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We are not even halfway through the second decade of the
21st century and there is already ample evidence that it is
going to be the century of biotechnology, leading to unprece-
dented breakthroughs in themedical sciences and revolution-
izing everything from drug discovery to healthcare delivery.
The rapid advancement in high-performance computing that
took place in the last quarter of the last century has been a
key driving force in this revolution, enabling us to generate,
store, query, and transfer huge amounts of medical data. This
is where statisticians come into the picture, lending their
expertise in extracting information from data and converting
that information to medical knowledge.

The crucial role that statisticians have been playing in
this information revolution has created new challenges and
posed difficult problems for their own discipline. Dealing
with them has often necessitated new statistical techniques,
new approaches to inference, or even newmodes of thinking.
These, in turn, have been the motivating force behind an
astonishing flurry of biostatistical research activities in the
recent years. In the ten carefully chosen and peer-reviewed
articles of this special issue, we hope to provide a nuanced
perspective on some of the areas in the biomedical sciences
that have directly benefited from that research. This thriving
partnership between experts in the quantitative world and
those in the medical world has been highly interdisciplinary
in nature. This special issue aims to introduce researchers,
practitioners, and students on both sides of the fence to some
of the statistical modeling and inference approaches that have
collectively had such a huge impact on the field of medicine.
And there is a clear need for it.

Due to the injection of a steady flow of new technologies,
the medical field has progressed rapidly and has produced
data at a phenomenal rate. It is important for those in the
medical world to understand that the types of data collected
and the manner in which they are collected are crucial to the
validity and reliability of the subsequent statistical analysis.
Some basic familiarity with statistical methodologies will
make them aware of the potential pitfalls of some designs of
experiments in certain contexts and enable them to choose
better ones. Also, they need to realize that statistical analysis
is not a mechanical process like solving a set of mathematical
equations. Specifying a statistical model that is appropriate
for a given situation and drawing conclusions about the
model parameters are fraught with many challenges. This
realization will give them a better appreciation of the role
that a statistician plays in medical research. On the other
hand, statisticians will be motivated to develop method-
ologies capable of handling systems that change constantly
with time and in response to therapeutic, physiological, and
environmental stimuli. They will see the need for dealing
with mathematical models that are much more complex and
challenging than those routinely encountered in the rest of
statistics.

The articles in this special issue were chosen with this in
mind. J. V. Pottala et al. use a latent variable approach and
structural equation modeling for analyzing erythrocyte fatty
acids in the context of the Framingham study. B. Miller et al.
use chi-squared automatic interaction detection decision
trees andwaist circumference as a surrogatemeasure to detect
metabolic syndrome in young adults. M. Banerjee et al. use
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logic regression in an innovative way in the context of kidney
cancer treatment delivery to uncover the complex interplay
among patient, provider, and practice environment variables
based on linked data from the National Cancer Institute’s
Surveillance, Epidemiology and End Results Program and
Medicare. Z. Huang and Y. Chen propose and implement
a two-stage model based on synergetic neural networks for
exon recognition, a fundamentally important task in bio-
informatics. J. A. Koziol and Z. Jia generalize the quadratic
version of the log-rank test, introduced originally by Lin and
Wang, to incorporate weights that increase statistical power
in some situations. H. Li et al. construct an association net-
work between micro-RNA and cancer based on more than a
thousandmiRNA-cancer associations detected frommillions
of abstracts using a text-mining method. C. Taslim and S.
Lin propose a mixture modeling framework that is flexible
enough to automatically adapt tomost high-throughput data-
types that are encountered in modern genomics, thereby
overcoming the difficulty that statistical methods specifically
designed for one data-type may not be optimal for or appli-
cable to another data-type. P. T. Edlefsen shows through
examples that the heterogeneous effects of leaky vaccines
(that protect subjects with fewer exposures to a pathogen at
a higher effective rate than subjects with more exposures)
violate the proportional hazards assumption, leading to
incomparability of infected cases across treatment groups and
to nonindependence of the distributions of the competing
failure processes in a competing risks setting. E. Cheng and
Z. M. Ozsoyoglu propose a framework for deriving path-
counting formulas for all generalized kinship coefficients for
which there are recursive formulas and which are sufficient
for computing condensed identity coefficients, an important
computation on Pedigree data that provides a complete
description of the degree of relatedness between two indi-
viduals. Finally, R. L. Einsporn and Z. Jia shed the light on
some problems with interaction and varying block sizes in
a comparison of endotracheal tubes through a randomized
clinical experiment based on a block design.

Collectively, the editors express their sincerest gratitude
to their respective institutions for the time and resources
that they were provided. And last but not least, the editors
gratefully acknowledge the support and encouragement they
received from their respective families during this endeavor.

Sujay Datta
Xiao-Qin Xia

Samsiddhi Bhattacharjee
Zhenyu Jia
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An important computation on pedigree data is the calculation of condensed identity coefficients, which provide a complete
description of the degree of relatedness of two individuals. The applications of condensed identity coefficients range from genetic
counseling to disease tracking. Condensed identity coefficients can be computed using linear combinations of generalized kinship
coefficients for two, three, four individuals, and two pairs of individuals and there are recursive formulas for computing those
generalized kinship coefficients (Karigl, 1981). Path-counting formulas have been proposed for the (generalized) kinship coefficients
for two (three) individuals but there have been no path-counting formulas for the other generalized kinship coefficients. It has
also been shown that the computation of the (generalized) kinship coefficients for two (three) individuals using path-counting
formulas is efficient for large pedigrees, together with path encoding schemes tailored for pedigree graphs. In this paper, we
propose a framework for deriving path-counting formulas for generalized kinship coefficients.Then, we present the path-counting
formulas for all generalized kinship coefficients for which there are recursive formulas and which are sufficient for computing
condensed identity coefficients. We also perform experiments to compare the efficiency of our method with the recursive method
for computing condensed identity coefficients on large pedigrees.

1. Introduction

With the rapidly expanding field of medical genetics and
genetic counseling, genealogy information is becoming
increasingly abundant. In January 2009, the US Department
of Health and Human Services released an updated and
improved version of the Surgeon General’sWeb-based family
health history tool [1]. This Web-based tool makes it easy for
users to record their family health history. Large extended
human pedigrees are very informative for linkage analysis.
Pedigrees including thousands of members in 10–20 gen-
erations are available from genetically isolated populations
[2, 3]. In human genetics, a pedigree is defined as “a
simplified diagram of a family’s genealogy that shows family
members’ relationships to each other and how a specific trait,
abnormality, or disease has been inherited” [4]. Pedigrees
are utilized to trace the inheritance of a specific disease,

calculate genetic risk ratios, identify individuals at risk, and
facilitate genetic counseling. To calculate genetic risk ratios
or identify individuals at risk, we need to assess the degree
of relatedness of two individuals. As a matter of fact, all
measures of relatedness are based on the concept of identical
by descent (IBD). Two alleles are identical by descent if one
is an ancestral copy of the other or if they are both copies of
the same ancestral allele. The IBD concept is primarily due
to Cotterman [5] and Malecot [6] and has been successfully
applied to many problems in population genetics.

The simplest measure of relationship between two indi-
viduals is their kinship coefficient. The kinship coefficient
between two individuals 𝑖 and 𝑗 is the probability that an allele
selected randomly from 𝑖 and an allele selected randomly
from the same autosomal locus of 𝑗 are identical by descent.
To better discriminate between different types of pairs of rel-
atives, identity coefficients were introduced by Gillois [7] and
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Harris [8] and promulgated by Jacquard [9]. Considering the
four alleles of two individuals at a fixed autosomal locus, there
are 15 possible identity states. Disregarding the distinction
between maternally and paternally derived alleles, we obtain
9 condensed identity states. The probabilities associated with
each condensed identity state are called condensed identity
coefficients, which are useful in a diverse range of fields. This
includes the calculation of risk ratios for qualitative disease,
the analysis of quantitative traits, and genetic counseling in
medicine.

A recursive algorithm for calculating condensed identity
coefficients proposed by Karigl [10] has been known for
some time. This method requires that one calculates a set
of generalized kinship coefficients, from which one obtains
condensed identity coefficients via a linear transformation.
One limitation is that this recursive approach is not scalable
when applied to very large pedigrees. It has been previously
shown that the kinship coefficients for two individuals [11–13]
and the generalized kinship coefficients for three individuals
[14, 15] can be efficiently calculated using path-counting
formulas together with path encoding schemes tailored for
pedigree graphs.

Motivated by the efficiency of path-counting formulas for
computing the kinship coefficient for two individuals and
the generalized kinship coefficient for three individuals, we
first introduce a framework for developing path-counting
formulas to compute generalized kinship coefficients con-
cerning three individuals, four individuals, and two pairs of
individuals. Then, we present path-counting formulas for all
generalized kinship coefficients which have recursive formu-
las proposed by Karigl [10] and are sufficient to compute
condensed identity coefficients. In summary, our ultimate
goal is to use path-counting formulas for generalized kinship
coefficients computation so that efficiency and scalability for
condensed identity coefficients calculation can be improved.

The main contributions of our work are as follows:

(i) a framework to develop path-counting formulas for
generalized kinship coefficients;

(ii) a set of path-counting formulas for all generalized
kinship coefficients having recursive formulas [10];

(iii) experimental results demonstrating significant per-
formance gains for calculating condensed identity
coefficients based on our proposed path-counting
formulas as compared to using recursive formulas
[10].

2. Materials and Methods

This section describes kinship coefficients and generalized
kinship coefficients, identity coefficients, and condensed
identity coefficients in more detail. Conceptual terms for the
path-counting formulas for three and four individuals are
introduced in Section 2.3. In addition, an overview of path-
counting formula derivation is presented.

2.1. Kinship Coefficients and Generalized Kinship Coefficients.
The kinship coefficient between two individuals 𝑎 and 𝑏 is

the probability that a randomly chosen allele at the same
locus from each is identical by descent (IBD). There are two
approaches to computing the kinship coefficient Φ

𝑎𝑏
: the

recursive approach [10] and the path-counting approach [16].
The recursive formulas [10] forΦ

𝑎𝑏
and Φ

𝑎𝑎
are

Φ
𝑎𝑏
=
1

2
(Φ
𝑓𝑏
+ Φ
𝑚𝑏
) if 𝑎 is not an ancestor of 𝑏,

Φ
𝑎𝑎
=
1

2
(1 + Φ

𝑓𝑚
) =

1

2
(1 + 𝐹

𝑎
) ,

(1)

where𝑓 and𝑚 denote the father and themother of 𝑎, respec-
tively, and 𝐹

𝑎
is the inbreeding coefficient of 𝑎.

Wright’s path-counting formula [16] forΦ
𝑎𝑏
is

Φ
𝑎𝑏
= ∑

𝐴

∑

⟨𝑃𝐴𝑎,𝑃𝐴𝑏⟩∈𝑃𝑃

(
1

2
)

𝑟+𝑠+1

(1 + 𝐹
𝐴
) , (2)

where 𝐴 is a common ancestor of 𝑎 and 𝑏, 𝑃𝑃 is a set of non-
overlapping path-pairs ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
⟩ from 𝐴 to 𝑎 and 𝑏, 𝑟 is the

length of the path 𝑃
𝐴𝑎
, 𝑠 is the length of the path 𝑃

𝐴𝑏
, and 𝐹

𝐴

is the inbreeding coefficient of 𝐴. The path-pair ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ is

nonoverlapping if and only if the two paths share no common
individuals, except 𝐴.

Recursive formulas proposed by Karigl [10] for general-
ized kinship coefficients concerning three individuals, four
individuals, and two pairs of individuals are listed as follows
in (3), (4), and (5):

Φ
𝑎𝑏𝑐
=
1

2
(Φ
𝑓𝑏𝑐
+ Φ
𝑚𝑏𝑐
)

if 𝑎 is not an ancestor of 𝑏 or 𝑐,

Φ
𝑎𝑎𝑏

=
1

2
(Φ
𝑎𝑏
+ Φ
𝑓𝑚𝑏
) if 𝑎 is not an ancestor of 𝑏,

Φ
𝑎𝑎𝑎

=
1

4
(1 + 3Φ

𝑓𝑚
) =

1

4
(1 + 3𝐹

𝑎
) ,

(3)

Φ
𝑎𝑏𝑐𝑑

=
1

2
(Φ
𝑓𝑏𝑐𝑑

+ Φ
𝑚𝑏𝑐𝑑

)

if 𝑎 is not an ancestor of 𝑏 or 𝑐 or 𝑑,

Φ
𝑎𝑎𝑏𝑐

=
1

2
(Φ
𝑎𝑏𝑐
+ Φ
𝑓𝑚𝑏𝑐

)

if 𝑎 is not an ancestor of 𝑏 or 𝑐,

Φ
𝑎𝑎𝑎𝑏

=
1

4
(Φ
𝑎𝑏
+ 3Φ
𝑓𝑚𝑏
)

if 𝑎 is not an ancestor of 𝑏,

Φ
𝑎𝑎𝑎𝑎

=
1

8
(1 + 7Φ

𝑓𝑚
) =

1

8
(1 + 7𝐹

𝑎
) ,

(4)
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Φ
𝑎𝑏,𝑐𝑑

=
1

2
(Φ
𝑓𝑏,𝑐𝑑

+ Φ
𝑚𝑏,𝑐𝑑

)

if 𝑎 is not an ancestor of 𝑏 or 𝑐 or 𝑑,

Φ
𝑎𝑎,𝑏𝑐

=
1

2
(Φ
𝑏𝑐
+ Φ
𝑓𝑚,𝑏𝑐

)

if 𝑎 is not an ancestor of 𝑏 or 𝑐,

Φ
𝑎𝑏,𝑎𝑐

=
1

4
(2Φ
𝑎𝑏𝑐
+ Φ
𝑓𝑏,𝑚𝑐

+ Φ
𝑚𝑏,𝑓𝑐

)
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Φ
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=
1

2
(Φ
𝑎𝑏
+ Φ
𝑓𝑚𝑏
)

if 𝑎 is not an ancestor of 𝑏,

Φ
𝑎𝑎,𝑎𝑎

=
1

4
(1 + 3Φ

𝑓𝑚
) =

1

4
(1 + 3𝐹

𝑎
) .

(5)

Φ
𝑎𝑏𝑐

is the probability that randomly chosen alleles at
the same locus from each of the three individuals (i.e., 𝑎, 𝑏,
and 𝑐) are identical by descent (IBD). Similarly, Φ

𝑎𝑏𝑐𝑑
is the

probability that randomly chosen alleles at the same locus
from each of the four individuals (i.e., 𝑎, 𝑏, 𝑐, and 𝑑) are IBD.
Φ
𝑎𝑏,𝑐𝑑

is the probability that a random allele from 𝑎 is IBD
with a random allele from 𝑏 and that a random allele from 𝑐

is IBD with a random allele from 𝑑 at the same locus. Note
that Φ

𝑎𝑏𝑐
= 0 if there is no common ancestor of 𝑎, 𝑏, and 𝑐.

Φ
𝑎𝑏𝑐𝑑

= 0 if there is no common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑, and
Φ
𝑎𝑏,𝑐𝑑

= 0 in the absence of a common ancestor either for 𝑎
and 𝑏 or for 𝑐 and 𝑑.

2.2. Identity Coefficients and Condensed Identity Coefficients.
Given two individuals 𝑎 and 𝑏withmaternally and paternally
derived alleles at a fixed autosomal locus, there are 15 possible
identity states, and the probabilities associated with each
identity state are called identity coefficients. Ignoring the
distinction betweenmaternally and paternally derived alleles,
we categorize the 15 possible states to 9 condensed identity
states, as shown in Figure 1. The states range from state 1,
in which all four alleles are IBD, to state 9, in which none
of the four alleles are IBD. The probabilities associated with
each condensed identity state are called condensed identity
coefficients, denoted by {Δ

𝑖
| 1 ≤ 𝑖 ≤ 9} . The condensed

identity coefficients can be computed based on generalized
kinship coefficients using the linear transformation shown as
follows in (6):

[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

2 2 1 1 2 2 1 1 1
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16 0 4 0 4 0 2 1 0
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]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
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Δ
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Δ
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Δ
3

Δ
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Δ
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Δ
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Δ
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Δ
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Δ
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]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[

[

1

2Φ
𝑎𝑎

2Φ
𝑏𝑏

4Φ
𝑎𝑏

8Φ
𝑎𝑎𝑏

8Φ
𝑎𝑏𝑏

16Φ
𝑎𝑎𝑏𝑏

4Φ
𝑎𝑎,𝑏𝑏

16Φ
𝑎𝑏,𝑎𝑏

]
]
]
]
]
]
]
]
]
]
]
]

]

. (6)

In our work, we focus on deriving the path-counting for-
mulas for the generalized kinship coefficients, includingΦ

𝑎𝑏𝑐
,

Φ
𝑎𝑏𝑐𝑑

, and Φ
𝑎𝑏,𝑐𝑑

.

2.3. Terms Defined for Path-Counting Formulas for Three and
Four Individuals

(1) Triple-Common Ancestor.Given three individuals 𝑎, 𝑏, and
𝑐, if𝐴 is a common ancestor of the three individuals, then we
call 𝐴 a triple-common ancestor of 𝑎, 𝑏, and 𝑐.

(2) Quad-Common Ancestor. Given four individuals 𝑎, 𝑏, 𝑐,
and 𝑑, if𝐴 is a common ancestor of the four individuals, then
we call 𝐴 a quad-common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑.

(3) 𝑃(𝐴, 𝑎). It denotes the set of all possible paths from 𝐴 to
𝑎, where the paths can only traverse edges in the direction of
parent to child such that 𝑃(𝐴, 𝑎) ̸= 𝑁𝑈𝐿𝐿 if and only if 𝐴 is
an ancestor of 𝑎. 𝑃

𝐴𝑎
denotes a particular path from 𝐴 to 𝑎,

where 𝑃
𝐴𝑎
∈ 𝑃(𝐴, 𝑎).

(4) Path-Pair. It consists of two paths, denoted as ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩,

where 𝑃
𝐴𝑎
∈ 𝑃(𝐴, 𝑎) and 𝑃

𝐴𝑏
∈ 𝑃(𝐴, 𝑏).

(5) Nonoverlapping Path-Pair. Given a path-pair ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩,

it is nonoverlapping if and only if the two paths share no
common individuals, except 𝐴.

(6) Path-Triple. It consists of three paths, denoted as ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
⟩, where 𝑃

𝐴𝑎
∈ 𝑃(𝐴, 𝑎), 𝑃

𝐴𝑏
∈ 𝑃(𝐴, 𝑏), and 𝑃

𝐴𝑐
∈ 𝑃(𝐴, 𝑐).

(7) Path-Quad. It consists of four paths, denoted as ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩, where 𝑃

𝐴𝑎
∈ 𝑃(𝐴, 𝑎), 𝑃

𝐴𝑏
∈ 𝑃(𝐴, 𝑏), 𝑃

𝐴𝑐
∈ 𝑃(𝐴, 𝑐),

and 𝑃
𝐴𝑑
∈ 𝑃(𝐴, 𝑑).

(8) 𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
). It denotes all common individuals shared

between 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
, except 𝐴.

(9) 𝑇𝑟𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
). It denotes all common individuals

shared among 𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, and 𝑃

𝐴𝑐
, except 𝐴.

(10)𝑄𝑢𝑎𝑑 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
). It denotes all common indi-

viduals shared among 𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, and 𝑃

𝐴𝑑
, except 𝐴.

(11) Crossover and 2-Overlap Individual. If 𝑠 ∈ 𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
),

we call 𝑠 a crossover individual with respect to 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏

if
the two paths pass through different parents of 𝑠. On the other
hand, if 𝑃

𝐴𝑎
and 𝑃

𝐴𝑏
pass through the same parent of 𝑠, then

we call 𝑠 a 2-overlap individual with respect to 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
.

(12) 3-Overlap Individual. If 𝑠 ∈ 𝑇𝑟𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
) and the

three paths 𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, and 𝑃

𝐴𝑐
pass through the same parent

of 𝑠, then we call 𝑠 a 3-overlap individual with respect to 𝑃
𝐴𝑎
,

𝑃
𝐴𝑏
, and 𝑃

𝐴𝑐
.

(13) 2-Overlap Path. If 𝑠 is a 2-overlap individual with respect
to 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
, then both 𝑃

𝐴𝑎
and 𝑃
𝐴𝑏

pass through the same
parent of 𝑠, denoted by 𝑝, and the edge from 𝑝 to 𝑠 is called an
overlap edge. All consecutive overlap edges constitute a path
and this path is called a 2-overlap path. If the 2-overlap path
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Figure 1: The 15 possible identity states for individuals 𝑎 and 𝑏, grouped by their 9 condensed states. Lines indicate alleles that are IBD.
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Three independent paths

t is a crossover individual

and the overlap path is a root 2-overlap path.

t is a 2-overlap individual and e is a
crossover individual.

t is a crossover individual; s is a 2-overlap
individual and the overlap path is a root 2-overlap path.

overlap individuals and the overlap path is a root 2-
overlap path

e is a crossover individual; t is a 2-overlap
individual and the overlap path is not a root 2
-overlap path; c is a 2-overlap individual and the
overlap path is a root 2-overlap path

}

}

}

}

Path-triple6 }}

t is a crossover individual.

s, e, t} are 2-overlap individuals

c is a 3-overlap individual; and {e, t} are 2-

A → s → e → t → a
A → s → e → t → b

A → s → e → t → a
A → d→ b

A → s → e → t → a
A →
A → c

A → c

A → c

Path-pair1

Path-pair2

A → d → f → t → b
A → s → e → t → a

A → s → e → t → a
A → s → e → t → b

d → f

A → s → e → t → a
A → d → f → t → b

A → c → t → e → a
A → d → f → t → b

A → s → e → t → a
A → s → f → t → b
A → c

A → c → e → t → a
A → c → e → t → b
A → c

A → c → e → t → a
A → c → e → t → b
A → c

Path-triple1

Path-triple2

Path-triple3

Path-triple4

Path-pair3

Path-pair4

Path-triple5

s, e, t} are 2-overlap individuals.where {

where

where {

where

where

where

where

where

Figure 2: Examples of path-pairs and path-triples.

extends all theway to the ancestor𝐴, we call it a root 2-overlap
path.

(14) 3-Overlap Path.It consists of all 3-overlap individuals in
a consecutive order. If the 3-overlap path extends all the way
to the root 𝐴, we call it a root 3-overlap path.

Example 1. Consider the path-pairs from 𝐴 to 𝑎 and 𝑏 in
Figure 2, where𝐴 is a common ancestor of 𝑎 and 𝑏. For path-
pair1, 𝐵𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
) = {𝑠, 𝑒, 𝑡}, and 𝐴 → 𝑠 → 𝑒 → 𝑡 is

a root 2-overlap path with respect to 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
. For path-

pair4, 𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
) = {𝑒, 𝑡}, where 𝑒 is a crossover indi-

vidual; 𝑡 is a 2-overlap individual with respect to 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
,

and 𝑒 → 𝑡 is a root 2-overlap path with respect to 𝑃
𝐴𝑎

and
𝑃
𝐴𝑏
.

Example 2. There are four path-quads listed in Figure 3, from
𝐴 to four individuals 𝑎, 𝑏, 𝑐, and 𝑑, where 𝐴 is a quad-
common ancestor of the four individuals. For path-quad2,
considering the paths 𝑃

𝐴𝑎
and 𝑃
𝐴𝑏
, the path𝐴 → 𝑡 → 𝑓 →

𝑠 is a root 2-overlap path; {𝑡, 𝑓, 𝑠} are 2-overlap individualswith
respect to 𝑃

𝐴𝑎
and 𝑃

𝐴𝑏
. For path-quad3, {𝑡, 𝑓, 𝑠} are 3-overlap

individuals with respect to 𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, and 𝑃

𝐴𝑐
, and the path

𝐴 → 𝑡 → 𝑓 → 𝑠 is a root 3-overlap path.

Then, we summarize all the conceptual terms used in the
path-counting formulas for two individuals, three individu-
als, and four individuals in Table 1 which reveals a glimpse of
our framework for generalizingWright’s formula to three and
four individuals from terminology aspect.

2.4. An Overview of Path-Counting Formula Derivation.
According to Wright’s path-counting formula [16] (see (2))
for two individuals 𝑎 and 𝑏, the path-counting approach
requires identifying common ancestors of 𝑎 and 𝑏 and
calculating the contribution of each common ancestor to
Φ
𝑎𝑏
. More specifically, for each common ancestor, denoted

as 𝐴, we obtain all path-pairs from 𝐴 to 𝑎 and 𝑏

and identify acceptable path-pairs. For Φ
𝑎𝑏
, an acceptable

path-pair ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ is a nonoverlapping path-pair where
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}
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dt
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}

Path-quad1:

Path-quad2:

Path-quad3:

Path-quad4:

A → c
A → d

A → t → f → s → a
A → m → s → b

A → t → f → s → a
A → t → f → s → b
A → c
A → d

A → t → f → s → a
A → t → f → s → b
A → t → f → s → c
A → d

A → t → f → s → a
A → t → m → s → b
A → t → m → s → c
A → d

Figure 3: Examples of path-quads.

Table 1: The conceptual terms used for two, three, and four individuals.

Two individuals Three individuals Four individuals
Common ancestor Triple-common ancestor Quad-common ancestor
Path-pair Path-triple Path-quad
𝐵𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
) 𝑇𝑟𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
) 𝑄𝑢𝑎𝑑 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)

N/A 2-Overlap individual 3-Overlap individual
N/A 2-Overlap path 3-Overlap path
N/A Root 2-overlap path Root 3-overlap path
N/A Crossover individual Crossover individual

the two paths share no common individuals, except 𝐴. In
Figure 2, path-pair2 is an acceptable path-pair, while path-
pair1, path-pair3, and path-pair4 are not acceptable path-
pairs. The contribution of each common ancestor 𝐴 toΦ

𝑎𝑏
is

computed based on the inbreeding coefficient of 𝐴, modified
by the length of each acceptable path-pair.

To compute Φ
𝑎𝑏𝑐

, the path-counting approach requires
identifying all triple-common ancestors of 𝑎, 𝑏, and 𝑐 and
summing up all triple-common ancestors’ contributions to
Φ
𝑎𝑏𝑐

. For each triple-common ancestor, denoted as𝐴, we first
identify all path-triples each of which consists of three paths
from 𝐴 to 𝑎, 𝑏, and 𝑐, respectively. Some examples of path-
triples are presented in Figure 2.

For Φ
𝑎𝑏
, only nonoverlapping path-pairs are acceptable.

A path-triple ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ consists of three path-pairs

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩, ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑐
⟩, and ⟨𝑃

𝐴𝑏
, 𝑃
𝐴𝑐
⟩. For Φ

𝑎𝑏𝑐
, a path-triple

might be acceptable even though either 2-overlap individuals
or crossover individuals exist between a path-pair. The
main challenge we need to address is finding necessary and
sufficient conditions for acceptable path-triples.

Aiming at solving the problem of identifying acceptable
path-triples, we first use a systematic method to generate all
possible cases for a path-pair by considering different types of
common individuals shared between the two paths.Then, we
introduce building blocks which are connected graphs with
conditions on every edge in the graph that encapsulates a

set of acceptable cases of path-pairs. In each building block,
we represent paths as nodes and interactions (i.e., shared
common individuals between two paths) as edges. There are
at least two paths in a building block. For each building
block, we obtain all acceptable cases for concerned path-
pairs. Given a path-triple, it can be decomposed to one or
multiple building blocks. Considering a shared path-pair
between two building blocks, we use the natural join operator
from relational algebra to match the acceptable cases for
the shared path-pair between two building blocks. In other
words, considering the acceptable cases for building blocks
as inputs, we use the natural join operator to construct all
acceptable cases for a path-triple. Acceptable cases for a path-
triple are identified and then used in deriving the path-
counting formula forΦ

𝑎𝑏𝑐
.

Then, we summarize all the main procedures used for
deriving the path-counting formula for Φ

𝑎𝑏𝑐
in a flowchart

shown in Figure 4. The main procedures are also applicable
for deriving the path-counting formulas forΦ

𝑎𝑏𝑐𝑑
andΦ

𝑎𝑏,𝑐𝑑
.

3. Results and Discussion

3.1. Path-Counting Formulas for Three Individuals. We first
introduce a systematic method to generate all possible cases
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Path-pair

Path-triple Path-pair level
representation Decomposition A set of

building blocks
Sets of acceptable cases
For each building block

Acceptable cases for
path-triple Natural join

If path-pair has
crossover

No

No

Yes

Yes

Split operator

Path-triple belongs to
Type 2

Type 1

If path-pair has
root overlap

Compute its contribution
to Φabc

Path-triple belongs to

⟨PAa, PAb⟩
Generate all cases for Identify nonoverlap path-

Pairs for ⟨PAa, PAb⟩
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to Φab

Identify acceptable cases
⟨PAa, PAb⟩ in thefor

context of a path-triple

Aa, PAb, PAc ⟩⟨P

⟨PAa, PAb⟩

Figure 4: A flowchart for path-counting formula derivation.

for a path-pair. Then we discuss building blocks for path-
triples and identify all acceptable cases which are used in
deriving the path-counting formula forΦ

𝑎𝑏𝑐
.

3.1.1. Cases for a Path-Pair. Given a path-pair ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩with

𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
) ̸= 𝑁𝑈𝐿𝐿, where 𝐴 is a common ancestor of 𝑎

and 𝑏 and 𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
) consists of all common individuals

shared between 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏
, except 𝐴, we introduce three

patterns (i.e., crossover, 2-overlap, and root 2-overlap) to gen-
erate all possible cases for ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
⟩.

(1) 𝑋(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
): 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏

share one or multiple cross-
over individuals.

(2) 𝑇(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
): 𝑃
𝐴𝑎

and 𝑃
𝐴𝑏

are root 2-overlapping from
𝐴, and the root 2-overlap path can have one or multi-
ple 2-overlap individuals.

(3) 𝑌(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
):𝑃
𝐴𝑎

and𝑃
𝐴𝑏

are overlapping but not from
𝐴, and the 2-overlap path can have one or multiple 2-
overlap individuals.

Based on the three patterns, 𝑋(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), 𝑇(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
),

and 𝑌(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), we use regular expressions to generate all

possible cases for the path-pair ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩. For convenience,

we drop ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ and use 𝑋,𝑇, and 𝑌 instead of patterns

𝑋(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), 𝑇(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
), and 𝑌(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
), whenever there is

no confusion. When 𝐵𝑖 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
) ̸= 𝑁𝑈𝐿𝐿, the eight cases

shown in (7) cover all possible cases for ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩. The com-

pleteness of eight cases shown in (7) for ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ can be

proved by induction on the total number of 𝑇, 𝑋, and 𝑌
appearing in ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
⟩. Using the pedigree in Figure 2, Cases

1–3 and Case 6 are illustrated in (8), (9), (10), and (11):

{{{{

{{{{

{

Case 1: 𝑇
Case 2: 𝑋+

Case 3: 𝑇𝑋+

Case 4: 𝑇(𝑋+𝑌)+,

{{{{

{{{{

{

Case 5: 𝑇(𝑋+𝑌)+𝑋+

Case 6: 𝑋+𝑌
Case 7: 𝑋+(𝑌𝑋+)+

Case 8: 𝑋+(𝑌𝑋+)+𝑌,

(7)

𝐴 󳨀→ 𝑠 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑎

𝐴 󳨀→ 𝑠 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑏
} ∈ 𝑇, (8)
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S0 S1 S2 S3

PAa PAb

PAc

Figure 5: A path-pair level graphical representation of ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩.

where {𝑠, 𝑒, 𝑡} are 2-overlap individuals and the overlap path
is a root 2-overlap path:

𝐴 󳨀→ 𝑠 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑎

𝐴 󳨀→ 𝑠 󳨀→ 𝑓 󳨀→ 𝑡 󳨀→ 𝑏
} ∈ 𝑇𝑋, (9)

where 𝑠 is a 2-overlap individual and the overlap path is a root
2-overlap path; 𝑡 is a crossover individual:

𝐴 󳨀→ 𝑠 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑎

𝐴 󳨀→ 𝑑 󳨀→ 𝑓 󳨀→ 𝑡 󳨀→ 𝑏
} ∈ 𝑋, (10)

where 𝑡 is a crossover individual:

𝐴 󳨀→ 𝑐 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑎

𝐴 󳨀→ 𝑠 󳨀→ 𝑒 󳨀→ 𝑡 󳨀→ 𝑏
} ∈ 𝑋𝑌, (11)

where 𝑒 is a crossover individual; 𝑡 is a 2-overlap individual
and the overlap path is a 2-overlap path.

3.1.2. Path-Pair Level Graphical Representation of a Path-Tri-
ple. Given a path-triple ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩, we represent each

path as a node. The path-triple can be decomposed to three
path-pairs (i.e., ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
⟩, ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑐
⟩, and ⟨𝑃

𝐴𝑏
, 𝑃
𝐴𝑐
⟩). For

each path-pair, if the two paths share at least one common
individual (i.e., either 2-overlap individual or crossover indi-
vidual), except𝐴, then there is an edge between the two nodes
representing the two paths. Therefore, we obtain four differ-
ent scenarios 𝑆

0
–𝑆
3
, shown in Figure 5.

In Figure 5, the scenario 𝑆
0
has no edges, so it means

that ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ consists of three independent paths. In

Figure 2, path-triple1 is an example of 𝑆
0
. Next, we introduce

a lemma which can assist with identifying the options for the
edges in the scenarios 𝑆

1
–𝑆
3
.

Lemma 3. Given a path-triple ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩, consider the

three path-pairs ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩, ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑐
⟩, and ⟨𝑃

𝐴𝑏
, 𝑃
𝐴𝑐
⟩, if there

is a 2-overlap edge which is represented by 𝑌 in regular expres-
sion representation of any of the three path-pairs, and then the
path-triple ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has no contribution to Φ

𝑎𝑏𝑐
.

Proof. In [17], Nadot and Vaysseix proposed, from a genetic
and biological point of view, that Φ

𝑎𝑏𝑐
can be evaluated by

enumerating all eligible inheritance paths at allele-level start-
ing from a triple common ancestor𝐴 to the three individuals
𝑎, 𝑏, and 𝑐.

p1

p3
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b c
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b c

a

p5

p7

p4

p6

p8

p1 p2

p3

(b) Inheritance paths

Figure 6: Examples of pedigree and inheritance paths.

For the pedigree in Figure 6, let us consider the path-
triple ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ listed as follows. 𝑃

𝐴𝑎
: 𝐴 → 𝑎; 𝑃

𝐴𝑏
:

𝐴 → 𝑝
3
→ 𝑝
6
→ 𝑝
7
→ 𝑏; 𝑃

𝐴𝑐
: 𝐴 → 𝑝

4
→ 𝑝
6
→

𝑝
7
→ 𝑐.
For ⟨𝑃

𝐴𝑏
, 𝑃
𝐴𝑐
⟩, 𝑝
6
is a crossover individual, 𝑝

7
is an over-

lap individual, and 𝑝
6
→ 𝑝
7
is a 2-overlap edge repre-sented

by 𝑌 in regular expression representation (see the definition
for 𝑌 in Section 3.1.1).

For the individual 𝑝
6
, let us denote the two alleles at one

fixed autosomal locus as 𝑔
1
and 𝑔

2
. At allele-level, only one

allele can be passed down from 𝑝
6
to 𝑝
7
. Since 𝑝

3
and 𝑝

4

are parents of 𝑝
6
, 𝑔
1
is passed down from one parent, and

𝑔
2
is passed down from the other parent. It is infeasible to

pass down both 𝑔
1
and 𝑔

2
from 𝑝

6
to 𝑝
7
. In other words,

there are no corresponding inheritance paths for the path-
triple ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩with a 2-overlap edge between ⟨𝑃

𝐴𝑏
, 𝑃
𝐴𝑐
⟩

(i.e., Case 6:𝑋𝑌). Therefore, such kind of path-triples has no
contribution toΦ

𝑎𝑏𝑐
.

Figure 6(b) shows one example of eligible inheritance
paths corresponding to a pedigree graph. Each individual is
represented by two allele nodes.The eligible inheritance paths
in Figure 6(b) consist of red edges only.

Only Case 1, Case 2, and Case 3 do not have 𝑌 in the
regular expression representation of a path-pair (see (7));
considering the scenarios 𝑆

1
–𝑆
3
shown in Figure 5, an edge

can have three options {Case 1: 𝑇;Case 2: 𝑋;Case 3: 𝑇𝑋}.

3.1.3. Constructing Cases for a Path-Triple. For the scenarios
𝑆
1
–𝑆
3
in Figure 5, we define two building blocks {𝐵

1
, 𝐵
2
}

along with some rules in Figure 7 to generate acceptable
cases. For 𝐵

1
, the edge can have three options {Case 1: 𝑇;

Case 2: 𝑋; Case 3: 𝑇𝑋}. For 𝐵
2
, we cannot allow both edges

to be root overlap, because if two edges are root overlap, then
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For B2, there can be at most one edge belonging to root overlap (either T or TX).

PAa PAa

PAb PAb PAc

B1 B2

For B1 , the edge can have three options {case 1: T, case 2 : X, case 3: TX}.

Figure 7: Building blocks {𝐵
1
, 𝐵
2
} and basic rules.

Note: Ri denotes all acceptable path-triples for ui

S3
e1

T3 = R1 ⋈ R2 ⋈ R3
u1 u2 u3

e2 e2 e2

e3
e3 e3e1 e1

Figure 8: A graphical illustration for obtaining 𝑇
3
.

𝑃
𝐴𝑎

and 𝑃
𝐴𝑐

must share at least one com-mon individual,
except 𝐴, which contradicts the fact that 𝑃

𝐴𝑎
and 𝑃

𝐴𝑐
have

no edge.
Next, we focus on generating all acceptable cases for the

scenarios 𝑆
1
–𝑆
3
in Figure 5, where only 𝑆

3
contains more

than one building block. In order to leverage the dependency
among building blocks, we decompose 𝑆

3
to 𝑆
3
= {𝑢
1
= 𝐵
2
,

𝑢
2
= 𝐵
2
, 𝑢
3
= 𝐵
2
}, shown in Figure 8. For each 𝑢

𝑖
, we have a

set of acceptable path-triples, denoted as 𝑅
𝑖
.

Considering the dependency among {𝑅
1
, 𝑅
2
, 𝑅
3
}, we use

the natural join operator, denoted as ⋈, operating on {𝑅
1
,

𝑅
2
, 𝑅
3
} to generate all acceptable cases for 𝑆

3
. As a result, we

obtain 𝑇
3
= 𝑅
1
⋈ 𝑅
2
⋈ 𝑅
3
, where 𝑇

3
denotes the acceptable

cases of the path-triple ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ in the scenario 𝑆

3
.

For each scenario in Figure 5, we generate all acceptable
cases for ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩. The scenario 𝑆

0
has no edges, and

it shows that ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ consists of three independent

paths, while, for the other scenarios 𝑆
𝑘
(𝑘 = 1, 2, 3), the 𝑘

edges can have two options:

(1) all 𝑘 edges belong to crossover; or
(2) one edge belongs to root 2-overlap; the remaining (𝑘−

1) edges belong to crossover.

In summary, acceptable path-triples can have at most one
root 2-overlap path, any number of crossover individuals, but
zero 2-overlap path.

3.1.4. Splitting Operator. Considering the existence of root
2-overlap path and crossover in acceptable path-triples, we
propose a splitting operator to transform a path-triple with
crossover individuals to a noncrossover path-triple without
changing the contribution from this path-triple to Φ

𝑎𝑏𝑐
. The

main purpose of using the splitting operator is to simplify
the path-counting formula derivation process. We first use
an example in Figure 9 to illustrate how the splitting operator

works. In Figure 9, there is a crossover individual 𝑠 between
𝑃
𝐴𝑎

and 𝑃
𝐴𝑏

in the path triple ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ in 𝐺

𝑘+1
. The

splitting operator proceeds as follows:

(1) split the node 𝑠 to two nodes, 𝑠
1
and 𝑠
2
;

(2) transform the edges 𝑠 → 𝑎
󸀠 and 𝑠 → 𝑏

󸀠 to 𝑠
1
→ 𝑎
󸀠

and 𝑠
2
→ 𝑏
󸀠, respectively;

(3) add two new edges, 𝑠
2
→ 𝑎
󸀠 and 𝑠

1
→ 𝑏
󸀠.

Lemma 4. Given a pedigree graph 𝐺
𝑘+1

having (𝑘 + 1)

crossover individuals regarding ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ shown in

Figure 9, let 𝑠 denote the lowest crossover individual, where no
descendant of 𝑠 can be a crossover individual among the three
paths𝑃

𝐴𝑎
,𝑃
𝐴𝑏
, and𝑃

𝐴𝑐
. After using the splitting operator for the

lowest crossover individual 𝑠 in𝐺
𝑘
+1, the number of crossover

individuals in 𝐺
𝑘+1

is decreased by 1.

Proof. The splitting operator only affects the edges from 𝑠 to
𝑎
󸀠 and 𝑏󸀠. If there is a new crossover node appearing, the only

possible node is either 𝑎󸀠 or 𝑏󸀠. Assume 𝑏󸀠 becomes a cross-
over individual; it means that 𝑏󸀠 is able to reach 𝑎 and 𝑏 from
two separate paths. It contradicts the fact that 𝑠 is the lowest
crossover individual between 𝑃

𝐴𝑎
and 𝑃

𝐴𝑏
.

Next, we introduce a canonical graph which results from
applying the splitting operator for all crossover individuals.
The canonical graph has zero crossover individual.

Definition 5 (Canonical Graph). Given a pedigree graph 𝐺
having one or more crossover individuals regarding Φ

𝑎𝑏𝑐
, If

there exists a graph 𝐺󸀠 which has no crossover individuals
with regards to Φ

𝑎𝑏𝑐
such that

(i) any acceptable path-triple in 𝐺 has an acceptable
path-triple in 𝐺󸀠 which has the same contribution to
Φ
𝑎𝑏𝑐

as the one in 𝐺 forΦ
𝑎𝑏𝑐

;

(ii) any acceptable path-triple in 𝐺󸀠 has an acceptable
path-triple in 𝐺 which and has the same contribution
to Φ
𝑎𝑏𝑐

as the one in 𝐺󸀠 forΦ
𝑎𝑏𝑐

.

We call 𝐺󸀠 a canonical graph of 𝐺 regardingΦ
𝑎𝑏𝑐

.

Lemma 6. For a pedigree graph 𝐺 having one or more
crossover individuals regarding ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩, there exists a

canonical graph 𝐺󸀠 for 𝐺.
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Ancestor-descendant relationship
Parent-child relationship

a󳰀 b

a b a b

󳰀 a󳰀 b󳰀

s1 s2

A A

x w c x w c

s For Gk+1: ⟨P ⟩ = }PAa, PAb, PAc

⟨P ⟩ = }PAa, PAb, PAcFor Gk:

Gk+1: k + 1 crossover Gk: k crossover

A → · · · → x → s → a󳰀 → · · · → a
A → · · · → w → s → b󳰀 → · · · → b

A → · · · → x → s1 → a󳰀 → · · · → a
A → · · · → w → s2 → b󳰀 → · · · → b

A → c

A → c

Figure 9: Transforming pedigree graph 𝐺
𝑘
+ 1 having 𝑘 + 1 crossover to 𝐺

𝑘
having 𝑘 crossover.

S0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PAa PAd

PAb PAc

Figure 10: A path-pair level graphical representation of ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩.

Proof (Sketch). The proof is by induction on the number of
crossover individuals.

Induction hypothesis: assume that if𝐺 has 𝑘 or less cross-
overs, there is a canonical graph 𝐺󸀠 for 𝐺.

In the induction step, let𝐺
𝑘+1

be a graph with 𝑘+1 cross-
overs; let 𝑠 be the lowest crossover between paths 𝑃

𝐴𝑎
and

𝑃
𝐴𝑏

in 𝐺
𝑘+1

. We apply the splitting operator on 𝑠 in 𝐺
𝑘+1

and
obtain 𝐺

𝑘
having 𝑘 crossovers by Lemma 4.

3.1.5. Path-Counting Formula for Φ
𝑎𝑏𝑐

. Now, we present the
path-counting formula forΦ

𝑎𝑏𝑐
:

Φ
𝑎𝑏𝑐
= ∑

𝐴

( ∑

Type 1
(
1

2
)

𝐿 triple

Φ
𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿 triple+1

Φ
𝐴𝐴
) ,

(12)

where Φ
𝐴𝐴
= (1/2)(1 + 𝐹

𝐴
), Φ
𝐴𝐴𝐴

= (1/4)(1 + 3𝐹
𝐴
), 𝐹
𝐴
: the

inbreeding coefficient of𝐴,𝐴: a triple-common ancestor of 𝑎,
𝑏, and 𝑐, Type 1: ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has zero root 2-overlap, Type

2: ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has one root 2-overlap path 𝑃

𝐴𝑠
ending at

the individual 𝑠

𝐿 triple = {
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

for Type 1
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐
− 𝐿
𝑃𝐴𝑠

for Type 2,
(13)

and 𝐿
𝑃𝐴𝑎

: the length of the path 𝑃
𝐴𝑎

(also applicable for 𝑃
𝐴𝑎
,

𝑃
𝐴𝑐
, and 𝑃

𝐴𝑠
).

For completeness, the path-counting formula for Φ
𝑎𝑎𝑏

is
given in Appendix A; and the correctness proof of the path-
counting formula is given in Appendix B.

3.2. Path-Counting Formulas for Four Individuals

3.2.1. Path-Pair Level Graphical Representation of ⟨𝑃
𝐴𝑎
,𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
,𝑃
𝐴𝑑
⟩. Given a path-quad ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩ and

𝑄𝑢𝑎𝑑 𝐶(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
) = 0, the path-quad can have 11

scenarios 𝑆
0
–𝑆
10
shown in Figure 10 where all four paths are

considered symmetrically.
In Figure 11, we introduce three building blocks {𝐵

1
,

𝐵
2
, 𝐵
3
}. For 𝐵

1
and 𝐵

2
, the rules presented in Figure 7 are also

applicable for Figure 11. For𝐵
3
, we only consider root overlap,

because the crossover individuals can be eliminated by using
the splitting operator introduced in Section 3.1.4. Note that
for 𝐵
3
, if 𝑇𝑟𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
) = 0, then it is equivalent to the

scenario 𝑆
3
in Figure 8 Therefore, we only need to consider

𝐵
3
when 𝑇𝑟𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
) ̸= 0.

