Security, Trust, and Privacy in

Machine Learning and Internet of
Things 2021

Lead Guest Editor: Weizhi Meng
Guest Editors: Jinguang Han, Wenijia Li, and Chunhua Su

Security, Trust, and Privacy in Machine
Learning and Internet of Things 2021

Security and Communication Networks

Security, Trust, and Privacy in Machine
Learning and Internet of Things 2021

Lead Guest Editor: Weizhi Meng
Guest Editors: Jinguang Han, Wenjia Li, and
Chunhua Su

Copyright © 2022 Hindawi Limited. All rights reserved.

This is a special issue published in “Security and Communication Networks.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Chief Editor

Roberto Di Pietro, Saudi Arabia

Associate Editors

Jiankun Hu (), Australia
Emanuele Maiorana (), Italy
David Megias (), Spain
Zheng Yan (), China

Academic Editors

Saed Saleh Al Rabaee(2), United Arab
Emirates

Shadab Alam, Saudi Arabia
Goutham Reddy Alavalapati(), USA
Jehad Ali (%), Republic of Korea
Jehad Alj, Saint Vincent and the Grenadines
Benjamin Aziz ("), United Kingdom
Taimur Bakhshi (®), United Kingdom
Spiridon Bakiras (), Qatar

Musa Balta, Turkey

Jin Wook Byun (i), Republic of Korea
Bruno Carpentieri (), Italy

Luigi Catuogno (), Italy

Ricardo Chaves (), Portugal
Chien-Ming Chen (), China

Tom Chen (1), United Kingdom
Stelvio Cimato (1), Italy

Vincenzo Conti(l), Italy

Luigi Coppolino (1), Italy

Salvatore D'Antonio (9, Italy
Juhriyansyah Dalle, Indonesia
Alfredo De Santis, Italy

Angel M. Del Rey (), Spain

Roberto Di Pietro (2, France

Wenxiu Ding (2), China

Nicola Dragoni (), Denmark

Wei Feng (1), China

Carmen Fernandez-Gago, Spain
AnMin Fu(®, China

Clemente Galdi(), Italy

Dimitrios Geneiatakis (), Italy
Muhammad A. Gondal (), Oman
Francesco Gringoli (), Italy

Biao Han(»), China

Jinguang Han (), China

Khizar Hayat, Oman

Azeem Irshad, Pakistan

M.A. Jabbar (), India

Minho Jo (%), Republic of Korea
Arijit Karati(»), Taiwan

ASM Kayes (), Australia

Farrukh Aslam Khan (%), Saudi Arabia
Fazlullah Khan (%), Pakistan
Kiseon Kim (1), Republic of Korea
Mehmet Zeki Konyar, Turkey
Sanjeev Kumar, USA

Hyun Kwon, Republic of Korea
Maryline Laurent (), France
Jegatha Deborah Lazarus (), India
Huaizhi Li(®), USA

Jiguo Li(®), China

Xueqin Liang , Finland

Zhe Liu, Canada

Guangchi Liu (9, USA

Flavio Lombardi (), Italy

Yang Lu, China

Vincente Martin, Spain

Weizhi Meng (2), Denmark
Andrea Michienzi (), Italy

Laura Mongioi (), Italy

Raul Monroy (), Mexico
Naghmeh Moradpoor (), United Kingdom
Leonardo Mostarda (), Italy
Mohamed Nassar (), Lebanon
Qiang Ni, United Kingdom
Mahmood Niazi (), Saudi Arabia
Vincent O. Nyangaresi, Kenya

Lu Ou(}), China

Hyun-A Park, Republic of Korea
A. Peinado (19, Spain

Gerardo Pelosi (1), Italy

Gregorio Martinez Perez(2), Spain
Pedro Peris-Lopez (), Spain

Carla Rafols, Germany

Francesco Regazzoni, Switzerland
Abdalhossein Rezai(2), Iran
Helena Rifa-Pous (), Spain

Arun Kumar Sangaiah, India
Nadeem Sarwar, Pakistan

Neetesh Saxena, United Kingdom
Savio Sciancalepore(i2), The Netherlands

https://orcid.org/0000-0003-0230-1432
https://orcid.org/0000-0002-4312-6434
https://orcid.org/0000-0002-0507-7731
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0001-8842-493X
https://orcid.org/0000-0002-4335-8331
https://orcid.org/0000-0002-0589-7924
https://orcid.org/0000-0001-5089-2025
https://orcid.org/%200000-0003-4750-7864
https://orcid.org/0000-0002-8964-0746
https://orcid.org/0000-0002-5450-3207
https://orcid.org/0000-0003-1960-9986
https://orcid.org/0000-0002-6315-4221
https://orcid.org/0000-0002-4450-3983
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0001-8037-1685
https://orcid.org/0000-0003-1737-6218
https://orcid.org/0000-0002-8718-111X
https://orcid.org/0000-0002-2079-8713
https://orcid.org/0000-0001-9327-0138
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0003-1909-0336
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0002-8131-3206
https://orcid.org/0000-0002-1632-5737
https://orcid.org/0000-0002-2988-700X
https://orcid.org/0000-0001-6455-502X
https://orcid.org/0000-0003-1688-0113
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0002-5082-5727
https://orcid.org/0000-0002-4993-9452
https://orcid.org/0000-0003-4059-2728
https://orcid.org/0000-0001-7311-6459
https://orcid.org/0000-0001-5605-7354
https://orcid.org/0000-0002-2421-2214
https://orcid.org/0000-0002-7023-7172
https://orcid.org/0000-0003-4227-6067
https://orcid.org/0000-0001-9166-0570
https://orcid.org/0000-0002-7256-3721
https://orcid.org/0000-0001-8069-3801
https://orcid.org/0000-0002-5115-0928
https://orcid.org/0000-0002-6532-2081
https://orcid.org/0000-0003-4588-3196
https://orcid.org/0000-0003-0723-7847
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0001-8005-8701
https://orcid.org/0000-0003-2341-0996
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0002-8709-2678
https://orcid.org/0000-0001-8852-8317
https://orcid.org/0000-0001-8857-4436
https://orcid.org/0000-0001-7318-7644
https://orcid.org/0000-0002-8441-781X
https://orcid.org/0000-0003-1183-736X
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0001-5532-6604
https://orcid.org/0000-0001-6943-0760
https://orcid.org/0000-0001-8529-499X
https://orcid.org/0000-0003-0923-0235
https://orcid.org/0000-0003-0974-3639

De Rosal Ignatius Moses Setiadi (),
Indonesia

Wenbo Shi, China

Ghanshyam Singh (©), South Africa
Vasco Soares, Portugal

Salvatore Sorce (), Italy
Abdulhamit Subasi, Saudi Arabia
Zhiyuan Tan (%), United Kingdom
Keke Tang(®), China

Je Sen Teh ("), Australia

Bohui Wang, China

Guojun Wang, China

Jinwei Wang (), China

Qichun Wang (%, China

Hu Xiong (%), China

Chang Xu (), China

Xuehu Yan (%), China

Anjia Yang (), China

Jiachen Yang (), China

Yu Yao (), China

Yinghui Ye, China

Kuo-Hui Yeh (%), Taiwan

Yong Yu(), China

Xiaohui Yuan (), USA

Sherali Zeadally, USA

Leo Y. Zhang, Australia

Tao Zhang, China

Youwen Zhu (), China

Zhengyu Zhu (), China

https://orcid.org/0000-0001-6615-4457
https://orcid.org/0000-0002-5159-3286
https://orcid.org/0000-0003-1976-031X
https://orcid.org/0000-0001-5420-2554
https://orcid.org/0000-0003-0377-1022
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-9366-5671
https://orcid.org/0000-0003-3474-4115
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0002-9726-7232
https://orcid.org/0000-0001-6388-1720
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0003-2558-552X
https://orcid.org/0000-0001-5458-541X
https://orcid.org/0000-0003-0598-761X
https://orcid.org/0000-0003-0667-077X
https://orcid.org/0000-0001-6897-4563
https://orcid.org/0000-0003-4365-9713
https://orcid.org/0000-0001-6562-8243

Contents

Zero-Trust-Based Protection Scheme for Users in Internet of Vehicles
Letian Fang(»), Chunshang Wu (), Yukun Kang (), Wei Ou (), Donghao Zhou (), and Jun Ye
Research Article (17 pages), Article ID 9896689, Volume 2022 (2022)

FGL_Droid: An Efficient Android Malware Detection Method Based on Hybrid Analysis
Weiping Wang (), Congmin Ren (), Hong Song(»), Shigeng Zhang (), and Pengfei Liu
Research Article (11 pages), Article ID 8398591, Volume 2022 (2022)

An Enhanced Intrusion Detection System for IoT Networks Based on Deep Learning and Knowledge
Graph

Xiuzhang Yang, Guojun Peng(®), Dongni Zhang, and Yangqi Lv

Research Article (21 pages), Article ID 4748528, Volume 2022 (2022)

Automating Group Management of Large-Scale IoT Botnets for Antitracking
Pengyu Pan (%), Xiaobo Ma((?), Yingjie Fu(), and Feitong Chen
Research Article (10 pages), Article ID 4196945, Volume 2022 (2022)

Natural Backdoor Attacks on Deep Neural Networks via Raindrops
Feng Zhao (), Li Zhou (), Qi Zhong (), Rushi Lan (%), and Leo Yu Zhang
Research Article (11 pages), Article ID 4593002, Volume 2022 (2022)

GAN-Based Information Leakage Attack Detection in Federated Learning
Jianxiong Lai (), Xiuli Huang, Xianzhou Gao, Chang Xia (%), and Jingyu Hua
Research Article (10 pages), Article ID 4835776, Volume 2022 (2022)

Blockchain-Based Privacy-Preserving Vaccine Passport System
Yangzhou Cao, Jiageng Chen (), and Yajun Cao
Research Article (16 pages), Article ID 4769187, Volume 2022 (2022)

IoT-DeepSense: Behavioral Security Detection of IoT Devices Based on Firmware Virtualization and
Deep Learning

Jin Wang (®), Chang Liu (), Jiangpei Xu (), Juan Wang ("), Shirong Hao (), Wenzhe Yi("), and Jing
Zhong

Research Article (17 pages), Article ID 1443978, Volume 2022 (2022)

Machine Learning Techniques for Spam Detection in Email and IoT Platforms: Analysis and Research
Challenges

Naeem Ahmed (), Rashid Amin (), Hamza Aldabbas, Deepika Koundal, Bader Alouffi, and Tariq Shah
Review Article (19 pages), Article ID 1862888, Volume 2022 (2022)

A Method for Identifying Tor Users Visiting Websites Based on Frequency Domain Fingerprinting of
Network Traffic

Yuchen Sun (9, Xiangyang Luo (), Han Wang, and Zhaorui Ma

Research Article (12 pages), Article ID 3306098, Volume 2022 (2022)

https://orcid.org/0000-0001-9451-9214
https://orcid.org/0000-0002-1598-3076
https://orcid.org/0000-0003-1171-2778
https://orcid.org/0000-0002-3230-7563
https://orcid.org/0000-0002-6910-3716
https://orcid.org/0000-0003-1010-2484
https://orcid.org/0000-0001-5255-5639
https://orcid.org/0000-0002-6201-223X
https://orcid.org/0000-0002-1677-425X
https://orcid.org/0000-0001-5351-7239
https://orcid.org/0000-0002-5154-3123
https://orcid.org/0000-0001-5731-8958
https://orcid.org/0000-0003-1339-6334
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0001-6342-5418
https://orcid.org/0000-0002-6770-9343
https://orcid.org/0000-0002-5730-2208
https://orcid.org/0000-0002-0300-0394
https://orcid.org/0000-0002-3736-7135
https://orcid.org/0000-0002-9488-8236
https://orcid.org/0000-0001-9330-2662
https://orcid.org/0000-0002-7151-9294
https://orcid.org/0000-0003-0039-4794
https://orcid.org/0000-0001-9033-2575
https://orcid.org/0000-0003-0507-225X
https://orcid.org/0000-0002-5058-322X
https://orcid.org/0000-0002-0818-7186
https://orcid.org/0000-0001-8813-7842
https://orcid.org/0000-0002-2593-2029
https://orcid.org/0000-0003-1096-2505
https://orcid.org/0000-0002-6342-974X
https://orcid.org/0000-0002-1850-5846
https://orcid.org/0000-0002-3143-689X
https://orcid.org/0000-0003-3479-3590
https://orcid.org/0000-0001-6062-2950

Deep Neural Embedding for Software Vulnerability Discovery: Comparison and Optimization
Xue Yuan, Guanjun Lin, Yonghang Tai("), and Jun Zhang
Research Article (12 pages), Article ID 5203217, Volume 2022 (2022)

TapChain: A Rule Chain Recognition Model Based on Multiple Features
Keyu Jiang, Hanyi Zhang, Weiting Zhang, Liming Fang (), Chunpeng Ge, Yuan Yuan, and Zhe Liu
Research Article (11 pages), Article ID 6568602, Volume 2021 (2021)

Identifying IoT Devices Based on Spatial and Temporal Features from Network Traffic
Feihong Yin (), Li Yang ("), Jianfeng Ma, Yasheng Zhou, Yuchen Wang, and Jiahao Dai
Research Article (16 pages), Article ID 2713211, Volume 2021 (2021)

Image Speckle Denoising for Securing Internet of Smart Sensors
Wei Ma, Zhihui Xin (), Licun Sun, and Jun Zhang
Research Article (10 pages), Article ID 2610887, Volume 2021 (2021)

EPCT: An Efficient Privacy-Preserving and Collusion-Resisting Top-k Query Processing in WSNs
Qian Zhou (), Hua Dai(), Jianguo Zhou, Ronggi Qi, Geng Yang ("), and Xun Yi
Research Article (10 pages), Article ID 6234409, Volume 2021 (2021)

BCEAD: A Blockchain-Empowered Ensemble Anomaly Detection for Wireless Sensor Network via
Isolation Forest

Xiong Yang ("), Yuling Chen (1), Xiaobin Qian (), Tao Li(%), and Xiao Lv

Research Article (10 pages), Article ID 9430132, Volume 2021 (2021)

Attacks and Solutions for a Two-Factor Authentication Protocol for Wireless Body Area Networks
Chien-Ming Chen (), Zhen Li(), Shehzad Ashraf Chaudhry (%), and Long Li
Review Article (12 pages), Article ID 3116593, Volume 2021 (2021)

https://orcid.org/0000-0001-9186-475X
https://orcid.org/0000-0002-5310-0270
https://orcid.org/0000-0002-1420-2047
https://orcid.org/0000-0001-5579-3333
https://orcid.org/0000-0003-2750-7031
https://orcid.org/0000-0002-6283-3097
https://orcid.org/0000-0002-5310-0270
https://orcid.org/0000-0001-7888-2419
https://orcid.org/0000-0003-2465-8977
https://orcid.org/0000-0001-7740-2401
https://orcid.org/0000-0002-0675-4538
https://orcid.org/0000-0002-8674-8356
https://orcid.org/0000-0003-2122-4620
https://orcid.org/0000-0002-1448-3619
https://orcid.org/0000-0002-2274-6212
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0002-4329-9212
https://orcid.org/0000-0002-9321-6956
https://orcid.org/0000-0002-7693-9722

Hindawi

Security and Communication Networks
Volume 2022, Article ID 9896689, 17 pages
https://doi.org/10.1155/2022/9896689

Research Article

WILEY | Q@) Hindawi

Zero-Trust-Based Protection Scheme for Users in

Internet of Vehicles

Letian Fang ! Chunshang Wu ,2 Yukun Kang 2 Wei Ou®),> Donghao Zhou &

and Jun Ye >

!School of Food Science and Engineering, Hainan University, Haikou, China
2School of Cyberspace Security, Hainan University, Haikou, China
*School of Computer, National University of Defense Technology, Changsha, Hunan, China

Correspondence should be addressed to Wei Ou; ouwei@hainanu.edu.cn

Received 1 October 2021; Revised 28 November 2021; Accepted 21 April 2022; Published 12 May 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Letian Fang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

At present, the Internet of Vehicles technology is developing rapidly, but in the process of networking it may be attacked by
hackers. In view of the tampering attack on the user’s device and identity, we establish a multifactor authentication scheme to
achieve dual identity authentication through device fingerprint authentication and PKI authentication. In response to the attack
by hackers in the application of data transmission, we use the SM series of state secret algorithms for data encryption and take
advantage of the immutable and decentralized characteristics of blockchain to ensure the security and integrity of data collection
and transmission. Through the zero-trust security network architecture, the security level of the system in the process of data
transmission is effectively improved, the identity-centered dynamic access control is carried out, the user’s behavior is monitored
in real time, and the malicious nodes are screened and eliminated, which improves the stability and security of the Internet of
Vehicles data transmission system. By adopting the identity authentication pass rate, fingerprint authentication pass rate, API
authentication pass rate, and SPA packet transmission acceptance rate as the factor set, the evaluation level of the vehicles is
calculated. The experimental results show that compared with the traditional boundary-centered security protection, our scheme
can protect a wider range of application security, even if there are security problems, the loss is less. Through the training

simulation of the convolutional neural network, the classification accuracy of the trust level is improved.

1. Introduction

In recent years, with the rapid development of mobile In-
ternet and industrial intelligence, the automotive industry is
constantly changing to intelligence and networking. Internet
of Vehicles has become an important research field. The
Internet of Vehicles refers to the realization of an all-around
network connection within vehicles, between vehicles and
people, between vehicles and vehicles, between vehicles and
roads, and between vehicles and service platforms with the
help of a new generation of mobile communication tech-
nology [1]. The Internet of Vehicles improves the intelli-
gence level and automatic driving ability of vehicles and
brings great convenience to people’s transportation. At the
same time, it will help the government to establish an

intelligent transportation system and build a new business
form of automobile and transportation. Figure 1 shows the
Internet of Vehicles communication scenario.

The Internet of Vehicles system contains massive private
data of relevant users and vehicles. The cloud service plat-
form of Internet of Vehicles includes key data such as vehicle
management and transportation, service of information
content, and personal information. Therefore, data security
is an important issue of Internet of Vehicles. In the tradi-
tional Internet of Vehicles, the information of users and
vehicles exposed in public is easily stolen, interfered, or even
modified, as the Internet of Vehicles is a part of wireless
communication. At present, the academic community be-
lieves that the threat to data security of Internet of Vehicles
mainly comes from the following two aspects:

mailto:ouwei@hainanu.edu.cn
https://orcid.org/0000-0001-9451-9214
https://orcid.org/0000-0002-1598-3076
https://orcid.org/0000-0003-1171-2778
https://orcid.org/0000-0002-3230-7563
https://orcid.org/0000-0002-6910-3716
https://orcid.org/0000-0003-1010-2484
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9896689

Security and Communication Networks

Vehicle network service
platform

®Car-cloud

communication

Cellular network and
Satellite communications

®Car-to-car ®Car-to-person
[-
e = communication communication
. col— = » — "
i PR o)) - -
—_—0) el - =~ 43
- ’ LTE-V2X and DSRC [Wifi and Bluetooth

Car an In-vehicle communication

@Car-to-road T LTE-V2X and DSRC

communication
((.E ’) [
Server system RSU Video detection

Figure 1: Communication scenarios of vehicle networking.

(V)

o Ml

RSU Phone Person

(i) The attacker attacks the vehicle-linked network
transmission. In the process of wireless communi-
cation, the attacker obtains the private data from
users on the vehicle node in the communication
channel by launching an eavesdropping attack. After
the eavesdropping attack, the attacker can also co-
ordinate a tampering attack, falsify the collected
private data, and then send the wrong information to
the users.

(ii) The attacker attacks the application side of the In-
ternet of Vehicles. When the road traffic infra-
structure RSU, traffic cameras, and other devices that
receive communication information are captured by
an attacker, a node capture attack will come. In
addition, if the smart device related to the Internet of
Vehicles application is lost, attackers may use the
authentication information in them to have access to
resources and services illegally. There are also attacks
initiated by system insiders. For example, an ad-
ministrator who has access to user passwords ille-
gally embezzles and uses users’ information, which is
stored in the system server to launch attacks on the
network. Such ghost-type attacks will also threaten
the security of the Internet of Vehicles network. The
safety problems are diversely faced by the Internet of
Vehicles, and the defense solution we need to do
should be comprehensive. It is the direction that we
need to solve urgently to establish a three-dimen-
sional and reliable security defense system for the
Internet of Vehicles.

The protection measures of data security introduced in
the existing research mainly focus on data encryption tech-
nology, data access control technology, corresponding in-
tegrity protection, data existence and availability proof, and
virtualization security technology. The above technologies can

ensure the security of user private data, to a certain extent. In
the Internet of Vehicles environment, with the high-speed
movement of vehicles, the network topology and the external
environment of vehicles are constantly changing, and un-
known network attacks will continue to emerge. However, the
existing research is still based on traditional border security.
By dividing the security area, the network is divided into an
external network and an internal network. The traditional
border security takes the defense in depth model as the center
and carries out security protection by building a “wall.” By
default, the interior of the border is not secure, which cannot
prevent malicious attacks launched by attackers from the
interior, and there are great security risks. In the Internet of
Vehicles, data are assets and have a high value. To deal with
the shortcomings of traditional security protection, a new
security concept focusing on data should be adopted. The
zero-trust business security takes identity as the center and
establishes a dynamic portable boundary. For the cloud PAN-
interconnected vehicle networking system of people, vehicles,
and roads, the zero-trust security system is more suitable.
Compared with the traditional scheme, we take the lead in
using the zero-trust security architecture in the Internet of
Vehicles. While ensuring the security of data flow trans-
mission of the Internet of Vehicles, the efficiency of system
security identification is improved, and a new mode is used to
manage the Internet of Vehicles. Therefore, we propose a
zero-trust-based data protection scheme for users in the
Internet of Vehicles.

The zero-trust security architecture adheres to the
principle of “never trust and always verify.” Its access control
is based on the core of identity. The subject of data trans-
mission will be continuously authenticated. Then, the zero
trust will rely on the trust evaluation model to conduct an
intelligent behavior analysis of the entire access process of
the visitor, which can timely respond to the security threats
of the Internet of Vehicles system data and update the

Security and Communication Networks

vehicle nodes’ trust value in real time. Finally, through the
trusted access gateway, the control of the dynamic access
authority of the asset equipment is realized. The zero trust
will automatically resist eavesdropping attacks on the ac-
quisition of private data in the communication channel and
prevent malicious operations such as tampering attacks.
Once a node is evaluated as a malicious node, it will no
longer be able to access the database. At present, commu-
nication technology is adopted to realize the interconnection
between vehicles, roads, and data processing platforms and
perform cloud processing on data. In the blockchain net-
work [2], the decentralized features of the blockchain can
effectively prevent the excessive centralization of data in the
cloud and reduce the risk of database attacks. After the data
are stored in the block, the traceable feature of the block-
chain data can trace historical records such as user’s identity
authentication and vehicle’s device fingerprint. The time-
stamp in the block can resist replay attacks. After using the
commercial cryptographies SM2, SM3, and SM4 to encrypt
the data of the Internet of Vehicles, it is transmitted to the
blockchain network [3, 4]. The identification of vehicles is
realized by device fingerprint technology. The device fin-
gerprint technology includes device fingerprint extraction
and device fingerprint authentication. The equipment fin-
gerprint extraction is to actively collect the characteristic
information related to vehicles and generate a unique
identifier for each vehicle according to the fingerprint
generation algorithm. The device fingerprint authentication
is an important part of the whole identity authentication
process. When a vehicle accesses the cloud data, the cloud
platform first calculates the device fingerprint of the vehicle
and compares it with the existing fingerprint in the database
to realize the identity authentication of the vehicle. Through
the authentication center CA in the PKI system, the identity
authentication and authorization of Internet of Vehicles
users are carried out. The users can transmit on the alliance
chain. This research will effectively protect the private in-
formation of Internet of Vehicles users [5].

In combination with the convolutional neural network,
the vehicle and user identities are collected to extract be-
havioral features, and then the feature values are fuzzily
calculated according to different weights to obtain the trust
value. Finally, the user’s trust is inputted into the model to
achieve the prediction of trust level and improve the ac-
curacy of trust level evaluation.

The rest of this study is organized as follows: in Section 2,
we mainly introduce the research status of data security of
the Internet of Vehicles at home and abroad. In Section 3, we
mainly introduce the overall architecture and process of data
protection scheme for Internet of Vehicles based on zero
trust. In Section 4, we mainly introduce the simulation
experiment of this scheme. In Section 5, we do a safety
analysis. In Section 6, we mainly summarize the article.

2. Background

Zhang et al. [6] proposed a reliable and efficient system based
on edge computing and blockchain, which is designed to
ensure the reliability of edge devices during interactions and

improve transmission efficiency. Mostafa et al. [7] proposed
a layered adjustable autonomy (LAA) as a dynamically
adjustable autonomy model for a multiagent system.
Poongodi et al. [8] have proposed the improved versions of
blockchain technology to strengthen various real-time
complex applications at a flourishing rate. The results of the
simulation kernel show that the proposed architecture
justifies all the essential characteristics and effectuates the
optimal use of 5G network sharing by each network entity.
Kumar et al. [9] proposed an optimized location-aided
routing protocol that is the modified version of location-
aided routing protocol. Xiong et al. [10] proposed an effi-
cient and large-scale batch verification scheme with group
testing technology based on ECDSA, which analyzes the
application of the presented protocols in Bitcoin and
Hyperledger Fabric. Wang et al. [11] proposed PERT, a
privacy-enhanced retrieval technology for cloud-assisted
IoT, which preserves data privacy by hiding the information
of data transmission between the cloud and the edge servers.
Mostafa et al. [12] conducted tests on the AFC agent, and the
results show that the agent successfully controls the UAV in
three performed test cases and a total of nine implemented
missions. Zhang et al. [13] proposed a covert communica-
tion model combined with smart contracts to covertly
transfer information in the blockchain environment, using
encryption algorithms and two-round protocols to ensure
data privacy. Wang et al. [14] proposed a new certificateless
scheme, which utilizes the most advanced blockchain
technology and smart contracts to build a reliable and ef-
ficient CLS scheme. Lian et al. [15] proposed a new joint
learning system, COFEL, which can reduce communication
time through layer-based parameter selection and enhance
privacy protection by using a local differential privacy
mechanism for selected parameters. Zhang et al. [16] pro-
posed a secure and eflicient data storage and sharing scheme
based on blockchain-based mobile-edge computing. IoT
devices only need to submit the data and random key share
allocated to edge nodes, and edge nodes use the recovered
signature private key to realize data signature and homo-
morphic encryption. Song et al. [17] proposed a security
arrangement method based on matrix eigenvalue calcula-
tion. Compared with existing security arrangement
methods, this method has stronger robustness and effi-
ciency, making the scheme more suitable for repeated po-
lymerization. Balamurugan et al. [18] proposed a subspace
tracking algorithm with low computational complexity for
tracking DOA to provide a seamless connection. Compared
with traditional DOA estimation methods, the proposed
DOA tracking method takes less time to track the current
position of UAV target, and the tracking process is not
affected by a signal-to-noise ratio.

Wang [19] put forward a nondual pair authentication
scheme for Internet of Vehicles messages based on elliptic
curve cryptography. This scheme adopts random pseudo-
nyms to achieve conditional privacy protection. Xie et al.
[20] came up with an improved secure certificateless ag-
gregation authentication scheme based on elliptic crypto-
graphic curves. Li et al. [21] proposed a password-based
serverless cross-domain vehicle-to-vehicle authentication

and key agreement protocol. Xin et al. [22] proposed an
event-driven lightweight algorithm to quickly identify the
false position of vehicles and detect the erroneous behavior
claiming the false position. Shi and Wang [23] put forward a
resist conspiracy Sybil attack detection method based on
spatiotemporal analysis based resist conspiracy Sybil
(STARCS) attack. Si [24] proposed a lightweight authenti-
cation scheme suitable for vehicle-mounted self-organizing
networks. The trusted authority (TA) obtains the identifi-
cation information of the onboard unit (OBU) through
calculation, which can significantly improve the randomness
of the signature of the message and avoid the counterfeit
attack, hence improving the security of the solution. Zhang
[25] proposed a 5G vehicular network authentication
scheme based on a reputation system. A one-way hash
function is adopted to generate the credit references to
restrict the vehicles whose reputation score is below the
threshold from participating in the authentication process.
Zhang [26] constructed the vehicular cloud computing
structure formed by the collaboration among vehicles and
designed a security authentication mechanism that can
achieve a privacy protection based on an identity-based
signcryption scheme and a short-group signature scheme.
Chen et al. [27] proposed an E-forensics framework of
Internet of Vehicles based on the blockchain technology. It
implements a remote repository of E-forensics by using the
features of decentralized storage for blockchain technology.
Ma [28] proposed a trust management model based on the
blockchain to realize the reliability and synchronization of
existing reputation data. In trust calculation, the RSU relies
on a weighted voting mechanism to evaluate the credibility
of the message. Xu [29] studied the vehicle attribute rec-
ognition technology in surveillance video and bayonet
image, mainly studied the fine-grained vehicle type recog-
nition and body color recognition using the convolution
neural network technology framework, and developed the
vehicle attribute recognition prototype system on this basis.

3. Scheme

3.1. Architecture. We mainly describe the capacities of
overall architecture in the zero-trust philosophy, including
the following capabilities: zero-trust drive authentication
mechanism, identity security infrastructure, and trusted
access gateway. The authentication mechanism of zero trust
is the core capability of the entire program architecture. The
identity security infrastructure implements trusted access by
establishing trusted basic permissions between trusted ac-
cess subjects and trusted access objects. The trusted access
gateway supports single sign-on (SSO) to avoid frequent
authentication and improve ease of use. First, based on the
user’s access behavior to the device and the access envi-
ronment of the device and then relying on the continuous
trust evaluation model and the access control model, the
intelligent behavior analysis of the entire access process of
the visitor is carried out. Then, the risk coeflicient of the
visitor is intelligently adjusted, and then a continuous trust
assessment of the credibility of users and asset equipment is
achieved. The following step is to dynamically adjust access

Security and Communication Networks

control strategies based on the evaluation results. Finally, the
dynamic access authority control of the mobile subject is
realized through the trusted access gateway, as shown in
Figure 2.

There are varieties of mobile subjects in the Internet of
Vehicles, including equipment hardware parameters, net-
work environment, intelligent systems, sensors, signals, user
information, etc. We can regard these access subjects as the
attribute set of the application. Based on the device infor-
mation of multidimensional mobile subjects, such as device
hardware parameters, network environment, intelligent
systems, sensors, and signals, a unique device identifier
called device fingerprint is generated through a model al-
gorithm. The device fingerprint is stable and does not change
even when the device system is upgraded or parameters are
changed. In addition, device fingerprints cannot be tam-
pered and can identify the risks of terminal environment.
Generation rules of the device fingerprint are placed in the
cloud platform. During the registration process of the device
management, the device fingerprint is automatically gen-
erated according to the device parameters and then it will be
stored in the device fingerprint library, as shown in Figure 3.
In the process of device login authentication, based on the
collected multidimensional device information, the model
algorithm of the cloud platform analyzes the collected data
and calculates the device fingerprint, matching it with the
device fingerprint library to achieve enhanced
authentication.

Through continuous active scanning, passive detection,
and secure access to the control area, continuous trust
evaluation and access control are carried out on the vehicle
IoT terminal to solve the counterfeiting and malicious ac-
cess. High-confidence equipment adopts a trusted chip + -
trusted OS56 to directly identify the identity. Embedded
devices adopt device tags, such as mobile device identifi-
cation code, application developer identifier, unique device
identification code, RFID6 electronic tags, and crypto-
graphic modules attached to the outside of the device, all of
which can help establish device identity. For low-intelligence
IoT devices, digital fingerprints can also be used to construct
device identification to solve the problem involved in device
access identity management. Having an established finger-
print database improves the accuracy of zero-trust archi-
tecture devices. Since each user has only one unique identity
fingerprint, when it is employed, any changes to the identity
fingerprint will be dynamically detected by the trust engine,
which leads to the engine’s restricting permissions of the
related user.

Under the zero-trust framework, during the commu-
nication between the car and the cloud, commercial cryp-
tography ensures the security of the system. The two-way
identity authentication between the car and the cloud re-
alizes the anti-interception, anticounterfeiting, and antireuse
of the authentication information, ensuring the authenticity
of the users and the vehicle management cloud platform. In
terms of security transmission requirements, the system
must ensure the confidentiality and integrity of the com-
munication process. The vehicle can realize the communi-
cation function with the cloud server through the vehicle

Security and Communication Networks

Other security analysis platforms: Security situation

awareness system, Security information and event
management system, Continuous diagnosis and
Detection system /
/Zero Trust \
Architecture
: " Control plane i .
Moving subject : Pass the certlﬁc?itlon ‘I Trust evaluation engine
Hardware parameters -
——— Access control engine
D G (Certification level upgrade Internet of Vehicles Platform
Smart system strategy, Secondary certification) (data center):
Sensor [| b Interface
Signal Data
: Untrustwortthy oo oo IR EEEER Credible A
User info : v . Accessible to Creditle™ Application
Institutionalinformation Mﬂ : L :—| access gateway ™ | Features
: Access agent :
AN - J Data ol : Node
. Data plane
N T / -
(Identity security infrastructure N\
Commercial
PKI technol Identity fingerprint
| Cryptography echnology ¥ ngerp
Key management Device ﬁr}lger'prmt
authentication J

FIGURE 2: Structure of zero-trust-based data protection system for the Internet of Vehicles.

Hardware parameters

Web
environment

System
Configuration

Fingerprint library

<

Algorithm processing \

Hybrid cloud

FIGURE 3: Verification process of device fingerprint library.

terminals and the Bluetooth communication modules. The
vehicle realizes various security functions by configuring the
cryptographic module. Through the encryption and verifi-
cation of SM2, SM3, and SM4 commercial cryptography, the
information security of user registration will be improved,
and the transmission of vehicle data will be difficult to be
tampered with and disclosed.

In the cloud server, the server cryptography machine
performs authentication operations using the public key
stored in it. In the Internet of Vehicles system, an SM2 key
protocol algorithm is adopted to negotiate a session key, and
secure transmission of sensitive data between the cloud
server and the vehicle is completed. In the Internet of
Vehicles system, the cloud server employs the server cipher
machine that adopts SM4 and HMAC-SM3 algorithms to
protect the confidentiality and integrity of user data and

authentication data. At the same time, the vehicle calls
cryptography modules that apply SM4 and HMAC-SM3
algorithms to protect the confidentiality and integrity of key
data such as identification data, vehicle collection, and
control data.

In the Internet of Vehicles system, the PKI is widely
applied and plays different roles among different objects. In
the Internet of Vehicles system, the application and related
data security of the Internet of Vehicles include a four-layer
key system: CA public keys, the cloud server key pair, the car
Bluetooth communication module key pair, and the Blue-
tooth communication key, all of which are all key compo-
nents of the PKI in the identity security infrastructure. PKI
can guarantee the authenticity, integrity, confidentiality, and
nonrepudiation of the identities of both parties. The source
of trust of the asymmetric key system is the CA certificate,

which is used to verify the cloud server certificate and the car
Bluetooth communication module certificate. In the zero-
trust framework, the signature key of the cloud server key
pair is used to authenticate the identity of the cloud server
and the encryption key is used to realize the secure trans-
mission of data between the server and the car. The public
key is issued by the CA to form a cloud server certificate. The
private key is stored in the cipher machine of the cloud
server. The public key is issued by the CA to form the car
Bluetooth communication module certificate, while the
private key is stored in the car Bluetooth cryptographic
module.

In the Internet of Vehicles system, the zero-trust
framework can ensure the safety of the whole system. It
contains two parts: the control plane and the data plane. In
the control plane, the trust evaluation engine and access
control engine are connected to form effective contact and
communication with each module. On the one hand, the
trust evaluation engine receives node devices, people, ap-
plications, systems, and directly connected devices. On the
other hand, it maintains contact with the data center, in-
cluding Internet of Vehicles cloud systems. At the same time,
the trust evaluation engine can share data with other security
analysis platforms and also transmit information with the
access control engine. The access agent is the key node of
zero-trust architecture for authentication, can efficiently and
effectively verify the information received by the zero-trust
system each time, and ensure the security of the entire
Internet of Vehicles system.

The data center of the Internet of Vehicles platform will be
built on the blockchain network and will be deployed in the
cloud server. The center will include a user interface, data
visualization processing, application services, and basic user
functions. The whole system takes the vehicle equipment in
the connected car environment and users’ system as block-
chain network nodes, to build a decentralized chain alliance. It
decides to charge to an account through consultation and
achieve consistency by the consensus mechanism. Therefore,
members of the nodes will achieve data exchange in the case
of not fully trusting. Members can enter or exit the league
chain only through the authorization of these organizations.
Important data such as the node’s public key information, the
node’s historical communication behavior data, and smart
contract-based access control strategy are stored in the
blockchain, and all blockchain nodes jointly maintain the
communication security among the nodes of the Internet of
Vehicles. However, the nodes of the Internet of Vehicles
usually have limited computing and storage resources.
Therefore, the vehicle node is regarded as a lightweight node
of the blockchain, which only stores the block header of the
blockchain but does not participate in “mining.” To improve
the speed of the blockchain network, the communication
behavior data of the vehicle nodes are collected by its adjacent
RSVs, while the collection process is performed by predefined
smart contracts. Round-side units are authorized as full nodes
of the blockchain to generate and validate new blocks, while
vehicle-borne units, as lightweight nodes of the blockchain,
do not participate in the “mining” process of the blockchain,
thus causing no additional overhead to the vehicle nodes.

Security and Communication Networks

In the process of evaluating vehicle trust levels, we in-
troduce a trust level classification model based on the
convolution neural network algorithm. The preset convo-
lution neural network is used to train the data of vehicle
nodes and complete the trust level classification of vehicle
nodes. A CNN model has four typical characteristics: local
connection, weight sharing, pooling operation, and multi-
layer structure. The CNN can automatically learn features
from data through multilayer nonlinear transformation, to
replace manually designed features, and its deep structure
makes it have strong expression and learning ability. The
CNN has a special structure of weight sharing, and its layout
is closer to the actual biological neural network, which re-
duces the complexity of the network. In particular, the image
of a multidimensional input vector can be directly input into
the network, which avoids the complexity of data recon-
struction in the process of feature extraction and classifi-
cation. As an input-output mapping, the CNN can learn a
large number of mapping relationships between input and
output. Without the precise mathematical expression be-
tween input and output, the convolutional neural network
can have the ability of mapping between input and output
pairs by using the known pattern to train the convolutional
neural network. Combined with the CNN model, the effi-
ciency of the algorithm in the cluster environment has been
greatly improved. It can efficiently process the experimental
data and complete the effective classification of the trust
value of vehicle nodes.

3.2. Work Flow. During the process of trust evaluation in the
equipment of the vehicle network, we should not only au-
thenticate the static attributes of the device, such as its at-
tribute, ID, and network environment, but also evaluate the
dynamic attributes of the device, such as its real-time re-
quest, dynamic operation, and evaluation success rate. In
particular, it is very important to calculate and update the
trust value of the dynamic attributes of each node. In the
zero-trust network architecture, the initial trust value of the
device is 0, so we need to collect and authenticate the static
attributes of the device. First of all, we will collect the identity
fingerprints of users of the Internet of Vehicles and store the
fingerprints in the cloud server to verify and authenticate the
identity of users of the Internet of Vehicles by using the
identity fingerprint database. At the same time, the digital
certificate issued by a Certification Authority (CA) of public
key infrastructure (PKI) technology is used for verification,
together with identity fingerprint database authentication as
a way to achieve the dual authentication. Therefore, the
credibility and security of the device can be improved.
Figure 4 shows the overall process.

3.2.1. Identity Registration. When the device on the vehicle
needs to communicate with the edge device, it must first
apply for registration with a trusted vehicle management
center. The specific registration process is as follows:

First, the vehicle management center chooses N random
numbers C;, C,, . . ., Cy, to form the challenge set C={C,, C,,
... Cy}, and then sends C to the onboard equipment.

Security and Communication Networks

B

Car User
Collect message Identity registration
| Device attribute set | | Vehicle Management Center |
Device fingerprint extraction PKI certification
| Fingerprint library | Certificate store
Fail Fingerprint authentication Key authentication Fail Force quit
A
Pass Pass
v
Trust Evaluation Engine
> environmental Certificate behavior access
assessment evaluation assessment assessment
Calculate the trust value X1,
X2..Xn in unit T time No
X>1?)
Yes According to the obtained
permissions,return the
X>2? corresponding data
The historical behavior is
transmitted, Authentication certificate Yes No
transmission
No
Yes
v No
. Obtain general . Obtain general
Obtain full trust 8 Obtain neutral 8
trust untrusted
! I
Access Access ACCISSS Access
1]
Moo
Blockchain

deploy

Cloud Server

FiGure 4: The work flow.

Second, after receiving C, the onboard device calculates
the PUF function R;=PUFy; (C;), obtains R={R;, R,, ...,
R,}, and sends R to the vehicle management center through
the secure channel.

Third, the train federation management center generates a
pseudonym AID; for the received R and obtains AID = {AID;,
AID,, ..., AID\}. The {IDy;, AID, R} is stored in a secure
storage area, and then the {AID, R} is sent to the blockchain
network. Then, the unused list is written by the PoS consensus
algorithm, and the AID is finally sent to the vehicle device.

After the onboard device receives the AID, it will be
stored in the safe storage area with the corresponding C.

The advantage of this management mode is that it can
guarantee effective communication between vehicles and
edge nodes, improve the information processing ability of
the whole system, and improve the efficiency of information
communication. Identity registration plays a key role in

system information processing. Identity identification is the
basis of subsequent identity authentication to ensure an
efficient and orderly information system.

3.2.2. Device Fingerprint Extraction. For common Internet
of Vehicles devices, fingerprint information is particularly
important for identity confirmation. The device fingerprint
ensures the accuracy and efficiency of the whole data
transmission process, avoids the tedious verification process
of messages in the information transmission, and ensures
the stable operation of the whole system. When the data of
the device are transmitted remotely, the unique fingerprint
information of the device is used as favorable evidence of its
authentication. Device fingerprint extraction provides the
basis for subsequent device fingerprint identification, which
is the first step of system identity operation.

We adopt an active device fingerprint technology to
obtain the fingerprint of vehicle equipment. The vehicle
equipment hardware, network environment, sensors, sig-
nals, system control, and other parameters are obtained by
calling the SDK interface, then the equipment fingerprint is
generated by using the hash algorithm, and the equipment
fingerprint database is built based on certain principles.
Without relying on the sensitive authority of the device, two
types of identifiers for generating device fingerprints can be
collected through the browser platform of device access
management. For different IoT devices, the fingerprint pa-
rameters can be obtained through the development docu-
ments provided by the device manufacturer.

The process of collecting and generating the parameter
information of the device fingerprint by calling the SDK
interface fully meets the following two requirements, so that
the whole process of collecting the device message is
transparent and visible and does not interfere with the
normal use of the devices:

(i) Fast Response. By default, the SDK has a timeout of 3
seconds for establishing a connection. It has a fast
response speed and will not fail to obtain fingerprint
information because the device access time is too
short.

(ii) Less Resource Consumption. Calling the SDK inter-
face to extract device information will not occupy
too much bandwidth, memory, CPU, and other
resources and will not have any impact on the
normal operation of the device.

3.2.3. Identity Authentication

(1) PKI Certification. Confirm the identity through PKI's CA
certificate management center. In the Internet of Vehicles,
users use their identity information to generate digital sig-
natures, which together form CA. In addition to user in-
formation, a digital signature includes the name of the
certificate authority, certificate validity period, certificate
serial number, the hash algorithm used for the signature, and
encryption algorithm used for the public key. We can view the
certificate validity period to determine the validity of the CA.
The vehicle sends its own information to the relevant user,
and the user uses the CA’s public key to verify the signature of
the certificate. As the CA is the only issuer of the certificate,
the user can verify the authenticity of the certificate in this
way, and the user can use the public key to verify the signature
of the vehicle or carry out encrypted communication with the
vehicle. At the same time, to prevent the authenticity of the
public key used by the user when verifying the CA certificate
of the vehicle, we can find another certificate authority to
issue a certificate to the public key of the certificate authority.
In this way, a nested loop of public key certificate is formed,
and the end of the loop is the Root Certificate Authority. The
public key certificate nesting cycle can ensure the authenticity
of the public key in the communication between the vehicle
and the user in the Internet of Vehicles and ensure the overall
security of information. It can be concluded that PKI plays a

Security and Communication Networks

very important role in the whole process. The circular nesting
of certificates ensures the security of public keys used in data
encryption and improves the efficiency of system authenti-
cation. Compared with the traditional vehicle network sys-
tem, this system has certain advantages in encryption
authentication.

(2) Authentication of Device Fingerprint. Equipment fin-
gerprint authentication is a very important identity au-
thentication technology in the Internet of Vehicles system.
In the authentication process, the client sends an access
request to collect terminal features, and the ECS loads the
feature collection code for collection. The server will locate
the specific device recorded in the system according to the
MAC address, verifying the active fingerprint of the device
and judging whether it is a new device. If it is a new device,
the new fingerprint will be stored in the device fingerprint
database. If the authentication is passed, it means that the
current equipment has passed the authentication and can
continue to communicate with the system. Otherwise, the
system will actively disconnect.

3.2.4. Trust Evaluation. We built three vehicles in the system
and carried out experiments independently. The experiment
carried out by the two vehicles is applied as a control ex-
periment and the accuracy of the trust evaluation is verified
through multiple experiments. We will describe the process
of trust evaluation between the vehicle and the car cloud
system by the following steps:

(1) Pass Rate of Client Authentication. First, apply PKI's CA
certificate for client authentication as the initial authenti-
cation method. Issue the certificate to the authenticated
client through the CA certificate management center of PKI.
The client authentication process is shown in Figure 5. The
client authentication module judges whether the machine
logs in locally, whether the access address is abnormal,
whether the account password is changed, whether the
protocol is changed, etc., to determine whether the client
authentication of the vehicle management center is suc-
cessful. Assign different initial trust values to vehicles that
have passed different authentication factors.

(2) Pass Rate of Fingerprint Authentication. As shown in
Figure 6 we obtain the fingerprint features of the vehicle
equipment including hardware parameters, network envi-
ronment, intelligent systems, sensors, signals, and other
information by calling the SDK interface and then use the
algorithm to generate the device fingerprint and build the
device fingerprint library based on certain rules. The newly
generated device fingerprint is identified in the fingerprint
database. We mainly extracted some basic parameters of
terminal equipment. If the fingerprint is associated suc-
cessfully, the device passes the fingerprint identification
process. According to the difference in fingerprints of each
vehicle, different trust values will be obtained. The trust value
obtained by the fingerprint authentication of the three ve-
hicles will be used as in the follow-up trust evaluation.

Security and Communication Networks

8@©ﬁt

Outsider

User registration
and login

Vehicle management

Submit verification information

»

Pass the verification and
grant permissions

center client Gateway
Insider
FiGure 5: Client authentication.
— _ Generatebyalgorithm [Fme
=1 - p—=
Data storage Service Side
A
| Multiple interactions
) Elements include: !
Identify (1) Main factors Return | Report
(2) Object factors fingerprint X clements
(3) Environmental !
factors v
e L.
; —@ - —@~ Collect elements - SDK.
= Write to cache e
Vehicle SDK
equipment

FIGURE 6: Device fingerprint extraction.

(3) API Certification Pass Rate. The use of API gateway can
reduce the attack surface and concentrate resource advan-
tages. The API gateway is based on a defense-in-depth
strategy and has the function of authentication. Even if the
attacker breaks the API gateway, it still needs to further
break the internal service authentication to enter a single
service. Next, the microisolation test of the system will be
carried out on the three vehicles to verify the proxy and
hiding conditions applied by different modules of the system
after the installation of the access gateway plug-in, as shown
in Figure 7. In the specific test of the system, the API gateway
of vehicle deployment is verified, the specific steps of the
implementation phase are evaluated, and the verification
and call success rate are taken as key evaluation values. Three
vehicles are verified by experiment in parallel. Due to the
different situations of vehicle API verification and call, three
vehicles will produce different trust values, which will be
used as the basis for subsequent trust evaluation.

(4) SPA Packet Transmission Acceptance Rate of SDP Ar-
chitecture. After completed the microisolation test, the next
step is to validate the SPA single-pack authorization for the
three vehicles. The client carries the encrypted SPA packet
and sends an access request to the gateway. The gateway
decrypts the packet using the key provided by the controller
and cross-checks the information in the decrypted packet
with the information it receives from the controller to de-
termine whether the client can access the packet, as shown in
Figure 8. After the vehicles have completed the SPA single
package authorization, the trust evaluation is conducted

based on whether the SPA package is sent successfully and
whether the certificate verification is passed.

When the device ed; conducts identity authentication, it
needs to conduct identity authentication at the edge com-
puting layer.

By sending authentication requests to node es; of the
edge computing layer, the corresponding key is obtained
from PKG and applied to the key communication of the
session. The request sent by the device contains the identity
of the device and the node of the edge layer. The SM2
signature algorithm is used to calculate the corresponding
digital signature (h, s) by using the private key of the device.

ed; — es;: AccessReq || N, |l ed; |l es, | All S. (1)

AccessReq is the authentication request when the device
accesses, and N; is a random number.

After receiving the authentication request of the terminal
device, the edge computing layer uses the SM2 signature
algorithm to sign and authenticate it. After verification, the
edge computing layer node saves the identity information of
the terminal device to the authentication list and gives
feedback of the encrypted authentication information to the
terminal device node. First of all, the value of the Qp element
in group G is calculated according to formula (2), and the
Cipher values in group G; are calculated according to the
generated random number r. Ciphers are the ciphertext and
r € [1,N — 1], the encapsulated key Key is calculated by
KDF according to formula (3), and the key value is the
shared key of the edge layer and the terminal device:

10

Security and Communication Networks

Unified Data
i
Management . B B
API certification . .
Certification|process Database
X Access to the container
Apply for Transfer Establish a
(BN access D instructions] connection
" BN] ——————» Cache
DNS server Nginx proxy API Gateway

Send|command

o
PEERY i TS TN,

Cloud server

FIGURE 7: API gateway authentication.

"y

? A = @ Device fingerprint
authentlcatlon
Vehicle
8 PKI certlﬁcatlon l
User Client

After verification, the connection
is established

Access request

Controller

F1GURE 8: Single-packet authorization process.

QD
Key = KDF(Cipher"(P

=[H, (ed;l hid, N)]P; + Prib-e>

(2)

pab-e> P2) | D Klen),

es; — ed;: AccessRsp|| es, || Cipher]| k| S,

where klen is the key length and AccessRSP requests re-
sponse identification.

After receiving the response package of the edge layer
node, the edge terminal device parses the received Cipher to
obtain the corresponding key Key. First, it needs to deter-
mine whether the Cipher belongs to the element in G;. If not,
the input is 0; otherwise, w' in Gris calculated according to
formula (5). Then, SM2 converts the data into a bitstream to
calculate the Key of the response:

w= e(Cipher, dedl),

Key = KDF(Cipher“w'”edi, klen), (3)

ed; — es;: AccessAck| key (ed;| es,),

where AccessAck confirms the response and d.q; is the
private key of the terminal.

In summary, if the obtained key is 0, the identity au-
thentication fails; otherwise, the identity authentication of
the device is successful, and the identity of the device is saved
to the node of the computing layer.

After evaluating CA’s certificate level and verifying device
identity, with the traceable and tamper-free feature of the
blockchain network, we record all identity fingerprints, digital
certificates, and verification information and save them in the
block. By using a smart contract, automatic verification can be
realized when the next device is accessed. However, if the
node’s trust value falls below the threshold or is deemed to be a
malicious node, the smart contract will remove the digital
certificate of the Internet of Vehicles users from the list. At the
same time, the zero-trust system will also conduct historical
behavior evaluations. The zero-trust trust evaluation engine
will continuously collect the behavior characteristics of the
vehicle and judge whether the vehicle node is a malicious node
in combination with the historical behavior. It is an important
factor in the evaluation of vehicle trust level. In this process, all
noncompliance and malicious operations will be recorded in
the blockchain network and will be used in the evaluation of
the next cycle as a reference.

So far, we have completed some tasks of the engine in
terms of trust evaluation in the zero-trust system. Next, we
will proceed with the work of the access control engine. In
the process of trust evaluation, since the degree of trust
between vehicles is not a white and black exclusive rela-
tionship, it cannot be mechanically divided into trust and
distrust. For example, the trust between vehicles can be
described as “complete trust,” “general trust,” “neutrality,”
“general distrust,” and “complete distrust.” These trust

Security and Communication Networks

descriptions can be used as the evaluation set of fuzzy
evaluation process D ={complete trust, general trust, neu-
trality, general distrust, complete distrust}. The cloud plat-
form will set different access permissions according to the
evaluation level of the vehicle. The higher the trust level of
the node, the higher the permissions can be obtained.

The main factors that affect the evaluation are considered
to determine the fuzzy evaluation process factor set U=
{client authentication pass rate, fingerprint authentication
pass rate, API authentication success rate, SPA packet
transmission-reception rate}. At the same time, according to
the importance of the evaluation index of each factor in the
factor set, the weight is calculated by the Delphi method, and
the weight distribution set W={0.4, 0.2, 0.2, 0.2} is obtained.
The cloud server will access and operate the device according
to the evaluation level. In the process of data transmission,
we will use SM2 to encrypt data to further ensure the safety
and integrity of data transmission. Suppose the threshold of
different permissions is V,, 5>V, >0, the access control
engine divides the security levels of device into five levels:
complete trust (5>X=>4), general trust (4>X>3),
neutrality(3 > X > 2), general distrust (2>X>1), and com-
plete distrust (1 > X >0), as listed in Table 1.

The zero-trust architecture will conduct a real-time
evaluation of vehicle nodes, combined with the above four
passing rates and the historical behavior of vehicles, and
calculate the trust value X in the process of operation. The
fuzzy mapping of several attributes of vehicle trust evalu-
ation on the evaluation set is carried out to obtain the
comprehensive evaluation matrix R. The proportion of each
weight factor in each evaluation is obtained by calculating
the vector T'= W = R. Finally, the trust value X is calculated.
The calculation formula is as follows:

Vo+V1
2

V1i+V2

xoTx| Y2tV3 | (4)

V3+V4

V4 +V5
2

Within a monitoring cycle T, we will continuously
evaluate the operating performance of the vehicle terminal,
which is evaluated for n times in total, and obtain a series of
trust values X;, X5, ..., X,.

Assuming that the initial user’s trust value is Xy, Xo > V,,,
the vehicle terminal obtains the corresponding access and
operation permissions; otherwise, the operation is blocked.

Calculate the variance o (X)* of the trust value of each
step within m cycles and take the mean value of the variance

11

o (X)2. If 3° > 0 (X)?, the user’s access level will be lowered.
At this time, the user trust value is changed from X, to the
low-level permission until it is reduced to 0, and the user is
forbidden to access.

If 3° <o (X)?% the user’s access level will be increased,
and the user’s X,,, trust value will change to a higher level of
authority. The longer the operation cycle is, the more ob-
vious the change of the trust value will be.

In the evaluation process of the convolutional neural
network, the two classification authentication model is
established to analyze the authentication results of users and
vehicles. The results listed in Table 2 usually appear in the
identification.

TP indicates the number of samples, in which all positive
samples are classified correctly in the result. TN indicates the
number of samples, in which all negative samples are
classified correctly in the result. FN represents the number of
samples, in which all positive samples are classified incor-
rectly in the result. FP indicates the number of samples, in
which all negative samples are classified incorrectly in the
result.

We used three indicators to assist in the analysis: pre-
cision, recall, and F1 score. We hope to obtain the com-
prehensive performance of the classifier in all categories.
Therefore, it mainly focuses on the microaveraging F1 value
as the measurement standard; that is, it calculates TP, FP,
and FN for each group in the category set and completes the
cumulative calculation of P, R, and FI. Their calculation
formula is as follows:

Precisi TP
recision = ————,
(TP + FP)
Recall TP (5
ecall = —————,
(TP + EN)
2 x precision X racall
F, =

precision + recall

Under different thresholds, the accuracy rate and recall
rate are often negatively correlated. In order to balance the
overall evaluation effect of the two, the F1 score is calculated
as the harmonic average of the two.

In the evaluation, we first need to find the weight
convergence point of the CNN and then calculate the trust
value of vehicle nodes with different trust levels. With the
learning function of CNN, the weight convergence point is
taken as an evaluation point. Once the network trust value to
be classified is inputted at the input end, the weight coef-
ficient in the network will be determined and finally reach
the stable state after a process from initial to steady-state
convergence. The trust level of vehicle nodes is the corre-
sponding classification level. The specific CNN evaluation
algorithm is as follows:

The trust value of the vehicle node to be rated is taken as
the input value, and the predicted trust level of the vehicle
node is taken as the output value. The CNN model will
obtain the trust value of the sample vehicle node in the
Internet of Vehicles.

12 Security and Communication Networks
TaBLE 1: Vehicle rating level and authority.

Level Estimation scale Authorization

1 Complete trust Vehicles and users can access, edit all data, and modify cloud facilities

2 General trust Vehicles and users can access and edit all data

3 Neutrality Vehicles and users can access all data

4 General distrust Vehicles and users can access some data

5 Complete distrust Refuse to provide service

TaBLE 2: Classification results of binary classification model.

Postive forecast Negative forecast

TP (true positives)
FP (false positives)

EN (false negatives)
TN (true negatives)

True positives
True negatives

First, the model finds the convergence point through the
given sample of node trust level. According to the set trust
value rating rules, it matches the trust value levels of vehicle
nodes treated separately and classified. Then, it creates a
convolutional neural network (CNN) and sets the initial
state value of the neural network. It takes the trust value of
each node to be rated as the input value of CNN. Finally, the
CNN obtains evaluation points through self-study conver-
gence and predicts the obtained trust level of vehicle nodes.

4, Test

4.1. Experiment Environment. The computer platforms used
for this test platform are Intel 17-8750H, 2.20 GHz CPU,
16 GB memory, 1 TB external memory, Ubuntu 20.04 op-
erating system, and MySQL 8.0.22 database system. The
blockchain system adopts hyperledger fabric architecture,
the operating system is Ubuntu 20.04, the memory size is
8 GB, the development language is Java, and the blockchain
type is federation chain. The vehicle model of the Internet of
Vehicles system is BYD Tang 2021 automatic flagship model,
the intelligent vehicle network system in the vehicle is
DiLink intelligent system, CPU is 8-core 2.0 GHz processor,
memory is 3 GB, external memory is 32GB, the power
system is 2.0 T 141 kW L4, maximum power is 141 kW, and
maximum torque is 320 N-m.

The parameter settings are as follows: The input matrix is
80 by n. The number of convolutional filters is 80 and the
number of convolution filter windows is 4. We choose a
sigmoid function as a convolution layer activation function
and set up 3 sampling layers. Then, we used a gradient
descent method for parameter optimization and repeated
training for 100 iterations.

The experimental environment of this study is listed in
Table 3.

4.2. Computation and Evaluation. Through the above four
steps, we have implemented the main experimental steps of
zero trust. We will take the above four steps, that is, client
authentication pass rate, fingerprint authentication pass rate,
success rate of API certification, and SPA packet trans-
mission receiving rate, as the four factors for fuzzy algorithm
sets. According to the main influencing factors of each step,
the weight of each step is reviewed by experts. From
Tables 4-7, we describe the data distribution tables of the
four evaluation indicators at each grade after rating evalu-
ation of 100 tests.

First, the single factor evaluation is carried out, and the
evaluation r; of each factor is obtained through statistical
data. We establish the fuzzy relationship between each
evaluation index Uj; and trust level D,. Based on the actual
test results of the three vehicles, we have obtained three
evaluation matrices and then combined them with the
weight set to calculate the trust value in an evaluation cycle:

0.82 0.13 0.03 0.02 0.00
0.7 0.1 0.15 0.04 0.01
Ry 0.6 0.23 0.1 0.04 0.03 |
0.48 0.21 0.13 0.10 0.08
0.85 0.05 0.05 0.03 0.02
0.75 0.08 0.08 0.05 0.04
Ry = , (6)
0.63 0.19 0.3 0.08 0.07
0.54 0.05 0.12 0.15 0.14
0.82 0.11 0.05 0.02 0.00
0.73 0.12 0.08 0.05 0.02
0.58 0.15 0.12 0.09 0.06

0.52 0.17 0.08 0.13 0.1

R; =

By multiplying the evaluation matrix R; of the three cars
with the weight vector W={W;(0.4), W,(0.2), W5(0.2),
W4(0.2)}, the fuzzy evaluation T; can be obtained:

Vehicle1 T, =(0.684 0.160 0.088 0.044 0.024), (7)

Vehicle2T, = (0.724 0.084 0.066 0.068 0.058), (8)

Vehicle3T; =(0.694 0.132 0.076 0.062 0.036). 9)

Security and Communication Networks

TaBLE 3: System configuration parameters.

13

Configuration items

Computer system Configuration items

Blockchain system

CPU Intel i7-8750H, 2.20 GHz Name
MEM 16.00 GB Operating system
SSD 1TB MEM

Operating system and version number
Database system and version number

Ubuntu 20.04
Mysql 8.0.22

Development language
Types of chain

Hyperledger fabric
Ubuntu 20.04 TLS
8GB
Java
League chain

TaBLE 4: Grade distribution of client authentication pass rate.

Vehicle Complete trust General trust Neutrality General distrust Complete distrust
Vehicle 1 82 13 3 2 0
Vehicle 2 85 5 5 3 2
Vehicle 3 82 11 5 2 0
TaBLE 5: Grade distribution of fingerprint certification pass rate.
Vehicle Complete trust General trust Neutrality General distrust Complete distrust
Vehicle 1 70 10 6 4 0
Vehicle 2 75 8 8 4 4
Vehicle 3 73 12 8 5 2
TaBLE 6: Grade distribution of API certification pass rate.
Vehicle Complete trust General trust Neutrality General distrust Complete distrust
Vehicle 1 60 23 10 4 3
Vehicle 2 63 19 3 8 7
Vehicle 3 58 15 12 9 6
TaBLE 7: Grade distribution of SPA packet delivery acceptance rate evaluation.
Vehicle Complete trust General trust Neutrality General distrust Complete distrust
Vehicle 1 48 21 13 10 8
Vehicle 2 54 5 12 15 14
Vehicle 3 52 17 8 13 10
Finally, we will calculate the comprehensive evaluation Dynamic changes of vehicles’ trust value
matrix X. 57
X, =T, %R, =3.936 X,=T,*R, o) . #H/'/./.ﬁ
=3.848 X;=T;*R;=3.886. g,
= J
=
According to the scores, we can conclude that the scores e
of the three cars are between 3.5 and 4. According to the £ 21
permission set, the three cars will obtain the general trust
level, that is, the vehicle and the user can access and edit all 1 -
the data. Through many experiments, we get the scores of the
three cars, as shown in Figure 9. 0 — T T T T T T
0 1 2 3 4 5 6 7 8 9 10

In the first few cycles, as the number of tests increases, the
trust value of the three vehicles also increases continuously. In
the process of multiple visits, according to the dynamic engine
detection, there is no malicious operation. Therefore, the trust
value of vehicle 1 rises steadily, and the rise slows down
gradually after reaching a relatively high level of trust. In terms
of vehicle 2, when the initial access conforms to the access the
specification, the trust value rises slowly. But after 3 times
detection, due to the malicious operation, in the subsequent
trust value tests, vehicle 2 keeps falling and the access right it
has gained also lowers. If subsequent vehicle 2 does not change

Numbers

—e— vehiclel
vehicle2
vehicle3

FIGURE 9: Dynamic changes of vehicles’ trust value.

its behavior, it will eventually reduce to trust level 1 and the
system will cease to serve it; when it comes to vehicle 3, to begin
with, its trust value is rising and we can see at this time, there is

14

no malicious operation in the process of access. However, after
5 times detection, it is identified as malicious nodes. Thanks to
its great harmfulness, it is detected by the dynamic detection
engine immediately and has directly reduced to the trust level
land refused to continue to provide service for the vehicle.
Thus, this model can accurately describe the behavior of ve-
hicles and quickly identify malicious nodes.

In the test of dynamic evaluation engine, trust values of
three vehicles will be updated once every cycle, and the size
of trust values will affect the access rights of vehicles. Client
authentication and device fingerprint authentication will
determine whether the users can register normally and enter
the Internet of Vehicles system. API gateway authentication
and single-packet authentication access will identify whether
malicious operations will occur during the user’s access. For
normal users, their trust value will finally reach a higher
score range. At this moment, they can access and edit all
data. For malicious nodes, the trust value will change rap-
idly. For example, the vehicles are suddenly controlled to
attack the systems, resulting in the loss of system files or a
system crash. In this case, the nodes will be forcibly disabled
from access.

Finally, we use relevant data sets to conduct experiments
on the convolutional neural network (CNN) model. The
experiment consists of two levels: the first level is the input
feature dimension analysis to analyze the accuracy of the
classification of the trust level of vehicle nodes and the
second level is to compare the accuracy of the algorithm
under different noise ratios.

Let X; be the internal state of a neuron node constituting
the neural network, Y; be the trust level of the input vehicle,
and W be the weight of the connection from X; to Y;. If B; is
the external input signal (in some states, the neuron node Z;
can be controlled to keep it in a certain state), then its formal
description is as follows:

The input Y; of the trust node can be expressed as the
measured value of the behavior attributes, and the influence
of each behavior attribute of the users’ trust value can be
expressed by the weight W.

In order to deal with vehicle features of different di-
mensions, we define the maximum vehicle dimension as 80,
and the dimensions less than the maximum length are filled
with zero vectors. A stochastic gradient descent algorithm is
used for model parameters. The outputs of each convolution
layer and full connection layer in the model are connected to
the ReLU activation function. The outputs of the last full
connection layer are classified by SoftMax, and dropout is
used to prevent overfitting. Comparative experiments are
conducted on data sets in different fields to verify the accuracy
of trust level assessment of the test model on data sets. Before
and after adding the trust level tendency dimension, the
accuracy of user trust level classification was analyzed. The
experimental results are shown in Figure 10. It can be seen
that when more feature attributes are used to participate in the
convolution calculation, the classification accuracy of trust
level will be significantly improved. However, with the in-
crease of attributes, the classification accuracy does not
necessarily increase together. The improper selection of
feature attributes will reduce the accuracy of classification.

Security and Communication Networks

Precision in different feature dimensions
0.9 -
0.89
0.88
0.87 A
0.86
0.85
0.84
0.83
0.82 A
0.81 A

Precision

50 60 70 80 90 100

Numbers of dimensions

= The tendency dimension of trust level is not increased
m Increased the propensity dimension of trust level

FiGUrE 10: Precision in different feature dimensions.

Therefore, when we select the dimension of 80, the ac-
curacy rate fluctuates to some extent. When the dimension of
trust level tendency is added, the accuracy of the model
calculation increases significantly compared with that without
the dimension of trust level tendency, and the best effect of
this experiment is achieved when the dimension is increased
to 90. To solve the problem that the accuracy decreases when
the dimension of feature attributes increases, we add noise
value to trust classification to compare the performance of
classification algorithms. As shown in Figure 11, the classified
noise ratios of 20%, 30%, 40%, 50%, 60%, 70%, and 80% were
respectively taken as four analysis environments. The results
show that when the noise ratio is relatively small, the model
has good accuracy, and when the noise ratio increases, the
classification accuracy of the algorithm tends to decrease.

By using the CNN model proposed in this study, the
predicted trust level by the CNN model is compared with the
trust level obtained by zero-trust evaluation. We find that the
result is basically consistent. We put the number of pass rates
about client authentication, fingerprint identification au-
thentication, API authentication, SPA packet acceptance,
and other attributes of the vehicle into the CNN model. The
corresponding trust level is obtained through self learning,
which indicates that the model constructed in this study can
extract key feature values and transform them into higher-
level features through learning. The comparison results of
trust level output are listed in Table 8.

Through the evaluation of the above CNN model, we
find that the accuracy of CNN model is not only affected by
the weights of different vehicle characteristics but also af-
fected by the noise ratio. In order to improve the prediction
accuracy of CNN model, the vehicle characteristic attributes
should not be set too much. The horizontal dimension
should be kept at 75, and the noise ratio should be set at 20%,
so that the prediction accuracy can be higher.

5. Analysis

5.1. Security. After the CA certificate and identity finger-
print generated by PKI are authenticated, the data are stored
in the blockchain through the consensus mechanism. The
trust evaluation engine will evaluate the certificate level and

Security and Communication Networks

Effect of noise ratio on precision

0.9 4

0.8
0.7 1
0.6
0.5
0.4
0.3
0.2
0.1
0 T T T T T T
20 30 40 50 60 70 80

Noise ratio (%)

Precision

FiGgure 11: Effect of noise ratio on precision.

TaBLE 8: The comparison results of trust level output.

Deviation rate

Vehicle Trust level output Predicted output (%)
0
Vehicle 1 3.936 391 0.66
Vehicle 2 3.848 3.81 0.99
Vehicle 3 3.886 3.85 0.93

historical behavior and convert them into relevant trust
values. If the client wants to send data, it needs to be
managed and verified through the API gateway. At this time,
the client needs to be authorized by the controller to es-
tablish an MTLs connection and then requests the gateway
to establish a connection. The gateway decrypts the data
according to the key obtained from the control end. After the
authentication succeeds, the client establishes a connection
with the gateway to transmit data packets. The success rate of
data transmission and the pass rate of certificate verification
by the gateway and controller are converted into corre-
sponding trust values for calculation. According to the size
of the trust value, the trust level is determined and the
corresponding service permissions are obtained. The access
authority of the vehicle is modified by periodically updating
the trust value to ensure the minimum access authority of
the vehicle.

5.2. Confidentiality. In the Internet of Vehicles system, the
session key is negotiated between the cloud server and the
vehicle using the SM2 key negotiation algorithm to complete
the secure transmission of sensitive data. In the Internet of
Vehicles system, the ECS invokes the server cipher machine
and uses SM4 and HMAC-SM3 algorithms to protect the
confidentiality and integrity of user data and authentication
data. At the same time, the vehicle calls the vehicle password
module and uses SM4 and HMAC-SM3 algorithms to
protect the confidentiality of key data such as identity au-
thentication data, vehicle acquisition, and control data.

5.3. Attacks Defense

5.3.1. Switch Attack. In the process of evaluation of the
Internet of Vehicles terminal nodes, if the attacker keeps
performing well for a period to accumulate trust value, then

15

it will reach a high trust level. Then, if it suddenly launches
an attack, and then it will return to the state of good per-
formance again. In this experiment, under the dual action of
zero-trust historical trust record evaluation and incentive
mechanism, the switch attack will be effectively suppressed.
When the attacker carries out a switch attack, this malicious
behavior will be recorded and uploaded to the blockchain
network as a record of historical trust evaluation. Besides,
users’ trust will also decline rapidly. For those with malicious
behaviors, if they want to increase their trust value again,
then they will find that it grows at a very slow rate.

5.3.2. Novice Attack. Some attackers eliminate the historical
interaction records badly and regain the trust of other In-
ternet of Vehicles terminal nodes by registering new user
identity information, thus launching attacks again in the
network. Such attacks occur when malicious nodes can easily
register as new vehicle terminal nodes. Aiming at the
characteristics of novice attackers, we can use two-factor
authentication, namely, fingerprint authentication for the
vehicle and PKI authentication for the user to improve the
difficulty of initial authentication. At the same time, the trust
evaluation engine is used to render less trust value to the
users who have passed the two-factor authentication. Only
when they continue to perform trusted operations and other
vehicle terminal nodes authenticate them with trust, the
trust value can be gradually increased to become a trusted
vehicle terminal node.

5.3.3. Replay Attack. Through the use of port knockout
technology, the port for the communication of authenti-
cation information is closed, and the default discard firewall
policy is dynamically reconfigured to allow access to services
that would otherwise be blocked. Through this mechanism,
remote users can be authenticated before granting access to
services such as SSH daemon. On the SPA server system,
twknopd will snift the replayed SPA packet and compare the
SHA-256 summary of this packet with the SHA-256 sum-
mary of all previously seen and correctly decrypted SPA
packets. If there is a match, fwknopd knows that a replay
attack has been made. In this case, fwknopd generates a
warning through syslog and does not grant access to the
attacker to stop the replay attack.

5.3.4. Internal Attacks. In the Internet of Vehicles, there are
also internal threats, which are more difficult to defend
against than the external attacks mentioned above. The
internal threats in car networking include three basic types
of attacks such as networking system damage, zero-trust
framework intellectual property theft, and electronic fraud.
The focus and difficulty of the internal defense of the system
lie in the internal staff, so as to ensure the efficient work and
concerted efforts of the internal staff, which is what we need
to do. On the one hand, we focus on systematic innovation;
on the other hand, we strengthen internal cooperation and
communication among employees. Not only there must be a
positive working atmosphere but also the relevant

16

management treaty. Insider threats can only be eradicated if
everyone follows the rules.

5.4. Integrity. User’s privacy information, device fingerprint,
vehicle’s trust value, punishment measures against malicious
nodes, etc. will be uploaded to the blockchain in a specific
data format. The participating organizations in the block-
chain network can automatically update the distributed
ledger through a unified consensus mechanism and algo-
rithm, and there is no third-party centralized organization to
participate. At the same time, the relevant principles of
cryptography are used for data verification, and multiple
private keys are used for access control. It ensures the se-
curity and nontamperability of users’ data.

6. Conclusions

Aiming at the problems of easy disclosure of user data
privacy in the Internet of Vehicles, we propose a data
protection scheme for users in the Internet of Vehicles,
which combines zero trust, blockchain, commercial cryp-
tography, and other technologies in the Internet of Vehicles
for the first time. It has achieved good results. The scheme
relies on terminal environment analysis, trusted identity
authentication, behavior model analysis, and other means to
enhance the authentication ability and carries out minimum
authorization and dynamic access control for the accessed
vehicles, personnel, third-party enterprises, and institutions.
It can effectively solve the security problems in the scenario
of interconnection with people, vehicles, roads, and the
cloud platform. It solves the risks encountered in data
collection, data transmission, data use, data storage, data
sharing, data destruction, and prevention of data leakage,
data misuse, and abuse. The scheme protects the data se-
curity in the cloud platform of the Internet of Vehicles.
In view of the problems such as data loss and inadequate
protection measures in data transmission of the Internet of
Vehicles, we carry out PKI authentication and fingerprint
identification as two-factor authentication for vehicles in the
blockchain network. The SM series national secret algorithm
is used for encryption and transmission, and the zero-trust
evaluation engine and access control engine are used to
realize identity authentication and authorization, improve
the security and integrity of data transmission, and clarify
the method of zero-trust system for vehicle networking data
protection. Through the experiment of three vehicles, we
tested the pass rate of identity authentication, the pass rate of
fingerprint identification authentication, the success rate of
API authentication, and the transmission and reception rate
of SPA package and analyzed the change of trust value. The
system can update the trust value of Internet of Vehicles
devices in real time. By using the convolutional neural
network to train the trust level of vehicle nodes, the set
convolutional neural network can be trained to study the
effectiveness of its application to the target, and the clas-
sification of user trust level in the convolutional neural
network algorithm for specific applications can be deter-
mined quickly. Through the simulation of the influence of

Security and Communication Networks

dimensions and weights of the four characteristic attributes
of the vehicle on CNN identification performance, the
specific dimension range of the characteristic attributes of
vehicle nodes is determined.

This scheme has also some limitations. In the zero-trust
framework, there are not enough vehicle nodes deployed to
effectively simulate the huge Internet of Vehicles architec-
ture in reality. Some representative nodes are selected in the
scheme, which simplifies the workflow on the one hand and
lacks sufficient data analysis on the other hand. In view of the
limited number of selected nodes, we select some key nodes,
increase the range of measurement data, and reduce the
selection unit of experimental data.

Next, we will mainly conduct two aspects: one is to study
the incentive measures of the trust evaluation model and the
other is to conduct the system security and performance test
targeted at the more complicated attack behaviors.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the Hainan Provincial
Natural Science Foundation of China (grant no. 621RC508),
Henan Key Laboratory of Network Cryptography Tech-
nology (grant no. LNCT2021-A16), the Science Project of
Hainan University (grant no. KYQD(ZR)-21075), National
Natural Science Foundation of China (grant no. 62162020),
the Hainan Provincial Natural Science Foundation of China
(grant no. 620RC563), the Hainan Province Science and
Technology Special Fund (grant no. ZDYF2021GX]S216),
and the Science Project of Hainan University (grant no.
KYQD(ZR)20021).

References

[1] B. H. Li, Secure Communication for Internet of Vehicles Based
on Blockchain, Doctoral Dissertation, Chongqing University
of Posts and Telecommunications, Chongging, China, 2019.

[2] Y. H. Zhou, Z. Q. Lv, Y. G. Yang, and W. Shi, “Data deposit
management system basedon blockchain technology,” Netinfo
Security, vol. 19, no. 8, pp. 8-14, 2019.

[3] J. W. Jiang, Z. Hong, and Z. J. Chen, “Application of SM4
encryption algorithm in Internet of vehicles,” Computer
Networks, vol. 46, no. 3, pp. 58-60, 2020.

[4] K. Feng, W. Li, and J. Gong, “Analysis on the application
status of cryptographic algorithms in Internet of vehicles,”
China Information Security, vol. 2019, no. 9, pp. 97-99, 2019.

[5] X. K. Chen, Zero-knowledge Identity Authentication Tech-

nology for Internet of Vehicles Based on Consortium Block-

chain, PhD Dissertation, Zhejiang University of Science and

Technology, Hangzhou, China, 2020.

L.J. Zhang, Y. F. Zou, W. Z. Wang, Z. Jin, Y. Su, and H. Chen,

“Resource allocation and trust computing for blockchain-

[6

Security and Communication Networks

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

enabled edge computing system,” Computers & Security,
vol. 105, Article ID 102249, 2021.

S. A. Mostafa, A. Mustapha, S. S. Gunasekaran et al., “An
agent architecture for autonomous UAV flight control in
object classification and recognition missions,” Soft Com-
puting, vol. 150, pp. 1-14, 2021.

M. Poongodi, M. Malviya, M. Hamdi, M. Mohammed,
H. T. Rauf, and K. A. Al-Dhlan, “5G based Blockchain net-
work for authentic and ethical keyword search engine,” IET
Communications, vol. 16, no. 5, pp. 442-448, 2021.

S. Kumar, R. S. Raw, A. Bansal, M. A. Mohammed,
P. Khuwuthyakorn, and O. Thinnukool, “3D location oriented
routing in flying ad-hoc networks for information dissemi-
nation,” IEEE Access, vol. 9, pp. 137083-137098, 2021.

H. Xiong, C.]. Jin, M. Alazab et al., “On the design of blockchain-
based ECDSA with fault-tolerant batch verication protocol for
blockchain-enabled I1o0MT,” IEEE Journal of Biomedical and
Health Informatics, vol. 26, no. 5, pp. 1977-1986, 2022.

T. Wang, Y. Quan, X. S. Shen, T. R. Gadekallu, W. Wang, and
K. Dev, “A privacy-enhanced retrieval technology for the
cloud-assisted Internet of things,” IEEE Transactions on In-
dustrial Informatics, vol. 18, no. 7, pp. 4981-4989, 2022.

S. A. Mostafa, M. S. Ahmad, A. Mustapha, and
M. A. Mohammed, “Formulating layered adjustable auton-
omy for unmanned aerial vehicles,” International Journal of
Intelligent Computing and Cybernetics, vol. 10, no. 4,
pp. 430-450, 2017.

L. Zhang, Z. Zhang, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Research on a covert communication model realized by
using smart contracts in blockchain environment,” IEEE
Systems Journal, vol. 99, pp. 1-12, 2021.

W. Z. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han, and
C. Su, “Blockchain-based reliable and efficient certificateless
signature for IIoT devices,” IEEE Transactions on Industrial
Informatics, vol. 11, pp. 1551-3203, 2021.

Z. T. Lian, W. Z. Wang, and C. H. Su, “COFEL: Commu-
nication-Efficient and Optimized Federated Learning with
Local Differential Privacy,” in Proceedings of the IEEE ICC,
Montreal, Canada, June 2021.

L. J. Zhang, M. H. Peng, W. Z. Wang, Z. Jin, Y. Su, and
H. Chen, “Secure and efficient data storage and sharing
scheme for blockchain-based mobile-edge computing,”
Transactions on Emerging Telecommunications Technologies,
vol. 5, 2021.

J. C.Song, Z. Y. Han, W. Z. Wang, J. Chen, and Y. Liu, “A new
secure arrangement for privacy-preserving data collection,”
Computer Standards & Interfaces, vol. 80, Article ID 103582,
2021.

N. M. Balamurugan, S. Mohan, M. Adimoolam, A. John,
T. R. Gadekallu, and W. Wang, “DOA Tracking for seamless
connectivity in beamformed IoT-based drones,” Computer
Standards & Interfaces, vol. 79, Article ID 103564, 2021.

B. B. Wang, Research on Vehicular Ad-Hoc NetworksMessage
Authentication Scheme Based on Lliptic Curve, Doctoral
Dissertation, Northwest Normal University, Lanzhou, China,
2020.

Y. Xie, X. Li, S. S. Zhang, and L. B. Wu, “An improved
provable secure certificateless aggregation signature scheme
for vehicular ad hoc NETworks,” Journal of Electronics and
Information Technology, vol. 42, no. 5, pp. 1125-1131, 2020.
X. W. Lj, D. Q. Yang, X. Zeng, X. W. Zhu, B. H. Chen, and
Y. Q. Zhang, “Cross—domain authentication and the key
agreement protocol in VANETS,” Journal of Xidian Univer-
sity, vol. 48, no. 1, pp. 141-148, 2021.

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

17

Y. Xin, X. Feng, and T. T. Li, “Position related lightweight
Sybil detection approach in VANET,” Journal on Commu-
nications, vol. 38, no. 4, pp. 110-119, 2017.

Y. L. Shi and L. M. Wang, “Spatio temporal analysis based
resist conspiracy Sybil attack detection in VANETS,” China
Information World, vol. 41, no. 9, pp. 2148-2161, 2018.

L. Si, Research on Authentication Scheme for Vehicle-Mounted
Ad Hoc Network under Cloud Service Environment, Doctoral
Dissertation, Tiangong University, Tianjin, China, 2019.

X. Y. Zhang, Research on New Vehicular Network Secur-
ityArchitecture and Privacy Protection Authentication Method,
Doctoral Dissertation, Anhui University, Hefei, China, 2020.
J. Y. Zhang, Research on Security Authentication and Privacy
protection Mechanism of Vehicular Cloud Computing, PhD
Dissertation, Beijing Jiaotong University, P. R. China, 2018.
W. W. Chen, L. Cao, and C. H. Shao, “Blockchain based
efficient anonymous authentication scheme for IOV,” Journal
of Computer Applications, vol. 40, no. 10, pp. 2992-2999, 2020.
Z. Y. Ma, Research and Implementation of Distributed
Trustscheme for Vehicular Ad Hoc Network Based on Block-
chain, Doctoral Dissertation, Nanjing University of Posts and
Telecommunications, Nanjing, 2020.

B. Xu, Vehicle Attribute Recognition Based on Convolutional
Neural Network, Doctoral Dissertation, Beijing Institute of
Technology, P. R. China, 2015.

Hindawi

Security and Communication Networks
Volume 2022, Article ID 8398591, 11 pages
https://doi.org/10.1155/2022/8398591

Research Article

WILEY | Q@) Hindawi

FGL_Droid: An Efficient Android Malware Detection Method

Based on Hybrid Analysis

Weiping Wang®,' Congmin Ren ©®,' Hong Song©®,' Shigeng Zhang (),

and Pengfei Liu

1,2

School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China

Correspondence should be addressed to Hong Song; songhong@csu.edu.cn

Received 22 December 2021; Revised 3 March 2022; Accepted 14 March 2022; Published 28 April 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Weiping Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the popularity of Android intelligent terminals, malicious applications targeting Android platform are growing rapidly.
Therefore, efficient and accurate detection of Android malicious software becomes particularly important. Dynamic API call
sequences are widely used in Android malware detection because they can reflect the behaviours of applications accurately.
However, the raw dynamic API call sequences are very usually too long to be directly used, and most existing works just use a
truncated segment of the sequence or statistical features of the sequence to perform malware detection, which loses the execution
order information of applications and consequently results in high false alarm rate. In this work, we propose a method that
transforms the dynamic API call sequence into a function call graph, which retains most of the application execution order
information with significantly reduced sequence size. To compensate for the missed behaviour information during the trans-
formation, the advanced features of permission requests extracted from the application are utilized. We then propose FGL_Droid,
which fusions the transformed function call graph feature and the extracted permission request feature to perform accurate
malware detection. Experiments on benchmark dataset show that FGL_Droid achieves a high detection accuracy of 0.975 and a
high F-score of 0.978, which are better than the existing methods.

1. Introduction

To prevent the threats caused by Android malware in-
cluding financial loss to users, information leakage, and
system damage, an efficient and accurate detection
scheme is urgently needed. In recent years, Android
operating system has been growing at an alarming rate.
As of 2020, approximately 3 billion Android-based de-
vices were shipped, accounting for 80% of all mobile
operating systems [1]. Therefore, Android devices have
become a popular target for malware developers. In 2020,
Kaspersky mobile products and technologies detected
5,683,694 malicious installation packages, increasing 2.1
million from last year, 156,710 new mobile banking
Trojans, and 20,708 new mobile ransomware Trojans [2].
In order to protect the property and information security

of Android device users, it is urgent to provide an efficient
and accurate malware detection method.

A large number of companies and researchers have
conducted research on malware detection. The mainstream
detection scheme mainly includes two categories: static
analysis [3-6] and dynamic analysis [7-13]. Static analysis
does not need to execute the application. It extracts features
from the APK file through reverse engineering, such as
Permissions [3], API calls [14], bytecodes, and other static
features [4], and then performs malicious detection based on
these features. However, with the advancement of tech-
nology, many malwares begin to use code obfuscation or
dynamic loading techniques to hide static features, which
leads static analysis schemes to be completely ineffective. On
the contrary, dynamic analysis needs to actually run the
program and collect information about its behaviour at

mailto:songhong@csu.edu.cn
https://orcid.org/0000-0001-5255-5639
https://orcid.org/0000-0002-6201-223X
https://orcid.org/0000-0002-1677-425X
https://orcid.org/0000-0001-5351-7239
https://orcid.org/0000-0002-5154-3123
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8398591

running time [15]. By analysing the application’s behaviour,
dynamic analysis can achieve higher accuracy and robust-
ness than static analysis. In this paper, we focus on dynamic
analysis.

Dynamic API call sequence can describe the behaviour
information of the application, which contains all the op-
erations during application execution (e.g., accessing net-
work, sending SMS, etc.). It is an important data for
application behaviour analysis and has been applied by
many researchers in Android malicious judgment. However,
in order to trigger malicious behaviour completely, a huge
number of detective operations are required, which will
produce distinctly long API call sequences, reaching millions
of levels. It is a great challenge to process the huge amount of
dynamic API call sequence. According to our statistics on
dynamic API call sequences, the average length of collected
dynamic API sequences is 1.698 million, and the number of
different API types is 25834. There are two problems in using
dynamic API call sequence as the feature for malicious
determination: (1) The large amount of data makes it difficult
to find the behaviour information of the application. (2)
There are many kinds of features, which makes the model
easy to overfit.

Several related works have used dynamic API call
sequence to detect Android malware; the main challenge
is how to process dynamic API call sequence to reduce the
amount of data size. The current solutions are broadly
categorized into two types: using statistical features of
dynamic API call sequence and truncating a fixed-length
subsequence of dynamic API call sequence. The methods
of using statistical features of dynamic API call sequence
have an advantage that the computational overheads are
relatively low, but these methods cannot save the order
information of the APIs. The methods of truncating a
fixed-length subsequence of dynamic API call sequence
can save the order information; however, these methods
will lose most of the sequence information, while the
computational overheads are extremely high.

In this paper, we propose a scheme to transform the
API call sequence into a function call graph. It can
convert a million levels of dynamic API call sequence into
a directed and edge-weighted graph structure with only a
few nodes, which can both preserve information about
the order of the API calls and greatly reduce the scale of
data. We first replace each API with its corresponding
function class to get the function call sequence and then
convert the function call sequence to function call graph.
Coarse-grained substitution loses part of semantic in-
formation. Therefore, we use advance feature Permission
to make up for this part of semantic information. We use
GCN (graph convolutional network) model to extract
application’s behaviour features and concatenate these
features with permission feature to construct the final
feature vector. Then we send the concatenated feature
into LR (logistic regression) model to obtain classification
result.

Our method can effectively solve the problem of ex-
cessive data volume of dynamic behaviour information. At
the same time, the detection accuracy is better compared to

Security and Communication Networks

the existing methods. The main contributions of this paper
include the three following points:

(a) We developed a dynamic behaviour capture tool that
integrates APE [16], which can capture API calls
during application running

(b) We propose a method to convert a dynamic API call
sequence into a function call graph, which can save
the behaviour information of the application while
reducing the amount of data

(c) We design a fusion model FGL_Droid, which can
achieve higher detection accuracy

The rest of the paper is organized as fallows: Section 2
discusses related work for Android malware detection using
dynamic detection scheme. Section 3 introduces the overall
structure of our framework. The method of processing
dynamic API call sequence and the fusion model is explained
in Section 4. Section 5 shows the experimental results to
illustrate the performance of our framework. Section 6
concludes our research.

2. Related Work

Faced with such a huge amount of dynamic API call se-
quence, the existing research solutions can be classified into
the two following types: using statistical features of dynamic
API call sequence and truncating a fixed-length subsequence
of a dynamic API call sequence:

(a) Using statistical features of dynamic API call se-
quence: use statistical algorithms to select the APIs
that have a greater impact on malware detection
from the dynamic API call sequence, such as the
information gain algorithm [17] and the TF-IDF
(term frequency-inverse document frequency) al-
gorithm [18], and then use the selected API as feature
for malware detection

(b) Truncating a fixed-length subsequence of dynamic
API call sequence: intercept the first part of the entire
dynamic API call sequence, and then use deep
learning algorithms for malware detection [19]

2.1. Malware Detection Based on Statistical Features of API
Call Sequence. Uppal. et al. [20] extracted 3-gram vectors
from dynamic API call sequence and then used the odds
ratio to select the most important vectors. Finally, they
applied SVM model to complete malicious judgment.
Mohammed K. Alzaylaee et al. [17] used the tool DynaLog to
extract 178 behaviour features of applications execution
process and then used the information gain algorithm to
select the most important 120 from them. In order to in-
crease the accuracy of the model, the authors extracted
permission requested by the application and formed a 420-
dimensional feature vector. Finally, the authors used DNN
(deep neural network) to determine maliciousness. Fang
et al. [21] constructed a TFIT (trace frequency information
table) to save the number of API calls. After that, they
calculated the weight of each API call according to TFIT and

Security and Communication Networks

selected the most important API calls. Finally, they fed the
selected API calls into XGBoost. Yong Qiao et al. [8] used a
frequent itemset mining algorithm to find frequent API calls
from the API call sequence and then used frequent item sets
as features for malware clustering. Singh et al. [22] utilized
Cuckoo Sandbox to capture the application’s dynamic API
call sequence and then checked whether a certain API
appeared as feature. Kim J. et al. [23] counted the frequency
of each API in dynamic API call sequence as feature. Af-
terward, the maliciousness of applications was judged by
comparing the difference in API call counts.

Merely using statistical features will lose the order in-
formation of API call sequence. However, the order of API
calls is very important; different orders can indicate different
behaviours. For example, getContentResolver().query() —
socket.getOutputStrean().write() can complete the behaviour
of stealing user information, but, if conversely, there is no
such behaviour. Such statistical methods damage the ac-
curacy of malicious detection. At the same time, due to the
excessive number of APIs, there are too many feature di-
mensions, which can easily cause overfitting problem and
reduce the generalization ability of malicious detection.

2.2. Malware Detection Based on a Fixed-Length Subsequence
of Dynamic API Call Sequence. Xi Xiao et al. [9] extracted the
system call sequence during application execution and then
applied the LSTM model to extract the information in the
sequence. In order to adapt the length of the sequence to the
LSTM (Long Short-Term Memory) model, the authors trun-
cateed the sequence, limiting the length of the sequence to 500.
Wengi Xie et al. [10] proposed an algorithm to segment the
system call sequence. They first cut the system call sequence into
fixed-length subsequences and then labeled each subsequence.
Finally, the LSTM model is used to determine the maliciousness
of each subsequence. Zhaoqi Zhang et al. [11] proposed a
method to map an API and its parameters to a fixed-length
vector. The LSTM model is used to determine its maliciousness
based on the vector. Kolosnjaji et al. [12] proposed a scheme to
integrate CNN and LSTM models. The method first uses CNN
(convolutional neural network) to learn a set of features and
then uses LSTM to determine the maliciousness. Pascanu et al.
[13] proposed a phased detection model, including feature
extraction stage and malicious detection stage. In the feature
extraction phase, they used the RNN (recurrent neural network)
to predict the next API call based on the previous sequence of
API calls. In the classification stage, RNN is frozen, and all API
outputs are converted into feature vectors by maximum pooling
for classification.

The LSTM model can learn the sequential relationship of
API calls. However, the best effect length of the LSTM model
is 200, so, in order to make API sequences suitable for the
LSTM model, many researchers intercept a part of API call
sequences. The intercepted API call sequence cannot fully
represent the behaviour of the application at runtime, and
the malicious behaviour may be cut off, which greatly re-
duces the detection accuracy.

Therefore, we propose a method to convert API call
sequence into a function call graph, which not only retains

most of the application execution order information but also
significantly reduces sequence size. We will introduce our
schema in the next part.

Table 1 compares the existing state-of-the-art schemas
with the proposed work. The schemas which use statistical
features of API call sequence will lose the order information
of API call sequence. The schemas which truncate a fixed-
length subsequence of dynamic API call sequence will cause
huge computational overheads. Therefore, we propose a
method to convert API call sequence into a function call
graph, which not only preserves the complete sequence but
also preserves the order information of the sequence. We
will introduce our schema in the next part.

3. System Framework

The overview of the FGL_Droid system is shown in Figure 1,
which is divided into four parts: AndroidGuard [24],
DyAPICapture, Graph Construct, and FGL_Droid model.

3.1. Static Feature Extraction. In the static feature extraction
stage, we use AndroGuard [24] to extract the static features
of each application and select the permission request list as
our static features. The reasons mainly include the two
following aspects:

(a) The distribution of Permissions in normal applica-
tions and malicious applications is significantly
different, which can reflect the malicious behaviour
of applications to a certain extent.

(b) For benchmark dataset, we collect a total of 135
kinds of Permissions. Using Permissions as static
features will not suffer from high-level dimensions.

3.2. Dynamic Feature Extraction. We have designed a dy-
namic behaviour capture system DyAPICapture to capture
the API calls during the running of the application. As
shown in Figure 2, DyAPICapture mainly includes two
modules: dynamic test module and API capture module. In
the dynamic test module, we adapt the model-based stateful
dynamic triggering scheme APE [16], which can achieve
higher function coverage with less detection actions. In the
API capture module, we use the functions provided by
JDWP (Java Debug Wire Protocol) [25] to obtain the API
calls during the execution of applications. At the same time,
in order to achieve higher functional coverage, the entire test
process will last for 5minutes, and the captured dynamic
API sequence length has reached millions level, with an
average length of 1.698 million. Moreover, some malicious
applications can detect the operating environment; if they
are found to be running in a virtual machine, they will hide
their malicious behaviour and avoid detection. Therefore,
our dynamic capture system can be deployed on real devices.

3.3. Function Call Graph Construction. The collected API call
sequence is too long. We propose algorithm 1, which
converts API call sequence into a directed and edge-
weighted function call graph. Function call graph contains

4 Security and Communication Networks

TaBLE 1: Comparison of the proposed work with state-of-the-art android malware detection schemas.

Classification Computational . L .

Schema Features algorithm overheads Capacity of saving information
(1] SVM
[2] Statistical features of API call sequence DNN Medium Low
[3] XGBoost
(7] LSTM
[10] A fixed-length subseguence of APT call CNN + LSTM High Medium
[1] sequence RNN
Ours Function call graph + permission GCN +LR Low High

[Dynamic API Sequences

| getDeviceld()

| Writev()

| setPasskey()

I :

| sendBurstDtmf()

| getltem()

\ handleMessage()

P

Permission

READ_CONTACTS
INSTALL_PACKAGES
READ_SMS

WRITE_CONTACTS
WRITE_SETTINGS
WAKE_LOCK

(
I
I
I
I
I
I
I
I
\

F1GURe 1: Framework of FGL_Droid. It includes four parts: DyAPICapture: extract the dynamic API call sequence; AndroidGuard: extract
the Permission; Graph Construct: function call graph construction; and FGL_Droid: detection model.

DyAPICapture

APE JDWP

Behaviour trigger API capture

&

getltem()

FiGure 2: DyAPICapture consisting of two parts: behaviour trigger and API capturer.

Security and Communication Networks

26 vertices, each representing a function class in SUSI [26].
Each directed edge in function call graph represents a call
relationship, and the corresponding weight means the
number of call relationship. Therefore, the function call
graph can keep order information of the API call sequence.

3.4. Model Training. We design a fusion model FGL_Droid,
which can effectively mine applications behaviour pattern
from the function call graph and merge it with the Per-
mission feature. Once the function call graph is constructed,
we train our FGL_Droid model on this graph for malware
detection. The details of the entire model are explained in the
Methodology chapter.

4. Methodology

4.1. Construction of the Function Graph. We propose a
method to transform the sequence of API calls into a
function call graph, which can save the order information of
API calls while reducing data size of dynamic API call se-
quence. The method applies Algorithm 1 to construct a
graph G (V, E, W) by representing a unique function class at
vertex V and a call relationship by a weighted edge E. As
shown in Figure 3, Algorithm 1 mainly contains four steps:
API substitution, deredundancy, graph construct, and
normalization.

(1) API substitution: the algorithm first transfers the
original dynamic API call sequence into function class
sequence. Each API is replaced with the corre-
sponding function class in SUSI [21]. As shown in
Figure 3, the API call sequence [‘getDeviceld()’, ‘get-
PhoneNumber()’, ‘getCellLocation(),, ‘getSer-
ialNumber()’, ‘query()’, ‘sendMessage()’, ‘sendSms()’,

.., getRawContactld()’, ‘getContactUri(), ‘getAll-
ContractName()’, ‘getViewAt()’, ‘getUserPassword()’,
‘getDriverName’] will be converted into function call
sequence [‘UNIQUE_IDENTIFIER', ‘UNIQUE._-
IDENTIFIER, LOCATION_INFORMATION',
‘NETWORK_INFORMATION', ‘FILE_
INFORMATION', ‘ACCOUNT_INFORMATION', ‘e-
mail’, ‘SMS_MMS', e ‘CONTACT_
INFORMATION', ‘CONTACT_INFORMATION',
‘CONTACT_INFORMATION', ‘BROWSER_
INFORMATION', ‘SYSTEM_SETTINGS', ‘NFC,
‘NFEC’.

(2) Deredundancy: in order to reduce the length of
function call sequence, we only retain one of the
same function classes that appears continuously. The
function classes call sequence will become
[‘'UNIQUE_IDENTIFIER',
‘LOCATION_INFORMATION', ‘NETWORK_IN-
FORM-ATION', ‘FILE_INFORMATION',
‘ACCOUNT_INFORMATION', ‘e-mail’,
SMS_MMS', ..., ‘CONTACT_INFORMATION',
‘BROWSER_INFORMATION', ‘SYSTEM_-
SETTINGS', ‘NEC’].

(3) Graph construction: Algorithm 1 converts the exe-
cution sequence of function classes to function call
graph. For the two consecutive function classes
[‘UNIQUE_IDENTIFIER’, ‘LOCATION_INF-
ORMATION’] in the sequence, we create a directed
edge pointing from UNIQUE_IDEN-TIFIER to
LOCATION_INFORMATION. If this edge does not
exist in the graph, add this edge to the function call
graph; if this edge exists in the graph, increase the
weight of the edge by 1. We get the function call
graph as shown in Figure 2 through this step.

(4) Edge normalization: in order to reduce the impact
caused by different orders of magnitude of each edge,
the min_max normalization method was adopted to
map all the weights into a range between (0, 1). As
shown in Equation 1, W ; , represents normalized
weight of the edge, w; ;) represents the number of
calls, MAX, g represents the maximum weight of
the edge in the figure, and MIN ;o represents the
minimum weight of the edge in the figure. Finally, we
obtain the directed weighted function call graph
F_GRAPH (V, E, W) originating from API sequence.
Each node of F_GRAPH represents a function class.
Each directed edge in F_GRAPH represents a call
relationship, and the corresponding weight means
the frequency of call relationship. Therefore, the
function call graph can keep sequence information of
the API call sequence.

W o = w; jy =~ MINeigne
G~ MAX - MIN

(1)

weight weight

4.2. Fusion Model of GCN and LR. Our model consists of
three steps: extracting dynamic behaviour feature, merging
dynamic behaviour feature and Permission, and malicious
judgment.

4.2.1. Extracting Dynamic Behaviour Feature. For function
call graph F_GRAPH (V, E, W) obtained by Algorithm 1, we
utilize graph neural network to extract application’s be-
haviour feature from function call graph. For each vertex in
the graph, the graph neural network can fuse the infor-
mation in adjacent nodes and edges and keep the call in-
formation between nodes. The information fusion mode is

H*D = a(D_mAE_UZHZWl>, (2)

where A represents the sum of the adjacency matrix of the
graph and the identity matrix, so that the information of its
own nodes can be kept in the process of information fusion.
D is the degree matrix of A, H is the characteristic of each
layer, and o is the activation function.

Through our observation, a malicious behaviour can be
accomplished only by calling 2-3 function classes. For ex-
ample, information leakage malware usually only needs to

Security and Communication Networks

e ——
/ API to Function Class De_redundancy Graph Construct

getDeviceld()
getphoneNumber()
getCellLocation()
getSerialNumber()
getContentUri()
query()
sendMessage()
sendSms()

getRawContactld()
getContactUri()
getAllContactName()
getViewAt()
getUserPassword()
getUid()

getDriverName()

UNIQUE_IDENTIFIER
UNIQUE_IDENTIFIER
LOCATION_INFORMATION
NETWORK_INFORMATION
FILE_INFORMATION
ACCOUNT_INFORMATION
EMAIL
SMS_MMS

CONTACT_INFORMATION
CONTACT_INFORMATION
CONTACT_INFORMATION
BROWSER_INFORMATION
SYSTEM_SETTINGS
NFC
NFC

UNIQUE_IDENTIFIER

LOCATION_INFORMATION
NETWORK_INFORMATION
FILE_INFORMATION

ACCOUNT_INFORMATION
EMAIL

SMS_MMS
CONTACT_INFORMATION
BROWSER_INFORMATION

SYSTEM_SETTINGS
NFC

FiGure 3: The process of converting dynamic API call sequence into function call graph. The figure only shows the first three steps.

(4) for API€S do

(8) while i <length(F) do

9) if F[i] =F[i— 1] then
(10) delete Fli]
@11) end if

(12) end while

(13) while i <length(F) do

(20) end while
(iv) //Step 4: normalization

(22) for w e W:

(24) end for
(25) Return F_Graph (V,E,W)

(1) Input: Dynamic API Call Sequence(S) and SUSI’s API Category(D)

(2) Output: Function Call Graph F_Graph (V,E, W)

(3) Initially: let V = (F1, F2, F3, ..., F26) be all the function category in D and E—&
(i) //Step 1: replace the API with corresponding function class

(5) Change API to its class in D
(6) let F(f1, f2, f3, ... f,) be the Function call Sequence
(7) end for

(ii) //Step 2: delete adjacent duplicate function classes

(iii) //Step 3: convert the execution sequence of function classes to function call graph

(14) if (F[i], F[i + 1]) ¢ E then

15) Add an edge (F[i],F[i+1]) to E
(16) W(F[i],F[i+1]) =1

17) else

(18) W (F[i},Fli+1])+ =1

19) end if

(21) maxWeight < max (W), minWeight < min (W)

(23) we (w — minWeight)/ (maxWeight — minWeight)

ALGORITHM 1: Graph construction algorithm. Our algorithm includes four steps, which are (1) replace the API with corresponding function
class, (2) delete adjacent duplicate function classes, (3) convert the execution sequence of function classes to function call graph, and (4) use

max-min algorithm method for normalization.

obtain account information (ACCOUNT_INFORMATION)
and then send it to the server through network (NET-
WORK); malicious download malware first needs to obtain
the memory status of the phone (UNIQUE_IDENTIFIER)

and then attach the information to the designated server
(NETWORK) and finally download the malicious applica-
tion to the designated memory through the network and
decompress and install it (FILE). Therefore, in our GCN

Security and Communication Networks

model, we use a double-layer GCN network. Each node
merges the information of the nodes that are within two
hops from the node, which can completely cover all the
malicious behaviours.

4.2.2. Merging Dynamic Behaviour Feature. In order to
reduce the amount of data and avoid the overfitting phe-
nomenon caused by excessive feature dimension, we
replaced API with the corresponding SUST’s function class to
reduce the data dimension. Such coarse-grained method will
inevitably lose some detailed information, resulting in a
decrease in detection accuracy. We find Permission can be
used to make up for the lost detail information. For example,
sendTextMessage() and notifySendFailed() are assigned to
the same functional class, losing the differences in their
behaviours. However, sendTextMessage() requires Permis-
sion “SEND_SMS,” but notifySendFailed() does not, so we
can make up for lost details by introducing Permission. Due
to the fact that the Permission information is an advanced
feature, there is no need to apply complex deep neural
network on this feature. In order to efficiently utilize both
function call graph and Permission, a fusion model of GCN
and LR is proposed, as shown in Figure 4. For complex graph
data, we use double-layer GCN to extract the application
behaviour information from the graph. Then apply Aver-
age_pooling and Max_pooling operations on each node and
concatenate the two results together as the final graph
representation Vector_Graph with length of 1150. We
combine Vector_Graph with Permission features as
Vector_mix.

4.2.3. Malicious Judgment. After getting the Vector_mix, we
use a dense layer with 128 neural units to reduce the di-
mension of the intermediate vector to 128. A ReLU acti-
vation is adopted in this dense layer. Then we use a dropout
layer with a rate of 0.6 to reduce overfitting. Finally, we use a
full connection layer with an output dimension of 1 to obtain
the malware probabilities. The binary cross-entropy function
is adopted as our loss function, which can characterize the
difference between the true sample label and the predicted
probability. The loss function is

Loss = y logy + (1 — y)log(1 -), (3)

where y represents the true label and 7 represents the
predicted label.

In addition, the optimization method we take is Adam,
and the learning rate is 0.0005.

5. Results and Discussion

5.1. Datasets and Experimental Environment. The bench-
mark dataset used in this paper is shown in Table 2, in-
cluding 4217 normal applications downloaded from the
Google Play Store and 3950 malicious applications collected
from Andro_dumpsys Project, which includes 13 malware
families.

The configuration of the experimental equipment is
shown in Table 3.

5.2. Effectiveness of Translating Dynamic APIs into Graph.
To evaluate the effectiveness of translating dynamic APIs
into function call graph, we measured the accuracies of the
other two mainstream process methods: using the statistical
features of dynamic API call sequences and intercepting a
fix_length subsequence of the dynamic API call sequence:

(a) SF: using the statistical features of dynamic API call
sequence. We count the number of occurrences of an
APIin dynamic API call sequence and then use DNN
(deep neural network) to detect the maliciousness of
the application. What we use is a three-layer DNN
with 4500, 500, and 1 neural unit, respectively, and
the activation function is ReLU. During the training
process, we choose the learning rate of 0.003, the
optimizer is the Adam optimizer, and the loss
function is the cross-entropy loss function.

(b) FLS: intercepting a fix_length subsequence of the
dynamic API call sequence. We use the first 1000
APIs of dynamic API call sequences and then use
LSTM (Long Short-Term Memory) network to de-
tect malware. What we use is a single-layer LSTM
network, and the training process is consistent with
the above parameters.

The results are shown in Table 4. Significantly, our
process method of translating dynamic APIs into function
call graph is superior to the other two processing methods in
four evaluation indicators. As for the metric MTTD (mean
time to detect), since we transformed the original sequence
into a graph with only 26 vectors, our schema also out-
performs the other two.

In the process of the experiment, we find that there is
obvious overfitting phenomenon in schemes which use
statistical features of dynamic API call sequences. On the
contrary, our method does not have this problem. We record
the change of loss value in the training process of using
statistical features and Ours. As shown in Figure 5, we can
clearly see that loss has been decreasing on the training set,
but, on the test set, there has been a large increase after a
small decrease. Obviously, there is an overfitting phenom-
enon when we use the statistical features of dynamic API call
sequences to judge malicious.

Using the frequency of each API that appears in dynamic
API call sequence as features will cause the data dimension
to be too high. Google officially provides 25834 APIs, so the
dimension of the feature is 25834. In some papers, they not
only use API but also include Permissions and opcodes. The
final feature dimension can reach tens of thousands of di-
mensions. The feature dimension is too high, so it is easy to
suffer from overfitting. Our processing method converts the
API call sequence into a graph with only 26 nodes, thus
reducing the data dimension and avoiding the occurrence of
overfitting.

5.3. Effect of the Layer of GCN. In this part, we verify the
influence of different layers of GCN on the detection result.
We conduct experiment under different layers of GCN from
1 to 5. The results are shown in Table 5. The best detection

Security and Communication Networks

£
l'l

o
(2]
=]
g
2
z
5
Function 1 i “
_Funcnon 1 . \ ,
Function 6 Function 6
[]
» |
e
=3 Function 5 @ .
g 2 B Pooli
& Function2 Z | ooling
?} ¢ H Function 5
N a _
S Ful’lCth:l 2 .
=2] .
¢ ® . B
Function 3 Function 4 Function3 Function 4

F1GURE 4: Fusion model of GCN and LR. Use GCN to extract the application behaviour pattern from the function call graph and then splice
it with the Permission feature, and then use the LR model for malware detection.

TaBLE 2: Summary of the dataset.

Dataset Number Source

Malware 3950 Andro_dumpsys

Benign 4219 Google Play Store
TaBLE 3: Experiment environment.

Environment Configuration

Operating system Android 6.0.1

Phone model LG Nexus 5

performance is achieved when there are 2 layers. For two-
layer GCN, each node merges the information of the nodes
that are within two hops from the node, which can com-
pletely cover all the malicious behaviours. For example,
information leakage malware usually only needs to obtain
account information (ACCOUNT_INFORMATION) and
then send it to the server through network (NETWOR).
When the layer of GCN is greater than 2, the representation
of each node will tend to homogenize, which decreases the
accuracy of detection.

5.4. Effectiveness of Normalizing the Edges of Function Call
Graph. Android malware usually hides malicious code in
normal code, and most of the dynamic API call sequences we
extracted are normal call relationships. Therefore, the weight
of the normal call relationship in the function call graph
obtained from the dynamic API call sequence transforma-
tion is much larger than the malicious call relationship,
which has a greater impact on the final judgment result. In
order to reduce misjudgment caused by the large difference
of edge weights, we normalized the edges.

To show the effect of normalizing the edges of the
function call graph, we added experiments to verify the
impact of edge normalization on the proposed scheme. The
WW is a weighted graph without normalization, and WNW
is a weighted graph with normalization. As shown in Table 6,
the detection accuracy of WNW is significantly superior
than the other method, reaching 0.975.

5.5. Effectiveness of the Integration Model. Due to the fact
that the method of transforming dynamic API call sequences
into function call graph loses some details, we propose a way
to make up for the loss of details by merging the function call
graph and Permission. As mentioned in the previous section,
both sendTextMessage() and notifySendFailed() are assigned
to the same functional class “SMS_MMS,” losing the dif-
ferences in their behaviours. However, sendTextMessage()
requires Permission “SEND_SMS,” but notifySendFailed()
does not, so we can make up for lost details by introducing
Permission. In order to evaluate the effectiveness of fusion
features, we conduct the three following groups of
experiments:

(a) Permission: use Permission only for maliciousness
determination

(b) Function call graph: use only the function call graph
for maliciousness determination

(c) Fusion feature: use fusion information to determine
maliciousness

Table 7 shows the experimental results. It can be seen
from the experimental results that our scheme is signifi-
cantly better than only using Permission or function call
graph, which indicates that our fusion scheme is indeed
effective in the determination of maliciousness.

Security and Communication Networks 9

TaBLE 4: Effectiveness of translating dynamic APIs into graph.

Process method Approach ACC Precision Recall F1 MTTD (ms)
SF DNN 0.925 0.933 0.933 0.933 0.208
FLS LSTM 0.702 0.952 0.662 0.781 1.406
FCG + Permission GCN+LR 0.975 0.979 0.976 0.978 0.141

SF: statistical features of dynamic API call sequence; FLS: fix_length subsequence of the dynamic API call sequence; FCG: function call graph.

40
20.0

35 o
17.5 o

30
15.0

25
12,5 o

Loss

20

Loss

10.0

7.5

5.0

2.5

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Train dataset

Train dataset

Test dataset

Test dataset

(a) (b)

FiGure 5: The change of loss value during model training and testing using different API call sequence processing methods. (a) Using
statistical features of API call sequence. (b) Ours: using function call graph.

