
Mathematical Problems in Engineering

Computational Methods for  
Engineering Science

Guest Editors: K. M. Liew, L. W. Zhang, J. N. Reddy, and Shaofan Li



Computational Methods for Engineering Science



Mathematical Problems in Engineering

Computational Methods for Engineering Science

Guest Editors: K. M. Liew, L. W. Zhang, J. N. Reddy,

and Shaofan Li



Copyright © 2015 Hindawi Publishing Corporation. All rights reserved.

�is is a special issue published in “Mathematical Problems in Engineering.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.



Editorial Board

Mohamed Abd El Aziz, Egypt
Farid Abed-Meraim, France
Silvia Abrahão, Spain
Paolo Addesso, Italy
Claudia Adduce, Italy
Ramesh Agarwal, USA
Juan C. Agüero, Australia
Ricardo Aguilar-López, Mexico
Tarek Ahmed-Ali, France
Hamid Akbarzadeh, Canada
Muhammad N. Akram, Norway
Mohammad-Reza Alam, USA
Salvatore Alfonzetti, Italy
Francisco Alhama, Spain
Juan A. Almendral, Spain
Lionel Amodeo, France
Igor Andrianov, Germany
Sebastian Anita, Romania
Renata Archetti, Italy
Felice Arena, Italy
Sabri Arik, Turkey
Fumihiro Ashida, Japan
Hassan Askari, Canada
Mohsen Asle Zaeem, USA
Francesco Aymerich, Italy
Seungik Baek, USA
Khaled Bahlali, France
Laurent Bako, France
Stefan Balint, Romania
Alfonso Banos, Spain
Roberto Baratti, Italy
Martino Bardi, Italy
Azeddine Beghdadi, France
Abdel-Hakim Bendada, Canada
Ivano Benedetti, Italy
Elena Benvenuti, Italy
Jamal Berakdar, Germany
Enrique Berjano, Spain
Jean-Charles Beugnot, France
Simone Bianco, Italy
David Bigaud, France
Jonathan N. Blakely, USA
Paul Bogdan, USA
Daniela Boso, Italy
Abdel-Ouahab Boudraa, France

Francesco Braghin, Italy
M. J. Brennan, United Kingdom
Maurizio Brocchini, Italy
Julien Bruchon, France
Javier Buldu&apos;, Spain
Tito Busani, USA
P. Cacciola, United Kingdom
Salvatore Caddemi, Italy
Jose E. Capilla, Spain
Ana Carpio, Spain
Miguel E. Cerrolaza, Spain
Mohammed Chadli, France
Gregory Chagnon, France
Ching-Ter Chang, Taiwan
M. J. Chappell, United Kingdom
Kacem Chehdi, France
Chunlin Chen, China
Xinkai Chen, Japan
Francisco Chicano, Spain
Hung-Yuan Chung, Taiwan
Joaquim Ciurana, Spain
John D. Clayton, USA
Carlo Cosentino, Italy
Paolo Crippa, Italy
Erik Cuevas, Mexico
Peter Dabnichki, Australia
Luca D’Acierno, Italy
Weizhong Dai, USA
Purushothaman Damodaran, USA
Farhang Daneshmand, Canada
Fabio De Angelis, Italy
Stefano de Miranda, Italy
Filippo de Monte, Italy
Xavier Delorme, France
Luca Deseri, USA
Yannis Dimakopoulos, Greece
Zhengtao Ding, United Kingdom
Ralph B. Dinwiddie, USA
Mohamed Djemai, France
Alexandre B. Dolgui, France
George S. Dulikravich, USA
Bogdan Dumitrescu, Finland
Horst Ecker, Austria
Ahmed El Hajjaji, France
Fouad Erchiqui, Canada

Anders Eriksson, Sweden
Giovanni Falsone, Italy
Hua Fan, China
Yann Favennec, France
Giuseppe Fedele, Italy
Roberto Fedele, Italy
Jacques Ferland, Canada
Jose R. Fernandez, Spain
Simme Douwe Flapper, Netherlands
�ierry Floquet, France
Eric Florentin, France
Francesco Franco, Italy
Tomonari Furukawa, USA
Mohamed Gadala, Canada
Matteo Gaeta, Italy
Zoran Gajic, USA
Ciprian G. Gal, USA
Ugo Galvanetto, Italy
Akemi Gálvez, Spain
Rita Gamberini, Italy
Maria Gandarias, Spain
Arman Ganji, Canada
Xin-Lin Gao, USA
Zhong-Ke Gao, China
Giovanni Garcea, Italy
Fernando García, Spain
Laura Gardini, Italy
Alessandro Gasparetto, Italy
Vincenzo Gattulli, Italy
Oleg V. Gendelman, Israel
Mergen H. Ghayesh, Australia
Anna M. Gil-Lafuente, Spain
Hector Gómez, Spain
Rama S. R. Gorla, USA
Oded Gottlieb, Israel
Antoine Grall, France
Jason Gu, Canada
Quang Phuc Ha, Australia
Ofer Hadar, Israel
Masoud Hajarian, Iran
Frédéric Hamelin, France
Zhen-Lai Han, China
�omas Hanne, Switzerland
Takashi Hasuike, Japan
Xiao-Qiao He, China



M.I. Herreros, Spain
Vincent Hilaire, France
Eckhard Hitzer, Japan
Jaromir Horacek, Czech Republic
Muneo Hori, Japan
András Horváth, Italy
Gordon Huang, Canada
Sajid Hussain, Canada
Asier Ibeas, Spain
Giacomo Innocenti, Italy
Emilio Insfran, Spain
Nazrul Islam, USA
Payman Jalali, Finland
Reza Jazar, Australia
Khalide Jbilou, France
Linni Jian, China
Bin Jiang, China
Zhongping Jiang, USA
Ningde Jin, China
Grand R. Joldes, Australia
Joaquim Joao Judice, Portugal
Tadeusz Kaczorek, Poland
Tamas Kalmar-Nagy, Hungary
Tomasz Kapitaniak, Poland
Haranath Kar, India
Konstantinos Karamanos, Belgium
C. M. Khalique, South Africa
Do Wan Kim, Republic of Korea
Nam-Il Kim, Republic of Korea
Oleg Kirillov, Germany
Manfred Krafczyk, Germany
Frederic Kratz, France
Jurgen Kurths, Germany
Kyandoghere Kyamakya, Austria
Davide La Torre, Italy
Risto Lahdelma, Finland
Hak-Keung Lam, United Kingdom
Antonino Laudani, Italy
Aime’ Lay-Ekuakille, Italy
Marek Le�k, Poland
Yaguo Lei, China
�ibault Lemaire, France
Stefano Lenci, Italy
Roman Lewandowski, Poland
Qing Q. Liang, Australia
Panos Liatsis, United Kingdom
Peide Liu, China
Peter Liu, Taiwan

Wanquan Liu, Australia
Yan-Jun Liu, China
Jean J. Loiseau, France
Paolo Lonetti, Italy
Luis M. López-Ochoa, Spain
Vassilios C. Loukopoulos, Greece
Valentin Lychagin, Norway
Fazal M. Mahomed, South Africa
Yassir T. Makkawi, United Kingdom
Noureddine Manamanni, France
Didier Maquin, France
Paolo Maria Mariano, Italy
Benoit Marx, France
Ge&apos;rard A. Maugin, France
Driss Mehdi, France
Roderick Melnik, Canada
Pasquale Memmolo, Italy
Xiangyu Meng, Canada
Jose Merodio, Spain
Luciano Mescia, Italy
Laurent Mevel, France
Y. V. Mikhlin, Ukraine
Aki Mikkola, Finland
Hiroyuki Mino, Japan
Pablo Mira, Spain
Vito Mocella, Italy
Roberto Montanini, Italy
Gisele Mophou, France
Rafael Morales, Spain
Aziz Moukrim, France
Emiliano Mucchi, Italy
Domenico Mundo, Italy
Jose J. Muñoz, Spain
Giuseppe Muscolino, Italy
Marco Mussetta, Italy
Hakim Naceur, France
Hassane Naji, France
Dong Ngoduy, United Kingdom
Tatsushi Nishi, Japan
Ben T. Nohara, Japan
Mohammed Nouari, France
Mustapha Nourelfath, Canada
Sotiris K. Ntouyas, Greece
Roger Ohayon, France
Mitsuhiro Okayasu, Japan
Javier Ortega-Garcia, Spain
Alejandro Ortega-Moñux, Spain
Naohisa Otsuka, Japan

Erika Ottaviano, Italy
Alkis S. Paipetis, Greece
Alessandro Palmeri, United Kingdom
Anna Pandol�, Italy
Elena Panteley, France
Manuel Pastor, Spain
Pubudu N. Pathirana, Australia
Francesco Pellicano, Italy
Haipeng Peng, China
Mingshu Peng, China
Zhike Peng, China
Marzio Pennisi, Italy
Matjaz Perc, Slovenia
Francesco Pesavento, Italy
Maria do Rosário Pinho, Portugal
Antonina Pirrotta, Italy
Vicent Pla, Spain
Javier Plaza, Spain
Jean-Christophe Ponsart, France
Mauro Pontani, Italy
Stanislav Potapenko, Canada
Sergio Preidikman, USA
Christopher Pretty, New Zealand
Carsten Proppe, Germany
Luca Pugi, Italy
Yuming Qin, China
Dane Quinn, USA
Jose Ragot, France
Kumbakonam Ramamani Rajagopal, USA
Gianluca Ranzi, Australia
Sivaguru Ravindran, USA
Alessandro Reali, Italy
Oscar Reinoso, Spain
Nidhal Rezg, France
Ricardo Riaza, Spain
Gerasimos Rigatos, Greece
José Rodellar, Spain
Rosana Rodriguez-Lopez, Spain
Ignacio Rojas, Spain
Carla Roque, Portugal
Aline Roumy, France
Debasish Roy, India
Rubén Ruiz García, Spain
Antonio Ruiz-Cortes, Spain
Ivan D. Rukhlenko, Australia
Mazen Saad, France
Kishin Sadarangani, Spain
Mehrdad Saif, Canada



Miguel A. Salido, Spain
Roque J. Saltarén, Spain
Francisco J. Salvador, Spain
Alessandro Salvini, Italy
Maura Sandri, Italy
Miguel A. F. Sanjuan, Spain
Juan F. San-Juan, Spain
Roberta Santoro, Italy
Ilmar Ferreira Santos, Denmark
José A. Sanz-Herrera, Spain
Nickolas S. Sapidis, Greece
Evangelos J. Sapountzakis, Greece
Andrey V. Savkin, Australia
Valery Sbitnev, Russia
�omas Schuster, Germany
M. Seaid, United Kingdom
Lot� Senhadji, France
Joan Serra-Sagrista, Spain
Leonid Shaikhet, Ukraine
Hassan M. Shanechi, USA
Sanjay K. Sharma, India
Bo Shen, Germany
Babak Shotorban, USA
Zhan Shu, United Kingdom
Dan Simon, USA
Luciano Simoni, Italy
Christos H. Skiadas, Greece
Michael Small, Australia
Francesco Soldovieri, Italy
Ra�aele Solimene, Italy

Ruben Specogna, Italy
Sri Sridharan, USA
Ivanka Stamova, USA
Yakov Strelniker, Israel
Sergey A. Suslov, Australia
�omas Svensson, Sweden
Andrzej Swierniak, Poland
Yang Tang, Germany
Sergio Teggi, Italy
Alexander Timokha, Norway
Rafael Toledo, Spain
Gisella Tomasini, Italy
Francesco Tornabene, Italy
Antonio Tornambe, Italy
Fernando Torres, Spain
Fabio Tramontana, Italy
Sébastien Tremblay, Canada
I. N. Trenda�lova, United Kingdom
George Tsiatas, Greece
A. Tsourdos, United Kingdom
Vladimir Turetsky, Israel
Mustafa Tutar, Spain
Efstratios Tzirtzilakis, Greece
Filippo Ubertini, Italy
Francesco Ubertini, Italy
Hassan Ugail, United Kingdom
Giuseppe Vairo, Italy
Kuppalapalle Vajravelu, USA
Robertt A. Valente, Portugal
Pandian Vasant, Malaysia

Miguel E. Vázquez-Méndez, Spain
Josep Vehi, Spain
Kalyana C. Veluvolu, Republic of Korea
Fons J. Verbeek, Netherlands
Franck J. Vernerey, USA
Georgios Veronis, USA
Anna Vila, Spain
Rafael J. Villanueva, Spain
Uchechukwu E. Vincent, United Kingdom
Mirko Viroli, Italy
Michael Vynnycky, Sweden
Junwu Wang, China
Shuming Wang, Singapore
Yan-WuWang, China
Yongqi Wang, Germany
Desheng D. Wu, Canada
Yuqiang Wu, China
Guangming Xie, China
Xuejun Xie, China
Gen Qi Xu, China
Hang Xu, China
Xinggang Yan, United Kingdom
Luis J. Yebra, Spain
Peng-Yeng Yin, Taiwan
Ibrahim Zeid, USA
Huaguang Zhang, China
Qingling Zhang, China
Jian Guo Zhou, United Kingdom
Quanxin Zhu, China
Mustapha Zidi, France



Contents

Computational Methods for Engineering Science, K. M. Liew, L. W. Zhang, J. N. Reddy, and Shaofan Li
Volume 2015, Article ID 842103, 1 page

Simulating the Range Expansion of Spartina alterni�ora in Ecological Engineering through

Constrained Cellular Automata Model and GIS, Zongsheng Zheng, Bo Tian, L. W. Zhang,
and Guoliang Zou
Volume 2015, Article ID 875817, 8 pages

Free Vibration Analysis of Symmetrically Laminated Folded Plate Structures Using an Element-Free

Galerkin Method, L. X. Peng
Volume 2015, Article ID 124296, 13 pages

SPH Simulation of Acoustic Waves: E�ects of Frequency, Sound Pressure, and Particle Spacing,
Y. O. Zhang, T. Zhang, H. Ouyang, and T. Y. Li
Volume 2015, Article ID 348314, 7 pages

Numerical Approximation of Nonlinear Klein-Gordon Equation Using an Element-Free Approach,
Dong-mei Huang, Guo-liang Zou, and L. W. Zhang
Volume 2015, Article ID 548905, 11 pages

Elastic Properties of Boron-Nitride Nanotubes through an Atomic Simulation Method, Jixiao Tao,
Guangmin Xu, and Yuzhou Sun
Volume 2015, Article ID 240547, 5 pages

Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam

�eory, Suihan Sui, Ling Chen, Cheng Li, and Xinpei Liu
Volume 2015, Article ID 391452, 9 pages

Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing

Data, Ma Xiaobing and Zhang Yongbo
Volume 2015, Article ID 902157, 9 pages

Optimal Harvesting Policies for a Stochastic Food-Chain Systemwith Markovian Switching,
Yanming Ge and Yifan Xu
Volume 2015, Article ID 875159, 8 pages

Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of
Trajectory Planning for Industrial Robots, Francisco Rubio, Carlos Llopis-Albert, Francisco Valero,
and Josep Lluís Suñer
Volume 2015, Article ID 931048, 10 pages

Numerical Simulation of the Generalized Newtonian Free Surface Flows by a Density Reinitialization
SPHMethod, Jinlian Ren, Weigang Lu, and Tao Jiang
Volume 2015, Article ID 915973, 17 pages

Drag Reduction in Turbulent Boundary Layers with Half WaveWall Oscillations, Maneesh Mishra
and Martin Skote
Volume 2015, Article ID 253249, 7 pages



Numerical Study of Correlation of Fluid Particle Acceleration and Turbulence Intensity in Swirling

Flow, Nan Gui, Xingtuan Yang, Jie Yan, Jiyuan Tu, and Shengyao Jiang
Volume 2015, Article ID 179072, 8 pages

Computational Methods for Coupled Fluid-Structure-Electromagnetic Interaction Models with

Applications to Biomechanics, Felix Mihai, Inja Youn, Igor Griva, and Padmanabhan Seshaiyer
Volume 2015, Article ID 253179, 10 pages

Controlling Force in Polarization-Maintaining Fiber Fused Biconical Tapering, Wei Zhang,
Weibin Rong, Lefeng Wang, Qing Zheng, and Lining Sun
Volume 2015, Article ID 676457, 9 pages

Predictor-Corrector LU-SGS Discontinuous Galerkin Finite Element Method for Conservation Laws,
Xinrong Ma, Sanyang Liu, and Gongnan Xie
Volume 2015, Article ID 940257, 11 pages

A Reconstruction Procedure Associated with Switching Lyapunov Function for Relaxing Stability
Assurance of T-S Fuzzy Mode, Yau-Tarng Juang, Chih-Peng Huang, and Chung-Lin Yan
Volume 2015, Article ID 147817, 12 pages

Global Analysis of a Delayed Impulsive Lotka-VolterraModel with Holling III Type Functional

Response, Hui Wang, Xiaomin Hu, Zhixing Hu, and Fucheng Liao
Volume 2015, Article ID 473539, 15 pages

Modeling and Analysis in Marine Big Data: Advances and Challenges, Dongmei Huang, Danfeng Zhao,
Lifei Wei, Zhenhua Wang, and Yanling Du
Volume 2015, Article ID 384742, 13 pages

Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage,
Guo-Qing Shi, Mao-xi Liu, Yan-Ming Wang, Wen-Zheng Wang, and De-Ming Wang
Volume 2015, Article ID 723764, 9 pages

A Practical Method of Nonprobabilistic Reliability and Parameter Sensitivity Analysis Based on
Space-Filling Design, Xin-dang He, Wen-xuan Gou, Yong-shou Liu, and Zong-zhan Gao
Volume 2015, Article ID 561202, 12 pages

Numerical Simulation of Interaction between Hall�ruster CEX Ions and SMART-1 Spacecra�,
Kang Shan, Yuchuan Chu, Qingyu Li, Liang Zheng, and Yong Cao
Volume 2015, Article ID 418493, 8 pages

Fractional Dynamics in Calcium Oscillation Model, Yoothana Suansook and Kitti Paithoonwattanakij
Volume 2015, Article ID 276059, 13 pages

Ship Electric Propulsion Simulation System Reliability Evaluation Based on Improved D-S Expert
Weight Calculation Method, Bing Li, Guoliang Gu, Bowen Xing, and Lihong Li
Volume 2015, Article ID 314058, 5 pages

Simulation of CavitationWater Flows, Piroz Zamankhan
Volume 2015, Article ID 872573, 16 pages



Evolutionary Game Analysis of Competitive Information Dissemination on Social Networks: An

Agent-Based Computational Approach, Qing Sun and Zhong Yao
Volume 2015, Article ID 679726, 12 pages

Modeling and Querying Business Data with Artifact Lifecycle, Danfeng Zhao, Wei Zhao, Le Sun,
and Dongmei Huang
Volume 2015, Article ID 506272, 9 pages

Seismic Stability Time-Frequency Analysis Method of Reinforced RetainingWall, Yang Changwei,
Zhang Shixian, Zhang Jianjing, and Bi Junwei
Volume 2015, Article ID 178692, 8 pages

Solving the MaximumWeighted Clique Problem Based on Parallel Biological Computing Model,
Zhaocai Wang, Jiangfeng Qin, Zuwen Ji, Dongmei Huang, and Lei Li
Volume 2015, Article ID 275019, 8 pages

Global Quasi-Minimal Residual Method for Image Restoration, Jun Liu, Ting-Zhu Huang,
Xiao-Guang Lv, Hao Xu, and Xi-Le Zhao
Volume 2015, Article ID 943072, 8 pages

An Extended Assessment of Fluid Flow Models for the Prediction of Two-Dimensional Steady-State

Airfoil Aerodynamics, José F. Herbert-Acero, Oliver Probst, Carlos I. Rivera-Solorio,
Krystel K. Castillo-Villar, and Santos Méndez-Díaz
Volume 2015, Article ID 854308, 31 pages

Parallel Numerical Simulations of�ree-Dimensional Electromagnetic Radiation with MPI-CUDA
Paradigms, Bing He, Long Tang, Jiang Xie, XiaoWei Wang, and AnPing Song
Volume 2015, Article ID 823426, 9 pages

Development of Fast-Time Stochastic Airport Ground and Runway Simulation Model and Its Tra�c

Analysis, Ryota Mori
Volume 2015, Article ID 919736, 11 pages

An Analytical Solution of Partially Penetrating Hydraulic Fractures in a Box-Shaped Reservoir,
He Zhang, Xiaodong Wang, and Lei Wang
Volume 2015, Article ID 726910, 11 pages

Generalized Finite Di�erence Time Domain Method and Its Application to Acoustics, Jianguo Wei,
Song Wang, Qingzhi Hou, and Jianwu Dang
Volume 2015, Article ID 640305, 13 pages

Active Learning Algorithms for the Classi�cation of Hyperspectral Sea Ice Images, Yanling Han,
Jing Ren, Zhonghua Hong, Yun Zhang, Long Zhang, Wanting Meng, and Qiming Gu
Volume 2015, Article ID 124601, 10 pages

A Numerical Study on the Improvement of Suction Performance and Hydraulic E�ciency for a
Mixed-Flow Pump Impeller, Sung Kim, Kyoung-Yong Lee, Jin-Hyuk Kim, and Young-Seok Choi
Volume 2014, Article ID 269483, 17 pages



A Comparative Assessment of Spalart-Shur Rotation/Curvature Correction in RANS Simulations in a

Centrifugal Pump Impeller, Ran Tao, Ruofu Xiao, Wei Yang, and Fujun Wang
Volume 2014, Article ID 342905, 9 pages

Element-Free Approximation of Generalized Regularized LongWave Equation, Dong-Mei Huang
and L. W. Zhang
Volume 2014, Article ID 206017, 10 pages

AMixed Element Method for the Desorption-Di�usion-Seepage Model of Gas Flow in Deformable

Coalbed Methane Reservoirs, Lei Yang
Volume 2014, Article ID 735931, 10 pages

Characteristic Value Method ofWell Test Analysis for Horizontal Gas Well, Xiao-Ping Li, Ning-Ping Yan,
and Xiao-Hua Tan
Volume 2014, Article ID 472728, 10 pages

A Smoothing Process of Multicolor Relaxation for Solving Partial Di�erential Equation by Multigrid
Method, Xingwen Zhu and Lixiang Zhang
Volume 2014, Article ID 490156, 10 pages

E�ect of Rotation onWave Propagation in Hollow Poroelastic Circular Cylinder, S. M. Abo-Dahab,
A. M. Abd-Alla, and S. Alqosami
Volume 2014, Article ID 879262, 16 pages

UnsteadyModel for Transverse Fluid Elastic Instability of Heat Exchange Tube Bundle, Jun Liu,
Chen Huang, and Naibing Jiang
Volume 2014, Article ID 942508, 7 pages

Fingerprint Classi�cation Combining Curvelet Transform and Gray-Level Cooccurrence Matrix,
Jing Luo, Dan Song, Chunbo Xiu, Shuze Geng, and Tingting Dong
Volume 2014, Article ID 592928, 15 pages

Research on Construction Optimization of�ree-Connected-Arch Hydraulic Underground Cavities
Considering Creep Property, Bao-yun Zhao, Nian-chun Xu, Zi-yun Li, and Tong-qing Wu
Volume 2014, Article ID 967975, 11 pages

Numerical Simulation of Soil Water Movement under Subsurface Irrigation, Xinqiang Qin,
Xianbao Duan, Lijun Su, Xiaoqin Shen, and Gang Hu
Volume 2014, Article ID 126398, 9 pages

AMeshfree Quasi-Interpolation Method for Solving Burgers’ Equation, Mingzhu Li, Lijuan Chen,
and Qiang Ma
Volume 2014, Article ID 492072, 8 pages

Pressure Pulsations of the Blade Region in S-Shaped Sha�-Extension Tubular Pumping System,
Fan Yang and Chao Liu
Volume 2014, Article ID 820135, 10 pages



MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand

Sides, Xin Li, Hao Liu, and Jingfu Zhu
Volume 2014, Article ID 357874, 6 pages

Numerical Solution of Fractional Integro-Di�erential Equations by Least Squares Method and Shi�ed

Chebyshev Polynomial, D. Sh. Mohammed
Volume 2014, Article ID 431965, 5 pages

Structure of Small World Innovation Network and Learning Performance, Shuang Song,
Xiangdong Chen, and Gupeng Zhang
Volume 2014, Article ID 860216, 12 pages



Editorial
Computational Methods for Engineering Science

K. M. Liew,1 L. W. Zhang,2 J. N. Reddy,3 and Shaofan Li4

1Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong
2College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
3Department of Mechanical Engineering, Texas A&M University, TX, USA
4Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

Correspondence should be addressed to K. M. Liew; kmliew@cityu.edu.hk

Received 24 March 2015; Accepted 24 March 2015

Copyright © 2015 K. M. Liew et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This special issue attempts to cover the recent advances on
various aspects of theories, analyses, and applications of
computational methods in engineering science, reflecting the
state of the art in computational methods and their frame-
works, applications, networking technologies, and new and
advanced engineering applications in emerging technologies
such as the bioscience and biotechnology, nanoscience and
nanotechnology, numerical modeling, simulation and analy-
sis, and material sciences.

The topics covered by the articles including in this
special issue encompass computationalmechanics, ocean and
offshore engineering, computational fluid dynamics, compu-
tational mathematics and statistics, computational physics,
computational material sciences, multiscale modeling, disas-
ter simulation and analysis, element-free/meshless/mesh-free
methods and dimension-reduction methods, geometric and
material nonlinear analyses, damage, fracture and fatigue,
contact mechanics and friction, smart structures and health
monitoring, structural optimization, nanomechanics, biome-
chanics, inverse and coupling problems, and reliability theory
and application.

We hope that this special issue will be cited for recent
advances in these research areas.
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Environmental factors play an important role in the range expansion of Spartina alterniflora in estuarine salt marshes. CA models
focusing on neighbor effect often failed to account for the influence of environmental factors. This paper proposed a CCA model
that enhanced CA model by integrating constrain factors of tidal elevation, vegetation density, vegetation classification, and tidal
channels in Chongming Dongtan wetland, China. Meanwhile, a positive feedback loop between vegetation and sedimentation was
also considered in CCA model through altering the tidal accretion rate in different vegetation communities. After being validated
and calibrated, the CCA model is more accurate than the CA model only taking account of neighbor effect. By overlaying remote
sensing classification and the simulation results, the average accuracy increases to 80.75% comparing with the previous CAmodel.
Through the scenarios simulation, the future of Spartina alterniflora expansion was analyzed. CCAmodel provides a new technical
idea and method for salt marsh species expansion and control strategies research.

1. Introduction

Spartina alterniflora (S. alterniflora) which is native to the
Atlantic Coast and Gulf Coast of North America is a
perennial and deep-rooted salt marsh grass that is found in
intertidal wetlands, especially estuarine salt marshes. With
its great capacity for reducing tidal wave energy, mitigating
erosion, and trapping sediment, S. alterniflora has been
widely planted on intertidal zones as a species for ecological
engineering by many countries at the beginning of the 20th
century. S. alterniflora was firstly introduced to China in
1979 purposely for beach protection and siltation promotion
and has expanded rapidly outside of its original area along
the coast of China [1, 2]. In recent years, however, some
evidence has been reported that this species may outcompete
native plants, alter the mudflat habitat, change and even
diminish biodiversity, damage the coastal aquiculture, and
cause declines in native species richness in the tidal land [1, 3].

As a result, since 2003, S. alterniflora was listed as 1 of the
16 invasive species by the Environmental Protection Bureau
of China. S. alterniflora is a competent pioneer and serves a
series of functions in coastal ecosystem. On the contrary, its
rapid spread on tidal lands has made it a dreaded invader.

ChongmingDongtanwetland is an important young tidal
wetland in the Yangtze River Estuary that plays an important
role in balancing the carbon discharge of the estuary. The
wetland was listed in the Chinese Protected Wetlands (1992)
and was designated as internationally important under the
Ramsar Wetlands Convention (2001) and a national nature
reserve (2005). The salt marsh with elevation less than 2m is
characterized by mud flats without any vascular plants. The
salt marsh between 2.0 and 2.9m elevation is dominated by
Scirpus mariqueter (S. mariqueter) community, with some
rarer Scirpus triqueter community. Above 2.9m, plant com-
munities are dominated by Phragmites australis (P. australis)
[4]. S. alterniflora was introduced to Chongming Dongtan in

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 875817, 8 pages
http://dx.doi.org/10.1155/2015/875817
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Model input:

Model calibration:

Model output:
- Vegetation distribution

Model coefficient weights:
- Binary logistics regression
- Vegetation classification
Historical dataset:
- Vegetation map 2003
- Vegetation map 2005
- Model iterative results

Model forest scenario:
- Vegetation map up to 2020

Box of model inputs

Box of scenario

Box of model data source
and weights identification

Box of model calibration and validation

- Vegetation density (Dij,t)
- Vegetation classification (Vij,t)
- Tidal channel density (Cij,t)
- Neighbourhood effects (Nij,t)
- Transition rule (f)

- Vegetation map (2003–2014)

- Tidal elevation ( +1)Eij,t

feedback
−→ Eij,t

Figure 1: Diagram representing the conceptual model framework.

1995. There have been a rapid expansion of this species and
hence a significant growth of wetland since then [5]. Over the
last 20 years, S. alterniflora has gradually invaded large areas
formerly covered by P. australis and has also started to invade
the upper parts of the S. mariqueter community [3, 6–8]. In
particular, the decrease of S. mariqueter on the high tidal flat
due to S. alterniflora expansion will seriously threaten the
habitat suitability for migratory birds at Chongming birds
nature reserve [9, 10]. Some physical techniques were already
promoted to control the invasion of the exotic species S.
alterniflora [4, 11–13]. To understand the invasion dynamics
and mechanisms of species, simulation model is a key tool
to integrate information and test hypotheses and has been
of great importance assisting management agencies with the
design of effective monitoring and control strategies [14, 15].

Recently some cellular automaton models were con-
structed to simulate spatial variation as a consequence of
competitive interactions [3, 16]. In fact, vegetation patterns
are strongly linked to the topographic characteristics of the
marsh, which stabilize marsh surface sediments, increase
friction to hydrodynamic flow, and reduce water sediment
transport, thereby increasing sedimentation from the water
column [17, 18]. Such topographic modification could in turn
strongly affect the vegetation communities’ structure and
distribution, providing more niches and thereby facilitating
the range expansion [8, 18]. However, the few process-based
ecological hypotheses and available parameters obtained
fromfieldmeasurement and experiment limited the accuracy
and utility of the models [19]. Huang et al. (2008) only put
the elevation parameter on the transition rules and controlled
the expansion speed by the selective Moore radius in CA
model [20]. In this paper, we employed a constrained CA
(CCA) model to simulate the expansion of S. alterniflora,
which already produced highly acceptable results in urban

environment model. To improve the model accuracy, more
environmental factors including elevation, tidal channel den-
sity, and vegetation density were incorporated in the CCA
model. Meanwhile, a positive feedback loop between vegeta-
tion and sedimentation was also considered in CCA model
through analyzing the erosion rate in different vegetation
communities.

2. Establishment of CCA

A cellular automaton is defined by (𝑆,𝑁, 𝑓). A CA was
defined with set language as follows:

𝑆
𝑡
= 𝑓 (𝑆

𝑡−1
, 𝑁) , (1)

where 𝑆 is a finite set and represents the cell state, 𝑡 the
transition step, 𝑓 the transition rule or function, and 𝑁

the cell neighbors. This CA only considers the effect of
neighbors, which is called conventional CA. But this kind
of CA can be inappropriate when modeling and predict-
ing complex and dynamic vegetation processes realistically,
because the vegetation class transitions are driven by the
more environmental variables. For purposes of S. alterniflora
dynamics, a more complex CA model (constrained CA
model) is needed, which considers more relative factors.
Constrained cellular automata (CCA) are produced with
embedding some constraints in the transition rules of cellular
automata, which are able to provide much better alternatives
to actual development patterns [21].

2.1. Model Description. TheCCAmodel was developed using
Matlab software and ArcGIS software, in order to simulate
the range expansion of S. alterniflora on the coastal mudflats.
Figure 1 showed the simulation process with a four-step cycle,
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including model inputs, factor weights identification, model
calibration and validation, and forecast scenario. 𝐸

𝑖𝑗
,𝐷
𝑖𝑗
, 𝑉
𝑖𝑗
,

𝐶
𝑖𝑗
,𝑁
𝑖𝑗
, and the transition potential rule in model inputs box

made up the model outputs for the calibration procedure.
In model calibration and validation box, CCA was rectified
through model results with corresponding vegetation map
from remote sensing classification. The final step introduced
one vegetation map scenario in scenarios box, which pro-
vided spatial information about the vegetation dynamics until
2020. Based on these outputs, the model was validated by
comparing the simulated S. alterniflora distribution with the
observed vegetation map to optimize the model coefficient
weights in data source and weights identification box.

2.2. Model Inputs. A number of ecologists have evaluated
the environmental factors affecting the plant distribution
patterns in salt marsh environments, for example, soil eleva-
tion [22, 23], salinity [24, 25], nutrient availability [26, 27],
inter- and intraspecific competition [28, 29], and grazing and
humanmanagement [12, 29].These researches have provided
more information on the controlling factors on vegetation
expansion, which can be used to improve simulation models
of the overall. In all these factors, tidal elevation is regarded as
convenientmetric that integrates a number of hydrologic and
edaphic factors [24]. In our study area, Ge et al. also reported
that the combination of dense S. alterniflora meadows with
high elevation and weak flow intensity resulted in a higher
density of seedling establishment [19]. So tidal elevation
(𝐸
𝑖𝑗
) and vegetation density (𝐷

𝑖𝑗
) were selected as two

important constrain factors in CCA model. Some studies
have also shown that location and size of tidal channels
are fundamental factors in determining plant distribution
patterns, since the tidal channel networks largely control the
distribution of tidal flooding within salt marshes [30, 31].
To quantify the effect of tidal channel, the density (𝐶

𝑖𝑗
) was

also regarded as one of the model inputs. Another control
factor was vegetation classification (𝑉

𝑖𝑗
) which indicated

the competition between P. australis, S. alterniflora, and S.
mariqueter. For example, P. australis and S. alterniflora were
obstacles to each other and can only occupy the cells of S.
mariqueter [20]. Finally, CCA is an array of cells that interact
with one another locally according to some neighborhood
rules. Each cell evolves which depends not only on the state
of the cell but also on the neighboring cells (𝑁

𝑖𝑗
).

2.3. Transition Rules. A model transition rule changes each
cell state to the state that has the highest potential. Based on
this rule, transition potential is calculated for each cell during
each time step of the simulation. This potential indicates the
vegetation pattern for which the cell is best adapted. The
potential for each cell is calculated as follows:

𝑆
𝑡+1

𝑖𝑗
= 𝑓 (𝑆

𝑡

𝑖𝑗
, 𝐸
𝑡

𝑖𝑗
, 𝐷
𝑡

𝑖𝑗
, 𝑉
𝑡

𝑖𝑗
, 𝐶
𝑡

𝑖𝑗
, 𝑁
𝑡

𝑖𝑗
, V) , (2)

where 𝑆𝑡+1
𝑖𝑗

, 𝑆𝑡
𝑖𝑗
represent the cell (𝑖, 𝑗) state at time (𝑡 + 1)

and time (𝑡), 𝐸𝑡
𝑖𝑗
is tidal elevation of the cell (𝑖, 𝑗), 𝐷𝑡

𝑖𝑗
is the

vegetation density of cell (𝑖, 𝑗), 𝑉𝑡
𝑖𝑗
is the vegetation type of

cell (𝑖, 𝑗), 𝐶𝑡
𝑖𝑗
is tidal channel density of the cell (𝑖, 𝑗), 𝑁𝑡

𝑖𝑗
is

the neighbourhood space effect on the cell (𝑖, 𝑗), and V is the
random perturbation term at time (𝑡), which is defined as V =

1 + [− ln(rand)]𝛼, where (0 < rand < 1) is a uniform random
variable and 𝛼 is a stochasticity parameter that adjusts the
perturbation size.

The five factors are further divided into suitability, resis-
tant, and neighbor factors. The suitability of vegetation is
based on three major factors, namely, elevation, vegetation
density, and vegetation type, in which value 0 corresponds
to the least suitability and value 1 corresponds to the highest
suitability. The vegetation suitability is calculated by the
following equation:

𝑠
𝑡

𝑘,𝑖𝑗



= 𝑤
1
∗ 𝐸
𝑡

𝑘,𝑖𝑗
+ 𝑤
2
∗ 𝐷
𝑡

𝑘,𝑖𝑗
+ 𝑤
3
∗ 𝑉
𝑡

𝑘,𝑖𝑗
. (3)

𝑠𝑡
𝑘,𝑖𝑗

 is the suitability of cell (𝑖, 𝑗) for marsh vegetation (𝑘)
at time (𝑡). 𝑤

1
, 𝑤
2
, and 𝑤

3
denote the weights associated

with elevation, vegetation density, and type. To consider the
feedback loop between tidal elevation and vegetation, 𝐸𝑡

𝑘,𝑖𝑗
is

provided as follows:

𝐸
𝑡

𝑖𝑗
=

{{{{{

{{{{{

{

𝐸
0

𝑖𝑗
+ 𝑛

𝑎

∑ step
, 𝑆. 𝑎𝑙𝑡𝑒𝑟𝑛𝑖𝑓𝑙𝑜𝑟𝑎 and 𝑃. 𝑎𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑠;

𝐸0
𝑖𝑗
+ 𝑛

𝑏

∑ step
, 𝑆. 𝑚𝑎𝑟𝑖𝑞𝑢𝑒𝑡𝑒𝑟;

0, bare flat.
(4)

𝐸0
𝑖𝑗
is the tidal elevation at the start (𝑡 = 0). 𝑛 is the step

number of the model. ∑ step is the total simulation steps in
one year. 𝑎 and 𝑏 are the annual accretion rate of tidal flat.The
suitability 𝑠𝑡

𝑘,𝑖𝑗
for a nonvegetation cell to be converted into a

vegetation cell can then be expressed as

𝑠
𝑡

𝑘,𝑖𝑗
= 𝑠
𝑡

𝑘,𝑖𝑗



×

𝑚

∏
𝑟=1

𝐶
𝑟,𝑘,𝑖𝑗

× V. (5)

∏
𝑚

𝑟=1
𝐶
𝑟,𝑘,𝑖𝑗

is the product of a few binary variables used
to represent the ecological constraints on the S. alterniflora
expansion, such as being prevented by tidal channel. 𝐶

𝑟,𝑘,𝑖𝑗

will have a value of 0 if cell (𝑖, 𝑗) is preserved due to constraint
𝑟 where S. alterniflora cannot invade into the cell (𝑖, 𝑗)
occupied by tidal channel.

Salt marsh vegetation parameters in each cell take states
of 𝑆
𝑝⋅𝑎
, 𝑆
𝑠⋅𝑎
, 𝑆
𝑠⋅𝑚

, and 𝑆
𝑏⋅𝑚

, representing P. australis, S.
alterniflora, S. mariqueter community, and bare mudflat at
the beginning of the simulation 𝑆𝑡−1

𝑖𝑗
.The cell states in the next

time step 𝑆𝑡
𝑖𝑗
are then defined by salt marsh states and species

interactions, which can be summarized by the following rule:

𝑆
𝑡

𝑖𝑗
=

{{{{{{{

{{{{{{{

{

𝑆
𝑝⋅𝑎

, 𝑆𝑡−1 = 𝑆
𝑝⋅𝑎

;

𝑆
𝑠⋅𝑎
, 𝑆𝑡−1
𝑖𝑗

= 𝑆
𝑝⋅𝑎

, 𝑠𝑡−1
𝑝⋅𝑎,𝑖𝑗

> 𝛼, 𝑁𝑡−1
𝑖𝑗

> 𝛽;

𝑆
𝑠,𝑎
, 𝑆𝑡−1
𝑖𝑗

= 𝑆
𝑠⋅𝑚

, 𝑠𝑡−1
𝑠⋅𝑚,𝑖𝑗

> 𝛼, 𝑁𝑡−1
𝑖𝑗

> 𝛽;

𝑆
𝑠⋅𝑎
, 𝑆𝑡−1 = 𝑆

𝑠⋅𝑎
;

𝑆
𝑏⋅𝑚

, 𝑆𝑡−1 = 𝑆
𝑏⋅𝑚

,

(6)

where 𝑆𝑡
𝑖𝑗
and 𝑆𝑡−1

𝑖𝑗
represent the cell states at times 𝑡 and

𝑡 − 1, respectively. 𝑠𝑡−1
𝑝⋅𝑎,𝑖𝑗

and 𝑠𝑡−1
𝑠⋅𝑚,𝑖𝑗

denote the S. alterniflora
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Table 1: Variables retained in the logistic regression model and their coefficients.

𝐵
1 S.E.2 Wald3 Df4 Sig5 Exp(𝐵)6 95% C.I. for Exp(𝐵)7

Lower Upper
𝑊
1

2.817 0.57 2484.209 1 0.000 16.723 14.969 18.682
𝑊
2

−2.449 0.48 2611.628 1 0.000 0.086 0.079 0.095
𝑊
3

1.061 0.28 1396.555 1 0.000 2.889 2.732 3.054
1
𝐵 = logistic coefficient; 2S.E. = standard error of estimate; 3Wald = Wald chi-square values; 4Df = degree of freedom; 5Sig = significance; 6Exp(𝐵) =
exponentiated coefficient; 795.0% C.I. for Exp(𝐵): 95% confidence interval for Exp(𝐵).

suitability of cell (𝑖, 𝑗) at P. australis and S. mariqueter
communities at time (𝑡 − 1). The thresholds 𝛼 and 𝛽 are
determined according to the actual cell conversion which is
obtained from observation data [32].

2.4. Data Source. The spatial pattern of salt marsh vegetation
classification (Figure 1) was based on the multitemporal
satellite images of 2000–2005 with the resolution of 30m on
the ground. A supervised classification, using the Maximum
Likelihood Classifier in ERDAS Imagine software, was then
carried out and the classified imagery was then integrated
into a GIS platform [20]. Wetland plants density and tidal
channels were mapped from QuickBird image with the
resolution of 0.6m, which was acquired on September 29,
2005. For information not available from high-resolution
Lidar elevation data, waterline method combining Landsat
TM, tidal gauge, and field elevation transects has been used
to generate digital elevationmodel (DEM) [10, 33–36]. All the
data were converted into standard raster data and resampled
with a 30m × 30m resolution for a total of 551 × 582 cells.

2.5.Weights Identification. Methods determining weights are
often divided into two categories: subjective and objective
weighting. Objective weighting is suitable to tackle the
situations where suggestions of experts are not easily attained
[37].Moreover, objectivemethods are also able to avoid biases
from experts or decision makers due to their predilections
through some mathematical methods. In order to determine
the weights values in the state transition rules, 𝑤

1
, 𝑤
2
, and

𝑤
3
were extracted through binary logistic regression method

according to threemain categories of S. alterniflora expansion
factors. Binary logistic regression establishes a functional
relationship between the binary coded S. alterniflora distri-
bution (presence or absence), DEM, classified vegetation, and
plants density factors that are recognized as playing a role in S.
alterniflora expansion. Regression coefficients 𝑤

0
∼ 𝑤
3
show

the contribution of each explanatory variable on suitability
𝑠𝑡
𝑘,𝑖𝑗

. The statistical technique is a multivariate estimation
method that examines the relative significance of the factors.
By using the statistical analysis software SPSS (19.0), the
model coefficients were estimated as shown in Table 1, which
were then used to calculate the suitability of S. alterniflora
expansion potential for all of the pixels in the study region.
A positive value means that the variable helps to increase
the probability of change, and a negative value implies the
opposite effect. Tidal elevation showedmore significant effect
on S. alterniflora expansion than the other vegetation from

Table 1. The variables with estimated coefficients having a
significance value (Sig) of less than 0.05 were found to
be significantly different from zero. These variables can be
accepted as influential predictor variables.