3.2.2. Building Block-Based Cases Construction for ⟨𝑃
𝐴𝑎
,𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
,𝑃
𝐴𝑑
⟩. For a scenario 𝑆

𝑖
(0 ≤ 𝑖 ≤ 10) in Figure 11, we

first decompose 𝑆
𝑖
to one or multiple building blocks. For a

scenario 𝑆
𝑖
∈ {𝑆
1
, 𝑆
3
}, it has only one building block, and

all acceptable cases can be obtained directly. For 𝑆
2
= {𝑢
1
=

𝐵
1
, 𝑢
2
= 𝐵
1
}, there is no need to consider the conflict between

the edges in 𝑢
1
and 𝑢

2
because 𝑢

1
and 𝑢

2
are disconnected.

Let 𝑅
𝑖
denote all acceptable cases of the path-pairs in 𝑢

𝑖
, and

let 𝑇
𝑖
denote all acceptable cases for 𝑆

𝑖
. Therefore, we obtain

𝑇
2
= 𝑅
1
×𝑅
2
where × denotes the Cartesian product operator

from relational algebra.
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For B3, all three edges belong to root overlap (i.e., having root 3-overlap).

PAa

PAb PAcPAb

PAa

C(PAa, PAb, PAc) ≠

B1 B2 B3

Tri 0

Figure 11: Building blocks for all scenarios of ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩.

Table 2: Largest subgraph of a scenario 𝑆
𝑖
(4 ≤ 𝑖 ≤ 10 and 𝑖 ̸= 6).

𝑆
𝑖

𝑆
4

𝑆
5

𝑆
7

𝑆
8

𝑆
9

𝑆
10

𝑆
𝑗

𝑆
3

𝑆
3

𝑆
6

𝑆
5

𝑆
7

𝑆
9

For 𝑆
6
= {𝑢
1
= 𝐵
3
}, we obtain 𝑇

6
= 𝑅
1
. For 𝑆

𝑖
∈ {𝑆
𝑖
| 4 ≤

𝑖 ≤ 10 and 𝑖 ̸= 6}, we define the largest subgraph of 𝑆
𝑖
based

on which we construct 𝑇
𝑖
.

Definition 7 (Largest Subgraph). Given a scenario 𝑆
𝑖
(4 ≤ 𝑖 ≤

10 and 𝑖 ̸= 6), the largest subgraph of 𝑆
𝑖
, denoted as 𝑆

𝑗
, is

defined as follows:

(1) 𝑆
𝑗
is a proper subgraph of 𝑆

𝑖
;

(2) if 𝑆
𝑖
contains 𝐵

3
, then 𝑆

𝑗
must also contain 𝐵

3
;

(3) no such 𝑆
𝑘
exists that 𝑆

𝑗
is a proper subgraph of 𝑆

𝑘

while 𝑆
𝑘
is also a proper subgraph of 𝑆

𝑖
.

For each scenario 𝑆
𝑖
(4 ≤ 𝑖 ≤ 10 and 𝑖 ̸= 6), we list the

largest subgraph of 𝑆
𝑖
, denoted as 𝑆

𝑗
, in Table 2.

For a scenario 𝑆
𝑖
(4 ≤ 𝑖 ≤ 10 and 𝑖 ̸= 6), let Diff(𝑆

𝑖
\ 𝑆
𝑗
)

denote the set of building blocks in 𝑆
𝑖
but not in 𝑆

𝑗
, where 𝑆

𝑗
is

the largest subgraph of 𝑆
𝑖
. Let |𝐸

𝑖
| and |𝐸

𝑗
| denote the number

of edges in 𝑆
𝑖
and 𝑆

𝑗
, respectively. According to Table 2, we

can conclude that |𝐸
𝑖
| − |𝐸

𝑗
| = 1. In order to leverage the

dependency among building blocks, we consider only 𝐵
2
in

Diff(𝑆
𝑖
\𝑆
𝑗
). For example, Diff(𝑆

5
\𝑆
3
) = {𝐵

2
}. Let𝑇

3
denote all

acceptable cases for 𝑆
3
. And let𝑅

1
denote the set of acceptable

cases for Diff(𝑆
5
\ 𝑆
3
). Then, we can use 𝑆

3
and Diff(𝑆

5
\

𝑆
3
) to construct all acceptable cases for 𝑆

5
. Then, we apply

this idea for constructing all acceptable cases for each 𝑆
𝑖
in

Table 2.
Given a path-quad ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩, an acceptable case

has the following properties:

(1) if there is one root 3-overlap path, there can be atmost
one root 2-overlap path;

(2) otherwise, there can be at most two root 2-overlap
paths.

3.2.3. Path-Counting Formula forΦ
𝑎𝑏𝑐𝑑

. Now, we present the
path-counting formula forΦ

𝑎𝑏𝑐𝑑
as follows:

Φ
𝑎𝑏𝑐𝑑

= ∑

𝐴

( ∑

Type 1
(
1

2
)

𝐿quad

Φ
𝐴𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿quad+1

Φ
𝐴𝐴𝐴

+ ∑

Type 3
(
1

2
)

𝐿quad+2

Φ
𝐴𝐴
) ,

(14)

where Φ
𝐴𝐴
= (1/2)(1+𝐹

𝐴
),Φ
𝐴𝐴𝐴

= (1/4)(1+3𝐹
𝐴
),Φ
𝐴𝐴𝐴𝐴

=

(1/8)(1+7𝐹
𝐴
), 𝐹
𝐴
: the inbreeding coefficient of𝐴,𝐴: a quad-

common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑, Type 1: zero root 2-overlap
and zero root 3-overlap path, Type 2: one root 2-overlap path
𝑃
𝐴𝑠

ending at 𝑠

Type 3:

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

Case 1: two root 2-overlap paths 𝑃
𝐴𝑠1
,

𝑃
𝐴𝑠2

ending at 𝑠
1
and 𝑠
2
, respectively

Case 2: one root 3-overlap path
𝑃
𝐴𝑡

ending at 𝑡
Case 3: one root 2-overlap path
𝑃
𝐴𝑠
, one root 3-overlap

path 𝑃
𝐴𝑡

ending at 𝑠 and 𝑡,
respectively,

𝐿quad =

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐
+ 𝐿
𝑃𝐴𝑑

for Type 1
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

+𝐿
𝑃𝐴𝑑
− 𝐿
𝑃𝐴𝑠

for Type 2
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐
+ 𝐿
𝑃𝐴𝑑

−𝐿
𝑃𝐴𝑠1

− 𝐿
𝑃𝐴𝑠2

for Case 1 ∈ Type 3
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

+𝐿
𝑃𝐴𝑑
− 2 ∗ 𝐿

𝑃𝐴𝑡
for Case 2 ∈ Type 3

𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐
+ 𝐿
𝑃𝐴𝑑

−𝐿
𝑃𝐴𝑡
− 𝐿
𝑃𝐴𝑠

for Case 3 ∈ Type 3,
(15)

and 𝐿
𝑃𝐴𝑎

: the length of the path 𝑃
𝐴𝑎

(also applicable for 𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
, etc.).

For completeness, the path-counting formulas for Φ
𝑎𝑎𝑏𝑐

and Φ
𝑎𝑎𝑎𝑏

are presented in Appendix A. The correctness of
the path-counting formula for four individuals is proven in
Appendix C.
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⟨ ⟩(PAa, PAb), (PAc , PAd) = }
b

A

c

s t

da

A → s → a
A → s → b
A → t → c
A → t → d

(a)

⟨ ⟩(PAa, PAb), (PAc , PAd) = }
b

A

c

x y

da

A → x → a

A → x → d

A → y → b
A → y → c

(b)

Figure 12: Examples of 2-pair-path-quads for Φ
𝑎𝑏,𝑐𝑑

.

3.3. Path-Counting Formulas for Two Pairs of Individuals

3.3.1. Terminology and Definitions

(1) 2-Pair-Path-Pair. It consists of two pairs of path-pairs
denoted as ⟨(𝑃

𝑆𝑎
, 𝑃
𝑆𝑏
), (𝑃
𝑇𝑐
, 𝑃
𝑇𝑑
)⟩, where 𝑃

𝑆𝑎
∈ 𝑃(𝑆, 𝑎), 𝑃

𝑆𝑏
∈

𝑃(𝑆, 𝑏), 𝑃
𝑇𝑐
∈ 𝑃(𝑇, 𝑐), 𝑃

𝑇𝑑
∈ 𝑃(𝑇, 𝑑), 𝑆 is a common ancestor

of 𝑎 and 𝑏, and 𝑇 is a common ancestor of 𝑐 and 𝑑. If𝐴 = 𝑆 =
𝑇, then 𝐴 is a quad-common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑.

(2) Homo-Overlap and Heter-Overlap Individual. Given two
pairs of individuals ⟨𝑎, 𝑏⟩ and ⟨𝑐, 𝑑⟩, if 𝑠 ∈ 𝐵𝑖 𝐶(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
) (or

𝑠 ∈ 𝐵𝑖 𝐶(𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
), we call 𝑠 a homo-overlap individual when

𝑃
𝐴𝑎

and 𝑃
𝐴𝑏

(or 𝑃
𝐴𝑐

and 𝑃
𝐴𝑑
) pass through the same parent of

𝑠. If 𝑟 ∈ 𝐵𝑖 𝐶(𝑃
𝐴𝑖
, 𝑃
𝐴𝑗
), where 𝑖 ∈ {𝑎, 𝑏} and 𝑗 ∈ {𝑐, 𝑑}, we call

𝑟 a heter-overlap individual when 𝑃
𝐴𝑖

and 𝑃
𝐴𝑗

pass through
the same parent of 𝑟.

(3) Root Homo-Overlap and Heter-Overlap Path. Given a 2-
pair-path-pair ⟨(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩, if 𝑠 is a homo-overlap

individual and the homo-overlap path extends all the way
to the quad-common ancestor 𝐴, then we call it a root
homo-overlap path. If 𝑟 is a heter-overlap individual and the
heter-overlap path extends all the way to the quad-common
ancestor 𝐴, then we call it a root heter-overlap path.

Example 8. 𝐴 is quad-common ancestor for 𝑎, 𝑏, 𝑐, and 𝑑 in
Figure 12. For (a), 𝑠 is a homo-overlap individual between 𝑃

𝐴𝑎

and 𝑃
𝐴𝑏
.

𝑡 is a homo-overlap individual between 𝑃
𝐴𝑐

and 𝑃
𝐴𝑑
. And,

𝐴 → 𝑠 and 𝐴 → 𝑡 are root homo-overlap paths. For (b), 𝑥 is
a heter-overlap individual between 𝑃

𝐴𝑎
and 𝑃

𝐴𝑑
. 𝑦 is a heter-

overlap individual between 𝑃
𝐴𝑏

and 𝑃
𝐴𝑐
. And 𝐴 → 𝑥 and

𝐴 → 𝑦 are root heter-overlap paths.

3.3.2. Path-Counting Formula for Φ
𝑎𝑏,𝑐𝑑

. Now, we present
a path-pair level graphical representation for ⟨(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
),

(𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ shown in Figure 13. The options for an edge can

be {𝑇,𝑋, 𝑇𝑋}. (Refer to Section 3.1.1 for definitions of 𝑇,𝑋,
and 𝑇𝑋). Based on the different types of ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩

presented in (14), all cases for ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ are

summarized in Table 3, where ℎ is the last individual of a root
homo-overlap path 𝑃

𝐴ℎ
(i.e., the path 𝑃

𝐴ℎ
ending at ℎ) and 𝑟

1

and 𝑟
2
are the last individuals of root heter-overlap paths 𝑃

𝐴𝑟1

and 𝑃
𝐴𝑟2

, respectively.
Given a pedigree graph having one or multiple progeni-

tors {𝑝
𝑖
| 𝑖 > 0}, we define that the generation of a progenitor

Table 3: A summary of all cases for ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩.

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
⟩ ⟨(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩

Zero root 2-overlap and
zero root 3-overlap

Zero root homo-overlap and zero root
heter-overlap

One root 2-overlap path

One root homo-overlap and zero root
heter-overlap
Zero root homo-overlap and one root
heter-overlap

Two root 2-overlap paths

Two root homo-overlaps and zero root
heter-overlap
Zero root homo-overlap and two root
heter-overlaps

One root 3-overlap path One root homo-overlap and two root
heter-overlaps, and ℎ = 𝑟

1
= 𝑟
2

One root 2-overlap and
one root 3-overlap

One root homo-overlap and two root
heter-overlaps, and 𝑟

1
= 𝑟
2
̸= ℎ

One root homo-overlap and two root
heter-overlaps, and ℎ = 𝑟

1
̸= 𝑟
2

𝑝
𝑖
is 0, denoted as gen(𝑝

𝑖
) = 0. If an individual 𝑎 has only

one parent 𝑝, then we define gen(𝑎) = gen(𝑝) + 1. If an
individual 𝑎 has two parents 𝑓 and 𝑚, we define gen(𝑎) =
MAX{gen(𝑓), gen(𝑚)} + 1.

The path-counting formula forΦ
𝑎𝑏,𝑐𝑑

is as follows:

Φ
𝑎𝑏,𝑐𝑑

= ∑

𝐴

( ∑

Type 1
(
1

2
)

𝐿2-pair

Φ
𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿2-pair+1

Φ
𝐴𝐴𝐴

+ ∑

Type 3
(
1

2
)

𝐿2-pair+2

Φ
𝐴𝐴

+ ∑

Type 4
(
1

2
)

𝐿2-pair+1

Φ
𝐴𝐴
)

+ ∑

(𝑆,𝑇)∈Type 5
(
1

2
)

𝐿⟨𝑃𝑆𝑎,𝑃𝑆𝑏
⟩+𝐿⟨𝑃𝑇𝑐,𝑃𝑇𝑑

⟩+1

Φ
𝐵𝐵
,

(16)

where 𝐴: a quad-common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑, 𝑆:
a common ancestor of 𝑎 and 𝑏, and 𝑇: a common ances-
tor of 𝑐 and 𝑑. For ⟨(𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ (𝑆 = 𝑇 =

𝐴), there are four types (i.e.,Type 1 to Type 4).
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S0
S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14 S15 S16

PAa

PAdPAb

PAc

Figure 13: Scenarios of ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ at path-pair level.

Type 1: zero root homo-overlap and zero root heter-
overlap.
Type 2: zero root homo-overlap and one root heter-
overlap 𝑃

𝐴𝑟
ending at 𝑟,

Type 3:

{{{{{{{{{

{{{{{{{{{

{

zero root homo-overlap and two root
heter-overlap 𝑃

𝐴𝑟1
and𝑃
𝐴𝑟2

ending at
𝑟
1
and 𝑟
2
, respectively,

one root homo-overlap 𝑃
𝐴ℎ

ending at ℎ
and two root heter-overlap 𝑃

𝐴𝑟1
and 𝑃

𝐴𝑟2

ending at 𝑟
1
and 𝑟
2
, and 𝑟

1
̸= 𝑟
2
.

(17)

Type 4: one root homo-overlap 𝑃
𝐴ℎ

ending at ℎ and
two root heter-overlap ending at 𝑟

1
and 𝑟
2
, and ℎ =

𝑟
1
= 𝑟
2
. For ⟨(𝑃

𝑆𝑎
, 𝑃
𝑆𝑏
), (𝑃
𝑇𝑐
, 𝑃
𝑇𝑑
)⟩ (𝑆 ̸= 𝑇), there is

one type (i.e., Type 5).
Type 5: ⟨𝑃

𝑆𝑎
, 𝑃
𝑆𝑏
⟩ has zero overlap individual, ⟨𝑃

𝑇𝑐
,

𝑃
𝑇𝑑
⟩ has zero overlap individual.

At most one path-pair (either ⟨𝑃
𝑆𝑎
, 𝑃
𝑆𝑏
⟩ or ⟨𝑃

𝑇𝑐
,

𝑃
𝑇𝑑
⟩) can have crossover individuals.
Between a path from ⟨𝑃

𝑆𝑎
, 𝑃
𝑆𝑏
⟩ and a path from ⟨𝑃

𝑇𝑐
, 𝑃
𝑇𝑑
⟩,

there are no overlap individuals, but there can be crossover
individuals, 𝑥, where 𝑥 ̸= 𝑆 and 𝑥 ̸= 𝑇:

𝐵=

{{{{

{{{{

{

𝑆 when gen (𝑆) < gen (𝑇)
𝑆 when gen (𝑆) = gen (𝑇)

and 𝑇 has two parents
𝑇 otherwise,

𝐿
2-pair =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏

+𝐿
𝑃𝐴𝑐
+ 𝐿
𝑃𝐴𝑑

for Type 1
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

+𝐿
𝑃𝐴𝑑
− 𝐿
𝑃𝐴𝑟

for Type 2
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

+𝐿
𝑃𝐴𝑑
− 𝐿
𝑃𝐴𝑟1

− 𝐿
𝑃𝐴𝑟2

for Type 3
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

+𝐿
𝑃𝐴𝑑
− 2 ∗ 𝐿

𝑃𝐴ℎ
for Type 4,

𝐿
⟨𝑃𝑆𝑎 ,𝑃𝑆𝑏⟩

= 𝐿
𝑃𝑆𝑎
+ 𝐿
𝑃𝑆𝑏

for Type 5,

𝐿
⟨𝑃𝑇𝑐 ,𝑃𝑇𝑑⟩

= 𝐿
𝑃𝑇𝑐
+ 𝐿
𝑃𝑇𝑑

for Type 5.

(18)

Note that if ⟨𝑎, 𝑏⟩ and ⟨𝑐, 𝑑⟩ have zero quad-common
ancestors, we have the following formula for Φ

𝑎𝑏,𝑐𝑑
:

Φ
𝑎𝑏,𝑐𝑑

= ∑

(𝑆,𝑇)∈Type 6
(
1

2
)

𝐿⟨𝑃𝑆𝑎,𝑃𝑆𝑏
⟩+𝐿⟨𝑃𝑇𝑐,𝑃𝑇𝑑

⟩

Φ
𝑆𝑆
∗ Φ
𝑇𝑇
. (19)

Type 6: ⟨𝑃
𝑆𝑎
, 𝑃
𝑆𝑏
⟩ is a nonoverlapping path-pair and ⟨𝑃

𝑇𝑐
,

𝑃
𝑇𝑑
⟩ is a nonoverlapping path-pair. Between a path from

⟨𝑃
𝑆𝑎
, 𝑃
𝑆𝑏
⟩ and a path from ⟨𝑃

𝑇𝑐
, 𝑃
𝑇𝑑
⟩, there are no overlap

individuals, but there can be crossover individuals.
𝐿
⟨𝑃𝑆𝑎 ,𝑃𝑆𝑏⟩

and 𝐿
⟨𝑃𝑇𝑐,𝑃𝑇𝑑⟩

are defined as in Type 5.
The correctness of the path-counting formula forΦ

𝑎𝑏.𝑐𝑑
is

proven in Appendix C. For completeness, please refer to [18]
for the path-counting formulas for Φ

𝑎𝑎,𝑏𝑐
, Φ
𝑎𝑏,𝑎𝑐

, Φ
𝑎𝑏,𝑎𝑏

, and
Φ
𝑎𝑎,𝑎𝑏

.

3.4. Experimental Results. In this section, we show the effi-
ciency of our path-counting method using NodeCodes for
condensed identity coefficients by making comparisons with
the performance of a recursive method used in [10]. We
implemented two methods: (1) using recursive formulas to
compute each required kinship coefficient and generalized
kinship coefficient; (2) using path-counting method coupled
with NodeCodes to compute each required kinship coeffi-
cient and generalized kinship coefficient independently. We
refer to the first method as Recursive, the second method
as NodeCodes. For completeness, please refer to [18] for the
details of the NodeCodes-based method.

Nodecodes of a node is a set of labels each representing a
path to the node from its ancestors. Given a pedigree graph,
let 𝑟 be the progenitor (i.e., the node with 0 in-degree).
(For simplicity, we assume there is one progenitor, 𝑟, as
the ancestor of all individuals in the pedigree. Otherwise, a
virtual node 𝑟 can be added to the pedigree graph and all
progenitors can be made children of 𝑟.) For each node 𝑢 in
the graph, the set of NodeCodes of 𝑢, denoted as NC(𝑢), are
assigned using a breadth-first-search traversal starting from
𝑟 as follows.

(1) If 𝑢 is 𝑟 then NC(𝑟) contains only one element: the
empty string.

(2) Otherwise, let 𝑢 be a node with NC(𝑢), and V
0
, V
1
, . . . ,

V
𝑘
be 𝑢’s children in sibling order; then for each 𝑥

in NC(𝑢), a code 𝑥𝑖∗ is added to NC(V
𝑖
), where 0 ≤

𝑖 ≤ 𝑘, and ∗ indicates the gender of the individual
represented by node V

𝑖
.
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Computations of kinship coefficients for two individuals
and generalized kinship coefficients for three individuals
presented in [11, 12, 14, 15] are using NodeCodes. The
NodeCodes-based computation schemes can also be applied
for the generalized kinship coefficients for four individuals
and two pairs of individuals. For completeness, please refer
to [18] for the details using NodeCodes to compute the
generalized kinship coefficients for four individuals and two
pairs of individuals based on our proposed path-counting
formulas in Sections 3.2 and 3.3.

In order to test the scalability of our approach for cal-
culating condensed identity coefficients on large pedigrees,
we used a population simulator implemented in [11] to
generate arbitrarily large pedigrees.The population simulator
is based on the algorithm for generating populations with
overlapping generations in Chapter 4 of [19] along with
the parameters given in Appendix B of [20] to model the
relatively isolated Finnish Kainuu subpopulation and its
growth during the years 1500–2000. An overview of the
generation algorithmwas presented in [11, 12, 14].The param-
eters include starting/ending year, initial population size,
initial age distribution, marriage probability, maximum age
at pregnancy, expected number of children by time period,
immigration rate, and probability of death by time period and
age group.

We examine the performance of condensed identity coef-
ficients using twelve synthetic pedigrees which range from
75 individuals to 195,197 individuals. The smallest pedigree
spans 3 generations, and the largest pedigree spans 19 gener-
ations. We analyzed the effects of pedigree size and the depth
of individuals in the pedigree (the longest path between the
individual and a progenitor) on the computation efficiency
improvement.

In the first experiment, 300 random pairs were selected
from each of our 12 synthetic pedigrees. Figure 14 shows
computation efficiency improvement for each pedigree. As
can be seen, the improvement of NodeCodes over Recursive
grew increasingly larger as the pedigree size increased, from
a comparable amount of 26.83% on the smallest pedigree to
94.75% on the largest pedigree. It also shows that path-count-
ing method coupled with NodeCodes can scale very well on
large pedigrees in terms of computing condensed identity
coefficients.

In our next experiment, we examined the effect of the
depth of the individual in the pedigree on the query time. For
each depth, we generated 300 random pairs from the largest
synthetic pedigree.

Figure 15 shows the effect of depth on the compu-
tation efficiency improvement. We can see the improve-
ment of NodeCodes over Recursive, ranging from 86.48% to
91.30%.

4. Conclusion

We have introduced a framework for generalizing Wright’s
path-counting formula for more than two individuals. Aim-
ing at efficiently computing condensed identity coefficients,
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Figure 14: The effect of pedigree size on computation efficiency
improvement.
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Figure 15: The effect of depth on computation efficiency improve-
ment.

we proposed path-counting formulas (PCF) for all general-
ized kinship coefficients for which are sufficient for express-
ing condensed identity coefficients by a linear combination.
We also perform experiments to compare the efficiency of our
method with the recursive method for computing condensed
identity coefficients on large pedigrees. Our future work
includes (i) further improvements on condensed identify
coefficients computation by collectively calculating the set
of generalized kinship coefficients to avoid redundant com-
putations, and (ii) experimental results for using PCF in
conjunction with encoding schemes (e.g., compact path-
encoding schemes [13]) for computing condensed identity
coefficients on very large pedigrees.

Appendices

A. Path-Counting Formulas of Special Cases

A.1. Path-Counting Formula for Φ
𝑎𝑎𝑏

. For ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩, we

introduce a special case, where 𝑃
𝐴𝑎1

and 𝑃
𝐴𝑎2

aremergeable.



14 Computational and Mathematical Methods in Medicine

PAa1 PAa2 PAa1 PAa2

S0 S1

PAb PAb PAb

If is mergeable⟨P ⟩Aa1, PAa2

PAa

S2 S3

Figure 16: A path-pair level graphical representation of ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
,

𝑃
𝐴𝑏
⟩.

Definition A.1 (Mergeable Path-Pair). A path-pair ⟨𝑃
𝐴𝑎1
,

𝑃
𝐴𝑎2
⟩ is mergeable if and only if the two paths 𝑃

𝐴𝑎1
and 𝑃

𝐴𝑎2

are completely identical.

Next, we present a graphical representation of ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
,

𝑃
𝐴𝑏
⟩ in Figure 16.

Lemma A.2. For 𝑆
2
and 𝑆

3
in Figure 16, ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ cannot

be a mergeable path-pair.

Proof. For 𝑆
2
and 𝑆

3
, if ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is mergeable, then

any common individual 𝑠 between 𝑃
𝐴𝑎1

and 𝑃
𝐴𝑏

is also
a shared individual between 𝑃

𝐴𝑎2
and 𝑃

𝐴𝑏
. It means

𝑠 ∈ 𝑇𝑟𝑖 𝐶(𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
) which contradicts the fact that

𝑇𝑟𝑖 𝐶(𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
) = 0.

Considering all three scenarios in Figure 16, only 𝑆
1
can

have a mergeable path-pair ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ by Lemma A.2. Now,

we present our path-counting formula forΦ
𝑎𝑎𝑏

where 𝑎 is not
an ancestor of 𝑏:

Φ
𝑎𝑎𝑏

= ∑

𝐴

( ∑

Type 1
(
1

2
)

𝐿 triple−1

Φ
𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿 triple

Φ
𝐴𝐴

+ ∑

Type 3
(
1

2
)

𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏
⟩+1

Φ
𝐴𝐴
) ,

(A.1)

where 𝐴: a common ancestor of 𝑎 and 𝑏.
When ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is not mergeable,

Type 1: ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩ has no root 2-overlap.

Type 2: ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩ has one root 2-overlap path

𝑃
𝐴𝑠

ending at the individual 𝑠.

When ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is mergeable,

Type 3: ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ is a nonoverlapping path-pair

𝐿 triple = {
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏

for Type 1
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
− 𝐿
𝑃𝐴𝑠

for Type 2,

𝐿
⟨𝑃𝐴𝑎 ,𝑃𝐴𝑏⟩

= 𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏

for Type 3.

(A.2)

For the sake of completeness, if 𝑎 is an ancestor of 𝑏, there is
no recursive formula for Φ

𝑎𝑎𝑏
in [10], but we can use either

the recursive formula for Φ
𝑎𝑏𝑐

or the path-counting formula
forΦ
𝑎𝑏𝑐

to computeΦ
𝑎1𝑎2𝑏

.

A.2. Path-Counting Formula for Φ
𝑎𝑎𝑏𝑐

. Given a path-quad
⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩, if ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is not mergeable, then

we process the path-quad as equivalent to ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
,

𝑃
𝐴𝑑
⟩. If ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is mergeable, the path-quad ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
,

𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ can be condensed to scenarios for ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩.

Now, we present a path-counting formula forΦ
𝑎𝑎𝑏𝑐

where
𝑎 is not an ancestor of 𝑏 and 𝑐 as follows:

Φ
𝑎𝑎𝑏𝑐

= ∑

𝐴

( ∑

Type 1
(
1

2
)

𝐿quad−1

Φ
𝐴𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿quad

ΦAAA

+ ∑

Type 3
(
1

2
)

𝐿quad+1

Φ
𝐴𝐴
)

+∑

𝐴

( ∑

Type 4
(
1

2
)

𝐿 triple+1

Φ
𝐴𝐴𝐴

+ ∑

Type 5
(
1

2
)

𝐿 triple+2

Φ
𝐴𝐴
) ,

(A.3)

where 𝐴: a quad-common ancestor of 𝑎, 𝑏, 𝑐, and 𝑑.
When ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is not mergeable,

Type 1: zero root 2-overlap and zero root 3-overlap
path;
Type 2: one root 2-overlap path 𝑃

𝐴𝑠
ending at 𝑠

Type 3:

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

Case 1: two root 2-overlap paths 𝑃
𝐴𝑠1

and 𝑃
𝐴𝑠2

ending at 𝑠
1
and 𝑠
2
, respectively

Case 2: one root 3-overlap path 𝑃
𝐴𝑡

ending at 𝑡
Case 3: one root 2-overlap
and one root 3-overlap paths
𝑃
𝐴𝑠

and 𝑃
𝐴𝑡

ending at 𝑠 and 𝑡,
respectively.

(A.4)

When ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ is mergeable,

Type 4: ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has zero root 2-overlap path;

Type 5: ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has one root 2-overlap path𝑃

𝐴𝑠

ending at 𝑠

𝐿quad=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

for Type 1
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

−𝐿
𝑃𝐴𝑠

for Type 2
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

−𝐿
𝑃𝐴𝑠1

− 𝐿
𝑃𝐴𝑠2

for Case 1∈Type 3
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

−𝐿
𝑃𝐴𝑡

for Case 2∈Type 3
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎2

+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

−𝐿
𝑃𝐴𝑡
− 𝐿
𝑃𝐴𝑠

for Case 3∈Type 3,

𝐿 triple = {
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

for Type 4
𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐
− 𝐿
𝑃𝐴𝑠

for Type 5.
(A.5)
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Note that if 𝑎 is an ancestor of either 𝑏 or 𝑐, or both of
them, then the path-counting formula of Φ

𝑎𝑏𝑐𝑑
is applicable

to computeΦ
𝑎1𝑎2𝑏𝑐

.

A.3. Path-Counting Formula for Φ
𝑎𝑎𝑎𝑏

. A special case of
⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
⟩ for ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩ is introduced

when ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
⟩ is mergeable. With the existence of

a mergeable path-triple, ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩ can be con-

densed to ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩.

Definition A.3 (Mergeable Path-Triple). Given three paths
𝑃
𝐴𝑎1

, 𝑃
𝐴𝑎2

, and 𝑃
𝐴𝑎3

, they are mergeable if and only if they
are completely identical.

Lemma A.4. Given a path-quad ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩, there

must be at least one mergeable path-pair among ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩,

⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎3
⟩, ⟨𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
⟩.

Proof. For an individual 𝑎 with two parents 𝑓 and 𝑚, the
paternal allele of the individual 𝑎 is transmitted from 𝑓 and
the maternal allele is transmitted from𝑚. At allele level, only
two descent paths starting from an ancestor are allowed. For
a path-quad ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩, there must be at least one

mergeable path-pair among ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩, ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎3
⟩, and

⟨𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
⟩.

For simplicity, we treat ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ as a default mergeable

path-pair.
Now, we present the path-counting formula for Φ

𝑎𝑎𝑎𝑏

where 𝑎 is not an ancestor of 𝑏 as follows:

Φ
𝑎𝑎𝑎𝑏

= ∑

𝐴

(
3

2
( ∑

Type 1
(
1

2
)

𝐿 triple−1

Φ
𝐴𝐴𝐴

+ ∑

Type 2
(
1

2
)

𝐿 triple

Φ
𝐴𝐴
)

+ ∑

Type 3
(
1

2
)

𝐿pair+2

Φ
𝐴𝐴
) ,

(A.6)

where 𝐴: a common ancestor of 𝑎 and 𝑏.
When there is only one mergeable path-pair (let us con-

sider ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩ as the mergeable path-pair),

Type 1: ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩ has zero root 2-overlap path,

Type 2: ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎3
, 𝑃
𝐴𝑏
⟩ has one root 2-overlap path

𝑃
𝐴𝑠

ending at 𝑠.

When ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑎3
⟩ is mergeable,

Type 3: ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩ is nonoverlapping

𝐿 triple = {
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎3

+ 𝐿
𝑃𝐴𝑏

for Type 1
𝐿
𝑃𝐴𝑎1

+ 𝐿
𝑃𝐴𝑎3

+ 𝐿
𝑃𝐴𝑏
− 𝐿
𝑃𝐴𝑠

for Type 2,

𝐿pair = 𝐿𝑃𝐴𝑎 + 𝐿𝑃𝐴𝑏 for Type 3.

(A.7)

Note that if 𝑎 is an ancestor of 𝑏, we treat Φ
𝑎𝑎𝑎𝑏

=

Φ
𝑎1𝑎2𝑎3𝑏

. Then, we apply the path-counting formula forΦ
𝑎𝑏𝑐𝑑

to computeΦ
𝑎1𝑎2𝑎3𝑏

.

Case2.1 Case3.1 ΦAAA
ΦabCase2.2 Case3.2

Case2.3 ΦAA

Figure 17: Dependency graph for different cases regardingΦ
𝑎𝑏𝑐

and
Φ
𝑎𝑎𝑏

.

B. Proof for Path-Counting Formulas of
Three Individuals

Wefirst demonstrate that, for one triple-common ancestor𝐴,
the path-counting computation of Φ

𝑎𝑏𝑐
is equivalent to the

computation using recursive formulas. Then, we prove the
correctness of the path-counting computation for multiple
triple-common ancestors.

B.1. One Triple-Common Ancestor. Considering the different
types of path-triples starting from a triple-common ancestor
𝐴 in a pedigree graph𝐺 contributing toΦ

𝑎𝑏𝑐
andΦ

𝑎𝑎𝑏
,𝐺 can

have 5 different cases:

Case 2.1: 𝐺 does not have
any path-triples
⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩

with root overlap
Case 2.2: 𝐺 has path-triples

⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩

with root overlap
Case 2.3: 𝐺 has path-triples

⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩

having mergeable
path-pair⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
⟩

}}}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}}}

}

⇐󳨐 Φ
𝑎𝑎𝑏
,

Case 3.1: 𝐺 does not have
any path-triples
⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩

with root overlap
Case 3.2: 𝐺 has path-triples

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩

with root overlap

}}}}}}}}}

}}}}}}}}}

}

⇐󳨐 Φ
𝑎𝑏𝑐
.

(B.1)

Based on the 5 cases from Case 2.1 to Case 3.2, we first
construct a dependency graph shown in Figure 17, consist-
ent with the recursive formulas (3), (4), and (5) for the gener-
alized kinship coefficients for three individuals.

Then, we take the following steps to prove the correctness
of the path-counting formulas (12) and (A.1):

(i) forΦ
𝑎𝑏
, the correctness of the path-counting formula

(i.e., Wright’s formula) is proven in [21]. For Case 2.1
and Case 2.2, the correctness is proven based on the
correctness of Cases 3.1 and 3.2;

(ii) for Case 2.3, it has no cycle but only depends on Φ
𝑎𝑏
.

Thus, we prove the correctness of Case 2.3 by trans-
forming the case toΦ

𝑎𝑏
;
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a b

c

(a)

A

a b c

(b)

Figure 18: (a) 𝑐 is a parent of 𝑎 and 𝑏; (b) no individual is a parent of another.
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Figure 19: (a) No individual is a parent of another; (b) 𝑐 is an ancestor of 𝑎 and 𝑏.

(iii) for Cases 3.1 and 3.2, the correctness is proven by
induction on the number of edges, 𝑛, in the pedigree
graph 𝐺.

B.1.1. Correctness Proof for Case 3.1

Case 3.1. ForΦ
𝑎𝑏𝑐

, 𝐺 does not have any path triples ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
,

𝑃
𝐴𝑐
⟩ with root overlap.

Proof (Basis). There are two basic scenarios: (i) one individ-
ual is a parent of another; (ii) no individual is a parent of
another, among 𝑎, 𝑏, and 𝑐.

Using the recursive formula (3) to compute Φ
𝑎𝑏𝑐

, for
Figure 18(a), Φ

𝑎𝑏𝑐
= (1/2)Φ

𝑐𝑏𝑐
= (1/2)

2

Φ
𝑐𝑐𝑐
; for Figure 18(b),

Φ
𝑎𝑏𝑐
= (1/2)Φ

𝐴𝑏𝑐
= (1/2)

2

Φ
𝐴𝐴𝑐

= (1/2)
3

Φ
𝐴𝐴𝐴

.
Using the path-counting formula (12), if a path-triple

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has no root overlap (i.e., Type 1), then the

contribution of ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ to Φ

𝑎𝑏𝑐
can be computed as

follows: ∑Type 1(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

,𝑃𝐴𝑐⟩Φ
𝐴𝐴𝐴

, where 𝐿
⟨𝑃𝐴𝑎,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

=

𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏
+ 𝐿
𝑃𝐴𝑐

.
For Figure 18(a), 𝑐 is the only triple-common ancestor

and we obtain Φ
𝑎𝑏𝑐

= (1/2)
𝐿⟨𝑃𝑐𝑎,𝑃𝑐𝑏

,𝑃𝑐𝑐⟩Φ
𝑐𝑐𝑐

= (1/2)
2

Φ
𝑐𝑐𝑐
; for

Figure 18(b), we obtain Φ
𝑎𝑏𝑐

= (1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

,𝑃𝐴𝑐⟩Φ
𝐴𝐴𝐴

=

(1/2)
3

Φ
𝐴𝐴𝐴

.

Induction Step. Let 𝑛 denote the number of edges in 𝐺.
Assume true for 𝑛 ≤ 𝑘, where 𝑘 ≥ 2. Then, we show it is
true for 𝑛 = 𝑘 + 1.

For Figures 19(a) and 19(b), among 𝑎, 𝑏, and 𝑐, let 𝑎 be the
individual having the longest path starting from their triple-
common ancestor in the pedigree graph𝐺with (𝑘+1) edges.
If we remove the node 𝑎 and cut the edge 𝑓 → 𝑎 from 𝐺,

then the new graph 𝐺∗ has 𝑘 edges. In terms of computing
Φ
𝑓𝑏𝑐

, 𝐺∗ satisfies the condition for induction hypothesis.
For Figure 19(a), Φ

𝑓𝑏𝑐
= ∑Type 1(1/2)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩Φ
𝐴𝐴𝐴

.
Based on the recursive formula (3),Φ

𝑎𝑏𝑐
= (1/2)(Φ

𝑓𝑏𝑐
+Φ
𝑚𝑏𝑐
)

where 𝑓 and 𝑚 are parents of 𝑎. In 𝐺, 𝑎 only has one parent
𝑓; thus, it indicatesΦ

𝑚𝑏𝑐
= 0. Then, we can plug-in the path-

counting formula forΦ
𝑓𝑏𝑐

to obtain

Φ
𝑎𝑏𝑐
=
1

2
Φ
𝑓𝑏𝑐

=
1

2
∗ ∑

Type 1
(
1

2
)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩

Φ
𝐴𝐴𝐴

= ∑

Type 1
(
1

2
)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩
+1

Φ
𝐴𝐴𝐴

∵ 𝐿
⟨𝑃𝐴𝑎,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

= 𝐿
⟨𝑃𝐴𝑓,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

+ 1

∴ Φ
𝑎𝑏𝑐
= ∑

Type 1
(
1

2
)

𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏
,𝑃𝐴𝑐⟩

Φ
𝐴𝐴𝐴

.

(B.2)

Similarly, for Figure 19(b), we obtain Φ
𝑎𝑏𝑐

=

∑Type 1(1/2)
𝐿⟨𝑃
𝑐𝑓
,𝑃
𝑐𝑏
,𝑃𝑐𝑐⟩
+1

Φ
𝑐𝑐𝑐
= ∑Type 1(1/2)

𝐿⟨𝑃𝑐𝑎,𝑃𝑐𝑏
,𝑃𝑐𝑐⟩Φ
𝑐𝑐𝑐
.

Thus, it is true for 𝑛 = 𝑘 + 1.

B.1.2. Correctness Proof for Case 3.2

Case 3.2. ForΦ
𝑎𝑏𝑐

,𝐺 has path triples ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩with root

overlap.

Proof (Basis). There are three basic scenarios: (i) there are two
individuals who are parents of another; (ii) there is only one
individual who is parent of another; (iii) there is no individual
who is a parent of another, among 𝑎, 𝑏, and 𝑐.
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Figure 20: (a) 𝑏 is a parent of 𝑎, and 𝑐 is a parent of 𝑏; (b) 𝑏 is a parent
of 𝑎; (c) no individual who is a parent of another.

Using the recursive formula (3) to compute Φ
𝑎𝑏𝑐

: in
Figure 20, for Figure 20(a), Φ

𝑎𝑏𝑐
= (1/2)Φ

𝑏𝑏𝑐
= (1/2)

2

Φ
𝑏𝑐
=

(1/2)
3

Φ
𝑐𝑐
; for Figure 20(b),Φ

𝑎𝑏𝑐
= (1/2)Φ

𝑏𝑏𝑐
= (1/2)

2

Φ
𝑏𝑐
=

(1/2)
4

Φ
𝐴𝐴

; for Figure 20(c),Φ
𝑎𝑏𝑐
= (1/2)

2

Φ
𝑠𝑠𝑐
= (1/2)

3

Φ
𝑠𝑐
=

(1/2)
5

Φ
𝐴𝐴

.
Using the path-counting formula (12), if a path-triple

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ has root overlap (i.e., Type 2), then the con-

tribution of ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ to Φ

𝑎𝑏𝑐
can be computed as

follows:∑Type 2(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

,𝑃𝐴𝑐⟩
+1

Φ
𝐴𝐴

, where 𝐿
⟨𝑃𝐴𝑎 ,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

=

𝐿
𝑃𝐴𝑎

+ 𝐿
𝑃𝐴𝑏

+ 𝐿
𝑃𝐴𝑐
− 𝐿
𝑃𝐴𝑠

and 𝑠 is the last individual of the
root overlap path 𝑃

𝐴𝑠
.

For Figure 20(a), 𝑐 is the only triple-common ancestor
and we obtain Φ

𝑎𝑏𝑐
= (1/2)

𝐿⟨𝑃𝑐𝑎,𝑃𝑐𝑏
,𝑃𝑐𝑐⟩
+1

Φ
𝑐𝑐
= (1/2)

2+1

Φ
𝑐𝑐
=

(1/2)
3

Φ
𝑐𝑐
. Similarly, for Figures 20(b) and 20(c), we obtain

Φ
𝑎𝑏𝑐
= (1/2)

4

Φ
𝐴𝐴

and Φ
𝑎𝑏𝑐
= (1/2)

5

Φ
𝐴𝐴

, respectively.

Induction Step. Let 𝑛 denote the number of edges in 𝐺.
Assume true for 𝑛 ≤ 𝑘, where 𝑘 ≥ 2. Show that it is true
for = 𝑘 + 1.

For Figures 21(a), 21(b), and 21(c), among 𝑎, 𝑏, and 𝑐, let
𝑎 be the individual who has the longest path and let 𝑝 be a
parent of 𝑎. Then, we cut the edge 𝑝 → 𝑎 from 𝐺 and obtain
a new graph 𝐺∗ which satisfies the condition of induction
hypothesis. For Figure 21(a), we use the path-counting for-
mula forΦ

𝑓𝑏𝑐
in 𝐺∗ : Φ

𝑓𝑏𝑐
= ∑Type 2(1/2)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩
+1

Φ
𝐴𝐴

.
In 𝐺, 𝑓 is the only parent of 𝑎, according to the recursive

formula (3), we have Φ
𝑎𝑏𝑐
= (1/2)Φ

𝑓𝑏𝑐
. Then, we can plug-in

the Φ
𝑓𝑏𝑐

and obtain

Φ
𝑎𝑏𝑐
=
1

2
Φ
𝑓𝑏𝑐

=
1

2
∑

Type 2
(
1

2
)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩
+1

Φ
𝐴𝐴

= ∑

Type 2
(
1

2
)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩
+1+1

Φ
𝐴𝐴

∵ 𝐿
⟨𝑃𝐴𝑎 ,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

= 𝐿
⟨𝑃𝐴𝑓,𝑃𝐴𝑏 ,𝑃𝐴𝑐⟩

+ 1

∴ Φ
𝑎𝑏𝑐
= ∑

Type 2
(
1

2
)

𝐿⟨𝑃
𝐴𝑓
,𝑃
𝐴𝑏
,𝑃𝐴𝑐⟩
+1+1

Φ
𝐴𝐴

= ∑

Type 2
(
1

2
)

𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏
,𝑃𝐴𝑐⟩
+1

Φ
𝐴𝐴
.

(B.3)

For Figures 21(b) and 21(c), we take the same steps as we cal-
culate Φ

𝑎𝑏𝑐
for Figure 21(a).

In summary, it is true for 𝑛 = 𝑘 + 1.

A

a

s

t

f

b

c

(a)

a

t

b

A

s c

(b)

a

s

t

b

c

(c)
Figure 21: (a) No individual who is a parent of another; (b) 𝑏 is a
parent of 𝑎; (c) 𝑏 is a parent of 𝑎 and 𝑐 is an ancestor of 𝑏.

B.1.3. Correctness Proof for Case 2.3

Case 2.3. For Φ
𝑎𝑎𝑏

, the path-triples in the pedigree graph 𝐺
have mergeable path-pair.

Proof. Considering the relationship between 𝑎 and 𝑏, 𝐺
has two scenarios: (i) 𝑏 is not an ancestor of 𝑎; (ii) 𝑏 is
an ancestor of 𝑎. Using the path-counting formula (A.1),
if a path-triple ⟨𝑃

𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩ ∈ Type 3, which means

that it has a mergeable path-pair, then the contribution
of ⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩ to Φ

𝑎𝑎𝑏
can be computed as follows:

∑Type 3(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

⟩+1Φ
𝐴𝐴

, where 𝐿
⟨𝑃𝐴𝑎 ,𝑃𝐴𝑏⟩

= 𝐿
𝑃𝐴𝑎
+ 𝐿
𝑃𝐴𝑏

.
Using the recursive formula (4), we obtain Φ

𝑎𝑎𝑏
=

(1/2)(Φ
𝑎𝑏
+ Φ
𝑓𝑚𝑏
).