TaBLE 5: Results under different numbers of GCN layers.

Layer ACC Precision Recall F1

1 0.957 0.963 0.940 0.951
2 0.975 0.979 0.976 0.978
3 0.968 0.977 0.966 0.972
4 0.954 0.969 0.954 0.961
5 0.953 0.962 0.934 0.948

TaBLE 6: The performance comparison with other proposed systems.

Method ACC Precision Recall F1
FCG_WW 0.713 0.653 0.799 0.719
FCG_WNW 0.975 0.979 0.976 0.978

WW: function call graph with weights; WNW: function call graph with normalization weights.

TaBLE 7: Evaluating the effectiveness of the integration model.

Feature ACC Precision Recall F1

Permission 0.748 0.665 0.999 0.799
Function call graph 0.920 0.904 0.906 0.930
Fusion feature 0.975 0.979 0.976 0.978
5.6. Model Evaluation. In order to study the performance Table 8 shows the results of the comparative experiment.
improvement of FGL_Droid model, we compare the state- Our scheme is significantly better than other methods. The

of-the-art scheme of malicious detection using dynamic API ~ precision of FGL_Droid in the test set is 0.975, and the
call sequences, which mainly includes two ways: using F-Measure is 0.978.

statistical features of API call sequences or intercepting the For the method of using the statistical features of the
API call sequence to a certain length. dynamic API call sequence [5, 17, 22], they lose the sequence

10

TaBLE 8: The performance comparison with other proposed
systems.

Approach ACC Precision Recall F1
Mohammed K. Alzaylaee [17] 0.950 0.941 0.978 0.959
Jagsir Singh [22] 0.855 0.769 0.949 0.849
Zhenlong Yuan [5] 0.966 0.966 0.966 0.966
Xi Xiao [9] 0.923 0.939 0.905 0.922
Bojan Kolosnjaji [12] 0.894 0856 0.894 —
Rakshit Agrawal [6] 0954 0.963 0.951 —
Ours 0.975 0.979 0.976 0.978

information of the API call sequence. For the method of
intercepting a part of dynamic API call sequence [6, 9, 12]
may lose malicious behaviour, our method not only pre-
serves the complete sequence but also preserves the order of
the sequence. Therefore, our method obtains better detec-
tion accuracy compared to other methods.

6. Conclusion

In this paper, we propose a new framework for detecting
Android malicious applications. First, we transform the
multimillion-length dynamic API call sequence into a di-
rected and edge-weighted function call graph with only 26
nodes, which can greatly reduce the amount of data, while
preserving the order information of dynamic API call se-
quence. Then we use a double-layer GCN network to extract
the behaviour information of the application from the
heterogeneous function call graph and concatenate the re-
sults with the advanced features Permission. Finally, we feed
the results into an LR model for malicious detection. The
experimental results show that the proposed method of
transforming API call sequence into a graph can significantly
improve the time efficiency of detection, while the loss of
precision is very small. We combined the two types of in-
formation through the fusion model, which was significantly
better than other baseline models.

Data Availability

The data used to support the findings of this study are in-
cluded within the article. The data presented in this study
will be available upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant nos. 61672543 and
61772559.

References

[1] C. Secutiry, “Cyber secutiry report,” 2021, https://www.ntsc.
org/assets/pdfs/cyber-security-report-2020.pdf%20.

(2]
(3]

(4]

(5]

[6

[7

(8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Security and Communication Networks

Kaspersky, “Mobile malware evolution 2020,” 2021, https://
securelist.com/mobile-malware-evolution-2020/101029/.

A. Arora, S. K. Peddoju, and M. Conti, “Permpair: android
malware detection using permission pairs,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1968-1982,
2019.

T. G. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A
multimodal deep learning method for android malware de-
tection using various features,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 773-788, 2018.
Z.Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114-123, 2016.

R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj,
“Neural sequential malware detection with parameters,” in
Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE,
Calgary, AB, Canada, April 2018.

M. Schofield, G. Alicioglu, R. Binaco et al., “Convolutional
neural network for malware classification based on API call
sequence,” in Proceedings of the 2021 the 14th International
Conference on Network Security & Applications, Computer
Science & Information Technology (CS & IT), Zurich,
Switzerland, January 2021.

Y. Qiao, Y. Yang, L. Ji, and J. He, “Analyzing malware by
abstracting the frequent itemsets in API call sequences,” in
Proceedings of the 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and
Communications, IEEE, Melbourne, VIC, Australia, July 2013.
X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences
and LSTM,” Multimedia Tools and Applications, vol. 78, no. 4,
pp. 3979-3999, 2019.

W. Xie, S. Xu, S. Zou, and J. Xi, “A system-call behavior
language system for malware detection using a sensitivity-
based LSTM model,” in Proceedings of the 2020 3rd Inter-
national Conference on Computer Science and Software
Engineering, Beijing, China, May 2020.

Z. Zhang, P. Qi, and W. Wang, “Dynamic malware analysis
with feature engineering and feature learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, NY, USA,
February 2020.

B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classification of malware system call sequences,”
in Proceedings of the Australasian Joint Conference on Arti-
ficial Intelligence, Springer, Hobart, TAS, Australia, December
2016.

R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent networks,”
in Proceedings of the 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, South
Brisbane, QLD, Australia, April 2015.

W. Wang, J. Wei, S. Zhang, and X. Luo, “LSCDroid: malware
detection based on local sensitive API invocation sequences,”
IEEE Transactions on Reliability, vol. 69, no. 1, pp. 174-187,
2019.

Y. Qin, W. Wang, S. Zhang, and K. Chen, “An exploit kits
detection approach based on HTTP message graph,” IEEE
Transactions on Information Forensics and Security, vol. 16,
pp. 3387-3400, 2021.

T. Gu, C. Sun, X. Ma et al., “Practical GUI testing of Android
applications via model abstraction and refinement,” in Pro-
ceedings of the IEEE/ACM 41st International Conference on

https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf%20
https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf%20
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/

Security and Communication Networks

Software Engineering (ICSE), IEEE, Montreal, QC, Canada,
May 2019.

[17] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, Article ID 101663, 2020.

[18] M. Ali, S. Shiaeles, G. Bendiab, and B. Ghita, “MALGRA:
machine learning and N-gram malware feature extraction and
detection system,” Electronics, vol. 9, no. 11, p. 1777, 2020.

[19] S. Jha, D. Prashar, H. V. Long, and D. Taniar, “Recurrent
neural network for detecting malware,” Computers & Security,
vol. 99, Article ID 102037, 2020.

[20] D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware detection
and classification based on extraction of API sequences,” in
Proceedings of the 2014 International Conference on Advances
in Computing, Communications and Informatics (ICACCI),
IEEE, Delhi, India, September 2014.

[21] Y. Fang, B. Yu, Y. Tang et al,, “A new malware classification

approach based on malware dynamic analysis,” Australasian

Conference on Information Security and Privacy, Springer,

Cham, 2017.

J. Singh and J. Singh, “Assessment of supervised machine

learning algorithms using dynamic API calls for malware

detection,” International Journal of Computers and Applica-

tions, vol. 44, no. 3, pp. 270-277, 2022.

[23] J. Kim, S. Lee, J. M. Youn, and H. Choi, “A study of simple
classification of malware based on the dynamic api call
counts,” in Proceedings of the Advances in Computer Science
and Ubiquitous Computing, pp. 944-949, Bangkok, Thailand,
December 2016.

[24] androguard, “reverse engineering, malware and goodware
analysis of android applications,” 2020, https://github.com/
androguard/androguard/.

[25] oracle. Java, “Debug wire protocol,” 2020, https://docs.oracle.
com/javase/8/docs/technotes/guides/jpda/jdwpspec.html.

[26] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A Tool for the Fully
Automated Classification and Categorization of Android
Sources and Sinks,” Rep. TUDCS-2013-0114, University of
Darmstadt, Darmstadt, Germany, 2013.

[22

11

https://github.com/androguard/androguard/
https://github.com/androguard/androguard/
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwpspec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwpspec.html

Hindawi

Security and Communication Networks
Volume 2022, Article ID 4748528, 21 pages
https://doi.org/10.1155/2022/4748528

Research Article

WILEY | Q@) Hindawi

An Enhanced Intrusion Detection System for IoT Networks
Based on Deep Learning and Knowledge Graph

Xiuzhang Yang,"? Guojun Peng®,"” Dongni Zhang,"* and Yanggqi Lv"*

'Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan 430072, China
2School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Correspondence should be addressed to Guojun Peng; guojpeng@whu.edu.cn
Received 24 December 2021; Revised 17 February 2022; Accepted 18 March 2022; Published 26 April 2022
Academic Editor: Weizhi Meng

Copyright © 2022 Xiuzhang Yang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Nowadays, the intrusion detection system (IDS) plays a crucial role in the Internet of Things (IoT) networks, which could
effectively protect sensitive data from various attacks. However, the existing works have not considered multiview features fusion
and failed to capture the semantic relationships among the anomalous requests. They are not robust and cannot detect the attack
types in real-time. This paper proposes a lightweight intrusion detection system based on deep learning and knowledge graph.
First, our system extracts semantic relationships and key features by knowledge graph and statistical analysis. Then, IoT network
requests are converted into word vectors through multiview feature fusion and feature alignment. Finally, an attention-based
CNN-BiLSTM model is designed to identify malicious request attacks, which can capture long-distance dependence and
contextual semantic information. Experiment results show that the proposed model significantly outperforms the existing
solution in the robustness of the model. Moreover, it can select more critical features for IDS to achieve better accuracy and lower
the false alarm rate. Compared with the state-of-the-art systems, the proposed IDS achieves a higher detection accuracy of 90.01%.
In addition, our system can detect various stealthy attack types (including DoS, Probe, R2L, and U2L) and extract semantic

relationships among features.

1. Introduction

With various terminal devices and applications becoming
interoperable through networks, the Internet of Things (IoT)
systems improve the quality of life and enhance real-life
intelligent devices [1]. The prominent devices in IoT net-
works include outdoor surveillance cameras, smart home
devices, mobile user-worn devices, and industrial control
services [2]. As a result, IoT devices are increasingly
deployed in critical infrastructures. However, due to the
intuitive design, IoT also faces many security threats and
challenges, making the infrastructures suffer from serious
attacks and undermining the integrity of sensitive data.
Some incidents (e.g., Stuxnet [3], the widespread blackout in
the Ukrainian power grid [4], SolarWinds supply chain
attack [5], Colonial Pipeline suffering the ransomware attack
[6]) have shown that network attacks on IoT devices can

result in catastrophic consequences to the society, enter-
prises, and human life [7, 8]. Thus, effectively detecting
security threats and protecting the IoT environment is
crucial.

As an active defense technology, intrusion detection
system (IDS) has gradually become a key technology to
ensure network security. IDS can identify abnormal requests
in the communication network, detect potential network
threats, and generate alarms, thereby protecting the Internet
and infrastructures in runtime. In this paper, we focus on
constructing IDS for IoT networks. Meanwhile, machine
learning (ML) has been widely used in security research
recently, such as APT attack detection [9], personal privacy
protection [10], malicious code analysis [11], cyberphysical
system defense [8], and malicious traffic detection [12]. In
order to detect malicious behaviors in large-scale network
traffic of IoT, machine learning-based IDS has attracted

mailto:guojpeng@whu.edu.cn
https://orcid.org/0000-0001-5731-8958
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4748528

widespread attention. The goal of ML-based IDS is to learn a
decision boundary that discriminates malicious network
traffic from normal network traffic. In this process, it learns
to distinguish different behaviors from the network traffic
and host audit records. Traditional ML-based intrusion
detection algorithms include support vector machine (SVM)
[13], K-Nearest Neighbors (KNN) [14], Decision Tree (DT)
[15], Random Forest (RF) [16], AdaBoost [17], K-Means
[18], and Artificial Neural Networks (ANNs) [19].

However, these systems usually require a large amount of
expert knowledge and labeled data to construct rules or
models to detect abnormal requests [8]. Hence, they have
poor applicability in large-scale intrusion detection systems.
Also, traditional ML-based systems have not considered
multiview features fusion and fail to capture the semantic
relationships among the anomalous requests. The existing
IDSs focus on constructing machine learning models and
lack detailed feature extraction analysis [20], resulting in a
poor ability to capture crucial features of IoT network traffic
and detect unknown attack types (e.g., the zero-day attack).
In addition, many machine learning algorithms are shallow
learning algorithms, which have low detection throughput
and suffer from evasion attacks that can easily bypass IDSs.
Thus, they cannot efficiently defend IoT environments
against various network attacks, especially when facing
large-scale data [21]. They cannot detect the attack types in
real time. Therefore, improving the design of current IDSs to
provide suitable intrusion detection for IoT networks is
urgent. Also, some features of different types of attacks often
appear in network traffic at the same time, and traditional
IDS ignores the semantic knowledge between features.
Therefore, effectively capturing semantic-semantic rela-
tionships will help improve the accuracy and robustness of
our IDS.

To address the above problems, this paper proposes an
enhanced intrusion detection system for IoT networks based
on deep learning and knowledge graph. The main research
problem in this paper is how to build a model to better learn
the semantic relationship between network traffic features,
so as to improve the robustness of IDS to traffic recognition
in IoT networks. We mainly address this problem from the
perspective of feature extraction and feature fusion.
Therefore, we particularly devise two feature extraction
methods: knowledge graph-based feature extraction and
statistical analysis-based feature extraction. By this means,
we can effectively extract the contextual semantic rela-
tionship of IoT network traffic and key features of different
attack types, thereby increasing the similarity distance be-
tween benign and malicious samples. Furthermore, to solve
feature ambiguity and the single perspective of traditional
models, we design a multiview feature fusion and feature
alignment algorithm to build more robust word vectors and
construct a deep learning model to detect IoT requests. The
contributions of our paper are summarized as follows:

(i) To our best knowledge, we are the first to design a
multiview fusion model for intrusion detection of
IoT networks. This model can extract the contextual
semantic relationship through a knowledge graph,

Security and Communication Networks

as well as crucial features through statistical analysis.
Then, we make the IDS more robust and inter-
pretable by feature fusion and alignment of the two
feature extraction algorithms.

(ii) We present an attention-based Convolutional
Neural Network and Bidirectional Long Short-term
Memory (CNN-BiLSTM) model, which can capture
the long-distance dependence and contextual se-
mantic information. Moreover, our IDS relies on
less prior knowledge and detects more attack types.
The deep learning-based classifier can better detect
attack types in runtime by adaptively updating the
weights of different features, especially the features
extracted by the knowledge graph.

(iii) We conduct a systematic comparison experiment
with state-of-the-art systems. The results show that
our system is effective and robust in detecting
malicious requests of IoT and can accurately detect
various stealthy attack types (including unknown
attacks).

The rest of the paper is organized as follows. Section 2
summarizes the related works. Section 3 presents the pro-
posed intrusion detection model for IoT networks in detail.
Section 4 experimentally evaluates the performances of our
model and Section 5 concludes the paper. Also, Table 1
summarizes all acronyms used in this paper for complete-
ness and readability.

2. Related Work

In this section, we introduce the related work of intrusion
detection systems for IoT networks, including rule-based
systems, machine learning-based systems, and deep learn-
ing-based systems. Note that we introduce from the per-
spective of methodology, rather than discuss the following
host-based IDS and network-based IDS.

2.1. Rule-based System. With the increasing complexity and
stealthy of network attacks, intrusion detection system plays
a significant role in detecting malicious requests. Traditional
intrusion detection system mainly relies on expert knowl-
edge and manual experience to extract traffic features by
defining rules and feature databases. Then, such IDS ana-
lyzes network requests with statistical correlation algorithms
to identify external attacks [22]. In 1987, Denning [23] first
proposed a universal intrusion detection system and in-
troduced it into computer security defense systems. Later,
Lunt and Jaganna [24] designed an intrusion detection
expert system based on domain knowledge. This system
adaptively learned the normal behavior of each user through
audit records and detected abnormal users in real time. After
that, more rule-based intrusion detection systems appear,
especially in the IoT ecosystem. Chimera [25] is a declarative
query language for network traffic processing that combines
the advantages of intrusion detection systems and SQL
syntax with rules. The vNIDS [26] is an innovative archi-
tecture for network intrusion detection systems (NIDSs),

Security and Communication Networks

TaBLE 1: List of the acronyms used in the manuscript.

Acronym Definition Acronym Definition

ANN Artificial Neural Network ML Machine Learning
BiLSTM Bidirectional Long Short-Term Memory M2-DAE MultiModal Deep AutoEncoder
CNN Convolutional Neural Network NIDS Network Intrusion Detection Systems
DL Deep Learning NIN Network-in-Network

DoS Denial of Service RDP Remote Desktop Protocol
DT Decision Tree ReLU Rectified Linear Unit
FAR False Alarm Rate RF Random Forest

FN False Negative RNN Recurrent Neural Network
FP False Positive R2L Remote to Local

IDS Intrusion Detection System SA Statistical Analysis

IoT Internet of Things SVM Support Vector Machine
KG Knowledge Graph TN True Negative

KNN K-Nearest Neighbors TP True Positive

LR Logistic Regression U2R User-to-Root

LSTM Long Short-Term Memory

which achieves elastic security by configuring virtual NIDS
as microservices and employing program slicing to partition
the detection logic programs. Haugerud et al. [27] designed
and implemented a lightweight elastic architecture NIDS,
which constructed a flexible IDS in a docker container
through network function virtualization and intelligent rule
ordering.

However, rule-based systems rely heavily on various
rules and expert experience, which will constantly update
rules. Since massive network attacks with stealth and anti-
detection, malicious requests often cannot be detected in
time. In addition, the system ignores the semantic rela-
tionship between traffic features, making it easy for specific
constructed and confused attack requests to bypass online
firewalls or IDSs. Therefore, it cannot detect unknown at-
tacks (e.g., zero-day attacks).

2.2. Machine Learning-Based System. With the rapid ad-
vancement in statistical machine learning, machine learn-
ing-based intrusion detection system is widely deployed to
protect IoT networks from various attacks [28]. This system
uses the established and trained machine learning model to
predict the malicious behavior of unknown network re-
quests. Common methods include SVM, random forest,
logistic regression, and K-Means. Whisper [21] is a real-time
ML-based malicious traffic detection system utilizing fre-
quency domain features to achieve high accuracy and
throughput. Also, Whisper has good robustness because
attackers cannot easily interfere with frequency domain
features. Bitton and Shabtai [29] propose an intrusion de-
tection algorithm based on clustering. This algorithm can
protect the cyberphysical system from Remote Desktop
Protocols (RDP) vulnerability attacks. Li et al. [30] design a
model based on sustainable ensemble learning, which
considers the accumulation of historical knowledge to re-
alize incremental learning and improve the robustness of
intrusion detection systems.

Compared with rule-based intrusion detection systems,
machine learning-based systems can improve the model’s
accuracy and robustness, which is no longer limited to

specific rules. However, because machine learning belongs to
shallow learning, it lacks deep semantic knowledge and
context analysis. Therefore, traditional IDS based on ma-
chine learning has some limitations in detecting complex,
confusing, and hidden massive malicious requests and
cannot detect the attack the first time.

2.3. Deep Learning-Based System. With the application of
deep neural networks in various security fields [31], intru-
sion detection systems based on deep learning appear
gradually. Representative models are mainly convolutional
neural networks and recurrent neural networks (including
LSTM). On the one hand, they can mine the deep infor-
mation of network requests and improve detection accuracy
through continuous learning of the model. On the other
hand, they can avoid the limitations caused by artificial
experience. LIO-IDS [32] is an intrusion detection system
based on the LSTM classification model and promotion one-
to-one technology, which is used to deal with infrequent
network intrusions. Imrana et al. [33] developed a cen-
tralized intrusion detection system based on BiLSTM to
identify attack types with fewer samples. DL-IDS [34] mixed
CNN and LSTM models for intrusion detection. Li et al. [35]
designed an IoT feature extraction and intrusion detection
system for smart cities based on the deep migration learning
model. Balakrishnan et al. [36] leveraged a deep belief
network to enhance intrusion detection systems and scru-
tinize malicious activity in the IoT network. Moreover, BDL-
IDS [37] was a big data-aware deep learning system, which
can reduce the number of false alarms in the NSL-KDD
dataset. Kasongo and Sun [38] proposed a feed-forward deep
neural network wireless IDS system using a wrapper-based
feature extraction unit. Ferrag et al. [39] compared the
cybersecurity intrusion detection systems and datasets based
on deep learning in detail and conducted a comparative
study.

Furthermore, to solve the problem that existing neural
networks need supervised training and label network traffic
with the help of expert knowledge, Mirsky et al. [40] pro-
posed an unsupervised online network intrusion detection

system called Kitsune. This system can distinguish normal
and abnormal traffic patterns by building an ensemble of
autoencoders. Bovenzi et al. [41] proposed a two-stage hi-
erarchical network intrusion detection system, namely
H2ID. The system performed anomaly detection via a novel
lightweight solution based on MultiModal Deep AutoEn-
coder (M2-DAE) and achieved attack classification by soft-
output classifiers.

However, the above systems lack the deep semantic
relationship among traffic features and fail to analyze the
correlation and difference between attack types through
feature extraction and feature fusion. In addition, the lack of
knowledge mapping to capture semantic information makes
it impossible to sense hidden, unknown attacks (with small
samples) and spoofing malicious traffic. Table 2 compares
the characteristics of the three intrusion detection models in
detail. It can be seen that the system in this paper can ef-
fectively extract semantic features through a knowledge
graph, has better robustness, and can detect unknown types
of attacks in real time.

3. System Design

In this section, we present the architecture of our proposed
intrusion detection system for IoT networks and introduce
how to extract features by knowledge graph and statistical
analysis. Then, we describe the design and implementation
of this IDS in detail.

3.1. Overview. The overall architecture of our IDS is depicted
in Figure 1. This IDS consists of five phases: data pre-
processing, feature extraction, feature fusion and alignment,
model construction, and intrusion detection.

The proposed intrusion detection system is designed to
increase the difference between normal and abnormal re-
quests. As shown in Figure 1, our detection framework is
comprised of five main phases. (1) The data preprocessing
component can improve the quality of the dataset by pro-
cessing the IoT network requests, which includes data
cleaning, numerical conversion, log processing, normalized
processing, and one-hot encoding. (2) The feature extraction
component consists of two parts. First, the semantic rela-
tionship of different attack types is extracted through se-
mantic feature analysis, cooccurrence calculation, and
knowledge graph construction. Then, the key features of
normal and malicious requests are mined through statistical
analysis and power-law distribution. (3) The feature fusion
and alignment component judges whether the feature
should be weighted, aiming to improve the robustness and
interpretability of the IDS by multiview fusion. In addition,
this step uses the word embedding module to convert traffic
features into word vectors. (4) The model construction
component presents an attention-based CNN-BiLSTM
model to capture the long-distance and contextual semantic
features. (5) The intrusion detection component constructs a
classifier through the softmax function, thereby detecting
malicious requests (i.e., binary classification) and identifying
attack types (i.e., multiclass classification).

Security and Communication Networks

3.2. Data Preprocessing. To obtain a high-quality dataset and
solve the constraint problem of nonnumerical features, this
paper carries out detailed data preprocessing to ensure the
IoT intrusion detection experiment. This part mainly in-
cludes five processing, namely, data cleaning, numerical
conversion, log processing, normalized processing, and one-
hot encoding. The following part explains each phase in
detail.

Note that we apply the NSL-KDD dataset in our ex-
periment, which is an improvement of the KDD Cup 99
dataset [42]. This dataset is the traffic request generated by
MIT Lincoln Laboratory using IoT devices to simulate at-
tacks in the real-time environment. Thus, it is a relatively
authoritative dataset. The entire NSL-KDD dataset can be
described in Figure 2. It includes 41 traffic attribute features
and one label feature. Among them, the attribute feature
contains four categories: intrinsic feature, content feature,
time-based feature, and host-based feature, which can be
formulated as (1), where x; corresponds to the feature i.
Moreover, the label feature is divided into normal network
traffic and abnormal network traffic. The abnormal network
traffic includes four types (i.e., DoS, Probe, R2L, and U2R),
covering a total of 39 different attack types (e.g., Nmap,
Smurf, Sqlattack, and Spy). The detailed feature description
and data distribution will be introduced in the following
experimental section.

X = (%1, X5 - .5 Xg0 Xg1)- (1)

Data cleaning can standardize the dataset and remove
redundant data. Typical operations include filling in gaps
and deleting duplicate values. In this paper, data cleaning is
performed on both the training set and the testing set. Since
the deep learning model requires a vector of real numbers as
input embedding, it is necessary to convert symbolic features
into numerical features. Thus, we perform numeric con-
version processing, encoding some strings from 0 to convert
them to the corresponding numeric value. For example, the
types of protocol (i.e., TCP, UDP, and ICMP) will be
converted into corresponding numeric values (i.e., 0, 1, and
2). In the case of the NSL-KDD dataset, the nonnumeric
features that require numerical transformation are protocol
type, service type, flag, and category type.

To enhance the performance of the proposed IDS, we
will execute log processing and normalized processing.
The former can effectively reduce the difference among
traffic features in the dataset. For example, the NSL-KDD
dataset counts the size of requests sent from the source
host to the target host, denoted as src_bytes, and the
maximum value is 1,379,963,888. Obviously, this value is
an outlier, which will seriously affect our experimental
results. Therefore, we need to execute the log function to
reduce dimensionality. By this means, it can reduce
feature values to the same or similar granularity, and the
processed result is 9.1399. In this paper, five features (i.e.,
duration, src_bytes, dst_bytes, num_compromised, and
num_root) of the NSL-KDD dataset will be processed by
the log function, whose calculation is shown in equation
(2). The results are shown in Table 3.

Security and Communication Networks 5

TaBLE 2: Comparing the existing intrusion detection systems.

Categor Related work Techniques Robust Knowledge Real-time =~ Unknown attack Semantic feature
gory a detection graph detection detection extraction
Chimera [25] Rules SQL syntax X X v X X
Rule-based vNIDS [26] virtual NIDS X X v X X
System Haugerud et al. rl.xle or.der.mg x x v x x
[27] virtualization
Whisper [21] Clustering v x v v X
requency domain
ML-based Bitton et al
System [29] " Clustering T-SNE v X v X X
Li et al. [30] ensemble learning v X v X X
LIO-IDS [32] LSTM v X v X X
Imrana et al. .
DL-based 33] BiLSTM 4 X v X X
System DL-IDS [34] CNN-LSTM 4 X 4 v X
KG+SA CNN
Our IDS BiLSTM 4 v v v v
== S

10T Network

Request Datasef Log Processing

:| Numerical Conversion |

+ | Semantic Feature Analysis
: | Co-occurrence Calculation [—» .,

KG Construction

;| Normalized Processing |:

One-Hot Encoding

Difference Calculation

@ Data Preprocessing

H Numerical Statistics bﬂ/{ﬂ
— H

t| Power-law Distribution

B.Feature Extraction Based on Statistical Analysis

@ Feature Extraction

© Feature Fusion and Alignment

@ Model Construction
(CNN-BIiLSTM-Attention)

| Malicious Request Detection

normal abnormal

| Attack Type Identification

o2

FIGUre 1: The architecture of our proposed intrusion detection system for IoT.

© Intrusion Detection

Intrinsic feature Content feature Time-based feature Host-based feature Label
1~9 10~22 23~31 32~41 42
-— e - - > 4 — >«
| 0,tcp,auth,REJ,0,0,0,0,0, | | 0,0,0,0,0,0,0,0,0,0,0,0,0, | | 131,1,0,0,1,1,0.01,0.07,0, || 255,1,0,0.06,0,0,0,0,1,1 | oD %
neptune z

0,tep,private,SH,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,0,0,1,0,0,

35,1,0.03,0.74,0.77,0,0.77,1,0,0

PROBE F
nma;

I(),tcp,ftp_data,SF,334,0,0,0,0,| |

0,0,1,0,0,0,0,0,0,0,0,0,0,

1,1,0,0,0,0,1,0,0,

|| 3,41,1,0,1,0.15,0,0,0,0

| R2L F
warezclient

| 0,udp,other,SF,32,0,0,0,0, ||

0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,0,0,0,0,1,0,0,

| | 255,1,0,0.02,0,0,0,0,0,0

| U2R F‘
rootkit

0,tcp,http,SF,324,2302,0,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,

22,28,0,0,0,0,1,0,0.14,

255,255,1,0,0,0,0,0,0,0

B e

FI1GURE 2: The description of the features in the NSL-KDD dataset.

TaBLE 3: The result of log processing in the NSL-KDD dataset.

No. Feature Scope before processing Scope after processing
1 duration [0, 58329] [0, 4.7659]
5 src_bytes [0, 1379963888] [0, 9.1399]
6 dst_bytes [0, 1309937401 [0, 9.1173]
13 num_compromised [0, 7479] [0, 3.8738]
14 num_root [0, 7468] [0, 3.8732]

x; = log(x;). (2)

Moreover, data normalization converts the feature value
into a suitable range, which can effectively eliminate the
problem of data imbalance and preference for larger values.
This paper mainly uses the Min-Max scaling to normalize
the values of different features between 0 and 1, and the Min-
Max scaling is described as

, xi]‘ _ x;nin
Xij = e 3)
Xi TX

where i is a feature in the dataset, j is a record of the dataset,
and x®™ and x™" are the maximum and minimum values of
the feature i. Hence, we can map every continuous feature’s
values within the range of (0, 1) and effectively characterize
the importance and distribution of the corresponding fea-
tures. However, to preserve the authenticity and relationship
of the original network requests, this paper does not call the
Z-score function for standardized processing.

Finally, we perform the one-hot encoding to convert the
category label of the NSL-KDD dataset to a unique category,
which assigns the current category bit to 1 and other low bits
to 0. For example, the DoS label in Figure 2 will be converted
to the form [1, 0, 0, 0, 0]. By this, our deep learning model
can receive better input vectors for training. In short, we
show how the proposed IDS implements data preprocessing
in five steps, and then, we will introduce the feature ex-
traction part in detail (the second step in Figure 1).

3.3. Feature Extraction Based on Knowledge Graph.
Without prior knowledge, it is difficult to obtain the cor-
relation between features, especially facing unknown net-
work attacks. Before training, it is important for our IDS
model to reduce the noise of redundant features and to mine
the semantic relationships. Therefore, this paper proposes a
feature extraction method based on the knowledge graph.
The method can construct a knowledge graph through se-
mantic feature analysis and cooccurrence calculation. By
this, it can extract the critical feature pairs of normal and
abnormal requests (including four types of attacks) of the
NSL-KDD dataset. Algorithm 1 shows the feature extraction
method based on the knowledge graph, which is designed to
select crucial feature pairs of different types.

In Algorithm 1, the output is the set M, which covers the
four categories (i.e., intrinsic feature, content feature, time-
based feature, and host-based feature) of the NSL-KDD
dataset, and completes the intrusion detection classification
tasks from a global perspective. Through this processing, we
can effectively count out the semantic relations of the
representative features of different attack types, thereby
providing better support for subsequent classification. For
example, the <scr_bytes, dst_host_same_srv_rate> and
<tcp, same_src_rate> features often exist in R2L attacks at
the same time.

3.4. Feature Extraction Based on Statistical Analysis. The
knowledge graph highlights the semantic relationship of

Security and Communication Networks

features and improves the robustness of intrusion detection
by calculating features that often appear in pairs in the same
attack type. However, some individual features also make an
important contribution to intrusion detection systems. For
instance, in the Probe attack of the NSL-KDD dataset, the
Nmap command is repeatedly called to perform port or IP
scanning. Thence, the corresponding number of network
requests or certain features exceeds other types of attacks,
even reaching a threshold. To this end, we propose a feature
extraction method based on statistical analysis. This method
uses mathematical statistics to calculate the average, median,
and mode of different features in the training set. Further,
this paper selects the average as the threshold of statistical
features, and the difference between normal requests and
abnormal requests is calculated as shown in

N N
4-3 3 W

i=1 j=1

In (4), x; and x; represent the average value of feature x’s
two classification types (i.e., i and j). The entire equation
calculates a sum of the average differences of different
features in network requests. The number N represents five
types (normal, DoS, Probe, R2L, and U2R) in the NSL-KDD
dataset. Through the above processing, we can maximize the
differences between various categories. Then, we use the
sorting algorithm to process the four feature categories (i.e.,
intrinsic feature, content feature, time-based feature, and
host-based feature) and identify the two largest values of
each category. Finally, eight key features based on statistical
analysis are formed, which can further enhance the per-
formance of our IDS. In addition, in the later deep learning
classification model, when these features exceed a defined
threshold (shown in the previous calculation), they are
weighted to increase the gradient descent speed of the neural
network.

Moreover, we use the power-law distribution to analyze
the NSL-KDD dataset statistically, as shown in (5). As a
result, the whole data presented a long-tail distribution,
which often appears in some specific cyberattacks. Also, this
stage further verifies that the intrusion detection system
conforms to the social law and can map the crucial features
from the statistical view.

P(k) ~Cx " (5)

3.5. Feature Fusion and Alignment. In this module, we de-
sign and implement a multiview feature fusion and align-
ment method. In recent years, multimodel deep learning
methods have been gradually applied to intrusion detection.
Aceto et al. [43] proposed a novel multimodal deep learning
framework for encrypted traffic classification, named MI-
METIC. The method can improve the performance of
mobile traffic classification by learning intramodality and
intermodality dependencies, thereby utilizing complemen-
tary views to identify traffic. Bu et al. [44] designed a neural
network model with deep and parallel network-in-network
(NIN) structures for classifying encrypted network trafhic.

Security and Communication Networks

F={f,i=12,...,n}
Output: The selected feature subset M = {(fiof j)}.
(1) Initialization: set M = &.

(2) for each x;; € D d? 0, if x;; <0
(3) Feature conversion by Vii =31 if xj >0
(4) end for Y

(5) for each f; € F do

(7). NumPairs ({f;, f ;) = {
(8) end for
(9) for each (f;, f;> from NumPairs do

(11) (a) Build an entity feature set E = {e, e,,....,€,}.
(12) (b) Build a relational feature set R = {rij,i,j =12,..

(14) (d) Build a knowledge graph of the IDS dataset.
(15) end for

(16) for each feature category do

(17) for each classification type do

19) (b)y M = TopFeaturePairs((f,-,fj>)

return M

Input: Feature vector set D = {xij} of the dataset, where i is the i™ network request, j is the j feature. Feature set

(6) Calculate pairwise feature pairs and judge whether the features cooccur.
n;; + 0, if there is no cooccurrence relationship
n;; + 1, if features f; and f; are cooccurring

(10) Use feature semantic cooccurrence relationship to construct a knowledge graph.

.,m}, where 1 is the weight of entity e; and e;.
(13) (c) Calculate the cooccurrence threshold set T of different types of features.

(18) (a) Calculate the critical feature pairs of four features (i.e., intrinsic feature, content feature, time-based feature, and host-
based feature) by sorting algorithm, which covers all classification types (e.g., DoS, Probe, R2L, U2R).

(20) Output key feature pairs based on the knowledge graph.

ALGORITHM 1: Feature extraction based on the knowledge graph.

NIN can adopt a micronetwork after each convolutional
layer to enhance local modeling and improve classification
accuracy.

However, the above methods only learn features by
fusing or combining different deep learning models, ig-
noring the feature extraction and feature fusion of network
traffic in intrusion detection. Also, their time overhead and
model complexity are high. Compared with these methods,
this paper implements feature fusion and feature alignment
in the feature extraction stage. This multiview feature fusion
method belongs to a lightweight intrusion detection feature
preprocessing, which effectively combines the advantage of
two feature extraction methods. On the one hand, a
knowledge graph-based feature extraction algorithm can
mine the semantic relevance between features and extract
four feature pairs. On the other hand, a statistical analysis-
based feature extraction algorithm can select a single feature,
which makes an essential contribution to our IDS and ex-
tracts eight key features.

Actually, the feature extraction from the two views
proposed in this paper is better than the traditional IDS. The
latter tends to ignore the correlation between features and
select features only from a single view, such as using sta-
tistical features or weak correlation algorithms (e.g., prin-
cipal component analysis or statistical frequency).

Next, we need to introduce multiview feature fusion and
feature alignment processing for these features so that the
following deep learning model can be better transformed
into input word vectors. The whole calculation process is
shown in Algorithm 2. The algorithm steps are as follows. (1)
Convert the feature pairs identified by the knowledge graph

into sequences, and perform alignment and deduplication
processing. (2) Take the union operation on the features
extracted from the knowledge graph and statistical analysis,
and perform feature combination. (3) Assign different
weights to the features of the two types of fusion, which will
be used as the initial weights of the neural network model.

Algorithm 2 generates the weight set W through feature
fusion and feature alignment. Then, we use word embedding
to convert the network traffic into word vectors, which is the
input of neural networks. Next, the set W will initialize the
weight parameters of the corresponding feature vectors. In
other words, if feature f; belongs to the critical feature se-
lected by our feature extraction algorithm (i.e., from the set
U), the weight corresponding to the feature will be multi-
plied by for addition. Otherwise, the other weight remains
unchanged. Through the above processing, we can improve
the robustness of IDS and increase the gradient descent
speed of neural networks. Thus, this stage will significantly
contribute to the following intrusion detection and mali-
cious request classification tasks.

3.6. Model Construction. Now, we construct an attention-
based CNN-BiLSTM algorithm to learn the traffic features
obtained from the proposed feature extraction and feature
fusion module. In this model, CNN is similar to a feature
extractor, which can reduce computing resources and is
suitable for IoT devices (with limited resources). Moreover,
LSTM performs classification operations based on the se-
rialized feature information given by CNN, similar to a
classifier. For example, if only one TCP handshake packet is

Security and Communication Networks

FSA = {fk’k = 1,2,. .
Output: W = {w;,i =1,2,..
(1) Initialization: set W = &.

(3) for each (fi,fj) € M do

(4) Fgg = FeaturesOfKG.append (f, f ;)
(5) Fgg = AlignmentBySort (Fyg)

(6) end for

(8) U = FyYFg,

(9) for each f; € F do .
(10) Weight calculation by w; = { u:’ 1£ j;i i g
(11) end for asw; i

(12) Output the weight set W.
return W

Input: Feature set F = {f},i = 1,2,...,n}. The feature subset M = {(f,-, fj)} is selected by a knowledge graph. The feature subset
.,m} is selected by statistical analysis.
.,n} is the weight parameter to be multiplied.

(2) Perform feature alignment on the feature pair M, and convert it into a sequence.

(7) Fuse the features extracted from the two views of KG and SA.

ALGORITHM 2: A multiview feature fusion and feature alignment approach.

analyzed in intrusion detection, it is difficult to judge
whether it is a port scan. However, when multiple data
packets are serialized and the LSTM network is used for
judgment, it can be more accurately judged that these data
packets are from port scanning attacks, with the reason that
the LSTM network can learn context information and se-
rialized features. Thus, this paper designs an attention-based
CNN-BILSTM model to reduce the computing resources
and improve the result of IDS in IoT networks. Figure 3
summarizes the architecture of the attention-based CNN-
BiLSTM model, which consists of six phases: (1) word
embedding layer, (2) convolutional layer, (3) pooling layer,
(4) BiLSTM layer, (5) attention mechanism layer, and (6)
fully connected layer.

3.6.1. Word Embedding Layer. We perform word embed-
ding processing on the extracted features and weight in-
formation. In this paper, Word2Vec is used to implement
word embedding processing. The feature information of
network traffic is converted into a vector, which will be used
as the input of the subsequent deep learning model.
Therefore, the attention-based CNN-BiLSTM model can be
trained more quickly, making our model learn the feature
distribution efficiently.

3.6.2. Convolutional Layer. Convolutional Neural Network
(CNN) is designed to extract local features by scrolling the
convolution kernel. In IoT intrusion detection, a CNN
model can effectively highlight the key features of network
requests. In this paper, we construct a convolutional layer to
extract import elements (e.g., some features that significantly
impact DoS attacks). The convolution kernel convolves the
input word vector matrix, and its filter will select different
features (step 2 in Figure 3). The convolutional layer cal-
culation is as shown in

W = f(wg-V;+by), (6)

where V; is a word vector of network request feature in (6),
and V; € R™*, nis the number of features, k is the dimension
of the word vector, w, is a convolution kernel of size d, and
b, is the bias vector. Here, fis an activation function (e.g.,
ReLU), and the obtained feature is denoted as hf. After the
convolution processing, the local feature set H is obtained by
mapping, and we can write the following equation:

Hy ={n{, 05, ... Hy g} (7)

3.6.3. Pooling Layer. In this stage, we sample the output
vector of the convolution process and calculate the optimal
solution of local features, thereby reducing the dimension of
our features and maintaining the core features of the net-
work traffic (step 3 in Figure 3). This paper uses Max Pooling
technology to pool features as (8), which can calculate the
most critical feature of malicious or normal requests.

M; = max{H,}. (8)

After the pooling layer extracts essential features, the
obtained features are added to the subsequent network
model. Finally, the output vector S formed by the combi-
nation of this step is defined by

S={M,,M,,...,M,}. (9)

3.6.4. BiLSTM Layer. Long Short-Term Memory (LSTM) is
a variant of Recurrent Neural Network (RNN), a sequence
processing model. The model retains the key information
and forgets the secondary information through the memory
unit and gate structure. A Bidirectional LSTM (BiLSTM)
model comprises a forward LSTM and a backward LSTM,
which encodes features from the front and back directions.
This paper uses BiLSTM to extract contextual semantic
information and capture the long-distance dependence of
network traffic (as shown in Figure 3). Taking DoS attacks as
an example, this model can effectively identify the

Security and Communication Networks

Word Embedding
Layer

(2]
Convolutional
Layer /

Pooling

Layer

LSTM LSTM

2 LSTM 2

LSTM

BiLSTM

Layer

LSTM LSTM

e w, 6 w, 6

Attention

Mechanism Layer Attention

Attention

LSTM LSTM

Attention Attention

Fully Connected

Layer

abormal

Softmax

=
% I__:_@}%E normal

Figure 3: The architecture of an attention-based CNN-BiLSTM model.

relationship between the number of host connections and a
specific flag feature of the connection rejection error (e.g.,
REJ). Obviously, this processing can maintain contextual
semantic information, and the BiLSTM is a coarse-grained
intrusion detection model. In this paper, the S vectors
processed by the CNN model are used as the input of the
BiLSTM model. They will be connected to form the CNN-
BiLSTM model and complete the IoT intrusion detection
task. The structure of BILSTM includes the forget gate, input
gate, output gate, and memory unit, which can be defined as
follows:

—

—
tzf(wl'st+w2'ht—1>’
hy :f<w3'5t+w5'ht+1)’

yt:g<w4'ht+w6'ht)

(10)

In (10), EZ and h,, respectively, represent the state of the
forward LSTM layer and the backward LSTM layer at time t,
corresponding to the context feature of IoT network traffic. s,

is the word vector input at time ¢, and w, to wg represent the
layer’s weight parameters. Also, f and g are activation
functions, including sigmoid and tanh, y, is the final output
result of the BiLSTM model. By this, we can effectively
extract long-distance dependent features and solve the
problem of local feature loss.

3.6.5. Attention Mechanism Layer. The attention mecha-
nism aims to allocate limited attention resources to crucial
information, thereby enhancing the relevance of feature
vectors and output results, which is widely used in natural
language processing. In this paper, the attention mechanism
is introduced to strengthen the attention features of the
neural network. These features are extracted from the
previous knowledge graph and statistical analysis. Thus, the
attention layer can increase the contribution of key features
to the corpus and add weights to better distinguish between
normal requests and abnormal requests. This paper mainly
uses the basic form of attention mechanism to pay attention
to the weight distribution of IoT network traffic. The at-
tention mechanism will focus on the semantic features and

10

key features of different attack types. For example, in DoS
attacks, the feature same_srv_rate and dst_host sa-
me_srv_rate often appear. Our model will highlight their
importance and ignore lesser features. The calculation
process of this step is shown in equations (11) to (13).

v, = tanh (w, - y, +b.), (11)

a, = soft max(wT, vt), (12)

”zzat')’t- (13)
t=1

Here, (11) generates the target attention weight, namely,
v,, which is a result of the nonlinear transformation of the
activation function tanh, y, is a vector output of the CNN-
BiLSTM network, w, is a parameter of training weight, and
b, is bias item. (12) uses the softmax function to calculate the
importance of each component v,, the probability vector of
the weight is a,, and w is the transposed matrix. Finally, the
generated attention weight is matched to the corresponding
output vector y, in our model, and u represents the sentence
vector of the weighted sum of the importance of y;, as shown
in (13).

3.6.6. Fully Connected Layer. The fully connected layer plays
the role of classifier in the neural network model. It maps the
learned distributed features representation to the sample
label space. Finally, this paper designs a softmax classifier for
obtaining the classification results of intrusion detection and
complete IoT networks’ intrusion detection. In a word, we
have successfully constructed the attention-based CNN-
BiLSTM model to distinguish different classes through the
above six steps shown in Figure 3.

4. Evaluation

In this section, we evaluate the performance of the proposed
system in intrusion detection and attack classification. Also,
we analyze the results of feature extraction methods based on
the knowledge graph and statistical analysis. Finally, we
compare the proposed system with state-of-the-art systems
to verify the effectiveness and robustness of intrusion
detection.

4.1. Dataset. In this paper, we evaluate the proposed ap-
proach on the NSL-KDD dataset [42], which is a new revised
version of the KDD Cup 99 that has been generated by IoT
devices simulating real-time attacks, bench-marked datasets
for IDS. We can get the NSL-KDD dataset through the link
[45]. The NSL-KDD dataset is the traffic request generated
by MIT Lincoln Laboratory using IoT devices to simulate
attacks in the real-time environment. Thus, it is a relatively
authoritative dataset. Table 4 gives details of the NSL-KDD
dataset. There are 125973 training traffic samples and 22544
testing traffic samples in the dataset, involving four cate-
gories of attacks. DoS is a denial of service attack, Probe is a
port listening or scanning attack, Remote to Local (R2L) is a

Security and Communication Networks

remote to local attack, and User-to-Root (U2R) is an un-
authorized and trying to gain superuser or root. In the NSL-
KDD dataset, there are 39 subcategories of attack scattered
in four categories (i.e., DoS, Probe, R2L, and U2R), among
which 22 subcategories appear in the training set, and 17
more different attack subcategories (i.e., unknown attacks)
exist in the testing set. By this, we can evaluate the per-
formance of our model for unknown attack types.

Next, Table 5 is a detailed description of 41 features,
which includes four categories: intrinsic features of TCP
connections, content features of TCP connections, time-
based network traffic statistics features, and host-based
network traffic statistics features. In addition, the attribute
features include three nonnumerical features (i.e., proto-
col_type, service, and flag) and 38 numeric features. In the
previous data preprocessing section, we systematically ex-
plain how to clean and preprocess our dataset. This section
mainly focuses on the experimental evaluation of the pro-
posed model.

4.2. Evaluation Metrics. To evaluate the performance of the
intrusion detection model for IoT networks, this paper
calculates the precision, recall, F;-score, accuracy, and false
alarm rate (FAR). Table 6 shows the detailed confusion
matrix. By comparing the actual network request label and
the predicted network request label (including normal re-
quests and attack requests), the results of the classification
algorithm are evaluated.

As shown in Table 6, True Positive (TP) means that both
the predicted results of the network request and the actual
label are positive (i.e., attack label). True Negative (TN)
implies that the predicted results of the network request and
the actual label are negative (i.e., normal label). False Positive
(FP) indicates that the predicted result is negative, but the
actual label is positive. False Negative (FN) indicates that the
predicted result is positive, but the actual label is negative.

The five metrics are calculated by the following equation:

A TP + TN
ccuracy = ,
Y= TP+ TN+ FP+FN
.. TP
Precision = ——,
TP + FP
TP
Recall = —— 14
TPy EN (14)
2 x Precision x Recall
F, —score = —
Precision + Recall
FP
FAR = ——.
FP + TN

4.3. Experimental Setup. We implement the intrusion de-
tection model of IoT networks using TensorFlow and Keras,
with the programming language Python (version 3.7). Also,
all experiments are run in Windows 10 64-bit operating

Security and Communication Networks

TABLE 4: Distribution of the NSL-KDD dataset.

11

TaBLE 6: Confusion matrix.

Actual label
Predicted label cluat fabe

Normal Attack
Normal True Negative (TN) False Negative (FN)
Attack False Positive (FP) True Positive (TP)

Abnormal
Category ~ Normal Total
DoS Probe R2L U2R
Train 67343 45927 11656 995 52 125973
Test 9711 7458 2421 2754 200 22544
TABLE 5: Feature list of the NSL-KDD dataset.
No. Feature Category Feature Name
1 duration
2 protocol_type
3 Service
4 Flag
5 Intrinsic feature src_bytes
6 dst_bytes
7 land
8 wrong_fragment
9 Urgent
10 hot
11 num_failed_logins
12 logged_in
13 num_compromised
14 root_shell
15 su_attempted
16 Content feature num_root
17 num_file_ creations
18 num_shells
19 num_access_files
20 num_outbound_cmds
21 is_hot_login
22 is_guest_login
23 count
24 srv_count
25 serror_rate
26 srv_serror_rate
27 Time-based feature rerror_rate
28 srv_rerror_rate
29 same_Srv_rate
30 diff srv_rate
31 srv_diff host_rate
32 dst_host_count
33 dst_host_srv_count
34 dst_host_same_srv_rate
35 dst_host_diff_srv_rate
36 dst_host_same_src_port_rate
37 Host-based feature dst_host_srv_diff_hlz)st_rate
38 dst_host_serror_rate
39 dst_host_srv_serror_rate
40 dst_host_rerror_rate
4] dst_host_srv_rerror_rate

system environment with Inter Core i7-8700K CPU, 64 GB
memory, and GTX 1080Ti GPU.

To detect malicious requests in IoT networks, we con-
struct an attention-based CNN-BiLSTM model in this paper.
In terms of model parameter setting, the number of con-
volution kernels of the CNN model is 128. The activation
function rectified linear unit (ReLU) is adopted for the
convolutional and fully connected layers. At the same time,
the number of neurons in both the forward and backward

directions of the BILSTM model is 128, and the optimization
algorithm selects the Adam optimizer. Then, the initial
learning rate is set to 0.001, which is a standard starting point
for traditional deep learning. During the experiment, the loss
functions are the binary cross-entropy for binary classifi-
cation and the categorical cross-entropy for multiclass
classification. The dropout mechanism is introduced to
randomly sample data for training to prevent overfitting,
and its keep_prob parameter is set to 0.4. For completeness,
we leverage the sci-kit-learn library to construct the other
machine learning classification models as baselines (e.g.,
logistic regression, support vector machine, random forest,
etc.). Further, all experiments use the same environment and
the NSL-KDD dataset for a fair comparison. We can not only
complete the detection of malicious requests (for binary
classification) but also identify the types of attacks (for
multiclass classification).

Moreover, we implement two feature extraction algo-
rithms based on knowledge graph and statistical analysis in
Python, as shown in the previous section. Then, these se-
mantic feature pairs and key features will be visually dis-
played by the Gephi tool and some Python libraries (e.g.,
matplotlib, seaborn, and pyecharts). In particular, these key
features will add to the weight parameters of the IDS neural
network model proposed in this paper. Finally, to better
verify the effectiveness and robustness of the model, the final
experimental result is the average of 10 network traffic
classification results. By this, we can reduce the noise in-
fluence of a possible abnormal result through multiple
experiments.

4.4. Analysis of Proposed Feature Extraction. We implement
a feature extraction algorithm based on knowledge graphs in
this section and conduct detailed experimental evaluations.
We use the previous Algorithm 1 to perform entity ex-
traction and relationship extraction on the training set of the
NSL-KDD dataset and generate the corresponding feature
knowledge graphs of four attack types as shown in Figure 4.
The knowledge graph is scattered from the center to the
surroundings, and the feature relationship pairs are repre-
sented by two tuples. Note that the thicker the lines between
the features that are more closely related, and the more
features that appear, the greater their size, and the features
are clustered in different colors. For example, Figure 4(a) is
the knowledge graph of the DoS attack type. It can be found
that the feature two tuples with close semantic relationship
are <same_srv_rate, dst_host_same_srv_rate>,
<dst_host_diff srv_rate, same_srv_rate>, <tcp,
same_srv_rate>, <dst_host_count255, same_srv_rate>, etc.

In addition, by comparing each subgraph, we can find
that the semantic relationship of different attack types is

12

$:a =
..-.'
. .

g N s’r rgte
d's hos\ s‘serror rate o q
. t_host -s,e srv' réte

e same_.l rate

. *

.

~ d.ho nt255 ’

. . b

co-.—*.

e . .
o« o f,.;f-.; ast:hod_.rmr =te | .
. X -
R £
s dllf’ e -
- et s @ e
- . % - < -
. . o o

.
W %= < ,.' . seu‘rate

DOS
(a)

dst_host_serror_rate
hot

dst_bytes
dst_host_same_srv_rate

dst_host_diff_srv_rate
dst_host_same_src_port_rate

src_bytes tcp tp
. is_guest_login
logged_in SF
r2l dst_host_rerror._rate
srv_count1
same srv_rate
T count1
warezclient =T

91 h_SA ost_rats

R2L
()

L e

Security and Communication Networks

*

w_»qm
_

] dst ho§ Qe siv_rate

* ’sr*tes ‘ . %

0 Y /e
+ dst_host sa rt_rat
st_host_si r‘src_po t_rate

N - @

Probe
(b)

e

scrcliies srv_count1

® telnet
oot most s st
dst_host_srv_rerror_rate S count
num_compromised
dst_host_reror_rate * 9

" root_shell
an_s e p “ num_file_creations, ..
Iogged in Yy
2] S g ®
ey, -
bumua oot
dsl host_same_src_port_rate o
dstfiytes, s - @

.same_srv_rate. ¢
dst_host_same_srv. rate

U2R

(d)

FIGURE 4: The semantic feature relationships of four attack types are extracted by a knowledge graph. (a) DoS. (b) Probe. (c) R2L. (d) U2R.

different. Among them, the closely related feature pairs in
the DoS attack are concentrated in the host-based feature;
the closely related feature pairs in the Probe attack are
concentrated in the two major categories of time-based
features and host-based features; the closely related feature
pairs in the R2L attack cover four categories, namely, in-
trinsic features (e.g., SF), content features (e.g., logged_in),
time-based features (e.g., same_srv_rate), and host-based
features (e.g., dst_host_same_srv_rate); U2R attacks also
cover four categories of features.

At the same time, we construct a knowledge graph for
the training set of normal network requests, as shown in
Figure 5 in the appendix. Table 7 shows the critical feature
pairs of normal and abnormal requests (covering five labels).
Each classification label displays the top 8 unique results
represented by triples <src_feature, dst_feature, weight>,
corresponding to the source position of the feature, the
destination position of the feature, and semantic relation

weight. Each weight adopts Min-Max normalization
processing.

This section implements the feature extraction algorithm
based on statistical analysis. We select features on the dif-
ferent classification labels of the four feature categories (i.e.,
normal, DoS, Probe, R2L, and U2L). Each category extracts
two essential features. The results are shown in Table 8 in the
appendix, represented by the two-tuple < feature, diff>,
corresponding to the key features and the average difference
of this feature’s category. The calculation process is shown in
the previous equation (4).

To further evaluate the effect of the feature extraction
algorithm based on statistical analysis, we use the power-law
distribution function to analyze the NSL-KDD dataset and
extract six representative features (i.e., duration, num_-
compromised, num_root, src_bytes, dst bytes, and
srv_count). The experimental results are shown in Figure 6.
The experimental results show that the power-law

Security and Communication Networks 13

@ @ e
e &
- » ®
P e - - g
s ©- P m@m = & &
o sy / @l o @
. su\@mss '@” W_,@W,w@‘"m)@ 7 @wm 28 du@,m @
- e st o, > ® @
el n@um:“—"@m e b PN
e b 4 @
s d e O =@ @
" 0 & @ P
B ,o = & o _ --o—
@ g e war@orn | e = @ AN
s By M@Wi S s U‘@”"&rv dnt rate © & e -0 W@m‘;u@m
@ w0 @«msﬂ‘"@"’“ e i@ @
m»@mm NS @“’“m@m ‘t host@ountzss o 0 S e @~
5 B o oGy & & & @ -e @ e > .-
PRt w(@ya oy NS “
u@m i gt ﬁa@:'@-'@st_rate & & o © 9 e .t
o e S @Mm_,@m @y ST e L RS
g O e o & ‘s e P 5
“ G P . %4 B T s dst_hntzss i
PN a oyt e oo & e o posEYeumtass s o @yrss
s = @ > oL . @
@ B gy e U opna mm_@mr af @M @ oo mds@h‘o‘iﬁm @ M@(rate "
& = D By s D o ‘. i W = e U 4)
o = = L g et g
= @m » @’m % @M “L .‘ dst h‘o Taie am@m ' Mm@mm “*‘-’"“@”“mu M—m@mm
O g D O e & R e S
,‘.n i omaran. . i
dst hossn’ate > Lo gL asros @y
@i cy Sl @ Dt e wreece
© wngu B e 6O ~ S rate ..
e atpoouns By e
® dst_host s?wp%rt”@te @ g » s T
s B R sy © = e
@ s © oot @y e i e A o @y
o vos@yonz o pos(@pnte 3] s o axreyes &
@ N oo e Vil
© B Seam SN SR e @ oo @
- g e O o o
L S e s Bymict ro@yrez B
P e @ @y
s@ren sl By il ~0 @
e e = D s Byir o %
@ A, WA 4
@ o = P Wi -8
dst_pos(Gm)countzs A; s um@»m
- % i@ am,m,@m.,w“®m"m@
@ = 7
B @m mw_m(@(mm

T TN o

FIGURE 5: The semantic feature relationships of normal requests are extracted by a knowledge graph.

distribution of features is generally consistent with the experimental results of the statistical analysis-based feature
features extracted in this section, and some features are extraction algorithm, and f%5) represents the features
affected by unbalanced data distribution. However, the recognized by two algorithms. Also, f; represents the i-th
traffic features of the whole NSL-KDD dataset basically feature, with a total of 41 features. Through Algorithm 2, we
conform to the law of human network attack activities, and ~ perform feature fusion and alignment for normal, DoS,
the attacks are mainly caused by human factors. So far, we Probe, R2L, and U2L, and the number of key features
effectively verified that the feature extraction algorithm extracted for each type is 12, 14, 15, 13, and 14, respectively.
proposed in this paper is very important to the identification =~ Then, these features will be added to the initial weight of the
of abnormal requests and the detection of attack types. subsequent IDS system based on deep learning. Therefore,

Finally, we implement feature fusion and feature since the semantic relationship between features and the
alignment algorithms according to Algorithm 2. The fusion statistical distribution of features are considered in our
features are shown in Table 9. Among them, fX represents system, IDS combining the two views can better detect the
the experimental results of the knowledge graph-based IoT malicious traffic and identify different types of network
feature extraction algorithm, fS* represents the attack requests.

14 Security and Communication Networks
TaBLE 7: Key semantic features extracted by the knowledge graph.
Label Feature category
(M <same_srv_rate, dst_host_same_srv_rate,0.980>
< src_bytes, same_srv_rate,0.950>
®<SF,src_bytes,0.940>
@®<src_bytes, dst_bytes,0.830>
Normal ® <tcp,sztme_srv_r§e,0.800>
®<logged_in,same_srv_rate,0.710>
@D<same_srv_rate, dst_host_same_src_port_rate,0.670>
<http, same_srv_rate,0.570>
(M<same_srv_rate, dst_host_same_srv_rate,0.970>
@<dst_host_diff_srv_rate, same_srv_rate,0.950>
®<tcp,same_srv_rate,0.920>
DoS @®<dst_host_count255,same_srv_rate,0.920>
®<tep,diff_srv_rate,0.910>
®<dst_host_serror_rate, dst_host_diff srv_rate,0.780>
@ <tcp,dst_host_srv_serror_rate,0.770>
<serror_rate, dst_host_serror_rate,0.770>
(M<same_srv_rate, dst_host_same_src_port_rate,0.950>
@<same_srv_rate, dst_host_same_srv_rate,0.810>
®<src_bytes, same_srv_rate,0.700>
Probe ®<dst_host_diff srv_rate, dst_host_rerror_rate,0.640>
®<count, dst_host_same_src_port_rate,0.610>
®<SF,src_bytes,0.600>
@<dst_host_count255,dst_host_diff_srv_rate,0.580>
<rerror_rate, dst_host_rerror_rate,0.550>
®<tcp,same_srv_rate,1.000>
@<same_srv_rate, dst_host_same_srv_rate,0.990>
®<src_bytes,tcp,0.970>
ROL @®<SF,same_srv_rate,0.940>
®«<logged_in,SF,0.910>
®<dst_host_same_src_port_rate, dst_host_same_srv_rate,0.740>
@<count, same_srv_rate,0.710>
<srv_count, count,0.700>
M®<SF,same_srv_rate,0.980>
@<dst_bytes, same_srv_rate,0.961>
®<tcp,dst_bytes,0.941>
Ul @®<dst_host_same_srv_rate, same_srv_rate,0.922>

®<logged_in,dst_bytes,0.882>
®<srv_count, same_srv_rate,0.824>
@<dst_host_same_src_port_rate, dst_host_same_srv_rate,0.824>
®<src_bytes, dst_bytes,0.725>

4.5. Comparison of Different Intrusion Detection System
Models. This paper proposes an enhanced intrusion detection
system model based on deep learning and a knowledge graph.
To verify the effectiveness of our system, the experimental
evaluation is compared with the traditional machine learning
models and the existing deep learning models. Detailed
comparative experimental results are shown in Table 10. The
precision, recall, and F;-score of the proposed system are
0.9035, 0.9107, and 0.9071, respectively, superior to state-of-
the-art systems. Moreover, the F;-score of our system is 10.29%
higher than that of the best machine learning algorithm
(random forest) and 5.46% higher than that of the compared
deep learning algorithm (CNN-BiLSTM-attention). Therefore,
our system improves the semantic relationship between traffic
features through knowledge graphs, improves the importance
of crucial features through statistical analysis, and adds weight
to the deep learning model to improve the accuracy of IDS for

IoT networks. Meanwhile, the CNN-BiLSTM-attention model
constructed in this paper can effectively capture long-distance
dependent information, and the attention mechanism can
highlight some features. These factors can highlight the con-
tribution of our model to intrusion detection.

In addition, the detection time of IoT network traffic is
also an important indicator for evaluating IDS, which can
effectively measure the time cost and algorithm complexity
of a model. Column 6 of Table 10 gives the detection times
for different systems in seconds. The detection time of the
system in this paper for the network traffic of the test set is
22.17 seconds, and it can effectively detect 1016 network
requests per second. The entire detection time efficiency is in
the upper-middle range. Compared with the improvement
of the F1-score, the time cost is within an acceptable range,
only slightly higher than other models, and does not show an
exponential increase.

Security and Communication Networks

15

TaBLE 8: Key features extracted by the statistical analysis.

Label Intrinsic feature Content feature
Normal <dst_bytes,0.1187> <logged_in,0.3149>
<src_bytes,0.0971> <is_guest_login,0.0036>
DoS <dst_bytes,0.1379> <logged_in,0.3749>
<duration,0.0284> <is_guest_login,0.0094>
Probe <dst_bytes,0.1435> <logged_in,0.3886>
<src_bytes,0.1082> <is_guest_login,0.0093>
ROL <src_bytes,0.1625> <logged_in,0.5179>
<duration,0.0736> <is_guest_login,0.3052>
UaL <duration,0.2563> <logged_in,0.4889>
<dst_bytes,0.2138> <num_shells,0.0671>
Label Time-based Feature Host-based Feature
Normal <same_srv_rate,0.3085> <dst_host_srv_count,0.2927>
<serror_rate,0.2711> <dst_host_same_srv_rate,0.2907>
DoS <serror_rate,0.4690> <dst_host_srv_serror_rate,0.4659>
<srv_serror_rate,0.4642> <dst_host_serror_rate,0.4634>
Probe <srv_rerror_rate,0.3233> <dst_host_same_src_port_rate,0.5034>
<rerror_rate,0.3173> <dst_host_srv_rerror_rate,0.3208>
ROL <same_srv_rate,0.3358> <dst_host_same_src_port_rate,0.4485>
<serror_rate,0.2726> <dst_host_count,0.3651>
UL <srv_serror_rate,0.2825> <dst_host_count,0.5270>
<same_srv_rate,0.2706> <dst_host_srv_count,0.4147>
10 10° 10°
10’ 10" 10*
10° . . 10° { * 10°
{=¥ ‘e f=% o .
10 . 10 . 107 o
“7 - ..
log 100 oabe @S¢ N zmnmsaED e © . 10“ * e s e cmesmmimenmms o .
10° 10' 10° 10° 10* 10° 10! 10° 10° 10* 10° 10! 10° 10° 10"
duration num_compromised num_root
(a) (b) (c)
10°
10° o .
10° S —
10°) . 10° *
10°
=~ 2 a bl 102 \ e .
10 102 \Q’& :
10" 0! 10' ‘L‘
10° 100 . 10° ..
10' 10° 10 107 10° 10! 0 0 10 0 10° 10! 10°
src_bytes dst_bytes srv_count
(d) (e) (f)

FIGURre 6: Experimental results of power-law distribution with different features. (a) duration. (b) num_compromised. (¢) num_root.

(d) src_bytes. (e) dst_byte.s (f) srv_count.

Note that the comparison IDS in this paper is due to
differences in datasets, and some of the code is not open
source. Therefore, the comparison systems combine the
methods and ideas of the references and the typical intrusion
detection methods to reconstruct the code, such as SVM
[13], KNN [14], DT [15], RF [16], LSTM [32], and BiLSTM

[33] in Table 10. Finally, we reproduce these baseline
methods and conduct a detailed comparative analysis of our
dataset.

In order to further measure the detection effect of the
proposed IDS model and evaluate its identification results of
malicious network requests and normal network requests,

16 Security and Communication Networks
TaBLE 9: Feature fusion results for the five types of requests on the NSL-KDD dataset.
Label ~ Number Feature fusion and feature alignment
Normal 12 (KG) £ (KG) "¢ (KG) "¢ RGSA) ¢ (KGSA) ¢ (KGSA) ¢ OB ¢ GA) ¢ (KGSA) ¢ GA) 7 (KGSA) "¢ (KG)
DoS 14 - (58) £ (KG)’ SA) f (SA) P, £ 0 g A ¢ KGSA) o9, f) fos (KG) fos &9 £, (G, SA) (KG.SA)
Probe 15 f(KG) f(KG ,SA) f(SA) f (SA) f (SA) f (KG) f (KGSA) f (SA) f (KG) f (KG) f (KG) f (KG) f (KGSA) f (KG) f (SA)
o N Ty < i
U2L 14 fl(),fz()’f4())fS(),fs(g)’f12(g)’fls()) f24()) f26()»f29(g)’f32()’f33())f34(), f36()
TaBLE 10: Performance comparison of various IoT intrusion detection models.
Type Model Precision Recall F,-score Detection Time
KNN 0.7997 0.7940 0.7968 23.40
LR 0.7739 0.7578 0.7658 5.97
DT 0.7726 0.7613 0.7669 5.44
ML-based IDS SVM 0.7741 0.7600 0.7670 13.26
RF 0.8131 0.7956 0.8043 10.99
AdaBoost 0.8065 0.7874 0.7969 18.40
CNN 0.8294 0.8228 0.8261 7.82
TextCNN 0.8417 0.8391 0.8404 19.40
LSTM 0.8265 0.8179 0.8222 13.93
DL-based IDS BiLSTM 0.8500 0.8504 0.8502 14.15
BiGRU 0.8271 0.8183 0.8227 11.46
CNN-BiLSTM-Att 0.8520 0.8530 0.8525 19.34
Our System 0.9035 0.9107 0.9071 22.17

we compared the accuracy and FAR of different IDS models.
The results are shown in Figure 7, and the accuracy of our
system is 0.9001, and the FAR is 0.0120, both of which are
better than the experimental results of other models. The
accuracy is 14.71% higher than the average of the six ma-
chine learning models and 8.50% higher than the average of
the other six deep learning models. On the other hand, the
FAR is 4.61% lower than the average of the six machine
learning models and 2.45% lower than the average of the
other six deep learning models. The experiment result in-
dicates that our system can identify more malicious requests
and discover semantic feature relationships between normal
and abnormal requests, that is, the feature relationship pairs
that often appear at the same time, inclu-
ding < same_srv_rate, dst_host_same_srv_rate>,
<dst_host_diff srv_rate, same_srv_rate>, <same_srv_rate,
and dst_host_same_src_port_rate>.

This paper implements various malicious request attack
identification experiments on the proposed model. The
experimental results of the five labels are shown in Table 11.
Among them, the recognition performance of normal re-
quest, DoS attack, and Probe attack is better, and their F,-
score is 0.9107, 0.9273, and 0.8849, respectively, indicating
that our system can effectively extract semantic relations and
key features. Although the experimental results of the U2R
type are poor due to small samples, our system yet detects 12
attack requests, reflecting that our system has better ro-
bustness and accuracy in identifying unknown attacks.

To better evaluate the performance of the attention-
based CNN-BiLSTM intrusion detection system and com-
pare the ability of IDSs to identify malicious requests with
different thresholds, this paper selects the random forest
algorithm (a better machine learning model) and the CNN-

BiLSTM-Att algorithm (a better deep learning model) to
compare the ROC curve with the IDS system. Figure 8 shows
the final renderings. It can be seen that the AUC area
corresponding to the ROC curve of our system is the largest,
which proves that our IDS has the best comprehensive
performance and can obtain higher TPR and lower FPR.

Moreover, this paper compares different intrusion de-
tection systems to identify malicious attack types (ie.,
multiclassification tasks), and the experimental results are
shown in Figure 9. The abscissa is various systems, and the
ordinate is the F;-score corresponding to the detection
results of different systems. Note that we only select the
random forest model, the best machine learning algorithm
in our experiment. In Figure 9, whether the system in this
paper detects normal network requests or recognizes
malicious request types, its F;-score is better than other
systems, and it can effectively identify unknown attack types.
Among them, the F;-score of the normal type is 13.37%
higher than the average value of other comparison systems;
the DoS attack type is 7.25% higher than the average value of
the other comparison systems; the Probe attack type is
15.68% higher than the average value of the other com-
parison systems; the R2L attack type is higher than the
average value. The average value of other comparison sys-
tems is 43.12% higher; the U2R attack type is 10.67% higher
than the average value of other comparison systems. In
short, this experiment further proves the contribution of the
IDS in this paper. The two feature extraction algorithms
proposed in this paper (i.e., knowledge graph-based feature
extraction algorithm and statistical analysis-based feature
extraction algorithm) can effectively mine the semantic
relationship between features and improve the performance
of the IDS for IoT networks.

Security and Communication Networks 17

1.0000 -
0.9000 -
0.8000 -
0.7000 -
0.6000 -
0.5000 -
0.4000 -
0.3000 -
0.2000 -

0.1000 -

0.0000
KNN LR KNN LR RF AdaBoost CNN TextCNN LSTM BiLSTM BiGRU CNN-BiLSTM Our
-Att System

W Accuracy
@ FAR

Figure 7: Comparison of accuracy and FAR of different IoT intrusion detection models.

TaBLE 11: The results of five labels by our intrusion detection system.

Label Precision Recall F,-score
Normal 0.8541 0.9754 0.9107
DoS 0.9021 0.9540 0.9273
Probe 0.8742 0.8959 0.8849
R2L 0.9060 0.3500 0.5050
U2R 0.5455 0.0600 0.1081

& L
<
e~ s
2 .7
k= .
g .
j=3 7z
= -
2 IR e
& o4 .
I: .
.
f .
.
| e
: s
02 L7
: .
: .
: .
: .
N
I
.
.
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

—— Our System (AUC=0.96)
<<<<<< CNN-BiLSTM-Att (AUC=0.91)
— .~ RF(AUC=0.80)

F1GURE 8: Comparison of ROC curves of different systems.

Finally, to prove that our system has a good detection =~ unknown attacks (i.e., apache2, mailbomb, processtable, and
effect on unknown attacks, this paper compares the resultsof ~ udpstorm) and 1717 traffic samples; Probe includes 2 types
different models against unknown types of attacks. In the of unknown attacks (i.e., mscan and saint), a total of 1315
testing set of the NSL-KDD dataset, 17 subcategories belong traffic samples; R2L includes 7 types of unknown attacks
to unknown attacks. Among them, DoS includes 4 types of (i.e., named, sendmail, snmpgetattack, snmpguess, worm,

18 Security and Communication Networks

0.9000 -
0.8000 -
0.7000 -
0.6000 -
0.5000 -
0.4000 -
0.3000 -
0.2000 -
0.1000 -

0.0000

Normal U@R
B RF B BiLSTM
@ ONN B BiGRU
O TextCNN W CNN-BILSTM-Att
O LST™M m Our System
FIGURE 9: Experimental results of different systems to identify malicious attack types.
TaBLE 12: Performance comparison of different systems for unknown types.
Type Model F,-score Ranking of various labels of detection performance
KNN 0.6201 Probe > DoS > U2R > R2L
LR 0.5701 Probe > DoS > U2R > R2L
DT 0.5804 DoS > Probe > U2R > R2L
ML-based IDS SVM 0.5865 Probe > DoS > U2R > R2L
RF 0.6329 Probe > DoS > U2R > R2L
AdaBoost 0.5676 Probe > DoS > U2R > R2L
CNN 0.7096 Probe > DoS > U2R > R2L
TextCNN 0.7566 Probe > DoS > U2R > R2L
LSTM 0.7169 Probe > DoS > U2R > R2L
DL-based IDS BiLSTM 0.8033 Probe > DoS > U2R > R2L
BiGRU 0.7579 Probe > DoS > U2R > R2L
CNN-BILSTM-Att 0.8146 Probe > DoS > U2R > R2L
Our System 0.8783 Probe > DoS > U2R > R2L
10 10
hot - 0.00 0.00 0.00 0.1 0.02
duration - 0.04 0.00 0.09 0.10 0.28
num_failed_logins - 0.00 0.00 0.00 0.01 0.00
0.8 logged_in - 0.02 0.01 0.8
stc_bytes -[025 WA e 052 02 num_compromised - 0.00 0.00 0.00 0.00 0.04
root_shell - 0.00 0.00 0.00 0.00 0.00
dst_bytes - 027 001 0.0 015 036 06 su_attempted - 0.00 0.00 000 0.00 0.00 06
num_root - 0.00 0.00 0.00 0.00 0.00
land - 0.00 0.00 0.00 0.00 0.00 04 num_file_creations - 0.00 0.00 0.00 0.00 0.02 04
num_shells - 0.00 0.00 0.00 0.00 0.07
num_access_files - 0.00 0.00 0.00 0.00 0.00
wrong_fragment - 0.00 0.02 0.00 0.00 0.00
- 02 num_outbound_cmds - 0.00 0.00 0.00 0.00 0.00 - 02
is_hot_login - 0.00 0.00 0.00 0.00 0.00
urgent - 0.00 0.00 0.00 0.00 0.01
is_guest_login - 0.01 0.00 0.00 0.32 0.00
. . . , , - 00 e e e B - 0.0
normal dos probe r21 ur normal dos probe r21 u2r
(a) (b)

Figure 10: Continued.

Security and Communication Networks

count - 0.04 0.35 0.15 0.00 0.01

srv_count - 0.05 0.06 0.02 0.01 0.00
0.8

serror_rate - 0.01 0.75 0.05 0.01 0.04

srv_serror_rate - 0.01 0.75 0.04 0.01 0.00 0.6

rerror_rate - 0.04 0.15 0.44 0.05 0.01

srv_rerror_rate - 0.04 0.5 | 044 005 0.02 - 04
B "
- 02
diff_srv_rate - 0.03
srv_diff_host_rate - 0.13 0.01 0.30 0.02 0.00
' ' ' ' ' - 0.0

normal dos probe r2l u2r

(c)

19

dst_host_count - 035 0.19

dst_host_srv_count -JIVEM 0.10 0.17 0.17
0.8
dst_host_same_srv_rate - 0.12 | 0.39 .
dst_host_diff_srv_rate - 0.04 0.07 0.0 0.04

0.6
dst_host_same_srv_port_rate - 0.12 0.05
dst_host_srv_diff_host_rate - 0.03 0.00 0.19 0.09 0.08
- 0.4
dst_host_serror_rate - 0.01 (WA 004 0.02 0.00

dst_host_srv_serror_rate - 0.01 (WZ% 004 0.02 0.01
- 02
dst_host_rerror_rate - 0.05 0.16 = 039 0.05 0.04

dst_host_srv_rerror_rate - 0.04 0.15 | 0.44 0.05 0.02

' ' 0 ' ' - 0.0
normal dos probe 121 u2r

(d)

Figure 10: Heat map distribution of different traffic features. (a) Intrinsic feature. (b) Content feature. (c) Time-based feature. (d) Host-

based feature.

xlock, and xsnoop) and 555 traffic samples; U2R includes 4
types of unknown attacks (i.e., httptunnel, ps, sqlattack, and
xterm) and 163 traffic samples. The results of the whole
experiment are shown in Table 12.

Among them, the F;-score of the proposed IDS in this
paper is 0.8783, which is higher than other IDSs based on
machine learning and deep learning. This F;-score of our
IDS is 25.82%, 30.82%, 29.79%, 29.18%, 24.54%, and 31.07%
higher than KNN, LR, DT, SVM, RF, and AdaBoost. Also,
this value is higher than CNN, TextCNN, LSTM, BiLSTM,
BiGRU, and CNN-BiLSTM-Att out 16.87%, 12.17%, 16.14%,
7.50%, 12.04%, and 6.37%. This experiment shows that the
system in this paper can better detect unknown attacks, and
its improvement is better than the previous Table 10. In
addition, this paper compares the F)-score of different
categories and puts the obtained ranking results in the fourth
column of Table 12. The experimental results show that,
except for the DT algorithm, other systems’ detection and
ranking results are Probe, DoS, U2R, and R2L. In short, our
IDS has a good performance in both semantic feature ex-
traction and malicious detection of unknown attacks.

5. Conclusions

This paper proposed and implemented an enhanced in-
trusion detection system based on a knowledge graph and
CNN-BiLSTM-attention. Our IDS combines knowledge
graph-based feature extraction and statistical analysis-based
feature extraction, which can effectively extract the con-
textual semantic relationship and crucial features of IoT
network traffic. The model has better accuracy and ro-
bustness. In particular, the proposed system extracts the key
features of normal and abnormal requests (including DoS,

Probe, R2L, and U2R attack types) in detail, ensuring robust
detection and identifying the attack types (including un-
known attacks) of network requests in real-time. We
demonstrated that the feature extraction algorithm based on
knowledge graph and multiviews fusion could accurately
extract key traffic features and have certain interpretability.
Extensive experiments showed that our IDS could effectively
detect various attacks on IoT networks. It achieved a pre-
cision of 90.35%, a recall of 91.07%, and an F;-score of
90.71%, which outperformed state-of-the-art systems.
Moreover, the F;-score of our system is 10.29% higher than
that of the best machine learning algorithm (random forest)
and 5.46% higher than that of the compared deep learning
algorithm (CNN-BiLSTM-attention). The accuracy of our
system is 0.9001, which is 14.71% higher than the average of
the six machine learning models and 8.50% higher than the
average of the other six deep learning models. In particular,
our IDS can identify unknown attack types with small
samples, the recognition performance of DoS attack and
Probe attack is better than other systems, and their F,-score
is 0.9273 and 0.8849. In short, our system can detect various
stealthy attack types (including DoS, Probe, R2L, and U2L)
and extract semantic relationships among features.

In the future, on the one hand, we will construct a
network intrusion detection system based on knowledge
graphs and deep learning for larger-scale network traffic,
which can realize real-time monitoring of malicious traffic
on enterprise IoT networks. On the other hand, we will
combine the advantages of graph neural network and
provenance graph to optimize our neural network model in
this paper, thereby building a more robust intrusion de-
tection system to identify encrypted or obfuscated malicious
network traffic.

20

Appendix

Figure 5 is a knowledge graph, which is constructed by the
training set of normal network requests. Among them, the
closely related feature relationship pairs mainly cover fea-
tures such as src_bytes, same_srv_rate, dst_host_sa-
me_srv_rate, and SF.

The key features extracted based on statistical analysis
are shown in Table 8. Each category extracts two essential
features, and each feature is represented by a two-
tuple < feature, diff>, corresponding to the key features and
the average difference of this feature’s category. The cal-
culation process is shown in the previous equation (4). For
example, the time-based feature of the type of DoS attack is
error_rate, and the average difference is 0.4690.

In particular, the authors calculate the average value of
different (numerical) features. The heat map distribution is
shown in Figure 10. The authors can see the key features of
different attack types. The statistical analysis results of the
whole distribution are basically consistent with those in
Table 8. For example, src_bytes, logged_in, same_srv_rate,
and dst_host_same_srv_rate features play an important role
in detecting different types of network requests.

Data Availability

The dataset used in this study is free and publicly available on
the Internet. We can get the NSL-KDD dataset through the
following link: https://www.unb.ca/cic/datasets/nsL.html.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was in part supported by the National Natural
Science Foundation of China under Grant Nos. 62172308,
U1626107, 61972297, and 62172144.

References

[1] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods
for Internet of Things (IoT) security,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 3, pp. 1646-1685, 2020.

[2] A.J. Siddiqui and A. Boukerche, “TempoCode-IoT: temporal
codebook-based encoding of flow features for intrusion de-
tection in Internet of Things,” Cluster Computing, vol. 24,
no. 1, pp. 17-35, 2021.

[3] Wikipedia. 2021. Stuxnet, 2021, https://en.wikipedia.org/wiki/
Stuxnet.

[4] Wikipedia, Ukraine Power Grid Hack, 2021, https://en.
wikipedia.org/wiki/Ukraine_power_grid_hack.

[5] Wikipedia, 2020 United States Federal Government Data
Breach, 2021, https://en.wikipedia.org/wiki/2020_United_
States_federal_government_data_breach.

[6] Wikipedia, Colonial Pipeline Ransomware Attack, 2021, https://
en.wikipedia.org/wiki/Colonial Pipeline ransomware_attack.

(7]

(8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Security and Communication Networks

T. Shekari, C. Bayens, M. Cohen, L. Graber, and
amd R. Beyah, “RFDIDS: radio frequency-based distributed
intrusion detection system for the power grid,” Proceedings of
the 26th Network and Distributed System Security Symposium,
San Diego CA, USA, 2019.

Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. Yao, “Deep
learning-based anomaly detection in cyber-physical systems:
progress and opportunities,” ACM Computing Surveys,
vol. 54, no. 5, pp. 1-36, 2021.

A. Alsaheel, Y. Nan, S. Ma et al., “ATLAS: a sequence-based
learning approach for attack investigation,” Proceedings of the
30th USENIX Security Symposium, pp. 3005-3022, August
2021.

Y. Tang, Y. Wang, H. Li, and X. Li, “To cloud or not to cloud:
an on-line scheduler for dynamic privacy-protection of deep
learning workload on edge devices,” CCF Transactions on
High Performance Computing, vol. 3, no. 1, pp. 85-100, 2021.
Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: learning
program-wide code representations for binary diffing,” Pro-
ceedings of the 27th Network and Distributed System Security
Symposium, San Diego CA, USA, 2020.

W. Meng, W. Li, L. Jiang, K.-K. R. Choo, and C. Su, “Practical
bayesian poisoning attacks on challenge-based collaborative
intrusion detection networks,” Lecture Notes in Computer
Science, pp. 493-511, Luxembourg, 2019.

P. Hadem, D. K. Saikia, and S. Moulik, “An SDN-based in-
trusion detection system using SVM with selective logging for
IP traceback,” Computer Networks, vol. 191, Article ID 108015,
2021.

W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “CANN: an intrusion
detection system based on combining cluster centers and
nearest neighbors,” Knowledge-Based Systems, vol. 78,
pp. 13-21, 2015.

A.J. Malik and F. A. Khan, “A hybrid technique using binary
particle swarm optimization and decision tree pruning for
network intrusion detection,” Cluster Computing, vol. 21,
no. 1, pp. 667-680, 2018.

S. Masarat, S. Sharifian, and H. Taheri, “Modified parallel
random forest for intrusion detection systems,” The Journal of
Supercomputing, vol. 72, no. 6, pp. 2235-2258, 2016.

M. Mazini, B. Shirazi, and I. Mahdavi, “Anomaly network-
based intrusion detection system using a reliable hybrid ar-
tificial bee colony and AdaBoost algorithms,” Journal of King
Saud University - Computer and Information Sciences, vol. 31,
no. 4, pp. 541-553, 2019.

C. Liu, Z. Gu, and J. Wang, “A hybrid intrusion detection
system based on scalable k-means+ random forest and deep
learning,” IEEE Access, vol. 9, pp. 75729-75740, 2021.

S. Ahn, H. Yi, Y. Lee, W. R. Ha, G. Kim, and Y. Paek,
“Hawkware: network intrusion detection based on behavior
analysis with ANNs on an IoT device,” Proceedings of the 57th
Design Automation Conference, pp. 1-6, San Francisco, CA,
USA, 2020.

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an
intrusion detection system using a filter-based feature se-
lection algorithm,” IEEE Transactions on Computers, vol. 65,
no. 10, pp. 2986-2998, 2016.

C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious
traffic detection via frequency domain analysis,” in Proceed-
ings of the 27th ACM SIGSAC Conference on Computer and
Communications Security, pp. 3431-3446, Virtual Event,
Korea, 2021.

J. B. D. Caberera, B. Ravichandran, and R. K. Mehra, “Sta-
tistical traffic modeling for network intrusion detection,”

https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Ukraine_power_grid_hack
https://en.wikipedia.org/wiki/Ukraine_power_grid_hack
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack

Security and Communication Networks

Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, pp. 466-473, San Francisco, California, USA, 2000.

[23] D. E. Denning, “An intrusion-detection model,” IEEE
Transactions on Software Engineering, vol. SE-13, no. 2,
pp. 222-232, 1987.

[24] T. F. Lunt and R. Jaganna, “A prototype real-time intrusion-
detection expert system,” Proceedings of the 9th IEEE Sym-
posium on Security and Privacy, pp. 59-66, Oakland, Cal-
ifornia, USA, 1988.

[25] K. Borders, J. Springer, and M. Burnside, “Chimera: a de-
clarative language for streaming network traffic analysis,” in
Proceedings of the 2Ist USENIX Security Symposium,
pp- 365-379, Bellevue, WA, USA, 2012.

[26] H. Li, H. Hu, G. Gu, G. Ahn, and F. Zhang, “vNIDS: towards
elastic security with safe and efficient virtualization of network
intrusion detection systems,” Proceedings of the 25th ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 17-34, Toronto, ON, Canada, 2018.

[27] H. Haugerud, H. N. Tran, N. Aitsaadi, and A. Yazidi, “A
dynamic and scalable parallel Network Intrusion Detection
System using intelligent rule ordering and Network Function
Virtualization,” Future Generation Computer Systems,
vol. 124, pp. 254-267, 2021.

[28] W. Li, W. Meng, and M. H. Au, “Enhancing collaborative
intrusion detection via disagreement-based semi-supervised
learning in IoT environments,” Journal of Network and
Computer Applications, vol. 161, Article ID 102631, 2020.

[29] R. Bitton and A. Shabtai, “A machine learning-based intrusion
detection system for securing remote desktop connections to
electronic flight bag servers,” IEEE Transactions on Depend-
able and Secure Computing, vol. 18, no. 3, pp. 1164-1181, 2021.

[30] X.Li, M. Zhu, L. T. Yang et al., “Sustainable ensemble learning
driving intrusion detection model,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 4, pp. 1591-
1604, 2021.

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, 2015.

[32] N. Gupta, V. Jindal, and P. Bedi, “LIO-IDS: handling class
imbalance using LSTM and improved one-vs-one technique
in intrusion detection system,” Computer Networks, vol. 192,
Article ID 108076, 2021.

[33] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirec-
tional LSTM deep learning approach for intrusion detection,”
Expert Systems with Applications, vol. 185, pp. 1-12, 2021.

[34] P. Sun, P. Liu, Q. Li et al., “DL-IDS: extracting features using
CNN-LSTM hybrid network for intrusion detection system,”
Security and Communication Networks, vol. 2020, pp. 1-11,
Article ID 8890306, 2020.

[35] D. Li, L. Deng, M. Lee, and H. Wang, “IoT data feature ex-
traction and intrusion detection system for smart cities based
on deep migration learning,” International Journal of Infor-
mation Management, vol. 49, pp. 533-545, 2019.

[36] N. Balakrishnan, A. Rajendran, D. Pelusi, and V. Ponnusamy,
“Deep Belief Network enhanced intrusion detection system to
prevent security breach in the Internet of Things,” Internet of
Things, vol. 14, Article ID 100112, 2021.

[37] M. Mahdavisharif, S. Jamali, and R. Fotohi, “Big data-aware
intrusion detection system in communication networks: a
deep learning approach,” Journal of Grid Computing, vol. 19,
no. 4, pp. 1-28, 2021.

[38] S. M. Kasongo and Y. X. Sun, “A deep learning method with
wrapper based feature extraction for wireless intrusion

(39]

(40]

(41]

(42]

(43]

(44]

(45]

21

detection system,” Computers ¢ Security, vol. 92, Article ID
101752, 2020.

M. A. Ferrag, L. A. Maglaras, S. Moschoyiannis, and
H. Janicke, “Deep learning for cyber security intrusion de-
tection: approaches, datasets, and comparative study,” Journal
of Information Security and Applications, vol. 50, Article ID
102419, 2020.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
an ensemble of autoencoders for online network intrusion
detection,” Proceedings of the 25th Network and Distributed
System Security Symposium, San Diego CA, USA, 2020.

G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape,
“A hierarchical hybrid intrusion detection approach in IoT
scenarios,” GLOBECOM 2020-2020 IEEE Global Communi-
cations Conference, pp. 1-7, 2020.

M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security
and Defense Applications, pp. 53-58, 2009.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “MI-
METIC: mobile encrypted traffic classification using multi-
modal deep learning,” Computer Networks, vol. 165, Article
ID 106944, 2019.

Z. Bu, B. Zhou, P. Cheng, K. Zhang, and Z.-H. Ling,
“Encrypted network traffic classification using deep and
parallel network-in-network models,” IEEE Access, vol. 8,
pp- 132950-132959, 2020.

UNB NSL-KDD Datasets: 2020, https://www.unb.ca/cic/
datasets/nsl.html.

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html

Hindawi

Security and Communication Networks
Volume 2022, Article ID 4196945, 10 pages
https://doi.org/10.1155/2022/4196945

Research Article

WILEY | Q@) Hindawi

Automating Group Management of Large-Scale IoT

Botnets for Antitracking

Pengyu Pan ,12 Xiaobo Ma (®),? Yingjie Fu ,12 and Feitong Chen 1,2

'MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi’an, China
2Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China

Correspondence should be addressed to Xiaobo Ma; xma.cs@xjtu.edu.cn

Received 23 December 2021; Revised 13 March 2022; Accepted 31 March 2022; Published 14 April 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Pengyu Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the popularity of Internet of Things (IoT) devices, IoT botnets like Mirai have been infecting as many devices as possible such
as IP cameras and home routers. Because of the sheer volume and continual operation of many vulnerabilities (many users do not
pay much attention to IoT update alerts and leave the configurations by default) of IoT devices, the population of an IoT botnet
becomes increasingly tremendous. The growing population, though making a botnet powerful, results in an increased risk of
exposure. Specifically, once a bot is captured, the command and control (C&C) channel may be cracked and then tracked,
potentially rendering more bots being discovered. To solve this problem, this paper proposes an automated approach to group
management of large-scale IoT bots. The basic idea of the proposed approach is to establish a reliable and unsuspicious social
network-based C&C channel capable of automatically grouping bots, wherein a group of bots have a unique ID that is against
cross-group tracking. The Diffie-Hellman key exchange method is leveraged for efficiently generating the unique group ID,
thereby scaling up automatic bot grouping. We refer to the botnet proposed in this paper as a multichannel automatic grouping
botnet (MCG botnet) and conduct verification experiments using social networks and more than 2,000 docker nodes. The

experimental results show that the MCG botnet has the ability of automatic grouping and antitracking.

1. Introduction

A botnet consisting of a large number of computers is
controlled by the botmaster. The botmaster can remotely
control bots to initiate DDoS attacks, send spam, collect user
privacy, and conduct other malicious activities [1]. With the
popularity of Internet of Things (IoT) devices, IoT botnets
like Mirai have been infecting as many devices as possible
such as IP cameras and home routers. Because of the sheer
volume and continual operation of many vulnerabilities
(many users do not pay much attention to IoT update alerts
and leave the configurations by default) of IoT devices, the
population of an IoT botnet becomes increasingly tre-
mendous. The growing population, though making a botnet
powerful, results in an increased risk of exposure.
Although there has been quite a lot of research on the
security of IoT devices [2-4], Mirai and its variant botnets
still pose a huge threat to increasingly more IoT devices [5].

On the other side, when the botmaster faces a large-scale [oT
botnet, how to effectively manage the group is a big chal-
lenge. Specifically, once a bot is captured, the command and
control (C&C) channel may be cracked and then tracked,
potentially rendering more bots being discovered. The
disclosure of the bot program will lead to the cracking of key
information such as communication patterns.

When designing a botnet, how the botmaster commu-
nicates to its bots is a problem of top priority [6]. Centralized
communication is the simplest and most common method.
The salient feature of this type of communication is that it
has a command and control (C&C) server. The botmaster
and its bots communicate through the server using protocols
like IRC and HTTP. Centralized communication has the
advantages of low delay, scalability, and large communi-
cation capacity. However, its disadvantages are also obvious.
Once the C&C server is shut down or taken over, the entire
botnet will most likely be destroyed. To alleviate this

mailto:xma.cs@xjtu.edu.cn
https://orcid.org/0000-0003-1339-6334
https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0001-6342-5418
https://orcid.org/0000-0002-6770-9343
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4196945

problem, the DGA algorithm is applied to the design of
botnets. Through such an algorithm, the botmaster and bots
can generate the same domain names hosting C&C servers.

However, if one obtains the bot program, it is feasible to
reverse-engineer the DGA algorithm. Therefore, the DGA-
based botnet could be blocked by predicting and registering
domain names in advance. Moreover, the use of the DGA
algorithm will cause bots to generate a large number of DNS
(failure) queries, which is a distinguishable detection feature.
With the aid of machine learning, defenders can easily
identify this type of botnet through traffic characteristics [7].

To improve the stealthiness and survivability of botnet
communication, more and more botnets use P2P to com-
municate. Compared with centralized botnets, P2P botnets
effectively avoid the problem of single point of failure.
However, P2P botnets are not absolutely reliable. Firstly, if a
P2P botnet uses a proprietary P2P communication protocol,
it is easy to be detected and shut down. At the same time,
Sybil attacks and index poisoning will also affect the reli-
ability of P2P botnets. In addition, the delay of the P2P
network leads the bot to be not able to receive the commands
from the botmaster in time.

To implement real-time, stealthy, and robust botnet
communication, the new generation of botnets began to
gradually use social networks and other public services as
their C&C channels, such as Twitter, Facebook, and Cloud
storage. However, no matter what communication channels
are used, once the botnet is captured and reverse-engi-
neered, the botnet faces two problems.

P1. How to ensure the survivability of botnets.

P2. How to manage the large number of bots without
being tracked.

To solve these problems, this paper proposes an auto-
mated approach to group management of large-scale IoT
bots. The basic idea of the proposed approach is to establish a
reliable and unsuspicious social network-based C&C
channel capable of automatically grouping bots, wherein a
group of bots have a unique ID that is against cross-group
tracking. The Diffie-Hellman key exchange method is lev-
eraged for efficiently generating such a unique group ID,
thereby scaling up automatic bot grouping.

The main contributions of this paper are as follows:

(i) We establish a reliable C&C channel through social
networks for our MCG botnet. To verify the
timeliness and reliability of our established C&C
channel, we deploy a real-world testbed consisting
of Twitter and GitHub.

(i) We dissect the C&C channel in consideration of its
fine-grained functionalities, namely, control chan-
nel, command channel, return channel, and regis-
tration channel. We analyze the functions and
characteristics of these four channels in detail in
comparison to the characteristics of existing social
networks and public network services.

(iii) We leverage the Diffie-Hellman key exchange
method for automatic bot grouping of the MCG
botnet. To evaluate the grouping performance, we

Security and Communication Networks

use more than 2,000 docker nodes to conduct ex-
periments. The results show that as the number of
bots increases, the bots could be effectively grouped
in real time without the botmaster’s intervention,
enabling the botmaster to control each group in an
isolated fashion with built-in antitracking
capability.

The structure of this paper is as follows: Section 2 dis-
cusses related work. Section 3 elaborates the design and
workflow of the MCG botnet. Section 4 conducts perfor-
mance evaluation. Section 5 discusses countermeasures
against the MCG botnet. We finally conclude the paper in
Section 6.

2. Related Work

Botnets have been a hot research area. With the wide ap-
plication of machine learning-based detection techniques,
traditional centralized botnets (e.g., based on IRC and HTTP
protocols) and P2P botnets could be detected under certain
conditions [8-12].

To evade detection, more sophisticated C&C structures
like hybrid P2P and more dynamic C&C resource man-
agement like URL Flux are used for improving botnet
survivability [13]. Meanwhile, increasingly more botnets
adopt social networks, such as Twitter, as C&C channels
[14]. For example, Pantic et al. designed a botnet that ex-
ploits Twitter accounts as C&C channels, wherein the ac-
count names are automatically generated based on Markov
chains. The botnet is of strong stealthiness due to its social
network-based and automatically generated channels [15].
Yin et al. proposed a social network-based botnet with
antidisruption capability [16]. The proposed botnet intro-
duces a divide-and-conquer and automatic reconstruction
mechanism to improve survivability. In addition to directly
leveraging social networks as C&C channels, botmasters are
incorporating steganography techniques, such as image
steganography and Unicode steganography [17, 18], to
further improve the stealthiness of botnets. Besides social
networks, many Internet services are also used by botnets.
For example, Google’s C2DM service provides C&C
channels for mobile botnets [19]; SLBot is a serverless botnet
based on Service Flux [20]; the URL shortening services are
used to evade network-level detection and blacklisting [21].

Social network-based botnets have been paid much at-
tention to in the literature. Chew et al. proposed a social
network-based hybrid botnet (RSHB) [22]. When RSHB
uses social networks for communication, it also adds a
reputation mechanism and a resurrection mechanism,
which further improves the robustness of the botnet. In
addition to social networks, blockchain has also become a
focus for botnet designers. The op_return field of Bitcoin
provides a certain storage space, which can transmit in-
formation simply and efficiently [23]. The ECDSA algorithm
used by Bitcoin has also been used to build subliminal
channels and has been proven feasible [24]. To improve the
efficiency of ciphertext transmission and reduce the number
of interactions, Luo et al. proposed a covert communication

Security and Communication Networks

method based on Bitcoin transactions [25]. The method of
communication using Bitcoin inevitably comes at the cost of
transaction fees. To address this limitation, the Whisper
protocol used in Ethereum allows botmasters to control bots
at almost zero cost [26].

Existing studies provide covert communication between
the botmaster and the bot. However, they do not take into
account the situation that a bot using their covert com-
munication is hacked or captured by the honeynet. The
proposed MCG botnet focuses on how to effectively and
automatically group large-scale botnets so to improve the
antitracking capability. That is, capturing and containing
some bots do not threaten the stealthiness of other bots and
the survivability of the entire botnet.

3. Design

In this section, we will detail the MCG botnet architecture
and its workflow.

We refer to the proposed botnet as a multichannel
automatic grouping botnet (MCG botnet). The multichannel
property means that the C&C channels are categorized into
different types according to their functionalities in terms of
botnet communication. Different types of channels are
separate yet cooperative, beneficial to the robustness of the
botnet. The MCG botnet has four types of channels, namely,
registration, command, control, and return channels. The
registration channel is used to collect the information of
newly infected bots. Having a number of registered bots, the
botmaster stores the command in the command channel,
and then a bot could find the address of the command
channel in the control channel so as to retrieve the com-
mand. After executing the retrieved command, the bot
transmits the results to the botmaster through the return
channel. The automatic grouping property enables bot group
management hierarchically. That is, the parent group is in
charge of the management of the child group. The taking
down of one group does not affect its parent or child group
(if the child group has already been generated).

3.1. Architecture. Designing a botnet architecture needs to
consider the communication requirements of different
parties like the botmaster, the bot, and the C&C channels.
However, the communication requirements of different
parties may differ in various scenarios. For example, when
launching DDoS attacks, the botmaster propagates com-
mands to its bots in a timely manner due to the need of all
bots simultaneously participating in the attack. In contrast,
when bots transmit information like user privacy, the
timeliness is not a top priority. According to the commu-
nication requirements of the MCG botnet (see Table 1), the
MCG botnet is architected, comprising four channels,
namely, command channel, control channel, return channel,
and registration channel.

3.1.1. Command Channel and Control Channel.
Command and control (C&C) channel is a general term
involving almost all aspects concerning how a botmaster

controls his/her bots (e.g., transmitting commands, sending
botnet configuration information). Existing studies do not
consider command and control channels separately. Since
the command channel and the control channel have distinct
communication requirements, we design the two channels
separately to fulfill their distinct communication
requirements.

Command Channel. We use the command channel to
store the commands released by the botmaster. When
selecting a command channel, one should focus on the
storage capacity as well as security.

Control Channel. We use the control channel to store
the address of command channel. The bots obtain the
address of the command channel through the control
channel and finally obtain the commands stored by the
botmaster in the command channel. Control channel
should be considered from a reliability perspective.

The whole process is shown in Figure 1, which is divided
into four stages.

Phase I (1-3): The botmaster stores ciphertext and
signature in command channel.

Phase II (4): Convert the address of the command
channel into a short URL and publish it to the control
channel.

Phase III (5): The bots regularly obtain the short URL
from the control channel.

Phase IV (6-8): The bots find the command channel
through the short URL to extract information.

In Phase II, we are facing an issue with synchronizing the
control channel address between the botmaster and its bots.
Based on the previous experience of designing botnets [6], a
botmaster generally uses DGA algorithm or similar algo-
rithms, which brings new problems while completing syn-
chronization. If the bot program is obtained by defenders,
the seeds used will be obtained. It is fatal to botnets because
defenders can predict subsequent addresses in the same way
and block addresses that may be C&C channels in advance.

The fundamental problem is that no matter how the
botmaster generates new addresses, they will be considered
malicious. Therefore, this paper adopts social network as
the C&C channel to avoid this problem. The botmaster and
its bots have agreed on the designated social network user
in advance. The botmaster will convert the address of the
command channel into a short URL and send it to the
comments section of the designated user’s blog post. The
bots only need to periodically read the comments section of
the designated social network user to obtain the command
channel address. Then the bots obtain the commands
stored in advance by the botmaster from the command
channel. Neither social network administrators nor de-
fenders can block a normal user with just a malicious
comment. Therefore, the MCG botnet does not need to
consider the synchronization between botmaster and bot.
For the MCG botnet, it is necessary to find a social network
that can retain malicious comments from users for a long
time as a control channel.

4 Security and Communication Networks
TaBLE 1: Channel features.

Channel Timeliness Security Anonymity Reliability Capacity

Control Y — Y —

Command — — — Y

Return — Y Y Y

Registration — — — —

Y
Ciphertext&
22— .
signature

l— | Command

||

Botmaster

@ Social

Network
Command Channel
(Malicious user)

Control Channel
(Legitimate user)

Y

Ciphertext&si
gnature

Command | -——7

FiGure 1: Command and control channel design.

3.1.2. Return Channel. Return channel is used by bots to
transmit information to the botmaster. When the botmaster
uses its bots to steal user privacy, the bots need to send
information to the botmaster frequently, and the amount of
information may be relatively large. Therefore, the return
channel should be easy to register and use. As the receiver,
the botmaster should focus on the issue of anonymity to
avoid being traced by defenders.

3.1.3. Registration Channel. The bot that infects normal
devices is called the parent bot, and the new infected bot is
called the child bot. In the MCG botnet, the child bot needs
to rely on the parent bot to complete the registration so as to
formally join the botnet. The botmaster obtains the scale of
the entire botnet through the registration channel.

In recent years, defenders have generally adopted
technologies such as honeypots and honeynets to monitor,
detect, and analyze the entire botnet. Therefore, the regis-
tration channel should ensure real time and reliability and
avoid the leakage of some key information as much as
possible. This is important for grouping of botnets.

So far, we detailed the four channels of the MCG botnet.
As shown in Table 1, we summarize the four channels from
the aspects of timeliness, security, anonymity, reliability, and
large capacity requirements (Y: there is a clear demand for this
indicator; —: there is no clear demand for this indicator).

3.2. Bot Grouping. The ever-expanding botnet also brings
two new problems to the botmaster:

P1. How the botmaster can control part of the botnet
more accurately when the botnet scale is large.

P2. Once a bot is captured, the information such as the
C&C channel used by the botnet will be leaked, po-
tentially making the entire botnet taken down/over.

To address the above problems, we propose the following
techniques:

(1) Bot grouping: Child bots will be divided into new
groups by parent bots without intervention by the
botmaster. The botmaster can also adjust the scale of
each group of bots in real time according to the size
of the botnet.

(2) Botnet group management: To avoid the harm
caused by the bot being captured, this paper gen-
erates exclusive configuration information for each
group of the MCG botnet. Once a group of bots are
mixed with honeypots, the configuration informa-
tion leakage will not affect other groups.

The Diffie-Hellman key exchange method is applied
for automatic bot grouping, as is shown in Figure 2. First,
the botmaster and its bots generate random numbers a
and b, respectively. P and G are two prime numbers
shared between the botmaster and its bots. They are used
to generate A and B. Finally, the botmaster and each bot
exchange A and B to generate K, the group ID of the bot.
Bots in the same group generate the same random
number b.

If any one of a, b, P, and G changes, the shared key K will
change accordingly. In the MCG botnet, as long as different
groups use different random numbers b, the botmaster and
its bots can obtain different K.

It has been explained in Section 3.1 that the child bots
can only rely on the parent bots to register. The parent bots
will generate exclusive configuration information for the
child bots, including encryption and decryption keys and
random number b. Subsequently, the parent bots send this
information to the botmaster to complete the registration
of the child bots. Parent bots and child bots belong to
different groups. Parent bots update the random number b
regularly to achieve the effect of automatic grouping. The
botmaster can also actively request the parent bots to
generate a new random number b for the child bots
according to the scale of the botnet to complete the scale
control of different groups.

Regardless of whether the botmaster intervenes, the
random number b is only generated by the parent bots. Then
it is sent to botmaster to avoid security risks caused by
synchronization. Assuming that a child bot is a honeypot
since the bots of different groups use different encryption and
decryption keys, defenders can only crack the communication
content between the bots of the current group and the

Security and Communication Networks

Botmaster Bot
a b
A=GramodP | |« PG p» | B=GAb mod P
A -
K=B”a mod P K=A”b mod P
B

F1GURE 2: Group ID generation.

botmaster through this honeypot. For a large-scale botnet, the
impact is very limited. A large-scale botnet refers to a botnet
that consists of a large number of bots, and the bots usually are
geographically dispersed in various networks.

3.3. Workflow. When the MCG botnet is initialized, the
botmaster will first generate two prime numbers P and G,
random number g, and public key A required by the Dif-
fie-Hellman key exchange method. Then the botmaster
generates the private key PrivK for signing the ciphertext
and the corresponding public key Pubk. To reduce the harm
caused by key leakage, each group uses a different key for
encryption and decryption. Both symmetric and asymmetric
encryption algorithms could be used, for example, AES
algorithms and RSA algorithms. When the amount of
transmitted information is small, asymmetric encryption
algorithms could be used. Otherwise, symmetric encryption
algorithms could be used.

P, G, A, and Pubk are hardcoded into the bot program.
Pubk is used to verify the botmaster’s signature. It is different
from the RSA key used for encryption and decryption in the
bot group. When the MCG botnet is first deployed, the
botmaster generates different random numbers b and RSA
keys for them according to different groups. The same group
of bots uses the same random number and key. The working
flow chart of the MCG botnet is shown in Figure 3.

(1) The botmaster uses the RSA public key corre-
sponding to the bot group to encrypt the informa-
tion. Then PriK is used to sign and store to command
channel.

(2) The botmaster converts the address of the command
channel into a short URL and sends it to the control
channel, which is the comments section of the
designated social network user.

(3) The bots regularly querie the control channel to
obtain the address of the command channel.

(4) The bots find the command channel according to the
address obtained in the previous step and obtain the
information transmitted by the botmaster.

(5) The execution result is transmitted to the botmaster
through the return channel.

(6) After a bot (parent bot) infects a new bot (child bot),
it copies its own program to the new bot and passes it
to the random number b and RSA key (not the
random number b and RSA key used by the current
bot group).

(7) After step (6), the parent bot will complete the
registration of the child bot through the registration
channel.

Different bots may originate from different groups.
Consequently, when communicating with a bot group, the
botmaster should use the public key of the corresponding
bot group to encrypt the commands.

For example, Group-A, Group-B, and Group-C are three
bot groups that use different public/private key pairs. When
the botmaster commands bots in Group-A to perform tasks,
it encrypts commands using Group-A’s public key. The
botmaster sends the encrypted commands to bots in Group-
A through C&C channels (e.g., the channel proposed in Sec.
3.1.1). Bots in Group-A, Group-B, and Group-C will receive
the encrypted commands, but only bots in Group-A can
decrypt them. After bots in Group-A execute the commands,
the execution result is transmitted to the botmaster through
the return channel.

The group size during automatic grouping of our
proposed MCG botnet can be accomplished in a predefined
manner. Consider that bots in Group-A infect new bots to
constitute Group-B. Given the size of Group-A S,, the
botmaster just needs to define the maximum number of
bots that each bot in Group-A could infect (e.g., n) to
control the upper bound of the size of Group-B (i.e., S n).
We control the upper bound because in most cases a large
group size would lead to the taking down of many bots.
However, since bots in Group-A may infect overlapping
sets of bots, the actual size of Group-B may be much
smaller than the upper bound. In such a case, the botmaster
could assign a larger value to # to further increase the upper
bound. Note that if one keeps #n constantly exceeding 1, the
child group size may grow larger than the parent group
size. To stop the group size growing unlimitedly, the
botmaster normally needs to make n decrease from gen-
eration to generation.

Consider that a bot in Group-A infects a set of new bots.
Such a set of new bots, along with those infected by all the
remaining bots in Group-A, constitute a new group named
Group-B. Group A is the parent group, while Group-B is its
child.

When the bots in Group-A infect a new bot, they
generate a grouping random number, which is the same
across all the bots in Group-A due to the same seeding
mechanism, as well as a symmetric key (or a private/public
key pair), for Group-B. The grouping random number and
the key will be sent to all the bots in Group-B directly, and to
the botmaster through the registration server, by bots in
Group-A. The random number is used to generate the ID of
Group-B, and the key is for encrypting the communication
message between the botmaster and the bots in Group-B.

Security and Communication Networks

Social Network

Control Channel
(Legitimate user)

(]
2.Address release f——p ————— 3.Get address
Alice / [FEESSX
- Bot
Botmaster . \
% T o
6y, Jack — — & G,
; Bob Rose S e
U, o O

Command Channel
(Malicious user)

Registration Channel

Return Channel

Da\ e

New Bot

I

7.Registration message

5.Return information

FiGure 3: The overall workflow of the MCG botnet.

The exposure of the key would affect the confidentiality
of the communication between the botmaster and the bots in
Group-B. However, the affection is limited because the
communication between the botmaster and the bots in other
groups remains confidential.

4. Experiment

To evaluate the MCG botnet, we first selected and verified
the four channels and finally conducted a simulation ex-
periment on the botnet automatic grouping.

4.1. Channel Selection. In Section 3.1, we have described the
functions and requirements of the four channels in detail. As
shown in Table 2, to select the appropriate channel, we
investigated popular social networks and e-mail services. In
Table 2, the “Register” column represents whether using the
service is conditioned on registration. The “High Capacity”
means whether uploading programs, pictures, and other
large-sized objects is allowed.

The control channel uses the comments section of le-
gitimate users in the social network to transmit the address
of the command channel. The two following issues should be
considered: (1) The social network allows the botmaster to
comment freely in the comments section of other people’s
accounts. (2) Social networks do not strictly control
comments.

The bots obtain the address of the command channel
from the control channel and obtain the commands and so
forth. Therefore, the command channel should have a larger
capacity. As shown in Figure 4, we use GitHub as the
command channel and Twitter as the control channel.

Among all channels, the command channel and the
control channel are crucial to the robustness of the MCG
botnet. To verify the robustness, we measure the survival
times of the command channel over GitHub and the control
channel over Twitter.

