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Research Article
IFN-α-2b Reduces Postoperative Arthrofibrosis in Rats by
Inhibiting Fibroblast Proliferation and Migration through
STAT1/p21 Signaling Pathway

Zhendong Liu ,1,2 Zhehao Fan ,1 Rui Wang ,2 Xiaolei Li ,1 Hui Chen ,1

and Jingcheng Wang 1

1Clinical Medical College of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
2Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China

Correspondence should be addressed to Hui Chen; 506437807@qq.com and Jingcheng Wang; dx120190165@yzu.edu.cn

Received 23 March 2022; Revised 2 November 2022; Accepted 25 January 2023; Published 4 March 2023

Academic Editor: Fumio Tsuji

Copyright © 2023 Zhendong Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To investigate the effect of IFN-α-2b in preventing postoperative arthrofibrosis in rats, its antiproliferation effect on
fibroblasts in vitro, and its molecular mechanism. Methods. The rat model of arthrofibrosis was established and treated with
different concentrations of drugs. Knee specimens were collected for histological and immunohistochemical staining to observe
the effect of IFN-α-2b on arthrofibrosis in rats. The biological information was further mined according to the database data,
and the possible regulatory mechanism of IFN-α-2b on fibroblasts was analyzed. The inhibitory effect of IFN-α-2b on
fibroblast proliferation and migration in vitro was detected by cell counting kit-8 (CCK-8), immunofluorescence analysis, cell
cycle test, EdU assay, wound healing test, and Transwell method, and the analysis results were verified by Western blotting
method. Results. The test results of rat knee joint specimens showed that IFN-α-2b significantly inhibited the degree of fibrosis
after knee joint surgery, the number of fibroblasts in the operation area was less than that of the control group, and the
expression of collagen and proliferation-related proteins decreased. In vitro experimental results show that IFN-α-2b can
inhibit the proliferation and migration of fibroblasts. According to the results of database analysis, it is suggested that the
STAT1/P21 pathway may be involved, and it has been verified and confirmed by Western blotting and other related methods.
Conclusion. IFN-α-2b can reduce surgery-induced arthrofibrosis by inhibiting fibroblast proliferation and migration, which
may be related to the regulation of STAT1/p21 signaling pathway.

1. Introduction

Arthrofibrosis is a common complication in joints after
trauma and surgery, which is characterized by the produc-
tion of excessive fibrous scar tissue in joints [1–3]. Previ-
ous studies have shown that arthrofibrosis is related to
the excessive proliferation of fibroblasts in the surgical
area. The excessive proliferated fibroblasts will migrate to
the area after surgery, secreting excessive extracellular
matrix (ECM) and collagen deposition, which eventually
leads to arthrofibrosis [4, 5]. As the overhyperplasia of
fibrosis tissue causes pain and limits the normal range of

joint activity, it can seriously affect the patient’s postoper-
ative life [6, 7].

In recent years, many strategies have been adopted, such
as all-round movements of the knee joint after anesthesia,
arthroscopic cleaning of joint cavity, and local drug treat-
ment to reduce the formation of postoperative arthrofibrosis
[8–10]. Other studies have reported that the best treatment
for arthrofibrosis is early identification and intervention
[11]. Therefore, the early application of drugs to prevent
arthrofibrosis deserves attention. But, although some
achievements have been made in the research of locally
applied drugs, there are still considerable limitations before
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clinical trials due to the side effects of the above drugs or the
effect of the route of administration.

IFN-α-2b is a kind of cytokine with many biological
activities such as antiviral, antitumor, antiproliferation, and
immunomodulation. It has good drug tolerance in the body,
even in high-dose application [12]. Previous studies have
shown that IFN-α-2b can treat some fibroproliferative dis-
eases (such as hypertrophic scar and keloid) [13]. In addi-
tion, it also plays an active preventive role in scar
formation after glaucoma filtration surgery and scar forma-
tion after cleft palate surgery [14–16]. It can not only inhibit
the proliferation of fibroblasts but also reduce the formation
of collagen, thus preventing the formation of fibrosis. How-
ever, there is no research on IFN-α-2b for arthrofibrosis in
the existing literature. Based on the above research back-
ground, we choose IFN-α-2b on rats for the prevention of
postoperative arthrofibrosis and the treatment of fibroblasts
in vitro in order to explore its effect of preventing knee
arthrofibrosis and the possible mechanism involved.

2. Materials and Methods

2.1. Reagent. The reagent used is recombinant human inter-
feron alpha 2b (IFN-α-2b), purity > 95%, originated from
GenScript Biotechnology Co., Ltd. (Nanjing, China).

2.2. Animals. The animal research in this experiment was
approved by the Animal Research Committee of Yangzhou
University. All rats received strict care. A total of 36 SD male

rats weighing about 300 g were selected and randomly
divided into 3 groups (12 in each group).

2.3. Establishment of Arthrofibrosis Model. After the rats
were successfully anesthetized, the knee joint was opened
through the medial approach of the patella, and the medial
and lateral femoral condyles were fully exposed. The cortical
bone of about 4∗4mm was excised until the cancellous bone
was exposed, and the articular cartilage was intact; then, the
wound was covered with saline or IFN-α-2b gauze for 10
minutes. After hemostasis, the gauze was removed to suture
the joint capsule and skin. After the operation, antibiotics
were applied for 3 consecutive days (intramuscularly,
50mg/kg), and saline or corresponding concentration of
IFN-α-2b 50μl was injected locally in the operation knee
joint 3 times a week [17].

2.4. Histological Analysis. The experiment ended 4 weeks
after surgery. Six rats were randomly selected from each
group, and knee joint specimens were collected for histolog-
ical analysis. The knee joint specimens were fixed with 4%
paraformaldehyde for 48 hours, fully decalcified in ethylene-
diamine tetra acetic acid (EDTA), and embedded in paraffin.
4μm serial sections were deparaffinized to water, and
hematoxylin-eosin (HE) staining was performed to detect
the degree of fibrosis and the number of fibroblasts, and
Masson’s trichrome staining was used to observe the colla-
gen production. The collagen was stained with picric acid-
Sirius red, and the type I collagen and type III collagen were
observed and distinguished under a polarized light
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Figure 1: Histological evaluation of joint fibrosis in different groups. (a, b) HE staining showed fibroblasts in each group of joint fibrotic
tissue; (c) the number of fibroblasts decreased with the increase of IFN-α-2b concentration; (d) Masson’s staining showed the content of
collagen in knee tissues of each group. (e) The results of optical density analysis suggest that IFN-α-2b can effectively reduce the
production of collagen. ∗Compared with the control group. #Comparison between the two groups of IFN-α-2b medications, P < 0:05
(n = 6).
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microscope; the optical density value of the stained image
and the cell count analysis was detected by ImageJ software.

2.5. Immunohistochemical Staining. The sections were
deparaffinized and rehydrated. Sodium citrate buffer was
used to activate antigenicity, 3% H2O2 inhibited peroxidase
activity, and the sections were washed with PBS solution
for 3 time. Then, the primary antibodies (anti-PCNA, anti-
collagen I, and anti-α-SMA) were incubated overnight at
4°C. The sections were incubated with anti-mouse IgG for
30 minutes at room temperature, and the DAB kit was used
to detect antibody binding. Finally, hematoxylin counter-

staining was carried out, and the results were observed and
photographed under an optical microscope.

2.6. Dataset Selection and DEG Identification. The gene
expression dataset GSE38652 was obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). The screen-
ing basis included (a) IFN-α-2b as the processing factor,
(b) fibroblasts as the intervention object, and (c) the organ-
ism as Homo sapiens. GSE38652 is based on the
GPL10558 (Illumina HumanHT-12 V4.0 expression bead-
chip) platform, and all data can be obtained online for free.
Use GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
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Figure 2: Immunohistochemical staining images of joint fibrosis in different groups (×400 magnification). (a, c) The results of
immunohistochemical staining of type I collagen and type III collagen in joint fibrotic tissue. (b, d) The positive expression of collagen
immunohistochemical staining in the IFN-α-2b group was significantly reduced. IFN-α-2b effectively inhibits the formation of collagen I
and collagen III in fibrotic tissues. (e) The result of Sirius red staining was visualized by polarized light microscope, in which type I
collagen was yellow and type III collagen was green. The image shows that collagen fibers decrease with increasing drug concentration.
(f, h) Immunohistochemical staining image of PCNA and α-SMA. (g, i) The IFN-α-2b medication group can significantly reduce the
expression of PCNA and α-SMA. ∗Compared with the control group. #Comparison between the two groups of IFN-α-2b medications, P
< 0:05 (n = 6).
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online software to analyze raw data and identify differen-
tially expressed genes (DEGs). P < 0:05 and jlogFCj ≥ 1 were
used as cut-off criteria to obtain DEGs.

2.7. Enrichment Analyses of DEGs and PPI Network. The
protein-protein interaction (PPI) network was established
by STRING database (http://string-db.org) [18]. In this
research, the interaction with high confidence > 0:7 was sta-
tistically significant. In order to explore more biological
information related to DEGs and obtain more comprehen-
sive gene and protein function, we conducted Gene Ontol-
ogy (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
through Metascape (http://metascape.org) [19]. GO enrich-
ment analysis includes biological processes (BP), cell compo-
nent (CC), and molecular function (MF). In addition, we
also performed TRRUST transcriptional regulatory network
analysis [20].

2.8. Fibroblast Culture and IFN-α-2b Treatments. The
human fibroblast cell line was offered by Jenino Biotech
Co., Ltd. (Guangzhou, China) and then cultured in a
medium containing 15% fetal bovine serum (FBS; Gemini,

USA) and 1% streptomycin/penicillin (Beyotime, Shanghai,
China), at 37°C with 5% CO2. Select fibroblasts between 3
and 5 generations for subsequent experiments. Fibroblasts
were treated with IFN-α-2b in four concentration groups
(0, 1000, 5000, and 10000 IU/ml) [17]. In the mechanism
research group, we pretreated fibroblasts with 50μM fludar-
abine (a specific Stat1 inhibitor) for 2 hours and then chan-
ged to a medium containing different concentrations of IFN-
α-2b to continue incubating [21].

2.9. Cell Viability Assay. Firstly, 100μl cell suspension was
planted in 96-well culture plate. When the cell density
reached 60%-70%, different concentrations of IFN-α-2b
were added to treat fibroblasts. After drug stimulation,
10μl CCK-8 (Dojindo, Tokyo, Japan) solution was added
and then cultured at 37°C for 2 hours. Finally, the absor-
bance at 450nm was measured.

2.10. Cell Cycle Analysis. Fibroblasts were treated with IFN-
α-2b of 5,000U/ml for 48 hours and then operated accord-
ing to the instructions of Cell Cycle Testing Kit (Beyotime,
Shanghai, China). Cells were collected, centrifuged at
2,000 r/min for 5 minutes, washed with precooled PBS, fixed

(f)

Figure 3: Dataset selection and DEG enrichment analysis. (a) The volcano map of the differentially expressed genes of IFN-α-2b acting on
fibroblasts in the dataset GSE38652. (b) Based on the STRING database, the PPI interaction network diagram showing significant DEGs
with an absolute value of logFc ≥ 1. (c–f) Enrichment analysis results based on Metascape. (c) GO enrichment analysis results; (d) KEGG
pathway enrichment analysis; (e) TRRUST transcriptional regulatory network analysis results; (f) differential gene interaction
relationship PPI network diagram and hub genes.
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Figure 4: IFN-α-2b inhibited fibroblast proliferation and extracellular matrix secretion. (a) CCK-8 assay showed that IFN-α-2b inhibited
fibroblast activity in a concentration- and time-dependent manner. (b) Flow cytometry analysis of cell cycle distribution showed that
fibroblasts were arrested in the S phase after 48 hours of IFN-α-2b treatment. (c) The expression images of α-SMA and collagen I in cells
treated with IFN-α-2b for 48 hours were observed under fluorescence microscope.
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Figure 5: Continued.
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with 70% absolute ethanol, and fixed overnight at 4°C. After
centrifugation again, cells were resuspended with 500μl pro-
pidium iodide staining solution prepared in advance, incu-
bated at room temperature for 30 minutes in the dark, and
then, flow cytometry was performed. Finally, the distribu-
tion of cells in different periods was calculated by ModFit
LT software.

2.11. Cell Immunofluorescence Imaging Analysis. Fibroblasts
were fixed in 4% paraformaldehyde for 20 minutes, infil-
trated with 0.5% Triton X-100 for 10 minutes, and blocked
with 5% goat serum at room temperature for 30 minutes.
Then, the primary antibody mixture (type I collagen and
α-SMA) was dripped onto the cell slide and incubated over-
night at 4°C. After PBST cleaning, the secondary antibody
was incubated in the dark at room temperature for 1 hour.
After cleaning, DAPI was stained in the dark for 10 minutes.
Finally, the images were collected under the fluorescence
microscope (Zeiss, Germany).

2.12. EdU Incorporation Assay. Cell-Light KFluor555 EdU
Kit (KeyGEN, Nanjing, China) was used to detect the prolif-
eration of fibroblasts. Operate according to the instructions.
First, plant fibroblasts on glass cell slides in a 6-well plate at a

cell density of 1 × 105/well. The cells were cultured at 37°C
overnight, and different concentrations of interferon-α-2b
were added to the culture medium for 48 hours. After sup-
plementing with 10 μM EdU and incubating for 2 h, the cells
were fixed with 4% paraformaldehyde for 15 minutes, and
then infiltrate with 0.5% Triton X-100 for 20 minutes.
Finally, stain with Hoechst 33342, incubate in the dark at
room temperature for 10min, and observe the positive stain-
ing under an upright fluorescence microscope.

2.13. Cell Migration Assay. Wound healing test and Trans-
well migration test were used to evaluate cell migration
behavior. In short, put a sterilized culture-inserts in the cen-
ter of each hole of the 12 well culture plate, add 70ml of cell
suspension in each interval of the culture-inserts, place it in
the cell incubator until the cells are completely fused at the
bottom, and then gently remove the culture-inserts. Wash
with PBS for 3 times, and then, serum-free medium and
detection reagents were added; observe and collect images
at different time points (0, 12, 24, and 48 h).

Polycarbonate membrane Transwell filter was selected
for Transwell assay (Corning Company, New York, USA).
Firstly, 600μl complete culture medium was added into each
well of the 24-well plate, and then, 100μl of serum-free
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Figure 5: The inhibitory effect of IFN-α-2b on the proliferation of fibroblasts by STAT1/P21 signaling pathway. (a) After treating fibroblasts
with IFN-α-2b or combined with fludarabine, perform EdU staining to analyze the result image. The cells shown in red are marked as
positive. (b) The results of the EdU incorporation test showed that as the concentration of IFN-α-2b increased, the percentage of positive
cells decreased significantly. This trend was partially reversed by fludarabine. (c, e) Western blotting shows the increase of PCNA, cyclin
A, and collagen I and predicts the expression levels of related pathway proteins. (d, f) The analysis results showed that IFN-α-2b
significantly reduced the relative expression levels of PCNA, cyclin A, and collagen I in a concentration-dependent manner, while
increasing the relative expression levels of P-STAT1 and P21. And after fludarabine application, the trend of action was partially
reversed. The histogram shows the results of three repeated detections of the gray value of the Western blot band. ∗Compared with the
control group. ∗∗Compared between the two groups, P < 0:05 (n = 3).
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fibroblast suspension (5 × 104 cells) was transferred to the
upper layer of the Transwell chamber and treated with dif-
ferent reagents. After cultured in the cell incubator for 24
hours, the chamber was lightly washed with PBS, fixed with
4% paraformaldehyde, stained with crystal violet, and gently
wiped the upper cells of the chamber with a cotton swab.
Finally, the images were collected under Zeiss inverted
microscope. The wound healing rate and migrating trans-
membrane cells were calculated by ImageJ software.

2.14. Western Blotting Analysis. According to the instruc-
tions of RIPA Lysis Solution (Beyotime, Shanghai, China),
the total proteins of different groups of fibroblasts were
extracted. The same amount of total protein (60μg/lane)
was electrophoresed on 10% or 12% SDS-PAGE and then
transferred to polyvinylidene difluoride membranes (Milli-
pore, Bedford, MA) at low temperature. Block with 5%
skimmed milk or 3% bovine serum albumin (BSA) at room
temperature for 2 hours, incubate the primary antibody
overnight at 4°C, and then incubate the secondary antibody
at room temperature for 2 hours. Finally, the enhanced
chemiluminescence detection kit (ECL Plus kit, Beyotime)
was used to detect protein bands.

The mouse monoclonal antibodies PCNA (#2586), rab-
bit monoclonal antibodies cyclin A (#67955), horseradish
peroxidase-conjugated goat anti-mouse (#7056), and goat
anti-rabbit (#7074) antibodies were purchased from Cell Sig-
naling Technology (Beverly, MA, USA). The rabbit mono-
clonal antibodies STAT1 (ab109320) and phospho-STAT1
(ab109461) were offered by Abcam (Cambridge, UK). The
mouse monoclonal α-SMA (67735-1-Ig), rabbit polyclonal
antibody P21 (10355-1-AP), collagen type I (14695-1-AP),
β-actin (20536-1-AP), and GAPDH (10494-1-AP) were
offered by Proteintech Group (Wuhan, China).

2.15. Statistical Analysis. All data in this study were analyzed
by SPSS 19.0 statistical software. The data were expressed as
mean ± standard deviation. Data were analyzed by one-way
analysis of variance (ANOVA), followed by Tukey’s test
for comparison between groups. P < 0:05 was considered
statistically significant.

3. Results

3.1. IFN-α-2b Improves Postoperative Arthrofibrosis in Rats.
According to the HE staining results, the number of scar
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Figure 6: IFN-α-2b inhibits the migration of fibroblasts by STAT1/P21 signaling pathway. (a, b) In vitro wound healing experiments
showed that the IFN-α-2b treatment group significantly inhibited the migration rate of fibroblasts. (c, d) Compared with the control
group, the number of cells passing through the cell bottom membrane in the IFN-α-2b treatment group was significantly reduced. And it
is concentration-dependent. (e, f) Western blotting shows that the IFN-α-2b treatment group can reduce the relative expression level of
α-SMA, while the fludarabine and IFN-α-2b coapplication groups can partially reverse the above-mentioned inhibitory trend of IFN-α-
2b. Each sample randomly selects 10 microscope fields and conducts 3 independent experiments. ∗Compared with the control group. ∗∗

Compared between the two groups, P < 0:05 (n = 3).
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Figure 7: Crosstalk between STAT1/P21 and TGFβ/Smad signaling pathways. (a) Western blotting showed the expression levels of p-Stat1,
Smad7, p-Smad3, and collagen I in different groups. (b) The analysis results showed that IFN-α-2b significantly reduced the relative
expression levels of p-Smad3 and collagen I, while increasing the relative expression levels of p-STAT1 and Smad7. Within the
fludarabine prestimulation group, the effect trend was partially reversed. Compared with the IFN-α-2b group, the change trend of p-
Smad3 and collagen I was enhanced in the SIS3 prestimulation group, but only the former had statistical significance, while p-STAT1
and Smad7 had no significant change. The histogram shows the results of three repeated detections of the gray value of the Western blot
band. ∗Compared with the IFN-α-2b group, P < 0:05 (n = 3).
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fibroblasts and dense fibrous tissue around the knee opera-
tion area in the IFN-α-2b group decreased, the tissue struc-
ture was sparse, and the degree of fibrosis was improved
(Figures 1(a) and 1(b)); the number of fibroblasts decreased
with the increase of IFN-α-2b concentration (Figure 1(c)).
Masson’s staining was used to evaluate the degree of collagen
synthesis in arthrofibrosis after local administration of IFN-
α-2b. The staining results showed that collagen synthesis in
arthrofibrosis decreased after application of IFN-α-2b, espe-
cially in the high-dose application group (Figure 1(d)); the
results of optical density analysis also suggest that IFN-α-
2b can effectively reduce the production of collagen
(Figure 1(e)).

Immunohistochemical staining showed that the expres-
sion of type I collagen in the IFN-α-2b treatment group
was lower than that in the normal saline application group
(Figures 2(a) and 2(b)). The same was true for the expres-
sion of type III collagen (Figures 2(c) and 2(d)). Sirius red
staining showed that type I collagen fibers (red or yellow)
and type III collagen fibers (green) decreased in the IFN-α-
2b treatment group (Figure 2(e)). Similarly, immunohisto-
chemical staining of proliferation- and migration-related
proteins PCNA (Figure 2(f)) and α-SMA (Figure 2(h))
showed that the expression of the IFN-α-2b-treated group
was significantly lower than that of the control group
(Figures 2(g) and 2(i)). In conclusion, the above in vivo
experimental results suggest that IFN-α-2b has the potential
to improve arthrofibrosis in rats.

3.2. DEG Acquisition and PPI Network Relationship, GO,
KEGG, and TRRUST Enrichment Analyses. The volcano
map shows the distribution of 28,553 expressed genes
(Figure 3(a)). Among them, according to jlogFCj ≥ 1 and P
< 0:05 as the cut-off criteria, 78 DEGs were extracted, and
the interaction relationship is shown in Figure 3(b). In order
to obtain more biological information, we used the online
database (Metascape) to perform GO and KEGG enrich-
ment analyses. DEGs are divided into three functional
groups: biological processes (BP), molecular functions
(MF), and cellular components (CC). GO analysis shows
that changes in biological processes are significantly
enriched in defense response to virus, negative regulation
of viral process, response to type I interferon, positive regu-
lation of type I interferon production, and other immune
response and transcriptional regulation. As for cellular com-
ponents, DEGs are abundant in the perinuclear region of
cytoplasm. Changes in molecular functions are mainly con-
centrated in 2′-5′-oligoadenylate synthetase activity, RNA
helicase activity, nuclearoside-triphosphatase activity,
ubiquitin-protein transferase activity, protein homodimeri-
zation activity, ubiquitin-like protein ligase binding, nuclear
receptor binding, and protein phosphatase binding aspect
(Figure 3(c)). KEGG pathway analysis showed that DEGs
play a key role in hepatitis C/B, RIG-I-like receptor signaling
pathway, and TNF signaling pathway (Figure 3(d)). The
TRRUST database can provide information on how to regu-
late these interactions, and analysis suggests that DEG tran-
scriptional regulation is mainly enriched in genes such as
STAT1, IRF1, BRCA1, and RELA (Figure 3(e)). The

protein-protein interaction (PPI) network results showed
22 hub genes and 125 connections (Figure 3(f)), including
the STAT1 gene. Through the above analysis, we speculate
that the role played by IFN-α-2b on fibroblasts is mainly reg-
ulated by STAT1, and P21, as a downstream molecule of
STAT1, can regulate cell proliferation. Therefore, we verified
the STAT1/P21 pathway in vitro.

3.3. IFN-α-2b Inhibits Fibroblast Proliferation. CCK-8 assay
showed that the activity of fibroblasts decreased with the
increase of IFN-α-2b concentration and the prolongation
of treatment time. The results showed that IFN-α-2b inhib-
ited the activity of fibroblasts in a time- and concentration-
dependent manner (Figure 4(a)). Flow cytometry analysis
showed that the proportion of IFN-α-2b-treated cells
increased significantly in the S phase, suggesting that the cell
cycle may be blocked in the S phase (Figure 4(b)). Fluores-
cence microscopy analysis showed that with the increase of
IFN-α-2b concentration, the fluorescence intensity of type
I collagen and α-SMA gradually decreased, suggesting that
IFN-α-2b reduces the formation of extracellular matrix
(Figure 4(c)).

The analysis of EdU experimental results showed that as
the concentration of IFN-α-2b increased, EdU-positive
fibroblasts decreased, the statistical results showed a signifi-
cant difference, and the fludarabine group partially reversed
the trend (Figures 5(a) and 5(b)). In addition, Western blot
results showed that the expression levels of proliferation-
related proteins PCNA, cyclin A, and type I collagen also
decreased with the increase of IFN-α-2b concentration
(Figures 5(c) and 5(d)), while STAT1 and P21 were activated
with the application of IFN-α-2b. This is because the expres-
sion levels of p-STAT1/STAT1 and P21 gradually increased
(Figures 5(e) and 5(f)). With the addition of fludarabine, the
above phenomenon reversed the blocking expression trend
to a certain extent.

3.4. IFN-α-2b Inhibits Fibroblast Migration. After treatment
with IFN-α-2b, themigration of fibroblasts was inhibited. Com-
pared with the control group, the wound healing rate of the
IFN-α-2b group decreased in a dose-dependent manner
(Figures 6(a) and 6(b)). The results of Transwell migration
experiment showed that the concentration of IFN-α-2b
increased. As the concentration of IFN-α-2b increases, the
number of cells on the bottom membrane of the migration
chamber gradually decreases (Figures 6(c) and 6(d)). Western
blot showed that the expression level of α-SMA in the IFN-α-
2b application group showed a downward trend, and the fludar-
abine application group also saw a partial reversal of the inhibi-
tion trend (Figures 6(e) and 6(f)). In summary, the above
experimental results show that IFN-α-2b can inhibit the prolif-
eration andmigration of fibroblasts, and the STAT1/P21 signal-
ing pathway may be involved in the regulation.

3.5. Crosstalk between STAT1/P21 and TGFβ/Smad
Signaling Pathways. Our team before published an article on
IFN-α-2b treatment of epidural postoperative adhesion, which
showed that IFN-α-2b can play a role by inhibiting TGFβ/
Smad signal pathway [17]. The relevant signaling pathways
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involved in this manuscript are experimentally verified by us
after screening the network database. The results showed that
IFN-α-2b could inhibit proliferation and fibrosis after knee
surgery through STAT1/P21 pathway. For these two signaling
pathways in the study of the relationship, we conducted the
experiment verification. Here, we added Smad3-specific inhib-
itor (SIS3) and STAT1-specific inhibitor fludarabine for pres-
timulation [21, 22], and the results showed that STAT1
phosphorylation was activated by IFN-α-2b application and
Smad7 expression was increased (which inhibited Smad3
phosphorylation). In addition, Smad3 phosphorylation and
type I collagen expression were significantly decreased, which
could be reversed by fludarabine pretreatment. The activation
of p-STAT1 and the expression of Samd7 decreased, the phos-
phorylation of Smad3 increased, and the expression of type I
collagen increased. However, the phosphorylation level of
Smad3 was significantly reduced in the group treated with
SIS3 in advance, although the expression of type 1 collagen
also showed a downward trend, but there was no statistical dif-
ference, and the activated expression levels of Smad7 and p-
STAT1 did not change significantly (Figures 7(a) and 7(b)).
According to the experimental results, we inferred that there
is crosstalk between STAT1/P21 and TGFβ/Smad signaling
pathways, which may be due to the phosphorylation and acti-
vation of STAT1, which stimulates the increase of Smad7 and
then plays a role in inhibiting the activation of Smad3.

4. Discussion

As mentioned earlier, excessive proliferation of fibroblasts
and excessive secretion of extracellular matrix (ECM) in
the surgical area can lead to fibrosis [10], while collagen is
one of the important components of extracellular matrix,
which can promote cell proliferation and migration [23].
Fibroblasts are transformed into myofibroblasts during
fibrosis, resulting in excessive synthesis and deposition of
extracellular matrix proteins [24, 25]. The expression of α-
SMA is considered to be a specific marker of myofibroblasts
[26]. Clinical studies have reported that the expression of α-
SMA increased significantly in joint fibrosis specimens [27],
and the high expression of α-SMA is also closely related to
the proliferation and migration of fibroblasts [28, 29]. In this
study, both Masson’s staining and Sirius red staining showed
a decrease in collagen deposition in the IFN-α-2b treatment
group. The results of in vitro experiments also suggested that
the expression of collagen I and α-SMA decreased in the
IFN-α-2b-treated group.

A number of studies have reported that IFN-α-2b can
activate STAT1, resulting in the phosphorylation of STAT1
[30, 31]. STAT1 is a member of STAT protein family. In
response to cytokines and growth factors, STAT family
members are phosphorylated by receptor-related kinases
and then form homodimers or heterodimers, which are
transferred to the nucleus as transcriptional activators. It
has been reported that the mice, struck off the STAT1 gene,
are more likely to have chemically induced lung and liver
fibrosis [32]. In the skin model, the expression of collagen
and α-SMA in the granulation tissue around the wound of
mice with fibroblast STAT1 gene defects increased, and the

perivascular fibrosis increased significantly. These results
indicated that STAT1 plays a role in tissue repair [33]. As
a key element of IFN-α-2b signal transduction, the function
of STAT1 is mainly determined by its phosphorylation state.
As an active form of STAT1, p-STAT1 has been shown to
inhibit tumor growth by regulating cell cycles [34]. As a reg-
ulator downstream of STAT1, p21 is the first identified
cyclin-dependent kinase inhibitor (CKI) protein member.
P21 can bind to several compounds of cyclins and cyclin-
dependent kinases (CDK), such as cyclin A/CDK2, cyclin
E/CDK2, cyclin D1/CDK4, and cyclin D2/CDK4 [35, 36].
The increased expression of p21 can reduce the expression
of cyclin, thus inducing cell cycle stagnation and inhibiting
cell proliferation [37], which is consistent with our experi-
mental results. In this study, with the increase of IFN-α-2b
concentration, the expression of p-stat1 and p21 increased,
while cell proliferation and migration were inhibited. The
results of the pretreatment group with STAT1-specific
inhibitor (fludarabine) partially reversed this trend. This
means that STAT1/p21signaling pathway is involved in the
antiproliferation and migration inhibition of IFN-α-2b. In
this study, we explored the relationship between STAT1/
P21 and TGFβ/Smad signaling pathways. After all, the
TGFβ/Smad signaling pathway plays a crucial role in the
formation of fibrosis. The results suggest that there is cross-
talk between the two signal pathways; that is, the activation
of Stat1 can promote the increase of the expression of
Smad7, thus preventing the expression of Smad3, which is
similar to some previous studies [38, 39].

During our experiment, there were no delayed wound
healing, epidermal necrosis, surgical incision infection, and
death. However, we did not explore the application of larger
dose and time, nor did we screen the optimal application
concentration of drugs, which is also the deficiency of this
experiment. In addition, the formation mechanism of fibro-
sis is very complex. In addition to the proliferation and
migration of fibroblasts, inflammatory response is also
involved in the formation of arthrofibrosis [40]. Interest-
ingly, STAT1 acts as a transcription factor in regulating pro-
inflammatory and anti-inflammatory responses, making
STAT1 an attractive anti-inflammatory target [41]. How-
ever, these were not measured in this study. We will con-
tinue to refine these explorations in future research. We
are looking forward to more comprehensive and in-depth
research and application.

5. Conclusion

In conclusion, this study firstly verified that IFN-α-2b can
reduce surgery-induced arthrofibrosis by inhibiting fibro-
blast proliferation and migration, which may be related to
the regulation of STAT1/p21 signaling pathway. Our study
provides a new therapeutic target for intervention in
arthrofibrosis.
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Thymic stromal lymphopoietin (TSLP), long known to be involved in Th2 response, is also implicated in multiple inflammatory
dermatoses and cancers. The purpose of this study was to improve our understanding of the expression of TSLP in the skin of
those dermatoses. Lesional specimens of representative immune-related dermatoses, including lichen planus (LP), discoid lupus
erythematosus (DLE), eczema, bullous pemphigoid (BP), psoriasis vulgaris (PsV), sarcoidosis, and mycosis fungoides (MF),
were retrospectively collected and analyzed by immunohistochemistry. Morphologically, TSLP was extensively expressed in the
epidermis of each dermatosis, but the expression was weak in specimens of DLE. In a semiquantitative analysis, TSLP was
significantly expressed in the epidermis in LP, BP, eczema, PsV, sarcoidosis, and MF. TSLP expression was higher in the
stratum spinosum in LP, eczema, BP, PsV, and MF and higher in the stratum basale in sarcoidosis and PsV. Moreover, we
found positive TSLP staining in the dermal infiltrating inflammatory cells of BP, PsV, and sarcoidosis. Our observation of
TSLP in different inflammatory dermatoses might provide a novel understanding of TSLP in the mechanism of diseases with
distinctly different immune response patterns and suggest a potential novel therapeutic target of those diseases.

1. Introduction

Thymic stromal lymphopoietin (TSLP), a type of epithelial-
derived cytokine, was originally identified as a factor pro-
moting B cell proliferation and development [1, 2]. Subse-
quently, TSLP was found to induce dendritic cells (DCs) or
directly act on innate lymphoid cells and CD4+ T cells and
to promote the immune responses of helper T type (Th) 2
cells [2, 3]. Furthermore, previous studies have demon-
strated that TSLP promotes Th17 cell differentiation under
Th2 polarizing conditions [4] and acts on neutrophils to
enhance S. aureus killing in the innate immune response
[5]. Hematopoietic progenitor cells, basophils, eosinophils,
mast cells, monocytes/macrophages, and platelets also
express TSLP receptors (TSLPR) and thus could be activated
by TSLP [3, 6].

Initially, research about TSLP mainly focused on allergic
disorders, such as allergic asthma, atopic dermatitis (AD),
allergic rhinitis, eosinophilic esophagitis, and food allergies
[2, 7, 8]. It was gradually revealed that TSLP is extensively
involved in autoimmune diseases and cancers [3]. Moreover,
expression of TSLP was found to participate in many inflam-
matory dermatoses, such as psoriasis vulgaris (PsV) [9, 10],
bullous pemphigoid (BP) [11], and alopecia areata [12].
Those diseases distinctly differ in clinical manifestations,
pathology, and immune response patterns.

Combining clinical and histopathologic phenotypes with
immunology and molecular genetics, noncommunicable
inflammatory dermatoses could be classified into six
immune response patterns [13]. PsV is a classic psoriatic
pattern dermatosis and regards as a Th1/Th17-induced
inflammatory disease [13, 14]. Eczema is a common
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inflammatory dermatosis with widely diverse aetiologies and
is considered one of the type 2 immune diseases. BP, the
most common autoimmune blister disease, is mainly
induced by pathogenic autoantibodies and the Th2 response.
TSLP expression was elevated in sera and lesions of patients
with PsV and BP [9–11, 15]. But the previous studies have
not revealed the specific site of skin lesions that TSLP
expressed in those dermatoses. Lichen planus (LP), as a typ-
ical lichenoid pattern dermatosis, is primarily induced by
cytotoxic CD8+ T cells attacking the keratinocytes. Previous
research has reported that TSLP expression is elevated in the
oral epithelium and sera of patients with oral LP [16, 17].
Sarcoidosis is a typical noninfectious granulomatous pattern
disease, characterized by granulomas and fibrosis. Previous
studies have shown that the TSLP level in the bronchoalve-
olar lavage fluid of pulmonary sarcoidosis is not higher than
that of normal controls [18]. Thus far, no studies have inves-
tigated TSLP expressed in LP and cutaneous sarcoidosis. In
conclusion, the involvement of TSLP in multiple dermatoses
with different features is notable.

To better understand the exact location and pattern of
TSLP expression in the skin of patients suffering from differ-
ent dermatoses, we analyzed by immunohistochemistry ret-
rospective samples of representative immune-related
dermatoses, including LP, discoid lupus erythematosus
(DLE), PsV, BP, eczema, sarcoidosis, and mycosis fungoides
(MF).

2. Materials and Methods

2.1. Specimen Selection. The dermatopathology database of
the Department of Dermatology at Peking Union Medical
College Hospital (Beijing) was queried to identify samples
consistent with LP, LE, eczema, BP, PsV, sarcoidosis, and
MF. Healthy controls (HC) for stains were recruited from
normal surrounding skin in patients with nevi, cysts, or seb-
orrheic keratosis. This study was performed in line with the
principles of the Declaration of Helsinki (as revised in 2013).
Approval was granted by the Ethical Review Committee of
Peking Union Medical College Hospital (ZS-1735). Potential
participants who had received systematic glucocorticoids,
immunosuppressants, biologics, or long-term topical treat-
ment were excluded from the study. The criteria for speci-
men selection are shown in Table 1.

2.2. Immunohistochemistry. Paraffin sections were deparaf-
finized and blocked with 3% hydrogen peroxide for 15min,
then incubated with goat serum solution for 1 h at room
temperature. Next, samples were incubated with rabbit
anti-human TSLP (ProteinTech Group, Rosemont, IL,
USA) overnight at 4°C, followed by incubation with HRP-
conjugated AffiniPure goat anti-rabbit IgG (ProteinTech
Group, Rosemont, IL, USA). The specimens were then
stained with DAB (Solarbio, Beijing, China), followed by
washing and counterstaining with hematoxylin (Solarbio,
Beijing, China).

2.3. Specimen Grading. For quantitative image analysis, the
slides were scanned using a NanoZoomer 2.0-RS (Hamama-

tsu, Japan), and five visual fields were selected randomly for
each slide. Each section was graded semiquantitatively on a
scale of 0–3 (0: negative, 1: mild, 2: moderate, and 3: strong)
blindly assessed by two dermatologists in five randomly
selected visual fields at high (400X) magnification of scanned
sections. The section whose average grade is greater than one
was considered a positive case. The gradient of the stratum
basale and the stratum spinosum was mathematically calcu-
lated by subtracting the stratum basale score from that of the
stratum spinosum.

2.4. Statistical Analysis. The grades of TSLP expression in
the stratum basale and the stratum spinosum were presented
as means ± standard deviations. A one-way ANOVA and
Dunnett’s test (the HC group was considered the control
group) were used to determine the significance of grade.
One-group Student’s t-test was used to determine the signif-
icance of the gradient of the stratum basale and the stratum
spinosum. A one-way ANOVA was used to assess general
differences among each dermatosis group, and Bonferroni
adjustment was used to assess differences between each der-
matosis group pair. The grade correlation of TSLP expres-
sion between the stratum basale and the stratum spinosum
was evaluated using the Pearson correlation test. Statistical
significance was assigned at p < 0:05. SAS 9.4 (SAS Institute,
Cary, NC, USA) was used for statistical analyses. The Prism
7 software (GraphPad Software, Inc, La Jolla, CA, USA) was
used to generate statistical graphs.

3. Results

3.1. TSLP Was Expressed in the Epidermis of Inflammatory
Dermatoses. A total of 76 specimens, composed of LP
(n = 10), DLE (n = 10), eczema (n = 10), BP (n = 10), PsV
(n = 11), sarcoidosis (n = 10), MF (n = 10), and HC (n = 5),
were collected for our investigation (Table 2). Morphologi-
cally, TSLP was distinctly expressed in the epidermis of LP,
BP, eczema, PsV, sarcoidosis, and MF specimens, while in
the epidermis with DLE, TSLP-positive keratinocytes could
also be observed focally, not as widespread as other derma-
toses in our investigation. There were a fewer lightly stained
positive cells in the epidermis of HC (Figure 1).

Positive rates of TSLP expression in the epidermis in
each group are presented in Table 3, and mean grades of
TSLP expression in the stratum basale and the stratum spi-
nosum are presented in Figure 2. Compared to that in HC,
TSLP was significantly expressed semiquantitatively in the
stratum basale of the epidermis with PsV (p = 0:002) and
sarcoidosis (p=0.025) specimens and not significantly
expressed in LP (p = 0:102), DLE (p = 0:360), eczema
(p = 0:253), BP (p = 0:145), and MF (p = 0:436)
(Figure 2(a)). Similarly, TSLP was significantly expressed in
the stratum spinosum of the epidermis in LP (p = 0:002),
BP (p = 0:031), PsV (p = 0:002), eczema (p = 0:041), and
MF (p = 0:046) specimens and not significantly expressed
in DLE (p = 0:217) and sarcoidosis (p = 0:309)
(Figure 2(b)). In the epidermis of DLE, the semiquantitative
score of TSLP expression was not significant.
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To further investigate the diversity of TSLP expression
among these dermatoses, we compared the grade between
every two groups. There were no significant differences in
TSLP expression in both the stratum spinosum and the stra-
tum basale grades among these dermatosis groups, which
means TSLP expression did not significantly differ between
each disease group overall.

3.2. The Differences of TSLP Expression between the Stratum
Basale and the Stratum Spinosum. Morphologically, there
were no apparent differences in TSLP stain intensity
between the stratum basale and the stratum spinosum. How-
ever, mean semiquantitative grades in the stratum spinosum
were significantly higher than those in the stratum basale in
LP (p = 0:022) specimens and lower than those in the stra-
tum basale in sarcoidosis (p = 0:019) specimens. The differ-
ences of TSLP expression between the stratum basale and
the stratum spinosum in other dermatoses were not signifi-
cant (Figure 2(c), DLE p = 0:584, eczema p = 0:153, BP p =
0:146, PsV p = 0:777, and MF p = 0:173).

Moreover, to further investigate the gradients of the stra-
tum basale and the stratum spinosum expression among

dermatoses, we compared it between every two groups.
The gradients of the stratum basale and the stratum spino-
sum expression of TSLP in sarcoidosis were different from
LP (p = 0:009), eczema (p = 0:030), BP (p = 0:027), and MF
(p = 0:023), respectively. The differences of gradients
between other dermatoses were not significant (Figure 2(c)).

3.3. The Correlations of TSLP Expression between the
Stratum Basale and the Stratum Spinosum. Generally, there
was a significantly positive correlation in TSLP expression
between the stratum spinosum and the stratum basale in
all specimens (r = 0:713, p < 0:001). Similar correlations
could also be found in LP (r = 0:654, p = 0:040), DLE
(r = 0:673, p = 0:033), eczema (r = 0:851, p = 0:002), BP
(r = 0:904, p < 0:001), PsV (r = 0:618, p = 0:043), and sar-
coidosis (r = 0:886, p < 0:001) specimens, whereas in MF
(r = 0:305, p = 0:391) and HC (r = −0:25, p = 0:685) speci-
mens, this correlation was not significant (Table 4).

3.4. TSLP Was Also Expressed in the Dermis of BP, PsV, and
Sarcoidosis. Finally, we found positive TSLP staining in the
dermal infiltrating inflammatory cells in BP, PsV, and sar-
coidosis. In BP, TSLP-positive cells scattered among

Table 2: List of participants for specimens used in a retrospective analysis.

Group Number of cases Age, years (mean (range))
Sex

Male Female

LP 10 48.8 (29-65) 3 7

DLE 10 41.5 (24-67) 5 5

Eczema 10 50.2 (27-74) 5 5

BP 10 70.4 (51-87) 5 5

PsV 11 49.7 (26-73) 6 5

Sarcoidosis 10 55.5 (30-76) 3 7

MF 10 38.4 (20-67) 6 4

HC 5 40.8 (28-56) 2 3

Age was record at the time of samples collection. LP: lichen planus; DLE: discoid lupus erythematosus; BP: bullous pemphigoid; PsV: psoriasis vulgaris; MF:
mycosis fungoides; HC: healthy control.

Table 1: Inclusion criteria for specimens used in retrospective analysis.

Disease Inclusion criteria

LP
Typical clinical manifestation + wedge-shaped hypergranulosis, dense band-like

lymphocytic infiltrate with an absence of eosinophils or parakeratosis

DLE
Clinical suspicion + hyperkeratosis, vacuolar interface change, thickened basement

membrane with patchy superficial and deep lymphocytic infiltrate

Eczema
Clinical suspicion + spongiosis with superficial perivascular inflammatory infiltrate,

and without clear aetiology, not atopic dermatitis or contact dermatitis

BP
Clinical suspicion + subepidermal blister with direct or indirect

immunofluorescence and/or autoantibodies

PsV Clinical suspicion + confluent parakeratosis with regular acanthosis

Sarcoidosis
Clinical suspicion + “naked” granulomas with no/minimal lymphocytes

surrounding granuloma, rule tuberculosis and leprosy out

MF
Clinical suspicion + epidermotropic lymphocytes, intraepidermal collections

of lymphocytes, atypical lymphocytes, typical immunophenotype
with clonal TCR rearrangement

LP: lichen planus; DLE: discoid lupus erythematosus; BP: bullous pemphigoid; PsV: psoriasis vulgaris; MF: mycosis fungoides.
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abundant inflammatory cells (Figures 3(a) and 3(b)). In PsV,
TSLP was expressed in the dermal superficial perivascular
inflammatory cells and endothelial cells (Figures 3(c) and
3(d)). In sarcoidosis, TSLP was expressed in epithelioid cells
in “naked” granulomas (Figures 3(e) and 3(f)). Regardless of
the extent of inflammatory cell infiltrating into the dermis,
we did not observe predominant TSLP expression in other
dermatoses specimens.

4. Discussion

In our study, we investigated the lesional expression of TSLP
in representative dermatoses with different immune pat-

terns. Morphologically, we found TSLP expressed in each
dermatosis to some extent. Using semiquantitative analysis,
except for DLE, TSLP was expressed in the stratum basale
or the stratum spinosum in those dermatoses, and the differ-
ence between each dermatosis was not generally significant.
Besides, TSLP expression in the stratum spinosum is signif-
icantly higher than that in the stratum basale of LP speci-
mens and significantly lower than that in sarcoidosis
specimens. Furthermore, the correlations of TSLP expres-
sion between the stratum basale and the stratum spinosum
were significant, except for MF and HC. In addition, we
found that TSLP was also expressed in the dermal infiltrat-
ing inflammation cells in BP, PsV, and sarcoidosis.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: TSLP was expressed in the epidermis of all skin samples: (a) LP, (b) DLE, (c) eczema, (d) BP, (e) PsV, (f) sarcoidosis, (g) MF, and
(h) HC. Original magnification: ×200, black scale bar = 200μm.

Table 3: Positive rates of thymic stromal lymphopoietin expression in the epidermis in each group.

Group Positive rates of TSLP in the stratum basale Positive rates of TSLP in the stratum spinosum

Total 61.84% 67.11%

LP 70% 60%

DLE 60% 50%

Eczema 50% 70%

BP 70% 80%

PsV 100% 100%

Sarcoidosis 70% 60%

MF 40% 80%

HC 0 0

LP: lichen planus; DLE: discoid lupus erythematosus; BP: bullous pemphigoid; PsV: psoriasis vulgaris; MF: mycosis fungoides; HC: healthy control.
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Collectively, our data showed that the expression of TSLP is
elevated in the skin of inflammatory dermatosis and may be
involved in their pathogenesis.

TSLP is a classic Th2-related cytokine and can induce
DC-promoted naïve T cell differentiating to Th2 cells [19].
It could also directly activate CD4+ T cells, mast cells, baso-
phils, and eosinophils to promote Th2 immune response [3,
19]. In our study, we found elevated TSLP expression in the
epidermis of eczema, BP, and MF, all of which are typical
Th2-dominant dermatoses [13, 20]. This result is consistent

with previous studies and confirms the relationship of TSLP
and Th2 immune response [15, 21–25].

PsV is a Th1/Th17-induced inflammatory disease [13,
14]. However, in our study, we found that TSLP expression
was also elevated in the epidermis of PsV. Similar to our
finding, previous research demonstrated that the levels of
TSLP were elevated in lesions and serum of PsV patients
and paralleled to the severity of disease [9, 26, 27]. However,
in lesions of a murine model and PsV patients, the TSLP
levels rose after being treated with topical vitamin D3
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Figure 2: TSLP was significantly expressed in the epidermis in LP, BP, eczema, PsV, sarcoidosis, and MF and nonsignificantly expressed in
DLE, in a semiquantitative analysis. (a) TSLP was significantly expressed in the stratum basale of the epidermis with PsV and sarcoidosis
specimens. (b) TSLP was significantly expressed in the stratum spinosum of LP, eczema, BP, PsV, and MF. (c) TSLP expression in the
stratum basale was significantly higher than that in the stratum spinosum in sarcoidosis specimens and was significantly lower in the
stratum spinosum in LP specimens, but not significant in other dermatoses. The mean gradient of stratum basale and stratum spinosum
expression of TSLP in sarcoidosis was different from in LP, eczema, BP, and MF, respectively. The score of each section was graded
semiqualitatively on a scale of 0–3 (0: negative, 1: mild, 2: moderate, and 3: strong) blindly by two dermatologists in five randomly visual
fields at high power field (HPF, ×400 magnification) of scanned sections. The gradient of the stratum basale and the stratum spinosum
was mathematically calculated by subtracting the stratum basale score from stratum spinosum. p values were determined by the one-
group Student t-test. Significant differences are noted between the groups: n.s.: not significantly different; ∗p < 0:05; ∗∗p < 0:01.
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analogs calcipotriol, and it was conducted that calcipotriol
could induce TSLP expression, suppress Th1/Th17, and
enhance Th2 [28, 29]. It may be due to complex reasons that
TSLP plays quite opposite roles in PsV. On the one hand,
TSLP is a pleiotropic cytokine that can promote two differ-

ent groups of DCs, one inducing expression of interferon-
γ, IL-17A, and IL-22, and the other expressing IL-4, IL-5,
IL-9, IL-13, and IL-10 [30]. TSLP was also found to have dif-
ferent immunomodulatory functions in different inflamma-
tory environments [9]. Moreover, some investigators

(a) (b)

(c) (d)

(e) (f)

Figure 3: TSLP expressed in infiltrating inflammatory cells in the dermis in BP, PsV, and sarcoidosis. TSLP expressed in the superficial
dermis inflammatory cells in BP in (a) and (b), in the superficial perivascular inflammatory cells in PsV in (c) and (d), and in the
epithelioid cells in sarcoidosis in (e) and (f). Original magnification: ×100 in (a), (c), and (e), black scale bar = 200 μm; ×400 in (b), (d),
and (f), black scale bar = 100μm.

Table 4: Pearson’s correlation between stratum spinosum and stratum basale thymic stromal lymphopoietin expression.

Group Correlation coefficient p value

Total 0.713 <0.001
LP 0.654 0.040

DLE 0.673 0.033

Eczema 0.852 0.002

BP 0.904 <0.001
PsV 0.618 0.043

Sarcoidosis 0.886 <0.001
MF 0.305 0.391

HC -0.250 0.685

LP: lichen planus; DLE: discoid lupus erythematosus; BP: bullous pemphigoid; PsV: psoriasis vulgaris; MF: mycosis fungoides; HC: healthy control.
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demonstrated that the activity of TSLP was heavily depen-
dent on the TSLP receptors rather than TSLP [27]. Thus,
TSLP may also promote the Th1/Th17 immune response
in PsV to some extent. On the other hand, those variable
results may be caused by heterogeneity of PsV. PsV patients
could be divided into two clusters; in one of the clusters,
Th2-related gene, including TSLP, was inducted significantly
higher in lesions of patients than those present in atopic der-
matitis [31]. Therefore, TSLP may promote PsV through
Th-2 immune response.

In this study, TSLP was significantly expressed in the
epidermis of LP. A similar observation has been documented
by Valdebran et al. [24]. Other available reports referred to
the relationship between oral LP and TSLP. Sun et al. [16]
suggested that TSLP is involved in oral LP by activating
the CD8+ T cell. Other researches imply that TSLP and other
Th2-related chemokines were involved in the pathogenesis
[17, 32], which does not support the opinion expressed in
a previous study that LP is a Th1 immune response [13].
Similar to PsV, multiple functions of TSLP and heterogene-
ity of LP might account for the results.

Growing evidence shows that Th1, Th2, and Th17 are
associated with the activity and severity of systematic lupus
erythematosus (SLE) [33]. Correlation between the TSLP
signal pathway and SLE was identified in a previous study
[34]. Previous study demonstrated that expression of TSLP
in sera and lesions did not significantly increase in SLE
patients, compared to HC [35]. Likewise, Soumelis et al.
[36] also failed to find TSLP expression increasing in lesions
of disseminated lupus erythematosus patient. In our experi-
ment, TSLP-positive keratinocytes could be observed focally
in the epidermis of DLE morphologically, but mean grades
of TSLP expression in the epidermis did not significantly
increase as assessed by the semiquantitative analysis.

Thus far, no studies about the relationship between cuta-
neous sarcoidosis and TSLP have been reported yet,
although one study about idiopathic pulmonary fibrosis
showed that TSLP level in the bronchoalveolar lavage fluid
of pulmonary sarcoidosis was not higher than that of normal
controls [18]. In our study, we found TSLP was significantly
expressed in the epidermis of sarcoidosis and the dermal epi-
thelioid cells in “naked” granulomas, which implies that
TSLP may be secreted by both keratinocytes and epithelioid
cells in cutaneous sarcoidosis. Moreover, it may also account
for the high level of TSLP in the stratum basale.

Regarding BP and PsV, the dermal infiltrating inflam-
matory cells were also positive for TSLP staining, which
indicates that TSLP was expressed not only by keratinocytes
but also by the infiltrating inflammatory cells in BP and PsV.
This observation has not been reported previously, and the
specific mechanism is still unknown. Nevertheless, TSLP
was also expressed by mast cells, CD163+ macrophage cells,
and endothelial cells in other immune-related dermatoses
[35, 37, 38]. In addition, TSLP expression in the dermis
might be related to a higher expression of TSLP in the stra-
tum basale than in the stratum spinosum in BP and PsV
specimens, although the differences were not significant.

Although our study showed no differences of TSLP
expression between the stratum basale and the stratum

spinosum morphologically, TSLP expression is signifi-
cantly more intense in the stratum spinosum in LP,
which is not consistent with a previous report [24]. By
reviewing the figures in other studies, we found that the
difference in TSLP expression between the stratum basale
and the stratum spinosum was not obvious either [15, 17,
36]. There are two reasons for these discrepancies,
namely, a small sample size in both studies and the mul-
tiple functions of TSLP. More comprehensive studies with
a larger sample size are needed to explain the difference
further. The specific expression pattern might reflect the
resource of TSLP in the dermatoses. For instance, LP is
primarily induced by cytotoxic CD8+ T cells attacking
the basal keratinocytes, but TSLP is expressed predomi-
nantly higher in the spinous keratinocytes. It may imply
that the spinous cells play more important roles in path-
ogenesis of LP than previously thought, whereas in sar-
coidosis, TSLP in the skin may come from the dermis
or circulation. Moreover, if TSLP was produced from spi-
nous keratinocytes in those dermatoses, it would be valu-
able to prevent TSLP generation topically. Recently,
topical agents were found to reduce TSLP secretion in
the epidermis [39, 40]. There is some prospect of lower-
ing TSLP expression in the epidermis, especially the spi-
nous keratinocytes, to improve inflammatory dermatoses.

Finally, this study has potential limitations. As men-
tioned above, the sample size of this research is small in
some extent, whereas our study attempts to conduct a pre-
liminary study and our intention is to raise a concern
about TSLP and its effect in cutaneous diseases with differ-
ent patterns of immune response. We would like to
enlarge the sample size in the further study of specific der-
matosis. Furthermore, we only detected the levels of TSLP
in skin specimens of patients. Some immune-related der-
matoses, such as PsV, BP and sarcoidosis, were not only
skin diseases but also systemic disorders. It might be
meaningful to detect the levels of TSLP in the sera or
other samples and to compare the results with those in
skin lesions. Moreover, TSLP interacts with IL-33 and
other cytokines and mediates a Th2 immune response so
that it is valuable to detect other cytokines and compare
their expressions [41].

5. Conclusions

As a whole, our study found that the expression of TSLP was
elevated in different immune response dermatoses. This
finding adds to the accumulating evidence of the importance
of TSLP in each inflammatory disease. It remains to be elu-
cidated if TSLP plays a role in some inflammatory diseases,
such as DLE and sarcoidosis. Tezepelumab, the first-in-
class anti-TSLP monoclonal antibody, was approved as a
biological agent for the treatment of severe asthma [42]. A
randomized phase 2a clinical trial reported that patients of
atopic dermatitis have improved under the treatment of
tezepelumab [43]. It is necessary to investigate TSLP in those
inflammatory diseases further, in order to discover a poten-
tial novel therapeutic target.
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Introduction. When sepsis attacks the body, the excessive reactive oxygen species (ROS) production can result to endoplasmic
reticulum stress (ERS) and eventually cause lymphocyte apoptosis. The mammalian target of rapamycin (mTOR) is essential
for regulating lymphocyte apoptosis; we hypothesized that it mediates CD4+ T cell apoptosis during ROS-related ERS. Method.
We, respectively, used ROS and ERS blockers to intervene septic mice and then detected ERS protein expression levels to verify
the relationship between them. Additionally, we constructed T cell-specific mTOR and TSC1 gene knockout mice to determine
the role of mTOR in ROS-mediated, ERS-induced CD4+ T cell apoptosis. Results. Blocking ROS significantly suppressed the
CD4+ T cell apoptosis associated with the reduction in ERS, as revealed by lower levels of GRP78 and CHOP. ERS rapidly
induced mTOR activation, leading to the induction of CD4+ T cell apoptosis. However, mTOR knockout mice displayed
reduced expression of apoptotic proteins and less ER vesiculation and expansion than what was observed in the wild-type
sepsis controls. Conclusion. By working to alleviate ROS-mediated, ERS-induced CD4+ T cell apoptosis, the mTOR pathway is
vital for CD4+ T cell survival in sepsis mouse model.

1. Introduction

An epidemiologic survey in 2020 reported that although the
average worldwide death rate from sepsis is around 15%–
30%, it is even higher in some underdeveloped regions [1].
Sepsis causes countless deaths and imposes huge economic
burdens on countries [2]. Over the years, research has deter-
mined that immunosuppression is one of the major reasons
for high mortality in patients with sepsis [3,4]. Abnormal
immune cell death is an important cause of immunosup-
pression in sepsis, and excessive apoptosis of lymphocytes
is one such type of immune cell death [5,6].

In recent years, researchers have discovered a new type
of apoptosis caused by endoplasmic reticulum stress (ERS),
and this type of apoptosis has been named the third apopto-

tic pathway. In pathological conditions such as infection,
sepsis, and hypoxia, cell energy metabolism disorders induce
reactive oxygen species (ROS) production, which renders the
endoplasmic reticulum (ER) unable to correctly synthesize
proteins [7]. Large amounts of unfolded or misfolded pro-
teins accumulate, and this leads to ERS. When ERS persists
and cell homeostasis cannot be recovered, cell apoptosis will
occur [8]. Therefore, preventing ERS may relieve the inflam-
matory state and damage to tissues and organs [9, 10].

As essential immune system components, reduced num-
bers of CD4+ T lymphocytes will further aggravate immune
deficiency in the body. Reduced CD4+ T cell absolute num-
ber is an independent risk factor that influences the outcome
of sepsis patients [11]. Mammalian target of rapamycin
(mTOR) is a serine/threonine protein kinase, which played
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significant role in regulating various cellular metabolic activ-
ities including cell energy metabolism and protein synthesis.
One important role that it plays is in regulating cell autoph-
agy and apoptosis. One important role that it plays is in reg-
ulating cell autophagy and apoptosis. In addition, mTOR
complex 1 (mTORC1) responds to low ATP levels or a hyp-
oxic unstable intracellular environment. Tuberous sclerosis
complex 1 (TSC1) functions as a GTPase-activating protein
to activate mTORC1 [12]. We have previously confirmed
that mTOR is involved in the immunosuppression of sepsis
and that the apoptosis of CD4+ T cells can be attenuated by
mTOR intervention [13, 14]. However, the region regulating
CD4+ T cell apoptosis upstream of mTOR has yet to be stud-
ied, and this knowledge gap in the mTOR pathway awaits
elucidation. Interestingly, emerging literature has indicated
that the mTOR signaling acts downstream of the ER and
mediates ERS-induced apoptosis of pulmonary vascular
endothelial cells [15]. We speculate that mTOR might also
function as import regulator during the process of CD4+ T
cell apoptosis caused by ERS in sepsis.

We hypothesized that mTOR is involved in the regula-
tion of CD4+ T cell apoptosis triggered by ROS-related
ERS. The cecal ligation and puncture (CLP) model is
referred to be the “gold standard” for the induction of poly-
microbial sepsis in experimental settings to research the fun-
damental mechanisms of sepsis. Besides, the cytokine profile
of the CLP model is similar to that seen in human sepsis
where there is increased lymphocyte apoptosis [16]. To test
this hypothesis, we constructed an mTOR knockout mouse
sepsis model to study the role of mTOR. We used this model
to investigate whether mTOR could be pharmacologically
used to regulate CD4+ T cell apoptosis thereby enhancing
the immunity and improving the prognosis of patients with
sepsis.

2. Materials and Methods

2.1. Mice. Male C57BL/6N mice were housed in a pathogen-
free animal house with comfortable environment (room
temperature 25 ± 1°C, 12 h day/night cycle). We used 16-
18 g healthy male C57BL/6N mice (aged 4-5 weeks) to estab-
lish the sepsis model. Lck-cre mice were generated by cross-
ing TSC1loxp/loxp and mTORloxp/loxp mice with mice
expressing Cre recombinase. Lck-cre mTORloxp/loxp (lck-
mTOR) and Lck-cre TSC1loxp/loxp (lck TSC1) mice
obtained, Lck-cre-negative mTOR loxp/loxp mice were their
corresponding controls. Lck-mTOR mice were used in the
Lck-mTOR+CLP group (n = 6). The Lck-TSC1 mice were
used in the Lck-TSC1+CLP group (n = 6). 30 lck-mTOR
mice (n = 6 per group) were allocated to each group: WT,
CLP, CLP+NAC, CLP+CIRP-Ab, and CLP+4-PBA group.

2.2. Sepsis Model. We establish a midgrade sepsis model
according to the protocol as previously described [16].

2.3. Drug Administration. In treatment groups, CIRP-Ab
(C23. 8mg/kg BW. GenScript: Nanjing, China) was admin-
istered by intravenous tail injection after 2 h of the CLP
operation. N-Acetyl-L-cysteine (NAC, 150mg/kg BW, Beyo-

time: Shanghai, China) and 4-phenylbutyric acid (4-PBA.
40mg/kg BW, TargetMol, USA) were administered intraper-
itoneally 60min before surgical procedure. Besides, DMSO
(10% DMSO, 4ml/kg BW) was administered intraperitone-
ally to mice in the control group. After 18h of the treatment,
all mice were killed, and spleens were collected immediately.
The experiments were carried out under strict guidance and
principles according to the guidelines of PUMCH Clinical
Laboratory. JS-1170 was the approval number for the study
from the Ethics Committee at Peking Union Medical College
Hospital (Beijing, China).

2.4. Spleen Tissue Single-Cell Suspension. The harvested
spleens were minced, and the homogenate was then passed
through a 40μm cell strainer. The obtained cells were lysed
in red blood cell lysis buffer, followed by being transferred
to 15ml centrifuge tubes. To make single-cell suspension,
samples were centrifuged at 1500 rpm for 10min and resus-
pended in 5ml of PBS.

2.5. Lymphocyte Purification. Mouse spleen lymphocytes
were purified using the lymphocyte separation kit (Solarbio,
Beijing, China.). Briefly, 5ml of lymphocyte separation
medium was gently added to 5ml spleen tissue single-cell
suspension; after centrifugation at 800g for 20 minutes, lym-
phocytes were transferred into a new 15ml centrifuge tube.
Following washing with 10ml washing solution and centri-
fugation at 250g for 10min, the separated spleen lympho-
cytes were suspended with PBS.

2.6. Sorting CD4+ T Cells. CD4+ T cells were isolated from
lymphocytes by negative magnetic bead sorting using mag-
netic microbeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). Briefly, we stained splenocytes with biotin-
conjugated anti-CD4 antibody for 30 minutes and then
washed with PBS for 5min 3 times; we next incubated the
cells for 15 minutes with magnetic streptavidin. Afterward,
we used the CD4+ T cells for apoptosis array, ROS detection,
RT-PCR, western blotting, and transmission electron
microscopy.

2.7. Western Blot. CD4+ T cells lysate was prepared by lysing
in RIPA buffer containing protease inhibitors. Protein con-
centrations were estimated (BCA protein assay kit). After
that, the protein samples were loaded onto each lane by
SDS-PAGE for electrophoresis and transferred to 0.45μM
PVDF membrane (Millipore, MA, USA). Next, PVDF mem-
branes were blocked with 5% skimmed milk in TBS-Tween
for 60min, followed by incubation with antibody at 4°C for
12-16 h. The following primary antibodies are as follows:
anti-mTOR (Cat#AF6308, dilution rate 1 : 1000), anti-P-
mTOR (Cat#AF3308, 1 : 1000), anti-P-p70s6k (Cat#AF3228,
1 : 1000), anti-p70s6k (Cat#AF6226, 1 : 1000), anti-4EBP
(Cat#AF6432, 1 : 1000), anti-caspase-3 (Cat#AF6311,
1 : 1000), anti-Bcl-2 (Cat#AF6139, 1 : 1000), anti-Bax
(Cat#AF0120, 1 : 1000), anti-GRP78 (Cat#AF5366, 1 : 1000),
anti-CIRP (Cat#DF2643, 1 : 1000), anti-CHOP
(Cat#DF6025, 1 : 1000), anti-CIRP (Cat#AF5366, 1 : 1000),
and anti-actin-β (Cat#AF7018, 1 : 3000) were purchased
from Affinity Biosciences (Jiangsu, China). Anti-P-4EBP
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(anti-eIF4EBP1, ab27792) was from Abcam (CA, USA).
After washing with TBS-Tween 3 times, the membranes
were incubated with a goat anti-rabbit IgG antibody
(1 : 5000, Affinity Biosciences) at 25°C for 1 h, and the
chemiluminescence signals were detected using an electro-
chemiluminescence detection system. Band densities were
quantified by the ImageJ software.

2.8. Apoptosis Array. Cell apoptosis array was carried out fol-
lowing the protocol of the apoptosis detection kit (BD Phar-
mingen, USA). Cells were resuspended at 1 × 10 cells/ml in
binding buffer and incubated with Annexin V-FITC and PI
for 15 minutes in the dark before analyzing cells on a flow cyt-
ometer. FCS files were analyzed using the FlowJo software.

2.9. Intracellular ROS Detection. The level of ROS in CD4+ T
cells was evaluated according to the protocol of ROS detec-
tion kit (Biyuntian, Shanghai, China). DCFH-DA and
CD4+ T cells were mixed and incubated at 37°C for 20
minutes. ROS levels were then measured by flow cytometry.

2.10. RNA Extract and RT-PCR. CD4+ T cells were collected
and RNA were harvested in TRIzol reagent (Tiangen, Bei-
jing, China). RNA was then reverse transcribed using a Pri-
meScript RT reagent kit. qPCR was performed with SYBR
Premix EX Taq™ II in ABI 7500 real-time PCR system
(Applied Biosystems, USA). Primers are as follows: Bim
sense: 5′-GAGATACGGATTGCACAGGA-3′, Bim anti-
sense: 5′ -TCAGCCTCGCGGTAATCATT-3′; β-actin
sense: 5′-ACTGGGACGACATGGAGAAG-3′, β-actin anti-
sense: 5′-GGGGTGTTGAAGGTCTCAAA-3′. Data analysis
used the 2-ΔΔCt method and normalized to the housekeep-
ing β-actin gene.

2.11. Conventional Reverse Transcriptase Polymerase Chain
Reaction. To detect mTOR and TSC1 expression levels,
cDNA was amplified through a 32-cycle PCR: 95°C for
30 sec, followed by 32 cycles of 55°C for 30 sec and 30 sec
at 72°C. Agarose gel electrophoresis method (1.5% agarose
gel) was conducted to evaluated PCR products. The size of
the PCR products was checked by 2 kb DNA Ladder
(3427Q, Takara, Japan).

2.12. Transmission Electron Microscopy. CD4+ T cells were
fixed with 2.5% glutaraldehyde and stored at 4°C. Next, the
samples were fixed with osmic acid at 4°C for 3 h after wash-
ing with phosphate buffer. They were then dehydrated step-
wise in increasing concentrations of ethanol, infiltrated in
Spurr resin overnight, embedded in Spurr resin, and cured
in a 70°C oven for 24 h. Finally, thin sections (90 nm) were
made and stained with uranyl acetate and lead citrate; the
sections were afterward viewed with a transmission electron
microscope. Representative images from randomly selected
fields under the microscope are shown.

2.13. Statistical Analysis. The number of mice used for the
experiments comprised at least six mice per treatment. All
data in this study were derived from 3 or more independent
experiments. The data are presented as the means ± SD. The
results were analyzed using the GraphPad Prism 8.0 soft-

ware. One-way ANOVA with Tukey’s post hoc or Dunnett’s
post hoc analysis was done to test multiple comparisons.
Kaplan-Meier with log rank test was used for survival anal-
ysis. In the case of western blot, apoptosis, and electron
microscope, one representative set of data is shown. P values
< 0.05 were considered statistically significant. ∗P ≤ 0:05,
∗∗P ≤ 0:01, ∗∗∗P ≤ 0:001, and ∗∗∗∗P ≤ 0:0001.

