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Welcome to this special issue of PPAR research dedicated
to “PPARs in Eye Biology and Disease.” PPARs are well
known to regulate the expression of genes involved in lipid
and glucose metabolism. Very recently, these transcription
factors have been demonstrated to modulate proliferative,
inflammatory, and oxidative stress responses, including those
that happen in the eye. We have collected a comprehensive
group of review papers that are focused on discussing the
relationships of PPARs with choroidal neovascularization,
inflammation, and redox balance, as well as perspective
therapeutic potentials of PPAR modulators in eye diseases.

Angiogenesis is an important element of normal devel-
opment and neovascularization which occurs normally in
wound healing. However, neoangiogenesis is unfortunately
also associated with various pathological ocular conditions
including corneal neovascularization secondary to graft
rejection and traumatic, chemical, and infectious insults;
diabetic complications in both the anterior and posterior
segments; retinoproliferative disease secondary to vaso-occ-
lusive events; as well as choroidal neovascularization asso-
ciated with trauma, high myopia, genetic disease, and age-
related macular degeneration (AMD). Of these, AMD is
currently the leading cause of blindness in the developed
world. As such, much effort and expense is and has
been invested in understanding and seeking cures for this
devastating condition. Although there is little direct evidence
linking PPAR action to AMD, there is a growing body of
literature demonstrating that PPARs may be involved in
various chemical pathways associated with AMD. In this
issue, three papers authored by respected experts in the field
are presented which review what we now know about the
relationship between the 3 PPAR isoforms, α, β, and δ, and
ocular angiogenesis with emphasis on AMD. Bishop-Bailey
has reviewed PPARβ/δ-mediated angiogenesis in the context

of ocular disorders. Gehlbach et al. have briefly discussed the
PPAR-α ligands as potential therapeutic agents for wet AMD.
Chan et al. have comprehensively described PPARs with the
development of AMD. There now appears to be ample data
in the peer-reviewed literature to encourage further study
of the link between PPARs and AMD, and investigate the
therapeutic potential of PPARs. In addition, an authoritative
fourth paper authored by Pershadsingh is also offered to
address PPARγ agonists as potential therapeutics for non-
AMD proliferative retinopathies.

Inflammatory signaling participates in the development
of different forms of eye diseases. Inflammatory injury happ-
ens under the conditions in which pathoangiogenic signaling
is activated in acute inflammatory responses; chronic inflam-
mation is triggered by oxidative stress in diabetic retinopathy
and atrophic AMD. The majority of reports documented in
the literature support an anti-inflammatory role of PPARs,
in particular PPARγ, by blocking the release of inflamma-
tory mediators from activated immune cells in vitro and
dampening inflammation in animal models. Minghetti et al.
have explored the roles of PPARγ in microglial cell functions
and therapeutic potentials of PPARγ ligands on ocular
diseases such as AMD, diabetic retinopathy, autoimmune
uveitis, and optic neuritis. Yanagi has evaluated the role of
PPARγ in the breakdown of blood-retinal barrier, providing
strong evidence that targeting PPARγ would be beneficial
to diabetic retinopathy via maintaining the integrity of
blood-retinal barrier. Phipps et al. have extensively reviewed
the literature regarding the role of lymphocytes in thyroid
eye disease-related inflammation, offering PPARγ ligands
as a therapeutic approach via inhibition of inflammatory
signaling in activated lymphocytes and fibroblasts.

The potential regulation of redox balance by PPARs in
the eye has been recently suggested and may constitute a new,
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exciting research field over the next few years. Phagocytosis of
tips of rod outer segments’ selectively upregulates expression
of PPARγ in retinal pigment epithelial (RPE) cells, suggesting
that PPARγ activation might deal with oxidative stress during
RPE cell phagocytosis. Oxidative stress is a major risk factor
causing RPE cell degeneration since RPE cells are exposed to
high levels of free radicals due to phagocytosis of oxidized
photoreceptor outer segments, intense light irradiation, and
high oxygen consumption in the macular area. PPARγ
ligands protect a variety of cell types from oxidative stress
injury in vitro, including retinal cells, though no in vivo
data are available yet. Chang et al. have briefly reviewed the
cytoprotective effects of an endogenous PPARγ agonist, 15d-
PGJ2, on oxidative stress-induced RPE cell death.

PPARs are emerging as potential targets for drugs that
might be used in the treatment of ocular diseases in which
PPAR activities play a key role in disease pathology. It is our
hope that this special issue will serve as a seed stimulating
broad interests to pursue therapeutic avenues of PPARs
in eye diseases. The outcomes of such investigations will
undoubtedly shed light on the roles of PPARs in eye diseases
and possibly identify new roles of PPARs in the etiology of
eye diseases.

Suofu Qin
Roy S. Chuck
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Review Article
A Role for PPARβ/δ in Ocular Angiogenesis
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The uses of highly selective PPARβ/δ ligands and PPARβ/δ knockout mice have shown a direct ability of PPARβ/δ to regulate
angiogenesis in vitro and in vivo in animal models. PPARβ/δ ligands induce the proangiogenic growth factor VEGF in many cells
and tissues, though its actions in the eye are not known. However, virtually, all tissue components of the eye express PPARβ/δ.
Both angiogenesis and in particular VEGF are not only critical for the development of the retina, but they are also a central com-
ponent in many common pathologies of the eye, including diabetic retinopathy and age-related macular degeneration, the most
common causes of blindness in the Western world. This review, therefore, will discuss the recent evidence of PPARβ/δ-mediated
angiogenesis and VEGF release in the context of ocular disorders.

Copyright © 2008 David Bishop-Bailey. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Peroxisome proliferator-activated receptors (PPAR’s) belong
to the steroid receptor superfamily of ligand-activated tran-
scription factors [1]. Three PPAR’s, PPARα, PPARβ/δ, and
PPARγ, have been identified [2]. PPARα is predominantly
expressed in liver, heart, kidney, brown adipose tissue, and
stomach mucosa; PPARγ is found primarily in adipose tissue;
PPARβ/δ is the most ubiquitously expressed [3, 4], though
its roles in physiological and pathophysiological processes
are far from clear, particularly, in human tissue. The re-
cent development of PPARβ/δ knockout and transgenic mice
has started to implicate roles for PPARβ/δ in adipose tissue
formation, metabolism, wound healing, brain development,
placental function, atherosclerosis, colorectal carcinogenesis,
and skeletal muscle function [5–7]. In this review, the emerg-
ing role of PPARβ/δ in regulating endothelial function and
angiogenesis will be discussed with a particular emphasis to
its relevance in the eye.

2. PPARβ/δ LIGANDS

A number of synthetic PPARβ/δ compounds have been
described including GW0742X, GW2433, GW9578, L-
783,483, GW501516, L-796,449, L-165,461, and compound

F [8, 9]. In addition, putative endogenous PPARβ/δ ac-
tivators include fatty acids [3, 10], triglycerides [11],
the cyclooxygenase (COX) product, prostacyclin [10],
the COX/prostacyclin synthase derived endocannabinoid
metabolites [12], and all-trans retinoic acid (ATRA) [13].
ATRA is derived from vitamin A (retinol) which is found at
its highest levels in the eye and is essential for its development
and function [14]. Retinol is converted to retinaldehyde, a
component of rhodopsin [14] and a functional PPARγ antag-
onist [15, 16], which in turn is metabolised to ATRA by reti-
nal dehydrogenases [14]. ATRA has its own family of high-
affinity nuclear receptors, the retinoic acid receptor (RAR)α,
-β, and -γ, which like the PPAR’s act as heterodimers with
RXRα, -β, and -γ, the receptors for the ATRA isomer 9-cis
retinoic acid [17]. Although ATRA can activate PPARβ/δ,
it is not known which, if any, of its actions are mediated
by PPARβ/δ. However, since ATRA is present in such large
quantities in ocular tissue, it is potentially an important site
for its actions.

3. PPARβ/δ AND ENDOTHELIAL CELLS

Endothelial cells play critical roles in vascular biology, being
both the protective inner lining of vessels and the local site for
delivery of oxygen to all tissues. Angiogenesis is the process
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of new blood vessel/capillary formation from existing vessels,
and hypoxia is a major signal which drives the process [18].
PPARα, PPARβ/δ, and PPARγ are all expressed in endothelial
cells [19]. PPARα and PPARγ have well-characterised roles
in endothelial cells, both being in general anti-inflammatory,
antiproliferative [1], and antiangiogenic in a variety of in
vitro and in vivo models, including tumorigenesis [20] and
laser-induced retinal injury [21]. In contrast, the role of
PPARβ/δ in this important cell type has only recent start-
ing to be elucidated. Initial reports using prostacyclin as a
ligand suggested that like PPARα and PPARγ, PPARβ/δ pro-
moted endothelial cell apoptosis [22]. In contrast, the use of
highly selective synthetic ligands has revealed a contradictory
role for PPARβ/δ regulating endothelial cell survival, prolif-
eration, and angiogenesis.

3.1. PPARβ/δ and endothelial cell
proliferation and survival

Long- [23] and short-term [24] culture of endothelial cells
with the selective ligand GW501516 induces endothelial cell
proliferation, an effect associated with the induction of the
VEGF receptor (Flt-1; VEGF R1) and VEGF production [23,
24]. In addition to inducing proliferation, PPARβ/δ activa-
tion protects cells from oxidant-induced apoptosis. Synthetic
PPARβ/δ ligands or activation of the COX-prostacyclin path-
way, which signals through PPARβ/δ, induce the endothelial
expression of 14-3-3α protein [25]. 14-3-3 proteins are anti-
apoptotic and anti-inflammatory molecules [26]. PPARβ/δ-
induced 14-3-3α blocks oxidant- (H2O2-) induced apopto-
sis by sequestering the proapoptotic protein Bad, stopping
its translocation to mitochondrial membranes, where it ini-
tiates cytochrome c release and the subsequent activation of
the proapoptotic caspase cascade [25].

3.2. PPARβ/δ and angiogenesis

In addition to having effects on endothelial cell prolifera-
tion, PPARβ/δ activation potently induces angiogenesis of
human vascular endothelial cells in tumour extracellular ma-
trix in vitro and in a murine matrigel plug model in vivo
[24]. In addition, the putative PPARβ/δ ligand prostacy-
clin analogues [27] and ATRA [28] also induce angiogene-
sis, though the latter appears mostly dependent on its RARα
receptor rather than PPARβ/δ [29]. In human endothelial
cells, a major trigger for morphogensis induced by PPARβ/δ
stimulation was the stimulated release of VEGF [24]. In ad-
dition to VEGF, mRNA for the matrix metalloproteinase
(MMP)-9, a protease important for cell migration was also
elevated by PPARβ/δ activation [24]; however, whether this
was secondary to VEGF release was not tested. VEGF is ex-
pressed as four main splice variants (by amino acid size:
VEGF121, VEGF165, VEGF189, VEGF206) [29]. VEGF (VEGF-
A; VEGF165) is a well-characterised central mediator of en-
dothelial cell growth and angiogenesis [29, 30]. Two en-
dothelial VEGF tyrosine kinase receptors have been identi-
fied: VEGFR-1/Flt-1, and VEGFR-2/KDR/Flk1. VEGF R2 ap-
pears to be the most important receptor in VEGF-induced
mitogenesis and permeability [29, 30]. In addition, in two

Endothelial cell Thrombospondin

VEGF

MMP-9

CD36

Flt-1

Flk-1

Clic4

CRBP1

p57kip2

14-3-3α

PPARβ/δ

Figure 1: Proangiogenic/prosurvival pathways of PPARβ/δ in en-
dothelial cells. PPARβ/δ is expressed in endothelial cells. PPARβ/δ
activation induces (solid line) the expression of VEGF and its re-
ceptor Flt-1, matrix metalloproteinase (MMP)-9, thrombospondin
and its receptor CD36, the chloride intracellular channel protein
(CLIC)-4, the cell cycle inhibitor p57kip2, and the antiapoptotic pro-
tein 14-3-3α. In contrast, the cellular retinol binding protein-1 is de-
creased (dashed line) by PPARβ/δ activation. For those interested, a
complex transcriptional map of the potential role of PPARβ/δ as a
hub node in tumour angiogenesis has recently also been formed as
detailed in [32].

recent studies, the growth of PPARβ/δ wild-type tumours or
angiogenesis in matrigel plugs in PPARβ/δ knockout mice
was tested [31, 32]. The tumours in PPARβ/δ knockout mice
compared to wild-type mice were associated with a dimin-
ished blood flow and an immature hyperplastic microvas-
cular structures. Moreover, the retroviral introduction of
PPARβ/δ into matrigel plugs was able to rescue the knockout
phenotype by triggering microvessel maturation [31]. In the
latter of these studies, PPARβ/δ was examined in tumours
from patients who had undergone “angiogenic switch” a
proangiogenic state involved in tumour progression [32].
PPARβ/δ correlated with advanced pathological tumor stage,
increased risk for tumor recurrence, and distant metastasis,
and was, therefore, suggested as a hub node transcription fac-
tor regulating tumour angiogenesis [32].

Genomic and proteomic analyses of the PPARβ/δ knock-
out endothelial cells isolated from matrigel plugs have also
led to the identification of a number of additional candi-
date genes to mediate the actions of PPARβ/δ in angiogen-
esis. In particular, the Cdkn1c gene which encodes the cell
cycle inhibitor p57Kip2 is a direct PPARβ/δ target gene that
mediates PPARβ/δ effects on cell morphogenesis [31]. In ad-
dition, CD36 and thrombospondin were also decreased in
matrigel-invading endothelial cells from PPARβ/δ knockout
mice [31]. Thrombospondins by directly interacting with
CD36 inhibit angiogenesis in vivo [33, 34]. Similarly, a pro-
teomic analysis by the same group [35] on PPARβ/δ knock-
out endothelial cells has also revealed a decreased expres-
sion of the chloride intracellular channel protein (CLIC)-4
in migrating endothelial cells from PPARβ/δ knockout mice.
In contrast, the expression of cellular retinol binding pro-
tein CRBP1 is increased in migrating endothelial cells from
PPARβ/δ knockout mice [35]. CLIC-4 promotes and plays
an essential role during tubular morphogenesis [36], while
CRBP1 inhibits cell survival pathways by acting as an in-
hibitor of the AKT signalling pathway [37], an additional im-
portant signalling signal for angiogenesis to occur [38].
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The combination of these studies show PPARβ/δ activa-
tion induces endothelial cell mitogen and differentiation sig-
nals, including VEGF, 14-3-3α, CD36 and thrombospondin,
CLIC4, CRBP-1, and p57KIP2, all of which may act in a co-
ordinate manner to bring about the functional morphogenic
changes associated with angiogenesis.

3.3. PPARβ/δ and VEGF

Although the direct evidence for a role of PPARβ/δ in an-
giogenesis is relatively new, there has been an increasing
literature regarding PPARβ/δ regulated tumour cell growth
via inducing tumour cells to release VEGF. PPARβ/δ lig-
ands induce VEGF in bladder cancer cells [39], human breast
(T47D, MCF7), and prostate (LNCaP, PNT1A) cancer cell
lines, along with its receptor flt-1 [22], but not (HT29,
colon; HCT116, colon; LS-174T, colon; HepG2, hepatoma;
and HuH7, hepatoma) cell lines [40].

In a genetic model of intestinal polyp development
APC/min mouse, deletion of PPARβ/δ decreases intestinal
adenoma growth and inhibits tumour-promoting effects of
the PPARβ/δ agonist GW501516 [41]. Moreover, activation
of PPARβ/δ upregulated VEGF in colon carcinoma cells, pro-
moting colon tumour epithelial cell survival through activa-
tion of AKT signalling [41]. Angiogenesis was not studied
in this model, however, any substantial tumour growth re-
quires a blood supply and angiogenesis to allow it to develop.
In contrast, in human colon and liver cancer cell lines [40],
PPARβ/δ ligands had no effect on human cancer cell growth,
AKT, VEGF or COX-2 expression in vitro or on these makers
in the liver, colon, and colon polyps in mice treated in vivo
[40]. The roles of PPARβ/δ in VEGF- mediated tumorigene-
sis are, therefore, still in need of further clarification.

3.4. Expression of PPARβ/δ in the eye

Angiogenesis regulates both the physiological development
and many of the most common pathophysiology’s of the eye.
As yet, there is no direct evidence linking PPARβ/δ and an-
giogenesis in the eye, however, PPARβ/δ is clearly expressed
at least in murine ocular tissue. PPARβ/δ is expressed in the
eye ciliary body epithelial cells, cornea epithelial cells, cornea
endothelium, cornea fibroblast, retina inner nuclear layer,
and retina ganglion cell layer [42]. Although one must be
cautious interpreting data from nonocular tissue to the eye
[43], as discussed previously and following, pathways that
have direct relevance to ocular angiogenesis are clearly reg-
ulated by PPARβ/δ and are therefore worthy of discussion.

4. VEGF AND OCULAR ANGIOGENESIS

VEGF is essential in retinal vasculature development [44].
Initially blood vessels grow from the optic nerve outwards.
As the retinal tissue develops via a complex interplay between
different cellular components such as neurons, glia, endothe-
lial cells, pericytes, and immune cells, the increased oxygen
demand induces hypoxia, the main stimulant for new vessel
growth via angiogenesis. As the tissue/vasculature develops
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Figure 2: Antiinflammatory/anticoagulation pathways of PPARβ/δ.
PPARβ/δ activation in endothelial cells reduces NFκB activation
and the induction of vascular cell adhesion molecule (VCAM)-1,
and monocyte chemoattractant protein (MCP)-1, along with the
release of tissue factor. PPARβ/δ is expressed in platelets and mono-
cytes/macrophages. PPARβ/δ ligands reduce platelet aggregation
via a rapid nongenomic mechanism. In macrophages, PPARβ/δ lig-
ands release the transcriptional corepressor BCL-6 from its complex
with PPARβ/δ. Free BCL-6 suppresses the release of MCP-1, MCP-
3, and IL-1β.

and gets oxygenated, hypoxia and VEGF decrease limiting
new vessel growth [44].

In contrast, neovascularisation of the adult eye via an-
giogenesis is a critical component of many disorders of the
eye including retinopathy of prematurity, diabetic retinopa-
thy, and age-related macular degeneration, the latter two be-
ing the leading causes of blindness in the Western world (as
reviewed in detail elsewhere [29, 45–48]). Pathological neo-
vascularisation resulting from tissue damage and hypoxia re-
sults in a more complex “inflammatory” angiogenesis. These
new vessels are often fragile and leaky leading to haemor-
rhage and vision disturbance and loss. The main trigger for
this new vessel growth still appears to be hypoxia induced
VEGF expression [29, 45–48]. Angiogenesis is a homeostatic
repair mechanism that is required for the reoxygenation of
the damaged ischemic tissue [29, 45–48]. The problems that
arise with pathologies such as age-related macular degenera-
tion and diabetic retinopathy are that this new vessel growth
is leaky and has a critical inflammatory component. VEGF
(in particular VEGF A; VEGF165) in addition to directly stim-
ulating angiogenesis is also a potent vascular permeability
factor and appears to play a role in regulating the local in-
flammation associated with pathological neovascularisation
[49]. VEGF has become a clear therapeutic target for the
treatment of angiogenesis in the eye. The clinical importance
of VEGF as a target has recently been further demonstrated
with the development and use of two new drugs targeting
its actions: Macugen (pegaptanib), an aptamer, and Lucentis
(ranibizumab), a FAB fragment, from a humanised mono-
clonal antibody, which both functionally block VEGF. More-
over, Macugen and Lucentis both show clinical efficacy in pa-
tients with age-related macular degeneration [50]; especially
when treated early and a mature neovasculature has yet to
form. These therapies require local delivery by intravitriol
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injection, which although having the benefit of overcoming
problems such as systemic VEGF blockade, they are clearly
still not ideal, and show that new therapies are still required.

5. PPARβ/δ OCULAR ANGIOGENESIS,
INFLAMMATION, AND COAGULATION

Angiogenesis associated with pathophysiology is often asso-
ciated with multiple process such as tissue damage, inflam-
mation, and coagulation. In contrast, developmental angio-
genesis may be a simpler hypoxia driven event. Indeed, an in-
flammatory response is induced by VEGF during pathologi-
cal but not physiological ischemia-induced retinal angiogen-
esis [51, 52]. Moreover, specifically blocking inflammatory
cytokines monocyte chemotactic protein-1 and macrophage
inflammatory protein-1a can reduce retinal neovascularisa-
tion [53]. Tissue factor is a critical initiator of blood coag-
ulation, and is associated with tumour aggressiveness and
angiogenesis in a variety of cancer cells [54], as well as in
choroidal neovascularisation where it promotes fibrin for-
mation and the growth of the choroidal angiogenic com-
plex [55]. One important facet of pathological angiogene-
sis may therefore be this involvement additional pathways,
and a complex interplay between processes of tissue damage,
hypoxia, inflammation, and coagulation. A long-term thera-
peutic aim may therefore be to have revascularisation of hy-
poxic tissue similar to development without these additional
inflammatory/coagulation processes.

PPARβ/δ induces VEGF in a number of cell types and
induces angiogenesis. Therefore, one may predict that a
PPARβ/δ antagonist would be useful to treat or at least test in
models of eye disease that involve neovascularisation. How-
ever, PPARβ/δ seems consistent with other PPAR’s in that it
also has anti-inflammatory and anticoagulation properties,
suggesting that its properties in ocular angiogenesis may be
more complex than one would originally predict.

PPARβ/δ activation suppresses endothelial cell tissue fac-
tor expression [12]. PPARβ/δ is also expressed in platelets
where its ligands reduce platelet aggregation to a variety of
stimuli [56]. Similar to PPARα and PPARγ, PPARβ/δ ligands
are anti-inflammatory in endothelial cells, inhibiting TNFα-
induced upregulation of expression of vascular cell adhe-
sion molecule-1, monocyte chemoattractanct protein-1, and
nuclear factor (NF)κB translocation [57]. In macrophages,
PPARβ/δ controls inflammatory status by its association and
disassociation with the transcriptional repressor BCL-6 [58];
in the absence of ligand, PPARβ/δ physically associates with
and inhibits this anti-inflammatory BCL-6. When a PPARβ/δ
ligand is added, BCL-6 dissociates from PPARβ/δ and re-
presses the inflammation and levels of monocyte chemoat-
tractanct protein-1, -3, and IL-1β [58].

6. CONCLUSION

PPARβ/δ induces angiogenesis and protects endothelial cells
from oxidant damage. A common signal for PPARβ/δ acti-
vation in endothelial cells or surrounding tissue may be the
induction of VEGF. PPARβ/δ is expressed in all tissues in the
eye, however its function has yet to be tested in physiologi-

cal processes, development, or pathophysiological disorders.
The development of both the eye and common pathologi-
cal disorders requires angiogenesis, with VEGF being a pri-
mary signalling molecule. Blocking PPARβ/δ may therefore
provide a new therapy to treat angiogenic eye disorders. The
difference between “physiological” and “pathophysiological”
angiogenesis may be additional components of inflammation
and coagulation. PPARβ/δ ligands reduce inflammation and
components of the coagulation cascade. It will be of great
interest to test the roles of PPARβ/δ in the eye as a poten-
tial proangiogenic stimulus reliving the hypoxia, while po-
tentially still capable of reducing the damaging inflamma-
tory/coagulation signals.
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development, and maturation of visual function,” Journal of
Neurobiology, vol. 66, no. 7, pp. 677–686, 2006.

[15] O. Ziouzenkova, G. Orasanu, M. Sharlach, et al., “Retinalde-
hyde represses adipogenesis and diet-induced obesity,” Nature
Medicine, vol. 13, no. 6, pp. 695–702, 2007.

[16] B. Desvergne, “Retinaldehyde: more than meets the eye,” Na-
ture Medicine, vol. 13, no. 6, pp. 671–673, 2007.

[17] M. Mark, N. B. Ghyselinck, and P. Chambon, “Function of
retinoid nuclear receptors: lessons from genetic and pharma-
cological dissections of the retinoic acid signaling pathway
during mouse embryogenesis,” Annual Review of Pharmacol-
ogy and Toxicology, vol. 46, pp. 451–480, 2006.

[18] J. Folkman, “Angiogenesis,” Annual Review of Medicine,
vol. 57, pp. 1–18, 2006.

[19] D. Bishop-Bailey and T. Hla, “Endothelial cell apoptosis
induced by the peroxisome proliferator- activated receptor
(PPAR) ligand 15-deoxy-Δ12,14-prostaglandin J2,” Journal of
Biological Chemistry, vol. 274, no. 24, pp. 17042–17048, 1999.

[20] D. Panigrahy, S. Singer, L. Q. Shen, et al., “PPARγ ligands in-
hibit primary tumor growth and metastasis by inhibiting an-
giogenesis,” Journal of Clinical Investigation, vol. 110, no. 7, pp.
923–932, 2002.

[21] T. Murata, S. He, M. Hangai, et al., “Peroxisome proliferator-
activated receptor-γ ligands inhibit choroidal neovasculariza-
tion,” Investigative Ophthalmology & Visual Science, vol. 41,
no. 8, pp. 2309–2317, 2000.

[22] T. Hatae, M. Wada, C. Yokoyama, M. Shimonishi, and T. Tan-
abe, “Prostacyclin-dependent apoptosis mediated by PPARδ,”
Journal of Biological Chemistry, vol. 276, no. 49, pp. 46260–
46267, 2001.

[23] R. L. Stephen, M. C. U. Gustafsson, M. Jarvis, et al., “Activation
of peroxisome proliferator-activated receptor δ stimulates the
proliferation of human breast and prostate cancer cell lines,”
Cancer Research, vol. 64, no. 9, pp. 3162–3170, 2004.

[24] L. Piqueras, A. R. Reynolds, K. M. Hodivala-Dilke, et al., “Ac-
tivation of PPARβ/δ induces endothelial cell proliferation and
angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biol-
ogy, vol. 27, no. 1, pp. 63–69, 2007.

