition during
the collapse, the geometries of the strata bedrock were
not favorable to the destabilization, and the local climatic
conditions have not allowed a great soils development.
Anyway, here there is the morphological evidence that the
Calaveras fault is part of an active fault system, as shown from
the drainage networks that give the NNW-SSE structures a
normal left-lateral component (Figure 2(c)). Despite these

http://www.nehrp.gov/
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differences, we have considered keeping Keefer’s equation.
In this paper we have only estimated the material volume of
the Mitla avalanche. However, in later works we will make
an estimate of the two avalanches that could have been
generated by the same earthquake (Garduño-Monroy et al.,
in press)

Starting from a maximum volume of 0.1674 km3 for the
landslide, the earthquake that caused the ground shaking up
to the slope collapse could have had a maximum magnitude
of 7.3 according to the relationship of [35, 36].

If we consider the length of the Calaveras fault (with a
minimum length of 10 km and maximum of up to 40 km,
Figure 3), it would be potential to generate an earthquake

of magnitude in the range of 6.2 to 6.9 Mw, based on the
relations proposed by [37] or [38], respectively.

So then, two possible sources were feasible in the gen-
eration of this avalanche. The presence of the geodynamic
framework of Oaxaca with the occurrence of earthquakes
between 7 and 8 Mw could suggest that a comparable event
could have generated the studied avalanche. On the other
hand, if we consider also the morphological evidence of the
Calaveras fault, an earthquake between 6 and 7 Mw could
have easily generated an avalanche of this type if the fault
was active in the period of the landslide event. Both scenarios
are plausible, but now the most important thing is to see the
possibility of starting new geoarchaeological explorations and
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consider that these segments of the Oaxaca fault system are
active.

8. Conclusions

This research indicates that the Mitla Landslide is a collapsed
body formed of ignimbrite blocks and matrix from the Sierra
La Calavera. According to its morphology, the geotechnical
characteristics, and the geophysical data interpretation, the
landslide was provoked by an earthquake of a magnitude
in the range from 6.2 to 7.3 Mw. The observations on the
field suggest that the earthquake could have been caused by
the La Calavera fault, which is a normal fault with small
left component and is part of the Oaxaca fault system-
oriented NNW-SSE to N-S. But we also do not rule out
that this avalanche was instead generated by the frequent
seismic activity of the Cocos plate. These geological facts
(from regional to local tectonics), and the age of the landslide,
could introduce a new scenario regarding seismic hazard in
Oaxaca, because beside the intense seismic activity caused by
the Cocos plate, more shallow earthquakes could also occur.
On the other hand, the fact that the Mitla fault (Calaveras) is
currently active indicates that many of the fault segments are
favorably oriented to the current stress field.

There is no precise age established for the landslide occur-
rence; however, the event presumably damaged the pyramids
ofMitla, and a large part of the pyramids are probably located
under the avalanche deposit as evidenced by the outcomes
of this preliminary investigation. Considering that if the
population reached 10,000 individuals, the extension must
have been larger than what can be implied by the current
remains.

From the point of view of geophysical exploration, the
method of electrical tomography and the study of earth-
quakes and environmental noise were good and promising
tools in the Geoarchaeology field of research, even if the
procedure can be better calibrated in synergy with other
survey techniques. It was not the case of the use of Georadar
that it failed to provide great information in the high-
detail characterization of the local subsoil and materials
discrimination in depth as necessary for this type of research.
For futurework it is recommended tomake a thinner network
with electrical tomography in parallel with seismic profiles.
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Many Italian rock slopes are characterized by unstable rock masses that cause constant rock falls and rockslides. To effectively
mitigate their catastrophic consequence thorough studies are required. Four velocimeters have been placed in the Torgiovannetto
quarry area for an extensive seismic noise investigation. The study area (with an approximate surface of 200×100 m) is located
near the town of Assisi (Italy) and is threatened by a rockslide. In this work, we present the results of the preliminary horizontal to
vertical spectral ratio analysis of the acquired passive seismic data aimed at understanding the pattern of the seismic noise variation
in case of stress state and/or weathering conditions (fluid content and microfracturing). The Torgiovannetto unstable slope has
been monitored since 2003 by Alta Scuola of Perugia and the Department of Earth Sciences of the University of Firenze, after the
observation of a first movement by the State Forestry Corps. The available data allowed an extensive comparison between seismic
signals, displacement, andmeteorological information.Themeasured displacements arewell correlatedwith the precipitation trend,
but unfortunately no resemblance with the seismic data was observed. However, a significant correlation between temperature data
and the horizontal to vertical spectral ratio trend of the seismic noise could be identified. This can be related to the indirect effect
of temperature on rock mass conditions and further extensive studies (also in the time frequency domain) are required to better
comprehend this dependency. Finally, the continuous on-line data reveal interesting applications to provide near-real time warning
systems for emerging potentially disastrous rockslides.

1. Introduction

For many years, researchers have turned their attention to
the massive problem of landslides in Italy. The topic is high
on the agenda because roughly 70% of all the landslides in
the European continent are concentrated in Italy [1]. As a
consequence of steep slopes, high seismic activity, and soil
and bedrock properties, many hillsides of the Italian valleys
are characterized by unstable rock masses causing constant
rock falls and rockslides of various sizes and types [2]. A
thorough understanding of failure types, mechanisms, and
possible causes of landslides is required to effectively mitigate
their catastrophic consequences. Moreover, currently early
warning systems (EWS) can be implemented in order to

prevent loss of life and to reduce the economic and material
impact of landslide events [3, 4]. Nevertheless, frequently
enough, it is not easy to find a technique able to provide
an immediate alert [5]. Therefore, slope failure of rock
masses represents an interesting case study for verifying the
feasibility of using passive seismic monitoring in EWS. By
means of the observation of the changes which occurred
in the acquired signal, in fact, it could be possible to
detect variations in the elastic parameters of the rock body
related to changes in pore-fluid pressure, consolidation, and
microfracturing that could forecast failure [6].

In the last years, besides the traditional geotechnical
and structural monitoring (e.g., topographic total stations,
extensometers, and inclinometers, [7]), new techniques have
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been used to characterize and monitor landslides: aerial
photos and LiDAR [8, 9], GPS monitoring [10–12], InSAR
and GB-InSAR technique [3, 13–15], laser scanner [16, 17],
infrared thermography [18–20], and optic fiber strain sensors
[21]. Shallow geophysical methods represent a valid comple-
ment to the aforementioned techniques [6, 22–27].

To verify the performance of a small-scale seismic net-
work as part of an EWS, a pilot scale experiment was
arranged to monitor an unstable rock mass. The test site is
the Torgiovannetto quarry located in Umbria Region, one of
the Italian Regions that is more prone to landslide. In general,
quarries can be characterized as remarkably vulnerable areas,
since their natural geomorphology is altered by excavating
activities [28]. The data were collected during a 7-month-
period monitoring. In this paper we present the results
of the preliminary analysis carried out on the acquired
data by means of the horizontal to vertical spectral ratio
analysis (HVSR or H/V). These analyses were aimed at
understanding the pattern of seismic noise variation in case of
stress state and/or weathering conditions (fluid content and
microfracturing) as the first step to set up a reliable EWS.
The studied quarry rockslide was also extensively monitored
since 2003 with traditional methods. Therefore, the multipa-
rameter analysis was useful to understand the mechanisms
that control the rockslide dynamics and to evaluate possible
connection between rainfall/temperature/displacement and
rockslide seismic activity. Thus, a comparison between the
seismic data and both temperature and precipitation data is
discussed, in order to highlight a correlation between them.

2. The Study Area

TheTorgiovannetto test site is located in a micritic limestone
former quarry (dismissed since the late '90s), 2 km NE from
Assisi (Umbria Region in Central Italy) in the northward
facing slope of Mount Subasio (red square in Figure 1).
Landslides in Umbria occupy about 14% of the entire land
cover (8456 km2) and affect many urban areas.

Mount Subasio (1109 m a.s.l.) is part of the Umbria-
Marche Apennines, a complex fold and arcuate thrust belt
that occupies the outer zones of the Northern Apennines of
Italy. The belt developed during the Neogene as a result of the
Ligurian Ocean closure, followed by the continental collision
between the European Corsica-Sardinia Margin and the
African Adria Promontory [29]. A northeast-directed com-
pressional tectonic phase started during the middle Miocene
and is still active near the Adriatic coast [30]. During the
upper Pliocene an extensional phase started with a principal
stress oriented about NE-SW that resulted in the dissection
of the Umbria-Marche Apennines and the opening of a NW-
SE-trending set of continental basins. Mount Subasio area
consists in a SSE-NNW trending anticline [31, 32] with layers
dipping almost vertically in the NE side of the mountain
with several NW-SE striking normal faults on the eastern and
western flanks. The local geological formations, belonging to
the Umbro-Marchigiana Sequence (from Calcare Massiccio
to Marnoso Arenacea), represent the progressive sinking of a
marine environment.