For Figure 22(a), 𝐴 is a common ancestor of 𝑎 and 𝑏.
∵ 𝑎 only has one parent 𝑓

∴ Φ
𝑎𝑎𝑏

=
1

2
(Φ
𝑎𝑏
+ Φ
𝑓𝑚𝑏
)

=
1

2
(Φ
𝑎𝑏
+ 0) =

1

2
Φ
𝑎𝑏

(as 𝑚 is missing) .
(B.4)

For Φ
𝑎𝑏
, we use Wright’s formula and obtain Φ

𝑎𝑏
=

∑
𝑃
(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

⟩Φ
𝐴𝐴

where 𝑃 denotes all nonoverlapping
path-pairs ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
⟩.

Then, we have Φ
𝑎𝑎𝑏

= (1/2)Φ
𝑎𝑏

=

(1/2)∑
𝑃
(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

⟩Φ
𝐴𝐴
= ∑
𝑃
(1/2)
𝐿⟨𝑃𝐴𝑎,𝑃𝐴𝑏

⟩+1Φ
𝐴𝐴

.
For Figure 22(b), we can also transform the computation

of Φ
𝑎𝑎𝑏

to Φ
𝑎𝑏
.

In summary, it shows that the path-counting formula
(A.1) is true for Case 2.3.

B.1.4. Correctness Proof for Cases 2.1 and 2.2. For Φ
𝑎𝑎𝑏

, when
there is no path-triple having mergeable path-pair, (i.e., the
path-triple belongs to either Case 2.1 or Case 2.3),Φ

𝑎𝑎𝑏
can be

transformed toΦ
𝑎1𝑎2𝑏

, which is equivalent to the computation
of Φ
𝑎𝑏𝑐

for Cases 3.1 and 3.2. The correctness of our path-
counting formula for Cases 3.1 and 3.2 is proven. Thus, we
obtain the correctness for Φ

𝑎𝑎𝑏
when the path-triple belongs

to either Case 2.1 or Case 2.2.

B.2. Multiple Triple-Common Ancestors. Now, we provide
the correctness proof for multiple triple-common ancestors
regarding the path-counting formulas (12) and (A.1).
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Figure 22: (a) 𝑏 is not an ancestor of 𝑎; (b) 𝑏 is an ancestor of 𝑎.

Lemma A. Given a pedigree graph 𝐺 and three individuals 𝑎,
𝑏, 𝑐 having at least one trip-common ancestor,Φ

𝑎𝑏𝑐
is correctly

computed using the path counting formulas (12) and (A.1).

Proof . Proof by induction on the number of triple-common
ancestors
Basis. 𝐺 has only one triple-common ancestor of 𝑎, 𝑏, and 𝑐.

The correctness of (12) and (A.1) for 𝐺 with only one tri-
ple-common ancestor of 𝑎, 𝑏, and 𝑐 is proven in the previous
section.

Induction Hypothesis. Assume that if 𝐺 has 𝑘 or less triple-
common ancestors of 𝑎, 𝑏, and 𝑐, (12) and (A.1) are correct for
𝐺.

Induction Step. Now, we show that it is true for 𝐺 with 𝑘 + 1
triple-common ancestors of 𝑎, 𝑏, and 𝑐.

Let 𝑇𝑟𝑖 𝐶(𝑎, 𝑏, 𝑐, 𝐺) denote all triple-common ancestors
of 𝑎, 𝑏, and 𝑐 in 𝐺, where 𝑇𝑟𝑖 𝐶(𝑎, 𝑏, 𝑐, 𝐺) = {𝐴

𝑖
| 1 ≤ 𝑖 ≤ 𝑘 +

1}. Let 𝐴
1
be the most top triple-common ancestor such that

there is no individual among the remaining ancestors {𝐴
𝑖
|

2 ≤ 𝑖 ≤ 𝑘 + 1} who is an ancestor of 𝐴
1
. Let 𝑆(𝐴

1
) denote the

contribution from 𝐴
1
to Φ
𝑎𝑏𝑐

.
Because𝐴

1
is themost top triple-common ancestor, there

is no path-triple from {𝐴
𝑖
| 2 ≤ 𝑖 ≤ 𝑘 + 1} to 𝑎, 𝑏, and

𝑐 which passes through 𝐴
1
. Then, we can remove 𝐴

1
from

𝐺 and delete all out-going edges from 𝐴
1
and obtain a new

graph 𝐺󸀠 which has 𝑘 triple-common ancestors of 𝑎, 𝑏, and 𝑐.
It means 𝑇𝑟𝑖 𝐶(𝑎, 𝑏, 𝑐, 𝐺󸀠) = {𝐴

𝑖
| 2 ≤ 𝑖 ≤ 𝑘 + 1}.

For the new graph 𝐺
󸀠, we can apply our induction

hypothesis and obtainΦ
𝑎𝑏𝑐
(𝐺
󸀠

).
For the most top triple-common ancestor 𝐴

1
, there are

two different cases considering its relationship with the other
triple-common ancestors:

(1) there is no individual among {𝐴
𝑖
| 2 ≤ 𝑖 ≤ 𝑘 + 1} who

is a descendant of 𝐴
1
;

(2) there is at least one individual among {𝐴
𝑖
| 2 ≤ 𝑖 ≤

𝑘 + 1} who is a descendant of 𝐴
1
.

For (1), since no individual among {𝐴
𝑖
| 2 ≤ 𝑖 ≤ 𝑘 + 1} is a

descendant of 𝐴
1
, the set of path-triples from 𝐴

1
to 𝑎, 𝑏, and

𝑐 is independent of the set of path-triples from {𝐴
𝑖
| 2 ≤ 𝑖 ≤

𝑘 + 1} to 𝑎, 𝑏, and 𝑐. It also means that the contribution from

𝐴
1
toΦ
𝑎𝑏𝑐

is independent of the contribution from the other
triple-common ancestors.

Summing up all contributions, we can obtainΦ
𝑎𝑏𝑐
(𝐺) =

Φ
𝑎𝑏𝑐
(𝐺
󸀠

) + 𝑆(𝐴
1
).

For (2), let𝐴
𝑗
be one descendant of𝐴

1
. Now both𝐴

1
and

𝐴
𝑗
can reach 𝑎, 𝑏, and 𝑐.
𝑝𝑡
𝑖
= {𝑡
𝑎
: 𝐴
1
→ ⋅ ⋅ ⋅ → 𝑎; 𝑡

𝑏
: 𝐴
1
→ ⋅ ⋅ ⋅ → 𝑏; 𝑡

𝑐
: 𝐴
1
→

⋅ ⋅ ⋅ → 𝑐}, a path-triple from 𝐴
1
to 𝑎, 𝑏, and 𝑐.

If 𝑡
𝑎
, 𝑡
𝑏
, and 𝑡

𝑐
all pass through𝐴

𝑗
, then the path-triple𝑝𝑡

𝑖

is not an eligible path-triple for Φ
𝑎𝑏𝑐

. When we compute the
contribution from𝐴

1
toΦ
𝑎𝑏𝑐

, we exclude all such path-triples
where 𝑡

𝑎
, 𝑡
𝑏
, and 𝑡

𝑐
all pass through a lower triple-common

ancestor. In other words, an eligible path-triple from 𝐴
1

regarding Φ
𝑎𝑏𝑐

cannot have three paths all passing through a
lower triple-common ancestor. Therefore, we know that that
the contribution from𝐴

1
toΦ
𝑎𝑏𝑐

is independent of the contri-
bution from the other triple-common ancestors. Summing up
all contributions, we obtainΦ

𝑎𝑏𝑐
(𝐺) = Φ

𝑎𝑏𝑐
(𝐺
󸀠

) + 𝑆(𝐴
1
).

C. Proof for Four Individuals and Two
Pairs of Individuals

Here, we give a proof sketch for the correctness of path
counting formulas for four individuals. First of all, for four
individuals in a pedigree graph 𝐺, we present all different
cases based on which we construct a dependency graph.
The correctness of the path-counting formulas for two-pair
individuals can be proved similarly.

C.1. Proof for Four Individuals. Consider the existence of
different types of path-quads regarding Φ

𝑎𝑏𝑐𝑑
, Φ
𝑎𝑎𝑏𝑐

, and
Φ
𝑎𝑎𝑎𝑏

; there are 15 cases for a pedigree graph 𝐺:

Case 2.1: 𝐺 has path-triples
⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩

with zero root overlap
Case 2.2: 𝐺 has path-triples

⟨𝑃
𝐴𝑎1
, 𝑃
𝐴𝑎2
, 𝑃
𝐴𝑏
⟩

with one root overlap
Case 2.3: 𝐺 has path-pairs

⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
⟩

with zero root overlap

}}}}}}}}}}}}}

}}}}}}}}}}}}}

}

⇐󳨐 Φ
𝑎𝑎𝑎𝑏

,
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Figure 23: Dependency graph for different cases for four individuals.

Case 3.1: 𝐺 has path-quads
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𝐴𝑎2
, 𝑃
𝐴𝑏
, 𝑃
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𝐴𝑎1
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Case 3.3.2: 𝐺 has path-quads
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(C.1)
Then, we construct a dependency graph shown in

Figure 23 for all cases for four individuals.
According to the dependency graph in Figure 23, the

intermediate steps including Cases 3.4 and 3.5 are already

proved for the computation of Φ
𝑎𝑏𝑐

. The correctness of the
transformation fromCase 4.2 to Case 3.4 can be proved based
on the recursive formula forΦ

𝑎𝑏𝑐𝑑
andΦ

𝑎𝑎𝑏𝑐
. Similarly, we can

obtain the transformation from Case 4.3.1 to Case 3.5.

C.2. Proof for TwoPairs of Individuals. Consider the existence
of different types of 2-pair-path-pair regarding Φ

𝑎𝑏,𝑐𝑑
; there

are 9 cases which are listed as follows.

Case 4.1. 𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with zero root homo-

overlap and zero root heter-overlap.

Case 4.2. 𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with zero root homo-

overlap and one root heter-overlap.

Case 4.3.1. 𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with zero root

homo-overlap and two root heter-overlap.

Case 4.3.2. 𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with one root

homo-overlap and two root heter-overlap.

Case 4.4.𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with one root homo-

overlap and zero root heter-overlap.

Case 4.5. 𝐺 has ⟨(𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
), (𝑃
𝐴𝑐
, 𝑃
𝐴𝑑
)⟩ with two root homo-

overlap and zero root heter-overlap.

Case 4.6. 𝐺 has path-triples ⟨𝑃
𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ with zero root

overlap.
Case 4.7. 𝐺 has path-triples ⟨𝑃

𝐴𝑎
, 𝑃
𝐴𝑏
, 𝑃
𝐴𝑐
⟩ with one root

overlap.

Case 4.8. 𝐺 has path-pairs ⟨𝑃
𝑇𝑐
, 𝑃
𝑇𝑑
⟩ with zero root overlap.

Then, we construct a dependency graph for the cases
relating to Φ

𝑎𝑏,𝑐𝑑
in Figure 24.

According to the dependency graph in Figure 24,
Cases 4.6, 4.7, and 4.8 are the intermediate steps which
already are proved for the computation of Φ

𝑎𝑏𝑐
. The

correctness of the transformation from Case 4.2 to Case 4.6
can be proved based on the recursive formula for Φ

𝑎𝑏,𝑐𝑑
and

Φ
𝑎𝑏,𝑎𝑐

. Similarly, we can obtain the transformation from
Cases 4.3.1 and 4.3.2 to Case 4.7 as well as from Case 4.4 to
Case 4.8 accordingly.
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A randomized clinical experiment to compare two types of endotracheal tubes utilized a block design where each of the
six participating anesthesiologists performed tube insertions for an equal number of patients for each type of tube. Five
anesthesiologists intubated at least three patients with each tube type, but one anesthesiologist intubated only one patient per tube
type. Overall, one type of tube outperformed the other on all three effectiveness measures. However, analysis of the data using an
interaction model gave conflicting and misleading results, making the tube with the better performance appear to perform worse.
This surprising result was caused by the undue influence of the data for the anesthesiologist who intubated only two patients. We
therefore urge caution in interpreting results from interaction models with designs containing small blocks.

1. Introduction

Aclinical research investigation byRadesic et al. [1] compared
two types of endotracheal tubes (ETTs) used by anesthesiol-
ogists. The original plan for the study utilized a generalized
randomized block design [2, 3] (stratified allocation), in
which each of six anesthesiology providers (hereafter “APs”)
was to use one type of tube for five patients and the other type
of tubes for five patients, with assignment of patient to tube
being randomized. Three dependent variables obtained for
each patient were used to compare the types of tubes: time to
complete the intubation, number of times the insertion had to
bemomentarily stopped and the tube redirected, and a rating
by the AP of the difficulty of the insertion. It was anticipated
that there could be some interactive effect between the type
of tube and the AP with respect to these response variables,
in that the differences between the tube types could vary
according to the APs’ proficiencies and preferences.

In the course of conducting this study, it turned out that
some of the APs whowere enlisted to participate were seldom
available, while others were frequently available. In order to
complete the investigation within an allotted time frame, the
number of patients per AP was altered with more than ten
patients for some APs and fewer than ten for others. Still,

each AP had an even number of patients with half being
randomized to each type of tube. One particular AP had
only two patients, one per tube type. In the original analysis
presented in Radesic et al. [1], the researchers deemed this
AP to have done too few intubations and excluded that data
from the analysis. A further analysis that did include the data
for this AP revealed a spurious result that conflicts with the
conclusions of the original study. It is this contradictory find-
ing that is the focus of this paper. Such a result should sound a
note of caution to data analysts who include interaction terms
in their models.

In this paper, we first provide some additional details of
both the design and original analysis of the anesthesiology
tube study by Radesic et al.Then we will illustrate the specific
problem that arises when an interaction term is added to
the statistical model. Finally, we discuss how such a problem
could arise in many other situations where an interaction
term may be included in a model.

2. Materials and Methods

The purpose of the study by Radesic et al. [1] was to
compare the performance of two types of ETTs when used
in conjunction with the GlideScope, a video laryngoscope.
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Table 1: Intubation outcomes for the Parker Flex-Tip and standard tubes.

Dependent variables Parker Flex-Tip (𝑛 = 30)
mean (SD)

Standard ETT (𝑛 = 30)
mean (SD)

Time for ETT insertion (sec) 10.9 (7.5) 12.4 (7.3)
Number of redirections 0.7 (1.5) 1.3 (2.7)
Difficulty of insertion rating 14.3 (14.9) 17.4 (19.7)

The Parker Flex-Tip (PFT) and the standard Mallinckrodt
were the two types of ETTs used in this study.TheGlideScope
allows the AP to visualize the airway structures when passing
the ETT into the oral pharynx, through the glottis, and into
the trachea.

Six APs and 60 patients participated in the study. In
the modified design, one AP intubated 22 patients, another
intubated 18 patients, three APs performed 6 intubations
each, and one AP only performed two intubations. The APs
were balanced with respect to the ETT type, in that half of
each AP’s intubations were done with the PFT tube and half
with the standard Mallinckrodt tube. In the original analysis
[1], the data for the AP who did only two intubations was
discarded, leaving a sample size of 58 patients, utilizing data
for only five APs. The three dependent variables were (1)
time for ETT insertion, (2) number of ETT redirections, and
(3) ease of use rating by the AP immediately following each
intubation. Values for the first two dependent variables were
determined precisely by means of viewing a video recording
of each intubation. To rate the ease of use, a 100mm visual
analog scale (VAS) was used, with 0 representing “easiest
insertion” and 100 representing “hardest insertion.” After
each intubation, the AP made a mark along this 100mm line
to rate the difficulty of the insertion.

The analysis presented in [1] utilized data for only the
58 patients who were intubated by the 5 APs who did six
or more intubations, excluding the AP who did only two
intubations. A two-factor ANCOVA model was used, with
ETT type and AP being the two designed factors and two
patient characteristic variables serving as covariates. These
were the Cormack-Lehane view (2 categories) and whether
the muscles were paralyzed, as determined by observation of
nerve stimulation. The model included interaction terms for
the ETT type with each covariate and with the AP factor.The
AP was entered into the model as a random effect. Two of the
dependent variables were transformed using logs in order to
correct for skewness.

When the results were averaged for the 58 patients (aggre-
gated over the five APs and the covariates), the PFT tube
had lower (better) mean responses on each of the dependent
variables. Likewise, for all three dependent variables, the
adjusted means resulting from the model described above
were lower for the PFT. 𝑃 values for two of the dependent
variables—time to intubate and difficulty rating—were below
.01.

In this paper, we will do a similar analysis, this time using
the data for all 60 patients and all six APs. To make our point
in the most straightforward fashion, our analysis will exclude
the two covariates. For the same reason, we will keep the

Table 2: Mean intubation outcomes for the Parker Flex-Tip and
standard tubes for each of the six anesthesiology providers.

Dependent variables Parker Flex-Tip Standard ETT
AP#1 𝑁 = 3 𝑁 = 3

Time for ETT insertion (sec) 9.0 14.0
Number of redirections 1.0 2.0
Difficulty of insertion rating 16.7 19.0

AP#2 𝑁 = 11 𝑁 = 11

Time for ETT insertion (sec) 6.7 9.9
Number of redirections 0.0 0.7
Difficulty of insertion rating 3.7 11.5

AP#3 𝑁 = 9 𝑁 = 9

Time for ETT insertion (sec) 14.7 17.1
Number of redirections 1.6 2.4
Difficulty of insertion rating 21.7 31.8

AP#4 𝑁 = 1 𝑁 = 1

Time for ETT insertion (sec) 15.0 5.0
Number of redirections 3.0 0.0
Difficulty of insertion rating 60.0 7.0

AP#5 𝑁 = 3 𝑁 = 3

Time for ETT insertion (sec) 8.0 6.0
Number of redirections 1.0 0.0
Difficulty of insertion rating 13.3 11.7

AP#6 𝑁 = 3 𝑁 = 3

Time for ETT insertion (sec) 18.7 14.7
Number of redirections 0.0 0.7
Difficulty of insertion rating 14.2 3.0

dependent variables in their original units, rather than using
log transformations. (The presence of covariates in the model
or the use of transformed data does not change the essence of
the results.)

3. Results and Discussion

Table 1 shows the mean values for each of the dependent
variables when the data are aggregated over all six APs. For
each dependent variable, the mean response is lower (better)
for the PFT tube than for the standard ETT. The results are
presented separately for eachAP in Table 2. It can be seen that
the fourth anesthesiology provider (AP #4) had one patient
who was difficult to intubate and one for whom intubation
was very easy. Whether this is due to the type of tube or to
patient characteristics cannot be sorted out statistically due
to confounding.
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Table 3: Least squares adjusted means for each type of tube using an additive model or an interaction model.

Dependent variables Additive model Interaction model
Parker Flex-Tip Standard ETT Parker Flex-Tip Standard ETT

Time for ETT insertion (sec) 10.8 12.3 12.0 11.1
Number of redirections 0.8 2.3 1.1 1.0
Difficulty of insertion rating 16.3 19.4 21.6 14.0
Note. The adjusted means were obtained using the General Linear Model ANOVA platform in Minitab V.16 and are the same as those obtained using PROC
GLM in SAS V.9.3.

3.1. Additive Model versus Interactive Model Results. First,
consider the results of an additive model in which the
factors are tube type (fixed) and anesthesiology provider
(random). Such a model will allow us to compare the tube
types, while adjusting for potential differences among theAPs
with respect to the dependent variables. For example, some
APs could be faster at performing intubations than others.
Variation in the dependent variables due to AP differences
would then be accounted for and removed from the “error
term” used for comparing the tube types. Univariate two-way
ANOVAs were run for each of the three dependent variables.
According to ANOVA 𝐹-tests, the difference between the
PFT tube and standard tube was not found to be statistically
significant for any of the three effectiveness measures. (This
is also true if the data for AP #4 are removed.) However, the
adjusted mean for the PFT tube was lower (better) than for
the standard tube on each of the three dependent variables
(Table 3).

In order to allow for the possibility that the differences
between the tube types may vary among APs, an interaction
term was added to the model. For example, some APs may
tend to perform better with one tube while other APs do
better with the other tube. Again, univariate ANOVAs were
run for each of the three dependent variables, this time
with the interaction term, tube type ∗ AP, included in the
model. Surprisingly, the adjusted means resulting from these
analyses make it appear that the PFT tube performs worse
than the standard tube (Table 3). Again, differences are not
statistically significant according to the ANOVA 𝐹-tests.

The adjusted means shown in Table 3 were produced
using theGeneral LinearModel ANOVAplatform inMinitab
V.16 and are the same as those obtained using PROC GLM in
SAS V.9.3. To its credit, Minitab’s default output flags both of
the data points for AP #4 as having “large leverage” for both
the additive and interaction models. We also note that the
same adjustedmeans are produced even if theAPs are entered
into the model as fixed rather than random effects.

We believe that the results obtained using the interaction
model aremisleading due to the undue influence of the results
for the one AP who intubated only one patient with each type
of ETT. Further, wewere somewhat surprised by this, because
the design was balanced in the sense that each AP used each
ETT type the same number of times, meaning that the ETT
and AP factors are orthogonal in the design matrix.

3.2. Illustration. The misleading results obtained in the ETT
study could arise in many similar situations. Here is a simple

Table 4: Hypothetical data for a two-factor study.

Factor B level 1 Factor B level 2
Factor A level 1 10 11 12 11 10 8 6 5 7 7
Factor A level 2 9 11 12 10 6 7 4 5
Factor A level 3 4 15

Table 5: Raw and adjusted means for the two levels of B for the
hypothetical data.

Factor B level
1

Factor B
level 2

Raw means 10.00 7.00
Adjusted means; additive model 10.23 7.23
Adjusted means; interaction model 8.43 9.03

example to illustrate the problem in the context of a two-
factor factorial analysis. Suppose that Factors A and B have 𝑎
and 𝑏 levels, respectively, and that, within each level of Factor
A, the same number of observations is obtained for each level
of B, although this number may vary among the levels of A.
As in the anesthesia tube study, we are primarily focusing on
the impact of only one factor, here, Factor B.

If 𝑛
𝑖𝑗
represents the number of observations for the 𝑖th

level of A and 𝑗th level of B, then 𝑛
𝑖1
= 𝑛
𝑖2
= ⋅ ⋅ ⋅ = 𝑛

𝑖𝑏
for

𝑖 = 1, 2, . . . , 𝑎. Consider the case where 𝑎 = 3 and 𝑏 = 2;
𝑛
1𝑗
= 5, 𝑛

2𝑗
= 4, and 𝑛

3𝑗
= 1, 𝑗 = 1, 2. Suppose the values of

the dependent variable are as shown in Table 4.
In this case, the raw means for the two levels of Factor

B differ by 3.0 with the B1 mean higher than the B2 mean
(Table 5). Using an additive model, PROC GLM in SAS
produces adjusted means that are also 3.0 units apart, and
the difference is statistically significant (𝑃 = .030). For the
interaction model, the adjusted means for the two levels of B
are reversed in order of magnitude, though the difference is
not statistically significant (𝑃 = .367 using SAS type III sums
of squares).

Minitab’s General Linear Model ANOVA produces the
same results for both the additive and interaction models. To
its credit, Minitab also issues a warning in its output that the
twoobservations forA3have high leverage. To investigate this
further, we performed regression analyses, which allowed us
to assess the leverage and influence of the two data values for
A3. To do this, we created indicator variables for A1, A2, and
B1 and multiplicative interaction terms A1 ∗B1 and A2 ∗B1.
Thenwe ran a regression analysis with both an additivemodel
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(Y versus A1, A2, and B1) and an interaction model (Y versus
A1, A2, B1, A1 ∗ B1, and A2 ∗ B1), requesting that influence
diagnostics be included in the output (INFLUENCE option
in PROC REG). For the additive model, each of the two A3
observations had somewhat high leverage (hat diagonal =
.55) and strong influence on the estimate for B1 (DFBETAS =
−3.11) (see Belsley et al. [4]). However, for the interaction
model, these two points had the maximum possible leverage
(hat diagonals = 1.00) and extreme influence on all the
coefficient estimates (DFBETAS all infinite/undefined). With
only one observation at each combination of A3 and B, it is
clear that an interactive model will fit the response variable
exactly and thus the maximum leverage.

4. Conclusion

There are many clinical studies, such as the ETT comparison
described here, where allocation of patients to treatments
may be blocked or stratified (see [5] for a discussion of strat-
ification in the clinical trial setting). For example, patients
may be stratified by center, race, or disease status. In such
cases, additive models for comparing the treatments will
properly adjust for net differences in the dependent variables
for the different strata. However, it may make sense for
an interaction model to be used in the model as well. For
example, the benefit afforded by one treatment over another
may be greater for one racial group than for another. If one or
more of the strata are very small in size, then the phenomenon
illustrated by the examples of this paper suggests caution
be used in interpretation of the results. Data for the small
strata may have undue influence on the findings, since these
observations will have high leverage. As shown here, this
problem holds even for the “unbiased” case where, within any
stratum, an equal number of subjects receive each treatment.
In light of these observations, we recommend that strata or
blocks of size two be omitted from the data if an interaction
model is used. This advice was followed in the original ETT
comparison analysis [1], where the AP who intubated only
two patients was removed from the data.
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The inventions of microarray and next generation sequencing technologies have revolutionized research in genomics; platforms
have led to massive amount of data in gene expression, methylation, and protein-DNA interactions. A common theme among a
number of biological problems using high-throughput technologies is differential analysis. Despite the common theme, different
data types have their own unique features, creating a “moving target” scenario. As such, methods specifically designed for one
data type may not lead to satisfactory results when applied to another data type. To meet this challenge so that not only currently
existing data types but also data from future problems, platforms, or experiments can be analyzed, we propose a mixture modeling
framework that is flexible enough to automatically adapt to any moving target. More specifically, the approach considers several
classes of mixture models and essentially provides a model-based procedure whose model is adaptive to the particular data being
analyzed. We demonstrate the utility of the methodology by applying it to three types of real data: gene expression, methylation,
and ChIP-seq. We also carried out simulations to gauge the performance and showed that the approach can be more efficient than
any individual model without inflating type I error.

1. Introduction

With the completion of the human genome project more
than a decade ago, large-scale approaches to biological
research are advancing rapidly. In particular, the inventions
of microarray and next generation sequencing technolo-
gies have revolutionized research in genomics; such high-
throughput platforms have led to massive amount of data.
Depending on the study, each type of experiment generates
data with different characteristics. Among them are cDNA
microarrays or RNA-seq formeasuring changes in expression
levels of thousands of genes simultaneously [1, 2]; ChIP-
chip tiling arrays or ChIP-seq for studying genome-wide
protein-DNA interactions [3, 4]; and differential methyla-
tion hybridization microarrays or whole genome bisulfite
sequencing for performing whole genome DNA methyla-
tion profiling study [5, 6]. A common theme of interest
for biologists when they employ these experiments is to
perform differential analysis [7–12]. For example, in gene
expression profiling, be it microarray or sequencing based,
there is an interest in finding genes that are differentially

expressed. For epigenetic profiling of cancer samples, it is of
interest to find CpG islands that are differentially methylated
between cancerous and normal cells. On the other hand,
ChIP-seq data are frequently used to interrogate protein
binding differentiation under two different conditions. Over
the past decade, methods have been proposed for each type
of data when new platforms/technologies were launched.
Despite the common theme, different data types have their
own unique features, creating a “moving target” scenario.
As such, methods specifically designed for one data type
may not lead to satisfactory results when applied to another
data type. Furthermore, new data types from new biological
experiments will continue to emerge as we are entering a
new era of discovery [13, 14]. As such, it would be desirable
to have a unified approach that would provide satisfactory
solutions tomultitype data, both those currently available and
those that will become available in the future. To meet this
challenge so that not only currently existing data types but
also data from future problems, platforms, or experiments
can be analyzed, we propose a mixture modeling framework
that is flexible enough to automatically adapt to any moving
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target. That is, the model we are proposing is adaptive to the
data being analyzed rather than being fixed.More specifically,
the approach considers several classes of mixture models
and essentially provides a model-based procedure with the
following features: (1) use of an ensemble of multiclass
models, (2) models within each class adapting to the data
being analyzed, and (3) flexible scheme for component clas-
sification. Thus, depending on the underlying distribution of
the data being analyzed, the model will adapt accordingly
to provide the best fit, which, as we demonstrate through
simulation, can lead to improved power and sensitivity of
differential identification without inflating type I error. To
illustrate the utility of the method, we employ it to analyze
three diverse types of high-throughput data, each of which
has led to improved fit compared to a single-model analysis.

2. Materials and Methods

2.1. Synopsis of the Ensemble Approach. Mixture model-
based approaches have been proposed specifically for dif-
ferent data types. Here, we propose an approach that tries
to synthesize the advantages of these approaches into one
single package. Depending on the data being analyzed, this
ensemble approach will select themodel that best fits the data
and perform model-based classification. The first mixture
model being considered for the ensemble is the gamma-
normal-gamma (GNG) model proposed for analyzing DNA
methylation data [15]. It uses a special case of the gamma
distribution (exponential) to capture data coming from dif-
ferential group and utilizes multiple normal components to
capture the nondifferentiating methylated group allowing for
small biases even after normalization.We integrate thismodel
with uniform-normalmixturemodel (NUDGE) proposed by
Dean and Raftery [16] which uses one uniform and one nor-
mal component to analyze gene expression data. To extend
the applicability of the ensemble approach to other omic data
types, we add to this ensemble an extension of NUDGE,
which we call iNUDGE, to improve the fit by following the
idea fromGNGusingmultiple normal components. A robust
weighting scheme for GNGwas also extended to (i)NUDGE.
In addition, we allow some of the normal components to be
classified as capturing differentiated observations based on
their locations and scale parameters, further increasing the
flexibility of the ensemble model. We note that this feature
differs from the intended use of the normal component(s) in
GNG and NUDGE. Depending on the underlying distribu-
tion of the data, the best overallmodel among the three classes
will be selected and used for inferences. The ensemble nature
of this procedure makes it highly adaptable to data from
various platforms.Wedemonstrate this capability by applying
it to three types of data: gene expression, DNA methylation,
and ChIP-seq. In what follows, we describe our ensemble
model, parameters estimation, model selection, and finally
model-based classification.

2.2. Ensemble of Finite Mixture Models. In the proposed
ensemble approach, we integrate advantages from different
models by considering multiple underlying distributions.

Specifically, a collection of three classes ofmixturemodels are
utilized. Each class ofmodels is designed to fit the normalized
data that are usually expressed as (log) differences under
two experimental conditions, for example, healthy versus
diseased or before versus after treatment.

Let𝑓(𝑦) be the unknown density function of the normal-
ized data point 𝑦, which is modeled as

𝑓 (𝑦;Ψ) = (1 − 𝜋) 𝑓
0
(𝑦; Ψ
0
) + 𝜋𝑓

1
(𝑦; Ψ
1
) , (1)

whereΨ,Ψ
0
, andΨ

1
are the underlying model parameters for

the mixture and each of the two components, respectively,
and will be specified as the formulation enfolds. In this
first level of mixture, 𝑓

1
is designated to capture differential

elements (overdispersion) whereas 𝑓
0
is for those that are

more centrally located. Nevertheless, 𝑓
0
may also be used to

identify differential observations, as detailed in the second
level of mixture modeling. Specifically, we model 𝑓

1
and 𝑓

0

as follows:

𝑓
1
(𝑦; Ψ
1
) =

{{{{{

{{{{{

{

𝑈
[𝑎,𝑏]

(𝑦) for (i)NUDGE
𝜌𝐸
1
(−𝑦 × 𝐼 {𝑦 < −𝜉

1
} ; 𝛽
1
)

+ (1 − 𝜌)

×𝐸
2
(𝑦 × 𝐼 {𝑦 > 𝜉

2
} ; 𝛽
2
) for GNG,

𝑓
0
(𝑦; Ψ
0
) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑁(𝑦; 𝜇, 𝜎
2

) for NUDGE
𝐾

∑

𝑘=1

𝛾
𝑘

×𝑁(𝑦; 𝜇
𝑘
, 𝜎
2

𝑘
) ,

𝐾

∑

𝑘=1

𝛾
𝑘
= 1 for iNUDGE and GNG.

(2)

As we can see from the above modeling, the overdispersion
in the data is captured by either a uniform distribution or
a mixture of two exponential distributions (special case of
gamma). The parameters of the uniform distributions, 𝑎
and 𝑏, are part of the model parameters (i.e., 𝑎, 𝑏 ∈ Ψ

1
)

and so are the scale parameters and the mixing proportion
of the exponential distributions (i.e., 𝜌, 𝛽

1
, 𝛽
2
∈ Ψ
1
). The

location parameters, 𝜉
1
and 𝜉

2
both >0, are assumed to

be known. In practice, 𝜉
1

= |max(𝑦 < 0)| and 𝜉
2

=

|min(𝑦 > 0)| may be used as estimates of 𝜉
1
and 𝜉

2
. The

more centrally located data are represented by either a single
normal distribution or a mixture of normal distributions.
The location and scale parameters are part of the model
parameters, that is, 𝜇, 𝜎2, 𝜇

𝑘
, 𝜎
2

𝑘
∈ Ψ
0
, and so are the mixing

proportions 𝛾
𝑘
and the number of components in themixture,

𝐾; that is 𝛾
𝑘
, 𝐾 ∈ Ψ

0
. Thus, Ψ = {𝜋} ∪ Ψ

0
∪ Ψ
1
. Finally, 𝐼{⋅} is

the usual indicator function that is equal to 1 if the condition
in { } is satisfied; otherwise, it is 0. Since any distribution
can be well represented by a mixture of normal distributions,
both 𝑓

1
and some components of the normal mixture

will be designated as “differential” components, as detailed
below.
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2.3. Robust Parameter Estimation. In order to get a robust
estimation of model parameters, following GNG, we use a
weighted likelihood function in our ensemble model:

𝑙 (Ψ) =

𝑛

∑

𝑖=1

𝑤
𝑖
log𝑓 (𝑦

𝑖
; Ψ) , (3)

where 𝑦
𝑖
, for 𝑖 = 1, 2, . . . , 𝑛, are the normalized observed data

and 0 ≤ 𝑤
𝑖
≤ 1 are some prespecified weights.

Weighted likelihood is used because we want to down-
grade the contributions from observations with small “inten-
sities.” For example, in modeling log-ratio, we want to
distinguish data points with the same log-ratio but vastly
different magnitudes in their individual intensities. If we let
𝑢 be the average log intensities (standardized to mean zero
and standard deviation 1), then the lower half Huber’s weight
function:

𝑤 (𝑢) =
{

{

{

1, if 𝑢 > −𝑐
𝑐

|𝑢|
if 𝑢 ≤ −𝑐, (4)

where 𝑐 = 1.345, can be used to downweigh those with
smaller average intensities. In addition to Huber’s weight
function, Tukey’s bisquare function may also be used [17].
Further, an upper half or a two-tailed weight function can be
used if justifiable for a particular data type or study goal.

TheEMalgorithm is used to fit each class ofmodels under
the ensemble.The stopping criteria for our EM algorithm are
when either ‖Ψ

(𝑚+1)
− Ψ
(𝑚)
‖ < 𝜖 or a maximum number of

iterations𝑀 are reached. In our simulation and data analysis,
we set 𝜖 = 10

−5 and 𝑀 = 2000, which are also the default
setting in the program implementing the ensemble approach.

2.4. Model Selection and Model-Based Classification. In both
GNG and iNUDGEmodels, we first need to determine𝐾, the
number of normal components in the model, also known as
the order of the model. In our analysis, we examine models
with 𝐾 = 1, 2, . . . and choose 𝐾 that maximizes the Bayesian
information criterion (BIC [18]). We use BIC as it is in
favor of parsimonious model since the penalty for additional
parameters is stronger than the Akaike information criterion
(AIC [19]). That is, when selecting the order of the model,
we want to be extra careful not to choose models that are
too complex. After identifying the best model within each
class, we use the AIC to select the overall best model among
the three classes. The use of this balanced model selection
approach is not only to prevent the selection of a model that
is too complex (thus using BIC within each class) but, in
the meantime, also to avoid choosing a model that is overly
simple (thus using AIC when selecting among the classes).

Using the best model selected, a two-step approach is
taken to classify each observation as differential or not. In
the first step, we classify a normal component 𝑁(𝜇

𝑘
, 𝜎
2

𝑘
) as

a differential one if one of its tails captures observations that
are “outliers” in the overall distribution:

󵄨󵄨󵄨󵄨𝜇𝑘
󵄨󵄨󵄨󵄨 + 2 × 𝜎𝑘 > 1.5 × IQR, (5)

where IQR is the interquartile range of the entire dataset.The
normal components that are not labeled as differential are
called “nondifferential.”

After each normal component is labeled, we compute the
local false discovery rate (fdr) proposed by Efron [20] and
adapted by Khalili et al. [15] for each observation:

fdr (𝑦
𝑖
) =

𝑓nd (𝑦𝑖, Ψ̂0)

𝑓 (𝑦
𝑖
; Ψ̂)

, ∀𝑖 ∈ 𝑛, (6)

where 𝑓nd is composed of normal components that are
designated as nondifferential. We then classify observation 𝑦

𝑖

with weight 𝑤
𝑖
to be a differential element if fdr(𝑦

𝑖
)/𝑤
𝑖
≤ 𝑧
0
,

for some threshold value 𝑧
0
.

2.5. Software. The method presented in this paper has been
implemented in an R package called DIME (differential
identification using mixture ensemble) and is available at
http://www.stat.osu.edu/∼statgen/SOFTWARE/DIME/ or
http://cran.r-project.org/web/packages/DIME/index.html
(CRAN).

3. Results and Discussion

3.1. Simulation Study. Our simulation was modeled after the
APO AI gene expression data [21]. Let 𝑥

𝑖𝑗
be the logarithm of

expression level corresponding to the 𝑖th gene (observation
unit) in the 𝑗th sample (𝑗 = 1 if it is a control sample and
𝑗 = 2 if it is a treatment sample). For nondifferential genes,
we generated 𝑥

𝑖2
− 𝑥
𝑖1
by sampling randomly from genes in

the APOAI dataset for which the log-ratio is at most one. For
differential genes, we simulated the log of expression level in
the control sample from a uniform distribution (i.e., 𝑥

𝑖1
∼

unif (15, 30)); we set the log expression level in the treatment
sample to be 𝑥

𝑖2
= 𝑥
𝑖1
+ 𝑍
𝑖2
+ (2 × 𝐵

𝑖2
− 1) × 𝐺

𝑖2
, where

𝑍
𝑖2
∼ 𝑁(0, 0.7−0.02×𝑥

𝑖1
), 𝐵
𝑖2
∼ Bern (0.5), and𝐺

𝑖2
followed

one of the following three distributions:

𝐺
𝑖2
∼

{{

{{

{

(1) exponential(𝛽 = 1.4286) + 1,
(2) uniform(1, 4) ,
(3) normal(𝜇 = 2.5, 𝜎 = 0.75) .

(7)

Note that 𝑍
𝑖2

was set such that genes with smaller
expression will have larger variance, while 𝐵

𝑖2
controls over-

or underexpression of genes. Further, 𝐺
𝑖2
represents three

different underlying distributions for differential observa-
tions to study the performance of the ensemble model under
diverse data types. We generated 10,000 genes for which 10%
(1000) are differential elements. A total of 100 datasets were
simulated under each of the three simulation settings (the
three 𝐺 distributions in (7)). In each replicate, we calculated
false positive rate (FPR) and true positive rate (TPR) for
classifying each gene as differential or nondifferential. Here,
TPR is the rate of correct classification of differential genes
and FPR is the rate of classifying a gene to be differential when
it is in fact a nondifferential gene. Figure 1 shows the result of
the ensemble approach fitting these three types of simulated
data. In column 1 (datasets with exponential distribution for
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Figure 1: Simulation results comparing the performance of the ensemble approach with each of the three individual classes of models, GNG
(row 1), iNUDGE (row 2), and NUDGE (row 3), under 3 different underlying models, exponential (column 1), uniform (column 2), and
normal (column 3), representing three different data types.

𝐺), we can see that the best model selected was GNG for
a majority of the replicates, which is evident from the fact
that the majority of the points are on the diagonal line for
the best model versus GNG plot (row 1, column 1). Although
iNUDGE also has similar TPR (row 2, column 1), it is more
variable (more scattering) with a slightly lower average TPR.
In column 2 (datasets with uniform distribution), iNUDGE
was chosen as the best model in all replicates, while GNG
has slightly lower TPR and more scattering (row 1, column
2), opposite of column 1. For model with underlying normal
truth (3rd column), iNUDGE was selected to be the best
in some cases whereas in other cases GNG was selected as
the best overall model. Overall, regardless of the underlying
distribution, the bestmodel selected has comparable or better
TPR compared to individual iNUDGE or GNG models. On
the other hand, results from NUDGE are associated with
a much lower TPR due to its limitation of using only one
normal component (row 3). The false positive rates are not
shown as they are zero in all replicates.

3.2. Real Data Analysis. After confirming the utility of the
ensemble approach for handling multiple data types through
a simulation study, we analyzed real data sets from ChIP-seq,
DNA methylation, and gene expressions. ChIP-seq exper-
iment has become the most commonly used technique to
interrogate genome-wide protein-DNA interaction locations
in recent years. It has enabled scientists to study transcrip-
tion factor binding sites with better accuracy and less cost
compared to older technology such as ChIP-chip [4]. Such
data may be used to capture differential transcription factor
binding sites in normal versus cancer samples, which may
provide insights as to how cancer-related genes are turned
on/off. For more information about ChIP-seq datasets and
the methods used in preprocessing, including normalization,
see Taslim et al. [11]. DNAmethylation is an important factor
in heritable epigenetic regulation that has been shown to
alter gene expression without changes in DNA sequence.
DNA methylation has been associated with many important
processes such as genomic imprinting and carcinogenesis
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Figure 2: Results from fitting DIME to the ChIP-seq data, where ∗ designates a differential component. (a)The histogram of the methylation
data is superimposed by the fitted best model and the individual components (inset: zoomed in view showing the individual components of
the fitted model). (b) The QQ-plot of the best model versus the observed normalized ChIP-seq data.

Table 1: Summary of three types of real datasets.

Data type Description Positive control Negative control
ChIP-seq Pol II comparison in MCF7 versus OHT No No

DNA methylation
MCF7 versus pooled normal No No
T47D versus pooled normal No No
MDA-MB-361 versus pooled normal No No

Gene expression Apo AI knocked out versus normal mice Yes No
HIV infected CD4+ T cell versus noninfected Yes Yes

[22, 23]. Likewise, differential analysis of gene expression has
enabled researchers to find cancer-associated genes and other
diseases [24, 25]. For more information on DNAmethylation
and gene expression datasets and normalizationmethods, see
Khalili et al. [15] and Dean and Raftery [16]. Table 1 provides
a summary of the three types of real data used in this section.

3.2.1. ChIP-Seq Data. The ensemble model was applied to
identify genes associated with enriched polymerase II (Pol II)
binding quantity in OHT (tamoxifen resistant breast cancer
cell line) compared to normal breast cancer (MCF7). We
used the normalized data described in Taslim et al. [11].
The ensemble modeling approach selected iNUDGE as the
best overall model with 5 normal components. However, the
mixing proportion for the uniform component is negligible.

According to the first step of the classification criterion, three
of the normal components were designated as differential
components (see Figure 2(a)). Figure 2(b) shows the QQ-
plot, which indicates a good fit of themodel to the data.DIME
identified around 21% (3,909) of the genes as having enriched
Pol II binding quantity in OHT cell line when compared with
MCF7.

3.2.2. DNA Methylation. The ensemble model was also
applied to identify differentially methylated genes in three
breast cancer cell lines: MCF7, T47D, and MDA-MB-361.
These methylation data are from DMH microarrays that
employed 2-color technique comparing a cancer cell line
with a normal pooled DNA sample [12]. Lower Huber’s
weighting scheme was used to downweigh the log-ratios of



6 Computational and Mathematical Methods in Medicine

D
en

sit
y

Observations

0.0

0.5

1.0

1.5

−4 −2 0 2 4

0.39N(0.034, 0.33)∗GNG

Goodness of fit

0.1N(−0.094,0.68)∗

0.5N(−0.0083, 0.2)
0E(1.6)∗

0E(3)∗

(a) MCF7

D
en

sit
y

0.0

0.5

1.0

1.5

Observations
−1−2 0 21 3

iNUDGE

Goodness of fit

0.47N(−0.013, 0.27)∗

0.42N(0.0036, 0.17)

0.11N(0.08, 0.6)∗

0U(−2.5, 2.9)∗

(b) T47D

D
en

sit
y

0.0

0.5

1.0

1.5

2.0

−4 −3 −2 −1 0 1

Observations
iNUDGE

Goodness of fit

0.4N(−0.027, 0.31)∗
0.03N(−0.39, 0.72)∗

0.57N(0.022, 0.16)

0U(−4.1, 1.7)∗

(c) NDA-MB-361

2452

164

2506

23226

2401

157
MDA-MB-361

MCF7

T47D

(d) Intersections
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histogram of the methylation data is superimposed by the fitted best model showing the fit of the model. Individual components of the best
model are also shown to be superimposed on the histogram. (d)The Venn diagram showing the number of uniquely methylated loci in each
of the three cell lines and the number of methylated loci shared between the three different cell lines.

small intensities. The overall best models selected for MCF7,
T47D, and MDA-MB-361 cell lines were GNG, iNUDGE,
and iNUDGE, respectively. Figures 3(a)–3(c) show that the
model chosen can capture the distribution of all three cell
lines well. It turns out that each estimatedmodel has 3 normal

components with negligible uniform or exponential. This
indicates the need for normal component(s) to represent
the differential probes, and indeed two of the three normal
components were labeled as differential in each of the three
cell lines. The number of probes identified to be differentially
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Figure 4: Results from fitting the DIME models to two gene expression data: ((a) and (b)) Apo AI results; ((c) and (d)) HIV results; ((a)
and (c)) histograms of the normalized data superimposed by the fitted best model along with their individual components; and ((b) and (d))
QQ-plot of the fitted model versus the normalized data.

methylated is 2816, 2928, and 2799 (among around 44 k
probes) for MCF7, T47D, and MDA-MB-361, respectively.
The three cell lines are known to be heterogeneous and as

such many uniquely methylated loci are expected. Neverthe-
less, since all three cell lines are hormone-receptor positive,
some shared methylated loci should also be present. Indeed,
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themajority of the probes are uniquelymethylated in each cell
line but there are a few that are shared between the different
cell lines (Figure 3(d)).