As Figure 5 shows, we register one GitHub account to
store the ciphertext of the command “DDoS www.test.com”
along with the signature of the bomaster and one Twitter
account to post the address of the command at the com-
ments sections of those Twitter accounts that our registered
account follows. The address of the command is a short URL
(compressed by TinyURL [27]) locating “DDoS https://
www.test.com” at GitHub. Note that there are 20 Twitter
accounts that our registered account follows, and these
followed accounts are all news accounts due to their long
time stability that is beneficial to short URL propagation. We
post one short URL at the comments section of each of the 20
news Twitter accounts and measure the survival times of the
20 posted short URLs (i.e., 20 control channels). Also, we
measure the survival time of the control channel, the time
that the posted short URLs are accessible. Figure 5 shows the
results. We see that all the 20 control channels and one
command channel survive for the entire 72 hours, indicating
the robustness of the MCG botnet.

As shown in Table 3, we checked the command channel
and the control channel every 24 hours and found that the
survival rate was 100%, and comments on Twitter can be
accessed immediately. This experiment demonstrates the
real time and robustness of using the Twitter user comments
section as the control channel and GitHub as the command
channel.

The return channel is used by the bots to actively send
information to the botmaster so the botmaster should be
more careful to avoid leaking too much personal infor-
mation. The botmaster can use e-mail as the receiver and
configure different sending mailboxes for different bot
groups through the command channel. The registration
channel is used for the registration of new bots, and the
communication volume is small. Due to the needs of botnet
grouping, it is necessary to ensure high security and real-
time performance. Third-party services are usually difficult
to achieve. Therefore, we use a private server as a registration
channel.

https://www.test.com
https://www.test.com

Security and Communication Networks

TABLE 2: Network service properties.

Type Name Register High Capacity
Twitter Y N
Facebook Y N
Social network Instagram Y N
Weibo Y N
GitHub Y Y
Gmail Y Y
E-mail service Outlook Y Y
YOPmail N N
OneDrive Y Y
Cloud storage Dropbox Y Y
Pan.baidu Y Y

2. Upload command
" channel address

3. Get command
channel address =

—p| Twitter —

— 1. Upload information —

Botmaster

Github

—— 4. Get information E

Bot

FIGURE 4: Real-world control channel and command channel testbed.

P main + test/testixt

whoami123456123 Add files via upload

Go to file

O History

v . Tweet
© Home o Tweet your reply
H# Explore

L) Notifications

° test test @testtes38626734 - Dec 165, 2021

FiGure 5: The GitHub account to store the ciphertext of the command and the Twitter accounts where we post the address of the command

(i.e., short URL).

TaBLE 3: Survival times versus the number of command and control channels.

Survival time (hours) 24 48 72
Number of command channels 1 1 1
Number of control channels 20 20 20

We have proven the robustness of the command channel
and the control channel. Even if the return channel and
registration channel are blocked, the botmaster can still
contact its bots by changing the e-mail and server address
through the command channel and the control channel.

4.2. Automatic Grouping. To verify the grouping effect of the
MCG botnet, this paper uses 2020 docker nodes to simulate
IoT devices to carry out simulation experiments. Using six

high-performance services, the CPUs are all Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00 GHz, and the RAMs are all
DDR4, 503G. The operating systems are Ubuntu20.04,
Ubuntul8.04, and Ubuntul6.04.

During initialization, 5 of the docker nodes are initial-
ized as bots, which are 5 groups, respectively. As to the C&C
method in the docker node experiment in Section 4.2, our
major goal is to verify the automatic bot grouping capability,
which is independent of the specific C&C method. There-
fore, in the docker node experiment, we use neither the

2000

1500

1000 +

500 |

number of registered bots

0 R S S S S P
o 1 2 3 4 5 6 7 8

sampling period

(a)

Security and Communication Networks

(o))

(=

S
T

w

(=3

(=}
T

'S

=)

S
T

w

(=3

(=}
T

200 +

number of bot groups

100 |+

0 S S S S S S
01 2 3 4 5 6 7 8 9 10 11 12

sampling period

(b)

FIGURE 6: Automatically grouping experiments. (a) Changes in the number of bots. (b) Changes in the number of bot groups.

TABLE 4: Statistics of bot grouping.

Number of bots in a single group >15 >10 >5 >1 Total

107 506 642
703 953 2020

Number of groups 5 24
Number of bots 92 272

proposed C&C method nor any other methods. As shown in
Figure 6(a), the number of registrations of bots increases
exponentially. Due to the limited number of docker nodes,
the number of bots will gradually stabilize. Therefore, the
number of registrations of bots and the number of groups
show an overall S-shape. As shown in Table 4, it can be seen
that, with the continuous increase of bots, the number of bot
groups has also increased sharply.

In the initial stage (period: 0-3), due to the small number
of bots, the speed of new bots joining the botnet is slower and
the number of bot groups is small. With the increase in the
number of bots, it will soon enter the explosive stage (period:
3-8), and bots show an exponential growth trend. At this
stage, due to the large increase in bots, the number of groups
also shows an exponential growth trend. However, at this
time, most bot groups contain fewer bots. As shown in
Table 4, there are a total of 136 groups with bots greater than
or equal to 5, as well as a total of 1067 bots, which is more
than half of the total bots.

As shown in Figure 6(b), it can be seen from the sim-
ulation experiment that the MCG botnet has better auto-
matic grouping ability. Even if devices such as honeypots
join the botnet, a honeypot can only affect one group at most
and will not interfere with the normal operation of the entire
botnet. This simulation experiment shows that the MCG
botnet greatly improves survivability through automatic

grouping.
5. Countermeasures

Compared with other botnets, the MCG botnet’s main
features are as follows: Automatic grouping botnet is to
reduce the harm caused by bot program leakage. The
communication between the botmaster and its bots is dis-
assembled according to function, and the social network is
used as the control channel. A reliable C&C channel is built
as the basis for botnet communication.

Therefore, the focus of detecting the MCG botnet should be
to strengthen the monitoring and censorship of social networks.
Identity authentication is also an effective approach when using
public services. If social network platforms and users can
strengthen the review of the comments section, especially some
comments that are not relevant to blog posts, it will pose a
greater threat to such botnets. In addition, public services that
are free to use and registration-free should use verification codes
and other methods to verify the user’s identity.

When we use news accounts as control channels, the bot
needs to access them regularly to get the address of the
command channel. This can lead to a rise in page views of these
news accounts, attracting the attention of defenders. If a bot is
captured (e.g., by honeynet), the social network accounts used
by the MCG botnet will be exposed. Defenders can report these
accounts to interrupt the operation of the MCG botnet.
However, there are many Twitter accounts and a huge number
of many other social network accounts that the botmaster can
choose as control channels. More importantly, a parent group
is able to dynamically define the social network account that the
bots in its child group should use, making the control channels
of different bot groups completely isolated. In other words,
defenders may interrupt the operation of certain groups, but
the remaining groups would be still working.

The MCG botnet has group management and anti-
tracking capabilities. However, like most botnets, when the
MCG botnet performs malicious actions such as DDoS
attacks, a large number of bots will generate very similar
traffic behaviors. This is very critical to combat botnets.
Defenders can collect enough traffic information. Then they
can analyze key information such as botnet communication
methods, network topology, botnet size, and types of in-
fected devices through machine learning and data mining.
Further, they cooperate with relevant social network service
providers or equipment manufacturers to propose targeted
measures against such botnets.

6. Conclusion

This paper proposed a multichannel self-grouping social
botnet called MCG botnet. According to the communication
requirements of the MCG botnet, the MCG botnet is

Security and Communication Networks

architected comprising four channels, namely, command
channel, control channel, return channel, and registration
channel. A botnet grouping strategy is designed based on the
Diffie-Hellman key exchange method. It greatly enhanced
the MCG botnet’s survivability, since containing one group
does not affect the survivability of all the remaining groups.
We perform experiments on Twitter and GitHub to verify
the robustness of the C&C channel in a real environment.
We also set up a simulation environment containing 2020
docker nodes to test the grouping ability of the botnet. It has
propounded implications on personalized group control and
antitracking of large-scale IoT botnets.

Data Availability

The original data in the research process can be obtained
from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest in
the manuscript.

Acknowledgments

This work was supported in part by National Natural Science
Foundation (61972313), Postdoctoral Science Foundation
(2019M663725 and 2021T140543), and the Fundamental
Research Funds for the Central Universities, China. Xiaobo
Ma is an XJTU Tang Scholar supported by Cyrus Tang
Foundation.

References

[1] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A
multifaceted approach to understanding the botnet phe-
nomenon,” in Proceedings of the 6th ACM SIGCOMM Con-
ference on Internet Measurement, pp. 41-52, Rio de Janeriro,
Brazil, October 2006.

[2] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey
on IoT security: challenges and solution using machine
learning, artificial intelligence and blockchain technology,”
Internet of Things, vol. 11, Article ID 100227, 2020.

[3] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and
B. Sikdar, “A survey on iot security: application areas, security
threats, and solution architectures,” IEEE Access, vol. 7, pp. 82
721-782 743, 2019.

[4] R. Vinayakumar, M. Alazab, S. Srinivasan, Q.-V. Pham,
S. K. Padannayil, and K. Simran, “A visualized botnet de-
tection system based deep learning for the internet of things
networks of smart cities,” IEEE Transactions on Industry
Applications, vol. 56, no. 4, pp. 4436-4456, 2020.

[5] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: iot botnet of
high wattage devices can disrupt the power grid,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18),
pp. 15-32, Princeton University, Princeton, NJ, USA, 2018.

[6] G. Vormayr, T. Zseby, and J. Fabini, “Botnet communication
patterns,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2768-2796, 2017.

[7] N. Jiang, J. Cao, Y. Jin, L. E. Li, and Z.-L. Zhang, “Identifying
suspicious activities through dns failure graph analysis,” in

Proceedings of the 18th IEEE International Conference on
Network Protocols, pp. 144-153, Kyoto, Japan, October 2010.

[8] A.H.R. A. Awadi and B. Belaton, “Multi-phase irc botnet and

botnet behavior detection model,” International Journal of

Computer Applications, vol. 66, 2015.

G. Sagirlar, B. Carminati, and E. Ferrari, “Autobotcatcher:

blockchain-based p2p botnet detection for the internet of

things,” in Proceedings of the 2018 IEEE 4th International

Conference on Collaboration and Internet Computing (CIC),

pp- 1-8, IEEE, Philadelphia, PA, USA, October 2018.

[10] T. Sengupta, S. De, and I. Banerjee, “A closeness centrality
based p2p botnet detection approach using deep learning,” in
Proceedings of the 2021 12th International Conference on
Computing Communication and Networking Technologies
(ICCCNT), pp. 1-7, IEEE, Kharagpur, India, July 2021.

[11] S.Y. Yerima and M. K. Alzaylaee, “Mobile botnet detection: a
deep learning approach using convolutional neural net-
works,” in Proceedings of the 2020 International Conference on
Cyber Situational Awareness, Data Analytics and Assessment
(CyberSA), pp. 1-8, IEEE, Dublin, Ireland, June 2020.

[12] S. Almutairi, S. Mahfoudh, S. Almutairi, and J. S. Alowibdi,
“Hybrid botnet detection based on host and network anal-
ysis,” Journal of Computer Networks and Communications,
vol. 2020, Article ID 9024726, 16 pages, 2020.

[13] C. Liu, W. Lu, Z. Zhang, P. Liao, and X. Cui, “A recoverable
hybrid c&c botnet,” in Proceedings of the 2011 6th Interna-
tional Conference on Malicious and Unwanted Software,
pp- 110-118, IEEE, Fajardo, PR, USA, October 2011.

[14] J. Zhang, R. Zhang, Y. Zhang, and G. Yan, “The rise of social
botnets: attacks and countermeasures,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 1068-
1082, 2016.

[15] N. Pantic and M. I. Husain, “Covert botnet command and
control using twitter,” in Proceedings of the 31st Annual
Computer Security Applications Conference, pp. 171-180, Los
Angeles, CA, USA, December 2015.

[16] T.Yin, Y. Zhang, and S. Li, “Dr-snbot: a social network-based
botnet with strong destroy-resistance,” in Proceedings of the
2014 9th IEEE International Conference on Networking, Ar-
chitecture, and Storage, pp. 191-199, IEEE, Tianjin, China,
August 2014.

[17] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh,
P. Agarwal, and N. Borisov, “Stegobot: a covert social network
botnet,” in International Workshop on Information Hiding-
Springer, Berlin, Heidelberg, 2011.

[18] A. Compagno, M. Conti, D. Lain, G. Lovisotto, and
L. V. Mancini, “Boten elisa: a novel approach for botnet c&c in
online social networks,” in Proceedings of the 2015 IEEE
Conference on Communications and Network Security (CNS),
pp- 74-82, IEEE, Florence, Italy, September 2015.

[19] S. Zhao, P. P. Lee, J. C. Lui, X. Guan, X. Ma, and J. Tao,
“Cloud-based push-styled mobile botnets: a case study of
exploiting the cloud to device messaging service,” in Pro-
ceedings of the 28th Annual Computer Security Applications
Conference, pp. 119-128, Orlando, Florida, USA, December
2012.

[20] D. Wu, B. Fang, J. Yin, F. Zhang, and X. Cui, “Slbot: a
serverless botnet based on service flux,” in Proceedings of the
2018 IEEE Third International Conference on Data Science in
Cyberspace (DSC), pp. 181-188, IEEE, Guangzhou, China,
June 2018.

[21] S. Lee and J. Kim, “Fluxing botnet command and control
channels with url shortening services,” Computer Commu-
nications, vol. 36, no. 3, pp. 320-332, 2013.

[9

10

(22]

(23

[24

[25

[26

(27]

C.-]J. Chew, Y.-C. Chen, J.-S. Lee, C.-L. Chen, and K.-Y. Tsai,
“Preserving indomitable ddos vitality through resurrection
social hybrid botnet,” Computers & Security, vol. 106, Article
ID 102284, 2021.

S. T. Alj, P. McCorry, P. H.-J. Lee, and F. Hao, “Zombiecoin:
powering next-generation botnets with bitcoin,” in Interna-
tional Conference on Financial Cryptography and Data Se-
curity, pp. 34-48, Springer, Berlin, Heidelberg, 2015.

D. Frkat, R. Annessi, and T. Zseby, “Chainchannels: private
botnet communication over public blockchains,” in Pro-
ceedings of the 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 1244-1252, IEEE, Halifax, NS, Canada, July 2018.

X. Luo, P. Zhang, M. Zhang, H. Li, and Q. Cheng, “A novel
covert communication method based on bitcoin transaction,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 4,
pp. 2830-2839, 2021.

M. Baden, C. F. Torres, B. B. F. Pontiveros, and R. State,
“Whispering botnet command and control instructions,” in
Proceedings of the 2019 Crypto Valley Conference on Block-
chain Technology (CVCBT), pp. 77-81, IEEE, Rotkreuz,
Switzerland, June 2019.

Tiny, “Tinyurl.com - shorten that long url into a tiny url,”
2020, https://tinyurl.com/.

Security and Communication Networks

https://tinyurl.com/

Hindawi

Security and Communication Networks
Volume 2022, Article ID 4593002, 11 pages
https://doi.org/10.1155/2022/4593002

Research Article

WILEY | Q@) Hindawi

Natural Backdoor Attacks on Deep Neural Networks via Raindrops

Feng Zhao L Li Zhou®),! Qi Zhong ,2 Rushi Lan®,' and Leo Yu Zhang 2

'Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology,

Guilin 541004, China

2School of Information Technology, Deakin University, Geelong, VIC 3216, Australia

Correspondence should be addressed to Qi Zhong; zhongq.lk@outlook.com and Rushi Lan; rslan2016@163.com

Received 12 December 2021; Accepted 1 March 2022; Published 26 March 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Feng Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, deep learning has made significant inroads into the Internet of Things due to its great potential for processing big data.
Backdoor attacks, which try to influence model prediction on specific inputs, have become a serious threat to deep neural network
models. However, because the poisoned data used to plant a backdoor into the victim model typically follows a fixed specific
pattern, most existing backdoor attacks can be readily prevented by common defense. In this paper, we leverage natural behavior
and present a stealthy backdoor attack for image classification tasks: the raindrop backdoor attack (RDBA). We use raindrops as
the backdoor trigger, and they are naturally merged with clean instances to synthesize poisoned data that are close to their natural
counterparts in the rain. The raindrops dispersed over images are more diversified than the triggers in the literature, which are
fixed, confined, and unpleasant patterns to the host content, making the triggers more stealthy. Extensive experiments on
ImageNet and GTSRB datasets demonstrate the fidelity, effectiveness, stealthiness, and sustainability of RDBA in attacking models

with current popular defense mechanisms.

1. Introduction

Internet of Things (IoT) devices have infiltrated many
industries and are now part of our daily lives. As a con-
sequence, a vast amount of data will be created. Deep
learning technology has been shown to be extremely ef-
fective in processing enormous volumes of high-dimen-
sional data, and it is now widely employed in a variety of
IoT applications, such as intelligent driving [1], computer
vision [2,3], natural language processing [4-6], and etc. In
another aspect, neural networks used in IoT are evolving
into deeper and wider architectures to perform well in
various tasks. This indicates that there are massive pa-
rameters to learn and a lot of computing resources to
consume. Such requirements boost the development of
machine learning-related industries, including machine
learning as a service (MLaaS). In essence, various giant
companies, such as Google and Amazon, have launched
their own MLaaS$ platforms to facilitate users to outsource
their model training projects. However, security vulnera-
bilities in deep neural networks may arise in any stage of the

supply chain, including but not limited to unprotected
open channels, unreliable data sources, and unreliable
training processes.

Studies have shown that deep neural networks are prone
to attacks from different stages, including inference-stage
attacks [7-9] and training stage attacks. Inference-stage
attacks, best known for adversarial attacks [10-13], generally
aim to mislead the deep neural network to produce high-
confidence error prediction results for the test data during
inference. They are usually achieved by adding subtle input-
specific perturbations to the test data before querying the
target model.

Training-stage attacks usually refer to backdoor at-
tacks [14], which intend to manipulate the model pre-
dictions for those attacker-specified instances by
poisoning some normal training data. Specifically, at-
tackers inject some patterns, dubbed triggers, into clean
samples. These modified data are also referred to as
poisoned data or backdoor samples, and they are assigned
predefined target labels. By involving backdoor samples
and normal data for model training, the trained model is

mailto:zhongq.lk@outlook.com
mailto:rslan2016@163.com
https://orcid.org/0000-0002-5730-2208
https://orcid.org/0000-0002-0300-0394
https://orcid.org/0000-0002-3736-7135
https://orcid.org/0000-0002-9488-8236
https://orcid.org/0000-0001-9330-2662
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4593002

thus embedded with backdoors. At the inference stage, the
backdoored model performs normally on benign inputs
but predicts the target labels for instances containing
triggers. This type of attack is stealthy since the victim
model has state-of-the-art performance on clean inputs,
which is indistinguishable from its corresponding clean
model, while its backdoor behavior can only be activated
by attacker-specified (unknown) inputs. In a nutshell, the
potential malicious behavior could result in dire conse-
quences in some security-critical areas, such as autono-
mous driving [15], face recognition [16], and speaker
recognition [17-19], which will also cause serious ob-
stacles to the DNN deployment and development.

In the literature, the most popular and effective
backdoor triggers are simple, fixed, or unpleasant pat-
terns, i.e., different clean data are patched with the same
trigger in a fixed position without considering the host
data content. In addition, the poisoned instances are
generated by simply stamping triggers into benign host
samples. For example, the trigger of BadNets [14], as
shown in Figure 1, is a black and white pixel block in the
bottom right corner of an image. Such poisoned data will
inevitably have abnormal distributions and appear un-
natural, raising the suspicions of model developers/users.
They can be easily filtered out before the model training
stage or rejected before the model inference. On the other
hand, researchers have made tremendous efforts to im-
prove the robustness of DNN models, and various
backdoor countermeasures have been proposed to remove
or suppress the backdoor behaviors of DNN models. It has
been demonstrated that most of the existing backdoor
methods can be successfully alleviated by some current
popular defenses, e.g., fine-tuning [20], fine-pruning [21],
and Grad-CAM based defenses [22,23].

Based on this understanding, in this work, we introduce
a novel, simple, but effective backdoor attack method using
raindrops, dubbed raindrops backdoor attack (RDBA).
Specifically, we perform two different blur operations on
uniformly distributed noise to simulate water droplets in
real scenes with different sizes and directions and make
them have motion blur. We then merge the raindrops
trigger with a small portion of clean training samples to
generate natural-looking poisoned data. Finally, the to-be-
produced backdoored model is obtained through a generic
training procedure.

Compared with the existing backdoor injection ap-
proaches, RDBA has the following advantages: (1) the
raindrops are evenly distributed across clean samples and
their natural features blend well with these host data, so the
poisoned instances can hardly be distinguished by naked
eyes or Grad-CAM based methods; (2) the backdoor triggers
are crafted based on natural phenomenon raindrops rather
than on some unpleasant patterns (e.g., BadNets) or obvious
outliers (e.g., Blending), implying that the poisoned in-
stances are closer to natural inputs and a misclassification
caused by RDBA could be considered a normal
misclassification.

In summary, the main contributions of this paper are as
follows:

Security and Communication Networks

(i) In this paper, we propose a backdoor attack method
RDBA, which uses natural behavior raindrops to
embed backdoors in image classification scenarios

(ii) We simulate natural raindrops through a series of
blur transformations on uniformly distributed
noise, and the resulting raindrops are evenly dis-
persed and naturally blended on each clean sample

(iii) Two datasets are used to evaluate the fidelity, ef-
fectiveness, stealthiness, and sustainability of the
proposed method in attacking two neural networks
with and without defenses

The rest of this article is organized as follows. Section 2
discusses related work. Section 3 introduces the threat
model and attack goals. Section 4 elaborates on the details
of the proposed RDBA method. The experimental results
are analyzed in Section 5 and the conclusions are drawn in
Section 6.

2. Related Work

2.1. Backdoor Attacks. Backdooring DNNs refers to a
technique that is able to maliciously manipulate the model
predictions on specific inputs by poisoning a small portion
of clean data during training or fine-tuning. Backdoor at-
tacks have posed serious threats to the model supply chain
and have attracted lots of attention from both industry and
research community. Specifically, the attacker-crafted trig-
gers are injected into some benign training data to create
poisoned samples. In the inference, a neural network trained
on these poisoned data will active abnormal behaviors when
feeding inputs containing the triggers but behave normally
on benign inputs.

Existing backdoor attacks can be divided into poison-
label attacks and clean-label attacks according to whether the
labels of poisoned samples are changed. In poison-label
attacks, the labels of poisoned data are replaced with pre-
defined target labels. As a result, when the backdoored
model detects the triggers, its predictions will be the target
labels. One of the most popular works that revealing
backdoor threat in the machine learning training stage is the
BadNets [14]. The authors used a simple binary pixel block at
bottom right corner of the image as the backdoor trigger, as
shown in Figure 1, and the poisoned data was created by
stamping the trigger to a benign instance and changing its
label to the target label. However, such kind of attack can be
easily detected either by human inspection or by backdoor
detection mechanisms due to the fact that triggers are
outliers of the host images. As a remedy, Chen et al. in [24]
blended triggers with benign images to generate poisoned
images, as shown in Figure 1, where the hello kitty trigger
overlaps with clean samples with a certain transparency.
However, the above discussed triggers are fixed patterns in
fixed locations, as will be shown in Section 2.2, most existing
poison-label backdoor attacks are easily mitigated by current
popular defenses.

In clean-label backdoor attacks, the poisoned training
data still preserve their ground-truth labels, and they look
like their source instances in the input space or at a pixel

Security and Communication Networks

sjoNpeg — Surpualg uesa))

smQ

sjoNpeg Surpualg ues))

smQ

(b)

FiGure I: Different backdoor instances. The trigger crafted by the BadNets is a black and white pixel block at the bottom right hand corner of
the image. In the specific case generated by the Blending, the “hello kitty” is used as the trigger to overlap with clean samples. In the case

generated by RDBA, the trigger is evenly distributed raindrops.

level. One typical work was proposed by Shafahi et al. in [25],
in which the authors crafted poison data by adding unno-
ticeable perturbations to clean samples from the target class
of the training set. The poisoned data appear like their clean
data counterparts, however, in latent feature space, they are
closer to the target samples (i.e., the clean data from a certain
non-target class of the testing set). During inference, the
targeted inputs would be misclassified as the target class. Zhu
et al. in [26] pointed out that the work of [25] is not suitable
in the black-box setting because the victim network is not
accessible. And they proposed an improved version of [25]
in [26] by leveraging the convex polytope attack to craft
poison data. Since the content of the poisoned data is
consistent with their labels, these data will be considered as
benign samples even by human inspection. Accordingly,
clean-label attacks are more stealthy compared with poison-
label attacks. However, it may be because the trigger is a
particular set of testing data rather than a universal pattern,
the attack success rate of clean-label attacks is relatively low,
e.g., in [25], for a 10-class classification setting, the target
success rate is 60%. Accordingly, in this work, we only target
the poison-label attacks and put forward a backdoor method
based on raindrops, which will be introduced in Section 4.

2.2. Backdoor Defenses. Backdoor defenses aim to detect or
mitigate backdoor attacks before or after model deployment.
In the current literature, various techniques have been
proposed. Here, we list the main-stream techniques for
backdoor defense before the deployment of DNN models,
which are the most commonly used in practice.

2.2.1. Fine-Tuning. Fine-tuning is one of the practical and
lightweight choices to get a well-performed model when the
labeled training data is insufficient. Researchers have found
that deep learning models suffer from catastrophic forget-
ting [20] of previously learned tasks when training on a
series of new tasks. The rationale for employing fine-tuning

to defend against backdoor attacks is that learning new tasks
will generally lead to large changes of the model weights,
which will disrupt previously learned trigger representations
[20]. The fine-tuning defense takes advantage of this cata-
strophic forgetting phenomenon to drive the victim model
to forget the implanted backdoors. That is, if defenders train
a model on the top of the victim using some new clean
training data, then the resultant model may drain out of
memory and forget the backdoor since it does not encounter
any triggers from new data during fine-tuning. However, in
reality, fine-tuning alone is not always effective as expected
when it comes to defense backdoors. This is because, neu-
rons associated with a backdoor are disentangled from
neurons associated with the original tasks, and their weights
have little contribution to the original (or new) tasks. During
fine-tuning, the weights of backdoor-related neurons will
keep unchanged due to lack of driven-force, and the
backdoor remains.

2.2.2. Fine-Pruning. Further to fine-tuning, the authors of
[14] observed that the neurons activated by benign samples
and those activated by trigger-containing samples do not
overlap. In other words, there are neurons that can only be
activated by triggers and remain dormant when inputs are
benign data. In view of this observation, removing these
trigger-sensitive neurons, dubbed backdoor neurons, can
help to disable the backdoor without impairing model
performance on normal data, as suggested by the neuron
pruning defense hypothesis. However, Liu et al. in [21]
further found that the subset of neurons activated by benign
inputs and the subset of neurons activated by malicious
inputs can overlap. Backdoors can also be triggered by
suppressing neurons activated by benign inputs. In this case,
pruning neurons alone will inevitably result in performance
loss on benign inputs. Considering such drawbacks, Liu et al.
proposed the fine-pruning defense in [21], which combines
the merits of neuron pruning with fine-tuning defense.

2.2.3. Grad-CAM Based Defense. Grad-CAM (Class Acti-
vation Map) [22,23] is a commonly used and useful tech-
nique for model interpretability and object detection. It
produces a visual interpretation of DNN decisions by
identifying the sample activation regions that contribute the
most to the prediction. The defense methods based on Grad-
CAM mainly utilize this technique to distinguish malicious
salient regions and filter out potential abnormal inputs or
behaviors. For example, the SentiNet [27] proposed by Chou
et al. employs Grad-CAM and boundary analysis to locate
the activated regions when each sample is classified into a
certain class, i.e., universal regions across different instances.
Then, by separating the salient areas from the common ones,
backdoor can be eliminated. NeuronInspect [28] proposed
by Huang et al. also follows this idea to detect poisoned
samples. In a nutshell, the effectiveness of Grad-CAM based
defenses mainly relies on the localization of trigger activa-
tion regions.

3. Problem Statement

In this section, we briefly introduce the threat model, in-
cluding the capability and knowledge of attackers, model
developers, and defenders, respectively, as well as the attack
goals.

3.1. System and Threat Model. This paper focuses on the
problem of poison-label backdoor attacks in image classi-
fication tasks. There are three main entities involved in the
lifecycle of backdooring DNNs: the attacker, the model
developer, and the defender.

3.1.1. Attacker. In our threat model, we follow the as-
sumption in BadNets [14] that the attacker can access and
manipulate the training data, but he cannot access the
parameters, structure, and training process of the victim
model. The attacker could, for example, be the training
data supplier who poisons a small portion of the training
data by stamping a self-crafted trigger onto the clean
instances and changing their labels to the target labels. In
the inference stage, the attacker can query the victim
model with images containing the trigger. He neither
knows the victim model nor can he manipulate the in-
ference process.

3.1.2. Developer. The developer could be the third-party
platform for training the victim model. He has powerful
resources and is usually very dedicated to the training
process. He will carefully select network architecture,
hyperparameters, as well as training strategies to obtain a
well-performed model. Due to the enormous volume of data
involved in the training process, if there is no obvious ab-
normality, e.g., some data have obvious traces of modifi-
cation, he will not carefully check data legitimacy. However,
if the trained model does not perform well on the validation
data set, he will reject it.

Security and Communication Networks

3.1.3. Defender. After the model has been trained, the de-
fender can take measures, including detection and mitiga-
tion, as we have introduced in Section 2.2, to disable possible
backdoors of the suspicious model. In the real-world sce-
nario, the defender can access the suspicious model and has
a certain portion of the source training data. He can also
fine-tune or change the model structure. For example, he can
use the available source training data to fine-tune or fine-
prune the model to remove the backdoor or suppress the
backdoor behavior via filtering.

3.2. Attack Goals. The attacker intends to inject a backdoor
into the victim model through data poisoning. An ideal
backdoor attack should have a good attack effect and attack
robustness. A good attack effect is a basic requirement for a
successful attack, which usually considers attack fidelity
and attack effectiveness. Attack robustness is a more ad-
vanced requirement for a backdoor attack, and it usually
takes into account attack stealthiness and sustainability.
Specifically, the RDBA is expected to own the following
properties.

(1) Fidelity. The existence of the backdoor should not
degrade the model’s accuracy on benign instances. It
is reasonable to assume that a backdoored model
whose performance on validation data is lower than
the developer’s expectations will be rejected for
deployment.

(2) Effectiveness. The backdoor can be easily activated by
the attacker-specific trigger. That is, the model will,
with a high probability, return target labels when
receiving inputs containing the trigger regardless of
what their ground-truth labels are.

(3) Stealthiness. It requires the trigger should be natural
and the poisoned data can hardly be distinguished
from natural inputs by naked eyes or Grad-CAM
based detectors and their volume should be kept to a
minimum. Otherwise, the anomaly in the training
data would be detected by the model developer, and
the poisoned data would be sanitized before training
the model.

(4) Sustainability. The attack should still be effective
under some commonly used defenses as we have
introduced in Section 2.2.

4. Raindrops Backdoor Attack

In this section, we illustrate our proposed RDBA backdoor
attack. Our main attack flow is shown in Figure 2. Before
diving into the details, we clarify the main process of the
backdoor attack.

4.1. Overview of RDBA. Without loss of generality, we
consider the DNN backdooring problem on a C-classes
) e N

image classification task. Suppose & = {(x;, y;)},., indicates
the benign training dataset containing N samples from a
trusted source used to train a DNN F, where
x; €{0,...,255}7¢ is the benign sample and

Security and Communication Networks

Clean samples

Backdoor samples

-

Clean set —> Target DNN —

DNN with backdoor

D,
®

Embed the backdoor into DNN

B

Inference Stage

Stop (true label)

20 Mile/h (target label)

FIGURE 2: Overview of the model. In the trigger generation stage, the attacker uses the raindrops trigger to poison a small portion of training
data to generate backdoor samples. In the backdoor embedding stage, the backdoor samples and clean samples are used together to train a
DNN to learn the mapping from the raindrops trigger to the target label. In the inference stage, the backdoored model returns the ground-

truth labels for clean inputs and the target label for poison inputs.

y;€1{0,...,C—1} is the corresponding label. Let
y' €{0,...,C—1} be the the target label chosen by the
attacker. We follow the definition in [29] and define our data
poisoning algorithm A(-) as:

(1)

xlt- — A(x;,m,A),

x;‘kc :(l_mjk)'xjkc+mjk'Ajkc’ (2)
where x € 9, is the original benign image, 9, is a subset of
D, xf is the poisoned sample, A is the trigger, m is a two-
dimension matrix called mask, and ¢, w and h refer to the
number of image channels, image width and image height
respectively.

The general training set of a backdoored model Fy is the
combination of a handful of training samples with backdoor
trigger Dyigeer = (0,)} and the remaining clean
samples 9, = 2\D:

Divain = D, UD (3)

train trigger*

The backdoor injection rate is & = |Dyjgpec /| D rainl-

4.2. Raindrop-Trigger Crafting. In our method, the trigger
used to poison clean instances is raindrops. We clarify the
raindrop-trigger generation steps as follows.

For each x € @,, we first generate random noise:

noise«—{random (0, 256)}:’:X1h.

(4)

To make the generated raindrops trigger A looks natural
and stealthy, we preprocess the noise by constraining the
raindrops density with « and perform the first blur operation
with the convolution kernel K;:

255, if noise > (256 — «),
noise =
0, else,

(5)
A—B(noise, K),

where K| is a single-channel 3 x 3 floating-point matrix. For
the further realization of the natural raindrops, the pre-
liminarily generated raindrops trigger needs to be stretched
and rotated to mimic rainwater of different sizes and di-
rections, then motion blur is added to it using the Gaussian
blur kernel K,. To use a Gaussian blur, it is necessary to
construct a corresponding weight matrix for filtering, and
the calculation of the weight relies on a two-dimensional
Gaussian function. The following is the two-dimensional
Gaussian function used:

e—(x2+y2)/2(72'

1
G(x,y) = — (6)
2n0
The raindrops trigger is updated by applying the second
blur operation with the Gaussian blur kernel K,:

A—B(AK,). (7)

Then, for all of the images in 9, repeat the above steps
and apply the algorithm in equation (2) to get our raindrops
trigger set Do, The detailed raindrops-trigger generation
procedure is summarized in Algorithm 1.

4.3. Backdoor Embedding. After generating the poisoned
training set P,,,., with the aforementioned method, at-
tackers will replace the clean subset &, with it to update the
training dataset 9,,,;,. The model developer uses D,,,;, to
train a model with a standard model training process with
cross-entropy loss, i.e., solving the following optimization
problem:

Security and Communication Networks

Output: dataset with trigger 2
(1) noise =0, A =0, Dyiger =
(2) 9, random select samples with ratio « from 2
(3) forall x € 2, do

trigger

(4) noise«—{random (0, 256)};‘;th
(5) if noise <256 — «

6) noise = 0

(7) else

(8) noise = 255

9) A—Blur (noise, K,)
10) A—Blur (A, K,)
11) x=(1-m)-x+m-A
(12) g%trigger'append{‘xt}
(13) end for

(14) return Dy,

Given: begin training data 2 = {(x;, yi)}il, poison injection rate , trigger density «, blur kernel K, and K,, mask m.

ALGORITHM 1: Raindrops-Trigger Generation.

] c
arggnin N Z Z yilog(p; (x,0)), (8)

x€D i=1

train

where y; is the i-th value of the ground-truth label of x, p; is
the i-th output of the softmax of Fy, 0 is the trainable model
weight set. The optimization equation (8) can be solved
using back-propagation with the SGD (stochastic gradient
descent) optimizer.

Since the dataset contains x ratio poisoned data, the
model can learn the mapping from the trigger to the target
label, i.e., the backdoor will be embedded into the model
seamlessly during the training process. In the inference
stage, attackers can activate the backdoor behavior by
injecting the trigger into benign inputs and feeding them to
the model.

5. Experiments and Analyses

To evaluate the performance of the proposed backdoor
method in terms of attack effect and attack robustness,
extensive experiments are executed by using different
benchmark datasets and neural architectures. The two most
popular poison-label backdoor methods, BadNets, proposed
in [14], and Blending, proposed in [24], serve as our
benchmark.

5.1. Experimental Settings. We evaluate the performance of
the backdoor attacks on two benchmark datasets:
ImageNet [30] and GTSRB (German Traffic Sign Recog-
nition Benchmark) [31]. ImageNet is a 1000-class image
classification dataset, including 1,281,167 training images,
50,000 validation images, and 100,000 test images. GTSRB
contains 43 classes of traffic signs, including 39,209
training images and 12,630 test images. For simplicity, we
randomly select a subset containing twelve categories from
each of the two datasets, used for training and testing,
where the first category within them is defined as the target
class. For the ImageNet and GTSRB, the selected subsets

contain 15,592 images and 40,520 images, respectively. The
two subsets are split into training sets and test set with a
10: 1 ratio, and the data enhancement methods (random
clipping and rotation) are adopted to process the samples.
These images are all resized into 244 x 244 x 3.

All attacks on the two datasets are conducted on
ResNetl18 [32] and VGGI16 [33] with the injection rate
defaults to x = 0.09. For RDBA, the raindrops density de-
faults to a = 6. The SGD optimizer is used in the training
stage, and the initial learning rate is set to 0.01. The batch size
and maximum iteration are set to 32 and 200, respectively.

The evaluation indexes we used include ASR (attack
success rate), ATA (after attack accuracy), and Py,. ASR
refers to the probability that a test set with a backdoor trigger
is misclassified as the target label by the poisoned model.
ATA refers to the performance of the poisoned model on a
clean test set. Py, = [BTA — ATA| measures the fidelity of
the infected model, where BTA (before attack accuracy) is
the clean test set accuracy of the backdoor-free model that
trained with clean instances. A qualified backdoor attack
that satisfies the fidelity and effectiveness goals should have a
high ASR and ATA but a low Pp,.

5.2. Attack Effect

5.2.1. Fidelity. It aims to test whether the performance of
clean data suffers as a result of the backdoor. As a com-
parison, we train corresponding clean models with the
above-mentioned network architectures and clean training
datasets. We also train backdoored models with the Blending
[24] and BadNets [14] methods, and the accuracy results are
shown in Table 1. Comparing our ATA with the BTA values,
itis clear that our backdoor attack has no negative impact on
performance. There is even a slight improvement in the clean
data accuracy of models trained on VGG16. However, as can
be seen in the fourth and fifth columns, the fidelity of
Blending [24] and BadNets [14] is not as well preserved. For
example, in Blending, the ATA of ResNet18 models trained
with GTSRB dropped by 3.83%; whereas in BadNets, the

Security and Communication Networks

TaBLE 1: Performance of different backdoor methods on ImageNet and GTSRB datasets evaluated using the ATA (%) and ASR (%), where x/
y indicates average metrics ATA/ASR and the best results are in bold.

Dataset Model BTA Blending [24] BadNets [14] Ours
GTSRB ResNet18 93.87 90.04/99.80 93.05/99.14 93.52/99.94
GTSRB VGGI16 92.31 92.83/99.97 93.22/97.39 92.86/100
ImageNet ResNet18 87.30 85.12/99.32 84.43/97.24 86.70/99.25
ImageNet VGGIl6 86.90 85.34/99.46 84.13/92.05 87.18/99.19

ATA of ResNet18 models trained with ImageNet dropped by
2.87%.

We also investigate our backdoor effects with different
raindrops densities « and different injection rates , with the
findings displayed in Table 2 and Figure 3, respectively. As
we can see from Table 2, the Py, values are very small, in
which the largest is 0.56%, and generally it can be think as
negligible. Figure 3 shows that, although ATA decreases
slightly at the injection rates of 0.04 and 0.08, overall ATA
remains relatively stable as the injection rate increases. To
conclude, RDBA achieves high fidelity.

5.2.2. Effectiveness. The purpose of effectiveness is to
quantify how likely the target labels can be activated by an
instance containing a specific trigger. From Table 1 we can
see that all of the methods have high ASRs. For RDBA and
Blending, their ASR is near 100%. For BadNets trained on
ImageNet using VGG16, the ASR is about 92%, which means
the effectiveness of BadNets is relatively inferior to RDBA
and Blending methods.

Table 2 further shows that ASRs of RDBA increase with
the increase of density o. When « is 0.5, its ASR is 96.42%,
which is relatively low but still outperforms BadNets, whose
ASRis only 92%. When & increases to 1, the ASR is near 99%,
which demonstrates that the backdoor effectiveness of
RDBA is high even at low density.

Figure 3 also shows a similar trend, that is, ASR increases
as the injection rate increases. When the injection rate is
0.02, the ASR of RDBA trained on the ImageNet dataset is
about 95%, which is not as high as the ASR that is close to
100% trained on the GTSRB. It is mainly because the
classification difficulty of the ImageNet dataset is higher than
that of the GTSRB dataset. When the injection rate is in-
creased to 0.04, the ASR reaches about 99%. After that, as the
injection rate is increased, the ASR value stabilizes between
99% and 100%.

To sum up, the trigger density setting has no significant
impact on the effect of the backdoor model, and the pro-
posed RDBA method can achieve a high attack effect even in
the case of a small density or low injection rate.

5.3. Attack Robustness

5.3.1. Stealthiness. Stealthiness is to measure how likely it is
that the poisoned data will arouse the suspicions of devel-
opers. Intuitively, the more natural the poisoned images and
the smaller the injection rate, the more concealed the poi-
soned data are and the less likely model developers will
notice them.

TaBLE 2: The ATA (%), ASR (%), and Py, (%) of backdoor triggers
with different raindrops densities tested by ImageNet dataset on
VGGI6.

a ATA ASR Py,
0.5 87.15 96.42 0.25
1 86.34 98.85 0.56
2 87.05 99.12 0.15
3 86.86 99.32 0.04
4 87.03 99.39 0.13
5 86.97 99.52 0.07
6 87.18 99.10 0.28
1000 | - 4o e ,
MR S— D qim—— g 2
97.5 T
3 950 L
= 925
=< 90,0
2 87.5 .\./.\F/—.
85.0 e
82.5
80.0
0.02 0.04 0.06 0.08 0.09

Injection rate

—#- ASR_ImageNet

—=— ATA_ImageNet

—-+- ASR_GTSRB
ATA_GTSRB

FiGure 3: The effect of different injection rates ¥ on our method.

Figure 4 shows the poisoned images generated with
different densities. From this figure, we can see that even if
the disturbance on the clean image increases with the in-
crease in density, the modified image appears natural to
naked eyes. Figure 1 shows backdoor instances used in
different methods. It is obvious that the instances created by
Blending and BadNets have traces of artificial synthesis. In
contrast, the poisoned images created using RDBA look
more natural, and the content of the source images is un-
affected. In another aspect, as we have analyzed in Sections
5.2.1 and 5.2.2, RDBA can achieve both high fidelity and
effectiveness at a relatively low injection rate. For instance, as
shown in Figure 3, the RDBA trained on ImageNet achieves
near 99% when the injection rate is 0.04, and almost 100%
for GTSRB. So, it is concluded that the RDBA meets the
stealthiness criteria.

Security and Communication Networks

FIGURE 4: Backdoor instances generated by RDBA on ImageNet with different densities a. (a) a=0.5. (b) a=3. (c) a=6.

5.3.2. Sustainability. The purpose of sustainable assessment
is to measure whether the backdoor method can withstand
backdoor defenses. In this section, we mainly pay attention
to the fine-tuning, fine-pruning, and Grad-CAM based
defenses.

(1) Fine-Tuning Defense. We evaluate the effects of Blending,
BadNets, and RDBA in evading fine-tuning defense. The
backdoored models are pretrained with the ImageNet
dataset using the three attack methods. And then they are all
fine-tuned for 10 epochs with a learning rate of 0.001 and a
10% clean ImageNet dataset, as shown in Figure 5.

Obviously, the ASR of BadNets has a significant decline
after only 2 epochs of fine-tuning, and the value continues to
decrease as the fine-tuning epoch increases. Finally, after 10
epochs of fine-tuning, the ASR of BadNets decreased from
92.05% to nearly 30%. On the contrary, as the fine-tuning
epoch is increased, the ASR of both Blending and RDBA is
essentially unaffected. The ASR of RDBA method drops by
2.18% when the epoch is 8, but it quickly recovers and is
finally maintained at around 97%. In general, RDBA is
comparable to Blending, and both are better than BadNets,
in terms of evading the fine-tuning defense. It’s possible that
this is due to BadNets’ triggers being overly simplistic, with
the trigger pattern only focusing on a small portion of an
image. The neurons that contribute to the prediction of clean
inputs rarely overlap with the neurons that contribute to the
prediction of triggers. In this way, BadNets is more sus-
ceptible to fine-tuning defense.

We also investigate the impact of raindrops density in
RDBA on evading the fine-tuning defense, as illustrated in
Figure 6. The backdoored models are trained by backdoor
samples with different densities a. As we can see from this
figure, the ASR of the backdoored models with densities of

100 #——®---@oe g @@= " e
A——A e
\\
80 -\
— A
X AN
g 60 A
< N
_A
\l’/ AN
40 ARy — :
A N
\\ /,A
N\, -~
20
0 1 2 3 4 5 6 7 8 9 10
Epochs
—-+— BadNets
Blending
—-+— Ours

FiGure 5: The sustainability of backdoor behaviors of BadNets,
Blending, and our methods to the fine-tuning defense.

0.5 and 1 decreases significantly as the fine-tuning epoch
grows. And finally, the value degraded to nearly 90% after
fine-tuning. It is because when the density is low, the
similarity of the poisoned input and the clean sample is
relatively high, preventing the DNN model from learning to
distinguish the trigger input accurately. Meanwhile, the ASR
of the backdoored models with a density of 2 or greater than
2 is almost unaffected by the fine-tuning, and their ASR
remains near 100%. It is concluded that our method can
maintain backdoor behavior well after the fine-tuning de-
fense with density >2. It is worth mentioning that, as we
discussed earlier, stealthiness is well maintained in such
settings.

Security and Communication Networks

100
\\x———x\

95 S
— T
X AN
29
<

85

80

—e— o=5
a=3
—x— a=1

Epochs
a=4
—+— a=2
—»— a=0.5

FIGURE 6: The ASR of backdoored models with different densities « after the fine-tuning defense.

(2) Fine-Pruning Defense. We assess the susceptibility of
backdoor behaviours of our method to this defense by
designing the experiments as follows. The backdoored
models are trained with VGG16 on ImageNet and GTSRB
datasets. We rank the weights by magnitude, and then set the
least p% to zero to prune the model. Then we fine-tune the
pruned model use 10% clean data. The experimental results
are shown in Figure 7.

As we can see from this figure, the ASR of all six
backdoored models is well preserved when 20% neurons are
pruned, but the ASR drops significantly when the proportion
of pruned neurons exceeds 20%. When the pruning rate is
40%, the ASR degradation of the Blending method is the
most severe, especially for the model trained on GTSRB
whose ASR dropped from nearly 100% to nearly 40%. For
the models backdoored with the Blending and BadNets
methods on ImageNet, their ASR degraded by about 20%.
And their ASR drops to near 60% when the pruning rate
reaches 50%. Compared with both Blending and BadNets,
RDBA is less susceptible to fine-pruning. The ASR values of
backdooring with RDBA on both ImageNet and GTSRB
datasets are all above 80% even when 50% neurons are
pruned. In general, the proposed RDBA outperforms
Blending and BadNets in sustaining the backdoor behavior
after fine-pruning.

(3) Grad-CAM Based Defense. As mentioned in 2.2, the
effectiveness of Grad-CAM defense methods highly relies on
the localization accuracy of malicious salient regions. To
evaluate the resistance of our method to this kind of defense,
we generate the salient heat maps, obtained through Grad-
CAM, of poisoned images with given datasets on VGG16, as
shown in Figure 8.

As we can see from the second row in both Figures 8(a)
and 8(b), the heat maps of backdoor samples obtained by
the BadNets are concentrated in specific significant areas,
i.e., the bottom right corner of images, which is exactly the
trigger embedded position. Such universal salient regions
are likely to be identified as malicious salient regions. For

100 | @==9===@=cp — 4
b SN
NN ‘\\ \
) . S
LR S
\ ‘\\ (N
£ 60 : : : 5 : \\\ *\'
~ \\ \\\\ *
1921 o—_ VN
< 40 TR e
AY
\\\\\‘lk\\
20 - \t\' \\2\\\'
TN
0 R STy
0 01 02 03 04 05 06 07 08 09 1

Proportion of pruned neurons

—+— BadNets-GTSRB —+— Blending-ImageNet

—+— BadNets-ImageNet —o— Ours-GTSRB

—e- Blending-GTSRB —+— Ours-ImageNet

FiGure 7: The sustainability of backdoor behaviors of BadNets,
Blending, and our methods to the fine-pruning defense.

the heat maps generated for Blending, as shown in the first
row of Figures 8(a) and 8(b), respectively, their salient areas
are not focused on the fixed areas of an image as the
BadNets method does. The distribution of highlighted
regions, on the other hand, retains some regularity, with
the majority of them concentrated in the middle of the
lower half of the images. In contrast, the salient regions of
poisoned samples generated by RDBA are scattered in the
images, as shown in the third row of Figures 8(a) and 8(b)
respectively, and they appear to be random. It is mainly
because different poisoned images generated by RDBA
contain different triggers, which are evenly distributed in
the images, while the poisoned images generated by
Blending and BadNets share fixed trigger patterns. As a
result, the triggers generated by RDBA are harder to dis-
tinguish compared to those of Blending and BadNets. In
conclusion, our attack is more resistant to the Grad-CAM-
based defense.

10

s1Nped Burpuarg

smQ

Surpudyg

s1Nped

smQ

N K
© e
2 | r
3

()

Security and Communication Networks

FIGURE 8: The heat maps of poisoned samples generated by different attacks. (a) GTSRB and (b) ImageNet.

6. Conclusion

In this article, we report that the triggers of most existing
backdoor attacks are simple, fixed, or unpleasant patterns,
which not only makes the backdoor samples easy to be
suspected by the model developer due to their unnatural
appearance, but also allows current backdoor defenses to
easily mitigate backdoor attacks. Based on this consider-
ation, we propose the RDBA attack based on the natural
raining phenomenon, which, compared to the current
backdoor trigger, is more disguised and can circumvent data
filtering. In addition, the raindrops triggers are evenly
scattered over images and do not follow a fixed pattern that
is shared by all benign samples, making the RDBA more
resistant to the existing backdoor defenses. Extensive ex-
periments have been conducted, which corroborate the
attack effect of RDBA in terms of fidelity, effectiveness,
stealthiness, and sustainability in attacking different models.
In the future, we will consider designing more stealthy
backdoor attacks by using advanced deep learning-based

techniques to generate synthetic raindrops that are indis-
tinguishable from real raindrops.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural
Science Foundation of China (nos. 62172120, 61936002, and
61962014), Guangxi Science and Technology Project (nos.
AD18281079, 2019GXNSFFA245014, 2019AC20014, and
AB19110038), and Guangxi Key Laboratory of Image and
Graphic Intelligent Processing (no. GIIP2001).

Security and Communication Networks

References

[1] H. Caesar, V. Bankiti, A. H. Lang et al., “NuScenes: a mul-
timodal dataset for autonomous driving,” in Proceedings of the
CVPR, pp. 11618-11628, Seattle, WA, USA, June 2020.

[2] C. Szegedy, V. Vincent, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the CVPR, pp. 2818-2826, Opatija, Croatia,
October 2020.

[3] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-
order attention network for single image super-resolution,” in
Proceedings of the CVPR, pp. 11065-11074, Long Beach, CA,
USA, June 2019.

[4] B. Dalbelo Bagi¢ and M. P. di Buono, “An analysis of early use
of deep learning terms in natural language processing,” in
Proceedings of the MIPRO, pp. 1125-1129, Opatija, Croatia,
October 2020.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the NAACL, pp. 4171-4186,
Minneapolis, MN, USA, 2019.

[6] S. Rao and H. Daumé, “Learning to ask good questions:
ranking clarification questions using neural expected Value of
perfect information,” in Proceedings of the ACL, pp. 2737-
2746, Melbourne, Australia, 2018.

[7] 1. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in Proceedings of the ICLR,
San Diego, CA, USA, May 2015.

[8] A.Madry, A. Makelov, L. Schmidt, D. Tsipras, and V. Adrian,
“Towards deep learning models resistant to adversarial at-
tacks,” 2017, https://arxiv.org/abs/1706.06083.

[9] A. Nguyen and A. Tran, “Wanet-Imperceptible warping-
based backdoor attack,” 2021, https://arxiv.org/abs/2102.
10369.

[10] A.Mustafa, S. H. Khan, M. Hayat, J. Shen, and L. Shao, “Image
super-resolution as a defense against adversarial attacks,”
IEEE Transactions on Image Processing, vol. 29pp. 1711-1724,
2020.

[11] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and
P. Mcdaniel, “Ensemble adversarial training: attacks and
defenses,” 2018, https://arxiv.org/abs/1705.07204.

[12] B. Li and Y. Vorobeychik, “Scalable optimization of ran-
domized operational decisions in adversarial classification
settings,” in Proceedings of the AISTATS, pp. 599-607, San
Diego, CA, USA, 2015.

[13] H. Dai, H. Li, T. Tian et al.,, “Adversarial attack on graph
structured data,” in Proceedings of the ICML, pp. 1115-1124,
Stockholm, Sweden, 2018.

[14] T. Gu, B. Dolan-Gavitt, and S. G. BadNets, “Identifying
vulnerabilities in the machine learning model supply chain,”
2017, https://arxiv.org/abs/1708.06733.

[15] S.-C. Lin, Y. Zhang, C.-H. Hsu et al, “The architectural
implications of autonomous driving: constraints and accel-
eration,” in Proceedings of the ASPLOS, pp. 751-766,
Williamsburg, VA, USA, 2018.

[16] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize
to a crime: real and stealthy attacks on state-of-the-art face
recognition,” in Proceedings of the CCS, pp. 1528-1540, New York,
NY, USA, October 2016.

[17] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-
end text-dependent speaker verification,” in Proceedings of the
ICASSP, pp. 5115-5119, Shanghai, China, March 2016.

[18] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey,
and S. Khudanpur, “Speaker recognition for multi-speaker

11

conversations using x-vectors,” in Proceedings of the ICASSP,
pp- 5796-5800, Brighton, UK, May 2019.

[19] D. Snyder and D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, X-Vectors: robust DNN embeddings for
speaker recognition,” in Proceedings of the ICASSP,
pp- 5329-5333, Calgary, AB, Canada, April 2018.

[20] R.Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
“Measuring catastrophic forgetting in neural networks,” in
Proceedings of the AAAI, New Orleans, LA, USA, 2018.

[21] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning:
defending against backdooring attacks on deep neural net-
works,” in Proceedings of the RAID, Heraklion, Greece,
September 2018.

[22] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-CAM: visual explanations from deep
networks via gradient-based localization,” in Proceedings of
the ICCV, pp. 618-626, Venice, Italy, October 2017.

[23] A. Chattopadhyay, A. Sarkar, P. Howlader, and
V. Balasubramanian, “Grad-CAM++: generalized gradient-
based visual explanations for deep convolutional networks,”
in Proceedings of the WACV, pp. 839-847, Lake Tahoe, NV,
USA, March 2018.

[24] X. Chen, L. Chang, B. Li, K. Lu, and D. Song, “Targeted
backdoor attacks on deep learning systems using data poi-
soning,” 2017, https://arxiv.org/abs/1712.05526.

[25] S. Ali, W. R. Huang, M. Najibi et al., “Poison frogs! targeted
clean-label poisoning attacks on neural networks,” 2018,
https://arxiv.org/abs/1804.00792.

[26] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and
T. Goldstein, “Transferable clean-label poisoning attacks on
deep neural nets,” in Proceedings of the 2019 International
Conference on Machine Learning, pp. 7614-7623, Long Beach,
CA, USA, June 2019.

[27] E. Chou, F. Tramer, and G. Pellegrino, “SentiNet: detecting
localized universal attacks against deep learning systems,” in
Proceedings of the 2020 IEEE Security and Privacy Workshops,
pp. 48-54, New Jersey, NJ, USA, May 2020.

[28] X. Huang, M. Alzantot, and M. Srivastava, “NeuronInspect:
detecting backdoors in neural networks via output explana-
tions,” 2019, https://arxiv.org/abs/1911.07399.

[29] B. Wang, Y. Yao, S. Shan et al., “Neural cleanse: identifying
and mitigating backdoor attacks in neural networks,” in
Proceedings of the SP, pp. 707-723, San Francisco, CA, USA,
May 2019.

[30] D. Jia, W. Dong, R. Socher, L.-]. Li, K. Li, and F.-F. Lj,
“ImageNet: a large-scale hierarchical image database,” in
Proceedings of the CVPR, Miami, FL, USA, June 2009.

[31] J. Stallkamp, M. Schlipsing, S. Jan, and C. Igel, “The german
traffic sign recognition benchmark: a multi-class classification
competition,” in Proceedings of the IJCNN, pp. 1453-1460, San
Jose, CA, USA, April 2011.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the CVPR,
pp. 770-778, Las Vegas, NV, USA, June 2016.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference on Learning Representations,
no. 1556, ICLR, San Diego, CA, USA, May 2015.

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2102.10369
https://arxiv.org/abs/2102.10369
https://arxiv.org/abs/1705.07204
https://arxiv.org/abs/1708.06733
https://arxiv.org/abs/1712.05526
https://arxiv.org/abs/1804.00792
https://arxiv.org/abs/1911.07399

Hindawi

Security and Communication Networks
Volume 2022, Article ID 4835776, 10 pages
https://doi.org/10.1155/2022/4835776

Research Article

WILEY | Q@) Hindawi

GAN-Based Information Leakage Attack Detection in

Federated Learning

Jianxiong Lai ,! Xiuli Huang,2 Xianzhou Gao,> Chang Xia ,Land Jingyu Hua'

'Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China
2State Grid Key Laboratory of Information & Network Security,
Global Energylnterconnection Research Institute Nanjing Branch, Nanjing, Jiangsu, China

Correspondence should be addressed to Chang Xia; changxia656569@gmail.com

Received 16 December 2021; Accepted 2 March 2022; Published 23 March 2022

Academic Editor: Jinguang Han

Copyright © 2022 Jianxiong Lai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Federated learning (FL) has been a popular distributed learning framework to reduce privacy risks by keeping private data locally.
However, recent work (Hitaj 2017) has demonstrated that sharing model’s parameter updates still leaves FL vulnerable to internal
attacks in its training phase. Existing works cannot detect such attacks well. To address this problem, we propose a novel and
lightweight detection scheme which selects and analyzes just a few parameter updates of the last convolutional layer in the FL
model. Extensive experiments demonstrate that our proposed detection scheme can accurately and efficiently detect the malicious
participant in near real time for a scenario with a malicious participant.

1. Introduction

With the rapid development of artificial intelligence, the
availability of large amounts of high-quality data has become
an important factor restricting its further development. In
this context, the demand for data sharing and integration is
becoming stronger and stronger. However, traditional
machine learning methods need to concentrate training data
in a certain machine or a single data center, which greatly
increases the privacy risk in the data fusion process.
Therefore, federated learning came into being, and it has
received extensive research and attention from industry and
academia. Federated learning has been widely used in sce-
narios where privacy is important and sensitive, including
financial, medical, electricity, etc. Federated learning relies
on the collaboration of many participants, and each par-
ticipant can be an IoT device holding its local data.
Existing study [1] has shown that although federated
learning can significantly reduce the risk of data privacy
leakage of each participant in the distributed learning
process, attackers can still steal data from other participants
by deploying GAN locally. In addition, many researchers
have conducted research on attacks against federated

learning. For example, Wang [2] deployed a GAN on the
computing center server-side to steal the private data of a
specific user. In other work, poisoning attack is delicately
conducted on the federated learning model [3-5].

In order to resist these attacks, a large amount of work on
privacy-preserving federated learning has been produced.
Zhao et al. [6] proposed a scheme to defend against poi-
soning attacks in federated learning through GAN. Hayes
et al. [7] provide a mitigation scheme for poisoning attacks
in federated learning through adversarial training. There are
also many studies on federated learning privacy protection
based on differential privacy [8-10] and many pieces of
research on security and privacy in federated learning based
on cryptography [5, 11-15]. Mothukuri et al. [16] have done
a detailed investigation of the federated learning privacy and
security research. Although these federated learning privacy
protection efforts have yielded considerable results and the
defense effects against most attacks are obvious, the defense
against [1] is still insufficient, and the existing work [17] has a
large delay in the detection of the attack. When the detection
is completed, the attacker may have stolen the target data.
Also, their work requires collecting the updates of all the
parameters in the last fully connected layer and needs to

mailto:changxia656569@gmail.com
https://orcid.org/0000-0002-7151-9294
https://orcid.org/0000-0003-0039-4794
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4835776

train two autoencoders to extract features from the collected
data. Thus, their work has a lot of room for improvement in
terms of efficiency and real time.

In this work, we propose a new detection scheme for
client-side GAN-based attacks in federated learning, where
the attacker is one of the participants and deploys a GAN
locally to mimic the training data of other participants. This
scheme analyzes the updates of bias of the last convolutional
layer of the model, quickly detects the abnormality of the
updates during the federated learning process, and locates
the malicious participants.

Our key contributions are as follows:

(1) We find the fact that a GAN-based attack will cause
the updates of specific parameters of the model to
show general anomalous features. We not only locate
the specific parameters but also summarize the
anomalous features and provide an analysis of the
occurrence of these anomalous features.

(2) We propose an anomaly detection algorithm to
automatically identify the malicious participants by
detecting the previously found anomalous features.

(3) We empirically evaluate our detection on MNIST
and GTSRB dataset against GAN-based attacks. The
results show our detection is not only accurate but
also efficient and real time.

2. Related Work
2.1. Attacks in Federated Learning

2.1.1. Poisoning Attacks. Poisoning attacks mainly refer to
malicious participants manipulating the predictions of the
machine learning model by poisoning the training set or the
model updates in the training process. In federated learning,
attackers have two ways to carry out poisoning attacks: data
poisoning and model poisoning [18]. Data poisoning means
that the attacker contaminates the samples in the training
set, such as adding wrong labels or biased data, to reduce the
quality of the data, thereby affecting the final trained model
and destroying its usability or integrity. Jiang et al. [19] make
the parameter values of the learning model close to the
values they expect and at the same time, make the model
output wrong predictions for specific test samples. Chen
et al. [20] adopt a hybrid auxiliary injection strategy by
injecting a small number of poisoned samples into the
training set to obtain more than 90% of the attack success
power. In order to increase the attack breadth, Muoz-
Gonzalez et al. [21] propose a new poisoning algorithm
based on the idea of antigradient optimization, which can
target the gradient-based training process in a wider range of
learning algorithms, including neural network (NN) and
deep learning(DL) architecture.

2.1.2. Privacy Leakage. Federated learning allows partici-
pants to conduct training on their local dataset, and one
entity’s local dataset cannot be accessed by another; thus a
certain degree of privacy and security can be guaranteed.
However, this kind of security is not absolute, and there is

Security and Communication Networks

still the risk of privacy leakage. A malicious participant can
deduce the sensitive information of other participants from
the shared parameters. Wang et al.explore user-level privacy
leakage against federated learning by the attack from a
malicious server. They propose a generic and practical re-
construction attack based on Generative Adversarial Net-
work(GAN), which enables a malicious server to not only
reconstruct the actual training samples but also target a
specific client and compromise the user-level privacy [2].
Hitaj et al. propose a similar attack, where the attacker exists
in the participants [1], and our work is focused on this work.

2.2. Defenses in Federated Learning

2.2.1. Defenses against Poisoning Attacks. There are already a
variety of defense mechanisms to resist data poisoning at-
tacks. Nathalie et al. use contextual information such as
origin and transformation to detect toxic sample points in
the training set [22]. They divide the entire training set into
multiple parts and compare the training effects of each part
of the data to identify which part of the data performs the
most abnormally. Liu et al. propose a defense mechanism to
combat poisoning attacks in regression [23]. This technology
integrates improved robust low-rank matrix approximation
and robust principal component regression, providing a
powerful performance guarantee. As for model poisoning,
there are usually two detection methods for abnormal pa-
rameter updates [24]. The first one is through accuracy
testing. The server first uses the parameter updates from
participant i to calculate new parameters W, then uses the
parameter updates from all the other participants to cal-
culate new parameters W,. Next, W, and W, are used as
the model parameters, respectively, to compare the accuracy
of the two models on the validation set. If the accuracy of the
model using Wy, is significantly lower than that using W;,,
it is assumed that W, is abnormal. Another method is to
directly compare the numerical statistical differences be-
tween the parameter updates §,, 9,, . . ., §,, uploaded by each
participant. When there is a significant statistical difference
between the parameter updates §; reported by one partici-
pant and that reported by all the other participants, the
anomaly of §; is predicted.

2.2.2. Defenses against Privacy Leakage. There are a few
defense schemes against privacy leakage. Lu et al. incor-
porate LDP into gradient descent local training process to
protect the updated models of each participant [10]. Anono
Y et al. propose a new system that utilizes additively ho-
momorphic encryption to protect the gradients against the
curious server [5]. However, little work has been done about
the detection against GAN-based attacks in federated
learning. Differential privacy does not apply to this attack,
while homomorphic encryption faces the problem of effi-
ciency. Xiong et al. [17] propose a method that utilizes the
parameter updates uploaded by participants during training
to detect the malicious participant. They train two
autoencoders to extract features from the collected data.
Finally, unsupervised learning is used to cluster the data into

Security and Communication Networks

normal ones and abnormal ones. Different from their work,
we only concentrate on a few parameters in the last con-
volutional layer and use a light-weighted statistic based
method to find out the malicious participant. Compared
with their work, our detection mechanism is more efficient
and real time.

3. Approach

3.1. Threat Model. Our threat model follows Hitaj et al.’s
work [1], which can be described in detail as follows.

In typical federated learning, there are some participants
and a parameter server. They agree on a common global
model, including the type and the architecture of the model.
They also agree on the data labels held by each participant.
The parameter server is authoritative and will not com-
promise with any attacker. The attacker pretends to be an
honest participant in the federated learning protocol but
tries to steal the information of a specific class, which he does
not own.

The attacker will attack as follows. First, he downloads
the global parameters from the parameter server to update
his local model. Then he trains a GAN locally to generate
samples of target labels. The GAN consists of a generator and
a discriminator. The goal of the generator is to fool the
discriminator into believing that the generated samples are
drawn from the target label, while the goal of the dis-
criminator is to distinguish whether the samples are fake and
classify the real samples as accurately as possible. The
downloaded model is used as the discriminator while the
generator is defined by the attacker. After the training of
GAN is finished in the current round, the attacker will
deliberately mislabel the samples generated by the generator
as a label that only he owns. Then the global model will get
confused and has to try harder to improve the accuracy on
the target label, so more details about the target label will be
revealed in the following training process, which will help
the attacker generate samples that looks more similar to
those of target label. In this paper, we consider a more clever
attacker who starts the attack only when the global model’s
accuracy is over a threshold such as 0.85. Delaying the attack
will help the attacker learn information about target label
faster and thus evade being detected easier.

3.2. Overview. We propose a novel, accurate and efficient
method to detect the potential malicious participant almost
in real time. The intuition is that if there is a malicious
participant in the federated learning system, the parameter
updates uploaded by the attacker should be quite different
from those uploaded by normal participants since the
malicious participant injects some fake samples into his local
training set and mislabels the fake samples deliberately.
However, there are often millions of parameters in a ma-
chine learning model, and it is not practical to observe all the
parameter updates during training. So we use some strategy
to pick out a few typical parameters for each local model and
only observe updates of these parameters in the following
training process. Our method only utilizes a very tiny

portion of parameter updates uploaded by each participant,
saving a lot of computing overhead and making the fol-
lowing data analysis easier. Overall, our method can be
divided into feature selection and anomaly detection.

3.2.1. Feature Selection. Considering that the collected
parameter updates are too large to analyze, we managed to
pick out the critical updates to reduce the size of data.
Although Xiong et al. [17] also managed to reduce the size
of collected data, the processed data is still very large and
needs to be analyzed through deep neural networks. Dif-
ferent from their work, we select the biases in the last
convolutional layer as the critical parameters and con-
centrate on the updates of the biases. One may wonder why
not consider other parameters such as the weights and
parameters from other layers, and here is the reason.
Theoretically, compared with other layers, the last con-
volutional layer contains the most abundant features except
the full-connected layers. However, the number of pa-
rameters in the full-connected layers is much more than
that of convolutional layers, and it means more compu-
tational overhead. As for weights vs. biases, according to
the rules of backpropagation, the updates of weights rely
more on the input of the current layer, causing the updates
to be more unstable and harder to analyze. In fact, we
tentatively tried both weights and biases from all the layers
and found biases from the last convolutional layer perform
best. Generally, the parameters in a convolutional layer are
composed of weights and bias, and the number of biases is
equal to the number of filters in this layer, which is usually
less than one thousand. The number of parameters we
utilized is less than one percent of that of Xiong et al. [17];
thus, data can be analyzed without deep neural networks,
saving a lot of computing overhead. To further reduce the
size of data, we proposed a metric called parameter change
rate, which is a very important feature for the following
anomaly detection.

3.2.2. Anomaly Detection. First, we analyze the reduced data
with Python and manage to find out the anomalous features.
Then an anomaly detection algorithm is proposed to au-
tomatically detect the anomalous features. The detection
algorithm is run by the parameter server each round and it is
based on statistics of the reduced data. There are some
hyperparameters in the algorithm and they may vary by
scenario and dataset. The details of the anomaly detection
algorithm will be described in the following section.

3.3. Detection Workflow Details

3.3.1. Implementation of Feature Selection. We start col-
lecting data from the beginning of training and try to find
out the malicious participant with the collected data in real
time. We only focus on updates of all the biases in the last
convolutional layer from each participant in each round. Set
m as the number of participants, p as the number of filters in
the last convolutional layer. Suppose the biases for

participant i in round j before training is B;; = {by, b,
...,b,}, after training is BiJ'- = {bl',b', . ,b;}. Then the
updates of biases collected from participant i in round j can
be repressnted as AB;;=B;;-B;= {b,-b, b,-b,,

..»b, — b,}. However, we do not care about the update of
every single bias. Instead, we focus on the overall update of
all the p biases. Thus, we propose a metric called parameter
change rate to measure the overall magnitude of update of
the p biases, which is defined as follows:

A L v
G I R Y

It is proved to be a critical feature to indicate the
anomalous features of abnormal updates. For each partic-
ipant i, we will get a sequence s; = ﬁ’ip Tigs-- s riq}, where g
is the number of training rounds. The m sequences
S=5,,8...,5, will be the final data to analyze. The final
data is a two-dimensional matrix of size m by g, which can be
plotted in the same figure as m curves.

1

3.3.2. Implementation of Anomaly Detection. First, we an-
alyze the final data on different datasets and different sce-
narios with Python and manage to find some general
anomalous features. For each dataset, we conduct repeated
experiments on scenarios with and without a malicious
participant. For the data collected in each experiment, we plot
the sequence corresponding to participant i as a curve in the
rectangular plane coordinate system, with the x-axis being the
index of training rounds and the y-axis being the parameter
change rate. For the convenience of comparison, we plot m
curves in the same figure. Figures 1 and 2 show the com-
parison of interested parameter updates with/without a
malicious participant on the MNIST dataset and GTSRB
dataset, respectively. It is worth mentioning that these figures
do not show the experimental results. Instead, their role is to
show the type of anomalous features and to make the de-
tection algorithm to be proposed next easier to understand.
Through a large number of observations and analyses, we
draw the following conclusions. Fisrt, in the scenario without
any malicious participant, the trend of all the m curves are
very similar. They all descend sharply from the same initial
value 1 and then converge gradually to close to 0, with many
overlaps among the curves. Second, in the scenario with a
malicious participant, the curves corresponding to normal
participants keep the same regular as the scenario without any
malicious participant, while the curve corresponding to the
malicious participant behaves differently. To be specific, there
are two kinds of anomalous features shown from the figures.
The first anomalous feature is that the anomalous curve is
significantly higher than other curves. The second anomalous
feature is a sudden spike in the mid of one curve, while the
curve behaves the same as other normal curves at other times.
Next, we present our explanation about the occurrence of
these two anomalous features.

As for the first anomalous feature, it lasts from the
beginning of the attack to the end of the training. This is
because the attacker keeps generating new fake samples

Security and Communication Networks

and adding them to his training set, the convergence speed
of parameters is affected, leading the parameter change
rate of the attacker obviously higher than others since the
attack begins. As for the second anomalous feature, the
spike occurs in the early rounds of the attack. This is
because the attacker mixed his training set with some
mislabeled fake samples which are unseen in the previous
training. The loss of the attacker’s local model will surge,
which is shown in Figures 3 and 4. As a result, the pa-
rameter updates of the attacker become abnormally large
in the early rounds of the attack to bring the loss back to
normal. However, the above two anomalous features do
not usually appear together. The complexity of the target
data may decide which kind of anomalous features will
appear. If the target data is complex, such as GTSRB used
in our work, the attacker will have a hard time teaching his
local model to classify the generated fake samples cor-
rectly; thus, the parameter change rate of the attacker will
always be much higher than others. On the contrary, if the
target data is simple, such as MNIST used in our work, the
attacker’s model will adjust itself to the generated fake
samples quickly; thus, the parameter change rate will just
be obviously higher than others in the first several rounds
since the attack begins.

Finally, we propose an anomaly detection algorithm to
detect the anomalous features analyzed above. It only utilizes
the comparison of parameter change rate and its related
statistical information. The detection of the second anom-
alous feature is very similar to outlier detection in time
series, although the data we collected is quite different from
time series. There is a lot of related work on anomaly de-
tection for time-series data [25-27]. Inspired by the idea of
employing a window-based forecasting model for time-se-
ries data [27], we develop our anomaly detection algorithm
with a sliding window used. However, different from the
sliding window in [27], which is used to predict future
values, our sliding window is used to calculate a statistic in it.
Our malicious participant detection algorithm works as
shown in Algorithm 1. First, we try to detect the first
anomalous feature by directly comparing each participant’s
parameter change rate with others. If the parameter change
rate of participant j is much higher than others, i.e., higher
than Gt-Thrl times the mean of others’ parameter change
rate, and this situation lasts for consecutive Rd-Thr rounds,
then participant j will be judged as malicious. If we fail to
detect the first anomalous feature at the current round, we
will immediately start to detect the second anomalous
feature by comparing the maximum fitted slope of points in
the sliding window of participant j with others. If the
maximum fitted slope of participant j is greater than Gt-
Thr2 times the mean of others’ maximum fitted slope, then
we conclude that participant j is malicious. The reason why
we divide the detection algorithm into two parts is that there
are two different anomalous features found from the col-
lected parameter change rate. They are so different that it is
hard to find a unified method to detect two anomalous
features simultaneously. So we divide the detection algo-
rithm into two parts to detect two anomalous features,
respectively. One may worry that it will cause false positives

Security and Communication Networks

parameter updates (Malicious client: 2, target label: 0)

1.0
0.8
@
g
o
2 0.6
s
<
S
o)
g
£ 04
<
s
a
0.2
0.0
T T T T T T T
0 50 100 150 200 250 300
round
— —— client0 - —— client4 client 7
——— dclient1 client 5 client 8
— —— client2 client 6 client 9
— —— client 3
(@

parameter updates (No malicious participant)

1.0
0.8
o
2
o
® 06
s
<
S
8
g 04
<
s
A
0.2
0.0
T T T T T T T
0 50 100 150 200 250 300
round
— —— client0 - —— client4 client 7
——— dclient1 client 5 client 8
— —— client2 client 6 client 9
— —— client 3
(®)

FiGure 1: Comparison of interested parameter updates with/without a malicious participant on MNIST dataset. (a) with a malicious

participant, (b) without a malicious participant.

parameter updates (Malicious client: 0, target label: 12)

0.8

0.6

0.4 -

parameter change rate

0.2

0.0

0 25 50 75 100 125 150 175 200

round
— —— client0 - —— client4 client 7
——— dclient 1 client 5 client 8
— —— client2 client 6 client 9
— —— client 3
(@

parameter updates (No malicious participant)

0.8

I
o
1

=
i
1

parameter change rate

0.2 H

0.0

T
0 25 50 75 100 125 150 175 200

round
— —— client0 - —— client4 —— client 7
——— dclient 1 client 5 —— client 8
— —— client2 client 6 —— client9
— —— client 3

(®)

F1GUre 2: Comparison of interested parameter updates with/without a malicious participant on the GTSRB dataset. (a) With a malicious

participant, (b) without a malicious participant.

easily. However, as long as the second part is designed well
and the hyperparameters are chosen appropriately, few false
positives will be caused. In fact, the second part eliminates
false negatives rather than causing false positives. It is worth
mentioning that there are 6 hyperparameters in the algo-
rithm and we introduce them brifely in Table 1. One may
doubt whether these hyperparameters are necessary, and
here is the explanation. If we remove either Rd-Thr or Gt-
Thrl, the algorithm will become too radical and cause lots of
false positives. As for Win-Size and SI-Step, they are in-
dispensable parameters for a sliding window. Gt-Thr2 and

Sp-Thr control the allowed steepening in the curve and
removing them will also cause many false positives.

4. Evaluation

4.1. Experimental Setup

4.1.1. Datasets. We conducted an experiment on two widely
used datasets, MNIST and GTSRB. MNIST is a large collection
of handwritten digits. It has a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28 x 28

Model loss (Malicious client: 2, target label: 0)

0.8 +

Loss

0.6

0.4 -

0.2

0 50 100 150 200 250 300
Epoch
— —— client0 - —— client4 client 7
——— dclient1 client 5 client 8
— —— client2 client 6 client 9
— —— client 3
(@

Security and Communication Networks

Model loss
1.6
1.4
1.2 A
1.0
§ 0.8
2
0.6
0.4
0.2
0.0 T T T T T T T
0 50 100 150 200 250 300
Epoch
— —— client0 - —— client4 client 7
——— client1 —— client 5 client 8
— —— client2 —— client 6 client 9
— —— client 3
(®)

FIGURE 3: Comparison of local training loss with/without malicious participant on MNIST dataset. (a) With a malicious participant, (b)

without a malicious participant.

Model loss (Malicious client: 0, target label: 12)

3.5 o

3.0

2.0

Loss

T T T T T T T T T
0 25 50 75 100 125 150 175 200

Epoch
— —— client0 - —— client4 client 7
——— client1 client 5 client 8
——— client2 client 6 client 9
— —— client 3
(@

Model loss

Loss
o
1

st oo
ANN e Vi 20 S a g

T T T T T T T T T
0 25 50 75 100 125 150 175 200

Epoch
— —— client0 — —— client4 client 7
——— client1 client 5 client 8
——— client2 client 6 client 9
— —— client 3

(®)

F1GURE 4: Comparison of local training loss with/without a malicious participant on the GTSRB dataset. (a) With a malicious participant, (b)

without a malicious participant.

grayscale image. German Traffic Sign Recognition Dataset
(GTSRB) is an image classification dataset consisting of
photos of traffic signs. The images are classified into 43 classes.
The training set contains 39209 labeled images and the test set
contains 12630 images. The image size is 64 x 64 x 3.

4.1.2. Scenario Settings. We consider both scenarios with a
malicious participant and without any malicious participant
on MNIST and GTSRB datasets; thus, our experiments can
be divided into four parts. For each part, we generate 100

samples and run the detection algorithm on each sample.
Here, sample means the parameter change rate of every
participant during each round. For scenarios without any
malicious participant, we run the same code 100 times to
generate 100 samples. Due to the randomness during
training, the 100 samples are not exactly the same. For
scenarios with a malicious participant, we take each par-
ticipant in turn as malicious and generate 10 samples for the
malicious participant. As there are 10 participants in our
settings, it leads to 100 samples in total. The settings of the
two scenarios are all the same, except that in the scenario

Security and Communication Networks

input: m: number of participants;
R: number of training rounds;

output: a list of malicious participants;
(1) suspects «—J;

(2) ent — [] "m;

(3) fori = 1toRdo

(4) forj = ltomdo

(5) avg < mean of W except for W;
(6) ifW;; > Gt-ThrI*avg then

(24) return suspects

: updates of our interested parameters, whose size is R x m;

(7) cnt[j] « entfjl+1;

(8) if cnt[j] > Rd-Thr then

9) suspects « suspects U {j};

(10) break;

@11 else

12) cntfj] « 0;

(13) if suspects isthen

(14) max_slope « [-inf] *m;

15) fori = Win — Sizeji < = Rji+ = Sl — Stepdo

(16) forj = 0;j <m;j + +do

17) kb « slope and intercept fitted with the least squares method on W;_yiy_gize: 155
(18) max_slope[j] « max(max_slope[j], k)

(19) forj = 0;j <m;j + +do

(20) avg < mean of max_slope except for max_slopelj];

(21) if max_slopes[j] > Sp-Thr and max_slopes[j] > Gt-Thr2* avg then
(22) suspects — suspects U {j};

(23) break;

ALGorITHM 1: Malicious participant detection.

with a malicious participant, the attacker will additionally
train a GAN locally and inject the generated fake data into
the original training set.

The attack part of our experiment follows the setup of
[1], while we consider a more clever attacker who starts the
attack only when the accuracy of the global model reaches
some threshold. The threshold is 0.85 for MNIST and 0.6 for
GTSRB. The detection algorithm is run by the parameter
server each round before it aggregates all the parameters
update from all the participants.

4.1.3. Hyperparameter Configurations. We use different
hyperparameter configurations on different datasets. As for
the attack part of the MNIST dataset, we set the global epoch
as 300, the local epoch as 1, and the batch size as 2048. As for
the training of GAN, the epoch is set as 1 and the batch size is
set as 2048. The number of samples merged with the training
set is 500. The attack starts as soon as the accuracy of the
global model on the validation set reaches 0.85. There are 10
participants and participant i owns the data of label i. We
have each participant taking turns as a malicious participant
and generate a target label for him randomly. We apply the
Adam optimizer and set the learning rate to be 0.001. In the
detection part, to show the impact of the input parameters of
our detection algorithm, we try some combinations of Rd-
Thr, Gt-Thrl, Win-Size, and SI-Step, Gt-Thr2 and Sp-Thr.
As for the attack part of the GTSRB dataset, the global
epoch is 200, the local epoch is 1, and the batch size is 512.

With regard to the training of GAN, we set the epoch as 3 and
batch size as 256. There are 300 samples merged with the
training set. The threshold of accuracy to start an attack is 0.6.
There are 10 participants and we distribute the total 43 labels
as evenly as possible. First, we distribute 4 labels to each
participant,; then, the left 3 labels are distributed to the first 3
participants. Each participant takes turns as the malicious
participant and randomly picks a target label. Adam opti-
mizer is applied and the learning rate is set as 0.001. As for
detection, different combinations of Rd-Thr, Gt-Thrl, Win-
Size and SI-Step, Gt-Thr2, and Sp-Thr are tried.

4.1.4. Evaluation Metrics. As for scenario with a malicious
participant, we use the following two metrics: (1) Recall: The
number of samples where the malicious participant is found,
divided by the number of total samples. The higher the recall
rate, the less the algorithm misses the malicious participant.
Thus, the recall rate measures the ability of the algorithm to
cover the malicious participant. When finding out the
malicious participant, the algorithm may judge normal
participants as malicious at the same time. This case also
contributes to the recall rate. Thus, we use another metric
called error rate to measure the accuracy of the algorithm.
(2) error rate: The number of samples where a normal
participant is judged as malicious, divided by the number of
total samples. The lower the error rate, the less the algorithm
causes false positives. Thus, it measures how correct the
detection results are. As for the scenario without any

8 Security and Communication Networks
TaBLE 1: Hyperparameters used in the detection algorithm.

Full name Abbreviation Meaning

roundsThreshold Rd-thr Number of consecutive rounds threshold used to detect the first anomalous feature

greaterThresholdl Gt-Thrl Multiple thresholds used to detect the first anomalous feature

windowSize Win-size Size of sliding-window used to detect the second anomalous feature

slidingStep Sl-step Sliding step of the sliding window used to detect the second anomalous feature

slopeThreshold Sp-thr Slope threshold used to detect the second anomalous feature

greaterThreshold2 Gt-Thr2 Multiple thresholds used to detect the second anomalous feature

malicious participant, since recall is meaningless for this
scenario, we only use error rate as the metric to measure the
correctness of our detection results. Actually, the error rate
in this scenario is equal to the false-positive rate and we will
call it a false-positive rate in the following sections.

4.2. Detection Results

4.2.1. Result MNIST. Table 2 shows the recall, ER, and FPR
on MNIST corresponding to different Rd-Thr and Gt-Thrl,
where Win-Size, Sl-Step, Gt-Thr2, Sp-Thr are fixed as 5, 2,
100, 0.002, respectively. We can see that the recall decreases as
Rd-Thr increases and increases as the Gt-Thr1 increases, while
both the ER and FPR decrease as Rd-Thr or Gt-Thr1 increases.
Table 3 shows the recall, ER, and FPR on MNIST corre-
sponding to different Win-Size and SI-Step, where Rd-Thr,
Gt-Thrl, Sp-Thr, and Gt-Thrl are fixed as 3, 2, 100, 0.002,
respectively. Since we always set SI-Step as half of Win-Size,
we only consider the effect of Win-Size. Conclusions can be
drawn that the recall decreases as the Win-Size increases. Both
the ER and FPR are not affected by Win-Size as they always
keep zero. It is worth mentioning that the smaller the Win-
Size is, the sooner the attacker is detected. The Win-Size can
be regarded as the delay of our detection algorithm. Under the
best hyperparameters setting, the recall is 0.99, and both ER
and FPR are zero. It means in the scenario with a malicious
participant, we only miss the attacker once in 100 samples.
While in the scenario without any malicious participant, our
detection algorithm does not make any mistake in 100
samples. The best Rd-Thr is 3, which means we can detect the
attacker with a delay of 3 rounds.

4.2.2. Result GTSRB. Table 4 shows the recall, ER, and FPR
on GTSRB corresponding to different Rd-Thr and Gt-Thrl,
where Win-Size, Sl-Step, Gt-Thr2, and Sp-Thr are fixed as
10, 5, 100, 0.005, respectively. We can see that the recall
slightly decreases as the Rd-Thr or Gt-Thrl increases, while
both the ER and FPR decline relatively largely as the Rd-Thr
increases and decline sharply as the Gt-Thrl increases.
Table 5 shows the recall, ER, and FPR on GTSRB corre-
sponding to different Win-Size and SI-Step, where Rd-Thr,
Gt-Thrl, Sp-Thr, and Gt-Thrl are fixed as 4, 2, 100, 0.005,
respectively. It is easy to see that the recall first increases and
then decreases as the Win-Size increases. While the error
rate is not affected by the Win-Size and keeps as 0.01, the
FPR decreases as the Win-Size increases. Under the best
hyperparameters setting, the recall is 0.97, the ER is 0.01, and
the FPR is 0.02. It means in the scenario with a malicious

TABLE 2: Recall, error rate (ER), and false positive rate (FPR) on
MNIST corresponding to different roundsThreshold (Rd-Thr) and
greaterThresholdl (Gt-Thrl). The windowSize (Win-Size), sli-
dingStep (SI-Step), greaterThreshold2 (Gt-Thr2), and slopeThres-
hold (Sp-Thr) are fixed as 5, 2, 100, 0.002, respectively.

Rd-Thr Gt-Thrl recall ER FPR
3 1.2 0.91 0.59 0.79
3 1.5 0.99 0 0
5 1.2 0.88 0.56 0.79
5 1.5 0.99 0 0
7 1.2 0.84 0.51 0.74
7 1.5 0.99 0 0

TaBLE 3: Recall, error rate (ER), and false positive rate (FPR) on
MNIST corresponding to different windowSize (Win-Size) and
slidingStep (Sl-Step). The roundsThreshold (Rd-Thr), great-
erThresholdl (Gt-Thrl), greaterThreshold2(Gt-Thr2), and slo-
peThreshold (Sp-Thr) are fixed as 3, 2, 100, 0.002, respectively.

Win-Size S1-Step recall ER FPR
3 1 0.99 0 0
5 2 0.99 0 0
7 3 0.95 0 0
9 4 0.82 0 0
11 5 0.66 0 0
13 6 0.52 0 0

TABLE 4: Recall, error rate (ER), and false positive rate (FPR) on
GTSRB corresponding to different roundsThreshold (Rd-Thr) and
greaterThresholdl (Gt-Thrl). The windowSize (Win-Size), sli-
dingStep (SI-Step), greaterThreshold2 (Gt-Thr2),and slopeThres-
hold (Sp-Thr) are fixed as 10, 5, 100, 0.005, respectively.

Rd-Thr Gt-Thrl recall ER FPR
2 1.5 1 0.86 1

2 2 0.98 0.11 0.31
4 1.5 1 0.63 0.94
4 2 0.97 0.01 0.02
6 1.5 0.98 0.34 0.75
6 2 0.96 0.01 0.01

participant, we only miss the attacker 3 times and misjudge a
benign participant as an attacker once in 100 samples. While
in the scenario without any malicious participant, our de-
tection algorithm only makes a mistake twice in 100 samples.

4.2.3. Discussion. The experiments are conducted under the
assumption that the attacker starts the attack after the model
begins to converge. In this case, the attack is more effective

Security and Communication Networks

TaBLE 5: Recall, error rate (ER), and false positive rate (FPR) on
GTSRB corresponding to different windowSize (Win-Size) and
slidingStep (SI-Step). The roundsThreshold (Rd-Thr), great-
erThresholdl (Gt-Thrl), greaterThreshold2 (Gt-Thr2), and slo-
peThreshold (Sp-Thr) are fixed as 4, 2, 100, 0.005, respectively.

Win-Size S1-Step recall ER FPR
4 2 0.94 0.01 0.58
6 3 0.94 0.01 0.1

8 4 0.96 0.01 0.04
10 5 0.97 0.01 0.02
12 6 0.95 0.01 0.02
14 7 0.96 0.01 0.02

and stealthy since the model about to converge contains
enough information about the training set, and there is not
much time left to detect the attacker. However, the chances
are that the attacker may start the attack from the beginning,
which deserves some discussion. In this case, different
anomalous features may show, and traditional secure ag-
gregation methods such as Krum [28] and trimmed mean
[29] may work, with the cost of slowing the model’s
convergence.

5. Conclusion

In this work, we present a scheme to detect the GAN-based
information leakage attack in FL, where the attacker is one
of the participants in the FL system. We aim to detect the
malicious participant accurately with a small computa-
tional overhead in real time. We only utilize the biases in
the last convolutional layer and manage to find general
anomalous features from updates of these biases. Then an
anomalous detection algorithm based on statistics is pro-
posed to detect the previously found anomalous features.
We conduct extensive experiments to evaluate the effec-
tiveness of our detection scheme. The results demonstrate
that our proposed detection scheme can detect the mali-
cious participant accurately and efficiently in near real
time. [30-32].

Data Availability

The MNIST dataset used to support the findings of this study
has been deposited in the website http://yann.lecun.com/
exdb/mnist/. The GTSRB dataset used to support the
findings of this study have been deposited in the website
https://www.kaggle.com/meowmeowmeowmeowmeow/
gtsrb-german-traffic-sign?select = Train.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Science and Technology
Project of State Grid Corporation of China: “Research on
Power Data Security Collaboration Technology Based on
Federated Learning” (Grant No. 5700-202190184A-0-0-00).

References

[1] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under
the GAN: information leakage from collaborative deep
learning,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 603-618,
February 2017.

[2] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qj,

“Beyond inferring class representatives: user-level privacy

leakage from federated learning,” in Proceedings of the IEEE

INFOCOM 2019-1EEE Conference on Computer Communi-

cations, pp. 2512-2520, IEEE, Paris, France, April 2019.

J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu,

“PoisonGAN: generative poisoning attacks against federated

learning in edge computing systems,” IEEE Internet of Things

Journal, vol. 8, no. 5, pp. 3310-3322, 2020.

[4] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning

attack in federated learning using generative adversarial nets,”

in Proceedings of the 2019 18th IEEE International Conference

On Trust, Security And Privacy In Computing And Commu-

nications/13th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE), pp. 374-380,

IEEE, August 2019.

H. Fang and Q. Qian, “Privacy preserving machine learning

with homomorphic encryption and federated learning,” Fu-

ture Internet, vol. 13, no. 4, 2021.

[6] Y. Zhao, J. Chen, J. Zhang, D. Wu, J. Teng, and S. Yu,
“PDGAN: a novel poisoning defense method in federated
learning using generative adversarial network,” in Proceedings
of the International Conference on Algorithms and Architec-
tures for Parallel Processing, pp. 595-609, Springer, Cham,
Melbourne, Australia, December 2019.

[7] J. Hayes and O. Ohrimenko, “Contamination attacks and
mitigation in multi-party machine learning,” in Proceedings of
the Advances in Neural Information Processing Systems,
pp- 6604-6615, Montréal, Canada, December 2018.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep

learning,” in Proceedings of the 22nd ACM SIGSAC conference

on computer and communications security, pp. 1310-1321,

Monticello, IL, USA, September 2015.

X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao,

“DP-FL: a novel differentially private federated learning

framework for the unbalanced data,” World Wide Web,

vol. 23, no. 4, pp. 2529-2545, 2020.

[10] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Dif-
ferentially private asynchronous federated learning for mobile
edge computing in urban informatics,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 3, pp. 2134-2143, 2019.

[11] Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic en-
cryption,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 5, pp. 1333-1345, 2017.

[12] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu,
“Batchcrypt: efficient homomorphic encryption for cross-silo
federated learning,” in Proceedings of the 2020 USENIX An-
nual Technical Conference (USENIXATC 20), pp. 493-506,
Boston, MA, USA, 2020.

[13] M. A. Rahman, M. S. Hossain, M. S. Islam, N. A. Alrajesh, and
G. Muhammad, “Secure and provenance enhanced Internet of
health things framework: a blockchain managed federated
learning approach,” Ieee Access, vol. 8, Article ID 205071,
2020.

[3

[5

[9

10

(14]

(15]

(16]

(17

(18

[19

(20]

[21]

[22

[23

(24]

(25]

(26]

(27]

[28

(29]

Z. Jiang, W. Wang, and Y. Liu, “FLASHE: additively sym-
metric homomorphic encryption for cross-silo federated
learning,” 2021, https://arxiv.org/abs/2109.00675.

X. Zhang, A. Fu, H. Wang, C. Zhou, and Z. Chen, “A privacy-
preserving and verifiable federated learning scheme,” in
Proceedings of the ICC 2020-2020 IEEE International Con-
ference on Communications (ICC), pp. 1-6, IEEE, Dublin,
Ireland, June 2020.

V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, D. Alj, and
S. Gautam, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115,
pp. 619-640, 2021.

Y. Xiong, F. Xu, and S. Zhong, “Detecting GAN-based privacy
attack in distributed learning,” in Proceedings of the ICC 2020-
2020 IEEE International Conference on Communications
(ICC), pp. 1-6, IEEE, Dublin, Ireland, June 2020.

M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poi-
soning attacks to byzantine-robust federated learning,” in
Proceedings of the 29th USENIX Security Symposium (USENIX
Security 20), pp. 1605-1622, Boston, MA, USA, 2020.

W. Jiang, H. Li, S. Liu, Y. Ren, and M. He, “A flexible poi-
soning attack against machine learning,” in Proceedings of the
ICC 2019-2019 IEEE International Conference on Commu-
nications (ICC), pp. 1-6, IEEE, Shanghai, China, May 2019.
X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” 2017,
https://arxiv.org/abs/1712.05526.

L. Mufoz-Gonzilez, B. Biggio, A. Demontis et al., “Towards
poisoning of deep learning algorithms with back-gradient
optimization,” in Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pp. 27-38, Dallas, TX,
USA, August 2017.

N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, “Miti-
gating poisoning attacks on machine learning models: a data
provenance based approach,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pp. 103-110,
Dallas, TX, USA, November 2017.

C. Liu, B. Li, Y. Vorobeychik, and A. Oprea, “Robust linear
regression against training data poisoning,” in Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security,
pp- 91-102, Dallas, TX, USA, 2017.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “An-
alyzing federated learning through an adversarial lens,” in
Proceedings of the International Conference on Machine
Learning. PMLR, pp. 634-643, Long Beach, CA, USA, No-
vember 2019.

S. Weixing, Z. Yunlong, L. Fang, and H. Kunyuan, “Outliers
and change-points detection algorithm for time series,”
Journal of Computer Research and Development, vol. 51, no. 4,
2014.

M. Braei and S. Wagner, “Anomaly detection in univariate
time-series: a survey on the state-of-the-art,” 2020, https://
arxiv.org/abs/2004.00433.

Y. Yu, Y. Zhu, S. Li, and D. Wan, “Time series outlier de-
tection based on sliding window prediction,” Mathematical
Problems in Engineering, vol. 2014, Article ID 879736,
14 pages, 2014.

P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: byzantine tolerant gra-
dient descent,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-
robust distributed learning: towards optimal statistical rates,”
in Proceedings of the International Conference on Machine

(30]

(31]

(32]

Security and Communication Networks

Learning. PMLR, pp. 5650-5659, Stockholm, Sweden, March
2018.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Proceedings of the
Artificial intelligence and statistics. PMLR, pp. 1273-1282, San
Francisco, CA, USA, February 2017.

W. Y. B. Lim, N. C. Luong, D. T. Hoang et al., “Federated
learning in mobile edge networks: a comprehensive survey,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 2031-2063, 2020.

I. Goodfellow, J. Pouget-Abadie, and M. Mirza, “Generative
adversarial nets,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

https://arxiv.org/abs/2109.00675
https://arxiv.org/abs/1712.05526
https://arxiv.org/abs/2004.00433
https://arxiv.org/abs/2004.00433

Hindawi

Security and Communication Networks
Volume 2022, Article ID 4769187, 16 pages
https://doi.org/10.1155/2022/4769187

Research Article

WILEY | Q@) Hindawi

Blockchain-Based Privacy-Preserving Vaccine Passport System

Yangzhou Cao,! Jiageng Chen ,2 and Yajun Cao’

Central China Normal UniversityWollongong Joint Institute, Central China Normal University Wuhan, Wuhan, China
2School of Computer, Central China Normal University Wuhan, Wuhan, China
3Yichang Center for Disease Control, Prevention Yichang, Yichang, China

Correspondence should be addressed to Jiageng Chen; chinkako@gmail.com

Received 11 November 2021; Accepted 13 January 2022; Published 21 March 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Yangzhou Cao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, we propose a blockchain-based privacy-preserving vaccine passport system for the global prevention and control of
infectious diseases. The system operates a double-chain framework which consists of a public blockchain and a consortium
blockchain. Among them, the combination of the immutability of the public blockchain and Internet of Things (IoT) technology
in the supply chain ensures the openness and transparency of the cold chain logistics records of the vaccines covering the stages
from auditing to the target vaccination hospitals. The system adopts the consortium blockchain to achieve the balance between the
protection of users’ vaccination privacy and auditing by the government departments. Specifically, a distributed system-based
threshold signature is adopted in the vaccine qualification phase to resist collusion between the vaccine manufacturing company
and vaccine approval institutions. The cryptographic tools such as the anonymous credentials, zero-knowledge protocols, and
range proofs ensure that users do not disclose any private information other than proving that they have a legally valid vaccine
passport when users display the vaccine passports to customs. At the same time, customs can apply various vaccine prevention
policies based on the conditions on the specific vaccine passports. Regarding the security properties of the system, a formal

security model is given along with the corresponding security proofs.

1. Introduction

With the outbreak of COVID-19 in early 2020, the global
defense against the spread of COVID-19 has been severely
tested. Following the outbreak, scientists, physicians, and
vaccine manufacturers in various countries engaged in the
development of vaccines for the coronavirus. On January
24, 2020, the Chinese Center for Disease Control and
Prevention (CDC) successfully isolated the first corona-
virus strain in China [1]. The National Pathogenic Mi-
crobial Resource Library released information and electron
microscopy photos of this strain (Wuhan strain 01 of the
novel coronavirus), as well as important authoritative in-
formation such as primers and probe sequences for nucleic
acid detection of the novel coronavirus, all of which laid the
foundation for vaccine development. On this basis,
COVID-19 vaccines in each country were promoted from
the R&D stage to the clinical trial stage. In the second half
of 2020, COVID-19 vaccines developed in each country

gradually were approved for marketing by various national
approval authorities.

At the stage when COVID-19 vaccines were introduced
into the market and society, vaccination would face social
problems in various aspects. With the gradual introduction
of COVID-19 vaccines, vaccine management and vaccina-
tion become important issues for national governments.
Especially in emergency cases when the COVID-19 vaccine
is not sufficient, it is vital for the privacy of vaccination
information to be protected to prevent social conflicts. As
the epidemic is effectively controlled in various regions, the
people returning from various countries and regions are also
a serious test for the prevention and control of the local
epidemic. Therefore, the application of vaccine passports
was born.

As countries around the world gradually recovered from
the effects of the COVID-19 epidemic, urgent cultural
communication and trade between countries led to the
implementation of vaccine passports. On July 26, 2021,

mailto:chinkako@gmail.com
https://orcid.org/0000-0001-9033-2575
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4769187

municipalities, wards, towns, and villages throughout Japan
began accepting applications for the official certificate
(“vaccine passport”) for COVID-19 vaccine [2]. The key
information of the vaccine certificate includes the individ-
ual’s name, date of birth, passport number, type of vaccine
used, and date of vaccination. The idea is that the certificates
exempt travelers from Japan from quarantine and other
antivirus measures after their arrival in overseas destina-
tions. However, the Japanese government does not make
such exemptions for people who enter Japan with vaccine
passports issued by other nations for now, and the gov-
ernment is considering making vaccine passports digital. At
1:00 p.m. Vancouver time on August 23, the Premier of
British Columbia held a press conference to announce the
implementation rules for the British Columbia vaccine
certificate. Starting from September 13, people attending
indoor concerts, sporting events, movie theaters, and other
nondiscretionary activities must receive at least one dose of
the COVID-19 vaccine and show proof of it. On October 24,
the vaccination requirement will be increased to 7 days after
completing two doses of the vaccine before being allowed to
enter certain public places with a vaccination card [3].

The vaccine passport should be an internationally rec-
ognized certificate of vaccination for COVID-19 [4] and
possibly other types as well. In February 2021, the concept of
the vaccine passport was still in the initial stages of con-
troversy, and international opinion was divided. In the view
of proponents, the emergence, use, and popularity of a
vaccine passport would significantly mitigate the impact of
the COVID-19 pneumonia outbreak on international travel
and facilitate global economic recovery. In contrast, in the
view of opponents, it is far from simple to establish a globally
circulating and mutually recognized certification system that
can effectively protect the privacy and ensure fairness.

The purpose of this study is to design protocols to ensure
the transparency and privacy of vaccination, as well as the
privacy of vaccine passports through the technology of
cryptography to address the issues of privacy protection.
However, we point out that the vaccine passports are sub-
jected to a global consensus. It assumes that the design,
implementation, and operation of the vaccine passport
system should be supported and accepted by countries
around the world.

1.1. Prior and Related Work. COVID-19 outbreak led to
research on vaccine supply chain improvements. Many
researchers in cryptography proposed blockchain-based
systems for the distribution and management of vaccine
supply chains. The idea is to take advantage of the non-
tamperability of blockchain, and the nature of jointly
maintaining a unified ledger to ensure the supply of vaccines
is regulated and transparent. Meanwhile, with the update
and development of IoT technology, IoT in the field of
traditional commodity logistics has been migrated to the
field of logistics and transportation of pharmaceutical
products. Among them, the monitoring and supervision of
environmental conditions of vaccines belonging to biolog-
ical products in the process of cold chain logistics

Security and Communication Networks

transportation can combine IoT devices with sensors. Spe-
cific sensors feedback to the CDC, which monitors the lo-
gistics of biologics, about the humidity, temperature, light
protection, and other transport conditions during the cold
chain transportation of vaccines. As vaccination users, they
also own the right to know that vaccine production and
transportation meet quality control. Cui et al. [5] proposed a
blockchain-based vaccine tracking system to protect the
entire vaccine cycle. The blockchain is used as a global,
unique, and verifiable database to store all circulating da-
tabases. Antal et al. [6] used Ethernet’s smart contract
technology to achieve the integrity of guaranteed vaccine
data and the immutability of registration for vaccinators,
avoiding identity theft and imitation. Yong et al. [7] applied
machine learning techniques to analyze and process data in
the vaccine blockchain.

Abid’s proposed vaccine platform [8] provides a sov-
ereign user identity that gives users full control over their
data and encrypts personally identifiable information to
enhance privacy. The platform also leverages W3C verifi-
able credential standards to facilitate instant verification of
COVID-19 proofs and allow users to share selected in-
formation with trusted parties. However, the platform’s
privacy is protected by hashing sensitive information and
then storing it on the blockchain, which is at risk when the
data are broadcasted. Haque et al. [9], the authors proposed
an architectural framework of a permission blockchain-
based vaccination passport for the European Union’s
General Data Protection Regulations (GDPR). The scope of
this regulation is broad, and any organization that collects,
transfers, retains, or processes personal information in-
volving all EU member states is subject to the regulation.
Then, the double-chain structured blockchain system
proposed by Qiu and Zhu [10] combines a public block-
chain and a private blockchain to manage and store data
information in different processes of vaccine logistics and
vaccination. However, the user privacy of this system relies
too much on the authorization mechanism of the private
blockchain.

1.2. Contributions. In this study, we propose a double-chain
framework with the vaccine cold chain logistics system and
vaccination record system. We introduce threshold signa-
ture technology at the vaccine audit stage of public block-
chain to deal with complicity between vaccine
manufacturing companies and vaccine approval institutions.
Second, it applies the consortium blockchain to record the
information of vaccination hospitals to give vaccination to
users. Its process ensures the privacy of vaccination hos-
pitals, vaccination users, and vaccination vaccines and re-
serves the right to reveal and audit the vaccination
information records by government departments under
special circumstances.

In the issuance and presenting of the vaccine passport,
the use of anonymous credential, ring signature, and range
proofs ensures that the validity of the vaccine passport is
proven without revealing the user’s vaccination hospital and
identity information during the process.

Security and Communication Networks

1.3. Paper Organization. In the subsequent content of this
study, we present the entities and the system threat model in
the vaccine passport system in Section 2. We show the
cryptographic techniques and tools used to build the system
protocol in Section 3. Section 4 of this article provides the
structural design of the system and the specific protocol
design. We give the security analysis and proof of the
protocols in this model in Section 5. We give a system
evaluation in Section 6, and we finally conclude this article in
Section 7.

2. Assumptions and Threat Model

2.1. Entities and Assumptions. Before presenting the system
structure, we introduce the entity participants in the system.

(i) International coalition government, £7: it acts as
the system’s CA to manage the authorization and
authentication of each participant. It acts as a
trusted third party for threshold signatures in the
vaccine approval process. In exceptional cases, it
can audit the encrypted information in the con-
sortium blockchain that records vaccinations.

(ii) Hospital, Z0SP: it issues a credential for the
user’s vaccine passport after completion of the
vaccination and uploads the information recording
the vaccination to the consortium blockchain.

(iii) User: the user receives a vaccine passport after
completion of vaccination at the hospital. When it
is necessary to prove the legitimacy and validity of
the vaccine passport to the vaccine passport
checkpoint, zero-knowledge proof protocol is
applied to protect their privacy.

(iv) Vaccine manufacturing company: it sends samples
of the vaccine to be tested to the vaccine approval
institutions in each country for approval. Once the
vaccine is approved, the batch is issued a certificate
of authorization.

(v) Vaccine approval institutions, &/.7: each country’s
approval body tests the submitted vaccine samples
according to its own standards. The approved
vaccine approval institution signs a threshold
signature for the vaccine. The €7 issues a
threshold signature certificate to the vaccine lot
after (¢,n) vaccine approval institutions have been
met and approved simultaneously.

(vi) Vaccine passport checkpoint: it verifies the user’s
identification and proof of the legitimacy and
validity of the vaccine passport. It also takes the
appropriate vaccination measures and policies for
the fulfillment of the conditions of the user’s
vaccine passport.

(vii) Vaccine transit centers: they act as a transit point
for vaccine shipments connecting vaccine com-
panies to the CDC. Information on storage and
transport conditions during cold chain logistics is
uploaded.

(viii) CDC: it audits the vaccine cold chain logistics
process for compliance with biologics-related
regulations. If so, the vaccine is held in temporary
storage and eventually shipped to the hospital
where it is administered.

Considering the specific prerequisite assumptions for the
application of the vaccine passport system to realistic sce-
narios and specific programs, the system provides the fol-
lowing reasonable assumptions.

(i) The authority of the international coalition gov-
ernment is recognized by every country in the world

(ii) Countries strictly adhere to the normal operation of
the system

(iii) The number of corrupted institutions in vaccine
approval institutions is less than half of the total
number

(iv) Authorized hospitals follow the hospital code of
conduct and do not conspire with users

(v) Users do not disclose or share their secret keys

2.2. Threat Model. In this study, we do not consider network-
level security attacks, physical hardware-level damage, and
software vulnerability penetration during the engineering
implementation of the protocol. In this study, we only
consider cryptographic attacks towards the protocol design.

(i) In the threat model of this study, we assume that
27 and auditor are completely honest. They
operate according to the protocol algorithm and do
not disclose the privacy parameters generated.

(ii) In the threshold signature phase, adversary is
allowed to corrupt up to t <n/2.7 s. €7 does not
disclose institutional audit signatures to vaccine
manufacturing companies.

(iii) In the vaccination information record uploading
consortium blockchain phase, all peers except the
auditor and €7 are assumed to be honest-but-cu-
rious; they try to break the privacy by passively
eavesdropping on the inputs and outputs of the
protocol but not actively violating the protocol
process.

(iv) In the vaccine passport display phase, vaccine
passport checkpoint is assumed to be honest-but-
curious; it tries to get the user’s private data, but it
still follows the protocols.

3. Preliminaries

3.1. Bilinear Pairing. Let e: G, x G, — Gy a bilinear map
where G, is a GDH group and G, #G, in our protocol.
G,,G, are the two multiplicative cyclic groups of prime
order g. The bilinear pairing e: G, x G, — Gy has the
following three properties:

(i) Bilinear: for all g, € G,, g, € G,, and o, f € Z,, it
holds that e(g‘{‘,gg) = e(gl,gz)“ﬁ;

(ii) Computability: there exists an efficient algorithm to
calculate e(g,, g,), where g, € G, g, € Gy;

(iii) Nondegenerate: e(g,,g,) # 1 for 3g, € G,, g, € G,,
where 1 is the unit element in the multiplicative
cyclic group.

3.2. g-Strong Diffie-Hellman Assumption. The q-SDH
problemin (G,,G,) is deﬁned2 that for adversary o/ on input
a (q+2)-tuple (9,9, 9595 ,...,95) €€G, x GI

A= g}/ (x+c)

Pr . <negl(A). (1)

(A,C)<—ed<g1,g2,g§>g§ P -)g§q>

3.3. Threshold Signature Scheme. The (t,n) threshold sig-
nature scheme allows any t signers among n signers to
generate a signature for a message, but less than ¢ signers
participate to generate a valid signature. The threshold
signature scheme can build a robust signature system to
prevent the unlawful behavior of some signers. The
threshold signature scheme consists of the following four
algorithms:

(i) ThresholdKeyGen (A, #,t): for distributed systems,
threshold key generation algorithm is a protocol
that runs interactively among many participants.
With the input security parameters A, number of
users 1, and threshold ¢, it outputs the secret share x;
for each participant, such that (x;,...,x,)
— (¢, m) sk.

(ii) Sign (x;,m): the signers in the participants output
the signature share o; based on the input secret
share x; and the message m.

(iii) Reconstruction (o;): the resulting signature o can be
generated by a trusted third party based on the
signature share o; of not less than ¢ signers.

(vi) Verify (pk,m,0): the verification algorithm inputs
the verification public key pk, message m, and
resulting signature ¢ and outputs 1 when the sig-
nature is successfully verified; otherwise, it outputs
0.

3.4. Ring Signature Scheme. A ring signature is a digital
signature that can be executed by any member of a group of
users that each have a pair of keys, so that a message with a
ring signature is recognized by someone in a particular
group. But, it is computationally infeasible to determine
which group member’s key is used to generate the signature,
which is one of the security properties of ring signatures. All
possible signers are formed into a ring. Each possible signer
is called a ring member. The ring member that generates the
signature is called a signer, and each other ring member is
called a nonsigner. The ring signature scheme consists of the
following three algorithms:

(i) KeyGen (A,n): let ring R = {Ry,...,R,}. With the
input security parameters A, it outputs each user

Security and Communication Networks

public-secret key pair (sk;, pk;). Assume that the
signing member is R,.

(ii) Sign (sky, 71, {PK}ic1 i45): the signer R, generates
a ring signature o,,, on message m with its own
secret key sk, and the public keys {pk;} of other

members.

(iii) Verify ({pK};cq1. > Oring): the verification al-
gorithm is with the input of public keys {pk;};c;
message m, and ring signature o,;,, and outputs 1
when the signature is successfully verified; other-
wise, it outputs 0.

