Security Threats to Artificial

Intelligence-Driven Wireless
Communication Systems

Lead Guest Editor: Huaming Wu
Guest Editors: Xiaolong Xu, Kaitai Liang, Yuan Yuan, and Junqging Zhang

Security Threats to Artificial Intelligence-
Driven Wireless Communication Systems

Security and Communication Networks

Security Threats to Artificial
Intelligence-Driven Wireless
Communication Systems

Lead Guest Editor: Huaming Wu
Guest Editors: Xiaolong Xu, Kaitai Liang, Yuan
Yuan, and Junqing Zhang

Copyright © 2021 Hindawi Limited. All rights reserved.

This is a special issue published in “Security and Communication Networks.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Chief Editor

Roberto Di Pietro, Saudi Arabia

Associate Editors

Jiankun Hu (), Australia
Emanuele Maiorana (), Italy
David Megias (), Spain
Zheng Yan (), China

Academic Editors

Saed Saleh Al Rabaee(2), United Arab
Emirates

Shadab Alam, Saudi Arabia
Goutham Reddy Alavalapati(), USA
Jehad Ali (%), Republic of Korea
Jehad Alj, Saint Vincent and the Grenadines
Benjamin Aziz ("), United Kingdom
Taimur Bakhshi (®), United Kingdom
Spiridon Bakiras (), Qatar

Musa Balta, Turkey

Jin Wook Byun (i), Republic of Korea
Bruno Carpentieri (), Italy

Luigi Catuogno (), Italy

Ricardo Chaves (), Portugal
Chien-Ming Chen (), China

Tom Chen (1), United Kingdom
Stelvio Cimato (1), Italy

Vincenzo Conti(l), Italy

Luigi Coppolino (1), Italy

Salvatore D'Antonio (9, Italy
Juhriyansyah Dalle, Indonesia
Alfredo De Santis, Italy

Angel M. Del Rey (), Spain

Roberto Di Pietro (2, France

Wenxiu Ding (2), China

Nicola Dragoni (), Denmark

Wei Feng (1), China

Carmen Fernandez-Gago, Spain
AnMin Fu(®, China

Clemente Galdi(), Italy

Dimitrios Geneiatakis (), Italy
Muhammad A. Gondal (), Oman
Francesco Gringoli (), Italy

Biao Han(»), China

Jinguang Han (), China

Khizar Hayat, Oman

Azeem Irshad, Pakistan

M.A. Jabbar (), India

Minho Jo (%), Republic of Korea
Arijit Karati(»), Taiwan

ASM Kayes (), Australia

Farrukh Aslam Khan (%), Saudi Arabia
Fazlullah Khan (%), Pakistan
Kiseon Kim (1), Republic of Korea
Mehmet Zeki Konyar, Turkey
Sanjeev Kumar, USA

Hyun Kwon, Republic of Korea
Maryline Laurent (), France
Jegatha Deborah Lazarus (), India
Huaizhi Li(®), USA

Jiguo Li(®), China

Xueqin Liang , Finland

Zhe Liu, Canada

Guangchi Liu (9, USA

Flavio Lombardi (), Italy

Yang Lu, China

Vincente Martin, Spain

Weizhi Meng (2), Denmark
Andrea Michienzi (), Italy

Laura Mongioi (), Italy

Raul Monroy (), Mexico
Naghmeh Moradpoor (), United Kingdom
Leonardo Mostarda (), Italy
Mohamed Nassar (), Lebanon
Qiang Ni, United Kingdom
Mahmood Niazi (), Saudi Arabia
Vincent O. Nyangaresi, Kenya

Lu Ou(}), China

Hyun-A Park, Republic of Korea
A. Peinado (19, Spain

Gerardo Pelosi (1), Italy

Gregorio Martinez Perez(2), Spain
Pedro Peris-Lopez (), Spain

Carla Rafols, Germany

Francesco Regazzoni, Switzerland
Abdalhossein Rezai(2), Iran
Helena Rifa-Pous (), Spain

Arun Kumar Sangaiah, India
Nadeem Sarwar, Pakistan

Neetesh Saxena, United Kingdom
Savio Sciancalepore(i2), The Netherlands

https://orcid.org/0000-0003-0230-1432
https://orcid.org/0000-0002-4312-6434
https://orcid.org/0000-0002-0507-7731
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0001-8842-493X
https://orcid.org/0000-0002-4335-8331
https://orcid.org/0000-0002-0589-7924
https://orcid.org/0000-0001-5089-2025
https://orcid.org/%200000-0003-4750-7864
https://orcid.org/0000-0002-8964-0746
https://orcid.org/0000-0002-5450-3207
https://orcid.org/0000-0003-1960-9986
https://orcid.org/0000-0002-6315-4221
https://orcid.org/0000-0002-4450-3983
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0001-8037-1685
https://orcid.org/0000-0003-1737-6218
https://orcid.org/0000-0002-8718-111X
https://orcid.org/0000-0002-2079-8713
https://orcid.org/0000-0001-9327-0138
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0003-1909-0336
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0002-8131-3206
https://orcid.org/0000-0002-1632-5737
https://orcid.org/0000-0002-2988-700X
https://orcid.org/0000-0001-6455-502X
https://orcid.org/0000-0003-1688-0113
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0002-5082-5727
https://orcid.org/0000-0002-4993-9452
https://orcid.org/0000-0003-4059-2728
https://orcid.org/0000-0001-7311-6459
https://orcid.org/0000-0001-5605-7354
https://orcid.org/0000-0002-2421-2214
https://orcid.org/0000-0002-7023-7172
https://orcid.org/0000-0003-4227-6067
https://orcid.org/0000-0001-9166-0570
https://orcid.org/0000-0002-7256-3721
https://orcid.org/0000-0001-8069-3801
https://orcid.org/0000-0002-5115-0928
https://orcid.org/0000-0002-6532-2081
https://orcid.org/0000-0003-4588-3196
https://orcid.org/0000-0003-0723-7847
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0001-8005-8701
https://orcid.org/0000-0003-2341-0996
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0002-8709-2678
https://orcid.org/0000-0001-8852-8317
https://orcid.org/0000-0001-8857-4436
https://orcid.org/0000-0001-7318-7644
https://orcid.org/0000-0002-8441-781X
https://orcid.org/0000-0003-1183-736X
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0001-5532-6604
https://orcid.org/0000-0001-6943-0760
https://orcid.org/0000-0001-8529-499X
https://orcid.org/0000-0003-0923-0235
https://orcid.org/0000-0003-0974-3639

De Rosal Ignatius Moses Setiadi (),
Indonesia

Wenbo Shi, China

Ghanshyam Singh (©), South Africa
Vasco Soares, Portugal

Salvatore Sorce (), Italy
Abdulhamit Subasi, Saudi Arabia
Zhiyuan Tan (%), United Kingdom
Keke Tang(®), China

Je Sen Teh ("), Australia

Bohui Wang, China

Guojun Wang, China

Jinwei Wang (), China

Qichun Wang (%, China

Hu Xiong (%), China

Chang Xu (), China

Xuehu Yan (%), China

Anjia Yang (), China

Jiachen Yang (), China

Yu Yao (), China

Yinghui Ye, China

Kuo-Hui Yeh (%), Taiwan

Yong Yu(), China

Xiaohui Yuan (), USA

Sherali Zeadally, USA

Leo Y. Zhang, Australia

Tao Zhang, China

Youwen Zhu (), China

Zhengyu Zhu (), China

https://orcid.org/0000-0001-6615-4457
https://orcid.org/0000-0002-5159-3286
https://orcid.org/0000-0003-1976-031X
https://orcid.org/0000-0001-5420-2554
https://orcid.org/0000-0003-0377-1022
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-9366-5671
https://orcid.org/0000-0003-3474-4115
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0002-9726-7232
https://orcid.org/0000-0001-6388-1720
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0003-2558-552X
https://orcid.org/0000-0001-5458-541X
https://orcid.org/0000-0003-0598-761X
https://orcid.org/0000-0003-0667-077X
https://orcid.org/0000-0001-6897-4563
https://orcid.org/0000-0003-4365-9713
https://orcid.org/0000-0001-6562-8243

Contents

Hardware Sharing for Channel Interleavers in 5G NR Standard
Xiaokang Xiong (%), Yuhang Dai(), Zhuhua Hu ("), Kejia Huo (), Yong Bai(), Hui Li(®), and Dake Liu
Research Article (13 pages), Article ID 8872140, Volume 2021 (2021)

A Study on the Optimization of Blockchain Hashing Algorithm Based on PRCA
Jinhua Fu (), Sihai Qiao, Yongzhong Huang, Xueming Si, Bin Li, and Chao Yuan
Research Article (12 pages), Article ID 8876317, Volume 2020 (2020)

Game Theoretical Method for Anomaly-Based Intrusion Detection
Zhiyong Wang, Shengwei Xu, Guoai Xu, Yongfeng Yin ("), Miao Zhang, and Dawei Sun
Research Article (10 pages), Article ID 8824163, Volume 2020 (2020)

DL-IDS: Extracting Features Using CNN-LSTM Hybrid Network for Intrusion Detection System
Pengfei Sun, Pengju Liu, Qi Li, Chenxi Liu, Xiangling Lu, Ruochen Hao, and Jinpeng Chen
Research Article (11 pages), Article ID 8890306, Volume 2020 (2020)

Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey
Yirui Wu (), Dabao Wei, and Jun Feng
Review Article (17 pages), Article ID 8872923, Volume 2020 (2020)

The Defense of Adversarial Example with Conditional Generative Adversarial Networks
Fangchao Yu, Li Wang (), Xianjin Fang, and Youwen Zhang
Research Article (12 pages), Article ID 3932584, Volume 2020 (2020)

Anomaly Event Detection in Security Surveillance Using Two-Stream Based Model
Wangli Hao, Ruixian Zhang, Shancang Li, Junyu Li, Fuzhong Li (), Shanshan Zhao, and Wuping Zhang
Research Article (15 pages), Article ID 8876056, Volume 2020 (2020)

Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques
Huaijun Wang, Jing Zhao, Junhuai Li (), Ling Tian, Pengjia Tu, Ting Cao, Yang An, Kan Wang, and
Shancang Li

Research Article (12 pages), Article ID 2132138, Volume 2020 (2020)

Warehouse-Oriented Optimal Path Planning for Autonomous Mobile Fire-Fighting Robots
Yong-tao Liu, Rui-zhi Sun (), Tian-yi Zhang, Xiang-nan Zhang, Li Li, and Guo-qing Shi
Research Article (13 pages), Article ID 6371814, Volume 2020 (2020)

Exploiting the Relationship between Pruning Ratio and Compression Effect for Neural Network
Model Based on TensorFlow

Bo Liu{, Qilin Wu, Yiwen Zhang (), and Qian Cao

Research Article (8 pages), Article ID 5218612, Volume 2020 (2020)

https://orcid.org/0000-0002-4133-5494
https://orcid.org/0000-0001-9468-9061
https://orcid.org/0000-0002-6837-9024
https://orcid.org/0000-0001-5842-8171
https://orcid.org/0000-0002-2506-5981
https://orcid.org/0000-0002-1846-7958
https://orcid.org/0000-0002-4644-4892
https://orcid.org/0000-0002-8854-7742
https://orcid.org/0000-0001-9432-3051
https://orcid.org/0000-0003-4157-5110
https://orcid.org/0000-0003-3022-3718
https://orcid.org/0000-0002-2627-5403
https://orcid.org/0000-0003-0181-712X
https://orcid.org/0000-0003-0558-9988
https://orcid.org/0000-0001-5483-5175
https://orcid.org/0000-0001-7267-5283
https://orcid.org/0000-0003-3948-2839
https://orcid.org/0000-0001-8709-1088
https://orcid.org/0000-0003-2915-2051

Hindawi

Security and Communication Networks
Volume 2021, Article ID 8872140, 13 pages
https://doi.org/10.1155/2021/8872140

Research Article

WILEY

Hindawi

Hardware Sharing for Channel Interleavers in 5G NR Standard

Xiaokang Xiong
and Dake Liu

» Yuhang Dai

, Zhuhua Hu

» Kejia Huo (©, Yong Bai (®, Hui Li®,

School of Information and Communication Engineering and State Key Laboratory of Marine Resource Utilization in South China

Sea, Hainan University, Haikou 570228, China

Correspondence should be addressed to Zhuhua Hu; eagler_hu@hainu.edu.cn and Yong Bai; bai@hainanu.edu.cn

Received 9 April 2020; Revised 16 June 2020; Accepted 7 January 2021; Published 27 January 2021

Academic Editor: Huaming Wu

Copyright © 2021 Xiaokang Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Interleaver module is an important part of modern mobile communication system. It plays an important role in reducing bit error
rate and improving transmission efficiency over fading channels. In 5G NR (5th Generation New Radio) standards, LDPC (low-
density parity-check) and polar channel codes are employed for data channels and control channels, respectively. If multiple
interleavers are implemented separately for them, the cost increases significantly. To address this issue, a hardware multiplexing
scheme for channel interleavers based on LDPC and polar codes is proposed in this paper. Firstly, the formulas for the processes of
the control channel interleaving and data channel interleaving are derived with respect to 5G NR standard. Then, the hardware
implementation structures of the two interleavers are given. Subsequently, hardware reuse is proposed by sharing the similar or
identical parts between the two hardware structures. Simulation results verify the correctness of our proposed scheme and

demonstrate that it can realize the hardware sharing of the two kinds of channel interleavers to reduce the cost of silicon.

1. Introduction

In the modern mobile communication, some important
technologies are used, such as interleaving [1], offloading [2],
spectrum sensing [3, 4], partitioning [5], hardware reusing, and
resource sharing and allocation [6, 7]. Specifically, channel
interleaving technology has been widely used. Channel in-
terleaving aims to distribute transmitted bits in time to achieve
desirable bit error distribution to counter the effects of fading
channels. The interleaver can change the permutation of the
signal bit stream to the utmost without changing the infor-
mation content. Therefore, interleaver can maximize the dis-
persion of continuous error bits generated by bursts in the
process of transmission. In this way, the error correction and
error detection capabilities of the receiver can be improved. In
the traditional LUT (lookup table) based interleaving and
deinterleaving scheme, a large amount of silicon is used with
high cost. Therefore, it is important to reuse the hardware for
different types of interleavers to reduce the cost of silicon.
At present, the hardware equipment based on multi-
mode and fast-switching has been studied for channel
interleavers in WLAN (wireless local area network, which

includes IEEE 802.11a/b/g and IEEE 802.11n standards),
WiIiMAX (Worldwide Interoperability for Microwave Ac-
cess, which includes IEEE 802.16e standard), 3GPP-
WCDMA (3rd Generation Partnership Project-Wideband
Code-Division Multiple Access), 3GPP-LTE (3GPP-long-
term evolution), and DVB-T/H (Digital Video Broadcast-
ing-Terrestrial/Handheld) standards [1]; multistandard
hardware interleaver structure was proposed for HSPA
(High Speed Packet Access) evolution, 3GPP-LTE, WiMAX,
WLAN, and DVB-T/H in [8]. A parallel architecture for
decoding reconfigurable interleavers was proposed to sup-
port HSPA evolution, DVB-SH (DVB-Satellite Services to
Handhelds), 3GPP-LTE, and WiMAX standards [9]. The
issues of address conflicts for hardware sharing were ana-
lyzed and resolved in [10]. Among these multistandard
interleaver implementations, it is common to simplify and
improve the interleaver algorithm of various standards such
that the hardware implementation structure becomes simple
and easy to reuse [11]. Then, the identical hardware structure
is reused by careful comparison to reduce the cost of silicon
for multistandards [12]. Although these works cover 2G, 3G,
and even 4G standards [13], the latest 5G standard has not

mailto:eagler_hu@hainu.edu.cn
mailto:bai@hainanu.edu.cn
https://orcid.org/0000-0002-4133-5494
https://orcid.org/0000-0001-9468-9061
https://orcid.org/0000-0002-6837-9024
https://orcid.org/0000-0001-5842-8171
https://orcid.org/0000-0002-2506-5981
https://orcid.org/0000-0002-1846-7958
https://orcid.org/0000-0002-4644-4892
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8872140

been studied in them. Therefore, with respect to the 5G NR
standard 3GPP TS 38.212 [14], this paper proposes a scheme
of hardware reuse and cost-saving for polar-encoded
channel interleaver [15] and LDPC-encoded channel
interleaver [16]. We first derive the formulas for the in-
terleaving schemes of data channel and control channel in
5G NR standard. Then, we design the corresponding
hardware structure for them. Next, by comparative analysis,
we obtain a multiplexing structure with a reused module to
achieve the hardware sharing of two-channel interleavers.
The contributions of this paper are as follows:

(1) The interleaving schemes of data channel and control
channel in 5G NR standard are formulized, and the
corresponding hardware structures are given.

(2) The hardware structure diagrams of two kinds of
channel interleaver are compared, and the hardware
sharing structure is given to realize low-cost
implementation.

The structure of the remaining parts of this paper is as
follows: in Section 2, we introduce the interleaver schemes for
LDPC and polar codes channel. In Section 3, we derive the
interleaving formulas of two kinds of channels to facilitate the
subsequent interleaver reuse. In addition, we give the hardware
structure designs of two interleavers. Then, according to the
derived formulas, we also give the hardware structure after
hardware sharing. Subsequently, the feasibility verification of the
final design is given. Finally, Section 4 summarizes the work of
this paper.

2. Brief Introduction of Channel Interleavers in
5G NR Standard

In this paper, our work is mainly carried out in accordance with
the final standard of 3GPP R15, which is the first version of the
5G standard and meets the part of IMT-2020 (International
Mobile Telecommunications-2020) requirements of ITU (In-
ternational Telecommunication Union). The interleaving
method used in the 5G standard is the optimal conclusion after
repeated discussion and demonstration [14, 17].

Channel interleaving mainly includes two modes: control
channel interleaving and data channel interleaving. This paper
focuses on the hardware sharing of these two interleaving
methods in 5G NR uplink and downlink. The position of our
work in the 5G NR standard is highlighted in Figure 1.

2.1. Interleaver for Data Channel. LDPC code is a new type of
error correction code. Its performance in mobile channel is
improved compared with turbo code. Even without inter-
leaver, the error correction ability of irregular LDPC code is
better than turbo code. Therefore, the LDPC code is listed as
one of the candidate schemes in 5G communications. In
addition, the simulation results show that LDPC has good
performance in all block lengths and code rates, and the
complexity is relatively low [18]. In the latest 5G standard,
the construction, coding, and interleaving scheme of parity
matrix H of LDPC code is specified. In 5G standard, QC-
LDPC (quasi-cyclic-LDPC) code is adopted. QC-LDPC code

Security and Communication Networks

belongs to a structured irregular LDPC code [19], which is
composed of basic matrix H, and lifting factor Z. In 5G
standard, two basic matrices (i.e., BG1 and BG2) are de-
termined. Two basic matrices have eight basic matrices,
respectively, and they have different dimensions. The cor-
responding basic matrix [20] is selected according to the size
and code rate of transmission block [21]. After the basic
matrix is determined, the lifting factor is selected, and then,
the basic matrix is modified according to the lifting factor to
get the modified parity matrix H. Finally, according to the
check matrix H, the encoded code word is directly obtained.

In essence, interleaver is a device which can change the
information distribution structure without changing the in-
formation content. It is employed to make the burst errors
generated in the process of channel transmission decentralized.
The LDPC code interleaving scheme adopted in 5G standard is
bit interleaving with block interleaver [22]. As shown in Figure 2,
the interleaving method is to read the input sequence into a
matrix by rows and then read out by columns. The process of
deinterleaving is the opposite operation, i.e., read the interleaved
sequence into the matrix by columns and then read it out by
rows. The matrix is determined by the length and interleaving
depth of the input sequence. The number of rows in the matrix is
the interleaving depth, and the number of columns is the length
of the input sequence divided by the interleaving depth. The
interleaving depth is related to the modulation order. There are
five modulation schemes specified in 5G NR standard, i.e., BPSK
(binary phase shift keying), QPSK (quadrature phase shift
keying), 16QAM (quadrature amplitude modulation), 64QAM,
and 256QAM. The corresponding modulation orders are 1, 2, 4,
6, and 8, respectively. For example, if 16QAM modulation is
used and the input sequence length is 8000 symbols, then the
matrix size is 4 x 2000. After adding the interleaving function,
the coding performance has a corresponding improvement, as
shown in Figure 3.

2.2. Interleaver for Control Channel. Due to its low complexity
of encoding and decoding, the polar code has become a research
hotspot of error correction code. The core of polar code con-
struction is related to the channel polarization. In the process of
coding, each subchannel is made to show a different reliability
[23, 24]. When the length of information code to be transmitted
continues to increase, some channels tend to the perfect channel
with capacity close to 1 (error-free code), and the other channels
tend to the pure noise channel with capacity close to 0. On this
basis, we can select those channels whose capacity is close to 1 to
transmit information directly to approximate the channel ca-
pacity. In addition, the polar code is the only coding scheme that
can be strictly proved to achieve the Shannon limit.

The construction of polar code is composed of error de-
tection, code matrix generation, sequence, rate matching [25],
and interleaving. In the interleaving part, we can also divide it
into two steps, interleaving before coding and interleaving after
coding. Interleaving before coding is applicable to 5G-NR DCI
(downlink control information), and there is no upstream in-
terleaving; the interleaving after coding is applicable to 5G-NR
UCI (uplink control information), and there is no downstream
interleaving. This paper discussed interleaving of UCL

Security and Communication Networks

Determine the L5 BG selection || Add the TB - L yls tation |—» Add the CB- L5 Bit selection || Bit Code block
TBS selection CRC egmentation CRC 1t selection interleaving merge
@
N Code bloc?k | 3| Add the CRC | Add al{xﬂlary Add al%xﬂlary A Subbloc.k || Rate matching] . Channe'l Code block
segmentation bits bits interleaving interleaving merge

(b)

FI1GURE 1: The position of our work in the 5G NR standard. (a) LDPC encoding process of PUSCH and PDSCH in 5G. (b) Polar encoding

process for UCI in 5G.

In Introduction, we have briefly introduced that the
interleaving is to disrupt the information structure without
changing the information content and reduce the relevance
between information bits to improve the resistance to burst
interference. In the interleaving of UCI, the right triangle
interleaving method is specified [26], as shown in Figure 4.
In this method, we assume that the storage unit is an
isosceles right triangle with a right angle side length of P, and
the side length P is clearly defined in 3GPP, that is,

P x g <8192. (1

In 3GPP, the interleaver has a maximum of 8192 bits
[27]. In this case, M is set as the number of bits after rate
matching. At this time, it requires

P+1

P x > M. (2)

When the equation takes the equal sign, we write the in-
formation into the interleaver line by line and then read it out in
the order of columns. When the equation takes the greater than
sign, there is still some unused space after all the information is
loaded into the interleaver. At this time, we load dummy ele-
ments (nulls) into the interleaver and discard the dummy el-
ements when reading out by columns. From the above process,
we can see that this is similar to the interleaving process of block
interleaver [28], but the rules of interleaving are not unitary
because the number of rows in each column or the number of
columns in each row is different. We can find that, after the right
triangle interleaving, the spacing between each adjacent infor-
mation data becomes P, P-1, and P-2, and they are not
equidistant. With the right triangle interleaving theory, we use
Matlab to simulate. We set up comparison groups; that is, one
group contains isosceles right triangle interleaving method,
while the other group does not. As shown in Figure 5, we can
find that the performance for reducing the bit error rate is
improved after using the interleaver. Among them, the red
dotted line does not use the interleaving function, while the blue
line uses the interleaving function.

3. Multiplexing of Two Interleavers in 5G
NR Standards

3.1. Formula Representation of Standardized Interleavers

3.1.1. Formula Representation of LDPC-Coded Data Channel
Interleaver. The channel interleaving process based on
LDPC encoding in 5G is given in Table 1.

a, a, as ay as ag a; ag ay

a; a as

a, as ag

az ag

v

as

g

a, ay a; a, ag as ag ag

FIGURE 2: Interleaving process of row/column interleaver.

Average BER, AWGN channel

09} -

08} -

0.7 |-

0.6 |-

05} -

BER

04} -

0.1} -

0 02 04 06 038 1

SNR/dB

12 14 16

-~ No interleaving
—— With interleaving

FiGure 3: Comparison of BER before and after interleaving.

In Table 1, E is the length of the input sequence, Q,,, is the
modulation order, e is the sequence before interleaving, and f
is the sequence after interleaving.

From Table 1, the essence of the whole interleaving
process is to write the input sequence x(n) in rows and
read the interleaving sequence as f(n) in columns. Hence,

Read by columns

a a a

—
Write by rows

FIGURE 4: Right triangle interleaving process.

. Average BER, AWGN channel

09F

0.8 | oo

0.6 F e

05 F i

BER

0AF - o

P

4 41 42 43 44 45 46 47 48 49 5
SNR/dB

—— With interleaving
--- No interleaving

Figure 5: Comparison of BER before and after interleaving.

TaBLE 1: The process of data channel interleaver.

for j=0to E/Q,, — 1
fori=0toQ,, -1
firjq, = €i(EQ,+j)
end for
end for

the realization of interleaver is to find the corresponding
relationship between f(n) and x(n), that is, the interleaving
address. Since the interleaving process can be equivalent
to that in a matrix, the parameter i in the interleaving
process can be equivalent to a row parameter, j can be
equivalent to a column parameter, and the row and
column correspond to the row and column in the matrix,
respectively, where the range of i is [0, Q,,— 1], and the
range of j is [0, E/Q,, — 1]. Then, set the interleaving result
as Jij which is

Security and Communication Networks

fisja, = €, (3)

where j is the outer loop and its value increases
from 0 to E/Q,, — 1 and i is the inner loop whose
value increases from 0 to Q,,,. Thus, we can get the
value of i+jxQ,, is 0, 1, 2, 3, ..., E—1. That is,
with the increase in i and j, the value of J;; is the
position of the elements in the output sequence
corresponding to the sequence before inter-
leaving. For example, the calculated value of J;; is
written as [1-4] in order. If the input sequence is
e, then the output sequence is [e(4), e(3), e(2),
e(1)]. In the original process,

i-E
Qu+ij

Ti iz (4)
However, because the formula is not con-
venient for subsequent hardware reuse, this pa-

per adopts a new method to achieve the result.

Let us first assume that the value of input sequence e is 0,
1,2,3,...,19. In other words, the value of the element in the
input sequence is equal to its position in the input sequence,
i, Jij. It is convenient for the later observation. Q,, =4
denotes 16QAM modulation, and the rectangle after the data
in the modulation process is shown in Figure 6. When the
value of j is 0, the data in the first column are readout. Jij
corresponds to the next data, and it is always 5 more than
that of the previous data. For example, the first element in
the first row corresponding J;; is 0, the next element cor-
responding J;; is 5, and the next element corresponds to 10.
The law of the following columns is the same as that of the
first column. Therefore, when the row parameter i is not
equal to 0, the value of J; ; is the value of the last read-out data
Jij (canbe setas J;_, ;) and plus E/Q,,. Then, when i is equal to
0, it can be observed that J;; is the value of the column
parameter j, so the formula of J;; can be derived as

j) i=0a

]i,j = (5)

£
Qn

where the value of E/Q,, (i.e., the number of columns of the
rectangle) can be given in the precalculation stage.

]i—l,j+ , 1#0,

3.1.2. Formula Representation of Polar-Coded Control
Channel Interleaver. In the above part, we give a brief
overview of the whole interleaving system. Here, we will refine
the formula and implement the hardware diagram according to
the interleaving process. First of all, we need to make it clear
that the data entered the isosceles right triangle interleaver
according to the order of rows but readout according to the
order of columns. Therefore, we can think that the data are read
in line order, and then, a transpose of rows and columns is
carried out in the interleaver. Then, we read in line order, which
is more convenient for us to derive the formula. Then, we
introduce two variables, i and j, as row and column counter,
respectively. Here, we make the following provisions for i and j

Security and Communication Networks

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

FIGURE 6: Input sequence after filling in rectangle.

(i<P-1,j< P-1), where P is the size of the right-angle side of
an isosceles right triangle. Meanwhile, when i increases from 0
to P—1, j adds 1; j increases from 0 to P—1, then i adds 1.
When the information data enter the interleaver and are
transposed, it is easy to find the order of elements a;; of row j
and column i in the sequence after reading them out by row.
We can obtain the formula as

i, j:())

(CL+C)x G+ Vx5 -[C -G+ 1], j%o
®)

aj,i=

It should be noted that the above formula does not
consider the existence of dummy elements, so it only de-
scribes the case when the information sequence completely
fills the interleaver. In equation (6), C; is the length of the
first line of the right triangle interleaver, which is P. C; is

defined by
b, j=0,
C;= . (7)
I SR N £

where C; is the number of columns in the (j+1)th row.
Through the above two formulas, we have known the re-
lationship between a;; and the sequence after interleaving
after the internal transposition of interleaver. However, we
still do not know the corresponding relationship between a;;
after transposition and the information a; before entering
the interleaver. Through the observation of the internal data
of the interleaver after transposition, it is found that when we
read the data in the order of columns, it is exactly the order
in which the data are stored in the interleaver. Therefore, we
can get a corresponding relationship as

J» i=0,
ap = 1
(C1+Ci)><(i+l)xE—[Ci—(j+1)], i#0,
(8)

where C; is the number of rows in each column. The defi-
nition is similar to the above C;. In the deinterleaving, we
should subtract the number of dummy elements, and
equation (6) becomes (9) for such a purpose:

j=o0,
9

(C1+Cj)><(j+1)><%—[cj—(i+1)]—C, j#o.

After deducing the interleaved address without dummy
elements, we now address a more realistic situation, namely,

P+1

P x > M. (10)

In this case, the isosceles right triangle interleaver is filled
with information elements and many dummy elements.
When the dummy elements are taken into account, formula
(6) no longer holds. However, we can still use the above
numbers to calculate the interleaving address of a certain
information unit including several dummy elements, and
then, we can calculate the dummy element number C before
this information unit and then make a subtraction, and we
can obtain the interleaved address of this information unit.

Let us explain in detail how to calculate the number of
dummy elements, which needs to be discussed in several
cases. Before that, we first define several variables: iy denotes
the number of columns of the information unit to be cal-
culated, j4 denotes the number of rows of the information

unit to be calculated, i denotes the number of columns of
the first dummy element, and j,., denotes the number of
columns in the last cell of the first dummy element. We have
the following three situations:

(1) jmax <ja. All dummies should be considered at this
time. That is,

[1+P—i5]><(jmax+1)><%—js. (11)

(2) jmax=Jja- First calculate the number of all dummy
elements and then subtract 1 to get the total number
of dummy elements to be subtracted. That is,

(14 P i) X (o D) X5 == 1. (12)

(3) jmax > ja, under this condition, and it can be further
divided into the following two situations. The first
case: ig=ig at this time, all the dummy elements

included in the (i;+1)th column and the (j;—1)th
row to be requested are subtracted. That is,

[P—(i.+1)+Cjy, - i+ 1)] x j, x%. (13)

The second case: iy<i, can be divided into the
following three scenarios:

(a) j4>js We first calculate the total number of the i-th
column and the j;—1th row to be calculated and then
subtract the number of information units in this
range. That is,

) . S
[P_ls"’_cjd—l_ls] X]dxi_]s' (14)

(b) ju<j. At this time, the number of dummy elements
in the ig-st column and the j;-th row are calculated.
That is,

1
[P—(g+1)+CM4—(g+1ﬂxjde (15)

(¢) ja=js This case is the same as scenario (b).

After we analyzed all the required formulas, we start to
design the hardware implement scheme. The first is the
implementation of C; and here, we can use a loop with a
judgment to achieve it. According to the formula, we can
design a hardware structure with the subtraction gate as
the main structure. On this basis, we add a judgment on
the position of the output. When j =0, the output is 4. If
this condition is not satisfied, we set a delay through the
register and then make a subtraction with 1 in turn. On
this basis, we implement the hardware structure step by
step according to the formula. We add a judgment to the
final output to meet the requirements of the formula.
For the implementation of dummy computing hard-
ware, the formulas can be divided into three categories.
Among them, case 1 and case 2 belong to one category,
and the hardware implementation of equation (11) can
be reused; then, a logical judgment is added, and if the
second case is satisfied, one is subtracted. The case one of
(3) and (b) can be reused, while (a) cannot be reused
because they do not have the same structure.

Note: when the number of dummy rows to be
considered is only 1, if j;=0 at this time, we only
need to consider the number of P - i;. When j; is not
equal to 0, we only need to consider the number of
P—i,—1. If the information unit to be calculated is
on the first line, there is no need to subtract the
number of dummy elements.

3.2. Verification of Formula for Interleaved Addresses

3.2.1. Verification of Interleaved Address Formula for Data
Channel. We use Matlab to simulate the LDPC interleaving
formula. First assume that the input sequence is [0, 1, 2, 3, 4,
56,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and the
modulation order is 4. The corresponding figure of this
sequence is shown in Figure 7.

Security and Communication Networks

Sequence before interleaving
20

18

16

14 +

12 ¢

10 +

Value of the corresponding position

0 2 4 6 8 10 12 14 16 18 20

Position in sequence

FIGURE 7: Sequence before interleaving.

Sequence after interleaving
20 T T T T T T T T T

18
16
14 +
12 ¢

10 +

Value of the corresponding position

L

0 2 4 6 8 10 12 14 16 18 20

Position in sequence

FIGURre 8: Interleaved sequence.

Using equation (5), J;; is obtained. The corresponding
position element is taken out from the input sequence
according to the value of J; j, which is the value in the output
sequence, as shown in Figure 8.

After verification, the interleaved sequence can be
deinterleaved back to the original sequence. The formula is
the same as the interleaving formula. We only need to
exchange the ranges of i and j with each other and change the
E/Q,, in the formula to Q,,. That is,

. =0 (16)
" Jioj +Qpy i#0.

Then, the interleaved sequence is deinterleaved in the
same way as the interleaving process, and the deinterleaved
sequence (i.e., the original input sequence) is obtained. The
result of the deinterleaved sequence is shown in Figure 9.

Security and Communication Networks

Sequence after deinterleaving
20

18

16

14 +

12 +

10 +

Value of the corresponding position

0 2 4 6 8 10 12 14 16 18 20

Position in sequence

FIGURE 9: Deinterleaved sequence.

4.5t

35 ¢

0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
J

Figure 10: Verification 1 for formula (8).

From Figure 9, the deinterleaving method successfully
restores the interleaved sequence to the original sequence.
Hence, the interleaving formula and deinterleaving formula
work correctly.

3.2.2. Verification of Interleaved Address Formula for Control
Channel. In order to verify the formula, we define an
isosceles right-angled triangle with P =6 and load the data a,
to a,; into the triangle interleaver in the order of the rows.
The interleaving process is equivalent to the data in this
triangle matrix. After transposing, we take them out in rows,
so we make a; ; into a; ;. First, we verify the correctness of
formula (8). For the number of the first column in the
interleaver, we can get it as shown in Figure 10.

For the second column number in the interleaver, the
corresponding C; is 5 at this time, and then, the function
formula we determined becomes

ak=(6+5)><2><%—[5—(j+1)]. (17)

Among them, the corresponding values of j are 0, 1, 2, 3,
and 4, which can be obtained through Matlab. The result is
shown in Figure 11.

For the third column number in the interleaver, the
corresponding C, is 4 at this time, and then, the function
formula becomes

ak:(6+4)x3x%—[4—(j+1)], (18)

where the corresponding values of j are 0, 1, 2, and 3. The
result is shown in Figure 12.

After comparison, we find out that this corresponds to
the actual serial number of the information after it is loaded
into the interleaver and after transpose. Hence, the formula
is theoretically feasible.

Next, we verify the formula of the interleaved address
information given in equation (6). For j=0, the first row of
elements according to (6) is obtained and shown in
Figure 13.

For j=1, the second row of elements is obtained.
According to equation (6), we get

aj)i:(6+5)><2><§—[5—(i+1)]- (19)

The simulation result is shown in Figure 14.
For j=2, the third row of elements is obtained.
According to equation (6), we get

aj,i:(6+4)><3><%—[4—(i+1)]- (20)

And the simulation result is shown in Figure 15.

After comparison, we find that this is consistent with the
sequence corresponding to the actual information loaded
into the interleaver and readout row by row after a transpose.
From these, we conclude that the formula is theoretically
feasible. In the following, we verify the corresponding C
value for different situations, that is, the number of dummy
elements to be subtracted.

For the first case, that is, j. <j4 to be calculated, the
number of dummy elements must be considered in calcu-
lating the address of the information at this time. This case
corresponds to equation (11). Suppose we now find a4, and
we let the head of i; in equation (11) be 1 and 2 to verify the
correctness of the expression.

When i, =1, the corresponding j,., =4, and the value of
js is in the range [0, 1, 2, 3, 4], that is, from ag, a;, ag to ayy,
respectively, as the first dummy element. The parameters i
and j,.x are substituted into equation (11), and the result can
be obtained and shown in Figure 16.

When =2, corresponding to j,.x =3, the range of j is
[0, 1, 2, and 3], that is, from ai,, d;3, 14 to ay5, respectively,
as the first dummy element. The parameters i; and j,.x are
substituted into equation (11), and the result can be obtained
and shown in Figure 17.

After comparison, we verified the correctness of the
formula. For the above second case, j.x=jq is to be

12 f

10 +

15

10 +

4.5t

35 ¢

25

15}

0.5t

0.5 1 1.5 2 2.5 3 3.5 4
j
Ficure 11: Verification 2 for formula (8).
0 0.5 1 1.5 2 2.5 3
j
FiGure 12: Verification 3 for formula (8).
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

i

FiGure 13: Verification 1 for formula (6).

Security and Communication Networks

12

10 + E

0 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

i

FIGURE 14: Verification 2 for formula (6).

calculated; that is, the information unit to be obtained is
on the same line as the dummy with the largest number of
rows. At this time, the number we need to consider is the
total number of dummies minus 1 (only considering the
number of dummy elements before this information unit).
In view of this situation, we can subtract 1 if equation (11)
is correct.

For the case 3, that is, j.x > js to be decided, first, we
discuss i, = i that is, the information unit to be decided and
the first dummy element are in the same column. At this
time, we need to consider the number of all units contained
in the (i+1)th column and the (j—1)th row based on the
information unit. This case corresponds to equation (13). In
equation (13), we choose i;=1 and i;=2 for verification.
When the i is 1, j; can be 2 and 3. When i, is 2, the j,; can be 2
and 3 as well.

When j,; =2, according to equation (13), for different i,
the simulation result can be obtained in Figure 18.

When j,; =3, according to equation (13), for different i,
the simulation result is shown in Figure 19.

After verification, it is the same as the theoretical value.
When i, < i, first discuss j; > jg that is, the number of rows of
the information unit to be decided is greater than the first
dummy element. At this time, the formula for calculating C
differs from the above formula only in that we are con-
sidering the i; column starts. Meanwhile, we can subtract the
number of information units in the i, row. When the first
dummy element starts from 8 and 12, respectively, we use
(14) to solve the address after a; interleaving. Because the
corresponding j; and ¢, are different, the verification results
are more general.

For the case where the first dummy starts at 8, the
formula is

1
C=(6—1+5—1)><2><5—1. (21)

The calculated result is 8, which is the correct result.
For the case where the first dummy starts at 12, the
formula is

Security and Communication Networks

15

10 +

0 0.5 1 1.5 2 2.5 3
i

Ficure 15: Verification 3 for formula (6).

15

0 05 1 L5 2 25 3 35 4
i

FiGure 16: Verification 1 for formula (11).

10

0 0.5 1 L5 2 2.5 3
i

FiGure 17: Verification 2 for formula (11).

1
C=(6—2+5—2)><2><§—0. (22)

The calculated result is 7, which is the correct result.

When j; <j,, the number of dummy elements we need to
calculate at this time is all the numbers in i;+ 1, j;— 1. The
calculation formula is equation (15).

3.3. Hardware Design and Reuse of Two Coding Interleavers

3.3.1. Interleaver Hardware Design for LDPC-Coded Data
Channel. From the formula of J;j, it can be concluded
that the hardware required for its implementation is an
adder, a selector, and an address register, which can
realize the interleaver of the data channel. It is shown in
Figure 20.

3.3.2. Interleaver Hardware Design for Polar-Coded Control
Channel. The interleaver hardware design for polar-coded
control channel is shown in Figure 21. In the first part of the
figure, we can get C; and then pass through a few adders and
subtractors. Before entering the second part, the output of
the subtraction gate is

(Ci+C1)><(i+l)x%—[Ci—(Hl)]. (23)

When judged by a logic gate, if j=0 (that is, the one in
the first row after replacement), the output is i. If j = 0 is not
satisfied, the output is equation (23).

3.3.3. Hardware Multiplexing of Two Interleavers. By ob-
serving and comparing the hardware implementation
diagrams of two interleavers, we can find that the hard-
ware structure of LDPC-coded data channel interleaver
has also appeared in the polar-coded control channel
interleaver. Thus, the hardware structure of the data
channel interleaver can be set to a new module M, and its
structure diagram is shown in Figure 22. It has a total of
three input terminals (g, b, ¢) and one output terminal y.
The input and output parameters can be determined
according to the selection of the interleaving scheme. If it
is selected for the data channel interleaving, the input
parameters a, b, and ¢ are E/Q,,, j, and i; the output is the
interleaved address J;;. If it is selected for the control
channel interleaving, the input parameters are 1, 4, and j,
respectively. The output is C;. Therefore, the final design of
the multiplexing structure can be obtained as shown in
Figure 23.

3.3.4. Flow Charts of Precalculation Stage and Execution
Stage. The flow charts of precalculation stages and execution
stages are shown in Figures 24 and 25, respectively.

10 Security and Communication Networks

10 |+ p
8t J
a 6} |
4+ |
2L |
0 1
0 0.2 0.4 0.6 0.8 1
i
Ficure 18: Verification 1 for formula (13).
15 + E
10 + g
a
51 |
0
0 0.2 0.4 0.6 0.8 1
i
Ficure 19: Verification 2 for formula (13).
i=0
E/Qm ————
£
L s)
— T J(i,))
i1
R |-

F1GURE 20: Hardware diagram of data channel interleaver.

Security and Communication Networks

I j=0
1 —»
| 4 —p
-~ 0
+ I I [
> y ¥
4 1 X 12 -
j >
+ > i 1 — H— i_addr

Y

F1GURE 21: Hardware diagram of control channel interleaver.

b —P 1

R [—

FIGURE 22: Multiplexing module M.

i_addr (data channel)

M oo

I 1

@ — i

| 4 0N 1|4

: + 1 +

| » . >

| b 1 X X

I 1

| e .
! | + b i_addr (control channel)
| 4@‘7: 1_>

I 1

I _I

FIGURE 23: Hardware sharing structure after reuse.

12

Data channel

Input data

Security and Communication Networks

Judge modulation
order

. | Calculate row and
column size

End

_|Calculate row and

Control channel

column size

FIGURE 24: Flow chart of precalculation stage.

Judgement type

Data channel

l

Determine the input
parameters a, b, and ¢

f Data channel

Output as
interleaved address

Control channel

!

Determine the input
parameters a, b, and ¢

Yes

Control channel

¢N¢°

The first case of
formula (6)

The second case of
formula (6)

FiGure 25: Flow chart of execution stage.

4. Conclusions and Future Work

This paper presents an interleaver multiplexing scheme
for the LDPC and polar encoding channel which are
specified in 5G NR standards. First, we analyze the two
interleaving methods and then refine and improve the
formulas according to the interleaving process to achieve
the hardware reuse. Then, according to the formulas, the
hardware realization of interleaving address is derived.
Finally, the hardware implementation of the two-channel
interleavers is reused as much as possible to achieve the
purpose of reducing the hardware cost. However, there
are still some issues to be improved in our research work.
For example, the formula for generating interleaving
address extracted is complicated; especially the formulas
for refining interleaving process of control channel need
to be further simplified. In the future work, we will also

consider the parallelization processing under a variety of
channel encoding standards in combination with rate
matching.

Data Availability

The code and data of “m” and “.mat” format files used to
support the findings of this study have been deposited in the
GitHub repository (https://github.com/huzhuhua/Data-and-
Code-for-Security-and-Communication-Networks).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

https://github.com/huzhuhua/Data-and-Code-for-Security-and-Communication-Networks
https://github.com/huzhuhua/Data-and-Code-for-Security-and-Communication-Networks

Security and Communication Networks

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. 61963012, 61961014, and
61661018), Natural Science Foundation of Hainan Province,
China (no. 619QN195), and Key R&D Project of Hainan
Province, China (no. ZDYF2018015).

References

[1] R. Asghar, Flexible Interleaving Sub-systems for FEC in
Baseband Processors, Linkoping University Electronic Press,
Linképing, Sweden, 2010.

[2] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile
offloading in heterogeneous networks,” IEEE Transactions on
Mobile Computing, vol. 17, no. 2, pp. 461-474, 2017.

[3] Z. Hu, Y. Bai, Y. Zhao, and M. Xie, “Adaptive and blind
wideband spectrum sensing scheme using singular value
decomposition,” Wireless Communications and Mobile
Computing, vol. 2017, Article ID 3279452, 14 pages, 2017.

[4] Z.Hu,Y. Bai, M. Huang, M. Xie, and Y. Zhao, “A self-adaptive
progressive support selection scheme for collaborative
wideband spectrum sensing,” Sensors, vol. 18, no. 9, p. 3011,
2018.

[5] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient ap-
plication partitioning algorithm in mobile environments,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 7, pp. 1464-1480, 2019.

[6] X. Liu, M. Jia, X. Zhang, and W. Lu, “A novel multichannel
Internet of things based on dynamic spectrum sharing in 5G
communication,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 5962-5970, 2019.

[7] X. Liu and X. Zhang, “NOMA-based resource allocation for
cluster-based cognitive industrial Internet of Things,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5379-5388, 2020.

[8] R. Asghar and D. Liu, “Multimode flex-interleaver core for
baseband processor platform,” Journal of Computer Networks
and Communications, vol. 2010, p. 2010.

[9] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurable
and scalable high throughput turbo decoder architecture for
multiple 4G wireless standards,” in Proceeding of the IEEE
International Conference on Application-specific Systems,
Architectures and Processors, pp. 209-214, IEEE, Leuven,
Belgium, July 2008.

[10] R. Asghar, D. Wu, J. Eilert, and D. Liu, “Memory conflict
analysis and implementation of a re-configurable interleaver
architecture supporting unified parallel turbo decoding,”
Journal of Signal Processing Systems, vol. 60, no. 1, pp. 15-29,
2010.

[11] Z. Zhang, B. Wu, Y. Zhou, and X. Zhang, “Low-complexity

hardware interleaver/deinterleaver for IEEE 802.11a/g/n

WLAN,” VLSI Design, vol. 2012, Article ID 948957, 7 pages,

2012.

P. Benoit, L. Torres, G. Sassatelli et al., “Dynamic hardware

multiplexing: improving adaptability with a run time

reconfiguration manager,” in Proceeding of the IEEE Com-
puter Society Annual Symposium on Emerging VLSI Tech-

nologies and Architectures, March 2006.

[13] R. Asghar and D. Liu, “Low complexity hardware interleaver
for MIMO-OFDM based wireless LAN,” in Proceeding of the
IEEE International Symposium on Circuits and Systems,
pp. 1747-1750, IEEE, Taipei, China, May 2009.

(12

13

[14] 3GPP TS 38.212. NR, “Multiplexing and Channel Coding,”
2017.

[15] E. Arikan, “Channel polarization: a method for constructing
capacity-achieving codes for symmetric binary-input mem-
oryless channels,” IEEE Transactions on Information Theory,
vol. 55, no. 7, pp. 3051-3073, 2009.

[16] W. E. Ryan, “An introduction to LDPC codes,” CRC

Handbook for Coding and Signal Processing for Recording

Systems, pp. 1-23, CRC Press, Boca Raton, FL, USA, 2004.

R1-1713474. “Design and Evaluation of Interleaver for Polar

Codes,” Qualcomm Inc., 3GPP TSG RANWGI1 #90 Meeting,

Prague, Czechia, 2017.

[18] H. Gamage, N. Rajatheva, and M. Latva-Aho, “Channel
coding for enhanced mobile broadband communication in 5G
systems,” in Proceeding of the European Conference on Net-
works and Communications (EuCNC), IEEE, Oulu, Finland,
2017.

[19] D.J. C. MacKay and R. M. Neal, “Near Shannon limit per-
formance of low density parity check codes,” Electronics
Letters, vol. 33, no. 6, 1997.

[20] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and
D. A. Spielman, “Efficient erasure correcting codes,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 569-
584, 2001.

[21] J. Xu and J. Xu, “Structured LDPC applied in IMT-advanced
system,” in Proceeding of the 4th IEEE International Con-
ference on Wireless Communication, IEEE, Dalian, China,
2008.

[22] R. Asghar and D. Liu, “Multimode flex-interleaver core for
baseband processor platform,” Journal of Computer Networks
and Communications, vol. 2010, Article ID 793807, 16 pages,
2010.

[23] R. Mori and T. Tanaka, “Performance of polar codes with the
construction using density evolution,” IEEE Communications
Letters, vol. 13, no. 7, pp. 519-521, 2009.

[24] 3GPP R1-167209, “Polar Code Design and Rate Matching,”
Huawei and HiSilicon, 3GPP TSG RAN WGI #86 Meeting,
Gothenburg, Sweden, 2016.

[25] 3GPP, R1-1713705, “Polar rate-matching design and per-
formance,” MediaTek, WG1#90, 2017.

[26] 3GPP, R1-1708649, “Interleaver design for polar codes,”
qualcomm, RAN#89, 2017.

[27] 3GPP, “Draft_Minutes_report_ RAN#91_v020,” 2017, http://
www.3gpp.org/ftp/tsg_ran/WG1_RL1/a) TSGR1_91/Report/
Draft_Minutes_report RAN1%2391_v020.zip.

[28] E. Tell and D. Liu, “A hardware architecture for a multi-mode
block interleaver,” in Proceeding of the International Con-
ference on Circuits and Systems for Communications (ICCSC),
Moscow, Russia, 2004.

(17

http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/a) TSGR1_91/Report/Draft_Minutes_report_RAN1%2391_v020.zip
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/a) TSGR1_91/Report/Draft_Minutes_report_RAN1%2391_v020.zip
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/a) TSGR1_91/Report/Draft_Minutes_report_RAN1%2391_v020.zip

Hindawi

Security and Communication Networks
Volume 2020, Article ID 8876317, 12 pages
https://doi.org/10.1155/2020/8876317

Research Article

WILEY

Hindawi

A Study on the Optimization of Blockchain Hashing Algorithm

Based on PRCA

Jinhua Fu ®,"? Sihai Qiao,” Yongzhong Huang,l’3 Xueming $i,"* Bin Li,"”” and Chao Yuan'

!State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

2School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
3School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
*School of Computer Science, Fudan University, Shanghai 201203, China

°Zhengzhou University, Zhengzhou 450001, China

Correspondence should be addressed to Jinhua Fu; jinhua@zzuli.edu.cn

Received 12 March 2020; Revised 14 April 2020; Accepted 23 May 2020; Published 14 September 2020

Academic Editor: Yuan Yuan

Copyright © 2020 Jinhua Fu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Blockchain is widely used in encrypted currency, Internet of Things (IoT), supply chain finance, data sharing, and other fields.
However, there are security problems in blockchains to varying degrees. As an important component of blockchain, hash function
has relatively low computational efficiency. Therefore, this paper proposes a new scheme to optimize the blockchain hashing
algorithm based on PRCA (Proactive Reconfigurable Computing Architecture). In order to improve the calculation performance
of hashing function, the paper realizes the pipeline hashing algorithm and optimizes the efficiency of communication facilities and
network data transmission by combining blockchains with mimic computers. Meanwhile, to ensure the security of data in-
formation, this paper chooses lightweight hashing algorithm to do multiple hashing and transforms the hash algorithm structure
as well. The experimental results show that the scheme given in the paper not only improves the security of blockchains but also

improves the efficiency of data processing.

1. Introduction

Blockchain is a kind of distributed general ledger technol-
ogy, originated from the literature [1]. Initially, it was mainly
used in the field of cryptocurrency, the most representative
of which were Bitcoin and Litecoin [2], Monroe [3], and
Zcash [4]. Amid its rapid development, blockchain tech-
nology can effectively guarantee the authenticity, security,
and reliability of data. It also has been widely used in medical
data [5], personal data protection [6], and data allocation
scheme [7]. As the basic unit of blockchain, block consists of
partition header including original data and block body
including transaction data. Among them, block data are used
to connect the previous block and index the data from the
hash value of range block. Each blockchain transaction is
conducted by using hash function interaction. It guarantees
the security of blockchain.

However, with the continuous development of block-
chain, its security issues become increasingly prominent.

The lightweight hash function SHA1 in the blockchain is no
longer regarded as an attacker that can withstand sufficient
funds and computing resources. SHA256 can replace SHA1
for information exchange with good anticollision ability,
while it cannot be changed at will. To avoid chain breakage, it
is necessary to modify the hash values of all blocks behind
the block at the same time. As a result, a large computational
complexity is needed and the security of the blockchain is
not guaranteed.

In the process of executing operations, the PRCA
(Proactive Reconfigurable Computing Architecture) gen-
erates the optimal computation structure set by self-per-
ception and dynamic selection. All the software and
hardware variants are dynamically variable. Therefore, in the
process of application processing, they can select optimal
solutions according to the independent variables in the
program to get the variable optimal solution sets with
equivalent function and different computing efficiency [8].
Combining with blockchain, it can improve the performance

mailto:jinhua@zzuli.edu.cn
https://orcid.org/0000-0002-8854-7742
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8876317

of the algorithm, improve the transmission efficiency, and
enhance the security of hash algorithm.

This paper proposes an optimization scheme of block-
chain hashing algorithm based on PRCA. Aiming at the
blockchain hash algorithm structure, a reconfigurable hash
algorithm with high performance is implemented in a full
pipeline way. At the same time, 10,000 Mbp communication
is realized by mimic computer to reduce data transmission
delay, and data is read from memory by DMA, which im-
proves transmission efficiency. In each transaction, the hash
algorithm is negotiated and the mimic computer is recon-
structed, which aims to transform the hash algorithm
structure through using lightweight hash algorithm for
many times. This scheme not only improves the efficiency of
processing data for blockchain but also increases its security.

2. Proactive Reconfigurable
Computing Architecture

2.1. Definition of Proactive Reconfigurable Computation.
PRCA is an operation mechanism based on multidimen-
sional reconstructed functional structure and dynamic
multibody. When proactive reconfigurable computation is
processing data, execution structures, such as computing,
storage, and interconnection, are changing dynamically with
the efficiency of transaction processing, instead of improving
the algorithm to improve the operation performance
without changing the basic hardware. There are many
functional equivalents in PRCA, but they are accomplished
by combining different hardware structures with this al-
gorithm. The purpose is to achieve the high performance of
computing, that is, how to automatically perceive variables
to generate the optimal computing set and autonomously
reconstruct the computing in the processing algorithm [9].

PRCA has variable infrastructure and algorithm, which
makes it possible to obtain optimal solutions to different
problems. It pursues different services and comprehensive
high performance under different loads or other conditions,
builds the most appropriate processing components, and
forms the most appropriate architecture. Proactive recon-
figurable computation combines the advantages of general
computing and special computing to achieve the goal of
solving problems efficiently. In terms of the general com-
puting structure, it is characterized by its determined
structures and variable algorithm and may calculate any
computable problems with high efficiency. Its principle is
shown in Figure 1.

2.2. Proactive Reconfigurable Computer. Proactive recon-
figurable computer is a new type of computer developed
according to the principle of mimetic computing to achieve
the high performance of computing. The computational
structure can be regarded as a high-order function. In the
analysis of the calculation, the computational structure will
generate the most efficient set of settlement structures by
selecting the perceptual independent variables. The essence
of proactive reconfigurable computer is the functionaliza-
tion of computational structure. Its high performance and

Security and Communication Networks

efficiency are very suitable for the processing and analysis of
big data nowadays. Compared with the traditional com-
puter, the energy efficiency of proactive reconfigurable
computer has been improved more than 10 times. The
structure of the principle prototype of the proactive
reconfigurable computer is shown in Figure 2.

