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I. Rachůnková, Czech Republic
Maria A. Ragusa, Italy
Simeon Reich, Israel
Weiqing Ren, USA
Abdelaziz Rhandi, Italy
Hassan Riahi, Malaysia
Juan P. Rincón-Zapatero, Spain
Luigi Rodino, Italy
Yuriy Rogovchenko, Norway
Julio D. Rossi, Argentina
Wolfgang Ruess, Germany
Bernhard Ruf, Italy
Marco Sabatini, Italy
Satit Saejung, Thailand
Stefan Samko, Portugal
Martin Schechter, USA
Javier Segura, Spain
Sigmund Selberg, Norway
Valery Serov, Finland
Naseer Shahzad, Saudi Arabia
Andrey Shishkov, Ukraine
Stefan Siegmund, Germany
A. A. Soliman, Egypt
Pierpaolo Soravia, Italy
Marco Squassina, Italy
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The present special issue of the Journal of Abstract and
Applied Analysis is devoted to trends in classical analysis, geo-
metric function theory, and geometry of conformal mappings.
In the sense of the title of this journal, we wanted to
present a spectrum of research themes reaching from applied
analysis to pure analysis and from applications of analysis in
geometry to applications in differential equations and integral
equations.

Further, our aim was to find articles on classical function
theory as well as on its generalizations in several directions.

One additional aspect, that was paid attention to, is the
tendency of mathematics to use computers to solve problems
by new and effective algorithms. In detail, we addressed to the
following themes.

That we did not forget classical pure analysis is proved
by an article that considers harmonic functions on Riemann
manifolds and by an article on geometry and topology of
Banach spaces.

The classical geometric function theory is represented by
an article on univalence criterions associated with the nth
derivative.

The relationships between conformal mappings and inte-
gral equations are in the scope of two articles, where algo-
rithms are proved to compute the mappings of unbounded
multiply connected as well as bounded multiply connected
regions onto slit regions.

Other old themes of classical function theory are entire
functions for which we publish a paper on uniqueness theo-
rems for monomials of entire functions.

Concerning the generalizations of classical analysis, we
incorporated a paper on the stability of solutions of fractional

differential equations and two papers on harmonic map-
pings, specially one on the general theory of log-harmonic
mappings and one on certain classes of harmonic mappings
defined by convolutions.

The papers on the generalizations of holomorphic func-
tions are completed by a longer article on the distribution
of zeros and poles of the rational approximants of a non-
holomorphic function on an interval.

The aspect of new algorithms is addressed in an article
on Hermite interpolation using Möbius transformations of
planar Pythagorean-hodograph cubics and in a paper where
algorithms to calculate inverse Z-transforms on the unit disc
by number-theoretical methods are proved.

We hope that in this broad variety of analytic themes
many researchers can find something interesting and new.

Árpád Baricz
Saminathan Ponnusamy

Matti Vuorinen
Karl-Joachim Wirths

http://dx.doi.org/10.1155/2013/463493
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We introduce a class of complex-valued biharmonic mappings, denoted by BH0(φk ;σ, a, b),
together with its subclass TBH0(φk ;σ, a, b), and then generalize the discussions in Ali et al. (2010)
to the setting of BH0(φk ;σ, a, b) and TBH0(φk ;σ, a, b) in a unified way.

1. Introduction

A four times continuously differentiable complex-valued function F = u + iv in a domain
D ⊂ C is biharmonic if ΔF, the Laplacian of F, is harmonic in D. Note that ΔF is harmonic in
D if F satisfies the biharmonic equation Δ(ΔF) = 0 in D, where Δ represents the Laplacian
operator

Δ = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
. (1.1)

It is known that, when D is simply connected, a mapping F is biharmonic if and only
if F has the following representation:

F(z) =
2∑

k=1

|z|2(k−1)Gk(z), (1.2)
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where Gk are complex-valued harmonic mappings in D for k ∈ {1, 2} (cf. [1–6]). Also it is
known that Gk can be expressed as the form

Gk = hk + gk (1.3)

for k ∈ {1, 2}, where all hk and gk are analytic in D (cf. [7, 8]).
Biharmonic mappings arise in a lot of physical situations, particularly, in fluid

dynamics and elasticity problems, and have many important applications in engineering and
biology (cf. [9–11]). However, the investigation of biharmonic mappings in the context of
geometric function theory is a recent one (cf. [1–6]).

In this paper, we consider the biharmonic mappings in D = {z ∈ C : |z| < 1}. Let
BH0(D) denote the set of all biharmonic mappings F in D with the following form:

F(z) =
2∑

k=1

|z|2(k−1)
(
hk(z) + gk(z)

)

=
2∑

k=1

|z|2(k−1)
⎛

⎝
∞∑

j=1

ak,jz
j +

∞∑

j=1

bk,jzj

⎞

⎠,

(1.4)

with a1,1 = 1, a2,1 = 0, b1,1 = 0, and b2,1 = 0.
In [12], Qiao andWang proved that for each F ∈ BH0(D), if the coefficients of F satisfy

the following inequality:

2∑

k=1

∞∑

j=1

(
2(k − 1) + j

)(∣∣ak,j
∣∣ +
∣∣bk,j
∣∣) ≤ 2, (1.5)

then F is sense preserving, univalent, and starlike in D (see [12, Theorems 3.1 and 3.2]).
Let SH denote the set of all univalent harmonic mappings f in D, where

f(z) = h(z) + g(z) = z +
∞∑

j=2

ajz
j +

∞∑

j=1

bjzj , (1.6)

with |b1| < 1. In particular, we use S0
H to denote the set of all mappings in SH with b1 = 0.

Obviously, S0
H ⊂ BH0(D).

In 1984, Clunie and Sheil-Small [7] discussed the class SH and its geometric subclasses.
Since then, there have beenmany related papers on SH and its subclasses (see [13, 14] and the
references therein). In 1999, Jahangiri [15] studied the class S∗

H(α) consisting of all mappings
f = h + g such that h and g are of the form

h(z) = z −
∞∑

j=2

∣∣aj
∣∣zj , g(z) =

∞∑

j=1

∣∣bj
∣∣zj (1.7)
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and satisfy the condition

∂

∂θ

(
arg f

(
reiθ
))

= Re

{
zh′ − zg ′

h + g

}
> α (1.8)

in D, where 0 ≤ α < 1.
For two analytic functions f1 and f2, if

f1(z) =
∞∑

j=1

ajz
j , f2(z) =

∞∑

j=1

Ajz
j , (1.9)

then the convolution of f1 and f2 is defined by

(
f1 ∗ f2

)
(z) = f1(z) ∗ f2(z) =

∞∑

j=1

ajAjz
j . (1.10)

By using the convolution, in [16], Ali et al. introduced the class S0
H(φ, σ, α) of harmonic

mappings in the form of (1.6) such that

Re

⎧
⎨

⎩
z
(
h ∗ φ)′(z) − σz(g ∗ φ)′(z)
(
h ∗ φ)(z) + σ(g ∗ φ)(z)

⎫
⎬

⎭ > α (1.11)

and the class SP 0
H(φ, σ, α) such that

Re

⎧
⎨

⎩

(
1 + eiγ

)z
(
h ∗ φ)′(z) − σz(g ∗ φ)′(z)
(
h ∗ φ)(z) + σ(g ∗ φ)(z)

− eiγ
⎫
⎬

⎭ > α, (1.12)

where σ ∈ R and α ∈ [0, 1) are constants, γ ∈ R and φ(z) = z +
∑∞

n=2 φnz
n is analytic in D.

Now we consider a class of biharmonic mappings, denoted by BH0(φk;σ, a, b), as
follows: F ∈ BH0(D) with the form (1.4) is said to be in BH0(φk;σ, a, b) if and only if

Re
{
a
Φ(z)
Ψ(z)

− b
}
> 0, (1.13)

where

Φ(z) = z

[ (
2∑

k=1

|z|2(k−1)(hk ∗ φk
)
(z)

)′
+ σ

(
2∑

k=1

|z|2(k−1)(gk ∗ φk
)
(z)

)′]
,

Ψ(z) = z′
2∑

k=1

|z|2(k−1)
((
hk ∗ φk

)
(z) + σ

(
gk ∗ φk

)
(z)
)
,

(1.14)
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φk(z) = z +
∑∞

j=2 φk,jz
j are analytic in D for k ∈ {1, 2}, σ ∈ R is a constant, a = p + ρeiγ ,

b = q + ρeiγ , p, q, ρ ∈ [0,+∞) are constants with a − b > 0, γ ∈ R, and z = reiθ. Here and in
what follows, “ ′ ” always stands for “∂/∂θ”.

Obviously, if φ2 = 0, a = 1 and b = α, then BH0(φk;σ, a, b) reduces to S0
H(φ, σ, α), and

if φ2 = 0, a = 1 + eiγ and b = α + eiγ , then BH0(φk;σ, a, b) reduces to SP 0
H(φ, σ, α).

Further, we use TBH0(φk;σ, a, b) to denote the class consisting of all mappings F in
BH0(φk;σ, a, b) with the form

F(z) =
2∑

k=1

|z|2(k−1)
(
hk(z) + gk(z)

)
, (1.15)

where

hk(z) = ak,1z −
∞∑

j=2

ak,jz
j , ak,j ≥ 0, a1,1 = 1, a2,1 = 0,

gk(z) = σ
∞∑

j=1

bk,jz
j , bk,j ≥ 0, b1,1 = b2,1 = 0.

(1.16)

The object of this paper is to generalize the discussions in [16] to the setting of
BH0(φk;σ, a, b) and TBH0(φk;σ, a, b) in a unified way. The organization of this paper is
as follows. In Section 2, we get a convolution characterization for BH0(φk;σ, a, b). As a
corollary, we derive a sufficient coefficient condition for mappings in BH0(D) to belong
to BH0(φk;σ, a, b). The main results are Theorems 2.1 and 2.3. In Section 3, first, we get
a coefficient characterization for TBH0(φk;σ, a, b), and then find the extreme points of
TBH0(φk;σ, a, b). The corresponding results are Theorems 3.1 and 3.6.

2. A Convolution Characterization

We begin with a convolution characterization for BH0(φk;σ, a, b).

Theorem 2.1. Let F ∈ BH0(D). Then F ∈ BH0(φk;σ, a, b) if and only if

2∑

k=1

|z|2(k−1)(hk ∗ φk
)
(z) ∗

(
z + ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2
)

− σ
2∑

k=1

|z|2(k−1)(gk ∗ φk
)
(z) ∗

(
((ax + b)/(a − b))z − ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2
)

/= 0,

(2.1)

for all z ∈ D \ {0} and all x ∈ C with |x| = 1.
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Proof. By definition, a necessary and sufficient condition for a mapping F in BH0(D) to be in
BH0(φk;σ, a, b) is given by (1.13). Let

G(z) =
1

a − b
(
a
Φ(z)
Ψ(z)

− b
)
. (2.2)

Then G(0) = 1, and so the condition (1.13) is equivalent to

G(z)/=
x − 1
x + 1

, (2.3)

for all z ∈ D \ {0} and all x ∈ C with |x| = 1 and x /= − 1. Obviously, (2.3) holds if and only if

a(x + 1)Φ(z) − b(x + 1)Ψ(z) − (a − b)(x − 1)Ψ(z)/= 0. (2.4)

Straightforward computations show that

a(x + 1)Φ(z) − b(x + 1)Ψ(z) − (a − b)(x − 1)Ψ(z)

= a(x + 1)z′
2∑

k=1

|z|2(k−1)
⎛

⎝z +
∞∑

j=2

jak,jφk,jz
j − σ

∞∑

j=2

jbk,jφk,jzj

⎞

⎠

− (ax − a + 2b)z′
2∑

k=1

|z|2(k−1)
⎛

⎝z +
∞∑

j=2

ak,jφk,jz
j + σ

∞∑

j=2

bk,jφk,jzj

⎞

⎠

= z′
2∑

k=1

|z|2(k−1)(hk ∗ φk
)
(z) ∗

(
2(a − b)z + (ax − a + 2b)z2

(1 − z)2
)

− σz′
2∑

k=1

|z|2(k−1)(gk ∗ φk
)
(z) ∗

(
2(ax + b)z − (ax − a + 2b)z2

(1 − z)2
)
,

(2.5)

from which we see that (2.3) is true if and only if so is (2.1). The proof is complete.

Remark 2.2. If h2 = g2 = 0, a = 1 and b = α, then Theorem 2.1 coincides with Theorem 2.1 in
[16], and if h2 = g2 = 0, a = 1 + eiγ , and b = α + eiγ , then Theorem 2.1 coincides with Theorem
2.3 in [16].

As an application of Theorem 2.1, we derive a sufficient condition for mappings in
BH0(D) to be in BH0(φk;σ, a, b) in terms of their coefficients.

Theorem 2.3. Let F ∈ BH0(D). Then F ∈ BH0(φk;σ, a, b) if

2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b
∣∣φk,jak,j

∣∣ + |σ|
2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b
∣∣φk,jbk,j

∣∣ ≤ 1, (2.6)
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here and in the following, ‖z‖max = maxγ∈R{|x+yeiγ |} = x+y, where z = x+yeiγ , x and y ∈ [0,+∞)
are constants.

Proof. For F given by (1.4), we see that

L(z) �
∣∣∣∣∣

2∑

k=1

|z|2(k−1)(hk ∗ φk
)
(z) ∗

(
z + ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2
)

−σ
2∑

k=1

|z|2(k−1)(gk ∗ φk
)
(z) ∗

(
((ax + b)/(a − b))z − ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2
)∣∣∣∣∣

=

∣∣∣∣∣∣
z +

2∑

k=1

|z|2(k−1)
∞∑

j=2

(
j +
(
j − 1

)ax − a + 2b
2a − 2b

)
φk,jak,jz

j

−σ
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
j
ax + b
a − b − (j − 1

)ax − a + 2b
2a − 2b

)
φk,jbk,jzj

∣∣∣∣∣∣
.

(2.7)

If F is the identity, obviously, L(z) = |z|.
If F is not the identity, then

L(z) > |z|
⎛

⎝1 −
2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b
∣∣φk,jak,j

∣∣ −|σ|
2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b
∣∣φk,jbk,j

∣∣
⎞

⎠.

(2.8)

Hence the assumption implies that L(z) > 0 for all z ∈ D \ {0} and all x ∈ C with |x| = 1. It
follows from Theorem 2.1 that F ∈ BH0(φk;σ, a, b).

Remark 2.4. If h2 = g2 = 0, a = 1 and b = α, then Theorem 2.3 coincides with Theorem 2.2 in
[16], and if h2 = g2 = 0, a = 1 + eiγ and b = α + eiγ , then Theorem 2.3 coincides with Theorem
2.4 in [16].

3. A Coefficient Characterization and Extreme Points

We start with a coefficient characterization for TBH0(φk;σ, a, b).

Theorem 3.1. Let φk(z) = z +
∑∞

j=2 φk,jz
j with φk,j ≥ 0, and let F be of the form (1.15). Then

F ∈ TBH0(φk;σ, a, b) if and only if

2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b φk,jak,j + σ2
2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b φk,jbk,j ≤ 1. (3.1)
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Proof. By similar arguments as in the proof of Theorem 2.3, we see that it suffices to prove the
“only if” part. For F ∈ TBH0(φk;σ, a, b), obviously, (1.13) is equivalent to

Re

⎧
⎨

⎩
P(z) −Q(z)

z −∑2
k=1 |z|2(k−1)

(∑∞
j=2 ak,jφk,jz

j − σ2
∑∞

j=2 bk,jφk,jz
j
)

⎫
⎬

⎭ > 0 (3.2)

in D, where

P(z) = (a − b)z −
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
aj − b)ak,jφk,jzj ,

Q(z) = σ2
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
aj + b

)
bk,jφk,jz

j .

(3.3)

Letting z → 1− through real values leads to the desired inequality. So the proof is complete.

Remark 3.2. If h2 = g2 = 0, a = 1, and b = α, then Theorem 3.1 coincides with Theorem 3.1 in
[16].

It follows from Theorem 3.1 that we have the following.

Corollary 3.3. Let φk(z) = z +
∑∞

j=2 φk,jz
j with φk,j ≥ φ1,2 > 0 (k ∈ {1, 2}, j ≥ 2) and |σ| ≥

(2‖a‖max − ‖b‖max)/(2‖a‖max + ‖b‖max). If F ∈ TBH0(φk;σ, a, b), then for |z| = r < 1, one has

r − a − b
(2‖a‖max − ‖b‖max)φ1,2

r2 ≤ |F(z)| ≤ r + a − b
(2‖a‖max − ‖b‖max)φ1,2

r2. (3.4)

The result is sharp with equality for mappings

F(z) = z − a − b
(2‖a‖max − ‖b‖max)φ1,2

z2. (3.5)

Theorem 3.1 and Corollary 3.3 imply the following

Corollary 3.4. Under the hypotheses of Corollary 3.3, one has that TBH0(φk;σ, a, b) is closed under
the convex combination.

Definition 3.5. Let X be a topological vector space over the field of complex numbers, and let
E be a subset of X. A point x ∈ E is called an extreme point of E if it has no representation of
the form x = ty + (1 − t)z (0 < t < 1) as a proper convex combination of two distinct points y
and z in E (cf. [17]).

We now determine the extreme points of TBH0(φk;σ, a, b).
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Theorem 3.6. Let

(1) h11(z) = z,

(2) h21(z) = g11(z) = g21(z) = 0,

(3) hkj(z) = z − |z|2(k−1)((a − b)/(j‖a‖max − ‖b‖max)φk,j)z
j for k ∈ {1, 2} and all j ≥ 2,

(4) gkj(z) = z + |z|2(k−1)((a − b)/σ(j‖a‖max + ‖b‖max)φk,j)z
j for k ∈ {1, 2} and all j ≥ 2.

Under the hypotheses of Corollary 3.3, one has that F ∈ TBH0(φk;σ, a, b) if and only if it can be
expressed as

F(z) =
2∑

k=1

∞∑

j=1

(
xkjhkj(z) + ykjgkj(z)

)
, (3.6)

where x21 = y11 = y21 = 0, all other xkj and ykj are nonnegative, and
∑2

k=1
∑∞

j=1(xkj + ykj) = 1.

In particular, the extreme points of TBH0(φk;σ, a, b) are all mappings hkj and gkj listed in
(1), (3), and (4) above.

Proof. It follows from the assumptions that

F(z) =
2∑

k=1

∞∑

j=1

(
xkjhkj(z) + ykjgkj(z)

)

= z −
2∑

k=1

∞∑

j=2
|z|2(k−1) a − b

(
j‖a‖max − ‖b‖max

)
φk,j

xkjz
j

+ σ
2∑

k=1

∞∑

j=2
|z|2(k−1) a − b

σ2
(
j‖a‖max + ‖b‖max

)
φk,j

ykjz
j ,

(3.7)

whence

2∑

k=1

∞∑

j=2

(
j‖a‖max − ‖b‖max

)

a − b φk,j · a − b
(
j‖a‖max − ‖b‖max

)
φk,j

xkj

+ σ2
2∑

k=1

∞∑

j=2

(
j‖a‖max + ‖b‖max

)

a − b φk,j · a − b
σ2
(
j‖a‖max + ‖b‖max

)
φk,j

ykj

=
2∑

k=1

∞∑

j=2

xkj +
2∑

k=1

∞∑

j=2

ykj

≤ 1,

(3.8)

and so Theorem 3.1 implies that F ∈ TBH0(φk;σ, a, b).
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Conversely, assume F ∈ TBH0(φk;σ, a, b), and let

x21 = y11 = y21 = 0, x11 = 1 −
2∑

k=1

∞∑

j=2

xkj −
2∑

k=1

∞∑

j=2

ykj ,

xkj =

(
j‖a‖max − ‖b‖max

)
φk,jak,j

a − b ,

ykj =
σ2(j‖a‖max + ‖b‖max

)
φk,jbk,j

a − b ,

(3.9)

for k ∈ {1, 2} and all j ≥ 2. Then

F(z) = z −
2∑

k=1

|z|2(k−1)
∞∑

j=2

ak,jz
j + σ

2∑

k=1

|z|2(k−1)
∞∑

j=2

bk,jz
j . (3.10)

The proof of the theorem is complete.

Remark 3.7. If h2 = g2 = 0, a = 1 and b = α, then Theorem 3.6 coincides with Theorem 3.2 in
[16].
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We present a boundary integral equation method for conformal mapping of unbounded multiply
connected regions onto five types of canonical slit regions. For each canonical region, three
linear boundary integral equations are constructed from a boundary relationship satisfied by an
analytic function on an unboundedmultiply connected region. The integral equations are uniquely
solvable. The kernels involved in these integral equations are the modified Neumann kernels and
the adjoint generalized Neumann kernels.

1. Introduction

In this paper, we present a new method for numerical conformal mapping of unbounded
multiply connected regions onto five types of canonical slit regions. A canonical region
in conformal mapping is known as a set of finitely connected regions S such that each
finitely connected nondegenerate region is conformally equivalent to a region in S. With
regard to conformal mapping of multiply connected regions, there are several types of
canonical regions as listed in [1–4]. The five types of canonical slit regions are disk with
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concentric circular slits Ud, annulus with concentric circular slits Ua, circular slit regions
Uc, radial slit regions Ur , and parallel slit regions Up. One major setback in conformal
mapping is that only for certain regions exact conformal maps are known. One way to
deal with this limitation is by numerical computation. Trefethen [5] has discussed several
methods for computing conformal mapping numerically. Amano [6] and DeLillo et al. [7]
have successfully map unbounded regions onto circular and radial slit regions. Boundary
integral equation related to a boundary relationship satisfied by a function which is analytic
in a simply or doubly connected region bounded by closed smooth Jordan curves has been
given by Murid [8] and Murid and Razali [9]. Special realizations of this integral equation
are the integral equations related to the Szegö kernel, Bergmann kernel, Riemann map, and
Ahlfors map. The kernels arise in these integral equations are the Neumann kernel and
the Kerzman-Stein kernel. Murid and Hu [10] managed to construct a boundary integral
equation for numerical conformal mapping of a bounded multiply connected region onto
a unit disk with slits. However, the integral equation involves unknown radii which lead
to a system of nonlinear algebraic equations upon discretization of the integral equation.
Nasser [11–13] produced another technique for numerical conformal mapping of bounded
and unbounded multiply connected regions by expressing the mapping function in terms
of the solution of a uniquely solvable Riemann-Hilbert problem. This uniquely solvable
Riemann Hilbert problem can be solved by means of boundary integral equation with
the generalized Neumann kernel. Recently, Sangawi et al. [14–17] have constructed new
linear boundary integral equations for conformal mapping of bounded multiply region onto
canonical slit regions, which improves the work of Murid and Hu [10] where in [10], the
system of algebraic equations are nonlinear. In this paper, we extend the work of [14–17]
for numerical conformal mapping of unbounded multiply connected regions onto all five
types of canonical slit regions. These boundary integral equations are constructed from a
boundary relationship satisfied by an analytic function on an unbounded multiply connected
region.

The plan of this paper is as follows: Section 2 presents some auxiliary material.
Section 3 presents a boundary integral equation related to a boundary relationship. In
Sections 4–8, we present the derivations for numerical conformal mapping for all five types
of canonical regions. In Section 9, we give some examples to illustrate the effectiveness of our
method. Finally, Section 10 presents a short conclusion.

2. Auxiliary Material

Let Ω− be an unbounded multiply connected region of connectivity m. The boundary Γ
consists ofm smooth Jordan curves Γj , j = 1, 2, . . . , m and will be denoted by Γ = Γ1 ∪Γ2 ∪ · · · ∪
Γm. The boundaries Γj are assumed in clockwise orientation (see Figure 1). The curve Γj is
parameterized by 2π-periodic twice continuously differentiable complex function ηj(t) with
nonvanishing first derivative, that is,

η′j(t) =
dηj(t)
dt

/= 0, t ∈ Jj = [0, 2π], k = 1, . . . , m. (2.1)
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ΓM
Γ2

Γ1

Ω−

Figure 1: An unbounded multiply connected region Ω− with connectivitym.

The total parameter domain J is the disjoint union of m intervals J1, . . . , Jm. We define a
parameterization η of the whole boundary Γ on J by

η(t) =

⎧
⎪⎪⎨

⎪⎪⎩

η1(t), t ∈ J1 = [0, 2π],
...
ηm(t), t ∈ Jm = [0, 2π].

(2.2)

Let Φ(z) be the conformal mapping function that maps Ω− onto U−, where U−

represents any canonical region mentioned above, z1 is a prescribed point located inside Γ1,
zm is a prescribed point inside Γm and β is a prescribed point located in Ω−. In this paper, we
determine the mapping functionΦ(z) by computing the derivatives of the mapping function
Φ′(η(t)) and two real functions on J , that is, the unknown function ϕ(t) and a piecewise
constant real function R(t). Let H be the space of all real Hölder continuous 2π-periodic
functions and S be the subspace of H which contains the piecewise real constant functions
R(t). The piecewise real constant function R(t) can be written as

R(t) =

⎧
⎪⎪⎨

⎪⎪⎩

R1, t ∈ J1 = [0, 2π],
...
Rm, t ∈ Jm = [0, 2π],

(2.3)

briefly written as R(t) = (R1, . . . , Rm). Let A(t) be a complex continuously differentiable 2π-
periodic function for all t ∈ J . We define two real kernels formed with A as [18]

N(s, t) =
1
π

Im
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)
,

M(s, t) =
1
π

Re
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)
.

(2.4)
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The kernelN(s, t) is known as the generalizedNeumann kernel formedwith complex-valued
functions A and η. The kernelN(s, t) is continuous with

N(t, t) =
1
π

Im
(
η′′(t)
η′(t)

− A′(t)
A(t)

)
. (2.5)

The kernelM(s, t) has a cotangent singularity

M(s, t) = − 1
2π

cot
s − t
2

+M1(s, t), (2.6)

where the kernelM1(s, t) is continuous with

M1(t, t) =
1
π

Re
(

1
2π

η′′(t)
η′(t)

− A′(t)
A(t)

)
. (2.7)

The adjoint function Ã of A is defined by

Ã =
η′(t)
A(t)

. (2.8)

The generalized Neumann kernel Ñ(s, t) and the real kernel M̃ formed with Ã are defined
by

Ñ(s, t) =
1
π

Im

(
Ã(s)

Ã(t)

η′(t)
η(t) − η(s)

)
,

M̃(s, t) =
1
π

Re

(
Ã(s)

Ã(t)

η′(t)
η(t) − η(s)

)
.

(2.9)

Then,

Ñ(s, t) = −N∗(s, t), M̃(s, t) = −M∗(s, t), (2.10)

whereN∗(s, t) = N(t, s) is the adjoint kernel of the generalized Neumann kernelN(s, t). We
define the Fredholm integral operators N∗ by

N∗υ(t) =
∫

J

N∗(t, s)υ(s)ds, t ∈ J. (2.11)

Integral operators M∗, Ñ, and M̃ are defined in a similar way. Throughout this paper, we
will assume the functions A and Ã are given by

A(t) = 1, Ã(t) = η′(t). (2.12)
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It is known that λ = 1 is not an eigenvalue of the kernelN and λ = −1 is an eigenvalue of the
kernelN with multiplicitym [18]. The eigenfunctions ofN corresponding to the eigenvalue
λ = −1 are {χ[1], χ[2], . . . , χ[m]}, where

χ[j](ξ) =

{
1, ξ ∈ Γj ,
0, otherwise.

j = 1, 2, . . . , m. (2.13)

We also define an integral operator J by (see [14])

Jμ(s) :=
∫

J

1
2π

m∑

j=0

χ[j](s)χ[j](t)μ(t)dt. (2.14)

The following theorem gives us a method for calculating the piecewise constant real function
h(t) in connection with conformal mapping later. This theorem can be proved by using the
approach as in [19, Theorem 5].

Theorem 2.1. Let i =
√−1, γ , μ ∈ H and h ∈ S such that

Af = γ + h + iμ (2.15)

are the boundary values of a function f(z) analytic inΩ−. Then the function h = (h1, h2, . . . , hm) has
each element given by

hj =
(
γ, ρ[j]

)
=

1
2π

∫

Γ
γ(t)ρ[t]dt, (2.16)

where ρ[t] is the unique solution of the integral equation

(I +N∗ + J)ρ[j] = −χ[j], j = 1, 2, . . . , m. (2.17)

3. The Homogeneous Boundary Relationship

Suppose we are given a function D(z) which is analytic in Ω−, continuous on Ω− ∪ Γ, Hölder
continuous on Γ andD(∞) is finite. The boundary Γj is assumed to be a smooth Jordan curve.
The unit tangent to Γ at the point η(t) ∈ Γ will be denoted by T(η(t)) = η′(t)/|η′(t)|. Suppose
further that D(η(t)) satisfies the exterior homogeneous boundary relationship

D
(
η(t)

)
= c(t)

T
(
η(t)

)2
D
(
η(t)

)

P
(
η(t)

) , (3.1)

where c(t) and P are complex-valued functions with the following properties:
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(1) P(z) is analytic in Ω− and does not have zeroes on Ω− ∪ Γ,

(2) P(∞)/= 0, D(∞) is finite,

(3) c(t)/= 0, P(η(t))/= 0.

Note that the boundary relationship (3.1) also has the following equivalent form:

P
(
η(t)

)
= c(t)T

(
η(t)

)2 D
(
η(t)

)2
∣∣D

(
η(t)

)∣∣2
. (3.2)

Under these assumptions, an integral equation for D(η(t)) can be constructed by means of
the following theorem.

Theorem 3.1. If the functionD(η(t)) satisfies the exterior homogeneous boundary relationship (3.1),
then

φ(t) +
∫

J

K(s, t)φ(s)ds = ν(t), (3.3)

where

φ(t) = D
(
η(t)

)
η′(t),

K(s, t) =
1

2πi

⎡
⎢⎣

η′(t)
η(t) − η(s) −

c(t)
c(s)

η′(t)
(
η(t) − η(s)

)

⎤
⎥⎦,

ν(t) = D(∞)η′(t) + c(t)η′(t)
D(∞)

P(∞)
.

(3.4)

Proof. Consider the integral I1(η(t)),

I1
(
η(t)

)
=

1
2πi

∫

J

D
(
η(s)

)

η(s) − η(t)ds. (3.5)

Since the boundary is in clockwise orientation and D is analytic in Ω−, then by [20, p. 2] we
have

I1
(
η(t)

)
=
D
(
η(t)

)

2
−D(∞). (3.6)

Now, let the integral I2(η(t)) be defined as

I2
(
η(t)

)
=

1
2πi

∫

J

c(t)T
(
η(t)

)2
D
(
η(s)

)

c(s)
(
η(s) − η(t)

)
T
(
η(s)

) |ds|. (3.7)
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Using the boundary relationship (3.1) and the fact that T(η(t))|dt| = dt and P(η(t)) does not
contain zeroes, then by [20, p. 2] we obtain

I2
(
η(t)

)
= −c(t)T(η(t))2D

(
η(t)

)

P
(
η(t)

) + c(t)T
(
η(t)

)2D(∞)

P(∞)
. (3.8)

Next, by taking I2(η(t)) − I1(η(t))with further arrangement yields

D
(
η(t)

)
+

1
2πi

∫

J

⎡

⎣ 1
η(t) − η(s) −

c(t)
c(s)

T
(
η(t)

)2

η(t) − η(s)

⎤

⎦D
(
η(s)

)|ds|

= D(∞) + c(t)T
(
η
)2D(∞)

P(∞)
.

(3.9)

Then multiplying (3.9)with T(η(t)) and |η′(t)|, subsequently yields (3.3).

Theorem 3.2. The kernel K(s, t) is continuous with

K(t, t) =
1
2π

Im
η′′(t)
η′(t)

− 1
2πi

c′(t)
c(t)

. (3.10)

Proof. Let the kernel K(s, t) be written as

K(s, t) = K1(s, t) +K2(s, t), (3.11)

where

K1(s, t) =
1

2πi

[
η′(t)

η(t) − η(s) −
η′(t)

η(t) − η(s)

]
,

K2(s, t) =
1

2πi

[
− c(t)
c(s)

η′(t)

η(t) − η(s)
+

η′(t)

η(t) − η(s)

]
=

1
2πi

η′(t)
c(s)

[
c(s) − c(t)
η(t) − η(s)

]
.

(3.12)

Notice thatK1(s, t) is the classical Neumann kernel withK1(t, t) = 1/(2π) Im((η′′(t))/(η′(t))).
Now for K2(s, t), as we take the limit s → t we have,

K2(t, t) =
1

2πi
lim
s→ t

η′(t)
c(s)

lim
s→ t

[
c(s) − c(t)
η(t) − η(s)

]

= − 1
2πi

c′(t)
c(t)

.

(3.13)
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Hence, by combining K1(t, t) and K2(t, t), we obtain

K(t, t) =
1
2π

(
Im

η′′(t)
η′(t)

− 1
i
c′(t)
c(t)

)
. (3.14)

Note that when c(t) = 1, the kernel K(s, t) reduces to the classical Neumann kernel.
We define the Fredholm integral operator K by

Kυ(t) =
1

2πi

∫

J

K(s, t)υ(s)ds, t ∈ J. (3.15)

Hence, (3.3) becomes

(I +K)φ(t) = ν(t). (3.16)

The solvability of the integral equation (3.16) depends on the possibility of λ = −1 being
an eigenvalue of the kernel K(s, t). For the numerical examples considered in this paper,
λ = −1 is always an eigenvalue of the kernel K(s, t). Although there is no theoretical proof
yet, numerical evidence suggests that λ = −1 is an eigenvalue of K(s, t). If the multiplicity
of the eigenvalue λ = −1 is m̂, then one need to add m̂ conditions to the integral equation to
ensure the integral equation is uniquely solvable.

4. Exterior Unit Disk with Circular Slits

The canonical region Ud is the exterior unit disk along with m − 1 arcs of circles. We assume
thatw = Φ(z)maps the curve Γ1 onto the unit circle |w| = 1, the curve Γj , where j = 2, 3, . . . , m,
onto circular slit on the circle |w| = Rj , where R2, R3, . . . , Rm are unknown real constants. The
circular slits are traversed twice. The boundary values of the mapping function Φ are given
by

Φ
(
η(t)

)
= R(t)eiθ(t), (4.1)

where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm). By
differentiating (4.1) with respect to t and dividing the result obtained by its modulus, we
have

Φ′(η(t)
)
η′(t)

∣∣Φ′(η(t)
)
η′(t)

∣∣ = i sign
(
θ′(t)

)
eiθ(t). (4.2)

Using the fact that unit tangent T(η(t)) = η′(t)/|η′(t)| and eiθ(t) = Φ(η(t))/R(t), it can be
shown that

Φ
(
η(t)

)
= sign

(
θ′(t)

)R(t)
i
T
(
η(t)

) Φ′(η(t)
)

∣∣Φ′(η(t)
)∣∣ . (4.3)
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Boundary relationship (4.3) is useful for computing the boundary values of Φ(z) provided
θ′(t), R(t), and Φ′(η(t)) are all known. By taking logarithmic derivative on (4.1), we obtain

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (4.4)

The mapping function Φ(z) can be uniquely determined by assuming

Φ(∞) = ∞, c = Φ′(∞) = lim
z→∞

Φ(z)
z

> 0. (4.5)

Thus, the mapping function can be expressed as [12]

Φ(z) = c(z − z1)eF(z), (4.6)

where F(z) is an analytic function and F(∞) = 0. By taking logarithm on both sides of (4.6),
we obtain

F
(
η(t)

)
= ln

R(t)
c

+ iθ − log
(
η(t) − z1

)
. (4.7)

Hence (4.7) satisfies boundary values (2.15) in Theorem 2.1 with A(t) = 1,

h(t) =
(
ln

1
c
, ln

R2

c
, . . . , ln

Rm

c

)
, γ(t) = − ln

∣∣η(t) − z1
∣∣. (4.8)

Hence, the values of Rj can be calculated by

Rj = ehj−h1 for j = 1, 2, . . . , m. (4.9)

To find θ′(t), we began by differentiating (4.7) and comparing with (4.4) which yields

iθ′(t) = F ′(η(t)
)
η′(t) − η′(t)

η(t) − z1 .
(4.10)

In view of Ã = η′(t) and letting f(z) = F ′(z) − 1/(z − z1), where f(z) is analytic function in
Ω−, (4.10) becomes

Ãf
(
η(t)

)
= iθ′(t). (4.11)

By [18, Theorem 2(c)], we obtain (I − Ñ)θ′ = 0 which implies

(I +N∗)θ′ = 0. (4.12)
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However, this integral equation is not uniquely solvable according to [18, Theorem 12]. To
overcome this, since the image of the curve Γ1 is clockwise oriented and the images of the
curves Γj , j = 2, 3, . . . , m are slits so we have θ1(2π) − θ1(0) = −2π and θj(2π) − θj(0) = 0,
which implies

Jθ′(t) = h̃(t) = (−1, 0, . . . , 0). (4.13)

By adding this condition to (4.12), the unknown function θ′(t) is the unique solution of the
integral equation

(I +N∗ + J)θ′(t) = h̃(t). (4.14)

Next, the presence of sign(θ′(t)) in (4.3) can be eliminated by squaring both sides of (4.3),
that is,

Φ
(
η(t)

)2 = −R(t)2T(η(t))2 Φ′(η(t)
)2

∣∣Φ′(η(t)
)∣∣2

. (4.15)

Upon comparing (4.15) with (3.2), this leads to a choice of P(η(t)) = Φ(η(t))2, P(∞) = ∞,
D(η(t)) = Φ′(η(t)), D(∞) = c, c(t) = −R(t)2. Hence,

φ(t) = Φ′(η(t)
)
η′(t) (4.16)

satisfies the integral equation (3.16) with

ν(t) = Φ′(∞)η′(t). (4.17)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
means one needs to add m conditions. Since Φ(z) is assumed to be single-valued, it is also
required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (4.18)

that is,

Jφ = 0. (4.19)

Then, φ(t) is the unique solution of the following integral equation

(I +K + J)φ(t) = ν(t). (4.20)
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By obtaining φ(t), the derivatives of the mapping function, Φ′(t) can be found using

Φ′(t) =
φ(t)
η′(t)

. (4.21)

By obtaining the values of R(t), θ′(t) and Φ′(η(t)), the boundary value of Φ(η(t)) can be
calculated by using (4.3).