The study area consists mainly of micritic limestone
belonging to the Maiolica Formation (Upper Jurassic-Lower
Cretaceous) that widely outcrops in the area. The thickness
of the Formation is about 100 m and is composed by white
or light grey well-stratified micritic limestone layers, whose
thickness ranges between 10 cm and 1 m, and thin clay
interlayers may sporadically occur. The site is also partially
covered by very heterometric debris (from pebble- to cobble-
sized angular clasts, with scattered boulders, in a silty or
coarse grained sandy matrix), some of which are of anthro-
pogenic nature. The dip direction varies between 350∘ and 5∘,
while the dip of layers from 25∘ to 35∘, which means that, in
general, the layers’ dip is in the same direction of the slope
but with a gentler angle.

First deformations within the quarry site were observed
in May 2003 by the State Forestry Corps, in the form of
tension cracks in the vegetated area above and within the
quarry front. From then, several monitoring campaigns were
carried out by means of different techniques (topographic
total station, inclinometers, extensometers, ground-based
interferometric radar, laser scanner, and infrared thermal
camera [7]). It is assured that the main predisposing factor of
instability was the quarrying activity that heavily altered the
original front. Actually the quarry is structured in four main
terraces, that the dense vegetation prevents distinguish well
them (refer to [4] for the quarry view from north to south),
with an overall height of about 140m (Figure 2). Nevertheless,
earthquakes-induced landslides cannot be neglected among
the instability factors. In fact, the link between earthquake
and landslide is well documented in the literature, especially
in the cases of high-magnitude seismic event [33–36]. For
example, the seismic sequence that affected the area southeast
of the quarry (Colfiorito basin) in the 1997-98 reached the
Assisi area in a macroseismic intensity (MCS) Io = 8-9 [37].
Therefore, the seismicity of the area surrounding the quarry
is another important instability factor.

Themain rockslide [38] in the Torgiovannetto quarry has
a rough trapezoidal shape and covers about 200 m x 100
m in surface and 550 m a.s.l. and 680 m a.s.l. in altitude.
The geometry and other soil parameters (such as densities
and body wave velocities) are well known thanks to the
geotechnical and geophysical investigations carried out on
the site by Alta Scuola of Perugia and by the University
of Firenze [4, 7]. Among these investigations, a passive
seismic network in continuous recordingwas installed on this
rockslide from December 2012 to July 2013. The “traditional”
monitoring network was composed by 13 wire extensome-
ters, 1 accelerometer, 1 meteorological station (composed
of 1 thermometer and 1 rain gauge), and 3 inclinometers
(Figure 2). The monitoring network, progressively enhanced
and improved throughout the years, was completed with
hydrological data [39], modelling computation analysis [7,
40], and the seismological stations. Nowadays, the active
volume of Torgiovannetto rockslide is estimated to be about
182,000 m3. The upper boundary is defined by a big open
subvertical fracture (Figure 2), a tension crack with an EW
strike, which in some places displays a width up to 2 m and
depth of about 20 meters [40].
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Figure 1: Geological map of the study area. (a) Geological cross-section of the investigated slope (modified from Balducci et al., 2011).

3. Methods

The HVSR technique was introduced for the first time by
[41, 42]. It is based on the ratio between the horizontal
and vertical components of ground motion and it requires
a 3-component sensor to acquire data. According to [43]
microtremor energy consists mainly of SH waves, while,
according to other authors, as discussed in [44], H/V peaks
are related to Rayleigh waves. One of the striking features of
the HVSR ratio is its stability in time, documented in many
papers [27, 45, 46].TheHVSR curve allows gaining additional

information about the underlying velocity profile at the site,
especially when a strong different shear wave velocity exists
between the shallow layer and the bedrock [47, 48]. The
site effect amplification, in fact, could be caused by several
geological conditions and one of them is the presence of a
soft soil layer overlying a rigid half space. Nowadays, the
HVSR is widely used both for environmental [49, 50] and for
structural [51–53] problems. For a more detailed discussion
about the seismic noise method please refer to the wide
literature [27, 43, 54–56]. The main application of HVSR
technique on landslide concerns the possibility to reconstruct
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the geometry of the sliding mass and to detect the depth
of the shear surface [27, 57–59] with a good approximation.
This point is beyond the scope of this paper that, instead,
aimed at the evaluation of the dynamic behaviour of the rock
mass affected by the presence of fractures linked to the sliding
wedge, searching for changes in its internal characteristics
detectable by the HVSR shape [6, 23] that could be used in
early-warning procedure.

At the Torgiovannetto quarry, seismic measurements
were performed using a small-scale network composed
by four seismic stations (TOR1, TOR2, TOR3, and
TOR4; locations are shown in Figure 2). Due to the
geomorphological characteristics of the site and the lack
of access to the eastern part of the slope, the installation
was really challenging. Station TOR4 was located on the
sliding mass while the other three stations (TOR1, TOR2,
and TOR3) were located at the edge of the quarry arranged
in pairs with diametrically opposite position with respect
to the centre of the landslide. This configuration (a reverse
Y with respect to the sliding orientation) allowed us to
retrieve punctual information both inside and outside the
landslide. Each station with a SARA 24bit A/D converter
(SL06) coupled with a SS45 tri-axial velocimeter sensor with
a natural frequency of 4.5 Hz and transduction factor of
78 V/m/s. Instruments response is flat down to 2 Hz, with
an upper-corner frequency of 100 Hz. All of them were
equipped with Global Positioning System (GPS) receivers
for time synchronization. The sensors were placed on a
concrete base with supporting plinth, isolated from the
exterior in order to attain protection from severe weather
conditions. Battery supply and digitizer, connected to
the sensors through a connector cable, were housed in a
separate case. Data were recorded in continuous mode at

200 Hz sampling frequency, as the best compromise between
signal resolution and data storage. Data acquisition was
continuous for 210 days from December 7, 2012, to July 3,
2013, except for some short intervals due to the batteries
change. Data format of the seismic records retrieved from
the converters SL06 is miniSEED (‘Data-only’ volume;
http://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/).
Nevertheless, this format was mainly designed for the
exchange of geophysical data and not for analysis.
Therefore, first of all, recorded data were converted
into a more suitable format for elaborations like SAC
(Seismological Analysis Code; https://ds.iris.edu/files/sac-
manual/manual/file format.html). For each station, every 6
hours, three separate files were generated (Figure 3), which
correspond to the east-west (SHE), north-south (SHN), and
vertical or up-down (SHZ) components of ground velocity.
The amplitude (y-axis) was expressed in counts, while the
x-axis in time (hours).

Data analysis was performed by means of Geopsy soft-
ware (www.geopsy.org; cf. [53] as an example of application).
For all the 3 components of ground motion the acquired
data were detrended, mean-removed, and filtered.Then, each
trace was divided into windows of 120 s length, and each
window was tapered with a Tukey window and padded with
zeros. The amplitude spectrum was evaluated via the Fast
Fourier Transform (FFT); individual spectra were finally
smoothed using a boxcar of 0.1 Hz width. The H/V ratio
was calculated for each window, and the final HVSR function
was given by the average of the HVSRs over 6 h intervals.
In this work the horizontal (H) spectra have been computed
by averaging E-W and N-S components using a quadratic
mean, which shows a lower bias with respect to the simple
arithmetic mean [52]. Finally, a special filtering process was

http://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/
https://ds.iris.edu/files/sac-manual/manual/file_format.html
https://ds.iris.edu/files/sac-manual/manual/file_format.html
http://www.geopsy.org
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Figure 3: Example of a 6 h trace recorded during the monitoring
period at TOR1 showing vibrations in three components (EW, NS,
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Figure 4: (a) The TOR1 HVSR amplitude, (b) the peak frequency
distribution, and (c) the peak amplitude distribution over the whole
monitoring period.

not applied since it did not significantly affect nonstationary
noises as happened in other studies [60–62].