[25] J.-Y. Liou, S. Lee, D. Ghelani, N. Matijevic-Aleksic, and
K. K. Wu, “Protection of endothelial survival by peroxi-
some proliferator-activated receptor-δ mediated 14-3-3 up-
regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology,
vol. 26, no. 7, pp. 1481–1487, 2006.

[26] E. Wilker and M. B. Yaffe, “14-3-3 proteins—a focus on cancer
and human disease,” Journal of Molecular and Cellular Cardi-
ology, vol. 37, no. 3, pp. 633–642, 2004.

[27] R. Pola, E. Gaetani, A. Flex, et al., “Comparative analysis of the
in vivo angiogenic properties of stable prostacyclin analogs: a

possible role for peroxisome proliferator-activated receptors,”
Journal of Molecular and Cellular Cardiology, vol. 36, no. 3, pp.
363–370, 2004.

[28] A. Saito, A. Sugawara, A. Uruno, et al., “All-trans retinoic acid
induces in vitro angiogenesis via retinoic acid receptor: pos-
sible involvement of paracrine effects of endogenous vascular
endothelial growth factor signaling,” Endocrinology, vol. 148,
no. 3, pp. 1412–1423, 2007.

[29] J. Bradley, M. Ju, and G. S. Robinson, “Combination therapy
for the treatment of ocular neovascularization,” Angiogenesis,
vol. 10, no. 2, pp. 141–148, 2007.

[30] A. Hoeben, B. Landuyt, M. S. Highley, H. Wildiers, A. T. Van
Oosterom, and E. A. De Bruijn, “Vascular endothelial growth
factor and angiogenesis,” Pharmacological Reviews, vol. 56,
no. 4, pp. 549–580, 2004.

[31] S. Müller-Brüsselbach, M. Kömhoff, M. Rieck, et al., “Dereg-
ulation of tumor angiogenesis and blockade of tumor growth
in PPARβ-deficient mice,” The EMBO Journal, vol. 26, no. 15,
pp. 3686–3698, 2007.

[32] A. Abdollahi, C. Schwager, J. Kleeff, et al., “Transcriptional
network governing the angiogenic switch in human pancre-
atic cancer,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 104, no. 31, pp. 12890–12895,
2007.

[33] M. Febbraio, D. P. Hajjar, and R. L. Silverstein, “CD36: a class
B scavenger receptor involved in angiogenesis, atherosclerosis,
inflammation, and lipid metabolism,” Journal of Clinical Inves-
tigation, vol. 108, no. 6, pp. 785–791, 2001.

[34] B. R. Mwaikambo, F. Sennlaub, H. Ong, S. Chemtob, and P.
Hardy, “Activation of CD36 inhibits and induces regression of
inflammatory corneal neovascularization,” Investigative Oph-
thalmology & Visual Science, vol. 47, no. 10, pp. 4356–4364,
2006.

[35] J. Adamkiewicz, K. Kaddatz, M. Rieck, B. Wilke, S. Müller-
Brüsselbach, and R. Müller, “Proteomic profile of mouse fi-
broblasts with a targeted disruption of the peroxisome prolif-
erator activated receptor-β/δ gene,” Proteomics, vol. 7, no. 8,
pp. 1208–1216, 2007.

[36] S. Bohman, T. Matsumoto, K. Suh, et al., “Proteomic analysis
of vascular endothelial growth factor-induced endothelial cell
differentiation reveals a role for chloride intracellular chan-
nel 4 (CLIC4) in tubular morphogenesis,” Journal of Biological
Chemistry, vol. 280, no. 51, pp. 42397–42404, 2005.

[37] Y. S. Kuppumbatti, B. Rexer, S. Nakajo, K. Nakaya, and
R. Mira-y-Lopez, “CRBP suppresses breast cancer cell sur-
vival and anchorage-independent growth,” Oncogene, vol. 20,
no. 50, pp. 7413–7419, 2001.

[38] C. D. Kontos, T. P. Stauffer, W.-P. Yang, et al., “Tyrosine 1101 of
Tie2 is the major site of association of p85 and is required for
activation of phosphatidylinositol 3-kinase and Akt,” Molecu-
lar and Cellular Biology, vol. 18, no. 7, pp. 4131–4140, 1998.

[39] S. Fauconnet, I. Lascombe, E. Chabannes, et al., “Differen-
tial regulation of vascular endothelial growth factor expression
by peroxisome proliferator-activated receptors in bladder can-
cer cells,” Journal of Biological Chemistry, vol. 277, no. 26, pp.
23534–23543, 2002.

[40] H. E. Hollingshead, R. L. Killins, M. G. Borland, et al., “Perox-
isome proliferator-activated receptor-β/δ (PPARβ/δ) ligands
do not potentiate growth of human cancer cell lines,” Carcino-
genesis, vol. 28, no. 12, pp. 2641–2649, 2007.

[41] D. Wang, H. Wang, Y. Guo, et al., “Crosstalk between perox-
isome proliferator-activated receptor δ and VEGF stimulates



6 PPAR Research

cancer progression,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 103, no. 50, pp.
19069–19074, 2006.

[42] H. Higashiyama, A. N. Billin, Y. Okamoto, M. Kinoshita, and
S. Asano, “Expression profiling of Peroxisome proliferator-
activated receptor-δ (PPAR-δ) in mouse tissues using tissue
microarray,” Histochemistry and Cell Biology, vol. 127, no. 5,
pp. 485–494, 2007.

[43] P. A. Campochiaro, “Ocular versus extraocular neovascular-
ization: mirror images or vague resemblances,” Investigative
Ophthalmology & Visual Science, vol. 47, no. 2, pp. 462–474,
2006.

[44] M. Fruttiger, “Development of the retinal vasculature,” Angio-
genesis, vol. 10, no. 2, pp. 77–88, 2007.

[45] J. Chen and L. E. H. Smith, “Retinopathy of prematurity,” An-
giogenesis, vol. 10, no. 2, pp. 133–140, 2007.

[46] C. Starita, M. Patel, B. Katz, and A. P. Adamis, “Vascular en-
dothelial growth factor and the potential therapeutic use of pe-
gaptanib (macugen�) in diabetic retinopathy,” Developments
in Ophthalmology, vol. 39, pp. 122–148, 2007.

[47] F. Shojaei and N. Ferrara, “Antiangiogenesis to treat cancer
and intraocular neovascular disorders,” Laboratory Investiga-
tion, vol. 87, no. 3, pp. 227–230, 2007.

[48] U. M. Schmidt-Erfurth, G. Richard, A. Augustin, et al., “Guid-
ance for the treatment of neovascular age-related macular de-
generation,” Acta Ophthalmologica Scandinavica, vol. 85, no. 5,
pp. 486–494, 2007.

[49] A. P. Adamis and D. T. Shima, “The role of vascular endothelial
growth factor in ocular health and disease,” Retina, vol. 25,
no. 2, pp. 111–118, 2005.

[50] A. L. Takeda, J. Colquitt, A. J. Clegg, and J. Jones, “Pegaptanib
and ranibizumab for neovascular age-related macular degen-
eration: a systematic review,” British Journal of Ophthalmology,
vol. 91, no. 9, pp. 1177–1182, 2007.

[51] S. Ishida, T. Usui, K. Yamashiro, et al., “VEGF164-mediated in-
flammation is required for pathological, but not physiolog-
ical, ischemia-induced retinal neovascularization,” Journal of
Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003.

[52] T. Usui, S. Ishida, K. Yamashiro, et al., “VEGF164(165) as the
pathological isoform: differential leukocyte and endothelial
responses through VEGFR1 and VEGFR2,” Investigative Oph-
thalmology & Visual Science, vol. 45, no. 2, pp. 368–374, 2004.

[53] S. Yoshida, A. Yoshida, T. Ishibashi, S. G. Elner, and V. M. El-
ner, “Role of MCP-1 and MIP-1α in retinal neovascularization
during postischemic inflammation in a mouse model of reti-
nal neovascularization,” Journal of Leukocyte Biology, vol. 73,
no. 1, pp. 137–144, 2003.

[54] J. Rak, C. Milsom, L. May, P. Klement, and J. Yu, “Tissue factor
in cancer and angiogenesis: the molecular link between genetic
tumor progression, tumor neovascularization, and cancer co-
agulopathy,” Seminars in Thrombosis and Hemostasis, vol. 32,
no. 1, pp. 54–70, 2006.

[55] H. E. Grossniklaus, J. X. Ling, T. M. Wallace, et al.,
“Macrophage and retinal pigment epithelium expression of
angiogenic cytokines in choroidal neovascularization,” Molec-
ular Vision, vol. 8, pp. 119–126, 2002.

[56] F. Y. Ali, S. J. Davidson, L. A. Moraes, et al., “Role of nuclear re-
ceptor signaling in platelets: antithrombotic effects of PPARβ,”
The FASEB Journal, vol. 20, no. 2, pp. 326–328, 2006.
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1. INTRODUCTION

Age-related macular degeneration (AMD) is the leading
cause of new blindness in the Western World and is cur-
rently responsible for more than half of all legal blindness in
the United States. There are approximately 8 million people
in the U.S. with early or intermediate stage AMD. Approx-
imately one million of these people will develop advanced
disease within the next five years [1–5]. Currently AMD is
estimated to affect about 50 million people worldwide. With
aging of the population this number is expected to double by
the year 2020. Strategic approaches to management of AMD
include delaying onset and progression of nonneovascular
“(dry)” disease; preventing conversion from dry to wet dis-
ease and treatment of wet disease.

While specific antioxidant vitamin formulations are now
known to delay progression of intermediate disease, current
treatment of AMD focuses largely on providing therapeu-
tic intervention following the progression of intermediate
“(dry)” disease to late stage “(wet)” disease. The neovascu-
lar (“wet” or “exudative”) form of AMD can lead to rapid
visual decline and accounts for nearly 90% of vision lost.
It is characterized by development of pathologic choroidal

neovascularization (CNV). Early strategies to ablate CNV
used thermal laser or photodynamic therapy. These are now
less frequently used as treatments that antagonize the effects
of vascular endothelial growth factor (VEGF), continue to
enhance efficacy, and improve outcomes. Currently pegap-
tanib, ranibizumab, and bevacizumab are considered rela-
tively safe and achieve therapeutic effects that may include
inhibition/regression of CNV, decreased vascular leakage, ab-
sorption of subretinal fluid, and improved vision [6–10].

The peroxisome proliferator-activated receptors (PPAR’s)
are not, at the present time, known as direct treatment
targets in the management of AMD. Each represents a sep-
arate nuclear receptor of the steroid super-family of ligand
activated transcription factors that induce steroid hormones,
thyroid hormones, vitamin D, and retinoid acid receptor
[11]. PPAR’s comprise a family of three ligand-activated
transcription factors (α, β, and γ) that are characterized by
distinct function, ligand specificity, and tissue distribution.
The PPAR transcription factors regulate transcription of
many genes involved in differentiation, proliferation, and
apoptosis, in a variety of cell types. During gene expression
the PPAR forms a heterodimer receptor complex with
the 9-cis-retinoic acid receptor (RXR). The PPAR/RXR
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heterodimer is associated with a multiprotein corepressor.
When a ligand or agonist binds to the receptor, the core-
pressor complex dissociates. The heterodimer receptor then
binds with peroxisome proliferator response elements on the
promoter domain of target genes to stimulate transcription
[12].

Three distinct PPAR’s had been identified in mammals,
PPAR-α, PPAR-γ, and PPAR-δ (also referred to as PPAR β).
The first PPAR entity identified was PPAR-α agonist, which
has multiple functions that result in an improved lipid pro-
file, increasing high density lipoprotein cholesterol (HDL-C),
decreasing triglycerides and free fatty acids, and shifting low
density lipoprotein cholesterol (LDL-C) to larger less athero-
genic particles. Each of these improvements in the lipid pro-
file is potentially beneficial and may in theory lead to delay
in AMD onset and progression thereby avoiding late stage or
“wet” disease.

PPAR-α is transcribed from chromosome 22q12-13.1, is
primarily expressed in tissues with elevated mitochondrial
and peroxisomal fatty acids β-oxidation rates, such as liver,
heart muscle, kidney, skeletal muscle, retina, and brown fat
[13–15] and may have a potential role in oxidant/antioxidant
pathways now strongly implicated in the pathogenesis of dry
AMD. PPAR-α is also present in cells of the arterial wall as-
sociated with smooth muscle cells [16] and endothelial cells
[17] and is found in monocytes and macrophages [18] that
participate in CNV formation, characteristic of wet AMD
[19]. The PPAR’s are activated by a number of ligands in-
cluding eicosanoids and fatty acids. In addition, synthetic
antidiabetic and lipid lowering fibrates have been shown to
activate PPAR-γ and PPAR-α, respectively. PPAR-α is the
main target of fibrate drugs, a class of amphipathic carboxylic
acids (gemfibrozil, fenofibrate, clofibrate) used in managing
elevated triglycerides and cholesterol. PPAR-γ is highly ex-
pressed in adipose tissues and is a key mediator of adipoge-
nesis [20, 21] and glucose homeostasis [22]. Little is known
about the PPAR-δ which is expressed ubiquitously and has
now been linked to obesity.

2. PPARs IN THE VASCULATURE

In addition to well established roles for the PPAR’s in
metabolic pathways, recent work suggests that the PPAR’s
may be involved in vascular regulation. Several groups
have identified PPAR-γ and PPAR-α expression in mono-
cytes/macrophages, vascular smooth muscle cells, and en-
dothelial cells [16–18]. In the endothelium, PPAR-γ has been
identified by PCR reaction [23], western blot and immuno-
precipitation. PPAR-α has been demonstrated in the vascu-
lar endothelium by immunohistochemical technique [24].
While PPAR-γ has been widely studied for its antiangiogenic
properties [25], recent studies now indicate that PPAR-α may
have antiangiogenic properties as well [26, 27], a finding
with potential therapeutic implications for wet AMD. PPAR-
α agonists have recently been shown to inhibit expression of
VEGF receptor 2 (VEGFR2) upregulation in neovasculariza-
tion [26]. Varet et al. have demonstrated that fenofibrate, a
PPAR-α ligand, inhibits angiogenesis in vitro and in vivo.
They have also shown that fenofibrate reduces endothelial

cell growth rate, endothelial cell mediated wound repair, and
capillary tube formation. Interestingly fenofibrate has been
shown to inhibit bFGF-induced angiogenesis in vivo [27]. Si-
multaneous inhibition of VEGFR2, bFGF, and VEGF would
in theory have a profound effect on pathological angiogene-
sis in the eye.

PPAR-α and PPAR-γ are associated with anti-inflamma-
tory and antioxidant activity [28–30] and have antiathero-
genic effects [31]. Each of these pathways is considered im-
portant to the onset and progression of early AMD and to de-
velopment of late choroidal neovascularization. PPAR-α acti-
vators inhibit expression of vascular cell adhesion molecules
on the endothelium that are important for the development
of new blood vessels and for atherogenesis [32]. Experimen-
tal evidence suggests that the PPAR activators prevent in vitro
vascular muscle cell growth [33], limit inflammatory re-
sponses [16], and are proapoptotic indicating a potential role
in vascular remodeling [34]. Such activity could theoretically
inhibit the transition from dry to wet AMD. PPAR-α agonists
also inhibit interleukin-1-induced production of interleukin-
6 and prostaglandins [16]. Moreover, Delerive et al. have
demonstrated prolonged inflammatory responses and in-
creased interleukin-6 production in aortic explants of PPAR-
α deficient mice [35] underscoring the anti-inflammatory
potential of PPAR-α.

3. PPAR-α IN ANGIOGENESIS

Pathological angiogenesis leading to choroidal neovascular-
ization is pathognomonic of “wet” AMD. Angiogenesis is the
formation of new blood vessels from preexisting vessels and
involves endothelial cell proliferation, migration, and orga-
nization into new capillary tubes. Pathological angiogenesis
is integral to a number of prevalent ocular diseases character-
ized by the development of ocular neovascularization includ-
ing but not limited to wet AMD, diabetic retinopathy, corneal
neovascularization, the occlusive retinal vasculopathies, and
retinopathy of prematurity. Inhibitors of ocular angiogene-
sis therefore have broad therapeutic implications for patients
with these diseases.

Varet et al. demonstrated inhibition of angiogenesis
by the PPAR-α ligand fenofibrate [27]. The antiangiogenic
properties exhibited were characterized by a dose-dependent
decrease in endothelial cell proliferation and apoptosis.
Fenofibrates also reduced endothelial cell migration in vitro
and capillary tube formation in a matrigel assay. Meissner
et al. have also reported a reduction in endothelial cell prolif-
eration, migration, and tube formation following treatment
with fenofibrates and also with the PPAR-α agonist Wy14643
[26]. In further support of the evident antiangiogenic effect
is the observation that several PPAR-α agonists decrease ex-
pression of VEGF receptor 2 (VEGFR2) in human umbilical
endothelial cells (HUVECs) [26].

VEGFR2 is the most potent of the VEGF receptors. When
activated VEGFR2 initiates signaling that leads to endothe-
lial cell proliferation and also to expression of cytoprotective
antiapoptotic molecules [36]. VEGFR2 is detectable only at
relatively low levels in the adult vasculature; it is markedly
up regulated by blood vessels during chronic inflammation,
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hypoxia, tumor growth, and wound repair. VEGFR2 and
VEGF expression both increase as part of the angiogenic re-
sponse and this coordinate response is observed in wet AMD
as well as other ocular diseases characterized by pathological
neovascularization [37, 38]. VEGF has been identified in fi-
broblastic cells and transdifferentiated RPE cells in surgically
excised choroidal neovascular membranes (CNV) [39, 40].
VEGF expression is also increased in macular RPE cells in
patients with AMD [41]. Vitreous VEGF levels are signifi-
cantly higher in AMD patients with CNV as compared to
healthy controls [42]. VEGF production is also increased in
RPE cells, retinal vascular endothelial cells, retinal pericytes
[43–45], and Muller cells [46]. The endothelial cells of the
retinal vasculature possess numerous high-affinity VEGF re-
ceptors.

PPAR-α agonists have been associated with a reduction
in VEGF levels in OVCAR-3 tumor as well as in DISS-
derived ascites [47]. They also reduce microvessel density
in these tumors. Other studies have similarly demonstrated
that a reduction in PPAR-α message and activity is associ-
ated with hypoxia [48]. Hypoxia-induced VEGF expression
contributes to choroidal and retinal neovascularization. The
relative significance of the effect of PPAR-α on VEGFR2 and
VEGF expression in the setting of AMD is not yet known.

4. PPAR-α AND WET AMD

Fenofibrates and other PPAR-α agonists are reported to de-
crease expression of VEGF and VEGFR2 that are central to
the VEGF/VEGFR signaling cascade and important to the de-
velopment of pathological CNV in AMD. Growth of exper-
imentally induced CNV, via laser rupture of Bruch’s mem-
brane in a rat model, is inhibited by intravitreous treatment
with a PPAR-γ agonist [49]. At the time of this writing, simi-
lar data has not been reported for PPAR-α. Evaluation of this
question is however supported by evidence of PPAR-α reduc-
tion of VEGFR2 expression in endothelial cells [26] and re-
ported decreases in tissue VEGF levels [47]. PPAR-α activa-
tors have also been shown to limit the expression of vascu-
lar cell adhesion molecules in the endothelium, an early step
in atherogenesis and an important step in the development
of new blood vessels [32]. Inhibition of CNV initiation and
early progression of CNV are therefore theoretical benefits
of PPAR-α agonist treatment. Described proapoptotic effects
also suggest therapeutic roles in early CNV development or
late regression of CNV [34].

With reports that the PPAR’s limit inflammatory as well
as oxidative responses and improve lipid profiles [16, 28,
29, 35, 37, 50], it is tempting to speculate on a potential
role in delaying onset and progression of nonneovascular
“(dry)” disease, thereby potentially preventing latter “wet”
stages of disease. There is a substantial literature linking ox-
idative damage to dry AMD pathogenesis [51]. PPAR-α could
theoretically inhibit AMD progression via effects on oxida-
tive pathways. It has been previously reported that PPAR-α
activation induces the expression and activation of antioxi-
dant enzymes, such as super oxide dismutase and glutathione
peroxidase [29]. It has also been reported that PPAR-α ago-
nists are neuroprotective in the CNS, and that this neuropro-

tection has been associated with a decrease in cerebral oxida-
tive stress. Consumption of direct acting antioxidants to pro-
vide protection to the retina and the RPE is supported by the
AREDS clinical trial that has added antioxidant formulation
to the routine care of dry AMD. Whether the antioxidant ef-
fects of PPAR-α activation are comparable to those of AREDS
formulation is not known.

Because fenofibrates are orally administered and have an
established safety profile in the treatment of atherosclerosis,
investigations pertaining to the impact of oral therapy on ox-
idative stress, VEFGR2, VEGF, and CNV growth are impor-
tant. It is also important to consider examining for poten-
tial beneficial effects on onset and progression of nonneo-
vascular “(dry)” disease and conversion from dry to wet dis-
ease. These and other factors support a hypothesis that asks
whether PPAR-α may play a therapeutic role in either pre-
vention or treatment of wet AMD.

5. SUMMARY

AMD remains the leading cause of new blindness in people
over 65 years of age and is the leading cause of new blindness
in the Western World. The conversion of dry AMD to wet
AMD is associated with most of the attendant visual decline.
Currently a variety of antiangiogenic treatments directed at
halting CNV growth and leakage are the mainstay of therapy.
The most frequently injected agent ranibizumab (Lucentis)
results in stabilization of visual acuity at the pretreatment
level for a majority of patients and results in improvement of
visual acuity by 3 or more lines in about 1/3 of those treated.
The therapy does not however restore visual acuity to nor-
mal levels in the majority of those treated. Moreover, ther-
apy with ranibizumab and other currently available VEGF
antagonists requires frequent intravitreous injections and is
associated with significant expense, some risk, and for most,
incomplete recovery of vision.

An oral therapy with an established safety profile that
favorably modified VEGF/VEGFR signaling and increased
the antioxidant capacity could significantly impact the ther-
apy of wet AMD. Taken collectively, the PPAR’s demonstrate
favorable biological activity in pathophysiological pathways
relevant to the onset and progression of nonneovascular
and neovascular age-related macular degeneration. The rel-
ative importance of the PPAR-α pathway in AMD is not yet
known. There is, however, sufficient preliminary evidence to
support further study of a potential role for PPAR-α pathway
modulation as an adjuvant or primary treatment in AMD.

ACKNOWLEDGMENTS

This work is financially supported by the JG Foundation
(PLG); an unrestricted grant from Research to Prevent Blind-
ness (Wilmer Eye Institute) and a Research to Prevent Blind-
ness Career Development Award (PLG); William Weis Award
(PLG); Jack and Gail Baylin Philanthropic Fund; the JHU
Fund for Medical Discovery (PLG) and a gift from Kenneth
and Brenda Richardson (PLG).



4 PPAR Research

REFERENCES

[1] R. Klein, B. E. Klein, and K. L. Linton, “Prevalence of age-
related maculopathy. The Beaver Dam Eye Study,” Ophthal-
mology, vol. 99, no. 6, pp. 933–943, 1992.

[2] F. Kinose, G. Roscilli, S. Lamartina, et al., “Inhibition of reti-
nal and choroidal neovascularization by a novel KDR kinase
inhibitor,” Molecular Vision, vol. 11, pp. 366–373, 2005.
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1. INTRODUCTION

Improvements in public health and medical advancements
have led to increasing lifespan among the population today
and consequently, a mounting burden of many disorders of
deteriorating body systems such as age-related macular de-
generation (AMD). Currently AMD is the leading cause of
blindness in developed countries [1]. With the general aging
of the population, this debilitating disease promises to be-
come an even bigger health care problem. As the demand for
therapy increases, much effort is being directed toward the
elucidation of the mechanisms underlying AMD pathogene-
sis.

Peroxisome proliferator-activated receptors (PPARs) are
members of the steroid/thyroid nuclear receptor superfam-
ily of ligand-activated transcription factors. PPARs are in-
volved in lipid and glucidic metabolism, immune regulation,
and cell differentiation. Because of these functions, PPARs
and their synthetic agonists have been marketed as fibrates
and thiazolidinediones for hypercholesterolemia and type 2
diabetes mellitus, respectively [2]. There is much specula-
tion regarding the potential role of PPARs in other disease

mechanisms. Recently, PPARs have been associated with age-
related changes in Alzheimer’s disease [3] and Parkinson’s
disease [4], suggesting that PPARs might also play a role in
the pathogenesis of AMD.

2. AGE-RELATED MACULAR DEGENERATION

The normal aging process of the eye can include a spectrum
of changes in the eyes [5] as follows. Photoreceptors decrease
in density, retinal pigment epithelium (RPE) undergoes loss
of melanin; formation of lipofuscin granules, and accumu-
lation of residual bodies; and basal laminar deposits accu-
mulate in Bruch’s membrane. AMD is a degenerative disease
of the central portion of the retina (the macula) which re-
sults primarily in loss of central vision [6]. The disease can
progress in two different ways and, therefore, can be classi-
fied into a dry form (geographic atrophy) and a wet form
(neovascular AMD).

In both subtypes of AMD, the RPE is a crucial cell in the
pathogenesis of AMD [6]. A pivotal function of the RPE is
the phagocytosis of the outer segments of the photoreceptors
and subsequent regeneration of the rods and cones. As one
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ages, metabolic waste builds up and imposes an increasing
burden on the RPE. The waste, now partially degraded in a
phagolysosome, is visualized histologically as residual bod-
ies and serves as a substrate for lipofuscin formation. These
residual bodies increase in number until they are extruded
and accrue in Bruch’s membrane, thickening the membrane
itself and forming dome shaped basal linear deposits in
Bruch’s membrane referred to as drusen. When the deposits
become large (>125 μm in diameter), soft (amorphous and
poorly demarcated), and confluent, they cause interruptions
in the choroidal capillaries, compromising blood flow within
the RPE layer. The extracellular deposits in Bruch’s mem-
brane also instigate chronic inflammation, promoting inva-
sion by phagocytes and other immune cells, cytokine release,
and production of reactive oxygen species (ROSs) [7].