5. Annulus with Circular Slits

The canonical region Ua consists of an annulus centered at the origin together with m − 2
circular arcs. We assume that Φ(z) maps the curve Γ1 onto the unit circle |Φ| = 1, the curve
Γm onto the circle |Φ| = Rm and Γj onto circular slit |Φ| = Rj , where j = 2, 3, . . . , m − 1. The slit
are traversed twice. The boundary values of the mapping function Φ are given by

Φ
(
η(t)

)
= R(t)eiθ(t), (5.1)

where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm) is a
piecewise real constant function. By using the same reasoning as in Section 4, we get

Φ
(
ηj(t)

)
= sign

(
θ′(t)

)Rj(t)
i

T
(
ηj(t)

) Φ′(ηj(t)
)

∣∣Φ′(ηj(t)
)∣∣ , (5.2)

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (5.3)

The mapping function Φ(z) can be uniquely determined by assuming c = Φ(∞) > 0. Thus,
the mapping function can be expressed as [12]

Φ(z) = c
z − zm
z − z1 e

F(z). (5.4)

By taking logarithm on both sides of (5.4), we obtain

F
(
η(t)

)
= ln

R(t)
c

+ iθ − log
η(t) − zm
η(t) − z1 . (5.5)

Hence, (5.5) satisfies boundary values (2.15) in Theorem 2.1 with A(t)=1,

h(t) =
(
ln

1
c
, ln

R2

c
, . . . , ln

Rm

c

)
, γ(t) = − ln

∣∣∣∣
η(t) − zm
η(t) − z1

∣∣∣∣. (5.6)

By obtaining hj , the values of Rj can be computed by

Rj = ehj−h1 , j = 2, 3, . . . , m. (5.7)
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By differentiating (5.5) and comparing with (5.3) yields

iθ′(t) = F ′(η(t)
)
η′(t) +

η′(t)
η(t) − zm − η′(t)

η(t) − z1 .
(5.8)

In view of Ã = η′(t) and f(η(t)) = F ′(η(t))+1/(η(t)−zm)−1/(η(t)−z1), where f(z) is analytic
in Ω−, (5.8) is equivalent to

Ãf
(
η(t)

)
= iθ′(t). (5.9)

By [18, Theorem 2(c)], we obtain

(I +N∗)θ′(t) = 0. (5.10)

Note that the image of the curve Γ1 is counterclockwise oriented, Γm is clockwise oriented
and the images of the curves Γj , j = 2, 3, . . . , m − 1 are slits so we have θ1(2π) − θ1(0) = 2π ,
θm(2π) − θm(0) = −2π and θj(2π) − θj(0) = 0, which implies

Jθ′(t) = h̃(t) = (1, 0, . . . ,−1). (5.11)

Hence, the unknown function θ′(t) is the unique solution of the integral equation

(I +N∗ + J)θ′(t) = h̃(t). (5.12)

Next, the presence of sign(θ′(t)) in (5.2) can be eliminated by squaring both sides of the
equation, that is,

Φ
(
η(t)

)2 = −R(t)2T(η(t))2 Φ′(η(t)
)2

∣∣Φ′(η(t)
)∣∣2

. (5.13)

Comparing (5.13) with (3.2) leads to a choice of P(η(t)) = Φ(η(t))2, P(∞) = c2, D(η(t)) =
Φ′(η(t)), D(∞) = 0, c(t) = −R(t)2. Hence,

φ(t) = Φ′(η(t)
)
η′(t) (5.14)

satisfies the integral equation (3.16) with

ν(t) = (0, . . . , 0). (5.15)
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Numerical evidence shows that λ = −1 is an eigenvalue ofK(s, t) of multiplicitym+ 1, which
implies one needs to add m + 1 conditions. Since Φ(z) is assumed to be single-valued, hence
it is also required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(s)ds =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (5.16)

that is,

Jφ = 0. (5.17)

Since we assume the mapping function Φ(z) can be uniquely determined by c = Φ(∞) > 0,
hence by [20]

Φ(∞) = c =
1
2π

∫

J

η′(t)
θ′(t)

(
η − z1

)φ(t)dt. (5.18)

If we define the Fredholm operator G as

Gμ(s) =
1
2π

∫

J

η′(t)
θ′(t)

(
η − z1

)μ(t)dt, (5.19)

then φ(t) is the unique solution of the following integral equation:

(I +K + J +G)φ(t) = c. (5.20)

By obtaining φ(η(t)), the derivatives of the mapping function, Φ′(t) can be obtained by

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (5.21)

6. Circular Slits

The canonical region Uc consists of m slits along the circle |Φ| = Rj where j = 1, 2, . . . , m and
R1, R2, . . . , Rm are unknown real constants. The boundary values of the mapping function Φ
are given by

Φ
(
η(t)

)
= R(t)eiθ(t), (6.1)
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where θ(t) represents the boundary correspondence function and R(t) = (1, R2, . . . , Rm). By
using the same reasoning as in Section 4, we get

Φ
(
ηj(t)

)
= sign

(
θ′(t)

)Rj(t)
i

T
(
ηj(t)

) Φ′(ηj(t)
)

∣∣Φ′(ηj(t)
)∣∣ , (6.2)

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = iθ′(t). (6.3)

The mapping function Φ(z) can be uniquely determined by assuming Φ(β) = 0, Φ(∞) = ∞
and Φ′(∞) = 1. Thus, the mapping function Φ can be expressed as [12]

Φ(z) =
(
z − β)eF(z). (6.4)

By taking logarithm on both sides of (6.4), we obtain

F
(
η(t)

)
= lnR(t) + iθ − log

(
η(t) − β). (6.5)

Hence, (6.5) satisfies boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (lnR1, lnR2, . . . , lnRm), γ(t) = − ln
∣∣η(t) − β∣∣. (6.6)

By obtaining hj , the values of Rj can be obtained by

Rj = ehj . (6.7)

By differentiating (6.5) and comparing with (6.3) yields

iθ′(t) = F ′(η(t)
)
η′(t) +

η′(t)
η(t) − β . (6.8)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = 1/(η(t) − β) where f(z) is analytic in Ω− and
g(z) is analytic in Ω+, we rewrite (6.8) as

Ãf
(
η(t)

)
= iθ′(t) − Ãg(η(t)). (6.9)

Let Ãg(t) = ψ + iϕ. Then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
θ′(t) − ϕ(t)) = M̃ψ(t), (6.10)

(I −N∗)ϕ(t) = M̃ψ(t). (6.11)
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Subtracting (6.11) from (6.10), we get

(I +N∗)θ′(t) = 2ϕ(t). (6.12)

Since the images of the curve Γ1,Γ2, . . . ,Γm are slits, we have θj(2π) − θj(0) = 0. Thus

Jθ′(t) = (0, 0, . . . , 0). (6.13)

Hence the unknown function θ′(t) is the unique solution of the integral equation

(I +N∗ + J)θ′(t) = 2ϕ(t), (6.14)

where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
η′(t)

η(t) − β
]
. (6.15)

By squaring both sides of (6.2) and dividing the result by (η(t) − β)2, we obtain

Φ
(
η(t)

)2
(
η(t) − β)2

= − R(t)2
(
η(t) − β)2

T
(
η(t)

)2 Φ′(η(t)
)2

∣∣Φ′(η(t)
)∣∣2

. (6.16)

Upon comparing (6.16) with (3.2) leads to a choice of P(η(t)) = Φ(η(t))2/(η(t) − β)2,
P(∞) = 1, D(η(t)) = Φ′(η(t)), D(∞) = 1, c(t) = −R(t)2/(η(t) − β2). Hence,

φ(t) = Φ′(η(t)
)
η′(t) (6.17)

satisfies the integral equation (3.16) with

ν(t) = − R(t)2

(
η(t) − β)2

η′(t) + η′(t). (6.18)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, thus one
needs to addm conditions. Since Φ(z) is assumed to be single-valued, it is also required that
the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (6.19)

that is,

Jφ = 0. (6.20)
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Then, φ(t) is the unique solution of the integral equation

(I +K + J)φ(t) = ν(t). (6.21)

By obtaining φ(η(t)), the derivatives of the mapping function, Φ′(t) can be obtained by

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (6.22)

7. Radial Slits

The canonical regionUr consists ofm slits alongm segments of the rays with arg(Φ) = θj , j =
1, 2, . . . , m. Then, the boundary values of the mapping function Φ are given by

Φ
(
η(t)

)
= r(t)eiθ(t) = eR(t)eiθ(t), (7.1)

where the boundary correspondence function θ(t) = (θ1, θ2, . . . , θm) now becomes real con-
stant function and R(t) is an unknown function. By taking logarithmic derivative on (7.1), we
obtain

η′(t)
Φ′(η(t)

)

Φ
(
η(t)

) = R′(t). (7.2)

It can be shown that the mapping function Φ(z) can be determined using

Φ
(
η(t)

)
=
η′(t)Φ′(η(t)

)

R′(t)
. (7.3)

The mapping function Φ(z) can be uniquely determined by assuming Φ(β) = 0, Φ(∞) = ∞
and Φ′(∞) = 1. Thus, the mapping function Φ(z) can be expressed as [12]

Φ(z) =
(
z − β)eiF(z). (7.4)

By taking logarithm on both sides of (7.4) and multiplying the result by −i, we obtain

F
(
η(t)

)
= θ − iR(t) + ilog

(
η(t) − β). (7.5)

Hence, (7.5) satisfies boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (θ1, θ2, . . . , θm), γ(t) = −Arg
(
η(t) − β). (7.6)

By obtaining h(t), one can obtain the values of θ(t) by

θj = hj for j = 1, 2, . . . , m. (7.7)
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Then, by differentiating (7.5) and comparing with (7.2) yields

iR′(t) = −F ′(η(t)
)
η′(t) + i

η′(t)
η(t) − β . (7.8)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = i/(η(t) − β) where f(z) is analytic in Ω− and
g(z) is analytic in Ω+, we rewrite (7.8) as

Ãf
(
η(t)

)
= iR′(t) − Ãg(η(t)). (7.9)

Let Ãg(t) = ψ + iϕ. Then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
ϕ(t) − R′(t)

)
= −M̃ψ(t),

(I −N∗)ϕ(t) = M̃ψ(t).
(7.10)

Adding these equations, we get

(I +N∗)R′(t) = 2ϕ(t). (7.11)

Since the images of the curve Γ1,Γ2, . . . ,Γm are slits, we have Rj(2π) − Rj(0) = 0. Therefore

JR′(t) = (0, 0, . . . , 0). (7.12)

Hence, the unknown function R′(t) is the unique solution of the integral equation

(I +N∗ + J)R′(t) = 2ϕ(t), (7.13)

where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
iη′(t)
η(t) − β

]
. (7.14)

The boundary relationship (7.3) can be rewritten as

Φ′(η(t)
)
= ±eiθj T(η(t))∣∣Φ′(η(t)

)∣∣. (7.15)

Squaring both sides of (7.15) yields

Φ′(η(t)
)
= e2iθj T

(
η(t)

)2Φ′(η(t)
)
. (7.16)
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Upon comparing (7.16) with (3.1) leads to a choice of P(η(t)) = 1, P(∞) = 1, D(η(t)) =
Φ′(η(t)), D(∞) = 1, c(t) = ei2θj . Hence,

φ(t) = Φ′(η(t)
)
η′(t) (7.17)

satisfies the integral equation (3.16) with

ν(t) = e2iθj (t)η′(t) + η′(t). (7.18)

Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
suggests one needs to add m conditions. Since Φ(z) is assumed to be single-valued, hence it
is also required that the unknown mapping function Φ′(z) satisfies [4]

∫

Jj

φ(t)dt =
∫

Γj
Φ′(η

)
dη = 0, j = 1, 2, . . . , m, (7.19)

that is,

Jφ = 0. (7.20)

Then, φ(t) is the solution of the following integral equation

(I +K + J)φ(t) = ν(t). (7.21)

By obtaining φ(η(t)), the derivatives of the mapping function Φ′(t) can be found using

Φ′(t) =
φ
(
η(t)

)

η′(t)
. (7.22)

8. Parallel Slits

The canonical regionUp consists of am parallel straight slits on thew-plane. Let B = ei(π/2−θ),
then the boundary values of the mapping function Φ are given by

BΦ
(
η(t)

)
= R(t) + iδ(t), (8.1)

where θ is the angle of intersection between the lines Re[BΦ] = Rj and the real axis.
R(t) = (R1(t), R2(t), . . . , RM(t)) is a piecewise real constant function and δ(t) is an unknown
function. It can be shown that (8.1) can be written as

BΦ′(η(t)
)
η′(t) = iδ′(t). (8.2)
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The mapping function Φ(z) can be uniquely determined by assuming Φ(∞) = ∞ and
limz→∞Φ(z) − z = 0. Thus, the mapping function Φ can be expressed as [12]

Φ(z) = z + BF(z), (8.3)

where F(z) is an analytic function with F(∞) = 0. By multiplying both sides of (8.3) with B,
we obtain

F
(
η(t)

)
= BΦ

(
η(t)

) − Bη(t). (8.4)

Hence, (8.4) satisfies the boundary values in Theorem 2.1 with A(t) = 1,

h(t) = (R1, R2, . . . , Rm) γ(t) = −Bη(t). (8.5)

Differentiating (8.4) and comparing the result with (8.2) yield

iδ′(t) = Bη′(t) + η′(t)F ′(η(t)
)
. (8.6)

In view of Ã = η′(t), f(t) = F ′(η(t)) and g(t) = B, where f(z) is analytic in Ω− and g(z) is
analytic in Ω+, we rewrite (8.6) as

Ãf
(
η(t)

)
= iδ′(t) − Ãg(η(t)). (8.7)

Assuming Ãg(t) = ψ + iϕ, then by [18, Theorems 2(c) and 2(d)], we obtain

(I +N∗)
(
δ′(t) − ϕ(t)) = M̃ψ(t),

(I −N∗)ϕ(t) = M̃ψ(t).
(8.8)

These two equations yields

(I +N∗)δ′(t) = 2ϕ(t). (8.9)

Note that, the images of the curves Γ1,Γ2, . . . ,Γm are slits, so we have δj(2π)−δj(0) = 0, which
implies

Jδ′(t) = (0, 0, . . . , 0). (8.10)

Hence, the unknown function δ′(t) is the unique solution of the integral equation

(I +N∗ + J)δ′(t) = 2ϕ(t), (8.11)
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where

ϕ(t) = Im
[
Ã(t)g

(
η(t)

)]
= Im

[
η′(t)B

]
. (8.12)

From (8.1), we introduce an analytic function ϑ(η(t)) such that

ϑ
(
η(t)

)
= eF(z) = e−Bη(t)eR(t)+iδ(t), (8.13)

where ϑ(∞) = 1. By differentiating (8.13)with respect to t, we obtain

ϑ′(η(t)
)
η′(t) =

(
iδ′(t) − Bη′(t))ϑ(η(t)). (8.14)

Let σ(t) be an analytic function such that it has the following representation

σ
(
η(t)

)
= ϑ′(η(t)

)
+ Bϑ

(
η(t)

)
, (8.15)

where σ(∞) = B. From (8.13)–(8.15) it can be shown that, the function ϑ(η(t)) can be re-
written as

ϑ
(
η(t)

)
= eRj e(−Re[Bη(t)]) sign(δ

′(t))
i

T
(
η(t)

) σ
(
η(t)

)
∣∣σ

(
η(t)

)∣∣ . (8.16)

By squaring both sides of (8.16), the sign δ′(t) is eliminated, that is,

ϑ
(
η(t)

)2 = −e2Rj e(−2Re[Bη(t)])T(η(t))2 σ
(
η(t)

)2
∣∣σ(η(t))

∣∣2
. (8.17)

Comparing (8.17) with (3.2) leads to a choice of P(z) = ϑ(z)2, P(∞) = 1, D(z) = σ(z),
D(∞) = B, c(t) = −e2Rj e(−2Re[Bη(t)]). Hence,

φ(t) = σ
(
η(t)

)
η′(t) (8.18)

satisfies the integral equation (3.16) with

ν(t) = −e2Rj e(−2Re[Bη(t)])η′(t)B + Bη′(t). (8.19)
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Numerical evidence shows that λ = −1 is an eigenvalue of K(s, t) of multiplicity m, which
suggests one needs to add m conditions. Since eBηj (t)ϑ(ηj(t))|2π0 = 0, hence we can have m
additional conditions for the integral equation above as in the following:

∫

Jj

d

dt

(
eBηj (t)ϑj

(
ηj(t)

))
dt = 0,

∫2π

0
eBηj (t)

(
ϑ′
j

(
ηj(t)

)
+ Bϑ

(
ηj(t)

))
η′(t)dt = 0,

∫2π

0
eBηj (t)

(
σ
(
ηj(t)

))
η′(t)dt = 0,

∫2π

0
eBηj (t)φ

(
ηj(t)

)
dt = 0, q = 1, 2, . . . , m.

(8.20)

We define Fredholm operator L as

Lμ(s) =
∫

Jj

eBηj (t)μ(t)dt. (8.21)

Then, φ(t) is the solution of the following integral equation:

(I +K + L)φ(t) = ν(t). (8.22)

Hence, by obtaining φ(η(t)), the function σ(t) can be found by

σ(t) =
φ
(
η(t)

)

η′(t)
. (8.23)

This allows the value for ϑ(η(t)) to be calculated from (8.16), which in turn allows the
boundary values for the mapping function Φ(η(t)) to be calculated by

Φ
(
η(t)

)
= η(t) + B logϑ

(
η(t)

)
. (8.24)

9. Numerical Examples

Since the boundaries Γj are parameterized by η(t) which are 2π-periodic functions, the
reliable method to solve the integral equations are by means of Nyström method with
trapezoidal rule [21]. Each boundary will be discretized by n number of equidistant points.
The resulting linear systems are then solved by using Gaussian elimination. For numerical
examples, we choose regions with connectivities one, two, three and four. For the region
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Table 1: Error norm ‖wj − ŵj‖∞ for Example 9.1.

n Uc Ur Up,π/3

32 6.2 × 10−12 4.6 × 10−14 8.8 × 10−16

64 9.1 × 10−14 9.6 × 10−15 —

with connectivity one, we compare our result with the analytic solution given in [12]. All the
computations were done by using MATLAB R2008a software.

Example 9.1. Consider an unbounded region Ω− bounded by a unit circle

Γ1(t) = e−it, (0 ≤ t ≤ 2π). (9.1)

We choose the special point β = 2.5 + 1.5i. The exact mapping function forUc,Ur , andUp are
given respectively by [12]

wc = z − β +
β − z
1 − βz

,

wr = z − β −
z − β
βz

,

wp = z +
e2iθ

z
.

(9.2)

For this example, we compare the error for each boundary value between our method and
the exact mapping function. See Table 1 for Error Norm of ||wj − ŵj ||∞.

Example 9.2. Consider an unbounded region Ω− bounded by a circle and an ellipse

Γ1(t) = 2 + i + e−it, (0 ≤ t ≤ 2π),

Γ2(t) = −2 + cos t − 2i sin t, (0 ≤ t ≤ 2π).
(9.3)

Figure 2 shows the region and its five canonical images by using our proposedmethod.

Example 9.3. Consider an unbounded region Ω− bounded by 3 circles

Γ1(t) = 2 + e−it, (0 ≤ t ≤ 2π),

Γ2(t) = −1 + i
√
3 + 0.5e−it, (0 ≤ t ≤ 2π),

Γ3(t) = −1 − i
√
3 + 1.5e−it, (0 ≤ t ≤ 2π).

(9.4)
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Figure 2: The original region Ω− and its canonical images with θp = π/3 for parallel slits.

This example has also been considered in [6, 12]. Figure 3 shows the regions and its
five canonical images by using our proposed method. See Table 3 for numerical comparison
between our parameter values (see Table 2) those in [12]. Note that our method has
considered exterior unit diskwith slits as a canonical regionwhile [12] has considered interior
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Figure 3: The original region Ω− and its canonical images with θp = π/2 for parallel slits.

unit disk with slits. Thus, in computing the error for Ud, we need to change the values for
Ud to 1/|Φ(z)|. See Table 4 for Error Norm of max1≤j≤3||wj − ŵj ||∞. We also compared the
condition number of our linear system for each nwith [6, 12], see Figures 4 and 5. The results
show that for our integral equations for finding Φ′(z) that is, (4.20), (5.20), (6.21), (7.21) and
(8.22), the condition numbers are almost constant except for (5.20). This is because the kernel
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Table 2: The values for approximated parameters in Example 9.3 with n = 256.

j Rj(Ud) Rj(Ua) Rj(Uc) θj(Ur) Rj(Up,π/2)

1 1.0000000000 1.0000000000 2.6958524041 −0.23582974094 1.32203173492

2 2.9672620504 0.3515929850 2.9121788457 2.24673051228 −0.78705294688
3 2.7249636495 0.1792099292 2.2653736950 −2.00502589294 −0.69725704737

Table 3: Error norm max1≤j≤3 ‖Rj − R̂j‖∞ of our method with [12] for Example 9.3.

n Ud Ua Uc Ur Up,π/2

32 2.7 × 10−11 3.4 × 10−11 2.9 × 10−01 1.6 × 10−01 2.0 × 10−10

64 5.6 × 10−17 1.1 × 10−16 4.4 × 10−05 2.0 × 10−05 2.2 × 10−16

128 7.8 × 10−16 4.7 × 10−16 2.2 × 10−09 4.1 × 10−10 8.9 × 10−16

256 1.6 × 10−15 9.99 × 10−16 3.8 × 10−12 5.2 × 10−13 1.3 × 10−15

Table 4: Error norm max1≤j≤3 ‖wj − ŵj‖∞ of our method with [12] for Example 9.3.

n Ud Ua Uc Ur Up,π/2

32 1.1 × 10−07 1.1 × 10−07 0.15 0.16 1.5 × 10−06

64 6.1 × 10−14 2.9 × 10−14 6.2 × 10−05 2.0 × 10−05 1.1 × 10−13

128 7.5 × 10−14 2.1 × 10−14 2.2 × 10−09 4.2 × 10−10 4.4 × 10−12

256 2.2 × 10−13 4.7 × 10−13 3.3 × 10−12 4.1 × 10−12 9.5 × 10−12
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Figure 5: Condition number of the matrices for generalized Neumann kernel (G.N.K), adjoint generalized
Neumann kernel (Adj.G. N. K), charge simulation for circular slits (C.S. circular) and charge simulation
for radial slits (C.S. radial).

involves θ′(t), which varies with the number of collocation points, n. However, this does not
have any effect on the accuracy of the method.

Example 9.4. Consider an unbounded region Ω− of 4-connectivity with boundaries

Γ1(t) = 3 + 2i + e−it, (0 ≤ t ≤ 2π), (9.5)

Γ2(t) = −3 + 2i + e−it, (0 ≤ t ≤ 2π), (9.6)

Γ3(t) = −3 − 2i + 0.7 cos t − 1.4i sin t, (0 ≤ t ≤ 2π), (9.7)

Γ4(t) = 3 − 2i + 0.7 cos t − 1.4i sin t, (0 ≤ t ≤ 2π). (9.8)

Figure 6 shows the region and its five canonical images by using our proposedmethod.

10. Conclusion

In this paper, we have constructed a unified method for numerical conformal mapping of
unbounded multiply connected regions onto canonical slit regions. The advantage of this
method is that the integral equations are all linear which overcomes the nonlinearity problem
encountered in [10]. From the numerical experiments, we can conclude that our method
works on any finite connectivity with high accuracy. By computing the boundary values of
the mapping function, the exterior points will be calculated by means of Cauchy’s integral
formula.
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Figure 6: The original region Ω− and its canonical images with θp = π/2 for parallel slits.
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The aim of this paper is to discuss the uniqueness of the difference monomials fnf(z + c). It
assumed that f and g are transcendental entire functions with finite order and Ek)(1, fnf(z+ c)) =
Ek)(1, gng(z + c)), where c is a nonzero complex constant and n, k are integers. It is proved that if
one of the following holds (i) n ≥ 6 and k = 3, (ii) n ≥ 7 and k = 2, and (iii) n ≥ 10 and k = 1,
then fg = t1 or f = t2g for some constants t2 and t3 which satisfy tn+12 = 1 and tn+13 = 1. It is an
improvement of the result of Qi, Yang and Liu.

1. Introduction and Main Results

In this paper, a meromorphic (respectively entire) function always means meromorphic
(respectively, analytic) in the complex plane C. It is also assumed that the reader is familiar
with the basic concepts of the Nevanlinna theory. We adopt the standard notations in the
Nevanlinna value distribution theory of meromorphic functions as explained in [1, 2].

Let f and g be two nonconstant meromorphic functions, and let a be a value in the
extended plane. We say that f and g share the value a CM, provided that f and g have the
same a-pints with the samemultiplicities. We say that f and g share the value a IM, provided
that f and g have the same a-points ignoring multiplicities. The order of f is defined by

σ
(
f
)
= lim sup

r→∞

log T
(
r, f

)

log r
. (1.1)
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Let f be a nonconstant meromorphic function on C, let a ∈ C be a finite value, and
let k be a positive integer or infinity. We denote by E(a, f) the set of zeros of f − a and
count multiplicities, while by E(a, f) the set of zeros of f − a but ignore multiplicities. Also,
we denote by Ek)(a, f) the set of zeros of f − a with multiplicities less than or equal to
k and count multiplicities. For a ∈ C

⋃{∞}, we denote by Nk)(r, 1/(f − a)) the counting
function corresponding to the set Ek)(a, f)while byN(k+1(r, 1/(f − a)) the counting function
corresponding to the set E(k+1(a, f) := E(a, f) \Ek)(a, f). If Ek(a, f) = Ek(a, g), we say that f ,
g share the value a with weight k.

The definition implies that if f and g share a value awith weight k, then z0 is a zero of
f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity m(≤ k) and
z0 is a zero of f −awith multiplicitym(> k) if and only if it is a zero of g −awith multiplicity
n(> k) wherem is not necessarily equal to n.

Also, we denote by Nk)(r, 1/(f − a)) and N(k+1(r, 1/(f − a)) the reduced forms of
Nk)(r, 1/(f − a)) andN(k+1(r, 1/(f − a)), respectively. At last, we set

Nk

(
r, f

)
=N

(
r, f

)
+N(2

(
r, f

)
+ · · · +N(k

(
r, f

)
. (1.2)

Hayman proposed the well-known conjecture in [3].

Hayman Conjecture

If an entire function f satisfies fnf ′ /= 1 for all n ∈ N, then f is a constant.
In fact, Hayman has proved that the conjecture holds in the cases n ≥ 2 in [4] while

Clunie proved the cases n = 1 in [5], respectively. In 1997, Yang and Hua [6] studied the
uniqueness theorem of the differential monomials and obtained the following result.

Theorem A. Let f and g be nonconstant entire function, and let n ≥ 6 be an integer. If fnf ′ and
gng ′ share 1CM, then either f(z) = c1e

cz, g(z) = c2e
−cz where c1, c2 and c are constants satisfying

(c1c2)
n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

In 2010, Qi et al. [7] studied the uniqueness of the difference monomials and obtained
the following result.

Theorem B. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 6 an integer. If E(1, fnf(z + c)) = E(1, gng(z + c)), then fg = t1 or f = t2g for
some constants t1 and t2 which satisfy tn+11 = 1 and tn+12 = 1.

In this paper, we will obtain the following results.

Theorem 1.1. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 6 an integer. If E3)(1, fnf(z + c)) = E3)(1, gng(z + c)), then the assertion of
Theorem B holds.

Theorem 1.2. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 7 an integer. If E2)(1, fnf(z + c)) = E2)(1, gng(z + c)), then the assertion of
Theorem B holds.
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Theorem 1.3. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 10 an integer. If E1)(1, fnf(z + c)) = E1)(1, gng(z + c)), then the assertion of
Theorem B holds.

2. Auxiliary Results

Lemma 2.1 (see [8, Corollary 2.5]). Let f(z) be a meromorphic function in the complex plane with
finite order σ = σ(f), and let η be a fixed non-zero complex number. Then for each ε > 0, one has

m

(
r,
f
(
z + η

)

f(z)

)
+m

(
r,

f(z)
f
(
z + η

)
)

= O
(
rσ−1+ε

)
. (2.1)

Lemma 2.2 (see [8, Theorem 2.1]). Let f(z) be a meromorphic function in the complex plane with
finite order σ = σ(f), and let η be a fixed non-zero complex number. Then for each ε > 0, one has

T
(
r, f

(
z + η

))
= T

(
r, f(z)

)
+O

(
rσ−1+ε

)
+O

(
log r

)
. (2.2)

Lemma 2.3. Let f(z) be an entire function with finite order σ = σ(f), c a fixed non-zero complex
number, and

P(z) = anf(z)n + an−1f(z)n−1 + · · · + a1f(z) + a0, (2.3)

where aj(j = 0, 1, . . . , n) are constants. If F(z) = P(z)f(z + c), then

T(r, F) = (n + 1)T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
. (2.4)

Proof. Since f(z) is an entire transcendental function with finite order, we can deduce from
Lemma 2.1 and the standard Valiron-Mohon’ko theorem that

(n + 1)T
(
r, f(z)

)
= T

(
r, f(z)P(z)

)
+O(1)

= m
(
r, f(z)P(z)

)
+O(1)

≤ m
(
r,
f(z)P(z)
F(z)

)
+m(r, F(z)) +O(1)

= m
(
r,

f(z)
f(z + c)

)
+m(r, F(z)) +O(1)

≤ T(r, F(z)) +O
(
rσ−1+ε

)
+O(1).

(2.5)

Therefore

T(r, F) ≥ (n + 1)T
(
r, f

)
+O

(
rσ−1+ε

)
+O(1). (2.6)
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On the other hand, Lemma 2.2 implies that

T(r, F(z)) ≤ T(r, P(z)) + T(r, f(z + c))

= nT
(
r, f(z)

)
+ T

(
r, f(z)

)
+O

(
rσ−1+ε

)
+O

(
log r

)

= (n + 1)T
(
r, f

)
+O

(
rσ−1+ε

)
+O

(
log r

)
.

(2.7)

We will obtain the conclusion of Lemma 2.3.

Remark 2.4. The condition “entire” cannot be replaced by “meromorphic” in Lemma 2.3, as is
shown by the following example.

Example 2.5. Let f(z) = (ez − 1)/(ez + 1), c = πi, and F(z) = f(z)f(z + c), we can see

T(r, F)/= 2T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
(2.8)

for every set of {rn}with infinite measure.

Lemma 2.6 (see [9, Lemma 2.1]). Let f and g be two nonconstant meromorphic functions satisfying
Ek)(1, f) = Ek)(1, g) for some positive integer k ∈ N. DefineH as follows:

H =
(
f ′′

f ′ −
2f ′

f − 1

)
−
(
g ′′

g ′ −
2g ′

g − 1

)
. (2.9)

IfH /≡ 0, then

N(r,H) ≤ N(2
(
r, f

)
+N(2

(
r,

1
f

)
+N(2

(
r, g

)
+N(2

(
r,

1
g

)
+N0

(
r,

1
f ′

)

+N0

(
r,

1
g ′

)
+N(k+1

(
r,

1
f − 1

)
+N(k+1

(
r,

1
g − 1

)

+ S
(
r, f

)
+ S

(
r, g

)
,

(2.10)

where N0(r, 1/f ′) denotes the counting function of zeros of f ′ but not zeros of f(f − 1) and
N0(r, 1/g ′) is similarly defined.

Lemma 2.7 (see [10]). Under the condition of Lemma 2.6, one has

N1)

(
r,

1
f − 1

)
=N1)

(
r,

1
g − 1

)
≤N(r,H) + S

(
r, f

)
+ S

(
r, g

)
. (2.11)
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Lemma 2.8 (see [10]). Let H be defined as Lemma 2.6. If H ≡ 0, then either f ≡ g or fg ≡ 1
provided that

lim sup
r→∞, r∈I

N
(
r, f

)
+N

(
r, g

)
+N

(
r, 1/f

)
+N

(
r, 1/f

)

T(r)
< 1, (2.12)

where T(r) := max{T(r, f), T(r, g)} and I is a set with infinite linear measure.

Lemma 2.9 (see [11, Lemma 2.2]). Let T : (0,+∞) → (0,+∞) be a nondecreasing continuous
function, s > 0, 0 < α < 1, and let F ⊂ R+ be the set of all r such that

T(r) ≤ αT(r + s). (2.13)

If the logarithmic measure of F is infinite, then

lim sup
r→∞

log T
(
r, f

)

log r
= ∞. (2.14)

3. Proof of Theorem 1.1

We define

F := fnf(z + c),

G := gng(z + c).
(3.1)

First of all, suppose that H /≡ 0. We replace f and g by F and G, respectively, in Lemma 2.7
and Lemma 2.8. Thus,

N1)

(
r,

1
F − 1

)
= N1)

(
r,

1
G − 1

)
≤N(r,H) + S

(
r, f

)
+ S

(
r, g

)

≤ N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)

+N(4

(
r,

1
F − 1

)
+N(4

(
r,

1
G − 1

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.2)

Applying the second main theorem to F and G jointly implies that

T(r, F) + T(r, G) ≤ N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+N

(
r,

1
G

)
+N

(
r,

1
G − 1

)

−N0

(
r,

1
F ′

)
−N0

(
r,

1
G′

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.3)
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Noting that

N

(
r,

1
F − 1

)
− 1
2
N1)

(
r,

1
F − 1

)
+N(4

(
r,

1
F − 1

)
≤ 1

2
N

(
r,

1
F − 1

)
≤ 1

2
T(r, F),

N

(
r,

1
G − 1

)
− 1
2
N1)

(
r,

1
G − 1

)
+N(4

(
r,

1
G − 1

)
≤ 1

2
N

(
r,

1
G − 1

)
≤ 1

2
T(r, G).

(3.4)

According to Lemma 2.9 and (3.2)–(3.4), we can obtain that

T(r, F) + T(r, G) ≤ 2N2

(
r,

1
F

)
+ 2N2

(
r,

1
G

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 4N
(
r,

1
f

)
+ 4N

(
r,

1
g

)
+ 2N

(
r,

1
f(z + c)

)

+ 2N
(
r,

1
g(z + c)

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 6N
(
r,

1
f

)
+ 6N

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 6T
(
r,

1
f

)
+ 6T

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.5)

Lemma 2.3 shows that

T(r, F) = (n + 1)T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
,

T(r, G) = (n + 1)T
(
r, g

)
+O

(
rσ(g)−1+ε

)
+O

(
log r

)
.

(3.6)

We can deduce that

(n − 5)
(
T
(
r, f

)
+ T

(
r, g

)) ≤ O
(
rσ(f)−1+ε

)
+O

(
rσ(g)−1+ε

)
+ S

(
r, f

)
+ S

(
r, g

)
, (3.7)

which is impossible since n ≥ 6. Therefore, we haveH ≡ 0. Noting that

N

(
r,

1
F

)
+N

(
r,

1
G

)
≤ 3T

(
r, f

)
+ 3T

(
r, g

)
+ S

(
r, f

)
+ S

(
r, g

) ≤ T(r), (3.8)

where T(r) = max{T(r, F), T(r, G)}. Together with Lemma 2.8, it shows that either F ≡ G or
FG ≡ 1. We will consider the following two cases.

Case 1. Suppose that F(z) = G(z). Therefore

f(z)nf(z + c) = g(z)ng(z + c). (3.9)
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Let h1(z) = f(z)/g(z); we have

h1(z)nh1(z + c) ≡ 1. (3.10)

If h1(z) is not a constant, then Lemma 2.2 and (3.10) imply that

nT(r, h1) = T(r, h1(z + c)) +O(1) = T(r, h1) +O
(
rσ(h1)−1+ε

)
+O

(
log r

)
, (3.11)

which is a contraction with n ≥ 6. Thus, h1(z) ≡ t1, where t1 is a constant. From (3.10), we
have f(z) = t1g(z) and tn+11 = 1.

Case 2. Suppose that F(z)G(z) ≡ 1. Therefore

f(z)nf(z + c)g(z)ng(z + c) ≡ 1. (3.12)

Let h2(z) = f(z)g(z); we have

h2(z)nh2(z + c) ≡ 1. (3.13)

By the same way as Case 1, we can obtain that h2 is a constant. Therefore, f(z)g(z) = t2 and
tn+12 = 1.

4. Proof of Theorem 1.2

Noting that

N

(
r,

1
F − 1

)
− 2
5
N1)

(
r,

1
F − 1

)
+
4
5
N(3

(
r,

1
F − 1

)
≤ 3

5
N

(
r,

1
F − 1

)
≤ 3

5
T(r, F),

N

(
r,

1
G − 1

)
− 2
5
N1)

(
r,

1
G − 1

)
+
4
5
N(3

(
r,

1
G − 1

)
≤ 3

5
N

(
r,

1
G − 1

)
≤ 3

5
T(r, G).

(4.1)

According to (3.1) and (4.1), we can obtain the conclusion of Theorem 1.2 by the same way
as Section 3.

5. Proof of Theorem 1.3

Noting that

N

(
r,

1
F − 1

)
− 1
4
N1)

(
r,

1
F − 1

)
+
1
2
N(2

(
r,

1
F − 1

)
≤ 3

4
N

(
r,

1
F − 1

)
≤ 3

4
T(r, F),

N

(
r,

1
G − 1

)
− 1
4
N1)

(
r,

1
G − 1

)
+
1
2
N(2

(
r,

1
G − 1

)
≤ 3

4
N

(
r,

1
G − 1

)
≤ 3

4
T(r, G).

(5.1)
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According to (3.1) and (5.1), we can obtain the conclusion of Theorem 1.2 by the same way
as Section 3.
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The distribution of zeros and poles of best rational approximants is well understood for the
functions f(x) = |x|α, α > 0. If f ∈ C[−1, 1] is not holomorphic on [−1, 1], the distribution of
the zeros of best rational approximants is governed by the equilibrium measure of [−1, 1] under
the additional assumption that the rational approximants are restricted to a bounded degree of
the denominator. This phenomenon was discovered first for polynomial approximation. In this
paper, we investigate the asymptotic distribution of zeros, respectively, a-values, and poles of
best real rational approximants of degree at most n to a function f ∈ C[−1, 1] that is real-
valued, but not holomorphic on [−1, 1]. Generalizations to the lower half of the Walsh table are
indicated.

1. Introduction

Let B be a subset of C; we denote by

m1(B) := inf
∑

ν

|Uν| (1.1)

them1-measure of B, where the infimum is taken over all coverings {Uν} of B by disksUν and
|Uν| is the radius of the diskUν.

Let D be a region in C and ϕ a function defined in D with values in C. A se-
quence {ϕn}n∈N

of meromorphic functions in D is said to converge to a function ϕ with
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respect to the m1-measure inside D if for every ε > 0 and any compact set K ⊂ D we
have

m1
({
z ∈ K :

∣∣(ϕ − ϕn
)
(z)

∣∣ ≥ ε}) −→ 0 as n −→ ∞ (1.2)

(cf. Gončar [1]).
The sequence {ϕn}n∈N

is said to converge to ϕ m1-almost geometrically insideD if for any
ε > 0 there exists a set Ω(ε) in C withm1(Ω(ε)) < ε such that

lim sup
n→∞

∥∥ϕ − ϕn
∥∥1/n
K\Ω(ε) < 1 (1.3)

for any compact set K ⊂ D. We note that ‖ · ‖B is the supremum norm on a subset B of C.
For n ∈ N0 = N ∪ {0}, we denote by Pn the collection of all polynomials of degree at

most n, and let

Rn,m :=
{
r =

p

q
: p ∈ Pn, q ∈ Pm, q /≡ 0

}
. (1.4)

In [2], sequences {rn}n∈N
, rn ∈ Rn,n, on a regionD were investigated if the number of poles of

rn inD is bounded. It turns out that the geometric convergence of {rn}n∈N
on a continuum S ⊂

D implies that the sequence converges m1-almost geometrically inside D to a meromorphic
function f in D with at most a finite number of poles in D.

To be precise, let B ⊂ C and let Mm(B) denote the subset of meromorphic functions in
B with at most m poles in B, each pole counted with its multiplicity. The main result of [2]
can be stated as follows.

Theorem A. Let S be a continuum in C and D a region with S ⊂ D. Let {rn}n∈N
, rn ∈ Rn,n, be a

sequence of rational functions converging geometrically to a function f on S, that is,

lim sup
n→∞

∥∥f − rn
∥∥1/n
S < 1, (1.5)

and assume that f /≡ 0 on S. If there exists a fixed integerm ∈ N such that rn ∈ Mm(D) for all n and

N0(rn,K) = o(n) as n −→ ∞ (1.6)

for each compact set K ⊂ D, then the sequence {rn}n∈N
converges m1-almost geometrically inside D

to a meromorphic function f ∈ Mm(D).

Here, the numberN0(rn,K) denotes the number of zeros of rn inK, each zero counted
with its multiplicity.
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The above result was applied in [2] to Chebyshev approximation on [−1, 1]. Let
G(z,∞) be the Green function of Ω = C \ [−1, 1] with pole at ∞, and let

Eρ :=
{
z ∈ C : G(z,∞) < log ρ

}
, ρ > 1, (1.7)

be the Green domain to the parameter ρ, that is, Eρ is the open Joukowski-ellipse with foci at
+1 and −1 and major axis ρ + 1/ρ.

Let f ∈ C[−1, 1] be real-valued on [−1, 1]. For abbreviation, we will write ‖ · ‖ for
‖ · ‖[−1,1]. Given n,m ∈ N0, let r∗n,m = r∗n,m(f) ∈ Rn,m denote the real rational function of best
uniform approximation to f ∈ C[−1, 1] with respect to Rn,m, that is,

En,m
(
f
)
:=

∥∥f − r∗n,m
∥∥ = inf

{∥∥f − r∥∥ : r ∈ Rn,m, r real-valued onR
}
. (1.8)

Moreover, let {mn}n∈N
be a sequence in N with

lim
n→∞

mn = ∞, mn = o
(

n

logn

)
as n −→ ∞, (1.9)

and let us consider a function f ∈ C[−1, 1] that can be continued meromorphically into Eρ
for some ρ > 1. Then the sequence {r∗n,mn

}n∈N
converges m1-almost geometrically inside Eρ

to f [3]. Using Theorem A, we obtain results about the distribution of the a-values in the
neighborhood of a point z0 ∈ ∂Eρ. For a ∈ C and B ⊂ C, we denote by

Na(r, B) := #{z ∈ B : r(z) = a} (1.10)

the number of a-values of the rational function r in B and each a-value is counted with its
multiplicity. If f cannot be continued meromorphically to z0, then for any neighborhood U

of z0 and any a ∈ C, with at most one exception,

lim sup
n→∞

Na

(
r∗n,mn

,U
)
= ∞. (1.11)

Particulary, such a point z0 is either an accumulation point of zeros or of poles of r∗n,mn
.

On the other hand, if f is not holomorphic on [−1, 1], so far results about the
distribution of the zeros of r∗n,mn

(f) are only known in the case that mn = 0 for all n ∈ N

(polynomial approximation) or in the case that mn = m ∈ N is fixed (rational approximation
with a bounded number of free poles). In the polynomial case, the normalized zero counting
measures of r∗n,0(f) converge in the weak∗-sense to the equilibriummeasure of [−1, 1], at least
for a subsequence n ∈ Λ ⊂ N [4]. This result was generalized to rational approximation with
a bounded number of poles (cf. [5, Theorem 4.1]). Moreover, Stahl [6] and Saff and Stahl [7]
have investigated for the function f(x) = |x|α, α > 0, the distribution of zeros and poles of
rational approximants, as well as the alternation points of the optimal error function.

In contrast to the distribution of zeros of r∗n,mn
, the behavior of the alternation points of

f − r∗n,mn
for f ∈ C[−1, 1] is well understood, not only in the polynomial case (cf. [8, 9]), but

also for rational approximations (cf. [10–14]). The aim of the present paper is to investigate
the distribution of the zeros of the rational approximants via the distribution of the alternation
points.



4 Abstract and Applied Analysis

2. Main Results

Let f be continuous on [−1, 1], possibly complex-valued. It is well known that the rate of
approximation by rational functions does not guarantee the holomorphy of the function f .
Gončar ([15], p. 101) pointed out the example

f(z) =
∞∑

n=1

An

z − αn , (2.1)

where the points αn are situated in C \ [−1, 1] such that any point of [−1, 1] is a limit point
of the sequence {αn} and the coefficients An converge to zero sufficiently fast. Hence, it is
possible that there exists a sequence {rn}n∈N

, rn ∈ Rn,n, such that

lim sup
n→∞

∥∥f − rn
∥∥1/n

< 1, (2.2)

and f is continuous on [−1, 1], but nowhere holomorphic on [−1, 1].
But it turns out that in this case Theorem A immediately yields the following.

Theorem 2.1. Let f ∈ C[−1, 1] be not holomorphic on [−1, 1], and let {rn}n∈N
, rn ∈ Rn,n, be a

sequence such that

lim sup
n→∞

∥∥f − rn
∥∥1/n

< 1. (2.3)

Then for any non holomorphic point z0 ∈ [−1, 1] of f any neighborhoodU of z0 either

lim sup
n→∞

N∞(rn,U) = ∞ (2.4)

or

lim sup
n→∞

Na(rn,U)
n

> 0 (2.5)

for all a ∈ C.

In the following we consider functions f ∈ C[−1, 1] that are always real-valued on
[−1, 1]. Then the case that

lim sup
n→∞

E1/n
n,n

(
f
)
= 1 (2.6)

is not covered by Theorem 2.1. By Bernstein’s theorem, condition (2.6) implies that f ∈
C[−1, 1] is not holomorphic on [−1, 1]. Examples for (2.6) are functions which are piecewise
analytic on [−1, 1] (Newman [16], Gončar [15]).
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In the following, we assume that {mn}n∈N
is a sequence with

mn ≤ n, mn ≤ mn+1 ≤ mn + 1. (2.7)

For abbreviation, let

En := En,mn

(
f
)
, r∗n := r∗n,mn

(
f
)
=
p∗n
q∗n
, (2.8)

where p∗n ∈ Pn and q∗n ∈ Pmn have no common factor. We define

δn := min
(
n − deg p∗n,mn − deg q∗n

)
(2.9)

as the defect of r∗n and dn := n+mn+1−δn. According to the alternation theorem of Chebyshev
(cf. Meinardus [17], Theorem 98) there exist dn + 1 points x(n)

k
,

−1 ≤ x(n)
0 < x

(n)
1 < · · · < x(n)

dn
≤ 1, (2.10)

which satisfy

λn(−1)k
(
f − r∗n

)(
x
(n)
k

)
=

∥∥f − r∗n
∥∥
[−1,1], 0 ≤ k ≤ dn, (2.11)

where λn = +1 or λn = −1 is fixed. For each pair (n,mn) let

An = An

(
f
)
:=

{
x
(n)
k

}dn
k=0

(2.12)

denote an arbitrary, but fixed alternation set for the best approximation r∗n ∈ Rn,mn , and let νn
denote the normalized counting measure of An, that is,

νn
([
α, β

])
:=

#
{
x
(n)
k : α ≤ x(n)

k ≤ β
}

dn + 1
(2.13)

for any interval [α, β] ⊂ [−1, 1]. Since νn is a probability measure on [−1, 1], there exists a
subsequence Λ ⊂ N such that

νn
∗→ ν asn −→ ∞, n ∈ Λ, (2.14)

in the weak∗-topology and ν is again a probability measure on [−1, 1].
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Theorem 2.2. Let f ∈ C[−1, 1] be real-valued, and let (2.6) hold. Moreover, let f be approximated
with respect to Rn,mn , where the sequence {mn}n∈N

satisfies (2.7). Then there exists a subsequence
Λ ⊂ N with the following properties:

(i)

νn
∗→ ν as n −→ ∞, n ∈ Λ, (2.15)

(ii) let z0 ∈ supp(ν), a ∈ C, and let U be a neighborhood of z0 with f(z)/≡a on U ∩ [−1, 1];
then

either lim sup
n∈Λ,n→∞

N∞(r∗n,U) = ∞

or lim sup
n∈Λ,n→∞

Na(r∗n,U)
n

> 0.
(2.16)

Applying to the approximation in the upper half of the Walsh table, we obtain the
following.

Corollary 2.3. Let f ∈ C[−1, 1] with (2.6) and let the subsequence {mn}n∈N
satisfy

mn ≤ cn with 0 ≤ c < 1, mn ≤ mn+1 ≤ mn + 1. (2.17)

Then there exists a subsequence Λ ⊂ N with the following property: Let a ∈ C, z0 ∈ [−1, 1], and let
U be a neighborhood of z0 with f(z)/≡a onU ∩ [−1, 1]; then either (i) or (ii) holds.

3. Auxiliary Tools

One of the essential tools for proving Theorem 2.2 is the interaction between alternation
points and poles of best rational approximants.

Let τn denote the normalized counting measure of the poles of r∗n, counted with their
multiplicities, and let us denote by τ̂n the balayage measure of τn onto [−1, 1]. Then the
following distribution results hold for the interaction between the alternation points of An

and the poles of r∗n and r
∗
n+1.