4. Results

The resonance frequency peaks, determined using the H/V
method described above, were analysed for stations TOR1,
TOR3, and TOR4 throughout the whole monitored period.
The HVSR analysis of station TOR2 is not presented here
because of the typical flat shape of the outcropping seismic
bedrock [55].The TOR1 HVSR (Figure 4) exhibits the highest
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Figure 5: (a) The TOR3 HVSR amplitude, (b) the peak frequency
distribution, and (c) the peak amplitude distribution over the whole
monitoring period.

amplitudes over the frequency band of 4.5 Hz to 13 Hz with
a stable peak around 10.5 Hz whose amplitude is generally
slightly above 2. Throughout the observation period, both,
peak amplitude and frequency, did not exhibit any particular
trend, with the exception of a slight increase in amplitude
within the period of January to mid-March, 2013. The TOR3
HVSR (Figure 5) is characterized by more closely spaced
peaks of amplitude higher than 2, coalescent in the spectral
band spanning from 2.5 to 6 Hz. Twomain peaks are present:
one, more frequent at 2.5 Hz and the other at 5 Hz. This
behaviour suggesting that the medium properties are likely
subjected to slight, periodic variations potentially related to
temporary fluctuation in water content that influences the
propagation velocity.

At TOR4 (Figure 6) the HVSR exhibits two main peaks
at frequencies of roughly 2.7 Hz and 5.5 Hz.The amplitude of
these peaks varies according to a characteristic and systematic
daily, and therefore weekly, behaviour, in which the largest
amplitudes of noise are higher. This could be associated
with (a) an artefact related to the internal electronic noise
of the instrument, whose effects become relevant when the
ground vibrations have very low amplitude, such as night
time or during the weekend, or (b) the variations of the
noise wavefield, as a consequence of the activation of different
sources related to anthropogenic activities. Beginning in
April, 2013, the amplitudes of these peaks start increasing
from the values of 3, and by the end of the monitoring period
they attain values around 5, that is, about 65% greater than
those observed during the early phases of the experiment.
Such amplitude increase is likely to reflect a corresponding
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Figure 6: Near here: (a) The TOR4 HVSR amplitude, (b) the peak
frequency distribution, and (c) the peak amplitude distribution over
the whole monitoring period.

increase of the impedance contrast between the unstable
mass and the underlying solid bedrock. However, the peak
frequency remains stable in time, indicating that both thick-
ness and velocity of the shallowest layer remain substantially
unchanged.Thus, an increment in the velocity and/or density
of the underlying layer must be invoked in order to explain
the inferred impedance variations. Potential phenomena
provoking this possible velocity increase will be discussed in
the following.

Also, the HVSR directivity throughout the 7 months of
recording was analysed. As an example, contour maps in
Figures 7(a) and 7(b) compare the medium directionality of
data acquired in December 2012 and July 2013, respectively.
For the two different intervals, the directivity at stations
TOR1, TOR2, and TOR3 stayed substantially unchanged. On
the other hand, the TOR4 polarization direction between
the two periods change slightly (Figure 8), even though
for the later interval directivity is clearer as a consequence
of the amplitude increase of the horizontal components,
as also manifested by the growing number of the HVSR
peaks (Figure 6). This suggests that the observed temporal
variations in the HVSR plots are not due to changes in
the distribution of active sources; if this would be the case,
consequently the polarization direction should most likely
have changed.

5. Discussion

Assuming that the HVSR is strictly related to the dynamic
properties of the medium and that it is supposed to be stable

if no change occurred in the velocity and/or density of the
ground [63], results fromHVSR analyses can be summarized
as follows: (i) there are clear configurations of quasiconstant
or slowly varying contiguous frequencies whose H/V peak
values depend on the considered station; (ii) the stations
located on the sliding mass (TOR4) and at its head (TOR3),
on potentially loose section, show an amplitude peak which
is sharper and larger than those observed at the stations
settled downstream. At TOR4, the amplitude variations of
the HVSR cannot be unequivocally interpreted. However,
the overall stationarity of the polarization properties suggests
that those changes most likely reflect a variation in the
acoustic properties of the medium rather than a change in
the distribution of noise sources.

As mentioned in the Introduction section the quarry
rockslide was extensively monitored since 2003 with tradi-
tional methods. Among these, as shown in Figure 2, there
were 13 extensometers. All the extensometer data (E1-E15
in Figure 2) were individually normalized and compared
with the measured cumulative rainfall in order to highlight
a possible linear correlation between two different time
series. The corr function in MATLAB was employed to both
evaluate the linear (or rank) correlation (Rho) and perform a
hypothesis test. The hypothesis was of no correlation against
the alternative that there is a nonzero correlation (Pval)
assuming by the authors that the correlation between two
data is significant if Pval is sufficiently small (< 0.05). Table 1
shows the values obtained for each comparison.

The results of the correlation analysis clearly show that
the deformational fields in the upper section of the quarry
(E7, E8, E9, E10, E13, E14, located on the main cracks
whose widths enlarge up to 2 m from East to West) and in
the western part of the quarry (E2, located on the lateral
crack) are strictly related to the seasonal rainfall, since the
Pval values are very small (exponent lower than -100). This
behaviour could be explained taking into account that, at
sites where opening of the fractures is significant, pore water
pressures in the fractures/cracks can critically influence the
stability of rock. Unfortunately, because of a problem in the
instrumentation, no data are available on thewater level in the
cracks. Moreover, from a qualitatively point of view, looking
at Figure 9, it is possible to assess that periods characterized
by the main soil movements (highlighted by the vertical
sections of the extensometer curves) follow periods with
higher rainfall (highlighted by the vertical sections of the
cumulated rain curve). In particular, this behaviour is clear
at the half of January, and at the end of February and May.
The rainfall also seems to have a weaker but still significant
influence on the deformations measured by E11, E3, E4, and
E15 (Figure 9) while an inverse correlation exists with the
data recorded by E1 (located in correspondence of the basal
plane). Finally, there is no evidence of correlation for E12
data neither with the rain trend nor with the temperature
variation. Unfortunately, there are no superficial evidences
that could justify this behaviour, apart from the fact that E12
is located in correspondence of a junction between two main
fractures (Figure 2). Perhaps its behaviour is caused by this
junction (i.e., the highest movements are recorded by the
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Figure 7:The HVSR directivity in (a) December 2012 and (b) July 2013.

Table 1: Correlation test between cumulative rainfall and extensometer data (Cum RAIN – Ei, where i=1, 2. . .15), and temperature and E12
extensometer data (Temp – E12).

Correlation test Rho Pval Correlation test Rho Pval
Cum RAIN – E1 -0.8674 9.1381 e−64 Cum RAIN – E10 0.9724 5.5739 e−131

Cum RAIN – E2 0.9822 4.0970 e−150 Cum RAIN – E11 0.8782 2.9209 e−67

Cum RAIN – E3 0.8326 6.7328 e−51 Cum RAIN – E12 0.1336 5.5500 e−2

Cum RAIN – E4 0.8296 1.6040 e−53 Cum RAIN – E13 0.9860 1.1666 e−67

Cum RAIN – E7 0.9746 1.7970 e−134 Cum RAIN – E14 0.9845 2.7311 e−156

Cum RAIN – E8 0.9826 3.7711 e−151 Cum RAIN – E15 0.9633 1.5301 e−118

Cum RAIN – E9 0.9833 7.4087 e−153 Temp – E12 0.1564 3.1200 e−2
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Figure 8:The peak azimuth distribution at TOR1, TOR3, andTOR4
over the whole monitoring period.

extensometer around), or otherwise it could be possible that
some errors in the data registration occurred.

A good match (Rho: 0.7147; Pval 9.3923 e−30) is obtained
by comparing the TOR4 HVSR amplification value and

temperature variation (Figure 10). This could be caused by
the water content variation in the medium (water content
alternatively empties and fills the rock pores) and conse-
quently the relative VR variation, related to changes in the
HVSR amplification value.The saturation of pores withwater,
in fact, tends to increase the velocity of P-waves (which
propagate more efficiently through water than air), also
increasing the Poisson ratio. This has a strong influence on
the Rayleigh waves and, in particular, on the ellipticity of
the particle motion with a consequent increase of the ratio
between the horizontal component H and the vertical one V
of ground motion [64–66].