3. Results

3.1. Genotype Identification of Conditional Gene Knockout
Mouse Used in CLP Model and Survival Observation. To
determine the role of mTOR in ERS-induced CD4+ T cell
apoptosis, we constructed a sepsis model with T cell-
specific mTOR and TSC1 gene knockout mice. The geno-
types of the experimental mice were confirmed by RT-PCR
(Figure 1). The expression of mTOR mRNA was signifi-
cantly decreased in lck-mTOR CD4+ T cells, while the
expression of TSC1 mRNA was significantly decreased in
lck-TSC1 CD4+ T cells. RT-PCR results confirmed the estab-
lishment of T cell-specific mTOR/TSCI-KO gene knockout
mouse. Survival rates between groups were also analyzed.
Compared to the CLP group, the LCK-TSC1+CLP group
showed higher mortality, whereas the Lck-mTOR+CLP
group had significantly lower mortality (Figure 2).

3.2. Endoplasmic Reticulum Stress-Induced Apoptosis Leads
to CD4+ T Cell Depletion in Sepsis. By constructing a mouse
sepsis model, we next investigated the relationship between sep-
sis, ERS, and CD4+ T apoptosis. In comparison to the WT
group, the CLP group exhibited statistically higher GRP78
and CHOP expression levels (Figure 3(b)). Electronmicroscopy
also showed that significant ERS manifestations, such as dilata-
tion and vesiculation of the ER structures, had occurred in the
CLP group (Figure 4(b)). Furthermore, western blots showed
that Bax, caspase-3, and BIM expression levels were upregulated
in the CLP group, while BCL-2 was downregulated (Figure 3(c)
and Figure 5(b)). As showed in the flow cytometry results, com-
pared with other groups, the CLP group has higher apoptosis
rate of CD4+ T cells (Figure 4(b)).

The relationship between ERS and CD4+ T cell apoptosis
was studied using 4-PBA since it blocks ERS. Compared with
the CLP group, GRP78 and CHOP expression levels were
reduced in the CLP+4-PBA group (Figure 3(b)), and less seri-
ous ERS was observed by electron microscopy (Figure 4(b)).
Compared with other groups, the CLP+4-PBA group dis-
played decreased p-mTOR, p-p70s6k, p-4EBP1, and CHOP
expression and apoptosis-related proteins such as BIM, Bax/
Bak, and caspase-3 and an upregulated Bcl-2 expression
(Figures 3(a)–3(c)). The flow cytometry results showed that
in the CLP+4-PBA group, fewer apoptotic CD4+ T cells were
found than in the other groups (Figure 4(a)). These results
indicate that sepsis induces ERS and then causes CD4+ T cell
apoptosis, and that ERS activates mTOR and blocking ERS
can alleviate CD4+ T cell apoptosis.

3.3. mTOR Is Involved in ERS-Induced CD4+ T Cell
Apoptosis. The p-mTOR expression levels were found to
have decreased significantly in the CD4+ T cells from the
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lck-mTOR mice and increased in the lck-TSC1 mice. In con-
trast, in the lck-mTOR+CLP and lck-TSC1+CLP groups,
GRP78 and CHOP levels did not differ significantly
(Figures 6(a) and 6(b)). We next examined what role mTOR
plays in CD4+ T cell apoptosis. We found that the expression
levels of Bax, caspase-3, and BIM were downregulated, and
the expression level of Bcl-2 increased.

In our study, we found that Bax, caspase-3, and BIM
expression levels decreased, whereas Bcl-2 expression
increased, and the CD4+ T cell apoptosis rate decreased sig-
nificantly in the lck-mTOR sepsis mice. However, Bax, cas-
pase-3, and BIM were upregulated, the expression levels of

Bax, caspase-3, and BIM were upregulated, the BCL-2
expression level was downregulated, and the CD4+ T cell
apoptosis rate significantly increased in the lck-TSC1 sepsis
mice (Figure 5(b) and Figure 6(c)). The above results suggest
that ERS activates mTOR, thereby causing apoptosis, and
that blocking mTOR can alleviate ERS-related CD4+ T
apoptosis.

3.4. The Role Played by ROS in ERS, mTOR Expression
Regulation, and CD4+ T Cell Apoptosis. We focus on the
effects of ROS on ERS and CD4+ T cell apoptosis in the
mouse sepsis model by using NAC to block ROS. Mice were
first injected intraperitoneally with NAC 1h before surgery.
Thereafter, the effects of NAC on ERS and apoptosis in
splenic CD4+ T cells from the mice were examined postsur-
gery. In comparison with the CLP group, the CLP+CIRP-Ab
group had a lower ROS level (Figure 7(b)) and lower CHOP,
GRP78, P-mTOR, P-4EBP, and p-p70s6k expression levels
(Figures 6(a) and 6(b)). Furthermore, in the CLP+CIRP-
Ab group, BIM expression was significantly downregulated,
Bcl-2 was upregulated, and Bax and caspase-3 expression
levels were downregulated (Figure 5(b) and Figure 6(c)).
CHOP and GRP78 expression was decreased, and they also
significantly differed from some of the other groups
(Figure 6(b)). Furthermore, electron microscopy results
showed fewer signs of ERS within the CD4+ T cells from
the CIRP-Ab+CLP mouse group compared with those from
the CLP group (Figure 7(c)); a lower percentage of apoptotic
CD4+ T cells was also recorded in the former group
(Figure 7(b)).

CIRP, a damage-associated molecular pattern (DAMP)
molecule, is an important upstream molecule of ROS [17].
To further explore the role played by ROS, we blocked CIRP
expression in mice using a CIRP-Ab and examined its effects
on ROS level, ERS, and apoptosis. The ROS level of the CLP
+CIRP-Ab group was lower than that of the CLP group
(Figure 7(b)) and lower CHOP, GRP78, P-mTOR, P-4EBP,
and p-p70s6k expression levels (Figures 6(a) and 6(b)). Fur-
thermore, in the CLP+CIRP-Ab group, BIM expression was
decreased, Bcl-2 was increased, Bax and caspase-3 were
downregulated (Figure 4(b) and Figure 6(c)), and CHOP
and GRP78 expression was downregulated and significantly
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Figure 1: mTOR and TSC1 mRNA expression in CD4+ T cells in CLP, lck-mTOR, and lck-TSC1 mice. Agarose gel electrophoresis of
colony PCR (a) mTOR and (b) TSC1 genotyping.
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different (Figure 6(b)). Furthermore, the electron micros-
copy results showed fewer signs of ERS within the CD4+ T
cells from the CIRP-Ab+CLP mouse group compared with

those from the CLP group (Figure 7(c)); a lower level of apo-
ptotic CD4+ T cells was also recorded in the former group
(Figure 7(b)).
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Figure 3: Expression levels of mTOR pathway proteins, ERS-associated proteins, and apoptosis-associated proteins in WT, CLP, and CLP
+4-PBA mouse groups. After purifying the CD4+ T cells from mouse spleen lymphocytes, whole cell lysates were assessed for the protein
expression of (a) patterns of mTOR pathway proteins, including mTOR, P-mTOR, downstream effectors p70s6k, p-p70s6k, 4EBP, and
P-4EBP; (b) ERS-associated proteins, including GRP78 and CHOP; (c) apoptosis-associated proteins, including caspase-3, Bax, and Bcl-
2. The protein expression was detected by immunoblotting. Data are mean ± SD. n = 4 biologically independent experiments (one-way
ANOVA Tukey’s post hoc test). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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4. Discussion

Sepsis is a type of life-threatening organ dysfunction feature
based on early-onset inflammatory storm and late-onset
immunosuppression [18]. Despite the advancement of many
medical technologies such as early 6-hour sepsis bundle
therapy, immunotherapy, and advanced organ function sup-
port, the prognosis for sepsis patients is far from ideal. One
reason for this is unrelieved immunosuppression in those
with deteriorating infections [5]. Studies by Inoue et al.
found that excessive T lymphocyte apoptosis is closely asso-
ciated with immunosuppression and is apparently linked
with the prognosis for sepsis [19,20]. The present study,
together with our previous research on the abnormal apo-
ptosis mechanism in CD4+ T cells, revealed the complete
process underlying sepsis-related CIRP–ROS-ERS–mTOR–
CD4+ T cell apoptosis. This is the first time that mTOR
proved to be involved in the CD4+ T cell apoptosis caused
by ROS-mediated ERS in sepsis. We found that inhibiting
mTOR reduced the high apoptotic rate of CD4+ T cells in
septic host and ultimately improved the prognosis for these
mice.

The ER is a vital organelle involved in protein synthesis
and secretion. It is also responsible for protein translation,
processing, and modification. When sepsis, infection, and
other diseases attacked the body, there is a mass of unfolded
or misfolded proteins accumulated in cells. This accumula-
tion disrupts homeostasis in the ER and causes ERS [21].
Moreover, there are many diseases associated with ERS,
including sepsis, cancer, and diabetes [22–24]. The use of
drugs or gene therapy strategies to inhibit ERS has success-
fully improved the pathological characteristics of such stress,
thereby imparting therapeutic effects on the target organs
[10, 24–26]. Therefore, lymphocyte ERS is expected to serve
as a new therapeutic target to improve immune function in
the sepsis patient. ROS accumulation is a sign of cell energy
metabolism disorders. Under cell stress, hypoxia, and other
oxidative stimuli, intracellular ROS production greatly
increases. Excessive ROS can cause cell damage, cell meta-
bolic disorders, even cell apoptosis [27]. Many recent studies
have shown that when the cell energy transfer process is
impeded, and the accumulation of excessive ROS will also
seriously affect the cell’s protein synthesis function; this sit-
uation inevitably causes ERS, further leading to cell death
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[28,29]. Therefore, ROS and ERS are causal with respect to
each other, and they ultimately affect the cell death process
[30]. In this study, to verify the role of ROS and ERS in
the apoptosis of septic CD4+ T cells, NAC and 4-PBA were
used to block ROS and ERS, respectively, and CD4+ T cell
apoptosis decreased in both groups.

When sepsis happened, there are two pathways that lead
to systemic inflammation and oxidative stress: endogenous
DAMPs and exogenous PAMPs (pathogen-associated
molecular patterns). DAMPs are proinflammatory sub-
stances released upon host cell damage. As effective activa-
tors of body immune reaction that initiate and maintain
damaged inflammatory responses, DAMPs can cause sys-
temic inflammation, organ dysfunction, and even death
[31]. CIRP, a newly discovered DAMP, recognized among
different kinds of cells (e.g., T cells, B cells, and macro-
phages), is an important upstream molecular of ROS [17].
By blocking CIRP, we observed that ROS production and
ERS occurrence were reduced, CD4+ T cell apoptosis
decreased, and the survival rates of the septic mice
improved. From these results, we conclude that ROS and
ERS are involved in septic CD4+ T cell apoptosis and that

ROS can cause ERS. The occurrence of ERS further mediates
the damaging effect of ROS on CD4+ T cells and causes
CD4+ T cell apoptosis.

mTOR is a sensitive and conserved cellular energy sen-
sor. It is activated by various hormones and growth factors
and has a key function in regulating cell metabolism, protein
synthesis, growth, and differentiation [32]. Studies have
highlighted mTOR’s role in the energy metabolism of cells
[33, 34]. When sepsis occurs, the body is in an inflammatory
state caused by severe hypoxia and stress. Oxygen utilization
and energy metabolism in the body’s cells are both affected,
and ROS production increases. ROS accumulation affects
the translation, synthesis, and processing of proteins, leading
to the occurrence of ERS and, ultimately, cell apoptosis [30].
In the body’s fierce anti-infection process, lymphocytes are
undoubtedly the first line of defense to bear the brunt of
the infection, as evidenced by the apoptosis of large numbers
of lymphocytes and the subsequent immunosuppression.
The flow cytometry results from the present study are con-
sistent with this. Sepsis therefore causes lymphocyte apopto-
sis and immunosuppression, and ROS accumulation
aggravates the lymphocyte energy metabolism disorder. As
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Figure 6: CD4+ T cells were assessed for the expression of mTOR pathway-associated proteins, ERS-associated proteins, and apoptosis-
associated proteins in WT, LCK-mTOR, LCK-TSC1, CLP, CLP+CIRP-Ab, CLP+NAC, LCK-TSC1+CLP, and Lck-mTOR+CLP mouse
groups. Data are mean ± SD. Number of mice per group = 4 (one-way ANOVA Tukey’s post hoc test). CD4+ T cells were purified from
CIRP-Ab-treated mice, NAC-treated mice, TSC1 knockout mice, and mTOR mouse spleen lymphocytes. Total proteins were western
blotted to identify the expression patterns of mTOR pathway proteins (P-mTOR, mTOR, p70s6k, p-p70s6k, P-4EBP, and 4EBP) (a);
CIRP and ERS-associated proteins (GRP78 and CHOP) (b); and apoptosis-related proteins (caspase-3, Bax, and Bcl-2) (c).
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a crucial part of energy metabolism regulation, what role
does mTOR play in this process? To answer this question,
we explored the role of mTOR in the ERS-related CD4+ T
cell apoptosis mediated by ROS. We explored the role of
mTOR by constructing septic models with T cell-specific
mTOR/TSCI-KO gene knockout mice. Our results showed

that CD4+ T cell apoptosis in the Lck-mTOR+CLP group
decreased, while CD4+ T cell numbers increased. Signifi-
cantly longer survival time was observed in mice that were
treated with Lck-mTOR+CLP. This indicates that mTOR is
activated by ERS to affect CD4+ T cell apoptosis during
sepsis.
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Our results showed that when ERS occurred, mTOR is
activated, as was revealed by two main results. (1) The inhi-
bition of ERS by 4-PBA downregulated mTOR expression in
parallel with decreased CD4+ T cell apoptosis. (2) The
occurrence of ERS was unaffected when mTOR and TSC1
(the inhibitor in the mTOR signaling pathway) genes were
knocked out. Consistently, the study by Kato et al. showed
that ERS rapidly activated mTORC1 in a mouse model of
renal tubular injury, and mTORC1 is rapidly activated with
the treatment of ERS inducers thapsigargin and tunicamycin
[10]. However, some researchers believe that activating
mTOR induces ERS. For example, Ozcan et al. reported that
the loss of TSC1 or TSC2 (the inhibitor of mTOR) and the
subsequent activation of mTORC1 led to ERS, thereby mak-
ing the cells more susceptible to apoptosis and death [35].
The reasons for the inconsistencies between the present
study and others may be related to the different disease
models and different stimulus methods used to induce
ERS. For example, in their article, Ozcan et al. pointed out
that ERS was provoked by drug stimulation on isolated cells
and that this may differ from the real situation in vivo. In
contrast, our mouse model of sepsis was used to induce
ERS in a manner as close as possible to the pathophysiologi-
cal process of severe infection. The ERS in our study was
more serious ERS and led to cell apoptosis and ultimately
death in the host. The flow cytometry and survival curves
confirmed the lymphocyte apoptosis and the timing of host
death. Relevant studies have also shown that ERS upregu-
lates the expression of mTORC1 and that the cytotoxicity
of ERS is significantly related to mTORC1 activation
[10,36]. Therefore, our results suggest that mTOR is
involved in regulating ERS-induced apoptosis, although the
specific mechanisms involved require further exploration.

Herein, we found that mTOR is involved in ROS-related
energy metabolism disorders. Through the intervention of
mTOR, the stress and damaged state of CD4+ T cells in sep-
sis were improved, CD4+ T cell apoptosis was reduced, and
the prognosis of the host was improved. These results pro-
vide a possible treatment avenue for improving the immune
status of patients with sepsis. However, some aspects of our
study require further investigation. First, when ERS occurs,
there are three known signaling pathways that sense and
relieve the occurrence of ERS; namely, IRE1, PERK, and
ATF6 sensory pathways. In future research, we will focus
on the precise sensing signal pathways to investigate how
mTOR perceives and regulates ERS-related CD4+ T cell apo-
ptosis. Second, further study is warranted to determine the
exact mechanism of the mTOR pathway leading to CD4+

T cell apoptosis, including the detection of more specific
downstream cytokine levels.

5. Conclusions

As far as we know, the upstream mechanisms by which
mTOR regulates lymphocyte apoptosis in sepsis have not
been elucidated. We explored the role of mTOR in CD4+ T
cell apoptosis induced by ERS. We found that ROS accumu-
lation in sepsis led to ERS occurrence and that the mTOR
pathway operating downstream of ERS induced CD4+ T cell

apoptosis. By inhibiting mTOR, CD4+ T cell apoptosis was
reduced, and the prognosis of the septic mice was improved.
This indicates that mTOR participates in and regulates ROS-
mediated ERS-related CD4+ T cell apoptosis in sepsis, rais-
ing the possibility of mTOR becoming a new targeted treat-
ment strategy for alleviating CD4+ T cell apoptosis and
improving the immune status of those experiencing sepsis.
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Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis;
there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of
NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-
inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression. Using methionine and
choline deficient (MCD) diet-fed mice, we found MFG-E8 knockout exacerbated hepatic damage and steatosis as indicated by
increased plasma transaminases activities and hepatic histopathologic change, higher hepatic triglycerides (TGs), and lipid
accumulation. Moreover, liver fibrosis and inflammation elicited by MCD were aggravated in MFG-E8 knockout mice.
Mechanistically, MFG-E8 knockout facilitated activation of hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB)
signaling pathway in MCD-fed mice. In vitro experiment, the TLR4 specific antagonist TAK-242 rescued palmitic acid- (PA-)
primed lipid formation and inflammation in MFG-E8 knockout primary murine hepatocytes. These findings indicated that
MFG-E8 is involved in the progression of NASH and the possible mechanism by which MFG-E8 knockout exacerbated NASH
in mice is associated with activation of the TLR4/NF-κB signaling pathway.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most
prevalent chronic liver diseases, occurring in 25%-30% of the
general population [1, 2]. NAFLD is defined as a clinico-
pathological syndrome, ranging from simple nonalcoholic
fatty liver to nonalcoholic steatohepatitis (NASH) [3, 4].
As an inflection point for the deterioration of NAFLD,
NASH can lead to the development of liver cirrhosis, liver
failure, and hepatocellular carcinoma, which has emerged
as the main cause of liver-related mortality and liver trans-
plantation. NASH is characterized by hepatic steatosis,

inflammation, hepatocytes ballooning, and variable degrees
of fibrosis [5]. However, its molecular mechanisms are still
not fully understood, and no effective control measures are
available. Therefore, there is an urgent need to explore the
pathophysiological mechanisms of NASH development.

Accumulating evidence has shown that excessive lipid
accumulation-induced production of proinflammatory
mediators and innate immune cell activation play the pivotal
roles in the progression of NASH. Due to the secretion of
inflammatory mediators such as chemokines, the innate
immune cell macrophages and neutrophils are recruited into
the liver and activated by damage-associated molecular
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patterns (DAMPs) released from injured hepatocytes, lead-
ing to aggravation of hepatic steatosis and fibrosis [6, 7].
As an important innate immune pattern recognition recep-
tor (PRR), toll-like receptor 4 (TLR4) has been found to be
upregulated in both NAFLD patients and animal models
and is counted for the progression of hepatic steatosis,
inflammation, and fibrosis [8–10]. It is well known that
nuclear factor kappa B (NF-κB), a key downstream molecule
of TLR4 signal pathway, plays an important role for the
transformation from simple steatosis to steatohepatitis [11,
12]. In the canonical pathway, NF-κB proteins are bound
and inhibited by IκB proteins. DAMPs, metabolites such as
free fat acid, and LPS trigger TLR4 signal to phosphorylate
IL-1 receptor-associated kinases (IRAKs). Sequentially, the
IKKβ protein is activated, which phosphorylates IκB pro-
tein, resulting in IκB ubiquitination and degradation to
release NF-κB proteins. The freeing NF-κB proteins such
as p65 are activated by phosphorylation modification and
translocated to the nucleus in which, as the key transcription
factors, they induce these target genes expression such as
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
and IL-6 [13, 14]. Therefore, targeting TLR4/NF-κB signal-
ing may be the underlying mechanisms and key therapeutic
strategies of NASH development.

Milk fat globule-epidermal growth factor-factor 8
(MFG-E8), a secreted glycoprotein with two EGF-like
domains, contains an RGD motif that is able to bridge phos-
phatidylserine on apoptotic cells and integrin αvβ3 or αvβ5
in phagocytes to accelerate phagocytosis of apoptotic cells,
resulting in the inhibition of inflammatory responses
[15–17]. It has been shown that MFG-E8 protects against
liver fibrosis in mice by interfering with the action of trans-
forming growth factor-β1 (TGF-β1) [18]. A recent study has
found that MFG-E8 is highly expressed in human hepatocel-
lular carcinoma (HCC) tissues and positively regulates HCC
progression, and anti-MFG-E8 antibodies could effectively
inhibit HCC progression and metastasis [19]. In addition,
it has been demonstrated that serum MFG-E8 can be feasi-
bly served as a diagnostic, and prognostic biomarker for
HCC and hepatic MFG-E8 prevents from the development
of hepatic steatosis and inflammation [20, 21]. Furthermore,
it has been reported that MFG-E8 could attenuate the release
of proinflammatory cytokines from immune cells by inhibit-
ing TLR4 and NF-κB pathways [22, 23] and is a key regula-
tor of neutrophil infiltration in acute lung injury [24, 25].
However, the potential roles and mechanisms of MFG-E8
in the pathogenesis of NASH need to further be elucidated.
Therefore, in the present study, we investigated the impact
of MFG-E8 deficiency on the development of MCD-
induced NASH model in mice and explored its potential
mechanisms.

2. Materials and Methods

2.1. Chemicals and Reagents. The kits for alanine amino-
transferase (ALT), aspartate aminotransferase (AST), and
triglyceride (TG) were supplied by Nanjing Jiancheng Bioen-
gineering Institute (Nanjing, China). Enzyme-linked immu-
nosorbent assay (ELISA) kits for TNF-α and IL-1β were

purchased from Bender MedSystems (Vienna, Austria). PE
rat anti-mouse Ly6G was obtained from BD Biosciences
(New Jersey, USA). Neutrophils and F4/80 antibodies were
obtained from Thermo Scientific (Rockford, IL, USA). Rab-
bit anti-mouse TLR4 antibody, rabbit anti-mouse phospho-
IRAK1, phospho-p38, phosphor-IKKβ, IKKβ, phospho-
IκBα, IκBα, phospho-p65, p38, p65, β-actin, Lamin B1, and
GAPDH were purchased from Abcam (Cambridge, UK).
PE rat anti-mouse F4/80, FITC rat anti-mouse CD11b, and
FITC rat anti-mouse CD45 antibodies were from Biolegend,
Inc. (San Diego, USA). TLR4-specific antagonist TAK-242
was from MedChemExpress LLC (Shanghai, China). Palmi-
tic acid (PA) was from Sigma-Aldrich (St. Louis, USA).

2.2. Animals and Animal Experiments.Male C57BL/6J (WT)
mice (6–8 weeks, 20-25 g) were supplied by the Experimen-
tal Animal Center of Chongqing Medical University
(Chongqing, China). MFG-E8 knockout (KO) mice were
donated by Professor Tianpen Cui at Wuhan No. 1 Hospital
affiliated to Tongji Medical College of Huazhong University
of Science and Technology. The experimental animals were
maintained in a specific standard laboratory condition (20-
25°C, 55 ± 5% humidity and a circle of 12 h light/dark) and
were fed regularly and watered ad libitum. All mice were
acclimatized for at least 1 week prior to use. The experiments
involving mice were performed in accordance with the
guidelines of the Animal Care and Use Committee of
Chongqing Medical University.

Mice were randomly divided into four groups (n = 6 in
each group): CD-WT group, CD-KO group, MCD-WT
group, and MCD-KO group. Mice in both MCD-WT and
MCD-KO groups were fed MCD diet (purchased by Trophic
Animal Feed High-tech Co., Ltd. Jiangsu, China) for 5 weeks
to induce NASH. During the same period, mice in the other
two groups were fed standard chow diet (CD) (purchased
from Trophic Animal Feed High-tech Co., Ltd. Jiangsu,
China). At the end of 5 weeks, all mice were sacrificed under
anesthesia via sevoflurane, blood samples were collected
from the retroorbital sinus, and liver tissues were collected
for next analysis.

2.3. Cell Culture and Treatment. Liver tissues were perfused
with Hank’s balanced salt solution (HBS), followed by Dul-
becco’s modified Eagle’s medium (DMEM) with 0.05% IV
collagenases at 37°C. Primary murine hepatocytes were col-
lected by centrifugation at 50 g for 2min, then were seeded
in coated collagen type I cultural plates with DMEM supple-
mented with 10% fetal bovine serum (FBS).

The primary murine hepatocytes from wild type or
MFG-E8 knockout mice were stimulated with palmitic acid
(PA) (0.5mM) with or without TLR4 specific antagonist
TAK-242 (10nM) for 24 h. The supernatant was collected
for cytokines assay; the cells were fixed by 75% ethanol
and stained with Oil Red O solution. In other experiment,
the cells were lysed with chloroform-methanol solution for
intracellular TG measurement.

2.4. Biochemical Analysis. Blood samples were collected from
mice and centrifuged to obtain serum. Liver samples were
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homogenized using a tissue homogenizer, and the superna-
tant was obtained by centrifugation. The activities of ALT
and AST in serum and triglyceride (TG) in liver were mea-
sured using commercial assay kits according to the manufac-
turer’s instructions.

2.5. Histological Analysis. Liver tissues were fixed in 4%
paraformaldehyde, embedded in paraffin, and sliced at
5μm thickness. Subsequently, tissue sections were stained
with hematoxylin and eosin (HE) staining, Masson’s Tri-
chrome staining, or Sirius Red staining and evaluated using
light microscopy (Olympus, Tokyo, Japan). Steatosis,
inflammation, and hepatocyte ballooning in HE staining of
the liver were scored according to the NAS (NAFLD activity
score).

2.6. Oil Red O Staining. Liver tissues were embedded in opti-
mum cutting temperature (OCT) compound, sectioned at
15μm thickness, and fixed in 75% ethanol. Then, frozen sec-
tions were stained with Oil Red O solution and counter-
stained nuclear with hematoxylin.

2.7. Immunofluorescence of Macrophages and Neutrophils.
Macrophages and neutrophils in the liver were visualized
by immunofluorescence. Briefly, frozen sections (8μm) were
incubated with primary antibody FITC rat anti-mouse F4/80
or PE rat anti-mouse Ly6G at 37°C in the dark for 1 h. Then,
actin filaments were then labeled with ActinRed 555 or
ActinGreen 488 (Thermo scientific, Rockford, USA) at
37°C for 1 h. Finally, sections were counterstained nuclear
with 4,6-diamino-2-phenyl indole (DAPI) and analyzed by
fluorescence microscopy (Olympus, Tokyo, Japan).

2.8. Flow Cytometry. Liver samples were grounded and
digested with 0.05% IV collagenases at 37°C which were fil-
tered and centrifuged at 50 g for 5min for the supernatant.
Then, the precipitate was obtained by centrifuging the
supernatant at 500 g for 5min and was resuspended by
phosphate buffer. Next, liver nonparenchymal cells (NPC)
in the precipitates were incubated with labeled CD45, F4/
80, Ly6G and CD11b antibodies in the condition of 4°C
and darkness. The infiltration of macrophages (CD11b+F4/
80+) and neutrophils (CD45+Ly6G+) was detected by flow
cytometry.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). The
levels of TNF-α and IL-1β in the liver and supernatants were
measured by the ELISA kits following the manufacturer’s
protocols.

2.10. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). Briefly, 100mg of liver tissue and
1mL Trizol reagent (Invitrogen, CA, USA) were homoge-
nized using a homogenizer. The lysed liver sample was incu-
bated for 5min to permit the nucleoprotein dissociation and
added 200μL chloroform to mix, then securely cap the tube
to incubate for 2min. The sample was centrifuged at 4°C,
12000 g for 15min, and the mixing contents were trans-
ferred 600μL of the colorless, upper aqueous phase contain-
ing the RNA to a new RNase-free tube. The RNA mixture

was added an equal volume of 70% ethanol to vortex. After
that, the supernatant was carefully discarded, and the pre-
cipitation was dried at room temperature, pipetting 200μL
of RNase-free water to dissolve the pellet, and the total
RNA solution was prepared after mixing well.

The complementary DNA (cDNA) was synthesized by
the PrimeScript RT kit (Takara, Dalian, China). Quantitative
real-time PCR was performed using the SYBR Green real-
time PCR amplification kit (Takara, Dalian, China) follow-
ing the manufacturer’s protocol. The relative expression
levels of all mRNAs were normalized to GAPDH expression.
The primer sequences were listed as Table 1.

2.11. Western Blotting. The whole cell lysate, cytoplasmic,
and nuclear soluble proteins from mouse liver tissues were
separated by the RIPA lysis and Subcellular Protein Fractio-
nation Kits (Thermo Fisher Scientific, Waltham, USA)
according to the instructions. In brief, precisely weighed
100mg of liver and 1000μL of newly prepared RIPA lysis
buffer or cytoplasmic extraction buffer (CEB) were placed
into prechilled tube on ice, homogenizing fully on ice. The
supernatants (whole cell lysate or cytoplasmic extract) were
transferred into clean prechilled tube to use. The pellet in
CEB was added 225μL nuclear extraction buffer (NEB) con-
taining protease inhibitors to vortex for 15 sec and incubate
at 4°C for 30min with gentle mixing. Then, the tube was
centrifuged at 4°C, 5000 g for 5min, and the supernatant
(soluble nuclear extract) was collected. The protein concen-
trations were detected using the BCA assay kit.

Subsequently, proteins were subjected to electrophoresis
through polyacrylamide-sodium dodecyl sulfate (SDS-
PAGE) gel and transferred to polyvinylidene fluoride
(PVDF) membrane. The membranes were then blocked with
5% bovine serum albumin (BSA) solution at room tempera-
ture for 1 h. Afterward, the membranes were incubated over-
night at 4°C with appropriately diluted primary antibodies,
followed by incubation with horseradish peroxidase-
(HRP-) conjugated secondary antibodies for 1 h at room
temperature. Eventually, antibody binding was displayed
using an ECL chemiluminescent system and analyzed by
Image Lab software.

2.12. Statistical Analysis. All data in this study were
expressed as mean ± standard deviation (SD). Student’s t
-test was used to compare the difference between the two
groups. One-way analysis of variance (ANOVA) followed
by the Tukey post hoc test was used for multiple compari-
sons. P value < 0.05 was considered statistically significant.

3. Results

3.1. MFG-E8 Knockout Increased Serum ALT and AST
Activities in NASH Mice. Serum ALT and AST activities
are the crucial biochemical indicators for the evaluation of
liver function. As shown in Figure 1, serum ALT and AST
activities in the MCD-WT group were significantly higher
than those in the CD-WT group (P < 0:01). Compared with
the MCD-WT group, MFG-E8 knockout markedly
increased serum ALT and AST activities (P < 0:01). In

3Mediators of Inflammation



addition, there was no significant difference between the
CD-WT and CD-KO groups, indicating that MFG-E8
knockout did not affect the liver function in mice.

3.2. MFG-E8 Knockout Aggravated MCD-Induced Hepatic
Damage in Mice. To further confirm the effect of MFG-E8
on NASH, the histopathological changes of liver tissues were
evaluated by HE staining and NAS scoring. As shown in
Figure 2(a), there were not obvious pathological changes in
both the CD-WT and CD-KO groups. In contrast, the
apparent and diffuse hepatic steatosis with lobular inflam-
matory foci, as well as some ballooned hepatocytes were
observed in the liver of the MCD-WT group, which were
further aggravated in MFG-E8 knockout mice fed with
MCD. Likewise, NAS scores showed that MFG-E8 knockout
mice developed more severe hepatic pathological damage
than wildtype mice after MCD diet for 5 weeks (Figure 2(b)).

3.3. MFG-E8 Knockout Deteriorated Hepatic Steatosis in
NASH Mice. To assess the effect of MFG-E8 on lipid droplet
formation, Oil Red O staining and TG content measurement
were performed. MCD diet induced a marked lipid deposition
and fat vacuole accumulation in hepatocytes, which are typical
histological features of steatosis. However, MFG-E8 knockout
significantly deteriorated the size and number of hepatic lipid
droplets (Figure 3(a)). Meanwhile, as shown in Figure 3(b), the
Oil Red O staining positive area was significantly higher in the
liver of MFG-E8 knockout mice compared to wildtype group

(P < 0:01). Similarly, MFG-E8 knockout mice showed
remarkably higher hepatic TG contents than control mice in
MCD diet (P < 0:01) (Figure 3(c)).

3.4. MFG-E8 Knockout Exacerbated MCD-Induced Liver
Fibrosis in Mice. NASH is closely associated with liver fibro-
sis progressive. Thus, the extent of liver fibrosis was deter-
mined by Masson’s Trichrome staining and Sirius Red
staining. Compared with chow diet mice (CD-WT), MCD
diet mice (MCD-WT) showed more significant liver fibrosis,
which was drastically exacerbated by MFG-E8 knockout, as
demonstrated by Masson’s Trichrome stain (Figures 4(a)
and 4(b), blue indicates collagen fibers) and Sirius Red stain
(Figures 4(c) and 4(d), red indicates collagen fibers).

3.5. MFG-E8 Knockout Promoted Infiltration of Hepatic
Macrophages and Neutrophils in NASHMice. The infiltration
of macrophages and neutrophils into the liver is one of the
most crucial events in NASH development. Immunofluores-
cence staining analysis showed that compared to the MCD-
WT group, MFG-E8 knockout mice exhibited augmented
infiltration of F4/80+ macrophages and Ly6G+ neutrophils
into the liver (Figures 5(a)–5(d)). Furthermore, as expected,
flow cytometry analysis experiments showed a similar result
that hepatic inflammatory cell (CD11b+F4/80+ macrophages
and CD45+Ly6G+ neutrophils) numbers were markedly ele-
vated in MCD diet-fed MFG-E8 knockout mice compared
with MCD-WT group (Figures 5(e) and 5(f)).

Table 1: The primers of RT-qPCR.

Target gene Forward primer Reverse primer

TNF-α 5′-CAGGCGGTGCCTATGTCTC-3′ 5′-CGATCACCCCGAAGTTCAGTAG-3′
IL-1β 5′-GAAATGCCACCTTTTGACAGTG-3′ 5′-TGGATGCTCTCATCAGGACAG-3′
IL-6 5′-CTGCAAGAGACTTCCATCCAG-3′ 5′-AGTGGTATAGACAGGTCTGTTGG-3′
ICAM-1 5′-GTGATGCTCAGGTATCCATCCA-3′ 5′-CACAGTTCTCAAAGCACAGCG-3′
CCL2 5′-TAAAAACCTGGATCGGAACCAAA-3′ 5′-GCATTAGCTTCAGATTTACGGGT-3′
CXCL2 5′-CCAACCACCAGGCTACAGG-3′ 5′-GCGTCACACTCAAGCTCTG-3′
TGF-β 5′-CCACCTGCAAGACCATCGAC-3′ 5′-CTGGCGAGCCTTAGTTTGGAC-3′
GAPDH 5′-TGACCTCAACTACATGGTCTACA-3′ 5′-CTTCCCATTCTCGGCCTTG-3′
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Figure 1: Effect of MFG-E8 knockout on serum ALT and AST activities in mice. Serum ALT (a) and AST (b) activities were measured after
5 weeks of feeding MCD diet or standard chew diet (CD) in wildtype (WT) or MFG-E8 knockout (KO). Data were expressed asmean ± SD,
n = 6, ##P < 0:01, compared with CD-WT group; ∗∗P < 0:01, compared with MCD-WT group.
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3.6. MFG-E8 Knockout Enhanced the Production of
Inflammatory Mediators in the Liver of NASH Mice. Further,
the expression of proinflammatory mediators in the liver of
NASH mice was analyzed by ELISA and RT-qPCR. As
shown in Figures 6(a) and 6(b), after MCD diet for 5 weeks,
the protein levels of hepatic TNF-α and IL-1β in MFG-E8
knockout mice were higher than that in wildtype mice
(P<0.01). Consistently, the mRNA levels of inflammatory
mediators TNF-α and IL-1β, as well as IL-6, ICAM, CCL2,
CXCL2, and TGF-β, which were indicated as progressive
inflammatory response and liver fibrosis, were significantly
elevated in the liver of MFG-E8 knockout mice compared
with the MCD-WT group (Figure 6(c)).

3.7. MFG-E8 Knockout Facilitated MCD-Induced Activation
of TLR4/NF-κB Signaling in the Liver of Mice. To further
explore the potential mechanism by which MFG-E8
knockout aggravated NASH progression, Western blotting
was used to detect the activation of TLR4/NF-κB signaling
pathway. The results showed that the levels of TLR4, p-
IRAK1, p-p38, and p-p65 proteins in the liver of the
MCD-WT group were significantly higher than those of
CD-WT group, but the total p38 and p65 protein levels
were not significant. However, MFG-E8 knockout obvi-
ously upregulated the levels of hepatic TLR4, p-IRAK1,
p-p38, and p-p65, indicating that MFG-E8 knockout
enhanced MCD-induced TLR4 signal activation
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Figure 2: Effect of MFG-E8 knockout on liver injury induced by MCD in mice. (a) The liver pathological changes were determined by HE
staining and observed under a microscope. (b) The NAS scores were analyzed. Arrow indicated inflammatory foci, arrowhead indicated
hepatocyte ballooning, and asterisk indicated hepatocyte steatosis. Data were expressed as mean ± SD, n = 6, ##P < 0:01 compared with
CD-WT group; ∗P < 0:05 compared with MCD-WT group.

CD
M

CD

WT KO

(a)

CD-WT CD-KO MCD-WT MCD-KO
0

20

40

60

80

O
il 

re
d 

po
sit

iv
e a

re
a (

%
)

##

⁎⁎

(b)

CD-WT CD-KO MCD-WT MCD-KO
0

20

40

60

80

H
ep

at
ic

 T
G

 co
nt

en
ts

(m
g/

g)

##

⁎⁎

(c)

Figure 3: Effect of MFG-E8 knockout on MCD-induced hepatic lipid accumulation in mice. (a) Lipid accumulation in frozen sections of
liver tissue was determined by Oil Red O staining (200x). (b) The Oil Red O staining positive area was measured and quantified. (c) The
content of TG in the liver was assayed. Data were expressed as mean ± SD, n = 6, ##P < 0:01 compared with CD-WT group; ∗∗P < 0:01,
compared with MCD-WT group.
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(Figures 7(a) and 7(b)). Accordingly, compared to MCD-
WT group, MFG-E8 knockout significantly increased
MCD-induced NF-κB activation, as supported by enhanc-
ing the phosphorylation of IKKβ and IκBα, as well as
increased IκBα degradation. Moreover, the analysis of p65
in the subcellular localization indicated that freeing p65
was sharply translocated from cytoplasm into nucleus in
the liver of MFG-E8 knockout mice compared with WT
group fed by MCD (Figures 7(c) and 7(d)).

3.8. TLR4 Antagonist Rescued MFG-E8 Knockout-Enhanced
TGs Synthesis and Proinflammatory Cytokine Production in
Primary Hepatocytes Stimulated by PA. To evaluate whether
TLR4 mediated MFG-E8 knockout-aggravated NASH phe-
notype in MCD-fed mice, the primary hepatocytes sepa-
rated from WT or MFG-E8 knockout mice were
stimulated by PA with or without TLR4-specific antagonist
TAK-242. In parallel with these results from in vivo ani-
mal experiment, MFG-E8 knockout hepatocytes showed
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Figure 4: Effect of MFG-E8 knockout on MCD-induced liver fibrosis in mice. The liver section was performed by Masson’s Trichrome
staining and Sirius Red staining to assess the degree of liver fibrosis. (a) Images of Masson’s Trichrome staining (200x). (b) The positive
area of Masson’s Trichrome staining. (c) Images of Sirius Red staining (200x). (d) The positive area of Sirius Red staining. Arrow
indicated hepatic fibrosis changes. Data were expressed as mean ± SD, n = 6, ##P < 0:01 compared with CD-WT group; ∗∗P < 0:01,
compared with MCD-WT group.
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higher lipid droplet formation and TG synthesis, as well as
massive inflammatory cytokines TNF-α and IL-1β produc-
tion compared with wildtype hepatocytes in response to
PA stimulation. However, TLR4-specific antagonist TAK-
242 significantly reverted MFG-E8 knockout-aggravated

NASH phenotype, as indicated by decreased lipid droplet
formation and TG synthesis, and weakened inflammatory
cytokine production (Figure 8), suggesting that TLR4
might participate in the function of MFG-E8 on modulat-
ing NASH progression.
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Figure 5: Effect of MFG-E8 knockout on hepatic macrophage and neutrophil infiltration in NASH mice. Hepatic macrophages and
neutrophils were determined by immunofluorescence and flow cytometry using specific macrophage marker antibody F4/80 and
neutrophil marker antibody Ly6G. (a) Representative immunofluorescence images of hepatic macrophages (200x), F4/80 positive cells
were labeled with Green; F-actin was labeled with ActinRed 555. (b) F4/80 positive cells in high power field (HPF) were quantified. (c)
Representative immunofluorescence images of hepatic neutrophils (200x), Ly6G positive cells were labeled with Red; F-actin was labeled
with ActinGreen 488. (d) Ly6G positive cells in HPF were quantified. White arrowhead in the images indicated macrophage or
neutrophil. (e) The CD11b+F4/80+ cells indicated as macrophages in representative flow cytometry analysis of hepatic nonparenchymal
cells. (f) The CD45+Ly6G+ cells indicated as neutrophils in representative flow cytometry analysis of hepatic nonparenchymal cells. Data
were expressed as mean ± SD, n = 6, ##P < 0:01 compared with CD-WT group; ∗∗P < 0:01, compared with MCD-WT group.
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4. Discussion

NASH, a potentially progressive subtype of NAFLD that
results in hepatocirrhosis and liver cancer, is closely associ-
ated with the metabolic syndrome and responsible for con-
siderable economic burden globally [26, 27]. In the current
study, we demonstrated that MFG-E8 plays an important
role in the development of NASH. Our results found that
MFG-E8 knockout significantly increased serum ALT and
AST activities, exacerbated the histopathological liver injury
as well as hepatic lipid accumulation, and promoted hepatic
inflammatory responses and fibrosis in mice induced by
MCD diet.

Liver fibrosis is a main histopathological feature of pro-
gressive NASH, exposing patients to a significant risk for cir-
rhosis and hepatocellular carcinoma. Previous several
studies have suggested that MFG-E8 might be involved in
the pathogenesis of fibrosis in various organs and tissues.
For example, the expression of MFG-E8 was significantly
downregulated in the sclerotic skin lesions in systemic scle-
rosis patients with skin fibrosis, in the smooth muscle cells
surrounding the fibrotic respiratory tracts of asthma
patients, and in the cirrhotic livers [18, 28, 29]. As indicated,
MFG-E8 KO mice developed severe pulmonary fibrosis and
skin fibrosis upon intratracheal bleomycin administration

[28, 30]. Similarly, our results showed that MFG-E8 knock-
out mice exhibited more severe hepatic fibrosis compared
to the MCD-WT group.

Mounting evidence has revealed that the imbalance lipid
metabolism is the main etiology of hepatic steatosis and
fibrosis. Excessive lipid accumulation in the liver induces
metabolic stress and causes lipotoxicity, resulting in liver
parenchymal cell death. The hepatocyte-death-released
DAMPs activate innate immune signaling by PPRs, which
trigger sustained inflammatory cascade and further worsen
metabolic disorders and, finally, drive NASH progression.
Thus, dissection of lipid metabolic disorder and excessive
innate immune reaction is important for exploring the
underlying mechanisms or identifying novel therapeutic tar-
gets of NASH development [31–33]. In this study, MFG-E8
knockout deteriorated hepatic steatosis in NASH mice, indi-
cating that MFG-E8 may lower hepatic lipid production
through a direct or indirect molecular mechanism. However,
a previous study has showed that MFG-E8 could promote
fatty acid uptake and cause obesity in mice by inducing the
translocation of CD36 and FATP1 into cell surface. This
data seems be controversial with our present results. How-
ever, this report showed that MFG-E8 mainly affects adipo-
cytes but not hepatocytes in the absorption of fatty acid from
blood [34]. In addition, in our experiment, the MCD diet but
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Figure 6: Effect of MFG-E8 knockout on hepatic inflammatory mediators in NASH mice. (a) TNF-α and (b) IL-1β protein levels in the liver
were detected by ELISA. (c) The mRNA levels of hepatic TNF-α, IL-1β, IL-6, ICAM, CCL2, CXCL2, and TGF-β were measured by RT-
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Figure 7: Effect of MFG-E8 knockout on TLR4/NF-κB signaling pathway in the liver of NASH mice. The indicated proteins in whole cell
lysates, cytoplasmic extraction, and nuclear extraction from the liver tissues were detected by Western blotting, respectively. Representative
Western blotting (a) and quantification (b) of TLR4, p-IRAK1, p-p38, p38, p-p65, p65, and GAPDH protein levels in the liver.
Representative Western blotting (c) and quantification (d) of p-IKKβ, IKKβ, p-IκBα, IκBα, and GAPDH in the whole cell lysates, p65,
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as mean ± SD, n = 3, #P < 0:05, ##P < 0:01 compared with CD-WT group, ∗P < 0:05, ∗∗P < 0:01, compared with MCD-WT group.
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not high fatty diet- (HFD-) induced NASH model was used.
The two NASH models have obvious different phenotype
and pathogenesis. In the MCD model, lack of methionine
and choline in diet interrupts the VLDL assembly, which
leads to decreased TG secretion, resulting in hepatic lipid
accumulation [35]. In fact, lipid metabolic disorder is
involved in an imbalance between hepatic lipid input and
output. Recently, Zhang et al. reported that MFG-E8
improved hepatic steatosis and inflammation through inhi-
biting apoptosis signal-regulating kinase 1 (ASK1) and
mitogen-activated protein kinase (MAPK) signaling in hepa-
tocytes [21]. Considering that ASK1 and MAPKs are down-
stream molecules of TLR4 signal pathway, and the lipid
output but not its input is declined in MCD-induced NASH,
we speculate that MFG-E8 does not directly regulate lipid
metabolism but might block inflammatory cascade-
worsened metabolic disorders by inhibiting innate immune
TLR4 signal.

It is acknowledged that metabolic inflammation is tightly
regulated by innate immune signal. Hepatic macrophages

and neutrophils have been identified as the main innate
immune cells in NAFLD [36, 37]. Infiltrating macrophages
and neutrophils secrete proinflammatory cytokines and che-
mokines that promote the progression of liver inflammation
and fibrosis and aggravate hepatic steatosis [38–40]. Estab-
lished data suggested that MFG-E8 could inhibit the produc-
tion of proinflammatory mediators and alleviate macrophage
and neutrophil infiltration [23, 41–43]. Consistently, in the
present study, by immunofluorescence staining and flow
cytometry, we found that MFG-E8 knockout exhibited more
severe hepatic macrophages and neutrophil infiltration in the
liver of NASH mice. In addition, the RT-qPCR and ELISA
analysis also indicated that MFG-E8 knockout upregulated
the expression of inflammatory mediators.

TLR4 and NF-κB play a critical role in the innate
immune inflammatory responses and are closely related to
the production of inflammatory mediators and cellular
damage. It has been well demonstrated that activation of
TLR4/NF-κB signaling pathway aggravates inflammatory
responses and promotes NASH progression [10, 44–46].
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Figure 8: TLR4 antagonist rescued MFG-E8 knockout-enhanced TG synthesis and proinflammatory cytokine production in primary
hepatocytes stimulated by palmitic acid (PA). The primary hepatocytes separated from WT or MFG-E8 knockout mice were stimulated
by PA (0.5mM) with or without TLR4 specific antagonist TAK-242 (10 nM) for 24 h, the lipid droplet was evaluated by Oil Red O
staining (a), TG content was assayed by a commercial kit (b), and TNF-α (c) and IL-1β (d) protein levels in the supernatants were
measured by ELISA. Data were expressed as mean ± SD, n = 6, #P < 0:05, ##P < 0:01 compared with WT+TAK-242 group, ∗P < 0:05,
compared with KO+PBS group.
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We previously reported that mice fed by an MCD diet
exhibited severe inflammation and liver injury through
upregulating the expression of proinflammatory cytokines
and chemokines, which coincided with activation of
TLR4/NF-κB signaling pathway in the liver [14]. Addition-
ally, inhibition of TLR4 or NF-κB activation has been
shown to exert the beneficial therapeutic role in several
NASH mouse models [47, 48]. In other inflammatory
models, MFG-E8 is also indicated to be effective for atten-
uating inflammatory response through inhibiting the acti-
vation of TLR4/NF-κB pathway [22, 23]. Notably, several
previous studies have shown that the expression of
MFG-E8 is downregulated by activation of TLR signal
in vitro and in vivo, indicating that there might be nega-
tive feedback mutual interaction between TLR signal and
MFG-E8 [49, 50]. In the current study, overactivated
TLR4/NF-κB signaling pathway, as well as the elevated
levels of inflammatory mediators, was observed in the
MCD-KO group, suggesting that the effect of MFG-E8 in
NASH might be mediated by TLR4/NF-κB signal pathway.
Furthermore, using a primary hepatocyte model, we found
that specific inhibiting of TLR4 could effectively rescue
MFG-E8 knockout-aggravated NASH phenotype. Thus,
our data suggested that MFG-E8 knockout promoted
hepatic steatosis, inflammation, and fibrosis in MCD-
induced NASH, which might be by activation of TLR4/
NF-κB signaling pathway.

5. Conclusion

In conclusion, we confirmed that MFG-E8 knockout exacer-
bated the development of NASH, and the underlying mech-
anism may be related to the activation of TLR4/NF-κB
signaling pathway, which led to hepatic inflammatory cell
infiltration and proinflammatory mediator production. Con-
sidering the role of MFG-E8 knockout in promoting liver
inflammation and fibrosis, it is reasonable to expect that tar-
geting MFG-E8 may be a promising strategy for improving
NASH outcome.
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Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial
surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other
mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial
homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the
development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the
pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus
erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance
of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an
innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated
in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants
such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these
autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-
based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.

1. Introduction

Interleukin 17A (IL-17A) represents a pleiotropic cytokine
that has gained attention as signature cytokine of CD4+ T
helper 17 (Th17) cells and has been put forward as critical
determinant of psoriasis, a chronic relapsing T cell-
mediated inflammatory disorder of the skin, and rheumatic
musculoskeletal diseases like psoriatic arthritis and periph-
eral and axial spondylarthritis. In the last decade, a plethora
of effective biological disease-modifying antirheumatic drugs
(bDMARD) targeting the IL-23/IL-17A pathway has been
developed, consisting of monoclonal antibodies against the
common p40 subunit of IL-23/IL-12 and anti-IL-17A and
the IL-23 p19 unit. Emerging data now indicates that IL-
17A exert a wide range of functions that may be responsible
for the development or exacerbation of systemic autoim-

mune diseases. Given the available data thus far, targeting
IL-17A may be considered a novel strategy to prevent clini-
cal manifestations in a broad spectrum of autoimmune con-
ditions. In this review, we will focus on the pathophysiologic
role of IL-17A in three major systemic autoimmune diseases
including systemic lupus erythematosus (SLE), Sjögren syn-
drome (SS), and systemic sclerosis (SSC). For the sake of
space restrictions, we will not address the role of IL-17A in
other autoimmune diseases or rheumatic musculoskeletal
diseases.

2. IL-17A: An Introduction to Its
Immunological Functions

IL-17A is a front runner in the IL-17 family that comprises
the six homologues IL-17A to IL-17F. IL-17A shares the
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greatest homology with IL-17F, where IL-17A and IL-17F
represent the best studied members of the IL-17-family [1,
2]. Like other proinflammatory cytokines such as TNF, IL-
17A displays AU rich repeats in the 3′untranslated region
of its messenger RNA (mRNA). IL-17A has been originally
identified as a T cell hybridoma-derived molecule CTLA-8
and shares a 57% amino acid sequence homology with a
putative protein that was found in the T cell tropic γ-herpes-
virus saimiri [3, 4]. Amongst the five canonical IL-17 recep-
tors, named IL-17RA to RE, IL-17A signals as a homodimer
IL-17A/A via the heterodimeric IL-17RA/RC receptor com-
plex, which may also be engaged by the homodimer IL-17F/
F (IL-17F) and the IL-17A/IL-17F heterodimer (IL-17A/F)
[1] (see Figure 1). Of note, CD93 has recently been identified
as receptor for IL-17D in group 3 innate lymphoid cells [5].
In terms of the hierarchy of activity, the most potent ligand
of the IL-17RA/IL-17RC receptor complex is IL-17A/A,
followed by IL-17A/F and IL-17F/F. Where the IL-17RA
subunit is ubiquitously expressed, IL-17RC expression is
restricted to nonhematopoietic epithelials and mesenchymal
cell types [2]. Recently, IL-17RD has been suggested to rep-
resent an alternative receptor for IL-17A signaling, particu-
larly in mouse and human keratinocytes [6]. The IL-17RA/
RC receptor complex is expressed by various cells including
fibroblasts, macrophages, epithelial cells, endothelial cells,
and astrocytes. Although IL-17RA has been detected on T
cells, both primary cells and cell lines, exposure to IL-17A
fails to induce the expression of the canonical IL-17 target
genes in the absence of the RC receptor unit [7]. The main
producers of IL-17A and IL-17F are Th17, as reflected by
their signature cytokines, CD4/CD8 double-negative
TCRαß+ T cells (DNT; see later) and to a lesser degree cyto-
toxic CD8+ T cells (mucosal-associated invariant (MAIT) T
cells, gamma-delta (γδ) T cells, and innate lymphoid cells
like group 3 innate lymphoid cells (ILC3)) [2, 8].

In the last three decades, the immunological functions of
IL-17A in the context of different clinical settings have been
increasingly elucidated. A large pile of evidence alludes to
IL-17A as first defence to preserve the barrier integrity of
epithelial organs including skin and respiratory and gastro-
intestinal tracts to fight against invading pathogens, particu-
larly extracellular bacteria and fungi. Clinical data from
human models of defective IL-17A signaling, resulting from
genetic, therapeutic, or viral causes, have underpinned its
crucial role for the antimicrobial immunity surveillance
across exposed surfaces [9–11]. Amongst the primary mech-
anisms of IL-17A to maintain epithelial barrier integrity is
stimulating the production of antimicrobial peptides such
as β-defensins and S100A8 (Calgranulin A) and S100A9
(Calgranulin B) that are together expressed as the heterodi-
mer calprotectin. Further, IL-17A may prevent colonic
injury and restore intestinal epithelial homeostasis by trig-
gering the expression of tissue plasminogen activator
(tPA), with subsequent activation of TGF-β-mediated anti-
inflammatory pathways [12]. In the skin, IL-17A has been
implicated in physiological wound repair by inducing the
expression of regenerating islet-derived protein 3-alpha
(REG3A) that promotes proliferation in keratinocytes [13].
Second, IL-17A attracts effector cells to the site of inflamma-

tion to help eliminate potential threats and assist in the
repair of tissue damage. Illustratively, the IL-17A/G-CSF
axis has been involved in regulation of bone marrow granu-
lopoiesis and neutrophil recruitment to the inflammatory
site. In this respect, counterregulatory mechanisms involving
CXCR2 expression on neutrophils, CXCL5, and commensal
bacteria are instated to keep neutrophil homeostasis in check
[14]. Third, IL-17A in synergy with IL-13 (in a CXCL13-
dependent manner) may support the host response to intra-
cellular pathogens by driving the development of ectopic
lymphoid structures, composed of highly organized T cell
and B cell zones that emerge during infections with intracel-
lular pathogens such as pneumocystis jiroveci and mycobac-
terium or in response to inflammatory stimuli [15, 16].
Several of these immune properties of IL-17A have been
recapitulated in autoinflammatory disorders and more
recently cancer, and on top of that, new features have been
uncovered [17, 18]. As for the latter, IL-17A assists in shap-
ing the tumor microenvironment by dampening tumor-
specific immune responses involving proangiogenic signals,
progressive loss of antitumor Th1 immunity, and suppres-
sion of T cell immune surveillance [19, 20]. In addition,
IL-17A has been shown to promote protumorigenic factors
like proliferation capacity, immune cell infiltration, resis-
tance to chemotoxicity, and migratory and invasive proper-
ties [19–26].

3. IL-17A Signaling Pathway

At first sight, IL-17A represents a proinflammatory cytokine
that appears to have only modest properties in vitro as com-
pared to other cytokines such as TNF and IL-6. Thus, IL-
17A signaling initiates a cascade of events that results in
transcriptional regulation of a variety of inflammatory RNAs
with the release of their corresponding proteins that are
dominated by a set of signature genes comprising IL-6, gran-
ulocyte colony-stimulating factor (G-CSF), chemokines such
as CXCL1-2, CCL20, lipocalin-2 (Lnc2), metalloproteinases,
and beta defensins [27, 28]. Adapter molecule Act1 encoded
by the gene TRAF3IP2 (also known as CIKS) mediates the
downstream signaling of IL-17A and is therefore essential
for its transcriptional and posttranslational mechanisms
[28]. Act1, containing different TNF receptor-associated fac-
tor (TRAF) binding motifs, constitutes a multifunctional
platform for various TRAFs, which context-dependently
may be recruited to trigger different downstream pathways.
Thus, the IL-17R/Act1 complex recruits the adaptor mole-
cule TRAF6 as intermediate component in the signaling cas-
cade, which subsequently results in TGF-β-activated kinase
(TAK) 1 phosphorylation and feedforward activation of
the canonical NFkB pathway but also the MAPK pathways
p38, ERK, or JNK [2, 29]. IL-17A constitutes a weak activa-
tor of the NFkB signaling pathway, but instead, IL-17A sig-
naling may activate other downstream targets including
transcription factors CCAAT enhancer-binding protein (C/
EBP-β), AP-1 complex, and IκBζ (encoded by NFKBIZ)
[30]. Act1 can also recruit and interact with TRAF2 and
TRAF5 and the splicing regulatory factor SF2 (ASF) to form
a complex in order to prolong the stability of inflammatory
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mRNAs like CXCL1 mRNA (see further) [31]. Other TRAFs
like TRAF4 may engage in antagonizing Act1-mediated
induction of IL-17A-related inflammatory genes by compet-
ing with TRAF6 [32]. Further, Act-1 may suppress IL-23/IL-
6-induced STAT3 inhibition as a negative regulator in T and
B cells [33].

Engagement of IL-17R with Act1 is mediated via interac-
tion between a “similar expression to fibroblast growth fac-
tor genes/IL17R” (SEFIR) domain in the cytoplasmic tail,
which is a conserved region amongst all IL-17Rs, and the
SEFIR domain present on Act1. The IL-17 target genes are
enriched for DNA binding sites of the transcription factors
(transcriptional regulatory elements) in their proximal pro-
moter regions [27].

Other functions of Act1 include the E3 ubiquitin ligase
activity towards TRAFs that may control their fate and activ-
ity in IL-17A signaling, as illustrated by the K63-linked poly-
ubiquitination of TRAF6 mediated by TAK-1 [2, 34, 35].
Lysine-124 residue of TRAF6 has been implicated in Act1-
mediated ubiquitination of TRAF6 and TRAF6’s ability to

mediate IL-17-induced activation of NFkB [36]. A counter-
regulatory mechanism is represented by the ubiquitin-
specific peptidase 25, a deubiquitinating protease that
reverses the modification of TRAF6 and thus decreases
TRAF6 assembly to Act-1 by remodeling the K63
polyubiquitin.

In addition, Act1 has been found to suppress pathways
mediated by CD40 and BAFF, both members of the TNF
receptor (TNFR) superfamily, which play critical roles in B
cell survival and differentiation. Thus, Act1 knockout mice
develop lymphadenopathy and splenomegaly, hypergamma-
globulinemia, and autoantibody formation, where Act1-
deficient B cells exhibit stronger IkappaB (IkB) phosphoryla-
tion, NFkB2 signaling, and activation of JNK, ERK, and p38
pathways [37]. A similar phenotype was observed in IL-
17RA knockout mice on a C57BL/6 lpr background [38].

Posttranscriptional regulation that may prolong or
shorten RNA stability is another important feature of IL-
17A signaling, a capacity that is mediated via mRNA-
binding proteins that are seemingly at the crossroads of host

IL-17A/A
IL-17A/F
IL-17F/F

FN1
FN2

SEFIR
SEFEX

CBAD
Act1

Act1

SEFIR

SEFEX

CBAD

MAPK TAK1

TRAF2/5
TRAF6

Syk
Cama2

IL-17 target genes
NF-kBAP-1C/EBPβ

IL-17C/C

IL-17RC IL-17RAIL-17RA IL-17RE IL-17RA IL-17RB IL-17RA IL-17RD IL-17RB CD93

IL-17DIL-17BIL-17A/A
IL-17B/B
IL-17E/E

CTLD
Sushi domain

EGF like domains

?

Figure 1: Schematic representation of IL-17 family of cytokines and receptors. IL-17A is the front runner in the IL-17 family of cytokines,
comprising six homologues IL-17A to IL-17F in total. The IL-17 receptor family consists of five canonical IL-17 receptors, named IL-17RA
to RE; CD93 has recently been identified as receptor for IL-17D. SEFIR: similar expression of fibroblast growth factor and IL-17Rs; SEFEX:
SEFIR extension; CBAD: C/EBPβ activation domain.
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immune response to microbial inflammation and the develop-
ment of autoimmune disorders. RNA-binding proteins
(RBPs), like AT-rich interactive domain-containing protein
5A (arid5a), act on the adenylate/uridylate- (AU-) rich ele-
ments (ARE) of the 3′untranslated region (3′UTR) for stabi-
lizing various inflammatory mRNA genes and have specific
target genes. Thus, Arid5a has been found to stabilize the IL-
6 gene and not that of other cytokines like TNF, via competi-
tion with the ribonuclease (RNAse) Regnase I (see further) on
the same region in 3′UTR of IL-6 [39, 40]. In addition, Arid5a
promotes the stability of the mRNA of CXCL1 and CXCL5
amongst others. Other RBPs that can be recruited to the IL-
17R/Act 1 complex via TRAF2 and TRAF5 include DEADbox
helicase 3X-linked (DD3X3) and Hu-antigen R (HuR). The
latter competes with RNA decay factor splicing factor 2SF2.
Through selective stabilization of STAT3, Arid5a may skew
differentiation of CD4+ T cells to the Th17 subset [41].

Noticeably, there are counterregulatory mechanism to
constrain IL-17-induced inflammation. Regnase-1, also
known as zinc finger CCCH-type containing 12A
(ZC3H12A) or monocyte chemoattractant protein I-
inducing protein (MCP1P1), represents an immune
response modifier with RNase activity. Regnase-1 is a cyto-
plasm localized protein with a CCCH-type zinc finger motif
that can be induced through toll-like receptor (TLR) signal-
ing [42]. The RNase activity is mediated via a putative
amino-terminal nuclease domain that sets off the decay of
a set of inflammatory genes like IL-6, IL-12p40, and calcito-
nin receptor gene via their 3′UTR [42]. Mice lacking
Regnase-1 display a phenotype of autoimmunity that resem-
bles systemic lupus erythematosus (SLE) in humans, includ-
ing antinuclear antibodies, anti-double-stranded DNA
(dsDNA), autoantibodies, hyperglobulinemia, anemia,
plasma cell infiltration in lung interstitial tissue, and spleno-
megaly and lymphadenopathy [42]. A similar phenotype has
been found in the lupus-prone Sanroque mice, where a key
role for another RING-type ubiquitin ligase protein with a
CCCH-type zinc-finger domain Roquin has been established
in repressing autoimmunity [43]. Recently, Regnase-1 has
been identified as negative regulator of antitumor activity
of CD8+ T cells and thereby suppressing their accumulation
and mitochondrial fitness by targeting BATF (rheostat) [44].
A recent study has pointed to IL-17-mediated Act1/DDX3X
interaction that controls stability of Regnase-1 [45].

Negative inhibitors of IL-17A signaling involve the deu-
biquitinase zinc-finger protein A20, a key player in the neg-
ative feedback regulation of NF-κB pathway, which is
mediated via the CEBP beta activity domain (CBAD) [46].
Other negative regulators of IL-17A signaling includes non-
coding RNA miR-23B that targets TAB2 and TAB3 and
miR30a that induces degradation of Act1 [47, 48]. In certain
conditions of inflammation, IL-17A may team up with other
proinflammatory mediators like epidermal growth factor,
FGF2, and Notch1 [18, 49, 50]. Further, synergistic activities
of TNF and IL-17A, involving transcription factors CUX1
and IκBζ (NFKBIZ), have been described in stromal-
resident fibroblast-like synoviocytes, resulting in secretion
of IL-6 and CXCL8 and neutrophil recruitment [51].

4. The Role of IL-17A in Systemic
Lupus Erythematosus

SLE represents a heterogeneous, multicompartment autoim-
mune disease that may involve the skin, lymphatic network,
musculoskeletal system, and internal organs like kidney,
lungs, and central nervous system (CNS) [52]. Next to clin-
ical manifestations, SLE features various serological abnor-
malities including autoantibody formation,
hypergammaglobulinemia, hypocomplementemia, and
autoimmune-mediated cytopenias. Prototypically, the anti-
nuclear antibodies consist of (1) anti-nucleosome autoanti-
bodies that are directed at DNA, histones, or DNA-histone
complex, (2) cytoplasmic proteins, (3) RNA, or (4) U1-
small nuclear ribonucleoprotein complex like U1-70 [53].
SLE is associated with long-term morbidity, coexistential
disorders like cardiovascular disease, and an increased risk
of death.

To date, several studies in young and adult SLE patients
have reported on the association of increased serum IL-17A
levels or frequencies of IL-17A expressing T cells with dis-
ease severity, particularly in those with CNS involvement
[52, 54–61]. In this regard, good interpretation of these stud-
ies has been flawed by the limited numbers of patients, het-
erogeneity of disease manifestations, and a large proportion
of study subjects on various treatment strategies. Preclinical
studies that have hinted at involvement of IL-17A in SLE
pathology indicate that the absence of IL-17 in experimental
lupus models is associated with inhibition of autoantibody
formation targeting DNA, RNP, and chromatin and, even
more striking, lupus nephritis [62, 63].

A closer look at the T cell compartment, which exhibits
various anomalies in cytokine production and cellular func-
tions in active SLE, may offer insights into the mechanisms
underlying these associations. Thus, patients with active
SLE display a marked expansion of IL-17A-expressing T cell
subpopulations comprising CD4+ Th17 cells and DNTs [57,
64, 65]. Normally, DNTs take up 1% to 2% of the total T cell
pool in peripheral blood and lymph nodes (LN) of healthy
donors [66]. These IL-17A+ subpopulations are antigen spe-
cific, given that tetramer studies have identified RORγt+ IL-
17A-producing T cells that are specific for U1-70 in humans
and lupus-prone mice [67]. Similar to Th17 cells, DNTs
express RORγt, the master regulator of the Th17 lineage,
and IL-23R [57, 64]. In lupus-prone mice, IL-23 has been
identified as an important driver of DNT expansion and
IL-17A production [68]. Phenotypically, peripheral DNTs
exhibit extraordinary migratory and tissue invasive proper-
ties, which may result in severe organ pathology in various
inflammatory settings like ischemic stroke and spondyloar-
tropathy [57, 69, 64, 70, 71]. Their origin is not completely
understood; however, earlier studies have suggested that
DNTs originate from the thymus and spleen. Recently,
splenic marginal zone macrophages (MZMs) have been
implicated as regulators of DNT development. Upon exper-
imental depletion of MZMs, the compartment of autoreac-
tive CD8+ T cells expand and lose their CD8 expression to
adopt the DNT phenotype including loss of regulatory prop-
erties, enhanced migratory potential, IL-17A-producing
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potency, hyperproliferative state, and a narrowed TCR rep-
ertoire [72]. Another regulator of DNT development that
has been suggested is Act1 [33]. The expansion of splenic
DNTs instigates hallmark symptoms of SLE in lupus-prone
mice including the emergence of germinal centers (GC),
generation of anti-double-stranded DNA (dsDNA) autoan-
tibodies, and inflamed kidney characterized by infiltration
of DNTs [72].