The purpose of proactive reconfigurable computer is to
deal with intensive computing. It consists of an ATOM
general microprocessor, four high-order reconfigurable large-
scale reconfigurable FPGAs, and DDR3 memory, which
connects LVDS bus FULL-MESH through floor GTX, and is
controlled by the control unit BMC and synchronized by
clock synchronization unit. The prototype supports multiple
interfaces and storage media and reconstructs FPGA pro-
cessing core, I/O interface, and on-chip interconnection
network according to the application requirements, so as to
achieve the purpose of high-efficiency computing [10].

Proactive reconfigurable computers use dynamic ran-
domicity to build an asymmetric defense system, which
expands the attack surface to weaken intrinsic attacks of
feature sniffing and state transition [11]. Based on such a
characteristic, 10,000 Mbp communication is realized by
using FPGA to reduce data transmission delay, build a
simulated hash structure, and improve the speed of hash
value calculation of blockchain data. A Merkle tree is formed
to match the algorithm, which makes it difficult for attackers
to distinguish the complexity of the target and improves the
security performance of the system [12]. The protection
function of computer hardware is used to expand the area of
attack, increase the difficulty of blockchain attack, and
improve the antiattack ability.

3. Optimization of Blockchain Hash Algorithms
Based on PRCA

3.1. System Framework and Block Structure. The proactive
reconfigurable computer is configured as a node in the
blockchain network. Users and proactive reconfigurable
computers establish a connection. The proactive reconfig-
urable computer catches the data in the DDR memory and
realizes the direct connection high-speed transmission from
network to the memory data by the asynchronous FIFO,
reducing the intermediate transmission level. In blockchain,
a high-performance hash algorithm is implemented by
means of pipelines and the key segment calculation data
hash is extracted from memory [13]. After calculating the
hash value, the result is encapsulated and transferred to the
storage server to complete the storage of the blockchain. The
specific system framework is shown in Figure 3.

The block stores all the information about transactions,
including the generation time of transaction, the record
index number of transaction, the hash value of transactions,
bitcoin’s expenditure address and its amount of expendi-
tures, and other types of transaction. A Merkle value will be
generated in the transaction. The hash node value in the
transaction determines that each address cannot be re-
peatedly traded and forged. To further improve the security
of transactions, a proactive reconfigurable hash is added to
the blockchain, which is composed of various types and

Security and Communication Networks

computation

+
accelerator

General purpose @ Dedicated

calculation

Hardware
+
embedded
CPU

FiGure 1: The basic ¢

oncept of PRCA.

/ L o
JATG G
g e <‘,::> e XAUI/SFP+
XAUL/SFP+
QSFP
@ : :| DDR : :| [QSFP_]
DDR3 | DDR3 |
F(}[-E X 8
E DDR3 | [PCLEXS | &
= PCI-E x 8 E’
E D Q =1
s FPGA FPGA 3 g
- ~
3 > ~

[_DDR: 5 [QSFP—]

poRy 11 JATG [DDR: 1] OS]

@ :l DDR3 :l

—

[GE]

GbE (base
o Control unit BMC Clock Synchronous | gy
clock input

FIGURE 2: Principle prototype structure of the proactive reconfigurable computer.

structures of hash algorithms and can be used separately or
in series. The concrete structure model is shown in Figure 4.

Unit nodes in blockchains monitor network traffic to
calculate transaction volume [14]. Before the transaction is
generated, the hash algorithm selection step will be added,
and then the appropriate hash function will be selected from
the hash list. The unit node uses the selected hash function to
compete to find the hash value. Once the hash value is found,
the block will be propagated to another node in the
blockchain for verification.

In the interaction, the sensor layer on the spot collects
data. The sensor transmits data to unit nodes and requests the
transaction to store the data. If unit nodes successfully com-
plete the transaction mining, the blockchain network will
update the block. After that, the blockchain network returns
the field layer data to the control layer. Then block mining will
be started. After the block mining is finished, the blockchain

network receives the node of transaction and broadcasts the
block and validation request to other nodes. Other nodes using
hash algorithm confirmed from the block header for verifi-
cation. After the successful verification, they will update the
block and store nodes and blocks. If the contents of trans-
actions are transferring data or commands, the requested node
will transfer the data or command to the other layers. The
specific block mining and updating are shown in Figure 5.

At the same time, the random number generator ran-
domly chooses the new hash algorithm at intervals, and the
two sides negotiate again and update for new hash algorithm
to improve security.

3.2. Hash Algorithm Optimization. Hash function is an
important part of many cryptographic algorithms. An im-
portant component of blockchain technology is to apply

Security and Communication Networks

o«

—
==
Network
— Blockchain
1,...N)
-
PRCA
=
Data
Storage
I | PRCA Database
Third-party
application
FIGURE 3: Blockchain system architecture based on PRCA.
Block N
| Version || Timestamp |
| Previous block hash |
Mimetic hash algorithm
BlockN—l'—» | g | —»| Block N + 1
| Nonce | | Difficulty |
| Merkle Root |
| Transaction 1 |
| Transaction 2 |
| Transaction 3 |
FIGURE 4: Proactive reconfigurable hash structure in blockchain.
Blockchain network
Other layers e Request nodes «++ e Other nodes -----
1. Transaction request D —
© 2. Hash algorithm selection
3. Block mining
4. Block broadcast and verification request
5. Return verification result
<. .. D v
7. Data/control command transmission 6. Block update

FIGURE 5: Mining and updating of block.

Security and Communication Networks

hash function for many operations. Hashing is a method of
applying hash function to data that computes a relatively
unique output for almost any size of input. It allows indi-
viduals to independently obtain input data and hash data
and produce the same results, proving that the data has not
changed. Take SHA256 as an example to illustrate the op-
timization and implementation of hash algorithm on pro-
active reconfigurable computers.

The throughput of the algorithm solves the computa-
tional performance of the algorithm. The specific imple-
mentation formula is as follows:

T:w. (1)

In equation (1), T is the throughput, B denotes the data
block size, f is the maximum clock frequency, N is the
pipeline series, and d denotes the calculation delay. The
number of pipeline series is proportional to frequency and
throughput. In order to improve the throughput of the
algorithm, we can use prediction and CSA strategies to
reduce the delay of critical paths and use full-pipeline SHA1
and SHA256 algorithms.

The following is an introduction to the optimization of
SHA256, which can be extended to SHAL.

3.2.1. SHA256. For messages with a length no more than 26

bits, the hash algorithm SHA256 will produce a hash value
with a length of 256 bits, which is called a message digest.
The digest is a 32-byte array that can be represented by a
hexadecimal string of length 64. The processing of the
SHA256 algorithm is divided into five steps:

(i) Add great many 0 bits to the input data until 448
bits. Then add 64-bit length to the input data until
512 bits.

(ii) Divide the spliced 512-bit data into 16 groups:
Mo-M;s.

(iii) Initialize the vectors Ky-Ks3; and hy-h;, and let
the initial values of A, B, C, D, E, F, G, and H be
ho-hs.

(iv) Set the variable t to loop from 0 to 63 and then

update as follows: B, =4,C,, =B
Dy =Cu,F = E,G =F,Hyy =Gy,

A, =H, +Z)+ Ch(E, F,,G,) + K, + W,

+ Z (A,) + Maj(A,, B,,C,),

E., = H, +z

)+ Ch(E,, F,,G,) +K, + W, + D,.

(2)

(v) Let
hy = hy + Ags, hy = hy + Bgs, hy
hy + Dy, hy = hy + Eg;,
hs = hs + Fg3, hg = hg + Gg3, h; = h, + Hg;. Output
ho—h7.

=h, +Cg, hy =

In the above algorithm,), (E,), Y, (4,), Maj (4, B,,C,),
and Ch(E,, F,,G,) are logical functions, and W, is updated
according to

M,, 0<t<15,
o, (W) + W, 40y (W, s) + W, e 16<E<63.
(3)

From the processing of the SHA256 algorithm, it can be
seen that the key is to update the values of A and E, which
requires multiple addition operations and 64 cycles of it-
eration. Therefore, the optimization of these two operands
will play an important role in reducing the time con-
sumption of the algorithm.

3.2.2. Critical Path Segmentation Optimization. The time
consumption of the SHA256 operation is mainly in the
iteration part of Step 4, and the most time-consuming part is
the calculation of A and E values. Therefore, adopting the
method of critical path segmentation and combining with
the parallel characteristics of FPGA computing resources
can effectively shorten the time consumption.

H,, K,,and W, in the critical path do not need additional
logical operations or do not depend on other operands of the
current round. Therefore, the critical path of the algorithm is
divided into the following formulas:

S,=H,+K,+W,, (4)

Ay =) (E)+Ch(E,F,G,)+S,
1

5
+ Y (A) + Maj(A,, B, C,), ©)
0

Et+1 = Z (E) +Ch (E[s Ft) Gt) + St + Dt' (6)
1

In this way, A and E values will be updated and
shortened from the original 6ty and 5¢,pp to 4t ,pp and
3t spp> Where ¢, denotes the time consumption of addi-
tion operations.

3.2.3. Minimum Addition Optimization. FPGA is suitable
for bit operation. Carry-Save Adders (CSA) strategy can
reduce addition operation, minimize critical path length,
and ensure pipeline throughput. For n-bit binary numbers a,
b, and ¢, the CAS operations are as follows:

S(a,b,c) =aAnbAc,
Cal(a,b,c) =[(ab)|(bc) | (ac)] <, (7)
CSA(a,b,c) = S(a,b,c) + Ca(a,b,c) =a+b+ec.

By dividing the critical paths, it takes 2t ,pp, 4t spp> and
3tspp to calculate S;, A, and E,,,, respectively. Since the
addition operation consumes a lot of time on the FPGA, the
CSA method should be used to increase bit operation and
reduce the addition operation, in order that the total time
consumption can be reduced. By using the critical path

partitioning method and CSA strategy, formulas (4)~(6) are
replaced by CSA operation in the following formulas:

S, = CSA (H,, K,, W,), ®
Ay = csA(CSA(Z(E),Ch (Ee Fio Gy),
1

S, Y (A), Maj(A,, B,, ct)>>,
0

(9)

Ey, = CSA<Z(E>, Ch(Et,Ft,Gt),St> +D,. (10

1

The critical path segmentation method and the CSA
strategy reduce the operation of A, ; and E,,, to only 2 s,
thus improving the efficiency of the algorithm.

3.2.4. Pipeline Optimization. After the optimization of
critical path partition, the time consumption of the longest
path is reduced. For serial computing, the total time con-
sumption does not decrease. Therefore, it is necessary to use
the parallel characteristics of FPGA and pipeline method for
optimization, so as to truly reduce the total time con-
sumption of computing.

According to the characteristics of the SHA256 algo-
rithm and the optimization of critical path, the core pro-
cessing of the algorithm is divided into three modules: W
module, split S module, and update module A — H. The
pipelining technology reduces time consumption by in-
creasing resource utilization. Therefore, each module needs
64 computing units and a total of 192 computing units.

While data are being calculated, in the first clock cycle,
the first data are input to the W, computing unit for pro-
cessing in the first clock cycle. In the second clock cycle, the
output of Wy is taken as the input of S0, and W is calculated.
At the same time, the second data are input to W,. In the
third clock cycle, three computing units are processed in
parallel, and so on. Until the 66th clock cycle, when all 192
units are running, the output of the first data is completed.
When there is a large amount of data to be computed, one
type of data is computed in a clock cycle, which reduces the
time consumed by 64 iterations in the algorithm. Therefore,
the throughput and resource utilization of the algorithm are
greatly improved. The pipeline structure of the SHA256
algorithm is shown in Figure 6.

3.3. Communication and Network Optimization

3.3.1. Communication Optimization. For adapting to the
calculation of blockchain hash, the concrete structure of
proactive reconfigurable computer is shown in Figure 7,
which mainly includes Hash_Core, I_10G, CTL_DDR3_0/1,
State_U, Ctl_Core, and I_1G modules.

The functions of each module are as follows:

(i) Hash_Core module. The core processing module of
hash computing is mainly responsible for hash

Security and Communication Networks

calculation of blockchain data, which is imple-
mented in full-pipeline mode and supports hash
calculation of SHA1, SHA256, and so forth.

(ii) I_I10G module. The data communication interface
circuit based on 10,000 Mega mainly includes
10,000 Mega MAC interface, data buffer, and in-
terface of module on the same chip. The module is
mainly responsible for the input of data to be
processed and the recovery of calculation results.

(iii) CTL_DDR3_0 module. The data communication
interface circuit based on DDR3 mainly includes
DDR3 interface, data buffer, and interface of on-
chip module. This module is mainly responsible for
data memory reading.

(iv) CTL_DDR3_1 module. The data communication
interface circuit based on DDR3 mainly includes
DDR3 interface, data buffer, and interface of on-
chip module. This module is mainly responsible for
data memory writing.

(v) State_U module. Acquire the on-chip state of each
module, and then output it to Ctl_Core.

(vi) Ctl_Core module. The processor-based on-chip
processing control core is mainly responsible for
reporting the running state of the mimic computer
and processing the control information.

(vii) I_1G module. Data communication interface based
on Gigabit Ethernet interface is mainly used for
communication of control information.

Block data are cached to CTL_DDR3 0 via I 10G
network interface, hash values are read and calculated by
Hash_Core, and results are cached into CTL_DDR3_1 and
finally sent to the network by I_10G. The host computer
controls the proactive reconfigurable computer in real time
through I_1G Gigabit interface and Ctl_Core according to
the information reported by State_U.

3.3.2. 10G Network. 10G network is implemented based on
IP protocol, and the content of data transmission is con-
trolled by external users. It uses FIFO interface to com-
municate with external devices [15]. In the process of
transmitting control messages, if the receiver does not have
an ARP response, the system will issue a timeout error
because ARP does not respond; if there is a timeout
transmission, the system will show the number of times of
timeout transmission. If the transmission succeeds, the
successful message will be returned; if the transmission fails,
the error message which is retransmitted overtime will be
returned. If there is a timeout and no information is re-
ceived, the system will send out the wrong signal of com-
munication channel, according to which the user will take
appropriate action accordingly. The whole structure is
shown in Figure 8.

In Figure 8, the sending port includes two FIFOs: the
sending data FIFO (ip_snd_fifo) and the sending status
FIFO (ip_snd_status_fifo). The sending data FIFO’s depth is
65 bits and low 64 bits are data interface. The highest bit

Security and Communication Networks

e 1
i Input: My-M,s, Ky—Kg3, hy-h;, A-H !
———————— e e e e
L Wo o So i AvHo , : l : :
I ! 1 1 1 1
LW S AT, , : : : i
I

A TR S N N NS B
___ !
i i : T :W62 L Se2 i Aq-Hey | i
I ! I ! L F-————— R T === ——————

| i | i L We 1 Ses | AgHes 1 o
Yoo 1 2 1 304 e L6331 64 65 |
I R, L, [o~ [e~ e ___ 1
I

FIGURE 6: Pipeline structure of the SHA256 algorithm.

Off-chip DDR3 memory
A I
+—p{ CTL_DDR3_0 CTL_DDR3_1
Hash_Core © 8
. =) = =) =
Blockchain 9 J0 el S L | E
data :I » E’ l » '_“ « » % H 8
@ 35 iz Z
2
[j)
FIGURE 7: On-chip architecture of proactive reconfigurable computer.
Send interface
T |
1 1
1 1
i Send content interface H
— [k=
<}:| <‘,|: User sent
! 1
! | data
: Ip _sdn_fifo : processing
1
10G network = | X
g ! '
war N 5 [l=—)
a i !
=
g | Ip_sdn_status_fifo H
2 R
=]
o
S
g
£ coTTTTTTT T,
< : Receive content interface :
O 1 H
& | i User
=~ 1 \ .
receive
':.> I::‘,.) data
X : processing
i Ip_rec_fifo i
[|
! 1

Figure 8: The whole structure of 10G network.

indicates whether the data transmission is the last one. If
more than 1440 bytes of data are to be transmitted, multiple
transfers are required. The sending status FIFO is used to
identify whether there is an error in the data transmission. If

there is an error like the timeout in the process of data
transmission, all subsequent contents will be read out until
the last one. Each data transmission corresponds to a state
FIFO write. The receiving port has only one FIFO, that is, the

receiving data FIFO (ip_rec_fifo), which has a depth of 65
bits and low 64 bits as the data interface. The highest bit
indicates whether the data transmission is the last frame of
data, and the data received is identified by index number.

3.3.3. Memory Management. Read-write memory is
implemented by four groups of FIFOs in burst mode. Every
time before it reads and writes memory, it will calculate the
memory address range according to the length of the data
and store it in wrrdinfo_fifo. At the same time, the data will
be cached in wfifo_fifo, and according to the information of
wrrdinfo_fifo, the read-write arbitration module determines
whether it is a reading operation or a writing one. If it is a
writing operation, the data will be written to memory
through the DDR write module. The process of reading
memory data is similar to that of writing. The read infor-
mation and data will be cached in out_rdinfo_fifo and
rififo_fifo, respectively. The read-write structure of memory
is shown in Figure 9, where the size of request information
wrrdinfo_fifo and out_rdinfo_fifo is 16 * 64 bits, and the size
of reading and writing wfifo_fifo and rififo_fifo is 4096 = 64
bits.

When the initialization of memory is completed, that is,
phy_init_done is set to 1, the CTL_DDR3_0 and
CTL_DDR3_1 modules are in the read-write state, and the
read-write state jump will be completed according to the
wrrdinfo_g[0] identifier bit, as shown in Figure 10. When it
begins reading and writing memory, the address of memory
will be counted according to the length of writing, and the
reading and writing of the whole data will be completed.
After the reading and writing operation is completed, it will
jump to the idle state and wait for the next operation.

3.4. Application of PRCA Blockchain. Public and private keys
in blockchains are a pair of keys obtained by a kind of al-
gorithm. It will be encrypted with public key and decrypted
with corresponding private key. After three times of SHA256
computation and one time of RIPEMD160 computation for
the public key, a public key hash can be obtained, and the
address can finally be obtained through base58 encoding
[16]. Merkle tree is a kind of tree structure. In trading with
blockchains, every transaction is hashed, and the final root is
Merkle root [17]. Proof-of-work (PoW) is called mining in
blockchains. CPU calculation uses the complexity of hash
operation to determine PoW, and it will produce a value
smaller than the specified target [18]. Block filter proposed in
the blockchain is a fast search based on hash function, which
can quickly determine whether a retrieved value exists in the
searched set [19]. The application of hash algorithm in
blockchain is shown in Figure 11.

In this paper, the communication equipment and net-
work are optimized. In a relatively safe environment, a
relatively simple and lightweight hash algorithm is chosen to
replace the complex hash algorithm, so as to improve the
running speed of the system and reduce the energy con-
sumption of the system. Meanwhile, multiple hash algo-
rithm is used to reduce the attack of length expansion and

Security and Communication Networks

ensure the integrity and tamper-proofing of information,
which reflects the security performance of blockchain.

4. Experimental Analysis

In this paper, proactive reconfigurable computer is used for
experiments. The software platform is ISE software inte-
grating design, simulation, integration, wiring, and gener-
ation. First, the comparison of CPU running speed and
resource utilization is given by optimizing the hash algo-
rithm deeply. Second, the collision resistance of proactive
reconfigurable hashes is analyzed. Finally, the security of this
scheme is analyzed from many aspects.

The configuration information of each computing unit
used in the experiment is shown in Table 1.

4.1. Performance Analysis. On the proactive reconfigurable
computer, the SHA256 and SHA1 algorithms are imple-
mented, respectively. Their resource occupation, frequency,
and throughput are shown in Table 2.

As seen from Table 2 and Figure 12, SHA256 and SHA1
implemented in a pipelined manner occupy less than 10% of
the resources but with high throughput.

Next is the performance comparison of SHA256 and
SHAL1 between the proactive reconfigurable computer and
CPU, as is shown in Table 3.

From Table 3, it can be seen that the proactive recon-
figurable computer can realize the parallelism of multiple
modules and can fully meet the application requirements of
hash computing in blockchain. Taking Bitcoin three hash as
an example, three SHA256 combinations are connected in
series to form a cascade pipeline. The data can be directly
input into the pipeline without waiting, and the results are
output sequentially by the end, which is very efficient.
Contrastively, CPU can only rely on multithreaded con-
currency to improve computing performance, and its es-
sence is still serial execution, which will not be competent for
blockchain applications requiring large amounts of
computing.

Meanwhile, the proactive reconfigurable computer is
equipped with a 10-gigabit network, whose data transmission
peak is about 10 Gbps, which can meet the communication
requirements of blockchain high-frequency transactions. As
each clock cycle can transmit 8 bytes of data, the clock fre-
quency is 156.25 MHz; while the FIFO interface and fre-
quency of DDR are 8 bytes and 156.25MHz, the data
transmitted by 10G network can be synchronized through
FIFO cache and written into memory with 64 bytes and
300 MHz. Two memory modules are configured: one is re-
sponsible for writing operation of 10G network and reading
operation of hash module, and the other is responsible for
writing operation of hash module and reading operation of
10G network. The two memory modules work independently,
which improves the efficiency of data transmission.

4.2. Antiattack Analysis. Hash operation is irreversible and
gets different values for different contents. Any change of
input information will lead to significant changes in hash

Security and Communication Networks

Read and write
management
main state
machine

= [[=

Wrrdinfo_fifo

—{ [=

Wfifo_fifo

L k=

Out_rdinfo_fifo

9
Read and write
arbitration
N DDR

DDR write — memory

module
o | (—

module

< k=

Rfifo_fifo

FIGURE 9: The read-write structure of memory.

> Idle >

Phy_init_done == 1

Request information is ready

v

Read request information

Wrrdinfo_g[0] =0

Wrrdinfo_g[0] =1

Write completed

Write memory

Read completed

—

Read memory

FIGURE 10: Memory state management mechanism.

results. Moreover, hash operation is also anticollision; that
is, two pieces of information with the same hash result
cannot be found, which can effectively prevent differential
attack [20].

Assuming that the output value of hash function is
uniformly distributed and the message digest has m bits,
the hash value has n =2" possible outputs. For any k
(k<n) random input, the probability of at least one col-
lision is

n!

N T

k-1 . (11)

1 — ¢ (kk=1y2n)

If p(nk)>0.5, that is, 1—e **k-D2% =1/2 then
In2 = (k%/2n); this means k = /n.

According to the above calculation, if the hash function
has an output digest of m bits, then only k = 22 attempts
will result in a collision with a probability of at least 50%.
SHAI and SHA256 are operations of 2!%° and 22°® orders of
magnitude, respectively. Table 4 gives the threshold of hash
function conflict.

Bitcoin obtains hash data through the SHA256 algo-
rithm and runs two iterations in block trading to mitigate
the length expansion attack. PRCA blockchain system can
be described by a triple tuple as Q = {Block, Hash, Num},
where “Block” represents block data, “Hash” represents
hash algorithm, and “Num” represents iteration times. The
multiple phases of) have many different hash combination
schemes and can be represented by Q = {Block(t),
Hash (¢), Num ()} at time ¢, which is dynamic, diverse, and
random.

The hash algorithm of PRCA blockchain system € is
dynamically reconfigurable. After negotiation, the hash
algorithm can be reconstructed dynamically and partially
to complete the switching of different algorithms. In
addition, “Block” is changing constantly, and the content
of each transaction is unpredictable and completely
different. Finally, “Num” can be negotiated by both sides
to improve its security by increasing the number of it-
erations without significantly increasing the amount of
computation. Obviously, the blockchain based on PRCA
not only improves the complexity of internal hash op-
eration but also combines the hash to increase the length
of output, which greatly hinders the attackers from
extending the blockchain and reduces the probability of
collision.

4.3. Security Performance Analysis. Encryption of informa-
tion is the key link of blockchain, which mainly includes
hash function and asymmetric encryption algorithms [21].
Asymmetric encryption uses private key to prove the
ownership of the node and is implemented by digital sig-
nature. Hash algorithm is used to transform the input of any

10 Security and Communication Networks

Padding + length
(384 bits)

H1 Padding + length @ @ @
(256 bits) (256 bits)

1 v
Hash
v - v function
(256 bits) " (256 bits)
l 1 1 1
H1
(256 bits)
Application of hash algorithm in blockchain
Bloch 1 header
Public key
Previous header hash
Markle root
SHAZ56 | Hash160
{ ¥
RIPEMD160
il H (hA | hB) H (hC | hD)
Public key hash / '\ / '\
H(A) H (B) H(C) H (D)
Base58check prefix 4 4 T 4
enconding version 0X00 1
A B C D
Block 1 transactions
FiGure 11: The application of hash algorithm in blockchain.
TaBLE 1: The configuration information of each computing unit.
Calculation component Configuration information
CPU server 4-core CPU; model: i5-7500; main frequency: 3.40 GHz; memory: 24 GB
PRCA 4 FPGA cards; on-chip resources slices: 85920; memory: 24 GB

10G switch 24 1/10G SFP + ports; 4 10/100/1000 m electrical interface

Security and Communication Networks

11

TaBLE 2: The actual operation of SHA256 and SHAI.

Regs (687, 360) LUTs (343, 680)

Slices (85, 920)

Frequency (MHz) Throughput (Mbps)

SHA1 24,703 18,899 6106 243.8 124825.6
SHA256 27669 25648 7745 172.0 88064
140,000 | - - oo . . .
124825.6
120,000
100,000 | - - - - o oo 88064
80,000 | - -
60,000
40,000
24,70327669 25648
20,000 | .- B S L SSCITRR
7745
6106 243.8 172
0 mm B
Regs (687,360) LUTSs (343,680) Slices (85,920) Frequency (MHz) Throughput
(Mbps)
B SHAIl
m SHA256

FIGURE 12: The actual operation of SHA256 and SHALI.

TaBLE 3: The performance comparison of SHA256 and SHA1 between the proactive reconfigurable computer and CPU.

Calculation component Number of parallel

Frequency (MHz) Running speed (m)

modules
SHA1 40 200 8000
PRCA SHA256 24 150 4800
SHA1 — — 270.6
CPU SHA256 — — 119.3

TaBLE 4: The threshold of hash function conflict.

Function collision threshold

280 ~ 1.2 x 10%
2128 ~ 34 % 1038

Hash function

SHA1
SHA256

length into an output of fixed length consisting of letters and
numbers, which is irreversible and tamper-proofing.

From the perspective of information security, the main
advantages of this scheme are as follows:

(i) Multiple hash algorithms are jointly used to ensure

the integrity and nontampering of information

(ii) There is a pseudorandom dynamic selection and the
hash algorithm is updated to increase the difficulty
of attack in time dimension

(iii) By using the hardware implementation of proactive
reconfigurable computer, the attack surface is ex-
panded and the attack threshold is raised

Obviously, the blockchain based on PRCA enhances the
confidentiality, authenticity, and integrity of data and

enhances the overall security of blockchain transactions with
its reliability, security, and tamper-resistance.

5. Conclusions

In order to improve the efficiency and security of blockchain
hash algorithm, a scheme of blockchain hash algorithm
optimization based on PRCA is proposed in this paper. This
scheme combines blockchain with proactive reconfigurable
computer to improve the performance of blockchain hash
function. In terms of security performance, several light-
weight hash algorithms are used to exchange information to
ensure the integrity and tamper-proofing of information.
The proactive reconfigurable computer hardware is used to
expand the attack surface, improve the attack threshold, and
ensure the security of blockchain.

Blockchain security is the most important part of the
system, which includes data, intelligent contract, privacy
protection, and application risk. Meanwhile, the data of
blockchain is unique. Under the condition of its own se-
curity, data writing cannot be changed. Based on the security
problem of data immutability, the data structure,

12

cryptography technology, and communication network at
the bottom of blockchain are improved to promote the
healthy development of blockchain application.

Data Availability

The data used support the findings of the study are available
from the corresponding authors upon request.

Additional Points

Highlights. In this paper, proactive reconfigurable computer
is used for experiments. The software platform is ISE
software integrating design, simulation, integration, wiring,
and generation. First, the comparison of CPU running speed
and resource utilization is given by optimizing the hash
algorithm deeply. Second, the collision resistance of pro-
active reconfigurable hashes is analyzed. Finally, the security
of this scheme is analyzed from many aspects.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research work was supported by the Innovative Re-
search Groups of the National Natural Science Foundation
of China (61521003), Intergovernmental Special Programme
of National Key Research and Development Programme
(2016YFE0100300 and 2016YFE0100600), National Scien-
tific Fund Programme for Young Scholar (61672470), and
Science and Technology Project of Henan Province
(182102210617).

References

[1] Q.Luand X. Xu, “Adaptable blockchain-based systems: a case
study for product traceability,” IEEE Software, vol. 34, no. 6,
pp. 21-27, 2017.

[2] M. Padmavathi and R. M. Suresh, “Secure P2P intelligent
network transaction using Litecoin,” Mobile Networks and
Applications, vol. 24, no. 2, pp. 318-326, 2018.

[3] 1. Bentov and R. Kumaresan, “How to use Bitcoin to design
fair protocols,” Lecture Notes in Computer Science, vol. 8617,
pp. 421-439, 2017.

[4] P.Katsiampa, “Volatility estimation for Bitcoin: a comparison
of GARCH models,” Economics Letters, vol. 158, pp. 3-6, 2017.

[5] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and
M. Guizani, “MeDShare: trust-less medical data sharing
among cloud service providers via blockchain,” IEEE Access,
vol. 5, no. 99, pp. 14757-14767, 2017.

[6] G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Dong, “Dis-
tributed blockchain-based data protection framework for
modern power systems against cyber attacks,” IEEE Trans-
actions on Smart Grid, vol. 10, no. 3, pp. 162-173, 2019.

[7] W. Pennington and J. Evans, “Blockchain-enabled, sub-
scriber-based capital markets index data distribution,” The
Journal of Index Investing, vol. 7, no. 4, pp. 83-87, 2017.

[8] S. X. Xi, W. N. Zhang, Q. L. Zhou, S. XueMing, and B. Li,
“High-throughput implementation of SHAS512 algorithm

Security and Communication Networks

based on mimetic computer,” Computer Engineering and
Science, vol. 40, no. 8, pp. 1344-1350, 2018.

[9] S.X. Chen, X. Y. Jiang, J. J. Cai, J. Y. Liu, and W. ChunMing,
“Research on mimic security gateway technology based on
attack transfer,” Journal of Communications, vol. 39, no. S2,
pp. 76-82, 2018.

[10] J. Steckert and A. Skoczen, “Design of FPGA-based radiation
tolerant quench detectors for LHC,” Journal of Instrumen-
tation, vol. 12, no. 4, p. T04005, 2017.

[11] H. Xu, X. Chen, J. Zhou, Z. Wang, and H. Xu, “Research on
basic problems of cognitive network intrusion prevention,” in
Proceedings of the 2013 Ninth International Conference on
Computational Intelligence and Security, pp. 514-517, Leshan,
China, December 2013.

[12] H. Li, R. Lu, L. Zhou, B. Yang, and X. Chen, “An efficient
merkle-tree-based authentication scheme for smart grid,”
IEEE Systems Journal, vol. 8, no. 2, pp. 655-663, 2014.

[13] Q. Wen, D. Wang, S. Feng, Y. Zhang, and G. Yu, “A novel
cross-modal hashing algorithm based on multimodal deep
learning,” Science China (Information Sciences), vol. 60, no. 9,
pp. 50-63, 2017.

[14] Y. Kano and T. Nakajima, “A novel approach to solve a
mining work centralization problem in blockchain technol-
ogies,” International Journal of Pervasive Computing and
Communications, vol. 14, no. 1, pp. 15-32, 2018.

[15] L. Xue, L. Yi, H. Ji, P. Li, and W. Hu, “Symmetric 100-Gb/s
TWDM-PON based on 10g-class optical devices enabled by
dispersion-supported equalization,” Journal of Lightwave
Technology, vol. 36, no. 2, pp. 580-586, 2018.

[16] A. S. Konoplev, A. G. Busygin, and D. P. Zegzhda, “A
blockchain decentralized public key infrastructure model,”
Automatic Control and Computer Sciences, vol. 52, no. 8,
pp. 1017-1021, 2018.

[17] H. Liu, A. Kadir, X. Sun, and Y. Li, “Chaos based adaptive
double-image encryption scheme using hash function and S-
boxes,” Multimedia Tools and Applications, vol. 77, no. 1,
pp. 1391-1407, 2018.

[18] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and
C. Yang, “The blockchain as a decentralized security frame-
work (future directions),” IEEE Consumer Electronics Mag-
azine, vol. 7, no. 2, pp. 18-21, 2018.

[19] W. Liu, W. Qu, J. Gong, and K. Li, “Detection of superpoints
using a vector bloom filter,” IEEE Transactions on Information
Forensics ¢ Security, vol. 11, no. 3, pp. 514-527, 2017.

[20] W. H. Zhou, N. D. Jiang, and C. C. Yan, “Research on anti-
collision algorithm of RFID tags in logistics system,” Procedia
Computer Science, vol. 154, pp. 460-467, 2019.

[21] D. Yaseen Khudhur, S. Saad Hameed, and S. M. Al-Barzinji,
“Enhancing e-banking security: using whirlpool hash function
for card number encryption,” International Journal of Engi-
neering and Technology, vol. 7, no. 2, pp. 281-286, 2018.

Hindawi

Security and Communication Networks
Volume 2020, Article ID 8824163, 10 pages
https://doi.org/10.1155/2020/8824163

Research Article

WILEY

Hindawi

Game Theoretical Method for Anomaly-Based

Intrusion Detection

Zhiyong Wang,' Shengwei Xu,” Guoai Xu,' Yongfeng Yin (®,> Miao Zhang,'

and Dawei Sun*

National Engineering Laboratory of Mobile Network Security, School of Cyberspace Security,

Beijing University of Posts and Telecommunications, Beijing, China

“Deputy Director of Information Security Research Institute, Beijing Institute of Electronic Science and Technology, Beijing, China
?School of Reliability and Systems Engineering, Beihang University, Beijing, China

*Re&*D Department, Beijing Softsec Technologies Co., Ltd., Beijing, China

Correspondence should be addressed to Yongfeng Yin; yyf@buaa.edu.cn

Received 8 May 2020; Revised 24 June 2020; Accepted 19 August 2020; Published 4 September 2020

Academic Editor: Xiaolong Xu

Copyright © 2020 Zhiyong Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the game theoretical analysis method is presented to provide optimal strategies for anomaly-based intrusion
detection systems (A-IDS). A two-stage game model is established to represent the interactions between the attackers and
defenders. In the first stage, the players decide to do actions or keep silence, and in the second stage, attack intensity and detection
threshold are considered as two important strategic variables for the attackers and defenders, respectively. The existence,
uniqueness, and explicit computation of the Nash equilibrium are analyzed and obtained by considering six different scenarios,
from which the optimal detection and attack actions are provided. Numerical examples are provided to validate our

theoretical results.

1. Introduction

Nowadays, network devices and communication services are
vulnerable to various kinds of intrusion attacks, such as DoS/
DDoS, false data injection, and botnet attacks. The intrusion
attacks tend to be more intelligent and the unexpected attack
modes arise frequently. Consequently, great challenges are
brought into network security control and management. As
one of the most important techniques to tackle with various
attacks, anomaly-based intrusion detection system (A-IDS)
has been widely adopted in almost all kinds of network
environments [1, 2]. An anomaly-based intrusion detector
attempts to estimate the normal behavior with a profile and
generates an anomaly alarm once the profile collected from
real-time observation exceeds a predefined threshold [2].
In an intrusion detection system, the attacker and de-
fender can naturally be regarded as two players who try to
maximize their payoffs, respectively, by executing certain
optimal strategies. Thus, the game theoretical method is an

effective tool which enables a defender to earn the maximum
payoff (or the minimum loss) while fighting with the attacks.
A number of results on game theory-based intrusion de-
tection methods have been reported for different network
environments and security requirements. Excellent surveys
about this topic can be found in [3-6]. In [7], two-player
noncooperative strategic game models are established for
some general intrusion detection problems and Nash
equilibriums are analyzed explicitly. In [8-11], game theo-
retical intrusion detection methods are investigated to solve
the security resource allocation problems of large-scale
heterogeneous networks. Note that, in [8-10], it is assumed
that the defender scan always correctly identify the malicious
behaviors of the attackers without any errors, while such an
assumption may not be satisfied in some cases. For example,
for intelligent APT attacks, the attackers often disguise
themselves as no attack happens, which may make the
detector to not always preciously identify the malicious
actions. To handle these uncertainties, Bayesian games are

mailto:yyf@buaa.edu.cn
https://orcid.org/0000-0001-9432-3051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8824163

considered in intrusion detection by updating the defender’s
belief to her/his opponent based on the past behaviors
[12-15]. The main idea of Bayesian game-based intrusion
detection is to use probability to represent the uncertainties
and further use Bayesian iteration to update the dynamics.
For self-organizing ad hoc networks, some nodes may be
malicious and how to detect the malicious actions is an
important work. Some strategic games are presented to
stimulate the cooperation among distinct regular nodes,
based on which the hidden malicious nodes can be detected
[16-21]. In [22], a two-player Stackelberg stochastic game is
analyzed for achieving the best response against the intru-
sion. In [23, 24], game theory-based analysis methods for
distributed intrusion detection are proposed, where con-
sensus-based distributed detection method is presented and
then game analysis is provided for the optimal defense and
attack strategies. In [25], the privacy defense problem is also
considered in the collaborative security scheme design
problem by using the game theoretical analysis method. In
[26], a differential game model is established to analyze the
dynamic process of the attack and defense.

In a game between an attacker and a defender, the rational
attacker will not launch an attack otherwise she/he can get a
positive payoff. Moreover, the attack intensity needs be chosen
to maximize her/his positive payoff. On the contrary, the
defender will perform a defense action to resist the attack
according to a similar rule. In an A-IDS, a predefined detection
threshold needs be cautiously determined. In general, a higher
threshold with a larger normal coverage area will result in a
smaller false alarm rate but a larger missing alarm rate. Note
that the missing alarm rate is also closely related to the attack
intensity. More specifically, larger attack intensity will cause a
lower missing alarm rate. Though attack intensity and de-
tection threshold are two important factors affecting the false
and missing alarm rates, which correspond to the payofts of
attackers and defenders in an intrusion detection game, they
are seldom considered in the aforementioned results. In most
of the aforementioned works, the false and missing alarm rates
are assumed to be known constants and only binary actions
“do” or “not do” are considered in their game models. In [11],
the detection threshold and attack intensity are considered,
while the focus is mainly related to distributed resource al-
location of the heterogeneous networks.

Motivated by the limitations mentioned above in the
literature, a more realistic two-stage form of the intrusion
detection game model is presented in this paper. The attack
intensity and detection threshold are considered as two
strategic variables. In the first stage, the attackers and de-
fenders make decisions on whether the attack and defense
actions should be executed, respectively. Once the attack/
monitoring actions are decided to be executed, optimal
attack intensity and detection threshold are determined to
maximize their utilities in the second stage. The existence
and uniqueness of the Nash equilibrium are discussed for the
first stage of our presented game model under different
scenarios, when the strategic variables of the second stage are
restricted to certain regions. Then, the optimal attack in-
tensity and detection threshold are derived for each scenario,
correspondingly.

Security and Communication Networks

The contributions of this paper can be summarized as
follows:

(1) A two-stage game model is presented for anomaly-
based intrusion detection confrontation. In contrast
to the existing work, where only binary actions “do”
or “not do” are considered in the game model, the
attack intensity and the detection threshold are
considered as two key strategic variables, and the
false and missing alarm rates are the functions of the
attack intensity and the detection threshold, instead
of being assumed to be constant. The two stages of
the game model are tightly coupled with each other
and thus the game model is more complex.

(2) The existence, uniqueness, and calculation of Nash
equilibriums are discussed. Based on the results,
optimal selections of attack intensity and detection
threshold for achieving the maximum payofts of the
attackers and defenders are provided. The results
provide a new method to determine the detection
threshold in the defense, from the perspectives of the
optimization and confrontation. So, the presented
game model and Nash equilibrium solution give a
more realistic theoretical analysis framework for the
anomaly-based security detection.

The rest of this paper is organized as follows. In Section
2, some definitions are introduced and a two-stage game
model of the A-IDS is presented. In Section 3, the Nash
equilibrium of the proposed game model is analyzed.
Simulation results are given to show the effectiveness of our
game theoretical analysis methods in Section 4, followed by
the conclusions of the paper summarized in Section 5.

2. A Two-Stage Intrusion Detection
Game Model

Suppose that there is a network unit vulnerable to intrusion
attacks. Typical examples for such a unit include a software
system, network equipment, and a communication channel.
Here, we adopt similar attack and A-IDS detection models as
that in [11]. The strategic form of two-player noncooperative
game is given in Table 1. U , and U, denote the payofts of the
attacker and the defender, respectively.

In the following, we give the physical meanings of the
corresponding variables in Table 1. The variable x denotes
the attack intensity, for example, the number of attack
packets in a DoS/DDoS attack, or the number of bogus
packets in a DNS cache poisoning attack or jamming
strength in a communication attack, or the magnitude of
false data injection. It is assumed that x € [x,X], where
1>x> x >0. The function s(x) € R is used to represent the
extent of damage to the security of the unit, when it is
suffered from an attack with intensity x. It is natural to
consider s(x) as a strictly increasing function such that
(0s(x)/0x) >0 and s(x) € [s,5] with 1 >5> s >0. The term
W +u(x)W, where ¢, € (0,1) is a constant, W is the
security asset of the unit, and u(x) is a strictly increasing
function, denotes the cost of launching the attack. The

Security and Communication Networks

TaBLE 1: Strategic form of the local game.

Not monitor

Monitor
U,u(x,) =q(x, y)s(x)W —c,W —u(x)W,
Attack A
Up(x, —q(x, y)s(x)W —c,W
Not pl &) q(y) (x))
attack UD(X y) _P()’)Cs -, W

Uyu(x,) =s(x)W —c (W —u(x)W,
Up (x,y) = —sgx)W
X, y) =
Up(x,y) =

variable y denotes the detection threshold. It is assumed that
y € (»,y) with y> y >0 and a larger y corresponds to a
larger coverage area for normal behavior. The function p
denotes the false alarm rate, i.e., it represents the probability
that an alarm is generated though no attack is activated.
Obviously, p is determined completely by the threshold y
and p(y) is a strictly decreasing function in this paper. The
function g denotes the missing alarm rate, i.e., it represents
the probability that no alarm is generated though an attack is
executed. The function q is determined by both attack in-
tensity x and threshold y. It can be easily derived that g is
strictly decreasing and increasing with respect to x and y,
respectively. The parameters ¢, € (0,1) and ¢; € (0,1) are
two constants.

Clearly, the game model described in Table 1 contains
the following two stages. In the first stage, the optimal
strategy set “Attack/Not attack” and “Monitor/Not
monitor” needs be determined by the attacker and de-
fender. Then, both players proceed to the next stage to
select optimal attack intensity x and detection threshold
y. For better understanding, the two-stage pure-strategic
intrusion detection game model with one attacker and
one defender is described in Table 2 in a more rigorous
way.

Remark 1. The attack and detection models are similar to
that in [11], while the results of [11] mainly consider the

(x,y) € m: s(x) —¢; —u(x)<0},

I| I| I|
e N e)

It can be readily shown that 7, Um,Un; U, = m and
(my Um,Ums) N, = . The results of NE for the game as
described in Tables 1 and 2 will be obtained from the fol-
lowing scenarios. In Scenario L.1, only one subset of 7;, 7,
713, and 7, is nonempty. In Scenarios L.2~L.5, 7, is empty
while at least two subsets of 7, 7,, and 75 are nonempty. In
Scenario L.6, 7, and at least one subset of 7;, 7,, and 5 are
nonempty. Clearly, there is no overlap between any two sce-
narios and the six scenarios include all the possibilities. In the
following, the sufficient and necessary conditions on x and y for
the existence and uniqueness of NE are first derived for Sce-
narios L.1~L.6, respectively. Then, the optimal values of x and y,
denoted by x* and y*, are further provided.

(x,) em: s(x) —¢c; —u(x)=0,-q(x, y)s(x) —c, <
(x,y) em: q(x, y)s(x) —¢c; —u(x)=0,-q(x, y)s(x) —¢c, >
(x,y) e m: q(x, y)s(x) —c; —u(x) <0,s(x) —c; —u(x)>0,-q(x, y)s(x) —¢c, >

attack and defense resource allocation problem for het-
erogeneous distributed networks. In this paper, we consider
the confrontation problem for one network unit, as
expressed by the game model in Table 2. Thus, it is essentially
different from the work in [11]. Besides, we establish a two-
stage game model by considering the attack intensity and
detection threshold as the key strategic variables, which is
also different from the existing works.

3. Nash Equilibrium Analysis of the Game

As mentioned in Section 2, the attacker/defender needs to
decide whether to launch an attack/to monitor the unit or
keep silence in the first stage of the presented game model.
For simplicity, an extra assumption is imposed that if the
payofts of a player choosing to perform the action and to
keep silence are the same, she/he will keep silence. In other
words, the attacker/defender tends to do nothing if she/he
cannot earn larger payoffs by launching an attack/moni-
toring. Note that the value of W has no impact on the
analysis of Nash equilibrium (hereinafter referred to as NE)
of the game from Table 1. Thus, without loss of generality, we
set W=1.

Denote the feasible set of x and y by n with

meE [x,X] X[» y]. For convenience in later analysis, 7 is
divided into the following subsets:

-s(x)},
1
sl (D

-s(x)}.

For convenient expression in what follows, two variables
! " .
x and x" are first defined, i.e.,

s.t.x € [x,%],

(2)

x' = arg maxq(x, X)s(x) —u(x) —cy,

!

x" = arg maxs(x) —¢; —u(x), stxe[x%] (3)

The optimization problems presented by (2) and (3)
can be solved by classical optimization methods such as
the gradient method and Lagrangian multiplier method
[27].

4 Security and Communication Networks
TaBLE 2: Two-stage pure-strategic intrusion detection game.
Players Attacker, defender

Strategy sets

Attacker: Attack, not attack, attack intensity x

Defender: Monitor, not monitor, detection threshold y

xe[xx,x>x>0,ye[y,y],y>y>0,s5(x) € [s5], 125> 5 >0,

Constraints (0s(x)/0x) >0, (u(x)/0x) >0, (0p(y)/dy) <0, (0q(x, y)/0x) <0, (dq(x, y)/dy)>0,
pelp,pl,qelqgql,1>p>p>0,1>g>q>0,cj,cyc5 € (0,1)
Payoffs U,, Up (see Table 1)

Game target

The players choose their strategies to maximize their payofts U,, U,

Scenario L.1. Only one of the subsets m,, m,, 73, and 7, is
nonempty.
The following conclusions can be drawn.

Theorem 1. In Scenario L.1, the NE of the game, as described
in Table 1, is derived as follows:

(1) If only the subset m, + &, “not attack, not monitor” is
the unique NE

(2) If only the subset m, + &, “attack, not monitor” is the
unique NE and x* = x"

(3) If only the subset my#+ O, “attack, monitor” is the
unique NE and x* = x', y* = y
(4) If only the subset m,# &, no NE exists

Proof. Firstly, the strategy combination “attack, not
monitor” will not be the NE. This is because,
—p(y)e; — ¢, <0, the defender tends to “not monitor” the
unit to earn zero payoff:

(D If only m+9d, we have gq(x,y)s(x)—c,—
u(x)<s(x)—c; —u(x)<0.This indicates that the
attacker has no incentive to launch an attack either.
Therefore, “not attack, not monitor” is the unique
NE.

(2) If only m, #+ &, as the payoff of the attacker s(x) —
¢, —u(x) is positive for any attack intensity x, the
attacker will select “attack.” Besides, the defender will
never get more payofts when she/he selects “moni-
tor” as —q(x, y)s(x) — ¢, < —s(x) for an arbitrary
threshold y. Thus, the defender will select “monitor.”
The optimal attack intensity x* should be derived by
maximizing the payoff of the attack; therefore, x* =
x" based on (3).

(3) If only 7, # &, the attacker will always select “attack.”
This is because for any attack intensity x and de-
tection threshold y the payoft of the attacker satisfies
s(x) —¢; —u(x)>q(x, y)s(x) — ¢, —u(x)>0. Since
the payoff of the defender satisfies —q(x, y)s(x) —
¢, > — s(x) for an arbitrary y, the defender will select
“monitor.” Then, for the defender, the optimal
threshold is computed by

y* =argmax—q(x,y)s(x)—c,, stxe[x,x],y€ [2,7].

y
(4)

Based on the property that (dq(x,y)/0y)>0 in
Table 2, we have y* = y. Then, the optimal attack
intensity is given by x* = x’ based on (2).

(4) If only 7, # &, “attack, monitor” cannot be the NE
since q(x, y)s(x)—c¢; —u(x)<0. Meanwhile, “at-
tack, not monitor” is not the NE because s(x) —
q(x, ¥)s(x)>c, indicates that the defender will se-
lects “monitor”.Moreover,since s (x) — ¢; —u(x) >0,
“not attack, not monitor” cannot be the NE, either.
Combining with the result derived in the beginning
that “not attack, monitor” cannot be the NE, it is
concluded that no NE exists.

Remark 2. From Theorem 1, the payoffs of the two players
are, respectively, expressed as U, = s(x*) —¢; —u(x*) and
Up = —s(x*) in (2) in Scenario L.1. It implies that the at-
tacker obtains positive payoft while the defender loses
certain security asset in this scenario. On the contrary, the
payoffs of two players are, respectively, expressed as U, =
q(x*, y)s(x*) —u(x*) —¢; and Up =—q(x", y)s(x") — ¢,
in (3) in Scenario L.1. Similar to (2) in Scenario L.I, the
attacker earns positive payoff while the defender loses
certain security asset. Nevertheless, different from (2) in
Scenario L.1, the defender compensates for part of the loss by
executing monitoring action in this scenario as g < 1. Thus,
the payoff earned by the attacker decreases.

As discussed previously, Scenarios L.2~L.5 cover the
possibilities that 7, is empty while at least two subsets of 7,
7,, and 73 are nonempty. Details are given as below.

Scenario L.2. my+ O, n,# D, and 3 = my = .
The following results about the NE for this scenario can
be shown.

Theorem 2. In Scenario L.2, the strategy combination “at-
tack, not monitor” is the unique NE and x* = x".

Proof. The subset 7, #+ & indicates that there exists an x such
that the payoft of the attacker s(x) —u(x) — ¢, is positive.
Thus, the attacker will select the strategy “attack.” Besides,
the payoff of the defender satisfies —q(x, y)s(x) —¢, < —
s(x) for any threshold y, so the defender will select “not
monitor.” Besides, the optimal attack intensity is given by

*

n
x*=x". |

Security and Communication Networks

Scenario L.3. m,#+ O, n3+ D, and m, = m, = &.
Main results for this scenario are formally stated in the
following theorem.

Theorem 3. In Scenario L.3, the strategy combination “at-
tack, monitor” is the unique NE if and only if
q(x', y)s(x") —c; —u(x")>0. The optimal attack intensity
and detection threshold are x* = x' and y* = y.

Proof. Necessity: if “attack, monitor” is the unique NE, then
from (2) and (4), there are x* = x" and y* = y. The payoff of
the attacker with x* and y* must be positive; thus,
q(x', y)s(x") —c; —u(x")>0.

Sufficiency: since q(x', y)s(x") — ¢, —u(x") >0, the at-
tacker can earn a positive maximum payoff if the defender
selects the strategy “monitor” and y* = y. Thus, the attacker
will select to “attack” and y*=y. As g<1 and
(0q(x, y)loy) >0, there is s(x)—c;—u(x")>q
(x", y)s(x) —¢c; —u(x")2q(x', y)s(x") —¢; —u(x") >0 for
y €[y, 7). It follows that x' ¢ m; and (x',y) € n; for
y € [y,y]. From the definition of 7, it can be concluded
that —q(x', y)s(x') — ¢, = — s(x") for y € [y,¥]. This indi-
cates that no matter how the threshold is selected, the de-
fender will earn larger payoft when she/he selects the strategy
“monitor” rather than “not monitor.” Clearly, the defender
will select “monitor” and the optimal threshold is set as y* =
y from (4). Therefore, the strategy combination “attack,
monitor” is the unique NE and x* = x' and y* =y. O

Scenario L4. 7, #+ D, n;+ D, and m; = m, = &.
The following conclusions can be drawn for this
scenario.

Theorem 4. In Scenario L.4,

(1) If and only if —q(x", y)s (x") — c; < — s(x"), “attack,
not monitor” is the NE and x* = x"

(2) If and only if —q(x', y)s(x') — ¢, > — s(x"), “attack,
monitor” is the NE and x* = x' and y* = y

Proof

(1) Necessity: under the strategy combination “attack, not
monitor”, the attacker will select x” as the optimal
attack intensity. If —q (x", y)s(x") — ¢, > — s(x"), the
defender will select “monitor” to earn larger payofs,
which is a contradiction to the premise that “attack, not
monitor” is the NE. Thus, the necessity is shown.

Sufficiency: from the definitions of 7, and 5, the
attacker can always earn positive maximum payoft
when s/he selects “attack.” As dq/dy >0, there is

—q(x", y)s(x") - ¢,
—q(x",z)s(x”) -c (5)
—s(x").

IN

IN

This means when the attacker selects x* = x", the
defender never earn larger payoffs than she/he does
nothing no matter how the threshold is set. Thus,
“attack, not monitor” is the NE and x* = x". The
sufficiency is shown.

(2) Necessity: under the strategy combination “attack,
monitor,” the defender and attacker will select y and x'
as the optimal detection threshold and attack intensity
from (4)and (2). If —q(x", y)s(x") —c, < —s(x"),
then similar to (5), there is

—q(x,y)s(x) — ¢,
—q(x',X)s(x') -c (6)

—s(x).

IN

IN

This means the defender never earns larger payofts than
she/he does nothing, which is a contradiction to the premise
that “attack, monitor” is the NE. Thus, the necessity is
shown.

Sufficiency: the attacker always selects “attack” from
the definitions of 77, and 7. If the attacker selects x* = x',
since —q(x, y)s(x') —c, > — s(x"), the defender will se-
lect “monitor” to obtain larger payoffs than “not mon-
itor” and the optimal detection threshold is y from (4).
Meanwhile, when the defender selects “monitor” and
y* =y, from (2), the attack will select “attack” and x* =
x' to earn the maximum positive payoff. Thus, the suf-
ficiency is shown.

Based on Theorem 4, the uniqueness of the NE for
Scenario L.4 can also be concluded.

Corollary 1. In Scenario L.4,

(1) If and only if —q(x", y)s(x")—c,< —s(x") and
—q(x', y)s(x") — ¢, < —s(x), “attack, not monitor”
is the unique NE and x* = x"

(2) If and only if —q(x",y)s(x")—c,> —s(x") and
—q(x', y)s(x") —cy> —s(x"), “attack, monitor” is
the unique NE and x* = x' and y* = y

Proof. From Theorem 4, “attack, not monitor” and “attack,
monitor” are the only two possible NEs. Clearly, “attack, not
monitor” is the unique NE if an extra condition holds, i.e.,
—q(x", y)s(x") — ¢, < — s(x"). Then, “attack, monitor” will
not be the NE. Similarly, “attack, monitor” is the unique NE
if the extra condition —q(x', y)s(x") — ¢, > — s(x") holds.
Then, “attack, not monitor” is not the NE. Therefore,
Corollary 1 can be concluded. O

Scenario L.5. m + O, n,#+ D, n,+ I, and m, = .
Different from Scenario L.4, there exists x € [x,X] be-
longing to 7; such that s(x) — ¢, —u(x)<0. Since the at-
tacker can always find an x such that she/he earns a positive
payoff, the strategy combination “not attack, not monitor”

cannot be the NE in this scenario. The main results about the
NE in this scenario can be formally stated in the following
theorem.

Theorem 5. In Scenario L.5,

(1) Ifand only if —q(x", y)s (x") — ¢, < —s(x"), “attack,
not monitor” is the NE and x* = x"

(2) If and only if q(x',y)s(x')—c; —u(x')>0 and
—q(x', y)s(x") —c, > —s(x"), “attack, monitor” is the
NE and x* = x' and y* = y

(3) If and only if —q(x",y)s(x")—c,< —s(x") and
{q(x/,y)s(x') - —u(x)<0 or —q(x', y)s(x") -
< — s(x")}, “attack, not monitor” is the uZique NE
and x* = x"

(4) If and only if q(x',y)s(x')—c, —u(x')>0, —q
(x',z)s(x') - > —s(x"), and —q(x",z)s(x") -
¢, > —s(x"), “attack, monitor” is the unique NE and
x*=x"and y* =y

Proof

(1) The proof is similar to that of (1) in Theorem 4 and is
omitted here.