3.5. Zero-Knowledge Proof. A zero-knowledge proof is a
protocol that the prover P can convince the verifier V that an
argument is correct without providing any useful infor-
mation to the verifier. A zero-knowledge proof is essentially
an agreement involving two or more parties, i.e., a series of
steps that two or more parties need to take to accomplish a
task. The prover convinces the verifier that he or she knows
or has a certain message, but the proof process cannot di-
vulge any information about the proven message to the
verifier. In our system protocol design, we focus on zero-
knowledge proof for NP language L ={y|3w s.t.
(y,w) € R}, where w is a witness for statement y. A zero-
knowledge proof protocol between P and V satisfies the
following three properties:

(i) Completeness: if y € Ly, prover P convinces V that
his statement is true with probability 1 — negl(A).

(ii) Soundness: if the prover’s statement y ¢ Ly, then
any malicious prover P* convinces an honest ver-
ifier of his statement with probability negl ().

(iii) Honest verifier zero-knowledge (HVZK): after the
proof is executed, the verifier only knows whether
the statement of the verifier is true or not, but he
does not have access to any other information
during the proof. It can also be said that there exists
a simulator algorithm Sim that simulates interaction
scripts that are nondistinguishable with the real
interaction scripts between P and V.

Range proof: range proof is proof that a secret value x,
which is encrypted or committed to, lies in a certain interval
[a, b]. In this study, the secret value x is hidden by Pedersen
commitment, such that C = g*h". Range proof does not leak
any information about the secret value other than the fact
that they lie in the interval. The prover needs to provide zero-
knowledge proof to the verifier PK{(x,7): C = g*h"Ax €
[a, b]}.

4. Our Proposed System

Before showing the overview of our system model, we
present the reasons for choosing the double chain as the
basis of the system. The generation of the vaccine passport
and the vaccine itself are indivisible. Given the biomedical
properties of the vaccine itself, we need a public blockchain
to store the production and logistics information of the

Security and Communication Networks

vaccine. The choice of the consortium blockchain is that
vaccination records are information with privacy properties
and are required to be privacy protected and regulated. So, it
is uncomplicated to achieve the intended effect in a
blockchain under authorization.

4.1. Overview. Our system consists of three main phases in
the vaccine cold chain logistics phase, as shown in Figure 1.

Step 1. It is for the vaccine manufacturing company to send
a batch of vaccine samples that need to be checked to ensure
quality to the vaccine approval institutions in each country.

Step 2. It consists of each country’s vaccine approval in-
stitution passing its review results through a (t, n) threshold
(if a total of n vaccine approval institutions are satisfied with
the approval of t vaccine approval institutions, then the
batch of vaccine is approved). If the batch meets the audit
requirements, a certificate is issued for the batch through the
threshold signature.

Step 3. It is that the vaccine manufacturing company en-
trusts the cold chain logistics company with the approved
batch of vaccine to send to the target hospital. The sender is
the vaccine production company. The receiver is the first
vaccine transit center. The transported goods are batches of
vaccines. The logistics information is uploaded to the public
blockchain after the logistics are completed.

Step 4. Tt is the uploading of cold chain logistics information
between vaccine transfer centers. The sender is the previous
vaccine transfer center. The receiver is the next vaccine
transfer center. The transported goods are batches of vac-
cines with the environmental conditions of the temporary
storage of vaccines and the signature of the person in charge.

Step 5. It is when the vaccine is delivered at the last logistics
transit center; the CDC under whose jurisdiction the target
hospital is located audits the entire cold chain logistics
storage and transportation for compliance with the logistics
requirements for biologics. If the batch of the vaccine cold
chain logistics process meets the requirements, the CDC
issues a certificate of conformity signature to the batch of
vaccine.

Step 6. It is to upload the logistics information between the
last vaccine transfer center and the CDC to the public
blockchain after the approval of the vaccine cold chain
logistics. The sender is the last vaccine transfer center. The
receiver is the local CDC, and the transported goods are
batches of vaccines with the CDC'’s certificate for vaccine
cold chain logistics.

Step 7. It is to upload the logistics information of the final
vaccine delivery from the local CDC to the target hospital to
the public blockchain. The sender is the local CDC, and the
receiver is the target vaccination hospital. The transported
goods are batch of vaccines with a certificate from the CDC

for the cold chain logistics of the vaccine and a threshold
signature certificate from the vaccine approval institutions.
Users are given the right and ability to know the approval
results of vaccinations and vaccine cold chain logistics in-
formation by viewing the information recorded on the
public blockchain before vaccination in hospitals. This helps
to achieve openness and transparency of vaccine informa-
tion to vaccination users.

In the vaccination phase shown in Figure 2, the local
hospital completes the uploading of vaccination information
to the consortium blockchain while protecting the privacy of
the vaccination information.

Step 8. Itis after the last injection of the user’s vaccine at the
local hospital, the hospital creates vaccination information
signed by it and sends the vaccination information to the
endorser. The sender of the vaccination information is the
local hospital. The receiver is the vaccination user. The in-
formation transmitted is the details of the vaccine.

Step 9. It is for the endorser to verify the uploaded vacci-
nation information and generate an endorsement signature.

Step 10. It is that the submitting local hospital broadcasts
the collected endorsement signatures and the vaccination
information itself to the orderers.

Step 11. It is for orderers to broadcast the sorted set of
vaccination information to all peers.

Step 12. It is for the committing peer to check if the vac-
cination information submitted by the orderers has a le-
gitimate certificate issued by the endorser. The committing
peer also detects malicious cases where the same vaccination
is included in the vaccination information more than once.
In this case, the first valid vaccination information will be
accepted. Once the uploaded vaccination information is
verified by the committing peer, the vaccination information
is submitted and the committing peer maintains the state
and a copy of the ledger. For the privacy-preserving vac-
cination information on the consortium blockchain, it is
necessary to audit it in case of special circumstances. Au-
ditors have the ability to open the encrypted vaccination
information on the consortium blockchain to audit the
vaccination details, such as the time of vaccination and
vaccine production date.
In the vaccine passport phase in Figure 2.

Step 13. It is where the local hospital opens the vaccination
user’s commitment to the vaccine production date, vaccine
shelf life, vaccine immunity lasting time, and vaccination
date. After the hospital confirms that the commitment is
correct, a ring signature is generated for the commitment
and the international coalition government-issued user
identity card. Finally, the ring signature, commitment, and
user identity certificate together form the vaccine passport
and are sent to the user.

Security and Communication Networks

g

Coalition government

———— =TT sz

Q

® ° 1
-
B R 1 ER) (o) R
) B - —
. Ee Vaccine manufacturing Vaccine”li“ransitCenters © CDC Hospital
company
Vaccine approval institutions
v v \ 2

Public Blockchain

(N

Users

FIGURE 1: Vaccine cold chain logistics phase.

gig

Coalition government

Hospital

T
=

Endorser

Orderer

- - 3 -

Committing peers

Passport check gates

Consortium Blockchain Auditor

FIGURE 2: Vaccination and vaccine passport phase.

Step 14. Ttis for the user to first present the vaccine passport
to the passport checkpoint. The passport checkpoint verifies
the legitimacy of the user’s identity and vaccine passport.
Next, the user proves the validity of the vaccine passport to
the passport checkpoint. This includes the following three
items:

(i) The vaccine injected by the user is within the shelf
life. If the vaccine injected by the user does not meet
this condition, then first, the passport checkpoint
needs to report this medical issue to a government
authority. This requires a request for an audit of the
vaccination information for the batch (including the
local vaccination hospital) and a traceability audit of
the vaccine batch. Also, the user needs to be re-
imbursed for the corresponding vaccination.

(ii) The user produces high titers of antibodies to create
effective protection. This corresponds to the last
date of vaccination plus 14 days [11], which needs to
be greater than the current date. If the user’s vac-
cination information does not meet this condition,

the passport checkpoint needs to take a quarantine
for 14 days before allowing the user to pass.

(iii) The vaccinated user is in the duration of immuni-
zation for the vaccine. This is equivalent to the last
date of vaccination plus the vaccine immunity
lasting time that needs to be less than the current
date. If the user’s vaccination information does not
meet this condition, the passport control point will
need to adopt the vaccine again to stimulate an
effective antibody prevention strategy.

None of the above proofs will reveal any information
about the user’s vaccination, including the production date
and shelf life of the vaccine.

4.2. Vaccine Cold Chain Logistics. This study adds Boldyr-
eva’s [12] threshold signature technique to other blockchain-
based vaccine distribution management systems. Vaccine
approval institutions in each country that adopt different
standards act as participants in the threshold signature. The
international coalition government acts as a trusted third

Security and Communication Networks

party as the group administrator in the threshold signature
group. This vaccine approval protocol effectively prevents
collusion and corruption between vaccine approval insti-
tutions and vaccine manufacturing companies. The vaccine
approval institutions approve samples of vaccines to be
submitted for review in a distributed structure on a per-
share basis. The distributed protocol allows for up to half of
the vaccine approval institutions to be malicious. Once the
approval of the submitted vaccine is complete, the vaccine
manufacturer receives only the results of whether the sub-
mitted vaccine batch was approved or not and does not
know the respective review opinions of the individual
vaccine approval institutions. This prevents the vaccine
manufacturing company from influencing the outcome of
the approval, thereby, achieving fairness and equity in
vaccine approval. Details are outlined as follows.

Setup (1*): on input 1*, where A € N is a security pa-
rameter, lete: G, x G, — Gy, a bilinear map, where G, is a
GDH group and g is the generator of G,. G, and Gy are the
cyclic groups. The participants in our scheme are the set of n
vaccine approval institutions {&/.7,...,.%,}. All J.Fs
are connected by a broadcast channel as well as by secure
point-to-point channels including the international coali-
tion government £7". Let H: {0,1}* — G, be collision-
resistant hash function.

Generating x (f; (), f:(): &.7; chooses ay,...,
a,»pLZp and a,, ...
fi(») and fi(y) of degree t: f;(y) =ay +ayy +---+a.y
and fi(y) =ajta,y+---+ayy'. 45, broadcasts com-
mitment to polynomial coeflicients Cy, = g%h* mod p for
k€{o,...,t}. .7, computess; = f;(j)and sig = fi(j) mod
q for j€{l,...,n} and sends s; and s; to &/.7; to verify.
Then, each /.7 verifies if

R .
,aiL<—Zp to form the polynomials

t

gaikhai,| = H (Cik)jk' (2)

k=0

If the above equation is not satisfied, /.7 ; will broadcast
the complaint against &/.7;. According to the conditions
satisfied by the distributed key generation protocol DKG for
discrete-log based systems of Gennaro et al. [13], each o/.%;
sets his share of the secret as x; = } . quars; mod gq. The
distributed secret value x equals x = } ;. quarai mod g from
the distributed secret polynomial:

Z ai0+< Z “il))"*""*(z an))’t- (3)
ie QUAL ic QUAL ie QUAL

Vaccine approval (x;): o/.7; decides whether to approve
the batch of vaccine according to the criteria. If &/.7; ap-
proves it, a signature o; = H (vaccine)® and pk; = g* are
generated and sent to 7. €7 verifies the signature by
e(g,0;) = e(pk;, H (vaccine)). If the verification passes, &/.7;
is assigned to the set APPR.

Threshold signature (o;): if the number of &/.7;s in set
APPR is greater than ¢,

F(y) =

t
LB;(y) = l_[(v- J’k)/()’j -)’k): (4)
k=0kl=

is public Lagrange coefficient for the set APPR according to
the Lagrange interpolation method [13].

X = Z aj = Z < Z LBj(O)-sij>
(5)

i€ QUAL i€ QUAL \ je APPR
= Z LB; (0) - x;.
je APPR

According to the above equation, the resulting signature
is that 0,,cine = [ic apPR (a,-LBi(O)) = H (vaccine)” and public
key is that pk = [];c appr (PkiLB[(0)) =g

User verification (0y,ecine> Pk, vaccine): the user checks
that e (g, 0,,ccine)= € (pk, H (vaccine)) for the vaccine. The
user accepts the signature if e(g, 0, ccine) = €(pk, H
(vaccine)) holds or rejects it otherwise.

Logistics consignment (0,..ie> Vaccine): structure of
vaccine includes the following attributes: ID=
H (manufacturer, batch number, serial number), manufac-
turer, batch number, serial number, vaccine certificate
Oyaccine> Production date x,, shelf life x,, and the duration of
immunization x;. The vaccine manufacturing company
broadcasts the vaccine properties, the entrusted logistics
company, and the certification certificate 0., as a package
to the public blockchain.

Cold chain logistics transit (0,,.ne> Vaccine, o,): the
responsible person for the cold chain logistics staging area
broadcasts to the public blockchain the vaccine, the vaccine
storage environment, its signature o,, and the logistics
destination package.

Distribution of CDC (public blockchain, skope): after
checking that the cold chain logistics on the public blockchain
meets the standards for transporting biologics, the CDC at-
taches a signature o - and broadcasts the distribution to the

destination vaccination hospital to the public blockchain.

4.3. Vaccination Record. The framework of the vaccination
record system is based on Hyperledger Fabric [14], whichisa
permissioned blockchain. The privacy protections of the
identity of the vaccination hospitals and vaccination users in
the vaccine record system are referred to the technique of
one-time sender and receiver public key in PAChain [15].
The certificate of authority for the long-term public key
(representing the identity of the hospital and the user) of the
vaccination hospital and the vaccination user uses the
BBS + signature [16] issued by the international joint gov-
ernment. However, in the vaccination record system of this
study, the identity of the user and hospital is anonymous to
the endorsement node. The endorsement of the vaccination
record by the endorsing node uses the anonymous credential
technique based on the Boneh-Boyen signature [17]. Vac-
cination information is encrypted with the auditor’s public
key using ElGamal encryption [18] to ensure that the

information is hidden. If necessary, the auditor can reveal
the encrypted vaccination information with his or her secret
key. Details are outlined as follows.

(param)«— Setup (1*): on input 1*, where A € N is a
security parameter. Suppose H,: {0,1} — {0,1}'* € Z,,
and H,: G, — Z, are collision-resistant hash functions. It
randomly picks generators go, g,> 92> 93> 9u> 95> Ge» 97> s>
9w 9n € G1591> 92 9. € Gy

(skye» skye, kg, PRy, PKres Pkgg)— AuditorKeyGen():

auditor picks random secret keys sk, sk, sksd<—Z , and
outputs their public keys pk,, gllg Pk = 95 e Pk
SKsd

= 3 .
(skcaus Pkeays Skea s Pkca p)— CAKeyGen(): CA

. R
picks random secret keys skc > Skep iy ——2Z, and outputs

AskCAH

their public keys pkeyy = gik@‘”, Pkean = 9,
(sk,, pk,)«— EndorserKeyGen(): endorser p1cks ran-

dom a secret key skeLZp

pk — Ask
(skU’I,skU’z,pkUYI,pkU,zy— UserKeyGen(): the user

randomly picks a pair of long-term secret keys

and outputs its public key

sky 1 skm(izp and computes a pair of long-term public
keys pky, = giku’l,pkm2 = gik”’z. HOSP is also a type of
user, so it follows the same algorithm to generate

(sky 15 8Kpy 2 PRy 15 PR)-
(Certcy y)— CACertIssue (skc,, pky): first, the user

needs proof to CA: PoK{(skU’l): pky, = g¥ur } After passing
CA verification, CA computes Acyy = (g, - pky -

g) using randomly selected s,,, wuLZp and its

own sk, ;. Then, CA issues a certificate Certcy ; = {ACA)U,
s,» w,} to the user’s pky; . OSSP is also a type of user, so it
follows the same algorithm to generate (Certcy ;; = {AC AH =
(9n - Pky, - g5 CACertIssue
(skea b P 1)-

(E;, R, E, R, .)<— VaccInfoEnc(vaccination, pk,.):
vaccination information includes ID= H
(manufacturer, batch number, serial number), vaccine cer-
tificate 0, ine> production date x,, shelf life x, the date of
vaccination x,, and the duration of immunization x,. Let
M = H, (vaccination), and it divides 128-bit M into 8
segments of 16-bit messages m; by M = ¥/ m; - (2'°)". It
encrypts each m; into E; = g;"pkl» and R; = g¢*, where

1/ (skep ptw,)

Sh)l/(SkCAH+wh) Sh) wh})(_

POK{(ACA U> Su> Wy pkU 1> rre’

PkU1 g (P UZ)

The details of the zero-knowledge proof is as follows:

1) OSSP randomly Picks 7, 7, Ty T s T s T r/3<—Z
and makes 6 = A¢, ;. It computes commitments:
Cy, = e((gu E.)" gsﬁe pkrerd’gl) Cy,a = grés
Cys = Rregre > CU4 = Pkre!h .

Security and Communication Networks

rw«in. The encryption E on M can be generated by E =

16i
-(21)". The user sends E; to the auditor. Then, it proves in
zero-knowledge proof that the knowledge of (m;,7,;) and

(M, r,): PoK{({mi,rv,i}ie{omﬂ,M, r)E; = gy pKHAR; =

9" NE = gy'pKAR, = gi').
Details of the zero-knowledge proof is as follows:

(1) The #0SP randomly picks a;b; € Z, for
ief0,...,7} and a,b €Z, and then computes

b,
commitments: =g pkvc, =g and

b
= ggpkvc’ Dv g
(2) It computes ¢ = H({E R;,C,;,D, }e{o,m}’ E,R,C,,
D,) and for i€ {0,...7} computes challenge re-
sponse: z;; =a; +cm;,z,; = b, +cr,;, z; =a+cM,
z, =b+cr,.

(3) Then, it outputs m,,. = {{Cv)i,Dv)i,zl),-,zz,i}ie{owﬂ,

C,.D,,zy,2;,c¢}
(otpky, Ryy)«— OTpkGen (pky , pky,): OSSP ran-
domly picks TMLZP and

H, (pk
94 2 (PR Ry =

outputs (otpky = pky

gi'). HOSP uses the same algorithm to

generate (otpky = pky;; - gfz(khz),RH =g,)«— OTpk-
Gen (pky ;, pky,). OSSP encrypts user’s long-term public
key pky , and long-term public key pkH1 of OSSP to the
auditor by picking random 7 rer rsd<—Z and computmg
(Er, = pky,i - Pk, Ree = g5°) and (Eg = pky, - pkg, Ry
= gg"“). Then, Z0S P runs the following proof of knowledge

for ensuring:

(i) pky,, and pky; are issued a valid certificate of
identity by CA.

(i) otpky is generated by pky; ;. otpky; is generated by
pky ;- otpky is the one-time public key identity of
the user whose public key is pky, ;. otpky; is the one-
time public key identity of #0859 whose public
key is pky; ;.

(ili) The user’s long-term public key pk;, ; and Z 0S8 P’s
long-term public key pk;, are encrypted by the
auditor’s public key pk,. and pkgy.

H OSSP needs to use proof of knowledge to endorser:

(Pkuz)) (ACAU’gl kaA) = e(gu - pky ‘9;“’§1)A°thU

ARy = gy'AE,, PkU,l'Pk:?}-

(6)

(2) It computes challenge ¢ = H(E.,R.,0,Cy,,Cy.
2,Cy3,Cyy) and _computes challenge response:
zy=tr,+c-Hy(pkyj,)z, =r.+c-w,, z;=r4+c
Tfla>Ze =Te+CoTg Zy=Ty+C T, 2p= Tgtc
TaSy-

Security and Communication Networks

(3) It outputs 7, = {otpky, E,e; Ry, €, 6, 24, 20, 2,45 2,
za,zﬁ}

Likewise, # 08P proofs the above relationship to the
endorser. The proof process 74 is very similar to that of the
user, so it will not be explained in detail here.

(otsky)e— OTskGen (sky ,skp,, Ry): with sky),

skyy 5, and Ry, 0S8 P calculates otskyy = sk ;| + H, (RSk’“)

otsk

and lets otpk,; = g, . At the same time, Z 0S5 <P sends R,
to the vaccination user over a secure channel. The user then
generates his own one-time secret key otsky = sk +
H2 (RSkU 2)

(0/ 1)«— EndorserVerify (m,., 7,4, 7,,.): the endorser
verifies the legitimacy of the vaccination information and the
legitimacy of the one-time public key of the sender
(HOSP) and the receiver (user).

The details of the zero-knowledge proof is as follows:

(1) First 0SSP needs proof to endorser: PoK
{(otsk): otpk, = got r
(2) On input n,,,, fori € {0,...,

C:H({E R Cvz’Dvl}ie{O 7}’

7}, endorser computes
C,.D,) and

checks C —Ecgg" pké, D —chfz‘, C,= Ecgo
pke D chl ‘

It outputs 1 if the above equation holds or 0
otherwise.

PoK{(otskU, M,r,

The details of the zero-knowledge proof are as
follows:

1) %@&@ randomly plcks TolpTolnlolololp
<—Z and makes S, = A, -u}",S, = g8 It com-
putes commitments: C,; =e(u;’-S] g8 - g

T, —~
pke | 9 3.) -e(ul,pke%
Ce,2 = gSC’Ce,3 = SZZgS d’Ce,4 = frb'

(2) It computes challenge ¢ =H(T,S},S,,C,,,C,,,
C.3C,,) and computes challenge response z,
=r,+c-otsky,z,. =r . +c-r,, z,=r,+c-k,z;=
ratcrok zy=rotcor,,zg=rp+c-l, zo =71
+c- M.

(3) It outputs 7, = {Certe,c, S1> 85,2 20 zd,ze,zsza,zﬁ}

(4) On input m,

— zZ,
= e ('S, " gy 9o Pk g5 95 9) - e (Wi STe,pk,), - C, 5
Z. o— ’ Z, —Z / _
=955, Co3 =595 % Coa = f2TC.

Then, verifier ~computes ¢ =H(T,S,,5,,C.1,C.2

C.3 C.4) and checks ¢'= c. It outputs 1 if ¢’ = ¢ holds or 0

otherwise.

(1/0)—— Link (T,T,): on input, two vaccination

records with two tags T,,T,. If T, =T,, it outputs 1.

Otherwise, it outputs 0.

and pk,, verifier computes C,;

Al k): e(Anpk,-3) = (g, - g - g5 PR -

(3) On input 7., endorser computes C[},I:e((gu
E,) g 0 pk, 7, §1) - e (6, pkey)’s Cuys = greRyS,
Cus = Riegre, Cya = pie g4zh (otpky/E)".

Then, endorser computes c —H(Ere,Rre,G CU1>

Cu» Cus Cy.) and checks ¢'= c. It outputs 1if ¢’ =
¢ holds or 0 otherwise.

(4) Oninput 4, endorser does same as (3). The initiator
of the vaccine record upload operation can only be
the hospital. Therefore, at this step, the endorser
needs to verify that the initiator of the upload op-
eration has a valid hospital identification credential.

If all four of the above verifications output 1, then (1)«—
EndorserVerify (7., 71y, Tenc)-

(Cert,)—— EndorserCredIssue (otpky, E,sk,): after
verifying the legitimacy of the vaccine information com-
mitment and the legitimacy of the one-time public key of
OSSP and the user, the endorser generates a certificate
Cert, by endorsing the vaccination record (otpky and E).
The endorser picks some random I, k7, and uses
secret key sk, to compute Cert, ={A, = (g, gk~
otpk) "¢ Kook LK} to HOSP.

(1/0)«— EndorserCredProof (Cert,, otsky;, M, r,): af-
ter obtaining the endorser’s certificate Cert,, # 0SS needs
zero-knowledge proof to the verifier that the vaccination
record has a valid certificate. First, 0§ 9 computes the tag
T = fotku for detecting double recording. #0S % needs to
use proof of knowledge to verifier:

OtSkH) ge)/\T — fotSkH } (7)

(1/0)(_ Audit (Ere’ Rre’ Esd’ de’ {Ei’ Ri}iE{O,...,7}): on
input a ciphertext (E,., R..), (Ey, Ryq) and sk, sk, auditor
has the ability to reveal long term pubhc keys of users and
H OSSP by computing pky; = Ere/Rre ,Pky, = E d/deSd.
On input a ciphertext {E;, R;}; (o, . » and sk, auditor has the
ab111ty to reveal vaccination 1nf0rmat10n by computing
g"i =E; /R . The auditor uses a precomputation table
contammg (g g% ...,g%"" V) to find out the message of
m; and reveal Vaccinatlon information M = (my]l ... [[my).
The auditor uses the secret keys skre, skq to reveal the long-
term public key pky;, = Esd/R " of the Vaccmatlon hospital
and the long-term public key pky, = E, /Rrere of the vac-

cination user.

4.4. Vaccine Passport. The signing of the vaccine passport is
accomplished by the vaccination hospital. This process uses
ring signature [19] to ensure the anonymity of the vacci-
nation hospital when issuing the authorization. During the
presentation of the vaccine passport, the vaccination
properties are proven using the Bulletproofs scheme [20] in
range proofs to guarantee the validity of the vaccine without
exposing the vaccine information. Before using Bulletproofs,
it uses interactions to transform the relationships of vaccine
attributes into relationships suitable for Bulletproofs range
proofs [21]. The identity privacy of the owner of the vaccine

10

passport is protected using the same one-time public key
technique as that used to protect the identity of the user in
the previous vaccination record system.

After the user received the last vaccination at the hos-
pital, the hospital uploads the vaccination record informa-
tion to the consortium blockchain. The hospital then issues a
vaccine passport to the user.

4.4.1. Vaccine Passport Issue

(1) The user commits the date of vaccination x,, pro-
duction date x,, shelf life x,, and the duyration of
immunization x, by selecting r,, 1,7, r;<—2, and
generates commitments C, = g“h™,C, = g*rh',
C,=g“hs,C; =g ih'a. The user sends
C,,CpCi, Gy 1Ty T, 7y to the vaccination hospi—
tal For the user 1dent1ty certificate Certey y =
{Acav = (g - Pky, - 93", s,, @,) issued by
the CA, the user randomly selects r, <—Z to send
Alyy to HOSP.

(2) ZOS P receives the user information and opens the
commitment and checks:

C,= Commit (x1,7y)s
Cp= Commlt(x rp)
CS— Commit (x;, 7,),
Cd; Commit (x, 7).

(8)

PoK{(otskU/): otpKy, = gomk{]},

(3) OSSP generates a ring signature oy

Security and Communication Networks

If one of the equations does not hold, OSSP re-
fuses to issue a vaccine passport to its user. Other-
wise, Z OSSP accepts to issue a vaccine passport for
the user.

ring for the
vaccine passport information (C,,C,,C,, C,

A¢yy)- First, it lets m = H(C,,,CP,CS,Cd, Aéyu)
and selects (n— 1) public keys of other hospitals.

Then, it randomly picks seed a7 pand x,-«LZP.
Suppose that f is a trapdoor one-way function such
as RSA. It computes y; = f(x;,pk;) and
Vi) = H (m|a) to go along the ring from signer
index i,. It closes the ring by computing
vy = Hm|y @ @H (my @H (mla))
and uses secret key sk of signing ZOSP to
compute x; = f‘l(v(is)ea(x). H OSSP randomly se-
lects an index i, and outputs the ring signature
Oring = (B0> Vipp X1> - - - X, PKp» - 5 PKy).

(4) OSSP outputs vaccine passport {CV, C,Co

T
Cd’ ACHA)U’ aring}

4.4.2. Vaccine Passport Proof

(1) User generates new one-time public and secret keys

pair by (otpky, R;;)—— OTpkGen (pky ;,pky,) and
(otsky)e— OTskGen (sky ;,sky,, Ry). The user
needs proof to vaccine passport checkpoint:

(9)

POK{(ACA,U’S @, Pky, 1> re’HZ(pkUZ)) (ACAU>95 PkCA):e(gu'PkU,l'g;"@l)/\o'fpkb

HZ ki 2 Ty — Tre
= PkU,l " 94 ((P v)/\R’U =94 /\Ere = pkU,l : pkre }

(2) Vaccine passport checkpoint verifies the legitimacy
of the ring signature o,,. The verification is
straightforward; the vaccine passport checkpoint
starts ~at index i, with value wv;. If v =
H(m"y(,-o,l)eameaH (m”vloeay,), it verlﬁes that the
vaccine passport has the hospital’s valid ring
signature.

(3) The vaccine injected by the user is within the shelf

life. It requires that the inequality (x, - x, —x,)>0
be satisfied.

PoK{(xp, X X X T o T Tgs rv), (CP’ C,,Cy, Cv): G,

Nx, - x, -

xs) >0, (x, +x4) <tl,x,>(t - 14)}.

(10)

The user produces high titers of antibodies to create
effective protection. This corresponds to the last date
of vaccination plus 14 days [11], which needs to be
greater than the current date. It requires that the
inequality (x, + x;) <t be satisfied, where t is the
current date.

The vaccinated user is in the duration of immuni-
zation for the vaccine. This is equivalent to the last
date of vaccination plus the vaccine immunity lasting
time needs to be less than the current date. It requires
that the inequality x, > (f — 14) be satisfied.

_ gxphrp,cs — gxshrs’cd — gxd]’lrd, CV — nghrv

(11)

Security and Communication Networks

(4) After vaccine
gt’ g(t— 14))

i passport checkpoint returns
g%, the above range proof translates to

PoK{(xP, X Xgs Xs T ps T T s rv), (A1 = CV/(CPCS),

11

142 _ CVCdQZI/gt,Ag, _ Cv/g(t—lzi)): A1 _ ng—xp—xshrv—rp—rS,Az _ ng+xd— [+21hrv+rd,A3 _ ng— HMI’I”/\(XV _ xp _ xs) (12)

€ [0,2), (x, +x,—t +2') € [0,2'), (x, —t +14) € [0,2)}.

5. Security Analysis

Definition 1. Threshold signature scheme is called secure
robust threshold signature scheme if the following two
conditions hold:

(i) Unforgeability: for every PPT adversary A, it is
allowed to corrupt up to t participants in the
threshold system and is given the oracle channel to
ask a finite number of messages m; and threshold
signatures ;. Eventually, it forges with negligible
probability a valid (m, 0), and m is not in the set of
previous queries (m;, 0;).

(ii) Robustness: for every PPT adversary A, it is allowed
to corrupt up to t participants in the threshold
system, and threshold signature protocol runs
successfully.

Theorem 1. (t,n)-threshold signature scheme under the
GDH group is a secure threshold signature scheme in the
random oracle model against an adversary which is allowed to
corrupt any t <n/2 participants.

Definition 2 (Soundness). The vaccination information
privacy protocol is sound if for all PPT adversary &/ with

b="b'"

oracle to query polynomial level times (E;,R; E,R,)—
VaccInfoEnc (vaccination, pk,.), and then,

l—EndorserVerify (7.,):

Pr
(T[enc)(_ﬂ({Ei’ Ri’ E, Rv})

<negl(A). (13)

Theorem 2. The vaccination information privacy protocol is
sound if DLP is hard, and the protocol provides knowledge of
soundness.

Proof. It rewinds ¢ = H({Ei, R,C,; D;i}ie{o b
R,,C., D)), where c#c' and computes {z{)i, z5; ief0 7},21',
z,. It extracts the knowledge of 77

m; = (21,,1'_ Zl,i)/ (" =¢)

ryi= (ZZ,,i_ Zz,i)/ (C’ -c), (14)

M =(z) - z,)/(c" =¢),

r,=(z3-2,)/(c" = ¢). -

Definition 3 (Privacy). The vaccination information is pri-
vate in the protocol if for all PPT adversary <:

Pr ({nenc}(0)’(1))<—VachnfoEnc({Vaccination}(0),(1)), —1/2| < negl (1) (15)

b(i{(), 1}> bl‘_d(ﬂenc}(b))

Theorem 3. The vaccination information is private in the
protocol if DDH is hard in G,, and the protocol is HVZK.

Proof. ‘The encryption (E; = g;"pkl", R; = g¢*) used in this
protocol is the ElGamal encryption algorithm. The security
of this encryption is based on the DDH assumption. If the
DDH assumption is difficult on G, the vaccination infor-
mation of this protocol is private during transmission.
The simulator of this pRrotocol randomly picks
{Ei, R,z ZZ,i}ie{o ,¢',z,,z,—corresponding domain.

> “Li> “2i fief,..., 7}
Then, it computes

Cu = 67

vc ?

Dv,i = Rf, gfz,i,
C - Ec’ Z1.1.2 (16)
v 9o pkvc’
D, =R g7’

where they are indistinguishable from real protocol inter-
actions. The simulator sets ¢ as H (TEi,Ri,CV’i,DV,
iticto,.7p E- R, C,, D,) in the random oracle model. There-
fore, this protocol provides zero-knowledge of vaccination
information. O

12

Definition 4 (Soundness). The users (including hospitals
and vaccination users) privacy protocol is sound if for all
PPTadversary o with oracle to query polynomial level times
(Certcy y)e— CACertlssue (pky), and then,

Security and Communication Networks

(i) The public key of the user (including hospital and
vaccination wuser) is issued a valid certificate

(ACA,U’ Su’ wu):

l——EndorserVerify (1, (or my)):

(CertCA’U’)<—t§2{(pkU)1)

Pr

where(CertCA)U', pkU,l) ¢ oracle queries,

< negl(A). (17)

(otpky, r, (or nsd))<—OTkaen(pkU)1, PkU,z)

(i) otpky is computed from a public key pky,; and the
public key pky;, is encrypted to the auditor:

l<—EndorserVerify (7. (or 74)):

(CertC AU) — CACertIssue(pkU,1),

Pr

<negl(A). (18)

(otpky, 7,; (or m,)) s/ (pky 1> Py 2)
where pk, | # pky

Theorem 4. The users (including hospitals and vaccination
users) privacy protocol is sound if the q-SDH assumption
holds in (G,,G,) in the random oracle model, where q is the
maximum number of CACertlssue oracle queries, and the
protocol provides knowledge of soundness.

Proof. It rewinds ¢’ = H(E,, R, 6,Cy 1,Cy 3 Cy 3 Cua)s
where ¢ # ¢, and computes z;, 2/, 24, 2, 24 2. It extracts the
knowledge of

ro=(2.-2)/(c' -¢),

su = (25— 25)! (ro (' =)

w, =(z.-z)/(c" —¢),

Tre = (24 = 24)/ (¢' =€), (19)
Ha(pki) = (2 - 20)/ (€~)

Pl = otplgt”)

_ plir,
ACA,U = 0 e,

b=10'":

Pr ({OtpkU’RU}(0),(1))(_OTPkGen(pkU,1)>

BBS + signature is unforgeable against adaptively chosen
message attack under the q-SDH assumption. O

Definition 5 (Anonymity). The anonymity of users (in-
cluding hospitals and vaccination users) is enabled in the
protocol if for all PPT adversary ,

—1/2|<negl (A). (20)

b0, 1}, b —({otpky, Ry})

Security and Communication Networks

Theorem 5. The anonymity of users (including hospitals and
vaccination users) is enabled in the protocol if CDH is hard in
G,, and the protocol is HVZK.

Proof. 'The encryptions (E,. = pky, - pkl=, R, = g5*) and
(Eyq = pkyyp - PR, Ryg = g5*) used in this protocol are the
ElGamal encryption algorithm. The security of this en-
cryption is based on the DDH assumptlon The one- time
public key (otpkU pkU gHz (pkif =g,) and
(otpky =pky,-g Hs (Pkii) Ry, = =g generatlon algorithm
is based on the CDH assumptlon If the CDH assumption is
difficult on G,, the anonymity of users (including hospitals
and vaccination users) is enabled during transmission.

The simulator of thlS protocol randomly picks
0,z 2,2y, ze,za,zﬁ<—corresp0nd1ng domain. Then, it
computes

Cu1 = e((9u - Ere)™ 95 S0 Pk ’91) -e(6, pkey),
CU2 = gngre’ (21)
CU3 - Rregre >

CU 4 pkre g42b (OtpkU/Ere)

13

where they are indistinguishable from real protocol inter-
actions. The simulator sets ¢’ as H(E,,R,,6,Cy;,
Cu.2»Cy 35 Cy) in the random oracle model. Therefore, this
protocol provides zero-knowledge of CA certificate for the
user’s long-term public key and the user’s long-term public
key. O

Definition 6 (Soundness). The vaccination information
endorsement protocol is sound if for all PPT adversary of
with oracle to query polynomial level times (Cert,)«—
EndorserCertIssue (otpk;;, E), and then, this vaccination
information E = g)/pk!* and otpky, is issued a valid cer-
tificate (A,,l, k) by the endorsement nodes:

l<—EndorserCredProof (Cert,, otpk,;, E)V
l<—EndorserCredProof (Cert,, otpk,;, E'):

Pr (Cert,)—f (otpkyy, E)V

<negl(A). (22)

(Cert,)«—EndorserCredIssue (otpk;;, E)

where (otpk;, E') #

Theorem 6. The vaccination information endorsement
protocol is sound if the q-SDH assumption holds in (G,, G,)
in the random oracle model, where q is the maximum number
of EndorserCredlIssue oracle queries, and the protocol pro-
vides knowledge of soundness.

Proof. It rewinds c¢' =H(T,S,, S Ce b Ce 2 Ce3Ce)s
where ¢ #c', and computes z,, 2., 2z, z,, Z zﬁ, z.. It extracts
the knowledge of

k e (CI - C)’
M =(z.-z)/(c' —¢), (23)
r, = (2a = 2)/ (¢ —¢),

BBS + signature is unforgeable against adaptively chosen
message attack under the q-SDH assumption. O

Definition 7 (Privacy). The vaccination information is pri-
vate in the protocol if for all PPT adversary </,

(otpky, E)

b=0"
({Certe} (O 1)) ——EndorserCredIssue
({E. otpkss} o), 1)

R
be—{0, 1}, b’ —/({E, otpky })

Pr —1/2|<negl (A). (24)

Theorem 7. The vaccination information is private in the
protocol if the protocol is HVZK.

Proof. The simulator of this protocol randomly picks

R . .
{C', S15855 21, 20> 24> Zg> Z5Z 5 zﬁ}<—correspondmg domain.
Then, it computes

_ Zg Q% 2B
Ce1 = e(“l 817+ gs

. e(uf‘S;C,, pke),

gi - PK: - 995 9)

. (25)
Cen = !]s >

Ces = 2 98 >

C,u= foT°°,

where they are indistinguishable from real protocol inter-
actions. The simulator sets ' as
H(T,S,,S,,C,;,C,,,C,3,C,,) in the random oracle model.

14 Security and Communication Networks
TaBLE 1: Comparison of COVID-19 vaccine systems.
. Vaccine Vaccination User Vaccination Vaccination . Vaccination
Blockchain structure supply Auditable .
chain record privacy hospital privacy privacy certificate
[7] Public blockchain v v v X X N X
Public chain and

[10] private blockchain v v v v v v x
[6] Public blockchain v X X X X v/ X
[8] Private blockchain X v v/ X v/ X v
[5] Public blockchain N X X X X v X

Consortium
[22] ethereum-based X v v/ X v X v

blockchain

Consortium

9

(23] blockchain % x

Permissioned
[24] blockchain x v v v
China
health .
code No blockchain X v X X X v v
system

Public blockchain

This study and consortium N, v v v/ v v/ v

blockchain

“4/” represents that the privacy protection of this attribute of the vaccine system is based on stronger assumptions, such as storing the private data in a private
database off-chain or increasing the restriction of database access, thus having a higher probability of privacy leakage. “?” represents that this attribute of the

vaccine system is not mentioned from the open-source code or references.

Therefore, this protocol provides zero-knowledge of vacci-
nation information. O

Lemma 1 (Ring lemma). Ring signature is unforgeable if the
DL assumption holds. The anonymity of the ring signature is
unconditional.

Lemma 2. The Bulletproof has perfect completeness, perfect
special honest verifier zero-knowledge, and computational
witness extended emulation.

6. System Analysis

6.1. Security and Privacy. We compare the vaccine system
proposed in this study with other solutions proposed in
academia and platform systems that have been applied in
practice, as given in Table 1. The main aspects of comparison
are the blockchain structure, the domain covered by the
system, the properties of user privacy protection, and
auditability.

In terms of vaccine system structure, the non-
blockchain-based vaccine system is represented by the
China health code system, a digital vaccine certificate
implemented by the Chinese government based on Alipay,
a trusted third party. The authentication of the vaccine
certificate is done by the verifier through the QR code in
the Alipay wallet app. Another blockchain-based vaccine
system mainly takes advantage of the immutability and
decentralized property of blockchain to create a more
credible and secure vaccine system, which is also the trend
of vaccine system research. The main types of blockchains
in vaccine systems are public blockchains, private

blockchains, and consortium blockchains. In this study
and [10], a double-chain structure is used. However,
under the assumption of global recognition, the consor-
tium blockchain has an advantage over the private
blockchain in terms of use coverage.

In terms of privacy protection, we divide user privacy
into user identity privacy, vaccination hospital privacy, and
privacy of vaccination records. Systems with a single public
blockchain structure, for example [5, 6], are not user
privacy protected. The blockchain of vaccination records in
[7] keeps sensitive information of users out of the block-
chain and protects user privacy to some extent. The
[8, 10, 22, 23] schemes use private blockchain or consor-
tium blockchain for participant’s identity authentication to
protect user privacy. Qiu and Zhu [10] stored all the
vaccination records in a private blockchain and Alabdul-
karim et al. [24] stored the private data on the private
database of the authorized specific peer. However, this does
not guarantee the leakage of user vaccination privacy by the
nodes in the private blockchain, and the storage of vac-
cination records would be centralized. In the study by Abid
et al. [8], the vaccination certificate is issued by the
healthcare provider (issuer) with a signature. Therefore,
this process can expose the privacy of the user’s vaccination
hospital. Also, this scheme cannot audit the vaccination
information because it uses a private blockchain and a
certain degree of information encryption. Both [22, 23]
used consortium blockchains structure, but do not have
any encryption of user privacy information, so these two
schemes guarantee the privacy of user personal informa-
tion only to some extent. However, the privacy of vacci-
nation hospitals cannot be guaranteed.

Security and Communication Networks

6.2. Performance Analysis. The main objective of this study
is to propose a framework for a double-chain-based vaccine
passport system and to refine the design of the protocol
between specific participants. This goal of this study is to
provide a systematic solution to the vaccine passport which
focuses more on the theoretical aspect. Therefore, only a
qualitative analysis of the system’s performance is presented
here.

The additional performance overhead of the public
blockchain-based vaccine cold chain phase is mainly in the
approval phase. For each approval process of vaccines sent
for review, the approval institutions in each country need to
participate in the distributed setting of threshold secret
sharing of the value x. For each distributed key generation
protocol, it is assumed that there are n approval institutions,
and each institution needs to generate 2 random polyno-
mials. At the same time, each approval authority broadcasts
the commitment of polynomials to the other (n-1) ap-
proval authorities. The communication data volume of the
whole broadcast channel is O (#2).

The permission blockchain framework for the vaccina-
tion record phase of this study is based on the Hyperledger
Fabric architecture. By referring to the idea of PAChain [15],
the privacy of the vaccination records is protected among the
endorsers, orderers, and committing peers. This study
removes the trust in the endorser compared to PAChain,
thus increasing the authentication protocol. Therefore, the
system latency in this phase is slightly higher than PAChain.

The performance bottleneck in the passport identifica-
tion phase is mainly due to the range proof of the vaccine
attributes. Benefiting from the efficiency and aggregability of
Bulletproofs [20], the proof size of vaccine passports in the
presentation phase is O (log(mn)) for a batch size of n users
and the vaccine attribute length of m bits. For the specific
case where the vaccine attribute is 64 bits (m = 64), the
proof size for a single user is 3 x 675 = 2025 bytes; while, the
aggregated proof size for 512 users is 3 x 1253 = 3759 bytes.

Based on the results of the above system performance
analysis, we believe that the vaccine passport system pro-
posed in this study is feasible for development and imple-
mentation. In future implementations, sacrificing acceptable
system performance loss in exchange for abundant privacy-
preserving security properties is to be considered in advance.

7. Conclusion

This study makes improvements to the vaccine approval part
of the previous vaccine distribution and management sys-
tem. The introduction of a threshold signature scheme in
distributed vaccine approval institutions has a certain degree
of deterrence against collusive corruption between vaccine
approval institutions and vaccine manufacturing companies.
Second, the privacy protection in the previous double-chain
system is optimized. In this study, the privacy protection of
vaccination hospitals, vaccine trusts, and vaccination users is
added to the audit function, which increases the control-
lability and auditability of the vaccination record system in
practice. Finally, the vaccine passport proposed in this study
protects the privacy of the user’s vaccination hospital, the

15

vaccine, and the user’s identity while proving the validity
and legitimacy of the passport to the vaccine passport
checkpoint. Moreover, it is possible to differentiate and
adopt targeted measures and policies for different conditions
of the vaccine passport. Future work in this study lies in
weakening the authority of local vaccination hospitals in the
system. It can increase the link between the double chains
using corresponding cryptographic techniques.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] W. Tan, X. Zhao, X. Ma et al., “A novel coronavirus genome
identified in a cluster of pneumonia cases—wuhan, China
2019- 2020,” China CDC weekly, vol. 2, no. 4, pp. 61-62, 2020.

[2] “Vaccination certification to be digitized by the end of this
year for use in Japan,” 2021, https://www.nikkei.com/article/
DGXZQOUA264980W1A820C2000000/.

[3] L. Byers, “BC launches proof of vaccination to stop spread of
covid-19,” 2021, https://news.gov.bc.ca/releases/
2021HLTHO0053-001659.

[4] M. A. Hall and D. M. Studdert, “Vaccine passport” certifi-
cation—policy and ethical considerations,” New England
Journal of Medicine, 2021.

[5] L. Cui, Z. Xiao, J. Wang et al., “Improving vaccine safety using
blockchain,” ACM Transactions on Internet Technology,
vol. 21, no. 2, pp. 1-24, 2021.

[6] C. Antal, T. Cioara, M. Antal, and I. Anghel, “Blockchain

platform for covid-19 vaccine supply management,” IEEE

Open Journal of the Computer Society, vol. 2, pp. 164-178,

2021.

B. Yong, J. Shen, X. Liu, F. Li, H. Chen, and Q. Zhou, “An

intelligent blockchain-based system for safe vaccine supply

and supervision,” International Journal of Information

Management, vol. 52, Article ID 102024, 2020.

A. Abid, S. Cheikhrouhou, S. Kallel, and M. Jmaiel, “Nov-

idchain: blockchain-based privacy-preserving platform for

covid-19 test/vaccine certificates,” Software: Practice and

Experience, 2021.

[9] A.B. Haque, B. Naqvi, A. K. M. N. Islam, and S. Hyrynsalmi,
“Towards a gdpr-compliant blockchain-based covid vacci-
nation passport,” Applied Sciences, vol. 11, no. 13, p. 6132,
2021.

[10] Z.QiuandY. Zhu, “A novel structure of blockchain applied in
vaccine quality control: double-chain structured blockchain
system for vaccine anticounterfeiting and traceability,”
Journal of Healthcare Engineering, vol. 2021, Article ID
6660102, 10 pages, 2021.

[11] F.-C. Zhu, Y.-H. Li, X.-H. Guan et al., “Safety, tolerability, and
immunogenicity of a recombinant adenovirus type-5 vectored
covid-19 vaccine: a dose-escalation, open-label, non-rando-
mised, first-in-human trial,” The Lancet, vol. 395, no. 10240,
pp. 1845-1854, 2020.

[12] A. Boldyreva, “Threshold signatures, multisignatures and
blind signatures based on the gap-diffie-hellman-group

[7

[8

https://www.nikkei.com/article/DGXZQOUA264980W1A820C2000000/
https://www.nikkei.com/article/DGXZQOUA264980W1A820C2000000/
https://news.gov.bc.ca/releases/2021HLTH0053-001659
https://news.gov.bc.ca/releases/2021HLTH0053-001659

16

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

signature scheme,” in Proceedings of the International
Workshop on Public Key Cryptography, pp. 31-46, Springer,
Miami, FL, USA, 6 January 2003.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure
distributed key generation for discrete-log based cryptosys-
tems,” in Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques,
pp. 295-310, Springer, Prague Czech Republic, 2 May 1999.
E. Androulaki, A. Barger, V. Bortnikov et al., “Hyperledger
fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys con-
ference, pp. 1-15, ACM, Porto Portugal, 23 April 2018.

T. H. Yuen, “Pachain: private, authenticated & auditable
consortium blockchain and its implementation,” Future
Generation Computer Systems, vol. 112, pp. 913-929, 2020.
M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic
k-taa,” in Proceedings of the International conference on se-
curity and cryptography for networks, pp. 111-125, Springer,
Maiori, Italy, 6 September 2006.

D. Boneh and X. Boyen, “Short signatures without random
oracles,” in Proceedings of the International conference on the
theory and applications of cryptographic techniques, pp. 56-73,
Springer, Interlaken, Switzerland, 2 May 2004.

T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information Theory, vol. 31, no. 4, pp. 469-472, 1985.

E. Bresson, J. Stern, and M. Szydlo, “Threshold ring signatures
and applications to ad-hoc groups,” in Proceedings of the
Annual International Cryptology Conference, pp. 465-480,
Springer, Santa Barbara, CA, USA, August 2002.

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: short proofs for confidential
transactions and more,” in Proceedings of the IEEE Symposium
on Security and Privacy (SP), pp. 315-334, IEEE, San Fran-
cisco, CA, USA, 20 May 2018.

J. Camenisch, R. Chaabouni, and abhi shelat, “Efficient
protocols for set membership and range proofs,” in Pro-
ceedings of the International Conference on the Theory and
Application of Cryptology and Information Security, pp. 234—
252, Springer, Melbourne, VIC, Australia, 7 December 2008.
M. Eisenstadt, M. Ramachandran, N. Chowdhury, A. Third,
and J. Domingue, “Covid-19 antibody test/vaccination cer-
tification: there’s an app for that,” IEEE Open Journal of
Engineering in Medicine and Biology, vol. 1, pp. 148-155, 2020.
“A simple and secure certificate of covid-19 immunity,” 2020,
https://www.immupass.org/.

Y. Alabdulkarim, A. Alameer, M. Almukaynizi, and
A. Almaslukh, “Spin: a blockchain-based framework for
sharing covid-19 pandemic information across nations,”
Applied Sciences, vol. 11, no. 18, p. 8767, 2021.

Security and Communication Networks

https://www.immupass.org/

Hindawi

Security and Communication Networks
Volume 2022, Article ID 1443978, 17 pages
https://doi.org/10.1155/2022/1443978

Research Article

WILEY | Q@) Hindawi

IoT-DeepSense: Behavioral Security Detection of IoT Devices
Based on Firmware Virtualization and Deep Learning

Jin Wang ! Chang Liu ! Jiangpei Xu ,' Juan Wang)2 Shirong Hao ,“Wenzhe Yi(®,

and Jing Zhong (»*

Electric Power Research Institute of State Grid Hubei Electric Power Company, Wuhan 430072, Hubei, China
2School of Cyber Science and Engineering, Wuhan University, Wuhan, Hubei, China

Correspondence should be addressed to Juan Wang; jwang@whu.edu.cn

Received 15 October 2021; Revised 30 January 2022; Accepted 4 February 2022; Published 18 March 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Jin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, IoT devices have become the targets of large-scale cyberattacks, and their security issues have been increasingly serious.
However, due to the limited memory and battery power of IoT devices, it is hardly possible to install traditional security software, such
as antivirus software for security defense. Meanwhile, network-based traffic detection is difficult to obtain the internal behavior states
and conduct in-depth security analysis because more and more IoT devices use encrypted traffic. Therefore, how to obtain complex
security behaviors and states inside IoT devices and perform security detection and defense is an issue that needs to be solved
urgently. Aiming at this issue, we propose IoT-DeepSense, a behavioral security detection system of IoT devices based on firmware
virtualization and deep learning. IoT-DeepSense constructs the real operating environment of the IoT device system to capture the
fine-grained system behaviors and then leverages an LSTM-based IoT system behavior abnormality detection approach to effectively
extract the hidden features of the system’s behavior sequence and enforce the security detection of the abnormal behavior of the IoT
devices. The design and implementation of IoT-DeepSense are carried out on an independent Internet of things behavior detection
server, without modifying the limited resources of IoT devices, and have strong scalability. The evaluation results show that IoT-
DeepSense achieves a high behavioral detection rate of 92%, with negligible impact on the performance of IoT devices.

1. Introduction

In recent years, the Internet of things (IoT) has developed
rapidly and has been continuously expanded and applied in
the fields of smart homes, smart cities, industrial systems,
and smart medical products [1]. Statistics show that the
number of IoT devices will reach about 50 billion [2] by 2020.
These interconnected IoT devices also bring a lot of smart
applications, services, and data, resulting in more emerging
data-centric businesses [3].

With the rapid growth of the Internet of things appli-
cations and devices, attacks against the Internet of Things are
becoming more and more serious. For example, remote
attackers attack and damage patients’ implantable medical
devices [4], which may not only cause huge economic losses
to individuals but also endanger the safety of patients. Also,
with the widespread use of IoT devices in other key areas,

attackers may jeopardize public network security. For ex-
ample, in 2016, a distributed denial-of-service (DDoS) [5]
attack against domain name system provider Dyn Company
resulted in the inaccessibility of multiple websites such as
GitHub and Twitter. This attack is performed through a
botnet composed of a large number of IoT devices, including
IP cameras, gateways, and even baby monitors. Further-
more, in April 2021, the Mozi botnet that targets IoT devices
had controlled approximately 438,000 nodes for DDoS at-
tacks, data exfiltration, and remote command execution.
Each compromised node in the botnet is instructed to find a
new victim IoT device for infection [6]. Therefore, it is
foreseeable that the botnets will continue to expand rapidly
and cause more serious damage.

However, most enterprises and users lack privacy and
security awareness, and only focus on the realization of the
core functions of the product, while ignoring potential

mailto:jwang@whu.edu.cn
https://orcid.org/0000-0003-0507-225X
https://orcid.org/0000-0002-5058-322X
https://orcid.org/0000-0002-0818-7186
https://orcid.org/0000-0001-8813-7842
https://orcid.org/0000-0002-2593-2029
https://orcid.org/0000-0003-1096-2505
https://orcid.org/0000-0002-6342-974X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1443978

security issues. Unless the user initiates a firmware update,
IoT device vendors usually do not update and patch their
device security vulnerabilities. At the same time, due to
limited power consumption and resources, IoT devices are
usually unable to install and run traditional security soft-
ware, such as antivirus software and IDS, resulting in vul-
nerabilities in IoT devices (e.g., default passwords and
unpatched errors) that cannot be eliminated in a long time
[7]. Therefore, under the situation where the number of IoT
devices is increasing rapidly and security problems are
constantly emerging, it is of great significance how to
conduct security detection on the behavior of the IoT devices
to realize the IoT security defense.

At present, the research on the behavior security of IoT
devices mainly focuses on behavior detection schemes based
on network traffic. Network traffic-based detection can only
detect the security issues of IoT devices from the network
layer. It is difficult to obtain the internal behavior status of
the system and conduct an in-depth security analysis. Be-
sides, more and more IoT devices currently use encrypted
traffic, which also makes traffic-based security detection
more difficult.

The firmware virtualization technology simulates the
operating environment of the embedded system based on
the firmware image, realizes large-scale and automated
dynamic analysis of the embedded firmware binary file, and
then mines firmware vulnerabilities to implement the em-
bedded firmware security analysis. The firmware virtuali-
zation technology can simulate the real operating
environment of the firmware, which helps to obtain the
operating data and security status of the internal system
layer of the device and thus realize the behavior detection
and defense at the system level of the IoT device. Therefore,
we propose a method to perform system behavior detection
on IoT devices using firmware virtualization and combining
it with deep learning. Given the difficulty in obtaining
complex security behaviors and states inside IoT devices, the
system operating environment of IoT devices is simulated
based on firmware virtualization technology and then the
complex security behaviors and states inside IoT devices are
collected. Aiming at the problem that the internal behavior
information structure of IoT devices is complex and difficult
to detect, a deep learning-based IoT behavior security de-
tection scheme is proposed. In response to the demand for
risk mitigation of abnormal behaviors of the Internet of
things, the attack stage and security risks are analyzed and
determined, and the risk mitigation policies are presented.

In particular, our main contributions can be summarized
as follows:

(i) We propose a fine-grained dynamic system be-
havior capture mechanism to collect the complex
security behaviors and states inside the IoT devices
in real time.

(ii) We propose an LSTM-based IoT system behavior
abnormality detection model. The abnormal be-
havior detection model can effectively extract the
hidden features of the system’s behavior sequence
and well express the internal dependencies, to

Security and Communication Networks

successfully implement the security detection of the
abnormal behavior of the IoT devices.

(iii) We design and implement IoT-DeepSense, an IoT
device behavior security detection system that
combines firmware virtualization and deep learn-
ing. The evaluation results show that the system can
achieve a high behavioral detection rate of 92%, with
negligible impact on the performance of IoT devices.

The rest of the study is organized as follows. Section 2
introduces the background, and Section 3 describes our
system overview and the design details. The implementation
and evaluation of our system are described in Section 4. We
present related work in Section 5. Finally, we discuss lim-
itations and future work in Section 6 and conclude this study
in Section 7.

2. Background

In this section, we describe the background of firmware
virtualization and recurrent neural networks.

2.1. Firmware Virtualization. Recently, IoT device risk
vulnerabilities are increasing day by day, often with very
serious security consequences. However, due to the limited
resources of IoT devices, it is a problem to install security
monitoring software on IoT devices to obtain the security
states of IoT physical devices and defend them. Network
function virtualization (NFV) can detect and defend the
security states of [oT devices by constructing virtual security
functions. However, network security functions such as
virtual IDS and virtual firewall only obtain limited and
simple device security status by analyzing network traffic.
The firmware virtualization technology can build the op-
erating environment of the IoT device system based on the
IoT firmware virtualization, to obtain the complex and
comprehensive internal behaviors and states of the IoT
device.

Since most IoT devices are not X86/X64 architectures,
they cannot be emulated using VMware-like software like
standard desktop or server operating systems. However,
mainstream virtualization software (e.g., QEMU) can al-
ready support firmware virtualization of IoT devices with
MIPS or ARM architecture, so that IoT device firmware
(including operating systems and applications) can run in a
virtualized environment.

QEMU [8] is a fast processor emulator based on dynamic
binary conversion. Unlike traditional simulators that in-
terpret the target program by instruction, QEMU converts
multiple basic blocks at once. More importantly, QEMU
caches the converted blocks and uses block linking to link
them together. This keeps the executive program in the code
cache most of the time, thereby minimizing the overhead of
conversion.

For firmware emulation, in addition to instruction
conversion, address space conversion is also very important.
QEMU has two execution modes: system mode and user
mode. The implementation of address space conversion is
different in different execution modes. In system mode,

Security and Communication Networks

QEMU uses a software memory management unit (MMU)
to handle memory access. The software MMU maps the
client’s memory address (GVA) to the host memory address
(HVA). This mapping process is transparent to the guest
operating system, so the guest operating system can set the
GVA to client physical address (GPA) mapping and handle
page faults through the page table interface. QEMU adds
GVA-to-GPA conversion logic for each memory access. To
speed up the conversion, QEMU uses an address translation
cache (TLB) to cache the conversion result. Moreover, to
avoid invalid code cache and block linking whenever the
address translation changes, all converted blocks are indexed
using GPA, and block linking is only performed when two
basic blocks are within the same physical page. The mapping
from GPA to HVA is done using linear mapping
(HVA = GPA + offset). Contrary to system model simula-
tion, in user mode simulation, the host virtual address
(HVA) is equal to the client virtual address (GVA) plus a
constant offset. Therefore, the conversion in user mode
simulation is much faster than the conversion in system
mode simulation.

There are already several frameworks that support the
use of QEMU to implement an IoT virtualized environment.
Avatar achieves this goal by building a hybrid execution
environment that includes a processor emulator (QEMU)
and actual hardware. Avatar uses an emulator to execute and
analyze instructions while passing I/O operations to physical
hardware, but Avatar must obtain the physical hardware of
the device under test and must manually identify and in-
teract with the debug port on the device interface, reducing
the practicability of this architecture. FIRMADYNE added
hardware support for IoT firmware in the system mode
QEMU. FIRMADYNE supports the popular ARM and
MIPS architectures among IoT manufacturers. To obtain
hardware support, FIRMADYNE implements a complete
simulation system by modifying the kernel and drivers to
handle the abnormality of the Internet of things due to a lack
of actual hardware. Due to FIRMADYNE’s full-system
emulation, this study chooses to use FIRMADYNE to vir-
tualize IoT devices with firmware to obtain the real operating
environment of IoT devices.

2.2. RNN. Artificial neural network (ANN) [9] was inspired
by the biological learning system and loosely modeled its
basic functions. The biological learning system is a complex
network of interconnected neurons [10]. The most common
type of standard neural network is a feedforward neural
network. Here, the collection of neurons is organized hi-
erarchically: an input layer, an output layer, and at least one
intermediate hidden layer. Feedforward neural networks are
limited to static classification tasks. Therefore, they are
limited to providing a static mapping between input and
output.

To model the time prediction task, we need a dynamic
classifier. We need to extend the feedforward neural network
to dynamic classification. To obtain this property, we need
teedback on the signal of the previous time steps back to the
network. These networks with recursive connections for

processing sequence data are called recurrent neural net-
works (RNNs) [11]. The typical structure of RNN includes
three layers, namely the input layer, the output layer, and the
hidden layer. Because the gradient disappears or the gradient
explodes, the RNN is limited to learning about ten-time
steps. When we deal with short-term dependencies, recur-
rent neural networks can work well.

Long short-term memory recurrent neural network
(LSTM-RNN) [12] solves the problem of gradient disap-
pearance and gradient explosion during long sequence
training. The LSTM network is biologically reasonable to a
certain extent and can learn more than 1,000-time steps,
depending on the complexity of the network being con-
structed. In short, LSTM can perform better than ordinary
RNN in longer sequences. LSTM has achieved considerable
success and has been widely used in many problems, such as
natural language processing and speech recognition.

The basic LSTM neural network is composed of an input
layer, a hidden LSTM layer, and an output layer. However,
this architecture can be extended to deeper LSTMs, where
multiple hidden LSTM layers are stacked on top of each
other [13]. This is done by taking the output of each LSTM
cell and using them as the input of the cell at the corre-
sponding location in the next LSTM layer.

The LSTM [14] network uses a memory unit to replace
the basic unit in the hidden layer of the RNN. There are three
gates in the memory unit of the LSTM network, including
the input gate, the output gate, and the forget gate. Since IoT
device behavior information is collected and recorded in
chronological order and has temporal characteristics, LSTM
can be applied to IoT device behavior analysis scenarios.

3. System Design

3.1. System Overview. Due to the limited computing and
storage resources of IoT devices, it is difficult to install
monitoring software on real IoT devices to obtain the in-
ternal behavior state of the device, thereby performing se-
curity state detection and defense. To solve this problem, we
have proposed IoT-DeepSense, a behavioral security de-
tection architecture and system for IoT devices based on
firmware virtualization and deep learning. Using the firm-
ware virtualization technology, we simulate the real oper-
ating environment for each real Internet of things device and
then collect the complex security behaviors inside the In-
ternet of Things devices and generate device behavior logs.
Through abnormal detection and analysis of the device
behavior logs, we can realize the behavioral security de-
tection and defense of Internet of Things devices.

The overall architecture of IoT-DeepSense is shown in
Figure 1. The architecture includes a device behavior col-
lection module, an abnormal behavior detection module,
and an abnormal behavior analysis and risk mitigation
module. The device behavior collection module simulates
the real operating environment of the IoT device based on
the firmware virtualization technology, then collects the
fine-grained complex security behaviors inside the IoT de-
vice, and generates device behavior logs. The abnormal
behavior detection module performs abnormal behavior

Security and Communication Networks

Device Behavior Collection

Abnormal Behavior Detection

Logs
Virtualization Behavior Preprocessin
Device Collection P 8
Device Firmware
Virtual Security | 0 (e Log Parsing
Function l

Behavior Analysis and Risk Mitigation

Abnormal Model Training

Behavior

Risk Mitigation [+,

Behavior
Analysis

!

Abnormal Detection

FIGURE 1: System architecture of IoT-DeepSense.

detection on the device behavior log based on deep learning
technology and sends the detected abnormal behavior to the
behavior analysis and risk mitigation module. The behavior
analysis and risk mitigation module analyze the abnormal
behavior and propose risk mitigation policies.

3.1.1. Device Behavior Collection Module. This module
contains two sub-modules, the virtualization device module
and the behavior collection module. (1) Virtualization device
module: the virtualization device module uses HTTP or FTP
to download the firmware image of the IoT device from the
IoT device supplier support website and then uses the
firmware virtualization technology to generate the IoT
virtual device based on the firmware image, thereby simu-
lating the real operating environment of IoT devices. (2)
Behavior collection module: the behavior collection module
obtains the complex security behavior and states inside the
IoT virtual device in real time through the device log be-
havior collection script, including a timestamp, process
number, process name, system call name, and system call
input value and return value (if any), environment variables,
and other information. Then, the module records the system
behavior in the device behavior log file and sends the device
behavior log to the abnormal behavior detection module.

3.1.2. Abnormal Behavior Detection Module. This module
performs abnormal behavior detection on device behavior
logs based on deep learning. This module includes pre-
processing module, log parsing module, model training
module, and abnormal detection module. (1) Preprocessing
module: the preprocessing module is responsible for data
cleaning and the deduplication operations of device be-
havior logs. (2) Log parsing module: the log parsing module
is responsible for converting unstructured device behavior
logs into structured device behavior logs, then further
extracting meaningful information, and finally generating
system behavior event sequences. (3) Model training
module: the model training models the system behavior
event sequence based on the long- and short-term memory
(LSTM) model. (4) Abnormal detection module: for the

newly collected unknown system behavior, it will be con-
verted into a sequence of system behavior events through a
preprocessing and log parsing module and then predicted
using a deep learning model.

3.1.3. Behavior Analysis and Risk Mitigation Module. The
module analyzes abnormal behavior to obtain fine-grained
abnormal behavior information, such as abnormal file op-
erations and abnormal executable files. The risk mitigation
module implements risk mitigation policies including device
isolation, traffic filtering, and user notification, which ef-
fectively mitigate the security risks brought by abnormal
behaviors.

3.2. Dynamic Behavior Collection. Based on firmware vir-
tualization, we have designed a scheme for capturing the
dynamic behavior of IoT devices as shown in Figure 2. The
purpose of the solution is to collect the system behavior
generated during the operation of the IoT system, and hence,
we virtualize an IoT virtual device for each IoT real device
and simulate the real operating environment of the IoT
device, and then, we track and record the security behavior
and states generated in the simulated IoT operating envi-
ronment. The collected behavior log file contains the system
behavior in chronological order: each line includes a
timestamp, process number, process name, system call
name, system call input value and return value (if any), and
other information such as environment variables. The
chronologically recorded system behavior information al-
lows us to construct various feature vectors to characterize
the behavior of IoT devices with different accuracy.

3.2.1. Virtualization Device Based on Firmware. The system
virtualizes an IoT virtual device for each IoT real device and
then simulates the real operating environment of the IoT
device. We collect complex system behaviors and states
inside IoT devices in the real operating environment of the
Internet of things and generate system behavior logs from
the system behaviors and states. The virtualization device is

Security and Communication Networks

. Binwalk i i Mips
Fitmware File Arch}t'ectl}re p Simulation
System Identification Arm
A
Behavi .
cravior Virtual Device Virtual Device Behavior
Collection | Logs
Scripts n 8
A QEMU 4
v
Tap
Host O TCP/IP Stack
I L , NIC
Bridge

FIGURE 2: Dynamic behavior capture of IoT devices.

based on FIRMADYNE. FIRMADYNE is an automated
dynamic analysis system for Linux-based IoT firmware. In
QEMU system mode, hardware support for [oT firmware is
added to implement full-system simulation to provide
support for popular ARM and MIPS architectures in IoT
device firmware. The process of virtualized equipment is
mainly divided into four steps.

(1) Download the firmware image. A Web crawler is
used to download the firmware image of the target
device from the IoT provider website. For dynamic
websites that are difficult to automatically crawl, the
vendor’s FTP website is used. For the collected files,
we use Binwalk to check the format of non-firmware
files for file filtering. Binwalk is a well-known
firmware decompression tool that can extract vari-
ous data from binary through pattern matching.

(2) Extract the file system. A custom file extraction
program is built based on the API of the firmware
extraction tool Binwalk, which is used to extract the
kernel and root file system. Then, the extracted file
system and kernel are compressed into TAR pack-
ages and stored for standardization and normali-
zation operations.

(3) Device architecture identification. After extracting
the root file system from the firmware image, the
system recognizes the architecture and endianness of
the target device. Currently, firmware virtualization
supports emulating ARM little-endian platforms,
MIPS big-endian platforms, and little-endian plat-
forms. For each firmware image, the QEMU system
emulator uses the modified kernel that matches its
corresponding architecture to guide the file system
extracted in the second step.

(4) Simulation. In the simulation phase, the modified
kernel tracks and records system calls to the file
system, network, and other related kernel subsys-
tems to infer the device system and network

configuration. After collecting the information, this
information is fed back to our simulation framework
to develop a more accurate QEMU configuration for
the system. Finally, the system configures the
matching network environment to communicate
with the simulation firmware.

When configuring the IoT virtual device network, the
network TAP device on the host is first instantiated, which is
associated with one of the analog network interfaces (such as
eth0) in the firmware. For firmware mirroring that uses
VLANS, we assign the corresponding VLAN ID to the TAP
interface to successfully communicate with the simulated
network service. Next, the TAP interface is configured with
an IP address that is on the same subnet as the IP address
assigned by the firmware to the emulated interface.

This network configuration limits the network functions
of ToT virtual devices and prevents them from accessing
external networks. Although it can successfully implement
automatic dynamic analysis and vulnerability detection of
embedded firmware, it cannot make the IoT virtual device
perform monitoring tasks. To solve this problem, we add
bridges and routes to the IoT virtual device network con-
figuration, so that the IoT virtual device can access
the external network. First, a virtual bridge is instantiated on
the host. An interface of the virtual bridge is connected to
the host’s network card (ens33). The host network card serves
as one end of the bridge and connects to the external network.
The other interface of the bridge is connected to the TAP
device. The TAP device serves as the interface at the other end
of the bridge and connects to the network interface of the
virtual device of the Internet of things, thereby realizing the
connection of the two networks at both ends of the bridge. The
IP address of the IoT virtual device is modified to correspond
to the IP of the real IoT device, and a default route is added.

3.2.2. System Behavior Collection. Virtual IoT devices based
on firmware virtualization simulation are all based on Linux.

The system call is an interface provided by the Linux kernel.
In IoT devices, the function of system calls mainly includes
network communication, creation of new processes, I/O
operations, and file operations. Malicious IoT devices and
trusted IoT devices have different system behaviors, such as
malicious devices requesting more permission to frequently
access sensitive resources or frequent I/O operations,
resulting in different system call frequencies. In addition,
because the system behavior of an IoT device usually in-
volves multiple system calls in sequence, a single system call
cannot be considered independent. The system call sequence
reveals the dynamic behavior of the application, and dif-
ferent system call sequences reflect different behaviors.
Therefore, the process information and the frequency, se-
quence, and parameters of system calls during the operation
of the IoT virtual device can all characterize its dynamic
behavior. The following introduces the four types of dy-
namic characteristics of process information and system call
frequency, sequence, and parameters in detail.

(1) Process Information. When the Internet of things device
is running, the process information inside the system will
reflect the system-related behavior information. For ex-
ample, when the IoT device becomes the Bot host controlled
by the Mirai botnet, the IoT device will have an additional
malicious process during its operation (e.g., mirai.mips,
where mips indicates that the IoT device is based on a MIPS
architecture). The process communicates with the C&C
server and operates according to malicious commands
issued by the server. Therefore, whether the IoT device is
attacked by malware can be detected through the process
information. This shows that process information can be
used as an important feature of behavior detection.

(2) System Call Frequency. The system call frequency rep-
resents the number of occurrences of each type of system call
when the Internet of things device runs within a specific
time. The frequency of system calls that occur during the
execution of the Internet of things system carries infor-
mation about related behaviors. When an IoT device is
maliciously attacked, the device may use some specific
system calls more frequently than normal. For example,
under DDoS attacks, system calls related to I/O operations
made by IoT devices may be much more frequent than
normal. This indicates that the increased frequency of system
calls may be a sign of malicious behavior.

(3) System Call Sequence. The system call sequence describes
the local time relationship between system calls within a
limited time range. System calls are fine-grained operating
system information. The system call sequence reflects the
execution path of the Internet of things device during op-
eration. Different system call sequences reflect different
behaviors. Because the functions of IoT devices are relatively
fixed and single, the system call sequence has a certain
regularity. For example, Table 1 shows the system call se-
quence information generated by the execution flow of
motion [15]. Motion is a highly configurable program for
monitoring video signals from multiple types of cameras.

Security and Communication Networks

The main loop consists of a series of blocks. Each cycle
begins with the camera capturing image frames. When
motion is detected, the current motion frame is saved to the
file system. Then, the application also independently saves
snapshots at regular intervals (e.g., every 5 seconds). The two
modules, save motion frame and save snapshot, use the same
program flow to save the image to a file, thereby generating
the same system call sequence as shown in the table.
After that, some predefined functions (e.g., waiting for
the camera client to connect) may trigger external programs.
This main loop repeats at the specified frame rate (e.g., 3
frames per second). Depending on the function, some blocks
may not be executed in every cycle. When the system is
maliciously attacked, it will destroy the original regular
system call sequence. Therefore, the system call sequence can
be used to extract features for malicious behavior detection.

(4) System Call Parameters. Some abnormal behaviors of IoT
devices are not directly reflected in the execution path of the
device, but in the form of abnormal parameters. For ex-
ample, the attacker forged a small piece of code to make the
system call sequence the same as the normal system call
sequence [16], but by modifying the file path parameters,
the device information was leaked. As shown in Table 2,
the current motion frame is leaked to the desired location in
the file system, while the generated system call sequence still
looks legitimate. We only modify the location of the saved
file (FilePath =“/path/to/Ideal location for attackers”),
which makes the motion frame data leaked. Since the code
blocks we added to use the same program routines as the
“Save Motion Frame” and “Save Snapshot” code blocks, the
system call sequence patterns generated by these three code
blocks are the same. At the same time, the cross-block
conversion does not generate a new pattern. If only one legal
block is executed (save motion frames), the resulting se-
quence is still legal, because the inserted block (leaked
motion frame) looks like another unexecuted block (save
snapshot). The only way the system call sequence can detect
such malicious execution is to learn the time relationship
between two legal blocks through a pattern long enough.
However, since the image size may vary greatly, this de-
tection method is highly unlikely. Therefore, we need to
obtain the specific location of the read-write file and the file
name and other information from the system call param-
eters, to accurately detect abnormal behavior of the Internet
of things.

Besides the above four types of dynamic characteristics
including process information and system call frequency,
sequence, and parameters, other hidden behavior features of
IoT systems need to be mined to achieve more accurate IoT
behavior security detection. The method for obtaining fine-
grained system behavior information executed by the IoT
virtual device in firmware is as follows.

When IoT virtual devices use QEMU for software
simulation, to realize full software simulation, a custom pre-
built kernel for ARM and MIPS architecture is used to
replace the kernel extracted from the firmware image.
During the custom pre-built kernel compilation process, an
analysis module was added to the custom Linux kernel

Security and Communication Networks

TaBLE 1: System call sequence.

Time Function System call sequence
T1 Get time gettimeofday—gettimeofday
T2 Get frame (ioctl)—rt sigprocmask—ioctl-ioctl-rt sigprocmask
T3 Get sport frame open—fstaté4—mmap2—write— . .. —write—close—-munmap—clone—write
T4 Save snapshot open—fstat64—mmap2—write— ... —write—close-munmap—clone—write unlink—symlink
T5 Wait for connection Select (accept—ioctl-write)—(write-munmap—close)—(mmap2—gettimeofday)
T6 Frame rate control gettimeofday—(nanosleep)
TaBLE 2: Image leakage under the same system call sequence.
Time Function System call sequence
T1 Save sport frame open—fstaté4—mmap2-write— ... —write—close-munmap—clone—write
T2 Leak sport frame open—fstaté4—mmap2—write— ... —write—close-munmap—clone—write
T3 Save snapshot open—fstat64—mmap2-write— ... —write—close-munmap—clone—write

module, which uses the kernel dynamic probe (kprobes)
framework to track multiple system calls, thereby helping to
debug and simulate the original IoT system environment.
Operations such as assigning MAC addresses, creating
bridges, restarting the system, and executing programs are
all monitored by the firmware virtualization framework to
properly configure the simulated network environment.

Since the modified kernel can intercept system calls to
the file system, network, and other related kernel subsys-
tems, we can obtain the system call information of all
processes executed in the firmware by setting the relevant
mask of the kernel system call parameters.

By setting the corresponding bits for these system calls,
each time the system is called, the system records the in-
formation about the system calls in the system behavior log.
We can set the corresponding bit in the firmadyne.syscall
parameter at startup to transfer information so that the IoT
virtual device outputs the system behavior during the system
operation and records it in the system behavior log file. The
IoT dynamic behavior capture solution saves the collected
IoT system behavior records into behavior log files, which
contain chronological system behavior. Each line entry is a
system behavior, including a timestamp, process number,
process name, system call name, system call input, return
value (if any), environment variables, and other information.
Recording system behavior information in chronological
order enables us to construct various complex features,
characterize various behaviors of IoT devices with different
precisions, and provide a basis for implementing abnormal
behavior detection.

3.3. Abnormal Behavior Detection. The fine-grained be-
havior logs of IoT devices record the system behavior of [oT
devices when they are running. Therefore, behavior logs are
one of the most valuable data sources for anomaly detection.
In addition, due to the complexity and a huge number of
behavior logs, manual detection of abnormal behavior be-
comes infeasible. The keyword matching method based on
explicit keywords (e.g., “Error”) and the regular expression
method based on structural features can only detect a single
abnormal behavior log, and it is difficult to detect most

behavior log anomalies. These anomalies can only be
inferred based on their behavior log sequence, which con-
tains multiple behavior logs that violate conventional rules.
Therefore, we need an automatic anomaly detection method
based on the system behavior log sequence.

As shown in Figure 3, we propose a deep learning-based
abnormal behavior detection scheme for real-time abnormal
detection of the behavior logs of the IoT system in this study.
The system behavior collected during the normal operation
of the Internet of things system has a certain periodicity and
stability. The solution is based on the system behavior logs
collected by the dynamic behavior capture module during
the normal operation of the IoT device, and the deep
learning method is used to learn the effective behavior
characteristics of the IoT system from a large number of fine-
grained system behaviors, thereby realizing the abnormal
behavior of the IoT real-time detection without any modi-
fication to the existing infrastructure.

The abnormal behavior detection scheme based on deep
learning mainly includes two stages, the training stage and
the detection stage. During the training phase, the system
preprocesses the IoT behavior log files to obtain the normal
system behavior execution flow. Then, through the log
parsing module, the unstructured behavior log is parsed into
a sequence of system behavior events. The system behavior
event sequence is used as the input of the abnormal behavior
detection model, which learns the complex features of the
system behavior event sequence and then constructs the
abnormal behavior detection model. In the real-time de-
tection phase, the system generates an IoT system behavior
log at that moment and then generates a new system be-
havior sequence through preprocessing. Through log anal-
ysis, the system behavior sequence is parsed into a system
behavior event sequence. Finally, the trained abnormal
behavior detection model is used to detect whether the
system behavior is normal. If it is detected as abnormal
behavior, the system behavior will be sent to the abnormal
behavior analysis module for further analysis.

3.3.1. Preprocessing and Log Parsing. To collect the data set,
we simulated the normal usage of IoT devices. Our data

Training Stage

I —
System
behavior

sequence

System behavior
event sequence

T1:log1
T2:log2
T3:log3
T4:log 4
T5:log 5
T6:log 6
T7:log 7

Logs

Logs
08 Parsing

Preprocessing

OOOO
OO
OOOG
OO

Security and Communication Networks

Detection Stage

—
System behavior System
event sequence behavior
Logs sequence
Parsing
LSTM f
Model Preprocessing
Behavior Logs
Analysis

FIGURE 3: Anomaly detection scheme based on deep learning.

collection method is as follows: firstly, the IoT device is
started and allowed to perform any initial configuration or
firmware update. Secondly, when the IoT device is in a stable
state, we interact with the device through smart applications.
We also provide some idle time for the device to commu-
nicate without user intervention. According to the activity of
the device, we captured tens of thousands of system be-
haviors from each device and recorded them in the system
behavior log file.

For the characteristics of the system behavior log col-
lected based on firmware virtualization in this study, we
preprepared it from the following aspects to improve the
efficiency of log analysis.

(1) System behavior cleaning. In the system behavior
log, many system behaviors only contain constant
strings, and there are no internal parameters. The
repeated occurrence of these system behaviors will
result in a large number of duplicate messages in the
system behavior log. Many system behavior log
messages will appear repeatedly at the same time. We
delete these types of system behaviors to reduce data
redundancy, thereby greatly improving the efficiency
of subsequent log parsing.

(2) Delete information related to firmware simulation.
During the simulation process of the IoT virtual
device, system behavior information related to the
device simulation process will appear in the behavior
log. This information can reflect the system behavior
of the device during the simulation, but it cannot
reflect the system behavior of the device during
operation. We delete the system behavior informa-
tion related to the equipment simulation process to
reduce the impact on the analysis of system opera-
tion behavior.

In general, the behavior log records the fine-grained
system behavior of the IoT device, and the current security
status information of the IoT device can be obtained by
analyzing the behavior log. System behavior log files are
unstructured text, which increases the difficulty of analyzing
system behavior. To realize automated system behavior
analysis, the system behavior log must be analyzed first, to

parse the original system behavior log data into a system
behavior event sequence. Therefore, we first structure the
unstructured system behavior log into several parts (e.g.,
date, time, and content), then extract meaningful infor-
mation from these parts, and finally generate a sequence of
system behavior events.

To achieve the goal of automated log analysis, academia
and industry have proposed many data-driven methods,
including frequent pattern mining (LogCluster [17]), iter-
ative partitioning (IPLoM [18]), layering clustering (LKE
[19]), longest common subsequence calculation (Spell [20]),
and parse tree (Drain [21]). These log analysis methods can
automatically generate common event templates based on
log data. Log parsing should make full use of the inherent
structure and characteristics of log messages to obtain good
parsing accuracy, instead of directly applying standard al-
gorithms such as clustering and frequent pattern mining
[22]. Among several parsing methods, Drain uses a fixed-
depth tree structure to represent log messages and effectively
extract event templates. This method uses the characteristics
of logs and performs well in many log parsing situations.

Due to the complex structure of the behavior log and rich
event templates, the above methods still cannot accurately
parse the behavior log, and considering the accuracy, ro-
bustness, and efficiency of several log analysis methods, we
further improved Drain to implement the system behavior
log analysis. The following describes the analysis steps in
detail.

During log parsing, an unstructured system behavior log
file containing free text log messages is used as input. The
unstructured system behavior logs we collected consist of a
constant part and a variable part. The constant section
displays the event template of the log message and remains
unchanged for each log event. The variable section shows the
parameters of the system during dynamic operation, which
may change between different events. For the characteristics
of the behavior log format, a regular expression function is
written to split the log message. We structure the behavior
log message into headers with Time, Syscall, PID, and
Content.

When the log message is parsed, a structured system
behavior log and a system behavior event template with

Security and Communication Networks

summary event counts are output. The content of structured
system behavior in the structured system behavior log file is
shown in Table 3. System behavior is structured to include
event ID, PID information, system calls, event templates,
event template-related event behavior list, and other system
behavior content. The content of the system behavior event
template file includes the event ID, the content of the event
template, and the number of occurrences of the event
template in the entire system behavior log file.

To distinguish each system behavior, we generate an
identifier EventID for each system behavior. We use UTF8 to
encode the important content of the structured system
behavior (PID name, system call, event template, and event
parameter list) and then use MD5 to encrypt the encoded
content into a string of 8-bit length, and finally, for each
encrypted character strings are mapped to one-to-one
decimal numbers as EventID of each system behavior.

The system processes the structured system behavior log
file to output the sequence of corresponding system behavior
events for each PID. As shown in Table 4, the sequence of
system behavior events executed by the process with PID 623
is 4, 5,6, 6,7,8,9, 10, 11, 12, 13, 14, and 15. Only three
system behavior event sequences are illustrated in the table,
and all system behaviors in the system behavior log are
similarly operated. Finally, the system behavior event se-
quence is processed, PID-related information is deleted, and
the system behavior event sequence is generated as shown in
Table 5. The system behavior event sequence represents a
collection of system behavior events executed by an IoT
system program, and the system uses it as an input of an
anomaly detection model.

3.3.2. Model Training. The log parsing process generates a
collection of system behaviors representing the execution of
IoT system programs. Once the system behavior log entries
are parsed into a sequence of system behavior events, the
sequence of system behavior events will reflect a specific
execution order execution path. Each data in this data set are
mapped to each system behavior one by one.

The collection S={sy, 53, $3, S, . .,5,,} is used to represent
the system behavior sequence data set, and s; represents the
system behavior at position i in the current system behavior
sequence. Obviously, s; is one of the #n possible system be-
haviors in the set S and is strongly dependent on the latest
system behavior collection that appeared before s;. There-
fore, we model anomaly detection in the system behavior
sequence as a multi-class behavior classification problem,
where each different system behavior defines a class. We
trained the anomaly detection model as a multi-class clas-
sifier in the latest context. The input is the historical record
of recent system behavior, and the output is the probability
distribution of n system behaviors in the system behavior set
S, indicating the probability that the next system behavior in
the sequence is s;€ S(i=1, 2,.. ., n).

Suppose t is the sequence ID of the next system behavior
to be displayed. The input used for classification is the
window w of the h most recent system behaviors, ie.,
W={S;_p» St—h+ 1> - - - St—2 St—1}, Where each s; in S is the system

9
TaBLE 3: Example of structured system behavior.
EventID 22
Syscall Sys socket
PID 372
PIDName snmpd
EventTemplate Family
ParameterList [“27,717,707]
TaBLE 4: PID and system behavior event sequence.
PID Event sequence
623 4,5,6,6,7,8,9,10,11,12,13,14,15
647 3,2,5,6,2,2,2,4
649 1,2,3,2,6,6,6,8,9,6,2,4,5,6,3

TaBLE 5: System behavior event sequence.
4566789101112131415
32562224
123266689624563

behavior contained in the system behavior set S. Due to the
repeatability of the system behavior, the same system be-
havior may appear several times in the window w.

The training phase relies on the system behavior gen-
erated by the normal execution of the IoT device system. For
each system behavior log sequence of length k in the training
data, the system update uses s;eS(i=1,2,..., n) as the
probability distribution of the next system behavior. For
example, suppose that a small amount of system behavior
logs generated by normal execution are parsed into a series
of system behavior events: {ss, sg, $11, $2, S26> S6> $3}. Assuming
that the window size h is 4, the input sequence and output
label pairs of the training model will be {s, sg, 511, 52 — 26}
{s8> S11> 525 S26 — Se}»> and {s11, S5, S26, S — 3}

The output of the training phase is the conditional
probability distribution P(s;=s; |<S;_pny 1+ Si— 25— 1>)
(for each system behavior, s; € S(i=1,2,. . .,n)). The detection
stage uses this model to predict and compare the predicted
system behavior with the actual system behavior.

Inspired by recent research, we found that the abnormal
behavior detection of the Internet of things in this study is
naturally applicable to the LSTM-RNN model. The system
behaviors generated by IoT devices can be organized in
chronological order. Our anomaly detection model based on
LSTM is shown in Figure 4, where the purpose and pa-
rameter settings of each layer are as follows.

(1) Input layer: after preprocessing and log analysis, the
normal system behavior will be converted into a
system behavior event sequence. We will use the
parsed normal system behavior event sequence as the
input layer data. Then, we group h consecutive
system behaviors to form a system behavior window.
Using the system behavior window, we can model
the temporal relationship of the behavior of adjacent
systems.

(2) LSTM layer: the input layer inputs system behavior
to the LSTM layer. In each step, system behavior is

10

Security and Communication Networks

! Input Layer |
| I
I 1
: Sl—h st—h+1 st—Z St—l :
] 1
e I e e !
| I
v A 4 A A
LSTM c LSTM c c LSTM c LSTM
Block Block [> ... — Block Block
h h h h
v v v v
FC FEC | FC FC
v v v v
Softmax Softmax | eeeees Softmax Softmax

FIGURE 4: Behavior detection model based on LSTM.

assigned to the LSTM unit. In a single-layer LSTM,
the output of the LSTM cell includes the cell state and
the hidden state, and the hidden state and the cell
state of the LSTM cell are transmitted to the next
LSTM cell. Taking 2-layer LSTM as an example, the
hidden state of each LSTM cell is also transferred to
the stacked lower LSTM cell as its input.

(3) FC layer: we have placed a hidden full-connection
(FC) layer between the LSTM layer and the softmax
layer, whose size is equal to the number of system
behavior categories.

(4) Softmax layer: we output the fully connected layer to
the softmax layer for standardization. The output of
the softmax layer is a probability distribution for
each system behavior, and the probability distribu-
tion indicates how likely each system behavior be-
comes the next system behavior.

The loss function in training is categorical cross-entropy.
The optimizer is Adam. In addition, the size of the epoch is
50. After training 50 epochs, the neural network converges.

3.3.3. Abnormal Behavior Detection. Our LSTM-based ab-
normal behavior detection model can learn the compre-
hensive and complex associations and patterns contained in
a series of system behaviors generated by the execution path of
the IoT virtual device system. In the process of abnormal be-
havior detection, we assume that the IoT virtual device is trusted,
the data and operating environment in the IoT virtual device are
ensured to be trusted and safe, and the system behavior collected
based on the IoT virtual device is also trusted, and the attacker
cannot carry out the attack and change the information of the
system. For example, Intel SGX [23] technology can be used to
provide data storage, data transmission, and run-time security
protection for IoT virtual devices.

In summary, our system can detect attacks that cause
abnormal behavior in the system’s behavior sequence, which
can lead to abnormal behavior in the system behavior log.
For example, a password blasting attack may perform Telnet
or SSH login operations for password verification multiple
times, which is reflected in the system behavior log. The
category system behavior will increase dramatically; for
example, malware will download malware on the Internet of
things device and gain control of IoT devices, which is re-
flected in the malware process in the device system. The
malware process will appear to delete files, change network
configuration, and other malicious operations, resulting in
abnormal system behavior sequences. For example, some
attacks will leave traces in the system behavior log. The
attack may cause the IoT system to stop working, so the
corresponding system behavior sequence ends early or
abnormal system behavior occurs.

To realize the real-time abnormality detection of the
system behavior of the IoT device, the system will collect the
system behavior regularly (in seconds). Then, preprocessing,
log analysis, and other processes are carried out, and finally,
the system behavior set at this stage is obtained. Behavior
SieS(i=1,2,. .., n) is normal or abnormal, w={s,_j,
St—h41> -+ St—2 S;_1}is sent to the LSTM-based abnormal
behavior detection model as its input, and finally the model
outputs the probability distribution of each system behavior:
P(s;=si|w) = {s1:p1, $2:P2>- - o> SpiP}-

This probability distribution describes the probability
that each system behavior from the system behavior set S
becomes the next system behavior when based on normal
IoT system behavior. In fact, S; may be multiple system
behaviors. For example, if the camera and the server are in
communication, the system behavior S; of the camera may
be “send video information to the server” or “receive con-
figuration information of the server.” In different behavioral
contexts, both are normal system behaviors.

Security and Communication Networks

The abnormal behavior detection model based on LSTM
can learn information about the behavior of multiple sys-
tems that can be the next system behavior in the model
training phase. In the detection phase, we sort them
according to the probability of the possible system behavior
Si, and if the value of system behavior is among the first p
candidate values, they are regarded as normal values.
Otherwise, the system behavior is marked as abnormal
execution, and then, the abnormal behavior is provided to
the abnormal behavior analysis and risk mitigation module
for subsequent analysis and other steps.

3.4. Behavior Analysis and Risk Mitigation. 10T attacks are
generally divided into multiple stages, and attacks at dif-
ferent stages will cause different device abnormal behavior.
When the behavior analysis module obtains the abnormal
behavior, it first obtains fine-grained abnormal behavior
content from the structured system behavior log file
according to the behavior event ID. According to the content
of abnormal behavior, different risk mitigation policies are
performed.

We propose a general risk mitigation method that is very
flexible in different situations. The key idea is that we design
a virtual security function for each real IoT device. This
virtual security function performs device monitoring tasks,
performs abnormal behavior detection, and manages the
communication between the IoT real device and the In-
ternet. This module is also responsible for generating and
enforcing restricted network access for connected devices.
Based on the analysis results of abnormal behavior, it blocks
malicious access in real time to reduce the risk of abnormal
behavior of the Internet of things. At the same time, the
virtual security function also has an isolation function,
which controls the access of IoT devices to other IoT devices
in the intranet, to prevent one device from being com-
promised and endangering other devices in the same net-
work segment. This can potentially prevent vulnerable IoT
devices from being maliciously triggered by accidental access
traffic while ensuring that the system can promptly warn
administrators of risks. We propose the following risk
mitigation policy, which aims to maintain as many IoT
device functions as possible while minimizing security risks.

3.4.1. Network Isolation. The goal of network isolation is to
prevent IoT devices with abnormal system behavior from
communicating with other devices. To this end, the virtual
security function divides the user’s network into two virtual
networks: an untrusted network and a trusted network.
When the IoT device is running, the behavior security de-
tection system will detect the behavior of the IoT device
system in real time. The required network isolation level is
determined based on the abnormal detection results. IoT
devices with normal system behavior have been placed in a
trusted network. IoT devices that have detected abnormal
behavior are placed in an untrusted network and are strictly
isolated from other devices.

According to the different risks caused by abnormal
device behavior, we have designed three different isolation

11

levels for IoT devices. (1) Strict isolation level: the IoT device
is not allowed to communicate with other IoT devices, and
the device does not have Internet access rights. (2) Limited
isolation level: this allows devices to communicate with
other devices in untrusted network coverage and a limited
set of remote targets on the Internet (e.g., cloud services
from vendors). (3) Trusted isolation level: this allows the
device to communicate with other devices in the trusted
network coverage and unrestricted Internet access. Network
isolation at the device level granularity ensures that when
threatened, any vulnerable device cannot infect other devices
in the trusted network. The virtual security function can
intercept the traffic in the network and ensure that it is
filtered according to the required isolation level.

3.4.2. Flow Filtering. 'The goal of traffic filtering is to prevent
attackers from communicating with vulnerable devices or
exposing data. Traffic filtering is performed by virtual se-
curity functions and can target specific protocols or end-
points to minimize the impact of the functions of the affected
devices.

3.4.3. User Notification. In some cases, network isolation
and traffic filtering are insufficient to provide adequate
protection. For example, if the IoT device has been attacked
by malware, the malware prevents the device from auto-
matically restarting the device to delete the malware in
memory. In this case, the effective measure to protect the
security of IoT devices is to manually restart or delete the
devices at risk. Therefore, the purpose of the user notification
is to help the user identify the problematic device, then warn
the user that there is a device that cannot overcome the
security vulnerability, and ensure that the user restarts or
deletes it.

4. Implementation and Evaluation

4.1. Implementation. We evaluate the performance of IoT-
DeepSense using the physical machine with an Intel i7-6700
CPU. The machine has 8 GB of memory, 500 G of hard disk,
and runs Ubuntu 16.04.

We build a firmware virtualization environment based
on FIRMADYNE. We have successfully conducted device
simulations and tested multiple firmware versions of
NETHEAR WNAP320, WNDAP350, WNDAP360, and
WNAP210 series devices. The behavior detection model of
IoT-DeepSense is implemented based on PyTorch.

4.2. Data Set. We simulate a normal and several attacked
IoT environment, capture the system behaviors separately,
and then use the collected system behaviors as the data set of
the following experiment. The types of attacks we simulate
mainly include IoT malware (Mirai and BrickerBot), DDoS
(TEN), and password cracking (Hydra). Mirai is a classic
DDoS attack, and BrickerBot is a permanent denial-of-
service attack. TEN is an open-source DDoS tool that can
perform various DDoS attacks, such as ICMP flooding, SYN

12 Security and Communication Networks
TABLE 6: System behaviors in our data set.

Type Normal Mirai BrickerBot Hydra TFN Total

Number of system behaviors 42600 4830 4800 2722 1756 56708

Data size 29M 350K 347K 200K 128 K 3.9M

flooding, UDP flooding, and Smurf attacks. Hydra is an
open-source tool for brute force password cracking that
provides options for attacking login names of various
protocols. Table 6 shows the type and the corresponding
number of system behaviors in our data set.

4.3. Functional Evaluation

4.3.1. Behavior Collection. To test the effectiveness of the IoT
behavior capture solution, we successfully performed device
simulation based on multiple firmware versions of NET-
GEAR WNAP320, WNDAP350, WNDAP360, and
WNAP210 series devices. According to the activity of the
device, we collect the system behavior generated by each IoT
virtual device running normally for 10 days. Then, we
conduct an IoT attack on each device and collect the ab-
normal system behavior generated by each IoT virtual device
under different types of attacks. The system behavior of each
IoT virtual device is recorded in the corresponding system
behavior log file.

Table 6 shows the system behavior information of the
IoT virtual device captured by the behavior capture scheme.
We successfully captured the system behavior of the device
in a normal scenario with a data size of 2.9 M and a number
of 42,600. In addition, we successfully captured different
abnormal system behavior in different attack scenarios. It is
found that the information contained in the fine-grained
system behavior logs is very rich. For example, in the Mirai
attack scenario, the system behavior log details that BusyBox
executes a file transfer instruction to download the malware
(mirai.mips) to the IoT device, then set file permissions on
the malware, and finally run the malware. After the malware
is successfully executed on the IoT device, the mirai.mips
process is generated, so the mirai.mips process and its
corresponding process operations appear in the system
behavior log. In the scenario of the BrickerBot attack, the
system behavior logs recorded in detail the BusyBox process
executing a series of commands to destroy the device.

It can be seen from this that our system behavior capture
scheme successfully captures the system’s fine-grained be-
havior, and these fine-grained system behaviors can reflect
the state of the system. The system behavior collected by the
system behavior capture scheme is used as the data set of the
abnormal behavior detection scheme. The data set contains
the normal system behavior of each device of about 40,000
and the abnormal system behavior of about 15,000. The
training set of the model includes all normal system behavior
(approximately 24,000), and the validation set and test set
contain normal system behavior (approximately 8,000) and
abnormal system behavior (approximately 75,00). In addi-
tion to some basic system behavior characteristics (e.g., the
number of system behaviors, number of system calls, PID,

and parameters), there are some hidden characteristics (e.g.,
the timing characteristics of system behavior) in the system
behavior data set. To learn this rich feature information, we
model the system behavior based on deep learning to per-
form abnormal detection.

4.3.2. Abnormal Behavior Detection. Abnormal behavior
detection is a binary classification problem. We label the
classification results as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). TP is the
abnormal system behavior accurately determined by the
abnormal behavior detection model. TN is accurately de-
termined normal system behavior. If the method determines
a certain system behavior as abnormal, but the system be-
havior is normal, we mark the result as FP. If this method
determines a certain system behavior as normal, but the
system behavior is abnormal, we mark the result as FN.

In addition to the number of FP and FN, the ability of the
classification method is usually evaluated by standard in-
dicators such as precision, recall, and F1 score.

Precision represents the percentage of true abnormal
behavior among all detected abnormal behaviors. The cal-
culation method is as follows:

TP

' 1
TP + FP ()

precision =
Recall represents the percentage of abnormal behavior in
the detected system behavior:
TP
= —— 2
T TP AN @)
The F1 score value is the harmonic average of precision
and recall:

2 % precision * recall
F1=

(3)

precision + recall

(1) Effect of the Value of h. We first test the window value h of
different sizes, that is, the effect of system behavior sequence
length on the classification results. We record the classifi-
cation performance of IoT behavior anomaly detection
classification models under different window sizes. The test
results are shown in Figure 5(a). When the window size is 6,
the anomaly detection classification model has a good
classification effect compared with the models with other
window sizes, with a high recall rate of 93.2%, a precision of
90.9%, and an F1 score of 92.03%. When the length of the
system behavior sequence is too short, the sequence cannot
cover all the characteristics of malicious behavior and
normal behavior. When the system behavior sequence is
very long, the deep learning network cannot store more
information.

Security and Communication Networks

13

09F - o B
0.8 + 5 . 4
L [X 1 = 9%7r i]
=) =) o 06F]
2 07} : : : : : B 2 07 ¢ 1 2 05F b
B ; ; ; ; ; g S 04} y
= 06} R R IRRE R = 06} 1 = sl i
05F- - : : : : ce 05 .
ol ol
3 4 5 6 7 8 9 8 9 10 11 12 13 14 Precision Recall F1 Score
The Value of h The Value of p
Il SVM 1 M
—a — Precision —& — Precision I Pca B LsT™M
- m— Recall -m— Recall
—e— F1 —e— F1
(a) (b) (c)
20 1000 10
900 + 9+ E
2 SN 4 . 800 | 1 8t 1
2
= E 700 - - 7L A
B12f g 600 - 1 3 6t 1
= = L | by L]
- : : : ; : 5 50 % 5
L B B B B B B i 1 - 4 3 L o
g 8 £ 400 2 4
£ : : . : : % 300 + R 3+ E
4t . 4 . . . 2 200 F . 2t g
: ’ : : : 100 + : B 1F E
0 i i i i i () 1 1 1 1 0
100KB 200KB 500KB 1MB 1.5MB 2MB 3MB 0 120 240 360 480 600 20 40 60 80 100
Log Size Number of System Behaviour Time (s)
3 CPU
[1 Memory

(d)

(e)

®

FIGURE 5: Performance test result. (a) Effect of the value of h. (b) Effect of the value of p. (c) Comparison with other algorithms. (d) Time cost
of log parsing. (e) Time cost of behavior detection. (f) The consumption of CPU and memory.

(2) Effect of the Value of p. In the process of abnormal
behavior detection, the next system behavior after the
predicted window w is sorted according to the probability
from large to small. If the system behavior is among the first
p system behaviors, it is regarded as a normal value. Oth-
erwise, the system behavior is regarded as abnormal
behavior.

It is worth noting that many factors need to be considered
when setting the candidate value p. If the candidate value p is
set too large, some abnormal behavior information will be
ignored, which may bring hidden dangers to the security of
future IoT devices. If the candidate p is set too small, the
normal system behavior may be judged as abnormal behavior
information, which will interfere with abnormal detection. To
test the influence of the candidate value p, we recorded the
model anomaly detection results in the case of different
candidate values p. The result is shown in Figure 5(b). When
p = 10, the overall model has a great classification effect with a
precision of 91.0%, F1 score of 90.5%, and recall rate of 90.1%,
so we choose the value 10 as the size of the candidate value p.

(3) Comparison with Other Algorithms. Through the above
analysis of the influence of the window size h and the in-
fluence of the candidate value p, we determined that we
chose h=6 and p = 10 as the parameters of our abnormal

behavior detection model. In addition, we also determined
that when the hidden layer is 3 layers, compared with other
hidden layers, LSTM has the best performance. We compare
LSTM with some representative log-based anomaly detection
works, using support vector machine (SVM), principal
component analysis (PCA), and invariant mining (IM). All
these algorithms can be used to implement log-based anomaly
detection and perform well. Figure 5(c) shows the comparison
results of these four algorithms in terms of precision, recall,
and F1 score. The results show that when the LSTM algorithm
performs system behavior classification, the F1 value reaches
92%, which has a good classification effect.

This is because LSTM considers the sequence information
of the system behavior sequence, and the other algorithms
cannot capture this important information. The abnormal
system behavior data set may contain a small amount of
normal system behavior, which will affect the overall detec-
tion effect of the model, but in general, the abnormal behavior
detection model can play a better behavior detection effect.

4.4. Performance

4.4.1. Behavior Log Parsing Performance. To measure the
processing efficiency of behavior log parsing, we recorded

14

the running time required to complete the entire parsing
process. We parse system behavior log files of different sizes
and record the parsing time. The result is shown in
Figure 5(d), the system behavior resolution time increases as
the size of the system behavior log increases. There are about
1,500 system behavior records in the average 100 kB system
behavior log. The average 100 kB file, that is, 1,500 system
behavior parsing, takes 0.5 seconds. It can be seen that the
parsing time of the system behavior log is basically
negligible.

In the training phase of the abnormal behavior detection
model, a large amount of normal system behavior needs to
be collected for training, so a large amount of normal system
behavior needs to be analyzed. In our experiments, we
collected system behavior logs generated by each device
running normally for 1 hour for training. The system be-
havior log size is about 3 MB, the system behavior is about
40,000, and it takes about 17s of parsing time. The time
consumed by this process is completed before the model
training. When the model training is successful, real-time
detection of system behavior will not require such a large
number of system behavior logs to be parsed. Therefore, the
performance of parsing behavior logs is basically negligible.

4.4.2. Behavior Detection Performance. After the system
behavior log is prepared and parsed, we perform model
training on the system behavior event sequence, the window
size is 6, the predetermined value p is 10, and the number of
hidden layers is 3 to train the model. The time consumption
of model training is about 3,101 s. After the deep learning-
based abnormal behavior detection model is trained, the
system performs real-time detection on the IoT system
behavior based on the model. The efficiency of detection is
an important indicator of the detection effect, which reflects
the time spent in detecting abnormal system behavior. Since
the Internet of things is a system that requires timeliness, we
do not want the abnormal behavior detection system to
cause excessive time consumption in the detection process,
thereby affecting the experience of using IoT devices.

To test the time consumption of the system in the process
of detecting abnormal behavior, we recorded the time it took
to detect different amounts of system behavior. Figure 5(e)
shows the time used for abnormal behavior detection under
different system behaviors. The results show that the time of
abnormal behavior detection increases with the increase in
the number of system behaviors, but the average detection
time per 100 system behaviors is about 150 ms, which is
within the acceptable range.

4.4.3. CPU and Memory Resource Consumption. We build
virtual security functions for each device on the IoT behavior
detection server. This virtual security function needs to
perform behavior capture, anomaly detection, risk mitiga-
tion, and other functions during operation, so it needs to
occupy a certain amount of CPU and memory resources for
calculation. Figure 5(f) shows the amount of CPU and
memory resources used during the abnormal behavior de-
tection process of the virtual security function running

Security and Communication Networks

stably for 100 seconds. The results in the figure show that the
virtual security function takes up an average of 6.2% of CPU
resources and an average of 5.1% of memory resources,
which are within the acceptable range.

5. Related Work

5.1. IoT Behavior Security. Although the Internet of things
has great potential, it also faces many security challenges
[24]. Unfortunately, the security and privacy risks of IoT
devices have not received enough attention. Due to a large
number of IoT devices and a lack of defense capabilities, they
are very attractive targets [25]. For example, IoT devices are
used as robots to launch DDoS or spam, smart meters are
attacked to reduce utility bills, and handheld scanners are
hacked to enter logistic companies.

Most previous research on IoT security and privacy has
focused on the use of firewalls [26], intrusion detection [27],
access control strategies [28-30], and software patches [31]
to protect the IoT infrastructure from attacks. These measures
cannot guarantee the behavior security of IoT devices. For
example, firewall rules can hardly guarantee that the door is
locked when the user is not at home. In addition, the analysis of
IoT devices and environments focuses on ensuring the security
of IoT applications by analyzing source code. For example,
some systems [32] infer the context of the application through
run-time prompts to enforce permissions based on that
context or require the user to authorize through the interface
[33], while other systems apply static models to check for
violations. Unfortunately, the current dynamic method is not
enough to identify violations, while the static method [34] lacks
accuracy and only implements limited strategies.

At present, there has been a lot of research on the be-
havior security of the Internet of things. HoMonit [35] is
used for detecting abnormal behavior on the smart home
platform, using side-channel information leakage in the
wireless communication channel (packet size and packet
interval) to infer the type of communication events between
the smart device and the hub and then compare the inferred
sequence of events with the expected program logic to
identify inappropriate behavior without any modification to
the existing infrastructure. IoTMon [36] is an IoT device
physical interaction control system that can discover any
possible physical interaction and generate all potential in-
teraction chains across applications in the IoT environment.
IoTMon also evaluates and mitigates the security risks of each
discovered interaction chain between applications based on
its physical influence. FlowFence [37] uses the taint tracking
technology to track the information flow of sensitive data in
the Internet of things applications, to ensure that the au-
thorized users can use the data safely and legally to prevent the
leakage of sensitive information. MCshield [38] is a DDoS
defense framework. This framework deploys multiple smart
filters at the edge of the attack source/target network to filter
malicious traffic by learning DDoS behavior.

5.2. Firmware Virtualization. Avatar [39] is a framework
that supports dynamic security analysis of embedded system

Security and Communication Networks

firmware. The framework performs dynamic analysis by
running firmware on actual hardware. Although this method
is very accurate, it has significant problems. Firstly, Avatar
must obtain the physical hardware of the device under test,
which puts a huge financial burden on developers. Secondly,
Avatar needs to manually identify and interact with the
debug port on the device interface, which reduces the
scalability of this technology, especially for consumer de-
vices that may not support hardware debugging. How to run
the firmware in a virtualized environment and analyze the
security of IoT devices is an important task. To solve this
problem, FIRMADYNE [40] proposed a complete system
simulation that relies on software, so as to realize the large-
scale and automated dynamic analysis of embedded firm-
ware binaries. FIRMADYNE solves the inherent challenges
of dynamic analysis of embedded systems, such as the
presence of hardware-specific peripherals, the use of non-
volatile memory, and the creation of dynamically generated
files. Costin [41] provides an extensible automated firmware
dynamic analysis framework, using pure software simulation
to find vulnerabilities in embedded devices. The framework
can test the firmware Web application security issues
through simulation. FIRM-AFL [42] is the first high-
throughput grey box fuzzer for IoT firmware. It proposes a
new technology for enhanced process simulation to solve the
performance bottleneck caused by QEMU system mode
simulation. P2IM [43] presents an abstract model for the I/O
behaviors of the processor-peripheral interfaces to enable
peripheral-oblivious emulation of MCU devices. uEMU [44]
builds a general model for each peripheral to learn how to
correctly emulate firmware execution at individual pe-
ripheral access points. It takes the image as input and
symbolically executes it by representing unknown peripheral
registers as symbols. During symbolic execution, it infers the
rules to respond to unknown peripheral accesses.
However, the existing research work on the behavior of
IoT devices focuses on the security detection of the network
behavior and application behavior of IoT devices, and there
is no comprehensive consideration of the behavior of IoT
devices at the system level. Due to limited resources, it is
difficult for IoT devices to obtain monitoring system-level
behavior by installing monitoring software. Firmware vir-
tualization technology can solve this problem. By simulating
the real operating environment of the firmware, the oper-
ating data and security status of the system layer inside the
device can be obtained, to perform system-wide security
status detection and defense and provide a new idea for
solving the problem of behavior security of the Internet of
things devices. However, the current work in this area is
mainly focused on the dynamic analysis and vulnerability
mining of IoT devices, failing to consider the behavioral
security detection of IoT devices. Therefore, we propose a
behavior security detection system for IoT devices based on
firmware virtualization and deep learning in this study.

5.3. Log-Based Anomaly Detection. Anomaly detection plays
an important role in the management of modern large
distributed systems. Logs that record system run-time

15

information are widely used for anomaly detection. Lang
et al. [45] used the SVM algorithm, a commonly used su-
pervised classification method, to build a failure prediction
model based on event logs. However, supervised methods
require lots of manual efforts to construct data and labels, so
unsupervised methods are more practical. Xu et al. [46]
proposed an unsupervised method for detecting anomalous
sequences of events using PCA, but PCA is data-sensitive so
the detection accuracy of PCA will vary on different data
sets. Lou et al. [47] converted log sequences into event count
vectors and then used IM to mine invariants within vectors.
The mined invariants would reflect the normal workflow of
the detected system. Then, they used these invariants to
detect anomalies in system logs. If the invariant relationship
of the log session did not hold, it would be judged as an
abnormal session.

6. Discussion and Future Work

This study designs and implements an IoT device behavior
safety detection system based on firmware virtualization and
deep learning. It implements IoT device behavior security
detection based on fine-grained real-time dynamic system
behavior, analyzes abnormal behavior, and proposes cor-
responding risk mitigation strategies. However, there are
limitations in the design of this article, and further research
and improvement are needed in future work.

(1) Due to the wide variety of IoT devices, firmware
virtualization technology only supports firmware
images that emulate fixed architectures (ARM and
MIPS) and fixed systems (Linux). Even if the firm-
ware image meets the appealing architecture and
system conditions, there may be problems with in-
complete image files and image encryption, resulting
in a considerable number of IoT devices that cannot
successfully simulate virtual IoT devices based on the
device firmware and thus cannot obtain the IoT
device’s fine-grained dynamic behavior. Hence,
firmware virtualization in a more in-depth way
should be studied to realize a more general simu-
lation method of the real operating environment of
IoT devices, to better simulate IoT virtual devices.

(2) There are many types of IoT attack methods, and
some attack types can achieve security detection and
defense through security tools such as intrusion
detection systems (e.g., Snort) and firewalls. System
behavior can be used as a supplement to network
behavior, thereby improving the framework for the
secure detection of IoT device behavior. We expect to
be combined with software-defined security in the
future to generate multiple virtual security functions
for each type of IoT device or each IoT device. The
virtual security function can be used to detect and
defend against a variety of IoT attacks against the
network layer, or it can be based on firmware
virtualization to simulate a real system environ-
ment to detect and defend against [oT system-level
attacks.