Apart from the peripheral blood compartment, IL-17A-
expressing T cells have been detected in various SLE-
related target tissues. Thus, IL-17A-producing cells particu-
larly DNTs have been shown to invade inflamed kidneys of
lupus nephritis patients (see Figure 2) [64]. In more detail,
infiltrating IL-17A-expressing T cells gather in close proxim-
ity to blood, which has been shown in vascular beds of skin
and lungs [57]. In pediatric SLE patients with pulmonary
involvement, these IL-17A+ T cells have been postulated to
exert direct adverse effects on airway smooth muscle remod-
eling worsening small airway obstruction [59, 73]. Their
presence seems to be a prerequisite for organ pathology
SLE. Thus, regression of DNT presence in the lupus-prone
B6/lpr mice, as mediated by IL-23R deficiency, was associ-
ated with mitigation of lymphoid hyperplasia and suppres-
sion of the development of lupus nephritis [74].

Based on the available evidence from preclinical mouse
models, the contribution of IL-17A to the disease pathology
in SLE appears to be reflected by four different mechanisms.

First, IL-17A mediates the recruitment of effector cells
like neutrophils, IL-17A+-expressing T cell subsets, and
CCR6+ B cells into SLE target tissues and GCs [75]. Second,
IL-17A may represent a driving force behind autoimmunity
[76]. In the BXD2 mouse model that recapitulates many SLE
features like enhanced activation-induced cytidine deami-
nase (AICDA) activity, autoantibody generation, circulating
immune complexes, and progressive glomerulonephritis, IL-
17A has been shown to induce and stabilize autoreactive GC
formation via B cell retention within GCs and increased
CXCL12/CXCR4-mediated interactions between B cells
and T cells resulting in AICDA upregulation and autoanti-
body generation [77–79]. Further, IL-17A may promote
class switching to IgG2a and IgG3, plasma cell development,
and MHC class II expression on B cells, whereas DNT
derived from patients with SLE have been found to directly
promote cationic IgG antibodies against DNA in coculture
[78–80].

Third, IL-17A may play a role in enhanced vascular-
immune interactions. Thus, endothelial activation upon
exposure to IL-17A derived from PBMC of patients with
active SLE promotes the adherence of Jurkat cells to vascular
endothelium, which is mediated by augmented endothelial
expression of E-cadherin, ICAM-1, and VCAM-1 [57]. The
last mechanism refers to the T cell-neutrophil interaction
as partners in crime. The release of neutrophil extracellular
trap (NET) formation has been implicated in the pathogen-
esis and organ injury in SLE, which is driven by increased
REDD1/autophagy axis [81]. Interestingly, depositions of
NET in actively inflamed skin and kidney have been found
to colocalize with bioactive tissue factor and IL-17A that in
a synergistic manner may promote fibrotic activity in the

stromal cell compartment [81]. In Fc gamma receptor IIb-
(Fcgr2b-) deficient mice that develop fatal lupus pathology,
IL-17A/Act1 signaling has been shown to adversely affect
the course of glomerulonephritis by promoting the recruit-
ment of immune cells in particular neutrophils and NET
deposition in inflamed kidneys [79].

The external and intrinsic factors that enable Th17 and
DNT subpopulations to successfully invade target tissues
and promote SLE pathogenesis are ample. Aside from the
inflammatory microenvironmental milieu that is enriched
with chemoattractants like CCL20, endothelium-derived
CD95 expression has been shown to promote infiltration
of IL-17A-expressing T cells into the perivascular space in
a PI3K- and calcium signaling-dependent manner [82].
The chemokine receptor CCR6, a nonpromiscuous receptor
with as sole ligand C-C motif chemokine ligand 20 (CCL20),
has been found to a play a key role in the trafficking of Th17
cells to the inflamed kidney in experimental lupus nephritis
[83]. In this respect, the serine/threonine kinase calcium/cal-
modulin-dependent kinase IV may promote CCR6 expres-
sion in IL-17A-expressing T cells, as well as CCL20
secretion that recruits other CCR6+ T cells through a posi-
tive feedback mechanism that may propagate tissue inflam-
mation and accelerate glomerular injury in the inflamed
kidney [60]. In children with lupus nephritis, enhanced
migratory activities of IL-17A-expressing T cell subsets have
been linked to enhanced Akt signaling [61]. Moreover,
expansion of IL-17A-expressing T cells has been ascribed
to heightened intrinsic activity of the nonreceptor phospha-
tase (PTP) protein tyrosine phosphatase SH2 domain-
containing PTP (SHP2) in humans and mice [84]. Using
adoptive transfer studies, fate reporter mice, and mouse
models of lupus nephritis, kidney-infiltrating Th17 cells
have been found to display very limited spontaneous plastic-
ity, where Th17 cells usually show high degree of plasticity to
transdifferentiate into other T cell phenotypes upon inflam-
matory stimuli [85]. Last, SLE may be associated with func-
tional impairment of CD147 (basigin), an extracellular
matrix metalloproteinase inducer (EMMPRIN), which may
act as a brake on the disproportional expansion of Th17
cells [86].

Enhanced activity of IL-17A-expressing T cell subsets
has been ascribed to increased ROCK activity [87, 88]. In
addition, SLE T cells exhibit augmented expression of signal-
ing lymphocyte activation molecules (SLAMs). Particularly,
expression of SLAMF6 and 3 has been associated with supe-
rior costimulatory activity in vitro, as compared to CD3/
CD28 [89, 90]. Inversely, SLAMF1 ligation in cocultures of
B and T cells may reduce IL-17A and IL-21 production
[91]. Another mechanism involves synergistic activity
between enhanced recruitment of RORγt to the IL-17A pro-
moter and CD28-induced nuclear abundance of the tran-
scription factor nuclear factor of activated T cells (NFAT)
[92]. The latter can be dampened by dipyridamole, a
recently recognized specific inhibitor of calcineurin–NFAT
interactions [93]. Further, upregulated expression of
ubiquitin-specific protease 17 (USP17) in CD4+ T cells from
SLE patients has been found to prolong RORyt-dependent
IL-17A transcription by increasing the stability of RORyt
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and preventing it from proteosomal degradation [94].
Another modifier that has been identified to augment IL-
17A production is transcription factor friend leukemia inte-
gration 1 (Fli-1) that regulates the expression of numerous
cytokines and chemokines [95]. Last, epigenetic mechanisms
that have been implicated in SLE pathogenesis involve
cAMP response modulator (CREM)α that mediates demeth-
ylation of IL-17A promoter and trans-repression of the IL-2
gene, resulting in enrichment of effector memory T cell phe-
notypes [65]. In juvenile onset lupus, CREMα has been rec-
ognized to drive increased IL-17A expression and reduced
IL-2 production in CD4+ T cells [96].

5. The Role of IL-17A in Sjögren’s Syndrome

The concept for the extent to which IL-17A is involved in
the pathogenesis of SS is less developed as compared to

SLE, given the restricted amount of clinical and experimen-
tal data. SS presents itself primarily with sicca syndrome and
exocrine gland dysfunction that results from lymphocytic
infiltration into lacrimal and salivary glands (SG). In addi-
tion, SS features a constellation of clinical and serological
signs, consisting of autoantibody formation, hypergamma-
globulinemia, fatigue, arthritis, cutaneous manifestations,
and increased risk for malignant lymphomas [97]. The pro-
totypical autoantibodies target Ro/SSa (two subunits, 52 kDa
and 60 kDa) and La/SSb antigens and may be detected up to
~5 years before diagnosis [98, 99]. Ro52 constitutes an E3
ligase that belongs to the tripartite motif family and has been
implicated in the transcriptional regulation of proinflamma-
tory cytokines like IL-17A given its RING-dependent E3
ligase activity [100]. Also, Ro52 regulates several members
of the interferon regulatory factor (IRF) family like IRF3 that
suppress IL-17A and IL-23R expression by holding off
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Epithelitis

Interstitial lung
disease

Severe organ
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Figure 2: Schematic representation of the contributive role of IL-17A in the pathogenesis of three major systemic autoimmune diseases.
Growing evidence suggests that the abundance of IL-17A and its prime source, i.e., Th17 cells and DNTs, in the target tissues may
deteriorate clinical and immunological patterns in any of these autoimmune disorders by promoting (1) autoimmunity, immune cell
recruitment, and vascular-immune interactions in SLE, (2) induction of autoantigen expression and undermining of endothelial
integrity/barrier function in SS, and (3) fibrogenesis (indirect mechanism) in myofibroblast precursors and vasculopathy in SSC. Th17
and DNTs, originating from the spleen and thymus, display excellent properties to infiltrate disease-associated organs, which in concert
with tissue-derived factors ensure coordinated temporal-spatial distribution as well as activation of IL-17A-expressing T cells within
lymphoid and nonlymphoid tissues.
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RORγt from accessing corresponding DNA-binding sites/
enhancer regions [101, 102]. In a Ro52 reporter (Rho-defi-
cient) mouse strain, where the Ro52 locus is replaced by
GFP, tissue-specific enrichment of Ro52 protein expression
is detectable in lymphoid tissues, including spleen, LNs,
and thymus, which corresponds with the clinical picture of
SS 100. Ro60 represents a RNA-binding protein that has been
implicated in environmental stress, and its loss has been
associated with photosensitivity and cutaneous lesions in
SLE [103].

Several exploratory studies in SS patients and preclinical
mouse models have reported on the association between IL-
17A and SS pathology, including increased IL-17A levels in
serum and in target tissue SGs and the lacrimal system
[104–110]. Moreover, histological examination of SGs of
patients, suffering from SS, reveals a lymphocytic infiltra-
tion, the majority of which are IL-17A-expressing CD4+ T
cells and to lesser degree CD8+ T cells (see Figure 2) [111].

Additional confirmation for IL-17A involvement in SS
comes from observations in the Ro52-null mice that develop
SS-like manifestations comprising dermatitis, autoantibody
formation, hypergammaglobulinemia, lymphadenopathy,
splenomegaly, and kidney pathology characterized by pro-
teinuria with mesangium and intraglomerular immunoglob-
ulin depositions [100]. Tissue inflammation and the
overactive immune system in these mice display an “IL-
17A signature,” as attested by hyperproliferating LN and
spleen cells that spontaneously secrete IL-17A (and related
cytokines), which together with a substantial enrichment
for IL-17A-expressing T cells in the CD4+ and CD4- com-
partments could be jacked up by T cell activation. Con-
versely, abrogation of the IL-23/IL-17A axis in these
Rho52-null mice restores a substantial part of the SS-
related pathology [100]. Of note, the effects of IL-17 ablation
on SS-like manifestations appear to be more prominent in
female animals, suggesting sexual dimorphism [110]. Other
lines of evidence that implicates the IL-17A pathway in the
pathogenesis of SS derives from adenovirus-mediated deliv-
ery studies (IL-17A overexpression) and genetically engi-
neered mouse models (IL-17A entrapment). Thus,
adenovirus-induced IL-17A overexpression in SGs of non-
susceptible C57Bl/6 gives rise to pathognomonic signs of
SS that include decreased saliva production, lymphocytic
infiltration in SGs, and positive ANA test with a fine nuclear
speckled pattern [112]. Inversely, IL-17A entrapment
through a fusion protein that combines IL-17R and a Fc por-
tion (IL-17R:Fc) results in amelioration of the clinical and
immunological pattern in established mouse models for SS
[109, 113, 114].

Based on currently available data, the contribution of IL-
17A to the pathophysiology of SS is reflected by three differ-
ent mechanisms. First, IL-17A may induce the expression of
autoantigens, characteristically that of glandular tissue kalli-
kreins (KLK) which belong to the large KLK family of serine
proteases. Thus, glandular KLK13, which is found to be
enriched in striated duct cells of SGs 115, shows enhanced
expression in SS-like IQI/Jic mice and acts as proliferative
stimulus for splenic T cells [116]. Moreover, SG-derived
KLK13 and KLK1 exhibit cross-reactivity with autoanti-

bodies in serum of IQI/Jic mice [116]. In a similar manner,
KLK1b22 has been found to be upregulated in the SGs of
SS-like ERdj5 knockout mice [117]. Noticeably, proteomic
analysis of glandular tissues in SS-like Aec1/Aec2 mice that
underwent ultrasound-guided adenoviral-mediated IL-
17R:Fc gene therapy of the SGs reveals that IL-17A entrap-
ment is associated with reduced expression of KLK1b22
[118].

Second, IL-17A has been implicated in the impairment
of the epithelial tight junction (TJ) integrity and barrier
function of SGs. In more detail, IL-17A appears to mediate
SG tissue damage and salivary dysfunction in NOD and
Aec1/Aec2 mice by targeting Claudin-4 and zonula
occludens I, both functional and structural components that
are crucial to TJs [110, 119].

Third, IL-17A may promote an inflammatory environ-
ment within target tissues like SGs through IL-6 expression
[111] that may facilitate mononuclear recruitment and infil-
tration [115] and invigorate the Th17 differentiation
program.

DNTs, as in SLE, may play a contributive role in the
pathogenesis of SS, given their expansion in the peripheral
blood and SG compartments of SS patients (see Figure 2)
[70]. Of note, mast cells are considered a potential source
for IL-17A, as their numbers, in parallel to IL-17A expres-
sion, shrink in SS patients in response to anti-CD20 ther-
apy [120].

Tissue-derived factors that may regulate IL-17A expres-
sion in CD4- and CD4+ T cell compartments include IL-
27. Thus, IL-27 display an inhibitory effect on IL-17A secre-
tion in PBMC cultures of SS patients and not RA patients or
age-matched healthy donors [121]. Further, induction of
experimental sialadenitis in IL-27receptor subunit alpha
knockout mice aggravates the formation of ectopic lym-
phoid structures in SGs, as compared to wild-type mice, a
finding that can be restored by IL-17A neutralization
[121]. Other local mediators that may control IL-17 expres-
sion are the lysophosphatidic acid receptor signaling path-
way and retinoic RORα that together with RORγt and
IκBζ may promote IL-17A transcription and Th17 differen-
tiation [122, 123].

6. The Role of IL-17A in Systemic Sclerosis

SSC is a multiorgan connective tissue disease that is charac-
terized by high morbidity and mortality related to organ
complications like lung fibrosis and pulmonary arterial
hypertension [124]. Approximately 1 in 10,000 people
appears to be affected globally.

The triad of pathologic changes that defines SSC com-
prises autoimmunity, vasculopathy, and fibrosis of skin
and internal organs. Fibrosis, a hallmark of more advanced
SSC disease stages, results from excess deposition of extra-
cellular matrix (ECM) and differentiation of mesenchymal
stromal cells like fibroblasts and endothelial cells into myofi-
broblasts, a key determinant of end-stage SSC pathology
[125, 126]. The fibrosis stage in SSC is preceded by an edem-
atous phase that is characterized by mononuclear cell infil-
trates in the dermis, comprising plasma cells, IL-13-
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producing CD8+ T cells, and Th17 [127, 128], and pro-
gressive failure of the locoregional blood and lymphatic
vasculature [124]. Consecutively, these events may result
in lymphedema with ensuing elastin degeneration, hyper-
plasia/hypertrophy of adipose tissue, and increase of colla-
gen fibres and fibrous deposits that causes hardening of
the skin.

Several association studies in humans and experimental
mouse models have hinted at the contributive role of the
IL-17A pathway in the pathogenesis of SSC, showcasing
increased IL-17A levels (or IL-23 as partner in crime) in
serum and affected skin, as well as increased frequencies of
IL-17A+-producing T cells(see Figure 2) [126, 129–133,
125, 134]. In the SSC skin, IL-17A-expressing T cells have
been detected throughout the skin, both superficial and deep
layers and in close proximity of αSMA-positive myofibro-
blasts [134]. In these studies, enhanced IL-17A production
has been repeatedly associated with early stages of SSC
[131, 135]. Outside the skin, augmented IL-17A expression
is detectable in lymphocytes, derived from peripheral blood
and bronchoalveolar lavage of SSC patients. Involvement
of the IL-17A pathway in SSC has been further suggested
by a large case-control study involving three different Euro-
pean populations, where polymophisms in the chemokine
receptor CCR6 gene have been associated with increased
susceptibility to SSC, particularly in patients with an anti-
topoisomerase (Scl-70) autoantibody profile [136].

The implication of IL-17A in the pathophysiology of SSC
has been fueled by several findings associated with disease
progression. The mechanism that has gained increasing
attention involves the impact of IL-17A on the fibroblast
phenotype and its transition to myofibroblasts. According
to findings in two established SSC-like mouse models, the
contributive role of IL-17A in the progression of skin fibrosis
is reflected by enhanced leucocyte recruitment and a driving
force behind the expression of the profibrotic mediators
transforming growth factor (TGF) β and connective tissue
growth factor (CTGF) in the skin [125]. In addition, these
authors and others reveal the capacity of IL-17A to stimulate
collagen production in cultured mouse and human skin
fibroblasts [125, 126]. However, the concept that IL-17A
directly mediates fibrogenesis in the SSC dermal fibroblast
has become controversial after conflicting data from more
recent work. These studies demonstrate a stimulatory effect
on the proliferating response in SSC and control skin fibro-
blasts, but fail to show enhanced collagen synthesis whether
or not in the presence of TGFβ [135, 137, 132, 138, 139].
The discrepancy in results between these studies may be
explained by different experimental settings, as well as dis-
tinct methods of fibroblast isolation and culture.

Second, IL-17A may assist in shaping the inflammatory
milieu within target tissues, through enhancement of
immune cell recruitment, tissue migration, and vascular
immune interactions via cytokines (e.g., MCP-1, IL-6, and
IL-8), chemokine networks (CCL20-CCR6, CXCL12-
CXCR4), endothelial adhesion molecules, and metallopro-
teinases [137, 134, 130, 132, 135]. Synergistic activity of IL-
17A and TGFβ in terms of inducing the expression of these
inflammatory cues has been reported [138]. A third way

involves the negative impact of IL-17A on SSC-associated
vasculopathy. In this regard, IL-17A has been shown to exert
adverse effects on dermal vascular smooth muscle cells
(DVSMCs) that may promote vascular wall fibrosis and
microangiopathy [140]. Analogue to pathological changes
of the blood vasculature in the skin, progressive loss of lym-
phatic vessels (rarefaction) has been acknowledged, particu-
larly in the advanced stages of SSC [141]. Besides
mechanisms that involve anti-endothelial cell autoantibodies
and dysregulated expression of vascular growth factors, IL-
17A and TNF are amongst the candidate cytokines that
may (potentially in concert) negatively affect lymphatic neo-
vascularization [142, 143].

Like the aforementioned disorders, SSC has been associ-
ated with increased numbers of DNTs in peripheral blood,
where particularly the Vα and Vβ repertoires seem nar-
rowed in diversity, as compared to CD4+ and CD8+ T cells
[144, 145]. Moreover, these T cell subsets with restricted
usage of TCR Vβ genes tend to oligoclonally expand in the
SSC skin (rather than in the peripheral blood compartment),
suggesting an autoantigen-driven process, and this phenom-
enon ceases in later stages of the disease [146, 147]. Addi-
tional anomalies in the peripheral T cell pool that may
promote IL-17A expression involve the emergence of
FoxP3+IL17+ T cells with reduced suppressive capacity and
higher RORC expression in the regulatory T cell compart-
ment, which may point to increased Treg-to-Th17 transi-
tion [148].

Local tissue-derived factors that may promote IL-17A-
expressing T cells involve the inducible T cell costimulator-
(ICOS-) ICOSL axis. Thus, SS patients, particularly in early
stages of SSC, show higher levels of sICOS in serum and
increased ICOSL expression in lesional skin, where ICOS
costimulation induces the expression of IFNγ and IL-17A
as well as profibrogenic cytokines (IL-4) from CD4+ T
cells [149].

7. Conclusive Remarks

In conclusion, this review presents evidence of the ability of
IL-17A to drive the development and exacerbation of clinical
manifestations in three major autoimmune diseases. Avail-
able studies provide convincing evidence that the abundance
of IL-17A and its prime source, i.e., Th17 cells and DNTs in
the target tissues, is not an innocent bystander but in fact
seems to be prerequisite for organ pathology. In support,
IL-17A has been directly implicated in critical steps of auto-
immunity comprising the emergence and stabilization of
autoreactive GC formation, AICDA upregulation, class
switching to IgG2a and IgG3, and autoantibody generation.
In addition, this review reports on the synergistic interac-
tions of IL-17A with other critical determinants such as B
cells, neutrophils, stromal cells, and the vasculature that pro-
mote the characteristic immunopathology of these autoim-
mune diseases. The summary of observations provided by
this review may have empowering implications for IL-17A-
based strategies to prevent clinical manifestations in a broad
spectrum of autoimmune conditions.
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Background. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia disease with no cure.
Communication between injured cells is triggered and maintained by a complicated network of cytokines and their receptors.
IL-19 is supported by increasing evidences for a deleterious role in respiratory diseases. However, its potential role in lung
fibrosis has never been explored. Methods. Bioinformatic, immunohistochemistry and western blot analysis were used to assess
the expression of IL-19 in human and mouse fibrosis lung tissues. CCK-8, transwell and flow cytometry assay were utilized to
analyze the effect of IL-19 on biological behaviors of lung fibroblasts. Histopathology was used to elucidate profibrotic effect of
IL-19 in vivo. Results. IL-19 was upregulated in fibrosis lung tissues. IL-19 promoted lung fibroblasts proliferation and
invasion, inhibited cell apoptosis, and induced differentiation of fibroblasts to the myofibroblast phenotype, which could be
revised by LY2109761, a TGF-β/Smad signaling pathway inhibitor. Furthermore, we found that IL-19 aggravated lung fibrosis
in murine bleomycin-induced lung fibrosis. Conclusions. Our results imply the profibrotic role for IL-19 through direct effects
on lung fibroblasts and the potential of targeting IL-19 for therapeutic intervention in pulmonary fibrosis.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is an age-related and
progressive disease with no cure. Incidence of IPF has risen
over time. It is reported to 2.8–18/100000 people per year
in Europe and North America while 0.5–4.2/100000 in Asia
and South America [1]. Mortality of IPF is very high, with a
median survival time of 2–4 years from diagnosis [2]. IPF is
a predominant type of interstitial lung disease (ILD), charac-
terized by chronic inflammation and interstitial fibrosis.
Genetic susceptibility, environmental risk factors and expo-
sures can cause repetitive local microinjuries to the lung tis-
sue and the vascular system, which can trigger a cascade of
inflammatory responses and fibrosis [3]. Chronic inflamma-
tion is considered as a common hallmark of fibrosis diseases
[4]. Injured intrinsic and immune cells contribute to the sus-
tainment of chronic inflammation and augment extracellu-

lar matrix (ECM) generation through releasing widespread
inflammatory cytokines and growth factors [5].

IL-19, a member of the IL-10 cytokine family, is gener-
ated by immune cells, epithelial cells, and vascular structural
cells [6]. The function of IL-19 is confusing and often con-
tradictory depending on the organization and disease [7].
IL-19 plays multiple roles in several human diseases and
their animal models, such as cardiovascular disease [8],
inflammatory bowel disease [9], psoriasis [10], rheumatoid
arthritis [11], acute kidney injury [12], and breast cancer
[13]. In respiratory diseases, IL-19, which is reported
involved in inflammatory responses and causing pulmonary
injury by activating lung epithelial cells [14], is positively
associated with the progression of asthma [15] and chronic
obstructive pulmonary disease (COPD) [16]. The immuno-
regulatory cytokine IL-19 holds promise as new treatment
and prevention [17]. Targeting the IL-19 signaling might
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be a new target for therapeutic intervention in chronic
asthma [15]. However, the impact of IL-19 on the develop-
ment of IPF has never been explored.

Here, we investigated IL-19 expression in human and
mouse lung fibrosis tissues and the effect of IL-19 on lung
fibroblasts as well as the possible mechanism. Then, we
focused on role of IL-19 on wild-type mice and bleomy-
cin(BLM)-induced pulmonary fibrosis mouse models. Over-
all, our study highlights the role of IL-19 on pulmonary
fibrosis in vitro and vivo and proposes a new insight for
future research and provides a promising management strat-
egy for treating pulmonary fibrosis.

2. Materials and Methods

2.1. Bioinformatics Analysis. Gene expression profiles for
two datasets (GSE77326, GSE2051) were obtained from the
Gene Expression Omnibus (GEO) database (http://www
.ncbi.nlm.nih.gov/geo/). The mRNA samples were obtained
from GSE2051, comprising of 11 lung tissues of patients
with IPF and 13 normal lung tissues samples, and
GSE77326, comprising of 6 bleomycin instilled mouse lung
tissues and 6 Sham group mouse lung tissues. Samples were
subjected to gene expression profiling to determine the dif-
ferent expression profiles between IPF and normal lung tis-
sues. The data sets were processed using the GeoR2 software.

To identify significantly dysregulated biological path-
ways of IL-19 in IPF, the GSEA was performed by GSEA
4.0 (http://www.gsea-msigdb.org/gsea/index.jsp) under
functional annotations of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (https://www.genome.jp/
kegg/). All the genes in each dataset were submitted to clus-
ter profiler, with the permutation number and the minimum
gene set size set as 10000 and 10, respectively. The signifi-
cance level was set as FDR < 0:05.

2.2. Primary Mouse Lung Fibroblasts Isolation and Cell
Culture. Primary mouse lung fibroblasts were prepared as fol-
lows [18]: (1) lung tissues obtained from 6–8 weeks old
C57BL/6 mice were perfused with 10–20ml PBS into the right
ventricle until the lungs were blood flushed and had a white
appearance. (2) The tissue was cut into very small pieces using
surgical scissors and then incubated with 0.5ml of collagenase
I (final concentration, 1000U/ml) (Biofroxx) at 37°C for
30min. (3) Centrifuge at 1000g for 5min, discard the super-
natant. (4) Then add 500μl 0.25% trypsin-EDTA to digest tis-
sues at 37°C for 10min. (5) After centrifuge, plate the
suspension into a 100mm cell culture dish and adherent cells
for 1 hour at 37°C, then discard the supernatant.

The human embryo lung fibroblast cell (HELF) was pur-
chased from iCell Bioscience (Shanghai, China). All cells
were cultured in DMEM (11995-065, Gibco) supplemented
with 10% fetal bovine serum (FBS, 10099141, Gibco) and
1% penicillin-streptomycin (SV30010, Hyclone) in an atmo-
sphere at 37°C and 5% CO2. Human and mouse IL-19 and
TGF-β1 were purchased from GenScript (Nanjing, China).
LY2109761 was obtained from Selleck Chemicals (Houston,
USA), solubilized in dimethyl sulfoxide (DMSO).

2.3. CCK-8 Assay. The abilities of cell proliferation were
assessed by CCK-8 assay (HY-K0301, MCE). HELF and pri-
mary mouse lung fibroblasts were placed into plates and cul-
tivated in incubator for 0 h, 24 h, 48 h, and 72h. Then cells
were interacted with CCK-8 solution at 37°C for 2–4h, and
the absorbance at 450 nm was measured.

2.4. Transwell Assay. The abilities of cell invasion were eval-
uated by transwell assay. Cells were added to the upper
chambers (Corning, USA) and incubated with stimulation
for 72 h while the lower chambers were incubated with
DMEM medium containing 10% FBS. Fixed cells migrating
into the lower chamber with methanol and stained with
crystal violet (C0121, Beyotime). After washed by PBS, cells
migrating through the membrane were stained and counted
by microscopy (Nikon).

2.5. Apoptosis Assay. Apoptosis was determined by Annexin
V-FITC staining and analyzed by flow cytometry. The apo-
ptosis of fibroblasts were evaluated at baseline and after
treatment with H2O2 and IL-19. The Annexin V-FITC/PI
apoptosis detection kit (A211-02, Vazyme) was used to eval-
uate the ratio of apoptotic fibroblasts, and the apoptosis was
assessed by FACS Calibur Flow cytometer.

2.6. Western Blot Assay. Tissues and cells were lysed with
RIPA buffer containing protease inhibitors. Load and sepa-
rate equal amounts of proteins on SDS-PAGE gels. Transfer
the proteins to a PVDF membrane after electrophoresis,
block membrane in 5% skimmed milk and incubate over-
night with the primary antibody (IL-19 (ab154187, Abcam),
α-SMA (ab7817, Abcam), Collagen I (ab260043, Abcam),
TGF-β1 (ab215715, Abcam), Smad2/3 (ab202445, Abcam),
pSmad3 (ab52903, Abcam), and GAPDH (60004-1-Ig, Pro-
teintech)). Wash the membrane three times with 0.1% tween
phosphate buffer solution (PBST) for 10 minutes each time
and then incubate the membrane with goat anti-mouse or
anti-rabbit for one hour at room temperature. Protein bands
were analyzed by ImageJ software. The relative grey values of
the target protein to the GAPDH bands were calculated to
determine the change in protein expression.

2.7. Immunofluorescence. Cells were fixed with 4% parafor-
maldehyde for 15 minutes, permeabilized with Triton X-
100 (1139ML100, Biofroxx) for 20 minutes, blocked with
1% BSA (4240GR100, Biofroxx) for 30 minutes, and incu-
bated overnight with specific primary antibody. Thereafter,
probe cells with conjugated goat anti-mouse IgG (H + L)
(SA00013-1, Proteintech) or rabbit IgG (H + L) (SA00013-
2, Proteintech) at room temperature in the dark for one
hour. Counterstain cell nuclei with DAPI (C1002, Beyo-
time). Then observe cells under a fluorescent microscope.

2.8. Induction of Pulmonary Fibrosis In Vivo. Male C57BL/6
mice weighing 18–22 g were divided into 4 groups: (a) saline
group (n = 6); (b) BLM (n = 8) group; (c) IL-19 (n = 8)
group; (d) BLM + IL − 19 group (n = 10). On day 0, mice
were anaesthetized by Avertin (125mg/kg, i.p.). After steril-
izing the neck using betadine, make a 1 cm midline incision
with sterile scissors and insert the microinjector into the
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Figure 1: Continued.
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exposed trachea, inject the saline/bleomycin (2.5mg/kg, HY-
17565A, MCE)/IL-19 (200 ng/kg, Z03113, GenScript) during
a single inspiration. After withdrawing the needle, close the
incision with suture clips. Place the animal on warmer pads
to allow recovery [19]. The peripheral bloods were collected
on day 21 to determine the levels of IL-19 by Mouse IL-19
ELISA KIT (SEKM-0020, Solarbio). The lung tissues were
collected for histopathological examination, hydroxyproline
analysis [20] and western blot analysis.

2.9. Histopathology and Immunohistochemistry. The lung
lobes were fixed in 4% buffered paraformaldehyde and
immobilized in paraffin for H&E or Masson trichrome stain-
ing. The severity of fibrosis in lung tissues was semi-
quantitatively assessed by Ashcroft scoring system [21]. His-
tological changes are assessed on the basis of alveolar wall
thickening, inflammatory disorder, and the extent of colla-
gen deposition. Immunohistochemistry was performed by
incubating tissue sections with primary antibodies (IL-19
and α-SMA) as described in previous protocol [22].

2.10. Statistical Analysis. Data are reported as the mean ± S
EM. Difference between two groups comparing experimen-
tal groups was analyzed using Student’s t-test, while more
than two groups comparison using one-way analysis of var-
iance (ANOVA). Analysis of data was conducted by Graph-
Pad Prism 8 software. P < 0:05 was considered as statistically
significant difference.

3. Results

3.1. IL-19 Is Upregulated in Human and Mouse Lung Fibrosis
Tissues. Bioinformatics analysis of IPF patients and BLM-
induced pulmonary fibrosis mice were initially conducted to

explore the differential gene expression in lung fibrosis tissues.
Data obtained from tissue specimens of IPF patients and mice
from GEO database (GSE77326, GSE2051) were investigated.
It was found that the lung fibrosis tissues exhibited higher
mRNA expressions of IL-19 compared with the normal lung
tissues in both human and mice (Figure 1(a)). Following
in vivo, we tested whether IL-19 was also upregulated in the
well-established BLM-induced murine fibrosis models.
C57BL/6 mouse lungs were acquired following the intratra-
cheal injection of either saline or BLM (2.5mg/kg) on day 21
[23]. We performed histological examination of lung tissue,
including H&E staining, Masson’s trichrome staining and
IL-19 immunohistochemical staining (Figure 1(b)). The
degree of lung fibrosis was quantified on the basis of modified
ashcroft scale and lung hydroxyproline content (Figure 1(c)).
The results demonstrated that BLM-induced thickening of
the major tracheal wall and higher collagen contents in inter-
stitial tissues, indicating the successful model construction. IL-
19 immunohistochemical staining revealed the higher IL-19
expressions in lung fibrosis tissues (Figure 1(d)), as well as
alpha smooth muscle Actin (α-SMA). Besides, we found
BLM-induced mice had elevated levels of IL-19 in peripheral
blood compared with control groups by ELISA (Figure 1(e)).
The western blot analysis of lung tissues showed increased
expressions of IL-19 in BLM-induced mice when compared
with controls (Figures 1(f) and 1(g)).

3.2. IL-19 Is a Profibrotic Cytokine by Activating Fibroblast in
Lung. To clarify whether IL-19 is pro fibrotic or antifibrotic in
the lung, we first explored the effect of IL-19 on the biological
behavior of lung fibroblasts. Cell proliferation and migration
abilities were analyzed in HELF and primary mouse lung fibro-
blasts. We evaluated the proliferation abilities of lung fibro-
blasts exposed to IL-19 by CCK8 assay, while TGF-β1 was
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Figure 1: Expression of IL-19 is upregulated in human and mouse lung fibrosis tissues. (a) The gene expression profiles of two independent
datasets (GSE77326, GSE2051) were used to assess the differential gene expression in lung fibrosis tissues. 121 gene expressions were higher
both in human and mouse lung fibrosis tissues than controls, and mRNA expression of IL-19 in IPF was significantly higher than that in
control. (b) Representative images (taken at ×20 magnification) of H&E, Masson’s trichrome, and immunohistochemical staining of IL-
19 and α-SMA in BLM-induced murine lung fibrosis tissues and controls. Scale bars, 200 μm. (c) Quantification of the degree of
pulmonary fibrosis according to the modified Ashcroft scale and pulmonary hydroxyproline content. (d) Amount of IL-19 was
quantified using automated image analysis of the IL-19 staining. (e) Serum IL-19 expression was analyzed by ELISA in the BLM-induced
mice and controls. (f) IL-19 protein expression in lung fibrosis was analyzed by western blot, and (g) relative protein levels were
quantified. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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used to be the positive control (Figure 2(a)). Cells proliferation
rates were calculated at 0h, 24h, 48h, and 72h with different
IL-19 concentrations of 0, 10, 100, and 200ng/ml. We found
cells growth were significantly promoted after exposure at the
concentration of 100ng/ml for 72h (Figure 2(d)), while combi-
nation of TGF-β1 (5ng/ml) and IL-19 (100ng/ml) showing a
higher appreciated rate, which provided the optimal concentra-
tion and time for further studies (Figure 2(e)). The transwell
assay indicated that cells invasion abilities increased after IL-
19 treatment and further enhanced along with TGF-β1
(Figures 2(b) and 2(f)). Furthermore, flow cytometry analysis
of FITC/PI showed that IL-19 suppressed the apoptosis rate
induced by H2O2 in lung fibroblasts (Figures 2(c) and 2(g)).

In addition, epithelial-mesenchymal transition (EMT) and
fibrotic markers were analyzed in lung fibroblasts. We incu-
bated lung fibroblasts with IL-19 (100ng/ml, 72 hours) with
or without TGF-β1 (5ng/ml), then detecting protein expres-
sion of α-SMA and Col-1 by western blot. As seen in
Figures 3(a) and 3(b), expression levels of α-SMA and Col-1
were elevated after IL-19 or TGF-β1 stimulation, and further
elevated when combined IL-19 with TGF-β1. Immunofluores-
cence staining analysis also demonstrated the increase of α-
SMA and Col-1 by IL-19 stimulation.We observed the highest
intensity of fluorescence staining of α-SMA and Col-1 in IL-
19+TGF-β1 stimulation groups (Figure 3(c)).

3.3. IL-19 Promotes Lung Fibrosis through TGF-β/Smad
Cascade. TGF-β/Smad signaling has a central role in the
development of pulmonary fibrosis that drives activation of
myofibroblasts (MFs), excessive production of ECM, and
inhibition of ECM degradation [24]. TGF-β1 phosphory-

lates Smad2/3 and regulates target gene expression [25].
Above results showed the effect of IL-19 on biological behav-
iors of fibroblast could be enhanced along with TGF-β1,
implying a potential interactive relationship between them.
To identify significantly dysregulated biological pathways
of IL-19 in IPF lung tissues, we performed bioinformatics
analysis of GSEA under functional annotations of the KEGG
database. KEGG functional enrichment analysis showed that
TGF-β/Smad pathway enriched in human and mouse lung
fibrosis and the expression of IL-19 in IPF was positively
correlated with the profibrosis critical TGF-β/Smad signal-
ing pathway (Figure 4(a)). Accordingly, to investigate the
impact of IL-19 on TGF-β/Smad signaling pathway, we
treated fibroblasts with increased concentration of IL-19 (0,
10, 100, and 200ng/ml) and measured TGF-β1, Smad2/3
and phospho-Smad3 (pSmad3) expressions by western blot.
The results showed the elevated expression levels of TGF-β1,
pSmad3/Smad2/3 along with IL-19 concentration growth,
demonstrating the activation of TGF-β/Smad cascade path-
way induced by IL-19 (Figures 4(b) and 4(d)).

LY2109761 is a TGF-β type I/II receptor kinase inhibitor
that suppressing the phosphorylation of Smad2 and Smad3.
To confirm that IL-19 could active TGF-β/Smad signaling
pathway, we examined the rescued impact of LY2109761
on IL-19-stimulated lung fibroblasts. We treated fibroblasts
with concentrations of 0.5–10μM of LY2109761 for 72 h.
The proteomic analyses of TGF-β1, Smad2/3, and pSmad3
showed that the treatment of LY2109761 effectively blocked
TGF-β/Smad cascade (Figures 4(c) and 4(e)). We further
determined the effect of LY2109761 on the biological behav-
iors of IL-19-stimulated lung fibroblasts. Cells were treated
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Figure 2: IL-19 promotes proliferation and invasion, while represses apoptosis of lung fibroblasts. (a) Lung fibroblasts appreciate rates were
assessed by CCK-8 assay at 0 h, 24 h, 48 h, and 72 h with different IL-19 concentration of 0, 10, 100, and 200 ng/ml, and combination TGF-
β1 (5 ng/ml) of different IL-19 concentration (0, 10, 100 and 200 ng/ml), and 72 h cell appreciate rates were analyzed (d and e). (b) Lung
fibroblasts were, respectively, treated with TGF-β1 (5 ng/ml), IL-19 (100 ng/ml), IL-19 + TGF-β1 (5 ng/ml + 100 ng/ml), cell invasions
were evaluated by transwell assay, and numbers of migrated cells were quantified (f). (c) The degrees of apoptosis were assessed by flow
cytometry using propidium iodide and Annexin V staining, and apoptosis rates were calculated (g). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,
and ∗∗∗∗P < 0:0001.
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with IL-19 (100 ng/ml) with or without LY2109761 (10μM)
for 72h. Cell viabilities were determined by the CCK8 assay.
Figures 4(f) and 4(g) showed that the proliferation promo-
tion effect of IL-19 on fibroblasts could be significantly
inhibited by LY2109761. The transwell analysis showed that
LY2109761 significantly suppressed the promotion of migra-

tion induced by IL-19 on lung fibroblasts (Figure 4(h)). In
addition, LY2109761 inhibited secretion of α-SMA and
Col-1 proteins in a concentration-dependent manner in
IL-19-stimulated lung fibroblasts (Figures 4(c) and 4(e)),
indicating LY2109761 suppressed the differentiation and
collagen synthesis induced by IL-19 in lung fibroblasts.
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Our results indicated that TGF-β/Smad signaling was acti-
vated in IL-19-stimulated lung fibroblasts and profibrotic
effect of IL-19 on lung fibroblasts could be inhibited if we
blocked TGF-β/Smad signaling pathway.

3.4. IL-19 Aggravates Lung Fibrosis In Vivo. To determine
the effect of IL-19 in progression of pulmonary fibrosis

in vivo, we, respectively, administered a single dose of IL-
19 (200 ng/kg) or BLM (2.5mg/kg) or combination of these
two treatments to wild-type C57BL/6 mice by intratracheal
route. The lung tissues were collected on day 21. As shown
in Figure 5(a), IL-19 treatment induced disruption of lung
structure and collagen deposition in wild-type mice, while
the extent of lung fibrosis (Figure 5(b)), lung hydroxyproline
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Figure 4: TGF-β1 blocker treatment attenuates expression and function of profibrotic markers in IL-19-stimulated lung fibroblasts. (a) The
bioinformatics KEGG functional enrichment analysis of IL-19 in IPF patients and BLM-induced pulmonary fibrosis mouse lung tissues. (b)
the western blots were used to analysis the expression of TGF-β1, Smad2/3, p-Smad3, Col-1, and α-SMA in lung fibroblasts treated with
increased IL-19 concentration of 0, 10, 100, and 200 ng/ml, and (d) relative protein levels were quantified. Data were compared with NC
group. (c) IL-19-stimulated lung fibroblasts treated with LY2109761 at concentration of 0.5–10μM for 72 h, and (e) relative protein
levels were quantified. Data were compared with IL-19 group. (f) Lung fibroblasts were treated with IL-19 (100 ng/ml) or IL − 19 ð100 ng
/mlÞ + TGF − β1 ð5 ng/mlÞ or IL-19 ð100 ng/mlÞ + LY2109761 ð10 μMÞ, cell appreciate rates were assessed by CCK-8 assay at 0 h, 24 h,
48 h, and 72 h, and (g) 72 h cell appreciate rates were analyzed. (h) Cell invasions were analyzed by transwell assay and (i) numbers of
migrated cells were quantified. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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content (Figure 5(c)), and the expression of α-SMA
(Figure 5(d)) were also higher than that in control groups.
Furthermore, IL-19 treatment exacerbated BLM-induced
abnormal lung changes with increased inflammatory cell infil-
tration and collagen deposition. Collectively, these studies
demonstrated that IL-19 treatment could promote and aggra-
vate the lung fibrosis progression induced by BLM in vivo.

4. Discussion

IL-19, as a new inflammatory factor in the regulation of the
immune system, is related to the progression of many dis-
eases, including autoimmune diseases, inflammation dis-
eases and cancer [11, 26]. The debates on IL-19 being
proinflammatory or anti-inflammatory factor have not yet

been settled. The function of IL-19 in the inflammatory
response depends on the cell type and disease model. The
expression of IL-19 is reported increased in asthma and
COPD patients, and shows the positive correlation with
the progression of these diseases [16]. Bronchial epithelial
cells from asthma and COPD patients express large amounts
of IL-19, which is involved in allergic airway inflammation
through the activation of group 2 innate lymphocytes
(ILC2, 15] and induction of Th2-dominant immune
response disorder [27]. Accordingly, we speculated IL-19
expression in respiratory diseases might be deleterious.
However, none of studies explore the role of IL-19 in the
etiopathogenesis of pulmonary fibrosis.

Usual interstitial pneumonia (UIP) is the histopatholo-
gical marker of IPF, characterized by the conversion of
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Figure 5: IL-19 aggravated lung fibrosis in wild-type and murine bleomycin fibrosis models. Schematic showing the induction of pulmonary
fibrosis of lung collagen visualized by histopathological analysis after IL-19 and BLM challenge. After treatment with a single dose of BLM
(2.5mg/kg) or IL-19 (200 ng/kg) and combination of IL-19 and BLM, C57BL/6 mouse lungs were isolated and subjected for histopathology.
(a) Representative pictures (20×) of H&E-stained, Masson’s trichrome-stained sections and immunohistochemistry for α-SMA in lung
sections. Effect of IL-19 on mice lung tissues were reflected by changes in the Ashcroft histology score (b) and lung hydroxyproline
content (c). (d) Table represents the semiquantitative evaluation of protein expression (α-SMA) in specified treatment groups. In b–c,
each symbol represents an individual mouse, a total of 5 to 7 mice per group. Scale bars, 200 μm. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and
∗∗∗∗P < 0:0001.
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fibroblasts to MFs, which are responsible for the production
of ECM and excessive collagen deposition in the lung [28].
Although two drugs, pirfenidone and nidanib, have been
approved for the therapies of IPF [29], the response to anti-
fibrotic therapy exhibits significant heterogeneity, making it
difficult for individual prognosis. The pathophysiology of
IPF is the subject of ongoing research. As our understanding
of cytokine-mediated regulation of fibrosis continues to
increase, novel approaches are likely to promote develop-
ment of fibrotic diseases treatment. The TGF-β superfamily
of ligands [30] are well-known drivers of fibrosis, and IL-1–
IL-17A–TGFβ axis [31] and the type 2 cytokine (IL-4 and
IL-13) response [32] have been considered as critical roles
in the progression of fibrosis. Our study firstly demonstrates
the profibrotic role for IL-19 through direct effects on lung
fibroblasts through TGF-β/Smad pathway. We find IL-19
is upregulated in IPF patients’ lung tissues and BLM-
induced murine fibrosis models, and the stimulation of lung
fibroblasts by IL-19 induces its proliferation and invasion,
inhibits apoptosis and promotes its differentiation to myofi-
broblast phenotype, which can be revised by LY2109761, a
TGF-β/Smad signaling pathway inhibitor. In vivo study,
we determine that IL-19 aggravates lung fibrosis in wild-
type mice and BLM-induced pulmonary fibrosis models.

IL-19, IL-20, IL-22, IL-24, and IL-26 are categorized in the
IL-20 subfamily, the organ-specific effects of these cytokines
are attributed to variation of their receptor heterodimers
between tissues. IL-19, IL-20, and IL-24 target a specific two
types of receptor complexes: IL-20RA/IL-20RB which pre-
dominantly localized in the lung, skin, testis, ovary, and pla-
centa, leading to duplication of their target cell profiles and
biological functions [6]. The three receptor subunits are
expressed by resident effector cells of target organs, including
keratinocytes [33], synovial fibroblasts [34], osteoclasts [35],
vascular smooth muscle cells [8], and intestinal [36] and air-
way epithelial cells [15], and not on cells traditionally associ-
ated with the immune system [35]. MFs are the key effector
cells of fibrosis diseases, characterized by α-SMA positive
and lack of epithelial or endothelial markers [37]. IL-20 has
been found to activate quiescent hepatic stellate cells (HSCs)
and promote the proliferation, migration, and production of
inflammatory cytokines, and deposition of ECM from acti-
vated HSCs. Anti-IL-20 receptor monoclonal antibody shows
the protective effects on CCl4-induced liver injury mouse
models. IL-20RA−/− mice are resistant to CCl4-induced liver
fibrosis [38]. Consistently, our data support the mechanism
of fibroblasts activation by IL-19 that lung fibroblasts are con-
verted to MFs, implying that targeting at IL-19 may be a
potential treatment strategy for lung fibrosis.

Chronic inflammation is a common hallmark of fibrosis
disease [39]. Immune cells and injured intrinsic cells of the
affected organ release large amounts of inflammatory cyto-
kines and growth factors to maintain chronic inflammation,
promote MFs proliferation, and enhance ECM production
[3]. The expression of IL-19 is initially detected in immune
cells, including in monocytes, macrophages, and B cells
[40]. Airway epithelial cells [16], synovial fibroblasts [34],
keratinocytes [33], and vascular smooth muscle cells
(VSMCs) [8] are subsequently confirmed to express IL-19.

Our study demonstrates the activation of lung fibroblast
induced by IL-19, however, whether immune response dys-
function involved in this progression is currently unclear.
Moreover, chronic dysregulation of type II alveolar epithelial
cells (AEC2s) is thought to be central of pathological mech-
anisms of fibrogenesis in IPF, most of epithelial cells in IPF
lungs are abnormally activated and produce mediators to
promote the amplification of myofibroblasts [41, 42].
Whether epithelial cells could produce IL-19 to participate
the progression and pathogenesis of lung fibrosis is worthy
of further study.

5. Conclusions

In conclusion, our study firstly highlights the deleterious role
of IL-19 on development of pulmonary fibrosis by modulat-
ing fibroblasts through TGF-β/Smad pathway and reinforces
its promise as a new therapeutic target for intervention in
pulmonary fibrosis.
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Glibenclamide displays an anti-inflammatory response in various pulmonary diseases, but its exact role in lipopolysaccharide-
(LPS-) induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) remains unknown. Herein, we aimed to
explore the effect of glibenclamide in vivo and in vitro on the development of LPS-induced ALI in a mouse model. LPS
stimulation resulted in increases in lung injury score, wet/dry ratio, and capillary permeability in lungs, as well as in total
protein concentration, inflammatory cells, and inflammatory cytokines including IL-1β, IL-18 in bronchoalveolar lavage fluid
(BALF), and lung tissues, whereas glibenclamide treatment reduced these changes. Meanwhile, the increased proteins of
NLRP3 and Caspase-1/p20 after LPS instillation in lungs were downregulated by glibenclamide. Similarly, in vitro experiments
also found that glibenclamide administration inhibited the LPS-induced upregulations in cytokine secretions of IL-1β and IL-
18, as well as in the expression of components in NLRP3 inflammasome in mouse peritoneal macrophages. Of note,
glibenclamide had no effect on the secretion of TNF-α in vivo nor in vitro, implicating that its anti-inflammatory effect is
relatively specific to NLRP3 inflammasome. In conclusion, glibenclamide alleviates the development of LPS-induced ALI in a
mouse model via inhibiting the NLRP3/Caspase-1/IL-1β signaling pathway, which might provide a new strategy for the
treatment of LPS-induced ALI.

1. Introduction

Acute lung injury (ALI) or acute respiratory distress syndrome
(ARDS), a common disease in intensive care unit (ICU), is the
consequence of biased inflammatory response to various
causes including sepsis, trauma, and ventilation [1–3].
Although supportive treatment and intensive care are devel-

oping, there have been no clinically effective pharmacologic
therapies and the prognosis of ALI/ARDS remains poor with
a high morbidity and mortality [1, 3]. Thus, to further explore
the underlying mechanisms and the potential treatment
approaches for ALI/ARDS is necessary and urgent.

NLRP3, belonging to a family of NLRs, is one of the
immediate responses of the innate immune system. It is
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postulated that a two-step mechanism is required for the full
activation of the NLRP3 inflammasome [4]. The first is a
priming step that is initiated by pathogen-associated molec-
ular patterns (PAMPs) or damage-associated molecular pat-
terns (DAMPs), resulting in the upregulations of pro-IL-1β,
pro-IL-18, and the components of the inflammasome. The
second is an activation step which is the assembly of these
components into the inflammasome structure and then to
produce mature proinflammatory interleukins. Recent
research has described the function of the NLRP3 inflamma-
some in various pulmonary diseases including respiratory
infections, chronic obstructive pulmonary disease, and
asthma [5, 6]. Currently, the role of NLRP3 inflammasome
in the development of multiple types of ALI is also reported,
and the main pathogenic mechanisms include the following:
(1) increased permeability of alveolar epithelial and barrier
dysfunction; (2) overproduction of cytokines including IL-
6, IL-1β, and TNF-α; and (3) involvement of tissue remodel-
ing and pulmonary fibrosis in the late stage of ALI [7–9].
These results imply that the NLRP3 inflammasome partici-
pates in the pathogenesis of ALI/ARDS.

Glibenclamide, besides as a kind of hypoglycemic drug,
displays an anti-inflammatory role in many diseases from
respiratory, urinary, heart, and central nervous systems
[10]. Given the fact of ALI/ARDS considered as an inflam-
matory disorder and the anti-inflammatory activity of glib-
enclamide, hence, glibenclamide might be against the
development of ALI/ARDS in theory. In fact, a large number
of studies have indicated that glibenclamide involves in the
regulation of inflammation in different animal models of
ALI, including oleic acid-, ozone-, radiation-, hemorrhagic
shock-, and ventilator-induced ALI [11–14]. However, no
such studies are reported concerning the role of glibencla-
mide in LPS-induced ALI. LPS, a major constituent of the
outer membrane of Gram-negative bacteria, acts as one of
the common causes in the pathogenesis of sepsis, septic
shock, and sepsis-related ALI/ARDS [15]. In addition, ani-
mal model of LPS-induced ALI is widely used as a clinically
relevant model of Gram-negative bacteria-related ALI/
ARDS [16–18]. Therefore, it would be of great clinical signif-
icance to explore whether glibenclamide can ameliorate LPS-
induced ALI.

Taken together, we proposed the hypothesis that gliben-
clamide has a protective effect on LPS-induced ALI/ARDS,
which might be associated with its inhibition of NLRP3
inflammasome signaling pathway. Thus, we herein
attempted to confirm this hypothesis via in vivo and
in vitro experiments in a mouse model of LPS-induced
ALI and for the first time found that glibenclamide alleviated
the development of LPS-induced ALI in a mouse model via
inhibiting the NLRP3/Caspase-1/IL-1β signaling pathway,
which might provide a new strategy for the treatment of
LPS-induced ALI.

2. Materials and Methods

2.1. Animals and Study Design. Male C57BL/6 mice (6-8
weeks) were purchased from the Shanghai SLAC Laboratory
Animal Co., Ltd. (Shanghai, China). All experimental proce-

dures were conducted in accordance with the ethics commit-
tee of the animal laboratory of Zhejiang University. Mice
were divided into four groups (n = 6/group): control (Con)
group, glibenclamide (Gly) group, LPS group, and LPS+glib-
enclamide (LPS+Gly) group. Glibenclamide (Sigma-Aldrich,
St. Louis, MO, USA) was diluted in DMSO for 100mg/ml
concentration according to the instruction manual. Gliben-
clamide was given intraperitoneally for 3 days before LPS
administration, whereas DMSO was used as vehicle. LPS
(Sigma-Aldrich, St. Louis, MO, USA) was injected into the
trachea of mice with a microsyringe to establish ALI model,
while PBS was used as vehicle. After intratracheal instilla-
tion, mice were kept vertical for at least 1min to ensure
the distribution of the PBS or LPS in the lungs. Twenty-
four hours later after LPS administration, the mice were
sacrificed for experiments. Bronchoalveolar lavage fluid
(BALF) was collected with PBS via a tracheal catheter as
described in our previous study [19]. After centrifugation,
the supernatant and cells were separated for further experi-
ments. The lung tissues were collected for further analysis.

2.2. Lung Histology and Immunohistochemistry Analysis.
The lung tissues fixed in 4% paraformaldehyde were embed-
ded in paraffin and then sliced at a thickness of 4μm for
hematoxylin and eosin (H&E) staining. The histology scor-
ing system was used to evaluate lung injury [11]. Four path-
ological parameters were scored as previously described: (1)
alveolar congestion, (2) hemorrhage, (3) leukocyte infiltra-
tion, and (4) thickness of alveolar wall/hyaline membrane
formation. Each category was graded using a 4-pointscale:
0: minimal damage, 1: mild damage, 2: moderate damage,
and 3: maximal damage. The total histology score was
expressed as the sum of the score for all parameters. Three
slides of each mouse were prepared for evaluation.

Immunohistochemistry (IHC) was performed to deter-
mine the protein expression of NLRP3. The paraffin sec-
tions were pretreated at 62°C for 30min, then dewaxed
in xylene, hydrated, and washed. Hydrogen peroxide solu-
tion was used to inhibit the endogenous peroxidase. The
sections were incubated overnight at 4°C with anti-
NLRP3 antibody (Abclonal, Wuhan, China) (1 : 100).
Then, membranes were washed thoroughly with
phosphate-buffered saline solution. The secondary anti-
bodies (Tuling, Hangzhou, China) were added and incu-
bated at 37°C for 30min. Diaminobenzidine was added,
and the sections were counterstained with hematoxylin to
visualize the reaction products. All the sections were semi-
quantitatively analyzed by the ImageJ software. The inte-
grated IOD/area (density mean) was measured by
evaluating the staining in images at ×200 magnification.
Three slides of each mouse were prepared for evaluation.

2.3. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR). Total RNA was extracted from lung tissues or cells
using Trizol (Thermo Fisher Scientific). cDNA was synthe-
sized using a cDNA synthesis kit (Takara, Dalian, Liaoning,
China) following the manufacturer’s instructions. For
mRNA detection, β-actin was used as the reference house-
keeping gene. Real-time PCR was conducted using SYBR
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Green (TaKaRa) with an Applied Biosystems 7500 real-time
PCR system (Thermo Fisher Scientific). The primer
sequences used are shown as follows: mouse NLRP3 sense
primer: 5′-TCACAACTCGCCCAAGGAGGAA-3′ and
mouse NLRP3 antisense primer: 5′-AAGAGACCACG
GCAGAAGCTAG-3′ and mouse β-actin sense primer: 5′-
GGCTGTATTCCCCTCCATCG-3′ and mouse β-actin
antisense primer: 5′-CCAGTTGGTAACAATGCCATGT-
3′.

2.4. Western Blot Analysis. Cell or tissue lysate was resus-
pended in 5× SDS loading buffer, subsequently incubated
at 100°C for 5min and centrifuged at 12,000 × g for
10min. Protein concentrations were detected using a BCA
Protein Assay Kit (Thermo Fisher Scientific). A total of
20μg of protein from the tissue or cell lysate was separated
by SDS-PAGE gel (Thermo Fisher Scientific) and then trans-
ferred onto polyvinylidene difluoride (PVDF) membranes
(Millipore). The membrane was blocked using 5% nonfat
milk for 2 h at room temperature and then incubated with
appropriate primary antibodies: anti-NLRP3 (Abclonal,
Wuhan, China) (1 : 1,000) and anti-Caspase-1 (Abclonal,
Wuhan, China) (1 : 1,000) in blocking buffer overnight at
4°C. Anti-β-actin (HuaBio, Shanghai, China) (1 : 2,000) was
used as a loading control. After washing three times with
PBST, the membranes were incubated with HRP-
conjugated secondary antibodies for 1.5 h at room tempera-
ture. The bands were detected using an ECL kit (Multi-
Sciences, Hangzhou, Zhejiang, China).

2.5. ELISA Assays. The levels of IL-1β, IL-18, and TNF-α
concentrations in lung tissues, BALF, and cell supernatant
were analyzed using ELISA Kit (BioLegend, San Diego,
CA, USA), according to the manufacturer’s protocol.

2.6. Mouse Lung Wet/Dry Ratio Assay. Twenty-four hours
after intratracheal instillation of LPS, mice were killed and
the lobes of the right lungs were excised after removal of
excess blood and then weighed to obtain the “wet” weight.
Subsequently, the lungs were dried in an oven at 60°C for
72 h for “dry” weight.

2.7. The Measurement of BALF. Total cell number of BALF
was counted, and total protein concentration in BALF was
determined using a BCA assay Kit (Thermo Fisher Scien-
tific) according to the manufacturer’s instructions. The
inflammatory cells in BALF were analyzed with a Cytoflex
machine (Beckman Coulter), and the following
fluorescence-conjugated antibodies were used for the exper-
iment: PE-conjugated anti-mouse CD11b (BioLegend, San
Diego, CA, USA), FITC-conjugated anti-mouse F4/80 (Bio-
Legend, San Diego, CA, USA), and BV650-conjugated anti-
mouse LY-6G (Invitrogen, Carlsbad, CA, USA).

2.8. Mouse Alveolar-Capillary Leakage Assay. Twenty-four
hours after LPS administration, the mice were injected with
20mg/kg Evans blue solution by the tail vein. Two hours
later, the mice were exsanguinated through the heart with
syringe. Then, the lungs were removed and placed in

100mg/ml formamide (Sigma-Aldrich, St. Louis, MO,
USA). The tissues were incubated at 60°C for 24h, and the
absorbance of formamide was measured at 620nm.

2.9. Isolation and Purification of Mouse Peritoneal
Macrophages. C57BL/6 mice at 8-week-old were i.p.
injected with 2ml of 3% sterile thioglycolate medium
(BD Biosciences, Sparks, MD), and peritoneal macro-
phages (PMs) were extracted three days later. To isolate
and purify the PMs, each mouse was euthanized with
40mg/kg pentobarbital sodium and soaked in 75% ethanol
for 3min. The outer layer of the peritoneum was incised
with scissors; 15ml RPMI 1640 was injected intraperitone-
ally into mice with a 20ml syringe. The intraperitoneal
fluid was collected into the tube with a 20ml syringe after
gently massaging the peritoneum and centrifuged at 4°C
for 250 × g for 5min. The supernatant was discarded,
and the sediment was suspended in RPMI 1640 medium
supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin. The cells were then added to 12-well
cell culture plates as needed to obtain a density of 5 ×
106 cells/well and cultured for 2 h at 37°C in 5% CO2.
Then, nonadherent cells were removed by gentle washing
with PBS three times. The isolated macrophages were pre-
pared for experiments in vitro.

2.10. Cell Proliferation Assay. Cell Counting Kit-8 kits
(CCK-8, TransGen, Beijing, China) were used to evaluate
PM proliferation. PMs were plated into 96-well cell culture
plates at a density of 1 × 104 cells/well for 24 h at 37°C and
then treated with different concentrations of glibenclamide
(0~200μM) for 24 h. The viability was assayed at 24 h by
using a Cell Counting Kit-8 assay (TransGen, Beijing,
China).

2.11. Inflammasome Activation Assays. PMs were seeded at
5 × 106/ml in 12 well-cell culture plates. The overnight
medium was replaced on the following day, and cells were
primed with 2μg/ml LPS for 6 h. Then, medium was
added with glibenclamide (50μM) or DMSO (1 : 1,000)
for another 6 h. Cells were finally stimulated with inflam-
masome activators: 2mM adenosine triphosphate (Sigma-
Aldrich, St. Louis, MO, USA) for 1 h. Supernatant was
removed and analyzed using ELISA kits according to the
manufacturer’s instructions. Cells were collected for West-
ern blot analysis.

2.12. Statistical Analysis. Statistical analysis was carried out
using Graphpad Prism. The data were expressed as mean
± SD. The unpaired Student t-test was used for comparisons
between two groups. Differences were considered significant
at P < 0:05.

3. Results

3.1. Glibenclamide Attenuates LPS-Induced Lung Injury.
After intratracheal instillation of LPS, mice showed greater
diffuse alveolar damage, thickened alveolar wall, hemor-
rhage, and more inflammatory cell infiltration, whereas pre-
treatment with glibenclamide alleviated these pathological
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changes (Figure 1(a)). Correspondingly, glibenclamide treat-
ment reduced the LPS-induced increases in inflammation
score, the wet/dry ratio, alveolar-capillary leakage of lungs,
and the concentration of total protein in BALF
(Figures 1(b)–1(e)). These results suggested that glibencla-
mide attenuates the LPS-induced lung injury.

3.2. Glibenclamide Decreases LPS-Induced Lung
Inflammation. In comparison with the LPS group, pretreat-
ment with glibenclamide significantly reduced the total cell
number and the percentage of neutrophils and macrophages
in BALF (Figures 2(a)–2(c)). The levels of proinflammatory
cytokines including IL-1β and IL-18 were also markedly
downregulated in both BALF (Figures 2(d) and 2(e)) and
lung tissues (Figures 2(g) and 2(h)). Surprisingly, glibencla-

mide treatment did not affect the LPS-mediated increase in
the production of TNF-α either in BALF (Figure 2(f)) or
in lung homogenates (Figure 2(i)).

3.3. Glibenclamide Suppresses the Expression of NLRP3 and
Caspase-1 Activity. Based on the fact that glibenclamide
can reduce the downstream products of NLRP3 signaling
way, we supposed that glibenclamide could directly suppress
the activation of NLRP3 inflammasome. Accordingly, we
detected the expression of NLRP3, one of the main compo-
nents of inflammasome, and Caspase-1/P20, a biologically
active form of Caspase-1. Compared with the control group,
the mRNA and protein levels of NLRP3 were obviously
increased in the LPS group (Figures 3(a)–3(e)). Similarly,
protein level of Caspase-1/P20 was also upregulated by LPS
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Figure 1: The effect of glibenclamide on the pathological injury in LPS-induced ALI. (a) The pathological alternations in lung tissues were
evaluated with HE staining (n = 4). (b) Lung injury scores in four groups. (c) Wet/dry ratio in four groups (n = 4). (d) Alveolar-capillary
leakage in four groups (n = 3). (e) The total protein concentration in BALF (n = 3). Scale bars, 100 μm. Data are representative of three
independent experiments (mean and SD). ns: not significant. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 (unpaired Student’s t-test).
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Figure 2: Continued.
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stimulation (Figures 3(b) and 3(c)). However, the elevated
expressions of NLRP3 and Caspase-1/P20 in the LPS group
were inhibited by glibenclamide treatment (Figures 3(a)–
3(e)).

3.4. Glibenclamide Exerts Anti-Inflammatory Effect In Vitro.
Since the protective function of glibenclamide on LPS-
induced ALI had been verified in vivo, then we further
confirmed its effect with an in vitro model. Macrophages
are key orchestrators of the inflammatory and repair
responses in the lung [20]. In vitro inflammatory model
established by LPS stimulation of macrophages including
macrophage cell lines [21] or primary macrophages [22]
can simulate the inflammatory process in vivo and is often
used in the study of the mechanism of anti-inflammatory
drugs [21, 22]. Herein, mouse peritoneal macrophages
(PMs) were used as the in vitro cell model. First, we mea-
sured the in vitro cytotoxicity of glibenclamide to PMs.
With the increased concentration, the cell viability
decreased by approximately 36.9% at 100μM glibencla-
mide compared with the control (Figure 4(a)). Conse-
quently, 50μM was recommended as the experimental
dosage as glibenclamide at this concentration had no obvi-
ous cytotoxicity. PMs were first primed with LPS, then
pretreated with glibenclamide, and lastly stimulated with
the NLRP3 stimulus ATP. LPS stimulation promoted the
expressions of NLRP3 mRNA and protein in PMs, and
these upregulations were inhibited by glibenclamide treat-
ment (Figures 4(b)–4(f)). Likewise, glibenclamide sup-
pressed the activation of Caspase-1 (Figures 4(c) and
4(d)) and the release of IL-1β and IL-18 enhanced by
LPS administration (Figures 4(g) and 4(h)). In contrast,
the LPS-induced increase in expression of TNF-α was still
not decreased after glibenclamide treatment (Figure 4(i)),
which was consistent with the in vivo results (Figures 2(f
) and 2(i)).

4. Discussion

In the current study, we revealed a previously unrecognized
protective role of glibenclamide against LPS-induced acute
lung injury. Glibenclamide could improve the pathological
injury of lungs and attenuate pulmonary inflammation in a
mouse model of LPS-induced ALI. Mechanistically, this pro-
tective effect is related to downregulations in the expression
and activation of NLRP3/Caspase-1/IL-1β signaling path-
way in vivo and in vitro. In addition, the inhibition in the
inflammatory response by glibenclamide is partly specific
to target NLRP3 inflammasome as it has no effect on the
production/secretion of other inflammatory cytokines like
TNF-α.

It is well-known that ALI/ARDS is characterized by sus-
tained inflammation, excessive oxidative stress, and loss of
alveolar-capillary membrane integrity, leading to increased
lung microvascular permeability, alveolar edema, and leuko-
cyte extravasations [1–3]. And so far, there have been con-
siderable interventions described in the publications to
prevent ALI/ARDS [23–25]. Among them, the anti-
inflammatory property of glibenclamide in ALI/ARDS has
been increasingly concerned and validated effectively in var-
ious animal models of ALI, including oleic acid-, ozone-,
radiation-, hemorrhagic shock-, and ventilator-induced
ALI [11–14]. In our study, administration of glibenclamide
inhibits LPS-stimulated lung edema, vascular hyperperme-
ability damage, and inflammatory cell infiltration. These
results indicate that in addition to the various models of
ALI reported in previous studies [11–14], glibenclamide also
exerts a protective role in the current model of LPS-induced
ALI.