(2) Different from Scenario L.4, there exists x € [x, x|
belonging to 7, such that

q(x, ¥)s(x) —c; —u(x)<s(x) —c; —u(x)<0, (7)

as q(x, y) < 1. Thus, compared to (2) in Theorem 4, an extra
condition q(x', y)s(x") — ¢, —u(x") >0 needs be added to
ensure that “attack, monitor” still be the NE. The remaining
proof is similar to that of (2) in Theorem 4 and is omitted here.

(3) and (4) By following similar analysis in the proof of
Corollary 1, the uniqueness of the NE in this case can
also be concluded.

In contrast to previous scenarios, 7, and at least one
subset of 7, m,, and m; are nonempty in Scenario L.6 as
described below. O

Scenario L.6. myUm, U, # O, and 7, # &.

From (4) in Theorem 1, there is no NE if only 7, # &.
Besides, if m, = & is replaced by m,#Q for (1)-(3) in
Scenario L.1 and Scenarios L.2-L.5, the NEs will never
belong to m,. This is because all the strategy combinations
driven by x and y within 7, are inconsistent with the ob-
tained NE in Theorems 1-5. Hence, (x*, y*) of the NE for
Scenario L.6 will belong to m;, m,, or m;. Moreover, the
conditions for the derived NEs in Theorems 1-5 are still
necessary. Therefore, to analyze the NE in Scenario L.6, we
only need to verify whether the results in Theorems 1-5 are
still correct if the subset 7, is changed to be nonempty. The
following conclusions will be shown.

Security and Communication Networks

Theorem 6. In Scenario L.6, the NE for the game as described
in Table 1 is derived as follows:

(1) If m, # & and m, = my; = &, no NE exists

2) If{my+ D, m) =3 = Blor{m +3, m, + D, n3 = D},
the results in (1) in Theorem 4 hold true and “attack,
not monitor” is the unique NE

3) If{ny +3, m) =my = Blor{m +3, n,+# D, m, = D},
the results in Theorem 3 hold true

4D If (m,#D, n,#3, my =D} or {m+3, m,+9,
715 #+ B}, the results in Theorem 5 hold true

Proof
(1) As there exists an x such that the payoff of the at-
tacker s(x) —c¢; —u(x) is positive, “not attack, not
monitor” is no longer the NE if 7, = & is replaced by
m,#+@ for (1) in Scenario L., ie, m #d,
7, = 3 = &, and 7, # &. It can be easily shown that
other strategy combinations cannot be the NE either.

(2) If m, = D is replaced by 7, # & for (2) in Scenario L.1,
there exists feasible x and y such that
—q(x, y)s(x) — ¢, > — s(x). Thus, an extra condition
-q(x", y)s(x")—c,< —s(x") is required with
comparison to (2) in Theorem 1 to ensure that “attack,
not monitor” still be the NE. If w, = & is replaced by
m, # @ for Scenario L.2, by following similar analysis
in the proofs of Theorem 2 and (1) in Theorem 4, we
can show that the results in (1) in Theorem 4 are true.

(3) When m3# 9, m, =m, = &, and m, # J, there exist
feasible x and y such that g (x, y)s(x) — ¢; —u(x) <0.
Thus, an extra condition g (x', y)s (x") —¢; —u(x') >0
is required with comparison to (3) in Theorem 1 to
ensure that “attack, monitor” still be the NE. When
m#+3, 13#3, m, =&, and 7w, + J, based on the
proof of Theorem 3 and the definitions of 775 and m,, it
can be shown that the results of Theorem 3 are still true.

(4) Firstly, if 7, is changed to be nonempty in Scenario
L.4, x and y belonging to 7, will have no influence on
the results of (1) in Theorem 4. As the results of (1) in
Theorem 5 are the same as that of (1) in Theorem 4,
(1) in Theorem 5 holds true in this case. Besides, an
extra condition g(x', y)s(x') — ¢, —u(x')>0 is re-
quired with comparison to (2) in Theorem 4 to
ensure “attack, monitor” be the NE since there exist
x and y such that q(x, ¥)s(x) —c¢; —u(x) <0 from
the definition of m,. Thus, the results in (2) in
Theorem 5 are true. The uniqueness of the NE can
also be verified from (3) and (4) in Theorem 5.
Secondly, if all the subsets are nonempty, i.e., 7, # &,
m,#+ 9, n;#J, and 7, # J, it can be easily shown
that the feasible values of x and y belonging to 7,
have no influence on the results of Theorem 5. O

Remark 3. It can be seen from (3) in Theorem 1, Theorem 3,
(2) in Theorem 4, and (2) in Theorem 5 that once the de-
fender decides to monitor in (3) in Scenario L.1, Scenario
L.3, (2) in Scenario L.4, (2) in Scenario L.5, and (4) and (5) in

Security and Communication Networks

Scenario L.6, she/he will always select y as the optimal
threshold y*. B

Remark 4. In this paper, we assume that the attackers are
completely rational, while this assumption may not be
satisfied in some scenarios. However, based on our method,
we present an optimal defense strategy for the worst case.
That is, we can guarantee that the maximum damage in the
worst case can be minimized by our method.

4. Simulation Studies

In this section, simulation results are provided to validate the
theoretical results as presented above. In A-IDS, a profile is
generally selected to cause distinctions between normal and
abnormal states. Such a profile is normally described by a
random variable in many cases. Here, we assume it follows a
Gaussian distribution with zero mean under normal states.
Similar assumptions can be seen in many intrusion detection
application areas such as network traffic detection and
Kalman filtering-based anomaly detection. Let the intensity
of the attack be denoted as x. Other parameters in simulation
are chosenasx = y =0.1,Xx =y = 2,5 = 0.5x, u = 0.1x, and
¢; = 0.2. The false alarm rate and missing alarm rate can be
expressed by

y

pz(JoerZ/Sdz>/2\/2_,
) (8)
a=(j &4) Vi,

respectively. Parameters ¢, and ¢, are used to represent the
costs of the attacker and the defender, respectively.

Case 1. We first select ¢; € [0,0.2] and ¢, = 0.2. Then, it can
be calculated by (1) that

(a) If ¢, € [0,0.04], there are m,#J, m3#+J, and
m, = 1, = &, which corresponds to Scenario L.4

(b) If ¢, € [0.04,0.08], there are m, + &, m, + &, 713 + T,
and m, = &, which corresponds to Scenario L.5

(c) If ¢, € [0.08,0.2], all the four subsets are nonempty,
which corresponds to Scenario L.6

Then, it can be checked whether the inequality condi-
tions in Theorems 4 and 5 and (4) in Theorem 6 are satisfied
for the above three scenarios, as given in Table 3. IC 4.1’, IC
4.2’,IC 5.1, and ‘IC 5.2’ refer to the inequality conditions in
(1) and (2) in Theorem 4 and (1) and (2) Theorem 5, re-
spectively. It is worth noting that the inequality conditions in
(4) in Theorem 6 are the same as those in Theorem 5. From
the theoretical analysis given in Section 2, the following
conclusions on the NEs can be drawn:

(a) Based on (2) in Theorem 4, “attack, monitor” is the
unique NE if ¢; € [0,0.04] and ¢, = 0.2.

(b) Based on (2) in Theorem 5, “attack, monitor” is the
unique NE if ¢, € [0.04,0.08] and ¢, = 0.2.

(c) Based on (4) in Theorem 6 and (2) in Theorem 5,
“attack, monitor” is still the unique NE if

¢, € [0.08,0.2] and ¢, = 0.2. However, no NE exists
ifc; € (0.12,0.2], ¢, = 0.2. This result can be verified
by observing the payoft of the attacker (U,) with
respect to ¢, as shown in Figure 1. U , decreases as ¢,
increases. Besides, U, will approach zero when ¢,
tends to 0.12, which indicates that the NE is broken.

Case 2. In this case, we fix ¢; as ¢; = 0.1, while let ¢, vary
within the interval [0,0.2]. It can be calculated that

(a) Ifc, € [0,0.04], there are m, + &, 13 + &, m, + J, and
7, = &, which corresponds to Scenario L.6

(b) If ¢, € [0.04,0.2], all the four subsets are nonempty,
which also corresponds to Scenario L.6

Similarly, Table 4 is given to show whether the inequality
conditions in Theorems 3 and 5 are satisfied, where IC 3
refers to the inequality condition in Theorem 3. Then, the
following conclusions on the NEs can be drawn:

(a) Based on Theorem 3 and (3) in Theorem 6, “attack,
monitor” is the unique NE if ¢; =0.1 and
¢, € [0,0.04]

(b) Based on (2) in Theorem 5 and (4) in Theorem 6,
“attack, monitor” is the unique NE if ¢; = 0.1 and
¢, € (0.04,0.2]

Therefore, “attack, monitor” is always the unique NE if
¢; =0.1, ¢, € [0,0.2]. Besides, from Theorem 3 and (2)
Theorem 5, it can be calculated that the payoff of the attacker
(U,) is equal to 0.024 if ¢, € [0,0.2]. It indicates that the
attacker has the motivation to launch the attack. The per-
formance of the defender’s payoft (Up,) with respect to ¢, is
shown in Figure 2. Clearly, the defender loses some security
asset as U, < 0. Moreover, the lost security asset will increase
as the defense cost ¢, increases.

At last, we make some comparisons with the existing
methods in [7-15], where attack intensity and detection
threshold are scarcely considered and majority of them
assume that the false and missing alarm rates, and the game
model of detection problem can be modelled as Table 5.

It can be seen that, without considering the attack in-
tensity and detection threshold, the payofts of the game
model will be reduced to be constant and the Nash equi-
librium analysis can be easily done. From the definition of
the Nash equilibrium, it can be calculated that if g + ¢, > 1,
(Attack, Monitor) will be the unique NE. Though the
existing analysis methods in [7-15] can determine the op-
timal action strategies, while our results can further deter-
mine the optimal explicit attack intensity and detection
threshold, different results can be obtained. First, the
existing work considers only the strategy do or not do; thus,
the one-stage game model, as expressed in Table 3, is
established to help analyze the optimal actions, while we
further consider the attack intensity and detection threshold
in the game model, as these two parameters are two key
strategies used for the defender and the attacker. Moreover,
we establish a more detailed two-stage game model to
consider both the action do or not do and the attack intensity

Security and Communication Networks

TaBLE 3: The results showing whether the inequality conditions in Theorems 4 and 5 and (4) in Theorem 6 are satisfied when ¢, € [0,0.2] and

c, =0.2.
¢, € [0,0.04] ¢, € [0.04,0.08] ¢, € [0.08,0.12] ¢, € (0.12,0.2]
Scenario L.4 Scenario L.5 Scenario L.6 Scenario L.6
IC 41 X IC 5.1 X IC 5.1 X IC 5.1 X
IC 4.2 N IC 5.2 v IC 5.2 V IC 5.2 x
0.14
0.12 |]
2 01t 1
53
S 0.08 E
k=
S 0.06 f .
2
5 0.04 | 1
=W
0.02 1
O 1 1 1 1 1 h I I I
0 002 004 006 008 0.1 012 014 016 0.18 0.2
Bl
F1GURE 1: Payoff of the attacker U, with respect to ¢, if ¢, is fixed as ¢, = 0.2.
TaBLE 4: The results about the inequality conditions in Theorems 3 and 5 with ¢; = 0.1 and ¢, € [0,0.2].
¢, € [0,0.04] ¢, € (0.04,0.2]
Scenario L.4 Scenario L.5
IC 5.1 X
IC 3 v IC 5.2 v
-0.25 equilibrium. Intuitively, for the game in Table 3, the NE are
completely determined by the parameter x and y; however,
. 03 this conclusion seems not to make sense as the false alarm
b rate and other parameters have no any effect on the Nash
2 o35t equilibrium. Alternatively, for our game model, we can see
E that all parameters will jointly determine the Nash equili-
& briumthus, our analysis results are more realistic. In prac-
g 04 tical, the false and missing alarm rates are not constant, as
;T the attacks are always dynamically changing. In A-IDS
-0.45 | methods, the false and missing alarm rates are commonly
determined by the attack intensity and detection threshold.
_05 Our method just considers this real scenario and establishes

0 0.02 0.04 0.06 0.08 0.1
G

0.12 0.14 0.16 0.18 0.2

FIGURE 2: Payoff of the defender U, with respect to ¢, if ¢, is fixed
as¢; =0.1.

TaBLE 5: Strategic form of the game in existing work.

Monitor Not monitor
Uy=gqW -c,W Up=W-c,W
Attack Up = —qW -, W Up =W
U,=0 U,=0
Not attack Up = —p&sW - 6, W Up =0

and detection threshold. Based on the experimental results,
we can see that the attack intensity and detection threshold
play an important role in the determination of the Nash

a more explicit game model, based on which the optimal
strategies are completely determined.

5. Conclusion

For anomaly-based intrusion detection system, we present a
game theoretical analysis method to provide the optimal
strategies. We first establish a more realistic game model by
considering the attack intensity and detection threshold as
two strategies for the players. The necessary and sufficient
conditions, for which strategies are the Nash equilibriums,
are presented. Simulation studies are provided to validate
our theoretical results. The results provide a new method to
determine the detection threshold in the security defense. In
the future, some more research work could be considered,
for example, the game theoretical analysis method for

Security and Communication Networks

specific scenarios such as Internet of Things and DoS/DDoS
attacks. Besides, dynamic game analysis is also an interesting
topic for dynamic security confrontation process, for ex-
ample, Stackelberg game analysis can be adopted to solve the
sequential problem of the attack and defense actions.

Data Availability

The manuscripts of game theory algorithm in this article
are from the databases of Cambridge University and Co-
lumbia University. Copies of these data can be obtained
from https://dl.acm.org/doi/book/10.5555/1951874 and
https://doi.org/10.1016/j.ins.2018.04.051.

Conflicts of Interest

The authors declared that they have no conflicts of interest.

Acknowledgments

This work was supported by the Basic Scientific Research
Projects of National Defense Science, Technology and In-
dustry Technology under Grant no. JSZL2017601C-1 and in
part by the National Natural Science Foundation of China
under Grant nos. 61897069 and 61831003, National Key
Research and Development Program of China under Grant
no. 2017YFB0801903, and National Key Program for Basic
Research of China under Grant no. 2017-JSJQ-ZD-043.

References

[1] H.J. Liao, C. H. R. Lin, Y. C. Lin, and K. Y. Tung, “Intrusion
detection system: a comprehensive review,” Journal of Net-
work and Computer Applications, vol. 36, no. 1, pp. 16-24,
2013.

[2] P. G. Teodoro, J. D. Verdejo, G. M. Fernandez, and
E. Vazquez, “Anomaly-based network intrusion detection:
techniques, systems and challenges,” Computers & Security,
vol. 28, no. 1-2, pp. 18-28, 2009.

[3] M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J. P. Hubaux,

“Game theory meets network security and privacy,” ACM

Computing Surveys, vol. 45, no. 3, pp. 1-39, 2013.

S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and

Q. Wu, “A survey of game theory as applied to network

security,” in Proceedings of the 43rd Hawaii International

Conference on System Sciences, IEEE, Honolulu, HI, USA,

January 2010.

X. Liang and Y. Xiao, “Game theory for network security,”

IEEE Communications Surveys & Tutorials, vol. 15, no. 1,

pp. 472-486, 2013.

[6] C. Manikopoulos and S. Papavassiliou, “Network intrusion
and fault detection: a statistical anomaly approach,” IEEE
Communications Magazine, vol. 40, no. 10, pp. 76-82, 2002.

[7] T. Alpcan and T. Basar, Network Security: A Decision and
Game-Theoretic Approach, Cambridge University Press,
Cambridge, UK, 2011.

[8] L. Chen and J. Leneutre, “A game theoretical framework on
intrusion detection in heterogeneous networks,” IEEE
Transactions on Information Forensics and Security, vol. 4,
no. 2, pp. 165-178, 2009.

[9] Z.Ismail and J. Leneutre, “A game theoretical analysis of data
confidentiality attacks on smart-grid AMI,” IEEE Journal on

[4

[5

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

Selected Areas in Communications, vol. 32, no. 7, pp. 1486-
1499, 2014.

Q. Zhu, C. Fung, R. Boutaba, and T. Basar, “GUIDEX: A
game-theoretic incentive-based mechanism for intrusion
detection networks,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 11, pp. 2220-2230, 2012.

H. Wu, W. Wang, C. Wen, and Z. Li, “Game theoretical
security detection strategy for networked systems,” Infor-
mation Sciences, vol. 453, pp. 346-363, 2018.

Y. Liu, C. Comaniciu, and H. Man, “A Bayesian game ap-
proach for intrusion detection in wireless ad hoc networks,”
ACM International Conference Proceeding Series, vol. 199,
2006.

K. C. Nguyen, T. Alpcan, and T. Basar, “Security games with
incomplete information,” in Proceedings of the of 2009 IEEE
International Conference on Communications, IEEE, Dresden,
Germany, June 2009.

W. Wang, M. Chatterjee, and K. Kwiat, “Attacker detection
game in wireless networks with channel uncertainty,” in
Proceedings of the 2010 IEEE International Conference on
Communications, IEEE, Cape Town, South Africa, May
2010.

Y. E. Sagduyu, R. Berry, and A. Ephremides, “MAC games for
distributed wireless network security with incomplete in-
formation of selfish and malicious user types,” in Proceedings
of the 2009 International Conference on Game Theory for
Networks, IEEE, Istanbul, Turkey, May 2009.

A. Bradai and H. Afifi, “Game theoretic framework for
reputation-based distributed intrusion detection,” in Pro-
ceedings of the 2013 International Conference on Social
Computing, IEEE, Alexandria, VA, USA, September 2013.
W. Wang, M. Chatterjee, K. Kwiat, and Q. Li, “A game
theoretic approach to detect and co-exist with malicious
nodes in wireless networks,” Computer Networks, vol. 71,
pp. 63-83, 2014.

W. Yu and K. J. R. Liu, “Secure cooperation in autonomous
mobile ad-hoc networks under noise and imperfect moni-
toring: a game-theoretic approach,” IEEE Transactions on
Information Forensics and Security, vol. 3, no. 2, pp. 317-330,
2008.

F.Li, Y. Yang, and J. Wu, “Attack and flee: game-theory-based
analysis on interactions among nodes in MANETs,” IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cy-
bernetics, vol. 40, no. 3, pp. 612-622, 2010.

L. Xiao, Y. Chen, W. S. Lin, and K. J. R. Liu, “Indirect rec-
iprocity security game for large-scale wireless networks,” IEEE
Transactions on Information Forensics and Security, vol. 7,
no. 4, pp. 1368-1380, 2012.

H. Moosavi and F. M. Bui, “A game-theoretic framework for
robust optimal intrusion detection in wireless sensor net-
works,” IEEE Transactions on Information Forensics and Se-
curity, vol. 9, no. 9, pp. 1367-1379, 2014.

S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley,
“RRE: A game-theoretic intrusion response and recovery
engine,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 25, no. 2, pp. 395-406, 2014.

H. Wu and W. Wang, “A game theory based collaborative
security detection method for Internet of Things systems,”
IEEE Transactions on Information Forensics and Security,
vol. 13, no. 6, pp. 1432-1445, 2018.

H. Wu and Z. Wang, “Multi-source fusion-based security
detection method for heterogeneous networks,” Computers &
Security, vol. 74, pp. 55-70, 2018.

https://dl.acm.org/doi/book/10.5555/1951874
https://doi.org/10.1016/j.ins.2018.04.051

10

[25] R.Jin, X. He, and H. Dai, “On the security-privacy tradeoff in
collaborative security: a quantitative information flow game
perspective,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 12, pp. 3273-3286, 2019.

[26] H.Zhang, L. Jiang, S. Huang, J. Wang, and Y. Zhang, “Attack-
defense differential game model for network defense strategy
selection,” IEEE Access, vol. 7, pp. 50618-50629, 2018.

[27] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, Cambridge, UK, 2004.

Security and Communication Networks

Hindawi

Security and Communication Networks
Volume 2020, Article ID 8890306, 11 pages
https://doi.org/10.1155/2020/8890306

Research Article

WILEY

Hindawi

DL-IDS: Extracting Features Using CNN-LSTM Hybrid
Network for Intrusion Detection System

Pengfei Sun,’ Pengju Liu,? Qi Li,’ Chenxi Liu,’ Xiangling Lu,”> Ruochen Hao,>

and Jinpeng Chen

!School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications,

Beijing 100876, China

2School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
*Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Jinpeng Chen; chenjinpeng@nlsde.buaa.edu.cn

Received 6 April 2020; Revised 17 July 2020; Accepted 25 July 2020; Published 28 August 2020

Academic Editor: Huaming Wu

Copyright © 2020 Pengfei Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many studies utilized machine learning schemes to improve network intrusion detection systems recently. Most of the research is
based on manually extracted features, but this approach not only requires a lot of labor costs but also loses a lot of information in
the original data, resulting in low judgment accuracy and cannot be deployed in actual situations. This paper develops a DL-IDS
(deep learning-based intrusion detection system), which uses the hybrid network of Convolutional Neural Network (CNN) and
Long Short-Term Memory Network (LSTM) to extract the spatial and temporal features of network traffic data and to provide a
better intrusion detection system. To reduce the influence of an unbalanced number of samples of different attack types in model
training samples on model performance, DL-IDS used a category weight optimization method to improve the robustness. Finally,
DL-IDS is tested on CICIDS2017, a reliable intrusion detection dataset that covers all the common, updated intrusions and
cyberattacks. In the multiclassification test, DL-IDS reached 98.67% in overall accuracy, and the accuracy of each attack type was

above 99.50%.

1. Introduction

L.1. Background. In recent years, with the rapid develop-
ment of emerging communications and information tech-
nologies such as 5G communications, mobile Internet,
Internet of Things, “cloud computing,” and big data, net-
work security has become increasingly important. As an
important research content of network security, intrusion
detection has been paid attention by experts and scholars.
Problems that are common under traditional anomaly-based
detection methods include the inaccurate feature extraction
of network traffic and difficulty in building attack detection
models, which leads to high false alarm rate when judging
attack traffic. It is difficult for network security personnel to
find unknown threats, which makes the defense inherently
passive. In other words, traditional methods are no longer
applicable to today’s Internet as per its massive data scale.

In recent years, many scholars have explored how to use
artificial intelligence (AI) to detect and analyze network
traffic for intrusion detection and defense systems. Hassan
etal. [1] proposed an ensemble-learning model based on the
combination of a random subspace (RS) learning method
with random tree (RT), which detected cyberattacks of
SCADA by using the network traffic from the SCADA-based
IoT platform. Khan and Gumaei [2] compared the most
popular machine learning methods for intrusion detection
in terms of accuracy, precision, recall, and training time cost.
Alqahtani et al. [3] proposed GXGBoost model to detect
intrusion attacks based on a genetic algorithm and an ex-
treme gradient boosting (XGBoost) classifier. Derhab et al.
[4] proposed a security architecture that integrates the
Blockchain and the software-defined network (SDN) tech-
nologies, which focuses on the security of commands in
industrial IoT against forged commands and misrouting of

mailto:chenjinpeng@nlsde.buaa.edu.cn
https://orcid.org/0000-0003-4157-5110
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8890306

commands. The current mainstream methods are intrusion
detection systems based on machine learning (ML) or deep
learning (DL). Among them, the ML-based system mainly
classifies and detects network traffic by analyzing the
manually extracted features of network traffic, while the DL-
based system can not only analyze the manually extracted
features but also automatically extract the features from the
original traffic. Therefore, DL-based systems can circumvent
the manual feature extraction problem and enhance the
detection accuracy compared to general ML-based systems.

To achieve higher accuracy, DL-based intrusion detec-
tion methods require a large amount of data for training,
especially different types of attack traffic data. In the actual
environment and the existing datasets [KDD99, NSL-KDD,
and CICIDS2017], the attack traffic is always less compared
with normal traffic. Moreover, because some types of attack
traffic are difficult to capture and simulate, the amount of
data available for model training is particularly small. These
problems greatly restrict the accuracy of the DL-based
method, making it difficult to judge certain types of attacks.

1.2. Key Contributions. This paper proposes a DL-based
intrusion detection system, DL-IDS, which uses the hybrid
network of Convolutional Neural Network (CNN) and Long
Short-Term Memory Network (LSTM) to extract the tem-
poral and spatial features of network traffic data to improve
the accuracy of intrusion detection. In the model training
phase, DL-IDS uses category weights to optimize the model.
This method reduces the effect of the number of unbalanced
samples of several attack types in model training samples on
model performance and improves the robustness of training
and prediction. Finally, we test DL-IDS to classify multiple
types of network traffic on the CICIDS2017 dataset and
compare it with the CNN-only model, LSTM-only model,
and other machine learning models because CICIDS2017 is a
recent original network traffic dataset simulating real situ-
ations. The results show that DL-IDS reached 98.67% in
overall accuracy, and the accuracy of each attack type was
above 99.50%, which achieved the best results in all models.

1.3. Paper Organization. The remainder of this paper is
organized as follows. Section 2 discusses the classification of
abnormal traffic as per previously published studies. Section
3 describes in detail the datasets and data preprocessing
methods we used in this study. The classifier structure and
classification methods used for traffic classification under the
proposed model are described in Section 4. Section 5
presents the results of our model evaluation with various
hyperparameters. Section 6 summarizes the paper and
discusses potential future development trends.

2. Related Work

With the continual expansion of the Internet, network se-
curity has become a problem that cannot be ignored.
Malicious network behaviors such as DDos and brute force
attacks tend to be “mixed into” malicious traffic. Security
researchers seek to effectively analyze the malicious traffic in

Security and Communication Networks

a given network so as to identify potential attacks and
quickly stop them [5-8].

2.1. Traditional Intrusion Detection System. Traditional
methods of intrusion detection mainly include statistical
analysis methods [9], threshold analysis methods [10], and
signature analysis methods [11]. These methods do reveal
malicious traffic behavior; however, they require security
researchers to input data related to their personal experi-
ence; to this effect, their various rules and set parameters are
very inefficient. Said “experience” is also only a summary of
the malicious traffic behavior found in the past and is
typically difficult to quantify, so these methods cannot be
readily adapted to the huge amount of network data and
volatile network attacks of today’s Internet.

2.2. Intrusion Detection System Based on ML. Advancements in
machine learning have produced models that effectively
classify and cluster traffic for the purposes of network se-
curity. Early researchers attempted simple machine learning
algorithms for classification-clustering problems in other
fields, such as the k-Nearest Neighbor (KNN) [12], support
vector machine (SVM) [13], and self-organizing maps
(SOM) [14], with good results on KDD99, NSL-KDD,
DARPA, and other datasets. These datasets are out of date,
unfortunately, and contain not only normal data but also
attack data that are overly simple. It is difficult to use these
datasets to simulate today’s highly complex network envi-
ronment. It is also difficult to achieve the expected effect
using these algorithms to analyze malicious traffic in a
relatively new dataset, as evidenced by our work in this
study.

2.3. Intrusion Detection System Based on Deep Neural
Network. The success of machine learning algorithms
generally depends on data representation [15]. Represen-
tation learning, also called feature learning, is a technique in
deep neural network, which can be used to learn the ex-
planatory factors of variation behind the data. Ma et al.
combine spectral clustering and deep neural network al-
gorithms to detect intrusion behaviors [16]. Niyaz et al. used
deep belief networks for developing an efficient and flexible
intrusion detection system [17]. But these research methods
construct their models to learn representations from
manually designed traffic features, not taking full advantage
of the ability of deep neural networks. Eesa et al. showed that
higher detection rate and accuracy rate with lower false
alarm rate can be obtained by using improved traffic feature
set [18]. Learning features directly from traffic raw data
should be feasible, such as in the fields of computer vision
and natural language processing [19].

Two most widely used deep neural network models are
CNN and RNN. The CNN uses original data as the direct
input to the network, does not necessitate feature extraction
or image reconstruction, has relatively few parameters, and
requires relatively little data in process. CNNs have been
proven to be highly effective in the field of image recognition

Security and Communication Networks

[20]. For certain network traffic of protocols, CNNs can
perform well through fast training. Fan and Ling-zhi [21]
extracted very accurate features by using a multilayer CNN,
wherein the convolution layer connects to the sampling layer
below; this model outperformed classical detection algo-
rithms (e.g., SVM) on the KDD99 dataset. However, the
CNN can only analyze a single input package—it cannot
analyze timing information in a given traffic scenario. In
reality, a single packet in an attack traffic scenario is normal
data. When a large number of packets are sent at the same
time or in a short period, this packet becomes malicious
traffic. The CNN does not apply in this situation, which in
practice may lead to a large number of missed alerts.

The recurrent neural network (RNN) is also often used to
analyze sequential information. LSTM, a branch of RNNs,
performs well in sequence information analysis applications
such as natural language processing. Kim et al. [22] com-
pared the LSTM-RNN network against Generalized Re-
gression Neural Network (GRNN), Product-based Neural
Network (PNN), k-Nearest Neighbor (KNN), SVM,
Bayesian, and other algorithms on the KDD99 dataset to find
that it was superior in every aspect they tested. The LSTM
network alone, however, centers on a direct relationship
between sequences rather than the analysis of a single packet,
so it cannot readily replace the CNN in this regard.

Wu and Guo [23] proposed a hierarchical CNN + RNN
neural network and carried out experiments on NSL-KDD
and UNSW-NBI15 datasets. Hsu et al. [24] and Ahsan and
Nygard [25] used another CNN + LSTM model to perform
multiclassification experiments on the NSL-KDD dataset.
Hassan et al. [26] proposed a hybrid deep learning model to
detect network intrusions based on CNN network and a
weight-dropped, long short-term memory (WDLSTM)
network. This paper mainly conducted experiments on
UNSW-NBI15 dataset. However, these studies are still based
on extracted features in advance.

Abdulhammed et al. [27] used Autoencoder and Prin-
ciple Component Analysis to reduce the CICIDS2017
dataset’s feature dimensions. The resulting low-dimensional
features from both techniques are then used to build various
classifiers to detect malicious attacks. Musafer et al. [28]
proposed a novel architecture of IDS based on advanced
Sparse Autoencoder and Random Forest to classify the
patterns of the normal packets from those of the network
attacks and got good results.

In this study, we adopted a malicious traffic analysis
method based on CNN and LSTM to extract and analyze
network traffic information of network raw dataset from
both spatial and temporal dimensions. We conducted
training and testing based on the CICIDS2017 dataset that
well simulates the real network environment. We ran a series
of experiments to show that the proposed model facilitates
very effective malicious flow analysis.

3. Datasets and Preprocessing

3.1. Dataset. The IDS is the most important defense tool
against complex and large-scale network attacks, but the lack
of available public dataset yet hinders its further

development. Many researchers have used private data
within a single company or conducted manual data col-
lection to test IDS applications, which affects the credibility
of their results to some extent. Public datasets such as
KDD99 and NSL-KDD [29] are comprised of data
encompassing manually selected stream characteristics
rather than original network traffic. The timing of the data
collection is also outdated compared to modern attack
methods.

In this study, in an effort to best reflect real traffic
scenarios in real networks as well as newer means of attack,
we chose the CICIDS2017 dataset (Canadian Institute for
Cybersecurity) [30] which contains benign traffic and up-to-
date common attack traffic representative of a real network
environment. This dataset constructs the abstract behavior
of 25 users based on HTTP, HTTPS, FTP, SSH, and e-mail
protocols to accurately simulate a real network environment.
The data capture period was from 9 a.m. on July 3, 2017, to 5
p-m. on July 7, 2017; a total of 51.1 g data flow was generated
over this five-day period. The attack traffic collected includes
eight types of attack: FTP-Patator, SSH-Patator, DoS,
Heartbleed, Web Attack, Infiltration, Botnet, and DDoS. As
shown in Table 1, the attacks were carried out on Tuesday,
Wednesday, Thursday, and Friday morning and afternoon.
Normal traffic was generated throughout the day on Monday
and during the nonaggressive period from Tuesday to Fri-
day. The data type for this dataset is a pcap file.

After acquiring the dataset, we analyzed the original data
and selected seven types of data for subsequent assessment
according to the amount of data and its noise rate. They are
Normal, FTP-Patator, SSH-Patator, DoS, Heartbleed, In-
filtration, and PortScan.

3.2. Network Traffic Segmentation Method. The format of the
CICIDS2017 dataset is one pcap file per day. These pcap files
contain a great deal of information, which is not conducive
to training the machine. Therefore, the primary task of traffic
classification based on machine learning is to divide con-
tinuous pcap files into several discrete units according to a
certain granularity. There are six ways to slice network
traffic: by TCP, by connection, by network flow, by session,
by service class, and by host. When the original traffic data is
segmented according to different methods, it splits into quite
different forms, so the selected network traffic segmentation
method markedly influences the subsequent analysis.

We adopted a session sharding method in this study. A
session is any packet that consists of a bidirectional flow, that
is, any packet that has the same quad (source IP, source port,
destination IP, destination port, and transport layer pro-
tocol) and interchangeable source and destination addresses
and ports.

3.3. Data Preprocessing. Data preprocessing begins with the
original flow, namely, the data in pcap format, for formatting
the model input data. The CICIDS2017 dataset provides an
original dataset in pcap format and a CSV file detailing some
of the traffic. To transform the original data into the model
input format, we conducted time division, traffic

4

TasLE 1: CICIDS2017 dataset.
Date Type Size
Monday Normal 11.0GB
Tuesday Normal + Force + SFTP + SSH 11.0GB
Wednesday Normal + Dos + Heartbleed Attacks 13GB
Thursday ~ Normal + XSS+ Web Attack + Infiltration 7.8GB
Friday Normal + Botnet + PortScan + DDoS 8.3GB

segmentation, PKL file generation, PKL file labeling, matrix
generation, and one_hot encoding. A flow chart of this
process is given in Figure 1.

Step 1 (time division). Time division refers to intercepting
the pcap file of the corresponding period from the original
pcap file according to the attack time and type [30]. The
input format is, again, a pcap file; the output format is still a
pcap file. The time periods corresponding to the specific type
and the size of the file are shown in Table 2.

Step 2 (traffic segmentation). Traffic segmentation refers to
dividing the pcap file obtained in Step 1 into corresponding
sessions by sharding according to the IP of attack host and
victim host corresponding to each time period [31]. The
specific process is shown in Figure 2. This step involves
shredding the pcap file of Step 1 into the corresponding flow
using pkt2flow [31], which can split the pcap package into
the flow format (i.e., the original pcap package is divided into
different pcap packages according to the flow with different
five-tuples). Next, the pcap package is merged under the
premise that the source and destination are interchangeable.
Finally, the pcap package of Step 1 is divided into sessions.

Step 3 (generate the PKL file) and Step 4 (tag the PKL file). As
shown in Table 1, the pcap file is still large in size after
extraction; this creates a serious challenge for data reading in
the model. To accelerate the data reading process, we
packaged the traffic using the pickle tool in Python. We use
PortScan type traffic as an example of the packaging process
here. In this class, many sessions are generated after Step 2,
each of which is saved in a pcap file. We generated a label of
the corresponding attack type for each session. Each session
contains several data flows, and each data flow contains an 7
packet. We then saved the n, sessions in a PKL file to speed
up the process of reading the data. n; can be changed as
needed; according to the experimental results, we finally
selected the best value, that is, n; = 8. The value of n, can be
calculated by formula (1). In this case, we packaged each type
of sessions into a PKL file. The structure of the entire PKL file
is shown in Figure 3.

_ total number of packets of this type

n, = " . (D

Step 5 (matrix generation). The input of the model must
have a fixed length, so the next step is to unify the length
of each session. The difference between each attack is
mainly in the header, so we dealt with the packet

Security and Communication Networks

Time division

Step 1

pacp files

Step 2

Step 3

Step 4

Label PKL files

Unify the length

One_hot encoding

[Input into the model J

Ficure 1: Data preprocessing process.

Step 5

Step 6

TaBLE 2: Distribution of network traffic periods in CICIDS2017
dataset.

Attack Time Size

Normal Monday 11GB
FTP-Patator Tuesday (9:20-10:20) 12 MB
SSH-Patator Tuesday (14:00-15:00) 25 MB
DoS Wednesday (9:47-11:23) 2.3GB
Heartbleed Wednesday (15:12-15:32) 79 MB
Infiltration Thursday (14:19-15:45) 21 MB
PortScan Friday (13:55-14:35) 31 MB

according to the uniform length of PACKET_LEN bytes;
that is, if the packet length was greater than PACK-
ET_LEN, then bytes were intercepted, and if the packet
length was less than PACKET_LEN, bytes were filled
with -1. Each session is then divided into a matrix
MAX_PACKET_NUM_PER_SESSION#*PACKET_LEN.
According to the results of our experiment, we finally
chose MAX_PACKET_NUM_PER_SESSION as 8 and
PACKET_LEN as 40.

Step 6 (one_hot encoding). To effectively learn and classify
the model, the data from Step 5 are processed by one_hot
encoding to convert qualitative features into quantitative
features:

Security and Communication Networks

pcap files from Step 1

L

Traffic to flow

Merge the flow

iy

Output

FiGure 2: Traffic segmentation process.

num, B=1,

ohe; (B, num) = {
0, B+#i,

OHEj(ohejl, ceo ohej(Length)) = ohe; ® ... ®ohey gy, »
OHE,

OHE,
Input;, = >

OHEy,
(2)

where B is a byte in the data packet; num is the number used
for encoding in one_hot encoding. In the model imple-
mentation, num = 1, ohe; is a bit in the one_hot encoding of a
byte, @ is the series notation, and OHE]- is the one_hot
encoding of a byte.

4. DL-IDS Architecture

This section introduces the traffic classifier we built into DL-
IDS, which uses a combination of CNN and LSTM to learn
and classify traffic packets in both time and space. According
to the different characteristics of different types of traffic, we
also used the weight of classes to improve the stability of the
model.

The overall architecture of the classifier is shown in
Figure 4. The classifier is composed of CNN and LSTM.
The CNN section is composed of an input and embedded
layer, convolution layer 1, pooling layer 2, convolution
layer 3, pooling layer 4, and full connection layer 5. Upon
receiving a preprocessed PKL file, the CNN section
processes it and returns a high-dimensional package
vector to the LSTM section. The LSTM section is

PKL file

A format for
storing files in

Session

python for Packages Flow
direct code | consisting of "
reading two-way | packages with aCet
flows the same | Data units in TCP/IP
quintile protocol
communication and

transmission

FiGure 3: Structure of entire PKL file.

composed of the LSTM layer 6, LSTM layer 7, full con-
nection layer 8, and the OUTPUT layer. It can process a
series of high-dimensional package vectors and output a
vector that represents the probability that the session
belongs to each class. The Softmax layer outputs the final
result of the classification according to the vector of
probability.

4.1. CNN in DL-IDS. We converted the data packets ob-
tained from the preprocessed data into a traffic image. The
so-called traffic image is a combination of all or part of the
bit values of a network traffic packet into a two-dimensional
matrix. The data in the network traffic packet is composed of
bytes. The value range of the bytes is 0-255, which is the
same as the value range of the bytes in images. We took the x
byte in the header of a packet and the y byte in the payload
and composed them into a traffic image for subsequent
processing, as discussed below.

As mentioned above, the CNN section is composed of
input and embedded layers, convolution layer 1, pooling
layer 2, convolution layer 3, pooling layer 4, and full
connection layer 5. We combined convolution layer 1 and
pooling layer 2 into Combination I and convolution layer 3
and pooling layer 4 into Combination II. Each Combi-
nation allows for the analysis of input layer characteristics
from different prospective. In Combination I, a convo-
lution layer with a small convolution kernel is used to
extract local features of traffic image details (e.g., IP and
Port). Clear-cut features and stable results can be obtained
in the pooling layer. In Combination II, a large convo-
lution kernel is used to analyze the relationship between
two bits that are far apart, such as information in the traffic
payload.

After preprocessing and one_hot coding, the network
traffic constitutes the input vector of the input layer. In the
input layer, length information is intercepted from the ith
packet Pkg; = (By, B, ..., Biepg) followed by synthesis S of
n Pkgs information set S = (Pkg,, Pkg,, ..., Pkg,).

Formula 3 shows a convolution layer, where f is the side
length of the convolution kernel. In the two convolution
layers, f=7 and f=5. s is stride, p is padding, b is bias, w is
weight, ¢ is channel, [is layer, L, is the size of Z;, and Z (i, j) is
the pixel of the corresponding feature map. Additionally
(l,]) € {O, 1,2, .. "Ll+1}Ll+1 = ((Ll + Zp - f)/S) + 1.

Input C1 S2 C3 s

Convolution

+ Convolution MaxPool

GlobalMaxPool

Security and Communication Networks

S5 L6 L7 8

Output

Softmax

LSTM

LSTM

F1GURE 4: Architecture of DL-IDS.

M=

c f
7+l (l,]) — Z Z

k=1x=1

[Z}{(s*i+x,s*j+y)*wi”(x,y)] +b.

=
I
-

(3)

The convolution layer contains an activation function
(formula 4) that assists in the expression of complex features.
Kis the number of channels in the characteristic graph and A
represents the output vector of the Z vector through the
activation function. We used sigmoid and ReLU, respec-
tively, after two convolution layers.

Ail,j,k = f(Zil,j,k)' (4)

After feature extraction in the convolution layer, the
output image is transferred to the pooling layer for feature
selection and information filtering. The pooling layer con-
tains a preset pooling function that replaces the result of a
single point in the feature map with the feature graph
statistics of its adjacent region. The pooling layer is calcu-
lated by formula 5, where p is the prespecified parameter. We
applied the maximum pooling in this study, that is,
p — oo.

fof 1/p
AL, j) = ZZAi(s*i+x,s*j+y)P . (5)
x=1y=1

We also used a back-propagation algorithm to adjust the
model parameters. In the weight adjustment algorithm
(formula 6), § is delta error of loss function to the layer, and
a is the learning rate.

w =uw - ocz 8w AL (6)

We used the categorical cross-entropy algorithm in the
loss function. In order to reduce training time and enhance
the gradient descent accuracy, we used the RmsProp opti-
mization function to adjust the learning rate.

After two convolution and pooling operations, we
extracted the entire traffic image into a smaller feature block,
which represents the feature information of the whole traffic
packet. The block can then be fed into the RNN system as an
input to the RNN layer.

4.2. LSTM in DL-IDS. Normal network communications
and network attacks both are carried out according to a
certain network protocol. This means that attack packets
must be ensconced in traffic alongside packets containing
fixed parts of the network protocol, such as normal con-
nection establishments, key exchanges, connections, and
disconnections. In the normal portion of the attack traffic,
no data can be used to determine whether the packet is
intended to cause an attack. Using a CNN alone to train the
characteristics of a single packet as the basis for the system to
judge the nature of the traffic makes the data difficult to
mark, leaves too much “dirty” data in the traffic, and pro-
duces altogether poor training results. In this study, we
remedied this by introducing the LSTM, which takes the
data of a single connection (from initiation to disconnec-
tion) as a group and judges the characteristics of all data
packets in said group and the relations among them as a
basis to judge the nature of the traffic. The natural language
processing model performs well in traffic information
processing [32] under a similar methodology as the grouping
judgment method proposed here.

The LSTM section is composed of LSTM layer 6, LSTM
layer 7, full connection layer 8, and Softmax and output
layers. The main functions are realized by two LSTM layers.
The LSTM is a special RNN designed to resolve gradient
disappearance and gradient explosion problems in the
process of long sequence training. General RNN networks
only have one tanh layer, while LSTM networks perform
better processing timing prediction through their unique
forgetting and selective memory gates. Here, we call the
LSTM node a cell (C,), the input and output of which are x,
and h,, respectively.

The first step in the LSTM layer is to determine what
information the model will discard from the cell state. This
decision is made through the forgetting gate (formula 7). The
gate reads h,_; and x, and outputs a value between 0 and 1 to
each number in the C,_; cell state; 1 means “completely
retained” and 0 means “completely discarded.” W and b are
weight and bias in the neural network, respectively.

fio=0(W;- [y x]+by). (7)

Security and Communication Networks

The next step is to decide how much new information to
add to the cell state. First, a sigmoid layer determines which
information needs to be updated (formula 8). A tanh layer
generates a vector as an alternative for updating (formula 9).
The two parts are then combined to make an update to the
state of the cell (formula 10).

iy =0 (W;- [h_, %] +b;), (8)
C, =tanh(W, - [h_,,x,] +b,), 9)
C,=f,*C,_, +i,*C, (10)

The output gate determines the output of the cell. First, a
sigmoid layer determines which parts of the cell state are
exported (formula 11). Next, the cell state is processed
through a tanh function to obtain a value between —1 and 1
and then multiplied by the output of the sigmoid gate. The
output is determined accordingly (formula 12).

op=0(W,- [h_,x] +b,), (11)

h, = o, * tanh(C,). (12)

In the proposed model, the feature maps of n data packets
in a group of traffic images in a connection serve as the input of
the LSTM section. The feature relations between these n data
packets were analyzed through the two LSTM layers. The first
few packets may be used to establish connections; such packets
may exist in the normal data streams,but they may occur in the
attack data streams too. The next few packets may contain long
payloads as well as attack data. The LSTM finds the groups
containing attack data and marks all packets of those whole
groups as attack groups.

LSTM layer 6 in DL-IDS has a linear activation function
designed to minimize the training time. LSTM layer 7 is
nonlinearly activated through the ReLU function. The flow
comprises a multiclassification system, so the model is
trained to minimize multiclass cross-entropy. We did not
update the ownership weight at every step but instead only
needed to add the initial weight according to the volume of
various types of data.

4.3. Weight of Classes. 'The data obtained after preprocessing
is shown in Table 3, where, clearly, the quantities (“num-
bers”) of different data types are uneven. The number of type
0 is the highest, while those of types 2 and 4 are the lowest.
This may affect the final learning outcome of the classifi-
cation. For example, if the machine were to judge all the
traffic as type 0, the accuracy of the model would seem to be
relatively high. We introduced the weights of classes to
resolve this problem: classes with different sample numbers
in the classification were given different weights, class_-
weight is set according to the number of samples, and
class_weight[i] is used instead of 1 to punish the errors in the
class [i] samples. A higher class_weight means a greater
emphasis on the class. Compared with the case without
considering the weight, more samples are classified into
high-weight classes.

7
TaBLE 3: Quantity of data per category in CICIDS2017.

Label Attack Num
0 Normal 477584
1 FTP-Patator 11870
2 SSH-Patator 7428
3 DoS 63240
4 Heartbleed 4755
5 Infiltration 64558
6 PortScan 160002

The class weight is calculated via formula 13, where w;
represents the class weight of class i and n; represents the
amount of traffic of class i.

K-1
Zi:O ”i. (13)

1;

w; =

When training the model, the weighted loss function in
formula 14 makes the model focus more on samples from
underrepresented classes. K is the number of categories, y is
the label (if the sample category is i, then y; = 1; otherwise
y; =0) and p is the output of the neural network, which is
the probability that the model predicts that the category is i
and is calculated by Softmax in this model. Loss function J is
defined as follows:

K-1

J=- Z w;ylog(p;). (14)

i=0

5. Experimental Results and Analysis

We evaluated the performance of the proposed model on the
CICIDS2017 dataset using a series of selected parameters: (1)
the impact of the length of data packets involved in training;
(2) the influence of the number of packets in each flow; (3)
the impact of the selected batch size; (4) the effect of the
number of units in LSTM; and (5) the influence of the weight
of classes. We optimized the DL-IDS parameters accordingly
and then compared them against a sole CNN and a sole
LSTM. The ratio of Train set, Validation set, and Test set is
18:1:1.

5.1. Metrics. We adopted four commonly used parameters
for evaluating intrusion detection systems: accuracy (ACC),
true positive rate (TPR), false positive rate (FPR), and F1-
score. ACC represents the overall performance of the model,
TPR represents the ratio of the real positive sample in the
current positive sample to all positive samples, and FPR
represents the ratio of the real negative sample wrongly
assigned to the positive sample type to the total number of all
negative samples. Recall represents the number of True
Positives divided by the number of True Positives and the
number of False Negatives. Precision represents the number
of positive predictions divided by the total number of
positive class values predicted. Fl-score is a score of a
classifier’s accuracy and is defined as the weighted harmonic
mean of the Precision and Recall measures of the classifier.

8
ACC 1P+ 1N 100%
= * 5
TP + FP + EN + TN ’
TP
TPR = ——— % 100%,
TP + EN
FPR= 0 _ 4 100%
= x
FP + TN >
(15)
Precisi £ 100%
recision = ———— % ,
TP + FP ’
TP
Recall = ———— % 100%,
TP + FN
2 * Precision * Recall
F1 — score = * 100%.

Precision + Recall

For each type of attack, TP is the number of samples
correctly classified as this type, TN is the number of
samples correctly classified as not this type, FP is the
number of samples incorrectly classified as this type, and
EN is the number of samples incorrectly classified as not
this type. The definitions of TP, TN, FP, and FN are given in
Figure 5.

5.2. Experimental Environment. The experimental configu-
ration we used to evaluate the model parameters is described
in Table 4.

5.3. LSTM Unit Quantity Effects on Model Performance.
The number of units in the LSTM represents the model’s
output dimension. In our experiments, we found that
model performance is first enhanced and then begins to
decline as the number of LSTM units continually increases.
We ultimately selected 85 as the optimal number of LSTM
units.

5.4. Training Packet Length Effects on Model Performance.
Figure 6 shows the changes in ACC, TPR, and FPR with
increase in the length of packets extracted during training.
As per the training results, model performance significantly
declines when the package length exceeds 70. It is possible
that excessively long training data packets increase the
proportion of data packets smaller than the current packet
length, leading to an increase in the proportion of units with
a median value of -1 and thus reducing the accuracy of the
model. However, the data packet must exceed a certain
length to ensure that effective, credible, and scientific
content is put into training. This also prevents overfitting
effects and provides more accurate classification ability for
data packets with partial header similarity. We found that a
length of 40 is optimal.

Under the condition that the packet length is 40, the
efficiency and performance of the DL-IDS intrusion

Security and Communication Networks

(=]
=
=
5o
w
(=3
=]
False positives
=]
=]
=
z

0 0
0 0 0 0 . 0 0 0 0 0
0 3 2 0 0 . 0 0 0 0
0 0 0 0 0 0 . 0 0 0
—
<
2 0 0 0o 0 2 3 0o FN o
< False negatives
0 0 1 1 0 0 1 0 0
TN =9
B N
1 1 0 3 0 0 0 0 0 8
Predicted

Figure 5: TP, TN, FP, and FN in multiple classifications.

TaBLE 4: Experimental environment.

(oM CentOS Linux release 7.5.1804
CPU Intel (R) Xeon (R) CPU E5-2620 v3 @ 2.40 GHz
RAM 126 GB
Anaconda 4,511
Keras 2.2.2
Python 3.6.5
100 ~
80 A
b
8
& 60 -
=
&
Ay
£ 40 4
Q
O
<
20 A
0 4
30 40 50 60 70 80 90 100
Packet length
—— TPR
—— FPR
—— ACC

FIGURE 6: Impact of training packet length on model performance.

detection system in identifying various kinds of traffic are
shown in Table 5.

5.5. Per-Flow Packet Quantity Effects on Model Performance.
As the number of data packets in each flow involved in the
training process increases, the features extracted by the
model become more obvious and the recognition accuracy

Security and Communication Networks

TaBLE 5: Model performance with training packet length of 40.

Label ACC (%) TPR (%) FPR (%) Fl-score (%)
Normal 99.54 99.52 0.00 99.61
FTP-Patator 99.62 92.29 0.27 91.45
SSH-Patator 99.63 87.04 0.00 86.87
Dos 99.61 98.25 0.00 97.87
Heartbleed 99.66 81.12 0.00 81.20
Infiltration 99.55 98.07 0.18 97.54
PortScan 99.54 98.42 0.00 98.71
Overall 98.67 97.21 0.47 93.32
100 /,ﬁ
80
3
&
& 60 -
&
&
[=W
E 40 -
Q
Q
<
20
0
6 8 10 12 14 16
Packet number per flow
—— TPR
—— FPR
—— ACC

FiGure 7: Impact of per-flow packet quantity on model
performance.

of the model is enhanced. If this number is too high,
however, the proportion of filling data packets increases,
thus affecting the model’s ability to extract features. Figure 7
shows the impact of the number of packets per flow on
model performance. We found that when the number of
packets in each flow exceeds 8, the performance of the model
declines significantly. We chose 8 as the optimal value of per-
flow packet quantity in the network.

5.6. Batch Size Effects on Model Performance. Batch size is an
important parameter in the model training process. Within a
reasonable range, increasing the batch size can improve the
memory utilization and speed up the data processing. If
increased to an inappropriate extent, however, it can sig-
nificantly slow down the process. As shown in Figure 8, we
found that a batch size of 20 is optimal.

5.7. Class Weight Effects on Model Performance. Table 6
shows a comparison of two groups of experimental results
with and without class weights. Introducing the class weight
does appear to reduce the impact of the imbalance of the
number of data of various types in the CICIDS2017 dataset
on model performance.

9
100 A
80 | ﬁ—/\/\/
]
&
& 60 A
&
&
£ 40
Q
O
<
20 A
0 4
0 10 20 30 40
Batchsize
—— TPR
—— FPR
—— ACC

FIGURE 8: Selected batch size affecting model performance.

TasLE 6: Effects of applying class weight on model performance.

Without class weights (%) With class weights (%)

ACC 97.16 98.58
TPR 93.33 97.04
FPR 0.38 0.52

5.8. Model Evaluation. The LSTM unit can effectively ex-
tract the temporal relationship between packets. Table 7
shows a comparison of accuracy between the DL-IDS
model and models with the CNN or LSTM alone. The
LSTM unit appears to effectively improve the identifica-
tion efficiency of SSH-Patator, Infiltration, PortScan, and
other attack traffic for enhanced model performance,
possibly due to the apparent timing of these attacks.
Compared to the LSTM model alone, however, adding a
CNN further improves the identification efficiency of most
attack traffic. As shown in Table 7, the proposed DL-IDS
intrusion detection model has very low false alarm rate and
can classify network traffic more accurately than the CNN
or LSTM alone.

Table 8 shows a comparison of models using CNN and
LSTM with traditional machine learning algorithms [33].
The DL-IDS model achieves the best performance among
them, with the largest ACC value and the lowest FPR
value.

The data input to DL-IDS is raw network traffic. There is
no special feature extraction in the model; the training and
testing time include the feature extraction time. The tradi-
tional machine learning algorithm does not consider data
extraction or processing time, so we could not directly
compare the time consumption of the various algorithms in
Table 8. The training time and testing time of the model were
under 600 s and 100 s, respectively, so we believe that the DL-
IDS achieves optimal detection effects in the same time
frame as the traditional algorithm.

10 Security and Communication Networks
TaBLE 7: CNN, LSTM, and CNN + LSTM results.
Label CNN (%) LSTM (%) CNN + LSTM (%)
abe

ACC TPR FPR Fl1-score ACC TPR FPR Fl-score ACC TPR FPR Fl1-score
Normal 99.57 99.56 0.00 99.64 99.56 99.55 0.00 99.63 99.54 99.52 0.00 99.61
FTP-Patator 99.45 91.95 0.27 89.95 99.34 89.27 0.15 91.72 99.62 92.29 0.27 91.45
SSH-Patator 99.53 80.90 0.00 87.22 98.91 79.91 0.00 86.66 99.63 87.04 0.00 86.87
Dos 99.53 98.04 0.00 97.86 98.55 94.85 0.13 89.89 99.61 98.25 0.00 97.87
Heartbleed 99.64 80.08 0.00 80.88 99.63 81.12 0.07 77.69 99.66 81.12 0.00 81.20
Infiltration 99.59 97.91 0.07 97.75 98.84 96.80 1.16 97.17 99.55 98.07 0.18 97.54
PortScan 99.35 97.48 0.00 98.51 99.42 97.99 0.00 94.04 99.54 98.42 0.00 98.71
Overall 98.44 96.46 0.36 93.11 96.83 94.21 1.54 90.97 98.67 97.21 0.47 93.32

TaBLE 8: CNN and LSTM models versus traditional machine
learning algorithms.

ACC (%) TPR (%) FPR (%) F1-score (%)

MultinomialNB 72.52 78.20 33.16 52.06
Random Forest 96.08 95.47 3.30 76.71
J48 97.32 96.80 2.17 91.43
Logistic Regression ~ 97.68 94.96 1.47 90.55
DL-IDS 98.67 97.21 0.47 93.32

6. Conclusions and Future Research Directions

In this study, we proposed a DL-based intrusion detection
system named DL-IDS, which utilized a hybrid of Con-
volutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) to extract features from the network
data flow to analyze the network traffic. In DL-IDS, CNN
and LSTM, respectively, extract the spatial features of a
single packet and the temporal feature of the data stream
and finally fuse them, which improve the performance of
intrusion detection system. Moreover, DL-IDS uses
category weights for optimization in the training phase.
This optimization method reduced the adverse of the
number of unbalanced samples of attack types in Train set
and improved the robustness of the model.