The suitability 𝑠
𝑡

𝑘,𝑖𝑗

 was a standardized suitability score
[0, 1] based on the consideration of factors. The classification
threshold 𝛼 was selected as 0.5 at 𝑡 = 0 in this paper.
By overlying multitemporal satellite data, the numbers of
neighbor 𝛽 were obtained through all the new converted S.
alterniflora cells around old S. alterniflora cells in the area,
where all other factors including tidal elevation, vegetation
density, and vegetation type were similar (Figure 2). The
average of converted numbers around old S. alterniflora was
5.68 from the statistics of converted pixels and 𝛽 = 5.68/8 =

0.71 was selected at 𝑡 = 0 in this research. A series of 𝛼 and
𝛽 was tested for S. alterniflora and the tentatively simulated
results were compared iteratively with the corresponding salt
marsh classification maps until they reached an acceptable
range in the calibration procedure.

2.6. Model Calibration and Accuracy Evaluation. Calibration
and validation are critical for the performance of CCA
models because they largely depend on the appropriateness
of the transition rules, which typically involve important
parameters [38, 39]. The vegetation maps from 2002 to 2005
were used to calibrate the CCA model by treating the 2002
map as the starting time. The simulated outcome of 2003
and 2005 based on each set of weights was compared with
vegetation map of the corresponding year and was used to
rectify the model by changing the threshold values 𝛼 and 𝛽.
At last the optimized values were used for simulation from
2003 to 2020.

The CCA model accuracy was checked by overlaying the
image classification and the simulation output for the whole
study area in the ArcGIS platform (Figure 3). By overlaying
the predicted S. alterniflora distribution with vegetationmap,
the percentage match of pixels indicated that 80.75% of S.
alterniflora expansion was correctly predicted in the 8 years
from 2005 to 2013 (Table 2).TheCCAmodel accuracy ranged
from 76% to 85%, which was higher than the CA accuracy
ranging from 37% to 75% as discussed by Huang et al. [20].

3. Simulations and Results

3.1.The Past Expansion of S. alterniflora. Patches of S. alterni-
flora were firstly found on the northeast part of the Dongtan
wetland in 1995. The seeds possibly came from the coast of
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Table 2: Comparison between the measured and modeled range expansion of S. alterniflora.

Pixels 2003 2005 2007 2009 2013 2020
Measured pixels (number) — 19550 20718 25978 32097 —
Corresponding area (ha.) — 1760 1865 2338 2889 —
Modeled pixels (number) 11880 15221 17690 21947 24505 28746
Corresponding area (ha.) 1069 1370 1592 1975 2205 2587
Accuracy (%) — 78% 85% 84% 76% —
Average accuracy (%) 80.75%

New S. alterniflora expansion cells
Neighbour cells around old S. alterniflora
Old S. alterniflora distribution

Figure 2: Neighbor effects on expansion pattern.

Jiangsu Province despite natural dispersal by tidal currents
[40]. Since then, S. alterniflora experiencedslow expansion
and formed many stable communities in colonization. For
rapid sediment accretion in salt marsh in the estuary, 337 ha
and 370 ha of S. alterniflora were planted in a belt on the
north and northeast in May 2001 and May 2003, respectively
[41]. Since 2003, S. alterniflora kept a rapid population growth
and range expansion (Figure 3). In the spatial pattern, S.
alterniflora began to expand towards the east and north and
emerged among the original S. mariqueter community along
with the accretion of elevation. As in the simulation process,
S. alterniflora increased in the ten years from 1069 ha in
2003 to 2205 ha in 2013, which matched closely the area
(2889 ha) based on remote sensing vegetation map in the
corresponding year (Table 2). The speed of range expansion
of S. alterniflora subsequently slowed down after 2013, which
distributed dominantly in the northern and eastern marshes
in Chongming Dongtan.

3.2. The Future Expansion of S. alterniflora. S. mariqueter
is the pioneer vegetation in the tidal flat, whose emergence
and growth create conditions for the colonization of S.
alterniflora and P. australis. S. alterniflora has the more rapid

expansion due to its wider ecological niche and stronger
competitive capacity than native P. australis [2]. S. alterniflora
will continuously expand northwards and eastwards in the
future (Figure 4) and the areas will amount to 2587 ha in 2020
according to the simulation (Table 2). With the accretion of
intertidal flats, it could be also anticipated that the rapid range
expansion of S. alterniflorawould last for a considerable time
on the Chongming Dongtan. So, more attention should also
be paid to the dynamics of S. alterniflora in the future. In
particular, the decrease of S. mariqueter due to S. alterniflora
expansion will seriously threaten the habitat suitability for
migratory birds. Some physical techniques were already
promoted to control the invasion of the exotic species S.
alterniflora. The first stage of control project of S. alterniflora
on the Chongming Dongtan started in 2011. The third stage
also launched in May 2013. The weirs of control project were
shown in Figure 4. In the simulation of 2020, these projects
were not considered in the CCA model.

4. Conclusions

Present CA models focusing on neighbor effect often failed
to account for the influence of environmental factors and
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Figure 3: Comparison between modeled results and remote sensing classification.
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Figure 4: The future of S. alterniflora distribution in the future of
2020.

were therefore inadequate for accurately simulating salt
marsh vegetation evolution. Environmental factors play an
important role in S. alterniflora dynamics in salt marsh. This
paper proposed a CCA model that enhanced CA model
by integrating the influence of tidal elevation, vegetation
density, vegetation classification, and tidal channels. The
average accuracy for the simulated S. alterniflora expansion
increased to 80.75% comparing with previous CA model
accuracy ranging from 37% to 75%. The simulation results

suggest a continuing S. alterniflora growth in the study area
and show that the future expansion ismost likely to take place
in the northeast of Chongming Dongtan. Close attention
should be paid to these areas to effectively detect, study,
and solve the problems associated with such expansions
in hope for wetland biodiversity conservation and resource
management. Currently, the control project is in progress
on the Chongming Dongtan, by integrating physical or
mechanical control measures such as cutting, cutting plus
waterlogging, and spraying chemicals. Based on the CCA
model, the effective assessment of these control strategies
should be the key point of the next research.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthorswould like to express their sincere appreciation to
the anonymous reviewers for their valuable comments, sug-
gestions, and recommendations. This work is funded under
the Program Strategic Scientific Alliances between China and
the Netherlands (no. 2008DFB90240), Open Research Fund
Program for State Key Laboratory of Estuarine and Coastal
Research (SKLEC201207), andOpenResearch FundProgram
for Shandong Province Key Laboratory of Marine Ecology
Environment and Disaster Prevention (2012011). Landsat TM
images were provided by China Remote Sensing Satellite
Ground Station.



Mathematical Problems in Engineering 7

References

[1] S. Wan, P. Qin, J. Liu, and H. Zhou, “The positive and negative
effects of exotic Spartina alterniflora in China,” Ecological
Engineering, vol. 35, no. 4, pp. 444–452, 2009.

[2] P. Zuo, S. H. Zhao, C. A. Liu, C. H. Wang, and Y. B. Liang,
“Distribution of Spartina spp. along China’s coast,” Ecological
Engineering, vol. 40, pp. 160–166, 2012.

[3] H.-M. Huang, L.-Q. Zhang, and L. Yuan, “The spatio-temporal
dynamics of salt marsh vegetation for Chongming Dongtan
National Nature Reserve, Shanghai,” Acta Ecologica Sinica, vol.
27, no. 10, pp. 4166–4172, 2007 (Chinese).

[4] H. P. Li and L. Q. Zhang, “An experimental study on physical
controls of an exotic plant Spartina alterniflora in Shanghai,
China,” Ecological Engineering, vol. 32, no. 1, pp. 11–21, 2008.

[5] Z. Chen, B. Li, Y. Zhong, and J. Chen, “Local competitive effects
of introduced Spartina alterniflora on Scirpus mariqueter at
Dongtan of Chongming Island, the Yangtze River estuary and
their potential ecological consequences,” Hydrobiologia, vol.
528, no. 1–3, pp. 99–106, 2004.

[6] W. S. He, R. Feagin, J. J. Lu, W. L. Liu, Q. Yan, and Z. F. Xie,
“Impacts of introduced Spartina alterniflora along an elevation
gradient at the Jiuduansha Shoals in the Yangtze Estuary,
suburban Shanghai, China,” Ecological Engineering, vol. 29, no.
3, pp. 245–248, 2007.

[7] R. Wang, L. Yuan, and L. Zhang, “Impacts of Spartina alterni-
flora invasion on the benthic communities of salt marshes in
the Yangtze Estuary, China,” Ecological Engineering, vol. 36, no.
6, pp. 799–806, 2010.

[8] D. R. Xiao, L. Q. Zhang, and Z. C. Zhu, “The range expansion
patterns of Spartina alterniflora on salt marshes in the Yangtze
Estuary, China,” Estuarine, Coastal and Shelf Science, vol. 88, no.
1, pp. 99–104, 2010.

[9] Z. J. Ma, B. Li, B. Zhao, K. Jing, S. M. Tang, and J. K. Chen,
“Are artificial wetlands good alternatives to natural wetlands
for waterbirds? A case study on Chongming Island, China,”
Biodiversity and Conservation, vol. 13, no. 2, pp. 333–350, 2004.

[10] B. Tian, L. Zhang, X. Wang, Y. Zhou, and W. Zhang, “Forecast-
ing the effects of sea-level rise at Chongming Dongtan Nature
Reserve in the Yangtze Delta, Shanghai, China,” Ecological
Engineering, vol. 36, no. 10, pp. 1383–1388, 2010.

[11] L. Tang, Y. Gao, J. Wang et al., “Designing an effective clipping
regime for controlling the invasive plant Spartina alterniflora in
an estuarine salt marsh,” Ecological Engineering, vol. 35, no. 5,
pp. 874–881, 2009.

[12] L. Yuan, L. Zhang, D. Xiao, and H. Huang, “The application
of cutting plus waterlogging to control Spartina alterniflora on
saltmarshes in the Yangtze Estuary, China,” Estuarine, Coastal
and Shelf Science, vol. 92, no. 1, pp. 103–110, 2011.

[13] J. H. Chen, L. Wang, Y. L. Li, W. Q. Zhang, X. H. Fu, and Y. Q.
Le, “Effect of Spartina alterniflora invasion and its controlling
technologies on soil microbial respiration of a tidal wetland in
Chongming Dongtan, China,” Ecological Engineering, vol. 41,
pp. 52–59, 2012.

[14] C. M. Taylor and A. Hastings, “Finding optimal control
strategies for invasive species: a density-structured model for
Spartina alterniflora,” Journal of Applied Ecology, vol. 41, no. 6,
pp. 1049–1057, 2004.

[15] D. L. Strayer, V. T. Eviner, J. M. Jeschke, and M. L. Pace,
“Understanding the long-term effects of species invasions,”
Trends in Ecology and Evolution, vol. 21, no. 11, pp. 645–651,
2006.

[16] J. Silvertown, S. Holtier, J. Johnson, and P. Dale, “Cellular
automaton models of interspecific competition for space—the
effect of pattern on process,” Journal of Ecology, vol. 80, no. 3,
pp. 527–534, 1992.

[17] S. L. Yang, “The role of Scirpus marsh in attenuation of
hydrodynamics and retention of fine sediment in the Yangtze
estuary,” Estuarine, Coastal and Shelf Science, vol. 47, no. 2, pp.
227–233, 1998.

[18] Z. C. Zhu, L. Q. Zhang, N. Wang, C. Schwarz, and T. Ysebaert,
“Interactions between the range expansion of saltmarsh vegeta-
tion and hydrodynamic regimes in the Yangtze Estuary, China,”
Estuarine, Coastal and Shelf Science, vol. 96, no. 1, pp. 273–279,
2012.

[19] Z. Ge, H. Cao, and L. Zhang, “A process-based grid model
for the simulation of range expansion of Spartina alterniflora
on the coastal saltmarshes in the Yangtze Estuary,” Ecological
Engineering, vol. 58, pp. 105–112, 2013.

[20] H.-M. Huang, L.-Q. Zhang, Y.-J. Guan, and D.-H. Wang, “A
cellular automata model for population expansion of Spartina
alterniflora at Jiuduansha Shoals, Shanghai, China,” Estuarine,
Coastal and Shelf Science, vol. 77, no. 1, pp. 47–55, 2008.

[21] X. Li and A. Gar-On Yeh, “Modelling sustainable urban devel-
opment by the integration of constrained cellular automata and
GIS,” International Journal of Geographical Information Science,
vol. 14, no. 2, pp. 131–152, 2000.

[22] V. J. Chapman, Salt Marshes and Salt Deserts of the World,
Interscience Publishers, London, UK, 1960.

[23] V. J. Chapman, Coastal Vegetation, Pergamon Press, London,
UK, 1976.

[24] S. Sadro, M. Gastil-Buhl, and J. Melack, “Characterizing pat-
terns of plant distribution in a southern California salt marsh
using remotely sensed topographic and hyperspectral data and
local tidal fluctuations,”Remote Sensing of Environment, vol. 110,
no. 2, pp. 226–239, 2007.

[25] Y. Xiao, J. B. Tang, H. Qing, C. F. Zhou, and S. Q. An,
“Effects of salinity and clonal integration on growth and sexual
reproduction of the invasive grass Spartina alterniflora,” Flora:
Morphology, Distribution, Functional Ecology of Plants, vol. 206,
no. 8, pp. 736–741, 2011.

[26] H. J. van Wijnen and J. P. Bakker, “Nitrogen and phosphorus
limitation in a coastal barrier salt marsh: the implications for
vegetation succession,” Journal of Ecology, vol. 87, no. 2, pp. 265–
272, 1999.
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An element-freeGalerkinmethod for the solution of free vibration of symmetrically laminated folded plate structures is introduced.
Employing the mature meshfree folded plate model proposed by the author, a folded laminated plate is simulated as a composite
structure of symmetric laminates that lie in different planes. Based on the first-order shear deformation theory (FSDT) and the
moving least-squares (MLS) approximation, the stiffness and mass matrices of the laminates are derived and supposed to obtain
the stiffness and mass matrices of the entire folded laminated plate. The equation governing the free vibration behaviors of the
folded laminated plate is thus established. Because of the meshfree characteristics of the proposed method, no mesh is involved
to determine the stiffness and mass matrices of the laminates. Therefore, the troublesome remeshing can be avoided completely
from the study of such problems as the large deformation of folded laminated plates.The calculation of several numerical examples
shows that the solutions given by the proposed method are very close to those given by ANSYS, using shell elements, which proves
the validity of the proposed method.

1. Introduction

Because of high strength/weight ratio, easy forming, and
low cost, folded plate structures have been widely used in
many engineering branches, such as roofs, corrugated-cores,
and cooling towers. They have much higher load carrying
capacity compared to flat plates. Before the invention of fiber-
reinforcedmaterial, folded plateswere oftenmade ofmedal or
timber. The application of fiber-reinforced material to folded
plate structures was a remarkable advance in engineering,
which combined the advantages of fiber-reinforced material
and folded plate structure directly and made the structure
even lighter and stiffer.

The study of isotropic folded plates had a quite long
history, and a variety of methods had emerged. In early
days, researchers were short of powerful numerical tools and
tried to analyze the structures with various approximations.
The beam method and the theory that ignores relative joint
displacement were introduced [1]. Although the methods
were weak in dealing with generalized folded plate problems,

they were simple and fulfilled the demand of fast and easy
computation in engineering. Therefore, they are still used in
some design environments, where accurate analysis is not the
first concern. Researchers such as Gaafar [2], Yitzhaki [3],
Yitzhaki and Reiss [4], and Whitney et al. [5] were the first
to consider the relative joint displacement of the structures
in their methods, which led to more precise analysis results.
Goldberg and Leve [6] used the two-dimensional theory of
elasticity and the two-way slab theory to analyze folded plates.
In their method, both the simultaneous bending and the
membrane action of a folded plate were taken into account,
and the degree of freedom (DOF) of each point along the joint
of the folded plate was chosen to be four (three components
of translation and one rotation). Niyogi et al. [7] considered
this method as the first to give an exact static solution
for folded plates. Yitzhaki and Reiss [4] took the moments
along the joints of folded plates as unknown and applied the
slope deflection method to the analysis of the folded plates.
Bar-Yoseph and Hersckovitz [8] proposed an approximated
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method for folded plates based on Vlasov’s theory of thin-
wall beams. Their method considered a folded plate as a
monolithic structure composed of longitudinal beams, which
can give good results for long folded plates. Bandyopadhyay
and Laad [9] compared two classical methods for folded
plates and studied the suitability of these methods for the
preliminary analysis of folded plate structures. Lai et al.
[10] gave an equation of the middle surface of a simply
supported cross V-shaped folded plate roof by using the
inclined coordinate system and generalized functions, sign
function and step function, and carried out a nonlinear
analysis for the folded plate.

The development of computation techniques and com-
puters has aroused research interest in numerical methods
for folded plates. A number of methods, such as the finite
strip methods (Cheung [11], Golley and Grice [12], Eterovic
and Godoy [13]), the combined boundary element-transfer
matrix method (Ohga et al. [14]), and the finite element
methods (FEM) (Liu and Huang [15], Perry et al. [16],
Niyogi et al. [7], and Duan and Miyamoto [17]), have been
introduced to solve folded plate problems. Among these
methods, the FEMs are the most successful. They are very
versatile as they can deal with the problems with complicated
geometry, boundary conditions, or loadings easily. However,
FEM also has disadvantages. Their solution of a problem is
based on the meshes that discretize the problem domain,
and any dramatic change of the problem domain will lead
to remeshing of the domain, which results in programming
complexity, diminished accuracy, and long computation
time. Regarding the disadvantage, some researchers proposed
the element-free, meshfree, or meshless methods [18–22]. As
alternatives to FEMs, the meshfree methods construct their
approximated solution of a problem completely in terms of a
set of ordered or scattered points that discretize the problem
domain; that is, their solution relies on the points other than
meshes. No element is required. Without the limit of meshes,
themeshfreemethods aremore applicable than the FEMs and
avoid the aforementioned difficulties caused by remeshing in
the FEMs.

Bui et al. [23], Bui and Nguyen [24], and Somireddy and
Rajagopal [25] have introduced the meshfree methods for
vibration analysis of laminated plates. However, few studies
on folded laminated plates have been found. There are only
Niyongi et al. [7] and Lee et al.’s [26] work on vibration and
the author’s work on bending with ameshfreemethod, which
is also the motive for this paper.

The objective of this paper is to introduce an element-free
Galerkin method based on the first-order shear deformation
theory (FSDT) [27, 28] for the free vibration analysis of folded
laminated plates. A symmetrical folded laminated plate is
regarded as a composite structure composed of symmetric
laminates. The analysis process includes (a) deriving the
stiffness and mass matrices of the symmetric laminates
that make up a folded plate by the element-free Galerkin
method; (b) considering the laminates as super elements and
superposing their stiffness and mass matrices to obtain the
global stiffness and mass matrices of the folded plate. Some
numerical examples are used to demonstrate the convergence
and accuracy of the proposed method. The calculated results

are compared with the results from the finite element analyt-
ical software ANSYS. The proposed method may be used as
a potential meshfree tool for the analysis of laminated shell
structures.

2. Moving Least-Squares Approximation

In the moving least-squares approximation (MLS) [18], a
function V(x) in a domain Ω can be approximated by V𝑑(x)
in the subdomain Ωx and

V𝑑 (x) =

𝑚

∑
𝑖=1

𝑞𝑖 (x) 𝑏𝑖 (x) = qT (x) b (x) , (1)

where 𝑞𝑖(x) are the monomial basis functions, 𝑏𝑖(x) are the
corresponding coefficients, 𝑑 is a factor that measures the
domain of influence (or the support) of the nodes, and 𝑚 is
the number of basis functions. In this paper, the quadratic
basis qT = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2] (𝑚 = 6) are used for the
laminates.The unknown coefficients 𝑏𝑖(x) are obtained by the
minimization of a weighted discrete 𝐿2 norm

Γ =

𝑛

∑
𝐼=1

𝜛 (x − x𝐼) [q (x𝐼)
T b (x) − V𝐼]

2

, (2)

where 𝜛(x − x𝐼) or 𝜛𝐼(x) is the weight function that is
associated with node 𝐼,𝜛𝐼(x) = 0 outsideΩx, 𝑛 is the number
of nodes in Ωx that make the weight function 𝜛𝐼(x) > 0, and
V𝐼 are the nodal parameters.Theminimization of Γ in (2) with
respect to b(x)

𝜕Γ

𝜕b (x)
= 0 (3)

leads to a set of linear equations

B (x) b (x) = A (x) k, (4)

where

B (x) =

𝑛

∑
𝐼=1

𝜛 (x − x𝐼) q (x𝐼) q
T
(x𝐼) , (5)

A (x) = [𝜛 (x − x1) q (x1) , . . . , 𝜛 (x − x𝑛) q (x𝑛)] . (6)

The coefficients b(x) are then derived from (4):

b (x) = B−1 (x)A (x) k. (7)

By substituting (7) into (1), the approximation V𝑑(x) is
expressed in a standard form as

V𝑑 (x) =

𝑛

∑
𝐼=1

𝑁𝐼 (x) V𝐼, (8)

where the shape function 𝑁𝐼(x) is given by

𝑁𝐼 (x) = qT (x)B−1 (x)A𝐼 (x) . (9)

From (6), we obtain

A𝐼 (x) = 𝜛 (x − x𝐼) q (x𝐼) , (10)

and thus (9) can be rewritten as

𝑁𝐼 (x) = qT (x)B−1 (x) q (x𝐼) 𝜛 (x − x𝐼) . (11)
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3. Meshless Model of a Laminate

The first step in our analysis is to obtain the stiffness and
mass matrices of the laminates that make up a folded plate.
The meshless model for a laminate in the local coordinate,
as shown in Figure 1, is prescribed with a set of nodes. The
DOF of every node is (𝑢0, V0, 𝑤, 𝜑𝑥, 𝜑𝑦), where 𝑢0, V0, and 𝑤

are the nodal translations of the laminate in the 𝑥-direction,
𝑦-direction, and 𝑧-direction, respectively. 𝜑𝑥 and 𝜑𝑦 are the
rotation about the 𝑦-axis and the 𝑥-axis, respectively. The
laminate is assumed to have 𝑁 layers, and the thickness of
each layer is 𝑧𝑖 (𝑖 = 1, . . . , 𝑁). Therefore, the thickness of 𝑘th
layer is ℎ𝑘 = 𝑧𝑘+1 − 𝑧𝑘.

3.1. DisplacementApproximation. Based on the FSDTand the
MLS approximation, the displacements of the laminate can be
approximated by

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0 (𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑥 (𝑥, 𝑦, 𝑡)

=

𝑛

∑
𝐼=1

𝐻𝐼 (𝑥, 𝑦) 𝑢0𝐼 (𝑡) − 𝑧

𝑛

∑
𝐼=1

𝐻𝐼 (𝑥, 𝑦) 𝜑𝑥𝐼 (𝑡) ,

V (𝑥, 𝑦, 𝑧, 𝑡) = V0 (𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑦 (𝑥, 𝑦, 𝑡)

=

𝑛

∑
𝐼=1

𝐻𝐼 (𝑥, 𝑦) V0𝐼 (𝑡) − 𝑧

𝑛

∑
𝐼=1

𝐻𝐼 (𝑥, 𝑦) 𝜑𝑦𝐼 (𝑡) ,

𝑤 (𝑥, 𝑦, 𝑡) =

𝑛

∑
𝐼=1

𝐻𝐼 (𝑥, 𝑦)𝑤𝐼 (𝑡) ,

(12)

x

y

z

Figure 1: Meshfree model of a laminate.

where {𝑢0𝐼(𝑡), V0𝐼(𝑡), 𝑤𝐼(𝑡), 𝜑𝑥𝐼(𝑡), 𝜑𝑦𝐼(𝑡)}
T = 𝛿𝐼 are the nodal

parameters of the 𝐼th node of the laminate, 𝑛 is the number of
nodes of the laminate, and 𝜑𝑥 and 𝜑𝑦 are independent of 𝑤.
The shape functions 𝐻𝐼(𝑥, 𝑦) are obtained from (9), and the
cubic spline function

𝜛 (𝑠) =

{{{{{{

{{{{{{

{

2

3
− 4𝑠
2
+ 4𝑠
3
, 𝑠 ≤

1

2
,

4

3
− 4𝑠 + 4𝑠2 −

4

3
𝑠3,

1

2
< 𝑠 ≤ 1,

0, 𝑠 > 1

(13)

is used as the weight function. Equation (12) can be written
in a matrix form as

U =

{{

{{

{

𝑢

V
𝑤

}}

}}

}

=

𝑛

∑
𝐼=1

[
[

[

𝐻𝐼 (𝑥, 𝑦) 0 0 −𝑧𝐻𝐼 (𝑥, 𝑦) 0

0 𝐻𝐼 (𝑥, 𝑦) 0 0 −𝑧𝐻𝐼 (𝑥, 𝑦)

0 0 𝐻𝐼 (𝑥, 𝑦) 0 0

]
]

]

×

{{{{{{{

{{{{{{{

{

𝑢0𝐼 (𝑡)

V0𝐼 (𝑡)
𝑤𝐼 (𝑡)

𝜑𝑥𝐼 (𝑡)

𝜑𝑦𝐼 (𝑡)

}}}}}}}

}}}}}}}

}

.

(14)

The strains of the laminate are defined as

𝜅 =

{{

{{

{

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

}}

}}

}

=
[
[

[

𝑢0,𝑥 − 𝑧𝜑𝑥,𝑥

V0,𝑦 − 𝑧𝜑𝑦,𝑦

𝑢0,𝑦 + V0,𝑥 − 𝑧 (𝜑𝑥,𝑦 + 𝜑𝑦,𝑥)

]
]

]

=

𝑛

∑
𝐼=1

B𝑏
𝐼
𝛿𝐼,

𝛾 = {
𝛾𝑥𝑧

𝛾𝑦𝑧
} = [

𝑤,𝑥 − 𝜑𝑥

𝑤,𝑦 − 𝜑𝑦
] =

𝑛

∑
𝐼=1

B𝑠
𝐼
𝛿𝐼,

(15)

where

B𝑏
𝐼
= [B0𝐼 −𝑧B1𝐼] =

[
[
[

[

𝐻𝐼,𝑥 0 0 −𝑧𝐻𝐼,𝑥 0

0 𝐻𝐼,𝑦 0 0 −𝑧𝐻𝐼,𝑦

𝐻𝐼,𝑦 𝐻𝐼,𝑥 0 −𝑧𝐻𝐼,𝑦 −𝑧𝐻𝐼,𝑥

]
]
]

]

,

B0𝐼 =
[
[
[

[

𝐻𝐼,𝑥 0

0 𝐻𝐼,𝑦

𝐻𝐼,𝑦 𝐻𝐼,𝑥

]
]
]

]

, B1𝐼 =
[
[
[

[

0 𝐻𝐼,𝑥 0

0 0 𝐻𝐼,𝑦

0 𝐻𝐼,𝑦 𝐻𝐼,𝑥

]
]
]

]

,
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B𝑠
𝐼
= [0 B2𝐼] = [

0 0 𝐻𝐼,𝑥 −𝐻𝐼 0

0 0 𝐻𝐼,𝑦 0 −𝐻𝐼
] ,

B2𝐼 = [
𝐻𝐼,𝑥 −𝐻𝐼 0

𝐻𝐼,𝑦 0 −𝐻𝐼
] ,

(16)

“,𝑥” refers to the derivatives of 𝑥, and “,𝑦” refers to the
derivatives of 𝑦.

3.2. Governing Equation. In free vibration, the strain energy
and kinetic energy of the laminate are, respectively,

Π =
1

2
∬∫
ℎ/2

−ℎ/2

𝜅
TD𝜅 d𝑧 d𝑥 d𝑦 +

1

2
∬ 𝛾

TA𝑠𝛾 d𝑥 d𝑦,

T0 =
1

2
∬∫
ℎ/2

−ℎ/2

U̇T
𝜌U̇ d𝑧 d𝑥 d𝑦,

(17)

where

D =

[
[
[
[
[

[

𝑄
(𝑘)

11
𝑄
(𝑘)

12
𝑄
(𝑘)

16

𝑄
(𝑘)

21
𝑄
(𝑘)

22
𝑄
(𝑘)

26

𝑄
(𝑘)

61
𝑄
(𝑘)

62
𝑄
(𝑘)

66

]
]
]
]
]

]

,

Ã𝑠 = [
𝐴55 𝐴45

𝐴45 𝐴44
] ,

𝐴 𝑖𝑗 = 𝑘𝑐 ∫
ℎ/2

−ℎ/2

𝑄
(𝑘)

𝑖𝑗
d𝑧 = 𝑘𝑐

𝑁

∑
𝑘=1

𝑄
(𝑘)

𝑖𝑗
(𝑧𝑘+1 − 𝑧𝑘) ,

(𝑖, 𝑗 = 4, 5) ,

(18)

𝑄𝑖𝑗 (𝑖, 𝑗 = 1, 2, 6, 4, 5) are thematerial stiffness that are defined
in [28], 𝑘𝑐 = 5/6 is the shear correction factor, and ℎ is the
thickness of the laminate. 𝜌 is the density of the material.

According to Hamilton’s principle,

𝛿∫
𝑡
2

𝑡
1

(T0 − Π) d𝑡 = 0. (19)

The substitution of (14) to (17) into (19) gives

K𝛿 + M�̈� = 0, (20)

where

𝛿 = {𝛿
T
1
𝛿
T
2

⋅ ⋅ ⋅ 𝛿
T
𝑛
}
T

= {𝑢01, V01, 𝑤1, 𝜑𝑥1, 𝜑𝑦1, . . . , 𝑢0𝑛, V0𝑛, 𝑤𝑛, 𝜑𝑥𝑛, 𝜑𝑦𝑛}
T
,

[M]𝐼𝐽 = ∬

[
[
[
[
[
[
[
[
[
[

[

ℎ

ℎ 0

ℎ

0
ℎ
3

12
ℎ3

12

]
]
]
]
]
]
]
]
]
]

]

𝜌𝐻𝐼𝐻𝐽 d𝑥 d𝑦,

K𝐼𝐽 = ∬∫
ℎ/2

−ℎ/2

[
BT
0𝐼

−𝑧BT
1𝐼

]D [B0𝐽 −𝑧B1𝐽] d𝑧 d𝑥 d𝑦

+ ∬[
0
BT
2𝐼

] Ã𝑠 [0 B2𝐽] d𝑥 d𝑦

= ∬∫
ℎ/2

−ℎ/2

[

[

BT
0𝐼
DB0𝐽 −𝑧BT

0𝐼
DB1𝐽

−𝑧BT
1𝐼
DB0𝐽 𝑧2BT

1𝐼
DB1𝐽

]

]

d𝑧 d𝑥 d𝑦

+ ∬[
0 0
0 BT
2𝐼
Ã𝑠B2𝐽

] d𝑥 d𝑦.

(21)

If (Ã, B̃, H̃) = ∫
ℎ/2

−ℎ/2
D(1, 𝑧, 𝑧2) d𝑧, we obtain

K𝐼𝐽 = ∬[

[

BT
0𝐼
ÃB0𝐽 −BT

0𝐼
B̃B1𝐽

−BT
1𝐼
B̃B0𝐽 BT

1𝐼
H̃B1𝐽 + BT

2𝐼
Ã𝑠B2𝐽

]

]

d𝑥 d𝑦. (22)

For the symmetric laminates, B̃ = 0.

4. Formulation for Folded Laminated Plates

In the paper, a folded laminated plate is regarded as a compos-
ite structure composed of laminates. We have obtained the
stiffness and mass matrices of a single laminate. Therefore,
the next step is to take each laminate of the composite
structure as a super element, to superpose their stiffness and
mass matrices by applying the displacement compatibility
conditions along the joints between the laminates, and to give
the governing equation of the entire folded laminated plate
(Figure 2).

Nevertheless, as pointed out by the author in [20], due
to a lack of Kronecker delta properties in the meshfree shape
functions given by (9), and that 𝛿 of (20) are nodal parameters
other than actual nodal displacements, the stiffness and mass
matrices cannot be directly superposed. The full transforma-
tion method that was first introduced by Chen et al. [19] to
enforce the essential boundary conditions is extended by the
author in the paper to modify the stiffness and mass matrices
before a superposition. After the modification, the essential
boundary conditions can be implemented as those in FEMs.

4.1. Modification of Stiffness and Mass Matrices. From (1), the
actual displacement of the nodes, k(x), can be approximated
by k𝑑(x)

k (x) ≈ k𝑑 (x) =

𝑛

∑
𝐼=1

𝑁𝐼 (x) V𝐼 = Φk, (23)
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i

x1

y1

x2

y2

y
z

x

Super element 1

Super element 2

Figure 2: Ameshfreemodel of a folded laminated plate that is made
up of two super elements (laminates). The domain of influence of
node 𝑖 is indicated by the dashed line.

where

Φ =

[
[
[
[
[

[

𝑁1 (x1) 𝑁2 (x1) . . . 𝑁𝑛 (x1)
𝑁1 (x2) 𝑁2 (x2) . . . 𝑁𝑛 (x2)

...
...

...
...

𝑁1 (x𝑛) 𝑁2 (x𝑛) . . . 𝑁𝑛 (x𝑛)

]
]
]
]
]

]

(24)

and V𝐼 are the nodal parameters.Therefore, the nodal param-
eters can be expressed in terms of the actual displacement

k = Λk, (25)

where Λ = Φ−1.
For the folded laminated plate, we accordingly have

u0 = Λu0, k0 = Λk0, w = Λw,

𝜑
𝑥
= Λ𝜑
𝑥
, 𝜑

𝑦
= Λ𝜑
𝑦
,

(26)

where u0 = {𝑢0(x1), 𝑢0(x2), . . . , 𝑢0(x𝑛)}T = {𝑢01, 𝑢02, . . . , 𝑢0𝑛}
T

are the actual nodal displacement (translation) in the 𝑥

direction and u0 = {𝑢01, 𝑢02, . . . , 𝑢0𝑛}
T are the corresponding

nodal parameters. k0, k0,w,w,𝜑𝑥,𝜑𝑥,𝜑𝑦, and𝜑𝑦 have similar
definition. Equation (26) can be written as

𝛿 = Λ𝛿, (27)

where 𝛿 = {𝛿
T
1
𝛿
T
2

⋅ ⋅ ⋅ 𝛿
T
𝑛
}T = {𝑢01, V01, 𝑤1, 𝜑𝑥1, 𝜑𝑦1, . . .,

𝑢0𝑛, V0𝑛, 𝑤𝑛, 𝜑𝑥𝑛, 𝜑𝑦𝑛}
T are the actual nodal displacement of all

nodes.Λ is a 5𝑛×5𝑛modificationmatrix which combines five
Λ. Substituting (27) into (20) and premultiplying both sides
of the equation with ΛT, we obtain

Λ
TKΛ𝛿 + ΛTMΛ ̈

𝛿 = 0. (28)

Assuming that K = Λ
TKΛ andM = Λ

TMΛ, we have

K𝛿 + M ̈
𝛿 = 0, (29)

the modified governing equation.

4.2. The Governing Equation of the Folded Laminated Plate.
Because the stiffness and mass matrices of a laminate in (20)
were established in a local coordinate attached to the laminate
(Figure 1), the matrices in (29) need to be transformed to
the global coordinates before the superposition. The stiffness
and mass matrices and the nodal displacement in the global
coordinates are

K̃ = TKTT
, M̃ = TMTT

, �̃� = T𝛿, (30)

where T is the 6𝑛 × 6𝑛 coordinate transformation matrix
derived in [20] (note: a drilling degree of freedom 𝜑𝑧 has
been added to 𝛿, andK andMmust be expanded accordingly
by inserting some zero elements). If there are 𝐽 (no. 1 to 𝐽)
coincident nodes along the joint between super elements 1
and 2 (Figure 2), we have

�̃�
1

𝑏
= �̃�
2

𝑏
,

̈̃
𝛿

1

𝑏
=

̈̃
𝛿

2

𝑏
, (31)

where �̃�
1

𝑏
= {̃𝑢
1

01
, Ṽ1
01
, �̃�
1

1
, �̃�
1

𝑥1
, �̃�
1

𝑦1
, �̃�
1

𝑧1
, . . . , �̃�1

0𝐽
, Ṽ1
0𝐽
, �̃�
1

𝐽
, �̃�
1

𝑥𝐽
, �̃�
1

𝑦𝐽
,

𝜑1
𝑧𝐽
}
T are the actual displacement of the nodes of super

element 1 along the joint between super element 1 and super
element 2 and �̃�

2

𝑏
= {�̃�2
01
, Ṽ2
01
, 𝑤2
1
, 𝜑2
𝑥1

, 𝜑2
𝑦1

, 𝜑2
𝑧1
, . . . , �̃�2

0𝐽
, Ṽ2
0𝐽
,

𝑤2
𝐽
, 𝜑2
𝑥𝐽

, 𝜑2
𝑦𝐽

, 𝜑2
𝑧𝐽
}
T are the actual displacement of the nodes of

super element 2 along the joint between super element 1 and
super element 2. After necessary elementary transformation,
the governing equation of super elements 1 and 2 can be
written in block forms

[
k̃1
𝑖𝑖

k̃1
𝑖𝑏

k̃1
𝑏𝑖

k̃1
𝑏𝑏

]
{

{

{

�̃�
1

𝑖

�̃�
1

𝑏

}

}

}

+ [
m̃1
𝑖𝑖

m̃1
𝑖𝑏

m̃1
𝑏𝑖

m̃1
𝑏𝑏

]
{

{

{

̈̃
𝛿

1

𝑖

̈̃
𝛿

1

𝑏

}

}

}

= 0,

[
k̃2
𝑏𝑏

k̃2
𝑏𝑖

k̃2
𝑖𝑏

k̃2
𝑖𝑖

]
{

{

{

�̃�
2

𝑏

�̃�
2

𝑖

}

}

}

+ [
m̃2
𝑏𝑏

m̃2
𝑏𝑖

m̃2
𝑖𝑏

m̃2
𝑖𝑖

]
{

{

{

̈̃
𝛿

2

𝑏

̈̃
𝛿

2

𝑖

}

}

}

= 0,

(32)

where �̃�
1

𝑖
and �̃�

2

𝑖
are the actual displacement of the nodes of

super elements 1 and 2 that are not along the joint, respec-
tively. Equation (32) are supposed to give the equation gov-
erning the dynamic behaviors of the entire structure

[
[
[

[

k̃1
𝑖𝑖

k̃1
𝑖𝑏

0
k̃1
𝑏𝑖

k̃1
𝑏𝑏

+ k̃2
𝑏𝑏

k̃2
𝑏𝑖

0 k̃2
𝑖𝑏

k̃2
𝑖𝑖

]
]
]

]

{{{{

{{{{

{

�̃�
1

𝑖

�̃�
1

𝑏

�̃�
2

𝑖

}}}}

}}}}

}

+
[
[

[

m̃1
𝑖𝑖

m̃1
𝑖𝑏

0
m̃1
𝑏𝑖

m̃1
𝑏𝑏

+ m̃2
𝑏𝑏

m̃2
𝑏𝑖

0 m̃2
𝑖𝑏

m̃2
𝑖𝑖

]
]

]

{{{{{

{{{{{

{

̈̃
𝛿

1

𝑖

̈̃
𝛿

1

𝑏

̈̃
𝛿

2

𝑖

}}}}}

}}}}}

}

= 0.

(33)
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Taking

K𝐺 =
[
[
[

[

k̃1
𝑖𝑖

k̃1
𝑖𝑏

0
k̃1
𝑏𝑖

k̃1
𝑏𝑏

+ k̃2
𝑏𝑏

k̃2
𝑏𝑖

0 k̃2
𝑖𝑏

k̃2
𝑖𝑖

]
]
]

]

,

M𝐺 =
[
[

[

m̃1
𝑖𝑖

m̃1
𝑖𝑏

0
m̃1
𝑏𝑖

m̃1
𝑏𝑏

+ m̃2
𝑏𝑏

m̃2
𝑏𝑖

0 m̃2
𝑖𝑏

m̃2
𝑖𝑖

]
]

]

,

𝛿𝐺 =

{{{{

{{{{

{

�̃�
1

𝑖

�̃�
1

𝑏

�̃�
2

𝑖

}}}}

}}}}

}

,

(34)

we have

K𝐺𝛿𝐺 + M𝐺�̈�𝐺 = 0. (35)

The solution of the corresponding eigenvalue problem

(K𝐺 − 𝜔
2M𝐺) 𝛿0 = 0 (36)

gives us the free vibration frequencies of the folded laminated
plate.

5. Results and Discussion

In order to show the convergence and accuracy of the
proposed method, several numerical examples are calculated
with the method and the finite element software ANSYS. For
all the laminates in the examples, the plies are assumed to
have the same thickness and material properties: 𝐸1 = 2.5 ×

107 Pa, 𝐸2 = 1 × 106 Pa, 𝐺12 = 𝐺13 = 5 × 105 Pa,
𝐺23 = 2 × 105 Pa, 𝜇12 = 0.25, and 𝜌 = 2823 kg/m3. Unless
otherwise specified, for each example a total of two cases of
symmetric laminates, cross-ply or angle-ply, which make up
the folded plates, are studied: (0∘/90∘/90∘/0∘) and (−45∘/45∘/
−45∘/45∘/−45∘ . . .)10. In ANSYS, the folded laminated plates
in the examples are all modeled as shells, and the linear
layered structural shell element SHELL99 [29] is used to
discretise the folded plates.

5.1. Validation Studies. To carry out the validation studies,
a cantilever square laminate with a lamination scheme of
(−45∘/45∘/45∘/−45∘) is considered (Figure 3).Thewidth of the
plate is 1.8m, and the thickness is 0.018m.The solution from
ANSYS (5000 elements to discretise the laminate) is taken
to be the exact solution. The validation studies consist of a
convergence study and a study on the effect of the size of
support and the completeness order of the basis functions on
the convergence of solutions.