3.2.3. Gene Expression. Dean and Raftery [16] analyzed a
couple of data sets that have some known differentially
expressed genes and some known similarly expressed genes,
which made them valuable test data sets as it is possible to
check for false positive and false negative rates.

Dataset I: Apo AI. In this experiment, gene expression was
obtained from eight normal mice and eight mice with their
APOAI gene knocked out [21]. DIME yielded iNUDGEwith
4 normal components as the best overallmodel, which indeed
capture the trimodal feature of the data well (Figure 4(a)).
The goodness of fit of iNUDGE is further supported by the
accompanying QQ-plot (Figure 4(b)). In this model, one of
normal densities was labeled as a differential component.
Based on this model, 31 genes were identified as differentially
expressed, which includes the 8 positive genes discussed in
Dudoit et al. [21].

Dataset III: HIV Data. This dataset compares cDNA from
CD4+ T cells at 1 hour after infection with HIV-1BRU and
their noninfected counterparts. There were 13 genes known
to be differentially expressed (HIV-1 genes, which were used
as positive controls) and there were also 29 negative control
genes. iNUDGE was selected once again as the best overall
model for explaining the data.The density plot with 5 normal
components and theQQ-plot (Figures 4(c)-4(d)) confirm the
goodness of fit of the selected model. In particular, it is noted
that the “spike” at the center of the distribution was quite well
captured, although theQQ-plot shows disagreement between
the data and the model at the right tail. There were 18 genes
classified as differentially expressed, which include the 13
known positive controls. Further, none of the 29 negative
control genes were included in the identified set.

4. Conclusions

Thanks to rapid progress and innovations in genomic
research, scientists are now producing a great deal of diverse
types of data in a very short period of time. These exciting
developments however brought great challenges for carrying
out appropriate data analysis. Existing methods designed
specifically for a particular type may not lead to satisfactory
results when applied to another data type. In this paper, we
propose a unified differential identification approach based
on an ensemble framework that is flexible enough to handle
multitype data (from older/current technologies as well as
potential future data). Our approach is based on classes of
mixture model that have been proposed for specific data
types. Here, we package these approaches into one unified
framework synthesizing each of their individual advantages.
In our proposed methodology, the best overall model will be
selected depending on the underlying characteristics of the
data and classification based on thismodel will be performed.

We demonstrated the applicability of our approach using
both simulated and real data. We simulated data under three

different underlying distributions to show the versatility of
our methods for analysis for different types of data. Our
results indeed show that the best model chosen by the
program performed as well as or, in most cases, better than
individual results from GNG, NUDGE, or iNUDGE, regard-
less of the underlying data types. Furthermore, it is clear from
the simulation study thatNUDGE is not a competitivemodel.
The main reason for NUDGE’s poor performance is due to
the fact that it does not have the ability to adapt to different
data types without the multiple normal components. Having
multiple normal components in GNG and iNUDGE is shown
to be essential to capture nondifferential elements that is not
symmetrical and sometimes may even be multimodal. In our
approach, labeling some normal components as differential
turned out to be beneficial in that it allows the best model
to capture differential data coming from any distribution,
thereby increasing the flexibility of our ensemble model
to capture diverse data types. Results from the analysis of
three real data types all lead to reasonable goodness of fit.
Further, good classification power and low error rates were
obtained when applied to data with known positive and
known negative controls.

Our model uses mixture of normal components with
unequal variances, which can lead to a singularity problem
(unboundedness in likelihood when a component variance
is 0) in some cases. One suggestion to alleviate this problem
to some extent is to use the BIC model selection criterion
to discourage larger model (hence, less chance of having a
component with observations all having the same value),
whichwe have implemented in the package.Onemay also use
a clustering algorithm (e.g., K-means) to provide reasonable
initial starting parameters for the mixture model. In our
implementation, we display a warning if potential singularity
is detected. Restarting the model from different initial values
and/or random seeds would also be recommended. In fact, as
a good practice, our model should be run in many iterations
with different starting parameters to avoid simply finding
local optimum. A penalized likelihood may also be enter-
tained to steer the variance estimates away from zero [26]. In
our approach, we designate normal component as capturing
differential regions based on what is commonly perceived as
extreme values. Thus, the result of the classification may vary
if this cut-off value is set differently.
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“Leaky” vaccines are those for which vaccine-induced protection reduces infection rates on a per-exposure basis, as opposed to “all-
or-none” vaccines, which reduce infection rates to zero for some fraction of subjects, independent of the number of exposures. Leaky
vaccines therefore protect subjects with fewer exposures at a higher effective rate than subjects with more exposures. This simple
observation has serious implications for analysis methodologies that rely on the assumption that the vaccine effect is homogeneous
across subjects. We argue and show through examples that this heterogeneous vaccine effect leads to a violation of the proportional
hazards assumption, to incomparability of infected cases across treatment groups, and to nonindependence of the distributions of
the competing failure processes in a competing risks setting. We discuss implications for vaccine efficacy estimation, correlates of
protection analysis, and mark-specific efficacy analysis (also known as sieve analysis).

1. Introduction

Public health vaccines have reduced the global burden of
disease considerably over the past century. Statistical design
and analysis of vaccine efficacy trials are well-studied and
critical components of the development of these interven-
tions. As discussed in [1], analysis of vaccine interventions
is usually complicated by the unobservability of exposure.
Even when exposure rates are constant across subjects, the
stochastic nature of exposures means that some subjects will
experience no exposures while others may experience multi-
ple exposures. Except in challenge trials in which exposure
is controlled by the experimental setting, or in controlled
scenarios in which exposure is estimable; the missingness
of exposure times poses a challenge to estimation of per-
exposure vaccine efficacy.

Vaccine efficacy has multiple definitions (see [2] for a
thorough review), including per-exposure reduction in sus-
ceptibility, which is distinct from reduction in instantaneous
hazard of infection and also from reduction in overall (attack)
rate of infection. These definitions coincide in some settings
but generally are not the same. It has been shown that

the mechanism of the vaccine’s protection is relevant to
the relationship among these kinds of efficacy, with “leaky”
vaccines (defined as those modifying per-exposure infection
rates for all subjects equally) at one extreme and “all-or-none”
vaccines (which completely protect some subjects and have
no effect on the others) at the other extreme.While for all-or-
none vaccines the overall attack rate is reduced by the fraction
of recipients that have protective responses, for leaky vaccines
the attack rate is reduced by an amount that depends on the
number of exposures that each subject experiences.

If each subject experiences exactly one exposure during
the trial, then a leaky vaccine reducing susceptibility by 50%
has the same attack-rate efficacy as an all-or-none vaccine that
fully protects 50% of the subjects. Here we focus on examples
such as HIV-1 vaccine trials, in which multiple exposures
are possible and in which some (or many) participants will
experience no exposures at all. In such settings, the effect
of a partially efficacious leaky vaccine is to reduce attack
rates for subjects who experience one exposure more than
for subjects who experience multiple exposures, since each
exposure has an independent opportunity to infect. Although
in this setting reinfection is possible, we assume that the
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endpoint of interest is initial infection only, so that infected
subjects are removed from the at-risk population.

In this paper, we consider the analysis of leaky vaccines
when there is heterogeneity in subjects’ infecting exposure
distributions (defined as either heterogeneity in exposure or
in per-exposure infection susceptibility or both). Through
arguments and simulation, [3] have previously shown that,
for this scenario, the assumption of proportional hazards
(that is usually required for Cox modeling) is violated.
Here we restate these arguments and consider additional
implications for survival analysis in the setting of competing
risks. We argue that the conditional distribution of exposure
rates, given infection status, depends on both time and
treatment assignment, which implies not only that the hazard
ratio varies over time (reflecting variation in the risk group
distribution among the “at-risk” uninfected population) but
also that the risk group distribution varies among those
infected—both over time and across treatment groups. We
discuss general implications of this observation for vaccine
efficacy analysis methods and for immune correlates analysis
methods, including case-onlymethods (which save resources
by evaluating covariates only among the subjects who became
infected in a trial), and for competing risks settings. We
review proofs for two mark-specific efficacy analysis (also
called “sieve analysis”) methodologies and show that the
proofs do not apply in this setting, leading to a potential bias
in these analyses.We conclude that in the absence of exposure
data, failure time and failure type data alone are insufficient
to distinguish per-exposure vaccine efficacy that varies across
subjects from per-exposure vaccine efficacy that varies across
marks of the failure.

2. Materials and Methods

2.1. Notation and Definitions. In this section, we introduce
the notation and examples that wewill use to demonstrate the
implications of risk heterogeneity for evaluating the efficacy
of leaky vaccines. We assume a setting of a well-conducted
placebo-controlled randomized clinical trial to evaluate a
vaccine intervention, where the effect of the intervention
is to reduce the per-exposure infection probability by a
(multiplicative) factor 𝜂, so that if for a subject the probability
of infection given one exposure is 𝜙

𝑝
in the absence of the

intervention, it is 𝜙V = 𝜂𝜙
𝑝
if the subject is assigned to the

vaccine treatment group.
As shown in [1], for nonharmful vaccines, the vaccine

effect can be seen as a filter on each subject’s infecting
exposure process 𝑁, which is itself a filtered version of
the exposure counting process 𝐸. That is, for an arbitrary
process 𝐸(𝑡) counting a placebo recipient’s exposures up
to time 𝑡, an infection occurs with probability 𝜙

𝑝
for each

time 𝑡 at which the exposure count increases. For vaccine
recipients this probability is reduced to 𝜙V = 𝜙

𝑝
𝜂, where

with probability 1 − 𝜂 the would-be-infection is avoided
due to the vaccine intervention. With minor adjustments the
arguments in this paper can be adapted to apply to vaccines
that could induce harm, such that the vaccine is not providing
an additional filter but is modifying and possibly increasing

the rate at which exposures become infections; for simplicity
of presentation we will proceed with the assumption that
0 < 𝜂 < 1.

We assume that we do not observe the exposure processes
at all; we are given data of the form of per-subject pairs
(𝑇,𝑀) representing the observed part of the latent pair of
processes (𝐼, 𝐶), where 𝐼 is the time at which the subject’s
infection count 𝑁 increases from zero to one and 𝐶 is the
right-censoring time.We only observe one value of this latent
pair, 𝑇 ≡ min(𝐼, 𝐶). 𝑀 = 1 indicates missingness of the
infection time (𝑀 = 1 means that 𝑇 = 𝐶). We assume
conditions of noninformative censoring, such that 𝐼:𝐶. The
arguments are easily extended to a setting in which the right-
censored values are used to improve estimates of efficacy,
but henceforth we consider only the uncensored data (except
when explicitly addressing the assumption in the context of
competing risks analysis).

We define three distinct notions of vaccine efficacy, based
on different quantities. First we define the attack rate for
treatment group 𝑥 (vaccine recipients have 𝑥 = V and placebo
recipients have 𝑥 = 𝑝) as 𝑎

𝑥
= Pr(𝑇 < 𝜏 | 𝑥). Then

the attack-rate vaccine efficacy VE𝑎 = 1 − 𝑎V/𝑎𝑝 is the
reduction in the total fraction of infected subjects due to the
vaccine.The per-exposure vaccine efficacy VE𝜙 = 1−𝜙V/𝜙𝑝 is
the reduction in the per-exposure susceptibility to infection
due to the vaccine. Finally we define the hazard-rate vaccine
efficacy VE𝜆 = 1 − 𝜆V(𝜏)/𝜆𝑝(𝜏), where for each treatment
group 𝑥 the infection hazard is 𝜆

𝑥
(𝑡) = lim

𝑑↘0
Pr(𝑁(𝑡 + 𝑑) =

1 | 𝑥,𝑁(𝑡) = 0)/𝑑, the instantaneous rate of infection
just after time 𝑡 given noninfection up to time 𝑡. The set of
subjects with treatment assignment 𝑥 that are not infected
up to time 𝑡 is called the at-risk group 𝑅

𝑥
(𝑡), and the set

of subjects already infected by time 𝑡 is called the infected
group 𝐼

𝑥
(𝑡).

2.2. Risk Groups. We assume for simplicity of presentation
that there are two risk groups. We allow that some fraction
𝜋
ℎ
of subjects is “high risk,” by which we mean that the

exposure rates are higher for these subjects, and in particular
that both single and multiple exposures are more likely for
these subjects. Since a “leaky” vaccine only protects a subject
if every exposure is noninfecting, the attack-rate VE is higher
for low-risk subjects than for high-risk subjects. For example,
if the vaccine effect reduces per-exposure susceptibility by
𝜂 = 50%, and if low-risk subjects tend to have about one
exposure during the trial and high-risk subjects tend to have
about nine exposures, then about half of the low-risk subjects
will be protected while about 0.5

9

= 0.2% of the high-risk
subjects will be protected. This implies that the fraction of
high- (versus low-) risk subjects among the infected vaccine
recipients will differ from that fraction among the infected
placebo recipients.

For illustration, we suppose arbitrarily that the baseline
hazard function is constant, as in the exponential model.
Under this model, an infection event occurs in a low-risk
placebo recipient at a time-constant rate 𝜆

𝑙
, which can be

written as the low-risk marginal rate of an exposure 𝜆
𝐸

𝑙

times the conditional probability 𝜙
𝑙𝑝
that the exposure will



Computational and Mathematical Methods in Medicine 3

infect the low-risk placebo recipient: 𝜆
𝑙
≡ 𝜆
𝐸

𝑙
𝜙
𝑙𝑝
. For high-

risk subjects we have corresponding infecting exposure rate
𝜆
ℎ

≡ 𝜆
𝐸

ℎ
𝜙
ℎ𝑝
. Because of the memoryless property of the

exponential model, these rates are equivalently viewed as
hazards.

The fraction 𝑎
𝑙𝑝
of low-risk placebo recipients that will

become infected is the fraction having infecting exposure
times 𝑇 that exceed the trial duration 𝜏. Since we assume
independence across subjects, under the exponential model
the number of infected low-risk placebo recipients follows
a binomial distribution with proportion 𝑎

𝑙𝑝
given by the

probability that a Poisson-distributed random variable (with
rate 𝜆

𝑙
𝜏) counting infecting exposures exceeds zero: 𝑎

𝑙𝑝
≡ 1−

𝑒
−𝜆𝑙𝜏. Similarly the number of the high-risk placebo recipients
that will become infected is given by a binomial distribution
with proportion 𝑎

ℎ𝑝
≡ 1 − 𝑒

−𝜆ℎ𝜏.

2.3. VE𝑎 under Heterogeneous Risk. A leaky vaccine with
multiplicative vaccine effect 𝜂 = 𝜙

𝑙V/𝜙𝑙𝑝 = 𝜙
ℎV/𝜙ℎ𝑝

(corresponding to a VE𝜙 of 1 − 𝜂) will result in overall attack
rates 𝑎

𝑙V = 1 − 𝑒
−𝜆𝑙𝜏𝜂 and 𝑎

ℎV = 1 − 𝑒
−𝜆ℎ𝜏𝜂 among low-

and high-risk vaccine recipients, respectively. If the vaccine
is partially efficacious then 0 < 𝜂 < 1, and 𝑎

ℎV < 𝑎
ℎ𝑝

and
𝑎
𝑙V < 𝑎

𝑙𝑝
, so the vaccine reduces the probability of being

infected for both high- and low-risk participants. However,
the reduction is not the same for high-risk participants as for
low-risk participants, since 𝜆

ℎ
> 𝜆
𝑙
implies that

(
𝑎
ℎV

𝑎
ℎ𝑝

=
1 − 𝑒
−𝜆ℎ𝜂𝜏

1 − 𝑒−𝜆ℎ𝜏
) > (

𝑎
𝑙V

𝑎
𝑙𝑝

=
1 − 𝑒
−𝜆𝑙𝜂𝜏

1 − 𝑒−𝜆𝑙𝜏
) . (1)

The direction of the inequality is reversed for harmful
vaccines (with 𝜂 > 1).

2.4. Differential Enrichment of High-Risk Infected Subjects
across Treatment Groups. This differential attack-rate efficacy
by risk group results in a different proportion of high-risk
participants among infected subjects at the end of the trial
across the two treatment groups. To see this, consider that
if the beginning-of-trial probability of being high risk is 𝜋

ℎ
,

then we can define the conditional probability 𝛾
ℎ𝑥

of being
high risk for subjects in the infected group 𝐼

𝑥
(𝜏) in terms of

the posterior odds 𝛾
ℎ𝑝

/(1 − 𝛾
ℎ𝑝

) ≡ (𝜋
ℎ
/(1 − 𝜋

ℎ
))(𝑎
ℎ𝑝

/𝑎
𝑙𝑝
) for

placebo recipients and 𝛾
ℎV/(1 − 𝛾

ℎV) ≡ (𝜋
ℎ
/(1 − 𝜋

ℎ
))(𝑎
ℎV/𝑎𝑙V)

for vaccinees.
For partially efficacious vaccines with 0 < 𝜏 < 1, since

the vaccine reduces low-risk infections more than high-risk
infections, 𝑎

𝑙V/𝑎𝑙𝑝 < 𝑎
ℎV/𝑎ℎ𝑝. This results in an enrichment

of high-risk participants among the infected vaccinees as
compared with the infected placebo recipients: 𝛾

ℎV > 𝛾
ℎ𝑝
. For

a harmful vaccine, this inequality is reversed.

2.5. Differential Enrichment of High-Risk at-Risk Subjects
across Treatment Groups. This correspondingly results in a
different proportion of high-risk participants among subjects
remaining at-risk at the end of the trial across the two
treatment groups. The posterior odds of being high risk

among those remaining uninfected are 𝜔
ℎ𝑝

/(1 − 𝜔
ℎ𝑝

) ≡

(𝜋
ℎ
/(1 − 𝜋

ℎ
))((1 − 𝑎

ℎ𝑝
)/(1 − 𝑎

𝑙𝑝
)) for placebo recipients and

𝜔
ℎV/(1−𝜔

ℎV) ≡ (𝜋
ℎ
/(1−𝜋

ℎ
))((1−𝑎

ℎV)/(1−𝑎
𝑙V)) for vaccinees.

If (1 − 𝑎
ℎ𝑝

)/(1 − 𝑎
𝑙𝑝
) < (1 − 𝑎

ℎV)/(1 − 𝑎
𝑙V), or equivalently

if (1 − 𝑎
𝑙V)/(1 − 𝑎

𝑙𝑝
) < (1 − 𝑎

ℎV)/(1 − 𝑎
ℎ𝑝

), then this
results in an enrichment of high-risk participants among
the uninfected vaccinees as compared with the uninfected
placebo recipients: 𝜔

ℎV > 𝜔
ℎ𝑝
. This condition is met if both

𝑎
𝑙V/𝑎𝑙𝑝 < 𝑎

ℎV/𝑎ℎ𝑝 and (𝑎
ℎ𝑝

− 𝑎
ℎV) > (𝑎

𝑙𝑝
− 𝑎
𝑙V), since we can

write
1 − 𝑎
𝑙V

1 − 𝑎
𝑙𝑝

<
1 − 𝑎
ℎV

1 − 𝑎
ℎ𝑝

as 𝑎
𝑙V𝑎ℎ𝑝 + (𝑎

𝑙𝑝
− 𝑎
𝑙V) < 𝑎

ℎV𝑎𝑙𝑝 + (𝑎
ℎ𝑝

− 𝑎
ℎV) .

(2)

For a partially efficacious vaccine we have shown that
𝑎
𝑙V/𝑎𝑙𝑝 < 𝑎

ℎV/𝑎ℎ𝑝, which implies that 𝑎
𝑙V𝑎ℎ𝑝 < 𝑎

ℎV𝑎𝑙𝑝, so if also
(𝑎
ℎ𝑝

− 𝑎
ℎV) > (𝑎

𝑙𝑝
− 𝑎
𝑙V), then the condition in (2) is satisfied.

We may still have 𝜔
ℎV > 𝜔

ℎ𝑝
despite not satisfying (𝑎

ℎ𝑝
−

𝑎
ℎV) > (𝑎

𝑙𝑝
− 𝑎
𝑙V) and 𝑎

𝑙V/𝑎𝑙𝑝 < 𝑎
ℎV/𝑎ℎ𝑝. The general condition

is that

𝑎
ℎV𝑎𝑙𝑝 − 𝑎

𝑙V𝑎ℎ𝑝 > (𝑎
𝑙𝑝

− 𝑎
𝑙V) − (𝑎

ℎ𝑝
− 𝑎
ℎV) . (3)

2.6. Summary. In this section we have shown that, for
leaky vaccines, subject heterogeneity in risk results in time
variation of VE𝑎 = 1 − 𝑎V/𝑎𝑝, where the values 𝑎

𝑥
(for 𝑥 ∈

{V, 𝑝}) are the marginal attack rates for vaccine and placebo
recipients. We have shown that this implies a change in the
composition of both the infected group 𝐼

𝑥
(𝑡) and in the at-risk

group 𝑅
𝑥
(𝑡) over time such that for both vaccine and placebo

recipients the proportion of high-risk subjects is higher in the
infected group than in the at-risk group by the end of the
trial.Wehave shown that this effect differs by treatment group
such that for partially protective leaky vaccines, the fraction
𝛾
ℎV of high-risk subjects among those infected in the vaccine
group is higher than the fraction 𝛾

ℎ𝑝
of high-risk subjects

among those infected in the placebo group. Finally we have
shown that the proportion of high-risk subjects among those
remaining at-risk at the end of the trialmay be higher or lower
in the vaccine group as compared with the placebo group; the
crucial point is that in general one should not expect that the
at-risk groups have the samedistribution of high-risk subjects
across treatments arms.

3. Results and Discussion

Next, we turn to implications of these observations. First, we
show, as has been shown previously, that VE𝜆 changes over
time or equivalently that the hazard proportion is inconstant.
Then we discuss implications of the risk imbalance in the
infected group for introducing bias into correlates of protec-
tion analysis whenever a putative correlate of protection is
also a correlate of placebo-recipient risk. Finally, we discuss
implications of the risk imbalance in the at-risk group in a
competing risks analysis and show that this risk imbalance
violates conditions required for the correctness of proofs
of unbiasedness for two sieve analysis methods for leaky



4 Computational and Mathematical Methods in Medicine

vaccines, with the implication that the proven unbiasedness
is only guaranteed if subject risk is homogeneous.

3.1. Implications for the Proportional Hazards Assumption.
The differential efficacy for high-risk and low-risk subjects
has the effect of inducing a violation of the proportional
hazards assumption for the marginal hazards, even if it holds
separately for the low-risk hazards and the high-risk hazards.
Each marginal hazard function is a mixture of the two risk-
group hazards, and the mixing proportion changes over time
differently for placebo recipients than for vaccine recipients
as the at-risk frequencies diverge due to different rates of
infection in the two risk groups.

The marginal hazard rate of infection is a mixture over
high- and low-risk subjects. At the beginning of the trial the
marginal hazard for placebo recipients is 𝜆

𝑝
(0) ≡ 𝜋

ℎ
𝜆
ℎ
+ (1−

𝜋
ℎ
)𝜆
𝑙
. This changes over the trial, since 𝜆

𝑝
(𝜏) ≡ 𝜔

ℎ𝑝
𝜆
ℎ
+ (1 −

𝜔
ℎ𝑝

)𝜆
𝑙
.The change is due to a shiftingmixing proportion, and

it appears even when there are constant hazards within each
risk group.

For vaccine recipients, there is also a change in the
marginal hazard over the course of the trial, but the change
is different than for placebo recipients. At the beginning of
the trial the marginal hazard for vaccine recipients is 𝜆V(0) ≡

𝜋
ℎ
𝜆
ℎ
𝜂 + (1 − 𝜋

ℎ
)𝜆
𝑙
𝜂. At the end of the trial, 𝜆V(𝜏) ≡ 𝜔

ℎV𝜆ℎ𝜂 +

(1 − 𝜔
ℎV)𝜆𝑙𝜂.

If the study enrolls 𝑛 vaccine recipients, 𝑛 ∗ 𝜋
ℎ
of whom

are high risk, then a 𝑎
𝑙V infection rate among low-risk vaccine

recipients (and a corresponding 𝑎
ℎV among the high-risk

vaccinees) over the course of the trial yields a difference in
the ratio of high : low risk at-risk subjects from 𝜋

ℎ
at the

beginning to 𝜔
ℎV at the end. Since the high-risk hazard rate

is 𝜆
ℎ
/𝜆
𝑙
times the low-risk hazard rate 𝜆

𝑙
, then the marginal

hazard goes from ((1 − 𝜋
ℎ
)𝜆
𝑙
𝜂 + 𝜋
ℎ
(𝜆
ℎ
/𝜆
𝑙
)𝜆
𝑙
𝜂) = (1 − 𝜋

ℎ
+

𝜋
ℎ
(𝜆
ℎ
/𝜆
𝑙
))𝜆
𝑙
𝜂 to ((1 − 𝜔

ℎV)𝜆𝑙𝜂 + 𝜔
ℎV(𝜆ℎ/𝜆𝑙)𝜆𝑙𝜂) = (1 − 𝜔

ℎV +

𝜔
ℎV(𝜆ℎ/𝜆𝑙))𝜆𝑙𝜂. The vaccine recipient hazard is 1 − (1 − 𝜔

ℎV +

𝜔
ℎV(𝜆ℎ/𝜆𝑙))/(1 − 𝜋

ℎ
+ 𝜋
ℎ
(𝜆
ℎ
/𝜆
𝑙
)) times 100% lower at the

end of the trial than at the beginning. The placebo recipient
hazard is correspondingly 1−(1−𝜔

ℎ𝑝
+𝜔
ℎ𝑝

(𝜆
ℎ
/𝜆
𝑙
))/(1−𝜋

ℎ
+

𝜋
ℎ
(𝜆
ℎ
/𝜆
𝑙
)) times 100% lower at the end of the trial than at the

beginning.
Unless the end-of-trial rates of high-risk subjects among

the uninfected are the same for both treatment groups (i.e.,
unless 𝜔

ℎ𝑝
= 𝜔
ℎV), the hazard ratio (vaccine to placebo)

will also differ at the end of the trial. The marginal hazards
ratio at the beginning of the trial is 𝜆V(0)/𝜆𝑝(0) = (𝜋

ℎ
𝜆
ℎ
𝜂 +

(1 − 𝜋
ℎ
)𝜆
𝑙
𝜂)/(𝜋
ℎ
𝜆
ℎ
+ (1 − 𝜋

ℎ
)𝜆
𝑙
). At the end of the trial it is

𝜆V(𝜏)/𝜆𝑝(𝜏) = (𝜔
ℎV𝜆ℎ𝜂+ (1−𝜔

ℎV)𝜆𝑙𝜂)/(𝜔ℎ𝑝𝜆ℎ + (1−𝜔
ℎ𝑝

)𝜆
𝑙
).

These are equal only when 𝜔
ℎV = 𝜔

ℎ𝑝
= 𝜋
ℎ
, and never for

leaky vaccines with heterogeneous risk.
We demonstrate the situation with a simple example of

a leaky vaccine with about 𝑎
𝑙𝑝

= 4% of low-risk placebo
recipients becoming infected over the unit-time course of
the trial (corresponding to a low-risk infecting exposure rate
of 𝜆
𝑙

= 0.04) and about 𝑎
ℎ𝑝

= 36% of high-risk placebo
recipients becoming infected (corresponding to a high-risk
instantaneous infecting exposure rate of 𝜆

ℎ
= 0.446). We

suppose a leaky vaccine that reduces the infection probability
by 𝜂 = 50% per exposure, which corresponds to 𝑎

𝑙V = 2%

of low-risk vaccinees and 𝑎
ℎV = 20% of high-risk vaccinees

becoming infected over the course of the trial. We suppose
that, at the start of the trial, 𝜋

ℎ
= 5% of participants are high

risk.
If the study enrolls 100 vaccine recipients, 5 of whom are

high risk, then a 2% infection rate among low-risk vaccine
recipients (and a corresponding 20% among the high-risk
vaccinees) over the course of the trial yields a difference in
the mixture of high : low risk hazards from 5 : 95 (𝜋

ℎ
= 5%)

at the beginning to 4 : 93 (𝜔
ℎV = 4.1%). Since in our example

the high-risk hazard rate 𝜆
ℎ
is about eleven times the low-

risk hazard rate 𝜆
𝑙
, then the marginal vaccine hazard goes

from (0.95 × 𝜆
𝑙
𝜂 + 0.05 × 11𝜆

𝑙
𝜂) = 1.5𝜆

𝑙
𝜂 to (0.96 × 𝜆

𝑙
𝜂 +

0.04 × 11𝜆
𝑙
𝜂) = 1.4𝜆

𝑙
𝜂. In this example, the vaccine recipient

marginal hazard is about 5.8% lower at the end of the trial
than at the beginning.

If that study also enrolls 100 placebo recipients, 5 of whom
are high risk, then a 4% infection rate among low-risk placebo
recipients and a corresponding 36% among the high-risk
placebos over the course of the trial yields a difference in the
mixture of high : low risk hazards from 5 : 95 at the beginning
to 3 : 91 (about 𝜔

ℎ𝑝
= 3.4%). Then the marginal placebo

hazard goes from (0.95 × 𝜆
𝑙
+ 0.05 × 11𝜆

𝑙
) = 1.5𝜆

𝑙
to

(0.976 × 𝜆
𝑙
+ 0.034 × 11𝜆

𝑙
) = 1.34𝜆

𝑙
. In this example, the

marginal placebo recipient hazard is about 10.7% lower at the
end of the trial than at the beginning.

For the conditions of our example, the hazard ratio at the
beginning of the trial (vaccine/placebo) is 1.5𝜂/1.5 = 0.5, but
at the end of the trial it is 1.4𝜂/1.34 = 0.527, about a 5.5%
increase. If we increase the rate of exposures for high-risk
subjects 𝜆

ℎ
to 1, so that we expect about one exposure per

high-risk participant, then the ending hazard ratio is about
18.9%higher than it is at the trial’s beginning.Thediscrepancy
peaks at about 𝜆

ℎ
= 3, at a 55% increase in the hazard ratio,

then decreases again as the leaky vaccine effect diminishes
for the high-risk subjects. At 𝜆

ℎ
= 10, the ending hazard

proportion is down to 8.8% above its starting value.
The hazard proportion also changes over the duration of

the trial; Figure 1 shows the change over time of the hazard
ratio.The plot shows that the change is nonmonotonic in time
and that it has a single mode and a right skew. For harmful
vaccineswith 𝜂 > 1, the plot has the same shape, but the plot is
mirrored over the𝑋 axis, with negative percent change values
indicating that the hazard ratio decreases and then increases
again.

3.2. Implications for Correlates Analysis. The differential
enrichment of high-risk subjects among those infected across
treatment groups implies that even if a vaccine has an
equal per-exposure effect on every subject, its effects on
overall attack rates are expected to differ by risk group.
When evaluating a vaccine candidate to determine if its
partial efficacy can be attributed to unequal vaccine effects
across subjects (by for instance identifying preexisting subject
traits or immune responses to vaccination that differentiate
subjects for whom the vaccine worked best), care must be
taken to differentiate between these expected attack-rate
effects (which do not reflect differential per-exposure efficacy
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Figure 1: Effects of differential enrichment for high-risk subjects in the at-risk population across treatment groups. (a)Themarginal hazards
as a function of time for placebo recipients (dashed blue line) and vaccine recipients (solid red line) for the conditions of our example trial
in which a 1 : 1 randomization allocates subjects to receive a placebo or a leaky vaccine with per-exposure efficacy 𝜂 = 0.5, with independent
Poisson exposure rates 𝜆

𝑙
= 0.0408 and 𝜆

ℎ
= 0.4463 for low-risk and high-risk subjects, respectively, and a 𝜋

ℎ
= 5% starting fraction of

high-risk subjects. (b) The ratio of the marginal hazards in (a). (c) The fraction of subjects infected in the two groups over time. (d) The
proportions 𝜔

ℎ𝑝
(𝑡) and 𝜔

ℎV(𝑡) of the at-risk groups 𝑅𝑝(𝑡) (dashed blue line) and 𝑅V(𝑡) (solid red line) that are high risk, over time.

by subject trait) from effects that truly modify the per-
exposure efficacy by subject trait.

Several authors have noted that the analysis of vaccine
trials to identify subject correlates of VE𝜙 is complicated
by missingness of the counterfactual effects of vaccination
on the placebo recipients (see [4] for a review and unifying
perspective). With the data typically available from a clinical
trial it is possible to estimate correlates of infection risk
within vaccine recipients and placebo recipients separately
but without strong assumptions or additional data it is not
possible to causally attribute changes in infection risk (for
some subset of subject covariates) to the vaccine treatment
assignment.The problem is that it is not possible to differenti-
ate between preexisting risk differences and vaccine-induced
risk differences without additional information.

Here we point out that leaky vaccines with heterogeneous
subject risk constitute a concrete example of this difficulty.
Since we expect differential enrichment of high-risk subjects
even when the vaccine has an equal per-exposure effect,
then any correlate of infection risk in the placebo group will
necessarily correlate with VE𝑎. We also expect a correlation
between a subject’s risk category and VE𝜆. The implication is
that (in the absence of additional justification) any identified
correlate of risk in the vaccine group should not be inter-
preted as a correlate of protection if it is also a correlate of
risk in the placebo group.

This suggests a test for any putative candidate correlate of
VE𝜙: if an association exists between the correlate and infec-
tion risk in the placebo group then any correlation observed
in the vaccine group (even a much stronger correlation) may
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be solely attributable to expected risk group enrichment and
should not (without further justification) be attributed to
differential per-exposure efficacy. If there is no association
in the placebo group then the correlate of vaccine-group
infection risk remains a plausible candidate as a correlate
of VE𝜙. Further work is required to develop the conditions
underwhich a vaccine-group correlate of infection risk can be
attributed to differential efficacy, but this argument suggests
general cautionwhenever a placebo-group correlation cannot
be ruled out.

This reasoning also warrants caution about so-called
“case-only” methods, which evaluate only the infected cases.
Such methods can be cost saving because correlates need
not be measured in uninfected subjects. However if there is
enrichment of different risk groups among infected subjects
in the two treatment groups (which should be expected
for any leaky vaccine), then covariate differences across
treatment groups among infected subjects may simply reflect
differential baseline risk. Since correlate information is
unavailable for uninfected subjects, in case-only analyses the
test of placebo-recipient risk correlation is not possible. Below
we examine a special case of case-only analysis in the setting
of competing risks, known as “sieve analysis.”

3.3. Implications for Competing Risks and Sieve Analysis.
In addition to evaluating vaccine efficacy as a function of
subject-specific covariates, it is often of interest to evaluate the
extent to which a vaccine’s efficacy differs by type of infection.
In a series of papers on what has variously been called “mark-
specific intervention efficacy” or “sieve effects,” Gilbert et
al. defined sufficient conditions under which estimates are
unbiased for quantities relevant to the identification of these
effects [5–7]. Here we argue that one of those conditions can
be represented as a requirement of “proportional exposure
pseudohazards” and that this condition is required not
only for the failure-type-only methods (such as multinomial
logistic regression (MLR)) but also for the time-to-event
methods (including competing risks Cox models, even when
relaxing the assumption of proportional baseline risks as
in [8]). In the special case of a leaky intervention, this is
equivalent to a condition that we call “balanced replacement,”
which requires that for each subject, the exposure type be
independent of the exposure time and exposure history.
We show that if there is subject variation in infection risk,
then even balanced replacement is insufficient to ensure the
proportional pseudohazards condition.

A sieve effect is defined as any violation of equivalence of
VE𝜙
𝑠
across mark types 𝑠 [6]. We define per-exposure mark-

specific relative risks:

RR𝜙 (𝑠)

≡
Pr (fail with type 𝑠 | one exposure to type 𝑠, vaccine recipient)
Pr (fail with type 𝑠 | one exposure to type 𝑠, placebo recipient)

=
𝜙V𝑠

𝜙
𝑝𝑠

,

(4)

and let VE𝜙
𝑠
= 1 − RR𝜙(𝑠).

Thus, a sieve effect is defined as a lack of equivalence
across all types 𝑠 ∈ 1, . . . , 𝐽 of RR𝜙(𝑠). In terms of odds ratios
to some baseline type (arbitrarily we use type 𝑠 = 1 here), the
null hypothesis of no sieve effect is that for all 𝑠, OR𝜙(𝑠) = 1,
where

OR𝜙 (𝑠) =
RR𝜙 (𝑠)
RR𝜙 (1)

=

𝜙V𝑠/𝜙𝑝𝑠

𝜙V1/𝜙𝑝1

=
𝜙V𝑠/𝜙V1

𝜙
𝑝𝑠
/𝜙
𝑝1

.

(5)

In Appendix B we revisit the proof that under the
condition that was called “Assumption 2” in [6, page 804],
which “implies that the strain-specific exposure intensities
are proportional, that is, 𝜆

𝐸𝑠
(𝑡) = 𝜃

𝑠
𝜆
𝐸1

(𝑡),” estimates of
odds ratios based only on the type distributions of observed
infections in treated and untreated subjects of a randomized
controlled trial are unbiased forOR𝜙(𝑠).The proof establishes
an equivalence between the per-exposure odds ratio OR𝜙(𝑠)
and two other odds ratios of interest: the “prospective” (or
“attack-rate”) odds ratio, OR𝑎(𝑠) and the “retrospective” odds
ratio OR𝑟(𝑠), as defined below. We show in Appendix A
that the proof not only relies on the assumption, following
[9], that for any subject the type-specific exposure hazard is
that of a history-independent (zero-order) process, but also
that it relies on the stronger assumption that the “exposure
pseudohazards” are proportional. Whereas exposure hazards
condition on the exposure processes, the pseudohazards
condition on the subject’s infection count being 𝑁(𝑡) = 0,
which depends both on the exposure processes 𝐸 and on the
chance of each exposure resulting in an infection.

In Appendix C we show that unless each subject can
experience at most one exposure during the trial (a con-
dition that we call “thoroughly rare events”), proportional
pseudohazards require independence between each subject’s
exposure type distribution and the timing of his exposures
(a condition that we call “balanced replacement”). As noted
in [8], this in turn implies independence between each
subject’s infection time, 𝑇, and the mark of his infection, 𝑆,
a condition that could only hold under a null hypothesis of
no sieve effects. We then show that the proof requires subject
homogeneity in risk. Risk inhomogeneity leads to a violation
of the proportional pseudohazards condition, and of 𝑇: 𝑆,
evenwhen the balanced replacement condition holds for each
risk group (or individual subject) separately.

InAppendixDwe revisit the argument that time-to-event
methods such as competing risks Cox proportional hazards
models can yield unbiased estimates of these quantities even
when “Assumption 2” is violated. We argue that the assertion
of unbiasedness requires an assumption of “noninforma-
tive censoring” when treating infections with some marks
as censoring events while evaluating other mark types of
infections. Since this implies that 𝑇: 𝑆, we argue that the
time-to-event methods are also biased unless Assumption
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2 holds. We show that heterogeneity of the intervention
effect across subjects will generally lead to a violation of the
noninformative censoring assumption.

From these arguments we conclude that existingmethods
for evaluating hypotheses of sieve effects of leaky vaccines
are expected to be biased if there is any subject heterogeneity
in risk (or in response to the treatment), or if replacement
failures are imbalanced. Gilbert has evaluated bias under
violations of Assumption 2 in simulation studies [7, 8]
and showed that under the conditions of those simulations
the bias is limited to a few percentage points unless the
marginal attack rate 𝑎

𝑝
is substantial, even when some

subjects have no response to the intervention at all. How-
ever, those simulations ensured equal exposure distributions
across subjects and did not carefully control replacement
distribution balance. Future work is required to update
the simulations to more specifically address issues of bal-
anced replacement and of heterogeneous infecting exposure
rates.

Particular caution is warranted when using case-only
sieve analysis methods as introduced in [10], to which these
arguments doubly apply, since in addition to the cautions
expressed about the effects of risk group enrichment on case-
only methods, the proof of the method’s approximate unbi-
asedness depends on the assumption that individual mark-
specific hazards can be evaluated by censoring other marks,
using the noninformative censoring assumption. Since that
assumption is surely violated whenever there are sieve effects,
the use of the case-only sieve analysis method to evaluate
sieve effects for subject-genotype dependency as the authors
propose (or any other correlate) is not justified by the proof.
Even under the null hypothesis of no sieve effects, the argu-
ments presented here and in Appendix D show that the non-
informative censoring assumption would only be reasonable
in a setting in which types of distributions do not vary by risk
group. If the different risk groups tend to be infected by differ-
ent distributions of viruses even in the absence of treatment,
as may be the case for HIV-1 trials (where risk is associated
with mode of transmission, which in turn is associated with
different populations of viruses), the assumption is likely
violated.

It remains likely that these methods, though not proven
unbiased, retain their power to detect sieve effects under
the heterogeneous risk conditions that we have considered.
Although the conditions of those proofs may not hold under
heterogeneity, we have not proven the contrary assertion;
other proofs that establish conditions under which unbiased
estimation is robust to subject variation in risk may yet
be devised. Also, in practice absolute unbiasedness may
not be required; with further work evaluating the practical
implications of these insights, we expect that these methods
will be approximately unbiased formany ormost applications
to leaky vaccines with heterogeneous risk. It remains to future
work to conduct a thorough evaluation of the loss of power
or the potential anticonservatism of analyses that assume risk
homogeneity when the assumption is not justified.

4. Conclusions

In this paper we have restated the argument that when
conducting statistical analysis of vaccine efficacy trials with
heterogeneous exposure or susceptibility risk, care should be
taken to account for the putative mechanism of the vaccine.
Two extremes of the spectrum of vaccine mechanisms are
considered. At one extreme (all-or-none), a vaccine protects
some fraction of subjects completely and the remaining
fraction are unaffected by it. At the opposite extreme (leaky),
a vaccine reduces the per-exposure transmission rate for all
recipients equally. We have shown that leaky vaccines induce
a violation of the proportional hazards condition that is often
assumed in survival analysis, due to a changing fraction of at-
risk subjects over time in both vaccinated and unvaccinated
individuals. Since these fractions change over time differently
in the two treatment groups, even if the proportional hazards
condition holds for each risk group individually, themarginal
hazard ratio changes over time.

Another effect of subject risk heterogeneity in leaky
vaccine trials is that the relative proportions of the risk groups
among infected subjects changes over time. We showed
that associations between subject covariates and vaccine
efficacy will be biased unless those covariates are distributed
equivalently in all risk groups. A simple diagnostic analysis of
the risk of infection among placebo recipients as a function
of the covariate could be used to reject the hypothesis of
independence that is required for interpreting correlations
with vaccine efficacy as indicative of differential efficacy
rather than differential baseline risk, but this is not possible
in a “case-only” analysis (which evaluates the association only
among infected subjects). This argument cautions against
case-only analysis of correlates of the partial efficacy of leaky
vaccines when there is subject heterogeneity in risk.

We also addressed the context of competing risks and
showed that leaky vaccines with risk heterogeneity will
induce time variation in the relative proportion of marks
(types of the competing risks) of infections and that since
this time variation occurs at different rates in the vaccine and
placebo groups, this induces a violation of the equivalence
between observable relative attack rates and unobservable
per-exposure relative risks that is required for unbiased
analysis of mark-specific vaccine efficacies (called “sieve
effects” when they differ across types) [6]. Furthermore, this
scenario has implications for the commonly encountered
analysis methodology of analyzing one mark type of the
competing risks by treating the infections by any other type as
right-censoring events. In particular, the censorship process
will not be independent of the infection process unless the
infection times of the competing risks are independent, but
the changing fractions of risk groups among the at-risk
subjects induce dependence (even when the processes are
conditionally independent).

Longini andHalloran [11] introduced an approach (frailty
models) to evaluating a vaccine’s efficacy when subject
susceptibilities in any treatment group vary (with some
fraction experiencing complete immunity as in an all-or-
none vaccine and the remainder having some per-exposure
susceptibility that may vary across individuals and differently
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for each treatment group). This approach enables estimation
of more complex vaccine effects, but the observations in this
paper about the implications of leaky vaccines with subject
heterogeneity in risk apply to these mixture models too, so
for instance a relative enrichment of high-risk subjects among
infected vaccine recipients cautions against naive correlation
of risk-dependent covariates with infection outcomes.

Recent work has introduced sieve analysis methods for
nonleaky vaccines, which have all-or-none style protection
but perhaps against only a subset of risk mark categories
(in which case they are called “some-or-none” vaccines) [12].
The all-or-none and some-or-none scenarios also engender
differential enrichment of high-risk subjects among infected
(and also at-risk) subjects, but because any protected subject
is fully protected against the vaccine-targetedmark types, the
attack rate will be reduced equally across risk groups as long
as risk is independent of relative exposure rates. If, however,
risk (in terms of rates of infection) is associated with themark
among placebo recipients, as expected for example, in HIV-1
vaccine trials, then the vaccine will reduce infection rates for
one risk group more than another.