The retina, because of its high oxygen consumption, its
high levels of cumulative irradiation, and its composition of
polyunsaturated fatty acids, which are readily oxidized and
can initiate a cytotoxic chain reaction, is an ideal environ-
ment for the generation of ROS [8]. Moreover, the process
by which RPE phagocytizes is itself an oxidative stress that re-
sults in ROS generation. The combined effects from chronic
sustained inflammation and ROS generation promote the
development of RPE damage seen in AMD [6, 9, 10]. Thin-
ning or destruction of theRPE leads to its degeneration and
to the subsequent death of rods and cones that depend on
the RPE for their nutrition. This translates into visual loss.
As the RPE degenerates, choriocapillaris beneath the RPE
becomes less fenestrated, reducing the transport of macro-
molecules between the retina and choroidal blood supply
and then disappearing altogether, creating a hypoxic envi-
ronment. Hypoxia then increases the secretion of growth fac-
tors such as vascular endothelial growth factor (VEGF) that
promotes choroidal neovascularization (CNV). The friable,
small vessels comprising CNV are easily damaged and leak,
creating the wet or exudative form of macular degeneration.
The other more-common and less-severe form, termed dry
AMD, occurs in the absence of neovascularization and with
a region of atrophy in a geographic distribution [6].

2.1. Risk factors for AMD

The etiology of AMD remains elusive. A major feature of
AMD is its association with age, with the highest preva-
lence among those 85 years of age or older [1]. Other cer-
tain risk factors include smoking and family history or ge-
netics [6, 11–17]. There have been recent studies show-
ing certain association between AMD and CFH [18–23],
LOC38775/ARMS2 (age-related maculopathy susceptibility
2) [24–27], HrtA-1 [28, 29], and APOE [30–34]genes. Re-
cently, VEGF single nucleotide polymorphism and matrix
metalloproteinases (MMP)-9 microsatellite polymorphism
are reported to be associated with wet AMD [35–37]. Stud-
ies have also considered an association between exposure to
sunlight and AMD [6].

The Age-Related Eye Disease Study (AREDS), a con-
trolled randomized clinical trial reports the use of high doses
of antioxidants (vitamin C, vitamin E, and beta carotene)
and zinc reduce the risk of advanced AMD by about 25%

in patients with moderate risk of developing AMD [38].
Supplementation of various nutrients in the literature have
demonstrated risk reduction for AMD, and these findings
support the potential role of PPARs in AMD, especially
since diet is an important modifiable risk factor when dis-
cussing PPARs, which regulate lipid metabolism and home-
ostasis [39, 40]. PPAR is one of the two characterized types
of polyunsaturated fatty acid-responsive transcriptional fac-
tors. Because humans do not have the capability for de novo
synthesis of essential fatty acids, which are particularly rich
in long-chain polyunsaturated fatty acid (LCPUFA), we are
dependant on dietary sources of these compounds [9]. Im-
portantly, a recent AREDS study has demonstrated that par-
ticipants reporting high-dietary intake of lutein/zeaxanthin,
an LCPUFA which counteracts photochemical damage and
generation of reactive oxygen species that attack cellular
lipids, proteins, and other nuclear material, are statistically
less likely to have advanced AMD (both neovascularizatio-
nand geographic atrophy) or large or extensive interme-
diate drusen than thosereporting lowest dietary intake of
lutein/zeaxanthin [41]. Thus, it is possible that the benefi-
cial effects of lutein/zeaxanthin LCPUFAs are related to their
ability to activate fatty acid-responsive PPARs, suggesting a
protective role of PPARs in AMD pathogenesis.

2.2. Clinical presentation

Though the etiology of AMD remains unclear, the clinical
progression of this disease is well characterized. With dry
AMD, patients may complain of a gradual loss of vision, from
several months to years, in one or both eyes due to progres-
sive loss of photoreceptors [42]. This gradual loss of vision
is often first noticed as difficulty in reading or driving, sco-
tomas, or increased reliance on brighter light or a magnifying
lens for tasks that require fine visual acuity [43]. Vision loss
that has occurred acutely over a period of days or weeks may
represent wet AMD due to subretinal/retinal hemorrhage re-
sulting from leakage or breaks of choroidal neovascular ves-
sels. These patients may report an acute distortion in vision
due to retinal hemorrhage, especially distortion of straight
lines, or loss of central vision. Symptoms of wet AMD usu-
ally appear in one eye although AMD pathology is generally
present in both eyes [44].

2.3. Pathological findings

The nonneovascular abnormalities in AMD include drusen
as well as abnormalities of the RPE highlighted by accumu-
lation of lipofuscin granules. The main component of lipo-
fuscin is A2E, which is cytotoxic to RPE and induces RPE
apoptosis. Clinically, drusen are round, dull yellow lesions,
located under the sensory neuroretina and RPE, which upon
fluorescein angiography, light up and stain late with no leak-
age. Histologically this material corresponds to the abnor-
mal thickening of the inner aspect of Bruch’s membrane. The
thickening involves basal laminar deposits, collagen accumu-
lation between the plasma membrane of the RPE cells and the
inner aspect of the basement membrane of the RPE, as well
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Figure 1: Microphotograph showing normal human retina stained
for PPARγ in the ganglion cell, inner nuclear layer, outer nuclear
layer, and RPE (avidin-biotin-complex immunoperoxidase).

as basal linear deposits outside the RPE basement membrane
referred to as drusen [6].

How and why drusen develop is unknown, however
much is deduced from its contents. Drusen often have a core
of glycoproteins and their outer domes contain crystallins,
chaperone proteins, apolipoprotein E, vitronectin, proteins
related to inflammation (amyloid P, C5, and C5b-9), and
sometimes fragments of RPE cells [45]. Drusen appear as
electron-dense granules within the inner aspect of Bruch’s
membrane. The thickening of the membrane causes a sharp
reduction in fluid and nutrient transport across the mem-
brane. Its diminished function also results in decreased cell
adhesion and anoikis of the photoreceptors, RPE cells, and
possibly choriocapillaris endothelial cells [6]. These deposits
around Bruch’s membrane are also the cause of chronic lo-
cal inflammation further promoting AMD development and
progression.

The presence of drusen may lead to RPE degeneration
and subsequently, deterioration of photoreceptors, which are
dependent upon maintenance by RPE [46]. When the atro-
phy of the RPE and photoreceptors covers a distinct and con-
tiguous area, it is termed geographic atrophy. Histologically,
geographic atrophy is characterized by roughly oval patches
of hypopigmentation as a consequence of RPE atrophy. The
underlying choroidal vessels are more readily visible and the
outer retina may appear thin secondary to loss of the pho-
toreceptor and RPE cells. At the periphery of the hypopig-
mented regions there may be hyperpigmented changes from
RPE cell proliferation. If the atrophy is less defined, with a
mottled appearance, then it is called nongeographic atro-
phy. If the disease continues to progress, there comes a point
when the components of the drusen begin to disappear; this
is termed regressed drusen [46]. Additionally there may be
small pinpoint glistening of the drusen where calcium has
been deposited.

The third key component of AMD is choroidal neovascu-
larization [47]. With the thinning and destruction of the RPE
the underlying choriocapillaries become less fenestrated, im-
pairing transport of macromolecules, such as oxygen, be-
tween the retina and choroidal blood supply. The resulting

hypoxia stimulates neovascularization through vascular en-
dothelial growth factor (VEGF). VEGF, which will be dis-
cussed in more detail below, acts as a stimulus for neovascu-
larization [48]. There can be both new vascular growths from
the choroidal vessels, growing through Bruch’s membrane
into the subretinal space. Clinically CNV appears as a purple-
grey discoloration beneath the retina. With the increase in
blood flow within the retina due to CNV, there may even be
a focal sensory retinal detachment and cystoid edema. New
vessels also promote fibroblast proliferation and disruption
of normal retinal architecture. Moreover, these neovascular
blood vessels are extremely leaky, and hemorrhage from these
friable vessels leads to sudden vision loss secondary to ac-
cumulation of fluid or blood in the subretinal space and/or
within the retina itself [49].

3. PEROXISOME PROLIFERATOR-ACTIVATED
RECEPTORS

Peroxisome proliferator-activated receptors (PPARs) seem to
be associated with chronic diseases such as diabetes mellitus,
obesity, atherosclerosis, cancer, and neurodegenerative dis-
eases [2, 4, 50]. Like androgens, steroids, retinoid, and thy-
roid hormone receptors groups, PPARs are members of nu-
clear receptor superfamily of ligand-activated transcription
factors [2]. Though they are among the best-categorized nu-
clear receptor families, the evolution of these molecules re-
mains unclear. PPARs have three known subtypes: α, β, and
γ. The α subtype is present in adipose tissue, liver, brain,
heart, and skeletal muscle. A synthetic agonist to this sub-
type has been created as a cholesterol-lowering therapy. The
PPAR β subtype, also known as δ or NUC1, is present in
the gut, kidney, brain, and heart. PPARγ, the subtype most
widely studied, is expressed on adipocytes, colon, brain, re-
nal epithelium, monocytes, and macrophages. The γ subtype
is the model for therapy such as thiazolidinediones (trogli-
tazone, rosiglitazone, pioglitazone) for increased insulin sen-
sitivity in noninsulin-dependent diabetes (type 2) [51, 52].
This receptor is also expressed in the retina, specifically in the
RPE and choroidal vascular endothelial cells [53]. Figure 1
shows positive immunoreactivity against PPARγ in the nor-
mal human retina. The association of PPAR with RPE cells,
as well as neuronal cells, supports the hypothesis that PPAR
may play a role in the pathogenesis of AMD; therefore, PPAR
may present a possible target for AMD treatment.

In response to binding by fatty acids, PPARs form
heterodimers with retinoid X receptor (RXR), and the
PPAR-RXR heterodimer binds to specific response elements
(PPREs) consisting of a direct repeat of the nuclear recep-
tor hexameric DNA core recognition motif spaced by one
nucleotide to influence the transcription of numerous tar-
get genes [54]. Because PPAR is widely expressed as a tran-
scription factor, it also plays a role in many processes in-
cluding lipid homeostasis, glucose regulation, inflammation,
atherosclerosis, ischemia, cancer, and neurodegenerative dis-
eases [2, 36, 37, 54–62] with the subtypes overlapping in ac-
tivity, function, and location.



4 PPAR Research

4. PROPOSED MECHANISMS OF AMD AND
THE LINKS TO PPAR

The etiology of AMD is not well understood, an explana-
tion in itself for the various proposed mechanisms for how
and why AMD progresses. Theories include aging, oxidative
stress, endoplasmic reticulum stress, and inflammation. In-
terestingly, these processes are shared among diseases with
similar pathophysiological changes to those seen in AMD
and also involve PPAR.

Oxidative stress arises from a significant increase in re-
active oxygen species (ROS) concentration and/or a decrease
in detoxification mechanisms. ROS include free radicals, hy-
drogen peroxide, and singlet oxygen. There are many natural
sources of oxidative stress such as exposure to environmental
oxidants, ionizing and UV radiation, heat shock, and inflam-
mation. The ROSs usually have one or more unpaired elec-
trons in their outer orbits, and in order to achieve a stable
state, extract electrons from other molecules, which them-
selves become unstable, causing a chain reaction [8]. High
levels of oxidative stress exert a toxic effect on biomolecules,
such as DNA, proteins, and lipids. As we know ROS may start
an oxidative cascade, mediated in part by ROS-induced ac-
tivation of NF-κB, STAT, and AP-1transcription factors, al-
tering the composition of the cellular membrane, changing
protein conformations, and lead to an upregulation of proin-
flammatory genes and cytokines, further potentiating dam-
age [62, 63].

Oxidative stress plays a role in ischemic-reperfusion in-
juries, atherosclerosis, hypertension, inflammation, cystic fi-
brosis, type 2 diabetes, Alzheimer’s, and Parkinson’s disease
[62]. Oxidative stress has also been linked to aging [64]. The
retina has a very high concentration of lipids [9] and there-
fore easily falls pray to such mechanisms of destruction [8].

Oxidative stress such as aging and light exposure is con-
sidered to be associated with AMD. RPE and photoreceptors
are particularly susceptible to oxidative stress because of high
oxygen consumption by photoreceptors [8], high concentra-
tion of LCPUFA in the outer segments [65], exposure to vis-
ible light, and presence of lipofuscin, a photo-inducible gen-
erator of ROS in RPE [66, 67]. Clinical data supporting a
beneficial effect of antioxidants in AMD provide direct val-
idation of the role of oxidative injury in AMD treatment.
Subgroup analysis of a multicenter, randomized, placebo-
controlled AREDS trial revealed that an antioxidant cock-
tail of vitamins C and E, β-carotene, and zinc can reduce
the progression of moderate atrophic AMD to late-stage dis-
ease [38]. Epidemiologic data showing that smoking leads to
a significantly increased risk of the disease is consistent with
the antioxidant approach as smoking is known to depress an-
tioxidants such as vitamin C and carotenoids, and to induce
hypoxia and ROS generation [68, 69].

PPARs are known to stimulate peroxisome enlargement
and proliferation, as well as upregulation of β-oxidation
enzymes. Since the peroxisome houses a variety of oxida-
tive metabolic processes, they are an obvious cause of ox-
idative stress [64]. Oxidative damage and proinflammatory
cytokines, TNF-α, INF-γ, and MMPs have been cited to
play roles in each of the disease processes mentioned above

[3, 50, 70–74], establishing PPAR as a common link between
them.

Another theory regarding drusen formation involves a
phenomenon known as endoplasmic reticulum (ER) stress.
The ER is central to protein and lipid synthesis and mat-
uration, as most newly formed proteins are assembled in
the ER. Incorrectly folded proteins tend to form aggregates
that are harmful to the cells and thus, ER-resident and/or
visiting chaperone molecules facilitate protein folding and
clearance of terminally misfolded proteins [75]. Any condi-
tion which impairs protein folding, for example, mutations
in proteins that affect folding or ER malfunction, is termed
ER-stress. Increased ER-stress, therefore, leads to protein and
lipid buildup within cells, and this buildup in the eye might
translate into RPE damage and drusen deposition.

The argument for a role for ER stress in AMD patho-
genesis is supported by the well-characterized role of ER
stress in several AMD-related neurodegenerative diseases.
Alzheimer’s disease and Lewy Body diseases, such as Parkin-
son’s disease, are characterized by deposition of abnormal
substances, which may parallel the abnormal deposition of
drusen in the eye. The classical histopathological hallmarks
of Alzheimer’s disease [3, 4] include deposition of fibrillar
amyloid in neuritic plaques as well as intracellular deposits
of hyperphosphorylated tau protein. This results in the for-
mationof neurofibrillary tangles and finally neuronal death,
causing progressive memory loss and decline in cognitive
functions [4]. In Parkinson’s disease, suffering dopaminer-
gic neurons are found to contain Lewy bodies and neurome-
lanin, an end product in catabolism by autoxidation [3]. In
atherosclerosis there are abnormal lipid depositions in blood
vessels leading to plaque formation and partial occlusion of
these vessels [76]. In an AMD model of Ccl2−/−/Cx3cr1−/−

deficient mice abnormal ER protein is detected and associ-
ated with disease pathogenesis [75].

Recent articles have discovered a role for PPAR in ER
stress. Dirkx et al. found that absence of peroxisomes in
hepatocytes had repercussions on different subcellular com-
partments, including mitochondria, ER, and lysosomes [77].
Another study found that intracellular calcium mobilization
by PPARγ ligands in rat liver epithelial cells interferes with
proper protein foldingin the ER, thus promoting ER stress
[73]. A third article discovered that under conditions of im-
paired translation, PPARγ ligands stimulate the expression of
a number of ER stress-responsive genes, such as GADD 153,
BiP, and HSP70 in rat pancreatic β cells. They concluded that
PPARγ ligands induce ER stress [78].

In addition to the obvious parallels, between amyloid,
Lewy bodies, cholesterol, and drusen, there are also similar
processes such as inflammation that may play a role in incit-
ing the damage associated with each disease.

Various immunological molecules and inflammatory
mediators, cytokines, and chemokines have been identified
in AMD lesions [79, 80]. Many of them are produced locally
by RPE, choroid, and retina [81]. It has been hypothesized
that RPE dysfunction is the critical event in drusen forma-
tion, making drusen a product of a localized inflammatory
response, possibly involving HLA antigens and the comple-
ment system [82]. The hypothesis is based on many different



Alexandra A. Herzlich et al. 5

findings scattered among the literature and within differ-
ent fields of medicine. Drusen, the hallmark of AMD, are
found higher in membranoproliferative glomerulonephritis
II (MPGNII), a complement-medicated immune deficiency.
These cuticular drusen are identical, clinically, histologically,
and immunohistochemically to the drusen in AMD [83–
85]. Drusen has also been cited as having similar features
to lipid-laden plaques of atherosclerosis [82, 86]. The rela-
tionship here is inferred from the histological as well as local
inflammatory similarities between dysfunctional endothelial
cells and the subendothelial deposition of modified LDL-
cholesterol in atherosclerotic deposits within arterial vessels
to those of drusen in the eye [86–88]. In addition, molecules
such as MMP-9 seem to be involved in both processes. In-
hibition of MMP-9 in atherosclerotic lesions has been cited
to oppose remodeling, as suggested by the inhibition of inti-
mal thickening and outward arterial remodeling [89]; while
in AMD it is thought to be involved in microvessel formation
duringearly phases of angiogenesis, in the reabsorption of-
neovascularization, and in involution and regression of ves-
sels inlater stages [90]. Similarities to the local inflamma-
tory components seen in Alzheimer’s also support this the-
ory where accumulations of neurofibrillary tangles or insol-
uble deposits of beta amyloid peptide are the inciting agents
of local inflammation [86].

The association between complement factor H (CHF) sin-
gle nucleotide polymorphisms and increased risk of AMD
also uncovers an important link between the complement
system (inflammation) and the development of maculopa-
thy (AMD) [18–20, 91]. The gene for CHF is located within
the chromosomal region (1q32) linked to AMD [82, 92]. The
CHF gene encodes a protein, complement response factor
(CRF), that functions as part of the complement system and
has been found in drusen from AMD patients [82, 93]. Fur-
thermore, the same environmental risk factors, smoking, that
influence levels of complement in serum are also associated
with increased risk of developing AMD [86, 94].

In Alzheimer’s, atherosclerosis, and AMD similar local
proinflammatory pathways are stimulated, thereby leading to
the deposition of activated complement components, acute-
phase proteins, and other inflammatory mediators in tissues
affected by each disease process. The cumulative impact is
chronic tissue-specific low-grade inflammation exacerbating
the effects of the primary pathogenic lesion [86]. PPARs act
to inhibit many proinflammatory genes, which may result in
protection of these diseases.

5. MOLECULES THAT INTERACT WITH
PPAR AND THEIR RELATIONSHIP WITH AMD:
AN INTRODUCTION TO VEGF, MMP, AND DHA

5.1. Vascular endothelial growth factor A, VEGF

VEGF was first identified in the early 1970s as a tumor-
angiogenesis factor that is mitogenic to capillary endothelial
cells in human tumors [95]. VEGF is now recognized as an
essential regulator of normal and abnormal vessel growth. It
regulates both vascular proliferation, as well as permeability,
and functions as an antiapoptotic factor for newly formed

blood vessels [95]. VEGF is expressed in response to hypoxia,
oncogenes, or cytokines [96]. In this process, VEGF binds to
and stimulates autophosphorylation of two distinct receptor
tyrosine kinases, VEGFR1 or Flt-1 (fms-related tyrosine ki-
nase 1) and VEGFR2 or KDR/FlK-1 (kinase insert domain
containing receptor/fetal liver kinase 1) [97]. This activates
an MAPK pathway causing neovascular channel growth from
the choroidal vasculature and extension into the space be-
tween the RPE and Bruch’s membrane thus activating the
RPE to migrate into stroma of the CNV lesion [98, 99]. VEGF
blockade has been shown to have a direct and rapid anti-
vascular effect in tumors by deprivation of tumor vascular
supply and inhibition of endothelial proliferation. Recently,
VEGF has also been shown to target CNV in AMD [100]. The
first anti-VEGF compound, pegaptanib, was approved by the
FDA in 2004 and followed closely by approval of two other
treatments, bevacizumab (Avastin) and ranibizumab (Lu-
centis). With monthly intravitreal injections of ranibizumab,
growth of neovascular membranes is halted and there is pre-
vention of severe vision loss in 90% of patients and improve-
ment of visual acuity in 30–40% of patients [101–104].

5.2. Matrix metalloproteases, MMPs

The regulated turnover of extracellular matrix macro-
molecules is crucial to a variety of important biological
processes. MMPs, a member of the class of proteases, de-
grade components of extracellular membranes [105]. MMPs,
zinc-dependent endopeptidases, are expressed by activated
macrophage foam cells and smooth muscle cells, and are im-
portant in the resorption of extracellular matrixes in both
physiological and pathological processes. MMPs are secreted
by macrophages as a proenzyme and once activated can com-
pletely degrade extracellular matrix components, such as
elastin and collagen, including the structural backbone of the
basement membrane, type IV collagen. Mostly this group of
enzymes acts locally where they are expressed to aid in cell
migration by clearing a path through the matrix, exposing
cryptic sites on the cleaved proteins that promote cell bind-
ing and/or cell migration, promoting cell detachment so that
a cell can move onward, or by releasing extracellular signal
proteins that stimulate cell migration [105].

MMP-9, a specific MMP, is thought to degrade the fibri-
nous cap found on atherosclerotic plaques, destabilizing the
plaque, and priming it for rupture [106]. Since AMD is as-
sociated with sustained chronic inflammation and loss of in-
tegrity of Bruch’s membrane, it has been hypothesized that
MMPs may play a role in the pathogenesis of the disease
[107]. MMP-9 and MMP-2, two subtypes of MMPs, have
been identified in Bruch’s membrane in AMD eyes, and cell-
culture studies have documented its role in the development
of CNV [108–110]. A recent study found the first associa-
tion between AMD and MMP-9 [108]. Significantly elevated
plasma MMP-9 levels were reported in both wet and dry
AMD patients as compared to age-matched controls. In addi-
tion, circulating plasma levels of MMP-9 were approximately
three times higher in AMD patients than in control patients
with no confounding illnesses. MMP transcriptional activ-
ity is regulated by genetic polymorphisms of the promotor
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region and carriers repeats of the MMP-9 promotor, num-
bering greater than or equal to 22, have a more than dou-
bled risk of developing AMD [37]. Facilitating this MMP-9
expression may act as a factor in increasing vascular perme-
ability of the vessels or in the neovascularization seen in ex-
udative AMD.

5.3. Docosahexaenoic acid, DHA

Docosahexaenoic acid (DHA) is a major dietary omega-3
LCPUFA. It is also a major structural lipid of retinal photore-
ceptor outer segment membranes with the highest concen-
trations per unit weight found here. Omega-3 LCPUFA have
the capacity to play roles in many processes of AMD, such as
retinal neovascularization, inflammation of the retinal vas-
culature, and alterations in the retinal capillary structure and
integrity [9]. DHA has been shown to promote survival, in-
hibit apoptosis of photoreceptors, possibly via signaling cas-
cades, play a role in rhodopsin regeneration, and exert neural
protection through an RPE-secreted neuroprotective media-
tor, NPD-1. Tissue DHA insufficiency can affect retinal sig-
naling and is associated with alterations in retinal function
[9]. It has also been documented that there exists an inverse
relationship between dietary intake of the omega-3 LCPUFA
and risk of developing AMD [111].

Despite the benefits of polyunsaturated fatty acids, hu-
mans lack the Δ15 and 12 desaturase enzymes to synthe-
size these compound de novo and are dependent on dietary
sources. In addition, the biochemical nature of DHA and the
proximity of these compounds to metabolically active ocu-
lar tissue and high oxygen tension of the choriocapillaries
facilitate the formation of ROSs. ROSs may start an oxida-
tive cascade altering the DHA and changing the composi-
tion of the cellular membrane and increasing the expression
ofproinflammatory genes and cytokines, thereby damaging
the retina [62, 63]. ROS are therefore extremely dangerous
because they damage DHA, a necessary yet limited resource
needed to keep retina healthy.

6. IMPORTANT MOLECULES INVOLVED IN
PPAR’s POTENTIAL ROLE IN AMD

6.1. VEGF, PPARγ, and their role in AMD

As previously discussed, VEGF has been shown to play a crit-
ical role in neovascularization via the MAPK kinase path-
way, associated with the wet form of AMD [103, 104]. PPARγ
with expression localized to the RPE and choroidal endothe-
lial cells of ocular tissue [53] may have an effect on endothe-
lial cells and may have a direct antagonistic relationship with
VEGF.

It has been demonstrated that vascular endothelial cells
express PPAR-γ mRNA and protein [61, 112]. PPAR-γ lig-
ands inhibit growth factor-induced proliferation of endothe-
lial cells, increase plasminogen activator inhibitor-1 expres-
sion and suppress endothelin-1 secretion [113, 114], overall
providing support to the theory that PPAR-γ plays an an-
tagonistic role to that of VEGF [115]. More directly Murata
and colleagues demonstrated that PPARγ inhibits MAPK-

dependent migration of smooth muscle and may act as a
downstream inhibitor to VEGF. This group also showed
that troglitazone and rosiglitazone, synthetic agonists of
PPARγ, inhibited the endothelial effects of VEGF in a dose-
dependent manner. In vivo studies with the troglitazone
demonstrated that intravitreal injections dramatically inhib-
ited the percentage of lesions as well as leakage per lesion,
making a strong case for therapeutic value of this drug [53].

6.2. Matrix metalloproteinase (MMP), PPARγ, and
their role in AMD

Ricote showed that PPARγ inhibits the expression of MMP-
9 in response to a naturally occurring ligand, prostaglandin
D2 metabolite 15-deoxy-Δ12,14 prostaglandin J2 (15d-PGJ2),
and synthetic PPARγ ligands activated macrophages by an-
tagonizing the activities of the transcription factors AP-1,
STAT, and NF-κB [52]. PPARγ activators decrease MMP-
9 expression in vascular smooth muscle [116] and treat-
ment with PPAR agonist troglitazone has shown decreased
atherosclerotic lesions in various animal models [107]. In ad-
dition PPARγ-mediated suppression of NF-κB activity may
decrease proinflammatory cytokines in macrophages, in-
cluding MMP-9 [117].