Firstly, we choose a certain meshless scheme (11 × 11
nodes for the laminate) and let the scaling factor 𝛽 and the
completeness order 𝑁𝑐 of the basis function vary. 𝛽 defines

y

x

1.
8m

z

Figure 3: A cantilevered laminate.
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Figure 4: Variation of dimensionless fundamental frequency of the
laminate under different 𝛽 and 𝑁𝑐.

the size of the support of nodes. In this paper, a rectangular
support is used and

ℎ𝑥 = 𝛽 ⋅ 𝐼𝑥,

ℎ𝑦 = 𝛽 ⋅ 𝐼𝑦,
(37)

where ℎ𝑥, ℎ𝑦 are the lengths of the support in the 𝑥

and 𝑦 directions, respectively, and 𝐼𝑥, 𝐼𝑦 are the distances
between two neighbouring nodes in the 𝑥- and 𝑦-directions,
respectively. The dimensionless fundamental frequency of
the laminate as calculated by the proposed method under
different values of 𝛽 and 𝑁𝑐 is shown in Figure 4 and is
compared with the solution that is given by ANSYS. The
dimensionless frequency is defined as

𝜔 = 𝜔(
𝐿2

ℎ
)√(

𝜌

𝐸2
), (38)

where 𝐿 is the width of the laminate and 𝜔 is the vibration
frequency. FromFigure 4, it can be observed that for a certain
meshless scheme (in this case 11 × 11 nodes), all of the
solutions for different completeness orders (𝑁𝑐) of the basis
functions converge when the support size (𝛽) is larger than 5.
Higher completeness orders (𝑁𝑐) need a larger support size
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Figure 5: Variation of dimensionless fundamental frequency of the
laminate, 𝑁𝑐 = 2.
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Figure 6: Variation of dimensionless fundamental frequency of the
laminate, 𝑁𝑐 = 3.

to make the solution converge (the solution under 𝑁𝑐 = 2

converges at 𝛽 = 4while the solution under𝑁𝑐 = 5 converges
at 𝛽 = 5).

Secondly, we vary the meshless scheme and obtain the
variations of the dimensionless fundamental frequency under
certain completeness order of the basis functions (𝑁𝑐), which
are shown in Figures 5, 6, 7, and 8, respectively. The solution
that is given by ANSYS is also in the figures for comparison.
Figures 5 to 8 indicate that for certain 𝛽, the solution
convergeswhen the number of nodes increases. For an𝑁𝑐, the
solutions for larger support sizes (𝛽) converge before those for
smaller support sizes do.
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Figure 7: Variation of dimensionless fundamental frequency of the
laminate, 𝑁𝑐 = 4.
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Figure 8: Variation of dimensionless fundamental frequency of the
laminate, 𝑁𝑐 = 5.

From the studies, we find that when the order of basis
functions 𝑁𝑐 = 2 and the support size 𝛽 = 4 for the
laminate, the solutions are precise enough with a relatively
lower computational cost. Therefore, all of the following
examples are calculated with 𝑁𝑐 = 2, 𝛽 = 4.

5.2. A Folded Plate That Is Made Up of Two Laminates.
A clamped laminated folded plate that is made up of two
identical square laminates is studied (Figure 9). The width of
each laminate is 𝐿 = 1m, and the thickness ℎ = 0.012m.The
dimensionless frequencies of the first five vibration modes of
the folded plate that are obtained by the proposed method
(11 × 11 nodes for each laminate) are listed in Tables 1 and 2
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Table 1: Dimensionless free vibration frequencies of the onefold
laminated plate with the lamination scheme (0∘/90∘/90∘/0∘).

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 8.9128 8.89037 0.25%
2 10.0977 10.06576 0.32%
3 12.9276 12.87695 0.39%
4 13.8224 13.77692 0.33%
5 28.836 28.70447 0.46%

𝛼 = 150∘

1 8.91325 8.89121 0.25%
2 10.1036 10.06659 0.37%
3 12.9008 12.8508 0.39%
4 13.7894 13.74465 0.33%
5 28.841 28.71003 0.46%

Table 2: Dimensionless free vibration frequencies of
the onefold laminated plate with the lamination scheme
(−45∘/45∘/−45∘/45∘/−45∘ . . .)10.

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 10.5522 10.48862 0.61%
2 15.7311 15.63222 0.63%
3 19.2923 19.11888 0.91%
4 22.6269 22.45392 0.77%
5 35.233 34.9528 0.80%

𝛼 = 150∘

1 10.5784 10.49001 0.84%
2 15.4292 15.32843 0.66%
3 19.5467 19.09968 2.34%
4 21.6468 21.4844 0.76%
5 35.3159 34.97227 0.98%

alongside the results that are given by ANSYS (3200 elements
to discretise the folded plate) for comparison, and the first five
mode shapes of vibration of the folded plate are also plotted
graphically in Figures 10 and 11. Different crank angles of the
folded plate,𝛼 = 90

∘ and𝛼 = 150∘, are considered.The results
of the two methods are very close.

When the folded plate is clamped at one side, which
makes it a cantilevered folded plate (Figure 12), the dimen-
sionless frequencies of the first five vibration modes of the
structure are listed in Tables 3 and 4, and the five vibration
mode shapes are shown in Figures 13 and 14.

5.3. A Folded Plate That Is Made Up of Three Laminates.
A folded plate that is made up of three identical square
laminates and clamped at one side is studied (Figure 15, 𝛼 =

90
∘).Thewidth of each laminate is 𝐿 = 1m, and the thickness

ℎ = 0.01m. The dimensionless frequencies of the first five
vibrationmodes of the folded plate, which are calculated with
the proposed method and ANSYS, are listed in Tables 5 and
6, and the first five mode shapes of vibration of the folded
plate are also plotted graphically in Figures 16 and 17. In

𝛼

x

y

z

y1

x1

x2

y2

1m

0.012m

Figure 9: The onefold laminated plate with two sides fixed.

Figure 10: First five vibration mode shapes of the clamped folded
plate (𝛼 = 90

∘).

Figure 11: First five vibration mode shapes of the clamped folded
plate (𝛼 = 150

∘).

ANSYS, 4800 elements are used to discretise the structure.
The agreement between the two sets of results is good.

When the crank angle 𝛼 = 60∘ and the laminates are
assumed to be connected with one another, we obtain a
tub structure with three folds (Figure 18). The dimensionless
frequencies of the first five vibration modes of the structure
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Figure 12: The cantilevered onefold laminated plate.

Figure 13: First five vibrationmode shapes of the cantilevered folded
plate (𝛼 = 90

∘).

Figure 14: First five vibrationmode shapes of the cantilevered folded
plate (𝛼 = 150

∘).

are listed in Tables 7 and 8, and the first five mode shapes are
shown in Figure 19.

5.4. A Laminated Shell. If the three laminates in Section 5.3
are joined with each other vertically, we obtain a laminated
shell (or half of a box structure) (Figure 20). The structure
is pinned at points A, B, and C. All of the DOFs, except the
rotations of these points, are set to zero.

𝛼 𝛼

x
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z

y1

x1

x2

y2

1m

0.01m
Figure 15: A cantilevered folded plate that is made up of three
identical square laminates.

Figure 16: First five vibration mode shapes of the cantilevered
folded plate (𝛼 = 90

∘) that is made up of three identical square
laminates.

Figure 17: First five vibrationmode shapes of the cantilevered folded
plate (𝛼 = 150∘) that is made up of three identical square laminates.

Three lamination schemes are considered. Case 1: lami-
nate 1 is taken to be (45∘/−45∘/−45∘/45∘) and laminates 2 and 3
to be (−45∘/45∘/45∘/−45∘), as is demonstrated in Figure 21(a);
Case 2: laminate 1 is taken to be (−45∘/45∘/45∘/−45∘) and
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Table 3: Dimensionless free vibration frequencies of the can-
tilevered onefold laminated plate with the lamination scheme
(0∘/90∘/90∘/0∘).

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 4.97836 4.97752 0.02%
2 5.47994 5.47883 0.02%
3 10.9922 10.97741 0.13%
4 14.3614 14.32497 0.25%
5 29.6419 29.62531 0.06%

𝛼 = 150∘

1 4.97887 4.97752 0.03%
2 5.47507 5.47410 0.02%
3 11.0002 10.98326 0.15%
4 14.0093 13.97611 0.24%
5 29.6493 29.63643 0.04%

Table 4: Dimensionless free vibration frequencies of the can-
tilevered onefold laminated plate with the lamination scheme (−45∘/
45∘/−45∘/45∘/−45∘ . . .)10.

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 5.19091 5.16586 0.48%
2 6.37998 6.35766 0.35%
3 15.5232 15.42413 0.64%
4 18.0588 17.93153 0.71%
5 20.3733 20.27757 0.47%

𝛼 = 150∘

1 5.23049 5.16336 1.30%
2 6.30941 6.27921 0.48%
3 15.6594 15.4258 1.51%
4 17.6398 17.50867 0.75%
5 20.2856 20.15211 0.66%

Table 5: Dimensionless free vibration frequencies of the can-
tilevered twofold laminated plate with the lamination scheme (0∘/
90∘/90∘/0∘).

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 5.15051 5.14912 0.03%
2 5.27945 5.27765 0.03%
3 9.42541 9.40889 0.18%
4 12.4088 12.37671 0.26%
5 14.3156 14.25922 0.40%

𝛼 = 150∘

1 5.15063 5.14912 0.03%
2 5.27544 5.27331 0.04%
3 9.41916 9.40088 0.19%
4 12.3053 12.27255 0.27%
5 14.162 14.10833 0.38%

Table 6: Dimensionless free vibration frequencies of the can-
tilevered twofold laminated plate with the lamination scheme
(−45∘/45∘/−45∘/45∘/−45∘ . . .)10.

Crank angle Modes Present
results

ANSYS
results

Relative
errors

𝛼 = 90∘

1 5.55864 5.53036 0.51%
2 6.01129 5.98305 0.47%
3 13.3613 13.2764 0.64%
4 16.8974 16.755 0.85%
5 18.1847 18.02859 0.87%

𝛼 = 150∘

1 5.55885 5.51233 0.84%
2 5.9971 5.94399 0.89%
3 13.4186 13.21197 1.56%
4 16.8014 16.59041 1.27%
5 17.9625 17.78489 1.00%

Table 7: Dimensionless free vibration frequencies of the can-
tilevered tub structure with the lamination scheme (0∘/90∘/90∘/0∘).

Modes Present results ANSYS results Relative errors

1 9.14727 9.126463 0.23%
2 9.14957 9.126797 0.25%
3 14.1263 14.06026 0.47%
4 23.6554 23.53825 0.50%
5 31.4647 31.43285 0.10%

Table 8: Dimensionless free vibration frequencies of the can-
tilevered tub structure with the lamination scheme (−45∘/45∘/−45∘/
45∘/−45∘ . . .)10.

Modes Present results ANSYS results Relative errors

1 12.6681 12.56399 0.83%
2 12.7663 12.56399 1.61%
3 18.6702 18.49329 0.96%
4 31.407 31.05495 1.13%
5 33.1907 32.96984 0.67%

laminates 2 and 3 to be (45∘/−45∘/−45∘/45∘), as is demon-
strated in Figure 21(b); and Case 3: laminate 1 is taken to be
(90∘/0∘/0∘/90∘) and laminates 2 and 3 to be (0∘/90∘/90∘/0∘), as
is shown in Figure 21(c).

The dimensionless frequencies of the first five vibration
modes of the structures are computed by both the proposed
method and ANSYS and listed in Tables 9, 10, and 11, and the
first five mode shapes are shown in Figures 22, 23, and 24.
In ANSYS, 4800 elements are used to discretise the structure.
The agreement of the two sets of results is good.
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Table 9: Dimensionless free vibration frequencies of the laminated
shell (Figure 21(a)).

Modes Present results ANSYS results Relative errors
1 8.10352 8.01745 1.1%
2 8.10352 8.01745 1.1%
3 10.01294 9.86091 1.5%
4 13.70969 13.49473 1.6%
5 15.17441 14.93191 1.6%

Table 10: Dimensionless free vibration frequencies of the laminated
shell (Figure 21(b)).

Modes Present results ANSYS results Relative errors
1 9.18846 9.08674 1.1%
2 9.18846 9.08674 1.1%
3 9.65333 9.58148 0.7%
4 13.41558 13.23601 1.4%
5 14.99186 14.81606 1.2%

Table 11: Dimensionless free vibration frequencies of the laminated
shell (Figure 21(c)).

Modes Present results ANSYS results Relative errors
1 7.09973 7.07069 0.4%
2 7.09973 7.07069 0.4%
3 9.75645 9.71035 0.5%
4 15.16616 15.11418 0.3%
5 18.02388 17.94379 0.4%

6. Conclusions

An element-free Galerkin method that is based on the FSDT
is proposed for the free vibration analysis of folded symmet-
rically laminated plate structures. A folded laminated plate
is considered to be a composite structure of flat symmetrical
laminates. The global stiffness and mass matrices of the
folded plate are formed by superposing the stiffness andmass
matrices of the laminates that are derived with the meshfree
method. In order to ensure the success of the superposition, a
treatment initially developed for the enforcement of essential
boundary conditions is extended to modify the stiffness and
mass matrices before the superposition, which has overcome
the difficulties that the EFG handles displacement compat-
ibility and improved the applicability of EFG to composite
structures. The proposed method does not rely on meshes;
therefore, mesh disorder due to the large deformation of
problem domain is avoided. The convergence and accuracy
of the proposed method are demonstrated by a comparison
of the solutions of several examples with those that are given
by ANSYS. Good agreement between the two sets of results
is observed. The proposed method used a relatively small
number of nodes to obtain the calculated results close to the
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Figure 18: A tub structure with three folds.

Figure 19: First five vibration mode shapes of the tub structure.

x

y

z A

O

B

C

x1

y1

x2

y2

x3

y3

1

2

3

1m

Figure 20: A laminated shell structure.

solutions given by ANSYS with a large number of nodes,
and the linear analysis by the proposed meshless method
in the paper can be the basis for future nonlinear analysis.
The treatment introduced with the proposed method has
provided a clue for EFG to be applied to composite structures.
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Figure 21: Lamination schemes of the laminated shell.

Figure 22: First five vibration mode shapes of the laminated shell
(Case 1).

Figure 23: First five vibration mode shapes of the laminated shell
(Case 2).
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Acoustic problems consisting of multiphase systems or with deformable boundaries are difficult to describe using mesh-based
methods, while themeshfree, Lagrangian smoothed particle hydrodynamics (SPH)method can handle such complicated problems.
In this paper, after solving linearized acoustic equations with the standard SPH theory, the feasibility of the SPH method in
simulating sound propagation in the time domain is validated.The effects of sound frequency,maximum sound pressure amplitude,
and particle spacing on numerical error and time cost are then subsequently discussed based on the sound propagation simulation.
The discussion based on a limited range of frequency and sound pressure demonstrates that the rising of sound frequency increases
simulation error, and the increase is nonlinear, whereas the rising sound pressure has limited effects on the error. In addition,
decreasing the particle spacing reduces the numerical error, while simultaneously increasing the CPU time. The trend of both
changes is close to linear on a logarithmic scale.

1. Introduction

Some classic numerical methods such as the finite element
method (FEM) [1, 2], the boundary element method (BEM)
[3], and other modified or coupled methods [4–6] are widely
used for acoustic simulations. However, these mesh-based
methods are not ideal for solving acoustic problems consist-
ing of a variety of media or with deformable boundaries.

Meshfree methods can handle such complicated prob-
lems. The method of fundamental solutions (MFS) [7], the
multiple-scale reproducing kernel particle method (RKPM)
[8], the element-freeGalerkinmethod (EFGM) [9], and other
meshfree methods [10, 11] have been applied to these acoustic
problems.

The smoothed particle hydrodynamics (SPH) method,
as a meshfree, Lagrangian method, was first independently
pioneered by Lucy [12] and Gingold and Monaghan [13] to
solve astrophysical problems in 1977. In addition, the SPH

method has been used in many different fields [14–16]. It not
only has most advantages of a meshfree method, but also
is suitable for solving problems with material separation or
large ranges of density as illustrated in recent reviews by Li
and Liu [17], Springel [18], M. B. Liu and G. R. Liu [19], and
Monaghan [20] due to its Lagrangian property. Introducing
the SPH method to acoustic computation also brings its
advantages to some fields like bubble acoustic, combustion
noise, sound propagation in multiphase flows, and so on.

With the advance of the SPH method in acoustic simula-
tion, some research literatures [21, 22] discussed solving fluid
dynamic equations to simulate sound waves. In addition, we
published a conference paper [23] that used the SPHmethod
to solve linearized acoustic equations for modeling sound
propagation and interference. Numerical results showed that
the SPH method was capable of accurately modeling sound
propagation, but the effects of frequency and sound pressure
on the SPH simulationneed further discussion.Therefore, the
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present paper focuses on discussing the effect of frequency
and sound pressure of the acoustic waves on the numerical
error caused by the SPH simulation.

The present paper is organized as follows. In Section 2,
the standard SPH theory is used to solve the linearized
acoustic equations. In Section 3, a one-dimensional sound
propagation model is built. In Section 4, a numerical exper-
iment is given based on standard SPH algorithms, and the
effect of frequency, sound pressure, and particle spacing on
the simulation is analyzed with considering the changes of
particle spacing and Courant number. Section 5 summarizes
the results of this work.

2. SPH Formulations of Sound Waves

2.1. Basic Formulations of SPH. As a meshfree, Lagrangian
particle method, the SPH method is an important method
widely used in recent years. Formulations in the SPH theory
are represented in a particle approximation form. The prop-
erties of each particle are computed using an interpolation
process over its neighboring particles [24]. In this way, the
integral of a field function 𝑓(r) can be represented as

⟨𝑓 (r)⟩ = ∫
Ω

𝑓 (r)𝑊(r − r, ℎ) dr, (1)

where ⟨⋅⟩ is the kernel approximation operator,𝑓 is a function
of the vector r, Ω is the volume of the integral, 𝑊 is the
smoothing kernel, and ℎ is the smoothing length.

The particle approximation for the function 𝑓(r) at
particle 𝑖 within the support domain can be written as

⟨𝑓 (r
𝑖
)⟩ =
𝑁

∑
𝑗=1

𝑚
𝑗

𝜌
𝑗

𝑓 (r
𝑗
) ⋅ 𝑊
𝑖𝑗
, (2)

where r
𝑖
and r
𝑗
are the position of particles 𝑖 and 𝑗, 𝑁 is the

number of particles in the computational domain, 𝑚
𝑗
is the

mass of particle 𝑗, 𝑊
𝑖𝑗
= 𝑊(𝑟

𝑖𝑗
, ℎ), and 𝑟

𝑖𝑗
is the distance

between particle 𝑖 and particle 𝑗.
Similarly, the gradient of function 𝑓(r) at particle 𝑖 is

obtained as

⟨∇ ⋅ 𝑓 (r
𝑖
)⟩ =
𝑁

∑
𝑗=1

𝑚
𝑗

𝜌
𝑗

𝑓 (r
𝑗
) ⋅ ∇
𝑖
𝑊
𝑖𝑗
, (3)

where ∇
𝑖
𝑊
𝑖𝑗
= ((r
𝑖
− r
𝑗
)/𝑟
𝑖𝑗
)(𝜕𝑊
𝑖𝑗
/𝜕𝑟
𝑖𝑗
).

2.2. SPH Formulations of Sound Waves. In acoustic simula-
tion, the governing equations for constructing SPH formula-
tions are the laws of continuity, momentum, and state. The
simplest andmost common acoustical problem occurs under
some assumptions. On one hand, the medium is lossless
and at rest, so an energy equation is unnecessary; on the
other hand, a small departure from quiet conditions occurs
as follows:

𝜌 = 𝜌
0
+ 𝛿𝜌,

𝛿𝜌
 ≪ 𝜌
0 (4)

𝑃 = 𝑝
0
+ 𝑝,

𝑝
 ≪ 𝜌
0
𝑐2
0

(5)

u = 0 + u, |u| ≪ 𝑐
0
, (6)

where 𝜌 is the fluid density, 𝜌
0
is the quiescent density which

does not vary in time and space, 𝛿𝜌 is the change of density,
𝑃 is the instantaneous pressure at time 𝑡 of the fluid, 𝑝

0
is the

quiescent pressure, 𝑝 is the sound pressure, 𝑐
0
is the speed of

sound, and u is the flow velocity. 𝛿𝜌, 𝑝, and u are taken to be
small quantities of first order.

By discarding second-order terms in the acoustic equa-
tions, the linearized continuity, momentum, and state equa-
tions (for ideal air) governing sound waves are obtained as

𝜕 (𝛿𝜌)

𝜕𝑡
= −𝜌 ∇ ⋅ u (7)

𝜕u
𝜕𝑡
= −

1

𝜌
∇𝑝 (8)

𝑝 = 𝑐2
0
𝛿𝜌. (9)

Applying the SPH particle approximation (see (3)) to
(7), the particle approximation equation of the continuity of
acoustic waves is written as

𝜕 (𝛿𝜌
𝑖
)

𝜕𝑡
= (𝜌
0
+ 𝛿𝜌
𝑖
)
𝑁

∑
𝑗=1

𝑚
𝑗

(𝜌
0
+ 𝛿𝜌
𝑗
)
u
𝑖𝑗
∇
𝑖
𝑊
𝑖𝑗
, (10)

where 𝜌
0
is the quiescent density which does not vary in time

and space, 𝑝
0
is the quiescent pressure, and u

𝑖𝑗
= u
𝑖
− u
𝑗
.

The momentum equation in SPH method is obtained as

𝜕u
𝑖

𝜕𝑡
=
𝑁

∑
𝑗=1

𝑚
𝑗
[

[
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2
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𝑊
𝑖𝑗
. (11)

Particle approximation of the equation of state is

𝑝
𝑖
= 𝑐2
0
𝛿𝜌
𝑖
. (12)

The cubic spline function given by Monaghan and Lat-
tanzio [25] is used as the smoothing kernel in this paper,
which is written as

𝑊(𝑟, ℎ) = 𝛼𝐷

{{{{
{{{{
{

1 −
3

2
𝑞2 +

3

4
𝑞3 0 ≤ 𝑞 ≤ 1

1

4
(2 − 𝑞)

3
1 ≤ 𝑞 ≤ 2

0 𝑞 ≥ 2,

(13)

where 𝛼
𝐷
is 1/ℎ in one-dimensional space, 𝑞 = 𝑟/ℎ, 𝑟 is the

distance between two particles, and ℎ is the smoothing length
which defines the influence area of smoothing function𝑊.

The second-order leap-frog integration [26] is used in the
present paper. All-pair search approach [24], as a direct and
simple algorithm, is used to realize the neighbor particles
searching in the acoustic wave simulation.

3. Sound Propagation Model

In order to evaluate the effect of sound pressure and fre-
quency, a one-dimensional soundwavewhich propagates in a
pipe with uniform cross section is used.The acousticmodel is
shown in Figure 1.The sound pressure at 𝑡 = 0 is plotted with
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Table 1: Model parameters and computational parameters for the numerical experiment.

Model parameters 𝑝Amp 𝑤 𝑐
0

𝑡

50 Pa 50 rad/s 340m/s 0.1 s

Computational parameters Particle spacing Smoothing length Courant number Particle mass
0.04m 0.13m 0.05 0.04 kg

Sound wave

So
un

d 
pr

es
su

re

−10 0 10 20 30 40 50 60 70

x (m)

340m/s

t = 0 s
t = 0.1 s

Figure 1: One-dimensional sound propagation model.

a solid line, while the sound pressure at 𝑡 = 0.1 s is plotted
with a dashed line.

Sound pressure of the source of sound wave in Figure 1 is

𝑝 (𝑡, 𝑥 < 0) = 𝑝Amp sin (𝑤𝑡 − 𝑘𝑥) , (14)

where 𝑡 represents time (propagation starts when 𝑡 = 0),
𝑥 is the geometric position, 𝑝Amp is the maximum sound
pressure of the acoustic wave, 𝑤 is the circular frequency of
the acoustic wave, 𝑘 = 𝑤/𝑐

0
is the wave number, and the

sound speed 𝑐
0
is 340m/s.

The sound propagates from 𝑥 < 0 to 𝑥 ≥ 0, with the
SPH computational region going from −10m to 70m. In the
computation, the region of the sound source is from −10m
to 0m, which is determined by the theoretical solutions,
while the region of sound propagation is from 0m to 70m,
which is obtained by the SPH method. At the end of the
sound propagation domain, the particles are set free in
the computation. Since the SPH computational region is
far longer than the sound propagation distance, any effects
caused by ignoring this boundary will not propagate to the
sound propagation domain and therefore can be neglected.
The simulation results at the time 𝑡 = 0.1 s are used to
compare with the theoretical solutions. A similar numerical
model is used in our recent conference paper [23].

In the evaluation of numerical results, the nondimen-
sional simulation error of the sound pressure is defined by

𝜀pre =
1

𝑁 ⋅ 𝑝Amp
√
𝑁

∑
𝑗=1

(𝑝∗
𝑗
− 𝑝 (𝑥

𝑗
))
2

, (15)

where𝑝∗
𝑗
is the simulation pressure of the particle 𝑗 and𝑝(𝑥

𝑗
)

is the theoretical pressure at the position of particle 𝑗.
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Figure 2: Sound pressure comparison between SPH results and
theoretical solutions. (𝑝Amp = 50Pa, 𝑤 = 50 rad/s, and 𝑡 = 0.1 s).

4. Results and Discussion

4.1. Numerical Experiment. A sound propagation model is
built to confirm agreement between SPH simulation results
and the theoretical solution. The parameters used in the
numerical experiment of the sound waves are listed in
Table 1.The physical time required for themodeling was 141.6
seconds.

A comparison between the SPH results and theoretical
solutions of sound pressure at 𝑡 = 0.1 s is shown in Figure 2.
The theoretical solution is plotted with a solid line while
the SPH results are plotted with red points. In order to
clearly identify the numerical results, the points are plotted
at intervals of 12.

As shown in Figure 2, the sound pressure of the sound
wave changes along with the position, and a peak and a
valley appear in the final wave at 𝑡 = 0.1 s. Comparing with
the analytical data, it can be seen that the SPH method can
accurately simulate the sound pressure of an acoustic wave
as the values of sound pressure can be obtained precisely,
and the simulation error is 1.6 × 10−4. The trend of both the
SPH results and the theoretical solutions also has a similar
tendency.
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Figure 4: Sound pressure error versus circular frequency for
different Courant numbers.

4.2. Effect of Frequency. Different sound propagation models
with the circular frequency of sound changing from 10 rad/s
to 200 rad/s are simulated, and the effect of circular frequency
is discussed. In the discussion, different computational
parameters, namely, the particle spacing and the Courant
number, are also considered.

Figure 3 gives the numerical error for different compu-
tational cases with different 𝑤 and particle spacing. Figure 4
shows the sound pressure error for different cases with
different values of circular frequency and Courant number.
Each point in both figures stands for a computational case.
The Courant number used in the computational cases in
Figure 3 is 0.05, and the particle spacing used in all cases in
Figure 4 is 0.06m.
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Figure 5: Sound pressure error versus maximum sound pressure
amplitude for different particle spacings.

As can be seen fromFigure 3, 𝜀pre increases alongwith the
increase of𝑤, and the increase of 𝜀pre is nonlinear. Along with
the increase of 𝑤, the increase of 𝜀pre is larger. On the other
hand, we can see from the line graph that 𝜀pre is much larger
than other positionswhen𝑤 is 200 rad/s.Thenumerical error
grows faster when the particle spacing is larger.

As shown in Figure 4, 𝜀pre increases along with the
increase of 𝑤. What is more, three lines are represent three
different Courant numbers, namely, three different choices of
time step when the particle spacing is the same. 𝜀pre obtained
from three different Courant numbers has almost the same
value when 𝑤 is under 100 rad/s. After that, some difference
is shown among three lines when 𝑤 becomes larger, but the
Courant number affects the effect of 𝑤 less in general.

4.3. Effect of Sound Pressure. In the present section, different
sound propagation models with the maximum sound pres-
sure amplitude changing from 10 Pa to 200 Pa are simulated,
and the effects of sound pressure are discussed. At the
same time, different computational parameters, namely, the
particle spacing and the Courant number, are also used in the
simulation. The 𝑤 of the sound in all computational cases in
this section is 50 rad/s.

Figure 5 illustrates the changes of sound pressure error
when the numerical model uses different 𝑝Amp and particle
spacing. Figure 6 describes the changes of error with different
𝑝Amp and different Courant numbers. Each point in both
figures stands for a computational case.The Courant number
used in all computational cases in Figure 5 is 0.05, and the
particle spacing used in all cases in Figure 6 is 0.06m.

It can be seen from the line graph that 𝜀pre has limited
change, which is a little increase, along with the increase
of 𝑝Amp. The trend of the line is approximately linear when
𝑝Amp changes from 10 Pa to 200 Pa. The value of three lines
in the figure is around 2.7 × 10−4, 3.7 × 10−4, and 5.2 × 10−4
corresponding to the particle spacing changes from 0.06m
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Figure 6: Sound pressure error versus maximum sound pressure
amplitude for different Courant numbers.

to 0.1m. In other words, when the particle spacing increases,
the error shows an upward trend.

Similarly, 𝜀pre rises a little along with the increase of
the amplitude of sound wave as shown in Figure 6. Specif-
ically, 𝜀pre stays at about 2.6 × 10−4 when the amplitude of
sound changes from 10 Pa to 200 Pa. Although with different
Courant number, the error of numerical results has similar
values.The largest difference of 𝜀pre among three lines is 2.0 ×
10−5, which happens when 𝑝Amp reaches 200 Pa.

4.4. Effect of Particle Spacing. In addition to the accuracy, the
convergence and the computational efficiency are also worth
concern. Particle spacing, as an important parameter in the
SPH simulation, affects these indexes a lot. In this section,
the effects of the particle spacing are analyzed based on the
model in Section 4.1 with the particle spacing (Δ𝑥) changes
from 0.03m to 0.3m.

Different sound pressure errors corresponding to the SPH
simulation results with different Δ𝑥 are shown in Figure 7.
Three different types of points are used in the figure to
represent Courant numbers of 0.05, 0.10, and 0.15 in the
computation. In order to clearly show the trend, logarithmic
scales are used for both axes in the figure.

As can be seen from Figure 7, there is an approximately
linear relation between 𝜀pre and Δ𝑥 with double logarithmic
coordinates. As Δ𝑥 increases, 𝜀pre also increases. This result
indicates a convergence of the simulation, as a smaller Δ𝑥
leads to amore accurate result. Note that the errors generated
with the three different Courant numbers all have similar
values. A linear fitted curve obtained by using all 𝜀pre results
produces a slope of approximately 1.4 for the fitted line.

The required CPU cost in terms of time to perform the
SPH simulation corresponding to different Δ𝑥 values is given
in Figure 8. Three different point types were also used to
represent different Courant numbers in the computation.The
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Figure 7: Sound pressure error versus particle spacing for different
Courant numbers.
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Figure 8: CPU time versus particle spacing for different Courant
numbers.

figure also shows the linear fit lines for each Courant number,
as well as the calculated slopes.

The graph shows that the CPU time logarithmically
decreases from hundreds of seconds to about one second as
Δ𝑥 increases from 0.03m to 0.3m. This decreasing trend is
roughly linear, with an absolute slope value of approximately
2.5. Although the CPU time is different for each Courant
number, the trends are similar. Thus, an appropriate particle
spacing value can be decided within a certain range by com-
paring the results in Figures 7 and 8 for a given application.

5. Conclusions

In this work, the meshfree, Lagrangian SPH method is
used to solve linearized acoustic equations. The feasibility of
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the SPH method in simulating acoustic waves is evaluated
using a numerical experiment of one-dimensional sound
propagation model. The effect of frequency, sound pressure,
and particle spacing is then subsequently discussed based on
the numerical error with considering the Courant number.

(1) The results of computational cases, with the acoustic
wave frequency changes from 10 rad/s to 200 rad/s,
show that the rising of sound frequency increases
simulation error, and the increase is nonlinear.

(2) As the maximum sound pressure amplitude changes
from 10 Pa to 200 Pa, the rising sound pressure
increases the simulation error. However, the resulting
change in error is limited and marginal.

(3) Decreasing the particle spacing in the computation
reduces the numerical error, while simultaneously
increasing the CPU time. The trend of both changes
is close to linear on a logarithmic scale. The Courant
number has little effect on the error generated with
different sound frequency or sound pressure, whereas
the particle spacing has a more significant influence
on both properties.
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Numerical approximation of nonlinear Klein-Gordon (KG) equation with quadratic and cubic nonlinearity is performed using the
element-free improved moving least squares Ritz (IMLS-Ritz) method. A regular arrangement of nodes is employed in this study
for the numerical integration to compute the system equation. A functional formulation for the KG equation is established and
discretized by the Ritz minimization procedure. Newmark’s integration scheme combined with an iterative technique is applied to
the resulting nonlinear system equations. The effectiveness and efficiency of the IMLS-Ritz method for the KG equation have been
testified through convergence analyses and comparison study between the present results and the exact solutions.

1. Introduction

The Klein-Gordon (KG) equation is essentially a relativistic
version of the Schrödinger equation. It has wide applica-
tions in many scientific fields, such as quantum mechanics,
solid state physics, and nonlinear optics [1]. Similar to the
Schrödinger equation, the KG equation is considered as one
of the important equations in mathematical physics, as well
as kinds of solitons studies, especially in the investigation
of solitons interactions for a collisionless plasma and the
recurrence of initial states [2, 3].

As a kind of essential nonlinear PDEs, the KG type equa-
tions have received considerable attention in deriving both
analytical and numerical solutions by using different types of
methods, such as the Adomian decompositionmethod [3, 4],
the sine-cosine ansatz and the tanh methods [2, 5, 6], the
auxiliary equation method, the Weierstrass elliptic function
method, the elliptic equation rational expansion method,
and the extended 𝐹-function method [7–9]. In the process,
various numerical schemes have also been developed based
on different theories, such as the homotopy method [10], the
cubic B-spline collocation method on a uniform mesh [11],
and the approximation with thin plate splines (TPS) radial
basis functions (RBF) based collocation approach [12].

To seek for an effective and efficient numerical technique,
the meshless method has been successfully developed to

solve partial differential equations that used to describemany
physical and engineering problems. The advantages of these
meshlessmethods are as follows: (i) solutions can be obtained
with only a minimum of meshing or no meshing at all [13–
18]; (ii) a set of scattered nodes is used instead of meshing
the entire domain of the problem. Several meshless methods
have been proposed and can be chosen as an alternative
to search for approximate solutions of the KG equations
[19, 20]. Based on different approximation functions, various
meshless methods were proposed, such as the element-free
Galerkin (EFG) method [21], the moving least squares differ-
ential quadrature method [22], the radial point interpolation
method [23], the smooth particle hydrodynamics methods
[24], the radial basis function [25], the element-free kp-Ritz
method [26–30], the meshless local Petrov-Galerkin method
[31], the reproducing kernel particle method [32], and the
local Krigging method [33].

In this study, by combining the IMLS approximation
and the Ritz procedure, the element-free IMLS-Ritz method
for numerical solution of the nonlinear KG equation is
presented. The cubic spline weight function and linear basis
are employed in this study. A regular arrangement of nodes is
employed for numerical integration to compute the system
equation. A functional formulation for the KG equation
is established and discretized by the Ritz procedure. The
essential boundary conditions are imposed by the penalty
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method. Newmark’s integration scheme is employed to solve
the nonlinear system equations. The applicability of the
IMLS-Ritz method is examined on a few selected example
problems. The accuracy of the presented method is also
investigated by comparing the obtained numerical results
with the existing analytical solutions.

2. Theoretical Formulation

2.1. Equivalent Functional of the One-Dimensional Nonlin-
ear KG Equation. We consider the following KG equation
including the nonlinear term as

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
+ 𝛼

𝜕
2
𝑢 (𝑢, 𝑡)

𝜕𝑥2
+ 𝛽𝑢 (𝑢, 𝑡) + 𝛾𝑢

𝑘
= 𝑓 (𝑥, 𝑡) ,

𝑥 ∈ Ω, 0 < 𝑡 ≤ 𝑇,

(1)

subject to the initial condition

𝑢 (𝑥, 0) = 𝑢
0
, 𝑎 ≤ 𝑥 ≤ 𝑏 (2)

and the boundary conditions

𝑢 (𝑎, 𝑡) = 𝑔
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑔

2
(𝑡) , 0 < 𝑡 ≤ 𝑇, (3)

where Ω = [𝑎, 𝑏] ⊂ R, 𝑢(𝑥, 𝑡) denotes the wave displacement
at position 𝑥 and time 𝑡, 𝑢

0
, 𝑔
1
(𝑡), and 𝑔

2
(𝑡) are known

functions, and 𝛼, 𝛽, and 𝛾 are real numbers (𝛾 ̸= 0). The
function 𝑢 is to be determined when functions 𝑓, 𝑔

1
, and 𝑔

2

are given; 𝑘 = 2 for the case of quadratic nonlinearity and
𝑘 = 3 for a cubic nonlinearity.

An equivalent functional is defined in the weighted
integral form based on (1) with the initial condition in the
following form:

Π (𝑢) = ∫
Ω

𝑤[
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
+ 𝛼

𝜕
2
𝑢 (𝑢, 𝑡)

𝜕𝑥2

+ 𝛽𝑢 (𝑢, 𝑡) + 𝛾𝑢
𝑘
− 𝑓 (𝑥, 𝑡)] 𝑑Ω.

(4)

Using integration by parts and the divergence theorem, (4)
yields the following expression:

Π (𝑢) = ∫
Ω

[−
𝛼

2
(
𝜕𝑢

𝜕𝑥
)

2

−
1

2
(
𝜕𝑢

𝜕𝑡
)

2

+
1

2
𝛽𝑢
2
+

𝛾

𝑘 + 1
𝑢
𝑘+1

− 𝑢𝑓 (𝑥, 𝑡)] 𝑑Ω,

(5)

where the weight 𝑤 is set to be 𝑢 in this numerical study.

2.2. Improved Moving Least Squares Shape Functions. The
IMLS approximation was proposed for construction of
the shape functions in the element-free method. In one-
dimensional IMLS approximation, for all 𝑓(𝑥), 𝑔(𝑥) ∈

span(p), we define

(𝑓, 𝑔) =

𝑛

∑

𝐼=1

𝑤 (𝑥 − 𝑥
𝐼
) 𝑓 (𝑥

𝐼
) 𝑔 (𝑥
𝐼
) , (6)

where (𝑓, 𝑔) is an inner product and span(p) is the Hilbert
space.

In span(p), for the set of points {𝑥
𝑖
} and weight functions

{𝑤
𝑖
}, if functions 𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) satisfy the condi-

tions

(𝑝
𝑘
, 𝑝
𝑗
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑝
𝑘
(𝑥
𝑖
) 𝑝
𝑗
(𝑥
𝑖
) = {

0, 𝑘 ̸= 𝑗

𝐴
𝑘
, 𝑘 = 𝑗

(𝑘, 𝑗 = 1, 2, . . . , 𝑚) ,

(7)

we furnish the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) as a

weighted orthogonal function set with a weight function {𝑤
𝑖
}

about points {𝑥
𝑖
}. If 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) are polynomials,

the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) is called a weighted

orthogonal polynomials set with a weight function {𝑤
𝑖
} about

points {𝑥
𝑖
}.

Consider an equation system fromMLS approximation:

A (𝑥) a (𝑥) = B (𝑥) u, (8)

whereA is the moment matrix. Then, (8) can be expressed as
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]

[
[
[
[

[

𝑎
1
(x)

𝑎
2
(x)
.
.
.

𝑎
𝑚
(x)

]
]
]
]

]

=

[
[
[
[

[

(𝑝
1
, 𝑢
𝐼
)

(𝑝
2
, 𝑢
𝐼
)

.

.

.

(𝑝
𝑚
, 𝑢
𝐼
)

]
]
]
]

]

.

(9)

If the basis function set 𝑝
𝑖
(𝑥) ∈ span(p), 𝑖 = 1, 2, . . . , 𝑚,

is a weighted orthogonal function set about points {𝑥
𝑖
}, that

is, if

(𝑝
𝑖
, 𝑝
𝑗
) = 0, (𝑖 ̸= 𝑗) , (10)

then (8) becomes

[
[
[
[

[

(𝑝
1
, 𝑝
1
) 0 ⋅ ⋅ ⋅ 0

0 (𝑝
2
, 𝑝
2
) ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ (𝑝
𝑚
, 𝑝
𝑚
)

]
]
]
]

]

[
[
[
[

[

𝑎
1
(x)

𝑎
2
(x)
.
.
.

𝑎
𝑚
(x)

]
]
]
]

]

=

[
[
[
[

[

(𝑝
1
, 𝑢
𝐼
)

(𝑝
2
, 𝑢
𝐼
)

.

.

.

(𝑝
𝑚
, 𝑢
𝐼
)

]
]
]
]

]

.

(11)

Subsequently, coefficients 𝑎
𝑖
(𝑥) can be determined

accordingly:

𝑎
𝑖
(𝑥) =

(𝑝
𝑖
, 𝑢
𝐼
)

(𝑝
𝑖
, 𝑝
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑚; (12)

that is,

a (𝑥) = Ã (𝑥)B (𝑥) u, (13)
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where

Ã (𝑥) =

[
[
[
[
[
[
[
[
[
[

[

1

(𝑝
1
, 𝑝
1
)

0 ⋅ ⋅ ⋅ 0

0
1

(𝑝
2
, 𝑝
2
)
⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
1

(𝑝
𝑚
, 𝑝
𝑚
)

]
]
]
]
]
]
]
]
]
]

]

. (14)

From (8) and (12), the expression of approximation
function 𝑢ℎ(𝑥) is

𝑢
ℎ
(𝑥) = Φ̃ (𝑥)u =

𝑛

∑

𝐼=1

Φ̃
𝐼
(𝑥) 𝑢
𝐼
, (15)

where Φ̃(𝑥) is the shape function and

Φ̃ (𝑥) = (Φ̃
1
(𝑥) , Φ̃

2
(𝑥) , . . . , Φ̃

𝑛
(𝑥)) = pT (𝑥) Ã (𝑥)B (𝑥) .

(16)

The abovementioned formulation details an IMLS
approximation in which coefficients 𝑎

𝑖
(x) are obtained

directly. It is, therefore, avoiding forming an ill-conditioned
or singular equation system.

From (16), we have

Φ̃
𝐼
(𝑥) =

𝑚

∑

𝑗=1

𝑝
𝑗
(𝑥) [Ã (𝑥)B (𝑥)]

𝑗𝐼
, (17)

which represents the shape function of the IMLS approx-
imation corresponding to node 𝐼. From (17), the partial
derivatives of Φ̃

𝐼
(𝑥) lead to

Φ̃
𝐼,𝑖
(𝑥) =

𝑚

∑

𝑗=1

[𝑝
𝑗,𝑖
(ÃB)
𝑗𝐼
+ 𝑝
𝑗
(Ã
,𝑖
B + ÃB

,𝑖
)
𝑗𝐼
] . (18)

The weighted orthogonal basis function set p = (𝑝
𝑖
) is

formed by using the Schmidt method as

𝑝
1
= 1,

.

.

.

𝑝
𝑖
= 𝑟
𝑖−1

−

𝑖−1

∑

𝑘=1

(𝑟
𝑖−1
, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)
𝑝
𝑘
, 𝑖 = 2, 3, . . . .

(19)

Moreover, using the Schmidt method, the weighted
orthogonal basis function set p = (𝑝

𝑖
) can be formed from

the monomial basis function. For example, for the monomial
basis function

p̃ = (𝑝
𝑖
) = (1, 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
1
𝑥
2
, 𝑥
1
𝑥
3
, 𝑥
2
𝑥
3
, 𝑥
2

1
, 𝑥
2

2
, 𝑥
2

3
, . . .) ,

(20)

the weighted orthogonal basis function set can be generated
by

𝑝
𝑖
= 𝑝
𝑖
−

𝑖−1

∑

𝑘=1

(𝑝
𝑖
, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)
𝑝
𝑘
, 𝑖 = 1, 2, 3, . . . . (21)

When the weighted orthogonal basis functions in (20)
and (21) are used, there exist fewer coefficients in the trial
function.