Based on our previous research, the mechanisms of
glibenclamide underlying its anti-inflammatory role are
summarized as follows [10]: (1) inhibiting the activation
of NLRP3/IL-1β signaling, (2) downregulating the
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Figure 2: The effect of glibenclamide on the LPS-stimulated inflammatory response in lungs. (a) The total cell number counts in BALF
(n = 3). (b, c) The percentage of neutrophils and macrophages is presented (n = 3). (d–i) The content of IL-1β, IL-18, and TNF-α in (d–f
) BALF (n = 3) and (g–i) lung tissues (n = 3) was measured by ELISA. Data are representative of three independent experiments (mean
and SD). ns: not significant. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 (unpaired Student’s t-test).
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generation of reactive oxygen species, and (3) suppressing
the migration of inflammatory cells like neutrophils and
eosinophil. In the current research, the LPS-induced

increases in levels of proinflammatory cytokines such as
IL-1β and IL-18 and inflammatory cells like neutrophils
and macrophages were decreased remarkably by
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Figure 3: The inhibition role of glibenclamide in the NLRP3/Caspase-1/IL-1β signaling pathway induced by LPS. (a) Relative NLRP3
mRNA expression in lungs was measured by real-time PCR (n = 3). (b, c) Representative images of Western blot of NLRP3 and Caspase-
1/p20 in the lungs and quantitative analysis (n = 3). (d, e) Representative images of immunohistochemical staining of NLRP3 in the
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not significant. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 (unpaired Student’s t-test).
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Figure 4: Continued.

8 Mediators of Inflammation



glibenclamide in BALF and lung tissues. As IL-1β and IL-
18 were known as the indicator of NLRP3 inflammasome
induction [26–28], we hypothesized that the protective
response of glibenclamide might be associated with its
inhibition of NLRP3 inflammation. Indeed, a large number
of studies have found that NLRP3 inflammasome plays an
important role in ALI [14, 29]. Consistently, NLRP3/Cas-
pase-1/IL-1β signaling was activated in vivo and in vitro
after LPS or LPS plus ATP treatment, while the activation
of NLRP3 inflammasome was inhibited by glibenclamide
in our study. Thus, we confirmed that glibenclamide exerts
its anti-inflammatory effect mainly by blocking NLRP3
signaling pathway.

Moreover, we noticed that the secretion of TNF-α, con-
sidered as an inflammasome-unrelated cytokine, was not
impaired by glibenclamide. Consistent with previous studies
[30, 31], our result found that glibenclamide did not affect
LPS-stimulated TNF-α production, ruling out a more gen-
eral anti-inflammatory effect by glibenclamide. These results
suggest that the anti-inflammatory effect of glibenclamide is
specifically related to NLRP3 inflammasome signaling path-
way in LPS-induced ALI, though it could inhibit Th2 cyto-
kines in ovalbumin-induced mouse model of asthma in
our previous study [32].

Some limitations also exist in the current research.
First, we did not determine the role of glibenclamide on
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Figure 4: A protective role of glibenclamide in vitro inflammatory model. (a) CCK-8 assay was used to determine glibenclamide cytotoxicity
(n = 3). (b) Relative NLRP3 mRNA expression in PMs was measured by real-time PCR (n = 3). (c, d) Representative images of Western blot
of NLRP3 and Caspase-1/p20 in PMs and quantitative analysis (n = 3). (e) Representative immunofluorescence staining of NLRP3 in PMs.
(f) Calculated percentage of NLRP3-positive nuclei (n = 3). (g–i) The level of IL-1β, IL-18, and TNF-α in cell supernatant was measured by
ELISA (n = 3). Data are representative of three independent experiments (mean and SD). Scale bars, 20μm. ns: not significant. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 (unpaired Student’s t-test).
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other inflammasome complexes such as NLRP1, NLRC4,
and AMI2. Second, we did not establish the model of
LPS-induced ALI in NLRP3-/-mice, so the extent to which
glibenclamide blocked the NLRP3 inflammasome has not
been better clarified. Third, TNF-α is the product of acti-
vation of multiple inflammatory signaling pathways
including the generic mitogen-activated protein kinases
(MAPK) signaling pathway [33], the Janus kinase (JAK)/
signal transducer and activator of transcription (STAT)
pathway [34], and Hedgehog pathway [35]. Although the
secretion of TNF-α was similar regardless of glibenclamide
treatment, we did not observe whether glibenclamide has a
role in the activation of these aforementioned multiple
inflammatory signaling pathways. Thus, the evidence for
the idea that the anti-inflammatory effect of glibenclamide
is relatively specific to NLRP3 inflammasome seems not so
solid. Last, we did not measure the blood glucose concen-
tration in mice in the current study. Although the mouse
model in the current study is different from the previous
one which was ovalbumin-induced allergic asthma, we
used the same therapeutic dose as before as 40μmol/kg
for the treatment of LPS-induced ALI/ARDS and we did
not make a fast pretreatment prior to glibenclamide
administration as our previous study shown [32]. Accord-
ing to our previous work, we observed that the blood glu-
cose concentration of mice was not affected at this
concentration without a fast pretreatment prior to gliben-
clamide administration [32]; thus, we consider that the
dose of glibenclamide at 40μmol/kg has no effect on blood
glucose of mice in this study.

5. Conclusion

We demonstrated that glibenclamide alleviates LPS-induced
ALI injury via an inhibition of inflammatory response,
which is attributed to the suppression of NLRP3 inflamma-
some (Figure 5). Taken together, our results provide evi-
dence that glibenclamide might be a promising candidate
for the adjuvant therapy for LPS-induced ALI.
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Idiopathic nephrotic syndrome (INS) is an important primary glomerular disease characterized by severe proteinuria. Evidence
supports a role for T cell dysfunction in the pathogenesis of INS. Glucocorticoids are the primary therapy for INS; however,
steroid-resistant NS (SRNS) patients are at a higher risk of drug-induced side effects and harbor poor prognosis. Although the
exact mechanism of the resistance is unknown, the imbalances of T helper subtype 1 (Th1), Th2, and regulatory T cells (Tregs)
and their cytokines may be involved in the pathogenesis of glucocorticoid responsiveness. Up to now, no confirmed biomarkers
have been able to predict SRNS; however, a panel of cytokines may predict responsiveness and identify SRNS patients. Thus, the
introduction of distinctive cytokines as novel biomarkers of SRNS enables both preventions of drug-related toxicity and earlier
switch to more effective therapies. This review highlights the impacts of T cell population imbalances and their downstream
cytokines on response to glucocorticoid responsiveness state in INS.

1. Introduction

Idiopathic nephrotic syndrome (INS) is a clinical definition,
described by extreme proteinuria due to podocyte injury and
foot process effacement. Focal segmental glomerulosclerosis
(FSGS) and minimal change disease (MCD) are the two
most important light microscopic pictures of this glomerular
disease and the most common causes of INS in both adults
and pediatrics. Despite the current lack of knowledge in a
comprehensive understanding of the disease mechanism,
the response to glucocorticoids and/or other immunosup-
pressant agents indicates the primary involvement of the
immune system. The current observations are in favor of
the association of T regulatory (Treg), T helper subtype 1
(Th1), and T helper subtype 2 (Th2) imbalances and their
related cytokines in the pathogenesis of INS [1, 2].

The activation of the inflammation cascades is heteroge-
neous and diverse in FSGS or MCD. A sequential produc-

tion of proinflammatory cytokines leads to a systemic
inflammatory response initiated with the synthesis of IL-1
and TNF-α (TNF), which, in turn, escalates the generation
of IL-6. The production of cytokines stimulates the forma-
tion of acute-phase proteins such as haptoglobin, haemo-
pexin, or C-reactive protein (CRP), suPAR (soluble
urokinase-type plasminogen activator receptor), α-1 anti-
trypsin, and fibrinogen in the liver. Alpha-1 antitrypsin
and fibrinogen are more sensitive to IL-6 stimulation while
others are generally synthesized in response to IL-1 [3]. Dif-
ferent studies have reported the plausible connection
between cytokine production and proteinuria in INS [4, 5].
However, conflicting results have been obtained when the
serum levels of the major cytokines and acute-phase proteins
are measured in patients with NS [6–8].

Glucocorticoids are the standard initial pharmacological
regimen in INS, which block the production of cytokines in
both immune and nonimmune cells effectively and result in
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remissions in approximately 85-90% of pediatric cases.
However, individuals exhibit different degrees of glucocorti-
coid responsiveness and variable patterns of relapses [9].
Glucocorticoids represent a key index of outcomes, and
drug-resistant patients pose a challenge to clinicians. Fur-
thermore, glucocorticoid dependency is observed in about
40–50% of the responders who are at high risk of therapy-
associated unwanted effects [10]. Indeed, no clinical test is
available to predict steroid resistance and/or dependence.

The response to glucocorticoids has been considered as
the key variable in long-term outcomes of FSGS and MCD
patients [11]. The potential effects of glucocorticoids high-
light the possible role of cytokines in determining the drug
response. SRNS patients without podocyte genetic defects
may also respond to other immunosuppressive agents, such
as cyclosporine, tacrolimus, and mycophenolate.

2. Factors Involved in SRNS

The impacts of epigenetic, pharmacogenetic, and genetic
factors on the pathogenesis of SRNS have been comprehen-
sively reviewed previously [12–15]. In the presence of podo-
cyte cytoskeletal-related mutations, glucocorticoids are
ineffective at restoring normal podocyte function. About
30% of SRNS patients have mutations in one of the
podocyte-expressed genes. Circulating factors, such as serum
urokinase-type plasminogen activator receptor or
cardiotrophin-like cytokine 1, are another proposed patho-
genic mechanism [16]. Cytokines are reported to modulate
the glucocorticoid responses in NS [17–19]. In the following
sections, we provide reported articles linking imbalanced T
cell populations and their dysregulated cytokines to SRNS.

3. Cytokines Affect the Responses to
Glucocorticoid Therapy

Because of the controversial reports regarding the cytokine
patterns of Th1/Th2, subtypes, and glucocorticoid response,
studies are aimed at introducing these possible biomarkers
[20, 21]. In the following sections, we focus on the impacts
of T cell population imbalance and its downstream cytokines
on SRNS.

3.1. T Cell Population Imbalance in SRNS. Despite conflict-
ing evidence, the imbalance between Th1, Th2, and Treg
cells has been associated with the incidence of SRNS. If glu-
cocorticoids mediate alterations in T cells’ population and
their cytokine profile, then steroid-sensitive NS (SSNS) and
SRNS patients should have differences in their T cell popula-
tions. It has been demonstrated that Th1/Treg and Th2/Treg
ratios are higher in SRNS compared to SSNS patients and
healthy individuals, while Th1/Th2 ratios are similar among
the groups. A higher ratio of Treg in comparison with Th1
and Th2 is connected with glucocorticoid sensitivity, while
the reverse ratio is associated with SRNS [22]. Guimarães
et al. made a study on a group of children with INS (ste-
roid-sensitive (16 boys/9 girls) and steroid-resistant 8/6)
and 10 healthy controls. They observed downregulated levels
of adhesion molecules (integrin, CD18) and higher levels

(48%) of Treg (TCD4+CTLA-4+ FoxP3+) in the steroid-
sensitive group [23]. NS patients who are more prone to
relapse or do not respond to glucocorticoids show an immu-
nological switching from Th2 to Th1 [24]. In line with these
findings, serum cytokines shift toward the Th1 pattern in
FSGS patients [24]. Additionally, in a study on a group of
INS children (29 SSNS and 14 SRNS children, aged between
2 and 19 years), higher levels of Th1 cytokines (e.g., IL-2)
have been found in their serum and urine samples, whereas
elevated Th2-related cytokine (i.e., IL-4) generation was
associated with long-term remission [5]. However, both glu-
cocorticoid sensitive and resistant patients show similar
levels of Th1- and Th2-associated cytokines; these differ-
ences might be due to different lymphocyte stimuli [4]. Sta-
chowski and coworkers also reported similar results and
concluded that the CD4+ T cell-related cytokine pattern
and the distribution of particular T cell subsets, including
suppressor-effector (CD45RA+CD8+), suppressor-inducer
(CD45RA+CD4+), and memory cells (CD45RO+CD4+),
might predict the patients’ sensitivity to glucocorticoids at
the onset of NS [25]. The importance of the Th1/Th2 bal-
ance has been confirmed by increased levels of Th1 cyto-
kines (including IL-2, soluble IL-2 receptor (sIL-2R), and
IFN-γ) in SSNS patients during relapse [26]. Hence, asses-
sing the balance of Th1/Th2 could be valuable in predicting
glucocorticoid responsiveness.

Effective glucocorticoid therapy has been shown to
restore the functional balance of the Th-17/Treg population
in MCD patients [27]. Moreover, primary glucocorticoid
therapy has reduced CD8+T, Th2, and CD4+ Th1 cells in
NS patients. Accordingly, glucocorticoid therapy effectively
diminishes CD8+T, Th2, and CD4+ Th1 cells in new-onset
pediatric NS cases [28].

Response to glucocorticoid therapy in children with NS
is influenced by the levels of IL-13 and TNF-β (lympho-
toxin-alpha). Elevated levels of TNF-β are observed in SRNS
patients after treatment while SSNS cases developed higher
levels of IL-13. Increased levels of IL-13 may be in connec-
tion with TNF-β downregulation in SSNS patients since
the latter is suppressed via Th2 cytokines [29]. Interaction
between TNF receptor and soluble lymphotoxin-alpha pro-
motes inflammatory responses. T cell deviation towards
the Th2 population in NS patients might also be linked to
the overproduction of IL-13. These findings propose that
Th1-dominant patients might develop glucocorticoid-resis-
tance, while increased IL-13 and Th2 phenotypes are in
favor of a satisfactory outcome, and glucocorticoid respon-
siveness. Therefore, alteration in Th1 and Th2 populations
and subsequent changes in IL-13/TNF-β cytokines balance
substantially affect NS pathophysiology in children [29].

3.2. T Cell Resistance to Glucocorticoids. Particular mediators
influence T cell resistance to glucocorticoids. For example,
IL-2 and IL-4 promote lymphocyte glucocorticoid resistance
during an in vitro study [30]. In addition, nuclear factor-κB
(NF-κB) and transcription factor activator protein-1 (AP-1)
are pivotal mediators of proinflammatory cytokine genera-
tion and have been found to interfere with glucocorticoid
functions on T cells [31]. In this context, the glucocorticoid
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receptor α (GRα) suppresses AP-1 activity via direct protein-
protein interaction with a c-Jun subunit of the AP-1 family
[32]. Interestingly, it is documented that AP-1 modulates
the structure of basal chromatin and increases the accessibil-
ity of GR and its binding to proinflammatory genes [33].
Hence, it appears that the interactions between AP-1 and
glucocorticoids are far more complicated.

3.2.1. NF-κB Signaling. NF-κB is a transcription factor that
regulates the transcription of genes participating in inflam-
mation. Sun and colleagues reported that the overexpression
of NF-κB in the juvenile Sprague-Dawley rat model of
nephrotic syndrome induces the expression of inflammatory
cytokines (IL-1 and IL-6), increases blood urea nitrogen and
creatinine levels, and exacerbates renal injury [34]. NF-κB as
a member of the Rel family contains two subunits (p50 and
p65) [35]. The binding of NF-κB to the endogenous IκB
family proteins makes it inactive. The release of NF-κB from
IκB occurs upon antigenic stimulation and subsequent phos-
phorylation of IκB via IκB kinases α and β. SRNS patients
have a lower level of NF-κB p65 subunit in the whole-cell
lysates, prepared from the peripheral mononuclear blood
cells (PMBC) compared to glucocorticoid-sensitive cases
[36]. Both lower levels of NF-κB p65 and GRα are connected
with poor glucocorticoid responses in some patients with
INS. This difference is more prominent in those experienc-
ing relapses [36]. However, both SSNS and SRNS patients
express similar levels of the p50 subunit. The translocation
of the NF-κB p50 subunit into the nucleus is essential for
the interaction of NF-κB with glucocorticoids, and the
absence of such translocation impairs the ability of GRs to
inhibit immune functions and NF-κB transcriptional activ-
ity, inducing glucocorticoid resistance [31, 32].

The expression of IL-2 is also increased during the
relapse of both SSNS and SRNS patients in comparison with
controls. These results indicated alterations in the T cell
populations between untreated SRNS and SSNS patients.
The upregulation of IL-2 and down-regulation of NF-κB
p65 subunits are possible mechanisms of glucocorticoid
resistance in NS [37]. It has been reported that three mech-
anisms are involved in this process. First, the absence of
required protein-protein interactions, especially among
GRα and p65 subunits. Second, disturbances in nuclear
export of NF-κB dimers, and third plunged affinity of NF-
κB for the glucocorticoid-stimulated leucine zipper that acts
as an inhibitor of NF-κB nuclear translocation [37]. In SRNS
patients, steroid-based treatment might fail by enhancing
NF-κB function, which would worsen disease by elevating
transcription of inflammatory cytokines [38].

4. Cytokines in SRNS

The prevalence of relapses in NS has been associated with
the serum levels of particular cytokines (Table 1). Some
researchers have attempted to identify urinary, plasma, and
salivary cytokine-based biomarkers for SRNS in children
[39–41]. Both SSNS and SRNS patients have shown sup-
pressed levels of IL-5, IL-7, IL-13, IFN-γ, and TNF after glu-
cocorticoid administration. Furthermore, SRNS patients

have been shown to have higher levels of MIP-1β, IL-17A,
IL-5, and INF-γ in comparison with SSNS cases in pre-
and posttreatment specimens. Agrawal et al. studied the
plasma profile of cytokines in children [SSNS (n = 26) and
SRNS (n = 14)] aged between 18 months and 18 years before
and after (7 weeks) treatment with glucocorticoids. Using a
bead-based fluorescence assay, the profiling of 27 cytokines
was evaluated on a Luminex Technology platform (Wal-
tham, MA). Different levels of 13 plasma cytokines were
observed between SSNS versus SRNS before therapy. Three
cytokines (IL-7, IL-9, and MCP-1) exhibited ROC (receiver
operating characteristic) values of 0.846, 0.64 sensitivity,
and 0.84 specificity and could differentiate children with
SRNS from those with SSNS at the disease onset. Further-
more, their results detected significant reductions in cyto-
kine levels (e.g., IFN-γ, TNF, IL-5, IL-7, and IL-13) in
response to glucocorticoid treatment in SSNS compared to
SRNS patients. The authors proposed that glucocorticoid
therapy decreases cytokine production by CD4+ Th1 cells,
Th2 cells, and CD8+ cells in children with new-onset NS
[28] (Figure 1).

Increased IL-8 concentration has been associated with
relapses in NS [42] and antibodies against IL-8 could neu-
tralize the ability of mononuclear cells to trigger albuminuria
in the Wistar rat model [43]. Moreover, surged amount of
IL-1β, IL-6, and IL-8 has been observed in INS relapses
compared to healthy controls or remission in children [44].
In addition, IL-4, IL-6, and TNF polymorphisms have been
in connection with glucocorticoid responsiveness in INS
children [45]. The activation of TGF-β1 has been reported
in SRNS cases, which further develop chronic kidney disease
(CKD). FSGS patients have shown higher levels of urinary
TGF-β1 compared to MCD patients. However, urinary
TGF-β1 has not been validated as a glucocorticoid respon-
siveness biomarker [19]. Elevated serum levels of IL-6, hap-
toglobin, and haemopexin are also independent markers of
glucocorticoid resistance in FSGS and MCD patients [3].

T cell expressing inflammatory cytokines, plasma mac-
rophage migration inhibitory factor (MIF), and urinary
MCP-1 are increased during persistent proteinuria in pediat-
ric SRNS [41]. The role of glomerular macrophages and the
underlying mechanism of macrophage-related glucocorti-
coid resistance have not been clarified. The substantial con-
nection between urinary MCP-1 and IL-6 or interferon-
inducible protein-10 (IP-10) suggests that the MCP-1-
stimulated macrophages can generate IL-6 or IP-10 after
recruitment to the glomeruli, which might then lead to tissue
damage and enrollment of other immune cells [46, 47].

4.1. MIF. MIF has been considered as a suitable marker for
glucocorticoid responsiveness among 48 evaluated cyto-
kines. According to cytokine analysis, the increased plasma
concentrations of MIF (cutoff concentration of MIF > 501
pg/ml) at diagnosis could identify NS children at high risk
of glucocorticoid resistance. Low levels (MIF mean concen-
tration 124.5 pg/ml in healthy controls vs. 466.1 pg/ml in
INS patients) of this cytokine could also successfully dis-
criminate INS patients from controls [48]. MIF displays pro-
inflammatory activities as a result of interactions with T cells
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and macrophages. Glucocorticoids decrease the formation of
inflammatory mediators; however, they accelerate MIF
release from T cells and macrophages [49]. Then, MIF coun-
terregulates the suppressor effects of glucocorticoids on pro-
inflammatory cytokines [50]. Although the underlying

mechanisms are not completely known, it has been postu-
lated that MIF interferes with the function of glucocorticoid
under an inflammatory condition mediated by NF-κB-
dependent manner. Glucocorticoids prevent the NF-κB acti-
vation through the induction of IκBα synthesis, whereas MIF
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Figure 1: Cytokines can identify the SRNS cases before therapy. Different levels of 13 plasma cytokines were observed between SSNS versus
SRNS before therapy, three of which (MCP-1, IL-9, and L-7) had values to discriminate SRNS from SSNS prior to glucocorticoid therapy
with ROC value = 0:84, 0.64 sensitivity, and 0.84 specificity. FGF: fibroblast growth factor; MCP-1: monocyte chemoattractant protein-1;
MIP-1β: macrophage inflammatory protein-1β; SSNS: steroid-sensitive nephrotic syndrome; SRNS: steroid-resistant nephrotic syndrome;
TNF: tumor necrosis factor; ROC: receiver operating characteristic. Adapted from Ref. [28] with permission. The reference [28] article is
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enhances the translocation of NF-κB to the nucleus [51].
Furthermore, MIF potently induces the extracellular
signal-regulated kinase- (ERK-) 1 and ERK-2 pathways,
which in turn, activate the intracellular isoform of phos-
pholipase A2 (PLA2) and lead to the liberation of arachi-
donic acid [52]. Glucocorticoids are recognized blockers
of PLA2 stimulation, and this impact is countered by
MIF. Additionally, to suppress the transcription of proin-
flammatory genes, glucocorticoids can raise the degrada-
tion of these mRNAs; moreover, this has been revealed
to be linked to the inhibitory effect of MIF on glucocorti-
coids. Although there are inadequate data to elucidate the
proinflammatory functions of MIF entirely, the mentioned
mechanisms could describe its impact on glucocorticoid-
related immunosuppression [48, 53].

4.2. TNF. In kidney glomeruli of patients with FSGS/SRNS,
activation of the TNF pathway was observed [54]. TNF is
an inflammatory cytokine produced by infiltrating/circulat-
ing macrophages and monocytes. The proposed TNF mech-
anisms of action includes (1) leukocyte recruitment to the
glomerular damage site, (2) stimulation of growth factors
and cytokines, and (3) generation of oxygen radicals. Conse-
quently, glomerular endothelial damage, apoptosis, and
albumin permeability could be the result of those TNF-
mediated adverse effects [55]. The intrinsic activation of
the TNF signaling pathway leads to podocyte damage that
can be reversed by the TNF blockader [54].

4.3. Suppressors of Cytokine Signaling. Suppressors of Cyto-
kine Signaling (SOCS) prohibit Signal Transducer and Acti-
vator of Transcription (STAT) phosphorylation via blocking
Janus Kinases (JaKs), and the effects of glucocorticoids on
the JaK/STAT signaling cascade in children with SRNS and
SSNS have been investigated. Accordingly, IL-6, IL-20,
SOCS3, and SOCS5 were significantly higher in plasma sam-
ples of SRNS patients in comparison with SSNS cases. More-
over, the authors suggested the potential role of SOCS3 and
SOCS5 mRNA levels as predicting factors of glucocorticoid
resistance in patients with NS [56]. Furthermore, substantial
lower methylation of one region of the SOCS3 promoter was
observed in SRNS participants versus SSNS and normal con-
trols [56, 57].

4.4. Other Cytokines. The activation of T lymphocytes and
release of IFN-γ, IL-4, and IL-2 have been seen in SSNS chil-
dren with relapse [7]. The plasma level of IL-8 has signifi-
cantly been in connection with IL-4 and IL-13 in all stages
of SSNS in children. Likewise, during the active phase,
increased levels of IL-13, IL-4, TNF, and IgE were signifi-
cantly seen in pediatric SSNS compared to patients in remis-
sion and controls [58]. It is deemed that a type-2 cytokine
production succeeds in children with active SSNS, and this
kind of immune response is closely correlated with the
expression of IL-18 [6]. Moreover, serum levels of IL-18
are associated with both IL-4 and IL-13 in pediatric SSNS
patients [59]. However, it is also reported that increased
levels of IL-18 after therapy can be involved in the SRNS
development [60].

5. Treatment

The goal of SRNS therapy is inducing complete remission;
however, even partial remission may have clinical benefits.
For cases with nongenetic-based SRNS, treatment with cal-
cineurin inhibitors (tacrolimus and ciclosporin) is the stan-
dard of care therapy and 70% of them attain a partial or
complete remission. The renin-angiotensin inhibitors as
antihypertensive and antiproteinuric are quintessential for
decreasing proteinuria [61]. Proinflammatory cytokines
derived from immune cells promote the formation of angio-
tensin II (Ang II) both systemically and locally. Production
of angiotensinogen by inflammatory cytokines is suggested
as a key mechanism for the development of Ang II-
dependent high blood pressure [62]. Nonresponding
patients to calcineurin inhibitors or immunosuppressives
are at risk for ESRD [61].

Epigenetic modification by targeting histone deacety-
lases (HDACs) are a promising therapeutic approach in
NS. Histone deacetylase inhibitors (HDACi) play an impor-
tant role in treating CKD due to their anti-fibrotic, anti-
inflammatory, and immunosuppressive activities. HDACi
inhibits HDACs, remodels the structure of proteins in tran-
scription factor complexes, and causes modifications in
gene transcription by removing the acetyl groups from the
lysine amino acid on histone. Thus, HDACi enhances chro-
matin condensation and exerts a repressor effect on tran-
scription. It is a promising intervention for targeting
glomerular sclerosis and fibrosis as important pathologic
features of fibrosis and CKD progression both in FSGS
and INS patients. Moreover, evidence from various research
has demonstrated an irregular expression of HDACs
involved in renal fibrosis and glomerulosclerosis which are
common pathological features of NS [63]. A combination
of HDACi, vorinostat with an ACE inhibitor benazepril in
an animal model of nephropathy could significantly reduce
proteinuria and kidney injury via modulating different sig-
naling cascades such as NF-κB, IL-1, TGF-β, MAPK, and
apoptosis machinery [66].

6. Conclusion

Alterations in cytokine patterns in INS may contribute to
proteinuria and glomerular injury and influence therapeutic
interventions. Thus, the identification of distinct cytokines
as novel biomarkers of SRNS at the early diagnosis can ben-
efit patients by both enabling the prevention of glucocorti-
coid toxicity and directing to earlier switch to more
effective therapeutic options. Understanding the molecular
mechanisms involved in SRNS and the development of
molecular-based diagnosis and predictive biomarkers would
have a significant value in the management of SRNS patients
in years to come.
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The objective of this study was to evaluate the histopathological changes caused by infection with the Colombian strain of
Trypanosoma cruzi (T. cruzi) in the acute and chronic experimental phases. C57Bl/6 mice were infected with 1000
trypomastigote forms of the Colombian strain of T. cruzi. After 30 days (acute phase) and 90 days (early chronic phase) of
infection, the animals were euthanized, and the colon was collected and divided into two parts: proximal and distal. The distal
portion was used for histopathological analysis, whereas the proximal portion was used for quantification of pro- and anti-
inflammatory cytokines. In addition, the weight of the animals and parasitemia were assessed. The infection induced gradual
weight loss in the animals. In addition, the infection induced an increase in interferon gamma (IFNγ) and tumor necrosis
factor-alpha (TNF-α) in the intestine in the acute phase, in which this increase continued until the early chronic phase. The
same was observed in relation to the presence of intestinal inflammatory infiltrates. In relation to interleukin (IL)-10, there was
an increase only in the early chronic phase. The Colombian strain infection was also able to induce neuronal loss in the
myenteric plexus and deposition of the collagen fibers during the acute phase. The Colombian strain of T. cruzi is capable of
causing histopathological changes in the intestine of infected mice, especially in inducing neuronal destructions. Thus, this
strain can also be used to study the intestinal form of Chagas disease in experimental models.

1. Introduction

More than 100 years after the discovery of the etiologic agent
of Chagas disease (CD), Trypanosoma cruzi, the disease still

has a great socioeconomic impact. This disease is estimated
to cost approximately $627 million per year for global public
health [1]. In addition, due mainly to the loss of productivity
and premature death of those infected, approximately 1.2
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billion dollars are spent annually worldwide [2]. The main
pathological manifestations of CD include the heart, diges-
tive system, and chagasic megacolon, which accounts for
10–20% of cases that evolve the digestive forms [3]. Little
is known about the mechanisms involved in progression,
and because of this, experimental models are used to assist
in the search for answers.

The strain of T. cruzi most commonly used in experi-
mental models of mouse [4, 5], rat [6, 7], or dog [8] that
mimic the intestinal form of CD is the Y strain. Thus, most
of the findings related to intestinal histopathological and
immunological changes due to T. cruzi infection are related
to this strain. Mice of the C57BL/6 strain infected with the
Y strain, for example, show changes in the width of the
colon and thickness of the muscle layer and an increase in
the inflammatory infiltrate in the intestine, as well as tissue
parasitism, myositis, ganglionitis, and periganglionitis dur-
ing the acute experimental phase [9]. During the chronic
phase, there is an increase in the deposition of collagen
fibers in the intestine, which is associated with fibrosis in
the organ [10]. The same process has also been reported
in the human chagasic megacolon [11]. In addition, infec-
tion by this strain leads to neuronal decrease in experimen-
tal models in both the acute and chronic phases [5, 12],
which is also a milestone in the progression of the megaco-
lon in humans [13, 14].

There is a diversity of strains of T. cruzi that have differ-
ent biological behaviors, mainly related to molecular biology,
tissue tropism, and the form of the developed DC [15, 16].
While infection in experimental models with strains such
as Y [5, 10] and MORC-1 [17] causes intestinal neuronal
destruction, strains such as Ninoa, Queretaro [18], and Bra-
zil [19], which induce intestinal changes, have not been eval-
uated for the number of neurons in the intestinal plexuses.

Furthermore, the Colombian strain is widely used for
studies based on experimental Chagas heart disease all
because of the myotropism, mainly cardiac and skeletal, that
this strain has [20, 21]. The presence of the parasite and
intestinal changes has been reported, although less fre-
quently, in infections with this strain [4, 22]. However, in
these studies, the relationship between intestinal neuronal
number, cytokine behavior, and fibrose deposition has not
been evaluated in mice. Thus, the objective of this study
was to assess whether the Colombian strain is related to
immunopathological changes and neuronal destruction in
the intestine, both during the acute and early chronic phases
of experimental infection.

2. Material and Methods

2.1. Animals, Infection, and Euthanasia. The study was
approved by the Ethics Committee on the Use of Animals
of the Federal University of Goiás (protocol number: 051/
19). Thus, all conditions of handling, maintenance, and
euthanasia of the animals were followed as indicated.

The animals used in this study were bred and donated by
the Bioterium of the Institute of Tropical Pathology and
Public Health of the Federal University of Goias. Male
C57Bl/6 mice (22–27 g) were infected, subcutaneously, or

not with 1000 trypomastigote forms of T. cruzi Colombian
strain obtained from BALB/c mice at the peak of parasite-
mia. From the day of infection, the animals were followed
for 30 days (n = 5) and 90 days (n = 4) during acute and
early chronic phases, respectively. Control animals without
infection were also followed for 30 days (n = 5) or 90 days
(n = 5). At the time of euthanasia (cervical dislocation after
confirmation of the anesthetic status, induced by 50mg/kg
of xylazine hydrochloride intraperitoneally), the final por-
tion of the colon was collected, and the proximal portion
was used for the measurement of cytokines, whereas the
distal portion was used for histopathological analysis.

2.2. Parasitemia and Animal Weight. Parasitemia of
infected mice was performed at 3-day intervals until the
total disappearance of blood trypomastigotes. For this,
5μL of blood was collected from the tail vein of the ani-
mals and then placed on a slide and cover slip. Then, 50
random fields were evaluated under an ordinary light
microscope to count the circulating trypomastigotes. The
weight of the animals was collected on the day of infection
(0 day) and on the subsequent days for euthanasia (30 and
90 days).

2.3. Histopathological Evaluations. The distal part of the
colon of the animals was washed with ×1 phosphate buffered
saline (PBS), transferred to a filter paper, and fixed within
48 h with 4% paraformaldehyde. The fixed material was then
processed according to a previous study [18].

For analysis of the inflammatory infiltrate, three serial
cuts (100μm apart) were stained with hematoxylin-eosin.
Then, 10 photos of each cut (final = 30 photos), under
×400 magnification, were captured using a common light
microscope attached to the camera. First, the intensity of
the inflammatory infiltrate was established qualitatively in
the submucosa and muscle, following the classification of 1
for mild, 2 for moderate, and 3 for accentuated. After this
classification, the average of the 30 photos was obtained
and classified according to the following score: 0–0.3, nor-
mal; 0.4–1.0, discrete; 1.1–2.0, moderate; and 2.1–3.0, accen-
tuated [4].

Slides stained with Giemsa stain were used to quantify
the intestinal nerve ganglia. Four serial slices, with 100μm
between each slice, were evaluated under standard optical
microscopy at ×400 magnification. The nerve ganglia of
the entire fragment were counted for each serial cut, and
the mean was obtained. The slides were scanned using a
common printer to measure each fragment. Using the Ima-
geJ software, the average of the four cuts was normalized
to 1 cm, and the result was obtained as the number of gan-
glia/cm of the intestine.

Slides stained with picrosirius and hematoxylin were
used for morphometric evaluation of the deposition of the
connective tissue in the mucosa, submucosa, and intestinal
muscle layers. For each intestinal fragment, 20 fields were
analyzed at ×400 magnification following the methodology
established in a previous study [18]. The results are
expressed as the percentage of the collagen/animal.
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2.4. Immunological Evaluations. The colon proximal frag-
ment (approximately 1 cm) was transferred to an Eppendorf
tube containing ×1 phosphate buffered saline solution and
Complete™ protease inhibitor (Sigma, USA). The fragments
were then homogenized in a homogenizer (DREMEL, EUA).
The homogenates obtained were centrifuged at 12000× g for
30min, and the supernatants were stored at -80°C for quan-
tification of cytokines and total proteins. The quantification
of interferon gamma (IFN-γ) (R&D Systems), tumor necro-
sis factor-alpha (TNF-α) (R&D Systems), and interleukin-
(IL-) 10 (BD OptEIA™) was performed on homogenates of
the proximal portion of the colon using an immunoenzy-
matic assay (ELISA) according to the manufacturers’
instructions. Tetramethylbenzidine (TMB) (3,3,5,5-tetra-
methylbenzidine) was used for the colorimetric reaction,
and the optical density was measured using a microplate
reader (Bio-Rad 2550 READER EIA, USA). To normalize
the concentration of cytokines, they were used as total pro-
teins of the modern intestinal homogenate in a nanodrop
(Thermo Fisher Scientific, USA). The results are expressed
in pg/mg.

2.5. Statistical Analysis. Statistical analyses were performed
using the GraphPad Prism 8.0.1 (Graphpad Software, USA).
The normality of the distribution of the quantitative variables
was verified using the Shapiro-Wilk test. For comparison of
the two groups, the Mann–Whitney test for data with nonnor-
mal distribution was used. Results such as animal weight were
analyzed using a two-way analysis of variance (ANOVA) test.
For correlation, the Spearman’s test was used. The results were
considered statistically significant at p < 0:05.

3. Results

The count of circulating parasites showed slow transit para-
sitemia (Figure 1(a)). It started at 9 days after infection and

declined completely on the 60th day. A peak was observed
on the 33rd day after infection. At 30 days of infection
(Figure 1(b)), there was a significant reduction in weight
when compared to the day of the inoculum (p = 0:0192),
which continued progressively until 90 days (p < 0:0001).
Animals without infection gradually gained weight (0 days
compared to 30 days, p = 0:0205, and 90 days, p = 0:0002).

To analyze the effects during the acute and early chronic
infection, histological evaluations were performed. Regarding
the presence of the inflammatory infiltrate (Figure 2(a)), dur-
ing the acute phase, 100% of the animals showed moderate
inflammatory infiltrate (1.30–2.06) (Figure 3(a)). During
the early chronic phase, 50% of the animals are characterized
by mild inflammatory infiltrate in the intestine (0.75-1) and
the other half as moderate (1.15–1.46) (Figure 3(b)).
Although there was a reduction, there was no difference
between the experimental times (p = 0:1905) (Figure 2(a)).
Although the quantification of amastigote nests is not per-
formed, only one amastigote nest was found in a mouse dur-
ing the acute stage of infection (Figure 3(c)).

Regarding the myenteric ganglion nerve, the acute phase
was a determinant of structure reduction, which was demon-
strated by a significant decrease when compared to the
respective uninfected group (p = 0:0079) (Figure 2(b)).
The same was observed when comparing the early chronic
phase with its respective control (p = 0:0159). However, 90
days of infection were not enough to continue with the
destruction of the ganglia when compared to that found
in the acute phase (p = 0:9048). In the control group, pre-
served myenteric plexus architecture was observed
(Figure 3(d)), both in the acute and chronic phases. Disor-
ganization and intrusion of inflammatory cells close to the
neurons of this structure were observed (Figures 3(e) and
3(f), respectively).

The collagen deposition process started in the acute phase
and continued until the early chronic phase, which is
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Figure 1: Blood parasitemia (a) and weight (b) differences between the acute and chronic phases of T. cruzi Colombian strain infected
C57Bl/6 mice. Two-way ANOVA test. ∗Significant statistical differences at p < 0:05.
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demonstrated by the difference between the respective con-
trols (p = 0:0303 and p = 0:0242, respectively) (Figure 2(c)).
However, 90 days of infection were no longer sufficient
to increase the collagen deposition compared to 30 days
(p = 0:3524). Although uninfected mice had little intestinal

collagen (Figure 3(g)), there was a great predominance of
collagen fiber deposition in the intestinal submucosal layer
in the infected mice at the two experimental times
(Figures 3(h) and 3(i)). However, deposition in the mucosa
and muscles was also observed.
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Figure 2: Intestinal immune and histopathological differences between the acute and chronic phases of T. cruzi Colombian strain infected
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Cytokines were used during both time points to analyze
the intestinal immunological response. IFN-γ (Figure 2(d))
and TNF-α (Figure 2(e)), proinflammatory cytokines, were
upregulated during the acute phase when compared with
the respective controls (p = 0:0317 and p = 0:0079, respec-
tively). In addition, the levels of TNF-α and IFN-γ
remained high during the early chronic phase, without
difference with acute levels (p > 0:9999 and p = 0:7857,
respectively), but with differences compared to the respective
control (p = 0:0357 and p = 0:0357, respectively). IL-10
(Figure 2(f)), an anti-inflammatory cytokine, was upregulated
only during the early chronic phase when compared to the
acute phase (p = 0:0357) and showed a tendency with the
respective control (p = 0:0536), which suggests an attempt to
control the immune response.

After observing that both in the acute and early chronic
phases, there were histological changes (increased inflamma-
tory infiltrate, neuronal destruction, and collagen deposi-
tion) and the maintenance of a proinflammatory profile
(IFN-γ and TNF-α) with an attempt to regulate (IL-10),
and the next objective was to evaluate the relationship
between these factors after 90 days of infection. Thus, it was
observed that the increase in IFN-γ (Figure 4(a)) and TNF-α
(Figure 4(b)) demonstrated a significant and negative correla-
tion with the decrease in the nerve ganglia in the myenteric
plexus (r = −0:7626 and p = 0:0002 and r = −0:6594 and p =
0:0029, respectively). However, IL-10 (Figure 4(c)) did not
correlate with this decrease (r = −0:03296 and p = 0:8967).
In addition, only the increase in IFN-γ (Figure 4(d)) correlated
significantly and positively with the increase in intestinal
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Figure 3: Intestinal photomicrographs of the intestinal histopathological differences between the noninfected, acute, and early chronic
phases of T. cruzi Colombian strain infected C57Bl/6 mice. Intestinal inflammatory infiltrate (HE): (a) acute phase and (b) early chronic
phase. (c) Intestinal amastigote nest in the acute phase highlighted by yellow lines (GIEMSA). Intestinal nerve ganglia (GIEMSA): (d) the
two intestinal nerve ganglia of the myenteric plexus of uninfected mice highlighted using black lines (30 days); nervous ganglion without
borderline of infected mice in the (e) acute and (f) early chronic phase with neuron (white arrow) and inflammatory cells (red arrow)
remarkably close. Intestinal collagen deposition (Picrosirius): (g) noninfected, (h) acute, and (i) early chronic phase of infection.
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collagen deposition (r = 0:4902 and p = 0:0389), while TNF-α
(Figure 4(e)) and IL-10 (Figure 4(f)) showed no significant
correlation (r = 0:3313 and p = 0:1793 and r = 0:1818 and
p = 0:4703, respectively).

4. Discussion

The focus of this study was to evaluate whether the Colom-
bian strain was capable of inducing immunopathological
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changes in the intestines of C57Bl/6 mice during the acute
and early chronic experimental phases. Our results show
that during the acute stage, there are intestinal changes, such
as increased inflammatory infiltrate, neuronal destruction,
and collagen deposition, along with the maintenance of the
inflammatory process with proinflammatory cytokines until
the early chronic phase.

A participant in DTU I and representative of biodema
III, the Colombian strain, is defined by its low proliferative
capacity, maximum peak close to 30 days, and myotropism
[22, 23]. In addition, T. cruzi infection is characterized by
excessive weight loss in experimental models, mainly in
mice. These findings corroborate those of our model. This
weight loss may be related to the inflammatory process,
especially the presence of circulating proinflammatory cyto-
kines such as TNF-α and IFN-γ, which may be associated
with cachexia in experimental models [24, 25].

Infection with the Colombian strain and other strains of
T. cruzi induces the appearance of the inflammatory intesti-
nal infiltrate [4, 22, 26, 27], which also corroborates the find-
ings of our model. However, the intensity of infiltration in
the intestine may vary depending on the strain and inocu-
lum concentration used in the infection [4, 9, 28]. It has been
reported that infection by strain Y, for example, does not
maintain the inflammatory process until the chronic phase,
unlike what is observed in the Colombian strain [4]. This
suggests that infection with the Colombian strain is more
intense and stays longer.

Phenotypically, the inflammatory infiltrate in the human
chagasic megacolon presents a great number of mononu-
clear cells, especially CD3+ lymphocytes [29]. In addition,
eosinophils, mast cells, macrophages (CD68+), natural killer
cells (CD57+), and cytotoxic T lymphocytes (TIA-1+) have
also been reported in the organs of these individuals [30,
31]. The presence of these cells and the maintenance of the
inflammatory process are associated with neuronal destruc-
tion, intestinal remodeling, and progression of chagasic
megacolon and megaesophagus [32]. In addition, cells pres-
ent in the enteric nervous system, such as the enteric glial
cells, have also been associated with the progression of CD
[31]. However, the role of these cells needs to be better
understood. From this diverse cellular microenvironment,
proinflammatory and regulatory cytokines, and microbicide
components, such as nitric oxide (NO) and reactive oxygen
species (ROS) can be produced by different cell types and
induce neuronal death [32]. Although the characterization
of these cells was not carried out in our study, it was demon-
strated that the inflammatory infiltrate and proinflammatory
cytokines persisted during the acute to the chronic phase,
and this was correlated with neuronal destruction.

In addition, the maintenance of the intensity of the intes-
tinal inflammatory infiltrate found in our study, which may
be related to the production of proinflammatory cytokines
(IFN-γ and TNF-α) were also maintained until the early
chronic phase. IFN-γ is one of the cytokines most closely
involved in resistance to T. cruzi infection [33–35], partici-
pating in the inhibition of intracellular replication of para-
sites [35], activation and maintenance of the T helper (Th)
1 response profile, and production of antibodies [36]. The

inhibition of this cytokine in infected mice, for example,
influences the increase in parasitemia, decreased survival,
and decreased NO production [34]. Synergistically to IFN-
γ, TNF-α activates macrophages with a microbicidal profile
and results in the destruction of intracellular forms of the
parasite; thus, it acts in the control of infection [37].

In the case of IL-10, a regulatory cytokine, only during
the early chronic phase, there was an increase in the intes-
tine. Differential production of IL-10 is one of the parame-
ters that allow the differentiation of strains after infection
[38]. A study that used a clone of the Colombian strain,
Col cl1.7, demonstrated that this strain induced greater pro-
duction of IL-10 compared to the infection established by
strain Y in monocytes in vitro [38]. In an experimental
model of the chronic phase, it has also been demonstrated
that the Y strain does not induce changes in the production
of this cytokine in the intestine of animals [10]. Thus, it is
suggested that the intestinal increase observed in our study
is related to a compensatory mechanism for controlling tis-
sue damage due to the intense inflammatory process
induced by the Colombian strain, which has also been sug-
gested in experimental chagasic heart disease [20].

However, the intense inflammatory process established
in the intestine is also related to tissue damage, especially
the neuronal destruction [12, 39]. Arantes et al. (2004), using
C57Bl/6 knockout mice for iNOS and IFN-γ infected with
100 blood trypomastigote forms of strain Y, demonstrated
that the absence of NO was a determinant for neuronal sur-
vival after 10 days of infection. The failure to induce NO
production via IFN-γ prevented denervation via oxidative
stress in an experimental acute phase model [12]. This find-
ing may explain the negative correlation between TNF-α and
IFN-γ and the amount of the nerve ganglia in the myenteric
plexus found in our study. Thus, the more the proinflamma-
tory cytokines, the more is the NO, and the fewer are the
neurons in the colon.

In addition to the participation of TNF-α, IFN-γ, and NO,
other mechanisms related to the neuronal destruction in CD
have been proposed. Substance P, a neuropeptide, has been
shown to be increased in dilated portions of patients with cha-
gasic megacolon, and this increase has been shown to be
related to the induction/maintenance of intestinal inflamma-
tion and leukocyte chemotaxis, which may be related to neu-
ronal damage [40, 41]. In addition, proteases produced by
mast cells, such as tryptase, are correlated with neuronal death
in patients with chagasic megacolon, mainly by decreasing
immunoreactive PAR2 neurons [42]. Our group demon-
strated that type 2 bonemorphogenetic proteins are correlated
with neuronal destruction and with the maintenance of the
intestinal proinflammatory profile in an acute-phase experi-
mental model infected with the Y strain [10].

Consequently, the positive correlation of IFN-γ with col-
lagen deposition may also be related, since fibrosis proceeds
the destruction of tissue. Contrary to what has been previ-
ously found for Y strain, which only included an increase
in the connective tissue during the chronic phase of experi-
mental infection [5, 10], our study demonstrated that the
process of the collagen fiber deposition begins even in the
acute phase of infection with the Colombian strain. What
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can also be related to the connected events of establishment
of the inflammatory process with production of proinflam-
matory cytokines, destruction of neurons, and deposition
of collagen fibers.

From these results, it is clear that the Colombian strain
can also be used in experimental models to study the intes-
tinal form of CD. The results of this study contribute to
the understanding of the mechanisms related to the forma-
tion and progression of Chagas megacolon.
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IL-17A and IL-17F together with their coreceptor (IL-17RA/RC) were reported to play a significant role in the pathogenesis of
spondyloarthritis. The group of axial spondyloarthritis comprises ankylosing spondylitis (AS), a rheumatic disease
characterized by chronic inflammation of the joints in the spine. This study is aimed at investigating IL-17A, IL-17F, IL-17RA,
and IL-17RC polymorphisms as potential biomarkers of disease susceptibility, clinical parameters, and anti-TNF treatment
outcome in a cohort of Polish ankylosing spondylitis patients. In total, 328 subjects, including 138 AS patients and 190 healthy
volunteers, participated in the study. Genotyping of IL-17A rs2275913 (G/A), IL-17F rs763780 (A/G), IL-17RA rs4819554
(A/G), and IL-17RC rs708567 (G/A) was performed on real-time PCR instrument using LightSNiP assays. No significant
differences were revealed in genotype and allele distribution between patients and controls despite the association of the IL-
17RC rs708567 AA homozygosity with the earlier onset of the disease. Moreover, some relationships between IL-17F rs763780
and IL-17RA rs4819554 polymorphisms with clinical parameters related to the disease activity and anti-TNF treatment
outcome were observed. IL-17F rs763780 G allele was found to be associated with high disease activity and BASDAI after 6
months and poor response to the treatment while higher VAS values were more common among IL-17RA rs4819554 G variant
carriers. In conclusion, the IL-17F rs763780 polymorphism should be considered as a promising biomarker of disease activity
and anti-TNF treatment outcome. The IL-17RA rs48419554 G allele may serve as a potential marker of disease severity in
Polish AS patients.

1. Introduction

Ankylosing spondylitis (AS) is characterized by visible
radiographic changes within the spine or sacroiliac joints.
The axial spondyloarthritis (axSpA) group comprises AS,
radiographic axial spondyloarthritis, and a nonradiographic

(nr-axSpA) form of the disease [1]. AS patients suffer from
inflammatory back pain and morning stiffness. Symptoms
can also involve enthesitis and peripheral arthritis manifes-
tations. The disease affects mostly men (ratio men to women
is 2 to 1), those under thirty years of age, and with a strong
genetic association linked to HLA-B27 [2]. Prevalence differs
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between geographical regions and ethnicity, reaching 0.23%
in the general European population [3] and roughly
0.083% in Polish people [4].

The standard pharmacological treatment against AS
involves tumour necrosis factor-alpha (TNF-α) inhibitor
(anti-TNF) dosage after the primary failure of nonsteroidal
anti-inflammatory (NSAIDs) administration. The long-
term anti-TNF approach has positive effects on patient’s
functional outcome, lessens disease activity, and reduces
radiographic progression [5].

The IL-17 family consists of six cytokines: IL-17A, IL-
17B, IL-17C, IL-17D, IL-17E (IL-25), and IL-17F. Those
proteins transmit signals through defined heterodimeric
transmembrane receptors (IL-17R). IL-17A, IL-17F, and
IL-17A/F heterodimer act via the IL-17RA/RC receptor
complex. IL-17E triggers responses through IL-17RA/RB,
and IL-17C induces the IL-17RA/RE heterodimer. For other
proteins, the heterotrimeric receptor compound has not
been fully elucidated. IL-17A and IL-17F have a high degree
of homology, and both are secreted by Th17 cells, γδ T cells,
innate lymphoid cells, cytotoxic T cells, and natural killer T
(NKT) cells [6].

IL-17 was reported to have a crucial role in the immuno-
pathogenesis of spondyloarthritis [7]. Elevated levels of IL-
17 in serum have been observed in ankylosing spondylitis
patients [8]. Besides, associations between IL-17 level and
the Bath Ankylosing Spondylitis Disease Activity Index
(BASDAI) [9, 10] have been described.

However, our knowledge of IL-17 gene polymorphisms
in AS is still limited. Thus, based on previous research
focused on rheumatoid arthritis [11] and osteoarthritis
[12], we hypothesized that IL-17A rs2275913 and IL-17
rs763780 might influence AS susceptibility. The targeted sin-
gle nucleotide polymorphisms were selected based on the
available literature, especially on Caucasians, as well as our
preliminary experiment on rheumatoid arthritis patients
[13]. We also decided to investigate polymorphisms of IL-
17 receptors IL-17RA and IL-17RC. IL-17RA rs4819554
was previously linked with response to etanercept in psori-
atic arthritis [14], while IL-17RC rs708567 was associated
with lupus arthritis [15] and was described in Tunisians with
rheumatoid arthritis [16]. Moreover, the newly performed
study considered the IL-17RA polymorphism as an AS risk
factor [17]. To the best of our knowledge, no investigations
have been conducted to assess the association between IL-
17RA and IL-17RC polymorphisms and rheumatic diseases
in the Polish population.

This study examines the IL-17A rs2275913, IL-17F
rs763780, IL-17RA rs4819554, and IL-17RC rs708567
genetic variants as potential biomarkers of disease suscepti-
bility, clinical parameters, and anti-TNF treatment outcome
in a cohort of Polish AS patients.

2. Materials and Methods

2.1. Patients and Controls. One hundred thirty-eight AS
patients and one hundred ninety controls were involved in
the study. AS patients were recruited from the Department
of Rheumatology and Internal Medicine, Wroclaw Medical

University, Poland, and from the Department of Rheumatol-
ogy and Connective Tissue Diseases, Jan Biziel University
Hospital No. 2 in Bydgoszcz, Poland. All the participants
diagnosed with AS were Caucasians over 18 years of age,
and 74% (102/138) were male. Included criteria comprise a
resistance to treatment with at least two nonsteroidal anti-
rheumatic drugs (NSAIDs), high disease activity before
starting biological treatment, initialization of anti-TNF ther-
apy at the time of the research, and complete medical his-
tory. Subjects with the coexistence of acute or chronic
disorders besides AS, other autoimmune diseases, malignan-
cies, or current infections, during pregnancy and breastfeed-
ing, as well as with insufficient clinical records, and an
unwillingness or inability to cooperate were excluded from
the study.

AS patients were diagnosed according to the 1984 mod-
ified New York Criteria [18].

Data such as gender, age, disease onset, disease duration,
body mass index (BMI), presence of HLA-B27, C-reactive
protein (CRP) level, pain visual analogue scale (VAS, range:
0-100mm), and Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI, range: 0-10) were collected from patients.

90.4% of patients were HLA-B27 positive, and most of
them (76.7%) had the axial form of AS. Drug administration
comprised MTX in 27.5% of cases, corticosteroids (20.3%) of
subjects and NSAIDs have been taken by 71.3% of patients.

Bath Ankylosing Spondylitis Disease Activity Index
(BASDAI) was used to calculate disease activity, which was
considered to be high (BASDAI ≥ 4), moderate (3 ≤
BASDAI < 4), or low (BASDAI < 3). The clinical outcome
was assessed after 3 and 6 months of anti-TNF treatment.
Significant improvement after therapy was defined as a
reduction of BASDAI (ΔBASDAI ≥ 2:0), good outcome as
ΔBASDAI ≥ 2:0 and BASDAI < 3:0 at the endpoint, moder-
ate response as ΔBASDAI ≥ 2:0 and BASDAI ≥ 3:0 at the
endpoint, and no improvement as ΔBASDAI < 2:0 [19].

The patient’s demographic and clinical characteristics
are described in Table 1. The data are presented as median
with range (minimum to maximum).

The control group was enrolled from the healthy volun-
teers, 63 females (33%) and 127 (67%) males, from the
Regional Centre of Transfusion Medicine and Blood Bank in
Wroclaw without a personal history of rheumatic diseases.

Informed consent was obtained from all participants
involved in the study. The research was approved by the
Wroclaw Medical University Ethics Committee (identifica-
tion code KB-625/2016).

2.2. SNP Selection and Genotyping. Tested genetic variants
were selected based on analysis of previous publications and
search results from NCBI Database of Short Genetic Varia-
tions (dbSNP) and SNPinfo Web Server [20]. Minor allele
frequency (MAF) in EUR was above 5% (1000 Genomes Pro-
ject) [21].

In total, four single nucleotide polymorphisms (SNPs)
were chosen for analysis: IL-17A rs2275913 (G/A) and IL-
17F rs763780 (A/G) located on chromosome 6, IL-17RA
rs4819554 (A/G) located on chromosome 22, and IL-17RC
rs708567 (G/A) located on chromosome 3. Two of them,
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IL-17F rs763780 and IL-17RC rs708567 are missense vari-
ants in exon 3 (His161Arg) and exon 4 (Ser111Leu), respec-
tively. IL-17A rs2275913 and IL-17RA rs4819554 are
substitutions within gene promoter regions with a predicted
transcription factor binding site (TFBS).

Whole blood samples were collected in EDTA tubes (BD
Vacutainer® Blood Collection Tubes). Genomic DNA was
isolated from peripheral blood using QIAamp DNA Blood
Midi/Maxi Kit (Qiagen, Hilden, Germany) following the
manufacturer’s protocol. The genotyping of selected SNPs:
IL-17A rs2275913 (G/A), IL-17F rs763780 (A/G), IL-17RA
rs4819554 (A/G), and IL-17RC rs708567 (G/A) was per-
formed using LightSNiP assays (TIB MOLBIOL, Berlin, Ger-
many) on the LightCycler 480 Real-Time PCR Instrument
(Roche Diagnostics, Basel, Switzerland).

2.3. Statistical Analysis. The genotype frequencies were
tested for the Hardy-Weinberg equilibrium (HWE). Potential
differences in allele and genotype distributions between the
patient and control groups were calculated using Fisher’s exact
test. Continuous variables were tested for normal distribution
by the Shapiro–Wilk test. Quantitative variables that were nor-
mally distributed were presented as mean ± SEM, while
medians with interquartile ranges (IQRs) were calculated for
nonnormally distributed variables. The unpaired two-sample
Wilcoxon test (for nonparametric data) or unpaired two-
sample t-test (for normally distributed data) were performed

to identify associations within genetic variants and clinical
parameters. Fisher’s exact test was also applied to detect rela-
tionships between genotypes and categorical variables such
as disease activity or treatment outcome. A p value lower than
0.05 (p < 0:05) was considered statistically significant. All sta-
tistical analysis was performed using R Software (http://www
.r-project.org) and GraphPad Prism 7 for Windows.

3. Results

3.1. Distribution of IL-17A, IL-17F, IL-17RA, and IL-17RC
Alleles and Genotypes in Patients and Controls. The distribu-
tion of genotypes and alleles of IL-17A rs2275913, IL-17F
rs763780, IL-17RA rs4819554, and IL-17RC rs708567 did
not differ between AS patients and healthy individuals
(Table 2). Also, no significant gender-dependent differences
were detected between patients and healthy subjects (not
shown). Please note that none of the patients or controls
were homozygous for the IL-17F rs763780 G allele. Thus,
in the further analyses, AA homozygotes were being com-
pared with AG genotype reflecting also the G allele carriers.

On the other hand, the significant association between
disease onset and genotype frequency was observed for IL-
17RC rs708567 SNP. Patients with AA genotype had a lower
age of disease onset (29:39 ± 1:405) than those with G allele
(33:43 ± 1:001) (AA vs. AG+GG, p = 0:022; AA vs. AG, p =

Table 1: Clinical characteristics of the study cohort.

Characteristic N Median (range)

Age (years) 138 43.5 (22-75)

Disease duration (years) 135 10 (0-48)

Disease onset (years) 135 33 (6-56)

BMI 113 25.32 (18.61-40.31)

CRP before treatment (mg/l) 108 16.83 (0.3-561)

CRP at 3 months (mg/l) 79 5.75 (0.2-175)∗

CRP at 6 months (mg/l) 72 5.495 (0.2-204.3)∗

VAS before treatment (mm) 132 80 (45-100)

VAS at 3 months (mm) 138 30 (0-80)∗

VAS at 6 months (mm) 131 20 (0-100)∗

BASDAI before treatment 138 8 (4.05-10)

BASDAI at 3 months 138 3.2 (0.7-6.7)∗

BASDAI at 6 months 132 2.25 (0.2-9.75)∗

Treatment (anti-TNF drug) N = 138 n (%)

Adalimumab 63 (45.6%)

Etanercept 44 (31.9%)

Certolizumab 17 (12.3%)

Golimumab 12 (8.69%)

Infliximab 2 (1.45%)

N : number of patients with clinical information; BMI: body mass index;
CRP: C-reactive protein; MTX: methotrexate; NSAIDs: nonsteroidal anti-
inflammatory drugs; BASDAI: Bath Ankylosing Spondylitis Disease
Activity Index; VAS: visual analogue scale; HLA-B27: human leukocyte
antigen B27. ∗p < 0:001; p value comparing the clinical variables between
baseline and after 3 or 6 months of treatment.

Table 2: The distribution of IL-17 genotypes and alleles in AS
patients and the control group.

Patients Controls

IL-17A rs2275913 N = 138 N = 190
G 174 (63.0%) 234 (61.6%)

A 102 (37.0%) 146 (38.4%)

GG 50 (36.2%) 69 (36.3%)

GA 74 (53.6%) 96 (50.5%)

AA 14 (10.1%) 25 (13.2%)

IL-17F rs763780 N = 138 N = 189
A 265 (96.0%) 359 (95.0%)

G 11 (4.0%) 19 (5.0%)

AA 127 (92.0%) 170 (89.9%)

AG 11 (7.97%) 19 (10.1%)

GG 0 (0%) 0 (0%)

IL-17RA rs4819554 N = 138 N = 190
A 215 (77.9%) 311 (81.8%)

G 61 (22.1%) 69 (18.2%)

AA 83 (60.1%) 126 (66.3%)

AG 49 (35.5%) 59 (31.1%)

GG 6 (4.35%) 5 (2.63%)

IL-17RC rs708567 N = 138 N = 189
A 150 (54.3%) 205 (54.2%)

G 126 (45.7%) 173 (45.8%)

AA 41 (29.7%) 47 (24.9%)

AG 68 (49.3%) 111 (58.7%)

GG 29 (21.0%) 31 (16.4%)
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0:015). However, disease duration was not found to be
affected by any of the analysed SNPs.

3.2. Associations between IL-17A, IL-17F, IL-17RA, and IL-
17RC Genotypes and Clinical Parameters. The potential
associations between IL-17A, IL-17F, IL-17RA, and IL-
17RC genotypes and CRP level, VAS, and BASDAI values
were analysed.

During anti-TNF therapy, these major clinical parame-
ters were decreased. CRP level was significantly lower after
3 and 6 months compared to baseline (p < 0:0001). Also,
VAS and BASDAI were reduced after 3 and 6 months
related to baseline, as well as after 6 months in comparison
to 3 months of therapy (p < 0:0001) (Table 1). A significant
improvement in clinical parameters was achieved after
administration of anti-TNF agents.

Higher VAS values at the baseline were found in IL-17A
rs2275913 GG (GG vs. GA+AA, p = 0:005; GG vs. GA, p =
0:006) and IL-17F rs763780 AG (AA vs. AG, p = 0:027)
genotype carriers (Table 3(a)).

The IL-17RA rs4819554 G allele was found to be more
common among patients who presented with higher VAS
and BASDAI values after anti-TNF treatment induction.

Patients possessing the IL-17RA rs4819554 G allele had
higher VAS values after 3 months of anti-TNF therapy
(AA vs. AG+GG, p = 0:002). This result was also observed
after 6 months of treatment (AA vs. AG+GG, p = 0:002).

Besides, IL-17RA rs4819554 G patients demonstrated
greater BASDAI values at 6 months of therapy than AA
homozygotes (AA vs. AG+GG, p = 0:046) (Table 3(b)). The
IL-17RA results concerning VAS at 3 and 6 months and
BASDAI at 6 months were confirmed by the overdominant
model (AA+GG vs. AG, p = 0:008, p = 0:006, and p = 0:045,
respectively). Additionally, a significant relationship with
an absolute BASDAI change (ΔBASDAI 0-3m.) (AA+GG
vs. AG, p = 0:027) was noted. Tendencies were observed
regarding BASDAI score at 3 months (AA vs. AG+GG, p =
0:066; AA+GG vs. AG, p = 0:064) and absolute BASDAI
change (ΔBASDAI 0-6m.) (AA+GG vs. AG, p = 0:057).

The BASDAI parameter at 6 months was also higher in
the group of AS individuals bearing IL-17F rs763780 AG
genotype (G allele) (AA vs. AG, p = 0:035) in comparison
to AA carriers (Table 3(a)).

As for CRP levels, IL-17RC rs708567 and IL-17A
rs2275913 polymorphisms were identified as significantly
associated with CRP level after 3 months of TNF inhibitor
administration. At that time point, IL-17A rs2275913 GG
was more frequently observed among patients with an ele-
vated level of CRP (>10mg/l) (GG vs. GA+AA, p = 0:022,
OR = 3, and 95%CI = 1:237‐7:046), and IL-17RC rs708567
G patients showed a significantly higher CRP level as com-
pared to the AA patients (AA vs. AG+GG, p = 0:043; AA
vs. AG, p = 0:018) (Table 3(b)).

No other significant differences between clinical param-
eters of AS patients and their IL-17 genotype distribution
were detected.

3.3. Effect of IL-17F Polymorphisms on the Disease Activity
and Anti-TNF Treatment Outcome. Before the anti-TNF

administration, all patients were characterized with high dis-
ease activity (BASDAI > 4). After 3 months of therapy,
25.4% (35/138), 44.9% (62/138), and 29.7% (41/138) of sub-
jects had a high, moderate, and low disease activity, respec-
tively. After 6 months, only 3.03% (4/132) and 1.52%
(2/132) were described with high and moderate disease
activity, respectively. The remaining 95.5% (126/132) of
patients presented low disease activity. After 3 months of
anti-TNF treatment, 97.8% (135/138) achieved a good or
moderate outcome, and 2.2% (3/128) were nonresponders.
Similarly, after 6 months, 3% (4/132) of patients did not
respond positively to treatment.

Out of IL-17A, IL-17F, IL-17RA, and IL-17RC polymor-
phisms studied, a significant association concerning disease
activity was detected for the IL-17F rs763780 variant. AS
patients homozygous for the A allele more likely presented
low or moderate disease activity (BASDAI < 4) after 6
months of treatment than heterozygotes (AA vs. AG, p =
0:035, OR = 13:22, and 95%CI = 1:82‐87:84). The same
genotype was significantly more common among subjects
with a good or moderate response to TNF inhibitor therapy
(AA vs. AG, p = 0:035, OR = 13:22, and 95%CI = 1:82‐87:84).

The other studied IL-17A rs2275913, IL-17RA
rs4819554, and IL-17RC rs708567 genetic variants were not
found to significantly differ among AS patients in respect
to disease activity and biological agent treatment outcome.

4. Discussion

In the present study, patients with ankylosing spondylitis
and controls were genotyped for the IL-17A, IL-17F, IL-
17RA, and IL-17RC polymorphisms to assess whether their
genetic variants may be associated with susceptibility to the
disease, clinical parameters, and anti-TNF treatment out-
come in our Polish population.

Comparison made between our patients and controls did
not show any significant association with predisposition to
the disease as in both groups, similar distributions of alleles
and genotypes of all SNPs studied were observed. However,
disease onset was found to be affected by the IL-17RC
rs708567 SNP and the presence of AA homozygosity pre-
vailed in patients that had a lower age of disease onset than
those with G allele.

Among currently analysed genetic variants, IL-17A
rs2275913 and IL-17F rs763780 have been previously exten-
sively studied for associations with various rheumatic
disorders.

In our current study, neither IL-17A rs2275913 nor IL-
17F rs763780 was found to be associated with AS risk. Nev-
ertheless, association with AS susceptibility and IL-17A
rs2275913 in Chinese [22] and IL-17F rs763780 in Turkish
[23] populations has been reported. Erkol et al. did not find
the relationship between IL-17A rs2275913 and AS suscepti-
bility in Turkish patients [23]. More recently, Rocha Loures
et al. reported rs2275913 A variant and rs763780 G allele as
risk factors for AS, spondyloarthritis (SpA), and psoriatic
arthritis (PsA) in Brazilian patients [24].

As for the associations of IL-17 polymorphisms with
other diseases, many previous studies focused on
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osteoarthritis (OA) and rheumatoid arthritis (RA). Results
of analysis performed on an Asian OA group suggested that
the IL-17A rs2275913 A allele [25–27] and IL-17F rs763780
G variant [26] increased susceptibility to knee OA. In Cau-
casians, no association between IL-17A rs2275913 polymor-
phism and risk of hip or knee OA was found [28], but the IL-
17F rs763780 G allele had a significant impact on the risk of
the hip [28] and knee OA [29]. IL-17A rs2275913 GA [29],
IL-17F rs763780 AA [28], and IL-17A-F G-A haplotype
[30] seem to play a rather protective role in the knee, hip,
or hip and knee OA, respectively. Further meta-analysis per-
formed by Lu et al. highlighted higher susceptibility to OA in
patients with IL-17A rs2275913 A allele and IL-17F rs763780
G allele among Asians, as well as with IL-17F rs763780 G
genetic variant in a Caucasian cohort [12].

Interestingly, papers concerning the role of IL-17A
rs2275913 and IL-17F rs763780 in RA are inconsistent. IL-
17A rs2275913 GG genotype [31, 32] and G allele [33] have
been found to increase susceptibility to RA, whereas Shen
et al. described AA genotype as being linked to lower RA risk
[34]. Other studies showed no significant correlations
between IL-17A rs2275913 variant and prevalence to
develop RA in Polish [13, 35], Turkish [36], Brazilian [37],
Tunisian [16, 38], Algerian [39], Mexican [40], and Egyptian
[41] patients. Growing evidence suggests that IL-17F
rs763780 G is associated with susceptibility to the disease
[13, 33, 38]. However, many studies did not confirm this
polymorphism as an RA risk factor [35–37, 39, 41, 42].
Recent meta-analysis findings led to the identification of
IL-17A GG and IL-17F AG genotypes as more frequently dis-
tributed among RA patients [11].