This intricate relationship demonstrates that PPARγ
downregulates MMP expression and inhibits MMP-9’s sub-
sequent accumulation in Bruch’s membrane where it may
play an integral role in the degradation of the extracellu-
lar matrix and be a stimulus for migration of the RPE into
Bruch’s membrane, in this way contributing to the patho-
physiology of AMD.

6.3. DHA, PPARγ, and their role in AMD

DHA is a naturally occurring ligand to all subtypes of the
PPAR family. It binds specific DNA motifs to modulate the
activity of PPAR and RXR as transcription factors [9]. As
being well known, PPARs play an important regulatory role
in oxidative stress by inducing the transcription of antiox-
idant genes, such as glutamate cysteine ligase (GCL) and
heme oxidase-1 (HO-1) [118]. These antioxidants then work
through MAPK kinase pathways to curb ROS. A functional
PPRE is located at the catalase gene promoter, a gene known
to protect cells from the toxic effects of hydrogen peroxide
(H2O2) by catalyzing its decomposition, indicating that cata-
lase expression is directly regulated by PPARγ [62]. To fur-
ther test this relationship, catalase expression was analyzed
in the striatum of rats subjected to intracranial bleeds with
and without 15-dPGJ2 treatment. Treated rats showed 1.6-
, 2.1-, and 1.7 fold higher levels of catalase mRNA expres-
sion compared to the saline controls at 1, 3, and 24 hours
[63]. Girnun et al. found similar increases in catalase mRNA
when using known PPAR agonists rosiglitazone and ciglita-
zone in rat brain microvascular endothelium cells, one of the
cell types damaged during inflammatory responses induced
by ROS generation [62].

In short, PPARγ has a special role in counteracting
the damaging effects of ROS generation by upregulat-
ing antioxidant genes and downregulating proinflammatory
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Figure 2: Schematic graph showing PPAR interactions with VEGF, ROS, MMP-9, LCPUFA, DHA, and RPE cells and their role in the
development of AMD.

genes. By decreasing damage to LCPUFAs, such as DHA,
there is preservation of the protective effects these essential
molecules confer to the retina.Enhancing this ability of the
RPE to protect itself from oxidative injury may provide a
therapeutic opportunity to delay or hinder the development
of AMD.

7. SUMMARY

Though there is limited literature directly linking PPAR dys-
function with AMD pathology, there is evidence that PPARs
may be involved in various mechanisms and pathways as-
sociated with this disease process. PPARγ is localized to the
neuroretina and RPE, the essential component to photore-
ceptor degeneration and vision loss. PPAR acts to inhibit in-
flammatory processes, which are linked to AMD. VEGF is a
known driving factor for neovascularization, a main causal
element of wet macular degeneration and PPARs directly in-
hibit VEGF function. High levels of MMP-9 have been de-
tected in retinas afflicted with AMD. In turn, PPARs are
known to decrease expression of MMP. PPARs play a di-
rect role in upregulation of antioxidative enzymes, one of the
many possible causes of macular pathology. PPARs bind var-
ious ligands including LCPUFAs and their metabolites, pos-
sibly shedding light on how PPARs interfere with NFκB as
one way in which omega-3 LCPUFAs are protective against
AMD. It is evident that PPARs must play a certain role in the
development of AMD. Figure 2 demonstrates the many ways
that PPARs interact with processes closely related to progres-
sion of AMD. Future studies are warranted to better elucidate
the pathogenic and therapeutic potentials of PPARs in AMD.
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antidiabetic and antihypertensive drugs, respectively, may be efficacious for treating and attenuating PDR and CNV humans.
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1. INTRODUCTION

Angiogenesis and neovascularization involve formation and
proliferation of new blood vessels and have a vital role
normal growth and development, such as embryogenesis,
wound healing, tissue repair [1, 2]. However, in pathological
neovascularization, angiogenesis is aberrant and unregulated
resulting in the formation of dysfunctional blood vessels
[3]. The latter occurs in proliferative diabetic retinopathy
(PDR) and choroidal neovascularization (CNV), “wet” or
exudative age-dependent macular degeneration (AMD),
wherein pathological neovascular vessels proliferate and leak
fluid leading to retinal edema, subretinal and retinal/vitreous
hemorrhage, retinal detachment, and blindness. In the
United States, PDR is the most common preventable cause
of blindness in adults <50 years [4], whereas CNV/AMD is
the leading cause of blindness among people of European
origin >65 years [5]. Both retinopathies are progressively
destructive, leading to eventual and irreversible blindness.
PDR is a serious microvascular complication of both type 1

and type 2 diabetes [6]. Type 2 diabetes is rapidly expanding
worldwide and is estimated to reach 380 million by 2025
[7, 8]. PDR is progressive and compounded by persistent
and substandard control of hyperglycemia, and concomitant
cardiovascular risk factors, especially hypertension [9–11].
Nearly, all type 1 diabetics and >60% of type 2 diabetics have
significant retinopathy after 20 years, emphasizing the need
for more cost-effective therapy [6, 10, 11]. Hyperglycemia,
advanced glycation end-products (AGEs), and hypoxia are
believed to induce pathological angiogenesis and neovascu-
larization within the retina [12]. Prevention of end-organ
damage by early and aggressive diabetes management is the
best approach to treating diabetic retinopathy (DR) [6, 12].

Visual acuity depends on a functional macula, located
at the center of the retina where cone photoreceptors are
most abundant. Exudative (wet) AMD is complicated by
CNV, involving activation and migration of macrophages,
and normally quiescent retinal pigment epithelial cells from
the choroid and invasion of defective neovascular blood
vessels into the subretinal space [13, 14]. Bleeding and
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Table 1: Growth factors, cytokines, chemokines, and other proinflammatory mediators downregulated by PPARγ activation. PDGF-BB,
platelet-derived growth factor-BB homodimer; AP-1, activated protein-1; NF-κB = nuclear factor-κB; NFAT = nuclear factor of activated
T lymphocytes; STAT = signal transducer and activator of transcription; ICAM, intracellular adhesion molecule; VCAM, vascular cell
adhesion molecule; iNOS, inducible nitric oxide synthase. (Adapted with permission from: B. Staels, ”PPARγ and atherosclerosis.” Current
Medical Research and Opinion, vol. 21, Suppl. 1, pp. S13-S20, 2005; H. A. Pershadsingh, “Dual peroxisome proliferator-activated receptor-
alpha/gamma agonists : in the treatment of type 2 diabetes mellitus and the metabolic syndrome.” Treatments in Endocrinology, vol. 5, no.
2, pp. 89-99, 2006.)

Growth factors Cytokines Chemokines Nuclear transcription factors Other molecules

ATII IL-1β IL-8 AP-1 IFN-γ

TGF-β IL-2 MCP-1 NF-κB iNOS

ET-1 IL-6 RANTES STAT PAI-1

bFGF TNF-α NFAT MMP-2

PDGF-BB MMP-9

EGF VCAM-1

VEGF ICAM-1

E-selectin

Table 2: Growth factors, cytokines, chemokines, and other proinflammatory mediators upregulated by angiotensin II stimulation. ET-1,
endothelin-1; TGF-β, transforming growth factor-β; CTGF, connective tissue growth factor; bFGF, basic fibroblast growth factor; PDGF-AA,
platelet-derived growth factor-AA homodimer; EGF, epidermal growth factor; VEGF, vascular endothelial cell growth factor; IL, interleukin;
GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF-α, tumor necrosis factor-α; MCP-1, monocyte chemoattractant protein-
1; MIP, macrophage inflammatory protein; NF-κB, nuclear factor-κB; NFAT, nuclear factor of activated T lymphocytes; STAT, signal
transducer and activator of transcription; RANTES, regulated on activation, normal T-cell expressed and secreted; IFN-γ, interferon-γ;
PAI-1, plasminogen activator inhibitor type 1; AP-1, activated protein-1. (Adapted with permission from: R. E. Schmieder, K. F. Hilgers, M.
P. Schlaich, B. M. Schmidt, “Renin-angiotensin system and cardiovascular risk.” Lancet, vol. 369, no. 9568, pp. 1208-1219, 2007.)

Growth factors Cytokines Chemokines Other proinflammatory molecules

ET-1 IL-1β IL-8 IFN-γ

TGF-β IL-6 MCP-1 Tissue factor

CTGF IL-18 MIP-1 PAI-1

bFGF GM-CSF RANTES

PDGF-AA TNF-α

EGF

VEGF

lipid leakage from these immature vessels damage the retina
and lead to severe vision loss and blindness [14, 15].
Current therapies of AMD are limited to treating the early
stages of the disease, and include laser photocoagulation,
photodynamic therapy, surgical macular translocation, and
antiangiogenesis agents [13–16]. These invasive procedures
are expensive, require repetition, whereas pharmacologic
approaches could simplify therapy and reduce cost.

The peroxisome proliferator-activated receptor (PPAR)
class of nuclear receptors (PPARα, PPARβ/δ, and PPARγ)
belongs to the nuclear receptor superfamily that include
the steroid, thyroid hormone, vitamin D, and retinoid
receptors [17, 18]. In 1995, Lehmann et al. [19] discovered
that PPARγ was the intracellular high affinity receptor
for the insulin-sensitizing, antidiabetic thiazolidinediones
(TZDs), the activation of which also promotes growth arrest
of preadipocytes, differentiation, adipogenesis, and differ-
entiation into mature adipocytes [20]. Ligand activation
of PPARγ also downregulates the transcription of genes
encoding inflammatory molecules, inflammatory cytokines,
growth factors, proteolytic enzymes, adhesion molecules,
chemotactic, and atherogenic factors [21–25] (Table 1).

Angiotensin II (AII) and components of the renin-
angiotensin system (RAS) are expressed in the retina [26,
27]. AII promotes retinal leukostasis by activating the
angiotensin type 1 receptor (AT1-R) pathway that propagates
proinflammatory, proliferative mediators (Table 2) leading
to the development and progression of PDR [28–30] and
CNV [31]. By selectively blocking the AT1-R, angiotensin
receptor blockers (ARBs) or “sartans,” for example, valsartan
and telmisartan have been shown to confer neuroprotective
and anti-inflammatory effects in animal models of retinal
angiogenesis and neovascularization [32–36]. Among the
seven approved ARBs, telmisartan and irbesartan were
recently shown to constitute a unique subset of ARBs also
capable of activating PPARγ [37–39]. Valsartan and the
remaining ARBs were inactive in the PPARγ transactivation
assay. In fact, telmisartan was shown to downregulate AT1
receptors through activation of PPARγ [40]. Telmisartan was
shown to provide therapeutic benefits in rodent models of
PDR [33, 41–44] and CNV [45] but data with irbesartan is
unavailable. Therefore, telmisartan and possibly irbesartan
(data unavailable) may have enhanced efficacy in treating
proliferative retinopathies. ARBs are safe and have beneficial
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Table 3: Comparison of pharmacological and other relevant properties of thiazolidinedione (TZD) full PPARγ agonists and dual angiotensin
II type 1 receptor blocker/selective PPARγ modulator (ARB/SPPARγM).

Parameter
TZDs† ARBs∗

Troglitazone Pioglitazone Rosiglitazone Telmisartan Irbesartan

Primary pharmacological target PPARγ PPARγ PPARγ AT1-R AT1-R

Type of PPARγ agonists Full PPARγ agonists Selective PPARγ modulator (SPPARγM)

Drug class (common names) Thiazolidinedione (TZDs) Angiotensin receptor blockers (ARBs)

PPARγ activation (EC50 in μM) 0.55 0.58 0.043 4.5 27

Therapeutic indication Treatment of type 2 diabetes mellitus Treatment of hypertension

Primary therapeutic mechanism Increase insulin sensitivity Lower blood pressure

Serious adverse effect
Fluid retention/weight gain/heart failure None None

(Black box warning)

Supplier/Pharmaceutical Co.
Sigma-Aldrich, Takeda GlaxoSmithKline, Boehringer-Ingelheim Sanofi-Aventis,

St. Louis, Pharmaceuticals NC, USA Pharmaceuticals, Inc., Bridgewater,

Mo, USA Deerfield, Ill, USA Ridgefield, Conn, USA NJ, USA
†

Thiazolidinedione full PPARγ agonists; troglitazone was withdrawn from the market (1998) because of association with rare cases of fatal hepatic failure.
Rosiglitazone and pioglitazone have no such known association.
∗Other FDA-approved ARBs had EC50 values > 100μM (see [37, 38]). EC50 values shown were determined using the standard PPARγ-GAL4 transactivation
assays.

cardiometabolic, anti-inflammatory, and antiproliferative
effects. Among these telmisartan and irbesartan may have
improved efficacy for targeting proliferative retinopathies.
Table 3 provides relevant information on the various drugs
described herein.

2. TISSUE DISTRIBUTION PPARγ

Four PPARγ mRNA isoforms have been identified [46]
that encode two proteins, PPARγ1 and PPARγ2 [47, 48].
PPARγ1 is the principal subtype expressed in diverse tissues,
whereas PPARγ2 predominates in adipose tissue [49, 50].
The PPARγ2 protein differs from PPARγ1 by the presence of
30 additional amino acids [49]. Tissue-specific distribution
of isoforms and the variability of isoform ratios raise the
possibility that isoform expression might be modulated
by or reflect disease states in which PPARγ activation
or inactivation has a role. In humans, PPARγ is most
abundantly expressed mainly in white adipose tissue and
large intestine, and to a significant degree in kidney, heart,
small intestine, spleen, ovary, testis, liver, bone marrow,
bladder, epithelial keratinocytes, and to a lesser extent in
skeletal muscle, pancreas, and brain [51].

2.1. PPARγ expression in the eye

PPARγ is heterogeneously expressed in the mammalian
eye [51–53]. PPARγ was found to be most prominent in
the retinal pigmented epithelium, photoreceptor outer seg-
ments, choriocapillaris, choroidal endothelial cells, corneal
epithelium, and endothelium, and to a lesser extent, in the
intraocular muscles, retinal photoreceptor inner segments
and outer plexiform layer, and the iris [52]. Ligand-
dependent activation of PPARγ evokes potent inhibition of
corneal angiogenesis and neovascularization [53–55]. The
prominent expression of PPARγ in selected tissues of the

retina [52–54] provides the rationale for pharmacotherapeu-
tic targeting of PPARγ for treating ocular inflammation and
proliferative retinopathies [53–56].

2.2. Importance of PPARγ in proliferative retinopathy

To determine whether endogenous PPARγ played a role in
experimental DR, Muranaka et al. [54] evaluated retinal
leukostasis and retinal (vascular) leakage in streptozotocin-
induced diabetic C57BL/6 mice deficient in PPARγ expres-
sion (heterozygous genotype, PPARγ+/−) after 120 days.
Retinal leukostasis and leakage were greater (205% and
191%, resp.) in the diabetic PPARγ+/− mice, compared
to diabetic wild-type (PPARγ+/+) mice. In streptozotocin-
induced diabetic Brown Norway rats, oral administration of
the TZD PPARγ ligand, rosiglitazone for 21 days (3 mg/kg
body weight/day, initiated post-streptozotocin injection)
resulted in suppression of retinal leukostasis by 60.9% (P <
.05), and retinal leakage by 60.8% (P < .05) [54]. Expres-
sion of the inflammatory molecule. ICAM-1 protein was
upregulated in the retina of the rosiglitazone-treated group,
though the levels of VEGF and TNF-α were unaffected
[54]. These findings provide strong evidence for a role of
PPARγ activity in the pathogenesis of DR and provide novel
genomic information that therapeutic targeting of PPARγ
with a known PPARγ ligand, the TZD rosiglitazone, can
attenuate the progression of PDR. Whether a similar effect
may apply to the prevention or attenuation of CNV is
currently unknown and should be explored.

3. ANTIDIABETIC THIAZOLIDINEDIONES (TZDs) AND
PROLIFERATIVE RETINOPATHIES

The insulin-sensitizing TZDs, rosiglitazone, and pioglitazone
are approved for the treatment of type 2 diabetes. Because
they increase target tissue sensitivity to insulin without
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increasing insulin secretion [57], there is no risk of hypo-
glycemia, though there is a risk fluid retention in diabetic
patients, especially those with coexisting heart failure, or at
risk for developing CHF [58].

By activating PPARγ, TZDs modulate groups of genes
involved in energy metabolism [59], inflammation, and cel-
lular differentiation [60–64] by down-regulating the activity
of the proinflammatory nuclear receptors (NF-κB, AP-1,
STAT, NFAT), and inhibiting the activity and expression of
inflammatory cytokines (TNF-α, IL-1β, IL-2, IL-6), iNOS,
proteolytic enzymes (MMP-3 and MMP-9), and growth
factors (VEGF, PDGF-BB, bFGF, EGF, TGF-β) (Table 1).
Because of these broadly beneficial and protective actions of
PPARγ agonists, TZDs have been under development for the
treatment of conditions beyond type 2 diabetes, including
atherosclerosis [64, 65], psoriasis [66], inflammatory colitis
[67], nonalcoholic steatohepatitis [68], and Alzheimer’s
disease [69]. More recently, TZDs have been found to protect
against glutamate cytotoxicity in retinal ganglia and have
antioxidant properties [70] suggesting that PPARγ agonists
could prove valuable in targeting retinal complications [71].

3.1. Therapeutic effects on proliferative
diabetic retinopathy (PDR)

Retinal capillaries consist of endothelial cells, basement
membrane neovascularization, and intramural pericytes
within the basement membrane which are important in
vascular development and maturation [44]. Selective loss
of pericytes from the retinal capillaries characteristically
occurs early in diabetic retinopathy (DR) [72]. Diabetic
macular edema (DME), often associated with PDR, involves
breakdown of the blood-retinal barrier and leakage of
plasma from blood vessels in the macula causing macular
edema and impaired vision [73, 74]. Resorption of the
fluid from plasma leads to lipid and lipoprotein deposition
forming hard exudates [75]. In PDR, inflammation leads
to endothelial dysfunction, retinal vascular permeability,
vascular leakage, and adhesion of leukocytes to the retinal
vasculature (leukostasis), progressive capillary nonperfusion,
and DME [12]. Intraretinal microvascular abnormalities and
progressive retinal ischemia lead to neovascular proliferation
within the retina, bleeding, vitreous hemorrhage, fibrosis,
and retinal detachment [74–76]. Despite advancements in
ophthalmologic care and the management of both type 1 and
type 2 diabetes, PDR remains a leading cause of preventable
blindness [5–7]. Primary interventions, especially intensive
glycemic and blood pressure control, and management
of other cardiovascular risk factors are essential [6, 73–
75]. Focal laser photocoagulation remains the only surgical
option for reducing significant visual loss in eyes with mac-
ular edema [6, 9–12]. The risk of blindness with untreated
PDR is currently greater than 50% at 5 years, but can be
reduced to less than 5% with appropriate therapy [5–7]. At
present, there is insufficient evidence for the efficacy or safety
of pharmacological interventions, including therapy target-
ing vascular endothelial growth factor (i.e., anti-VEGF anti-
body therapy), though intravitreal glucocorticoids may be
considered when conventional treatments have failed [6, 12].

Troglitazone and rosiglitazone were shown to attenuate
VEGF-induced retinal endothelial cell proliferation, migra-
tion, tube formation, and signaling, in vitro [55] by arresting
the growth cycle of endothelial cells [62]. Local intrastromal
implantation of micropellets containing pioglitazone into
rat corneas significantly decreased the density of VEGF-
induced angiogenesis, an accepted animal model of retinal
neovascularization [53].

Adverse conditions that contribute to macular edema
and retinal degeneration in PDR include generation of
advanced glycation end products (AGEs), local ischemia,
oxidative reactions, and hyperglycemia-induced toxicity
[72, 75, 76]. In PPARγ-expressing retinal endothelial cells,
troglitazone, and rosiglitazone inhibited VEGF-stimulated
proliferation, migration, and tube formation [55, 77]. The
effects of troglitazone and rosiglitazone were also evaluated
in the oxygen-induced ischemia murine model of retinal
neovascularization, an experimental model of PDR [77].
Although the model lacks specific metabolic abnormalities
found in diabetes, it isolates the VEGF-driven process in
which neovascularization is stimulated by increased VEGF
expression in the inner retina [77]. Both troglitazone
and rosiglitazone decreased the number of microvascular
tufts induced on the retinal surface, suggesting inhibition
of an early aspect of neovascularization. The inhibitory
effects were dose-dependent (IC50 � 5 μmo1/L) [77].
These findings support the proposal that TZDs may have
beneficial effects by reducing or delaying the onset of PDR
in diabetic patients. Prospective clinical trials are required to
demonstrate clinical efficacy.

3.2. Therapeutic effects on choroidal
neovascularization (CNV)

AMD complicated with CNV involves angiogenesis and
neovascularization in the choroid with hemorrhage in the
subretinal space, fluid accumulation beneath the photore-
ceptors within the fovea, and neural cell death in the outer
retina [13–16]. CNV is present with vascular inflammation,
unbridled vascular proliferation, aberrant epithelial and
endothelial cell migration, and inappropriate production of
proinflammatory cytokines, inducible nitric oxide synthase,
growth factors, proteolytic enzymes, adhesion molecules,
chemotactic factors, atherogenic, and other mediators
that propagate defective blood vessel proliferation [5, 13–
16, 78]. Elevated blood pressure, serum lipids, smoking,
and insulin resistance also have an etiological role in CNV
development [78]. Therefore, control of cardiometabolic
risk factors is important in palliative management of
CNV [79, 80]. Recently, therapy for early exudative
AMD has been directed toward intravitreal injection of
VEGF-directed antibodies or fragments thereof [14–16].
However, excessive cost ($1,950/dose) is a major issue
[http://www.globalinsight.com/SDA/SDADetail6273.htm].
Monthly treatments are difficult for patients to tolerate, and
the risk of serious adverse effects increases over time [16].
On the other hand, synthetic, nonpeptide PPARγ agonists
[81, 82] are straightforward to synthesize, inexpensive to
formulate.
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CNV comprises the underlying pathology of exudative
AMD, principally involving the subretinal vasculature and
choriocapillaris, leading to capillary closure and retinal
ischemia, angiogenesis, retinal neovascularization, bleeding
into the vitreous, retinal detachment and degeneration,
and eventually vision loss [13–16]. PPARγ is expressed
in the choriocapillaris, choroidal endothelial cells, retinal
endothelial cells, and retinal pigmented epithelium [52, 83].
VEGF is a potent inducer of retinal [13–16] angiogenesis
and neovascularization. In their landmark study, Murata
et al. [83] demonstrated the expression of PPARγ1 in
human retinal pigment epithelial (RPE) cells and bovine
choroidal endothelial cells (CECs), and that application
of the TZDs troglitazone or rosiglitazone (0.1–20 μmol/L)
inhibited VEGF-induced proliferation and migration of RPE
and CEC cells, and neovascularization [83]. Moreover, in the
eyes of rat and cynomolgus monkeys in which CNV was
induced by laser photocoagulation, intravitreal injection of
troglitazone markedly inhibited CNV compared to control
eyes (P < .001). The treated lesions showed significantly
less fluorescein leakage and were histologically thinner in
troglitazone-treated animals, without adverse effects in the
adjacent retina or in control eyes [83]. These findings suggest
that pharmacological activation of PPARγ by TZDs appear to
have a palliative or therapeutic effect on experimental CNV.
Again, clinical trials are required to demonstrate efficacy in
the clinical setting.

3.3. Adverse effects of TZDs: fluid retention
and macular edema

Pioglitazone and rosiglitazone are generally safe though, in
type 2 diabetic patients, there is a risk of weight gain (1–3 kg)
and fluid retention [58]. The incidence of peripheral edema
is greater in those concurrently taking exogenous insulin,
increasing from 3.0–7.5% to 14.7–15.3% [58]. The edema
may be related to TZD-induced vasodilation, increased
plasma volume secondary to renal sodium reabsorption,
and reflex sympathetic activation [58]. The association of
rosiglitazone treatment with development of macular edema
has been reported [84]. In a case review of 11 patients
who developed peripheral and macular edema, while on
the TZD therapy [85] 8 patients experienced resolution of
macular edema with improved vision, without laser treat-
ment, 3 months to 2 years after TZD cessation. Therefore,
DME should be considered in type 2 diabetic patients treated
with a TZD, especially those with peripheral edema, or other
symptoms or risk factors of CHF, or concurrently taking
exogenous insulin or nitrates. Drug cessation usually results
in rapid resolution of both peripheral and macular edema
[85].

4. ANTIHYPERTENSIVE ANGIOTENSIN RECEPTOR
BLOCKERS (ARBs) THAT ACTIVATE PPARγ

In their search for PPARγ agonists that lack the adverse
effects of TZDs, Benson et al. [37] screened the active
forms of all currently available antihypertensive “sartans”
(ARBs): losartan, valsartan eprosartan, irbesartan, candesar-

tan, telmisartan, and olmesartan, using the standard GAL-
4 cell-based PPARγ transactivation assay. Only telmisartan
and irbesartan [37, 38] activated PPARγ and promoted
adipogenesis, intracellular lipid accumulation and differen-
tiation of preadipocyte fibroblasts into mature adipocytes,
in vitro, hallmark properties of PPARγ agonists [19]. The
EC50 values for transactivation of PPARγ by telmisartan
and irbesartan were 4.5 μmol/L and 27 μmol/L, respectively
[37–39] (Table 3). Although the PPARγ transactivation assay
may not recapitulate conditions in vivo, based on phar-
macokinetic considerations, concentrations of these ARBs
required to activate PPARγ in vivo are achievable by standard
dosing [86, 87]. By functioning as partial PPARγ agonists
this unique subset of ARBs may provide added end-organ
benefits in certain patient populations such patients with
the metabolic syndrome [87] and other cardiometabolic risk
factors, including atherosclerosis, atherogenesis, and may
have palliative effects on proliferative retinopathies.