To justify the strong resemblance that emerges by com-
paring the temperature trend and that of the H/V recorded
at TOR4, a direct dependency of this latter parameter on the
meteorological conditions could be supposed.This behaviour
is suggested in [67] that ascribes a fundamental role to
barometric conditions variation concerning the composition
of the noise wavefield. In [68] this behaviour is related to
microseismic frequencies (lower than 1 Hz) and is related
to oceanic storm waves. Reference [69] observes similar
phenomena at very high latitudes: in that case the varia-
tions could be explained by cycles of freezing and thawing
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Figure 9: (a)The extensometer and rain trends and (b) two selected
extensometer and temperature trends. The E2, E7, E8, E9, E10, E13,
E14 trends show a clear correlationwith the precipitation; the E3, E4,
E11, E15 trends show a weaker correlation with the rain; the E1 trend
shows an inverse correlation with the rain; the E12 trend does not
show correlation either with rain or with temperature.

that crumble the rock surface and change their acoustic
properties. Moreover, [70] points out how the HVSR ampli-
tude could be affected by the local meteorological conditions
(e.g., the wind). If this would be the case, an extended dataset
(> 1 yr) would be necessary in order to clarify whether the
observed variations at TOR4 are part of cyclical phenomenon
occurring over longer periods as a consequence of seasonal
changes. Unfortunately, at the Torgiovannetto quarry it was
not possible to extend the experiment over longer time
intervals because of the hard acquisition conditions. Nev-
ertheless, the hypothesis that the HVSR amplitude value is
directly related to meteorological factors can be excluded in
Torgiovannetto area. All the stations, in fact, given their small
spacing, should have shown the same amplitude increase. At
the contrary, TOR1 shows a minimum in January 2013 and
relatively constant values in the other months; TOR3 shows
pronounced maxima on December 2012 and February 2013;
TOR4 shows an increasing trend from January to July 2013.
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Figure 10: (a) HVSR peak amplitude at TOR4 and temperature.
(b) Correlation between the HVSR TOR4 peak amplitude and the
normalized temperature.

These H/V frequency variations could be associated with a
different depth of fracturing (i.e., at site TOR1 fractures are
shallower/near to the surface while at sites TOR3 and TOR4
they could be observed at depth) since the penetration of the
surface waves is related to the frequency, but there are no
experimental data on the depth of the fractures. Moreover,
the surface geology at site TOR1 is characterized by stiffer or
thicker geological unit, as indicated by the H/V frequency
at 4.5 Hz. The surface geology at site TOR3 is characterized
by softer/or thinner geological unit, as indicated by the H/V
frequency at 2.5 Hz.

Probably the temperature variation does not directly
affect the H/V amplitude but is responsible of other mech-
anisms like: (i) increasing of the fracturing degree of the
medium acting directly on the dilatancy of the rocks (an
increase in the medium fracturing may result, directly or,
more often, indirectly, in density or velocity of propagation
variations); (ii) influencing the water content of the superfi-
cial layer leading to an increase of the wave velocity of this
portion of the slope. This hypothesis is supported by the
variation in the impedance contrast which occurred with the
approach of the hot season (early April, 2013) and therefore
higher temperature (i.e., the water in the superficial layers is
more prone to evaporate with the higher temperature).
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Unfortunately, at the present state the lack of evidence
of surface displacements corresponding to the observed
variations in the HVSR amplitude trend foreclosed any
possibility of threshold identification that could be used as
an EWS. It could be interesting to evaluate this technique as a
surveillance method when it can be calibrated onmonitoring
intervals characterized by a high rate of surface activity or
over longer period in order to explain the cyclical variation
of that parameter.

6. Conclusion

Implementing an EWS is a challenging issue in landslide
monitoring. To verify the usefulness of seismic noise analysis
as part of an EWS, a pilot scale experiment was arranged to
monitor an unstable rock mass. A 7-month period of passive
seismic data was analysed by means of the H/Vmethod. Pos-
sible connection between rainfall/temperature/displacement
and rockslide seismic activity was evaluated, and the hypoth-
esis that the HV amplitude value is directly related to
meteorological factors can be excluded. On the contrary, the
H/V observed variations with time are interesting, in that
they potentially reveal changes of subsoil site conditions and
have also implications for the assessment of site response to
seismic shaking. The presented analysis was just the first step
to employ H/V variations in an EWS. Many efforts, in fact,
have to be employed both to understand how the observed
variations are correlated with slope stability conditions and
to set up a reliable EWS. For the first point (a) a longer
time acquisition period and (b) a comparison with many
other parameters to model and interpret in a quantitative
way are needed. There are many factors (like cracks, joints,
rock diagenesis, and saturation), in fact, that could cause
velocity or density variations and therefore influence the
ellipticity and/or polarization of the surface waves. For the
second point, there are some open questions like, (a) what
is the main information that the EWS will receive, (b)
how this information will be processed, (c) what are the
preferred time responses, and (d) how the potential variations
and/or errors from (a) and (b) will affect the false alarm/no
alarm ratios of the EWS. Nonetheless, the rapid technological
advances increasing the speed in acquisition, transmission,
and processing of data suggest that it is clearly worthy to
proceed in the field of seismic monitoring of unstable slopes.
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In summer of 2015 we had completed a geophysical survey complemented by borehole drilling near the right-bank slope of the
Rogun Dam construction site, Tajikistan. These data were first processed and then compiled within a 3D geomodel. The present
paper describes the geophysical results and the 3D geomodel generated for an ancient mass movement located immediately
downstream from the construction site. The geophysical survey included electrical and seismic profiles and ambient vibration
measurements as well as earthquake recordings. The electrical and seismic data were processed as tomographic sections, the
ambient vibrations as horizontal-to-vertical spectral H/V ratios, and the earthquake data mainly in terms of standard spectral
ratios. By estimating the average shear wave velocities of the subsurface, we computed the local soft layer thickness from the
resonance frequencies revealed by the H/V ratios.Three seismic stations had been installed for ten days along a profile crossing the
intermediate plateau. Standard spectral ratios inferred from ten processed earthquake measurements confirmed the presence of a
thick soft material layer on the plateau made of weathered rocks, colluvium, and terrace deposits, which produce a medium-level
amplification at about 2Hz.The 3D geomodel was first built on the basis of new topographic data, satellite imagery, and a geological
map with two sections. Then, the various electrical resistivity and seismic refraction tomographies were inserted in the geomodel.
The soft layer thickness information and borehole data were represented in terms of logs in the model. The site is crossed by the
Ionakhsh Fault that could bemodeled on the basis of the geological inputs and of a lateral resistivity gradient found on one electrical
profile along the steep lower slope. The integrated interpretation of all results reveals that probably only a relatively small part of
the ancient giant mass movement is really exposed to slope instability phenomena.

1. Introduction

The Rogun dam construction site is located in central
Tajikistan within the Vakhsh River valley at about 100 km
in the Northeast of Tajikistan’s capital Dushanbe and 40 km
upstream from the Nurek reservoir. The project of the
construction of the dam and the associated hydropower plant
(HPP) had already started when Tajikistan still belonged to
the Soviet Union. It was part of a much wider project of
hydropower plant construction that was completed by the
Soviet Union in Central Asian countries, including also other
dams and HPPs constructed along Vakhsh River in Tajikistan

as well as the large hydropower cascade along Naryn River
in Kyrgyzstan (Figure 1). There, the last construction of the
(relatively small) Kambarata 2 dam had been completed in
2012; at present, it is the only ‘blast-fill’ dam within the two
hydropower cascades (a full description of the blast event,
construction works, and geophysical investigations on the
dam is provided by Havenith et al. [1]).

The Rogun dam construction project was relaunched in
the beginning of this century (2005) under the present-day’s
(2018) government. As for many other types of dams, the site
for this one had been selected in a very narrow part of the
VakhshRiver valley (to reduce the amount ofmaterial needed
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Figure 1: Map of Tien Shan and Pamir Mountains in Central
Asia with location of major faults and earthquakes (white circles
show all recorded M>=6.9 earthquakes with the year of occurrence;
the magnitude is indicated for analysed events) and related major
mass movements (stars). Highlighted by red dashed lines are the
Naryn HPP cascade in Kyrgyzstan and the one of Vakhsh River in
Tajikistan; the locations of the Rogun dam construction site and of
the Baipaza landslide, as well as the epicentral areas of the 1949 Khait
earthquake and the 2015 Sarez earthquake (red circle) are indicated
(modified from Havenith and Bourdeau, 2010).

for construction). The associated Rogun HPP will be part
of the cascade of already existing HPPs, including those of
Nurek, Baipaza, Sangtuda 1+2, and the “Golovnaya” (head, or
final). The Rogun dam, just as Nurek dam, is designed as a
rockfill dam with a clay core. At the end of the 70s, Nurek
dam had been the tallest dam in the world (with a height
of 300m); right now Nurek is the second tallest one after
Jinping-I dam in China. After completion, the Rogun dam
would be the future tallest dam on Earth (design height of
335m).