16

(3) For the training process of abnormal behavior model
based on deep learning, the training data set comes
from the system behavior collected when the IoT
device is initially connected to the network to
maintain stable operation. However, in the actual
environment, the system behavior of IoT devices may
change due to reasons such as firmware updates. This
change leads to the incompleteness of the previously
trained model. In future work, we will further im-
prove model accuracy and system performance.

7. Conclusion

In this study, we design and implement IoT-DeepSense, an
IoT device behavior security detection system based on
firmware virtualization and deep learning. Based on firm-
ware virtualization technology, we build the real operating
environment of the IoT system to capture the fine-grained
system behaviors, then conduct security detection of the IoT
device behaviors based on deep learning, analyze the ab-
normal behavior, and mitigate the risk according to the
detection results. The implementation of the entire system is
carried out on a separate IoT behavior detection server,
which does not require modification of IoT devices with
limited resources and is highly scalable. The evaluation
results show that our abnormal behavior detection model
has a good effect with an F1 score of 92%.

Data Availability

To test the effectiveness of the IoT behavior capture solution,
we successfully performed device simulation based on
multiple firmware versions of NETGEAR WNAP320,
WNDAP350, WNDAP360, and WNAP210 series devices.
According to the activity of the device, we collect the system
behavior generated by each IoT virtual device running
normally for 10 days. Then, we conduct an IoT attack on
each device and collect the abnormal system behavior
generated by each IoT virtual device under different types of
attacks. The system behavior of each IoT virtual device is
recorded in the corresponding system behavior log file.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 61872430 and in
part by the Hubei Key Research and Development Program
under Grant 2020BAA003 and the National Basic Research
Program of China (973 Program) under Grant
2014CB340600.

References

[1] L Lee and K. Lee, “The internet of things (iot): applications,
investments, and challenges for enterprises,” Business Hori-
zons, vol. 58, no. 4, pp. 431-440, 2015.

Security and Communication Networks

[2] G. Davis, “2020:Life with 50 billion connected devices,” in
Proceedings of the 2018 IEEE International Conference on
Consumer Electronics (ICCE), p. 1, Las Vegas, NV, USA, 2018.

[3] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an
analysis of security issues, challenges, and open problems in
the internet of things,” in Proceedings of the 2015 IEEE World
Congress on Services, pp. 21-28, IEEE, New York, NY, USA,
July 2015.

[4] B. Edge, “Hacking the human heart,” 2016, http://bigthink.
com/future-crimes/hacking-the-human-heart.

[5] Wikipedia, “Dyn cyberattack,” 2016,
securityintelligence.com/posts/internetof-threats-iot-
botnets-network-attacks/.

[6] D. McMillen, “Internet of threats: iot botnets drive surge in
network attacks,” 2021, https://www.euronews.com/2016/10/
22/what-we-know-about-the-dyn-cyber-attack.

[7] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of

iot new features on security and privacy: new threats, existing

solutions, and challenges yet to be solved,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 1606-1616, 2018.

F. Bellard, “Qemu, a fast and portable dynamic translator,”

USENIX Annual Technical Conference, FREENIX Track,

vol. 41, p. 46, 2005.

[9] M. van Gerven and S. Bohte, “Editorial: artificial neural
networks as models of neural information processing,”
Frontiers in Computational Neuroscience, vol. 11, p. 114,
2017.

[10] R. C. O’Reilly and M. J. Frank, “Making working memory
work: a computational model of learning in the prefrontal
cortex and basal ganglia,” Neural Computation, vol. 18, no. 2,
pp. 283-328, 2006.

[11] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and
S. Khudanpur, “Recurrent neural network based language
model,” in Proceedings of the Eleventh Annual Conference of
the International Speech Communication Association, Chiba,
Japan, September 2010.

[12] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and]. Schmidhuber,
“Kalman filters improve Istm network performance in
problems unsolvable by traditional recurrent nets,” Neural
Networks, vol. 16, no. 2, pp. 241-250, 2003.

[13] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 6645-6649, IEEE, USA, May 2013.

[14] K. Greff, R. k. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: a search space odyssey,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, pp. 2222-2232, 2016.

[15] Motion, “Motion,” 2019, https://motion-project.github.io/.

[16] M. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha,
“Learning execution contexts from system call distribution for
anomaly detection in smart embedded system,” in Proceedings
of the Second International Conference on Internet-of-Things
Design and Implementation, pp. 191-196, Pittsburgh, USA,
April 2017.

[17] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering
and pattern mining algorithm for event logs,” in Proceedings
of the 2015 11th International Conference on Network and
Service Management (CNSM), pp. 1-7, IEEE, Barcelona,
Spain, November 2015.

[18] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios,
“Clustering event logs using iterative partitioning,” in Pro-
ceedings of the 15th ACM SIGKDD International Conference

https://

[8

http://bigthink.com/future-crimes/hacking-the-human-heart
http://bigthink.com/future-crimes/hacking-the-human-heart
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://www.euronews.com/2016/10/22/what-we-know-about-the-dyn-cyber-attack
https://www.euronews.com/2016/10/22/what-we-know-about-the-dyn-cyber-attack
https://motion-project.github.io/

Security and Communication Networks

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

on Knowledge Discovery and Data Mining, pp. 1255-1264,
Paris, France, June 2009.

Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly de-
tection in distributed systems through unstructured log
analysis,” in Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, pp. 149-158, IEEE, Washington,
DC, USA, 2009.

M. Du and F. Li, “Spell: streaming parsing of system event
logs,” in Proceedings of the 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 859-864, IEEE,
Barcelona, Spain, December 2016.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: an online log
parsing approach with fixed depth tree,” in Proceedings of the
2017 IEEE International Conference on Web Services (ICWS),
pp- 33-40, IEEE, Honolulu, HI, USA, June 2017.

J. Zhu, S. He, J. Liu et al., “Tools and benchmarks for auto-
mated log parsing,” in Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 121-130, IEEE,
Montreal, QC, Canada, May 2019.

V. Costan and S. Devadas, “Intel sgx explained,” JACR
Cryptology ePrint Archive, vol. 2016, no. 86, 118 pages, 2016.
T.Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: rethinking
network security for the internet-of-things,” in Proceedings of
the 14th ACM Workshop on Hot Topics in Networks, pp. 1-7,
Philadelphia, PA, USA, November 2015.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
survey on internet of things: architecture, enabling technol-
ogies, security and privacy, and applications,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.

S. Kubler, K. Frimling, and A. Buda, “A standardized ap-
proach to deal with firewall and mobility policies in the iot,”
Pervasive and Mobile Computing, vol. 20, pp. 100-114, 2015.
B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and
S. C. de Alvarenga, “A survey of intrusion detection in in-
ternet of things,” Journal of Network and Computer Appli-
cations, vol. 84, pp. 25-37, 2017.

W. He, M. Golla, R. Padhi et al., “Rethinking access control
and authentication for the home internet of things (iot),” in
Proceedings of the 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 255-272, Baltimore, MD, USA,
August 2018.

S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and
provably secure three-factor authentication protocol based on
extended chaotic-maps for mobile lightweight devices,” IEEE
Transactions on Dependable and Secure Computing, vol. 2020,
Article ID 3022797, 1 page, 2020.

C. Wang, D. Wang, G. Xu, and D. He, “Efficient privacy-
preserving user authentication scheme with forward secrecy
for industry 4.0,” Science China Information Sciences, vol. 65,
no. 1, pp. 1-15, 2022.

O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai,
“Incentivized delivery network of iot software updates based
on trustless proof-of-distribution,” in Proceedings of the 2018
IEEE European Symposium on Security and Privacy Work-
shops (EuroSe&PW), pp. 29-39, IEEE, London, UK, April 2018.
Y. J. Jia, Q. A. Chen, S. Wang et al., “Contexlot: towards
providing contextual integrity to appified iot platforms,”
NDSS, vol. 2, no. 2, p. 2, 2017.

Y. Tian, N. Zhang, Y.-H. Lin et al., “Smartauth: user-centered
authorization for the internet of things,” in Proceedings of the
26th {USENIX} Security Symposium ({USENIX} Security 17),
pp- 361-378, Baltimore, MD, USA, 2017.

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

[46]

(47]

17

Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: automated iot
safety and security analysis,” in Proceedings of the 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
pp. 147-158, 2018.

W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“Homonit: monitoring smart home apps from encrypted
traffic,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1074-1088,
Toronto, ON, Canada, October 2018.

W. Ding and H. Hu, “On the safety of iot device physical
interaction control,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pp- 832-846, Toronto, ON, Canada, October 2018.

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: practical data protection for
emerging iot application frameworks,” in Proceedings of the
25th {USENIX} Security Symposium ({USENIX} Security 16),
pp- 531-548, Austin, TX, USA, August 2016.

N. Dao, T. V. Phan, J. Kim, T. Bauschert, S. Cho, and D. Do,
“Securing heterogeneous iot with intelligent ddos attack be-
havior learning,” IEEE Systems Journal, pp. 1-10, 2017.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Av-
atar: a framework to support dynamic security analysis of
embedded systems’ firmwares,” NDSS, vol. 14, pp. 1-16, 2014.
D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards
automated dynamic analysis for linux-based embedded
firmware,” NDSS, vol. 16, pp. 1-16, 2016.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic
firmware analysis at scale: a case study on embedded web
interfaces,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pp. 437-448,
Xi’an, China, June 2016.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“Firm-afl: high-throughput greybox fuzzing of iot firmware
via augmented process emulation,” in Proceedings of the 28th
{USENIX} Security Symposium ({USENIX} Security 19),
pp- 1099-1114, Santa Clara, CA, USA, August 2019.

B. Feng, A. Mera, and L. Lu, “P2im: scalable and hardware-
independent firmware testing via automatic peripheral in-
terface modeling,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20), pp. 1237-1254, USENIX
Association, Santa Clara, CA, USA, September 2020.

W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware
emulation through invalidity-guided knowledge inference,”
in Proceedings of the 30th USENIX Security Symposium
(USENIX Security 21), USENIX Association, Santa Clara, CA,
USA, November 2021.

Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure pre-
diction in ibm bluegene/l event logs,” in Proceedings of the
Seventh IEEE International Conference on Data Mining
(ICDM 2007), pp. 583-588, IEEE, Omaha, NE, USA, 2007.
W. Xu, L. Huang, A. Fox, D. Patterson, and M. 1. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pp. 117-132, Big Sky, MT, USA,
October 2009.

J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Ming invariants from
console logs for system problem detection,” in Proceedings of
the USENIX Annual Technical Conference, pp. 1-14, Boston,
MA, USA, June 2010.

Hindawi

Security and Communication Networks
Volume 2022, Article ID 1862888, 19 pages
https://doi.org/10.1155/2022/1862888

Review Article

WILEY | Q@) Hindawi

Machine Learning Techniques for Spam Detection in Email and
IoT Platforms: Analysis and Research Challenges

Naeem Ahmed ©®,' Rashid Amin ®,! Hamza Aldabbas,> Deepika Koundal,® Bader Alouffi,*

and Tariq Shah'

'Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan

2Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University,
Al-Salt, Jordan

*Department of Systemics, School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India

*Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia

Correspondence should be addressed to Rashid Amin; rashiddnw@gmail.com
Received 21 September 2021; Revised 1 November 2021; Accepted 30 November 2021; Published 3 February 2022
Academic Editor: Wenjia Li

Copyright © 2022 Naeem Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nowaday, emails are used in almost every field, from business to education. Emails have two subcategories, i.e., ham and spam.
Email spam, also called junk emails or unwanted emails, is a type of email that can be used to harm any user by wasting his/her
time, computing resources, and stealing valuable information. The ratio of spam emails is increasing rapidly day by day. Spam
detection and filtration are significant and enormous problems for email and IoT service providers nowadays. Among all the
techniques developed for detecting and preventing spam, filtering email is one of the most essential and prominent approaches.
Several machine learning and deep learning techniques have been used for this purpose, i.e., Naive Bayes, decision trees, neural
networks, and random forest. This paper surveys the machine learning techniques used for spam filtering techniques used in email
and IoT platforms by classifying them into suitable categories. A comprehensive comparison of these techniques is also made
based on accuracy, precision, recall, etc. In the end, comprehensive insights and future research directions are also discussed.

1. Introduction

In the era of information technology, information sharing
has become very easy and fast. Many platforms are available
for users to share information anywhere across the world.
Among all information sharing mediums, email is the
simplest, cheapest, and the most rapid method of infor-
mation sharing worldwide. But, due to their simplicity,
emails are vulnerable to different kinds of attacks, and the
most common and dangerous one is spam [1]. No one wants
to receive emails not related to their interest because they
waste receivers’ time and resources. Besides, these emails can
have malicious content hidden in the form of attachments or
URLs that may lead to the host system’s security breaches
[2]. Spam is any irrelevant and unwanted message or email
sent by the attacker to a significant number of recipients by
using emails or any other medium of information sharing

[3]. So, it requires an immense demand for the security of the
email system. Spam emails may carry viruses, rats, and
Trojans. Attackers mostly use this technique for luring users
towards online services. They may send spam emails that
contain attachments with the multiple-file extension, packed
URLs that lead the user to malicious and spamming websites
and end up with some sort of data or financial fraud and
identify theft [4, 5]. Many email providers allow their users
to make keywords base rules that automatically filter emails.
Still, this approach is not very useful because it is difficult,
and users do not want to customize their emails, due to
which spammers attack their email accounts.

In the last few decades, Internet of things (IoT) has
become a part of modern life and is growing rapidly. IoT has
become an essential component of smart cities. There are a
lot of IoT-based social media platforms and applications.
Due to the emergence of IoT, spamming problems are

mailto:rashid4nw@gmail.com
https://orcid.org/0000-0002-1850-5846
https://orcid.org/0000-0002-3143-689X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1862888

increasing at a high rate. The researchers proposed various
spam detection methods to detect and filter spam and
spammers. Mainly, the existing spam detection methods are
divided into two types: behaviour pattern-based approaches
and semantic pattern-based approaches. These approaches
have their limitations and drawbacks. There has been sig-
nificant growth in spam emails, along with the rise of the
Internet and communication around the globe [6]. Spams
are generated from any location of the world with the In-
ternet’s help by hiding the attacker’s identity. There are a
plenty of antispam tools and techniques, but the spam rate is
still very high. The most dangerous spams are malicious
emails containing links to malicious websites that can harm
the victim’s data. Spam emails can also slow down the server
response by filling up the memory or capacity of servers. To
accurately detect spam emails and avoid the rising email
spam issues, every organization carefully evaluates the
available tools to tackle spam in their environment. Some
famous mechanisms to identify and analyze the incoming
emails for spam detection are Whitelist/Blacklist [7], mail
header analysis, keyword checking, etc.

Social networking experts estimate that 40% of social
network accounts are used for spam [8]. The spammers use
popular social networking tools to target specific segments,
review pages, or fan pages to send hidden links in the text to
pornographic or other product sites designed to sell
something from fraudulent accounts. The noxious emails
that are sent to the same kind of individuals or associations
share regular highlights. By investigating these highlights,
one can improve the detection of these types of emails. By
utilizing artificial ntelligence (AI) [9], we can classify emails
into spam and nonspam emails. This solution is possible by
using feature extraction from the messages’ headers, subject,
and body. After extracting this data based on their nature, we
can group them into spam or ham. Today, learning-based
classifiers [10] are commonly used for spam detection. In
learning-based classification, the detection process assumes
that spam emails have a specific set of features that differ-
entiate them from legitimate emails [11]. Many factors in-
crease the complexity of the identification process of spam in
learning-based models. These factors include spam subjec-
tivity, idea drift, language problems, overhead processing,
and text latency.

One example of learning-based models is extreme
learning machine (ELM). This is a modern machine learning
model for the feedforward neural networks containing only
one hidden layer [12]. It eliminates slow training speed and
overfitting problems when compared with traditional neural
networks. In ELM, it requires only one cycle of iteration.
Because of better generalization potential, robustness, and
controllability, this algorithm specifically is now used in
many fields. In this paper, we consider different machine
learning algorithms for spam detection. Our contributions
are delineated as follows:

(i) The study discusses various machine learning-
based spam filters, their architecture, along with
their pros and cons. We also discussed the basic
features of spam email.

Security and Communication Networks

(ii) Some exciting research gaps were found in the
spam detection and filtering domain by conducting
a comprehensive survey of the proposed techniques
and spam’s nature.

(iii) Open research problems and future research di-
rections are discussed to enhance email security
and filtration of spam emails by using machine
learning methods.

(iv) Several challenges currently faced by spam filtering
models and the effects of those challenges on the
models’ efficiency are discussed in this study.

(v) A comprehensive comparison of machine learning
techniques and concepts that help understand
machine learning’s role in spam detection is
provided.

(vi) The study categorizes different spam detection
methods according to machine learning techniques
to better understand concepts jointly.

(vii) Various future spam detection and filtration di-
rections are discussed that could be explored to
detect spam better and add more security to email
platforms.

The rest of the paper is organized into nine sections.
Section 2 discusses the comparison of previous surveys that
were done on email spam detection. Section 3 discusses the
basics of email spam and its effects on the community.
Section 4 focuses on basic methods used for spam filtration.
Section 5 elaborates on the machine learning background,
while Section 6 provides an overview of machine learning
algorithms used for spam filtration. This section also reviews
various papers and proposed machine learning techniques
for spam filtration and detection. Section 7 presents the open
issues and research gaps, while Section 8 discusses challenges
of spam detection systems. At the end, Section 9 concludes
and presents the future directions of email spam detection
and filtration. Table 1 presents the list of acronyms used in
this article with corresponding definitions.

2. Comparison with Previous Surveys

Email spam is nothing more than fake or unwanted bulk
mails sent via any account or an automated system. Spam
emails are increasing day by day, and it has become a
common problem over the last decade. Email IDs receiving
spam emails are typically collected through spambots (a
computerized application that crawls email addresses across
the Internet). The applications of machine learning have
been playing a vital role in the detection of spam emails. It
has various models and techniques that researchers are using
to develop novel spam detection and filtering models [13].
Kaur and Verma [14] present a survey on email spam de-
tection using a supervised approach with feature selection.
They discuss the knowledge discovery process for spam
detection systems. They also elaborate various techniques
and tools proposed for spam detection. The choice of fea-
tures based on N-Gram is also addressed in this survey.
N-Gram [15, 16] is a predictive-based algorithm used to

Security and Communication Networks

TaBLE 1: A-list of acronyms used in this article with corresponding definitions.

Acronym Description
KNN K-nearest neighbors
NN Neural networks
SVM Support vector machine
MLP Multilayer perceptron neural network
ECML European conference of machine learning
Al Artificial intelligence
CART Classification and regression tree
TF/IDF Term frequency/inverse document frequency
PSO Particle swarm optimization
DTM Document term frequency
BOG Bag of words
ML Machine learning
NB Naive Bayes
NB tree Naive Bayes tree
LAD tree Logistic analysis of data tree
REP tree Reduced error pruning tree
University of California Irvine repository of
UcCl . .
machine learning databases
XML Extensible markable language
ID3 Iterative dichotomizer 3
SOM Self-organizing maps
DBSCAN Density—ba}sec! spatia'l clust.ering of
applications with noise
ELM Extreme learning machines
AD tree Alternating decision tree

predict the probability of the next word occurrence after
finding N-1 terms in a sentence or text corpus. N-Gram
uses probability-based techniques for the next word pre-
diction. They compare various machine learning (multilayer
perceptron neural network support vector machine, Naive
Bayes) and nonmachine learning (Signatures, Blacklist and
Whitelist, and mail header checking) approaches for email
spam detection.

Saleh et al. [17] present a survey on intelligent spam
email detection. They discuss various security risks of emails,
especially spam emails, the scope of spam analysis, and
different machine learning and nonmachine learning
techniques for spam detection and filtering. They conclude
that there is high adoption of supervised learning [18] al-
gorithms for email spam detection. They state that the high
usage of supervised learning is the accuracy and consistency
of supervised techniques. They also discussed multi-
algorithm frameworks and found that multialgorithm
frameworks are more efficient than a single algorithm. They
found that nearly all research work that uses the content of
emails for the identification spam, particularly phishing
emails, depends on word-based classification or clustering
systems.

Blanzieri and Bryl [2, 19] describe a list of learning-based
email spam filtering approaches. In this paper, they
addressed the spam problems and provided a review of
learning-based spam filtering. They explain various features
of spam emails. In this study, effects of spam emails on
different domains were discussed. Various economic and
ethical issues of spam are also discussed in this study. The
antispam approach that is common and learning-based
filtering is well developed. The commonly used filters are

based on different classification techniques applied to var-
ious components of email messages. This study suggests that
the Naive Bayes classifier holds a particular position
amongst multiple learning algorithms used for spam fil-
tering. With splendid pace and simplicity, it gives high
precision results.

Bhuiyan et al. [20] present a review of current email
spam filtering approaches. They summarize multiple spam
filtering approaches and sum up the accuracy on various
parameters of different proposed systems by analyzing
numerous processes. They discuss that all the existing
methods are efficient for filtering spam emails. Some have
successful results, and others are attempting to incorporate
other ways to boost their accuracy performance. Although
they are all successful, they still have some issues in spam
filtering methods, which is the primary concern for re-
searchers. They are trying to create a next-generation spam
filtering mechanism to understand large numbers of mul-
timedia data and filter spam emails. They conclude that most
email spam filtering is done by utilizing Naive Bayes and the
SVM algorithm. To test the spam filtration models, these
models can be trained on different datasets, such as “ECML”
and UCI dataset [21].

Ferrag et al. [13] presented a review of deep learning
algorithms of intrusion detection systems and spam de-
tection datasets. They discussed various detection systems
based on deep learning models and evaluated the effec-
tiveness of those models. They examined 35 well-known
cyber dataset by dividing them into seven categories. These
categories include Internet traffic-based, network traffic-
based, Interanet traffic-based, electrical network-based,
virtual private network-based, andriod apps-based, IoT

traffic-based, and Internet connected device-based datasets.
They conclude that deep learning models can perform better
than traditional machine learning and lexicon models for
intrusion and spam detection.

Vyas et al. [22] present a review on supervised machine
learning strategies for filtering spam emails. They concluded
that the Naive Bayes method provides faster results and
decent precision over all other methods (except SVM and
ID3) from all the techniques discussed. SVM and ID3 offer
greater precision than Naive Bayes but take much longer
time to construct a system. There is a trade-off between
timing and precision. They conclude that selecting the
learning algorithm heavily depends on the situation and the
required accuracy and time. They state that all parts of the
email should be considered in the future to create a more
robust spam filtering framework.

This survey paper discusses three main types of machine
learning that can be used for spam filtering. We review
various papers, the proposed techniques, and discuss
challenges to spam detection and filtration systems. This
article also focuses on the advantages and disadvantages of
the proposed techniques for spam detection and filtration
that is never reviewed in the past.

3. Spam Messages

The email spam definition is ambiguous since everybody has
their views on it. At present, email spam is getting the at-
tention of everyone. Email spam ordinarily includes par-
ticular spontaneous messages sent in mass by individuals
you do not know. The term spam is obtained from the Monty
Python sketch [23], in which the Hormel canned meat item
has numerous tedious emphases. While the term spam was
purportedly first utilized in 1978 to allude to unwanted
email, it increased rapidly in the mid-1990s, as we get to turn
out to be progressively typical outside scholastic and re-
search circles [24]. A notable model is the development
expense trick in which a client receives an email with an offer
that should bring about a prize. In the era of technology, the
dodger/spammer shows a story where the unfortunate ca-
sualty needs forthright financial help so that the fraudster
can gain a lot bigger total of cash, which they would then
share. The fraudster will either earn a profit or avoid
communication when the unfortunate victim completes the
installment.

3.1. Spam Filtering Methods in Email and IoT Platforms.
The number of spam emails is rapidly increasing in mar-
keting, chain communications, stock market tips, politics,
and education [24]. Currently, various companies develop
different techniques and algorithms for efficient spam de-
tection and filtering. We address some filtering strategies in
this section to understand the filtering process.

3.1.1. The Standard Spam Filtering Method. Standard spam
filtering is a filtering system that implements a set of rules
and works with that set of protocols as a classifier. Figure 1
illustrates a standard method for filtering spam. In the first

Security and Communication Networks

FIGURE 1: Standard spam filtering.

step, content filters are implemented and use artificial in-
telligence techniques to figure out the spam [25]. The email
header filter, which extracts the header information from the
email, is implemented in the second step. After that, backlist
filters are applied to the emails to clinch the emails coming
from the bacKklist file to avoid spam emails. After this stage,
rule-based filters are implemented, recognizing the sender
using the subject line and user-defined parameters. Even-
tually, allowance and task filters are used by implementing a
method that allows the account holder to send the mail [26].

3.1.2. The Client Side Spam Filtering. A client is a person
who can use the Internet or email network to send or receive
an email [27]. Spam detection at the client point offers
different rules and mechanisms to ensure secure commu-
nications transmission between people and organizations.
For transmission of data, a client should deploy multiple
existing frameworks on his/her system. Such systems con-
nect with client mail agents and filter the client’s mailbox by
compositing, accepting, and managing the incoming emails
[28, 29].

3.1.3. Enterprise Level Spam Filtering. Email spam detection
at the enterprise level is a technique in which various fil-
tering frameworks are installed on the server, dealing with
the mail transfer agent and classifying the collected emails
into one spam or ham [30]. This system client uses the
system consistently and effectively on a network with an
enterprise filtering technique to filter the emails. Existing
methods of spam detection use the rule of ranking the email.
A ranking function is specified in this principle, and a score
is generated against every post. The junk mail or ham
message is given specific scores or ranks [31]. Since
spammers use different approaches, all tasks are regularly
modified by implementing a list-based technique to block
the messages automatically. Figure 2 is reproduced from
Bhuiyan et al. [20]. Figure 2 shows the architecture of the
client and enterprise level spam filtering process.

3.1.4. Case-Based Spam Filtering. One of the well-known
and conventional machine learning methods for spam de-
tection is the case-based or sample-based spam filtering
system [32]. A typical case base filtering structure is illus-
trated in Figure 3. There are many phases to this type of

Security and Communication Networks

Accept Email

Mail Server

Send Emaj

FIGUre 2: Client based and enterprise level spam filtering [20].

filtering with the aid of the collection method; it collects data
(mails) during the first step. After that, the major transition
continues with the preprocessing steps through the client
graphical user interface, outlining abstraction, and choice of
email data classification, testing the entire process using
vector expression and classifying the data into two classes:
spam and legitimate email.

Finally, the machine learning technique is extended to
training sets and test sets to determine whether this is an
email. The final decision is made through two steps: self-
observation and classifier’s result, deciding whether the
email is spam or legitimate [32, 33].

4. Internet of Things and Its Attacks (IoT)

The Internet of things (IoT) means a system of interrelated,
Internet-connected objects that collect and transfer data
over a wireless network without the intervention of humans.
IoT enables the integration and implementation of real-
world objects regardless of location. In such a scenario,
privacy and security techniques are highly critical and
challenging in network management and monitoring per-
formance. To solve security problems, such as intrusions,
phishing attacks, DoS attacks, spamming, and malware in
IoT applications must protect privacy. los systems, including
objects and networks, are vulnerable to network and physical
attacks and privacy failures. The main types of IoT attacks are
illustrated in Figure 4.

The various attacks of IoT systems are listed as follows.

(a) Self-Promotion Attack. In this type of attack, the
compromised node tries to get importance over the
other nodes of the IoT environment for the partic-
ular recommendation.

(b) Bad Mouthing Attack. In this attack, the compro-
mised node forgave a wrong recommendation; it
may execute the trust of the trusted node. It de-
creased the services of the trusted node.

(c) Ballot Stuffing Attack. In this challenge of the IoT
environment, the compromised node enhances the
other compromised nodes. It is a chance for the

5
[—
Mail Server l
\//
A—

l

F1GURE 3: Case-based spam filtering.

FiGURre 4: IoT attacks.

compromised node to provide the services. It is also
known as the collision recommendation attack.

(d) Opportunistic Service Attack. In this type of attack,
the compromised node collaborates with the other
malicious nodes to build the bad mouthing and
ballot stuffing attack.

(e) On-Off Attack. In this type of attack, the compro-
mised node provides inadequate services, which
means that the compromised node randomly per-
forms a bad service.

(f) Node Tempering. The attacker changes the malicious
node and gets specific information such as a security
key.

(g) Malicious Node Attack. The attacker physically adds
the malicious node among nodes.

(h) Man in the Middle Attack. The attacker secretly
intercepts the communication between two nodes
over the Internet in this type of attack. The attacker
gets the main information by eavesdropping.

(i) Sybil Attack. The compromised node steals the
recognition of good nodes and acts as a suitable
node.

According to a study from Nozomi Networks, in the first
half of 2020, there were increasing attacks and threats on
Operational Technology (OT) and the IoT networks. Fig-
ure 5 shows the number of attacks in IoT devices in re-
spective years.

Machine learning techniques can be used for the pre-
vention and detection of these attacks with high perfor-
mance. Various research studies have been carried out to
detect and prevent the above issues discussed in Section 5.

5. Machine Learning

Machine learning [34] is one of the most important and
valuable applications of artificial intelligence (AI), which
gives computer systems the ability of automatically learning
and enhancing their functionality without explicit pro-
gramming [34]. The primary purpose of machine learning
algorithms is to build automated tools to access and use the
data for training. The learning process starts with learning
labeled data, also called training dataset. It can be a real-life
experience, review, example, or feedback to recognize trends
in the data to make better future decisions based on the
user’s input. The main objective of machine learning models
is to learn automatically without any intervention from
humans. Machine learning consists of three major kinds,
used for numerous tasks.

For the last decade, researchers have been trying to make
email communication better than today. Spam filtering of
emails [35] is one of the most critical ways of protecting email
networks. Many research articles have been published using
various machine learning approaches to identify and process
spam emails, but there are still some research gaps. Junk mail
is one of the central, attractive research fields for filling the
gaps [36]. For this reason, many spam classification studies
have already been carried out using several methods to make
email communication more trustworthy and valuable for
users. That is why, this paper is presented to make a sum-
marized version of different existing machine learning models
and approaches that are being used for email spam detection.
This paper also evaluates the most common machine learning
approaches like KNN, SVM, random forest, and Naive Bayes.

Security and Communication Networks

i

2015 2016 2017 2018 2019 2020

Number of attacks in
billions

F1GURE 5: Number of attacks on IoT devices.

5.1. Machine Learning-Based Spam Filtering Methods.
Machine learning facilitates the processing of vast quantities
of data. Though it typically provides faster and more ac-
curate results to detect unwanted content, it can also require
extra time and resources to train its models for a high level of
performance. Integrating machine learning with AI and
cognitive computing [37] can make handling massive
amounts of data even more powerful. Figure 6 demonstrates
various kinds of machine learning.

5.1.1. Supervised Machine Learning. Supervised machine
learning algorithms [18] are machine learning models that
need labeled data. Initially, labeled training data is provided
to these models for training, and after training models
predict future events. In other words, these models begin
with the analysis of an existing training dataset, and they
generate a method to make predictions of success values.
Upon proper training, the system can provide [38] the
prediction on any new data related to the user’s data at the
training time. Furthermore, the learning algorithm accu-
rately compares the output to the expected output and
identifies errors to modify the model.

Supervised learning uses labeled data for training, and
then it can predict the new data. This type of learning can be
used in solving various problems, i.e., advertisement pop-
ularity, spam classification, face recognition, and object
classification. The process of supervised learning is illus-
trated in Figure 7.

Some most commonly used supervised learning tech-
niques are discussed as follows.

5.1.2. Decision Tree Classifier. Decision tree classifier is a
machine learning algorithm [39], which has been widely
used since the last decade for classification. This algorithm
applies a simple method of solving any problem of classi-
fication. A decision tree classifier is a collection of well-
defined questions about test record attributes. Each time we
get an answer, a follow up question is raised until a decision
is not made on the record [40]. Tree-based decision algo-
rithms define models that are constructed iteratively or
recurrently based on the data provided. The decision tree-
based algorithms goal is used to predict a target variable’s

Security and Communication Networks

l

Supervised
Learning

FIGURE 6: Types of machine learning.

l

New Email

N\

N N

<

<

SPAM

|
i It

<

<

Categorical
Separation

SPAM

FIGURE 7: Process of supervised learning.

value on a given set of input values. This algorithm uses a tree
structure to solve classification and regression problems
[41]. Figure 8 shows the basic structure of the decision tree.

Some of the decision tree algorithms are the following:

(i) Random forest

(ii) Classification and regression tree (CART)
(iii) C4.5 and C5.0
(iv) Chi-square.

The following section deliberates some proposed email
spam detection and prevention techniques by using decision
tree algorithms.

DeBarr and Wechsler [42] discuss a spam filtering
technique using random forest algorithms to classify spam
emails and active learning to refine the classification [43].
They used the data of email messages from RFC 822 (In-
ternet) [44] and divided each email into two sections. Then,
they find term frequency and inverse document frequency of
all features of each email (TF/IDF). For the training dataset,
they select a set of emails with clustering to label the data.
After considering the cluster prototype mails for training,
they experiment with supervised machine learning algo-
rithms: random forest, Naive Bayes, support vector machine,
and KNN [45]. The research results show that the algorithm
“random forest” classifies data more efficiently with an
accuracy of 95.2%.

FiGure 8: Structure of decision tree.

Takhmiri and Haroonabadi [46] present a different
technique to detect spams using a fuzzy decision tree and the
Naive Bayes algorithm. They use the baking voting algorithm
to extract patterns of spam behaviour. They do this because
obvious characteristics do not exist in the real world. The
cross-linking degree for explaining or describing characters
is rational and neutral. Decision trees use fuzzy Mamdani
rules for the classification of spam and ham email. Then,
Naive Bayes classifier [47] is used by them on the dataset.
Finally, the baking method is used by dividing votes into
smaller sections. This solution gives them an optimized
weight that can be implemented on obtained percentages

that achieve a higher accuracy level. The dataset used in this
study contains 1000 emails, from which 350 (35%) were
spam and 650 (65%) were ham.

Verma and Sofat [48] used supervised machine learning
algorithm ID3 [49] to render the decision trees of the
problem and the hidden Markov model [50] to measure the
probabilities of events that could occur as a combination to
classify the emails as junk mail or ham. The proposed model
initially marks all emails as spam or legitimate by measuring
each e-mail’s total likelihood with the aid of subsequently
classified email terms. After that, it makes the decision trees
of emails one by one. The Enron dataset [51] is used in this
study that contains 5172 emails. From all 5172 emails, 2086
were spam, while 2086 were legitimate emails. Their model
can categorize the emails as spam and ham by using the
feature set obtained by the Enron dataset. They got an 11%
error by using the sklearn library’s fitness function in the
proposed model. Their model got 89% of accuracy results on
the given dataset.

Li et al. [52] proposed an email-classification technique
for IoT systems based on supervised machine learning. They
use a multiview technique that focuses on the collection of
richer information for classification. A double view dataset is
created with internal and external feature sets. The proposed
approach can be used in both labeled and unlabeled data and
was evaluated on two datasets with a real network envi-
ronment. The results of this study indicate that the multiview
model can achieve more accuracy than simple email clas-
sification. In the end, the multiview model is compared with
various existing models.

A spam filtering approach based on different decision
tree algorithms is presented by Subasi et al. [40] to compare
the accuracy and find the best one for their dataset. They
implement classification and regression tree (CART), C4.5,
REP tree, LAD tree, NBT, random forest, and rotation forest
algorithm on the dataset to classify emails. Their results show
that the proposed modified random forest model got the
highest accuracy than other decision tree methods for
publicly available datasets.

5.1.3. Support Vector Machine (SVM). The support vector
machine (SVM) is an essential and valuable machine
learning model [53]. SVM is a formally defined discrimi-
native supervised learning classifier that takes labeled ex-
amples for training and gives a hyperplane as output,
classifying new data [54]. A set of objects belonging to
various class memberships are separated by decision planes.
Figure 9 shows the classification concept of linear support
vector machines. In the figure, some circles and stars are
called objects. These objects can belong to any of two classes,
i.e., the class of stars or dots. The isolated lines determine the
choice of objects between green and brown objects. On the
lower side of the plane, the objects are brown stars, and on
the upper side of the plane all objects are green dots showing
that two unique objects are classified into two different
classes. If a new object black circle is given to the model, it
will classify that circle into one of the classes according to the
training examples provided in the training phase.

Security and Communication Networks

FIGURE 9: Support vector machine classification.

Banday and Jan [55] present research in which they
define the procedure of statistical spam filters. They design
those filters using Naive Bayes, KNN, support vector ma-
chines (SVM), and regression trees [56]. They use all these
supervised machine learning algorithms and evaluate the
results based on precision, recall, and accuracy. Using these
machine learning techniques, they found that classification
and regression trees (CART) [57] and Naive Bayes classifiers
are the most effective algorithms for the dataset. This ap-
proach estimates that, during spam filtering, calculations of
false positive are costlier than a false negative.

Zheng et al. [12, 58] present a procedure for detecting
spammers and spam messages in any social network. Today,
everyone uses social media, and many social media users
spend a considerable amount of time communicating with
their loved ones. The spammers take advantage of various
social media networks and users’ posts to send malicious
content, advertisements, information, etc., into the social
media user’s profiles. So, this paper discusses how to detect
those posts or malicious content on social media platforms.
Their study uses the Sina Weibo social network [59] and
machine learning algorithm support vector machine (SVM)
for the detection of spammers. The dataset that was used in
this study was 16 million messages that were collected from
several users. They used 18 features as a feature vector set.
The clients of the networks were divided into two categories,
legitimate users and spammers. 80% of data was used for the
model’s training, while 20% was used for testing. For better
accuracy, they used 1:2 between spammers and non-
spammers of the training dataset. With this ratio, the
proposed model gives an accuracy level of 99.5% for clas-
sifying spammers and nonspammers [60].

A novel fitness framework based on IoT-enabled
blockchain technology and machine learning techniques is
presented by Jamil et al. [10]. Their proposed model is
composed of two modules. The first one is a blockchain-
based network used for the security of sensing devices and an
intelligent contract-enabled relationship and an inference
engine that uncovers hidden insights and usable information
from IoT and user device data. The improved smart contract
gives users a useful application that allows real-time mon-
itoring, more control, and quick access to several devices
distributed across various domains. The inference engine

Security and Communication Networks

module attempts to uncover underlying patterns and usable
information from IoT environment data, assisting in ef-
fective decision-making and providing convenient services.
Their proposed model can be used to improve system
throughput and resource usage, according to their findings.
The proposed system in this article may be used in various
fields, including healthcare and smart businesses.

Olatunji [61] developed a spam filtering tool using
support vector machine and extreme learning machine al-
gorithms. He used the standard dataset for the development
of the spam detection model. SVM got an accuracy of
94.06% in his work, and the extreme learning machine
(ELM) model got a 93.04% accuracy level, suggesting just
1.1% performance improvement that SVM achieved over
ELM. He indicated that SVM’s improvement over ELM
accuracy is marginal. It implies that, in situations where
detection time is critical, as in real-time systems, the ELM
spam detector should be given preference over SVM spam
detection. Although SVM got a higher accuracy level in his
research, it takes more time for training than the ELM
system. Tretyakov [62] also discussed various machine
learning techniques for email spam filtering. This paper
compared the precision results between false positives and
precision results after eliminating false positives. They show
the result after eliminating false positives, which were more
accurate and reliable than before.

5.1.4. Naive Bayes Classifier (NB). The Naive Bayes classifier
[47] is based on the Bayes theorem. It assumes that the
predictors are independent, which means that knowing the
value of one attribute impacts any other attribute’s value.
Naive Bayes classifiers are easy to build because they do not
require any iterative process and they perform very effi-
ciently on large datasets with a handsome level of accuracy.
Despite its simplicity, Naive Bayes is known to have often
outperformed other classification methods in various
problems.

Rusland et al. [63] present research on email spam fil-
tering and perform the analysis using a machine learning
algorithm Naive Bayes. They used two datasets evaluated on
the value of accuracy, F-measure, precision, and recall. As we
know, Naive Bayes uses probability for classification, and the
probability is counting the frequency and combination of
values in a dataset. This research uses three steps for the
filtration of emails, i.e., preprocessing, feature selection, and,
at last, it implements the features by using the Naive Bayes
classifier. The preprocessing step removes all conjunction
words, articles, and stop words from the email body. Then,
they used the WEKA tool [64] and made two datasets called
spam data and spam base dataset. The average accuracy was
89.59% using two datasets, while the spam data got 91.13%
accuracy. The spam base dataset got an accuracy of 82.54%.
The average precision results for spam data were 83%, while,
for spam base, the precision result was 88%. They claimed
that the Naive Bayes classifier performs better on spam base
data as compared with spam data.

Arif et al. [11] presented an article on machine learning-
based spam detection techniques for IoT devices. They used

five ML models and analyzed their results using various
performance metrics. A large number of input features were
used for the training of proposed models. Each model
calculates a spam score based on the input attributes. This
score represents the trustworthiness of an IoT device based
on a variety of factors. The suggested approach is validated
using the REFIT smart home dataset. They claim that their
proposed system can detect spam better than currently used
spam detection systems. Their work can be utilized in smart
homes and other places where intelligent devices are used.

Kumar et al. [14] discussed email spam detection using
various ML algorithms. Their article explores ML methods
and how to implement them on datasets. The optimal al-
gorithm for email spam detection with the highest precision
and accuracy is identified from various ML algorithms. They
concluded that the Multinomial Naive Bayes algorithm
produces the best results, but it has limitations due to class-
conditional independence, which causes the machine to
misclassify some inputs. Ensemble models come after
Multinomial Naive Bayes with the best and reliable results in
this study. The proposed system in this study can only detect
spam from the body of emails.

Singh and Batra [65] proposed a semisupervised ma-
chine learning technique for spam detection in social IoT
platforms. They used an ensemble-based framework that is
consists of four classifiers. The architecture is based on the
use of probabilistic data structures (PDS) such as Quotient
Filter (QF) to query the database of URLs, spam users,
databases of spam keywords, and Locality Sensitive Hashing
(LSH) for similarity search. The proposed model minimizes,
so it decides by an adaptive weighted voting approach based
on each classifier’s output. The hybrid sampling technique
minimizes the computational efforts, which sample the data
according to each classifier. This study indicates that the
proposed model can be used for spam detection on large
datasets. The proposed model’s efficiency was evaluated by
comparing PDS with standard data models and the typical
evaluation metrics, including accuracy, recall, and F-score.

5.1.5. Artificial Neural Networks. An artificial neural net-
work (ANN) is a computational model based on the
functional aspects of biological neural networks, also known
as the neural network (NN) [66]. Many sets of neurons are
joined in a neural network, and information is interpreted
using a computational approach connection. In most situ-
ations, an ANN is an adaptive system, which changes its
structure depending on external or internal information
flowing through the network during the learning phase.
Current neural networks are nonlinear approaches to sta-
tistical data processing. These are commonly used when
there are complex relationships between inputs and outputs
or unusual performance patterns [6]. Figure 10 shows the
basic structure of the neural network.

The following section elaborates some proposed email
spam detection and prevention techniques by using neural
networks.

Xu et al. [67] present a method for the detection of spam
in online social networks. Their work focuses on the

10

Hidden layer 2

Neurons pyigden layer 1

Input

FiGure 10: Basic structure of neural network.

combination of spam messages in one social network to
another social network. By using Twitter, they gathered 1937
spam and 10943 ham tweets for processing. They also used
1338 spam posts and 9285 ham posts. In TSD, 75.6% of
tweets contained URL links for spam tweets, while 24.4%
contained different words. Out of 10942 ham tweets, 62.9%
contained URL links and words, while 37.1% had only
words. For the spam posts of FSD, 32.8% of posts consist of
different web links, and the remaining 67.2% of spam posts
contain only words [68]. Of 9285 ham posts, 95.1% have web
links, and the other 4.9% consist of words. They used the top
twenty feature words from Facebook spam data and Twitter
spam data. They divide the TSD and FSD into two sets, i.e.,
training dataset and testing dataset. These datasets were used
to train various machine learning classifiers like Naive Bayes,
random forest, logistic regression random tree, and Bayes
Net. After analyzing the accuracy of different classifiers, they
combine the spam dataset of Facebook into the training
dataset of Twitter and the spam dataset of Twitter into the
training dataset of Facebook. Then, they used the combined
dataset for the training and testing of classifiers. In the end,
they compare the results of classifiers on the above-men-
tioned social networks after measuring the precision, ac-
curacy, recall, and F-1 measure. They found that the
accuracy of combined datasets was higher than that of other
datasets [68, 69].

Guo et al. [70] proposed a spammer detection technique
using a collaborative neural network in IoT applications.
They present a novel spam detection mechanism called
Cospam for IoT applications. At first, the user and contents
of speech at different timestamps are viewed as feature se-
quences. In the second step, a collaborative neural network
model is used. The collaborative model consists of three
models: (1) Bi-AE model, (2) GCN model, and (3) LSTM
model. These models are used for the identification of the
nature of the user. In the end, a series of experiments were
conducted for the evaluation of the proposed technique. The
proposed model was able to obtain 5% more accuracy than
existing spammer detection approaches. Cospam consumes
more time than existing techniques because of a large
number of parameters.

Makkar and Kumar [71] proposed a deep learning model
for web spam detection in an IoT environment. Their system
enhances the cognitive ability of search engines for the
detection of web spam. This model removes spam pages with
the help of a web page rank score calculated by a search

Security and Communication Networks

engine. Their framework uses the extensive features of deep
learning. The first time in which the LSTM model was used
to detect spam is used for many problems like weather
forecasting. In this study, the proposed model is compared
with ten different machine learning models. The WEB-
SPAM-UK 2007 standard dataset is used in this study. The
preprocessing of the dataset is done by a novel technique
called “Split by Oversampling and Train by Underfitting.”
The accuracy of the proposed model was 95.25%. After the
optimization of the system, the proposed model got an
accuracy of 96.96%.

Zavvar et al. [72] present a paper on spam detection by
considering combined particle swarm optimization and
neural networks to select features. They also used SVM for
classifying and separating spam. They compared the pro-
posed approach with other approaches such as a self-or-
ganizing map and k-means data grouping based on the
region under curve parameters. This article uses the UCI
base dataset to evaluate spam classification and provide a
PSO-ANN and ANFIS algorithm-based approach for spam
detection. Seventy percent of data was used for training, and
30 percent was used for testing the models. RMSE, NRMSE,
and STD principles were analyzed and got 0.08733, 0.0185,
and 0.08742 results in the testing phase. The results show
that the proposed method has good accuracy and perfor-
mance for detecting spam emails. Table 2 summarizes su-
pervised machine learning techniques presented for spam
detection.

5.1.6. Discussions and Learned Lessons. Supervised machine
learning techniques, i.e., decision trees, random forests,
support vector machines, and artificial neural networks, can
be used for email spam detection or filtering. Support vector
machines classify different objects by using the idea of the
hyperplane. Objects are classified into two classes. If a new
object is given to the model, it will be classified into one of
both classes. Zavvar et al. [12], Garavand et al. [72], and Idris
et al. present different techniques for spam detection using
the support vector machine (SVM) model. They got a good
accuracy level on different spam datasets. Olatunji et al. [73]
used the support vector machine and extreme learning
machine algorithms on the standard dataset and got 94.06%
accuracy using the support vector machine. In their system,
extreme learning machines perform better than SVM but
take more time, so a time-consuming ELM performs better
than SVM. Zheng et al. got the highest accuracy level using
Weibo social network dataset. They use two types of features,
i.e., content base and user behavior base, to classify spam-
mers and nonspammers. Naive Bayes classification is an-
other supervised machine learning technique, which
predicts some events based on its naive theorem. Naive
Bayes classifiers are quite simple, and they do not use an
iterative process; they perform very efficiently on large
datasets with a handsome level of accuracy. Hijawi et al. [41]
use the Naive Bayes network for the detection of spam. They
did not get outstanding results using the spam assassin
dataset as their accuracy level was only 89%. Another
technique which is widely used in the last decade is decision

Security and Communication Networks

TaBLE 2: Comparison of supervised techniques for spam filtering.

11

Authors Algorithm Dataset Accuracy Advantages Limitations

DeBarr and

Wechsler Random forest Custo.m 95.29% TheY got goc.)d accuracy The dataset that they used was

[42] collection with multiple trees not a standard dataset

Rusland Modified Naive Bayes Spam base and 88% on spam base Selective features are They got less accuracy, and their
. . taken that consume less o

et al. [63] with selective features spam data 83% on spam data time model was not much intelligent

Twitter and They used the combined ~ Multiple algorithms and a
Ea;l]u zuetal. Bayes NeIt\,IEVM, and Facebook 90% using SVM dataset for the training combined dataset system take
dataset and testing of classifiers more training time

Hijawi et al.
(41]

(MLP), Naive Bayes,
random forest, and
decision tree

Spam assassin

99.3% using
random forest

They use a list of most

common spam features

that improve the spam
detection rate

Bandayv and Naive Bayes, K-nearest They make a spam filter
Jan [5;,] neighbor, SVM, and Real-life dataset 96.69% using SVM based on 8000 real-life
additive regression tree spam emails
Verma and ID3 algorithm hidden They use a preclassified
Enron dataset 89% dataset that uses less
Sofat [48] Markov .. .
time in processing
Subasi et al. - CART, C4.5, REP tree, UCI dataset 95.1% gﬁﬁﬁ lt(})l-z:\ft()l}?elcrssisn-
[40] LAD tree, and NBT - P
better evaluation
They use both user
Zheng et al. Weibo social o content and behavior
[12] SVM network data 99.5% features for detecting
spammers
. Standard . .
SVM, deep learning, 93% using the They use deep learning
Garavand - datasets from
and particle swarm support vector models for feature
et al. [72] L UCI 70% . .
optimization . machine extraction
education data
They got a high
. accuracy level as
Olatunji ELM an'd SVM Enron dataset ~ 94.06 using SVM compared to previous
et al. [5] classifier .
studies on the same
dataset
Smart contract-enabled
Jamil et al. SVM, KNN, DT, and Health fitness . blockchain technique is
[10] LR data 92.1 using SVM used that makes the
system more secure
XGBoost, bagged 91.8 using
Arif et al. model, and generalized Smart home generalized linear PCA was applied that

linear model with

dataset

enhances the accuracy

They use a significant corpus of
6050 emails, but they use a small
number of features extracted
from the corpus
Their model is not so effective as
spammers continuously change
the characteristic that they used
for making spam filter
Their model got an 11% loss
that is not too good for spam
filters

Less number of features used

Feature extraction is based on
statistical analysis and manual
selection

The neural networks take
massive time for training for the
extraction of features

For SVM, it takes more time
than ELM to gain the accuracy
level claimed in the paper

Interoperability of proposed
model with IoT framework is
not evaluated

Climatic and surrounding
features of IoT devices are not

(1] stepwise feature

selection

model with stepwise
feature selection

of the system considered

tree. These decision algorithms define models that are
constructed iteratively or recurrently based on the data
provided. The decision tree-based algorithms goal is to
predict a target variable’s value on given set of input vari-
ables. Subasi et al. [40] used different decision tree-based
algorithms for spam detection on the UCI machine learning
platform dataset. They used 10-fold cross-validation for the
evaluation of decision tree classifiers. They use open-source
Weka tools for the development of the model. DeBarr and
Wechsler [42] used a tree-based random forest algorithm for
email spam detection and active learning for refining the
classification. They used the data of email messages from
RFC 822 (Internet) and got the highest accuracy level of
95.2% by using the dataset’s custom collection of emails. In

all supervised machine learning techniques, Zheng et al. [12]
got the highest accuracy level among all researchers using
the support vector machine (SVM) technique for email spam
detection.

5.2. Unsupervised Machine Learning. Unsupervised machine
learning algorithms are used when we do not have labeled
data [74]. Unsupervised learning explores how programs can
explain a hidden structure by inferring a feature from un-
labeled data [75]. The machine does not evaluate the ap-
propriate output but examines the data and can draw
inferences from datasets to explain hidden constructs from
unlabeled data. Unsupervised learning works on unlabeled

12

data and makes clusters of the data based on the features of
that data. This type of learning can be used for various
problems like Recommender Systems, identifying Buying
Habits, Grouping User Logs, dimensionality reduction, etc.
The process of unsupervised learning is illustrated in
Figure 11.

Clustering is the main application of unsupervised
learning that has two main types. Different clustering
techniques are discussed as follows.

5.2.1. Hierarchical Clustering. Hierarchical clustering
identifies clusters with a hierarchy achieved either by iter-
atively combining smaller clusters into a more significant
cluster or by splitting a more massive cluster into smaller
clusters. This cluster hierarchy, generated through a clus-
tering algorithm, is called a dendrogram [76]. A dendrogram
is one way of representing the hierarchical clusters. The user
can understand different clusters based on the level at which
the dendrogram is defined. It uses a similarity scale repre-
senting the distance between the clusters grouped from the
massive cluster. A dendrogram is a visual representation of
hierarchical clustering that is illustrated in Figure 12.

5.2.2. Partitional Clustering. A partitional clustering divides
a single set of data objects into nonoverlapping subsets
(clusters) so that each data object is in only one subset [77].
Partitional clustering algorithms make different partitions of
data and then evaluate the required results based on some
criteria. Figure 13 illustrates the basic structure of partitional
clustering algorithms. In Figure 13, partitions (A, B, and C)
are created based on some characteristics. Partitional clus-
tering breaks down a dataset into a collection of clusters of
disjoints. The partitioning technique forms different parti-
tions of data by using the formula K (N/K); each partition
represents a cluster based on a set of N points in the data,
that is, by fulfilling the following conditions:

(1) Each class contains one point or more

(2) Each point comes as part of exactly one group

Let us discuss some work on filtering email spam using
unsupervised machine learning techniques.

Sharma and Rastogi [78] propose a strategy using un-
supervised techniques. They performed various experiments
on email spam datasets. After data gathering, they use the
k-means clustering model for the clustering of emails. They
use various distance measures for this purpose. The study’s
findings show that the proposed model performs well and
cluster spam and ham emails are efficient.

Tan et al. [79] developed a reliable model for spam
detection. First, they present a Sybil defense-based auto-
mated spam detection scheme called SD2, which consid-
erably outperforms current techniques by considering the
social network relationship. They further developed an
unsupervised spam detection system called UNIK to address
increased spam attacks effectively. Instead of directly
detecting spammers, UNIK operates by intentionally
eliminating nonspammers from the network. They used the

Security and Communication Networks

Y

a A i
A e | M AA
Q1. ® QD
. 'AA a 0 I
o4 @ — TS
@ Algorithm
- ©ag
®g
Raw Data Output

FI1GURE 11: Process of unsupervised learning.

Dendrogram

A B C D E F

FIGURE 12: Structure of dendrogram.

FIGURE 13: Partitioned clustering structure.

social graph as well as the user-link graph for the detection of
the spammer. UNIK’s fundamental basis is that spammers
actively change their patterns to avoid detection, while
nonspammers are not expected to do so. Therefore, we have
a reasonably nonvolatile pattern. When tested on a broad
network platform, UNIK has a similar performance as SD2
and substantially beats SD2 as spam attack rates go up. They
evaluate several known spam activities in the social network
platform by the identification of UNIK. Their proposed
system, UNIK, can be used for email spam classification. The
result shows that various spammer clusters exhibit different
characteristics, suggesting the instability of spamming and
UNIK’s ability of automatically extracting junk mail
signatures.

Ahmed [80] used an improved digest algorithm with
DBSCAN clustering to classify spam emails. They create a
different digest (parts) of emails before clustering. Their
proposed model has two key steps. When the system receives
emails, it first enters the digest generation phase, where an
improved digest algorithm processes it, and the output is the
set of digests of each email. These digests are then given to
the clustering algorithm, i.e., DBSCAN, in the next phase. In

Security and Communication Networks

the clustering phase, similar emails are classified in the
clustering process in a cluster of spam mails based on
similarities among their digests, where mails that do not look
like any other digest are considered noise and not clustered.
Such emails that are not clustered are standard (ham) emails.

Using unsupervised artificial neural networks (ANNs),
Cabrera-Leon et al. [81] propose a hybrid antispam filter.
Their method contains two main steps. The first step is
preprocessing of content, and the second one is actual
processing. Each step is based on various models of com-
putation. These models are “programmed and neural (using
Kohonen SOM) [55]. This proposed system used the Enron
dataset for ham or legitimate emails, while for spam emails
they used two distinct sources. The first phase preprocessing
was done based on thirteen (13) thematic features found in
spam and ham emails. The terms frequency (TF) and inverse
term frequency (IDF) were used in their system for the sake
of feature extraction. Their results were the same as those of
other researchers for the same dataset since they use distinct
machine learning techniques and attributes. They evaluated
their system with various datasets, defined by interdepen-
dent origins, ages, users, and forms like image spam samples.
Their system got an accuracy level between 75% and 96%.
They show that model performance degradation can vary by
variations, in datasets, especially in dates. This phenomenon
is known as “topic drift.” Generally, it affects all classifiers,
but it more affects those classifiers that use offline learning.
The same case is with adversarial machine learning problems
like spam filtering. Their method is robust to phrase ob-
tuscation, which is commonly used in spam content. It was
also independent of the need to use lemmatization or
stemming.

Sasaki and Shinnou [82] introduce a new approach for
spam detection using the vector-space model of content
clustering. Their system automatically calculates disjoint
clusters using a spherical k-means technique for all spam
and nonspam emails. It collects centroid vectors of clusters
for the extraction of vector definition. Each centroid is la-
beled with spam and nonspam to measure several spam
emails in the clusters. The system measures the cosine
similarity between the current mail vector and the centroid
vector as a new email arrives. Eventually, the new mail is
assigned the label of the most appropriate cluster. They
obtain several kinds of spam and nonspam email topics by
using the proposed approach and effectively identifying the
spam emails. They introduce the spam detection framework
in this paper and demonstrate the research outcomes uti-
lizing the series of Ling-spam datasets. They got 98.06%
accuracy with their model.

Narisawa et al. [83] suggest an unsupervised approach
for detecting spam documents from several documents
relying on string equivalence. They provide three metrics to
quantify a string’s alienation, which means how distinct they
are inside the documents from other substrings. In their
proposed model, a document labeled as spam includes a
substring with a significant alien degree in an equivalence
class. The proposed approach was unsupervised, indepen-
dently of language, and scalable. Japanese web forum data
were used for computational experiments to show the

13

proposed approach’s performance on real data. Table 3
presents comparison of unsupervised learning techniques
used for spam filtering.

5.2.3. Discussion and Learned Lessons. Several unsupervised
machine learning models are being used for email spam
detection and filtering. Hierarchical clustering and parti-
tioning clustering are commonly used clustering techniques.
Ahmed [80] used DBSCAN clustering and an improved
digest algorithm to classify emails. He used the spam assassin
dataset for the development of his model. This approach
significantly enhances filtering accuracy by 30 percent
against the newly proposed algorithms and increases spam
detection tolerance against increased spammer’s obfuscation
effort while maintaining successful email detection at a
comparable level of older filtering methods.

Sharma and Rastogi [78] used a machine learning al-
gorithm (k-mean clustering) with local concentration-based
content extraction for spam detection and got a handsome
accuracy level. Cabrera-Le6n et al. [81] used an artificial
neural network that contains two necessary steps. In the first
step, they do preprocessing and then in the second step they
process cleaned data for computing the results. These steps
are based on distinct models of computation. Its accuracy
was 95%. Narisawa et al. [83] introduced an unsupervised
approach to identify a spam document from a collection of
documents based on string equivalence. This solution was a
language-independent and scalable method for spam de-
tection. It was tested on the Japanese web forum. Among all
the researchers, Sharma Rastogi [78] and Ahmed et al. got
the highest accuracy level using DBSCAN and K-mean al-
gorithm, respectively, for the email spam detection. Ahmed
[80] used spam assassin dataset for the implementation of
his model.

5.3. Reinforcement Machine Learning. Reinforcement
learning is another type of machine learning which works on
reward taken from its environment. It takes suitable actions
to make or get the maximum reward in a given situation
[84]. Many machines and software employ it to find the
optimal path to take in a specific situation.

The main difference between supervised and rein-
forcement learning is that supervised learning needs training
data with correct labels. Simultaneously, there is no correct
label in reinforcement learning, but the agent decides what
to do to perform the given task. The agent is bound to learn
from its experience if there is no training dataset [85].
Figure 14 illustrates the simple reinforcement learning
process in which an agent passes an action to the envi-
ronment. The environment sends back the reward of action
and state to the agent. Let us discuss some research work
done on email spam detection using reinforcement learning.

Chiu et al. [86] propose an alliance-based approach to
classify, identify, and exchange relevant information on
spam email contents. Their spam filter consisted of a rough
set theory, a machine learning classifier (XCS), and a genetic
algorithm. They used several metrics to evaluate the model
results. From their paper, two main conclusions can be

14

Security and Communication Networks

TaBLE 3: Comparison of unsupervised learning techniques used for spam filtering.

Authors Algorithm used Dataset Acz;r)acy Advantages Disadvantages
0
Imbroved dicest and Spam The proposed model divides email into ~ The speed of the proposed
Ahmed [80] P 5 pain 96.7 fixed-length strings before clustering, model depends upon the
DBSCAN assassin . . .
which gives better accuracy length of strings
Sharma and It is discretized using supervised While comparing multiple
. K-means clustering UCI dataset 92.76 attribute filters and also used 10-fold algorithms, results take a
Rastogi [78] g .
cross-validation handsome amount of time
Cabrera- Unsupervised The system 1s rObus.t to word Bad false negative and false
. . . obfuscation, used in spam, o
Ledn et al. artificial neural ~ Enron email 95 . . positive rate are around 11 and
independently of the use of stemming .
[81] networks . 4%, respectively
or lemmatization
Sasaki and Spherical k-means . The model uses various contents of Updating spam contents and
. . Ling-spam 96.04 - relevance feedback is not in the
Shinnou [82] algorithm spam emails
proposed model
Narisawa Equivalence Japanese web The model was scalable and language- As the model uses N-Gram of
. - 95 . documents, so results depend
et al. [83] relations of strings forums independent « »
on the value of “n
Social I .
Tan et al. [79] UNIK and SD2 network sites 93 It is highly robust to an increased level The proposed system cannot
data of spam attacks handle short URLs

Action

FIGURE 14: Basic structure of reinforcement learning.

drawn, and they are given as follows: The spam filter is based
on a combination of rough set theory, genetic algorithm, and
machine classifier XCS. Many metrics are used to assess
spam mails filtering results by an alliance-based approach
and provide a reasonable output indicator. They may draw
two key conclusions which are the following:

(a) The rules that have been shared from many other
email servers do help the spam filter to block more
spam emails than before

(b) A blend of several techniques increases precision and
decreases false positives for the spam detection task

5.3.1. Discussion and Learned Lesson. Reinforcement ma-
chine learning is a type of machine learning in which an
agent communicates with its environment by producing
behaviors and generating results or rewards. This method
allows the software agents to find an optimal solution in a

specific domain. An agent acts with the environment and
gets the error or reward. Chiu et al. [86] used this approach
on spam emails. The spam filter was built based on a mixture
of rough set theory, genetic algorithm, an XCS classifier
system, and good performance measure. Lai et al. [87]
propose a practical approach for spam detection using rough
set theory and XML format. They use reinforcement learning
for the management exchange of spam rules. They suggest
that outdated rules should be discarded as spammers are
constantly changing their methods for doing spam. They
further conclude that the spam filter can block more spam
emails than a standalone system by sharing spam rules
between the email servers. Samadi et al. [85] and Dou et al.
[88] also used reinforcement learning techniques to detect
spam and spammers.

6. Overall Insights of the Machine Learning
Algorithms for Spam Detection

Figure 15 illustrates the percentage of work on email spam
detection discussed in this survey. After discussing the lit-
erature, we observed that most of the datasets used to train,
test, and implement different models are synthetically cre-
ated. There is a lack of examples for analysis and the
complexity of labeling all the supervised model data. So, the
classifiers’ results are not 100% trustworthy because of the
synthetic datasets used for the models’ training. These are
not representative of real-world spam reviews as vast
numbers of machine learning models are currently used for
email spam detection or filtering. The three learning algo-
rithms, logistic regression, Naive Bayes, and support vector
machine (SVM), are widely used, and they outperform the
other learning algorithms in most of the discussed studies.

SVM generally gives the best performance; Naive Bayes
and logistic regression commonly beat it. But SVM should not
be considered merely as the best algorithm since it is not
compared to all others. Multiple learning models on various

Security and Communication Networks

datasets should be evaluated in future studies using several
different feature engineering methods. This survey paper
elaborates the existing machine learning-based spam filtering
techniques and models by exploring and observing numerous
methods. The conclusions are discussed by the overview of
several spam filtering techniques and summarizing the accu-
racy of different proposed approaches based on various pa-
rameters. We conclude that all the spam filtering techniques
perform well. Some have outstanding results, while some are
trying to use other methods to increase the accuracy level.
Though all are effective, the spam filtering system still lacks
some, which are the primary concern for researchers. They are
trying to generate next-generation spam filtering processes that
can work on multimedia data and prominently filter spam
emails. Table 4 is reproduced from Awad and Elseuofi [13].
Table 4 summarizes the performance of various machine
learning models on 100 selected features.

7. Research Gaps and Open Research Problems

This section discusses the research gaps and open research
problems of the spam detection and filtration domain. In
the future, experiments and models should be trained on
real-life data rather than manually created datasets, be-
cause, in the various article, the models trained on artificial
datasets perform very poorly on real-life data. Currently,
supervised, unsupervised, and reinforcement learning al-
gorithms are used for spam detection, but we can get higher
accuracy and efficiency by using hybrid algorithms in the
future. Feature extraction can be improved in the future by
using deep learning for feature extraction. Using clustering
techniques for spam filtering relevance feedback using
dynamic updating can better cluster spam and ham. Along
with machine learning, blockchain models and concepts
can also be used for email spam detection in the future.
Experts in linguistics and psycholinguistics can collaborate
in the future for manual annotation of datasets, which will
result in the development of effective and standard spam
datasets with high dimensionality. In future, spam filters
can be designed with faster processing and classification
accuracy using Graphics Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs), which offer low
energy consumption, flexibility, and real-time processing
capabilities. Moreover, future research should concentrate
on the availability of standard labeled datasets for re-
searchers to train classifiers and the addition of more at-
tributes to the dataset to improve the accuracy and
reliability of spam detection models, such as the spammer’s
IP address and the location. The following are some other
future research directions and open research problems in
the domain of spam detection.

(i) Some studies considered header, subject of the
email, and message body as a feature for spam
classification. While these features are not enough
for fully accurate results, manual feature selection
and features should also be.

(ii) Almost all researchers presented their results based
on accuracy, precision, recall, etc., while the time

15

. Supervised Learning

. Unsupervised learning

Reinforcement Learning

FiGure 15: Ratio of machine learning techniques for email spam
detection.

TaBLE 4: Performance of various machine learning models on 100
selected features.

Algorithm Recall Precision Accuracy
Naive Bayes 98.46 99.66 99.46
SVM 95.00 93.12 96.90
KNN 97.14 87.00 96.20
Neural network 96.92 96.02 96.83
AIS 93.68 97.75 96.23
Decision tree 94.36 91.35 93.55

complexity of machine learning models should be
considered an evaluation metric.

(iii) Some researchers show promising results in the
process of feature extraction using a bag of words.
They claim that the email header is as important
for spam detection as the content of the body. So,
deep feature extraction of the header line should be
considered.

(iv) Fault tolerance, self-learning, and quick response
time can be better by using comprehensive feature
engineering and an accurate preprocessing phase.

(v) Deep learning models with dynamic updating of
feature space are needed to implement for better
spam classification. Most of the current filters
cannot update their feature space.

(vi) The security of spam detection and filtration sys-
tem is needed for better accuracy and reliable
results.

16

(vii) The false positive rate of many models is still higher
than required. It must be reduced to the smallest
possible value.

(viii) Few spam filters work on image spam detection
and filtration. Expert spammers also use images for
spam messages, so it should be considered in
detecting spam.

(ix) Real-time spam classification is much needed as
most of the proposed models cannot work on real-
time data.

(x) Labeled data is one of the major issues in spam
detection. There are a few new labeled and up-to-
date datasets for this purpose.

(xi) Multilingual spam detection is also a significant
research area that can be explored for better spam
detection systems. There is less work done on
multilingual spam detection using deep learning
techniques.

(xii) Semisupervised and federated learning techniques
can be used to enhance spam detection in various
IoT and email frameworks.

(xiii) A combination of linguistic features for the spam
detection approach can also be explored.

(xiv) The research community ignores the identification
of spammers and spammer networks.

(xv) Many researchers manually annotate data, using
spam features that they think to be accurate. As a
result, the evaluation results of the detection sys-
tems that they propose are doubted. The ideal
solution for this problem has yet to be discovered.

(xvi) There is a lack of a robust method of dealing with
challenges regarding the spam filters’ security. An
attack of this nature can be a casual, exploratory, or
targeted attack. The deep learning techniques with
blockchain technology can be used for this
purpose.

8. Challenges of Spam Detection

Some critical challenges faced by spam filters are discussed as
follows:

(i) The growing amount of data on the Internet with
various new features is a big challenge for spam
detection systems.

(ii) Features’ evaluation from several dimensions such
as temporal, writing styles, semantic, and statistical
ones is also challenging for spam filters.

(iii) Most of the models are trained on balanced datasets,
while self-learning models are not possible.

(iv) Many spam detection models face adversarial ma-
chine learning attacks that will decrease their ef-
fectiveness. Adversaries can throw a variety of
attacks during the training and testing of ML
models. Adversaries can harm training data to cause
a classifier to classify the data incorrectly (poisoning

Security and Communication Networks

attack), create unfavorable samples during testing to
evade detection (evasion attack), and obtain sen-
sitive training data via a learning model (privacy
attack)

(v) Deep fake is another big challenge that is being faced
by spam detection systems. To generate, modify,
and style pictures and videos, neural network
models such as GPT-2,3 and image generation
models like BigGAN, StyleGAN, and CycleGAN are
adopted. Deep fakes can be used to disseminate false
information.

9. Conclusion

In the last two decades, spam detection and filtration gained
the attention of a sizeable research community. The reason
for a lot of research in this area is its costly and massive effect
in many situations like consumer behavior and fake reviews.
The survey covers various machine learning techniques and
models that the various researchers have proposed to detect
and filter spam in emails and IoT platforms. The study
categorized them as supervised, unsupervised, reinforce-
ment learning, etc. The study compares these approaches
and provides a summary of learned lessons from each
category. This study concludes that most of the proposed
email and IoT spam detection methods are based on su-
pervised machine learning techniques. A labeled dataset for
the supervised model training is a crucial and time-con-
suming task. Supervised learning algorithms SVM and Naive
Bayes outperform other models in spam detection. The study
provides comprehensive insights of these algorithms and
some future research directions for email spam detection
and filtering.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by Taif University Researchers’
Supporting Project number TURSP-2020/314, Taif Uni-
versity, Taif, Saudi Arabia.

References

[1] H. Faris, A. M. Al-Zoubi, A. A. Heidari et al., “An intelligent
system for spam detection and identification of the most
relevant features based on evolutionary random weight net-
works,” Information Fusion, vol. 48, pp. 67-83, 2019.

[2] E. Blanzieri and A. Bryl, “A survey of learning-based tech-
niques of email spam filtering,” Artificial Intelligence Review,
vol. 29, no. 1, pp. 63-92, 2008.

[3] A. Alghoul, S. Al Ajrami, G. Al Jarousha, G. Harb, and
S. S. Abu-Naser, “Email classification using artificial neural
network,” International Journal for Academic Development,
vol. 2, 2018.

Security and Communication Networks

[4] N. Udayakumar, S. Anandaselvi, and T. Subbulakshmi,
“Dynamic malware analysis using machine learning algo-
rithm,” in Proceedings of the 2017 International Conference on
Intelligent Sustainable Systems (ICISS), IEEE, Palladam, India,
December 2017.

[5] S. O. Olatunji, “Extreme Learning machines and Support
Vector Machines models for email spam detection,” in Pro-
ceedings of the 2017 IEEE 30th Canadian Conference on
Electrical and Computer Engineering (CCECE), IEEE,
Windsor, Canada, April 2017.

[6] J. Dean, “Large scale deep learning,” in Proceedings of the
Keynote GPU Technical Conference, San Jose, CA, USA, 2015.

[7] J. K. Kruschke and T. M. Liddell, “Bayesian data analysis for
newcomers,” Psychonomic Bulletin & Review, vol. 25, no. 1,
pp. 155-177, 2018.

[8] K. S. Adewole, N. B. Anuar, A. Kamsin, K. D. Varathan, and
S. A. Razak, “Malicious accounts: dark of the social networks,”
Journal of Network and Computer Applications, vol. 79,
pp. 41-67, 2017.

[9] A. Barushka and P. Héjek, “Spam filtering using regularized
neural networks with rectified linear units,” in Proceedings of
the Conference of the Italian Association for Artificial Intel-
ligence, Springer, Berlin, Germany, November 2016.

[10] F.Jamil, H. K. Kahng, S. Kim, and D. H. Kim, “Towards secure
fitness framework based on IoT-enabled blockchain network
integrated with machine learning algorithms,” Sensors, vol. 21,
no. 5, p. 1640, 2021.

[11] M. H. Arif, J. Li, M. Igbal, and K. Liu, “Sentiment analysis and
spam detection in short informal text using learning classifier
systems,” Soft Computing, vol. 22, no. 21, pp. 7281-7291, 2018.

[12] X. Zheng, X. Zhang, Y. Yu, T. Kechadi, and C. Rong, “ELM-
based spammer detection in social networks,” The Journal of
Supercomputing, vol. 72, no. 8, pp. 2991-3005, 2016.

[13] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: approaches,
datasets, and comparative study,” Journal of Information Security
and Applications, vol. 50, Article ID 102419, 2020.

[14] N. Kumar and S. Sonowal, “Email spam detection using
machine learning algorithms,” in Proceedings of the 2020
Second International Conference on Inventive Research in
Computing Applications (ICIRCA), pp. 108-113, Coimbatore,
India, 2020.

[15] I Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-
based file signatures for malware detection,” ICEIS, vol. 9,
no. 2, pp. 317-320, 2009.

[16] S. Cresci, M. Petrocchi, A. Spognardi, and S. Tognazzi, “On
the capability of evolved spambots to evade detection via
genetic engineering,” Online Social Networks and Media,
vol. 9, pp. 1-16, 2019.

[17] A.J. Saleh, A. Karim, B. Shanmugam et al., “An intelligent
spam detection model based on artificial immune system,”
Information, vol. 10, no. 6, p. 209, 2019.

[18] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised
machine learning: a review of classification techniques,”
Emerging artificial intelligence applications in computer en-
gineering, vol. 160, pp. 3-24, 2007.

[19] E. Blanzieri and A. Bryl, E-mail Spam Filtering with Local
SVM Classifiers, University of Trento, Trento, Italy, 2008.

[20] H. Bhuiyan, A. Ashiquzzaman, T. Islam Juthi, S. Biswas, and
J. Ara, “A survey of existing e-mail spam filtering methods
considering machine learning techniques,” Global Journal of
Computer Science and Technology, vol. 18, 2018.

[21] A. Asuncion and D. Newman, “UCI machine learning re-
pository,” 2007, https://archive.ics.uci.edu/ml/index.php.

17

[22] T. Vyas, P. Prajapati, and S. Gadhwal, “A survey and eval-
uation of supervised machine learning techniques for spam
e-mail filtering,” in Proceedings of the 2015 IEEE international
conference on electrical, computer and communication tech-
nologies (ICECCT), IEEE, Tamil Nadu, India, March 2015.

[23] L. N. Petersen, “The ageing body in monty Python live
(mostly),” European Journal of Cultural Studies, vol. 21, no. 3,
pp. 382-394, 2018.

[24] L. Zhuang, J. Dunagan, D. R. Simon, H. J. Wang, and
J. D. Tygar, “Characterizing botnets from email spam rec-
ords,” LEET, vol. 8, pp. 1-9, 2008.

[25] W. N. Gansterer, A. G. K. Janecek, and R. Neumayer, “Spam
filtering based on latent semantic indexing,” in Survey of Text
Mining II, pp. 165-183, Springer, New York, NY, USA, 2008.

[26] D. Lee, M. J. Lee, and B. J. Kim, “Deviation-based spam-
filtering method via stochastic approach,” EPL (Europhysics
Letters), vol. 121, no. 6, Article ID 68004, 2018.

[27] A. K. Jain and B. B. Gupta, “Towards detection of phishing
websites on client-side using machine learning based ap-
proach,” Telecommunication Systems, vol. 68, no. 4,
pp. 687-700, 2018.

[28] M. F. N. K. Pathan and V. Kamble, “A review various
techniques for content based spam filtering,” Engineering and
Technology, vol. 4, 2018.

[29] A. K. Jain and B. B. Gupta, “A novel approach to protect
against phishing attacks at client side using auto-updated
white-list,” EURASIP Journal on Information Security,
vol. 2016, no. 1, p. 9, 2016.

[30] A. Bhowmick and S. M. Hazarika, “Machine learning for E-mail
spam filtering: review, techniques and trends,” 2016, https://www.
researchgate.net/publication/303812063_Machine_Learning_for_
E-mail_Spam_Filtering ReviewTechniques_and_Trends.

[31] M. Bassiouni, M. Alj, and E. A. El-Dahshan, “Ham and spam
e-mails classification using machine learning techniques,”
Journal of Applied Security Research, vol. 13, no. 3, pp. 315-
331, 2018.

[32] J. R. Méndez, T. R. Cotos-Yaiez, and D. Ruano-Ordds, “A
new semantic-based feature selection method for spam fil-
tering,” Applied Soft Computing, vol. 76, pp. 89-104, 2019.

[33] R. Alguliyev and S. Nazirova, “Iwo approaches on imple-
mentation of CBR and CRM technologies to the spam filtering
problem,” Journal of Information Security, vol. 3, no. 1, Article
ID 16724, 2012.

[34] E. Alpaydin, Introduction to Machine Learning, MIT Press,
Cambridge, UK, 2020.

[35] E. P. Sanz, J. M. Gémez Hidalgo, and J. C. Cortizo Pérez,
“Chapter 3 email spam filtering,” Advances in Computers,
vol. 74, pp. 45-114, 2008.

[36] S. Pitchaimani, V. P. Kodaganallur, and C. Newell, “Systems
and methods for controlling email access,” Google Patents,
2020.

[37] A.d. A. Garcez, M. Gori, L. C. Lamb, L. Serafini, M. Spranger,
and S. N. Tran, “Neural-symbolic computing: an effective
methodology for principled integration of machine learning
and reasoning,” Journal of Applied Logic, vol. 6, 2019.

[38] A. Singh, N. Thakur, and A. Sharma, “A review of supervised
machine learning algorithms,” in Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global
Development (INDIACom), IEEE, New Delhi, India, March
2016.

[39] J. Tanha, M. van Someren, and H. Afsarmanesh, “Semi-su-
pervised self-training for decision tree classifiers,” Interna-
tional Journal of Machine Learning and Cybernetics, vol. 8,
no. 1, pp. 355-370, 2017.

https://archive.ics.uci.edu/ml/index.php
https://www.researchgate.net/publication/303812063_Machine_Learning_for_E-mail_Spam_Filtering_ReviewTechniques_and_Trends
https://www.researchgate.net/publication/303812063_Machine_Learning_for_E-mail_Spam_Filtering_ReviewTechniques_and_Trends
https://www.researchgate.net/publication/303812063_Machine_Learning_for_E-mail_Spam_Filtering_ReviewTechniques_and_Trends

18

(40]

[41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

[55]

(56]

A. Subasi, S. Alzahrani, A. Aljuhani, and M. Aljedani,
“Comparison of decision tree algorithms for spam E-mail
filtering,” in Proceedings of the 2018 Ist International Con-
ference on Computer Applications & Information Security
(ICCAIS), 1IEEE, Riyadh, Saudi Arabia, April 2018.

W. Hijawi, H. Faris, J. Alqatawna, A. Z. Ala’M, and I. Aljarah,
“Improving email spam detection using content based feature
engineering approach,” in Proceedings of the Applied Electrical
Engineering and Computing Technologies (AEECT), IEEE,
IEEE, Aqaba, Jordan, 2017.

D. DeBarr and H. Wechsler, “Using social network analysis
for spam detection,” in Proceedings of the International
Conference on Social Computing, Behavioral Modeling, and
Prediction, Springer, Ethesda, MD, USA, March 2010.

H. Faris, I. Aljarah, and B. Al-Shboul, “A hybrid approach
based on particle swarm optimization and random forests for
e-mail spam filtering,” in Proceedings of the International
Conference on Computational Collective Intelligence, Springer,
Halkidiki, Greece, September 2016.

S. E. Kille, Mapping Between X. 400 and RFC 822, University
College Department of Computer Science, London, UK, 1986.
S. Jiang, G. Pang, M. Wu, and L. Kuang, “An improved
K-nearest-neighbor algorithm for text categorization,” Expert
Systems with Applications, vol. 39, no. 1, pp. 1503-1509, 2012.
H. Takhmiri and A. Haroonabadi, “Identifying valid email
spam emails using decision tree,” International Journal of
Computer Applications Technology and Research, vol. 5, 2016.
L. Rish, “An empirical study of the naive Bayes classifier,” in
IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, University of British Columbia, Computer Sci-
ence Department, Vancouver, Canada, 2001.

M. Verma and S. Sofat, “Techniques to detect spammers in
twitter-a survey,” International Journal of Computer Appli-
cations, vol. 85, no. 10, 2014.

J. Chhikara, R. Dahiya, N. Garg, and M. Rani, “Phishing &
anti-phishing techniques: case study,” International Journal of
Advanced Research in Computer Science and Software Engi-
neering, vol. 3, no. 5, 2013.

S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden
Markov model: analysis and applications,” Machine Learning,
vol. 32, no. 1, pp. 41-62, 1998.

P. S. Keila and D. B. Skillicorn, “Structure in the Enron email
dataset,” Computational & Mathematical Organization The-
ory, vol. 11, no. 3, pp. 183-199, 2005.

W. Li, W. Meng, Z. Tan, and Y. Xiang, “Design of multi-view
based email classification for IoT systems via semi-supervised
learning,” Journal of Network and Computer Applications,
vol. 128, pp. 56-63, 2019.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to
support vector classification,” 2003, https://www.csie.ntu.edu.
tw/%7Ecjlin/.

Q. Wang, Y. Guan, and X. Wang, “SVM-based spam filter
with active and online learning,” in Proceedings of the Fif-
teenth Text REtrieval Conference, TREC 2006, NIST, Gai-
thersburg, MD, USA, November 2006.

M. T. Banday and T. R. Jan, “Effectiveness and limitations of
statistical spam filters,” 2009, https://arxiv.org/ftp/arxiv/
papers/0910/0910.2540.pdf.

W. Peng, L. Huang, J. Jia, and E. Ingram, “Enhancing the
naive bayes spam filter through intelligent text modification
detection,” in Proceedings of the 2018 17th IEEE International
Conference on Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference on Big

(571

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

[66]

(67]

(68]

(69]

(70]

(71]

(72]

(73]

Security and Communication Networks

Data Science And Engineering (TrustCom/BigDataSE), 1EEE,
New York, NY, USA, August 2018.

D. Steinberg, “CART: classification and regression trees,” in
The Top Ten Algorithms in Data Mining, pp. 193-216,
Chapman and Hall/CRC, Boca Raton, FL, USA, 2009.

Z. Zeng, X. Zheng, G. Chen, and Y. Yu, “Spammer detection
on Weibo social network,” in Proceedings of the 2014 IEEE 6th
International Conference on Cloud Computing Technology and
Science, IEEE, Singapore, December 2014.

K. Lei, Y. Liu, S. Zhong et al., “Understanding user behavior in
Sina Weibo online social network: a community approach,”
IEEE Access, vol. 6, pp. 13302-13316, 2018.

C. Lin, J. He, Y. Zhou, X. Yang, K. Chen, and L. Song, “Analysis
and identification of spamming behaviors in sina weibo micro-
blog,” in Proceedings of the 7th Workshop on Social Network
Mining and Analysis, ACM, Chicago, IL, USA, August 2013.

S. O. Olatunji, “Improved email spam detection model based
on support vector machines,” Neural Computing & Appli-
cations, vol. 31, no. 3, pp. 691-699, 2019.

K. Tretyakov, “Machine learning techniques in spam filter-
ing,” in Data Mining Problem-Oriented Seminar, vol. 3,
no. 177, pp. 60-79, 2004.

N. F. Rusland, N. Wahid, S. Kasim, and H. Hafit, “Analysis of
Naive Bayes algorithm for email spam filtering across multiple
datasets,” in Proceedings of the IOP Conference Series: Ma-
terials Science and Engineering, IOP Publishing, Busan, Re-
public of Korea, 2017.

A. K. Sharma and S. Sahni, “A comparative study of classi-
fication algorithms for spam email data analysis,” Interna-
tional Journal on Computer Science and Engineering, vol. 3,
no. 5, pp. 1890-1895, 2011.

A. Singh and S. Batra, “Ensemble based spam detection in
social ToT using probabilistic data structures,” Future Gen-
eration Computer Systems, vol. 81, pp. 359-371, 2018.

N. Sutta, Z. Liu, and X. Zhang, “A study of machine learning
algorithms on email spam classification,” in Proceedings of the
35th International Conference, ISC High Performance 2020,
vol. 69, pp. 170-179, Frankfurt, Germany, 2020.

H. Xu, W. Sun, and A. Javaid, “Efficient spam detection across
online social networks,” in Proceedings of the 2016 IEEE In-
ternational Conference on Big Data Analysis (ICBDA), IEEE,
Hangzhou, China, March 2016.

H. Faris, I. Aljarah, and J. F. Algatawna, “Optimizing feedforward
neural networks using krill herd algorithm for e-mail spam
detection,” in Proceedings of the 2015 IEEE Jordan Conference on
Applied Electrical Engineering and Computing Technologies
(AEECT), IEEE, Amman, Jordan, November 2015.

A.H. Wang, “Detecting spam bots in online social networking
sites: a machine learning approach,” in Proceedings of the IFIP
Annual Conference on Data and Applications Security and
Privacy, Springer, Berlin, Germany, June 2010.

Z. Guo, Y. Shen, A. K. Bashir et al., “Robust spammer de-
tection using collaborative neural network in Internet of thing
applications,” IEEE Internet of Things Journal, vol. 8, 2020.
A. Makkar and N. Kumar, “An efficient deep learning-based
scheme for web spam detection in IoT environment,” Future
Generation Computer Systems, vol. 108, pp. 467-487, 2020.
M. Zavvar, M. Rezaei, M. Rezaei, and S. Garavand, “Email
spam detection using combination of particle swarm opti-
mization and artificial neural network and support vector
machine,” International Journal of Modern Education and
Computer Science, vol. 8, no. 7, pp. 68-74, 2016.

E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid,
A. O. Adetunmbi, and O. E. Ajibuwa, “Machine learning for

https://www.csie.ntu.edu.tw/%7Ecjlin/
https://www.csie.ntu.edu.tw/%7Ecjlin/
https://arxiv.org/ftp/arxiv/papers/0910/0910.2540.pdf
https://arxiv.org/ftp/arxiv/papers/0910/0910.2540.pdf

Security and Communication Networks

(74]

[75]

[76]

(771

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

email spam filtering: review, approaches and open research
problems,” Heliyon, vol. 5, no. 6, Article ID €01802, 2019.
M. Diale, T. Celik, and C. Van Der Walt, “Unsupervised
feature learning for spam email filtering,” Computers ¢
Electrical Engineering, vol. 74, pp. 89-104, 2019.

Z. Ghahramani, “Unsupervised learning,” in Summer School
on Machine LearningSpringer, Berlin, Germany, 2003.

R. Ahuja, A. Chug, S. Gupta, P. Ahuja, and S. Kohli, “Clas-
sification and clustering algorithms of machine learning with
their applications,” in Nature-Inspired Computation in Data
Mining and Machine Learning, pp. 225-248, Springer, Cham,
Switzerland, 2020.

W.-F. Hsiao and T.-M. Chang, “An incremental cluster-based
approach to spam filtering,” Expert Systems with Applications,
vol. 34, no. 3, pp. 1599-1608, 2008.

A. Sharma and V. Rastogi, “Spam filtering using K mean
clustering with local feature selection classifier,” International
Journal of Computer Applications, vol. 108, no. 10, 2014.

E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao, “Unik:
unsupervised social network spam detection,” in Proceedings
of the 22nd ACM international conference on Information &
Knowledge Management, ACM, San Francisco, CA, USA,
October 2013.

A. Ahmed, “Improved spam detection using DBSCAN and
advanced digest algorithm,” International Journal of Com-
puter Applications, vol. 69, 2013.

Y. Cabrera-Ledn, P. G. Baez, and C. P. Sudrez-Araujo, “Non-
email spam and machine learning-based anti-spam filters:
trends and some remarks,” in Proceedings of the International
Conference on Computer Aided Systems Theory, Springer, Las
Palmas de Gran Canaria, Spain, February 2017.

M. Sasaki and H. Shinnou, “Spam detection using text clus-
tering,” in Proceedings of the 2005 International Conference on
Cyberworlds (CW’05), IEEE, Singapore, November 2005.

K. Narisawa, H. Bannai, K. Hatano, and M. Takeda, “Un-
supervised spam detection based on string alienness mea-
sures,” in Proceedings of the International Conference on
Discovery Science, Springer, Sendai, Japan, October 2007.

P. Lison, An Introduction to Machine Learning, Language
Technology Group, Edinburgh, UK, 2015.

S. Smadi, N. Aslam, and L. Zhang, “Detection of online
phishing email using dynamic evolving neural network based
on reinforcement learning,” Decision Support Systems,
vol. 107, pp. 88-102, 2018.

Y.-F. Chiu, C.-M. Chen, B. Jeng, and H.-C. Lin, “An alliance-
based anti-spam approach,” in Proceedings of the Third In-
ternational Conference on Natural Computation (ICNC 2007),
IEEE, Haikou, China, August 2007.

G.-H. Lai, C.-M. Chen, and C.-S. Laih, T. Chen, A collabo-
rative anti-spam system,” Expert Systems with Applications,
vol. 36, no. 3, pp. 6645-6653, 2009.

Y. Dou, G. Ma, P. S. Yu, and S. Xie, “Robust spammer de-
tection by nash reinforcement learning,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery ¢ Data Mining, ACM, Virtual Event CA, USA, July
2020.

19

Hindawi

Security and Communication Networks
Volume 2022, Article ID 3306098, 12 pages
https://doi.org/10.1155/2022/3306098

Research Article

WILEY | Q@) Hindawi

A Method for Identifying Tor Users Visiting Websites Based on
Frequency Domain Fingerprinting of Network Traffic

Yuchen Sun ®,"? Xiangyang Luo ,12 Han Wang,l’2 and Zhaorui Ma'?

IState Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, Henan, China
°Key Laboratory of Cyberspace Situation Awareness of Henan Province, Zhengzhou 450001, Henan, China
3Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China

Correspondence should be addressed to Xiangyang Luo; xiangyangluo@126.com

Received 16 October 2021; Revised 19 December 2021; Accepted 12 January 2022; Published 31 January 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Yuchen Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although the anonymous communication network Tor can protect the security of users’ data and privacy during their visits to the
Internet, it also facilitates illegal users to access illegal websites. Website fingerprinting attacks can identify the websites that users
are visiting to discern whether they are performing illegal operations. Existing methods tend to manually extract the traffic features
of users visiting websites and construct machine learning or deep learning models to classify the features. While these methods can
be effective in classifying unknown website traffic, the effect of classification in the use of defensive measures or onion service
scenarios is not yet ideal. This paper proposes a method to identify Tor users visiting websites based on frequency domain
fingerprinting of network traffic (FDF). We extract the direction and length features of circuit sequences in access traffic and
combine and transform them into the frequency domain. The classification of access traffic is accomplished by using a deep
learning classification model combining CNN, FC, and Self-Attention. In this paper, the proposed FDF method is experimentally
validated in common scenarios of Tor networks. The results show that FDF outperforms the existing methods for classification in
different Tor scenarios. It can achieve 98.8% and 94.3% classification accuracy in undefended and WTF-PAD defense scenarios,
respectively. In the onion service scenario, the accuracy is improved by 4.7% over the current state-of-the-art Tik-Tok method.

1. Introduction

As people’s awareness of protecting personal privacy con-
tinues to increase, more and more users are beginning to use
anonymous communication systems to interact with the
outside world. However, many criminals have also used
anonymous communication systems to conduct illegal op-
erations. Some criminals have established illegal trading
websites. Users can purchase leaked database information
and even network attack services through these websites.
Driven by interests, a large number of network intrusions
have spawned on the Internet. Tor is currently the most
popular anonymous communication system, and it provides
privacy to over 200 million users every day [1]. Tor protects
the anonymity of user access by creating an encrypted link
with three-hop relays. These relays are randomly selected,
prevented from being traced through the bridge and

pluggable transmission [2], and the links are changed pe-
riodically as the client accesses the server. Although it is
difficult to directly crack the Tor anonymous communica-
tion system, previous studies have shown that network traffic
analysis can affect the security of Tor [3-19], especially
website fingerprint (WF) attacks. When users visit each
website, they will generate different network traffic features,
such as different numbers of data packets and different traffic
burst patterns. In a WF attack, the enforcer intercepts
network traffic and extracts the features of the traffic packets
in an encrypted connection between the monitored user and
the entry node of Tor. The classifier determines whether the
intercepted traffic is associated with the website of interest to
the enforcer, and if the traffic matches the classifier, it in-
dicates that the monitored user is visiting the website of
interest to the enforcer. The WF attack allows the enforcer to
determine whether the monitored user is browsing illegal

mailto:xiangyangluo@126.com
https://orcid.org/0000-0003-3479-3590
https://orcid.org/0000-0001-6062-2950
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3306098

websites, especially websites that conduct black transactions,
which is of great significance for combating illegal crimes.

The original intention of Tor is to provide users with
anonymity during data communication. Tor should try to
avoid the occurrence of WF attacks so as not to affect its
security. Therefore, defense measures against WF attacks are
proposed. But for enforcers, due to a large number of illegal
activities in Tor, it is necessary to monitor criminals and
illegal websites. Therefore, it is necessary to conduct further
research on WF attacks on Tor that uses defensive measures.
The proposed defense measures basically reduce the bursts
in the original Tor traffic and confuse the traffic, which
significantly reduces the efficiency of WEF attacks. For
measures that may be used by Tor in the future, it is im-
portant to improve their recognition accuracy. In addition,
the onion service [20] is the most secure service provided by
Tor, which contains a large number of illegal transactions.
WEF attacks on Tor networks using onion service are also of
interest for research. To access the website in the onion
service, users need to establish more complex links and have
a more complete security verification mechanism. This
makes the access traffic mixed with a lot of traffic noise
generated for the purpose of authentication. Existing
methods for fingerprinting Tor traffic using the onion service
are not yet very effective. These methods can detect the
behavioral patterns of users visiting different websites from
different features such as timing and direction of traffic.
However, none of them can reduce the influence of traffic
noise on fingerprint recognition.

To address the shortcomings in existing studies, this
paper adopts a frequency domain transformation method to
deal with Tor traffic. Unlike the existing studies, the fre-
quency domain processing method can effectively reduce the
impact of noise on fingerprint recognition when users access
the server. In particular, for scenarios where defensive
measures and onjon services are used, the impact of noise on
fingerprint recognition is greater due to the increased se-
curity mechanisms. We achieve more significant results in
these environments than the existing methods.

The contributions of our work are as follows:

(1) We propose FDF, a fingerprint recognition method
for websites based on DWT frequency domain processing.
We compared several frequency domain processing
methods and found that the wavelet transform works best
through theoretical as well as experimental analysis. Due to
the properties of the frequency domain transform, we
combine for the first time the signal element sequence di-
rection as well as length features for the input of a deep
learning model.

(2) We have improved the DF [15] model. The Self-
Attention module is added to the original model to support
intelligent and eflicient analysis of website traffic. In the
closed-world scenario (we assume that the monitored user
only visits the websites we are interested in. The performance
of the classifier can be observed more clearly through the
closed world), the classification accuracy on Undefended,
WTF-PAD [21], and Onion Service [20] datasets are better
than the existing models. Especially for the Onion Service
[20] dataset, the accuracy of FDF has reached 70.7%, while

Security and Communication Networks

the accuracy of the current state-of-the-art Tik-Tok [18]
method is only 66.0%.

(3) We evaluated FDF in a more realistic open-world
scenario (we assume that monitored users can randomly
visit different websites. These sites can be sites that we are
interested in or sites that we are not interested in. Through
the open world, a more realistic environment can be sim-
ulated), where we collected a dataset containing 40,000
unmonitored websites and achieved more desirable Preci-
sion and Recall in both undefended and WTE-PAD [21]
environments, indicating that FDF is effective in real
environments.

The remaining sections of this paper are organized as
follows. The second part is the background and related work,
which describes the existing approaches to the problem of
website fingerprinting for the Tor system. The third part is
the problem description, describing the process of finger-
print identification of the website. The fourth part introduces
the FDF attack process in detail and explains the key steps of
the model in principle. The fifth part introduces the ex-
perimental dataset, comparative experiments, and experi-
mental results. The sixth part discusses the problems in the
experiment of the method proposed. Finally, the seventh
part is the conclusion of this paper.

2. Background and Related Work

For website fingerprint attacks, the data processing method
of network traffic and the choice of classifier have a sig-
nificant impact on its attack efficiency. The website finger-
printing methods that have performed well in recent years
are shown in Table 1. In the earliest research, researchers
used machine learning to classify website traffic [5-13]. The
WE attack was first evaluated by Herrmann et al. [5] in 2009.
In 2011, Panchenko et al. [6] used the Herrmann et al.
dataset and employed an SVM classifier to classify Tor
network traffic by various features such as packet traffic and
time. The K-NN attack was proposed by Wang et al. [7] in
2014. The method employs a K-Nearest Neighbor (K-NN)
classifier that uses a combination of features to evaluate the
similarity between different websites through a distance
metric. However, this method is not effective in reducing the
impact of noise on WF attacks. In 2016, Panchenko et al. [8]
proposed a novel WF attack CUMUL against Tor based on
the cumulative representation of traces. The method con-
siders the effect of real noise on WF attacks. However, the
problem of overfitting occurs in the process of actual
classification. In 2016, Hayes et al. [9] proposed a website
fingerprinting attack K-FP based on random decision forest.
This method uses a random forest to extract fingerprints for
each traffic instance, uses Hamming distance to calculate the
distance between these fingerprints, and finally classifies
them by k-nearest fingerprint technology. This method
shortens the classification time and reduces the impact of
overfitting on the classification results. However, the noise
will have a certain impact on K-FP.

In recent years, with the massive application of deep
learning on WF attacks [14-18], the performance of WF
attacks has been further improved. Sirinam et al. [15]

Security and Communication Networks

TaBLE 1: Well-performing website fingerprinting methods.

Method Accuracy (%) Advantage Disadvantage
K-NN [7] 95.0 Multiple features are used. The noise is not considered.
CUMUL (8] 97.3 The noise is considered. Overfitting.
K-FP [9] 95.5 Sorting time is Sh?g;itii’ and overfitting is Classification effect is easily affected by the noise.
DF [15] 98.3 Complex CNN model is proposed. Large datasets are needed.
TF [16] 95.0 Small datasets are needed. The accuracy needs to be improved.
' . . . Classification effect is easily affected by circuit
Tik-Tok [18] 98.4 Multiple time features are considered.

congestion.

proposed the Deep Fingerprinting (DF) attack in 2018. The
highlight of DF is the design of complex convolutional
neural network (CNN) structures. The deep learning model
of DF can solve the WF attack problem well, and the
framework of the DF model has been basically borrowed in
the subsequent studies. However, DF has a long period to
complete the WF attack and requires a large number of
training sets to achieve better classification results. The data
staleness problem also has an impact on the attack during
the data collection. Sirinam et al. [16] studied a triplet
fingerprint attack TF in 2019. This attack uses a triplet
network for N-shot learning [22]. This method can effec-
tively reduce the workload of data collection and training in
the implementation of WF attacks, but the accuracy of the
attack needs to be improved. Rahman et al. [18] proposed the
Tik-Tok attack based on packet timing information in 2020.
The method uses a set of new features based on burst level
features related to timing. The information contained in each
of these features is mutually exclusive and improves the
robustness of the classifier. The method fully considers the
timing features so that it can obtain effective information
and achieve a high accuracy rate of website fingerprinting
under the scenario of using defense. However, due to the
instability of the Tor link, it is easy to cause circuit con-
gestion [23, 24]. Circuit congestion can have an impact on
the timing information, thus reducing classification

accuracy.
In order to make the Tor network more secure, re-
searchers have proposed some defensive measures

[21, 25-28] to defend against WF attacks. The basic principle
is to operate on packet traffic (add, delete, delay packets,
etc.). In order to achieve the purpose of confusing flow
teatures, the BUFLO [25] defense method was proposed by
Dyer et al. This method achieves the effect of transmitting
data packets close to a constant rate by sending data packets
of a fixed length in the Tor network at a fixed time. Juarez
et al. proposed WTE-PAD [21]. WTE-PAD is a probabilistic
connection filling defense based on adaptive filling. It masks
the features of traffic bursts by adding short-delay pseu-
dotraffic bursts, thereby reducing the threat of WF attacks.
Wang et al. proposed the Walkie-Talkie (W-T) [28] method.
W-T modified the browser to communicate in half-duplex
mode instead of the usual full-duplex mode. The half-duplex
mode converts the cell sequence into a burst sequence, which
not only saves additional overhead but also reduces the
characteristics of the cell sequence, thereby leaking less
information to the enforcer.

3. The Description of Problem

Tor consists of thousands of relays that form a worldwide
network of volunteer overlays to direct Internet traffic.
During a user’s visit to a website, the traffic is encrypted in
multiple layers so that an attacker cannot know which
websites the user is visiting. Many illegal websites have
emerged in the onion service, where users can log in to
complete transactions without being tracked. Therefore,
obtaining the websites that users are visiting with the
knowledge of their identity is a problem worth investigating.

Although Tor can effectively protect the security and
privacy of users, it is still possible to reduce the anonymity of
users by means of traffic analysis. A series of associated traffic
is generated when users visit a website, and the pattern of
this traffic is relatively fixed within a certain period of time.
That is, users visiting the same website in the same region
within a certain time frame can obtain similar packets.
Therefore, the user’s access traffic can be analyzed to discern
which website the user is visiting. As shown in Figure 1, an
enforcer is deployed locally to collect the network traffic
between the client and the server and identify the website
that the user is visiting. This enforcer can be a router, an
Internet Service Provider (ISP), an autonomous service, and
so on, capable of arbitrarily collecting encrypted traffic
between the client and the entry node. The enforcer cannot
discard, modify, insert, and delay packets. If the traffic is
tampered with during a user’s visit to the site, it may result in
errors or anomalies on the user’s return page. This not only
affects users’ browsing but also alerts them to the possibility
of their privacy being compromised. Especially for illegal
users, it will make it more difficult to collect their incrim-
inating evidence.

For sites of interest to the enforcer, we call them
monitored sites. For other types of websites, we call them
unmonitored websites. In WF attacks, the enforcer’s task is
to identify the monitored websites. The enforcer needs to set
up a classifier, and in addition to that, he has to loop through
the Tor network to the monitored website and collect the
traffic during the visit. After the collection is complete, the
enforcer has to manually extract the traffic features and
construct a traffic matrix from all the processed traffic data
for the training of the classifier. When the classifier is
trained, the enforcer can passively collect the encrypted
traffic during the monitored user’s access to the server,
process the traffic in the same way as the training set, and
then use the classifier to classify the traffic to determine

R

Router ISP AS

Entry
Client

Enforcer

— Encrypted link
Unencrypted link
— Monitoring location

| @g/gi

Security and Communication Networks

6 Internet

Exit

FIGURE 1: Schematic diagram of website fingerprint recognition process.

whether the website being visited by the monitored user is a
monitored website.

In order to improve the readability of the paper, we
summarize and explain the notations in our method, as
shown in Table 2.

4. The Proposed Method

4.1. The Principle Framework and Main Steps of the Method.
In the existing website fingerprint identification methods,
the main factor affecting the classification of Tor traffic
fingerprints is the noise in the traffic. These noises can ef-
fectively confuse the features of the original Tor traffic and
reduce its classification accuracy. In response to this
problem, we found that frequency domain transformation
can reduce the impact of noise on classification and pro-
posed a DWT-based website fingerprint recognition
method. The complete fingerprint identification process is
shown in Figure 2.

This method is divided into two stages: data pre-
processing and classifier classification. Data preprocessing is
mainly to extract features from the collected data packets
and transform the extracted sequences into the frequency
domain to form circuit frequency domain feature sequences.
The method of frequency domain transformation can in-
crease the difference of traffic patterns of different websites
and can obtain better classification results. Classifier clas-
sification focuses on identifying and classifying the pre-
processed data using deep learning techniques. Before
classifying the unknown traffic, the classifier is trained. This
process requires collecting a large number of circuit fre-
quency domain feature sequences and corresponding the
sequences to their site labels one by one to generate a
training sequence matrix and a training label matrix. After
the training is completed, the traffic to be tested is converted
into a test sequence matrix for classifier classification. This
method uses a deep learning classification model combining
CNN, FC, and Self-Attention and uses various regularization
techniques in the model to prevent overfitting in the website
recognition process.

Step 1. Capture the traffic packets of users visiting the
website. Capture the background traffic during the user’s
visit to the website and generate the raw traffic packets.

Step 2. Extract the feature sequence of the circuit. Extract
the direction and length information of the sequence of
circuits in the raw network traffic packets, and combine
them to form the feature sequence of circuits.

Step 3. Generate the frequency domain feature sequence of
the circuit. The feature sequence of the circuit is transformed
into the frequency domain feature sequence of the circuit by
DWT transformation, and the low-frequency sequence
generated after DWT transformation is retained.

Step 4. Store the data into the database. Store the frequency
domain feature sequences of the circuits and their corre-
sponding site labels into the database.

Step 5. Generate training set. The frequency domain feature
sequences of the circuits and the site labels are extracted
from the database according to the model training re-
quirements, and the training sequence matrix and the
training label matrix are generated.

Step 6. Construction of the model framework. A suitable
neural network framework is selected according to the data
type and features of the traffic, and a series of overfitting
prevention methods are used to improve the accuracy of the
model classification.

Step 7. Model training. The deep learning model is trained
using the above matrix. The appropriate hyperparameters
are selected through training.

Step 8. Generate the test set. Extract the frequency domain
feature sequence of the circuit to be tested from the database
and generate the test sequence matrix.

Security and Communication Networks

TaBLE 2: List of notations.

Notations Description

Seqgr The direction sequence of the circuit.

Seqien The length sequence of the circuit.

Seqix The feature sequence of the circuit.

x(n) The feature sequence of the original circuit.

o The number of layers of DWT decomposition.

X, 1 (1) The low-frequency sequence generated after DWT transformation.
Xop (1) The high-frequency sequence generated after DWT transformation.
L(n) The low-pass filter.

H(n) The high-pass filter.

Q The downsampling multiples.

N The length of the circuit feature sequence.

| Captures traffic packets as users visit the websites.

G

e,

Data pre-processing stage

Extract the feature
sequence of the circuit. I |

Store the features and |
labels to the database.

Generate the frequency domain
feature sequence of the circuit. | |

| Generate the training set. N

Extract A
—

I Website 1 Network Packet 1 | ||
. . : .. Direction A 1 DWT |
[% — - | i [
. Extract .. ength I Matrix
| e —) @ Il Sequence of Circuit | Sequences of Circuit |
: . - Features . Frequency Domain !
I 2 o Network Packet j I i Features I
Client 6 Website j . ‘- Website name |* Matrix I J
I : II — | —) . | Deep learning |
i G — I| I| | | database
. @ . Labels | Labels -
| Iy | g [
| webster NeworkPacketn | I T o ;
Classifier classification

........................... —— e ey

I 1 |_ Repeat 4 Times -

| m— L L. | Training A= ——1= |
TS - Sequences of Circuit Training set I Bl N -
Z Characteristics . NN |
| | | Testing] I Y O .
i J Extract N | — |
! Deeplearning ———) |- .
| database | I
- Label: .
| abels Test set I | Deep Learning Models |
est se -
| Generate the test set. - [Model classification. |

Construction of the model |
framework. |

FIGURE 2: Identification process of Tor users visiting websites based on network traffic frequency domain fingerprinting.

Step 9. Model classification. Use the model to predict the
test sequence matrix and obtain the website labels corre-
sponding to the frequency domain feature sequences of the
circuit to be tested. Complete the identification of the un-
known traffic and correspond the traffic to the website.

4.2. Data Preprocessing

4.2.1. Extract the Feature Sequence of the Circuit. By cap-
turing the packets during a user’s visit to a website, we can
obtain the circuit sequence of the packets of this website. By
analyzing this sequence, we can extract various features,
including the direction, length, timing, and burst of the

circuit sequence. We select the direction and length of the
sequence as the key features to be extracted.

Direction. The sequence of the original circuit is mapped into
the value domain of [+1, —1], and the enforcer is usually
monitored before the entry relay. Specify the direction of
data inflow into the enforcer as “+1” and the direction of
data outflow from the enforcer as “~1.” By this method, the
direction sequence of the circuit Seqy;, is formed.

Length. Each packet in the sequence of the circuit is
packaged by the protocol before transmission. Clients and
servers interact with each other through TCP protocol, so
packets that do not contain TCP protocol are to be filtered

out. Next, the length of the TCP protocol layer circuit is
extracted to compose the length sequence of the circuit
Seqlen'

The length sequence and direction sequence of the
circuit are combined, and a new feature sequence Seq,;, is
constructed by multiplying the terms of these two
sequences.

Seqmix = Seqdir X Seqlen' (1)

In a previous study [15], researchers have verified
through experimental arguments that the length of the
circuit sequence does not significantly improve the accuracy
of the attack. A good attack can be achieved by using only the
direction of the circuit sequence. However, in our approach,
the length of the circuit sequence is necessary. Any time
sequence can be seen as an infinite superposition of sine
waves of different frequencies and formed. Amplitude is the
most basic characteristic of a sine wave. If only the direction
of the circuit sequence is used, the full information of the
sine wave cannot be reflected. Therefore, we consider
combining the length and direction of the circuit sequence to
be able to achieve better results in the frequency domain
transformation.

4.2.2. Generate the Frequency Domain Feature Sequence of
the Circuit. The circuit sequence of a packet based on timing
can be understood as the result of the variation of the signal
over time. The analysis of the circuit sequence in the fre-
quency domain allows us to obtain more useful information.
It is possible to analyze the composition of the sequence
frequency, more precisely to decompose the sequence into
several subsequences. In this way, the internal connection of
each packet in the circuit sequence is reflected, and it is
convenient to achieve better results in the subsequent neural
network training process.

DWT (Discrete Wavelet Transformation) can discretize
the scales and translations of the fundamental wavelets. It
can analyze the frequency domain features of local time-
domain processes and is more suitable for the analysis of
nonsmooth processes. The discrete wavelet transform uses a
bandpass filter to decompose the circuit sequence into
multiple frequency domain components, which greatly re-
duces the interference of noise and makes the presentation
more intuitive. The architecture of the discrete wavelet
transform decomposition process for discrete sequences is
shown in Figure 3.

L(n) and H (n) represent the low-pass filter and high-
pass filter, and their correspondence is shown in relation (2).
1Q denotes the Q-fold downsampling filter. The sequences
decomposed at layer « in the architecture can be represented
according to the relations (3) and (4). The high-frequency
components are extracted in each layer, while the low-fre-
quency components are deployed to the next layer to
continue the decomposition. Since Q-fold downsampling is
performed at each layer, if the length of the input circuit
sequence is N, then the length of both x, ; (1) and x,, ;; (1) in
the « th layer is N/Q“.

Security and Communication Networks

L(N -1-n) = (-1)"H (n), (2)
K-1

Xgp (1) = Z X1, (Q-n—k)L(k), (3)
k=0
K-1

X (M) =) X, 1 (Q-n—K)H (k). (4)
k=0

In our model, we perform a one-layer architectural
decomposition of the circuit sequence and set the multiplier
of the downsampling filter to 2. Thus, we are able to obtain
the sequence decomposition method as shown in relations
(5) and (6).

K-1

x,0(m) =) x(2n-Kk)L(k). (5)

k=0

K-1

X0 () =) x(2n—k)H (k). (6)
k=0

The circuit sequence is processed in the frequency do-
main using the relation (5) after the feature processing. The
frequency domain processing results in a low-frequency
sequence x,;(n) and a high-frequency sequence x, ; (n).
x, 1 (n) contains the slowly changing part of the circuit
sequence. It is the basic frame of the sequence and belongs to
the approximate information of the sequence. x, (n)
contains the rapidly changing part of the circuit sequence. It
belongs to the detailed information of the sequence, which
contains the noise. We use the low-frequency part x, ; (n),
which can represent the contour features of the sequence, for
the training of the model. It can reduce the interference of
noise in the sequence for fingerprint recognition.