The arguments in this paper together imply that it is
generally not possible to differentiate between mark-specific
efficacy and subject-covariate-specific efficacy using failure
time and failure type data alone unless subject risk is homo-
geneous. The only exception is when risk groups (though
heterogeneous in overall failure rate) have homogeneous
relative rates of the marks of infecting exposures across
competing risk mark types. Future work is needed to develop
statistical analysis methods that account for both subject
heterogeneity (as in a frailtymodel) and competing risks such
that the effects of each can be differentiated in an analysis of
a partially efficacious vaccine. Such approaches would likely
require parameterization not just of the frailty model but also
of the exposure processes, requiring considerable modeling
effort and sensitivity analysis.

Appendices

A. Correction to the Definition of
Proportional Exposure Pseudohazards

In practice we are usually unable to observe exposure events
(as noted in [9]), complicating estimation of the per-exposure
probabilities of failure 𝜙

𝑥𝑠
. We observe the “retrospective”

mark type distributions 𝑃
𝑟

𝑥𝑠
among those who become

infected before the end of trial:

𝑃
𝑟

𝑥𝑠
≡ Pr (infected with mark 𝑠 | infected in [0, 𝜏] ,

treatment assignment is𝑥) .
(A.1)

This is distinct from the “prospective” (or “joint attack
rate”) mark type distribution 𝑃

𝑎

𝑥𝑠
, which is the joint proba-

bility of infection (“failure”) (occurring at all) and that the
failure is of type 𝑠. It can also be defined in terms of the

“retrospective” failure type distribution 𝑃
𝑟

𝑥𝑠
and the marginal

failure probability 𝑎
𝑥
, since

𝑎
𝑥
≡ Pr (failed in [0, 𝜏] | 𝑥) ,

𝑃
𝑎

𝑥𝑠
≡ Pr (fail with type 𝑠 in [0, 𝜏] | 𝑥)

= 𝑎
𝑥
× 𝑃
𝑟

𝑎𝑠
.

(A.2)

Both the retrospective and prospective probabilities are
distinct from the per-exposure probabilities that we intend to
estimate. Gilbert et al. showed in [6] that, under certain con-
ditions, there is an equivalence between the odds ratios for
all three of these. The proof (repeated below in Appendix B)
beginswith an expression of the failure hazard as a function of
the type-specific rate of exposure 𝜆

𝐸𝑠
(𝑡) and the per-exposure

probabilities of failure𝜙
𝑥𝑠
[6, page 805].With𝑇 defined as the

time of the subject’s first failure, 𝑆 themark of that failure, and
𝜏 defined as the duration of the clinical trial, he wrote that, for
any 𝑡 ∈ [0, 𝜏],

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑥,

exposure history)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥 ,

exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡) ,

exposure history) .

(A.3)

We note that the first term on the right hand side
should include the condition 𝑇 ≥ 𝑡 (that the subject has
not yet experienced a failure as of time 𝑡). This is not
subsumed by “exposure history” because it depends not only
on the exposure process(es) but also on the per-exposure
probabilities of failure. Also, the “exposure history” condition
does not exist on the left-hand side of the equation, so it
should either be added there or removed from the right-hand
side. That is, we can define the exposure-history conditional
failure hazard as

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥, exposure history)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑋 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥,

1in exposed to s in [𝑡, 𝑡 + Δ𝑡) ,

exposure history) ,
(A.4)

and then define themarginal failure hazard 𝜆
𝑥𝑠
(𝑡) in terms of

this as
∑

exposure history
Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥) .

(A.5)
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Since the per-exposure failure probability is assumed to
be independent of exposure history, we can directly define the
marginal failure hazard by dropping the condition from the
right-hand side:

𝜆
𝑥𝑠

(𝑡) ≡ Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥 ,

exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡)) .

(A.6)

We define the first term of this corrected failure hazard as
the “exposure pseudohazard”:

ℓ
𝑥𝑠

(𝑡) = Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥) .

(A.7)

This is distinct from the generalized hazard function of the
type 𝑠 exposure process 𝐸

𝑠
:

Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑥, exposure history) ,
(A.8)

which conditions only on its own history (a generalization of
the standard hazard function’s dependence on nonfailure to
time 𝑡). There is no difference if every exposure results in a
failure, but the two functions depart whenever any exposure
event could be avoided (by a roll of the “leaky” dice, with
probability 1 − Pr(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥, exposed to
𝑠 in [𝑡, 𝑡 + Δ𝑡)) = 1 − 𝜙

𝑥𝑠
).

Conceptually, if exposures are occurring that do not
result in failures (we call these “avoided failures”), then
the subject may nevertheless fail, but later than she would
have otherwise. Since lower per-exposure failure probabilities
result in more avoided failures, the time-to-event distribu-
tion among those who fail in the treated group will be
right-shifted compared to what it would have been in the
untreated group. We note that it may not be right-shifted
for a particular failure type, but aggregating over all types,
lower per-exposure failure rates will result in later expected
failure times. Mathematically, this dependence between the
probability of nonfailure by time 𝑡 (i.e., that 𝑇 ≥ 𝑡) and the
rates of failure avoidance (1−𝜙

𝑥𝑠
) can be shown by expanding

ℓ
𝑥𝑠
(𝑡) in the equation 𝜆

𝑥𝑠
(𝑡) = ℓ

𝑥𝑠
(𝑡)𝜙
𝑥𝑠
:

ℓ
𝑥𝑠

(𝑡) = ∑

exposure history
Pr (exposed to 𝑠 in

[𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥) .

(A.9)

By Bayes’ theorem,

Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥)

∝ Pr (𝑇 ≥ 𝑡 | exposure history, 𝑥)

× Pr (exposure history | 𝑥) .

(A.10)

These are not all equal, since if the exposure history
includes 𝑘 exposure times 𝑒

1
, . . . , 𝑒

𝑘
, then Pr(𝑇 ≥ 𝑡 |

exposure history, 𝑥) involves a product of the 𝑘 chances that
those failures were avoided and would be monotonically
decreasing as the number of exposures increases (except in
the boring case of a perfect intervention).

In Appendix B we repeat the proof from [6, 3.12] of the
equivalence of the odds ratios, using these corrected defini-
tions.The proof crucially depends on the assumption that the
exposure pseudohazards ℓ

𝑥𝑠
(𝑡) are proportional across types.

That is, it requires that there exist 𝐽 constants 𝜃
𝑠
such that

∀𝑠, ℓ
𝑥𝑠
(𝑡) = 𝜃

𝑠
ℓ
𝑥1

(𝑡). By (A.9), this would necessitate setting
Pr(exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥, exposure history)
to depend on exposure history in such a way that exactly
counteracts the effect of variation in Pr(exposure history |

𝑇 ≥ 𝑡, 𝑥). This is the condition that we call “balanced
replacement” (so-called because it requires that the condi-
tional distribution of failure types to be the same regardless of
the number of avoided failures, so “replacement failures” have
the same distribution as the failures that they replace through
failure avoidance and subsequent reexposure). It is difficult
to imagine how this perfect balance could be accomplished
other than by assuming complete independence between the
type of the exposure and both its timing and the history of the
exposure processes (as in independent Poisson-distributed
exposure processes for each mark). Effectively, therefore,
balanced replacement implies that for each subject (given
his treatment and in general his response to the treatment,
as discussed below), the time and type of his failures are
independent.

B. Proof of the Equivalence of Odds Ratios
under Proportional Pseudohazards

Here we repeat the proof, given in [6], of the equivalence
of the retrospective odds ratios and the per-exposure odds
ratios.The proof begins by using the equation Pr(𝑇 ≥ 𝑡 | 𝑥) =

𝑒
−Λ(𝑡|𝑥) relating a survivor function to a cumulative hazard
function to establish that, under conditions of proportional
exposure pseudohazards,

Pr (𝑇 ≥ 𝑡 | 𝑥) = exp(−∫

𝑡

0

𝜆 (𝑢 | 𝑥) 𝑑𝑢)

= exp(−∫

𝑡

0

∑

𝑙

𝜆 (𝑢, 𝑙 | 𝑥) 𝑑𝑢)

= exp(−∫

𝑡

0

∑

𝑙

ℓ
𝑥𝑙

(𝑢) 𝜙
𝑥𝑙
𝑑𝑢) .

(B.1)

Then the prospective probabilities can be written in terms
of the exposure pseudohazards: as

𝑃
𝑎

𝑥𝑠
= ∫

𝜏

0

lim
Δ𝑡↘0

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

Δ𝑡
𝑑𝑡

= ∫

𝜏

0

𝜆 (𝑡, 𝑠 | 𝑥) × Pr (𝑇 ≥ 𝑡 | 𝑥) 𝑑𝑡
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= ∫

𝜏

0

ℓ
𝑥𝑠

(𝑡) 𝜙
𝑥𝑠

Pr (𝑇 ≥ 𝑡 | 𝑥) 𝑑𝑡

= ∫

𝜏

0

ℓ
𝑥𝑠

(𝑡) 𝜙
𝑥𝑠
exp(−∫

𝑡

0

∑

𝑙

ℓ
𝑥𝑙

(𝑢) 𝜙
𝑥𝑙
𝑑𝑢)𝑑𝑡.

(B.2)

Then if we define the integrated type 𝑠 exposure pseudo-
hazard 𝐹

𝑥𝑠
(𝑡) ≡ ∫

𝑡

0

ℓ
𝑥𝑠
(𝑢)𝑑𝑢, we get

𝑃
𝑎

𝑥𝑠
= ∫

𝜏

0

ℓ
𝑥𝑠

(𝑡) 𝜙
𝑥𝑠
exp(−∫

𝑡

0

∑

𝑙

ℓ
𝑥𝑙

(𝑢) 𝜙
𝑥𝑙
𝑑𝑢)𝑑𝑡

= 𝜃
𝑠
𝜙
𝑥𝑠

∫

𝜏

0

ℓ
𝑥1

(𝑡) exp(−∫

𝑡

0

ℓ
𝑥1

(𝑢) 𝑑𝑢∑

𝑙

𝜃
𝑙
𝜙
𝑥𝑙
)𝑑𝑡

= 𝜃
𝑠
𝜙
𝑥𝑠

∫

𝜏

0

ℓ
𝑥1

(𝑡) exp(−𝐹
𝑥1

(𝑡)∑

𝑙

𝜃
𝑙
𝜙
𝑥𝑙
)𝑑𝑡

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

∑
𝑙
𝜃
𝑙
𝜙
𝑥𝑙

exp(−𝑢∑

𝑙

𝜃
𝑙
𝜙
𝑥𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹𝑥1(𝜏)

0

× 𝜃
𝑠
𝜙
𝑥𝑠

= (1 − exp(−𝐹
𝑥1

(𝜏)∑

𝑙

𝜃
𝑙
𝜙
𝑥𝑙
))

𝜃
𝑠
𝜙
𝑥𝑠

∑
𝑙
𝜃
𝑙
𝜙
𝑥𝑙

= (1 − Pr (𝑇 ≥ 𝜏 | 𝑥))
𝜃
𝑠
𝜙
𝑥𝑠

∑
𝑙
𝜃
𝑙
𝜙
𝑥𝑙

= 𝑎
𝑥

𝜃
𝑠
𝜙
𝑥𝑠

∑
𝑙
𝜃
𝑙
𝜙
𝑥𝑙

,

(B.3)

which, since 𝑃
𝑎

𝑥𝑠
= 𝑎
𝑥
× 𝑃
𝑟

𝑥𝑠
, implies that

𝑃
𝑟

𝑥𝑠
=

𝜃
𝑠
𝜙
𝑥𝑠

∑
𝑙
𝜃
𝑙
𝜙
𝑥𝑙

. (B.4)

This proof relies on the proportional pseudohazards condi-
tion to enable the factorization that separates the integrated
exposure pseudohazard 𝐹

𝑥1
(𝜏) for an arbitrary mark (𝑠 = 1)

from the time-constant multiples 𝜃
𝑠
for 𝑠 > 1 such that

𝐹
𝑥𝑠
(𝜏) = 𝜃

𝑠
𝐹
𝑥1

(𝜏).
Finally, this result guarantees equivalence of retrospec-

tive, prospective, and per-exposure odds ratios, since

OR𝑟 (𝑠) ≡

𝑃
𝑟

V𝑠/𝑃
𝑟

𝑝𝑠

𝑃
𝑟

V1/𝑃
𝑟

𝑝1

=
𝑃
𝑟

V𝑠/𝑃
𝑟

V1

𝑃𝑟
𝑝𝑠
/𝑃
𝑟

𝑝1

=
𝜃
𝑠
𝜙V𝑠/𝜃1𝜙V1

𝜃
𝑠
𝜙
𝑝𝑠
/𝜃
1
𝜙
𝑝1

=
𝜙V𝑠/𝜙V1

𝜙
𝑝𝑠
/𝜙
𝑝1

= OR𝜙 (𝑠) , QED.

(B.5)

C. Conditions for Proportional Pseudohazards

The result of Appendix B is limited to conditions of pro-
portional exposure pseudohazards, which requires balanced
replacement. Technically, balanced replacement means that
for each subject, given her response to the intervention,
any variation in her probability of exposure to a potential
failure of type 𝑠 due to dependence on time or exposure
history must exactly counterbalance the effects of unavoid-
able variation in the probability of exposure history over
time (conditioned on survival up to that time), such that
the relative rate of exposure to one type over another type
remains constant. This is accomplished if we assume that the
type of the exposure is completely independent of the failure
time (and history), an assumption that has been discussed
elsewhere [7, 13].

C.1. Thoroughly Rare Events. Proportional exposure pseu-
dohazards could also be accomplished if we assume that
each subject experiences at most one failure during [0, 𝜏]

(because in that case, every exposure is a “first exposure”
and there are no replacement failures; put another way, in
that case the probability of survival given exposure history
is effectively independent of exposure history, so there is
nothing to balance). It may be tempting to argue that in
rare-event settings, this is a reasonable assumption. We note
however that the requirement of no replacement failures is
stronger than a typical “rare event” scenario, in which the
rates 𝑎

𝑥
are small. The condition we require (thoroughly

rare events) means that for all subjects, the probability of a
second exposure is zero. While in very-rare event settings,
violations of this condition may not lead to bias, it should
be noted that the relevant determinant is not the rareness
of the event in the total population but the rareness of the
event in the subset of subjects who experience a failure
during the trial. Since in general, subjects who experience
more than one exposure have more chances of failure, in
expectation, the probability of experiencing more than one
exposure is greater among the subjects who fail than among
the larger population. In other words, there is an enrichment
of multiply exposed subjects among the subjects who expe-
rience a failure during the trial. This is restating our main
finding that high-risk subjects are enriched among infected
vaccinees.

C.2. Risk Homogeneity. Gilbert noted that conditions of
the proof require a “leaky” vaccine in which all subjects
experience the same intervention effect, and he explored
violations of this assumption through simulations [8]. He
showed that if some subjects do not have “take” of the
intervention (i.e., if there is a chance that an intervention-
receiving subject might nevertheless have no change in her
per-exposure probabilities of infection), a bias is introduced.
Here we show why the proof breaks down in the context of
incomplete take. It is analogous to the setting of dichotomous
risk, since for high-risk subjects the leaky vaccine’s effect on
attack-rate vaccine efficacy is reduced, and in some cases it
becomes effectively nil.
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For the example with two risk groups, the exposure
pseudohazard for vaccine recipients becomes

ℓV𝑠 (𝑡) = 𝜔
ℎV (𝑡) ℓVℎ𝑠 (𝑡) + (1 − 𝜔

ℎV (𝑡)) ℓV𝑙𝑠 (𝑡) , (C.1)

where ℓVℎ𝑠 and ℓV𝑙𝑠 are the type 𝑠 exposure pseudohazards for
high-risk and low-risk subjects, respectively, and

𝜔
ℎ𝑥

(𝑡)

≡ Pr (high risk | infected with mark 𝑠 by time 𝑡, 𝑥) .

(C.2)

For placebo recipients analogously

ℓ
𝑝𝑠

(𝑡) = 𝜔
ℎ𝑝

(𝑡) ℓ
𝑝ℎ𝑠

(𝑡) + (1 − 𝜔
ℎ𝑝

(𝑡)) ℓ
𝑝𝑙𝑠

(𝑡) . (C.3)

Since 𝜔
ℎ𝑝

(𝑡) varies over time and differently from 𝜔
ℎV(𝑡), the

exposure pseudohazards depend on time and risk group and
do not satisfy the proportionality condition, even if the risk
group specific-exposure pseudohazards do satisfy it.

D. Homogeneous Intervention Effects and
Proportional Pseudohazards Are Both
Required for Noninformative Censoring

Gilbert argued in [8] that some time-to-event methods are
robust to violations of the condition thatwe call “proportional
exposure pseudohazards.” He argued that estimates (of retro-
spective odds ratios) using Cox proportional hazards models
without proportional baseline risks could be used to estimate
each per-exposure odds ratio in a separate model. So for
instance, the per-exposure odds ratio for strain 𝑠 versus strain
1 could be estimated by treating all other types of failure as
censoring events. Since the methodology for this estimation
requires an assumption of noninformative censoring, this
argument breaks down unless the time-to-event distribution
of type 1 and type 𝑠 failures is independent of that of the other
failure types. Since the condition must hold for all choices of
𝑠, it effectively requires independence between the time-to-
event distribution 𝑇 and the failure type distribution 𝑆. In
the case of a leaky vaccine with homogeneous risk, this can
be achieved under the conditions of “balanced replacement”
(which requires that the exposure processes exhibit the same
sort of time/type independence that is desired for the failure
hazard).

We now show that any amount of subject heterogeneity
in the intervention effect will lead to a violation of the
noninformative censoring assumption, except under the null
hypothesis of no sieve effect. We have shown that infection
time 𝑇 is not independent from risk group 𝑅, and so if mark
type 𝑆 is also nonindependent from risk, then 𝑆 and𝑇will not
be independent. If time and type are not independent then if
you treat some marks of infection as censoring events, then
those events are not independent of the uncensored infection
times, and noninformative censoring does not hold.

So it remains to show that failure mark type 𝑆 is not
independent of risk. It is clearly the case that if high-risk
subjects have a different mark distribution of exposures,

then by assumption 𝑆 depends on risk. Also, by the same
mechanism of exposure-rate-dependent attack-rate efficacy
that is discussed in Section 2, even if high-risk placebo
recipients have the same mark distribution of exposures
as low-risk placebo recipients, the mark-specific attack-rate
vaccine efficacy will vary across the types unless the infecting
exposure rates are identical across all types. If the mark
distribution of exposures is same for both risk groups and
the rate of exposures is constant acrossmarkswithin each risk
group, then only the overall rate of infection varies across risk
groups, and the VE𝑎

𝑠
is the same for all marks. This condition

clearly precludes sieve effects.
The noninformative censoring assumption will never

hold if there are sieve effects, but even under the null
hypothesis of no sieve effects the assumption will only hold
in the extreme case in which the (placebo-recipient) infecting
exposure processes for all marks are equidistributed within
each risk group. As long as some mark exposures occur at
higher rates than others, then the attack-rate vaccine effect
will differ against the different types, leading to a violation of
the noninformative censoring condition.
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Research has shown that several types of erythrocyte fatty acids (i.e., omega-3, omega-6, and trans) are associated with risk for
cardiovascular diseases. However, there are complex metabolic and dietary relations among fatty acids, which induce correlations
that are typically ignored when using them as risk predictors. A latent variable approach could summarize these complex relations
into a few latent variable scores for use in statistical models. Twenty-two red blood cell (RBC) fatty acids were measured in
Framingham (N = 3196). The correlation matrix of the fatty acids was modeled using structural equation modeling; the model
was tested for goodness-of-fit and gender invariance. Thirteen fatty acids were summarized by three latent variables, and gender
invariance was rejected so separate models were developed for men and women. A score was developed for the polyunsaturated
fatty acid (PUFA) latent variable, which explained about 30% of the variance in the data. The PUFA score included loadings in
opposing directions among three omega-3 and three omega-6 fatty acids, and incorporated the biosynthetic and dietary relations
among them. Whether the PUFA factor score can improve the performance of risk prediction in cardiovascular diseases remains
to be tested.

1. Introduction

Higher blood levels of the essential omega-3 polyunsaturated
fatty acids (PUFA) are associated with reduced risk for
sudden cardiac death [1, 2] and all-cause mortality [2, 3].
There is also evidence that the essential omega-6 PUFA
intakes and blood levels are inversely associated with risk for
coronary heart disease [4]. Other fatty acids, such as the trans
fatty acids found in partially hydrogenated vegetable oils, are
believed to increase risk for cardiovascular disease [5].Hence,
the study of these fatty acids is of vital importance.

PUFA are “essential” since they cannot be produced in
vivo andmust be consumed. Foods are composed of multiple

fatty acids, and dietary habits manifest themselves as corre-
lated fatty acid levels in the blood. Once consumed, simpler
PUFA species can be acted upon by enzymes that convert
them into more complex PUFA which have a wide variety
of metabolic functions. Desaturase enzymes insert double
bonds (points of “desaturation”) into fatty acid molecules,
and elongase enzymes are needed to increase the carbon
chain length [6]. Importantly, competition among PUFA
species exists for these enzymes such that different ratios
in the diet can affect overall PUFA patterns (Figure 1) [7].
While elongase enzymes are readily available, the desaturase
enzymes are rate limiting, and thus their levels may impact
the amount of the 20- and 22-carbon fatty acids present
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Figure 1: Polyunsaturated fatty acid biosynthesis [7]. Permission to reproduce this figurewas granted onDecember 26, 2013, from the journals’
copyright clearance center. Biosynthesis of long-chain n-3 and n-6 series polyunsaturated FAs from their 18-carbon precursors. The terminal
methyl group is carbon 1 and the n-3 and n-6 series of FAs are termed according to the position of the first double bond: after carbon 3 and
carbon 6, respectively. Biologically important FAs are highlightedwith a gray box. Newly added/removed carbons or double bonds introduced
at each step are colored red. Signaling molecules derived from AA, EPA, and DHA are noted in blue. LA, linoleic acid; LNA, linolenic acid;
AA, arachidonic acid; EPA, eicosapentanoic acid; DPA, docosapentanoic acid; DHA, docosahexaenoic acid; COX, cyclooxygenase; LOX,
lipoxygenase; PG, prostaglandin; and LT, leukotriene.

in the system [8]. Additionally, omega-3 fatty acids are the
preferential substrates over omega-6 for these desaturase
enzymes [6]. These biochemical and dietary relations induce
a correlation structure in the blood fatty acids.

Fatty acids have been reported as weight%, mol%, or
concentration (by volume or cell count). Since there are no
laboratory standards in the USA to uniformly report fatty
acid data, these multiple presentations exist.Themain debate
is relative versus absolute amounts, whose quantities become
more divergent as they increase [9]. Chow argues in favor

of absolute concentrations, citing the obvious drawback of
relative amounts being the imposed linear constraint (i.e,
summation to 100%) [10]. However, Crowe prefers relative
amounts since absolute concentrations rise and fall with total
cholesterol, which is made up of lipoproteins composed of
fatty acids [11]. Fatty acid nomenclature is as follows: C#:#n#=
the number of carbon (C) atoms in the molecule, the number
of double bonds, and the omega family (n), whether 3, 6, 7,
or 9. The latter indicates on which carbon the final double
bond resides. In Bradbury et al. concentrations andmol% are
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compared for C14:0 and C18:2n6 in plasma cholesterol ester
and phospholipids [12]. The study results show that C18:2n6
is significantly directly correlated with total cholesterol when
represented as a concentration (𝜇mol/L) but significantly
inversely related as mol%. The paper lists several references
that support the cholesterol lowering effect of C18:2n6 and
concludes that the metabolic pathways are influenced by the
percentage of total fatty acids and not by concentration. The
other advantage of weight% representation is that RBC fatty
acids have a strong correlation with myocardium tissue fatty
acids (𝑟 = 0.82) [13] and dietary intake [14]. This preferred
technique of using relative weight% of total fatty acids also
induces a correlation structure in the data.

Structural equation modeling (SEM) is well suited to
incorporate the metabolic, dietary, and measurement corre-
lations observed in fatty acid data. Only in the last decade
has SEM been applied to fatty acids [15–18]. SEM allows
complex high-dimensional relations to be simplified into a
few latent variable scores, which can be evaluated as novel
risk markers. Sex-specific risk prediction models have been
implemented for coronary heart disease [19] to account for
gender differences in the amount of risk attributable to
cholesterol and blood pressure levels. Similarly the observed
fatty acids may relate to the underlying latent constructs
differentially for men and women, and this potential gender
invariance needs to be evaluated. A recent taxonomyhas been
developed to specifically test measurement invariance over
multiple groups in SEM by comparing models with different
constraints applied to the correlation structure [20, 21].

The objective of the present study was to reduce the
dimensionality of the complex fatty acid correlation structure
by incorporating dietary intake patterns and biosynthesis
processes as constraints in a structural equation model. This
technique was applied to the Framingham Offspring/Omni
RBC samples, and differences in fatty acid means, loadings,
residuals, and latent variable covariance structures between
men and women were tested.

2. Materials and Methods

2.1. Materials. The Framingham Heart Study (FHS) was
established in 1948 to research the factors that contribute
to cardiovascular disease. Its study design and methods are
described at http://www.nhlbi.nih.gov/about/framingham.
In 1971, the children (and their spouses) of the original FHS
were recruited; they constitute the Framingham Offspring
cohort [22]. In 1994, to better reflect the changing demo-
graphics of the area, recruitment began for Framingham
residents aged 40–74 who described themselves as members
of a minority group, that is, Omni cohort [23]. The Offspring
and Omni cohorts were scheduled together for comprehen-
sive examinations every 4–8 years. These included anthropo-
metric measurements, biochemical assessment for CVD risk
factors, medical history, and physical examination by a study
physician. RBC samples taken from Offspring Examination
8 and Omni Exam 3 (2005–2007) were collected and subse-
quently 22 fatty acids were analyzed using gas chromatog-
raphy (GC), and their content was expressed as a weight%

of total fatty acids [24]. These data are publicly available as
part of the National Heart Lung and Blood Institute (NHLBI)
SNP Health Association Resource (SHARe) project (release
date: March 26, 2013, dataset name: l rbcfa 2008 m 0420s,
dataset accession: pht002568).Written informed consent was
provided by all participants, and the Institutional Review
Board at the Boston University Medical Center approved the
study protocol.

The study participants had a mean age (SD) of 66
(9) years, 55% were female, and 91% were white (see
Table 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/160520). The prevalence of
chronic disease was diabetes (14%), heart disease (10%), and
congestive heart failure (2%). The participants were taking
hypertension medications (49%), lipid pharmacotherapy
(43%), aspirin 3+ per week (43%), and fish oil supplements
(10%).

2.2. Methods

2.2.1. Model Notation. SEM is a two-part modeling process.
The first part defines a measurement model, which specifies
the relations between the fatty acids and the latent variables,
given by y

𝑖
=^+Λ𝜂

𝑖
+𝜀
𝑖
(𝑖 = 1, . . . , 𝑁) [25] where y

𝑖
is a 𝑝 × 1

vector of observed fatty acids measured on subject 𝑖, ^ is a
vector of fatty acid means, Λ is a matrix of unknown loading
parameters, 𝜂

𝑖
is a 𝑚 × 1 vector of latent variable scores

for subject 𝑖, and 𝜀
𝑖
is vector of normal random errors with

covariance matrix Θ that is independent of 𝜂
𝑖
. The second

part defines a path model for the latent variables 𝜂
𝑖
, which

allows regressing one latent variable 𝜂
1𝑖
on the set of other

latent variables 𝜂
2𝑖
, given by 𝜂

1𝑖
= 𝛼 + B𝜂

2𝑖
+ 𝜉
𝑖
, where 𝛼 is

a vector of latent variable means, B is a vector of unknown
regression parameters, and 𝜉

𝑖
is vector of normal random

errors with covariance matrixΨ.

2.2.2. Comparing SEM to Other Multivariate Techniques. The
proportion of variance explained in the 𝑗th fatty acid by
the latent variables is defined as the 𝑗th communality. The
variance in each fatty acid is equal to its communality plus
its unique variance; that is, 𝜎

𝑗𝑗
= 𝜆
2

𝑗1
+ 𝜆
2

𝑗2
+ ⋅ ⋅ ⋅ + 𝜆

2

𝑗𝑚
+ 𝜃
𝑗
.

Principal components analysis (PCA) ignores the specific
variance (measurement error) and uses the identity matrix
for 𝜃
𝑗
. This results in factoring the total variance instead of

the common variance; the latter is the proportion of variance
shared by the fatty acids. If communalities < 1 are used with
principal components method of decomposing the observed
correlation matrix using eigenvalues and eigenvectors, then
the method is principal factoring. This is akin to using the
reduced sample correlation matrix where the main diagonals
are less than one. Likewise, an exploratory factor analysis
imposes no structure and also assumes independence in
the residuals matrix, but the common variance is extracted
and the factors can be correlated through oblique rotations.
Moving to confirmatory factor analysis requires restrictions
on the model parameter, which allows testing the model
goodness-of-fit. However, only structural equation modeling
(SEM) allows regression paths among the observed and



4 Computational and Mathematical Methods in Medicine

Table 1: Framingham subjects’ fatty acids; mean (SD).

Fatty acid Overall
𝑁 = 3196

Male
𝑁 = 1434

Female
𝑁 = 1762

𝑃 value∗

Myristic, C14:0 0.31 (0.08) 0.29 (0.07) 0.32 (0.09) <0.0001
Palmitic, C16:0 21.29 (1.24) 21.24 (1.21) 21.34 (1.26) 0.031
Stearic, C18:0 18.11 (0.95) 18.20 (0.89) 18.04 (1.00) <0.0001
Lignoceric, C24:0 0.43 (0.16) 0.44 (0.16) 0.42 (0.16) 0.012
Palmitoleic, C16:1 0.35 (0.19) 0.31 (0.18) 0.39 (0.19) <0.0001
Oleic, C18:1 13.88 (1.06) 13.90 (1.06) 13.85 (1.06) 0.23
Eicosenoic, C20:1 0.27 (0.11) 0.28 (0.12) 0.27 (0.10) <0.0001
Nervonic, C24:1 0.45 (0.15) 0.46 (0.15) 0.43 (0.15) <0.0001
trans Palmitoleic, C16:1 trans 0.17 (0.05) 0.16 (0.05) 0.17 (0.05) 0.0052
trans Oleic, C18:1 trans 1.62 (0.55) 1.62 (0.57) 1.61 (0.54) 0.56
trans Linoleic, C18:2 trans 0.25 (0.08) 0.24 (0.08) 0.25 (0.08) 0.0021
alpha-Linolenic, C18:3n3 0.19 (0.10)† 0.17 (0.09) 0.20 (0.11) <0.0001
Eicosapentaenoic (EPA), C20:5n3 0.74 (0.46)† 0.71 (0.42) 0.76 (0.49) 0.0011
Docosapentaenoic, C22:5n3 2.74 (0.46) 2.80 (0.46) 2.70 (0.45) <0.0001
Docosahexaenoic (DHA), C22:6n3 4.88 (1.38) 4.82 (1.39) 4.92 (1.37) 0.043
Linoleic, C18:2n6 11.19 (1.74) 11.03 (1.63) 11.33 (1.81) <0.0001
gamma-Linolenic, C18:3n6 0.08 (0.09) 0.08 (0.12) 0.09 (0.07) 0.089
Eicosadienoic, C20:2n6 0.28 (0.05) 0.28 (0.05) 0.28 (0.05) 0.23
Eicosatrienoic, C20:3n6 1.59 (0.36) 1.59 (0.36) 1.59 (0.35) 0.66
Arachidonic, C20:4n6 16.78 (1.62) 16.79 (1.57) 16.77 (1.66) 0.66
Docosatetraenoic, C22:4n6 3.76 (0.83) 3.92 (0.83) 3.63 (0.81) <0.0001
Docosapentaenoic, C22:5n6 0.66 (0.19) 0.67 (0.19) 0.64 (0.19) <0.0001
∗Two-sample 𝑡-test, the critical level alphawas set to 0.05/22 = 0.0023 for statistical significance using Bonferroni correction (shown in bold). †Use the following
mean (SD) of the log-transformed values when standardizing data as explained in the discussion section for C18:3n3 −6.38 (0.41) and C20:5n3 −5.04 (0.48).

unobserved variables, also a sparse correlation matrix for the
residuals can be specified. Therefore, SEM allows the most
model flexibility for implementing the dietary intake patterns
and metabolic processes among the fatty acids.

2.2.3. Data Preparation. SEM requires multivariate normal-
ity for maximum likelihood (ML) estimation. We started by
assessing univariate normality which is implied by multivari-
ate normality. To examine univariate normality, skewness and
kurtosis measures were calculated for each fatty acid. If a fatty
acid had an absolute kurtosis >10, considered problematic
[26], or skewness>3, then a natural logarithm transformation
was employed. Next, the null hypothesis of multivariate
normality was tested using the SAS macro %MULTNORM
which calculates the squared Mahalanobis distances (𝐷2);
for large samples, 𝐷2 is distributed as a 𝜒2

𝑝
[27]. When

multivariate normality is not tenable, robust ML estimation
should be implemented [28].

The scales of the RBC fatty acids differed by two orders
of magnitude, on average Palmitic acid (C16:0) accounted
for 20% of total fatty acid abundance, whereas alpha-
linolenic acid (C18:3n3) accounted for only 0.2%. How-
ever, there are meaningful fatty acids even at small relative
weight%. For example, the mean levels of C20:5n3 and
C16:1t are 0.7% and 0.2%, but these are widely studied

biomarkers of fish and dairy intake, respectively. There-
fore, all fatty acids were standardized in order to have
similar effect sizes, which prevented the large abundance
fatty acids from dominating the variance extraction. The
measure of sampling adequacy developed by Kaiser [29]
MSA = Σ(simple correlations)2/[Σ(simple correlations)2 +
Σ(partial correlations)2] was used to identify fatty acids that
were not sufficiently related to the core latent structure.
Individual fatty acids with a MSA < 0.60 were considered
“unacceptable” [30] and dropped from analysis.

2.2.4. Gender Invariance Testing. The primary motivation of
the study was to reduce the dimensions of the fatty acid
correlation matrix and to develop latent variable scores for
each subject using the regression scoring method [31]. An
assumption when using latent variable scores is that the
indicators (i.e, fatty acids) have the same relations with the
underlying latent variables between groups of interest, in
this case gender. To this end, the correlation matrix was
partitioned as Σ = ΛΨΛT + Θ, and it along with the
mean profile ^ of the observed fatty acids was tested for
gender invariance using the likelihood ratio test (LRT) by
comparingmodels with different imposed constraints. When
using robustmaximum likelihood the LRThas beenmodified
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by the deviance scaling [32]. The specific hypotheses are as
follows.

(1) The fatty acid means are equal between genders,
H
1
: ^male=^female.

(2) The loadings matrix is equal between genders,
H
2
: Λmale=Λfemale.

(3) The fatty acid variances are equal between genders,
H
3
: Θmale=Θfemale.

(4) The latent variable covariances are equal between
genders, H

4
: Ψmale=Ψfemale.

(5) The fatty acid covariances are equal between genders,
H
5
: Σmale=Σfemale.

The number of underlying dimensions was examined
using exploratory factory analysis where eigenvalues >1 were
retained. Then a SEM was built using the same number of
latent variables, and it was used to test if the fatty acid means
^ were equal between men and women (H

1
). This was done

by testing the model 𝑋2 between a model with intercepts,
loadings, and unique variances freely estimated for men and
women (model M0) versus one with a single set of intercepts
imposed for both genders (model M1). To test for equality
in the loading matrix Λ between genders (H

2
), a model with

equal loading constraints, but freely estimated intercepts and
unique variances for each gender (model M2), was compared
tomodelM0.HypothesisH

3
was tested for gender differences

in fatty acid residual variancesΘ by comparing a model with
freely estimated intercepts and loadings for each gender, but
with constrained variances (Model M3) versus model M0.
To test the latent variable covariance structure Ψ, model
M2 was used for comparison with additional constraints
placed on the six latent covariances to be equal between
genders (Model M4). Lastly the fatty acid covariance matrix
was tested by constraining loadings, latent covariances, and
unique variances to be equal for men and women (Model
M5). Each model used the direct Quartimin oblique rotation
(available in Mplus and SAS).

2.2.5. Comparing Model Fits. To evaluate the fit of the SEM
there are several indices, and the following is the minimal
set established by current practice: (1) model chi-square,
(2) Steiger-Lind root mean square error of approximation
(RMSEA), (3) Bentler comparative fix index (CFI), and (4)
standardized root mean square residual (SRMSR) [26]. The
RMSEA indicates the discrepancy in model fit per degree of
freedom as defined by 𝜀 = sqrt[(𝜒2 − df)/(df × (N − 1))]
[33].TheRMSEA follows a noncentral𝑋2 distribution, which
allows reversing the role of the null hypothesis to testing
a poorly fitting model and then a larger sample provides
evidence of good fit. RMSEA is not used to test for perfect
fit 𝜀 = 0 but to test the alternative hypothesis of “close fit”
𝐻
𝑎
: 𝜀 ≤ 0.05 or “reasonable fit” 𝐻

𝑎
: 𝜀 ≤ 0.08 [26].

Bentler’s CFI and the Tucker-Lewis Index (TLI) are relative
fit indexes; these measures should be >0.90 [34], and CFI
differences of 0.01 between models are considered relevant
[35]. The absolute model fit was assessed by calculating
the SRMSR between the fatty acids’ observed correlations

and the correlations predicted by the latent variables; these
residuals should be less than 0.10 for a good fitting model
[26]. The Schwarz Bayesian Criterion [36], which includes a
larger penalty for lack of parsimony than Akaike Information
Criteria [37], was also reported. Analyses were performed
using SAS software (version 9.2; SAS Institute Inc., Cary, NC)
and Mplus (version 6.12; Muthen & Muthen, Los Angeles,
CA).

3. Results

3.1. Exploratory Factor Analysis. Table 1 indicates gender
differences in mean levels, in 12 out of 22 RBC fatty acids.
The greatest relative differences were higher levels of C16:1
and C18:3n3 in females. The largest absolute differences were
that females had about 0.3 percentage point higher and
lower levels of C18:2n6 and C22:4n6 than males, respectively.
Skewness and kurtosis were calculated for the individual fatty
acids, and the following had distributions with an absolute
kurtosis index >10 and/or a skew index >3, that is, C20:1,
C18:3n3, C20:5n3, and C18:3n6, which became approximately
Gaussian using a natural logarithm transformation.However,
about 60% of C18:3n6 measurements were <0.1%, which is
considered as the reliable detection limit for the GC method,
and it appears that the log transformation simply produced
normally distributed noise. Therefore, C18:3n6 was excluded
from latent variable analysis. Even though univariate normal-
ity was reasonable for the individual fatty acids, multivariate
normality was rejected (𝑃 < 0.0001) so robust ML method
was implemented in Mplus [28].

Fatty acid concentrations were standardized to produce
a correlation matrix (Supplemental Table 2), and the MSA
was calculated for each fatty acid and overall (the latter was
initially 0.20). The fatty acid with the lowest MSA value
was dropped from analysis until all fatty acid MSA values
were >0.60. This resulted in the following fatty acids being
sequentially excluded from the latent variable analysis: C18:1,
C20:1, C18:2n6, C20:2n6, C20:3n6, C24:0, and C24:1. After
excluding these fatty acids the overallMSA for the correlation
matrix increased to 0.75. Additionally, C22:5n3 needed to
be removed from the correlation matrix because it was
causing the explained variability inC20:5n3 to be greater than
100%, that is, Heywood condition [38]; hence, 13 fatty acids
remained. Afterwards three dimensions were identified for
men and women with eigenvalues greater than one.

3.2. Confirmatory Factor Analysis. Model M0 allowed inter-
cepts, loadings, and unique variances to be freely estimated
for men and women.The absolute fit was good with a SRMSR
of 0.035, and the fit was much better than a model with
zero correlations since CFI = 0.888 (Table 2). However, the
fit measures which adjust for parsimony, that is, RMSEA
and TLI, were not near acceptable ranges. In model M1
when the 13 fatty acid means were held constant between
gender H

1
: ^male=^female, the SBC increased by over 400 and

the hypothesis was rejected using the chi-squared difference
testing between nested models 𝑋2

13
= 520, 𝑃 < 0.0001. As

pointed out earlier since robust ML method was used due to
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Table 2: Goodness-of-fit for testing gender invariance (among 13 fatty acids).

Model constraint
(𝑁 = 3196)

Absolute fit Relative fit

𝜒
2/DF† 𝜒

2

Scaling SRMSR SBC
RMSEA
upper

90% limit
CFI TLI

M0: unrestricted by
gender 1900/84 1.079 0.035 100055 0.121 0.888 0.791

M1: equal fatty acid
means, ^ 2409/97 1.071 0.056 100480 0.126 0.857 0.770

M2: equal loadings, Λ 1965/114 1.097 0.040 99919 0.105 0.885 0.843
M3: equal unique
Variances, Θ 1673/97 1.255 0.036 99999 0.105 0.902 0.843

M4: equal loadings and
latent covariances, Λ,Ψ 1986/120 1.105 0.048 99909 0.102 0.884 0.850

M5: equal fatty acid
covariance matrix, Σ 1793/133 1.251 0.050 99853 0.092 0.897 0.879

M6: SEMmodel 968.8/107 1.217 0.046 98999 0.075 0.947 0.922
M7: reduced SEMM6 967.5/111 1.225 0.046 98972 0.074 0.947 0.925
†The total degrees of freedom (DF) = 2 ∗ (91 fatty acid variances/covariances + 13 fatty acid means) = 208 parameters in all models; hence, the number of
estimated parameters equals 208 − 𝑋2 DF; SRMSR = standardized root mean square residual; SBC = Schwarz Bayesian criteria; RMSEA = root mean square
error of approximation; CFI = Bentler Comparative Fit Index; TLI = Tucker-Lewis Index.

lack of multivariate normality, the chi-squared test statistic
was modified [32]. Specifically, to compare model M1 nested
in M0, the scaling correction factor was computed as 𝑐

𝑑
=

(DFM1 ∗ ScalingM1 − DFM0 ∗ ScalingM0)/(DFM1 − DFM0) =
(97 ∗ 1.071 − 84 ∗ 1.079)/13 = 1.0. Then 𝑋2

13
= (𝑋

2

M1 ∗

ScalingM1 − 𝑋
2

M0 ∗ ScalingM0)/𝑐𝑑 = (2409 ∗1.071 − 1900 ∗
1.079)/1.019 = 520 (Table 2). All other model fit measures
deteriorated as well. These results importantly show that the
multivariate fatty acidmean profile was not the same between
genders for these fatty acids.

Next the fatty acid correlation structure was tested for
gender invariance in multiple steps. When comparing model
M2 to M0, H

2
: Λmale=Λfemale we concluded that the factor

loadings were different between men and women 𝑋2
30

= 92,
𝑃 < 0.0001 (Table 2). To test for gender differences in
the fatty acids’ variances, H

3
: Θmale = Θfemale models M3

and M0 were compared. The fatty acids’ variances were not
different between genders, 𝑋2

13
= 20.7, respectively, 𝑃 =

0.079. Next the latent variable covariance structure was
tested H

4
: Ψmale = Ψfemale, by comparing model M2 with

M4 and found to be different between men and women
(𝑃 < 0.0001). Likewise the overall covariance structure
H
5
: Σmale=Σfemale was different (𝑃 < 0.0001).

3.3. Structural Equation Modeling Constraints. The above
results suggested differential fatty acid functioning for men
and women, so separate models were developed by gender
that allows the standardized latent variables scores to be
compared between men and women. Model M3 had a good
fit compared to M0 shown by chi-squared difference testing,
SRMSR, and CFI; however, the parsimony measures suggest
there were still too many parameters. Model M3 is shown for
men andwomen in Supplemental Tables 3 and 4, respectively;

the latent variables were named for the fatty acids with
the strongest correlations as PUFA, SATURATED, and
TRANS FACTORS. When examining the loading estimates
between men and women they were quite similar; there
were only 3 parameters that differ by >0.10 which included
the saturated fatty acids C14:0 and C18:0. These two fatty
acids have slightly stronger correlations with the underlying
latent variables in women than men. To further reduce the
model complexity, constraints were placed on the loading
matrix. A threshold of 0.15 was chosen, and parameters were
constrained to zero if they had loadings below this threshold.

Correlations among dietary intakes of fatty acids were
determined for the subset of 2332 participants with valid
food frequency questionnaires [39] (Supplemental Table 5).
Dietary intake (g/d) was available for 11 out of 13 RBC fatty
acids included in the latent variable model, and C22:4n6 and
C22:5n6 were not calculated from the diet. Since RBC fatty
acids were correlated with corresponding dietary intakes of
fatty acids, covariances were added to the fatty acids residual
matrix, Θ, to account for foods being composed of many
different fatty acids. Being able to specify which residual
covariances to include is a feature unique to structural equa-
tion modeling and cannot be accomplished in the context
of confirmatory factor analysis. There were 14 strong dietary
correlations (𝑟 > 0.80) that were added to the model. The
correlation between C18:1t and C18:2t was extremely high
(𝑟 = 0.98) and caused model convergence issues; therefore,
it was subsequently removed.

The biosynthesis process is well known for omega-3
and omega-6 fatty acids [7]. Delta-6 and delta-5 desaturase
activity is needed to convert C18:3n3 into C20:5n3 (Figure 1).
Then delta-6 desaturase (D6D) is required again to further
convert C20:5n3 into C22:6n3. The amount of D6D available
for the second conversion to synthesize C22:6n3 may be
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Table 3: Structural equation model M7 factor loadings (Λ) and standardized fatty acid means (^).