Theorem B (See [11]). Let f be not a rational function, and let {mn}n∈N
satisfy (2.7). Then there

exists a subsequence Λ ⊂ N such that

νn − αn(τ̂n + τ̂n+1) − (1 − αn)μ ∗→ 0 as n −→ ∞, n ∈ Λ, (3.1)

where

αn =
deg q∗n + deg q∗n+1

dn + 1
(3.2)

and μ is the equilibrium distribution of [−1, 1].
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We remark that in the proof of Theorem B in [11], the subsequenceΛ ⊂ N is defined by

Λ :=
{
n ∈ N :

En + En+1
En − En+1 ≤ n2

}
. (3.3)

Inspecting the proof of (3.1) in [11], it turns out that we can modify the definition of Λ by

Λ :=
{
n ∈ N : En+1 ≤

(
1 − 1

n2

)
En

}
. (3.4)

The existence of such sequences Λ is based on the divergence of the infinite product

∞∏

n=0

En+1
En

=
∞∏

n=0

(
1 − En − En+1

En

)
(3.5)

to 0 if f is not a rational function. This argument has already been used by Kadec [9] in his
proof for the distribution of the alternation points in polynomial approximation.

Concerning the distribution of the zeros of best polynomial approximations p∗n to f ,

p∗n(z) = anz
n + · · ·, (3.6)

the asymptotic behavior of the highest coefficient an plays an essential role, namely,

lim sup
n→∞

|an|1/n =
1

cap([−1, 1])lim supn→∞e
1/n
n

, (3.7)

where

en =
∥∥f − p∗n

∥∥ = inf
pn∈Pn

∥∥f − pn
∥∥ (3.8)

and cap([−1, 1]) = 1/2 is the logarithmic capacity of [−1, 1].
If f ∈ C[−1, 1] is not holomorphic on [−1, 1], then lim supn→∞e

1/n
n = 1 and we can

choose a subsequence Λ ⊂ N such that

lim
n∈Λ,n→∞

e1/nn = 1 (3.9)

and moreover,

lim
n→Λ,n→∞

|an|1/n = 2. (3.10)

If en /= en+1, then the polynomial

pn(z) :=
p∗n(z)
an

(3.11)
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is monic and satisfies

∥∥pn
∥∥ ≤

(
1

2 − ε
)n

(3.12)

for all n ∈ Λ which are sufficiently large, where ε > 0 can be chosen arbitrarily. Then the
Erdős-Turán Theorem [18] (cf. [19]) implies a weak∗-version of Kadec’s result, namely, the
weak∗-convergence of the normalized counting measures of alternation sets of f − p∗n to the
equilibrium measure μ of [−1, 1], at least for a subsequence Λ, n ∈ Λ.

The objective of this section is to show that there exists a subsequence Λ ⊂ N such
that (3.4) and the analogue of (3.9) for rational approximation hold simultaneously with
consequences for the behavior of the difference of two consecutive best approximants.

Lemma 3.1. Let f ∈ C[−1, 1] with (2.6). Then there exists a subsequence Λ ⊂ N such that

En+1 ≤
(
1 − 1

n2

)
En for n ∈ Λ,

lim
n∈Λ,n→∞

E1/n
n = 1.

(3.13)

Moreover, let {ξn}n∈Λ be a sequence in [−1, 1] with |(f − r∗n)(ξn)| = ‖f − r∗n‖; then

lim
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n = 1. (3.14)

Proof . Using the above arguments of the beginning of this section, there exists a subsequence
Λ1 ⊂ N such that

En+1 ≤
(
1 − 1

n2

)
En for n ∈ Λ1. (3.15)

First, we show that there exists Λ ⊂ N such that (3.13) holds.
For proving this, we define

Λ̃ :=
{
n ∈ N : En+1 ≤

(
1 − 1

n2

)
En

}
. (3.16)

Since Λ1 ⊂ Λ̃, Λ̃/= ∅, and Λ̃ is not finite, hence the complement

Λ̃c := N \ Λ̃ (3.17)

of Λ̃ in N has the property that

En+1 >

(
1 − 1

n2

)
En for n ∈ Λ̃c. (3.18)
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If Λ̃c is a finite set, then there existsm ∈ N such that

Λ := {n ∈ N : n ≥ m} (3.19)

satisfies property (3.13).
If Λ̃c is an infinite set, then observing that Λ̃ is not a finite set, we can define

subsequences {mj}j∈N
and {nj}j∈N

of N such that

nj−1 < mj ≤ nj < mj+1,

Λ̃ =
{
n ∈ N : mj ≤ n ≤ nj, j ≥ 1

}
.

(3.20)

Next, we consider a fixed integerm ≥ m1. If

nj−1 < m < mj, j ≥ 2, (3.21)

thenm /∈ Λ̃ and we deduce

Emj >

(
1 − 1

(
mj − 1

)2

)
Emj−1 >

(
1 − 1

(
mj − 1

)2

)(
1 − 1

(
mj − 2

)2

)
Emj−2

> · · · >
mj−m−1∏

k=0

(
1 − 1

(m + k)2

)
Em.

(3.22)

Since the infinite product

S =
∞∏

n=2

(
1 − 1

n2

)
(3.23)

converges, there exists a constant β, 0 < β < 1, such that all partial products

Sν,μ :=
μ∏

n=ν

(
1 − 1

n2

)
, 2 ≤ ν < μ, (3.24)

of S are bounded by β from below, that is, Sν,μ ≥ β.
By (3.22), Emj > βEm and

E
1/mj

mj
≥ E1/m

mj
> β1/mE1/m

m for Emj ≤ 1. (3.25)

Let us define form ≥ m1

ν(m) :=

{
m, if m ∈ Λ̃
mj, if nj−1 < m < mj.

(3.26)
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Next, we choose a subsequence Λ2 = {kj}j∈N
of N such that k1 ≥ m1 and

lim
j→∞

E
1/kj
kj

= 1. (3.27)

If Λ2 ⊂ Λ̃, then we are done. As for the general case, let us define

Λ :=
∞⋃

j=1

{
ν
(
kj

)}
; (3.28)

then Λ ⊂ Λ̃ and (3.25)–(3.27) imply

lim
j→∞

E
1/ν(kj )
ν(kj )

= 1. (3.29)

Hence, (3.13) is proved.
Moreover, for n ∈ Λ,

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣ ≥ ∣∣(f − r∗n
)
(ξn)

∣∣ − ∣∣(f − r∗n+1
)
(ξn)

∣∣

≥ En − En+1 ≥ En −
(
1 − 1

n2

)
En =

1
n2
En,

1 ≥ lim sup
n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n ≥ lim sup
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n

≥ lim sup
n∈Λ,n→∞

((
1
n2

)1/n

E1/n
n

)
= lim

n∈Λ,n→∞
E1/n
n = 1.

(3.30)

Hence,

lim
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n = 1, (3.31)

and (3.14) is proved.

4. Proofs

Proof of Theorem 2.2. First we will prove the theorem for a = 0.
According to the lemma in Section 3, there exists a subsequenceΛ ⊂ N such that (3.13)–

(3.14) hold. Then Theorem B applies and (3.1) holds for n ∈ Λ. Because νn are probability
measures on [−1, 1], we may assume that

νn
∗→ ν as n −→ ∞, n ∈ Λ. (4.1)

Let z0 ∈ supp(ν) andU a neighborhood of z0 such that f(z)/≡ 0 onU ∩ [−1, 1].
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Let us assume that (ii) of Theorem 2.2 does not hold. Hence, there existsm ∈ N

N∞(r∗n,U) ≤ m ∀n ∈ N, (4.2)

N0(r∗n,U) = o(n) as n −→ ∞. (4.3)

Of course, wemay assume thatU is a bounded symmetric region with respect to the real axis.
Let ln be the number of poles ξn,i of r∗n inU counted with their multiplicities. Then we define

qn(z) :=

⎧
⎪⎨

⎪⎩

ln∏
i=1

(z − ξn,i), ln ≥ 1,

1, ln = 0.
(4.4)

Because qn, qn+1 ∈ Pm, there exists a subsequence Λ1 ⊂ Λ and q̃0, q̃1 ∈ Pm such that

lim
n∈Λ1,n→∞

qn+i = q̃i for i = 0, 1. (4.5)

Together with f(z)/≡ 0 for z ∈ U ∩ [−1, 1], this implies that there exists an interval [α, β] ⊂
U ∩ [−1, 1], α /= β, and a constant κ > 0 such that

∣∣q̃i(x)
∣∣ ≥ κ for x ∈ [

α, β
]
, i = 0, 1, (4.6)

∣∣f(x)
∣∣ ≥ κ for x ∈ [

α, β
]
. (4.7)

Let kn be the number of zeros (with multiplicities) of r∗n in U. If kn ≥ 1, let ηn,i, 1 ≤ i ≤ kn, be
the zeros of r∗n inU and let

πn(z) :=

⎧
⎪⎨

⎪⎩

kn∏
i=1

(
z − ηn,i

)
, kn > 0

1, kn = 0.
(4.8)

Because of (4.3), kn = o(n) as n → ∞ and we obtain

lim sup
n→∞

‖πn‖1/nK ≤ 1 (4.9)

for any compact set K in C. Now, let us define

hn(z) :=
1
n
log|Φn(z)| (4.10)
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with

Φn(z) :=
πn(z)

r∗n(z)qn(z)
. (4.11)

Then Φn is holomorphic inU and hn harmonic inU.
Consider z ∈ [α, β] and Λ1 as before. Then by (4.5)–(4.7) there exists ñ ∈ N such that

∣∣r∗n+i(z)
∣∣ ≥ κ

2
,

∣∣qn+i(z)
∣∣ ≥ κ

2
(4.12)

for z ∈ [α, β], i = 0, 1, and n ∈ Λ1, n ≥ ñ. Then for i = 0, 1

∥∥∥∥∥
πn+i

r∗n+iqn+i

∥∥∥∥∥
[α,β]

≤ 4(d + 1)kn+i

κ2
, (4.13)

where

d = sup
z∈U

|z|. (4.14)

According to a Lemma of Gončar [20, Lemma 1, page 153], for any compact set K ⊂ U there
exists a constant λ = λ([α, β], U,K) > 1 such that

∥∥∥∥∥
πn+i

r∗n+iqn+i

∥∥∥∥∥
K

≤ λn+i
∥∥∥∥∥

πn+i
r∗n+iqn+i

∥∥∥∥∥
[α,β]

(4.15)

for i = 0, 1. For example, λ([α, β], U,K) can be chosen as

λ
([
α, β

]
, U,K

)
:= max

z∈K
sup
t∈C\U

exp
(
G[α,β](z, t)

)
, (4.16)

where G[α,β](z, t) is the Green function of C \ [α, β]with pole at t.
Next, we choose a regionW ⊂ U,W symmetric to the real axis, with z0 ∈ W ,W ⊂ U

and [α, β] ⊂W , then

hn+i(z) ≤ λ
([
α, β

]
, U,W

)
+

1
n + i

log
4
κ2

+
kn + i
n + i

log(1 + d) (4.17)

for i = 0, 1. Hence for i = 0, 1, the sequences {hn+i}n∈Λ1
are uniformly bounded in W from

above as n → ∞, n ∈ Λ1, i = 0, 1. By Harnack’s theorem, either

hn(z) −→ −∞ locally uniformly in W as n −→ ∞, n ∈ Λ1, (4.18)

or there exists a subsequence Λ2 ⊂ Λ1 such that {hn}n∈Λ2
converges locally uniformly to h0 as

n → ∞, n ∈ Λ2, in the regionW and the function h0 is harmonic inW .
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Next, let us show that the first situation cannot occur: if C > 0 is such that

max
z∈[α,β]

hn(z) ≤ −C (4.19)

for n ∈ Λ1 and n sufficiently large, then

n · max
z∈[α,β]

|hn(z)| ≤ max
z∈[α,β]

log
∣∣∣∣

πn(z)
r∗n(z)qn(z)

∣∣∣∣ ≤ −nC. (4.20)

Hence, by (4.5)–(4.7) there exists a constant c1 > 0 such that

max
z∈[α,β]

|πn(z)| ≤ c1e−nC. (4.21)

Since πn ∈ Pkn is a monic polynomial and kn = o(n) as n → ∞, this is a contradiction to

‖πn‖[α,β] ≥ 2

((
β − α)

4

)kn

. (4.22)

Next, we consider (4.17) for i = 1. Again by Harnack’s theorem, either

hn+1(z) −→ −∞ locally uniformly in W as n −→ ∞, n ∈ Λ2, (4.23)

or there exists a subsequence Λ3 ⊂ Λ2 such that {hn+1}n∈Λ3
converges locally uniformly to a

function h1 inW and h1 is harmonic inW .
As above for {hn}n∈Λ1

, the first situation cannot occur. Consequently,

max
z∈[α,β]

hi(z) ≥ 0 for i = 0, 1. (4.24)

On the other hand, using (4.13)we deduce for i = 0, 1 that

lim sup
n∈Λ1,n→∞

max
z∈[α,β]

hn+i(z) ≤ 0. (4.25)

Summarized, we have for i = 0, 1 that

hi(z) ≡ 0 for z ∈ [
α, β

]
. (4.26)

By definition, the regionsU,W are symmetric to R as well as the functions

∣∣r∗n+i(z)
∣∣, |πn+i(z)|,

∣∣qn+i(z)
∣∣ (4.27)
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for i = 0, 1. This symmetry, together with (4.26), implies that

hi(z) ≡ 0 ∀z ∈W (4.28)

for i = 0, 1. Hence,

lim
n∈Λ3,n→∞

∥∥r∗n+iqn+i
∥∥1/n
K ≤ 1 (4.29)

for all compact sets K inW , i = 0, 1.
Combining (4.29) for i = 0, 1, we obtain

lim
n∈Λ3,n→∞

∥∥(r∗n − r∗n+1
)
qnqn+1

∥∥1/n
K ≤ 1 (4.30)

for all compact sets K ⊂ W . Hence, the function V (z) ≡ 0 is a harmonic majorant for the
sequence {Fn}n∈Λ3

of subharmonic functions inW , where

Fn(z) :=
1
n
log

∣∣(r∗n − r∗n+1
)
(z)qn(z)qn+1(z)

∣∣, n ∈ N. (4.31)

Next, we want to show that V (z) ≡ 0 is an exact harmonic majorant for {Fn}n∈Λ3
and also for

any {Fn}n∈Λ4
for any subsequence Λ4 ⊂ Λ3.

Let us assume that this assertion would be false: then there exists a subsequence Λ4 ⊂
Λ3 ⊂ Λ (Λ as in the Corollary of Section 3) and a continuum K ⊂W such that

lim sup
n∈Λ4,n→∞

max
z∈K

Fn(z) < 0. (4.32)

Since V (z) ≡ 0 is a harmonic majorant for {Fn}n∈Λ4
in W , then (4.32) implies that the

inequality (4.32) holds for any continuum K ⊂W .
First, let us note that under the condition (4.2) a point ξ ∈ U ∩ [−1, 1] cannot be an

isolated point of supp(ν).
To prove this, let us denote by δz the Dirac measure of the point z ∈ C, and let δ̂z be

the associated balayage measure of δz to the interval [−1, 1]. For z /∈ [−1, 1] the density of the
balayage measure δ̂z at the point x ∈ (−1, 1) is given by

d

dx
δ̂z(x) =

∂

∂n+
G(x, z) +

∂

∂n−
G(x, z), (4.33)

where n+ (resp., n−) denotes the normal at the point x to the upper half (resp., lower half)
plane andG(ξ, z) is the Green function for ξ ∈ C\[−1, 1]with pole at z, continuously extended
by G(x, z) = 0 to ξ = x ∈ [−1, 1].
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Then for any interval [α, β] ⊂ [−1, 1]

0 ≤ δ̂z
([
α, β

]) ≤ 1,

lim
z→η

η∈[−1,1]\[α,β]

δ̂z
([
α, β

])
= 0. (4.34)

Let z ∈ C \ [−1, 1], ξ ∈ U ∩ [−1, 1], and ε > 0; then

lim
ε→ 0

δ̂z([ξ − ε, ξ + ε]) = 0. (4.35)

Consider the exterior of the ε-neighborhood of [−1, 1]; that is, let

Wε :=
{
z ∈ C : dist(z, [−1, 1]) ≥ ε

}
. (4.36)

Then we can obtain a sharpening of (4.35), namely,

lim
ε→ 0

max
z∈Wε\U

δ̂z([ξ − ε, ξ + ε]) = 0. (4.37)

Since ξ ∈ U ∩ [−1, 1] and (4.2) holds, (4.34)–(4.37) imply

lim
ε→ 0

lim
n→∞

τ̃n([ξ − ε, ξ + ε]) = 0. (4.38)

Because (3.1) and (4.1) hold for n ∈ Λ, ξ cannot be an isolated point of supp(ν).
Consequently, since z0 ∈ supp(ν) there exists a sequence {ξk}k∈N

in U, ξk ∈ supp(ν),
such that

z0 = lim
k→∞

ξk (4.39)

and each ξk is not an isolated point of supp(ν). Hence, for any k ∈ N and any open interval
(α, β) with ξk ∈ (α, β) we have ν((α, β)) > 0. Taking into account (4.39) and the fact that the
zero set

Z :=
{
z ∈ C : p̃0(z) = 0 or p̃i(z) = 0

}
(4.40)

of the polynomials p̃0, p̃1 in (4.5) is finite, there exists an interval [α̃, β̃] ⊂ U ∩ [−1, 1], α̃ < β̃,
with

ν
([
α̃, β̃

])
> 0,

[
α̃, β̃

]
∩ Z = ∅. (4.41)
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Using (4.5) we conclude that there exists n1 ∈ N and a constant κ̃ > 0 such that

∣∣qn+i(z)
∣∣ ≥ κ̃ for z ∈

[
α̃, β̃

]
, (4.42)

where n ∈ Λ1, n ≥ n1, and i = 0, 1.
Let us choose forK in (4.32) the interval [α̃, β̃]. Then there exists, by definition of Fn(z)

in (4.31), a constant δ, 0 < δ < 1, and n2 ∈ N, n2 ≥ n1, such that

max
z∈[α̃,β̃]

∣∣(r∗n − r∗n+1
)
(z)qn(z)qn+1(z)

∣∣ ≤ δn. (4.43)

for all n ∈ Λ4, n ≥ n2. By (4.42) we obtain

max
z∈[α̃,β̃]

∣∣(r∗n − r∗n+1
)
(z)

∣∣ ≤ δn

κ̃2
, (4.44)

lim sup
n∈Λ4,n→∞

∥∥r∗n − r∗n+1
∥∥1/n
[α̃,β̃]

≤ δ < 1 (4.45)

contradicting the property (3.14) and ν([α̃, β̃]) > 0.
Hence, V (z) ≡ 0 is an exact harmonic majorant for {Fn}n∈Λ3

and for any subsequence
{Fn}n∈Λ4

, Λ4 ⊂ Λ3, in the regionW .
This is now the situation that a distribution result of Walsh about the zeros of the

sequence

{(
r∗n − r∗n+1

)
qnqn+1

}
n∈Λ3

(4.46)

of holomorphic functions inW can be applied (Walsh [21], Theorem 16, page 221): for every
compact set K inW we have

N0
((
r∗n − r∗n+1

)
qnqn+1, K

)
= o(n) as n ∈ Λ3, n −→ ∞. (4.47)

Choosing forK the interval [α̃, β̃], then the number of alternations of f − r∗n in [α̃, β̃] is a lower
bound for the number

N0

((
r∗n − r∗n+1

)
qnqn+1,

[
α̃, β̃

])
(4.48)

of zeros of (r∗n − r∗n+1)qnqn+1 in [α̃, β̃]. Because of (4.1) and ν([α̃, β̃]) > 0,

lim
n∈Λ3,n→∞

νn
([
α̃, β̃

])
= ν

([
α̃, β̃

])
> 0 (4.49)

which contradicts (4.47).
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Hence, the theorem is proved for a = 0. The case a/= 0 can be reduced to a = 0 by
defining

f̃(z) := f(z) + a, z ∈ [−1, 1], (4.50)

r̃(z) := r(z) + a for r ∈ Rn,n, z ∈ C. (4.51)

If a ∈ C, we note that the inequality (4.30) is equivalent to

lim
n∈Λ3,n→∞

∥∥(r̃∗n − r̃∗n+1)qnqn+1
∥∥1/n
K ≤ 1 (4.52)

and (3.14) is equivalent to

lim
n∈Λ,n→∞

∣∣(r̃∗n − r̃∗n+1
)
(ξn)

∣∣1/n = 1, (4.53)

where {ξn}n∈Λ, ξn ∈ [−1, 1], and |(f̃ − r̃∗n)(ξn)| = ‖f̃ − r̃∗n‖. Therefore, all arguments for the
sequence {Fn} are invariant by replacing in definition (4.10) the functions r∗n, r

∗
n+1 by r̃

∗
n, r̃

∗
n+1.

Hence, Theorem 2.2 is true for all a ∈ C.

Proof of the Corollary. In the proof of Theorem 2.2, the subsequence Λ was chosen such that

νn − αn(τ̂n + τ̂n+1) − (1 − αn)μ ∗→ 0 as n −→ ∞, n ∈ Λ, (4.54)

where

αn =
deg q∗n + deg q∗n+1

dn + 1
. (4.55)

Since {mn} fulfills (2.17), we obtain

αn =
deg q∗n + deg q∗n+1
n +mn + 1 − δn

≤ deg q∗n + deg q∗n+1
n +mn + 1 − (

mn − deg q∗n
)

= 1 − n + 1 − deg q∗n+1
n + 1 + deg q∗n

< 1 − n + 1 − c(n + 1)
n + 1 + c(n + 1)

= 1 − 1 − c
1 + c

.

(4.56)

Hence, by (3.1)

νn
([
α, β

]) ≥ 1 − c
1 + c

μ
([
α, β

])
(4.57)
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for any interval [α, β] ⊂ C[−1, 1]. Therefore, property (i) of Theorem 2.2 implies that

νn
∗→ ν, supp(ν) = [−1, 1] (4.58)

and Theorem 2.2 holds for all z0 ∈ [−1, 1].

5. Generalization to the Lower-Half of the Walsh Table

Theorem 2.2 restricts the approximation to the upper half of theWalsh table. In the following,
we also want to allow approximations in the lower half of the Walsh table. We assume that
the pairs

(n(s), m(s)) ∈ N0 × N0 (5.1)

depend on parameters s ∈ N. For abbreviation, let

Es := En(s),m(s)
(
f
)
, r∗s = r

∗
n(s),m(s)

(
f
)
=
p∗s
q∗s
, (5.2)

where p∗s and q
∗
s have no common factor. As above, let

δs := min
(
n(s) − deg p∗s,m(s) − deg p∗s

)
(5.3)

be the defect of r∗s , and let As = As(f) = {x(s)
k
}d(s)
k=0 be an alternation point set to f − r∗s , where

ds = n(s) +m(s) + 1 − δs. (5.4)

We denote by νs the normalized counting measure of As. Then Theorem 2.2 can be
generalized in the following way.

Theorem 5.1. Let (n(s), m(s)), s ∈ N, be a strictly increasing subsequence of N0 × N0 with

n(s) ≤ n(s + 1) ≤ n(s) + 1, m(s) ≤ m(s + 1) ≤ m(s) + 1, (5.5)

and let us approximate f ∈ C[−1, 1], with respect to Rn(s),m(s), where

m(s) ≤ n(s) + κ(s), s ∈ N,

κ(s) = o
(

s

log s

)
as s −→ ∞.

(5.6)

If f ∈ C[−1, 1] satisfies (2.6), then there exists a subset Λ ⊂ N with the following properties:

(i) νs
∗→ ν as s → ∞, s ∈ Λ.
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(ii) let a ∈ C; then for any z0 ∈ supp(ν) and any neighborhood U of z0 with f(z)/≡a on
U ∩ [−1, 1] either

lim sup
s→∞

N∞(r∗s ,U) = ∞ (5.7)

or

lim sup
s→∞

Na(r∗s ,U)
s

> 0. (5.8)

For the proof, we use a generalization of Theorem B to the previous situation (see [10]): if
(5.5) and (5.6) hold, then there exists a subsequence Λ ⊂ N such that

νs − αs(τ̂s + τ̂s+1) − (1 − αs)μ ∗→ 0 as s −→ ∞, s ∈ Λ. (5.9)

Again, we use in (5.9) the balayage measures of the normalized pole counting measures τs
and τs+1 of r∗s , respectively, r

∗
s+1, onto [−1, 1] and

αs :=
deg q∗s + deg q∗s+1

ds + 1
. (5.10)

Then the proof of (5.7) and (5.8) follows the same lines as the proof of Theorem 2.2 if

lim sup
s→∞

E1/s
s = 1. (5.11)

Because of (5.5), the index n(s) runs from n(1) to ∞. Moreover, letM(s) := max(n(s), m(s)),
s ∈ N; thenM(s) runs fromM(1) to∞ and

lim sup
s→∞

E1/s
s = lim sup

s→∞
E1/s
n(s),m(s)

≥ lim sup
s→∞

(
E
1/M(s)
M(s),M(s)

)M(s)/s
= 1,

(5.12)

since

s ≥M(s) −M(1). (5.13)
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6. Remarks

For the function f(x) = |x|α, α > 0, the distribution of alternation points of the optimal error
curves, as well as the zeros and poles of r∗n,m is very well investigated [7].

Let α ∈ R+ \ 2N, and let (n,mn) ∈ N × N with

lim
n→∞

mn

n
= c ≤ 1, n ≥ mn + 2

[α
2

]
. (6.1)

Since all best approximants of f(x) = |x|α are even functions, we can assume that n,mn ∈ N

are even. Moreover, the error function f − r∗n,mn
has always exactly n + mn + 3 points [7].

By νAn = νn we denote the normalized alternation counting measure and νPn denotes the
normalized pole counting measure of r∗n,mn

and νZn the normalized zero counting measure of
r∗n,mn

. Then

νAn

∗→
n→∞

2c
1 + c

δ0 +
1 − c
1 + c

μ, (6.2)

νPn
∗→

n→∞
δ0, (6.3)

νZn

∗→
n→∞

cδ0 + (1 − c)μ (6.4)

(cf. Theorems 1.6 and 1.7 in [7]).
For c < 1, we would obtain by (3.1) and by the corollary of Theorem 2.2 that any point

of [−1, 1] is either a limit point of poles or of a-values of r∗n,mn
, a ∈ C, as n → ∞. Since by

(6.3) the normalized pole counting measures converge to the Dirac measure at 0, any point
of [−1, 1], with 0 as only possible exception, is a limit point of a-values.

For c = 1, νAn

∗→ δ0. Hence Theorem 2.2 can only tell us that the point 0 is either a limit
point of poles or of a-values, a ∈ C. But (6.3) and (6.4) show that 0 is as well a limit point of
zeros as of poles of r∗n,mn

. Hence, the investigations in [7] for the special functions f(x) = |x|α
lead to deeper results for the zeros and poles of the best approximants.

But the example of f(x) = |x|α shows an interesting area for further investigations,
namely, a weak∗-type analogue of relation (3.1) for the distribution of zeros, respectively, a-
values, and poles of rational approximationwould be desirable. Moreover, the approximation
problem should be moved from the interval [−1, 1] to more general compact sets E in C.
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For normalized analytic functions f(z) with f(z)/= 0 for 0 < |z| < 1, we introduce a univalence
criterion defined by sharp inequality associated with the nth derivative of z/f(z), where n ∈
{3, 4, 5, . . .}.

1. Introduction

Let A denote the class of functions of the following form:

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are normalized analytic in the open unit disk U := {z : |z| < 1}.
In [1], Aksentev proved that the condition

∣∣∣∣∣
z2f ′(z)
f2(z)

− 1

∣∣∣∣∣ ≤ 1 (1.2)

or equivalently Re(f2(z)/z2f ′(z)) ≥ 1/2, for z ∈ U, is sufficient for f(z) ∈ A to be univalent
in U. By virtue of the aforementioned result of Aksentev, the class of functions defined by
(1.2)was extensively studied by Obradović and Ponnusamy [2, 3], Ozaki and Nunokawa [4],
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Obradović et al. [5], and others. Afterwards, Nunokawa et al. [6] proved for f(z) ∈ A with
f(z)/= 0 when 0 < |z| < 1 that

∣∣∣∣
(

z

f(z)

)′′∣∣∣∣ ≤ 1 (1.3)

implies |z2f ′(z)/f2(z) − 1| ≤ 1 for z ∈ U, and hence f(z) is univalent in U. Later, Yang and
Liu [7] extended this result for f(z) ∈ A:

∣∣∣∣
(

z

f(z)

)′′∣∣∣∣ ≤ 2 (1.4)

with f(z)/= 0 when 0 < |z| < 1 implies that f(z) is univalent in U and the bound 2 is
best possible for univalence. This result was also given first in the preprint of reports of
the Department of Mathematics, University of Helsinki: M. Obradović, S. Ponnusamy, New
criteria, and distortion theorems for univalent functions, Preprint 190, June 1998. Later, under
the same name, the paper was published in Complex Variables Theory Application (see [3]).
Corresponding to the functions defined by (1.4), Yang and Liu in [7] studied a class of analytic
univalent functions f(z) satisfying |(z/f(z))′′| ≤ β(0 < β ≤ 2) and denoted by S(β). The class
S(β) is extensively studied in the recent years (see [2, 3, 8–10]).

In this work, we introduce a univalence criteria defined by the conditions f(z)/= 0 for
0 < |z| < 1 and

n−1∑

k=2

k − 1
k!

∣∣βk
∣∣ +

n − 1
n!

∣∣∣∣
dn

dzn

(
z

f(z)

)∣∣∣∣ ≤ 1 for |z| < 1, (1.5)

where f(z) is normalized analytic in U and βk = (dk/dzk)(z/f(z))|z=0, n ∈ {3, 4, . . .}. The
sharpness occurs for the Koebe function. Indeed, all functions satisfying the condition (1.5)
are univalent in U and the bound 1 in the inequality is best possible for univalence. Letting
n = 2 in (1.5) gives the univalence criterion defined by (1.4). Some special cases and examples
for functions satisfying (1.5) are given.

2. Sufficient Conditions for Univalence

Let us prove the following theorem.

Theorem 2.1. Let f(z) ∈ A with f(z)/= 0 for 0 < |z| < 1 and let g(z) ∈ A be bounded in U and
satisfy

m = inf
{∣∣∣∣

g(z1) − g(z2)
z1 − z2

∣∣∣∣: z1, z2 ∈ U

}
> 0. (2.1)

For any n ∈ {3, 4, . . .}, if
∣∣∣∣
dn

dzn

(
z

f(z)
− z

g(z)

)∣∣∣∣ ≤ K (z ∈ U), (2.2)
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where

K =
n!

n − 1

(
m

M2
−
n−1∑

k=2

k − 1
k!

|αk|
)
, αk =

dk

dzk

(
z

g(z)
− z

f(z)

)∣∣∣∣∣
z=0

, (2.3)

andM = sup{|g(z)| : z ∈ U}, then f(z) is univalent in U.

Proof. If we put

h(z) =
dn

dzn

(
z

f(z)
− z

g(z)

)
, (2.4)

then the function h is analytic in U and, by integration from 0 to z, we get

dn−1

dzn−1

(
z

f(z)
− z

g(z)

)
= αn−1 +

∫z

0
h(u1)du1. (2.5)

Integrating both sides of the previous equation (n − 1)-times from 0 to z gives

z

f(z)
− z

g(z)
=

n−1∑

k=1

αk
k!
zk +

∫z

0
dun

∫un

0
dun−1 · · ·

∫u3

0
du2

∫u2

0
h(u1)du1. (2.6)

Thus, we have

f(z) =
g(z)

1 + g(z)
∑n−1

k=1(αk/k!)zk−1 + g(z)
(
ψ(z)/z

) , (2.7)

where

ψ(z) =
∫z

0
dun

∫un

0
dun−1 · · ·

∫u3

0
du2

∫u2

0
h(u1)du1. (2.8)

Next, for n = 3, we have

z2
(
ψ(z)
z

)′
=
∫z

0
uψ ′′(u)du =

∫z

0
u du

∫u

0
h(u1)du1, (2.9)
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and for n = 4,

z2
(
ψ(z)
z

)′
=
∫z

0
uψ ′′(u)du =

∫z

0
u du

∫u

0
du2

∫u2

0
h(u1)du1. (2.10)

In general, for n ∈ {3, 4, . . .},

z2
(
ψ(z)
z

)′
=

∫z

0
uψ ′′(u)du

=
∫z

0
u du

∫u

0
dun−2

∫un−2

0
dun−3 · · ·

∫u2

0
h(u1)du1

=
∫1

0
z2t dt

∫zt

0
dun−2

∫un−2

0
dun−3 · · ·

∫u2

0
h(u1)du1

(
by setting u = zt

)

=
∫1

0
z3t2 dt

∫1

0
ds1

∫un−2

0
dun−3 · · ·

∫u2

0
h(u1)du1

(
by setting un−2 = zts1

)

=
∫1

0
z4t3 dt

∫1

0
s1ds1

∫1

0
ds2 · · ·

∫u2

0
h(u1)du1

(
by setting un−3 = zts1s2

)

=
∫1

0
zntn−1 dt

∫1

0
sn−31 ds1

∫1

0
sn−42 ds2 · · ·

∫1

0
sn−3dsn−3

∫1

0
h(zts1 · sn−2)dsn−2

(
by setting u1 = zts1s2 · · · sn−2

)
,

(2.11)

therefore

∣∣∣∣∣

(
ψ(z)
z

)′∣∣∣∣∣ ≤
|z|n−2
n

· 1
n − 2

· 1
n − 3

· · · 1
2

∫1

0
|h(zts1s2 · · · sn−2)| dsn−2 ≤ n − 1

n!
K, (2.12)

and so

∣∣∣∣
ψ(z2)
z2

− ψ(z1)
z1

∣∣∣∣ =

∣∣∣∣∣

∫z2

z1

(
ψ(z)
z

)′
dz

∣∣∣∣∣ ≤
n − 1
n!

K|z2 − z1| (2.13)
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for z1, z2 ∈ U and z1 /= z2. If z1 /= z2, then g(z1)/= g(z2), and it follows, from (2.7) and (2.13),
that

∣∣f(z1)−f(z2)
∣∣

=

∣∣∣g(z1)−g(z2)+g(z1)g(z2)
∑n−1

k=2(αk/k!)
(
zk−12 −zk−11

)
+g(z1)g(z2)

(
ψ(z2)/z2−ψ(z1)/z1

)∣∣∣
∣∣∣1+g(z1)

∑n−1
k=1(αk/k!)z

k−1
1 +g(z1)

(
ψ(z1)/z1

)∣∣∣
∣∣∣1+g(z2)

∑n−1
k=1(αk/k!)z

k−1
2 +g(z2)

(
ψ(z2)/z2

)∣∣∣

>

∣∣g(z1)−g(z2)
∣∣−M2|z1−z2|

∑n−1
k=2(|αk|/k!)

∣∣∣
∑k−2

t=0 z
t
1z

k−1−t
2

∣∣∣−((n−1)/n!)KM2|z1−z2|
∣∣∣1+g(z1)

∑n−1
k=1(αk/k!)z

k−1
1 +g(z1)

(
ψ(z1)/z1

)∣∣∣
∣∣∣1+g(z2)

∑n−1
k=1(αk/k!)z

k−1
2 +g(z2)

(
ψ(z2)/z2

)∣∣∣

>

∣∣g(z1)−g(z2)
∣∣−M2|z1−z2|

∑n−1
k=2(|αk|(k−1)/k!)−((n−1)/n!)KM2|z1−z2|∣∣∣1+g(z1)

∑n−1
k=1(αk/k!)z

k−1
1 +g(z1)

(
ψ(z1)/z1

)∣∣∣
∣∣∣1+g(z2)

∑n−1
k=1(αk/k!)z

k−1
2 +g(z2)

(
ψ(z2)/z2

)∣∣∣

≥ 0.
(2.14)

Hence, f(z) is univalent in U.

Corollary 2.2. Let f(z) ∈ A with f(z)/= 0 when 0 < |z| < 1. For any n ∈ {3, 4, . . .}, if

n−1∑

k=2

k − 1
k!

∣∣βk
∣∣ +

n − 1
n!

∣∣∣∣
dn

dzn

(
z

f(z)

)∣∣∣∣ ≤ 1 (z ∈ U), (2.15)

where βk = (dk/dzk)(z/f(z))|z=0, then f(z) is univalent in U. The result is sharp, where equality
occurs for the Koebe function k(z) = z/(1 − z)2 and also for functions of the following form:

f(z) =
z

1 + az + z2
, (|a| ≤ 2), fn(z) =

z

(1 ± (1/(n − 2))z)n−1
. (2.16)

Proof. Setting g(z) = z in Theorem 2.1 immediately yields (2.15). To show that the result is
sharp for n ≥ 3, we consider

f(z) =
z

(1 + (1/(n − 2))z)n+ε−1
(ε > 0). (2.17)

A computation shows, for 1 ≤ k ≤ n − 1, that

dk

dzk

(
z

f(z)

)
= (n − 2)−k(ε + n − 1)(ε + n − 2) · · · (ε + n − k)

(
1 +

1
n − 2

z

)ε+n−k−1
. (2.18)
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Letting ε = 0 in (2.17) and (2.18) implies, respectively, that (dn/dzn)(z/f(z)) = 0 and

∣∣βk
∣∣ =

(n − 1)!

(n − k − 1)!(n − 2)k
. (2.19)

This satisfies the equality in (2.15), because for x ∈ R and n ≥ 3, an application of the binomial
theorem gives

(1 + x)n−1 =
n−1∑

k=0

(
n − 1
k

)
xk, (2.20)

and so

n−1∑

k=2

(k − 1)
(
n − 1
k

)
xk = 1 + (n − 1)(1 + x)n−2x − (1 + x)n−1

= 1 + (1 + x)n−2[x(n − 2) − 1].

(2.21)

Choosing x = 1/(n − 2) in assertion (2.21) gives the equality. However, for every ε > 0, we
have

f ′
(

n − 2
n − 2 + ε

)
= 0. (2.22)

Hence f is not univalent in U and the result is sharp. Moreover it can be easily checked that
the equality in (2.15) holds for the given functions and the proof is complete.

3. Special Cases and Examples

Letting n = 2 in inequality (2.15) gives the univalence criterion defined by (1.4), which is
due to Yang and Liu [7]. Next, we reduce the result for some values of n by computing the
corresponding values of βk in terms of the coefficients. More precisely, for n = 3 and n = 4,
Corollary 2.2 reduces at once to the following two remarks.

Remark 3.1. Let f(z) = z +
∑∞

k=2 akz
k with f(z)/= 0 when 0 < |z| < 1 satisfy

∣∣∣∣
(

z

f(z)

)′′′∣∣∣∣ ≤ 3 − 3
∣∣∣a22 − a3

∣∣∣ (z ∈ U). (3.1)

Then f(z) is univalent in U. The bound in (3.1) is best possible, where equality occurs for the
Koebe function and for functions of the following form:

f(z) =
z

1 + az + z2
(|a| ≤ 2). (3.2)
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Proof. The result follows from taking n = 3 in Corollary 2.2 and that |β2| = 2|a22 − a3|.

Remark 3.2. Let f(z) = z +
∑∞

k=2 akz
k with f(z)/= 0 for 0 < |z| < 1 satisfy

∣∣∣∣∣
d4

dz4

(
z

f(z)

)∣∣∣∣∣ ≤ 8 − 8
∣∣∣a22 − a3

∣∣∣ − 16
∣∣∣a4 − 2a2a3 + a32

∣∣∣ (z ∈ U). (3.3)

Then f(z) is univalent in U. The bound in (3.3) is best possible, where equality occurs for the
Koebe function and also for functions of the following form:

f(z) =
z

1 + az + z2
(|a| ≤ 2), f(z) =

z

(1 ± (1/2)z)3
. (3.4)

Proof. The result follows from taking n = 4 in Corollary 2.2 and that |β3| = 6|a4 − 2a2a3 + a32|,
and |β2| = 2|a22 − a3|.

To understand the behavior of the extremal functions for our criterion (2.15), let us
consider, for example, f(z) = z/(1 − (1/2)z)3, which is an extremal function for the case
n = 4. Figures 1(a) and 1(b) show the images of the unit circle under the functions f(z) and
g(z) = z/(1 − (1/2)z)3.05, respectively. If we restrict the images around the cusps as shown
in Figures 1(c) and 1(d), we see that the image of g is a curve that intersects itself in some
purely real point u. This means that there are two different points z1 and z2 that lie on the
unit circle such that g(z1) = g(z2) = u. In fact, each purely real point lies inside the closed
curve of Figures 1(c) and 1(d)which is an image for two different points in U having the same
modulus but different arguments. However, we cannot find such points for the function f ,
and this interprets why f is an extremal function for univalence, since the closed curve of
Figure 1(d) vanishes whenever the power in the function g approaches to 3 as shown in
Figure 1(c).

From Corollary 2.2, we have the following.

Corollary 3.3. Let

f(z) =
z

1 +
∑∞

k=1 bkz
k
∈ A (3.5)

with f(z)/= 0 for 0 < |z| < 1 and

n∑

k=2

(k − 1)|bk| + (n − 1)
∞∑

k=n+1

(
k
n

)
|bk| ≤ 1, (3.6)

for some n ∈ {2, 3, . . .}. Then f(z) is univalent in U.

Proof. In view of (3.5) and by simple computation we have

dn

dzn

(
z

f(z)

)
= n!bn +

∞∑

k=n+1

k!
(k − n)!bkz

k−n, (3.7)
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Figure 1: Geometric description for the sharpness of the case n = 4.

and so βm = m!bm, for 1 ≤ m ≤ n − 1. It follows that

∣∣∣∣
dn

dzn

(
z

f(z)

)∣∣∣∣ ≤
∞∑

k=n

k!|bk|
(k − n)! . (3.8)

Hence, by applying Corollary 2.2, we get the desired result.

Remark 3.4. Taking n = 2 in Corollary 3.3 gives a result of Yang and Liu [7].

Example 3.5. From Corollary 3.3, it can be easily seen that the functions

f(z) =
z

1 +
∑n

k=1 bkz
k
, (3.9)

with f(z)/= 0 for 0 < |z| < 1 and
∑n

k=2(k − 1)|bk| ≤ 1, are univalent in U.
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For Riemannian manifoldsM and N, admitting a submersion φ with compact fibres, we introduce
the projection of a function via its decomposition into horizontal and vertical components. By
comparing the Laplacians onM andN, we determine conditions under which a harmonic function
onU = φ−1(V ) ⊂M projects down, via its horizontal component, to a harmonic function on V ⊂N.

1. Introduction and Preliminaries

Harmonic morphisms are the maps between Riemannian manifolds which preserve germs
of harmonic functions, that is, these (locally) pull back harmonic functions to harmonic
functions. The aim of this paper is to analyse the converse situation and to investigate the
class of harmonic morphisms that (locally) projects or pushes forward harmonic functions to
harmonic functions, in the sense of Definition 2.4. If such a class exists, another interesting
question arises “to what extent does the pull back of the projected function preserve the original
function.”

The formal theory of harmonicmorphisms between Riemannianmanifolds beganwith
the work of Fuglede [1] and Ishihara [2].

Definition 1.1. A smooth map φ : Mm → Nn between Riemannian manifolds is called a
harmonic morphism if, for every real-valued function f which is harmonic on an open subset
V ofN with φ−1(V ) nonempty, f ◦ φ is a harmonic function on φ−1(V ).