To evaluate the proposed system, we experimented on
the CICIDS2017 dataset, which is often used by researchers
for the benchmark. Normal traffic data and some attack data
of six typical types of FTP-Patator, SSH-Patator, Dos,
Heartbleed, Infiltration, and PortScan were selected to test
the ability of DL-IDS to detect attack data. Besides, we also
used the same data to test the CNN-only model, the LSTM-
only model, and some commonly used machine learning
models.

The results show that DL-IDS reached 98.67% and
93.32% in overall accuracy and F1-score, respectively, which
performed better than all machine learning models. Also,
compared with the CNN-only model and the LSTM-only
model, DL-IDS reached over 99.50% in the accuracy of all
attack types and achieved the best performance among these
three models.

There are yet certain drawbacks to the proposed model,
including low detection accuracy on Heartbleed and SSH-
Patator attacks due to data lack. Generative Adversarial
Networks (GAN) may be considered to overcome the
drawback to some degree. Further, combining with some

traditional traffic features may enhance the overall model
performance. We plan to resolve these problems through
further research.

Data Availability

Data will be made available upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This research was funded by Beijing Natural Science
Foundation under Grant no. 4194086, the National Natural
Science Foundation of China under Grant no. 61702043, and
the Key R&D Program of Heibei Province under Grant no.
201313701D.

References

[1] M. M. Hassan, A. Gumaei, S. Huda, and A. Ahmad, “In-
creasing the trustworthiness in the industrial IoT networks
through a reliable cyberattack detection model,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, 2020.

[2] F. A. Khan and A. Gumaei, “A comparative study of machine
learning classifiers for network intrusion detection,” in Pro-
ceedings of the International Conference on Artificial Intelli-
gence and Security, pp. 75-86, New York, NY, USA, July 2019.

[3] M. Algahtani, A. Gumaei, M. Mathkour, and M. Maher Ben

Ismail, “A genetic-based extreme gradient boosting model for

detecting intrusions in wireless sensor networks,” Sensors,

vol. 19, no. 20, p. 4383, 2019.

A. Derhab, M. Guerroumi, A. Gumaei et al., “Blockchain and

random subspace learning-based IDS for SDN-enabled in-

dustrial IoT security,” Sensors, vol. 19, no. 14, p. 3119, 2019.

[5] T. Yaqoob, H. Abbas, and M. Atiquzzaman, “Security vul-

nerabilities, attacks, countermeasures, and regulations of

networked medical devices-a review,” IEEE Communications

Surveys & Tutorials, vol. 21, no. 4, pp. 3723-3768, 2019.

X. Jing, Z. Yan, X. Jiang, and W. Pedrycz, “Network traffic

fusion and analysis against DDoS flooding attacks with a

novel reversible sketch,” Information Fusion, vol. 51, no. 51,

pp. 100-113, 2019.

[7] Z. A. Baig, S. Sanguanpong, S. N. Firdous et al., “Averaged
dependence estimators for DoS attack detection in IoT net-
works,” Future Generation Computer Systems, vol. 102,
pp. 198-209, 2020.

[4

[6

Security and Communication Networks

[8] Y. Yuan, H. Yuan, D. W. C. Ho, and L. Guo, “Resilient control
of wireless networked control system under denial-of-service
attacks: a cross-layer design approach,” IEEE Transactions on
Cybernetics, vol. 50, no. 1, pp. 48-60, 2020.

A. Verma and V. Ranga, “Statistical analysis of CIDDS-001

dataset for network intrusion detection systems using dis-

tance-based machine learning,” Procedia Computer Science,

vol. 125, pp. 709-716, 2018.

[10] H. Xu, F. Mueller, M. Acharya et al., “Machine learning
enhanced real-time intrusion detection using timing infor-
mation,” in Proceedings of the International Workshop on
Trustworthy & Real-Time Edge Computing for Cyber-Physical
Systems, Nashville, TN, USA, 2018.

[11] Y. Wang, W. Meng, W. Li, J. Li, W.-X. Liu, and Y. Xiang, “A
fog-based privacy-preserving approach for distributed sig-
nature-based intrusion detection,” Journal of Parallel and
Distributed Computing, vol. 122, pp. 26-35, 2018.

[12] H. Xu, C. Fang, Q. Cao et al., “Application of a distance-
weighted KNN algorithm improved by moth-flame optimi-
zation in network intrusion detection,” in Proceedings of the
2018 IEEE 4th International Symposium on Wireless Systems
within the International Conferences on Intelligent Data Ac-
quisition and Advanced Computing Systems (IDAACS-SWS),
pp- 166-170, IEEE, Lviv, Ukraine, September 2018.

[13] S. Teng, N. Wu, H. Zhu, L. Teng, and W. Zhang, “SVM-DT-
based adaptive and collaborative intrusion detection,” IEEE/CAA
Journal of Automatica Sinica, vol. 5, no. 1, pp. 108-118, 2018.

[14] J. Liu and L. Xu, “Improvement of SOM classification algo-
rithm and application effect analysis in intrusion detection,”
Recent Developments in Intelligent Computing, Communica-
tion and Devices, pp. 559-565, Springer, Berlin, Germany,
2019.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: a review and new perspectives,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798-1828, 2013.

[16] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, “A hybrid
spectral clustering and deep neural network ensemble algo-
rithm for intrusion detection in sensor networks,” Sensors,
vol. 16, no. 10, p. 1701, 2016.

[17] Q.Niyaz, W. Sun, A.Y. Javaid, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Pro-
ceedings of the 9th International Conference on Bio-inspired
Information and Communications Technologies, pp. 21-26,
Columbia, NY, USA, December 2015.

[18] A.S. Eesa, Z. Orman, and A. M. A. Brifcani, “A novel feature-
selection approach based on the cuttlefish optimization al-
gorithm for intrusion detection systems,” Expert Systems with
Applications, vol. 42, no. 5, pp. 2670-2679, 2015.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, Cambridge, MA, USA, 2016.

[20] Z. Wang, The Applications of Deep Learning on Traffic
Identification, pp. 21-26, BlackHat, Las Vegas, NV, USA, 2015.

[21] J. Fan and K. Ling-zhi, Intrusion Detection Algorithm Based on
Convolutional Neural Network, Beijing Institude of Tech-
nology, Beijing, China, 2017.

[22] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term
memory recurrent neural network classifier for intrusion
detection,” in Proceedings of the 2016 International Conference
on Platform Technology and Service (PlatCon), February 2016.

[23] P. Wu and H. Guo, “LuNET: a deep neural network for
network intrusion detection,” in Proceedings of the Sympo-
sium Series on Computational Intelligence (SSCI), IEEE,
Xiamen, ChinalEEE, Xiamen, China, December 2019.

[9

11

[24] C. M. Hsu, H. Y. Hsieh, S. W. Prakosa, M. Z. Azhari, and
J. S. Leu, “Using long-short-term memory based convolu-
tional neural networks for network intrusion detection,” in
Proceedings of the International Wireless Internet Conference,
Springer, Taipei, Taiwan, pp. 86-94, October 2018.

[25] M. Ahsan and K. Nygard, “Convolutional neural networks
with LSTM for intrusion detection,” in Proceedings of the 35th
International Conference, vol. 69, pp. 69-79, Seville, Spain,
May 2020.

[26] M. M. Hassan, A. Gumaei, A. Ahmed, M. Alrubaian, and
G. Fortino, “A hybrid deep learning model for efficient in-
trusion detection in big data environment,” Information
Sciences, vol. 513, pp. 386-396, 2020.

[27] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and
A. Abuzneid, “Features dimensionality reduction approaches
for machine learning based network intrusion detection,”
Electronics, vol. 8, no. 3, p. 322, 2019.

[28] H. Musafer, A. Abuzneid, M. Faezipour, and A. Mahmood,
“An enhanced design of Sparse autoencoder for latent features
extraction based on trigonometric simplexes for network
intrusion detection systems,” Electronics, vol. 9, no. 2, p. 259,
2020.

[29] V. Ramos and A. Abraham, “ANTIDS: self organized ant
based clustering model for intrusion detection system,” in
Proceedings of the Fourth IEEE International Workshop on Soft
Computing as Transdisciplinary Science and Technology
(WSTST05), Springer, Muroran, JapanSpringer, Muroran,
Japan, May 2005.

[30] I. Sharafaldin, A. H. Lashkari, and A. Ali, “Toward generating
a new intrusion detection dataset and intrusion traffic
characterization,” in Proceedings of the The Fourth Interna-
tional Conference on Information Systems Security and Privacy
(ICISSP), Madeira, Portugal, January 2018.

[31] X. Chen, “A simple utility to classify packets into flows,”
https://github.com/caesar0301/pkt2flow.

[32] B. J. Radford and B. D. Richardson, “Sequence aggregation
rules for anomaly detection in computer network traffic,”
2018, https://arxiv.org/abs/1805.03735v2.

[33] A. Ahmim, M. A. Ferrag, L. Maglaras, M. Derdour, and H. Janicke,
“A detailed analysis of using supervised machine learning for in-
trusion detection,” 2019, https://www.researchgate.net/publication/
331673991_A_Detailed_Analysis_of Using Supervised_Machine_
Learning_for_Intrusion_Detection.

https://github.com/caesar0301/pkt2flow
https://arxiv.org/abs/1805.03735v2
https://www.researchgate.net/publication/331673991_A_Detailed_Analysis_of_Using_Supervised_Machine_Learning_for_Intrusion_Detection
https://www.researchgate.net/publication/331673991_A_Detailed_Analysis_of_Using_Supervised_Machine_Learning_for_Intrusion_Detection
https://www.researchgate.net/publication/331673991_A_Detailed_Analysis_of_Using_Supervised_Machine_Learning_for_Intrusion_Detection

Hindawi

Security and Communication Networks
Volume 2020, Article ID 8872923, 17 pages
https://doi.org/10.1155/2020/8872923

Review Article

WILEY

Hindawi

Network Attacks Detection Methods Based on Deep Learning

Techniques: A Survey

Yirui Wu@®), Dabao Wei, and Jun Feng

College of Computer and Information, Hohai University, Nanjing, China

Correspondence should be addressed to Jun Feng; fengjun@hhu.edu.cn

Received 7 May 2020; Revised 26 June 2020; Accepted 20 July 2020; Published 28 August 2020

Academic Editor: Xiaolong Xu

Copyright © 2020 Yirui Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of the fifth-generation networks and artificial intelligence technologies, new threats and challenges have
emerged to wireless communication system, especially in cybersecurity. In this paper, we offer a review on attack detection
methods involving strength of deep learning techniques. Specifically, we firstly summarize fundamental problems of network
security and attack detection and introduce several successful related applications using deep learning structure. On the basis of
categorization on deep learning methods, we pay special attention to attack detection methods built on different kinds of
architectures, such as autoencoders, generative adversarial network, recurrent neural network, and convolutional neural
network. Afterwards, we present some benchmark datasets with descriptions and compare the performance of representing
approaches to show the current working state of attack detection methods with deep learning structures. Finally, we summarize
this paper and discuss some ways to improve the performance of attack detection under thoughts of utilizing deep

learning structures.

1. Introduction

The continuous development and extensive usage of Internet
benefit numerous network users from a quantity of aspects.
Meanwhile, network security becomes much more impor-
tant with wide usage of network. Network security is closely
related to computers, networks, programs, various data, and
so forth, where the purpose of defense is to prevent un-
authorized access and modification [1]. However, the
growing number of internet-connected systems in finance,
E-commerce, and military makes them become targets of
network attacks, resulting in large quantity of risk and
damage. Essentially, it is necessary to provide effective
strategies to detect and defend attacks and maintain network
security. Furthermore, different kinds of attacks are usually
required to be processed in different ways. How to identify
different kinds of network attacks thus becomes the main
challenge in domain of network security to be solved, es-
pecially those attacks never seen before.

Over the past several years, researchers have used various
kinds of machine learning methods to classify network

attacks without prior knowledge of their detailed charac-
teristics. However, traditional machine learning methods are
not capable of providing distinctive feature descriptors to
describe the problem of attack detection, due to their lim-
itations in model complexity. Recently, machine learning
has made a great breakthrough by simulating human brain
with structure of neural networks, which are named deep
learning methods for their general architecture of deep
layers to solve complicated problems. Among these suc-
cessful applications, Google’s AlphaGo is one of the most
outstanding trials for the game of “go,” involving the
strength of a typical kind of deep learning structure, that is,
convolutional neural networks.

Since deep learning is complex in its original structures
and domain-oriented applications, this paper is written to
explain so for those who aim to study in the field of network
security by utilizing deep learning methods. Essentially,
there exists a quantity of previous work focusing on attack
detection using deep learning techniques. Among them,
several literature reviews [2-8] have been conducted to get
ideas from applying deep learning on attack detection, which

mailto:fengjun@hhu.edu.cn
https://orcid.org/0000-0003-3022-3718
https://orcid.org/0000-0002-2627-5403
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8872923

is the foundation of our paper. For example, Berman et al.
[5] provide a quantity of reading resources to describe the
basic knowledge and development history of deep learning
methods and their corresponding applications in attack
detection. Different from a complete view on this specific
domain brought by Berman et al. [5], Apruzzese et al. [4]
focus on explaining attack detection methods related to
intrusion detection, malware analysis, and spam detection.
In work of Wickramasinghe et al. [7], they mainly review
deep learning methods on securing under the usage of
Internet of Things technologies, which offers a clear view on
variant kinds of cyberattacks and the corresponding tech-
niques used in detection. Afterwards, Aleesa et al. [3] review
and analyze the research status of intrusion detection system
based on deep learning technology among four major da-
tabases. Meanwhile, they offer a systematic literature review
of the relevant articles using the keywords “deep learning”,
“invasion”, and “attack” selection, which provide a wide
range of resource background for the researchers. By re-
garding dataset as significantly important to intrusion de-
tection, Ferrag et al. [6] describe 35 well-known network
datasets and divide them into seven categories. They in-
troduce seven presentative models for each category, where
they evaluate and compare the efficiency via accuracy and
false alarm rate based on real traffic datasets, that is, CSE-
CIC-IDS2018 and Bot-IoT.

In fact, all the above review papers have their own
emphases, such as security applications, attacks type,
datasets, or databases. Unlike former methods, we intend to
build our paper on the basis of deep learning models, thus
paying special attention to attack detection methods built on
different kinds of deep learning architectures. Furthermore,
we offer a fair comparison and our own specified analysis on
performance of representing approaches based on bench-
mark datasets. We believe our paper could offer a more
understandable reading resource for readers, who are in-
terested in how different deep learning architectures affect
the area of attack detection.

In the paper, we attempt to build up basics for future
research through a thorough literature review of deep
learning related approaches in the field of attack detection.
More specially, firstly, we summarize the fundamental
problems, classify the previous methods, and review the
useful methods for beginners. Then, we briefly introduce the
great progress on deep learning techniques in cybersecurity.
By replacing traditional machine learning methods with
deep learning structures, researchers have proposed a
quantity of novel algorithms to greatly improve the per-
formance referring to higher detection rate and lower false
alarm rate. Afterwards, we compare and analyze the per-
formance of some representative deep learning approaches
on benchmark dataset. Finally, we make a summary of the
problems to be solved and future direction of deep learning
method to improve attack detection.

We organize the rest of our work as follows. Section 2
focuses on concepts of attack detection and cyber applica-
tions via research background introduction. Section 3 offers
overviews on different deep learning methods for attack
detection, which are categorized as unsupervised and

Security and Communication Networks

supervised methods with different structures. Section 4
presents datasets and analyzes the performance comparisons
of a quantity of deep learning methods. Section 5 provides
discussion and conclusion based on the current foundations
and presents several ideas for future research.

2. Brief Introduction to Attack Detection

In order to provide an overview of effective attack detection
based on deep learning techniques, it is essential to introduce
background knowledge. We thus first give a brief intro-
duction to the concepts of attack detection, which could offer
a basic recognition for new learners. Afterwards, we make a
brief representation of successful applications for
cybersecurity.

2.1. Developing Process of Attack Detection. Attacks could be
recognized as the attempts to bypass security policies of the
system, which gives attackers easier access to obtain or
modify information, even destroying the system. With
technologies developing on wireless communication sys-
tems, serious threats to network security, especially security
of wireless communication systems, have been proposed by
more frequent network attack activities, due to openness
characteristics of wireless channels. Since we are now in
machine learning and big data epoch [9], cybersecurity in
wireless communication systems is important for users to
protect network, computer, and data from attacks. There
exist variant kinds of attacks for cyber systems, such as
flooding, distributed denial of service, abnormal packet
attack, and spoofing.

To deal with such attack threads to cybersecurity, re-
searchers have proposed many solutions [10]. Among the
solutions, attack detection is one of the most effective ways,
which offers a complete and dynamic security mechanism to
monitor, prevent, and resist attacks. Specifically, attack
detection would collect information by monitoring network,
system status, behavior, and the usage of system, which
could automatically detect unauthorized usage of system
users and attacks of external attackers on the system.

In recent years, machine learning is developing with
incredible speed. Among different machine learning
methods, deep learning structures construct artificial neural
networks to simulate interconnecting neurons of human
brains, which brings distinctive power to solve complicated
problems. Researchers thus adopt various deep learning
methods to operate attack detection, resulting in significant
achievements. However, there are still many unsolved
problems due to the limitation of deep learning methods. It
is essential to make a summarization of how former methods
use deep learning methods to detect attacks, which could
bring new ideas for future developments.

2.2. Applications of Attack Detection Using Deep Learning
Structures. Since deep learning shows great potential in
constructing security applications, it has been widely used in
cybersecurity [11]. There are numerous related applications
such as malware, intrusion, phishing, spam detection, and

Security and Communication Networks

traffic analysis [12]. We believe these successful application
examples could help analyze users’ requirements with the
innovation brought by deep learning structures. Thus, we
provide some typical applications to present practicability of
deep learning method, where we believe these applications
can be implemented in domains of multimedia handling
[13], signal processing [14], and so on [15].

2.2.1. Intrusion Detection. Intrusion detection system could
detect malicious activities by collecting and analyzing net-
work behavior, security log, and other information available
on the network and among connected computers [16].
Essentially, intrusion detection system checks existence of
abnormal behaviors against system security policy and signs
of being attacked in the system, which is capable of pro-
tecting the system with real-time responses. Under tradi-
tional system settings, intrusion detection system works as a
reasonable, active, and efficient supplement to firewall,
which actually acts as a passive defense mean to attacks.

Traditional intrusion detection system is firstly built on
misuse of intrusion detection technology, which mainly
extracts characteristics or rules of intrusion behavior. After
appearance of abnormal behavior detection technology with
traditional machine learning models, intrusion detection
system evolutes to carry out probability statistical modeling
for normal behaviors, which could analyze and alarm ab-
normal behaviors with large deviation. However, such
system may have unsatisfactory results, due to low capability
in problem space defining and complexity in modeling
malicious activities.

To further overcome shortcomings brought by tradi-
tional machine learning methods, deep learning technology
is performed to analyze network packets, which progres-
sively changes the mainstream idea of intrusion detection
from blacklist to white model. A new NIDS deep learning
model is proposed by Shone et al. [17], which is helpful to
analyze the network traffic under the symmetrical deep
autoencoder technology. On the basis of LSTM algorithm,
Vinayakumar et al. [18] design a system call modeling ap-
proach with integration method for anomaly intrusion
detection system. System call modeling helps capture the
semantics of each call and relationship on the network. The
integration method mainly focuses on the false alarm rate in
accordance with IDS design. Currently, a mature intrusion
detection system could detect many kinds of attacks with the
strength of deep learning structures.

2.2.2. Malware Detection. Malware is designed to reduce
performance and vulnerability of a computer, server, or
computer network. Under extreme situations, Malware will
result in destruction of the entire system. Malware requires
to be implanted into the target computer at first. Afterwards,
it could execute code, script, active content, and other
software automatically or following orders from planters. It
is noted that such software or codes could be categorized in
forms of computer viruses, worms, Trojans, spyware, ad-
vertising software, and malicious codes.

We divide the malware detection methods into two
categories, that is, signature-based and anomaly-based de-
tection. Traditional antivirus software can be included in the
first category, which detects malicious files based on file
signature. However, slightly deformed malicious codes
could be bypassed, leading to a large number of false pos-
itives. Later, technologies of sandbox and virtual machine
appear to detect dynamic behaviors of virus, which can be
regarded as big progress from static detection to dynamic
analysis, greatly improving the ability to detect unknown
malicious code.

For example, in [19], Saxe discusses the deep learning of
a four-layer network application. In order to get appropriate
computing feature text extraction technology, PE Metadata
Features can be used. The author proposes eXpose neural
network, where their network takes the original short strings
as input and extracts features to classify with character-level
embeddings. Because of the feature design of self-extraction,
the method of express is better than the baseline method
based on manual feature extraction. Pascanu et al.’s [20]
echo state network is helpful to extract all information by
random time projection technology, the max pooling is used
for nonlinear sampling of data, and the logistic regression is
used for final classification of data.

2.2.3. Domain Generate Algorithms. DGAs are popular to be
used as malware tools to create a great quantity of domain
names for tracking communication with C2 server. Different
domain names make it difficult to use standard technologies
like blacklist or sink-holing to prevent malicious domain
names. DGAs are often used in various network attacks,
such as spam, personal data theft, and DDoS attacks.

By applying deep learning technologies, DGA is capable
of detecting domain names from the perspective of syntax
analysis. Specifically, such novel algorithms could not only
compare word frequency with normal domain names by n-
gram methods but also compare the probabilities of char-
acter combination with normal domain names by HMM
method. Moreover, it is capable of analyzing the entropy,
consonant letter, and other characteristics of domain names,
which are utilized in LSTM for abnormal classification. Due
to the slow speed and poor performance of traditional
technology, Feng et al. [21] provide a deep learning method
which helps to distinguish DGA domains from non-DGA
domains. In [22], the advantages of featureless extraction of
raw domain names as an input in LSTM network are also
discussed.

3. Deep Learning Methods for Attack Detection

Considering the current deep learning methods for attack
detection [23] and following the categorization of the pre-
vious works [24, 25], we roughly divide them into three
categories as well, that is, unsupervised (e.g., autoencoder
(AE), deep belief network (DBN), and generative adversarial
network (GAN)), supervised (e.g., deep neural network
(DNN), convolutional neural network (CNN), and recurrent
neural network (RNN)), and other hybrid methods; we show

the details of categorization in Figure 1. Essentially, there
exist other classification criterions. For example, Berman
etal. [5] review the related deep learning methods according
to attacks type and focus on how deep learning is used for
various attacks. Moreover, Al-Garadi et al. [2] offer a
comprehensive view of deep learning methods based on the
applications of cybersecurity.

Adopting different kinds of deep learning algorithms
could bring variant advantages for attack detection
methods. Supervised learning based methods often result in
high accuracy, due to quantity of information provided by
manually labeled samples. Without sufficient knowledge
from labeled data, unsupervised learning based methods
are generally low in performance. However, manually la-
belling is a time-consuming task, especially for complex
attacks. There even exist cases that cannot be described by a
simple label, due to the inherent complexity of real-world
network attacks. Therefore, unsupervised learning based
methods could perform well without prior knowledge of
attacks, which is an obvious advantage. Hybrid methods
decrease the number of training samples and maintain a
relatively high performance, which is suitable to deal with
variant attack situations. However, it is generally complex
in structure and high in computing time, which prevents its
wide usage.

3.1. Unsupervised Learning for Attack Detection

3.1.1. Autoencoder Based Methods for Attack Detection.
Let us first introduce the architecture of AE, which can be
regarded as a data compression algorithm with neural
network structure. In fact, it is capable of firstly compressing
the input into feature space representation and then
reconstructing representation into the output. Since AE can
be regarded as a typical representing learning algorithm, it is
widely used for dimension reduction and outlier detection.
Researchers in cybersecurity also adopt AE to represent
abnormal behaviors in its compressed feature space, which
brings the advantage of dynamical representation for un-
known category of attacks.

To extract informative feature descriptors from original
network traffic data, Zhang et al. [26] propose to detect
network intrusion by stacking dilated convolutional AE
(DCAEsS), which is a successful combination of self-taught
and representation learning. Specifically, original network
traffic data is firstly transformed into a vector through the
preprocessing step. During unsupervised training, DCAEs
learn the hierarchical structure of feature representation
from a large number of unlabeled samples. Afterwards, use
backpropagation algorithm and a few labeled instances to
fine-tune and improve feature description ability learned
from the unlabeled instances. In fact, using original network
traffic and unsupervised pretraining makes their model
more adaptive and flexible to deal with complicated raw
data.

Following the idea to facilitate intrusion detection with
AE models, Shone et al. [17] propose nonsymmetric deep AE
(NDAE) for wunsupervised feature blearing, which

Security and Communication Networks

successfully reduces computations cost of analysis by
combining AE with shallow learning. Specifically, NDAE has
an additional coding stage comparing with typical AE, which
could reduce complexity and improve the accuracy of the
model. We show such structure in Figure 2, where we can
observe its hierarchical feature extractor. At the end of their
proposed NDAE, they apply the structure of random forest
to recognize abnormal situations with the help of feature
representation learned from NDAEs. To evaluate their
model, the authors have implemented their codes in GPU
and evaluated with KDDCup 99 and NSL-KDD, achieving
promising results comparing with others.

Since AE is capable of learning potential representation
of unknown attacks, Yousefi-Azar et al. [27] propose to learn
feature representation with AE structure for different
cybersecurity applications, which consists of two training
stages, that is, pretraining and fine-tuning. The former stage
is designed to search for an appropriate starting point for the
fine-tuning stage. After determining the parameters in the
pretraining stage, fine-tune stage will coverage offering
feature description for input data. Their proposed feature
learning scheme can greatly reduce feature dimensions, thus
significantly minimizing storage requirements. Experiment
results show their feature representation can be used in
many domains and could achieve remarkable results com-
paring with previous works.

Since collected network raw data can be unbalanced in
distribution, Farahnakian et al. [28] utilize deep stacked
autoencoder to focus on important and informative feature
representations, thus constructing classification models to
detect abnormal behaviors. Specifically, their proposed
network consists of 4 AEs in sequential order, which will be
trained in a greedy layerwise fashion. Experimental results
on KDDCup 99 dataset show it could achieve high accuracy
for abnormal detection, that is, 94.71%, even under the
situation of unbalanced data.

In order to construct a flexible system for detecting
intrusion attacks, Javaid et al. [29] utilize sparse AE and
softmax-regression layer for construction and self-taught
learning (STL) for the training process. Specifically, their
proposed STL could be divided into two steps, where sparse
AE is used for unsupervised feature learning at first and
softmax-regression is used for classification after feature
extraction. In fact, usage of STL could largely improve the
learning ability of constructed network facing unknown
attacks, where new categories of attacks can be incrementally
analyzed during runtime without troubles of training from
scratch.

Following such idea, Papamartzivanos et al. [30] present
a more powerful approach with MAPE-K framework, which
could construct a misuse intrusion detection system with
scalable, self-adaptive, and autonomous characteristics. It
could extract generalized features for problem reconstruc-
tion, even facing unknown environment and using unla-
beled data. They believe their proposed method could work
well by grasping the nature of variant attacks, where they
further design experiments to show that their method could
deal with new situations without updating the training set
manually.

Security and Communication Networks

Deep learning for

attack detection
Unsupervised Supervised Hybrid
. Generative Convolutional Recurrent
Deep belief . Deep neural
Autoencoder| | adversarial neural neural
network network
(DBN) (AE) network (DNN) network network
(GAN) (CNN) (RNN)

FIGURE 1: Categorization of the current deep learning methods for attack detection.

Hidden
layer

s

Encode Decode

Typical autoencoder

Hidden
layer

Hidden
layer

_\FJ

Encode

_V_J

Encode

_V_J

I
I
I
1
1
I
I
I
I
1
1
I
I
I
I
1
1
I
I
I
I
|
I
Encode !
I
1
1
I

Nonsymmetric deep autoencoder

FIGURE 2: Network structure of Shone et al. [17], which is a novel structure of AE designed with nonsymmetrical multiple hidden layers.

Feature extraction is one of the major issues to address
for attack detection. Regarding AE as a structure for in-
formation compressing and feature generation, utilizing AE
brings advantages of automatical and dynamical feature
construction, resulting in high accuracy for detecting pre-
defined attacks existing in datasets. Facing variant and
unknown attacks which are the main characteristics in
cybersecurity, researchers have emphasized self-learning
strategies to make AE more powerful.

3.1.2. Deep Belief Network Based Methods for Attack
Detection. Deep belief network (DBN) could be divided
into two categories, that is, restricted Boltzmann machines
(RBM) with several layers of unsupervised learning net-
works and backpropagation neural network (BPNN or
BP) with one such layer. Essentially, RBM is a random
structure of generating neural network, which is undi-
rected graph model composed of different layers con-
structed by visible neurons and hidden neurons. Due to
the natural characteristics of RBM, it is effective for DBN
to train layer by layer.

Early, Gao et al. [31] focus on dealing with big raw data
and apply deep belief network to construct such intrusion
detection system. In their paper, they try different DBN
models by adjusting parameters like number of layers and

hidden layers. They find the best parameter settings for DBN
is a four-layer DBN model, which could achieve better
performance than other machine learning methods on
KDDCup 99 dataset.

Afterwards, Ding et al. [32] represent malware as opcode
sequences and use DBN to detect malware, where they use
unsupervised learning to pretrain a multilayer generative
model to help DBNSs solve the overfitting problem. We show
its structure in Figure 3, where we can observe DBN works as
classier in the whole workflow with steps of RBM training
and BP fine-tuning. With the help of additional unlabeled
data, their proposed DBN could achieve accuracy as high as
96%, which outperforms three other traditional artificial
intelligence models, that is, SVM, kNN, and decision tree.
However, their methods are not justified by other metrics.

Since behavioral characteristics of ad hoc networks have
brought great challenges to network security, Tan et al. [33]
propose a deep belief network based on ad hoc network
intrusion detection structure. Their proposed DBN model
contains 6 modules: wireless monitoring node for data
fetching, data fusion module to fuse useful data and remove
redundancy, DBN training module and DBN intrusion
module to train and identify whether there is intrusion,
respectively, and response module that expresses results of
the proposed model to users. Experimental results show
their proposed method can reach 97.6% in accuracy, leading

]

PE parser = Feature = DBN
selection classifier
PE file
unpacking
Selecting opcode RBM
i N-grams training
Decompiling
PE file i
. BP
v Constructing Fi .
N ine-tuning
E . PE file
xtracting feature vectors
opcode n-
grams

Figure 3: Workflow of opcode malware detection approach
proposed by Ding et al. [32], which consists of three major
components: PE (Portable Executable) parser, feature extractor,
and malware detection module. It is noted that DBN is the core
classier of malware detection module.

it to be fit with implementation in intrusion detection
applications.

To explore the capabilities of DBN for detecting intru-
sion attacks, Alom et al. [34] propose an effective platform to
explain intrusion attempts in network traffics. Their con-
structed system firstly uses digital encoding and standard-
ized method to select features and then uses DBN to classify
network intrusion by assigning class label to each feature
vector. According to their experiments and analysis, their
constructed system can not only detect attacks, but also
accurately identify and classify network activities according
to limited, incomplete, and nonlinear data sources.

Many trials have been applied in using DBN for in-
trusion detection. However, there still exist many unsolved
problems, such as redundant information, easy to trap into
local maximal. To solve these problems, Zhao et al. [35]
propose to detect intrusion attacks by involving strength of
DBN and probabilistic neural network (PNN). Firstly, they
rescale original input data to low-dimensional by utilizing
nonlinear describing capability of DBN. Meanwhile, DBN
could maintain basic characteristics of original data in
representation. Secondly, particle swarm optimization al-
gorithm is used to reduce the size of hidden nodes of every
layer. Thirdly, PNN is introduced to classify low-dimen-
sional information. Their experiments on KDDCup 99
dataset show they have solved the above problem to a certain
extent.

Regarding real-time attacks detection as the biggest
challenge of intrusion detection, Alrawashdeh and Purdy
[36] propose an anomaly detection method based on DBN,
which only consists of one-hidden layer RBM and a fine-
tuning layer constructed by logistic regression classifier.
Their simplest design of DBN achieves instant running and

Security and Communication Networks

best performance (reported as 97.7% in accuracy and 8s CPU
time for each instance) when testing with KDDCup 99
dataset. Their method offers possibility to implement deep
learning methods for attack detection on low computation
resource platforms like drones, cell phones, and personal
computers, which greatly expands usage scenarios of such
methods.

Because the traditional intrusion detection approaches
face difficulties dealing with high-speed network data and
cannot detect the unknown attacks at present, Zhang et al.
[37] propose a network attack detection model integrating
flow calculation and deep learning, which comprises two
parts: real-time detection algorithm based on frequent
patterns and a classification algorithm based on the DBN
and SVM. Sliding window stream data processing can realize
real-time detection, and the DBN-SVM algorithm can im-
prove classification accuracy. Based on the CICIDS2017
dataset, several groups of comparative experiments are
carried out. The method’s real-time detection efficiency is
higher than that of traditional algorithms.

3.1.3. Generative Adversarial Network Based Methods for
Attack Detection. Due to property of discovering inherent
pattern of data to generate new samples, generative
adversarial network (GAN) is one of the most promising
unsupervised learning methods proposed in recent years.
The main inspiration of GAN comes from the idea of zero-
sum game. When it is applied to deep neural network, it
keeps playing games between generator G and discriminator
D, and finally G is capable of learning distribution repre-
sentation of actual data. G is to imitate, model, and learn
distribution characteristics of real data as much as possible,
while the task of D is to distinguish whether an input data
comes from real data or output of G. Through the contin-
uous competition between these internal models, the gen-
eration ability and discrimination ability of both G and D
can be greatly improved.

Even though GAN is new in conception and hard in the
training process, researchers successfully build several attack
detection applications by regarding it as basic structure. For
instance, Erpek et al. [38] propose a GAN-based approach to
detect jamming attacks on wireless communications and
defend it based on collected information of attacks. Spe-
cifically, their model consists of a transmitter, a receiver, and
a jammer. A pretrained classifier is adopted by the trans-
mitter to predict the current channel state and decide
whether to send based on the latest sensing results, while the
jammer collects the channel state and ACKs to construct a
classifier, which could predict next transmission and block it
successfully. The jammer uses classification score to control
the power under the average power constraint. Afterward, a
GAN is designed to perform as a jammer, which can cut
down collection time by adding synthetic samples.

Utilizing machine learning technology to perform
phishing detection, that is, URL of fake web address, is
popular, due to its high effectiveness and real-time response.
However, adversary may bypass URL classification algo-
rithm by modifying components. To solve this problem,

Security and Communication Networks

AlEroud and Karabatis [39] propose to generate URL-based
phishing examples by using generator of GAN, which are
then shipped to discriminator, that is, black-box phishing
detector. In their proposed GAN model where its structure is
shown in Figure 4, generator network could generate dis-
turbed versions of real phishing examples and convert them
into adversary examples. Discriminator network learns to
classify both generated examples and real ones working as a
phishing detector, where the generator parameters and
weights are updated with information passing from the
discriminator. After testing with a public phishing dataset,
their experimental results show that their proposed GAN is
successful by avoiding a large number of unknown phishing
examples.

GAN is not often used for attack detection field. In fact,
GAN is in fast developing in terms of structures, algorithms,
and so forth. At present, GAN have shown promising results
in many domains, which lead us to believe this proposing
new technique to synthesize attempts is quite significant in
creating a defensive mechanism. Such novel defensive
mechanism can further complete quantity of tasks, such as
preventing zero-day phishing attempts, performing opinion
spam, and detecting intrusion attacks. Therefore, we think
there exists a broad research space to connect GAN structure
with attack detection filed.

3.2. Supervised Learning for Attack Detection

3.2.1. Deep Neural Network Based Methods for Attack
Detection. DNN is recognized as multilayer perceptron due
to characteristic of multiple hidden layers. Such multilayer
feature brings advantage to express complex functions with
fewer parameters, which makes DNN capable of facilitating
tasks of feature extraction and representation learning.
Essentially, there exist three categories of layers in DNN.
Generally speaking, we regard the first layer as input layer,
the last layer as output layer, and middle layers as hidden
layers.

To provide a solution to network security problem,
Tang et al. [40] propose a DNN model to perform flow
based anomaly detection. Their first attempt in applying
DNN for network security results in a relatively simple
DNN, which is composed of one input layer, three hidden
layers, and one output layer. Some experiments are
carried out on NSL-KDD dataset, where the proposed
DNN model is proven to detect zero-day attack
and behaves better than the other machine learning
methods.

To enhance ability of DNN, Li et al. [41] propose a novel
network structure called HashTran-DNN to classify Android
malware. We show its architecture design in Figure 5, where
we can observe their most innovation point lies in trans-
forming input samples by using hash functions to preserve
locality characteristics. After transforming input data,
HashTran-DNN uses AE to perform denoising task, so that
DNN classifier can obtain locality information in the po-
tential space for better performance. After analyzing the
experimental results, we can observe that HashTran-DNN

can effectively defend against four special testing attacks,
where standard DNN fail to detect all these attacks.

Challenges arise motivated by the fact that malicious
attacks are constantly varying and occur on very large
volumes which require scalable solutions. To meet this
challenge, a DNN structure with a scalable and hybrid design
is proposed by Vinayakumar et al. [18], which can watch
network traffic and host level events in real-time, actively
warning possible network attacks. Specifically, their pro-
posed framework adopts scalable computing architecture,
text representation method, and DNNs to meet the re-
quirement to process big data, where DNN could help
improve the performance of their model with functions of
nonlinear activation.

For network administrator, it is an urgent task to prevent
the invasion of malicious network hackers and keep the
network system and computer in a safe and normal oper-
ation state. Peng et al. [42] propose a network intrusion
detection method based on deep learning, which uses deep
neural network to extract features of network monitoring
data, and BP neural network is used to classify intrusion
types. The method is evaluated by KDDCup 99 dataset. The
results show that the method achieves the accuracy of
95.45%, and it has a significant improvement while com-
pared with the traditional machine learning method.

3.2.2. Convolutional Neural Network Based Methods for
Attack Detection. CNN involves convolution computation
and depth structure, which is a representative and com-
monly used techniques in deep learning domain. Specifi-
cally, CNN wuses multilayer perception variant design
requiring minimal preprocessing. The basic structure of
CNN is composed of input and output layers and multiple
hidden layers which include convolution, pooling, and full
connection layer. Compared with other classification algo-
rithms, CNN uses relatively less preprocessing and is in-
dependent of feature design containing prior knowledge,
which are its main advantages.

Convolutional neural network has been applied to
network security field with much promising progress. For
example, Kolosnjaji et al. [43] attempt to construct a neural
network with convolutional and recursive network layers,
which obtains classification features to model malware
detection system. Through their proposed method, they
obtain a hierarchical feature extraction architecture, which
combines advantages of convolution operation from con-
volutional layer and sequence modeling from recursive
network layer. Afterwards, Kolosnjaji et al. [44] further
develop it to involve with feature derived from headers of
Portable Executable files, which achieves quite remarkable
accuracy and recall rate under cases of fusing data.

To detect attack indicators in advance, Saxe and Berlin
[19] propose eXpose neural network, where their network
takes the original short strings as input and extracts features
to classify with character-level embeddings. It is noted that
their original inputs are a wide and complicated range for
algorithms to deal with. Owing to the self-extracted feature
design, eXpose is superior to baseline methods based on

Dataset with phishing

Security and Communication Networks

& legitimate URLs
.
s o "ot
| o % " Labeled data
® /e, —_—
ea®
- s e g
v »
Legitimate/
benign URLs Phishing detector
Tensors %
URL features Discriminator

Phishing URLs

Generator

: Noise /

Adversarial URLs

Feedback

FIGURE 4: Overview of steps for the GAN model proposed by AlEroud and Karabatis [39].

Input layer Hashing layer First hidden Latent space Adjusted training
layer representations procedure
Ol |
Of i . .
O ! Mapping / r-"ﬁ]ﬂ Classifier
H i > S ‘i
O |MH= {Hy; ...; Hp} [.x.]
|
Wiss /s =
ol ! A)]
ﬁ-] Decoder

Hashing layer

Hash functions

Testing

_’IOUU'"II]}

B Benign files
B Malicious files

Mapping

Hidden layer Decoder & classifier
Hash value

representation

100000100010 II

00000001 0010
00010100

1000

No -
¢ —..1
Classfication

Adversarial
example

10000010
yllooooo00r.

0010
0010

000101001000

FIGURE 5: Architecture design of HashTran-DNN model proposed by Li et al. [41].

manual feature extraction. However, it achieves a decrease in
false alarm rate compared with these baselines, which proves
automatically feature extraction process in CNN is not
robust and reasonable enough with introducing extra or
even noise information from original inputs.

Malicious web shell detection is an important means to
protect network security. Aiming at analysis of HTTP

requests, Zhang et al. [46] propose a word2vec representing
and CNN-based malicious detection approach, which is the
first attempt to combine “word2vec” and CNN in malicious
detection domain. Specifically, they first introduce the
“word2vec” tool to represent each word obtained from
HTTP by features. Then, they represent the web request as a
fixed-size matrix by concatenating features. Finally, they

Security and Communication Networks

build up the shell classification model based on CNN
structure. Several groups of experiment are carried out, and
the proposed method performs the best when comparing
with relevant classical classifiers.

To achieve robust performance in attack detection with
CNN structure, an end-to-end encrypted traffic classifica-
tion method based on one-dimensional CNN is presented by
Wang et al. [45], in which feature extraction, selection, and
classifier are integrated into an end-to-end framework. We
show its detailed network design in Figure 6, where their
proposed 1D-CNN as learning algorithm directly learns
relationship between automatical extracted features and
outputs with predicted labels in training phase. In their
experiment, they adopt ISCX VPN-nonVPN traffic dataset
for verification, where they achieve better performance than
the latest methods in 11 of 12 evaluation measurements.
Such promising results are remarkable, due to robust and
informative traffic data representation and fine-tuning steps
to improve model ability. Regarding network traffic data as
two-dimensional image, a new traffic analysis approach
based on CNN is further proposed by Wang et al. [47]. They
test their algorithm on USTC-TRC2016 flow dataset to show
average classification accuracy is as high as 99%.

To solve the diversity attack of wireless network traffic
and improve the detection ability of malicious intrusion in
wireless network, an intrusion detection method based on
improved convolutional neural network is proposed by
Yang and Wang [48], namely, ICNN-Based Wireless Net-
work Intrusion Detection Model. Preprocess the network
traffic data, and then model the data using CNN. CNN
abstracts low-level intrusion traffic data into high-level
features, automatically extracts sample features and opti-
mizes network parameters through random gradient descent
algorithm to converge the model. The results on the
KDDTest + show that the detection accuracy is 8.82% and
0.51% higher than that of LeNet-5 and DBN, while the false
positive rate is also lower. It also has a big advantage
compared to the previous methods.

Low rate denial of service (LDOS) attacks reduce the
performance of network services, and it is difficult to dis-
tinguish the attack behavior from the normal traffic. Thus, a
new detection method of LDOS attack based on multifeature
fusion and convolutional neural network (CNN) is proposed
by Tang et al. [49]. They calculate features and fuse them into
a feature map to describe the state of the network. The CNN
model is used to distinguish and detect feature maps in-
cluding LDOS attacks. Experiments are carried out on NS2
simulation platform and test-bed and results show that the
proposed method can effectively detect LDOS attacks with
accuracy of 97.1%.

3.2.3. Recurrent Neural Network Based Methods for Attack
Detection. Since the output of DNN and CNN only con-
siders the influence of the current input without considering
information from the previous and future time, they could
achieve significant performance on the classification or
recognition tasks without time-varying characteristics. In-
volving time-dependent data, RNN is proposed as a special

Training traffic Test traffic

v v v

Predict labels

F1GUre 6: Workflow of the traffic analysis approach proposed by
Wang et al. [45], which consists of three parts: preprocess, training,
and testing phase.

Idx1 files 1dx3 files 1dx3 files
|

N
! Training phase | ! Test phase |

I I
I Y ! 1
i Minibatch | i |
: SGD training i |
I ! I !
| v i v |

I H I
| 1 N Fine-tuned !
| CNN model n 4 CNN model !
i :: !
I ! |
I ! |
! 1! I
! 1! 1
| A !

category of neural network structures, which is designed
with “memory” function to maintain previous content. In
fact, such design feature coincides with the idea that “human
cognition is based on the past experience and memory.”
RNN is thus good at dealing with time-series information.
However, there are still some problems in structure design of
RNN like gradient disappearance or gradient explosion,
which leads failure to remember or model long-time de-
pendence. Therefore, researchers develop LSTM and GRU
with gates design and memory cell, which successfully keep
long-time relationship unforgotten by passing through
important components of information flow.

Early, Staudemeyer [50] proposes to consider time-series
characteristics of known malicious behavior and network
traffic, which may improve accuracy performance of attacks
detection algorithms. To confirm this, they implement
LSTM for intrusion detection based on excellent property of
LSTM to model long-time dependant relationship. They
design a four-memory blocks network, each of which
contains two cells. The network is capable of keeping balance
in both computational cost and detection performance.
Their experimental results indicate that the proposed LSTM
model is better than previously published methods since
LSTM could learn to backtrack and correlate continuous
connection records in a time-varying manner.

Later, Krishnan and Raajan [51] apply RNN to perform
task of attack classification, where their anticipated model is
constructed as a sawy self-erudition based Intrusion De-
tection System by RNN structure. During the experiments,
their proposed intrusion detection system could filter

10

attacks, but fail to identify false positives. Comparing with
the baseline methods, their proposed method has improved
in measurements, such as classification accuracy and time-
consuming.

Similarly, Yin et al. [52] explore utilizing RNN for in-
trusion detection named RNN-IDS, where they evaluate
RNN-IDS with forms of binary classification and multiclass
classification. In fact, RNN model has one-way information
flow from the first units to the hidden, also from the previous
hidden unit to the current one, where the hidden units could
be regarded as storage units to store end-to-end and useful
information for classification. They have tested whether the
parameters, such as number of the neurons, have impact on
the RNN-IDS using NSL-KDD dataset. When comparing
with previous works such as ANN, random forest, and SVM,
RNN-IDS has an advantage in classification performance
with high accuracy.

Since LSTM solves the long-term dependency problem
and overcomes the vanishing gradient drop during training,
Kim et al. [54] apply LSTM architecture for intrusion de-
tection, where the size of hidden layer and the learning rate
are settled as 80 and 0.01 after experiments. Comparing with
Staudemeyer [50], the constructed LSTM model has a higher
false detection rate when training with the KDDCup 99
dataset. Following the trend of applying LSTM on attack
detection, Le et al. [55] build a LSTM classifier to detect
intrusion as well. They aim is to find the most suitable
optimizer for gradient descent optimization of LSTM, where
they compare six widely used optimization methods, that is,
Adagrad, Adadelta, RMSprop, Adam, Adamax, and Nadam,
and find the most effective one is LSTM with Nadam
optimizer.

To reduce high false alarm rate achieved by the former
methods, a system-call analysis method is proposed by Kim
et al. [53], which is developed for anomaly-based host in-
trusion detection system. As shown in Figure 7, their method
consists of two modules: the front-end module, that is,
system call language models, which is used to model time-
varying characteristics of system calls with LSTM structure
in various environments, and the back-end module which is
used to predict exceptions based on information passing
from the front-end module by a set of ensemble and
threshold-based classifiers.

GRU is a variant of LSTM, in which softmax function is
used as the final output layer. Moreover, GRU uses cross-
entropy function to calculate its losses. Based on GRU
structure, Agarap [56] proposes a novel network for binary
classification in the attack detection field, which regards a
total of 21 features as model inputs. Specifically, linear
support vector machine (SVM) is introduced to replace
softmax function of the proposed GRU model, which could
achieve relatively better effects than the traditional GRU-
softmax network on public datasets, due to fast convergence
and better ability in classification.

3.3. Other Deep Learning Methods for Attack Detection.
In this subsection, we aim to emphasize on the hybrid
category of methods on attack detection, which are designed

Security and Communication Networks

with the idea of integrating advantages of different deep
learning structures.

Early in 2015, Li et al. [57] apply a AE and DNN based
hybrid deep learning method for malicious code detection.
Specifically, they adopt AE to reduce dimensions of original
data and focus on the main and important features. Af-
terward, they use a DBN-based learning model to do the
detection of malicious code, which consists of multilayer
RBM and a layer of BPNN. Defining each layer of RBM as
unsupervised trained and BP as supervised trained, their
optimal hybrid model is finally obtained by fine-tuning the
whole network. Experiments show that detection accuracy of
their hybrid network is higher than other previous DBN-
based networks.

Later in 2017, Ludwig [58] employs an ensemble network
to classify various types of attacks. In fact, the neural net-
work learning classifies targets with multiple classifiers and
merges their results to form robust outputs. To distinguish
between normal and abnormal behaviors, their proposed
method fuses AE, BNN, DNN, and extreme learning ma-
chine for better performance. Their proposed ensemble
method brings promising results, which achieve more ac-
curate performance than utilizing single classifier for de-
tection task.

Following the idea of fusing classifiers to obtain better
results, Li et al. [59] propose an ensemble structure to en-
hance the robustness of neural networks for malware de-
tection in 2018; the network is shown in Figure 8. More
specifically, a group of neural networks are trained in the
training stage and each classifier keeps its counter such as
input conversion and semantic preservation. In the test
stage, the labeled samples are determined by voting of
different classifiers. Their proposed ensemble framework is
applied to the challenge of AICS 2019 and has received a
good performance in both accuracy and recall.

In order to detect network attacks effectively, Liu et al.
[60] propose an end-to-end detection method in 2019. Based
on the deep learning model, the author proposes two
payload classification models: PL-CNN and PL-RNN. The
model learns feature representation from the original pay-
load without feature engineering and end-to-end detection.
At the same time, they design a data preprocessing method,
which can keep enough information while keeping effi-
ciency. The accuracy of the proposed methods is 99.36% and
99.98%, respectively, when applied to DARPA 1998 dataset.
The proposed methods support the use of network data flow
for effective end-to-end attack detection, so as to solve the
practical problem.

Most recently in 2019, Zhang et al. [61] do not design the
characteristics of the flow but directly extract the original
data information for analysis. At the same time of learning
the temporal and spatial characteristics of flow, a new
network intrusion detection model called deep network is
proposed, which integrates the improved leNet-5 and LSTM
neural network structure. The CICIDS2017 dataset and the
CTU dataset are used to evaluate the performance of the
network. The amount of traffic is large, and the type of attack
is relatively new. The experimental results show that the
performance of the network model is better than other

Security and Communication Networks

System call
language model —
LM,

System call
language model —
LM,

Normal training data

System call
language model —
LM,,

Query sequence

11

Thresholding
classifier Cf

Normal
or
abnormal

Ensemble
classifier G

Thresholding
classifier Cr

Thresholding
classifier Cr

FIGURE 7: Structure design of Kim et al. [53] for intrusion detection system.

Ensemble f,,,

Classifier f;

Transformation semantics- preservatlon

w / \\\

& —~
'*g. Transformation semantics-preservation 'Loss functlon'n_
[=
&

O data Decoder

Training

Testin

8 Classifier f;
Sample x Voting)
Classifier f;

—> Forward
Gradient

FiGUure 8: Workflow of the hybrid model proposed by [59].

network intrusion detection models, and it can achieve the
best detection accuracy.

4. Comparisons and Analysis

4.1. Public Datasets. Many public datasets are popular to
prove and compare efliciency and effectiveness among
different attack detection methods. Among them, we list two
famous benchmark datasets, that is, KDDCup 99 and NSL-
KDD, which are widely used in the academic research to
evaluate the ability to detect attacks.

4.1.1. KDDCup 99 Dataset. Despite the fact that there exist
some drawbacks like containing a great deal of redundant
training and testing data, KDDCup 99 dataset is famous in the
field of cybersecurity. It includes both labeled training data and
unlabeled test data, which correspond to seven and two weeks of
data originated from DARPA’98 IDS evaluation program [62].

Five categories of labels are contained in the dataset
which are normal, DoS, Probe, R2L and U2R, that is, short
for DoS, Probe, R2L, and U2R, where normal refers to
normal traffic instances, Dos is an attack in which the at-
tacker tries to make the target machine stop providing

service or resource access to system, Probe represents sur-
veillance and probing, and R2L refers to the unauthorized
access while there is an illegal access from the remote
machine to local one and represents that there is an un-
authorized access to local superuser privileges by local
unprivileged user. In Table 1, we display 22 different attacks
in training and test data, which could be categorized into
these four attack types.

In KDDCup 99 dataset, each record has 41 features in
total including basic features, content features, and traffic
features as shown in Table 2, where the basic features are
obtained from TCP/IP connections including basic char-
acteristics of connection. The content features are extracted
from data content, which can be used in the detection of
U2R and R2L attacks, which are usually hidden in the
packets data without abnormal appearance in single packet
and normal connection. Meanwhile, traffic features refer to
accumulated values in a time window with 100 connections.
It is noted that 7 features and 34 features are symbolic and
continuous in data type, respectively.

4.1.2. NSL-KDD Dataset. NSL-KDD is famous as a new
development of KDDCup 99 dataset, which comes out to

12

Security and Communication Networks

TaBLE 1: Category of 22 different attacks contained by KDDCup 99.

Class label

Attack name

DoS back, land, neptune, pod, smurf, teardrop.

Probe ipsweep, nmap, portsweep, satan.

R2L ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster.
U2R buffer_overflow, loadmodule, perl, rootkit.

TaBLE 2: Feature set for each instance in KDDCup 99 dataset.

No. Features Types

1 Duration Continuous
2 protocol_type Symbolic
3 Service Symbolic
4 Flag Symbolic
5 src_bytes Continuous
6 dst_bytes Continuous
7 Land Symbolic
8 wrong_fragment Continuous
9 Urgent Continuous
10 Hot Continuous
11 num_failed_logins Continuous
12 logged_in Symbolic
13 num_compromised Continuous
14 root_shell Continuous
15 su_attempted Continuous
16 num_root Continuous
17 num_file_ creations Continuous
18 num_shells Continuous
19 num_access_files Continuous
20 num_outbound_cmds Continuous
21 is_hosts_login Symbolic
22 is_guest_login Symbolic
23 Count Continuous
24 srv_count Continuous
25 serror_rate Continuous
26 srv_serror_rate Continuous
27 rerror_rate Continuous
28 srv_rerror_rate Continuous
29 same_srv_rate Continuous
30 diff_srv_rate Continuous
31 drv_diff_host_rate Continuous
32 dst_host_count Continuous
33 dst_host_srv_count Continuous
34 dst_host_same_srv_count Continuous
35 dst_host_diff _srv_rate Continuous
36 dst_host_same_src_port_count Continuous
37 dst_host_srv_diff host_rate Continuous
38 dst_host_serror_rate Continuous
39 dst_host_srv_serror_rate Continuous
40 dst_host_serror_rate Continuous
41 dst_host_srv_rerror_rate Continuous

reduce shortcomings of the previous dataset. Specifically, it
not only removes redundant data from the training and test
data to achieve more accurate detection rate but also offi-
cially sets the number of records in both training and test
data. Moreover, different difficulty level group has different
number of records, which is inversely proportional to the
percentage of that in the primary KDD dataset. Hence,
evaluations and comparisons among different learning
technologies become more effective and obvious.

NSL-KDD and KDDCup 99 dataset are similar in
structure, where both of them are divided into four attack
types as mentioned before. NSL-KDD dataset is divided into
two parts: KDDTrain+ and KDDTest+, where we show the
specific numbers corresponding to each attack type in Ta-
ble 3. It is noted that there are 17 attack types in KDDTest+,
which do not appear in KDDTrain+. This interesting setting
makes NSL-KDD more challenging than KDDCup 99
dataset, which imitates real-life network environment with
unknown attacks. We believe only these learning methods
built on realistic theoretical basis, that is, analyzing inherent
characteristics of attack behaviors, would achieve promising
results on NSL-KDD.