ARBs bear an acidic group (tetrazole or carboxyl group)
at the ortho position on the terminal benzene ring of the
biphenyl moiety, which is essential for AT1 receptor binding.
Telmisartan bears a carboxyl and irbesartan, a tetrazole
[87, 88]. The active forms of all other ARBs have two
acidic groups at opposite molecular poles. This second
acidic group limits accessibility, and hinders binding to
the hydrophobic region of the PPARγ receptor [87, 88].
Therefore, among currently available ARBs, the molecular
dipole appears to be an important structure-functional
determinant of ligand binding to the PPARγ receptor [87].
Compared to all other ARBs, telmisartan has a uniquely long
elimination half-life (24 hours), and the largest volume of
distribution (500 L, and >10-fold in excess of other ARBs)
which greatly increases central bioavailability upon oral
dosing [86]. Furthermore, telmisartan has been shown to
have significant anti-inflammatory and antioxidant activity,
which may enhance its effectiveness in attenuating the
progression of proliferative retinopathies [89–91].

4.1. Full versus partial PPARγ agonists

The PPARγ receptor is composed of five different domains,
an N-terminal region or domain A/B, a DNA binding
domain C (DBD), a hinge region (domain D), a ligand
binding domain E (LBD), and a domain F [81, 92, 93]. The
A/B domain contains an activation function-1 (AF-1) that
operates in absence of ligand. The DBD confers DNA binding
specificity. PPARγ controls gene expression by binding
to specific DNA sequences or peroxisome proliferation-
responsive elements (PPREs) in the regulatory region of

PPAR-responsive genes. The large LBD (∼1300 Å
3
) allows

the receptor to interact with a broad range of structurally dis-
tinct natural and synthetic ligands [81, 92, 93]. The receptor
protein contains 13 helices, and the activation function, AF-2
helix located in the C terminus of the LBD is intimately inte-
grated with the receptor’s coactivator binding domain [81].
Ligand-dependent stabilization is required for activation of
the downstream transcriptional machinery [81, 92, 93].

Thiazolidinedione full agonists (TZDfa), for example,
rosiglitazone and pioglitazone permit certain coactivators to
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S342

Telmisartan
GW0072

Figure 1: Telmisartan (blue) superimposed on the co-crystal struc-
ture of GW0072 (red) bound within the PPARγ-LBD. Telmisartan
and GW0072 are Van der Waals space-filling representations, and
the protein backbone by the yellow ribbon. Formation of hydrogen
bonds and interactions between both ligands and the amide proton
of Ser342 contribute toward stabilization of the partial agonists
within the PPARγ-LBD. (Kindly provided by Dr. P.V. Desai &
Professor M.A. Avery, Department of Medicinal Chemistry, University
of Mississippi, USA.)

interact with the PPAR-LBD in an agonist-dependent man-
ner and are oriented by a “charge clamp” formed by residues
within helix 3 and the AF-2 arm of helix 12 in the LBD [45,
93]. Based on protease digest patterns and crystallographic
findings, the PPARγ non-TZD partial agonist (nTZDpa)
[94] and PPARγ partial agonist/antagonist, GW0072 [95] are
mainly stabilized by hydrophobic interactions with helixes
H3 and H7.

The antihypertensive ARBs telmisartan and irbesartan
have been shown to function as partial PPARγ agonists,
similar to the previously identified nTZDpa [94]. Based on
molecular motifs, telmisartan appears to occupy a region in
proximity with helix 3, with key interactions between the
carboxylic acid group of the ligand and Ser342 near the
entrance of the PPARγ pocket [37] (Figure 1). Telmisartan
and irbesartan appear to cause an alteration in the confor-
mation of these helixes similar to that induced by nTZDpa
[37, 39], promoting differences in receptor activation and
target gene expression that confer a low adipogenic potential
compared with full agonists (TZDfa) like rosiglitazone and
pioglitazone, which are known to have a high adipogenic
potential and promote weight gain [58, 81, 94]. Differential
binding motifs reflecting full versus partial PPARγ agonism
are illustrated in Figure 2.

Several coactivators, including CREB-binding protein
complex, CBP/p300, steroid receptor coactivator (SRC)-
1, nuclear receptor corepressor (NcoR), DRIP204, PPAR
binding protein (PBP)/TRAP220, and PPARγ coactivator-1
(PGC-1), among others, interface functionally between the

SPPARM model
Different PPARγ agonists induce distinct receptor conformations

Ligand 2
Ligand 1 Ligand 3

PPARγ
receptor

Ligand 1 Ligand 3

Ligand 2

Differential interactions with cofactors,
histones, and other transcription factors, etc.

Differential gene activation/repression

Ligand 1

Ligand 2

Ligand 3

Figure 2: Selective PPARγ modulator (SPPARγM) model of PPARγ
ligand action. PPARγ is a multivalent receptor whose ligand binding
domain can accommodate different PPARγ ligands. Ligands 1,
2, or 3 (e.g., full agonist, partial agonist, or SPPARγM) are
capable of inducing distinct receptor combinations leading to
selective gene expression. Each ligand-receptor complex assumes
a somewhat different three-dimensional conformation, leading
to unique and differential interactions with cofactors, histones
(acetylases/deacetylases), and other transcription factors. Conse-
quently, each PPARγ ligand-receptor complex leads to a differential,
but overlapping, pattern of gene expression. Thus, each ligand
will activate, or repress multiple genes leading to differential
overlapping expression of different sets of genes. (Adapted with
permission from: J. M. Olefsky, “Treatment of insulin resistance
with peroxisome proliferator-activated receptor gamma agonists.”
Journal of Clinical Investigation, vol. 106, no. 4, pp. 467-472,
2000); H. A. Pershadsingh, “Treating the metabolic syndrome
using angiotensin receptor antagonists that selectively modulate
peroxisome proliferator-activated receptor-gamma.” International
Journal of Biochemistry and Cellular Biology, vol. 38, nos 5-6, pp.
766-781, 2006.)

nuclear receptor and the transcription initiation machinery
in ways not well understood [94]. Differential ligand-
induced initiation of transcription is the consequence of
differential recruitment and release of selective coactiva-
tors and corepressors [96] (Figure 3). For example, NcoR
a silencing mediator when bound to PPARγ suppresses
adipogenesis in the absence of ligand. Activation by TZDfa
ligands causes release of NcoR and recruitment of the nuclear
receptor coactivator complex, NcoA/SRC-1 which promotes
adipogenesis and lipid storage [94].
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Figure 3: Schematic diagram of the mechanisms of PPARγ action. In the unliganded state (top), the PPARγ receptor exists as a heterodimer
with the RXR nuclear receptor and the heterodimer is located on a PPAR response element (PPRE) of a target gene. The unliganded receptor
heterodimer complex is associated with a multicomponent corepressor complex, which physically interacts with the PPARγ receptor through
silencing mediator for retinoid and thyroid hormone receptors (SMRT). The corepressor complex contains histone deacetylase (HDAC)
activity, and the deacetylated state of histone inhibits transcription. After PPARγ ligand binding, the corepressor complex is dismissed, and
a coactivator complex is recruited to the heterodimer PPARγ receptor (bottom). The coactivator complex contains histone acetylase activity,
leading to chromatin remodeling, facilitating active transcription. (Adapted with permission from: J. M. Olefsky, “Treatment of insulin
resistance with peroxisome proliferator-activated receptor gamma agonists.” Journal of Clinical Investigation, vol. 106, no. 4, pp. 467-472,
2000); C. K. Glass, M. G. Rosenfeld, “The coregulator exchange in transcriptional functions of nuclear receptors”. Genes & Development,vol.
14, no. 2, pp. 121-141, 2000.)

Demonstration of direct interaction between telmisartan
or irbesartan with PPARγ protein, by analyzing migration
patterns of ligand-PPARγ protein fragments in trypsin diges-
tion experiments, indicated that both ARBs downregulated
PPARγ mRNA and protein expression in 3T3-L1 human
adipocytes, a known property of PPARγ ligands in adipocytes
[39]. In fact, both telmisartan and irbesartan caused release
of NCoR and recruitment of NCoA/DRIP205 to PPARγ in
a concentration-dependent manner [39]. The transcription
intermediary factor 2 (TIF-2), an adipogenic coactivator
implicated in PPARγ-mediated lipid uptake and storage,
which increased the transcriptional activity of PPARγ, was
potentiated by pioglitazone but not by the ARBs [39]. More-
over, irbesartan and telmisartan also induced PPARγ activity

in an AT1R-deficient cell model (PC12W), demonstrating
that their effects on PPARγ activity were independent of
their AT1-R blocking actions [38]. These data demonstrate
the functional relevance of selective cofactor docking by
the ARBs, and compared to pioglitazone, identify telmisar-
tan and irbesartan as unique selective PPARγ modulators
(SPPARγMs) that can retain the metabolic efficacy of PPARγ
activation, while reducing adverse effects, in parallel AT1-
R blockade [37–39, 88]. Therefore, as dual ARB/SPPARγM
ligands, telmisartan and irbesartan have important dif-
ferential effects on PPARγ-dependent regulation of gene
transcription, without the limitations of fluid retention and
weight gain, providing improved therapeutic efficacy by
combining potent antihypertensive, antidysmetabolic, anti-
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inflammatory, and antiproliferative actions in the treatment
of the proliferative retinopathies.

4.2. Expression of the renin-angiotensin
system in the eye

The RAS evolved to maintain volume homeostasis and blood
pressure through vasoconstriction, sympathetic activation,
and salt and water retention [97]. AII binds and activates
two primary receptors, AT1-R, and AT2-R. In adult humans,
activation of the AT1-R dominates in pathological states,
leading to hypertension, atherosclerosis, cardiac failure,
end-organ demise (e.g., nephropathy), and proliferative
retinopathies. AT2-R activation generally has beneficial
effects, counterbalancing the actions propagated through
AT1-R. ARBs selectively block AT1-R, leaving AII to interact
with the relatively beneficial AT2-R. AII is generated in car-
diovascular, adipose, kidney, adrenal tissue, and the retina;
and through AT1-R activation promotes cell proliferation,
migration, inflammation, atherogenesis, and extracellular
matrix formation [97].

AII and genes enconding angiotensinogen, renin, and
angiotensin converting enzyme (ACE) have been identified
in the human neural retina [98]. Prorenin and renin have
been identified in diabetic and nondiabetic vitreous, and
intravitreal prorenin is increased in PDR [99]. Angiotensin
I and AII were found to be present in ocular fluids of
diabetic and nondiabetic patients [100]. AII and VEGF
have been identified in the vitreous fluid of patients
with PDR [101], and AT1 and AT2 were identified in
the neural retina [102]. Furthermore, AT1 and AT2, AII,
and its bioactive metabolite Ang-(1–7) were identified in
blood vessels, pericytes, and neural (Müller) cells suggesting
that these glial cells are able to produce and process AII
[102]. Thus, AII signaling via the AT1 pathway within
the retina may mediate autoregulation of neurovascular
activity, and the onset and severity of retino-vascular disease
[103].

4.3. Pathophysiological role of AT1 activation in
proliferative retinopathies

AT1 activation participates in the pathogenesis of PDR,
involving inflammation, oxidative stress, cell hypertro-
phy and proliferation, angiogenesis, and fibrosis [101,
103]. The RAS is upregulated concomitant with hypoxia-
induced retinal angiogenesis [102–104] and is linked to
AII-mediated induction of inflammatory mediators and
growth factors, including VEGF and PDGF [103–106].
AT1 blockade with candesartan inhibited pathological
retinopathy in spontaneously diabetic Torii rats by reduc-
ing the accumulation of the advanced glycation end-
product (AGE) pentosidine [34]. AGEs contribute to vas-
cular dysfunction by increasing the activity of VEGF and
reactive oxygen species [34]. Treatment with candesartan
reduced the accumulation pentosidine and VEGF gene
expression in the diabetic rat retina [34]. AT1-R, AT2-
R, and AII were shown to be expressed in the vascular
endothelium of surgical samples from human CNV tissues

and chorioretinal tissues from mice in which CNV was
laser-induced [40]. Therefore, the retinal RAS appears to
have an important pathophysiological role in proliferative
retinopathies.

4.4. Therapeutic effects of telmisartan on
PDR and CNV

AII is among the most potent vasopressive hormones known
and contributes to the development of leukostasis in early
diabetes [29]. Hypertension increases retinal inflammation
and exacerbates oxidative stress in experimental DR
[34, 107], and in diabetic hypertensive rats, prevention
of hypertension abrogaItes retinal inflammation and
leukostasis in early DR [108]. Therefore, RAS blockade by
the dual ARB/PPARγ agonists, telmisartan or irbesartan,
may have enhanced effects for abrogating inflammatory and
other pathological events that contribute to or exacerbate
PDR and CNV/AMD. In clinical studies, reduction of
hypertension by any means reduces the risk of development
and the progression of DR [109]. ARBs are widely used
antihypertensive agents clinically.

Induction of diabetes by streptozotocin injection in
C57BL/6 mice caused significant leukostasis and increased
retinal expression and production of AII, AT1-R, and AT2-R
[30]. Intraperitoneal administration of telmisartan inhibited
diabetes and glucose-induced retinal expression of ICAM-1
and VEGF, and upregulation of ICAM-1 and MCP-1, via
inhibition of nuclear translocation of NF-κB [33]. There
have been no reports on the effects of irbesartan on PDR or
CNV/AMD.

In the laser-induced mouse model of CNV, new vessels
from the choroid invade the subretinal space after pho-
tocoagulation, reflecting the choroidal inflammation and
neovascularization seen in human exudative AMD. Based
a recent suggestion [110], Nagai et al. [45] evaluated and
compared the effects of telmisartan with valsartan, an ARB
lacking significant PPARγ activity [38, 39], and suitable con-
trol to evaluate the role of telmisartan PPARγ activity. Both
ARBs have identical affinities for the AT1-R (∼10 nmo1/L)
[97]. Telmisartan (5 mg/kg, i.p.) or valsartan (10 mg/kg, i.p.)
significantly suppressed CNV in mice [45]. Simultaneous
administration of the selective PPARγ antagonist GW9662,
partially (22%) but significantly reversed the suppression
of CNV in the group receiving telmisartan but not the
group receiving valsartan [45], indicating separate beneficial
contributions via AT1 blockade and PPARγ activation,
respectively [45]. Using GW9662, similar findings were
obtained identifying participation of PPARγ in the suppres-
sive effect of telmisartan on the inflammatory mediators,
ICAM-1, MCP-1, VEGFR-1 in b-End3 vascular endothelial
cells, and VEGF and in RAW264.7 macrophages, unrelated to
AT1 blockade [45]. These findings confirm that the beneficial
effects of telmisartan are derived from a combination of AT1
blockade and PPARγ activation. The inhibitory effects of val-
sartan were insensitive to the presence of GW9662. This is the
first known demonstration of PPARγ-dependent inhibitory
actions of a non-TZD PPARγ agonist on CNV. There have
been no reports on the effects of irbesartan on PDR or CNV.
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4.5. Therapeutic potential of dual ARB/SPPARγMs

Reduction in the cardiometabolic risk profile by lowering
high blood pressure, improving insulin sensitivity, normal-
izing the lipid profile, and inhibiting inflammatory pathways
are known to impede the pathological evolution of prolifera-
tive retinopathies. The dual ARB/SPPARγM ligands, telmis-
artan has been shown to be effective in this regard in the
rodent model, though irbesartan has yet to be tested experi-
mentally. PPARγ activation has beneficial effects by lowering
hyperglycemia and improving the metabolic profile in
individuals with type 2 diabetes and the metabolic syndrome.
The fact that both AT1-R blockade and PPARγ activation
by telmisartan had independent synergistic effects in the
murine model of laser-induced CNV is an important finding
[40]. It would be useful to test whether irbesartan has effects
similar to those of telmisartan in animal models of PDR and
CNV/AMD [28, 31–34, 40], as both ARBs similarly attenuate
inflammation, proliferation, and improve the metabolic syn-
drome [111, 112]. Also, unlike TZDs, telmisartan (but not
valsartan) increases caloric expenditure and protects against
weight gain and hepatic steatosis [113]. With its high lipid
solubility, large volume of distribution, and other favorable
pharmacokinetic properties [86–88], telmisartan may be
effective when administered orally. If oral delivery proves
therapeutically ineffective, the drug may be formulated for
administration via implant or transscleral application for
local delivery to the posterior segment [114–116].

5. CONCLUDING REMARKS

Hypertension, insulin resistance, dyslipidemia, and risk for
atherosclerosis and atherogenesis, all components of the
metabolic syndrome, comprise significant epidemiologic risk
factors for neovascular, proliferative retinopathies [6, 9, 12,
117, 118]. Photodynamic and anti-VEGF therapy, current
treatments for CNV/AMD are cost-intensive. Treatments for
PDR are limited to surgical options in advanced disease
when the visual function is irreversibly affected [3–6, 14–
16]. Therefore, alternative, low cost, prophylactic and/or
palliative pharmacotherapeutic approaches are attractive and
desirable. The currently approved antidiabetic TZD, rosigli-
tazone (a full PPARγ agonist), and the antihypertensive
ARB, telmisartan (a partial PPARγ agonist) have both shown
promise in animal models of proliferative retinopathies. The
potential efficacies of irbesartan in proliferative retinopathies
remain to be determined. Administration of TZDs may,
in patients with AMD, slow the progression to CNV, and
in patients with diabetic retinopathy attenuate the progress
to PDR, provided that: (1) their risk of macular edema is
low, (2) they lack symptoms of CHF or cardiomyopathy,
and (3) are not taking insulin or nitrates. The efficacy and
safety limitations of the TZDs are well understood [119–
123] and their use would require careful benefit-to-risk
analysis. Because these drugs have been in use clinically for
a decade, well-designed retrospective analyses in carefully
selected patient populations may reveal useful information
regarding their clinical potential.

Several SPPARγMs currently which are under develop-
ment for treating type 2 diabetes [124] could be screened in
animal models of PDR and CNV to determine their potential
efficacy for treating proliferative retinopathies. Long-term,
prospective clinical trials are needed to demonstrate the
efficacy of currently approved TZDs and ARBs (Table 3).
Notably, three large prospective phase III trials are underway
to evaluate the effect of the ARB, candesartan on retinopathy
in normotensive type 1 and type 2 diabetes patients, the dia-
betic REtinopathy candesartan trials (DIRECTs) Programme
[125]; estimated study completion date: June 2008. These
studies will provide important insight into the potential
efficacy of ARBs in general in the treatment of DR. With
their capacity for activating PPARγ and improving the
metabolic profile, the clinical efficacy of telmisartan and
possibly irbesartan could be evaluated in patients at risk for
developing PDR and CNV, especially those with deficiencies
in carbohydrate and lipid metabolism. Moreover, with their
unique structure/activity profile, these compounds may
provide a drug discovery platform for designing therapeutic
agents for treating proliferative retinopathies.
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The last decade has witnessed an increasing interest for the role played by the peroxisome proliferator-activated receptor-γ (PPAR-
γ) in controlling inflammation in peripheral organs as well as in the brain. Activation of PPAR-γ has been shown to control the
response of microglial cells, the main macrophage population found in brain parenchyma, and limit the inflammation. The anti-
inflammatory capacity of PPAR-γ agonists has led to the hypothesis that PPAR-γ might be targeted to modulate degenerative
brain diseases in which inflammation has been increasingly recognized as a significant component. Recent experimental evidence
suggests that PPAR-γ agonists could be exploited to treat ocular diseases such as diabetic retinopathy, age-related macular degener-
ation, autoimmune uveitis, and optic neuritis where inflammation has relevant role. Additional PPAR-γ agonist beneficial effects
could involve amelioration of retinal microcirculation and inhibition of neovascularization. However, PPAR-γ activation could, in
some instances, aggravate the ocular pathology, for example, by increasing the synthesis of vascular endothelial growth factor, a
proangiogenic factor that could trigger a vicious circle and further deteriorate retinal perfusion. The development of new in vivo
and in vitro models to study ocular inflammation and how to modulate for the eye benefit will be instrumental for the search of
effective therapies.
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1. INTRODUCTION

The peroxisome proliferator-activated receptor-γ (PPAR-γ)
is a ligand-inducible transcription factor that belongs to
a large superfamily comprising the nuclear receptors for
steroids, thyroid hormones, and retinoids. The PPAR-γ and
the two closely related PPAR-α and PPAR-δ (also known as β,
NUC-1, or FAAR) are activated by naturally occurring fatty
acids and act as sensors that regulate whole body metabolism
in response to the dietary intake by controlling lipid and car-
bohydrate metabolism and lipid storage [1]. All three PPARs,
once agonist-activated,form heterodimers with retinoic X
receptors and regulate specific target gene transcription by
binding to specific DNA regions (peroxisome proliferator re-
sponse elements, PPREs) or by a mechanism independent of
PPRE binding, termed transrepression, which begins to be
unravelled [2].

Because of their role in the regulation of genes involved
in lipid and carbohydrate metabolism, PPARs deeply affect
lipid homeostasis and insulin sensitivity [3, 4]. The serum

glucose lowering activity of PPAR-γ has lead to the develop-
ment of specific PPAR-γ agonists for the treatment of type-2
diabetes and the metabolic syndrome [5]. PPAR-γ agonists
such as thiazolidinediones (TZD), including pioglitazone
(Actos) and rosiglitazone (Avandia), increase insulin sensi-
tivity thereby improving glycaemic control, but also modify
lipidemic profile and decrease blood pressure [6–9]. On the
other hand, fibrates, which are PPAR-α agonists, are preva-
lently antilipidemic drugs, and therapeutic benefits of PPAR-
α and PPAR-γ activations, which only are minimally over-
lapping, have generated interest in dual agonists that target
both receptors, thus offering improved insulin sensitivity and
lipidemic control in the same molecule [10, 11]. This would
provide a therapeutic tool against diabetes and the metabolic
syndrome.

The three PPARs share a high homology, but differ for
tissue distribution and ligand specificity. PPAR-α is mainly
expressed in tissues with high catabolic rates of fatty acids,
such as the liver, muscle, and heart, whereas PPAR-δ shows
a much wider distribution. PPAR-γ is highly expressed in
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adipose tissue, where it plays a central role in the regula-
tion of adipocyte differentiation [12], and in cells of the im-
mune system, including lymphocytes and macrophages. In
peripheral monocytes, PPAR-γ expression is induced during
the process of extravasation from blood vessels into the tis-
sues, and in the course of activation by pro-inflammatory
stimuli, suggesting that PPAR-γ is important for promoting
monocyte-macrophage differentiation and activation and,
thus, controlling inflammation [13–16]. As for macrophages
of peripheral tissues, PPAR-γ regulates the activation of mi-
croglial cells, the main macrophage population found in
brain parenchyma, and increasing evidence indicates that
PPAR-γ might modulate brain inflammation and neurode-
generation [17] and be exploited as valuable therapeutic tar-
get in neurological diseases [18]. Indeed, brain inflammation
is increasingly viewed as a target for treating neurological dis-
eases, not only in classical infectious and immune-mediate
disorders such as meningitis or multiple sclerosis, but also in
stroke, trauma, and neurodegenerative diseases that were not
originally considered to be inflammatory [19, 20].

In a similar way, inflammation could represent an im-
portant target to treat ocular diseases. In the study of oph-
thalmology, the classical subdivision of pathology textbooks
in metabolic, inflammatory, hemodynamic, and degenera-
tive disorders appears artificial and does not reflect the com-
plexity of conditions, where inflammation, dysmetabolic and
hemodynamic disorders, and neurodegeneration often con-
spire to the development of diseases. Paradigmatic example
is diabetic retinopathy (DR), where a metabolic derangement
(hyperglycemia) triggers a pathologic pathway, characterized
initially by inflammation (leukostasis, enhanced retinal vas-
cular permeability, Muller cell, and microglial activation),
followed by microvasculature alterations and ischemia (pro-
liferative DR), eventually leading to degeneration of neu-
ral retina and visual loss. To this complexity, a simplicity in
the natural history may correspond and the course of dif-
ferent retinal diseases may at a certain stage converge to-
ward a similar evolution. For example, pathologic neovas-
cularization may be the same and ominous outcome of DR,
age-related macular degeneration (AMD), and autoimmune
uveitis, conditions that are very far from each other from the
point of view of etiology.

In the present article, we will first briefly review the
immune cells that participate to the ocular inflammation,
mainly microglia, and the role of PPAR-γ in controlling their
functions. In a second part, we will consider three conditions,
where inflammation has a relevant function, microglia is in-
volved, and the role of PPARs has been taken into considera-
tion: DR, AMD, and optic neuritis (ON).

2. MICROGLIAL CELLS AND OTHER CELL
POPULATIONS OF THE IMMUNE RESPOSE
IN THE EYE.

Glial cells are the primary participants in the formation of
scars in response to retinal or ocular injury and diseases. In
addition, under normal conditions, they carry out a vari-
ety of supportive functions for the neurons with which they
are closely related. Glial cells include astrocytes, oligoden-

drocytes, the retina-specific Muller-glial cells, and microglia,
which are considered the main immune resident cells.

Retinal microglia, like their counterpart in the brain, be-
long to the myeloid lineage and their myeloid progenitors en-
ter the nervous system primarily during embryonic and fetal
periods of development. During embryogenesis, microglial
precursors migrate to the retina before retinal vascularization
and differentiate into ramified, quiescent microglia typical
of adult healthy retina. A second population of phagocytes,
which express macrophage markers, invades the retinal later
through the developing vasculature and remains associated
with the blood vessels (see below). In the adult retina, mi-
croglia are distributed through most of the retinal layers, in-
cluding outer plexiform layer, outer nuclear layer, inner plex-
iform layer, ganglion cell layer, and nerve fiber layer. Engraft-
ment experiments have shown that they display some prolif-
erative capacity and have a slow turnover in respect of other
macrophage populations [21]. Disturbances in the number
or distribution of these cells disrupt the normal development
of the eye and its related structures. Ritter and collaborators
[22] have recently reported that myeloid progenitors migrate
to vascular regions of the retina where they differentiate into
microglia and facilitate the normalization of the vasculature,
thus underlining a main role of microglial cells in promoting
and maintaining retinal vasculature during development.