Fatty acids Men Women
PUFA∗ SAT TRANS Mean PUFA∗ SAT TRANS Mean

Ln(C18:3n3) 0.257 0.138 0.070 −0.186 0.370 0.149 0.114 0.149
Ln(C20:5n3) 0.847 0 0 −0.043 0.844 0 0 0.036
C22:6n3 0.815 −0.373 0 0 0.801 −0.335 0 0
C20:4n6 −0.634 −0.289 −0.215 0 −0.667 −0.285 −0.204 0
C22:4n6 −0.837 0 0 0.168 −0.814 0 0 −0.138
C22:5n6 −0.806 0 0 0.083 −0.788 0 0 −0.069
C14:0 0 0.633 0.056 −0.221 0 0.781 0.105 0.178
C16:0 0 0.754 −0.227 0 0 0.808 −0.290 0
C18:0 0 −0.524 0 0.072 0 −0.681 0.084 −0.054
C16:1 0 0.723 0 −0.209 0 0.812 0 0.169
C16:1t 0 0 0.499 −0.070 0 0 0.540 0.057
C18:1t 0 −0.114 0.888 0 0 −0.168 0.843 0
C18:2t 0 0.248 0.728 −0.065 0 0.239 0.738 0.053

Factor correlations (Ψ)
Factor

PUFA 1 0.190 −0.323 1 0.249 −0.385
SAT 0.190 1 −0.160 0.249 1 0.003
TRANS −0.323 −0.160 1 −0.385 0.003 1

∗Direction of signs is arbitrary; the signs for the PUFA loadings and factor correlations have been reversed in this table to make more n3 fatty acid positively
associated with the PUFA FACTOR.

limited by a function of what is initially consumed to support
converting C18:3n3 [40].Therefore, the amount and variabil-
ity of both C20:5n3 and C22:6n3 depend (to some extent) on
the intake of the parent n3 fatty acid C18:3n3. In the omega-
6 fatty acid family, D6D is needed for C22:4n6 to synthesize
into C22:5n6. These biochemical steps introduce structural
elements into the SEMmodel, so these three covariances were
added to fatty acid residualsmatrixΘ. However, omega-3 and
omega-6 fatty acids also compete for the desaturase enzymes,
and the omega-3 fatty acids are the preferential substrates [6].
So with higher levels of C20:5n3 (whether by biosynthesis
or fish oil consumption), D5D activity is inhibited (feedback
inhibition, whereby the enzyme senses when enough product
has beenmade and then shuts down).This slows the synthesis
of C20:4n6 from C20:3n6. Likewise C22:6n3 and C22:5n6
compete for D6D.These two additional fatty acid covariances
were added to the SEM residual matrix as well.

3.4. Final Structural Equation Model. After the above con-
straints were placed on the model, the resulting SEM (Model
M6) had a significantly better fit than the unrestricted model
by gender (M0),𝑋2

23
= 506 (𝑃 < 0.0001). Additionally model

M6was the onlymodel to have a “reasonable” fit with RMSEA
<0.08. Also it was the only model to have CFI and TLI > 0.90.
Model M6 had a total of 208 − 107 = 101 estimated parame-
ters, including the following gender specific 2 ∗ (23 loadings,
9 means, and 3 latent variable covariances) = 70 and gender
invariant (13 residual variances and 13 dietary-related and 5
desaturase-related residual covariances) = 31. The loadings
and latent variable correlations (Supplemental Table 6) and
fatty acid residual matrix (Supplemental Table 7) are shown

for model M6. One loading and three residual covariances
were <0.05; these were set to zero for a more parsimonious
model (M7). The nested fit between the reduced SEM model
M7 was similar to model M6, 𝑋2

4
= 4.3 (𝑃 = 0.37) and all

the parsimony fit measures (i.e, SBC, RMSEA, and TLI) were
improved.

There were four fatty acids with gender mean differences
which were not significantly different than zero (i.e, C22:6n3,
C20:4n6, C16:0, and C18:1t). The greatest mean differences
(all 0.30 to 0.40 SD) between genders were found in two
PUFA [ln(C18:3n3) and C22:4n6], one saturated fatty acid
[C14:0] and one monounsaturated fatty acid [C16:1]. The
loadings, latent variable covariance structure, mean profile,
and fatty acid residual matrix for model M7 are shown in
Tables 3 and 4. The Mplus code for model M7 is given in
Algorithm 1.

4. Discussion

Although 22 individual fatty acids were measured during
the GC process, 9 were removed from the latent variable
analysis because they were not related to the core structure
as explained above. However, the individual fatty acids that
were removed may still have clinical utility as individual
predictor variables. For example, C18:2n6 (Linoleic acid)
was fairly independent of the PUFA, SATURATED, and
TRANS latent variable scores, and all correlations were
around 0.10 (Supplemental Table 8). Since C18:2n6 has
been reported inversely related with heart disease [4], it
could still have clinical utility as in independent predictor
variable in combination with these newly defined latent
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TITLE:

Structural Equation Model M7;

DATA:

FILE IS infile;

VARIABLE:

NAMES ARE C140 C160 C180 C161 C161t C181t C182t C204n6 C224n6 C225n6

LnC183n3 LnC205n3 C226n3 ID Female;

USEVARIABLES C140 C160 C180 C161 C161t C181t C182t C204n6 C224n6 C225n6

LnC183n3 LnC205n3 C226n3;

GROUPING is Female (1=Female 0=Male);

AUXILIARY=ID;

ANALYSIS:

TYPE=GENERAL;

ESTIMATOR=MLR;

MODEL:

!MODEL Female;

!Latent variable loadings;

fFISH BY LnC183n3∗ LnC205n3 C226n3 C204n6 C224n6 C225n6;

fSAT BY C226n3∗ C204n6 C140 C160 C180 C161 LnC183n3 C181t C182t;

fTRANS BY C204n6∗ C160 C180 C161t C181t C182t LnC183n3 C140;

!Latent variable means are fixed at 0;

[fFISH@0 fSAT@0 fTRANS@0];

!Fatty acid means are free, or constrained to zero where indicated;

[LnC183n3 LnC205n3 C226n3@0 C224n6 C225n6 C204n6@0 C140 C180 C160@0 C161 C161t C181t@0 C182t];

!Latent variables covariance matrix;

fFISH@1; fSAT@1; fTRANS@1;

fFISH WITH fSAT;

fFISH WITH fTRANS;

fSAT WITH fTRANS;

!Fatty acid residual variances are equal between gender;

C140(1); C160(2); C180(3); C161(4); C161t(5); C181t(6); C182t(7);

C204n6(8); C224n6(9); C225n6(10); LnC205n3(11); C226n3(12); LnC183n3(13);

!Dietary intake covariances are equal between gender;

C140 WITH C160(14); C140 WITH C180(15); C140 WITH C161t(16);

C160 WITH C161(17); C160 WITH C161t(18);

C180 WITH C161(19); C180 WITH C161t(20); C180 WITH C181t(21); C180 WITH C182t(22);

C161 WITH C161t(23);

LnC205n3 WITH C226n3(24);

!Desaturase enzymes covariances are equal between genders;

LnC183n3 WITH LnC205n3(25);

C204n6 WITH LnC205n3(26);

C226n3 WITH C225n6(27);

C226n3 WITH LnC183n3(28);

MODEL male:

!Latent variable loadings;

fFISH BY LnC183n3∗ LnC205n3 C226n3 C204n6 C224n6 C225n6;

fSAT BY C226n3∗ C204n6 C140 C160 C180 C161 LnC183n3 C181t C182t;

fTRANS BY C204n6∗ C160 C180@0 C161t C181t C182t LnC183n3 C140;

!Fatty acid means are free, or constrained to zero where indicated;

[LnC183n3 LnC205n3 C226n3@0 C224n6 C225n6 C204n6@0 C140 C180 C160@0 C161 C161t C181t@0 C182t];

!Fatty acid residual variances are equal between gender;

C140(1); C160(2); C180(3); C161(4); C161t(5); C181t(6); C182t(7);

C204n6(8); C224n6(9); C225n6(10); LnC205n3(11); C226n3(12); LnC183n3(13);

Algorithm 1: Continued.
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!Dietary intake covariances are equal between gender;

C140 WITH C160(14); C140 WITH C180(15); C140 WITH C161t(16);

C160 WITH C161(17); C160 WITH C161t(18);

C180 WITH C161(19); C180 WITH C161t(20); C180 WITH C181t(21); C180 WITH C182t(22);

C161 WITH C161t(23);

LnC205n3 WITH C226n3(24);

!Desaturase enzymes covariances are equal between genders;

LnC183n3 WITH LnC205n3(25);

C204n6 WITH LnC205n3(26);

C226n3 WITH C225n6(27);

C226n3 WITH LnC183n3(28);

OUTPUT:

SAVEDATA:

FORMAT IS F20.14;

FILE IS outfile;

RESULTS ARE parametersfile;

SAVE=FSCORES;

Algorithm 1: Mplus code for structural equation model M7.

variables. C22:5n3 (DPA) is intermediate of C20:5n3 (EPA)
and C22:6n3 (DHA) in the biosynthesis process (Figure 1)
and was the only excluded fatty acid that had a correlation
>0.10 with the PUFA FACTOR (𝑟 = 0.39). However, DPA
has less biological activity than the other marine fish oils
[41], so it is not anticipated that DPA would be useful
as an individual predictor variable of clinical outcomes.
Afterwards, the remaining 13 fatty acids were found to be
represented by three dimensions, which constituted nearly
70% of the total fatty acid abundance. In the SEM model,
the residual variances were equal between genders. Likewise
the structural dietary correlations and biosynthesis processes,
which were accounted for with residual correlations, did not
vary between men and women. The final SEM model fit the
data well by all measures.

The PUFA FACTOR includes the following fatty acids:
ln(C18:3n3), ln(C20:5n3), C22:6n3, C20:4n6, C22:4n6, and
C22:5n6 (Figure 2); all of which are found in the PUFA
biosynthesis processes shown in Figure 1. The loading direc-
tions of the fatty acids included in the PUFA FACTOR are
also supported by many of the competing metrics being used
in fatty acid research. The omega-3 index is implemented in
clinical laboratory testing and is defined as RBC C20:5n3 +
C22:6n3 [42]. The omega-3 index was an independent risk
factor for all-cause mortality in a study of stable coronary
heart disease patients, with higher levels indicating reduced
risk [3]. Lower amounts of the omega-3 indexwere associated
with depression in a case-control study of adolescents [43]. In
the PUFAFACTOR, for bothmen andwomen, these two fatty
acids operate in the same direction with similar magnitudes,
which supports their summation as a biomarker (although
C20:5n3 has been log transformed in the PUFA FACTOR).

The n6/n3 ratio [44], n6 HUFA/total HUFA ratio [45],
and C20:4n6/C20:5n3 ratio [46] are all metrics that seek to
combine individual fatty acids into more powerful predictors

of risk. Although the goal is reasonable, these approaches
are criticized as being imprecise and impractical [46]. All
of these ratios may be flawed in that the same ratio can be
obtained by increasing the numerator or decreasing the
denominator, when these fatty acids do not have the same
physiological properties. An improvement to these ratios
may be the PUFA FACTOR. It is a more nuanced metric
since it does not simply add up the masses of different PUFA
families and create a ratio; it takes into account the relative
strengths of relationship among these linearly “opposing”
and interrelated fatty acids and reduces this nexus into
a single number. The algorithm for scoring these latent
variables from raw fatty acid data is given in the following.

Algorithm (algorithm for scoring latent variables)

Step 1.Measure fatty acids as a % of total fatty acids.

Step 2. For C18:3n3 and C20:5n3 transform the values using
natural logarithm.

Step 3. Standardize all fatty acids using corresponding overall
means and standard deviations fromTable 1 into a row vector
Z
𝑖
(as shown below, the headings indicate the required order).

Step 4.Calculate the latent variable scores𝜂
𝑖
for subject 𝑖using

the appropriate male or female matrices as

𝜂
𝑖
= (Z
𝑖
− ^𝑇) [ΨΛ𝑇(ΛΨΛ𝑇 +Θ)

−1

]

𝑇

, (1)

where ^ is the standardized fatty acid mean column vector
given by gender in Table 3.Ψ is the latent variable covariance
matrix given by gender in Table 3. Λ is the loading matrix
given by gender in Table 3. Θ is the fatty acid residual
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PUFA factor
men

C20:4n6 C22:5n6Ln(C18:3n3)

0.83

Ln(C20:5n3) C22:6n3 C22:4n6

0.28 0.37 0.47 0.29 0.36

0.14

0.08

0.08

0.26 0.85 0.82

−0.12

−0.21

−0.63 −0.84 −0.81

e1 e2 e3 e4 e5 e6

(a)

PUFA factor
women

C20:4n6 C22:5n6Ln(C18:3n3)

0.83

Ln(C20:5n3) C22:6n3 C22:4n6

0.28 0.37 0.47 0.29 0.36

0.14

0.08

0.08

0.37 0.84 0.80

−0.12

−0.21

−0.67 −0.81 −0.79

e1 e2 e3 e4 e5 e6

(b)

Figure 2: Structural equation model M7 for men (a) and women (b). Solid lines from PUFA FACTOR to fatty acids are gender specific
loadings, solid lines from circles to fatty acids are residual variances, dotted line indicates structural dietary intake correlation, and dashed
lines indicate structural desaturase enzymes required for biosynthesis.

covariance matrix given in Table 4. 𝑇means to transpose the
matrix. −1 means to take the inverse of the matrix.

Example. Measure RBC fatty acid percent weight composi-
tion using gas chromatography as detailed in Harris et al. [41]

or similar, then log transformC18:3n3 and C20:5n3, and then
standardize all raw data by (value − mean)/SD from Table 1
to produce a row vector:

Ln Ln
C18:3n3 C20:5n3 C22:6n3 C20:4n6 C22:4n6 C22:5n6 C14:0 C16:0 C18:0 C16:1 C16:1t C18:1t C18:2t

Z
𝑖
= |0.557 1.776 2.532 −2.086 −2.495 −1.969 0.417 2.248 −2.526 0.388 −0.213 −1.267 0.398|.

(2)
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Lastly the latent variable scores are derived by using 𝜂
𝑖
=

(Z
𝑖
− ^𝑇)[ΨΛ𝑇(ΛΨΛ𝑇 +Θ)

−1

]

𝑇

, with the appropriate vector
and matrices used for men or women given in Tables 3 and 4.
If the blood sample was from aman or woman, the respective
latent variables scores would be

PUFA SAT TRANS
FACTOR FACTOR FACTOR

𝜂
𝑖
= |2.77 1.76 −1.56| .

or
PUFA SAT TRANS

FACTOR FACTOR FACTOR
𝜂
𝑖
= |2.56 1.38 −1.52| .

(3)

Another approach has been to construct “desaturase
ratios” which are based on the known biosynthetic relation-
ships among PUFA [7]. Since it is far too invasive (requiring
liver biopsy) tomeasure the activity of these enzymes directly,
they have been estimated empirically by dividing RBC levels
of product fatty acids by levels of precursor fatty acids. Thus
the delta-6 desaturase (D6D) activity can be estimated by
the ratio of 20:3n6/C18:2n6 and the delta-5 desaturase (D5D)
activity by the ratio of C20:4n6/C20:3n6 (Figure 1). Interest-
ingly, both of these desaturase ratios have been associated
with risk for the development of Type 2 diabetes mellitus
in a recent metareview [47]. The ultimate clinical utility of
the PUFA FACTOR (versus desaturase or other fatty acid
ratios) will be determined in future studies by comparing
these metrics as predictors of disease outcomes for mortality,
CHDevents, development of type 2 diabetes or dementia, and
so forth.

5. Conclusion

ThePUFA FACTOR has much supporting evidence based on
fatty acid metabolism and dietary patterns. It was also the
first dimension extracted from the data, due to explaining
the most variability (about 30% of total in men and women)
for these 13 fatty acids. In a previous study these same
Framingham subjects were included in a heritability analysis,
and it was found that about 25% and 40% of the variance in
two of the fatty acids included in the PUFA factor (i.e, EPA
and DHA) was due to genetic and environment, respectively
[41]. The PUFA factor can also be seen as a unifying theme
among the various n3 and n6 metrics typically used in fatty
acid research. Since n3 and n6 fatty acids have been impli-
cated in cardiovascular diseases [4, 47], cognitive function
[48], brain magnetic resonance imaging [49, 50], depression
[43], mortality [1–3], and cellular aging [51] it is reasonable
to expect the PUFA FACTOR to have clinical utility for
predicting these outcomes. In contrast, the SATURATEDand
TRANS FACTORS had several cross loadings between them
and even include some PUFA.Thus, their interpretations are
unclear, which will likely limit their usefulness.

The strengths of this study include a well-characterized
structural equation model applied to RBC fatty acid data
which incorporates elements of both fatty acid metabolism
and dietary intake patterns in defining the model. Addition-
ally the correlation structure of the SEM was decomposed,

and the separate components were tested for gender invari-
ance. Another benefit was the use of a large, extensively stud-
ied cohort with enrichment for minorities (Framingham).
Limitations include that the RBC measurements were from
a particular GC method, and since national standards have
not been established for measuring fatty acids the sensitivity
of these results to other GC methods is unknown. This study
measured erythrocytes; other blood fractions or sample types
(e.g., whole blood, plasma, and plasma phospholipids) have
different rank orders of fatty acid abundances and these may
require unique structural equation models. The fit of this
SEM needs be tested in independent samples to determine
its generalizability beyond the Framingham Study.
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Metabolic syndrome (MetS) in young adults (age 20–39) is often undiagnosed. A simple screening tool using a surrogate measure
might be invaluable in the early detection of MetS. Methods. A chi-squared automatic interaction detection (CHAID) decision
tree analysis with waist circumference user-specified as the first level was used to detect MetS in young adults using data from the
National Health and Nutrition Examination Survey (NHANES) 2009-2010 Cohort as a representative sample of the United States
population (𝑛 = 745). Results. Twenty percent of the sample met the National Cholesterol Education Program Adult Treatment
Panel III (NCEP) classification criteria for MetS. The user-specified CHAID model was compared to both CHAID model with no
user-specified first level and logistic regression basedmodel.This analysis identified waist circumference as a strong predictor in the
MetS diagnosis. The accuracy of the final model with waist circumference user-specified as the first level was 92.3% with its ability
to detect MetS at 71.8% which outperformed comparison models. Conclusions. Preliminary findings suggest that young adults at
risk for MetS could be identified for further followup based on their waist circumference. Decision tree methods show promise for
the development of a preliminary detection algorithm for MetS.

1. Introduction

Metabolic Syndrome (MetS) is a collection of cardiometa-
bolic risk factors that includes excessive central adiposity,
elevated triglycerides (TG) and fasting plasma glucose (FPG),
decreased HDL-cholesterol (HDL), and hypertension [1].
When these risk factors are present in tandem, they increase
the risk of heart attack, stroke, and cardiovascular morbidity
and/or mortality affecting one in three adults in the United
States (US) [2]. Additionally, there is a disproportionate
increase in healthcare costs for adults presenting with MetS
compared to those that do not [3, 4]. Prevalence and com-
plications associated with MetS and other cardiometabolic
diseases continue to be a major health concern in the United
States.

The National Cholesterol Education Program Adult
Treatment Panel III (NCEP) and International Diabetes
Federation (IDF) clinical risk models are limited in their
usefulness in that they only identify either the presence or

absence of MetS [3, 4]. However much like obesity, there
are varied clinical implications based on the severity of the
risk factors used to defineMetS. Furthermore, certain factors
might be more significant than others in predicting the
presence or absence of MetS. Waist circumference has been
demonstrated to be a strong predictor of cardiometabolic
risk [2, 5, 6] and can be easily and affordably obtained in
a clinical screening. Creating an early detection model that
stratifies the severity of cardiometabolic and anthropometric
factors used in the MetS diagnosis based on proxy measures
easily obtained in a clinical setting would be invaluable for
clinicians aiming to provide improved patient-centered care
[7].

Predictive models are useful and cost effective in iden-
tifying risk of developing cardiometabolic chronic diseases
[8]. Decision tree methodologies show promise over tradi-
tional predictive modeling procedures based on their ease of
interpretability by nonstatisticians. One of the outstanding
advantages of decision tree analysis is that it can visualize
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the relationship pathways between the binary target variable
and the related continuous and/or categorical predictor vari-
ables with a tree image [9]. Recently,Worachartcheewan et al.
[10] used a classification and regression tree (CART)model to
identify pathways for MetS detection in accordance with the
NCEP criteria using a large Thai population of overweight
men and women without regard to age or health status. In
this model, TGwas the strongest predictor ofMetS. However,
dyslipidemia is not commonly elevated in younger adulthood
and is invasive and costly to measure [7].

Unfortunately, there is a lack of research focusing on the
adult population ages of 20–39 years where preventative or
early correctivemeasures can be utilized. Rather, themajority
of research has focused on the adult population greater than
age 40 [11, 12]. Currently no preventative methodologies exist
for the early detection of MetS. Therefore, attention is war-
ranted to the derivation of premetabolic syndrome criteria
that identifies at-risk subjects who can utilize preventive
intervention well before qualifying as moderate to high risk
on current predictive models [13].

The purpose of this pilot study is to investigate the
utility of the chi-squared automatic interaction detection
(CHAID) algorithm to identify and develop pathways for the
early detection of MetS. The central hypothesis states that
the decision tree pathways derived from CHAID algorithms
using data from National Health and Nutrition Examination
Survey (NHANES) 2009-2010 will detect the presence of
MetS in adults of 20–39 years of age. These pathways are
meant to serve as pilots for the future development of an easily
interpreted, clinically relevant, cost-effective screening tool to
detect cardiometabolic chronic disease [14].

2. Materials and Methods

2.1. Participants. The current study is based on publicly
available data from the National Health and Nutrition Exam-
ination Survey (NHANES) 2009-2010 cohort [15]. The full
data set includes 10,537 subjects designed to represent the
population of the United States across age, sex, and ethnicity.
Subjects with missing MetS criteria were excluded from the
present study due to the inability in making a complete
classification of MetS (subjects lost 𝑛 = 7589). Subjects not
meeting the inclusion criteria of an age between 20 and 39
years were excluded as were those with a body mass index
(BMI) less than 20 kg/m2 (subjects lost 𝑛 = 2203; n = 522 for
age <20 years, 𝑛 = 1622 for age >39 years, and 𝑛 = 59 for BMI
<20 kg/m2). The final sample retained meeting the inclusion
criteria included 745 subjects.

Demographic information included age, sex, and dichot-
omous ethnicity represented as ethnic or nonethnic. Anthro-
pometric information includedweight (kg), height (cm), BMI
(kg/m2), and waist circumference (cm). Laboratorymeasures
included HDL (mg/dl), TG (mg/dl), fasting plasma glucose
(FPG, mg/dl), and blood pressure expressed as systolic and
diastolic pressures (mmHg).

The criteria for MetS followed the NCEP guidelines
defined as presenting with three or more of the following
factors: waist circumference > 88 cm for women or >102 cm

for men, blood pressure ≥ 135/≥85mmHg, TG ≥ 150mg/dl,
HDL < 50mg/dl for women or <40mg/dl for men, or FPG ≥
100mg/dl [16]. Sample characteristics are illustrated in Table 1
and are expressed as mean ± standard deviation. Of the 745
subjects between the ages of 20–39 years, 20% (𝑛 = 149)
presented with the NCEP criteria for MetS. Approval for this
analysiswas provided by theUniversity ofAkron Institutional
Review Board.

2.2. Statistical Analysis. The data was arranged in a column-
wise format with each subject given a sequence identifier.
Data management was performed using data set merging
and data subset functions with statistical analysis performed
using IBM SPSS version 19. A CHAID algorithm analysis was
used to develop the decision tree models. CHAID decision
trees are nonparametric procedures that make no assump-
tions of the underlying data. This algorithm determines how
continuous and/or categorical independent variables best
combine to predict a binary outcome based on “if-then”
logic by portioning each independent variable into mutually
exclusive subsets based on homogeneity of the data. For
this study, the response variable is the presence or absence
of MetS. According to Kass (1980), the CHAID algorithm
operates using a series of merging, splitting, and stopping
steps based on user-specified criteria as follows [17].

The merging step operates using each predictor variable
where CHAID merges nonsignificant categories using the
following algorithm.

(1) Perform cross-tabulation of the predictor variable
with the binary target variable.

(2) If the predictor variable has only 2 categories, go to
step 6.

(3) 𝜒2-test for independence is performed for each pair
of categories of the predictor variable in relation to
the binary target variable using the 𝜒2 distribution
(df = 1) with significance (𝛼merge) set at 0.05. For
nonsignificant outcomes, those paired categories are
merged.

(4) For nonsignificant tests identified by 𝛼merge > 0.05,
those paired categories are merged into a single
category. For tests reaching significance identified by
𝛼merge ≤ 0.05, the pairs are not merged.

(5) If any category has less than the user-specified mini-
mum segment size, that pair is merged with the most
similar other category.

(6) The adjusted𝑃 value for themerged categories using a
Bonferroni adjustment is utilized to control for Type
I error rate.

The splitting step occurs following the determination of
all the possible merges for each predictor variable. This step
selects which predictor is to be used to “best” split the node
using the following algorithm.

(1) 𝜒2-test for independence using an adjusted𝑃 value for
each predictor.
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Table 1: Subject demographics and descriptive statistics.

Parameter Mean ± standard
deviation (n = 745)

Age (yr) 29.3 ± 5.8
Weight (kg) 82.7 ± 21.3
Height (cm) 168.2 ± 9.9
Body mass index (kg/m2) 29.2 ± 6.8
Systolic blood pressure (mmHg) 113.8 ± 11.7
Diastolic blood pressure (mmHg) 66.7 ± 11.8
Waist circumference (cm) 96.8 ± 15.8
HDL (mg/dl) 51.30 ± 14.9
Triglyceride (mg/dl) 126.7 ± 114.3
Fasting plasma glucose (mg/dl) 98.0 ± 24.6
Values are mean ± standard deviation. HDL: high-density lipoprotein
cholesterol (n = 745; male = 335, female = 410).

(2) The predictor with the smallest adjusted 𝑃 value (i.e.,
most statistically significant) is split if the 𝑃 value less
than the user-specified significance split level (𝛼split) is
set at 0.05; otherwise the node is not split and is then
considered a terminal node.

The stopping step utilizes the following user-specified
stopping rules to check if the tree growing process should
stop.

(1) If the current tree reached the maximum tree depth
level, the tree process stops.

(2) If the size of a node is less than the user-specified
minimum node size, the node will not be split.

(3) If the split of a node results in a child node whose
node size is less than the user-specified minimum
child node size value, the node will not be split. The
parent node is the level where the data set divides into
child nodes that can themselves become either parent
nodes or end in a terminal or decision node.

(4) The CHAID algorithm will continue until all the
stopping rules are met.

The CHAID analysis was run in duplicate with parent
nodes defined at 20 subjects, child node defined at 5 subjects,
and significance set at (𝛼merge, 𝛼split, and 𝑃 value) ≤0.05.

For the first run, the first level or first division was user-
specified as waist circumference due to the measurement
of this parameter having the lowest cost in MetS screening
[18, 19]. The second run was utilized as a comparison to the
first model with no first division user-specified. This allowed
the algorithm to determine the parameter of the first split.
CHAIDaccuracy anddetectionwas expressed as percentages.

Logistic regression with testing for multicollinearity was
performed on the five factors used to define MetS as a
parametric comparison to the CHAID models. Results were
expressed as overall accuracy of the logistic regression model
and detection of MetS, both expressed as percentages with
significance of the overall model set at 𝑃 ≤ 0.05.

3. Results

3.1. CHAID: Waist Circumference User-Specified. The deci-
sion tree algorithm partitioned the data into statistically
significant subgroups that were mutually exclusive and
exhaustive [17]. The tree analysis in Figure 1 shows the 4-
level CHAID tree with a total of 29 nodes, of which 15
were terminal nodes. Four major predictor variables reached
significance to be included in this model including waist
circumference, TG, HDL, and FPG.The blood pressure MetS
criteria, sex, age, and ethnicity did not reach significance
for inclusion in the model. This model had an overall
classification accuracy of 92.3% with its ability to detect MetS
at 71.8%.

The first level of the tree was split into four initial
branches according to the user-specified first level on waist
circumference. The mean waist circumference of this sample
was 96.82 cm with 49.1% of the total population and 86.6%
of the population with MetS presenting with the NCEP
waist circumference criteria. The MetS prevalence of sub-
jects whose waist circumference was less than 86 cm was
0.5%, which was significantly less than subjects whose waist
circumference was between 86 and 94 cm, between 94 and
103 cm, or greater than 103 cm (8.8%, 21.5%, or 45.8%, resp.).

As seen in the second level of the tree, HDL and TG
were shown to be the next best predictor variables for each
of the waist circumference splits in the first level. The subset
of subjects categorized by a waist circumference less than
86 cm and who had HDL less than or equal to 38mg/dl had
a higher prevalence of MetS (4.8%) than those who had an
HDL greater than 38mg/dl (0.0%). In the subset of subjects
with a waist circumference greater than 103 cm, the next split
based on HDL of less than or equal to 38mg/dl and 38–
49mg/dl and greater than 49mg/dl had MetS prevalence of
82.1%, 45.3%, and 7.9%, respectively.

In the subset of subjects categorized by a waist circum-
ference between 86 and 94 cm the next level based on TG
less than 138mg/dl resulted in lower MetS prevalence (1.6%)
compared to TG greater than 138mg/dl (36.4%). The subset
of subjects categorized by a waist circumference between 94
and 103 cm and the next level of TG greater than 162mg/dl
had a MetS prevalence of 57.8% compared to TG less than
or equal to 162mg/dl (5.1% MetS). These results indicate
that further testing for MetS might not be warranted for
subjects presenting with a waist circumference less than
86 cm but would be recommended for those in either of the
subcategories of waist circumference.

FPG level was the most prominent variable in the third
level of the tree. The only exception was the split based HDL
for subjects who had a waist circumference between 94 and
103 cm and TG level was greater than 162mg/dl. In the subset
of subjects whose waist circumference was between 86 and
94 cm and TG level was less than or equal to 138mg/dl,
FPG less than or equal to 103mg/dl resulted in 0% MetS
prevalence compared to the subset greater than 103mg/dl
(16.7%). This was consistent for subjects who had TG greater
than 138mg/dl with the next level based on FPG less than
or equal to 92mg/dl (0%) compared to FPG greater than
92mg/dl (52.2%).
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Figure 1:MetS:metabolic syndrome, TG: triglyceride (mg/dl), HDL: high-density lipoprotein cholesterol (mg/dl),Waist: waist circumference
(cm), and FPG: fasting plasma glucose (mg/dl).

In the subset of subjects whose waist circumference was
between 94 and 103 cm and TG level was less than or equal
to 162mg/dl, FPG again resulted in a 0% MetS prevalence
compared to FPG greater than 162mg/dl (18.5%). In the
subset of subjects whose waist circumference was between
94 and 103 cm and TG level was greater than 162mg/dl,
HDL less than or equal to 38mg/dl resulted in higher MetS
prevalence of 82.6% compared to HDL greater than 38mg/dl
(31.8%). In the subset of subjects whose waist circumference
was greater than 103 cm, HDL level greater than 49mg/dl and
FPG greater than 103mg/dl had a MetS prevalence of 2.1%
compared to FPG less than or equal to 103mg/dl (26.7%).
Note that FPG level was the only variable in the fourth level
of the tree.

Terminal nodes (nodes that do not split any further) are
the ends of each pathway where the prevalence is equated to
the likelihood of presenting withMetS. Decision rules for the
detection of MetS, presented in Table 2, show the “if-then”
logic for each of the 15 terminal nodes. The terminal nodes
are chronologically sorted by the proportion ofMets detected,
where the highest proportion of 94.4% MetS occurred in
node 29 and the lowest proportion of 0% occurred in nodes
6, 14, 16, and 18.

3.2. Model Comparison. The following are the results of the
user-specified first split model, referred to as the proposed
CHAID model, as compared to the CHAID model with
no user-specified first split and a logistic regression derived
model.

For the CHAID model with no user-specified first split,
the first variable was split on FPG. Like the proposed CHAID
model, four major predictor variables were selected by the
algorithm in this model including waist circumference, TG,
HDL, and FPG. The blood pressure MetS criteria, age, sex,
and ethnicity did not reach significance and thus were not
used in themodel. Compared to the proposedCHAIDmodel,
this model had a lower, but not practically different, overall
classification accuracy of 92.2% with its ability to detect MetS
at 69.8%.

The logistic regression model based on the MetS criteria
used in CHAIDmodels had no violations of multicollinearity
with themodel reaching significance. Compared to proposed
CHAID model, this logistic regression model had a lower
overall classification accuracy of 89.4% with its ability to
detect MetS at 61.7%.

4. Discussion

The current study aimed to generate a model for the early
detection of MetS in young adults. This model was derived
using a CHAID algorithm based on the presence of MetS
as the target variable and the MetS classification criteria as
its predictors whose values were obtained from 2009-2010
NHANES data. MetS is classified by the presence of 3 of 5
criteria defined by either the NCEP or IDF guidelines. The
novelty of this study is that the pathways derived from this
model show promise in accurately detecting MetS with an
easily obtained measurement.

The CHAID model illustrates multilevel interactions
among risk factors to identify stepwise pathways to detect
MetS. The five variables (waist circumference, TG, HDL,
FPG, and blood pressure) were included as predictors of
the target variable, MetS. Interestingly, the proposed CHAID
model with the user-specified first split on waist circumfer-
ence outperformed the CHAID algorithm without first-level
split specification and the logistic regression model in both
overall accuracy and ability to detect MetS.

The user-specified first split on waist circumference in
the decision tree was based on the current literature showing
that high waist circumference is the most frequent risk
component in people with metabolic syndrome [6] and
is highly correlated with diabetes and cardiovascular risks
[2, 5]. The IDF guidelines use waist circumference as the
first criteria followed by two or more other cardiometabolic
abnormalities [16]. However, in these guidelines, the waist
circumference criteria would be met for MetS if BMI was
greater than 30 kg/m2 [1]. In the current study, the mean
BMI was 29.2 ± 6.8, suggesting that user-specified waist
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Table 2: Decision rules for the prediction of the incidence risk of MetS from the CHAID algorithm.

Node number Level 1 Level 2 Level 3 Level 4 MetS probability
29 94 < waist circumference ≤ 103 TG > 162 HDL ≤ 38 FPG > 94 94.4
11 Waist circumference > 103 HDL ≤ 38 ∗ ∗ 82.1
17 86 < waist circumference ≤ 94 TG > 138 FPG > 92 ∗ 52.2
12 Waist circumference > 103 38 <HDL ≤ 49 ∗ ∗ 45.3
28 94 < waist circumference ≤ 103 TG > 162 HDL ≤ 38 FPG ≤ 94 40.0
21 94 < waist circumference ≤ 103 TG > 162 HDL > 38 ∗ 31.8
27 Waist circumference > 103 HDL > 49 FPG > 103 ∗ 26.7
19 94 < waist circumference ≤ 103 TG ≤ 162 FPG > 99 ∗ 18.5
15 86 < waist circumference ≤ 94 TG ≤ 138 FPG > 103 ∗ 16.7
5 Waist circumference ≤ 86 HDL ≤ 38 ∗ ∗ 4.9
26 Waist circumference > 103 HDL > 49 FPG ≤ 103 ∗ 2.1
6 Waist circumference ≤ 86 HDL > 38 ∗ ∗ 0.0
14 86 < waist circumference ≤ 94 TG ≤ 138 FPG ≤ 103 ∗ 0.0
16 86 < waist circumference ≤ 94 TG > 138 FPG ≤ 92 ∗ 0.0
18 94 < waist circumference ≤ 103 TG ≤ 162 FPG ≤ 99 ∗ 0.0
∗represents not significant. Growing method: exhaustive CHAID; dependent variable: MetS: metabolic syndrome, TG: triglyceride, HDL: high-density
lipoprotein cholesterol, and FPG: fasting plasma glucose.

circumference in the decision tree resulted in findings similar
to those used by IDF in MetS classification. Two recent
studies by Worachartcheewan et al. [20] and Kawada et al.
[21] identified the optimal waist circumference cutoff for
prediction of MetS. The optimal waist circumference cutoff
in the study by Worachartcheewan et al. [20] and Kawada
et al. [21] was in the range of 85–88 cm in male and females
and 83–85 cm in males, respectively, compared with 86 cm
in men and women in the current study. The comparability
of these results supports the validity of our findings showing
that the CHAID algorithm waist circumference cutoffs could
accurately detect MetS.

Central adiposity has been identified as a strong pre-
dictor of MetS and a strong contributor to BMI and waist
circumference. Després et al. [22] demonstrated a strong
correlation between BMI and waist circumference (r = 0.91,
𝑃 < 0.05) that is comparable to the current study (r =
0.93, data not shown). Furthermore, BMI did not take into
consideration the actual body composition, although waist
circumference andBMI have been shown to be a strong proxy
of visceral adiposity [23]. However, large variances of girth
measurements in epidemiological samples weaken the clini-
cal interchangeability between BMI and waist circumference.
Waist circumference as compared to BMI might therefore
be a more sensitive predictor of MetS, especially in the at-
risk young adult population. Awaist circumference screening
could more readily and easily alert health providers to the
increased metabolic risks associated with excessive visceral
fat accumulation over other MetS classification criteria that
require fasting, blood draws, and analysis. Therefore waist
circumference shows promise as an initial predictor in the
detection of MetS prior to further testing.

Interestingly, blood pressure did not reach significance to
be included in the final model. One possible explanation is
that elevations in blood pressure are less prevalent in younger
adults [13].Within our sample, the blood pressure criteria had

the lowest prevalence of all the MetS classification criteria for
subjects with and without MetS (10.1% and 0.8%, resp.).

4.1. Limitations. The current study was intended as a pilot
study meant to explore and test the CHAID algorithm’s
utility in creating pathways to detect MetS in young adults.
Although this model had an overall accuracy of 92.3%, its
ability to accurately detect MetS was only 71.8%.The CHAID
algorithm requires large sample sizes to operate effectively.
Given that the parent and child nodes were set to split at
small sizes (20 and 5, resp.) and that there was no validation
of the model, the derived pathways for MetS detection from
this study are not intended for clinical use. Furthermore, the
MetS diagnosis in this analysis was not a clinical diagnosis but
was rather determined by the presence of three ormore of the
NCEP criteria based on their prevalencewithin the secondary
data set. Additionally, this analysis did not account for the
use of medications to control blood pressure, lipids, and/or
plasma glucose.

The CHAID analysis did not identify any significant
differences in MetS based on sex or ethnicity in this sample
although previous studies have shown differences in MetS
risk based on sex and ethnicity [24, 25]. Considering the
limitation of the current study, future investigations warrant
utilizing sufficiently large sample sizes, considering the differ-
ence in MetS based on the sex and ethnicity and performing
model validation.

5. Conclusion

In summary, these preliminary findings suggest that young
adults at risk for MetS, who are not routinely screened for
fasting blood lipids or FPG, could be identified for further
follow-up testing based on their waist circumference. Future
research warrants the investigation of other anthropometric
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measures, simple point-of-care techniques, and validation of
these decision tree methods to create a strong algorithm for
predicting and/or the early detection ofMetS in young adults.
There are no clinically established criteria for premetabolic
syndrome. Decision tree methods are promising regarding
preliminaryMetS detection and can aid in the development of
a formal definition of premetabolic syndrome. If established,
premetabolic syndrome diagnostic criteria could improve
outcomes associated with the development of MetS or could
halt the progression of MetS and its relative consequences.
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Associating microRNAs (miRNAs) with cancers is an important step of understanding the mechanisms of cancer pathogenesis and
finding novel biomarkers for cancer therapies. In this study, we constructed a miRNA-cancer association network (miCancerna)
based on more than 1,000 miRNA-cancer associations detected from millions of abstracts with the text-mining method, including
226miRNA families and 20 common cancers.We further prioritized cancer-relatedmiRNAs at the network level with the random-
walk algorithm, achieving a relatively higher performance than previous miRNA disease networks. Finally, we examined the top
5 candidate miRNAs for each kind of cancer and found that 71% of them are confirmed experimentally. miCancerna would be an
alternative resource for the cancer-related miRNA identification.

1. Introduction

MicroRNAs (miRNAs) are a large class of small noncoding
RNAs [1] known to be functionally involved in a wide range
of biological processes including embryo development, cell
growth, differentiation, apoptosis, and proliferation [2–5].
Recently, it has been found that miRNAs play important roles
in human tumor genesis and many of them have also been
applied as novel biomarkers for cancer therapies [6–11], which
attracts more andmore efforts in revealing the complex asso-
ciations betweenmiRNAs and cancers. However, the existing
literature usually focused on the relationship between several
miRNAs and a specific cancer, leaving the comprehensive
miRNA-cancer network unrevealed. Therefore, fully uncov-
ering the associations between miRNAs and cancers would
be extremely interesting and valuable for identifying cancer-
related miRNA and understanding the mechanisms behind.

To this aim, the manually collected miRNA-disease asso-
ciation databases HMDD [12] and miR2Disease [13] have

been established. At present, these manually created miRNA-
disease networks have been used to predict disease-related
miRNAs [14–16] and achieved relatively high accuracies,
opening opportunity of prioritizing miRNAs with bioinfor-
matics methods.

However, thousands of papers on miRNA and cancer
researches are published each year, making it difficult to
manually check papers. On the other hand, automatic text-
mining methods are needed to extract reliable miRNA-
disease associations [17] from the increasing database.

In this paper, we collected 1,018 associations between 226
miRNA families and 20 common cancers by extracting from
more than 7.1 million publications with an automatic text-
miningmethod. All these relationships have been recorded in
a database named miCancerna, which can be freely assessed
at http://micancerna.appspot.com/.We further constructed a
miRNA-cancer general view on top 5% significant associa-
tions for visualizing the roles of miRNAs in different cancers
and prioritized the cancer-related miRNAs using the random
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walk with restart algorithm (RWRA) [14] on miRNA-cancer
network built on the data in miCancerna. By analyzing the
top 5 associated miRNAs of 20 cancers according to Fisher’s
exact tests, we found experimental evidence for 71% of these
miRNA-cancer relationships, and the rest might be candidate
cancer-related miRNAs for further experimental validation.
The constructed miRNA-cancer network would be extremely
valuable for comprehensively understanding themechanisms
of cancers and identifying cancer-related miRNA genes.

2. Materials and Methods

2.1. Collecting Resource Literature. We collected the abstracts
from NCBI’s MEDLINE database as our target literature
resource. MEDLINE is a comprehensive database containing
the abstracts of millions of articles in biomedical area. Since a
large number of papers are not fully accessible in the PubMed
database, we only consider the abstracts for the papers, which
are always available.

In 2000, Reinhart et al. [18] identified the secondmiRNA,
and thereafter researchers began to pay attention to the
importance of miRNAs. Therefore, we mainly focus on
the papers that have been published in 2000 and after. In
total, 7,207,066 abstracts were retrieved and then screened
using keywords, such as “Humans” or “Animals,” within the
PubMed search for eliminating plant and virus miRNAs in
the following text-mining analysis. This filtration yielded
5,606,308 paper abstracts.

Currently, the 20 most common cancers reported by
National Cancer Institute (http://www.cancer.gov/) are con-
sidered in our study, including leukemia, lung cancer bladder
cancer, brain cancer, breast cancer, cervix cancer, colorec-
tal cancer, esophageal cancer, kidney cancer, liver cancer,
melanoma, myeloma, non-Hodgkin lymphoma, oral cancer,
ovarian cancer, pancreatic cancer, prostate cancer, stomach
cancer, thyroid cancer, and uterine cancer. The abstracts
are individually marked with cancer types by the following
steps: first, we mapped each cancer type to its corresponding
MeSH (medical subject headings) term(s), the U.S. National
Library ofMedicine’s controlled vocabulary that aremanually
assigned for articles archived in MEDLINE describing their
subject matters, and then compiled a list of standard names
of each type of cancer. Subsequently, we searched each
article abstract for the MeSH annotations. The abstracts with
MeSH terms in our cancers name list are marked with the
corresponding cancer and selected for the following text-
mining processing.

2.2. Establishing miRNA-Cancer Networks by Text-Mining
Method. With the selected abstracts, we firstly established
relationships between miRNAs and cancers by a text-mining
method.The associations betweenmiRNAs and cancers were
estimated based on the cooccurrence assumption, which is
the fundamental assumption in the field of text-mining and
can be used to infer whether two terms are associated or not.
In our case, if a particular miRNA appears in the abstracts
marked by a specific cancer frequently, we can reasonably
assume that they cooccurred and tend to be related. To

establish the associations between miRNAs and cancers, we
detect the appearance of miRNAs in the abstracts marked by
cancer types. In this study, the regular expression was applied
to match miRNA names against the texts with the following
steps. (1) miRNAs (such as “miR-1” and “miR-2”) were firstly
extracted from the abstractswith the nomenclature of a “miR”
prefix accompanied by a unique identifying number [19]. (2)
Following the conventions, a prefixed species/state identifier
can be added (e.g., “hsa-miR-1” in Homo sapiens and “pre-
miR-1” for a precursor) and additional suffixes can be given
to indicate loci or variant (e.g., “miR-1a-1”) [20]. (3) The
regular expression was also designed for the variants of some
miRNAs, such as “lin-4” and “let-7.” (4) Abbreviations for
more than one miRNA are also recognized by the regular
expression, for example, “miR-221/222” and “miR-15 & -16.”

The significance levels of the associations of the miRNAs
and the cancers extracted from the marked abstracts were
estimated by one-sided Fisher’s exact tests [21]. For a pair
of the miRNA 𝑀 and the cancer 𝐶, the 𝑃 value of Fisher’s
exact test is calculated based on hypergeometric distribution,
as follows: 𝑃 = ( 𝑎+𝑏

𝑎
) ( 𝑐+𝑑
𝑐
) / (
𝑛

𝑎+𝑐
) = (𝑎 + 𝑏)!(𝑐 + 𝑑)!(𝑎 +

𝑐)!(𝑐+𝑑)!/(𝑎!𝑏!𝑐!𝑑!𝑛!), where 𝑛 is denoted as the total number
of papers included in the text-mining analysis,𝑎 stands for the
number of papers with both the miRNA𝑀 and the cancer 𝐶
in the abstracts, 𝑏 and 𝑐 represent, respectively, the number
of abstracts containing one termand excluding the other, and
𝑑 is the number of papers with neither of the terms. The
top 5% miRNA-cancer associations with the minimum 𝑃
value are considered as significant and were used to generate
the general view for miRNA-cancer network. The miRNA-
cancer network is a bipartite network composed by miRNA
nodes and cancer nodes. Each edge in miCancerna connects
a miRNA and one of its corresponding cancers.