3. The Ritz Minimization Procedure and
Discretion Implementation

In the present work, the penalty method is used to modify
the constructed functional in implementing the specified
Dirichlet boundary conditions for a domain Ω bounded by
Γ. We use a penalty parameter 𝜆 to penalize the difference
between the displacement of the IMLS approximation and
the prescribed displacement on the essential boundary. The
penalty function can be expressed as

𝑇 =
𝜆

2
∫
Γ
1

(𝑢 − 𝑢)
2
𝑑Γ, (22)

where 𝜆 is the penalty parameter and 𝑢 is the specified
function on the Dirichlet boundary Γ

1
. Normally, 𝜆 is chosen

as 103 ∼ 107 which is case dependent.
The resulting functional enforcing the Dirichlet bound-

ary conditions for the KG equation is

Π
∗
(𝑢) = Π (𝑢) + 𝑇. (23)

Substituting (5) and (22) into the functional of (23), we have
the modified functional

Π
∗
(𝑢) = ∫

Ω

[−
𝛼

2
(
𝜕𝑢

𝜕𝑥
)

2

−
1

2
(
𝜕𝑢

𝜕𝑡
)

2

+
1

2
𝛽𝑢
2

+
𝛾

𝑘 + 1
𝑢
𝑘+1

− 𝑢𝑓 (𝑥, 𝑡) ] 𝑑Ω

+
𝜆

2
∫
Γ
𝑢

(𝑢 − 𝑢)
2
𝑑Γ.

(24)

The approximation of the field function can be obtained
from (15) as follows:

𝑢
ℎ
(𝑥, 𝑡) =

𝑛

∑

𝐼=1

Φ
𝐼
(𝑥) 𝑢
𝐼
(𝑡) = Φ (𝑥)U (𝑡) ,

𝜕𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑥
=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥
(𝑥) 𝑢
𝐼
(𝑡) = Φ

𝑥
(𝑥)U (𝑡) ,

𝜕
2
𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑡2
=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥
(𝑥)

𝜕
2
𝑢
𝐼
(𝑡)

𝜕𝑡2
= Φ
𝑥
(𝑥) Ü (𝑡) ,

(25)

where

Φ (𝑥) = (Φ
1
(𝑥) , Φ

2
(𝑥) , . . . , Φ

𝑛
(𝑥)) ,

Φ
𝑥
(𝑥) = (Φ

1,𝑥
(𝑥) , Φ

2,𝑥
(𝑥) , . . . , Φ

𝑛,𝑥
(𝑥)) ,

Ü (𝑡) = (
𝜕𝑢
2

1
(𝑡)

𝜕𝑡2
,
𝜕𝑢
2

2
(𝑡)

𝜕𝑡2
, . . . ,

𝜕𝑢
2

𝑛
(𝑡)

𝜕𝑡2
)

T

.

(26)
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Substituting (25) into (24) and applying the Ritz mini-
mization procedure to the maximum energy functionΠ∗

𝜕Π
∗

𝜕𝑢
𝐼
(𝑡)

= 0, 𝐼 = 1, 2, . . . , 𝑛, (27)

that yields the following matrix form:

Mü + Ku = F, (28)

where
K = 𝛽M − 𝛼K + K𝑎,

F = F + F𝑎,

M = ∫
Ω

Φ
T
Φ𝑑Ω,

K = ∫
Ω

Φ
T
𝑥
Φ
𝑥
𝑑Ω,

F = ∫
Ω

Φ𝑓 (𝑥, 𝑡) 𝑑Ω,

𝐾
𝑎

𝐼𝐽
= 𝛼 (Φ

𝐼
(𝑥)
𝑇
Φ
𝐽
(𝑥)

𝑥=𝑎
+ Φ
𝐼
(𝑥)
𝑇
Φ
𝐽
(𝑥)

𝑥=𝑏
) ,

𝐹
𝑎

𝐼
= −𝛾∫

Ω

Φ
𝐼
𝑢
𝑘
𝑑Ω + 𝜆 (Φ

𝐼
(𝑥)) 𝑢

𝑥=𝑎
+ Φ
𝐼
(𝑥) 𝑢

𝑥=𝑏
.

(29)

To solve the above nonlinear system, time discretization
of (28) is forming with Newmark’s integration scheme.
According to the fundamental assumptions of Newmark’s
integration

u̇
𝑡+Δ𝑡

= u̇
𝑡
+ [(1 − 𝛿) ü

𝑡
+ 𝛿ü
𝑡+Δ𝑡

] Δ𝑡,

u
𝑡+Δ𝑡

= u
𝑡𝑡
+ u̇
𝑡
Δ𝑡 + [(−

1

2
− 𝛼) ü

𝑡
+ 𝛼ü
𝑡+Δ𝑡

]Δ𝑡
2
,

(30)

we have

ü
𝑡+Δ𝑡

=
1

𝛼Δ𝑡2
(u
𝑡+Δ𝑡

− u
𝑡
) −

1

𝛼Δ𝑡
u̇
𝑡
− (

1

2𝛼
− 1) ü

𝑡
,

u̇
𝑡+Δ𝑡

=
𝛿

𝛼Δ𝑡
(u
𝑡+Δ𝑡

− u
𝑡
) + (1 −

𝛿

𝛼
) u̇
𝑡
+ (1 −

𝛿

2𝛼
)Δ𝑡ü

𝑡
,

(31)

where 𝛿 ≥ 0.5 and 𝛼 ≥ 0.25(0.5 + 𝛿)
2 are redefined as

parameters here to influence the accuracy and stability of the
integration.

The dynamic form of (28) at 𝑡 + Δ𝑡 can be written as

Mü
𝑡+Δ𝑡

+ Ku
𝑡+Δ𝑡

= F
𝑡+Δ𝑡

. (32)

Substituting (31) into (32), we have the full discretized
equation

(K +
1

𝛼Δ𝑡2
M) u
𝑡+Δ𝑡

= F
𝑡+Δ𝑡

+M(
1

𝛼Δ𝑡2
u
𝑡
+

1

𝛼Δ𝑡
u̇
𝑡
+ (

1

2𝛼
− 1) ü

𝑡
) .

(33)

By solving the above iteration equations, we can obtain
numerical solutions to the one-dimensional nonlinear Klein-
Gordon equation.

Table 1: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (𝑁) for the solutions of
Example 1 (𝑡 = 10, Δ𝑡 = 0.1, and 𝑑max = 3).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

11 4.7172 × 10−4 2.0891 × 10−4 1.5224
21 6.6446 × 10−4 2.1335 × 10−4 1.7486
51 1.0503 × 10−3 2.1488 × 10−4 5.2065
101 1.5343 × 10−3 2.1500 × 10−4 10.3477
201 2.1912 × 10−3 2.1504 × 10−4 19.8889
251 2.3485 × 10−3 2.1505 × 10−4 25.6620

4. Numerical Results and Discussion

Three selected examples are included with their numerical
solutions obtained by the presentedmethod for the nonlinear
KG equation. The problems are solved using regular node
arrangements. The convergence study is carried out for the
results of the KG equation. The accuracy and efficiency of
the IMLS-Ritzmethod are comparedwith available analytical
solutions by evaluating the 𝐿

2
-norm and 𝐿

∞
errors defined

as

𝐿
2
=
𝑢exact − 𝑢numerical

2
= √

𝑁

∑

𝑖=0

𝑢
𝑖

exact − 𝑢
𝑖

numerical


2

,

𝐿
∞
=
𝑢exact − 𝑢numerical

∞
= max
𝑖


𝑢
𝑖

exact − 𝑢
𝑖

numerical

,

(34)

where 𝑢exact and 𝑢numerical present the exact solution and
numerical approximation, respectively.

4.1. Example 1. Consider the KG equation (1) with quadratic
nonlinearity (𝑘 = 2), by taking the parameters 𝛼 = −1, 𝛽 = 0,
𝛾 = 1, and 𝑓(𝑥, 𝑡) = −𝑥 cos 𝑡 + 𝑥2cos2𝑡.

The exact solution of the equation is given as [1]

𝑢 (𝑥, 𝑡) = 𝑥 cos 𝑡, −1 ≤ 𝑥 ≤ 1. (35)

The corresponding initial conditions and Dirichlet
boundary function can be extracted from the analytical
solution directly as

𝑢 (𝑥, 0) = 𝑥, −1 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 0, −1 ≤ 𝑥 ≤ 1,

𝑢 (𝑥, 𝑡) = {
− cos 𝑡 𝑥 = −1

cos 𝑡 𝑥 = 1.

(36)

In the present example, the numerical solutions are
obtained as the penalty factor 𝛼 = 10

3 and 𝑑max = 3.
We examine the convergence of the element-free IMLS-Ritz
method by varying the number of nodes (𝑁) from 11 to 201.
The 𝐿

2
-norm and 𝐿

∞
errors of 𝑢(𝑥, 𝑡) with CPU times are

computed at 𝑡 = 10withΔ𝑡 = 0.1 and tabulated in Table 1.We
found that both 𝐿

2
-norm and 𝐿

∞
errors arise as𝑁 increases.
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Figure 1: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1 (Example 1). (a) Solutions of 𝑢(𝑥, 𝑡); (b) absolute error.
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Figure 2: IMLS-Ritz solutions and absolute errors of 𝑢(𝑥, 𝑡) at different times (Example 1). (a) Solution surface of 𝑢(𝑥, 𝑡); (b) absolute error
contour.

This may be due to that once convergent result has been
obtained, in this case on 𝑁 = 11, the additional arranged
nodes will cause errors being accumulated. Based on this
observation, the following analysis will be performed using
𝑁 = 11 for accuracy consideration. We also investigated the
influence of 𝑑max on the accuracy of the IMLS-Ritz method.
As illustrated in Table 2, by varying 𝑑max from 2 to 3, accurate

results can be furnished when 𝑑max = 2. Furthermore,
the predicted results are compared with the available exact
solutions at 𝑡 = 10 and illustrated in Figure 1. It is apparent
that a close agreement is obtained from the illustrated results.
The computed results of 𝑢(𝑥, 𝑡) for a time history are also
predicted between 𝑡 = 0 s and 𝑡 = 10 s (Δ𝑡 = 0.1) (see
Figure 2(a)). The corresponding absolute error contour is



6 Mathematical Problems in Engineering

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

unumerical

uexact

u
(x
,
t)

Time = 1

(a)

0

0.5

1

0
0.5

1
0

0.5

1

x

t

unumerical

uexact

u
(x
,
t)

(b)

Figure 3: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) (Example 2). (a) Solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1; (b) solution surface of 𝑢(𝑥, 𝑡).

Table 2: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 1 (𝑁 = 11,
𝑡 = 10, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 6.7304 × 10−4 2.1170 × 10−4 1.7510
2.2 6.9125 × 10−4 2.1913 × 10−4 1.7888
2.4 7.1843 × 10−4 2.2411 × 10−4 1.8604
2.6 6.5686 × 10−4 2.2234 × 10−4 1.7744
2.8 6.4655 × 10−4 2.1186 × 10−4 1.7812
3 6.6445 × 10−4 2.1335 × 10−4 1.7949

plotted in Figure 2(b). From the presented results, we can
conclude that the approximate solutions generated by the
IMLS-Ritz method agree well with the analytical results.

4.2. Example 2. In the present numerical example, we con-
sider KG in (1) with a quadratic nonlinearity (𝑘 = 2), by
taking the parameters 𝛼 = −1, 𝛽 = 0, 𝛾 = 1, and 𝑓(𝑥, 𝑡) =
6𝑥𝑡(𝑥

2
− 𝑡
2
) + 𝑥
6
𝑡
6. The initial conditions are described by

𝑢 (𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1.

(37)

The exact solution of the equation is given as [1]

𝑢 (𝑥, 𝑡) = 𝑥
3
𝑡
3
, 0 ≤ 𝑥 ≤ 1. (38)

Table 3: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (𝑁) for the solutions of
Example 2 (𝑡 = 1, Δ𝑡 = 0.1, and 𝑑max = 2.2).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

6 2.1937 × 10−2 1.7231 × 10−2 0.1081
21 3.3745 × 10−4 2.0891 × 10−4 0.2683
26 3.7023 × 10−4 1.6600 × 10−4 0.3275
51 5.1750 × 10−4 1.6589 × 10−4 0.6268
101 7.2991 × 10−4 1.6588 × 10−4 1.1983

The corresponding Dirichlet boundary function can be
extracted from the analytical solution directly as

𝑢 (𝑥, 𝑡) = {
0 𝑥 = 0

𝑡
3

𝑥 = 1.
(39)

In this analysis, numerical solutions are predicted and
compared with the analytical solutions at 𝑡 = 1, Δ𝑡 = 0.01,
𝑑max = 2.2, and the penalty factor 𝜆 = 10

3. Table 3 presents
the convergence patterns of the IMLS-Ritz results by varying
𝑁 from 6 to 101. A similar convergence trend is observed in
Example 1; that is, convergent results can be obtained from
𝑁 = 6 to 21; then, the errors are accumulated as𝑁 increases.
Table 4 illustrates the values of 𝐿

2
-norm and 𝐿

∞
errors as

𝑑max varying from 2 to 3.5. A growing trend of 𝐿
2
-norm

and 𝐿
∞

errors is observed from Table 4, and the CPU time
rises oscillatory as 𝑑max increases. As presented in Figure 3,
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Figure 4: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 21 (Example 2). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.
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Figure 5: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 101 (Example 2). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.

the comparison study shows that the IMLS-Ritz method pro-
vides very similar solutions to the exact results. In Figure 4,
the absolute errors of 𝑢(𝑥, 𝑡) at a selected time point (𝑡 = 1)
and the absolute error contour on a time period (0 ≤ 𝑡 ≤ 1)
are exhibited at 𝑁 = 21. Figure 5 is plotted at 𝑁 = 101 for
comparison with Figure 4. Although the increase in number
of nodes has been identified to be unaided in enhancing the
accuracy of the approximation, it influences the smoothness
of the solutions indeed.

4.3. Example 3. Consider the nonlinear Klein-Gordon equa-
tion (1) with a cubic nonlinearity (𝑘 = 3), by taking
parameters as 𝛼 = −2.5, 𝛽 = 1, 𝛾 = 1.5, and 𝑓(𝑥, 𝑡) = 0.
The initial conditions are given by

𝑢 (𝑥, 0) = 𝐵 tan (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 𝐵𝑐𝐾 sec2 (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

(40)

where 𝐵 = √𝛽/𝛾 and𝐾 = √−𝛽/2(𝛼 + 𝑐2) and 𝑐 = 0.05.
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Figure 6: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) (Example 3). (a) Solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1; (b) solution surface of 𝑢(𝑥, 𝑡).

Table 4: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 2 (𝑁 = 11,
𝑡 = 1, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 3.3081 × 10−4 2.1170 × 10−4 0.2637
2.2 3.3746 × 10−4 1.6616 × 10−4 0.2644
2.4 3.4597 × 10−4 1.6866 × 10−4 0.2754
2.6 3.7193 × 10−4 1.7459 × 10−4 0.2690
2.8 3.8596 × 10−4 1.8276 × 10−4 0.2686
3 3.8960 × 10−4 1.9179 × 10−4 0.2650
3.2 4.2300 × 10−4 1.999 × 10−4 0.2644
3.5 4.9035 × 10−4 2.3717 × 10−4 0.2819

The exact solution of the equation is given as [4]

𝑢 (𝑥, 𝑡) = 𝐵 tan [𝐾 (𝑥 + 𝑐𝑡)] , 0 ≤ 𝑥 ≤ 1. (41)

The IMLS-Ritz computation is carried out by settingΔ𝑡 =
0.1, the penalty factor 𝜆 = 103, and 𝑑max = 2.5. The 𝐿

2
-norm

and 𝐿
∞

errors of 𝑢 are computed with the number of nodes
varied from 13 to 201. The results are tabulated in Table 5. It
is apparent that both 𝐿

2
-norm and 𝐿

∞
errors decrease as 𝑁

increases, indicating that convergent results are obtained by
the IMLS-Ritzmethod. FromTable 6, the results of numerical
analysis suggested that satisfied accuracy can be achieved
when 𝑑max = 2. In Figure 6, the numerical and analytical
solutions are plotted on a time point (𝑡 = 2) and a time period
(0 ≤ 𝑡 ≤ 2). From the comparison results, we can conclude
that the IMLS-Ritz method provides very similar solutions to
the exact results. In Figures 7 and 8, the absolute errors of

Table 5: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (N) for the solutions of
Example 3 (𝑡 = 2, Δ𝑡 = 0.1, and 𝑑max = 2.5).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

13 1.9791 × 10−5 1.3049 × 10−5 447.3713
21 9.5355 × 10−6 5.7505 × 10−6 559.7717
51 2.8692 × 10−6 1.7171 × 10−6 600.6953
101 1.8512 × 10−6 1.3635 × 10−6 650.4551
126 1.4819 × 10−6 1.0907 × 10−6 687.4458
201 7.8596 × 10−7 5.3053 × 10−7 721.8184

Table 6: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 3 (𝑁 = 11,
𝑡 = 10, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 5.5466 × 10−6 3.4260 × 10−6 793.1491
2.2 1.8244 × 10−5 1.0416 × 10−5 826.7344
2.4 3.2447 × 10−5 1.8490 × 10−5 891.1543
2.6 4.5397 × 10−5 2.5715 × 10−5 945.6493
2.8 4.4504 × 10−5 2.6234 × 10−5 975.9027
3 2.7963 × 10−5 1.6959 × 10−5 1027.5762
3.2 3.2756 × 10−5 1.6014 × 10−5 1070.3232

𝑢(𝑥, 𝑡) at a selected time point (𝑡 = 2) and the absolute error
contour on a time period (0 ≤ 𝑡 ≤ 1) are depicted at 𝑁 =

21 and 𝑁 = 201, respectively. As expected, more accurate
results can be obtained as𝑁 increases in this example. From
the results presented in both tables and figures, it is evident
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Figure 7: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 21 (Example 3). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.
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Figure 8: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 201 (Example 3). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.

that the IMLS-Ritz values almost coincide with the exact
solutions.

5. Conclusion

In this paper, an element-free IMLS-Ritz method and its
numerical implementation on three examples of nonlinear
KG equation have been presented. The effectiveness and

efficiency of the IMLS-Ritz method for KG equation have
been testified through convergence and comparison studies.
From the numerical results, it is concluded that the agreement
of the IMLS-Ritz solutions with the exact results is excellent.
Due to difficulties of constructing analytical solutions for
many nonlinear PDEs, the element-free IMLS-Ritz method
will have great advantages for solving them through simple
implementation with high accuracy.
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The elastic properties of the boron-nitride nanotubes are studied based on an atomic simulation method that is called atomic-scale
finite element method. The Tersoff-Brenner potential is used to describe the interaction between boron and nitrogen atoms, and
the computational method is established in an atomic-scale scheme similar to the classical finite element method. Young’s modulus
is evaluated for the boron-nitride nanotubes, and their buckling behavior is analyzed. It is shown that the diameter has an obvious
influence on Young’s modulus of BNNTs, and the buckling is little related to the length of the nanotubes.

1. Introduction

Boron-nitride nanotubes (BNNTs) are a very promising one-
dimensional material and have a structural analogy to carbon
nanotubes [1–3]. Some research reports have shown that
BNNTs possess unique structural, mechanical, thermal, ele-
ctrical, and chemical properties. For example, Young’s modu-
lus of BNNTs is on the order of 1 TPa [4, 5].The thermal con-
ductivity along the nanotube is also very high. BNNTs have
always large band gaps regardless of the chirality and diam-
eter and are therefore semiconductors which are contrary
to carbon nanotubes. The atomic simulation methods are
important to the development of nanotechnology and to the
study of nanomaterials and nanosystems. Molecular dynam-
ics [6, 7] is a commonly used atomic-scale method, in which
the conjugate gradient method is used for the energy mini-
mization that consumes a large amount of computational
resources, and is only available for the very small size. The
atomic-scale finite element method (AFEM) is proposed by
Liu et al. [8, 9], and it can achieve a high computational effi-
ciency with the same accuracy as molecular dynamics. In the
present study, AFEM is used to obtain the stiffnessmatrix and
nonequilibrium force vector of the system, and the equilib-
rium state is determined with the nonlinear iteration.

In the field of theoretical research, only a few researches
have been reported about the tensile and compressive prop-
erties of BNNTs. Oh used the continuum lattice approach to
estimate elastic properties of BNNTs, in which the Tersoff-
Brenner potential was used to describe the interaction
between boron and nitrogen atoms, but some potential
parameters have been modified to fit the cohesive energy and
the bond length of boron nitride [10]. Song et al. employed an
atomic-based continuum theory to study Young’s modulus,
stress-strain curve, and nonlinear bifurcation in BNNTs [11].
They pointed out that the mechanical behavior of BNNTs
is virtually independent of the diameter and length of
BNNTs but has a strong dependence on chirality. Wei et al.
used classical molecular dynamics simulations to investigate
compressive and tensile behaviors of the carbon nanotubes
and boron-nitride nanotubes [12]. From the computational
analyses, they found that the chirality is the main factor
affecting the behavior of the nanotubes, and the nanotubes
in different materials but with the same chirality have similar
deformation patterns. Liao et al. investigated the deformation
behaviors of an (8, 8) boron-nitride nanotube under axial
tensile strains, in which Tersoff potential was employed with
the appropriate potential parameters [13]. According to their
results, the BNNT starts to fail at the failure strain of 26.7%
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Figure 1:The definitions for the basis unit vectors, chiral vector, and
chiral angle.

and the local elongation dominates the tensile failure of
the BNNT. In this paper, the widely used Tersoff-Brenner
potential is employed in the atomistic simulation, and a set of
potential parameters modified by Oh are used to investigate
the elastic properties of boron-nitride nanotubes [10]. AFEM
is used to obtain the equilibrium states.

2. Atomic-Scale Modeling Method

2.1. Boron-Nitride Nanotubes. An undeformed BNNT can
be visualized as a hollow cylinder that is formed by rolling
up a BN sheet into a cylindrical shape. It can be uniquely
characterized by a chiral vector Γ in terms of a set of two
integers (𝑛,𝑚) corresponding to BN sheet unit vectors a

1
and

a
2
(Figure 1):

Γ = 𝑛a
1
+ 𝑚a
2
. (1)

This tube is denoted as an (𝑛,𝑚) tube with its diameter given
by

𝐷 =
√3

𝜋
𝑎B–N√𝑛

2 + 𝑚𝑛 + 𝑚2, (2)

where 𝑎B–N is the bond length in the BN sheet.The tubes with
𝑛 = 𝑚 are commonly referred to as armchair tubes and those
with 𝑚 = 0 as zigzag tubes. Other tubes are called chiral
tubes in general with the chiral angle 𝜃 which is defined as
that between the vector Γ and the zigzag direction a

1
:

𝜃 = tan−1 [ 3𝑚

2𝑛 + 𝑚
] , (3)

where 𝜃 ranges from 0∘ for zigzag (𝑚 = 0) to 30∘ for armchair
(𝑚 = 𝑛) tubes (𝑛 ≥ 𝑚 is used for convention). Shown in
Figure 2 are Zigzag and armchair BNNTs.

2.2. The Atomic-Scale Finite Element. The present research
adopts AFEM that was proposed by Liu et al. [8, 9].The basic
idea is to divide nanotubes into finite number of elements,
and each element is characterized by a set of discrete atoms.
The positions of all atoms are determined by minimizing the
energy in the system.

For a system of𝑁 atoms, the energy stored in the atomic
bond can be denoted by the function of each atom coordinate:

𝑈
𝑡
= 𝑈
𝑡
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑁

∑
𝑖<𝑗

𝑉
𝐵
(𝑥
𝑗
− 𝑥
𝑖
) . (4)

Tersoff-Brenner potential [14, 15] is a multibody potential
and can better describe the interaction between C, B, H,
and N atoms. In the present study, Tersoff-Brenner potential
𝑉
𝐵
(𝑟
𝑖𝑗
) is used to describe the interaction between the boron

and nitrogen atoms:

𝑉
𝐵
(𝑟
𝑖𝑗
) = 𝑉
𝑅
(𝑟
𝑖𝑗
) − 𝐵
𝑖𝑗
𝑉
𝐴
(𝑟
𝑖𝑗
) , (5)

where𝑉
𝑅
and𝑉
𝐴
are the repulsive pair potential and attractive

pair potential; 𝑟
𝑖𝑗
is the distance from atom 𝑖 to atom 𝑗; 𝐵

𝑖𝑗

is the bond order function. The sets of potential parameters
modified by Oh [10] are used which are listed in Table 1.

The total energy is thus evaluated as

𝐸
𝑡
(𝑥) = 𝑈

𝑡
(𝑥) −

𝑁

∑
𝑖=1

𝐹
𝑖
⋅ 𝑥
𝑖
, (6)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇,𝐹
𝑖
is the external force exerted on

atom 𝑖. The state of minimal energy corresponds to

𝜕𝐸
𝑡

𝜕𝑥
= 0. (7)

Giving Taylor expansion of 𝐸
𝑡
(𝑥) and substituting it into (7)

yield the following equation:

𝐾Δ𝑢 = 𝑃, (8)

where Δ𝑢 is displacement increment and 𝐾 and 𝑃 are, res-
pectively, the stiffness matrix and nonequilibrium force vec-
tor given by

𝐾 =
𝜕
2𝐸
𝑡

𝜕𝑥𝜕𝑥
=

𝜕
2𝑈
𝑡

𝜕𝑥𝜕𝑥
, 𝑃 = −

𝜕𝐸
𝑡

𝜕𝑥
= 𝐹 −

𝜕𝑈
𝑡

𝜕𝑥
. (9)

Newton iterationmethod can be used to solve the present
problem. It is much faster than the widely used conjugate gra-
dient method because the first and second order derivatives
were used. Materials may display softening behavior when
they were under axial compression. For problems involving
material softening, 𝐾 is nonpositive definite and 𝐾 may be
replaced by 𝐾∗ = 𝐾 + 𝐼𝛼 to ensure the convergence, where 𝐼
is the identitymatrix and𝛼 is a positive number slightly larger
than the absolute value of the minimum negative eigenvalue
of the stiffness matrix [16, 17].

2.3. The Simulation Process. The above method has been
written as a Fortran code for BNNTs, in which the following
steps are used to compute the elastic properties of BNNTs and
determine their buckling deformation.

Step 1. First, construct the initial configuration of BNNTs
with uniform bond length using a separate program; store the
coordinates and each piece of bond information in an array.
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Figure 2: The atomic structure of the zigzag and armchair BNNTs.

Table 1: Potential parameters.

Parameter 𝐷
(𝑒) (eV) 𝑆 𝛽 𝑅

(𝑒)
𝑅
(1) (Å) 𝑅

(2) (Å) 𝛿 𝑎
0

𝑐
0

𝑑
0

6.36 1.0769 22.0 0.133 1.9 2.1 0.382 2.0813 330 3.5

Step 2. Using the coordinate and bond number of arrays, find
the first and second neighbor atoms information and store
them in an array.

Step 3. Call a separate program to make the system back to
the equilibrium coordinates for given initial coordinates and
boundary conditions of BNNTs.

Step 4. Apply displacement field to equilibrium coordinates.
This process adopts the constant displacement values at each
load step.

Step 5. Store the potential of BNNTs against applied displace-
ment filed. Using the polynomial curve fitting, fit data for
equation of potential in terms of displacement filed (strain).

Step 6. Calculate Young’smodulus using equations in Section
3.1.

Boundary conditions in Step 3 are to restrain one side
of BNNTs and make the other side free until the system
returns to the equilibrium configuration. During the process
of axial tensile or compression, one end of the BNNT is
completely fixed, and the tensile or compression is achieved
by incrementally imposing an axialmovement at another end.
The length of the tube is changed by 0.01 nm per loading step
until material appears buckling.

3. Results and Discussions

3.1. Young’s Modulus. In continuum mechanics, the consti-
tutive response between the load and deformation is estab-
lished prior to solving a specific problem. If the material is
homogeneous and isotropic, the material can be represented
by two independent constants, namely, Young’s modulus 𝑌
and Poisson’s ratio ]. For a material undergoing a uniaxial
deformation, 𝑌 is defined as

𝑌 =
2 (𝑉
𝛿
− 𝑉
0
)

𝑉ol

𝐿2

𝛿2
=
𝑘𝐿2

𝑉ol
, 𝑘 =

2 (𝑉
𝛿
− 𝑉
0
)

𝛿2
, (10)
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Figure 3: Stress-strain curve of an (8, 0) BNNT.

where 𝑉ol is the volume, 𝐿 is the initial nanotube length,
and 𝑉

0
and 𝑉

𝛿
are the equilibrium (minimised) potentials

corresponding to the initial and deformed equilibrium con-
figurations, respectively. 𝛿 is the length change in BNNTs, and
𝑘 is the stiffness of the BNNT, as 𝛿 → 0 𝑘 → 𝑘

0
.

The thickness is often taken as 0.34 nm [11–13, 18] in the
evaluation of 𝑉ol. 𝑉𝛿 can be expressed as

𝑉
𝛿
= 𝑎
1
+ 𝑎
2
𝛿 + 𝑎
3
𝛿
2
+ 𝑎
4
𝛿
3
. (11)

The stiffness constant 𝑘
0
is then obtained as

𝑘
0
= lim
𝛿→0

𝜕2𝑉
𝛿

𝜕𝛿2
= 2𝑎
3
. (12)

Deformation behavior of an (8, 0) BNNT under axial
tensile strains is first investigated in this paper. It has 23
hexagonal cells along the axis, and its initial length and radius
are 5.037 nm and 0.326 nm, respectively. Figure 3 shows the
stress-strain curve. Plot of equilibrium potential energy ver-
sus the length change is displayed in Figure 4.

The potential equation (11) is obtained from Figure 4
using polynomial curve fitting. Replace 𝑘

0
with 2𝑎

3
= 745.8.

Substituting (12) into (10), the obtained 𝑌 is 863.85GPa.
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Figure 4: Potential versus the length change of an (8, 0) BNNT for
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Figure 5: Young’s moduli versus tube radius for (𝑛, 0) and (𝑛, 𝑛)

BNNTs.

Using the above steps, armchair (𝑛, 𝑛) and zigzag (𝑛, 0)

BNNTs are also simulated. Figure 5 shows the variation of the
axial Young’s moduli with the tube radius. It can be seen that
Young’s moduli of both armchair and zigzag BNNTs increase
with increasing tube diameter, and this trend becomes much
obvious for small radii zigzag tubes. With an increasing tube
radius, the axial Young’s moduli tend to the same constant.
Employing an atomistic-based continuum theory, Song et al.
[11] obtained the normalized Young’s modulus of BNNT for
the armchair (𝑛, 𝑛) and zigzag (𝑛, 0) BNNTs with the varying
tube diameter, and they compared their results with tight
binding [4] and ab initio calculation [5]. The present results
agree well with those from [4, 5, 10, 11].

3.2. Axial Buckling of BNNTs. AFEM is also applied to pre-
sent a complete numerical simulation of buckling behavior.
At each loading step, the stable state is solved with Newton’s
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Figure 6: Buckling deformation.

method, and then the further compressive displacement is
used. The penalty function method [19–21] is used to enforce
the essential boundary condition. When BNNTs appear
buckling,𝐾 is nonpositive definite.The iterative convergence
is achieved to replace 𝐾 with 𝐾

∗ = 𝐾 + 𝐼𝛼, where 𝐼 is the
identity matrix and 𝛼 is a positive number larger than the
minimum negative eigenvalue of the stiffness matrix.

The buckling deformation of an (8, 0) BNNT is shown
in Figure 6 and it is very similar to the single-wall car-
bon nanotube studied by some researchers. The molecular
dynamic method is the most popular atomic simulation
method, in which the conjugate gradient method is used to
achieve the energyminimization.The presentmethod has the
same accuracy with the molecular dynamic method because
they both are atomic-scale methods. The conjugate gradient
method is an order-𝑁2 method, and its computational cost
is very huge. In the present AFEM, Newton iteration method
is applied to obtain the equilibrium state, in which the first
and second order derivatives are used and 3–5 iterative steps
can achieve a good convergence.The computation is far faster
thanmolecular dynamicmethod. Liew et al. showed thatMD
simulation of the buckling behavior of a (10, 10) SWCNT
containing 2,000 atoms required 36 hours in a single CPU of
SGI origin 2000, whereas the computation for a four-walled
MWCNT containing 15,097 atoms took four months [2, 6].
The computational time inAFEMscales linearlywith number
of atoms and the numbers of iteration steps is approximately
independent of the atomnumber, which implies thatAFEM is
an order-𝑁method and is very effective for the nanostructure
with a larger number of atoms.

Our results are in good agreement with Wei et al. who
have used classical molecular dynamics simulations to inves-
tigate compressive behaviors of the boron-nitride nanotubes
[12]. In order to investigate the relationship between the
bulking and length of single-walled boron-nitride nanotubes,
some (𝑛, 0) BNNTs were simulated. Figure 7 shows the
buckling strain versus length for several zigzag BNNTs. It is
observed that the curve is nearly flat so that the nanotube
length has little influence on buckling.

4. Conclusions

This paper has used AFEM to study the elastic properties of
boron-nitride nanotubes based on interatomic potentials for
boron and nitrogen atoms. It is shown that Young’s moduli
of both armchair and zigzag BNNTs closely related to tube
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Figure 7: The buckling strain versus the length for several zigzag
boron-nitride nanotubes.

diameter, especially for small radii zigzag tubes. When radius
exceeds 1 nm, Young’s moduli tend to the same constant. For
zigzag BNNTs, the buckling strain is virtually independent
of the nanotube length, and its average strain is 12%. This is
consistent with the conclusions that the mechanical behavior
of BNNTs is independent of the diameter and length of
BNNTs by some researchers. AFEM is an efficient and accu-
rate computation method and it is also readily applicable for
solving many physics related optimization problems.
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The transverse free vibration of an axially moving beam made of functionally graded materials (FGM) is investigated using a
Timoshenko beam theory. Natural frequencies, vibrationmodes, and critical speeds of such axially moving systems are determined
and discussed in detail. Thematerial properties are assumed to vary continuously through the thickness of the beam according to a
power law distribution. Hamilton’s principle is employed to derive the governing equation and a complexmode approach is utilized
to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving
speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the
differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined
numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

1. Introduction

The axially moving systems are extensively applied in
machinery, electronics, and some other related fields. Many
engineering devices such as band-saw blade, power transmis-
sion belts, and crane hoist cables can be modeled as axially
moving systems. Transverse vibration of axially moving sys-
tems may induce some disadvantageous effects. For example,
the transverse vibration of power transmission belts causes
noise and accelerated wear of the belt; the vibration of the
blade in band saws leads to poor cutting quality. Therefore,
research of the transverse vibration of axially moving beams
is indispensable, which has important engineering signifi-
cance in controlling and optimizing the transverse dynamics.
At present, the axially moving beam structures have been
widely studied, of which most literatures are based on Euler-
Bernoulli beam model. Öz [1] computed natural frequencies
of an axially moving beam in contact with a small stationary
mass under pinned-pinned or clamped-clamped boundary
conditions. Chen et al. [2] studied the dynamic stability of
an axially accelerating viscoelastic beam and analyzed the
effects of the dynamic viscosity, the mean axial speed, and
the tension on the stability conditions. Chen and Yang [3]

developed two nonlinear models for transverse vibration of
an axially accelerating viscoelastic beam and applied the
method of multiple scales to compare the corresponding
steady-state responses and their stability. Chen and Yang [4]
presented the first two mode frequencies of axially moving
elastic and viscoelastic beams under simple supports with
torsion springs. Lee and Jang [5] studied the effects of
the continuously incoming and outgoing semi-infinite beam
parts on the dynamic characteristics and stability of an axially
moving beam by using the spectral element method. Lin
and Qiao [6] determined some numerical results for natural
frequency of an axially moving beam in fluid based on a
differential quadrature method. Ghayesh et al. [7] developed
an approximate analytical solution for nonlinear dynamic
responses of a simply supported Kelvin-Voigt viscoelastic
beam with an attached heavy intraspan mass. Lv et al. [8]
investigated natural frequency, bifurcation, and stability of
transverse vibration of axially accelerating moving viscoelas-
tic sandwich beams with time-dependent axial tension.

All the cases aforementioned are in the framework of
Euler-Bernoulli beam model. However, it does not contain
the information about shear stress and moment of inertia in
Euler-Bernoulli beammodel. Consequently, the Timoshenko
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beam model has received more attention in modeling the
axially moving structures in recent years. Lee et al. [9]
formulated the spectral element model for the transverse
vibration of an axially moving Timoshenko beam subjected
to a constant axial tension and verify its high accuracy by
comparing with the solutions by other methods. Tang et al.
[10] analyzed the parametric resonance of axially moving
Timoshenko beams with time-dependent speed. Ghayesh
and Balar [11] presented nonlinear vibration and stability
analysis of an axially moving Timoshenko beam for two
dynamic models and employed the multiple scales method
to obtain the mode shape equations, natural frequencies,
and steady-state responses of the system. Li et al. [12]
studied the nonlinear free transverse vibrations of the axially
moving Timoshenko beam with constant speed. Ghayesh
and Amabili [13] investigated the nonlinear forced vibrations
and stability of an axially moving Timoshenko beam with
an intraspan spring-support. All the literatures using axially
moving Timoshenko beam model receive more accurate
results and it is applicable to the stubby axially moving
structures.

In engineering practices, the axially moving beammay be
made by FGM.Thepresent study is concernedwith the axially
moving FGM Timoshenko beam. In the related literatures,
most are focused on the mechanical properties of FGM
without axial motion but the studies of axially moving FGM
Timoshenko beam are very few. Ding et al. [14] derived a
series of analytical solutions for anisotropic FGM beams with
various end conditions using an Airy stress function in the
generalized polynomial form. Kang and Li [15] investigated
the mechanical behaviors of a nonlinear FGM cantilever
beam subjected to an end force by using large and small
deformation theories. Zhou et al. [16] studied the mechanical
responses of a functionally graded cantilever beam by use
of two kinds of particle with different properties based on
discrete element method. Şimşek [17] investigated the forced
vibration of a functionally graded beam under a moving
mass by using Euler-Bernoulli, Timoshenko, and the third-
order shear deformation beam theories. Alshorbagy et al.
[18] studied the free vibration of a functionally graded beam
by finite element method with material graduation axially
or transversally through the thickness. Ke et al. [19] investi-
gated nonlinear free vibration of size-dependent functionally
graded microbeams based on the modified couple stress
theory and von Kármán geometric nonlinearity. Şimşek et
al. [20] analytically examined static bending of functionally
graded microbeams based on the modified couple stress
theory and Euler-Bernoulli and Timoshenko beam theories,
respectively.

Considering the wide application of axially moving
structures and the excellent characteristics of FGM, the
investigation of transverse vibration of axially moving beams
made of FGM is of great significance both in theoretical study
and engineering application. In this paper, the transverse
vibration of an axiallymoving, initially tensioned beammade
of FGM is investigated. The Timoshenko beam model is
utilized and the complex mode approach is performed to
obtain the natural frequencies and themodal functions.With
the numerical example for boundary condition of simply
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Figure 1: Schematics of an axially moving FGM beam.

supported on both ends, the effects of power-law exponent,
axial speed, and initial stress to the natural frequencies are
analyzed and discussed in detail. Finally, the critical speed
is determined to show its variation with different power-law
exponent, axial initial stress, and length to thickness ratio.

2. Physical Model

For an axially moving FGM beam as shown in Figure 1, the
beam travels at a speed V between two boundaries separated
by distance 𝐿 under an applied axial initial stress 𝜎

0
. The

cross section is a rectangle of thickness ℎ and width 𝑏. The
coordinate system (𝑂𝑥𝑧) is defined on the middle plane of
the beam.Note that the 𝑥-axis is taken along themiddle plane
and the 𝑧-axis in the thickness direction.

The elastic modulus 𝐸 (N/m2) and density 𝜌 (kg/m3) of
the beamare assumed to vary through the thickness following
a simple power-law distribution. They can be described by

𝐸 (𝑧) = (𝐸
𝑐
− 𝐸
𝑚
) (

𝑧

ℎ
+
1

2
)

𝑘

+ 𝐸
𝑚
,

𝜌 (𝑧) = (𝜌
𝑐
− 𝜌
𝑚
) (

𝑧

ℎ
+
1

2
)

𝑘

+ 𝜌
𝑚
,

−
ℎ

2
≤ 𝑧 ≤

ℎ

2
,

(1)

where 𝑘 stands for the power-law exponent. As the FGM
beam is assumed to be made of pure Alumina ceramics and
pure steel metal, subscripts 𝑐 and 𝑚 refer to the ceramic
(𝐸
𝑐
= 390GPa, 𝜌

𝑐
= 3960 kg/m3) and metal (𝐸

𝑚
= 210GPa,

𝜌
𝑚
= 7800 kg/m3), respectively.

3. Governing Equation and
Theoretical Formulation

Based on the Timoshenko beam theory, the total transverse
deflection and the angle of rotation due to bending are
denoted by 𝑤(𝑥, 𝑡) and 𝜓(𝑥, 𝑡), respectively. The kinetic
energy 𝑇 and potential energies 𝑉 are given by

𝑇 =
1

2
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where

𝜌
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𝜌 (𝑧) 𝑑𝐴, 𝜌
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(3)

in which 𝜇 is the Poisson’s ratio and 𝜅 is the shear correction
factor.

Substitute (2) into the extended Hamilton’s principle

∫

𝑡
2

𝑡
1

(𝛿𝑇 − 𝛿𝑉) 𝑑𝑡 = 0. (4)

The detail is shown in Appendix A from which the equations
ofmotion for the axiallymoving FGMTimoshenko beam can
be derived as
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(6)

Decoupling (5) and (6) yields the governing equation
for the transverse vibration of such axially moving FGM
Timoshenko beams
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4
− 𝑎
1
V2)

𝜕
4
𝑤

𝜕𝑥4

− 2V (𝑎
1
+ 𝑎
2
+ 𝑎
2
𝑎
4
− 2𝑎
1
𝑎
2
V2)

𝜕
4
𝑤

𝜕𝑡𝜕𝑥3

+ 𝑎
3
(𝑎
1
V2 − 𝑎

4
)
𝜕
2
𝑤

𝜕𝑥2
− (𝑎
1
+ 𝑎
2
+ 𝑎
2
𝑎
4
− 6𝑎
1
𝑎
2
V2)

×
𝜕
4
𝑤

𝜕𝑡2𝜕𝑥2
+ 4𝑎
1
𝑎
2
V
𝜕
4
𝑤

𝜕𝑡3𝜕𝑥
+ 2𝑎
1
𝑎
3
V
𝜕
2
𝑤

𝜕𝑡𝜕𝑥

+ 𝑎
1
𝑎
3

𝜕
2
𝑤

𝜕𝑡2
+ 𝑎
1
𝑎
2

𝜕
2
𝑤

𝜕𝑡4
= 0,

(7)

where

𝑎
1
=

𝜌
𝑇0

𝜅𝐺
𝑇

, 𝑎
2
=

𝜌
𝑇2

(𝐸𝐼)eq
,

𝑎
3
=

𝜅𝐺
𝑇

(𝐸𝐼)eq
, 𝑎

4
=
𝜎
0
𝐴

𝜅𝐺
𝑇

.