Microglia show particular capacity of interaction with
retinal cells, supervising the immune environment (see
[23] and references therein). As for microglia in the brain
parenchyma, retinal microglial cells are immunocompetent
cells, able to remove the debris created during normal eye de-
velopment or degenerative conditions by phagocytosis and to
mount an inflammatory and immune response against ocu-
lar injury, infection, and disease.

Under normal conditions, microglia are characterized
by a downregulated phenotype when compared to other
macrophage populations of peripheral tissues. The mainte-
nance of microglia in this “inhibited” state is crucial for the
regulation of the immune state of the retina, which has to
maintain tissue homeostasis while preventing the destructive
potential of inflammatory and immune response. The com-
plexity of the several intraocular structures on which the cor-
rect vision is dependent renders the eye particularly vulner-
able to the reactions of the immune system against invad-
ing pathogens or ocular injury. To prevent that a defensive
reaction can transform into a threat to vision in itself, the
eye is equipped with several regulatory mechanisms, which
contribute to make the eye an “immune-privileged” site [24].
As recently described for the brain parenchyma [25], the im-
mune privilege is not an absolute or an immutable state, but
rather it is the result of the active interplay among specialized
cellular elements and specific microenvironment character-
istics, and it can be overcome in several instances. Among
the main features that account for the ocular immune privi-
legeare is the presence of blood-ocular barriers (the blood-
aqueous barrier and the blood-retinal barrier), which are
physical barriers between the local blood vessels and most
parts of the eye itself, and the peculiar characteristics of the
resident immune cells, namely, microglia, which are largely
dependent on the presence of immunomodulatory factors
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Table 1: Retinal pathologies characterized by microglial activation.

Pathology References

Diabetic retinopathy [26–29]

Glaucomatous optic nerve degeneration [30–33]

Human retinitis pigmentosa [34]

Age-related macular degeneration [34, 35]

Retinal ischemia and reperfusion injury [36, 37]

Retinal degeneration [14, 20, 38]

in the aqueous humor and on the cross-talk between mi-
croglia and retinal cells. Several “ligand-receptor-” type in-
teractions between retinal cells and microglia contribute to
maintaining microglia in a nonactivated state. Among these,
the glycoprotein CD200, which in the retina is extensively ex-
pressed in neurons and endothelial cells, and the cognate lig-
and CD200L on microglia [39], and the neuronal chemokine
fractalkine (or CX3CL1) and its microglial receptor CX3CR1
[40].

In spite of their apparent “dormant” state, resting mi-
croglia actively monitor the surrounding microenvironment
with extremely motile processes and protrusions, entering in
contact with other cellular elements and sensing alterations
in the nearby environment, to which they rapidly react. Mi-
croglial activation comprises morphological changes, such
as cellular hypertrophy, retraction of processes, and expres-
sion of surface markers, as well as functional changes, includ-
ing proliferation, migration, phagocytosis, and production of
bioactive molecules. Activated microglia have been described
in several forms of retinal injury or disease (see Table 1),
in which they are believed to play major roles, either pro-
tective or detrimental. Indeed, activated microglia can, on
one side, remove the degenerating neurons and contribute
to re-establish tissue integrity; on the other side, they can
secrete proinflammatory cytokines such interleukin (IL)-1β,
IL-3, IL-6, tumour necrosis factor (TNF)-α, and interferon
(IFN)-γ, which can be toxic to neurons and photoreceptors
[41, 42] or to other cellular targets such as oligodendro-
cytes [43, 44]. In addition, several of these microglial prod-
ucts can up-regulate the expression of vascular cell adhesion
molecules and chemokines [45–47], thus promoting the re-
cruitment of lymphocytes and macrophages, and enhancing
the immune-mediated tissue damage [23, 48]. In this con-
text, molecules that can enable the control of microglial acti-
vation represent valuable tools to counteract the detrimental
effects of inflammation and immune response while foster-
ing those necessary for healing.

In addition to microglia, other cell types contribute to the
immune response in the eye. The perivascular macrophages
reside outside the blood-ocular barrier, in the space that sep-
arates the endothelium of the retinal capillaries and reti-
nal pigment epithelium (RPE). Because of their anatom-
ical location, they escape the tight control to which reti-
nal microglia are subjected and their morphology and im-
munophenotype are very similar to those of macrophages
of peripheral tissues. In close proximity, but separate from
perivascular macrophages are the pericytes, which are be-

lieved to be essential as structural support in microcircula-
tion. In addition, together with astrocytes and Muller glia,
they are considered to play a major role in maintaining the
inner blood-retinal barrier [49]. These cells, of mesodermal
origin, are enclosed within the basal lamina on the ablumi-
nal surface of endothelial cells and contain contractile pro-
teins. Pericytes have been shown to control vessel constric-
tion and retinal blood flow [50], and are involved in sev-
eral pathological conditions, including hypoxia, hyperten-
sion, and DR. Their activation, since the very early phases of
disease, is thought contribute to the disruption of the blood-
retinal barrier [51]. Finally, the RPE cells are important in
ocular immune response and in maintaining the eye immune
privilege. These cells form a monolayer between the neu-
roretina and the choroids and are the essential component of
the outer blood-retinal barrier. One of the main characteris-
tics of RPE cells is the presence of tight junctions at the apical
side of their lateral membrane, which render the monolayer
impermeable for macromolecules and limit access of blood
components to the retina. In addition to several important
supportive functions, including regulation of transport of
nutrients to the photoreceptors, phagocytosis of damaged or
old rod outer segments, and production of growth factors,
RPE cells contribute to the immune and inflammatory re-
sponse of the retina by expressing major histocompatibility
complex (MHC) antigens, adhesion molecules, and a variety
of cytokines, which may either promote or enhance immune
responses or down-regulate them [52].

In addition to the cell types so far described, a novel pop-
ulation of dendritic cells has been recently reported in nor-
mal mouse retina, distinguishable by the cell types by the ex-
tent of specific surface antigens and anatomical tissue loca-
tion [53].

3. DIABETIC RETINOPATHY

Diabetic retinopathy (DR) is one of the most serious compli-
cations of diabetes and the leading cause of blindness among
working-age adults. DR symptoms are mostly due to the vas-
cular alterations that affect the retina. The early events are in-
creased blood flow and abnormal vessel permeability, due to
the impairment of blood-retinal barrier. They are caused by
hyperglycemia and the other metabolic consequences of ex-
cess glucose disposal. As the disease progresses, retinal vascu-
lopathy develops, showing loss of pericytes, smooth muscle
and endothelial cell death, and microaneurysm formation,
resulting in areas of ischemia in the retina. At this stage, up-
regulation of proangiogenic factors in ischemic retina, such
as vascular endothelial growth factor (VEGF), initiates a vi-
cious circle of neovascularization (proliferative DR), charac-
terized by enhanced vascular leakage and formation of new,
weak, and prone-to-break blood vessels, which further dete-
riorates retinal perfusion, worsens ischemia and eventually
leads to visual loss.

Although the pathogenetic cascade connecting these
events is still unclear, evidence suggesting a role for in-
flammation in DR is accumulating, supporting the involve-
ment of both chemical mediators and inflammatory cells
in the pathogenesis of the disease [54]. Elevated levels of
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proinflammatory cytokines, such as IL-1β, IL-6 and IL-8,
and TNF-α and vascular cell adhesion molecule-1, have been
found in the vitreous of patients with proliferative DR [55–
57]. Increased VEGF and IL-6 levels were detected in the
aqueous humor of diabetic patients with macular edema
[58]. TNF-α was found in epiretinal membranes of prolifera-
tive DR [59]. Data from experimental models are in line with
these observations. In streptozotocin (STZ)-induced diabetic
rats, changes in retinal blood vessel permeability, which char-
acterizes the early phases of DR, are paralleled by increase
in the level of the intercellular cell adhesion molecule-1
(ICAM-1), which facilitates the trafficking of leukocytes [60],
and pro-inflammatory mediators, such as TNF-α and cyclo-
oxygenase-2 (COX-2) [61, 62]. In the same animal model, an
increased level of IL-1β has been observed and put in relation
to upregulated inducible nitric oxide synthase (iNOS) [63].
Mice deficient in the leukocyte adhesion molecules CD18
and ICAM-1 demonstrate significantly fewer adherent leuko-
cytes in the retinal vasculature after induction of diabetes
with STZ [54]. According to some authors, VEGF could be
responsible for the initiation of the inflammatory cascade, as
its administration in vivo was found to induce retinal ICAM-
1 and endothelial NOS (eNOS) expression [64, 65]. As far
as inflammatory cells are concerned, microglia seem to be
mostly involved. Microglial activation appears early in the
course of DR, before the onset of overt neuronal cell death
[62]. In STZ-induced diabetic rats, hypertrophic microglia
were observed one month after the onset of diabetes [66],
with significant increase also in cell number [67]. In mice
with alloxan-induced diabetes, changes in microglial cell
morphology were the first detectable cellular modifications,
apparently preceding ganglion cell apoptosis and increase in
blood barrier permeability [68]. Treatment of STZ-induced
diabetic rats with minocycline, a semisynthetic tetracycline
that counteracts microglial activation, besides decreasing the
expression of proinflammatory cytokines, decreased caspase-
3 levels [62], suggesting a potential neuroprotective anti-
apoptotic effect of inhibition of microglial activation.

Considering the role of inflammation in the pathogen-
esis of DR, it has been suggested that PPAR-γ ligands ex-
ert therapeutic effects also as modulators of inflammation,
besides providing glycemic control [69]. In diabetic pa-
tients, PPAR-γ agonists reduce several markers of inflam-
mation, such as serum levels of C-reactive protein, IL-6,
monocyte chemoattractant protein-1 (MCP-1), plasmino-
gen activator inhibitor-1, soluble CD40 ligand, and matrix
metalloproteinase-9 [70–75]. In addition, they have been
shown to induce the suppression of activated NFκB and de-
crease ROS generation in blood mononuclear cells [70, 73].

Modulation of the inflammatory process has also been
studied in DR in in vivo models. In streptozotocin-induced
DR, rosiglitazone was shown to inhibit both retinal leukosta-
sis and retinal leakage [76]. The effect was not accompanied
by downregulation of proinflammatory cytokines, such as
TNF-α, although the adhesion molecule ICAM was found
reduced. Nitric Oxide (NO) of endothelial origin regulates
ocular blood flow. In the endothelial dysfunction, which
characterizes the early stages of DR, a reduction in the
bioavailability of NO may contribute to impairment of oc-

ular hemodynamics [77]. In bovine aortic endothelial cells,
troglitazone increased NO production in a dose- and time-
dependent manner with no modifications in eNOS expres-
sion [78]. A study focused on NO production in pericytes
showed that PPAR-γ is constitutively expressed in retinal per-
icytes and that troglitazone increases NO production and
iNOS expression in a PPAR-γ-dependent manner, an effect
which is opposite to what observed in cultured microglia
[79, 80]. This study suggests that PPAR-γ agonists, in ad-
dition to improving insulin sensitivity, might also improve
retinal microcirculation in early DR [81]. However, NO is
a double-edged sword. Overproduction of NO by neuronal
NOS is supposed to contribute to retinal injury in ischemia
[82, 83]. Thus, although in DR early phase an increase in NO
may contribute to the improvement of retinal microcircu-
lation, in proliferative DR a beneficial effect is doubtful. A
further reason of concern is represented by TZD effects on
VEGF. Several in vivo and in vitro studies have reported in-
creased expression of VEGF in response to PPAR-γ ligands.
TZDs have been found to upregulate VEGF in human vascu-
lar muscle cells [84], in 3T3-L1 adipocytes [85], in cultured
cardiac myofibroblasts [86]. In bovine aortic endothelial cells
treated with troglitazone, NO increase was accompanied by
upregulation of VEGF and its receptor, KDR/Flk-1 [78]. Ad-
ministration of pioglitazone [87] and troglitazone [85] also
significantly increased plasma VEGF levels in diabetic pa-
tients. Considering the role played by VEGF in the develop-
ment and progression of DR, caution has been suggested in
the use of PPAR-γ ligands in patients with advanced disease
[85, 87]. However, in partial disagreement with the results
above reported, antiangiogenic properties of PPAR agonists
have been shown both in in vitro and in vivo models [35, 88–
90]. In neonatal mice, where ischemia was used as a model of
retinal neovascularization, intravitreous injection of rosigli-
tazone or troglitazone inhibited development of new retinal
vessels [91]. In the same study, TZDs have been found to
inhibit retinal endothelial cell proliferation, migration, and
tube formation in response to VEGF treatment [91]. Further
studies are therefore required to clarify the issue.

4. AGE-RELATED MACULAR DEGENERATION

Age-related macular degeneration (AMD) is the leading
cause of vision loss in the elderly in the western world. It
is characterized by degeneration of the macula, the central
area of the retina with the highest concentration of cone pho-
toreceptors, responsible for visual acuity and color vision.
Histopathologically, the early phase of AMD is characterized
by formation of drusen, deposits of lipid and cellular de-
bris that are found between the RPE cells and Bruch’s mem-
brane, possibly as a result of RPE degeneration or, as recently
proposed [92], microglial infiltration and transformation in
foam cells. As the disease proceeds, photoreceptor degener-
ation and, in the most aggressive cases, choroidal neovascu-
larization (CNV) intervene, with growth of new blood vessels
from the choroids into the subretinal space. Two major clin-
ical phenotypes of AMD are recognized: nonexudative (dry
type), and exudative (wet type). The latter more frequently
develops into CNV.
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AMD is a complex, multifactorial disease and both ge-
netic and environmental factors may contribute at some
level. In the pathogenesis of the disease, both altered angio-
genesis and inflammation play a role. The study of patho-
logic angiogenesis in the retina has focused on two main fac-
tors: the angiogenic VEGF [93, 94] and the antiangiogenic
PEDF [94–96], although a number of other factors are im-
plicated(for a review, see [97]). It is widely agreed that in
CNV an imbalance between angiogenic and anti-angiogenic
factors takes place, but what disrupts this delicate equilib-
rium is still unclear. Several lines of evidence point to inflam-
mation as a pathogenetic mechanism. Many risk factors for
AMD are related to inflammation, including environmen-
tal factors, such as smoking and low intake of omega-3 fatty
acid [98, 99], and genetic factors, such as polymorphisms of
complement factor H [100–102] and the chemokine receptor
CX3CR, which is expressed by microglia and mediates mi-
gration and adhesion in response to its ligand fractalkine or
CX3CL1 [103]. Increased serum levels of IL-6 and C-reactive
protein have been found to be related with progression of
AMD [104]. More recently, IL-6 receptor neutralization has
shown to lead to decrease in the expression of inflamma-
tory mediators, such as the chemokine MCP-1, the adhesion
molecule ICAM-1, and VEGF, and to reduce macrophage in-
filtration into CNV in in vivo model of the disease [105].
Inflammatory mediators, such as macrophage chemoattrac-
tants and activated complement components, especially C3a
and C5a, are also found in drusen samples from AMD pa-
tients [106–108]. A role for complement in the development
of the disease has been suggested [34]. In line with this hy-
pothesis, it has been observed that genetic ablation of recep-
tors for C3a or C5a reduced VEGF expression, leukocyte re-
cruitment, and CNV [109].

Activation of microglia and infiltration of macrophages
have been reported in the human AMD as well as in
experimental CNV [110–112]. In transgenic mice lack-
ing CX3CR1, microglia migrate defectively and accumu-
late in the subretinal space, evoking morphological and
pathological features similar to those observed in human
AMD. In addition, laser-induced CNV was exacerbated in
these mice [92]. A controversy exists regarding the ori-
gin of activated retinal mononuclear phagocytes, that is,
whether they are resident microglia [113, 114] or blood-
derived bone marrow macrophages [46, 115]. In support
of the latter hypothesis, it should be noted that systemic
depletion of macrophages using clodronate-filled liposomes
blocked neovascularization [116, 117]. However, the role
of macrophages is still debated, since some studies suggest
an antiangiogenic role for macrophages. For example, mice
lacking CC chemokine ligand 2 (CCL2) or its receptor, both
involved in chemoattraction of macrophages and/or mi-
croglia, show drusen-like deposits and CNV, suggesting that
macrophage recruitment may protect against AMD [118].
In addition, mice lacking IL-10, an anti-inflammatory cy-
tokine known to control macrophage/microglia functions,
had significantly reduced neovascularization and increased
macrophage infiltrates compared to wild type, in a laser-
induced model of CNV. In these experiments, prevention of
macrophage entry into the eye promoted neovascularization

while direct injection of macrophages significantly inhibited
CNV.

As mentioned earlier, beside mononuclear phagocytic
cells, RPE cells have also a role in the inflammatory and an-
giogenetic process, as a major source of VEGF and PEDF. In
addition, there is a cross-talk between RPE and macrophages.
It has been shown that macrophages in CNV are im-
munopositive for VEGF, TNF-α, and IL-1β [119]. The lat-
ter factors can induce the secretion of IL-8 and MCP-1 in
RPE cells in vitro [120, 121]. MCP-1 is, in turn, involved in
the recruitment of macrophages [122], thus closing the cir-
cle. Indeed, in surgically excised CNV specimens, RPE was
found to express VEGF and MCP-1 and macrophages were
immunolabeled for VEGF [123].

The interest in the role of PPARs in AMD has been
mainly focused on their activities as modulators of angio-
genesis. PPAR agonists have shown antiangiogenic properties
both in in vitro and in vivo models [35, 88, 89]. It has been
shown that choroidal ECs and RPE cells express PPAR-γ and
that PPAR-γ ligands inhibit their response to VEGF, without
apparent toxicity to the adjacent retina, in a laser-induced
model of CNV [90]. Decrease in angiogenesis apparently
takes place by inhibition of VEGF, since PPAR-α agonists
are found to inhibit endothelial VEGFR2 expression [124].
An opposite role has been recently described for PPARδ,
which induced endothelial proliferation and angiogenesis in
vitro, through a VEGF-dependent mechanism [125]. The
natural ligand 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2)
was found to protect a human RPE cell line from oxidative
stress by elevating GSH and enhancing MAPK activation, but
such activity was independent of its PPAR-γ binding activity
[126]. The roles of infiltrating macrophages and/or resident
microglia in the pathogenesis of AMD open the possibility
that PPAR-γ agonists may ameliorate the course of the dis-
ease also through the down-regulation of several proinflam-
matory functions of these cells [8] and reference therein, in-
cluding TNF-α and iNOS, and MHC-II expression.

However, possible beneficial effects of PPAR-γ agonists
in the treatment of ocular inflammation and, particularly,
of AMD need to be further verified. It is important to keep
in mind that PPAR-γ is involved in the differentiation of
macrophages to foaming cells and PPAR-γ ligands can induce
expression of adipocyte lipid binding protein (ALBP/aP2),
a gene that is highly expressed in vivo in macrophage/foam
cells of human atherosclerotic plaques [127]. Moreover, ac-
tivation of PPAR-γ has been shown to reduce CCR2 expres-
sion in monocytes and their chemotaxis in response to MCP-
1 [128]. These PPAR-γ mediated activities are of particular
interest in the view of the recent finding by Combadière et al.
[92], suggesting that subretinal microglial foam cells might
be the origin of drusen-like deposits and that accumulation
of microglia in the subretinal space may be a driving force in
the pathogenesis of AMD.

5. OPTIC NEURITIS AND RELATED DISORDERS

Optic neuritis (ON), an inflammatory, demyelinating dis-
ease of the optic nerve, may be the initial symptom of mul-
tiple sclerosis (MS) or appear in the course of the disease.
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Table 2: PPAR agonists and EAE.

Agonists Biological activity Receptor References

Troglitazone Amelioration of clinical symptoms. Reduced expression
of proinflammatory cytokines, IL1β and TNF-α

PPAR-γ [129]

Ciglitazone, 15d-PGJ2

Decrease of severity and duration of clinical paralysis.
Decrease of CNS inflammation and demyelination. De-
crease of IL-12 production

PPAR-γ [130]

15d-PGJ2

Delay in the onset and decrease in the severity of disease.
Reduction of Con A- and MBP Ac1–11-reactive, IFN-α-
and IL-4-secreting cells

PPAR-γ [131]

Pioglitazone Decreased mRNA levels of iNOS and the chemokines
MIP1 and RANTES in the central nervous system

PPAR-γ [132]

Gemfibrozil and fenofibrate
Dose-dependent suppression of lymphocyte prolifera-
tion. Promotion of IL-4 production and inhibition of
IFN-γ production

PPAR-α [133]

GW0742 Improvement of clinical recovery. Reduction of glial
activation

PPAR-δ [134]

Ciglitazone, 15d-PGJ2
Amelioration of clinical and pathological symptoms. In-
hibition of neural antigen-specific T cell proliferation

PPAR-γ [135]

Gemfibroil

Reduction of incidence and clinical signs. Inhibition of
the infiltration of inflammatory cells into the CNS. Re-
duced expression of proinflammatory molecules such as
iNOS, IL-1, IL-6, and TNF-α

no PPAR-γ [136]

Pioglitazone
Prevention of relapse episodes and reduction of mean
clinical scores during the treatment period. Decrease of
IFN-γ levels

PPAR-γ [137]

In any event, nearly half of MS patients develop ON during
the course of the disease. An idiopathic demyelinating dis-
order of the optic nerve also occurs as NeuroMyelitis Optica
(NMO) or Devic’s disease, which is characterized by the co-
existence of usually bilateral and severe optic neuritis with
spinal cord involvement and the presence of a highly spe-
cific serum autoantibody marker (NMO-IgG), recognizing
the transmembrane channel Aquaporin 4 [138, 139]. The
boundaries between NMO and MS are, however, rather im-
precise, from both the clinical and pathologic points of view
and it is still a matter of controversy whether NMO should
be considered a variant of MS or a separate entity [139, 140].

Considering their role in inflammation, the possible ther-
apeutic efficacy of PPAR-γ agonists has been studied in ex-
perimental autoimmune encephalomyelitis (EAE), an ani-
mal model of the disease where the autoimmune reaction
against myelin is induced in animals by active sensitization
with myelin components. Although several criticisms have
been moved towards this model, EAE still provides a valu-
able tool for improving our understanding on the pathogen-
esis and treatment of MS. EAE is also considered a model
relevant to the study of demyelinated diseases of the optic
nerve [141, 142]. An additional animal model is represented
by T cell receptor transgenic mice specific for myelin oligo-
dendrocyte glycoprotein (MOG). These mice develop iso-
lated optic neuritis either spontaneously or after sensitiza-
tion with suboptimal doses of MOG [143]. Therapeutic effi-
cacy of PPAR-γ ligands has been demonstrated in terms of
suppression or amelioration of clinical symptoms and de-
crease of inflammatory signs (see Table 2). Although the anti-

inflammatory activities of PPAR-γ agonists are complex and
multifaceted, evidence has been provided suggesting a direct
action of PPAR-γ agonists on microglia/mononuclear phago-
cytic cells. Indeed, taking part in both innate and adaptive
immune responses, microglia and mononuclear phagocytes
are deeply implicated in the complex inflammatory cascade
associated with MS. Their role has been recently and ex-
tensively reviewed [144, 145]. The PPAR-γ natural agonist
15d-PGJ2 [146] and the PPAR-α agonist gemfibrozil [133]
were found to significantly reduce macrophage infiltration
in the lesions. A decreased number of IL-1β-positive cells
were found in EAE brain of mice treated with GW0742 and a
PPAR-δ agonist and this observation was considered indica-
tive of a reduction of glial activation [134]. PPAR-γ inhibi-
tion of microglial cell activation is also supported by in vitro
experiments [8, 79, 80, 147–152].

Notwithstanding the amount of data regarding a thera-
peutic activity of PPAR agonists in EAE, clinical studies are
lacking and report on their clinical use in MS or ON is still
anecdotical [153]. Clinical trials are however in course with
pioglitazone and rosiglitazone.

6. CONCLUSIONS

The promising results obtained in experimental models of
ocular diseases and the recent advancements in the knowl-
edge of the pathogenic mechanisms driving ocular damage
and vision loss strongly point to PPAR-γ as a valuable tar-
get to control inflammation and treat invalidating diseases
such as DR, AMD, and ON. Given the complexity of the
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phenomena that can be influenced by PPAR-γ activation, in-
volving not only inflammation but also retinal microcircu-
lation, neovascularization, and transformation of activated
microglia in foam cells contributing to drusen-like deposits,
further studies are mandatory for a correct evaluation of pro
and cons of using PPAR-γ agonists in ocular disease treat-
ment. The PPAR-γ agonists could also find other important
applications in controlling the adverse effects of inflamma-
tion that can put at risk the eye integrity and the correct vi-
sion. As an example, some of the adverse reactions described
after liquid artificial vitreous replacement use in vitreoreti-
nal surgery are a consequence of inflammatory reaction and
activation of mononuclear phagocytic cells [154], suggesting
that the use of PPAR-γ agonists could be very advantageous
in controlling the inflammatory response to biomaterials.
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The retinal vessels have two barriers: the retinal pigment epithelium and the retinal vascular endothelium. Each barrier exhibits
increased permeability under various pathological conditions. This condition is referred to as blood retinal barrier (BRB) break-
down. Clinically, the most frequently encountered condition causing BRB breakdown is diabetic retinopathy. In recent studies,
inflammation has been linked to BRB breakdown and vascular leakage in diabetic retinopathy. Biological support for the role of
inflammation in early diabetes is the adhesion of leukocytes to the retinal vasculature (leukostasis) observed in diabetic retinopathy.
PPARγ is a member of a ligand-activated nuclear receptor superfamily and plays a critical role in a variety of biological processes,
including adipogenesis, glucose metabolism, angiogenesis, and inflammation. There is now strong experimental evidence to sup-
port the theory that PPARγ inhibits diabetes-induced retinal leukostasis and leakage, playing an important role in the pathogenesis
of diabetic retinopathy. Therapeutic targeting of PPARγ may be beneficial to diabetic retinopathy.