2.3. Text-Mining Quality Check. We first queried PubMed
with “MIR or MIRN or MIRNA or MICRORNA” and
randomly picked up 100MEDLINE abstracts with at least one
miRNA identifier from the querying result as our evaluating
data.We then investigated the reliability of detectingmiRNAs
in texts using the 𝐹-measure, which is the harmonic mean of
two other measures, recall and precision, as follows:

Recall = TP
TP + FN

,

Precision = TP
TP + FP

,

𝐹-measure = 2 × Recall × Precision
Recall + Precision

,

(1)

where TP, FP, and FN are the number of true positives, false
positives, and false negatives, respectively.

2.4. Random Walk with Restart Method. Based on the net-
work constructed by the data from miCancerna, a random
walk with restart (RWRA) method is applied to prioritize
cancer-related miRNAs.

RWRA is one of the random walk models widely used in
disease gene discovery [22]. It simulates a random walker’s
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moves in a given network and the walker moves from a
current node to a direct neighboring node or restart with a
training node with the probability (𝛼). The movement given
out by RWRA is defined as follows:

𝑃
𝑡+1
= (1 − 𝛼)𝑀𝑃

𝑡
+ 𝛼𝑃
0
, (2)

where 𝑀 is a column-normalized adjacency matrix repre-
senting the given network. In this case, each nonzero node
in𝑀 stands for a certain association between a miRNA and
a cancer, and these nodes are taken as seeds. 𝑃

𝑡
is a vector

representing the probabilities of the walker at each node
at time 𝑡, and 𝑃

0
is the initial probability vector in which

training nodes are equally assigned 1/𝑁 (𝑁 is the number
of seeds) while others are 0. The process is iterated until
𝑃 reaches a stable status when the difference between 𝑃

𝑡+1

and 𝑃
𝑡
(measured by 𝐿1 norm) is less than a threshold value

(10−6 in this study). The stable probability is defined as 𝑃
∞
.

The candidate nodes are then ranked in descending order
according to 𝑃

∞
.

2.5. Leave-One-Out Cross-Validation. The performance of
cancer-related miRNA prioritization by random walk with
restart algorithm through miCancerna could be evaluated
by calculating the area under the ROC through the leave-
one-out cross-validation. For each training node, we took
it as a candidate node and randomly picked 20 miRNAs
not belonging to the same cancer as testing nodes and then
prioritized them as above. For each threshold, the sensitivity
(SN) and specificity (SP) are defined as follows:

SN = TP
TP + FN

,

SP = TN
FP + TN

,

(3)

where TP (true positive) is the number of training nodes with
rank above the threshold, FN (false negative) is the number
of training nodes with rank under the threshold, TN (true
negative) is the number of testing nodes with rank under the
threshold, and FP (false positive) is the number of test nodes
with rank above the threshold. The ROC curve shows the
relationship between SN and 1-SP, and the AUC means the
area under the ROC curve.

3. Result and Discussion

3.1. Online Resource for miRNA-Cancer Network. In the first
release, miCancerna records 1,018 associations between 226
miRNA families and 20 common cancers extracted from
7.2 million papers. Now all the data that miCancerna refers
to can be freely assessed at http://micancerna.appspot.com/,
including the associations, the supporting papers, and signif-
icant levels for each association. miCancerna will be updated
periodically.

To check the text-mining quality, we randomly picked up
100 MEDLINE abstracts that contained at least one miRNA
identifier from the search results by queryingMEDLINEwith
“MIR or MIRN or MIRNA or MICRORNA.” A total of 739

Table 1: Top 10 associates between miRNAs and cancers.

miRNA Cancer Papers 𝑃 value
miR-15 Leukaemia 35 6.804 × 10−43

miR-16 Leukaemia 33 5.028 × 10−36

miR-122 Liver cancer 22 9.742 × 10−26

miR-181 Leukaemia 23 3.142 × 10−25

miR-155 Non-Hodgkin lymphoma 22 7.393 × 10−22

Let-7 Lung cancer 34 1.110 × 10−19

miR-223 Leukaemia 16 1.987 × 10−18

miR-17 Non-Hodgkin lymphoma 19 3.772 × 10−18

miR-21 Breast cancer 31 1.659 × 10−16

miR-221 Thyroid cancer 11 1.607 × 10−14

miRNA identifiers were manually recognized in the texts
of evaluating data, while our regular expression correctly
matched 735 of them (true positive, TP), miscalled 2 (false
positive, FP), and missed 4 (false negative, FN). So the
miRNA annotation gained recall of 0.9946, precision of
0.9973, and𝐹-measure of 0.9959, which demonstrated a fairly
high reliability of our regular expression.

According to these comparison results, we concluded
that miCancerna is a high-quality resource of miRNA-cancer
associations.

3.2. miRNA-Cancer Network Visualization. To reveal the
roles of miRNA in different cancers, we constructed a
bipartite network with the top 5% associations based on
Fisher’s exact test 𝑃 values in miCancerna, consisting of
40 miRNA families and 13 types of cancers (Figure 1).
In this bipartite network, miRNAs are only connected
to cancers and cancers are only connected to miRNAs.
The miRNA-cancer network was visualized with Pajek
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/). It is inter-
esting to find that almost all these cancers (except the stomach
cancer) can be connected via miRNAs, which indicated that
different cancers might share common pathogenic com-
ponents regulated by these interconnected miRNAs, while
stomach cancer may be different with others.

As shown in Figure 1, miRNAs may have different
involvements in cancers. Some miRNAs are specifically asso-
ciated with a specific cancer. For example, miR-15 andmiR-16
are tendentiously related to leukemia, and miR-122 is almost
exclusively associated with liver cancer. These miRNAs may
be used as biomarker candidates for diagnosis and efficacy
of therapies for corresponding cancers. By contrast, some
miRNAs tend to be associated with various cancers. One
example is miR-21, which is shown to significantly associate
with breast cancer, colorectal cancer, liver cancer, and pancre-
atic cancer, indicating that target genes of miR-21 might play
critical roles in tumor formation.

It is interesting that four miRNA-cancer associations in
top 10 (Table 1) are miRNA-leukemia associations, and 28.6%
(12) of significant associations were related to leukemia,
which makes leukemia the most miRNA-related cancer. Sim-
ilarly, 8 (19.0%) miRNA families were related to breast cancer
in significant miRNA-cancer associations. Furthermore, we
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Figure 1: Network illustrated significant associations of miRNAs and cancers. Red circles and green squares represent cancers and miRNAs,
respectively, with different sizes according to the number of corresponding annotated papers (logarithmic). Each link represents a miRNA-
cancer association with colour and width according to the strength of relationship.

found that miR-21 is the most cancer-related miRNA, which
is associated with 4 (30.77%) different cancers in significant
associations (breast cancer, pancreatic cancer, liver cancer,
and colorectal cancers), indicating that miR-21 may be
involved in an important pathway in cancer formation.

3.3. Prioritization of Cancer-Related miRNAs. We applied
RWRA on the network established by miCancerna to priori-
tize candidate cancer-related miRNAs, and the performance
is evaluated by leave-one-out cross-validation. With a restart
probability alpha of 0.9, the AUC of ROC curve can reach
0.798 (Figure 2), while theAUCof 1 stands for the perfect per-
formance andAUC of 0.5 indicates the random performance.
The performances with different restart probabilities are
showed in Table 2.The AUC improves as alpha increases, but
the variation is small. To rule out the possibility that the per-
formance of miCancerna is achieved by chance, a permuta-
tion test with 300 runswas performed. For each run, the seeds
are randomly selected from the candidate nodes.The average
AUC of random permutations obtained by leave-one-out
cross validation is 0.513, and the distribution of the random
permutation AUCs is shown in Figure 3. It is obvious that
there is significant difference between the AUC achieved by
miCancerna and the random permutations, which supports
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Figure 2: ROC curves for RWRA on miCancerna and previous
miRNA-cancer network.
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Table 2: AUC value under different alpha.

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AUC 0.7952 0.7973 0.7974 0.7978 0.7981 0.7981 0.7983 0.7983 0.7984

Table 3: Top 5 potential miRNAs of 20 cancers.

Bladder cancer Brain cancer Breast cancer Cervix cancer
miRNAs Confirm miRNAs Confirm miRNAs Confirm miRNAs Confirm
miR-15 Null let-7 Ref. [25] miR-143 dbDEMC let-7 Null
miR-34 Ref. [26] miR-145 Ref. [27] miR-223 dbDEMC miR-221 Null
miR-16 Ref. [26] miR-16 Ref. [28] miR-203 dbDEMC miR-17 Ref. [29]
miR-146 Ref. [30] miR-155 Ref. [31] miR-194 dbDEMC miR-125 Null
miR-155 Ref. [30] miR-143 Ref. [28] miR-100 dbDEMC miR-222 Null

Colorectal cancer Esophageal cancer Kidney cancer Leukemia
miRNAs Confirm miRNAs Confirm miRNAs Confirm miRNAs Confirm
miR-221 dbDEMC miR-17 dbDEMC miR-125 dbDEMC miR-200 Ref. [32]
miR-146 dbDEMC miR-222 dbDEMC miR-222 dbDEMC miR-205 Null
miR-29 dbDEMC miR-15 dbDEMC miR-146 dbDEMC miR-193 Null
miR-199 dbDEMC miR-125 dbDEMC miR-16 dbDEMC miR-9 Ref. [33]
miR-193 Null miR-200 dbDEMC miR-143 dbDEMC miR-31 Ref. [34]

Liver cancer Lung cancer Melanoma Myeloma
miRNAs Confirm miRNAs Confirm miRNAs Confirm miRNAs Confirm
miR-205 Null miR-23 dbDEMC miR-21 Ref. [35] miR-145 Null
miR-27 dbDEMC miR-148 dbDEMC miR-145 Ref. [36] miR-200 Null
miR-124 Ref. [37] miR-27 dbDEMC miR-26 Null miR-221 Ref. [38]
miR-520 dbDEMC miR-203 dbDEMC miR-143 Ref. [36] miR-34 Null
miR-203 Ref. [39] miR-520 dbDEMC miR-126 Ref. [35] miR-205 Null

Non-Hodgkin lymphoma Oral cancer Ovarian cancer Pancreatic cancer
miRNAs Confirm miRNAs Confirm miRNAs Confirm miRNAs Confirm
miR-200 dbDEMC miR-15 Null miR-26 Null miR-16 Ref. [40]
miR-205 dbDEMC miR-205 Ref. [41] miR-181 Null miR-125 Ref. [42]
miR-126 dbDEMC miR-10 Ref. [43] miR-143 Ref. [44] miR-26 Null
miR-224 dbDEMC miR-182 Null miR-10 Null miR-126 Ref. [45]
miR-23 dbDEMC miR-20 Null miR-23 Null miR-181 Ref. [40]

Prostate cancer Stomach cancer Thyroid cancer Uterine cancer
miRNAs Confirm miRNAs Confirm miRNAs Confirm miRNAs Confirm
miR-155 dbDEMC miR-155 Ref. [46] miR-15 Null miR-17 dbDEMC
miR-29 Null miR-29 Null miR-34 Null miR-222 dbDEMC
miR-30 dbDEMC miR-30 Null miR-145 Ref. [47] miR-224 dbDEMC
miR-10 dbDEMC miR-10 Ref. [48] miR-16 Null miR-30 dbDEMC
miR-199 dbDEMC miR-199 Null miR-205 Ref. [49] miR-106 dbDEMC
“Null” means we did not find experimental evidence.

that the miCancerna reveals the real involvement of miRNAs
in cancer biology.

The top 5 potential miRNAs of each cancer are presented
in Table 3, among which 71% have been evaluated by exper-
imental evidence in dbDEMC [23] or literatures published
aftermiCancerna.Theperformance of cancer-relatedmiRNA
prioritization demonstrates the reliability of miCancerna.
Moreover, the top predicted miRNAs may be the potential
cancer-related miRNAs for further study.

3.4. Comparison with Similar Databases. We made compar-
isons with similar database or networks. First we compared
the data involved in miCancerna and the manual checking
database miR2Disease on the number of evidence papers.
Formost cancers, miCancerna providesmuchmore evidence
papers thanmiR2Disease (Table 4). Second, we compared the
prediction performance of RWRA on miCancerna with the
miRNA-cancer network used in RWRMDA [14], which was
built based on HMDD, a manual database. The ROC curves
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Table 4: Number of evidence papers comparing with miR2Diease.

Cancer types miCancerna miR2Disease Increase
Bladder cancer 14 11 27.27%
Brain cancer 35 3 1067%
Breast cancer 137 58 136.2%
Cervix cancer 11 4 175%
Colorectal cancer 81 39 107.7%
Esophageal cancer 16 7 128.6%
Kidney cancer 14 4 250.0%
Leukemia 146 45 224.4%
Liver cancer 99 39 153.8%
Lung cancer 112 37 202.7%
Melanoma 21 9 133.3%
Myeloma 9 3 200.0%
Non-Hodgkin lymphoma 62 13 376.9%
Oral cancer 19 0 —
Ovarian cancer 47 18 161.1%
Pancreatic cancer 47 16 193.8%
Prostate cancer 61 19 221.1%
Stomach cancer 48 16 200.0%
Thyroid cancer 21 9 133.3%
Uterine cancer 28 5 460.0%
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Figure 3: Distribution of random AUC for miCancerna.

for both networks are showed in Figure 2. According to the
result of leave-one-out cross-validation, the network used in
RWRMDA achieved AUC of 0.763, which is lower than 0.797
achieved by miCancerna.

These results indicate that miCancerna provides an alter-
native resource of miRNA-cancer associations.

4. Conclusion

In this study, we constructed a reliable miRNA-cancer net-
work based on text-mining method, which is stored in the
database miCancerna. In current release, there are 1,018 asso-
ciations between 226 miRNA families and 20 common can-
cers. According to our test result, the miCancerna provides
a reliable and comprehensive resource of miRNA-cancer
associations, which can be further used in the identification
of cancer-related miRNAs.

For future development, we plan to consider more types
of cancers, add regulation information to the miRNA-cancer
associations, and integrate miCancerna into other related
databases, such asMISIM [24], the humanmiRNA functional
similarity and functional network.
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Lin and Wang have introduced a quadratic version of the logrank test, appropriate for situations in which the underlying survival
distributionsmay cross. In this note, we generalize the Lin-Wang procedure to incorporate weights and investigate the performance
of Lin andWang’s test and weighted versions in various scenarios. We find that weighting does increase statistical power in certain
situations; however, none of the procedures was dominant under every scenario.

1. Introduction

Lin and Wang [1] have recently introduced an ingenious
modification of the two-sample logrank statistic, appropriate
for crossing hazards alternatives.Through a simulation study,
they demonstrated that their modified test had greater power
than the commonly used logrank and Wilcoxon tests for
detecting differences between crossing survival curves. In this
note, we proposeweighted versions of the Lin-Wang (LW) test
and investigate the performance of these weighted tests in a
limited simulation study. Details are given in Section 2, and
the simulation results are presented in Section 3. We give an
example in Section 4 and conclude remarks in Section 5.

2. Methods

For consistency, we adhere to the notational conventions
introduced by Lin and Wang [1]. We have survival data from
two groups of subjects, the groups being labeled I and II,
and are interested in comparing the survival distributions of
the two groups. Events (failures or deaths) are observed at 𝑟
distinct time points 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑟
across the pooled groups.

At time 𝑡
𝑗
, the number of observed failures in each of the two

groups is denoted by 𝑑
1𝑗
for Group I and 𝑑

2𝑗
for Group II, and

the numbers at risk just before time 𝑡
𝑗
are denoted by 𝑛

1𝑗
and

𝑛
2𝑗
, respectively, for 𝑗 = 1, 2, . . . , 𝑟. Consequently, at time 𝑡

𝑗
,

there are 𝑑
𝑗
= 𝑑
1𝑗
+ 𝑑
2𝑗
failures out of 𝑛

𝑗
= 𝑛
1𝑗
+ 𝑛
2𝑗
subjects.

Subjectsmay be censored during or at the end of the period of
observation. A representative 2×2 contingency table of group
by status at observed failure time 𝑡

𝑗
is given in Table 1.

We are interested in assessing the null hypothesis

𝐻
0
: the survival distributions of the two groups are

identical versus the global alternative hypothesis.
𝐻
1
: the survival distributions of the two groups are

not identical.

Lin and Wang introduced the quadratic statistic

Δ =

𝑟

∑

𝑗=1

[𝑑
1𝑗
− 𝐸 (𝑑

1𝑗
)]
2

(1)

for comparison of the two groups: they argued that Δ reflects
the quadratic distance between the two underlying survival
distributions hence should be sensitive to differences in either
direction. They therefore based inference relating to 𝐻

0
on

the standardized version of Δ, which they denoted as 𝑇∗.
Let us define a weighted version of Δ as

Δ
𝑤
=

𝑟

∑

𝑗=1

𝑤
𝑗
∗ [𝑑
1𝑗
− 𝐸(𝑑

1𝑗
)]
2

(2)
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Table 1: Survival experience of the two groups at observed failure
time 𝑡

𝑗
.

Group Number of
failures

Number of
non-failures

Number at risk just
before 𝑡

𝑗

I 𝑑
1𝑗

𝑛
1𝑗
− 𝑑
1𝑗

𝑛
1𝑗

II 𝑑
2𝑗

𝑛
2𝑗
− 𝑑
2𝑗

𝑛
2𝑗

Total 𝑑
𝑗

𝑛
𝑗
− 𝑑
𝑗

𝑛
𝑗

with arbitrary weights 𝑤
𝑗
, usually nonnegative. Our test

statistic for assessing 𝐻
0
is the standardized version of Δ

𝑊
;

namely,

𝑇
𝑤
=
Δ
𝑤
− 𝐸 (Δ

𝑤
)

√Var (Δ
𝑤
)

, (3)

where 𝐸(Δ
𝑊
) and Var(Δ

𝑊
) are calculated from the marginal

hypergeometric distribution of the 𝑑
1𝑗
. In particular,

𝐸 (Δ
𝑤
) =

𝑟

∑

𝑗=1

𝑤
𝑗
∗

𝑛
1𝑗
𝑛
2𝑗
𝑑
𝑗
(𝑛
𝑗
− 𝑑
𝑗
)

𝑛
2

𝑗
(𝑛
𝑗
− 1)

, (4)

and Var(Δ
𝑊
) is given by

Var (Δ
𝑤
) =

𝑟

∑

𝑗=1

𝑤
2

𝑗
∗ {𝐸 (𝑑

4

1𝑗
) − 4𝐸 (𝑑

3

1𝑗
) 𝐸 (𝑑

1𝑗
)

+ 6𝐸 (𝑑
2

1𝑗
) [𝐸 (𝑑

1𝑗
)]
2

− 3[𝐸 (𝑑
1𝑗
)]
4

− [Var (𝑑
1𝑗
)]
2

} .

(5)

The raw moments of 𝑑
𝑖𝑗
can be readily calculated from the

following expression for the factorial moments:

𝐸 (𝑑
(𝑟)

1𝑗
) =

𝑛
(𝑟)

1𝑗
𝑑
(𝑟)

𝑗

𝑛
(𝑟)

𝑗

, (6)

where 𝑛(𝑟) = 𝑛∗(𝑛 − 1) ∗ ⋅ ⋅ ⋅ ∗ (𝑛 − 𝑟 + 1). For reference,

𝐸 (𝑑
1𝑗
) =

𝑛
1𝑗
𝑑
𝑗

𝑛
𝑗

, (7)

Var (𝑑
1𝑗
) =

𝑛
1𝑗
𝑛
2𝑗
𝑑
𝑗
(𝑛
𝑗
− 𝑑
𝑗
)

𝑛
2

𝑗
(𝑛
𝑗
− 1)

, (8)

𝐸 (𝑑
2

1𝑗
) = Var (𝑑

1𝑗
) + [𝐸(𝑑

1𝑗
)]
2

, (9)

𝐸 (𝑑
3

1𝑗
) = 3𝐸 (𝑑

2

1𝑗
) − 2𝐸 (𝑑

1𝑗
) +

𝑛
(3)

1𝑗
𝑑
(3)

𝑗

𝑛
(3)

𝑗

, (10)

𝐸 (𝑑
4

1𝑗
) = 6𝐸 (𝑑

3

1𝑗
) − 11𝐸 (𝑑

2

1𝑗
) + 6𝐸 (𝑑

1𝑗
) +

𝑛
(4)

1𝑗
𝑑
(4)

𝑗

𝑛
(4)

𝑗

. (11)

We note in passing that there are typographical errors in the
expressions for 𝐸(𝑑3

𝑖𝑗
) and 𝐸(𝑑4

𝑖𝑗
) in Lin and Wang [1].

Under the same assumptions as enumerated by Lin and
Wang [1]; namely, the underlying failure times are indepen-
dent, the censoring distributions (if any) for group I and
group II are independent of each other, and of the respective
survival distributions, the total number of observed failures
and the distinct number of failure times are large, and the
weights are positive and bounded; then𝑇

𝑤
approximately fol-

lows a standard normal distribution. We are thus specifying
the usual random censorship model, with further conditions
to ensure approximate normality of 𝑇

𝑤
. For assessing the null

hypothesis of equality of the underlying survival distributions
of the two groups, Lin and Wang propose a two-sided test
statistic based on 𝑇∗, and we will follow that convention with
𝑇
𝑤
.

3. Simulation Studies

In this section, we will investigate the empirical performance
of weighted versions of the LW statistic, compared to the
original (unweighted) LW statistic.

3.1. Empirical Type I Error. We first investigate achieved
significance levels of the LW statistic and three weighted ver-
sions. Following LW, we generated two independent random
samples from the exponential distribution with mean of 4.
The censoring distribution is Uniform (0, 20) in each group.
The number of iterations in each simulation study is 5000.
The empirical Type I error is calculated as the proportion of
5000 repeated random samples in which we reject the null
hypothesis at the alpha = 0.05 significance level, under the
assumption that 𝑇 and weighted versions 𝑇

𝑤
have normal

distributions, and two-sided tests are utilized. We report on
three weighted versions of the LW statistic, delineated by
different sets of weights 𝑤

𝑗
, 1 ≤ 𝑗 ≤ 𝑟: (i) 𝑤

𝑗
= 𝑛
𝑗
; (ii)

𝑤
𝑗
= √𝑛
𝑗
; (iii) 𝑤

𝑗
= 1/SD(𝑑

1𝑗
), where SD(𝑑

1𝑗
) = √Var(𝑑

1𝑗
).

The empirical Type I errors are given in Table 2.
In this limited simulation study the empirical Type I

errors are quite close to the theoretical 0.05 value, for both
the LW statistic and the weighted variants. The normal
distribution seems an adequate approximation for the sample
sizes investigated.

3.2. Empirical Power. Following LW, we undertook sim-
ulation studies comparing the empirical powers of the
unweighted LW statistic with its weighted variants, under the
three following scenarios.

Scenario 1. This scenario entails crossing survival curves.The
LW specification is as follows. “In Group I the survival times
follow an exponential distribution with mean of 6. In Group
II the survival times follow an exponential distribution with
mean of 2. However, if the survival time in Group II is greater
than or equal to 1.5, then the survival time is regenerated
to follow an exponential distribution with mean of 40. The
censoring distribution is Uniform (0, 20) in Group I and
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Table 2: Empirical levels of the Lin-Wang test, and three weighted
variants.

Sample sizes LW LW
𝑤1

LW
𝑤2

LW
𝑤3

(20, 20) 0.044 0.045 0.044 0.042
(30, 30) 0.048 0.053 0.053 0.048
(40, 40) 0.046 0.048 0.047 0.045
(50, 50) 0.051 0.053 0.050 0.049
(60, 60) 0.053 0.045 0.051 0.053
(70, 70) 0.049 0.049 0.051 0.047
(80, 80) 0.056 0.047 0.053 0.053
(90, 90) 0.051 0.049 0.050 0.050
(100, 100) 0.048 0.050 0.049 0.048
Notes: Sample sizes are given for group 1, followed by group 2. LWdenotes the
Lin-Wang test, and LW

𝑤𝑖
denotes the weighted version of the LW test, with

weights 𝑤
𝑖
as described in the text. The underlying distributions of group 1

and group 2were identical, as described in the text.The empirical levels of the
two-sided test statistics were estimated from 5000 simulations, at nominal
alpha level 0.05.

Uniform (0, 100) in Group II, which result in about 24%
censoring rate in Group I and 18% in Group II, respectively.”

Scenario 2. In this situation, the two survival curves are
initially close, then cross, and diverge. The LW description
is as follows. “In Group I the survival times follow an
exponential distribution with mean of 4. In Group II the
survival times follow an exponential distribution with mean
of 3. However, if the survival time in Group II is greater than
or equal to 4, then the survival time is regenerated to follow
an exponential distribution with mean of 20. Also, censoring
is assumed to occur randomly across the two groups. For
each subject in the two groups, an independent Uniform
(0, 1) random variable 𝑈 is generated. In Group I, if 𝑈 is less
than 0.2, then the corresponding time point will be flagged
as censored. Otherwise it is not censored. The censoring in
Group II is created similarly but with a different rate. The
censoring rate is 20% in Group I and 30% in Group II,
respectively.”

Scenario 3. Here, the proportional hazards assumption
obtains. The LW specification is as follows. “The survival
times follow an exponential distribution with means 2 and 5
in Groups I and II, respectively. The censoring mechanism is
similar to that in Situation (Scenario 2), but this time with
20% censoring rate in Group I and 15% censoring rate in
Group II, respectively.”

Thenumber of iterations in each simulation study is 5000.
The estimated statistical power is calculated as the proportion
of 5000 repeated random samples in which we reject the null
hypothesis at the nominal alpha = 0.05 significance level, with
two-sided test statistics. The weighted versions of the LW
statistic are as above, namely, (i) 𝑤

𝑗
= 𝑛
𝑗
; (ii) 𝑤

𝑗
= √𝑛
𝑗
; (iii)

𝑤
𝑗
= 1/SD(𝑑

1𝑗
), where SD(𝑑

1𝑗
) = √Var(𝑑

1𝑗
). Findings for

the three scenarios are given in Tables 3, 4, and 5, respectively.
Interestingly, none of the procedures is dominant under

every scenario.Wemight tend to favor the LW statistic under
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Figure 1: Kaplan-Meier survival curves for two groups of leukemic
mice. Initial sample sizes were 30 per group. There were 4 censored
observations in Group (A) and 5 in Group (B).

Scenario 1, the weighted version LW
𝑤3

under Scenario 2, and
the weighted versions LW

𝑤1
and LW

𝑤2
under Scenario 3.

4. An Example

We will apply the various procedures to data arising from
a cancer chemotherapy experiment, as explained in Koziol
[2] and Koziol and Yuh [3]. Briefly, sixty leukemic mice
were randomly subdivided into two groups of equal size;
one group (Group (a)) was treated with a new investigative
chemotherapeutic agent, and the other group (Group (b))
served as controls. Survival times of the two cohorts are given
in Table 6, and Kaplan-Meier survival curves for the groups
are depicted in Figure 1.

Clearly, we are in crossing hazards setting, and the
logrank test and the generalized Wilcoxon test are not
necessarily sensitive to this type of alternative. Indeed, with
these data, the logrank chi-square statistic (with 1 d.f.) is 1.36
(𝑃 = 0.24), and the generalizedWilcoxon chi-square statistic
is 1.12 (𝑃 = 0.27); we would fail to reject the hypothesis
of equality of survival distributions for the two cohorts with
either of these tests.

On the other hand, the LW statistic and its weighted
variants all point to significantly different survival experi-
ences in the two cohorts, with 𝑃 values of 10−6 or smaller.
In comparison, the omnibus Kolmogorov-Smirnov, Kuiper,
and Cramér-von Mises statistics introduced by Koziol and
Yuh [3] were also indicative of significantly different survival
distributions but with more modest 𝑃 values of 10−3.
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Table 3: Empirical powers of the Lin-Wang test, and three weighted
variants, under Scenario 1.

Sample sizes LW LW
𝑤1

LW
𝑤2

LW
𝑤3

(20, 20) 0.406 0.269 0.331 0.407
(30, 30) 0.627 0.524 0.589 0.602
(40, 40) 0.813 0.772 0.81 0.774
(50, 50) 0.904 0.902 0.912 0.87
(60, 60) 0.952 0.968 0.965 0.922
(70, 70) 0.982 0.992 0.99 0.965
(80, 80) 0.99 0.998 0.996 0.981
Notes: Sample sizes are given for group 1, followed by group 2. LW denotes
the Lin-Wang test, and LW

𝑤𝑖
denotes the weighted version of the LW test,

with weights 𝑤
𝑖
as described in the text. The empirical powers of the two-

sided test statistics were estimated from 5000 simulations, at nominal alpha
level 0.05.

Table 4: Empirical powers of the Lin-Wang test, and three weighted
variants, under Scenario 2.

Sample sizes LW LW
𝑤1

LW
𝑤2

LW
𝑤3

(20, 20) 0.089 0.039 0.053 0.097
(30, 30) 0.157 0.046 0.084 0.167
(40, 40) 0.222 0.057 0.116 0.239
(50, 50) 0.314 0.077 0.169 0.339
(60, 60) 0.402 0.106 0.225 0.433
(70, 70) 0.484 0.122 0.273 0.511
(80, 80) 0.549 0.151 0.338 0.583
(90, 90) 0.612 0.173 0.379 0.644
(100, 100) 0.675 0.212 0.431 0.700
Notes: Sample sizes are given for group 1, followed by group 2. LW denotes
the Lin-Wang test, and LW

𝑤𝑖
denotes the weighted version of the LW test,

with weights 𝑤
𝑖
as described in the text. The empirical powers of the two-

sided test statistics were estimated from 5000 simulations, at nominal alpha
level 0.05.

Table 5: Empirical powers of the Lin-Wang test, and three weighted
variants, under Scenario 3.

Sample sizes LW LW
𝑤1

LW
𝑤2

LW
𝑤3

(20, 20) 0.433 0.430 0.435 0.387
(30, 30) 0.600 0.630 0.628 0.532
(40, 40) 0.728 0.775 0.767 0.647
(50, 50) 0.822 0.878 0.872 0.753
(60, 60) 0.889 0.929 0.925 0.827
(70, 70) 0.931 0.970 0.962 0.884
(80, 80) 0.964 0.985 0.982 0.933
Notes: Sample sizes are given for group 1, followed by group 2. LW denotes
the Lin-Wang test, and LW

𝑤𝑖
denotes the weighted version of the LW test,

with weights 𝑤
𝑖
as described in the text. The empirical powers of the two-

sided test statistics were estimated from 5000 simulations, at nominal alpha
level 0.05.

5. Concluding Remarks

The logrank test as described in Section 2 should be ascribed
to Mantel [4]: Mantel brilliantly intuited that the Mantel-
Haenszel (MH) statistic [5] for assessing association across
independent 2 × 2 tables could be applied to survival data, by

Table 6: The clinical data for sixty leukemic mice which were
randomly subdivided into two groups (Group A and Group B) of
equal size. “1” indicates the censored data.

Group A Group B
Survival (days) Censoring Survival (days) Censoring
4.7 0 15.4 0
5.4 0 15.4 0
7.1 0 15.7 0
7.5 0 16.1 1
8.1 0 16.5 1
8.3 1 16.6 0
8.5 0 16.9 0
8.6 0 17.9 0
10 0 18.4 0
10.4 0 18.5 0
11.1 0 18.9 0
12.1 1 19 0
13.8 0 19.1 0
15 0 19.2 0
15.1 0 19.4 0
15.3 0 19.7 0
17.6 0 19.8 0
21 0 20.4 1
22.7 0 20.8 0
23.9 0 20.9 1
24.1 0 21.3 0
27.4 0 21.4 0
31.8 0 21.4 0
33.5 0 21.4 1
34.9 0 21.5 0
35.5 1 21.7 0
35.6 1 22 0
35.9 0 22.2 0
37.4 0 22.5 0
38.2 0 23.8 0

constructing a 2 × 2 table as in Table 1 at each event (death)
time then combining the resulting 2 × 2 tables as in the MH
procedure.

Correspondingly, our incorporation of weights into the
LW statistic as described in Section 2 is not new: our motiva-
tion devolves from similar introduction of weights into the
Mantel formulation of the logrank statistic, by Tarone and
Ware [6] and Leurgans [7] among others. And, anticipating
the findings in Section 3, these investigators have shown that
the weights can enjoy improved power properties over the
unweighted MH statistics in various settings. We remark
that calculation of the LW statistic is rather computationally
intensive; but incorporation of weights should cause no addi-
tional computational difficulties. Optimal choice of weights
remains an open issue, which we are currently pursuing.

The generalized Wilcoxon test and the logrank test are
perhaps the best known and most commonly used pro-
cedures for the comparison of two survival distributions
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with observations subject to random censorship. Mantel [4]
and others recognized, however, that these tests may not
be appropriate whenever the alternative of interest is not
that the one survival distribution is stochastically larger than
the other but merely that the distributions are not equal.
Crossing hazards are an example of nonstochastic ordering
of survival distributions. For testing equality against such
alternatives, Koziol [2] proposed a two-sample Cramér-von
Mises type statistic based on the product-limit estimates of
the individual survival distributions, and later Koziol and
Yuh [3] introduced Kolmogorov-Smirnov and Kuiper as well
as Cramér-von Mises statistics for the same omnibus two-
sample testing problem. The LW statistic is more closely
attuned to the logrank test than these omnibus procedures;
and, as seen in the example, the LW statistics may be more
sensitive to crossing hazards alternatives.

It should be noted that Mantel [4] also proposed a
modification of the Mantel logrank test, appropriate for
crossing hazards: Mantel suggested that one construct a “chi-
squared” statistic at each event time as in Table 1, sum these
individual statistics over the event times, and then treat
the resulting sum as an approximate chi-square random
variable with 𝑛 degrees of freedom, 𝑛 being the number of
tables (distinct event times). We explored this statistic in
simulation studies, but regrettably we cannot recommend
this statistic, due to decreased power relative to the other
statistics reported herein, and the tenuous assumption that
a chi-square distribution for this statistic is adequate (though
with larger sample sizes, a normal approximation might be
invoked).
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In the delivery of medical and surgical care, often times complex interactions between patient, physician, and hospital factors
influence practice patterns. This paper presents a novel application of logic regression in the context of kidney cancer treatment
delivery. Using linked data from theNational Cancer Institute’s (NCI) Surveillance, Epidemiology, and EndResults (SEER) program
and Medicare we identified patients diagnosed with kidney cancer from 1995 to 2005. The primary endpoints in the study were
use of innovative treatment modalities, namely, partial nephrectomy and laparoscopy. Logic regression allowed us to uncover the
interplay between patient, provider, and practice environment variables, which would not be possible using standard regression
approaches. We found that surgeons who graduated in or prior to 1980 despite having some academic affiliation, low volume
surgeons in a non-NCI hospital, or surgeons in rural environment were significantly less likely to use laparoscopy. Surgeons with
major academic affiliation and practising in HMO, hospital, or medical school based setting were significantly more likely to use
partial nephrectomy. Results from our study can show efforts towards dismantling the barriers to adoption of innovative treatment
modalities, ultimately improving the quality of care provided to patients with kidney cancer.

1. Introduction

Open radical nephrectomy has long been the standard treat-
ment for patients with early-stage kidney cancer [1]. In recent
years, however, easier convalescence and equivalent cancer
control established laparoscopy as an alternative standard of
care formost patients treatedwith radical nephrectomy [1–3].
Studies have also demonstrated that, for patients with small
renal masses, partial instead of radical nephrectomy achieves
identical cancer control while better preserving long-term
renal function and reducing overtreatment of benign or
clinically indolent tumors [4–7]. However, despite their
potential advantages, the adoption of laparoscopy and partial
nephrectomy have been relatively slow and asymmetric in the
population [3, 8].

Earlier studies have shown that individual surgeon char-
acteristics and their practice environments largely influence
the use of laparoscopy and partial nephrectomy [9]. These

studies are based on logistic regression models, a member
of the generalized linear model family suitable for data with
a binary outcome (e.g., use versus nonuse of laparoscopy).
Logistic regression focuses on identification of main effects.
While interactions can be assessed using logistic regression,
these interactions need to be known a priori and specified
as input variables in the model. Discovery of interactions is
therefore difficult using logistic regression. We hypothesize
that surgeon characteristics may not have uniform effect on
the adoption of laparoscopy and partial nephrectomy across
practice environments. For example, use of advanced tech-
niques may vary among recently trained surgeons depending
on the surgeon’s affiliation with an academic hospital or
NCI-designated cancer center, suggesting a potential interac-
tion between year of medical school graduation and practice
setting.

Logic regression is an adaptive classification and regres-
sion procedure [10], initially developed to uncover and
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measure the importance of interacting factors in genetic
association studies [11, 12]. There are many approaches based
on classificationmethods such as CART and Random Forests
[13–15] that allow measuring the importance of a single
predictor. But none of these methods can directly quantify
the importance of combinations of several predictors. Logic
regression uses the predictors as inputs into the model while
still enabling one to identify combinations of predictors and
quantify the importance of these interactions.

In general, logic regression can be used in any setting,
when the interaction between the predictors is of primary
interest. Logic regression searches for Boolean (logical)
combinations of the original predictors that best explain the
variability in the outcome variable and, thus, reveals variables
and interactions that are associated with the response and/or
have predictive capabilities. Given a set of binary predictors,
one creates new predictors such as “𝑋

1
, 𝑋
2
, 𝑋
3
, and 𝑋

4

are true” or “𝑋
5
or 𝑋
6
but not 𝑋

7
is true.” In more specific

terms, the goal is to try to fit regression models of the form
logit[𝑃(𝑌 = 1)] = 𝑏

0
+ 𝑏
1
𝐿
1
+ ⋅ ⋅ ⋅ + 𝑏

𝑝
𝐿
𝑝
, where 𝑃(𝑌 =

1) is the probability that the binary outcome is 1, and 𝐿
𝑗

is any Boolean expression of the predictors. The 𝐿
𝑗
and 𝑏
𝑗

are estimated simultaneously using a stochastic optimization
algorithm [16].

The goal of this paper is to introduce logic regression
as a novel method for discovering interactions, specifically,
Boolean combinations of factors that potentially discriminate
users of partial nephrectomy or laparoscopy from nonusers.
Characterizing providers who are actually using (or not
using) these techniques is needed to show education- and/or
policy-based interventions designed to increase utilization
of these advanced surgical techniques. Given that logic
expressions are embedded in a generalized linear regres-
sion framework and therefore naturally adaptable to other
outcome types (e.g., numeric and time-to-event data); the
method has broad scope of application in health services and
outcomes research.

2. Materials and Methods

2.1. Data Source. We used data from the National Can-
cer Institute’s Surveillance, Epidemiology, and End Results
(SEER) Program and the Centers for Medicare and Medicaid
Services (Medicare) to identify patients diagnosed with inci-
dent kidney cancer from 1995 to 2005. SEER is a population-
based cancer registry that collects data regarding incidence,
treatment, and mortality. The demographic composition,
cancer incidence, and mortality trends in the SEER registries
are representative of the entire United States population. The
Medicare Program provides primary health insurance for
97% of the United States population aged 65 years and older,
and linkage toMedicare claims is achieved for >90% of SEER
cases over age 65 [17].

2.2. Cohort Identification and Assignment of Surgical
Procedure. We identified 15,744 patients diagnosed with
nonurothelial, nonmetastatic kidney cancer from 1995 to
2005. For this group of patients, we searched inpatient and

physician claims to identify kidney cancer-specific diagnosis
and procedure codes (list of codes available from authors
upon request). We excluded patients who lacked claims
denoting surgical treatment for kidney cancer, patients
with multiple hospitalizations for direct open or partial
nephrectomy, patients whose claims suggested the presence
of bilateral tumors at diagnosis, and patients operated by
a nonurologic specialty physician. This process yielded a
cohort of 11,918 cases. We applied a validated claim-based
algorithm to assign each patient to one of four mutually
exclusive surgical categories: (1) open radical nephrectomy
(ORN) (𝑛 = 8029), (2) open partial nephrectomy (OPN)
(𝑛 = 1380), (3) laparoscopic radical nephrectomy (LRN)
(𝑛 = 2082), and (4) laparoscopic partial nephrectomy (LPN)
(𝑛 = 427).

As validation, we assessed the level of concordance
between our claim-based algorithm and the type of cancer-
directed surgery specified for each patient in the SEER
data file (Patient Entitlement and Diagnosis Summary File).
Although SEER does not collect data regarding whether the
surgical approach was open or laparoscopic, we observed
97% agreement for the assignment of partial versus radical
nephrectomy (𝜅 = 0.83). Also, we identified relevant surgical
pathology claims within 30 days of the index admission
for more than 95% of analyzed cases, thus supporting the
occurrence of cancer-directed surgery. As a final step, we
externally validated our algorithm by comparing procedure
assignments based on Medicare claims with the surgery
specified in actual operative reports of 549 cases from the Los
Angeles Cancer Surveillance Program. Overall, the claims-
based algorithm assigned the correct surgical procedure
(ORN, OPN, LRN, or LPN) for 97% of patients in the
validation sample (𝜅 = 0.91). We observed equally high
concordance for identification of laparoscopic versus open
surgery (𝜅 = 0.87) and for classification of partial versus
radical nephrectomy (𝜅 = 0.93).

2.3. Patient-Level Covariates. For each patient in the ana-
lytic cohort, we used SEER data to determine demographic
and cancer-specific information (i.e., age at surgery, gender,
race/ethnicity, marital status, tumor size, tumor grade, his-
tology, and laterality). Based on patient-level zip codes, we
assigned patients to one of three socioeconomic strata [18].
We measured preexisting comorbidity by using a modified
Charlson Index based on claims submitted during the 12
months prior to the kidney cancer surgery [19, 20].

2.4. Primary Surgeon and Surgeon-Level Covariates. To iden-
tify the primary surgeon for each case, we used encrypted
Unique Physician IdentifierNumbers (UPIN) submittedwith
Medicare physician claims. We linked the comprehensive
list of surgeon UPINs to the American Medical Association
(AMA) Physician Masterfile, which contains demographic,
educational, and certification information for over one mil-
lion residents and physicians in the United States. Using
AMA data, we determined surgeon age, gender, year of
medical school graduation, and practice size. We assigned
each surgeon a rural-urban commuting area (RUCA) code
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based on an established classification scheme using the zip
code of the primary office address [21]. We determined
academic affiliation (major,minor, or no academic affiliation)
based on the methods described by Shahinian et al. [22].
We also determined each surgeon’s average annual nephrec-
tomy (partial or radical) volume using claims from 1995 to
2005. We empirically defined high-volume surgeons as those
performing at least 3 annual cancer-related nephrectomies
among the SEER-Medicare population (83rd percentile).This
measure of case volume may not reflect the total number of
nephrectomies performed by a provider: it fails to account for
surgeries among younger (non-Medicare-eligible) patients,
Medicare HMO enrollees, and/or fee-for-service Medicare
participants who reside outside of the SEER registries. Finally,
we determined each surgeon’s association with a National
Cancer Institute- (NCI-) designated cancer center based
on whether or not they performed at least one radical
nephrectomy at a hospital carrying this designation.

2.5. Statistical Methods. Before fitting logic regression mod-
els, we performed several univariate analyses. We used
Chi-square tests to evaluate the level of association between
surgical procedure and various patient-level covariates and
to assess the statistical significance of temporal surgical
trends. For the subsequent modeling, we defined two binary
endpoints as follows: (1) use of partial nephrectomy (i.e.,
OPN+LPN versus ORN+LRN) and (2) use of laparoscopy
among patients who underwent radical nephrectomy (i.e.,
LRN versus ORN).

The classification algorithm used in this study is logic
regression, an adaptive regression methodology developed
by Ruczinski et al. [10]. In the logic regression framework,
given a set of binary covariates 𝑋, the goal is to create new,
better predictors for the response by constructing Boolean
combinations of the binary covariates. For example, if the
response is binary, the goal is to find decision rules such as
“if 𝑋
1
, 𝑋
2
, 𝑋
3
, and 𝑋

4
are true,” or “𝑋

5
or 𝑋
6
but not 𝑋

7

is true,” then the response is more likely to be in class 0.
Boolean combinations of the covariates, called logic trees,
are represented graphically as a set of and-or rules. Logic
regression searches for Boolean combinations of predictors in
the entire space of such combinations, while being completely
embedded in a regression framework, where the quality of the
models is determined by an appropriate score function for the
regression class.

Let𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑘
be binary (0/1) predictors and let 𝑌 be

the response. In our setting,𝑋’s correspond to patient, physi-
cian, and practice environment variables, and 𝑌 represents
binary outcomes (use of partial nephrectomy: yes/no; use
of laparoscopy: yes/no) each of which is modeled separately
using binomial deviance as the score function. For a given
set of Boolean expressions, an example of which was given in
Section 1, the logic regression model is a logistic regression
model with those Boolean expressions as covariates. Specifi-
cally, we denote a Boolean expressionwith the binary variable
𝐿, where 𝐿 = 1 is true and 𝐿 = 0 is false. The model is written
as

logit𝑃 (𝑌 = 1 | 𝐿
1
, . . . , 𝐿

𝑝
) = 𝛽
0
+ 𝛽
1
𝐿
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝐿
𝑝
, (1)

where 𝐿
𝑗
is a Boolean combination of the predictors 𝑋

𝑖
’s.

The goal is to find Boolean expressions in (1) that mini-
mize the binomial deviance, estimating the parameters 𝛽

𝑗

simultaneously with the search for the Boolean expressions
𝐿
𝑗
. This is what distinguishes logic regression from simple

logistic regression with binary covariates, that is, that the
fitting algorithm both defines “covariates” for model (1)
(using predictor data) and estimates the regression coef-
ficients simultaneously. The output from logic regression
is represented as a series of trees, one for each Boolean
predictor, 𝐿

𝑗
, and the associated regression coefficient.