These maps are related to horizontally (weakly) conformal maps which are a natural
generalization of Riemannian submersions.
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For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M| rank dφx < n} be its critical set.
The points of the set M \ Cφ are called regular points. For each x ∈ M \ Cφ, the vertical space
at x is defined by TVx M = Ker dφx. The horizontal space THx M at x is given by the orthogonal
complement of TVx M in TxM.

Definition 1.2 (see [3, Section 2.4]). A smoothmap φ : (Mm,g) → (Nn,h) is called horizontally
(weakly) conformal if dφ = 0 onCφ and the restriction of φ toM\Cφ is a conformal submersion,
that is, for each x ∈M\Cφ, the differential dφx : THx M → Tφ(x)N is conformal and surjective.
This means that there exists a function λ :M \ Cφ → R

+ such that

h
(
dφ(X), dφ(Y )

)
= λ2g(X,Y ), ∀X,Y ∈ THx M. (1.1)

By setting λ = 0 on Cφ, we can extend λ : M → R
+
0 to a continuous function on M

such that λ2 is smooth. The extended function λ :M → R
+
0 is called the dilation of the map.

For x ∈M\Cφ, the assignments x �→ THx M and x �→ TVx M define smooth distributions
THM and TVM on M \ Cφ or subbundles of TM|M\Cφ , the tangent bundle of M \ Cφ. The
distributions THM and TVM are, respectively, called horizontal distribution (or horizontal
subbundle) and vertical distribution (or vertical subbundle) defined by φ.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes the associated
energy integral E(φ) = (1/2)

∫
Ω ‖φ∗‖2dυM for every compact domainΩ ⊂M. It is well known

that a map (φ) is harmonic if and only if its tension field vanishes.
Harmonic morphisms can be viewed as a subclass of harmonic maps in the light of the

following characterization, obtained in [1, 2].
A smooth map is a harmonic morphism if and only if it is harmonic and horizontally

(weakly) conformal.
What is special about this characterization of harmonic morphism is that it equips

them with geometric as well as analytic features. For instance, the following result of Baird
and Eells [4, Riemannian case] and Gudmundsson [5, semi-Riemannian case] reflects such
properties of harmonic morphisms.

Theorem 1.3. Let φ :Mm → Nn be a horizontally conformal submersion with dilation λ. If

(1) n = 2, then φ is a harmonic map if and only if it has minimal fibres;

(2) n ≥ 3, then two of the following imply the other:

(a) φ is a harmonic map,

(b) φ has minimal fibres,

(c) gradHλ2 = 0 where gradHλ2 denotes the projection of gradλ2 on the horizontal
subbundle of TM, obtained through the unique orthogonal decomposition into vertical
and horizontal parts.

For the fundamental results and properties of harmonic morphisms, the reader is
referred to [1, 3, 6, 7] and for an updated online bibliography to [8].
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2. The Projection of a Function via a Submersion

Given a smooth map φ : Mm → Nn with compact fibres φ−1(φ(x)) for x ∈ M \ Cφ, we
can use fibre integration to define the horizontal and vertical components of every integrable
function f onU ⊂M at regular points.

Definition 2.1. Let φ : Mm → Nn be a smooth map between Riemannian manifolds with
compact fibres. Define the horizontal component of an integrable function f , on M, at a
regular point x as the average of f taken over the fibre φ−1(φ(x)). Precisely, for any V ⊂ N
and integrable function f : U = φ−1(V ) ⊂ M → R, the horizontal component of f at a regular
point x is defined as

(Hf
)
(x) =

1
vol

(
φ−1(y

))
(∫

φ−1(y)
fdv φ−1(y)

)
(
φ(x)

)
, (2.1)

where x ∈ U, φ(x) = y, dvφ
−1(y) is the volume element of the fibre φ−1(y), vol(φ−1(y)) is the

volume of the fibre φ−1(y), and (
∫
φ−1(y) fdv

φ−1(y))(φ(x)) denotes the integral of f |φ−1(φ(x)).
The vertical component of f is given by

(Vf)(x) = (
f −Hf

)
(x). (2.2)

Note that the horizontal component of a function depends only on the fibre φ−1(y) and
not the choice of x ∈ φ−1(y).

Definition 2.2. Let φ : Mm → Nn be a submersion. A function f : U ⊂ M → R is called
horizontally homothetic if the vector field grad(f) is vertical, that is, at each point grad(f) is
tangent to the fibre.

The components Hf and Vf have the following basic properties for submersions.

Lemma 2.3. Let φ :Mm → Nn be a submersion with compact fibres. Suppose that the fibres φ−1(y),
y ∈N are minimal submanifolds ofM. Consider x ∈ U and a function f : U ⊂M → R.

(1) If f is horizontally homothetic at x, thenHf is also horizontally homothetic at x.

(2) If Hf is horizontally homothetic at x and either Xi(f) ≥ 0 or Xi(f) ≤ 0 (for all i) on
the fibre through x, then f is horizontally homothetic, where {Xi}ni=1 is a local orthonormal
frame for the horizontal distribution.

(3) If f is constant along the fibre through x then Vf = 0.

Proof. The proof can be completed by following the calculations in Proposition 3.1.

Definition 2.4. Let φ : Mm → Nn be a submersion with compact fibres, and let f : U =
φ−1(V ) ⊂ M → R be an integrable function. The horizontal component of f defines a
function f̃ : V ⊂N → R as

f̃
(
y
)
=
(Hf

)
(x), (2.3)

where x ∈ U and y = φ(x). The function f̃ is called the projection of f onN, via the map φ.
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We next focus on projection of harmonic functions to harmonic functions via harmonic
morphisms.

3. Harmonic Morphisms Projecting Harmonic Functions

The conditions under which harmonic morphisms project harmonic functions to harmonic
functions can be obtained by employing an identity relating the Laplacian on the fibre with
the Laplacians on the domain and target manifolds.

Recalling that for a submersion φ : Mm → Nn, the vector fields X onM and Y onN
are said to be φ-related if dφ(Xx) = Yφ(x) for every x ∈M. A horizontal vector field X onM is
called basic if it is φ-related to some vector field X′ onN, and X is called horizontal lift of X′. It
is well known that for a given vector field X′ onN, there exists a unique horizontal lift X of
X′ such that X and X′ are φ-related.

Proposition 3.1. Let φ : (Mm,g) → (Nn,h) (n > 2) be a nonconstant submersive harmonic
morphism with dilation λ, having compact, connected, and minimal fibres. Then for any V ⊂ N and
f : U = φ−1(V ) ⊂M → R,

ΔNf̃ =
1

vol
(
φ−1(y

))
∫

φ−1(y)

1
λ2

(
ΔMf −Δφ−1(y)f

)
dvφ

−1(y)

+
1

vol
(
φ−1(y

))
n∑

i=1

∫

φ−1(y)

(
∇M
Xi
Xi

)V
fdvφ

−1(y),

(3.1)

where x ∈ U, φ(x) = y, f̃ is as defined in Definition 2.4 and ΔM, ΔN , Δφ−1(y) are the Laplacians on
M, N, φ−1(y), respectively, ∇M is the Levi-Civita connection on M, (∇M

Xi
Xi)

V
denotes the vertical

component of ∇M
Xi
Xi, and {Xi}ni=1 denote the horizontal lift of a local orthonormal frame {X′

i}ni=1 for
TN.

Proof. First notice from Theorem 1.3 that λ is horizontally homothetic, a fact which will be
used repeatedly in the proof.

Choose a local orthonormal frame {X′
i}ni=1 for TN. If Xi denotes the horizontal lift of

X′
i for i = 1, . . . , n, then {λXi}ni=1 is a local orthonormal frame for the horizontal distribution.

Let {Xα}mα=n+1 be a local orthonormal frame for the vertical distribution. Then we can write
the Laplacian ΔM onM as

ΔM =
n∑

i=1

{
λXi ◦ λXi − ∇M

λXi
λXi

}
+

m∑

α=n+1

{
Xα ◦Xα − ∇M

Xα
Xα

}

= λ2
n∑

i=1

{
Xi ◦Xi − ∇M

Xi
Xi

}
+

m∑

α=n+1

{
Xα ◦Xα − ∇M

Xα
Xα

}
.

(3.2)

Now the Laplacian of the fibre φ−1(y) is

Δφ−1(y) =
m∑

α=n+1

{
Xα ◦Xα − ∇φ−1(y)

Xα
Xα

}
. (3.3)
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If B is the second fundamental form of the fibre φ−1(y) as a submanifold inM, we can write
∇M
Xα
Xα as

∇M
Xα
Xα = ∇φ−1(y)

Xα
Xα + B(Xα,Xα). (3.4)

Let μ denote the mean curvature vector of φ−1(y) given by

μ =
1

m − n
m∑

α=n+1

B(Xα,Xα). (3.5)

SettingH = (m − n)μ, we obtain from (3.2)

ΔM = λ2
n∑

i=1

{
Xi ◦Xi −

(
∇M
Xi
Xi

)H}
+ Δφ−1(y) −H − λ2

n∑

i=1

(
∇M
Xi
Xi

)V

= λ2
n∑

i=1

{
Xi ◦Xi −

(
∇M
Xi
Xi

)H}
+ Δφ−1(y) − λ2

n∑

i=1

(
∇M
Xi
Xi

)V
,

(3.6)

where XH , XV denote the orthogonal projections of a vector field X on the horizontal and
vertical subbundles of TM, respectively.

Since Xi is the horizontal lift of X′
i (i = 1, . . . , n), we have

X′
i

(
f̃
)
=

1
vol

(
φ−1(y

))
{∫

φ−1(y)
Xi

(
f
)
dvφ

−1(y) +
∫

φ−1(y)
fLXi

(
dvφ

−1(y)
)}

=
1

vol
(
φ−1(y

))
{∫

φ−1(y)
Xi

(
f
)
dvφ

−1(y) +
m∑

α=n+1

∫

φ−1(y)
fg

(
∇M
Xα
Xi, Xα

)
dvφ

−1(y)

}

=
1

vol
(
φ−1(y

))
{∫

φ−1(y)
Xi

(
f
)
dvφ

−1(y) −
∫

φ−1(y)
fg(H,Xi)dvφ

−1(y)

}
,

(3.7)

where LXi denotes the Lie derivative along Xi. The volume of the fibres does not vary in the
horizontal direction because of the relation X′

i(vol(φ
−1(y))) = − ∫

φ−1(y) g(H,Xi)dvφ
−1(y) and

the fact that the fibres are minimal.
Similarly, we obtain

X′
i ◦X′

i

(
f̃
)
=

1
vol

(
φ−1(y

))
{∫

φ−1(y)
Xi ◦Xi

(
f
)
dvφ

−1(y) −
∫

φ−1(y)
Xi

(
f
) · g(H,Xi)dvφ

−1(y)

}

− 1
vol

(
φ−1(y

))
{∫

φ−1(y)
Xi

(
fg(H,Xi)

)
dvφ

−1(y) −
∫

φ−1(y)
f(g(H,Xi))2dvφ

−1(y)

}
.

(3.8)
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The horizontal homothety of the dilation implies that (∇M
Xi
Xi)

H is the horizontal lift of∇N
X′
i
X′
i,

cf. [9, Lemma 3.1]; therefore, we have

∇N
X′
i
X′
i

(
f̃
)
=

1
vol

(
φ−1(y

))

×
{∫

φ−1(y)

(
∇M
Xi
Xi

)H(
f
)
dvφ

−1(y) −
∫

φ−1(y)
f · g

(
H,

(
∇M
Xi
Xi

)H)
dvφ

−1(y)

}
.

(3.9)

Now using (3.7), (3.8), (3.9), along with the condition that the fibres are minimal, in (3.6)
completes the proof.

From the above proposition, we see that it suffices to take λ constant to have both
f and f̃ harmonic on M and N, respectively. In this case, by a homothety of M we may
suppose that λ ≡ 1 and φ is a harmonic Riemannian submersion. We then have the following
consequence.

Theorem 3.2. Let φ : (Mm,g) → (Nn,h) (n ≥ 2) be a harmonic Riemannian submersion with
compact, connected fibres. Then the projection f̃ : V ⊂ N → R (via φ) of any harmonic function
f : U = φ−1(V ) ⊂ M → R is a harmonic function. Moreover, Hf = f̃ ◦ φ. If [fH] denotes the class
of harmonic functions on U = φ−1(V ) having the same horizontal component then each class [fH]
has a unique representative in the space of harmonic functions on V .

Proof. Since ΔMf = 0 and the dilation λ ≡ 1, Proposition 3.1 leads to

ΔNf̃ =
1

vol
(
φ−1(y

))
n∑

i=1

∫

φ−1(y)

(
∇M
Xi
Xi

)V
fdvφ

−1(y), (3.10)

where we have also used the fact that

∫

φ−1(y)
Δφ−1(y)fdvφ

−1(y) = 0 (3.11)

for compact fibres.
Let {X′

i}ni=1 be a local orthonormal frame for TN and Xi be the horizontal lift of X′
i

for i = 1, . . . , n. Then {Xi}ni=1 is a local orthonormal frame for the horizontal distribution. Let
{Xα}mα=n+1 be a local orthonormal frame for the vertical distribution. Then using the standard
expression for Levi-Civita connection, we have

(
∇M
Xi
Xi

)V
=

m∑

α=n+1

g
(
∇M
Xi
Xi, Xα

)
Xα

=
1
2

m∑

α=n+1

{Xi(g(Xi,Xα)) +Xi(g(Xα,Xi)) −Xα(g(Xi,Xi))

−g(Xi, [Xi,Xα]) + g(Xi, [Xα,Xi]) + g(Xα, [Xi,Xi])}Xα.

(3.12)
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Because Xi are basic, Xα are vertical we have [Xi,Xα] vertical and therefore

(
∇M
Xi
Xi

)V
= 0. (3.13)

Hence, from (3.10), f̃ is harmonic. The rest of the proof follows from the construction of f̃ .

As an application, we give a description of harmonic functions onmanifolds admitting
harmonic Riemannian submersions with compact fibres.

Corollary 3.3. Let Mm be a Riemannian manifold admitting a harmonic Riemannian submersion
φ :Mm → Nn with compact fibres. Then

(1) every horizontally homothetic harmonic function on U ⊂ M is horizontal, that is, Vf = 0,
and so in particular is constant;

(2) every nonhorizontally homothetic harmonic function f on U ⊂ M satisfies one of the
following:

(a) Vf /= 0;
(b) Vf = 0 and Xi(Hf)/= 0 for at least one i ∈ {1, . . . , n};
(c) Vf = 0, Xi(Hf) = 0 (for all i) and Xi(f) changes sign on the fibre, for at least one

i ∈ {1, . . . , n}.

Proof. Equation (3.6) implies that a horizontally homothetic harmonic function on M is
harmonic on the fibre and hence is constant on the fibre. Now using Lemma 2.3 we get the
proof.

Remark 3.4. (1) Since an R
N-valued map f = (f1, . . . , fN) is harmonic if and only if each of

its component is harmonic, we see that Riemannian submersions with compact fibres project
R
N-valued harmonic maps from φ−1(V ) to R

N-valued harmonic maps from V .
(2) Given a Lie group G and a compact subgroup H of G, the standard projection

φ : G → G/H with G-invariant metric provides many examples satisfying the hypothesis
of Theorem 3.2. Further examples can be obtained from Bergery’s construction φ : G/K →
G/H with K ⊂ H ⊂ G and K,H compact; see [10] for the details of the metrics for which φ
is a harmonic morphism. Another reference for such examples is [11, Chapter 6].
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We present an algorithm for C1 Hermite interpolation using Möbius transformations of planar
polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solve C1

Hermite interpolation problems, since their lack of parameters makes the problems overdeter-
mined. In this paper, we show that, for each Möbius transformation, we can introduce an extra
parameter determined by the transformation, with which we can reduce them to the problems
determining PH cubics in the complex plane C. Möbius transformations preserve the PH property
of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH
and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in
order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved
stability of these new interpolants compared with PH quintics.

1. Introduction

Farouki and Sakkalis [1] introduced Pythagorean-hodograph (PH) curves, which are a spe-
cial class of polynomial curves with a polynomial speed function. These curves have many
computationally attractive features: in particular, their arc lengths and offset curves can be
determined exactly. Farouki [2] reviews the abundant results on these curves obtained by
many researchers. Hermite interpolation with PH curves is one of the main topics in this
research (Farouki and Neff [3], Albrecht and Farouki [4], Jüttler [5], Jüttler and Mäurer [6],
Farouki et al. [7], Pelosi et al. [8], and Šı́r et al. [9]).

In this paper, we solve the C1 Hermite interpolation problem using the Möbius trans-
formations of polynomial PH cubics in the plane. The use of Möbius transformation has been
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demonstrated in recent publications [10, 11]. In [11], Bartoň et al. used a general Möbius
transformation in R

3, which is defined as a composition of an arbitrary number of inversions
with respect to spheres or planes. They showed that (μ ◦ x)(t) is a rational PH curve for any
general Möbius transformation μ(x1, x2, x3), if x(t) is a polynomial PH space curve inR3. (The
preservation of PH properties under transformation is first studied by Ueda [12].) They also
presented an algorithm forG1 Hermite interpolation. In this work, we use the classicalMöbius
transformation, a bijective linear fractional transformation in the extended complex plane
C∞ = C ∪ {∞}, that is,

Φ(z) =
az + b
cz + d

, (1.1)

for some complex numbers a, b, c, and d for which ad−bc /= 0 [13]. Using this transformation,
we can solve the C1 Hermite interpolation problems with PH cubics. In general, with PH
cubics, we cannot solve C1 Hermite interpolation problems, since their lack of parameters
makes the problems overdetermined. But we can show that, for a C1 Hermite interpolation
problem, we are always able to obtain four interplants which are constructed by PH cubics.
The Möbius transformation makes this possible, since it permits the introduction of a new
extra parameter into the problem, which is to be reduced to a simple problem to determine
PH cubics as follows: here we adapt the complex representation method [14] to solve the C1

Hermite interpolation problem. The original problem is, for a Hermite dataset (pi,pf ,vi,vf),
to find a polynomial PH curve r(t) and a Möbius transformation Φ(z), which satisfy

(Φ ◦ r)(0) = pi, (Φ ◦ r)(1) = pf , (Φ ◦ r)′(0) = vi, (Φ ◦ r)′(1) = vf . (1.2)

Next, by an appropriate translation, rotation, and scaling of the dataset, we can arrange that
pi = 0 and pf = 1 and take a Möbius transformation

Φ(z) =
αz

(α − 1)z + 1
, (1.3)

which fixes 0 and 1, for some nonzero complex number α. Then the inverse image of the C1

Hermite dataset under a Möbius transformation Φmakes (1.2) into

r(0) = 0,
∫1

0
r′(t)dt = 1, r′(0) =

1
α
vi, r′(1) = αvf , (1.4)

which are suitable forms for adapting the complex representation method (for details, see
Section 4). Farouki and Neff [3] already solved the C1 Hermite interpolation problem with
PH quintics. According to (1.2), this is exactly the case inwhich r(t) is a quintic andΦ(z) is the
identity, that is, α = 1. On the other hand, our work in this paper is the case just when Φ(z) is
not the identity, that is, α/= 1. At the end of this paper, we will compare our interpolants with
PH quintic ones for the same C1 Hermite dataset.

The interpolants obtained by our method are specific rational curves represented by
complex rational functions. For planar rational curves, there already exists a general theory,
which were introduced by Pottmann [15] and Fiorot and Gensane [16]: they studied rational
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plane curves with rational offets. These curves are represented in the dual form, in which
curves are specified using line coordinates instead of point coordinates. Pottmann showed
how to design rational PH curves segments by G1 and G2 Hermite interpolations [17, 18].
However, in our work, what we need is only a suitable PH cubic and a PH-preserving trans-
formation which is algebraically simple as possible and which can generate an extra-
parameter, and the latter is completely settled by the classical Möbius transformation. More-
over, the transformation is biholomorphic. Thus it preserves the topology of the preimage curve
(PH cubic). Therefore, the interpolants obtained by our method should have no cusp, al-
though cusps are a generic feature of rational PH curves. They are simple curves or else loops.
Hence, to obtain these, even avoiding the easy shortcut, there is no need to follow up the
lengthy path with a far starting point. We just use the classical Möbius transformation of PH
cubics, that is all.

The rest of this paper is organized as follows. In Sections 2 and 3, we review some
basic properties of Möbius transformations and planar PH cubics. In Section 4, we solve the
C1 Hermite interpolation problem using the Möbius transformations of planar PH cubics.
In Section 5, we present the condition on a Hermite dataset, which determine whether the
corresponding Hermite interpolant has a loop, we also compare these new interpolants with
PH quintics and show that the former have improved stability. We conclude this paper in
Section 6.

2. Möbius Transformations

A Möbius transformation Φ(z) is a bijective linear fractional transformation in the extended
complex plane C∞ = C ∪ {∞}, that is,

Φ(z) =
az + b
cz + d

, (2.1)

for some complex numbers a, b, c, and d for which ad− bc /= 0 [13]. ThenΦ(z) is a one-to-one
correspondence on the extended complex plane C∞ with its inverse

Φ−1(z) =
dz − b
−cz + a. (2.2)

The derivative of Φ(z) is

Φ′(z) =
ad − bc
(cz + d)2

. (2.3)

For any Möbius transformations Φ(z) and Ψ(z), (Ψ ◦Φ)(z) is also a Möbius transformation.
Thus the set M of all Möbius transformations forms a group under composition.

A rational plane curve r(t) = x(t) +
√−1y(t) is called a Pythagorean-hodograph (PH)

curve [1] if there exists a rational function σ(t) such that

x′(t)2 + y′(t)2 = σ(t)2. (2.4)
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Lemma 2.1. Let Φ(z) be a Möbius transformation and r(t) be a polynomial PH curve. Then s(t) =
(Φ ◦ r)(t) is a rational PH curve.

Proof. Since s′(t) = Φ′(r(t))r′(t), we have

∣∣s′(t)
∣∣ =

|ad − bc|
|cr(t) + d|2

∣∣r′(t)
∣∣ =

|ad − bc|
Re (cr(t) + d)2 + Im (cr(t) + d)2

∣∣r′(t)
∣∣. (2.5)

This completes the proof.

Lemma 2.1 means that Möbius transformations preserve the PH property, which is a
special case of the result of Bartoň et al. [11].

For a polynomial PH curve r(t) of degree n, a Möbius transformation of r(t)

(Φ ◦ r)(t) = ar(t) + b
cr(t) + d

(2.6)

is a rational curve, also of degree n, with coefficients in the complex plane C. However, if we
associate the complex plane C with R

2, and express (Φ ◦ r)(t) as a rational curve with real
coefficients in R

2 then the result is generally a rational PH curve of degree 2n or n. If we per-
form a further Möbius transformationΨ(z), the rational curve (Ψ◦(Φ◦r))(t) = ((Ψ◦Φ)◦r)(t)
retains a degree of 2n or n, since (Ψ ◦Φ)(z) is a Möbius transformation.

Lemma 2.2. Let (Φ ◦ r)(t) be a Möbius transformation Φ(z) of a polynomial curve r(t), such that
(Φ ◦ r)(0) = 0 and (Φ ◦ r)(1) = 1. Then there exist a polynomial curve s(t) and a Möbius transforma-
tion Ψ(z), such that s(0) = 0, s(1) = 1, and (Φ ◦ r)(t) = (Ψ ◦ s)(t).

Proof. We can find a Möbius transformationΦ1(z) = az+ b for some complex constants a and
b such that a/= 0 and s(t) = (Φ1 ◦ r)(t) is a polynomial curve with s(0) = 0 and s(1) = 1. Con-
sequently, we can obtain the Möbius transformationΨ(z) = (Φ◦Φ−1

1 )(z) such that (Φ◦ r)(t) =
(Ψ ◦ s)(t).

A Möbius transformation Ψ(z) of this sort also fixes 0 and 1.

Lemma 2.3. Let Φ(z) be a Möbius transformation with Φ(0) = 0 and Φ(1) = 1. Then there exists a
nonzero complex constant α such that

Φ(z) =
αz

(α − 1)z + 1
. (2.7)

If τ = |α| and η = arg(α), then Φ(z) = (Φτ ◦Φη)(z) = (Φη ◦Φτ)(z), where

Φτ(z) =
τz

(τ − 1)z + 1
, Φη(z) =

eiηz
(
eiη − 1

)
z + 1

. (2.8)

Proof. LetΨ(z) = (az+ b)/(cz+d) be a Möbius transformation withΨ(0) = 0 andΨ(∞) = ∞.
Then from Ψ(0) = 0 we get b = 0, and from Ψ(∞) = ∞ we get c = 0. Thus Ψ(z) = αz, where
α = a/d. Let τ = |α| and η = arg(α). Then we obtainΨ(z) = (Ψτ ◦Ψη)(z) = (Ψη◦Ψτ)(z), where
Ψτ(z) = τz and Ψη(z) = eiηz.
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Now let Φ(z) be a Möbius transformation with Φ(0) = 0 and Φ(1) = 1. Let S(z) =
z/(z−1), so that S(0) = 0 and S(∞) = 1. Then, since (S−1 ◦Φ◦S)(0) = 0 and (S−1 ◦Φ◦S)(∞) =
∞, we get (S−1 ◦Φ ◦ S)(z) = Ψ(z), where Ψ(z) = αz for some nonzero α. Thus we obtain

Φ(z) =
(
S ◦Ψ ◦ S−1

)
(z) =

αz

(α − 1)z + 1
. (2.9)

Moreover, in the same way, we can obtain Φτ(z) = (S ◦ Ψτ ◦ S−1)(z) and Φη(z) = (S ◦ Ψη ◦
S−1)(z), so that Φ(z) = (Φτ ◦Φη)(z) = (Φη ◦Φτ)(z).

Since Φ′(z) = α/((α − 1)z + 1)2, we have Φ′(0) = α and Φ′(1) = 1/α.

3. Planar Pythagorean-Hodograph Cubics

A planar polynomial curve r(t) = x(t) +
√−1y(t) is a PH curve [19] if and only if there exist

polynomials h(t), u(t), and v(t), which satisfy

x′(t) = h(t)
[
u(t)2 − v(t)2

]
, y′(t) = h(t)[2u(t)v(t)]. (3.1)

Note that, if gcd(u(t), v(t)) = 1, then gcd(u(t)2 − v(t)2, 2u(t)v(t)) = 1. In this paper, we will
assume that h(t) is monic, meaning that its leading coefficient is 1.

A polynomial curve r(t) is a PH curve [14] if and only if there exists a polynomial h(t)
and a polynomial curve w(t) such that

r′(t) = h(t)w(t)2. (3.2)

Suppose that the PH cubic r(t) is a line. Then the hodograph r′(t) can be expressed as h(t)(x0+√−1y0), where x0 +
√−1y0 is a nonzero point and h(t) is the quadratic monic polynomial

h(t) = h0(1 − t)2 + h12(1 − t)t + h2t2, (3.3)

and h0, h1, and h2 are real constants such that h0 + h2 /= 2h1.
Let r(t) be a PH cubic for which r′(t) = w(t)2. Since w(t) is linear, we can write w(t) in

Bernstein form:

w(t) = w0(1 − t) +w1t, (3.4)

where w0 and w1 are distinct complex constants. The hodograph r′(t) can then be expressed
as

r′(t) = w2
0(1 − t)2 +w0w12(1 − t)t +w2

1t
2. (3.5)

If we represent the PH cubic r(t) in the Bernstein form

r(t) = p0(1 − t)3 + p13(1 − t)2t + p23(1 − t)t2 + p3t
3, (3.6)
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then we obtain

p1 = p0 +
1
3
w2

0, p2 = p1 +
1
3
w0w1, p3 = p2 +

1
3
w2

1, (3.7)

where p0 can be chosen arbitrarily.

4. First-Order Hermite Interpolation

We will now solve the C1 Hermite interpolation problem using Möbius transformations of
PH cubics.

Let pi and pf be the initial and final points to be interpolated, where pi /=pf . Let vi =
rie

√−1θi and vf = rfe
√−1θf , respectively, be the initial vector at pi and the final vector at pf ,

where ri > 0 and rf > 0. For this Hermite dateset (pi,pf ,vi,vf), we want to find planar PH
cubics r(t) and Möbius transformations Φ(z) which satisfy (1.2), which are equivalent to

(Φ ◦ r)(0) = pi,
∫1

0
(Φ ◦ r)′(t)dt = pf − pi,

(Φ ◦ r)′(0) = vi, (Φ ◦ r)′(1) = vf .

(4.1)

By an appropriate translation, rotation, and scaling of the data-set, we can arrange that pi = 0
and pf = 1. Then, from Lemmas 2.2 and 2.3, we seek some nonzero constants α and PH cubics
r(t), which satisfy (1.4).

4.1. Case of r ′(t) = h(t) = h0(1 − t)2 + h12(1 − t)t + h2t2

In this case, (4.1) become

r(0) = 0, h0 + h1 + h2 = 3, αh0 = vi,
h2
α

= vf . (4.2)

From the second and third of these equations, we can see that Hermite interpolants r(t) exist
if and only if θi + θf = mπ for some integersm. In this case, for α = τe

√−1θi or α = τe
√−1(θi+π),

where τ is any positive number, we have

h0 =
vi
α
, h2 = αvf , h1 = 3 − h0 − h2. (4.3)

Consequently, we can obtain the PH cubics

r(t) =
h0
3
3(1 − t)2t + h0 + h1

3
3(1 − t)t2 + h0 + h1 + h2

3
t3 (4.4)
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and their Möbius transformations

(Φ ◦ r)(t) = αr(t)
(α − 1)r(t) + 1

. (4.5)

4.2. Case of r ′(t) = w(t)2 Where w(t) = w0(1 − t) +w1t

From (3.5) and (3.6), (4.1) become

r(0) = 0, w2
0 +w0w1 +w2

1 = 3, αw2
0 = vi,

w2
1

α
= vf . (4.6)

If we let

v =
√
rirf

3
e
√−1(θi+θf )/2, (4.7)

and also let a = w2
0/3, b = w2

1/3 and k = w0w1/3, then second and third equations in (4.6)
imply that k = v or k = −v, and so we have

ab = k2, a + b = 1 − k. (4.8)

Now let

am =
1 − k +

√
(1 + k)(1 − 3k)
2

,

bm =
1 − k −√

(1 + k)(1 − 3k)
2

,

(4.9)

where m = 1 if k = v, and m = −1 if k = −v. Then we have a = am and b = bm, or a = bm and
b = am. Consequently, we can obtain the four PH cubics

rm,1(t) = am3(1 − t)2t + (am + k)3(1 − t)t2 + (am + k + bm)t3,

rm,2(t) = bm3(1 − t)2t + (bm + k)3(1 − t)t2 + (bm + k + am)t3,
(4.10)

where k = v or k = −v. Note that rm,1 = rm,2 if and only if k is −1 or 1/3. From the PH cubics
rm,j(t) we can obtain the Möbius transformations of the PH cubics Φm,j(rm,j(t))(m = 1,−1,
and j = 1, 2), where

Φm,j(z) =
αm,jz(

αm,j − 1
)
z + 1

, αm,1 =
1
3
vi
am

, αm,2 =
1
3
vi
bm

. (4.11)

If k is nonreal, then both rm,1(t) and rm,2(t) are nonlinear. But if k is a real number, then −1 ≤
k ≤ 1/3 if and only if both rm,1(t) and rm,2(t) are linear.

We can summarize these results.
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Theorem 4.1. Let (0, 1,vi = rie
√−1θi ,vf = rfe

√−1θf ) be a C1 Hermite data-set such that ri > 0 and
rf > 0.

(a) Let v be the vector given by (4.7), and let k be v or −v. Then all C1 Hermite interpolants
using Möbius transformations of planar PH cubics r(t), such that r′(t) = w(t)2 for some
linear curve w(t), are Φm,j(rm,j(t))(m = 1,−1, and j = 1, 2), from (4.10) and (4.11),
where am and bm are given by (4.9).

(b) C1 Hermite interpolants using Möbius transformations of planar PH cubics r(t), such that
r′(t) = h0(1 − t)2 + h12(1 − t)t + h2t2 for some real number h0, h1, and h2 such that h0 +
h2 /=h1, exist if and only if θi + θf = mπ for some integersm. In this case, the interpolants
(Φ ◦ r)(t) are given by (4.5), where r(t) is given by (4.3) and (4.4), where α = τe

√−1θi or
α = τe

√−1(θi+π) for any positive number τ .

5. Best Interpolant

In this section we consider how to choose the best interpolant for a given Hermite data-set
(pi = 0, pf = 1,vi,vf ).

We will begin by presenting a condition under which the Möbius transformation of
a PH cubic (Φ ◦ r)(t) has a loop, where r′(t) = (w0(1 − t) + w1t)

2 for some distinct complex
constants w0 and w1. Since Φ(z) represents a one-to-one correspondence on the extended
complex plane, the condition that r(t) has a loop is both necessary and sufficient to establish
that (Φ◦ r)(t) has a loop. Under the conditions r(0) = 0 and r(1) = 1, the PH cubic r(t) is given
by r(t) = A(t − B)3 + C, where

A =
(w0 −w1)2

3
, B =

w0

w0 −w1
, C =

w3
0

3(w0 −w1)
. (5.1)

The condition that there exist constants t1 and t2, such that 0 ≤ t1 < t2 ≤ 1 and r(t1) = r(t2),
is necessary and sufficient to establish that r(t) has a loop. From r(t1) = r(t2), we can obtain
3B2 − 3(t1 + t2)B + (t21 + t1t2 + t

2
2) = 0, which implies

B =
3(t1 + t2) ±

√−1(t2 − t1)
√
3

6
. (5.2)

This equation is equivalent to

t1 + t2 = 2ReB, t2 − t1 = 2
√
3|ImB|, (5.3)

and hence

t1 = ReB −
√
3|ImB|, t2 = ReB +

√
3|ImB|. (5.4)

Consequently, r(t) has a loop if and only if B ∈ Ω1 ∪Ω2, (see Figure 1)where

Ω1 =
{
z ∈ C0 ≤ Re z −

√
3 Im z < Re z +

√
3 Im z ≤ 1

}
,

Ω2 =
{
z ∈ C | 0 ≤ Re z +

√
3 Im z < Re z −

√
3 Im z ≤ 1

}
.

(5.5)
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Ω1

0
0

0.2 0.4 0.6 0.8 1

0.05
0.1

0.15
0.2

0.25

(a)

Ω2

0
0.2 0.4 0.6 0.8 1−0.05

−0.1

−0.2
−0.25

−0.15

(b)

Figure 1: Areas of Ω1 and Ω2: B belongs to Ω1 ∪Ω2 if and only if r(t) has a loop.

On the other hand, the PH cubic r(t) can be represented by

r(t) = a3(1 − t)2t + (a + k)3(1 − t)t2 + (a + k + b)t3, (5.6)

where a = w2
0/3, k = w0w1/3, and b = w2

1/3. From k = w0w1/3 and B = w0/(w0−w1), we can
obtain

B2 − B =
k

1 − 3k
=

1
1/k − 3

, (5.7)

and hence

k =
1
3
− 1
3(3B2 − 3B + 1)

. (5.8)

Note that

{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z −
√
3 Im z < Re z +

√
3 Im z ≤ 1

}

=
{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z +
√
3 Im z < Re z −

√
3 Im z ≤ 1

}
.

(5.9)

Therefore we conclude as following.

Theorem 5.1. Suppose that (Φ ◦ r)(t) is a Möbius transformation of a planar PH cubic, such that
r(0) = 0, r(1) = 1, and r′(t) = (w0(1 − t) + w1t)

2 for some distinct complex constants w0 and w1

(see Figure 2). Then (Φ ◦ r)(t)(0 ≤ t ≤ 1) is a simple curve if and only ifw0w1/3 /∈ D, where

D =
{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z −
√
3 Im z < Re z +

√
3 Im z ≤ 1

}
. (5.10)
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D

2

1

0

−1

−2

−0.4−1−1.4

Figure 2: Area of D: w0w1/3 /∈ D if and only if (Φ ◦ r)(t) in Theorem 5.1 is a simple curve.

For a given Hermite data-set (0, 1,vi,vf), the term v in (4.7) belongs toD if and only if
(Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t) have a loop; and −v belongs toD if and only if (Φ−1,1 ◦ r−1,1)(t)
and (Φ−1,2 ◦ r−1,2)(t) have a loop. Note that D is a subset of the left half-plane, that is, D ⊂
{z ∈ Z : Re z < 0}. Thus we can deduce that both (Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t), or both
(Φ−1,1◦r−1,1)(t) and (Φ−1,1◦r−1,2)(t) are simple curves. From these simple curves we can choose
a best interpolant, which is that with the least bending energy

E((Φ ◦ r)(t)) =
∫

Φ◦r
κ2ds =

∫1

0
κ(t)2

∣∣(Φ ◦ r)′(t)∣∣dt, (5.11)

where κ is the curvature of (Φ ◦ r)(t).

Example 5.2. Consider a Hermite data-set (0, 1, 2e−
√−1π/4, 2e−

√−1π/8). Then the vector v becomes

v =
√
rirf

3
e
√−1(θi+θf )/2 =

2
3
e−

√−13π/16. (5.12)

Thus v /∈ D and −v ∈ D, which implies that (Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t) are simple but
(Φ−1,1 ◦ r−1,1)(t) and (Φ−1,2 ◦ r−1,2)(t) each have a loop. See Figure 3.

Example 5.3. In the case of a Hermite data-set (0, 1, e−
√−13π/5, e−

√−1π/5), the vector v becomes

v =
√
rirf

3
e
√−1(θi+θf )/2 =

1
3
e−

√−12π/5. (5.13)

Thus v /∈ D and −v /∈ D, which implies that (Φ1,1 ◦ r1,1)(t), (Φ1,2 ◦ r1,2)(t), (Φ−1,1 ◦ r−1,1)(t), and
(Φ−1,2 ◦ r−1,2)(t) are all simple. See Figure 4.
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Figure 3: For the Hermite dataset (0, 1, 2e−
√−1π/4, 2e−

√−1π/8), the graph on the left shows that −v ∈ D and
v /∈ D; the central graph shows the PH cubics r(t)with their control polygons; the graph on the right shows
the four interpolants.

Example 5.4. Consider a family of C1 Hermite data-sets (0, 2, k(1+
√−1), 1+2√−1),where k =

1, 5, 10, 20. We construct C1 Hermite interpolants that satisfy these data-sets using Möbius
transformations of PH cubics, and also PH quintics, all shown in Figure 5. The Möbius trans-
formations of the PH cubics always provide two S-shaped simple curves and two other
curves; the latter are C-shaped simple curves when k = 1 or 5 and have a single loop in the
other cases. As the parametric speed of the initial Hermite condition increases, the C-shaped
interpolants change from simple curves to single loops, while the simple S-shaped interpol-
ants retain their original shape characteristics. We also observe that, unlike the S-shaped
interpolants produced by Möbius transformations of PH cubics, the S-shaped PH quintic
interpolants may be simple (like the curve labeled 4 in Figure 5), or have one or two loops
(some PH quintics labeled 2 in Figure 5 are S-shaped double loops).

We observed the behavior of these interpolants as the parametric speed at the end-
points changes. As this speed increases, the arc-lengths of PH quintics increase rapidly, but
the arc-length, of Möbius transformations of PH cubics are generally less affected. In partic-
ular, the simple S-shaped interpolants, produced by Möbius transformations of PH cubics
show little change in arc-length. Table 1 shows that these latter interpolants have both lower
bending energies and shorter arc-lengths, than all the other interpolants we are considering.
If we look at Table 1 and identify the most shapely interpolants with the lowest bending
energies, we find that the best Möbius transformation of a PH cubic is always S-shaped and
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Figure 4: For the Hermite data-set (0, 1, e−
√−13π/5, e−

√−1π/5), the graph on the left shows that −v /∈ D and
v /∈ D; the central graph shows the PH cubics r(t)with their control polygons; the graph on the right shows
the four interpolants.
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Figure 5:Comparison of pairs of PH interpolants, satisfying the sameC1 Hermite data-set (0, 2, k(1+
√−1),

1 + 2
√−1), when k = 1, 5, 10, 20: (a), (b), (c), and (d), respectively, show the Möbius transformations of the

PH cubicsMCi when k = 1, 5, 10, 20; and (a)′, (b)′, (c)′, and (d)′ show the correspoding PH quintics Qi.

simple. However, the merit of the PH quintic interpolants depends on the parametric speeds
at their end points. For example, in Figures 5(a)′ and 5(b)′, the curves labeled 4 are best, while
the curves labeled 1 are best in Figures 5(c)′ and 5(d)′. Looking closely at the PH quintic inter-
polants, we see that the simple S-shaped curve with the best shape when k = 1 becomes less
and less acceptable as the parametric speeds at the end-points increase. But the interpol-
ants labeled 1 in Figures 5(a)′, 5(b)′, 5(c)′, and 5(d)′ exhibit the opposite behavior: initially
these curves are C-shaped loops with high bending energies when k = 1; but as the para-
metric speed increases, they become C-shaped simple curves with lower bending energies.
When k reaches 20, it has the best shape but the greatest arc-length. This suggests that the
best-shaped interpolants, produced by Möbius transformations of PH cubics are more stable
than the corresponding PH quintics, in the sense that the former largely achieve a lower arc-
length and bending energy than the latter, except when the end-point speeds are significantly
asymmetric, as we see when k = 20 in this example.
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Table 1: Comparison of arc-length and bending energy for the interpolants of Figure 5.

k = 1 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 3.03 2.19 3.10 2.29 2.34 2.16 2.34 2.16
BE 45.0 5.5 72.8 6.8 149 3106 273 5.3
k = 5 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.93 2.28 4.50 2.31 3.05 2.40 3.05 2.40
BE 50.2 6.5 20.9 5.7 36.1 762 47.3 10.0
k = 10 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.89 2.31 5.47 2.36 4.42 3.02 4.42 3.02
BE 54.03 8.2 16.6 7.5 14.4 345.9 19.3 36.9
k = 20 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.85 2.34 6.13 2.40 7.91 5.39 7.91 5.39
BE 60.1 11.9 17.7 11.3 8.0 136 10.7 97.9

6. Conclusions

Möbius transformations preserve Pythagorean-hodograph properties. For any C1 Hermite
data-set, we can generally obtain four C1 Hermite interpolants as Möbius transformations of
PH cubics. We have proved that these interpolants are always simple curves or single loops,
and that at least two of them must be simple. We have also presented the condition that an
interpolant must meet if it is to be a simple curve.

We compared the shape characteristics of C1 Hermite interpolants, produced by
Möbius transformations of PH cubics, together with their response to changes of parametric
speed at their end points, with the same data for PH quintic interpolants satisfying an iden-
tical C1 Hermite dataset: we found that interpolants produced by Möbius transformations of
PH cubics generally have lower bending energies and shorter arc-lengths than PH quintics.

One avenue for further research is to look for ways of predicting how the geometry of
Möbius transformation of PH cubics will be determined by a particular C1 Hermite data-set.
Another avenue to explore would be the application of Möbius transformations to other
interpolation problems involving PH (or MPH) curves, in both two and three dimensions.
In particular, we might look to complete the geometric characterization of Möbius trans-
formation of PH cubics in C1 Hermite interpolation.
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We present a boundary integral equation method for the numerical conformal mapping of
bounded multiply connected region onto a circular slit region. The method is based on some
uniquely solvable boundary integral equations with adjoint classical, adjoint generalized, and
modified Neumann kernels. These boundary integral equations are constructed from a boundary
relationship satisfied by a function analytic on amultiply connected region. Some numerical exam-
ples are presented to illustrate the efficiency of the presented method.