Copyright © 2008 Yasuo Yanagi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. BLOOD RETINAL BARRIER (BRB) BREAKDOWN
IN DIABETIC RETINOPATHY

The retinal vessels have a barrier consisting of the tight junc-
tion of the retinal pigment epithelium and the retinal vas-
cular endothelium. Each barrier exhibits increased perme-
ability under various pathological conditions. This condi-
tion is referred to as blood retinal barrier (BRB) break-
down. Clinically, the most frequently encountered condi-
tion that induces vascular permeability is diabetic retinopa-
thy [1]. BRB breakdown causes retinal edema. Clinically,
the retinal edema often affects macula, the highly sensi-
tive area of the central retina, and often severely affects vi-
sion (Figure 1). The frequency of diabetic macular edema
ranges from 2% to 13.3% of all diabetic patients, and 6.7%
to 62% of insulin-dependent diabetic patients, and its inci-
dence is 1.3% to 5.1% over a four-year observation period
[2]. Due to the enhanced retinal vascular permeability, en-
dothelial cell damage and capillary nonperfusion are aggra-
vated. Much effort has been directed toward establishing ef-
fective treatments, and recent clinical studies have found that
laser photocoagulation, pars plana vitrectomy, and antivas-
cular endothelial growth factor (VEGF) therapy might be ef-

fective in ameliorating macular edema [3–6], but the treat-
ment efficacy is limited and the results of the preliminary
clinical investigation will have to be confirmed by further
studies.

2. THE ROLE OF INFLAMMATION IN BRB BREAKDOWN

In recent studies, inflammation has been linked to vascu-
lar leakage in diabetic retinopathy [7]. Biological support
for the role of inflammation in early diabetes is the ad-
hesion of leukocytes to the retinal vasculature (leukostasis)
observed in both experimental diabetic retinopathy in rats
and in human diabetic retinopathy [8, 9]. Increased adhe-
sion of leukocytes to the retinal vasculature is considered to
promote vascular leakage. Thus, leukostasis is considered to
be a critical event in the pathogenesis of diabetic retinopa-
thy. Clinical investigations have demonstrated that the vit-
reous level of VEGF protein is higher in patients with di-
abetic macular edema than in patients with other condi-
tions [10]. Ample evidence suggests that the adhesion of
leukocytes to the retinal capillaries is controlled by vas-
cular endothelial growth factor (VEGF), and focal adhe-
sion molecules such as the intercellular adhesion molecule



2 PPAR Research

(a) (b)

Figure 1: Macular edema in diabetic retinopathy. (a) Macular
edema in diabetic retinopathy. (b) Increased vascular permeability
is observed by fluorescin angiography. Note the leakage of the fluo-
rescent dye showing the blood retinal barrier breakdown. Although
the retinopathy is mild, this patient has a visual acuity of 20/200 due
to severe macular edema.

Diabetic retina

Adhesion molecules (ICAM-1)

VEGF

CD18+ leucocytes adhesion to retinal vessels

Vascular permeability

Figure 2: Schematic representation of the molecular mechanism
of macular edema. VEGF drives the expression of ICAM-1 in the
retinal vessels, which subsequently makes CD18+ leukocytes adher-
ent to the retinal vessels. Adhesion of leukocytes to the retinal ves-
sels leads to increased vascular leakage, subsequent endothelial cell
damage, and capillary nonperfusion.

1 (ICAM1) [11]. It is a commonly accepted molecular mech-
anism of leukocyte adhesion that VEGF drives the upreg-
ulation of the ICAM-1 molecule in the retinal endothelial
cells [12, 13], and that this upregulated ICAM-1, together
with upregulated leukocyte integrin CD18, triggers adhesion
of leukocytes to the retinal vessels [14]. Indeed, CD18(−/−)
and ICAM-1 (−/−) mice demonstrate significantly fewer ad-
herent leukocytes in the retinal vasculature after the induc-
tion of diabetes with streptozotocin (STZ) [15]. It is, how-
ever, not only VEGF but also several other molecules that
are involved in the expression of ICAM-1. NF-κB molecules,
activated by inflammation, also drive ICAM-1 expression
[16]. Furthermore, blockage of the bioactivity of VEGF or
ICAM-1 or inhibition of inflammatory pathways leads to
decreased retinal leukocyte adhesion and reduced vascular

leakage [17]. Thus, it is generally assumed that the upreg-
ulation of the adhesion molecule, triggered by VEGF and
other inflammatory stimuli, is important in the leukostasis
(Figure 2).

3. PPARγ AND INFLAMMATION

PPARγ is a member of a ligand-activated nuclear receptor
superfamily and plays a critical role in a variety of biolog-
ical processes, including adipogenesis, glucose metabolism,
angiogenesis, and inflammation [18]. Synthetic ligands of
PPARγ, that is, thiazolidine derivatives such as rosiglita-
zone and pioglitazone, are used as oral antihyperglycemic
agents for the therapy of non-insulin-dependent diabetes
mellitus. In addition, recent studies have shown that PPARγ
ligands modulate the production of inflammatory media-
tors [19]. Actually, it has been reported that PPARγ lig-
ands, such as rosiglitazone and pioglitazone, suppress in-
flammatory diseases such as adjuvant-induced arthritis [19].
Importantly, some evidence suggests that PPARγ is in-
volved in the regulation of adhesion molecules. Previ-
ously, it has been demonstrated that PPARγ ligand sup-
pressed ICAM-1 expression in a murine model of intesti-
nal ischemia-reperfusion injury [20] and in human umbil-
ical vein endothelial cells in vitro [21]. Some of these anti-
inflammatory functions are mediated through the inhibition
of NF-κB activation (Figure 3). Considering the close link
between inflammation and diabetes, it is rational to con-
sider that PPARγ ligand therapy may also improve diabetic
retinopathy.

4. PPARγ IN BRB BREAKDOWN

We investigated the effects of a synthetic PPARγ ligand,
rosiglitazone, on an experimental diabetic model [22]. Addi-
tionally, heterozygous PPARγ-deficient (+/-) mice were used
in an experimental model to determine whether endoge-
nous PPARγ played a role [22]. Experimental diabetes was
induced by intraperitoneal injection of STZ. This model is
considered to destroy pancreatic beta cells completely [22]
Retinal leukostasis quantification was performed by count-
ing the number of adherent leukocytes after fluorescein-
isothiocyanide (FITC)-Concanavalin A lectin (Con A) per-
fusion. A retinal leakage assay was performed by evaluat-
ing the retinal concentration of FITC-dextran after the an-
imals were perfused. The results showed the PPARγ agonist,
rosiglitazone, inhibited both the retinal leukostasis and reti-
nal leakage observed in the experimental diabetic rats and
that the decreased expression of the endogenous PPARγ in
mice leads to the aggravation of retinal leukostasis and reti-
nal leakage in diabetic mice. Together, these findings sup-
port the theory that the PPARγ signaling pathway inhibits
diabetes-induced retinal leukostasis and leakage. In addition,
it was demonstrated that PPARγ ligand suppresses ICAM-1
expression, but not VEGF expression, raising the possibility
that NF-κB mediated ICAM-1 is suppressed by PPARγ ligand
(Figure 4).
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Figure 3: PPARγ exerts anti-inflammatory effects. Schematic representation showing molecular pathways mediating the anti-inflammatory
effects of PPARγ ligands.
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Figure 4: Involvement of PPARγ ligand and its receptor system in
retinal leukostasis and vacular permeability. Schematic representa-
tion showing the role of PPARγ system in the retinal leukostasis and
vascular permeability in diabetic retinopathy.

These results provide strong evidence to support the the-
ory that PPARγ activity plays an important role in the patho-
genesis of diabetic retinopathy and introduce the novel pos-
sibility that the therapeutic targeting of PPARγ may be ben-
eficial to diabetic retinopathy.
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Thyroid eye disease (TED) is an autoimmune condition in which intense inflammation leads to orbital tissue remodeling, includ-
ing the accumulation of extracellular macromolecules and fat. Disease progression depends upon interactions between lympho-
cytes and orbital fibroblasts. These cells engage in a cycle of reciprocal activation which produces the tissue characteristics of TED.
Peroxisome proliferator-activated receptor-γ (PPARγ) may play divergent roles in this process, both attenuating and promoting
disease progression. PPARγ has anti-inflammatory activity, suggesting that it could interrupt intercellular communication. How-
ever, PPARγ activation is also critical to adipogenesis, making it a potential culprit in the pathological fat accumulation associated
with TED. This review explores the role of PPARγ in TED, as it pertains to crosstalk between lymphocytes and fibroblasts and the
development of therapeutics targeting cell-cell interactions mediated through this signaling pathway.

Copyright © 2008 G. M. Lehmann et al. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

Peroxisome proliferator-activated receptors (PPARs) are
members of the nuclear hormone receptor superfamily that
bind to DNA as heterodimers formed with retinoid X re-
ceptors (RXRs) [1].These heterodimers control gene expres-
sion by binding to a specific cis acting DNA element known
as the peroxisome proliferator response element (PPRE)
found in the promoter or enhancer regions of target genes.
PPRE binding can occur in the presence or absence of lig-
and and can either induce or repress gene transcription in a
cell-specific manner. The ability of PPAR-RXR heterodimers
to transactivate genes results not only from their binding
to DNA, but also from their association with transcrip-
tional coactivators or corepressors. Usually, agonist binding
to these receptors inhibits corepressor and promotes coacti-

vator binding, resulting in increased transcription of target
genes.

Three PPAR subtypes, PPARα (NR1C1), PPARβ/δ
(NUC1, NR1C2), and PPARγ (NR1C3), are encoded by sep-
arate genes [2]. Three isoforms of PPARγ, PPARγ1, PPARγ2,
and PPARγ3 are generated by alternative splicing of the same
mRNA [3]. PPARs are differentially expressed in a variety
of tissues and are important to the regulation of lipid and
carbohydrate metabolism, energy homeostasis, cellular dif-
ferentiation, apoptosis, and immunity and inflammatory re-
sponses [2, 4–6]. The physiological functions of PPARα and
PPARγ have been well characterized, whereas the physio-
logical function of PPARβ/δ is poorly understood although
the protein is widely distributed [3]. PPARα is expressed in
brown adipose tissue, liver, kidney, heart, and skeletal mus-
cle, but is also detected in cells of the vasculature and the
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immune system [1, 3, 7–10]. Its activation affects transcrip-
tional expression of many genes involved in fatty acid oxi-
dation, lipid metabolism, and inflammation [8, 11]. PPARα
agonists (including the fibrates) have been reported to in-
crease levels of high-density lipoproteins (HDL), lower those
of triglycerides and decrease weight gain [12, 13]. They also
induce adipogenesis in fibroblasts in vitro through the in-
duction of genes such as high-mobility group AT-hook 2
(HMGA2) and leptin [8, 14–18].

PPARγ is highly expressed in adipose tissue, colon, retina,
and in cells of the immune system, including platelets [1, 3–
5, 19–25]. The PPARγ1 isoform is the more widely ex-
pressed, while PPARγ2 is mainly found in adipose tissue
and liver [3, 26]. PPARγ3 mRNA is detectable in mouse
macrophages, but little is known about the protein expres-
sion and functional significance of this isoform [3, 27]. Syn-
thetic PPARγ agonists, including drugs of the thiazolidine-
dione (TZD) family (e.g., ciglitazone, pioglitazone, rosiglita-
zone and troglitazone), have potent insulin-sensitizing prop-
erties [3, 28, 29]. Because of this, rosiglitazone and piogli-
tazone are often prescribed for the treatment of type 2 di-
abetes mellitus [3]. These and naturally occurring PPARγ
ligands, such as lysophosphatidic acid [30], nitrolinoleic
acid [31], prostaglandin D2(PGD2), and 15-deoxy-Δ12,14-
prostaglandin J2(15d-PGJ2) [32, 33], are also potent pro-
moters of adipogenesis [3, 28, 34–37]. PGD2 and 15d-PGJ2

are derived from arachidonic acid by the catalytic activi-
ties of the cyclooxygenase-2 (Cox-2) and prostaglandin D
synthase enzymes [28, 32, 33]. PGD2 spontaneously under-
goes a series of dehydration reactions to form the PGJ fam-
ily of prostaglandins, including 15d-PGJ2, and 15d-PGD2,
which can also transactivate PPARγ and induce adipogene-
sis [28, 38–41]. Many of the genes under PPARγ control are
important to glucose uptake, lipid metabolism and storage,
as well as adipogenesis, explaining the ability of PPARγ lig-
ands to increase insulin sensitivity and to trigger the differ-
entiation of fibroblasts to adipocytes [8, 42–44]. Others act
to dampen inflammation by decreasing TNFα, IL-6, and IL-
8 production, suggesting potential therapeutic applications
in chronic inflammatory diseases [45]. It has been suggested
that the adipogenic action of PPARγ could serve as another
of its anti-inflammatory functions because remodeling of in-
flamed tissue to fat may render it more quiescent [28]. Others
would argue that adipogenesis is a proinflammatory action
because an increase in fat mass would result in increased re-
lease of proinflammatory adipocytokines [36]. In any case,
increased adipogenesis may lead to disease, even if it serves
to attenuate active inflammation. Thyroid eye disease (TED)
provides a cogent example of such a circumstance. This re-
view will explore the role that PPARγ and lymphocytes play
in advancing pathological tissue remodeling in TED and how
PPARγ may be exploited as a target for therapeutic strategies.

2. THYROID EYE DISEASE

TED is a condition in which intense inflammation leads to
remodeling and expansion of the connective and adipose
tissues of the orbit, including proliferation and differenti-
ation of fibroblasts to adipocytes, fat deposition, and dis-

ordered accumulation of extracellular matrix glycosamino-
glycans (GAGs) [8, 46, 47]. Accumulation of GAGs is ac-
companied by dramatic swelling due to their prodigious
water-binding capacity [48, 49]. The increased volume of
orbital connective tissue leads to forward protrusion of the
eye (exophthalmos), accompanied by nerve and muscle dam-
age [28, 50–56]. In patients with severe TED, the initial in-
flammation subsides, but infiltration of muscle fibers by fi-
broblasts leads to fibrosis, potentially limiting their motility
[46, 47, 50–52]. In addition to exophthalmos and extraocular
muscle dysfunction, clinical features of TED include perior-
bital edema, eyelid retraction, dry eye, pain, optic neuropa-
thy, double vision, and vision loss [28, 50, 53, 57].

TED is closely associated with Graves’ disease (GD), a
common autoimmune disorder in which stimulatory au-
toantibodies against the thyroid-stimulating hormone re-
ceptor (TSH-R) cause the thyroid to produce excess thy-
roid hormone [50, 54, 58, 59]. In addition to the hyperme-
tabolic consequences of hyperthyroidism, clinically appar-
ent TED develops in approximately 50–60% of patients with
GD [50, 54–56]. Furthermore, a subset of patients with se-
vere TED develop pretibial dermopathy, a distinctive thick-
ening of the skin, usually occurring on the anterior lower leg
[60, 61]. Although the pathogenesis of the hyperthyroid state
in GD is relatively well understood, many questions remain
regarding the induction and perpetuation of the orbital (and
pretibial) disease that develops in some patients. It is likely
that the hyperthyroid state does not promote connective tis-
sue accumulation within the orbit. Euthyroid GD patients
remain at risk for developing TED [62, 63]. Furthermore,
TED does not usually occur in patients with non-Graves’
hyperthyroidism [64]. It has been suggested that the orbit
is a secondary target of autoimmune attack, involving the
same autoantigen (TSH-R), but resulting in consequences
distinct from those in the thyroid [50, 58, 65]. However,
TSH-R mRNA and protein are expressed widely in many tis-
sues which are unaffected in GD, so the basis for the anatom-
ical restriction of TED remains unclear [50, 66]. Moreover,
no convincing evidence currently exists for TSH-R mediating
any important biological events in orbital connective tissues.

To date, there are no effective means of preventing the
onset of TED or for predicting which GD patients are likely
to exhibit extrathyroidal complications. A study by Khoo et
al. [67] suggested that the presence of thyroid-stimulating
antibodies combined with the absence of antibodies against
thyroid peroxidase is a predictor, but other reports contra-
dict these findings [68, 69]. Current treatment options for
TED exist, including corticosteroid treatment, external beam
radiation, and surgery, but these interventions are aimed
only at the consequences of the disease, and they fail to pre-
vent or reverse pathological alteration of orbital tissues [70].
Histological examination of orbital tissue in TED suggests
that its development and progression involve interactions
between lymphocytes and fibroblasts [28]. Understanding
these complex interactions may both lead to the identifica-
tion of biomarkers predictive of advanced disease and pro-
vide effective early treatments. It is thought that autoreactive
B lymphocytes initiate the disease state by producing anti-
bodies against self-antigen, such as the TSH-R [58]. Next,
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in a poorly understood and likely variable event, autoanti-
body production results in orbital fibroblast activation [71].
Activated fibroblasts release chemoattractants that recruit T
lymphocytes and monocytes to the orbit [28, 37, 50, 72–77].
These bone marrow-derived cells cooperate with the resident
fibroblasts and are engaged in a cycle of reciprocal activation
which ultimately produces the pathological changes in the
orbit characteristic of TED [50].

3. INTERACTIONS BETWEEN LYMPHOCYTES AND
FIBROBLASTS

Orbital tissue from patients with TED is infiltrated by T
helper type I (Th1) and T helper type 2 (Th2) lymphocytes,
B lymphocytes, mast cells, and macrophages [47, 50, 59, 78–
82]. It is currently thought that these cells, once recruited
to the orbit, generate cytokines which participate in driv-
ing tissue reactivity and remodeling. Autoimmune responses,
like that found with TED, are governed primarily by the
actions of B and T lymphocytes. Lymphocytes are migra-
tory cells that proliferate extensively and develop into acti-
vated effector cells when they encounter specific antigen in
the proper costimulatory context. Normally, the antigens to
which lymphocytes respond are foreign and several tolerance
mechanisms act to prevent the development of reactivity to
self antigens or autoimmunity [83, 84]; but these tolerance
mechanisms sometimes fail and autoimmunity develops. B
lymphocytes are key to this phenomenon, as activated au-
toreactive B lymphocytes produce autoantibodies and are a
critical source of support for the function of other immune
cells, such as T lymphocytes and fibroblasts [85].

Fibroblasts were once viewed as merely structural by-
standers in the cellular microenvironment, producing ex-
tracellular matrix components, but otherwise uninvolved
in the regulation of tissue homeostasis. Now, it is under-
stood that fibroblasts are a highly interactive cell type, de-
scribed as “sentinel cells,” which are able to detect events
that endanger homeostasis, to communicate these dangers
to cells of the immune system, and to respond directly to
these threats via proliferation and differentiation to effec-
tor cells that support tissue integrity [58, 66, 72]. Fibrob-
lasts do not merely respond to immune stimulation, but ac-
tively participate in the inflammatory pathway through the
synthesis of proinflammatory mediators, including IL-1, IL-
6, and IL-8 [28, 73, 74]. They interact with bone marrow-
derived cells in the orbit and are key to the pathophysiol-
ogy of TED [8, 37, 50, 65, 72, 73, 75, 76]. As described ear-
lier, the clinical symptoms of TED result from excess ex-
tracellular macromolecular deposition, fibrosis, and fat ac-
cumulation in the orbit [48, 57]. Several differences have
been identified that distinguish orbital fibroblasts harvested
from patients with TED from those derived from normal or-
bital tissues and nonorbital anatomic sites. Orbital fibrob-
lasts from patients with TED synthesize excess GAGs, in-
cluding hyaluronan, are unusually proliferative and can dif-
ferentiate into adipocytes, leading to accumulation of fat
[50, 86, 87]. In addition, they do not express IL-1 recep-
tor antagonist at levels found in other fibroblasts. This re-
sults in excessively high levels of Cox-2 and PGE2 in response

to proinflammatory cytokines [47, 50, 59, 77, 86, 88–91].
They also display lymphocyte costimulatory molecules such
as CD40 [59, 77, 86, 88]. These characteristics suggest that
the fibroblast phenotype underlies the selective anatomic dis-
tribution of TED-associated inflammation and tissue remod-
eling [37, 47, 50, 59, 73, 75, 92, 93].

The unique features of orbital fibroblasts provide an en-
vironment in which TED might develop, but the disease is
characterized also by mononuclear cell infiltration [48, 59,
94]. Substantial data support the concept that infiltrating T
lymphocytes interact with fibroblasts, activate them, and re-
sult in their proliferation, synthesis of extracellular macro-
molecules, and differentiation to adipocytes [50, 59]. A sum-
mary of this model for the pathogenesis of TED is depicted
in Figure 1. It is thought that autoantigen expression by or-
bital fibroblasts instigates T lymphocyte recruitment to the
orbit [48, 95, 96]. The autoantigen may be TSH-R or an-
other protein, such as insulin-like growth factor-1 recep-
tor (IGF-1R) [34, 48, 54, 94–98]. Recruited T lymphocytes
stimulate orbital tissue remodeling by initiating fibroblast
proliferation and hyaluronan synthesis [50]. They also con-
tribute to the perpetuation of the inflammatory response
by (1) stimulating fibroblast production of chemokines, like
IL-16 and RANTES, and cytokines, like IL-6, that initi-
ate T and B lymphocyte migration to local environments,
and (2) increasing fibroblast presentation of autoantigens
[50, 73, 74, 76, 77, 99]. The T lymphocyte-fibroblast interac-
tion occurs via costimulatory molecules, adhesion molecules,
and cytokines like IFNγ, IL-1β, and TNFα [50, 99]. One
mechanism by which T lymphocytes may communicate with
orbital fibroblasts is through the CD40-CD40 ligand pathway
[50, 74, 88]. CD40 is a cell surface receptor found on antigen-
presenting cells, whereas CD40 ligand (CD40L, CD154) is
expressed on T lymphocytes [50]. Ligation of CD40 on B
lymphocytes or other antigen-presenting cells is necessary
for efficient activation of T-lymphocyte effector functions
[100, 101]. Recently, it has been shown that orbital fibrob-
lasts from TED patients express high levels of CD40, which
is upregulated in the presence of IFNγ, produced by infiltrat-
ing T lymphocytes [74, 76, 77, 99]. Activation by CD40L in-
duces hyaluronan synthesis, IL-6 and IL-8, Cox-2 and PGE2

[50, 74, 86, 102]. Thus, the CD40-CD40L bridge is one po-
tential pathway through which T lymphocytes could influ-
ence fibroblast activation and proliferation in TED [50].

Fibroblasts respond to T lymphocyte-mediated activa-
tion by releasing factors that recruit, activate, and promote
the proliferation of T lymphocytes, thus participating in
the perpetuation of inflammation [35, 50, 103]. In patients
with clinically significant TED, even in those whose hyper-
thyroidism is well controlled, B and T lymphocytes have
been shown to display a distinctly activated phenotype dif-
ferent from those derived from control donors [59]. This
sustained activation following treatment of hyperthyroidism
contributes to orbital inflammation and tissue remodeling
observed in late-stage TED. A recent study found that orbital
fibroblasts from TED patients may modulate the activity of T
lymphocytes through the production of CXCL10 [35]. TED
patients with active disease had higher serum CXCL10 levels
than patients with inactive disease. CXCL10 release enhances
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Figure 1: According to one current model, TED is triggered by binding and activation of orbital fibroblasts by autoantibodies. These au-
toantibodies could be specific for antigens such as TSH-R and/or IGF-1R. Activated orbital fibroblasts release chemokines, including IL-16,
RANTES, and CXCL10, which recruit T lymphocytes into the orbit. These lymphocytes then interact with fibroblasts, potentially activating
each other, further promoting cytokine production (IFNγ, TNFα, PGD2, and 15d-PGJ2) and secretion of T cell-activating factors by the
fibroblasts (IL-8 and CXCL10). Fibroblasts are also stimulated to secrete IL-6 (promoting B cell differentiation) and to increase autoantigen
presentation, both of which amplify the overall response. The interactions of fibroblasts with T cells result in the deposition of extracellular
matrix molecules, fibroblast proliferation, and fat accumulation.

the migration of T lymphocytes into the orbit, where they
secrete IFNγ and TNFα. IFNγ levels were higher in TED pa-
tients than in patients with GD without orbital involvement.
IFNγ and TNFα synergistically induced CXCL10 release by
orbital fibroblasts, thereby perpetuating a positive feedback
loop [35, 50, 103]. PPARγ activation was found to play an
inhibitory role in this process, both in vivo and in vitro [35].

4. PPARγ LIGANDS AND INFLAMMATION

PPARγ ligands attenuate activity of inflammatory bowel dis-
ease in animal models [35, 104–106], experimental autoim-
mune encephalomyelitis [107, 108], arthritis [21], and pso-
riasis [109]. Clinical trials have shown that they amelio-
rate inflammation in patients with mild-to-moderate cases
of ulcerative colitis [1, 110, 111]. At least some of the anti-
inflammatory effects of PPARγ ligands result from direct ac-
tions on cells of the innate and adaptive immune system
[23, 112–114]. In macrophages, they inhibit activation and
production of inflammatory cytokines such as TNFα, IL-
1β, and IL-6 [25, 115, 116]. In addition, PPARγ activation
has been shown to skew macrophage differentiation into a
more anti-inflammatory phenotype [117]. In dendritic cells,

PPARγ agonists downregulate the synthesis of chemokines
involved in the recruitment of T lymphocytes [35, 118].

Evidence for a physiological role of PPARγ in regulat-
ing B lymphocyte function was generated in studies using
PPARγ-haploinsufficient mice [21]. B lymphocytes derived
from these mice exhibit increased proliferation and survival,
enhanced antigen specific immune response, and sponta-
neous NF-κB activation [1, 21]. Our laboratory has shown
that normal and malignant mouse and human B lympho-
cytes express PPARγ and that exposure to certain PPARγ
ligands inhibits their proliferation and can induce apopto-
sis [24, 113, 119]. Several anti-inflammatory mechanisms
of PPARγ have been suggested, including inhibition of NF-
κB, AP1 and STAT transcription factors [120, 121]. A recent
study demonstrated that some of these effects are PPARγ-
independent [122]. PPARγ also regulates inflammation by
blocking gene transcription through “transrepression.” Sev-
eral models of transrepression by PPARγ have been pro-
posed. In one of them, PPARγ-RXR complexes are thought
to sequester coactivators, thereby downregulating other tran-
scription factors. A second model suggests that interactions
between transcription factors result in mutual antagonism
of gene activation [123]. A recent report by Pascual et al.
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demonstrated a PPARγ ligand-dependent sumoylation of
PPARγ that leads to its recruitment to repressor complexes
in the promoter regions of inflammatory genes regulated by
NF-κB. This prevents their release and suppresses proinflam-
matory gene expression [124].