The present paper is focused on a geophysical survey
that had been completed in summer 2015 on a large slope
downstream and a smaller one upstream from the Rogun
dam construction site. This survey included electrical and
seismic profiles as well as ambient noise measurements and
earthquake recordings supported by differential GPS posi-
tioning (methods are detailed under Section 3). Results from
related data processingwere then combined in a 3Dgeomodel
of the site. A very similar type of site characterization has been
completed with the samemethods byUlysse et al. [2] for a hill
site in Port-au-Prince, for which topographic amplification
effects had to be assessed.

The objectives of this survey are related to the general
hazard situation of the Rogun HPP that is now under
construction. The obviously most important regional type of
hazard to which the selected site is exposed (just as the other
HPP sites downstream) is the one related to earthquakes: the
site is located at 100 km in the southwest of the epicentral zone
of the catastrophic 1949 Khait earthquake, and at 300-350km
in the West of the 1911 Sarez earthquake (see summary of
events in Havenith and Bourdeau [3]). It should be noted that

only a few months after our survey in 2015, the Sarez region
was hit by another M>7 earthquake.

At local scale, the site is affected by multiple types of
mass movement-related hazards; such hazards are perfectly
exemplified by those that had been induced by the two largest
aforementioned events, in 1911 and 1949: rock avalanching
and river damming. The M=7.4 Khait earthquake triggered
several large mass movements, including the Khait rock
avalanche that had partly covered the town of Khait [4, 5],
while the Sarez earthquake triggered a giant rockslide that
formed the presently tallest (intact) natural dam on Earth, the
Usoy dam [6].

The interest in the slope site downstream from the
construction area is also related to the risk of formation of
a landslide dam near the exit of the spillway of the Rogun
dam. This risk is exemplified by an event that occurred in
2002 near the Baipaza dam and hydropower plant (HPP)
that also belong to the Tajik HPP cascade. At that time, a
massive failure affected the already existing and identified
Baipaza landslide at 4.5 km downstream from the Baipaza
HPP (see also Havenith et al. [7]). The first displacement of
this landslide had been observed in 1968 when it partially
blockedVakhshRiver, even before design and construction of
the Baipaza HPP. In 1969, the volume of the Baipaza landslide
was assessed to be 20-25millionm3. InMay, 1992, the Baipaza
landslide moved again as a result of heavy rains, and the
Vakhsh River was dammed. After the March 3, 2002, deep-
focal Mw=7.4 Hindu Kush earthquake (with an epicentre
located in Afghanistan at a distance 250 km from the Baipaza
site, and with an intensity of shaking of 6 degrees on EMS-
98 scale), this landslide started to move and partially blocked
again the Vakhsh River (Figure 2). As a result, a lake formed
upstream from the dam and partly inundated the Baipaza
HPP,which could not operate at a normal level for onemonth.
The use of high explosives was required to clear the river bed
after this landslide. Note that the view of Baipaza rockslide of
2007 in Figure 2 still shows the presence of the cascade across
the dam that had been breached in 2002. Now, the cascade
cannot be seen anymore due to river erosion.

As introduced above, the larger downstream zone (Site
1) of the Rogun dam construction site was studied to assess
the probability of occurrence of a massive failure event
similar to the one observed downstream from Baipaza HPP
in 2002; the smaller upstream Site 2 that can be seen on
some maps (Figures 6 and 7) was investigated due to the
possibility of a potentially tsunamigenic impact of an existing
mass movement on the lake. Investigations on both sites are
described below (see also Torgoev et al. [8]), with focus on
the larger Site 1.

2. The Seismic Hazard and Geological Context
of the Dam Site

As seismic hazard maps can provide a more general overview
on the seismotectonic activity of a region and its effects on
the surface than singular events, and, over a certain period of
time, it is important to situate the Rogun site in its regional
seismic hazard context. Relatively recent seismic hazardmaps
for the target region have been produced by Abdrakhmatov
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Figure 3: Seismic hazardmap of the Southeastern part of Central Asia, entirely including the countries of Kyrgyzstan andTajikistan (modified
from Ischuk et al., 2018). Indicated are the locations of the Khait earthquake epicentral region, the Rogun and Nurek sites, and the Baipaza
landslide just downstream from the Baipaza HPP.

et al. [11] and Bindi et al. [12], the first one covering only
the northernmost part of Tajikistan while the second fully
covers Tajikistan. The most recent seismic hazard map has
been computed by Ischuk et al. [13]. Actually, Ischuk et al.
[13] produced several maps for this part of Central Asia
(calculated for a 475-year return period), one considering a
75% contribution by regional (or zonal) and 25% by fault-
related seismic ground motion hazards, one considering a
25% regional and 75% fault-related contribution, and the
seismic hazard map shown (Figure 3) for a 50% zonal
and 50% fault-related contribution. This map shows that
the entire Vakhsh hydropower cascade is exposed to a
minimum seismic hazard of about 0.3 g. As the Rogun site
is located in the northern part of the cascade, it is closer
to the active fault zones of the southern Tien Shan, which
induce a seismic hazard of even more than 0.4 g (with 10%
exceedance probability in 50 years). Comparable high values
are displayed on the two other maps (not shown here, the
first with stronger regional seismicity and the second with
a stronger fault contribution) and were also obtained by the

two other assessments, noting that Bindi et al. [12] expressed
their results in terms of Intensities: 7 for the southern
part of the Vakhsh HPP cascade and 9 for the northern
part.

It should be noted that such large dam structures due to
the deep lakes formed upstream are often not only exposed
to the effects of natural seismicity, but also to those due to
reservoir-triggered seismicity during and just after reservoir
filling (generally during the first years after filling—but this
could also last longer in the case of Rogun as filling will take
a long time and as the lakewill be particularly large and deep).
For instance, extensive induced seismicity had been observed
after the filling of the Nurek reservoir in the 70s [14].

Here, we will not discuss in detail the possible effects
of the reservoir-triggered seismicity related to the future
filling of the Rogun reservoir. Large-scale effects are generally
not expected as a consequence of the reservoir-triggered
seismicity, due to the limited magnitudes of related earth-
quakes (M<5 for the Nurek case); note that exceptional
magnitudes of up to 6 had been observed after filling of
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Figure 4: Simplified geological map of the Tien Shan (from Havenith et al. [9]). Views of 3D model of site with geological map ((b): green:
Cretaceous sandstone bedrock; yellow: quaternary surface deposits, terraces, and colluvium) and a Pleiades image (of September 2015, (c))
projected on the surface, showing also the location of the dam and of the Ionakhsh Fault and elements of the ancient Sackung-like massive
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Figure 5: Field photographs showing elements of the large ancient Sackung-like mass movement. (see orientation and location of views in
Figure 4: (a) view in western part to ENE; (b) view in eastern part to WSW).

the Koyna dam (see paper by Chopra and Chakrabarti [15]).
Nevertheless, seismic ground motions can be locally very
intense as the hypocentres of those medium-size earthquakes
are generally located close to the surface (at depths that
can be less than 5 km); if located near the dam structure,
shallow M>4 events could cause fractures within the dam
(e.g., according to Chopra and Chakrabarti, 1973, the Koyna
M=6.5 earthquake had caused damage on the concrete Koyna
dam) and neighbouring slopes.

Massive failures along the neighbouring slopes could,
however, only occur if a natural M>=7 earthquake (similar
to the aforementioned Khait earthquake) hits the Rogun
region. Anyway, the investigations described below were
designed to provide inputs for estimates of possible slope
failures of multiple origins, induced by purely static (mainly
on groundwater pressure depending) factors or by small
(or higher frequency) or stronger (lower frequency) seismic
ground motions.

The general geological context of the Rogun site is related
to its position near the southern border of the Tien Shan.
Immediately to the north of the site, the pre-Mesozoic rocks
of the Tien Shan are outcropping, while the site itself is
located in Mesozoic rocks (see general geological map of the
Tien Shan in Figure 4(a)). Most of the right-bank slopes are
made of Cretaceous sandstones (green layers in Figure 4(b))
widely covered by colluvium and along the central plateau
(see location in Figure 4(c)) also by terrace deposits. Along
this plateau also two lakes can be found (one is shown in the
photograph in Figure 5(a)). In the central part of the lower
slope also upthrusted Jurassic clayey rocks can be found.They
are markers of the presence of the Ionakhsh Fault that crosses
the site from ENE to WSW.