CART is another tree-based method for modeling binary
data [15]. The classification rule is displayed as a tree whose
leaves are the two classes of interest (e.g., use versus nonuse
of partial nephrectomy or laparoscopy) and whose branches
correspond to dichotomized covariates. Each leaf is reached
by one or more paths through the tree; to reach the leaf,
all conditions along the path must be satisfied. Thus, a
classification tree can be thought of as the collection of
all paths that reach a leaf predicting use of treatment.
Therefore, any classification tree can be written as a Boolean
combination of covariates, as can a logic regression tree.
However, there are some Boolean expressions which can be
very simply represented as logic trees, but which require fairly
complicated classification trees [10]. It is this simplicity of
logic trees which we hope to exploit in order to produce easily
interpretable characterizations of individuals who have a high
likelihood of using the specific surgical treatment.

In logic regression, the challenge is to find good candi-
dates for the logic term 𝐿

𝑗
, as the collection of all Boolean

expressions is enormous. Using a tree-like representation
for logic expressions, we adaptively select this term using
a simulated annealing algorithm [16]. In our setting leaves
of each tree are the threshold conditions for each covariate,
and the root and knots of the tree are the Boolean (and-or)
operators. Simulated annealing is a stochastic optimization
algorithm. At each step a possible operation on the current
tree, such as adding or removing a knot, is proposed at
random. This operation is always accepted if the new logic
tree has a better score than the old logic tree; otherwise, it
is accepted with a probability that depends on the difference
between the scores of the old and the new tree and the
stage of the algorithm. Properties of the simulated annealing
algorithm depend heavily on Markov chain theory and thus
on the set of operations that can be applied to logic trees.

The complexity of a logic regression model is defined
by the number of logic trees (𝑝 in (1)) and the number of
variables, or leaves, that make up a tree. As with any adaptive
regression methodology, larger models (those with more
trees and leaves) typically fit better than smaller models. To
avoid overfitting, in this paperwe chose themodel size using a
cross-validation approach.We variedmodel complexity from
1 to 4 trees (corresponding to the 𝑝 in (1)) and the number of
leaves that make up a tree from 1 to 15. We randomly divided
our data into ten subsets, such that each subset consisted of
one-tenth of the “treatment” and the “control” (RN for the
first endpoint and ORN for the second endpoint) groups. Of
the ten subsets, we used nine subsets as training data and
the remaining single subset as validation data for testing the
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model. We used the training data to develop the logic models
using simulated annealing algorithm and then estimated the
deviance based on the test data. This process was repeated
ten times, with each of the ten subsets used exactly once as
validation data (tenfold cross validation). The results from
the ten folds were then averaged to produce a single deviance
score for each model. To reduce variability, this procedure
(splitting the data into ten parts, developing logic rules on
the training data, and estimating the deviance based on
the test data) was repeated 15 times, with different random
splits of the whole dataset for each run. The deviance scores
were averaged over the 15 rounds of cross-validation, and
the model with the smallest average deviance was selected.
Results presented correspond to the run yielding value for the
test set based model deviance that was closest to its average
across the 15 runs. This run was selected so as to provide
results for what might be considered a typical rather than an
extreme split of the data into test and training sets.

Logic regression requires binary predictor variables, so
we recoded variables into binary forms. Categorical covari-
ates were coded as a set of indicator variables for each level
of the covariate. For example, marital status was analyzed as
married versus others, and racewas coded as a set of indicator
variables based on the categories Caucasian, African Ameri-
can, Hispanic, and others. Continuous and ordinal covariates
were coded as a series of threshold indicators based on a
priori knowledge about the variables. For example, tumor
size was categorized into two clinically relevant groups based
on a 4 cm threshold; patient’s age at surgery and Charlson
comorbidity index were each coded as a series of threshold
indicators based on five-year age intervals 65–69, 70–74,
75–79, 80–84, and ≥85 years and 0, 1, and ≥2 comorbid
conditions, respectively. Each of the surgeon variables, that
is, surgeon’s year of medical school graduation, age, practice
structure, and academic affiliation, was also coded as a series
of threshold indicators based on the categories prior to 1960,
1961–1970, 1971–1980, 1981–1990, and 1991 and after; <40,
40–49, 50–59, and ≥60 years; solo or two person practice,
group practice, HMO or hospital based practice, medical
school, and others; and none, minor, and major affiliation,
respectively.

3. Results

We identified a total of 11,918 Medicare beneficiaries who
underwent surgery for an incident kidney cancer diagnosed
between 1995 and 2005. Table 1 presents demographic and
clinical characteristics of patients in the analytic sample.
During the study interval, 1807 patients (15.2%) under-
went partial nephrectomy (427 performed laparoscopically),
and 10,111 patients (84.8%) underwent radical nephrectomy
(2082 performed laparoscopically). We observed differences
in treatment patterns according to patient age, gender,
race/ethnicity, marital status, socioeconomic status, tumor
size, tumor grade, and histology (Table 1).

From 1995 to 2005, the annual proportion of patients who
underwent partial nephrectomy increased from8.5% to 21.3%
(𝑃 < 0.0001); for patients who had tumors that measured

≤4 cm, the proportion rose from 14.4% to 37.1% (𝑃 < 0.0001).
Among patients treatedwith radical nephrectomy, the annual
proportion of laparoscopy use increased from 1.3% in 1995
to 44.1% in 2005 (𝑃 < 0.0001). For patients whose tumors
measured ≤4 cm, the annual proportion of laparoscopy use
increased from 1.6% to 52.9%; for patients with larger tumors,
this proportion increased from 1.2% to 39.3% (𝑃 values <
0.0001).

We identified 2088 primary surgeons who performed
11,918 kidney cancer surgeries during the study interval
(median 4 cases). Of these, 2019 surgeons performed 10,111
radical nephrectomies (median 3 cases; range 1–84). During
the same interval, 842 surgeons performed 1,807 partial
nephrectomies (median 1 case; range 1–29). Of the 2019
surgeons who performed the radical nephrectomies, 720
operated laparoscopically on 2,082 patients (median 2 cases;
range 1–55). We observed differences in treatment pat-
terns according to provider age, gender, year of medical
school graduation, annual nephrectomy volume, practice
size, rural/urban status, academic affiliation, and NCI cancer
center designation (Table 2).

Figure 1 displays results of the logic regression to deter-
mine optimal combination rules for use of partial nephrec-
tomy based on a two-tree model. The first tree, 𝐿

1
, is entirely

described by tumor size. The estimated odds ratio associated
with this tree is 5.9 (95% CI 4.7–7.4), suggesting that tumor
size ≤4 cm is associated with almost six times higher odds of
partial nephrectomy.This finding is concurrent with previous
reports in the literature documenting tumor size as a strong
predictor of partial nephrectomy [8, 9]. Interestingly, the
second tree, 𝐿

2
, involves practice environment characteris-

tics. This tree (𝐿
2
) indicates that not having major academic

affiliation, or not practising inHMO, hospital, medical school
based setting is associated with lower odds ratio of partial
nephrectomy. The estimated odds ratio associated with 𝐿

2
is

0.30 (95% CI 0.23–0.39), suggesting that, as a group, those
satisfying 𝐿

2
are estimated to have a 70% lower odds of using

partial nephrectomy compared to those who do not satisfy
the tree. In other words, patients treated by surgeons who
have major academic affiliation and are in HMO, hospital, or
medical school based practice setting are 3.3 timesmore likely
to undergo partial nephrectomy than their counterparts.

Figure 2 displays results of the logic regression to deter-
mine optimal combination rules for use of laparoscopic
radical nephrectomy based on a three-tree model. The first
tree, 𝐿

1
, is entirely described by academic affiliation. The

estimated odds ratio associated with this tree is 2.12 (95% CI
1.71–2.63), suggesting that surgeon’s affiliation with a major
academic center is associated with two times higher odds
of a laparoscopic radical nephrectomy. The second tree, 𝐿

2
,

involves a combination of patient and surgeon characteristics.
This tree (𝐿

2
) indicates that having larger tumors (>4 cm)

or having a surgeon who graduated in or prior to 1980
or practising in nongroup settings (solo or two person) is
associated with a lower odds of laparoscopic procedure. The
estimated odds ratio associated with 𝐿

2
is 0.38 (95% CI 0.29–

0.48), suggesting that, as a group, those satisfying 𝐿
2
are

estimated to have a 62% lower odds of laparoscopic radical
nephrectomy compared to those who do not satisfy the tree.
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Table 1: Distribution of patient and tumor characteristics by surgical procedures (1995–2005).

Total LPN LRN OPN ORN
𝑃 value𝑛 𝑛 (%) 𝑛 (%) 𝑛 (%) 𝑛 (%)

11,918 427 (3.6) 2082 (17.5) 1380 (11.6) 8029 (67.3)
Age at surgery (years) 0.0001

65–69 3127 131 (4.2) 530 (16.9) 431 (13.8) 2035 (65.1)
70–74 3423 122 (3.6) 536 (15.7) 426 (12.5) 2339 (68.3)
75–79 3024 98 (3.2) 579 (19.2) 354 (11.7) 1993 (65.9)
80–84 1721 59 (3.4) 300 (17.4) 139 (8.1) 1223 (71.1)
≥85 623 17 (2.7) 137 (22.0) 30 (4.8) 439 (70.5)

Race/ethnicity 0.0001
Caucasian 9884 344 (3.5) 1757 (17.8) 1158 (11.7) 6625 (67.0)
African-American 878 33 (3.8) 154 (17.5) 103 (11.7) 588 (67.0)
Hispanic 719 27 (3.8) 81 (11.3) 70 (9.7) 541 (75.2)
Other or Unknown 437 23 (5.3) 90 (20.6) 49 (11.2) 275 (62.9)

Gender 0.0001
Male 6882 274 (3.9) 1134 (16.5) 850 (12.4) 4624 (67.2)
Female 5036 153 (3.0) 948 (18.8) 530 (10.5) 3405 (67.6)

Marital status 0.005
Yes 7499 294 (3.9) 1274 (17.0) 901 (12.0) 5030 (67.1)
No 4419 133 (3.0) 808 (18.3) 479 (10.8) 2999 (67.9)

Socioeconomic status 0.0001
Low 3808 134 (3.5) 603 (15.8) 424 (11.1) 2647 (69.5)
Intermediate 3899 135 (3.5) 633 (16.2) 386 (9.9) 2745 (70.4)
High 4196 158 (3.8) 846 (20.2) 568 (13.5) 2624 (62.5)

Charlson comorbidity score 0.38
0 6842 241 (3.5) 1186 (17.3) 794 (11.6) 4621 (67.5)
1 2847 104 (3.7) 512 (18.0) 313 (11.0) 1918 (67.4)
≥2 1904 74 (3.9) 345 (18.1) 246 (12.9) 1239 (65.1)

Tumor size (cm) 0.0001
≤4 5188 352 (6.8) 949 (18.3) 1035 (20.0) 2852 (54.9)
>4 6401 51 (0.8) 1101 (17.2) 286 (4.5) 4963 (77.5)

Tumor histology 0.0001
Clear cell 10000 301 (3.0) 1682 (16.8) 1042 (10.4) 6975 (69.8)
Papillary 888 77 (8.7) 200 (22.5) 170 (19.1) 441 (49.7)
Chromophobe 391 24 (6.1) 107 (27.4) 82 (21.0) 178 (45.5)
Other 639 25 (3.9) 93 (14.6) 86 (13.5) 435 (68.1)

The third tree, 𝐿
3
, is characterized by a combination of

surgeon and practice environment variables. This tree (𝐿
3
)

indicates that low volume surgeons in a non-NCI hospital,
surgeons in rural environment, or surgeons who graduated in
or prior to 1980 despite having some academic affiliation have
a lower odds for laparoscopic procedure (odds ratio = 0.29,
95% CI 0.23–0.38).

We also performed CART analyses of our data (results
not shown) for both the partial and laparoscopic radical
nephrectomy endpoints. For partial nephrectomy, the CART
tree yielded subgroups characterized by tumor size and
surgeon’s academic affiliation. As observed before, patients
with tumor size > 4 cm were less likely to undergo par-
tial nephrectomy compared to those with smaller tumors.
For the latter group (tumor size ≤4 cm), surgeons with

major academic affiliation had higher propensity for partial
nephrectomy compared to those with minor or no academic
affiliation. The area under the ROC curve for the CART tree
was 0.72, compared to 0.77 for the logic regression model.
For laparoscopic radical nephrectomy, the CART tree yielded
subgroups characterized by surgeon’s academic affiliation,
year of medical school graduation, and annual surgeon
volume. High volume surgeons who graduated after 1980 and
were affiliated with a major academic center had the highest
propensity towards laparoscopic procedure. Surgeons with
minor or no academic affiliation had the lowest propensity
towards laparoscopic procedure. Interestingly, despite having
major academic affiliation surgeons who graduated in or
prior to 1980 had only a slightly higher propensity towards
laparoscopic procedure compared to surgeons with minor or
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Table 2: Distribution of surgeon and practice environment characteristics by surgical procedures (1995–2005).

Total LPN LRN OPN ORN
𝑃 value𝑛 𝑛 (%) 𝑛 (%) 𝑛 (%) 𝑛 (%)

11,918 427 (3.6) 2082 (17.5) 1380 (11.6) 8029 (67.3)
Surgeon age (years) 0.0001
<40 2553 147 (5.8) 774 (30.3) 271 (10.6) 1361 (53.3)
40–49 4034 170 (4.2) 728 (18.1) 440 (10.9) 2696 (66.8)
50–59 3710 85 (2.3) 427 (11.5) 458 (12.4) 2740 (73.9)
≥60 1621 25 (1.5) 153 (9.4) 211 (13.0) 1232 (76.0)

Surgeon gender 0.0001
Male 11684 419 (3.6) 2036 (17.4) 1364 (11.7) 7865 (67.3)
Female 234 8 (3.4) 46 (19.7) 16 (6.8) 164 (70.1)

Annual nephrectomy volume 0.0001
Bottom 25% 2279 34 (1.5) 209 (9.2) 230 (10.1) 1806 (79.3)
2nd 25% 3474 77 (2.2) 458 (13.2) 370 (10.7) 2569 (73.9)
3rd 25% 3141 107 (3.4) 519 (16.5) 320 (10.2) 2195 (69.9)
Top 25% 3024 209 (6.9) 896 (29.6) 460 (15.2) 1459 (48.3)

Year of medical school graduation 0.0001
<1960 346 2 (0.6) 9 (2.6) 48 (13.9) 287 (82.9)
1961–1970 2488 25 (1.0) 176 (7.1) 301 (12.1) 1986 (79.8)
1971–1980 3568 89 (2.5) 437 (12.3) 403 (11.3) 2639 (73.9)
1981–1990 3705 166 (4.5) 738 (19.9) 431 (11.6) 2370 (63.9)
>1991 1811 145 (8.0) 722 (39.9) 197 (10.9) 747 (41.3)

Practice size 0.0001
Solo or two-person 3200 36 (1.1) 284 (8.9) 279 (8.7) 2601 (81.3)
Group practice 6619 274 (4.1) 1368 (20.7) 709 (10.7) 4268 (64.5)
HMO or hospital-based 631 29 (4.6) 100 (15.9) 141 (22.4) 361 (57.2)
Medical school 484 34 (7.0) 98 (20.3) 125 (25.8) 227 (46.9)
Other/unclassified 984 54 (5.5) 232 (23.6) 126 (12.8) 572 (58.1)

Academic affiliation 0.0001
None 4195 88 (2.1) 660 (15.7) 385 (9.2) 3062 (72.9)
Minor 4408 127 (2.9) 740 (16.8) 420 (9.5) 3121 (70.8)
Major 3201 207 (6.5) 668 (20.9) 561 (17.5) 1765 (55.1)

Rural/urban status 0.0001
Urban 11093 412 (3.7) 1992 (17.9) 1318 (11.9) 7371 (66.5)
Rural 823 15 (1.8) 89 (10.8) 61 (7.4) 658 (79.9)

Cancer Center Affiliation 0.0001
No 10793 322 (2.9) 1861 (17.2) 1125 (10.4) 7485 (69.4)
Yes 1096 102 (9.3) 219 (19.9) 252 (22.9) 523 (47.7)

no academic affiliation.The area under the ROC curve for the
CART tree was 0.61, compared to 0.71 for the logic regression
model.

4. Conclusions

The principal finding from this study was our ability to
uncover the interplay between patient, provider, and practice
environment variables towards adoption of partial nephrec-
tomy and laparoscopy. Through the use of logic regression
we were able to uncover interactions that would not have
been detected by standard logistic regression approach.

Our findings demonstrate that the adoption of laparoscopic
radical nephrectomy is particularly influenced by complex
combinations of surgeon and practice environment charac-
teristics, rather than simple “main effects.” More specifically,
our results suggest that patients treated by surgeons who
graduated in or prior to 1980 despite having some academic
affiliation, low volume surgeons in a non-NCI hospital,
or surgeons in rural environment were significantly less
likely to use laparoscopic radical nephrectomy. Although less
dramatic, the adoption of partial nephrectomy is also influ-
enced by combination of tumor and practice environment
characteristics. Collectively, these findings highlight the rich
contextual interactions that influence urologist’s adoption of
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Minor or no academic 
affiliation

Or

Not practising in HMO, hospital, 
medical school setting 

Tree no. 1: L1

Tree no. 2: L2

Tumor size ≤ 4 cm

Figure 1: Two-tree model for use of partial nephrectomy. The odds
ratio associated with 𝐿

1
is 5.9 (95% CI 4.7–7.4) and that with 𝐿

2
is

0.30 (95% CI 0.23–0.39).

new technologies and potentially reflect role of resources and
access to informational externalities that help promote the
adoption of these technologies.

According to Donabedian’s structure-process-outcome
model for quality-of-care assessment, characteristics of indi-
vidual providers and their practice environments are struc-
tural measures that influence patient outcomes both directly
and through their influence on specific processes of care
[23]. In fact, these links have been validated empirically
in multiple, diverse clinical settings. One well-characterized
example is the inverse association between surgeon case vol-
ume (a provider characteristic and structural measure) and
operative mortality (a patient outcome) following high-risk
cancer surgery [24]. Likewise, among patients with prostate
cancer, evidence-based utilization of androgen deprivation
therapy (a process of care) varies based on characteristics of
the treating urologist, including years since medical school
graduation and academic affiliation [22]. In addition to a
surgeon’s individual characteristics, the practice environment
also influences treatment decisions and patient outcomes.
For instance, patients receiving care at the National Can-
cer Institute- (NCI-) designated cancer centers have lower
adjusted mortality rates following surgical resection of gas-
tric, lung, colorectal, and esophageal cancers than in non-
NCI-designated hospitals [25]. Specific to urology, patients
treated by physicians in solo practice receive less-frequent
surveillance (a process of care) following a bladder cancer
diagnosis than do those whose surgeon is in a group practice
[26].

Our results are in keeping with existing literature that
describes the influence of provider characteristics and prac-
tice environments on the adoption of innovative surgical
therapies. For example, prior work identified younger sur-
geon age, active board certification, urban practice location,
group practice affiliation, and a competitive practice setting
as important facilitators of general surgeons’ adoption of
laparoscopic cholecystectomy [27, 28]. Similar findings have
been described for surgical treatment in early stage breast
cancer [29, 30], as well as urological cancers, such as the use
of partial nephrectomy for kidney cancer [31], utilization of
continent reconstruction among patients undergoing radical
cystectomy for bladder cancer [32], and use of androgen

Major academic 
affiliation

Or

Solo or two-person 
practice setting

Year of medical school 
graduation 1980 or prior 

Year of medical school 
graduation 1980 or prior

Or

Some academic 
affiliation

And
Rural center

Or

And

Low volume 
surgeon

non-NCI 
cancer center

Tree no. 1: L1

Tree no. 2: L2

Tree no. 3: L3

Tumor size > 4 cm

Figure 2:Three-tree model for use of laparoscopic radical nephrec-
tomy. The odds ratio associated with 𝐿

1
is 2.1 (95% CI 1.7–2.6), that

with 𝐿
2
is 0.38 (95% CI 0.29–0.48), and that with 𝐿

3
is 0.29 (95% CI

0.23–0.38).

deprivation therapy among patients with localized prostate
cancer [22].

This study has several limitations. Because SEER-Med-
icare data are limited to patients >65 years of age, our
findings may not apply to younger patients with kidney
cancer. Second, similar to surgery for early-stage breast
cancer, clarification of the optimal use of partial nephrec-
tomy and laparoscopy will require a better understanding
of patient attitudes and preferences that cannot be assessed
using claims data. Third, as we used Medicare claims, we
may be underestimating the operative volume of individual
surgeons treating patients younger than 65 years. Fourth, we
could measure only a limited set of surgeon and practice
environment characteristics (most of which are structural
in nature); as such, there is a need for future studies that
assess the degree to which difficult-to-measure barriers such
as technical complexity and/or an absence of adopters in their
local communities influence urologists’ uptake of these newer
surgical therapies.

These limitations notwithstanding, our findings have
implications for efforts aimed at facilitating the adoption of
partial nephrectomy and laparoscopic radical nephrectomy.
As described previously, renewed efforts are needed to better
understand barriers to initial and sustained adoption among
urologists working in rural environments, small practice
settings, and those not affiliated with academic medical cen-
ters and/or NCI-designated cancer centers. Although more
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recently trained urologists were more likely to use laparo-
scopic radical nephrectomy, our findings counter the notion
that uniform adoption will occur naturally as training in this
minimally invasive technique becomes more commonplace.
Recognizing that social connections and local informational
resources facilitate the diffusion of new surgical therapies [27,
33, 34], we see innovative collaborations between urologists,
informed by established practice-based surgical research
models [35, 36], as representing a potential mechanism for
accelerating uniform and equitable adoption of these newer
technologies. That being said, the most significant implica-
tions from the current study relate to our illustration, more
generally, of the power of logic regression as a novel method
for discovering interactions in health services and outcomes
research. In addition to characteristics of the surgeon and
practice environment, others have described multiple con-
textual factors that influence technology adoption, including,
among others, patient demand, professional impact (i.e.,
financial and social costs), commercial promotion, and mag-
nitude of perceived clinical benefit [37]. As such, methods
that allow better characterization and understanding of the
complex interplay between these factors will undoubtedly
facilitate targeted and efficient interventions to optimize the
adoption of both beneficial and potentially harmful new
technologies.
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Exon recognition is a fundamental task in bioinformatics to identify the exons of DNA sequence. Currently, exon recognition
algorithms based on digital signal processing techniques have been widely used. Unfortunately, these methods require many
calculations, resulting in low recognition efficiency. In order to overcome this limitation, a two-stage exon recognition model is
proposed and implemented in this paper.There are threemainworks. Firstly, we use synergetic neural network to rapidly determine
initial exon intervals. Secondly, adaptive sliding window is used to accurately discriminate the final exon intervals. Finally,
parameter optimization based on artificial fish swarmalgorithm is used to determine different species thresholds and corresponding
adjustment parameters of adaptive windows. Experimental results show that the proposed model has better performance for exon
recognition and provides a practical solution and a promising future for other recognition tasks.

1. Introduction

With the completion of human genome project, gene data
increase exponentially. Identifying the genes encoding of
DNA [1] has important theoretical and practical implications.
How to quickly access accurate genetic information is an
urgent problem to be solved.

Early exon recognition methods were based mainly on
statistical models [2], which get their chromosomal order by
statistical analysis of different genes. But with the increase of
genomic number, statistical methods cannot meet the need
for rapid recognition of exons. At present, exon recognition
methods based on digital signal processing have also been
widely used [3–5].These techniques select a suitablemapping
method and transformation method to get spectral values
and identify exons according to fixed length window. Limi-
tations of these methods include slow recognition speed and
inability to accurately determine the threshold for different
species.

Synergetic theory [6] is the science proposed by Haken
to describe high dimension and nonlinear problem as a set

of low-dimension nonlinear equations. One advantage of
synergetic neural network is that themethod is robust against
noise and the method can better handle the fuzzy matching
problem [7–9]. Exon recognition can also be considered
a problem of pattern recognition, for which the proposed
method can be used to solve.

Artificial fish swarm algorithm (AFSA) [10, 11] is a class
of swarm intelligence optimization algorithms based on the
behavior of animals proposed in 2002; the basic idea of AFSA
is to imitate the fish behaviors such as praying, swarming,
and following. AFSA is very suitable for solving a variety
of numerical optimization problems, making the algorithm
become a hot topic in the current optimization field quickly.
Because of simplicity in principle and good robustness, AFSA
has been applied successfully to all kinds of optimization
problems such as image segmentation [12], color quantization
[13], neural network [14], fuzzy logic controller [15], multi-
robot task scheduling [16], fault diagnosis in mine hoist [17],
data clustering [18], and other areas.

In this paper, we proposed a two-stage exon recognition
model based on synergetic neural network and artificial fish
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Figure 2: Exon recognition algorithm based on 3-Cycle spectrum.

Table 1

Δ𝑥[𝑛] 1 −1 1 −1 −1 1 1
Δ𝑦[𝑛] 1 1 −1 −1 −1 1 −1
Δ𝑧[𝑛] 1 −1 −1 1 1 1 −1

swarm algorithm. This paper is organized as follows. Firstly,
traditional exon recognition method based on digital signal
processing and related work are presented. Secondly, an
exon recognition model based on synergetic neural network
and parameter optimization method based on artificial fish
swarm algorithm are introduced. Finally some experimental
tests, results, and conclusions are given on the systems.

2. Introduction to Exon Recognition Method
Based on Digital Signal Processing

The gene is usually divided into many fragments. The coding
sequence is called exons and noncoding part is called introns,
as shown in Figure 1.

The objective of gene recognition is to identify the
exons of DNA sequence. Gene recognition based on digital
signal processing methods consists of several steps [19, 20].
First, gene sequences are transformed into digital symbol
sequences using mapping methods [21–24]. This is followed
by calculation of the corresponding frequency value by fast
Fourier transform and the 3-Cycle properties of the spectrum
are then used to identify exons [25, 26]. Finally, fixed sliding
window method is used for automatic exon recognition, as
shown in Figure 2.

2.1. Z-Curve Mapping. In order to make digital processing,
we must transform four nucleotide sequences A, T, G, and C
into their corresponding numeric sequence based on certain
rules.

Let the four instruction sequences be {𝑢
𝑏
[𝑛]}, 𝑏 ∈ 𝐼 =

{A,C,G,T}, and cumulative sequence 𝑏
𝑛
(𝑛 = 0, 1 . . . , 𝑁 − 1)

is 𝑏
𝑛
= ∑
𝑛−1

𝑖=0
𝑢
𝑏
[𝑖]; then we can define three sequences 𝑥[𝑛],

𝑦[𝑛], and 𝑧[𝑛]:

𝑥 [𝑛] = 2 (A
𝑛
+ G
𝑛
) − 𝑛,

𝑦 [𝑛] = 2 (A
𝑛
+ C
𝑛
) − 𝑛,

𝑧 [𝑛] = 2 (A
𝑛
+ T
𝑛
) − 𝑛.

(1)

Let

𝑥 [−1] = 0, 𝑦 [−1] = 0, 𝑧 [−1] = 0,

Δ𝑥 [𝑛] = 𝑥 [𝑛] − 𝑥 [𝑛 − 1] , Δ𝑦 [𝑛] = 𝑦 [𝑛] − 𝑦 [𝑛 − 1] ,

Δ𝑧 [𝑛] = 𝑧 [𝑛] − 𝑧 [𝑛 − 1] .

(2)

Thus we can get the 𝑍-curve mapping:

(

Δ𝑥 [𝑛]

Δ𝑦 [𝑛]

Δ𝑧 [𝑛]

) = (

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

)(

𝑢A [𝑛]
𝑢C [𝑛]
𝑢G [𝑛]
𝑢T [𝑛]

) . (3)

For example, the DNA sequence of 𝑆(𝑛) is ACGTTAG;
then the corresponding 𝑍-curve mapping sequence is shown
in Table 1.

2.2.The Power Spectrum. To study the characteristics of DNA
coding sequences (exons), we can do the discrete Fourier
transform (DFT), respectively, for the instruction sequences:

𝑈
𝑏
[𝑘] =

𝑁−1

∑

𝑛=0

𝑢
𝑏
[𝑛] 𝑒
−𝑗(2𝜋𝑛𝑘/𝑁)

, 𝑘 = 0, 1, . . . , 𝑁 − 1. (4)

Thus we can calculate the power spectrum:

𝑃
𝑧
[𝑘] = |Δ𝑋 [𝑘]|

2

+ ||Δ𝑌 [𝑘]||
2

+ |Δ𝑍 [𝑘]|
2

,

𝑘 = 0, 1, . . . , 𝑁 − 1,

(5)

where Δ𝑋[𝑘], Δ𝑌[𝑘], and Δ𝑍[𝑘] are the Fourier transform of
Δ𝑥[𝑛], Δ𝑦[𝑛], and Δ𝑧[𝑛], respectively.

The spectral peaks of exon sequences are larger in 𝑘 =
𝑁/3 and 𝑘 = 2𝑁/3 of the power spectrum curve, while
they are not similar for intron.This statistical phenomenon is
known as 3-Cycle. Suppose that the average power spectrum
of DNA sequences is

𝐸 =
∑
𝑁−1

𝑘=0
𝑃 [𝑘]

𝑁
. (6)

The power spectrum ratio of the DNA sequence and the
average spectrum of the entire sequence are known as SNR
(signal-to-noise ratio):

𝑅 =
𝑃 [𝑁/3]

𝐸
. (7)

Figure 3 shows the power spectrum of viral genes.
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Figure 3: The power spectrum of viral gene sequence.

From Figure 3, we can see that the spectrum presents
obvious 3-Cycle.Thepeaks appear roughly in 2000, 4000, and
6000. So the exon segment can be determined, enabling the
recognition of genes.

The highest point of power spectrum may not appear in
𝑘 = 𝑁/3 and 𝑘 = 2𝑁/3 but occur in the surrounding. So we
can calculate average SNR 𝑅

1
and 𝑅

2
of intervals [𝑁/3 − 𝛾,

𝑁/3 + 𝛾] and [2𝑁/3 − 𝛾, 2𝑁/3 + 𝛾], respectively:

𝑅
1
=

∑
𝑁/3+𝛾

𝑘=𝑁/3−𝛾
𝑃 [𝐸]

(2𝛾 + 1) 𝐸
, 𝑅

2
=

∑
2𝑁/3+𝛾

𝑘=2𝑁/3−𝛾
𝑃 [𝐸]

(2𝛾 + 1) 𝐸
. (8)

2.3. Automatic Recognition Algorithm Based on Fixed Sliding
Windows. Supposed 𝑀 is the length of fixed window; we
can do four discrete Fourier transforms (DFT) for instruction
sequences {𝑢

𝑏
[𝑛]} (0 ≤ 𝑛 ≤ 𝑁 − 1),

𝑈
𝑏
[𝑘] =

𝑖=𝑛+(𝑀−1)/2

∑

𝑖=𝑛−(𝑀−1)/2

𝑢
𝑏
[𝑖] 𝑒
−𝑗(2𝜋𝑖𝑘/𝑀)

, 𝑘 = 0, 1, . . . ,𝑀 − 1.

(9)

Then the total spectrum 𝑝 (𝑛;𝑀/3) at position𝑀/3 is

𝑃 [
𝑀

3
] =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈A [

𝑀

3
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈T [
𝑀

3
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈G [

𝑀

3
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈C [
𝑀

3
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Δ

= 𝑝(𝑛;
𝑀

3
) .

(10)

3. Related Work

The SNR of exon sequences reflects the distribution of
spectrum peak. SNR greater than a given threshold is a
characteristic of exons, while introns generally do not have
this property.

Protein coding regions and noncoding regions can be
distinguished using the value of SNR, but this method still
has a large predictive error because the spectrum peak varies
amongst different biological categories. A fixed threshold is
unreasonable to use for different biological categories.There-
fore, determining the SNR threshold has great significance for

exon recognition. Note that it is difficult to find the proper
prediction threshold for biological categories when relying
only on prior biological knowledge.

Xu [27] proposed amethod based on bootstrap algorithm
to determine the best SNR threshold that can be obtained
from marked exon sequences. The results of that study
showed that the average prediction accuracy of the method
was 81%, which is 19% higher than other methods that
employ empirical thresholds. In paper [28], a novel model
was proposed to determine the SNR threshold based on the
means of biological categories and improved the recognition
performance to some extent.

But all the methods mentioned above have problems,
such as slow recognition speed, inaccurate determination of
the threshold for different species, and the requirement to
know the exon fragments of DNA sequences. In the following
sections, we propose a novel two-stage exon recognition
model based on synergetic neural network and artificial fish
swarm algorithm to better deal with these problems.

4. A Novel Two-Stage Exon Recognition Model

In this section, a two-stage exon recognition model is
presented. In the first stage, synergetic neural network is
used to determine initial exon intervals. In the second stage,
final accurate exon intervals determination based on adaptive
sliding window and parameter optimization algorithm are
introduced.

4.1. Initial Exon Intervals Determination Based on Synergetic
Neural Network. The basic principle of synergetic neural
network [29, 30] is that the pattern recognition procedure can
be viewed as the competition progress of many order param-
eters. The strongest order parameter will win by competition
and desired pattern will be recognized.

A pattern that remained to be recognized, 𝑞, is con-
structed by a dynamic process which translates 𝑞 into one of
prototype pattern vectors V

𝑘
through status 𝑞(𝑡); namely, this

prototype pattern is closest to 𝑞(0). The process is described
as the following equation:

𝑞 󳨀→ 𝑞 (𝑡) 󳨀→ V
𝑘
. (11)

A dynamic equation can be given for an unrecognized
pattern 𝑞:

̇𝑞 =

𝑀

∑

𝑘=1

𝜆
𝑘
V
𝑘
(V+
𝑘
𝑞) − 𝐵 ∑

𝑘
󸀠
̸=𝑘

(V+
𝑘
󸀠𝑞)
2

(V+
𝑘
𝑞) V
𝑘

− C (𝑞+𝑞) 𝑞 + 𝐹 (𝑡) ,

(12)

where 𝑞 is the status vector of input pattern with initial value
𝑞
0
, 𝜆
𝑘
is attention parameter, V

𝑘
is prototype pattern vector,

and V+
𝑘
is the adjoint vector of V

𝑘
that satisfies

(V+
𝑘
, VT
𝑘
󸀠) = V+

𝑘
⋅ VT
𝑘
󸀠 = 𝛿
𝑘𝑘
󸀠 . (13)
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Table 2: The signal-to-noise ratio of four different gene sequences.

Gene categories Exon Intron
Number 𝑅-mean Variance Number 𝑅-mean Variance

Human 35 3.02 3.071 26 0.82 0.533
Mus musculus 357 2.46 2.508 275 0.68 0.414
Sewer rat 45 3 5.233 35 0.83 0.624
Mammalian 827 2.72 6.243 626 0.67 0.394

DNA 
sequence

Numerical 
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Fourier 
transform

Power 
spectrum

EvaluatingOrder 
parameters

Exons 
interval

Parameters
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Figure 4: Exon recognition based on synergetic neural network.
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Figure 5: The SNR distribution of 200 mammalian exons.

Corresponding dynamic equation of order parameters is

̇𝜉
𝑘
= 𝜆
𝑘
𝜉
𝑘
− 𝐵 ∑

𝑘
󸀠
̸=𝑘

𝜉
2

𝑘
󸀠𝜉
𝑘
− C
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑘
󸀠
=1

𝜉
2

𝑘
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜉
𝑘
. (14)

Haken has proved that when 𝜆
𝑘
= 𝑐 (𝑐 > 0), the largest

initial order parameter will win and the network will then
converge.

We firstly introduce the synergetic theory to exon recog-
nition; an exon recognition algorithm based on synergetic
neural network is shown in Figure 4.

We use synergetic neural network and 𝑁 equal method
to quickly determine the initial exon region, as shown in
Algorithm 1.

4.2. Get Precise Exon Intervals Using Adaptive Smoothing
Window. We can obtain several possible exon intervals by
Algorithm 1. In this section, we propose an adaptive sliding
window algorithm to get more accurate intervals, as shown
in Algorithm 2.

4.3. Parameter Optimization Based on Artificial Fish Swarm
Algorithm. The parameters T

0
and 𝛾 directly influence the
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Figure 6: The SNR distribution of 200 mammalian introns.

performance of exon recognition. The adjustment of the
parameters is a global behaviour and has no general research
theory to control the parameters in the recognition process
at present. In this section, artificial fish swarm algorithm is
used to search the global optimum parameters (T

0
, 𝛾) in the

corresponding parameter space.
Theparameter optimization based on artificial fish swarm

algorithm is shown as Algorithm 3.

5. Experiment

5.1. Data Description. In our experiments, we use some gene
sequences provided byChineseGraduateMathematical Con-
test in Modeling. Chinese graduate Mathematical Contest in
modeling is aimed at improving the students’ comprehensive
abilities of mathematical modeling and computer to solve
practical problems. From different points of view, the inte-
grated use of a variety of mathematical methods established
the mathematical model of the characteristic.

We selected 100 human gene sequences, 100 rodent gene
sequences (including Mus musculus and Sewer rat), and 200
mammalian gene sequences for testing. The signal-to-noise
ratios of the sequences are gotten by SPSS statistical analysis
software, as shown in Table 2.

From Table 2, we can find out that the difference between
SNR standard deviation of exons is greater than SNR standard
deviation of introns.

At the same time, we analyze the SNR distribution of
exons and introns of 200 mammalian gene sequences, as
shown in Figure 5 and Figure 6.

From Figure 5 and Figure 6, we can see that the mam-
malian introns are mostly less than 2, while exons are mostly
distributed in the range of [0, 2], which accounts for 55.38%.
Therefore, it is unreasonable to set SNR threshold of different
categories as fixed value. How to accurately determine SNR



Computational and Mathematical Methods in Medicine 5

(1) Let 𝑆 is a given gene sequence, 𝑆start and 𝑆end are the beginning and end of the
sequence respectively, 𝑇

0
is throdthod of spectral values;

(2) Using 𝑍 Curve mapping converted gene sequence to the corresponding numeric sequence;
(3) Using fast Fourier transform to get spectral values 𝑅

1
and 𝑅

2
according to the formula (8);

(4) Calculating gene sequence order parameter:
𝜉
1
=

𝑅
1

𝑅
1
+ 𝑅
2

, 𝜉
2
=

𝑅
2

𝑅
1
+ 𝑅
2

;

(5) Setting network parameter 𝜆
𝑘
and 𝐵, 𝐶;

(6) Order parameter evolution according to formula (14);
(7) If 𝜉

1
> 𝑇
0
and 𝜉

2
> 𝑇
0
, then [𝑆start, 𝑆end] is recorded as a possible interal, and 𝑆 is divided

equally into 𝑛 interals 𝑆
1
, 𝑆
2
, . . ., 𝑆

𝑛
, Repeat step 1 to step 7;

(8) End.

Algorithm 1: Determination of initial exon region based on synergetic neural network.

(1) Let𝑊 is a given gene sequence,𝑊start and𝑊end are the beginning and the end of
the sequence respectively;

(2) Using 𝑍 Curve mapping converted gene sequence [𝑊start,𝑊end] to the
corresponding numeric sequence;

(3) Using fast Fourier transform to get spectral values;
(4) Calculating gene sequence order parameter:

𝜉
1
=

𝑅
1

𝑅
1
+ 𝑅
2

, 𝜉
2
=

𝑅
2

𝑅
1
+ 𝑅
2

;

(5) Order parameter evolution according to formula (14);
(6) If 𝜉

1
> 𝑇
0
, 𝜉
2
> 𝑇
0
and𝑊start + 𝛾 < 𝑊end − 𝛾, Then𝑊start = 𝑊start + 𝛾,

𝑊end = 𝑊end − 𝛾,
Repeat step 2 to step 6;

(7) Output the final interval [𝑊start,𝑊end].

Algorithm 2: Precise exon regions based on adaptive smoothing window.

threshold of each kind of biological gene has important
significance.

5.2. Experiment Results. Suppose that sensitivity 𝑆
𝑁
= 𝑇
𝑃
/

(𝑇
𝑝
+ 𝐹
𝑁
) and specificity 𝑆

𝑃
= 𝑇
𝑁
/(𝑇
𝑁
+ 𝐹
𝑃
), where 𝑇

𝑃
is

the number of exons which are correctly identified, 𝑇
𝑁
is the

number of introns which are correctly identified, 𝐹
𝑃
is the

number of exons which are not correctly identified, and 𝐹
𝑁

is the number of introns which are not correctly identified.
Then we can compute the accurate rate A

𝑐
= (𝑆
𝑁
+ 𝑆
𝑃
)/2.

For comparison, we use four strategies.
(1) Baseline: automatic recognition algorithm with

threshold 𝑅
0
= 2.

(2) Bootstrap: the threshold selection algorithm based on
bootstrap method.

(3) SNN: exon recognition based on synergetic neural
network.

(4) SNN + AFSA: two-stage exon recognition model
based on synergetic neural network and artificial fish
swarm algorithm.

The testing performance of Baseline is shown as in
Table 3.

The experiments showed that when the exon length is
short, the recognition accuracy rate is low. In the short

gene coding sequence, 3-base periodicity is not absolutely
satisfied. In our experiments, we complete a two-stage exon
recognition model based on synergetic neural network and
artificial fish swarm algorithm. The parameter settings of
artificial fish swarm algorithm are shown in Table 4.

In the experiment, we set the recognition accuracy rate as
score function.

The testing performance of SNN + AFSA is shown as in
Table 5.

Table 5 shows that the two-stage exon recognition algo-
rithm improves precision compared to the Baseline system.
Experiments also indicate that the improved model has a
more powerful global exploration ability and a reasonable
convergence speed.

The accurate rate A
𝑐
of different methods is shown in

Table 6.
Detailed comparisons of results are given in Table 6.

Experimental results show that the proposedmodel SNN and
SNN + AFSA have good performance for exon recognition.
The accurate rate we obtained for all four corpuses is
comparable to the state-of-the-art systems, such as Baseline
and bootstrap method. Through the evaluating of order
parameter equation of SNN to obtain the best threshold, we
can further improve the exon recognition performance.

At the same time, we can see that the performance of
SNN + AFSA is better than SNN model. This is because
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(1) Initialize the parameters of artificial fish, such as 𝑠𝑡𝑒𝑝, V𝑖𝑠𝑢𝑎𝑙, the number of exploratory,
maximum number of iterations, and randomly generated 𝑛 fishes;

(2) Set bulletin board to record the current status of each fish, and select the optimal value;
(3) Implementation of prey behavior, swarm behavior and follow behavior;
(4) Optimal value in bulletin board is updated;
(5) If termination condition is satisfied, output the result; otherwise return to step 2.

Algorithm 3: Parameter optimization based on artificial fish swarm algorithm.

Table 3: The testing performance of Baseline.

Gene categories 𝑇
𝑃

𝐹
𝑁

𝑆
𝑁

𝑇
𝑁

𝐹
𝑃

𝑆
𝑃

𝐴
𝑐

Human 17 18 0.485 24 2 0.923 0.71
Mus musculus 146 211 0.409 271 4 0.985 0.70
Sewer rat 17 28 0.378 31 4 0.886 0.63
Mammalian 369 458 0.446 621 5 0.992 0.72

Table 4: The parameter settings of artificial fish swarm algorithm.

Algorithm Fish
number Visual Delta Step Number of

iterations
AFSA 100 2.85 9 1 60

Table 5: The test performance of SNN + AFSA.

Gene categories 𝑇
𝑃

𝐹
𝑁

𝑆
𝑁

𝑇
𝑁

𝐹
𝑃

𝑆
𝑃

𝐴
𝑐

Human 30 5 0.857 19 7 0.731 0.79
Mus musculus 295 62 0.826 220 55 0.80 0.81
Sewer rat 36 9 0.80 28 7 0.80 0.80
Mammalian 630 197 0.762 607 19 0.97 0.87

Table 6: The test performance comparison among different meth-
ods.

Gene categories Baseline Bootstrap SNN SNN + AFSA
Human 0.71 0.76 0.78 0.79
Mus musculus 0.70 0.78 0.80 0.81
Sewer rat 0.63 0.75 0.77 0.80
Mammalian 0.72 0.84 0.85 0.87

the attention parameters are very important for SNN and
optimization algorithm is essential for better performance.
Experimental results show that improved AFSA algorithm
has better global and local parameter searching capabilities
and thus a better recognition result.

It is worth noting that experimental results show that run
times of our proposed model reduced with good speedup
ratio compared with Baseline. Further studies show that the
procedure exhibits data parallelism, so it can be effectively
parallelized by running it concurrently. In the future work,
we will utilize parallel processing techniques for rapid exon
recognition based on SNN to further reduce the run time.

6. Conclusions

In the paper, we proposed a two-stage exon recognition
model based on synergetic neural network and artificial
fish swarm algorithm. Experiments show that the proposed
model can improve the precision of exon recognition.

We got the following conclusions.
(1) The exon recognition procedure can be viewed as the

competition progress of many order parameters. The
proposed model based on synergetic neural network
and𝑁 equal method can quickly determine the exon
intervals.

(2) Artificial fish swarm algorithm has both global and
local search ability and can effectively choose the
parameters of our proposed model.

(3) Using𝑁 equal algorithm to obtain exon intervalsmay
still miss some intervals which are in the middle; we
will further improve the algorithm or use different
pattern recognition algorithm in the future.

Itmust be noted that, althoughwe havemade some efforts
to explore the intelligent exon recognition algorithm in this
paper. But due to the special nature of life science itself, there
are many problems such as how to accurately determine that
the exon interval needs further study. But we believe that
with the development of social progress and technology, gene
identification technology will become increasingly perfect;
we expect it can bring gospel to manking in the near future.
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