1. Introduction

In general, the exact conformal mapping functions are unknown except for some special
regions. It is well known that every multiply connected regions can be mapped conformally
onto the circle with concentric circular slits, the circular ring with concentric circular slits, the
circular slit region, the radial slit region, and the parallel slit region as described in Nehari
[1, page 334]. Several methods for numerical approximation for the conformal mapping
of multiply connected regions have been proposed in [2–16]. Recently, reformulations of
conformal mappings from bounded and unboundedmultiply connected regions onto the five
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canonical slit regions as Riemann-Hilbert problems are discussed in Nasser [12, 13, 17]. An
integral equation with the generalized Neumann kernel is then used to solve the RH problem
as developed in [18]. The integral equation however involves singular integral which is
calculated by Wittich’s method. Murid and Hu [11] formulated an integral equation method
based on another form of generalized Neumann kernel for conformal mapping of bounded
doubly connected regions onto a disk with circular slit but the kernel of the integral equation
involved the unknown circular radii. Discretization of the integral equation yields a system
of nonlinear equations which they solved using an optimization method. To overcome this
nonlinear problem, Sangawi et al. [19] have developed linear integral equations for conformal
mapping of bounded multiply connected regions onto a disk with circular slits. In this paper,
we describe an integral equation method for computing the conformal mapping function f
of bounded multiply connected regions onto a circular slit region. This boundary integral
equation is constructed from a boundary relationship that relates the mapping function f on
a multiply connected region with f ′, θ′(t), and |f |, where θ is the boundary correspondence
function.

The plan of the paper is as follows. Section 2 presents some auxiliary materials.
Derivations of two integral equations related to f ′ and θ′(t) are given in Sections 3 and 4,
respectively. Section 5 presents a method to calculate the modulus of f . In Section 6, we give
some examples to illustrate our boundary integral equation method. Finally, Section 7 pre-
sents a short conclusion.

2. Notations and Auxiliary Material

LetΩ be a boundedmultiply connected region of connectivityM+1. The boundary Γ consists
ofM+1 smooth Jordan curves Γj , j = 0, 1, . . . ,M, such that Γĵ , ĵ = 1, . . . ,M, lies in the interior
of Γ0, where the outer curve Γ0 has counterclockwise orientation and the inner curves Γĵ ,

ĵ = 1, . . . ,M, have clockwise orientation. The positive direction of the contour Γ =
⋃M
j=0 Γj is

usually that for which Ω is on the left as one traces the boundary (see Figure 1). The curve
Γk is parametrized by 2π-periodic twice continuously differentiable complex function zk(t)
with nonvanishing first derivative

z′k(t) =
dzk(t)
dt

/= 0, t ∈ Jk = [0, 2π], k = 0, 1, . . . ,M. (2.1)

The total parameter domain J is the disjoint union of M + 1 intervals J0, . . . , JM. We
define a parametrization z of the whole boundary Γ on J by

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z0(t), t ∈ J0 = [0, 2π],

...

zM(t), t ∈ JM = [0, 2π].

(2.2)
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w = f(z)
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...

µM

ΓM

...

Figure 1: Mapping of the bounded multiply connected region Ω of connectivityM + 1 onto a circular slit
region.

Let H∗ be the space of all real Hölder continuous 2π-periodic functions ω(t) of the
parameter t on Jk for k = 0, 1, . . . ,M, that is,

ω(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω0(t), t ∈ J0,
ω1(t), t ∈ J1,
...

ωM(t), t ∈ JM.

(2.3)

Let θ(t) (the boundary corresponding function) be given for t ∈ J by

θ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ0(t), t ∈ J0,
...

θM(t), t ∈ JM.

(2.4)

Let μ (a piecewise constant real function) be given for t ∈ J by

μ(t) =
(
μ0, μ1, . . . , μM

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ0, t ∈ J0,
...

μM, t ∈ JM.

(2.5)

Let Â(t) be a complex continuously differentiable 2π-periodic function for all t ∈ J . The
generalized Neumann kernel formed with Â is defined by

N̂(t, s) =
1
π

Im

(
Â(t)

Â(s)

z′(s)
z(s) − z(t)

)
. (2.6)
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The kernel N̂ is continuous with

N̂(t, t) =
1
π

(
1
2
Im

z′′(t)
z′(t)

− Im
Â′(t)

Â(t)

)
. (2.7)

Define also the kernel M̂ by

M̂(t, s) =
1
π

Re

(
Â(t)

Â(s)

z′(s)
z(s) − z(t)

)
, (2.8)

which has a cotangent singularity type (see [18] for more detail). The classical Neumann
kernel is the generalized Neumann kernel formed with Â(t) = 1, that is,

N(t, s) =
1
π

Im
(

z′(s)
z(s) − z(t)

)
. (2.9)

The adjoint kernelN∗(s, t) of the classical Neumann kernel is given by

N∗(t, s) =N(s, t) =
1
π

Im
(

z′(t)
z(t) − z(s)

)
. (2.10)

The adjoint function to the function Â is given by

Ã(t) =
z′(t)

Â(t)
= z′(t). (2.11)

The generalized Neumann kernel Ñ(s, t) formed with Ã is given by

Ñ(t, s) =
1
π

Im

(
Ã(t)

Ã(s)

z′(s)
z(s) − z(t)

)
. (2.12)

If Â = 1, then

Ñ(t, s) = −N∗(t, s). (2.13)
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We define the Fredholm integral operators N, Ñ,N∗ by

Nυ(t) =
∫

J

N(t, s)υ(s)ds, t ∈ J, (2.14)

Ñυ(t) =
∫

J

Ñ(t, s)υ(s)ds, t ∈ J, (2.15)

N∗υ(t) =
∫

J

N(s, t)υ(s)ds, t ∈ J. (2.16)

Note that Ñ = −N∗, if Â = 1.
It is known that λ = 1 is an eigenvalue of the kernelN with multiplicity 1 and λ = −1

is an eigenvalue of the kernelN with multiplicityM [18]. We define the piecewise constant
functions

χ[j](ξ) =

⎧
⎨

⎩
1, ξ ∈ Γj , j = 0, 1, 2, . . . ,M.

0, otherwise.
(2.17)

Then, we have from [18]

Null(I −N) = span{1}, Null(I −N) = span
{
χ[1], χ[2], . . . , χ[M]

}
. (2.18)

Lastly, we define integral operators J and Ĵ by

Jυ =
∫

J

1
2π

M∑

j=1

χ[j](s)χ[j](t)υ(s)ds,

Ĵυ =
∫
J

1
2π

M∑
j=0
χ[j](s)χ[j](t)υ(s)ds,

(2.19)

which are required for uniqueness of solution in a later section.

3. Homogenous and Nonhomogenous Boundary Relationship

3.1. Nonhomogeneous Boundary Relationship for Conformal Mapping

Suppose that c(z), Q(z), and H(z) are complex-valued functions defined on Γ such that
c(z)/= 0, H(z)/= 0, Q(z)/= 0, and H(z)/(T(z)Q(z)) satisfies the Hölder condition on Γ. Then,
the interior relationship is defined as follows.

A complex-valued function P(z) is said to satisfy the interior relationship if P(z) is
analytic in Ω and satisfies the nonhomogeneous boundary relationship

P(z) = c(z)
T(z)Q(z)

G(z)
P(z) +H(z), z ∈ Γ, (3.1)
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where G(z) analytic inΩ, Hölder continuous on Γ, and G(z)/= 0 on Γ. The boundary relation-
ship (3.1) also has the following equivalent form:

G(z) = c(z)T(z)Q(z)
P(z)2

|P(z)|2
+
G(z)H(z)

P(z)
, z ∈ Γ. (3.2)

Let the function LR(z̃) be defined in the region C ∪ {∞} \ Γ by

LR(z̃) =
1

2πi

∫

Γ

c(z̃)H(w)

c(w)(w − z̃)Q(w)T(w)
dw, z̃ ∈ Ω−, (3.3)

where Ω− is the complement of Ω. The following theorem gives an integral equation for
an analytic function satisfying the interior nonhomogeneous boundary relationship (3.1) or
(3.2). This theorem generalizes the results of Murid and Razali [9] and can be proved by
using the approach used in proving Theorem 3.1 in [20, page 45].

Theorem 3.1. Let U and V be any complex-valued functions that are defined on Γ. If the function
P(z) satisfies the interior nonhomogeneous boundary relationship (3.1) or (3.2), then

1
2

[
V (z) +

U(z)

T(z)Q(z)

]
P(z) + PV

∫

Γ
K(z,w)P(w)|dw| + c(z)U(z)

×
[
∑
aj∈Ω

Res
w=aj

P(w)
(w − z)G(w)

]conj
= −U(z)L−

R(z), z ∈ Γ,

(3.4)

where

K(z,w) =
1

2πi

[
c(z)U(z)

c(w)(w − z)Q(w)
− V (z)T(w)

w − z

]
,

L−
R(z) =

−1
2

H(z)
Q(z)T(z)

+ PV
1

2πi
∫
Γ

c(z)H(w)

c(w)(w − z)Q(w)T(w)
dw.

(3.5)

The symbol “conj” in the superscript denotes complex conjugate, while the minus sign in the
superscript denotes limit from the exterior. The sum in (3.4) is over all those zeros a1, a2, . . . , aM of G
that lie inside Ω. If G has no zeros in Ω, then the term containing the residue in (3.4) will not appear.

Proof. Suppose that P(z) and G(z) are analytic functions in Ω and G has a finite number of
zeros at a1, a2, . . . , aM in Ω. Then, by the calculus of residues, we have

1
2πi

∫

Γ

P(w)
(w − z̃)G(w)

dw =
∑

aj∈Ω
Res
w=aj

P(w)
(w − z̃)G(w)

, z̃ ∈ Ω−. (3.6)
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Since P and G satisfy the Hölder condition on Γ and G(z)/= 0 on Γ, then P/G also satisfies the
Hölder condition on Γ. Taking the limitΩ− � z̃ → z ∈ Γ and applying Sokhotski formula [5],
we get

−1
2
P(z)
G(z)

+ PV
1

2πi

∫

Γ

P(z)
(w − z)G(w)

dw =
∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

, z ∈ Γ. (3.7)

By taking conjugate to both sides and using (3.1), we get

− 1
2

P(z)

c(z)Q(z)T(z)
+
1
2

H(z)

c(z)Q(z)T(z)
− PV

1
2πi

∫

Γ

P(z)

c(w)(w − z)Q(w)

dw

T(w)

+ PV
1

2πi

∫

Γ

H(z)dw

c(w)(w − z)Q(z)T(z)
=

⎡

⎣
∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦
conj

, z ∈ Γ.

(3.8)

Multiplying both sides by −c(z) and the fact that dw = T(w)|dw|, after some arrangement,
yield

1
2

P(z)

Q(z)T(z)
+ PV

1
2πi

∫

Γ

c(z)P(z)

c(w)(w − z)Q(w)
|dw| + c(z)

⎡

⎣
∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦
conj

= −
[
−1
2

H(z)
Q(z)T(z)

+ PV
1

2πi

∫

Γ

c(z)H(z)

c(w)(w − z)Q(z)T(z)
dw

]conj
, z ∈ Γ.

(3.9)

Applying Sokhotski formulas again to the expression inside the bracket of the right-hand side
yields

1
2

P(z)

Q(z)T(z)
+ PV

1
2πi

∫

Γ

c(z)P(z)

c(w)(w − z)Q(w)
|dw| + c(z)

⎡

⎣
∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦
conj

= −L−
R(z), z ∈ Γ.

(3.10)

Since P(z) is analytic in Ω, then by Cauchy integral formula, we have

1
2πi

∫

Γ

P(z)
w − z̃dw = 0, z ∈ Ω−. (3.11)

Taking the limit ω− � z̃ → z ∈ Γ and applying Sokhotiski formulas, we get

−1
2
P(z) + PV

1
2πi

∫

Γ

T(w)P(z)
w − z |dw| = 0, z ∈ Γ. (3.12)

Multiplying (3.12) by v(z) and subtracting it from (3.10)multiplied by u(z) yield (3.4).
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3.2. Homogeneous Boundary Relationship for Conformal Mapping

Letw = f(z) be the analytic function which mapsΩ in the z-plane onto a canonical region of
the circular slit region in the w-plane. Let 0 and a be a fixed point in Ω such that a/= 0. Then,
the mapping function is made uniquely determined by assuming that f(a) = 0 and f(0) = ∞
such that the residue of the function f at 0 is equal to 1 [1]. Hence, the function f can be
written in the form

f(z) =
(
1
z
− 1
a

)
ezg(z), (3.13)

where g is analytic in Ω [12, 13]. Note that the boundary value of f can be represented in the
form

f
(
zp(t)

)
= μpeiθp(t), Γp : z = zp(t), 0 ≤ t ≤ βp, p = 0, 1, . . . ,M, (3.14)

where θp is a boundary correspondence function of Γp and μp is the radius of the circular slit.
The unit tangent to Γ at z(t) is denoted by T(z(t)) = z′(t)/|z′(t)|. Thus, it can be shown that

f(z) =

∣∣f(z)
∣∣

i
T(z)

∣∣∣θ′p(t)
∣∣∣

θ′p(t)
f ′(z)
∣∣f ′(z)

∣∣ , z ∈ Γ. (3.15)

4. Integral Equation Method for Computing F ′(Z)

Note that the value of θ′p(t) may be positive or negative since each circular slit f(Γp) is
traversed twice. Thus, |θ′p|/θ′p = ±1. Hence, the boundary relationship (3.15) can be written
as

f(z) = ±T(z)
∣∣f(z)

∣∣

i

f ′(z)
∣∣f ′(z)

∣∣ , z ∈ Γ. (4.1)

To eliminate the ± sign, we square both sides of the boundary relationship (4.1) to get

f(z)2 = −T(z)2∣∣f(z)∣∣2 f ′(z)2
∣∣f ′(z)

∣∣2
, z ∈ Γ. (4.2)

Then, the function E(z) defined by

D(z) = z2f ′(z) = z2f(z)
[
zg ′(z) + g(z)

] − ezg(z) (4.3)

is analytic in Ω.
Combining (4.3), (4.2), and (3.13), we obtain the following boundary relationship:

ze2zh(z)

a2
= − z|z|2

(a − z)2
∣∣f(z)

∣∣2T(z)2
D(z)2

|D(z)|2
, z ∈ Γ. (4.4)
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Comparison of (4.4) and (3.2) leads to a choice of P(z) = D(z), c(z) = −z|z|2|f(z)|2/(a − z)2,
Q(z) = T(z), G(z) = ze2zh(z)/a2, H(z) = 0. Setting U(z) = T(z)Q(z) and V (z) = 1,
Theorem 3.1 yields

T(z)D(z) + PV
1

2πi

∫

Γ

⎡

⎣ z|z|2∣∣f(z)∣∣2(a −w)2T(z)

w|w|2∣∣f(w)
∣∣2(a − z)2(w − z)

− T(z)
w − z

⎤

⎦T(w)D(w)|dw|

=
z|z|2∣∣f(z)∣∣2

(a − z)2
T(z)

⎡

⎣
∑

aj∈Ω
Res
w=aj

a2D(w)
(w − z)we2wh(w)

⎤

⎦
conj

, z ∈ Γ.

(4.5)

Note that a2D(w)/(w − z)w2 has a simple pole at w = 0. To evaluate the residue in (4.5),
we use the fact that if L(z) = d(z)/q(z) where d(z) and q(z) are analytic at z0 and d(z0)/= 0,
q(z0) = 0 and q′(z0)/= 0, which means z0 is a simple pole of L(z), then

Res
w=z0

L(w) =
d(z0)
q′(z0)

. (4.6)

Applying (4.6) to the residue in (4.5) and after several algebraic manipulations, we obtain

∑

aj∈Ω
Res
w=aj

a2D(w)
(w − z)we2wg(w)

=
a2

z
. (4.7)

Thus, integral equation (4.5) becomes

F(Z) +
∫

Γ
N+(z,w)F(w)|dw| = a2z2

∣∣f(z)
∣∣2

(a − z)2
T(z), z ∈ Γ, (4.8)

where

F(z) = T(z)D(z),

D(z) = z2f ′(z),

N+(z,w) =
1

2πi

⎡

⎣ T(z)
z −w − z|z|2∣∣f(z)∣∣2(a −w)2T(z)

w|w|2∣∣f(w)
∣∣2(a − z)2(z −w)

⎤

⎦,

N+(t, t) =
1

2π |z′(t)| Im
z′′(t)
z′(t)

+
1

πi|z′(t)|

[
z′(t)

z(t) − a
− Re

(
z′(t)
z(t)

)]

− 1
2πi|z′(t)|

z′(t)
z(t)

.

(4.9)
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By using single valuedness of the mapping function f leads to the following condition:

1
2π

∫

−Γq

F(w)
w2 |dw| = 0, q = 0, 1, . . . ,M. (4.10)

By means of Cauchy’s integral formula, we can get the following condition:

1
2π

∫

Γ

F(w)
w

|dw| = −i. (4.11)

Thus, the integral equation (4.8) with the conditions (4.10) and (4.11) should give a unique
solution provided the parameters μp, p = 0, 1, . . . ,M that appear inN+(z,w) are known.

Integral equation methods for computing μp and θ′p are discussed in the next two
sections.

5. Integral Equation for Computing |f(z)|
Note that, from (3.13) and (3.14), we get the following equation:

z(t)g(z(t)) = log
∣∣f(z(t))

∣∣ − log
∣∣∣∣

1
z(t)

− 1
a

∣∣∣∣ − i arg
(

1
z(t)

− 1
a

)
+ θp(t). (5.1)

Since g(z) is analytic in Ω, thus

Â(t)g(z(t)) = γ(t) + h(t) + iυ, (5.2)

from (5.1) and (5.2), yields

Â(t) = z(t), (5.3)

γ(t) = − log
(

1
z(t)

− 1
a

)
, (5.4)

h(t) = logμ(t) =
(
logμ0, logμ1, . . . , logμM

)
. (5.5)

The following theorem from [22] gives a method for calculating h(t), and hence μp =
|f(zp)|.

Theorem 5.1 (see [22, Theorem 5]). The function h is given by h = (h0, h1, . . . , hM), where

hj =
(
γ, φ[j]

)
=

1
2π

∫

J
γ(t)φ[j](t)dt, (5.6)

and where φ[j] is the unique solution of the following integral equation

(
I + N̂∗ + Ĵ

)
φ[j] = −χ[j], j = 0, 1, . . . ,M, (5.7)

where the kernel N̂∗(s, t) is the adjoint kernel of the kernel N̂(s, t) which is formed with Â(t) = z(t).
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By obtaining h0, h1, . . . , hM from (5.6), in view of (5.5), we obtain

μj = ehj , j = 0, 1, . . . ,M. (5.8)

6. Integral Equation Method for Computing θ′p(t)

This section gives another application of Theorem 3.1 for computing f ′/f . Let f be the
mapping function as described in Section 3.2. Note that (4.2) can be written in the following
form:

∣∣∣∣
f ′(z)
f(z)

∣∣∣∣
2

= −T(z)2
(
f ′(z)
f(z)

)2

, z ∈ Γ. (6.1)

Taking the derivative of both sides of (3.13) together with some elementary calculations
yields

f ′(z)
f(z)

+
a

z(a − z) = zg ′(z) + g(z). (6.2)

Let E(z) = (f ′(z)/f(z)) + (a/z(a − z)) = zg ′(z) + g(z) be analytic in Ω. Then,

f ′(z)
f(z)

= E(z) +
a

z(z − a) , z ∈ Γ. (6.3)

Equations (6.1) and (6.3) together with some elementary calculations yield

E(z) = −T(z)2E(z) − aT(z)2

z(z − a) −
a

z(z − a) , z ∈ Γ. (6.4)

Comparison of (6.4) and (3.1) leads to a choice of P(z) = E(z), c(z) = −1, Q(z) = T(z),
G(z) = 1,H(z) = −(aT(z)2/z(z − a)) − (ā/z̄(z − a)). Setting U(z) = T(z)Q(z) and V (z) = 1,
Theorem 3.1 yields

E(z)T(z) + PV
1

2πi

∫

Γ

[
T(z)
w − z − T(z)

w − z

]
E(w)T(w)|dw| = −T(z)L−

R(z), z ∈ Γ, (6.5)

where

T(z)L−
R(z) = −1

2

[
−aT(z)
z(z − a) −

aT(z)
z(z − a)

]
+ T(z)PV

1
2πi

∫

Γ

a

w(w − z)(w − a)dw

− T(z)PV 1
2πi

∫

Γ

AaT(w)2

w(w − a)(w − z)dw, z ∈ Γ.

(6.6)
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Then, it follows from [5, page 91] that

PV
1

2πi

∫

Γ

a

w(w − z)(w − a)dw = −1
2

a

z(z − a) . (6.7)

From (6.5),(6.6), (6.7), and (6.3), we obtain the integral equation

f ′(z)
f(z)

T(z) + PV
1

2πi

∫

Γ

[
T(z)
z −w − T(z)

z −w

]
f ′(w)
f(w)

T(w)|dw| = 2i Im
[
aT(z)
z(z − a)

]
, z ∈ Γ. (6.8)

In the above integral equation, let z = z(t) and w = z(s). Then, by multiplying both sides of
(6.8) by |z′(t)| and using the fact that

f ′(z)
f(z)

z′(t) = iθ′p(t), z ∈ Γ, (6.9)

the above integral equation can also be written as

θ′p(t) +
∫

J

N(s, t)θ′p(s)ds = 2 Im
[

az′(t)
z(t)(z(t) − a)

]
. (6.10)

SinceN(s, t) =N∗(t, s), the integral equation can be written as an integral equation in opera-
tor form

(I +N∗)θ′p = ψ̃, (6.11)

where

ψ̃ = 2 Im
[

az′(t)
z(t)(z(t) − a)

]
. (6.12)

However, λ = −1 is an eigenvalue ofN∗ with multiplicityM, by [18, Theorem 12]. Therefore,
the integral equation (6.11) is not uniquely solvable. To overcome this problem, note that

∫

Jj

θ′p(t)dt = 0, j = 1, 2, . . . ,M, (6.13)

which implies

Jθ′p = 0. (6.14)

By adding (6.14) to (6.11), we obtain the integral equation

(I +N∗ + J)θ′p = ψ̃. (6.15)
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The integral equation (6.15) is uniquely solvable in view of the following theorem which can
be proved by using the approach used in proving [22, Theorem 4].

Theorem 6.1.

Null(I +N∗ + J) = {0}. (6.16)

Proof. Let υ ∈ Null(I +N∗ + J), that is, υ is a solution of the integral equation

(I +N∗ + J)υ = 0. (6.17)

Then, it follows from the definition of the operator J, (2.18), and the Fredholm alternative
theorem that

J = J∗ = J2,

Range(J) = span
{
χ[1], . . . , χ[M]

}
= Null(I +N),

Null(J) =
(
span

{
χ[1], . . . , χ[M]

})⊥
= Null(I +N)⊥ = Range(I +N∗).

(6.18)

Hence, we have NJ = −J and JN∗ = J∗N∗ = (NJ)∗ = −J. By multiplying (6.17) by J, we obtain

Jυ = 0, (I +N∗)υ = 0. (6.19)

Thus,

υ ∈ Null(J) ∩Null(I +N∗) = Range(I +N∗) ∩Null(I +N∗). (6.20)

Since Â = 1, thus the index of the function Â is given by (see [18] for the definition of the
index)

κj = 0, j = 0, 1, . . . , m, κ = 0. (6.21)

The space S+ defined in [18, Equation (30)] is then given by S+ = span{1}. Then, it follows
from [18, Equation (92)] that the dimension of the space S̃+ defined in [18, Equation (32)] is
given by dim(S̃+) =M. Similarly, it follows from [18, Equation (105)] that

dim(Null(I +N∗)) = dim
(
Null

(
I − Ñ

))
=M. (6.22)

Thus, it follows from [18, Lemma 20(b)] that Null(I +N∗) = S̃+ and the space R̃+ ∩ S̃− in [18,
Lemma 20(a)] contains only the zero function, that is, R̃+ ∩ S̃− = {0}. Thus, it follows from
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[18, Equation (103)] (applied to the adjoint function Ã(t) = Â(t)/z′(t) instead of Â(t)) and
from [18, Equation (100)] that

Range(I +N∗) ∩Null(I +N∗) = {0}. (6.23)

Hence, it follows from (6.20) that υ = 0.

By solving the integral equation (6.15), we get θp(t). And solving the integral equation
(5.7), we get φ[j], j = 0, 1, . . . ,M, which gives hj through (5.6)which in turn gives μj through
(5.8). By solving integral equation (4.8), (4.10), and (4.11) with the known values of μj , we
get F(z). From the definition of F(z), we get

f ′(z(t)) =
F(z(t))
z2(t)z′(t)

. (6.24)

Finally, from (3.14) and (6.24), the approximate boundary value of f(z) is given by

f(z) =

∣∣f(z)
∣∣

i
T(z)

∣∣∣θ′p(t)
∣∣∣

∣∣θ′p(t)
∣∣
f ′(z)
∣∣f ′(z)

∣∣ , z ∈ Γ. (6.25)

The approximate interior value of the function f(z) is calculated by the Cauchy integral
formula

f(z) =
a − z
az

1
2πi

∫

Γ

awf(w)
a −w

1
w − zdw, z ∈ Γ. (6.26)

For points z which are not close to the boundary, the integral in (6.26) is approximated by
the trapezoidal rule. However, for the points z closed to the boundary Γ, the numerical
integration in (6.26) is nearly singular. This difficulty is overcome by using the fact that
(1/2πi)

∫
Γ(1/(w − z)) dw = 1 , and rewrite f(z) as

f(z) =
((a − z)/az)(1/2πi) ∫Γ

(
awf(w)/(a −w)

)
(1/(w − z))dw

∫
Γ(1/(w − z))dw , z ∈ Ω. (6.27)

This idea has the advantage that the denominator in this formula compensates for the error
in the numerator (see [23]). The integrals in (6.27) are approximated by the trapezoidal rule.

7. Numerical Examples

Since the function zp(t) is 2π-periodic, a reliable procedure for solving the integral equations
(6.15), (5.7), and (4.8) with the conditions (4.10) and (4.11) numerically is by using the
Nyström’s method with the trapezoidal rule [24]. The trapezoidal rule is the most accurate
method for integrating periodic functions numerically [25, page 134–142]. Thus, solving the
integral equations numerically reduces to solving linear systems of the form

AX = B. (7.1)
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Table 1: Error norm (unit circle).

n ‖μ − μn‖∞ ‖f − fn(t)‖∞
8 1.8 × 10−05 2.2 × 10−02

16 3.7 × 10−10 5.0 × 10−06

32 8.8 × 10−16 3.4 × 10−14

Table 2: The numerical values of μ0 for Example 7.2.

n μ0

16 3.5383174719052
32 3.5355590602433
64 3.5355585660566
128 —

The above linear system (7.1) is uniquely solvable for sufficiently large number of collocation
points on each boundary component, since the integral equations (6.15), (5.7), and (4.8)with
the conditions (4.10) and (4.11) are uniquely solvable [26]. The computational details are
similar to [6, 11–13].

7.1. Regions of Connectivity One

For numerical experiments, we have used some test regions of connectivity two, three, four,
and five based on the examples given in [2, 4, 7, 12, 13, 15, 27–29]. All the computations
were done using MATLAB 7.8.0.347(R2009a)(double precision floating point number). The
number of points used in the discretization of each boundary component Γj is n.

In this section, we have used three test regions of connectivity one. Only the first test
region has known exact mapping function. The results for sup norm error between the exact
values of f , μ1 and approximate values fn, μ1n are shown in Table 1.

Example 7.1. Consider a region Ω bounded by the unit circle

Γ :
{
z(t) = eit

}
, a = −0.2 + 0.2i, (7.2)

Then, the exact mapping function is given by [1, page 340]

g(z) =
(a − z)

az(1 − az) , r =
1
|a| . (7.3)

Figure 2 shows the region and its image based on our method. See Table 1 for results.

Example 7.2. Consider the elliptical region bounded by the ellipse

Γ : {z(t) = 4 cos t + 2i sin t}, a = −0.2 − 0.2i. (7.4)

Figure 3 shows the region and its image based on our method. See Table 2 for our computed
value of μ0.
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Table 3: Error norm for Example 7.3.

n ‖μ0 − μ0n‖∞
8 1.0 × 10−02

16 7.2 × 10−05

32 1.1 × 10−08

64 4.6 × 10−15
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Figure 2: Mapping a region Ω bounded by unit circle onto a circular slit region.

Example 7.3. Consider a region Ω bounded by

Γ :
{
z(t) = (10 + 3 cos 3t)eit

}
, a = 0.1 − 0.6i. (7.5)

Figure 4 shows the region and its image based on our method. See Table 3 for comparison
between our computed values of μ0 with those computed values μ0n of Nasser [12, 13].

7.2. Regions of Connectivity Two

In this section, we have used two test regions of connectivity two whose exact mapping
functions are unknown. The first and second test regions are circular frame, and the third
test region is bounded by an ellipse and circle. Figures 5–7 show the region and its image
based on our method, and approximate values of μ0 and μ1 are shown in Tables 4–6.

Example 7.4 (circular frame). Consider a pair of circles [28]

Γ0 :
{
z(t) = eit

}
,

Γ1 :
{
z(t) = −0.6 + 0.2e−it

}
, t : 0 ≤ t ≤ 2π, a = 0.25 + 0.25i,

(7.6)

such that the region bounded by Γ0 and Γ1 is the region between a unit circle and a circle
centered at −0.6 with radius 0.2. Then, Figure 5 shows the region and its image based on our
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Figure 3: Mapping for Example 7.2.

Table 4: Error norm for Example 7.4.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
32 3.2 × 10−03 5.8 × 10−03

64 2.4 × 10−06 5.1 × 10−06

128 1.7 × 10−12 3.5 × 10−12

256 8.8 × 10−16 2.2 × 10−15

method. See Table 4 for comparison between our computed values of μ0 and μ1 with those
computed values μ0n and μ1n of Nasser [12, 13].

Example 7.5 (ellipse with one circle). Consider a region Ω bounded by an ellipse and a circle

Γ0 : {z(t) = 4 cos t + i sin t},

Γ1 :
{
z(t) = −1 + 0.25e−it

}
, t : 0 ≤ t ≤ 2π, a = −1.4,

(7.7)

such that the region bounded by Γ0 and Γ1 is the region between an ellipse and a circle
centered at −1 with radius 0.25. Then, Figure 6 shows the region and its image based on our
method. See Table 5 for comparison between our computed values of μ0 and μ1 with those
computed values μ0n and μ1n of Nasser [12, 13].

Example 7.6 (two ellipses). Consider a region Ω bounded by pair of ellipses

Γ0 : {z(t) = 4 cos t + i sin t},
Γ1 : {z(t) = 1 + 0.7 cos t − 0.3i sin t}, t : 0 ≤ t ≤ 2π, a = 2.3.

(7.8)

Figure 7 shows the region and its image based on our method. See Table 6 for comparison
between our computed values of μ0 and μ1 with those computed values μ0n and μ1n of Nasser
[12, 13].
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Figure 5: Mapping a region Ω bounded by two circles onto a circular slit region.
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Figure 6: Mapping a region Ω bounded by an ellipse and a circle onto a circular slit region.

Table 5: Error norm for Example 7.5.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
64 1.5 × 10−03 6.2 × 10−04

128 4.9 × 10−07 8.5 × 10−10

256 7.1 × 10−14 3.5 × 10−14



Abstract and Applied Analysis 19

0
0

1 2 3 4

−3

3

−3

−2

2

−2
−1

1

−1−4

(a)

0
0

1 2 3

−3

3

−3

−2

2

−2
−1

1

−1

(b)

Figure 7: Mapping a region Ω bounded by two ellipses onto a circular slit region.
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Figure 8: Mapping a region Ω bounded by three ellipses onto a circular slit region.

7.3. Regions of Connectivity Three

In this section, we have used three test regions of connectivity three. The first test region is
bounded by three ellipses, the second test region is bounded by an ellipse and two circles,
and the third test region is a circular region. The results for sup norm error between the our
numerical values of μ0, μ1, μ2 and the computed values of μ0n, μ1n, μ2n obtained from [12, 13]
are shown in Tables 7–9.

Example 7.7 (three ellipses). Let Ω be the region bounded by

Γ0 : {z(t) = 10 cos t + 6i sin t},
Γ1 : {z(t) = −4 − 2i + 3 cos t − 2i sin t},

Γ2 : {z(t) = 4 + 2 cos t − 3i sin t}, 0 ≤ t ≤ 2π, a = 7.

(7.9)

Figure 8 shows the region and its image based on our method. See Table 7 for comparison
between our computed values of μ0, μ1, and μ2 with those computed values of Nasser [12].
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Figure 9: Mapping a region Ω bounded by an ellipse and two circles onto a circular slit region.
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Figure 10: Mapping a region Ω bounded by three circles onto a circular slit region.

Example 7.8 (ellipse with two circles). Let Ω be the region bounded by [7, 13, 15]

Γ0 : {z(t) = 4 cos t + i sin t},
Γ1 : {z(t) = 1.2 + 0.3(cos t − i sin t)},

Γ2 : {z(t) = −1 + 0.6(cos t − i sin t)}, 0 ≤ t ≤ 2π, a = −2.5 − 0.1i.

(7.10)

Figure 9 shows the region and its image based on our method. See Table 8 for comparison
between our computed values of μ0, μ1, and μ2 with those computed values of Nasser [13].

Example 7.9 (three circles). Let Ω be the region bounded by

Γ0 :
{
z(t) = 2eit

}
,

Γ1 :
{
z(t) = 1.2 + 0.3e−it

}
,

Γ2 :
{
z(t) = −1 + 0.6e−it

}
, 0 ≤ t ≤ 2π, a = 0.5 − 1.25i.

(7.11)
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Figure 11: Mapping for Example 7.10.

Table 6: Error norm for Example 7.6.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
64 2.3 × 10−03 2.4 × 10−03

128 7.4 × 10−07 9.5 × 10−07

256 7.3 × 10−14 9.9 × 10−14

Table 7: Error norm for Example 7.7.

3n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞
48 5.1 × 10−04 1.3 × 10−03 4.7 × 10−04

96 2.8 × 10−06 7.5 × 10−06 3.9 × 10−06

192 2.4 × 10−10 6.3 × 10−10 3.1 × 10−10

384 5.5 × 10−17 2.7 × 10−16 4.9 × 10−16

Table 8: Error norm for Example 7.8.

3n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞
96 1.6 × 10−05 1.0 × 10−03 4.9 × 10−03

192 2.7 × 10−06 2.8 × 10−06 8.6 × 10−07

384 1.2 × 10−11 1.4 × 10−11 1.2 × 10−11

Table 9: The numerical values of μ0, μ1, and μ2 for Example 7.9.

3n μ0 μ1 μ2

96 1.144844712112 1.333447560114 1.711779222648
192 1.144844080644 1.333446944282 1.711778670173
384 — 1.333446944281 —

Table 10: Error norm for Example 7.10.

4n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞ ‖μ3 − μ3n‖∞
64 6.7 × 10−05 7.2 × 10−05 9.9 × 10−05 2.2 × 10−05

128 6.4 × 10−09 5.0 × 10−08 1.8 × 10−09 4.5 × 10−08

256 6.8 × 10−13 1.0 × 10−12 9.8 × 10−13 9.7 × 10−13

512 1.3 × 10−16 1.2 × 10−15 3.0 × 10−16 4.4 × 10−16
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Table 11: The numerical values of μ0, μ1, μ2, and μ3 for Example 7.11.

4n μ0 μ1 μ2 μ3

64 2.97316998311 2.50170500411 3.45373711618 3.69125205510
128 2.96757277502 2.49923061605 3.45041067650 3.69904161729
256 2.96756361086 2.49922735100 3.45040617845 3.69905124306
512 2.96756361085 2.49922735099 3.45040617844 3.69905124308
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Figure 12: Mapping a region Ω bounded by an ellipse and three circles onto a circular slit region.

Figure 10 shows the region and its image based on our method. See Table 9 for our computed
values of μ0, μ1, and μ2.

7.4. Regions of Connectivity Four and Five

In this section, we have used four test regions for multiply connected regions whose exact
mapping functions are unknown. The results for sup norm error for first and third regions
between the our numerical values of μ0, μ1, μ2, μ3, μ4 and the computed values of μ0n, μ1n,
μ2n, μ3n, μ4n obtained from [12] are shown in Tables 10 and 12.

Example 7.10. Let Ω be the region bounded by [12]

Γ0 :
{
z(t) = (10 + 3 cos 3t )eit

}
,

Γ1 :
{
z(t) = −3.5 + 6i + 0.5e−iπ/4

(
eit + 4e−it

)}
,

Γ2 :
{
z(t) = 5 + 0.5eiπ/4

(
eit + 4e−it

)}
,

Γ3 :
{
z(t) = −3.5 − 6i + 0.5eiπ/4

(
eit + 4e−it

)}
, 0 ≤ t ≤ 2π, a = 8.5 + 0.1i.

(7.12)

Figure 11 shows the region and its image based on our method. See Table 10 for comparison
between our computed values of μ0, μ1, μ2, and μ3 with those computed values of Nasser
[12].
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Figure 13: Mapping a region Ω bounded by an ellipse and four circles onto a circular slit region.

Table 12: Error norm for Example 7.12.

5n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞ ‖μ3 − μ3n‖∞ ‖μ4 − μ4n‖∞
80 4.2 × 10−05 4.5 × 10−05 4.5 × 10−05 4.4 × 10−05 4.3 × 10−05

160 1.1 × 10−07 3.2 × 10−08 3.2 × 10−08 6.6 × 10−08 6.6 × 10−08

320 1.6 × 10−13 5.7 × 10−14 5.7 × 10−14 1.2 × 10−13 1.2 × 10−13

400 9.9 × 10−16 0 9.9 × 10−16 0 0

Example 7.11 (ellipse with three circles). Let Ω be the region bounded by

Γ0 : {z(t) = 2 cos t + 1.5i sin t},
Γ1 : {z(t) = 1 + 0.25(cos t − i sin t)},
Γ2 : {z(t) = −1 + 0.25(cos t − i sin t)},

Γ3 : {z(t) = 0.75i + 0.25(cos t − i sin t)}, 0 ≤ t ≤ 2π, a = 0.25 − 0.25i.

(7.13)

Figure 12 shows the region and its image based on ourmethod. See Table 11 for our computed
values of μ0, μ1, μ2, and μ3.

Example 7.12 (ellipse with four circles). Let Ω be the region bounded by

Γ0 : {z(t) = 0.2 + 8 cos t + 6i sin t},
Γ1 : {z(t) = 3 + 2i + cos t − i sin t},
Γ2 : {z(t) = −3 + 2i + cos t − i sin t},
Γ3 : {z(t) = −3 − 2i + cos t − i sin t},

Γ4 : {z(t) = 3 − 2i + cos t − i sin t}, 0 ≤ t ≤ 2π, a = 4i.

(7.14)
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Figure 14: Mapping a region Ω bounded by five ellipses onto a circular slit region.

Table 13: The numerical values of μ0, μ1, μ2, μ3, and μ4 for Example 7.13.

5n μ0 μ1 μ2 μ3 μ4

160 0.4081769461 0.5470254751 0.5470254751 0.6850879289 0.5258641902
320 0.4081097591 0.5470505181 0.5470505181 0.6850466360 0.5258066821
400 0.4081097885 0.5470505071 0.5470505071 0.6850466537 0.5258067072

Figure 13 shows the region and its image based on our method. See Table 12 for comparison
between our computed values of μ0, μ1, μ2, μ3, and μ4 with those computed values of Nasser
[12].

Example 7.13 (five ellipses). Let Ω be the region bounded by

Γ0 : {z(t) = −1.5i + 6 cos t + 8i sin t},
Γ1 : {z(t) = 3 + 0.5i + 1.5 cos t − i sin t},
Γ2 : {z(t) = −3 + 0.5i + 1.5 cos t − i sin t},
Γ3 : {z(t) = −3i + 0.7 cos t − 1.7i sin t},

Γ4 : {z(t) = −6i + 1.7 cos t − 0.7i sin t}, 0 ≤ t ≤ 2π, a = 0.4i.

(7.15)

Figure 14 shows the region and its image based on ourmethod. See Table 13 for our computed
values of μ0, μ1, μ2, μ3, and μ4.

8. Conclusion

In this paper, we have constructed new boundary integral equations for conformal mapping
of multiply regions onto a circular slit region. We have also constructed a newmethod to find
the values of modulus of f(z). The advantage of our method is that our boundary integral
equations are all linear. Several mappings of the test regions of connectivity one, two, three,
four, and five were computed numerically using the proposed method. After the boundary
values of the mapping function are computed, the interior mapping function is calculated by
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the means of Cauchy integral formula. The numerical examples presented have illustrated
that our boundary integral equation method has high accuracy.
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By introducing the concept of L-limited sets and then L-limited Banach spaces, we obtain some
characterizations of it with respect to some well-known geometric properties of Banach spaces,
such as Grothendieck property, Gelfand-Phillips property, and reciprocal Dunford-Pettis property.
Some complementability of operators on such Banach spaces are also investigated.

1. Introduction and Preliminaries

A subset A of a Banach space X is called limited (resp., Dunford-Pettis (DP)), if every weak∗

null (resp., weak null) sequence (x∗
n) in X

∗ converges uniformly on A, that is,

lim
n→∞

sup
a∈A

|〈a, x∗
n〉| = 0. (1.1)

Also if A ⊆ X∗ and every weak null sequence (xn) in X converges uniformly on A, we say
that A is an L-set.

We know that every relatively compact subset ofX is limited and clearly every limited
set is DP and every DP subset of a dual Banach space is an L-set, but the converse of these
assertions, in general, are false. If every limited subset of a Banach space X is relatively
compact, then X has the Gelfand-Phillips property (GP). For example, the classical Banach
spaces c0 and �1 have the GP property and every reflexive space, every Schur space (i.e., weak
and norm convergence of sequences in X coincide), and dual of spaces containing no copy of
�1 have the same property.

Recall that a Banach space X is said to have the DP property if every weakly compact
operator T : X → Y is completely continuous (i.e., T maps weakly null sequences into norm
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null sequences) and X is said to have the reciprocal Dunford-Pettis property (RDP) if every
completely continuous operator on X is weakly compact.

So the Banach space X has the DP property if and only if every relatively weakly com-
pact subset ofX is DP and it has the RDP property if and only if every L-set inX∗ is relatively
weakly compact.

A stronger version of DP property was introduced by Borwein et al. in [1]. In fact,
a Banach space X has the DP∗ property if every relatively weakly compact subset of X is
limited. But if X is a Grothendieck space (i.e., weak and weak∗ convergence of sequences
in X∗ coincide), then these properties are the same on X. The reader can find some useful
and additional properties of limited and DP sets and Banach spaces with the GP, DP, or RDP
property in [2–6].

We recall from [7] that a bounded linear operator T : X → Y is limited completely
continuous (lcc) if it carries limited and weakly null sequences in X to norm null ones in Y .
We denote the class of all limited completely continuous operators from X to Y by Lcc(X,Y ).
It is clear that every completely continuous operator is lcc and we showed in [7] that every
weakly compact operator is limited completely continuous.

Here, by introducing a new class of subsets of Banach spaces that are called L-limited
sets, we obtain some characterizations of Banach spaces that every L-limited set is relatively
weakly compact and then we investigate the relation between these spaces with the GP, DP,
RDP and Grothendieck properties.