The origin of the intermediate plateau on the right-
bank slope downstream form the dam construction site
can be explained by an ancient Sackung-like movement
of that slope. Another interpretation would be that the
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Figure 6: Overview of investigated sites with types of measurements indicated. Measurement locations plotted on a hill-shade map, with
locations of landslides (reddish) extracted from the geographic-geological database (by Havenith et al. [10]) with overlay of a new 8m
resolution DEM. See detailed site survey views in Figure 8.
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Figure 7: Overview of the two investigated sites (Google Earth� views, see detail on types of surveys in Figure 8). Also shown: approximate
outlines of the future Rogun dam structure and of the two main reservoir levels (darker and light blue filling of reservoir outlines) after an
intermediate and the final construction.

plateau is just the remnant of a river terrace—especially
as terrace material is found on this plateau. The interpre-
tation of the whole slope as a major Sackung therefore
requires additional elements—the most important one is the
presence of multiple crests and graben structures on top
of the upper slope (above the plateau, see photograph in
Figure 5(b)) that can be considered as the main scarp of the
Sackung.

3. The 2015 Rogun Geophysical Field Survey

Anoverview of theRogundam site (in 2015, before the start of
dam construction in 2016) and the neighbouring investigated
areas is shown in Figures 6 and 7. The first presents an
overview map; the second includes Google Earth� imagery
views of the investigated sites, with an approximate represen-
tation of the future dam structures (that are now being built
and would be completed in two stages) and respective lake
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levels. A more detailed overview map of the investigated sites
with indication of the survey types is shown in Figure 8.

In 2015, our teams had been asked by local officials to
study specifically those two sites as both of them present
geomorphic features of ancient mass movements: as intro-
duced above, Site 1 presents a terrace-like plateau above the
middle part of the slope that could be related to a very
old (≫1000y) massive Sackung; Site 2 has characteristics of
an old rockslide with clearly destroyed rock structures. The
main “risk” question concerns the reactivation potential of
those two ancient massive failures; in this regard, we have
to consider that for Site 2 the stability conditions would
drastically change with reservoir filling as the toe of the
rockslide would be inundated (after complete filling), while
for Site 1 the situation will not really change after reservoir
filling. The external factor that could contribute to instability
on both sites is a major earthquake event near the dam
site. Such an earthquake could be either natural as we are
located in a seismically active area or induced by the reservoir
filling. In both cases, the presence of weak structures such
as a fault zone and of groundwater reduces slope stability in
general while groundmotion amplification effects specifically
contribute to the seismic slope failure triggering potential.
Therefore, our investigations targeted the detection of both
weak zones and wet zones as well as the determination of
seismic ground response characteristics. This was achieved
through the combination of electrical and seismic methods,
combined with seismological measurements.

In total, on both sites up- and downstream from the future
dam, we completed a dozen electrical resistivity tomography
(ERT) and about the same amount of seismic refraction
tomography (SRT) profiles, as well as 92 single station ambi-
ent noise (H/V)measurements. In addition to the geophysical
measurements, we carried out earthquake recordings during
10 days (only on Site 1); in addition, geotechnical tests were
completed on samples collected from two new boreholes (one

120mdeep borehole on Site 1 and one 100mdeep borehole on
Site 2).

After processing of all geophysical data, the survey results
(including also the borehole data) have been inserted in a 3D
geological-geophysical model that was completed with the
GOCAD software [16], which will be described in the next
section. To support modeling, a new 8m resolution digital
elevation model had been constructed (produced upon order
by Apollo Mapping) and new orthorectified high-resolution
remote imagery (recent Pleiades and Spot images) had been
acquired.

The electrical resistivity survey included 12 ERT profiles
(using a GeoTom system with four cables and 100 electrodes)
with a total length of 4150 meters and installation of 1035
electrodes (7 profiles on Site 1 and 5 profiles on Site 2, see
Figure 8, with some profiles being along the same line to
get longer profiles). All electrodes (with a spacing of 4m
between electrodes on all profiles) had been located with a
differential GPS (DGPS) with a precision of about 20 cm. For
the measurements, we used for all profiles the Wenner array
configuration. In the laboratory, data were then processed
with the 2D inversion algorithm of Loke and Barker [17]
implemented in the RES2DINV software. Four processed
ERT profiles on Site 1 are presented in Figure 9.

Examples of ERTs shown in Figure 9 show that the electri-
cal resistivity values are highly variable over Site 1. Along the
uppermost profile (ERT near upper scarp, Figure 9(a)) and
along the intermediate crest (ERT in Figure 9(b)), relatively
high resistivities (>500 ohm.m) were measured all along
the investigated profiles. Much lower resistivity values (<100
ohm.m) have been measured along profiles completed on
the intermediate plateau (ERT in Figure 9(d)) and along the
lower steep slope (ERT in Figure 9(c)). Those lower values
are probably indicative both of the presence of soft rocks
and/or deposits and of groundwater in the subsoil. Along the
plateau it is more likely that these wet soft materials are made
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Figure 11: (a) Overviewmap of 92 ambient vibrationsmeasurements (for both studied sites); circles are colored according to the fundamental
resonance frequency (see scale in the middle) and with a size proportional to the peak amplitude; see also the double arrows indicating the
main vibration orientation (polarization). See also the black Ionakhsh Fault outline crossing the lower slope from NE to SW. (b-d) Three
examples of H/V results of processed ambient vibrations, in terms of simple H/V spectral ratios and ofH/V azimuth spectra (with polarization
information).

of colluvium and/or terrace deposits, while along the slope
the material is probably made of wet fractured rocks. We can
also see the slight lateral change of resistivities in the middle
part of the ERT profile “03” in Figure 9(c), which could point
to the presence of a subvertical fault, possibly the Ionakhsh
Fault crossing the target region in this area.This lateral change
roughly corresponds to the location of the Ionakhsh Fault that
is shown on the geological section in Figure 12(c).

The seismic refraction survey included 13 SRT profiles
(with Daqlink seismograph and 24 4.5Hz geophones) with
a total length of 4210 meters (8 profiles on Site 1 and 5
profiles on Site 2; see Figure 8). In total, 40 hammer shots
and 25 small (250-500g dynamite) explosions (with min.
40m offset) were used to trigger seismic waves. Along each
profile at least 10 DGPS measurements had been completed
to measure the profile position, and all shot points were
located by means of DGPS measurements. In the laboratory,
the seismic data (recorded over 2.5s, with a time interval
of 0.5ms) were processed with the Sardine software (by

Demanet [18]) in terms of P-wave SRT profiles on Site 1;
two examples of SRTs are presented for two long seismic
profiles (with several distant explosive shots) in Figure 10. For
the seismic profile SP07 (Figure 10(a)) also a multichannel
analysis of surface waves (MASW) had been performed (with
the SeisImager software, fromABEM company) to determine
S-wave velocity (Vs) logs in themiddle part of the slope of Site
1 (see Vs-logs and digitized surface wave dispersion diagrams
in Figures 10(a1) and 10(a2), respectively, for explosive shots
triggered at 100 m from the end and the beginning of the 115 m
long profile).

Both SRT profiles in Figure 10 show that in some places
relatively lowP-wave velocities (Vp) have beenmeasured near
the surface, often less than 1000m/s. These results are also
confirmed by low Vs (<500m/s) measured near the surface,
as proved by a few MASW analyses, such as those shown
in Figures 10(a1) and 10(a2). Higher Vp-values (>1500m/s)
near the surface were only observed near the upper steep
slope below the main crest. At a depth of more than 30m
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Figure 12: (a, b) Overviewmaps ((a) with Pleiades image; (b) with geological map) of 92 ambient vibrations measurements (for both studied
sites); circles are colored according to the depth of the soft rock layer basis inferred from the H/V results and with a size proportional to the
peak amplitude; see also double arrows indicating the main vibration orientation (polarization). (c) Geological cross-section (along red line
in the maps in (a, b), Southern Tajik Geological Prospecting Expedition, 2012) with location of depth-logs (colored; see for scale the 100m
deep red log) of the soft rock layer basis, location of the Ionakhsh Fault (colored, as from geological map; the dashed black line as inferred
from our results), and the borehole (light grey) on Site 1.

only in a few places Vp-values of more than 3000m/s have
been measured. Those results are not typical for a rock slope
and point to a general weakening of the rocks over large
depths, probably due to intense fracturing. The lowest Vp-
values had been measured along the intermediate plateau
and along the lower steep slope (see the SRT profiles shown
in Figure 10) which are also marked by the lowest electrical
resistivities.Thus, for these zones, the presence of deep-seated
weak materials has been confirmed by both (electrical and
seismic) types of investigations.