In our method, both L(n) and H (n) are of constant
length, independent of the length N of the circuit sequence.
We only need the low-frequency part of the wavelet
transform. The convolution of the circuit sequence and the
filter requires O(N) time complexity. After each layer of
convolution, a branch of length N/2 is formed. Therefore,
the time complexity required for the entire frequency do-
main transformation process is O (N).

4.3. Classifier Classification

4.3.1. Construction of the Model Framework. Website fin-
gerprinting on Tor is a supervised classification problem.
Starting from DF [15], deep learning techniques have
achieved good results on the website fingerprinting problem.
We have borrowed from these models and made im-
provements. In DF, two convolutional layers were used
before each Max Pooling. The researchers believe that
adding more convolutional layers to each Base Model can
obtain a deeper network and extract features more effi-
ciently. In our model, each Max Pooling layer is preceded by
only one convolutional layer, which can effectively reduce
the complexity of the neural network. After the Base Model,
we add a Self-Attention layer. The reason for this is that

Security and Communication Networks

Ingredile:vteslof First

Ingredients of
second level

D)

Ingredients of
alevel

G0

Figure 3: DWT decomposition process.

CNN only considers the information in the receptive field
and only acts on a local scale. Self-Attention, on the other
hand, considers the information on the entire circuit se-
quence. It contains a much wider range. Therefore, we
consider extracting the local features in the circuit sequence
by CNN first and then extracting the global features by Self-
Attention, so as to form a complete model. This approach
not only reduces the complexity of the neural network but
also does not affect the extraction of features. The neural
network classification model is shown in Figure 4.

Since neural networks have a fixed input size require-
ment, for one-dimensional circuit sequences, different
lengths of circuit sequences need to be fixed to the same
length. After data preprocessing, the circuit sequence length
needs to be set to a fixed threshold. Sequences with length
less than the threshold are filled with 0, and those with length
greater than the threshold are truncated. All circuit se-
quences are combined to form the input matrix.

To address the selection of hyperparameters in different
modules, we empirically assign a range of values to these
hyperparameters. For hyperparameters with a small range of
values, the hyperparameters are taken iteratively. For
hyperparameters with a large range of values, the hyper-
parameters are taken using the dichotomous method. In the
process of model construction, we filtered the hyper-
parameters module by module and finally obtained the best
combination of hyperparameters.

In Tor, many useless data packets are generated when
users visit websites due to network congestion, identity
verification, and other reasons. This may cause the same user
to make multiple visits to the same website in the near time
to generate quite different traffic. These noisy data packets
can cause overfitting problems during neural network
training. For the overfitting problem, we use regularization
techniques such as Dropout, Batch Normalization (BN), and
Label Smoothing methods. Dropout reduces the interaction
between hidden nodes and makes the model more gener-
alizable by making a certain neuron probabilistically stop
working. BN normalizes the output results so that the output
obeys the standard normal distribution and reduces the
internal covariance shift (ICS), which not only helps the
network fit faster but also reduces the overfitting problem.
Due to the small number of parameters in the convolutional
layer, Dropout is rarely used after the convolutional layer,
and BN is usually used. In our model, BN is connected
immediately after each CNN, and Dropout is used after Max
Pooling to prevent overfitting. There are many parameters in

the FC and Prediction process, so BN and Dropout can be
used together.

In order to approximate the predicted probability dis-
tribution to the true distribution during neural network
prediction, a common practice is to encode the true labels
using the one-hot method. This encoding approach can
make the model lack adaptability and be overconfident in its
predictions, which can lead to overfitting problems. Label
Smoothing smoothes the empirical distribution of the gap
between the maximum prediction and the mean of the other
categories by adding a smoothing factor. The essence of
Label Smoothing is to drive the classification probability
results after the activation of the Softmax activation function
in the neural network closer to the correct classification, so it
is placed in the last part of the model.

4.3.2. Model Training. The selection process of the hyper-
parameters in the model is shown in Table 3, containing the
range of values for each hyperparameter and the value that
achieves the best results. We conducted experiments on
tuning parameters using the collected Undefended Closed-
World dataset and validated them using other datasets, all
with good results.

5. Experiments and Results Analysis

To validate the performance of the proposed FDF method,
we conducted a series of experiments based on the Unde-
fended, WTF-PAD [21], and Onion Sites [20] datasets.

5.1. Dataset

5.1.1. The Closed-World Dataset. We performed a recursive
crawl of the homepages of the top 100 websites ranked by
Alexa [31] through the Tor network, with a total of 1000
crawls per site. We deployed the work on LXD containers on
ten VPS servers in different countries.

5.1.2. The Open-World Dataset. Since it is not realistic to
visit all Internet sites, we selected some of them for simu-
lating the open-world experiment. We visited the top 40,000
websites in Alexa ranking in order. Because these sites are
unmonitored sites, they cannot contain the 100 monitored
sites collected in the closed-world experiment. We deployed
the work in the same ten VPS servers.

8 Security and Communication Networks
[Conv Layer] ’ EC ‘
2 2
Pad Self-Attention
2 Layer
3 ¥
L2
= E =EIE =i,
-
- 3
Network Traffic 3
-
3 Label
Smoothing
Repeat 4 Times
FIGURE 4: The neural network classification model of WF attack.
TaBLE 3: Selection of hyperparameters for FDF.
Parameters Search space Selected value

Input dimension [500 ... 7000] 5000
Wavelet Haar, Db, Sym, Coif, Bior, and Rbio Coif
Base Model GoogleNet [29], ResNet [30], and DF [15] DF
Number of FC layers [1...4] 1
Hidden units (FC) [256 ... 2048] 512
Hidden dim (Self-Attention) [128 ... 2048] 256
Optimizer SGD, adam, adamax, and RMProp Adamax
Batch size [32 ... 256] 128
Dropout (Pooling, Self-Attention, and FC) [01...0.8] [0.1, 0.1, 0.5]

5.1.3. The Onion Service Dataset. A collection of onion
domains was conducted by Overdorf et al. [19], and the sites
were fingerprinted. They published the dataset used for their
experiments to the Internet in the form of tshark logs, which
we chose to use for our experiments. Since collecting a large
number of onion domains is a difficult task, we chose to use
this dataset for experiments.

5.1.4. The Defense Dataset. We performed evaluation tests
on the WTF-PAD [15] defense approach. For the WTF-PAD
[21] defense, we adapted the raw traffic we collected using a
script code posted by the researchers in GitHub. It is used to
simulate the traffic generated during access in a real envi-
ronment according to the defense protocol populated.

A total of five datasets were used in our experiments. In
the closed-world scenario, data were collected for unde-
fended, WTF-PAD [21] defense, and onion services, gen-
erating the Undefended (CW), WTE-PAD (CW), and Onion
Sites (CW) datasets. In the open-world scenario, data col-
lection was performed for both undefended and WTF-PAD
[21] defense methods to generate Undefended (OW) and
WTF-PAD (OW) datasets. Table 4 shows the website classes
and the number of visited website instances in each dataset.
We randomly divided each dataset into three parts: training
set, validation set, and test set. Due to the large size of the
dataset, we divided it according to the ratio of 8:1:1.

5.2. Website Fingerprinting Experiments on the Closed-World
Dataset. The core of the FDF method is to process the
circuit sequence in the frequency domain before performing
the deep learning fingerprint recognition on the circuit

TABLE 4: Number of classes and instances in each dataset.

Dataset Classes Instances/class Total
Undefended (CW) 100 1000 100000
Undefended (OW) 40000 10 400000
WTE-PAD (CW) 100 1000 100000
WTEF-PAD (OW) 40000 10 400000
Onion Sites (CW) 539 77 41503

sequence. In addition to DWT, Discrete Fourier Transform
(DFT) and Discrete Cosine Transform (DCT) are also
mainstream frequency domain processing methods, which
have good applications in the direction of image processing.
We compared the above three frequency domain processing
methods in the closed-world environment. FFT is an effi-
cient and fast algorithm of DFT that can reduce the oper-
ation time. Therefore, we use FFT instead of DFT for our
experiments.

Table 5 shows the accuracy results of fingerprint rec-
ognition on different datasets after processing by three
frequency domain processing methods. It can be found that
the accuracy rates of the two methods, DCT and FFT, are
relatively close to each other. Meanwhile, DWT is signifi-
cantly better than the other two methods on all three dif-
ferent datasets. This is because circuit sequences are
nonstationary signals, and DWT has better results for
nonstationary signals, while FFT is more suitable for han-
dling stationary signals.

To show the good attack effect of FDF, we compared it
with K-NN [7], K-FP [9], CUMUL [8], DF [15], and Tik-Tok
[18] attacks.

Security and Communication Networks

TaBLE 5: Comparison of the attack accuracy of three frequency domain processing methods in the closed world.

The accuracy of different dataset

Method
Undefended (CW) (%) WTE-PAD (CW) (%) Onion Sites (CW) (%)
DCT 98.2 92.6 64.3
FFT 98.3 92.8 65.1
DWT 98.8 94.3 70.7

Table 6 shows the accuracy results of different attack
methods in the closed-world scenario for the three envi-
ronments. It can be found that FDF outperforms the other
attacks on the Undefended, WTF-PAD [21], and Onion
datasets. Each attack method does not perform very well on
the Onion dataset, which we believe is related to the dataset.
The Onion dataset has 539 categories with only 77 traffic
data per category, which is much less data than other
datasets and therefore reduces the accuracy rate.

5.3. Website Fingerprinting Experiments on the Open-World
Dataset. To simulate a realistic environment, we conducted
experiments in the more realistic open-world scenario. In
the open world, the adversary first determines whether the
traffic data belongs to monitored or unmonitored sites and
second classifies all the traffic belonging to monitored sites
according to the limited set of monitored sites.

For open-world scenarios, Precision and Recall were
suggested in literature [9, 21] for the evaluation of classifiers.
Because the difference between the limited set of monitored
sites and the limited set of unmonitored sites may be too
large, True Positive Rate (TPR) and False Positive Rate (FPR)
can be wrong in the interpretation of the model attack
performance.

For the performance evaluation process, we used the
standard model proposed in DF Attack [15]. In the open-
world scenario, for the dataset of monitored websites, they
are trained in the same way as in the closed world. For the
dataset of unmonitored websites, it is trained as an addi-
tional class. We evaluated undefended and WTF-PAD [21]
in the open-world scenario by tuning the attack for Precision
and Recall. Precision and Recall are shown in relations (7)
and (8).

True Positive (TP)

Precision = . 7
True Positive (TP) + False Positive (FP))

True Positive (TP)

Recall = .
True Positive (TP) + False Positive (FP)

(8)

Tables 7 and 8 show the results of different methods to
tune the attacks for Precision and Recall, respectively, for the
two datasets in the open-world scenario. Figure 5 shows the
Precision-Recall curves of the attacks in the open world. The
above graphs show that DWT shows good results for the
Undefended dataset. When attacking tuned for Precision, it
achieves 0.99 Precision and 0.94 Recall, while when attacking
tuned for Recall, it achieves 0.93 Precision and 0.99 Recall.
For the WTF-PAD [21] dataset, the Precision and Recall of
all methods decreased due to the added defenses. The best
performance was achieved by DWT with a Precision of 0.98

and a Recall of 0.76 when attacking tuned for Precision and a
Precision of 0.75 and a Recall of 0.96 when attacking tuned
for Recall.

6. Discussion

In this section, we discuss the data preprocessing method
before the feature frequency domain processing and the
number of DWT decomposition layers for the feature fre-
quency domain processing.

Input for feature frequency domain processing: The most
important feature of packets in WF attacks is the direction of
the circuit sequence. In DF [15], researchers have also
compared packet processing methods and found that the
best results can be achieved using only the direction of the
circuit sequence. But for frequency domain transformation,
not only the direction of the cell sequence but the amplitude
of the cell sequence is also very important. If only the di-
rection of the circuit sequence is used and its amplitude is
ignored, a lot of information of the original sequence will be
leaked during the frequency domain transformation. Thus,
the effect of frequency domain processing of the signal
cannot be achieved, and the result is degraded. Therefore, we
choose to use the direction and length of the signal element
sequence as the input for the feature frequency domain
processing.

The number of decomposition layers of DWT: in other
applications of DWT, multiple layers of wavelet decom-
position are often required to achieve better results. Each
DWT decomposition results in two components, a high-
frequency component, and a low-frequency component.
These two components are of the same length. In our
method, we use the decomposed low-frequency compo-
nents every time. In other words, for each layer of DWT
decomposition, the length of the circuit sequence is
halved. For example, if the input length of the circuit
sequence in the FDF model is 5000, a two-layer DWT
would require an original circuit sequence length of
20000. We found through statistical analysis that all the
original circuit sequences are less than 10,000 in length, so
a lot of padding is needed for the circuit sequences. This
will have a great impact on the original sequences and lead
to a decrease in the accuracy of the classification results. In
summary, we choose to perform one layer of DWT de-
composition for the feature frequency domain processing.
We believe that future additions to the website content
and updates to the security mechanisms will result in
longer circuit sequences during visits to the website. On
this basis, WF attacks using multilayer DWT are expected
to achieve a better result.

10 Security and Communication Networks
TaBLE 6: Comparison of attack accuracy between FDF and other methods in the closed world.
Method The accuracy of different dataset
etho
Undefended (CW) (%) WTE-PAD (CW) (%) Onion Sites (CW) (%)
K-NN [7] 95.2 16.1 40.9
K-FP [9] 95.6 68.9 454
CUMUL 8] 97.5 60.1 47.2
DF [15] 98.3 90.9 53.0
Tik-Tok [18] 98.4 935 66.0
Proposed FDF 98.8 94.3 70.7

TaBLE 7: The methods tuned for Precision and tuned for Recall on the Undefended (OW) dataset in the open world.

Tuned for Precision

Tuned for Recall

Method .. i
Precision Recall Precision Recall
DF [15] 0.986 0.931 0.929 0.983
Tik-Tok [18] 0.984 0.935 0.918 0.987
Proposed FDF (DCT) 0.973 0.922 0.909 0.981
Proposed FDF (FFT) 0.977 0.931 0.915 0.988
Proposed FDF (DWT) 0.990 0.943 0.931 0.991
TaBLE 8: The methods tuned for Precision and tuned for Recall on the WTF-PAD (OW) dataset in the open world.
Tuned for Precision Tuned for Recall
Method o o
Precision Recall Precision Recall
DF [15] 0.973 0.736 0.719 0.958
Tik-Tok [18] 0.978 0.751 0.748 0.957
Proposed FDF (DCT) 0.953 0.718 0.692 0.938
Proposed FDF (FFT) 0.961 0.723 0.700 0.947
Proposed FDF (DWT) 0.982 0.756 0.751 0.961
1.0 1.0
[
‘s‘%\ .\\
N
\o \\><
. N
g g . \\\
Z o8t Z 08 N Ny
g & ®
~ [y \ k
\
.
0.6 L 0.6 L
0.90 0.95 1.00 0.6 0.8 1.0
Recall Recall

DF-WTFPAD [15] FDF (FFT)-WTFPAD
—— Tik-Tok-WTFPAD [18] -« FDF (DWT)-WTFPAD
—e— FDF (DCT)-WTFPAD

—e— DF-UnDef [15]
—A— Tik-Tok-UnDef [18]
—o— FDF (DCT)-UnDef

—%— FDF (FFT)-UnDef
_e— FDF (DWT)-UnDef

FIGURE 5: The Precision-Recall curve of attacks in the open world.

Security and Communication Networks

7. Conclusion

In this study, we propose an efficient DWT-based WF attack
method FDF. We construct key features for traffic analysis
by performing DWT on the length and directional features
of circuit sequences. After that, we use neural networks to
complete the learning and classification of the traffic fre-
quency domain features. Overall, our results show that
transforming circuit sequences to the frequency domain for
deep learning can achieve good results. However, a large
number of training sets are required for data support during
the training process. This leads to longer data collection time
and increases the difficulty of WF attacks. In the future, we
should work to shorten the time to complete the fingerprint
identification of the website. One possibility is to learn from
the idea of the big data framework [32]. The fingerprint
identification process of the website should be layered, es-
pecially the data collection process. Collect data through a
distributed architecture and reasonably arrange the modules
to add new data and delete old data. Ultimately, our methods
can effectively respond to urgent tasks [33].

Data Availability

Previously reported Onion Service datasets were used to
support this study and are available at DOI:10.1145/
3133956.3134005. These prior studies (and datasets) are cited
at relevant places within the text as references [12]. The
closed-world datasets used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. U1804263, U1736214, and
62172435) and the Zhongyuan Science and Technology
Innovation Leading Talent Project (no. 214200510019).

References

[1] “Users—tor metrics,” 2010, https://metrics.torproject.org/
userstats-relay-country.html.

[2] K. Shahbar and A. N. Zincir-Heywood, “Traffic flow analysis
of tor pluggable transports,” in Proceedings of the 11th In-
ternational Conference on Network and Service Management,
pp.- 178-181, IEEE, Barcelona, Spain, November 2015.

[3] A. Montieri, D. Ciuonzo, G. Aceto, and A. Pescape, “Ano-
nymity services tor, i2p, jondonym: classifying in the dark
(web),” IEEE Transactions on Dependable and Secure Com-
puting, vol. 17, no. 3, pp. 662-675, 2018.

[4] A. Montieri, D. Ciuonzo, G. Bovenzi, V. Persico, and
A. Pescap, “A dive into the dark web: hierarchical traffic
classification of anonymity tools,” IEEE Transactions on
Network Science and Engineering, vol. 7, no. 3, pp. 1043-1054,
2019.

11

[5] D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting: attacking popular privacy enhancing tech-
nologies with the multinomial Naive-Bayes classifier,” in
Proceedings of the ACM Workshop on Cloud Computing Se-
curity, pp. 31-42, ACM, New York, NY, United States, No-
vember 2009.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website

fingerprinting in onion routing based anonymization net-

works,” in Proceedings of the ACM Workshop on Privacy in the

Electronic Society, pp. 103-114, ACM, New York, NY, United

States, October 2011.

[7]1 T. Wang and 1. Goldberg, “Improved website fingerprinting
on Tor,” in Proceedings of the ACM Workshop on Privacy in
the Electronic Society, pp. 201-212, ACM, Berlin Germany,
November 2013.

[8] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website finger-
printing,” in Proceedings of the USENIX Security Symposium,
pp. 143-157, USENIX Association, Sandieago CA, August
2014.

[9] A. Panchenko, F. Lanze, A. Zinnen et al.,, “Website finger-
printing at internet scale,” in Proceedings of the Network and
Distributed System Security Symposium, Febuary 2016.

[10] J. Hayes and G. Danezis, “k-fingerprinting: a robust scalable
website fingerprinting technique,” in Proceedings of the
USENIX Security Symposium, pp. 1187-1203, USENIX As-
sociation, Sandieago CA, May 2014.

[11] H.Jahani and S. Jalili, “A novel passive website fingerprinting
attack on tor using fast Fourier transform,” Computer
Communications, Elsevier, vol. 96, , pp. 43-51, 2016.

[12] R.Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz, “Inside
job: applying traffic analysis to measure tor from within,” in
Proceedings of the Network and Distributed System Security
Symposium, Febuary 2018.

[13] A. Shusterman, L. Kang, Y. Haskal et al., “Robust website
fingerprinting through the cache occupancy channel,” in
Proceedings of the USENIX Security Symposium, pp. 639-656,
USENIX Association, Sandieago CA, November 2014.

[14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and
P. A. Manzagol, “Stacked denoising autoencoders: learning
useful representations in a deep network with a local
denoising criterion,” Journal of Machine Learning Research,
MIT Press, vol. 11, , pp. 3371-3408, 2010.

[15] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep
fingerprinting: undermining website fingerprinting defenses
with deep learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pp- 1928-1943, ACM, Toronto Canada, October 2018.

[16] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright,
“Triplet fingerprinting: more practical and portable website
fingerprinting with n-shot learning,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1131-1148, ACM, London United
Kingdom, November 2019.

[17] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: a data-
efficient website fingerprinting attack based on deep learn-
ing,” Proceedings on Privacy Enhancing Technologies in Pro-
ceedings of the Privacy Enhancing Technologies, no. 4,
pp- 292-310, Springer, Sandieago CA, Febuary 2019.

[18] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara,
and M. Wright, “Tik-Tok: the utility of packet timing in
website fingerprinting attacks,” in Proceedings on Privacy
Enhancing Technologiesvol. 2020, no. 3, , pp. 5-24, Springer,
2020.

[6

https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html

12

(19]

[20

[21

[22

[23

(24

(25]

(26]

(27]

(28]

[29]

(30]

[31

(32]

(33]

R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz,
“How unique is your .onion?: an analysis of the finger-
printability of tor onion services,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, pp. 2021-2036, ACM, Dallas Texas USA, October
2017.

Tor: Onion Service Protocol, https://2019.www.torproject.org/
docs/onion-services, 2019.

M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright,
“Toward an efficient website fingerprinting defense,” in
Computer Security - ESORICS 2016, 1. Askoxylakis,
S. Ioannidis, S. Katsikas, and C. Meadows, Eds., vol. 9878, ,
pp. 27-46, Springer, 2016.

L. Li Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” in IEEE Transactions on Pattern Analysis
and Machine Intelligencevol. 28, no. 4, , pp. 594-611, IEEE,
2006.

R. Dingledine and S. J. Murdoch, Performance Improvements
on Tor or, Why Tor Is Slow and what We’re Going to Do about
it, Technical report, The Tor Project, United States, 2009.

P. Dhungel, M. Steiner, I. Rimac, V. Hilt, and K. W. Ross,
“Waiting for anonymity: understanding delays in the tor
overlay,” in Proceedings of the 2010 IEEE Tenth International
Conference on Peer-to-Peer Computing (P2P), pp. 1-4, IEEE,
Delft, Netherlands, August 2010.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,
“Peek-a-Boo, I still see you: why efficient traffic analysis
countermeasures fail,” in Proceedings of the IEEE Symposium
on Security and Privacy, pp. 332-346, IEEE, San Francisco,
CA, USA, May 2012.

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg,
“A systematic approach to developing and evaluating website
fingerprinting defenses,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 227-238, ACM, Scottsdale Arizona USA, No-
vember 2014.

X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: a con-
gestion sensitive website fingerprinting defense,” in Pro-
ceedings of the Workshop on Privacy in the Electronic Society,
pp- 121-130, ACM, New York, NY, United States, November
2014.

T. Wang and 1. Goldberg, “Walkie-talkie: an efficient defense
against passive website fingerprinting attacks,” in Proceedings
of the 26th USENIX Security Symposium, pp. 1375-1390,
USENIX Association, Vancouver BC, August 2017.

C. Szegedy, W. Liu, Y. Jia et al,, “Going deeper with con-
volutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1-9, IEEE, Boston, MA,
June 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770-778,
IEEE, Las Vegas, NV, USA, June 2016.

The Top 500 Sites on the Web, https://www.alexa.com/topsites,
2016.

G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape,
“A big data-enabled hierarchical framework for traffic clas-
sification,” IEEE Transactions on Network Science and Engi-
neering, vol. 7, no. 4, pp. 2608-2619, 2020.

Wtf-Pad, https://github.com/wtfpad/wtfpad, 2020.

Security and Communication Networks

https://2019.www.torproject.org/docs/onion-services
https://2019.www.torproject.org/docs/onion-services
https://www.alexa.com/topsites
https://github.com/wtfpad/wtfpad

Hindawi

Security and Communication Networks
Volume 2022, Article ID 5203217, 12 pages
https://doi.org/10.1155/2022/5203217

Research Article

WILEY | Q@) Hindawi

Deep Neural Embedding for Software Vulnerability Discovery:

Comparison and Optimization

Xue Yuan,' Guanjun Lin,> Yonghang Tai ,! and Jun Zhang

1

!School of Physics and Electronic Information, Yunnan Normal University, Kunming 650000, China
2School of Information Engineering, Sanming University, Sanming, Fujian 365004, China

Correspondence should be addressed to Yonghang Tai; taiyonghang@ynnu.edu.cn and Jun Zhang; junzhang@ynnu.edu.cn

Received 1 September 2021; Revised 31 October 2021; Accepted 6 November 2021; Published 18 January 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Xue Yuan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to multitudinous vulnerabilities in sophisticated software programs, the detection performance of existing approaches
requires further improvement. Multiple vulnerability detection approaches have been proposed to aid code inspection. Among
them, there is a line of approaches that apply deep learning (DL) techniques and achieve promising results. This paper attempts to
utilize CodeBERT which is a deep contextualized model as an embedding solution to facilitate the detection of vulnerabilities in C
open-source projects. The application of CodeBERT for code analysis allows the rich and latent patterns within software code to be
revealed, having the potential to facilitate various downstream tasks such as the detection of software vulnerability. CodeBERT
inherits the architecture of BERT, providing a stacked encoder of transformer in a bidirectional structure. This facilitates the
learning of vulnerable code patterns which requires long-range dependency analysis. Additionally, the multihead attention
mechanism of transformer enables multiple key variables of a data flow to be focused, which is crucial for analyzing and tracing
potentially vulnerable data flaws, eventually, resulting in optimized detection performance. To evaluate the effectiveness of the
proposed CodeBERT-based embedding solution, four mainstream-embedding methods are compared for generating software
code embeddings, including Word2Vec, GloVe, and FastText. Experimental results show that CodeBERT-based embedding
outperforms other embedding models on the downstream vulnerability detection tasks. To further boost performance, we
proposed to include synthetic vulnerable functions and perform synthetic and real-world data fine tuning to facilitate the model
learning of C-related vulnerable code patterns. Meanwhile, we explored the suitable configuration of CodeBERT. The evaluation
results show that the model with new parameters outperform some state-of-the-art detection methods in our dataset.

1. Introduction

Software vulnerability has long been a severe but crucial
research issue in cybersecurity [1-3]. These security vul-
nerabilities threaten the IT infrastructure of organizations
and government sectors. There are increasingly more
vulnerabilities being discovered. Multiple vulnerabilities
released in the Common Vulnerabilities and Exposures
were approximately 4,600 in 2010. However, it grows to
approximately 153,955 in 2021. Software vulnerability
[4-6], as a threat, is increasing in frequency, scale, and
severity, which are similar to natural disasters; it may lead
to unintended and severe consequences. Once vulnerability
in a key system is exploited by attackers, millions of
computer systems may be affected [7].

Despite the efforts that have been invested in pursuing
the low probability of mistake when programming, software
vulnerabilities remain and will continue to be a high-profile
problem [8]. Recent years have witnessed a tremendous
change in defending against vulnerabilities, from primarily
reactive detection towards attempting to actively predict the
code snippet whether it contains a vulnerability.

Deep learning-based vulnerability detection has attrac-
ted much attention recently. These techniques have been
applied in the field of communications and networking and
have achieved promising outcomes [9, 10]. For vulnerability
detection tasks, neural networks are applied for automated
feature extraction, which helps to improve the generalization
ability of a model being capable of extracting high-level and
latent features automatically. Therefore, researchers are

mailto:taiyonghang@ynnu.edu.cn
mailto:junzhang@ynnu.edu.cn
https://orcid.org/0000-0001-9186-475X
https://orcid.org/0000-0002-5310-0270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5203217

motivated to improve the usefulness of deep learning-based
vulnerability detection solutions from various aspects. The
process of applying deep learning techniques in the context
of vulnerability detection can be divided into four steps: data
collection, data preparation, model building, and evaluation/
test. Some existing vulnerability detectors with traditional
embedding solutions such as Word2Vec, GloVe, and
FastText often incur low precision and recall [11]. The bi-
modal feature of code [12] demands a model to be able to
handle long-distance contextual dependencies. However,
conventional embedding methods adopted by existing
studies, such as Word2Vec, can only generate a unique
embedding for a given code token and are unable to produce
embeddings based on different contexts. Hence, we consider
using CodeBERT as a code embedding and feature
generator.

CodeBERT is capable of producing different embeddings
based on different contexts. On the one hand, CodeBERT is
based on a bidirectional transformer which can capture
long-distance dependencies of code sequences. It can pre-
serve the relationship between contexts, capture latent
vulnerable code patterns, and minimize the loss of infor-
mation. On the other hand, CodeBERT inherits the structure
of multihead attention, which makes the model focus on
multiple key points of a code sequence. When there is a loop
in a code fragment, the value of a variable is constantly
changing according to the loop condition; however, using
the noncontextual embedding methods, the vector corre-
sponding to this variable is constant. This means that the
generated vector representation fails to represent the change
of the value that happened to the variable. That is, the
noncontextual embedding models can only generate a fixed
representation for one word, incapable of producing dif-
ferent representations according to the difference of code
contexts. This can be one of the reasons that the work [11]
that uses Word2Vec as the code embedding method yielded
relatively low precision.

In this paper, we fill this gap by incorporating a
CodeBERT-based embedding solution for vulnerable
function detection, and the frequently used acronyms in this
paper are summarized in Table 1. Recent research has
achieved impressive results on embedding source code by
applying natural language techniques such as Word2Vec,
GloVe, and FastText. CodeBERT is based on the structure of
the bidirectional transformer, which can help the under-
standing of code semantics in a relatively large context. In
addition, CodeBERT inherits the mechanism of multihead
attention, employing 12 parallel attention heads, which al-
lows the model to jointly attend to vulnerable features from
different representation subspaces at various positions.
Therefore, as an extractor, CodeBERT has the potential of
generating more rich and meaningful code embeddings
compared with noncontextual embedding methods such as
Word2vec, GloVe, and FastText. CodeBERT achieved a
promising result in many code processing/analysis tasks
such as clone detection, defection detection, and natural
language code search. However, it has not been used in the
context of C language vulnerability detection. In summary,
the contributions of the paper are three-fold:

Security and Communication Networks

(i) We perform a systematic evaluation on several
mainstream code embedding solutions including
Word2vec, GloVe, FastText, and CodeBERT. We
discover that utilizing CodeBERT as a code em-
bedding solution yielded the best performance in
terms of vulnerability detection in C open-source
projects.

(ii) We apply synthetic vulnerability data derived from
SARD (Software Assurance Reference Dataset) to
fine tune the parameters of CodeBERT and to ad-
dress the data imbalance problems frequently faced
in vulnerability detection in practice. Experiments
demonstrate that applying synthetic vulnerability
data can further improve the usefulness of code-
BERT and achieve optimized results in vulnerability
detection.

(iii) We examine important parameters of CodeBERT in
terms of code feature extraction and evaluate the
optimal parameters identified for effective vulner-
ability detection.

The rest of this paper is organized as follows. Section 2
presents some existing studies for deep learning-based
vulnerability detection. In Section 3, the research frame-
work, the code representation learning, the process of fine
tuning, and the impact of various sequence-length for fine
tuning CodeBERT are presented. Section 4 is our evaluation
and the analysis of experimental results. In Section 5, we
conclude the present paper and discuss the limitations of the
proposed scheme and open problems for future research.

2. Related Work

In the field of software vulnerability detection, various
techniques have been proposed. There have been several
survey articles providing systematic reviews of many ap-
proaches in this field from various perspectives [5, 28-32].

Meanwhile, we review several existing deep learning-
based vulnerability detection studies on different neural
networks (see Table 2). Many deep learning architectures
include convolutional neural network (CNN) [13-16],
deep belief network (DBN) [17], multilayer perceptron
(MLP) [18, 19], long short-term memory (LSTM) [20-22],
and gated recurrent unit (GRU) [11]. In addition, a large
body of studies focuses on employing different embedding
techniques for generating vector representations as input
for the training process. A summary of the reviewed
studies is shown in Table 3. Pradel and Sen [23] used
Word2Vec for generating code vectors derived from the
custom Abstract Synthetic Trees (ASTs)-based contexts.
These vectors were used to train deep learning models to
detect vulnerabilities in JavaScript code. The Word2Vec
was applied for making vector representations from C/
C++ source code [13].

Instead of using Word2Vec, Henkel et al. [24] applied
the GloVe model to produce vectors learned from the
Abstracted Symbolic Traces of C programs. Furthermore,
FastText was used in FastEmbed [25] for vulnerability
prediction based on ensemble machine learning models.

Security and Communication Networks 3
TaBLE 1: List of the acronyms involved in the manuscript.

Acronyms Definition Acronyms Definition

DL Deep learning NLP Natural language processing

ML Machine learning MLM Masked language modeling

SARD Software assurance reference dataset RTD Replace token detection

DBN Deep belief network NVD National vulnerability dataset

LSTM Long short-term memory CVE Common vulnerabilities and exposures

BiLSTM Bidirectional long short-term memory GRU Gated recurrent unit

ELMo Embeddings from language models CBOW Continuous bag-of-words model

CuBERT Code understanding BERT CNN Convolutional neural network

MLP Multilayer perceptron

TaBLE 2: Reviewed studies which applied various neural networks for software vulnerability detection.

Neural network

Paper

Convolutional neural network
Deep belief network
Multilayer perceptron

Long short-term memory
Gated recurrent unit

Harer et al. [13], Lee et al. [14], Russell et al. [15], and Wu et al. [16]

Wang et al. [17]
Lin et al. [18] and Shar and Tan [19]
Li et al. [20], Lin et al. [21], and Lin et al. [22]
Lin et al. [11]

TaBLE 3: Reviewed studies which applied various embedding techniques for software engineering.

. Whether
Embedding .
Paper Type of data to consider contextual
model . .
information
Pradel and Sen [23] 150,000 JavaScript files collected from various open-source projects Word2Vec No
Harer et al. [13] C/C++ packages dlStI‘lbl.lt.ed with the Debian Llnux distribution C/C++ Word2Vec No
functions collected from github
Henkel et al. [24] 19,000 API-usage analogies extracted from the Linux kernel GloVe No
Fang et al. [25] Projects are extracted from open-source intelligence data such as NVD FastText No
Kanade et al. [26] 150k Python files from github CuBERT Yes
Karampatsis and 150,000 JavaScript files consisting of various open-source projects SCELMo Yes

Sutton [27]

Recently, several contextualized embedding models have
been applied for generating code representations. Kanade
et al. [26] proposed CuBERT (Code Understanding BERT),
which generates contextual embeddings by training a BERT
model on software source code. Karampatsis and Sutton [27]
proposed a model named SCELMo to generate contextual
code representations. Both studies have proved that con-
textualized embedding models are effective for various code
analysis tasks. In our work, we utilize CodeBERT, which is
also a pretrained contextualized model on six programming
languages, for a specific code analysis task which is vul-
nerability detection.

3. Methodology

3.1. Research Framework. We collect several dissimilar
software projects and create the ground truth dataset;
meanwhile, we select multiple synthetic vulnerabilities at the
function level. Figure 1 presents our workflow. In detail, it
includes three stages. Firstly, the source code is loaded and
transformed to JSON format that is recognized by Code-
BERT. For conventional models, the source code files are
loaded and processed to generate sequence data and labels.

The data is then passed to the next stage to be transformed
into the code embedding vectors. These vectors will then
be partitioned and fed to the GRU neural network for
the training process. We utilized a system to train code
vulnerability detectors for evaluating three traditional em-
bedding methods. The system was built based on the open-
source API benchmark proposed by [11]. Secondly, we feed
CodeBERT with the synthetic data to obtain a fine-tuned
model; the vulnerable probabilities of the test set were
generated correspondingly. Thirdly, based on fine tuning, we
evaluated the impact of the various parameters such as the
length of the input sequence, batch size, epoch, and learning
rate. A suitable input sequence length for extracting vul-
nerability features from programs written in C is finally
determined. In order to verify the proposed method is
successful in producing the desired result, we perform the
tasks towards answering the following three research
questions. We will address each question with the results.

Research Question 1 (RQ1): how effective is Code-
BERT when compared with other embedding
methods? This research question is meaningful be-
cause one may argue that CodeBERT cannot be used
to extract features of programs written in C. For

Result

Security and Communication Networks

I
|
: Modell
-
g : Llpp.L12| &
) I : &
: ' 3| [
2 | 2
2 | — Result g
g : Validation set 5 il
S | 2
= i =
? =9
- : Model4
I
I

J \ J

Stage 1

Stage 2

Y T
Stage 3

FiGure 1: The workflow consists of three stages. In stage 1, we compare the performance of four models. In stage 2, a synthetic dataset
derived from SARD projects is poured into the real-world dataset to fine tune the parameters of CodeBERT. In stage 3, we examine
important parameters of CodeBERT in terms of code feature extraction.

answering this question, we will compare CodeBERT
with other approaches, including Word2vec, GloVe,
and FastText.

Research Question 2 (RQ2): how to improve the ef-
fectiveness of CodeBERT for vulnerability detection?
To answer this question, we apply a real-world dataset
and a synthetic dataset to fine tune CodeBERT and
conduct comparative experiments.

Research Question 3 (RQ3): how does the input se-
quence length affect CodeBERT? We compare the
performance of the fine-tuned model with various
sequence lengths on the same classification tasks.

3.2. Code Representation Learning. Word2Vec, GloVe,
FastText, and CodeBERT are embedding models for con-
verting textual tokens to meaningful vectors; they have some
similarities and differences. We compare four models from
the following perspective.

From the perspective of model structure, in general,
CodeBERT has a complex structure, while the other three
models have simple structures. Word2Vec contains two
models: Skip-gram and CBOW. Skip-gram employs middle
words to predict nearby words, and CBOW applies context
words to predict middle words. Both models have three
layers, which are the input layer, mapping layer, and output
layer. The hidden layer has a linear structure, so it is very fast
to train. Word2Vec generates a unique vector for each word
in the corpus; however, it ignores the connection between
words, for example, “apple” and “apples.” The two words are
similar, that is, their internal morphology is close. However,
both words are converted by Word2Vec; this internal form
will be ignored. In order to avoid this problem, FastText uses
character-level n-grams to represent a word. The FastText
model also has three layers: an input layer, a hidden layer, an
output layer, and the network structure is relatively simple.
GloVe uses the matrix factorization method, and the
training speed is also very fast. However, it only focuses on
co-occurrence; the generated word vector contains limited
semantic information and is only suitable for limited tasks
such as similarity calculation. Compared with the three
models mentioned above, the model structure of CodeBERT
is much more complicated. CodeBERT is based on a mul-
tilayer two-way transformer. Specifically, CodeBERT

contains 12 layers, each layer has 12 self-attention heads, the
size of each self-attention head is set as 64, and the hidden
dimension is set as 768. These differences in model structure
and computer system will affect the detection of
vulnerabilities.

From the perspective of outcome, for a word, CodeBERT
can generate different vectors according to context infor-
mation, however, Word2Vec, GloVe, and FastText cannot.
This perspective is important because a target word may
express multiple contents, meaning that an embedding
model that is noncontextual would be too limited.

Context information is crucial for analyzing vulnera-
bilities of many different types. A motivating example is
shown in Figure 2. In the vulnerable code (see Figure 2(a)),
both a and b are short types, and b=b+a may cause b to
exceed its range. In the corrected function (see Figure 2(b)),
the range of a is limited so that it can only be less than 0,
which can avoid this error. In the two functions, the range of
a is different. For different contexts, a certain variable has
various meanings.

This paper applies CodeBERT for extracting high-level
code representations for detecting vulnerable functions
written in C. Traditional models such as Word2Vec, GloVe,
and FastText are usually applied to convert a word into a
fixed vector [33], regardless of the variation of the values of
these variables. This will affect the correct understanding of
code semantics. In CodeBERT, a pretrained model for
natural language and programming language, two objectives
are used for training. The first objective is Masked Language
Modeling (MLM) and the second is to replace token de-
tection (RTD). RTD further uses a large number of uni-
modal data, such as source codes without paired natural
language data. For vulnerability detection, we take advantage
of the second objective. CodeBERT is considered as an
embedding model proposed in [34] which is based on the
concept of transformer [35]. Furthermore, we leverage the
component of the encoder; the encoder consists of a mul-
tihead attention layer and feedforward network. Designed to
improve the ability to retain useful information, residual
connections are used for two layers. CodeBERT has not
learned the patterns of C language; by using transfer
learning, CodeBERT makes practical and effective use of the
relevant syntactic and semantic information learned from
other programming languages.

Security and Communication Networks

short add (short a)

{
short b = 32767;

b=b+a
return b;

}

o2 e S R S

(a)

1 | shortadd (shorta)
2| {

3 short b = 32767;
4 if (a<0){

5 b=b+a;

6 }

7 return b;

811}

(b)

FIGURE 2: The example of C functions. (a) A vulnerable function. (b) Tthe revised function.

For many embedding tasks, checking the contiguous
information is generally insufficient to generate semantically
rich vector representations [36], vulnerable patterns usually
contain declarations, assignments, control flow, and other
operational logic. Hence, it is necessary to pay attention to
multiple key points in the vulnerable functions. Multihead
attention enables the algorithm to focus on multiple key
points, which facilitates the capture of potentially vulnerable
program patterns. In addition, the pattern of vulnerabilities
is long-term dependent, meaning that long-distance con-
textual information is crucial for vulnerable function de-
tection. For vulnerable functions, words, such as X;_, and
X;,,, of the word X;, can also be useful. To obtain the de-
pendencies of surrounding words of the word, the positional
embedding is designed to serve this purpose. A positional
encoding layer is added to the input embedding layer, and
the dimension of positional encodings d, 4 is the same as
the embeddings so that both parameters can be summed.
Due to the source code structure being according to the rules
of logic or formal argument and relating to meaning in
language or logic, it is closely connected and tightly coupled.
Hence, the occurrence of a vulnerable code fragment is
usually having constituent parts linked or connected to
either previous or subsequent code, or even to both. A tiny
vulnerable code snippet usually holds multiple lines of code
that can be distributed across a function block [37]. For
traditional embedding models such as Word2Vec [38], it is
needing much effort or skill to exactly pinpoint which line of
code gives rise to software programs; however, with the
structure of the transformer, it is presenting few difficulties
to confirm the distance between each word. Hence, the
structure of CodeBERT can make it easier for the model to
detect a long-term dependency of both forward and back-
ward by offering services, which can effectively capture the
vulnerable programming patterns. CodeBERT has not been
trained in C language; however, by using transfer learning,
CodeBERT is capable of utilizing the relevant patterns from
other programming languages to be applied to a related
detection task.

We explored four embedding models for feature ex-
traction from source code. Word2Vec: the dimension of the
feature vector is set at 100 and the maximum distance be-
tween the current and predicted word within a sentence is 5.
If a word appears less than 5 times, the word will be ignored.
GloVe: dimensionality of the output word vectors is set at
100; the maximum distance between the current and pre-
dicted word within a sentence is 5. The number of iterations

over the corpus is set at 40. The learning rate for training is
set as 0.001. FastText: the dimension of the feature vector is
set as 100. The maximum distance between a current and
predicted word within a sentence is 5. Ignore the words with
a total frequency lower than 5. The number of epochs is set at
20. CodeBERT: the number of epochs is set at 5. The default
sequence length is 400. The number of data samples captured
in one training session is 4, and we used the Adam optimizer
throughout. The default learning rate is 2e—5. The archi-
tecture of the CodeBERT-based embedding model is illus-
trated as follows:

Input layer: it feeds the open-source code to this model

Embedding layer: source codes are transformed into a
low dimension vector

Encoder layer: 12 encoder layers are employed to learn
high-level feature representation

Fully connected layer: only used for fine tuning

Output layer: it delivers the learned high-quality de-
scription of features for vulnerability detection

3.3. Synthetic Data Fine Tuning. In this paper, a fine-tuned
solution is provided to allow CodeBERT to learn the syntax
and structure of the C programming language and capture
the semantics of C code. CodeBERT is pretrained in 6
programming languages which does not include the C
programming language. CodeBERT requires to be familiar
with the code pattern of the C language. Through transfer
learning, CodeBERT does not need to use C language data to
train; it only requires following the fine-tuning strategy.
Fine-tuning CodeBERT requires a large number of samples
and corresponding labels. Manually picking the faults on the
real vulnerable functions is time-consuming. It is difficult to
obtain a lot of real data to fine tune the CodeBERT. The
reasons for adding an artificial synthetic dataset are as
follows. First of all, the synthetic dataset has sufficient
quantity and diversity. It includes basic code patterns and
syntax. In addition, it possesses accurate labels which are
more beneficial to the training and optimization of the
model. We are using the dataset named SARD; synthetic
vulnerable functions are poured off the training set and
validation set, respectively, so that, in the total dataset, the
vulnerability functions are one-tenth of the total functions.
In addition, this also solves the issue of data imbalance for
us. In reality, for multiple classification tasks, such as fi-
nancial fraud and fault diagnosis, the data are often

imbalanced. The model receives the constraints of the data
distribution and learns more of the features of the majority
class, while ignoring the features of the minority class. This
leads to a decrease in the classification performance of the
model. After adding artificially synthesized vulnerability
data, the ability of the model to extract vulnerability features
can be improved.

Regarding the mixed dataset settings [39], we divide the
real-world dataset into the training set, validation set, and
test set according to the ratio of 6:2:2; the vulnerable
functions in these datasets are 1189, 395, and 399, respec-
tively. Among the synthetic dataset, 7486 and 2495 vul-
nerable functions are selected to pour into the training set
and validation set, respectively, making sure that the vul-
nerable functions account for 1/10 of total functions. No
synthetic vulnerable function was added to the test set.

3.4. Evaluate the Impact of Fine-Tuned CodeBERT with the
Various Sequence Length. Source code functions have
varying lengths when they are converted to sequences, and
initial experiments suggest that using different sequence
lengths exerted tremendous influence on detection results.
When mapping code to vectors, the over-long codes are
needed to truncate when converting codes to vectors of the
fixed length for balancing between excessively long vectors
and information loss. If a code sequence of a function is not
long enough, it is padded with 1s. The sequence length
affects the performance of the CodeBERT model signifi-
cantly. When the input sequence is too short, a large number
of functions will be truncated, resulting in loss of infor-
mation. The model cannot fully learn the features of
functions. What it learns may only be the declaration or the
definition of the variables. When the sequence is too long, a
large number of functions will be filled with 1 at the end, and
useless information occupies most of the space of the input
sequence. In addition, there are also long-distance depen-
dencies within the programs, given that some vulnerable
functions may lie many sentences away from their locus of
attention. Due to the bidirectional structure of CodeBERT,
when the distance is too long, previous information may slip
from the model’s memory. Therefore, an appropriate input
sequence length is required, and it will make the model focus
exactly on the feature of the vulnerability.

The lengths of functions in the real-world dataset are
depicted in Table 4; the entire real-world dataset includes
132,018 functions. We observed that approximately 44.4% of
samples are within 128 elements in length. There are 90,696
functions less than 256, accounting for 68.7% of the total.
Although the highest proportion is elements within 128, 128
is not necessarily the most suitable input sequence length.
We need to make a trade-off between the different lengths of
function code sequences.

We fine-tuned CodeBERT using different sequence
lengths (block size) of 128, 256, 384, and 512, respectively.
The model was firstly fine tuned, and the Adam optimizer
with a learning rate of 2e—5 is applied. Considering the
limitation of GPU memory, the batch size is set to 4. Besides,
a relatively small batch size helps the generalization of the

Security and Communication Networks

model. The configuration is one of the many hyper-
parameters we tuned to obtain the optimal parameters.
CodeBERT has been pretrained on six different program-
ming languages, having weights to be initialized. Therefore,
fine tuning is needed to allow the model to fit the specific
task.

4. Experiment and Evaluation

4.1. Dataset. We believed that vulnerabilities are generally
reflected in the pattern of source code, particularly at the
function level. Hence, we focus on function-level vulnera-
bilities in this paper. The statistics of the aforementioned
datasets are presented in Table 5.

4.1.1. Real-World Dataset. The real-world dataset used for
evaluation consists of 12 popular open-source software
projects and libraries. There are Asterisk, Httpd, Image-
Magick, LibPNG, LibTIFF, OpenSSL, Pidgin, gemu, samba,
VLC Player, and Xen. This dataset was built by Lin et al. [11]
and was further extended to form a dual-granularity vul-
nerability detection dataset, providing vulnerabilities at the
file and function level. For vulnerable files and functions,
labels were manually attached based on the records and
description of the National Vulnerability Dataset (NVD)
and Common Vulnerabilities and Exposures (CVE). For the
experiments, we acquire 1,983 vulnerable functions and
130,035 nonvulnerable functions from the dataset. The real-
world vulnerability dataset enables classifiers to learn real-
world vulnerable patterns.

4.1.2. Synthetic Dataset. The synthetic vulnerability dataset
contains function samples derived from the Software As-
surance Reference Dataset (SARD) project. Samples contain
artificially constructed code fragments based on currently
known vulnerable source code patterns. Meanwhile, each
test fragment comprises one main function to guarantee the
fragment of code is compilable. The synthetic dataset enables
classifiers to learn the simplified and straightforward vul-
nerable patterns.

4.2. Experiment Settings. The implementation of CodeBERT
is based on Pytorch (1.7.1) backend, and we implement the
Word2Vec, GloVe, and FastText in Python using Keras with
TensorFlow (1.14.0). We carry out experiments on a machine
with NVIDIA GeForce GTX 1070 GPU and an Intel Core i7-
6700k CPU operating at 4.00 GHz.

The comparison of four models: the real-world dataset
is applied to evaluate the effectiveness of code features
extracted by four embedding models, namely, Word2vec,
FastText, GloVe, and CodeBERT. There are a total of
132,018 functions across 12 open-source projects, of which
1,983 functions are vulnerable. The selected source code
tunction samples are divided into three sets, training set,
validation set, and test set, with a ratio of 6:2:2. Fine-
tuning stage: a contrast experiment was conducted to
demonstrate the effectiveness of the proposed method that

Security and Communication Networks

TaBLE 4: The statistics on code lengths for the total real-world dataset and test set involved in experiments. The functions are divided into
five categories according to length.

>384 and <512

8,065 (6.1%)
1,630 (6.2%)

>256 and <384

15,052 (11.4%)
2,944 (11.1%)

>128 and <256

32,140 (24.3%)
6,446 (24.4%)

<128

58,556 (44.4%)
11,735 (44.4%)

>512

18,205 (13.8%)
3944 (13.9%)

Length of functions

No. of samples (% of total sets)
No. of samples (% of test set)

TaBLE 5: The vulnerable functions and nonvulnerable functions are elaborated in this table. The datasets are derived from 12 open-source
projects written in C programming language and the Software Assurance Reference Dataset (SARD) project which contains artificially
constructed test cases. In the real-world dataset, the vulnerable functions are labeled based on the description of CVE and NVD. The first
column lists the name of the dataset, the second column lists the projects, and the last two columns list the number of vulnerable functions

and nonvulnerable functions, respectively.

No of functions used/collected

Data source Dataset/collection
vulnerable Nonvulnerable
Test cases from the SARD projects C source code samples 83710 52290
Asterisk 94 17620
FFmpeg 249 5549
Httpd 57 3843
ImageMagic 344 2361
LibPNG 45 577
LibTIFF 123 726
Real-world open-source projects OpenSSL 159 7004
Pidgin 29 8547
qemu 143 36063
samba 26 32819
VLC Player 44 6013
Xen 670 8913
Total 1983 130035
helps to fine-tune CodeBERT. Among the functions listed TPQK%
in Table 6, we used the training set and validation set to PAK% = >
> g TPQK% + FPQK%
fine-tune CodeBERT; subsequently, we fed the model with (1)
the test set to obtain a CSV file that sorts functions RAK% = TPQK%
according to the probability of being vulnerable. Evaluation °~ TPQK% + FNQK%

of various parameters: we employed the previously used
three sets in the fine-tuning stage as the dataset for eval-
uating the optimal parameters.

4.3. Evaluation Metrics. For classification tasks, precision
and recall are both mainstream evaluation metrics.
However, there are significantly more nonvulnerable
functions than vulnerable ones. The proportion is ap-
proximately ninety six to one. The severe data imbalance
may let the classifier focus on the majority class, while
ignoring the minority one during the training process. To
correctly monitor the performance, we apply the top-k
percentage precision (PQK%) and top-k percentage recall
(RQK%) to evaluate the effectiveness of the proposed
methods. This standard of measurement is widely used in
the research of information retrieval systems of top-k
retrieved documents.

PQK% alludes to the data in the test set, that is, the
vulnerable data, and has been successfully identified by
the vulnerability detector. RQK% represents the per-
centage of K% data in the test set, that is, the data of
vulnerability. They can be calculated by the following two
mathematical expressions:

4.4. Results and Analyses. There are various studies dedi-
cated to addressing the issue of detecting vulnerabilities,
such as the system proposed in [11] and an open-source
detector named Flawfinder [40]. These systems are applied
as the baselines because we have full access to the code and
dataset, and Flawfinder is a well-known open-source tool
which is widely used in practice. We structure the assess-
ment by completing three research questions step by step.

RQ1: selecting the suitable embedding method can be
a critical task since it can affect the performance of the
vulnerability detectors. Thus, we compare the effec-
tiveness of CodeBERT with other traditional em-
bedding models to determine the most viable
embedding model for vulnerability detection. We here
report the results of applying four embedding models
in detecting vulnerable functions written in the C
programming language. Figure 3(a) elaborates the
comparison of precision obtained from four embed-
ding models, which are 46%, 28%, 41%, and 61%,
respectively, when retrieving the top 1% of most
probably vulnerable functions. Figure 3(c) shows that

Security and Communication Networks

TaBLE 6: The number of vulnerable functions and nonvulnerable functions when fine tuning the parameters of CodeBERT. In the training

set and verification set, aiming to make vulnerable functions account for 1/10 of the total number of functions, we added synthetic data to the
original dataset.

Dataset No of vul. Functions (real-world | SARD) No. of total functions

Training set 8675 (1189 | 7486) 86759

Validation set 2891 (395 | 2495) 28919

Test set 399 (399 | 0) 26425
Precision

80 Precision

Precision (k%)
Precision (k%)

Top k% functions were retrieved Top k% functions were retrieved
m Word2Vec m FastText m CodeBERT
m GloVe m CodeBERT m Fine-tune
® Baseline
(a) (b)
% Recall 90 Recall
80 80
70 - 70
60 .60
= c\"
% 50 < 50
S 40 T 40
L L
530 = 30
20 20
10 10
0 0
1 5 10 15 1 5 10 15
Top k% functions were retrieved Top k% functions were retrieved
—— Word2Vec —— FastText —— CodeBERT
GloVe —— CodeBERT —— Fine-tune
—— Baseline
(© (d)

FIGURE 3: Results of two comparative experiments. (a) and (c) The precision and recall of several embedding methods, respectively; (b) and
(d) the precision and recall of three models.

the green line which is the recall obtained by Code- In addition, we considered the computational com-
BERT lies above the other three lines being the recall plexity of CodeBERT. To directly measure the com-
achieved by Word2Vec, GloVe, and FastText. Code- putational complexity of CodeBERT is a challenging
BERT could identify 40% of total vulnerable functions task because the implementations of the encoder
when retrieving 1% of functions. With Word2Vec, structure of transformer and the multihead attention
only 30% of total vulnerable functions were found. mechanism are encapsulated by the deep learning
When using the FastText and GloVe models, only 27% framework (e.g., PyTorch). Therefore, we chose to
and 20% of actual vulnerable functions could be compare the training and test time of CodeBERT with
found. This indicates that compared with the other those of other embedding methods and measured the
three models, code embeddings generated by Code- efficiency of CodeBERT and other embedding methods.

BERT facilitate vulnerability detection. By comparison, how computationally complex

Security and Communication Networks

codeBERT it is can be evaluated. Table 7 summarizes
the training (measured in one epoch) and test time of
CodeBERT and the other three models, respectively.
We observe that it took CodeBERT 6720 seconds to
complete one epoch during the training phase. In
contrast, the training times of the three embedding
models were similar, which did not exceed 300 seconds.
The noncontextual model (Word2Vec, GloVe, and
FastText) outperforms CodeBERT in terms of training
time. This can be explained by the fact that the
CodeBERT model structure is complex.

RQ2: to evaluate whether the performance of Code-
BERT can be improved via fine tuning. We add a fully
connection layer at the bottom of the output. Mean-
while, to further fine tune the parameters, we apply a
synthetic vulnerability dataset derived from software.

Assurance Reference Dataset (SARD) project: the
synthetic dataset contains artificially defined test cases
to simulate vulnerable code patterns. As shown in
Figure 3(b) and Figure 3(d), when retrieving 1% of
vulnerable functions, we observe that, after fine tuning,
there is an 8% of precision improvement, and the fine-
tuned model could find 84% of total vulnerable
functions when returning 15% of potentially vulnerable
functions. In addition, the fine-tuned model is more
effective than previous models such as the vulnerability
detector [11]. When retrieving 1% of total functions,
the improvement in each of the metrics is substantial,
that is, 24% in precision and 16% in recall. It was
proved that the performance of the detectors was
improved by using the fine-tuned approach.

RQ3: the purpose of this experiment is to understand
how much suitable sequence length help. We construct
experiments to demonstrate the effectiveness of suitable
sequence lengths for vulnerability detection. Tables 8
and 9 show the results of models with various sequence
lengths. The testing set contains 26,425 functions
among which there are 399 vulnerable functions. For
detecting software vulnerabilities written in C language,
we can conclude that the most satisfying sequence
length is 256. Because whether it is retrieving the top
1%, 5%, 10%, or 15%, the model works best when the
sequence length is 256. When examining the top 1% of
total functions, the model with a sequence length of 128
only incurs a precision of 26%.

For a fair comparison, we analyzed the results obtained
above with a baseline. We observe that the output of
Flawfinder is ranking the functions according to their
vulnerable level. The results of the proposed method are
ranking functions according to the probability of being
vulnerable. Hence, we applied the abovementioned
performance metrics to describe both detectors. We
here report the comparison between their effectiveness
in detecting real world.

Vulnerabilities: Tables 8 and 9 show the comparison
results; the model with a sequence length of 256 sub-
stantially outperforms the FlawFinder. The model with a

sequence length of 256 incurs an PQ1% of 70% and R@Q1%
of 47%; however, when we retrieved the top 1% of func-
tions in the test set that contains 399 vulnerable functions,
Flawfinder only achieved 3% precision and 2% recall.
Retrieving 5%, 10%, and 15% of functions ranked by the
vulnerable level, the results of the Flawfinder are also poor.
This phenomenon further highlights the effectiveness of
the CodeBERT-based embedding solution for vulnera-
bility detection.

5. Discussion

This section discusses the balance between model effec-
tiveness and model complexity. To directly measure the
computational complexity of CodeBERT is a challenging
task because the implementations of the encoder structure
of transformer and the multihead attention mechanism
are encapsulated by the deep learning framework. We take
an epoch as an example to show the time overhead in-
curred by the process of training. The training time
corresponding to these four models (CodeBERT,
Word2Vec, GloVe, and FastText) was, respectively,
6720s, 287, 2855, and 286s; it is clear that CodeBERT
takes the longest. The underlying reason is that the
structure of CodeBERT is more complex than the other
three models, and CodeBERT has a large capacity; it may
save a large body of information that other models have
not captured, such as some potential code patterns and
semantic features. In addition, the parameter is complex
and requires a lot of calculation, so it takes more time.
Even so, CodeBERT can improve the precision and recall
of vulnerability detection tasks; it is still worth selecting.

In addition, when using CodeBERT extracting code
features, different sequence lengths exhibited varying
performances; the statistic is shown in Tables 8 and 9. In
the current task, the balance between functions length and
the input sequence length is also a challenge. We discuss
the possible causes of performance behavior of different
sequence lengths. Compared with other lengths, the se-
quence length of 256 outperformed the real-world dataset.
The underlying reason is that the vulnerable functions
contain information such as a head file, variable decla-
ration, parameters, logic code, and return value. If the
sequence length is too short, the obtained features may
only include information such as header files and variable
declarations. Vulnerability features are usually hidden in
the logic code. Therefore, the features of the vulnerabil-
ities may be cut off, and the model learns all the useless
features. When the sequence length is longer than 256,
performance is not satisfactory; the reason for this phe-
nomenon may be that the length of most vulnerable
functions is within 256; if the sequence length is set too
long, the sequence will automatically be filled with 1. Too
much irrelevant information will interfere with the
model’s judgment on the features of the vulnerability;
meanwhile, models will focus on irrelevant information.
In general, setting the sequence length to 256 can greatly
reduce the redundancy and loss of information.

10 Security and Communication Networks
TaBLE 7: The complexity of training and test when we compare four models.

Models Training time per epoch (s) Test time per epoch (s) Number of epochs Total training time with all epoch completed (s)

CodeBERT 6720 600 5 33600

Word2Vec 287 32 150 43050

GloVe 285 32 150 42750

FastText 286 32 150 42900

TaBLE 8: Test precision of various sequence lengths against
Flawfinder on the same classification tasks.

Precision calculated when top-k% functions were retrieved

1 5

o) () 10% 15 6)

sizBeliC1k g 26 7 6 5
Different sequence Siiliczk 56 70 22 12 8
lengths ; ilic;<84 6 18 10 0
sifel Zcé(lz 63 20 12 8
Flawfinder 3 3 - ;

TaBLE 9: Test recall of various sequence lengths against Flawfinder
on the same classification tasks.

Recall calculated when top-k% functions were retrieved

1 5 10

@% o) @) >

sizBelicfzs 225 37 46
Different sequence siZBeliczk 56 47 74 81 36
length 512111(:;(84 3 60 69 g
sifel Zcé(lz 4 66 78 85
Flawfinder 2 2 45 45

6. Conclusions and Future Work

This paper proposes an embedding solution for vulner-
ability detection which is based on CodeBERT. Code-
BERT is not familiar with the syntax and semantic of the C
language; however, it has been pretrained on other pro-
gramming languages and has great potential of learning
effective features of the C language. We have employed C
open-source projects and manually constructed functions
written in C to fine-tune CodeBERT. Meanwhile, we have
constructed a useful real-world dataset for evaluating and
estimating the ability and quality of the solution and other
deep learning-based vulnerability detectors that will be
expanded in the future. The experimental results show
that the proposed embedding solution can achieve pre-
cision that exceeded expectation when returning K (1, 5,
10, 15)% of total functions, indicating that the approach is
capable of facilitating the detection of vulnerabilities in C
open-source projects.

The present scheme can be further improved by
addressing the following limitations. Firstly, CodeBERT
consists of 12 encoder layers and has approximately 110
million parameters, which are expensive to train and deploy.
Therefore, proposing a lightweight model could be valuable.
Secondly, the present embedding solution for vulnerability
detection is limited to dealing with the software code written
in C# and C++. Further research could be conducted to
adapt to more programming languages. Thirdly, there is still
lack of a large real-world dataset providing multiple de-
tection granularities. Further research effort could be de-
veloping an automated vulnerability data labeling solution to
speed up the data collection process.

Data Availability

The public dataset is available online for research (https://
cybercodeintelligence.github.io/CyberCl/).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xue Yuan and Guanjun Lin contributed equally to this
paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (Grant no. 62062069), Op-
toelectronic Information Technology Key Laboratory Open
Project Fund of Yunnan Province, China, under Grant
YNOE-2020-01, and Natural Science Foundation Project of
Fujian Province, China, under Grant 2021J011131.

References

[1] M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou,
“Security and privacy in 6g networks: new areas and new
challenges,” Digital Communications and Networks, vol. 6,
no. 3, pp. 281-291, 2020.

[2] Y. Miao, C. Chen, L. Pan, Q.-L. Han, J. Zhang, and Y. Xiang,
“Machine learning-based cyber attacks targeting on con-
trolled information,” ACM Computing Surveys, vol. 54, no. 7,
pp. 1-36, 2022.

[3] X. Chen, C. Li, D. Wang et al,, “Android hiv: a study of
repackaging malware for evading machine-learning detec-
tion,” IEEE Transactions on Information Forensics and Se-
curity, vol. 15, pp. 987-1001, 2019.

[4] G. Lin, W. Xiao, L. Y. Zhang, S. Gao, Y. Tai, and J. Zhang,
“Deep neural-based vulnerability discovery demystified: data,

https://cybercodeintelligence.github.io/CyberCI/
https://cybercodeintelligence.github.io/CyberCI/

Security and Communication Networks

model and performance,” Neural Computing and
Applications, pp. 1-14, Springer, New York, NY, USA, 2021.

[5] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang,
“Detecting and preventing cyber insider threats: a survey,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 2,
pp. 1397-1417, 2018.

[6] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek,
“Hackers vs. testers: a comparison of software vulnerability
discovery processes,” in Proceedings of the 2018 IEEE Sym-
posium on Security and Privacy (SP), pp. 374-391, IEEE, San
Francisco, CA, USA, May 2018.

[7] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust
network traffic classification,” IEEE/ACM Transactions on
Networking, vol. 23, no. 4, pp. 1257-1270, 2014.

[8] S.Liu, G. Lin, L. Qu et al., “Cd-vuld: CD-VulD: cross-domain
vulnerability discovery based on deep domain adaptation,”
IEEE Transactions on Dependable and Secure Computing,
2020.

[9] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “Mobile
encrypted traffic classification using deep learning: experi-
mental evaluation, lessons learned, and challenges,” IEEE
Transactions on Network and Service Management, vol. 16,
no. 2, pp. 445-458, 2019.

[10] T.O’sheaand]. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Transactions on Cognitive Com-
munications and Networking, vol. 3, no. 4, pp. 563-575, 2017.

[11] G.Lin, W.Xiao, J. Zhang, and Y. Xiang, “Deep learning-based
vulnerable function detection: a benchmark,” in Proceedings
of the International Conference on Information and Com-
munications Security, pp. 219-232, Springer, Beijing, China,
December 2019.

[12] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal
modelling of source code and natural language,” in Pro-
ceedings of the International Conference on Machine Learning,
pp. 2123-2132, PMLR, Lille, France, July 2015.

[13] J. A. Harer, L. Y. Kim, R. L. Russell et al., “Automated software
vulnerability detection with machine learning,” 2018, https://
arxiv.org/abs/1803.04497.

[14] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, and K.-W. Park,

“Learning binary code with deep learning to detect soft-ware

weakness,” in Proceedings of the KSII the 9th international

conference on internet (ICONI) 2017 symposium, Vientien,

Laos, December 2017.

R. Russell, L. Kim, L. Hamilton et al., “Automated vulnera-

bility detection in source code using deep representation

learning,” in Proceedings of the 17th IEEE international
conference on machine learning and applications (ICMLA),

pp- 757-762, IEEE, Orlando, FL, USA, December 2018.

[16] F. Wu,]. Wang, J. Liu, and W. Wang, “Vulnerability detection
with deep learning,” in Proceedings of the 2017 3rd IEEE
international conference on computer and communications
(ICCC), pp. 1298-1302, IEEE, Chengdu, China, December
2017.

[17] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 2016
IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), pp. 297-308, IEEE, 2016.

[18] G. Lin, J. Zhang, W. Luo et al., “Software vulnerability dis-
covery via learning multi-domain knowledge bases,” IEEE
Transactions on Dependable and Secure Computing, vol. 18,
no. 5, pp. 2469-2485, 2021.

[19] L. K. Shar and H. B. K. Tan, ““Predicting common web ap-
plication vulnerabilities from input validation and sanitiza-
tion code patterns,” in Proceedings of the2012 27th IEEE/ACM

(15

11

international conference on automated software engineering,
pp- 310-313, IEEE, Essen, Germany, September 2012.

[20] Z.Li, D. Zou, S. Xu et al,, “Vuldeepecker: a deep learningbased
system for vulnerability detection,” 2018, https://arxiv.org/
abs/1801.01681.

[21] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. . Xiang, “Poster:
vulnerability discovery with function representation learning
from unlabeled projects,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 2539-2541, Dallas, TX, USA, October 2017.

[22] G. Lin, J. Zhang, W. Luo et al., “Cross-project transfer rep-
resentation learning for vulnerable function discovery,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3289-3297, 2018.

[23] M. Pradel and K. Sen, “Deep learning to find bugs,” TU
Darmstadt, Department of Computer Science, vol. 4, no. 1,
2017.

[24] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors:
understanding programs through embedded abstracted
symbolic traces,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pp- 163-174, Boise, ID, USA, November 2018.

[25] Y. Fang, Y. Liu, C. Huang, and L. Liu, “FastEmbed: p,” PLoS
One, vol. 15, no. 2, Article ID e0228439, 2020.

[26] A. Kanade, P. . Maniatis, G. Balakrishnan, and K. Shi,
“Learning and evaluating contextual embedding of source
code,” in Proceedings of the International Conference on
Machine Learning, pp. 5110-5121, PMLR, Shenzhen, China,
February 2020.

[27] R.-M. Karampatsis and C. Sutton, “Scelmo: source code
embeddings from language models,” 2020, https://arxiv.org/
abs/2004.13214.

[28] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, “SOftware
vulnerability analysis and discovery using deep learning
techniques: a survey,” IEEE Access, vol. 8, pp. 197158-197172,
2020.

[29] S. K. Singh and A. Chaturvedi, “Applying deep learning for
discovery and analysis of software vulnerabilities: a brief
survey,” Advances in Intelligent Systems and Computing,
vol. 1154, pp. 649-658, 2020.

[30] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang,
“Data-driven cybersecurity incident prediction: a survey,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1744-1772, 2019.

[31] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A
survey of android malware detection with deep neural
models,” ACM Computing Surveys, vol. 53, no. 6, pp. 1-36,
2020.

[32] G.Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software
vulnerability detection using deep neural networks: a survey,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1825-1848, 2020.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 2013,
https://arxiv.org/abs/1301.3781.

[34] Z.Feng, D. Guo, D. Tang et al., “Codebert: a pretrained model
for programming and natural languages,” 2020, https://arxiv.
org/abs/2002.08155.

[35] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Proceedings of the Advances in neural information
processing systems, pp. 5998-6008, Long Beach, CA, USA,
December 2017.

[36] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and
D. Bieber, “Global relational models of source code,” in

https://arxiv.org/abs/1803.04497
https://arxiv.org/abs/1803.04497
https://arxiv.org/abs/1801.01681
https://arxiv.org/abs/1801.01681
https://arxiv.org/abs/2004.13214
https://arxiv.org/abs/2004.13214
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155

12 Security and Communication Networks

Proceedings of the International conference on learning
representations, New Orleans, Louisiana, May 2019.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping
language to code in programmatic context,” 2018, https://
arxiv.org/abs/1808.09588.

J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang,
“Deep learning based attack detection for cyber-physical
system cybersecurity: a survey,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 9, no. 3, pp. 377-391, 2022.

C.-L. Zhang, J.-H. Luo, X.-S. Wei, and J. Wu, “In defense of
fully connected layers in visual representation transfer,” in
Pacific Rim Conference on MultimediaSpringer, New York,
NY, USA, 2017.

[40] FlawFinder: https://dwheeler.com/flawfinder/.

[37

(38

[39

https://arxiv.org/abs/1808.09588
https://arxiv.org/abs/1808.09588
https://dwheeler.com/flawfinder/

Hindawi

Security and Communication Networks
Volume 2021, Article ID 6568602, 11 pages
https://doi.org/10.1155/2021/6568602

Research Article

WILEY

Hindawi

TapChain: A Rule Chain Recognition Model Based on

Multiple Features

Keyu Jiang,' Hanyi Zhang,” Weiting Zhang,' Liming Fang ®,">* Chunpeng Ge,

Yuan Yuan,? and Zhe Liu!

1,3,4

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211 100,

Jiangsu, China
*Alibaba Group, Hangzhou 311100, Zhejiang, China

*Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute, Shenzhen 518 000, Guangdong, China
*Science and Technology on Parallel and Distributed Processing Laboratory (PDL), Changsha 410000, Hunan, China

Correspondence should be addressed to Liming Fang; fangliming@nuaa.edu.cn
Received 24 September 2021; Revised 27 October 2021; Accepted 18 November 2021; Published 23 December 2021
Academic Editor: Jinguang Han

Copyright © 2021 Keyu Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Trigger-action programming (TAP) is an intelligent tool, which makes it easy for users to make intelligent rules for IoT devices and
applications. Unfortunately, with the popularization of TAP and more and more rules, the rule chain from multiple rules appears
gradually and brings more and more threats. Previous work pays more attention to the construction of the security model, but few
people focus on how to accurately identify the rule chain from multiple rules. Inaccurate identification of rule chains will lead to
the omission of rule chains with threats. This paper proposes a rule chain recognition model based on multiple features, TapChain,
which can more accurately identify the rule chain without source code. We design a correction algorithm for TapChain to help us
get the correct NLP analysis results. We extract 12 features from 5 aspects of the rules to make the recognition of the rule chain
more accurate. According to the evaluation, compared with the previous work, the accuracy rate of TapChain is increased by 3.1%,
the recall rate is increased by 1.4%, and the precision rate can reach 88.2%. More accurate identification of the rule chain can help
to better implement the security policies and better balance security and availability. What’s more, according to the rule chain that

TapChain can recognize, there is a new kind of rule chain with threats. We give the relevant case studies in the evaluation.

1. Introduction

Trigger-action programming (TAP) [1] is a programming
method that users can use to stitch devices and applications
(APPs) together, such as IoT devices, Twitter, and Google
Calendar. The users do not need to know the specific
programming language. They just need to use the graphical
interface to create rules such as “if this, then that.” For
example, the rule “if your room temperature is too high, then
turn on your A/C” indicates that the air conditioner will be
turned on when the temperature in your room is too high.
TAP can be used not only in Internet of Things but also in
the interaction between APPs. For example, the rule “if you
share a photo on Instagram, then upload a photo from URL
in your Facebook” instructs the photo will be uploaded in

your Facebook when you share a photo on Instagram. This
kind of personalized and simple programming model
provides great convenience for end-users.

Unfortunately, as more and more devices and APPs need
to be associated, this intelligent method will also bring vul-
nerabilities to the end-user system due to the formation of a
variety of rule chains vulnerabilities. For example, one rule
turns on the heater, while another rule opens the window
when the temperature is too high. These two rules may cause
windows to open unexpectedly and then the open windows
can be exploited by attackers. However, a rule adds any new
iOS reminders to your Google Calendar, and another rule
posts a tweet when any new event is added to your Google
Calendar. These two rules may upload reminders you do not
want to upload to public space to Twitter, as shown in Figure 1.

mailto:fangliming@nuaa.edu.cn
https://orcid.org/0000-0002-1420-2047
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6568602

Connected

Security and Communication Networks

Window

R1: If temperature is low, then open the heater.

R2: If temperature is too high, then open the window

R3: Add any new iOS reminders to your Google Calendar.

R4: If any new event added in your Google Calendar, then post a tweet.

Connected Air

Conditioner
........ = rT,__?I -
LA
Connected \
Heater Smart Smart Mobile
Lock Hub Device

Connected
Bulb

——

. Connected
@ Thermostat

iOS reminder:

g . | Add new :
. —oCC W
| reminders

User

FIGURE 1: Application scenario of TAP.

In previous work, researchers pay more attention to the
construction of a security model to identify threats such as
SOTERIA [2] but ignored the identification of the rule chain.
Although the construction of the security model is im-
portant, the accurate identification of the rule chain is also
crucial. Only by accurately identifying the rule chain, the
excellent security model can work more perfectly. Celik et al.
[3] can accurately identify the rule chain in SmartThings by
using code analysis tools on the SmartThings platform.
However, it is difficult to apply the closed nature of IoT
platforms, such as IFTTT, on a large scale [3]. Although
Wang et al. [4] can identify the rule chain without source
code, its accuracy and precision are not good enough.

In this paper, we propose a rule chain recognition model
based on multiple features, TapChain. We define a
(action, trigger) pair as a rule chain. TapChain can improve
the recognition accuracy of the rule chain through the natural
language description of rules. To overcome the closed nature,
we use natural language processing (NLP) technology to
analyze and process trigger description and action descrip-
tion, respectively. Due to the marking error of the NLP tool,
we design a correction algorithm to help us get the correct
mark. Since there is no label data of rule chain at present, we
manually combine and identify {action, trigger) pair in the
same service and label 0 or 1 for each pair to indicate whether
the rule chain will be formed. Then, we extract 12 features
from trigger description and action description and then
judge whether an action will cause a trigger to start.

We evaluate TapChain according to triggers and actions
from 279,828 real rules on the IFTTT website. We find that
TapChain can achieve 89.9% accuracy, 88.2% precision, and
92.1% recall in identifying rule chains. Compared with the
previous work, TapChain’s recognition accuracy of the rule
chain is improved by 3.1% and the recall rate is improved by
1.4%. In addition, through TapChain, we find a new kind of
rule chain with threat and we give a case study.

We summarize our contributions as follows:

(1) We propose TapChain, a rule chain recognition
model based on multiple features. We extract 12
features to identify the rule chain. These features can

more finely represent the relationship between ac-
tion and trigger in {action, trigger).

(2) We design a correction algorithm for TapChain to
help us get the more accurate NLP analysis results.

(3) Compared with the previous work, TapChain’s
recognition accuracy of the rule chain is improved by
3.1%, the recall rate is improved by 1.4%, and the
precision rate can achieve 88.2%.

(4) Thanks to the improvement of the accuracy of rule
chain recognition, we find a new kind of rule chain
with threats. We give the relevant case study in the
evaluation.

The organization of this paper is as follows. Section 2
outlines the related work. Section 3 shows the data pro-
cessing. Section 4 introduces TapChain. In Section 5, we
evaluate TapChain. Section 6 discusses usability and limi-
tations. Section 7 concludes the paper.

2. Related Work

Comprehension of Single Rule in TAP. Researchers have been
studying TAP for seven years. The earliest research can be
traced back to 2014. To test the usability of TAP, Ur et al. [1]
gathered 266 participants to carry out a user study, which
laid a good foundation for the research of TAP. Since then,
many researchers [5-9] have been devoted to the research in
this field. In 2020, Zhao et al. [10] proposed a visual interface
to interpret TAP rules to help users understand the oper-
ation of rules. These researches are of great significance for
other researchers to assume that users can understand a
single rule when they study the rule chain.

Security of Single Rule in TAP. In 2016, Fernandes et al.
[11] researched the potential security problems caused by
TAP on the SmartThings platform for the first time and
found the vulnerabilities in the event subsystem of Smart-
Things through static analysis. Then, some researches
[12-16] summarized the security problems of a single rule
and put forward corresponding solutions. The security of a
single rule is also helpful to the security of the rule chain.

Security and Communication Networks

Security of Rule Chain in TAP. On the SmartThings
platform, Celik et al. [2, 3] identified the threats in TAP and
proposed corresponding solutions. However, their solution
needs to obtain source code, which is difficult for the IFTTT
platform, because the IFTTT platform is a closed source
platform. Wang et al. [4] proposed iRule, which not only
constructs the security model but also realizes the identi-
fication of the rule chain without obtaining the source code.
However, the performance of iRule in the chain of recog-
nition rules can be optimized. They only extracted the
features of the predicate and object from the description. It is
difficult to make an accurate judgment when identifying the
rule chain which has a great difference between predicate
and object, especially when it involves environmental fac-
tors. Our work is to improve the recognition rule chain to
better identify more threat rule chains.

3. Data Processing

In this section, we describe how we process data. Then, we
introduce how we label the rule chain.

3.1. Dataset. Our work is based on the rules on the IFTTT
website. So, first we need to obtain the data. We try to use
Blase et al.’s method [6] to obtain the latest rules. However,
at present, the links to the rules on the IFTTT website have
been processed additionally. Although the URL of each rule
is still “https://ifttt.com/applets/ID,” the ID of each rule is no
longer a number, but a combination of numbers and letters,
such as “https://ifttt.com/applets/SdbAq2ce.” At present, it
is difficult for us to find crack methods from the ID of rules.
Therefore, we have to use the dataset provided by Mi [17].
The dataset contains rules, triggers, and actions.

3.2. Data Preprocessing. It seems that we obtain a lot of rules,
but there is little practical help for us to identify the rule chain.
This is because each rule is composed of a trigger and an action.
When users make rules, they can combine trigger and action in
a variety of ways. But in the end, trigger and action come from
the trigger dataset and action dataset, respectively. Therefore,
we can decompose the rules into trigger and action, analyze
them respectively, and then find the rule chain. Besides, the
dataset contains a lot of invalid information, so we need to
clean the data. For example, in the triggers dataset, “triggerUrl,”
“triggerchannelURL,” and so on, are invalid information. So,
we need to filter out this information.

3.2.1. Trigger Dataset. The trigger dataset is used to deter-
mine the detail of each trigger for comparison with action.
We filter the trigger to keep only the information we need.
There is the following example:

(1) triggerTitle: door opened

(2) triggerDesc: this trigger fires when the selected door

is opened
(3) triggerChannelName: abode
(4) triggerFieldList: [“Select door”]

Among them, “triggerTitle” and “triggerChannelName”
can uniquely determine a trigger. “TriggerDesc” describes
the detail of the trigger. “TriggerFieldList” is supplementary
to “triggerDesc” and it is a personalized value that can be set
by users. In this example, we can use the “triggerFieldList” to
determine which door the trigger exactly corresponds to.
“TriggerFieldList” is also extracted as features.

3.2.2. Action Dataset. The action dataset is used to deter-
mine the function and impact of each action for comparison
with a trigger. We also sift out the information we need.
There is the following example:

(1) actionTitle: change mode

(2) actionDesc: this action will change your abode
system to the selected system mode

(3) actionChannelName: abode
(4) actionFieldList: [“Which mode?”]

“ActionTitle” and “actionChannelName” can uniquely
determine an action. “ActionDesc” describes the function and
influence of the action in detail. “ActionFieldList” is supple-
mentary to “actionDesc” and it is a personalized value which
can be set by users. In this example, we can use the “action-
FieldList” to determine which mode the action will change to.

3.3. Description Processing. First of all, at the beginning of
the description of each trigger, there are expressions such as
“this trigger fires when.” Similarly, at the beginning of the
description of each action, there are expressions such as “this
action will.” This kind of information is not only helpful for
us to analyze the rule chain but also increases the analysis
complexity of the description statement. So, we delete these
prefixes and capitalize the first letter of the new first word to
make it a sentence.

Second, we find that some trigger descriptions have
multiple sentences. For example, the description “this trigger
fires every time anyone shares a public photo with a tag you
specify. Note: limited to 30 photos per check” contains two
sentences. We notice that the first sentence of the description
mainly describes the function of the trigger. The rest of the
sentence is usually a prompt to the user. So, we only keep the
first sentence of the description.

Third, in the description, some special symbols appear,
such as % and /. For %, it often appears in statements describing
percentage, such as humidity level and lighting level. We
convert it into a word, percentage, to avoid errors in NLP tool
analysis. For /, it often appears in the abbreviation of air
conditioning. We find that A/C often appears in the description
instead of air conditioning. We directly delete these /, to avoid
the NLP tool taking A/C apart for analysis.

3.4. Dataset Labeling. When we look for the rule chain, we
must find which trigger can be affected by the action. We
define the pair as {action, trigger). If an action can start a
trigger in (action, trigger), we label it as 1; otherwise, we
label it as 0.

https://ifttt.com/applets/ID
https://ifttt.com/applets/SdbAq2ce

For the convenience of describing our method, we give
some examples of action and trigger, as shown in Table 1. ID
is used to distinguish each data represents action or trigger,
A represents action, and T represents trigger. The descrip-
tion is the description of the action or trigger.

We divide (action, trigger) labeled as 1 into two parts.
One is that action can start trigger directly, which is called
direct chain, and the other is that action can start trigger by
affecting the physical environment, which is called indirect
chain. For the two types of data, we describe them separately.

3.4.1. Direct Chain. We define that action can only start
triggers belonging to the same services. When we label,
comparing the description of action and trigger, we can
judge whether most (action, trigger) can form a direct
chain. For example, Al and TI in Table 1; we can directly
judge that Al can start T1. First of all, A1 and T1 belong to
the same service. Secondly, according to the description of
T1, as long as the mode of abode system changes, it can be
triggered. A1 is to change the mode of abode system. Finally,
we need to determine whether the values in “FieldList” are
the same. Therefore, we can label (A1, T1) as 1 if the mode
of action is the same as that of the trigger; otherwise, label 0.

3.4.2. Indirect Chain. In contrast, labeling the indirect chain
is more difficult. We first need to define the environment for
the device. For example, the operation of air conditioning
and heaters can affect both temperature and humidity. We
have made a summary of the devices appearing in the
triggers dataset and actions dataset, as shown in Table 2.

The second difficulty is that we need to distinguish how
devices affect the environment. For example, air condi-
tioning has many functions, such as refrigeration and
heating. Refrigeration will reduce the temperature and
humidity, but heating will increase the temperature and
reduce the humidity. “FieldList” can help us.

For example, A2 describes that this action will turn on
your A/C in the specified room and run it in temperature
mode. From the description, it is difficult to determine the
impact of air conditioning on the environment. However,
the “keep temperature at” in “actionFieldList” clearly in-
dicates that the function of A2 is to keep the temperature at a
certain value. Therefore, we can know whether A2 can start
T3 by comparing the “temperature threshold” in A2
“actionFieldList” with the “keep temperature at” in T3
“triggerFieldList.” If the value in the “actionFieldList” of A2
is less than the value of the “triggerFieldList” of T3, we can
label (A2, T3) as 1; otherwise, we label 0. At the same time,
since A2 turns on the air conditioner, T2 may be started. If
the first value in T2 “triggerFieldList” is “turn on” and the
second value is the same as the first value in A2 “action-
FieldList,” we can label (A2, T2) as 1; otherwise, we label 0.

Based on the above analysis, the personalized values,
values in the “actionFieldList” and “triggerFieldList” are very
important for us to judge whether a rule chain can be
formed. So, we randomly set these values to complete
labeling.

Security and Communication Networks

4. TapChain

In this section, we describe TapChain, our model to recognize
the rule chain. Because the IFTTT platform is a closed source
platform, program analysis technology is difficult to apply to it
[4]. To overcome this difficulty, TapChain recognizes the rule
chain by using natural language processing (NLP).

4.1. Overview. TapChain first takes the data processed in
Section 3 as the input. These data are divided into two cat-
egories. One is “Desc” data, including “triggerDesc” and
“actionDesc.” The other is “FieldList” data, including “trig-
gerFieldList” and “actionFieldList.” For “desc,” we use the
NLP tool, Stanford CoreNLP [18], to perform part-of-speech
(POS) tagging and dependency parsing on sentences. When
the tool is used for sentence analysis, some special sentences
are analyzed inaccurately, so we correct these inaccurate
analysis results. Then, we extract semantic related features
from the corrected results. For “FieldList,” the data inside are
personalized, and users can set it by themselves. To overcome
the uncertainty brought by personalized data, we abstract the
data into the comparison of the same value or the same range.
Then, we extract the “FieldList” features. We also extract
environment-related features based on “FieldList” and
“Desc.” Finally, we input the extracted features into the
machine learning models to obtain the recognition results of
the rule chain. The overview is shown in Figure 2.

4.2. Description Analysis Based on NLP. We first perform
part-of-speech (POS) tagging and dependency parsing using
Stanford CoreNLP. The generated dependency tree is shown
in Figure 3.

The dependency relationship analyzed by Stanford
CoreNLP is complex. There are some invalid elements, such
as the analysis of stop words and punctuation. So, we
summarize the syntax elements that we focus on, as shown in
Table 3.

(1) Predicate: it is a verb, expressed as root. Sometimes,
there is a verb phrase. At this time, we need to
combine the word marked as root with the word
marked as compound:prt as verb, such as “turn on.”
When conjunctions appear in a sentence, there will
be coordinate verbs, expressed as conj.

(2) Direct object: the action is executed on it. The direct
object is expressed as obj. When there is no word
marked obj in the sentence, we take the word marked
obl as the direct object, because indirect objects
cannot exist independently. We also define the
subject in the passive voice as the direct object,
expressed as nsubj:pass.

(3) Indirect object: the indirect object is expressed as obl,
such as “mode” in “change your abode system to the
selected system mode.”

(4) Modifier: modify a noun. In our work, most of them
modify the object, such as “new” in “write a new
message in a given sphere.”

Security and Communication Networks

TaBLE 1: Example of action and trigger.

ID Service

Description

FieldList

Al Abode

Change your abode system to the selected system mode

[“Which mode”]

A2 Ambi climate Turn on your A/C in the specified room, and run it in temperature mode [“Keep temperature at,” “Which A/C”]

T1
T2
T3

Abode
Ambi climate

Your abode system mode is changed
The air conditioner has been turned on or off
Ambi climate Your device detects the temperature is below the threshold you specified [“Select A/C,” “Temperature threshold”]

[“Select mode”]
[“Turn on/off,” “Select A/C”]

TasLE 2: Physical environment.

Phy‘smal Source of trigger Device or service of action Keyword

environment

Temperature Temperature rises above Air conditioner, heat pump Temperature

Humidity Humidity rises above Air conditioner, heat pump, humidifier Humidity

Brightness Brightness higher .than light dimmed to Dimmer, light Brlghtn?ss, light,
specific level dim

Air flow Zone air flow rises above threshold iZone Air flow, airflow

Air quality Air quality changes

Sound Sound detected says a specific phrase
Motion Motion detected
Smoke Smoke detected

Air purifier
Musaic, Nightingale, Woopla, GO, Android device,
D-Link Siren play
Samsung robot vacuum Motion, robot
\ Smoke

Air quality
Sound, say, ask,

e N
Features i
Actions Data (actionFieldlist]Ij/lach}ne
Triggers Data triggerFieldlist SS1C Fieldlist carning
~< —T— Models
S~o) Features
\ ™ 1+ Environment
S N\ TPE
entence
/\ Features
. Y|
actionDesc Analysis Part-of-Speech Correcting | 4 Pie —
triggerDesc Stanford CoreNLP Dependency Parsing & ~~,| Semantic Recognition
Features Results
J J
FIGURE 2: Overview of TapChain.
punct
obl
. case
obj det
nmod:poss amod
1—c0mp()und :‘ l l——compound*
Change your abode system to the selected system mode
VB PRP$ NN NN IN DT VBN NN NN
ROOT

FiGURE 3: Example of dependency parsing.

TaBLE 3: Explanation of the analysis results.

We do not extract the subject. Because we have deleted

Sentence constituent

Analysis of Stanford CoreNLP

the beginning of the sentence in the text preprocessing, most

Predicate
Direct object
Indirect object
Modifier

obj, obl, nsubj:pass
obl
amod, compound

Root, compound:prt, conj

of the sentences have become imperative sentences, and
there is no subject. The valid subject only exists in the de-
scription of some triggers but, it does not exist in the de-
scription of actions.

4.3. Correcting. The Stanford CoreNLP sometimes makes
analysis an error when analyzing sentences. We call this
error predicate dislocation. For example, for the analysis of
the sentence “add mixes to your favorite mixes,” the tool will
mark “add” as the subject and “mixes” as the predicate, as
shown in Figure 4. However, “add” should be the predicate
and “mixes” should be the direct object.

This error has caused great obstacles to rule chain
recognition, so we designed an algorithm to correct it.
According to the observation, NLP tools only mark
predicate and the direct object incorrectly but mark the
indirect object and other sentence components starting
from the indirect object correctly. Therefore, we modify
the predicate and direct object and their relationship with
other sentence elements. The correction algorithm is
shown in Algorithm 1.

The algorithm first determines whether the syntax tree is
empty and whether there is a subject. Then, the position of
the subject and the part of speech of the subject are obtained
in turn. If the part of speech of the subject is the original
form of the verb and the position of the subject is at the
beginning of the sentence, we can judge that it is a predicate
dislocation. If the part of speech of our root word is the
plural of verbs, it is further determined that the plural of
nouns is wrongly judged as the third person singular. We
update the part of speech of the root node to NNS (noun
plural). Then, we swap the root node and the subject node
and mark their relationship as a direct object. The corrected
marking results are shown in Figure 5. Because there is only
such predicate dislocation in the current dataset, our al-
gorithm does not discuss other cases. In the future, we will
update the algorithm if new marking errors appear.

4.4. Feature Extraction. Our goal is to determine whether an
action can start a trigger. Wang et al. [4] only extracted
features from verbs and objects, and their effect can be
further improved. Therefore, we extract more features to
help us identify the rule chain.

First of all, we use the lemma function of Stanford
CoreNLP to transform the predicate and object words into
word prototypes for feature extraction. Then, we extract
features from five different aspects.

4.4.1. Predicate. Usually, the predicate is the core of a
sentence; it has the function of connecting the preceding and
the following. Through the predicate, we can know how to
complete a task.

Same Predicate. The role of the predicate in a sentence
determines its importance. Therefore, in a {action, trigger),
we compare the predicate in action with the predicate in the
trigger and construct a binary feature according to
whether it is the same or not. In the description of trigger
and action, there are parallel predicates. In this case,
when we compare predicates, as long as one predicate is
the same, we think that the predicate of action is the same
as that of the trigger. We use the f(s_p) to represent this
feature, a_ps to represent all predicates in an action, and
t_ps to represent all predicates in a trigger. We use a_p to

Security and Communication Networks

obl punct

case

nmod: poss
y—amod—

17 nsubj

Add mixes to your favorite mixes
VB VBZ IN PRP$) NNS
ROOT

FIGURE 4: Wrong mark.

represent predicate from a_ps and use t_p to represent
predicate from t_ps. We abstract the feature extraction as
a formal expression, as follows:

1, ifJda_pea_ps=3t_pet_ps,
ope| TS s,

0, else.

4.4.2. Object. Generally speaking, the object is the receiver
of the predicate. Different objects, even if they have the same
predicate, have opposite meanings. Therefore, it is equally
important for us to identify the rule chain.

Same Direct Object. The direct object is the receiver of the
predicate. We take it as a binary feature whether the direct
object in action is the same as that in the trigger.

Same Indirect Object. The indirect object is a part af-
fected. We also take it as a binary feature.

4.4.3. Modifier. Modifiers are used to modify nouns, which
can describe some special properties of the modified nouns.
Since we have extracted two types of objects, we also divide
attributives into two types.

Same Modifier of Direct Object. Modifier of the direct
object is used to modify the direct object. We take it as a
binary feature.

Same Modifier of Indirect Object. Modifier of the indirect
object is used to modify the indirect object. We also take it as
a binary feature.

4.4.4. FieldList. On the IFTTT website, action and trigger
have their own “FieldList,” which are “actionFieldList” and
“triggerFieldList,” respectively. In “FieldList,” there is a lot of
specific information. Therefore, we also extract three fea-
tures from “actionFieldList” and “triggerFieldList.”

Exist Same Fields. We first traverse the “FieldList” of
action and trigger respectively to find out whether there are
the same fields. We take the number of same fields as a
continuous feature.

Same Values in Same Fields. We also need to know if the
values are the same in all the same fields. We take it as a
binary feature.

The Number of Same Values. This is a supplement to the
second feature. We calculate the number of the same per-
sonalized values. We take it as a continuous feature.

4.4.5. Environment. We first extract physical environmental
factors from triggers. This is because our goal is to identify
the rule chain. Only when the trigger can receive the physical
environmental factors can the rule chain be formed. When
we label manually, we do this work at the same time. We

Security and Communication Networks

3) return R
(4) end if

(14) R' «—— subjNode

(16) end if
17) end if

(18) returnR’
(19) end function

Input: R (root of syntax tree)

Output: R’ (root of corrected syntax tree)

(1) function FixPredicate(R)

(2) if (R ==NULL) and (getSubjct(R) ==NULL) then

(5) subj_pos «— getSubjectPosition (R)
(6) subj_PoS «— getPartOfSpeech (subj_pos)
(7) if (subj_PoS == VB)and (subj_pos == 1) then
(8) root_PoS «— getPartOfSpeech (R)
9) if root_PoS == VBZ then
(10) subjNode «— getSubjectNode (R)
(11) root_pos «— getRootPosition (R)
12) root_PoS «— NNS
(13) SwapNode (R, subjNode)

(15) R' «—setRelation (R, R, 0bj)

ArGoriTHM 1: Correcting predicate dislocation.

punct

obl

case
obj nmod: poss
l [amod
Add mixes to your favorite mixes
VB NNS IN PRP$] NNS
ROOT

Ficure 5: Corrected mark.

extract eight kinds of physical environment factors, and at
the same time, we extract keywords to extract features, as
shown in Table 2.

For the physical environment, we can distinguish
whether the indirect chain can be formed according to four
characteristics.

Same Environmental Factor. First of all, the physical
environment affected by an action needs to be the same as
that detected by a trigger before the action can start the
trigger. Therefore, we regard whether the physical envi-
ronment affected by action is the same as the physical
environment detected by trigger as the first physical
environment feature, which is a binary feature. For the
first three environmental factors, we extract them directly
from the “actionFieldList” and “triggerFieldList.” But we
cannot extract the hidden environmental factors of device
effect and other environmental factors in the same way.
Therefore, for a trigger, we extract it from “triggerDesc”
by string matching and, for action, we summarize the
environment affected by the device or service and the
keywords to extract features in Table 2. According to the
terms of the device or service and the keywords we

extracted, we judge whether the action will cause envi-
ronmental changes.

The Types of Environmental Factors. Second, if the en-
vironmental factors are the same, we extract the types of
environmental factors. We take it as a continuous feature.
The values of this feature are from 1 to 8, representing 8
environmental factors in Table 2. 0 is used to indicate that
the environment variables are different.

Same Value Range. Third, we need to judge whether the
values of the physical environment are the same. When
“higher, above, exceed, greater” appear in “triggerDesc,” we
map the environment value range of trigger (T(E_v_r)) to
[T (E_v),00). When “lower, below, less” appear in “trigger-
Desc,” we map the environment value range of trigger
(T(E_v_r)) to (—00, T (E_v)]. Then, we can get values from the
“actionFieldList” (A(E_v)) and “triggerFieldList” (T(E_v)) and
compare them. This is important in the first three environ-
mental factors: temperature, humidity, and brightness because
they all have certain values in trigger and action. We also define
this feature as a binary feature. We use f(s_v_r) to represent this
feature. For the convenience of understanding, we abstract it as
a formal expression, as follows:

[T (E_v),00)

(=00, T(E_v)],
0, A(E.v) ¢ T(E_v.r),
1, A(E_.v) e T(E_v_r).

higher, above,
T(E_v_r) =

lower, below,

(2)
f(sovor) = {

Same Trend. Finally, we also make it a feature whether
the changing trend of the physical environment is the same.
For other environmental factors, there may be an explicit
numerical expression in the trigger, but we cannot find the
description of numerical value in action. Besides, some
devices will affect other physical environments. For example,
we can get the temperature value of the air conditioner
setting through the “actionFieldList,” but we cannot get the
value that the air conditioner affects the humidity; we can
only judge that it will lower the humidity. Therefore, we take
it as a supplement to the second physical environmental
feature. We define this feature as a binary feature. For the
first five environmental factors, we define the trend as up or
down according to the description. For the latter three
environmental factors, we only define whether they exist.

4.4.6. Summary. We extract 9 binary features and 3 con-
tinuous features from five different perspectives. Among
them, the five features of grammatical elements are based on
NLP technology. The other features are more extracted by
string matching and numerical comparison.

5. Evaluation

In this section, we evaluate the performance of TapChain. In
the following evaluation, we use i7-5700HQ@2.70GHz
quad-core processors, 8 GB memory.

5.1. Setup. We obtain 279,828 rules, 431 services, 1,470
triggers, and 896 actions. In the above data, only 150 services
have both triggers and actions, so we only construct 5,528
(action, trigger) pairs with the same service and label them.
It takes us about 60 hours to complete the task of labeling
data. One of our collaborators reviews the labeled dataset
and revises it. In the process of labeling data, we find that the
positive and negative data are unbalanced, and the positive
data only accounted for about one-tenth of all datasets. We
do not have a large number of data, so we use SMOTE
algorithm in imblearn [19] to balance the data. We randomly
select the data of 80 services as the training set of the
classifier, and the data of 70 services as the test set of the
classifier.

In the choice of classifier, we do not consider too much.
Since our task is a supervised binary classification task, we
use four main supervised learning classifiers from scikit-
learn [20] to train the model. The four classifiers are random
forest, support vector machine (SVM) (RBF kernel), mul-
tiple perceptron, and logistic regression.

5.2. Performance. We use test sets to evaluate TapChain with
accuracy, precision, recall, and F1-score [21]. In our opinion,

Security and Communication Networks

precision rate and recall rate are equally important in the
recognition rule chain. Because, if the precision of the model
is low, the future security policy based on the model will
confuse users and seriously affect the user experience. If the
recall rate is low, the identified rule chain will be incomplete,
which will affect the security of users. Therefore, besides
accuracy rate, precision rate, and recall rate, we use F1-score
to evaluate TapChain. The results are shown in Table 4.
All evaluation indicators are calculated based on the
following concepts. True positive (TP) is the number of rule
chains correctly predicted. False positive (FP) is the number
of rule chains incorrectly predicted. True negative (TN) is
the number of correct recognition that will not form a
regular chain. False negative (FN) is the number of incorrect
recognition that will not form a regular chain. All is the
number of all data. The accuracy rate (A), precision rate (P),
recall rate (R), and Fl-score (F1) are defined as follows:

Ao TP+TN)
All
TP
P=——,
TP + FP
1 (3)
R< TP
" TP+EN’
2xPxR
Fl=——.
L P+R

According to the results, our model of identifying rule
chain is better than that of Wang et al. [4]. TapChain
performs better when using the same machine learning
model. The reason why TapChain works better is that we
extract more features and correct the results of NLP tool
analysis. We not only extract additional semantic features
from indirect objects but also extract additional environ-
ment and personalized features from “FieldList.” For the
analysis error of the NLP tool, we design an algorithm to
correct it, which can get the correct part-of-speech tagging
and dependency parsing. Then, we can extract the correct
features and improve the performance of TapChain. In
addition, we split the sentences with conjunctions that are
easy to cause trouble. When two sentences are compared and
there is a same predicate, we think that the predicates of the
two sentences are the same. It also improves the perfor-
mance of TapChain.

Besides, they do not use the personalized data in
“FieldList” when they label datasets, and in practical ap-
plication, TapChain has more advantages in identifying rule
chains. Because when users use these actions and triggers,
they will set specific values. For example, for action “turn on
light,” the user needs to set “which light” in “actionField-
List.” At this time, if there is a trigger “light turned on,” and
the “which light” in the “triggerFieldList” is different from
the “which light” set in the “actionFieldList,” then the action
will not start the trigger.

To prove the rationality of our conjecture, we calculate
the importance of every feature. Because the model based on

Security and Communication Networks 9
TABLE 4: Results (percentage).

Model Accuracy Precision Recall F1-score
SVM (RBF kernel) 89.7 87.8 92.1 89.9
TapChain Random forest 89.5 87.9 91.7 89.7
P Multiple perceptron 88.1 87.8 88.5 88.1
Logistic regression 89.9 88.2 92.1 90.1
SVM (RBF kernel) 80.2 — 90.7 —
Random forest 85.7 — 88.2 —
Wang et al. [4] Multiple perceptron 86.8 — 88.6 —
Logistic regression 83.1 — 84.4 —

logistic regression performs better, we calculate the im-
portance of features according to logistic regression. In
logistic regression, the importance of features is strongly
correlated with the coefficients of features. Therefore, we
reflect the importance of features through the coefficients of
features. We can understand this more easily through the
formal expression of logical regression. The formal ex-
pression of logistic regression is as follows:

1
) “

where x is a vector composed of different features, and w is a
vector composed of coeflicients of different features. The
solution process of w is as follows:

= ! (5)
w =wyt+ 7 X5
t+1 t yn 1 e(_ Txn) n

where # is a constant, wj, is a random vector, and x, and y,,
are from a random training sample. Because w is updated
continuously, and finally an appropriate weight is calculated
for every feature, the coefficient of every feature can rep-
resent the importance of the feature.

In addition, since scikit-learn officially provides the
calculation method of feature importance in the random
forest model, we also calculate the importance of each
feature in the random forest, as shown in Figure 6.

To facilitate drawing, we use the abbreviation of feature
as the coordinate axis. The relationship between abbrevia-
tions and features is shown in Table 5. For the feature
importance of random forest, the closer the value is to 1, the
more important the feature is. For logistic regression, the
larger the absolute value of the coefficient of a feature, the
more important the feature is. According to Figure 6, we find
that the most important features come from predicates and
direct objects, followed by “FieldList”-related features and
environment-related features. The features extracted from
indirect objects play a very limited role in the classifier. Our
newly extracted features play an important role in the ac-
curate recognition of rule chains.

5.3. Case Study. Because we extract more features, TapChain
can identify the rule chains more accurately and more fine-
grained. We find that there are some new threatening rule
chains that cannot be recognized by the existing work. We
give a relevant case study.

(i) RI: if a trigger, then play audio from URL (Musaic).

(ii) R2: if say a simple phrase (Google Assistant), then
open the garage door you specify (Gogogate).

R1 is a virtual rule, while the action of R1 is real action
and R2 is a real rule. However, the action of R1 is real action,
and if this action is used, there will be a huge threat from this
rule chain. An attacker can make a high-frequency signal
with “open the garage door” coding and then insert the high-
frequency signal into the audio file. Finally, the attacker
uploads the audio file to the URL. This URL can be a song list
subscribed by the victim or a public link used by the victim.
When the victim starts R1, the audio file uploaded by the
attacker will be played. Because the current sound receiving
equipment cannot filter the high-frequency signal [22],
Google Assistant will receive the high-frequency signal,
“open the garage door,” from the audio. This causes R2 to be
activated unexpectedly. Then, the attacker can commit
further criminal acts, as shown in Figure 7.

Generally speaking, if an attacker wants to take ad-
vantage of the domino effect of the rule chain, they need to
use a malicious rule to start the rule chain [4]. However, the
existence of this rule chain makes the attacker does not even
need to construct a malicious rule, and the attacker can
directly use the rule chain.

In this rule chain, none of the predicate and object of R1’s
action and R2’s trigger are the same, which can only be
identified according to the features of environmental factors
that we extracted. Previous work cannot recognize this kind of
rule chain. However, it is very dangerous for users to construct
this kind of rule chain unintentionally when using TAP.

6. Discussion

Usability. Our goal is to better identify the rule chain and then
more accurately identify threatening rule chains for end-
users. When users use TAP to automate devices or APPs,
TapChain can help users identify rule chains. Users can decide
whether to change the TAP rules according to their own
needs. Because the recognition of the rule chain by TapChain
is based on the description of the text, TapChain can be ef-
fective as long as the Internet of things platform or TAP
platform has a complete description. In future work, we plan
to use a user survey to obtain real datasets to evaluate and
modify TapChain. In future work, an important aspect will be
the construction of a security model. In this way, TapChain
can directly present the threatened rule chain to users.

Security and Communication Networks

12 —
g]
10]
£ -
s]
£7 [|

[|

|

I

to |

£5

f4 B

£3

Features

f2 |
f1

2 4 6 8
Coefficient of feature

b)

o 4

-4 -2

—~

FIGURE 6: Feature importance. (a) Random forest. (b) Logistic regression.

10
0.30 1
0.25 1
H
8 0.20 4
Ns
8
g 015
8
f=¥
£
= 0.10 4
0.05 1
0.00
f1 f2 £3 f4 £5 f6 f7 £8 £9 £10f11 fI2
Features
(a)
TABLE 5: The abbreviation of feature.
Abbreviation Feature
fi Same predicate
f2 Same modifier of direct object
£3 Same direct object
f4 Same modifier of indirect object
f5 Same indirect object
f6 Same field
7 Same value in same field
f8 The number of same value
f9 Same environmental factor
f 10 The type of environmental factor
f11 Same value range
f12 Same trend
el o * P Upload malicious audio to url ﬁ
Q o
o = © 1
o < 1

1

Control accortling to the R2

Get audio from url and the instrulhions in audio
according to the R1 |

l High frequency signal

Musaic play audio Intelligent device

Victim's house

FiGure 7: New potential threat.

Limitation. There are also some limitations to our
work. First of all, manually labeling a dataset can lead to
potential errors. Although we avoid errors by labeling and
reviewing, manually labeling datasets can still be the source of
the errors. Secondly, TapChain is difficult to identify some
rule chains with time constraints. For example, one rule is to

turn on the washing machine, and another rule sends a
message to me when the washing machine is turned off.
Generally speaking, the washing machine stops automatically
after running for a while. When the washing machine stops, a
message will be sent. However, since TapChain cannot obtain
the running time, it cannot accurately identify such rule
chains. Finally, because TapChain’s recognition of the rule
chain is based on the description of the text, the performance
of TapChain depends on the correctness of the text de-
scription. If there is a trigger or action description that does
not conform to the actual behavior, TapChain will make a
judgment error.

7. Conclusion

In this paper, we propose TapChain, a rule chain recognition
model based on multiple features. We extract 12 features from
5 different aspects. We designed a correction algorithm to
obtain more accurate NLP analysis results and make us ex-
tract features more accurately. Our evaluation shows that the
recognition accuracy of TapChain is up to 89.9%, the pre-
cision is up to 88.2%, and the recall is up to 92.1%. Compared
with the existing work, the accuracy rate is increased by 3.1%,
and the recall rate is increased by 1.4%. In addition, Tap-
Chain’s recognition of the rule chain is more fine-grained and
we find a new kind of rule chain with a potential threat, which
will cause serious consequences once exploited by attackers.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that the funding in Acknowledgements
section did not lead to any conflicts of interest regarding the
publication of this manuscript. Also, there are no any other
conflicts of interest in the manuscript.

Security and Communication Networks

Acknowledgments

This work was support by the National Key R&D Program of
China (Grant Nos. 2021YFB3100700 and 2020AAA0107703),
the National Natural Science Foundation of China (Grant Nos.
61872181, 62032025, 62076125, 62071222, U20A201092,
U20B2049, U20B2050, and 61702 236), the Natural Science
Foundation of Jiangsu Province (Grant Nos. BK20200418
and BE2020106), the Guangdong Basic and Applied Basic
Research Foundation (Grant No. 2021A1515012650), and
the Shenzhen Science and Technology Program (Grant No.
JCYJ20210324134810028).

References

[1] B. Ur, E. McManus, M. P. H. Yong, and M. L. Littman,
“Practical trigger-action programming in the smart home,” in
Proceedings of the SIGCHI conference on human factors in
computing systems, pp. 803-812, Toronto Ontario, Canada,
April 2014.

[2] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: automated iot
safety and security analysis,” in Proceedings of the 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
pp- 147-158, Boston, MA, USA, July 2018.

[3] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: dynamic
enforcement of security and safety policy in commodity iot,”
in Proceedings of the Network and Distributed System Security
Symposium, February 2019.

[4] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pp. 1439-1453, London, United
Kingdom, November 2019.

[5] J. Huang and M. Cakmak, “Supporting mental model accu-
racy in trigger-action programming,” in Proceedings of the
2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 215-225, Osaka, Japan, September
2015.

[6] B. Ur, M. P. H. Yong, S. Brawner et al, “Trigger-action
programming in the wild: an analysis of 200,000 ifttt recipes,”
in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, pp. 3227-3231, San Jose California,
USA, May 2016.

[7] C.Nandi and M. D. Ernst, “Automatic trigger generation for
rule-based smart homes,” in Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Se-
curity, pp. 97-102, Vienna, Austria, October 2016.

[8] S. Yarosh and P. Zave, “Locked or not? mental models of iot
feature interaction,” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pp. 2993-2997,
Denver Colorado, USA, May 2017.

[9] W. Brackenbury, A. Deora, J. Ritchey et al., “How users in-
terpret bugs in trigger-action programming,” in Proceedings of
the 2019 CHI conference on human factors in computing
systems, pp. 1-12, Glasgow Scotland, Uk, May 2019.

[10] V. Zhao, L. Zhang, B. Wang, S. Lu, and B. Ur, “Visualizing
differences to improve end-user understanding of trigger-
action programs,” in Proceedings of the Extended Abstracts of
the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1-10, Honolulu HI, USA, April 2020.

[11] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in Proceedings of the 2016

11

IEEE symposium on security and privacy (SP), pp. 636-654,
IEEE, San Jose, CA, USA, May 2016.

[12] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia,
“Some recipes can do more than spoil your appetite: analyzing
the security and privacy risks of ifttt recipes,” in Proceedings of
the 26th International Conference on World Wide Web,
pp- 1501-1510, Perth, Australia, April 2017.

[13] Y. J. Jia, Q. A. Chen, S. Wang et al., “Contexlot: towards
providing contextual integrity to appified iot platforms,” in
Proceedings of the 4th Annual Network and Distributed System
Security Symposium, vol. 2, NDSS, San Diego, California,
USA, March 2017.

[14] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?
controlling flows in iot apps,” in Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security,
pp- 1102-1119, Toronto, Canada, October 2018.

[15] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“Homonit: monitoring smart home apps from encrypted
traffic,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1074-1088,
Toronto, Canada, October 2018.

[16] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and
B. Ur, “Autotap: synthesizing and repairing trigger-action
programs using Itl properties,” in Proceedings of the 2019
IEEE/ACM 4lst international conference on software engi-
neering (ICSE), pp. 281-291, IEEE, Montreal, QC, Canada,
May 2019.

[17] X. Mi, F. Qian, Y. Zhang, and X. Wang, “An empirical
characterization of ifttt: ecosystem, usage, and performance,”
in Proceedings of the 2017 Internet Measurement Conference,
pp- 398-404, London United, Kingdom, November 2017.

[18] C.D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language
processing toolkit,” in Proceedings of the 52nd annual meeting
of the association for computational linguistics: system dem-
onstrations, pp. 55-60, Baltimore, Maryland, January 2014.

[19] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-
learn: a python toolbox to tackle the curse of imbalanced
datasets in machine learning,” Journal of Machine Learning
Research, vol. 18, no. 1, pp. 559-563, 2017.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[21] Z. H. Zhou, Machine Learning, Springer, Berlin, Germany,
2021.