The notations and terminologies are standard. We use the symbols X, Y , and Z for
arbitrary Banach spaces. We denoted the closed unit ball ofX by BX , absolutely closed convex
hull of a subset A of X by aco(A), the dual of X by X∗, and T ∗ refers to the adjoint of the
operator T . Also we use 〈x, x∗〉 for the duality between x ∈ X and x∗ ∈ X∗. We denote
the class of all bounded linear, weakly compact, and completely continuous operators from
X to Y by L(X,Y ), W(X,Y ), and Cc(X,Y ) respectively. We refer the reader for undefined
terminologies to the classical references [8, 9].

2. L-Limited Sets

Definition 2.1. A subset A of dual space X∗ is called an L-limited set, if every weak null and
limited sequence (xn) in X converges uniformly on A.

It is clear that every L-set in X∗ is L-limited and every subset of an L-limited set is the
same. Also, it is evident that every L-limited set is weak∗ bounded and so is bounded. The
following theorem gives additional properties of these sets.

Theorem 2.2. (a) Absolutely closed convex hull of an L-limited set is L-limited.
(b) Relatively weakly compact subsets of dual Banach spaces are L-limited.
(c) Every weak∗ null sequence in dual Banach space is an L-limited set.

Proof. Let A ⊆ X∗ be an L-limited set, and the sequence (xn) in X is weak null and limited.
Since

sup{|〈xn, x∗〉| : x∗ ∈ aco(A)} = sup{|〈xn, x∗〉| : x∗ ∈ A}, (2.1)
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the proof of (a) is clear. For the proof of (b) suppose A ⊂ X∗ is relatively weakly compact
but it is not an L-limited set. Then there exists a weakly null and limited sequence (xn) in X,
a sequence (an) inA and an ε > 0 such that |〈xn, an〉| > ε for all integer n. SinceA is relatively
weakly compact, there exists a subsequence (ank) of (an) that converges weakly to an element
a ∈ X∗. Since

|〈xnk , ank〉| ≤ |〈xnk , ank − a〉| + |〈xnk , a〉| −→ 0, (2.2)

we have a contradiction.
Finally, for (c), suppose (x∗

n) is a weak∗ null sequence in X∗. Define the operator T :
X → c0 by T(x) = (〈x, x∗

n〉). Since c0 has the GP property by [7], T is lcc. So for each weakly
null and limited sequence (xm) in X, we have

sup
n

|〈xm, x∗
n〉| = ‖T(xm)‖ −→ 0, (2.3)

asm → ∞. Hence (x∗
n) is an L-limited set.

Note that the converse of assertion (b) in general is false. In fact, the following theorem
show that the closed unit ball of �1 is an L-limited set, while the standard unit vectors (en)
in c0, as a weakly null sequence, shows that the closed unit ball of �1 is neither an L-set
nor a relatively weakly compact. The following Theorem 2.4, give a necessary and sufficient
condition for Banach spaces that L-sets and L-limited sets in its dual coincide.

Theorem 2.3. A Banach space X has the GP property if and only if every bounded subset of X∗ is an
L-limited set.

Proof. Since the Banach space X has the GP property if and only if every limited and weakly
null sequence (xn) in X is norm null [10], the proof is clear.

Theorem 2.4. A Banach space X has the DP∗ property if and only if each L -limited set in X∗ is an
L-set.

Proof. Suppose X has the DP∗ property. Since every weakly null sequence in X is limited so
every L-limited set in X∗ is L-set.

Conversely, it is enough to show that, for each Banach space Y , Cc(X,Y ) = Lcc(X,Y )
[7, Theorem 2.8]. If T : X → Y is lcc, it is clear that T ∗(BY ∗) is an L-limited set. So by
hypothesis, it is an L-set and we know that the operator T : X → Y is completely continuous
if and only if T ∗(BY ∗) is an L-set.

The following two corollaries extend Theorem 3.3 and Corollary 3.4 of [1].

Corollary 2.5. For a Banach space X, the following are equivalent.

(a) X has the DP∗ property,

(b) If Y has the Gelfand-Phillips property, then each operator T : X → Y is completely
continuous.
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Proof. (a)⇒ (b). Suppose that Y has the Gelfand-Phillips property. By [7, Theorem 2.2], every
operator T : X → Y is lcc, thus T ∗(BY ∗) is an L-limited set and by Theorem 2.3, it is an L-set.
Hence T is completely continuous.

(b)⇒ (a). IfX does not have the DP∗ property, there exists a weakly null sequence (xn)
in X that is not limited. So there is a weak ∗ null sequence (x∗

n) in X
∗ such that |〈xn, x∗

n〉| > ε,
for all integer n and some positive ε [10]. Now the bounded operator T : X → c0 defined by
T(x) = (〈x, x∗

n〉) is not completely continuous, since (xn) is weakly null and ‖Txn‖ > ε for all
n. This is a contradiction.

Corollary 2.6. A Gelfand-Phillips space has the DP∗ property if and only if it has the Schur property.

Proof. It is clear that the Banach space X has the Schur property if and only if every bounded
subset of X∗ is an L-set. Now, if X is a GP space with the DP∗ property, then by Theorem 2.3,
unit ball X∗ is L-limited and so it is an L-set. The converse of the assertion is also clear.

Definition 2.7. A Banach space X has the L-limited property, if every L-limited set in X∗ is
relatively weakly compact.

Theorem 2.8. For a Banach space X, the following are equivalent:

(a) X has the L-limited property,

(b) for each Banach space Y , Lcc(X,Y ) =W(X,Y ),

(c) Lcc(X, �∞) =W(X, �∞).

Proof. (a) ⇒ (b). Suppose that X has the L-limited property and T : X → Y is lcc. Thus
T ∗(BY ∗) is an L-limited set in X∗. So by hypothesis, it is relatively weakly compact and T is a
weakly compact operator.

(b)⇒ (c). It is clear.
(c) ⇒ (a). If X does not have the L-limited property, there exists an L-limited subset A

of X∗ that is not relatively weakly compact. So there is a sequence (x∗
n) ⊆ A with no weakly

convergent subsequence. Now we show that the operator T : X → �∞ defined by T(x) =
(〈x, x∗

n〉) for all x ∈ X is limited completely continuous but it is not weakly compact. As
(x∗

n) ⊆ A is L-limited set, for every weakly null and limited sequence (xm) in X we have

‖T(xm)‖ = sup
n

|〈xm, x∗
n〉| −→ 0 as m −→ ∞, (2.4)

thus T is a limited completely continuous operator. It is easy to see that T ∗(e∗n) = x∗
n, for all

n ∈ N. Thus T ∗ is not a weakly compact operator and neither is T . This finishes the proof.

The following corollary shows that the Banach spaces c0 and �1 do not have the L-
limited property.

Corollary 2.9. A Gelfand-Phillips space has the L-limited property if and only if it is reflexive.
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Proof. If a Banach space X has the GP property, then by [7], the identity operator on X is lcc
and so is weakly compact, thanks to the L-limited property of X. Hence X is reflexive.

Theorem 2.10. If a Banach spaceX has the L-limited property, then it has the RDP and Grothendieck
properties.

Proof. At the first, we show that X has the RDP property. For arbitrary Banach space Y , let
T : X → Y be a completely continuous operator. Thus it is limited completely continuous
and so by Theorem 2.8, T is weakly compact. Hence X has the RDP property.

By [11], we know that a Banach space X is Grothendieck if and only if W(X, c0) =
L(X, c0). Since c0 has the GP property, by [7], Lcc(X, c0) = L(X, c0) and by hypothesis on X,
W(X, c0) = Lcc(X, c0). So X is Grothendieck.

We do not know the converse of Theorem 2.10, in general, is true or false. In the
following, we show that in Banach lattices that are Grothendieck and have the DP property,
the converse of this theorem is correct.

Theorem 2.11. If a Banach lattice X has both properties of Grothendieck and DP, then it has the
L-limited property.

Proof. Suppose that T : X → Y is limited completely continuous. We know, that in Gro-
thendieck Banach spaces, DP and DP∗ properties are equivalent. Thus by [7], T is completely
continuous. On the other hand, �1 is not a Grothendieck space and Grothendieck property
is carried by complemented subspaces. Hence the Grothendieck space X does not have any
complemented copy of �1. Since X is a Banach lattice, by [12], it has the RDP property and so
the completely continuous operator T : X → Y is weakly compact. Thus X has the L-limited
property, thanks to Theorem 2.8.

As a corollary, since �∞ is a Banach lattice that has Grothendieck and DP properties,
it has the L-limited property. This shows that the L-limited property on Banach spaces is not
hereditary, since c0 does not have this property. In the following, we show that the L-limited
property is carried by every complemented subspace.

Theorem 2.12. If a Banach space X has the L-limited property, then every complemented subspace of
X has the L-limited property.

Proof. Consider a complemented subspace X0 of X and a projection map P : X → X0.
Suppose T : X0 → �∞ is a limited completely continuous operator, so TP : X → �∞ is
also lcc. Since X has the L-limited property, by Theorem 2.8, TP is weakly compact. Hence T
is weakly compact.

As another corollary, for infinite compact Hausdorff space K, we have the following
corollary for the Banach space C(K) of all continuous functions on K with supremum norm.

Corollary 2.13. C(K) has the L-limited property if and only if it contains no complemented copy of
c0.

Proof. We know that C(K) is a Banach lattice with the DP property. On the other hand, C(K)
is a Grothendieck space if and only if it contains no complemented copy of c0 [13]. So the
direct implication is an application of Theorem 2.12 and the opposite implication is also an
easy conclusion of Theorem 2.11.
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3. Complementation in Lcc Operators

In [11], Bahreini investigated the complementability ofW(X, �∞) and Cc(X, �∞) in L(X, �∞).
She showed that if X is not a reflexive Banach space, then W(X, �∞) is not complemented
in L(X, �∞) and if X is not a Schur space, Cc(X, �∞) is not complemented in L(X, �∞). In the
following, we investigate the complementability of W(X, �∞) and Cc(X, �∞) in Lcc(X, �∞).
We need the following lemma of [14].

Lemma 3.1. LetX be a separable Banach space, and φ : �∞ → L(X, �∞) is a bounded linear operator
with φ(en) = 0 for all n. Then there is an infinite subset M of N such that for each α ∈ �∞(M),
φ(α) = 0, where �∞(M) is the set of all α = (αn) ∈ �∞ with αn = 0 for each n /∈ M.

Theorem 3.2. If X does not have the L-limited property, then W(X, �∞) is not complemented in
Lcc(X, �∞).

Proof. Consider a subset A of X∗ that is L-limited but it is not relatively weakly compact. So
there is a sequence (x∗

n) inA that has no weakly convergent subsequence. Hence S : X → �∞
defined by S(x) = (〈x, x∗

n〉) is an lcc operator but it is not weakly compact. Choose a bounded
sequence (xn) in BX such that S(xn) has no weakly convergent subsequence. Let X0 = [xn],
the closed linear span of the sequence (xn) in X. It follows that X0 is a separable subspace of
X such that S|X0 is not a weakly compact operator. If y∗

n = x∗
n|X0

, we have (y∗
n) ⊆ X∗

0 is bounded
and has no weakly convergent subsequence.

Now define T : �∞ → Lcc(X, �∞) by T(α)(x) = (αn〈x, x∗
n〉), where x ∈ X and α =

(αn) ∈ �∞. Then

‖T(α)(x)‖ = sup
n

|αn〈x, x∗
n〉| ≤ ‖α‖ · ‖x∗

n‖ · ‖x‖ <∞. (3.1)

We claim that for each α = (αn) ∈ �∞, T(α) ∈ Lcc(X, �∞).
Fix α = (αn) ∈ �∞ and a weakly null and limited sequence (xm) in X. Since (x∗

n) is an
L-limited set, supn|〈xm, x∗

n〉| → 0. So we have

‖T(α)(xm)‖ = sup
n

|αn〈xm, x∗
n〉| ≤ ‖α‖sup

n
|〈xm, x∗

n〉| −→ 0, (3.2)

as m → ∞. This finishes the proof of the claim and so T is a well-defined operator into
Lcc(X, �∞).

Let R : Lcc(X, �∞) −→ Lcc(X0, �∞) be the restriction map and define

φ : �∞ −→ Lcc(X0, �∞) by φ = RT. (3.3)

Now suppose thatW(X, �∞) is complemented in Lcc(X, �∞) and

P : Lcc(X, �∞) −→W(X, �∞) (3.4)
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is a projection. Define ψ : �∞ → W(X0, �∞) by ψ = RPT . Note that as T(en) is a rank one
operator, we have T(en) ∈W(X, �∞). Hence

ψ(en) = RPT(en) = RT(en) = φ(en) (3.5)

for all n ∈ N. By Lemma 3.1, there is an infinite set M ⊆ N so that ψ(α) = φ(α) for all α ∈
�∞(M). Thus φ(χM) is a weakly compact operator. On the other hand, if (e∗n) is the standard
unit vectors of �1, for each x ∈ X0 and each n ∈ N, we have

〈(
φ
(
χM

))∗(e∗n), x
〉
= 〈x∗

n, x〉. (3.6)

Therefore (φ(χM))∗(e∗n) = x∗
n|X0

= y∗
n for all n ∈ M. Thus (φ(χM))∗ is not a weakly compact

operator and neither is φ(χM). This contradiction ends the proof.

Corollary 3.3. Let X be a Banach space. Then the following are equivalent:

(a) X has the L-limited property,

(b) W(X, �∞) = Lcc(X, �∞),

(c) W(X, �∞) is complemented in Lcc(X, �∞).

We conclude this paper with another complementation theorem. Recall from [11] that
a closed operator ideal O has the property (∗) whenever X is a Banach space and S is not in
O(X, �∞), then there is an infinite subsetM0 ⊆ N such that SM is not inO(X, �∞) for all infinite
subsets M ⊆ M0, where SM : X → �∞ is the operator defined by SM(x) = Σm∈Me∗m(Sx)em,
for all x ∈ X.

Theorem 3.4. If a Banach space X does not have the DP∗ property, then Cc(X, �∞) is not comple-
mented in Lcc(X, �∞).

Proof. By hypothesis, there is a weakly null sequence (xm) in X that is not limited. So there
exists a weak∗ null sequence (x∗

n) in X
∗ such that

lim
m→∞

sup
n

|〈xm, x∗
n〉|/= 0. (3.7)

Nowdefine the operator S : X → �∞ by S(x) = (〈x, x∗
n〉). By Theorem 2.2, (x∗

n) is an L-limited
set, but S is not completely continuous. So for X0 = [xn], S|X0

is not completely continuous.
Since Cc(X0, �∞) has the property (∗) [11, Theorem 4.12], one can chooseM0 ⊆ N so that for
each infinite subset M of M0, SM /∈ Cc(X0, �∞). Define T : �∞ → Lcc(X, �∞) by T(α)(x) =
(αn〈x, x∗

n〉), where x ∈ X and α = (αn) ∈ �∞. As shown in the proof of the preceding theorem,
T is well defined.

Let R : Lcc(X, �∞) → Lcc(X0, �∞) be the restriction map and define

φ : �∞ −→ Lcc(X0, �∞) by φ = RT. (3.8)

Now suppose Cc(X, �∞) is complemented in Lcc(X, �∞) and

P : Lcc(X, �∞) −→ Cc(X, �∞) (3.9)
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is a projection. Define ψ : �∞ → Cc(X0, �∞) by ψ = RPT . Since

ψ(en) = RPT(en) = RT(en) = φ(en), (3.10)

for all n ∈ N, one can use Lemma 3.1 to select an infinite subset M of M0 such that ψ(α) =
φ(α) for all α ∈ �∞(M). Thus φ(α) = RT(α) belongs to Cc(X0, �∞) for each α ∈ �∞(M). But
T(χM)|X0

= SM /∈ Cc(X0, �∞), so we have a contradiction.

Corollary 3.5. Let X be a Banach space. Then the following are equivalent:

(a) X has the DP∗ property,

(b) Cc(X, �∞) = Lcc(X, �∞),

(c) Cc(X, �∞) is complemented in Lcc(X, �∞).
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We consider the Hyers-Ulam stability for the following fractional differential equations in sense of
Srivastava-Owa fractional operators (derivative and integral) defined in the unit disk: Dβ

zf(z) =
G(f(z), Dα

zf(z), zf
′(z); z), 0 < α < 1 < β ≤ 2, in a complex Banach space. Furthermore, a genera-

lization of the admissible functions in complex Banach spaces is imposed, and applications are
illustrated.

1. Introduction

A classical problem in the theory of functional equations is the following: if a function f
approximately satisfies functional equation E, when does there exist an exact solution of E
which f approximates? In 1940, Ulam [1, 2] imposed the question of the stability of Cauchy
equation, and in 1941, Hyers solved it [3]. In 1978, Rassias [4] provided a generalization
of Hyers theorem by proving the existence of unique linear mappings near approximate
additive mappings. The problem has been considered for many different types of spaces
(see [5–7]). Li and Hua [8] discussed and proved the Hyers-Ulam stability of spacial type
of finite polynomial equation, and Bidkham et al. [9] introduced the Hyers-Ulam stability of
generalized finite polynomial equation. Rassias [10] imposed a Cauchy type additive func-
tional equation and investigated the generalized Hyers-Ulam “product-sum” stability of this
equation.

Recently, Jung presented a book [11], which complements the books of Hyers, Isac,
and Rassias (Stability of Functional Equations in Several Variables, Birkhäuser, 1998) and of
Czerwik (Functional Equations and Inequalities in Several Variables, World Scientific, 2002)
by covering and offering almost all classical results on the Hyers-Ulam-Rassias stability such
as the Hyers-Ulam-Rassias stability of the additive Cauchy equation, generalized additive
functional equations, Hosszú’s functional equation, Hosszú’s equation of Pexider type,
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homogeneous functional equation, Jensen’s functional equation, the quadratic functional
equations, the exponential functional equations, Wigner equation, Fibonacci functional equa-
tion, the gamma functional equation, and the multiplicative functional equations. Further-
more, the concept of superstability for some problems is defined and studied.

TheUlam stability and data dependence for fractional differential equations in sense of
Caputo derivative has been posed by Wang et al. [12] while in sense of Riemann-Liouville
derivative has been discussed by Ibrahim [13]. Finally, the author generalized the Ulam-
Hyers stability for fractional differential equation including infinite power series [14, 15].

The class of fractional differential equations of various types plays important roles and
tools not only in mathematics but also in physics, control systems, dynamical systems and
engineering to create the mathematical modeling of many physical phenomena. Naturally,
such equations required to be solved. Many studies on fractional calculus and fractional
differential equations, involving different operators such as Riemann-Liouville operators
[16], Erdèlyi-Kober operators [17], Weyl-Riesz operators [18], Grünwald-Letnikov operators
[19] and Caputo fractional derivative [20–24], have appeared during the past three decades.
The existence of positive solution and multipositive solutions for nonlinear fractional
differential equation are established and studied [25]. Moreover, by using the concepts of the
subordination and superordination of analytic functions, the existence of analytic solutions
for fractional differential equations in complex domain is suggested and posed in [26–28].

2. Preliminaries

Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H denote the
space of all analytic functions on U. Here we suppose that H as a topological vector space
endowed with the topology of uniform convergence over compact subsets of U. Also for
a ∈ C andm ∈ N, let H[a,m] be the subspace of H consisting of functions of the form

f(z) = a + amzm + am+1z
m+1 + · · · , z ∈ U. (2.1)

Let A be the class of functions f , analytic in U and normalized by the conditions f(0) =
f ′(0) − 1 = 0. A function f ∈ A is called univalent (S) if it is one-one in U. A function f ∈ A
is called convex if it satisfies the following inequality:

�
{
zf ′′(z)
f ′(z)

+ 1
}
> 0, (z ∈ U). (2.2)

We denoted this class C.
In [29], Srivastava and Owa, posed definitions for fractional operators (derivative and

integral) in the complex z-plane C as follows.

Definition 2.1. The fractional derivative of order α is defined, for a function f(z) by

Dα
zf(z) :=

1
Γ(1 − α)

d

dz

∫z

0

f(ζ)
(z − ζ)α dζ, (2.3)
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where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin, and the multiplicity of (z − ζ)−α is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.

Definition 2.2. The fractional integral of order α > 0 is defined, for a function f(z), by

Iαz f(z) :=
1

Γ(α)

∫z

0
f(ζ)(z − ζ)α−1 dζ; α > 0, (2.4)

where the function f(z) is analytic in simply connected region of the complex z-plane (C)
containing the origin, and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.

Remark 2.3. We have the following:

Dα
zz

μ =
Γ
(
μ + 1

)

Γ
(
μ − α + 1

)zμ−α, μ > −1,

Iαz z
μ =

Γ
(
μ + 1

)

Γ
(
μ + α + 1

)zμ+α, μ > −1.
(2.5)

In [27], it was shown the relation

IαzD
α
zf(z) = D

α
zI

α
z f(z) = f(z), f(0) = 0. (2.6)

More details on fractional derivatives and their properties and applications can be found in
[30, 31].

We next introduce the generalized Hyers-Ulam stability depending on the properties
of the fractional operators.

Definition 2.4. Let p ∈ (0, 1). We say that

∞∑

n=0

anz
n+α = f(z) (2.7)

has the generalized Hyers-Ulam stability if there exists a constant K > 0 with the following
property: for every ε > 0, w ∈ U = U

⋃
∂U, if

∣∣∣∣∣

∞∑

n=0

anw
n+α

∣∣∣∣∣ ≤ ε
( ∞∑

n=0

|an|p
p(n + 1)2

)
, (2.8)

then there exists some z ∈ U that satisfies (2.7) such that

∣∣∣zi −wi
∣∣∣ ≤ εK,

(
z,w ∈ U, i ∈ N

)
. (2.9)
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In the present paper, we study the generalized Hyers-Ulam stability for holomorphic solu-
tions of the fractional differential equation in complex Banach spaces X and Y

D
β
zf(z) = G

(
f(z), Dα

zf(z), zf
′(z); z

)
, 0 < α < 1 < β ≤ 2, (2.10)

where G : X3 ×U → Y and f : U → X are holomorphic functions such that f(0) = Θ (Θ is
the zero vector in X).

3. Generalized Hyers-Ulam Stability

In this section we present extensions of the generalized Hyers-Ulam stability to holomorphic
vector-valued functions. Let X,Y represent complex Banach space. The class of admissible
functions G(X,Y ) consists of those functions g : X3 × U → Y that satisfy the admissibility
conditions:

∥∥g(r, ks, lt; z)
∥∥ ≥ 1, when ‖r‖ = ‖s‖ = ‖t‖ = 1, (z ∈ U, k, l ≥ 1). (3.1)

We need the following results.

Lemma 3.1 (see [32]). If f : D → X is holomorphic, then ‖f‖ is a subharmonic of z ∈ D ⊂ C. It
follows that ‖f‖ can have no maximum in D unless ‖f‖ is of constant value throughout D.

Lemma 3.2 (see [33]). Let f : U → X be the holomorphic vector-valued function defined in the
unit diskU with f(0) = Θ (the zero element of X). If there exists a z0 ∈ U such that

∥∥f(z0)
∥∥ = max

|z|=|z0|

∥∥f
∥∥, (3.2)

then

∥∥z0f ′(z0)
∥∥ = κ

∥∥f(z0)
∥∥, κ ≥ 1. (3.3)

Lemma 3.3 (see [34, page 88]). If the function f(z) is in the class S, then

∣∣Dα+n
z f(z)

∣∣ ≤ (n + α + |z|)Γ(n + α + 1)

(1 − |z|)n+α+2
, (z ∈ U;n ∈ N0 := N ∪ {0}; 0 ≤ α < 1). (3.4)

Lemma 3.4 (see [29, page 225]). If the function f(z) is in the class C, then

∣∣Dα+n
z f(z)

∣∣ ≤ Γ(n + α + 1)

(1 − |z|)n+α+1
, (z ∈ U;n ∈ N0; 0 ≤ α < 1). (3.5)

Theorem 3.5. Let G ∈ G(X,Y ) and f : U → X be a holomorphic vector-valued function defined in
the unit diskU, with f(0) = Θ. If f ∈ S, then

∥∥G
(
f(z), Dα

zf(z); z
)∥∥ < 1 =⇒ ∥∥f(z)

∥∥ < 1. (3.6)
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Proof. Since f ∈ S, then from Lemma 3.3, we observe that

∣∣Dα
zf(z)

∣∣ ≤ (α + |z|)Γ(α + 1)

(1 − |z|)α+2
. (3.7)

Assume that ‖f(z)‖/<1 for z ∈ U. Thus, there exists a point z0 ∈ U for which ‖f(z0)‖ = 1.
According to Lemma 3.1, we have

∥∥f(z)
∥∥ < 1, z ∈ Ur0 = {z : |z| < |z0| = r0},
max
|z|≤|z0|

∥∥f(z)
∥∥ =

∥∥f(z0)
∥∥ = 1.

(3.8)

In view of Lemma 3.2, at the point z0, there is a constant κ ≥ 1 such that

∥∥z0f ′(z0)
∥∥ = κ

∥∥f(z0)
∥∥ = κ. (3.9)

Consequently, we obtain that

∥∥f(z0)
∥∥ =

(1 − |z|)α+2
(α + |z|)Γ(α + 1)

∥∥Dα
z0f(z0)

∥∥ =
1
κ

∥∥z0f ′(z0)
∥∥ = 1. (3.10)

We put k := ((α + |z|)Γ(α + 1)/(1 − |z|)α+2) ≥ 1, for some 0 < α < 1 and z ∈ U and l := κ ≥ 1;
hence from (3.1), we deduce

∥∥G
(
f(z0), Dα

z0f(z0), z0f
′(z0); z0

)∥∥ =

∥∥∥∥∥G
(
f(z0), k

[
Dα
z0f(z0)
k

]
, l

[
z0f

′(z0)
l

]
; z0

)∥∥∥∥∥ ≥ 1,

(3.11)

which contradicts the hypothesis in (3.6) that we must have ‖f(z)‖ < 1.

Corollary 3.6. Assume the problem (2.10). If G ∈ G(X,Y ) is a holomorphic univalent vector-valued
function defined in the unit diskU, then

∥∥G
(
f(z), Dα

zf(z), zf
′(z); z

)∥∥ < 1 =⇒
∥∥∥IβzG

(
f(z), Dα

zf(z), zf
′(z); z

)∥∥∥ < 1. (3.12)

Proof. By univalency of G, the fractional differential equation (2.10) has at least one holo-
morphic univalent solution f . Thus, according to Remark 2.3, the solution f(z) of the problem
(2.10) takes the form

f(z) = IβzG
(
f(z), Dα

zf(z), zf
′(z); z

)
. (3.13)

Therefore, in virtue of Theorem 3.5, we obtain the assertion (3.12).
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Theorem 3.7. Let G ∈ G(X,Y ) be holomorphic univalent vector-valued functions defined in the unit
diskU then (2.10) has the generalized Hyers-Ulam stability for z → ∂U.

Proof. Assume that

G(z) :=
∞∑

n=0

ϕnz
n, z ∈ U (3.14)

therefore, by Remark 2.3, we have

IαzG(z) =
∞∑

n=0

anz
n+α = f(z). (3.15)

Also, z → ∂U and thus |z| → 1. According to Theorem 3.5, we have

∥∥f(z)
∥∥ < 1 = |z|. (3.16)

Let ε > 0 and w ∈ U be such that
∣∣∣∣∣

∞∑

n=1

anw
n+α

∣∣∣∣∣ ≤ ε
( ∞∑

n=1

|an|p
p(n + 1)2

)
. (3.17)

We will show that there exists a constant K independent of ε such that

∣∣∣wi − ui
∣∣∣ ≤ εK, w ∈ U, u ∈ U (3.18)

and satisfies (2.7). We put the function

f(w) =
−1
λai

∞∑

n=1, n /= i

anw
n+α, ai /= 0, 0 < λ < 1, (3.19)

thus, for w ∈ ∂U, we obtain

∣∣∣wi − ui
∣∣∣ =

∣∣∣wi − λf(w) + λf(w) − ui
∣∣∣

≤
∣∣∣wi − λf(w)

∣∣∣ + λ
∣∣∣f(w) − ui

∣∣∣

<
∣∣∣wi − λf(w)

∣∣∣ + λ
∣∣∣wi − ui

∣∣∣

=

∣∣∣∣∣∣
wi +

1
ai

∞∑

n=1, n /= i

anw
n+α

∣∣∣∣∣∣
+ λ

∣∣∣wi − ui
∣∣∣

=
1
|ai|

∣∣∣∣∣

∞∑

n=1

anw
n+α

∣∣∣∣∣ + λ
∣∣∣wi − ui

∣∣∣.

(3.20)
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Without loss of generality, we consider |ai| = maxn≥1(|an|) yielding

∣∣∣wi − ui
∣∣∣ ≤ 1

|ai|(1 − λ)

∣∣∣∣∣

∞∑

n=1

anw
n+α

∣∣∣∣∣

≤ ε

|ai|(1 − λ)

( ∞∑

n=0

|an|p
p(n + 1)2

)

≤ ε|ai|p−1
p(1 − λ)

( ∞∑

n=0

1

(n + 1)2

)

=
π2ε|ai|p−1
6p(1 − λ)

:= Kε.

(3.21)

This completes the proof.

In the same manner of Theorem 3.5, and by using Lemma 3.4, we have the following
result.

Theorem 3.8. Let G ∈ G(X,Y ) and f : U → X be a holomorphic vector-valued function defined in
the unit diskU, with f(0) = Θ. If f ∈ C, then

∥∥G
(
f(z), Dα

zf(z), zf
′(z); z

)∥∥ < 1 =⇒ ∥∥f(z)
∥∥ < 1. (3.22)

4. Applications

In this section, we introduce some applications of functions to achieve the generalized Hyers-
Ulam stability.

Example 4.1. Consider the function G : X3 ×U → R by

G(r, s, t; z) = a(‖r‖ + ‖s‖ + ‖t‖)n + b|z|2, n ∈ R+ (4.1)

with a ≥ 0.5, b ≥ 0 and G(Θ,Θ,Θ; 0) = 0. Our aim is to apply Theorem 3.5, this follows since

‖G(r, ks, lt; z)‖ = a(‖r‖ + k‖s‖ + l‖t‖)n + b|z|2 = a(1 + k + l)n + b|z|2 ≥ 1, (4.2)

when ‖r‖ = ‖s‖ = ‖t‖ = 1, z ∈ U. Hence by Theorem 3.5, we have the following. If a ≥ 0.5,
b ≥ 0 and f : U → X is a holomorphic univalent vector-valued function defined in U, with
f(0) = Θ, then

a
(∥∥f(z)

∥∥ +
∥∥Dα

zf(z)
∥∥ +

∥∥zf ′(z)
∥∥)n + b|z|2 < 1 =⇒ ∥∥f(z)

∥∥ < 1. (4.3)

Consequently, ‖IαzG(f(z), Dα
zf(z), zf

′(z); z)‖ < 1, thus in view of Theorem 3.7, f has the
generalized Hyers-Ulam stability.
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Example 4.2. Assume that the function G : X3 −→ X by

G(r, s, t; z) = G(r, s, t) = re‖s‖‖t‖−1, (4.4)

with G(Θ,Θ,Θ) = Θ. By applying Corollary 3.6, we need to show that G ∈ G(X,X). Since

‖G(r, ks, lt)‖ =
∥∥∥re‖ks‖‖lt‖−1

∥∥∥ = ekl−1 ≥ 1, (4.5)

when ‖r‖ = ‖s‖ = ‖t‖ = 1, k ≥ 1 and l ≥ 1. Hence by Corollary 3.6, we have the following. For
f : U → X is a holomorphic vector-valued function defined inU, with f(0) = Θ, then

∥∥∥f(z)e‖D
α
zf(z)‖‖zf ′(z)‖−1

∥∥∥ < 1 =⇒ ∥∥f(z)
∥∥ < 1. (4.6)

Consequently, ‖IαzG(f(z), Dα
zf(z), zf

′(z); z)‖ < 1, thus in view of Theorem 3.7, f has the gene-
ralized Hyers-Ulam stability.

Example 4.3. Let a, b, c : U → C satisfy the following:

∣∣a(z) + μb(z) + νc(z)
∣∣ ≥ 1, (4.7)

for every μ ≥ 1, ν > 1 and z ∈ U. Consider the function G : X3 −→ Y by

G(r, s, t; z) = a(z)r + μb(z)s + νc(z)t, (4.8)

with G(Θ,Θ,Θ) = Θ. Now for ‖r‖ = ‖s‖ = ‖t‖ = 1, we have

∥∥G
(
r, μs, νt; z

)∥∥ =
∣∣a(z) + μb(z) + νc(z)

∣∣ ≥ 1 (4.9)

and thus G ∈ G(X,Y ). If f : U → X is a holomorphic vector-valued function defined in U,
with f(0) = Θ, then

∥∥a(z)f(z) + b(z)Dα
zf(z) + zc(z)f

′(z)
∥∥ < 1 =⇒ ∥∥f(z)

∥∥ < 1. (4.10)

Hence according to Theorem 3.7, f has the generalized Hyers-Ulam stability.
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A generalized Möbius transform is presented. It is based on Dirichlet characters. A general
algorithm is developed to compute the inverseZ transform on the unit circle, and an error estimate
is given for the truncated series representation.

1. Introduction

We consider a causal, linear, time-invariant system with an infinite impulse response {cj}∞j=1.
The system is assumed to be stable and the Z transform X(z) =

∑∞
j=1 cjz

−j is convergent for
|z| > r, where r < 1. The frequency response of the system is obtained by evaluating the Z
transform on the unit circle.

The arithmetic Fourier transform (AFT) offers a convenient method, based on the
construction of weighted averages, to calculate the Fourier coefficients of a periodic function.
It was discovered by Bruns [1] at the beginning of the last century. Similar algorithms were
studied by Wintner [2] and Sadasiv [3] for the calculation of the Fourier coefficients of even
periodic functions. This method was extended in [4] to calculate the Fourier coefficients
of both the even and odd components of a periodic function. The Bruns approach was
incorporated in [5] resulting in a more computationally balanced algorithm. In [6, 7],
Knockaert presented the theory of the generalized Möbius transform and gave a general
formulation.

In [8], Schiff et al. applied Wintner’s algorithm for the computation of the inverse Z-
transform of an infinite causal sequence. Hsu et al. [9] applied two special Möbius inversion
formulae to the inverse Z-transform.
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The transform pairs play a central part in the arithmetic Fourier transform and inverse
Z-transform. In this paper, based on Dirichlet characters, we presented a generalized Möbius
transform of which all the transform pairs used in the mentioned papers are the special cases.
A general algorithm was developed in Section 2 to compute the inverse Z transform on
the unit circle. The algorithm computes each term cj of the infinite impulse response from
sampled values of the Z transform taken at a countable set of points on the unit circle.
An error estimate is given in Section 3 for the truncated series representation. A numerical
example is given in Section 4. Number theory and Dirichlet characters [10] play an important
role in the paper.

2. The Algorithm

According to the Möbius inversion formula for finite series [4], if n is a positive integer and
f(n), g(n) are two number-theoretic functions, then

g(n) =
[N/n]∑

k=1

f(kn) iff f(n) =
[N/n]∑

m=1

μ(m)g(mn), (2.1)

where [y] denotes the integer part of real number y and μ(n) is the Möbius function:

μ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n = 1,
(−1)r if n includes r distinct prime factors,
0, otherwise.

(2.2)

Knockaert [6] extended the Möbius inversion formula and proved the following proposition.

Proposition 2.1. Let f1, f2, . . . be a sequence of real numbers and α(n), β(n) two arithmetical
functions. For the transform pair

sn =
∞∑

k=1

α(k)fkn, fn =
∞∑

k=1

β(k)skn (2.3)

to be valid for all sequences fn, it is necessary and sufficient that

∑

kl=m

α(k)β(l) =
∑

k|m
α(k)β

(
m

k

)
= δ1m =

{
1, m = 1,
0, m/= 1.

(2.4)

Let G be the group of reduced residue classes modulo q. Corresponding to each
character f of G, we define an arithmetical function χ = χf as follows:

χ(n) = f(n̂) if
(
n, q
)
= 1, χ(n) = 0 if

(
n, q
)
> 1, (2.5)

where n̂ = {x : x ≡ n(mod q)} and (a, b) denotes the greatest common divisor of a and b.
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The function χ is called a Dirichlet character modulo q. The principal character χ1 is
that which has the properties

χ1(n) =

{
1 if

(
n, q
)
= 1,

0 if
(
n, q
)
> 1.

(2.6)

If q ≥ 1, the Euler’s totient φ(q) is defined to be the number of positive integers not
exceeding q that are relatively prime to q. There are φ(q) distinct Dirichlet characters modulo
q, each of which is completely multiplicative and periodic with period q. That is, we have

χ(mn) = χ(m)χ(n) ∀m,n, (2.7)

χ
(
n + q

)
= χ(n) ∀n. (2.8)

Conversely, if χ is completely multiplicative and periodic with period q, and if χ(n) = 0 if
(n, q) > 1, then χ is one of the Dirichlet characters modulo q.

Let f(n) be an arithmetical function. Series of the form
∑∞

n=1 f(n)/n
s are called

Dirichlet series with coefficients f(n). If f(n) = χ(n), then the series are called Dirichlet L-
functions. For any Dirichlet character χ mod q, the sum

G
(
n, χ
)
=

q∑

m=1

χ(m) e2πimn/q (2.9)

is called the Gauss sums associated with χ. If χ = χ1, then the Gauss sums reduce to
Ramanujan’s sum

G
(
n, χ1

)
=

q∑

m=1
(m,q)=1

e2πimn/q = cq(n). (2.10)

See [10].
Let χ be a Dirichlet character modulo q. We have

∑

k|m
χ(k)μ

(
m

k

)
χ

(
m

k

)
= χ(m)

∑

k|m
μ

(
m

k

)
= δ1m. (2.11)

In this way, we have defined a generalized Möbius transform pair.

Lemma 2.2. Let χ be a Dirichlet character modulo q; then transform pair

sn =
∞∑

k=1

χ(k)fkn, fn =
∞∑

k=1

μ(k)χ(k)skn (2.12)

is valid for all q.
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Remarks 1. The transform pairs play a central part in the arithmetic Fourier transform and
inverse Z-transform. It is not hard to show that all the transform pairs used in the mentioned
papers are the special cases of our generalized Möbius transform. In fact,

(a) let q = 1 in Lemma 2.2; we have

sn =
[N/n]∑

k=1

fkn, fn =
[N/n]∑

k=1

μ(k)skn, (2.13)

which is Theorem 3 in [4] and Lemma 1 in [8];

(b) let q = 2α and χ = χ1 in Lemma 2.2, where α ≥ 1 is a positive integer; we have

sn =
[N/n]∑

k=1,3,5,...

fkn, fn =
[N/n]∑

k=1,3,5,...

μ(k)skn, (2.14)

which is Case 1 of Lemma 1 in [9];

(c) let q = 2α, α ≥ 2, and

χ2(k) =

{
(−1)(k−1)/2 if

(
k, q
)
= 1,

0 if
(
k, q
)
> 1

(2.15)

in Lemma 2.2, then χ2 is one of the Dirichlet characters modulo q since χ2(k) is
completely multiplicative and periodic with period q. We have

sn =
[N/n]∑

k=1,3,5,...

fkn(−1)(k−1)/2, fn =
[N/n]∑

k=1,3,5,...

μ(k)skn(−1)(k−1)/2, (2.16)

which is Case 2 of Lemma 1 in [9];

(d) let χ = χ1 in Lemma 2.2; we have

sn =
∑

(k,q)=1
fkn, fn =

∑

(k,q)=1
μ(k)skn, (2.17)

which is transform pair I of Theorem 4 in [7];

(e) let q = 4, pα or 2pα, and χ3(k) = (k/q) in Lemma 2.2, where p is an odd prime,
α ≥ 1, and (k/q) is the Legendre’s symbol defined as follows:

(
k

q

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 if
(
k, q
)
= 1 and n is a quadratic residue mod q,

−1 if
(
k, q
)
= 1 and n is not a quadratic residue mod q,

0 if
(
k, q
)
> 1.

(2.18)
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From [10], we know that q admits a primitive root and (k/q) = (−1)ind(k). We have

sn =
∑

(k,q)=1
(−1)ind(k)fkn, fn =

∑

(k,q)=1
μ(k)(−1)ind(k)skn, (2.19)

which is transform pair II of Theorem 4 in [7].
From these facts, we claim that Lemma 2.2 is actually an important extension on the

Möbius inversion formula. In practice, we can choose the best possible transform pair.

We do not discuss the convergence of the transform pair since in practice it is used
only on a truncated series. Next we establish our main theorem.

Theorem 2.3. Let X(z) =
∑∞

j=1 cjz
−j be convergent for |z| > r, where r < 1. For any fixed q ≥ 1 and

Dirichlet character χ modulo q, the coefficients are given by

cn =
1
qn

∞∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ
) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
. (2.20)

Proof. On |z| = 1, let us write X(θ) = X(eiθ) =
∑∞

j=1 cje
−ijθ.

Define

sn =
1
q

q∑

r=1

G
(
r, χ
)
[
1
n

n∑

l=1

X
(
e(2πi/n)(l+r/q)

)]
. (2.21)

Note that for a positive integer k

1
n

n∑

m=1

e2πikm/n =

{
1 if n divides k,
0 if n does not divide k,

(2.22)

we have

sn =
1
q

q∑

r=1

G
(
r, χ
)
[
1
n

n∑

l=1

X
(
e(2πi/n)(l+r/q)

)]
=

1
q

q∑

r=1

G
(
r, χ
)
⎡

⎣ 1
n

n∑

l=1

∞∑

j=1

cje
−2πij(l+r/q)/n

⎤

⎦

=
1
q

q∑

r=1

G
(
r, χ
)
⎡

⎣ 1
n

∞∑

j=1

cj
n∑

l=1

e−2πijl/ne−2πijr/nq

⎤

⎦ =
1
q

q∑

r=1

G
(
r, χ
) ∞∑

l=1

clne
−2πilr/q.

(2.23)

Let l = qk + s; then

sn =
1
q

q∑

r=1

G
(
r, χ
) ∞∑

k=0

q∑

s=1

cn(qk+s)e
−2πisr/q =

1
q

∞∑

k=0

q∑

s=1

cn(qk+s)

q∑

m=1

χ(m)
q∑

r=1

e2πir(m−s)/q. (2.24)
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Note that 1 ≤ m, s ≤ q, so q | (m − s) if and only ifm = s; therefore,

sn =
∞∑

k=0

q∑

s=1

χ(s)cn(qk+s) =
∞∑

t=1

χ(t)cnt. (2.25)

By Lemma 2.2, we have

cn =
∞∑

k=1

μ(k)χ(k)snk =
1
qn

∞∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ
) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)
. (2.26)

This completes the proof of Theorem 2.3.

Remarks 2. Let q = 1 in Theorem 2.3; we have

cn =
∞∑

k=1

μ(k)
kn

kn∑

l=1

X
(
e(2πi/kn)(l+1)

)
, (2.27)

which is the theorem in [8].
Let q = 2 in Theorem 2.3 or q = 4 and χ = χ1 in Theorem 2.3; we easily have

cn =
∞∑

k=1,3,5,...

μ(k)
2kn

[
kn∑

l=1

X
(
e(2πi/kn)(l+1)

)
−

kn∑

l=1

X
(
e(2πi/kn)(l+1/2)

)]
. (2.28)

Let q = 4 and χ = χ2 in Theorem 2.3; we have

cn =
∞∑

k=1,3,5,...

μ(k)(−1)(k−1)/2i
2kn

[
kn∑

l=1

X
(
e(2πi/kn)(l+1/4)

)
−

kn∑

l=1

X
(
e(2πi/kn)(l+3/4)

)]
. (2.29)

In practice, a large number of coefficients cn may be calculated. We suppose that a
truncation is employed. Next we estimate the error due to the truncation of the series.