With regard to IL-17RA and IL-17RC polymorphisms,
the present analysis did not show differences in genotype
and allele distribution between patients and controls. This
observation confirms previous results for IL-17RC among
RA patients [16] but stays in contrast with IL-17RA develop-
ments in AS Spanish cohorts [17]. IL-17RA rs48419554 was
also identified as a risk factor for psoriasis [43, 44]. However,
other IL-17RA SNPs were not found to be associated with
PsA [45].

Our current results also show that IL7RC rs708567 G
variant has an effect on disease onset and is more frequently
detected among patients that developed the diseases approx-
imately 4 years later than AA homozygotes. To the best of
our knowledge, no one has studied IL-17RC rs708567 in
AS so far. This genetic variant and its homozygosity were
also described to affect arthritis among systemic lupus ery-
thematosus Bulgarian patients [46]. On the other hand, in
a study conducted by Dhaouadi et al., IL7RC A allele of this
polymorphism tended to show higher DAS28 in RA subjects
[16]. However, the functional consequence of IL-17RC
rs708567 polymorphism remains unknown.

In the present study, some interesting results were
described regarding the IL-17F rs763780 SNP and our
cohort of patients with AS and unfavourable effect of the
IL-17F rs763780 G allele.

Likewise, the IL-17F rs763780 G allele was observed by
Paradowska-Gorycka et al. to be positively correlated with
the number of tender joints, as well as to tend to reach insig-

nificantly higher values of DAS28-CRP and health assess-
ment questionnaire (HAQ) score [42].

According to earlier findings established in Turkey, the
IL-17F rs763780 GG genotype was prone to greater BASFI
scores and AG variant to higher CRP level [23]. As sug-
gested, the evidence we found points to an association
between this polymorphism and disease activity in AS
patients. Our results show that the AG genotype is signifi-
cantly correlated with higher, both VAS values before treat-
ment and BASDAI score after 6 months. Also, we link AA
genotype with moderate/low disease activity and good/mo-
derate response to treatment after 6 months. This concurs
well with results obtained by Prieto-Peréz et al., who
observed that rs763780 can predict response to adalimumab
at 6 months, in psoriasis [47].

Of note, our previous analysis showed the association of
the IL-17F rs763780 G allele with higher IL-17F secretion
[48]. Also, Braga et al. observed this association between
the IL-17F rs763780 G allele and increased IL-17F serum
levels in Brazilian AS patients and controls [49]. These
results suggest that alleles or genotypes associated with
higher IL-17F production may play an unfavourable role.

Recently, the novel insight into functional consequences
of the IL-17F polymorphism was described by Nisar et al.
The change at position 161 (His to Arg) is located in the
C-terminal end of IL-17, which interacts with IL-17RA. This
substitution resulted in more favourable conformation,
enhanced stability of the trimeric IL-17A/F/IL-17RA com-
plex. The stronger binding may induce the proinflammatory
effect and influence the severity of RA [50].

One of our previous studies performed on RA patients
found that IL-17A rs2275913 GG homozygous females were
characterized with the most active disease after 3 months
and poor response to anti-TNF therapy [13]. On the other
hand, de la Peña et al. reported that A allele carriers were
predicted to present more severe RA and needed more than
three DMARDs to control the disease [51].

It has been reported that the IL-17A rs2275913 polymor-
phism located in the promoter region can regulate gene
transcription and stimulate IL-17 cytokine secretion
(-197A allele) [52].

Current analysis demonstrates a significant correlation
between the IL-17A GG genotype and higher VAS values
before starting therapy in AS patients. The same genotype
more frequently characterized patients with elevated CRP
after 3 months. We did not find any significant correlation
between IL-17A variants and response to the therapy. How-
ever, it was reported in the literature that rs2275913 was
associated with response to anti-TNF therapy among
patients with inflammatory bowel disease [53].

Our results are also in line with the findings of Vidal-
Castiñeira et al. concerning significantly higher BASDAI
scores in AS patients carrying the IL-17RA rs4819554 G allele.
Moreover, our study reveals associations between the IL-17A
G allele and greater VAS after 3 and 6 months of anti-TNF
treatment. These correlations are worth mentioning because
they indicate an impact of G variant, located in the gene pro-
moter, on AS severity. This region was also noted to affect
the response to anti-TNF therapy outcome in psoriasis [54].
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The IL-17RA rs4819554 variant is encoded within the
promotor region and may have a functional effect by modu-
lating the gene transcription. This SNP was found to be in
linkage disequilibrium with rs4819553 and rs4819958.
Those polymorphisms are predicted to be related to tran-
scription factor binding sites (TFBSs) belonging to the
Ikaros (IK) family. These are involved in Th17 cell differen-
tiation [54].

In G allele carriers, the increase of Th17 cytokines could
promote the pathogenic mechanism via IL-23/Th17 path-
way [54]. It could explain the higher VAS values and BAS-
DAI scores that we observed.

These findings shed some light on common genetic var-
iants in IL-17A, IL-17F, and IL-17RA genes. The investigated
polymorphisms can affect biological activity of the protein
and thus influence immunological features like a response
to etanercept [14].

There is still considerable controversy surrounding IL-17
SNP relationships and AS development. Therefore, our
results need to be interpreted with caution. In fact, popula-
tion diversity and treatment approach may explain the dif-
ferences between studies. Although the advantage of our
methodology is homogeneity of the Polish population, we
are aware that the main limitation of our study is the rela-
tively limited number of cases included in the analysis.
Therefore, further data collection from AS patients is
required to confirm these observations.

Other interesting genetic variants within IL-17F include
rs11465553 [35] and rs2397084 [33, 35, 36, 38, 39, 42],
which were investigated in RA. In a Polish cohort, the
rs2397084 polymorphism was correlated with longer disease
duration [42], whereas in Tunisians, it was associated with
disease severity [38]. Additionally, rs2397084 [29] and
rs1889570 [28, 30] were studied in osteoarthritis patients.
Regarding the IL-17A gene, rs3804513 was associated with
radiographic progression in early RA [55]. Other IL-17A
polymorphisms were studied in a Chinese population. IL-
17A rs4711998 and rs8193037 were not associated with
RA, whereas rs3819024, rs3819025, and rs8193036 were cor-
related with the risk of RA [34]. These polymorphisms may
be of interest for further study on ankylosing spondylitis.

5. Conclusions

The analysis shows that IL-17 polymorphisms are associated
with clinical parameters in Polish patients with ankylosing
spondylitis and have influence on AS severity and potential
course of the disease and may be biomarkers of response
to anti-TNF drugs in Polish patients. The IL-17F rs763780
polymorphism should be considered as a candidate bio-
marker of disease activity and anti-TNF treatment outcome.
The IL-17RA rs48419554 G allele may serve as a potential
marker of disease severity.
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Autoinflammatory and autoimmune diseases are characterized by an oversensitive immune system with loss of the physiological
endogenous regulation, involving multifactorial self-reactive pathological mechanisms of mono- or polygenic nature. Failure
in regulatory mechanisms triggers a complex network of dynamic relationships between innate and adaptive immunity,
leading to coexistent autoinflammatory and autoimmune processes. Sustained exposure to a trigger or a genetic alteration
at the level of the receptors of the natural immune system may lead to abnormal activation of the innate immune system,
adaptive system activation, loss of self-tolerance, and systemic inflammation. The IL-1 family members critically activate
and regulate innate and adaptive immune responses’ diversity and plasticity in autoimmune and/or autoinflammatory
conditions. The IL-23/IL-17 axis is key in the communication between innate immunity (IL-23-producing myeloid cells)
and adaptive immunity (Th17- and IL-17-expressing CD8+ T cells). In psoriasis, these cytokines are decisive to the
different clinical presentations, whether as plaque psoriasis (psoriasis vulgaris), generalized pustular psoriasis (pustular
psoriasis), or mixed forms. These forms reflect a gradient between autoimmune pathophysiology with predominant
adaptive immune response and autoinflammatory pathophysiology with predominant innate immune response.

1. Introduction

Autoinflammatory and autoimmune diseases are character-
ized by immune system hyperactivity, typically featuring an
against-self pathological process. They are systemic diseases
and mono- or polygenic. The innate immune system directly
causes tissue inflammation in autoinflammatory diseases. An
adaptive immune dysregulation—against self—is found in
autoimmune diseases. Both combined are present in mixed
autoinflammatory-autoimmune pattern diseases (Figure 1).

The former characterization of autoinflammatory dis-
eases, the more recent mixed form presentation (autoinflam-

matory-autoimmune), and the changing contribution of
underlying autoinflammatory processes to autoimmunity
pathways further complicated understanding the pathophys-
iological processes [1].

The immune system responds to independent pathways,
either exogenous (bacteria) or endogenous (injured tissue),
yet with crosscommunication.

The clinical diversity of immune diseases may result
from the variable expression of autoinflammatory and
autoimmune factors in disease production, establishing a
continuous spectrum of mixed patterns [2]. Connecting
molecules or molecular aggregates between them are critical
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to understanding autoinflammatory-autoimmune disease
interactions. Members of the IL-1 family and the inflamma-
some are key components in crosscommunication between
these diseases with mixed components. Mutations in genes
related to the inflammasome have been associated with
autoinflammation. This multiprotein complex has been
associated with organ-specific autoimmunity since a wide
spectrum of endogenous danger signals can activate inflam-
masome products, including IL-1β, triggering adaptive
immunity pathways [3].

Genetic predisposition involves many loci encoding key
immune pathway molecules. These genes are under epige-
netic control, influenced by several environmental factors in
susceptible individuals. Interleukin-1 seems a critical link
between autoinflammatory and autoimmune diseases involv-
ing innate and adaptive mechanisms.

Trends for classifying and providing a theoretical frame-
work for all immune diseases that include autoinflammatory
and autoimmune nature still hold. However, deeper compre-
hension of immune-mediated pathologies is required before
postulating a unified explicative model.

In this review, we examine current knowledge on the
inflammatory role of the IL-1 cytokine family, their associa-
tion with the inflammasome in autoinflammatory and auto-
immune disorder regulation, and the underlying implication
of innate and adaptive immunity in diseases with a mixed
pathogenic pattern, with particular focus on psoriasis [4].

2. The IL-1 Family

Eleven members of the IL-1 family participate in natural
immunity and contribute to acute and chronic inflamma-
tion. The clinical severity results from the balance between
the proinflammatory and anti-inflammatory IL-1 family
members in some forms of rheumatic disease [5]. The
IL-1β is the best-characterized member of the IL-1 family
cytokines and potent inflammation mediator in the
immune-inflammatory response. The IL-1 family—IL-1α;
IL-1β; IL-18; IL-33; IL-36α, β, and γ; IL-37; and IL-
38—includes regulatory factors that modify the intensity of
the inflammatory response like decoy receptors, receptor
antagonists, and inflammatory pathway signaling inhibitors.

The identification of multiple negative regulation pathways
of the IL-1/IL-1R family highlighted the need for tight con-
trol of the IL-1 family repertoire [6]. The pathophysiological
role of IL-1β is well established in autoinflammatory dis-
eases, and IL-1β and IL-18 are critically associated with
severity in various autoimmune and chronic inflammatory
pathologies [7].

Inflammasomes comprise a multimolecular complex of
specialized intracellular sensors. Mutations in inflammasome-
related genes have been associated with autoinflammation
and autoimmunity. A broad spectrum of endogenous danger
signals can activate inflammasome products, including IL-1β,
triggering adaptive immunity pathways [3].

The pathophysiological transition results from the
imbalance between the proinflammatory activities of IL-1
cytokines and their control mechanisms.

The IL-1 family members (Table 1) play a key role in
innate and adaptive immunity and in the pathogenesis of
autoimmune and autoinflammatory diseases. Members of
the IL-1R-like receptor family include signaling molecules
and negative regulators.

3. Psoriasis: A Leading Case in Mixed-Pattern
Psoriasis Diseases

Psoriasis is considered a systemic chronic inflammatory dis-
ease with an immunogenetic basis that can be triggered
extrinsically or intrinsically [8, 9]. The disease is character-
ized by critical interactions between components of the
adaptive and the innate immune systems [10, 11].

In recent years, remarkable progress has been made in
our understanding of the critical immune pathways involved
in psoriasis. Genetic studies have shown that susceptibility to
psoriasis involves components of both the adaptive and
innate immune systems. Activation of both arms of the
immune system is implicated in psoriasis of the skin, while
autoimmune adaptive pathogenic immune responses pre-
dominate in chronic plaque psoriasis and innate autoinflam-
matory pathogenic responses dominate in pustular forms of
psoriasis, and other clinical subtypes span a spectrum
between plaque and pustular psoriasis. This makes psoriasis
a mixed autoimmune and autoinflammatory disease, where
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Figure 1: Simplified representation of the relative contribution of autoimmune, autoinflammatory, and mixed-pattern forms to tissue
damage. DAMPs: damage-associated molecular patterns.
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the balance between the two responses determines the clini-
cal presentation [12].

The relative expression of inflammatory mediators,
influenced by different IL-1 family members, determines
different subclinical patterns along a wide transition spec-
trum that extends from one type of psoriasis in which the
autoimmune component dominates to another in which
the autoinflammatory component dominates. Plaque psoria-
sis presents a typical adaptive immune response, with
immune synapsis in secondary lymphoid organs and adap-
tive leukocyte-effector inflammatory functions in the skin.
In contrast, generalized pustular psoriasis is characterized
by enhanced chemotaxis-mediated phagocyte infiltration
and phagocyte effector functions [13]. The IL-23/IL-17 axis
in psoriasis highlighted the strong interaction between cells
of the innate immune system (represented by IL-23-
producing myeloid antigen-presenting cells) with cells of
the adaptive immune system (represented by Th17- and
IL-17-expressing cytotoxic CD8+ T cells). The balance
between IL-36 and IL-17 partially influences the clinical
expression profile (psoriasis vulgaris vs. psoriasis pustulosa)
[14] (Figure 2).

3.1. Autoimmune Processes in Psoriasis. Autoimmune
signature in psoriasis seems driven by local and systemic
Th17 patterns, expressing IL-17A, IL-22, and IFN-γ [10]
(Figure 3). Chronic-stimulated dendritic cells sustain activa-
tion and differentiation of lesional Th17 cells primarily
through secretion of IL-23 [15].

Both HLA restriction and T cell peptide specificity are
determined by the T cell receptor repertoire. Antigenic stim-
ulation triggers T cells’ activation and clonal expansion. In
the absence of foreign antigens, clonal T cell expansion likely
suggests autoimmunity in inflammatory diseases [16].

Psoriasis seems to be driven by locally prevailing anti-
gens [17]. Environmental factors are mostly rated, including
stress, smoking, drugs, and infections [18]. Activated clonal
T cells exert disease inflammatory process in combination
with locally inflammatory leucocytes. In the last years, puta-
tive autoantigens like cathelicidin LL-37, melanocytic
ADAMTSL5, lipid antigen PLA2G4D, and keratin 17 have
been identified in psoriasis [19–22].

3.2. Crosstalk between Adaptive and Innate Immunity in
Psoriasis. Complex crosstalk between the innate and adaptive
immune systems in psoriasis adds up to antigen-specific
exacerbation of inflammation in psoriasis. The accumulating
circumstantial evidence suggests that in patients with stable
and mild psoriasis, adaptive immunity is likely more preva-
lent, while innate immunity might contribute more to the
active and severe disease, systemic involvement, and comor-
bid conditions [23] (Figure 3). The coexistence of comorbid-
ities like atherosclerosis in severe psoriasis has been
interpreted as a systemic inflammatory reaction to the innate
local inflammation in affected tissues [24]. The involved fac-
tors are not psoriasis-specific, though they magnify the over-
all inflammatory burden in patients with severe psoriasis.

The studies addressing the interplay between IL-17- and
IL-36-driven inflammation might help understand how
certain mediators influence the psoriasis spectrum by shift-
ing innate or adaptive immunity [25]. All IL-36 isoforms
(IL-36α, β, and γ) are members of the IL-1 family and are
expressed in psoriatic skin [26]. They bind to a specific
receptor (IL-1RL2), triggering the transcription of several
inflammatory mediators through NF-κB activation.

The IL-36 seems to be associated with the clinical
manifestation of specific psoriatic phenotypes. The skin in
psoriasis vulgaris differs significantly from that in pustular
psoriasis, representing opposite ends of the psoriasis spec-
trum. The balance between IL-36 and IL-17 might contrib-
ute to differential clinical symptoms between the vulgaris
and pustulosa forms, in line with the response to given
therapies [27].

The IL-23/IL-17 axis is key as it comprises innate immu-
nity (IL-23-producing myeloid cells) and adaptive immunity
(Th17- and IL-17-expressing CD8+ T cells). Understanding
psoriasis might help shed light on such relationships.

3.3. On How IL-1 and IL-8 Participate in Th1 and Th17
Activation by IL-12/23. Some cytokines, including IL-1,
induce IL-17 release in human T lymphocytes. Their ability
to promote Th17 cells depends not only on the induction of
IL-23, IL-6, and TGF-β by dendritic cells but also on directly
or indirectly activating the inflammasome and inducing
IL-1β.

Table 1: IL-1 family of ligands and receptors.

IL-1 family Specific receptor Coreceptor Function

IL-1α, IL-1β IL-1R1 IL-1RAP Proinflammatory

IL-1β IL-1R2 IL-1RAP Anti-inflammatory

IL-1Ra IL-1R1 Not available Anti-inflammatory

IL-18 IL-18R1 IL-18RAP Proinflammatory

IL-33 IL-1RL1 IL-1RAP Proinflammatory

IL-36α, β, γ IL-1RL2 IL-1RAP Proinflammatory

IL-36Ra IL-1RL2 IL-1RAP Anti-inflammatory

IL-37 IL-18R1 SIGIRR Anti-inflammatory

IL-38 IL-1RL2 IL-1RAPL2 Anti-inflammatory
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IL-12 and IL-23 are extremely important to induce Th1
and Th17, respectively, and their production mediated by
antigen-presenting cells is distinctively regulated. Innate
immunity-derived stimuli regulate IL-12 and IL-23 produc-
tion, influencing the induced T lymphocyte phenotype. IL-
23 promotes IL-23R expression in myeloid cells and induces
proinflammatory TNF-α and IL-1β cytokine production.
Further, IL-23 promotes CD4+ precursors’ differentiation
to the Th17 effector in the absence of IFN-γ and IL-4 [28].

IL-1 promotes lymphocytes’ growth and differentiation.
The differential expression of IL1R1 in CD4 T lymphocyte
subtypes confers different effector functions.

Th17 cells’ response to IL-12 and sustained exposure to
IL-23 promote Th17 change to the Th1 phenotype [29],
indicating the strong environmental influence [30]. Th17-
derived Th1 cells are called “nonclassic Th1” and express
CD161 and IL1R1 [31]. IL-1β and IL-23 combination pro-
motes T cells’ production with the Th17 and Th1 phenotype
in CD4+ CD161+ and CD4+ CD161- cell fractions. This
suggests that Th1 cells respond to IL-1β and that CD4+
CD161+ clones in inflamed tissue are able to produce IFN-
gamma and express IL1R1 mRNA [32].

IL-8 (CXCL8) participates in the pathophysiology of
psoriasis recruiting neutrophils and other inflammatory leu-
kocytes. In fact, IL-8 highly expresses in plaque psoriasis
and, up to tenfold, in pustular psoriasis [25].

IL-36, highly expressed in plaque psoriasis, acts on kera-
tinocytes and myeloid dendritic cells [33] and is a potent
inducer of the neutrophil CXCL1 and IL-8 chemotactic
cytokines. Infiltrating neutrophils play a fundamental role
in psoriatic plaque, amplifying the IL-36-mediated autoin-
flammatory loop in psoriasis [13].

4. Association of Inflammasomes with Innate
and Adaptive Immunity

Inflammasomes are tripartite complexes comprising a cyto-
plasmic sensor, an adapter known as ASC, and procaspase-
1. Inflammasomes are defined by their cytoplasmic sensor,
which includes AIM2, Pyrin, NLRP1, NLRP3, and NLRC4
and belongs to the NOD2-like receptor family. Sensors’
diversity and specificity allow inflammasomes to respond
to a wide range of either extrinsic (microbial molecules) or
intrinsic (danger signals) stimuli.

The NLRP3 inflammasome is the prototypical and best-
characterized inflammasome, and its activation has been
sequenced [34]. A first signal, priming, provided by micro-
bial molecules like lipopolysaccharide induces NLRP3 and
pro-IL1β expression in an NF-κB-dependent fashion.
Microbial molecules like toxins or danger signals like mono-
sodium urate offer the second signal and trigger multimeri-
zation to make up an inflammasome (Figure 4).

The NLRP3 assembles to ASCs, leading to caspase-1 acti-
vation, which induces proteolytic maturation of IL-1β and
IL-18 and Gasdermin D cleavage. The next pore formation
of Gasdermin D in the cell membrane induces pyroptosis, a
fast proinflammatory cell death [35]. Pyroptosis associated
with the release of IL-1β, IL-18, and alarmins contributes to
danger signal propagation beyond the damaged or infected
cell, recruiting mono- and polymorphonuclear phagocytes
(Figure 3). Oligomeric particles may be released from the
inflammasome to further amplify the inflammatory response
after phagocytosis by surrounding macrophages.

In intact phagocytes, IL-1β secretion can occur
independently from pyroptosis. Autophagy regulates the
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exogenous alarm signals
Chronic leucocyte recruitment

Enhanced chemotaxis and
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activation
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Figure 2: Autoimmune vs. autoinflammatory responses in psoriasis. Complicate interactions between the innate and the adaptive immune
systems characterize the pathophysiology of psoriasis. Once settled, the relative contribution of inflammatory and regulatory mediators of
adaptive and innate immunity determines the clinical manifestation towards chronic stable vs. highly inflammatory and/or pustular
psoriasis. Plaque psoriasis (psoriasis vulgaris) and generalized pustular psoriasis (psoriasis pustulosa) represent autoimmune (IL-17A/IFN-γ
secretion profile) and autoinflammatory (IL-36/IL-1 secretion profile) response patterns, respectively.
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inflammasome-processed cytokines, which induce IL-17.
Autophagy intersects with the inflammasome-dependent
generation of IL-1β and IL-18 at different stages. Autopha-
gosomes can remove endogenous inflammasome-activating

stimuli, including mitochondrial DNA, ROS, damaged
lysosomes, pro-IL-1β, and inflammasome components as
well. Autophagy inhibits IL-23 secretion due to its effects
on IL-1β [36].
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1; TCR: T cell receptor.
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Involvement in a variety of pathophysiological condi-
tions poses inflammasomes as interesting antibody-based
therapeutic intervention targets (Figure 3). From a pathoge-
netic perspective, they are characterized by chronic activa-
tion of the immune system, causing tissue inflammation in
genetically predisposed individuals. However, damage-
specific effectors are different. In autoinflammatory diseases,
the innate immune system directly causes tissue inflamma-
tion, while in autoimmune disorders, the innate immune
system activates the adaptive immune system, ultimately
responsible for the inflammatory process [37].

Some diseases have amixed autoimmune-autoinflammatory
root [38]. Inflammasome dysregulation is associated with
autoinflammatory and autoimmune diseases like familial
Mediterranean fever, rheumatoid arthritis, psoriasis, and
systemic lupus erythematosus [4, 39]. Some immune-
inflammatory diseases may reflect a variable expression
in the pathogenetic autoinflammatory and autoimmune
factors [40].

In an explanatory attempt, Polly Matzinger put forward
the danger signal theory. This proposes that the immune
system does not so much discriminate between endogenous
and exogenous signals but increases responses to danger sig-
nals, regardless if they are exogenous pathogenic bacteria or
endogenous damaged tissues [41]. However, the hazard
model does not adequately explain the exquisite specificity
of adaptive immune responses in autoimmune diseases.
Recent advances in genetic and molecular studies allow
converging to a united classification for all immunological
diseases in a theoretical framework. Psoriasis, ankylosing
spondylitis, Behcet’s syndrome, uveitis, and other diseases
show a mixed pattern.

Inflammasome-hyperactivated dendritic cells elicit
enhanced T cell responses. They preserve their antigen-
presenting function and contextualize T-helper cell responses
through IL-1β and IL-18 secretion. These cytokines drive
Th1/Th17 responses in particular. The IL-18 amplifies IFN-γ
production by Th1 cells, while IL-1β promotes Th17 polariza-
tion and IL-17 secretion [42] (Figure 3).

Inflammasome-dependent IL-1β-driven Th17 responses
are essential for host defense against infections by fungi like
Candida albicans. The C-type lectins Dectin-1 are involved
in host defense mechanisms against fungal infection, driving

inflammatory and adaptive immune responses. Dectin-1 is a
type-C lectin receptor that detects β-glucans [43]. This leads
to Syk-dependent NF-κB activation and NLRP3 inflamma-
some assembly, while Th17 responses yield immune protec-
tion against the pathogen [44]. Notably, Dectin-1 signaling
also triggers IL-1β production through a noncanonical
caspase-8 inflammasome [45].

The divergent roles of IL-1β and IL-18 in adaptive immu-
nity setup have drawn much attention to inflammasomes as
adjuvants to vaccines. The Th1-mediated humoral responses,
cytotoxic T cell/Th1/Th17 immunity, and immune memory
can be manipulated using inflammasome-activating ligands
[46]. Type I interferons inhibit pro-IL-1 synthesis, promote
IL-18 maturation, and, combined with inflammasomes’ acti-
vation, might aid in modeling protective Th1 responses [47].
The vaccine adjuvant chitosan is a cationic polysaccharide
that induces type I IFN production, NLRP3 inflammasome
activation, and intense Th1 responses. More studies are
needed to better understand the role of inflammasomes in
pathological and protective immunity.

Apoptosis and pyroptosis are two well-studied cell death
patterns, traditionally believed as unrelated. Emerging evi-
dence shows their extensive interrelation as converging
pathways, activating the same cell death effector, the pore-
forming protein Gasdermin D [48].

Pyroptosis is the inflammatory cell death triggered by
intracellular detection of signs of damage or pathogens
[49]. Pyroptotic cells show swelling, fragmented genetic
material, membrane pore formation, plasma membrane rup-
ture, and release of inflammatory mediators and cytoplasmic
content to the extracellular space [50]. Lipopolysaccharide, a
hallmark of the gram-negative bacterial cell wall, is a proto-
typical trigger of immune cell pyroptosis. Pyroptosis starts
with the innate TLR4 activation step. This induces NF-κB
activation and translocation to the nucleus to boost gene
transcription for precursors pro-IL-1β, pro-IL-18, and pro-
caspases and intracellular Nod-like receptors’ transcription.
In psoriatic lesions, Dectin-1 upregulation seems under the
control of psoriasis-associated cytokines, while its role in
the biology of skin inflammation and infection is to be
explored [51].

The second signal induces oligomerization of intracellu-
lar complexes called inflammasomes [52], which facilitate
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Figure 4: IL-1 and IL23 induce CD4 CD161 precursors’ differentiation to classical Th-17 and Th-1 cells in the presence of IL-12. IL-1:
interleukin-1; IL-23: interleukin-23; IL-12: interleukin-12; Th: T-helper cells.
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pro-IL-1β and procaspase-1 maturation into their active
forms. While IL-1β is released and induces a proinflamma-
tory state, caspase-1 breaks down the cytoplasmic gasdermin
D, forming pores in the membrane and triggering cell death
through cytoplasmic components’ leakage.

Autophagy is a self-degrading process required to restore
cell homeostasis when menacing factors are detected [53].
This ubiquitous lysosomal degradation mechanism removes
damaged proteins and organelles, contributes to antigen
presentation to the cell surface, protects against genome
instability, and prevents tissue damage. Autophagy is of
physiological relevance, helping defend against damaging
stress while leading to pathology when in excess or
defect [54].

As an essential homeostatic mechanism, autophagy is
upregulated in response to environmental and pharmacolog-
ical triggers. It has a very important role in cancer, neurode-
generation, diabetes, and liver and autoimmune diseases.
Molecular elements that lead to this type of cell death also
collaborate in the stress response.

In the immune system, autophagy serves as a source of
peptides for antigen presentation [55], provides a mecha-
nism for the absorption and degradation of intracellular
pathogens, and is a key regulator of inflammatory cytokines.
It is also involved in regulating inflammasome activation
and helping remove inflammasome components and endog-
enous activators [56] and plays a role in determining IL-1β
fate in autophagosomes. Present understanding suggests that
autophagy is a critical regulator of inflammasome activation
and IL-1 family cytokines’ release [57].

5. Inflammasome-Induced IL-1 Promotes
IL-17-Mediated Responses

An inflammasome is a multiprotein complex that contrib-
utes to defense against pathogens and repair during inflam-
matory processes while producing inflammatory diseases
under aberrant chronic conditions. Inflammasome assembly
triggers caspases’ activation, setting off inflammatory cyto-
kines, including IL-1 activation.

The finding of IL-17 and IL-17-secreting T cells has
improved our understanding of the T cell role in autoim-
mune and other inflammatory diseases. The Th1 cells were
first considered key pathogenic T cells in many autoimmune
diseases. However, mice deficient in IFN-γ or IL-12 signaling
had exacerbated symptoms in certain autoimmune dis-
eases [58].

Dendritic cells associated with inflammasome hyperac-
tivity boost T lymphocyte activity (Th1/Th17) through
increased IL-1β, IL-18, and IL-23 release. IL-18 amplifies
Th1 cells’ IFN-γ production and enhances Th1 differentia-
tion while IL-1β promotes Th17 polarization and IL-17
release, triggering a pathological autoinflammatory and
autoimmune profile.

Besides, IL-1 and IL-23 (Figure 4) can induce and acti-
vate human Th1/Th17 cell differentiation. IL-1 can induce
cells of the innate immune system to produce IL-6, which
stimulates naïve T cell differentiation to Th17 [59].

6. Conclusions

From a pathogenic perspective, most autoinflammatory and
autoimmune diseases share a chronic aberrant immune
system activation, which leads to tissue inflammation and
damage of varying magnitude in genetically predisposed
individuals. IL-1 has grown into a complex, multifaceted
family of cytokines with complex regulatory mechanisms
and diverse functions in health and disease.

IL-1 and inflammasome are strongly associated with
adaptive and autoimmune disorders. The role of the
inflammasome-associated IL-1 cytokines’ family in shaping
adaptive immune responses is now well-established regard-
ing the differentiation of Th17 cells and promoting effector
functions of Th1 cells and CD8 T cells. In addition, cell
lysis triggers inflammasome activation, releasing additional
DAMPs and self-antigens, linking autoinflammation and
autoimmunity. The contribution of IL-1 and associated mol-
ecules to inflammasome regulation needs exploration to
improve our understanding of inflammatory diseases.

The relevance of the IL1-related cytokines has outreached
classic immunopathology and is a critical bridge to under-
standing mixed-pattern diseases.

Novel therapeutic intervention strategies may be antici-
pated after deepening our understanding of inflammatory
disorders and the molecular pathways of autoinflammation,
autoimmunity, and immune homeostasis regulation.
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Neuroinflammation is a process related to the onset of neurodegenerative diseases; one of the hallmarks of this process is microglial
reactivation and the secretion by these cells of proinflammatory cytokines such as TNFα. Numerous studies report the relationship
between neuroinflammatory processes and exposure to anthropogenic air pollutants, but few refer to natural pollutants. Volcanoes
are highly inhabited natural sources of environmental pollution that induce changes in the nervous system, such as reactive
astrogliosis or the blood-brain barrier breakdown in exposed individuals; however, no neuroinflammatory event has been yet
defined. To this purpose, we studied resting microglia, reactive microglia, and TNFα production in the brains of mice chronically
exposed to an active volcanic environment on the island of São Miguel (Azores, Portugal). For the first time, we demonstrate a
proliferation of microglial cells and an increase in reactive microglia, as well an increase in TNFα secretion, in the central nervous
system of individuals exposed to volcanogenic pollutants.

1. Introduction

The role of microglial cells in neuroinflammatory events
currently represents one of the main research areas in neuro-
biology due to the potential therapeutic application. Microg-
lia is a population of resident immune cells in the central
nervous system (CNS) being a front-line defence against a
threat to the nervous tissue [1, 2]. Although these cells are
present throughout the nervous system, they predominate
in the grey matter [3], being abundant in areas such as the
hippocampus, olfactory telencephalon, basal ganglia, and
the substantia nigra [4]. Normally, in the mature health
brain, microglial cells are found in their resting form, exhi-
biting a rounded cell body, which generally remains fixed,
and long and highly branched prolongations. These ramifi-

cations undergo cycles of formation and retraction that give
the cells pronounced motility, thus enabling the monitoring
of the cellular neighbourhood [5], safeguarding the homeo-
stasis of the nervous system, and clearing the parenchyma
of accumulated metabolic products and debris from deterio-
rated tissues. In addition, microglial cells show another
peculiarity: upon an immune stimulus or CNS damage, they
are rapidly activated undergoing a dramatic morphological
transformation and exhibiting a set of surface molecules
[6–8] including CD68, a transmembrane protein on both
lysosomal [9] and plasma membrane [10] which is present
on monocytes and macrophages, acting as a modulator of
the immune response [8]. Furthermore, in response to dam-
age, reactive microglia secrete a wide range of trophic factors
and cytokines that can act in either beneficial or detrimental
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ways on the surrounding cells [11–15]. Microglia activation
is the hallmark of neuroinflammation.

Multiple neuroinflammatory processes are regulated by
these cytokines [16]. Tumour necrosis factor alpha (TNFα),
one of the best characterised proinflammatory cytokines, plays
both a homeostatic and pathologic role in the CNS [17]. In the
healthy nervous system, TNFα is involved in processes such as
synaptic plasticity [18, 19] or learning and memory [20, 21].
However, in face of damage or threat to the nervous system,
some glial cells, mostly astrocytes and microglia, and certain
neuronal populations can produce this cytokine in large quan-
tities. This released is considered a key component of neuroin-
flammation [22] that leads to a wide range of double-edged
sword responses: it has a protective role at acute levels but
can contribute to tissue damage and trigger disease when it
is a sustained response over time [23]. There are several
studies in the literature linking chronic neuroinflammation
to neuronal death [23–27] and thus to neurodegenerative dis-
eases such as Alzheimer’s disease [28–34], Parkinson’s disease
[35–37], or multiple sclerosis [38–41].

The occurrence of neuroinflammatory processes as well as
neurodegenerative diseases in relation to chronic exposure to
environmental pollution has been extensively studied [42–52].
However, all the literature refers to anthropogenic pollution,
and little is known about the effect of natural pollution on
health, even though there are large natural sources of pollution,
such as volcanoes, which can cause health problems.

Volcanoes are attractive for human settlements due to the
fertility of their soils and their touristic interest [53–55], but
they are also dangerous due to the geochemical processes that
take place during both eruptive and noneruptive periods. Con-
sidering that volcanoes are a major source of natural pollution,
with emissions of certain gases comparable to anthropogenic
emissions [56], and that an estimated 44 million people live
within 10km of an active volcano [57], it is very interesting
to study the effect of such exposure on health.

The island of São Miguel (Azores archipelago, Portugal)
has three active volcanoes: Sete Cidades, Fogo, and Furnas.
The latter, considered one of the most active in the archipelago
due to its very marked volcanic activity, exhibits different
hydrothermal manifestations such as strong ground degas-
sing, thermal and cold CO2 springs, and fumarolic fields.
Although it is estimated that Furnas volcano emits 1000 tons
of CO2 per day [58], the village of Furnas, with about 1700
inhabitants, is located inside the volcano crater. Numerous
studies have shown that people chronically exposed to such
volcanic manifestations can develop chronic bronchitis and
other respiratory diseases [55, 59] and certain types of cancer
such as lip, oral cavity, or pharyngeal cancer [60]. However,
the respiratory system is not the only one that reacts to expo-
sure to such a hostile environment; changes in the CNS have
already been reported, such as the accumulation of inorganic
mercury in different areas of the brain parenchyma [61],
which suggests a breakdown in the blood-brain barrier, as well
as astrocyte reactivity and dysfunction in important areas of
the brain such as the hippocampus [62].

Since, as mentioned above, the literature focuses on
neuroinflammation as one of the main events following
long-term exposure to air pollutants and as a trigger for

future neurodegenerative diseases, our work is aimed at
detecting a neuroinflammatory response in individuals chron-
ically exposed to volcanic pollutants by studying microglia
(resting and reactive form) and the proinflammatory cytokine
TNFα.

2. Material and Methods

2.1. Study Areas and Animal Capture. Two groups of feral
mice, Mus musculus, were captured alive in two different
areas of the island of São Miguel: the village of Furnas and
Rabo de Peixe. The Furnas village, built on the degassing soil
of the crater of the homonymous volcano, presents impor-
tant manifestations of volcanic activity such as soil degas-
sing. This phenomenon is responsible for the release of
hazardous gases such as radon (222Rn), hydrogen sulphide
(H2S), and carbon dioxide (CO2) among others, as well as
volatile metals into the atmosphere [63–65]. On the other
hand, Rabo de Peixe village, used as a control site, is located
20 km from the exposed area and shows no evidence of
active volcanism or sources of anthropogenic contamina-
tion. In addition, this area is placed near the coast, present-
ing a high air renewal rate.

The selection ofMusmusculus as a surrogate species is due
to several important reasons: on the one hand, the fact that it
shares habitat with humans, being sometimes captured even
inside inhabited houses, both in the volcanically active area
and in the reference area. On the other hand, different authors
have reported the robustness of research using feral specimens
in the evaluation of the effects of contaminant exposure on
individuals, compared to laboratory studies, since the latter
may present discrepancies with reality in terms of diet, animal
behaviour, and even the mixture of contaminants [66, 67].

Mus musculus individuals (Furnas, N = 5 and Rabo de
Peixe, N = 5) were captured by trapping at different points in
the study areas and transferred to the laboratory in the short-
est possible time for processing. To avoid any animal distress,
mice were anaesthetised with isofluorane until an optimal level
of anaesthesia was reached and then transcardially perfused
with phosphate buffered saline followed by 4% paraformalde-
hyde solution (PFA). After perfusion, the animals were
necropsied by surgical extraction of the brain, which was fixed
by immersion in 4% PFA overnight at 4°C. Sex, body weight,
and age were recorded for each individual; the latter was esti-
mated using the dry weight of the crystalline lens according to
the methodology of Quere and Vincent [68]. Individuals
weighing less than 10g were discarded for this study.

Experimental procedures were approved by the Ethics
Committee of the University of Azores (REF: 10/2020). All pro-
cedures were performed conformed with the recommendations
of the European Convention for the Protection of Vertebrate
Animals used for Experimental and Other Scientific Purposes
(ETS 123), directive 2010/63EU and Portuguese law decree
(DL 113/2013).

2.2. Tissue Processing and Immunofluorescence Assay. After
overnight fixation in 4% PFA, the brains were processed for
paraffin embedding, and once included, serial sagittal 4μm
thickness sections were cut using a microtome (Microm HM
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340E). The slides were dewaxed using xylol and hydrated in
decreasing concentration of ethanol until PBS 0.1M, and after
hydration, the immunofluorescence assay was performed as
follows. Briefly, brain sections containing the hippocampus
were subjected to heat-induced epitope retrieval and blocked
with 10% BSA for 90 minutes at room temperature. Then,
samples were immunolabeled at 4°C overnight using the
following primary antibodies at 1 : 100 dilution: anti-Iba1
(GTX101495, Genetex), anti-CD68 (GTX37743, Genetex),
and anti-TNFα (GTX110520, Genetex). The next day, the
slides were washed and incubated with the secondary antibody
(SAB4600310, Sigma Aldrich Co.) diluted at 1 : 500 during 3
hours at room temperature. Then, sections were washed
repeatedly and covered with Vectashield medium (Vector
Laboratories, Burlingame CA) containing DAPI to counter-
stain nuclei.

2.3. Quantitative Analysis. Confocal images of the hippo-
campus were taken using Zeiss confocal scanning micro-
scope (LSM 800), and the immunofluorescence assessment
was carried out following the methodology reported by
Navarro et al. [61]. Altogether, from each individual, three
coronal sections every 150μm were taken and analysed
keeping constant pinhole, contrast, and brightness. From
each section, photographs were obtained at 20x magnifica-
tion, every 0.5μm z-step and assembled in an orthogonal
projection through the Zen Blue software.

The region of interest (ROI) of our experiments was a
specific hippocampal formation (Figure 1), the dentate
gyrus. In this brain circumvolution, two subareas were ana-
lysed: the polymorphic layer (PL) and the granular layer
(GL). The total number of immunopositive cells per μm2

in both subareas was counted and expressed in cells/mm2

using the Image J software. For this count, three different
researchers performed blindly these quantifications and the
results were averaged.

2.4. Statistical Analysis. Data regarding the density of Iba1+

and CD68+ cells in mouse dentate gyrus from both study
locations was compared using Student’s t-test, and a p value
of less than 0.05 was considered as statistically significant.
The software Graph Pad Prism (Graph Pad Software Inc.,
La Jolla, CA, USA) was used to conduct all the statistical
analysis.

3. Results

All samples used in this study correspond to male individ-
uals. No statistical differences were found between both
study groups in age (Furnas: 204 ± 9 days old and Rabo de
Peixe: 213 ± 13 days old; p = 0:193, Student’s t-test) and
weight (Furnas: 13:55 ± 2:42 g and Rabo de Peixe: 14:10 ±
0:90 g; p = 0:728, Student’s t-test).

3.1. Iba1 Expression Is Increased in Individuals Chronically
Exposed to Volcanic Environments. Microglial cells were con-
firmed in this study by staining with the anti-Iba1 antibody
(ionizing calcium-binding adaptor molecule 1) in the dentate
gyrus from Furnas and Rabo de Peixe mice. It is a protein that
consistently is expressed on all microglial subtypes.

Qualitative comparison from immunofluorescence anal-
ysis of Iba1 revealed that the staining pattern for Iba1 was
much higher in samples from mice living in the Furnas
region, both in the polymorphic layer and in the granular
layer of the dentate gyrus (Figure 2).

The number of Iba1 positive cells in the immunofluores-
cence assay was quantified in each layer of the dentate gyrus:
granular and polymorphic layer, from individuals captured
in the two study areas. An increase in the number of these
cells was observed in those animals chronically exposed to
volcanogenic pollutants compared to individuals from Rabo
de Peixe, in both the granular layer (448:71 ± 33:41
cells/mm2 vs. 258:45 ± 9:42 cells/mm2; ∗∗∗p > 0:001) and
the polymorphic layer (535:67 ± 31:47 vs. 341:84 ± 13:08;
∗∗∗p < 0:001) (Figure 3).

3.2. Expression of CD68, a Marker of Active Microglia. CD68
(macrosialin in mice) is one of the most helpful and descrip-
tive markers of microglial function. This protein is localised
to the lysosomal membrane of microglia and is upregulated
in active phagocytic cells [69]. It is, therefore, a marker of
microglial activation with phagocytic activity.

Immunofluorescence evaluation of CD68+ positive cells
in both layers of the hippocampal dentate gyrus revealed
that chronic exposure to an active volcanic environment
induces the increment of these cells in the assessed tissue
(Figure 4). Likewise, an important CD68+ immunofluores-
cent staining was observed in the choroid plexus and the
area surrounding it in individuals from Furnas village; such
staining was less evident in rodents from Rabo de Peixe.

3.3. Immunofluorescence and Localisation of TNFα in the
Dentate Gyrus of the Hippocampus of Exposed Mice. TNFα
was used as a proinflammatory marker. TNFα expression

Figure 1: Region of interest (ROI) for the different analyses. The
hippocampal dentate gyrus is divided in two areas: granular layer
(GL) and polymorphic layer (PL). Scale bar: 50μm.
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was evaluated in mouse dentate gyrus cells from both loca-
tions by immunofluorescence staining. The immunoreactiv-
ity is localised in the intracellular spaces around the nucleus
of neurons in both polymorphic and granular layers of the
dentate gyrus of mice chronically exposed to a volcanic envi-
ronment. In contrast, no reaction was detected in the peri-

karyon of the dentate gyrus neurons of the Rabo de Peixe
samples.

In the samples from the animals inhabiting Furnas, the
immunoreactive cells are found in the subgranular zone
(SGZ) located on the inner surface of the granule cell layer.
These cells could be compatible with neural stem cells

(a) (b)

(c) (d)

Figure 2: Expression of the microglial marker Iba1 in the dentate gyrus of mice from (a, b) Furnas and (c, d) Rabo de Peixe. Scale bar:
50μm. Magnification of a section of the total microglia in the dentate gyrus of (c) Furnas and (d) Rabo de Peixe. GL: granular layer; PL:
polymorphic layer. Scale bar: 20 μm.
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Figure 3: Quantification of Iba1+ cells/mm2 in both dentate gyrus layers: (a) granular and (b) polymorphic layers of mice from the two
study locations. Data reported in the bar graph is represented as mean ± SEM. The statistical analysis was performed using Student’s t
-test, ∗∗∗p < 0:001.
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(Figure 5). As for the polymorphic layer, in the image, we can
observe a minor marking, consistent with the mossy cells of
this layer.

4. Discussion

Air pollution is a major public health concern due to the
large number of studies that have linked long-term exposure
to various health effects. Although some studies have shown
a link between chronic exposure to anthropogenic pollution
and effects on the nervous system, only a few have focused
on studying these effects regarding volcanic pollution [61,
62]. The Azores archipelago is a volcanic area with several
manifestations of active volcanism, making it an ideal place
to study environmental health problems [70]. Previous
research has shown that volcanic areas are associated with
an increased incidence of a wide range of diseases [55, 59,
60, 71–74]. However, very little is known about the conse-
quences on the nervous system of people inhabiting volcanic
environments.

Both volcanoes and geothermal areas are associated with
emissions of a variety of gases that classically include carbon
dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride
(HCl), hydrogen fluoride (HF), hydrogen sulphide (H2S),

carbon monoxide (CO), radon (Rn), and some heavy metals
such as lead and mercury, among others [56]. Therefore,
volcanoes are considered an important source of pollutants,
including air pollutants, that can damage the health of indi-
viduals living in these natural spaces.

Air pollution is a prevalent proinflammatory stimulus
for the CNS, which until a few decades ago was not known
to be involved as a risk factor for neurodegenerative diseases
[45, 49]. For this reason, the rationale of this work has been
to relate volcanic contamination to proinflammatory events
in the CNS individuals chronically exposed to volcanic
contamination. For this purpose, we have studied microglial
cells.

As mentioned above, microglia are immunoregulatory
cells that play an important role in the healthy and diseased
CNS. They help maintain the homeostasis of the brain envi-
ronment under normal conditions but show a strong reac-
tion in response to adverse conditions, becoming activated
microglia and adopting an amoeboid phenotype. These
microglia proliferate and migrate to the site of injury or
damage, where they perform a protective function, removing
cellular debris [75–77]. On the other hand, overactivation of
microglia, with excess production of inflammatory media-
tors, can have neurotoxic consequences. Whether microglial

(a) (b)

(c) (d)

Figure 4: Analysis of active microglia in GL and PL of mice chronically exposed to (a, b) volcanogenic pollutants and from the (c, d) control
site. CD68 (green) is expressed in both dentate gyrus layers only in those animals inhabiting (b) active volcanic environments; no
immunofluorescence signal is observed in the dentate gyrus of mice from (d) Rabo de Peixe. Note a higher number of CD68+ cells in the
surrounding area of the choroid plexus in Furnas’ mice (white arrows) were compared to a few cells observed in the vicinity of the
plexus in control site mice (asterisk). GL: granular layer; PL: polymorphic layer. Scale bar: 50μm.

5Mediators of Inflammation



function in neurodegenerative diseases is beneficial but
insufficient or whether microglia are only effective in the
early stages of the disease but become detrimental in later
stages is still unknown.

The intense reaction of microglia is collectively termed
“microgliosis.” As revealed by Li and Zhang [78], this may
exist at least three sources for microgliosis in the adult
CNS: local proliferation of reactive microglia, infiltration of
blood-derived cells, and mobilization of latent progenitors
within the CNS. Each or all of these sources may play a role
in microgliosis in different pathological conditions. Alter-
ations in microglia functionality are therefore implicated in
brain neurodegeneration.

Our results show several proinflammatory events in the
dentate gyrus of animals chronically exposed to an active
volcanic environment. These events are the proliferation of
the microglial population, the presence of activated micro-
glial cells with phagocytic activity, and intracellular accumu-
lation of TNFα. The dentate gyrus is a very relevant area of
the hippocampal formation, not only because it has been
described as highly sensitive to oxidative stress [79], but
because it is where the adult neurogenesis takes place [80].

Proinflammatory mediators produced in epithelial and
olfactory tissue as a result of chronic exposure to volcanic
pollutants can induce systemic inflammation and reach the
brain parenchyma through the breakdown of the blood-
brain barrier. This inflammation is accompanied by the
production of different proinflammatory cytokines, such as
IL1β, IL6, or TNFα, for which brain vessel endothelial cells
exhibit constitutive and induced receptors. Endothelial
cytokine-receptor binding activates endothelial cells thereby
disrupting the blood-brain barrier. Our study focused on the
proinflammatory cytokine TNFα revealed its increase in
mice from Furnas. Camarinho et al. [71] also observed its

overproduction in the respiratory tissue of mice living in
the same location as our study (Furnas village). It is not
unreasonable to think that this same cytokine could be pres-
ent in the CNS from two sources: either by entry from the
systemic circulation or by being produced in the CNS itself.
Within the central nervous system, microglia, astrocytes,
and neurons are major sources of TNFα [81–86]. In fact,
we have detected immunoreactivity in cells located in the
subgranular zone of the dentate gyrus in chronically exposed
animals. These cells, whose location and size are compatible
with neural stem cells (NSCs), must have received a proin-
flammatory signal of environmental origin that led them to
activate the NFkb transcription machinery, which regulates
numerous genes, including those coding for proinflamma-
tory cytokines [87–90]. Therefore, the presence of cytokines
in the extracellular milieu may be a stimulus for these cells to
initiate TNFα production and thus enter a proinflammatory
loop. It is important to note that this staining was not
observed in individuals living in Rabo de Peixe, our control
population.

As demonstrated by Widera et al. [91], following CNS
injury, TNFα plays a critical role in the development of
pathology and inflammation, as well as activating NSC pro-
liferation, triggering a neuroprotective mechanism. In this
regard, Pluchino et al. [92] demonstrated that during CNS
inflammation, NSCs were able to secrete neuroprotective
cytokines. Neuroinflammation may be beneficial as a tissue
protector process; however, if this is sustained over the time
can lead to a chronic neuroinflammation cycle essential for
the pathogenesis and progression of neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and multiple sclerosis [93, 94]. In addi-
tion, a chronic neuroinflammation condition contributes to
both cognitive impairment [95] and memory formation,

(a) (b)

Figure 5: Immunofluorescence assay of TNFα in the dentate gyrus of rodents inhabiting (a) Furnas village and (b) Rabo de Peixe.
Accumulation of TNFα is evident inside some cells located in the subgranular zone, compatible with neural stem cells (inset, white
arrows) and in the hilum, compatible with mossy cells (inset, arrowhead). GL: granular layer; PL: polymorphic layer. Scale bar: 50 μm.
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disrupting the acquisition and impairing the consolidation/re-
consolidation process [96, 97].

The proliferation of microglia, quantified by the marker
Iba1, and its morphological change towards a phagocytic
form, in which CD68 expression increases, as observed in
the dentate gyrus of exposed animals compared to those cap-
tured in Rabo de Peixe, suggest that an innate immune
response of the CNS to volcanic contamination is taking
place. This type of response by microglial cells is consistent
with that reported by numerous papers focusing on anthro-
pogenic pollution [43, 45, 98–101]. Importantly, microglial
activation is necessary to repair the injured microenviron-
ment by removing cellular debris. However, as a conse-
quence of this activation, these microglial cells can damage
living neurons through their phagocytic capacity or by
releasing cytokines [102].

Moreover, in addition to the existence of CD68+ cells in
the hippocampal dentate gyrus, immunofluorescence has
also been observed in the ventricles and areas adjacent to
them. This finding indicates that systemic macrophage infil-
tration of the brain parenchyma may be occurring, preceded
by a loss of BBB integrity. Again, it is important to note that,
in mice captured in Rabo de Peixe, no immunofluorescence
signal was observed in the vicinity of the ventricles. This
agrees with the results obtained by Navarro-Sempere et al.
[61] in which they reported accumulations of heavy metals,
such as mercury, in different areas of the brain, supporting
the premise that the aetiology of mercury toxicity in the
brain is the breakdown of the blood-brain barrier.

On the other hand, according to our previous research
data [62] regarding the long-term exposure of animals to
volcanic contaminants, not only the microglial cells have
undergone changes but also differences in astrocytes were
recorded between the studied populations: Mice from Fur-
nas showed reactive astrogliosis, marked by an increase in
GFAP (glial fibrillary acidic protein) and morphological
transformation, as well as astrocyte dysfunction, with lower
expression of the enzyme glutamine synthetase, when com-
pared to individuals from Rabo de Peixe. Such events already
indicated a possible proinflammatory response of the CNS
to exposure to volcanic pollutants.

In this context, our previous studies and the present work
have provided evidence for the existence of different inflam-
matory events in the brains of mice living in active volcanic
environments, raising awareness about possible neurological
health hazards in individuals inhabiting volcanically active
areas. However, it should be noted that this neuroinflamma-
tory process may not have a detrimental effect, as neuroin-
flammation may be playing a beneficial role.
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Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer
treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of
therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor
microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory
cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the
formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal
crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis
and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-
1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study
provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic
target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in
the study of inflammatory cytokines and immune networks in the tumor microenvironment.

1. Introduction

The history of interleukin-1 (IL-1) dates back to the early
1940s, from the identification of the fever-inducing activity
of “soluble factors” produced by endotoxin-stimulated leu-
kocytes, to the discovery of inflammasomes and clinical ben-
efits of anti-IL-1β therapy, encompassing the entire field of
inflammatory cytokines, Toll-like receptors (TLRs), and
innate immune responses [1]. IL-1 includes two agonists,
IL-1α and IL-1β, which trigger signals via binding to IL-1
receptor 1 (IL-1R1) and recruitment of an accessory peptide

chain [2]. The reason for having two IL-1 agonists may lie in
the difference in robustness or specific functions between
them [3]. Subsequently, the IL-1 receptor antagonist
(IL-1Ra) was discovered, which specifically blocks IL-1R1
[4]. IL-1, together with several other sequentially discovered
structurally related members, constitutes the IL-1 family.
To date, there are 11 members of the IL-1 family [5]. These
cytokines have pleiotropic functions, including regulating
innate and adaptive immune responses; participating in the
physiological regulation of homeostatic processes and host
defense against pathogens, injury, and environmental
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stresses; and directly affecting transcription of mRNA [6, 7].
Antagonists in the IL-1 family cytokines and inhibitors in the
IL-1 receptor family that function as membrane-bound or
soluble decoy receptors have an important role in the biolog-
ical activity of IL-1 and the negative regulation of inflamma-
tion induced by IL-1 [8].

IL-1 is a proinflammatory cytokine that affects cellular and
organ inflammatory reactions, immune responses, and
homeostatic regulation at low concentrations, and has long
been known to be important in oncogenesis, invasion, metas-
tasis, and tumor host interactions [9, 10]. IL-1 blockers applied
to some autoimmune and inflammatory diseases are currently
being tested in preclinical and human clinical experiments for
tumor therapy [11]. The role and regulatory mechanisms of
IL-1 signaling has been extensively studied in a variety of
infectious diseases, inflammation, and inflammation-related
cancers, such as colon cancer, liver cancer, gastric cancer,
cervical carcinoma, and lymphoma, but is still not well under-
stood in breast cancer (BC) [12–14]. Although BC has not
been recognized as an inflammation-related cancer except
inflammatory breast cancer (IBC) [15], it is well known that
inflammation is a fundamental feature of the tumor microen-
vironment (TME) [16]. TME infiltrated a large number of
immune and inflammatory mediators, including abundant
IL-1 cytokines derived from immune or tumor cells. These
mediators were thought to be key regulators of TME [17,
18]. Studies in recent years have also confirmed the important
role of IL-1 in the BCmicroenvironment. However, the role of
IL-1 signaling in the BC microenvironment is controversial,
despite most studies showing its tumor promoting effects
[19]. The dual functions in tumorigenesis, both pro- and anti-
tumorigenic, largely depend on the source of the cytokines,
levels present in TME, tissues and organs involved, inflamma-
tory context, and stage of the cancer [20].

No matter which subtype of BC, it shows different
degrees of inflammatory status in cancer progression, which
is a common denominator, and thus can provide a generally
applicable therapeutic idea. Whether IL-1 is the originator of
the protumor inflammatory microenvironment in BC
remains unclear. Questions on the regulatory mechanisms
of IL-1 signaling; the crosstalk network between different
cells and between different intracellular signal transductions,
by which IL-1 signaling and its regulation affect aspects of
inflammation, immunity, metastasis, and drug resistance in
BC microenvironment; and the usability of IL-1 signaling
blockade in terms of clinical treatment in BC may lead us
to discover a novel biomarker or effective therapeutic target.

2. Breast Cancer and Targeted Therapy

In the last decade, the global incidence of BC has shown an
increasing trend with no significant reduction in mortality
[21, 22]. Patients with early, locally advanced, and locally
recurrent BC are considered to have a higher chance of cure.
But nearly 12% of patients diagnosed with BC will eventually
develop into metastatic disease, which received palliative
treatment only trying to relieve symptoms, prolong survival,
and maintain quality of life [23–25].

Systematic treatment of patients with nonmetastatic BC
is determined by subtypes: hormone receptor-positive (HR
+) patients receive endocrine therapy, and a few of them
receive chemotherapy at the same time; human epidermal
growth factor receptor 2-positive (HER2+) patients receive
HER2-targeted antibody or small molecule inhibitor com-
bined chemotherapy; due to the high heterogeneity, inva-
siveness, and lack of treatment options, chemotherapy is
still the standard treatment for triple negative breast cancer
(TNBC). Local treatment of nonmetastatic BC includes sur-
gical resection and postoperative radiotherapy [26, 27]. In
recent years, the progress of chemotherapy, endocrine
therapy, immunotherapy, new targeted therapy, and combi-
nation therapy has significantly improved the clinical out-
comes and prognosis of BC, and made the prospect of
long-term disease control of metastatic BC more and more
realistic [28–31]. However, acquired tumor resistance is the
major reason limiting the treatment effect [32]. Therefore,
great efforts have been devoted in recent years to evaluate
the molecular characteristics of metastasis and elucidate
the mechanisms of drug resistance in BC in order to find
novel molecular targets and therapeutic strategies [33–35].

Targeted therapies locate and inhibit tumor-related
pathways, such as phosphoinositide 3-kinase (PI3K)/V-akt
murine thymoma viral oncogene homolog (AKT)/mamma-
lian/mechanistic target of rapamycin (mTOR), rapidly
accelerated fibrosarcoma (RAF), mitogen-activated protein
kinase (MAPK), histone deacetylase (HDAC), cyclin-
dependent kinases (CDK), and poly(ADP-ribose) polymer-
ase (PARP), by molecules binding to extracellular receptors,
such as trastuzumab against HER2 and bevacizumab against
vascular endothelial growth factor (VEGF), or by cytoplas-
mic blocking of small molecules, which is mainly aimed at
the tumor [36–38]. Targeted therapies hold good promise
in cancer treatment. But targeted therapies for BC face the
challenges of diminishing returns, increasing costs of cancer
care, and risk of overtreatment [39]. TME is associated with
proliferation, angiogenesis, metastasis, apoptosis inhibition,
immune system suppression, and drug resistance in BC
[40]. Due to the recognition that the cancer stroma is the pro-
tagonist of cancer progression and the fact that TME is much
more genetically stable than cancer, the development of dual
anticancer strategies that target both cancer cells and TMEwill
undoubtedly become the focus of current and future research,
which may also be the key to the treatment success of BC with
genetic and phenotypic heterogeneity [41].

3. Breast Cancer Microenvironment

In addition to tumor cells, the BC microenvironment also
contains a large number of other distinct cell types collec-
tively referred to as stromal cells, including vascular endo-
thelial cells (VECs), cancer-associated fibroblasts (CAFs),
mesenchymal stem cells (MSCs), and immune cells such as
tumor-associated macrophages (TAMs), myeloid-derived
suppressor cells (MDSCs), T lymphocytes, B lymphocytes,
as well as myoepithelial cells and adipocytes. Besides, several
noncellular components, including extracellular matrix
(ECM), exosomes, soluble cytokines or signaling molecules,
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and occasionally the blood and lymphatic vascular network,
have been identified. The physical characteristics of TME,
such as hypoxia, acidity, inflammation, and high intersti-
tial fluid pressure, also differ from those of normal tissues
[42]. TME is now recognized as a hallmark of cancer biol-
ogy. Infiltration of TAMs, tumor-associated neutrophils
(TANs), MDSCs, T regulatory cells (Tregs), T helper IL-
17-producing cells (Th17s), metastasis-associated macro-
phages (MAMs), and CAFs enables immune escape, tumor
growth, angiogenesis, metastasis, and treatment resistance
in multiple tumors, including BC [43–45]. Moreover, the
ECM, ECM proteins, chemokines, cytokines, growth factors,
and the physical state of TME can all influence the behavior
and treatment response of solid tumor in complex ways
and predict clinical outcomes [35, 46, 47].

The relevance of inflammation to cancer has been demon-
strated. Normally, proinflammatory and anti-inflammatory
signals are maintained in a state of balance called inflam-
matory homeostasis (central). However, dysregulation and
prolonged maintenance of inflammation lead to chronic
inflammation or immunosuppression and may contribute
to the development of several diseases, including cancer
[48]. Tumor itself and tumor-triggered inflammation can
also promote malignant progression and cause immunosup-
pression through the recruitment and activation of
inflammatory cells [49]. Complement system and kinins,
vasoactive amines, cytokines, and hormones are considered
important inflammatory mediators in the BC microenviron-
ment [50]. Various overexpressed inflammatory mediators
exert their biological effects locally or at a distance through
the systemic circulation to influence progression, metastasis,
and treatment outcome of BC by establishing a supportive
immune or inflammatory microenvironment [51]. Com-
pared with other cancers, the role of the immune and
inflammatory systems in the development of human BC
remains poorly understood. As the prototypical inflamma-
tory cytokine upstream of the cytokine cascade, the role
of IL-1 in tumor initiation and progression and tumor-
associated inflammation is of sufficient interest [10]. The
availability of IL-1R1 conditional demolded mouse models
has made it possible to dissect the role of IL-1/IL-1R1 sig-
naling in different cell types in TME [18].

4. IL-1 Single-Nucleotide Polymorphisms and
Breast Cancer Risk

Genetic variation is an important inducer of cancer, and
single-nucleotide polymorphisms (SNPs) are one of the
most common heritable variations in the human genome.
There has been an attempt to explore the association
between IL-1 SNPs and cancer risk. 144 different SNPs have
been described in the IL-1 β gene [52]. At base pairs in these
transcription sites, base transitions between C and T have
been widely reported [53, 54]. Recent studies have shown
that IL-1β SNPs rs1143634, rs1143627, rs1143623, and
rs10490571 were suggested to be associated with BC risk,
while the results of the association of rs16944 with BC risk
were inconsistent [55–62]. More studies on IL-1 SNPs and

their functions affecting the balance of IL-1 protein may help
to identify patients at risk and the severity of the disease and
may provide additional therapeutic options in some groups
of patients.

5. IL-1 Signaling

IL-1 signaling under the title of the article refers to intercel-
lular crosstalk and intracellular signal transduction driven by
the IL-1α/β-IL-1R system. IL-1 is derived from dendritic
cells (DCs), monocytes, macrophages, mast cells, neutro-
phils, B cells, T cells, endothelial cells, epithelial cells, dying
cells, and tumor cells [5]. As the initial member of the IL-1
family, IL-1 has been recognized as a key immune and
inflammatory mediator with important roles in tumorigene-
sis, invasion, metastasis, and tumor host interactions by
mediating chronic inflammation, tumor angiogenesis, acti-
vation of the IL-17 pathway, induction of MDSCs, recruit-
ment of macrophages, and skewing and suppression of
antitumor immunity [9, 10].

The potent proinflammatory effects of IL-1 follow three
major steps: cellular expression, membrane receptor bind-
ing, and intracellular signal transduction. IL-1α and IL-1β
are translated into 31 kDa precursor forms (pro-IL-1α and
pro-IL-1β), cleavage of which generates 17 kDa mature
forms (IL-1α and IL-1β). Unlike pro-IL-1β, pro-IL-1α has
a functional nuclear localization signal in the N-terminal
domain [63, 64]. Thus, both forms of IL-1α are biologically
active and have dual functions, i.e., binding to IL-1R1 to
exert damage-associated molecular patterns (DAMPs) or
“alarming” function, or directly regulating transcription of
genes [20, 65]. It was found that HS-1-associated protein X
(HAX) 1, a protein associated with mitochondria, endoplas-
mic reticulum, and nuclear membrane, can bind to pro-IL-
1α and promote its nuclear localization. Pro-IL-1α interacts
with histone acetyltransferases P300, p300/CBP-associated
factor (PCAF), and general control nonrepressible 5 (GCN5)
in the nucleus and regulates gene expression independently
of IL-1R. Pro-IL-1α is also posttranslationally modified,
including myristoylation at Lys82, phosphorylation at Ser90,
and glycosylation at D64. Myristoylation and glycosylation
are associated with the membrane-bound form of IL-1α. But
the functions of these modifications are largely unknown
[63]. The production of IL-1α requires intracellular or
extracellular proteases (calpain II, caspase-1, chymotrypsin,
elastase, and granzyme B) [63, 64]. The necessity of this pro-
teolytic cleavage may manifest in the enhanced biological
potency of pro-IL-1α cleaved by inflammatory proteases
[66]. IL-1α is constitutively expressed in epithelial, endothelial,
and stromal cells and can be upregulated in hematopoietic and
nonhematopoietic cells by a variety of stimuli, including Toll-
like receptor (TLR) agonists, inflammatory cytokines, oxida-
tive stress, fatty acid-induced mitochondrial uncoupling, and
hormones [63]. IL-1α promoter lacks typical TATA and
CAAT box regulatory regions but contains binding sites
for activator protein-1 (AP1) and nuclear factor kappa B
(NF-κB) transcription factors, which are upregulated during
inflammatory stimulation [63].
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As a key proinflammatory cytokine, IL-1β is mainly
expressed in innate immune cells [18]. Different from IL-1α,
IL-1β is only active as a mature, secreted molecule, with tightly
regulated processes of production and secretion. IL-1β requires
a “dual signal” process to become activated. Signal 1 events rep-
resent the transcription and translation of pro-IL-β induced
through activation of TLR, tumor necrosis factor (TNF), IL-
1R, AP1, or NF-κB. Signal 2 is an activation step dependent
on the inflammasome complex, which consists of a sensing
molecule NOD-like receptor (NLR)/AIM2-like receptor
(ALR), an adaptor molecule apoptosis-associated speck-like
protein (ASC), and an activation and recruitment domain of
the caspase. The inflammasome platform recruits and activates
caspase-1/11, which cleaves the N-terminal 116 amino acids of
the pro-IL-1β polypeptide to convert it into mature IL-1β [63,
67–71]. NLR protein families mostly have a variable N-
terminal domain and a C-terminal leucine-rich repeat (LRR)
domain. This family is further divided into NLRP or NLRC
receptors based on the presence of anN-terminal pyrin domain
(PYD) or caspase activation and recruitment domain (CARD).
Among them, NLRP1 (NOD-like receptor family PYD
domain-containing protein 1), NLRP3, andNLRC4 (NOD-like
receptor family CARD-containing protein 4) are able to induce
the formation of an inflammasome, serving as platforms
for activating caspase-1 [72]. However, inflammasome-
independent processing of IL-1β has also been demonstrated
in caspase-1/11-deficient mice, and neutrophil proteases
including elastase, proteinase-3, granzyme A, and cathepsin
G are able to extracellularly convert pro-IL-1β into active
mature protein [65]. Since IL-1α and IL-1β lack a signal pep-
tide, they are not secreted via the conventional endoplasmic
reticulum/Golgi pathway but via an unconventional protein
secretion pathway [73]. This mode of secretion may involve
exocytosis of secretory lysosomes, cytolysis, multivesicular
body formation, microvesicle shedding, and direct efflux dur-
ing hypertonic cell death, and cleavage of IL-1β is thought to
be necessary for this mode [65, 67].