[22] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“Dolphinattack: inaudible voice commands,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 103-117, Dallas Texas, USA, Oc-
tober 2017.

Hindawi

Security and Communication Networks
Volume 2021, Article ID 2713211, 16 pages
https://doi.org/10.1155/2021/2713211

Research Article

WILEY

Hindawi

Identifying IoT Devices Based on Spatial and Temporal

Features from Network Traffic

Feihong Yin JLi Yang ! Jianfeng Ma,> Yasheng Zhou,' Yuchen Wang,1 and Jiahao Dai’

ISchool of Computer Science and Technology, Xidian University, Xi'an 710071, China
2School of Cyber Engineering, Xidian University, Xi'an 710071, China
3Science and Technology on Communication Information Security Control Laboratory, Jiaxing 314000, China

Correspondence should be addressed to Li Yang; yangli@xidian.edu.cn

Received 31 August 2021; Revised 13 October 2021; Accepted 29 October 2021; Published 25 November 2021

Academic Editor: Jinguang Han

Copyright © 2021 Feihong Yin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid growth of the Internet of Things (IoT) devices, security risks have also arisen. The preidentification of IoT devices
connected to the network can help administrators to set corresponding security policies according to the functionality and
heterogeneity of the devices. However, the existing methods are based on manually extracted features and prior knowledge to
identify the IoT devices, which increases the difficulty of the device identification task and reduces the timeliness. In this paper, we
present CBBI, a novel IoT device identification approach. On the one hand, CBBI uses a hybrid neural network model Conv-
BiLSTM to automatically learn the representative spatial and temporal features from the network traffic, such as the position
relationship of the internal organization structure in network communication traffic, the time sequence of the data packets, and
the duration of the network flow. On the other hand, CBBI contains the data augmentation module FGAN that solves the problem
of data imbalance in deep learning and improves the accuracy of the model. Finally, we used the public dataset and laboratory
dataset to evaluate CBBI from multiple dimensions. The evaluation results for different datasets show that our approach achieves

the accurate identification of IoT devices.

1. Introduction

With the rapid development of IoT technology, the types and
numbers of IoT devices have been growing quickly. The
powerful connectivity and convenience of the IoT devices
make their applications increasingly widespread, and they
penetrate almost every corner of life, including smart wear,
smart homes, smart entertainment, and smart travel.
According to [1], approximately 31 billion IoT devices were
used globally by the end of 2020, and approximately 75
billion IoT devices will be used by 2025, of which smart
homes [2] will account for 41%, reaching 12.86 billion.
However, many vulnerabilities exist in current IoT de-
vices and execution environments [3-5]. Attackers are in-
creasingly concentrating on these vulnerable IoT devices,
using device vulnerabilities to launch attacks [6-11]. For
example, malicious attackers used a cloud of vulnerable IoT
devices to build a sizable and highly destructive botnet to

launch large-scale DDoS attacks. In the first 1 TB DDoS
attack conducted on the Krebs Security website, more than
400,000 IoT devices were utilized [3]. Additionally, attackers
can use these vulnerable IoT devices as proxies for malicious
activities, further deteriorating the network environment.
With the proliferation of IoT devices with security flaws, [oT
device-centric attacks could further increase.

From the defensive aspect, network administrators must
implement network access control on all connected devices.
Whenever a new device is connected to the network, and if
the device can be identified, then the network administrator
can take appropriate security precautions. For example, the
administrator configures the corresponding firewall rules
according to the security requirements of the device, verifies
whether the device has known vulnerabilities, or notifies the
intrusion detection system to isolate vulnerable devices.

Many of the current studies on IoT device identification
concentrate on features based on statistics and manual

mailto:yangli@xidian.edu.cn
https://orcid.org/0000-0001-5579-3333
https://orcid.org/0000-0003-2750-7031
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2713211

extraction and then combine fingerprint matching, machine
learning, or deep learning to recognize IoT devices. These
traditional IoT device identification methods face the fol-
lowing problems: (1) extracting features manually is a te-
dious and time-consuming process, and the low efficiency of
feature extraction will affect the real-time performance of the
classification model. (2) Feature extraction requires a pro-
fessional domain prior knowledge and even professional
feature engineering. Feature engineering involves feature
extraction, feature construction, and feature selection,
which, undoubtedly, further increases the difficulty of fea-
ture extraction. (3) The generalization ability of the model is
also a concern. Before the training process in the traditional
method, some seemingly trivial features might be discarded.
These features could help the model improve its general-
ization ability, which would enable the model to be extended
to more IoT devices. The feature space generated by tradi-
tional feature engineering is relatively small, and it is difficult
to extract these subtle features. With the increase in the
number and diversity of devices in practical applications, the
recognition accuracy of the model could drop sharply. (4) A
surging number of IoT devices use encryption protocols,
increasing the difficulty of feature extraction and device
identification. (5) With the increasing number of IoT de-
vices, the amount of data generated by them is also in-
creasing, and hence, feature extraction requires more time
and resources. Therefore, it is difficult to meet the current
needs using traditional features based on manual extraction.

In this paper, we present CBBI, a novel IoT device
identification approach based on Conv-BiLSTM to learn the
spatial and temporal features of the network traffic. CBBI
contains three modules. The first module is the data pre-
processing module, whose main task is to quickly process the
raw network traffic generated by the IoT device and convert
it into an input that can be used in the deep learning model.
The second module is the data augmentation module FGAN
that solves the problem of data imbalance in deep learning
methods [12, 13]. The third module is to establish a deep
learning model. We designed a hybrid deep learning model
Conv-BiLSTM. Convolutional neural networks (CNNSs) can
learn the spatial characteristics of network communication
traffic, such as the positional relationship of internal orga-
nizational structures in the network communication traffic.
A bidirectional long short-term memory network (BiLSTM)
can extract the time-domain characteristics of the network
communication traffic, especially the timing relationship
and flow duration of the data packets. The accuracy and
generalization ability of the model are further improved by
learning the spatial and temporal features simultaneously.
Even when confronted with the IoT devices that have similar
functions produced by the same device manufacturer, CBBI
can use the powerful feature learning capabilities of deep
learning to extract the representative features and some
potential subtle features from the original traffic, and finally,
it can realize the accurate identification of the IoT devices
based on these learned features. This paper is an extended
version of [4]. Firstly, compared with [4], we added a data
augmentation module FGAN to solve the data imbalance. At
the same time, the corresponding comparative test was also

Security and Communication Networks

added. Secondly, we added our own dataset to the experi-
ment and made some experimental evaluations based on the
dataset. Finally, we added an additional visualization part to
prove that CBBI can learn the representative spatial and
temporal characteristics from the device communication
traffic.

We summarize the main contributions as follows:

(1) We propose a novel IoT device identification
method, CBBI. This method does not require any
prior knowledge about feature engineering. It avoids
the overhead of manual feature extraction and de-
creases the complexity of IoT device identification
tasks.

(2) CBBI extracts the spatial and temporal features from
the original traffic generated by the device, including
some potential subtle features to identify the IoT
devices, increasing the generalization ability of the
model.

(3) CBBI contains the data augmentation module FGAN
that solves the problem of data imbalance in deep
learning and effectively improves the accuracy of the
model.

(4) We conduct extensive experiments on the public
dataset and laboratory dataset to evaluate the per-
formance of CBBI. The results show the superiority
of the proposed model.

The remainder of this paper is organized as follows.
Section 2 summarizes the related work on IoT device
classification. Section 3 describes our proposed IoT device
identification method, which includes data preprocessing,
data augmentation, and Conv-BiLSTM. Section 4 describes
the experiment setup. Section 5 presents the evaluation
results and analyses. Finally, we conclude this work in
Section 6.

2. Related Work

For the identification of IoT devices, researchers have
proposed many solutions. In this paper, the existing research
studies are summarized and discussed from two aspects:
device identification technology based on a classification
model and device identification technology based on active
detection.

2.1. Device Identification Technology Based on a Classification
Model. Because of the differences in the software and
hardware used in the IoT devices, there will also be subtle
differences among the different devices produced by the
same manufacturer. Researchers use the subtle differences in
the hardware of the device, such as the clock offset [14-17],
as the fingerprint of the device. Then, they construct a
classification model to realize the accurate identification of
the target device. In the traditional method, wireless devices
can be identified by some unique radio frequency (RF)
fingerprints caused by radio circuits [18, 19]. Yuan et al. [20]
fingerprinted wireless devices by extracting the features
caused by the hardware defects in the analog circuits. An

Security and Communication Networks

important advantage of using these physical defects as device
signatures for device identification is that it is difficult to use
other wireless devices to spoof the signature. Brik et al. [21]
designed and implemented a technology that uses the
passive radio frequency analysis to identify the source
network interface card (NIC) of IEEE 802.11 frames.

Radhakrishnan et al. [22] used the arrival interval time
of packets in specific traffic types generated by the devices
as the feature vectors. They used these feature vectors to
train the artificial neural network (ANN). Miettinen et al.
[23] proposed IoT Sentinel, which is a system for the
automatic recognition of IoT devices. The system extracts
23 features from the data packets as device fingerprints and
identifies the devices using a two-step classification
method.

Guo and Heidemann proposed a method that analyses
the DNS traffic to detect the IoT devices and identify their
type [24]. Marchal et al. [25] automatically identified the
type of IoT devices in the local network based on the periodic
background network traffic of the IoT devices. The method
needed 30 minutes to identify the type of devices, and the
accuracy rate reached 98.2%.

Thangavelu et al. [26] used controllers to control the
gateways based on a software-defined network (SDN). The
controller implements the training and updating of the
model and sends the newly trained model to each gateway.
Sivanathan et al. [27] used statistical attributes such as the
device traffic activity cycle, port number, signaling mode,
and cipher suite as fingerprint features of the device. Then,
they used a multistage machine learning classification al-
gorithm to identify the device.

WDMTI [28] uses 18 features extracted from DHCP
messages to establish a hierarchical Dirichlet process (HDP)
model to identify the wireless devices. This method relies on
the bursts of traffic when the device is connected to the
network. OWL [29] analyzed the broadcast and multicast
packets in the wireless local area networks (WLANS), built a
multiview deep learning (MvWDL) model based on the
features extracted from each protocol message, and classified
the IoT devices.

According to the unique network traffic pattern of the
IoT devices, Deng et al. [30], firstly, extracted all available
features from each TCP flow header. Secondly, they used the
principal component analysis (PCA) algorithm to select the
main features that affect device recognition. Finally, they
learned the device-specific network traffic signature based
on a random forest classifier to achieve device identification.
Yin et al. [4] proposed an end-to-end IoT device identifi-
cation method that directly uses the original communication
traffic generated by the device. This method fails to fully
consider the problem of data imbalance. In the face of
extremely unbalanced datasets, the performance of the
model may be greatly compromised.

2.2. Device Identification Technology Based on Active
Detection. Active detection refers to actively sending de-
tection packets to the devices in the network, obtaining
response packets, and extracting device information by

analyzing the information in the response packets. At-
tackers usually obtain information about vulnerable de-
vices in the network through active detection before
launching an attack to improve the accuracy of the attack.
Researchers also use the active detection method to de-
termine the state of the devices in the network, so they can
take further security measures to ensure the safety of the
devices in the network.

In practice, because of the large number of IoT devices
and the lack of training data, researchers use banner in-
formation instead of device fingerprints to identify the IoT
devices. Antonakakis et al. [31] applied the banner rules to
analyze the online devices from Censys [32] and Hon-
eypot. Shodan [33] and Censys [32] are the two popular
search engines that are mainly used to discover online
devices. Both search engines use different protocols (such
as HTTP, SSH, FTP, and TELNET) to perform Internet-
wide scans.

Many researchers [34, 35] use banner information ac-
quisition to actively scan the devices in the IP space. They
collect and check the text features from the response, such as
hard-coded keywords, and match them with known fin-
gerprints for device identification.

Li et al. [36] established a framework for searching
devices on the Internet using network measurement and
banner grabbing to obtain services running on the network
hosts and to match the response header fields with prestored
keywords to retrieve device information.

Feng et al. [37] proposed an acquisition rule-based
engine (ARE) that can automatically generate rules for
discovering and annotating the IoT devices without any
training data. ARE uses the application layer response data
from the IoT devices and product descriptions in the related
websites to obtain device comments, thereby constructing
device rules. It solves the cumbersome and incomplete
shortcomings of traditional methods based on manually
writing banner information capture rules.

Table 1 summarizes the main references aforementioned
and shows the features and methods used in the relevant
references.

The aforementioned research works made important
contributions to the identification of IoT devices and
promoted the development of network security. The device
fingerprint identification method based on the classifica-
tion model mainly uses the physical difference of the device
as the fingerprint of the device. Otherwise, it manually
extracts some field values and related statistical charac-
teristics in the device communication traffic. Then, it is
combined with machine learning or deep learning methods
to construct a classification model. The device identifica-
tion method based on active detection must actively send a
multitude of detection packets to the target devices in the
network, which is susceptible to packet loss and network
delay. In addition, the frequent transmission of probe
packets will increase the load on the network and aggravate
the deterioration of the network environment. More im-
portantly, if the device does not generate a response or if
there is no valid information in the response packets, the
device cannot be further identified.

4 Security and Communication Networks
TaBLE 1: Summary of related works.
References Features Method
[14-17] Clock skew —
[18-21] Radio frequency fingerprint —
[22] Clock skew ANNs
[23] Features from the packet head Twofold K;ZTE?:E%Z?,[tlgcilsltzﬁlcuee) (Random
[24] Flow-level network traffic and knowledge of servers run by the .
manufacturers
[25] Periodic communication traffic features KNN
[26] Features from DNS queries and HTTP URT’s Improved k-means algorithm, Random Forest, SDN
[27] Statistical attributes such as activity cycles, port numbers, signaling A multistage machine learning (Naive
patterns, and cipher suites Bayes + Random Forest)
[28] 18 features of DHCP Dirichlet process
[29] Features from passively received broadcast and multicast packets Multiview wide and deep learning framework
[30] Features in TCP header per TCP flow PCA, Random Forest
[4] Raw network traffic from devices CNN, BiLSTM
[31] Banners, honeypots Active scanning
[34-36] Banners Active scanning, match
[37] Banners Active scanning, search and match

3. Proposed Framework

The overall structure of the CBBI framework is shown in
Figure 1. CBBI is composed of three modules: data pre-
processing, data augmentation, and Conv-BiLSTM. Initially,
the data preprocessing module converts the raw network
traffic generated by the IoT device into an input that can be
used in the deep learning model. Furthermore, the data
augmentation module FGAN solves the problem of data
imbalance in deep learning. Finally, the Conv-BiLSTM
module simultaneously learns the spatial and temporal
characteristics of the original traffic of the device, which
improves the accuracy and generalization ability of the
model.

3.1. Data Preprocessing. In general, deep learning models
cannot directly use the raw pcap data. These original pcap
files need to be processed into a format suitable for model
input. The entire data preprocessing process includes three
parts: flow generation, irrelevant field removal, and traffic
vectorization.

3.1.1. Flow Generation. The original communication traffic
generated by the IoT devices contains different numbers of
data packets, and the length of each data packet is also
inconsistent. In other words, the original communication
traffic generated by the devices can be defined as
P={p,,...,p,}, and each data packet can be defined as
p; = (x;, 5, t;). The value of i is i =1,2,...,|n|, where x;
represents the 5-tuple information (source IP address,
source port number, destination IP address, destination port
number, and transport layer protocol type) of the packet, s;
represents the size of packet p;, and t; represents the starting
time of packet p;.

In this paper, the existing Splitcap tool [38] is utilized to
process the original network traffic into a network flow with
the same 5-tuple information, where the network flow can be

defined as F;={p, = (x,s,t1), P2 = (x3,8,65)s»
P = (X5 Sy)} Here, m represents the number of data
packets in the network flow. As the data packets in the
network flow have the same 5-tuple information,
X, =x, =-+-=x,,. The network flow has a certain time
order, and thus, the data packets in the network flow have a
sequence, represented by t; <t, < --- <t,,.

Each network flow is composed of several packets. The
network flow contains substantial behavior characteristics of
IoT device communication traffic, including the closeness of
the relationship among the bytes in the data packet, the
duration of each network flow, the number and size of the
data packets that constitute the network flow, and the timing
relationships among the data packets. These traffic behavior
characteristics can help the deep learning model to better
recognize the device and improve the accuracy of the model.

3.1.2. Irrelevant Fields Removal. CBBI makes use of the
traffic behavior characteristics of IoT devices. Here, we need
to eliminate some interference data, such as MAC addresses
and IP addresses, to prevent these data from affecting the
experimental results. In a small LAN, the number of devices
is limited, and the MAC addresses of the devices can
uniquely identify the devices. These field values can occupy a
relatively large weight in the process of the feature extraction
of the deep learning model, which could affect the real
recognition and classification ability of the model. It can
even lead to the overfitting of the model. The IP address of
the device has the same interference effect as the MAC
address. In this paper, these interference fields are eliminated
in the data processing module to prevent them from af-
fecting the process of model feature learning.

3.1.3. Traffic Vectorization. The neural network requires the
input data to have a standardized format, and we must
convert the processed data aforementioned into a suitable
input format. The number of data packets in each network

Security and Communication Networks

Pre-processing

Device Classification

(Flow Generation)
1l
C

Irrelevant Fields
Removal

Iy

Real Data

)

f oncaf oncaf’

(Ec]
Sofima]

ncal

FiGURE 1: An overview of the CBBI framework.

flow and the size of each data packet are different, and thus,
a unified standard must be determined to vectorize the
features in the network flow. We performed a statistical
analysis based on the public dataset and laboratory dataset.
As shown in Figure 2, we found that the number of data
packets in the network flows in the two datasets is mostly
within 10, and most of the data packets are within 250 bytes
in size. According to the statistical information, each
network flow intercepts 2500 bytes of data samples. In
other words, each network flow selects the first 10 packets
(n=10), and each packet intercepts the first 250 bytes
(L=250 bytes). If the number of data packets N in the
network flow is less than 10, or the length of the data packet
L is less than 250 bytes, then it is directly filled with 0. The
representation of network flow characteristics is shown in
Figure 3. The complete data preprocessing algorithm is
shown in Algorithm 1.

3.2. Data Augmentation. The network traffic generated by
the IoT devices can be transformed into different numbers
of data samples after the preprocessing stage. Because of the
different functions, the software, and the hardware of the
devices, the traffic model generated by each device is very
different. For example, the network traffic generated by the
video monitoring devices is very large, whereas the network
traffic generated by some sensors is relatively limited.
Therefore, there is a large difference in the number of
samples that correspond to the device, which leads to the
serious problem of data imbalance. As far as the learning
model is concerned, the sample is usually considered to be
an unbiased sample of the true distribution. When the
training set is largely skewed, it usually does not reflect the

true distribution. The imbalance of the sample distribution
causes the model prediction result to be biased; in other
words, the classification result is biased toward more
sample categories, and the result is misleading. Therefore,
we must adjust the generated sample data to alleviate the
imbalance and further improve the performance of the
model.

This paper uses the GAN-based data augmentation
module FGAN, as shown in Figure 4. The generative
adversarial network (GAN) is an adversarial network pro-
posed by Goodfellow [39] in 2014. The network framework
consists of two parts, a generator and a discriminator. The
generator tries to cheat the discriminator by constructing
false data. It accepts arbitrary noise p, (z) and generates false
data according to the noise, which is recorded as G (z). The
discriminator tries to distinguish whether the data came
from a real sample or fake data constructed by a forger. The
input parameter of the discriminator is x, which comes from
Pdata (%). The output D (x) of the discriminator represents
the probability that x is the real data. Both models improve
their abilities using continuous learning. In other words, the
generator hopes to generate more real fake data to cheat the
discriminator, and the discriminator hopes to learn how to
more accurately identify the fake data of the generator. The
objective function v of FGAN is as follows:

mgn mDaxV(D, G) =Ep, (v [log D (x)]

+E,.p (»[log(1 - D(G(W))].
The basic flow of the network is as follows:

(i) Initialize parameter 6; of discriminator D and
parameter 6, 0f generator G.

=X)

Probability: P (packet size

uluu pb e

0 200 400 600 800 1000 1200 1400

x: packet size (Bytes)

mm Laboratory Dataset
mm UNSW Dataset
(a)

Security and Communication Networks

L 1.0
"
400000 4
2 L 0.8
g
2 300000 4
I - 0.6
i~ o
S a
£ 200000 o ©
:)
=
o
S 100000 L 0.2
% L]
Q? 0 - CIR JEEY 2 2 20 20 ce2e0ee* | 0.0
T T T T T
0 5 10 15 20

x: packet number in a flow

e Laboratory Dataset

» UNSW Dataset
—— Laboratory Dataset
—— UNSW Dataset

(®)

FIGURE 2: Statistics of the network traffic in the two datasets. (a) Statistics of the packet size. (b) Statistics of the number of data packets in the

network traffic flow.

«~—+— UnfixdL ——M >

Packet 1 |
Packet 2 | [
Packet 3 |

Z

E Z
= =
=)

Packet N-2 |
Packet N-1 |
Packet N |

Flow

<«——— L=250 Bytes

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6 !

Packet 7 | Padding
Packet 8
Packet 9

Packet 10 |

| Padding

| Padding

10

Padding

FIGURE 3: Representation of the network traffic flow.

(i) Firstly, n sample data {x',x?,...,x"} are obtained

from the real samples. Then, n noise samples
{z',2%,...,2"} are sampled from the prior distri-
bution noise. Secondly, n samples {%!, %%, ..., %"}
are produced using the generator. Finally, the
generator G is fixed, and the discriminator D is
trained to identify the real data from the generated
data as accurately as possible.

(iii) After updating the discriminator for k epochs, the
parameters of the generator are updated once with a
small learning rate, and the generator is trained to
reduce the gap between the generated data and the
real data as much as possible.

(iv) After many iterations of updates, the final ideal is for
the discriminator to be unable to tell whether the
sample comes from the output of the generator or
the real output.

This paper designs the generator and discriminator in
FGAN based on the fully connected network. Detailed in-
formation will be in Section 4.3.

3.3. Training Conv-BiLSTM for IoT Device Classification.
In this section, we build a deep learning model Conv-BiLSTM
for identifying the IoT devices. This model is different from
the traditional classification methods based on manually
extracted features and statistical features. Firstly, the model
can simultaneously learn the spatial and temporal features of
the device traffic, which improves the accuracy of device
identification. In addition, the traditional device identification
method based on manual design and statistical features has
some limitations. When these features are designed and se-
lected artificially, the inherent features in the original com-
munication flow of the device are changed, and some
potential features are ignored. These potential features can

Security and Communication Networks

Input: raw network traffic pcap files
Output: Samples_Data
Samples_Data «—&

(1) for each Fi do
(2)
(3)
(4)
(5)
(6)
(7)
(8)
9)

if Packets_ZNumber > = 10 then
Packets_Sequence «— Get the top

if length (P) > = 250 bytes then

else

(26) end for
(27) Return Samples_Data

Use SplitCap tool to convert raw pcap files into Flows with the same 5-tuple
information, F1, F2, ..., Fm, m represents the last Flow in raw pcap

Packets_Number«Len (Fi), Flow_Feature «— &

for each P in Packets_Sequence do
Packet_Feature «— Get the first 250 bytes in P

Packet_Feature «— Get all bytes in P + 170/ * (250 — length (P))

10) Set the MAC address field and IP address field in Packet_Feature to 0
@an Flow_Feature «Flow_Feature U Packet_Feature

(12) end for

(13) else

(14) Packets_Sequence «— Get all packets in Fi

15) for each P in Packets_Sequence do

(16) if length (P) > = 250 bytes then

(17) Packet_Feature «— Get the first 250 bytes in P

@18) else

19) Packet_Feature «— Get all bytes in P + 170/ * (250 — length (P))
(20) Set the MAC address field and IP address field in Packet_Feature to 0
(21) Flow_Feature «—Flow_Feature U Packet_Feature

(22) end for

(23) for j = 1; j< = 10 — Packets_Number; j+ + do

(24) Flow_Feature «—Flow_Feature U (1701 x 250)

(25) Samples_Data.append(Flow_Feature)

10 packets in Fi

ALGoRITHM 1: The algorithm for data preprocessing.

help to improve the recognition accuracy and generalization
ability of the model. In addition, artificially designed features
might not fully represent the high-level semantics of the
network traffic, and models trained based on these features
cannot learn these high-level semantics. The Conv-BiLSTM
network model can learn highly semantic features from the
original communication traffic generated by the device.
The CNN [40] is widely used in the field of image
classification because of its influential spatial feature
learning ability. The CNN has a convolutional layer, pooling
layer, and fully connected layer. The main function of the
convolutional layer is to extract features. The pooling layer
implements data subsampling without destroying the clas-
sification results in terms of reducing the dimensionality of
the features, compressing the data, and avoiding the over-
fitting of parameters. The convolutional layer and the
pooling layer play the role of mapping the original data to
the hidden layer feature space. The fully connected layer is a
fully connected neural network. The weight parameters are
adjusted by weighing the proportion of each neuron’s
feedback. The model also uses dropout to avoid overfitting.
LSTM is a special recurrent neural network (RNN) [41].
The difference between LSTM and the standard recurrent
neural network is that the LSTM overcomes the problems of

gradient explosion and gradient disappearance by intro-
ducing memory units and gate mechanisms, and it performs
well in extracting the long-term dependence in the sequence
data. The LSTM architecture is composed of an input gate,
forget gate, output gate, storage unit, hidden state, and so on.
The specific calculation process of the input gate, output
gate, and forget gate is as follows.

3.3.1. Forget Gate. f, is called the forget gate, which indi-
cates that some features of ¢,_; are used to calculate ¢,. f, is
obtained by a logical function to calculate the input x, and
the last hidden layer value h,_,. The value of the forget
parameter is between 0 and 1, which controls how much
information is retained from c,_; to ¢,. Here, 1 means to
retain the information completely, whereas 0 means to
discard the information entirely.

fi=0(Wg[hpx]+by). (2)

3.3.2. Input Gate. The input gate decides what new infor-
mation to store in the “cell state.” The sigmoid layer decides
what value is to be updated. The tanh layer creates a new

Security and Communication Networks

Fine Tune Training

A

—

\4

1#] data (x)

Real Data

Real Sample

Real

X

Fake Sample

G(2)
Generator

D(x)
Discriminator

Fine Tune Training

FiGure 4: The framework of FGAN.

candidate value vector ¢, and i, determines the part of the
information to be updated. When updating ¢,_; to ¢,, we
must multiply the old state with f,, discard the information
that needs to be discarded, and add i, *C,.

i = U(Wz’ : [ht—l’xt] + bi)>
¢, =tanh(W,- [h_y,x,] +b,), (3)

¢ = fi*c +i %C,.

3.3.3. Output Gate. h, can be considered the last output at
the current moment. h,_; is the output at t—1. o, is a
probability vector that is used to determine which part is the
output. Firstly, we run a sigmoid layer to determine which
part of the cell state is to be the output. Then, tanh is used to
process the cell state (obtaining a value between —1 and 1).
Finally, this value is multiplied with the output of the sig-
moid gate to obtain the output.

0, = G(Wo [ht—l’ xt] + bo)’

(4)
h, = o, * tanh(c,).

Unlike other types of deep neural networks, LSTM
shares weights at all time steps, which reduces the number of
parameters that the network must learn. The BiLSTM [42] is
composed of two LSTMs: one LSTM is the input forward,
whereas the other LSTM is the output backward. BiLSTM
effectively increases the amount of information available to
the network and improves the context available for the al-
gorithm. BiLSTM can not only address gradient disap-
pearance and gradient explosion, as in the LSTM, but also
learn more context information from the network.

The Conv-BiLSTM network model structure is shown in
Figure 5.

The convolutional neural network model used in this
paper is improved on the basis of the classical lenet-5 [43].
The convolutional neural network constructed in this paper
has seven layers. More detailed network structure infor-
mation is provided in Section 4.3. The training process of the
Conv-BiLSTM model is shown in Algorithm 2.

The feature dimension of each sample after CNN is 1600.
We reshape the 1600-dimensional data into a 10 160
format and input it into BiLSTM, where 10 represents the
number of time steps. The vector dimension of each time
point is 160. The BiLSTM consists of two layers, each with
512 hidden cells, and each layer uses the sigmoid function for
nonlinear operations. The last layer of the BILSTM network
adopts the fully connected layer, and the number of neurons
in the fully connected layer is equal to the number of IoT
devices. Softmax is used as the activation function, which
maps the output of multiple neurons to (0, 1), and the sum of
each output is 1. The type with the largest probability value
can be selected for multiple classifications.

4. Evaluation Setup

4.1. Computing Platform Configurations. We use Keras [44]
as the neural network framework to construct the Conv-
BiLSTM model. The detailed configuration information is
shown in Table 2.

4.2. Dataset Description. The UNSW dataset is the traffic data
generated by the IoT devices in two weeks. The dataset contains a
total of 22 ToT devices. Some of these devices generate very little
communication traffic. For example, Withings_Smart_Scale and
Blipcare_Blood_Pressure_meter generated 8 and 13 sample
data, respectively, after data preprocessing. In the experimental
part, we selected 18 10T devices with relatively large sample sizes.

Security and Communication Networks

.
] —————
] ———
(-) E—>: 0 0 £] £ i—’ 2 o
a1 = 18] g]| sl st Lgl Is| 1B R I
1 A N A = - e = R e A A A AR S R
21O 1 |EHEH BB E A E I 2B BRI | [EHE
g0 [1g] |51 18] B 18] |2] sl 15l =] |E] |zl (5] | H{E] |8
dIRIERERERE 2EIHE B R B E |z
AR R CIE B
ol L L I B | B B
o E—J CNN Model] BiLSTM Model i—»

o | A
Ol
==
FIGURE 5: The architecture of Conv-BiLSTM.
Input:
Samples_Data composed of network flows, the dimension of each network flow is 2500.
{Epoch, Batchsize, dropout, Loss_function} represent some of the parameters during model training.
Output:
The categories of Samples_Data

(1) for each epoch in (1, Epoch) do

2) for each Batchsize data of the Samples_Data do

3) for each Sample_Data in batch do

(4) Reshape Sample_Data to 50 * 50 form

(5) Compute convolution with 6 filters

(6) Compute the result through Relu

7) Max Pooling

(8) Compute convolution with 16 filters

9) Compute the result through Relu

(10) Max Pooling

@11 Flatten the data

12) Run through a densely connected layer

13) Dropout

(14) Reshape output data as 10 = 160

15) Run through the 2-layered BiLSTM with dropout

16) Run through a densely connected layer

17) Output the result referring Loss_function

(18) Update the parameters of weight and bias

19) end for

(20) end for

(21) end for

ALGORITHM 2: Training process of the Conv-BiLSTM model.

We built an IoT device traffic collection platform in the
laboratory environment. We collected the two-week com-
munication traffic of 23 IoT devices, covering a variety of
device types and device brands, including 360, Amazon,
Hikvision, Huawei, TP-Link, Xiaomi, and other common
IoT device manufacturers. The device types include smart
cameras, smart speakers, smart gateways, smart doorbells,
and so on. Also, there are IoT devices of the same brand and
type, but of different models, such as the two cameras
Hikvision_DS-IPC-E22H-IW and Hikvision_DS-IPC-S12P-
IWT from Hikvision and the three smart cameras
TP_Link_Camera_IPC42A-4, TP_Link_Camera_IPC43A
N-4,and TP_Link_Camera_IPC64C-4 from TP-Link. The

data traffic generated by 23 IoT devices was processed to
generate a total of 636,789 sample data. Detailed information
on the UNSW dataset and the laboratory dataset is shown in
Table 3.

As shown in Table 3, the number of samples of cameras
in the two datasets is relatively vast. The traffic data
generated by some cameras in the laboratory dataset is not
very large, such as D-Link-DSH-C310, Hikvision_DS-
IPC-E22H-IW, and Hikvision_DS-IPC-S12P-IWT. We
checked the settings of these devices and found that they
adopted the “Standard Definition” video recording
method rather than the “High Definition” or “Super
Definition” as the other cameras did. Some cameras also

10

TaBLE 2: Experiment settings.

Parameter

Ubuntu 16.04 LTS OS
Intel(R) Xeon(R) Bronze 3106 CPU@

Category

Operating system

<o 1.70GZ

Deep learning Keras
platform

Deep learning

backend TensorFlow-gpu 2.2.0

GPU version NVIDIA GP104GL(Quadro P4000)
CUDA version 10.1.243
CuDNN version 7.6.5

enabled face recognition, automatic tracking, and other
modes, and hence, the communication traffic generated
was enormous.

4.3. Parameter Settings. This section provides detailed in-
formation about the FGAN and Conv-BiLSTM network
structures used in the experiment. Both generator and
discriminator in FGAN are implemented based on a mul-
tilayer perceptron (MLP). The specific information is shown
in Tables 4 and 5. The input of the generator is a 100-di-
mensional Gaussian noise vector, and the hidden layer
contains 256, 512, 1024, and 2500 neurons. The input of the
discriminator contains both real data and generated data,
and its dimension is 2500. The LeakyReLU activation
function, dropout, and BatchNormalization are used in
FGAN to optimize the model.

Detailed information on Conv-BiLSTM is shown in
Table 6, including the structural parameters of each layer of
the network, the optimizer, loss function, and other
hyperparameters.

4.4. Evaluation Metrics. To evaluate the performance of the
neural network model, this paper selects four perfor-
mance metrics: the recall, precision, accuracy, and F1-
score:

TP
recall = ——,
TP + FN
.. TP
precision = ——,
TP + FP
(5)
: TP + TN
Y = P FP+ FN + TN
2TP
Fl1 -score=———,
2TP + FP + FN

where TP, TN, FP, and FNdenote the true positives, true
negatives, false positives, and false negatives, respectively.

5. Experimental Results and Analyses

5.1. Ablation Study. To verify the effectiveness and ratio-
nality of the data augmentation module FGAN in CBBI, we
performed the corresponding experiments on the UNSW

Security and Communication Networks

dataset and the laboratory dataset. We used the precision,
recall, and F1-score to evaluate the results of the experiment.
Tables 7 and 8 show the experimental results on CBBI,
including FGAN, on the UNSW dataset and the laboratory
dataset, respectively. From the two tables, it can be seen that
FGAN in CBBI has well alleviated the problem that the
classification results of a small number of samples are biased
toward large sample classes due to data imbalance. The small
sample classes iHome, Nest_Dropcam, NEST_Pro-
cet_Smoke_Alarm, and Triby_Speaker in the UNSW dataset
and D-Link-DSH-C310, Huawei_Smart_Scale, Hua-
wei_Smart_Scale, Xiaomi_Air_Purifier, and Xiaomi_Hub in
the laboratory dataset have significantly improved the
performance after using FGAN. The performance of other
categories has also been improved to varying degrees as the
samples become more balanced. The data augmentation
FGAN module in CBBI realizes the relative balance of the
sample and further improves the classification accuracy of
the model.

5.2. Misclassification Analysis. To analyze the misclassifi-
cation of the CBBI model in the two datasets, we give the
confusion matrixes of the experimental results in the two
datasets, as shown in Figure 6. The classification accuracy of
most of the devices in the UNSW dataset is close to 100%.
The accuracy of Nest_Dropcam is 96%, and 4% of its data
samples are identified as Netatmo_Welcome. These two
devices are products of two different device manufacturers,
however, both belong to the smart camera type, and there are
certain similarities in the traffic model.

The accuracy of CBBI in the laboratory dataset reached
97.26%, which is not as high as that in the UNSW public
dataset. We can determine the following reasons by ana-
lyzing the experimental data and the results: (1) the labo-
ratory dataset contains more IoT devices than the UNSW
dataset, which increases the difficulty of multiclassification
of the model; (2) the number of samples generated by the
devices in the laboratory dataset is more unbalanced, which
affects the fitting effect of the model; (3) there are more
devices from the same manufacturer and type in the labo-
ratory dataset, and there are more similarities between the
devices; the confusion matrix shows that IoT devices of the
same device manufacturer and type are prone to misclas-
sification between one another. Hikvision_DS-IPC-E22H-
IW and Hikvision_DS-IPC-S12P-IWT from Hikvision,
Ezviz_Camera_CS-C6CN and Ezviz_Door_CS-DB2C from
Ezviz, as well as four devices from TP-Link, have all been
misclassified to varying degrees. The worst classification
effect in the laboratory dataset is TP_Link_ WDAG6332RE
and Xiaomi_Air_Purifier. The sample size of these two
devices is extremely small, and FGAN has improved the
classification accuracy of these two devices to a certain
extent.

5.3. Visualization of Spatial and Temporal Features. In this
section, we input the spatial and temporal feature vectors
learned by CBBI from the UNSW dataset and laboratory
dataset into the t-SNE algorithm before applying softmax

Security and Communication Networks

11

TaBLE 3: Description of the UNSW dataset and laboratory dataset.

UNSW dataset

Laboratory dataset

No. Device name Sample number No. Device name Sample number
0 Amazon_Echo 73780 0 360_Camera 5950
1 Belkin_Wemo_Switch 17148 1 Amazon_Echo 9584
2 HP_Printer 2794 2 D-Link-DSH-C310 836
3 Insteon_Camera 216088 3 Hikvision_DS-IPC-E22H-IW 2082
4 Light_Bulbs_LiFX_Smart_Bulb 7226 4 Hikvision_DS-IPC-S12P-IWT 2149
5 Netatmo_Weather_Station 4703 5 Ezviz_Camera_CS-C6CN 65366
6 Netatmo_Welcome 16000 6 Ezviz_Door_CS-DB2C 88273
7 PIX_STAR_Photo_Frame 12311 7 Huawei_Camera_HQ5 35742
8 Samsung_SmartCam 61815 8 Huawei_Speaker 50183
9 Smart_Things 10367 9 Huawei_Smart_Scale 378
10 TP_Link_Day_Night_Cloud_Camera 4954 10 Imou-Camera_TP1-2525 19534
11 TP_Link_Smart_Plug 2586 11 Imou-Camera_TP7C-E152 15110
12 Withings_Aura_Smart_Sleep_Sensor 13963 12 Philips_Hue 103687
13 Withings_Smart_Baby_Monitor 20229 13 TP_Link_Camera_IPC42A-4 79354
14 iHome 346 14 TP_Link_Camera_IPC43AN-4 61061
15 Nest_Dropcam 154 15 TP_Link_Camera_IPC64C-4 61815
16 Nest_Procet_Smoke_Alarm 221 16 TP_Link WDAG6332RE 221
17 Triby_Speaker 669 17 Xiaomi_Air_Purifier 133
— — — 18 Xiaomi_Camera_M]JSXJ06CM 22120
— — — 19 Xiaomi_Door_LSC_MO01 4203
— — — 20 Xiaomi_Hub 242
— — — 21 Xiaomi_Humidifier 1414
— — — 22 Xiaomi_Soundbox 7352
Total 465354 Total 636789
TaBLE 4: The structure of the generator. classification to achieve dimension-reduction visualization.
La The dimensions of each sample input to the t-SNE algorithm
yer Output shape .
in the UNSW dataset and the laboratory dataset are 18 and
Dense_1(Dense) (None, 256)
LeakvReLU (None, 256) 23, ?espgctlvely, which are conmstept w1j[h the number of IoT
Y.
BatchNormalization (None, 256) devices in the two datasets. The visualized effect of the di-
Dense_2(Dense) (None, 512) mensionality reduction result is shown in Figure 7. In the
LeakyReLU (None, 512) laboratory dataset, some devices are not highly distin-
BatchNormalization (None, 512) guished, especially for several devices with the same man-
Dense_3(Dense) (None, 1024) ufacturer and type. The visualization results of these two
LeakyReLU (None, 1024) datasets are consistent with the aforementioned experi-
BatchNormalization (None, 1024) mental results. The clustering effect of the two datasets is
Dense_4(Dense) (None, 2500) excellent, and the separation distance among the different
LeakyReLU (None, 2500) categories is relatively obvious. In general, CBBI can learn
representative spatial and temporal characteristics from
TaBLE 5: The structure of the discriminator. device c.om.muni.catio.n traffic, which can be used as the basis
for device identification.
Layer Output shape

Dense_1(Dense) (None, 2500)

LeakyReLU (None, 2500)
Dropout (None, 2500)
Dense_2(Dense) (None, 1024)
LeakyReLU (None, 1024)
Dropout (None, 1024)
Dense_3(Dense) (None, 512)
LeakyReLU (None, 512)
Dropout (None, 512)
Dense_4(Dense) (None, 256)
LeakyReLU (None, 256)
Dropout (None, 256)

Dense_5(Dense) (None, 1)

5.4. Comparison Results. The classification accuracy of CBBI
on the UNSW dataset is 99.83%, which achieves a similar effect
to UNSW [27]. The detailed experimental results are shown in
Figure 8. As far as we know, UNSW [27] is currently the
highest accuracy rate for IoT device identification-related work,
reaching 99.88%. The study in [27] used 6 months of IoT device
communication traffic data. In addition, the author achieves
accurate identification of IoT devices based on manually
extracted features combined with a multistage device identi-
fication framework. The UNWS dataset that we used contains
two weeks of traffic data, and thus, the communication traffic

12 Security and Communication Networks

TABLE 6: The structure of Conv-BiLSTM.

Hyperparameters Value Activation function
Conv2D #filters = 6, filter size=5 ReLU
MaxPlooing2D #pool size =2, padding = “valid” —
Conv2D #filters = 16, filter size=5 ReLU
MaxPlooing2D #pool size =2, padding = “valid” —
Conv-BiLSTM Flatten — —
Dense #neurons = 1600, dropout =0.5 ReLU
BiLSTM #neurons =512, dropout =0.3 Sigmoid
BiLSTM #neurons = 512, dropout=0.3 Sigmoid
Dense #neurons = 18/23 Softmax
Optimizer — #Adam with learning rate =0.001 —
Loss function — #Categorical_crossentropy —
Batch size — #512 —
Epochs — #50 —

TaBLE 7: Results of the ablation study on the UNSW dataset.

Method CBBI w/o FGAN CBBI

FGAN X v

Conv-BiLSTM v 4

Device name Precision Recall F-score Precision Recall F-score
Amazon_Echo 0.9878 0.9932 0.9905 0.9983 0.9988 0.9985
Belkin_Wemo_Switch 0.9932 0.9929 0.9931 0.9982 0.9988 0.9985
HP_Printer 0.9056 0.9646 0.9342 0.9908 0.9981 0.9944
Insteon_Camera 0.9931 0.9981 0.9956 0.9994 0.9994 0.9994
Light_Bulbs_LiFX_Smart_Bulb 0.9825 0.9825 0.9825 0.9979 0.9965 0.9972
Netatmo_Weather_Station 0.9865 0.9963 0.9914 0.9988 1.0000 0.9994
Netatmo_Welcome 0.9181 0.9533 0.9354 0.9937 0.9956 0.9947
PIX_STAR_Photo_Frame 0.9926 0.9887 0.9907 0.9990 0.9951 0.9971
Samsung_SmartCam 0.9978 0.9922 0.9950 0.9992 0.9989 0.9991
Smart_Things 0.9956 0.9888 0.9922 0.9985 0.9980 0.9983
TP_Link_Day_Night_Cloud_Camera 0.9898 0.9563 0.9728 0.9892 0.9989 0.9940
TP_Link_Smart_Plug 0.8638 0.8675 0.8657 0.9804 0.9615 0.9709
Withings_Aura_Smart_Sleep_Sensor 0.9929 0.9793 0.9861 0.9989 0.9985 0.9987
Withings_Smart_Baby_Monitor 0.9823 0.9961 0.9891 0.9997 0.9997 0.9997
iHome 1.0000 0.6833 0.8119 1.0000 1.0000 1.0000
Nest_Dropcam 0.3193 0.4371 0.3980 1.0000 0.9600 0.9796
NEST_Procet_Smoke_Alarm 1.0000 0.7317 0.8451 1.0000 1.0000 1.0000
Triby_Speaker 0.8841 0.4552 0.6010 0.9817 0.9469 0.9640
Macro average performance 0.9325 0.8865 0.9039 0.9958 0.9914 0.9935
Total accuracy 0.9865 0.9983

TaBLE 8: Results of the ablation study on the laboratory dataset.

Method CBBI w/o FGAN CBBI

FGAN X v

Conv-BiLSTM v v

Device name Precision Recall F-score Precision Recall F-score
360_Camera 0.9504 0.9017 0.9254 0.9697 0.9566 0.9631
Amazon_Echo 0.9023 0.9395 0.9205 0.9435 0.9764 0.9597
D-Link-DSH-C310 0.8882 0.8988 0.8935 1.0000 1.0000 1.0000
Hikvision_DS-IPC-E22H-IW 0.9526 0.9161 0.9340 0.9902 0.9731 0.9816
Hikvision_DS-IPC-S12P-IWT 0.9255 0.9535 0.9393 0.9753 0.9907 0.9829
Ezviz_Camera_CS-C6CN 0.9251 0.9382 0.9316 0.9676 0.9264 0.9465
Ezviz_Door_CS-DB2C 0.9289 0.9596 0.9440 0.9300 0.9856 0.9570
Huawei_Camera_HQ5 0.9966 0.9968 0.9967 0.9988 0.9992 0.9990
Huawei_Speaker 0.9982 0.9936 0.9959 0.9991 0.9978 0.9985
Huawei_Smart_Scale 0.7975 0.8289 0.8129 0.9663 0.9101 0.9373

Imou-Camera_TP1-2525 0.9979 0.9962 0.9971 0.9986 0.9977 0.9982

Security and Communication Networks 13

TaBLE 8: Continued.

Method CBBI w/o FGAN CBBI

Imou-Camera_TP7C-E152 0.9894 0.9894 0.9894 0.9977 0.9932 0.9955
Philips_Hue 0.9504 0.9165 0.9332 0.9606 0.9379 0.9491
TP_Link_Camera_IPC42A-4 0.9638 0.9499 0.9568 0.9806 0.9836 0.9821
TP_Link_Camera_IPC43AN-4 0.9581 0.9492 0.9536 0.9881 0.9731 0.9805
TP_Link_Camera_IPC64C-4 0.8520 0.9287 0.8887 0.9360 0.9682 0.9518
TP_Link_WDAG6332RE 0.6364 0.4667 0.5385 0.7815 0.8378 0.8087
Xiaomi_Air_Purifier 0.6923 0.3333 0.4500 0.8676 0.8806 0.8741
Xiaomi_Camera_M]JSXJ06CM 0.9919 0.9923 0.9921 0.9986 0.9979 0.9983
Xiaomi_Door_LSC_MO01 0.9905 0.9881 0.9893 0.9952 0.9967 0.9960
Xiaomi_Hub 0.6857 0.4898 0.5714 0.9975 0.9988 0.9982
Xiaomi_Humidifier 0.8881 0.8975 0.8928 0.9730 0.9689 0.9709
Xiaomi_Soundbox 0.9135 0.9041 0.9088 0.9814 0.9483 0.9646
Macro average performance 0.9033 0.8752 0.8850 0.9651 0.9652 0.9649
Total accuracy 0.9524 0.9726

Belkin_Wemo_switch Amazon_Echo
D-Link DSH-C310
HP_printer
Hikvision_DS-IPC-E22H-IW
Insteon_Camera

- Hikvision_DS-IPC-SI2P-IWT
08

Light Bulbs_LiFX_Smart_Bulb 08 Enviz_Camera CS.C6CN
0 0 0 0 0 0 0
Enviz-Door-CS-DE2C
Netatn 0 0 0 0 0 0 0
Huawel_Camera_HQ5 0 0 0 0 0 0 0
Huanei Speaker o 0 0 0 0 0 o
PIX_STAR Photo_frame 0
06 Hoa 004001 0 001 0 0 0
Samsung SmartCam Imou Camera_TP1.2525 0 0 0 0 0 0 0
Smart_Things b era_TPIC-EIS2 0 0 0 0 0 0 0
Philips_Hue 0 0 0 0 0 0 0
TP_Link_Day_Night Cloud_camera
TP Link Camera IPCR24-4 0 0 0 0 0 0 0 o
TP Link Smart_plug 04 . o
TP_Link_Camera_IPCI3AN-4 0 0 0 0 0 0 0
Withings_Aura_smart_sleep_sensor TP Link Camera 1PCosc-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0000
. 0002 0 0 0 0 002005 0 001 0 001 0 001 001
Within Baby_M TP_Link WDAGI2RE _
Siomi_ A Purier © 0 0 0 0 0 0 001 0 001 0 001 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02
- 02 Xiaomi_Camera_MISXJ06CM _
Nest_Dropeam 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xisomi_Door_LSC_MOI __
NEST_Protect_smoke_alarm Yo _ 0 0 0 0 0000 00000 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
“Triby_Speaker Xiso
Xisomi_Soundbox 00
00 l
H
g
&
Predicted label
accuracy=0.998%; misclass=0.0017

FIGURE 6: The confusion matrix of the two datasets. (a) The confusion matrix of the UNSW dataset. (b) The confusion matrix of the
laboratory dataset.

.0
75 Z

2 75
3
» 4
.5

0 6 50
.7
.8
)

% ® 10 25
e 11
.2

0 .13 0
W .14
e 15
.16

_25 .17 -25

50 -50

-~
75 B -"5"9" =75
T
-80 -60 -40 -20 0 20 40 60 80 -100 =75 -50 =25 0 25 50 75 100
(a) (b)

FIGURE 7: Visualization of the final fully connected layer based on t-SNE. (a) Visualization of the UNSW dataset. (b) Visualization of the
laboratory dataset.

14 Security and Communication Networks
100.00
90.00
80.00
70.00
£ 60.00
—~
g 50.00
=1
o 40.00
<
30.00
20.00
10.00
0.00 o = o = Y Y g © o0 o = g
8 g =2 & P 58 B SR
2 E 5 Y235 Y8 Y EE R
S 9 g & J =z o E ¢ (- S = | A g |
S 8§ £ g £ 3 3 4 3 2T & g5 i J g B
E 2 g 4 = g8 £ o £ = B3 g £ =
< z k7] o] o =} | =} « O 24 o J~a) Z. 2 =
! S B2 z2 £ = 3 5 5 3
g = 3 5] < = 3 s = 5]
= . d Z £ & ® o & g g
& £ £ NG z B 73 A
2 8 > | g) e
A Z & & z 2 @
b= /A ! Z
&) £ 2z
A £ 7
& =
Device name
m UNSW
m CBBI
F1GURE 8: Comparison with related work on the UNSW dataset.
TaBLE 9: Performance comparison of different model combinations.
Method Accuracy Precision Recall F1-score
CNN UNSW dataset 0.9464 0.8919 0.8858 0.8872
Laboratory dataset 0.9302 0.9026 0.8774 0.8877
UNSW dataset 0.9517 0.8990 0.8963 0.8950
FGAN=+CNN Laboratory dataset 0.9463 0.9081 0.8925 0.8989
BiLSTM UNSW dataset 0.9465 0.8897 0.8800 0.8812
Laboratory dataset 0.9382 0.8875 0.8581 0.8664
. UNSW dataset 0.9541 0.9059 0.8882 0.8906
FGAN + BILSTM Laboratory dataset 0.9478 0.8900 0.8671 0.8754
. UNSW dataset 0.9865 0.9325 0.8865 0.9039
CNN+ BilSTM Laboratory dataset 0.9524 0.9033 0.8752 0.8850
. UNSW dataset 0.9983 0.9958 0.9914 0.9935
FGAN + CNN + BiLSTM (CBBI) Laboratory dataset 0.9726 0.9651 0.9652 0.9649

generated was relatively small, especially for several devices
such as Nest_Dropcam, NEST_ Procet_Smoke Alarm, and
Triby_Speaker. Our method achieves an accuracy rate similar
to that of UNSW [27]. Additionally, CBBI does not need to
manually extract features, which increases the timeliness of the
device recognition.

We have implemented more comparative experi-
ments, including CNN, FGAN+CNN, BiLSTM,
FGAN +BiLSTM, CNN + BiLSTM, and CBBI. The de-
tailed experimental results are shown in Table 9. Each
method gives the accuracy, precision, recall, and F1-score
values. We can conclude that FGAN and the simultaneous

learning of temporal and spatial features can effectively
improve the identification accuracy.

In summary, various experimental results show that
our method can effectively and accurately identify the
IoT devices. Compared with traditional manual feature
extraction methods, this method can not only auto-
matically learn the representative features of devices but
also has good classification capabilities. On the other
hand, the experimental results on the two datasets also
show the effectiveness and flexibility of CBBI, which can
address the complex and changeable IoT device
environment.

Security and Communication Networks

6. Conclusions and Future Work

In this paper, we propose an IoT identification method called
CBBI. This method uses the spatial and temporal features of
the original network traffic generated by the IoT devices,
which avoids the overhead and cumbersomeness of feature
extraction in the traditional methods and reduces the
complexity of the IoT device identification task. CBBI has
three modules: data preprocessing, data augmentation
FGAN, and Conv-BiLSTM. The main task of the data
preprocessing module is to quickly process the raw network
traffic generated by the IoT device and convert it into input
that can be used in a deep learning model. The data aug-
mentation module FGAN solves the problem of class im-
balance in deep learning and further improves the accuracy
and generalization ability of the model. The hybrid deep
learning model Conv-BiLSTM can learn the spatial and
temporal characteristics of the device communication traffic.
In this paper, we use a public dataset and a laboratory dataset
to verify the effectiveness of CBBI. The experimental results
show that CBBI has good classification performance, even
for some IoT devices from the same equipment manufac-
turers. In our future work, we will consider a combination of
active and passive IoT device identification schemes to re-
alize the identification of unknown IoT devices. [45].

Data Availability

We used the UNSW dataset, which is a publicly accessed
dataset (https://iotanalytics.unsw.edu.au/iottraces). The
laboratory dataset used to support the findings of this study
is available from the corresponding author upon request.

Disclosure

This paper is an extended version of a conference paper, and
the conference name is DSC 2021—IEEE Conference on
Dependable and Secure Computing.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key Research and
Development Project (2017YFB0801805) and the National
Natural Science Foundation of China (62072359 and
62072352).

References

[1] “Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025, https://www.statista.com/
statistics/471264/iot-number-of-connected-devices-worldwide/.
“Internet of things (IoT) - statistics & facts,” https://www.
statista.com/statistics/370350/internet-of-things-installed-base-
by-category/.
[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in
the iot: mirai and other botnets,” Computer, vol. 50, no. 7,
pp. 80-84, 2017.

[2

15

[4] F.Yin, L. Yang, Y. Wang, and J. Dai, “Iot ETEI: end-to-end iot
device identification method,” in Proceedings of the IEEE
Conference on Dependable and Secure Computing, DSC 2021,
pp- 1-8, Aizuwakamatsu, Japan, January 2021.

[5] Y. Yue,S. Li, P. Legg, and F. Li, “Deep learning-based security

behaviour analysis in iot environments: a survey,” Security

and Communication Networks, vol. 2021, Article ID 8873195,

13 pages, 2021.

E. Fernandes, J. Jung, and A. Prakash, “Security analysis of

emerging smart home applications,” in Proceedings of the

IEEE Symposium on Security and Privacy, SP, 2016,

pp. 636-654, San Jose, CA, USA, May 2016.

[7] V. Sachidananda, J. Toh, S. Siboni, S. Asaf, and E. Yuval,
“POSTER: towards exposing internet of things: a roadmap,”
in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1820-1822,
Vienna, Austria, October 2016.

[8] L. Garcia, F. Brasser, M. H. Cintuglu, R. S. Ahmed,

A. M. Osama, and A. Z. Saman, “Hey, my malware knows

physics! attacking plcs with physical model aware rootkit,” in

Proceedings of the 24th Annual Network and Distributed

System Security Symposium, NDSS 2017, San Diego, CA, USA,

February 2017.

E. Ronen, A. Shamir, A. O. Weingarten, and C. O’Flynn, “Tot

goes nuclear: creating a zigbee chain reaction,” in Proceedings

of the 2017 IEEE Symposium on Security and Privacy, SP2017,

pp- 195-212, San Jose, CA, USA, May 2017.

[10] Y.Jia, Y. Xiao, J. Yu, X. Cheng, Z. Liang, and Z. Wan, “A novel
graph-based mechanism for identifying traffic vulnerabilities
in smart home iot,” in Proceedings of the 2018 IEEE Conference
on Computer Communications, INFOCOM, pp. 1493-1501,
Honolulu, HI, USA, April 2018.

[11] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: iot botnet of
high wattage devices can disrupt the power grid,” in Pro-
ceedings of the 27th USENIX Security Symposium, USENIX
Security 2018, pp. 15-32, Baltimore, MD, USA, August 2018.

[12] Z. Liu, R. Wang, N. Japkowicz, Y. Cai, D. Tang, and X. Cai,
“Mobile app traffic flow feature extraction and selection for
improving classification robustness,” Journal of Network and
Computer Applications, vol. 125, pp. 190-208, 2019.

[13] X. Xiao, R. Li, H. T. Zheng, R. Ye, A. KumarSangaiah, and
S. Xia, “Novel dynamic multiple classification system for
network traffic,” Information Sciences, vol. 479, pp. 526-541,
2019.

[14] D. L. C. Choong, C. Y. Cho, C. P. Tan, and R. S. Lee,
“Identifying unique devices through wireless fingerprinting,”
in Proceedings of the First ACM Conference on Wireless
Network Security, WISEC 2008, pp. 46-55, Alexandria, VA,
USA, March, 2008.

[15] S. Jana and S. K. Kasera, “On fast and accurate detection of
unauthorized wireless access points using clock skews,” in
Proceedings of the 14th Annual International Conference on
Mobile Computing and Networking, MOBICOM 2008,
pp- 104-115, San Francisco, CA, USA, September 2008.

[16] T. Kohno, A. Broido, and K. C. Clafty, “Remote physical
device fingerprinting,” IEEE Transactions on Dependable and
Secure Computing, vol. 2, no. 2, pp. 93-108, 2005.

[17] C. Arackaparambil, S. Bratus, A. Shubina, and D. Kotz, “On
the reliability of wireless fingerprinting using clock skews,” in
Proceedings of the Third ACM Conference on Wireless Network
Security, WISEC 2010, pp. 169-174, Hoboken, NJ, USA,
March 2010.

[18] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device
fingerprinting to enhance wireless security using

[6

[9

https://iotanalytics.unsw.edu.au/iottraces
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/

nonparametric bayesian method,” in Proceedings of the IEEE
INFOCOM, pp. 1404-1412, Shanghai, China, April 2011.

S. U. Rehman, K. W. Sowerby, and C. Coghill, “Analysis of
impersonation attacks on systems using rf fingerprinting and
low-end receivers,” Journal of Computer and System Sciences,
vol. 80, no. 3, pp. 591-601, 2014.

H. L. Yuan and A. Q. Hu, “Preamble-based detection of wi-fi
transmitter rf fingerprints,” Electronics Letters, vol. 46, no. 16,
pp. 1165-1167, 2010.

V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device
identification with radiometric signatures,” in Proceedings of
the 14th Annual International Conference on Mobile Com-
puting and Networking, MOBICOM 2008, pp. 116-127, San
Francisco, California, USA, September 2008.

S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “Gtid: a
technique for physical device and device type fingerprinting,”
IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 5, pp. 519-532, 2014.

M. Miettinen, S. Marchal, I. Hafeez et al., “Iot SENTINEL:
automated device-type identification for security enforcement
in iot,” in Proceedings of the 37th IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2017,
pp- 2177-2184, Atlanta, GA, USA, June 2017.

H. Guo and J. S. Heidemann, “Ip-based iot device detection,”
in Proceedings of the 2018 Workshop on IoT Security and
Privacy, 10T S&P@SIGCOMM 2018, pp. 36-42, Budapest,
Hungary, August 2018.

S. Marchal, M. Miettinen, T. D. Nguyen, A. R. Sadeghi, and
N. Asokan, “AuDI: toward autonomous IoT device-type
identification using periodic communication,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 6,
pp. 1402-1412, 2019.

V. Thangavelu, D. M. Divakaran, R. Sairam, S. B. Suman, and
G. Mohan, “Deft: a distributed iot fingerprinting technique,”
IEEE Internet of Things Journal, vol. 6, no. 1, pp. 940-952,
2018.

A. Sivanathan, H. H. Gharakheili, F. Loi et al., “Classifying iot
devices in smart environments using network traffic char-
acteristics,” IEEE Transactions on Mobile Computing, vol. 18,
no. 8, pp. 1745-1759, 2018.

L. Yu, T. Liu, Z. Zhou, and Y. Zhu, “WDMTT: wireless device
manufacturer and type identification using hierarchical
dirichlet process,” in Proceedings of the 15th IEEE Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems,
MASS 2018, pp. 19-27, Chengdu, China, October 2018.

L. Yu, B. Luo, J. Ma et al., “You are what you broadcast:
identification of mobile and iot devices from (public) wifi,” in
Proceedings of the 29th USENIX Security Symposium, USENIX
Security 2020, pp. 55-72, August 2020.

L. Deng, Y. Feng, D. Chen, and N. Rishe, “Iotspot: Identifying
the iot devices using their anonymous network traffic data,” in
Proceedings of the 2019 IEEE Military Communications
Conference, MILCOM 2019, pp. 1-6, Norfolk, VA, USA,
November 2019.

M. Antonakakis, T. April, M. Bailey et al., “Understanding the
mirai botnet,” in Proceedings of the 26th USENIX Security
Symposium, USENIX Security 2017, pp. 1093-1110, Van-
couver, BC, Canada, August 2017.

Z. Durumeric, D. Adrian, A. Mirian et al., “A search engine
backed by internet-wide scanning,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security, pp. 542-553, Denver, CO, USA, October 2015.
Shodan, “The search engine for Internet-connected devices,”
https://www.shodan.io/.

Security and Communication Networks

[34] C. Fachkha, E. Bou-Harb, A. Keliris et al., “Internet-scale
probing of CPS: inference, characterization and orchestration
analysis,” in Proceedings of the 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San
Diego, CA, USA, February 2017.

[35] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting
of iot devices in the cyberspace,” Computer Networks, vol. 148,
pp. 318-327, 2019.

[36] Q. Li, X. Feng, L. Zhao, and L. Sun, “A framework for
searching internet-wide devices,” IEEE Network, vol. 31, no. 6,
pp. 101-107, 2017.

[37] X.Feng, Q.Li, H. Wang, and L. Sun, “Acquisitional rule-based
engine for discovering internet-of-things devices,” in Pro-
ceedings of the 27th {USENIX}Security Symposium ({USENIX}
Security 18), pp. 327-341, Baltimore, MD, USA, August 2018.

[38] “SplitCap tool,” https://www.netresec.com/?page=SplitCap.

[39] L. Goodfellow,]. Pouget-Abadie, M. Mirza et al., “Generative
adversarial networks,” Communications of the ACM, vol. 63,
no. 11, pp. 139-144, 2020.

[40] Y.LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, 2015.

[41] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “Lstm: a search space odyssey,” IEEE
transactions on neural networks and learning systems, vol. 28,
no. 10, pp. 2222-2232, 2017.

[42] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673-2681, 1997.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[44] A. Gulli and S. Pal, Deep Learning with Keras, Packt Pub-
lishing Ltd, Birmingham, United Kingdom, 2017.

[45] G. F. Lyon, Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning,
Insecre. Com LLC (US), WA, USA, 2008.

https://www.shodan.io/
https://www.netresec.com/?page=SplitCap

Hindawi

Security and Communication Networks
Volume 2021, Article ID 2610887, 10 pages
https://doi.org/10.1155/2021/2610887

Research Article

WILEY

Hindawi

Image Speckle Denoising for Securing Internet of Smart Sensors

Wei Ma,"? Zhihui Xin ®,"? Licun Sun,"? and Jun Zhang 1,2

"Yunnan Normal University, School of Physics and Electronic Information, Kunming/650500, China

*Yunnan Normal University, Yunnan Key Lab of Opto-Electronic Information Technology, Kunming/650500, China
Correspondence should be addressed to Zhihui Xin; xinzhihuiluncky@163.com and Jun Zhang; junzhang@ynnu.edu.cn
Received 19 September 2021; Accepted 28 October 2021; Published 18 November 2021

Academic Editor: Weizhi Meng

Copyright © 2021 Wei Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to improve utility performance when securing sensitive data is an important research problem in Internet of smart sensors.
In this paper, we study secured image speckle denoising for networked synthetic aperture radar (SAR). Speckle noise of SAR
affects image quality and has a great influence on target detection and recognition. MSTAR dataset is often used in image target
recognition. In this paper, a subregion-based method is proposed in order to improve the accuracy of target recognition and better
retain target information while filtering and denoising the image. The new method applies advanced encryption techniques to
protect sensitive data against malicious attack. Firstly, the image is divided into marked areas and unmarked areas through edge
extraction and hole filling. Secondly, we use different size windows and filtering methods to filter the image in different areas. The
experimental results show that the proposed algorithm has obvious advantages over MR-NLM, SSIM-NLM, Frost, and BM3D

filtering in terms of equivalent view number and preserving edge and structure.

1. Introduction

Synthetic aperture radar (SAR) is a system of continuous
tracking and monitoring imaging that can transmit and
receive electromagnetic waves. As a smart sensor, SAR can
provide full-time and full-weather observation for targets
and is often used in military and civilian applications. Radar
networking is an effective method to improve the radar
system in the modern war and civil scenario. In contrast to
the single radar system, the radar networking system can
trace objects more precisely, is more capable to anti-jam-
ming, and has larger scale in space domain, time domain,
and frequency domain. When the radar networking is
designed, the security of received data and the stability of the
system need to be considered. Cyber security is very im-
portant in different netting systems. Therefore, detecting and
preventing cyber insider threats are necessary [1-4]. The
stealing attack based on machine learning is reviewed in
perspectives of three categories of targeted controlled in-
formation [5]. When the radar networking system is utilized,
the data from single radar and different processing flows
should be encrypted and kept secure. Malware and software
vulnerability detections based on machine learning and deep

neural models are studied to ensure that the Internet system
is secure [6-8]. Due to the limitation of the imaging
mechanism of radar, the complexity of ground environment
usually makes the reflection of the surrounding environment
to electromagnetic waves weaken the reflection of the target
to electromagnetic waves. Therefore, speckle suppression of
SAR image is extremely important for feature extraction of
image and target recognition.

At present, MSTAR datasets supported by Defense
Advanced Research Projects Agency are widely used for
target recognition of the SAR image. Image denoising is
needed to improve the efficiency of image recognition. There
are two main purposes for image denoising in the MSTAR
dataset: one is to smooth out the noise-polluted background
area and the other is to retain more texture and detail in-
formation in the target area [9]. Commonly used SAR image
denoising algorithms are divided into spatial domain fil-
tering [10, 11], transform domain filtering [12-15], and
partial differential anisotropic diffusion filtering [16, 17].
Spatial filtering is mainly based on LEE filtering [10] and
Frost filtering [11]; in this method, the corresponding pixel
values are processed by sliding a fixed-size window and
predefined filter coefficients. However, the filtering effect is

mailto:xinzhihui.luncky@163.com
mailto:junzhang@ynnu.edu.cn
https://orcid.org/0000-0002-6283-3097
https://orcid.org/0000-0002-5310-0270
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2610887

limited by the window size and has the disadvantage of
insufficient filtering. In recent years, transform domain
filtering such as wavelet transform [12] or BM3D and it is
various improved methods have also achieved good results
[13-15], but these methods are easy to introduce interference
artificially. Anisotropic diffusion filtering [16, 17] takes an
image as a heat field and determines whether to diffuse to the
surrounding pixels according to the relationship between the
surrounding pixels and the current pixel. However, this
algorithm requires multiple iterations and requires a large
amount of computation.

Based on bilateral filtering method, the non-local
means (NLM) denoising algorithm was developed [18].
This algorithm uses image block similarity instead of
traditional single-pixel similarity to construct weights.
Making full use of the redundant information in the
image, details of the image can be maintained to the
greatest extent while denoising [19]. In recent years,
scholars have carried out a large number of studies based
on NLM filtering [19-25]. Through the SAR image ex-
periment in MSTAR, it can be found that this method can
achieve good denoise performance in the target area.
However, the denoising performance in the background
area and the edge area of the target is poor. NLM filtering
effect is also related to the size of the window. Meanwhile,
the methods of NLM filtering are impossible to balance
the details of preserving details and smoothing noise. Due
to the extremely serious noise pollution of the MSTAR
data image, the variance-based segmentation algorithm
proposed in paper [20] and the cluster-based segmenta-
tion algorithm proposed in paper [21] are not suitable for
the MSTAR data image.

Each algorithm has its own merits and demerits. This
paper proposes a subregion NLM filter method. The image
is divided into marked region and unmarked region by
extracting target information. Then, we comprehensively
consider the noise difference between different regions.
An improved NLM filter method is used for the unmarked
region. The two regions need to be encrypted through
encryption technology. Then, two encryption features are
transferred into the next flow to decrypt and denoise with
different filter weight, respectively. After this processing,
different weighted functions and different sizes of filtering
windows are used for NLM filtering in different regions.
Experimental results show that the algorithm in this paper
can greatly suppress noise while preserving the target
details.

2. Proposed Method

2.1. Non-Local Mean Algorithm. The non-local mean algo-
rithm can define the weight by measuring the similarity of
the two similar blocks in the large search window when
filtering the additive noise image and calculates the pixel
value of the target point by weighted average. Its algorithm
can be denoted as

Security and Communication Networks

U@= Y WG HVQ), (1)

jeQ (i)

where Q(7) is the large-scale search window centering on
pixel i, U (i) is the pixel after filtering, and V () is the pixel at
any point in the search window. W (i, j) is the weighted
coefficient of pixel j to pixel i in the search window. Weight
is defined as

. 1 d (i j)
Wi, j) === - , 2
(@) z(i)eXp(i @
where h controls the rate of decay of the exponential
function, and it is usually equal to 10. Z (i) is the normalized
factor, which can be expressed as

Z(i) = Zexp(—d:;j)>, (3)
j

where d (i, j) is the similarity of two pixels in formulas (2)
and (3). When calculating d (i, j), the first step is to form
similar areas of fixed sizes N (i) and N (j) with the pixels i
and j as the center. The similarity is determined by the gray
value vectors v(N;) and v(N j), which can be measured by
Gaussian weighted Euclidean distance which can be
expressed as

: (4)

2,0

dG, j) =[v(N;) - v(N;)

where 3 | denotes the L2 norm.

However, due to the special imaging mechanism of SAR
image, its noise is a typical multiplicative noise. Assuming
that the observed value of a SAR image at position i is Y (i),
its real signal is X (i), and the speckle noise is N (i), and then
its noise model is

Y (i) = N (i) = X (i). (5)

Therefore, the non-local mean algorithm is not directly
applicable to SAR image denoising. On the contrary, it is
suitable only when the multiplicative noise is changed into
additive noise after logarithmic processing.

2.2. Subregion NLM Filtering Algorithm. Classical NLM al-
gorithms cannot maintain the texture of the target while
smoothing the noise. A new subregion filtering process and
weighting function are proposed in this paper. The proposed
algorithm flowchart is shown in Figure 1. The original image
is divided into two areas, and different areas are processed
using different filtering weights. The edge contour forms a
closed area after edge extraction and hole filling. The edge
contour is used to mark the original image. The original
image is divided into marked region and unmarked region.
For the selection of the size of search window and similar
window, small window should be used to maintain details
and large window should be used to smooth noise. So, the
small window is used in the marked area and the large

Security and Communication Networks

Algorithms start

Extracting the edge of
the target by the Canny
algorithm

v

Making expansion,
corrosion and hole filling
at the edge, then marking

in filled region

la

e

Calculating the
normalizing factor
Z(i) and weighting

coefficient W(i,j)

Whether itisa
marked region

A

Each pixel in the
search window is

Choosing the search
window formed
by the pixel i at the marked
region

Choosing the search
window formed
by the pixel i at the unmarked
region

—

v

Choosing the similar
window N(i) and N(j)
center on i and j in the

search window

Choosing the similar
window N(i) and N(j)
center on i and j in the

search window

distance d(i,j) and the
variation coefficient h

v v
Calculating the spatial Calculating the difference
weighted Euclidean of average pixel gray

value D(i,j) and the
variation coefficient #’

Whether all pixels
were estimated

Whether all pixels
were estimated

multiplied by its
corresponding
weight

All pixels are
filtered?

Algorithm end

FIGURE 1: Algorithm flowchart.

window is used in the unmarked area. The marked area has a
large amount of texture information. So, the similarity of
windows is measured through Euclidean distance in NLM
algorithm for the marked area. At the same time, the
similarity of the window is measured by the difference of the
average pixel for the unmarked area. When the image is
filtered, the variation coeflicient is chosen as the filtering
parameter. The main steps of the proposed framework are
summarized in Algorithm 1.

2.2.1. Edge Extraction. The Canny filtering algorithm is used
to extract the image edge in the paper. The image is
smoothed through Gaussian filtering. A fixed-size convo-
lution template is used to calculate the gradient of the image.
The image is divided into two parts by setting a threshold in
the maximum suppression method, and then the two parts
of the image are connected [26]. The commonly used
convolution template includes the Soble operator, Roberts
operator, and Prewitt operator. The gradient value and angle
value of a certain point of the image are obtained according

to the correlation operator, and the edge of the target is
determined according to the method of non-maximum
suppression. In this paper, the Soble operator is used to
calculate the horizontal and vertical gradients respectively,
which can be expressed as

[1 2 1
Sobel, =[0 0 0 |,
-1 -2 -1)
[1 0 -1
Sobel, =2 0 -2 |
1 0 -1

Because the edge curve obtained by Canny filtering al-
gorithm is not necessarily closed, it needs to be expanded
and corroded [19]. The expansion process is shown in
Figure 2, in which Figure 2(a) shows the original image,
assuming that the pixel value of the white area is 0 and the
pixel value of the black area is 1. Set a structural element

Security and Communication Networks

Input: the SAR image A

binary image B;
(2) Read the imageA and Bsize [m. n];

(3) for p=1:m

(4) forg=1n

(5) if B (i, j) =255

(6) A (i, j) €9,; ¢, represents the marked area;
(7) else

(8) A (i, j) €9,; ¢, represents the unmarked area;

(9) end; end; end

(11) Read the image A size [m. n];
(12) fori=1:m
(13) forj=1mn

(19) end; end; end
Output: the final denoising image

(1) Extract the edge contour of the central target, carry out expansion, corrosion, and hole filling, form a closed area, and generate a

(10) Then the marked area ¢, and unmarked area ¢, in the noisy image are obtained;

(14) if current position (4, j) belongs to the marker area ¢,
(15) D(, j) = Iv(N) = v(N)I*;

(16) else

(17) d (i, j) = lv(N) =v(N)I3, 5

(18) Use formulas (2) and (11) to calculate the weights;

ALGORITHM 1: Secured image speckle denoising for internet of smart sensors.

(a) (b)

(© (d)

FIGURE 2: Image expansion process. (a) Original image. (b, c¢) Structural elements. (d) Expansion image.

(Figure 2(b)) and obtain the mapping (Figure 2(c)) of
Figure 2(b) about the origin. The process of expansion is to
make Figure 2(c) traverse every pixel in the original image.
When Figures 2(c) and 2(a) have an intersection, the center
pixel of Figure 2(c) is replaced by the maximum value in the
structure. Figure 2(d) is the result of expansion (Figure 2(a)).
The mathematical expression of expansion is

A®B ={x|(B)y N A+ 9},)

where A is the original image and B refers to the structural
elements.

The corrosion process is the inverse process of expan-
sion. As shown in Figure 3, the aim of which is to make
Figure 3(b) traverse every pixel in the original image
(Figure 3(a)), when Figure 3(b) is included in Figure 3(a), the
central pixel of Figure 3(b) is retained. Figure 3(d) is a
corrosion diagram of Figure 3(a). The mathematical ex-
pression of corrosion is

A®B ={x|(B)xCcA}. (8)

2.2.2. Hole Filling. In this algorithm, the edge of the target is
extracted by the Canny operator, but the edge is not nec-
essarily continuous. The hole is filled after the expansion and
corrosion of the edge. A hole can be understood as a
background region surrounded by the boundary connected
by foreground pixels. The basis of hole filling is also the
expansion of image. After the edge of the target is obtained,
the target region is separated from the image through hole
filling [27]. As shown in Figure 4, Figure 4(a) is the edge
image. First of all, the edge image is inverted to get
Figure 4(b) in the process. Then, use an all-white graph with
a black spot in the hole (Figure 4(c)) as the initial image and
fill it with Figure 4(d). If the expansion result exceeds the size
of the hole, use Figure 4(b) to find the intersection of it and
limit it to the inside of the hole. Figure 4(e) is the result after
filling twice. Assuming that the number of expansion op-
erations is k and the result is X, when X| and Xj._; are the
same, the filling image (Figure 4(f)) of the hole is obtained.
The filling image (Figure 4(f)) is merged with Figure 4(a) to
form the final result (Figure 4(g)).
The hole filling formula can be expressed as

Security and Communication Networks

(a) (b)

(c) (d)

FIGURE 3: Image etching process. (a) Original image. (b) Structural element. (c) Corrosion process. (d) Corrosion image.

(e)

(8

FiGure 4: Hole filling process. (a) Edge image. (b) Edge image is inverted. (c) The first image of the hole filling. (d) Structural element. (e) The

image after two fillings. (f) Filling image of the hole. (g) Final image.

xk = (xk_l@B) n AC,

9)
E = X U AC.

2.2.3. Improved Weight Function. As shown in Figure 5, (a)
is the similarity window of the center pixel of the search
window, where the white pixel is noise, and (b) and (c)
represent two different sliding windows, respectively.
d(a,c)>d(a,b) can be obtained according to formula (4),
and w(a, c) <w(a, b) can be obtained according to formula
(2). But for (a), the white pixel at the center is noise and
should be cleared, so the ideal weighting situation should be
w(a,c) <w(a,b). Borrowing the idea of neighborhood fil-
tering, the difference between the gray values of the average
pixels of similar blocks is used as the similarity function here
so as to redefine the weighted function. When the difference

a

FIGURE 5: Pixel weighted weight analysis.

between the gray values of the two is smaller, a relatively
large weight will be obtained. The smoothing effect of the
isolated noise points is related to the size of the window. A

large window will make the noise smoother better, but the
amount of calculation will increase accordingly.
The new similarity function is defined as

D, j) =|V(Ni) - v(Nj)|2, (10)

where v(N;) and v(N ;) represent the average gray value of
the similar box centering on i and j, respectively, and then
the weight calculation formula of the gray scale of the pixel
in the center of the image block is defined as

W' (i, j) :%m Z[exp(—sz’zj)>], (11)

where Z(i) is expressed as a normalized factor, D (i, j)
denotes the grayscale distance of the mean pixels of similar
blocks, and k' is the corresponding filtering parameter.
The selection of filter parameters plays an important role
in the effect of filtering, the size of which directly determines
the effect of denoising. The filtering parameters used in the
traditional NLM filtering process are all constants, larger
values are easy to lose details, and smaller values will retain
more noise. Variation coeflicient can well evaluate the de-
gree of fluctuation of image pixels, so it is introduced into the
filtering parameters. The coefficient of variation is defined as

o (N (i)
IO

CV (i) = (12)
where N (7) is a similar block with the pixel as the center of 7,
0 (N (7)) is the standard deviation of the similar block, and
N (i) represents the mean value.

2.2.4. NLM Filtering Algorithm Based on Subregion Improved
Weights. We can get the image contour information from
the Canny filter algorithm, but because the outline is not
closed, expansion, corrosion, and hole filling processing are
needed. After edge extraction and hole filling, the original
image is divided into marked area and unmarked area by
marking the original image. The marked area is the central
target with less noise, while the unmarked area is the target
background with a large number of isolated noise points. To
keep the target information and make effective denoising at
the same time, this paper conducts the image in different
filtering functions. First, we use the spatially weighted Eu-
clidean distance as the similarity function in the marked
area, as shown in formula (4), and appropriate filtering
parameters are selected for filtering. Meanwhile, the mean
difference of similar blocks is used as the similarity function
for weighting in the unmarked region, as shown in equations
(10) and (11), and appropriate filtering parameters are se-
lected. According to the characteristics of MSTAR image,
the new attenuation factor is defined as

h=B%CV,

(13)
W =axCV,
where h and k' are the filter parameters in the marked area
and the unmarked area, respectively, and and « are
constants.

Security and Communication Networks

3. Experiments and Results

3.1. Experiment Settings. Experimental data were obtained
from the measured SAR ground stationary target data. They
were published by the MSTAR project supported by DARPA.
The radar operates in the X band, and polarization mode is HH
polarization. The resolution is 0.3 m*0.3 m. The pixel size is
100+100. There are 7 types of ground targets in 3 categories.

The images of armored vehicles (SAR1) and tanks (SAR2)
in the MSTAR dataset are used for verification. We use Frost
algorithm [11], SSIM-NLM method [22], MR-NLM method
[24], and block-matching 3D (BM3D) algorithm [15] to
compare with the proposed algorithm to verify its superiority.
The experiment adopted Intel (R) Core (TM) i7-10700F CPU@
2.90Ghz. During the experiment, the filter window size of MR-
NLM was 1 and 2, and the filter parameters were 1/ (1.5 * CV).
The size of the filter window in the SSIM-NLM algorithm is 1
and 2, and the filter parameter is 220, where ¢ is the standard
deviation obtained from paper [28] and the number of sights L
in the BM3D algorithm is set to 3. In the algorithm of this
paper, the search window radius in the marked area is 2, the
similar window radius is 1, and the constant « is 0.25. In order
to verify that the weighted algorithm proposed in this paper is
more beneficial to smooth the noise, two groups of experiments
are carried out. In the first group, the radius of the search
window in the unmarked region is 5, and the radius of the
similarity window is 2. In the second group, the radius of the
search window in the unmarked region is 10, and the radius of
the similarity window is 3. In the experiments, the constant § is
0.2, and the threshold of Canny edge detection is 0.8.

3.2. Denoising Quality Evaluation Index. Subjective
denoising quality evaluation uses naked eyes to observe the
denoising degree of images, while objective quality evalu-
ation uses equivalent number of looks, edge preserve index,
and structure similarity index to evaluate.

3.2.1. Equivalent Number of Looks (ENL). The equivalent
number is an indicator used to view the smoothing effect of
the image, and its definition is as follows:

2
ENL = £, (14)
o
where y is the mean value and ¢? is the variance. The larger
the equivalent number, the better the smoothing effect of the
image. In this paper, the equivalent number is calculated
only in the specific area.

3.2.2. Edge Preservation Index (EPI). The edge preservation
index is used to evaluate the degree of image edge preser-
vation, and its definition is as follows:

_2WUGEH-UG+LPI+UG j)-UG j+ 1)
SUVGEH=VE+LPI+IVE)=V 3G j+DI)
(15)

EPI

where U (i, j) is the denoised image and V (i, j) is the original
image. The larger the edge preservation index is, the better

Security and Communication Networks

the effect will be. In this paper, the edge preservation index is
calculated only for the marked area, and the unmarked area
is the noise area, which has no such index.

3.2.3. Structure Similarity Index (SSIM). The structural
similarity index is used to measure the retention degree of
image structure before and after denoising. The definition
formula is as follows:

(Zy,-yj +C1)(20ij +C2)

N P S CAT AT

(16)

where y is the mean value, o is standard deviation, and
subscripts i and j show the similarity window, respectively,
with their centers i and j. The larger the structure similarity
index is, the better the effect will be. In this paper, the
structure similarity index is calculated only for the marked
area, and the unmarked area is the noise area, which has no
such index.

3.3. Experimental Results. We apply the Frost algorithm
[11], BM3D algorithm [15], SSIM-NLM algorithm [22], MR-
NLM algorithm [24], and the algorithm in this paper to the
SAR images of armored vehicles and tanks, respectively.
Then, images and related parameters of the obtained ar-
mored vehicle are shown in Figure 6 and Table 1. The images
and related parameters of the obtained tank are shown in
Figure 7 and Table 2. Table 3 presents the results of running
time of different algorithms in two groups of experiments,
and it can be used to analyze the efficiency of the algorithm.

Armored vehicles have less edge information, while
tanks have more edge information, so the robustness of the
algorithm in this paper is verified. In this paper, a fixed area
is selected in the image and marked by a white box in the
original image, and the equivalent number of each algorithm
is calculated in this fixed area. Then, the search window
radius of 5 and similar block radius of 2 and the search
window radius of 10 and similar block radius of 3 were
defined for the unmarked area, respectively, in order to
analyze the effectiveness of the new weighting function in
smoothing noise.

As shown in Figure 6, the SSIM-NLM algorithm and the
proposed algorithm have the best effect on noise smoothing,
but the SSIM-NLM algorithm causes the image to be blurry.
The contour information and texture information of the
center target from Figure 6(c) are all lost. The EPI index of
SSIM-NLM algorithm from Table 1 is less than 0.5, while
that of the proposed method is 0.8625. EPI of the Frost
algorithm from Table 1 is only 0.64, so the edge of the target
is not well kept. The noise smoothing eftect of Frost algo-
rithm from Figure 6(d) is not obvious, though its ENL index
from Table 1 is 6.7322. The detail texture and edge contour
information of the BM3D algorithm are better preserved,
but the noise suppression effect is the worst. The MR-NML
algorithm has made some progress in noise suppression
compared to the BM3D algorithm. According to Table 1,
MR-NML algorithm and BM3D algorithm have good effect
on target preservation, but the highest ENL index is only

4.2787. Compared with the proposed algorithm, the pro-
posed algorithm has obvious advantages in noise suppres-
sion. From the analysis of the two denoising effect diagrams
in this paper, when the window size is set to 5 and 2, re-
spectively, the noise is not smoothed completely, and there
are still some white patches. When the window is set to 10
and 3, the white patches are also smoothed out, which proves
that the weighting function proposed in this paper has
obvious advantages in noise smoothing. Because the same
parameters and algorithms are used in the target area, the
relevant parameters of the target area have not changed. To
sum up, the algorithm in this paper has the optimal effect on
noise smoothing, target contour, and detail preservation.

As shown in Figure 7, the central target of the original
image includes a square body area and a protruding barrel
area, especially an isolated white area directly below the body,
which represents the vehicle wheel of the tank. The
smoothing effect of the SSIM-NLM algorithm is too serious.
While smoothing the noise, it also oversmooths the target.
So, the target information is almost completely lost. The
images of the vehicle wheel area the barrel area are com-
pletely erased from Figure 7(c). The denoising image does not
retain any detailed texture information of the target, so its
EPI and SSIM are the lowest among various denoising al-
gorithms. The Frost algorithm makes the detailed informa-
tion of the target lost from Figure 7(d), so EPI of the
algorithm is relatively low. The denoising effect of the
background of Frost algorithm is not ideal though ENL is
7.2377 in Table 2. The MR-NLM algorithm is excessively
smooth in the target area, resulting in a decrease in the SSIM
index, and its ENL index is the lowest. Compared with the
MR-NLM algorithm, the BM3D algorithm has made certain
progress in noise suppression and target retention. However,
the BM3D algorithm with the highest EPI index has also
reduced by 10% compared with EPI in this paper. The two
denoising images in this paper indicate that window will
smooth the noise to a greater extent without affecting the
center target. The algorithm in this paper can control the ENL
index by adjusting the window while maintaining a high level
of EPI and SSIM indexes. To sum up, the algorithm in this
paper has the optimal effect on noise smoothing, target
contour, and detail preservation. The window size can be
chosen to obtain an ideal denoising image using the proposed
algorithm to recognize the target better.

Table 3 records the running times of the various algorithms
in Figures 6 and 7. Since the window size of the algorithm in
this paper is set to 2 and 5, the MR-NLM algorithm and the
SSIM-NLM algorithm also adopt the same size window as that
in this paper. As can be seen from this table, Frost algorithm
has the shortest running time. BM3D algorithm is a block
method of 3-dimension algorithm based on the similarity
between image blocks; although it has shorter running time, the
denoising is not good. Among the various improved algo-
rithms of NLM, when MR-NLM adopts a smaller window, the
computation time will be shorter, while a larger window will
make the computation time longer. When a window of the
same size as the one in this paper is used, the running time
difference between the algorithm in this paper and the MR-
NLM algorithm is less, but the denoising effect in this paper is

8 Security and Communication Networks

FIGURE 6: SAR images of armored vehicle. (a) Original. (b) MR-NLM. (c) SSIM-NLM. (d) Frost. (e¢) BM3D. (f) This paper (search window
radius and the similarity window radius are set to 5 and 2). (g) This paper (search window radius and the similarity window radius are set to
10 and 3).

FIGURE 7: SAR images of tank. (a) Original. (b) MR-NLM. (c) SSIM-NLM. (d) Frost. (e) BM3D. (f) This paper (search window radius and
the similarity window radius are set to 5 and 2). (g) This paper (search window radius and the similarity window radius are set to 10 and 3).

TaBLE 1: Performance comparison of several algorithms in Figure 6.

Algorithms EPI SSIM ENL

MR-NLM 0.7134 0.9799 42787
SSIM-NLM 0.4646 0.9546 13.7213
Frost 0.6442 0.9740 6.7322
BM3D 0.7955 0.9995 3.6986
This paper (2/5) 0.8625 0.9908 6.0072
This paper (3/10) 0.8625 0.9908 16.1660

better. SSIM-NLM algorithm introduces the structural simi- efficiency. Since the NLM algorithm itself has a high amount of
larity index, and the increase of parameters in the operation = computation, how to improve the computing efficiency of the
process leads to the increase of operation time and low algorithm will be the focus of future research.

Security and Communication Networks 9
TaBLE 2: Performance comparison of several algorithms in Figure 7.
Algorithms EPI SSIM ENL
MR-NLM 0.7169 0.9827 5.3808
SSIM-NLM 0.4147 0.9504 14.1114
Frost 0.6153 0.9741 7.2377
BM3D 0.7676 0.9994 5.9258
This paper (2/5) 0.8679 0.9918 7.3157
This paper (3/10) 0.8679 0.9918 13.6220
TasLE 3: Efficiency comparison of several algorithms in Figures 6 and 7.
MR-NLM SSIM-NLM i
Frost (s) BM3D (s) This paper
(1/2) (s) (2/5) (s) (1/2) (s) (2/5) (s) (2/5) (s)
Figure 6 0.3 4 74 129 1098 6389 118
Figure 7 0.3 3 72 129 1241 6369 117
This paper adopts different weighting methods in dif- Acknowledgments

ferent regions through regional processing. From the
analysis of SAR denoising images and relevant indicators of
the three targets, the proposed method can achieve good
denoising performance compared with the other methods.
The texture information of the image is retained well and the
noise is thoroughly smoothed. ENL, EPI, and SSIM of the
proposed algorithm have great improvement compared with
other algorithms.

4. Conclusions

In this paper, a new segmentation filtering algorithm based
on edge extraction was proposed, in which edge extraction is
applied to SAR image segmentation algorithm. The edge of
the target is first determined by edge extraction, and then the
image is divided into different areas by expansion corrosion
and hole filling. The separated regions are both encrypted
before they are transferred to next procedure for security. In
the process of filtering, each area is decrypted and filtered
separately. Meanwhile, a new NLM filter weighting algo-
rithm is proposed for the background areas with serious
noise. The new segmentation filtering algorithm can pre-
serve the characteristics of central target and smooth the
background noise well. Performance indexes such as ENL,
EPI, and SSIM are obtained to evaluate the algorithm
compared with existing methods. Finally, experimental re-
sults and simulation data demonstrate the effectiveness of
the proposed algorithm.

Data Availability

The MSTAR data used to support the findings of this study have
been deposited in the following website: https://download.csdn.
net/download/al367666195/123025372utm_source=iteye_new.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

This research was supported by the National Natural Science
Foundation of China (61801419) and Natural Science
Foundation of Yunnan Province (2019FD114).

References

[1] R. Coulter, Q.-L. Han, L. Pan, Z. Jun, and X. Yang, “Data

driven cyber security in perspective - intelligent traffic

analysis,” IEEE Transactions on Cybernetics, vol. 50, no. 7,

pp. 3081-3093, 2020.

N. Sun, J. Zhang, P. Rimba, Y. Z. Leo, G. Shang, and X. Yang,

“Data-driven cybersecurity incident prediction: a survey,”

IEEE Communications Surveys and Tutorials, vol. 21, no. 2,

pp. 1744-1772, 2019.

[3] L. Liu, O. D. Vel, Q. L. Han, Z. Jun, and X. Yang, “Detecting
and preventing cyber insider threats: a survey,” IEEE Com-
munications Surveys and Tutorials, vol. 20, no. 2, pp. 1397-
1417, 2018.

[4] M. H. Wang, T. Q. Zhu, T. Zhang, Z. Wanlei, S. Yu, and
Z. Jun, “Security and privacy in 6G networks: new areas and
new challenges,” Digital Communications and Networks,
vol. 6, no. 3, pp. 281-291, 2020.

[5] Y. T. Miao, C. Chen, L. Pan, Q. H. Long, Z. Jun, and X. Yang,

“Machine learning based cyber attacks targeting on controlled

information: a survey,” ACM Computing Surveys, vol. 54,

no. 7, 2021.

J. Y. Qiu, J. Zhang, L. Pan, L. Wei, N. Surya, and X. Yang, “A

survey of android malware detection with deep neural

models,” ACM Computing Surveys, vol. 53, no. 6, pp. 1-36,

2021.

[7] X. Chen, C. Li, D. Wang et al., “Android HIV: a study of
repackaging malware for evading machine-learning detec-
tion,” IEEE Transactions on Information Forensics and Se-
curity, vol. 15, no. 1, pp. 987-1001, 2020.

[8] G.J.Lin, S. Wen, Q. L. Han, J. Zhang, and Y. Xiang, “Software
vulnerability detection using deep neural networks: a survey,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1825-1848, 2020.

[9] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and
W. T. Freeman, “Automatic estimation and removal of noise

[2

[6

https://download.csdn.net/download/a1367666195/12302537?utm_source=iteye_new
https://download.csdn.net/download/a1367666195/12302537?utm_source=iteye_new

10

from a single image,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 2, pp. 299-314, 2008.

[10] J. S. Lee, “Digital image enhancement and noise filtering by
using local statistics,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 2, no. 2, pp. 165-168, 1980.

[11] Y.Pan, Y. Meng, and L. Zhu, “SAR image despeckling method
based on improved Frost filtering,” Signal Image and Video
Processing, vol. 15, pp. 1-8, 2020.

[12] X. Q. Yang, Z. H. Jia, J. Yang, and K. Nikola, “Change de-
tection of optical remote sensing image disturbed by thin
cloud using wavelet coefficient substitution algorithm,”
Sensors, vol. 19, no. 9, pp. 1972-1986, 2019.

[13] M. Lebrun, “An analysis and implementation of the BM3D
image denoising method,” Image Processing On Line, vol. 2,
no. 25, pp. 175-213, 2012.

[14] M. M. Hasan, Adaptive Edge-Guided Block-Matching and 3D
Filtering (BM3D) Image Denoising Algorithm, University of
Western Ontario, London, United Kingdom, 2014.

[15] Y. Makinen, L. Azzari, and A. Foi, “Collaborative filtering of
correlated noise: exact transform-domain variance for im-
proved shrinkage and patch matching,” IEEE Transactions on
Image Processing, vol. 29, pp. 8339-8354, 2020.

[16] Y.]J. Yu and S. T. Acton, “Speckle reducing anisotropic dif-
fusion,” IEEE Transactions on Image Processing A Publication
of the IEEE Signal Processing Society, vol. 11, no. 11,
pp. 12601270, 2002.

[17] E. Cuevas, H. Becerra, and A. Luque, “Anisotropic diffusion
filtering through multi-objective optimization,” Mathematics
and Computers in Simulation, vol. 183, no. 2, pp. 1410-1429,
2021.

[18] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm
for image denoising,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, vol. 2, pp. 60-65, San Diego, CA, USA, June 2005.

[19] S. Y. Chen and X. J. Li, “SAR image despeckling based on
adaptive non-local means,” Systems Engineering and Elec-
tronics, vol. 39, no. 12, pp. 2683-2690, 2017.

[20] S.].Liu, G. Q. Wu, X. Z. Zhang, T. Yang, and Y. M. Li, “SAR
image despeckling via the classification-based non-local
clustering,” Systems Engineering and Electronics, vol. 38, no. 3,
pp. 551-556, 2016.

[21] J. M. Li, L. Zhu, B. Zhang, and Y. Pan, “A non-localmeans
speckle suppression algorithm with restrained search win-
dow,” Journal of Xi’an Jiaotong University, vol. 54, no. 10,
pp. 54-62, 2020.

[22] Y.]. Wang, The Study of Image Denoising Methods Based on
the Non-local Means, Harbin University of Science and
Technology, Harbin, China, 2019.

[23] B. G. Kim, S. H. Kang, R. P. Chan, H. W. Jeong, and Y. Lee,
“Noise level and similarity analysis for computed tomo-
graphic thoracic image with fast non-local means denoising
algorithm,” Applied Sciences, vol. 10, no. 21, 2020.

[24] L. Zhu, F. F. Cai, Y. N. Wang, and L. Y. Guo, “A non-local
means filtering algorithm for despeckling of SAR images,”
Journal of Xi’an Jiaotong University, vol. 52, no. 4, pp. 98-104,
2018.

[25] D. Devapal, S. S. Kumar, and C. Jojy, “A novel approach of
despeckling SAR images using nonlocal means filtering,”
Journal of the Indian Society of Remote Sensing, vol. 45, no. 3,
pp. 443-450, 2016.

[26] C. Huang, W. Jin, Q. Xu, Z. Q. Liu, and Z. L. Xu, “Sub-pixel
edge detection algorithm based on canny-zernike moment
method,” Journal of Circuits, Systems, and Computers, vol. 29,
no. 15, pp. 1-18, 2020.

Security and Communication Networks

[27] X. Liu and X. Ji, “Weld pool image processing and feature
extraction based on the vision of the co2 welding,”vol. 355,
pp- 625-633, in Proceedings of the 4th International Con-
ference on Computer Engineering and Networks, vol. 355,
Springer International Publishing, Harbin, China, December
2015.

[28] A. F. Santiago, V. S. F. Gonzalo, M. F. Marcos, and
A. L. Carlos, “Automatic noise estimation in images using
local statistics. Additive and multiplicative cases,” Image and
Vision Computing, vol. 27, no. 6, pp. 756-770, 2009.

Hindawi

Security and Communication Networks
Volume 2021, Article ID 6234409, 10 pages
https://doi.org/10.1155/2021/6234409

WILEY

Hindawi

Research Article

EPCT: An Efficient Privacy-Preserving and Collusion-Resisting
Top-k Query Processing in WSNs

Qian Zhou ®,"' Hua Dai®,"? Jianguo Zhou,' Rongqi Qi,’ Geng Yang ,'2 and Xun Yi’

'Nanjing University of Post and Telecommunication, Nanjing 210023, China
*Jiangsu Security and Intelligent Processing Lab of Big Data, Nanjing 210023, China
Royal Melbourne Institute of Technology University, Melbourne 3001, Australia

Correspondence should be addressed to Qian Zhou; zhouqian@njupt.edu.cn
Received 8 September 2021; Revised 28 September 2021; Accepted 7 October 2021; Published 15 November 2021
Academic Editor: Weizhi Meng

Copyright © 2021 Qian Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data privacy threat arises during providing top-k query processing in the wireless sensor networks. This article presents an
efficient privacy-preserving and collusion-resisting top-k(EPCT) query processing protocol. A minimized candidate encrypted
dataset determination model is first designed, which is the foundation of EPCT. The model guides the idea of query processing and
guarantees the correctness of the protocol. The symmetric encryption with different private key in each sensor is deployed to
protect the privacy of sensory data even a few sensors in the networks have been colluding with adversaries. Based on the above
model and security setting, two phases of interactions between the interested sensors and the sink are designed to implement the
secure query processing protocol. The security analysis shows that the proposed protocol is capable of providing secure top-k
queries in the manner of privacy protection and anticollusion, whereas the experimental result indicates that the protocol

outperforms the existing works on communication overhead.

1. Introduction

Wireless sensor networks (WSNs), as one of the important
technologies in the Internet of Things (IoT), have been
widely deployed to provide practical solutions in various
applications, such as environment monitoring, military
target sensing, and smart home application. Meanwhile, data
privacy leakage in WSNs is becoming the main obstruction,
which slows down its further development. For example, in
the scenario of a smart home application, videos or pictures
collected by wireless IP-cameras could be eavesdropped for
illegal profit. As a result, privacy protection on sensitive data
is a critical issue that must be addressed in WSNGs.

In WSNs, the top-k query is one of the critical operations
in data aggregation for sensor monitoring process. The top-k
query requests the k lowest or highest data items collected
from IoT sensors in WSNs. For example, “collecting the 10
lowest humidity data in forest area A-Z in last 2 hours” is an
example of top-k query, which can be performed for fire
monitoring. Our aim of this work is to design a secure top-k

query approach with privacy-preserving and collusion-
resisting manners.

This article presents an efficient privacy-preserving and
collusion-resisting top-k query processing protocol (EPCT)
in WSNs. We first propose a minimized candidate encrypted
dataset determination model, which is the foundation of our
proposed protocol. It guides the idea of query processing and
guarantees the correctness of the protocol. There are two
phases of interactions between the queried sensors and the
sink in EPCT. In the first phase, when the queried sensors
receive a top-k query from the sink, they first use their own
private keys to encode the maximum of the collected data in
the interested time slot, respectively, and then, they submit
the encrypted data to the sink. In the second phase, the sink
decrypts the received ciphertext and calculates the candidate
sensors; after that, it unicastly informs the candidate sensors
to submit the rest candidate data. Once the sink obtains
enough data from the candidate sensors, the final result of
the query is determined. The security analysis and perfor-
mance evaluation indicate that the proposed approach

mailto:zhouqian@njupt.edu.cn
https://orcid.org/0000-0001-7888-2419
https://orcid.org/0000-0003-2465-8977
https://orcid.org/0000-0001-7740-2401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6234409

EPCT has the ability of protecting data privacy and per-
forming efficiently in transmission overhead.

The main contributions of this article are listed as
follows:

(i) We present a minimized candidate encrypted
dataset determination model, which is the foun-
dation of our proposed scheme. It guides the idea of
query processing and guarantees the correctness of
the protocol.

(ii) We present a novel privacy-preserving and collu-
sion-resisting top-k query processing protocol,
which consists of two phases of secure interactions
between the queried nodes and the sink. We also
analyse the correctness, security, and transmission
overhead of the proposed method.

(iii) We perform evaluations on the transmission
overhead of the proposed protocol and the existing
works. The experimental result shows the advan-
tages of the proposed scheme in transmission
overhead.

The remainder of this article is organized as follows.
Section 2 discusses the related work. Section 3 introduces the
network model, query model, threat model, and the problem
description. Section 4 proposes the minimized candidate
encrypted dataset determination model. Section 5 presents
the top-k query processing protocol and the analysis of this
protocol. Section 6 presents the performance evaluation of
query protocols on communication cost, and Section 7 gives
a conclusion of this article.

2. Related Work

Secure data queries (such as top-k query, range query, and
MAX/MIN query) are critical operations for sensor moni-
toring and data collection in security-sensitive environment.
There are a lot of works [1-24] focusing confidentiality,
integrity, and completeness when performing data queries.

Kui et al. [3] utilize the pairwise-key and order-preserving
symmetric encryption and the together to protect the privacy
of data in top-k queries in two-tiered WSNs. Peng et al. [4]
encoded both sensory data and top-k query commands, and
storage nodes are designed to be able to correctly perform
top-k queries over those encoded data. Li et al. [6] use
pseudorandom hash function with bloom filter and partition
algorithm to protect data privacy and integrity for top-k
queries, respectively. Tsou et al. [7] constructed a layered
authentication tree by an order-preserving symmetric en-
cryption and used it to verify the completeness of query
results. Zhang et al. [12] designed a renormalized arithmetic
coding method such that storage nodes can calculate exact
top-k query results without knowing real values of data, and
they proposed a verification scheme to detect compromised
storage nodes. Peng et al. [13] encoded top-k queries by
threshold-based scheme and proposed a secure protocol that
storage nodes can calculate query results over encrypted
sensory data. Xingpo et al. [14] proposed secure top-k query
protocol with privacy and integrity preservation by deploying

Security and Communication Networks

the secure data preprocessing in sensor nodes. Wu and Wang
[17] bound the collected sensory data with the corresponding
locations to achieve secure top-k query processing on hybrid
sensory data. Liu et al. [18] proposed a verifiable top-k query
protocol on two-tiered mobile sensor network, which adopts
the distinct symmetric data encryption and maps real nodes
into virtual nodes. These methods are designed for two-tiered
WSNs, which adopt resource-rich storage nodes in traditional
multihop WSNs. The different network architecture makes
them not suitable for addressing secure top-k queries in
traditional multihop WSNss.

In traditional multihop WSNs, the earlier studies
[19, 25-29] proposed various top-k query schemes but
without concerning any security issues. Huang et al. [30]
designed a privacy-protection top-k query algorithm using a
filter and a data distribution table. The algorithm adopts
conic section function to protect the privacy of the sensory
data. But, the algorithm is vulnerable when collusion attacks
happen. It is because all sensor nodes share the same secure
keys and functions. If a sensor node colludes with adver-
saries, these secure keys and functions will be disclosed, and
the adversaries could obtain the private data of other in-
nocent sensors. In our previous work [31], we gave the first
solution providing the privacy-protecting and anticollusion
top-k query processing scheme in wireless sensor networks.
It adopts the bloom filter and HMAC when performing
interactions between nodes and the sink to achieve secure
top-k query processing. However, there is some space for
transmission overhead saving because of the redundant data
submission and the false positive of bloom filter. This article
presents an efficient and secure top-k query processing
protocol, which can address the above problems.

Additionally, some previous studies have focused on the
privacy-preserving range queries [8, 11, 32] and MAX/MIN
queries [15, 16] in WSNs. Because the query types are
different, the ideas of these works cannot be applied to
achieve the secure top-k queries in WSNGs.

3. Problem Description

3.1. Network Model. The architecture adopted is shown in
Figure 1. The network routing topology is structured as a
tree, which is following TAG protocol [33]. Assuming that in
our scenario, 7 sensors S = {s, s,, .. ., s,} are deployed and a
sink. Sensor nodes are sensory devices with limited resources
in energy, storage, and computation. They are in charge of
collecting data items from their neighboring areas and then
submitting the collected data to the sink through the tree
route. The sink is a resourceful device, which executes query
commands from users and returns query results to users.
When receiving a query command, the sink cooperates with
those queried sensors in S to process queries according to
predeployed protocols. After the sink obtains the query
result, it returns the result to the upper-level users.

3.2. Top-k Query Model. A top-k query is a data aggregation
operation to get k highest or lowest sensory data from
queried sensors. It is denoted as a triple Query, = (¢, S, k)

Security and Communication Networks

FIGURE 1: A example of tree routing topology.

where t is the queried time slot identity, S is the set of in-
terested sensors, and k is the number of interested data
items. For example, (t,{s;,s,,...,5,},3) is a top-3 query to
obtain the 3 highest or lowest data items during sensors
{s1>85,...,5,} in the time slot t.

Each sensor s; € S is assumed to collect N data items in a
time slot, which is denoted as D, = {di,l, diy..os di’N}, and
each data item collected by a sensor is assumed to have an
unique score. The uniqueness of collected data items can be
achieved by integrating the data collecting time and the
sensor identity into the data item score calculation. It en-
sures the uniqueness and correctness of a top-k query result.

3.3. Threat Model. The honest-but-curious threat model [9]
is adopted in this article. The sink is trustful while sensors
could collude with adversaries to leak out their collected or
forwarded data. But the sensors that has been attacked still
perform the pre-deployed protocols and cooperate with
other innocent (noncompromised) sensors to process query
commands. We have to note that the innocent sensors are
the majority in WSNs; otherwise, the network will be useless.

The goal of the proposed secure top-k query protocol is
described as follows:

(1) A sensor only owns the data collected by itself, and
the data can be shared with the sink. It has no idea of
the data collected by other sensors even when they
are colluding with the adversaries.

(2) Query results can only be obtained by the sink, but
the adversaries have no idea of them even when there
are a few compromised sensors colluding with the
adversaries.

(3) The k data items obtained by the sink are the k
highest or lowest data items collected by the queried
sensors, which means that the query result is correct.

Because sensors have limited energy, the network life-
time is usually determined by the energy consumption of the
sensors. Reference [33] shows that sensors consume most
energy in data transmission. Thus, the transmission over-
head of network is an important metric for performance
evaluation. We will perform the evaluation on this metric in
Section 6.

4. Minimized Candidate Encrypted Dataset
Determination Model

Based on the idea making, the proposed protocol efficient in
transmission overhead. We propose the minimized candi-
date encrypted dataset determination model in this session.

4.1. Minimized Candidate Sensor Set. Let Query, = (t,S, k)
be a query command, and each sensor s; € S collects N data
items in a time slot, the set of collected data of all sensorsin S
is D={d; ls, e SA1<j<N}.

Definition 1. For a top-k query, the query result R, is a
dataset having the k largest data items of D. L(R,) is denoted
as the lower bound of R,, which is the minimum of R,.

Definition 2. For asensors; € S, the in-node-maximum of s;
is the maximum data item.

For example, if the collected data of s; are
D;={d;\d,,,....d;y} and d;; >d;, > - >d, y, then d;,

is the in-node-maximum of s;.

Definition 3. For a top-k query, we define @ is a sensor set
consisting of k sensors whose in-node-maximums are the k
largest in-node-maximums of sensors in S, that is

DCSAID| =kA(Vs; € D5, €S- — d;; >d;,). (1)

Lemma 1. L(R,)>min ({d,,|s; < ®})

Proof. According to Definition 1, L(R,) is the lower bound
of R,, which is the kth largest data of D. Because || =k,
there are k in-node-maximums of sensors of @, that is,
{d;,Is; € ®}| = k. Thus, min (d;, |s; € }) is the kth largest
data of {di,llsi € CD}, where min(*) represents the mini-
mum of a dataset. Because {di,llsi € d)} € D, we have that

L(R,)>min({d;,|s; € ®}) holds. O

Lemma 2. ® is the candidate sensor set of a query, which
means that all data in the query result R, are contributed by
sensors of @, that is,

R, < S}EJ(D D;. (2)

Proof. We give the proof by contradiction. We are
assuming that there is at least one data of R,, which is not
contributed by a sensor of @. It means that
Jx (x € R, Ax € D), where x is collected by s; and s; is not
ind,i.e, sj € S — ®©. We are assuming that x is the Ith largest
data of D. Then, we can deduce two results: 1. 1 <I <k holds
because of x € R, and |R,| = k. 2. According to the definition
of @, for Vy ¢ {di,llsi € (D}, because x is assumed to be
collected by s; € S — @, we have y >d;; > x, whered;, is the
in-node-maximum of s;. Additionally, there are k in-node-
maximums contributed by sensors in ©, ie,
|d;,|s; € ®}| = k. Therefore, we can deduce that I > k holds.

Obviously, there are contradictions between 1 and 2. As a
result, we deduce that Lemma 2 holds.

Lemma 2 It indicates that all sensors in @ are candidate
sensors, which contribute the query result. In addition, ® is
also the minimized candidate sensor set, and we prove it in
Lemma 3. O

Lemma 3. @ is the minimized candidate sensor set that
contribute the query result R,.

Proof. To prove this lemma, we have to prove the following
two observations. O

Observation 1. For where

L(R,)> d]-’h holds.

vd;, € D; Vs; €S-0,

Observation 2. Any sensor deletion from @ could incur the
incompleteness of query result. If and only if the two ob-
servations hold simultaneously, then we can deduce that @ is
the minimized candidate sensor set that contribute the query
result.

Proof to Observation 1. According to Definition 3, for
Vs; € ® and Vs; € S—-®, d;; and d;, are their in-node-
maximums and d;; >d;, holds. Because d;, is the in-node-
maximum of s;, d;; >d;;, holds where d;; € D;. Thus,
d;; >d;), holds. In addition, because s; could be any sensor
of @, we can deduce that min({d,»)llsi € CD}) >d;y. At last,
Lemma 1 indicates that L(R;) zmin({di,1|si € @}); there-
fore, L(R,)>d;; holds, and the first observation is
proved. O

Proof to Observation 2. To prove the second observation, we
just need to prove that, for any sensor of @, its collected data
could belong to the query result R,. If it is true, then deleting
any sensor from @ could cause the incompleteness of R,. We
are assuming that the collected data of sensors of ® satisfy:
Vdi’j(si €EDPA2<j<N) —d;;<min(d,; | s, € ®). Be-
cause || = k, the top-k query result R, is determined and
R, = {dp,l Is, € CD}. It means that the in-node-maximums of
all sensors of @ are just the elements of R,. It is obvious that,
in such circumstance, deleting any sensor from @ will incur
the incompleteness of R,. Therefore, the second observation
is proved.

According to the proofs, the above two observations
both hold. Thus, @ is the minimized candidate sensor set
that contribute the query result. O

4.2. Minimized Candidate Encrypted Dataset. To protect
data privacy, each sensor owns its private key only by itself.
When a query is started, sensors first encrypt the qualified
data by their keys and then submit the encrypted data to
sink. For sensor s;, we are assuming its key is g;, which is
only shared by s; and sink. The encrypted data of d;; is
denoted as (di,j)g;

Security and Communication Networks

Definition 4 (minimized candidate encrypted dataset). For a
top-k query, the minimized candidate encrypted dataset,
denoted as T, is contributed by sensors of ® and consists of
the minimum number of encrypted data that have the
encrypted query result in it.