(8)

4. Case Studies

4.1. Natural Frequencies and Mode Function. The boundary
conditions for the simple supports at both ends are given by

𝑤 (0, 𝑡) = 0; 𝑤 (𝐿, 𝑡) = 0;

𝜕
2
𝑤 (0, 𝑡)

𝜕𝑥2
= 0;

𝜕
2
𝑤 (𝐿, 𝑡)

𝜕𝑥2
= 0.

(9)

The solution to (7) can be assumed as

𝑤 (𝑥, 𝑡) = 𝜑
𝑛
(𝑥) 𝑒
𝑖𝜔
𝑛
𝑡
+ 𝜑
𝑛
(𝑥) 𝑒
−𝑖𝜔
𝑛
𝑡
, (10)

where 𝜑
𝑛
and 𝜔

𝑛
denote the 𝑛th mode function and natural

frequency, respectively. 𝜑
𝑛
represents the complex conjugate

of 𝜑
𝑛
. Substitution of (10) into (7) and (9) leads to

(1 − 𝑎
2
V2) (1 + 𝑎

4
− 𝑎
1
V2) 𝜑(4)
𝑛

− 2𝑖𝜔
𝑛
V (𝑎
1
+ 𝑎
2
+ 𝑎
2
𝑎
4
− 2𝑎
1
𝑎
2
V2) 𝜑(3)
𝑛

+ [𝑎
3
(𝑎
1
V2 − 𝑎

4
) + 𝜔
2

𝑛
(𝑎
1
+ 𝑎
2
+ 𝑎
2
𝑎
4
− 6𝑎
1
𝑎
2
V2)] 𝜑

𝑛

− 2𝑖𝑎
1
V𝜔
𝑛
(2𝑎
2
𝜔
2

𝑛
− 𝑎
3
) 𝜑


𝑛
− 𝑎
1
𝜔
2

𝑛
(𝑎
3
− 𝑎
2
𝜔
2

𝑛
) 𝜑
𝑛
= 0,

(11)

𝜑
𝑛
(0) = 0; 𝜑

𝑛
(𝐿) = 0;

𝜑


𝑛
(0) = 0; 𝜑



𝑛
(𝐿) = 0,

(12)

where 𝜑
(4)

𝑛
, 𝜑(3)
𝑛
, 𝜑
𝑛
, and 𝜑



𝑛
denote the derivative with

respect to coordinate 𝑥. The solution to ordinary differential
equation (11) can be expressed by

𝜑
𝑛
(𝑥) = 𝐶

1𝑛
𝑒
𝛽
1𝑛
𝑥
+ 𝐶
2𝑛
𝑒
𝛽
2𝑛
𝑥
+ 𝐶
3𝑛
𝑒
𝛽
3𝑛
𝑥
+ 𝐶
4𝑛
𝑒
𝛽
4𝑛
𝑥
, (13)

where 𝐶
1𝑛
∼𝐶
4𝑛
are four unknown constants and 𝛽

1𝑛
∼𝛽
4𝑛
are

four complex eigenvalues of (11). Substituting (13) into (12)
yields

𝐶
1𝑛
+ 𝐶
2𝑛
+ 𝐶
3𝑛
+ 𝐶
4𝑛
= 0, (14a)

𝐶
1𝑛
𝑒
𝛽
1𝑛 + 𝐶

2𝑛
𝑒
𝛽
2𝑛 + 𝐶

3𝑛
𝑒
𝛽
3𝑛 + 𝐶

4𝑛
𝑒
𝛽
4𝑛 = 0, (14b)

𝐶
1𝑛
𝛽
2

1𝑛
+ 𝐶
2𝑛
𝛽
2

2𝑛
+ 𝐶
3𝑛
𝛽
2

3𝑛
+ 𝐶
4𝑛
𝛽
2

4𝑛
= 0, (14c)

𝐶
1𝑛
𝛽
2

1𝑛
𝑒
𝛽
1𝑛 + 𝐶

2𝑛
𝛽
2

2𝑛
𝑒
𝛽
2𝑛 + 𝐶

3𝑛
𝛽
2

3𝑛
𝑒
𝛽
3𝑛 + 𝐶

4𝑛
𝛽
2

4𝑛
𝑒
𝛽
4𝑛 = 0.

(14d)

Rewrite (14a), (14b), (14c), and (14d) in the form of a
matrix as

(

1 1 1 1

𝑒
𝛽
1𝑛 𝑒

𝛽
2𝑛 𝑒

𝛽
3𝑛 𝑒

𝛽
4𝑛

𝛽
2

1𝑛
𝛽
2

2𝑛
𝛽
2

3𝑛
𝛽
2

4𝑛

𝛽
2

1𝑛
𝑒
𝛽
1𝑛 𝛽
2

2𝑛
𝑒
𝛽
2𝑛 𝛽
2

3𝑛
𝑒
𝛽
3𝑛 𝛽
2

4𝑛
𝑒
𝛽
4𝑛

)(

𝐶
1𝑛

𝐶
2𝑛

𝐶
3𝑛

𝐶
4𝑛

) = 0. (15)

For the nontrivial solution of (15), the determinant of the
coefficient matrix must be zero.
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Figure 2: The natural frequencies versus axially moving speeds for different power-law exponents (𝜎
0
= 1MPa).

Consider

[𝑒
(𝛽
1𝑛
+𝛽
2𝑛
)
+ 𝑒
(𝛽
3𝑛
+𝛽
4𝑛
)
] (𝛽
2

1𝑛
− 𝛽
2

2𝑛
) (𝛽
2

3𝑛
− 𝛽
2

4𝑛
)

− [𝑒
(𝛽
1𝑛
+𝛽
3𝑛
)
+ 𝑒
(𝛽
2𝑛
+𝛽
4𝑛
)
] (𝛽
2

1𝑛
− 𝛽
2

3𝑛
) (𝛽
2

2𝑛
− 𝛽
2

4𝑛
)

+ [𝑒
(𝛽
2𝑛
+𝛽
3𝑛
)
+ 𝑒
(𝛽
1𝑛
+𝛽
4𝑛
)
] (𝛽
2

2𝑛
− 𝛽
2

3𝑛
) (𝛽
2

1𝑛
− 𝛽
2

4𝑛
) = 0.

(16)

Using (15) and (16), one can obtain the coefficients of (13);
the expressions of 𝐶

2𝑛
∼𝐶
4𝑛
are listed in Appendix B.

The 𝑛th modal function of the axially moving FGM beam
is determined as
𝜑
𝑛 (𝑥)

= {𝑒
𝛽
1𝑛
𝑥
−

(𝛽
2

4𝑛
− 𝛽
2

1𝑛
) (𝑒
𝛽
3𝑛 − 𝑒
𝛽
1𝑛)

(𝛽
2

4𝑛
− 𝛽
2

2𝑛
) (𝑒𝛽3𝑛 − 𝑒𝛽2𝑛)

𝑒
𝛽
2𝑛
𝑥

−

(𝛽
2

4𝑛
− 𝛽
2

1𝑛
) (𝑒
𝛽
2𝑛 − 𝑒
𝛽
1𝑛)

(𝛽
2

4𝑛
− 𝛽
2

3𝑛
) (𝑒𝛽2𝑛 − 𝑒𝛽3𝑛)

𝑒
𝛽
3𝑛
𝑥

+ (−1 +

(𝛽
2

4𝑛
− 𝛽
2

1𝑛
) (𝑒
𝛽
3𝑛 − 𝑒
𝛽
1𝑛)

(𝛽
2

4𝑛
− 𝛽
2

2𝑛
) (𝑒𝛽3𝑛 − 𝑒𝛽2𝑛)

+

(𝛽
2

4𝑛
− 𝛽
2

1𝑛
) (𝑒
𝛽
2𝑛 − 𝑒
𝛽
1𝑛)

(𝛽
2

4𝑛
− 𝛽
2

3𝑛
) (𝑒𝛽2𝑛 − 𝑒𝛽3𝑛)

) 𝑒
𝛽
4𝑛
𝑥
}𝐶
1𝑛
.

(17)
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Figure 3: The natural frequencies versus power-law exponent for different axially moving speeds (𝜎
0
= 1MPa).

4.2. Critical Speeds. The time-independent equilibrium form
of the linear equation (7) can be written as

(1 − 𝑎
2
V2) (1 + 𝑎

4
− 𝑎
1
V2)

𝜕
4
𝑤

𝜕𝑥4
+ 𝑎
3
(𝑎
1
V2 − 𝑎

4
)
𝜕
2
𝑤

𝜕𝑥2
= 0.

(18)

The characteristic equation of (18) is

(1 − 𝑎
2
V2) (1 + 𝑎

4
− 𝑎
1
V2) 𝑟4 + 𝑎

3
(𝑎
1
V2 − 𝑎

4
) 𝑟
2
= 0. (19)

When V is higher than 100m/s, numerical results demon-
strate that (1−𝑎

2
V2)(1+𝑎

4
−𝑎
1
V2) and 𝑎

3
(𝑎
1
V2−𝑎
4
) are positive

numbers. Consequently, the solution to (19) is determined as

𝑟
1
= 𝑟
2
= 0, 𝑟

3
= 𝑟
4
= ±𝑖√

𝑎
3
(𝑎
1
V2 − 𝑎

4
)

(1 − 𝑎
2
V2) (1 + 𝑎

4
− 𝑎
1
V2)

.

(20)
On the other hand, the solution to (18) can be expressed

by
𝑤 (𝑥) = 𝐶

1
+ 𝐶
2
𝑥 + 𝐶

3
cos (𝛽𝑥) + 𝐶

4
sin (𝛽𝑥) , (21)
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Figure 4: The first four modal functions (V = 100m/s, 𝜎
0
= 1MPa).

where

𝛽 = √
𝑎
3
(𝑎
1
V2 − 𝑎

4
)

(1 − 𝑎
2
V2) (1 + 𝑎

4
− 𝑎
1
V2)

. (22)

Substituting (21) into the boundary condition of (9) yields

(

1 0 1 0

1 𝐿 cos (𝛽𝐿) sin (𝛽𝐿)
0 0 −𝛽

2
0

0 0 −𝛽
2 cos (𝛽𝐿) −𝛽

2 sin (𝛽𝐿)

)(

𝐶
1

𝐶
2

𝐶
3

𝐶
4

) = 0. (23)

For the nontrivial solution of (23), the determinant of the
coefficient matrix must be zero, which results in

𝐿𝛽
4 sin (𝐿𝛽) = 0. (24)

Using (22) and (24), as well as the conditions𝛽𝐿 = 𝑛𝜋 and
𝑛 = 1, one can get the critical speeds of axially moving FGM
beam as follows:

V
𝑐
= √

𝑀 −𝑁

2𝜋2𝑎
1
𝑎
2

(25)

or

V
𝑐
= √

𝑀 +𝑁

2𝜋2𝑎
1
𝑎
2

, (26)

where
𝑀 = 𝜋

2
(𝑎
1
+ 𝑎
2
+ 𝑎
2
𝑎
4
) + 𝐿
2
𝑎
1
𝑎
3
,

𝑁 = ((𝑎
1
(𝜋
2
+ 𝐿
2
𝑎
3
) + 𝜋
2
𝑎
2
(1 + 𝑎

4
))
2

− 4𝜋
2
𝑎
1
𝑎
2
(𝜋
2
+ 𝜋
2
𝑎
4
+ 𝐿
2
𝑎
3
𝑎
4
) )

1/2

.

(27)
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Combined with numerical results in Section 4.3, it can be
verified that the critical speed can be determined by equation
(25) only.

4.3. Numerical Results and Discussions. In the following
numerical computation, the beam is made of steel metal and
Alumina ceramics; several parameters are chosen to be

𝐿 = 1m, ℎ = 0.04m, 𝑏 = 0.04m, 𝜇 = 0.3,

𝜅 =
5

6
.

(28)

Table 1: Effect of initial stress on first four frequencies for FGM
beam (V = 100m/s).

𝑘 𝜎
0
(MPa) 𝜔

1
(Hz) 𝜔

2
(Hz) 𝜔

3
(Hz) 𝜔

4
(Hz)

0.001

1 1075 4436 9900 17322
50 1129 4490 9955 17377
100 1182 4545 10010 17433

Increase rate 9.95% 2.46% 1.11% 0.64%

1

1 738 3170 7109 12455
50 790 3221 7160 12506
100 841 3272 7211 12559

Increase rate 13.96% 3.22% 1.43% 0.84%

100

1 496 2304 5209 9147
50 553 2357 5262 9200
100 605 2409 5315 9254

Increase rate 21.98% 4.56% 2.03% 1.17%

Natural frequencies are found by numerically solving
(11) and (16), simultaneously, with different speeds, different
power-law exponents, and different initial stresses. Figure 2
illustrates the effect of axial speed on the first four natural
frequencies for different power-law exponents. As observed,
with the increase of axiallymoving speed, natural frequencies
decrease. Increasing the power-law exponent on the other
hand causes a decrease in natural frequencies. Figure 3
illustrates the effect of power-law exponents on the first four
natural frequencies under different axially moving speeds. As
observed, with the increase of power-law exponent, natural
frequencies decrease, and the decrease becomes more and
more gentle.

In Figures 2 and 3 the solid lines and dashed lines
denote the Timoshenko model and the Euler beam model,
respectively. The frequencies are lower with Timoshenko
model comparing with the Euler model, as other parameters
are fixed. Besides, the numerical results demonstrate that the
difference of the natural frequencies with the two models
becomes more significant as the order increases.

The frequencies of a FGM beam always remain between
the frequencies of its constituent material of the beam; that
is, when 𝑘 is small, the content of ceramic in the beam is
high; then the natural frequencies of FGM beams are close to
the natural frequencies of the pure ceramic beam. When 𝑘 is
large, the content ofmetal in the beam is high, and the natural
frequencies of FGM beams approach the natural frequencies
of the pure metal beam.

Table 1 shows the first four natural frequencies with dif-
ferent 𝜎

0
and different 𝑘. It is seen that natural frequencies are

increasing with increasing 𝜎
0
and decreasing with an increase

in 𝑘.Moreover, with the increase of 𝑘, the increase rate of each
order raises to some extent and the first frequencies raise the
most.

After obtaining the natural frequencies of the system, the
solution 𝛽

1𝑛
∼𝛽
4𝑛
of (11) can be obtained. Subsequently, using

(17), one can get the modal function of the axially moving
FGM beam. Figure 4 presents the first four modal functions,
in which the solid lines and dashed lines denote the real and



8 Mathematical Problems in Engineering

imaginary parts of the modal functions, respectively, where
V = 100m/s and 𝜎

0
= 1MPa are adopted.

With an increase of axially moving speed, each order of
the frequency tends to vanish. The exact values at which the
first natural frequency vanishes are called the critical speeds.
If axially moving speed is higher than the critical speed, the
system is unstable. Figure 5 illustrates the effect of 𝑘 on the
critical speeds for different initial stress.Thenumerical results
indicate that the critical speeds of the beam decrease with the
increasing 𝑘 and the decreasing 𝜎

0
. For a specific initial stress,

for example, 𝜎
0
= 1MPa, with an increase of 𝑘, the critical

speeds begin to decrease rapidly and then gently. The effects
of the 𝐿/ℎ ratio on the critical speeds for different 𝑘 are shown
in Figure 6. The larger 𝐿/ℎ ratio leads to lower critical speeds
for given 𝑘 and the higher the critical speeds the smaller the
𝑘 for given 𝐿/ℎ ratio.

5. Conclusions

This work is devoted to the transverse dynamic responses of
axially moving, initially tensioned Timoshenko beams made
of FGM.The complex mode approach is performed to obtain
the natural frequencies and modal functions, respectively.
The effects of some parameters including axially moving
speed and the power-law exponent on the natural frequencies
are investigated. Some numerical examples are presented
to demonstrate the comparisons of natural frequencies for
Timoshenko beammodel and Euler beammodel.The critical
speeds are determined and numerically investigated. The
results show that an increase of the power-law exponent or
the axial speed results in a lower natural frequency, while the
axial initial stress tends to increase the natural frequencies.
With the increase of the power-law exponent or the 𝐿/ℎ ratio,
the critical speeds decrease, while the axial initial stress tends
to increase the critical speeds. The results reported in this
work could be useful for designing and optimizing the axially
moving FGM Timoshenko beam-like structures.

Appendices

A. Result of Substituting (2) into (4)
Leads to

Consider
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An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon
fiber.The ultimate failure stress predictions of cylinders were obtained by themixing rule and verified by the blasting static pressure
method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder
was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation.
Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using
the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of
failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information
of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was
proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could
be improved obviously, and the results showed that the accuracy of this method increased by 35%.

1. Introduction

In recent years, T700 carbon fiber replacing T300 becomes
the new general carbon fiber since densification gives the
T700 higher tensile strength [1–6]. The cylinder of new
special equipment consists of T700 carbon fiber composite
materials, glass fiber composites, and aluminum alloy. The
main role of aluminum alloy is to improve the axial modulus
and corrosion resistance of cylinder, the glass fiber composite
material is to guarantee the aluminum alloy being adapted
to higher working because of large prestress, and the carbon
fiber composite material is to improve the strength and
modulus of the cylinder and it is also the main load-bearing
material between the three-layer materials.

The introduction of carbon fiber into the new generation
cylinder improves the failure stress of the cylinder, but it
also brings new problem to the reliability evaluation of the
cylinder. The cylinder wound by T700 carbon fiber exhibits
long life and high reliability in high-speed rotation mode,
and the sufficient data cannot be obtained by the traditional

life tests. Therefore, the accelerated test must be introduced,
and the reliability index in the normal stress could be
extrapolated by the statistical analysis using the high stress
level data [7]. The maximum likelihood estimation method
[8, 9] is very suitable for the censored data analysis, but this
method only has good properties for the large sample. And it
needs to iterate for the transcendental equations; sometimes
the computation is difficulties and not convergence. The
integral best linear unbiased estimationmethod [10, 11] solves
problems by regression analysis based on linear transforma-
tion acceleration model. The information between different
stresses is used comprehensively, and the estimation accuracy
can be improved. But the evaluation accuracy is still unable
to meet the actual engineering requirement of the cylinder
structure with great life dispersion.

This study found that the failure mode of the cylinder
wound by T700 carbon fiber was carbon fiber breakage
in the working mode with high-speed rotation. Therefore,
there would be some relationship between the rupture life of
fiber carbon and the cylinder. In this study, we analyzed the
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mechanical properties of the cylinder compositematerial and
obtained the ultimate failure stress by mixing rules, which
were verified by the static pressure burst test method. Then
we designed accelerated life tests on the carbon fiber and
the cylinder. According to the test results, we proposed the
integral best unbiased estimate method for the cylinder life
prediction. The evaluation accuracy was greatly improved
by comprehensive evaluation using the information of T700
carbon fiber based on the test results of the accelerated
equivalence and failure mechanisms.

2. Mechanical Analysis

2.1. Mechanical Analysis of the Composite Material. The new
generation cylinder consists of aluminium alloy, glass fiber,
and T700 carbon fiber, and its structure is illustrated in
Figure 1.

The main role of the aluminium alloy is to improve the
axial modulus and anticorrosion of the cylinder. The glass
fiber is to impose prestress to the aluminium alloy according
to winding, and so it could improve the maximum capacity.
The carbon fiber is the main bearing materials and for their
high strength and modulus the ultimate failure stress of
cylinder is greatly improved. The mechanical properties of
the glass fiber and the carbon fiber can be obtained bymixing
rules according to tensile strength, modulus, and the volume
content of each fiber. Thus, the overall mechanical properties
of the cylinder could also be estimated by the mixing rule
basing on the material properties and structures.

According to the property test of T700 carbon fiber, the
tensile strength is 4900Mpa, themodulus is 230GPa, and the
strain is approximately 2%. Also, the matrix strength of the
composite material is 85MPa, the modulus is 2.8 Gpa, and
the strain is 4%. The mix rule is

𝑋
𝑡
= 𝜎
𝑓
𝑉
𝑓
+ 𝜎
𝑚
(1 − 𝑉

𝑓
) , (1)

where the𝑋
𝑡
is tensile strength of composite, 𝜎

𝑓
is the tensile

strength of fiber, 𝜎
𝑚
is the tensile strength ofmatrix, and𝑉

𝑓
is

the fiber volume.Therefore, for the fiber volume of composite
material used in this study is 72%, the tensile strength of this
composite would be calculated as 3551.8MPa.

For the glass fiber, the tensile strength is 3400MPa, the
modulus is 91 GPa, and the strain is approximately 3.7%. And
the matrix is the same with the T700 carbon fiber reinforced
composite. While the percentage of fiber volume is 76%,
according to the mix rule, the tensile strength of this glass
fiber reinforced composite would be calculated as 2604.4.

The lining of the cylinder is aluminium alloy, its elastic
modulus is 70GPa, yield strength is 610Mpa, tensile strength
is 640Mpa, and strain is greater than 4% [12].

2.2. Failure Stress Analysis of the Cylinder. The tensile modu-
lus of the glass fiber and the aluminium alloy is significantly
lower than the outer carbon fiber composite material by the
previous analysis. And according to the thickness of each
laminate listed in Table 1, it is obvious that the carbon fiber
is the main load-bearing material in the entire cylinder.
When the outer T700 carbon fiber reinforced composite

Aluminium alloyGlass fiberT700 carbon fiber

XC

YC

ZC

Figure 1: Structure of the cylinder.

is destructed, the glass fiber and aluminum alloy would
be instantaneously destroyed due to the large load. The
stress-strain curves of glass fiber and carbon fiber reinforced
composite materials presented to be linear like the tensile
stress-strain curves of glass fiber and carbon fiber that are
shown in Figures 2 and 3.

The bearing stress of glass fiber is 380Mpa that is the
reverse stress to impose on the aluminum alloy; therefore, its
bearing stress is 1777Mpa when the conditions are the same
with the outer carbon fiber.The tensile strength of aluminum
alloy is 640MPa, we consider that it imposed the reverse
prestress of 380MPa, its bearing stress is 260Mpa when the
breaking elongation is 2%, and its thickness is 1.2mm. The
thickness of glass fiber and the carbon fiber is 0.85mm and
1.5mm, respectively. Therefore, according to the mixing rule,
the ultimate failure stress of the cylinder is theoretical as

𝜎 =

𝜎
𝑙
× 𝑡
𝑙
+ 𝜎
𝑔
× 𝑡
𝑔
+ 𝜎
𝑓
× 𝑡
𝑓

𝑡
𝑙
+ 𝑡
𝑔
+ 𝑡
𝑓

= 2004MPa. (2)

The strip tensile testmethod [13] for ultimate failure stress
of the cylinder cannot meet the requirements of test accuracy
with a few samples. The NOL [13] ring stretching method
is sensitive to the boundary effects and sample processing is
very difficult. Therefore, we chose the blasting static pressure
method [14] for the ultimate failure stress testing which dealt
with the data as a whole and thus could reflect themechanical
properties better.

The test samples were produced according to the national
standardGB/T15560, and the processing technical, rawmate-
rials were the same with the cylinder. Figure 4 shows the size
of this test sample. As shown, two ends of the cylinder were
strengthened by carbon fiber layers of 30mm width. Table 2
shows the parameters of this static pressure burst test. Table 3
shows the test result.

It can be seen from Table 3 that the mean of the ultimate
test failure stress is 2067.6MPa, which is slightly higher than
the theoretical prediction of 2004Mpa. It may be the reason
that the overall performance of the cylinder material would
be slightly higher than fiber samples. The parameters used
for theoretical prediction were the mean value of the tensile
test results of fiber sample, and thus its volatility is relatively
large. Another main reason may be that the length of the test
sample in the static pressure burst test was required to be
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Table 1: Geometry parameters and properties of each laminate.

Aluminium alloy Glass fiber Carbon fiber
Thickness (mm) 1.20 0.85 1.50
Modulus (GPa) 71 70, 20 (90∘) 163, 8 (90∘)
Density (g/cm3) 2.8 2.15 1.58

Table 2: Parameters of the static pressure burst test.

Aluminium alloy
(mm)

Process conditions Resin formula Curing system
Glass fiber Carbon fiber

Thickness: 1.2
Length: 350 5 layers 10 layers Proprietary formula 75∘C/4 h + 80∘C/12 h
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Figure 2: Tensile stress-strain curves of the glass fiber.
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Figure 3: Tensile stress-strain curves of the carbon fiber.

at least 5 times greater than the diameter in test standard of
GB/T15560. But this long diameter ratio of our test sample
is only 2.7. As the shorter sample is sensitive to the effects
of the end portion in the testing process, this may be the
main reason that the test results are slightly higher than the
prediction result. In all, the test results of the static pressure
burst test made a good agreement with the prediction result,
and it is feasible to verify the overall performance of the
cylinder. This test result would be taken as the important
reference for the constant stress accelerated life test in the
following research.

3. Accelerated Life Test

3.1. Experiment Preparation. In the working conditions, the
bearing stress of cylinder is about 913.8Mpa, which is equiv-
alent to 45.5% of the ultimate failure stress. We calculated

Table 3: Test result of the static pressure burst test.

Number 𝜎
𝑏
(MPa) 𝜀

𝑏
(%) 𝐸 (GPa)

1 2032.4 1.88 112.5
2 2087.6 1.87 113.3
3 2060.9 1.94 109.9
4 2180.9 2.02 112.3
5 2049.0 1.85 112.2
6 2110.5 1.93 112.3
7 1932.4 1.84 108.2
8 2086.7 1.91 112.6
Mean 2067.6 1.91 111.7
Dispersion 3.44% 3.08% 1.43%

30 30

350

14
0

Figure 4: Size of the static pressure burst test.

the stress level of the cylinder by the finite element method,
and the result shows that the bearing stress of the lining
aluminum alloy is 240MPa, the bearing stress of the glass
fiber is 1060Mpa, and the bearing of carbon fiber is 1350MPa.
The related parameters are shown in Table 1.

The cylinder used in the accelerated life test is the same
as that used in the static pressure burst test, as shown in
Figure 5. Then, the cylinder is filled with hydraulic oil up to
certain pressure and maintains this pressure for a long time
so that the cylinder bears a uniform inner pressure in every
direction.The test device is placed in one ovenwhereworking
temperature could be maintained. The pressure can be tested
by the pressure sensor. If the pressure of the cylinder drops
significantly, the cylinder was considered to be failure and the
failure time is automatically recorded.
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Figure 5: Diagram of the reliability test unit of the cylinder.

3.2. The Accelerated Test Plan of the Cylinder. We know
the ultimate failure stress is 2067.6Mpa given by the static
pressure burst test and the working stress is 913.8Mpa, which
is equivalent to 45.5% of the ultimate failure stress of the
cylinder.The stress-strain curve is close to linear in the scope
of the ultimate failure stress of the cylinder.

According to GB 2689.1-81, we divided the cylinders into
five groups for constant stress accelerated life test. And we
set the minimum stress level to be 1315MPa (almost 63.6%
of the ultimate failure stress) and the maximum stress level
to be 1861MPa (almost 90% of the ultimate failure stress).
Also, other stress levels were set to be 72.7%, 80%, and 85% of
the ultimate failure stress, respectively. According to the test
standard of GB 2689.1-81, this test level setting could ensure
that the failure mechanism of cylinders was the same. The
working temperature of the cylinder will not exceed 40∘C, so
the test temperature is controlled at 40 ± 2∘C.

4. Results and Discussion

4.1. The Method on Rupture Life Evaluation of the Cylinder.
We assume that there are 𝑛

𝑗
samples prepared for type-I

censored test in the V
𝑗
(𝑗 = 1, 2, . . . , 𝑠) stress level and the

censored time is 𝜉∗
𝑗
. There are 𝑞

𝑗
(1 ≤ 𝑞

𝑗
≤ 𝑛
𝑗
) failures and

the censored data is 𝜉
𝑗1
≤ ⋅ ⋅ ⋅ ≤ 𝜉

𝑗𝑞𝑗
.

Hypothesis 1. The product life follows Weibull distribution
𝑊(𝑚
𝑗
, 𝜂
𝑗
) in the V

𝑗
stress level.

Hypothesis 2. The failure mechanisms of the carbon fiber and
the cylinder are the same in each stress level.

Hypothesis 3. The relationship between characteristic life 𝜂
𝑗

and stress level V
𝑗
follows the inverse power law model: 𝜂

𝑗
=

𝐴V−𝑐
𝑗
, 𝑗 = 1, 2, . . . 𝑠. And 𝐴, 𝑐 are parameters that should be

estimated.

The linear expression can be obtained by logarithmic
transformation on the accelerated model in Hypothesis 3:

ln 𝜂
𝑗
= 𝑎 + 𝑏𝑥

𝑗
. (3)

Then the logarithmic life follows the extreme value distribu-
tion and the relationship between the logarithmic life and the
logarithmic stress can be written as

𝑦
𝑗
= 𝑎 + 𝑏𝑥

𝑗
+ 𝜀
𝑗𝑘
, 𝜀
𝑗𝑘
∼ 𝐸𝑉 (0, 𝜎) ,

(𝑗 = 1, 2, . . . , 𝑠; 𝑘 = 1, 2, . . . , 𝑞
𝑗
+ 1) ,

(4)

where 𝑦
𝑗
= ln 𝜂

𝑗
, 𝑥
𝑗
= ln V

𝑗
, 𝑎 = ln𝐴, and 𝑏 = −𝑐. Parameter

𝑎 reflects the characteristic of test product; parameter 𝑏

reflects the acceleration characteristic of the test; 𝜎 is the scale
parameter of the extreme value distribution and the measure
parameter for the consistency of the failure mechanism.

In the condition of Hypothesis 1, type-I censored data
𝑦
𝑗1

≤ ⋅ ⋅ ⋅ ≤ 𝑦
𝑗𝑞𝑗

can be taken as the value of the former 𝑞
𝑗

order statistics𝑌
𝑗1
≤ ⋅ ⋅ ⋅ ≤ 𝑌

𝑗𝑞𝑗
for the extreme value distribu-

tion with size 𝑛
𝑗
. 𝑦
𝑗(𝑞𝑗+1)

= 𝑦
∗

𝑗
can be taken as the value of the

𝑞
𝑗
th interval statistics 𝑌

𝑗(𝑞𝑗+1)
with the same sample.

From literature [9, 10], we can obtain the estimations of 𝑎,
𝑏, and 𝜎 by partial derivative for 𝑄

𝑄 =

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

(𝑦
𝑗𝑘
− 𝑎 − 𝑏𝑥

𝑗
− 𝜎𝑢
𝑗𝑘
)

× 𝑔
𝑗𝑘𝑙
(𝑦
𝑗𝑙
− 𝑎 − 𝑏𝑥

𝑗
− 𝜎𝑢
𝑗𝑙
) .

(5)

The estimations of 𝑎, 𝑏, and 𝜎 are

𝑎 = 𝑦 − �̂�𝑥 − �̂�𝑢,

�̂� =

𝐿
22
𝐿
1𝑦
− 𝐿
12
𝐿
2𝑦

𝐿
11
𝐿
22
− 𝐿
2

12

,

�̂� =

𝐿
11
𝐿
2𝑦
− 𝐿
12
𝐿
1𝑦

𝐿
11
𝐿
22
− 𝐿
2

12

,

(6)

where

𝑦 =
1

𝑛∗

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
𝑦
𝑗𝑘
, 𝑢 =

1

𝑛∗

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
𝑢
𝑗𝑘
,

𝑥 =
1

𝑛∗

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
𝑥
𝑗
, 𝑛

∗
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
,

𝐿
1𝑦
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
(𝑥
𝑗
− 𝑥) (𝑦

𝑗𝑘
− 𝑦) ,

𝐿
2𝑦
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
(𝑢
𝑗𝑘
− 𝑢) (𝑦

𝑗𝑙
− 𝑦) ,

𝐿
11
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
(𝑥
𝑗
− 𝑥)
2

,
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𝐿
12
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
(𝑥
𝑗
− 𝑥) (𝑢

𝑗𝑘
− 𝑢) ,

𝐿
22
=

𝑠

∑

𝑗=1

𝑞𝑗+1

∑

𝑘,𝑙=1

𝑔
𝑗𝑘𝑙
(𝑢
𝑗𝑘
− 𝑢) (𝑢

𝑗𝑙
− 𝑢) .

(7)

And the covariance matrix of 𝑎, 𝑏, and 𝜎 is

cov (𝑎, �̂�, �̂�) = 𝜎
2
𝐶,

𝐶 =

[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝑥
𝑗

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝜇
𝑗𝑘

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝑥
𝑗

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝑥
2

𝑗
∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝑥
𝑗
𝜇
𝑗𝑘

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝜇
𝑗𝑘

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝑥
𝑗
𝜇
𝑗𝑘

∑

𝑗,𝑘,𝑙

𝑔
𝑗𝑘𝑙
𝜇
𝑗𝑘
𝜇
𝑗𝑙

]
]
]
]
]
]
]
]
]
]
]

]

−1

,

(8)

where𝐺=(𝑔
𝑗𝑘𝑙
)
(𝑞𝑗+1)×(𝑞𝑗+1)

=𝑉
−1
=(V
𝑗𝑘𝑙
)
−1

(𝑞𝑗+1)×(𝑞𝑗+1)
, 𝑢
𝑗𝑘
(𝑘=1,

2, . . . , 𝑞
𝑗
) is the mean of the 𝑘th order statistic for the

standard extreme value distribution with size 𝑛
𝑗
, V
𝑗𝑘𝑙

(𝑘, 𝑙 =

1, 2, . . . , 𝑞
𝑗
) is the covariance of the 𝑘th and 𝑙th order

statistic for the standard extreme value distribution with size
𝑛
𝑗
, 𝑢
𝑗(𝑞𝑗+1)

is the mean of the (𝑞
𝑗
+ 1)th order statistic for

the standard extreme value distribution with size 𝑛
𝑗
+ 1,

and V
𝑗𝑘(𝑞𝑗+1)

= V
𝑗(𝑞𝑗+1)𝑘

(𝑘 = 1, 2, . . . , 𝑞
𝑗
+ 1) is the covariance

of the 𝑘th and (𝑞
𝑗
+ 1)th order statistic for the standard

extreme value distribution with size 𝑛
𝑗
+1.These values could

be all obtained by formula or table lookup [15].
The reliability rupture life with reliability of 𝑅 and its

upper and lower limits with confidence level 𝛾 could be calcu-
lated as follows:

𝑦
𝑅
= 𝑎 + �̂�𝑥 + �̂�lnln 1

𝑅
,

𝑦
𝑅𝑈

= 𝑎 + �̂�𝑥

+
�̂�

1 − 𝑢2
𝛾
𝑐
33

[lnln 1
𝑅
+ 𝑢
2

𝛾
(𝑐
13
+ 𝑐
23
𝑥) + 𝑢

𝛾√𝜔𝑅] ,

𝑦
𝑅𝐿

= 𝑎 + �̂�𝑥

+
�̂�

1 − 𝑢2
𝛾
𝑐
33

[lnln 1
𝑅
+ 𝑢
2

𝛾
(𝑐
13
+ 𝑐
23
𝑥) − 𝑢

𝛾√𝜔𝑅] ,

(9)

where 𝑐
𝑖𝑗
are elements of thematrix𝐶,𝜔

𝑅
=𝜔+𝑐

33
(lnln(1/𝑅))2

+2(𝑐
13
+𝑐
23
𝑥)lnln(1/𝑅), and𝜔 = 𝑢

2

𝛾
(𝑐
13
+𝑐
23
𝑥)
2
+(1−𝑐

33
𝑢
2

𝛾
)(𝑐
11
+

2𝑐
12
𝑥 + 𝑐
22
𝑥
2
).

The Failure Mechanism Consistency Analysis. This analysis
focused on the consistency of failure mechanism and acceler-
ated model parameter between the carbon fiber and cylinder
in the accelerated life test. Denote the model parameters of
the carbon fiber and the cylinder as 𝑎

1
, 𝑏
1
, and 𝜎

1
and 𝑎
2
, 𝑏
2
,

and 𝜎
2
, respectively. We assume the following.

(1) The distribution parameters 𝜎
1
, 𝜎
2
are two indepen-

dent normal populations. If the failure mechanism of
the carbon fiber is the same with the cylinder, the
mean and variance of the two normal populations are
the same [16, 17].

(2) Parameters of 𝑎
1
and 𝑎

2
reflect the life characteristic

of carbon fiber and cylinder, and then 𝑎
1
and 𝑎
2
have

no relation.

(3) The model parameters 𝑏
1
, 𝑏
2
are two independent

normal populations. If the acceleration of the carbon
fiber is the same with the cylinder, the mean and
variance of the two normal populations are the same.

Based on the above assumptions, (�̂�
1
, �̂�
1
) and (�̂�

2
, �̂�
2
) can

be taken as two bivariate normal populations. We can judge
the consistency of the mean vector and covariance matrix of
the two bivariate normal populations by hypothesis test.

(1) The Consistency Judgment of the Mean Vector. The two
independent normal populations are denoted by (�̂�

1
, �̂�
1
) ∼

𝑁
2
(𝜇
1
, Σ
1
) and (�̂�

2
, �̂�
2
) ∼ 𝑁

2
(𝜇
2
, Σ
2
). We sample 𝑛, 𝑚 >

2 specimens from them, respectively, and denote the mean
vectors by 𝑋, 𝑌, respectively, and the variance matrix by
𝑆
𝑖
(𝑖 = 1, 2). The hypothesis is

𝐻
0
: 𝜇
1
= 𝜇
2

𝐻
1
: 𝜇
1

̸= 𝜇
2
. (10)

When Σ
1
= Σ
2
and they were unknown, the test statistic

𝑇
2
=

𝑛𝑚

𝑛 + 𝑚
(𝑋 − 𝑌)

𝑇

𝑆
−1
(𝑋 − 𝑌) , (11)

where

𝑆 =
(𝑛 − 1) 𝑆

1
+ (𝑚 − 1) 𝑆

2

𝑛 + 𝑚 − 2
. (12)

And 𝐹 = (((𝑛 +𝑚−2) − 1)/2(𝑛 +𝑚−2))𝑇
2
∼ 𝐹(2, 𝑛 +𝑚−3).

Then the rejection region with the significance level 𝛼 is

{𝐹 > 𝐹
1−𝛼

(2, 𝑛 + 𝑚 − 3)} . (13)

(2) The Consistency Judgment of the Variance Matrix. The
hypothesis is

𝐻
0
: Σ
1
= Σ
2

𝐻
1
: Σ
1

̸= Σ
2
. (14)

The amendatory likelihood ratio statistic is

𝜆
∗
=

(𝑛 + 𝑚 − 2)
(𝑛+𝑚−2)𝑆1



(𝑛−1)/2𝑆2


(𝑚−1)/2

(𝑛 − 1)
(𝑛−1)/2

(𝑚 − 1)
(𝑚−1)/2𝑆1 + 𝑆2



(𝑛+𝑚−2)/2
. (15)

Then,

−2 ln 𝜆∗ ∼ 𝜒
2
(

𝑓

1 − 𝑑
) , (16)
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where

𝑓 =
1

2
𝑝 (𝑝 + 1) (𝑘 − 1) ,

𝑑 =
2𝑝
2
+ 3𝑝 − 1

6 (𝑝 + 1) (𝑘 − 1)
(

1

𝑛 − 1
+

1

𝑚 − 1
−

1

𝑛 + 𝑚 − 𝑘
)

(17)

and 𝑘 = 𝑝 = 2.
Then the rejection region with the significance level 𝛼 is

{𝜒
2
< 𝜒
2

𝛼
(

𝑓

1 − 𝑑
)} . (18)

The information fusion method
Based on the result of the integral best linear unbiased

estimation and the consistency analysis of failuremechanism,
we proposed an information fusion method for the covari-
ance matrixes of the T700 carbon fiber and the cylinder.
The fusion process can be accomplished by the two steps:
firstly, fusing the information only related to parameters 𝑏
and 𝜎 in the covariance matrix and then, secondly, to further
improve the evaluation accuracy of the covariance matrix for
model parameter of the cylinder, fusing the other information
related to 𝑏 and 𝜎.

Denote the point estimations of T700 carbon fiber and the
cylinder by 𝑎

1
, �̂�
1
, and �̂�

1
and 𝑎
2
, �̂�
2
, and �̂�

2
, respectively, and

their covariance matrix is

cov (𝑎
𝑖
, �̂�
𝑖
, �̂�
𝑖
) =

[
[

[

var (𝑎
𝑖
) cov (𝑎

𝑖
, �̂�
𝑖
) cov (𝑎

𝑖
, �̂�
𝑖
)

cov (𝑎
𝑖
, �̂�
𝑖
) var (�̂�

𝑖
) cov (�̂�

𝑖
, �̂�
𝑖
)

cov (𝑎
𝑖
, �̂�
𝑖
) cov (�̂�

𝑖
, �̂�
𝑖
) var (�̂�

𝑖
)

]
]

]

,

(𝑖 = 1, 2) .

(19)

Denote the covariance matrix of the bivariate normal
distribution of 𝑏

1
, 𝜎
1
and 𝑏
2
, 𝜎
2
, respectively, by

�̂�
𝑖
= [

var (�̂�
𝑖
) cov (�̂�

𝑖
, �̂�
𝑖
)

cov (�̂�
𝑖
, �̂�
𝑖
) var (�̂�

𝑖
)
] , (𝑖 = 1, 2) . (20)

The elements of the above matrixes are one part of (19).
The first step is fusing the information only related to

parameters 𝑏 and 𝜎 in the covariance matrix.
If the covariance matrixes 𝑉

1
and 𝑉

2
are certified to be

the same by the consistency analysis of the bivariate normal
distribution (𝑏

1
, 𝜎
1
) and (𝑏

2
, 𝜎
2
), the unbiased estimation of

the covariancematrix of the bivariate normal distribution can
be obtained by the following equation:

�̂� =
(𝑛
1
− 1) �̂�

1
+ (𝑛
2
− 1) �̂�

2

𝑛
1
+ 𝑛
2
− 2

. (21)

Compared to the small ratio of failure and high censored
time of the cylinder life test, the data and failures of the carbon
fiber are much greater and thus the evaluation result is more
accurate.Therefore, when the matrix �̂�

2
is replaced by �̂�with

fusing the information of parameters 𝑏 and 𝜎 according to the
above method, the prediction result of the cylinder is more

accurate. The covariance matrix of 𝑏 and 𝜎 based on fusion
could be written as

�̂� = [
var (�̂�

12
) cov (�̂�

12
, �̂�
12
)

cov (�̂�
12
, �̂�
12
) var (�̂�

12
)

] . (22)

The covariancematrix cov(𝑎
2
, �̂�
2
, �̂�
2
) for the cylinder with

bottom right four elements replaced by �̂� could be written as

cov (𝑎
2
, �̂�
2
, �̂�
2
)


=
[
[

[

var (𝑎
2
) cov (𝑎

2
, �̂�
2
) cov (𝑎

2
, �̂�
2
)

cov (𝑎
2
, �̂�
2
) var (�̂�

12
) cov (�̂�

12
, �̂�
12
)

cov (𝑎
2
, �̂�
2
) cov (�̂�

12
, �̂�
12
) var (�̂�

12
)

]
]

]

.

(23)

The second step is fusing the other elements related to 𝑏, 𝜎
of the covariance matrix.

Based on the same correlation coefficient between the
parameters, the value of cov(𝑎

2
, �̂�
12
), cov(𝑎

2
, �̂�
12
) with fusing

the information of the T700 carbon fiber can be calculated as

cov (𝑎
2
, �̂�
12
) = √

var (�̂�
12
)

var (�̂�
2
)

⋅ cov (𝑎
2
, �̂�
2
) ,

cov (𝑎
2
, �̂�
12
) = √

var (�̂�
12
)

var (�̂�
2
)
⋅ cov (𝑎

2
, �̂�
2
) .