The IL-1 receptor family comprises 10 members, simply
named IL-1R1~IL-1R10 [65]. The extracellular Ig domains
of the receptors share the same structure with the intracellu-
lar Toll-like/IL-1R (TIR) domain [8]. IL-1α and IL-1β bind
to the extracellular Ig domain of IL-1R1. Ligand-induced
conformational changes recruit the nonbinding accessory
chain IL-1RAcP to form a heterotrimeric complex [8]. The
trimeric IL-1R complex recruits myeloid differentiation pri-
mary response gene 88 (MyD88) via its C-terminal TIR
domains. MyD88 oligomerizes via its death domain (DD)
and TIR domain, and it interacts with interleukin-1
receptor-associated kinase 4 (IRAK4) to form the myddo-
some complex, which serves as a platform to phosphorylate
IRAK4, IRAK2, and IRAK1. Alterations in the recruitment
and oligomerization of TNF receptor-associated factor 6
(TRAF6) and other signaling intermediates then occur,
which participate in the activation of NF-κB, MAPK, p38,
Janus kinase, extracellular signal-regulated kinase (ERK)
and signal transducer and activator of transcription 3
(STAT3) to initiate the transcription of inflammatory cyto-
kines [5, 71, 74]. The synthesis, secretion, activated signal
transduction, and subsequent role of IL-1 signaling are shown

in Figure 1. The targeted genes of IL-1 include IL-1α and IL-1β
themselves, as well as other inflammatory factors such as IL-6,
IL-8, monocyte chemotactic protein 1 (MCP-1)/C-C chemo-
kine ligand 2 (CCL2), and cyclooxygenase-2 (COX-2) [68,
75, 76]. IL-1R1 can also bind to IL-1Ra, which does not
produce a signal due to its lack of an IL-1 receptor accessory
protein interaction domain, thereby acting as a competitive
binding factor to inhibit proinflammatory signaling [66].
IL-1R2 is a membrane-bound or released form of a decoy
receptor with an extracellular region similar to that of
IL-1R1. But it has a short cytoplasmic domain unable to
generate a signal, acting as a molecular trap to block signal
generation [5, 10, 77]. IL-1R2 is the key negative regulator of
the IL-1 signaling, acting intracellularly, on the cell surface,
and extracellularly to inhibit maturation of IL-1α/β, sequester
their active form, or hinder the assembly of signaling com-
plexes [77]. Soluble receptors (sIL-1R1, sIL-1R2, and sIL-
1RAcP) present in the circulation can also sequester IL-1
and reduce signal production [78].

6. Role of IL-1 Signaling in Breast
Cancer Microenvironment

As shown in Figures 2 and 3, there is a complex intercellular
and intracellular crosstalk mediated by IL-1 signaling in the
breast cancer microenvironment, which may contribute to
its role in tumor-associated inflammation, immunosuppres-
sion during tumor development, metastasis leading to recur-
rence, and acquired drug resistance.

6.1. Formation and Maintenance of Inflammatory
Microenvironment. It has been demonstrated that inflamma-
tion in cancer is driven by IL-1β. “IL-1 signature” is found in
patients with HER2- BC [79]. Primary BC cells secrete high
levels of the chemokines RANTES/CCL5, CCL2, and
granulocyte-colony stimulating factor (G-CSF) that recruit
and activate monocytes and instruct them to secrete high
levels of IL-1β and IL-8. This interaction also promotes the
secretion of high levels of matrix metalloproteinase-1
(MMP-1), MMP-2, and MMP-10, ultimately creating a
chronic inflammatory microenvironment that supports
malignant progression and invasiveness [80]. One of the
Th2 inflammatory pathways favoring tumor protection in
BC relies on the secretion of IL-1β from primary BC induced
by T cell cytokines and thymic stromal lymphopoietin
(TSLP). Furthermore, IL-1β produced by myeloid cells is
involved in the activation of inflammasomes by BC cell-
derived factors. Breast cancer cell membrane-associated
transforming growth factor-beta (TGF-β) is required for
IL-1β production by DCs. IL-1-dependent transcriptional
signaling has also been shown in the blood of patients with
metastatic BC [81]. BC cell-derived IL-1α also induces
expression of TSLP from tumor infiltrating myeloid cells,
and TSLP, in turn, induces expression of B cell lymphoma-
2 (Bcl-2) in tumor cells, promotes tumor cell survival, and
skews the TME toward Th2 inflammation, sustaining lung
metastatic survival [82]. Inflammasomes are one of the key
regulators of IL-1 production. BC cells induce release of
IL-1β from myeloid and T cells via activation of the NLRP3
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inflammasome, and IL-1β activates the transcription factors
aryl hydrocarbon receptor (AhR) and retinoid-related
orphan nuclear receptor gamma t (RORγt) to induce IL-22
production in memory cluster determinant 4-positive
(CD4+) T cells to promote tumor growth [83]. Activation
of inflammasomes as well as increased level of IL-1β at the
primary and metastatic sites promote the infiltration of mye-
loid cells such as MDSCs and TAMs into the TME [84].

Transactivation p73β (TAp73β) has been shown to
directly activate the positive transcription of caspase-1 and
upregulate the expression of pro-IL-1β mRNA and IL-1β
protein, and thus may be important for the regulation of
the inflammasomes and inflammation in tumor [85]. In

addition, soluble CD44 (sCD44) antigen derived from the
TNBC cell membrane triggers the production of macrophage-
derived IL-1β, regulates the inflammatory TME, and promotes
the growth of primary tumor [86]. However, the role of inflam-
mation in HER2-induced tumorigenesis remains controversial.
New studies have found that in HER2+ BC, overexpression of
HER2 induces the expression and secretion of IL-1α, triggers
the activation of other signal sequences including IL-6, and
stimulates the NF-κB and STAT3 pathways to generate and
maintain cancer stem cells (CSCs) and chronic inflammation
to promote cancer initiation and progression [87]. In addition,
the BCmicroenvironment in the context of obesity is associated
with the increase of tumor infiltrating myeloid cells, which have
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Figure 1: Typical IL-1 signaling. (a) Synthesis and secretion of IL-1α and IL-1β. (b) Several natural or recombinant biologics block IL-1 and
its process of binding to membrane receptors. (c) IL-1 activated intracellular signaling. Abbreviations: IL—interleukin; IL-1R—IL-1
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an activated NLRC4 inflammasome and IL-1β, which drive
disease progression through activation of c-Jun N-terminal
kinase (JNK)-mediated expression of VEGFA and angiogenesis
in adipocytes [88]. The level of chronic inflammation usually
alsomeans a higher risk of recurrence of BC after primary treat-
ment [87, 89].

6.2. Involvement in Tumor Immunosuppression/Escape.
The systemic inflammatory cascade is orchestrated
through a CCL2–macrophage–IL-1β–γδT cell–IL-17–
immunosuppressive neutrophil axis in BC. CCL2 recruits
C-C chemokine receptor 2-positive (CCR2+) monocytes
from the bone marrow to elsewhere in the body and induces
their differentiation into macrophages, promoting the
expression of IL-1 derived from TAMs. γδT cells are subse-
quently induced to expand and produce IL-17, promoting
the systemic expansion of immunosuppressive neutrophils
and formation of metastasis [90]. Whereas IL-1β deficiency
leads to low levels of CCL2, hinders recruitment of mono-

cytes and, together with low levels of CSF-1, inhibits differen-
tiation of monocytes into macrophages and results in a
relatively high proportion of CD11b+ DCs, whose secretion
of IL-12 supports antitumor immunity [91]. In addition,
upregulation of IL-1R8 in mammary epithelial cell transfor-
mation and primary BC decreased IL-1-dependent activation
of NF-κB and proinflammatory cytokine production, inhib-
ited activation of NK cells, and promoted M2-like polariza-
tion of macrophages, resulting in impaired innate immune
sensing and T cell rejection of the TME [92]. Proinflamma-
tory cytokines expressed by primary breast tumors activate
an IL-1β-dependent innate immune response in innate
immune cells infiltrating the microenvironment of distant
metastasis-initiating cancer cells (MICs), which may prevent
the development of secondary disease and, conversely, pri-
mary tumor resection may prompt recurrence [93]. Another
study also showed that the expression of IL-1β by MICs in
BC was significantly associated with longer relapse-free sur-
vival and overall survival, while the lack expression of IL-1β
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by MICs are associated with the worst prognosis, and may
contribute to tumor immune escape [94]. Thus, IL-β secreted
by BC cells at the primary and metastatic sites may have a
positive effect on tumor immune escape and metastasis
suppression, whereas IL-β secreted by immune cells
infiltrating the TME exerts a detrimental effect. These new
evidences suggest a new line of thinking to link the immuno-
suppressive/escape microenvironment of BC with IL-1 and
thus design tumor suppressive approaches.

6.3. Promotion of Metastasis. The infiltration of IL-1β
inflammatory factors can directly promote the metastasis
of BC. In TNBC, the increase of IL-1β directly affects the
invasiveness of tumor cells [95]. IL-1β is both transmission
supportive and colonization inhibitory. At the metastatic
site, IL-1β maintains the systemic environment dissemi-
nated MICs in an active differentiated state of zinc-finger
E-box binding protein 1 (ZEB1), preventing MICs from pro-
ducing highly proliferative progeny with active E-cadherin
[93]. In addition, the cytokine network composed of IL-1
together with other cytokines has a complex role in metasta-
sis of BC cells. IL-6, oncostatin M (OSM), and IL-1β are
correlative in expression. OSM induces phosphorylation of
STAT3, and IL-1β promotes phosphorylation of p65 to
synergistically induce IL-6 secretion of ER-MDA-MB-231

cells, promoting the onset of acute and chronic inflamma-
tion and metastasis [96]. Evaluation of serum samples from
BC patients showed significant positive correlations between
levels of IL-1β and (C-X-C motif) ligand 8 (CXCL8), and
between levels of IL-1β and sCD200 in controls. Serum
levels of sCD200, CXCL8, IL-1β, and CRP were significantly
higher in early and advanced BC patients compared to
controls [97]. Human IL-1β induces expression and secre-
tion of stem cell factors (SCFs) in MCF-7 human epithelial
BC cells in a manner dependent on the PI3K/mTOR
pathway and hypoxia-inducible transcription factor-1alpha
(HIF-1α) accumulation/activation [98]. IL-1β confers
stem-cell-like ability of tumor cells to enhance their metasta-
tic potential. However, another study showed that IL-1β
increased migration of MDA-MB-231 cells, accumulation of
HIF-1α, upregulation of CXCR1, and expression of CXCL8
and NF-κB under hypoxia. But inhibition of HIF-1α had no
effect on IL-1β-migration of induced hypoxic cells and
could not reduce expression of NF-κB and CXCL8. The
NF-κB/CXCL8 pathway in a hypoxic microenvironment
may play a compensatory role in the IL-1β-induced migra-
tion of MDA-MB-231 cells [99].

Several studies have shown that a complex interplay
between MSCs and BC cells is closely related to the metasta-
tic potential of BC cells. Compared with normal and other
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subtypes of BC, the highest level of BRCA1-IRIS (hereafter
IRIS) expression was observed in TNBC, the cellular necro-
tic/hypoxic/inflammatory centre of IRIS overexpressing
(IRISOE) tumors or the vicinity formed an invasive niche,
and IL-1β secreted by IRISOE-TNBC cells recruited and
activated bone marrow MSCs to secrete CXCL1. CXCL1
enabled IRISOE-TNBC cells to secrete higher levels of
CCL2 and VEGF, which recruit and activate TAMs and
endothelial cells (ECs), and induce these cells to secrete
S100A8/9 and IL-8, respectively. This interaction contrib-
utes to the generation of the metastatic precursor of
IRISOE-TNBC [100]. Invasive BC cells (MDA-MB-231
cells) activate NF-κB signaling in MSCs by secreting IL-1β,
inducing and increasing the production of the same
chemokines (CXCL1, 3, 5, 6, 8, and CCL2, 5, etc.) as
metastatic ER- BC [101]. Cocultured TNBC cells and
MSCs/CAFs in the presence or stimulation of TNF-α or
IL-1β showed increased expression of the prometastatic che-
mokines CXCL8, CCL2, and CCL5, enhanced angiogenesis,
migration and invasion of cancer cells, and a significantly
enhanced prometastatic phenotype in TME and tumor cells
themselves. Among them, CXCL8 plays a key mediating role
[102]. Umbilical cord-derived mesenchymal stem cells (UC-
MSCs) were cocultured with breast or ovarian cancer cells,
and the switched inflammatory UC-MSCs had no obvious
effect on the proliferation or apoptosis of the two cancer
models, but IL-1β produced in an autocrine manner pro-
moted stem-cell-like properties of cancer cells, initiating
the formation of a prestem niche [103].

There is a causal relationship between the inflammatory
microenvironment and metastasis. Research found that loss
of p53, a key regulator of prometastatic neutrophils, induced
secretion of Wingless and int-1 (Wnt) ligands from cancer
cells, which stimulated TAMs to produce IL-1β, which
drives systemic inflammation. Pharmacologically and
genetically blocking the secretion of Wnt reverses IL-1β
expression by macrophages and subsequent neutrophilic
inflammation, leading to reduced metastasis formation
[104]. High expression of the transcription factor c-Myb
was found to repress the expression of a set of inflammatory
signature genes in BC, including Ccl2, Cxcl1, cxcl2, cxcl6,
Cxcl16, Icam1, Il1a, Tnfrsf9, Lcn2, and Ikbke, which were
denoted as c-Myb-inflammatory signature [105]. It was
subsequently found that c-Myb reduced autocrine signal
transduction of the NF-κB pathway in BC and the ability
of BC cells to migrate and cross the endothelial barrier
through inhibition of the expression of IL-1α. Overexpres-
sion of IL-1α as well as the addition of recombinant protein
of IL-1α activated NF-κB signaling and restored the expres-
sion of inflammatory signature genes that were suppressed
by c-Myb [53]. Mouse models of BC reflect that periodontal
inflammation (PI) and the resulting IL-1β promote the
expression of CCL5, CXCL12, CCL2, and CXCL5, which in
turn recruit MDSCs and macrophages, ultimately creating
a premetastatic niche at the site of inflammation [106].

Tumor lymphangiogenesis is associated with metastasis,
but the exact mechanism remains unclear. The novel study
identified that sphingosine 1-phosphate receptor 1 (S1PR1)
signaling in macrophages promoted lymphangiogenesis via

NLRP3-dependent IL-1β secretion in mouse mammary
tumors infiltrated with CD11bhiCD206+ TAMs. And since
IL-1β is involved in tumor pathological rather than physio-
logical lymphangiogenesis, the side effects of targeting IL-1β
to block tumor lymphangiogenesis may be limited [107].
Macrophage-derived caspase-1-dependent IL-1β plays an
important role in BC cell lymphatic endothelial cell adhesion
and migration across endothelial cell barriers [108]. Tumor-
associated leukocytes isolated from lymph node+ BC patients
secreted 2- to 5-fold more cytokines than lymph node-
patients, with the most increased cytokines being thymus
and activation-regulated chemokine (TARC/CCL17), IGF-1,
IL-3, TNF-β, IL-5, G-CSF, IL-4, and IL-1α. These cytokines
promote epithelial mesenchymal transition (EMT) and BC
lymph node metastasis by upregulating TGF-β and vimentin,
downregulating E-cadherin, and activating epidermal growth
factor receptor (EGFR) (Tyr845) and NF-κB/p65 (ser276) sig-
naling [109]. Circulating tumor cells (CTCs) are precursors to
the formation of metastatic lesions and, therefore, are also
prognostic markers of poor survival in patients with early-
stage BC before the initiation of systemic adjuvant therapy
and after adjuvant chemotherapy. Studies have found that
IL-1α is a marker of tumor cells released into the circulation
rather than into the lymphatic system [110]. Neutrophils can
assist the formation of a precancerous metastatic niche in
distant organs of BC due to activated neutrophils escorting
CTCs, facilitating the adhesion of CTCs and ECs, and most
CTC-associated leukocytes are N2-like neutrophils. Ki-67
expression was higher in disseminated tumor cells derived
from CTC-neutrophil clusters compared with independent
CTCs. In contrast, CTC-associated neutrophils frequently
expressed TNF-α, OSM, IL-1β, and IL-6, which matched their
receptors on the corresponding CTCs [111].

Studies have confirmed the importance of IL-1 signaling
in the promotion of BC bone metastasis. Using a clinically
relevant humanized mouse model of BC bone metastasis,
altered expression of IL-1β, IL-1R1, S100A4, cathepsin K
(CTSK), secreted phosphoprotein 1 (SPP1), and receptor
activator of NF-κB (RANK) in BC cells as they progress
from primary tumor to bone metastasis was demonstrated,
and these molecules can be used to predict future bone
recurrence in BC patients [112]. This model established that
the presence and active function of IL-1β had an impact on
the occurrence of bone metastases. In-depth studies have
shown that bone marrow-derived IL-1β stimulates bone col-
onization of BC cells by inducing NF-κB/cyclic AMP
response-element binding protein- (CREB-) Wnt signaling
and colony formation of CSCs [113]. Furthermore, IL-1β
produced endogenously by BC cells in primary sites pro-
motes EMT, invasion, migration, and bone colonization.
Upon arrival in the bone environment, contact between
tumor cells and osteoblasts or myeloid cells increases the
secretion of IL-1β by all three of these cell types. High con-
centrations of IL-1 β cause increased proliferation of the
bone metastatic niche and bone resorption by osteoclasts,
stimulating disseminated tumor cells to grow into overt
metastases [114]. Additionally, IL-1 is also a differential reg-
ulator associated with pain of metastatic cancer in bone
[115]. Bone marrow dissemination of BC cells is an early
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event, but cells can become latently dormant for years before
the development of bone metastases [114]. Treatment of
bone metastases is not effective, and IL-1 signaling inhibitors
may become new adjuvants to inhibit colonization of dis-
seminated cells to metastases.

The lung is also a common metastatic site for BC. IL-1α
and IL-1β secreted by metastatic BC cells induce the produc-
tion of CXCL9 and CXCL10 by lung fibroblasts through the
NF-κB signaling pathway. A small subset of BC cells specif-
ically expressing CXCR3 exhibited tumor-initiating ability
when cotransplanted with fibroblasts, driving JNK signaling,
increasing expression of IL-1α/β, forming a supportive met-
astatic niche, and promoting lung metastatic tumor growth
[116]. The inflammasome/IL-1 pathway is an important
mechanism in the development of BC lung metastasis, as
confirmed by the significant reduction of lung metastasis
in inflammasome or caspase-1-deficient mice, and may be
related to IL-1β-induced expression of CCL2 in macro-
phages and tumor cells [84]. In vitro invasion assay con-
firmed that irradiation targeting D2A1 tumor and its
microenvironment increased the levels of plasma IL-1β, pro-
moted the infiltration of tumor cells and the development of
lung metastasis and increased the activity of MMP-2 and
MMP9 [117]. Conversely, genetic studies utilizing the mouse
mammary tumor virus polyoma middle tumor (MMTV-
PyMT) mouse model revealed that IL-1α-mediated IL-1R1
signaling inhibits the proliferation, growth, and lung metas-
tasis of BC cells at early stages of tumorigenesis [118].
Therefore, the role of IL-1α-mediated IL-1 signaling in BC
lung metastasis may be biphasic depending on the stage
and context of tumor development.

6.4. Involvement in Tumor Resistance. BC is a HR-driven
cancer, so many patients are treated with therapies that
lower hormone levels or directly block HR, but most will
eventually develop therapeutic resistance. A recent study
proposed that IL-1 may provide a conserved basal gene
expression pattern in HR+ BC cells that mimic HR- BC cells.
Sequestome-1 (SQSTM1/p62) is a differentially expressed
gene induced by IL-1 in HR+ and HR- BC cells and is
required for survival of HR- cells, playing a role in acquired
HR-independent survival and therapeutic resistance. P62
binds to and polyubiquitinates TRAF6, leading to transacti-
vation of NF-κB, forming a positive feedback loop inducing
production of IL-1β and activation of signaling. P62 may
also be involved in the crosstalk between IL-1 and glucocor-
ticoid signaling by inhibiting NR3C1, which encodes a glu-
cocorticoid nuclear receptor that suppresses inflammatory
gene expression [52]. In addition, IL-1 was found to mediate
the inhibition of estrogen receptor α (ERα) and progesterone
receptor (PR) induced by bone marrow stromal cells in
ERα+/PR+ BC cells, the upregulation of p62/SQSTM1 and
autophagy, and the p62-LC3 interaction. Thus, IL-1β may
depend on the function of p62 and autophagy to confer a
viable ERα-/PR- molecular phenotype in ERα+/PR+ BC
cells, and this may underlie endocrine resistance [119]. In
HER2+ BC, HER2 induced expression of IL-1α and IL-6,
which then increased drug-resistance-related CSCs in pri-
mary tumor, while blocking IL-1 signaling increased the effi-

cacy of chemotherapy when combined with cisplatin and
paclitaxel [87].

In the cell model of BC cells (6D cells) with EMT
induced by IL-1β through the activation of the IL-1β/IL-
1R1/β-catenin pathway, upregulation of Twist1 resulted in
methylation of the ESR1 gene promoter, which significantly
reduced the level of ERα and increased the resistance to
tamoxifen [120]. After IL-1β-highly responsive clone (6D
cells) from noninvasive MCF-7 BC cells were stimulated by
IL-1β, the expression of CDKN1A/p21, TP63, small-fiber
neuropathy (SFN), and especially BIRC3, was upregulated,
which made BC cells resistant to doxorubicin [121]. The
IL-1β/IL-1R1/β-catenin signaling pathway can also upregu-
late the expression of tumor protein 63 (TP63) isoform
ΔNp63α, which in turn leads to increased expression of
EGFR and phosphatase 1D (Wip1) and decreased DNA
damage sensors and ataxia telangiectasia mutated (ATM).
This is involved in the enhancement of the cisplatin resis-
tance of BC cells [122]. Furthermore, IL-1β induces IL-6
production by transglutaminase 2- (TG2-) expressing
MCF-7 cells through NF-κB-, PI3K-, and JNK-dependent
mechanisms, ultimately increasing the stem-cell-like pheno-
type of cancer cells associated with drug resistance [123].

7. Targeting IL-1 Signaling for Breast
Cancer Treatment

7.1. Direct Blockade of IL-1 Signaling. There are currently
four known IL-1 blocking biologics: anakinra, canakinumab,
gevokizumab, and rilonacept. Anakinra, the recombinant
form of the human IL-1Ra, acts by competitively preventing
the binding of IL-1α and IL-1β to IL-1R1 [124]. Canakinu-
mab is a human monoclonal antibody (mAb) specific for
IL-1β [125]. Gevokizumab is a recombinant humanized
allosteric monoclonal antibody that negatively regulates IL-
1β signaling through an allosteric mechanism [78]. Rilona-
cept (ril on’a sept), an approved recombinant fusion protein
comprising the extracellular portion of human IL-1R1 and
IL-1RAcP fused to the Fc portion of human IgG1, binds to
and inactivates IL-1, acting as an “IL-1 trap” [126]. Anakinra
and canakinumab are currently approved for the treatment
of rheumatoid arthritis, familial Mediterranean fever
(FMF), cryopyrin-associated periodic syndrome, Still’s dis-
ease, and gouty arthritis, while gevokizumab does not
currently have a specific indication [69, 127, 128]. Among
them, canakinumab has been widely used in clinical experi-
ments for lung cancer [129–131]. The protein formulation,
i.e., the solution of IL-1Ra (kineret), may have ultra-long-
term stability for 10 years and has clinical applications in
metastatic BC (NCT01802970) [11, 132]. In addition, there
are several other mAbs against two cytokines or their recep-
tors, respectively, such as lutikizumab (ABT-981), a double
variable domain Ig that binds to and inhibits both IL-1α
and IL-1β [133]; anti-IL-1α Xilonix [134]; Bermekimab, a
true human mAb targeting IL-1α cloned directly from
human B cells (Epstein-Barr virus immortalized) isolated
from humans with endogenous anti-IL-1α antibodies
[135]; two IL-1β neutralizing antibodies, RD24 and
P2D7KK [136]; and Nidanilimab, an entire humanized
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mAb against IL-1RAcP. Most of these antibodies are being
used in clinical cancer therapy to block IL-1 signaling [11].
These blockers are shown in Figure 1.

Anakinra is an ideal treatment option with a short half-
life for patients who have undergone chemotherapy, and it is
increasingly used as an adjuvant therapy to reduce inflam-
mation in metastatic cancer [79, 137]. In humanized mouse
models of BC bone metastasis, anakinra treatment reduced
the number of mice that developed metastases in human
bone implants from 57.14% to 0% [112]. Anti-IL-1β treat-
ment reduced hindlimb bone metastasis in the spontaneous
MDA-MB-231 BH mouse model [113]. Knockout of IL-1R1
(IL-1R1−/−), anakinra or canakinumab reduced bone metas-
tasis and the number of tumor cells shed into the circulation
[114]. Blocking IL-1R with IL-1Ra inhibited the invasiveness
of Hs578t and MDA-MB231 TNBC cells and the develop-
ment of bone metastasis [95], and it inhibited tumor growth
while reducing the accumulation of myeloid cells [84].
Treatment with anti-IL-1β antibody attenuates production
of IL-6, the stem-like phenotype, and tumor growth and
metastasis in TG2+ BC cells [123]. The use of anakinra
in vivo reduced the production of IL-22 and tumor growth
in BC [83]. Anakinra or TGF-β neutralizing antibody treat-
ment significantly decreased the production of IL-13, IL-4,
IL-17, and TSLP; increased the production of NF or
interferon-gamma (IFNγ); and suppressed growth of BC
[81]. Secretion of IL-1β by IRISOE-TNBC cells within the
invasive niche initiates a bidirectional effect with MSCs.
Anakinra could break these bidirectional interactions;
inhibit generation of MSCs, tumor recruitment, and secre-
tion of CXCL1 in vivo; and enhance the efficacy of chemo-
therapy on IRISOE-TNBC, especially on metastasis [100].
Neither prophylactic nor therapeutic administration of ana-
kinra significantly inhibited the growth of MDA-MB-231-IV
tumors in bone and reduced the number of mice that devel-
oped bone metastases and subcutaneous tumor volume
[138]. Anti-IL-1R1 antibody and anakinra treatment inhibits
the growth of E0771 tumor in DIO mice [88]. These
evidences revealed that anakinra can modulate the BC micro-
environment by blocking IL-1 signaling, reducing tumor
growth and metastasis. Unfortunately, there have been few
studies on rilonacept and gevokizumab and other biologics
used to block IL-1 for the treatment of BC except for the
human antibody scFv 12H7, one specially prepared specific
binder of IL-1RAcPwith high affinity, which had growth inhib-
itory activity against TNBC cells in vitro and in vivo [139].

Anakinra provides an optimal treatment. The short half-
life of subcutaneously injected anakinra is a distinct advantage,
allowing oncologists to stop anakinra treatment at the first sign
of infection. This is something that cannot be achieved with
persistent antibodies, such as canakinumab [79]. But the results
of experiments using anakinra alone may limit understanding
of the pleiotropic role of IL-1 in BC, as it is not clear howmuch
of its efficacy is due to blocking IL-1α and how much is due to
blocking IL-1β [140]. Because chemotherapy often leads to
myelosuppression, and IL-1 blockade therapy can also suppress
peripheral blood neutrophils, the risk of infection may be
increased when using IL-1 blockade therapy alone or when
using anakinra in combination with standard chemotherapy

regimens. Therefore, the precise timing and dosage of IL-1
blockade should be determined before application to cancer
patients. In this context, modulation of cancer-cell-induced
production of IL-1 might be a better option [86].

7.2. Blockade of Up- and Downstream Regulatory Signals of
IL-1. Blocking IL-1 in tumors has now expanded immensely.
Primary mammary tumor growth and lung metastasis were
significantly reduced in NLRP3 knockout mice and
caspase-1 knockout mice designed to reduce mature IL-1
production [84]. Tumor growth was significantly reduced
in caspase-1/11−/− and NLRC4−/− diet-induced obese mice
[88]. TGF-β neutralizing antibody treatment was able to
decrease production of IL-1β in humanized mouse tumors
[81]. Antibody-mediated neutralization of sCD44 abrogated
production of IL-1β in macrophages, modulated the tumor
inflammatory microenvironment, and inhibited primary
tumor growth [86]. IL-1R8 deficiency in the transgenic
mouse model of BC (MMTV-neu/IL-1R8−/−) delayed
tumorigenesis and reduced tumor burden and metastasis
[92]. miRNAs are noncoding microRNAs that negatively
regulate gene expression, and play important roles in self-
renewal, growth, and metastasis of BC cells [141, 142].
miR-146a-5p can downregulate expression of IRAK1 by
directly binding to its 3′-untranslated region and inhibit
proliferation and invasion of BC cells [143]. NF-κB inhibitor
Bay11-7085 reduced basal levels of IL-1β and invasiveness of
TNBC cells [95]. Furthermore, since IL-1-induced p62
mediated survival and HR treatment resistance of BC cells,
the p62 targeting drug verteporfin (visudyne®) was cytotoxic
to HR- BC cell lines [52]. These results illustrate that target-
ing NLRP3, NLRC4, caspase-1, TGF-β, sCD44, IL-1R8,
IRAK1, and NF-κB, which affect production and activation
of IL-1, and IL-1-mediated downstream signaling p62, are
also effective ways to modulate IL-1 signaling in the BC
microenvironment.

7.3. Combination Therapy. It has been mentioned before
that anti-IL-1 or anakinra may decrease the resistance of
BC and improve the efficacy of chemotherapy. Furthermore,
it was shown that the median duration of treatment with
anakinra in combination with one of the standard chemo-
therapeutic agents (albumin-bound paclitaxel, eribulin, or
capecitabine) for BC was 4 months in 11 women with
metastatic HER2- BC. Gene expression of IL-1β, IL-1R1,
IL-1R2, and IL-1RAcP, the five members of the TLR family
and the IL-1 signaling kinases MyD88 and spleen tyrosine
kinase (SYK) were decreased during two weeks of daily ana-
kinra and during the pilot trial. Conversely, the expression of
some NK cell and cytotoxic T cell genes that favor immune-
mediated tumor destruction was increased [79]. It is
suggested that chemotherapy combined with anakinra treat-
ment may also have the effect of restoring antitumor immu-
nity. In addition, anakinra may also enhance the effects of
other treatment modalities, such as immunotherapy.
Treatment of wild type mice with 4T1 tumors first with
anti-IL-1β antibody and then with antiprogrammed cell
death protein 1 (PD-1) antibody resulted in a therapeutic
outcome that differed from the partial growth inhibition
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Table 1: Treatments or interventions targeting or affecting IL-1 signaling in breast cancer.

Treatment/intervention Targets
In vivo/
in vitro

Models Findings References

Anakinra; anti-TGFβ IL-1R1 In vivo
Hs578T; NOD/SCID/β2m

−/−;
patients with HER2 metastatic

BC (NCT01802970)

Prevented tumor progression and
production of IL-13 in humanized mouse

model; downregulated specific
components of the systemic inflammatory

signature observed in patients with
metastatic BC and rescued cytotoxic
programs thought to be critical for

antitumor activity

[81]

Anti-IL-1R; anakinra
IL-1

signaling
In vivo 4T1; E0771; BALB/c; C57BL/6

Reduced tumor progression and
production of IL-22+ cells

[83]

IL1Ra; caspase-1 inhibitor;
Ac-YVAD-cmk; anti-IL-1β;
anticaspase-1; caspase-1−/−;
NLRP3−/−

IL-1
signaling

In vivo
and

in vitro

EO771; PyT8; MDA-MB-231;
C57BL/6J; NSG; MMTV-

PyMT

Reduced tumor growth and lung
metastasis accompanied by decreased

myeloid cell accumulation
[84]

Anti-CD44 CD44 In vitro

MDA-MB231; MDA-MB-468;
MCF-7; MCF-10A; 4T1-Luc;

THP-1; human serum
samples; BALB/c

Abrogated IL1β production in
macrophages and inhibited growth of

primary tumors
[86]

IRAK1 inhibitor synergized
with either cisplatin or
paclitaxel

IL-1α
signaling

In vivo FVB/N
Reduction of CSCs and improvement of

the chemotherapy efficacy
[87]

Anti-IL-1R1; anakinra;
caspase 1/11−/−; NLRP3−/−;
NLRC4−/−

NLRC4/
IL-1β

In vivo Py8119; E0771; C57BL/6N
Reduced tumor growth except NLRP3−/−

mice
[88]

Anti-IL-1β, anti-PD-1
IL-1β,
PD-1

In vivo 4T1; BALB/c
Anti-IL-1β Abs and anti-PD-1 Abs have a

synergistic antitumor activity
[91]

IL-1R8−/− IL-1R8
In vivo
and

in vitro

HB4a; HB4a-C5.2; NKL;
THP-1; MMTV-neu

Reduced tumor growth and metastasis [92]

IL-1Ra; Bay; Zerumbone
NF-κB
signaling
pathway

In vitro Hs578T; MDA-MB231
Inhibition of IL-1β expression and cell

invasiveness
[95]

Anakinra IL-1R1 In vivo MSCs; IRISOE cell lines; SCID
Decreased recruitment of mouse MSCs
into IRISOE-TNBC tumors and their

activation to produce and secrete CXCL1
[100]

IL-1Ra IL-1R1 In vitro
MDA-MB-231 and UC-MSCs

coculturing system
Blocked prostemness effects of UC-MSCs

on cancer cells
[103]

Anakinra IL-1R1
In vivo
and

in vitro

T47D; MCF-7; BB3RC32;
BB2RC08; BB6RC37

Reduced bone metastasis [112]

Sulfasalazine; KG-501
NF-κB;
CREB

In vitro MCF-7; MDA-MB-231_BH
Inhibited Wnt-dependent CSC colony
formation in the bone environment

[113]
Anti-IL-1β IL-1β In vivo NSG

Reduced tumor formation; increased
trabecular bone volume

IL-1Ra; canakinumab
IL-1β

signaling
In vivo

MDA-MB-231; E0771; NOD/
SCID; BALB/c nude

Reduced spontaneous metastasis to
human bone

[114]
Caspase-1 inhibitor

Caspase-
1

In vitro MDA-MB-231
Abrogated level of transmigration of

MDA-MB-231 cells through both blood
and lymphatic endothelial cell barriers

Verteporfin; siRNA-silenced
p62

SQSTM1/
p62

In vitro MCF-7; MDA-MB-231 Cytotoxic for HR- cell lines [52]

IRAK1/4 inhibitor; BAY11-
7082; SP600125; and
LY294002

NF-κB,
JNK,
PI3K

In vitro
MCF-7 (ATCCHTB-22);

MCF-7_TG2

Inhibited expression of IL-6 from IL-1β-
stimulated TG2-overexpressing MCF-7_

TG2 BC cells
[123]

11Mediators of Inflammation

https://clinicaltrials.gov/ct2/show/NCT01802970


resulting from each antibody alone in that, instead, the
tumor progression was completely abrogated [91]. Chimeric
antigen receptor- (CAR-) T cells are genetically modified T
cells with potential to target the TME and treat solid tumors.
Toxicities arising in tumor CAR-T therapy, IL-1-mediated
inflammation, and IL-1-induced IL-33-mediated anaphy-
laxis could be suppressed by the anti-inflammatory cytokine
IL-37, thereby contributing to the amelioration of adverse
effects of CAR-T therapy [144]. Anakinra can reduce the
inflammation and immunosuppression caused by IL-1,
contributing to the enhanced antitumor activity. More
information on these treatments or interventions is shown
in Table 1.

The combination with mAbs is a great focus of future
development for IL-1-related therapies, both with immune
checkpoint inhibitors, and with other molecularly targeted
antibody classes of drugs. As tumor-hyperactivated IL-1 sig-
naling is also responsible for the failure of targeted therapies,
targeted therapies using monoclonal antibodies in combina-
tion with IL-1 blockade might have improved efficacy [145].
There are a number of recent studies that support this infer-
ence. For example, inhibition of IL-1R1 reduced the resis-
tance of metastatic colorectal cancer (mCRC) to cetuximab
(a monoclonal antibody-targeting EGFR) [146]. IL-1α
induced a T cell-dependent antitumor immune response
increasing the antitumor efficacy of cetuximab against head
and neck squamous cell carcinoma (HNSCC) [147]. In a
phase II study, the good activity and manageable safety pro-
file of fluorouracil (5-FU) in combination with bevacizumab
and anakinra were demonstrated in mCRC patients who did
not respond to chemotherapy and antiangiogenic therapy
[137]. But such studies are lacking in BC.

As mentioned earlier, fatal systemic inflammation is a
drawback of this therapy. IL-1R1 blockade in combination
with chemotherapy may also increase toxicity [81]. There-
fore, whether anakinra is a safe adjuvant to chemotherapy
and other treatments remains to be demonstrated.

8. Conclusions and Perspectives

As a key regulatory inflammatory cytokine, IL-1 is produced
in response to not only the stimulus of cell damage, necrosis
or environmental stress but also the demand of certain
tumors, including BC, and in turn it activates downstream
and surrounding inflammatory signals that act to recruit,
promote inflammation, induce immunosuppression, pro-
mote metastasis, and participate in drug resistance, thus pro-
viding a favorable environment for tumor survival.

IL-1-mediated inflammatory signaling participates in
immunosuppression and immune escape through the pro-
duction and maintenance of an inflammatory microenviron-
ment, which is conducive to the progress of BC. Therefore,
blocking of abnormal IL-1 signaling caused by a tumor can
be used as an immunotherapy or adjuvant immunotherapy
to reduce inflammation/immunosuppression and enhance
antitumor immunity [148]. In the context of BC, the dysreg-
ulated expression of genes, transcription factors, inflamma-
tory cytokines, chemokines, and signaling pathway proteins
that depend on or involve in the regulation of the produc-
tion, secretion, and function of IL-1 signaling molecules, as
well as the IL-1-mediated crosstalk between tumor cells
and tumor infiltrating immune cells plays an important role
in determining the prometastatic potential and therapeutic
resistance. To date, the role of IL-1 signaling in tumors has
been controversial, in part due to differences in cancer con-
texts, pleiotropic effects of IL-1, and distinct functions of the
two IL-1 cytokines. Most of what is currently known about
the role of IL-1 signaling in tumors comes from studying
the function of individual recombinant or extracellular
forms of IL-1 cytokines, actually leading to an inability to
determine their relevance to the function of cells as well as
established malignant cells, either from cancer patients or
from transplantable mouse models [118].

The levels of IL-1 in combination with other cytokines or
IL-1α/β alone in TME or serum in BC patients are correlated

Table 1: Continued.

Treatment/intervention Targets
In vivo/
in vitro

Models Findings References

Anakinra IL-1R1 In vivo
MDA-MB-231-IV or MCF-7;

BALB/c

Reduced growth of tumors in bone and
the number of mice that developed bone

metastases
[138]

scFv 12H7 IL-1RAcP
In vivo
and

in vitro

Patients; MDA-MB-231;
HCC-70

Increased expression of IL-1RAcP in both
TNBC cell lines and TNBC patient cohort;
scFv 12H7 inhibited tumor growth via
inhibiting IL-1-activated-NF-κB pathway

in TNBC cells

[139]

miR-146a-5p IRAK1 In vitro MDA-MB-453; MCF-7
Repressive effects on the proliferation and
invasion behavior of BC cells by targeting

IRAK1
[143]

CAR-T therapy and IL-37
IL-1,
IL-33

Inhibited inflammation and toxicity
generated in tumor CAR-T therapy

[144]

Notes. −/−Symbols indicate that the gene has been knocked out. Abbreviations: CSC—cancer stem cell; MSC—mesenchymal stem cell; NLRP3—NOD-like
receptor family pyrin domain domain-containing protein 3; CREB—cyclic AMP response-element binding protein; IRAK1—interleukin-1 receptor-
associated kinase 1; TG2—transglutaminase 2; CAR-T—chimeric antigen receptor T cell.
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with treatment outcome and are likely to be predictive of
poorer outcome. The clinical implications of biomarkers
that can classify cases in need of action versus those that
are best addressed individually are gaining traction [149,
150]. Currently, only a minority of molecules form part of
routine molecular diagnosis of BC, and microenvironment-
derived biomarkers are potential additions to existing panels
of predictive and prognostic markers [35]. Interestingly, a
study conducted in 2017-2018 explored the relationship
between cognitive function, severity of depressive symp-
toms, and IL-1 expression in patients with BC treated with
systemic anticancer therapy. The protein expression levels
of IL-1α and IL-1β in patients after chemotherapy were sig-
nificantly lower, and the severity of depressive symptoms
was also lower than that before chemotherapy [151]. We
need a more detailed understanding of how different types
of cells interact in the microenvironment and how IL-1 sig-
naling promotes or suppresses tumors to better use immune
cells and IL-1 as targets and biomarkers for BC therapy.

Among the related therapeutic strategies, the results of
several in vivo and in vitro experiments demonstrated the
potential of IL-1 as a therapeutic target for metastatic BC.
Anakinra is the most widely used FDA approved biological
agent for cancer-related inflammation, which targets the BC
microenvironment by directly blocking IL-1 signaling, reduc-
ing tumor growth and metastasis, and enhancing chemother-
apy efficacy. But this therapeutic approach may interfere with
the IL-1-mediated innate immunity in vivo, which is the
biggest limitation. Compared with several other blockers, ana-
kinra mimics the natural mode of IL-1 blockade with more
direct apparent effects and representativeness, which may
have contributed to the lower cost-effectiveness and use of
other blockers in clinical studies. On the other hand, none of
the primary aims of various related studies were to investigate
the antitumor effects of IL-1 blockade on a targeted basis. We
therefore believe that focusing on the antitumor effects of the
blockade of IL-1 signaling in future studies is warranted. There
are also other candidate targeting strategies in terms of IL-1
signaling blockade, such as IL-1RAcP, IL-1R2/8, inflammaso-
me/caspase-1, IRAK, and NF-κB pathways. At present, BC has
a high recurrence rate and rapid disease progression after
monotherapy; thus, combination therapy has become a hall-
mark of BC treatment. Drug combinations using different
mechanisms are able to reduce the likelihood of cancer cells
developing drug resistance while reducing the therapeutic
dose and toxicity of monotherapies [152].

Targeting the tumor microenvironment often requires
innovative drug delivery systems, such as nanoformulations,
to achieve drug accumulation at the tumor site. How to link
nanomedicine to tumor delivery of anti-IL-1 drugs is also a
question to be addressed in the future [153]. Altogether, fur-
ther understanding of the mechanisms by which IL-1 signal-
ing regulates inflammation, immunity, metastasis, and drug
resistance in the BC microenvironment, and finding novel
targets that are closely related to tumor development and
whose blockade does not later have a devastating impact
on the role of IL-1 signaling in innate immunity will provide
new perspectives for therapeutic strategies in BC, especially
in metastatic BC.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Projects of International
Cooperation and Exchanges of the National Natural Science
Foundation of China (grant number 82020108033), the Sci-
ence and Technology Program of Guangzhou (grant number
202103000091) and the Natural Science Foundation of
Guangdong (grant number 2019A1515011286).

References

[1] C. A. Dinarello, “IL-1: discoveries, controversies and future
directions,” European Journal of Immunology, vol. 40,
pp. 599–606, 2010.

[2] J. K. Fields, S. Günther, and E. J. Sundberg, “Structural basis
of IL-1 family cytokine signaling,” Frontiers in Immunology,
vol. 10, p. 1412, 2019.

[3] A. Mantovani, C. A. Dinarello, M. Molgora, and C. Garlanda,
“Interleukin-1 and related cytokines in the regulation of
inflammation and immunity,” Immunity, vol. 50, pp. 778–
795, 2019.

[4] C. H. Hannum, C. J. Wilcox, W. P. Arend et al., “Interleukin-
1 receptor antagonist activity of a human interleukin-1 inhib-
itor,” Nature, vol. 343, pp. 336–340, 1990.

[5] J. E. Sims and D. E. Smith, “The IL-1 family: regulators of
immunity,” Nature Reviews Immunology, vol. 10, pp. 89–
102, 2010.

[6] I. Striz, “Cytokines of the IL-1 family: recognized targets in
chronic inflammation underrated in organ transplantations,”
Clinical Science, vol. 131, pp. 2241–2256, 2017.

[7] F. L. van de Veerdonk and M. G. Netea, “New insights in the
immunobiology of IL-1 family members,” Frontiers in Immu-
nology, vol. 4, p. 167, 2013.

[8] D. Boraschi, P. Italiani, S. Weil, and M. U. Martin, “The fam-
ily of the interleukin-1 receptors,” Immunological Reviews,
vol. 281, pp. 197–232, 2018.

[9] R. N. Apte, S. Dotan, M. Elkabets et al., “The involvement of
IL-1 in tumorigenesis, tumor invasiveness, metastasis and
tumor-host interactions,” Cancer Metastasis Reviews,
vol. 25, pp. 387–408, 2006.

[10] A. Mantovani, I. Barajon, and C. Garlanda, “IL-1 and IL-1
regulatory pathways in cancer progression and therapy,”
Immunological Reviews, vol. 281, pp. 57–61, 2018.

[11] A. Litmanovich, K. Khazim, and I. Cohen, “The role of
interleukin-1 in the pathogenesis of cancer and its potential
as a therapeutic target in clinical practice,”Oncology and ther-
apy, vol. 6, pp. 109–127, 2018.

[12] J. J. McDonald, D. C. McMillan, and B. J. A. Laird, “Targeting
IL-1α in cancer cachexia: a narrative review,” Current Opin-
ion in Supportive and Palliative Care, vol. 12, pp. 453–459,
2018.

[13] J. Mora and A. Weigert, “IL-1 family cytokines in cancer
immunity - a matter of life and death,” Biological Chemistry,
vol. 397, pp. 1125–1134, 2016.

13Mediators of Inflammation



[14] O. S. Dmitrieva, I. P. Shilovskiy, M. R. Khaitov, and S. I. Gri-
vennikov, “Interleukins 1 and 6 as main mediators of inflam-
mation and cancer,” The Biochemist, vol. 81, pp. 80–90, 2016.

[15] A. Valeta-Magara, A. Gadi, V. Volta et al., “Inflammatory
breast cancer promotes development of M2 tumor-
associated macrophages and cancer mesenchymal cells
through a complex chemokine network,” Cancer Research,
vol. 79, pp. 3360–3371, 2019.

[16] K. Taniguchi and M. Karin, “NF-κB, inflammation, immu-
nity and cancer: coming of age,” Nature Reviews Immunol-
ogy, vol. 18, pp. 309–324, 2018.

[17] C. Belli, D. Trapani, G. Viale et al., “Targeting the microenvi-
ronment in solid tumors,” Cancer Treatment Reviews, vol. 65,
pp. 22–32, 2018.

[18] W. Zhang, N. Borcherding, and R. Kolb, “IL-1 signaling in
tumor microenvironment,” Advances in Experimental Medi-
cine and Biology, vol. 1240, pp. 1–23, 2020.

[19] I. Martínez-Reza, L. Díaz, D. Barrera et al., “Calcitriol inhibits
the proliferation of triple-negative breast cancer cells through
a mechanism involving the proinflammatory cytokines IL-1β
and TNF-α,” Journal of Immunology Research, vol. 2019,
Article ID 6384278, 11 pages, 2019.

[20] K. J. Baker, A. Houston, and E. Brint, “IL-1 family members
in cancer; two sides to every story,” Frontiers in Immunology,
vol. 10, p. 1197, 2019.

[21] A. Ahmad, “Breast cancer statistics: recent trends,” Advances
in Experimental Medicine and Biology, vol. 1152, pp. 1–7,
2019.

[22] J. Huang, P. S. Chan, V. Lok et al., “Global incidence and
mortality of breast cancer: a trend analysis,” Aging (Albany
NY), vol. 13, pp. 5748–5803, 2021.

[23] O. Peart, “Metastatic Breast Cancer,” Radiologic technology,
vol. 88, no. 5, pp. 519m–539m, 2017.

[24] B. Wörmann, “Breast cancer: basics, screening, diagnostics
and treatment,” Medizinische Monatsschrift für Pharmazeu-
ten, vol. 40, pp. 55–64, 2017.

[25] C. D. Savci-Heijink, H. Halfwerk, G. K. Hooijer, H. M. Horlings,
J. Wesseling, and M. J. van de Vijver, “Retrospective analysis
of metastatic behaviour of breast cancer subtypes,” Breast
Cancer Research and Treatment, vol. 150, pp. 547–557, 2015.

[26] A. G. Waks and E. P. Winer, “Breast cancer treatment: a
review,” Journal of the American Medical Association,
vol. 321, pp. 288–300, 2019.

[27] K. J. Ruddy and P. A. Ganz, “Treatment of nonmetastatic
breast cancer,” Journal of the American Medical Association,
vol. 321, pp. 1716-1717, 2019.

[28] N. Harbeck and M. Gnant, “Breast cancer,” Lancet, vol. 389,
pp. 1134–1150, 2017.

[29] S. Nagini, “Breast cancer: current molecular therapeutic tar-
gets and new players,” Anti-Cancer Agents in Medicinal
Chemistry, vol. 17, pp. 152–163, 2017.

[30] O. Peart, “Breast intervention and breast cancer treatment
options,” Radiologic Technology, vol. 86, pp. 535M–558M,
2015, quiz 559–62.

[31] F. A. Fisusi and E. O. Akala, “Drug combinations in breast
cancer therapy,” Pharmaceutical nanotechnology, vol. 7,
pp. 3–23, 2019.

[32] M. Fahad Ullah, “Breast cancer: current perspectives on the
disease status,” Advances in Experimental Medicine and Biol-
ogy, vol. 1152, pp. 51–64, 2019.

[33] M. Nedeljković and A. Damjanović, “Mechanisms of chemo-
therapy resistance in triple-negative breast cancer—how we
can rise to the challenge,” Cell, vol. 8, p. 957, 2019.

[34] J. J. Wang, K. F. Lei, and F. Han, “Tumor microenvironment:
recent advances in various cancer treatments,” European
Review for Medical and Pharmacological Sciences, vol. 22,
pp. 3855–3864, 2018.

[35] S. Mittal, N. J. Brown, and I. Holen, “The breast tumor micro-
environment: role in cancer development, progression and
response to therapy,” Expert Review of Molecular Diagnostics,
vol. 18, pp. 227–243, 2018.

[36] T. G. Odle, “Precision medicine in breast cancer,” Radiologic
technology, vol. 88, no. 4, pp. 401m–421m, 2017.

[37] H. Rachdi, A. Mokrani, R. Batti, M. Ayadi, N. Chraiet, and
A. Mezlini, “Target therapy for metastatic breast cancer,” La
Tunisie Médicale, vol. 96, pp. 465–471, 2018.

[38] G. Gu, D. Dustin, and S. A. Fuqua, “Targeted therapy for
breast cancer and molecular mechanisms of resistance to
treatment,” Current Opinion in Pharmacology, vol. 31,
pp. 97–103, 2016.

[39] L. The, “Breast cancer targeted therapy: successes and chal-
lenges,” Lancet, vol. 389, p. 2350, 2017.

[40] K. G. Deepak, R. Vempati, G. P. Nagaraju et al., “Tumor
microenvironment: challenges and opportunities in targeting
metastasis of triple negative breast cancer,” Pharmacological
research, vol. 153, article 104683, 2020.

[41] M. Truffi, S. Mazzucchelli, A. Bonizzi et al., “Nano-strategies
to target breast cancer-associated fibroblasts: rearranging the
tumor microenvironment to achieve antitumor efficacy,”
International Journal of Molecular Sciences, vol. 20, p. 1263,
2019.

[42] Q. Q. Liu, F. Peng, and J. P. Chen, “The role of exosomal
microRNAs in the tumor microenvironment of breast can-
cer,” International Journal of Molecular Sciences, vol. 20,
p. 3884, 2019.

[43] J. Plava, M. Cihova, M. Burikova, M. Matuskova,
L. Kucerova, and S. Miklikova, “Recent advances in under-
standing tumor stroma-mediated chemoresistance in breast
cancer,” Molecular Cancer, vol. 18, p. 67, 2019.

[44] D. Bauer, N. Redmon, E. Mazzio, and K. F. Soliman, “Api-
genin inhibits TNFα/IL-1α-induced CCL2 release through
IKBK-epsilon signaling in MDA-MB-231 human breast can-
cer cells,” PLoS One, vol. 12, article e0175558, 2017.

[45] D. T. Chu, T. N. T. Phuong, N. L. B. Tien et al., “The
effects of adipocytes on the regulation of breast cancer in
the tumor microenvironment: an update,” Cells, vol. 8,
p. 857, 2019.

[46] T. Wu and Y. Dai, “Tumor microenvironment and therapeu-
tic response,” Cancer Letters, vol. 387, pp. 61–68, 2017.

[47] E. Hirata and E. Sahai, “Tumor microenvironment and dif-
ferential responses to therapy,” Cold Spring Harbor Perspec-
tives in Medicine, vol. 7, p. a026781, 2017.

[48] N. J. Brady, P. Chuntova, and K. L. Schwertfeger, “Macro-
phages: regulators of the inflammatory microenvironment
during mammary gland development and breast cancer,”
Mediators of Inflammation, vol. 2016, Article ID 4549676,
13 pages, 2016.

[49] N. Singh, D. Baby, J. P. Rajguru, P. B. Patil, S. S. Thakkanna-
var, and V. B. Pujari, “Inflammation and cancer,” Annals of
African Medicine, vol. 18, pp. 121–126, 2019.

14 Mediators of Inflammation



[50] M. D. Allen and L. J. Jones, “The role of inflammation in pro-
gression of breast cancer: friend or foe? (review),” Interna-
tional Journal of Oncology, vol. 47, pp. 797–805, 2015.

[51] S. K. Deshmukh, S. K. Srivastava, T. Poosarla et al., “Inflam-
mation, immunosuppressive microenvironment and breast
cancer: opportunities for cancer prevention and therapy,”
Annals of translational medicine, vol. 7, p. 593, 2019.

[52] A. F. Nawas, M. Kanchwala, S. E. Thomas-Jardin et al., “IL-1-
conferred gene expression pattern in ERα(+) BCa and AR(+)
PCa cells is intrinsic to ERα(-) BCa and AR(-) PCa cells and
promotes cell survival,” BMC Cancer, vol. 20, p. 46, 2020.

[53] M. Dúcka, M. Kučeríková, F. Trčka et al., “c-Myb interferes
with inflammatory IL1α-NF-κB pathway in breast cancer
cells,” Neoplasia, vol. 23, pp. 326–336, 2021.

[54] H. Li, N. Duan, Q. Zhang, and Y. Shao, “IL1A & IL1B genetic
polymorphisms are risk factors for thyroid cancer in a Chi-
nese Han population,” International Immunopharmacology,
vol. 76, article 105869, 2019.

[55] H. Ji, L. Lu, J. Huang et al., “IL1A polymorphisms is a risk fac-
tor for colorectal cancer in Chinese Han population: a case
control study,” BMC Cancer, vol. 19, p. 181, 2019.

[56] Y. Wang, X. Chu, and H. Wang, “Note of clarification
regarding data on the association between the interleukin-
1β-511C>T polymorphism and breast cancer risk,” Breast
Cancer Research and Treatment, vol. 155, pp. 419–421,
2016.

[57] Y. Wang, Y. Wang, and L. Li, “Note of clarification regarding
data about the association between the interleukin-1β-
31T>C polymorphism and breast cancer risk,” Breast Cancer
Research and Treatment, vol. 155, pp. 415–417, 2016.

[58] B. Wang and F. Yuan, “The association between interleukin-
1β gene rs1143634 polymorphism and the risk of breast can-
cer,” Cytokine, vol. 113, pp. 475-476, 2019.

[59] S. Pooja, S. Rajender, and R. Konwar, “Response to commen-
tary article: “The association between interleukin-1β gene
rs1143634 polymorphism and the risk of breast cancer by
Bei Wang, Fenlai Yuan”,” Cytokine, vol. 113, p. 477, 2019.

[60] N. Eras, F. T. Daloglu, T. Çolak, M. Guler, and E. Akbas, “The
correlation between IL-1β-C31T gene polymorphism and
susceptibility to breast cancer,” Journal of breast cancer,
vol. 22, pp. 210–218, 2019.

[61] J. Wang, Y. Shi, G.Wang, S. Dong, D. Yang, and X. Zuo, “The
association between interleukin-1 polymorphisms and their
protein expression in Chinese Han patients with breast can-
cer,” Molecular Genetics & Genomic Medicine, vol. 7, article
e804, 2019.

[62] L. N. Al-Eitan, B. H. Al-Ahmad, and F. A. Almomani, “The
association of IL-1 and HRAS gene polymorphisms with
breast cancer susceptibility in a Jordanian population of arab
descent: a genotype-phenotype study,” Cancers, vol. 12, 2020.

[63] A. Malik and T. D. Kanneganti, “Function and regulation of
IL-1α in inflammatory diseases and cancer,” Immunological
Reviews, vol. 281, pp. 124–137, 2018.

[64] M. J. Bou-Dargham, Z. I. Khamis, A. B. Cognetta, and Q. A.
Sang, “The role of interleukin-1 in inflammatory and malig-
nant human skin diseases and the rationale for targeting
interleukin-1 alpha,” Medicinal Research Reviews, vol. 37,
pp. 180–216, 2017.

[65] L. A. Borthwick, “The IL-1 cytokine family and its role in
inflammation and fibrosis in the lung,” Seminars in Immuno-
pathology, vol. 38, pp. 517–534, 2016.

[66] K. Khazim, E. E. Azulay, B. Kristal, and I. Cohen, “Interleukin
1 gene polymorphism and susceptibility to disease,” Immu-
nological Reviews, vol. 281, pp. 40–56, 2018.

[67] V. Ziaee, L. Youssefian, M. Faghankhani et al., “Homozygous
IL1RN mutation in siblings with deficiency of interleukin-1
receptor antagonist (DIRA),” Journal of Clinical Immunol-
ogy, vol. 40, pp. 637–642, 2020.

[68] N. Toplak, Š. Blazina, and T. Avčin, “The role of IL-1 inhibi-
tion in systemic juvenile idiopathic arthritis: current status
and future perspectives,” Drug Design, Development and
Therapy, vol. 12, pp. 1633–1643, 2018.

[69] B. Afsar, A. Covic, A. Ortiz, R. E. Afsar, and M. Kanbay, “The
future of IL-1 targeting in kidney disease,” Drugs, vol. 78,
pp. 1073–1083, 2018.

[70] M. Kantono and B. Guo, “Inflammasomes and cancer: the
dynamic role of the inflammasome in tumor development,”
Frontiers in Immunology, vol. 8, p. 1132, 2017.

[71] K. D. Mayer-Barber and B. Yan, “Clash of the cytokine titans:
counter-regulation of interleukin-1 and type I interferon-
mediated inflammatory responses,” Cellular & Molecular
Immunology, vol. 14, pp. 22–35, 2017.

[72] A. Malik and T. D. Kanneganti, “Inflammasome activation
and assembly at a glance,” Journal of Cell Science, vol. 130,
pp. 3955–3963, 2017.

[73] C. A. Dinarello, “Overview of the IL-1 family in innate
inflammation and acquired immunity,” Immunological
Reviews, vol. 281, pp. 8–27, 2018.

[74] H. J. Anders, “Of inflammasomes and alarmins: IL-1β and
IL-1α in kidney disease,” Journal of the American Society of
Nephrology, vol. 27, pp. 2564–2575, 2016.

[75] J. W. Singer, A. Fleischman, S. Al-Fayoumi, J. O. Mascarenhas,
Q. Yu, and A. Agarwal, “Inhibition of interleukin-1 receptor-
associated kinase 1 (IRAK1) as a therapeutic strategy,” Onco-
target, vol. 9, pp. 33416–33439, 2018.

[76] S. A. Scarneo, P. F. Hughes, K. W. Yang et al., “A highly selec-
tive inhibitor of interleukin-1 receptor-associated kinases 1/4
(IRAK-1/4) delineates the distinct signaling roles of IRAK-
1/4 and the TAK1 kinase,” The Journal of Biological Chemis-
try, vol. 295, pp. 1565–1574, 2020.

[77] T. Schlüter, C. Schelmbauer, K. Karram, and I. A. Mufazalov,
“Regulation of IL-1 signaling by the decoy receptor IL-1R2,”
Journal of Molecular Medicine, vol. 96, pp. 983–992, 2018.

[78] H. Issafras, J. A. Corbin, I. D. Goldfine, and M. K. Roell,
“Detailed mechanistic analysis of gevokizumab, an allosteric
anti-IL-1β antibody with differential receptor-modulating
properties,” The Journal of Pharmacology and Experimental
Therapeutics, vol. 348, pp. 202–215, 2014.

[79] C. A. Dinarello, “An interleukin-1 signature in breast cancer
treated with interleukin-1 receptor blockade: implications for
treating cytokine release syndrome of checkpoint inhibitors,”
Cancer Research, vol. 78, pp. 5200–5202, 2018.

[80] N. A. Espinoza-Sánchez, G. K. Chimal-Ramírez, A. Mantilla,
and E.M. Fuentes-Pananá, “IL-1β, IL-8, andmatrixmetallopro-
teinases-1, -2, and -10 are enriched upon monocyte-breast can-
cer cell cocultivation in a Matrigel-based three-dimensional
system,” Frontiers in Immunology, vol. 8, p. 205, 2017.

[81] T. C. Wu, K. Xu, J. Martinek et al., “IL1 receptor antagonist
controls transcriptional signature of inflammation in patients
with metastatic breast cancer,” Cancer Research, vol. 78,
pp. 5243–5258, 2018.

15Mediators of Inflammation



[82] E. L. Kuan and S. F. Ziegler, “A tumor-myeloid cell axis,
mediated via the cytokines IL-1α and TSLP, promotes the
progression of breast cancer,” Nature Immunology, vol. 19,
pp. 366–374, 2018.

[83] C. Voigt, P. May, A. Gottschlich et al., “Cancer cells induce
interleukin-22 production from memory CD4(+) T cells via
interleukin-1 to promote tumor growth,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 114, pp. 12994–12999, 2017.

[84] B. Guo, S. Fu, J. Zhang, B. Liu, and Z. Li, “Targeting inflam-
masome/IL-1 pathways for cancer immunotherapy,” Scien-
tific Reports, vol. 6, article 36107, 2016.

[85] P. Vikhreva, V. Petrova, T. Gokbulut et al., “TAp73 upregu-
lates IL-1β in cancer cells: potential biomarker in lung and
breast cancer?,” Biochemical and Biophysical Research Com-
munications, vol. 482, pp. 498–505, 2017.

[86] J. H. Jang, D. H. Kim, J. M. Lim et al., “Breast cancer cell-
derived soluble CD44 promotes tumor progression by
triggering macrophage IL1β production,” Cancer Research,
vol. 80, pp. 1342–1356, 2020.

[87] S. Liu, J. S. Lee, C. Jie et al., “HER2 overexpression triggers an
IL1α proinflammatory circuit to drive tumorigenesis and
promote chemotherapy resistance,” Cancer Research,
vol. 78, pp. 2040–2051, 2018.

[88] R. Kolb, L. Phan, N. Borcherding et al., “Obesity-associated
NLRC4 inflammasome activation drives breast cancer pro-
gression,” Nature Communications, vol. 7, p. 13007, 2016.

[89] Y. Wen, M. Wang, J. Yang et al., “A comparison of fentanyl
and flurbiprofen axetil on serum VEGF-C, TNF-α, and IL-1β
concentrations in women undergoing surgery for breast can-
cer,” Pain Practice, vol. 15, pp. 530–537, 2015.

[90] K. Kersten, S. B. Coffelt, M. Hoogstraat et al., “Mammary
tumor-derived CCL2 enhances pro-metastatic systemic inflam-
mation through upregulation of IL1β in tumor-associated mac-
rophages,” Oncoimmunology, vol. 6, article e1334744, 2017.

[91] I. Kaplanov, Y. Carmi, R. Kornetsky et al., “Blocking IL-1β
reverses the immunosuppression in mouse breast cancer
and synergizes with anti-PD-1 for tumor abrogation,” Pro-
ceedings of the National Academy of Sciences, vol. 116,
pp. 1361–1369, 2019.

[92] L. F. Campesato, A. P. M. Silva, L. Cordeiro et al., “High IL-
1R8 expression in breast tumors promotes tumor growth
and contributes to impaired antitumor immunity,” Oncotar-
get, vol. 8, pp. 49470–49483, 2017.

[93] Z. Castaño, B. P. San Juan, A. Spiegel et al., “IL-1β inflamma-
tory response driven by primary breast cancer prevents
metastasis-initiating cell colonization,” Nature Cell Biology,
vol. 20, pp. 1084–1097, 2018.

[94] B. Fernandez-Garcia, N. Eiro, M. A. Miranda et al., “Prognos-
tic significance of inflammatory factors expression by stroma
from breast carcinomas,” Carcinogenesis, vol. 37, pp. 768–
776, 2016.

[95] M. Jeon, J. Han, S. J. Nam, J. E. Lee, and S. Kim, “Elevated IL-1β
expression induces invasiveness of triple negative breast cancer
cells and is suppressed by zerumbone,” Chemico-Biological
Interactions, vol. 258, pp. 126–133, 2016.

[96] K. Tawara, H. Scott, J. Emathinger et al., “HIGH expression
of OSM and IL-6 are associated with decreased breast cancer
survival: synergistic induction of IL-6 secretion by OSM and
IL-1β,” Oncotarget, vol. 10, pp. 2068–2085, 2019.

[97] B. Celik, A. D. Yalcin, G. E. Genc, T. Bulut, S. Kuloglu Genc,
and S. Gumuslu, “CXCL8, IL-1β and sCD200 are pro-
inflammatory cytokines and their levels increase in the circu-
lation of breast carcinoma patients,” Biomedical reports,
vol. 5, pp. 259–263, 2016.

[98] R. W. Wyszynski, B. F. Gibbs, L. Varani, D. Iannotta, and
V. V. Sumbayev, “Interleukin-1 beta induces the expression
and production of stem cell factor by epithelial cells: crucial
involvement of the PI-3K/mTOR pathway and HIF-1 tran-
scription complex,” Cellular & molecular immunology,
vol. 13, pp. 47–56, 2016.

[99] I. Filippi, F. Carraro, and A. Naldini, “Interleukin-1β affects
MDAMB231 breast cancer cell migration under hypoxia: role
of HIF-1α and NFκB transcription factors,” Mediators of
Inflammation, vol. 2015, Article ID 789414, 10 pages, 2015.

[100] D. Ryan, A. Sinha, D. Bogan, J. Davies, J. Koziol, and W. M.
ElShamy, “A niche that triggers aggressiveness within
BRCA1-IRIS overexpressing triple negative tumors is sup-
ported by reciprocal interactions with the microenviron-
ment,” Oncotarget, vol. 8, pp. 103182–103206, 2017.

[101] P. Escobar, C. Bouclier, J. Serret et al., “IL-1β produced by
aggressive breast cancer cells is one of the factors that dictate
their interactions with mesenchymal stem cells through che-
mokine production,” Oncotarget, vol. 6, pp. 29034–29047,
2015.

[102] Y. Liubomirski, S. Lerrer, T. Meshel et al., “Tumor-stroma-
inflammation networks promote pro-metastatic chemokines
and aggressiveness characteristics in triple-negative breast
cancer,” Frontiers in Immunology, vol. 10, p. 757, 2019.

[103] X. Luo, S. Huang, N. He et al., “Inflammatory human umbil-
ical cord-derived mesenchymal stem cells promote stem cell-
like characteristics of cancer cells in an IL-1β-dependent
manner,” BioMed Research International, vol. 2018, Article
ID 7096707, 12 pages, 2018.

[104] M. D. Wellenstein, S. B. Coffelt, D. E. M. Duits et al., “Loss of
p 53 triggers WNT-dependent systemic inflammation to
drive breast cancer metastasis,” Nature, vol. 572, pp. 538–
542, 2019.