PPARγ also plays a role in T lymphocyte regulation,
and its level is upregulated following activation [5, 125].
PPARγ ligands inhibit T lymphocyte proliferation and re-
duce the production of IFNγ, TNFα, and IL-2 [23, 126, 127].
These inhibitory effects result from the direct interaction
between PPARγ and the transcription factor nuclear factor
of activated T cells (NFAT) [128]. Recent observations re-
ported by Wohlfert et al. could illuminate yet another mech-
anism through which PPARγ controls immune responses
[129]. They investigated the connection between PPARγ and
CD4+ CD25+ regulatory T lymphocytes (Tregs). Tregs have
been demonstrated to play a key role in regulating autoim-
munity and immune responses [130–132]. There are two
different subtypes of Tregs: thymus-derived natural Tregs
(nTregs) and inducible or adaptive Tregs (iTregs). nTregs are
always present in normal individuals as a functionally ma-
ture population constitutively expressing CD25, while iTregs
are CD4+ CD25+ T lymphocytes which differentiate from
CD4+ CD25− effector T lymphocytes in the periphery un-
der a specific cytokine stimulation [133, 134]. Wohlfert et al.
showed that ciglitazone enhanced the conversion of effector
T lymphocytes into iTregs. Moreover, PPARγ expression in
nTregs was required for the in vivo effects of ligand treatment
in a murine model of graft-versus-host disease. These find-
ings suggest that PPARγ ligands may enhance the activity of
regulatory T lymphocytes while dampening the activation of
other T lymphocyte subsets. The anti-inflammatory poten-
tial of PPARγ may be relevant to TED because this transcrip-
tion factor is present in orbital tissues from TED patients, its
activity may be involved in the regulation of IFNγ-induced
chemokine expression, and its activators might attenuate the
recruitment of activated T lymphocytes to sites of inflam-
mation [35, 106, 118, 135, 136]. Together, the evidence in-
dicates that PPARγ ligands could interrupt communication
between mononuclear cells and fibroblasts [1, 35, 50]. How-
ever, PPARγ ligands may also promote T lymphocyte syn-
thesis of IL-8 [137, 138]. Thus, the effects of PPARγ on T
lymphocytes are complex and require further study.

End-stage TED can culminate with permanent patho-
logical changes including the differentiation of fibroblasts to
adipocytes that contribute to increased connective tissue vol-
ume [28]. Adipogenesis is regulated by the interplay of sev-
eral factors, including PPARα and γ [8, 28, 42, 139]. Natu-
ral and synthetic activators of PPARγ are known to stimu-
late lipid accumulation and the expression and secretion of
adiponectin [28, 34, 139, 140]. PPARγ antagonists prevent
triglyceride accumulation in orbital fibroblasts exposed to
PPARγ agonists. This supports the concept that PPARγ ex-
pression and activation are crucial for adipocytic differenti-
ation [28, 35, 36]. PPARγ levels are higher in orbital tissue
from patients with active TED than in controls or individuals
with inactive TED [35, 135]. Responses of orbital fibroblasts
to PPARγ ligands provide an interesting link to T lympho-
cyte activity. T lymphocytes from patients with GD express

constitutively high levels of Cox-2, and produce substantial
PGD2 and 15d-PGJ2 [28, 141]. We have developed the model
depicted in Figure 2, in which T lymphocyte infiltration of
the orbit results in adipocytic differentiation of fibroblasts
[28, 142]. In fact, coculture of orbital fibroblasts from TED
patients with activated T lymphocytes results in cytoplasmic
accumulation of lipid droplets in fibroblasts [28].

5. PPARγ AND TISSUE REMODELING

Adipogenesis has been suggested to be a mechanism for
stanching chronic inflammation [28]. Alternatively, this
process may promote further inflammation by increasing
proinflammatory adipocytokine production [36]. Orbital
adipocytes express immunoreactive and functional TSH-R
[8, 34, 54, 87, 95, 97, 98]. Positive correlation between TSH-
R, PPARγ, and other adipocytic differentiation markers has
been observed in tissues from TED patients [34]. Upregula-
tion of an autoantigen on the surface of orbital fibroblasts
could enhance the recruitment of autoreactive T lympho-
cytes to the orbit, fueling inflammation [36, 55]. Whether
adipogenesis serves to abate or amplify inflammation, the as-
sociated increase in orbital tissue mass is undesirable. Thus,
despite anti-inflammatory actions of PPARγ, its proadi-
pogenic functions in the orbit might worsen the disease, con-
traindicating the use of agents activating this pathway in TED
[36]. Several case reports have described development of ex-
ophthalmos in patients receiving TZD treatment for type 2
diabetes [28, 36, 143]. In particular, a patient with stable and
inactive TED experienced aggravated disease with orbital fat
expansion following pioglitazone therapy [28, 35, 36].

6. PPARγ AS A THERAPEUTIC TARGET

PPARγ modulators with selective activities would be re-
quired if PPARγ function is to be targeted as a TED ther-
apeutic. Identification of selective PPARγ modulators, or
SPPARγMs, has been sought as a better therapy for type 2
diabetes [3, 144]. In this context, designing partial PPARγ
agonists that display insulin-sensitizing activity but lack adi-
pogenic properties might be attractive [3, 144, 145]. The
SPPARγMs take advantage of both the large ligand-binding
domain of PPARγ and the complex interactions between
PPARγ and its coactivators and corepressors [1, 3, 144,
146]. The ligand binding domain mediates interactions with
transcriptional coactivator or corepressor proteins through
ligand-dependent conformational changes in the C-terminal
activation function 2 (AF2) α-helix [1, 144, 146]. In the ab-
sence of ligand, PPARγ functions as an active transcriptional
repressor by binding both target genes and transcriptional
corepressors [1]. Binding of classical ligands causes the AF2
α-helix to move in such a way that a high-affinity bind-
ing site for nuclear receptor coactivator proteins is created
while corepressor proteins are dislodged from their binding
sites [1, 144, 146–149]. Therefore, the structural change in
AF2 resulting from agonist binding serves to both inhibit
corepressor interaction and promote coactivator recruitment
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Figure 2: T lymphocytes in TED patients express constitutively elevated levels of Cox-2, one enzyme critical to the production of the
naturally-occurring PPARγ ligand 15d-PGJ2. When these lymphocytes infiltrate the orbit, 15d-PGJ2 is secreted in resident fibroblasts result
in their differentiation into adipocytes.

[1]. Because the position of the AF2 domain relative to the
ligand binding domain determines whether coactivators or
corepressors are recruited, ligands that fit into the binding
domain without directly interacting with the AF2 helix, such
as SPPARγMs, can act as agonists for some receptor func-
tions and as antagonists for others [1, 3, 144, 145, 150–153].

Although not yet clinically available, several SPPARγMs
have shown promise as potential glucose-lowering agents in
type 2 diabetes. For example, metaglidasen has been shown
in vitro to act as a partial PPARγ agonist/antagonist, with
only a weak ability to recruit coactivators, such as CBP,
DRIP205/TRAP220, and p300 [144]. Compared to rosigli-
tazone, metaglidasen is less adipogenic in primary human
adipocytes and mouse 3T3-L1 adipocytes. In rodent mod-
els of insulin resistance, both metaglidasen and another
SPPARγM, PAT5A, increased insulin sensitivity to levels
comparable to those seen with rosiglitazone, with only weak
adipogenic potential [3, 144, 154]. Consistent with the pre-
clinical findings, metaglidasen appears to have comparable
efficacy to pioglitazone and rosiglitazone in type 2 diabetics,
without the undesirable side effect of weight gain [144]. Since
developing SPPARγMs to target insulin resistance seems
achievable, it is anticipated that the anti-inflammatory prop-
erties of PPARγ will be targeted in the future [3].

7. FUTURE PROSPECTS

PPARγ may play an important role in the development of
TED. Studies have taken advantage of the availability of or-
bital tissue from TED patients. Orbital tissues from patients
with GD but without TED are far less available. Potential dif-
ferences between orbital tissues from “normal” and TED pa-
tients have not been fully explored. Similarly, few compar-
isons between tissues from early and late stage TED patients
have been possible. Thus, an animal model of TED with fi-
delity to human disease is critical.

T lymphocytes and fibroblasts exist as multiple phe-
notypic subsets in the orbit. Aniszewski et al. [82] found
that the phenotypes of orbital T lymphocytes in TED pa-
tients changed with disease duration. From that report, the T
helper lymphocyte Th1subset may predominate early, while
Th2 lymphocytes may become more abundant later. Fur-
thermore, as discussed previously, the role of Tregs in TED
may differ from that of Th1 and Th2 lymphocytes. Studies

comparing PPARγ expression and function in each of these
subpopulations may lead to better understanding of the role
that this transcription factor plays in TED.

Like T lymphocytes, orbital fibroblasts exist in multi-
ple subpopulations. Two major subsets of orbital fibrob-
last are defined based on their expression of a surface pro-
tein known as Thy-1 (CD90) whose function is unknown
[37, 73, 155, 156]. The balance between Thy-1 negative and
Thy-1 positive populations in the orbit may prove important
to normal regulation of inflammation because these subsets
exhibit distinct biosynthetic capabilities [73]. However, this
balance may also be critical to the development and progres-
sion of TED. Depending on the signaling environment and
their phenotype, fibroblasts can be stimulated to differenti-
ate into myofibroblasts or lipofibroblasts [37, 157]. Myofi-
broblasts are important in wound healing, but they may also
contribute to fibrosis in late-stage TED patients [158]. The
presence of lipofibroblasts is an indication of pathology; in
TED, their presence may result in excess orbital fat deposi-
tion [28]. Data suggest that the potential for terminal differ-
entiation depends on Thy-1 display. TGF-β triggers differen-
tiation of Thy-1+ fibroblasts into myofibroblasts, identified
by their expression of α-SMA [157]. Adipocytic differentia-
tion occurs in the Thy-1− subset [37, 157]. PPARγ expression
or function may differ between Thy-1+ and Thy-1− subsets,
explaining their divergent potential for differentiation.

Finally, TED is one of several pathological conditions
in which chronic inflammation leads to tissue remodeling
and inappropriate fat deposition. Sjögren syndrome, inflam-
matory bowel disease, nonalcoholic fatty liver disease, and
atherosclerosis are examples [159–162]. PPARγ has been
shown to play a major role in the regulation of atherogenesis
by countering the inflammation-provoking action of platelet
adhesion and activation [3]. Because PPARγ has been impli-
cated in these diseases, it may prove an important determi-
nant in diseases such as TED.
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1. AGE-RELATED MACULAR DEGENERATION:
POSSIBLE INVOLVEMENT OF RPE

Age-related macular degeneration (AMD) is the leading
cause of legal blindness in individuals 50 years of age or older
in the United States and developed countries. AMD can be
divided into two major forms as follows: (i) nonneovascular
form, also known as “dry” or “nonexudative” form; as clin-
ical findings of this form include drusen and abnormalities
of the retinal pigment epithelium (RPE) and (ii) neovascu-
lar form, also known as “wet” or “exudative” form, which
is defined by the appearance of choroidal neovascularization
with subsequent subretinal fibrosis or disciform scarring. Pa-
tients with drusen larger than 63 μm in diameter (termed
“soft drusen”) have a high risk of developing choroidal neo-
vascularization [1].

There is evidence that pathological alterations of RPE
around macula area may be partially responsible for the de-
velopment of AMD [2, 3]. Clinical abnormalities of RPE in

AMD include clumping and atrophy of these cells. RPE is in-
volved in the ingestion of photoreceptor outer segments and
the general health of photoreceptors. As a result, pathologi-
cal changes of RPE can lead to photoreceptor cell death and
visual impairment. Study with human cadaver eyes indicates
that there is an age-dependent RPE apoptosis as evidenced by
TUNEL staining [4]. A separate study further indicates that
eye specimens from patients with AMD show statistically
more macular RPE apoptosis than those without AMD [5].

2. POSSIBLE ROLES OF OXIDATIVE STRESS IN AMD

Retina is exposed to a combination of sunlight, high concen-
trations of polyunsaturated fatty acids, and high oxygen envi-
ronment. It is proposed that reactive oxygen species (such as
hydrogen peroxide, superoxide anion, hydroxyl radicals, and
singlet oxygen) are constantly generated in this environment.
As a result, oxidative stress is believed to have an important
role in RPE apoptosis and in the development of AMD [2, 3].
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An increase of oxidative stress in RPE is associated with
an increase of cellular catalase, metallothionein [6], and glu-
tathione S-transferase [7], which should serve as a protective
mechanism to decrease the cytotoxicity caused by H2O2 and
other reactive oxygen species. This protective mechanism de-
clines with age. For example, a study analyzing metalloth-
ionein levels in RPE of macular region showed a significant
(68%) decrease in aged donors (mean age = 80-year-old) as
compared to those from younger donors (mean age = 58-
year-old) [8]. A separate report also concluded that there was
an age-dependent decrease of catalase activity in RPE [9].
These studies suggest that RPE cells in the elderly are more
susceptible to oxidative stress-induced damage.

3. STUDIES OF OXIDATIVE STRESS ON RPE:
PREVENTION BY PHARMACOLOGICAL AGENTS

Given the observations that RPE might be the prime tar-
gets for oxidative stress, a number of studies are con-
ducted to study this issue. A majority of research use di-
rect oxidative agents, such as hydrogen peroxide (H2O2)
or t-butylhydroperoxide (tBH), to initiate cellular oxidative
stress, as further discussed below. Other conditions of exper-
imental oxidative stress include: intense light [10–12], iron
[13], and oxidative metabolites that are toxic to cells, such as
A2E [14, 15], acrolein [16], and oxysterols [17–19].

By using H2O2 or tBH as the direct source of oxida-
tive stress on RPE, a number of studies focus on strategies
to build up cellular defense mechanisms against the insult.
Several reports explore the importance of cellular antioxida-
tive enzymes, such as catalase [20], glutathione-S-transferase
[21, 22], superoxide dismutase [23], and methionine sulfox-
ide reductase [24]. Growth factors including lens epithelium-
derived growth factor [25], keratinocyte growth factor [26],
and pigment epithelium-derived factor [27] are also protec-
tive against oxidative stress. Other proteins that can enhance
RPE antioxidative mechanism against H2O2 include bcl-2
[28], alpha B-crystallin [29], melatonin [30], and poly(ADP-
ribose) polymerase [31].

In addition to those protein factors discussed above,
many investigators seek the use of small-molecule pharma-
cological agents to prevent RPE damage caused by H2O2

or tBH. Examples of these pharmacological agents include:
(R)-alpha-lipoic acid [32], 17-beta-estradiol [33], flavonoids
[34], and L-carnitine [35]. The endogenous PPARγ lig-
and, 15-deoxy-delta-12,14-prostaglandin J2(15d-PGJ2), is al-
so very effective in preventing RPE oxidative stress, as further
discussed below.

4. PREVENTION OF OXIDATIVE STRESS-INDUCED
RPE DEATH BY 15d-PGJ2

15d-PGJ2, a prostaglandin derivative, is normally present in
tissues at low levels (<1 nM), but can reach high concentra-
tions during infection and inflammation [36]. Under in vitro
conditions, it can be induced by chemical [37] or physical
[38] stress. It has a very potent anti-inflammatory effect [39].
For example, it is a potent inhibitor of macrophage [40–42]
and microglia [43–45] activation.

During RPE ingestion of rod outer segments, there is a
generation of H2O2 [6, 46] and a 10-fold upregulation of
PPARγ mRNA [47]. Based on these observations, it is likely
that PPARγ is involved in RPE cellular responses toward
H2O2. One can hypothesize that PPARγ agonists should
modulate cellular defense against oxidative stress.

We reported earlier that the PPARγ agonist, 15d-PGJ2,
protected H2O2-induced RPE cell death [48]. With primary
human RPE cells, pretreatment of cells overnight with 15d-
PGJ2 dose-dependently prevented H2O2-induced cytotoxic-
ity, such that the viability raised from ∼25% (H2O2 only)
to ∼80% of control. Maximal protection was observed at
∼2 μM 15d-PGJ2. Similar protection was made in the hu-
man ARPE-19 cell line. While H2O2 caused significant nu-
clear condensation, a sign of apoptosis; this was largely pre-
vented by 1 μM 15d-PGJ2 (see Figure 1). However, it should
be mentioned that the protective effect by 15d-PGJ2 was not
shared by other PPARγ agonists, such as ciglitazone, azelaoyl
PAF, or LY171883. These results raised the possibility that
the protective effect by 15d-PGJ2 was not mediated through
PPARγ activation. This idea was supported by other investi-
gators, as further discussed below.

The cytoprotective effect of 15d-PGJ2 on H2O2-treated
RPE was further studied by Qin et al. [49]. These investi-
gators confirmed that 1 μM 15d-PGJ2 effectively prevented
H2O2-induced cell death. Other PPARγ agonists, such as
AGN195037 or Roziglitazone, had no protective effects. Im-
portantly, reduction of PPARγ by siRNA did not block the
protective effect of 15d-PGJ2. This set of experiments to-
gether with those described above strongly suggests that
15d-PGJ2 protect RPE cells through a PPARγ-independent
mechanism. Some properties of 15d-PGJ2 are independent
of PPARγ activation, as reviewed by Straus and Glass [39].

Subsequent studies by Qin et al. [49] indicated that 15d-
PGJ2 could upregulate glutamylcyteine synthetase, the rate-
limiting enzyme that regulates glutathione (GSH) synthe-
sis. These investigators reported that 15d-PGJ2 at 1-2 μM in-
duced GSH levels to∼300% of control. With 1 μM 15d-PGJ2,
the maximal induction occurred at 18–24 hours after treat-
ment. This GSH induction appeared to depend on JNK and
p38 pathways because inhibitors of these pathways greatly re-
duced GSH induction by 15d-PGJ2. Induction of GSH by
15d-PGJ2 is also observed in other cell types [37, 50, 51].
Since intracellular GSH is very important in cellular defense
against oxidative stress, the induction of GSH should have
an important role in the protective effect caused by 15d-
PGJ2 treatment. Even though induction of heme oxygenase-
1 (HO-1) was associated with cytoprotective effects of 15d-
PGJ2 in other studies [52], this enzyme had no roles in the
protection observed in this experimental system.

If 15d-PGJ2 greatly induced intracellular GSH, one
would expect that this agent should reduce oxidant-induced
intracellular reactive oxygen species generation. Indeed, we
reported earlier that 15d-PGJ2 could reduce H2O2- and tBH-
induced reactive oxygen species in human ARPE-19 cells
[53]. For example, pretreatment of cells with 1 μM 15d-
PGJ2 reduced 1 mM H2O2-generated reactive oxygen species
to ∼80% of untreated cells challenged with H2O2. Simi-
lar reduction was observed in cells challenged with tBH.



Jason Y. Chang et al. 3

Control

(a)

4 hr

(b)

12 hr

(c)

16 hr

(d)

16 hr

(e)

Figure 1: Prevention of H2O2-induced nuclear condensation by 15d-PGJ2. The human RPE cell line ARPE-19 cells were treated with 1.5 mM
H2O2 for various periods of time, and then processed for nuclear staining by bisbenzimide (Hoechst 33258) to identify apoptotic cells [48];
(a): untreated cells; (b): 4 hours; (c): 12 hours; (d): 16 hours after treatment. Arrows in (c) point to representative cells with condensed
nuclei, an indication of apoptosis. (e): Cells were pretreated with 1 μM 15d-PGJ2 overnight, followed by 1.5 mM H2O2 for 16 hours (without
15d-PGJ2). The number of apoptotic cells was greatly reduced by 15d-PGJ2. Scale bar: 100 μm.

This reduction apparently was enough to keep free radical
levels under a critical threshold, thus rendering cells survive
an otherwise detrimental oxidant insult.

Our study further indicated that 15d-PGJ2 helped RPE
cells to maintain mitochondrial integrity [53]. This is sig-
nificant because mitochondria are intimately involved in
apoptosis. Oxidative stress can induce mitochondria dys-
function, which is a critical event that leads to cytochrome c
release and subsequent activation of caspases, a group of en-
zymes that executes apoptosis [54, 55]. An important event
associated with mitochondrial dysfunction is a drop of mi-
tochondrial membrane potential (ΔΨm), that is, mitochon-
drial depolarization. This event initiated by oxidative stress
was largely prevented by 1 μM 15d-PGJ2 (see Figure 2). This
is likely to prevent cytochrome c release and subsequent ac-
tivation of the apoptosis pathway.

5. CYTOPROTECTIVE VERSUS CYTOTOXIC EFFECTS
OF 15d-PGJ2

In addition to those studies described above regarding the
protective effect of 15d-PGJ2 against oxidative stress on RPE,
this agent is cytoprotective toward other retinal cells. For ex-
ample, Aoun et al. [56] reported that glutamate could in-
duce oxidative stress and cell death in the rat retinal gan-
glion cell line, RGC-5 cells. This cell death was prevented by
1–5 μM 15d-PGJ2. Outside of retina, 15d-PGJ2 was effective
in preventing glutamate-induced cell death of primary cor-
tical neurons [51]. Both groups attributed the protective ef-
fect through the antioxidative property of 15d-PGJ2. In this
respect, it should be noted that this agent can also prevent
cell death caused by toxic metabolites of oxidative stress. For

example, we reported earlier that 15d-PGJ2 prevented cyto-
toxicity of oxysterols, toxic cholesterol metabolites generated
under oxidative stress [57]. The cytoprotective effect of 15d-
PGJ2 in other experimental systems were also described in
reports by Kawamoto et al. [58] and Itoh et al. [59].

It is clear now that 15d-PGJ2 can induce intracellular ox-
idative stress [60, 61]. It is likely that this agent at low con-
centrations (1–5 μM) can cause low levels of oxidative stress,
thus inducing the build up of cellular defense mechanisms
against oxidative stress. However, at high concentrations, this
agent can cause severe oxidative stress and cell death [60, 61].
Induction of apoptosis by this agent was reported in several
cell types [62–64]. This interesting bifunctional property of
15d-PGJ2 has been reported [50], and is a subject of review
by Na and Surh [65]. This also prompts a recent microarray
study analyzing the regulation of prosurvival and prodeath
genes by this agent [66].

6. CONCLUDING REMARKS

Oxidative stress is believed to play an important role in RPE
cell death during aging and the development of age-related
macular degeneration. During phagocytosis of rod outer seg-
ments, there is an upregulation of PPARγ in RPE cells. The
natural PPARγ ligand 15d-PGJ2 has a potent protective ef-
fect for RPE under oxidative stress. This agent can upreg-
ulate GSH and prevent oxidant-induced intracellular reac-
tive oxygen species accumulation, mitochondrial depolariza-
tion, and apoptosis (see Figure 3). There is also evidence that
15d-PGJ2 can prevent glutamate-induced death of cultured
retinal ganglion cells. Current data suggests that this cyto-
protection is not mediated through the activation of PPARγ.
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Figure 2: Prevention of H2O2-induced mitochondrial membrane depolarization by 15d-PGJ2. Binding of the JC-1 dyes to mitochondria leads
to the appearance of two peaks. The green peak (at ∼545 nm) represents JC-1 monomers of this dye. The red peak (at ∼595 nm) represents
JC-1 aggregates, which is caused by the negative charge of mitochondrial membrane. Depolarization of mitochondrial membrane causes
a shift in the emission spectrum from red to green color, which can be quantified by a fluorescence plate reader. The relative intensity of
these two peaks is a measurement of relative mitochondrial potential such that a higher ratio represents more mitochondrial membrane
depolarization. (a)–(d): The JC-1 emission spectra between 520 nm to 620 nm were determined for cells under various conditions [53]; (a):
untreated cells; (B): cells treated with 1 μM 15d-PGJ2 overnight; (c): cells treated with 1.5 mM H2O2 for 2 hours; (d): Cells treated with 1 μM
15d-PGJ2 overnight, then with 1.5 mM H2O2 (without 15d-PGJ2) for 2 hours. Note H2O2 caused a shift of the relative intensity of the peaks,
and 15d-PGJ2 pretreatment restored membrane potential to a condition closer to untreated cells. (e)-(f): Cells were pretreated with 1 μM
15d-PGJ2 overnight, then with 1.5 mM H2O2 (without 15d-PGJ2) for 2 hours (e) or 4 hours (f); then the 545/595 emission intensity ratios
were determined. Note in either 2-hour or 4-hour treatment, H2O2 caused an increase of the 545/595 emission intensity ratio, indicating
mitochondrial depolarization. 15d-PGJ2 pretreatment restored the ratio to that similar to control value (P < .001 between H2O2-treated and
15d-PGJ2+H2O2-treated cells in (e) and (f)).
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Figure 3: Protective effects of 15d-PGJ2 against oxidative stress. Ox-
idative stress on RPE cells can lead to intracellular accumulation
of reactive oxygen species. This can result in mitochondrial dys-
function, which in turn causes activation of the apoptosis pathway.
Current data suggests that 15d-PGJ2 can block each of these events.
One mechanism that causes this protection is through upregulation
of GSH synthesis by activation of the glutamylcystein synthetase.
There is a possibility that other cytoprotective mechanisms are also
activated that lead to prevention of apoptosis. This remains to be
studied.

The antioxidative property of 15d-PGJ2 may be useful in fu-
ture development of pharmacological tools against retinal
diseases caused by oxidative stress.

Finally, based on anti-inflammatory effects of 15d-PGJ2,
we would like to speculate that this agent might be effective
in the treatment of other ocular diseases such as idiopathic
autoimmune anterior uveitis. To confirm our hypothesis, we
intend to explore the effect of 15d-PGJ2 on experimental au-
toimmune anterior uveitis (EAAU) which serves as an ani-
mal model of idiopathic human autoimmune anterior uveitis
[67, 68].
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