(24)

According to the above two steps, the covariance matrix
cov(𝑎
2
, �̂�
12
, �̂�
12
) can be written as

cov (𝑎
2
, �̂�
12
, �̂�
12
)

=
[
[

[

var (𝑎
2
) cov (𝑎

2
, �̂�
12
) cov (𝑎

2
, �̂�
12
)

cov (𝑎
2
, �̂�
12
) var (�̂�

12
) cov (�̂�

12
, �̂�
12
)

cov (𝑎
2
, �̂�
12
) cov (�̂�

12
, �̂�
12
) var (�̂�

12
)

]
]

]

.

(25)

Comparing with (25) and (19) (𝑖 = 2), it can be found that
the elements of parameter covariance matrix of the cylinder
have changed in addition to the variance vâr(𝑎

2
) by fusing

the carbon fiber test information, thus making the evaluation
result more reasonable. It should be noted that the parameter
covariance matrix can be obtained by the integrated best
linear unbiased estimation as follows:

cov (𝑎, �̂�, �̂�) = 𝜎
2
𝐶. (26)

In the calculation of the upper and lower limits for the
reliability rupture life, thematrix𝐶would be used.Therefore,
in fusion process of the covariance matrix with T700 carbon
fiber information and cylinder information, we can introduce
the matrix 𝐶 directly in the above method to make the
calculation easier.

4.2. Examples. To verify the design level of the rupture life of
a certain type of cylinder, a unit made accelerated life tests
for T700 carbon fiber composite material and the cylinder
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Table 4: Accelerated life test information for T700 carbon fiber and
the cylinder.

Subjects Stress level
T700 carbon fiber (𝑁) 1700 1800 1900 — —
Cylinder (the percentage of limit
load %) 63.6 72.7 80 85 90

structure, respectively. The test temperature is 40∘C, and the
test load conditions are shown in Table 4.

The diagramof rupture life data for T700 carbon fiber and
the cylinder structure from the test is as in Figures 6 and 7.

(1) The Result of the Integral Best Unbiased Estimation. The
results of model parameters and the matrix 𝐶 obtained by
the integrated best linear unbiased estimation are shown in
Table 5.

(2) The Test of Mean Vector and Covariance Matrix Equal
to (�̂�, �̂�) of the Carbon Fiber and the Cylinder. We consider
parameters (�̂�, �̂�) as a bivariate normal population and test
whether the mean vectors and covariance matrixes of (�̂�, �̂�)
for the carbon fiber and the cylinder are equal or not, and the
results are shown in Table 6.

From Table 6, the observed values of the test statistic are

𝐹 = 8.09725 < 𝐹
0.975

(2, 5) = 8.43,

𝜒
2
= 1.9468 > 𝜒

2

0.025
(5) .

(27)

Then, we can receive the null hypothesis. The mean vectors
and the covariance matrixes of (�̂�, �̂�) for the carbon fiber and
the cylinder are equal.

(3) The Information Fusion of the T700 Carbon Fiber and
the Cylinder. By using the method in this paper, the matrix
information of carbon fiber in Table 5 can be fused into the
cylinder and the upper and lower limits of the reliability
rupture life at confidence level 𝛾 = 0.95 can be calculated.
The comparison results are shown in Table 7.

From Table 7, when the reliability is 0.9, the evaluation
accuracy of the reliability life of the cylinder is increased by
35%.

The curves of upper and lower limits of the logarithmic
reliability rupture life 𝑦

𝑅
changed with the reliability 𝑅 are

shown in Figure 7.
Figure 8 shows that the upper and lower limits of the

reliability rupture lifewill bemore accuratewith the reliability
changed after fusion of the information of T700 carbon fiber
and the interval length is much shorter.

5. Conclusion

(1) Since the carbon fiber bears themain load at work, the
acceleration and failure mechanism of T700 carbon
fiber and the cylinder are the same. And it can be
proved by the structure analysis and the statistic test
of the test data.
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Figure 6: Rupture life of T700 carbon fiber.
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Figure 7: Ruptures life of the cylinder.

(2) When the acceleration and failure mechanism are the
same, the evaluation accuracy of the reliability life
for the cylinder can be improved by fusion of the
information of the carbon fiber.

(3) The method in this paper is based on Weibull distri-
bution and the inverse power law model for struc-
tured products. It can be applied to other location-
scale family distribution and acceleration models.
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Table 5: Contrast result between T700 carbon fiber and the cylinder with the integrated best linear unbiased estimation.

Result T700 carbon fiber Cylinder
(𝑎, �̂�, �̂�) (157.177, −19.872, 2.32) (6.39, −18.41, 1.20)

𝐶
[
[

[

495.06 −66.08 0.46

−66.08 8.82 −0.06

0.46 −0.06 0.012

]
]

]

[
[

[

0.53 2.70 −0.06

2.70 21.49 −1.05

−0.06 −1.05 0.13

]
]

]

Table 6: The test results of mean vector and covariance matrix for a bivariate normal population (�̂�, �̂�) of carbon fiber and cylinder.

Null hypothesis Rejection region Observation value Critical value 𝛼 = 0.025

𝜇
1
= 𝜇
2

{𝐹 > 𝐹
1−𝛼

(2, 𝑛 + 𝑚 − 3)} 8.09725 8.43
Σ
1
= Σ
2

{𝜒
2
< 𝜒
2

𝛼
(𝑓/(1 − 𝑑))} 1.9468 0.831

Table 7: Contrast result of cylinder after fusion information of T700 carbon fiber.

Result The original data Fusion of the information of T700

𝐶
[
[

[

0.53 2.70 −0.06

2.70 21.49 −1.05

−0.06 −1.05 0.13

]
]

]

[
[

[

0.53 2.08 −0.037

2.08 12.76 −0.37

−0.037 −0.37 0.049

]
]

]

The interval estimation of 𝑦
𝑅

[13.79, 27.35] [14.29, 23.15]
Interval length 13.56 8.86
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Figure 8: Change curves for 𝑦
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and upper and lower limits.
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An optimal harvesting problem for a stochastic food-chain system with Markovian switching is investigated in this paper. Firstly,
the existence, uniqueness, and positivity of the food-chain system’s solution are proved. Secondly, persistent in mean of the system
is obtained. Then the optimal harvesting policy is discussed. Finally, the main results are illustrated by several examples.

1. Introduction

Optimal harvesting problem is an important and interesting
topic from both biological and mathematical point of view.
Since Clark’s works [1, 2], one of the most important area-
optimal harvesting problems have received a lot of attention
and been studied widely. Among these studies, a large num-
ber of literatures were focused on deterministicmodels [3–9],
with some on the stochastic versions [10–17], but only a few
on the food-chain systems. Furthermore, it is well known that
the theory of food chains illustrated the balance of nature and
that no animal or plant can exist independently. Motivated
by these arguments presented above, we are interested in
the optimal harvesting problems on the following stochastic
food-chain system:

𝑑𝑥 = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
𝑥 −

𝑎
2
𝑦

𝑚
1
(𝜉 (𝑡)) + 𝑥

] 𝑥 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑥𝑑𝐵

1
(𝑡) ,

𝑑𝑦 = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
𝑦

𝑚
1
(𝜉 (𝑡)) + 𝑥

−
𝑏
2
𝑧

𝑚
2
(𝜉 (𝑡)) + 𝑦

] 𝑦 𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) 𝑦𝑑𝐵

2
(𝑡) ,

𝑑𝑧 = [𝑟
3
(𝜉 (𝑡)) −

𝑐𝑧

𝑚
2
(𝜉 (𝑡)) + 𝑦

] 𝑧 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) 𝑧𝑑𝐵

3
(𝑡)

(1)

with the initial value (𝑥
0
, 𝑦

0
, 𝑧

0
). Where 𝐵

𝑖
(𝑡), 𝑖 = 1, 2, 3,

is a standard Brownian motion and 𝑒 is the harvesting
effort (control parameter), and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) represent the
population densities of three species (resource, consumer,
and predator) at time 𝑡, respectively. All parameters are
positive constants and parametric functions are continuous
and positive. 𝑟

𝑖
(⋅), 𝑖 = 1, 2, 3, represent the intrinsic growth

rate of species 𝑥, 𝑦, 𝑧, respectively; 𝑎
1
measures the strength

of competition among individuals of species 𝑥; 𝑎
2
is the

maximum value of the per capita reduction rate of 𝑥 due to
𝑦; 𝑏

1
, 𝑏

2
, and 𝑐 have similar meaning to 𝑎

2
; 𝑚

1
(⋅) measures

the extent to which the environment provides protection to
species 𝑥 and 𝑦; 𝑚

2
(⋅) measures the extent to which the

environment provides protection to species 𝑦 and 𝑧; 𝜉(𝑡) be a
right continuous Markov chain; 𝜎

𝑖
(⋅), 𝑖 = 1, 2, 3, represents

the intensity of the white noise. This system is the exten-
sion of a predator-prey model with modified Leslie-Gower
and Holling-type II schemes with stochastic perturbation
which was discussed by Ji et al. [18], Song et al. [19], and
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Guo et al. [20], and there the factor of Markovian switching
is not considered.

In themost literatures [1, 2] the sustainable yield function
is used as the harvesting function. Here the harvesting
function associated with (1) is

𝐹 (𝑒) = 𝑒 lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡
. (2)

This type of harvesting function is also used by some other
papers, such as Wang [21, chapter 4] and Zou and Wang [22]
and defined as the time averaging yield function.The optimal
harvesting problem considered in this paper is then stated as
follows. Find a harvesting effort 𝑒∗ such that

𝐹 (𝑒
∗
) = sup

𝑒≥0

{𝐹 (𝑒)} . (3)

Based on the aforementioned discussion, obviously, the
first and most important duty is to discuss the existence of
lim

𝑡→∞
(∫

𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡) and then the optimal harvesting prob-

lem. Therefore, the rest of the paper is organized as follows.
In Section 2, we show that system has a global positive
solution. In Section 3, we obtain some long time behavior of
the solution, especially the property of persistent in mean,
which ensures the existence of the time averaging yield
function and its explicit expression is given. In Section 4,
the optimal harvesting policies are investigated. In Section 5,
we illustrate our main results through several numerical
examples. Last but not least, conclusions are drawn in
Section 6.

On the other hand, for convenience, we give some
notations and assumptions in the rest of this section.

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous whileF

0
contains all P-null

sets). The standard Brownian motion 𝐵
𝑖
(𝑡), 𝑖 = 1, 2, 3, is

defined on this probability space.
The right continuous Markov chain 𝜉(𝑡) on this probabil-

ity space taking values in a finite-state space 𝑆 = {1, 2, . . . , 𝑁}

with the generator 𝛾 = (𝛾
𝑘𝑙
)
𝑁×𝑁

is given by

𝑃 (𝜉 (𝑡 + 𝛿) = 𝑙 | 𝜉 (𝑡) = 𝑘)

= {
𝛾
𝑘𝑙
𝛿 + 𝑜 (𝛿) if 𝑙 ̸= 𝑘,

1 + 𝛾
𝑘𝑙
𝛿 + 𝑜 (𝛿) if 𝑙 = 𝑘,

(4)

where 𝛿 > 0. Here 𝛾
𝑘𝑙
is the transition rate from 𝑘 to 𝑙 and

𝛾
𝑘𝑙
≥ 0 if 𝑙 ̸= 𝑘, while

𝛾
𝑘𝑘

= 1 −∑

𝑙 ̸=𝑘

𝛾
𝑘𝑙
. (5)

We assume that the Markov chain 𝜉(⋅) and the Brownian
motion 𝐵

𝑖
(⋅) are independent of each other, 𝑖 = 1, 2, 3. As

a standing hypothesis we also assume in this paper that the
Markov chain 𝜉(𝑡) is irreducible. This is very reasonable as
it means that the system will switch from any regime to any
other regime. This is equivalent to the condition that, for any

𝑘, 𝑙 ∈ 𝑆, one can find finite numbers 𝑖
1
, . . . , 𝑖

𝑛
∈ 𝑆 such that

𝛾
𝑘𝑖
1

𝛾
𝑖
1
𝑖
2

⋅ ⋅ ⋅ 𝛾
𝑖
𝑛
𝑙
> 0. Under this condition, the Markov chain

has a unique stationary distribution 𝜋 = (𝜋
1
, 𝜋

2
, . . . , 𝜋

𝑁
) ∈

𝑅
𝑁 and 𝜋

𝑘
> 0 for any 𝑘 ∈ 𝑆.

In order to obtain some properties of the system, some
assumptions are given in the following. These assumptions
are conventional; they guarantee that the ecosystem is not
collapsed as time lapses.

Assumption 1. Consider 0 < 𝐷
1

:= min
𝜉∈𝑆

{𝑟
1
(𝜉) − 𝑒 −

0.5𝜎
2

1
(𝜉)}, 0 < 𝐷

𝑖
:= min

𝜉∈𝑆
{𝑟
𝑖
(𝜉)−0.5𝜎

2

𝑖
(𝜉)} ≤ max

𝜉∈𝑆
{𝑟
𝑖
(𝜉)−

0.5𝜎
2

𝑖
(𝜉)} := 𝐴

𝑖
, 𝑖 = 2, 3.

Assumption 2. 𝐷
2
− 𝑏

2
(𝑃

3
+ 𝜖) > 0, 𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) >

0, 𝑃
1

> 0, where 𝑃
3

:= (1/𝑐)∑
𝑁

𝑖=1
𝜋
𝑖
(𝑟
3
(𝑖) − 0.5𝜎

2

3
(𝑖)),

𝑃
2

:= (1/𝑏
1
)[∑

𝑁

𝑖=1
𝜋
𝑖
(𝑟
2
(𝑖) − 0.5𝜎

2

2
(𝑖)) − 𝑏

2
𝑃
3
], 𝑃

1
:=

(1/𝑎
1
)[∑

𝑁

𝑖=1
𝜋
𝑖
(𝑟
1
(𝑖) − 𝑒 − 0.5𝜎

2

1
(𝑖)) − 𝑎

2
𝑃
2
], and 𝜖 is positive

and sufficiently small.

Let �̌�
𝑖
= max

𝜉∈𝑆
{𝑚(𝜉)}, �̂�

𝑖
= min

𝜉∈𝑆
{𝑚(𝜉)}, 𝑖 = 1, 2,

and𝐾 denotes a float constant in the rest of this paper, which
expresses different constants in different positions.

The key method used in this paper is the comparison
theorem for stochastic equations.This theorem for stochastic
differential equations was developed by Ikeda and Watanabe
[23] and has been used by many authors [24–26].

2. Positive and Global Solutions

As the state of the system (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is the population
density of species in the system at time 𝑡, it should be
nonnegative. Moreover, in order for a stochastic differential
equation to have a unique global (i.e., no explosion in a finite
time) solution for any given initial data, the coefficients of the
equation are generally required to satisfy the linear growth
condition and local Lipschitz condition [25]. However, the
coefficients of each equation in system obey neither the linear
growth condition nor local Lipschitz continuous. In this
section, we show existence and uniqueness of the positive
solution.

Lemma 3. For any initial value 𝑥
0
> 0, 𝑦

0
> 0, 𝑧

0
> 0, system

has a unique positive local solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for 𝑡 ∈

[0, 𝜏
𝑒
) almost surely (a.s.), where 𝜏

𝑒
is the explosion time.

Proof. To begin with, consider the following equations:
𝑑𝑢 (𝑡)

= [𝑏
1
(𝜉 (𝑡)) − 𝑎

1
𝑒
𝑢(𝑡)

−
𝑎
2
𝑒
V(𝑡)

𝑚
1
(𝜉 (𝑡)) + 𝑒𝑢(𝑡)

]𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑑𝐵

1
(𝑡) ,

𝑑V (𝑡)

= [𝑏
2
(𝜉 (𝑡)) −

𝑏
1
𝑒
V(𝑡)

𝑚
1
(𝜉 (𝑡)) + 𝑒𝑢(𝑡)

−
𝑏
2
𝑒
𝑤(𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑒V(𝑡)

]𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) 𝑑𝐵

2
(𝑡) ,
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𝑑𝑤 (𝑡)

= [𝑏
3
(𝜉 (𝑡)) −

𝑐𝑒
𝑤(𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑒V(𝑡)

]𝑑𝑡 + 𝜎
3
(𝜉 (𝑡)) 𝑑𝐵

3
(𝑡)

(6)

on 𝑡 ≥ 0 with initial value 𝑢(0) = ln𝑥
0
, V(0) = ln𝑦

0
, 𝑤(0) =

ln 𝑧
0
, where 𝑏

1
(𝑡) = 𝑟

1
(𝜉(𝑡)) − 𝑒 − 0.5𝜎

2

1
(𝜉(𝑡)), 𝑏

𝑖
(𝑡) = 𝑟

𝑖
(𝜉(𝑡)) −

0.5𝜎
2

𝑖
(𝜉(𝑡)), 𝑖 = 2, 3. Notice that the last equations’ coefficients

satisfy the local Lipschitz condition; thus there is a unique
solution (𝑢(𝑡), V(𝑡), 𝑤(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
). Therefor, it follows

from Itô’s formula that 𝑥(𝑡) = 𝑒
𝑢(𝑡), 𝑦(𝑡) = 𝑒

V(𝑡), 𝑧(𝑡) = 𝑒
𝑤(𝑡) is

the unique positive local solution of system with initial value
𝑥
0
> 0, 𝑦

0
> 0, 𝑧

0
> 0.

Lemma 3 only tells us that there is a unique positive local
solution to (1). Next, we show this solution is global, that is,
𝜏
𝑒
= +∞. For convenience, we define six equations:

𝑑�̌� (𝑡) = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
�̌�] �̌� 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) �̌�𝑑𝐵

1
(𝑡) ,

�̌� (0) = 𝑥
0
,

𝑑 ̌𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
̌𝑦

𝑚
1
(𝜉 (𝑡)) + �̌�

] ̌𝑦 𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) ̌𝑦𝑑𝐵

2
(𝑡) ,

̌𝑦 (0) = 𝑦
0
,

𝑑�̂� (𝑡) = [𝑟
3
(𝜉 (𝑡)) −

𝑐�̂�

𝑚
2
(𝜉 (𝑡))

] �̂� 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) �̂�𝑑𝐵

3
(𝑡) ,

�̂� (0) = 𝑧
0
,

𝑑�̌� (𝑡) = [𝑟
3
(𝜉 (𝑡)) −

𝑐�̌�

𝑚
2
(𝜉 (𝑡)) + ̌𝑦

] �̌� 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) �̌�𝑑𝐵

3
(𝑡) ,

�̌� (0) = 𝑧
0
,

𝑑𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
𝑦

�̂�
1

−
𝑏
2
�̌�

�̂�
2

]𝑦 𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) 𝑦𝑑𝐵

2
(𝑡) ,

𝑦 (0) = 𝑦
0
,

𝑑𝑥 (𝑡) = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
𝑥 −

𝑎
2
̌𝑦

�̂�
1

] 𝑥 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑥𝑑𝐵

1
(𝑡) ,

𝑥 (0) = 𝑥
0
.

(7)

Obviously, when 𝑡 ∈ [0, 𝜏
𝑒
), by the comparison theorem

for stochastic equations [27, Theorem 3.1], it yields

𝑥 ≤ 𝑥 ≤ �̌�, 𝑦 ≤ 𝑦 ≤ ̌𝑦, �̂� ≤ 𝑧 ≤ �̌�. (8)

Furthermore, 𝑥, �̌�, 𝑦, ̌𝑦, �̂�, �̌� are all existing on 𝑡 ≥ 0, and
hence we have the following.

Theorem 4. There is a unique positive solution 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)
on 𝑡 ≥ 0 to (1) a.s. for any initial value 𝑥

0
> 0, 𝑦

0
> 0, 𝑧

0
> 0,

and relations

𝑥 ≤ 𝑥 ≤ �̌�, 𝑦 ≤ 𝑦 ≤ ̌𝑦, �̂� ≤ 𝑧 ≤ �̌� (9)

are all satisfied on 𝑡 ≥ 0.

3. The Long Time Behavior

Theorem 4 shows that the solution of the system (1) will
remain in the positive cone𝑅3

+
.This nice property provides us

with a great opportunity to discuss how the solution varies in
𝑅
3

+
in detail. In this sectionwewill give some long time behav-

ior of the solution, especially the property of persistent in
mean, which ensures the existence of lim

𝑡→∞
(∫

𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡).

Lemma 5 (see [28]). If Assumption 1 is satisfied, then one has

lim
𝑡→∞

ln �̌� (𝑡)
𝑡

= 0, lim
𝑡→∞

ln �̂� (𝑡)
𝑡

= 0 𝑎.𝑠. (10)

Lemma 6. If Assumption 1 is satisfied, then one has

lim
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0, lim

𝑡→∞

ln �̌� (𝑡)
𝑡

= 0 𝑎.𝑠. (11)

Proof. Firstly, we give an auxiliary equation

𝑑 ̌𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
̌𝑦

�̌�
] ̌𝑦 𝑑𝑡 + 𝜎

2
(𝜉 (𝑡)) ̌𝑦𝑑𝐵

2
(𝑡) ,

̌𝑦 (0) = 𝑦
0
.

(12)

Obviously, ̌𝑦(𝑡) ≤ ̌𝑦(𝑡), and using the similar method of
Lemma 5, we have

lim
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0 a.s. (13)

Therefore,

0 = lim inf
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ lim inf

𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
a.s. (14)

Next, we need only to prove lim sup
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) ≤

0 a.s.
The quadratic variation of ∫

𝑡

0
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠) is

∫
𝑡

0
𝜎
2

2
(𝜉(𝑠))𝑑𝑠 ≤ 𝐾𝑡, and by the strong law of large numbers

for local martingales, we have

∫
𝑡

0
𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)

𝑡
→ 0 a.s., 𝑡 → ∞. (15)

Therefore, for all 𝜖 > 0, ∃0 < 𝑇 < ∞, we have

∫

𝑡

0

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (16)
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From this, we have

∫

𝑡

𝑠

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖 (𝑠 + 𝑡) a.s., 𝑡 > 𝑠 ≥ 𝑇. (17)

On the other hand, from Lemma 5, we have
−𝜖𝑡 ≤ ln �̌� (𝑡) ≤ 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (18)

By the arguments as above, when 𝑡 > 𝑠 ≥ 𝑇, we can get
1

̌𝑦 (𝑡)

= 𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠))) 𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

× [
1

̌𝑦 (𝑇)
+∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + �̌�

× 𝑒
∫
𝑠

𝑇
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑇
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠]

≥ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + �̌�

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠

≥∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 𝑒𝜖𝑠

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠

≥ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 1

𝑒
−𝜖𝑠

𝑒
𝐴
2
(𝑠−𝑡)

𝑒
−𝜖(𝑡+𝑠)

𝑑𝑠

≥
𝑏
1

�̌�
1
+ 1

𝑒
−(𝐴
2
+𝜖)𝑡

∫

𝑡

𝑇

𝑒
(𝐴
2
−2𝜖)𝑠

𝑑𝑠

=
𝑏
1

(�̌�
1
+ 1) (𝐴

2
− 2𝜖)

𝑒
−(𝐴
2
+𝜖)𝑡

(𝑒
(𝐴
2
−2𝜖)𝑡

− 𝑒
(𝐴
2
−2𝜖)𝑇

) .

(19)

Therefore, we obtain

𝐴
2
+ 𝜖 ≥ lim sup

𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
+ 𝐴

2
− 2𝜖; (20)

that is

lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ 3𝜖. (21)

For the arbitrary of 𝜖 > 0, we must have

lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ 0. (22)

Hence, lim
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) = 0 a.s., and the second con-
clusion can be proved similarly.

Theorem 7. If Assumption 1 is satisfied, then we have

lim
𝑡→∞

ln 𝑧 (𝑡)
𝑡

= 0 a.s., (23)

lim
𝑡→∞

∫
𝑡

0
(𝑧 (𝑠) / (𝑚

2
(𝜉 (𝑠)) + 𝑦 (𝑠))) 𝑑𝑠

𝑡

=
1

𝑐

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
3
(𝑖) − 0.5𝜎

2

3
(𝑖)) .

(24)

Proof. Following from lim
𝑡→∞

(ln �̂�(𝑡)/𝑡) = 0 a.s., lim
𝑡→∞

(ln �̌�(𝑡)/𝑡) = 0 a.s., and �̂� ≤ 𝑧 ≤ �̌�. Obviously, we have

lim
𝑡→∞

ln 𝑧 (𝑡)
𝑡

= 0 a.s. (25)

In the following, we prove the second conclusion.
Let 𝑉(𝑧, 𝜉) = ln 𝑧; applying Itôs formula gives

𝑑 ln 𝑧 (𝑡) = (𝑟
3
(𝜉 (𝑡)) − 0.5𝜎

2

3
(𝜉 (𝑡)) −

𝑐𝑧 (𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑦 (𝑡)

) 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) 𝑑𝐵

3
(𝑡) .

(26)

Hence

ln 𝑧 (𝑡) − ln 𝑧
0

= ∫

𝑡

0

(𝑟
3
(𝜉 (𝑠)) − 0.5𝜎

2

3
(𝜉 (𝑠))) 𝑑𝑠

− ∫

𝑡

0

𝑐𝑧 (𝑠)

𝑚
2
(𝜉 (𝑠)) + 𝑦 (𝑠)

𝑑𝑠 + ∫

𝑡

0

𝜎
3
(𝜉 (𝑠)) 𝑑𝐵

3
(𝑠) .

(27)

Based on the first conclusion in this theorem, the strong
law of large numbers for local martingales, and the ergodic
property of Markov chain, the second conclusion is proved.

Theorem 8. If Assumptions 1 and 2 are satisfied, then one has

lim
𝑡→∞

ln𝑦 (𝑡)
𝑡

= 0, lim
𝑡→∞

ln𝑥 (𝑡)
𝑡

= 0, 𝑎.𝑠.

lim
𝑡→∞

∫
𝑡

0
(𝑦 (𝑠) /𝑚

1
(𝜉 (𝑠)) + 𝑥 (𝑠)) 𝑑𝑠

𝑡

=
1

𝑏
1

[

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
2
(𝑖) − 0.5𝜎

2

2
(𝑖)) − 𝑏

2
𝑃
3
] ,

lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡

=
1

𝑎
1

[

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
1
(𝑖) − 𝑒 − 0.5𝜎

2

1
(𝑖)) − 𝑎

2
𝑃
2
] .

(28)

Proof. Based on lim
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) = 0 and 𝑦 ≤ ̌𝑦, we have

lim sup
𝑡→∞

ln𝑦 (𝑡)
𝑡

≤ lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0 a.s. (29)

Next, we need only to prove lim inf
𝑡→∞

(ln𝑦(𝑡)/𝑡) ≥

0 a.s.
The quadratic variation of ∫

𝑡

0
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠) is

∫
𝑡

0
𝜎
2

2
(𝜉(𝑠))𝑑𝑠 ≤ 𝐾𝑡, and by the strong law of large numbers

for local martingales, we have

∫
𝑡

0
𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)

𝑡
→ 0 a.s., 𝑡 → ∞. (30)
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Therefore, for all 𝜖 > 0, ∃0 < 𝑇 < ∞, we have

∫

𝑡

0

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (31)

From this, we have

∫

𝑡

𝑠

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖 (𝑠 + 𝑡) a.s., 𝑡 > 𝑠 ≥ 𝑇. (32)

On the other hand, from Lemma 5, we have

−𝜖𝑡 ≤ ln �̌� (𝑡) ≤ 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (33)

By the arguments as above, when 𝑡 > 𝑠 ≥ 𝑇, we can get

1

𝑦 (𝑡)
=

1

𝑦 (𝑇)
𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠)))𝑑𝑠−∫

𝑡

𝑇
(𝑏
2
𝑧(𝑠)/(𝑚

2
(𝜉(𝑠))+𝑦(𝑠)))𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

+ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 𝑥 (𝑠)

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏−∫

𝑠

𝑡
(𝑏
2
𝑧(𝜏)/(𝑚

2
(𝜉(𝜏))+𝑦(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)
𝑑𝑠

≤
1

𝑦 (𝑇)
𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠)))𝑑𝑠−∫

𝑡

𝑇
(𝑏
2
𝑧(𝑠)/(𝑚

2
(𝜉(𝑠))+𝑦(𝑠)))𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

+ ∫

𝑡

𝑇

𝑏
1

�̂�
1

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏−∫

𝑠

𝑡
(𝑏
2
𝑧(𝜏)/(𝑚

2
(𝜉(𝜏))+𝑦(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)
𝑑𝑠

=: 𝐼
1
+ 𝐼

2
.

(34)

Based on the second conclusion of Theorem 7, for all 𝜖 > 0,
∃0 < 𝑇 < ∞, when 𝑡 > 𝑠 > 𝑇, we have

∫

𝑡

𝑇

𝑧 (𝑠)

𝑚
2
(𝜉 (𝑠)) + 𝑦 (𝑠)

𝑑𝑠 < (𝑃
3
+ 𝜖) 𝑡 − (𝑃

3
− 𝜖) 𝑇 a.s.,

∫

𝑡

𝑠

𝑧 (𝜏)

𝑚
2
(𝜉 (𝜏)) + 𝑦 (𝜏)

𝑑𝜏 < (𝑃
3
+ 𝜖) 𝑡 − (𝑃

3
− 𝜖) 𝑠 a.s.

(35)

Thus,

𝐼
1
≤

1

𝑦 (𝑇)
𝑒
−[𝐷
2
−𝑏
2
(𝑃
3
+𝜖)](𝑡−𝑇)+[𝑡+(2𝑏

2
+1)𝑇]𝜖

≤ 𝐾𝑒
[𝑡+(2𝑏

2
+1)𝑇]𝜖a.s.,

𝐼
2
≤ ∫

𝑡

𝑇

𝐾𝑒
[𝑡+(2𝑏

2
+1)𝑠]𝜖

𝑑𝑠 ≤ 𝐾𝑒
(2𝑏
2
+2)𝑡𝜖a.s.

(36)

Hence, we obtain 1/𝑦(𝑡) ≤ 2𝐾𝑒
(2𝑏
2
+2)𝑡𝜖 a.s., and further-

more

lim sup
𝑡→∞

(
− ln𝑦 (𝑡)

𝑡
) ≤ (2𝑏

2
+ 2) 𝜖. (37)

In other words,

lim inf
𝑡→∞

ln𝑦 (𝑡)
𝑡

≥ − (2𝑏
2
+ 2) 𝜖. (38)

For the arbitrary of 𝜖 > 0, we must have

lim inf
𝑡→∞

ln𝑦 (𝑡)
𝑡

≥ 0. (39)

The first assertion is proved. The assertion
lim

𝑡→∞
(ln𝑥(𝑡)/𝑡) = 0, a.s. can be proved similarly.

Similarly to the proof of the second assertion of
Theorem 7, the last two assertions can be proved.

Definition 9 (see [5]). The system is said to be persistent in
mean, if

lim inf
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡
> 0,

lim inf
𝑡→∞

∫
𝑡

0
𝑦 (𝑠) 𝑑𝑠

𝑡
> 0,

lim inf
𝑡→∞

∫
𝑡

0
𝑧 (𝑠) 𝑑𝑠

𝑡
> 0 a.s.

(40)

Theorem 10. If Assumptions 1 and 2 are satisfied, then the
system is persistent in mean.

Proof. lim inf
𝑡→∞

(∫
𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡) > 0 is already proved in

Theorem 8.
From the third assertion of Theorem 8, we have

lim inf
𝑡→∞

∫
𝑡

0
𝑦 (𝑠) 𝑑𝑠

�̂�
1
𝑡

≥ lim
𝑡→∞

∫
𝑡

0
(𝑦 (𝑠) / (𝑚

1
(𝜉 (𝑠)) + 𝑥 (𝑠))) 𝑑𝑠

𝑡
= 𝑃

2
> 0;

(41)

that is, lim inf
𝑡→∞

(∫
𝑡

0
𝑦(𝑠)𝑑𝑠/𝑡) > 0.
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From the second assertion of Theorem 7, we have

lim inf
𝑡→∞

∫
𝑡

0
𝑧 (𝑠) 𝑑𝑠

�̂�
2
𝑡

≥ lim
𝑡→∞

∫
𝑡

0
(𝑧 (𝑠) / (𝑚

2
(𝜉 (𝑠)) + 𝑦 (𝑠))) 𝑑𝑠

𝑡
= 𝑃

3
> 0;

(42)

that is, lim inf
𝑡→∞

(∫
𝑡

0
𝑧(𝑠)𝑑𝑠/𝑡) > 0.

This theorem is proved.

4. The Optimal Harvesting Policies

Based on the explicit expression of the time averaging yield
function obtained in the last section, here we discuss the
optimal harvesting problem mentioned in Section 1.

Theorem 11. If Assumptions 1 and 2 is satisfied, then the
optimal harvesting effort is

𝑒
∗
= min {𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) , 𝑒} , (43)

where 𝐷
1
= min

𝜉∈𝑆
{𝑟
1
(𝜉) − 0.5𝜎

2

1
(𝜉)}, 𝑒 = 0.5Σ − 0.5𝑎

2
𝑃
2
,

Σ = ∑
𝑁

𝑖=1
𝜋
𝑖
(𝑟
1
(𝑖)−0.5𝜎

2

1
(𝑖)), and the optimal harvesting output

is

𝐹 (𝑒
∗
) =

1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒

∗
− (𝑒

∗
)
2

] . (44)

Proof. Based onTheorem 8, the optimization problem can be
expressed as follows:

max 𝐹 (𝑒) =
1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒 − 𝑒

2
]

s.t. 𝑒 ≤ 𝐷
1

(Assumption 1)

𝑒 ≤ 𝐷
1
− 𝑎

2
(𝑃

2
+ 𝜖) (Assumption 2)

𝑒 ≤ Σ − 𝑎
2
𝑃
2

(Assumption 2)

𝑒 ≥ 0.

(45)

From the definitions of 𝐷
1
and Σ, we get 𝐷

1
≤ Σ.

Therefore, the above optimization problem can be simplified
as follows:

max 𝐹 (𝑒) =
1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒 − 𝑒

2
]

s.t. 0 ≤ 𝑒 ≤ 𝐷
1
− 𝑎

2
(𝑃

2
+ 𝜖) .

(46)

Because the objective function is concave, and we can
obtain the unique maximum point easily as

𝑒
∗
= min {𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) , 𝑒} , (47)

here the 𝑒 is obtained by letting 𝑑𝐹(𝑒)/𝑑(𝑒) = 0.
Substituting it into the harvesting function, we obtain the

optimal harvesting output

𝐹 (𝑒
∗
) =

1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒

∗
− (𝑒

∗
)
2

] . (48)

This theorem is proved.

Remark 12. (i)That the feasible zone of optimization problem
(46) is nonempty is guaranteed by Assumptions 1 and 2.

(ii) From the explicit expression of the optimal harvesting
effort, we can easily investigate how the parameters influence
on it, such that 𝑒∗ is decreasing in 𝑎

2
, and this claim coincides

with the fact that if the consumer’s (𝑦(𝑡)) consuming capacity
is enhanced (𝑎

2
augments), the harvesting effort must reduce

(𝑒∗ go down), or the resource (𝑥(𝑡)) will be extinct and the
whole ecosystem is crashed.

5. Numerical Results

We present numerical experiments in this section to show
how the proposedmodel works in the constructive examples.
The results enhance the readers to understand the theoretical
conclusions from the practical applications.

Here, we use the Milstein method [29] to construct the
discretization equation of (1); that is,

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑥

𝑘
[𝑟

1
(𝜉 (𝑘Δ𝑡)) − 𝑒 − 𝑎

1
𝑥
𝑘
−

𝑎
2
𝑦
𝑘

𝑚
1
(𝜉 (𝑘Δ𝑡)) + 𝑥

𝑘

]Δ𝑡

+ 𝜎
1
(𝜉 (𝑘Δ𝑡)) 𝑥

𝑘
√Δ𝑡𝜁

𝑘

+ 0.5𝜎
2

1
(𝜉 (𝑘Δ𝑡)) 𝑥

2

𝑘
(𝜁

2

𝑘
− 1)Δ𝑡,

𝑦
𝑘+1

= 𝑦
𝑘
+ 𝑦

𝑘
[𝑟

2
(𝜉 (𝑘Δ𝑡)) −

𝑏
1
𝑦
𝑘

𝑚
1
(𝜉 (𝑘Δ𝑡)) + 𝑥

𝑘

−
𝑏
2
𝑧
𝑘

𝑚
2
(𝜉 (𝑘Δ𝑡)) + 𝑦

𝑘

]Δ𝑡

+ 𝜎
2
(𝜉 (𝑘Δ𝑡)) 𝑦

𝑘
√Δ𝑡𝜂

𝑘

+ 0.5𝜎
2

2
(𝜉 (𝑘Δ𝑡)) 𝑦

2

𝑘
(𝜂

2

𝑘
− 1)Δ𝑡,

𝑧
𝑘+1

= 𝑧
𝑘
+ 𝑧

𝑘
[𝑟

3
(𝜉 (𝑘Δ𝑡)) −

𝑐𝑧
𝑘

𝑚
2
(𝜉 (𝑘Δ𝑡)) + 𝑦

𝑘

]Δ𝑡

+ 𝜎
3
(𝜉 (𝑘Δ𝑡)) 𝑧

𝑘
√Δ𝑡𝜍

𝑘

+ 0.5𝜎
2

3
(𝜉 (𝑘Δ𝑡)) 𝑧

2

𝑘
(𝜍

2

𝑘
− 1)Δ𝑡,

(49)

where 𝜁
𝑘
, 𝜂

𝑘
, and 𝜍

𝑘
, 𝑘 = 1, . . . , 𝑛, are the Gaussian random

variables.
For simplicity, assume that the random environments are

modeled by a two-state Markov chain with state set 𝑆 = {1, 2}

and generator

𝑄 = (
−7 7

5 5
) . (50)

The other parameters are defined as follows: 𝑟
1
(1) = 8,

𝑟
1
(2) = 9, 𝑟

2
(1) = 6, 𝑟

2
(2) = 6, 𝑟

3
(1) = 4, 𝑟

3
(2) = 3, 𝜎

1
(1) =

0.8, 𝜎
1
(2) = 0.9, 𝜎

2
(1) = 0.6, 𝜎

2
(2) = 0.6, 𝜎

3
(1) = 0.4, 𝜎

3
(2) =
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Figure 1: Sample path of (1) with initial condition (𝑥
0
, 𝑦

0
, 𝑧

0
) =

(1, 1, 1) and 𝜉(𝑡) ≡ 1.
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Figure 2: Sample path of (1) with initial condition (𝑥
0
, 𝑦

0
, 𝑧

0
) =

(1, 1, 1) and 𝜉(𝑡) ≡ 2.

0.3, 𝑚
1
(1) = 5, 𝑚

1
(2) = 4, 𝑚

2
(1) = 3, 𝑚

2
(2) = 2, 𝑎

1
= 𝑎

2
=

𝑏
2
= 1, 𝑏

1
= 𝑐 = 10, 𝑒 = 0. In this scenario, 𝐵

1
= 7.68,

𝐵
2
= 5.82, 𝐵

3
= 2.955, 𝑃

1
= 7.66, 𝑃

2
= 0.55, 𝑃

3
= 0.34, 𝐵

1
−

𝑎
2
(𝑃

2
+𝜀) = 7.13−𝜀, and 𝐵

2
−𝑏

2
(𝑃

3
+𝜀) = 5.48−𝜀. Obviously,

Assumptions 1 and 2 are satisfied.
Based on the aforementioned discussion, we obtain the

following results.
Figures 1 and 2 show that the solutions of (1) are

positive in the deterministic environment (without regime
switching); that is, 𝜉(𝑡) ≡ 1 or 2. Figure 4 shows that the
solutions of (1) are positive in the random environment (with
regime swithcing); the random environment is described
by Figure 3. They are all identical to Theorem 4. Figure 5
shows lim

𝑡→∞
(ln𝑥(𝑡)/𝑡) = 0, lim

𝑡→∞
(ln𝑦(𝑡)/𝑡) = 0, and

lim
𝑡→∞

(ln 𝑧(𝑡)/𝑡) = 0 in the random environment described
by Figure 3, and this is consistent withTheorems 7 and 8.
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Figure 3: Sample path of 𝜉(𝑡) with initial condition 𝜉(0) ≡ 1.
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Figure 4: Sample path of (1) with initial condition (𝑥
0
, 𝑦

0
, 𝑧

0
) =

(1, 1, 1) and sample path of 𝜉(𝑡) is Figure 3.
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Figure 5: The curves of ln 𝑥/𝑡, ln𝑦/𝑡, and ln 𝑧/𝑡.

6. Conclusions

This paper studies an optimal harvesting problem for a food-
chain system with markovian switching. Based on the prop-
erties, the food-chain system’s solution is existing, unique,
and positive; the system is persistent in mean, and the
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rationality of the optimal harvesting problem is proved.Then
the optimal harvesting policy is obtained.

Nevertheless, there are rooms to continue work on this
issue, such that more than one of control variables in the
system are considered.The permanence and extinction of the
system and the stability in distribution need to be investigated
too.
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In this paper an analysis of productivity will be carried out from the resolution of the problem of trajectory planning of
industrial robots. The analysis entails economic considerations, thus overcoming some limitations of the existing literature. Two
methodologies based on optimization-simulation procedures are compared to calculate the time needed to perform an industrial
robot task. The simulation methodology relies on the use of robotics and automation software called GRASP. The optimization
methodology developed in this work is based on the kinematics and the dynamics of industrial robots. It allows us to pose a
multiobjective optimization problem to assess the trade-offs between the economic variables by means of the Pareto fronts. The
comparison is carried out for different examples and from a multidisciplinary point of view, thus, to determine the impact of
using each method. Results have shown the opportunity costs of non using the methodology with optimized time trajectories.
Furthermore, it allows companies to stay competitive because of the quick adaptation to rapidly changing markets.

1. Introduction

Time needed to perform a trajectory for industrial robots is
a very important issue in order to improve productivity in
many economic activities. Specifically, most algorithms seek
to find the minimum time trajectory in order to increase the
working time and subsequently to reduce the unproductive
time. The existing literature shows a lack of studies that con-
sider both the economic issues and the motion of industrial
robots.

In this paper, the working times of industrial robots are
compared between twodifferent approacheswhile taking into
account the corresponding economic impacts. The compari-
son is applied to several examples, which covers a wide range
of parameters that govern the kinematics and dynamics of the
industrial robots.The first methodology is based on a robotic
simulation program called GRASP (BYG System Ltd) and the
second on optimization techniques.

When the working times have been calculated, the
assembly line productivity is estimated by means of the time

difference, so that we can quantify the impact of eachmethod.
Productivity is quantified by conducting an economic study
based on the working times of robotic tasks and, more
specifically, the time needed to manufacture and assemble a
certain product.

A multiobjective optimization problem is posed to assess
the trade-offs between the economic variables by means of
the Pareto fronts (see Section 6). These fronts will serve to
determine those variables that mostly influence the increase
of productivity of the assembly line. We will prove that
working times (not working cycles) are critical from an
economic point of view and so are the methods to obtain
them.

Those times will enable us to set conclusions about which
method is more useful in order to increase the productivity
of the robotic system.