[105] L. Knopfová, E. Biglieri, N. Volodko et al., “Transcription
factor c-Myb inhibits breast cancer lung metastasis by
suppression of tumor cell seeding,” Oncogene, vol. 37,
pp. 1020–1030, 2018.

[106] R. Cheng, S. Billet, C. Liu et al., “Periodontal inflammation
recruits distant metastatic breast cancer cells by increasing
myeloid-derived suppressor cells,” Oncogene, vol. 39,
pp. 1543–1556, 2020.

[107] B. Weichand, R. Popp, S. Dziumbla et al., “S1PR1 on tumor-
associated macrophages promotes lymphangiogenesis and
metastasis via NLRP3/IL-1β,” The Journal of Experimental
Medicine, vol. 214, pp. 2695–2713, 2017.

[108] S. J. Storr, S. Safuan, N. Ahmad, M. El-Refaee, A. M. Jackson,
and S. G. Martin, “Macrophage-derived interleukin-1beta
promotes human breast cancer cell migration and lymphatic
adhesion in vitro,” Cancer Immunology, Immunotherapy,
vol. 66, pp. 1287–1294, 2017.

[109] E. A. Elghonaimy, S. A. Ibrahim, A. Youns et al., “Secretome of
tumor-associated leukocytes augment epithelial-mesenchymal
transition in positive lymph node breast cancer patients via
activation of EGFR/Tyr 845 and NF-κB/p 65 signaling path-
way,” Tumour Biology, vol. 37, pp. 12441–12453, 2016.

[110] T. Vilsmaier, B. Rack, A. König et al., “Influence of circulating
tumour cells on production of IL-1α, IL-1β and IL-12 in sera of

16 Mediators of Inflammation



patients with primary diagnosis of breast cancer before treat-
ment,” Anticancer Research, vol. 36, pp. 5227–5236, 2016.

[111] W. Zhang, Y. Shen, H. Huang et al., “A Rosetta Stone for
breast cancer: prognostic value and dynamic regulation of
neutrophil in tumor microenvironment,” Frontiers in Immu-
nology, vol. 11, p. 1779, 2020.

[112] D. Lefley, F. Howard, F. Arshad et al., “Development of clin-
ically relevant in vivo metastasis models using human bone
discs and breast cancer patient-derived xenografts,” Breast
Cancer Research, vol. 21, p. 130, 2019.

[113] R. Eyre, D. G. Alférez, A. Santiago-Gómez et al., “Microenvi-
ronmental IL1β promotes breast cancer metastatic colonisation
in the bone via activation ofWnt signalling,”Nature Communi-
cations, vol. 10, p. 5016, 2019.

[114] C. Tulotta, D. V. Lefley, K. Freeman et al., “Endogenous pro-
duction of IL1B by breast cancer cells drives metastasis and
colonization of the bone microenvironment,” Clinical Cancer
Research, vol. 25, pp. 2769–2782, 2019.

[115] R. G. Ungard, K. Linher-Melville, M. G. Nashed, M. Sharma,
J. Wen, and G. Singh, “xCT knockdown in human breast can-
cer cells delays onset of cancer-induced bone pain,” Molecu-
lar Pain, vol. 15, article 1744806918822185, 2019.

[116] M. Pein, J. Insua-Rodríguez, T. Hongu et al., “Metastasis-
initiating cells induce and exploit a fibroblast niche to fuel
malignant colonization of the lungs,” Nature Communica-
tions, vol. 11, p. 1494, 2020.

[117] G. Bouchard, H. Therriault, R. Bujold, C. Saucier, and
B. Paquette, “Induction of interleukin-1β by mouse
mammary tumor irradiation promotes triple negative breast
cancer cells invasion and metastasis development,” Interna-
tional Journal of Radiation Biology, vol. 93, pp. 507–516,
2017.

[118] M. Dagenais, J. Dupaul-Chicoine, T. Douglas, C. Champagne,
A. Morizot, and M. Saleh, “The interleukin (IL)-1R1 pathway
is a critical negative regulator of PyMT-mediated mammary
tumorigenesis and pulmonary metastasis,” Oncoimmunology,
vol. 6, article e1287247, 2017.

[119] A. F. Nawas, R. Mistry, S. Narayanan et al., “IL-1 induces
p62/SQSTM1 and autophagy in ERα(+)/PR(+) BCa cell lines
concomitant with ERα and PR repression, conferring an
ERα(-)/PR(-) BCa-like phenotype,” Journal of cellular bio-
chemistry, vol. 120, no. 2, pp. 1477–1491, 2019.

[120] A. M. Jiménez-Garduño, M. G. Mendoza-Rodríguez,
D. Urrutia-Cabrera et al., “IL-1β induced methylation of
the estrogen receptor ERα gene correlates with EMT and che-
moresistance in breast cancer cells,” Biochemical and Bio-
physical Research Communications, vol. 490, pp. 780–785,
2017.

[121] M. Mendoza-Rodríguez, H. Arévalo Romero, E. M. Fuentes-
Pananá, J. T. Ayala-Sumuano, and I. Meza, “IL-1β induces
up-regulation of BIRC3, a gene involved in chemoresistance
to doxorubicin in breast cancer cells,” Cancer Letters,
vol. 390, pp. 39–44, 2017.

[122] M. G. Mendoza-Rodríguez, J. T. Ayala-Sumuano, L. García-
Morales, H. Zamudio-Meza, E. A. Pérez-Yepez, and
I. Meza, “IL-1β inflammatory cytokine-induced TP63 iso-
form ΔNP63α signaling cascade contributes to cisplatin resis-
tance in human breast cancer cells,” International Journal of
Molecular Sciences, vol. 20, p. 270, 2019.

[123] K. Oh, O. Y. Lee, Y. Park, M. W. Seo, and D. S. Lee, “IL-1β
induces IL-6 production and increases invasiveness and
estrogen-independent growth in a TG2-dependent manner

in human breast cancer cells,” BMC Cancer, vol. 16, p. 724,
2016.

[124] S. J. Vastert, Y. Jamilloux, P. Quartier et al., “Anakinra in chil-
dren and adults with Still’s disease,” Rheumatology, vol. 58,
pp. vi9–vi22, 2019.

[125] H. Ozdogan and S. Ugurlu, “Canakinumab for the treatment
of familial Mediterranean fever,” Expert Review of Clinical
Immunology, vol. 13, pp. 393–404, 2017.

[126] M. F. McDermott, “Rilonacept in the treatment of chronic
inflammatory disorders,” Drugs Today (Barc), vol. 45, no. 6,
pp. 423–430, 2009.

[127] A. Bettiol, E. Silvestri, G. Di Scala et al., “The right place of
interleukin-1 inhibitors in the treatment of Behçet’s syn-
drome: a systematic review,” Rheumatology International,
vol. 39, pp. 971–990, 2019.

[128] G. Cavalli and C. A. Dinarello, “Anakinra therapy for non-
cancer inflammatory diseases,” Frontiers in Pharmacology,
vol. 9, p. 1157, 2018.

[129] P. M. Ridker, J. G. Mac Fadyen, T. Thuren, B. M. Everett,
P. Libby, and R. J. Glynn, “Effect of interleukin-1β inhibition
with canakinumab on incident lung cancer in patients with
atherosclerosis: exploratory results from a randomised,
double-blind, placebo-controlled trial,” Lancet, vol. 390,
pp. 1833–1842, 2017.

[130] K. M. Schenk, J. E. Reuss, K. Choquette, and A. I. Spira, “A
review of canakinumab and its therapeutic potential for
non-small cell lung cancer,” Anti-Cancer Drugs, vol. 30,
pp. 879–885, 2019.

[131] A. Dhorepatil, S. Ball, R. K. Ghosh, M. Kondapaneni, and C. J.
Lavie, “Canakinumab: promises and future in cardiometa-
bolic diseases and malignancy,” The American Journal of
Medicine, vol. 132, pp. 312–324, 2019.

[132] Y. Peng and X. Wang, “Kineret protein solution survives ten
years,” Journal of Pharmaceutical and Biomedical Analysis,
vol. 160, pp. 383–385, 2018.

[133] R.M. Fleischmann, H. Bliddal, F. J. Blanco et al., “Aphase II trial
of lutikizumab, an anti-interleukin-1α/β dual variable domain
immunoglobulin, in knee osteoarthritis patients with synovitis,”
Arthritis & Rhematology, vol. 71, pp. 1056–1069, 2019.

[134] C. A. Dinarello, “Treatment of inflammatory diseases with
IL-1 blockade,” Current otorhinolaryngology reports, vol. 6,
pp. 1–14, 2018.

[135] R. Kurzrock, T. Hickish, L. Wyrwicz et al., “Interleukin-1
receptor antagonist levels predict favorable outcome after
bermekimab, a first-in-class true human interleukin-1α anti-
body, in a phase III randomized study of advanced colorectal
cancer,” Oncoimmunology, vol. 8, article 1551651, 2019.

[136] C. F. Li, T. C. Chan, C. I. Wang et al., “RSF1 requires CEBP/β
and hSNF2H to promote IL-1β-mediated angiogenesis: the
clinical and therapeutic relevance of RSF1 overexpression
and amplification in myxofibrosarcomas,” Angiogenesis,
vol. 24, pp. 533–548, 2021.

[137] N. Isambert, A. Hervieu, C. Rébé et al., “Fluorouracil and bev-
acizumab plus anakinra for patients with metastatic colorec-
tal cancer refractory to standard therapies (IRAFU): a single-
arm phase 2 study,” Oncoimmunology, vol. 7, article
e1474319, 2018.

[138] I. Holen, D. V. Lefley, S. E. Francis et al., “IL-1 drives breast
cancer growth and bone metastasis in vivo,” Oncotarget,
vol. 7, pp. 75571–75584, 2016.

17Mediators of Inflammation



[139] P. Zheng, Y. Zhang, B. Zhang, Y. Wang, Y. Wang, and
L. Yang, “Synthetic human monoclonal antibody targets
hIL1 receptor accessory protein chain with therapeutic
potential in triple-negative breast cancer,” Biomedicine &
Pharmacotherapy, vol. 107, pp. 1064–1073, 2018.

[140] C. A. Dinarello and J. W. van der Meer, “Treating inflamma-
tion by blocking interleukin-1 in humans,” Seminars in
Immunology, vol. 25, pp. 469–484, 2013.

[141] Y. Zhang, B. Xu, and X. P. Zhang, “Effects of miRNAs on
functions of breast cancer stem cells and treatment of breast
cancer,” Oncotargets and Therapy, vol. 11, pp. 4263–4270,
2018.

[142] H. Akbulut, Y. E. Ersoy, E. Coskunpinar et al., “The role of
miRNAs as a predictor of multicentricity in breast cancer,”
Molecular Biology Reports, vol. 46, pp. 1787–1796, 2019.

[143] J. P. Long, L. F. Dong, F. F. Chen, and Y. F. Fan, “miR-146a-
5p targets interleukin-1 receptor-associated kinase 1 to
inhibit the growth, migration, and invasion of breast cancer
cells,” Oncology letters, vol. 17, pp. 1573–1580, 2019.

[144] A. Caraffa, C. E. Gallenga, S. K. Kritas, G. Ronconi, P. Di Emidio,
and P. Conti, “CAR-T cell therapy causes inflammation by IL-1
which activates inflammatory cytokine mast cells: anti-
inflammatory role of IL-37,” Journal of Biological Regulators
and Homeostatic Agents, vol. 33, pp. 1981–1985, 2019.

[145] V. Gelfo, D. Romaniello, M. Mazzeschi et al., “Roles of IL-1 in
cancer: from tumor progression to resistance to targeted ther-
apies,” International Journal of Molecular Sciences, vol. 21,
p. 6009, 2020.

[146] V. Gelfo, M. Mazzeschi, G. Grilli et al., “A novel role for the
interleukin-1 receptor axis in resistance to anti-EGFR ther-
apy,” Cancers, vol. 10, p. 355, 2018.

[147] M. Espinosa-Cotton, S. N. Rodman Iii, K. A. Ross et al.,
“Interleukin-1 alpha increases anti-tumor efficacy of cetuxi-
mab in head and neck squamous cell carcinoma,” Journal
for Immunotherapy of Cancer, vol. 7, p. 79, 2019.

[148] E. Voronov and R. N. Apte, “Targeting the tumor microenvi-
ronment by intervention in interleukin-1 biology,” Current
Pharmaceutical Design, vol. 23, pp. 4893–4905, 2017.

[149] C. Woolston, “Breast cancer,” Nature, vol. 527, p. S101, 2015.

[150] J. Shi, F. Liu, and Y. Song, “Progress: targeted therapy, immu-
notherapy, and new chemotherapy strategies in advanced
triple-negative breast cancer,” Cancer Management and
Research, vol. 12, pp. 9375–9387, 2020.

[151] J. Jasionowska, M. Talarowska, E. Kalinka et al., “Interleukin
1 level, cognitive performance, and severity of depressive
symptoms in patients treated with systemic anticancer ther-
apy: a prospective study,” Croatian Medical Journal, vol. 60,
pp. 166–173, 2019.

[152] M. Z. Aumeeruddy and M. F. Mahomoodally, “Combating
breast cancer using combination therapy with 3 phytochem-
icals: piperine, sulforaphane, and thymoquinone,” Cancer,
vol. 125, pp. 1600–1611, 2019.

[153] M. Du, Y. Ouyang, F. Meng et al., “Polymer-lipid hybrid
nanoparticles: a novel drug delivery system for enhancing
the activity of psoralen against breast cancer,” International
Journal of Pharmaceutics, vol. 561, pp. 274–282, 2019.

18 Mediators of Inflammation



Research Article
Evaluation of the Therapeutic Effects of the Hydroethanolic
Extract of Portulaca oleracea on Surgical-Induced
Peritoneal Adhesion

Ali Jaafari,1,2 Vafa Baradaran Rahimi,3 Nasser Vahdati-Mashhadian,2

Roghayeh Yahyazadeh,2,3 Alireza Ebrahimzadeh-Bideskan,4 Maede Hasanpour,5

Mehrdad Iranshahi,5 Sajjad Ehtiati,6 Hamed Rajabi,6 Mohammadreza Mahdinezhad,6

Hassan Rakhshandeh ,1 and Vahid Reza Askari 6,7,8

1Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
2Departments of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
3Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
5Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
6Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University
of Medical Sciences, Mashhad, Iran
7Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
8Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences,
Mashhad, Iran

Correspondence should be addressed to Hassan Rakhshandeh; rakhshandehh@mums.ac.ir
and Vahid Reza Askari; askariv@mums.ac.ir

Received 30 April 2021; Accepted 18 July 2021; Published 2 August 2021

Academic Editor: Matilde Otero-Losada

Copyright © 2021 Ali Jaafari et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. Peritoneal adhesion (PA) is an abnormal connective tissue that usually occurs between tissues adjacent to damaged
organs during processes such as surgery. In this study, the anti-inflammatory and antioxidant effects of Portulaca oleracea (PO)
were investigated against postoperative-induced peritoneal adhesion. Methods. Thirty healthy male Wistar rats (220 ± 20 g, 6-8
weeks) were randomly divided into four groups: (1) normal, (2) control (induced peritoneal adhesion), and (3) and (4) PO
extracts (induced peritoneal adhesion and received 100 or 300mg/kg/day of PO extract for seven days). Finally, macroscopic
and microscopic examinations were performed using different scoring systems and immunoassays in the peritoneal lavage fluid.
Results. We found that the levels of adhesion scores and interleukin- (IL-) 1β, IL-6, IL-10, tumour necrosis factor- (TNF-) α,
transforming growth factor- (TGF-) β1, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA) were
increased in the control group. However, PO extract (100 and 300mg/kg) notably reduced inflammatory (IL-1β, IL-6, and TNF-
α), fibrosis (TGF-β1), angiogenesis (VEGF), and oxidative (MDA) factors, while increased anti-inflammatory cytokine IL-10,
antioxidant factor glutathione (GSH), compared to the control group. Conclusion. Oral administration of PO improved
postoperational-induced PA by alleviating the oxidative factors, fibrosis, inflammatory cytokines, angiogenesis biomarkers, and
stimulating antioxidative factors. Hence, PO can be considered a potential herbal medicine to manage postoperative PA.
However, further clinical studies are required to approve the effectiveness of PO.
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1. Introduction

Abnormal connective fibrous tissues join in the surgical area
and cause adhesions between the organs and nearby tissues at
nonanatomic locations [1]. Notably, infertility, reinterven-
tion, abdominal pain, and intestinal occlusion occur follow-
ing peritoneal adhesions (PA). The progression rate of PA
has related to some risk factors such as surgical trauma,
genetic factors, presence of infection, and peritoneal contam-
ination during the surgical operation [2]. In particular, peri-
tonitis is considered one of the main reasons for PA
progression mentioned in animal and cellular studies. Fur-
thermore, the duration of operation and type of surgical
approach directly are related to the PA formation [3]. In this
regard, the open procedure (laparotomy) has been more
frequently associated with PA than the laparoscopic
approach [4]. Also, in the United States in 1998, the eco-
nomic burden of adhesions was estimated at around 1437.1
million dollars per year [5]. Some studies indicated the reduc-
tion of tissue plasminogen activator (tPA)/plasminogen acti-
vator inhibitor-1 (PAI-1) ratio [6], increase of transforming
growth factor-beta-1 (TGF-β1), tumour necrosis factor-
alpha (TNF-α) [6], interleukin- (IL-) 6 [7], vascular endothe-
lial growth factor (VEGF) [8] and cyclooxygenase (COX),
and inhibition of proteolytic enzymes (e.g., matrix metallopro-
teases (MMPs)) [9], caused to PA development [10]. In addi-
tion, further research also proved that upregulation of
inducible nitric oxide synthase (iNOS) [9], stress oxidative
markers, and myeloperoxidase (MPO) promoted PA progres-
sion and development [10]. These alterations are considered
underlying factors for the generation of collagen type-1 and
PA development [11]. As primary cells involving PA develop-
ment, phagocytic and secretory activities of macrophages are
increased after five days from surgical procedure and injury
by rolling the immune system. Indeed, the surface of the
injured area was renewed by macrophages that provide new
mesothelial layers with the help of fibroblast cells, usually three
to five days after surgical injury [12]. The formation and devel-
opment of the fibrins were inhibited by chemical agents such
as glucocorticosteroids, calcium channel blockers, nonsteroi-
dal anti-inflammatory drugs (NSAIDs), antibiotics, histamine
antagonists, and fibrinolytic agents [13]. However, they have
no enough effectiveness and efficacy for the prevention or
treatment of PA.

The therapeutic advantages of herbal medicine were con-
sidered in some research because of its availability, possible
efficacy, and safety [14]. Portulaca oleracea L. (PO) is a
warm-climate herbaceous, namely, “purslane” in the USA
and Australia, a famous rig in Egypt, pigweed in England,
pourpier in France, Ma-Chi-Xian in China, and Qurfeh in
Iran [15, 16]. Also, it is the main source of phosphorus, cal-
cium selenium, manganese, iron [17], and omega-3 fatty
acids that promote immune function [16, 18]. There are sev-
eral reports of benefits of the PO plant, including attenuating
effects on cancers, coronary artery disease, hypertension, and
inflammatory and autoimmune disorders [16, 19]. Experi-
mentally, it has been shown that the plant has several active
constituents, including monoterpenes (portulosides A and
B), diterpenes (portulene), β-amyrin type triterpenoids, and

vitamin A [20]). Besides, it contains α-tocopherol, ascorbic
acid, B-complex vitamins (niacin, pyridoxine, and riboflavin)
[21], and amino acids (leucine, lysine, phenylalanine, methi-
onine, isoleucine, proline, cysteine, valine, threonine, and
tyrosine) [16, 22]. Moreover, further in vivo and in vitro
studies represented neuroprotective [18], antidiabetic [23],
antioxidant [24], anticancer [25], antiulcerogenic [26], and
hepatoprotective [15] effects of PO. However, there is no
study evaluating the effectiveness of the oral administration
of PO on preventing surgical-induced peritoneal adhesion.
Therefore, in the present study, we investigated the protective
effects of PO against the surgical-induced peritoneal adhe-
sion in a rat model.

2. Materials and Methods

2.1. Drugs and Chemicals. Ethanol was prepared from Sigma-
Aldrich Chemical Co. (St. Louis, MO, USA). Normal saline
was purchased from the Samen® pharmacy factory (Iran).
Ketamine and xylazine were obtained from ChemiDaru
Company (Iran). Enzyme-linked immunosorbent assay
(ELISA) kits, including VEGF, IL-1β, IL-6, TGF-β, IL-10,
and TNF-α, were purchased from IBL International® Com-
pany (Switzerland), and malondialdehyde (MDA), nitric
oxide (NO), and glutathione (GSH) kits were prepared from
ZellBio Company (Germany).

2.1.1. Plant Material and Preparation of the Extract. PO (her-
barium No. 12-1615-240) was prepared from Mashhad,
Khorasan Razavi Province, Iran, in Jan 2020. First, the aerial
parts of the plant were freshly prepared then washed and
dried in the shadow (25°C). After the complete drying of
the plant, 100 g of the plant was powdered using a mill. Next,
the extract was prepared by the maceration method using
800ml of 70% v/v ethanol/water solution for the next 72 h.
Afterwards, the obtained liquid extract was concentrated
using a rotary evaporator at 40°C, which yields a solid pow-
der (20% w/w of dried powder) [27–29]. This powder is
stored in the freezer at -20°C until experimenting. Finally,
the extract was dissolved in normal saline containing 5% v/
v Tween 80 [30].

2.1.2. Liquid Chromatography-Mass Spectrometry (LC-MS)
Apparatus. The LC-MS analysis was performed using an
AB SCIEX QTRAP (Shimadzu) liquid chromatography
coupled with a triple quadrupole mass spectrometer. Liquid
chromatography separation was performed on a Supelco
C18 (15mm × 2:1mm × 3 μm) column. The analysis was
done at a flow rate of 0.2ml/min. The binary mobile phase
consisted of A: 0.1% formic acid in water and B: 0.1% formic
acid in acetonitrile. The gradient analysis started with 10% of
B, isocratic conditions were maintained for 10min, gradually
turned to 30% B over 20min, gradually increased to 80% B
over 30min, and held at 80% B for 10min, and the system
was turned to the initial condition of 10% B in 5min. Finally,
the system was reequilibrated over 5min. The mass spectra
were acquired in a range of 100 to 1700 within the 80-
minute scan time. The positive electrospray ionisation (ESI)
mode was applied for the mass spectrometer. Mass feature
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extraction of the acquired LC-MS data and maximum detec-
tion of peaks was done using the MZmine analysis software
package, version 2.3.

2.2. Experimental Animals and Ethical Statements. The inves-
tigation was performed with male Wistar rats weighing 200-
250 g obtained from the animal laboratory of Faculty of Med-
icine, Mashhad University of Medical Sciences, Mashhad,
Iran. The animals were preserved in the institute animal
house at 24 ± 1°Cwith a 12/12 h light-dark cycle for one week
before and through the experiment with free access to water
and food. All animal procedures were carried out in compli-
ance with the National Institutes of Health’s Guide for the
Use and Care of Laboratory Animals guidelines of institu-
tional guidelines. Moreover, the National Institute for
Medical Research Development ethical committee approved
all procedures involving animals based on the policies of
animal experiments and care (Ethical approval code:
971254, Approval date: 2018–07–01, Approval ID:
IR.NIMAD.REC.1397.084).

2.3. Model Induction and Grouping and Interventions. To
generate abdominal adhesions, the sterilised gauze was used
to induce peritoneal abrasion and adhesion. First, all rats
were anaesthetised with intraperitoneal (i.p.) injection of
100mg/kg ketamine, 10mg/kg xylazine, and 3mg/kg acepro-
mazine, and then, rats’ abdominal hair was carefully shaved
and then washed with 70% v/v ethanol [30]. Next, the steri-
lised gauze was repeatedly contacted to the peritoneum wall
until the appearance of the faded purple spot on the perito-
neum. Then, the peritoneal tissue was sutured with nonab-
sorbable sutures No. 4.0. After that, this area was disinfected
with a few drops of chloramphenicol [31–33]. At the end of
the surgery, the rats received cefazolin 300mg/kg (i.m.) to pre-
vent wound infection [32, 33] and then were transferred to the
recovery room for grouping and interventions for seven days.
The surgery procedure was prolonged to a maximum of ten
min. It should be noted that the gavage of groups was per-
formed on the first day after the surgery.

Thirty healthy male Wistar rats (220 ± 20 g, 6-8 weeks)
were randomly divided into four groups, as described below:
group one, normal (six rats without surgical procedures);
group two, control (eight rats induced peritoneal adhesion
and gavaged with the vehicle of PO extract for seven consec-
utive days); group three (low dose, eight rats induced perito-
neal adhesion and received 100mg/kg/day of PO extract for
seven consecutive days); group four (high dose, eight rats
induced peritoneal adhesion and received 300mg/kg/day of

PO extract for seven consecutive days). The doses of PO were
selected according to the preliminary evaluation.

2.4. Assessment of Adhesion Grade. The rats’ laparotomy was
done on the 8th day after the surgery. The peritoneal adhesion
grades were scored via the two scoring systems (Tables 1 and
2) with two independent researchers blinded on the proce-
dure and the grouping.

2.5. Histological Evaluation. In this study, paraffin-embedded
histological sections were stained by Masson’s trichrome
staining to assess the extent and distribution of fibrosis in
rats’ peritoneal tissue as described by the manufacturer
(Sigma-Aldrich) [34, 35]. In addition, to prepare the perito-
neal tissue sample, after removing formalin and washing with
distilled water three times, the tissues were transferred to
different concentrations of alcohol (50-100% v/v) for some
minutes. Tissue sections were observed with magnifications
of 4x, 20x, and 40x using a Nikon E-1000 microscope (Japan)
under bright-field optics and photomicrographed using Easy
Image 1 (Bergström Instrument AB, Sweden).

2.6. Total Protein Measurement Method. The Bradford
protein assay was performed to quantify the total protein
concentration in a sample [36]. For this reason, first, the Coo-
massie Brilliant Blue G-250 dye (10mg) was dissolved in
50ml ethanol 96%. Then, phosphoric acid 85% (10ml) was
added and the volume of the solution was increased to
100ml. Next, bovine serum albumin (4mg/ml) solution was
prepared as a standard curve. Then, after sample pouring
(20μl), a Bradford reagent (200μl) was added to the 96-
well microplate. Finally, the light absorption was read at
595 nm with a microplate reader after 5 minutes.

2.7. Evaluation of Inflammatory, Angiogenesis, and Fibrosis
Biomarkers. According to the manufacturer’s instruction, as
indices of inflammation, the levels of TNF-α, IL-1β, and IL-
6 were measured in peritoneal lavage fluid using ELISA kits
[37, 38]. In addition, the levels of VEGF, as an angiogenesis
marker, TGF-β, as a fibrosis factor, and IL-10, as an anti-
inflammatory and suppressive cytokine, were also measured
in the peritoneal fluid sample by ELISA kits according to
the manufacturer’s instruction [31, 39].

2.8. Measurement of Oxidant and Antioxidant Parameters.
The levels of malondialdehyde (MDA), as an oxidant marker,
and glutathione (GSH), as an antioxidant marker, were mea-
sured in the peritoneal fluid using commercially available
biochemistry kits [31, 38, 40].

Table 1: Scoring system for peritoneal adhesion according to the Nair et al. criteria [53].

Grade Description of adhesive bands

0 The complete absence of adhesions

1 Only one band of adhesions among the viscera or between one viscera and the abdominal wall

2 Two bands: among viscera’s or from viscera to abdominal wall

3
More than two bands: among viscera or from viscera to the abdominal wall or all intestine making a mass without adhesion to the

abdominal wall

4 Viscera adhered directly to the abdominal wall, independent of the number and the extension of adhesion bands
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2.9. Statistical Analysis. Data were analysed using GraphPad
Prism software (version 6.01) and represented as mean ±
SD and median ± interquartile range (IQR), according to
the nature of parametric or nonparametric data, respectively.
A one-way analysis of variance (ANOVA) was performed
with Tukey’s Kramer multiple comparison posttest for para-
metric data. However, for the nonparametric data (adhesion
scores), a Kruskal-Wallis’ test was performed with Dunn’s

multiple comparison post hoc test. P values (P) when lower
than 0.05 were considered statistically significant [28, 39, 40].

3. Results

3.1. LC-MS Analysis of PO Extract. In total, 30 compounds
were identified in the hydroethanolic extract of the aerial
parts of PO, mainly including alkaloids, flavonoids,

Table 3: Peak assignment of metabolites in the hydroethanol extract of PO using LC-MS in the positive mode.

Peak No. Compound identification tR (min) M+H (m/z) Ref.

1 Portulacanone D 26.9 299.76 [25]

2 Noradrenaline 37.0 170.7 [54]

3 Dopa 15.0 198.12 [55]

4 Oleraceins A 62.5 504.66 [55]

5 Oleraceins B 9.5 533.76 [55]

6 Oleraceins C 64.1 666.06 [55]

7 Oleraceins D 13.1 696.84 [55]

8 Adenosine 19.8 268.8 [55]

9 (3R)-3,5-Bis(3-methoxy-4-hydroxyphenyl)-2,3-dihydro-2(1H)-pyridinone 89.3 342.36 [56]

10 Aurantiamide acetate 36.4 445.8 [57]

11 Cyclo(L-tyrosinyl-L-tyrosinyl) 67.7 327.24 [57]

12 Portuloside A 72.2 332.22 [58]

13 Portulene 66.3 337.02 [15]

14 Lupeol 66.5 427.5 [15]

15 (3S)-3-O-(β-D-Glucopyranosyl)-3,7-dimethylocta-1,6-dien-3-ol 67.8 318.12 [59]

16 Friedelane 54.9 413.34 [60]

17 Quercetin 39.4 303.18 [61]

18 Myricetin 55.1 318.24 [61]

19 Genistin 65.4 433.20 [62]

20 Indole-3-carboxylic acid 77.8 162.90 [25]

21 Palmitic acid 62.2 256.14 [63]

22 Stearic acid 37.8 285.18 [63]

23 Caffeic acid 65.8 181.08 [64]

24 Riboflavin 35.0 376.62 [21]

25 Vitamin C 28.5 177.00 [21]

26 α-Tocopherol 67.1 431.22 [63]

27 Hesperidin 76.8 611.58 [65]

28 Portulacerebroside A 64.6 843.18 [60]

29 β-Sitosterol 48.7 415.32 [15]

30 β-Carotene 37.5 538.74 [63]

Table 2: Scoring system for peritoneal adhesion according to Adhesion Scoring Scheme [44, 53].

Grade Description of adhesive bands

0 Absence of adhesions

1 A thin layer adhesion

2 More than a thin layer adhesion

3 Thick adhesive tissue attached to the surgical site

4 Thick adhesive tissue attached to different areas of the abdomen

5 Thick adhesive tissue containing blood vessels or too much adhesive tissue or organ adhesive tissue
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Figure 1: Continued.
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terpenoids, and vitamins. Data concerning the identification
of the compounds are represented in Table 3. The total ion
chromatogram of PO extract is shown in Figure 1(a). In
addition, the MS spectral data were compared with the
reported compounds in some previous literature. Examples
of extracted ion chromatograms from the total ion chromato-
gram and its relatedmass are represented in Figures 1(b)–1(g).
Alkaloids are one of the important chemicals found in PO,
including dopa, noradrenalin, and oleraceins A, B, C, and D
(cyclodopa alkaloids). Moreover, PO contains monoterpenes
(portulosides A), diterpenes (portulene), ascorbic acid, α-
tocopherol, and riboflavin.

3.2. The Effects of PO Extract on Peritoneal Adhesion (PA)
Scoring. A macroscopic evaluation of PA scores was per-
formed at the end of the experiment (Figure 2). We found
that the PA scores were significantly increased in the control
group compared to the standard group (P < 0:01 for both
scoring systems, Figures 3(a) and 3(b)). Conversely, both
doses of PO (100 and 300mg/kg) markedly abolished the
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Figure 1: (a) The total ion chromatogram of Portulaca oleracea extract; (b) chromatogram of dopa and corresponding mass adduct, ½M+ 1�,
at m/z 198.120; (c) chromatogram of oleraceins D and corresponding mass adduct, ½M+ 1�, at m/z 696.84; (d) chromatogram of
portulacanone D and corresponding mass adduct, ½M+ 1�, at m/z 299.76; (e) chromatogram of friedelane and corresponding mass adduct,
½M+ 1�, at m/z 413.34; (f) chromatogram of riboflavin and corresponding mass adduct, ½M+ 1�, at m/z 376.62; (g) chromatogram of
aurantiamide acetate and corresponding mass adduct, ½M+ 1�, at m/z 445.8.
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Figure 2: Macroscopic evaluation of PA bands in normal, control,
and PO at doses of 100 and 300mg/kg groups.
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Figure 3: The effects of different doses of PO on adhesion scores evaluated by Naier et al. (a) and Adhesion Scoring Scheme (b) scoring
systems; data were presented as median ± interquartile range, IQR (n = 8 for all groups except normal as 6). ∗P < 0:05 and ∗∗P < 0:01.

(a) (b)

(c) (d)

Figure 4: The effects of different doses of PO on adhesion formation and collagen deposition by histopathological evaluation using Masson’s
trichrome staining; blue colour intensities (marked with yellow stars) represent fibrosis and collagen deposition. Pathological imaging; (a)
normal group, (b) control group, (c) PO at the dose of 100mg/kg, and (d) PO at the dose of 300mg/kg. The highest rate of tissue fibrosis
(blue colour) and collagen deposition was observed in the control group (b) compared to the normal group (a), which had the lowest
fibrosis rate. Conversely, the blue colour intensities as a marker of fibrosis and collagen deposition in both doses of the extract groups (100
and 300mg/kg) were significantly decreased compared to the control group (c, d).
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PA scores compared to the control group (P < 0:05 for both
cases and scoring systems).

3.3. The Effects of PO Extract on Histopathological Alteration
of Peritoneal Fibrosis. The histopathological study was per-
formed using Masson’s trichrome staining to evaluate the rate
of peritoneal fibrosis. As shown in Figure 4, the highest rate of
tissue fibrosis (blue colour) and collagen deposition was
observed in the control group (Figure 4(b)) compared to the
normal group (Figure 4(a)), which had the lowest fibrosis rate.
In contrast, the blue colour intensities as a marker of fibrosis
and collagen deposition in both doses of the extract groups
(100 and 300mg/kg) were significantly decreased compared
to the control group (Figures 4(c) and 4(d)).

3.4. The Effects of PO Extract on Inflammatory and Anti-
Inflammatory Biomarkers. Our results indicated that the
levels of inflammatory mediators, including IL-6 (P < 0:001,
Figure 5(b)) and TNF-α (P < 0:001, Figure 5(c)), and anti-
inflammatory cytokine IL-10 (P < 0:01, Figure 5(d)) were
significantly increased in the control group compared to the

normal group. However, the level of IL-1β was greater than
the normal group, but this increment was not statistically
significant (Figure 5(a)). Administration of PO for seven
consecutive days notably reduced the levels of IL-1β
(100mg/kg, P < 0:05, and 300mg/kg, P < 0:001,
Figure 5(a)), IL-6 (P < 0:001 for 100 and 300mg/kg,
Figure 5(b)), and TNF-α (300mg/kg, P < 0:001, Figure 5(c))
and significantly elevated the level of IL-10 (100mg/kg, P <
0:01, and 300mg/kg, P < 0:001, Figure 5(d)) in the peritoneal
lavage fluid, compared to the control group.

3.5. The Effects of PO Extract on Fibrosis and Angiogenesis
Parameters. Following the PA, the levels of TGF-β1 as a
fibrotic factor and VEGF as an angiogenesis factor were
significantly enhanced in the control group compared to
the normal group (P < 0:001 for both cases, Figures 6(a)
and 6(b)). In contrast, the use of 300mg/kg/day PO signifi-
cantly mitigated the levels of TGF-β1 and VEGF compared
to the control group (P < 0:001 for both cases, Figures 6(a)
and 6(b)). However, 100mg/kg/day of PO could significantly
attenuate the level of TGF-β1 compared to the control group
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Figure 5: The effects of different doses of PO on the peritoneal lavage levels of (a) IL-1β, (b) IL-6, (c) TNF-α, and (d) IL-10; data were
presented as mean ± SD (n = 8 for all groups except normal as 6). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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(P < 0:001, Figure 6(a)). Moreover, the results indicated that
the suppressive effect of 300mg/kg/day PO on TGF-β1 level
was more than 100mg/kg/day PO (P < 0:05, Figure 6(a)).

3.6. The Effects of PO Extract on Oxidant and Antioxidant
Levels. The results revealed that the MDA level was signifi-
cantly elevated in the control group compared to the normal
group (P < 0:001, Figure 7(a)). Nevertheless, 100 and
300mg/kg/day PO administration remarkably abolished the
MDA levels compared to the normal group (P < 0:001 for
both cases, Figure 7(a)). Following the PA induction, we
observed that the level of GSH slightly decreased in the con-
trol group in comparison to the normal group (Figure 7(b)).

However, administration of PO (100 and 300mg/kg/day)
considerably augmented the GSH levels in peritoneal lavage
fluid compared to the control group (P < 0:001 for both
cases, Figure 7(b)).

4. Discussion

To the best of our knowledge, this is the first study evaluating
the effects of oral administration of PO extract on PA in a rat
model. As a result, we found that PO at both doses signifi-
cantly reduced the adhesion formation score by lowering
the inflammatory cytokines (IL-1β, IL-6, and TNF-α),
increasing the anti-inflammatory cytokine IL-10, and
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Figure 6: The effects of different doses of PO on the peritoneal lavage levels of (a) TGF-β and (b) VEGF; data were presented as mean ± SD
(n = 8 for all groups except normal as 6). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 7: The effects of different doses of PO on the peritoneal lavage levels of (a) MDA and (b) GSH; data were presented as mean ± SD
(n = 8 for all groups except normal as 6). ∗∗P < 0:01 and ∗∗∗P < 0:001.
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suppressing TGF-β1 and VEGF as fibrotic and angiogenesis
factors, respectively. Moreover, PO extract regulated the
imbalanced oxidant/antioxidant markers by lowering MDA
level as a marker of lipid peroxidation and enhancing GSH
level as an antioxidant system’s reservoir.

The peritoneum is a thin and delicate membrane cover-
ing the abdominal cavity and protects and structures internal
organs. Some pathologic processes, including ischemia,
haemorrhage, endometriosis, infections, trauma, and surgical
procedures, cause PA generation in the overwhelming major-
ity of patients [12, 41]. Nevertheless, its effects in everlasting
fibrinous adhesions are influenced by the integrity of the
fibrinolytic system [42]. Several investigations showed that
inflammatory cytokines, including TNF-α, IL-6, and IL-1β,
are the primary reasons for PA generation [30, 43, 44]. In this
regard, our investigation also revealed that the levels of the
inflammatory cytokines (TNF-α, IL-6, and IL-1β) were
meaningfully increased in the control group following
postoperational-induced PA. In contrast, PO at both doses
markedly abolished these inflammatory markers. In line with
our findings, it has been reported that administration of PO
(200 and 400mg/kg/day for four weeks) significantly abro-
gated systemic oxidative stress (MDA) and inflammatory
markers (TNF-α and IL-6) in streptozotocin-induced dia-
betic rats [45].

Transforming growth factor-β (TGF-β), as a pleiotropic
cytokine, modulates the immune system activity of T cells
and regulates inflammation [30, 46]. VEGF is the essential
angiogenesis activator. It also induced leakage and proliferat-
ing in endothelial cells to the adhesion site and generated new
blood vessels [47, 48]. The Cahill et al. investigation results
revealed that suppressing the VEGF via VEGF monoclonal
antibody (bevacizumab) mitigates PA formation in mice
[49]. In fact, both VEGF and TGF-β1 expression levels are
increased during the PA process [47, 48, 50]. Our present
study demonstrated that VEGF and TGF-β1 levels were
significantly elevated in the control group following the
postoperational-induced PA compared to the normal group
accordingly. In immunohistological research, treatment of
mice with PO (300mg/kg/day, p.o., for ten weeks) revealed
that it could reduce the expression levels of advanced glyca-
tion end products (AGE), TGF-β1, and intercellular adhe-
sion molecule- (ICAM-) 1 in diabetic nephropathy through
suppression of renal fibrosis and inflammation in diabetic
db/db mice [50]. Similarly, PO extract (300mg/kg/day, p.o.,
for ten weeks) reduced vascular-related adhesion molecules
such as endothelial vascular cell adhesion molecule-1
(VCAM-1), intercellular adhesion molecule-1 (ICAM-1),
and E-selectin in diabetic db/dbmice [51]. Moreover, we also
exhibited that the PO extract (100 and 200mg/kg, p.o.)
inhibited lung inflammation by downregulating TNF-α, IL-
6, IL-β, TGF-β, and PGE2 levels and upregulating the expres-
sion level of IL-10 [29]. In addition, it was found that PO
abolished the lung wet/dry ratio that was an index of oedema
and improved the levels of MDA, MPO, WBC, thiol group
formation, and CAT and SOD activities compared with the
LPS group [29].

One of the essential parameters of PA generation is
oxidative stress [52]. Hence, in the current study, we investi-

gated the levels of MDA and GSH as oxidant/antioxidant
markers. Our data emphasised that POmeaningfully reduced
the level of MDA and enhanced the GSH level following the
postoperational-induced PA. Furthermore, it has been
reported that the PO extract could elevate the SOD and
CAT levels, while downregulating the MDA level in lipopoly-
saccharide- (LPS-) induced acute lung injury rats [37]. In this
context, another study indicated that the PO extract
improves SOD and GSH levels and prevents MDA and IL-6
levels in the STZ-induced diabetic rats [45]. Thus, these stud-
ies can support our findings on the antioxidant activity of PO
that led to the reduction of adhesion formation.

In conclusion, our investigation represented that oral
administration of PO improved postoperational-induced
PA via alleviating the oxidative factors, fibrosis, inflamma-
tory cytokines, angiogenesis biomarkers, and stimulating
antioxidative factors. Hence, PO can be considered a
potential herbal medicine to manage postoperative PA.
However, further clinical studies are required to approve
the effectiveness of PO.
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There is a limited number of clinical studies on interferon (IFN) levels in human brucellosis. The novel group of interferons, type III
interferons, which consists of four IFN-λ (lambda) molecules called IFN-λ1 or interleukin-29 (IL-29), IFN-λ2 or IL-28A, IFN-λ3 or
IL-28B, and IFN-λ4, is not fully known. This study is one of the first studies of IL-28A and IL-29 levels in brucellosis cases at the end
of their treatment course. A total of 33 acute brucellosis patients were included in this study. We considered changes in the levels of
IL-28A and IL-29 in cases with acute brucellosis before and after treatment with standard therapy that referred to the Ayatollah
Rohani Hospital in Babol, northern Iran. Of 33 included patients, 22 (66.6%) were males, and 11 (33.4%) were females. The
range of patients’ age was 49:21 ± 17:70 years. Serum IL-29 and IL-28A (acute form: 56:4 ± 30:32 pg/mL and 48:73 ± 27:72
pg/mL, respectively, and posttreatment: 40:15 ± 20:30 pg/mL and 38:79 ± 22:66 pg/mL, respectively) levels were elevated
significantly in acute brucellosis than after treatment (p < 0:05). These findings indicate that considering biomarker levels in
brucellosis patients may indicate the chronicity of infection. In conclusion, we suggest that IL-29 and IL-28A levels may be
valuable biomarkers for follow-up patients with brucellosis.

1. Introduction

Brucellosis is a zoonotic bacterial disease caused by one of the
various species of the Brucella spp. [1–3]. Although approxi-
mately half-million new brucellosis cases are reported world-
wide, the actual incidence rate has been much more
significant [4, 5]. Even though the gold standard for diagnos-
ing this disease is leukocyte culture, this test has a high false-
negative rate. Moreover, its cost and a 10-day delay before
confirmation restrict its use as a standard diagnostic test in
acute brucellosis [6]. As a result, clinicians chiefly rely on
other laboratory tests to evaluate patients with brucellosis,
such as agglutination test, white blood cell (WBC) counts,
platelet (PLT) counts, liver function tests, erythrocyte sedi-
mentation rate (ESR), and C-reactive protein (CRP). Never-

theless, the diagnosis of brucellosis remains a challenge in
most cases [6].

Although rare, brucellosis infection has a chronic disease
course that may continue to trouble patients for years. No
approved human antibrucellosis vaccine is currently avail-
able [7]. So far, brucellosis studies have been focused primar-
ily on epidemiological investigations, and the immune
response against these bacteria was somehow neglected [8].
After the entry of this pathogen, several immunogenic
changes are prominent in the host body. For example,
interferon-gamma (IFN-γ) and tumor necrosis factor-alpha
(TNF-α) levels are elevated as naïve T cells differentiate to
CD4+ helper T cells type 1 (Th1). On the other hand,
interleukin-4 (IL-4) levels are increased as naïve T cells give
rise to CD4+ helper T cells type 2 (Th2) [6].
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Moreover, transforming growth factor-beta (TGF-β)
levels are also raised due to the surge in the regulatory T cell
(Treg) population [6]. Several studies have shown that
interferon-gamma serum concentration may be recognized
as an essential factor in chronic brucellosis [8]. It is vital to
note that the association between other types of cytokines,
such as type III interferons or interferon-lambda (IFN-λ),
and the clinical course of brucellosis, including response to
treatment, is not yet fully understood. Nevertheless, some
studies recognized that bacterial pathogens might activate
IFN-λ1 or interleukin-29 (IL-29), IFN-λ2 or IL-28A, IFN-λ3,
or IL-28B [9, 10].

Therefore, this study was conducted to evaluate the levels
of IL-28A and IL-29 in patients with brucellosis, both pre-
treatment and posttreatment.

2. Materials and Methods

2.1. Patients. In this case-control study at the Ayatollah
Rohani Hospital in Babol, northern Iran, 33 pretreatment
and posttreatment acute brucellosis patients were included.
Inclusion criteria were defined as receiving a clinical diagno-
sis of acute brucellosis (clinical presentation time: acute form
(≤2 months) based on the symptoms, compatible clinical find-
ings, standard tube agglutination (STA) test titer ≥ 1 : 160,
and the presence of 2-mercaptoethanol (2ME) agglutination
≥ 1 : 80. The control group consisted of the same 33 patients
who had undergone a complete course of treatment with gen-
tamicin 5mg/kg/day IM for seven days plus doxycycline
100mg tablet BID for 45 days [11]. Then, the patients were
included in the control group and considered treated when
no clinical manifestations related to brucellosis and compati-
ble paraclinical findings, i.e., the STA test titer < 1 : 160 and
2ME agglutination < 1 : 80, were present [12]. The exclusion
criteria were pregnancy, age < 18 years, and other chronic
infectious or immunodeficiency diseases. Informed consent
was obtained from all study participants.

2.2. Determination of Cytokine Levels. Blood samples were
collected in an ethylenediamine tetraacetic acid- (EDTA-)
containing tube. One blood sample (5mL) was obtained
from all patients before and after treatment. The blood sam-
ples were centrifuged at 400 g for 35 minutes, and collected
sera were stored at −80°C for further analysis. IL-28A and
IL-29 levels in all serum samples were measured using a com-
mercial enzyme-linked immunosorbent assay (ELISA) kit
(eBioscience Inc., San Diego, CA, USA) according to the
manufacturer’s guidelines.

2.3. Statistical Analysis. All data are expressed as the
mean ± standard deviation ðSDÞ. Statistical analysis was per-
formed using the SPSS software version 16.0 (IBM, Chicago,
IL, USA). The difference between groups was analyzed using
the paired t-test, and the relationship between variables was
evaluated using Spearman’s rank correlation test. A p value
of ≤0.05 was defined as statistically significant.

3. Results

Of 33 included patients, 22 (66.6%) were males, and 11
(33.4%) were females. The range of patients’ age was
49:21 ± 17:70 years.

Serum levels of IL-28A and IL-29 in the study groups
(before and after the treatment) are illustrated in Figure 1.
Serum IL-28A levels were 48:73 ± 27:72pg/mL and 38:79 ±
22:66pg/mL pre- and posttreatment, respectively (p = 0:038)
(Figure 1). Also, IL-29 serum levels were 56:45 ± 30:32pg/mL
and 40:15 ± 20:30pg/mL pre- and posttreatment, respectively
(p = 0:026) (Figure 1). Also, it is noteworthy that IL-29 levels
both before and after treatment were more than IL-28A levels.

4. Discussion

In this case-control study, the IL-28A and IL-29 levels of 33
patients with confirmed acute brucellosis were measured
both pre- and posttreatment. It was observed that the levels
of these biomarkers were significantly decreased after the
eradication of the disease.

Several studies revealed the crucial role of type III IFNs
for resistance to viral infections, principally by induction of
the antiviral state. Furthermore, some studies revealed that
type III IFNs play a significant role in inhibiting virus replica-
tion by mediating and expressing interferon-regulated genes
(IRGs) [13]. Subsequent studies have also shown an inhibit-
ing role of interferon in replicating Zika virus (ZIKV), influ-
enza A and B viruses, coronavirus, and respiratory syncytial
virus (RSV) [14, 15]. Ank et al. concluded that interferon-
lambda plays a crucial role in the innate immune response
through activating the macrophages and dendritic cells
against human herpesvirus type 1 (HHV-1) [16]. Another
study demonstrated dengue virus (DENV) replication inhibi-
tion through interferon-regulating gene expression [17].

The role of IL-29 in bacterial and parasitic infections and
its increased expression in these diseases have been proven
before. Also, the critical role of interferon-lambda has been
highlighted in the acquired immune response in previous
studies. This cytokine initiates the received immune response
through its effect on antigen-presenting cells. Moreover, type
III IFNs suppress the immune response through regulatory T
cells (Tregs), promoting the acquired immune response [18].
As shown in previous studies, the human immune system’s
defense against brucellosis depends on cellular immunity,
which mainly affects antigen-presenting cells (APC), such
as macrophages, dendritic cells, and CD4+ and CD8+ T cells.
Other defense cells, such as natural killer (NK) cells and other
T lymphocytes, also play a crucial role in cellular immunity
against Brucella [19]. As a result, the Th1-dependent immune
response is dominant at the onset of Brucella infection and is
critical in eradicating the disease. Therefore, this issue fully
justifies the current study results, particularly the higher
levels of IL-29 in patients with acute brucellosis before
treatment than after receiving the standard treatment [19].
Figure 2 illustrates a summary of the immune reactions of
the host’s body and the vital role of different cytokines,
such as IFN-γ, TNF-α, and IFN-λ, in the eradication of
Brucella spp.
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Figure 1: Serum levels of interleukin-28A and interleukin-29 among patients with brucellosis before and after treatment. All data are
presented as the mean ± SD. ∗ indicates p < 0:05.
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Figure 2: Interactions of Brucella spp. with the immune system. After the activation of antigen-presenting cells (APCs) with Brucella antigen
via the Toll-like receptor (TLR) signaling pathway, a cascade of events leads to the priming of CD4+ T cells to helper T cells type 1 (Th1) and
type 2 (Th2). Th1 cells secrete various cytokines, such as TNF-α and IFN-γ, which activate and enhance the anti-Brucella mechanisms of
macrophages and activate CD8+ T cells, which boost the immune responses of macrophages even further. Moreover, APCs can trigger
Th2 activation, which switches on B lymphocytes and the humoral immunity, facilitating the opsonization and faster eradication of the
pathogen from the host’s body. It is noteworthy that Th1 and Th2 cells can inhibit either pathway via secreting cytokines, such as IFN-γ
and IL-10, respectively. Furthermore, macrophages can be stimulated by secreting another cytokine called type III interferons or
interferon-λ by APCs or epithelial cells. These activated macrophages exert their immunomodulatory effects through two different
pathways: direct and indirect. In the direct pathway, chemokine and inflammatory cytokine expression, antigen recognition and
presentation, and macrophages’ cytotoxicity are elevated. Through the indirect pathway, these cells can enhance natural killer (NK) and T
cell chemotaxis and NK cell cytotoxicity and elevate the production and release rate of IFN-γ, which in turn, via activating the Th1
pathway, helps better and faster eradication of Brucella spp. Abbreviations: TLR: Toll-like receptor; ILC: innate lymphocyte cells;
IL-12: interleukin-12; APC: antigen-presenting cells; B7: cluster of differentiation 80/86; MHC II: major histocompatibility complex type 2;
CD28: cluster of differentiation 28; TCR: T cell receptor; IFN-γ: interferon-gamma; TNF-α: tumor necrosis factor-alpha; IL-4: interleukin-4;
Th1: helper T cell type 1; Th2: helper T cell type 2; IL-2: interleukin-2; IL-10: interleukin-10; IL-5: interleukin-5; IFN-λ: interferon-λ; IFNLR1:
interferon-lambda receptor 1; IL10Rβ: interleukin-10 receptor beta; IFNλR: interferon-lambda receptor; NK cell: natural killer cell.
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The present study showed a significant decrease in IL-28-A
and IL-29 levels after treatment with the standard antibiotic
regimen, i.e., gentamicin 5mg/kg/day IV for seven days plus
doxycycline 100mg tablet BID for 45 days. Regarding the
IL-28A levels, it seems that cross-linking of IL-28A with type
I interferons (IFNs) and subsequent innate and acquired
immune responses against brucellosis may be the cause. For
IL-29, this reduction can be attributed to its vital role in
acquired immunity, eradicating brucellosis using antibiotic
treatment, and reduced inflammation [19]. IFNs initiate an
innate immune response after contact with pathogens. The
immune response and immune mediators and the subsequent
inflammation are expected to decline following the control
and eradication of infection. It is important to note that some
standard diagnostic tests, such as STA, Coombs Wright, and
2ME, may remain positive even at high titers for up to two
years after treatment [20, 21]. Thus, such tests’ application
was not justified for follow-up patients. Practically, most
patients are generally followed up with their symptoms [22].

The current study results revealed a significant reduction
in serum IL-28A and IL-29 levels after treatment, making
these biomarkers a valuable indicator for monitoring the
patients. While the effects of IL-28A on the acquired immu-
nity are not significant, its functions are chiefly exerted via
innate immunity, with no effect on increasing or decreasing
immunoglobulins (Ig) [22]. On the other hand, some previ-
ous studies have shown a positive correlation of IL-29 with
serological tests that indicate its impact on acquired immu-
nity and Ig production. However, it is essential to note that
cellular immunity plays a more crucial role in eliminating
brucellosis [22].

The primary limitation of this was our small sample size.
It is recommended to reperform such studies in a larger sam-
ple size. Also, another limitation of the current study was the
sole evaluation of interferon-lambda. It is suggested that
future researchers assess the levels of other vital cytokines,
such as interferon-alpha (IFN-α) and interferon-gamma
(IFN-γ), tumor necrosis factor-alpha (TNF-α), transforming
growth factor-beta (TGF-β), interleukin-2 (IL-2), and
interleukin-12 (IL-12). Furthermore, performing molecular
analysis, i.e., PCR test, would be of interest. Moreover, future
studies with a prolonged follow-up assessing these IFNs in
different periods could help confirm the role of IFN-γ as a
reliable biomarker in chronic brucellosis.

5. Conclusion

This study’s findings confirmed previous studies on bacterial
infections and validated the pivotal role of IFN-λ during
acute brucellosis via strengthening innate and promoting
acquired immunities. Therefore, the significant reduction in
serum levels of IL-28A and IL-29 in patients with brucellosis
after a standard treatment regimen may promise the emer-
gence of valuable biomarkers in patient follow-up.
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Vitamin C (ascorbic acid: AA) uptake in neurons occurs via the sodium-dependent vitamin C transporter-2 (SVCT2), which is
highly expressed in the central nervous system (CNS). During chronic neuroinflammation or infection, CNS levels of
lipopolysaccharide (LPS) and LPS-induced tumor necrosis factor-α (TNFα) are increased. Elevated levels of LPS and TNFα have
been associated with neurodegenerative diseases together with reduced levels of AA. However, little is known about the impacts
of LPS and TNFα on neuronal AA uptake. The objective of this study was to examine the effect of LPS and TNFα on SVCT2
expression and function using in vitro and in vivo approaches. Treatment of SH-SY5Y cells with either LPS or TNFα inhibited
AA uptake. This reduced uptake was associated with a significant decrease in SVCT2 protein and mRNA levels. In vivo
exposure to LPS or TNFα also decreased SVCT2 protein and mRNA levels in mouse brains. Both LPS and TNFα decreased
SLC23A2 promoter activity. Further, the inhibitory effect of LPS on a minimal SLC23A2 promoter was attenuated when either
the binding site for the transcription factor Sp1 was mutated or cells were treated with the NF-κB inhibitor, celastrol. We
conclude that inflammatory signals suppress AA uptake by impairing SLC23A2 transcription through opposing regulation of
Sp1 and NF-κB factors.

1. Introduction

Vitamin C (ascorbic acid: AA) is an essential micronutrient
for cellular function, growth, and development, serving as a
cofactor for an array of biological reactions and as a pleiotro-
pic intracellular antioxidant [1, 2]. AA also serves as a first-
line antioxidant defense to neutralize reactive oxygen species
(ROS) by promoting the regeneration of endogenous antiox-
idants [3]. Brain tissue is susceptible to free radical damage
and oxidative stress, since the brain is the most metabolically
active organ in the body, and for this reason, the brain con-
tains the highest concentration of vitamin C [3]. Accumula-
tion of vitamin C in the brain cells occurs by a two-step

mechanism, first by absorption across the choroid plexus
and second by concentration into neurons and glia [4, 5].
The human sodium-dependent vitamin C transporter-2
(hSVCT2, the product of the SLC23A2 gene) controls these
steps [4, 5]; knockout of murine SVCT2 results in undetect-
able levels of AA in the mouse brain [6].

Deficiencies of vitamin C could play a major role in brain
dysfunction and neurodegeneration. Plasma vitamin C levels
are found to be significantly lower in patients with neurode-
generative diseases [3, 7–10]. For instance, in Alzheimer’s
disease (AD), reduced vitamin C levels may accelerate
amyloid-beta (Aβ) accumulation and cognitive impairment
[3, 7, 8, 11]. Reciprocally, restoration of vitamin C levels
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and maintaining its homeostasis appear to safeguard against
cognitive decline and the progression of AD neuropathology
[12]. Therefore, studies aimed at understanding the underly-
ing molecular mechanisms that control vitamin C homeosta-
sis in the CNS may prove essential for developing strategies
to counteract conditions of disease-enhanced oxidative stress
through optimization of vitamin C homeostasis.

Neuroinflammation plays a pivotal role in the patho-
physiology of many neurodegenerative diseases [13–16].
Chronic neuroinflammation and systemic bacterial infection
lead to increased levels of proinflammatory cytokines like
TNFα, IL-6, and IL-1β [17–20]. Lipopolysaccharide (LPS)
is a cell wall-derived endotoxin of most gram-negative bacte-
ria that is capable of inducing a strong neuroinflammatory
response [21, 22]. Recent studies have shown that LPS and
bacterial components are associated with plaques in post-
mortem AD brains [21, 23]. In addition, LPS is present in a
septic patient’s blood plasma [24–26], where it is assumed
to play an important role in systemic inflammatory response
syndrome, and also, some evidence indicates that sepsis is
associated with lower blood vitamin C levels [27–29]. LPS
is known to affect the function and expression of certain
neuronal transporters [30–32]; however, the effect of LPS
and subsequently induced TNFα on AA uptake and
SVCT2 expression has been overlooked. Therefore, we
studied the impact of LPS and TNFα exposure on neuro-
nal AA uptake using both in vitro (SH-SY5Y cells) and
in vivo (mouse) models.

2. Materials and Methods

2.1. Materials. The 14C-AA (specific activity 2.8mCi/mmol;
radiochemical purity > 98%) used in vitamin uptake analysis
was acquired from PerkinElmer, Inc. (Boston, MA). LPS (E.
coli 0111:B4) was purchased from Millipore Sigma (St. Louis,
MO). Human TNFα was bought from Invitrogen (Carlsbad,
CA), and murine TNFα was from PeproTech, Inc. (Rocky
Hill, NJ). Antibodies were obtained from the following
sources: anti-β-actin antibodies (ThermoFisher Scientific,
Huntington Beach, CA), anti-NF-κB p65 and anti-IKKαβ
antibodies (Abcam, Cambridge, MA), and anti-laminin
antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz,
CA). LI-COR (Lincoln, NE) IRDyes 800CW and 680LT goat
anti-mouse and anti-rabbit secondary antibodies were used
for western blot. Celastrol was ordered from InvivoGen,
Inc. (San Diego, CA). Services provided by Integrated DNA
Technologies (San Diego, CA) were used to synthesize oligo-
nucleotide primers (Table 1). All other molecular biology-
grade chemicals, reagents, and materials used in this study
were from commercial sources.

2.2. Culturing of SH-SY5Y Cells and AA Uptake Analysis.
Human-derived neuroblastoma SH-SY5Y cells (ATCC,Manas-
sas, VA) were given DMEM-F12 medium (ATCC) (with 20%
fetal bovine serum (FBS) and penicillin-streptomycin added)
and cultured in a temperature-controlled CO2 incubator at
37°C. In assays treating SH-SY5Y cells with LPS or TNFα, over-
night serum starvation was followed by exposure either with
LPS (20μg/ml) or TNFα (20ng/ml) or LPS plus celastrol (100

nM) in DMEM-F12 (with 0.5% FBS and no antibiotics added).
SH-SY5Y cells were subjected to pretreatment with celastrol
(100nM) for 5h before LPS treatment. After 48h of LPS or
TNFα or LPS plus celastrol treatment, 14C-AA uptake was
performed in vitro [33, 34]. Briefly, SH-SY5Y cells were incu-
bated (30min) with 14C-AA (0.1μCi) in Krebs-Ringer (KR)
buffer at 37°C in a water bath, and then, sample lysates were
prepared for radioactivity determination using a liquid scintilla-
tion counter [33, 34].

2.3. Animal Studies. For in vivo experiments, adult male
C57BL/6 mice aged 8-12 weeks (Jackson Laboratory, Bar
Harbor, ME) were administered either a single injection of
LPS (5mg/kg body weight; 100μl of PBS) [33, 35] or TNFα
(15μg/mouse; 100μl of PBS) [34, 36] or vehicle alone (100
μl of PBS) intraperitoneally (IP). After 72 h, mouse brains
were removed immediately after euthanization and protein
and RNA extracted. The animal protocol gained approval
from the Institutional Animal Care and Use Committee
(IACUC), Veteran Administration Medical Center, Long
Beach, CA, and University of California, Irvine, CA.

2.4. Real-Time PCR (RT-qPCR) Analysis. Total RNA was pre-
pared from SH-SY5Y cells and mouse brain exposed to either
LPS or TNFα or LPS plus celastrol and their respective con-
trols using the TRIzol reagent (Life Technologies). One
microgram of total RNA sample was reverse-transcribed
(RT) to cDNA using the i-Script cDNA synthesis kit (Bio-
Rad, CA). RT-qPCR analysis was then performed using the
cDNA and gene-specific primers (Table 1) in a CFX96
Real-Time iCycler (Bio-Rad) [33, 34]. Simultaneously ampli-
fied β-actin acted as a base for comparison to normalize the
relative expression of different mRNAs, which were quanti-
fied using a relative relationship method (Bio-Rad) [33, 34].

2.5. Heterogeneous Nuclear RNA (hnRNA) Analysis. Table 1
shows the gene-specific hnRNA primers for Slc23a2 that
were utilized in RT-qPCR analysis of total RNA prepared
using LPS- or TNFα-treated mouse brain samples and paral-
lel controls [37]. DNase I (Invitrogen) was added to the RNA
samples for digestion before they were reverse-transcribed
using i-Script cDNA synthesis kit reagents (Bio-Rad). β-
Actin was again used to normalize RT-qPCR data, which
was calculated as described above.

2.6. Transfection and Promoter Assays. SH-SY5Y cells were
cultured on twelve-well plates (Corning) and cotransfected
using Lipofectamine 2000 (3μl/well; Invitrogen) with full-
length, minimal, or mutant SLC23A2 promoter constructs
(3μg plasmid DNA/well) [38, 39] and Renilla luciferase-
thymidine kinase (pRL-TK, 100ng/well; Promega). Cells
were left to incubate for 24 h before being treated with either
LPS or TNFα or LPS plus celastrol for an additional 48 h.
Then, the samples were processed following the Promega
Dual-Luciferase Reporter Assay System. In short, each sam-
ple was lysed using passive lysis buffer (Promega), and a
luminometer detected both the firefly and Renilla luciferase
activities sequentially [38, 39].
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2.7. Western Blotting. SH-SY5Y cells and mouse brain total
protein were prepared by homogenization in RIPA (Radio-
immunoprecipitation Assay) Buffer (Sigma) with 1X prote-
ase inhibitor cocktail (Roche, Nutley, NJ). The nuclear and
cytosolic fractions from LPS- or LPS plus celastrol-treated
SH-SY5Y cells were obtained using the NE-PER nuclear
and cytoplasmic extraction kit (ThermoFisher Scientific).
Total protein (60μg) was separated using 4-12% NuPAGE
Bis-Tris protein gels (Invitrogen) and transferred to a PVDF
membrane. After protein transfer, the membrane was
blocked for 10min at room temperature in LI-COR Odyssey
Blocking Buffer and then probed with previously character-
ized primary SVCT2 antibodies (1 : 500 dilution) [40], anti-
IKKαβ antibodies (1 : 1000 dilution; Abcam), anti-NF-κβ
p65 antibodies (1 : 1000 dilution; Abcam), anti-laminin anti-
bodies (1 : 300 dilution; Santa Cruz Biotechnology), and anti-
β-actin mouse monoclonal antibody (1 : 3000 dilution; Ther-
moFisher Scientific) used. The respective secondary antibod-
ies (anti-rabbit IRDye-800 and anti-mouse IRDye-680, LI-
COR Biosciences) were used in 1 : 30,000 dilutions [33, 34,
40]. Odyssey Infrared imaging system (LI-COR Biosciences)
software was used to quantify the densitometry of specific
band signal intensities normalized against β-actin.

2.8. Statistical Analyses. Carrier-mediated AA uptake analy-
sis data from these investigations are presented as the
means ± SE of at least 3 to 4 separate investigations with mul-
tiple determinations and represent a percentage relative to
simultaneously performed untreated controls. RT-qPCR,
western blot, and promoter assays were determined from at
least 3 different batches of cells or 3 pairs of mouse samples.
Student’s t-test with P < 0:05 set as statistically significant
was chosen to perform statistical analysis.

3. Results

3.1. Effect of LPS on hSVCT2 Function In Vitro. Recent
studies have shown detectable levels of LPS in the AD brain
[21, 23]. LPS is a potent inflammatory stimulator, which
can affect the neuronal transport of many different substrates
[30–32]. To assess the effect of LPS on AA uptake, we mea-

sured hSVCT2 mRNA levels by RT-qPCR after exposure of
cells to various concentrations of LPS (10-50μg/ml for
48 h). Data showed a concentration-dependent decrease in
hSVCT2 mRNA expression relative to untreated control
SH-SY5Y cells (Figure 1). To address the specificity of the
LPS effect, we also determined mRNA levels of the brain-
specific human riboflavin transporter-2 (hRFVT2) [41].
There was no significant change in hRFVT2 mRNA in
SH-SY5Y cells treated with LPS (20μg) compared to
untreated cells (100 ± 11 and 117 ± 20 for control and LPS
treatment, respectively).

An LPS treatment paradigm of 20μg/ml for 48 h also
caused a significant (P < 0:001) inhibition of AA uptake
(Figure 2(a)), coupled with a significant (P < 0:05) decrease
in hSVCT2 protein expression (Figure 2(b)). The action of
LPS was then interrogated at the level of the SLC23A2 pro-
moter, by monitoring promoter activity of a luciferase
reporter construct (pGL3-SLC23A2). This reporter construct
was transiently transfected into SH-SY5Y cells, and then,
cells were treated (24 h after transfection) with LPS (20μg/ml
for 48 h) before firefly luciferase activity was determined. LPS
treatment caused significantly (P < 0:01) reduced SLC23A2
promoter activity when compared to untreated SH-SY5Y
cells (Figure 2(c)). These data suggest that LPS decreases
hSVCT2 function via transcriptional regulation.