3. Error Estimate

In order to estimate the error due to truncation of the series representation of the coefficients
cn, we require the following lemma.

Lemma 3.1. If f is a function of period 2π , with f ′ ∈ Lip1([0, 2π]), then

∣∣∣∣∣

∫2π

0
f(θ)dθ − 1

n

n∑

m=1

f

(
θ +

2πm
n

)∣∣∣∣∣ ≤
C

n2
, (3.1)

uniformly in θ, where C is the Lipschitz constant.
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Proof. This is Lemma 3 of [8].

Taking X(z) as in Theorem 2.3, we maintain the following theorem.

Theorem 3.2. The truncation error satisfies

∣∣∣∣∣cn −
1
qn

N∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ
) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)∣∣∣∣∣ ≤
Cφ
(
q
)

n2N
, (3.2)

where C is the Lipschitz constant.

Proof. Note that we have

0 = c0 =
1
2π

∫2π

0
X
(
eiϕ
)
dϕ. (3.3)

Moreover, X′ ∈ Lip1([0, 2π]) by the analyticity of X. By Theorem 2.3 and Lemma 3.1,
we have

∣∣∣∣∣cn −
1
qn

N∑

k=1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ
) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)∣∣∣∣∣

=

∣∣∣∣∣
1
qn

∞∑

k=N+1

μ(k)χ(k)
k

q∑

r=1

G
(
r, χ
) kn∑

l=1

X
(
e(2πi/kn)(l+r/q)

)∣∣∣∣∣

≤
∣∣∣∣∣
1
q

∞∑

k=N+1

μ(k)χ(k)
q∑

r=1

G
(
r, χ
) C

n2k2

∣∣∣∣∣ ≤
Cφ
(
q
)

n2

∞∑

k=N+1

1
k2

≤ Cφ
(
q
)

n2N
.

(3.4)

This completes the proof of Theorem 3.2.
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Table 1: Calculation of the Z-transform coefficients of the function: X(z) = e1/z + 1/(z − 1/2) − 1, q = 1.

k c1 c2 c3

1 3.718281828 + 0.000000720i 1.209747301 + 0.000000338i 0.453772595 + 0.000000199i
2 2.508534526 + 0.000000381i 1.034722511 + 0.000000208i 0.420637706 + 0.000000128i
3 2.054761931 + 0.000000182i 1.001587622 + 0.000000138i 0.416721106 + 0.000000087i
4 2.054761931 + 0.000000182i 1.001587622 + 0.000000138i 0.416721106 + 0.000000087i
5 1.981912218 + 0.000000089i 0.999632365 + 0.000000100i 0.416660127 + 0.000000062i
6 2.015047107 + 0.000000160i 1.000120712 + 0.000000131i 0.416667696 + 0.000000082i
7 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
8 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
9 1.999100704 + 0.000000103i 0.999998692 + 0.000000105i 0.416666804 + 0.000000065i
10 2.001055961 + 0.000000140i 1.000000538 + 0.000000123i 0.416666743 + 0.000000077i

Table 2: Calculation of theZ-transform coefficients of the function:X(z) = e1/z+1/(z−1/2)−1, q = 2, q =
4, or χ = χ1.

k c1 c2 c3

1 2.508534526 + 0.000000785i 1.034722484 + 0.000000226i 0.420637664 + 0.000000130i
3 2.087896862 + 0.000000654i 1.002075958 + 0.000000213i 0.416728633 + 0.000000129i
5 2.017002434 + 0.000000624i 1.000122546 + 0.000000212i 0.416667589 + 0.000000126i
7 2.001178059 + 0.000000618i 1.000000467 + 0.000000209i 0.416666630 + 0.000000121i
9 2.001178059 + 0.000000618i 1.000000467 + 0.000000209i 0.416666630 + 0.000000121i
11 2.000201462 + 0.000000617i 0.999999985 + 0.000000205i 0.416666627 + 0.000000117i
13 1.999957311 + 0.000000615i 0.999999950 + 0.000000200i 0.416666625 + 0.000000113i
15 2.000018355 + 0.000000618i 0.999999956 + 0.000000204i 0.416666626 + 0.000000117i
17 2.000003089 + 0.000000614i 0.999999953 + 0.000000200i 0.416666625 + 0.000000114i
19 1.999999268 + 0.000000610i 0.999999951 + 0.000000196i 0.416666624 + 0.000000111i

4. An Example

Consider the function

X(z) = e1/z +
1

z − 1/2
− 1, |z| > 1

2
. (4.1)

The few first coefficients are c1 = 2, c2 = 1, and c3 = 5/12. Employing formulae (2.27), (2.28),
and (2.29), we obtain the results given in Tables 1, 2, and 3. The results show that formulae
(2.28) and (2.29) is quite more accurate than formula (2.27). Choosing carefully the modulo
q and the Dirichlet character, we will greatly improve the algorithm.

5. Conclusion

A general algorithm offers a general way to compute the inverse Z transform. It is based
on generalized Möbius transform, Dirichlet characters, and Gauss sums. The algorithm
computes each term cj of the infinite impulse response from sampled values of the Z
transform taken at a countable set of points on the unit circle. An error estimate and a
numerical example are given for the truncated series representation. Choosing carefully the
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Table 3: Calculation of the Z-transform coefficients of the function: X(z) = e1/z + 1/(z − 1/2) − 1, q =
4, and χ = χ2.

k c1 c2 c3

1 1.641470945 + 0.000000164i 0.969199603 + 0.000000195i 0.412817735 + 0.000000128i
3 2.054288680 + 0.000000292i 1.001830856 + 0.000000204i 0.416726726 + 0.000000119i
5 1.983516336 + 0.000000263i 0.999877456 + 0.000000214i 0.416665686 + 0.000000128i
7 1.999338790 + 0.000000262i 0.999999531 + 0.000000205i 0.416666645 + 0.000000122i
9 1.999338790 + 0.000000262i 0.999999531 + 0.000000205i 0.416666645 + 0.000000122i
11 2.000315379 + 0.000000252i 1.000000013 + 0.000000200i 0.416666650 + 0.000000120i
13 2.000071234 + 0.000000261i 0.999999978 + 0.000000204i 0.416666646 + 0.000000122i
15 2.000010194 + 0.000000270i 0.999999971 + 0.000000207i 0.416666642 + 0.000000123i
17 1.999994930 + 0.000000277i 0.999999967 + 0.000000209i 0.416666639 + 0.000000124i
19 1.999998750 + 0.000000271i 0.999999971 + 0.000000208i 0.416666642 + 0.000000123i

modulo q and the Dirichlet character we will greatly improve the algorithm. But this is not
exhaustive. Dirichlet characters and Gauss sums play an important role in number theory,
and there are so many methods and results associated with them. Any development on the
Dirichlet character and Gauss sums may be applied to the inverse Z transform.
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This paper surveys recent advances on univalent logharmonic mappings defined on a simply
or multiply connected domain. Topics discussed include mapping theorems, logharmonic
automorphisms, univalent logharmonic extensions onto the unit disc or the annulus, univalent
logharmonic exterior mappings, and univalent logharmonic ring mappings. Logharmonic
polynomials are also discussed, alongwith several important subclasses of logharmonicmappings.

1. Introduction

LetD be a domain in the complex plane C. Denote byH(D) (resp., byM(D)) the linear space
of all analytic (resp., meromorphic) functions in D, and let B(D) be the set of all functions
a ∈ H(D) satisfying |a(z)| < 1, z ∈ D. A nonconstant function f is logharmonic in D if f is
the solution of the nonlinear elliptic differential equation

fz = a
f

f
fz, (1.1)

a ∈ B(D). The function a is called the second dilatation of f . In contrast to the linear
space H(D) consisting of analytic functions, translations in the image do not preserve
logharmonicity, and the inverse of a logharmonic function is not necessarily logharmonic. If
f1 and f2 are two logharmonic functions with respect to a ∈ B(D), then f1 · f2 is logharmonic
with respect to the same a. If, in addition, 0 /∈ f2(D), then f1/f2 is also logharmonic.
The composition f ◦ φ of a logharmonic mapping f with a conformal premapping φ is
also logharmonic with respect to a ◦ φ. However, the composition φ ◦ f of a conformal
postmapping φ with a logharmonic mapping f is in general not logharmonic. If f is a
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logharmonic mapping in D, then f is a nonconstant locally quasiregular mapping, and,
therefore, it is continuous, open, and light. It follows that f can be represented as a
composition of two functions f = A ◦ χ, where χ is a locally quasiconformal homeomorphism
in D and A ∈ H(χ(D)). As an immediate consequence, the maximum principle, the identity
principle, and the argument principle all still hold for logharmonic mappings.

The study of logharmonic mappings was initiated in the main by Abdulhadi, Bshouty,
and Hengartner in the last century, and the basic theory of logharmonic mappings was
developed in [1–8].

A local representation for logharmonic mappings was given by Abdulhadi and
Bshouty in [1]. In particular, they obtained the following result.

Theorem 1.1. Let f be a logharmonic mapping inD with respect to a ∈ B(D). Suppose that f(z0) =
0 andB(z0, ρ)\{z0} ⊂ D\Z(f), whereB(z0, ρ) = {z : |z− z0| < ρ} andZ(f) = {z ∈ D : f(z) = 0}.
Then f admits the representation

f(z) = (z − z0)|z − z0|2βnh(z)g(z), z ∈ B(z0, ρ
)
, (1.2)

where n ∈ N, β = na(z0)(1 + a(z0))/(1 − |a(z0)|2) and, therefore, Re(β) > −n/2. The functions h
and g are inH(B(z0, ρ)), with h(z0)/= 0 and g(z0) = 1.

As a direct consequence of Theorem 1.1, we have the following global representation
for logharmonic mappings.

Corollary 1.2. LetD be a simply connected domain in C and f a logharmonic mapping inD. If f has
exactly p zeros {zk}pk=1 in D (counting multiplicities), then f admits a global representation given
by

f(z) =

[
p∏

k=1

(z − zk)|z − zk|2βk
]
h(z)g(z), (1.3)

where βk = a(zk)(1 + a(zk))/(1 − |a(zk)|2) and, therefore, Re(βk) > −1/2. The functions h and g
are inH(D), and 0 /∈ h · g(D).

For the converse, Abdulhadi and Hengartner [2] proved the following theorem.

Theorem 1.3. Suppose that f(z) = h(z)g(z) is defined in a domainD, where h and g are inH(D),
such that f(D) does not lie on a logarithmic spiral. Then either f = g or f is a solution of

fz(z) = a
f(z)
f(z)

fz(z), a ∈M(D), |a|/= 1. (1.4)

Remark 1.4. The converse of Theorem 1.3 does not hold. Indeed, consider the partial dif-
ferential equation fz = (1/3)(f/f)fz. Then f1(z) = z6z2 and f2(z) = z|z| are solutions of
this equation. The function f1 can be written in the form hg while f2 could not.
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Remark 1.5. The function gw(z) = f(z) −w, w ∈ C, cannot be written in the form hg unless
w = 0 or f is a constant. However, it is a solution of the second Beltrami equation

(
∂gw(z)
∂z

)
= μw

(
z, gw

)∂gw(z)
∂z

, (1.5)

where

μw
(
z, gw

)
= a(z)

gw(z) +w
gw(z) +w

. (1.6)

Hence, |μw| ≡ |a| in D and is independent of w.

Corollary 1.6. The image f(D) of a nonconstant function f(z) = h(z)g(z) lies on a logarithmic
spiral if and only if f is a solution of (1.1) with |a| ≡ 1.

In the theory of quasiconformal mappings, it is proved that, for any measurable
function μ with |μ| < 1, the solution of Beltrami equation fz = μfz can be factorized in the
form f = ψ ◦ F, where F is a univalent quasiconformal mapping and ψ is an analytic function
(see [9]). For sense-preserving harmonic mappings, the answer is negative. In [10], Duren
and Hengartner gave a necessary and sufficient condition on sense-preserving harmonic
mappings f for the existence of such a factorization. Moreover, for logharmonic mappings,
such a factorization need not exist. For example, the function f(z) = z2/|1 − z|4 is a sense-
preserving logharmonic mapping with respect to a(z) = z, and f has no decomposition of
the desired form (see [11]). The following factorization theorem was proved in [11].

Theorem 1.7. Let f be a nonconstant logharmonic mapping defined in a domain D ⊂ C, and let a
be its second dilatation function. Then f can be factorized in the form f = F ◦ ϕ, for some analytic
function ϕ and some univalent logharmonic mapping F if and only if

(a) |a(z)|/= 1 in D,

(b) f(z1) = f(z2) implies a(z1) = a(z2).

Under these conditions, the representation is unique up to a conformal mapping; any
other representation f = F1 ◦ ϕ1 has the form F1 = F ◦ ψ−1 and ϕ1 = ψ ◦ ϕ for some conformal
mapping defined in ϕ(D).

Consider now the logharmonic mapping f(z) = ze1/ze−1/z. The point z = 0 is an
isolated singularity of f , and f is continuous at this point. However, f does not admit a
logharmonic-continuation to C. A further restriction is needed.

Theorem 1.8 (see [2] (logharmonic-continuation across an isolated singularity)). Let Dr be
the point disc Dr = {z : 0 < |z| < r}, and let f = hg defined in Dr be a logharmonic mapping with
respect to a ∈ B(D) satisfying limz→ 0f(z) = 0. Then f admits a logharmonic-continuation across
the origin and has the representation

f(z) = zn0zm0h0(z)g0(z), (1.7)
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where n0 and m0 are nonnegative integers, 0 ≤ m0 < n0, and h0 and g0 are analytic functions on
|z| < r satisfying h0(0)g0(0)/= 0.

Liouville’s theorem does not hold for entire logharmonic functions. The function
f(z) = exp(z) exp(−z) is a nonconstant bounded logharmonic in C. Its dilatation is a(z) ≡ −1.
However, the following modified version of Liouville’s theorem was given in [2].

Theorem 1.9 (modified Liouville’s theorem). Let f = hg be a bounded logharmonic function in
C. Then either the image f(C) is a circle centered at the origin with dilatation function a(z) ≡ −1 or
f is a constant.

Let f(z) = h(z)g(z) be a logharmonic mapping defined in a domainD with respect to
a ∈ B(D) satisfying |a(z)|/≡ 1. Let

(1) SG(D) = {z ∈ D : |a(z)| > 1},
(2) SL(D) = {z ∈ D : |a(z)| < 1},
(3) SE(D) = {z ∈ D : |a(z)| = 1},
(4) NZ(f −w,D) be the cardinality of Z(f −w,D), that is, the number of zeros of f −w

in D, multiplicity is not counted,

(5) VZ(f −w,G) be the number of zeros of f −w in SG(D), multiplicity counted.

The following argument principle for logharmonic mappings in D is shown in [2].

Theorem 1.10 (generalized argument principle for logharmonic mappings). LetD be a Jordan
domain, and let f = hg be a logharmonic mapping defined in the closure D with respect to a ∈ B(D)
satisfying |a(z)|/≡ 1. Fix w ∈ C such that Z(f −w,D) ∩ (∂D ∪ SE(D)) is empty. Then

VZ
(
f −w,SL(D)

) − VZ(f −w,SG(D)
)
=

1
2π

∮

∂D

d arg
(
f −w)

. (1.8)

As a consequence of the argument principle, the following result is obtained.

Theorem 1.11. Let fn be a sequence of logharmonic mappings defined in U with respect to a given
an ∈ B(U), where U is the unit disc. Suppose that an converges locally uniformly to a ∈ B(U) and
that fn converges locally uniformly to a logharmonic mapping f with respect to a. If w0 /∈ fn(U) for
all n ∈ N, then w0 /∈ f(U).

In Section 2, a survey is given on univalent logharmonic mappings defined in a simply
connected domain D of C. Section 3 deals with univalent logharmonic mappings defined on
multiply connected domains, while Section 4 considers logharmonic polynomials. The final
section of the survey discusses several important subclasses of logharmonic mappings.

2. Univalent Logharmonic Mappings in a Simply Connected Domain

2.1. Motivation

LetΩ be a domain in the complex planeC, and let S be a nonparametric minimal surface lying
over Ω. Then S can be represented by a function s = G(u, v), w = u + iv ∈ Ω, and there is a
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univalent orientation-preserving harmonic mapping w = F(z) from an appropriate domain
D of C onto Ωwhich determines S in the following sense. The mapping F is a solution of the
system of linear elliptic partial differential equation

Fz = AFz, (2.1)

where A ∈ H(D). Since F is orientation preserving, it follows that |A(z)| < 1 in D. The
function A is the second dilatation of F. The value (1 + |A(z)|)/(1 − |A(z)|) is the quotient of
the maximum value and the minimum value of the differential |dF(z)|when dz varies on the
unit circle (see, e.g., [12, 13]). The representation of the minimal surface S is given by three
real-valued harmonic functions (see, e.g., [13, 14]),

u(z) = Re(F(z)), v(z) = Im(F(z)), s(z) = Im
∫z √

AFz dz. (2.2)

Since (sz)
2 = −FzFz = −A(Fz)

2 inD, it follows that
√
A belongs toH(D). In particular,

each zero ofA is of even order. Since the Riemannian metric of S is ds2 = |Fz|2(1+ |A|)2|dz|2, it
follows that x = Re(z) and y = Im(z) are isothermal parameters for S. Moreover, the exterior
unit normal vector 
n(z) = (n1(z), n2(z), n3(z)), n3(z) ≥ 0, to the minimal surface S (known as
the Gauss mapping) depends only on the second dilatation function A of F. More precisely,


n =
(
2 Im

(√
A
)
, 2Re

(√
A
)
,
1 −A
1 +A

)
. (2.3)

The inverse of the stereographic projection of the Gauss mapping 
n, i/
√
A(z), is called the

Weierstrass parameter.
The following question arises: What are the domains D? If ϕ is univalent and analytic

and if F is univalent and harmonic, then the composition F ◦ ϕ (whenever well defined)
is a univalent harmonic mapping but ϕ ◦ F need not be harmonic. Hence, if F represents a
minimal surface overΩ (in the sense of relation (2.2)), then F(ϕ) represents the sameminimal
surface but in other isothermal parameters.

Suppose that Ω is a proper simply connected domain in C. Then, we may choose for
D any proper simply connected domain in C. In particular, D = U or D = Ω are appropriate
choices.

Consider now the left half-planeD = {z : Re(z) < 0}, and let F be a univalent harmonic
and orientation-preserving map defined in D satisfying the relation

F(z + αi) = F(z) + β ∀z ∈ D, (2.4)

where α and β are real constants. Applying the transformation (2π/β)F(2α/2π), it may be
assumed without loss of generality that α = β = 2π , that is,

F(z + 2πi) = F(z) + 2πi ∀z ∈ D. (2.5)

Whenever limx→−∞ Re(F(z)) = c for some c ∈ [−∞,∞), we will write Re(F(−∞)) = c.
Similarly, A(−∞) = c means that limx→−∞A(z) = c.
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Let UHP denote the class of all univalent harmonic orientation-preserving mappings
defined on the left half-plane D = {z : Re(z) < 0} satisfying

F(z + 2πi) = F(z) + 2πi ∀z ∈ D,
Re(F(−∞)) = −∞.

(2.6)

It follows that the second dilatation function A is periodic, that is, A(z + 2πi) = A(z) + 2πi in
D, and therefore the Gauss map is also periodic. Observe that A(−∞) exists. Furthermore, it
was shown in [6] that mappings in the class UHP admit the representation

F(z) = z + βx +H(z) +G(z), (2.7)

where

(a) H and G are inH(D) such that

(i) G(−∞) = 0 andH(−∞) exists and finite in C,
(ii) H(z + 2πi) = H(z) and G(z + 2πi) = G(z) for all z ∈ D;

(b)

∣∣∣∣∣
G′(z) + β

1 + β +H ′(z)

∣∣∣∣∣ < 1 on D,

β =
A(−∞)(1 −A(−∞))

1 − |A(−∞)|2
, and hence Re

(
β
)
> −1.

(2.8)

Define

f(z) = eF(log(z)), z ∈ U. (2.9)

Then f is a univalent logharmonic mapping inU with respect to a(z) = A(log(z)) and hence
a ∈ B(U). Observe that the family of all univalent logharmonic and orientation-preserving
mappings f defined in U satisfying f(0) = 0 is isomorphic to the class UHP. It was shown
in [4, 7] that it is easier to work with logharmonic mappings even if the differential equation
becomes nonlinear.

2.2. Univalent Logharmonic Mappings

Let D be a simply connected domain in C, D/=C, and suppose that f is a univalent
logharmonic mapping defined in D. If 0 /∈ f(D), then log(f(z)) is a univalent and harmonic
mapping in D. This mapping has been extensively studied in [15–18]. If f(0) = 0 and f is a
univalent logharmonic mapping defined in D, then the representation (1.2) of f becomes

f(z) = z|z|2βh(z)g(z), (2.10)



Abstract and Applied Analysis 7

for every z ∈ U, where

(a) β = a(0)(1 + a(0))/(1 − |a(0)|2), and so Re(β) > −1/2,
(b) h and g are inH(U) satisfying g(0) = 1 and 0 /∈ h · g(U).

It follows that f is locally quasiconformal. The analogue of Caratheodory’s Kernel
Theorem might fail for univalent logharmonic mappings. Indeed, each function

fr(z) =
z

(1 − z)2
exp

(
−2r

(
Re

∫z

0

(1 + z)
(1 + rz)(1 − z)dz

))
, 0 < r < 1, (2.11)

which is univalent and logharmonic with respect to ar(z) = −rz, satisfies the normalization
fr(0) = 0, (fr)z(0) = 1, and maps the unit disc U onto the slit domain C \ (−∞,−pr). The tip
pr of the omitted slit varies monotonically from −1/4 to −1 as r varies from 0 to 1. The limit
function limr→ 1fr(z) = f1(z) = (z(1 − z))/(1 − z) is univalent and logharmonic and maps U
onto U. It has the boundary value f(eit) = −1 for 0 < |t| ≤ π , and the cluster set of f1 at the
point 1 is the unit circle.

Let D be a simply connected domain in C and z0 ∈ D. The following characterization
theorem was proved in [1].

Theorem 2.1. Let f be a univalent mapping defined in D such that f(z0) = 0. Then f is of the form
hg if and only if f is a logharmonic mapping with respect to a ∈ B(D) satisfying a(z0) = m/(1+m),
m ∈ N ∪ {0}.

Univalent logharmonic mappings have the following properties.

Theorem 2.2 (see [1]). Let D be a simply connected domain in C and f a univalent logharmonic
mapping defined in D with respect to a ∈ B(D).

(a) Then fz(z)/= 0 for all z ∈ D whenever f(z)/= 0.

(b) If f(z0) = 0, then limz→ z0(z − z0)fz(z)/f(z) exists and is in C \ {0}. Therefore, (z −
z0)fz(z)/f(z) is a nonvanishing function inH(D).

(c) Let α be a complex number such that Re(α) > −1/2. Then F = f |f |2α is a univalent
logharmonic mapping with respect to

a∗ =
1 + α
1 + α

a + (α/(1 + α))
1 + a(α/(1 + α))

∈ B(D). (2.12)

There are few logharmonic mappings that are univalent on the whole complex plane
C. Indeed, Abdulhadi and Bshouty [1] showed the following.

Theorem 2.3. A function f is a univalent logharmonic mapping defined in C with respect to a ∈ U
if and only if

f(z) = const · (z − z0)|z − z0|2β, β =
a(1 + a)
(
1 − |a|2

) , z0 ∈ C. (2.13)
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Now let D be a simply connected proper domain in C and f a univalent logharmonic
function in D with respect to a ∈ B(D). Denote by ϕ a conformal mapping from the unit disc
U onto D. Then f ◦ ϕ is univalent logharmonic in U with respect to a∗ = a ◦ ϕ ∈ B(U).
Therefore, we may assume that D = U and f(0) = 0.

Analogous to the analytic case, we denote

SLh =
{
f(z) = z|z|2βhg : f is a univalent logharmonic mapping defined in U

with h(0) = g(0) = 1
}
.

(2.14)

Now 12β = 1, and SLh is not compact with respect to the topology of normal convergence.
Indeed, the sequence fn(z) = z|z|(1−n)/n is in SLh, and it converges uniformly to f(z) = z|z|−1
not in SLh. Our next result deals with the subclass S0

Lh of SLh defined by S0
Lh = {f ∈ SLh :

a(0) = 0 (resp., β = 0)}. The following result was proved in [1].

Theorem 2.4. S0
Lh

is compact in the topology of normal (locally uniform) convergence.

Remark 2.5. In contrast to univalent harmonic mappings, SLh is not a normal family. Indeed,

fn(z) =
z

(1 − z)2

∣∣∣∣∣
z

(1 − z)2

∣∣∣∣∣

2n

(2.15)

is not locally uniformly bounded for n sufficiently large.

The following interesting distortion theorem is due to Abdulhadi and Bshouty [1], and
it was used in the proof of the mapping theorem.

Theorem 2.6. If f ∈ S0
Lh, then |f(z)| ≥ |z|/4(1 + |z|)2. In particular, the disc {w : |w| < 1/16} is

in f(U).

2.3. Mapping Theorem

We look for an analogue of the Riemann Mapping Theorem. LetΩ/=C be a simply connected
domain in C, and let a ∈ B(U) be given. Fix z0 ∈ U and w0 ∈ Ω. We are interested in the
existence of a univalent logharmonic function f from U into Ω with respect to the given
function a and normalized by f(z0) = w0 and fz(z0) > 0. If |a| ≤ k < 1 for all z ∈ U, then the
univalent logharmonic mappings are quasiconformal, and therefore the problem is solvable.

Suppose that we want to find a univalent logharmonic mapping f with a(z) = −z,
normalized by f(0) = 0 and fz(0) > 0 such that f maps U onto Ω = C \ (−∞,−1]. Assume
that such a function exists. Then, using Theorem 5.1 (α = 0), it follows that f must be of the
form

f = const · z(1 − z)
(1 − z) . (2.16)

Observe that f is univalent inU, but mapsU onto a disc, and not onto a slit domain. In other
words, there is no univalent logharmonic mapping defined in U with respect to a(z) = −z
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satisfying f(0) = 0, fz(0) > 0, and f(U) = Ω. However, the following mapping theorem was
proved in [1].

Theorem 2.7. Let Ω be a bounded simply connected domain in C containing the origin, and whose
boundary is locally connected. Let a ∈ B(U) be given. Then there is a univalent logharmonic function
defined inU with the following properties.

(i) f is a solution of (1.1).

(ii) f(U) ⊂ Ω, normalized at the origin by f(z) = cz|z|2β(1 + o(1)), where β = a(0)(1 +
a(0))/(1 − |a(0)|2) and c > 0.

(iii) limz→ eitf(z) = f̂(eit) exists and is in ∂Ω for each t ∈ ∂U \ E, where E is a countable set.

(iv) For each eit0 ∈ ∂U, f∗(eit0) = ess limt↑t0 f̂(e
it) and f∗(eit0) = ess limt↓t0 f̂(e

it) exist and
are in ∂Ω.

(v) For eit0 ∈ E, the cluster set of f at eit0 lies on a helix joining the point f∗(eit0) to the point
f∗(eit0).

Remark 2.8. In the case where ‖a‖ = supz∈U|a(z)| < 1, properties (ii) and (iii) imply that
f(U) = Ω.

Remark 2.9. If eit0 ∈ E and f∗(eit0) = f∗(eit0), then the cluster set at eit0 is a circle. Suppose
that A = f∗(eit0)/= f∗(eit0) = B, then there are infinitely many helices joining A and B. But the
cluster set of f at eit0 lies on one of them. For example, the cluster set of

f(z) = z
(1 − z)
(1 − z) exp

(
−2 arg 1 − iz

1 − z
)

(2.17)

at z = 1 lies on the helix, γ(τ) = exp[−τ + i(π/2 + τ)] joining the points f∗(1) = −e−π/2
and f∗(1) = −e3π/2, where the cluster set of f at z = −i is the straight line segment from
f∗(−i) = −e−π/2 and f∗(−i) = −e3π/2.

The uniqueness of the mapping theorem was proved in [6] for the special case Ω is a
strictly starlike and bounded domain; that is, every ray starting at the origin intersects ∂Ω at
exactly one point.

Theorem 2.10 (uniqueness in the mapping theorem). Let a ∈ B(U) be given such that ‖a‖ =
supz∈U|a(z)| < 1. Let Ω be a strictly starlike and bounded domain. Then there exists a unique
univalent logharmonic function f(z) = z|z|2βh(z)g(z) with respect to a such that f(U) = Ω and
h(0) > 0.

2.4. Logharmonic Automorphisms

We consider univalent logharmonic mappings from U onto U. With no loss of generality,
it is assumed that f(0) = 0 and h(0) > 0. Otherwise, we consider an appropriate Möbius
transformation of the preimage. Let AUTLh(U) denote the class of such mappings. The
following two theorems established in [8] characterize completely mappings in AUTLh(U).
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Theorem 2.11. Let h and g be two nonvanishing analytic functions in U. Then f(z) =
z|z|2βh(z)g(z) is in AUTLh(U) satisfying h(0) > 0 and g(0) = 1 if and only if g = 1/h, Re(β) >
−1/2, and Re(zh′(z))/h(z) > −1/2 inU.

We now associate to each f(z) = z|z|2βh(z)/h(z) in AUTLh(U) with the mapping
ϕ(z) = z(h(z))2 ∈ S∗.

Theorem 2.12. (a) For each ϕ ∈ S∗ and for each β, Re(β) > −1/2, there is one and only one f ∈
AUTLh(U) such that f(z)/(ϕ(z)|z|2β) > 0 for every z ∈ U and h(0) = 1.

(b) For each a ∈ B(U), there is a unique solution of (1.1) which is in AUTLh(U).

Remark 2.13. Part (a) of Theorem 2.12 is quite surprising. Indeed, consider ϕ(z) = z/(1 − z)2
and β = 0. Then arg(f(eit)) = arg(ϕ(eit)) = ±π , almost everywhere; however, f(U) = U. To
be more precise, the corresponding mapping is f(z) = z(1 − z)/(1 − z) satisfying f(eit) = −1
for all 0 < |t| ≤ π , where the cluster set of f at the point 1 is the unit circle.

2.5. Univalent Logharmonic Mappings Extensions onto the Unit Disc

In 1926 Kneser [19] obtained the following result.

Theorem 2.14. Let Ω be a bounded simply connected Jordan domain, and let f∗ be an orientation-
preserving homeomorphism from the unit disc circle ∂U onto ∂Ω. Then, if f(U) = Ω, the solution of
the Dirichlet problem (the Poisson integral) is univalent on the unit discU.

Since f(U) always contains Ω and lies in the convex hull of Ω, Kneser used
Theorem 2.14 to obtain the following solution to a problem posed by Rado in [20].

Theorem 2.15. Let f∗ be a homeomorphism from ∂U onto ∂Ω, whereΩ is a bounded convex domain.
Then the Dirichlet solution f is univalent onU.

In 1945, Choquet [21] independently gave another proof of Theorem 2.15, and he
pointed out that it holds whenever Ω is not a convex domain.

We will use the following definition.

Definition 2.16. Let D be the unit disc U or the annulus A(r, 1), r ∈ (0, 1), and suppose that
f∗ is a continuous function defined on ∂D. One says that f is a logharmonic solution of the
Dirichlet problem if

(a) f is a solution of the form (1.1),

(b) f is continuous in D,

(c) f |∂D ≡ f∗.

The next two theorems proved in [6] deal with the solutions of the Dirichlet problem
for logharmonic mappings of the form (2.10).

Theorem 2.17. Let f∗ be a nonvanishing continuous complex-valued function defined on ∂U. Then
there exist h and g analytic inU which are independent of β, such that

f(z) = z|z|2βh(z)g(z) , Re
(
β
)
> −1

2
(2.18)
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is a logharmonic solution of the Dirichlet problem (i.e., f(eit) ≡ f∗(eit)). Furthermore, if g(0) = 1,
then h and g are uniquely determined.

Theorem 2.18. Let f∗ be an orientation-preserving homeomorphism from ∂U onto ∂U,
that is, f(eit) = eiλ(t), where λ is continuous and strictly monotonically increasing on [0, 2π).
Furthermore, suppose that λ(2π) = λ(0) + 2π . Then, for a given β with Re(β) > −1/2, the
logharmonic solution of the Dirichlet problem which is of the form f(z) = z|z|2βh(z)/h(z) is
univalent inU.

2.6. Boundary Behavior

Let f be a univalent logharmonic mapping in the unit disc U with respect to a ∈ B(U). If
|a(z)| ≤ k < 1 for all z ∈ U, then f is a quasiconformal map, and its boundary behavior is the
same as for conformal mappings. However, if |a| approaches one as z tends to the boundary,
then the boundary behavior of f is quite different. It may happen that the boundary values
are constant on an interval of ∂U, or that there are jumps as the following example shows.

Example 2.19. The function f(z) = z(1−z)/(1−z) is a univalent logharmonic mapping in the
unit disc U with respect to a(z) = −z, such that f(U) = U. It follows that f(eit) = −1 for all
0 < |t| ≤ π and that the cluster set of f at the point 1 is the unit circle.

The following theorem was stated in [1].

Theorem 2.20. Let Ω be a simply connected domain of C whose boundary ∂Ω is locally connected,
and a ∈ B(U). Let f be a univalent logharmonic mapping from U onto Ω satisfying f(0) = 0. Then
the nonrestricted limit f∗(eit) of f at eit exists on ∂U \ E, where E is a countable set. If eit ∈ E, then
f∗ jumps at eit, and the cluster set at eit is a subinterval of a logarithmic spiral.

The next theorem [22] shows that the boundary values of f depend strongly on the
values of a(eit).

Theorem 2.21. Let Ω be a simply connected domain of C whose boundary ∂Ω is locally connected
and a ∈ B(U). Suppose that the function a has an analytic extension across an open subinterval
I = {eit : σ < t < σ + 2π} of the unit circle ∂U, such that |a(z)| ≡ 1 in I. Let f be a univalent
logharmonic mapping with respect to a which maps U onto Ω and satisfies f(0) = 0. Then the
following relations hold in I.

(a) Let σ < t < σ + 2π and arg(f(z)) be a continuous function on the set Y := |z : 1/2 <
|z| < 1, σ < arg(z) < τ}. If σ < t < t + h < τ , then

log
(
f∗
(
ei(t+h)

))
− a(ei(t+h)) log(f∗(ei(t+h)

)) − log
(
f∗
(
eit
))

+ a(eit) log
(
f∗(eit)

)
+
∫ t+h

t

log
(
f∗(eiφ

))
da

(
eiφ

) ≡ 0.
(2.19)

(b) If f∗ is continuous at eit, then

lim
t↓0

Im
√
a(eit)

f∗(ei(t+h)
)
/f∗(ei(t−h)

) − 1
h

= 0. (2.20)
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(c) If f∗ jumps at eit, which must and can happen only when f∗(I) lies on a segment of a log-
arithmic spiral, for q ∈ f∗(I), then

arg

(
log

f∗(ei(t+0)
)

q

)
= −1

2
arg

(
a
(
eit
))

mod π. (2.21)

(d) If f∗ is not constant on a subinterval of I, then the right limit

lim
t↓0

arg

(
f∗(ei(t+h)

)

f∗(ei(t−h)
) − 1

)
= −1

2
arg

(
a
(
eit
))

mod π (2.22)

exists everywhere on I.

2.7. A Constructive Method

In this section, a method is introduced for constructing univalent logharmonic mappings
from the unit disc onto a strictly starlike domain Ω, which has been successfully applied to
conformal mappings (see, e.g., [23–25]), as well as for univalent harmonic mappings (see,
e.g., [26, 27]).

Let Ω be a strictly starlike domain of C. Then ∂Ω can be expressed in the parametric
form

w(t) = R(t)eit, 0 ≤ t ≤ 2π, (2.23)

where R is a positive continuous function on [0, 2π]. The following notations will be used:

∥∥f
∥∥
∞ = sup

{∣∣f(z)
∣∣; z ∈ U}

,

‖Ω‖∞ = sup{|w|;w ∈ Ω},
d(∂Ω) = distance from the origin to ∂Ω.

(2.24)

For all w ∈ C, define

λΩ(w) =

⎧
⎨

⎩

|w|
R(t)

, 0/=w = |w|eit,
0, w = 0.

(2.25)

Then

λΩ(w) < 1 ⇐⇒ w ∈ Ω,

λΩ(w) = 1 ⇐⇒ w ∈ ∂Ω,
λΩ(w) > 1 ⇐⇒ w ∈ C \Ω,
λΩ(w) = 0 ⇐⇒ w = 0.

(2.26)
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For any complex-valued function f inU, define

μΩ
(
f
)
= sup

{
λΩ(w) : w ∈ f(U)

}
. (2.27)

The following properties are due to Bshouty et al. [26].

Lemma 2.22. (a) μΩ(f) ≤ 1 ⇔ f(U) ⊂ Ω,
(b) μΩ(tf) = tμΩ(f) for all t ≥ 0,
(c) μΩ(f) ≤ ‖f‖∞/d(∂Ω),
(d) ‖f‖∞ ≤ μΩ(f)‖Ω‖∞,
(e) μΩ(f1 + f2) ≤ (μΩ(f1) + μΩ(f2))(‖f‖∞/d(∂Ω)).

The next lemma shows that μΩ is lower semicontinuous with respect to the point-wise
convergence; this was proved in [28].

Lemma 2.23. Let Ω be a strictly starlike domain of C, and let fn be a sequence of mappings from U
into C which converges pointwise to f . Then limn→∞ inf(μΩ(fn)) ≥ μΩ(f). Strict inequality can
hold even in the case of locally uniform convergence.

Let Ω be a fixed strictly starlike domain of C, and let a ∈ H(U), a(0) = 0, |a| ≤ k < 1
be a given (second) dilatation function. Denote by N the set of all logharmonic mappings
f(z) = zh(z)g(z)with respect to the given dilatation functionwhich are normalized by g(0) =
h(0) = 1. Observe that β = 0 since it is assumed that a(0) = 0. Hengartner and Nadeau [27]
solved the following optimization problem.

Theorem 2.24. Let Ω be a strictly starlike domain of C, and let a ∈ H(U), a(0) = 0, |a| ≤ k < 1
be given. Denote by F(z) = zH(z)G(z) the univalent logharmonic mapping satisfying F(U) =
Ω, G(0) = 1, and H(0) > 0. Then there exists a unique f∗ ∈ N such that μΩ(f∗) ≤ μΩ(f) for all
f ∈N and f∗ = F/H(0).

Theorem 2.24 allows us to solve the following mathematical program:

minM, λ
(
f(z)

) ≤M ∀z ∈ U, ∀f ∈N. (2.28)

For f ∈N, f(z) = zh(z)g(z), where h(z) = exp(
∑∞

k=1 akz
k) and

g(z) = exp

(∫z

0

a(s)
s

ds +
∞∑

k=1

kak

∫z

0
a(s)sk−1ds

)
. (2.29)

Furthermore, each f ∈N is an open mapping. Denote by Vn the set of all mappings f ∈N of
the form

f(z) = z exp

(∫z

0

a(s)
s

ds +
∞∑

k=1

[
akz

k + kak

∫z

0
a(s)sk−1ds

])
(2.30)
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and by f∗
n any solution of the optimization problem

min
{
μΩ

(
f
)
; f ∈ Vn

}
. (2.31)

As a consequence of Theorem 2.24, Hengartner and Rostand [28] obtained the fol-
lowing result.

Theorem 2.25. Let a be a polynomial such that ‖a‖∞ ≤ k < 1 inU. Then the sequence f∗
n of solutions

of

minμΩ
(
f
)
, f ∈ Vn, (2.32)

converges locally uniformly to the univalent solution f∗ of

minμΩ
(
f
)
, f ∈N. (2.33)

The question remains how big could n be. It follows from Theorem 5.24 that |an| ≤
2 + n−1 and |bn| ≤ 2 − n−1. Suppose that Ω is a Jordan domain whose boundary ∂Ω
is rectifiable and piecewise smooth. Hengartner and Nadeau [27] obtained the following
additional estimate for the coefficients.

Theorem 2.26. Let

F(z) = z|z|2β exp
( ∞∑

k=1

akz
k +

∞∑

k=1

bkzk

)
(2.34)

be a univalent logharmonic mapping fromU onto Ω, and let L be the length of F(|z| = r), 0 < r < 1.
Then

|an| ≤ limr→ 1 infL(r)
2πd(∂Ω)n

,

|bn| ≤ limr→ 1 infL(r)
2πd(∂Ω)n

.

(2.35)

Equality holds for the case Ω = U and f(z) = z(1 − z)/(1 − z).

3. Univalent Logharmonic Mappings on Multiply Connected Domains

3.1. Univalent Logharmonic Exterior Mappings

This section considers univalent logharmonic and orientation-preserving mappings f de-
fined on the exterior of the unit disc U, Δ = {z : |z| > 1}, satisfying f(∞) = ∞. These
mappings are called univalent logharmonic exterior mappings. If f does not vanish on Δ,
then Ψ(z) = 1/f(1/z) is a univalent logharmonic mapping defined in U normalized by
Ψ(0) = 0. Moreover, F(ζ) = log f(eζ) is a univalent harmonic mapping defined on the right
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half-plane {ζ : Re(ζ) > 0} satisfying the relation F(ζ + 2πi) = F(ζ) + 2πi and F is a solution of
the linear elliptic partial differential equation

Fζ = AFζ, (3.1)

where the second dilatation function A(ζ) = a(eζ), a ∈ B(Δ), satisfies A(ζ + 2πi) = A(ζ) on
{ζ : Re(ζ) > 0}. Such mappings were studied in [9, 29–32]. Several authors have also studied
harmonic mappings between Riemannian manifolds, and an excellent survey has been given
in [33–37].

The next result proved in [4] is a global representation of univalent logharmonic
exterior mappings.

Theorem 3.1. Let f be a univalent logharmonic mapping defined on the exterior Δ of the closed unit
discU such that f(∞) = ∞. Suppose that f(p) = 0 for some p ∈ Δ, or if f does not vanish, let p = 1.
Then there are two complex numbers β and γ , Re(β) > −1/2, Re(γ) > −1/2, and two nonvanishing
analytic functions h and g on Δ ∪ {∞} such that g(∞) = 1, and f is of the form

f(z) = z|z|2β
(
z − p
1 − pz

)∣∣∣∣
z − p
1 − pz

∣∣∣∣
2γ

h(z)g(z) (3.2)

for all z ∈ Δ.

Remark 3.2. Observe that not each function of the form (3.2) is univalent. Indeed, the function

f(z) = z|z|2 z − 4
1 − 4z

(3.3)

is not a univalent logharmonic mapping on Δ, but it can be written in the form (3.2) by
putting β = 1, γ = 0, p = 4, h(z) = 1/g(z) = (4z − 1)/(4z).

Let f be a univalent logharmonic exterior mapping defined on the exterior Δ of the
closed unit disc U such that f(∞) = ∞. Applying an appropriate rotation to the preimage,
we may assume that p ≥ 1.

Definition 3.3. The class
∑

Lh consists of all univalent logharmonic mappings defined on Δ
which are of the form (3.2), where p ≥ 1, Re(β) > −1/2, Re(γ) > −1/2, and h and g are
analytic nonvanishing functions on Δ ∪ {∞}, normalized by g(∞) = 1 and |h(∞)| = 1.