The paper is organized as follows. Initially, we will explain
in detail the main characteristics of the trajectory planning
methodology and how the time is obtained. Consequently,
the economic analysis will provide insight on the productivity
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of assembly lines. Finally, the conclusions will be discussed in
the last section.

2. Background of the Trajectory
Planning Problem

Currently there are a great number of methodologies to solve
the trajectory planning problem for industrial robots which
give the time needed to perform a task. But few papers tackle
the analysis of productivity related to the working times
obtained.

Over the years, the algorithms have been polished and
the working assumptions of the robotic systems have been
increasingly adjusted to real conditions. This fact has been
achieved by analysing the complete behaviour of the robotic
system, particularly the characteristics of the actuators and
the mechanical structure of the robot. To tackle this problem
other important working parameters and variables have been
taken into account, such as the input torques, the energy
consumed, and the power transmitted. Furthermore, the
kinematic properties of the robot’s links, such as the veloc-
ities, accelerations, and jerks, must be also considered. The
aforementioned algorithms provide a smooth robot motion
for the robotic system.

To obtain the best trajectories in terms of minimum
times, some of the working parameters have been included
in the appropriate objective function of the optimization
procedure (input torques, the energy consumed, and the
power transmitted). The optimization criteria most widely
used can be sorted as follows.

(1) Minimum time required, which is directly bounded
to productivity.

(2) Minimum jerk, which is bounded to the quality of
work, accuracy, and equipment maintenance.

(3) Minimum energy consumed or minimum actuator
effort, both linked to savings.

(4) Hybrid criteria, for example, minimum time and
energy.

In the past, the early algorithms that solved the trajectory
planning problem tried to minimize the time needed for
performing the task (see [1–3]). One disadvantage of those
minimum-time algorithms was that the trajectories had
discontinuous values of acceleration and torques which led to
dynamic problems during the trajectory performance. Those
problems were avoided by imposing smooth trajectories to
be followed, such as spline functions which have been used
in both path and trajectory planning.

The early algorithms in trajectory planning sought to
minimize the time needed for performing the task. The
dynamics properties of actuators were neglected. A recent
example of this type of algorithm can be found in [4], which
determines smooth and near time-optimal path-constrained
trajectories. It considers not only velocity and acceleration but
also jerk.

Later, the trajectory planning problem was tackled by
searching for jerk-optimal trajectories. Jerks are highly

important for working with precision and without vibration.
They also have an effect on the control system and thewearing
of mobile parts such as joints and bars. These methods allow
a reduction in errors during trajectory tracking, the stresses
in the actuators and also in the mechanical structure of
the robot, and the excitement of resonance frequencies. Jerk
restriction is introduced by other authors [5, 6].

In [7] a method is introduced for determining smooth
and time-optimal path-constrained trajectories for robotic
manipulators by imposing limits on the actuator jerks.

In [8] a global minimum-jerk trajectory planning algo-
rithm of a space manipulator is presented.

Another different approach to solving the trajectory
planning problem is based on minimizing the torque and
the energy consumed instead of the trajectory time or the
jerk. This approach leads to smoother trajectories. An early
example is seen in [9].

Similarly, in [10], the authors searched for the minimum
energy consumed. They proposed a method for solving
the trajectory generation problem in redundant degree of
freedommanipulators.They used a variational approach and
the B-Spline curve was introduced to minimize the electrical
energy consumed in a robot manipulator system.

Thework in [11] also takes into account energyminimiza-
tion for the trajectory planning problem.

In [12] the authors proposed a technique of iterative
dynamic programming to plan minimum energy consump-
tion trajectories for robotic manipulators. The dynamic
programming method was modified to perform a series of
dynamic programming passes over a small reconfigurable
grid covering only a portion of the solution space at any
one pass. Although strictly no longer a global optimization
process, this iterative approach retained the ability to avoid
certain poor local minima while avoiding the dimensional
issue associatedwith a pure dynamic programming approach.
The modified dynamic programming approach was veri-
fied experimentally by planning and executing a minimum
energy consumed path for a Reis V15 industrial manipulator.

Afterwards, new perspectives appear for solving the
trajectory planning problem. The main point was to use a
weighted objective function to optimize the working param-
eters [13]. There, the cost function is a weighted balance of
transfer time, the mean average of the torques, and power.

In this paper we will introduce two methods to solve the
trajectory planning problem for industrial robots working
in complex environments. The time will be used in the
economical study.

In the first method, the procedure calculates the optimal
trajectory by neglecting initially the potential presence of
obstacles in the workspace. By removing the obstacles (real
or potential) from the optimization problem, the algorithm
will calculate a minimum time trajectory as a starting point.
Then the procedure must take into account the real obstacles
presented in the workspace. When obstacles are considered,
the initial trajectory will not be feasible and will have to
evolve so that it can become a solution. The way this initial
trajectory evolves until a new feasible collision-free trajectory
is obtained is presented in this paper. It is a direct algorithm
that works in a discrete space of trajectories, approaching the
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first solution to the global solution as the discretization is
refined. The solutions obtained are efficient trajectories (i.e.,
the minimum time trajectories). All the trajectories obtained
meet the physical limitations of the robot. The solution also
avoids collisions and takes into account the constraint of
energy consumed.

The second method calculates the times using the kine-
matic properties of the robotic system by means of a simula-
tion program called GRASP.

3. Time Obtained Using the Proposed
Optimization Trajectory Planner

Our objective is to calculate the minimum time trajectory (𝑡)
between the initial and final configurations. Any robot con-
figuration𝐶𝑗 = 𝐶𝑗(𝛼𝑗𝑖 , 𝑝

𝑗

𝑘
) can be expressed unequivocally by

means of the Cartesian coordinates of significant points of the
robot 𝛼𝑗𝑖 = (𝛼

𝑗

𝑥𝑖, 𝛼
𝑗

𝑦𝑖, 𝛼
𝑗

𝑧𝑖).
We calculate the time needed to go from 𝐶𝑖 to 𝐶𝑓.

This process is based on an optimization problem to obtain
the minimum time between these two configurations. The
problem is transformed into obtaining the minimum time
over an interpolated trajectory between both configurations,
subjected to physical constraints in the actuators.

This optimization problem can be stated as in [7] as
follows:

Find 𝑞 (𝑡) , 𝜏 (𝑡) , 𝑡𝑓 (1)

between each of the two configurations (see Section 3.3),

Minimizing min
𝜏∈Ω
𝐽 = ∫

𝑡𝑓

0

𝑑𝑡, (2)

where 𝜏(𝑡) ∈ 𝑅𝑛 is the vector of the actuator torques andΩ is
the space state in which the vector of the actuator torques is
feasible.

The optimization problem is subject to:

(1) the robot dynamics

𝑀(𝑞 (𝑡)) ̈𝑞 (𝑡) + 𝐶 (𝑞 (𝑡) , ̇𝑞 (𝑡)) ̇𝑞 (𝑡) + 𝑔 (𝑞 (𝑡)) = 𝜏 (𝑡) ; (3)

(2) unknown boundary conditions (position, velocity,
and acceleration) for intermediate configurations a
priori

𝑞 (𝑡int−1) = 𝑞int−1; 𝑞 (𝑡int) = 𝑞int,

̇𝑞 (𝑡int−1) = ̇𝑞int−1; ̇𝑞 (𝑡int) = ̇𝑞int−1,

̈𝑞 (𝑡int−1) = ̈𝑞int−1; ̈𝑞 (𝑡int) = ̈𝑞int−1;

(4)

(3) boundary conditions for initial and final configura-
tions

𝑞 (0) = 𝑞𝑜; 𝑞 (𝑡𝑓) = 𝑞𝑓,

̇𝑞 (0) = 0; ̇𝑞 (𝑡𝑓) = 0;

(5)

(4) collision avoidance within the robot workspace

𝑑𝑖𝑗 ≥ 𝑟𝑗 + 𝑤𝑖; (6)

𝑑𝑖𝑗 being the distance from any obstacle 𝑗 (sphere,
cylinder, or prism) to robot arm 𝑖; 𝑟𝑗 is the character-
istic radius of the obstacle and 𝑤𝑖 is the radius of the
smallest cylinder that contains the arm 𝑖;

(5) actuator torque rate limits

𝜏
min
𝑖 ≤ 𝜏𝑖 (𝑡) ≤ 𝜏

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof; (7)

(6) maximum power in the actuators

𝑃
min
𝑖 ≤ 𝜏𝑖 (𝑡) ̇𝑞𝑖 (𝑡) ≤ 𝑃

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof;

(8)

(7) maximum jerk on the actuators

...
𝑞
min
𝑖 ≤

...
𝑞𝑖 (𝑡) ≤

...
𝑞
max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof,

(
...
𝑞𝑖 is the jerk of actuator 𝑖) ;

(9)

(8) energy consumed

𝑚−1

∑
𝑗=1

(

dof
∑
𝑖=1

𝜀𝑖𝑗) ≤ 𝐸, (10)

where 𝜀𝑖𝑗 is the energy consumed by the actuator 𝑖 between
the configurations 𝑐𝑗 and 𝑐𝑗+1.

Here, the main definitions and processes used to obtain
the free-collision trajectories of the robot (and subsequently
the time needed to perform the trajectory) are detailed.

3.1. Robot Configuration. It is expressed in joint coordinates
𝑐
𝑘(𝑞𝑖) with a view to define kinematics and dynamics of the
robot. When dealing with collisions, Cartesian coordinates
𝑐𝑘(𝜆𝑗) will be used, being 𝑖 = 1, . . . dof; 𝑗 = 1, . . . , npc; dof:
robot degrees of freedom; npc: number of Cartesian points
used for the wired model of the robot in collision detection;
and 𝑘 is the configuration itself; see [14–16].

3.2. Adjacent Configuration. Given a feasible configuration of
the robot 𝑐𝑘, it is said that 𝑐𝑙 is adjacent to it if it is feasible and
meets the following two conditions.

(i) The robot end-effector occupies a position corre-
sponding to a node of the discretized workspace in
Cartesian coordinates and its distance to the end-
effector position in the configuration 𝑐𝑘 is less than
a given value.

(ii) 𝑐𝑙 is such that it minimizes the function

dof
∑
𝑖=1

(𝑞
𝑙
𝑖 − 𝑞
𝑘
𝑖 )
2
. (11)
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3.3. Trajectory. Given a sequence of 𝑚 robot configurations
= {𝑐1(𝑞1𝑖 ), 𝑐

2(𝑞2𝑖 ), . . . , 𝑐
𝑚(𝑞𝑚𝑖 )}, the trajectory 𝑠 is defined by

means of cubic interpolation functions between adjacent
configurations so that the resulting time 𝑡min to perform the
trajectory is minimum. We have that

∀𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗[ → 𝑞𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑡 + 𝑑𝑖𝑗𝑡
2
+ 𝑒𝑖𝑗𝑡
3
,

(12)

where 𝑖 = 1, . . . , dof, 𝑗 = 1, . . . , 𝑚 − 1.
To ensure continuity, the following conditions associated

with the given configurations are considered.

(a) Position: for each interval 𝑗 the initial and final
positions must match 𝑐𝑗 and 𝑐𝑗+1; this gives a total of
(2 dof (𝑚 − 1)) equations:

𝑞𝑖𝑗 (𝑡𝑗−1) = 𝑞
𝑗

𝑖 ,

𝑞𝑖𝑗 (𝑡𝑗) = 𝑞
𝑗+1

𝑖 .
(13)

(b) Velocity: the initial and final velocities of the
trajectory must be zero, obtaining (2 dof) equations

̇𝑞𝑖1 (𝑡0) = 0,

̇𝑞𝑖𝑚−1 (𝑡𝑚−1) = 0.
(14)

When passing through each intermediate configura-
tion, the final velocity of previous interval must be
equal to the initial velocity of the next interval; that
gives (dof (𝑚 − 2)) equations

̇𝑞𝑖𝑗 (𝑡𝑗) = ̇𝑞𝑖𝑗+1 (𝑡𝑗) . (15)

(c) Acceleration: for each intermediate configuration,
the final actuator acceleration of the previous interval
must be equal to the initial acceleration of the next,
resulting in (dof (𝑚 − 2)) equations

̈𝑞𝑖𝑗 (𝑡𝑗) = ̈𝑞𝑖𝑗+1 (𝑡𝑗) . (16)

Knowing the time required to perform the trajectory
between the different configurations, using the above
equations, the coefficients of the cubic polynomials
can be obtained efficiently bymeans of the calculation
of the normal time [15].
In addition, theminimum time trajectory smustmeet
the following four types of constraints:
(d) maximum torque in the actuators,
(e)

𝜏
min
𝑖 ≤ 𝜏𝑖 (𝑡) ≤ 𝜏

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof, (17)

(f) maximum power in the actuators,
(g)

𝑃
min
𝑖 ≤ 𝜏𝑖 (𝑡) ̇𝑞𝑖 (𝑡) ≤ 𝑃

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof,

(18)

(h) maximum jerk on the actuators,
(i)

...
𝑞
min
𝑖 ≤

...
𝑞𝑖 (𝑡) ≤

...
𝑞
max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof, (19)

(j) energy consumed

𝑚−1

∑
𝑗=1

(

dof
∑
𝑖=1

𝜀𝑖𝑗) ≤ 𝐸, (20)

where 𝜀𝑖𝑗 is the energy consumed by the actuator 𝑖
between the configurations 𝑐𝑗 and 𝑐𝑗+1.

To obtain the minimum time, an optimization problem
is solved using variables defined in time increment at each
interval (see [17]) so that in the interval between 𝑐𝑗 and 𝑐𝑗+1,
the variable is Δ𝑡𝑗 = 𝑡𝑗 − 𝑡𝑗−1 and the objective function is

𝑚−1

∑
𝑗=1

Δ𝑡𝑗 = 𝑡min. (21)

3.4. Offspring Trajectory. Let 𝑠𝑗 be aminimum time trajectory
associated to the sequence of 𝑚 configurations 𝐶𝑗 under the
conditions described in Section 3.5. It is said that the trajec-
tory 𝑠𝑘 is an offspring of 𝑠𝑗 when the following conditions are
met:

(a) 𝐶𝑘 = 𝐶𝑗 ∪ 𝑐𝑛;
(b) 𝑛 ̸= 1;
(c) 𝑛 ̸= 𝑚 + 1.

So the trajectories of a certain generation will have one
passing configurationmore than the previous generation, but
they will keep the same initial and final configurations.

3.5. Obtaining of the Collision-Free Trajectory. The problem
of obtaining a feasible and efficient trajectory for a robot in
an environment with static obstacles allowing the motion
between two given configurations (𝑐𝑖 and 𝑐𝑓) is posed. An
efficient trajectory is that performed in a minimum time,
with a reasonable computational cost, and subject to the
limitations of the robot dynamics, the jerk constraints, and
power consumption. Clearly the feasibility of the trajectory
means that there are no collisions.

Theproposed process for solving the problem involves the
following steps which are implemented in the algorithm.

(a) Obtaining the minimum time trajectory: using the
procedure described in Section 3.3, the trajectory
𝑠min is obtained corresponding to the sequence of
configurations 𝐶 = {𝑐𝑖, 𝑐𝑓}.

(b) Search for collisions: the first configuration from 𝑠min
which has collision 𝑐𝑐 is determined, and a previous
configuration 𝑐𝑎 is searched for whose distance is
less than 𝑑seg (so that the smallest patterned obstacle
used to represent the work environment can never be
between 𝑐𝑐 y 𝑐𝑎).
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Table 1: Kinematic characteristics of PUMA 560 robot.

Joint 1 2 3 4 5 6
Minimum angle (∘) −160.0 −215.0 −45.0 −140.0 −100.0 −266.0
Maximum angle (∘) 160.0 35.0 225.0 140.0 100.0 266.0
Maximum velocity (∘/s) 82.0 54.0 122.0 228.0 241.0 228.0

(c) Obtaining adjacent configurations: up to six new
adjacent configurations to 𝑐𝑎 can be achieved as
defined in Section 3.2 (𝑐𝑎𝑗 𝑗 = 1, . . . , 6).

(d) Obtaining offspring trajectories: for each one of the
𝑙 adjacent configurations obtained in the previous
section that have no collision with obstacles, the
offspring trajectory 𝑠𝑘 is obtained from 𝑠min, such that
𝐶𝑘 = 𝐶 ∪ 𝑐𝑎𝑘 (𝑘 = 1, . . . , 𝑙).

(e) Trajectory selection: the generated trajectories are
introduced in previous section (d) on the set of
trajectories ordered by time 𝑇𝑡 = {𝑠1 ⋅ ⋅ ⋅ 𝑠𝑝}, taking
the minimum time trajectory 𝑠1 and checking for no
collisions as it was done in previous section (b). If
𝑠1 has no collision, the algorithm goes to the next
section; otherwise it returns to section (c) and the
process is repeated.

(f) Refining the trajectory: in case that the collision-
free trajectory 𝑠1 does not belong to the first gen-
eration (direct offspring of 𝑠min, with a sequence of
three configurations), we have 𝑠1 such that 𝐶1 =
{𝑐𝑖, 𝑐2, 𝑐3, . . . , 𝑐𝑚−1, 𝑐𝑓} (𝑚 being the number of con-
figurations that define the trajectory).

𝑚 − 2 sets of configurations 𝐶1𝑝 are taken such that 𝐶1 =
𝐶1𝑝∪𝑐
𝑝 for𝑝 = 2, . . . , 𝑚−1, obtaining the corresponding set of

collision-free trajectories𝑇𝑟. If it is empty then it is said that 𝑠1
cannot be reduced; otherwise the process is repeated for the
new trajectories and the results are included in𝑇𝑟.Theprocess
finishes when the algorithm cannot obtain new trajectories.

Finally the trajectory 𝑠1 is included in 𝑇𝑟 and the reduced
trajectory 𝑠𝑟 is defined as the trajectory belonging to 𝑇𝑟 with
minimum time.

The proposed solution to the problem is 𝑠𝑟, which will be
a minimum time offspring trajectory 𝑠min and with a small
number of passing configurations.

4. Time Obtained Using a Robotic
Environment Simulation Program
Called GRASP

The simulation program GRASP10 for robotic environ-
ments is used to obtain the time needed to perform the
motion between two given configurations. Among other
tasks, GRASP10 can model and simulate the robot kinematic
behavior. In this paper we have used the original model
of PUMA 560 robot that comes with the program as a
comparator. It is assumed that the point to point trajec-
tory calculation procedures of GRASP10 correspond to the

real robot. The robot kinematic characteristics are shown
in Table 1.

It should be noted that GRASP10 does not perform
dynamic calculations but only kinematic ones. It is therefore
very important to indicate the maximum working velocities,
which have been obtained from actual robot by considering
the properties of each actuator, primarily its maximum
power, and the working torque.

When the trajectory is generated by GRASP10, the work-
ing actuators act simultaneously and at least one of them is
moved to its maximum speed, calculated as follows for each
actuator: (see Table 1)

𝜔max =
𝑃

𝑡min
, (22)

where 𝑃 stands for the power and 𝑡min for the torque in the
corresponding actuator.

This methodology (use of GRASP10 for calculating the
time required to perform a trajectory) has been applied to the
same examples that have been resolved by the optimization
algorithm explained in Section 3 in order to compare their
efficiency.

For each example, the initial data are the initial and final
configurations and the kinematics of the robot. The obstacle
has been incorporated after the generation of the path, so that
it burdens the previously calculated one.

5. Productivity and Economic Study

In this section the productivity will be quantified by conduct-
ing an economic study based on the working times of robotic
tasks.

The aim is to increase the profitability of production
lines by designing flexiblemanufacturing systems.This allows
companies to stay competitive because of the quick adapta-
tion to rapidly changing markets. For instance, by adjusting
the working hours in assembly lines or by deciding which
products are more suitable to be manufactured according to
the current demand.

This is performed by posing a multiobjective optimiza-
tion problem, which makes use of the optimization algo-
rithm, above presented, to solve the kinematics and dynamics
of robot arms. The optimization method finds the minimum
time trajectory to perform industrial tasks in production lines
while taking into consideration the physical constraints of
the real posed problem and then economic issues are also
considered in the process.

Furthermore, Pareto fronts will be introduced, which will
serve to determine those variables which mainly affect the
improved productivity. To bemore precise, themultiobjective
optimization problem allows obtaining the Pareto frontiers,
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which provides information about the trade-offs between
the competing variables (i.e., execution times and benefits
for the different products that can be manufactured at the
production line).

Therefore, the economic study starts by defining the
economic objective function to be used. It is formulated as
follows:

Max𝐵 = 1

(1 + 𝑟)
𝑇
[

𝑛

∑
𝑝=1

(𝑃𝑝 − 𝐶𝑝) ⋅ 𝑁𝑝 (𝑡)] , (23)

where 𝐵 is the objective function to be maximized and
represents the current value of the net benefit from a
generic product (in C) defined as the revenue of the items
manufactured at a production line minus total costs; 𝑟 is the
annual discount rate; 𝑇 represents number of years; 𝑃𝑝 is the
market unitary price of the product 𝑝 (in C); 𝐶𝑝 stands for
the unitary cost to perform the product 𝑝 (in C), ranging
from costs of rawmaterials, energy, amortization, labor force,
maintenance, and taxes to direct and indirect costs;𝑁𝑝(𝑡) is a
function accounting for the number of products carried out
per hour. It is calculated like

𝑁𝑝 (𝑡) =
𝐾

𝑡(𝑆𝑘)
𝜇 , (24)

where 𝑆𝑘 is the set of tasks needed to manufacture and
assemble a certain product (𝑝) and it constitutes the work
load, where 𝑘 represents the number of tasks. 𝑡(𝑆𝑘) = ∑𝑗∈𝑆𝑘 𝑡𝑗
is the cumulated task time and it is called the product time. A
cubic function of 𝑡min has been considered. 𝜇 is a parameter
that refers to the economic environment and the market
seasonality. 𝐾 is a constant related to the current number of
working hours per year.

Each one of these tasks is performed by the robot arm,
which uses a certain time to describe the optimal trajectory.
As above mentioned, the developed algorithm (Section 3)
returns the minimum time 𝑡min𝑝 to perform the task of the
robot arm in order to obtain the product𝑝, while considering
the time of the other tasks as constant. The lower the time
used by the robot to perform its task, the greater the number
of products manufactured per hour. Then, the cumulative
time of all tasks can be defined as follows:

𝑡 (𝑆𝑘) = 𝑡min𝑝 +
𝑘

∑
𝑗∉𝑆robot

𝑡𝑗. (25)

Besides, the amount that an additional item adds to a
company’s total revenue during a period is called themarginal
revenue of the product (MRP).

This factor is defined as the additional products man-
ufactured per hour because of reducing the time used by
the robot arm (𝑡min𝑝).The additional products manufactured
increase the company’s output and, therefore, the company’s
total revenue.

The marginal revenue product can be obtained by mul-
tiplying the marginal product (MP) of the factor by the
marginal revenue (MR). In a perfectly competitive market,
the marginal revenue a company receives equals the market-
determined price of the product 𝑃𝑝.

Therefore, for companies in perfect competition, the
marginal revenue product MRP can be expressed as follows:

MRP = MP × 𝑃𝑝. (26)

The law of diminishing marginal returns tells us that if
the quantity of a factor is increased while other inputs are
held constant, its marginal product will eventually decline. If
marginal product is falling (MP ↓), MRP must be falling as
well (MRP ↓).

The marginal revenue of a product (calculated in
Section 7)will be used to obtain the total annual benefits in an
assembly line, as well as to determine the trade-offs between
the benefits and the times obtained in the multiobjective
optimization problem.

6. Pareto Optimality

Many real-world problems face two different types of mathe-
matical difficulties.Those difficulties are the existence ofmul-
tiple and conflicting objectives and a highly complex search
space. Contrary to a single optimal solution, competing goals
entail a set of compromise solutions generally denoted by
the Pareto-optimal, for example, [18]. When there is lack of
preference information, none of the corresponding trade-offs
between decision variables could be said to be better than
that of others. The optimal set of solutions in multiobjective
optimization problems is named the Pareto-optimal set.

A solution is defined as Pareto optimal if no improvement
in one objective can be accomplished without adversely
affecting at least one other objective. In the objective space,
the hypersurface that represents all possible Pareto-optimal
solutions is termed as the Pareto front or frontier. A design
that is located along the Pareto front is neither better nor
worse than any other solution along the Pareto front. Hence,
the solutions that compose the Pareto-optimal set are equiv-
alently optimal. The objective of multiobjective optimization
using this technique is to generate as many Pareto-optimal
solutions as possible to adequately represent the Pareto front.
This allows obtaining sufficient information for a trade-off
decision between competing variables. The Pareto front can
be discontinuous, concave, or convex and, in general, is not
known a priori.

The concept of domination enables the comparison of
a set of designs with multiple objectives. Such a concept is
not required for single objective optimization on account of
the fact that the value of the objective function is the only
measure of the quality of the design.

Then, in a direct comparison of two designs, if one
design dominates another, the dominating design is superior
and nearer to the Pareto front. Instead, if neither design
dominates the other, the designs are nondominant to each
other.Therefore, the best designs (with equally good objective
vectors) in an arbitrary set of solutions can be distinguished
because they are not dominated by any other design in
the set; they compose the nondominated subset. Similarly,
the designs that compose the Pareto-optimal set are the
nondominated set associated with the entire feasible space
and are located along the Pareto front.



Mathematical Problems in Engineering 7

Table 2: Working times needed to perform the trajectory for each example.

Optimization
algorithm

Example 1 2 3 4 5 6 7 8 9 10
Working time (s) 0.7488 0.5909 0.7511 1.5557 0.7488 0.5115 1.3920 0.7118 0.4529 1.0000

Example 11 12 13 14 15 16 17 18 19 20
Working time (s) 0.7488 0.5909 0.7511 1.5557 0.7488 0.5115 1.3920 0.7118 0.4529 1.0000

Simulation
software
GRASP

Example 1 2 3 4 5 6 7 8 9 10
Working time (s) 0.7500 0.6200 0.7700 1.6000 0.7600 0.5300 1.4000 0.7200 0.4600 1.2000

Example 11 12 13 14 15 16 17 18 19 20
Working time (s) 0.7500 0.6000 0.7600 1.5600 0.7500 0.5200 1.4300 0.7400 0.4600 1.3000

Consequently, the trajectory planning optimization prob-
lem in robotics can be defined as finding a motion law along
a given geometric path, taking into account some predefined
requirements, while generating minimum trajectory time of
the robot arm.The inputs of the trajectory planning problem
are the geometric path and the kinematic and dynamic
constraints, while the output is the trajectory of the joints
(or of the end-effector). The trajectory is expressed as a time
sequence of position, velocity, and acceleration values. The
optimized trajectory should alsomeet the physical limitations
of the robot, the constraint of energy consumption and
collisions avoidance.

The times obtained from the simulation-optimization
procedures lead to different benefits. Therefore the Pareto
fronts can be determined, thus showing the trade-offs
between the benefits and the obtained times. They show
the opportunity cost of time higher than the minimum (see
Section 7).

7. Results of the Application of the
Methodology to Different Examples

The proposed multiobjective optimization methodology and
the Pareto optimality have been applied to different examples
in order to set the above mentioned trade-offs between
the benefits and the obtained times. Therefore, now the
objective is conducting an economic study to quantify the
productivity of the assembly line by comparing theminimum
time trajectory to perform certain industrial tasks. It is
obtained using two methods: an optimization algorithm and
the simulation software GRASP.

These times are obtained while taking into consideration
the physical constraints of the real working problem and the
economic issues involved in the process. Twenty examples
have been solved. The examples differ in the initial and final
configurations of the robot, that is, the location of the end-
effector (see Table 2). The optimization algorithm simulates
the PUMA 560 robot.

This industrial robot arm is probably the most common
robot in university laboratories. It is a 6-R (revolution)
type robot, with 6 degrees of freedom, and uses direct
current (DC) servo motors as its actuators. This robot is
a compact computer-controlled robot not only to perform
service tasks, but also to carry out medium-to-lightweight
assembly, welding, materials handling, packaging, inspection

applications, personal care, and so forth. The Series 500 is
the most widely used model in the PUMA line of electrically
driven robots.

With a 36-inch reach and 5-pound payload capacity,
this robot is designed with a high degree of flexibility
and reliability. The range of these angles from 𝜃1 to 𝜃6 is
the following (320∘, 250∘, 270∘, 280∘, 200∘, and 532∘). The
corresponding link lengths from L1 to L6 are (432, 432, 433,
56, 56, and 37.5) mm.

Table 2 presents the results obtained for the developed
algorithm and GRASP, that is, the working time required for
the robot to perform the industrial tasks.

With regard to the economic issues associated with
the robot industrial tasks we suppose for all examples the
following quantities and considerations:

unitary cost to produce a certain item: 0.8 C (without
considering the cost of the energy consumed);

item price: 1 C. For the sake of simplicity, we assume
that only one product is produced at this point.

When the cost of the energy consumed is considered,
the different examples have different costs because of the
different working times. Therefore cost of the consumed
energy: 0.0676 C/kWh (it is an average cost). This cost has
been added to the cost of 0.8 C.

For reasons of clarity, the manufactured products are
obtained in only one shift of 8 hours (365 working days in
a year). The benefits 𝐵 are presented for a period of one year.

The time of the other industrial tasks needed to produce
the item has been defined as 90 s, that is, the summation of
times shown in (25), ∑𝑘𝑗∉𝑆robot 𝑡𝑗.

The optimization algorithm presents different working
times for the different examples, thus leading also to different
benefits.

For instance, the case number 19, which has no con-
straints in both the jerk and the energy consumed, presents
the maximum annual revenue (Figure 1). Contrary, case
4, with severe physical constraints, shows the minimum
benefits.

The benefits for all examples obtained by means of the
optimization algorithm are depicted in Figure 1. With the
current demand, the mean value of the benefit for the 20
examples analyzed is 23,142.40 C/year, while the standard
deviation is 90.32.
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Figure 1: Annual revenue for each example based on the current
demand.

The industrial tasks are carried out in only a few seconds,
so that the time scale is based on seconds. Note that the
GRASP working times are similar to those obtained with the
developed optimization algorithm, although slightly higher.

Then total benefits are also similar to those reported in
Figure 1, although the higher working times lead to lower
benefits.

Consequently, a lower mean value of the benefits is
obtained, that is, 23,132.84 C/year with a standard deviation
of 96.02.

Note that different prices, costs, and number of items
produced by year may lead to higher differences in benefits
between the optimization algorithm and GRASP. However,
the selected values are only intended to illustrate the impor-
tance of using efficient algorithms of robot trajectory opti-
mization for saving time and reducing costs in production
lines.

In addition, a new analysis is carried out using Pareto
optimality to illustrate the loss of benefits on account of not
using optimization algorithms.

For that, we consider that three different products can
be manufactured and assembled in the same production
line. The loss of benefits is represented by the Pareto fronts
for three different products. They differ in their cumulative
time to be manufactured and assembled but share the same
working time (𝑡min𝑝) of the robot arm.

Then the minimum trajectory time for case 4 is used for
the three products, in this example, 1.55 s.These products also
differ in the total costs (without considering the energy costs),
prices, and values of the parameter 𝜇, which is intended
to simulate different economic environments and market
seasonality. The total cost of Product 1 is 0.8 C, Product 2 is
0.82 C, and Product 3 is 0.84 C, while the prices are 1.0 C for
Product 1, 1.05 C for Product 2, and 1.03 C for Product 3. In
this analysis, 𝑡(𝑆𝑘) has been defined as a cubic function of
𝑡minp. The parameter 𝜇 takes the values for each product of
0.6, 0.5, and 0.55, respectively.

Consequently, if the market conditions do not change
and the optimization algorithm is not used, the minimum
trajectory time is not obtained.

In this scenario, there is a benefit loss due to the fact that
robot arm may present higher working times.

Moreover, the multiobjective optimization problem
allows obtaining the Pareto frontiers, which provides
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Figure 2: Pareto frontiers obtained with the optimization algorithm
for “example 4” and the three different products manufactured.

information about the trade-off of the decision variables.
One main trade-off is between the benefits and the working
time (i.e., the Pareto frontier). Results for example 4 are
shown in Figure 2, considering the manufacturing of three
different products. That is, the algorithm allows quantifying
the benefit loss because of not using the optimization
algorithm. Each solution in the front will have optimal
objective function value, optimal value of variables, and the
constraints value. All constraints will be satisfied by any
solution in the Pareto optimal front.

It is worth pointing out that for the analyzed examples,
the differences between their annual energy costs are almost
negligible compared with the other costs.

Furthermore, the concept of nondomination sorting can
be used to categorize each design within a set into a hierarchy
of nondominated levels or fronts. Each different level of
nondomination represents a relative distance from the Pareto
front. The best nondominated front is closest to the Pareto
front and each subsequent front lags further behind and is,
hence, increasingly inferior.

Through this sorting, each design is associated with
a front that defines the quality of the design relative to
the rest of the group. To isolate the various fronts, the
designs that belong to the nondominated subset of the entire
group are first identified. These designs are the best in the
group, the closest to (or members of) the Pareto front.
For instance, in our multiobjective trajectory optimization,
the nondominated subset (i.e., the best solution in terms
of greater benefits) is represented by the Pareto frontier of
Product 2 for times higher than 1.96 s (see Figure 2).

Any design belonging to this front is then temporarily
set aside and another comparison process determines the
next level of nondominated designs from the remaining
population.

This nondominated subset is the front of Product 3 and
the procedure is repeated until the entire population has been
sorted into the appropriate level, that is, the Pareto frontier of
Product 1.

Note, however, that for working times lower than 1.76 s
the Pareto frontier of Product 1 dominates the frontier of
Product 2.That is, higher benefits are expected to be achieved
in the assembly line for Product 1.
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Figure 3: Benefits obtained for Product 1 and “example 4” versus
costs.
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Figure 4: Benefits obtained for Product 1 and “example 4” versus
price.

Additionally, for the twenty examples analyzed in this
work, a normal distribution function of the cost (𝐶) and the
price (𝑃) has been defined for a certain product based on the
current market economic fluctuations. The benefits resulting
from these market fluctuations are provided in Figures 3 and
4.

Figure 3 has been obtained when a normal distribution of
the cost fluctuation is considered on account of hypothetical
market changes.The statistics that define the normal distribu-
tion (mean and variance) are based on the current total costs
above mentioned.

Figure 4 has been obtained when a normal distribution of
the price fluctuation is considered on account of hypothetical
market changes. The statistics that define the normal distri-
bution (mean and variance) are based on the current prices.

For the sake of conciseness, the cost and price fluctuations
have been considered only for Product 1. Its current market
values are 𝑚𝑐 = 0.8 C for costs and 𝑚𝑝 = 1 C for prices,
while the standard deviation (𝜎) is defined as𝑚/3.With these
functions, the market changes, regarding costs and prices,
are intended to be modeled. 𝐶(𝐶 = 𝐶𝑝 ∗ 𝑁𝑝) gives the
cost to manufacture 𝑝 products (𝑁𝑝). 𝑃𝑝 gives the revenue as
defined by (2), that is, multiplying the price of the products
manufactured.

These functions are sampled, with these values being used
in the multiobjective optimization problem to obtain the
results presented in Figures 3 and 4.

These figures show a hypothetic fluctuation in the market
conditions with regard to costs and prices for case 4.

The fluctuations can be directly translated into benefits
using the algorithm, thus allowing managers in the decision
making process regarding which products should be manu-
factured, and also to define an efficient scheduling.Therefore,
the design and planning of the robot tasks are considerably
improved.

Finally, the algorithm has also been run for example 4 to
simulate an increase in the future demand of a 20% compared
with the current demand (i.e., a total of 137,778 products
manufactured per year). The aim is to answer the question
about how many extra working hours are needed to respond
to that increase in the demand. The best solution is given
by the optimization algorithm, since it reports the minimum
trajectory time. The solution is that we need an additional
3,504 hours per year to meet such demand. This information
can be used during the decision making process to design an
efficient scheduling.

8. Conclusions

This work deals with trajectory planning of industrial robots
for assembly lines in a cost-efficient way, thus overcom-
ing limitations of the economic analysis methods which
are currently available. It has been demonstrated that the
multiobjective optimization algorithm finds the minimum
time trajectory of industrial robots and the maximum annual
revenue. This means greater annual revenue and better
adaptation to market fluctuations in terms of costs, prices,
and product demands. This is carried out by taking under
consideration the physical constraints of the real working
problem and the economic issues involved in the process.
The proposed procedure has been successfully validated in
different examples of robotic industrial tasks, where a better
planning and design of production lines have been found.

The results from different examples have been compared
using two methodologies, an optimization procedure and a
simulation technique.

We have checked that the results obtained with the
optimization procedure lead to lower working times and
therefore greater annual revenues in comparison with those
obtained with the simulation technique. Consequently the
number of products manufactured and profits are increased
while the number of the shifts required is reduced.The core of
this paper is the procedure to obtain the best working times in
real complex industrial robots with many degrees of freedom
and mechanical constraints.

This has shown the worth of the methodology, with the
overall objective of improving the profitability of production
lines by designing flexible manufacturing systems. Further-
more, an entire set of equally optimal solutions for each
process, the Pareto-optimal sets, are generated.

This provides information about the trade-offs between
the different competing variables of the multiobjective
optimization problem (i.e., working times and profits for
the different products that can be manufactured at the
production line).
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Once the optimal time to perform each process is
obtained in a cost-effective manner the results can be used
for improving a wide variety of robotic industrial tasks. This
can help managers in the decision making process regarding
which products should be manufactured and to define an
efficient scheduling to produce them.This is because it allows
adjusting the number of shifts needed according to the exist-
ing demand of the products manufactured. Then companies
may stay competitive because the algorithm allows a quick
adaptation to rapidly changing markets.

As a further research this methodology will be extended
to deal with new decision variables in the multiobjective
optimization problem such as the energy consumed and time
simultaneously since they are conflicting variables.
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A periodic density reinitialization smoothed particle hydrodynamics (PDRI-SPH) method is proposed to treat the generalized
Newtonian free surface flows, which is based on the concept of Taylor series expansion. Meanwhile, an artificial stress term is
also presented and tested, for the purpose of eliminating the unphysical phenomenon of particle clustering in fluid stretching. The
free surface phenomena of a Cross model droplet impacting and spreading on an inclined rigid plate at low impacting angles are
investigated numerically using the proposed PDRI-SPHmethod. In particular, the effect of the surface inclination and the different
regimes of droplet impact, spreading and depositing on an inclined surface, are illustrated; the influence of surface inclination on
the tensile instability is also concerned. The numerical results show that the accuracy and the stability of the conventional SPH are
all improved by the periodic density reinitialization scheme. All numerical results agree well with the available reference data.

1. Introduction

Theproblems of free surface flows for polymers are important
in today’s industry, such as the structured reactors, surface
coating, container filling in the food, and pharmaceutical
industries of polymers. All the flows involved almost exhibit
nonlinear behavior, for example, the viscoelastic or shear-
thinning behavior. In these processes, the impacting, spread-
ing, and depositing of liquid droplets on solid surface play a
crucial role.

In the early stage of research, many methods based on
the Eulerian description of motion are mainly presented
to capture the complex free surface of polymers, including
particle in cell (PIC) [1], marker and cell (MAC) [2], volume
of fluid (VOF) [3], level set [4], and phase-field [5] meth-
ods. These methods are based upon grid-based numerical
methods such as finite difference methods (FDM) and finite
element methods (FEM) that are commonly used to solve
the Navier-Stokes equations. However, it is difficult for the
simulation of large deformation.

In order to overcome the shortcomings of grid-based
methods and effectively handle the problem of large

deformation, the variousmesh-freemethods [6–8] or particle
methods have been proposed in a Lagrangian framework.
Among the various particle methods [9–12], the smoothed
particle hydrodynamics (SPH) method [9, 13] is the earliest
one and it is alsomost widely used.The SPHhas the following
main advantages over grid-based methods. (1) It handles
convection dominated flows and large deformation problems
without any numerical diffusion. (2) Complex free surfaces
are modeled easily and naturally without the need of explicit
surface tracking technique. (3) It is easy to program for
complex problems compared with grid-based methods. In
1994, it was firstly used to deal with fluid mechanic problems
[14]. Since then, it has been extensively studied in many
areas such as viscous flows [15, 16], incompressible fluids
[17, 18], multiphase flows [19, 20], geophysical flows [21, 22],
viscoelastic flows [23, 24], and viscoelastic free surface flows
[25].

Unfortunately, the consistency between mass, density,
and occupied area cannot be enforced exactly (see [15,
26]) when the evolved particle density is obtained by the
continuity equation in standard SPHmethod [23–25]. In this
work, a periodic density reinitialization method based on
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the corrective kernel estimate [27] of a Taylor series expan-
sion is proposed to overcome the problem of the consistency
between mass, density, and the occupied area. Moreover, we
can know that the tensile instability is related to the sign
of both the stress and the second derivative of the kernel
function as noticed by [28]. And then, a changing artificial
stress term is presented and tested to remove the unphysical
phenomenon of particle clustering in the simulations of a
generalized Newtonian droplet impact and spreading on an
inclined rigid plate, which is different from the one in [25].

This paper has been directly motivated by the polymer
industry where materials tend to be shear-thinning but
not necessarily viscoelastic. Due to the fact that the Cross
model [29] or some similar model can describe the shear-
thinning behavior better, then here we choose the Cross
model. In general, the phenomena of free surface can be
complex.Therefore, the two-dimensional shear-thinning free
surface flows of a Cross droplet impact and spreading on an
inclined rigid plate are discussed. During these processes, the
effect and ability of the mentioned above periodic density
reinitializationmethod and artificial stress term for capturing
the complex polymer free surfaces are also analyzed.

The structure of this paper is organized as follows. The
governing equations for the Cross model are introduced in
Section 2. Section 3 describes the PDRI-SPH discretization
of the Navier-Stokes equations, including artificial viscosity,
boundary conditions, and temporal discretization of the
governing equations. In particular, the density reinitializa-
tion method and tensile instability are also discussed in
Section 3. In Section 4, the validity of the proposed PDRI-
SPH combined with the mentioned artificial stress term is
first tested. Subsequently, a numerical example of a Cross
model droplet impacting on an inclined dry surface is solved
to demonstrate the capability of the PDRI-SPH method in
handling generalized Newtonian free surface flows. Some
concluding remarks are reported in Section 5.

2. Governing Equations for the Cross Model

2.1. Governing Equations. In a Lagrangian frame, the gener-
alized Newtonian fluid is governed by the conservation of
mass and momentum equations, together with a nonlinear
constitutive equation.The isothermal, incompressible fluid is
usually described by the following equations:

𝐷𝜌

𝐷𝑡
= −𝜌

𝜕V𝛽

𝜕𝑥𝛽
, (1)

𝐷V𝛼

𝐷𝑡
=
1

𝜌

𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
+ 𝑔
𝛼
, (2)

where 𝜌 denotes the fluid density, V𝛽 the 𝛽th component of
the fluid velocity, 𝜎𝛼𝛽 the (𝛼, 𝛽)th component of the total
stress tensor, 𝑔𝛼 is the 𝛼th component of the gravitational
acceleration, and the 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + V𝛽 ⋅ (𝜕/𝜕𝑥𝛽) is the
material derivative. The spatial coordinates 𝑥𝛽 and time 𝑡 are
the independent variables.