3.2. Effect of LPS on SVCT2 Function In Vivo.Next, we exam-
ined whether similar effects occurred in vivo. LPS (5mg/kg
body weight; single dose [33, 35]) was administered intraper-
itoneally to wild-type (WT) mice, and responses were
compared with vehicle (PBS)-injected controls. To monitor
inflammation, the expression of nucleotide-binding, oligo-
merization domain- (NOD-) like receptor family, pyrin
domain containing 3 (NLRP3) was examined. NLRP3
mRNA levels were found to be significantly (P < 0:05)
increased in LPS-administered brain samples 72 h after injec-
tion (Figure 2(d)). These data demonstrate activation of an
inflammatory marker following LPS administration in
mouse brain samples. As expected, TNFα mRNA expression
was also significantly (P < 0:0001) increased in LPS-
administered mouse brain compared to controls (100 ± 19

Table 1: Oligonucleotide primer combinations used to amplify coding region of the respective genes by RT-qPCR.

Gene name Forward and reverse primers (5′-3′)
Real-time PCR primers

hSVCT2 TCTTTGTGCTTGGATTTTCGAT; ACGTTCAACACTTGATCGATTC

hRFVT2 CCCTGGTCCAGACCCTA; ACACCCATGGCCAGGA

hSp1 CCATACCCCTTAACCCCG; GAATTTTCACTAATGTTTCCCACC

hβ-actin CATCCTGCGTCTGGACCT; TAATGTCACGCACGATTTCC

mSVCT2 AACGGCAGAGCTGTTGGA; GAAAATCGTCAGCATGGCAA

mNLRP3 ATTACCCGCCCGAGAAAGG; TCGCAGCAAAGATCCACACAG

mTNFα CATCTTCTCAAAATTCGAGTGACAA; TGGGAGTAGACAAGGTACAACCC

mβ-actin ATCCTCTTCCTCCCTGGA; TTCATGGATGCCACAGGA

hnRNA primers

mSVCT2 ACTCTTGTCCATGGCTCTGG; GGGCAAAATCTTCGTTGGGT

mβ-actin AGATGACCCAGGTCAGTATC; GAGCAGAAACTGCAAAGAT
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and 351 ± 33 for control and LPS-administered mouse
brains, respectively). Levels of mSVCT2 protein, mRNA,
and heterogeneous nuclear RNA (hnRNA) were then deter-
mined in control and LPS-injected animals. Results showed
that the expression levels of mSVCT2 protein, mRNA, and
hnRNA were all markedly reduced in LPS-injected mouse
brain samples versus controls (Figures 2(e)–2(g)). The latter
represents the initial products of gene transcription, reflect-
ing the rate of transcription of a given gene [37]. Collectively,
these findings suggest that LPS also decreases the mSVCT2
functional expression in vivo, and this occurs via a transcrip-
tional mechanism.

3.3. Effect of TNFα on SVCT2 Function. Elevated levels of
proinflammatory cytokines such as TNFα, IL-6, and IL-1β
in the brain and blood are linked to neuroinflammation
and systemic bacterial infection [17–20]. TNFα is upregu-
lated in AD brain samples and in the blood of patients
infected with bacteria [18, 20]. Still, there is little evidence
to describe the effect of TNFα on SVCT2 expression and
function in neuronal systems. Treatment of SH-SY5Y cells
with TNFα (20 ng/ml) significantly (P < 0:001) inhibited
AA uptake (Figure 3(a)). This inhibition in uptake was again
accompanied by marked decreases in the hSVCT2 protein
(Figure 3(b)) and mRNA (Figure 3(c)) expression levels, as
well as a significant reduction in SLC23A2 promoter activity
(Figure 3(d)). To assess responses to TNFα in vivo, mice were
injected intraperitoneally with TNFα (15μg/mouse) [34, 36],
followed by evaluation of mSVCT2 protein, mRNA, and
hnRNA expression levels in mouse brain after 72 h. Results
showed a significant (P < 0:05 for all) decrease in mSVCT2
protein, mRNA, and hnRNA in TNFα-administrated mouse
brain samples compared to control mouse brain samples
(Figures 3(e)–3(g)). Together, these results suggest that the
TNFα-mediated decrease in SVCT2 functional expression
also occurs via transcriptional mechanism(s).

3.4. Role of the Transcription Factor Sp1 in the Effect of LPS on
Neuronal AA Uptake. As shown above, the full-length

SLC23A2 promoter activity is inhibited by LPS in SH-SY5Y
cells (Figure 2(c)). To investigate the molecular basis for this
effect in greater depth, we tested whether the LPS inhibitory
effect was also apparent on specific regions of the promoter.
First, we assessed LPS action on a SLC23A2 minimal pro-
moter reporter construct (-97 bp to +102 bp; Figure 4(a))
transiently expressed in SH-SY5Y cells. The SLC23A2 mini-
mal (WT) promoter activity was significantly (P < 0:001)
inhibited following LPS treatment compared with controls
(Figure 4(b)). The minimal promoter region contains one
Sp1-binding and two KLF-binding sites. It has been previ-
ously established that both transcription factors, Sp1 and
KLF, are necessary to drive the basal transcriptional activity
of the SLC23A2 promoter [39, 42]. Therefore, we tested the
role of mutations at these sites on the inhibitory LPS effect.
Mutant minimal SLC23A2 promoter constructs were tran-
siently transfected into SH-SY5Y cells. After 24 h of transfec-
tion, cells were exposed to LPS for 48 h. Mutational ablation
of either KLF-binding site (KLF1 or KLF2) had no effect on
the inhibitory action of LPS (Figure 4(b)). In contrast,
mutational ablation of the Sp1-binding site led to a loss of
the LPS inhibitory effect on the SLC23A2 promoter activity
(Figure 4(b)). Based on this result, we examined the effect
on Sp1 protein and mRNA expression in SH-SY5Y cells after
exposure to LPS. LPS treatment resulted in significantly
(P < 0:05 for protein and P < 0:001 for mRNA) decreased
human Sp1 protein and mRNA levels compared with
untreated SH-SY5Y cells (Figures 4(c) and 4(d)). These data
suggest that the transcription factor Sp1 mediates the LPS-
induced inhibition of neuronal AA uptake.

3.5. NF-κB Signaling Regulates the Inhibitory Effect of LPS.
The NF-κB inflammatory signaling pathway is a part of the
regulatory mechanism that mediates the action of LPS on
gene expression [43–45]. LPS activates the NF-κB pathway
in SH-SY5Y cells by driving nuclear translocation of NF-κB
and promoting degradation of IKKαβ in the cytoplasm
(Figures 5(a) and 5(b)). Both these actions were blocked by
celastrol, which can act as a NF-κB inhibitor (Figures 5(a)
and 5(b)). As Sp1 and NF-κB are often involved in coordi-
nated regulation of gene expression [46–48], we examined
whether NF-κB was engaged by LPS to repress hSVCT2
expression. The addition of celastrol to inhibit NF-κB action
markedly reversed the effect of LPS-induced inhibition on
AA uptake (Figure 5(c)). Celastrol markedly increased the
hSVCT2 protein, mRNA expression levels, and SLC23A2
promoter activity (Figures 5(d)–5(f)). Collectively, these data
support the concept that Sp1 and NF-κB signaling pathway
coordinate to regulate SLC23A2 promoter activity in neuro-
nal cells, where NF-κB is activated (Figures 5(a) and 5(b))
and Sp1 is inhibited (Figure 4) by elevated LPS.

4. Discussion

The highest concentration of vitamin C is found in the brain,
and its levels can be markedly lower in the plasma of patients
with neurodegenerative disease [3, 9, 10]. Expression levels of
SVCT2 are also markedly lower in human and mouse brain
tissue with AD pathology (unpublished observations), which
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Figure 2: Effect of exposure of SH-SY5Y cells and mouse brain with LPS on different aspects of SVCT2 functional expression. (a) SH-SY5Y
cells were serum-deprived overnight and exposed to LPS (20 μg/ml). After 48 h, AA uptake was determined. (b) SH-SY5Y cells were exposed
to LPS for 48 h, and the protein was prepared to perform western blot analysis to determine the hSVCT2 protein expression levels. (c)
SLC23A2 full-length promoter activity was determined in LPS-treated SH-SY5Y cells. (d, f) Total RNA isolated from LPS-administered
and control mouse brain were used to determine the mSVCT2 and NLRP3 mRNA expression levels by RT-qPCR. (e) Protein samples
prepared from mouse brain tissue of LPS (5mg/kg body weight; 72 h) exposed and controls were subjected to western blotting to
determine mSVCT2 protein expression levels. (g) Total RNA prepared from LPS-injected and control mouse brain were subjected to
RT-qPCR to determine the mSVCT2 hnRNA expression levels. Values are means ± SE of at least 3-5 independent investigations utilizing
multiple batches of SH-SY5Y cells or at least 3-5 pairs of mice. ∗∗∗P < 0:001; ∗∗P < 0:01; ∗P < 0:05.
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Figure 3: Effect of exposure of SH-SY5Y cells and mouse brain with TNFα on different aspects of SVCT2 functional expression. (a) SH-SY5Y
cells were serum-deprived overnight and exposed to TNFα (20 ng/ml). After 48 h, AA uptake was performed. (b) SH-SY5Y cells were
pretreated with TNFα for 48 h, and the total protein was prepared and used to perform western blotting to determine hSVCT2 protein
expression levels. (c) Total RNA isolated from TNFα pretreated SH-SY5Y cells was utilized to determine the level of hSVCT2 mRNA
expression by RT-qPCR. (d) SLC23A2 full-length promoter activity was determined in TNFα pretreated SH-SY5Y cells. (e) Protein
samples from mouse brain tissue of TNFα (15 μg/mouse; 72 h) exposed and control mice were isolated to perform western analysis to
determine mSVCT2 protein expression levels. (f) Total RNA isolated from TNFα-injected and control mouse brain was used to determine
the mSVCT2 mRNA expression by RT-qPCR. (g) Total RNA samples prepared from TNFα-administered and control mouse brain were
subjected to determination of the mSVCT2 hnRNA expression levels by RT-qPCR. Values are means ± SE of at least 3-5 separate
investigations using different batches of SH-SY5Y cells or at least 3-4 pairs of mice. ∗∗∗P < 0:001; ∗∗P < 0:01; ∗P < 0:05.
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is a possible explanation for this deficit. Recent studies have
shown that LPS and other bacterial products are associated
with amyloid-beta (Aβ) plaques in AD brains [21, 23], sug-
gesting that abnormal buildup of these bacterial components
may be an additional factor to trigger chronic neuroinflam-
mation during the disease course. Brain vitamin C dysho-
meostasis induced by inflammation may therefore serve as
a mechanism linking inflammation to exacerbated disease
phenotypes. LPS and TNFα both affect neuronal gene func-
tion and expression [30–32, 49, 50]. Here, we investigated
their roles in regulating AA uptake and SVCT2 expression
in neuronal systems.

Both in vitro and in vivo assays suggest that the lower
levels of SVCT2 functional expression observed upon LPS
exposure in neuronal systems are mediated through tran-
scriptional regulation of the SLC23A2 gene. Substantial evi-
dence shows that Sp1 drives the basal activity of SLC23A2
promoter in different cellular systems [33, 39, 42] and has
also been implicated in transporter regulation in inflamma-
tory conditions [51]. In our investigation, we have used a
SLC23A2minimal promoter construct expressed in neuronal

cells [38, 39] to demonstrate that Sp1 mutation attenuated
the LPS-induced decrease in firefly luciferase activity
(Figure 4). LPS also markedly decreased the Sp1 protein
and mRNA expression, signifying that LPS degrades Sp1
and thus reduces SLC23A2 activity [52].

Sp transcription factors often interact with NF-κB signals
mediated at the same DNA binding sites [46–48]. NF-κB is a
pleiotropic regulator of many genes responsible for host
defense, inflammatory response, and apoptosis [53–56].
The observation that celastrol reversed the inhibitory action
of LPS and nuclear translocation of NF-κB implies a conver-
gent regulation of hSVCT2 promoter activity by these dual
and often dueling transcription factors. Further work will
be needed to resolve the details of how these factors may
exert their opposing influences on hSVCT2 promoter
activity, possibly even via the very same DNA binding sites.
It is worth mentioning that NF-κB is a redox-sensitive tran-
scription factor and regulates SVCT2 mRNA expression in
response to redox-state unsteadiness [57], and also, nitric
oxide (NO) regulates SVCT2 expression via the NF-κB
signaling pathway [58].
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Figure 4: Effect of pretreating SH-SY5Y cells with LPS on the activity of SLC23A2 minimal (WT) and mutant promoter constructs. (a)
Schematic depiction of SLC23A2 minimal promoter and the locations of Sp1- and KLF-binding sites. (b) SLC23A2 minimal (WT), Sp1-
and KLF-binding sites mutated promoter construct activities were determined in LPS-exposed and control SH-SY5Y cells (KLF1
designates the site 5′ of the second site named KLF2). Western blot analysis was done to determine the expression levels of Sp1 protein
(c), and RT-qPCR was done to determine the level of Sp1 mRNA (d) in LPS-exposed cells. @: cells exposed to LPS treatment significantly
decreased compared to KLF1 or KLF2 controls. NS: not significant. Values are means ± SE of at least 4 separate experiments. ∗∗∗P < 0:001;
∗∗P < 0:01; ∗P < 0:05.
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In summary, our findings suggest that LPS and TNFα
downregulate the functional expression of SVCT2, the major
vitamin C transporter in the brain. These actions may con-
tribute to the low levels of AA observed during neuroinflam-
matory insults.
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Figure 5: NF-κB signaling pathway plays a role in mediating the LPS-induced inhibitory effect on SVCT2 functional expression. SH-SY5Y
cells were pretreated with celastrol (100 nM) for 5 h before LPS treatment; then 48 h later, the NF-κB expression in the nucleus (a), IKKαβ
expression in the cytoplasm (b), carrier-mediated AA uptake (c), hSVCT2 protein expression (d), hSVCT2 mRNA expression (e),
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The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response
of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases,
whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct
and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in
response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include
local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS
inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find
potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive
immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.

1. Introduction

The cardinal signs of acute inflammatory diseases involve
cellular and molecular events, typically self-limiting, unlike
autoimmune and neurodegenerative lesions, which are due
to the failure in chronic inflammation resolution. Unresolved
inflammatory conditions typically lack the proinflammatory
to proresolving phase switch. This implies sustained recruit-
ment and persistence of inflammatory cells at the site of
inflammation because of lacking apoptosis and dead cell
clearance, macrophages not switching to an anti-inflamma-
tory/regenerative phenotype, no way out for the effector cells,
and partial tissue regeneration.

Some of these unsuccessful resolution phase scenarios
appear common to acute and chronic diseases.

Both in chronic inflammation with unsuccessful resolu-
tion and acute inflammation with a self-limited resolution,
making sense of the interaction interlayer between paren-
chyma cells and immune cells is key to understanding the
inflammation-repair process.

Both the immune and central nervous (CNS) systems
produce and use immune factors and neuroendocrine medi-
ators. Immune cells and mediators play a regulatory role in
the CNS, participating in neurodevelopmental synaptic plas-
ticity and removal and synaptic plasticity in adulthood. Far-
distance talk of immune cells with the CNS allows the
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immune system to engage the body in fighting infection by
pathogenic microorganisms and the nervous system to regu-
late immunity.

Cross-talk between the immune, nervous, and endocrine
systems involves a great variety of mediators, including cyto-
kines, neurotransmitters, and hormones.

The nervous system lays out functional connections with
the immune system directly innervating the lymphoid system
with adrenergic, peptidergic, and catecholaminergic fibers
and via receptors for neuropeptides (substance P (SP),
somatostatin, and vasointestinal peptide, (VIP)) and neuro-
transmitters (noradrenaline, acetylcholine, enkephalin, and
endorphin) on immune cells. These mediators can modulate
the synthesis and release of cytokines, including the chemo-
kines, chemotactic cytokines. Chemokines are low molecular
weight cytokines that recruit secondary proinflammatory
leukocytes and might act as central neuromodulators [1].
Neuropeptides and neurotransmitters reach the immune
cells by nerve-terminal nearby diffusion (nonsynaptic trans-
mission) and bloodstream circulation. Hormonal receptors
in lymphoid tissues allow the neuroendocrine mediators to
interact with the immune system. In the last years, the consis-
tent characterization of receptors and hormones in lymphoid
tissues has brought out interesting information on the cross-
talk between the immune and neuroendocrine systems and
the involved mechanisms.

Brain tissue is a particular target of immune-
inflammatory reactions. In the past, the CNS was believed
immune-privileged, v.g., not prone to undergo strong inflam-
mation, and lacking lymphatic drainage. Accrued evidence
on neuroimmune interactions has questioned the historical
idea of the brain, isolated by the blood-brain barrier (BBB),
immune-privileged. This intrinsic characteristic of the CNS
is conferred by constitutive and reactive components includ-
ing the BBB, microglial cells, astrocytes, oligodendrocytes,
and infiltrating myeloid and lymphoid cells. Astrocytes appear
to protect the CNS from T cell-mediated neuroinflammation
[2]. This review offers an update on the key inflammatory
mediators and the role of inflammatory cells in infectious
and noninfectious conditions on neuroinflammation. We dis-
cuss the relationship between neuroinflammatory processes,
hypoxia, and oxidative stress and how innate and adaptive
immunity shape up an integrative network to regulate immu-
nological processes, affecting brain homeostasis.

2. Neuroinflammatory Diseases

The BBB-derived immune privilege of the brain is, at least,
questionable by now. Central nervous system cells are reac-
tive to peripheral inflammatory factors, and peripheral
immune cells can infiltrate the brain. In encephalitis, menin-
gitis, encephalopathy, hypoxia, and other conditions, the
inflammatory response of brain cells evidences neurological
involvement. Neurologic manifestations of infective (para-
site, virus, bacteria, and fungi) and not mutually exclusive,
noninfective agents (traumatic, neurodegenerative, and auto-
immune) result in morbidity and mortality. The best treat-
ment for these neurologic complications, with varying
degrees of recovery and sequelae, is yet unclear.

Inflammation is emerging as a pivotal mechanism com-
mon to different neuropathological conditions [3–10].

2.1. Neuroinfectious Diseases. Innate immunity offers a rapid
response to infections, often called the first line of host
defense, enhancing adaptive immune responses. During neu-
roinflammatory infections, specific types of innate immune
molecular and cell pathways seem activated. Their functional
effectiveness to limit brain injury spread is crucial.

Neurologic dysfunction with acute alteration in mental
status due to inflammation is a hallmark of CNS infections
by neurotropic pathogens [11]. Postinfectious neurologic
dysfunction has been attributed to irreversible damage
caused by pathogens on their own [12–15].

Neurologic involvement andmanifestations were reported
in some parasitic infections, v.g., Chagas disease, toxoplasmo-
sis, human African and American trypanosomiasis, echino-
coccosis, cysticercosis, leishmaniasis, onchocerciasis,
schistosomiasis, food-borne trematodiasis, dracunculiasis,
filariasis, and soil-transmitted helminthiasis [16].

Chagas disease is associated with brain atrophy indepen-
dent from structural cardiac disease related to cardiomyopa-
thy. Brain atrophy, rather than multiple infarcts, may
represent the main anatomical substrate of cognitive impair-
ment in Chagas’ disease [17].

An important determinant of brain inflammation is the
delicate balance between proinflammatory and counterin-
flammatory mediators. In mouse models of human African
trypanosomiasis, proinflammatory mediators like the tumor
necrosis factor (TNF-α), interferon-gamma (IFN-γ), and
CXC ligand 10 (CXCL10) have been crucial to parasite
CNS invasion. The administration of IL-10, a prototypical
counterinflammatory molecule, reduces the CNS parasite
burden, the severity of the neuroinflammatory response,
and the clinical symptoms associated [18].

Viral infections associated, or not, with acquired immu-
nodeficiency like dengue, rabies, infections by Epstein Barr
virus (EBV), herpes papillomavirus (HPV), human immu-
nodeficiency virus (HIV), and others could cause neurolog-
ical complications.

Human immunodeficiency viruses infect the CNS during
primary infection and persist in resident macrophages, lead-
ing to low-grade chronic inflammation. Various CNS viral
infection-mediated inflammations take place in perivascular
inflammatory infiltrates of the CNS parenchyma [19].

Malignant and nonmalignant tumors are rare. Based on
serologic findings and literature, the pathogenetic mecha-
nism of this rare intracranial tumor is believed a chronic
reactive response to EBV infection [20].

Bacterial infections of the CNS can cause meningitis,
granulomatous infections like tuberculosis, syphilis, spiro-
chete infections, and others, cerebral and epidural abscesses,
and bacterial exotoxin-related diseases like diphtheria, teta-
nus, and botulism, affecting the CNS.

Certain mycoses can affect the brain causing neuroin-
flammation and neurodegeneration [5, 7, 8] or toxicity [21].
Coccidioidal meningitis (CM) often affects immunocompro-
mised people [22]. Cerebral aspergillosis is a highly fatal
infection [23], and mucormycosis is an opportunistic fungal

2 Mediators of Inflammation



infection with a poor prognosis among generalized fungal
infections that promote brain degeneration.

The past years have established a key role for infectious
pathogens in certain neurological autoimmune-associated
diseases. Certain systemic and organ-specific autoimmune
diseases, rheumatic mainly, can cause neuroinflammation.
Fibromyalgia [4], destructive joint diseases [6], and systemic
lupus erythematosus [3] are a few examples. Neurodegen-
eration studies suggest that peripheral infection might be
related to onset and progression of age-related neurode-
generation [24]. Aged patients appear more vulnerable to
infection-related cognitive changes associated with Alzhei-
mer’s disease (AD). This may occur from typical infectious
challenges like respiratory tract infections, although some
specific viral, bacterial, and fungal pathogens have been
associated with disease development as well. To date,
whether these microorganisms are directly related to AD
progression or are opportunistic pathogens colonizing
dementia patients and exacerbating the preexisting ongo-
ing inflammation [8, 25] is unclear.

Neuroinflammation with altered synaptic plasticity fol-
lowing perinatal infectious-inflammatory challenges is of
concern. The effects of congenital infection on neural cell
proliferation and survival, axonal damage, and myelination
have been studied in different experimental settings [26].
Microglia, as an antigen-presenting cell (APC), exerts a
special role during neuroinflammation-associated injury
to the immature brain [27]. However, microglial activation
also participates in the immunoregulation-triggering
response, although the evidence suggests that the microglia
critically influences brain plasticity in the healthy develop-
ing brain [28].

2.2. Not Pathogen-Associated CNS Diseases. Neurodegenera-
tive diseases progressively affect cognitive and motor func-
tions and interfere with daily tasks’ performance. Advances
in genetics and animal models are showing an unexpected
role of the immune system in the pathogenesis and onset of
diseases. The role of cytokines, growth factors, and immune
signaling pathways in disease pathogenesis is still being
examined [29].

Traumatic brain injury (TBI) elicits a robust immune
response within hours and days [30]. Peripheral immune cell
infiltration to the damaged tissue with activation of brain
resident astrocytes and microglia has been observed in
patients and TBI animal models. Regulatory T cell-reduced
neuroinflammation, T lymphocyte brain infiltration, reactive
astrogliosis, interferon-γ gene expression, and transient
motor deficits have been observed in an acute TBI murine
model [31].

Postmortem brain and cerebrospinal fluid of Parkinson’s
disease (PD) patients had a high concentration of proinflam-
matory cytokines, indicating ongoing neuroinflammation
beyond pathology. Inflammation might lead to oxidative
stress promoting dopaminergic neuron degeneration [9].
Several studies have reported inflammation and immune
responses as determinant factors in disease progression,
responsible for pathogenic processes in familial and sporadic
PD onset [10]. One study reported activated microglia in the

substantia nigra (SN) and putamen of patients diagnosed
with PD [32]. In 2005, another study suggested microglia-
mediated inflammation presenting at an early stage of par-
kinsonism [33]. Several authors suggested pathogenic muta-
tions in the α-synuclein (SNCA) gene and the leucine-rich
repeat kinase 2 (LRRK2). Alpha-synuclein accumulation, a
major stimulant of microglial activation, participates in PD
progression [34–36]. Both central and peripheral inflamma-
tion is responsible for the sustained progression of PD.
Degeneration of dopaminergic neurons occurs with the infil-
tration of T cells and activation of microglia, with increased
production of inflammatory cytokines and chemokines due
to pathological SNCA accumulation [34, 37, 38].

In addition, the CNS is an autoimmune disease target.
Multiple sclerosis (MS) is one of the most ravaging disorders,
presenting with spontaneous onset, remitting-relapsing
periods sometimes, and a progressive disease pattern in
genetically predisposed hosts. Experimental autoimmune
encephalomyelitis (EAE) is the traditional animal model for
MS. However, despite its similarities with MS, most treat-
ments for EAE have failed in translation to humans. Adaptive
and innate, systemic, and resident in the CNS immune com-
ponents contribute to neurodegenerative and neurobehav-
ioral disorders’ progression as found in animal models and
correlated with human studies.

Environmental triggers affecting the CNS during the pre-
natal and postnatal periods trigger microglia activation and
astrogliosis, upregulate proinflammatory cytokines, and are
critically associated with neuroinflammation [39, 40]. It is
not only a hallmark of infections but secondary to not-
infective insults as well, like cerebral hypoxia-ischemia [41].
Noteworthily, inflammatory brain glial cells appear pivotal
in regulating synaptic structure and function. Synaptic phys-
iology and pathophysiology studies suggest that the immune
system dynamically affects neurodevelopmental synapse
organization [42, 43].

Though seldom exposed to harmful agents, brain tissue
has limited restorative ability to repair damaged cells. The
expanding molecular biology findings offer increasing
insights into immune glial system interactions, including
innate and adaptive immune molecules and receptors medi-
ating tissue injury and repair [44].

3. Key Components of the
Neuroinflammatory Process

Newly evolving neuropathology evidence offers proper inter-
pretations of a plethora of diverse disorders. Microglia
response, infiltrating immune cells, generation of oxidative
stress species, and proinflammatory cytokines offer a com-
mon background to neuroinflammatory and neuroimmune
responses.

Neuroinflammation is often harmful yet contributes to
normal brain development [42] and homeostasis and is actu-
ally necessary for brain plasticity during critical developmen-
tal periods [45]. Perpetuating inflammatory processes lead to
progressive chronic inflammatory conditions, mainly derived
from autoimmune or neurodegenerative disorders. Adaptive
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immune-mediated neuroinflammation is a frontier grey zone
between injury and healing in chronic diseases in particular.

In homeostasis, the neuronal function requires glial cells
and BBB integrity. Accumulating evidence suggests that neu-
roinflammation targeting glial cells is implicated in neurode-
generative disorders [46].

3.1. Inflammatory Mediators in the CNS

3.1.1. Cytokines and Chemokines at the Neuroinflammation
Border. Chemokines and cytokines are bioactive proteins
and peptides involved in feedback activation of protein sig-
naling cascades. Peripheral macrophages and lymphocytes
and central astrocytes and microglia produce and release
cytokines and chemokines. These are necessary for neuronal
metabolism, immune surveillance, leukocyte trafficking, and
uptake of other inflammatory mediators. They participate
in neurodevelopment and synaptic transmission and are the
main inducers of neuroinflammation. Cytokines and chemo-
kines bind to specific membrane receptors at the extracellular
ligand-binding region, activating the intracellular region
which triggers signal transmission to the nucleus [47].

Cytokines and chemokines are neuroprotective and neu-
roinflammatory, and their dysregulation is decisive for neu-
roinflammation, neurodegeneration, and demyelination in
the central and peripheral nervous systems [48].

(1) Chemokines. Chemokines comprise two categories based
on their expression. One of them, constitutively expressed,
is responsible for the maintenance of homeostasis, surveil-
lance, and immune system monitoring. The other one,
inducible by inflammation following damage, amplifies the
innate and adaptive immune system responses.

Chemokines act via chemokine-unspecific G protein-
coupled receptors (GPCR). They can attract or activate
immune cells and affect neuronal activity and survival [49].
They may induce neuronal death directly, activating neuro-
nal chemokine receptors, or indirectly, activating microglial
killing mechanisms. Some chemokines are neuroprotective
and act as pro- or anti-inflammatory mediators [48]. One
of the most important neuroinflammatory chemokines is
the monocyte chemoattractant protein-1 (MCP-1), also
known as C-C motif ligand 2 (CCL2) or C-X3-C motif ligand
1 (CX3CL1). It regulates the migration of monocytes, T lym-
phocytes, and “natural killer” cells towards the affected area.
In its soluble form, MCP-1 participates in the interaction
between neurons and other inflammatory cells.

The MCP-1 acts via the CCR2 receptor and is expressed
in neurons and glial cells. The astrocytes are the major source
of MCP-1 after neuronal damage or infection. It plays an
important role in neuroinflammation linked to various dis-
eases involving neuronal degeneration. Neuronal MCP-
1/CCL2 induction during mild impairment of oxidative
metabolism caused by microglial recruitment/activation
exacerbated neurodegeneration in thiamine deficiency-
(TD-) induced neuronal death. Knockout mice lacking
CCL2 were resistant to TD-induced neuronal death, suggest-
ing that CCL2 mediated microglial recruitment and neurode-

generation in this model [50]. However, several studies show
that suppressing MCP-1 may be beneficial, reducing inflam-
mation in some diseases. In patients with complications asso-
ciated with inflammatory processes, a high blood level of
CCL2 contributes to ischemic cerebrovascular disease and
myocardium infarct. Brain overexpression of CCL2 aggra-
vates ischemic injury [51], while CCL2 deficiency confers
neuroprotection against permanent carotid artery oblitera-
tion [52]. Mice lacking CCR2 showed reduced cerebral
edema, infarct size, and BBB disruption and decreased leuko-
cyte, monocytes, and neutrophil infiltration. They also had
decreased expression of a variety of proinflammatory cyto-
kines (IL-1β, TNF-α, and IFN-γ) and endothelial cell adhe-
sion molecules preventing leukocyte-endothelial cell
interaction during reperfusion [53, 54]. Interestingly, MCP-
1-deficient mice showed reduced neuroinflammatory
responses and increased peripheral inflammatory responses
to peripheral endotoxin insult [55]. In the hypoxia-
ischemia model, CCR2 knockout mice had impeded transen-
dothelial diapedesis in response to CCL2, showing that CCR2
was required for stem cell migration to promote CNS regen-
eration via CCL2 chemotaxis [56]. Likewise, CCL2 protected
cultures of human neurons and astrocytes from glutamate
toxicity and HIV-transactivator of transcription- (HIV-tat-)
induced apoptosis [57]. Rat dorsal hippocampal neurons in
culture treated with kainic acid (KA) showed increased
CCL2 and macrophage inflammatory protein-2 (MIP-2)
levels, both inducers of basic fibroblast growth factor (bFGF)
and astrocyte activation. Astrocytes stimulated with CCL2
facilitated bFGF-dependent neuronal cell differentiation
and induced H19-7 neurons’ survival in vitro, suggesting a
supporting trophic role for chemokine-activated astrocytes
[58]. Astrocytes produce chemokines in response to proin-
flammatory cytokines like IL-1β and TNF-α and synthesize
MCP-1 via nuclear factor-kappa B (NF-κB) [55]. Primary
astrocytes treated with lipopolysaccharide (LPS) and inter-
leukin- (IL-) 1β were responsible for the exacerbated cyto-
kine response observed in vivo in the absence of CCL2
postinjury. Evidence of CCL2-induced inhibition of IL-6
and TNF-α produced by astrocytes following IL-1β stimula-
tion suggests a novel CCL2 immunomodulatory role in acute
neuroinflammation [59].

Other chemokines like CXCL9, CXCL10, and CXCL11
and their receptor (CXCR3) are crucially involved in AD
andMS. They are implicated in the Th1-type response in var-
ious diseases. Their expression is induced by IFN-γ, the most
typical Th1 cytokine associated with tissue T cell infiltration
[60]. Accordingly, MCP-1 might have a dual neuroinflam-
matory or neuroprotective role in neurodegenerative dis-
eases, depending on the neuroinflammatory milieu.

(2) Cytokines. The small proteins known as cytokines are sig-
naling molecules released in response to a variety of stimuli
under physiological and pathological conditions. Present in
up to picomolar concentrations, they regulate inflammation
and the duration of the immune response and modulate cel-
lular activities like growth, survival, and differentiation. The
large and diversified group of pro- or anti-inflammatory
cytokines comprises different families based on their
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structural homology and that of their receptors [48]. The
main proinflammatory cytokines are TNF-α, IL-1β, and IL-
6 interleukins and IFNs. Anti-inflammatory cytokines are
IL-10 and IL-4, among others. Cytokines act as neuromodu-
lators and regulate neurodevelopment, neuroinflammation,
and synaptic transmission. They are crucial to brain immu-
nity comaintaining immune surveillance, facilitating leuko-
cyte traffic, and recruiting other inflammatory factors. The
role of cytokines in neurodegenerative diseases is compli-
cated by their dual roles in neuroprotection and neurodegen-
eration [48].

To illustrate, IL-6 has dual roles in brain injury and dis-
ease. It is essential in regulating inflammation, balancing
between pro- and anti-inflammatory responses, and partici-
pating in neurodegenerative and neuroprotective processes
[61]. The peripheral nervous system and the CNS, v.g., neu-
rons, microglia, and astrocytes, in particular, show IL-6
[60]. In neuroinflammatory processes, IL-6 promotes astro-
gliosis and microglial activation. During reactive astrogliosis,
IL-6 acts as a neurotrophin, promoting neuronal survival in
response to neuronal damage. A high level of IL-6 has been
associated with brain disease [61]. Interleukin-6 is upregu-
lated upon neuroinflammation as observed after CNS infec-
tion or injury, viral meningitis, experimental encephalitis,
and acute viral infections. In all these conditions, its cerebro-
spinal fluid (CSF) level rises in patients [62]. Other examples
of high IL-6 level conditions are mouse experimental cerebral
malaria [63], TBI [64], and advanced stages of patients with
HIV infection [65]. Conversely, studies in IL-6 knockout
mice show a compromised inflammatory response, increased
oxidative stress, impaired neuroglial activation, decreased
lymphocyte recruitment, and a slower rate of recovery and
healing [61]. In physiological conditions, TNF-α participates
in homeostasis regulation, synaptic plasticity, learning and
memory, and sleep/wake cycles. However, a high TNF-α level
is related to neuroinflammation and neurodegenerative dis-
eases [66]. Its major source is the microglia, along with astro-
cytes and neurons during neuroinflammation [66]. Together
with the interferon-gamma protein (IFN-γ), TNF-α is proin-
flammatory during acute brain inflammation and is immu-
nosuppressive upon chronicity [67].

Interferon-gamma (IFN-γ) is a multifunctional cytokine
that participates in inflammation onset and consolidation,
in innate and adaptive immune responses, induced in many
cell types, including neurons [68]. It is a potent inducer of
TNF-α gene expression in microglia, having complementary
roles during neuroinflammation [66]. TNF-α induces neuro-
toxicity by high glutamate production, leading to neuronal
excitotoxicity and death [69]. Inactivating IL-1? and TNF-α
with neutralizing antibodies reduced neuronal death in SK-
N-SH cells, a neuroblastoma cell line induced by the West
Nile virus [70]. Deleting the TNF-α gene reduces neurode-
generation in Sandhoff disease (SD), a lysosomal storage dis-
order [71]. However, TNF-α receptor-1-deficient mice
showed severe experimental autoimmune neuritis suggesting
an anti-inflammatory role for TNF-α at least in this model
[72]. Two surface receptors, TNFR1 and TNFR2, recognize
TNF-α. They differ in their expression, signaling cascade

transduction, and TNF-α binding affinity [73]. Downregulat-
ing TNFR1 reduced JNK activation and attenuated neuroin-
flammation, neurovascular damage, and brain injury in the
LPS-sensitized hypoxic-ischemia mouse model [69]. Upreg-
ulating TNFR2 protected neurons from excitotoxicity and
promoted neuronal survival, activating the PI3K/NF-κB sig-
naling pathway in a glutamate-induced cell death model
[74]. Different receptor-related signaling pathways account
for TNF-α dual effects [75, 76].

IL-1β is a very potent signaling molecule of the family of
pleiotropic cytokines, expressed at low levels usually, but
induced rapidly in response to local or peripheral insults. It
coordinates the host defense response to pathogens and
injury, not surprisingly, not only systemically but in the
CNS as well. Upon injury or in brain disease, IL-1β presence
has been correlated with effects on neurons and nonneuronal
cells [77]. It is also involved in neuroinflammation, fever,
appetite, learning, and memory [78]. It is synthesized by
macrophages, microglia, astrocytes, T and B lymphocytes,
or neutrophils, among others [77]. Binding to the IL-1R
receptor induces the production of other inflammatory cyto-
kines like IL-6 and TNF-α, and the increase in the PLA2,
COX-2, and iNOS enzymes which produce arachidonic acid,
prostaglandins, and NO, respectively [79, 80]. Studies in IL-
1R1 receptor-deficient mice found decreased activation of
microglia and astrocytes and of IL-6 and COX-2 production
in brain injury, indicating the key role of IL-1β [79, 81].
Interleukin-1β was rapidly induced in experimental stroke,
while a low IL-1β level protected from ischemic injury and
neuronal loss, reducing infarct volume [79, 82]. Multiple
sclerosis patients had high IL-1β levels in CSF and demyeli-
nated lesions [83]. Oppositely, IL-1β induced the production
of fibroblast growth factor-2 (FGF-2), transforming growth
factor-β1 (TGF-β1), and nerve growth factor (NGF), pro-
moting neurite growth in vitro [84]. Taken together, IL-1β
appears important in the initiation and development of the
inflammatory cascade and in neuronal survival in a variety
of neurodegenerative diseases.

Neuropoietic cytokines are a group of immune mediators
that participate in normal brain development, promoting
neural precursors’ proliferation, fate determination and dif-
ferentiation, neuronal and glia migration, cell survival, and
activity-dependent changes in synaptic function. Inflamma-
tion during development may cause widespread injury, inter-
fering with the normal balance in cytokine signaling and
developmental processes, or increase neurological vulnera-
bility later in life [85].

3.1.2. The Role of the Complement Cascade in
Neuroinflammation. The complement system comprises
around 30 proteins, nearly 5% of total whey protein and a
low proportion of membrane proteins. It participates in the
recognition, trafficking, and elimination of pathogens and
any unfamiliar material to the host as a powerful arm of the
innate immune system. In normal conditions, its compo-
nents do not pass through the blood-brain barrier. Glial cells
and neurons produce complement components, largely in
response to neural damage or inflammatory signals [86].
The complement cascade is also expressed during

5Mediators of Inflammation



physiological development when neuron-derived comple-
ment proteins tag synapses for pruning by microglial cells
[87, 88]. Astrocytes and microglia are the largest producers
of complement elements in both normal and pathological
conditions. The microglia expresses high complement recep-
tor levels, crucial at inducing phagocytosis of complement-
labeled structures, regulating cytokine signals and chemo-
taxis. Astrocytes, oligodendrocytes, and neurons express high
levels of the C3 complement fraction and other members of
the complement cascade [89, 90]. The complement system
is implicated in several neurological disorders. Complement
mRNAs have been found in the cerebral cortex and the hip-
pocampus in man. The postmortem examination of samples
from patients with AD showed an increased level of these
mRNAs in pyramidal neurons. This finding along with reac-
tive oxygen species and proteases portrays a local inflamma-
tory nest compatible with neuronal dysfunction and
cognitive decline [91–93]. Products of the activation cascades
are generated in human AD, MS, Huntington’s disease,
Parkinson’s disease, spinal cord injury, TBI, and cerebral
ischemia [94–102]. In addition, C3−/− mice showed reduced
brain edema in intracerebral hemorrhage [102]. Comple-
ment overactivation, associated with glial activation and the
release of proinflammatory compounds, appears implicated
in synaptic loss concomitant with aging physiological, cogni-
tive decline, and brain diseases [103]. The complement sys-
tem role in the pathology of neurodegenerative diseases
opens new avenues for understanding its involvement in
neuroinflammatory processes and as a promising target for
future therapeutic strategies.

3.2. Inflammatory Cells in the CNS. Neurons and glial cells
produce cytokines either constitutively or by induction in
appropriate culture media.

Glial cells, unlike neurons, are not excitable and comprise
the microglia and the macroglia (astrocytes, oligodendro-
cytes, and ependymal cells). Some of them are involved in
the isolation, support, and supply of substances to maintain
neuronal metabolism. The microglia are considered brain
resident macrophages able to migrate to the inflammatory
foci. Glial cells release cytokines, which establish functional
connections with each other and with neurons. Upon inflam-
matory stimuli, they can participate in the pathogenesis of
neurological diseases.

3.2.1. Microglia. Microglia, the resident immune cells of the
CNS, are derived from yolk sac macrophages arising during
the first wave of primitive hematopoiesis and populating
the developing CNS via the bloodstream once embryonic cir-
culation is established [104]. Central nervous system glia and
a mononuclear phagocyte are involved in physiologic pro-
cesses, inflammatory and immune responses, and in the
pathogenesis of several CNS disorders [46]. These cells share
innate immunological functions with other mononuclear
phagocytes like monocytes, macrophages, and dendritic cells,
mostly related to phenotypic characteristics and lineage-
related immunological properties, including the ability to
secrete cytokines common to immune antigen-presenting
cells, described over two decades ago [105].

Surveillant microglia cells contribute to maintaining CNS
homeostasis [106]. In response to inflammation challenge,
microglia promptly becomes ameboid and upregulates cell
surface receptors involved in innate immune responses, pro-
inflammatory type (classical or M1 activation). This is
because they have pattern recognition receptors (PRRs) like
the toll-like receptors (TLR), the nucleotide-binding oligo-
merization domain-like (NOD) receptors, receptors for
advanced glycation end products (RAGE), scavenger recep-
tors (CD36, CD91), phagocytic receptors like the CR3 and
CR4, and triggering receptor expressed on myeloid cells
(TREM). These receptors are involved in the innate immune
response, increasing the expression of various cytokines, che-
mokines, surface receptors, and metabolic enzymes [107].
The microglia can take on an anti-inflammatory profile
(M2 microglia), promoting healing, tissue regeneration, and
angiogenesis. The M2microglia has been subdivided into dif-
ferent M2 subtypes depending on the expression of specific
markers and secreted cytokines and chemokines [82, 108].

Microglia is crucial in restricting neuroinflammation.
In osteopetrotic (op/op) mice, defective in producing func-
tional colony-stimulating factor (M-CSF), a decrease in the
number of tissue macrophages and microglial cells led to
neuropathology exacerbation [109, 110]. All the same, res-
ident glial cells can turn into aggressive effectors, attacking
healthy neurons by phagocytosis, or secreting factors on
their own, or in coordination with infiltrated immune cells
[111]. This rich repertoire of responses may account for
the dichotomic microglia reactivity in promoting neuronal
survival or degeneration.

The presence of activated microglia in nearly every neu-
rological insult leads to possibly oversimplifying in vitro
study design. Assuming that activated microglia and associ-
ated inflammatory responses are harmful to the brain should
be cautious [112]. The reactive response of the microglia
might be interpreted mostly as beneficial. The regulatory
control of neuroinflammation is normally imposed, and
interfering with homeostatic regulations may be detrimental.
Unfortunately, the way to reaching a healthy balance and its
modulation under psychological distress and neurological
diseases is still unclear [107].

3.2.2. Astrocytes. Astrocytes have been traditionally consid-
ered supportive cells for neurons, responsible for brain
homeostasis and neuronal functions. They are the largest cell
population in the CNS, even compared with neurons [107].
Astrocytes give metabolic support to the neuron, generate
neurovascular coupling, and control BBB permeability. They
are essential in recapturing several neurotransmitters, K+

damping, and other functions. They express a wide variety
of cytokine receptors like the PRRs, contributing to brain
immunity [113]. The expression kinetics indicates that che-
mokines contribute to amplifying the inflammatory reaction
or that astrocytes can promote recruitment and proliferation
of regulatory T cells (Tregs) via the anti-inflammatory cyto-
kine transforming growth factor β (TGF-β) and chemokine
CXCL12 (stromal cell-derived factor-1 (SDF-1)) [107].
Astrocytes secreting other anti-inflammatory cytokines like
IL-10 might exert important immunoregulatory functions
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in the CNS, reducing microglia and astrocytes’ presenting
capacity and interfering with antigen-specific T lymphocyte
proliferation.

Activated T lymphocytes (Th1 and Th17) in the second-
ary lymphatic organs cross the BBB and are locally reacti-
vated upon surface antigen recognition on the antigen-
presenting cells. They secrete cytokines that stimulate
microglia and astrocytes, increasing cell recruitment in a
variety of neurological disorders. Astrocytes act as a source
of cell surface receptor/ligands and cytokines to modulate
both innate and adaptive immune cell system in the neurop-
athy, and the way around, immune cells regulate astrocyte
activity [114, 115].

Microglia and astrocytes play an active dual role in brain
inflammatory diseases. Not only can they boost immune
responses and promote neurodegeneration but can also pro-
tect and restrict CNS inflammation. What factors or scenar-
ios determine whether a beneficial or detrimental response
follows remains a matter of research.

3.2.3. Oligodendrocytes. The oligodendrocytes are glial cells
that start myelinization, allow electric potential propagation,
and give metabolic support to neurons. From an immunolog-
ical point of view, oligodendrocytes were classically thought
of as inert and merely representing bystander victims of
immune responses. This view has now changed in the light
of accumulating evidence that oligodendrocytes actively pro-
duce a wide range of immune-regulatory factors and express
the corresponding receptors [115].

Neuroinflammatory responses can be deleterious for cell
survival, leading to irreversible and extensive brain damage,
if long-sustained in particular. Oligodendrocytes are the
main target of the immunoinflammatory response in the
CNS. This occurs due to deleterious cytokines released by
infiltrating macrophages and microglia, T lymphocyte cyto-
toxicity, or antibodies triggering antibody-mediated cytotox-
icity (antibody-dependent cellular cytotoxicity).

Oligodendrocytes produce immune mediators that mod-
ulate microglia activity in response to stress. Chemoattrac-
tants like CXCL10, CCL2, CXCR2, and CCL3, CXCR2
expressed on oligodendroglia, in particular, have been impli-
cated in the pathogenesis of neuroinflammatory demyelinat-
ing diseases and in amplifying the migration, proliferation,
and myelin production by the oligodendroglia [116]. Oligo-
dendrocytes express receptors to IL-4, IL-6, IL-10, IL-12,
and other cytokines and markers like the CD200 during
inflammation and infection, suggesting that they recruit
microglia to damaged tissues [115]. A wide range of proin-
flammatory cytokines, including IL 1, 2, and 3, IFN α, β,
and γ, TNF-α, and lymphotoxin, released by microglia, have
been detected in demyelinating pathologies like MS, suggest-
ing that microglial activity and oligodendrocyte damage may
be associated [116, 117]. In vitro stimulation with IFN-γ
induced MHC-I expression, making them susceptible to
death caused by CD8+ T cells (often called cytotoxic T lym-
phocytes) [118]. Likewise, oligodendrocytes express both IL-
18 and IL-18R receptors during the active MS period. The
large amount of IFN-γ observed in these circumstances adds
to oligodendrocyte damage [119]. Human oligodendrocytes

are susceptible to MHC class I restricted CD8+ T cell medi-
ated cytotoxicity in vitro [120, 121], to non-MHC restricted
cytotoxicity mediated by γδ T cells [122], and to cytokine-
activated natural killer (NK) cells [123]. The cytotoxic activ-
ity of killer (K) cells in enriched cultures of bovine oligoden-
drocytes (BOL) was investigated in MS. Human K cells
mediated cytotoxicity to primary cultures of BOL, where
the antibody-dependent cell-mediated cytotoxicity (ADCC)
to BOL was mediated by large granular lymphocytes [124].

Oligodendrocytes play a central role in the pathogenesis
of a wide spectrum of neurological disorders encompassing
various neurodegenerative diseases, besides the classical
demyelinating disorders. The interaction between oligoden-
drocytes and other glial cells like microglia offers an insight
into the neuroinflammatory dynamics in different neurolog-
ical conditions. More studies are needed on the communica-
tion between microglia and oligodendrocytes. The outcome
will help to develop new approaches to treat disorders with
myelin damage associated with innate immune activation,
promoting repair and reducing inflammation in the CNS.
This is summarized in Figure 1.

3.3. CNS Immune-Mediated Inflammation, Hypoxia, and
Oxidative Stress Crossovers. The CNS is sensitive to periph-
eral inflammatory events and peripheral immune cell and
cytokine infiltration. Unfortunately, unsuccessful repair leads
to lasting cellular damage. Any insult to the CNS involves
immune-mediated inflammation-hypoxia and oxidative
stress. Often, there is a massive epithelial cell loss and inter-
stitial fibroblast proliferation with an extracellular collage-
nous matrix deposition known as fibrosis because of a
failure in repairing injured parenchyma cells [125]. This
interpretation is not conclusive. Fibroblast expansion is
intrinsic to damage due to tissue-resident macrophage acti-
vation and macrophage-like cell influx rather than paren-
chyma repairing attempt by macrophages. Whether fibrosis
benefits or aggravates damage is not clear [126]. Clarifying
this issue applies to whether the intervention should point
against fibrosis development (fibroblasts’ expansion and col-
lagen deposition) or not if the repair strategy avoids axonal
loss and brain damage.

Functional recovery after hypoxic brain damage poses a
complex scenario. Hypoxia impairs gene expression and
downregulates transcription and translation mechanisms
and gene activation as the hypoxia-inducible factor (HIF1-
α) and its target molecules [127]. Hypoxia triggers two main
molecular and cell cascades. One leads to hypoxia-damaged
cell removal via ubiquitination, peroxisome, and caspase
pathway activation, resulting in apoptosis or necrosis, the lat-
ter encompassing proinflammatory effects [128, 129]. The
other is compensatory, reducing cell loss via multiple mech-
anisms, including DNA repair, preserving homeostasis [130].

Eventually, the loss and salvage of cells impact brain
development, neuronal wiring, and neuron-glia interactions.
Whatever further negative impact comes up during develop-
ment will reinforce the sequel of damage, aggravating neuro-
logical deficits and ensuing neurological disorders.

Inflammation and hypoxia are inextricably linked.
Nuclear factor kappa B (NF-κB) regulates the HIF1-α system
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[131]. The concept of hypoxia leading to inflammation has
gained general acceptance after studies on the hypoxia signal-
ing pathway. Mountain sickness increases the circulating
level of proinflammatory cytokines and vascular leakage,
triggering pulmonary or cerebral edema [129, 132–134].

Hypoxia signaling and the NF-κB family of transcription
factors regulate inflammation and orchestrate immune
responses to guarantee tissue homeostasis [135]. The interac-
tion of the NF-κB family with the HIF pathway links inflam-
mation with hypoxia. The NF-κB-independent ATIA- (anti-
TNF-α-induced apoptosis-) thioredoxin 2 (TRX2) axis
inhibits TNF-α- and hypoxia-induced apoptosis irrespective
of NF-κB through TRX2-mediated elimination of excess
reactive oxygen species (ROS) (Figure 2) [136].

Ischemia-reperfusion activates NF-κB in epithelial cells,
releasing proinflammatory tumor necrosis factor α (TNF-α)
while attenuating apoptotic hypoxia-activated pathways
[137, 138].

One study identified an NF-κB-independent ATIA-
thioredoxin 2 axis that inhibits TNF-α- and hypoxia-
induced apoptosis, eliminating ROS directly [139]. Cur-
rently, the paradigm for inhibition of TNF-α-induced apo-
ptosis points to NF-κB, which inhibits caspases and
prevents sustained JNK activation [73]. Besides, the antia-
poptotic effect of NF-κB has been associated with excessive
ROS elimination.

The evidence poses a novel paradigm for apoptosis inhi-
bition by TNF-α and other death signals, controlling ROS
accumulation. The pleiotropic inflammatory cytokine TNF-
α regulates immune responses, inflammation, proliferation,
and cell death (apoptosis and necrosis) and regulates apopto-
sis binding to its membrane receptor 1 (TNF-R1).

Upon TNF-α stimulation, TNF-R1 trimer recruits multi-
ple adaptors like TRAF2, TRAF5, RIP1, cIAP1, and cIAP2
and other modulators or regulators like Miz1 and the linear
ubiquitin chain assemble complex [140–143].

Cells of the adaptive and innate immune systems in the
brain parenchyma and meningeal space are relevant in both
brain health and disease.

Astrocyte

(1) homeostatic conditions

(2) endothelium-mediated effects of circulatory cytokines

(3) cytokines and immune cells cross BBB
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Figure 1: Essential ways cytokines affect the brain. (1) De novo synthesis of cytokines in the CNS in homeostatic conditions is clear. (2)
Peripheral cytokines can induce brain cytokine synthesis. Also, cytokines can act centrally via endothelial cells. Cytokine-endothelial cell
interaction triggers the release of second messengers like nitric oxide (NO) and prostaglandins (PGS) with central effects. Hence, the
signal mediated by a cytokine as IL-1β can be transduced from the periphery without crossing the BBB. (3) Systemic administration of IL-
1β and TNF-α to experimental animals decreases BBB selectivity. Cytokines induce glial stimulation.
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Figure 2: Schematic representation of ATIA as the proposed
inflammation and hypoxia crossover.
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The ATIA-TRX2 axis inhibits apoptosis induced by both
TNF-α and a low oxygen level, eliminating excessive ROS in
mitochondria. This rescues parenchyma cells from undergo-
ing apoptosis. The activity of ATIA may be a key regulator in
carcinogenesis because tumor cells often take advantage of
normal tissue under hypoxic conditions.

3.4. Autophagy-Associated Inflammation in the CNS.
Autophagy plays an important role in both innate and adap-
tive immune responses [144]. This lysosome-dependent cat-
abolic process serving to the turnover of proteins and
organelles is crucial in the inflammatory response and cell
survival. Immune and inflammatory signals induce autoph-
agy in macrophages through TLRs, among others [145]. Nev-
ertheless, the physiological role of autophagy and its
signaling mechanisms in microglia remains poorly under-
stood [145]. Autophagy-related genes (Atg) in microglia are
largely suppressed after TLR4 activation by lipopolysaccha-
ride (LPS), inversely as the LPS-mediated stimulation in
macrophages [145].

Microglial cells are activated during various phases of tis-
sue repair in certain CNS pathologies. Spinal cord injury-
(SCI-) associated anoxemia has a key pathogenic effect,
resulting in tissue damage. Besides, HIF-1α protects against
apoptosis and necrosis under ischemic and anoxic condi-
tions, upregulating the expression of downstream target
genes in brain stroke. Both HIF-1α expression and autopha-
gic cell death were described in microglial cells during brain
damage [146]. Autophagy suppression with decreased cell
viability and increased inflammatory cytokines were reported
associated with HIF-1α inhibition or HIF-1α silencing [146].
If confirmed, HIF-1α may lead to minor autophagic cell
death of microglial cells associated with hypoxia-mediated
inflammation and may provide a novel therapeutic approach
for SCI diseases with deleterious microglial cell activation.

Certain bacteria and pathogenic viruses are implicated in
neurodegenerative processes, oxidative stress, decreased
autophagy, synaptopathy, and neuronal death [147]. How-
ever, how infections influence neurological disease progres-
sion is still controversial. Mitochondrial antiviral signaling
(MAVS) protein has an important role in antiviral immunity
and autoimmunity. However, the pathophysiological role of
this signaling pathway, especially in the brain, remains elu-
sive [148]. Autophagy regulated MAVS signaling activity in

mouse embryonic fibroblasts (MEFs) [149]. In addition,
defective autophagy was associated with neurodegenerative
disease development [150–152]. Also, MAVS signaling was
involved in microglial activation in vivo [148]. Inflammation
is concurrent with autophagic activation, and autophagy
inhibition in microglial cells strengthens MAVS-mediated
inflammation [148]. This accounts for a regulation of
MAVS-dependent microglial activation in the CNS, where
autophagy has a key role in microglia-driven inflammatory
brain diseases.

MicroRNAs (miRNAs) have a role in regulating immune
cell development and modulating innate and adaptive
immune responses [153]. Abnormal autophagy occurs dur-
ing infectious and autoimmune diseases associated with cer-
tain miRNAs as novel and potent modulators of autophagic
activity [154]. The deficiency of miRNA 223 has been found
to reduce CNS inflammation, demyelination, and the clinical
symptoms of experimental autoimmune encephalomyelitis
(EAE) and increased resting microglia and autophagy [154]
found that. Taken together, targeting autophagic proteins
may be considered as a potential therapeutic strategy in
neuroinflammation-associated diseases [144].

3.5. Neuroinflammation and Natural Immunity. The innate
immune response is the first line of defense after tissue injury,
hypoxia, or metabolic stress. Activation of innate immunity
in response to tissue injury is crucial to homeostasis restora-
tion and wound healing [155, 156].

A balanced oxygen environment is imperative for sur-
vival, while away from the balance point, it may be harm-
ful (Figure 3). Both oxygen deficit and excess are
detrimental to parenchymal cells and favor macrophage
influx [157–159].

Following an insult, cell fate depends on the balance
between cell damage and repair, along with oxygen level
restoration.

During hypoxia-driven inflammatory damage and oxida-
tive stress-associated inflammatory injury, cell rescue is pos-
sible, and parenchyma cells survive. In both scenarios, the
immune system orchestrates immune reactive CNS compo-
nents to restore homeostasis, maximizing parenchyma sur-
vival. Provided oxygen level normalizes by homeostatic
immune-mediated compensatory mechanisms, parenchyma
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Figure 3: Schematic representation of parenchyma and macrophage cell fate in hypoxia and oxidative stress-inflammation environment.

9Mediators of Inflammation



cells may successfully recover, and the infiltrated macro-
phages die.

Fully restoring altered homeostasis is not possible in
the innate autoimmune response, and inflammation per-
petuates [160]. Studies on the interlinkages between hyp-
oxia, tissue alarm signals, neoangiogenesis, and reactive
tissue repair mechanisms have allowed identifying early
immune response molecules. These are the TLRs, inflam-
matory cytokines, and putative danger signals, among
others, that trigger, sustain, and end the homeostatic
response. Janeway’s “recognition of microbial nonself”
hypothesis explains the activation of an immune response
to infection or injury [161]. The “danger model” postulates
alternative mechanisms for inducing an appropriate
immune response unless there is evidence of tissue injury,
termed as “alarm” signals [162]. Innate receptors, like C-
type lectins and TLR, seem involved in neuroinflammation
and might play a crucial role in the pathogenesis of EAE,
an MS animal model [155, 156, 163, 164].

Growing evidence shows that macrophages have vari-
ous functions in the CNS. Understanding the mechanisms
governing the reparative and pathological properties of
activated macrophages is at the forefront of neuroscience
research. Both macrophage-mediated repair and
macrophage-mediated injury occur. Two innate immune
receptor subtypes participate in developmental processes
and neurological diseases. Danger-associated molecular sig-
nals released from dying cells in the injured spinal cord
appear to activate different subtypes of macrophage pattern

recognition receptors, including TLRs and fungal C-type
lectin receptors (e.g., dectin-1) causing neuroprotection or
neurotoxicity [165].

Oxidative stress and hypoxic stress trigger divergent
pathways to restore homeostasis, resulting in survival or
death according to the cell type. Hypoxia often amplifies
inflammation and has a prosurvival effect on neutrophils,
monocytes, and eosinophils. Complete restoring of oxygen
homeostasis ensues macrophage apoptosis and wound heal-
ing (Figure 4).

3.6. Neuroinflammation and Adaptive Immunity. Adaptive
immunity makes use of immunological memory to recognize
specific pathogens, adding up to the innate immunity
response, overall achieving an amplified response. Adaptive
immunity is typically initiated after innate immune cells
like dendritic cells, macrophages, or microglia via their pat-
tern recognition receptors (PRRs) recognize broad specific-
ities of pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs). These
are associated with microbial pathogens, cellular stress, or
cell components of damaged tissues [166]. In addition,
adaptive immunity includes a plethora of effector T cells
(Th1, Th17, Th3, Th2, and T regulatory), effector B cells,
and antibodies that, in turn, infiltrate the brain during neu-
roinflammation. Macrophages can act during innate and
adaptive immune responses.

During brain hypoxia, the NF-κB pathway is amplified,
upregulating TLRs, which enhance antimicrobial factor
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production and stimulate phagocytosis, leukocyte recruit-
ment, and adaptive immunity. Besides, HIF-1α increases,
influencing adaptive immunity. Patients with a rheumatic
disease showed HIF-1α-deficient lymphocytes and high
serum levels of anti-double-stranded DNA antibodies and
rheumatoid factor [167].

Brain hypoxia depends on signaling mediated by T cell
HIF-1α receptors [168]. In vivo and in vitro experiments
have suggested that immune responses mediated by T cells
and HIF-1α are key downregulators in vascular inflamma-
tion and remodeling tissue, contributing to vascular remod-
eling modulation together with B lymphocytes [169]. The
deletion of HIF-1α in T cells impairs differentiation of CD4+
Th17-producing cells in vitro and in MOG/CFA-induced
EAE [168]. In a brain hypoxia-ischemia (H/I) mouse model,
the expression of TIM-3 (a member of the T cell immuno-
globulin that downregulates the TH1-dependent immune
response) increases in activated microglia and astrocytes
(brain resident immune cells) depending on HIF-1α [170].
Blocking of TIM-3 reduces infarct size, neuronal death,
edema formation, and neutrophil infiltration in H/I mice
[170]. Other studies suggest that HIF-1α modulates T cell
differentiation towards a Th17 cytokine-secreting phenotype.
A decrease in HIF-1α resulted in reduced Th17 but enhanced
T regulatory cell differentiation, protecting mice from auto-
immune neuroinflammation [171]. Others reported that
HIF-1α induced FoxP3+ Tregs during inflammation [172].
Likewise, in the EAE model, CD4+ cells decreased, and
the CD4+CD25+FoxP3 Treg subset increased in the spinal
cord of EAE mice exposed to chronic mild hypoxia com-
pared with normoxic counterparts [173]. The increase in
Trx-1 contributes to reducing Treg sensitivity to oxidative
stress. Along with inflammatory stimuli, especially TNF-α,
this dynamic negative feedback promotes Tregs in the
inflammatory milieu to prevent a sustained or excessive
immune response [145, 174]. Inflammatory mediators like
cytokines dependent on the Th1, Th17 lymphocyte sub-
population [175], NO, or free radicals [176, 177] have
been observed during clinical relapse phases in MS. Con-
versely, suppressive cellular activity by Th2, Th3, and
Tr1 cells, in particular, has been reported during remission
periods [178]. The increase in CD4+ and CD8+ T cells
found in mouse models of AD [179] suggests an impor-
tant contribution of T cells to disease pathogenesis [180].
Depleting Tregs enhanced T cell infiltration and reactive
astrogliosis in a model of TBI, suggesting tissue damage
modulation by Tregs following injury [181].

The evidence of the role of innate and adaptive immunity
in neuroinflammation is conclusive. The key events trigger-
ing the pathology or charting the chronology of the early
changes upon disease is yet to be clarified, even considering
the vast literature available. The infiltration of immune cells,
T cells, in particular, prompts further examining the role of
adaptive immunity [179].

4. Fibrotic Reaction to Inflammation

The regulation of fibrotic processes in the CNS is little
known. After an inflammatory response, the fibrotic reaction

ensues the increase in extracellular matrix components. Dif-
ferent chronic inflammatory diseases with MS-resembling
traits like psoriasis or rheumatoid arthritis present severe
and intermittent progression with phases of acute exacerba-
tion and remission. They show an influx of inflammatory
cells (macrophages, granulocytes, and T cells) and increased
expression of proinflammatory mediators, including those
locally released by parenchyma cells. These diseases may nev-
ertheless differ in their pathogenesis [182].

Eventually, inflammation rests, but massive fibrosis
prevents fully restoring tissue integrity. Even three decades
after identifying the master cytokine in immune regulation
and fibrosis, we find it hard to ascribe only one role to
TGF-β [183, 184].

Regulatory T cells (Tregs) release TGF, a potent cytokine
that downregulates immune responses and is involved in
tissue-specific repair and homeostasis [185].

Most responses to brain injury involve reactive gliosis,
resident astrocyte hypertrophy, and neuron cell loss with
fibrosis. Fibrosis engages fibrocytes and macrophages derived
from the bone marrow. Fibrocytes and activated macrophage
type 2- (M2-) microglia cells may act as profibrotic in the
CNS as well [186].

The glial scar is a structural formation of reactive glia
around a damaged area. Traditionally viewed as a hin-
drance to axon regeneration, beneficial functions of the
glial scar have been recently reported. Discrepancies have
been discussed on the functional heterogeneity of the glial
scar cells, astrocytes, NG2 glia, and microglia (Figure 5).
The NG2 glia regulates brain innate immunity via the
TGF-β2/TGFBR2 axis [187]. After TBI, ischemic stroke,
and neurodegenerative diseases, including MS, newly pro-
liferated reactive astrocytes are observed. The NG2 glia
and microglia round the severely damaged area or lesion
core. This core presents perivascular-derived fibroblasts,
pericytes, ependymal cells, and phagocytic macrophages.
Previous studies have sometimes referred to the entire
CNS lesion as the glial scar, leading to discrepancies. Dif-
ferent glial cells are associated with the lesion or fibrotic
lesion core, rich in extracellular matrix proteins, inhibiting
axonal growth and remyelination. Yet, some glial cell types
counteract, and others regulate scar formation [188].

Immune neuroinflammation involves complex neural
and immune cell interactions, regulating the balance between
neural tissue repair and scar formation. Reactive microglia
(RM) differentiation leads to microglial subpopulations, like
macrophage differentiation pathways (inflammatory type
M1 and anti-inflammatory type M2). M1 microglia induces
A1 reactive astrocyte (RA), derived from a common pre-
cursor astrocyte (nervous stem cell abv-NSC-), which
under certain signals differentiates to astrocyte cell pheno-
types A1 (A1 astroglia are neurotoxic) and A2 (A2 astro-
glia are neuroprotective). The A1 astrocytes secrete a
toxin that kills oligodendrocytes (OD). The A2 astrocytes
promote axonal growth. The M2 microglia induces NG2
(neuron-glial antigen 2, also called oligodendrocyte precur-
sor cells) glia differentiation to oligodendrocytes. In addi-
tion, NG2 glia regulates brain innate immunity via the
TGF-β2/TGFB-R2 axis.
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5. Conclusion

Classifying neuroinflammatory and neuroimmune reactions
as beneficial or detrimental is an oversimplification. There
is a myriad of interactions between diverse brain cell types
and the triggered signaling cascades in different disorders.
Various families of cytokines and cytokine receptors, cell-
specific distribution, growth factors, and chemokines influ-
ence the apoptotic or survival pathways of neurons and the
degree of inflammatory processes in the CNS. Even with
the growing knowledge of neuroinflammation in health and
disease, a deep comprehension of the underlying mecha-
nisms in neuropathology remains limited.

Hypoxia interacts with inflammation at the molecular,
cellular, and clinical levels. The immune system reacts to
restore homeostasis in two crucial scenarios. One of them is
hypoxic stress, causing cells to upregulate pathways involved
in increasing oxygen supply. The other one is oxidative stress,
causing cells to upregulate antioxidant pathways. Provided
that oxygen homeostasis is achieved, epidermal cells survive,
and inflammatory leucocytes die. Targeting oxygen-sensing
mechanisms and hypoxia signaling pathways might aid in
reducing inflammation. Oxidative stress and inflammation
underlie most neurological disorders, whether neurodegen-
erative, autoimmune, traumatic, neoplastic, ischemic, meta-
bolic, toxic, infectious, or other. All of them show direct
and indirect immune-related neuroinflammation.

Targeting hypoxia-dependent signaling pathways might
help to attenuate organ failure, reducing hypoxia-driven
inflammation. Chronic and/or sustained inflammation and
hypoxia lead to the survival of macrophages, which further
releases oxidative and inflammatory mediators [189, 190].

Inflammatory conditions like meningeal infiltrations,
meningoencephalitis with perivascular infiltrates, reactive
gliosis, and inflammatory-necrotic lesions showed central
immune interactions in different homeostatic alterations.

Regardless of the infective nature, or not, of the central
insult, the immune-mediated neuroinflammation orches-
trates the response of reactive CNS components to altered

homeostasis. Unsuccessful restoration leads to disease, some-
times perpetuating neuroinflammation, and damage.
Whether fibrogenesis should be disrupted or not is crucial
to understand the pathogenesis and how to go ahead.

There is still a road to walk before a deep insight into
underlying factors in pathogenesis allows for designing better
treatments.
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