4.2. Measurements. In this subsection, we describe 7 mea-
surements including accuracy (ACC), precision (PR), true
positive rate (TPR), recall (RE), false positive rate (FPR), true
negative rate (TNR), and F1-score. Firstly, we define several
items, where true positive (TP) and false negative (FN) refer
to attack data correctly classified or not, respectively, and
false positive (FP) and true negative (TN) are normal data
which are classified as normal or attack, respectively. Af-
terwards, we define measurements as follows:

(TP + TN)
ACC =)
(TP + FN + TN + FP)
R - TP
~ (TP + FpP)
RE-__ &
~ (TP + FN)’
FNR = N (1)
" (TP + FN)’
FPR = IP
~ (FP + TN)’
TN
TNR=—————,
(TN + FP)
_ (2% PR *RE)
(PR +RE) ’

where ACC shows the proportion of the amount of data that
are correctly classified to whole data, PR calculates the
proportion of the amount of attack data that are correctly
classified to all attack data representing how many attacks
predicted are actual attacks, TPR or RE shows the pro-
portion of predicted attacks to all attacks, FNR estimates the
percentage of the number of misclassified normal data to all

Security and Communication Networks

TaBLE 3: Records distribution in training and test data [63].

Class KDDTrain+ KDDTest+
Dos 45927 74588
Probe 11656 2421
R2L 995 2754
U2R 52 200

normal data, FPR called FAR measures the proportion of the
benign events that are incorrectly classified as attack, TNR is
recognized as the proportion of attack data that are correctly
classified to the whole attack data, and Fl-score is the
weighted average of PR and RE and representing balance
performance in both precision and recall.

4.3. Comparisons and Performance Analysis. In Table 4, we
offer detailed statics on attack detection results achieved by
various methods listed in Section 3, where most of the listed
deep learning methods are designed to perform network
intrusion detection and malware detection. Among quantity
of measurements, we select accuracy, precision, F1-score,
and FPR as evaluations, since most of the listed methods use
these measurements for experiments. We must emphasize
that there exist imbalances in performance comparisons
since different authors adopt different datasets, measure-
ments, and settings. However, Table 4 can still provide much
information by roughly comparing different deep learning
methods for attack detection.

From Table 4, we could notice that the mean perfor-
mances of different categories of attack detection methods
are variant. In the authors’ opinion, DBN, LSTM, CNN, and
AE achieve the detection performance in descending order.
Meanwhile, hybrid methods are inconsistent, since their
performances are highly related with ensemble classifiers.
DBN is the highest in performance, due to its inherent
property of multiple layers in dealing with quantity of
unlabeled data. LSTM may achieve higher performance than
CNN by involving temporal property for more precise
modeling. AE may suffer from large unlabeled data without
enough prior knowledge or enough layers to describe the
complexity embedded.

Essentially, it is interesting to point out that RBMs and
AEs are popular in intrusion detection because we can
pretrain the RBMs and AEs with unlabeled data and fine-
tune with only a small number of labeled data. Regarding
ACC values achieve by listed methods as the first evaluation
index due to its completeness, we can find the best per-
formance achieved by attack detection methods on
KDDCup 99 dataset, that is, 99.8% achieved by Kim et al.
[53], is larger than that on NSL-KDD dataset, that is, 98.3%
achieved by Javaid et al. [29], which proves that NSL-KDD
dataset is much more difficult than KDDCup 99 dataset due
to settings of unknown instances in testing dataset. Another
interesting point is that all CNN-based methods abandon
the usage of KDDCup 99 and NSL-KDD datasets since their
small number of samples could not support showing dis-
tinguished power of CNN for generating feature descriptors
with abundant information. Meanwhile, other deep learning

13

methods, especially unsupervised learning methods, could
bare the shortage of sufficient training samples.

We can observe that performance of AE-based methods
is uneven, where most of the improved AE-based methods
obviously perform better than traditional AE-based
methods. This is due to the fact that the structure of AE
might lose important information during compression
process. Meanwhile, improved AE could better capture
important and informative parts of input data with addi-
tional designs. Similarly, LSTM-based and GRU-based
methods outperform RNN-based methods, due to their
features in structure design of gates and memory cells. In
fact, such intelligent designs bring advantage of capability of
maintaining long-term information, thus better modeling
long-time relationship.

Due to the large number of DBN- and RNN-based (e.g.,
LSTM and GRU) methods for attack detection proposed by
researchers, we would like to regard DBN- and RNN-based
methods as typical unsupervised and supervised algorithms,
respectively, where we further compare them to show the
advantages and disadvantages of both groups.

Essentially, RNN could remember information of the last
several moments and then apply it in the calculation for the
current unit, which introduces temporal information to help
more accurate classification. However, RNN can be powerful
structure with sufficient training instances, where attack data
especially those unknown attacks are hard to be achieved.
Meanwhile, DBN is capable of automatically discovering
feature pattern from input data. Moreover, the unsupervised
DBN network is less likely to be overfitting than those
supervised methods due to its pretraining procedure, where
DBN could learn inherent descriptions on abnormal be-
haviors or attacks by learning from unlabeled data. This
feature of generated ability makes DBN, that is, a typical
unsupervised learning method, fit with real environment of
network security. Last but not least, DBN is easy to be
trained, fast to be converged, and low in running time, due to
less hidden layers compared with deep structures of CNN or
so. Therefore, we think unsupervised learning methods
could produce better classification results than supervised
learning methods, especially when facing small, imbalanced,
or redundant dataset.

5. Summary

Deep learning uses cascaded layers in a hierarchy structure
to perform data processing, which results in significant
results in domains of unsupervised feature learning and
pattern recognition. Inspired by performance of deep
learning methods, we believe deep learning is important for
field of network security, so as to review the current deep
learning methods for attack detection. We analyze recent
methods, classify them according to different deep learning
techniques, and compress the performance of the most
representative methods.

Over the past few years, research on how to apply deep
learning methods on attack detection has made a great
progress. However, many problems still exist. Firstly, it is
challenging to modify deep learning methods as real-time

14

Security and Communication Networks

TaBLE 4: Quantitative evaluation of listed attack detection methods using different deep learning structures, where ID, MD, and T represent
network intrusion detection, malware detection, and traffic identification, respectively.

DL Method Usage Dataset ACC (%) PR (%) FPR (%) ES
Convolutional AE Yu et al. [26] 1D CTU-UNB — 98.44 — 0.980
Sparse AE Javaid et al. [29] ID NSL-KDD 98.30 — — 0.990
AE Pamartzivanos et al. [30] 1D KDDCup 99 77.99 80.00 — —
SAE Farahnakian and Heikkonen [28] ID KDDCup 99 94.71 94.53 0.42 —
AE Shone et al. [17] ID NSL-KDD 89.22 92.97 10.78 0.910
Sparse AE Shone et al. [17] ID KDDCup 99 97.85 99.99 2.15 0.980
AE Aygun and Yavuz [64] ID NSL-KDD 93.62 91.39 — 0.938
Denoising AE Aygun and Yavuz [64] ID NSL-KDD 94.35 94.26 — 0.940
Sparse AE Gharic et al. [65] ID NSL-KDD 96.45 95.56 — 0.965
AE Yousefi-Azar et al. [27] ID, MD NSL-KDD 83.34 — — —
DBN Gao et al. [31] ID KDDCup 99 93.49 92.33 0.76 —
DBN Ding et al. [32] MD Netflow 96.10 — — —
DBN Qu et al. [66] D NSL-KDD 95.25 — — —
DBN Tan et al. [33] 1D Netflow 97.60 — 0.90 —
DBN Alom et al. [34] 1D 40% NSL-KDD 97.50 — — —
DBN Zhao et al. [35] ID KDDCup 99 99.14 93.25 0.62 —
DBN Alrawashdeh and Purdy [36] ID 10% KDDCup 99 97.90 97.81 2.10 0.975
DNN Tang et al. [40] ID NSL-KDD 91.70 83.00 — —
DNN Vinayakumar et al. [18] ID, MD KDDCup 99 93.00 99.00 0.95

DNN Wang et al. [42] ID KDDCup 99 95.45 — — —
CNN Kolosnjaji et al. [43] MD Netflow — 93.00 — 0.920
CNN Saxe and Berlin [19] MD Netflow 92.00 — 0.10 —
CNN Wang et al. [45] ID ISCX — 97.30 — 0.960
CNN Wang et al. [47] TI Netflow 99.41 — — —
CNN Tang et al. [49] ID NS2 simulation 97.1 — — —
CNN Yang and Wang [48] ID KDDCup 99 95.36 95.55 0.76 0.930
LSTM Staudemyer [50] 1D 10% KDDCup 99 93.85 — 1.62 —
RNN Krishnan and Raajan [51] ID KDDCup 99 77.55 84.60 — 0.730
RNN Yin et al. [52] 1D NSL-KDD 83.28 — — —
LSTM Kim et al. [54] 1D 10% KDDCup 99 96.93 98.80 10.00 —
LSTM Le et al. [55] ID KDDCup 99 97.54 98.95 9.98 —
LSTM Kim et al. [53] 1D KDDCup 99 99.80 — 5.50 —
GRU Agarap [56] ID Netflow 84.15 — — —
Ensemble Ludwig [58] 1D NSL-KDD 92.50 93.00 0.92 —
AE, DBN Li et al. [57] ID KDDCup 99 92.10 — 1.58 —
DCNN Naseer et al. [67] ID NSL-KDD 85.00 — — 0.980
PL-CNN Liu et al. [60] 1D DARPA1998 99.36 90.56 — 0.910
PL-RNN Liu et al. [60] 1D DARPA1998 99.98 99.98 — 0.990

classifiers for attack detection. In most of the previous works,
they only reduce feature dimension for less computation
cost during phase of feature extraction. Secondly, most of the
deep learning techniques are appropriate for analysis of
image and pattern recognition. Thus, how to conduct the
classification of network traffic reasonably with deep
learning techniques will be an interesting issue. Thirdly, with
more data involving the experiments, the classification re-
sults will be better [68]. However, most of the attack de-
tection problems are short of sufficient data. Therefore,
combining supervised and unsupervised learning may
provide better performance, which has been proved by many
trials. Moreover, with the development of IoT [69], fog,
cloud [70], and big data technologies, how to involve them to
help improve effectiveness of attack detection methods using
deep learning remains an open and interesting question.
According to the above analysis, we hold a belief that this
overview is a benefit for those who have ideas to improve the
performance of attack detection in terms of accuracy; our

review will provide guidance and dictionaries for further
research in this field.

Data Availability

The data used to support the findings of this study were
supplied by Dabao Wei under license and so cannot be made
freely available. Requests for access to these data should be
made to Yirui Wu (wuyirui@hhu.edu.cn).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by National Key R&D Program of
China under Grant 2018YFC0407901, the Fundamental
Research Funds for the Central Universities under Grant

mailto:wuyirui@hhu.edu.cn

Security and Communication Networks

B200202177, the Natural Science Foundation of China under
Grant 61702160, and the Natural Science Foundation of
Jiangsu Province under Grant BK20170892.

References

[1] S. Aftergood, “Cybersecurity: the cold war online,” Nature,
vol. 547, no. 7661, pp. 30-31, 2017.

[2] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, and

M. Guizani, “A survey of machine and deep learning methods

for internet of things (iot) security,” 2018, http://arxiv.org/

abs/ 11023.

A. Aleesa, B. Zaidan, A. Zaidan, and N. M. Sahar, Review of

Intrusion Detection Systems Based on Deep Learning Tech-

niques: Coherent Taxonomy, Challenges, Motivations, Rec-

ommendations, Substantial Analysis and Future Directions.

Neural Computing and Applications, pp. 1-32, Springer,

Berlin, Germany, 2019.

[4] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and
M. Marchetti, “On the effectiveness of machine and deep
learning for cyber security,” in Proceedings of 2018 10th In-
ternational Conference on Cyber Conflict (CyCon), IEEE,
Tallinn, Estonia, pp. 371-390, June 2018.

[5] D.Berman, A. Buczak, J. Chavis, and C. Corbett, “A survey of
deep learning methods for cyber security,” Information,
vol. 10, no. 4, p. 122, 2019.

[6] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: ap-
proaches, datasets, and comparative study,” Journal of In-
formation Security and Applications, vol. 50, p. 102419, 2020.

[7] C. S. Wickramasinghe, D. L. Marino, K. Amarasinghe, and
M. Manic, “Generalization of deep learning for cyber-physical
system security: a survey,” in Proceedings of IECON 2018-44th
Annual Conference of the IEEE Industrial Electronics Society,
IEEE, Washington, DC, USA, pp. 745-751, October 2018.

[8] Y. Xin, L. Kong, Z. Liu et al., “Machine learning and deep
learning methods for cybersecurity,” IEEE Access, vol. 6,
pp- 35365-35381, 2018.

[9] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan,
“Joint optimization of offloading utility and privacy for edge
computing enabled iot,” IEEE Internet of Things Journal,
vol. 7, no. 4, pp. 2622-2629, 2020.

[10] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, “A
blockchain-powered crowdsourcing method with privacy
preservation in mobile environment,” IEEE Transactions on
Computational Social Systems, vol. 6, no. 6, pp. 1407-1419,
2019.

[11] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang, and L. Qi, “Trust-
oriented iot service placement for smart cities in edge com-
puting,” IEEE Internet of Things Journal, vol. 7, 2019.

[12] X. Xu, Y. Chen, X. Zhang, Q. Liu, X. Liu, and L. Qi, A
Blockchain-Based Computation Offloading Method for Edge
Computing in 5¢ Networks, John and Wiley, Hoboken, NJ,
USA, 2019.

[13] C. Wang, Z. Chen, K. Shang, and H. Wu, “Label-removed
generative adversarial networks incorporating with k-means,”
Neurocomputing, vol. 361, pp. 126-136, 2019.

[14] T.Meng, K. Wolter, H. Wu, and Q. Wang, “A secure and cost-
efficient offloading policy for mobile cloud computing against
timing attacks,” Pervasive and Mobile Computing, vol. 45,
pp. 4-18, 2018.

[15] X. Li and H. Wu, “Spatio-emporal representation with
deepneural recurrent network in MIMO CSI feedback,”
CoRRabs/1908.07934, 2019.

[3

15

[16] R. Vinayakumar, K. Soman, and P. Poornachandran, “Eval-
uating effectiveness of shallow and deep networks to intrusion
detection system,” in Proceedings of 2017 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), IEEE, Udupi, India, pp. 1282-1289,
September 2017.

[17] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 2, no. 1,
pp. 41-50, 2018.

[18] R.Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” IEEE Access, vol. 7,
pp. 41525-41550, 2019.

[19] J. Saxe and K. Berlin, “expose: a character-level convolutional
neural network with embeddings for detecting malicious urls,
file paths and registry keys,” 2017, http://arxiv.org/abs/ 1702.
08568.

[20] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent networks,”
in Proceedings of 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1916—
1920, Queensland, Australia, April 2015.

[21] Z. Feng, C. Shuo, and W. Xiaochuan, “Classification for dga-
based malicious domain names with deep learning archi-
tectures,” in Proceedings of 2017 Second International Con-
ference on Applied Mathematics and Information Technology,
London, UK, January 2017.

[22] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant,
“Predicting domain generation algorithms with long short-
term memory networks,” 2016, http://arxiv.org/abs/ 1611.
00791.

[23] M. Z. Alom, T. M. Taha, C. Yakopcic et al., “The history began
from alexnet: a comprehensive survey on deep learning
approaches,”2018 pages, CoRR abs/1803.01164.

[24] E. Aminanto and K. Kim, “Deep learning in intrusion de-
tection system: an overview,” in Proceedings of 2016 Inter-
national Research Conference on Engineering and Technology
(2016 IRCET), Higher Education Forum, Seoul, South Korea,
January 2016.

[25] L. Deng, “A tutorial survey of architectures, algorithms, and
applications for deep learning,” APSIPA Transactions on
Signal and Information Processing, vol. 3, 2014.

[26] Y. Yu, J. Long, and Z. Cai, “Network intrusion detection
through stacking dilated convolutional autoencoders,” Secu-
rity and Communication Networks, vol. 2017, Article ID
4184196, 10 pages, 2017.

[27] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and
U. Tupakula, “Autoencoder-based feature learning for cyber
security applications,” in Proceedings of 2017 International
Joint Conference on Neural Networks (IJCNN), IEEE, San
Diego, CA, USA, pp. 3854-3861, June 2017.

[28] F. Farahnakian and]. Heikkonen, “A deep auto-encoder
based approach for intrusion detection system,” in Proceed-
ings of 2018 20th International Conference on Advanced
Communication Technology (ICACT), IEEE, Chuncheon,
South Korea, pp. 178-183, July 2018.

[29] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Pro-
ceedings of the 9th EAI International Conference on Bio-Inspired
Information and Communications Technologies (formerly
BIONETICS), pp. 21-26, New York, NY, USA, December 2016.

[30] D.Papamartzivanos, F. Gomez Marmol, and G. Kambourakis,
Introducing Deep Learning Self-Adaptive Misuse Network

http://arxiv.org/abs/ 11023
http://arxiv.org/abs/ 11023
http://arxiv.org/abs/ 1702.08568
http://arxiv.org/abs/ 1702.08568
http://arxiv.org/abs/ 1611.00791
http://arxiv.org/abs/ 1611.00791

Intrusion Detection Systems, IEEE Access, Piscataway, NJ,
USA, 2019.

N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion detection
model based on deep belief networks,” in Proceedings of 2014
Second International Conference on Advanced Cloud and Big
Data, IEEE, Huangshan, China, pp. 247-252, November 2014.
Y. Ding, S. Chen, and J. Xu, “Application of deep belief
networks for opcode based malware detection,” in Proceedings
of 2016 International Joint Conference on Neural Networks
(IJCNN), pp. 3901-3908, Vancouver, British, July 2016.

Q. . s. Tan, W. Huang, and Q. Li, “An intrusion detection
method based on dbn in ad hoc networks,” in Proceedings of
Wireless Communication and Sensor Network: International
Conference on Wireless Communication and Sensor Network
(WCSN, World Scientific, Wuhan, China, pp. 477-485, De-
cember 2015.

M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion de-
tection using deep belief networks,” in Proceedings of 2015
National Aerospace and Electronics Conference (NAECON),
pp. 339-344, Dayton, OH, USA, June 2015.

G. Zhao, C. Zhang, and L. Zheng, “Intrusion detection using
deep belief network and probabilistic neural network,” in
Proceedings of 2017 IEEE International Conference on Com-
putational Science and Engineering (CSE) and IEEE Inter-
national Conference on Embedded and Ubiquitous Computing
(EUC), Taipei, Taiwan, December 2017.

K. Alrawashdeh and C. Purdy, “Toward an online anomaly
intrusion detection system based on deep learning,” in Pro-
ceedings of 2016 15th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pp. 195-200,
Anaheim, CA, USA, December 2016.

H. Zhang, Y. Li, Z. Lv, A. K. Sangaiah, and T. Huang, “A real-
time and ubiquitous network attack detection based on deep
belief network and support vector machine,” IEEE/CAA
Journal of Automatica Sinica, vol. 7, no. 3, pp. 790-799, 2020.
T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for
launching and mitigating wireless jamming attacks,” IEEE
Transactions on Cognitive Communications and Networking,
vol. 5, no. 1, pp. 2-14, 2018.

A. AlEroud and G. Karabatis, “Bypassing detection of url-
based phishing attacks using generative adversarial deep
neural networks,” in Proceedings of the Sixth International
Workshop on Security and Privacy Analytics, pp. 53-60, New
Orleans, LA, USA, March 2020.

T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Deep learning approach for network intrusion
detection in software defined networking,” in Proceedings of
2016 International Conference on Wireless Networks and
Mobile Communications (WINCOM), IEEE, Reims, France,
pp- 258-263, October 2016.

D. Li, R. Baral, T. Li, H. Wang, Q. Li, and S. Xu, “Hashtran-
dnn: a framework for enhancing robustness of deep neural
networks against adversarial malware samples,” 2018, http://
arxiv.org/abs/ 1809.06498.

W. Peng, X. Kong, G. Peng, X. Li, and Z. Wang, “Network
intrusion detection based on deep learning,” in Proceedings of
2019 International Conference on Communications, Infor-
mation System and Computer Engineering (CISCE), pp. 431-
435, Haikou, China, July 2019.

B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classification of malware system call sequences,”
in Proceedings of Australasian Joint Conference on Artificial
Intelligence, pp. 137-149, Springer, Hobart, Australia, De-
cember 2016.

Security and Communication Networks

[44] B.Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert,
“Empowering convolutional networks for malware classifi-
cation and analysis,” in Proceedings of 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 3838-3845, San
Diego, CA, USA, June 2017.

[45] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-
end encrypted traffic classification with one-dimensional
convolution neural networks,” in Proceedings of 2017 IEEE
International Conference on Intelligence and Security Infor-
matics (ISI), pp. 43-48, Taipei, Taiwan, June 2017.

[46] M. Zhang, B. Xu, S. Bai, S. Lu, and Z. Lin, “A deep learning
method to detect web attacks using a specially designed
CNN,” in Proceedings of 24th International Conference on
Neural Information Processing, pp. 828-836, Guangzhou,
China, November 2017.

[47] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network for
representation learning,” in Proceedings of 2017 International
Conference on Information Networking, ICOIN), Da Nang,
Vietnam, January 2017.

[48] H. Yang and F. Wang, “Wireless network intrusion detection
based on improved convolutional neural network,” IEEE
Access, vol. 7, pp. 64366-64374, 2019.

[49] D. Tang, L. Tang, W. Shi, S. Zhan, and Q. Yang, Mf-cnn: A
New Approach for Ldos Attack Detection Based on Multi-
Feature Fusion and Cnn. Mobile Networks and Applications,
pp- 1-18, Springer, Berlin, Germany, 2020.

[50] R. C. Staudemeyer, “Applying long short-term memory re-
current neural networks to intrusion detection,” South Afri-
can Computer Journal, vol. 56, no. 1, pp. 136-154, 2015.

[51] R. B. Krishnan and N. Raajan, “An intellectual intrusion
detection system model for attacks classification using rnn,”
International Journal of Pharmaceutical Technology and
Biotechnology, vol. 8, no. 4, pp. 23157-23164, 2016.

[52] C.Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,”
IEEE Access, vol. 5, pp. 21954-21961, 2017.

[53] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “Lstm-based
system-call language modeling and robust ensemble method
for designing host-based intrusion detection systems,” 2016,
http://arxiv.org/abs/ 1611.01726.

[54] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term
memory recurrent neural network classifier for intrusion
detection,” in Proceedings of 2016 International Conference on
Platform Technology and Service (PlatCon), pp. 1-5, Jeju,
Korea, February 2016.

[55] T. Le, J. Kim, and H. Kim, “An effective intrusion detection
classifier using long short-term memory with gradient descent
optimization,” in Proceedings of 2017 International Conference
on Platform Technology and Service (PlatCon), pp. 1-6, Jeju,
Korea, February 2017.

[56] A. F. M. Agarap, “A neural network architecture combining
gated recurrent unit (gru) and support vector machine (svm)
for intrusion detection in network traffic data,” in Proceedings
of the 2018 10th International Conference on Machine
Learning and Computing, ACM, Macau, China, February
2018.

[57] Y. Li, R. Ma, and R. Jiao, “A hybrid malicious code detection
method based on deep learning,” International Journal of
Security and Its Applications, vol. 9, no. 5, pp. 205-216, 2015.

[58] S. A. Ludwig, “Intrusion detection of multiple attack classes
using a deep neural net ensemble,” in Proceedings of 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), IEEE,
Honolulu,HI, USA, November 2017.

http://arxiv.org/abs/ 1809.06498
http://arxiv.org/abs/ 1809.06498
http://arxiv.org/abs/ 1611.01726

Security and Communication Networks

(59]

(60

[61

(62

(63

(64]

(65]

(6]

(67]

(68]

(69]

(70]

D. Li, Q. Li, Y. Ye, and S. Xu, “Enhancing robustness of deep
neural networks against adversarial malware samples: prin-
ciples, framework, and aics’2019 challenge,” 2018, http://arxiv.
org/abs/ 1812.08108.

H. Liu, B. Lang, M. Liu, and H. Yan, “Cnn and rnn based
payload classification methods for attack detection,” Knowl-
edge-Based Systems, vol. 163, pp. 332-341, 2019.

Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, “Network
intrusion detection: based on deep hierarchical network and
original flow data,” IEEE Access, vol. 7, pp. 37004-37016, 2019.
R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das,
“The 1999 darpa off-line intrusion detection evaluation,”
Computer Networks, vol. 34, no. 4, pp. 579-595, 2000.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the kdd cup 99 data set,” in Proceedings of
2009 IEEE Symposium on Computational Intelligence for Se-
curity and Defense Applications, 1EEE, Ottawa, Canada,
pp. 1-6, July 2009.

R. C. Aygun and A. G. Yavuz, “Network anomaly detection
with stochastically improved autoencoder based models,” in
Proceedings of 2017 IEEE 4th International Conference on
Cyber Security and Cloud Computing (CSCloud), pp. 193-198,
New York, NY, USA, June 2017.

M. Gharib, B. Mohammadi, S. H. Dastgerdi, and M. Sabokrou,
“Autoids: auto-encoder based method for intrusion detection
system,” 2019, http://arxiv.org/abs/ 1911.03306.

F. Qu, J. Zhang, Z. Shao, and S. Qi, “An intrusion detection
model based on deep belief network,” in Proceedings of the
2017 VI International Conference on Network, Communica-
tion and Computing, pp. 97-101, Kunming, China, December
2017.

S. Naseer, Y. Saleem, S. Khalid et al., “Enhanced network
anomaly detection based on deep neural networks,” IEEE
Access, vol. 6, pp. 48231-48246, 2018.

N. Jones, “Computer science: the learning machines,” Nature,
vol. 505, no. 7482, pp. 146-148, 2014.

X. Xu, X. Zhang, H. Gao, Y. Xue, L. Qi, and W. Dou, “Become:
blockchain-enabled computation offloading for iot in mobile
edge computing,” IEEE Transactions on Industrial Infor-
matics, vol. 16, no. 6, pp. 4187-4195, 2020.

X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, “Dynamic
resource provisioning with fault tolerance for data-intensive
meteorological workflows in cloud,” IEEE Transactions on
Industrial Informatics, vol. 16, 2019.

17

http://arxiv.org/abs/ 1812.08108
http://arxiv.org/abs/ 1812.08108
http://arxiv.org/abs/ 1911.03306

Hindawi

Security and Communication Networks
Volume 2020, Article ID 3932584, 12 pages
https://doi.org/10.1155/2020/3932584

Research Article

WILEY

Hindawi

The Defense of Adversarial Example with Conditional Generative

Adversarial Networks

Fangchao Yu,' Li Wang®,' Xianjin Fang,' and Youwen Zhang’

ISchool of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232000, China
2School of Computer Science and Engineering, Anhui University, Hefei 230601, China

Correspondence should be addressed to Li Wang; liwang@aust.edu.cn

Received 9 February 2020; Accepted 6 May 2020; Published 25 August 2020

Academic Editor: Xiaolong Xu

Copyright © 2020 Fangchao Yu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Deep neural network approaches have made remarkable progress in many machine learning tasks. However, the latest research
indicates that they are vulnerable to adversarial perturbations. An adversary can easily mislead the network models by adding well-
designed perturbations to the input. The cause of the adversarial examples is unclear. Therefore, it is challenging to build a defense
mechanism. In this paper, we propose an image-to-image translation model to defend against adversarial examples. The proposed
model is based on a conditional generative adversarial network, which consists of a generator and a discriminator. The generator is
used to eliminate adversarial perturbations in the input. The discriminator is used to distinguish generated data from original
clean data to improve the training process. In other words, our approach can map the adversarial images to the clean images,
which are then fed to the target deep learning model. The defense mechanism is independent of the target model, and the structure
of the framework is universal. A series of experiments conducted on MNIST and CIFAR10 show that the proposed method can

defend against multiple types of attacks while maintaining good performance.

1. Introduction

Deep learning [1-5] is a hierarchical machine learning
method involving multilevel nonlinear transformations and
is good at mining abstract and distributed feature repre-
sentations from raw data. Deep learning can solve many
problems that are considered challenging in machine
learning. Recently, driven by the emergence of big data and
hardware acceleration, deep learning has made significant
progress in numerous machine learning domains, such as
computer vision, natural language processing, edge com-
puting [6-10], and services computing [11-13], and pro-
motes the large-scale application of artificial intelligence
technology in the real world. While deep learning has
achieved great success, its performance and applications are
also questioned due to the lack of interpretability [14], which
means that we cannot reasonably explain the decisions made
by deep learning models. This exposes deep learning-based
artificial intelligence applications to potential security risks.

Many types of research have shown that deep learning is
threatened by multiple attacks, such as membership infer-
ence attack [15, 16] and attribute inference attack [17]. The
most serious security threat to deep learning is the adver-
sarial example [18] proposed by Szegedy in 2013. An ad-
versary can add small-magnitude perturbations to inputs,
which can easily fool a well-performed deep learning model
with few perturbations imperceptible to humans [19]. The
disturbed inputs are called adversarial examples, and they
make the target model report high confidence in incorrect
predictions. Moreover, recent research shows that artificial
intelligence applications in the real world can be exposed to
adversarial samples [20], for example, attacks in the face
recognition system [21] and vision system in autonomous
cars [22].

With the in-depth study of adversarial examples, the
development of this field mainly presents the following main
trends. (1) A growing number of methods for constructing
adversarial examples are proposed. According to adversarial

mailto:liwang@aust.edu.cn
https://orcid.org/0000-0003-0181-712X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3932584

specificity, we can divide these attack methods into targeted
attacks and nontargeted attacks. For targeted attacks, the
adversary can submit well-designed inputs to the target
model and cause maliciously chosen target outputs, such as
R+LLC [23], JSMA [24], EAD [25], and C&W [26]. For
nontargeted attacks, the adversary can cause the target
model to misclassify well-designed inputs into classes that
are different from the ground truth, such as FGSM [27], BIM
[20], PGD [28], and DeepFool [29]. Even worse, the ro-
bustness of adversarial examples constantly increases, and
detection and defense are challenging. (2) The cost of
constructing adversarial examples is decreasing. Due to the
transferability [30] of the adversarial example, the adversary
can successfully launch an attack without background
knowledge about the target model. (3) The range of attacks is
also expanding. Adversarial examples can also successfully
attack different deep learning models such as reinforcement
learning models and recurrent neural network models.
Moreover, attack scenarios are not limited to the computer
vision. The same security risks exist in text [31] and speech
[32]. Therefore, building an effective defense mechanism
against adversarial examples is crucial in deep learning.
There is no uniform conclusion on the cause of the
adversarial examples; thus, building a defense mechanism is
challenging. In general, there are two classes of approaches
to defend against adversarial examples: (1) making deep
neural networks more robust by adjusting learning strate-
gies, such as adversarial training [27, 33] and defensive
distillation [34]; (2) detecting adversarial examples or
eliminating adversarial noise after deep neural networks are
built, such as LID [35], Defense-GAN [36], MagNet [37],
and ComDefend [38]. There are some bottlenecks in these
defense mechanisms. First, some defense mechanisms are
only effective against specific attacks. For example, defensive
distillation is effective for gradient-based attacks, and it is
defeated by C&W attacks. Second, some methods require
large samples and high computational costs, which limit the
application scenarios for these defense mechanisms. Third,
the difference between the adversarial example and the clean
example is small; thus, it is difficult for current detection
methods to distinguish them with high confidence. In
summary, we hope to find a defense mechanism with good
performance on most attacks and low computational cost.
Our work has made some progress toward building a
better defense mechanism against adversarial examples in
computer vision. The main reason for adversarial examples
to mislead the target model is that the added noise changes
the characteristics of the original inputs; thus, an intuitive
approach is to remove the noise from the adversarial ex-
amples and generate a mapping of the adversarial examples
to the clean examples. In computer vision, this can be posed
as “translating” an input image (adversarial example) into a
corresponding output image (clean example). In this paper,
we use the framework proposed by Isola et al. [39] as a
defense mechanism. Based on conditional adversarial net-
works (conditional GANs) [40], the framework consists of a
generator network to translate the adversarial images to the
clean images and a discriminator network to ensure that the
generated images are realistic. Our method can effectively

Security and Communication Networks

eliminate adversarial perturbations and restore the char-
acteristics of the original clean images. The overview of the
defense model is shown in Figure 1. The advantages of our
method are listed as follows:

(1) The proposed method is a general-purpose defense
framework. On the one hand, the defense mecha-
nism processes the input and is model independent,
which means that the target model does not need to
be retrained. On the other hand, the network
structure of the defense framework is based on a
general-purpose solution of image-to-image, and we
can apply the framework for different scenarios with
only a few adjustments.

(2) Our method is simple and easy to use, and it is
effective against most commonly considered attack
strategies, such as FGSM, DeepFool, JSMA, and CW.
Moreover, this defense mechanism shows certain
transferability, which means the defense mechanism
built for the specific target model is still effective for
other models.

The remainder of the paper is as follows. We introduce
some related works about adversarial example in Section 2.
In Section 3, we review the necessary theories and concepts
about adversarial example and conditional GANs. We give a
detailed technical development about the framework of the
generation and defense of adversarial example in Section 4.
Section 5 describes the experimental results, and Section 6
concludes the paper.

2. Related Works

In this section, we introduce the application of GANs in the
field of adversarial examples: generating adversarial exam-
ples with GANs and defending adversarial examples with
GANG.

2.1. Generating Adversarial Examples with GANs. Xiao [41]
proposed AdvGAN to generate adversarial examples.
AdvGAN takes a clean image x as the input of the generator
G and obtains the adversarial images as x + G(x). The
adversarial examples generated by AdvGAN perform high
attack success rates in both semiwhite box and black-box
attacks. Song et al. [42] designed an unrestricted approach to
generate adversarial examples with an auxiliary classifier
generative adversarial network (AC-GAN) [43]. Different
from perturbation-based attacks, this approach constructs
adversarial examples entirely from scratch instead of per-
turbing an existing data point. In addition, the adversary can
specify the style of the generated adversarial examples and
labels that are misclassified on the target model. Zhao et al.
[44] noticed that the adversarial perturbations are often
unnatural and not semantically meaningful. He proposed a
framework consisting of a WGAN [45] and an inverter. The
inverter maps a clean image to random dense vectors z. The
generator of the WGAN obtains the z (perturbing z) as the
input. The goal of the generator is to synthesize an image that
is as close to the original image as possible. This method can

Security and Communication Networks

Image X X*=G(X)
—_— —_—

Generator —>Y

F1GURE 1: The overview of defense model for the adversarial ex-
ample proposed in this paper. Between the input images and the
classifier, we add a generator, which can eliminate the adversarial
perturbations in the input images and map the adversarial ex-
amples into clean images.

generate natural and legible adversarial examples that lie on
the data manifold. Hu and Tan [46] focused on adversarial
examples in traditional security scenarios. They proposed
the MalGAN to generate adversarial malware examples,
which are able to bypass black-box machine learning-based
detection models.

2.2. Defense Adversarial Examples with GANs. Lee et al. [47]
introduced a novel adversarial training framework named
generative adversarial trainer (GAT). The framework con-
sists of a generator and a classifier. The generator attempts to
generate adversarial perturbations that can easily fool the
classifier and the classifier attempts to correctly classify both
original and generated adversarial images. This approach
can improve the robustness of the model and outperforms
other adversarial training methods using a fast gradient
method. Santhanam and Grnarova [48] proposed cowboy, an
approach to defend against adversarial attacks with GANS.
This work shows that adversarial samples lie outside of the
data manifold learned by a GAN that has been trained on the
same dataset. They used the discriminator (GAN) to detect
adversarial examples and the generator (GAN) to eliminate
adversarial perturbations. Samangouei et al. [36] proposed a
new framework named Defense-GAN, which leverages the
expressive capability of generative models (WGAN) to
defend against adversarial examples. Defense-GAN finds a
close input to the adversarial examples and sends the input
to the generator of WGAN. Then, the generated images are
fed to the target model.

3. Background

In this section, we introduce four methods of generating
adversarial examples. In addition, GAN and its connection
to our method will be discussed.

3.1. Generating Adversarial Example. The main idea of
generating adversarial samples is to add appropriate per-
turbations to the input samples to make the noisy samples as
similar to the original input as possible, but mislead the
target model. We can briefly describe this process: for a given
input image x, the adversary needs to find a minimal per-
turbation # and craft the noisy example as x* = x + 7. In
recent years, many methods of generating adversarial ex-
amples have been proposed. Here, we introduce some of the
most well-known attacks.

3.1.1. Fast Gradient Sign Method (FGSM) [27]. Szegedy et al.
first introduced adversarial examples against deep neural
networks and proposed the method named L-BFGS [18] to
generate adversarial examples; however, it was time-con-
suming and impractical. In 2014, Goodfellow et al. argued
that the primary cause of neural networks” vulnerability to
adversarial perturbations is their linear nature. Based on this
explanation, they proposed a simple and fast method to
generate adversarial samples, named fast gradient sign
method (FGSM). Let 6 be the parameters of a target model, x
is the input to the model, y is the label associated with x, and
J (6, x, y) is the cost function used to train the model. The
adversarial sample is generated as

x* =x+esign(V,J(6,x,), (1)

where ¢ is a parameter that determines the perturbation size.

3.1.2. DeepFool [29]. FGSM is simple and effective; however,
it causes a large degree of perturbations to inputs. Moosavi-
Dezfooli et al. observed that adding noise along the vertical
direction of the closest decision boundary to the inputs can
ensure that the added perturbation is optimal. They used an
iterative method to approximate the perturbation by con-
sidering that f is linearized around x; at each iteration. The
minimal perturbation is computed as

argmin, 7],
st.f (x,)+ Vf(x) 7 =0,

where #; is the distance to the decision boundary.

(2)

3.1.3. Jacobian-Based Saliency Map Attack (JSMA) [24].
The previous two attack methods are both nontargeted at-
tacks. Papernot et al. observed that different input features
have different degrees of influence on the output of the target
model. If we find that some features correspond to a specific
output in the target model, we can make the target model
produce a specified type of output by enhancing these
features in the inputs. Based on this idea, they proposed a
simple iterative method for targeted attack named the Ja-
cobian-based saliency map attack (JSMA). First, the JSMA
requires the calculation of the forward derivative, which
shows the influence of each input feature on the output.
Then, it can generate the adversarial saliency map and use
the adversarial saliency map to find the input features that
have the greatest impact on the specific output of the target
model. Finally, a small perturbation added to the features
can fool the neural network.

3.1.4. Carlini and Wagner (Ce»W) [26]. Carlini et al. pro-
posed a method of generating a more robust adversarial
example that can bypass many advanced defense mecha-
nisms. This method treats the adversarial example as a
variable, and two conditions need to be met for the attack to
succeed. First, the difference between the adversarial ex-
ample and the corresponding clean sample should be as
small as possible. Second, the adversarial example should

make the model classification error rate as high as possible.
There are three attacks for the L,, L,, and L, distance
metrics, and we provide a brief description of the L, attack:

min |% (tanh (w) + l)|2 +c- g(%tanh(w) + 1). (3)
The loss function g is defined as

a0 = max(mx(2(0) -2, -x),
i#l

where Z denotes the SoftMax function, x is a constant used
to control the confidence (as k increases, the adversarial
examples become more powerful), ¢ is the target label of
misclassification, and the constant ¢ can be chosen with
binary search.

3.2. Generative Adversarial Networks. Generative adversarial
networks (GANs) [49] are a successful framework for
generative models and are widely used in many fields
[50-52]. A GAN framework forces two networks to compete
with each other: a generator G, which attempts to map a
sample z (noise distribution z ~ p,(2z) to the data distri-
bution (x ~ pyu. (¥)), and a discriminative model D, which
estimates the probability that a sample came from the
training data rather than G. The goal of a generator G is to
maximize the probability of D making a mistake. Thus, this
framework plays a two-player minimax game via the fol-
lowing value function V (G, D):

me mﬁaxV(D, G) = EXdit) [log D (x)] -

+E log(1 - D(G(2)))].

Z~pz<z)[

In the competition, both the generator and discriminator
will be improved until the discriminator cannot distinguish a
generated sample from a data sample.

Mirza and Osindero [40] introduced the conditional
version of generative adversarial networks (conditional
GAN), and the conditional GAN can be expressed as a
mapping from an observed input x and random noise z to
¥,G: {x,z} — y. The value function V (G, D) in condi-
tional GAN is as follows:

minmax V (D, G) = Ex)y [log D(x, y)]
G D (6)
+E,[log(1 - D(x,G(x,2)))].

With the conditional GAN, it is possible to direct the data
generation process and obtain the specified result.

4. Proposed Method

In this section, we introduce the defense mechanism against
adversarial examples in detail.

4.1. Motivation. In computer vision, we can consider the
attack and defense of adversarial examples as an image-to-
image translation process. For the adversary, the goal is to
perturb clean images to generate adversarial images. For the

Security and Communication Networks

defender, the usual idea is to transform the input adversarial
images and eliminate the perturbation to restore them to
clean images. According to this idea, we can apply some
image conversion methods to the field of adversarial ex-
amples. In 2018, Isola et al. [39] proposed a generic approach
named pix2pix to solve image-to-image translation prob-
lems and is based on the conditional GAN. They demon-
strated that pix2pix is effective at reconstructing objects from
edge maps and colorizing images, among other tasks. In this
paper, we use the same network framework as pix2pix to
solve the problems in adversarial examples. We use the
framework as a defense mechanism to generate a mapping of
adversarial images to clean images.

4.2. Framework. The framework of pix2pix is based on the
conditional GAN. This means that the structure of this
framework mainly consists of two parts: a generator and a
discriminator. As shown in Figure 2, we introduce the
structure of our framework from two aspects.

4.2.1. Generator. We use the structure of U-Net [53] as a
generator, which adds skip connections based on the en-
coder-decoder network. Although there are some minor
distinctions in surface appearance between the inputs
(adversarial images) and outputs (clean images), the un-
derlying structures of both are the same. Therefore, in the
task of image-to-image (adversarial images to clean images),
both of them should share the same underlying information.
The traditional encoder-decoder generator model lacks the
transmission of low-level information, which causes some
distortion of the outputs. Therefore, we add skip connections
to share underlying information between the inputs and
outputs based on the encoder-decoder network, which can
ensure that the quality of the converted images is closer to
the expected result. Each skip connection simply concate-
nates all channels at layer i with those at layer n — i, where n
is the total number of layers.

4.2.2. Discriminator. We use the structure of PatchGAN
[39] as a discriminator. The traditional GAN discriminator
judges the output as a whole, and it restricts the discrimi-
nator to model the high-frequency structure. The PatchGAN
maps each input image into N x N patches via a con-
volutional network and attempts to determine whether each
N x N patch in an image is real or fake. Then, it averages all
responses to provide the ultimate output of the discrimi-
nator. In this way, the local features of the generated images
can be well constructed.

4.3. Defense Adversarial Example. Figure 2 illustrates the
overall architecture of the defense mechanism for the
adversarial example. We use paired data (x, y) for training,
and each pair of data contains a clean image y and its
adversarial image x. Here, the generator G takes the
adversarial example x as its input and generates the images
G (x). Then, (x,G(x)) and (x, y) are sent to the discrimi-
nator D, which is used to distinguish the generated data and

Security and Communication Networks

G

Clean Adversary

n - - { >|:| lI , -
>

. Y B s

Elimination Clean

B B
&

)

» Fake

C\)c

>

Adversary
CEE—

Adversary
.

FIGURE 2: The training framework of defense mechanism with the conditional GAN. This framework consists of a generator and a
discriminator. The generator takes adversarial images x as input and eliminates perturbations in x. Then, we obtain G (x). The discriminator
is used to distinguish the generated data (x,G(x)) and the original instance (x, y), where y denotes the clean images.

the original instance. The adversarial loss can be written as
follows:

Zan = Eyyllog D (x, y)] + E, [log(1 = D(x, G(x)))].
(7)

The goal of G is to not only fool the discriminator but
also be near the ground truth output. Therefore, we add the
loss ZL, (G), which encourages the generated instances
G (x) to be close to the clean images y:

ZL(G) = E.,[ly -G (x),]. (8)
The current objective function is

G* = argmGin max Zean (G, D) +AZL, (G) | (9)

where A controls the relative importance of ZL, (G).

As shown in Figures 3 and 4, our defense mechanism
can eliminate adversarial perturbations in the images.
However, for some complex datasets (such as CIFAR10),
although the generated images are close to the original
clean images, their performance in the target model f is
not satisfactory. To solve this problem, we adjust the
objective function. Our core goal is to eliminate the
adversarial perturbations in x and make the prediction
results of the generated images G(x) close to the pre-
diction results of y in the target model. Therefore, we add
the loss function as follows:

Z! = E.LG(x,y). (10)
The final objective function is

G = arg mGin max Zcan (G, D) +AZL, (G) + ygf

adv >
(11)

where y controls the relative importance of 3; v

In general, the loss functions Z ,\(G,D) and
AZL, (G) encourage the adversarial data to appear similar to
the clean data, while the loss function &, improves the

prediction accuracy of the generated images on the target
model.

5. Experiment

In this section, we evaluate the defense mechanism against
adversarial examples. All experiments are based on two
datasets: MNIST and CIFARIO.

MNIST (the MNIST used to support the findings of the
study is public, and one can find it in http://yann.lecun.
com/exdb/mnist/) is a dataset of handwritten digits and
consists of 60000 training examples and 10000 testing ex-
amples. Each sample consists of 28 x 28 pixels, where each
pixel is a grayscale value. For MNIST, we trained two clas-
sifiers Anet and Bnet and used these classifiers as target
models to generate adversarial examples and test our ap-
proach. The network structure is shown in Table 1. The
prediction accuracies of Anet and Bnet on the test set are
98.96% and 99.74%, respectively.

The CIFAR10 (the CIFAR10 used to support the
findings of the study is public, and one can find it in
https://www.cs.toronto.edu/~kriz/cifar.html) dataset
consists of 60000 32 x 32 color images in 10 classes, with
6000 images per class. There are 50000 training images
and 10000 test images. For CIFARIO, we trained two
classifiers Resnet (Rnet) [54] and DenseNet (Dnet) [55]
and used these classifiers as target models to generate
adversarial examples and test our approach. The predic-
tion accuracy of Rnet and Dnet on the test set is 93.63%
and 95.04%, respectively.

5.1. Implementation Details. We used the adversarial ex-
amples generated by the training data and the clean
images in the training data as the training set for our
framework. All attacks (FGSM, DeepFool, JSMA, and
CW) were implemented in advbox [56], which is a toolbox
used to benchmark deep learning systems’ vulnerabilities
to adversarial examples. We used the interface provided
by advbox to generate the adversarial examples. We
experimented with &£=0.15 on MNIST, ¢=0.1 on
CIFARI10, and L, attacks for CW. For the targeted attacks

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/%7Ekriz/cifar.html

Security and Communication Networks

FIGURE 3: Experimental results of the defense adversarial example in the MNIST dataset. The first line shows clean images. The second line
shows an adversarial example. Here, we use four different approaches to generate adversarial (CW, DeepFool, FGSM, and JSMA) images and
three images for each approach. The third line shows the images generated by the defense framework.

FIGURE 4: Experimental results of defense adversarial example in the CIFAR10 dataset. The first line shows clean images. The second line
shows an adversarial example. Here, we use four different approaches to generate adversarial (CW, DeepFool, FGSM, and JSMA) images and
two images for each approach. The third line shows the images generated by the defense framework.

TaBLE 1: The structure of target model.

Anet

Bnet

Conv(64, 5x5, 1)+ ReLU
Conv(64, 3 x3, 2) +ReLU
Dropout(0.5)

FC(128) + ReLU
Dropout(0.5)

FC(10) + ReLU

SoftMax

Conv(64, 3x3, 1)+ ReLU
Conv(64, 3x3, 1)+ ReLU
Maxpooling
Conv(64, 3x3, 1)+ ReLU
Conv(64, 3x3, 1)+ ReLU
Maxpooling
FC(200) + ReLU
Dropout(0.5)
FC(200) + ReLU
Dropout(0.5)
FC(10) + ReLU
SoftMax

JSMA and CW, we set a random target label for each
sample. The network structure of our framework (include
the generator and discriminator) is the same as pix2pix
[39].

5.2. Defense Adversarial Example. To verify the effectiveness
of the defense mechanism, we tested it on two datasets
MNIST and CIFARIO. For each dataset, we trained two
defense frameworks for different target models. We

generated adversarial examples on test data and selected the
adversarial examples that successfully attacked in the target
model as members of the test set. Therefore, the prediction
accuracy of the target model on the test set is 0%. In our
defense mechanism, we sent the adversarial examples to a
generator that had previously been trained. Then, we took
the generated data as input to the target model. Figures 5 and
6 show the prediction accuracy of the target model on the
adversarial example under the defense mechanism, where
epoch means the number of training iterations. The result
indicates that our defense framework can quickly converge
during training. For the MNIST dataset, we take epoch = 20
as the final result, as shown in Table 2. Our defense
mechanism is effective against different types of attacks. It
improves the prediction accuracy of the target models (Anet
and Bnet) on the adversarial sample from 0 to almost 98%.
For the CIFARIO dataset, we take epoch = 40 as the final
result, as shown in Table 3. Since the CIFARIO dataset is
much more complicated than the MNIST dataset, it can
cause some losses in the denoising process. Therefore, the
defensive performance on CIFAR10 is reduced compared to
that on MNIST. CW attacks are more robust than other
attacks, which means that defending against such attack is
more challenging. Our defense mechanism still achieves
good performance on CW attacks.

Security and Communication Networks 7

1.00 1.00
L - N —e—F————§——
0.95 l/.—_./././4.———I—-—I—l 0.95
o : : : o
2 S
Z 090 -5 0.90
& 2
A A~
085 F oo 0.85 |
0.80 ' ' ' 0.80 . . .
5 10 15 20 5 10 15 20
Epoch Epoch
—4— FGSM —+— DeepFool —4— FGSM —+— DeepFool
—eo— JSMA s CW —eo— JSMA - CW

(@ (b)

FiGuRre 5: The prediction accuracy of the defense mechanism for the MNIST dataset (the range of epoch is from 2 to 20): the experimental
results of the target models (a) Anet and (b) Bnet.

0.90 0.90

I
1)
oyt

b
%
S

0.75 +

Precision
Precision

0.70 +

0.65 F

0.60 L . | 0.60 . . ;
10 20 30 40 10 20 30 40

Epoch Epoch

—+— FGSM —+— DeepFool —4— FGSM —+— DeepFool
—o— JSMA -a- CW —o— JSMA - CW

(a) (b)

F1GURE 6: The prediction accuracy of the defense mechanism for CIFAR10 dataset (the range of epoch is from 4 to 40): the experimental
results of target models (a) Rnet and (b) Dnet.

TaBLE 2: Defense performance on MNIST (epoch = 20).

Target model FGSM DeepFool JSMA CW
Anet 98.73 98.44 98.25 95.39
Bnet 98.70 98.68 98.88 96.51

TaBLE 3: Defense performance on CIFAR (epoch = 40).

Target model FGSM DeepFool JSMA CW
Rnet 82.82 84.15 82.17 79.84
Dnet 84.19 85.10 83.30 81.63

In addition, we compare the adversarial perturbation perturbation means average L, norm loss between adver-
and defense loss for both the MNIST dataset (epoch =20) sarial images and clean images, and the defense loss means
and CIFARIO dataset (epoch =40). An adversarial an average L, norm loss between the generated images and

0.5

Loss

FGSM DeepFool JSMA

I Adversary
B Generated

()

Security and Communication Networks

0.5 -

Loss

FGSM DeepFool JSMA CwW

I Adversary
B Generated

(®)

FIGURe 7: The loss of the defense mechanism on the MNIST dataset: experimental results of target models (a) Anet and (b) Bnet.

0.5

Loss

FGSM JSMA CwW

DeepFool

I Adversary
B Generated

()

0.6 4

0.5 4

Loss

FGSM JSMA CW

DeepFool

I Adversary
B Generated

()

FiGUre 8: The loss of the defense mechanism on the CIFARIO dataset: experimental results of target models (a) Rnet and (b) Dnet.

clean images. Since our defense framework consists of U-Net
and PatchGAN, their combination enables the generator to
restore the details of the original clean data. As shown in
Figures 7 and 8, our defense mechanism can control defense
losses within a certain range. This ensures the high quality of
the generated images and the similarity to the clean images.

5.3. Defense Transferability. In this experiment, we tested the
transferability of our defense mechanism. We used the
adversarial examples generated by other target models to test
the framework trained for the specific target model. Fig-
ures 9 and 10 show the trend of the transferability of the
prediction accuracy during training. Similar to previous

results, in this case, our defense mechanism still achieves a
high convergence speed.

For the MNIST dataset and CIFARI10 dataset, we separately
took epoch = 20 and epoch = 40 as the final result, and the
result is shown in Tables 4 and 5 (Anet/Bnet means that we use
the adversarial examples generated by the target model Anet to
test the framework trained for the target model Bnet). The
purpose of our defense mechanism is to restore the original
characteristics of the adversarial examples and eliminate their
adversarial perturbations. Therefore, our defense framework
focuses on adversarial examples, not the target model. The
experimental results prove that our method is universal. It can
transfer the capabilities learned from the specific target model
to other models.

Security and Communication Networks

.]
0'95/_/._/.#%/4—4

0.90

Precision

0.85

0.80

5 10 15 20
Epoch

—— FGSM
—eo— JSMA

—+— DeepFool
-a—- CW

(a)

1.00

0.95

Precision
=}
O
S

0.85
0.80 . . .
5 10 15 20
Epoch
—4— FGSM —+— DeepFool
—eo— JSMA - CW

(b)

FIGURE 9: The transferability of the defense mechanism on the MNIST dataset (the range of epoch is from 2 to 20): experimental results of (a)

Anet/Bnet and (b) Bnet/Anet.

0.90

0.85 -

0.80

0.75

Precision

0.70 |

0.65

0.60

10 20 30 40
Epoch

—— FGSM
—eo— JSMA

—+— DeepFool
-~ CW

(a)

Precision

0.60 1 . .
10 20 30 40
Epoch
—— FGSM —+— DeepFool
—e— JSMA s CW

(b)

F1GuRre 10: The transferability of the defense mechanism on the CIFAR10 dataset (the range of epoch is from 4 to 40): experimental results of

(a) Rnet/Dnet and (b) Dnet/Rnet.

TaBLE 4: Transferability on MNIST (epoch = 20).

Target model FGSM DeepFool JSMA CW

Anet/Bnet 98.13 98.36 98.06 94.11

Bnet/Anet 97.56 97.24 96.89 93.82
TaBLE 5: Transferability on CIFAR (epoch = 40).

Target model FGSM (%) DeepFool (%) JSMA (%) CW (%)

Rnet/Dnet 81.45 82.71 81.79 78.16

Dnet/Rnet 80.36 81.36 80.35 78.01

5.4. Comparison with Other Defense Methods. Following the
experimental setup in Defense-GAN [36], we compared the
proposed method with other defense mechanisms such as
Defense-GAN, MagNet [37], and adversarial training [27].
The adversarial training uses the adversarial example as part

of the training set to build a more robust model. The
magnet consists of a detector and a reformer. The detector
is used to detect adversarial examples, and reformer is
used to transform adversarial examples into clean ex-
amples. Since Defense-GAN is not argued secure on

10 Security and Communication Networks
TaBLE 6: Comparisons with other defense methods.

Attack Target model No attack No defense Defense-GAN MagNet Adv.Tr Our method

A 0.997 0.217 0.988 0.191 0.651 0.986
FGSM B 0.962 0.022 0.956 0.082 0.060 0.958

C 0.996 0.331 0.989 0.163 0.786 0.987

D 0.992 0.038 0.980 0.094 0.732 0.983

A 0.997 0.141 0.989 0.038 0.077 0.965
cw B 0.962 0.032 0.916 0.034 0.280 0.924

C 0.996 0.126 0.989 0.025 0.031 0.968

D 0.992 0.032 0.983 0.021 0.010 0.966
CIFAR10, we only use MNIST and experiment with ¢ = 0.3 Acknowledgments

for FGSM and the L, attack for CW. There are four target
models A, B, C, and D, whose structures are the same as
the settings in Defense-GAN. The experiment results are
shown in Table 6.

The proposed method is better than MagNet and
adversarial training. Although our method is slightly inferior
to Defense-GAN in some tests, our method also has certain
advantages. (1) Our method is simpler than Defense-GAN.
Simultaneously, Defense-GAN requires two steps before
feeding the input to the classifier: minimizing the recon-
struction error and generating. However, our method only
requires generating. (2) Our defense mechanism is a general-
purpose defense framework, which means that we can adapt
the defense mechanism to different datasets or scenarios
with a few adjustments.