Let f be a univalent logharmonic mapping in Δ with f(∞) = ∞. Then there is a real
number α and a positive constant A such that Af(e−αz) belongs to

∑
Lh. If f does not vanish

on Δ, then the set of omitted values is a continuum. In other words, there is no univalent
logharmonic mapping f defined onΔ satisfying f(∞) = ∞ and f(Δ) = C\{0}. Note that 0 is
an exceptional point, since, for each w0 ∈ C \ {0}, there are univalent logharmonic mappings
f such that f(Δ) = C \ {w0}. Assume that p > 1, let f ∈ ∑

Lh, and let w0 be an omitted value
of f . Applying a rotation to the image f(Δ), we may assume that w0 = 1, and we restrict
ourselves to the subclass

∑∗
Lh = {f ∈ ∑

Lh, p > 1, w0 = 1 /∈ f(Δ)}.
In the next theorem, Abdulhadi and Hengartner [4] gave a complete characterization

of all mappings in the class
∑∗

Lh .
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Theorem 3.4. A mapping f belongs to
∑∗

Lh and f(Δ) = C \ {1} if and only if f is of the form

f(z) = z|z|2β
(
z − p
1 − pz

)∣∣∣∣
z − p
1 − pz

∣∣∣∣
2γ

, p > 1, (3.4)

where β and γ satisfy the inequality

∣∣∣∣∣∣∣

β
(
1 + γ

) − γ
(
1 + β

)

1 + γ + γ
− 1
p2 − 1

∣∣∣∣∣∣∣
≤ p

p2 − 1
. (3.5)

3.2. Univalent Logharmonic Ring Mappings

In this section we investigate the family Ar of all univalent logharmonic mappings f which
map an annulus A(r, 1) = {z : r < |z| < 1}, 0 < r < 1, onto an annulus A(R, 1) for some
R ∈ [0, 1) satisfying the condition

1
2π

∫

|z|=ρ
d arg f

(
ρeit

)
= 1 (3.6)

for all ρ ∈ (r, 1). The last condition says that the outer boundary corresponds to the outer
boundary. We call an element f ∈ Ar a univalent logharmonic ring mapping.

If a ≡ 0, then R = r and f(z) = eiαz, α ∈ R, are the only mappings in Ar . In the case
of univalent harmonic mappings from A(r, 1) onto A(R, 1), it may be possible that R = 0; for
example, f(z) = (1 − r2)−1(z − (r2/z)) has this property. However, Nitsche [38] has shown
that there is an R0(r) < 1 such that there is no univalent harmonic mapping fromA(r, 1) onto
A(R, 1) whenever R0 < R < 1.

There is no univalent logharmonic mappings fromA(r, 1), 0 < r < 1, ontoA(0, 1). This
is a direct consequence of Theorem 3.5. But, on the other hand, for R there is neither a positive
lower bound nor a uniform upper bound strictly less than one. Indeed, f(z) = z|z|2β, Re(β) >
−1/2, is univalent on A(r, 1), and its image is A(r1+2Re(β), 1).

Unlike the case of univalent harmonic mappings, univalent logharmonic mappings
need not have a continuous extension onto the closure ofA(r, 1). Indeed, f(z) = z(z−1)/(z−
1) is a univalent logharmonic ring mapping from A(1/2, 1) onto itself whose cluster sets on
the outer boundary are C(f, eit) = {−1}, if z = eit, 0 < t < 2π , and C(f, 1) = {w : |w| = 1}.

Let S∗(r, 1) be the set of all univalent analytic functions ϕ onA(r, 1)with the properties

(i) p(z) = zϕ′(z)/ϕ(z) ∈ H(A(r, 1)),

(ii) Re(p(z)) > 0 on A(r, 1).

Theorems 3.5 and 3.6 [5] give a complete characterization of univalent logharmonic
mappings in Ar .

Theorem 3.5. A function f belongs to Ar if and only if

f(z) = z|z|2β h(z)
h(z)

, (3.7)
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where

(a) h ∈ H(A(r, 1)) and 0 /∈ h(A(r, 1)),

(b) Re(zh′(z)/h(z)) > −1/2 on A(r, 1),

(c) (1/2π)
∫
|z|=ρ d arg f(ρe

it) = 0, r < ρ < 1,

(d) Re(β) > −1/2.

In particular, functions belonging to Ar map concentric circles onto concentric circles.

Theorem 3.6. A function f is in Ar if and only if it is of the form

f(z) =

(
ϕ(z)
∣∣ϕ(z)

∣∣ |z|
2γ

)
, (3.8)

where Re(ϕ) > 0 and ϕ ∈ S∗(r, 1).

Next we fix the second dilatation function a ∈ H(A(r, 1)), |a(z)| < 1 for all z ∈ A(r, 1).
The following existence and uniqueness theorem was established in [5].

Theorem 3.7. For a given a ∈ H(A(r, 1)), |a(z)| < 1 for all z ∈ A(r, 1), and, for a given z0 ∈
A(r, 1), there exists one and only one univalent solution f of (1.1) in Ar such that f(z0) > 0.

Remark 3.8. Theorem 3.7 is not true for univalent harmonic ring mappings (see [32, Theorem
7.3].)

3.3. Univalent Logharmonic Mappings Extensions onto the Annulus

The next two theorems proved in [6] deal with the solution of the Dirichlet problem for ring
domains.

Theorem 3.9. Let f∗ be a nonvanishing continuous function defined on the boundary ∂A(r, 1) of the
annulusA(r, 1). Then there exists, for each β, Re(β) > −1/2, a unique mapping f of the form (2.10),
which is continuous on the closure of A(r, 1) and satisfies f = f∗ on ∂A(r, 1).

Theorem 3.10. Let f∗(eit) = eiλ(t) and f∗(reit) = Reiμ(t), 0 < R < 1, be a given continuous function
on ∂A(r, 1), 0 < r < 1, satisfying

(a) dλ(t) ≥ 0 and dμ(t) ≥ 0 on [0, 2π],

(b)
∫2π
0 dλ(t) =

∫2π
0 dμ(t) = 2π .

Then the logharmonic solution of the Dirichlet problem with respect to f∗and A(r, 1) is a
univalent mapping from A(r, 1) onto A(R, 1).

4. Logharmonic Polynomials

Denote by pn an analytic polynomial of degree n. A logharmonic polynomial is a function
of the form f = pnpm. In contrast to the analytic case, there are nonconstant logharmonic
polynomials which are not p-valent for every p > 0. For example, the function f(z) = zz
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is a logharmonic polynomial in C with respect to a = −1. Moreover, the function f(z) =
(z − 1)(z + 1) is a logharmonic polynomial in C with respect to a(z) = (z + 1)/(z − 1). This
polynomial is two-valent and omits the half-plane Re(w) < −1. On the other hand, they
inherit the property limz→∞f(z) = ∞ of analytic polynomials. This follows from the fact that
|f | = |pnpm| = |pnpm|. However, the converse is not true; there are logharmonic functions f =
hg defined inC which are not logharmonic polynomials and have the property limz→∞f(z) =
∞. The function f(z) = zeze−z is such an example. Note that there are harmonic polynomials
pn(z) + pm(z) which do not satisfy limz→∞f(z) = ∞. However, if it is assumed that a(∞)
exists and |a(∞)|/= 1, then the following result [2] is deduced.

Theorem 4.1. Let f = hg be a logharmonic function in C such that limz→∞f(z) = ∞. If
limz→∞a(z) = a(∞) exists and if |a(∞)|/= 1, then f is a polynomial.

Denote byNZ(f −w,D) the cardinality of Z(f −w,D), that is, the number of zeros of
f −w inD, multiplicity not counted. The polynomial f(z) = |z|2 has the property thatNZ(f −
1, C) = ∞. On the other hand, using Theorem 2.3, it follows that a univalent logharmonic
mapping in C is necessarily a polynomial which is either of the form f(z) = const · (z −
a)(z − a)m or of its conjugate, where const/= 0, a ∈ C, andm = 0, 1, 2, . . .. There are functions
of the form f = hg which are not polynomials but have the property that NZ(f − w, C) is
finite and uniformly bounded for all w ∈ C. For example, the function f(z) = zezez −w has
at most two zeros for all fixed w ∈ C. The following result was shown in [2].

Theorem 4.2. Let f = hg be a logharmonic function in C such that NZ(f − w,G) is finite for at
least two different values of w, limz→∞a(z) = a(∞) exists with |a(∞)|/= 1, then f is a polynomial.

An upper bound on the number of w-points of a logharmonic polynomial can be
readily obtained by using Bezout’s theorem [39].

Theorem 4.3 (see [39]). Let p(x, y) and q(x, y) be polynomials in the real variables x and y with
real coefficients. If deg(p) = n and deg(q) = m, then either p and q have at most nm common zeros
or they have infinitely many zeros.

Wilmshurst [40] has shown that Bezout’s theorem gives a sharp upper bound for the
number of zeros of a harmonic polynomial and hence for polyanalytic polynomials (see, e.g.,
[41, 42]). However, this is not true for logharmonic polynomials.

Let f = pnpm be a logharmonic polynomial of degree n + m. Then f(z) − w =∑n
k=0

∑m
j=0 akjz

kzj . The functions P(z) = Re(f(z)) and Q(z) = Im(f(z)) are real-valued
polynomials in x and y and are of degree n + m. Applying Bezout’s theorem, we conclude
with the following estimate.

Theorem 4.4. Let f = pnpm be a logharmonic polynomial defined in C. Then either f − w has
infinitely many zeros or f −w has at most (n +m)2 zeros for all w ∈ C.

The bound is not the best possible. Indeed, a quadratic polynomial is of the form f(z) =
p2(z), f(z) = p2(z), or f(z) = a(z+b)(z + c). In all three cases, f−w has either infinitely many
zeros or it has at most two.

Observe that the logharmonic polynomial f(z) = (z − 1)/(z + 1) is 2-valent and omits
the half-plane Re(w) < −1 and that |a|/≡ 1. However, the situation changes if |a(∞)|/= 1 and
we have the following result [2].
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Theorem 4.5. Let f = pnpm be a logharmonic polynomial defined in C, and suppose that n > m.
Fix w ∈ C such that Z(f − w, C) ∩ (∂D ∪ SE(D)) is empty. Then the number of zeros VZ(f −
w,SE(C)) of f −w, and hence also the valency V (f,C) of f in C, is at least n −m. The bound is best
possible.

The following result is an immediate consequence of Theorem 4.5.

Corollary 4.6. Let f = pnpm be a logharmonic polynomial defined in C, and suppose that n > m.
Then

(i) f(C) = C,

(ii) for almost all w ∈ C, the function f −w has at least n −m disjoint zeros.

The next result characterizes polynomials of finite valency [2].

Theorem 4.7. Let f = pnpm be a logharmonic polynomial defined in C, such that pn /≡ const · pm.
Then the cardinalityNZ(f −w,C) of the zero set Z(f −w,C) is finite (hence, by Bezout’s theorem,
uniformly bounded) for all w ∈ C.

Remark 4.8. If pn ≡ const · pm, then the image lies on a straight line.

5. Subclasses of Logharmonic Mappings

5.1. Spirallike Logharmonic Mappings

Let Ω be a simply connected domain if C contains the origin. We say that Ω is α-spi-
rallike, −π/2 < α < π/2, if w ∈ Ω implies that w exp(−teiα) ∈ Ω for all t ≥ 0. If α = 0, the
domain Ω is called starlike (with respect to the origin). We will use the following notations.

(a) Sα
Lh

is the set of all univalent logharmonic mappings f in U satisfying f(0) = 0,
h(0) = g(0) = 1, and f(U) is an α-spirallike domain.

(b) Sα = {f ∈ Sα
Lh

and f ∈ H(U)}.
(c) S∗

Lh = S0
Lh and S

∗ = S0, for which f(U) is starlike (with respect to the origin).

To each f(z) = z|z|2βh(z)g(z) ∈ Sα
Lh
, we associate the analytic function ψ(z) =

zh(z)/g(z)e
iα

, ψ(0) = 0. Abdulhadi and Hengartner [8] gave a representation theorem for
mappings in the class SαLh.

Theorem 5.1. (a) If f ∈ Sα
Lh
, then ψ ∈ Sα.

(b) For any given ψ ∈ Sα and a ∈ B(U), there are h and g inH(U) uniquely determined such
that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,

(ii) ψ(z) = zh(z)/g(z)e
iα

,

(iii) f(z) = z|z|2βh(z)g(z) is a solution of (1.1) in Sα
Lh
, where β = (a(0)(1+a(0)))/(1−

|a(0)|2).
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Remark 5.2. Theorem 5.1 has no equivalence for the class of all convex univalent logharmonic
mappings. Indeed, ψ(z) = z is a convex mapping, a(z) = z4 ∈ B(U), but f(z) = z/|1 − z4|1/2
is not a convex mapping.

Remark 5.3. Theorem 5.1 asserts that the class SαLh, α fixed in (−π/2, π/2), is isomorphic to
Sα × B(U).

The following result is an immediate consequence of Theorem 5.1.

Corollary 5.4. If f ∈ SαLh, then f(rz)/r ∈ SαLh for all r ∈ (0, 1). In other words, level sets inherit
the property of being α-spirallike.

The next result is an integral representation for f ∈ Sα
Lh

[8].

Theorem 5.5. A function f ∈ SαLh if and only if there are two probability measures μ and ν on the
Borel sets of ∂U and an a(0) ∈ U such that

f(z) = z|z|2β · exp
{∫

∂U×∂U
K(z, ζ, ξ;a(0))dμ(ζ)dν(ξ)

}
, (5.1)

where

β =
a(0)(1 + a(0))

1 − |a(0)|2
,

K(z, ζ, ξ;a(0)) = −2 cos(α) · eiα · log(1 − ζz) + 2eiα Re
{
eiα log(1 − ζz)} + T(z, ζ, ξ;a(0)),

T(z, ζ, ξ;a(0)) = 2eiα Re
eiα(1 + a(0))

(
1 − a(0)e−2iα

)
ζ + e−iα

(
1 + a(0)

)(
1 − a(0)e2iα)ξ

(ζ − ξ)|1 − a(0)e2iα|2

× log
1 − ξz
1 − ζz ,

(5.2)

if |ζ| = |ξ| = 1, ζ /= ξ, and

T(z, ζ, ζ;a(0)) = 4 cos(α) · eiα · Re ζz

(1 − ζz)
1 − |a(0)|2

|1 − a(0)e2iα|2
. (5.3)

Observe that Sα
Lh

is not compact, but Theorem 5.5 can be used to solve extremal
problems over the class of mappings in Sα

Lh
with a given a(0) = 0.

We have seen in Corollary 5.4 that if f is a univalent logharmonicmapping inU, f(0) =
0, and if f(U) is starlike, then f(|z| < r) is starlike (with respect to the origin) for all r ∈ (0, 1).
The next result proved in [8] shows that this property may fail whenever f(0)/= 0.

Theorem 5.6. For each z0 ∈ U \ {0}, there are univalent logharmonic mappings f such that f(z0) =
0, f(U) is starlike (with respect to the origin), but no level set f(|z| < r), |z0| = ρ < r < 1, is
starlike.
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5.2. Close-to-Starlike Logharmonic Mappings

5.2.1. Logharmonic Mappings with Positive Real Part

Let PLh be the set of all logharmonic mappings R in U which are of the form R = HG, where
H and G are inH(U),H(0) = G(0) = 1, such that Re(R(z)) > 0 for all z ∈ U. In particular, the
set P of all analytic functions p inU with p(0) = 1 and Re(p(z)) > 0 inU is a subset of PLh.

The next result [43] describes the connection between PLh and P .

Theorem 5.7. A function R = HG ∈ PLh if and only if p = H/G ∈ P .
As a consequence of Theorem 5.7, it follows that R admits the representation

R(z) = p(z) exp 2Re
∫z

0

a(s)
1 − a(s)

p′(s)
p(s)

ds, (5.4)

where a ∈ B(U) and p is an analytic function with positive real part normalized by p(0) = 1.

The following result [43] is a distortion theorem for the class PLh.

Theorem 5.8. Let R(z) = H(z)G(z) ∈ PLh, and suppose that a(0) = 0. Then for z ∈ U

(i) exp(−2|z|/(1 − |z|)) ≤ |R(z)| ≤ exp(2|z|/(1 − |z|)),
(ii) |Rz(z)| ≤ (2/(1 − |z|)(1 − z|2)) exp(2|z|/(1 − |z|)),
(iii) |Rz(z)| ≤ (2|z|/(1 − |z|)(1 − |z|2)) exp(2|z|/(1 − |z|)).

Equality occurs for the right inequalities if R is a function of the form R0(ζz), |ζ| = 1, where

R0(z) =
1 + z
1 − z

∣∣∣∣
1 + z
1 − z

∣∣∣∣ exp
(
Re

2z
1 − z

)
, (5.5)

and equality occurs for the left inequalities if R is of the form

1
R0(ζz)

, |ζ| = 1. (5.6)

5.2.2. Close-to-Starlike Logharmonic Mappings

Let F(z) = z|z|2βhg be a logharmonic mapping. The function F is close to starlike if F is a
product between a starlike logharmonic mapping f(z) = z|z|2βh∗g∗ ∈ S∗

Lh which is a solution
of (1.1) with respect to a ∈ B(U) and a logharmonic mapping with positive real part R ∈ PLh
with the same second dilatation function a.

The geometric interpretation for a close-to-starlike logharmonic mappings is that the
radius vector of the image of |z| = r < 1 never turns back by an amount more than π .

Denote by CSTLh the set of all close-to-starlike logharmonic mappings. It contains in
particular the set CST of all analytic close-to-starlike functions which was introduced by
Reade [44] in 1955. Also, the set S∗

Lh of all starlike univalent logharmonic mappings is a subset
of CSTLh (take R(z) ≡ 1 in the product). Furthermore, if F(z) = z|z|2βhg is a logharmonic
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mapping with respect to a ∈ B(U) satisfying h(0) = g(0) = 1 and ReF(z)/z|z|2β > 0, then F
is a close-to-starlike logharmonic mapping, where

f(z) = z|z|2β
∣∣∣∣exp

(∫z

0

a(s)/s
1 − a(s)ds

)∣∣∣∣
2

. (5.7)

On the other hand, a mapping F ∈ CSTLh need not necessarily be univalent. For example,
take F(z) = z(1 + z), where z ∈ S∗ and 1 + z ∈ P .

Our next result is a representation theorem for the class CSTLh proved in [43].

Theorem 5.9. (a) Let F = z|z|2βhg be in CSTLh. Then ψ = zh/g ∈ CST.

(b) Given any ψ ∈ CST and a ∈ B(U), there are h and g inH(U) uniquely determined such
that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,
(ii) ψ(z) = zh/g,
(iii) F = z|z|2βhg is in CSTLh which is a solution of (1.1) with respect to the given a.

Corollary 5.10. F ∈ CSTLh if and only if F(rz)/r ∈ CSTLh for all r ∈ (0, 1).

In the next result the radius of univalence and the radius of starlikeness are determined
for those mappings in the set CSTLh [43].

Theorem 5.11. Let F = z|z|2βhg ∈ CSTLh. Then F maps the disc |z| < R, R ≤ 2−√3, onto a starlike
domain. The upper bound is best possible for all a ∈ B(U).

Combining Theorems 5.8 and 5.11 with α = 0, we obtain the following distortion
theorem for the class CSTLh.

Theorem 5.12. Let F = zhg ∈ CSTLh. Then, for every z ∈ U,

(a) |z| exp(−2|z|/(1 − |z|) − 4|z|/(1 + |z|)) ≤ |F(z)| ≤ |z| exp(6|z|/(1 − |z|)),
(b) |Fz(z)| ≤ ((|z|2 + 4|z| + 1)/(1 − |z|)2(1 + |z|)) exp(6|z|/(1 − |z|)),
(c) |Fz(z)| ≤ (|z|(|z|2 + 4|z| + 1)/(1 − |z|)2(1 + |z|)) exp(6|z|/(1 − |z|)).
Equality holds for the right inequalities if F is a function of the form

Fη,ζ(z) =
z
(
1 − ηz)

(
1 − ηz)

1 + ζz
1 − ζz

∣∣∣∣
1 − ζz
1 + ζz

∣∣∣∣ exp
(
Re

[
4ηz

1 − ηz +
2ζz

1 − ζz
])

, (5.8)

where |η| = |ζ| = 1, and for the left inequalities if F is a function of the form

Fη,ζ(z) =
z
(
1 − ηz)

(
1 − ηz)

1 + ζz
1 − ζz

∣∣∣∣
1 − ζz
1 + ζz

∣∣∣∣ exp
(
Re

[
4ηz

1 − ηz − 2ζz
1 − ζz

])
, (5.9)

where |η| = |ζ| = 1.
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5.3. Typically Real Logharmonic Mappings

A logharmonic mapping f is said to be typically real if and only if f is real whenever z is real
and if f is normalized by f(0) = 0 and h(0)g(0) = 1, or equivalently by f(0) = 0 and h(0) =
g(0) = 1. Denote by TLh the class of all orientation-preserving typically real logharmonic
mappings. Since f is orientation preserving and univalent on the interval (−1, 1), it follows
that f is of the form (2.10). Furthermore, if f ∈ TLh, then β (and hence, also a(0)) has to be
real and yields the relation

Im z Im f(z) > 0, ∀ z ∈ U \ R. (5.10)

The class TLh is a compact convex set with respect to the topology of locally uniform
convergence, and it contains, in particular, the set T of all analytic typically real functions.

5.3.1. Basic Properties of Mappings from TLh

The following representation theorem for typically real logharmonic mappings was proved
in [45].

Theorem 5.13. (a) If f(z) = z|z|2βh(z)g(z) is in TLh, then φ = zh/g ∈ T .

(b) Given φ ∈ T and a ∈ B(U) such that β ∈ R and a(0) ∈ R, there are uniquely determined
mappings h and g inH(U) such that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,
(ii) φ(z) = zh/g,
(iii) F = z|z|2βhg is in TLh which is a solution of (1.1) with respect to the given a.

As a consequence of Theorem 5.13, it follows that

f(z) = zh(z)g(z) = φ(z)
∣∣g(z)

∣∣2, (5.11)

where

g(z) = exp
∫z

0

a(s)φ′(s)
(1 − a(s))φ(s)ds,

zh(z) = φ(z)g(z).
(5.12)

Denote by T0
Lh the subclass of TLh (β = 0) consisting of all mappings F from TLh for

which φ = zh/g = z/(1 − z2). Then F is of the form

F(z) =
z

1 − z2 exp 2Re
∫z

0

a(s)
(
1 + s2

)

s(1 − a(s))(1 − s2)ds. (5.13)

The next theorem links the class TLh with the class PLh.
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Theorem 5.14 (see [45]). Let f(z) = zh(z)g(z) ∈ TLh with respect to a ∈ B(U), and a(0) = 0.
Then there exist an R ∈ PLh and an F ∈ T0

Lh
, such that both functions are logharmonic with respect to

the same a and

f(z) = F(z)R(z). (5.14)

The next result is a distortion theorem for the class T0
Lh
.

Theorem 5.15 (see [45]). Let F(z) = zh(z)g(z) ∈ T0
Lh
. Then, for z ∈ U,

(a) |F(z)| ≤ |z| exp(2|z|/(1 − |z|)),
(b) |Fz(z)| ≤ ((1 + |z|2)/(1 − |z|2)(1 − |z|)) exp(2|z|/(1 − |z|)),
(c) |Fz(z)| ≤ (|z|(1 + |z|2)/(1 − |z|2)(1 − |z|)) exp(2|z|/(1 − |z|)).
Equality holds if and only if F is of the form ηF0(ηz), |η| = 1, where

F0(z) =
z

1 − z2
∣∣∣1 − z2

∣∣∣ exp
(
Re

(
2z

1 − z
))

. (5.15)

Combining Theorems 5.8, 5.14, and 5.15, the following distortion theorem is obtained
for the class TLh.

Theorem 5.16. Let f(z) = zh(z)g(z) ∈ TLh. Then, for z ∈ U,

(a) |f(z)| ≤ |z| exp(4|z|/(1 − |z|)),
(b) |fz(z)| ≤ ((1 + |z|)/(1 − |z|2)) exp(4|z|/(1 − |z|)),
(c) |fz(z)| ≤ (|z|(1 + |z|)/(1 − |z|2)) exp(4|z|/(1 − |z|)).
Equality holds if f is of the form ηf0(ηz), |η| = 1, where

f0(z) =
z(1 − z)
1 − z exp

(
Re

(
4z

1 − z
))

. (5.16)

Remark 5.17. The function f0 given in (5.16) plays the role of the Koebe mapping in the set of
logharmonic mappings (see, e.g., [1, 6]).

The next result gives the radius of univalence and the radius of starlikeness for the
mappings in the set TLh [45].

Theorem 5.18 (see [45]). Let f(z) = z|z|2βh(z)g(z) ∈ TLh. Then f maps the disc {z : |z| < R0},
where R0 = (1 +

√
5 −

√
2 + 2

√
5)/2, onto a starlike domain. The upper bound is the best possible for

all a ∈ B(U).

5.3.2. Univalent Mappings in TLh

Nowwe consider univalent mappings in TLh. For analytic typically real functions, it is known
that if t(z) = z +

∑∞
n=2 anz

n is univalent in the unit disc U, then t belongs to T if and only if
the image t(U) is a domain symmetric with respect to the real axis.
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One might consider a similar problem in TLh. Let f(z) = z|z|2βh(z)g(z) be a univalent
logharmonic mapping in the unit disc U, and h(0) = g(0) = 1, β > −1/2. Observe that β
(and hence a(0)) is real. Is it true that f belongs to TLh if and only if the image of f(U) is a
symmetric domain with respect to the real axis?

The answer is negative in both directions. Indeed, the function

f(z) = z
(
1 +

iz

8

)(
1 − iz

8

)
(5.17)

is a normalized univalent logharmonic typically real mapping, but f(U) is not symmetric
with respect to the real axis. On the other hand, the function f(z) = z(1 + iz)/(1 − iz) is a
univalent logharmonic mapping from U onto U, and f(U) is symmetric with respect to the
real axis, but f is not typically real (for more details, see [45]).

Additional conditions on a and on the image domainΩ = f(U) are needed in order to
get an affirmative answer to the question posed above.

Theorem 5.19 (see [45]). Letf(z) = z|z|2βh(z)g(z) be a univalent (orientation-preserving) lo-
gharmonic mapping in the unit disc U and normalized by f(0) = 0, h(0) = g(0) = 1. Suppose that
the second dilatation function a has real coefficients, that is, a(z) ≡ a(z). (Observe that the condition
a(0) real or equivalently β real is automatically satisfied.)

(a) If f is typically real, then f(U) is symmetric with respect to the real axis.

(b) If |a| ≤ k < 1 inU and f(U) is a strictly starlike Jordan domain symmetric with respect to
the real axis, then f is typically real.

5.4. Starlike Logharmonic Mappings of Order α

Let f = z|z|2βhg be a univalent logharmonic mapping. We say that f is starlike logharmonic
mapping of order α if

∂ arg f
(
reiθ

)

∂θ
= Re

zfz − zfz
f

> α, 0 ≤ α < 1, (5.18)

for all z ∈ U. Denote by STLh(α) the set of all starlike logharmonic mappings of order α. If
α = 0, we get the class of starlike logharmonic mappings. Also, let ST(α) = {f ∈ STLh(α) and
f ∈ H(U)}.

In this section, we obtain two representation theorems [46] for functions in STLh(α). In
the first, we establish the connection between the classes STLh(α) and ST(α). The second is an
integral representation theorem.

Theorem 5.20. Let f(z) = zh(z)g(z) be a logharmonic mapping in U, 0 /∈ hg(U). Then f ∈
STLh(α) if and only if ϕ(z) = zh(z)/g(z) ∈ ST(α).



26 Abstract and Applied Analysis

Theorem 5.21. A function f = zhg ∈ STLh(α) with a(0) = 0 if and only if there are two probability
measures μ and ν such that

f(z) = z exp
(∫

∂U×∂U
K(z, ζ, ξ)dμ(ζ)dν(ξ)

)
, (5.19)

where

K(z, ζ, ξ) = (1 − α) log
(

1 + ζz
1 − ζz

)
+ T(z, ζ, ξ),

T(z, ζ, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2(1 − α) Im
(
ζ + ξ
ζ − ξ

)
arg

(
1 − ξz
1 − ζz

)
− 2α log|1 − ξz|, if |ζ| = |ξ| = 1, ζ /= ξ,

(1 − α)Re
(

4ζz
1 − ζz

)
− 2α log|1 − ζz|, if |ζ| = |ξ| = 1, ζ = ξ.

(5.20)

Remark 5.22. Theorem 5.21 can be used to solve extremal problems for the class STLh(α)with
a(0) = 0. For example, see Theorem 5.23.

The following is a distortion theorem for the class STLh(α)with a(0) = 0.

Theorem 5.23 (see [46]). Let f = zh(z)g(z) ∈ STLh(α) with a(0) = 0. Then, for z ∈ U,

|z|
(1 + |z|)2α

exp
(
(1 − α) −4|z|

1 + |z|
)

≤ ∣∣f(z)
∣∣ ≤ |z|

(1 − |z|)2α
exp

(
(1 − α) 4|z|

1 − |z|
)
. (5.21)

Equalities occur if and only if f(z) = ζf0(ζz), |ζ| = 1, where

f0(z) = z
(
1 − z
1 − z

)
1

(1 − z)2α
exp

(
(1 − α)Re 4z

1 − z
)
. (5.22)

The next result gives sharp coefficient estimates for functions h and g in the starlike
logharmonic mapping f = zh(z)g(z).

Theorem 5.24 (see [6]). Let f = zh(z)g(z) ∈ STLh(0) with a(0) = 0, and put

h(z) = exp

( ∞∑

k=1

akz
k

)
, g(z) = exp

( ∞∑

k=1

bkz
k

)
. (5.23)

Then

|an| ≤ 2 +
1
n
, |bn| ≤ 2 − 1

n
(5.24)



Abstract and Applied Analysis 27

for all n ≥ 1. Equality holds for the mapping

f(z) = z
1 − zeiα
1 − zeiα exp

(
4zeiα

1 − zeiα
)
, α ∈ (0, 2π). (5.25)

5.5. Functions with Logharmonic Laplacian

We consider the class of all continuous complex-valued functions F = u + iv in a domain
D ⊆ C such that the Laplacian of F is logharmonic. Note that log(ΔF) is harmonic in D if it
satisfies the Laplace equation Δ(log(ΔF)) = 0, where

Δ = 4
∂2

∂z∂z
. (5.26)

In any simply connected domain D, we can write

F = r2L +H, z = reiθ, (5.27)

where L is logharmonic andH is harmonic in D. It is known that L andH can be expressed
as

L = h1g1,

H = h2 + g2,
(5.28)

where h1, g1, h2, and g2 are analytic in D. Denote by LLh(U) the set of all functions of the
form (5.27) which are defined in the unit discU.

Note that the composition L ◦ φ of a logharmonic function Lwith an analytic function
φ is logharmonic and, also, the composition H ◦ φ of a harmonic function H with analytic
function φ is harmonic, while this is not true for the function F. Also, if F1(z) = r2L1(z) and
F2(z) = r2L2(z) are in LLh(U), where L1 and L2 are logharmonic with respect to the same a,
then Fα1F

β

2 , α + β = 1, is also in LLh(U).
Denote the Jacobian ofW by JW . Then

JW = |Wz|2 − |Wz|2. (5.29)

Also let

λW = |Wz| − |Wz|,
ΛW = |Wz| + |Wz|.

(5.30)

Then JW = λWΛW .



28 Abstract and Applied Analysis

5.5.1. The Univalence of Functions with Logharmonic Laplacian

First a lower bound for the area of the range of F(z) = r2L(z) is established, where L is a
starlike univalent logharmonic mapping.

Theorem 5.25 (see [47]). Let F(z) = r2L(z), where L = hg is starlike univalent logharmonic inU,
with g(0) = 1 and h′(0) = 1. Let A(r, F) denote the area of F(Ur), where Ur = {z : |z| < r}, for
r < 1. Then

A(r, F) ≥ 2π

[
−2r + r2 − 2r3

3
+
r4

2
− r5

5
+
r6

6
− r8

8
+ 2 ln(1 + r)

]
. (5.31)

Equality holds if and only if L0(z) = r2z(1 + z/2)/(1 + z/2) or one of its rotations.

Definition 5.26. Let L be logharmonic function in U. A complex-valued function of the form
F(z) = r2L(z) is starlike in U if it is orientation preserving, F(0) = 0, F(z)/= 0 when z/= 0
and the curve F(reit) is starlike with respect to the origin for each 0 < r < 1. In other words,
∂ argF(reit)/∂t = Re((zFz − zFz)/F) > 0.

Remark 5.27. Note that starlike functions are univalent inU.

The following theorem links starlike functions in LLh(U) with the class of starlike
analytic functions.

Theorem 5.28 (see [48]). Let F(z) = r2L(z), where L(z) = h(z)g(z), be a logharmonic function
in U with respect to a, where a ∈ B(U) with a(0) = 0. Then F is starlike univalent in U if and only
if ψ(z) = h(z)/g(z) is starlike univalent function inU.

Corollary 5.29. The function r2L(z) is starlike for all conformal starlike functions L.

A characterization of the logharmonic Laplacian solutions of the Dirichlet problem in
the unit discU is given in [48].

Theorem 5.30. Let F∗ be an orientation-preserving homeomorphism from ∂U onto ∂U, that is,
F∗(eit) = eiλ(t), where λ is continuous and strictly monotonically increasing on [0, 2π]. Furthermore,
suppose that λ(2π) = λ(0)+2π . Then F(z) = z|z|2h(z)/h(z) is a univalent solution of the Dirichlet
problem inU.

For the general case F(z) = r2L(z)+H(z), a sufficient condition is obtained that makes
F locally univalent.

Theorem 5.31 (see [48]). Let F(z) = r2h1(z)g1(z) +h2(z) +g2(z) be in the class LLh(U). Suppose
that ψ(z) = h1(z)/g1(z) is starlike univalent inU, and |g ′

2(z)| < |h′2(z)| for z ∈ U. If

Re
[
g ′
2
(
r2h1g1

)
z

]
< Re

[
h′2
(
r2h1g1

)
z

]
, (5.32)

then JF(z) > 0 for z/= 0, and F is locally univalent.
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5.5.2. Landau’s Theorem for Functions with Logharmonic Laplacian

Lewy’s famous theorem [49] states that a harmonic function W is locally univalent in D
(univalent in some neighborhood of each point in D) if and only if its Jacobian does not
vanish in D.

The classical Landau Theorem states that if f is analytic in the unit discU with f(0) =
0, f ′(0) = 1, and |f(z)| < M for z ∈ U, then f is univalent in the discUρ0 = {z : |z| < ρ0}with

ρ0 =
1

M +
√
M2 − 1

, (5.33)

and f(Uρ0) contains a discUR0 withR0 =Mρ20. This result is sharp, with the extremal function
f(z) =Mz(1 −Mz)/(M − z) (see [19]).

Chen et al. [50] obtained a version of Landau’s Theorem for bounded harmonic
mappings of the unit disc. Unfortunately their result is not sharp. Better estimates were given
in [51] and later in [52].

Specifically, it was shown in [52] that if f is harmonic in the unit disc U with f(0) =
0, Jf(0) = 1, and |f(z)| < M for z ∈ U, then f is univalent in the discUρ1 = {z : |z| < ρ1}with

ρ1 = 1 − 2
√
2M√

π + 8M2
, (5.34)

and f(Uρ1) contains a disc UR1 with R1 = π/4M − 2M(ρ21/(1 − ρ1)). This result is the best
known, but not sharp.

The following Schwarz lemma for harmonic mappings is due to Grigoryan [52].

Lemma 5.32 (Schwarz lemma). Let f be a harmonic mapping of the unit discU with f(0) = 0 and
f(U) ⊂ U. Then

∣∣f(z)
∣∣ ≤ 4

π
arctan|z| ≤ 4

π
|z|,

Λf(0) ≤ 4
π
.

(5.35)

Recently Mao et al. [53] established the Schwarz lemma for logharmonic mappings,
through which two versions of Landau’s theorem for these mappings were obtained.

The next theorem gives Landau’s theorem for functions with logharmonic Laplacian
of the form F = r2L(z).

Theorem 5.33 (see [47]). Let L be logharmonic inU such that L(0) = 0, JL(0) = 1, and |L(z)| < M
for z ∈ U. Then there is a constant 0 < ρ2 < 1 such that F = r2L is univalent in the disc |z| < ρ2, ρ2
is the solution of the equation 1 = 2ρ2M/(1−ρ22)− 2Mρ2/(1−ρ22)2, and f(Uρ2) contains a discUR2

with R2 = ρ22 − 2Mρ42/(1 − ρ22). This result is not sharp.

Finally we give a Landau theorem for functions of logharmonic Laplacian of the form
F = r2L +K.
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Theorem 5.34 (see [47]). Let F = r2L + K, z = reiθ be in LLh(U), where L is logharmonic and
K is harmonic in the unit disc U, such that L(0) = K(0) = 0, JF(0) = 1, and |L| and |K| are both
bounded byM. Then there is a constant 0 < ρ3 < 1 such that F is univalent in |z| < ρ3. Specifically
ρ3 satisfies

π

4M
− 2ρ3M − 2M

⎛

⎝ ρ33
(
1 − ρ23

)2 +
1

(
1 − ρ3

)2 − 1

⎞

⎠ = 0, (5.36)

and F(Uρ3) contains a discUR3 , where

R3 =
π

4M
ρ3 − ρ23M

1
1 − ρ23

− 2M
ρ23

1 − ρ3 . (5.37)
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[14] R. Osserman, A Survey of Minimal Surfaces, Dover, New York, NY, USA, 2nd edition, 1986.
[15] J. Clunie and T. Sheil-Small, “Harmonic univalent functions,” Annales Academiae Scientiarum Fennicae,

vol. 9, pp. 3–25, 1984.



Abstract and Applied Analysis 31

[16] W. Hengartner and G. Schober, “Univalent harmonic functions,” Transactions of the American
Mathematical Society, vol. 299, no. 1, pp. 1–31, 1987.

[17] W. Hengartner and G. Schober, “Harmonic mappings with given dilatation,” Journal of the London
Mathematical Society, vol. 33, no. 3, pp. 473–483, 1986.

[18] W. Hengartner and G. Schober, “Univalent harmonic mappings onto parallel slit domains,” The
Michigan Mathematical Journal, vol. 32, no. 2, pp. 131–134, 1985.

[19] H. Kneser, “Losung der Aufgabe 41,” Jahresber. Deutsch Math. Verein, vol. 35, pp. 123–124, 1926.
[20] T. Rado, “Aufgabe 41,” Jahresber. Deutsch Math. Verein, vol. 35, p. 49, 1926.
[21] G. Choquet, “Sur un type de transformation analytique généralisant la représentation conforme et
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optimization problem,”Matematički Vesnik, vol. 40, no. 3-4, pp. 233–240, 1988.

[28] W. Hengartner and J. Rostand, “A constructive method for univalent logharmonic mappings,” in
Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), vol. 430 of NATO
Science Series C: Mathematical and Physical Sciences, pp. 273–291, Kluwer Academic, Dodrecht, The
Netherlands, 1994.

[29] D. Bshouty and W. Hengartner, “Univalent solutions of the Dirichlet problem for ring domains,”
Complex Variables. Theory and Application, vol. 21, no. 3-4, pp. 159–169, 1993.

[30] Sh. Chen, S. Ponnusamy, and X. Wang, “Coefficient estimates and Landau-Bloch’s constant for planar
harmonic mappings,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 2, pp. 255–265,
2011.

[31] P. Duren, Harmonic Mappings in the Plane, vol. 156 of Cambridge Tracts in Mathematics, Cambridge
University Press, Cambridge, UK, 2004.

[32] W. Hengartner and G. Schober, “Univalent harmonic exterior and ring mappings,” Journal of
Mathematical Analysis and Applications, vol. 156, no. 1, pp. 154–171, 1991.

[33] J. Eells and L. Lemaire, “A report on harmonic maps,” The Bulletin of the London Mathematical Society,
vol. 10, no. 1, pp. 1–68, 1978.

[34] J. Eells, Jr. and J. H. Sampson, “Harmonic mappings of Riemannian manifolds,” American Journal of
Mathematics, vol. 86, pp. 109–160, 1964.

[35] J. Jost, Harmonic Maps between Surfaces, vol. 1062 of Lecture Notes in Mathematics, Springer, Berlin,
Germany, 1984.

[36] J. Jost, Two-Dimensional Geometric Variational Problems, Pure and Applied Mathematics, John Wiley &
Sons, Chichester, UK, 1991.

[37] R. M. Schoen, “The role of harmonic mappings in rigidity and deformation problems,” in Complex
Geometry (Osaka, 1990), vol. 143 of Lecture Notes in Pure and Applied Mathematics, pp. 179–200, Dekker,
New York, NY, USA, 1993.

[38] J. C. C. Nitsche, Lectures on Minimal Surfaces, vol. 1, Cambridge University Press, Cambridge, 1989.
[39] G. T. Whyburn, Topological Analysis, Princeton Mathematical Series, No. 23, Princeton University

Press, Princeton, NJ, USA, 2nd edition, 1964.
[40] A. S. Wilmshurst, “The valence of harmonic polynomials,” Proceedings of the American Mathematical

Society, vol. 126, no. 7, pp. 2077–2081, 1998.
[41] M. B. Balk, Polyanalytic Functions, vol. 63 ofMathematical Research, Akademie-Verlag, Berlin, Germany,

1991.
[42] M. B. Balk, “The fundamental theorem of algebra for polyanalytic polynomials,” Lietuvos Matematikos

Rinkinys, vol. 8, pp. 401–404, 1968.



32 Abstract and Applied Analysis

[43] Z. Abdulhadi, “Close-to-starlike logharmonic mappings,” International Journal of Mathematics and
Mathematical Sciences, vol. 19, no. 3, pp. 563–574, 1996.

[44] M. O. Reade, “On close-to-close univalent functions,” The Michigan Mathematical Journal, vol. 3, pp.
59–62, 1955.

[45] Z. Abdulhadi, “Typically real logharmonic mappings,” International Journal of Mathematics and
Mathematical Sciences, vol. 31, no. 1, pp. 1–9, 2002.

[46] Z. Abdulhadi and Y. Abu Muhanna, “Starlike log-harmonic mappings of order α,” Journal of
Inequalities in Pure and Applied Mathematics, vol. 7, no. 4, Article 123, p. 6, 2006.

[47] Z. Abdulhadi, Y. Abu Muhanna, and R. M. Ali, “Landau’s theorem for functions with logharmonic
Laplacian,” Applied Mathematics and Computation, vol. 218, pp. 6798–6802, 2012.

[48] Z. Abdulhadi, “On the univalence of functions with logharmonic Laplacian,” Applied Mathematics and
Computation, vol. 215, no. 5, pp. 1900–1907, 2009.

[49] H. Lewy, “On the non-vanishing of the Jacobian in certain one-to-one mappings,” Bulletin of the
American Mathematical Society, vol. 42, no. 10, pp. 689–692, 1936.

[50] H. Chen, P. M. Gauthier, and W. Hengartner, “Bloch constants for planar harmonic mappings,”
Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3231–3240, 2000.

[51] M. Dorff and M. Nowak, “Landau’s theorem for planar harmonic mappings,” Computational Methods
and Function Theory, vol. 4, no. 1, pp. 151–158, 2004.

[52] A. Grigoryan, “Landau and Bloch theorems for harmonic mappings,” Complex Variables and Elliptic
Equations, vol. 51, no. 1, pp. 81–87, 2006.

[53] Zh.Mao, S. Ponnusamy, and X.Wang, “Schwarzian derivative and Landau’s theorem for logharmonic
mappings,” Complex Variables and Elliptic Equations.