By combining all SRT and the two MASW results,
we estimated mean Vp- and Vs-values for the first rel-
evant (for slope stability analysis) 60m, of, respectively,
1500 and 750m/s (for a Poisson ratio of 0.33) for Site

1 (the values are lower for Site 2, i.e., Vp
60
=1000m,

Vs
60
=500m).

92 ambient noise H/Vmeasurements (using a sampling
frequency of 200Hz, completed with a Lennartz L5s seis-
mometer connected to a CitySharkII station) included 62
points on Site 1 and 30 points on Site 2. All H/V points
were located with a normal GPS with a precision of about
5 to 7m. Ambient vibrations data were processed with the
Geopsy software (by Wathelet [19]). An overview map of
all measurements and three examples of H/V results are
shown in Figure 11. The overview map (Figure 11(a)) shows
already processed H/V results as circles colored according
to the fundamental resonance frequency and with a size
proportional to the measured peak amplitude. The three



10 International Journal of Geophysics

43000 44000

42
93

00
0

42
94

00
0

 



N°

 
N°

 
E°  




E°

(a)
43000 44000

42
93

00
0

42
94

00
0

 



N°

 
N°

 
E°  




E°

(b)

(c)

Figure 13: (a, b) Overview maps ((a) with Pleiades image; (b) with geological map) of seismological station locations and of seismic profiles
(green lines and shot points) on Site 1. (c) CitySharkII station and battery.

examples of H/V results shown in Figures 11(b), 11(c), and
11(d) are presented in terms of both simpleH/V spectral ratios
and H/V azimuth spectra (with polarization information).

Those examples show that in the upper slope mainly
higher resonance frequencies had been measured (>5Hz, see
also green circles in overview map in Figure 11(a), indicating
high frequency resonances), marking the presence of a rel-
atively thin (<30m) cover of potentially weaker materials on
top of amedium shallow hard rock, while on the intermediate
plateau and also along the steep lower slope some areas are
characterized by clear, relatively low frequency, resonance
peaks (<4Hz; see also numerous large red, yellow, and orange
circles in those areas in the overview map in Figure 11(a)).
Figures 11(b) and 11(c) also show polarization diagrams which
clearly indicated a dominant NW-SE oriented shaking of the
ambient vibrations, which is likely due to the general NW-
SE orientation of the entire slope. In the overview maps in
Figure 11(a) and also in Figure 12, this polarization of the
horizontal shaking is marked by the azimuth of the double
arrows.

From the H/V resonance frequency values, f0, we made
average soft material thickness, h, estimations, using the
equations h=Vs/4/f0. Related results are shown in Figure 12.

For Site 1 we estimate that the thicker soft materials
on the intermediate plateau and in some parts of the steep

lower slope mark the general weakness of the rocks in these
areas. The map of depths of hard rock indicated by circles
is reproduced in Figure 12, together with the same circles
plotted on the geological map of the area. Along the red
line in Figures 12(a) and 12(b), a geological cross-section
(shown in Figure 12(c)) has been established by the Southern
Tajik Geological Prospecting Expedition [20]. On this cross-
section, we plotted soft layer thickness logs inferred from
the H/V resonance frequencies. By interpolating the bottoms
of these logs, the body of soft material most exposed to
instability phenomena (indicated by a fine dashed line) can be
outlined. By comparing H/V results with the geological data,
we can also see that the deepest logs are located in the center
of a syncline structure within the bedrock. In the middle of
this syncline a thick deposit of colluvium/terrace material
is marked by the yellow layer in Figure 12(c). Additionally,
the 2012 geological survey identified a fault zone in the
SE of the Syncline center; this fault zone has also been
detected in at least one of our ERT profiles (the one shown in
Figure 9(c)); according to our estimates, this fault zone should
be subvertical while the geological survey assumed a NW-
oriented dip. However, more detailed investigations would
be necessary to confirm the precise location of the fault, its
dip, and the presence of a certain amount (still uncertain) of
Jurassic clayey rocks along the fault.
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Figure 14: Example of seismic event (August 20, 2015, 01:20:17 UTC) in Northern Tajikistan recorded on all three stations: (a) near slope
break in the south; (b) on flat area behind the lake; (c) near crest, on hard rock in the north. Amplitudes are scaled.

Seismological recordings have been completed during
10 days with three mobile seismic stations (3 CitySharkII
stations, two connected to a Lennartz L1Hz seismometer
and one connected to an L5s seismometer; see location in
Figure 13) in the area of the intermediate plateau, near the
central part of the Syncline structure. During this period
of seismic observations, a total of 20 earthquakes had been
recorded within a distance of 450 km from the site, including
15 seismic events, which had been measured simultaneously
by all three seismic stations; according to the Tajik catalogue,
4 events had a magnitude of 4 or larger. The data recorded
on/near the plateau (Stations Middle and South in the maps
of Figure 13) had been processed in terms of standard spectral
ratios (SSR) computed with the Geopsy software with respect
to the measurements on a hard rock site above the slump
area (Station North in the maps in Figure 13, with the highest
location where a CitysharkII station with an L1Hz had been
installed).

From the common 15 identified earthquake recordings
we finally selected 10 events that produced the strongest

amplitudes on our sites. Figure 14 presents an example of
an event of 20/08/2015 at 0120 am UTC that was recorded
by all three stations. This figure also explains the calculation
of epicentral distance on the basis of S-P time lag (time
difference between P-wave and S-wave arrival) and estimated
average values of Vp andVs for the Earth crust (Vp= 6.9 km/s
and Vs=3.75 km/s for all events with epicentral distance
smaller than 300 km and Vp=7 km/s and Vs=4 km/s formore
distant events), estimations being based on calibration with
the 4 known event locations (included in the Tajik catalogue).
The comparison between those recordings shows that the
Southern and Middle Stations are affected by larger shaking
amplitudes (here unit-less, but scaled to the same maximum)
than theNorthern Station that is actually located on (shallow)
bedrock.

The spectral analysis applied to the event of 20 August
2015 at 0120 am is documented in Figure 15. This figure
shows that the H/V ratios and spectral amplitudes are
clearly the smallest at Station North located near outcrop-
ping bedrock, which may thus be used as reference station



12 International Journal of Geophysics

(b) Station North

(c) Station Middle

H/V

H/V

(d) Station South

H/V

H/V=2

H/V=2

SA=0.06

SA=0.06

SA=0.06

SA=0.06

Seismic event
2015-08-20T01:20:17

H/V and Spectral Analysis

(a)

Slight resonance at 4-6 Hz

Clear resonance at 1.5-3 Hz

Clear resonance at 1.8-4 Hz

42
93

00
0

42
94

00
0

43000 44000

150820_0030.073

6

4

H
/V

2

0
0.8 1 2 4 6

Frequency (Hz)
8 10 20

16

20

4

8

H
/V

12

0
0.8 1 2 4 6

Frequency (Hz)
8 10 20

150820_0040.086

150820_0030.073 Z 150820_0030.073 N

150820_0040.086 Z

150820_0108.098

6

8

4H
/V

2

0
0.8 1 2 4 6

Frequency (Hz)
8 10 20

150820_0108.098 Z

0.3

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

0.3

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

150820_0108.098 N

150820_0108.098 E

150820_0030.073 E

150820_0040.086 N

150820_0040.086 E

0.3

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

0.2

0.1

0.0
0.6 0.8 1 2 4 6 8 10

Frequency (Hz)

A
m

pl
itu

de

0.00

0.04

0.08

0.12

0.16

0.6 0.8 1 2 4 6 8 10
Frequency (Hz)

A
m

pl
itu

de

0.00

0.04

0.08

0.12

0.16

0.6 0.8 1 2 4 6 8 10
Frequency (Hz)

A
m

pl
itu

de

0.00

0.04

0.08

0.12

0.16

0.6 0.8 1 2 4 6 8 10
Frequency (Hz)

A
m

pl
itu

de

 



N°

 
N°

 
E°  




E°

0.120.12

0.16Z

EW spectra

0.2

e

Z

EW spectra

0.3

0.2

lit
ud

eZ

NS spectra

NS spectra

NS spectra

EW spectra

0

A
m

ppl

SA=0.06

A
m

pl
itu

dde

SA=0.06

H
/V

2H/V=2

Figure 15: August 20, 2015, event analysed with Geopsy software: (a) map with plots of seismograms and 5 selected S-wave windows for
spectral analysis; H/V spectral ratios (left) and amplitude spectra (right) calculated for 5 S-wave windows, for Station North (b), Station
Middle (c), and Station South (d). See indicated H/V level = 2 and Spectral Amplitude, SA = 0.06.

for site amplification analyses applied to the two other
stations.