6. Conclusions

In this paper, we propose a novel defense strategy utilizing
conditional GANSs to enhance the robustness of classification
models against adversarial examples. Our method is a
universal defense framework. We tested it on different
datasets and target models, and the experimental results
proved that our method is effective against most commonly
considered attack strategies. In addition, compared to the
state-of-the-art defense methods, the proposed method also
has many advantages.

It is worth mentioning that although our method is a
feasible and simple defense mechanism, there are still some
practical difficulties in implementing and deploying this
method. For example, our experimental performance will be
reduced on complex datasets. In the future, we will focus on
adjusting the network structure of the defense framework to
improve the performance on complex scenarios.

Data Availability

The MNIST dataset used to support the findings of the study is
public and available at http://yann.]lecun.com/exdb/mnist/.
The CIFARI10 dataset used to support the findings of the study
is public and available at https://www.cs.toronto.edu/~kriz/
cifar.html.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

This work was supported by the National Natural Science
Foundation of China (61572034) and Major Science and
Technology Projects in Anhui Province (18030901025).

References

[1] I. G. Goodfellow, Y. Bengio, and A. C. Courville, “Deep
learning,” Nature, vol. 521, pp. 436-444, 2015.

[2] B. Wu, Z. Chen, J. Wang, and H. Wu, “Exponential dis-
criminative metric embedding in deep learning,” Neuro-
computing, vol. 290, pp. 108-120, 2018.

[3] M. M. Y. Zhang, K. Shang, and H. Wu, “Learning deep

discriminative face features by customized weighted con-

straint,” Neurocomputing, vol. 332, pp. 71-79, 2019.

C. Liu and H. Wu, “Channel pruning based on mean gradient

for accelerating convolutional neural networks,” Signal Pro-

cessing, vol. 156, pp. 84-91, 2019.

[5] X. Li and H. Wu, “Spatio-temporal representation with deep
neural recurrent network in mimo csi feedback,” IEEE Wireless

Communications Letters, vol. 9, no. 5, pp. 653-657, 2020.

[6] X.Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, “Dynamic
resource provisioning with fault tolerance for data-intensive
meteorological workflows in cloud,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 9, pp. 6172-6181, 2019.

[7] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan,
“Joint optimization of offloading utility and privacy for edge
computing enabled IoT,” IEEE Internet of Things Journal,
vol. 7, no. 4, pp. 2629-2622, 2019.

[8] X.Xu,X.Zhang, H. Gao, Y. Xue, L. Qi, and W. Dou, “Become:
blockchain-enabled computation offloading for IoT in mobile
edge computing,” IEEE Transactions on Industrial Infor-
matics, vol. 16, no. 6, pp. 4187-4195, 2019.

[9] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang, and L. Qi, “Trust-
oriented iot service placement for smart cities in edge com-
puting,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4084-4091, 2019.

[10] X.Xu, X. Zhang, X. Liu, J. Jiang, L. Qi, and M. Z. A. Bhuiyan,
“Adaptive computation offloading with edge for 5g-envi-
sioned internet of connected vehicles,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1-10, 2020.

[11] Y. Zhang, C. Yin, Q. Wu, Q. He, and H. Zhu, “Location-aware
deep collaborative filtering for service recommendation,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pp. 1-12, 2019.

[12] Y. Zhang, G. Cui, S. Deng, F. Chen, Y. Wang, and Q. He,
“Efficient query of quality correlation for service composi-
tion,” IEEE Transactions on Services Computing, 2018.

[4

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html

Security and Communication Networks

[13] Y. Zhang, K. Wang, Q. He et al., “Covering-based web service
quality prediction via neighborhood-aware matrix factor-
ization,” IEEE Transactions on Services Computing, 2019.

[14] Q.-s. Zhang and S.-C. Zhu, “Visual interpretability for deep
learning: a survey,” Frontiers of Information Technology &
Electronic Engineering, vol. 19, no. 1, pp. 27-39, 2018.

[15] R. Shokri, M. Stronati, and V. Shmatikov, “Membership in-
ference attacks against machine learning models,” in Pro-
ceedings of the 2017 IEEE Symposium on Security and Privacy,
pp. 3-18, May 2017, San Jose, CA, USA.

[16] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy
risk in machine learning: analyzing the connection to over-
fitting,” in Proceedings of the 2018 IEEE 31st Computer Se-
curity Foundations Symposium (CSF), IEEE, San Jose, CA,
USA, pp. 268-282, May 2017.

[17] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic counter
measures,” in Proceedings of the Computer and Communi-
cation Security, Denver, CO, USA, October 2015.

[18] C. Szegedy, W. Zaremba, I. Sutskever et al., “Intriguing
properties of neural networks,” 2013, https://arxiv.org/abs/
1312.6199.

[19] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples:
attacks and defenses for deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, pp. 2805-
2824, 2017.

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” 2016, https://arxiv.org/abs/
1607.02533.

[21] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter,
“Adversarial generative nets: neural network attacks on state-
of-the-art face recognition,” 2018, https://arxiv.org/abs/1801.
00349.

[22] 1. Evtimov, K. Eykholt, E. Fernandes et al., “Robust physical-
world attacks on deep learning models,” 2017, https://arxiv.
org/abs/1707.08945.

[23] F. Trame'r, A. Kurakin, N. Papernot, D. Boneh, and
P. D. McDaniel, “Ensemble adversarial training: attacks and
defenses,” 2017, https://arxiv.org/abs/1705.07204.

[24] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson,
Z.B. Celik, and A. Swami, “The limitations of deep learning in
adversarial settings,” in Proceedings of the 2016 IEEE European
Symposium on Security and Privacy, IEEE, Saarbrucken,
Germany, pp. 372-387, March 2015.

[25] P.-Y.Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “EAD:
elastic-net attacks to deep neural networks via adversarial
examples,” 2017, https://arxiv.org/abs/1709.04114.

[26] N. Carlini and D. Wagner, “Towards evaluating the robust-

ness of neural networks,” in Proceedings of the 2017 IEEE

Symposium on Security and Privacy, IEEE, San Jose, CA, USA,

pp. 39-57, May 2017.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and

harnessing adversarial examples,” 2014, https://arxiv.org/abs/

1412.6572.

[28] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial at-
tacks,” 2017, https://arxiv.org/abs/1706.06083.

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deep-
fool: a simple and accurate method to fool deep neural
networks,” in Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, Las Vegas,
NV, USA, pp. 2574-2582, June 2015.

[27

11

[30] F. Trame'r, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “The space of transferable adversarial examples,”
2017, https://arxiv.org/abs/1704.03453.

[31] M. Alzantot, Y. Sharma, A. Elgohary, B.-]. Ho, M. Sri- vastava,
and K.-W. Chang, “Generating natural language adversarial
examples,” 2018, https://arxiv.org/abs/1804.07998.

[32] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel,
“Imperceptible, robust, and targeted adversarial examples for
automatic speech recognition,” 2019, https://arxiv.org/abs/
1903.10346.

[33] F. Trame'r, A. Kurakin, N. Papernot, I. Goodfel-low,
D. Boneh, and P. McDaniel, “Ensemble adversarial training:
attacks and defenses,” 2017, https://arxiv.org/abs/1705.07204.

[34] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against
deep neural networks,” in Proceedings of the 2016 IEEE
Symposium on Security and Privacy, IEEE, San Jose, CA, USA,
pp. 582-597, May 2016.

[35] X. Ma, B. Li, Y. Wang et al., “Characterizing adversarial
subspaces using local intrinsic dimensionality,” 2018, https://
arxiv.org/abs/1801.02613.

[36] P.Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN:
protecting classifiers against adversarial attacks using gen-
erative models,” 2018, https://arxiv.org/abs/1805.06605.

[37] D. Meng and H. Chen, “Magnet: a two-pronged defense
against adversarial examples,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, ACM, Dallas, TX, USA, pp. 135-147, October 2017.

[38] X. Jia, X. Wei, X. Cao, and H. Foroosh, “Comdefend: An
efficient image compression model to defend adversarial
examples,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, Long Beach, CA, USA,
pp. 6084-6092, June 2019.

[39] P.Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, Honolulu, HI, USA, pp. 5967-
5976, July 2016.

[40] M. Mirza and S. Osindero, “Conditional generative adver-
sarial nets,” 2014, https://arxiv.org/abs/1411.1784.

[41] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. X. Song,
“Generating adversarial examples with adversarial networks,”
in Proceedings of the International Conference on Artificial
Intelligence, Stockholm, Sweden, July 2018.

[42] Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing
unrestricted adversarial examples with generative models,” in
Proceedings of the Neural Information Processing Systems,
Montreal, Canada, December 2018.

[43] A. Odena, C. Olah, and J. Shlens, “Conditional image syn-
thesis with auxiliary classifier GANS,” in Proceedings of the
34th International Conference on Machine Learning, vol. 70,
pp- 2642-2651, Sydney, Australia, August 2017.

[44] Z.Zhao, D.Dua, and S. Singh, “Generating natural adversarial
examples,” 2017, https://arxiv.org/abs/1710.11342.

[45] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,”
2017, https://arxiv.org/abs/1701.07875.

[46] W.Huand Y. Tan, “Generating adversarial malware examples
for black-box attacks based on GAN,” 2017, https://arxiv.org/
abs/1702.05983.

[47] H. Lee, S. Han, and J. Lee, “Generative adversarial trainer:
defense to adversarial perturbations with GAN,” 2017, https://
arxiv.org/abs/1705.03387.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1801.00349
https://arxiv.org/abs/1801.00349
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1705.07204
https://arxiv.org/abs/1709.04114
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1704.03453
https://arxiv.org/abs/1804.07998
https://arxiv.org/abs/1903.10346
https://arxiv.org/abs/1903.10346
https://arxiv.org/abs/1705.07204
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1805.06605
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1710.11342
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1702.05983
https://arxiv.org/abs/1702.05983
https://arxiv.org/abs/1705.03387
https://arxiv.org/abs/1705.03387

12

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

G. K. Santhanam and P. Grnarova, “Defending against
adversarial attacks by leveraging an entire GAN,” 2018,
https://arxiv.org/abs/1805.10652.

I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” in Proceedings of the Advances in Neural
Information Processing Systems, pp. 2672-2680, Montreal,
Canada, December 2014.

H. Huang, P. S. Yu, and C. Wang, “An introduction to image
synthesis with generative adversarial nets,” 2018, https://arxiv.
org/abs/1803.04469.

C. Wang, Z. Chen, K. Shang, and H. Wu, “Label-removed
generative adversarial networks incorporating with
K-Means,” Neurocomputing, vol. 361, pp. 126-136, 2019.

Z. Chen, C. Wang, H. Wu, K. Shang, and J. Wang, “DMGAN:
discriminative metric-based generative adversarial networks,”
Knowledge-Based Systems, vol. 192, p. 105370, 2020.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234-241,
Springer, Munich, Germany, October 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, Las Vegas,
NV, USA, pp. 770-778, June 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-berger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, Honolulu, HI, USA, pp. 4700-4708, July
2017.

B. X-lab, “Advbox:a toolbox to generate adversarial examples
that fool neural networks,” 2019, https://github.com/baidu/
AdvBox.

Security and Communication Networks

https://arxiv.org/abs/1805.10652
https://arxiv.org/abs/1803.04469
https://arxiv.org/abs/1803.04469
https://github.com/baidu/AdvBox
https://github.com/baidu/AdvBox

Hindawi

Security and Communication Networks
Volume 2020, Article ID 8876056, 15 pages
https://doi.org/10.1155/2020/8876056

Research Article

WILEY

Hindawi

Anomaly Event Detection in Security Surveillance Using

Two-Stream Based Model

Wangli Hao,' Ruixian Zhang,1 Shancang Li,2 Junyu Li, Fuzhong Li ,! Shanshan Zhao,’
and Wuping Zhang'

ISchool of Software, Shanxi Agricultural University, Taigu District, Jinzhong, Shanxi 030801, China
2University of the West of England, Bristol BS16 1QY, UK

Correspondence should be addressed to Fuzhong Li; lifuzhong@sxau.edu.cn
Received 7 March 2020; Revised 10 May 2020; Accepted 23 June 2020; Published 3 August 2020
Academic Editor: Xiaolong Xu

Copyright © 2020 Wangli Hao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Anomaly event detection has been extensively researched in computer vision in recent years. Most conventional anomaly event
detection methods can only leverage the single-modal cues and not deal with the complementary information underlying other
modalities in videos. To address this issue, in this work, we propose a novel two-stream convolutional networks model for
anomaly detection in surveillance videos. Specifically, the proposed model consists of RGB and Flow two-stream networks, in
which the final anomaly event detection score is the fusion of those of two networks. Furthermore, we consider two fusion
situations, including the fusion of two streams with the same or different number of layers respectively. The design insight is to
leverage the information underlying each stream and the complementary cues of RGB and Flow two-stream sufficiently. Two

datasets (UCF-Crime and ShanghaiTech) are used to validate the effectiveness of proposed solution.

1. Introduction

Security surveillance is increasingly utilized at public places
such as streets, hospitals, intersections, shopping malls, and
banks, to guarantee public safety. However, the law en-
forcement agencies and monitoring abilities have not been
matched. Consequently, the result is that there are obvious
defects in the use of surveillance cameras. Anomaly event
detection in surveillance videos is an important research
topic in computer vision, which has been widely used in
many security related scenarios, including traffic accidents
investigation, crimes or illegal activities surveillance, fo-
rensics investigation, and violence alerting [1]. Because
anomalous events rarely appear in real life, behavioral or
appearance patterns deviating from normal patterns are
often defined as anomalies [1-3].

Anomaly event detection has been effectively performed
on the basis of several prevalent theories in the past decade,
such as dictionary learning [4-7], probabilistic models [8, 9],
and deep learning [10-12]. However, anomaly event de-
tection is still facing a number challenges.

Most existing researches in anomaly event detection
mainly focus on the RGB modality when extracting video
features in anomaly event detection. In this work, we pro-
pose a two-stream-based model to handle the anomaly event
detection problem using the RGB and Flow two convolu-
tional neural network (ConvNets) to extract video features.
The RGB stream performs anomaly event detection from
video frames, whilst the Flow stream is trained to detect
anomalies from motion-based on dense optical flow.
Moreover, the proposed framework is able to utilize all
frames in the video, while almost no additional calculation is
introduced in inference when compared to [13]. The main
reason is that the final number of features utilized for
training the anomaly model is the same. Specifically, one
video is divided into several clips, features of all frames in
one clip are averaged to obtain the video clip-level feature.

There are noticeable advantages of our two-stream-based
anomaly event detection. Instead of only considering RGB
features for MIL models, in this work, we propose TAEDM
that can leverage information of both RGB and Flow mo-
dalities. Specifically, the information from RGB modality is

mailto:lifuzhong@sxau.edu.cn
https://orcid.org/0000-0003-0558-9988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8876056

the static features underlying still images, such as the color,
shape, and appearance of objects or people in the event. The
information from the Flow modality is the motion features
of the event. As a result, TAEDM can capture the com-
plementary information on RGB stream from still images
and motion between images in one video sufficiently. We
evaluate the developed approach on two different-scale
benchmark datasets, including UCF-Crime [13] and
ShanghaiTech [14]. The extensive ablation experimental
studies demonstrate that our model obtains the state-of-the-
art performance.

The main contributions of this work are summarized as
follows:

(i) A novel two-stream-based anomaly event detection
model is proposed for anomaly detection in sur-
veillance videos. Furthermore, a dense feature ex-
traction method is proposed to obtain video-level
feature.

(ii) Proposed models are tested using benchmark
datasets UCF-Crime [13] and ShanghaiTech [14],
and results from both datasets show good perfor-
mances than existing works.

The rest of this paper is organized as follows: Section 2
reviews the state-of-the-art research in anomaly event de-
tection. Section 3 proposes a two-stream-based anomaly
event detection model. Experimental results are elaborated
in Section 4 and further discussion is presented in Section 5.
Section 6 concludes this paper.

2. Related Work

In this section, we will discuss the most recent research
results in anomaly event detection, and details about
anomaly detection, ranking, and two-stream action recog-
nition will be discussed.

2.1. Anomaly Detection. In computer vision, anomaly event
detection is one of the most challenging problems and has
attracted lots of research efforts in the past decades [15-21],
where the commonly used detection methods can be roughly
categorized into following three groups.

The first category of anomaly detection methods focuses
on the hypothesis that anomalies are rare, and behaviors
different from normal patterns seriously are seen as
anomalous. In these methods, the regular patterns are
encoded through various statistic models, such as Gaussian
process based models [22, 23], the model of social force [24],
Hidden Markov-based models [15, 25], the spatial-temporal
Markov random field based models [26, 27], the combi-
nation of dynamic models [21], and treat anomalies as
outliers.

The second category of anomaly detection approaches is
sparse reconstruction [3, 14, 16, 28], which is utilized for
usual pattern learning. Specifically, a dictionary is con-
structed by employing sparse representation for normal
behavior, and the ones with high error are detected as
anomalies. Recently, with the promising breakthrough of

Security and Communication Networks

deep learning, some researchers construct deep neural
networks for anomaly detection, including video prediction
learning [29], and abstraction feature learning [6, 30, 31].

The third group is the hybrid methods of normal and
anomaly behavior for modelling [13, 32, 33], in which, under
weakly supervised setting, multi instance learning (MIL) is
utilized to model motion patterns [13, 33], e.g., Sultani et al.
developed an MIL-based classifier [13], which is employed to
detect anomalies. Meanwhile, a deep ranking model is
utilized to predict anomaly scores.

Aimed at leveraging the superiority of Sultani’s work that
considering both normal and anomalous videos, in this
work, we rebuilt the model using a weak labelled supervised
learning.

2.2. Ranking. Learning to rank is a popular research
problem in machine learning and many research efforts have
been conducted, including [7, 11, 34-38]. These approaches
aimed at boosting relative scores of the pieces rather than
individual scores. Rank-SVM [7] was proposed to enhance
the retrieval performance of search engines.

The detection algorithm proposed in [34] can solve
multiple-instance ranking problems through gradual linear
programming. This method has been utilized in computa-
tional chemistry to solve hydrogen abstraction problem.
More recently, researchers have proposed deep ranking
networks for computer vision-related applications and
achieved promising success, such as highlight detection [35],
person reidentification [11], feature learning [36], Graphics
Interchange Format (GIF) generation [37], face detection
and verification [38], and metric learning and image re-
trieval [39]. All the above deep ranking approaches need
extensive annotations of both positive and negative samples.
Unlikely, in this work, a ranking model is proposed by
reformulating anomaly detection problem as a regression
problem under the ranking framework based on both
normal and anomalous samples. The proposed model uti-
lizes MIL depending on weakly supervised data to train the
anomaly model and located anomaly with video segment
level during testing. Unlike the conventional multiple in-
stance learning (MIL) setting, the proposed ranking com-
ponent forces ranking only includes two segments with the
highest anomaly score in the negative and positive bags.

2.3. Two-Stream Action Recognition. Video-based action
recognition has been extensively researched and achieved
comparable attention recently. Among them, the two-
stream-based action recognition is superior [40-42]. In-
spired by neuroscience, one kind of action recognition
methods introduced two-stream neural network architec-
ture [40-42], to perform RGB and Flow feature extraction in
parallel. The final score of action classification can be
achieved by fusing the results of two paths. In order to
further enhance the action recognition performance, Wang
et al. developed a novel Temporal Segment Network (TSN)
[41], which focuses on modelling the long-range temporal
structure in videos. Further, various extensions of two-
stream model [40] that explore convolutional fusion [42]

Security and Communication Networks

and residual connections [43, 44] were developed. The
model in [43] established the residual connections between
RGB and Flow streams. The STDDCN [44] integrated the
multiscale information into residual connections via dense-
connectivity interaction and contained a new knowledge
distillation module.

Two-stream-based methods have been widely employed
on some other task of video, such as action recognition
[40-43, 45, 46]. However, two-stream-based methods are
rarely applied to anomaly event detection. Inspired by the
two-stream-based action recognition architectures leverag-
ing the complementary information of RGB and Flow
modalities underlying actions, we first design a novel two-
stream anomaly event detection model. Compared with
action recognition, the anomaly event detection can identify
the kind of behavior (normal or abnormal) and locate the
time range of an exception. That leads this problem more
difficult to solve than the others.

3. Two-Stream Anomaly Event Detection
Network

This section will detail the proposed two-stream-based
anomaly event detection model as shown in Figure 1. We
first will introduce the abnormal video and the normal video,
and then divide them into multiple time video clips for
extracting the two-stream features (RGB stream and Flow
stream) of the video clips. A fully connected neural network
will be trained using a ranking loss function, which calcu-
lates the highest-scoring instance (shown in blue) and the
fusion operation then will be performed.

Video clip can be naturally split into synchronous spatial
and temporal parts. The spatial component underlying the
individual frame image consists of scenes and object in-
formation in the video. The temporal component hidden in
the motion across the images carries the movement between
the objects and the observer. We designed our anomaly
detection model accordingly and decomposed it into two
streams, as is illustrated in Figure 1. Each stream is realized
via a deep convolutional network (ConvNet), anomaly de-
tection scores of which are fused in the late.

In the proposed model, video segments that obtained high
anomaly scores will be marked as anomaly event. Each video
will be split into equal number of nonoverlapping segments.
The video containing anomaly segment is labelled as positive
and a video without any anomaly segment is labelled as
negative. A positive/negative video is treated as a positive/
negative bag and the segments as instances in the multiple
instance learning. Through ranking method, anomaly scores
for each video segment can be obtained and the video seg-
ments obtained high anomaly scores is seen as anomaly event.

First, given the abnormal video and the normal video, we
divided them into multiple time video clips. Secondly, we
extracted the two-stream features (RGB stream and Flow
stream) of the video clips and then trained a fully connected
neural network using a ranking loss function, which cal-
culates the highest-scoring instance (shown in blue) and
performed the fusion operation in the last step.

3.1. Problem Formulation. In the past decade, a number of
pattern learning methods have been developed [10, 15, 19, 25],
most of them assuming that any pattern that violates this
common pattern should be abnormal. In fact, it is impossible
to propose a method to define a full set of normal patterns,
because the normal pattern may contain too many different
events and behaviors. To define anomaly events is another
challenge, since anomaly events may also contain many
similar events and behaviors.

To handle the above issues, the proposed method for-
mulates each anomaly detection task (RGB branch and Flow
branch) as a regression problem, which is realized under the
ranking framework by leveraging both normal and anom-
alous data. To achieve more precise segment-level labels, a
weakly supervised deep multiple instance learning (MIL)
ranking is employed. Specifically, weakly supervised rank
indicates that the model only knows whether there is an
abnormal event in a video rather than the category of the
anomaly event and the corresponding occurrence time
during training.

The differences of the proposed pattern learning method
from those in [10, 15, 19, 25] is that our model utilizes both
normal and anomalous data rather than normal data in
previous studies (e.g., [10, 15, 19, 25]). Furthermore, our
model is formulated as a regression problem, which means
that we consider a certain segment as an abnormal event
based on regression prediction score rather than the
probability less than a certain threshold.

3.2. Data Formulation. To align the data for deep MIL
setting in anomaly detection, the source video is first split
into equal number of nonoverlapping segments during
training. All segments in the same video are denoted as a bag,
and each segment is acted as an instance. All videos formed
two different bags, positive bags and negative bags, re-
spectively. The segments of anonymous video are treated as
positive bag and those of normal video negative bag.
Moreover, as our insight is based on leveraging the com-
plementary information of RGB and Flow streams, video
clips in each bag are all decomposed into RGB and Flow
components. Each kind of component is fed into the cor-
responding branch networks separately.

3.3. Network Architecture. The deep MIL framework in-
cludes two main branch deep MIL ranking networks: RGB
and Flow, as shown in Figure 1. Each branch contains
feature extraction and instance scoring parts. Concerning
the feature extraction, ResNet [47] is chosen as backbone
because of its superiority in both efficiency and effectiveness.

3.3.1. Spatial Branch ConvNet. Spatial Branch ConvNet
focuses on single video frame, effectively conducting
anomaly event detection from still images. The static RGB
stream by itself contains useful information, since some
anomaly events are closely associated with specific objects.
Actually, as will be reported in the section of experiments,

Bag instance
(Video segment)

L/—,

Positive bag
(RGB)

video

maly

4

1

Wi

32 temporal segments

-2,

i ——

32 temporal segments

A

)

Positive bag

¢

Negative bag
(RGB)

(Flow)

Negative bag

Feature extraction module

Security and Communication Networks

RGB stream anomaly event detection module

Instance scores in positive bag

® o 1

04 03

”’é? &

nomly score
¥ &

0.

¢
&
Co® u?

FIGURE 1: A flowchart of the proposed two-stream based anomaly event detection framework.

anomaly event detection from still images (the RGB anomaly
event detection stream) is quite competitive by itself.

3.3.2. Temporal Branch ConvNet. Unlike the conventional
ConvNet models, the input of proposed temporal anomaly
event detection stream is the stacked optical flow dis-
placement fields among several adjacent frames. This input
explicitly models the motion between video clip images,
which makes the anomaly event detection easier, as no
implicit motion estimation is required.

The dense optical flow is formed using a group of dis-
placement vector fields v, between adjacent t and t+ I
frames. Further, v, (m, n) indicates the displacement vector
at the corresponding point (m,n) in frame t, which rep-
resents the movement of point (m, n) from frame ¢ to frame
t+ 1. Moreover, the displacement vector v, contains two
components, including horizontal and vertical ones, which
dubbed as v¥ and v/, respectively. v¥ and v; are seen as
image channels (as shown in Figure 2) and can be fed into
the temporal anomaly event detection stream network.

Figures 2 (al), (bl) and (a2), (b2) indicate the pair of
adjacent video frames with the highlighted moving area
outlined with a red rectangle. Figures 2(c1)/(c2) denote the
horizontal part v} of displacement vector field (higher/lower
intensity relates to positive/negative values). Figures 2 (d1)
and (d2) illustrate the vertical part v of displacement vector
field.

3.3.3. Loss Function. To pursue better performance, we
employ the following loss function (referred from [13]) to
train each branch network:

Z=1(S,,S,) H17 |, (1)

where S, and S, denote positive and negative bags, re-
spectively. [(S,,S,) indicates the loss over these two kind of
bags. | 7|l denotes the F — norm regularization on weights
of the model, for boosting its generalization. Among them,
l(SP,Sn) is defined as

Z(Sp’ Sn) = lrank + Aalsmooth + /\blsparsity’ (2)

in which [, denotes the ranking loss, [, . denotes the
temporal smooth restrict and I, represents the sparsity
constraint. A, and A, are two hyper-parameters which
balance the strengths of corresponding terms. Among them,
l.ank is formulated as

b = max(o, 1 -mex f(C,) + max f (CZ))’ (3)

ran

where S, and S, share the same meanings with those of
equation (1). C, and C, indicate normal and anomalous
video instances. f(C') and f(C!) denote the predicted
scores for the corresponding video instances.

The I, forces rank only on two segments with the
highest anomaly score in the negative and positive bags
separately, rather than every segment of the bag. Thus, the
max operation is performed over all instances in each bag.
The reason for this different setting is the absence of video
segment-level annotations in anomaly event detection
task.

The I, loss here is superior for anomaly detection task
due to several appealing reasons. First, it can enforce the
anomalous video segments to achieve higher anomaly scores
compared to normal ones. Furthermore, it can separate the
positive instances and negative instances based on anomaly
score.

On the other hand, ;oo and Iy, are defined as
n-1 . .
lsmooth = Z (f(C;) - f(C::l))z’
" (4)

lsparsity = Zlf(c;)’

where 7 is the number of instances in the specific bag. I
is utilized to guarantee the temporal smoothness via min-
imizing the difference of anomaly scores between neigh-
boring video instances in a bag. iy, is employed to
enforce the sparsity of scores in the anomalous bag. The

Security and Communication Networks

(a2) (b2)

(c1) (d1)

(c2) (d2)

F1GuRre 2: Optical flow examples. (al, bl) and (a2, b2): the pair of adjacent video frames with the highlighted moving area outlined with a red
rectangle. (c1, ¢2) horizontal part v of displacement vector field (higher/lower intensity relates to positive/negative values). (d1, d2): vertical

part v{ of displacement vector field.

reason for introducing Iy, loss function is that few
segments may involve the anomaly event.

4. Experiments

In this section, we will illustrate our experiments in detail
from aspects including datasets, implementation details,
evaluation metric, and sufficient quantitative and qualitative
experiments, respectively.

4.1. Datasets. UCF-Crime [13] and ShanghaiTech [14] are two
popular benchmark datasets commonly used in anomaly de-
tection task. In this work, we use both datasets to validate the
superiority of our proposed anomaly event detection model.
With following steps, the proposed model can also support
other datasets: (1) extract the RGB image and optical flow
images of each video in the dataset; (2) extract their corre-
sponding features; and (3) feed both the RGB and Flow stream
features into corresponding branch subnetworks in the pro-
posed model for training and obtaining expected test results.
Before introducing the details, we first briefly introduce the two
benchmark datasets as follows.

4.1.1. UFC-Crime. Reference [13] is a large-scale dataset that
contains a total of 13 anomaly events and 1900 real-word
surveillance videos. Among them, 950 videos include clear
anomalies and the other videos are treated as normal video.
Further, concerning the dataset partitioning, the training set
contains 1610 videos (800 normal videos, 810 anomalous
videos), and the test set contains 290 videos (150 normal, 140
anomalous videos).

4.1.2. ShanghaiTech. Reference [14] is a medium-scale
dataset with a total of 437 videos, which contains 130 ab-
normal events of 13 scenes. This dataset cannot be utilized

directly to perform anomaly event detection because the
training set has no abnormal video. To tackle this problem,
Zhong et al. [48] rebuilt the dataset via randomly choosing
abnormal test videos and putting them into the training data
and vice versa. Simultaneously, both training and test dataset
contain 13 scenes. This new organization of dataset made it
suitable for anomaly event detection task. Thus, we perform
the same operation as that in [48], before executing the
experiments.

4.2. Implementation Details and Evaluation Metrics. To
implement the proposed model, we first extract features of
RGB and Flow images from the last fully connected (FC)
layer of the ResNet network [47]. Concerning the RGB
stream, ResNet features for every frame are computed. The
video segment-level feature can be obtained by averaging all
frame features in the corresponding video segment. Simi-
larly, for the Flow stream, features can be extracted using the
same way of RGB stream. The only difference between these
two streams is that each frame in Flow stream contains two
directional flow images, namely, vertical (v;) and and
horizontal (v{) images as stated above, which makes the
ResNet infeasible to extract their features. Specifically, viand
v] are all grayscale images with only one channel (the
concatenation of them only has two channels), while the
input sample of feature extraction network (ResNet) needs
three ones. To handle this problem, we concatenate the two
directional flow images and their average variant to form the
input flow sample with three channels for the feature ex-
traction network.

After obtaining segment-level RGB and Flow ResNet
features, we feed them (2048D) into a three-layer FC neural
network as that of [13]. Further, the Adagrad optimizer is
utilized, which initial learning rate is 0.001. To perform a fair
comparison, the smoothness constraint, the sparsity re-
striction, and the segment number of each video are the

same with those of [13]. We stop our training at 20, 000
iterations.

The following commonly used evaluation metrics are
adopted to validate the performance our model. They are
receiver operating characteristic (ROC) curve and the area
under the curve (AUC), respectively. The reason we utilize
ROC and AUC is that they are two popular metrics for
anomaly event detection tasks [13, 21, 48]. For fair com-
parison with other works and to verify the effectiveness of
our model, ROC and AUC are employed.

4.3. Experimental Results

4.3.1. Evaluation of the Proposed Model. To validate the
performance of the proposed method, we compare the re-
sults with those of state-of-the-art models, based on UCEF-
Crime [13] and ShanghaiTech [14]. Comparison ROC curves
are shown in Figure 3. In Figure 3, RGB, Flow and Two
denote the anomaly event detection results of different
models based on RGB stream network, Flow stream network
and the fusion of them separately.

Figure 3 illustrates that RGB, Flow, and Two obtain
better results than the other models, validating the dense
feature extraction is effective. Further, Two yields better
results than those of RGB and Flow, which verifies the
superiority of the proposed model.

The AUC results from different models on UCF-Crime
[13] and ShanghaiTech [14] are displayed in Tables 1 and 2,
respectively. It can be seen that the results are the same with
those of Figure 3, which further validates the effectiveness of
our model.

4.3.2. Ablation Studies. In this section, several ablation
studies are designed to demonstrate the effectiveness of the
proposed model.

(1) Evaluation of the Generalization Capacity of the Model.
To validate the generalization of the proposed method, we
present the results of proposed method based on models
with different depths and architectures, including ResNet50,
ResNet100, ResNet150, and VGG16, respectively, as shown
in Tables 3 and 4. The results in Tables 3 and 4 illustrate that
model Two achieves better results than those of the corre-
sponding RGB and Flow models in all cases, which verifies
the generalization capacity of the proposed model in terms
of model depth and architecture.

Additionally, the ROC curves of ResNet50, ResNet100,
ResNet150, and VGG16 are exhibited in Figures 4 and 5,
respectively. Among them, Figures 4(a)-4(c) and 5(a)-5(c)
report the ROC curves of RGB, Flow, and Two networks
from ResNet50, ResNet100, ResNet150, and VGG16 models,
respectively. Figures 4 and 5 further validate the general-
ization capacity of our method on model depth and
architecture.

(2) Evaluation of the Fusion of Two Streams. As stated above,
different backbone feature extraction models are employed
to assess the proposed method. This naturally raises the

Security and Communication Networks

following evaluations, including the fusion of two streams
with the same number of layers and the fusion of two
streams with different number of layers separately:

(1) Fusion of two streams with the same number of layers:
To validate the effectiveness of the fusion of two
streams with the same number of layers, we utilize the
identical network (including ResNet50, ResNet100,
ResNet150, and VGGL16, respectively) to perform both
RGB and Flow stream feature extractions. Comparison
results are presented in Tables 1 and 2. Tables 1 and 2
show model Two obtains uniformly better results than
those of the corresponding RGB and Flow models,
which illustrates the effectiveness of the proposed
method under the same layer fusion setting (dubbes as
Fusiong, . setting).

(2) Fusion of two streams with different number of
layers: To verify the effectiveness of the fusion of two
streams with different number of layers, we employ
different networks to perform RGB and Flow stream
feature extractions, respectively.

Tables 5 and 6 illustrate that the performance of model Two
is consistently superior to those of corresponding RGB and
Flow models, which validates the superiority of the proposed
method under the different layers fusion setting (dubbed as
Fusiong; setting). Further, an appealing conclusion can be
drawn that Fusiony, surpasses Fusiong,. in most cases. In
addition, the case that RGB stream with ResNet50 and Flow
stream with VGG16 yields our best anomaly event detection
results, which again verifies the effectiveness of fusion under
different model architectures and depths.

(3) Evaluation of Fusion Proportion. This paper obtains the
final anomaly detection scores via fusing two streams via the
following equation: Score = 8+ Scorey;,,, + (1 —) * Scorepap.
To validate the effects of fusion proportion 3 between two
streams, we perform anomaly event detection with various
fusion proportion ranges from 0.1 to 0.9 with step size 0.1.

(1) Results of fusion proportion with same number of
layers: Figure 6 reports the results of Fusion, . with
different fusion proportions. From Figure 6, we can
see that each ResNet backbone (including RenNet50,
RenNet100, and RenNet150) obtains similar fusion
anomaly detection results respectively under dif-
ferent fusion proportions, with differences range
from 0.2 to 1.23 (UCF-Crime) and 0.05 to 0.6
(ShanghaiTech). Further, the best fusion results are
seemed obtained at 8 = 0.7 in most ResNet backbone
cases. On the other hand, VGG backbone’s fusion
varies a lot, about 4 points (UCF-Crime) and 1 point
(ShanghaiTech). Moreover, the best fusion result is
achieved at $ = 0.9.

(2) Results of fusion proportion with different number
of layers: Figure 7 shows the results of Fusiongy;
with different fusion proportions on UCF-Crime.
Figures 7(a)-7(d) denote the results of ResNet50
(Flow), ResNet100 (Flow), ResNet150 (Flow), and
VGGL16 (Flow) fusing with different RGB networks,

Security and Communication Networks

1.0 |

o o
o %

N
'S

True-positive rate

0.2 4

0.0
0.0 0.2 0.4 0.6 0.8 1.0
False-positive rate
Luetal. —— Flow
- -~ Sultani et al. —— Two-stream
RGB

(a)

1.0

o o
o %

N
'S

True-positive rate

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
False-positive rate
Zhong et al. —— Flow
—— RGB —— Two-stream

(b)

FiGure 3: ROC curves of different models on UCF-Crime [13] and ShanghaiTech [14]. (a) Results of UCF-Crime [13] and (b) that of

ShanghaiTech [14].

TaBLE 1: Quantitative comparison on UCF-Crime.

TaBLE 3: Comparison results of different models on UCF-Crime.

Method AUC (%) Model ResNet50 ResNetl00 ResNetl50 VGGI16
Hasan et al. [6] 50.6 RGB AUC (%) 78.51 76.84 77.44 71.21
Lu et al. [28] 65.51 Flow AUC (%) 79.92 77.51 77.93 80.29
Sultani et al. [13] with w/o constraints 74.44 Two AUC (%) 80.87 79.54 79.19 80.58
Sultani et al. [13] with w constraints 75.41
Ours (RGB) 78.51
Ours (flow) 80.29 TasLE 4: Comparison results of different models on ShanghaiTech.
Ours (two) 81.22
Model ResNet50 ResNetl00 ResNetl50 VGG16
RGB AUC (%) 9453 95.11 95.28 83.07
TasLE 2: Quantitative comparison on ShanghaiTech. Flow AUC (%) 95.42 94.81 95.28 95.49
Two AUC (%) 95.53 95.23 95.38 95.85

Method AUC (%)
Zhong et al. [48] 84.44
Ours (RGB) 94.53
Ours (flow) 95.42
Ours (two) 96.74

respectively. Figure 7 shows that as fusion pro-
portion value f increases, the trends of the AUC
curves of Figures 7(a) and 7(d) are monotonically
increasing and those of Figures 7(b) and 7(c) are
monotonically decreasing. Reasons are that
anomaly scores of flow streams of Figures 7(a) and
7(d) are superior to those of their corresponding
fused RGB streams, and anomaly scores of flow
streams of Figures 7(a) and 7(d) are worse than or
comparable to those of their corresponding fused
RGB streams. In other words, which stream has
better performance, the fusion result will be better
when its proportion is higher. The general pro-
portion value for that stream with better results is
0.8 in most cases.

Figure 8 presents the results of Fusiongy, with different
tusion proportions on ShanghaiTech. Figures 8(a)-8(d) show
the results of ResNet50 (Flow), ResNet100 (Flow), ResNet150
(Flow), and VGG16 (Flow) fusing with different RGB net-
works respectively. Figure 8 shows that as fusion proportion
value f3 increases, the trends of the almost all AUC curves of
four subfigures are monotonically increasing, and also three
curves are almost monotonically decreasing. Reason is that
flow streams of these curves have higher anomaly scores than
those of their corresponding fused RGB streams, and anomaly
scores of flow streams are worse than or comparable to those
of their corresponding fused RGB streams. In this dataset, we
also obtain the similar conclusion that for the stream with a
better result, the fusion result will be better when its pro-
portion is higher. The general proportion value for that stream
with better results is 0.9 in most cases.

4.3.3. Qualitative Results. To provide a more intuitive
perception of the proposed model, we introduce the scores
of anomalies per segment in a video obtained via our

Security and Communication Networks

1.0 A 1.0
’l
/’,
”
’/
0.8 0.8 i
7
,’
,/
1 L e
: g /
v 0.6 o 0.6 -
£ £ L
o a9 S
3 04 o
& &
"
’/
/”
0.2 0.2 o
’I
,/
,l
’I
0.0 0.0 +2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False-positive rate False-positive rate
—— VGGRGB —— ResNet100 RGB —— VGG flow —— ResNet100 flow
—— ResNet50 RGB —— ResNet150 RGB —— ResNet50 flow —— ResNet150 flow
(a) (b)
1.0
’I
’I
’/
/”
0.8 i
’I
”
5} vl
= P
st .
ji: 0.6 ,,,’
a ’/
2 -
g 04 d
- - o
’
I ’,,
e
/,’
0.2 e
-
’I
’/
L
,/
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False-positive rate

—— Two-stream (VGG)

—— Two-stream (ResNet150)

—— Two-stream (ResNet50) —— Our best
——— Two-stream (ResNet100)

F1Gure 4: ROC curves of different models on ShanghaiTech. (a) Results of RGB stream. (b) Results of Flow stream. (c) Results of the fusion

of RGB and Flow two streams.

method. Meanwhile, corresponding events with the highest
or lower abnormal event scores in the video are also pre-
sented, with results presented in Figure 9 for UCF-Crime
and Figure 10 for ShanghaiTech. Specifically, three example
events are displayed in Figures 9 and 10, respectively. The
first row of Figures 9 and 10 show the visualization results
obtained by our best model variant, and the green blocks in
the gray rectangle in Figure 9 or purple rectangles in Fig-
ure 10 represent the ground truth time period in which the
anomaly event occurred. The second row of Figures 9 and 10
present the visualization results of different variants of our
model, including results of ResNet50, ResNet50, ResNet150,
and the best model variants, respectively. Simultaneously,
several frames at the corresponding time are exhibited,

including corresponding frames with the highest or lower
abnormal event scores in the video. The area marked by the red
circle in the image is the corresponding abnormal event. From
Figures 9 and 10, we can see that our model can effectively
predict the time period of anomalous events.

5. Discussion

It is noted that the RGB stream focuses on the appearance
information and Flow stream concentrates on motion
clues underlying a certain video. The fusion of these two
streams with the same number of layers boosts the
anomaly event detection performance effectively, as Ta-
ble 1 and Table 2 show. Reason is that this fusion can