We are assuming that the candidate sensors are
®={s,s;,...,5 and their in-node-maximums are
{d1,1’d2,1’---’dk,1}s respectively, where d,,>d,; > --- >
dy,. For any sensor s; € ®, its collected data items are

{di1»diss..»d;n}, where d;;>d;,> - >d, . Thus, the
calculation of T is given as follows:
I'= Ir;,

T 3)

where

{(dy) isjsk-ivf N2k-iv1,
T. = (4)

i {(di,j)ngSjSN}, N<k-i+1.

We give an example to describe the minimized candidate
encrypted dataset. As shown in Figure 2, we are assuming
that there are 5 nodes {s},s,, s, 54 S5}, and each sensor has
collected 4 data items. Their in-node-maximums satisfy
dy,,>d,, > - >ds,. For sensor s;, its collected data satisfy
d;,>d;;>d;;>d;,. According to Definition 4, the mini-
mized candidate encrypted datasets when k=3 and k=5 are
shown in the dotted-lined area and solid-lined area,
respectively.

Lemma 4. I is the minimized candidate encrypted dataset
that has the encrypted query result.

Proof. To prove this lemma, the following two observations
need to be proved. O

Observation 3. For any (d,;), ¢ I, which is generated by s;,
L(R,)>d,; holds.

Observation 4. Any encrypted data deletion from I' could
incur the incompleteness of query result. If and only if the
two observations hold simultaneously, then we can deduce
that I is the minimized candidate encrypted dataset that has
the encrypted query result.

Proof of Observation 1. For sensor s;, it has two alternative
cases, which are s; ¢ ® or s; € . We give the proofs in such
two cases:

(i) Case L s; ¢ ®. According to Lemma 3, @ is the
minimized candidate sensor set that contribute the
query result R,. Because s; ¢ @, we have d;; ¢ R,,
where d; ; € D; and then L(R,)>d; ; is deduced.

(ii) Case II: s; € @. Because (di,j)g,- ¢Lk-i+2<j<N
is deduced according to equation (4). In the calcu-
lation of I, d,,>d,,>--->d;;>--->d;, and
diy>diy> - >d; ;> >d;y are the given as-
sumption. Thus, there are at least k» =i + j — 2 data

Security and Communication Networks

I(k=3)q_

(d3,1)g3 : (d4,1)g

4

I'(k=5)«]

FIGURE 2: Minimized candidate encrypted datasets when k =3 and 5.

larger than d;;. According to k—i+2<j<N and
kr =i+ j—2, then we have k<kr<i+N-2. It
means that there are at least k data larger than d, ;

Definition 1 shows that the query result R, has the k
largest data, so the minimum of R, is obv1ously larger
than d; ;, that is, L(R,) > d, ;. The deductions in two
cases both lead to the same result L(R,) >d, ;, and
the first observation is proved. O

Proof of Observation 2. To prove the second observation, we
just need to prove that, for any (d;;), €T, the corre-
sponding plaintext data d; ; could belong t0 R,. If it is true,
then deleting any encrypted data from T could cause the
incompleteness of R,. According to the assumptions of the
calculation of T' that the minimized candidate sensor set is
® = {sy,$,,...,5}, where their in-node-maximums satisfy
dy,>dy, > -+ >d;, and the collected data of any s; € ®
satisfy d;,>d;,>--->d;y, for the data d;; and
C=1{d\,dyy>. iy diydyss . »d; ;4) each data in C
is larger than d;; and |C|=i+j-2. If the following
equation holds, then d;; is the (i + j —2)th largest data.

Vi ((dpg),, €TAdyy £C) —dyy<di (5)

According to the calculation of I' in equations (3) and
(4),wehave j<k —i+ 1, then |C| <k — 1 holds. It means that
d; ; is at least the kth largest data when equation (5) hold. In
such scenario, d; ; always belongs to R,. Therefore, we have
that deleting any encrypted data from I' could cause the
incompleteness of R,. Observation 2 is proved.

According to the above proofs, two observations both
hold. Thus, T' is the minimized candidate encrypted dataset
that has the encrypted query result. Lemma 4 is proved.

Lemma 4 It indicates that I' is the minimized candidate
encrypted dataset that has the encrypted query result. It is a
key to achieve eflicient privacy-preserving query processing
method. O

5. Top-k Query Processing

At first, an efficient privacy-preserving and collusion-
resisting top-k (EPCT) query scheme is introduced here.
Then, the correctness and security analysis, and performance
of the proposed EPCT protocol will be presented.

5.1. Query Processing Protocol. The queried nodes and the
sink are involved as the cooperators in this EPCT protocol.
To perform the protocol, sensors and the sink are firstly

settled with keys in the network deployment. Each sensor is
deployed a private key, and it only shares the key with the
sink. The sink owns keys of all sensors, whereas sensors have
no idea of each other’s keys. The protocol has two phases,
shown in Figure 3. The command is broadcasted to sensors
in S, before the sink receives a top-k query Query, = (¢, S, k)
in the first phase from the user. Once the sensor s; gets
Query,, it transmits the encrypted in-node-maximum in the
queried time slot t to the sink. As the first phase ends, the
second phase begins. In the second phase, the minimized
candidate sensor set is determined according to the maxi-
mum values of the queried sensors. Then, the sink transmits
the second phase data request command to those candidate
sensors. After each candidate sensor submits the qualified
encrypted data, the sink obtains the minimized candidate
encrypted dataset, and then, it will get the final query result
after decryption. The processing of the top-k query Query, is
finished.

The detailed procedures of the query processing protocol
are shown in Protocol 1.

Protocol 1. EPCT protocol is shown as follows:
(1) Phase 1:

(1) As a query Query, = (t,S, k) is running, the first
phase starts to process. Sink broadcasts Query,
through all the networks and initials the dataset
I' = @. Then, it waits till the first phase responses
from the queried nodes in the networks.

(2) For each node s; €S, s; encrypts its in-node-
maximum d; ; by using its private key g;, after s;
gets the Query,. Then, s; generates the encrypted
data (d;;),,, submitting the message as follows to
the sink.

s; — sink: (t,i d(s;), (dl"l)gi> ()

(2) Phase 2:

(1) As the submitted message from a queried sensor
s; € S arrives, (t,i d(s;), (di,l)g,->’ the sink de-
crypts (d;,),, with the shared private key g; and
gets the plaintext in-node-maximum of s;. s;
obtains all the decrypted in-node-maximums of
the nodes in S, {di,llsi € S}, before it determines
the top-k data. If the determined top-k data are
{didoys. . odiy} where dyy>dy, > oo >dy
and the corresponding sensor list according to
the decent sequence of data are
® = {s,,s,,...,5}. According to Lemma 3, @
are the set of minimized candidate sensors. Then,
the sink appends {dl,l’dz,l’ e ,dk’l} into I' and
transmits the following messages to the k-1
candidate nodes in @ — {s;} in unicast mode.

t (k=i),» Vse®d —{seh (D)

(2) For each candidate node s; € @ — {s;}, as the
message (t, (k—i)g) arrives, s; decrypts the
ciphertext and gets the plaintext number k —i.

sink — s;:

Sink S;

Broadcast all sensors

/
Phase 1 Feedback
P

Unicast candidate sensors — 3|

R ——
Feedback

Phase 2 ~|:
.

FiGure 3: EPCT protocol query process.

Then, s; encrypts k —i collected data items and
sends them to the sink, e.g,,

s; — sink: <t,i d(s;), LR;), (8)
where

{(dy),eisk-iv1} Nzk-iv1,

{(d)), l2<i=N}

LR; =

1

N<k-i+]1.

(9)

(3) The sink obtains the message (t,i,LR;) trans-
mitted by the candidate node s; € ® — {s;} in the
second phase, before the ciphertext of the
message is decrypted. The plaintext data after
decryption are denoted as Dec(LR;, g;) and
appended into I'. After all messages submitted
from the candidate nodes are processed, the
minimized candidate encrypted dataset I' is de-
termined, where

I'= SEJ@({di,l} U Dec (LRi»gi)) (10)

(4) The sink gets the top-k data of I', which is the

exact query result R,.

R STA|R|=kA (Vx€R,y€ (T-R)— x>y).
(11)

As presented in Protocol 1, the query command Query,
arrives from the user in the first phase, before the sink
broadcasts it through the whole network. As a queried
sensor knows Query,, it encodes the in-node-maximum
before transmitting the encrypted data to the sink, where the
received ciphertext is decrypted to obtain the in-node-
maximums of the queried sensors in the second phase.
Afterwards, the sink uses the in-node-maximums to de-
termine the candidate sensor set ® —{s.}, and then, it
unicasts each candidate sensor in @ — {s;} to start the second
phase. Once a candidate sensor receives the unicast message,
it submits the rest data in ciphertext according to the request
to the sink. As the sink obtains all the needed data from
candidate nodes, the query result is determined in the end.

5.2. Protocol Analysis

5.21. Correctness Analysis. In the proposed EPCT
protocol, when a user starts a query command Query,, the

Security and Communication Networks

sink will know the minimized candidate encrypted dataset
T after interactions of the sink and sensors within two
phases. I' is consisting of the coded data items of query
result. According to Lemma 4, for any (d;) ¢ T, (d;)
does not belong to the query result R,, deﬁmtely Addl—
tionally, T is the minimized candidate encrypted dataset
that contains the encrypted query result. Any encrypted
data deletion from T could incur the incompleteness of
query result. As I received by the sink, it can get the query
result by obtaining the top-k data from I. Therefore, our
proposed scheme is capable of guaranteeing the correctness
of top-k query result.

5.2.2. Security Analysis. The security analysis is conducted
here for the privacy of the collected data and the query
results. With the cooperation of the sink and the sensors in
EPCT in these two phases, each node is deployed with a
private key, which is only shared with the sink. The collected
data of sensors only exists in data submission from sensors
to the sink. When a top-k query is started, two phases of
query processing are performed. In the first phase, each
sensor performs a symmetric encryption to encrypt its in-
node-maximum and then transmits it to the sink. Secondly,
candidate nodes are unicastly informed by the sink. They
encrypted a fixed number of collected data according to the
request and then sends the enciphered date to the sink node.
Clearly, the data collected and transmitted through the
network are all in the form of ciphertext. Every node in WSN
owns a unique private key, so it can only get access to the
data it collected. However, it fails to know the data collected
by other sensors because of the computational infeasibility of
symmetric encryption. Even a few nodes probably are
attacked and colluded with adversaries, they can only snoop
the collected data of those colluded sensors, but they have no
idea of the collected data of innocent sensors. Besides, due to
the query result is decrypted and computed in the sink and
sensor nodes only process the encrypted data for the query, it
is hard for the attackers to know the plaintext query result
even if a few compromised sensors are colluded with them.
Therefore, this proposed EPCT is a privacy-preserving and
anticollusion top-k query processing protocol, which can
protect the privacy of collected data of sensors even a few
compromised sensors are in collusion with the adversaries,
which can protect the privacy of collected data from ad-
versaries even a few compromised sensors are in collusion
with the adversaries.

5.2.3. Communication Cost Analysis. In WSNS, sensors have
limited energy resource, and the energy are mainly con-
sumed by communication. During the top-k query proce-
dures, the communication cost of the network is mainly
caused by transmission overhead of sensors. The parameters
used in sensor networks are introduced in Table 1.

We are assuming that the transmission overhead of
phase 1 and phase 2 are C, and C,, respectively. According
to the proposed EPCT protocol, all sensors participate in
phase 1, whereas only the candidate sensors participate in
phase 2. Then, we obtain

Security and Communication Networks 7
TaBLE 1: Parameters description. TaBLE 2: Default settings of parameters.
Para Description Parameter n k L 4 I I, I
lig The space size of a sensor ID Value 500 10 4byte 8byte 4byte 16byte
1 The space size of a time-slot
1. The space size of a coded data item
1, The space size of a query command
L The average path length from sensors to the sink 7.0x106
6.0x10°

Cr=n-lg+n-(Ly+l+1)-L

k-1
C,=(k-1)- (lt+lc)~L+Z(lid+lt+i~lc)~L

i=1

S kDb Lr o)) (g eg) - Le T
=(k-1)- (lid+21f+lC)'L+w'lc-L
(12)

The total communication overhead of the whole network
is computed as follows:

Com =Ci+Cy=n-l+(n+k-1)- (Lig+l+1)-L

k-(k—l)_l

> L.

+(k-1)-1,-L+
(13)

6. Performance Evaluation

Based on the improved simulator of [34], we implement
three protocols, EPCT, PCTQ [31], and a naive protocol
(Naive). For Naive scheme, each node queried firstly encodes
its k highest data items and then submits them to the sink.
After the sink gets all the ciphertext from sensors, it decrypts
them to obtain the final query result. The performance is
evaluated by the communication overhead in WSNGs.

This experiment is conducted on a PC with an AMD R5-
3600 (6 cores 12 threads 4.2 Ghz) CPU and 32 GB RAM,
running 64-bit win 10 professional OS and Java JDK 1.8. In
the simulation, we generate 10 networks with random to-
pologies, and each network is distinguished by different
network IDs. In each network, sensors are randomly dis-
tributed in area covering a 200 x 200 m?, and the commu-
nicating radius of a sensor is 6 m. The collected data of
sensors are randomly generated in each time slot. The
network communication cost C,.,; is measured by com-
puting the average result of these 10 networks. The default
settings of other parameters are shown in Table 2.

(1) Ciora versus Network ID. Figure 4 presents that the
transmission overhead of these methods are dis-
tributed uniformly in different networks. Naive has
much higher cost compared with PCTQ and EPCT.
Statistically, the communication overhead of EPCT is
averagely 89.06% and 43.23% lower than that of
Naive and PCTQ, respectively.

-L

Communication Cost (Byte)

5.0x10°
4.0%x10°
3.0x10°

2.0x10°

%
A, 4, .

1 2 3 4 5 6 7 8 9 10

1.0x10°

Network ID
—*— Naive
—— PCTQ
—A— EPCT
FiGURE 4: C,, vs. Network ID.

total

(2) Cioral versus L. Figure 5 shows that the communi-

cation overhead of EPCT, PCTQ, and Naive in-
creases as the space size of an encrypted data item /,
increases. The reason is that the transmission
overhead of three approaches are all in proportion
to the space size of an encrypted data item. The
growth rates of communication overhead in EPCT
and PCTQ are smaller than that in Naive. Statis-
tically, EPCT reduces about 89.14% and 38.32%
transmission overhead than Naive and PCTQ,
respectively.

(3) Cipra Versus n. Figure 6 presents that the commu-

nication overhead of three schemes grows as the
number of sensors 7 increases. The reason is that the
more sensors are queried, the more data are trans-
mitted in the network, i.e., the higher communica-
tion costs. Moreover, the curves in Figure 6 tell that
the growth rate of transmission overhead in Naive is
significantly higher than that in PCTQ and EPCT.
Statistically, EPCT saves about 89.51% and 42.00%
communication overhead than Naive and PCTQ,
respectively.

(4) Cyora versus k. As shown in Figure 7, the trans-

mission overhead of three methods all increases as
the number of requested data items k increases. It is
that when k increases, more data items are requested
in all three protocols. The growth rates of commu-
nication cost in PCTQ and EPCT are both lower
than that in Naive. Specifically, EPCT saves about
93.44% and 44.57% on average than Naive and
PCTQ in communication cost.

Communication Cost (Byte)

Communication Cost (Byte)

2.5%107 1

2.0x107 1

1.5x107 1

1.0x107 1

0.5x107 1

0.0x107 1

1.8x107 1
1.5%x107 1
1.2x107 1
1.0x107 1
0.8x107 1
0.5x107 A
0.2x107 1

0.0x107 1

Security and Communication Networks

7.0x10° 1
6.0x10° 1
5.0x10° 1
4.0x10° 1
3.0x10° 1

2.0x10° 1

Communication Cost (Byte)

e G S S S S S

16 18 20

24 26 28 30 32

Length of Encrypted Data Item (/)

—%— Naive
—— PCTQ
—A— EPCT

FIGURE 5: Cyypy Vs. L.

‘%h::‘ﬁ

500 600 700 800 900 1000 1100 1200 1300 1400
Number of Sensors (1)

—%— Naive
—— PCTQ
—A— EPCT

FIGURE 6: C,, Vs. 1.

s eS— S
5 10 15 20 25 30 35 40
Requested data items (k)
—%— Naive
—— PCTQ
—&— EPCT

FIGURE 7: Cyoyy Vs. K.

According to the results of Figures 4-7, the transmission
overhead of EPCT is the lowest in three protocols, whereas
the overhead of Naive is much higher than the others.
Because in EPCT and PCTQ, transmission only caused by
candidate sensors need to, whereas in Naive scheme, all
sensors are participated in transmission. Specifically, there
are k- (k +1)/2, at least k%, and n - k encrypted data items
are submitted from sensors to the sink in EPCT, PCTQ, and
Naive, respectively. As a result, according to the above
evaluations, compared with the PCTQ and Naive protocol, it
has been shown that the proposed EPCT has less network
communication cost and more efficient.

7. Conclusion

Data privacy threat arises during providing top-k query
processing in the wireless sensor networks. To address this
issue, we proposed a novel and efficient top-k query pro-
cessing approach, which is capable of privacy protection and
anticollusion. We fist present a minimized candidate
encrypted dataset determination model, which is the foun-
dation of the protocol. The model guides the idea of query
processing and guarantees the correctness of the protocol. The
symmetric encryption with different private keys in each node
is employed for data privacy and even to prevent the attackers
from colluding with a few nodes. Based on the above model
and security setting, two phases of secure interactions be-
tween queried nodes and the sink are designed to implement
the query processing protocol. The security analysis shows
that our scheme is capable of providing privacy-protecting
and collusion-resisting top-k queries, whereas the experi-
mental result indicates that our approach is efficient by
evaluating the network communication.

Data Availability

The data generated randomly in WSN and used to support
the findings of this study are available from the corre-
sponding author upon request.

Security and Communication Networks

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was sponsored by the Natural Science Foun-
dation of China (Grant nos. 61902199, 61872197,
61972209, and 61872193), the Postdoctoral Science
Foundation of China (Grant no. 2019M651919), and the
Natural Research Foundation of Nanjing University of
Posts and Telecommunications (Grant nos. NY219142
and NY217119).

References

[1] Z. H. Liang Liu and L. Wang, “Energy-efficient and privacy-
preserving spatial range aggregation query processing in
wireless sensor networks,” International Journal of Distributed
Sensor Networks, vol. 15, 2019.

[2] P.Li, Y. Liu, X. Gao, H. Li, and P. Gong, “Energy-efficient time
and energy resource allocation in non-selfish symbiotic
cognitive relaying sensor network with privacy preserving for
smart city,” EURASIP Journal on Wireless Communications
and Networking, vol. 2021, pp. 1687-1499, 2021.

[3] X. Kui, J. Feng, X. Zhou et al., “Securing top-k query pro-
cessing in two-tiered sensor networks,” Connection Science,
vol. 33, no. 1, pp. 62-80, 2021.

[4] H. Peng, X. Zhang, H. Chen, Y. Wu, Y. Wu, and J. Zeng,
“Enable privacy preservation and result verification for top-k
query in two-tiered sensor networks,” IEEE Trustcom/Big-
DataSE/ISPA, vol. 1, pp. 555-562, 2015.

[5] X. Liao and J. Li, “Privacy-preserving and secure top-k query
in two-tier wireless sensor network,” in Proceedings of the
2012 IEEE Global Communications Conference (GLOBE-
COM), pp. 335-341, Anaheim, CA, USA, December 2012.

[6] R. Li, A. X. Liu, S. Xiao, H. Xu, B. Bruhadeshwar, and
A. L. Wang, “Privacy and integrity preserving top- k query
processing for two-tiered sensor networks,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2334-2346,
2017.

[7]1 Y. T. Tsou, Y. L. Hu, Y. Huang, and S. Y. Kuo, “PCTopk:
privacy-and correctness-preserving functional top-k query on
un-trusted data storage in two-tiered sensor networks,” in
Proceedings of the 2014 IEEE 33rd International Symposium on
Reliable Distributed Systems, pp. 191-200, Nara, Japan, Oc-
tober 2014.

[8] H. Dai, Q. Ye, X. Yi, R. He, G. Yang, and J. Pan, “VP2RQ:
efficient verifiable privacy-preserving range query processing
in two-tiered wireless sensor networks,” International Journal
of Distributed Sensor Networks, vol. 12, 2016.

[9] L. Dong, X. Chen, J. Zhu, H. Chen, K. Wang, and C. Li, “A
secure collusion-aware and probability-aware range query
processing in tiered sensor networks,” in Proceedings of the
2015 IEEE 34th Symposium on Reliable Distributed Systems
(SRDS), pp. 110-119, Montreal, Canada, October 2015.

[10] Y.-T. Tsou, C.-S. Lu, and S.-Y. Kuo, “SER: secure and efficient
retrieval for anonymous range query in wireless sensor net-
works,” Computer Communications, vol. 108, pp. 1-16, 2017.

[11] J. Zeng, L. Dong, Y. Wu, H. Chen, C. Li, and S. Wang,
“Privacy-preserving and multi-dimensional range query in
two-tiered wireless sensor networks,” in Proceedings of the

GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, pp. 1-7, Singapore, December 2017.

[12] X. Zhang, H. Peng, L. Dong, H. Chen, and H. Sun, “SET:
secure and efficient top-k query in two-tiered wireless sensor
networks,” in Proceedings of the Asia-Pacific Web (APWeb)
and Web-Age Information Management (WAIM) Joint Con-
ference on Web and Big Data, pp. 495-510, Beijing, China,
August 2017.

[13] H. Peng, B. Liu, J. Liu, D. Li, and L. Yun, “Dp2T: preserving
data privacy for top-K query in wireless sensor networks,” in
Proceedings of the 2018 IEEE 9th International Conference on
Software Engineering and Service Science (ICSESS), pp. 885-
888, Beijing, China, November 2018.

[14] M. Xingpo, L. Junbin, M. Wenpeng, L. Yin, L. Ran, and
K. Xiaoyan, “A secure top-k query processing protocol for
two-tiered wireless sensor networks,” Journal of Computer
Research and Development, vol. 55, p. 2490, 2018.

[15] H. Dai, M. Wang, X. Yi, G. Yang, and J. Bao, “Secure max/min
queries in two-tiered wireless sensor networks,” IEEE Access,
vol. 5, pp. 14478-14489, 2017.

[16] H. Dai, T. Wei, Y. Huang, J. Xu, and G. Yang, “Random secure
comparator selection based privacy-preserving MAX/MIN
query processing in two-tiered sensor networks,” Journal of
Sensors, vol. 2016, Article ID 6301404, 13 pages, 2016.

[17] H. Wu and L. Wang, “Efficient and secure top-k query
processing on hybrid sensed data,” Mobile Information Sys-
tems, vol. 2016, Article ID 1685054, 10 pages, 2016.

[18] F. Liu, X. Ma, J. Liang, and M. Lin, “Verifiable top-k query
processing in tiered mobile sensor networks,” International
Journal of Distributed Sensor Networks, vol. 11, pp. 437678-
437678, 2015.

[19] J. Tang and Z. Zhou, “A priority-aware multidimensional top-
k query processing in wireless sensor networks,” Procedia
Computer Science, vol. 129, pp. 149-158, 2018.

[20] J. Shiraishi, H. Yomo, and K. Huang, “Content-based wake-up
for top-k query in wireless sensor networks,” IEEE Trans-
actions on Green Communications and Networking, vol. 5,
no. 1, pp. 362-377, 2021.

[21] A. F. Baig and S. S. Eskeland, “Privacy, and usability in
continuous authentication: a survey,” Sensors, vol. 21, 2021.

[22] Q. Xie, K. Li, X. Tan, L. Han, and W. T. Bin Hu, “A secure and
privacy-preserving authentication protocol for wireless sensor
networks in smart city,” EURASIP Journal on Wireless
Communications and Networking, vol. 12, 2021.

[23] K. A. Shah and D. Jinwala, “Privacy preserving secure ex-
pansive aggregation with malicious node identification in
linear wireless sensor networks,” Frontiers of Computer Sci-
ence, vol. 15, 2021.

[24] S. Hu, L. Liu, L. Fang, F. Zhou, and R. Ye, “A novel energy-
efficient and privacy-preserving data aggregation for WSNs,”
IEEE Access, vol. 8, pp. 802-813, 2020.

[25] J. Zheng, B. Song, Y. Wang, and H. Wang, “Adaptive filter
updating for energy-efficient top-k queries in wireless sensor
networks using Gaussian process regression,” International
Journal of Distributed Sensor Networks, vol. 11, 2015.

[26] G.Li, X. Gao, M. Liao, and B. Han, “An iterative algorithm to
process the top-k query for the wireless sensor networks,”
International Journal of Embedded Systems, vol. 7, no. 1,
pp. 26-33, 2015.

[27] Z.Chen, M. He, W. Liang, and K. Chen, “Trust-aware and low
energy consumption security topology protocol of wireless
sensor network,” Journal of Sensors, 2015.

[28] J. Tang, Z. Wang, Y. Sun, C. Du, and Z. Zhou, “Top-k queries
in wireless sensor networks leveraging hierarchical grid

10

index,” in Proceedings of the 2014 Eighth International Con-
ference on Innovative Mobile and Internet Services in Ubig-
uitous Computing, pp. 381-386, Birmingham, United
Kingdom, July 2014.

[29] C.Zhu,L.T.Yang, L. Shu, V. C. Leung, T. Hara, and S. Nishio,
“Insights of top-k query in duty-cycled wireless sensor net-
works,” IEEE Transactions on Industrial Electronics, vol. 62,
pp. 1317-1328, 2014.

[30] H. Haiping, F. Juan, W. Ruchuan, and Q. XiaoLin, “An exact
top-k query algorithm with privacy protection in wireless
sensor networks,” International Journal of Distributed Sensor
Networks, vol. 10, 2014.

[31] J. Zhou, H. Dai, J. Zhu, R. Qi, G. Yang, and J. Xu, “A privacy-
preserving and collusion-resisting top-K query processing in
WSNs,” in Proceedings of the 2020 16th International Con-
ference on Mobility, Sensing and Networking (MSN),
pp. 677-682, IEEE, Yokyo, Japan, December 2020.

[32] L. Wang, M. Zhao, J. Chen et al., “A novel privacy-and in-
tegrity-preserving approach for multidimensional data range
queries in two-tiered wireless sensor networks,” International
Journal of Distributed Sensor Networks, vol. 15, 2019.

[33] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
ACM SIGOPS - Operating Systems Review, vol. 36, no. SI,
pp. 131-146, 2002.

[34] A. Coman, M. A. Nascimento, and J. Sander, “A framework
for spatio-temporal query processing over wireless sensor
networks,” in Proceedings of the Ist International Workshop
on Data Management for Sensor Networks: in conjunction with
VLDB 2004, pp. 104-110, Toronto, Canada, August 2004.

Security and Communication Networks

Hindawi

Security and Communication Networks
Volume 2021, Article ID 9430132, 10 pages
https://doi.org/10.1155/2021/9430132

Research Article

WILEY

Hindawi

BCEAD: A Blockchain-Empowered Ensemble Anomaly
Detection for Wireless Sensor Network via Isolation Forest

Xiong Yang 12 Yuling Chen ,! Xiaobin Qian ,} Tao Li®,! and Xiao Lv()*

IState Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
2Guangxi Key Laboratory of Cryptography and Information Security, Guilin, China

*Guizhou CoVision Science & Technology Co., Ltd., Guiyang, China

*Guizhou Shuanhui Big Data Industry Development Co., Ltd., Guiyang, China

Correspondence should be addressed to Yuling Chen; ylchen3@gzu.edu.cn

Received 27 September 2021; Revised 18 October 2021; Accepted 27 October 2021; Published 10 November 2021

Academic Editor: Weizhi Meng

Copyright © 2021 Xiong Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The distributed deployment of wireless sensor networks (WSNs) makes the network more convenient, but it also causes more
hidden security hazards that are difficult to be solved. For example, the unprotected deployment of sensors makes distributed
anomaly detection systems for WSNs more vulnerable to internal attacks, and the limited computing resources of WSNs hinder
the construction of a trusted environment. In recent years, the widely observed blockchain technology has shown the potential to
strengthen the security of the Internet of Things. Therefore, we propose a blockchain-based ensemble anomaly detection
(BCEAD), which stores the model of a typical anomaly detection algorithm (isolated forest) in the blockchain for distributed
anomaly detection in WSNs. By constructing a suitable block structure and consensus mechanism, the global model for detection
can iteratively update to enhance detection performance. Moreover, the blockchain guarantees the trust environment of the
network, making the detection algorithm resistant to internal attacks. Finally, compared with similar schemes, in terms of

performance, cost, etc., the results prove that BCEAD performs better.

1. Introduction

In recent years, the booming Internet of Things is revolu-
tionizing the world. As its supporting technology, wireless
sensor networks have also received extensive attention [1, 2].
WSNs are a multihop self-organizing network formed by
many sensor nodes deployed in the monitoring area to
communicate. It gets rid of the limitation of the cable, re-
alizes the wireless communication of the network, and has a
wide range of application scenarios. However, due to the
backwardness of WSNs security technology, various security
issues limit the practical application of WSNs [3, 4].
Various security technologies and strategies have
emerged for protecting network security. Intrusion detec-
tion is a classic network security technology [5]. Early in-
trusion detection systems (IDS) mostly utilize misuse
detection. Misuse detection record the attacks by a signature
database, then judge an intrusion with the events or data

matching the signatures. However, misuse detection is not
practical enough because it cannot detect unrecorded at-
tacks. Nowadays, anomaly detection has been more widely
used [6] with the development of machine learning.
Anomaly detection comes from the statistical community
[7]. It establishes a standard model and judges the events or
data that do not match with the model as an intrusion.
Although anomaly detection requires some model training
time and produces a higher false alarm rate, it can detect new
unknown intrusions. The performance of anomaly detection
will continue to increase and make outstanding contribu-
tions to protecting network security with the optimization of
modeling algorithms in anomaly detection.

The structure of intrusion detection systems has become
richer for stronger practicability and applicability. For example,
the proposal of distributed intrusion detection systems (DIDSs)
eases the pressure of detecting heterogeneous networks. The
DIDS is similar to ensemble learning [8], and the system builds

mailto:ylchen3@gzu.edu.cn
https://orcid.org/0000-0002-0675-4538
https://orcid.org/0000-0002-8674-8356
https://orcid.org/0000-0003-2122-4620
https://orcid.org/0000-0002-1448-3619
https://orcid.org/0000-0002-2274-6212
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9430132

multiple detection models in a large-scale network. Therefore,
the DIDS not only balances network energy consumption but
also improves detection performance. However, distributed
anomaly detection must ensure trust between nodes to prevent
internal attacks. It is the prerequisite for its further application.

In recent years, the emergence of blockchain tech-
nology has pointed out a path worth trying to solve the
distributed trust problem in the Internet of Things envi-
ronment. Blockchain is a peer-to-peer distributed network
with features such as non-tempera, decentralization,
transparency, and system autonomy [9], which can effec-
tively enhance device security and network collaboration in
the Internet of Things. Nowadays, some distributed in-
trusion detection based on blockchain has been proposed
[10]. The system packs the detection results or alarms into
blocks and shares them in the network to manage trust
among domains. However, due to the limitation of the data
shared by the blockchain, the above scheme still has its
limitations.

Therefore, we propose a blockchain-based ensemble
anomaly detection scheme. The scheme stores the model of a
typical anomaly detection algorithm (isolated forest) in the
blockchain network and performs distributed anomaly
detection in the WSNs. By constructing a suitable block
structure and consensus mechanism, the global model for
detection can be iteratively updated to enhance the detection
performance. Moreover, the blockchain guarantees the trust
environment of the network, making the detection algo-
rithm resistant to internal attacks. Finally, compared with
similar schemes in terms of performance, cost, security, etc.,
the results prove that BCEAD performs better.

1.1. Contributions.

(1) We propose an ensemble anomaly detection network
structure for WSN. The structure has three levels,
and high-performance nodes in the sink layers bear
most of the storage and computing overhead re-
quired by the solution. Multiple sink nodes will
independently detect anomalies in the local net-
work based on the global anomaly detection model
and optimize the model by submitting some pa-
rameters. This network structure is suitable for
resource-constrained and heterogeneous WSNs
and can be equipped with multiple types of
anomaly detection algorithms to ensure network
security.

(2) We design an anomaly detection model stored and
updated by the blockchain. The detection node filters
a batch of isolated trees stored in the blockchain to
form an isolated forest for detection. In addition,
new isolated trees are continuously generated and
published to the blockchain, so that the isolated
forest model, which is utilized to detect, is constantly
updated. In this scheme, the detection model keeps
dynamically updated with the environment, which
enhances the detection performance while main-
taining security.

Security and Communication Networks

2. Related Works

2.1. Anomaly Detection Structure. Intrusion detection is an
important part of network security protection, and it is a
network security technology that actively protects its net-
work and system from illegal attacks. An intrusion detection
system [11] usually consists of data collectors, data ana-
lyzers, alarm modules, and other parts. Traditional intrusion
detection systems begin to feel weak with the expansion of
the network scale and the complexity of information.
Therefore, distributed intrusion detection systems and
collaborative intrusion detection systems have been pro-
posed. They not only analyze system logs but also analyze
network traffic and introduce a distributed data collection
mechanism into the structure. Subsequently, the anomaly
detection structure for network attacks has gradually
changed from local and centralized to a distributed struc-
ture. Specifically, the new detection system also deploys
multiple data analyzers. Data analyzers in each network
domain can communicate with each other and share de-
tection models and strategies.

Distributed or collaborative anomaly detection has
better detection performance for large-scale heterogeneous
networks. However, the distributed anomaly detection has
to consider the issue of trust among nodes. For example, the
system may crash if a detection node in the detection system
falsely sends alarms or maliciously updates the global de-
tection model. Therefore, it is vital to build a trusted en-
vironment that can prevent nodes from internal attacks. In
addition, distributed detection faces privacy issues. During
the detection process, a large amount of data is collected and
uploaded by the agent, which exposes the system to hidden
dangers and threats of data leakage.

2.2. Anomaly Detection Method. Anomaly detection is the
identification of events or observations that do not match the
expected pattern. In different scenarios, anomalies are also
called outliers, noises, deviations, etc. Isolation forest is a
type of typical anomaly detection algorithm [12, 13], which
distinguishes abnormal data with “few” and “different”
characteristics. Compared with other classic classification
methods, isolated forests consume fewer computing re-
sources and can still maintain good performance when
processing large amounts of high-dimensional data.

The isolated forest algorithm continuously divides the
data by isolated trees, calculates the isolation score according
to the height of the data point in the tree, and judges the
anomaly according to the average isolated score. Suppose T
is a node of an isolated tree, then T may be a leaf node, or an
intermediate node with a decision threshold 8 and two child
nodes (T),T,). Assuming a dataset X = {x|,..,x,}, each
data x is a d-dimensional vector. By continuously selecting
attributes g € d randomly and the decision threshold 8 € g
to continuously classify X'cX, an isolated tree can be
established. The isolated forest classifies the data by con-
structing a large number of random isolated trees. In
general, data points classified into leaf nodes earlier may be
more suitable for the definition of anomalies. Therefore, the

Security and Communication Networks

isolation forest can quantify the degree of the anomaly of the
data by the average tree length path of the data points.

Specifically, given a sample set with ¢ instances, the
average path length of each isolated tree is c,

(2(p—-1

-1 -207D g

C((P):< 1 (P:Z > 1)
| 0 otherwise

where H (i) is the harmonic number, which can be estimated
with In (i) + 0.5772156649 (Eulerian constant). c(¢) is the
average h(x) for a given ¢. The anomaly score s of instance x
is defined as

s(x,¢) = 2—(E(h(x))/c(q))), (2)
where E (h(x)) is the average value of h(x) in an isolated
tree, which is the average height of the tree. From the results,
the score of a sample close to 1 is judged to be abnormal; the
score close to 0 is judged to be safe; and if the scores of all
samples are 0.5, it means that the sample set has no obvious
abnormality. However, the isolation forest algorithm also
has shortcomings. Because it belongs to unsupervised
learning, the algorithm is more dependent on the quality of
the training set. In practical applications, it is necessary to
ensure the real-time performance of the training set and
continuously train and change the detection model to adapt
to environmental changes and ensure detection
performance.

2.3. Anomaly Detection and Blockchain. Blockchain is a new
decentralized infrastructure and distributed computing
paradigm that has gradually emerged with the increasing
popularity of digital cryptocurrencies such as Bitcoin. At
present, it has been highly valued and widely concerned by
government departments, financial institutions, technology
companies, and capital markets [14]. Blockchain is often
understood as a data structure [15]. The block stores the data
composed of Merkle tree and forms a chain through hash
pointers, thereby ensuring that the data are difficult to be
changed. In addition, the blockchain uses pure mathematical
methods to establish trust relationships among distributed
nodes to form a decentralized trusted distributed system,
which has the characteristics of decentralization, network
robustness, security, and credibility. In addition, the
blockchain uses pure mathematical methods to establish
trust relationships among distributed nodes to form a
decentralized trusted distributed system, which has the
characteristics of decentralization, network robustness, se-
curity, and credibility.

Therefore, the blockchain enables mutual trust between
different participants [16] in the Internet of Things envi-
ronment, which greatly reduces the cost of reshaping or
maintaining trust for each node. For the trust problem of
distributed detection, blockchain is also a kind of solution
worth trying. Some schemes, which combine intrusion

detection with blockchain to ensure trusted data sharing in
distributed intrusion detection, have been proposed
[10, 17, 18]. They store different data, such as detection
characteristics, detection alarms, and detection results in the
blocks, and publish to the blockchain network to share.
Subsequently, a type of anomaly detection framework driven
by blockchain on edge intelligence appeared [19]. The
framework stores the data features to be analyzed on the
blockchain, then the cloud-based detection model reads the
data features on the blockchain for anomaly detection and
feeds back the detection results. In addition, the framework
transfers the overhead pressure for detection to the dis-
tributed edge network, which is more suitable for the system
structure of the IoT. Therefore, the advantages of low de-
tection delay and global model update brought by distrib-
uted detection could be supported by the blockchain.
Recently, a scheme for detecting abnormal behavior in social
networks [20] has been proposed, which combines isolation
forest and blockchain technology. The authors claim that the
blockchain can protect the privacy leakage problem in the
anomaly detection process. They execute the isolated forest
algorithm to detect data anomalies by the smart contracts,
then marked and stored the abnormal data on a separate
blockchain.

All the above detection schemes utilize the advantages of
blockchain to solve a certain degree of security or privacy
issues, but each has certain limitations. Specifically, they all
store detection-related data on the blockchain. Although
each solution has made optimizations to reduce the storage
overhead, for example, the blockchain only stores the
characteristic value or the hash value of the detection data.
However, as the detection cycle lengthens, the blockchain
will still face a storage bottleneck, resulting in much loss of
detection performance. Therefore, we propose the BCEAD,
which is different from the traditional scheme, to solve the
storage problem and enhance the detection performance by
storing the detection model.

3. A Blockchain-Based Ensemble
Anomaly Detection

As shown in Figure 1, there is the multilayer network
structure in BCEAD, which consists of the sensing layer, the
sink layer, and the blockchain layer. The roles and functions
of each layer are explained as follows:

Sensing Layer. The sensing layer contains a large
number of low-cost, low-energy, and low-performance
sensor nodes. The sensor node collects physical in-
formation from the external environment in real-time
and converges it to the sink node. The collected data
will be processed and used to generate the corre-
sponding feature matrix for subsequent anomaly
detection.

Sink Layer. The sink layer converges the environmental
information collected by the sensors and submits it to
the base station. Compared with sensor nodes, sink
nodes have better computing and storage capabilities.
Therefore, the sink node is responsible for most of the

Security and Communication Networks

Sensor Layer | o Download I
! l > /{I' | iltl(v»rest : |
Feature Matrix Formatted | %%%% | I | L I
120103121212 |7 | data I T I | — o
201211211013 Detection I | K Generate iForest |
120103121212 I I I $0:09 by iForest | I L__1| byswipewindow _l I
201211211013 | |:@ :I |i— ————————— Il
Raw I I : Generate ?‘ : : I : B/D‘\\D%. : I
I I | iTree 2 | | |
- | (I R ety |
o\ @
[07 . e \ | M 1 - \ ' Upload Update
\ \ ! L ‘an??e' A iTree Consensus
] Lo’ - 4 authentication |
[

FiGure 1: The framework of the BCEAD.

work of BCEAD. In detection, the sink nodes select a
batch of the latest isolated trees from the blockchain by
the sliding window algorithm. Then, an isolation forest
is constructed to detect anomalies for the data sub-
mitted by the sensor layer. After detection, the sink
node will contribute a new isolated tree to help opti-
mize the global model. Finally, the sink node will re-
spond according to the detection result.

Blockchain Layer. The blockchain layer is mainly re-
sponsible for maintaining a safe, usable, and constantly
updated global detection model in a distributed net-
work. The sink nodes keep verifying each released block
according to the consensus mechanism to ensure that
each update for blockchain is benign. The isolated
forest, which is a global detection model, will be re-
dundantly stored on the blockchain. Finally, the sliding

windows mechanism will screen out suitable blocks to
form the isolation forest model for anomaly detection.

3.1. Isolation Blocks. In the detection, the sink node located
in the sink layer utilizes the detection model stored in the
blockchain layer to detect the data of the local sensor layer.
The detection model (isolation forest) is composed of several
isolated trees, so a single block in the blockchain is an
isolated block containing an isolated tree. Then, the isolated
blocks continue to increase, and the blockchain is period-
ically updated. Therefore, the detection model keeps iterative
dynamically.

In BCEAD, the block format includes timeStamp, block
ID, the hash value of current and previous blocks, node ID,
and isolated tree,

Block = [timeStamp||blockchainl D||hashPre|hashCur|NID||iTree]. (3)

An isolated tree contains several nodes, each node
contains the decision threshold 8 and the left node T, and the
right node T,. The data evaluated by the tree will help the
isolated tree to form its structure,

iTree = [iTreeleftIIﬁIIiTree”-ght]. (4)

As shown in Figure 2, the isolation tree iTree is the
parameters submitted for each update of the global model. It
is also the main content of the block released by the node
after each round of consensus. This is the difference between
BCEAD and previous solutions: BCEAD does not stores the
detect-related data on the blockchain but instead stores the
detection model. It avoids data privacy issues and reduces
storage and communication overhead. However, the update

of the global model can also be consensus because the global
nodes can verify whether an isolation tree is appropriate.

3.2.Sliding Window. The number of samples (isolated trees)
used by the isolation forest will affect the detection per-
formance of the model. The optimal value of the number of
samples has been verified as ¢ = 250. BCEAD stores the
detection model on the blockchain network, and the number
of isolated blocks included in the blockchain keeps in-
creasing. Therefore, the detection scheme has to filter the
appropriate number of isolated blocks.

As shown in Figure 3, BCEAD sets up a sliding window
algorithm to screen isolated trees for the detection model.
The sliding window is essentially a fixed-size list, including a

Security and Communication Networks

iTree B iTree
left right

Bi<B B,>p
iTree B iTree iTree B iTree
left ! right left ! right

7

N

FiGure 2: The structure of the isolated tree.

L |

[l Confirmed block L ; Old window
. Unconfirmed block
. New block

l ; New window
FiGure 3: The sliding window for isolation forest.

series of block indexes. With the addition of new blocks, the
total length of the blockchain will gradually increase, but the
swiping window always traces back from the latest block and
includes ¢ blocks. The update of the swiping window after
each round of consensus in the blockchain network, each
sink node will get a new slide window when synchronizing
the latest blockchain.

Therefore, after detection, the sink node submits an
isolated tree trained by the current data. The isolated tree will
be packaged into blocks and released to the blockchain
network. The isolated tree will be packaged into blocks and
released to the blockchain network, and the model generated
by each subsequent detection may utilize the isolated tree.
This setting ensures the real-time update of the global de-
tection model. Moreover, the training set used to generate
the model is the current real-time detection data, which
ensures the performance of the detection algorithm.

3.3. Block Forest. In the blockchain network, all nodes store
a public ledger locally. During the continuous update of the
ledger data, all nodes always communicate to reach con-
sensus and ensure consistency. In BCEAD, the blockchain
network uses IOTA (tangle) consensus. Compared with the
traditional blockchain, the block in tangle is a single
transaction. Each new transaction will verify and quote the
previous two, so the network does not need to reach a
consensus immediately [21]. Therefore, the network does
not require miners, which avoids mining attacks such as in

[22, 23]. Users can complete transaction verification by
themselves, and the cost of the transaction is only the
computational cost of verifying the other two transactions
[24]. Therefore, the tangle blockchain can achieve mutual
trust between nodes in distributed detection systems. It can
both ensure security and considerable performance.

All sink nodes in BCEAD act as participants in the
tangle, using isolated trees instead of blockchain transac-
tions, and each block packs an isolated tree separately. In the
block releasing, the new isolated tree will be packed into a
specified structure block, and quote after the previous two
verified blocks on the chain. The specific process is as
follows:

(1) Verify Block. The sink node visits the tips list
(maintains unconfirmed blocks in the network) and
randomly selects blocks for verification. The verifi-
cation will review the format of the block, the node
ID of the publishing block, and its reference block.
When a block is verified, the sink node puts it into
the list, which contains references, and ends the
verification work when the list has 2 elements.

(2) Release Block. The sink node refers to two blocks in
the list, attaches the block ID, its ID, encrypts the
block content with its private key, and calculates the
hash value of the current block, then broadcasts the
block to the blockchain network. Other nodes in the
network will review the format and source of the new
block, add it to the end of the tangle, and update tips.
After several rounds of blockchain updates, subse-
quent references to a block will prove its credibility.

The application of a blockchain network for trusted
communication among nodes can resist internal attacks
because the blockchain network always verifies every mes-
sage, even it comes from the trusted nodes. Therefore, at-
tackers can only deplete the performance of the global
detection model by publishing extreme or malicious isolated
trees. Therefore, in the blockchain consensus, the verifica-
tion includes querying the ID of the promulgator, and the
purpose is to prohibit a node from frequently publishing the
block. The experimental part in Section 4 proves that a single
node publishing block has to set two rounds of consensus
cycle cooling time, which can effectively prevent malicious
nodes from destroying the model and ensure the benign
performance of the detection model.

3.4. Algorithm Description. This paper proposes an isolation
forest-based anomaly detection algorithm based on block-
chain. The algorithm stores the isolation forest in the
blockchain, and each detection will build a model based on
the blockchain to detect the network data. The details are
shown in Algorithm 1.

In this algorithm, first initialize the sink node SN (line 2).
The sensor node runs snif ferPackets to capture the ex-
ternal environment information and obtain the unprocessed
sensor information Raw,ata (line 3). Through the feature
extraction function featureExtractor, the feature matrix
FM is obtained after processing the sensor data (line 4-6).

Security and Communication Networks

input: log files and data packets of the networks
output: response the detection and update the detection model

(1) begin:
(2) SN « this;

(6) add(FM,bvector)
(7) end

(10) if state ==TFalse then
(11) Response();

(12) end
(13) updateBlockchain();
(14) end

(3) Raw_data < snifferPackets();
(4) for all elements of Raw_data do
(5) vector = featureExtractor(elements);

(8) iForest = slideWindow(blockChain);
(9) state = detection(FM, iForest);

ALGORITHM 1: B-iForest.

The sink node uses the algorithm sli de Win do w to filter
out suitable blocks from the blockChain to form an isolation
forest iForest (line 8). Then, the sink node detects the feature
matrix FM according the iForest and returns the detection
result state (line 9). When the system detects an abnormality,
that is, state = False, use Response to respond (line 10-11).
Finally, the blockchain will be updated according to the
update algorithm up da teBlcokchain, which is detailed in
Algorithm 2 as follows:

In Algorithm 2, first initialize the number of samples of
the detection algorithm, that is, the number of isolated trees
¢ (line 2). The algorithm MCMC filters out the latest and
quotable block list tips in the chain (line 4). According to the
selection algorithm Select, the block to be quoted is selected
from the list of references (line 6) and is verified (line 7), and
the index of the verified block in the List (line 8) is recorded
until the number of List’s elements reaches two (line 5). The
isolated tree iTree to be submitted into blocks is packed and
the two previous blocks that have been verified (line 11) is
quoted. Finally, the packaged block to the entire network is
broadcasted and the blockchain is updated (line 12).

4. Experiment

4.1. Data Processing. We implement related experiments of
the proposed scheme through Python3.8. The isolation forest
algorithm comes from the machine learning package Scikit-
learn by Python. All experiments are executed on an x64
Windows10 personal computer using an Intel(R) Core (TM)
i5-8500 CPU 3.00 GHz processor. We choose kddcup.da-
ta_l0percent.gz in the popular KDD CUP’99 dataset in IDS
research, that is, 10% of the dataset sampling. We select four
typical attack samples with different attributes,
Buf fer,ver flow, po d, guess,assws, and nmap, remove
the data labels, and mix them with normal samples to
generate raw data for simulation. In the simulation process,
samples are continuously sampled from the raw data to
BCEAD for detection. The changes in the environment are
simulated by controlling the abnormal proportions in the
samples.

In this section, we conduct evaluation experiments
through the following indicators:

Table 1 is the confusion matrix, where TP indicates that
the real sample is positive and the prediction is also positive.
FP indicates that the real sample is negative, but the pre-
diction is positive. FN indicates that the real sample is
positive, but the prediction is negative. TN means that the
real sample is negative and the prediction is also negative.
Some evaluation indicators, such as accuracy rate, precision
rate, recall rate, and F1 value, can be obtained by the
confusion matrix.

4.1.1. Accuracy. The ratio of the number of correctly clas-
sified samples to the total number of samples.

TP+TN

A = . 5
CUraCY = TPy FP+TN + FN 5

4.1.2. Precision. The probability that a sample predicted to
be positive is indeed a positive sample.

TP

- 6
TP+ FP ()

Precision =

4.1.3. Recall Rate. The probability of being correctly pre-
dicted as a positive sample among all positive samples is

TP)

Recall = ——+
= TP EN

4.1.4. F1 Value. An indicator of comprehensive precision
rate and recall rate is

2 x Recall x Precision
F1_score = I (8)
Recall + Precision

Security and Communication Networks

(1) begin:
(2) ¢« this;

slideWindow
(4) tips < MCMC();

(13) end

input: the iTree given by last detection
output: the newest detection model given by the blockchain

(3) //estimatorSize, the size of

(5) while length(List)< 2 do
(6) preBlock = Select(tips)
(7) if Verif y(preBlock) == True then

(8) add (List, preBlock)
9) end
(10) end

(11) curBlock = publish (List, iTree)
(12) blockchain = Brodcast (curBlock)

ALGorIiTHM 2: Update Blockchain.

TaBLE 1: Confusion matrix.

Label Positive Negative
Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

4.2. Detection Performance. Jia et al. [25] proposed the
connection between model generalization error and indi-
vidual learners in ensemble learning. The upper limit of the
generalization error is

- 2
PE§¥. ©)

Here, p is the average value of all relevancies between
every two classifiers, and S denotes the mean intensity of the
individual classifier. Equation (9) shows that the general-
ization performance of the global model is better when the
classification of individual classifiers is stronger, and the
correlation between the classifiers is smaller. In EAD, iso-
lated trees are generated independently by sink nodes during
detection, so the low correlation between isolated trees
ensures the detection performance of the global isolation
forest.

As shown in Figure 4, some sampling points of the Nmap
attack are drawn after being processed by PCA, and BCEAD
can effectively distinguish between normal points and ab-
normal points. The ACU can reach 96.67%, and the F1 value
is about 0.6 in the detection. It shows that BCEAD can
effectively detect anomalies and distinguish between normal
traffic and attack events in the network.

Figure 5 shows the accuracy of BCEAD’s detection of
various typical attacks. The detection performance of the
detection model is maintained at a high level of 94% to 96%,
and it has a good detection accuracy rate for all kinds of
attacks. Figure 6 shows the false positive rate (FPR) of
BCEAD detection of various typical attacks. The detection
effect is worse for Guess_passw d and Nmap attacks, which
is consistent with the response of the curve in Figure 5. The

IsolationForest

-4 -2 0 2 4 6 8 10 12

FiGUre 4: BCEAD detects two-dimensional data after PCA.

difference in the detection performance for different attacks
is mainly due to the different launch frequency of various
attacks. It confirms that the quality of the training set directly
affects the performance of the detection model, and BCEAD,
which updates the training data in real-time, can effectively
guarantee its detection performance.

Figure 7 shows the F1 value changes of the scheme
proposed by Liu et al. and BCEAD during a period. In the
figure, the abscissa indicates the time by the ratio change of
abnormal and normal data in the real-time detection. The
blockchain-based anomaly detection proposed by Liu et al.
does not have the update of the detection model, so the
detection performance of the data is always constant in a

Security and Communication Networks

ACU of BCEAD

times

—A— Guess_passwd
—+— Nmap

FIGUure 5: BCEAD’s detection accuracy of the data after PCA.

8
0.962 F—
0.960 -~
0.958 - :
& 0.956 |-
e
j=1
g ‘
2 0954 |
0.952 +
0.950
0948 - ; I
0 1 2
—@— Buffer_overflow
-¥- Pod
FPR of BCEAD
0.052 - :
0.050
0.048 | - @
0.046 |-
~
& .
0.044 +
0.042 - -
0.040
0.038
0 1 2 3 4 5 6 7
times

—@— Buffer_overflow
—¥— Pod

Ficure 6: BCEAD’s FPR of the data after PCA.

—A— Guess_passwd
—— Nmap

fixed range. However, BCEAD will dynamically select the
training set to update the detection model in real-time.
Therefore, the BECAD will optimize performance in long-
term detection according to environmental changes.

Figure 8 shows the cost comparison between the scheme
proposed by Liu et al. and BCEAD during the detection. The
experiment specifically compared the communication
overhead and storage overhead. As can be seen from the
figure, because Liu et al.’s scheme stores detection data by
the blockchain, the overhead will continue to grow during
the long-term detection process. However, BCEAD uses the
blockchain to store the detection model, so the cost in the
early detection stage will be slightly higher, but the increase
in cost is low. After a period of detection, the cost of BCEAD
is significantly lower than similar blockchain-based detec-
tion schemes.

Compare with F1

0.88 -

0.86

0.84 -

F1_value

0.80 |

0.76 -

0.2 0.4 0.6 0.8
time
—— EAD_Trend
—— Liu._Trend

e EAD
x Liu.

FIGURE 7: Performance comparison between BCEAD and similar
scheme.

4.3. Security. Yang et al. proposed the security entropy to
evaluate the benefits of system offense and defense [26],
which can quantify the security of the system. We can
suppose that the insecure factors caused by the attacker are
41> 935 - 9> and the insecure entropy of the detection system
at time t is Q(t, 4y, 4> - - - »4,)> or simply Q(¢). If Q (t) grows
with time, that is, differential dQ (¢)/dt > 0, then the system
will become more and more unsafe. If Q(¢) decreases with
time (differential dQ (¢)/dt < 0), then the system will become
more and more secure.

In BCEAD, the factors that affect the security of the
system are generally classified into two: (1) the attacker
publishes bad blocks, depletes the global model, and in-
creases insecure entropy. (2) Ordinary nodes publish normal

Security and Communication Networks

le6 Compare with overhead

time
—— EAD mm EAD.C
—— Liu mm LiuC

FiGure 8: Overhead comparison between BCEAD and similar
scheme.

Loss Rate

0.7 F
061}

05F -

0.3 F

0.2 F

Detection Performance

0.1 F

0'0 C 1 . . 1 . . L . M . L . L
0 20 40 60 80 100

Number of malicious blocks

—— PRE_LINE e PRE
—— REC_LINE e REC
—— F1_LINE e F1

F1Gure 9: Changes in detection performance with the release of
malicious blocks.

blocks, gaining the global model, and not increasing the
insecure entropy. Then, the changes in the security entropy
of the two factors are as follows:

dQ, aQ

e alQlandd—t2 =a,Q,. (10)
Solving this system of equations,
Q, = ¢;e"andQ, = c,e™". (11)
The time ¢ is

9
. InQ, - In¢, _ InQ, - lncz. (12)
a a
Set a = a,/a,, set b = ¢,/cj; then,
Q, =b(Q,)" (13)
In addition, it can be obtained that
dQ, 1] [(dQ, 1
T e) 14
{dtal}{dtez ¢ (1

It can be seen from Equations (13) and (14) that the
attacker’s loss rate and the system’s loss rate of the detection
model is a power function with each other, and the ratio of
the two to the model’s loss change rate is a constant. In
BCEAD, WSN’s device authentication has prevented ex-
ternal attacks, and internal attackers can only undermine
system security through the loss detection model. Because
the blockchain guarantees the format of the network
communication content, the attacker’s loss model can only
be done by publishing unhelpful isolated tree blocks.
Therefore, restricting this single evil means can ensure the
safety of the detection system.

The experimental results of malicious attacks on the loss
of the system are shown in Figure 9. When malicious blocks
continue to be released, the performance indicators of the
detection system continue to decrease. It can be seen from
the figure that after the release of 30 malicious blocks, the
detection performance has dropped significantly. Since the
BCEAD verification block is randomly selected, the prob-
ability of continuous bad blocks is low, and the submission
of normal blocks has a gain effect on the detection model, so
the solution itself has a certain attack resistance. From the
above analysis, it can be seen that the ratio of the attacker’s
loss to the model and the program’s gain to the model is
constant, so this confrontation can find a balanced
threshold. By disabling the node’s continuous release of
blocks, the security resistance of the detection system can be
sufficient to resist malicious internal attacks.

5. Conclusion

This paper studies the security of wireless sensor networks,
applies distributed anomaly detection to WSNs by the
blockchain technology, and proposes the BCEAD scheme.
The scheme divides the WSN into multiple layers. The sink
layer performs anomaly detection for each network domain
in the sensor layer. The detection model (isolation forest) is
stored in the blockchain (tangle). Besides, this paper com-
pares and analyzes the detection performance of BCEAD
through experiments and proves its superiority. However,
the actual deployment of the blockchain may affect the
performance of the detection system, and the communi-
cation and storage overhead of the blockchain technology is
also difficult to be balanced. Therefore, we will do some
practice for the blockchain in the future. Nevertheless, the
experiment proved that the scheme is compatible with some
existing security mechanisms [27] for detection, which is
enough to guarantee the application potential of the scheme.

10

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation
under Grant no. 61962009, Major Scientific and Techno-
logical Special Project of Guizhou Province under Grant no.
20183001, Science and Technology Support Plan of Guizhou
Province ([2020]2Y011), and Foundation of Guangxi Key
Laboratory of Cryptography and Information Security
(GCIS202118).

References

[1] L. Qiang, H. Xiaohong, L. Supeng, L. Longjiang, and
M. Yuming, “Deployment strategy of wireless sensor net-
works for internet of things,” China Commun, vol. 8,
pp. 111-120, 2011.

[2] N. Marriwala and P. Rathee, “An approach to increase the
wireless sensor network lifetime, Proc. 2012 World Congr,”
Inf. Commun. Technol. WICT, vol. 2012, pp. 495-499, 2012.

[3] C. Mahmoud and S. Aouag, “Security for internet of things: a
state of the art on existing protocols and open research issues,”
ACM Int. Conf. Proceeding Ser.vol. 17, pp. 1294-1312, 2019.

[4] Y. Chen,]. Sun, Y. Yang, T. Li, X. Niu, and H. Zhou, “PSSPR: a
source location privacy protection scheme based on sector
phantom routing in WSNs,” 2021, https://arxiv.org/abs/2109.
13774.

[5] A.M. FSabahi, “Intrusion detection: a survey,” in Proceedings
of the 3rd Int. Conf. Syst. Networks Commun. ICSNC 2008 -
Incl. I-CENTRIC 2008 Int. Conf. Adv. Human-Oriented Pers.
Mech. Technol. Serv., pp. 23-26, Sliema, Malta, October 2008.

[6] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly
based network intrusion detection: a review,” Computers &
Security, vol. 30, no. 6-7, pp. 353-375, 2011.

[7] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: methods, systems and tools,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 303-336, 2014.

[8] F. Huang, G. Xie, and R. Xiao, “Research on ensemble
learning,” in Proceedings of the 2009 Int. Conf. Artif. Intell.
Comput. Intell. AICI, pp. 249-252, Shanghai, China, No-
vember 2009.

[9] K. Christidis and M. Devetsikiotis, “Blockchains and smart
contracts for the internet of things,” IEEE Access, vol. 4,
pp. 2292-2303, 2016.

[10] B. Hu, C. Zhou, Y.-C. Tian, Y. Qin, and X. Junping, “A
collaborative intrusion detection approach using blockchain
for multimicrogrid systems,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 49, no. 8, pp. 1720-1730,
2019.

[11] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung,
“Intrusion detection system: a comprehensive review,”
Journal of Network and Computer Applications, vol. 36, no. 1,
pp. 16-24, 2013.

Security and Communication Networks

[12] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in
Proceedings of the IEEE Int. Conf. Data Mining, ICDM.,
pp. 413-422, Pisa, December 2008.

[13] F.T.Liuand K. M. Ting, “Isolation-based anomaly detection,”
ACM Transactions on Knowledge Discovery from Data, vol. 6,
no. 1, pp. 1-44, 2018.

[14] Y. Yuan and F. Y. Wang, “Blockchain: the state of the art and
future trends,” Zidonghua Xuebao/Acta Autom. Sin.vol. 42,
pp. 481-494, 2016.

[15] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,”
SSRN Electronic Journal, 2008.

[16] T.Li, Y. Chen, Y. Wang et al., “Rational protocols and attacks
in blockchain system,” Security and Communication Net-
works, vol. 2020, pp. 1-11, 2020.

[17] W. Li, S. Tug, W. Meng, and Y. Wang, “Designing collabo-
rative blockchained signature-based intrusion detection in
IoT environments,” Future Generation Computer Systems,
vol. 96, pp. 481-489, 2019.

[18] W. Li, Y. Wang, J. Li, and M. H. Au, “Toward a blockchain-
based framework for challenge-based collaborative intrusion
detection,” International Journal of Information Security,
vol. 20, no. 2, pp. 127-139, 2021.

[19] X. Xie, Y. Fang, Z. Jian, Y. Lu, T. Li, and G. Wang,
“Blockchain-driven anomaly detection framework on edge
intelligence,” CCF Transactions on Networking, vol. 3, no. 3-4,
pp. 171-192, 2020.

[20] X. Liu, F. Jiang, and R. Zhang, “A new social user anomaly
behavior detection system based on blockchain and smart
contract,” IEEE Int. Conf. Networking, Sens. Control. ICNSC,
vol. 2020, 2020.

[21] I. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni,
“Blockchain’s adoption in IoT: the challenges, and a way
forward,” Journal of Network and Computer Applications,
vol. 125, pp. 251-279, 2019.

[22] T. Li, Z. Wang, G. Yang, Y. Cui, Y. Chen, and X. Yu, “Semi-
selfish mining based on hidden Markov decision process,”
International Journal of Intelligent Systems, vol. 36, no. 7,
pp. 3596-3612, 2021.

[23] T. Li, Z. Wang, Y. Chen, C. Li, Y. Jia, and Y. Yang, “Is semi-
selfish mining available without being detected?” Interna-
tional Journal of Intelligent Systems, 2021.

[24] W. F. Silvano, R. Marcelino, and I. Tangle, “Iota Tangle: a
cryptocurrency to communicate Internet-of-Things data,”
Future Generation Computer Systems, vol. 112, pp. 307-319,
2020.

[25] B.Jia and Y. Liang, “Anti-D chain: a lightweight DDoS attack
detection scheme based on heterogeneous ensemble learning
in blockchain,” China Communications, vol. 17, no. 9,
pp. 11-24, 2020.

[26] Y. X. Yang and X. X. Niu, The General Theory of Information
Security, Publishing House of Electronics Industry, Beijing,
China, 2018.

[27] W. Meng, W. Li, and L.-F. Kwok, “EFM: enhancing the
performance of signature-based network intrusion detection
systems using enhanced filter mechanism,” Computers ¢
Security, vol. 43, pp. 189-204, 2014.

https://arxiv.org/abs/2109.13774
https://arxiv.org/abs/2109.13774

Hindawi

Security and Communication Networks
Volume 2021, Article ID 3116593, 12 pages
https://doi.org/10.1155/2021/3116593

Review Article

WILEY

Hindawi

Attacks and Solutions for a Two-Factor Authentication
Protocol for Wireless Body Area Networks

Chien-Ming Chen ,! Zhen Li®,! Shehzad Ashraf Chaudhry ,2and Long Li 3

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
Department of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey
*Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Gullin, China

Correspondence should be addressed to Long Li; lilong@guet.edu.cn

Received 1 September 2021; Accepted 4 October 2021; Published 21 October 2021

Academic Editor: Azees M

Copyright © 2021 Chien-Ming Chen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As an extension of the 4G system, 5G is a new generation of broadband mobile communication with high speed, low latency, and
large connection characteristics. It solves the problem of human-to-thing and thing-to-thing communication to meet the needs of
intelligent medical devices, automotive networking, smart homes, industrial control, environmental monitoring, and other IoT
application needs. This has resulted in new research topics related to wireless body area networks. However, such networks are still
subject to significant security and privacy threats. Recently, Fotouhi et al. proposed a lightweight and secure two-factor au-
thentication protocol for wireless body area networks in medical IoT. However, in this study, we demonstrate that their proposed
protocol is still vulnerable to sensor-capture attacks and the lack of authentication between users and mobile devices. In addition,
we propose a new protocol to overcome the limitations mentioned above. A detailed comparison shows that our proposed

protocol is better than the previous protocols in terms of security and performance.

1. Introduction

Since the beginning of human civilization, the efficient and
fast transmission of information has always been an un-
swerving pursuit for mankind. From writing to printing, from
cell towers to radio, from telephones to mobile Internet, the
speed of modern technology development has always
depended on the speed of information dissemination, and
new ways of information dissemination often bring about
radical changes in society. 5G (fifth-generation mobile
communication technology) is the current stage of progress in
the latest wave of mobile communication [1]. 5G is a new
generation of broadband mobile communication with high
speed, low latency, and large connection characteristics. It is a
network infrastructure that enables the interconnection of
people, machines, and things. 5G has three major application
scenarios: enhanced mobile broadband, ultra-high reliability
and low-latency communications, and massive machine-like
communications. Enhanced mobile broadband mainly

responds to the explosive growth of Internet traffic, and it
results in improved user experience for mobile Internet users.
Low-latency communication is mainly for applications with
high requirements for latency and reliability, such as tele-
medicine, autonomous driving, and virtual reality. Massive
machine-like communication is mainly for applications that
involve the sensing and collection of data, such as Internet of
Things (IoT) [2-4], smart cities [5-7], smart homes, and
environmental monitoring [8-10].

In the long run, consumer demand for health will
continue to rise, and the development potential of the
medical and health fields is huge. Currently, 5G is partic-
ularly useful for the healthcare sector, especially for the
Internet of Things in the medical field [11-13]. 5G will
empower the existing smart healthcare service system, and it
will improve the service capability and management effi-
ciency of wireless body area networks, telemedicine, and
emergency rescue. It will also give rise to the development
and prosperity of smart healthcare.

mailto:lilong@guet.edu.cn
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0002-4329-9212
https://orcid.org/0000-0002-9321-6956
https://orcid.org/0000-0002-7693-9722
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3116593

Owing to rapid advancements in life informatization,
people’s requirements for medical monitoring are con-
stantly improving. There is also a high demand for more
convenient and effective telemedicine and health-sign
monitoring. A wireless body area network (WBAN)
[14, 15] is a network composed of different intelligent
components, such as sensors, nodes, and actuators. The
network is designed for collecting and monitoring data
from the human body and its surrounding environment. Its
typical architecture is shown in Figure 1. For the elderly,
sensors/wearable devices on the elderly send the infor-
mation collected to a gateway node. For the patient, the
sensor acquires the patient’s body monitoring data, con-
nects it to a bedside monitor or other receiver, and
transmits it wirelessly to a doctor for monitoring or di-
agnosis. The gateway acts as a local server which analyzes,
stores, and manages the data sent by the sensor or monitor.
Users, who can be doctors, nurses, or other medical pro-
fessionals, can communicate with the gateway and access
the data they want to know via mobile devices or computer-
based devices on a LAN with the gateway. For example, a
nurse can specifically track and check a patient’s body data,
so that if an abnormality is detected, the patient’s condition
can be checked and dealt with in a timely manner.

Because data transmission over a WBAN takes place
over a public channel, attackers can access highly sensitive
health information of patients. To ensure the security of a
WBAN, a secure authentication and key agreement (AKA)
protocol should be implemented before communication.
Numerous AKA protocols have been proposed [16-21].
However, many of these AKA protocols have proven to be
insecure against many types of attacks. Recently, Fotouhi
etal. [22] proposed a lightweight and secure two-factor AKA
protocol for WBANSs in the healthcare-based IoT. They
claimed that their proposed protocol is secure against many
attacks, such as key disclosure simulation attacks, special
session temporary information attacks, and offline password
guess attacks.

In this study, we first demonstrate that Fotouhi et al.’s
proposed protocol [22] is still vulnerable to sensor-capture
attacks. Additionally, their proposed protocol fails to pro-
vide authentication between users and mobile devices. To
overcome these security pitfalls, we propose a secure and
efficient AKA protocol for WBANSs. The security analysis
shows that our proposed protocol is secure. We also provide
a detailed comparison to demonstrate that our proposed
protocol achieves improved efficiency and security.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the authentication protocol
proposed by Fotouhi et al. In Section 3, we provide a rea-
sonable cryptanalysis of Fotouhi et al.’s proposed protocol.
In Section 4, we propose a new protocol for improving the
flaws in the old protocol. In Section 5, we perform a security
analysis, which includes both formal and informal analyses,
to demonstrate the security and stability of our proposed
protocol. In Section 6, we analyze the security and perfor-
mance of our proposed protocol in terms of security, per-
formance, and communication cost. Finally, we provide the
conclusions to this study.

Security and Communication Networks

f

Doctor
Elderly with sensors
. Gateway
Patients with sensors Nurse

FiGure 1: The typical architecture of a WBAN.

2. Review of Fotouhi et al.’s Protocol

In this section, we briefly review Fotouhi et al.’s authenti-
cation protocol. Their proposed protocol includes four
phases: initialization, registration, authentication, and
password modification. Here we describe only the first two
phases. The detailed steps of their proposed protocol can be
found in [22]. The notations used in this study are listed in
Table 1.

2.1. Sensor Node Registration. In this phase, the corre-
sponding gateway injects the necessary information into
each sensor node. We assume that a gateway GW; is the
corresponding gateway of SN;.. GW; generates two random
numbers, R, and R, after which it injects
{SIDy, SGy, QIDy, GID, Ry, R} into the memory of SNy,
where SG; = h(SIDkl Gj“Nl). GW; also

{SIDy, N;, QIDg, R, h(R,)} in its database.

stores

2.2. User Registration. Assuming that a user, U}, desires to
register to GW, the following steps are performed:

Step 1: U; sends ID; and HPW; to GW; through a
secure channel, where HPW, = h (PWi”RO).

Step 2: if U; is an unregistered user, GW ; generates a
pseudoidentity CID; and a random number R, and it
stores {ID;, HPW;, CID;, R, } in GW,’s database. GW

then calculates A; = h(CID,-|Rx GIDj"GIDj)GBHPW,-
and A, = h(ID,|G)oh (ID,|[HPW,), after which it
sends {CIDJ-,GID]-,Al,Az} to U; through a secure
channel.

Step 3: U, calculates A; = h(IDi"PWi)EBRO, after which
it stores {CID;, GID;, A}, A,, A3} in the mobile device.

2.3. Authentication Phase. Assuming that U; desires to
communicate with SN, the following steps are performed:

Security and Communication Networks

TaBLE 1: Notations table.

Symbol Description

U,,ID;, PW; i-th user, his/her identity, his/her password
GW;,GID;,G; j-th gateway, its identity, its secret key
SN, SID,, k-th sensor, its identity

N, Network identifier of the sensor set
SGy Shared key between sensor and gateway
SK, Session key generated by user

SK, Session key generated by gateway
SK, Session key generated by user

M; i-th message

CID;, QID,, Temporary pseudoidentity of U; and SN,

RoRy Ry Ry Ry Ry, R,
Gen(-), Rep(+)

BIO,

h(-)

52

Temporary random number
Biometric extraction function, decryption function
Biometric information of the i-th user
Hash function
Bitwise XOR operation

Concatenate operation

Step 1: U, generates a random number, R, after which
it calculates Ry = A;@h (ID,|PW), HPW; = h(PW,|R,),
B, = A|@HPW,, B, = B,@HPW,eR,, B, = SID,®H
(ID;|R,), and B, = h(CID;@GID ;@SID,®B,®ID,&R,).
Afterwards, U; transmits M, to GWj;, where
M, ={CID,,GID;, B,, By, B,}.

Step 2: GW; obtains the corresponding ID;, R, and

HPW; from its database. GW; then calculates B, =
h(CID,|R,|GID;|G,) and R, = B,@B,@HPW,, after
which it verifies the correctness of B,. GW; then

generates two random numbers, R, and R,, obtains
SID; with Bj, obtains R, from its database, and gen-
erates a new pseudonym QID. GW; then calculates
SGy = h(SID|G,[Np, $ =h(SG|GID)), Bs = (R,
®HPW)®SeR,, B, = R,@SeSID,@R,, B, = QID;e
R,®R,, By =h(Ry|R,IS)eR,, and By =h(QID;|B;
|Bs[|SG||R.@HPW,|R,). Afterwards, GW; transmits
{QIDy, Bs, Bg, B, Bg, By} to SN,.

Step 3: SN, verifies the correctness of QID,. If it is
correct, SN, calculates S = h(SGk”GID j),
(R,©HPW,)B;@S&R , and R, = B;@SaSID@R,. If By
is correct, SN, generates a random number, R, and it
calculates R! = h(R,[R, IS)®Bs, QID; = B,oR,@R,,
and By, = R,®S®R,. SNy then stores QIDy, R;, and
R}i = h(Ry), and it calculates SK, =h(R,
GBHPWi"Rg"RS). It then «calculates B, =h(SG,
|[Rp@h(RJoR, and By, = h(By|[Byy[[SK,[SIDy
GIDj”RS), after which it transmits {B,,, B;;, B},} to
GW;.

Step 4: GW; calculates R = h(R,) and R, = R, ©S®B,,.
It then verifies whether h(R,) is equal to h(R}). If the
verification is passed, it calculates

R, = BHGBh(SGk"Rg)GBR; and obtains the session key

SK, = h(RuQBHPWi"Rg“RS). It further verifies the
correctness of Bj,, generates a new CID) for U, stores
QIDy, and R, and replaces R, and h(R,) with R, and
R, respectively. It then calculates
By; = h(CIDj|A(R,)|GID; |G)eh (R, [HPW)),

By, = h(R,|ID)&R,, Bys = h(R,|R,|HPW)eR,,
B,g = h(h(ID}|G)|R)eCID}, ~and B, = h(SK,
“IDi"BB"CID;). GW; then generates {B3, By,
B,s, Big» B7} and transmits it to U;.

Step 5. U; calculates R, =B ®h(R, HIDi),
R, = Bjs®h(R,|R,|[HPW,), ~and CID; = B (@h
((Ay@h (ID,|[HPW)))|R,). U; then calculates the ses-
sion key SK, = h(R,6HPW,[R,|R,) and verifies B,;.
When the verification is passed, U, calculates
A{ = B;;0h(R,|HPW,) and stores CID; and A.

3. Cryptanalysis of Fotouhi et al.’s Protocol

This section shows that Fotouhi et al’s protocol [22] is
vulnerable to sensor-capture attacks and a lack of authen-
tication between users and mobile devices.

3.1. Threat Model. The attacker model briefly describes the
capabilities of an attacker. In this study, we use the D -Y
model [23-25] and assume that the attacker is A. The de-
tailed capabilities are as follows:

(1) A can eavesdrop and intercept information trans-
mitted by public channels and can forge, delete,
replay, and tamper with such information

(2) A can extract the information from the captured
sensor nodes

(3) A can access the information stored in the gateway

3.2. Sensor-Capture Attack. Assuming that A captures SN
and obtains {SID;, SG;, GIDj,Ry, R,,QID,;} in the memory
of sensor SN, A can calculate the session key SK through the
following steps:

Step 1: calculate S =h (SGk"GID j), and then obtain

(R,©HPW;) by calculating B;@SeR,

Step 2: obtain R by calculating B;@S®SID @R,

Step 3: obtain R, by calculating h (SGk“Rg)GBh (R,)®By,

Therefore, A can calculate the correct session key

SK = h(RuGBHPWi"R |Rs) shared among U;, GW;, and
SN,.

ol

3.3. Lack of Authentication between Users and Mobile Devices.
Assuming that an attacker A captures U;’s mobile device, A
performs the following steps:

Step 1: because A does not know PW;, A randomly
generates PW; and then inputs ID; and PW: to the
captured mobile device. The mobile device calculates
and transmits M, with the fake password PW; to GW 5+

Step 2: GW; verifies GID; and CID;, after which it
calculates B; and R,. Afterwards, GW; attempts to
verify the correctness of B, and GW realizes that M,
sent from Uj; is not legal.

Essentially, A does not need to capture a mobile device
because the attacker can eavesdrop the M, between any user
and GW; and then send M, to GW;.

The scenario mentioned above illustrates two weaknesses
in Fotouhi et al.’s proposed protocol. First, the mobile device
does not verify the password that a user inputs. Regardless of
whether the password or account number entered by U, is
correct, the mobile device sends all the necessary messages to
GW . Second, GW; calculates B, and R, before verifying B,.
Owing to the limited computing power of a gateway, if an
attacker has been sending a large number of error messages
to a gateway through multiple mobile devices, the gateway
may be paralyzed and unable to respond to the requests of
other users, which will result in immeasurable losses in
medical Internet environments.

4. The Improved Protocol

In this section, we present an enhanced lightweight and
secure two-factor authentication protocol (AELSA) for
medical IoT and WBANS to address and enhance the out-
standing vulnerabilities and fragile shortcomings of Fotouhi
et al.’s protocol. AELSA also applies to the WBAN archi-
tecture and includes three main participants: (a) the phy-
sician or nurse as the user, (b) the gateway node as the server,
and (c) as the sensor. The sensors can include the dynamic
collection of patient data for real-time data. On the other
hand, the gateway represents a server, which acts as an
authentication and data-delivery center for ensuring mutual
authentication between the physician and the sensor. The
physician or nurse, as the user, can access the information
from the sensor, which is delivered using the gateway
through a device, such as a mobile device or a computer that

Security and Communication Networks

can log into the system. AELSA comprises four main phases:
(a) initialization, (b) registration, (c) login, and (d) mutual
authentication and key exchange phases. The registration
phase includes the user registration and sensor registration
phases. The symbols used are also listed in Table 1.

4.1. Initialization Phase. We assume that all the gateways are
considered trusted parts, the gateways are identified through
GID; when transmitting messages, and the gateways gen-
erate G; as their private key during initialization. In this
phase, important parameters and functions of the system are
generated and published, such as initializing the stored
information within the gateway.

4.2. Registration Phase. This phase comprises a sensor node
enrollment phase and a user enrollment phase with the
following steps.

4.2.1. Sensor Node Enrollment. In the sensor registration
phase of AELSA, if a new sensor SN, wants to join the
WBAN, it must interact with the data and submit regis-
tration information to the gateway GW ;. First, SN sends its
SID; and N; to GW; over a secure channel. After GW;
receives the message, it determines whether SID; is a new
identity and generates a new pseudoidentity QID,, for SN, if
it is a new identity. Next, it computes SGy, as a shared key for
SNy and GW}, where SG; = h(SIDk"GjeaNl), and it stores
{QIDy, N;} into the memory. Afterwards, GW; securely
sends {SGy, QID,} to SN.. Once SN, receives the message, it
encrypts SG; using its SID;, RSG,= SG,®SID,, and it stores
{RSGy, QID,}.

4.2.2. User Enrollment. In this stage, the user completes the
registration in GW; based on the generation function of the
bioinformation embedded in the mobile device as well as
other information. The user enters their identity ID;,
password PW;, and bioinformation BIO; on the mobile
device. The mobile device then generates ¢; and 7; using the
generation function Gen. It uses g, to mask and protect PW,,
calculates HPW, = h(PW,-"a,-), and sends {ID;, HPW;} to
GW; on the anti-interference channel. Upon receiving
{ID;, GW} determines whether the identity is new. A new
identity represents an unregistered identity. If it is new, it
then calculates CID; = h(ID;) and stores CID,, HPW,. It

then selects a secret random number R; and computes A, =
h(CID,|GID, |R,@G))@Hpw; and A, = h(GID;|HPW,)
®(Ry®G), which, in turn, store A; into memory. It then
transmits the secure message {A,,GID;} to U; over the
private channel. After U, receives the secure message, it
computes A= h(IDi||HPWi) and stores
{Az,A3,GIDj,Gen(.),Rep(.),an dt;}, where Rep can de-
crypt o; using the biological information BIO; and ;.

4.3. Login Phase. Compared to the protocol proposed by
Fotouhi et al., AELSA adds a login phase in which the mobile

Security and Communication Networks

device verifies the legitimacy of U;’s identity and effectively
prevents the consumption of redundant functions resulting
from the nonuse of authentication. It is assumed that when
U, logs into the mobile device, U; enters ID; and PW; and
enters biological information BIO;, such as the fingerprint
and iris. The mobile device calculates Rep (BIO;, 1;)07,
HPW! = h(PW/|o}), and Aj = h(ID;||HPW,). It then
verifies A; by comparison. If A; = A}, the mobile device
allows U; to log in. Otherwise, it denies U, to log into the
system and sends an alert. Figure 2 shows the detailed
process of the user login phase.

4.4. Mutual Authentication and Key Exchange Phase. In the
key exchange phase, the user, gateway, and sensor negotiate
to create a three-way trusted key for ensuring the correctness
and security of future messages. This phase comprises five
steps, as described below. Among other things, Figure 3
shows the stages of mutual authentication and key exchange.

Step 1: user U; selects the SID, of the sensor to be
accessed, generates a random number R,,, and creates a
timestamp T;. U; computes (Ry8G)) = 4,
®h (GID,|HPW,), B, = SID;@h(GID,|HPW,), B, =
R,@h (GID;|HPW,@SIDy), and B; = (Ry®G)h(GID;
||Ru), after which U; transmits the message M,
{CID;, GID}, By, B,, B3, T} to the gateway GW .

Step 2: after receiving the message M, GW; verifies the
legitimacy of T, by determining whether it matches
IT) = Tc|AT. GW; searches and obtains the corre-

sponding HPW; and QID; in the memory based on
CID; in M,. Afterwards, GW; computes

SID;, = B,@h (GID,|[HPW,), R, = B,®h(GID||
HPW,@SID,), (Ry®G,) = B;@h(GID;|R,), and
A} = h(CID,|GID,|R,@G))@HPW,, and it verifies
AI; A}. If the verification fails, GWj aborts the con-
versation. Otherwise, GW; confirms the legitimacy of

the identity of U,, after which it generates a random
number R, and a new timestamp T,, and it computes

SGy = h(SID|G;@N)), B, = R,@HPW,@SG; , B; = R,
®h(SG|SID,), and B¢ = h(QIDy|B,|Bs|SGk|R,
®HPW,|R,). Finally, GW; sends M,{QIDy,B,,
B;, B, T',} to the sensor node SN;.

Step 3: once M, is received, SN, verifies that
|T, — T¢|SAT, and if this is true, then the message M,
is fresh. Afterwards, SN, obtains the corresponding
RSG, in storage based on QID,. It computes
SGi = RSG@SIDy, (R, ®HPW)) = B,&SGy, R, = B;®
h(SG[SIDy), and B} = h(QID;|B,|B5|SGi|R.@

HPWI-"Rg), and it verifies whether Bg; Bg. If the

verification is successful, SN creates a random number
R, and a timestamp T';, after which it computes the keys

SK, = h(R,@HPW,|R,[R,), B, = h(SG,|R,)eR,, and

By = h(R,|Ry||SG|T;). SNy then sends M{B,, By, T}
to GW; over the public channel.

Step 4: after receiving message M;, GW ; verifies the
freshness of timestamp T5 using |T; — T¢|SAT. After
verifying that it passes, GW; generates timestamp T,

R, = h(SG|R)eB, and
B; =h(R |RS||SGk||T3), after which it verifies the le-
gitimacy of Bg. If Bg qualifies, the key
SK, = h(R,@HPW, R [R,), By = h(R,&GID;|HPW,)
®(R,[R,), and By, = h(Ry®G;|SK,|R,). Finally, GW,
generates M, {Bg, B,(, T,} and passes M, back to U;.

and computes

ol

Step 5: in the final step, after receiving the message M,,
U, verifies whether |T', — T|SAT, and if this is correct,
it computes (R,|R,) = By®h(R,eGID,|HPW)),

SK, = h(R,@HPW,[R/[R,), and Bj, = h(R,®G,SK,

”RM). Finally, U; verifies whether Bi‘oé By, and if this is
true, the verification and key exchange phase is
complete.

5. Security Analysis

In this section, we use the random oracle model (ROR) to
conduct a rigorous formal security analysis of the improved
protocol. In addition, an informal security analysis is carried
out to logically analyze the protocol. Through the following
security analysis, it is easy to prove the security and ro-
bustness of the improved protocol.

5.1. Formal Security Analysis. In this section, the ROR model
is mainly used to prove the security and feasibility of our
proposed protocol, and we successfully demonstrated that
users and sensor nodes can securely establish session keys
through the gateway. In the proof process, U represents a
user, G represents a gateway, and S represents a sensor node.
The detailed proof of the procedure is presented as follows.

5.1.1. ROR Model. In this section, we will use the ROR
model to prove the security and reliability of our proposed
new scheme, where &/ represents the attacker. There are
three participants which are user U, gateway G, and sensor S.
Suppose IT7; represents the x-th communication of the user,
IT;,, represents the i-th instance of the user, IT/, represents
the j-th instance of the gateway, and 1% represents the k-th
instance of the sensor. The attacker has special capabilities
and can initiate the following queries:

Execute (IT¥; , , [T}, TT%): by executing this query, & can
intercept and obtain the messages transmitted between
the various participant instances on the public channel.
Passive attacks can be executed by this query

Send (ITf;, M): in this query, & can get the corresponding
response by sending message M to IIf;. & can perform
man-in-the-middle attacks and impersonation attacks.

Security and Communication Networks

U.

Mobile device

UZ enters I D7 and PW 7
imprints B10O)

Input to mobile device
- 0

Rep(BIO;, 1)) = o7
HPW* = h(PW* | oF
h(ID* I HPW)

Verlfy Ay = A
If true, user authentication passed

FIGURE 2: Login phase.

U, GW, SN,
Selects STD,, R,, T,
Computes (R, @ G)) = A, €B h(GID || HPW,)
B, = SIDk D AGID, | HPW)
B,=R,@®h(GID, || HPW,® SID,)

By =(Ry®G)@®h(GID, || R)

M, ={CID;,GID;,By,B,,B3.T }

v mmrmr

Verify |T), — T | £ AT
Gets HPW,, QlD

Computes SID, = B, G) h(GI’b || HPW,)
R,= B, ® h(GID | HPW, ® SID,)
(Ry®G,) = B/® h(GIDj Il R
A; =h(CID, || GID, || Ry® G,) ® HPW,

Check A, = A]
Selects R,, T,
SG, =h(SID, || G, ® N))
B, = R, ® HPW, ® SG,
@ (SGy || SID)
Bs | SG, || R, ® HPW, || R,)
My={QIDy.By.Bs5.Bs.T> }
D —

B,=R
By =h(QID, || B, |

Verify |T; —

|T, — T¢| £ DeltaT
Compute (R, || R,) = By ® h(R, ® GID; || HPW))
SK =n(R,® HPW, | R, || R))
o = h(R, &G, | 5K, fir)

Checks B;, = By,
If ture, communication is possible

Te| £ AT
Computes R, = h(SG TR) ® B,
h(R‘ I R, |l SG i)

Check By = By
Selects T,
SK, =R, ® HPW, | R, || R)
Bo—h(R GBGID Il HPW) & (R |l R))
By, = h(R, e) G, | SK, I R

My=(By, Bm Ty)
—

Verify |T, — Te| £ AT
Gets RSG, based on QID,
SG, = RSG,(@ SID,
(R, ® HPW,) = B, ® SG,
R, = B; ® h(SG, || SID,)
=h@ID, || B, || B | SG, | R, ® HPW, || R,)

Verify B; = B
Selects R Ty
Computes SK; = h(R, @ HPW I R, I Ry
B, = h(SG, || R) ® R,
By =h(R, || R, || SG, || T)
M3={B;.By.T; |
— A

s

g u

FIGURE 3: Mutual authentication and key agreement phase.

Hash (II{, string): in this query, the hash value of the
input string can be obtained by «.

Corrupt (IT;): through this query, & can send this query
to the instance ITf; and IT}; returns the secret value of U:
long-term private key, password, and secret parameters
stored in the smart card (based on the smart card). & can
simulate the execution of forward secrecy, privilege
insider (internal) attacks, and stolen smart card attacks.

Reveal (I;): &/ can send this query to the instance ITf;
and IT; returns the current session key SK generated by
its partner to &. &/ can simulate the execution of
known session key attacks.

Test (I17;): & can perform this query by flipping a coin
C. If C results in 1, the attacker will get the correct
session key; otherwise, the attacker will receive a
random string.

Theorem 1. In the above ROR model, we redefine the of’s
capabilities and allow the attacker to execute the above query,
so the probability P of our proposed new protocol being broken
is expressed as AdVY, () € Geena/2" 2 + 3G,/
2142 max{C', qimd, Gsend/2 }, where gy, represents the
number of hash queries performed and g, represents the

Security and Communication Networks

number of queries performed. The number of bits of biological
information is expressed by I, C' and s' are Zipf's law [26].

Proof. We define GM,, to GM; to mlmlc and verify the
behavior that may be performed by . Succ, o M (&) is used to
denote the probability of success of &’s attack on the
protocol in GM;. The specific process is as follows:

GM,: in GM,, & does not initiate any queries.
Therefore, in GM,), the probability P that the protocol is
broken in this query round is

AdvY, (§) = |2Pr[succGM° ®]- 1| (1)

GM,: GM, adds Execute query, and the others have no
difference with GM,. We can obtain

Pr[Succg’;\A1 (f)] = Pr[Succ;;MO (E)]. (2)

GM,: GM, adds Send query, and there is no difference
with GM,. Therefore, we can get

|Pr[SuccGM2 (E)] Pl‘[SuccGMl (E)” QSend 3)
GM;: GM; and GM, are indistinguishable except that it

adds the Hash query and deletes the Send query. We
can obtain

|Pr[Succ§M3 (E)] - Pr[SuccGM2 €3 ” < Ghash (4)

l+1

GM,: in GM,, whether a session key is secure or not can
be seen in the following two cases. The first case is
whether the protocol can ensure perfect forward se-
crecy security when o obtains the long-term private
key. The second is whether the protocol can resist the
temporary information leakage attack when the tem-
porary information is compromised.

(1) Perfect forward secrecy: using [T, of tries to obtain
the long-term key SG;. between the gateway and the
sensor, or & uses IT5;, or I to try to get a certain
secret value in the registration phase

(2) Known session-specific temporary information
attacks: of uses one of IT, or IT,, or IT% to try to
obtain temporary information from one entity

In both cases, &/ only needs to use Send and Hash
queries to compute SK, = h(RueBHPWiﬂ\Rg"RS). For
the first case, assuming that &/ obtains the long-term
key SG,, although R,@HPW, can be computed by
intercepting B,, & has no access to SID, and thus
cannot compute R, and R, and thus even less likely to
compute SK. For the second case, assuming that of
obtains the temporary information R,,, & has no access
to the other random numbers R, and R, and thus
cannot crack this protocol. Therefore, we get

|Pr[Succy)™ (§)] - Pr[Succg,™ ()] < F<pd qsend qhash'

21+1
(5)

GM;: in GM;, & can execute smart card stolen attacks.
g uses Corrupt (IT;) to get the information stored in
SC{AZ, A;, GID, Gen (.),Rep(.), Ti}. The mobile user
uses password PW; and biological information BIO; to
register. If o/ tries to guess A} =
HPWi is encrypted with biological information, the
probability of &/ guessing the biometric o, is 1/2! [27].
o can also guess low-entropy passwords; using Zipf's
law [26], we can get

'Pr[Succhs (f)] Pr[SuccGM“ (f)” < max{C Tonts qSZend]>
(6)

GMg: GMg is used to verify whether the proposed
protocol is resistant to impersonation attacks. In GM,
if of issues a h(RMGBHPW,-"RgHRS) query, the game is
terminated. So we can obtain

|Pr Succd 5(5)] Pr[Succ (f)” qh‘“h (7)

l+1

Since GM; has half the probability of success and
failure,

1
Pr[Succh"’ (f)] =5 (8)
To sum up, we can obtain the following conclusions:

1
S Advy () =

Pr[SuccGM° (f)] - 7|

= 'Pr[SuccSYM" (E)] - Pr[Suc:cGMG (E)H

= 'Pr[SuccGM1 (5)] [Succ:GM6 (5)”

<Z'Pr[8ucc G Pr[Succh"(f)”

2
Gsend , 3hash Gsend
= 2516?1 + zlfls + max{C' qsend, Sze“ .

(9)

Finally, we can get

3 ,
Adv, (&)< = —qslenld + —ql}‘fh +2 max{C/, Teend> qse?d}.
2 2 2
(10)

Therefore, we can use the ROR model to demonstrate

that our proposed new protocol can provide perfect forward
security against common attacks such as smart card theft

attacks, man-in-the-middle attacks, and other more com-
mon attacks. O

5.2. Informal Security Analysis. In this section, we prove that
our proposed protocol is secure against common attacks.
The security of our proposed protocol and the reasons it can
withstand attacks are analyzed.

5.2.1. Resisting Sensor Node Capture Attacks. If an attacker
captures a sensor node and obtains its memory information,
although the attacker already knows the parameters RSG;
and QID,, to obtain SK, the attacker must also know SID,,
and the long-term key SG; between the gateway and the
sensor node, which is obtained from RSG,, and SID,, through
heterodyning. However, SID,. is not stored in the memory of
the sensor node. Therefore, our proposed protocol is im-
proved to effectively prevent sensor node capture attacks.

5.2.2. Ensuring Authentication between Users and Mobile
Devices. An attacker can replay eavesdropped messages and
obtain valuable information through replay and feedback.
For example, an attacker can replay message M, by imitating
the user. However, our improved protocol does not provide
this opportunity to the attacker. This is because we add a
timestamp T to verify the freshness of the message, and we
set a reasonable timestamp threshold. Moreover, we add
biometric authentication to ensure accurate authentication
between users and mobile devices, thereby preventing at-
tackers from attacking the gateway using large amounts of
useless information resulting from the lack of authentication
between users and devices.

5.2.3. Perfect Forward Secrecy. If an attacker cannot obtain
the previous session key when the private long-term key is
destroyed, the authentication protocol has perfect forward
confidentiality [28, 29]. Assuming that an attacker has ob-
tained the long-term key SG; between the gateway and the
sensor, although it can be obtained through the message B,
of the common channel (R,@HPW)), R, and R; are pro-
tected by the long-term key SG; in addition to SID,.
Therefore, an attacker cannot obtain SID, while obtaining
the long-term key. As such, it can be inferred that the at-
tacker cannot crack the long-term key in the case of
obtaining the past session key. Thus, our proposed protocol
demonstrates perfect forward security.

5.2.4. Resisting Session-Specific Temporary Information
Attacks. If short-term secret information, such as random
numbers, is cracked and obtained by an attacker, the attacker
cannot calculate the key SK. Because the improved protocol
uses a three-way random number and the encrypted value of
the user’s password information composition, an attacker
cannot obtain the user’s password information through the
knowledge of the random number. Therefore, our proposed
protocol can resist temporary information leakage attacks.

Security and Communication Networks

5.2.5. Resisting Offline Password-Guessing Attacks. In the
authentication stage, we use the pseudo-password HPW; as
a substitute for the user password to ensure the security and
privacy of the password. Because the user password is
obtained through the user’s biological information and
password encryption, assuming that the attacker obtains
HPW;, the user password cannot be calculated. In the login
phase, assuming that the attacker obtains A; and ID;, the
attacker cannot calculate PW,; from these data. Therefore,
our proposed protocol can resist offline password-guessing
attacks.

5.2.6. Resisting Privileged Insider Attacks. Assuming that an
attacker is an insider of the gateway and has access to the
gateway’s memory information [30], the attacker can obtain
CID;, HPW,, and QID;. After obtaining this internal in-
formation, the attacker cannot compute any valuable in-
formation, and thus, the exact protocol is completely
resistant to privileged insider attacks.

5.2.7. Resisting Relay Attacks. In the general three-party
authentication protocol, the general steps involve authen-
ticating communications between the user and the server.
The server then communicates with the sensor or other
devices for authentication, after which the sensor and other
devices pass the information to the user through the server,
and the information finally reaches the user, server, sensors,
and other devices involved in the three-party authentication
process. However, the transmission process is prone to relay
attacks [30, 31], where information can easily be intercepted
by the attacker using disguised devices to obtain the correct
information sent by the official server or the user, so that
they can disguise themselves as legitimate servers and send
instructions to the user or disguise themselves as legitimate
users to obtain valuable information. However, in our
proposed protocol, the server GW; properly verifies the
legitimacy of user U; and sensor SN, by comparing A, and
Bg. Additionally, the sensors and users verify the legitimacy
of the server, and they employ a timestamp to verify the
freshness of the message. Thus, our proposed protocol is
resistant to relay attacks.

5.2.8. Resisting Stolen-Verifier Attacks. In a stolen authen-
tication attack, we assume that the user authentication value
stored on the server side is stolen by an attacker, and the
attacker can directly use the authentication value to disguise
themselves as a user and log into the system. Further, we
assume that the secret information stored on the server side
is also stolen, and the attacker can use this information to
obtain the public key. Assuming that an attacker obtains the
stored information inside the gateway GW;, which is
{CID;, HPW;, A;,QID;, N}, the key to determining SK
involves obtaining SG; and obtaining Ru using SG.
However, SG, cannot be obtained using the information in
the memory of GW ;. Therefore, our proposed protocol can
resist stolen authentication attacks.

Security and Communication Networks

TaBLE 2: Comparisons of security.

Security properties

Fotouhietal. [22] Kumarietal. [32] Srinivasetal. [33]

Gope and Hwang
34] Ours

Perfect forward secrecy

Resists impersonation attacks

Resists offline password-guessing attacks
User anonymity security

Mutual authentication

Resists replay attacks

Resists sensor-capture attacks

Resists known session temporary information
attacks

Resists relay attacks

Resists man-in-the-middle attacks
Provable security

XSS SN XXSSSSS

v

XSS XS

X
XSS S SSSS XSS

XSS SN SSSS XSS
SSS S SSSSSASS

X XN

TaBLE 3: The computational cost of complex operations.

Operations Host node(s)
Hash function 0.00032
Fuzzy function 0.0171
Chaotic map function 0.0171
Encryption and decryption 0.0056
TABLE 4: Calculation cost comparison.
Protocol User Gateway Sensor Total (ms)
Fotouhi et al.’s [22] 10T}, 17T, 7T, 37T}, =10.88
Kumari et al.’s [32] 8T, +2T, 4T, + T, 4T, + 2T, 16T, +5T,=33.12
Srinivas et al.’s [33] 4T, + 2T, +2T, 6T, +2T, 3T, +2T, 4T +4T,+ 13T, =94.96
Gope et al.’s [34] 7T, 3T, 19T}, =6.08
Ours 9Th + 1Tfe IOTh 4Th 23Th + lee =24.46

6. Security and Performance Comparisons

In this section, we discuss the typical costs of the authen-
tication protocols from three aspects: protocol security,
computing cost, and storage consumption [22, 32-34].

6.1. Security Comparisons. As shown in Table 2, we com-
pared the security analysis of the mentioned protocols and
used v and X to signify whether the protocol meets the
security requirements involved. The security of the protocol
proposed by Kumari et al. [32] was disproved by Li et al. [35]
in that it cannot resist sensor node capture attacks, session-
specific temporary information attacks, sensor node im-
personation attacks, and man-in-the-middle attacks.
Therefore, Li et al. designed a mutual authentication and key
agreement protocol for wireless sensor networks. However,
it was later proved to be unsafe. The protocol proposed by
Srinivas et al. [33] cannot resist offline password-guessing
attacks. The security of the protocol proposed by Gope and
Hwang [34] was disproved by Adavoudi-Jolfaei et al. [36] in
that the adversary can obtain the session key between the
user and the sensor using the dy model. Compared to the
protocols mentioned above, our proposed protocol can resist
such attacks and meet the security requirements.

6.2. Performance Comparisons. We performed a perfor-
mance comparison between the new authentication protocol
and the other four authentication protocols listed in Table 4.
Additionally, we made the following calculations in terms of
the time consumption of cryptographic operations, as shown
in Table 3, including hash functions, symmetric key en-
cryption/decryption, chaotic mapping functions, and fuzzy
extraction functions, as the most important operations [22].
The meanings of symbols in Table 4 are as follows: T, de-
notes the time of the regular hash operation, T, denotes the
operation time of the fuzzy function, T, denotes the oper-
ation time of symmetric encryption and decryption, and T',
denotes the operation time of the chaotic map function.
In the login and mutual authentication phase, we
compared the computation times of the user, gateway, and
sensor node sides along with other protocols to design our
proposed protocol. As shown in Table 4, the newly designed
protocols guarantee security and time appropriateness.
Although our new protocol takes slightly more time than the
protocols proposed in Fotouhi et al.’s [22] and Gope and
Hwang’s [34], it ensures improved security. This is because
the extra time spent is mainly in the user login phase, where
the user biometric information needs to be compared, a very
important and indispensable step that amounts to a partial
performance sacrifice to improve the security of the

10

Security and Communication Networks

Communication cost (ms)

6000 -

5000

4000

3000

2000 - - - - - S S S R ,
1000 - - - - - S S S e :
0

Fotouhi et al Kumari et al

Srinivas et al

Gope et al ours

FiGure 4: Communication cost.

protocol. As a result, the new protocol is more secure than
the two protocols and ensures that the user’s legitimacy is
verified. Compared to Kumari et al’s [32] and Srinivas
et al’s [33] proposed protocols, it is evident that our pro-
posed protocol significantly reduces the computational cost.
In addition, we compared the communication costs, as
shown in Figure 4. Considering the computational cost and
communication in terms of cost and security for the new
protocol, it is evident that our proposed protocol can be
better adapted to the wireless human medical environment
regional network, thereby providing improved service ex-
perience for hospital staff and individual patients.

7. Conclusion

In this study, we improve on the WBAN-based authenti-
cation protocol proposed by Fotouhi et al. in medical IoT.
The improved protocol compensates for the defects in the
original protocol, and it can resist attacks that cannot be
resisted by the original protocol. It also improves the au-
thentication speed of the protocol, thereby reducing com-
putational expenditure. Moreover, it is advantageous in that
it is lightweight compared to the original protocol. The
improved protocol adds biometric authentication and login
authentication to significantly increase the security of the
user login process, and it also makes extensive use of single
hash, heterogeneous, and joint operations to reduce com-
putational cost. Our proposed protocol is highly secure
against a range of attacks, such as sensor node capture at-
tacks, replay attacks, and internal privilege attacks. It
demonstrates excellent performance in terms of security and
efficiency. Therefore, it can be considered more suitable for
the WBAN-based medical IoT. For every new technology
development there are bound to be technical implementa-
tion and realization challenges, and the Internet of
Healthcare is facing some problems in terms of adoption for

the time being. Most of the problems exist because there is
no all-in-one healthcare IoT solution; all solutions are tai-
lored to specific challenges and therefore can be too ex-
pensive for any organization. The second is the lack of a set
of standards for the healthcare industry to protect extremely
sensitive healthcare data from security risks and threats. It is
hoped that this paper will provide a reference for addressing
the security aspects of healthcare data.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work of Long Li was supported by Guangxi Key Lab-
oratory of Trusted Software (no. KX202033).

References

[1] M. Shafi, A. F. Molisch, P. J. Smith et al., “5G: a tutorial
overview of standards, trials, challenges, deployment, and
practice,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 6, pp. 1201-1221, 2017.
H. Xiong, X. Huang, M. Yang, L. Wang, and S. Yu, “Un-
bounded and efficient revocable attribute-based encryption
with adaptive security for cloud-assisted internet of things,”
IEEE Internet of Things Journal, vol. 2021, Article ID 3094323,
2021.
H. Xiong, Y. Wu, C. Jin, and S. Kumari, “Efficient and privacy-
preserving authentication protocol for heterogeneous systems
in IIoT,” IEEE Internet of Things Journal, vol. 7, no. 12,
pp- 11713-11724, 2020.
[4] X. Chen, M. Li, H. Zhong, Y. Ma, and C. H. Hsu, “DNNOff:
offloading DNN-based intelligent IoT applications in mobile

[2

[3

Security and Communication Networks

(6]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

edge computing,” IEEE Transactions on Industrial Infor-
matics, vol. 2021, Article ID 3075464, 2021.

J. W. Jiao Wang, J.-S. P. Jiao Wang, S.-C. C. Jeng-Shyang Pan,
Z.-Y. M. Shu-Chuan Chu, and H. L. Zhen-Yu Meng, “Im-
proved black hole algorithm for intelligent traffic navigation,”
Journal of Internet Technology, vol. 22, no. 4, pp. 725-734,
2021.

X. Xue, X. Wu, C. Jiang, G. Mao, and H. Zhu, “Integrating
sensor ontologies with global and local alignment extrac-
tions,” Wireless Communications and Mobile Computing,
vol. 2021, Article ID 6625184, 2021.

S. Lv and Y. Liu, “PLVA: privacy-preserving and lightweight
V2I authentication protocol,” IEEE Transactions on Intelligent
Transportation Systems, vol. 2021, Article ID 3059638, 2021.
P. Wang, C. M. Chen, S. Kumari, M. Shojafar, R. Tafazolli, and
Y. N. Liu, “HDMA: hybrid D2D message authentication
scheme for 5G-enabled VANETSs,” IEEE Transactions on In-
telligent Transportation Systems, vol. 2020, Article ID 3013928,
2020.

J. Song, Q. Zhong, W. Wang, C. Su, Z. Tan, and Y. Liu, “FPDP:
flexible privacy-preserving data publishing scheme for smart
agriculture,” IEEE Sensors Journal, vol. 2020, Article ID
3017695, 2020.

E. K. Wang, X. Liu, C. M. Chen, S. Kumari, M. Shojafar, and
M. S. Hossain, “Voice-transfer attacking on industrial voice
control systems in 5G-aided IIoT domain,” IEEE Transactions
on Industrial Informatics, vol. 2020, Article ID 3023677, 2020.
W. Zhang, Y. Wu, H. Xiong, and Z. Qin, “Accountable at-
tribute-based encryption with public auditing and user rev-
ocation in the personal health record system,” KSII
Transactions on Internet and Information Systems (TIIS),
vol. 15, no. 1, pp. 302-322, 2021.

J. Sun, H. Xiong, X. Liu, Y. Zhang, X. Nie, and R. H. Deng,
“Lightweight and privacy-aware fine-grained access control
for IoT-oriented smart health,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6566-6575, 2020.

C.-M. Chen, C.-T. Li, S. Liu, T.-Y. Wu, and J.-S. Pan, “A
provable secure private data delegation scheme for moun-
taineering events in emergency system,” Ieee Access, vol. 5,
pp. 3410-3422, 2017.

E.Jovanov, A. Milenkovic, C. Otto et al., “A WBAN system for
ambulatory monitoring of physical activity and health status:
applications and challenges,” IEEE, vol. 2005, Article ID
1615290, 3813 pages, 2005.

M. R. Yuce, “Implementation of wireless body area networks
for healthcare systems,” Sensors and Actuators A: Physical,
vol. 162, no. 1, pp. 116-129, 2010.

J. Liu, Z. Zhang, X. Chen, and K. S. Kwak, “Certificateless
remote anonymous authentication schemes for wirelessbody
area networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 332-342, 2013.

Z. Zhao, “An efficient anonymous authentication scheme for
wireless body area networks using elliptic curve cryptosys-
tem,” Journal of Medical Systems, vol. 38, no. 2, pp. 13-17,
2014.

S. Chatterjee, A. K. Das, and J. K. Sing, “A novel and efficient
user access control scheme for wireless body area sensor
networks,” Journal of King Saud University - Computer and
Information Sciences, vol. 26, no. 2, pp. 181-201, 2014.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

11

C. Wang and Y. Zhang, “New authentication scheme for
wireless body area networks using the bilinear pairing,”
Journal of Medical Systems, vol. 39, no. 11, pp. 1-8, 2015.

P. K. Dhillon and S. Kalra, “Multi-factor user authentication
scheme for IoT-based healthcare services,” Journal of Reliable
Intelligent Environments, vol. 4, no. 3, pp. 141-160, 2018.

F. Wu, X. Li, A. K. Sangaiah et al., “A lightweight and robust
two-factor authentication scheme for personalized healthcare
systems using wireless medical sensor networks,” Future
Generation Computer Systems, vol. 82, pp. 727-737, 2018.
M. Fotouhi, M. Bayat, A. K. Das, F. Han, S. M. Pournaghi, and
M. A. Doostari, “A lightweight and secure two-factor au-
thentication scheme for wireless body area networks in
health-care I0T,” Computer Networks, vol. 177, Article ID
107333, 2020.

D. Dolev and A. Yao, “On the security of public key proto-
cols,” IEEE Transactions on Information Theory, vol. 29, no. 2,
pp. 198-208, 1983.

D. Wang, D. He, P. Wang, and C. H. Chu, “Anonymous two-
factor authentication in distributed systems: certain goals are
beyond attainment,” IEEE Transactions on Dependable and
Secure Computing, vol. 12, no. 4, pp. 428-442, 2014.

D. Wang and P. Wang, “Two birds with one stone: two-factor
authentication with security beyond conventional bound,”
IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 4, pp. 708-722, 2016.

D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s
law in passwords,” IEEE Transactions on Information Fo-
rensics and Security, vol. 12, no. 11, pp. 2776-2791, 2017.
V. Odelu, A. K. Das, and A. Goswami, “A secure biometrics-
based multi-server authentication protocol using smart
cards,” IEEE Transactions on Information Forensics and Se-
curity, vol. 10, no. 9, pp. 1953-1966, 2015.

P. Li, J. Su, and X. Wang, “iTLS: lightweight transport-layer
security protocol for iot with minimal latency and perfect
forward secrecy,” IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 6828-6841, 2020.

L. Xiong, D. Peng, T. Peng, H. Liang, and Z. Liu, “A light-
weight anonymous authentication protocol with perfect
forward secrecy for wireless sensor networks,” Sensors, vol. 17,
no. 11, p. 2681, 2017.

T.Y. Wu, L. Yang, Z. Lee, S. C. Chu, S. Kumari, and S. Kumar,
“A provably secure three-factor authentication protocol for
wireless sensor NETWORKS,” Wireless Communications and
Mobile Computing, vol. 2021, Article ID 5537018, 2021.

M. Safkhani, C. Camara, P. Peris-Lopez, and N. Bagheri,
“RSEAP2: an enhanced version of RSEAP, an RFID based
authentication protocol for vehicular cloud computing,”
Vehicular Communications, vol. 28, Article ID 100311, 2021.
S. Kumari, X. Li, F. Wu, A. K. Das, H. Arshad, and
M. K. Khan, “A user friendly mutual authentication and key
agreement scheme for wireless sensor networks using chaotic
maps,” Future Generation Computer Systems, vol. 63,
pp. 56-75, 2016.

J. Srinivas, D. Mishra, and S. Mukhopadhyay, “A mutual
authentication framework for wireless medical sensor net-
works,” Journal of Medical Systems, vol. 41, no. 5, p. 80, 2017.
P. Gope and T. Hwang, “A realistic lightweight anonymous
authentication protocol for securing real-time application
data access in wireless sensor networks,” IEEE Transactions on
Industrial Electronics, vol. 63, no. 11, pp. 7124-7132, 2016.

12

(35]

(36]

J. Li, W. Zhang, S. Kumari, K. K. R. Choo, and D. Hogrefe,
“Security analysis and improvement of a mutual authenti-
cation and key agreement solution for wireless sensor net-
works using chaotic maps,” Transactions on Emerging
Telecommunications Technologies, vol. 29, no. 6, Article ID
€3295, 2018.

A. Adavoudi-Jolfaei, M. Ashouri-Talouki, and S. F. Aghili,
“Lightweight and anonymous three-factor authentication and
access control scheme for real-time applications in wireless
sensor networks,” Peer-to-Peer Networking and Applications,
vol. 12, no. 1, pp. 43-59, 2019.

Security and Communication Networks