For each of the 10 analysed events, average EW-NS
spectral ratios were computed for Station Middle and Station
South with respect to the reference Station North. The
procedure is schematically described in Figure 16.

Then, the average of all ten ratios has been computed
to determine the site amplification at Station Middle and
Station South, as shown in Figure 17. The final average ratios
for both Stations Middle and South reveal that the main
site amplification (of about 2-3) appears at around 1.5-2.5Hz
(as already shown by the H/V ratios in Figure 11). The
strongest amplification is observed for Station Middle (∼3)
that can only be explained by the presence of deepweak rocks,
possibly covered by loose deposits.

Two boreholes had been drilled in autumn 2015, a 120m
deep borehole on Site 1 and a 100m deep borehole on Site
2. Every 10m rock samples were taken from the borehole.
In total 14 rock samples were used for geotechnical tests
completed in two geotechnical laboratories (one belonging
to the Rogun HPP construction company and one belonging
to the Institute of Geomechanics and Mining of the National
Academy of Sciences of the Kyrgyz Republic).

On the basis of the developed 3D geomodels and geotech-
nical data, slope stability calculations and seismic ground

motion simulations had been completed with the UDEC
(Itasca) software. However, those simulations are not the
target of the present publication; therefore, below,wewill only
present some views of the 3D geomodel that has been used as
a basis to establish the 2D numerical models.

4. Integrated Geophysical 3D Models
and Rock Fall Simulations

All data processed have been inserted in a 3D geological-
geophysicalmodel completedwith theGOCADsoftware.The
core of the 3DGeomodel is the digital elevation surfacemodel
extracted from the 2D GIS software in point format and
reinterpolated in GOCAD (as 3D surface). Raster mapping
data such as geological maps and satellite images were then
projected on this 3D surface (see upper parts of Figures
18 and 19). All geophysical profiles and geological sections
(by Southern Tajik Geological Prospecting Expedition, 2012)
were imported as vertical Raster profiles disposed in the right
position; in addition, all H/V soft layer thickness logs have
been inserted as vertical borehole logs (see lower parts of
the Figures 18 and 19). In addition, we represented a section
of the Ionakhsh Fault in the model (brown surface in the
lower parts in Figures 18 and 19); the 3D views show that
this fault would cross the middle-upper part of the Southern
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shown in (b).

Slope of Site 1 (denoted as “Landslide 1” in Figures 18 and
19).

A closer view showing the spatial relationship between
the Ionakhsh Fault, the site geometry, geophysical profiles,
and the existing geological sections is shown in Figure 18.
Here, we can see that one ERT profile along the slope crosses
the fault (see yellow bar in yellow outline). The large along-
slope seismic tomography also crosses the fault (see lower
parts of Figures 19(a) and 19(b)), but outside the location
of geophones where the Vp variations are weakly controlled.
Therefore, no particular Vp changes are shown by this long
seismic tomography as all geophones are located on the
East side of the fault. However, the ERT profile (shown
in Figure 9(c)) displays a change of resistivity from low
resistivity in the East (<60 ohm.m) to medium resistivity in
theWest (>130 ohm.m).This contact seems to be subvertical.
Also, our observations in the field combined with analyses
of satellite images (Pleiades) confirm a roughly vertical
contact of outcropping reddish sandstones in the East (lower
Cretaceous) to outcropping grey sandstones in the West
(Upper Cretaceous, also found in the borehole). So, we do

not follow the interpretation of the Southern Tajik Geological
Prospecting Expedition [20] indicating a fault dip (of less
than 60∘) to the Northwest (see red line on their profile in
Figure 12). The consequence is that, with a vertical dip, the
fault also crosses amajor part of the upper dam slope (while it
would barely “touch” the dam if a dip to the NW is assumed).
However, as indicated above, a series of uncertainties affect
those interpretations; to confirm the strike and dip of the fault
more detailed investigations would have to be completed on
the site (also to the East and West of the main slope).

5. Discussion and Conclusions

The main result of the geophysical survey (combined with
geological data that were briefly introduced above) is the
identification of a large weak zone (roughly 800 by 450m,
along the steep lower slope, starting above the intermediate
slope break) on the main investigated Site 1 that is outlined in
yellow in the 3D geomodel views in the Figures 18 and 19.

This conclusion is based on previous studies summarized
in the report of the Southern Tajik Geological Prospecting
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Figure 17: (a) Spectral ratios for averaged NS and EW spectra computed for 10 events recorded on all 3 stations, for Stations South and
Middle with respect to Station North (used as reference station). (b) Final average spectral ratios for combined NS and EW spectra (from all
10 events), for Stations South (blue curve) and Middle (orange curve) with respect to Station North (used as reference station).

Expedition [20], combined with our geophysical results. The
past studies highlighted the morphological and structural
features of Site 1, on the right-bank slope of the Vakhsh
River above the spillway exit of the Rogun HPP, which
characterize a very large potentially unstable zone. Those
studies concluded that the total area of the right-bank slope
exposed to landslide processes would be about 1.4 106m2
(1700∗800m: this includes the entire plateau and upper steep
slope); the unstable mass would have a thickness of up to
500m; consequently, the total volume of this mass could
be up to 700 106m3. Actually, these estimates are close to

ours when we consider the whole ancient mass movement
covering almost the entire investigated slope.

Within this zone, our geophysical results confirmed the
presence of a soft layer (weak material) near the surface.
However, the extent of the area that is really marked by
unfavorable geophysical properties (low resistivity values
of less than 100 ohm.m observed in several parts of the
intermediate plateau and along the lower steep slope, Vp and
Vs of, respectively, less than 1000 and 500m/s, up to a depth
of 20m as well as low resonance frequencies of less than 4Hz
in the same zones) is far less than what has been estimated
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Figure 18: Views of 3D geomodel for Site 1 with location of ERT profiles, geological sections, Ionakhsh Fault, H/V logs, and borehole log ((a)
view from SSW; (b) view from E). The yellow outline (∼800m long, ∼450m wide) marks the zone that we estimate to be most exposed to
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Figure 19: Views of 3D geomodel for Site 1 with location of SRT profiles, geological sections, Ionakhsh Fault, H/V logs, and borehole log ((a)
view from SSW; (b) view from E). The yellow outline (∼800m long, ∼450m wide) marks the zone that we estimate to be most exposed to
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by previous studies and of the amount of 350 103m2 (800 by
450m yellow outline in the Figures 18 and 19). Figure 14(c)
shows that this unstable mass can locally have a thickness of
up to 100m, but on average it is 20-40m thick. According to
those data, the volume of the unstable mass could be up to
10-15 106m3.

Certainly, also our estimates are affected by numerous
uncertainties. First of all, all geophysical measurements
highlighted the great variability of electrical, seismic, and
resonance properties over Site 1. We observed an absence
of resonance peaks in the western part (roughly in the west
of the lake of the plateau) which hints at the presence of
outcropping hard rock, while along the slope break of the
plateau and all over the eastern part of Site 1, resonance
frequencies of 1 to 4Hz indicate the presence of more deeply

fractured-weathered rocks with possible presence of soft
deposits (colluvium as well as the terrace material on the
plateau). This information combined with morphological
aspects such as the deep graben-like depression along the
southern border of the plateau might indicate the presence
of a deep-seated instability responsible for a more intense
fracturing of this part of the slope compared to the western
zone. Most probably the Ionakhsh Fault crossing the site and
identified on one of the ERT profiles (with subvertical dip)
would also contribute to the general instability of the steepest
part of the southern slope and of the border of the plateau
above the same.

Here, we have not presented the outcomes of numerical
studies that had been completed to estimate the likelihood
that a major mass movement could be triggered from Site 1
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(see a short summary in Havenith et al. [21]). Also, the main
question at the origin of our study has not been answered in
this paper that is focused on the geophysical results obtained
for Site 1: could amajormassmovement thatmay be triggered
by an earthquake also form a dam onVakhsh River and could
the dammed lake block the exit of the spillway tunnel? We
intend to publish those results in a follow-up paper.
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