Security and Communication Networks

1.0 1.0
P— td
- td
P ’
— g Pid
,/
,/
0.8 #7- 0.8
r /,
” ’/,
3
K 4 e 2
E 0.6 7 § 0.6
‘3 e =
1) 7 B
g , g
) N 4 N
g) 7 3
= 04 bl & 0.4
7’
,/
,/
7’
//
024 A 0.2
0
[/ ’
[/ ,/
,/
0.0 i i : i 0.0
0.0 02 04 0.6 08 10 0.0 02 0.4 0.6 0.8 1.0
False-positive rate False-positive rate
--- Luetal ResNet50 RGB -~~~ Luetal ResNet50 flow
-—- Sultanietal — ResNet100 RGB ~~~ Sultani etal. ——— ResNet100 flow
— VGGRGB — ResNet150 RGB —— VGG flow —— ResNet150 flow
(a) (b)
1.0
0.8
L
= 0.6
£
S
[=3
a
g
E 04
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False-positive rate
~~~ Luetal Two-stream (ResNet100)

Sultani et al.
—— Two-stream (VGG)
——— Two-stream (ResNet50)

(c)

—— Two-stream (ResNet150)
—— Our best

F1GURE 5: ROC curves of different models on ShanghaiTech. (a) Results of RGB stream. (b) Results of Flow stream. (c) Results of the fusion
of RGB and Flow two streams.

TaBLE 5: Comparison results of different models of two streams with different number of layers on UCF-Crime.

RGB
Flow
ResNet50 ResNet100 ResNet150 VGGl16
ResNet50 80.87 80.48 80.19 80.08
ResNet100 80.22 79.54 79.16 78.28
ResNet150 80.11 79.66 79.19 78.75
VGGI16 81.21 80.8 80.54 80.58




Security and Communication Networks

10
TAaBLE 6: Comparison results of different models of two streams with different number of layers on ShanghaiTech.
RGB
Flow
ResNet50 ResNet100 ResNet150 VGGl16

ResNet50 95.53 95.54 95.55 95.85
ResNet100 94.93 95.23 95.13 95.33
ResNet150 94.93 95.13 95.38 95.33
VGG16 96.66 96.74 96.61 95.85

81 A 77 80.81 gp 75 - 95.8 - 95.79

043 8064 8G 80¢7>_80.59 w01
801 7037 7952 7954 7950 o 7939 956 1
{053, 9534 9535 9537 9538 79538 95.39 9538 -34

AUC (%)

T T T
1 02 03 04 05 06 07 08 09

0
The same layer
Beta
—o— ResNet50 —e— ResNet 150
—@— ResNet100 —e— VGG
(a)

T T T
01 02 03 04 05 06 07 08 09

The same layer

Beta
—o— ResNet50 —@— ResNet150
—@— ResNet100 —eo— VGG
(b)

FIGURE 6: Results of different fusion proportions under Fusiong, . setting on UCF-Crime and ShanghaiTech. (a) Results of UCF-Crime. (b)
Results of ShanghaiTech.

95.7

95.6 1

95.5 1

AUC (%)

95.4 1

95.3

95.68

95.55 9554 95,54
95.51 9551

95.44

95.2

T T T T T T T T T
0.1 02 03 04 05 06 07 08 09
ResNet50 (Flow)

—o— ResNet100 (RGB)
—e— ResNet150 (RGB)
—e— VGG (RGB)

(a)

T T T
01 02 03 04 05 06 07 08 09

ResNet100 (Flow)

—o— ResNet50 (RGB)
—e— ResNet150 (RGB)
—e— VGG (RGB)

(®)

Ficure 7: Continued.



Security and Communication Networks

0.7

0.8

0.9

985
95.4
95.2 + 95.25
< et e 95.19
g 050 % 95.0
2 9.
94.8
94.6
T T T T T T T T T T T T T T T
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06
ResNet150 (Flow) VGG (Flow)
—eo— ResNet50 (RGB) —e— ResNet50 (RGB)
—e— ResNet100 (RGB) —e— ResNet100 (RGB)
—eo— VGG (RGB) —e— ResNet150 (RGB)
© @
FIGURE 7: Results of different fusion proportions under Fusiony; setting on UCF-Crime.
80.5 - 80.12 8318 80.00
79.96
79.69
80.0
g 79.5 908 721 7911 7907
S
< 79.0 4 78.2
78.5
78.0

T T T
0.1 02 03 04 05 0.6
ResNet50 (Flow)

—o— ResNet100 (RGB)
—e— ResNet150 (RGB)
—eo— VGG (RGB)

(a)

0.7

T
0.8 0.9 0.1 0.2 0.3 04 05 0.6
ResNet100 (Flow)

—o— ResNet50 (RGB)
—e— ResNet150 (RGB)
—e— VGG (RGB)

(b)

Ficure 8: Continued.

0.7

11



12

80.09 80.11 80.08

79.98

79.66

79.62

T
01 02 03 04 0.6

T
0.5
ResNet150 (Flow)

0.7

—o— ResNet50 (RGB)
—e— ResNet100 (RGB)
—e— VGG (RGB)

(c)

Security and Communication Networks

81.0 -

80.5 -

g

O

= 80.0 -

<

79.5 -

79.0 -
T T T T T T T T T
01 02 03 04 05 06 07 08 09

VGG (Flow)

—e— ResNet50 (RGB)
—eo— ResNet100 (RGB)
—e— ResNet150 (RGB)

(d)

FIGURE 8: Results of different fusion proportions under Fusiong; setting on ShanghaiTech.

F2hERI5EREsE

2hah

Ourben

B

(42)

®2)

()

F1GURE 9: The visualization results of our method on testing videos on UCF-Crime. The first row shows the visualization results obtained by
our best model variant, and the green block in the gray rectangle represent the ground truth time period in which the anomaly event
occurred. The second row presents the visualization results of different variants of our model, including results of ResNet50, ResNet50,

ResNet150, and the best model variants, respectively.

leverage the complementary spatiotemporal information
on the same scale underlying videos. In addition, the
fusion of two streams with different number of layers
achieves better results than those of the same layer fusion.
Reason is this different layer fusion not only utilizes the
complementary information between two streams, but
also leverages the multiscale information at different

layers, as Tables 5 and 6 show. Thus, fusion of RGB and
Flow two streams is optimal in anomaly event detection
task.

The benefits of our proposed solution are that it can
further improve the performance of anomaly event detection
significantly by leveraging the complementary information
of RGB.



Security and Communication Networks 13

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 0 10
Frame number

(an

(a2) ®2) ©

FiGure 10: The visualization results of our method on testing videos on ShanghaiTech. The first row exhibits the visualization results
obtained by our best model variant, and the purple rectangles represent the ground truth time period in which the anomaly event occurred.
The second row shows the visualization results of different variants of our model, including results of ResNet50, ResNet50, ResNet150, and
the best model variants, respectively, and Flow modalities in the video. Moreover, our proposed solution can provide inspiration for other
video-related tasks, including video classification, video segmentation, video tracking and video detection, through bistream setting to

obtain the improved.

6. Conclusion

This paper proposes a novel two-stream-based model for
anomaly event detection. Specifically, this model consists of
RGB and Flow two branch networks, and the final anomaly
detection score is the fusion of two networks. Meanwhile, we
consider two fusion strategies, including the fusion of two
streams with the same of different number of layers, re-
spectively. The proposed model can utilize the comple-
mentary information of the two streams hidden in the video,
which can improve the performance of anomaly event de-
tection. Ablative studies based on two benchmark datasets
UCF-Crime and ShanghaiTech have validated the effec-
tiveness of the proposed model. Future work should focus
more on effective feature extraction methods for improved
anomaly event detection using new inputs [49] in edge
computing environment [50-52].

Data Availability

The datasets used to support the findings of this study are
available at https://webpages.uncc.edu/cchen62/dataset.html
(UFC-Crime) and https://svip-lab.github.io/datasets.html
(ShanghaiTech).

Conlflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was partially funded by Shanxi Agricultural
University Young Science and Technology Innovation

Programme (41257914) and Shanxi Key Research and De-
velopment Program (201703D221033-3).

References

[1] Y. Benezeth, P. Jodoin, V. Saligrama, and C. Rosenberger,
“Abnormal events detection based on spatio-temporal co-
occurences,” in Proceedings of the 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR 2009), Miami, FL, USA, June 2009.

[2] A. Adam, E. Rivlin, I. Shimshoni, D. Reinitz, and
M. Intelligence, “Robust real-time unusual event detection
using multiple fixed-location monitors,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 30, no. 3,
pp. 555-560, 2008.

[3] Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for
abnormal event detection,” in Proceedings of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, June 2011.

[4] A.Basharat, A. Gritai, and M. Shah, “Learning object motion
patterns for anomaly detection and improved object detec-
tion,” in Proceedings of the 2008 IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, AK, USA, June
2008.

[5] J. C. Duchi and E. Hazan, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of
Machine Learning Research, vol. 12, pp. 2121-2159, 2011.

[6] M. Hasan, J. Choi, J. Neumann, A. K. Roychowdhury, and
L. S. Davis, “Learning temporal regularity in video sequences,”
2016, https://arxiv.org/abs/1604.04574.

[7] T. Joachims, “Optimizing search engines using clickthrough
data,” in Proceedings of the the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
Edmonton, Alberta, Canada, July 2002.


https://webpages.uncc.edu/cchen62/dataset.html
https://svip-lab.github.io/datasets.html
https://arxiv.org/abs/1604.04574

14

[8] T.G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving
the multiple instance problem with axis-parallel rectangles,”
Artificial Intelligence, vol. 89, no. 1-2, pp. 31-71, 1997.

[9] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted Boltzmann machines,” in Proceedings of the 27 th
International Conference on Machine Learning, Haifa, Israel,
2010.

[10] X. Cui, Q. Liu, M. Gao, and D. N. Metaxas, “Abnormal de-
tection using interaction energy potentials,” in Proceedings of
the Computer Vision and Pattern Recognition, Providence, RI,
USA, June 2011.

[11] S.Ding, L. Lin, G. Wang, and H. Chao, “Deep feature learning
with relative distance comparison for person re-identifica-
tion,” Pattern Recognition, vol. 48, no. 10, pp. 2993-3003,
2015.

[12] S.Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic
monitoring and accident detection at intersections,” IEEE
Transactions on Intelligent Transportation Systems, vol. 1,
no. 2, pp. 108-118, 2000.

[13] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly
detection in surveillance videos,” 2018, https://arxiv.org/abs/
1801.04264.

[14] W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based
anomaly detection in stacked RNN framework,” in Pro-
ceedings of the International Conference on Computer Vision,
Venice, Italy, October 2017.

[15] L. Kratz and K. Nishino, “Anomaly detection in extremely
crowded scenes using spatio-temporal motion pattern
models,” in Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA,
June 2009.

[16] B.Zhao, L. Feifei, and E. P. Xing, “Online detection of unusual
events in videos via dynamic sparse coding,” in Proceedings of
the Computer Vision and Pattern Recognition, Providence, R,
USA, June 2011.

[17] S. Wu, B. E. Moore, and M. Shah, “Chaotic invariants of
Lagrangian particle trajectories for anomaly detection in
crowded scenes,” in Proceedings of the 2010 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, June 2010.

[18] N. Li, H. Guo, D. Xu, and X. Wu, “Multi-scale analysis of
contextual information within spatio-temporal video volumes
for anomaly detection,” in Proceedings of the International
Conference on Image Processing, Paris, France, October 2014.

[19] B. Antic and B. Ommer, “Video parsing for abnormality
detection,” in Proceedings of the International Conference on
Computer Vision, Barcelona, Spain, November 2011.

[20] H. Mobahi, R. Collobert, and J. Weston, “Deep learning from
temporal coherence in video,” in Proceedings of the 26 th
International Conference on Machine Learning, Montreal,
Canada, 2009.

[21] W. Li, V. Mahadevan, V. NJIToPA, and M. Intelligence,
“Anomaly detection and localization in crowded scenes,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, pp. 18-32, 2014.

[22] N. Li, X. Wu, H. Guo et al., “Anomaly detection in video
surveillance via Gaussian process,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 29, no. 6,
Article ID 1555011, 2015.

[23] K. Cheng, Y. Chen, and W. Fang, “Video anomaly detection
and localization using hierarchical feature representation and
Gaussian process regression,” in Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, June 2015.

Security and Communication Networks

[24] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd be-
havior detection using social force model,” in Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, June 2009.

[25] T. M. Hospedales, S. Gong, and T. Xiang, “A Markov clus-
tering topic model for mining behaviour in video,” in Pro-
ceedings of the International Conference on Computer Vision,
Kyoto, Japan, October 2009.

[26] C. Wang, Z. Chen, K. Shang, and H. Wu, “Label-removed
generative adversarial networks incorporating with K-
Means,” Neurocomputing, vol. 361, pp. 126-136, 2019.

[27] T.Meng, K. Wolter, H. Wu, Q. Wang, and M. Computing, “A
secure and cost-efficient offloading policy for Mobile Cloud
Computing against timing attacks,” Pervasive and Mobile
Computing, vol. 45, pp. 4-18, 2018.

[28] C.Lu,]J. Shi, and J. Jia, “Abnormal event detection at 150 FPS
in MATLAB,” in Proceedings of the International Conference
on Computer Vision, Sydney, Australia, December 2013.

[29] W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction
for anomaly detection—a new baseline,” 2018, https://arxiv.
org/abs/1712.09867.

[30] Y. S. Chong and Y. H. Tay, “Abnormal event detection in
videos using spatiotemporal autoencoder,” 2017, https://arxiv.
org/abs/1701.01546.

[31] W. Luo, W. Liu, and S. Gao, “Remembering history with
convolutional LSTM for anomaly detection,” in Proceedings of
the International Conference on Multimedia and Expo, Hong
Kong, China, July 2017.

[32] K. P. Adhiya, S. R. Kolhe, and S. S. Patil, “Tracking and
identification of suspicious and abnormal behaviors using
supervised machine learning technique,” in Proceedings of the
International Conference on Advances in Computing, Com-
munication and Control, Mumbai India, January 2009.

[33] C. He, J. Shao, and J. Sun, “An anomaly-introduced learning
method for abnormal event detection,” Multimedia Tools and
Applications, vol. 77, no. 22, pp. 29573-29588, 2018.

[34] C. Bergeron, J. Zaretzki, C. M. Breneman, and K. Bennett,
“Multiple instance ranking,” in Proceedings of the 25 th In-
ternational Conference on Machine Learning, Helsinki, Fin-
land, 2008.

[35] T.Yao, T. Mei, and Y. Rui, “Highlight detection with pairwise
deep ranking for first-person video summarization,” in
Proceedings of the 016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, June
2016.

[36] J. Wang, Y. Song, T. Leung et al., “Learning fine-grained
image similarity with deep ranking,” 2014, https://arxiv.org/
abs/1404.4661.

[37] M. Gygli, Y. Song, and L. Cao, “Video2GIF: automatic
generation of animated GIFs from video,” 2016, https://arxiv.
org/abs/1605.04850.

[38] S. Sankaranarayanan, A. Alavi, and R Chellappa, Triplet
Similarity Embedding for Face Verification, https://arxiv.org/
abs/1602.03418, 2016.

[39] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “Deep image
retrieval: learning global representations for image search,”
2016, https://arxiv.org/abs/1604.01325.

[40] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” 2014, https://arxiv.
org/abs/1406.2199.

[41] L. Wang, Y. Xiong, Z. Wang et al., “Temporal segment
networks: towards good practices for deep action recogni-
tion,” 2016, https://arxiv.org/abs/1608.00859.


https://arxiv.org/abs/1801.04264
https://arxiv.org/abs/1801.04264
https://arxiv.org/abs/1712.09867
https://arxiv.org/abs/1712.09867
https://arxiv.org/abs/1701.01546
https://arxiv.org/abs/1701.01546
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1605.04850
https://arxiv.org/abs/1605.04850
https://arxiv.org/abs/1602.03418
https://arxiv.org/abs/1602.03418
https://arxiv.org/abs/1604.01325
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1608.00859

Security and Communication Networks

[42] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional
two-stream network fusion for video action recognition,”
2016, https://arxiv.org/abs/1604.06573.

[43] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal
residual networks for video action recognition,” 2016, https://
arxiv.org/abs/1611.02155.

[44] H. Kwon, Y. Kim, J. S. Lee, and M. Cho, “First person action
recognition via two-stream ConvNet with long-term fusion
pooling,” Pattern Recognition Letters, vol. 112, pp. 161-167,
2018.

[45] L. Sevillalara, Y. Liao, F. Guney, V. Jampani, A. Geiger, and
M. J. Black, “On the integration of optical flow and action
recognition,” 2018, https://arxiv.org/abs/1712.08416.

[46] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal rep-
resentation with pseudo-3D residual networks,” 2017, https://
arxiv.org/abs/1711.10305.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2016, https://arxiv.org/abs/1512.
03385.

[48] J. Zhong, N. Li, W. Kong, S. Liu, T. H. Li, and G. Li, “Graph
convolutional label noise cleaner: train a plug-and-play action
classifier for anomaly detection,” 2019, https://arxiv.org/abs/
1903.07256.

[49] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang, and L. Qi, “JIIoT].
Trust-oriented IoT service placement for smart cities in edge
computing,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4084-4091, 2019.

[50] X. Xu, X. Zhang, H. Gao, Y. Xue, L. Qi, and W. Dou, “Be-
Come: blockchain-enabled computation offloading for IoT in
mobile edge computing,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 6, pp. 4187-4195, 2020.

[51] X.Xu, C. He, Z. Xu, L. Qi, S. Wan, and Z. A. Bhuiyan, “JTIoTJ.
Joint optimization of offloading utility and privacy for edge
computing enabled I0T,” IEEE Internet of Things Journal,
vol. 7, no. 4, pp. 2622-2629, 2019.

[52] S. Li, “Zero trust based internet of things,” EAI Endorsed
Transactions on Internet of Things, vol. 5, no. 20, p. 6, 2020.

15


https://arxiv.org/abs/1604.06573
https://arxiv.org/abs/1611.02155
https://arxiv.org/abs/1611.02155
https://arxiv.org/abs/1712.08416
https://arxiv.org/abs/1711.10305
https://arxiv.org/abs/1711.10305
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1903.07256
https://arxiv.org/abs/1903.07256

Hindawi

Security and Communication Networks
Volume 2020, Article ID 2132138, 12 pages
https://doi.org/10.1155/2020/2132138

WILEY

Hindawi

Research Article

Wearable Sensor-Based Human Activity Recognition Using
Hybrid Deep Learning Techniques

Huaijun Wang,l’2 Jing Zhao,' Junhuai Li®,"? Ling Tian,' Pengjia Tu,’ Ting Cao, '
Yang An,' Kan Wang,"? and Shancang Li’

!School of Computer Science and Engineering, Xi’an University of Technology, Xi'an 710048, China
2Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an 710048, China
3Department of Computer Science and Creative Technologies, UWE Bristol, Bristol BS16 1QY, UK

Correspondence should be addressed to Junhuai Li; lijunhuai@xaut.edu.cn
Received 16 February 2020; Revised 8 June 2020; Accepted 6 July 2020; Published 27 July 2020
Academic Editor: Xiaolong Xu

Copyright © 2020 Huaijun Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care,
rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific
activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based
scheme that can recognize both specific activities and the transitions between two different activities of short duration and low
frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting
features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term
dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor
based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the
proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%,

which are better than those of most existing similar models over the open HAPT dataset.

1. Introduction

Human behavior recognition (HAR) is the detection, in-
terpretation, and recognition of human behaviors, which
can use smart heath care to actively assist users according to
their needs. Human behavior recognition has wide appli-
cation prospects, such as monitoring in smart homes, sports,
game controls, health care, elderly patients care, bad habits
detection, and identification. It plays a significant role in
depth study [1] and can make our daily life become smarter,
safer, and more convenient.

Currently, human behavior data can be acquired in two
ways: one is based on computer vision and the other is based
on sensors [2]. Behavior recognition based on computer
vision has been studied for a long time and has a mature
theoretical basis. However, the vision-based approaches
have many limitations in practice. For example, the use of a
camera is limited by various factors, such as light, position,

angle, potential obstacles, and privacy invasion issues, which
make it difficult to be restricted in practical application.
Although the research time of sensor-based behavior rec-
ognition is relatively short, with the development and
maturity of microelectronics and sensor technology, there
are various types of sensors, such as accelerometers, gyro-
scopes, magnetometers, and barometers. These sensors can
be integrated into mobile phones and wearable devices such
as watches, bracelets, and clothes. Furthermore, state-of-the-
art wearable sensors have solved the issue of antimagnetic
field interference, such as [3], which can accurately estimate
the current acceleration and angular velocity of motion
sensors in real time in the presence of magnetic field in-
terference. So these wearable sensors are usually small in
size, high in sensitivity, and strong in anti-interference
ability, so the sensor-based identification method is more
suitable for practical situations. Moreover, sensor-based
behavior recognition is not limited by scene or time, which


mailto:lijunhuai@xaut.edu.cn
https://orcid.org/0000-0001-5483-5175
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2132138

can better reflect the nature of human activities. Therefore,
the research and application of human behavior recognition
based on sensors are more and more valuable and
significant.

Besides, the HAR includes two types: basic actions and
transition actions. Due to the low incidence and short
duration of transition movement, there are relatively few
studies on the transition movement from standing to sitting,
walking to standing, and so on in the research of human
behavior recognition [4]. However, the study of transitional
movement is a very important part of human behavior
recognition. In order to improve the behavior recognition
rate, transition action recognition is not negligible. The
transition action is the distinction of a variety of basic ac-
tions in frequent alternations. The accurate division of the
transition action can accurately segment the streaming data
to a certain extent and ultimately improve the recognition
rate. In addition, the behavior recognition methods based on
traditional patterns have shortcomings such as manual
feature extraction. With the application and development of
deep learning in different fields, the deep learning model also
shows great advantages in the field of behavior recognition.

The main contributions of this work are summarized as
follows:

(1) We presented a deep learning model composed of
convolutional and Long Short-Term Memory re-
current layers, which can automatically learn local
features and model the time dependence between
features.

(2) We discussed the influence of key parameters in deep
learning model on performance and finally deter-
mined the best parameters in the model.

(3) We analyzed and compared the experimental results
with other models that adopt the same common data
set. The results show that the proposed method is
superior to the other advanced methods.

In this work, we use both acceleration sensor and a
gyroscope sensor of smart phones to acquire data and
proposed a CNN-LSTM hybrid model to recognize the
transition motion. Convolution neural network (CNN) [5] is
a type of depth neural network used as a feature extractor. It
is characterized by local dependence, so it has good per-
formance in extracting local features. However, human
activity information belongs to long instance, which is
composed of complex movements and changes with time. So
the CNN model does not work well in extracting the rela-
tionship between time and features. The Long Short-Term
Memory (LSTM) [6] neural network is a kind of recursion
network that contains a memory to simulate a time de-
pendent sequence problem. Therefore, the mixture of CNN-
LSTM can accurately identify the basic and transitional
features of activities.

The remainder of the paper is organized as follows:
Section 2 reviews the literature on human activity identi-
fication based on deep learning and existing problems;
Section 3 presents the mixed deep learning framework
proposed in this paper for existing problems; Section 4

Security and Communication Networks

discusses and analyzes the experimental results based on
experimental data. Finally, Section 5 concludes this paper.

2. Related Works

Due to the extensive application of human-computer in-
teraction, behavior detection, and other technologies, hu-
man behavior recognition has become a hot field [7]. Human
behavior recognition can be regarded as a representative
pattern recognition problem. The traditional pattern of
behavior recognition research using decision tree, support
vector machine (SVM), and other machine learning algo-
rithms can obtain much satisfactory results, in premise of
some controlled experimental environments and a small
number of labeled data. However, the accuracy of these
methods depends on the effectiveness and comprehen-
siveness of manual feature extraction. In addition, these
methods can only extract shallow features. Because of these
limitations, the behavior recognition methods based on
traditional pattern recognition are limited in classification
accuracy and model generalization.

In recent years, deep learning has developed rapidly and
attracted many research efforts, especially in image, pro-
cessing time series, natural language, logical reasoning, and
other complex data processing aspects and has achieved
unparalleled achievements [8]. Different from the traditional
behavior recognition method, deep learning could reduce
the workload of feature design. In addition, the higher-level
and more meaningful features can be learned via the end-to-
end neural network. Furthermore, the deep network
structure is more suitable for unsupervised incremental
learning. Moreover, deep networks created by super-
imposing several layers of features can model data with
complex structures. In a word, the deep learning is an ideal
method for HAR.

Since deep learning has made outstanding achievements
in image feature extraction, many researchers first try to
apply it to behavior recognition based on video. In early
periods, Taylor et al. [9] used convolution threshold
Boltzmann machine to identify video behavior data and
extract sensitive features. Ji et al. [10] proposed a three-
dimensional CNN model to capture more action informa-
tion from space and time. Liu et al. [11] proposed that CNN
and conditional random domains (CRFs) be combined for
action segmentation and recognition. The CNN can auto-
matically learn space-time characteristics, while CRF is able
to capture the dependency between outputs. Other common
deep learning methods are also widely used, such as re-
cursive neural network [12] and long short-term memory
network. On one hand, it is successful on application of deep
learning in video behavior recognition. On the other hand, it
is also widely used in human behavior recognition based on
Sensors.

Zeng et al. [13] proposed treating the single-axis sensor
data as one-dimensional data of images and then sending
them to CNN for identification. Jiang and Yin [14] com-
bined the signal sequences of accelerometer and gyroscope
into an active image, enabling deep convolutional neural
network (DCNN) to automatically learn the optimal features



Security and Communication Networks

from the active image. Chen and Xue [15] modified the CNN
convolution kernel to adapt to the characteristics of triaxial
acceleration signals. Ronao and Cho [16] proposed a con-
vNet, which realized efficient and data adaptive human
behavior recognition with smart phone sensors. ConvNets
not only utilize the inherent time-local dependence of sensor
signal sequences but also provide an adaptive method for
extracting robust features. Experimental results show that
this method can recognize similar actions, which are difficult
to be processed by traditional machine learning. Murad and
Pyun [17] and Zhou et al. [18] proposed three deep recursive
neural network structures based on LSTM to establish
recognition models to capture time relations in input se-
quences and could achieve more accurate recognition. Due
to the superior performance of LSTM in behavior recog-
nition application, Guan and Plotz [19] and Qi et al. [20]
improved the LSTM and proposed an integration model,
integrating different LSTM learners into an integrated
classifier. Through the experimental evaluation in the
standard data set, it is proved that the integrated system
composed of LSTM learners is superior to a single LSTM
network. Ignatov [21] combined the manually extracted
statistical features with the features automatically extracted
by neural network and realized a human behavior recog-
nition method based on user autonomous deep learning.
Among them, CNN extracted local features, while statistical
features preserved the information about the global form of
time series. Experiments on open data sets show that the
model has the advantages of small computation, short
running time, and good performance. Nweke et al. [22] and
Wang et al. [23], respectively, summarized the application of
deep learning method in sensor-based behavior recognition
and not only put forward detailed views on the existing
work, but also pointed out the challenges and improvement
directions of future research.

This work demonstrated the potential of deep neural
network to learn the potential features and time series
features. Nevertheless, existing works on action recognition
mainly focus on the aspect of basic behavior recognition,
while the transition between actions is usually ignored be-
cause the transition action has a short duration. However, it
is necessary to study the transition action in depth in order
to improve the robustness of the model. The precise division
of the transition action can accurately segment the streaming
data to a certain extent and ultimately improve the recog-
nition rate. In this paper, CNN combined with LSTM hybrid
model is adopted to extract deep and advanced features, and
elaborate description is made of basic and transition action,
so as to realize accurate identification.

3. Proposed Method

The overall architecture diagram of the method proposed in
this paper is shown in Figure 1, which contains three parts.
The first part is the preprocessing and transformation of the
original data, which combines the original data such as
acceleration and gyroscope into an image-like two-dimen-
sional array. The second part is to input the composite image
into a three-layer CNN network that can automatically

extract the motion features from the activity image and
abstract the features, then map them into the feature map.
The third part is to input the feature vector into the LSTM
model, establish a relationship between time and action
sequence, and finally introduce the full connection layer to
achieve the fusion of multiple features. In addition, Batch
Normalization (BN) is introduced [24], in which BN can
normalize the data in each layer and finally send it to the
Softmax layer for action classification.

3.1. Data Preprocessing. Due to the large amount of be-
havioral data collected by the sensor, it is impossible to input
all the data into the depth model at one time. Therefore,
sliding window segmentation should be carried out before
data input into the model. The behavior recognition method
proposed in this paper can recognize both the basic action
and the transition action at the same time. The transition
action lasts for a short time; it is necessary to choose the
appropriate window size. If the window is too large, im-
portant information will be lost. Otherwise, the computa-
tional costs will be increased. After data segmentation, the
behavioral data collected by sensors are one-dimensional
time series different from image data. Therefore, before
applying the deep learning model to these input data, it is
necessary to input and adapt them. Dimension transfor-
mation is carried out on the data after window segmentation.
The method of transformation is to splice the sensor data of
all axes into a two-dimensional matrix. The advantage of this
approach to data processing is that it preserves the corre-
lation between sensors’ axes. Finally, samples similar to
pictures are formed and input into the deep learning model.
Figure 2 shows the model structure of data preprocessing.

3.2. Feature Learning Based 1D-CNN. The original uniaxial
acceleration and gyroscope data are equivalent to two-di-
mensional array of images after dimensional transformation.
The feature image is input into the convolution neural
network, and its structure is generally composed of con-
volution layer and pooling layer. The convolution layer
carries out convolution operation on the input image
through convolution kernel to obtain feature mapping. The
pooling layer extracts local features from the feature map of
the convolution layer through sampling operation to lessen
the size of neurons and the number of parameters. The
convolution layer and pooling layer are stacked to form a
deep structure, which can automatically extract the action
feature information from the original action data [5].

The CNN model structure designed in this paper is
shown in Figure 3. The CNN network model consists of
three convolution layers and three pooling layers (each
convolution layer is followed by one pooling layer) and
finally outputs a number of feature map images with action
features. Table 1 illustrates the settings of different param-
eters for each convolution and pooling layer. Convolution is
achieved by the convolution of two-dimensional convolu-
tion kernel with images superimposed by multiple adjacent
frames. The convolution kernel number of the three con-
volution layers is 18, 36, and 72, respectively. The



4 Security and Communication Networks
\
(ﬁ CNN feature extraction
Input
Feature map =
aemae || | ol | sl | e M=l
| =1 [ =] [ =1 5] N
Aemae—\| = |5 N & |= :‘> e :l> _I ] =
=} © =} (=) (=} o =]
asmae/| 5 (B[ 581V S |2 I = 5 bt E
- = e
AemA® = g () Stand to lie
" = @ Lie to stand
@ J Y,
FIGURE 1: Human activity recognition framework based on CNN-LSTM.
N e R me) AOCENAOEOE
Raw data : E@Wiﬁi DR AOENAroemEOH
L ] ! l ; Time
Window split
FIGURE 2: Structure of data preprocessing model.
( ™
Convolutional and pooling layer
m*xn
Input _‘__r_'—— Feature map
X } M'l‘ %"{( Conv_1 Pooling_1 Conv_2 Pooling_2 ;i - Conv_3 Pooling_3
Wi
%
FIGURE 3: CNN model architecture.
TaBLE 1: Activity label corresponding to the original data.
convolution kernel size is 2 x 8, 2x 18, and 2 x 36, and the
1d Exp Label Start End step size is 1. Since the filter may not be able to process the
1 1 5 250 1232 data in a certain direction in the operation of convolution, to
i } Z gg g ;i’gi avoid reducing data of the image edge, the padding pa-
) . g 5105 3359 rameter is introduced and set to “SAME” and 0 is added to
] 1 5 2360 3374 the edge of the input image matrix. After the convolution
1 1 1 3375 3662 operation in the convolution layer, the output will usually
1 1 5 3663 4538 pass through a nonlinear activation function and then form
1 1 11 4539 4735 the output of the convolution layer. The popular activation
1 1 5 4736 5667 functions include Sigmoid function, ReLU function, and
1 1 11 5668 5859 Tanh function. Among them, ReLU function can change the
1 1 5 5860 6786 negative value of the data extracted by CNN into 0, and the
1 1 11 6787 6977 positive value of the data greater than 0 remains unchanged.
1 1 5 6978 8078

After nonlinear processing operation, the positive value



Security and Communication Networks

greater than 0 can be more clearly expressed by the extracted
features. Therefore, ReLU activation function is used in the
convolution layer of CNN:

0, x<0,
f(x) = max (0, x) = (1)
x, x=0.
Further, we have
, 0, x<0,
f(x)= (2)
1, x=0.

Pooling layer is regarded as reducing the number of
feature mappings and parameters. The popular pooling
techniques include maximum pooling and average pooling.
In recent years, relevant theoretical analysis and perfor-
mance evaluation have shown the superior performance of
the maximum pooling strategy, which is widely used in deep
learning [25, 26]. Moreover, some studies show that the
maximum pooling technology is very suitable for sensor-
based human behavior recognition [27]. Therefore, all
pooling layers of CNN in this paper utilized the maximum
pooling technique. Specific convolution and pooling process
parameters are set as shown in Table 2.

3.3. Feature Fusion and Action Classification. To improve the
recognition rate of transition actions, we build a LSTM after
the CNN network {f, f,...... S} is the feature sequence
converted from the feature map calculated by CNN from the
images composed of original data. Therefore, the sequence
{fifaeennnn f} input LSTM and the storage unit of LSTM
will produce a sequence of characters {m;,m,...... m,}.

Since LSTM has different gating units, memory units
such as input gate, forgetting gate, and output gate are
combined with learning weights to solve the problem of
gradient disappearance in the process of back propagation of
ordinary circular neural network. Meanwhile, LSTM can
model time-dependent actions and fully capture global
features, so as to improve the recognition accuracy [28].
LSTM cell controls the inward flowing information of
neurons, which is composed of forgetting gate, input gate,
and output gate. Furthermore, the predicted value of LSTM
cell is obtained using Tanh function.

Firstly, the forgetting gate determines how much in-
formation from the previous moment can be accumulated to
the current cell. As shown in equation (3), the probability
value is calculated to determine the amount of information
that can pass through the gate:

Ly =o(wy» a7 2] +by), (3)

where w/ represents the weight corresponding to the input
vector, b represents the bias, ‘=1’ presents the output of the
neuron at the last moment, and x& represents the current
input of the neuron.

Secondly, the input gate consists of update gate and Tanh
layer, which controls how much information can flow into
the current cell. The calculation process is shown in equa-
tions (4)-(6). The input of the input gate and the output of
the forgetting gate update the cell at the same time,

TaBLe 2: The convolution and pooling layers of the CNN
architecture.

Layers Convld_1 Convld_2 Convld_2
Size 1x2x8 1x2x18 1x2x%x36
Stride Ix1x1 1x1x1 I1x1x1
Channel 18 36 72
Layers Pooling 1 Pooling 2 Pooling 3
Size 1x2x18 1x2x%x36 1x2x%x72
Stride 1x1x1 1x1x1 1x1x1
Channel 18 36 72

discarding unwanted information. Then, the predicted value
of the current unit is determined by the output gate, and the
output of the model is obtained, as shown in equations (7)
and (8):

I, =o(w,*[a“",x“]+b,), (4)
C = tanh(w.* [a“"", x| +b,), (5)
C,=T,+CY 41, xC" P, (6)
I, =o(w, * [a“ 7, x¥] +b,), (7)
a® =T,» tanh(C?). (8)

After the processing of LSTM layer, the final output is a
set of vectors containing time and action sequence corre-
lation, which are input into the full connection layer for the
fusion of global action features. The training process of
neural network model becomes complicated since the sta-
tistical distribution of input of each layer changes with the
parameters of the previous layer. To keep the distribution of
output data from changing too much, a lower learning rate
will be used, which could reduce the training speed. To solve
this issue, this paper introduces the BN to standardize the
values of each layer in LSTM (the output of neurons at the
last moment and the input at the current moment), so that
the mean and variance of sum will not change with the
change of the distribution of the underlying parameters and
effectively separate the parameters of each layer from other
layers. In this way, the gradient disappearance or explosion
can be prevented and the training speed of the network can
be accelerated. The BN algorithm is shown in Algorithm 1.

In Algorithm 1, 1, and ¢2 are the mean and variance of x;
obtained through minibatch. The mean and variance were
used to normalize x; to make the sample follow normal
distribution. However, the positive distribution is not able to
reflect the characteristic distribution of the training samples,
and thus it is necessary to introduce the scaling factor y and
the shift factor 5. As training progresses, y and f are also
learned by back propagation to improve accuracy.

After BN operation, the features are more obvious, so
input them to Softmax layer to extract the action features
and classify them in time series. In this model, the output
layer uses Softmax normalized exponential function to
calculate the posterior probabilities of different actions to



Security and Communication Networks

Output: { y; = BNM(XI')}

Input: data set: y = {x, ...x,}

(1) Calculate the mean of data set: y,— (1/n) Y, x;

(2) Calculate the variance of data set: C)ZC<— (Un) Y, (x;— yx)z
(3) Normalize data: x;« (x; — yx/\/g +¢)

(4) Scale change and deviation: y;—yX; + = BN, 5 (x;)

(5) Return learning parameter y and f3

ALGORITHM 1: Algorithm of batch normalization.

realize classification. It maps the output values of neurons
between (0, 1), which can be regarded as the prediction
probability of actions, and the largest one is the result of
classification. Then the Softmax output layer outputs a
category vector such as [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
indicating that the classification result is an action numbered
5.

3.4. Model Implementation and Training. The neural net-
work described here is implemented in TensorFlow [29]. It is a
lightweight library for building and training neural networks.
Model training and classification runs on a conventional
computer with a 2.4 GHz CPU and 16 GB memory.

The model is trained in a fully supervised manner to
backpropagate the gradient from the Softmax layer to the
convolution layer. Network parameters are optimized by
using minibatch gradient descent method and Adam opti-
mizer through minimizing cross-loss function [13]. Adam is
widely used due to its advantages in simple implementation,
efficient calculation, and low memory demand. Compared
with other kinds of random optimization algorithms, Adam
has great advantages. In this paper, to better train the model,
after the training data are input into the network. Adam
optimizer and backpropagation algorithm are used to learn
and optimize the network parameters. Meanwhile, the cross-
entropy loss function is used to calculate the total error, as
shown in the following equation:

C:_%Z[ylnaﬂl—y)ln(l—a)]’ 9)
X

where y is the true tag and a is the predicted value.

To improve efficiency, small batches of data segment size
are segmented during training and testing. With these
configurations, the cumulative gradient of the parameters is
calculated after each small batch. The weights are randomly
and orthogonally initialized. As a form of regularization, we
introduce a dropout operator on each dense layer of input.
This operator sets the activation of a randomly selected unit
to zero during training. Dropout technology proposed by
Hinton et al. [30] is based on the principle of randomly
deleting some nodes in the network while maintaining the
integrity of input and output neurons, which is equivalent to
training many different networks. Different networks may
overfit in different ways, but their average results can ef-
fectively reduce overfitting. In addition, dropout allows
neurons to learn stronger features by not relying on other

specific neurons. The number of parameters to be optimized
in a deep neural network varies depending on the type of
layer it contains. And it has a great impact on the time and
computer skills required to train the network. The specific
model training parameters will reflect the best choices in the
experiment.

4. Activity Recognition

4.1. Experiment Data. In addition to common basic actions,
this paper also studies transition actions. Actually, a few
existing public data sets contain transition actions. There-
fore, this paper adopts the international standard Data Set,
Smart phone Based Recognition of Human Activities and
Postural Transitions Data Set [31, 32] to conduct an ex-
periment, which is abbreviated as HAPT Data Set. The data
set is an updated version of the UCI Human Activity
Recognition Using popularity Data set [8]. It provides raw
data from smart phone sensors rather than preprocessed
data. In addition, the action category has been expanded to
include transition actions. The HAPT data set contains
twelve types of actions. Firstly, it has six basic actions that
include three types of static actions, such as standing, sitting,
and lying, and three types of walking activities such as
walking, going downstairs, and upstairs; Secondly, it has six
possible transitions between any two static movements:
standing to sitting, sitting to standing, standing to lying,
lying to sitting, sitting to lying, and lying to standing.

The HAPT data collection process is shown in Figure 4.
The experiment involved 30 volunteers, whose ages range
from 19 to 48, each wearing a smart phone on their waist.
Data collection is carried out with the built-in acceleration
sensor and gyroscope, and the sampling frequency is 50 Hz.
Meanwhile, video records of the experimental process are
made for the convenience of subsequent data marking.

The collected data is saved in the form of .txt, and the
acceleration and gyroscope data are stored independently,
with 60 groups, respectively. As shown in Table 1, it is the
label information corresponding to the original data of the
experiment. Among them, the first column is the experiment
ID, the second column is the experimenter number, the third
column is the action label, and the fourth and fifth columns
are the start and end row labels of the corresponding sensor
data. The label ranges from 1 to 12, representing 12 types of
actions. It can be seen from the figure that the collected data
contains invalid data, and the first 250 pieces of data are
unlabeled and belong to invalid data.



Security and Communication Networks

FIGURE 4: Data collection of the physical activities.

TaBLE 3: The data amount of various activities in the HAPT.

Type ID Number
Walk Al 122,091
Upstairs A2 116,707
Downstairs A3 107,961
Sit down A4 126,677
Stand A5 138,105
Lie A6 136,865
Stand to sit A7 10,316
Sit to stand A8 8,029
Sit to lie A9 12,428
Lie to sit Al0 11,150
Stand to lie All 14,418
Lie to stop Al2 10,867

After preliminary processing of the original data, all the
data without labels were deleted. Finally, 815,614 valid pieces
of data were obtained. Due to the low frequency and short
duration of transition action, as well as the high frequency
and long duration of basic action, there is a considerable
difference in data volume between transition action and
basic action. The data volume of the six transition actions is
much lower than that of the other basic actions, accounting
for only about 8% of the total data. Table 3 lists the amount of
data for different actions. The original data is divided into
three parts, training set, verification set, and test set, in which
the training set is used for model training, and verification
set is used to adjust parameters, and test set is used to
measure the quality of the final model.

4.2. Parameters Setting. In the deep learning network, the
model parameters greatly affect its recognition rate.
Therefore, the experimental analysis of the number of
neurons, learning rate, BN, Batch size, and other parameters
in LSTM layer would be conducted in the following sections.

4.2.1. Number of Neurons in LSTM Layer. In order to verify
the influence of the number of neurons in LSTM layer on the
recognition results, the following experiments are carried
out in this paper, as shown in Figure 5. It shows that the
recognition rate is the lowest when each LSTM layer con-
tains only 8 neurons. This is because, given less neurons, the
network lacks the necessary learning ability and information
processing ability, resulting in the low recognition rate. As

0.955

0.950 -

0.945 +

0.940 -

Accuracy

0.935

0.930 -

0.925 |

0.920 -

8 16 24 32 40 48 56 64

Number of neurons
—o— Test accuracy

FIGURE 5: Accuracy of different numbers of neurons on test sets.

the number of neurons increases, the recognition rate tends
to increase. When the number of neurons is 64, the rec-
ognition rate reaches 95.87%. If the number of neurons is too
large, the complexity of network structure will increase and
the learning speed of network will slow down. Therefore,
considering the training time of the network, the number of
LSTM layer neurons in this paper is tentatively 64.

4.2.2. The Learning Rates. Experiments are carried out at
different learning rates in this paper. As shown in Table 4, it
can be seen that the recognition rate of the model reaches a
maximum of 95.87% when the learning rate is 0.002.
Therefore, the learning rate of 0.002 is adopted.

4.2.3. BN Operation. To verify the improvement of the BN
operation on the network model, a comparative experiment
is carried out first with and without BN layer. The epoch is
set to 400, and other parameters remain unchanged. The
recognition rates of both methods on the test set are shown
in Table 5. Obviously, the recognition rate on the test set is
improved by about 4.24% after the BN layer is added.

4.2.4. Batch Size. Batch size refers to the Batch sample size,
whose maximum value is the total number of samples in the



TaBLE 4: Accuracy of different learning rates on test sets.

Security and Communication Networks

TaBLE 6: Accuracy of different batch size on test sets.

Learning rate Recognition rate (%) Batch size Recognition rate (%)
0.001 93.57 25 91.74
0.0015 94.21 50 92.88
0.002 95.87 75 92.92
0.0025 92.39 100 93.10
0.003 93.34 125 94.33
0.0035 92.12 150 95.87
0.004 92.84 175 93.45
0.0045 92.01 200 93.37
225 93.72
250 93.45
TaBLE 5: Accuracy and loss rate on test sets with or without BN 275 92.84
layer. 300 93.35
325 94.06
Recognition rate (%) 350 93.34
Without BN layer 91.63 375 92.96
With BN layer 95.87 400 93.53

training set. When the amount of data is small, the batch
data is the whole data set, so that it can approach the extreme
value direction more accurately. However, in practical ap-
plications, the amount of data used by deep learning is
relatively large, and the principle of small batch processing is
generally adopted. Using small batch processing requires
relatively little memory and faster training time. Within an
appropriate range, increasing the batch size can more ac-
curately determine the direction of gradient descent and
cause less training shock. However, when the batch size
increases to a certain value, the determined downward di-
rection will not change and the correction of parameters will
slow down significantly. The identification results of dif-
ferent batch sizes are shown in Table 6. It can be seen that
when the batch size is 150, the maximum identification rate
reaches 95.87%. Therefore, 150 is selected as the best batch
size in this paper.

The parameters of the CNN-LSTM model proposed in
this paper are shown in Table 7.

5. Experimental Results and Analysis

For human movement recognition, Wang and Liu [33]
proposed to use the F-measure standard measurement
method to verify the performance of the deep-rooted
LSTM network model in human activity recognition. Lu
et al. [34] demonstrated the superiority of the model in
behavior recognition by using accuracy, prediction rate,
and recall rate in the experiment. Therefore, to evaluate
the performance of the motion recognition method
proposed in this paper, we also used the measurement
method of accuracy, recall rate, loss rate, and F-measure in
the experiment.

According to the above parameters, the recognition
confusion matrix of 12 different actions is shown in Table 8.
Accuracy curve of CNN-LSTM model is shown in Figure 6.
It can be seen from Table 9 that the overall recognition rate
of CNN-LSTM is high, and the CNN-LSTM has a better
recognition effect on the transition action.

TaBLE 7: Experimental parameters of CNN-LSTM model.

Parameters Value
Input vector size 150
Input channel number 8
Convolution kernel size 3
Pool size 2
Activation function ReLu
LSTM layer 1
Neurons number 64
Dropout 0.5
Learning rate 0.002
Batch size 150
Epoch 400

TaBLE 8: Confusion matrix of various actions.

Predict
Actual
Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2

Al 40 1 3 0 0 0 0 0 0 0 0 0
A2 5 38 3 0 0 0 0 0 0 0 0 0
A3 1 3 346 0 0 0 0 0 0 0 0 0
A4 1 0 0 3832 3 1 0 1 1 0 0
A5 0O 0 1 31 41 0 0 0 0 0 0 0
A6 0 0 0 1 0 457 0 0 0 0 0 0
A7 0o 0 0 1 0 0 17 0 0 0 0 0
A8 o 0 0 0 0O 0 0 4 0 0 1 0
A9 0O 0 0 0 0 0 0 0 19 1 4 1
AI00 0 0 0O 0O 0 0 0 0 1 14 0 2
Al1 0 1 0 1 0 0 1 0 2 1 32 1
A2 0 0 0 0 0 0 0 0 0 1 1 16
6. Case Study

In the non-deep-learning method, the random forest clas-
sification method (RF) and K-nearest neighbor (KNN)
classification perform well in action classification recogni-
tion. Therefore, the CNN-LSTM model proposed is com-
pared with the RF and KNN methods. First of all, input the
HAPT data set into RF and KNN. Then, segment the original



Security and Communication Networks 9

1.0 A

0.9 1

0.8 4

0.7 A

0.6 A

0.5 4

0.4 A

0.3 4

0 50 100 150 200 250 300 350 400
Iterations

—— Train

—— Validation

FIGURE 6: Accuracy curve of CNN-LSTM Model.

TaBLE 9: The recognition accuracy, recall rate, and F value of various actions.

1D Accuracy (%) Recall (%) F-measure (%)
Al 99.03 98.32 98.68
A2 97.78 98.73 98.35
A3 98.86 98.02 98.44
A4 90.76 91.85 91.30
A5 93.09 93.09 93.09
A6 99.78 99.56 99.56
A7 94.44 89.47 91.89
A8 100 100 100
A9 76.00 82.61 79.17
Al0 82.35 77.78 80.00
All 82.05 86.49 84.21
Al2 88.89 80.00 84.21

TaBLE 10: Average accuracy of various actions in CNN-LSTM, RF, and KNN models.

ID RF (%) KNN (%) CNN-LSTM (%)
Al 99.90 88.10 99.03

A2 92.50 97.80 97.78

A3 90.20 99.40 98.86

A4 91.90 83.80 90.76

A5 90.80 87.50 93.09

A6 97.10 100 99.78

A7 71.30 66.70 94.44

A8 72.00 68.00 100

A9 51.30 38.60 76.00

Al0 74.90 36.30 82.35

All 59.20 33.70 82.05

Al2 61.10 57.90 88.89
sensor data and calculate the mean value, variance, co-  than that of RF and KNN methods for both basic actions and
variance, and 15 features. Finally, classify the basic actions  transition actions.

and transition actions according to the clustering results. In addition to the comparison with RF and KNN clas-

The classification results are shown in Table 10. It canbe seen  sifier, our proposed model is also compared with a single
that the recognition rate of CNN-LSTM model is higher =~ CNN, a single LSTM, CNN-GRU, and CNN-BLSTM deep



10 Security and Communication Networks
TaBLE 11: Average accuracy of different activities with five deep learning models.
ID CNN (%) LSTM (%) CNN-BLSTM (%) CNN-GRU (%) CNN-LSTM (%)
Al 97.50 97.70 97.41 99.75 99.03
A2 97.25 97.10 95.65 98.99 97.78
A3 95.60 97.15 100 96.57 98.86
A4 91.26 90.26 91.96 81.99 90.76
A5 90.80 90.80 84.74 92.48 93.09
A6 99.67 98.58 100 99.78 99.78
A7 76.47 64.86 44.44 77.78 94.44
A8 100 66.67 66.67 50.00 100
A9 63.83 69.39 62.07 48.00 76.00
A10 84.85 70.27 80.00 52.94 82.35
All 72.50 69.33 65.00 71.79 82.05
Al12 83.30 70.27 70.59 55.56 88.89

TABLE 12: Average accuracy of the five models in this paper.

Method Average recognition rate (%)
CNN 94.29
LSTM 93.22
CNN-BLSTM 92.73
CNN-GRU 93.34
CNN-LSTM 95.87

TaBLE 13: Average accuracy of different methods on test set in the
paper [35, 36].

Method Average recognition rate
BLSTM [35] 87.5
DBN [36] 89.6
CNN-LSTM 95.8

learning models. Table 11 shows the average accuracy of
various actions in five different depth models. As can be seen
from Table 11, CNN-LSTM not only has a slightly higher
recognition of basic movements than the other five models,
but also has a significantly better recognition of transition
movements, especially standing to sitting, sitting to lying,
and standing to lying. Table 12 shows the recognition rates of
different models on the test set. It can be seen from the table
that the average recognition rate of the three models is
higher than 90%, but the recognition effect of CNN-LSTM
model is slightly better than that of CNN, LSTM, CNN-
GRU, and CNN-BLSTM.

To prove the effectiveness of the CNN-LSTM deep
learning model, it is also compared with other deep learning
methods using the same dataset. Kuang [35] applied BLSTM
to construct the behavior recognition model. Hassan et al.
[36] used deep belief network (DBN) for human behavior
recognition. We compared the performance with the ap-
proaches in [35, 36], with the result shown in Table 13. It
follows that the proposed CNN-LSTM can achieve highest
average recognition rate.

7. Conclusion

This paper explored the recognition method based on deep
learning and designed the behavior recognition model based
on CNN-LSTM. CNN learns local features from the original

sensor data, and LSTM extracts time-dependent relation-
ships from local features and realizes the fusion of local
features and global features, fine description of basic and
transition movements, and accurate identification of the two
motion patterns.

The actions identified in this paper only include common
basic actions and individual transition actions. In the next
step, more kinds of actions can be collected and more
complex actions can be added, such as eating and driving.
And the individual recognition can be realized by consid-
ering the behavior differences of different users. Meanwhile,
the deep learning model still needs to be optimized and
improved. Studies show that the combination of depth
model and shallow model can achieve better performance.
Deep learning model has strong learning ability, while
shallow learning model has higher learning efficiency. The
collaboration between the two can achieve more accurate
and lightweight recognition.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors would like to thank the support of the labo-
ratory, university, and government. This research was
funded by the National Key Research and Development Plan
(No. 2017YFB1402103), the National Natural Science
Foundation of China (No. 61971347), Scientific Research
Program of Shaanxi Province (2018HJCG-05), and Project
of Xi’an Science and Technology Planning Foundation
(201805037YD15CG214).

References

[1] I. H. Lopez-Nava and M. M. Angelica, “Wearable inertial
sensors for human motion analysis: a review,” IEEE Sensors
Journal.vol. 16, no. 15, 2016.



Security and Communication Networks

[2] Y. Liu, L. Nie, L. Liu, and D. S. Rosenblum, “From action to
activity: sensor-based activity recognition,” Neurocomputing,
vol. 181, pp. 108-115, 2016.

[3] T. Liu, F. Bingfei, and L. Qingguo, “The invention relates to a
wearable motion sensor and a method for resisting magnetic
field interference,” 2017.

[4] O.D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, 2013.

[5] F.J. Ordéiiez and D. Roggen, “Deep convolutional and LSTM
recurrent neural networks for multimodal wearable activity
recognition,” Sensors (Switzerland), vol. 16, p. 1, 2016.

[6] X.Du, R. Vasudevan, and M. Johnson-Roberson, “Bio-LSTM:
a biomechanically inspired recurrent neural network for 3-d
pedestrian pose and gait prediction,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1501-1508, 2019.

[7] Y. Huang, C. Wan, and H. Feng, “Multi-feature fusion human
behavior recognition algorithm based on convolutional
neural network and long short term memory neural network,”
Laser Optoelectron. Prog, vol. 56, p. 7, 2019.

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, 2015.

[9] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Con-
volutional learning of spatio-temporal features,” in Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
Springer, Berlin, Germany, 2010.

[10] S.Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional neural
networks for human action recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 221-231, 2013.

[11] C. Liu, J. Liu, Z. He, Y. Zhai, Q. Hu, and Y. Huang, “Con-
volutional neural random fields for action recognition,”
Pattern Recognition, vol. 59, pp. 213-224, 2016.

[12] K. Cho, M. Bart van, G. Caglar et al, “Learning phrase
representations using RNN encoder-decoder for statistical
machine translation,” in Proceedings of the EMNLP 2014 -
2014 Conference on Empirical Methods in Natural Language
Processing, pp. 1724-1734, Doha, Qatar, October 2014.

[13] M. Zeng, T. N. Le, Y. Bo et al., “Convolutional Neural
Networks for human activity recognition using mobile sen-
sors,” in Proceedings Of the 2014 6th International Conference
On Mobile Computing, Applications And Services, pp. 197-
205, Austin, TX, USA, November 2015.

[14] W. Jiang and Z. Yin, “Human activity recognition using
wearable sensors by deep convolutional neural networks,” in
Proceedings Of the 2015 ACM Multimedia Conference MM
2015, pp. 1307-1310, Brisbane, Australia, October 2015.

[15] Y. Chen and Y. Xue, “A deep learning approach to human
activity recognition based on single accelerometer,” in Pro-
ceedings of the 2015 IEEE International Conference On Sys-
tems, Man, and Cybernetics, SMC 2015, pp. 1488-1492, Hong
Kong, China, October 2016.

[16] C. A.Ronao and S.-B. Cho, “Human activity recognition with
smartphone sensors using deep learning neural networks,”
Expert Systems with Applications, vol. 59, pp. 235-244, 2016.

[17] A.Murad and]J. Y. Pyun, “Deep recurrent neural networks for
human activity recognition,” Sensors (Switzerland), vol. 17,
p. 11, 2017.

[18] J. Zhou, J. Sun, P. Cong et al., “Security-critical energy-aware
task scheduling for heterogeneous real-time MPSoCs in IoT,”
IEEE Transactions On Services Computing (TSC), vol. 12, p. 99,
2019.

11

[19] Y. Guan and T. Pl6tz, “Ensembles of deep LSTM learners for
activity recognition using wearables,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 1, no. 2, pp. 1-28, 2017.

[20] L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, and J. Chen, “A two-
stage locality-sensitive hashing based approach for privacy-
preserving mobile service recommendation in cross-platform
edge environment,” Future Generation Computer Systems,
vol. 88, pp. 636-643, 2018.

[21] A. Ignatov, “Real-time human activity recognition from ac-
celerometer data using Convolutional Neural Networks,”
Applied Soft Computing, vol. 62, pp. 915-922, 2018.

[22] H.F.Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep
learning algorithms for human activity recognition using
mobile and wearable sensor networks: state of the art and
research challenges,” Expert Systems with Applications,
vol. 105, pp. 233-261, 2018.

[23] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning
for sensor-based activity recognition: a survey,” Pattern
Recognition Letters, vol. 119, pp. 3-11, 2019.

[24] S. Wu, G. Li, L. Deng et al., “$L1$-norm batch normalization
for efficient training of deep neural networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 30,
no. 7, pp. 2043-2051, 2019.

[25] B. Almaslukh, J. Al Muhtadi, and A. M. Artoli, “A robust
convolutional neural network for online smartphone-based
human activity recognition,” Journal of Intelligent & Fuzzy
Systems, vol. 35, no. 2, pp. 1609-1620, 2018.

[26] R. Yao, G. Lin, Q. Shi, and D. C. Ranasinghe, “Efficient dense
labelling of human activity sequences from wearables using
fully convolutional networks,” Pattern Recognition, vol. 78,
pp. 252-266, 2018.

[27] T.Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and
B. M. Eskofier, “Activity recognition in beach volleyball using
a deep convolutional neural network,” Data Mining and
Knowledge Discovery, vol. 31, no. 6, pp. 1678-1705, 2017.

[28] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical
exploration of recurrent network architectures,” in Proceed-
ings of the 32nd international Conference on machine learning,
ICML 2015, vol. 3, pp. 2332-2340, Lille, France, July 2015.

[29] S. Li, S. Zhao, P. Yang, P. Andriotis, L. Xu, and Q. Sun,
“Distributed consensus algorithm for events detection in
cyber-physical systems,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2299-2308, 2019.

[30] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, Improving Neural Networks by Pre-
venting Co-adaptation of Feature Detectors, arXiv preparation,
Geneva, Switzerland, 2012.

[31] B. M. h. Abidine, L. Fergani, B. Fergani, and M. Oussalah,
“The joint use of sequence features combination and modified
weighted SVM for improving daily activity recognition,”
Pattern Analysis and Applications, vol. 21, no. 1, pp. 119-138,
2018.

[32] G. M. Weiss, J. W. Lockhart, T. T. Pulickal et al., “A
smartphone-based activity recognition system for improving
health and well-being,” in Proceedings of the 3rd IEEE In-
ternational Conference On Data Science And Advanced An-
alytics, DSAA 2016, pp. 682-688, Montreal, QC, Canada,
October 2016.

[33] L. Wang and R. Liu, “Human activity recognition based on
wearable sensor using hierarchical deep LSTM networks,”
Circuits, Systems, and Signal Processing, vol. 39, no. 2,
pp. 837-856, 2019.



12

[34] W. Lu, F. Fan, J. Chu, P. Jing, and S. Yuting, “Wearable
computing for internet of things: a discriminant approach for
human activity recognition,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2749-2759, 2019.

[35] X. Kuang, Human Behavior Recognition Based on Deep
Learning and Wearable Sensor, Nanjing University of In-
formation Engineering, Nanjing, China, 2018.

[36] M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren,
“A robust human activity recognition system using smart-
phone sensors and deep learning,” Future Generation Com-
puter Systems, vol. 81, pp. 307-313, 2018.

Security and Communication Networks



Hindawi

Security and Communication Networks
Volume 2020, Article ID 6371814, 13 pages
https://doi.org/10.1155/2020/6371814

Research Article

WILEY

Hindawi

Warehouse-Oriented Optimal Path Planning for Autonomous

Mobile Fire-Fighting Robots

Yong-tao Liu,"? Rui-zhi Sun ®,"? Tian-yi Zhang,‘l’5 Xiang-nan Zhang,l Li Li,!
and Guo-qing Shi'

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

North China Institute of Science and Technology, East Yanjiao, Beijing 065201, China

*Scientific Research Base for Integrated Technologies of Precision Agriculture (Animal Husbandry), The Ministry of Agriculture,
Beijing 100083, China

*Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan

*Wedo Electric Solutions Technology Co. Ltd., Beijing 100095, China

Correspondence should be addressed to Rui-zhi Sun; sunruizhi@cau.edu.cn
Received 17 December 2019; Revised 30 January 2020; Accepted 7 February 2020; Published 20 June 2020
Guest Editor: Xiaolong Xu

Copyright © 2020 Yong-tao Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to achieve the fastest fire-fighting purpose, warehouse autonomous mobile fire-fighting robots need to make an overall
optimal planning based on the principle of the shortest time for their traveling path. A= algorithm is considered as a very ideal
shortest path planning algorithm, but the shortest path is not necessarily the optimal path for robots. Furthermore, the con-
ventional A= algorithm is affected by the search neighborhood restriction and the theoretical characteristics, so there are many
problems, which are closing to obstacles, more inflection points, more redundant points, larger total turning angle, etc. Therefore,
A algorithm is improved in eight ways, and the inflection point prior strategy is adopted to compromise Floyd algorithm and A *
algorithm in this paper. According to the criterion of the inflection point in this paper, the path inflection point arrays are
constructed and traveling all path nodes are replaced by traveling path inflection points for the conventional Floyd algorithm
backtracking, so it greatly reduces the backtracking time of the smooth path. In addition, this paper adopts the method of the
extended grid map obstacle space in path planning safety distance. According to the relationship between the actual scale of the
warehouse grid map and the size of the robot body, the different safe distance between the planning path and the obstacles is
obtained, so that the algorithm can be applied to the safe path planning of the different size robots in any map environments.
Finally, compared with the conventional A algorithm, the improved algorithm reduces by 7.846% for the path length, reduces by
71.429% for the number of the cumulative turns, and reduces by 75% for the cumulative turning angle through the experiment.
The proposed method can ensure robots to move fast on the planning path and ultimately achieve the goal of reducing the number
of inflection points, reducing the cumulative turning angle, and reducing the path planning time.

1. Introduction

One of the core technologies of autonomous mobile robots is
the ability of real time path planning. Path planning refers to,
under the premise of following an optimal index (such as the
shortest time, the optimal path, and the lowest energy
consumption), the optimal path without collision from
origin to termination is planned in the usage scenario [1],
and the second path planning can be planned in the process
of the original path planning in real time.

The premise of path planning needs to build environ-
ment map. There are generally two ways to build a map: one
is that the robot automatically builds the map through
SLAM; the other one is that the site CAD is manually
imported into the robot system according to the specified
format. Either way, the environmental layout is required to
be as fixed as possible.

The object of this paper, warehouse-oriented autono-
mous mobile fire-fighting robot, is just suitable for this
scenario. In the environment, multiple flame detection


mailto:sunruizhi@cau.edu.cn
https://orcid.org/0000-0001-7267-5283
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6371814

probes with address codes are installed on the top. When a
flame is detected by a certain probe, the probe code and
alarm signal are sent to the robot through edge computing
processing and wireless networking technology [2-7]. Here,
we need to ensure the security and stability of wireless sensor
network and reduce the network delay [8-11]. The robot
completes autonomous path planning and reaches the ig-
nition point in the shortest time, and it extinguishes fires
early in the fire. The structural space in the scene is relatively
stable. In order to adapt to the path planning of the fire-
fighting robot, we should take the best rather than the
shortest as the principle according to the optimization index
path. Because the robot is limited by its own space structure,
it is difficult to ensure high-speed travel when it is in a small
space and the loss time is much longer than that of path
planning. The optimal path is based on the principle of the
shortest time, i.e., the robot can achieve the fastest traveling
path, and the fire-fighting robot can reach the fire point in
the shortest time to put out the fire. This requires that, under
the premise of ensuring the shortest planning path, the path
and obstacles (such as shelves) have enough safe distance,
reserved robot turning action space, etc. And, the number of
turning points is less; the total turning angle is lower.

After years of development, the path planning algorithm
has achieved good results, but there are still some problems
in specific application scenarios. The proposed method of
the artificial potential field by Khatib [12] in 1994 falls into
local minimum and oscillate near obstacles easily. In genetic
algorithm (GA) [13], the range of coding length is large and
the convergence is bad. In the complex map mode, the
convergence speed of the algorithm is slow and the com-
putation is large. In artificial neural network (ANN) [14],
when the initial feedback information of the algorithm is
insufficient, it needs to adjust the weight in a long time to
achieve the optimization effect of the project approval. The
search speed of the ant colony algorithm is slow and falls into
local optimality easily [15]. The Dijkstra algorithm is a
classical breadth prior algorithm [16], and it can always find
the optimal path and conduct the overall search directly.
However, it does not consider the target point information,
and it has a long search time and low search efficiency
because it cannot meet the need of rapid path planning. BFS
optimal prior algorithm can quickly guide the search to the
target node and greatly improve the search efficiency but
cannot often get the shortest path.

A algorithm, first proposed in 1968 by Hart et al. [17],is a
heuristic search algorithm [18-20] combined with the ad-
vantages of the above algorithms. It uses heuristic information
to guide the search direction, so as to reduce the search scope
and improve the search efficiency. It is a typical heuristic path
planning algorithm [21, 22], which has been successfully
applied and verified in mobile robot path planning [23].

However, due to the computational characteristic of Ax
algorithm, the planned path points generally have many
problems, such as many broken lines and large cumulative
turning angle, and easily discard some points to generate
suboptimal problems [24]. Therefore, many researchers have
proposed improved algorithms in computational time
[25, 26]. Gao et al. [27] proposed a bidirectional time-

Security and Communication Networks

effective A* algorithm to find the path and adopted a
multineighborhood grid distance computational scheme to
achieve the effect of improving efficiency and smoothing the
path, but it is not suitable for large-scale complex maps. In
[28], an improved search Ax algorithm combined with skip
points is proposed, the speed of the algorithm has been
greatly improved, but there are still many inflection points
and close to obstacles. In [29], the size of the robot is
considered, and a neighborhood matrix is proposed to
improve the path safety of obstacle search. However, the
path smoothing and length are not improved, so there are
still many problems including more turning angles and large
total turning angle. In [30, 31], proposed expand search
neighborhood and dispose of quadratic smoothing of
quintic polynomial reduce the length of search path and
turning angle and greatly improve path smoothing. How-
ever, there are still some problems, such as closing to ob-
stacles, and safety distance is not considered.

Aiming at the problems of usage scenarios of warehouse-
oriented fire-fighting robots and the existing various opti-
mizational Ax algorithm, this paper proposes a compre-
hensive improved A algorithm to achieve path smoothing
and reduces broken lines and cumulative turning angle.
And, according to the bulk of the robot and the scale of map,
we set up safe distance with the obstacles to meet the path
planning application of the robots.

The paper is organized as follows. In Section 2, we
propose the improved As algorithm and smoothen the
optimal path. Then, we introduce the constraint conditions
including robot’s safety traveling distance and compare with
the effect of the current latest algorithm. Section 3 introduces
the practical application effect of the complete algorithm in
this paper and verifies a great impact of safety distance on the
path. Section 4 concludes the paper.

2. Improved A= Algorithm

The planning effect of the conventional four-way search A
algorithm is shown in Figure 1(a). There are a lot of right-
angle points in the route, and the length of the route is not
the shortest. On this basis, eight-way search A algorithms
are proposed; the planning effect is shown in Figure 1(b). It
can be seen that the eight-way search Ax algorithm over-
comes the problem of right-angle inflection point in the path
and plans the shortest path length under the algorithm.
However, the algorithm has the problems of closing to the
obstacles and crossing the diagonal vertex of the obstacles
(Figure 1(a)); this path cannot be used as the traveling path
of the robot obviously. Therefore, the conventional eight-
way search Ax algorithm is not suitable for robot path
planning and it needs to improve the basic safety distance
and the constraint.

2.1. Improved Eight-Way Ax Algorithm. In view of the
existing problems of conventional eight-way search A= al-
gorithm, we make a basic improvement, i.e., when the eight-
way search area is expanded and if the path forward di-
rection is a slash, the constraint term is added, for example,



Security and Communication Networks

=W UTAANI00\ O O = N Wk 1O\

=W TN N 00\O

AN FNONOAND—~ AN FIN OO0

—
~~~~~~~~~~ S5 — N SN0 N O

S = AN N\ DN
— o —

18

DO~
— AN

FIGURE 1: The comparisons of A algorithm comparison. (a) Conventional four-way As algorithm. (b) Conventional eight-way A

algorithm. (c) Improved eight-way A algorithm.

in Figure 1(c), when the path is planned according to a lower
right slash, then we judge whether there is any obstacle on
the right and bottom sides of the parent-node. If there is, the
path is not feasible and the subnode needs to be selected
again. When the path is planned according to upper left
slash, then we judge whether there is any obstacle on the left
and upper sides of the parent-node. If there is, the path is not
feasible, the subnode needs to be selected again. The plan-
ning path according to this method is shown in Figure 1(c).
The performance comparisons of the three algorithms in
Figure 1 are shown in Table 1. It can be seen that the con-
ventional four-way search A= algorithm has the longest path
length and the slowest operation time. The conventional
eight-way search A= algorithm has the shortest path length
and the fastest operation time, but the path has the problems
of closing to the obstacle vertex and crossing the obstacle
vertex angle, so the path cannot be used by robots. On this
basis the eight-way search, the A algorithm is improved in
this paper and the shortest path is realized under the algo-
rithm. Compared with the conventional four-way search Ax
algorithm, the path length reduces by 12.53%, the operation
time reduces by 46.9%, and the situation closing to the ob-
stacle vertex and crossing the corner is effectively avoided.

2.2. Improved Floyd Path Smoothing Algorithm. In [30],
traversing nodes are used for the smoothing process. In [32],
Floyd algorithm is used for the smoothing process. These
two methods need to trace back all path nodes one by one
from the origin or termination to determine whether they
intersect obstacles. If they do not intersect, the intermediate
node will be discarded, and if they intersect, the previous
node will be retained. These two methods can optimize the
original path, but traversing all the path nodes significantly
reduces the execution speed, and the straight path nodes in
the original path can avoid traversing judgment completely.
Therefore, this paper proposes the criterion of the prior
inflection point, and Floyd algorithm is used to connect the
backtracking method of the inflection point.

2.2.1. Criterion of the Planning Route Inflection Point.
Before path smoothing is completed, the eight-way Ax al-
gorithm path planning has to be improved. Inflection

criteria are added after planning; path inflection array is
generated. For example, let point D in Figure 2 be the current
node #, according to the Ax* algorithm formula:

Jf(n) =g(n)+h(n), (1)

where g(n) indicates the length of the actual path from the
origin to the current node and h(n) is the distance of es-
timate cost function from the state node n to termination.
According to the eight-way extended As# algorithm,
there are only two path lengths of adjacent nodes, i.e., L and
V2L. If the distance from the current node # to its parent-
node (n— 1) and sub-node (n + 1) is not equal, then the node
in the planning path is the inflection point. The criteria are as
follows:
L(Xn—l’Xn) ¢L(Xn’Xn+l)' (2)
For example, if L(C, D) # L(D, E), then the planning
path node D is the inflection point; if L(D, E) = L(E, F), then
the planning path node E is a normal node. In the judgment,
all the noninflection nodes in the planning path are
expressed as (X, y, 0); the inflection nodes are expressed as (x,
¥, 1); the origin of the robot path is defined as a common
node; the termination is defined as an inflection. All the
nodes are saved in the file-list array. In the last path
backtracking, simply priorly connecting the inflection points
can get the path smooth optimization.

2.2.2. Design of Floyd Algorithm. We combine Floyd algo-
rithm and the improved As algorithm; the length of the
original planning path can be shorter; the number of in-
flection points can be less; the cumulative turning angle can
be less; the path can be smoother.

In the smooth process, firstly, we need to get the file list
of the inflection points of the planning path and directly
connect the second inflection point in the backtracking path
when backtracking from the termination. If it does not
intersect the obstacle, then the third inflection point should
be connected. If the connection encounters the obstacle, all
nodes between the third inflection point and the second
inflection point are traced back in turn until the node that

Security and Communication Networks

TaBLE 1: The comparisons of performance efficiency for A= algorithm.

Origin termination Algorithm The length of the path Turn times
as, 1) Four-way Ax 28.00 0.0678
2. 13) Eight-way A* 2214 0.0196
’ Improved eight-way Ax 24.49 0.036
10
8
6
4
2
0
0 2 4 6 8 10
Origin —— Once original path
® Termination - - Search path
® Node —— Optimal path
@ Inflection point
FIGURE 2: The principle of improved A algorithm.
does not intersect the obstacle is found, and the intermediate L(A,E) + L(E,G)<L(A,D) + L(D,G). (6)

node is discarded.

In Figure 2, if points A and B are adjacent inflection
points, then they can be connected directly. The distance is
written as L(A, B). Judge A — Cand A — D in turn; if they
do not intersect obstacles when they are connecting, the
original path can be changed to A — D. But, when A — G,
they intersect obstacles, so the path length L(A, G) =+00:

L(A,C)<L(A,B)+ L(B,C). (3)

Then, the array of points A and C are retained, and the
array of point B is deleted:

L(A,D)<L(A,C)+L(C,D). (4)

Then, the array of points A and D are retained, and the
array of point C is deleted.
Because L(A, G) =+o00,

L(A,G) =L(A,D)+L(D,G). (5)

At this time, assume the coordinate of point G is G(3, j,
1), then the original path node between D and G will be
traced back from point G, G,(i—1, j, 0), G,(i—2, j, 0),
G;(i-3,, 0), and G,(i—4, j, 0), where G;=F and G, =E.
When connected with point A, L(A, G,)=+0c0, L(A,
G,) =+00, and L(A, F) =+o00 are abandoned:

Then, the array of points A and E are retained, and the
array of point D is deleted. The original path
A— B— C—D— G is optimized as A— E— G,
so far, this section of path optimization is completed, and the
next path optimization is carried out accordingly.

The specific implementation steps of the path smoothing
algorithm are as follows:

(i) Step 1: take out the processed nodes of the above
improved eight-way A algorithm and carry out the
secondary backtracking analysis from the
termination.

(ii) Step 2: start the termination to connect all the in-
flection points one by one, B— C — D, and then
the nodes of noninflection points, such as the points
between B— C, are ignored during the connection
process.

(iii) Step 3: when points A and D are directly connected,
continue to search backward inflection point G. At
this time, there will be a conflict between search
path A — G and obstacles. Then, search the nodes
of noninflection point between G — D.

(iv) Step 4: if there is still a conflict with the obstacle
when searching to node F, then continue to Step 3

Security and Communication Networks

until node E, that is, no conflict with the obstacle is
found.

(v) Step 5: at this time, take the direct connection path
A—E as the fixed path and repeat step
2 — 3 — 4 from node E until reaching the origin.

The flowchart of the algorithm is given in Figure 3.

Compared with [33], the method only makes redundant
judgments for inflection points; it adds the backtracking
function of common nodes between obstacle inflection
nodes and makes the path distance shorter. Compared with
[30, 32], the traversal connection judgment time of the
smoothing path algorithm is significantly reduced. In the
method, all node connection judgments are no longer
performed, and only the inflection nodes in the eight-way
Ax algorithm planning nodes are preferentially connected
twice. There is a conflict with obstacles, and then node by
node from the inflection node back is connected; the number
of connection judgments is reduced greatly; the path
smoothing processing time becomes shorter.

An array of once planned path node int a [3] [6] is shown
as

(0,0,0,)
2,2,1,
2,3,0,
2,4,0,
2,5,0,
2,6,0,
2,7,1,
3,8,1,

14380 [@)
5,8,0,
6,8,0,
7,8,0,
8,8,1,
9,7,1,
9,6,0,

[9,5,1]

It can be seen that there are five inflection nodes besides
origin [0, 0, 0] and termination [1, 5, 9] in once planned path,
and the following five inflection nodes are used as the prior
traversal point:

2,7,1,
3,8,1,
188,1, . (8)
9,7,1,

9,51 |
After executing the optimized algorithm based on Floyd
algorithm, the final path contains only 3 nodes and the

noninflection points in the once path. The optimal path node
array int a [3] [3] is shown as follows:

4,8,0,
8,8,1, |. 9)
9,5,1.

2.2.3. Simulation Analysis of the Confluent Improved
Algorithm. To verify the effect of the proposed confluent
improved Floyd and improved A# algorithms in this paper,
comparisons are made between the basic improved A al-
gorithm and the proposed prior moving route algorithm in
[34]. The optimized path in [34] is shown in the red path in
Figure 4(a). The length of the path is actually 21.4852 grids,
but the path has the problem of closing to the apexes of the
obstacles and the possibility of crossing the top angle of the
obstacles, so the path is not suitable as a robot planning path.

This paper basically improves the path planning of the
A algorithm and adds grid constraints to avoid closing to
obstacle paths. The planned path is shown in Figure 4(b).

Finally, path smoothing process is added based on the
path planning of the improved A# algorithm, and the
processing effect is shown in the blue path in Figure 4(c).

In the case that the initial orientation of the robot is not
considered in the three paths in Figure 4, the obtained data
graph by the experimental simulation is shown in Table 2.
Compared with the improved eight-way A+ algorithm, in
this paper, the path length of the confluent algorithm re-
duces by 7.846%, the number of cumulative turns reduces by
71.429%, and the cumulative turning angle reduces by 75%.
Compared with the improved A algorithm in [34], in this
paper, the path length of the smoothing algorithm reduces
by 0.02%; the length optimization is not obvious. But the
number of the cumulative turns reduces by 66.67%, and the
cumulative turning angle reduces by 57.91%. The advantage
of the part is obvious, the path is more conducive to the
execution of the robot.

So far, although the proposed confluent algorithm in this
paper has obvious advantages in cumulative turning points
and cumulative turning angles, there are still cases crossing
the vertices of obstacles, so it needs to further optimize the
path safety distance considering the actual situation of the
robot body space.

2.3. Optimization Algorithm of the Path Planning Safety
Distance. For the reasonable traveling path of the robot, we
should fully consider its own space structure and a sufficient
safe distance from the obstacles should be reserved in the
path planning. In this way, the robots can reduce the de-
tection and processing time required to avoid obstacles when
it actually follows the path in the later stage. Although this
paper achieves the goal of the smoothing path by improving
the Floyd algorithm, the optimized path still has the situ-
ation closing to the obstacles. Therefore, this paper continues
to lead into the concept of path safety space in the design for
algorithm optimization.

Take out the array of
file-list node

v

Put the termination in the key list as
the parent-node n

v

Skip the first
inflection pointn =n + 1

v

Take out the (n + 1)-th

v

Security and Communication Networks

inflextion point

Is there an obstacle
conflict with the parent node?

The inflextion point
n=mn+ 1is abandoned

Is it the origin of the
original planned path?

Yes

Backtrack all nodes from n + 2
ton+1

Is there an obstacle
conflict with the parent node?

Yes

Put it into the key list, and
let this node be the parent-node
n=n+1l

FIGURE 3: Algorithm flowchart.

2.3.1. Optimization Algorithm of the Safety Distance Based on
Extended Obstacle Boundary. In order to ensure the space
safety distance of the path, there are generally two methods.
One is to expand the pixels occupied by the robot body
within the map pixels and make the robot body space
consistent with the actual map pixel ratio. The cross-obstacle
search algorithm and the m-shaped obstacle search algo-
rithm are given in [29]. The algorithm obtains different
safety distances by changing the size of the search matrix to
ensure the safety of the different robots in different map
environments. The other one is the method that is to extend
the obstacle boundary. This method combining with the size
of the robot can set the safety distance arbitrarily and in-
tuitively without increasing the difficulty of the algorithm,
and it can effectively reduce the number of traversal grids in
the search area and the search time.

Note: in the following path planning diagrams, the red
path is the planned path of the basic improved eight-way A
algorithm; the blue path is the smoothed planned path,
which is the final path; the colored grid is all the traversal
grids in the path planning process.

The planned route is the planned route obtained in [29]
using the 12-neighborhood search algorithm in Figure 5(a).
The method can improve the search efficiency, and it also
leads to the increase of the path length. The algorithm is
designed with the path length as the primary priority and the
search time as the secondary priority. In Figure 5(b), the red
path is the improved eight-way A algorithm planned path
in this paper. The path is linked by the grid center point. The
planned path can also achieve a safety distance to a certain
degree. However, it is not flexible enough and cannot be set
arbitrarily according to the robot map ratio.

Security and Communication Networks 7
20 20 1] 11
: e .
N 15 T s mom |
14
12
10 10 10
8 .) .

o | T i : [m
. 5 , 5 :
ad =

4T m roved A-star * [
' W g - w . -
0 0 o Tl
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 0 5 10 15 20
- —- Ant colony

—— Improved A-star

(a) (b) (c)

FIGURE 4: The improved path smoothing algorithm process. (a) The improved algorithm in [34]. (b) The improved algorithm in this paper.

(c) The confluent path smoothing algorithm.

TaBLE 2: Comparisons of key parameters for the algorithmic effectiveness.

Algorithm The length of path Inflection points Cumulative turning point (°)
Improved eight-way Ax 23.31 7 360.00
Algorithms in [25] 21.4852 6 213.84
Smoothing algorithm in this paper 21.4809 2 90.00
100
90
80
70
60
50
40
30
20
10
0
0 10 20 30 40 50 60 70 80 90 100
(a) (b)

F1GURE 5: The comparison of the safety distance solutions. (a) Cross barrier search in [29]. (b) Extended obstacle boundary method in this

paper.

It can be seen in Table 3 that the improved A* smoothing
algorithm adopts the search method of expanding obstacle
boundary in this paper; compared with [29], the path length is
shorter and the number of traversed grids is smaller. The

number of the path inflection points that is a key indicator for
evaluating the robot’s traveling path has also decreased 44.4%;
the corresponding cumulative turning angle has decreased
significantly; the path smoothness advantage is very obvious.

8 Security and Communication Networks

TaBLE 3: The comparisons of two safety distance search methods.

Algorithm The length of path Inflection points Ergodic grid number

12 neighborhood cross search algorithms in [29] 224 18 7957
Extended barrier boundary method 169.81 10 3739

2.3.2. Impact Analysis of the Path Safety Distance.
Although the constraint condition of safety distance is re-
quired in path planning, the design path is more suitable for
robot walking. On the surface, the path designed by the
algorithm should be as far away from the obstacles as
possible, but when this safety distance is set too large, the
path cannot be planned. As shown in Figure 6, this paper has
tested and analyzed the situations of the different safety
distances.

In Figure 6, the path planning test was performed on a
map of 25 x 25 grid pixels for each without safety distance
constraint, 0.6 grid safety distance, and 1.0 grid safety
distance.

According to the analysis in Table 4, it can be found that
when there is no safety distance, the planned path is the
shortest; the number of inflection points is centered; the
number of traversed grids is the largest; and the planning
time is the longest. At 0.6 grid safety distance, the path length
is 1.2% longer than the shortest path; the number of in-
flection points reduces by 50%; the number of traversal grids
reduces by 62.6%; and the planned time reduces by 37.79%.
1.0 grid safety distance has the longest path length, the
largest number of inflection points, and the shortest planned
time. If the safety distance grid is set to 2.0, path planning
cannot be completed.

Under the condition that the robot path planning
guarantees a safe distance, the time spent in path planning
can be ignored compared with the time saved by robot
turning and fast passing. Therefore, it can be ensured that the
second shortest path with the least number of inflection
points and the smallest cumulative turning angle of the robot
is the optimal path of the robot.

3. Autonomous Mobile Robot Warehouse
Center Path Planning

After the algorithm design is completed, it needs to be
verified in the actual map environment. Because the robot
application environment is a structural layout space, the
verification uses the warehouse center as the verification
object, and the warehouse map is derived from Baidu
Gallery. Robot path planning must first establish an accurate
two-dimensional map of the environment space and then
perform path planning.

3.1. Construction of Environmental Map for Warehouse
Center. The map construction in the normal A* algorithm
uses the method that directly creates a two-dimensional
array in the program, as shown in Figure 7(a), and the
produced grid map is shown in Figure 7(b). “0” in the array
indicates that the open grid is in white, and “1” indicates that
the obstacle is in black. Each “0” or “1” represents a grid, and

the number of rows and columns of the two-dimensional
array corresponds to the number of rows and columns of the
grid map.

This representation method is flexible to change the map
and is suitable for low-resolution map construction. For
large-space and high-resolution maps, the two-dimensional
array is huge and it is difficult to accurately match the actual
space. For institutional spaces such as warehouse centers,
accurate CAD drawings are generally available during
construction, as shown in Figure 8 (The Figure 8 from the
Internet, the website is: http://www.51w2c.com/
details_id_1347.html). The actual positions and absolute
coordinates of various items are accurately marked on the
drawings, and the positions will not basically change easily.
Low-resolution grid maps in this scenario will cause large
errors and cannot accurately reflect the precise coordinate
positions of obstacles and feasible paths, and it is easy to
make the planned path deviates from the actual path,
causing the robot to excessively rely on obstacle avoidance
function when it is traveling.

Aiming at the above problems, in order to improve the
practicability of the system, this paper designs a drawing
program by using Matlab’s composition conversion func-
tion. When the software is imported, we must first draw the
warehouse center (Figure 8) into one of the three formats
bmp, jpg, and png according to the size proportion and
position, as shown in Figure 9. Select the imported image in
the GUI interface designed by Matlab, set the required
horizontal axis resolution of the grid image, and complete
the conversion according to the horizontal and vertical
proportions of the original image.

According to this step, the actual warehouse center
shown in Figure 8 is converted into the binary map of
Figure 9 for the application scenario and imported into
Matlab R2017a for experimental verification.

In the scenario, the actual space of the CAD drawing of
the warehouse center is 4476 x 4000 cm. The two-dimen-
sional space of the robot is 60 x 70 cm. The two-dimensional
size of a single shelf is 60 x 200 cm. The road width between
the shelves is 150 cm.

The higher the resolution during the construction of the
grid map, the smaller the error will be, but the time con-
sumption with the system path planning will increase
greatly. Therefore, there are three preliminary methods for
setting the resolution:

(1) Take the two-dimensional space of the robot as the
grid point size. The robot adopted a two-wheel
differential turning method, and the width of the
forward direction needs to be 60 cm. Taking this as
the minimum resolution of the grid map, the
resolution of the warehouse center grid map is
43 x 48.

http://www.51w2c.com/details_id_1347.html
http://www.51w2c.com/details_id_1347.html

Security and Communication Networks 9

25

TTTTTT]

20

0 5 10 15 20 25
(@ (b) ()

F1GURE 6: The effect of path planning at different safety distances. (a) No safety distance. (b) Safety distance 0.6 grid. (c) Safety distance 1
grid.

TaBLE 4: Effect analysis of path planning for different safe distances.

Algorithm The length of path Discount points Ergodic grid number Planning time (S)
No safe distance 3717 4 361 0.4424
0.6 grid safe distance 37.62 2 135 0.2749
1.0 grid safe distance 39.98 5 135 0.2272
MAXO0 = [00000011000000000000O0

01100011000000000000

01100000000000000111

00000000000000000O0O0O

0000000000001 1000000

11000000110011000000

11000000110000000011

00000000110011111000

00000110110000000000

00000110110000000000

00011000110000000000

00011000110000000000

00000000000000000O0O0O 8

01101100000000000111 7

00001100000000000000 6

000000000O0O0O0O0O0O0OOOOOO 5

00000000001111000000 %

011000110011110001T11 2

01100011000000000000 R AR A A R S R

00000000000000000000F; 123456 7 8 91011121314151617 181920 21

—
©
=

(b)

FiGure 7: The grid map creation. (a) Map array. (b) Corresponding grid map.

(2) Use shelf width as a reference and consider most path The Matlab image conversion program design process is
widths. It can be seen from the CAD drawing that the =~ shown in Figure 10.
width of most of the auxiliary passages between the
shelves is 150 cm, so the grid size of the storage center
is considered to be 30 cm, and the resolution of the
warehouse center grid map is 132 x 149.

3.2. Path Planning Verification

3.2.1. Impact of Different Resolutions on Planning Time.

(3) According to the CAD map, the grid is drawn Path planning experiments were performed on the grid
according to a certain proportion and the grid sizeis ~ maps designed to be constructed at multiple resolutions. The
determined by the path planning time. obtained data are shown in Table 5.

10

FIGURE 8: Actual layout of a warehouse center.

(NI
1= 1 4lllf]

FIGURE 9: Binary map for warehouse center CAD.

It can be seen that the larger the number of grids on the
same map, the higher the resolution, the smaller the spatial
error of the map expression, but the longer the path planning
time. When the number of grids is 132, the grid map can
basically and accurately express the spatial layout of shelves
and aisles in the warehouse center, and the planning time
can be completed within 0.5S.

3.2.2. Impact of Different Safety Distances on Planned Paths.
At the same grid resolution, different safety distance settings
will have a greater impact on path planning.

The warehouse maps are set at different security dis-
tances and at the same 132 grid resolution, the obtained path
planning results are shown in Figures 11(a) and 11(b), and
the specific experimental data are shown in Table 6.

Security and Communication Networks

(Imread (PictureFullPath))

A

Enter the desired number
of rows of grid graphic

v

Get the number of columns of
grid graphic according to the
aspect ratio of the original image

4

sign = imresize ()
Scale the original image according to
the row-to-column ratio

v

im2bw (sign)
Convert a grayscale
image to a binary image

:

flipud (sign)
Generate a two-dimensional
matrix of picture

h =fill (x,y,°k’)
Generate image array

e

s = (num2str((j - 1)*row + i))
Convert an array to a string

Axis([0 col 0 row])
Set the coordinate range of the image

Draw grid image
trellis lines

Figure 10: Grid map creation process.

Figure 11(a) shows the path planning without the safety
distance. There are many cases where the path is close to the
obstacles. The path planning passed the narrow section. The

Security and Communication Networks

11

TaBLE 5: Path planning time at different grid resolutions.

Safe distance Planning time/(S)

The length of path

Discount points Ergodic grid number

Body width
15cm

0.4976
0.2711

194.445
205.5228

7 7807
4 6034

20 40 60 80 100 120 140

20 40 60 80 100 120 140
(b)

FiGure 11: 132 grid maps with different safety distance paths. (a) No safety space path. (b) 10 cm safety space path.

TasBLE 6: Effects of different safety distances on grid path planning.

Algorithm Grid size (cm) Safe distance Planning time (S)

66 60.0 Body width 0.0975
132 30.0 10 cm 0.3421
200 20.0 10cm 0.6429
400 10.0 10cm 8.1772
800 5.0 10 cm 103.3154

road width is only 2 grids, and the actual width is 60 cm; it is
shown in the enlarged path of Figure 11(a); it is exactly the
same as the width of the robot body. Obviously, the section
of the robot is very difficult to pass or even unable to pass.
The path planning has 7 inflection points, and the robot
needs to perform steering actions multiple times. Both of
these problems greatly affect the traveling time of robot.

In Figure 11(b), a grid closing to the obstacle is placed in
the closed-list by expanding the obstacle area, and it is set to
prohibit traversal. The method reserves a 15cm safety dis-
tance between the robot path and the obstacles. Due to the
introduction of the safety distance, the planned path has
changed greatly compared with that in Figure 11(a). Because
it is difficult for the robot to travel at high speeds in narrow
sections, increasing the safety distance ensures that the robot
travels on the secondary shortest path, but it ensures that the
robot can travel at full speed and reduces turns. Compared
with the path without safety distance, the number of turns of
the path reduces by 42.8% and the planning time reduces by
44.91%.

It can be seen that the correct and reasonable safety
distance setting not only determines whether the algorithm
can plan the correct path, but also can greatly improves the

path optimization. Therefore, the path planning safe dis-
tance must be considered in practical applications.

4. Conclusions

The shortest path cannot be as the judgment that the path is
optimal for warehouse autonomous mobile fire-fighting
robots in indoor structure space. It should also be based on
the safety distance between the path and the obstacle to make
the robot move at high speed, and the executive time is the
shortest. Therefore, this paper improves the problems of the
conventional As algorithm in the path planning of au-
tonomous mobile robots.

In the design, Floyd algorithm and A= algorithm are
fused by the inflection point priority strategy. Experiments
show that the method can reduce the path optimization time
and significantly reduces the total number of the path of the
inflection points and the cumulative turning angle and thus
shortens the path length and increases the smoothness of the
path. Finally, the problem of safe path of all kinds of robots
in different space is solved by expanded obstacles; the time of
the path planning is reduced greatly; the path is optimized in
many aspects; the planning efficiency and the algorithm
practicability are improved.

Although the method of the path planning has achieved
good experimental results, there is still a long planning time
in the process of high-resolution map path planning. In the
next research, we will consider how to add new search
heuristic functions and constraints, so as to improve the
search efficiency of high-resolution grid map in complex
environment and ensure the algorithm has better
applicability.

12

In the future, the fire-fighting ability of a single robot will
not meet the demand for a large indoor space or a flammable
environment. Therefore, we will also consider the cooper-
ation and game of multirobots in this environment [35] and
study the wireless mobile networking and anticollision
theory of multirobots [36].

Data Availability

The MATLAB path planning data used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the Fundamental Research
Funds for the Central Universities (3142018047).

References

[1] E.Frazzoli, A. Munther, and M. A. Dahleh, “Real-time motion
planning for agile autonomous vehicles,” in Proceedings of the
2001 American Control Conference, vol. 25, no. 1, pp. 43-49,
IEEE, Arlington, VA, USA, June 2001.

[2] X. Xu, Y. Li, T. Huang et al., “An energy-aware computation
offloading method for smart edge computing in wireless
metropolitan area networks,” Journal of Network and Com-
puter Applications, vol. 133, pp. 75-85, 2019.

[3] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient appli-
cation partitioning algorithm in mobile environments,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30,
no. 7, pp. 1464-1480, 2019.

[4] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu, “A QoS-
aware virtual machine scheduling method for energy con-
servation in cloud-based cyber-physical systems,” World
Wide Web, vol. 23, no. 2, pp. 1275-1297, 2019.

[5] X. Xu, Y. Xue, L. Qi et al, “An edge computing-enabled
computation offloading method with privacy preservation for
internet of connected vehicles,” Future Generation Computer
Systems, vol. 96, pp. 89-100, 2019.

[6] H. Wu, “Performance modeling of delayed offloading in
mobile wireless environments with failures,” IEEE Commu-
nications Letters, vol. 22, no. 11, pp. 2334-2337, 2018.

[7] J.. Zhao, X.. Guan, and X.. Li, “Power allocation based on
genetic simulated annealing algorithm in cognitive radio
networks,” Chinese Journal of Electronics, vol. 22, no. 1,
pp. 177-180, 2013.

[8] X. Xu, S. Fu, L. Qi et al., “An IoT-Oriented data placement
method with privacy preservation in cloud environment,”
Journal of Network and Computer Applications, vol. 124,
pp. 148-157, 2018.

[9] H. Wu, Z. Han, K. Wolter, Y. Zhao, and H. Ko, “Deep learning
driven wireless communications and mobile computing,”
Wireless ~ Communications and Mobile ~ Computing,
vol. 20192 pages, 2019.

[10] L. Qi, Q. He, F. Chen et al., “Finding all you need: web APIs
recommendation in web of things through keywords search,”
IEEE Transactions on Computational Social Systems, vol. 6,
no. 5, pp. 1063-1072, 2019.

Security and Communication Networks

[11] X.Xu, Q. Liu, Y. Luo et al,, “A computation offloading method
over big data for IoT-enabled cloud-edge computing,” Future
Generation Computer Systems, vol. 95, pp. 522-533, 2019.

[12] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” in Proceedings of the 1994 IEEE, Munich,
Germany, 1994.

[13] Q. Bu, Z. Wang, and X. Tong, “An improved genetic algo-
rithm for searching for pollution sources,” Water Science and
Engineering, vol. 6, no. 4, pp. 392-401, 2013.

[14] J. Ye, “Tracking control of a nonholonomic mobile robot
using compound cosine function neural networks,” Intelligent
Service Robotics, vol. 6, no. 4, pp. 191-198, 2013.

[15] M. M. Mohamad, M. W. Dunnigan, and N. K. Taylor, “Ant
colony robot motion planning,” in Proceedings of the
EUROCON 2005-The International Conference on “Computer
as a Tool”, November 2006.

[16] F. Zhang, J. Liu, and Q. Li, “A new way of network analysis
based on dijkstra,” Remote Sensing Information, vol. 2,
pp. 38-41, 2004.

[17] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100-107, 1968.

[18] F. Duchon, A. Babinec, M. Kajan et al., “Path planning with
modified a star algorithm for a mobile robot,” Procardia
Engineering, vol. 96, no. 1, pp. 159-169, 2014.

[19] S. Uttendorf, B. Eilert, and L. Overmeyer, “Combining a
fuzzy inference system with an Ax algorithm for the au-
tomated generation of roadmaps for automated guided
vehicles,” At-Automatisierungstechnik, vol. 65, no. 3,
pp. 189-197, 2017.

[20] M. Wodzinski and A. Krzyzanowska, “Sequential classifica-
tion of palm gestures based on A algorithm and MLP neural
network for quadrocopter control,” Metrology and Mea-
surement Systems, vol. 24, no. 2, pp. 265-276, 2017.

[21] S.G. Cui, H. Wang, and L. Yang, “A simulation study of a-star
algorithm for robot path planning,” 16th Int Conf on Mate-
rials. Beijing, vol. 282, pp. 33-38, 2013.

[22] A. R. Soltani, H. Tawfik, J.Y. Goulermas, and T. Fernando,
“Path planning in construction sites: performance evaluation
of the Dijkstra, Ax, and GA search algorithms,” Advanced
Engineering Informatics, vol. 16, no. 4, pp. 291-303, 2002.

[23] F. Duchon, D. Hunady, M. Dekan, and A. Babinec, “Optimal
navigation for mobile robot in known environment,” Applied
Mechanics and Materials, vol. 282, no. 1, pp. 33-88, 2013.

[24] Y. Qin, H. Wang, and C. Du, “Mobile robot path planning
based on double-layer Ax algorithms,” Manufacturing Au-
tomation, vol. 24, pp. 21-25, 2014.

[25] M. Hawa, “Light-assisted Ax path planning,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 2, pp. 888-
898, 2013.

[26] D. Frantisek, B. Andrej, and K. Martin, “Path planning with
modified A star algorithm for a mobilerobot,” Procedia En-
gineering, vol. 96, no. 96, pp. 59-69, 2014.

[27] M. Gao, Y. Zhang, and L. Zhu, “Bidirectional time- efficient
A algorithm for robot path planning,” Application Research
of Computers, vol. 36, no. 4, pp. 1-6, 2019.

[28] X. Zhao, Z. Wang, and C. Huang, “Mobile robot path
planning based on an improved A algorithm,” Robot, vol. 40,
no. 6, pp. 903-910, 2018.

[29] R. Chen, C. Wen, and L. Peng, “Improve As algorithm and
apply to indoor path planning for mobile robots,” Journal of
Computer Applications, vol. 39, no. 4, pp. 1006-1011, 2019.

Security and Communication Networks

[30] Y. Ren, F. U. Lixia, and Y. Zhang, “Smoothing A algorithm
extended search neighborhood for robot path planning,”
Electronic Science and Technology, vol. 31, no. 5, pp. 33-43,
2018.

[31] W. Wang and Z. Feng, “The shortest path planning for mobile
robots using improved A# algorithm,” Journal of Computer
Applications, vol. 38, no. 5, pp. 1523-1526, 2018.

[32] W. Lu, J. Lei, and Y. Shao, “Path planning for mobile robot
based on an improved Ax algorithm,” Journal of Ordnance
Equipment Engineering, vol. 40, no. 4, pp. 197-201, 2019.

[33] C. Cheng, X. Hao, J. Li et al., “Global dynamic path planning
based on fusion of improved Ax algorithm and dynamic
window approach,” Journal of Xian Jiaotong University,
vol. 51, no. 11, pp. 137-143, 2017.

[34] Y. Zhang, L.-L. Lin, and H.-C. Lin, “Development of path
planning approach using improved A-star algorithm in AGV
system,” Journal of Internet Technology, vol. 20, no. 3,
pp. 915-924, 2019.

[35] J. Zhao, Y. Tao, G. Yi et al., “Power control algorithm of
cognitive radio based on non-cooperative game theory,”
China Communications, vol. 10, no. 11, pp. 143-154, 2013.

[36] X. Xu, X. Liu, Z. Xu et al, “Trust-oriented IoT service
placement for smart cities in edge computing,” IEEE Internet
of Things Journal, vol. 7, no. 5, pp. 4084-4091, 2019.

13

Hindawi

Security and Communication Networks
Volume 2020, Article ID 5218612, 8 pages
https://doi.org/10.1155/2020/5218612

Research Article

WILEY

Hindawi

Exploiting the Relationship between Pruning Ratio and
Compression Effect for Neural Network Model

Based on TensorFlow

Bo Liu®,! Qilin Wu,! Yiwen Zhang ,2 and Qian Cao

College of Information Engineering, Chaohu College, Chaohu 238000, China
2School of Computer Science and Technology, Anhui University, Hefei 230000, China

Correspondence should be addressed to Qian Cao; 19875069@qq.com

Received 12 December 2019; Revised 4 February 2020; Accepted 10 February 2020; Published 30 April 2020

Guest Editor: Xiaolong Xu

Copyright © 2020 Bo Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pruning is a method of compressing the size of a neural network model, which affects the accuracy and computing time when the
model makes a prediction. In this paper, the hypothesis that the pruning proportion is positively correlated with the compression
scale of the model but not with the prediction accuracy and calculation time is put forward. For testing the hypothesis, a group of
experiments are designed, and MNIST is used as the data set to train a neural network model based on TensorFlow. Based on this
model, pruning experiments are carried out to investigate the relationship between pruning proportion and compression effect.
For comparison, six different pruning proportions are set, and the experimental results confirm the above hypothesis.

1. Introduction

Model compression is a common method to transplant
artificial intelligence from the cloud to the embedded ter-
minal. Network pruning is a particularly effective com-
pression solution for models [1, 2]. In [1, 3], Han et al
proposed a method of compression based on pruning but
did not investigate the relationship between pruning pro-
portion and compression effect. At the same time, He et al.
[2] studied channel pruning for accelerating very deep
neural networks, yet the pruning rate on the prediction effect
is not stated. In fact, some studies of pruning methods have
been carried out in recent years. However, to the best of our
knowledge, there are very few studies on the relationship
between the pruning proportion and the size, accuracy, and
computing time which is used to make predictions. It is also
the motivation of our research.

In a trained neural network model, pruning sets all pa-
rameters with values less than a specific threshold to zero.
After pruning, retraining and sparsification are normally
conducted, where sparsification can delete connections with
the zero values to compress the size of the model [4, 5]. As an

example, the two figures show the comparison before and after
pruning, where Figure 1 shows the original structural diagram,
and Figure 2 shows the structural diagram after pruning.

Here, based on TensorFlow, we will use MNIST as the
data set to train a neural network model. TensorFlow is an
open-source machine learning framework. Specifically, it is
software, and users need to build mathematical models by
programming in Python and other languages. These models
are used in the application of artificial intelligence. MNIST
data set is a handwritten data set with 60,000 handwritten
digital images in the training library and 10,000 in the test
library. It is a good database for people who want to try
learning techniques and pattern recognition methods on
real-world data while spending minimal efforts on pre-
processing and formatting.

In this paper, we make the hypothesis that the pruning
proportion is positively correlated with the compression
scale of the model but not with the prediction accuracy and
calculation time. So, our research object is the preliminary
relationship between pruning proportion and compression
effect in the neural network model. Specifically, this paper
studies the relationship from three aspects: first, the

mailto:19875069@qq.com
https://orcid.org/0000-0003-3948-2839
https://orcid.org/0000-0001-8709-1088
https://orcid.org/0000-0003-2915-2051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5218612

FiGure 1: Original structural diagram.

FIGURE 2: Structural diagram after pruning.

relationship between pruning proportion and model size;
second, the relationship between pruning proportion and
model prediction accuracy; lastly, the relationship between
pruning proportion and computing time for model pre-
dictions. For the above objective, a great number of ex-
periments are carried out to investigate the relationship
between pruning proportion and compression effect, and the
above hypothesis is confirmed, which is our main contri-
bution in this paper.

The rest of this paper is organized as follows. In Section
2, the neural network model is proposed first. To test the
hypothesis, an original model and an experimental plan are
introduced in Section 3. Section 4 gives the experimental
procedures, and Section 5 gives the experimental results and
analysis. Finally, Section 6 concludes this paper.

Security and Communication Networks

2. Neural Network Model

A neural network is constituted by one input layer, one or
several hidden layers, and one output layer, and every layer is
constituted by a certain number of neurons. These neurons
are interconnected, just like the nerve cells of humans.
Figure 3 shows the structure of the neural network.

We assume that X, (t) = [x;, (£),x;,(¢), ..., x;p ()] is
the ith individual (solution) in the population. The mutation
operator aims to generate mutant solutions. For each so-
lution X;, a mutant solution V; is created by the corre-
sponding mutation scheme. There are some classical
mutation schemes listed as follows:

(1) DE/rand/1:
v (0) = () + F - (x,; (1) = x5, (1), (1)

(2) DE/rand/2:
v () = xp () + F e (3 (8) = x5, (1))

(2)
+F - (xy,j (£) = ;5 (1))
(3) DE/best/1:
Vij (1) = Xpeqj (8) + F - (xil,j () = xip,j (t))- (3)
(4) DE/best/2:
Vi (£) = Xpeqj (8) + F - (x5 (8) = x5, (1)) + F @

. (x,-lj(t) - Xy (t)),

where i1, i2, i3, i4, andi5 are five randomly selected indi-
vidual indices between 1 and N, and il #i2#i3#i4#i5-
F € [0,1] is usually used. Xy is the global best individual
(solution).

The crossover operator focuses on recombining two
different individuals and creates a new one. In DE, a trial
solution U; is created based on the following crossover
operation:

swap (X, Xpp), i f (Xi) < f (Xin)s (5)
where CRis called the crossover rate, the random value rand;
is in the range [0, 1], and j, is a randomly selected dimension
index. As seen, U; inherits from V; and X; based on the value
of CR. For a large CR, most dimensions of U; are taken from
V.. For a small CR, most dimensions of U; are taken from X;.
For the latter case, U, is similar to its parent X;.

3. Design of the Experiment

3.1. Structure of the Original Model. The basic neural net-
work structure consists of the following layers in sequence:
convolutional layer, pooling layer, convolutional layer,
pooling layer, and two fully connected layers [6, 7], which is
shown in Figure 4. In the experiment plan, pruning is
performed by default on the weight parameters w of the two
tully connected layers. Alternative pruning is performed on

Security and Communication Networks

F1GURE 3: Structure of the neural network model.

N~

w_fc2 [,:,:,:)—b FC2 —p{ | Gradients
b_fc2 TP
<
[\
=
T X
w_fclf —p .
—— FC1 L Gradients
b_fcl EREIpe '
+*
Pooling2 Gradients
?
w_conv2 f,:,:; Gradients
b_conv2 (L}
Poolingl Gradients
w-convl :}}}} i Gradients
gx
M
Input —p Gradients

°
W

FIGURE 4: Basic structure of the neural network of the experiment.

all network parameters, and the specific operations are
executed by changing the command line parameters [8, 9].

3.2. Experiment Plan. The experiment is based on the
TensorFlow framework and used MNIST as the dataset. An
original model is trained in the beginning, and then six
pruning practices with different pruning proportions are
employed [10, 11]. For each pruning, retraining and spar-
sification are subsequently performed. When all three op-
erations are completed on the original model, the task of
pruning compression is also finished [12, 13]. Then, the data

are collected and analysed for comparison (size, accuracy,
and computing time for making predictions).

4. Experimental Procedures

4.1. Run Command of the Pruming Experiment. Model
pruning is executed by the following command: python
trainpy -1 -2 -3 --train_data_dir /tmp/mnist_data
--train_dir /tmp/mnist_train --variables_dir /tmp/mnist_-
variables --max_steps 10000 --batch_size 32 --sparse_ratio
0.9 --pruning_variable_names w_fcl, w_fc2. Table 1 spec-
ifies the parameters in this command [14-16].

4.2. Pruning Effect View Command. The effects of the —1 or
-2 parameters can be viewed through eval -
predict_with_dense_network.py. The specific command is
python eval_predict_with_dense_network.py --test_data_-
dir /tmp/mnist_data --checkpoint_dir /tmp/mnist_train/
step_2_2 --batch_size 32 --max_steps 10. Table 2 specifies
the parameters in this command [17-19].

The effect of -3 sparsification can be viewed through
eval_predict_with_sparse_network.py. The specific com-
mand is python eval predict_with_sparse_network. py
--test_data_dir /tmp/mnist_data --checkpoint_dir /tmp/
mnist_train/step_3 --batch_size 32 --max_steps 10. Table 3
specifies the parameters in the command.

4.3. Hardware and Software Configuration of the Experiment.
Pruning experiments are based on the following hardware
and software parameters and versions [20, 21]:

Operating system: Windows 10

GPU: NVIDIA GeForce GTX 1080 Ti 11.0G
CPU: Intel(R) Core(TM) i3-4160 CPU @ 3.60 GHz
Memory: 16.0 GB DDR3

Disk: Lenovo SSD SL700 240G

Software: TensorFlow-GPU 1.5.0, Python 3.6

4.4. Construction of Experimental Environment. The exper-
iment is based on the MNIST dataset and the TensorFlow
framework. The experimental environment was constructed
by the following three steps [22-24]:

Step 1: constructing the Python environment. Directly
following Anaconda and then directly adding and
running Anaconda3-4.3.1-Windows-x86_64.exe.

Step 2: constructing the plug-ins of NVIDIA GPU.
Directly running the cuda_9.0.103_winl0.exe for in-
stallation. Unzipping cudnn-9.0-windows10-x64-v7.zip
and copying its contents to the folder C:\Program Fil-
es\NVIDIA GPU Computing Toolkit\CUDA\v9.0.

Step 3: constructing the TensorFlow environment.
Executing the installation command on the CMD
commands: pip install tensorflow-gpu==1.5.0.

4 Security and Communication Networks
TaBLE 1: Descriptions of parameters of the pruning command.

Parameter Description Default value

-1 Most basic model training

-2 Pruning is performed on the most basic model

-3 Pruning is performed, and network parameters of sparsification are stored

--train_data_dir

Folder path containing training data

/tmp/mnist_data

--train_dir Log data during training and folder path containing model data /tmp/mnist_train
--variables_dir Folder containing data of the last trained model . /tmp{
mnist_variables
--max_steps Number of iterations of the basic model 10,000
--batch_size Sample data size of each batch during model training 32
--sparse_ratio Percentage of compression parameter of pruning/volume of parameters set to 0 0.9
_-pruning variable_names Parameters on which pruning could be performed. Optional parameters include w fel, w_fc2

w_convl, w_conv2, w_fcl, and w_fc2

TABLE 2: Descriptions of parameters of the pruning effect view command (view effects of —1 or —2 training).

Parameter

Description

Default value

--test_data_dir
--checkpoint_dir
--variables_dir

Folder path containing test data
Folder path of the trained model
Folder containing data of the last trained model

/tmp/mnist_data
/tmp/mnist_train/step_2_2
/tmp/mnist_variables

--max_steps Number of iterations during model testing 10

--batch_size Size of sample data of each batch used for calculation during model testing 32
TaBLE 3: Descriptions of parameters of the pruning effect view command (view effects of -3 sparsification).

Parameter Description Default value

--test_data_dir
--checkpoint_dir
--variables_dir
--max_steps
--batch_size

Folder path containing test data
Folder path of the trained model
Folder containing data of the last trained model
Number of iterations during model testing 10
Size of sample data of each batch used for calculation during model testing 32

/tmp/mnist_data
/tmp/mnist_train/step_3
/tmp/mnist_variables

5. Experimental Results and Analysis

In this section, six different pruning proportions are
employed in this experiment. The six groups of tables show
the specific data of pruning proportion, model size, accu-
racy, and computing time for predictions.

5.1.10% Pruning Proportion. First, the pruning proportion is
set to 10%; Table 4 shows the parameters of pruning effect in
the first scene. In this group of experiments, the parameter
threshold values of the two fully connected layers are set to
0.012034996 and 0.013038448. In this way, the valid pa-
rameter numbers are reduced from 3,211,264 and 10,240 to
2,890,137 and 9,215, respectively, making exactly 10% of the
parameter values of the two fully connected layers equal to 0.
However, the model size after the pruning, retraining, and
sparsification is 66.5 M, which is larger than the size (37.5 M)
of the original model. Hence, no compression effect is
achieved. In addition, compared with the original model, the
accuracy does not change, and the computing time for
predictions slightly increases [25, 26].

TaBLE 4: Descriptions of parameters of the pruning effect in the first
scene.

Original number of Threshold Valid parameter
parameters value number
w_convl 800 0.0 800
w_conv2 51,200 0.0 51,200
w_fcl 3,211,264 0.012034996 2,890,137
w_fc2 10,240 0.013038448 9,215

5.2. 30% Pruning Proportion. Second, the pruning propor-
tion is set to 30%; Table 5 shows the parameters of pruning
effect in the first scene. In this group of experiments, the
parameter threshold values of the two fully connected layers
are set to 0.036936015 and 0.039559085. In this way, the
valid parameter numbers are reduced from 3,211,264 and
10,240 to 2,247,884 and 7,167, respectively, making exactly
30% of the parameter values of the two fully connected layers
equal to 0. However, the model size after the pruning,
retraining, and sparsification is 51.8 M, which is larger than
the size (37.5M) of the original model. Hence, no com-
pression effect was achieved. Again, compared with the

Security and Communication Networks

TaBLE 5: Descriptions of parameters of the pruning effect in the second scene.

Original number of parameters

Threshold value Valid parameter number

w_convl 800
w_conv2 51,200
w_fcl 3,211,264
w_fc2 10,240

0.0 800

0.0 51,200
0.036936015 2,247,884
0.039559085 7,167

TaBLE 6: Descriptions of parameters of the pruning effect in the third scene.

Original number of parameters Threshold value Valid parameter number
w_convl 800 0.0 800
w_conv2 51,200 0.0 51,200
w_fcl 3,211,264 0.06429165 1,605,631
w_fc2 10,240 0.068891354 5,119

original model, the accuracy does not change, and the
computing time for predictions slightly increases.

5.3.50% Pruning Proportion. Third, the pruning proportion
is set to 50%; Table 6 shows the parameters of pruning effect
in the first scene. In this group of experiments, the parameter
threshold values of the two fully connected layers are set to
0.06429165 and 0.068891354. In this way, the valid pa-
rameter numbers are reduced from 3,211,264 and 10,240 to
1,605,631 and 5,119, respectively, making exactly 50% of the
parameter values of the two fully connected layers equal to 0.
The model size after pruning, retraining, and sparsification is
37.1 M, which is slightly smaller than the size (37.5 M) of the
original model. Here, compression takes effect. Besides, both
accuracy and computing time for predictions slightly de-
crease as compared with those of the original model.

5.4. 70% Pruning Proportion. Fourth, the pruning propor-
tion is set to 70%; Table 7 shows the parameters of pruning
effect in the fourth scene. In this group of experiments, the
parameter threshold values of the two fully connected layers
are set to 0.09749276 and 0.10360378. In this way, the valid
parameter numbers are reduced from 3,211,264 and 10,240
t0 963,379 and 3,071, respectively, making exactly 70% of the
parameter values of the two fully connected layers equal to 0.
The model size after pruning, retraining, and sparsification is
22.3 M, which is smaller than the size (37.5 M) of the original
model. The compression effect is obvious. Moreover, both
accuracy and computing time for predictions slightly de-
crease as compared with those of the original model.

5.5. 80% Pruning Proportion. Fifth, the pruning proportion
is set to 80%; Table 8 shows the parameters of pruning effect
in the fifth scene. In this group of experiments, the pa-
rameter threshold values of the two fully connected layers
are set to 0.11903707 and 0.12662686. In this way, the valid
parameter numbers are reduced from 3,211,264 and 10,240
to 642,252 and 2,047, respectively, making exactly 80% of the
parameter values of the two fully connected layers equal to 0.
The model size after pruning, retraining, and sparsification is

TaBLE 7: Descriptions of parameters of the pruning effect in the
fourth scene.

Original number of Threshold Valid parameter
parameters value number
w_convl 800 0.0 800
w_conv2 51,200 0.0 51,200
w_fcl 3,211,264 0.09749276 963,379
w_fc2 10,240 0.10360378 3,071

14.9 M, which is smaller than the size (37.5 M) of the original
model, and compression is 60%. Additionally, as compared
with the original model, the accuracy slightly decreases and
the computing time for predictions slightly increases.

5.6.90% Pruning Proportion. Lastly, the pruning proportion
is set to 90%; Table 9 shows the parameters of pruning effect
in the sixth scene. In this group of experiments, the pa-
rameter threshold values of the two fully connected layers
are set to 0.14814831 and 0.15710811. In this way, the valid
parameter numbers are reduced from 3,211,264 and 10,240
to 321,126 and 1,023, respectively, making exactly 90% of
the parameter values of the two fully connected layers equal
to 0. The model size after pruning, retraining, and spar-
sification is 7.6 M, which is compressed by 80%. Further-
more, both accuracy and computing time for predictions
slightly decreased as compared with those of the original
model.

5.7. Comparison Results. Figure 5 shows the comparison
results for persistence model size of the four networks, with
the pruning ratio increases, and the model size represented
by the red columns decreases gradually. Apparently, the
pruning proportion is positively correlated with the model
size.

Figure 6 shows the comparison results for testing ac-
curacy of the four networks, with the pruning ratio increases,
and the testing accuracy represented by the red columns has
no obvious changes. This means that there is no positive
relationship between pruning proportion and accuracy.

Security and Communication Networks

TaBLE 8: Descriptions of parameters of the pruning effect in the fifth scene.

Original number of parameters Threshold value Valid parameter number
w_convl 800 0.0 800
w_conv2 51,200 0.0 51,200
w_fcl 3,211,264 0.11903707 642,252
w_fc2 10,240 0.12662686 2,047

TaBLE 9: Descriptions of parameters of the pruning effect in the sixth scene.

Original number of parameters Threshold value Valid parameter number
w_convl 800 0.0 800
w_conv2 51,200 0.0 51,200
w_fcl 3,211,264 0.14814831 321,126
w_fc2 10,240 0.15710811 1,023

Persistence model size (M)

10% 30% 50% 70% 80% 90%
Pruning ratio
= Original network = Pruning and retraining network
Pruning network ® Pruning, retraining, and sparsification network

F1GURre 5: Comparison results for persistence model size of the four networks.

1.200

1.000

Testing accuracy
j=} j=}
[} x®©
j=3 (=3
(=} (=}

0.400
0.200
0.000
10% 30% 50% 70% 80% 90%
Pruning ratio
m Original network Pruning network
= Pruning and retraining network ® Pruning, retraining, and

sparsification network

FIGURE 6: Comparison results for testing accuracy of the four networks.

Figure 7 shows the comparison results for computing columns changes irregularly. Also, there is no positive re-
time of the four networks. With the pruning ratio increases, lationship between pruning ratio and computing time for
the computing time for prediction represented by the red predictions.

Security and Communication Networks

1.450

1.400
1.350
1.300
1.250
1.200
1.150

Computing time for prediction (S)

1.100

m Original network

Pruning network

10% 30% 50%
Pruning ratio

70% 80% 90%

® Pruning and retraining network

® Pruning, retraining, and
sparsification network

FIGURE 7: Comparison results for computing time of the four networks.

6. Conclusions

By comparing the experimental data of six different pruning
proportions, it is found that pruning does not necessarily
compress the size of the model. Compression takes effect
only when the pruning proportion reaches 50% or more.
Furthermore, we found a positive relationship between the
pruning proportion and the model size. However, there was
no positive relationship between pruning proportion and
accuracy and between pruning proportion and computing
time for predictions.

Since there is no specific experimental verification for
other models, the conclusion does not apply to other
models. Additionally, the experimental is based on the
pruning method, pruning is only one of the compression
methods of various models; thus, the conclusion of this
study is not applicable to other compression methods
[27-29].

Data Availability

The data used to support the findings of this study can be
accessed publicly in the website http://yann.lecun.com/
exdb/mnist/.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the key project of the Natural
Science Research of Higher Education Institutions in Anhui
Province (grant no. KJ2018A0461); Anhui Province Key
Research and Development Program Project (grant no.
201904a05020091); and a provincial quality engineering
project from Department of Education Anhui Province
(grant no. 2019mooc283).

References

[1] S.Han, J. Pool, S. Narang, H. Mao et al., “DSD: dense-sparse-
dense training for deep neural networks,” in Proceedings of the
International Conference on Learning Representations (ICLR),
pp- 1-13, Toulon, France, April 2017.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating

very deep neural networks,” in Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), 2017.

S. Han, J. Kang, H. Mao et al., “ESE,” in Proceedings of the

Proceedings of the 2017 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays—FPGA ’17,

pp. 75-84, Monterey, California, USA, February 2017.

[4] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,

“Pruning filters for efficient convnets,” 2016, https://arxiv.org/

abs/1608.08710.

Y. Zhang, G. Cui, S. Deng et al., “Efficient query of quality

correlation for service composition,” IEEE Transactions on

Services Computing, 2018.

C. Wan, X. Yan, D. Zhang, Z. Qu et al., “An advanced fuzzy

Bayesian-based FMEA approach for assessing maritime

supply chain risks,” Transportation Research Part E: Logistics

and Transportation Review, vol. 125, pp. 222-240, 2019.

[7] L. Qi, Y. Chen, Y. Yuan, S. Fu et al.,, “A QoS-aware virtual
machine scheduling method for energy conservation in cloud-
based cyber-physical systems,” World Wide Web, vol. 23,
no. 2, pp. 1275-1297, 2019.

[8] Z. Huang, G. Shan, J. Cheng, and J. Sun, “TRec: an efficient
recommendation system for hunting passengers with deep
neural networks,” Neural Computing and Applications, vol. 31,
no. 1, pp. 209-222, 2019.

[9] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of
deep convolutional neural networks,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 13,
no. 3, p. 32, 2017.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression:
compressing deep neural networks with pruning, trained
quantization and Huffman coding,” 2015, https://arxiv.org/
abs/1510.00149.

[11] B. Wu,X. Yan, Y. Wang, and C. Guedes Soares, “An evidential
reasoning-based CREAM to human reliability analysis in
maritime accident process,” Risk Analysis, vol. 37, no. 10,
pp. 1936-1957, 2017.

[2

[3

[5

[6

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149

[12] B. Wu, L. Zong, X. Yan, and C. Guedes Soares, “Incorporating
evidential reasoning and TOPSIS into group decision-making
under uncertainty for handling ship without command,”
Ocean Engineering, vol. 164, pp. 590-603, 2018.

[13] Y. Wang, E. Zio, X. Wei, D. Zhang, and B. Wu, “A resilience
perspective on water transport systems: the case of Eastern
Star,” International Journal of Disaster Risk Reduction, vol. 33,
pp. 343-354, 2019.

[14] L. Qi, X. Zhang, S. Li, S. Wan et al., “Spatial-temporal data-
driven service recommendation with privacy-preservation,”
Information Sciences, vol. 515, pp. 91-102, 2020.

[15] R. Zhu, Z. Sun, T. Ristaniemi, and J. Hu, “Special issue on
green telecommunications,” Telecommunication Systems,
vol. 52, no. 2, pp. 1233-1234, 2013.

[16] R. Zhu, W. Shu, T. Mao, and T. Deng, “Enhanced MAC
protocol to support multimedia traffic in cognitive wireless
mesh networks,” Multimedia Tools and Applications, vol. 67,
no. 1, pp. 269-288, 2013.

[17] D. Zhang, R. Zhu, S. Men, and V. Raychoudhury, “Query
representation with global consistency on user click graph,”
Journal of Internet Technology, vol. 14, no. 5, pp. 759-769, 2013.

[18] J. Chang, H. Chao, C. Lai, and R. Zhu, “An efficient geo-
graphic routing protocol design in vehicular ad-hoc network,”
Computing, vol. 96, no. 2, pp. 119-131, 2014.

[19] K. Zhu, R. Zhu, H. Nii, H. Samani et al., “PaperIO: a 3D

interface towards the internet of embedded paper-craft,”

IEICE Transactions on Information and Systems, vol. E97.D,

no. 10, pp. 25972605, 2014.

Y. Jalaeian, C. Yin, Q. Wu et al., “Location-aware deep col-

laborative filtering for service recommendation,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems

(TSMC), pp. 1-12, 2019.

Y. Ma, W. Cho, J. Chen, Y. Huang, and R. Zhu, “RFID-based

Mobility for seamless personal communication system in

cloud computing,” Telecommunication Systems, vol. 58, no. 3,

pp. 233-241, 2015.

[22] L. Qi, Q. He, F. Chen et al,, “Finding all you need: web APIs
recommendation in web of Things through keywords search,”
IEEE Transactions on Computational Social Systems, vol. 6,
no. 5, pp. 1063-1072, 2019.

[23] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang et al, “An edge

computing-enabled computation offloading method with pri-

vacy preservation for internet of connected vehicles,” Future

Generation Computer Systems, vol. 96, pp. 89-100, 2019.

K. Guo, S. Han, S. Yao, Y. Wang et al.,, “Software-hardware co-

design for efficient neural network acceleration,” IEEE Micro,

vol. 37, no. 2, pp. 8-25, 2017.

[25] X. Xu, Y. Li, T. Huang, Y. Xue et al., “An energy-aware
computation offloading method for smart edge computing in
wireless metropolitan area networks,” Journal of Network and
Computer Applications, vol. 133, pp. 75-85, 2019.

[26] Y. Peng, K. Wang, Q. He et al., “Covering-based web service
quality prediction via neighborhood-aware matrix factor-
ization,” IEEE Transactions on Services Computing, 2019.

[27] X. Xu, Q. Liu, Y. Luo, K. Peng et al., “A computation offloading
method over big data for IoT-enabled cloud-edge computing,”
Future Generation Computer Systems, vol. 95, pp. 522533, 2019.

[28] B. Jalaeian, R. Zhu, H. Samani, and M. Motani, “An optimal
cross-layer framework for cognitive radio network under
Interference Temperature model,” IEEE Systems Journal,
vol. 10, no. 1, pp. 293-301, 2014.

[29] T. Zhou, C. Wu, J. Zhang, and D. Zhang, “Incorporating
CREAM and MCS into fault tree analysis of LNG carrier spill
accidents,” Safety Science, vol. 96, pp. 183-191, 2019.

[20

[21

(24

Security and Communication Networks