The total stress tensor in (2) is commonly made up of the
isotropic pressure𝑝 and the components of extra stress tensor
𝜏
𝛼𝛽:

𝜎
𝛼𝛽
= −𝑝𝛿

𝛼𝛽
+ 𝜏
𝛼𝛽
, (3)

where 𝛿𝛼𝛽 = 1 if 𝛼 = 𝛽 and 𝛿𝛼𝛽 = 0 if 𝛼 ̸= 𝛽. In order to study
a shear-thinning polymer material, the relating constitutive
equation must be provided.

2.2. Cross Model. In this paper, the surface problem based
on the generalized Newtonian fluid is mainly considered.
The generalizedNewtonian fluid displaysmore complex fluid
characters than the Newtonian fluid, and the constitutive
model for describing the generalized Newtonian fluid can
be derived from the Newtonian model; that is, the viscosity
is variable for the generalized Newtonian fluid. Several con-
stitutive models for describing generalized Newtonian fluid
have been proposed, in which the Cross fluidmodel with four
parameters (see (6)) [29, 30] is usually used to represent the
polymer material and describe the shear-thinning behavior
during polymer processing. Then the typical constitutive
model of Cross fluid with four parameters is employed
to study the influences of shear-thinning behavior on the
free surface in polymers impact process. It is worth noting
that the surface tension is not considered in the following
simulations. The measure of fluid droplet is centimeter level
in the following simulations, so that the effect of surface
tension can be omitted according to the physical knowledge.
In addition, the detailed description of Crossmodel with four
parameters can also be found in [29, 30].

The extra stress tensor 𝜏 for the generalized Newtonian
fluid based on the Cross model [29, 30] is expressed as

𝜏 = 2𝜇 ( ̇𝛾) d, (4)

where 𝜇( ̇𝛾) = 𝜌𝜐( ̇𝛾) is the dynamic viscosity and the 𝜐( ̇𝛾) is
the kinematic viscosity. The symmetric strain rate tensor d is
defined as

d = [𝑑𝛼𝛽] = 1
2
[
𝜕V𝛼

𝜕𝑥𝛽
+
𝜕V𝛽

𝜕𝑥𝛼
] . (5)

The kinematic viscosity 𝜐( ̇𝛾) represents the shear-thinning
nature of the fluid; it is defined as

𝜐 ( ̇𝛾) = 𝜐∞ +
𝜐0 − 𝜐∞

(1 + (𝐾 ̇𝛾)
𝑚
)
, (6)

where𝑚, 𝜐0, 𝜐∞, and 𝐾 are given positive constants. The ̇𝛾 is
the local shear rate defined by

̇𝛾 = [2 tr (d2)]
1/2
, (7)

and the symbol “tr” denotes the trace of matrix. Here, the
positive constants𝐾 and𝑚 are all chosen equal to 1.0.

2.3. Equation of State. The incompressible flows were some-
times treated as slightly compressible flows by adopting
a suitable equation of state in many previous works (see
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Monaghan [14] and Morris et al. [15]). Here, the incompress-
ible flows are also treated as weakly compressible flows using
the following equation of state [24]:

𝑝 (𝜌) =
𝑐
2
𝜌
2

2𝜌0
, (8)

where 𝑐 is the speed of sound and 𝜌0 is reference density.
An artificial, lower sound speed is usually used to avoid the
instability and extremely small time steps. To keep the density
variation of fluid less than 1% of the reference density, the
Mach number𝑀 (𝑀 ≡ 𝑉/𝑐, where 𝑉 is a typical reference
velocity) [9] must be smaller than 0.1. In other words, the
sound speed must be ten times higher than maximum fluid
velocity.

3. PDRI-SPH Formulation

3.1. Discretization Schemes of Standard SPH. The SPH
method [9, 13] is based on the interpolation theory, which
is the theory of integral interpolates using a kernel function.
Namely, the fluid domainΩ is discretized into a finite number
of particles, where all the relevant physical quantities are
approximated in terms of the integral representation over
neighboring particles. Each particle carries amass𝑚, velocity
k, and other physical quantities depending on the problem.
Any function 𝑓(r) defined at the position r = (𝑥, 𝑦) can be
expressed by the following integral:

⟨𝑓 (r)⟩ = ∫
Ω
𝑓 (r)𝑊(r − r, ℎ) 𝑑r, (9)

where𝑊 represents the kernel function (or smoothing func-
tion) and ℎ denotes the smoothing length defining the influ-
ence area of𝑊. The kernel function𝑊 is usually required to
meet three properties, namely, the regular condition, Dirac
delta function property, and compactly supported condition
[9, 13]. In addition, the smoothing function is also usually
chosen as an even function overΩ.

According to (9), the integrating principle by parts and
the divergence theorem, the particle discretization scheme of

standard SPH for a function 𝑓(r), and its first derivative at
the position r = (𝑥, 𝑦) of the particle 𝑖 can be written in the
following condensed forms:

𝑓𝑖 = ∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖𝑗, (10)

(
𝜕𝑓

𝜕r𝑖
) = ∑
𝑗

𝑚𝑗

𝜌𝑗
(𝑓𝑗 − 𝑓𝑖)

𝜕𝑊𝑖𝑗

𝜕r𝑖
, (11)

where𝑚𝑗 and 𝜌𝑗 are the mass and density of the 𝑗th particle,
and 𝑓𝑗 = 𝑓(r𝑗). The 𝑚𝑗/𝜌𝑗 represents the occupied volume
by the 𝑗th particle. The 𝑊𝑖𝑗 = 𝑊(|r𝑖 − r𝑗|, ℎ), 𝜕𝑊𝑖𝑗/𝜕r𝑖 =
−𝜕𝑊𝑗𝑖/𝜕r𝑗.

In this paper, the cubic spline function is chosen as the
smoothing function which is the function about 𝑟𝑖𝑗 = |r𝑖 − r𝑗|
and 𝑞 = 𝑟𝑖𝑗/ℎ. Then it reads for 2-D as follows:

𝑊𝑖𝑗 = 𝑊(𝑟, ℎ) =
15

7𝜋ℎ2

{{{{{

{{{{{

{

2

3
− 𝑞2 + (

1

2
) 𝑞3, 0 ≤ 𝑞 < 1,

(
1

6
) (2 − 𝑞)

3
, 1 ≤ 𝑞 < 2,

0, 𝑞 ≥ 2.

(12)

In order to have an accurate interpolation, the smoothing
length ℎ should be chosen bigger than the mean interparticle
distance. Here, the smoothing length ℎ is given by 1.5𝑑0 with
𝑑0 as the initial distance between neighboring particles. The
compact support domain size is 2ℎ.

Considering the discrete gradient equation (11) and the
following identity: (1/𝜌)(𝜕𝜎𝛼𝛽/𝜕𝑥𝛽) = 𝜕(𝜎𝛼𝛽/𝜌)/𝜕𝑥𝛽 +

(𝜎𝛼𝛽/𝜌2)(𝜕𝜌/𝜕𝑥𝛽), the particle discretization schemes of the
governing equations can be obtained at the particle 𝑖:

(
𝐷𝜌

𝐷𝑡
)
𝑖
= 𝜌𝑖∑
𝑗

𝑚𝑗

𝜌𝑗
(V𝛽𝑖 − V

𝛽
𝑗 )
𝜕𝑊𝑖𝑗

𝜕𝑥
𝛽
𝑖

, (13)
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𝐷V𝛼

𝐷𝑡
)
𝑖
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𝑗

𝑚𝑗(
𝜎
𝛼𝛽
𝑖

𝜌2𝑖
+
𝜎
𝛼𝛽
𝑗

𝜌2𝑗
)
𝜕𝑊𝑖𝑗

𝜕𝑥
𝛽
𝑖

+ 𝑔
𝛼
. (14)

Introducing the velocity gradient

𝜅
𝛼𝛽
𝑖 = (

𝜕V𝛼

𝜕𝑥𝛽
)
𝑖

= ∑
𝑗

𝑚𝑗

𝜌𝑗
(V𝛼𝑗 − V

𝛼
𝑖 )
𝜕𝑊𝑖𝑗

𝜕𝑥
𝛽
𝑖

, (15)

then the particle approximation schemes of constitutive
equation for the Cross model can be obtained as

𝜎
𝛼𝛽
𝑖 = −𝑝𝑖𝛿

𝛼𝛽
+ 𝜇 ( ̇𝛾𝑖) (𝜅

𝛼𝛽
𝑖 + 𝜅

𝛽𝛼
𝑖 ) ,

̇𝛾𝑖 = [2 tr (d
2
𝑖 )]
1/2
.

(16)

3.2. Density Reinitialization Method. In the standard SPH
method, each particle has a fixed mass. If the number
of particles is constant, mass conservation is intrinsically
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 num = 10 num = 20 num = 40 num = 60 num = ∞

Figure 2: The position of particles calculated by PDRI-SPH method at the time 0.01 s.

satisfied. However, the consistency between mass, density,
and the occupied area could not be enforced exactly (see
[15, 26]) if the evolved particle density is determinated by the
evolution equation (1) for simulating theweakly compressible
flows. Although the density field is periodically reinitialized
by applying the following equation for removing this problem
in [15]:

𝜌𝑖 = ∑
𝑗

𝑚𝑗𝑊𝑖𝑗, (17)

the particle approximations (17) do not have first order
accuracy and 𝐶0, 𝐶1 consistency for boundary regions or
irregularly distributed particles (see [31]). Therefore, the
above periodic density reinitialization method (see (17))
cannot well alleviate the above problem.

In order to well overcome this problem, we use a second-
order accurate particle approximation scheme based on Tay-
lor series expansion (see [27, 31]) to periodically reinitialize
the density field:

𝜌𝑖 = ∑
𝑗

𝑚𝑗𝑊
Tay
𝑖𝑗 , (18a)

where the corrected kernel function𝑊Tay
𝑖𝑗 is given by

𝑊
Tay
𝑖𝑗 = 𝐵

[

[

∑
𝑗

𝐴 (r𝑖) 𝑉𝑗]
]

−1

𝑊, (18b)

𝐴 (r𝑖) =
(
(

(

𝑊𝑖𝑗 𝑥𝑗𝑖 ⋅ 𝑊𝑖𝑗 𝑦𝑗𝑖 ⋅ 𝑊𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝑥𝑗𝑖 ⋅
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝑦𝑗𝑖 ⋅
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖

𝜕𝑊𝑖𝑗

𝜕𝑦𝑖
𝑥𝑗𝑖 ⋅
𝜕𝑊𝑖𝑗

𝜕𝑦𝑖
𝑦𝑗𝑖 ⋅
𝜕𝑊𝑖𝑗

𝜕𝑦𝑖

)
)

)

,

𝐵 = (1, 0, 0) , 𝑊 =
(
(

(

𝑊𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖

𝜕𝑊𝑖𝑗

𝜕𝑦𝑖

)
)

)

. (18c)

Here 𝑥𝑗𝑖 = 𝑥𝑗 − 𝑥𝑖, 𝑦𝑗𝑖 = 𝑦𝑗 − 𝑦𝑖, and 𝑉𝑗 is replaced by
𝑚𝑗/𝜌𝑗. The particle approximations scheme (18a)–(18c) pos-
sesses 𝐶0, 𝐶1 consistency for boundary regions or irregularly
distributed particles (see [31]).

When the density reinitialization method is applied in
above standard SPH method, an inversion matrix of 3 × 3
should be solved for each fluid particle; thus, the computing
time is increased slightly. Considering the computational cost
and the efficiency of using periodic density reinitialization,
we can apply this procedure every fixed (about 10∼40,
see Section 4.1) time step in our numerical simulations. In
particular, for the purpose of preserving that the corrected
particle approximations (18a) at least have 𝐶0 consistency on
the whole domain, the matrix∑𝑗 𝐴(r𝑖)𝑉𝑗 may be replaced by
∑𝑗𝑊𝑖𝑗𝑉𝑗 if the matrix of (18b) is singular (it occurs occasion-
ally). Now, the above discretization schemes of standard SPH
combined with the periodic density reinitialization method
may be called the “PDRI-SPH” method.

3.3. Artificial Viscosity Model. According to previous works
[15, 32], the artificial viscosity is first introduced to enhance
the numerical stability and accuracy in the simulations of
strong shock problems [32]. On the other hand, the artificial
viscosity term guarantees the conservation of the angular
momentum without external force when it is added into
the momentum equation of TSPH schemes. For that reason,
the artificial viscosity term is usually also considered and
employed in the SPH simulations of viscous or viscoelastic
fluid flows problems with large deformation, which can be
seen in recent works [18, 25, 33]. Through the simulations
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Figure 3: The pressure field distribution (𝑝/107) obtained using the PDRI-SPH method with different “num” at time 0.003 s and 0.006 s,
respectively.
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Figure 4: The comparisons of numerical results obtained using
PDRI-SPH method about the semiminor axis varying with time.

of viscoelastic droplet impact problem in [25] and our
numerical simulation experience of using SPH or improved
SPH method, we find that it is necessary to employ an
artificial viscosity term in the discrete momentum equation
(14) for improving the numerical stability (see Section 4.2).
Here, the artificial viscosity term is also added to the discrete
momentum equation (14) of PDRI-SPH method, which is
usually chosen as [32, 34]

Π𝑖𝑗 =

{{{

{{{

{

−𝛼Π𝑐𝑖𝑗𝜙𝑖𝑗 + 𝛽Π𝜙
2
𝑖𝑗

𝜌𝑖𝑗
, k𝑖𝑗 ⋅ r𝑖𝑗 < 0,

0, k𝑖𝑗 ⋅ r𝑖𝑗 ≥ 0,
(19a)

where

𝜙𝑖𝑗 =
ℎu𝑖𝑗 ⋅ r𝑖𝑗


r𝑖𝑗


2
+ 0.01ℎ2

, 𝑐𝑖𝑗 =
𝑐𝑖 + 𝑐𝑗

2
,

𝜌𝑖𝑗 =
𝜌𝑖 + 𝜌𝑗

2
,

k𝑖𝑗 = k𝑖 − k𝑗, r𝑖𝑗 = r𝑖 − r𝑗.

(19b)

The 0.01ℎ2 term is included to prevent numerical divergence
when two particles get too close to each other. The 𝛼Π
and 𝛽Π are usually chosen approximately equal to 1. In the
artificial viscosity, the first term associated with 𝛼Π involves
shear and bulk viscosity, while the second term associated
with 𝛽Π is similar to the von-Neumann-Richtmeyer viscosity
for resolving shocks and is very important in preventing
unrealistic particle penetration.

3.4. Artificial Stress Model. In 1995, the “tensile instability”
was first investigated in detail by Swegle et al. [28], which
pointed out that the phenomenon of unphysical clustering
of particles arises when the standard SPH method is applied
to Euler problem. At present, a number of methods have
been proposed to remove the tensile instability in elastic
dynamics of solid materials. The artificial stress method [35,
36] is one of the most successful approaches, which has
been successfully extended and applied to non-Newtonian
fluid free surface flows [25]. In [35, 36], the authors think
the “tensile instability” is mainly caused by tension (positive
stress in tension), so that the adopted artificial stress term
[25, 35, 36] is only related to the positive stress. As noticed by
[28], the “tensile instability” is related to the sign of both the
stress and the second derivative of the kernel function, which
implies that the instability is caused by not only the tension
but also the compression (negative stress in compression).
Therefore, we use the following artificial stress term by
extending the conclusions in [28, 36] to eliminate the “tensile
instability”:

𝑓
𝑛
𝑖𝑗 (𝑆
𝛼𝛽
𝑖 + 𝑆

𝛼𝛽
𝑗 ) , (20a)

where 𝑛 = 𝑊(0, ℎ)/𝑊(𝑑0, ℎ), 𝑓𝑖𝑗 = 𝑊𝑖𝑗(|r𝑖 − r𝑗|, ℎ)/𝑊𝑖𝑗(𝑑0, ℎ).
The components of the artificial stress tensor 𝑆𝛼𝛽𝑖 are given as

𝑆
𝛼𝛽
𝑖 =

{{{

{{{

{

−
𝑏𝜎
𝛼𝛽
𝑖

𝜌2
, if (∑

𝑗

𝑊
𝛼𝛽
𝑖𝑗 ) ⋅ 𝜎

𝛼𝛽
𝑖 > 0,

0, other,
(20b)

where 𝑏 is a positive parameter (0 < 𝑏 < 1), and the𝑊𝛼𝛽𝑖𝑗 =

𝜕2𝑊𝑖𝑗/(𝜕𝑥
𝛼 ⋅ 𝜕𝑥𝛽).

Introducing the𝐾𝑖𝑗 = 𝑓
𝑛
𝑖𝑗(𝑆
𝛼𝛽
𝑖 +𝑆
𝛼𝛽
𝑗 ), the artificial viscosity

term (19a) and the artificial stress term (20a) are added to the
discrete momentum equation (14) of PDRI-SPH and we can
obtain

(
𝐷V𝛼

𝐷𝑡
)
𝑖

= ∑
𝑗

𝑚𝑗(
𝜎
𝛼𝛽
𝑖

𝜌2𝑖
+
𝜎
𝛼𝛽
𝑗

𝜌2𝑗
− Π𝑖𝑗𝛿

𝛼𝛽
+ 𝐾𝑖𝑗)

𝜕𝑊𝑖𝑗

𝜕𝑥
𝛽
𝑖

+ 𝑔
𝛼
.

(21)

Usually, the particle positions are updated by the follow-
ing equation:

𝐷𝑥𝛼𝑖

𝐷𝑡
= V𝛼𝑖 . (22)

3.5. Boundary Condition Treatment. In most engineering
problems, the physical boundarymight be the surface of rigid
bodies enclosing fluid or enclosed by fluid, fully or partially.
The boundary can be stationary or in motion. We know that
the treatment of boundary conditions is very important in the
numerical simulation process using SPH method.

Several methods for treating rigid wall boundary condi-
tions have been presented in previous work.There are mainly
two methods; that is, (1) the solid walls may be simulated
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Figure 5: The initial state of a droplet impact (a) and side view of a droplet on an inclined rigid plate (b).
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Figure 6: The particles distribution predicted by standard SPH
method for a Newtonian droplet impact on horizontal rigid plate
at dimensionless time 𝑡 = 5.2. Without artificial viscosity (first row),
artificial viscosity (second row).

by particles, which exert repulsive force by employing an
artificial repulsive force (see [14]) on inner fluid particles
to prevent them from penetrating the wall. (2) The wall
boundary conditions can also be modeled either by fixed
particles [37] or by virtual particles that mirror the physical
properties of inner fluid particles. The above methods of
boundary treatment have been discussed in 2009 [38], and
the literature shows that the virtual particles approach has
better stability and affectivity than the artificial repulsive
force method. So, the boundary particles in this work do not
employ an artificial repulsive force instead of adopting the
virtual particles on approaching real particles to prevent fluid
particles from penetrating rigid walls.

As shown in Figure 1, two types of virtual particles are
used to implement the boundary conditions on a rigid wall.
The first type virtual particles are located right on the rigid
wall, namely “wall particles.” The density of wall particles is
not evolved unlike Morris et al. [15]. Meanwhile, the nonslip
condition is enforced on the solid wall and the positions of
wall particles remain fixed in time. If the no-slip condition
was not considered in the simulations, the fluid particles

may penetrate the wall and the numerical simulations will be
terminated. The pressure on the wall particles is calculated
according to the following approximation formulation:

𝑝𝑖 =
∑𝑗 𝑝𝑗 (2ℎ − 𝑟𝑖𝑗)

∑𝑗 (2ℎ − 𝑟𝑖𝑗)
, (23a)

where 𝑖 represents the index of a wall particles and 𝑗 denotes
the index of its neighboring fluid particles only.

The second type virtual particles are placed just outside
the solid wall and fill a domain with at least a range of depth
comparable with the compact support of the kernel used in
the computations, which are called “ghost particles” and have
fixed density and positions. The velocity and the pressure on
the ghost particles are computed in the following way.

(1) For each ghost particle 𝐺, we assign a corresponding
point 𝑊 just on the rigid wall and point 𝐹 inside
domain, respectively. Meanwhile, these three kinds of
points lie in a line which is perpendicular to the wall.

(2) In order to calculate conveniently we can define the
normal distances 𝑑𝐺 and 𝑑𝐹 of the points 𝐺 and 𝐹 to
the rigid wall, respectively.

(3) The pressure 𝑝𝐺 and velocity V
𝛼
I for the ghost particles

can be obtained through the following linear extrap-
olation:

L𝐺 = L𝐹 + (1 +
𝑑𝐺

𝑑𝐹
) (L𝑊 − L𝐹) , (23b)

where L represents the vector of variables (𝑝, V𝛼). To
specify the values for L𝐹, the interpolation formula-
tion (23a) is applied again. Here, we let the 𝑑𝐹 = 𝑑0.

Moreover, the following total stress-free condition must
be satisfied in the computational domain for surface particles:

𝜎 ⋅ n = 0, (24)

where n denotes a unit normal vector to the surface. In
this paper, the surface tensor is neglected and a Dirichlet
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Figure 7:The shape of a Newtonian droplet impact on horizontal (left) or inclined (𝛼 = 30∘, right) rigid plate obtained by PDRI-SPHmethod
with 𝛼II = 1, 𝛽II = 2 and different artificial stress parameter 𝑏, at dimensionless time 𝑡 = 6.2.

boundary condition of zero pressure is given to the surface
particles. This condition, that is, (24), is satisfied naturally by
the PDRI-SPH method.

3.6. Time Integration Scheme. In order to better illustrate
the effect of the density reinitialization method, a suitable
time integration schemes is chosen necessarily in practice.
Considering that the predictor-corrector scheme possesses
second-order accuracy and better stability, we chose the
predictor-corrector scheme for solving the systemof ordinary
differential equations (13), (21), and (22). The predictor step
consists of an Eulerian explicit evaluation of all quantities for
each particle

X̃𝑛+1𝑖 = X
𝑛
𝑖 +
Δ𝑡

2
Γ
𝑛
𝑖 , (25a)

where X𝑖 represents the vector of the unknown variables
(𝜌𝑖, V
𝛼
𝑖 ) and Γ𝑖 denotes the vector of right-hand sides of (13),

(21), and (22). In the corrected step, the updated value of X𝑖
at the end of each time step is given by

X𝑛+1𝑖 = X
𝑛
𝑖 +
Δ𝑡

2
(Γ
𝑛
𝑖 + Γ̃
𝑛
𝑖 ) . (25b)

To ensure the numerical stability, the time step and space
step must satisfy the well-known Courant-Friedrichs-Lewy
(CFL) condition. According to [15], we may choose the
following stability condition:

Δ𝑡 ≤ min[0.25ℎ
𝑐
, 0.25 (

ℎ

𝐹𝑎
)

1/2

, 0.125
ℎ2

𝜐0
] , (25c)

where 𝐹𝑎 is the hydrodynamical force acting on the particle,
and 𝜐0 = 𝜂/𝜌0 is the kinematic viscosity.
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Figure 8:The shape of a Cross droplet impact on horizontal (left) or inclined (𝛼 = 30∘, right) rigid plate obtained by PDRI-SPHmethod with
𝛼II = 1, 𝛽II = 2 and different artificial stress parameter 𝑏, at dimensionless time 𝑡 = 4.3.

4. Test Examples and Numerical
Simulations for the Cross Model

Firstly, the effect and the validity of modified models for
simulating generalized Newtonian free surface flows using
the PDRI-SPH method are obviously demonstrated through
applying the periodic density reinitialization method, artifi-
cial viscosity model, and artificial stress model. Subsequently,
the capacity of PDRI-SPH method for solving a Cross model
droplet impact, spreading and depositing on an inclined rigid
plate, is shown in Section 4.3.

4.1. Effect of the Periodic Density Reinitialization Scheme. In
order to show the effect of PDRI-SPH method and compare
with the conventional SPH method, the two-dimensional
benchmark problem of the stretching of an initially circular
water drop is simulated using PDRI-SPH and SPH, respec-
tively, without enforcing the artificial viscosity, artificial
stress, and rigid boundary condition. This example has been

used in the literature [14, 33] of using SPH method, and
its corresponding analytical solution can be obtained from
[14, 33].

All the physical quantities are the same as those in
[33, Figure 1], the reference density 𝜌0 = 1000 kgm

−3, the
viscosity 𝜂 = 0.001 kgm−1 s−1, and the speed of sound 𝑐 =
1400ms−1. The initial geometry of the water drop is a circle
of radius 𝑅 = 1m with its center located at the origin (𝑥 = 0,
𝑦 = 0). There is no external forces but initial velocity field
V𝑥0 = −𝐴0𝑥, V

𝑥
0 = 𝐴0𝑦 with 𝐴0 = 100 s

−1 and the initial
pressure field 𝑝0 = (1/2)𝜌0𝐴

2
0[𝑅
2 − (𝑥2 + 𝑦2)]. The number

of fluid particles is 1961 and corresponding to the initial
distance 𝑑0 = 0.02m, and the time step 𝑑𝑡 = 10−5 s. During
the stretching process of water drop, the water drop remains
elliptical shape and the value of 𝑎 ⋅ �̃� (𝑎 is the semiminor
axis and �̃� is the semimajor axis) remains constant. We let
“num” denote the interval time step of the periodic density
reinitialization of PDRI-SPH, and the PDRI-SPH method
becomes the SPH method if num = ∞.
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Figure 9: The distribution of pressure contour for a Newtonian/Cross drop impact on horizontal rigid plate obtained using PDRI-SPH (left
column) or SPH (right column) at different dimensionless time.

Figure 2 shows the positions of 1961 particles calculated by
PDRI-SPH method with different interval time steps num =
10, 20, 40, 60,∞ at the time 0.01 s. The distributed particles
of using PDRI-SPH (num ̸= ∞) are all more uniform and
the outer surfaces are all far smoother than the ones of SPH
method (num = ∞). From Figure 2, we can observe that
the better results belong to num = 10 and 20. In fact, the
more uniformly distributed the particles are, the better the
numerical accuracy is (see [31]). In other words, the accuracy
of numerical results using SPH can be improved by periodic
density reinitialization with appropriate “num.” For further
exhibiting the merit of the PDRI-SPH method, the pressure
field distribution (𝑝/107) and numerical accuracy obtained
using PDRI-SPH are shown in Figures 3 and 4, respectively.
We can know that the problem of pressure oscillations of
using SPH can be effectively reduced by PDRI-SPH (see
Figure 3).The pressure distribution has certain defect around
the boundary region in Figure 3, due to the reduced particles
on the boundary. Figure 4 demonstrates that the PDRI-SPH
has better accuracy than the standard SPH.

In a word, the effect of the density reinitializationmethod
used in the standard SPH method is obvious. Through the
results of Figures 2–4, and considering the computational
cost and the effect of PDRI-SPH with different “num,” we
choose the interval time step num = 20 in all the following
numerical simulations.

4.2. Validity of the Artificial Viscosity andArtificial StressMod-
els. In this subsection, the example of a droplet impact and
spreading on a horizontal or an inclined plate is considered.
The initial state of a droplet impact on an inclined surface is
shown in Figure 5(a).When a droplet impacts on the inclined
rigid plate, the shape of the droplet distorts and spreads
symmetrically (𝛼 = 0∘) or asymmetrically (𝛼 ̸= 0∘) relative to
the point of impact, which is shown in Figure 5(b). We define
the positive value of the elongation 𝑋back and the negative
value of the elongation 𝑋front (see Figure 5(b)), in which
asymmetry increases with time.The front edge of the droplet
spreads forward, while the back edge spreads backward or
slips forward.
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Figure 10: Comparison of the numerical results obtained using SPH or PDRI-SPH method for the width of a Newtonian (a) and Cross (b)
droplet impact on horizontal rigid plate varying with dimensionless time.

All the physical parameter values for a Newtonian droplet
are chosen as follows. Its initial diameter and velocity are𝐷 =
0.02m and 𝑈0 = −1ms−1, respectively. The total viscosity is
𝜂 = 4Pa ⋅ s, the reference density is 𝜌0 = 10

3 kgm−3, the
speed of sound is 𝑐 = 12ms−1, and the gravitational force acts
downwards with 𝑔𝑦 = −9.81ms−2: in this subsection, 1961
fluid particles, 251wall particles, and 753 ghost particles.The
initial spacing 𝑑0 = 0.0004m and the time-step 𝑑𝑡 = 1×10−5.
The height of dropping is 𝐻 = 0.04m from the center of
drop to the center (𝑜) of inclined rigid wall (see Figure 5(a)).
For the Cross model droplet, 𝜐0 = 4 × 10

−3m2 s−1, 𝜐∞ =
4 × 10

−4m2 s−1, and the other parameter values are the same
as the case of Newtonian droplet.

Although the artificial viscosity term (19a) is adopted
for simulating the Newtonian drop case with considering a
horizontal plate in [25], the role of the artificial viscosity has
not been obviously demonstrated in [25]. Here, the effect
of artificial viscosity is illustrated in Figure 6. And then, we
can obtain three advantages of using the artificial viscosity
in the example of droplet impact. (1) The particles are
more uniformly distributed than those without using it. (2)
The numerical accuracy and stability are improved. (3)The
phenomenon of unphysical clustering becomes weakened.
Note that the artificial stress term and the density reinitial-
ization method are all not considered in Figure 6. In all sub-
sequent simulations, the artificial viscosity (𝛼II = 1, 𝛽II = 2)
is adopted.

Figures 7 and 8 show the effect of the artificial stress
for simulating a Newtonian/Cross model droplet impact

on horizontal/inclined (𝛼 = 30∘) rigid plate using PDRI-
SPH method with different artificial stress parameters. It
can be seen that the droplet fractures unrealistically for
the problem of droplet impact without the artificial stress
term (𝑏 = 0), and the simulations may be eventually
diverged. The phenomenon of fracture is observable for the
Newtonian droplet impact on horizontal rigid plate with
artificial stress 𝑏 = 0.2, but it is much severer when the
Newtonian droplet impacts on inclined plate. For the Cross
model droplet, the unphysical fracture is obvious no matter
how the droplet impacts on horizontal or inclined rigid plate
even if the artificial viscosity is adopted. Observing Figures
7 and 8, we can get the following. (1)The problem of tensile
instability occurs more evidently for the Cross droplet than
the Newtonian case when the droplet impacts on horizontal
rigid plate. (2) A droplet impacts on rigid plate fracture
more likely at low impact angles 𝛼 ̸= 0

∘ than 𝛼 = 0∘. In
fact, the tensile instability is also related to the ratio of the
kinematic viscosity 𝜐0, 𝜐∞ for a Cross droplet impact on plate.
Here, we can find that the fracture is avoided completely by
increasing the value of 𝑏 up to 0.8 for the Newtonian/Cross
model droplet impact on inclined plate. In other words, it
is necessary that the artificial stress parameter 𝑏 is chosen
appropriately for simulating a droplet impact on inclined
rigid plate at low impact angles using PDRI-SPH method.

4.3. Numerical Simulations Based on CrossModel Using PDRI-
SPH. In this subsection, we mainly focus on the PDRI-
SPH/SPH method combined with the artificial viscosity
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Figure 11: Numerical convergence of the PDRI-SPH results with different smoothing length ℎ and particles number 𝑁𝑥 (along the 𝑥-axis
direction): (a1)-(a2) Newtonian droplet; (b1)-(b2) Cross droplet (which corresponds to Figure 10).
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t = 1.38

t = 1.23

t = 1.75

t = 2.00

Figure 12: The shape of a Newtonian droplet at impact angles of 15∘ (first column), 30∘ (second column), and 45∘ (third column) obtained
using PDRI-SPH, varying with short dimensionless time.

(𝛼II = 1, 𝛽II = 2), artificial stress (𝑏 = 0.8), and boundary
condition for simulating a Cross droplet impact on inclined
rigid plate at different low impact angles 𝛼 = 15∘, 30∘, 45∘,
respectively. For the purpose of comparison, the Newtonian
droplet case is also considered. The number of fluid particles
is set to 7845, corresponding to the initial spacing 𝑑0 =
0.0002m, 501 wall particles, and 1503 ghost particles. The
time-step is 5 × 10−6. The other physical parameters values
are the same as those in Section 4.2.

The effect of the proposed periodic density reinitializa-
tion method is obviously shown by predicting the pressure
distribution for the problem of droplet impact in Figure 9. At
the short time of droplet impact, the phenomenon of pressure
oscillations occurs for the SPH method combined with the
above improved models. The pressure oscillations grow near
the rigid plate varying with time and later progressively
destroy the whole pressure field, resulting in making its
physical interpretation and possible practical use difficult.
However, the pressure filedmaintains amuch smoother char-
acter obtained using the proposed PDRI-SPH method than
the SPH, especially on the boundary regions. We can also
know that the wall particles and ghost particles contribute to

the evolution of the density of the fluid particles; pressures on
both fluid and virtual particles increase when fluid particles
are near the rigid wall. The presented boundary treatment is
strong enough to prevent fluid particles from penetrating the
rigid wall without employing an additional artificial repulsive
force.

Figure 10 shows the comparison of the numerical results
obtained using SPH or PDRI-SPH method for the width of
a Newtonian and Cross droplet varying with dimensionless
time. The Newtonian/Cross droplet spreads symmetrically
along the wall after impact with time. The PDRI-SPH results
much closer to the results in [39] than the SPH results in the
numerical simulations of Newtonian droplet impact. There
are also certain differences between the numerical results
of using PDRI-SPH and those of using SPH for solving the
width of a Cross droplet impact on horizontal rigid plate with
time in Figure 10(b). Considering the analysis of Section 4.1
and the results in Figure 9, it is not difficult to believe that
the results obtained using the PDRI-SPH method are more
reliable than those using SPH method. From Figure 10, we
also can observe that the width of a Cross droplet becomes
much larger than the corresponding Newtonian droplet case
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t = 1.23
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t = 2.65

t = 3.65

Figure 13: The shape of a Cross droplet at impact angles of 15∘ (first column), 30∘ (second column), and 45∘ (third column) obtained using
PDRI-SPH, varying with short dimensionless time.

at the short time (about dimensionless time 𝑡 ≤ 3) of droplet
impact, due to the shear-thinning behavior of the Cross
model droplet (see [29, 30]).

In order to further demonstrate the feasibility and the
credibility of the proposed method to simulate the impact
problem, the numerical convergence of the PDRI-SPH results
with different smoothing length ℎ and particles number 𝑁𝑥
(along the 𝑥-axis direction) is shown in Figure 11. From
Figures 10 and 11, we can get that (a) the proposed method
is convergent to simulate the Newtonian or Cross droplet
impact on horizontal rigid plate under different smoothing
length; (b) the results of Newtonian droplet for ℎ = 1.5𝑑0

are more accurate than those for ℎ = 1.2𝑑0 by observing
Figures 10(a) and 11(a), which implies that it is credible to
adopt the ℎ = 1.5𝑑0 in the simulations of Section 4.3; (c)
the credibility of the PDRI-SPH for simulating the impact
problem based on the Cross fluid is further verified by
Figure 11(b).

We can observe the shapes of aNewtonian drop spreading
over inclined rigid surfaces (𝛼 = 15∘, 30∘, 45∘) at different
dimensionless times from Figure 12. It can be seen that the
first phase of impact involving the initial deformation of
the droplet for all the cases of 𝛼 = 15∘, 30∘, 45∘ is similar to
that of impact angle 𝛼 = 0∘; namely, the front edge spreads
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Figure 14: Evolution of the elongation of a Newtonian (a) and a Cross (b) spreading droplet at different impact angles, obtained using PDRI-
SPH.
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Figure 15: Numerical convergence of evolution of a Newtonian droplet (a) and a Cross droplet (b) spreading on an inclined plate with impact
angle 30∘ and smoothing length ℎ = 1.5𝑑0 obtained using PDRI-SPH method.
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forward and the back edge spreads backward. Subsequently,
the front edge spreads forward and the back edge slips
forward, which can be clearly observed in Figure 14(a). The
phenomenon of precipitation appears versus time, which
becomes more evident with an increase of impact angle. The
PDRI-SPH results are similar to the results of a water droplet
impact on inclined surface obtained using VOF in [40, 41].

From Figure 13, we can get that the shapes of the Cross
drop spreading over inclined rigid surfaces (𝛼 = 15∘, 30∘, 45∘)
at different dimensionless time are different from the case
of Newtonian (see Figure 12) under the same total viscosity.
There are some obvious differences between the Newtonian
drop and the Cross model droplet case, which are shown in
Figures 12–14. The speed of a Cross droplet spreading over
inclined rigid plate is faster than its Newtonian counterpart.
Moreover, an indentation is formed only for the Cross droplet
with time at lower impact angle (𝛼 = 15∘) because of the
shear-thinning of the Cross fluid.

To further exemplify the reliability of the proposed
method for simulating the droplet spreading over inclined
rigid surface, Figure 15 shows the numerical convergence of
evolution of a Newtonian droplet and a Cross droplet spread-
ing on an inclined plate with impact angle 30∘ and smoothing
length ℎ = 1.5𝑑0. Observing Figure 15, the numerical results
for 𝑁𝑥 = 81 are very close to those for 𝑁𝑥 = 101, which
demonstrates that the proposed method possesses preferable
numerical convergence for simulating the impact problem. In
short, it is feasible and reliable to simulate the impact problem
of a Newtonian or Cross droplet spreading on an inclined
plate using the proposed PDRI-SPH method.

5. Conclusions

Aiming at the deficiency of standard SPHmethod, a periodic
density reinitialization method which is called the PDRI-
SPHmethod is proposed to preserve the consistency between
mass, density, and the occupied area. In order to verify
the validity and ability of the proposed PDRI-SPH, the
benchmark problem of drop stretching is simulated by PDRI-
SPH. Due to the density reinitialization, the PDRI-SPH has
better accuracy than the SPH, and the distributed pressure
field is much smoother likewise. Meanwhile, an artificial
stress is successfully presented and tested to simulate a Cross
droplet impact onto an inclined rigid plate of using PDRI-
SPH.The effect of the proposed PDRI-SPH combinedwith an
artificial viscosity, an artificial stress, and boundary condition
treatment is further shown in the physical problem of impact
of droplet onto inclined rigid plate and compared with the
standard SPH. All the numerical results declare that the
proposed PDRI-SPH has some merits comparing with the
SPH, and it is a powerful tool to simulate the complex free
surface for generalized Newtonian fluid. It is expected to
be widely used and further improved to solve complex free
surface flows in future.
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Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary
layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step
function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only
the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency
of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall
oscillation parameters is numerically simulated to study its effect on the power budget.

1. Introduction

Turbulent drag reduction is one of the active areas of research
in fluid mechanics especially due to its global impact on
sustainability challengeswe are facing today. One of the active
techniques for reducing drag is through spanwise oscillation
of the wall which reduces the skin friction and promises to
have large potential for energy savings.

This curious phenomenon was first observed by Jung
et al. [1] through direct numerical simulations (DNS) in a
channel flow. Since then, a lot of research efforts have been
made in this direction for different flow configurations like
channel flow [2–9], pipe flow [10, 11], and boundary layer
flows [12–14]. These investigations have been made either
through experiments or using DNS.

Most of these studies have dealt with temporal form of
wall oscillations which are specified as

𝑤 (𝑡)𝑦=0 = 𝑊𝑚 sin (𝜔𝑡) , (1)

where 𝑊𝑚 is the amplitude and 𝜔 is the frequency of the
imposed oscillations.

A few studies have been devoted to explore the spatial
oscillations and its impact on reducing skin friction has been
found to be greater than for temporal oscillations [15–19].

Spatial oscillations can be realized by enforcing the following
boundary condition:

𝑤 (𝑥)𝑦=0 = 𝑊𝑚 sin (𝑘𝑥) , (2)

where 𝑘 is the spatial frequency of oscillation and is related to
the wavelength (𝜆) as 𝑘 = 2𝜋/𝜆.

Spatial wall oscillation technique has its advantages and
disadvantages. It can have greater drag reduction as compared
to temporal oscillations and, hence, there are higher net
energy savings. It is an open-loop method so we do not
require an array of distributed sensors on the surface. How-
ever, the implementation remains a challenge as it requires
numerous moving parts which makes it impractical.
Although there have been advances in the field of material
science research to realize such waveforms in practical sit-
uations, the physical realization still remains elusive with the
current technology.

Almost all of the previous works have implemented oscil-
lation waveforms using sinusoidal functions. A recent study
by Cimarelli et al. [20] explored different temporal wave-
forms. In this work, we would like to explore the possibility
of using spatial square waves for drag reduction. In order to
reduce the power required to incorporate these oscillations,
we consider only the positive cycles of these oscillations. One
of the ways to realize spatial oscillations can be via pulsed jets
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Figure 1: Computational box as seen from the negative 𝑧-direction with the growth of boundary layer illustrated. Fringe region forces the
solution back to the prescribed laminar inflow thus enforcing periodic boundary condition. The lower part illustrates the spanwise velocity
forcing which is applied in a part of the wall under the turbulent boundary layer. Half square waves are used in the present study as shown in
the bottom figure.

in the spanwise direction for the near wall region. Another
possibility is to actively manipulate wall roughness optimally
distributed along the surface. The main contribution of the
present work is to illustrate the use of smooth step functions
to approximate the square waves which otherwise may give
rise to Gibbs phenomenon when using spectral methods.

2. Methodology

2.1. Governing Equations. The governing equations which
are used for the simulations here are the Navier-Stokes
equations which are formulated in terms of velocity-vorticity
and written in tensor notation as

𝜕𝑢𝑖

𝜕𝑡

= −

𝜕𝑝

𝜕𝑥𝑖

+ 𝜖𝑖𝑗𝑘𝑢𝑗𝜔𝑘 −

𝜕

𝜕𝑥𝑖

(

1

2

𝑢𝑗𝑢𝑗) +

1

Re
∇
2
𝑢𝑖 + 𝐹𝑖, (3)

𝜕𝑢𝑖

𝜕𝑥𝑖

= 0, (4)

where 𝑢𝑖 are the velocity components, 𝜔𝑖 are the vorticity
components, 𝑝 denotes pressure, and 𝐹𝑖 is the body force.
The nondimensional constant Re = 𝑈∞𝛿

∗
/] is the Reynolds

numberwith𝑈∞ being the streamwise freestream velocity, 𝛿∗
is the displacement thickness at 𝑥 = 0, and ] is the kinematic
viscosity. 𝑥𝑖 represents the coordinate system with (𝑥, 𝑦, 𝑧)

as streamwise, wall-normal, and spanwise coordinates and 𝑡
denotes time.

These equations are solved using a pseudospectral
method with appropriate boundary conditions. The basic

idea with spectral methods is to express the solution as a sum
of basis functions and then compute their coefficients such
that they satisfy the governing partial differential equations
and the boundary conditions.

A third-order Runge-Kutta-scheme is used to perform
time integration for the nonlinear terms. A second-order
Crank-Nicolson method is used for the linear terms. For
removing aliasing errors, a 3/2-rule is applied to the eval-
uation of the nonlinear terms when calculating Fourier
transforms in the wall parallel (𝑥-𝑧) plane. The numerical
code (SIMSON [21]) used for the simulations in this work
has been developed at KTH, Stockholm. Earlier simulations
of both temporal [12, 13] and spatial [15, 16] wall forcing have
been performed with the code.

2.2. Numerical Setup. Since we are trying to simulate a
turbulent boundary layer with a spatially growing boundary
layer, we need to choose our basis functions accordingly.
A basic sketch for the computational setup is shown in
Figure 1. For the discretization in the streamwise-spanwise
plane, Fourier basis is chosen assuming the solutions are
periodic in these directions. However, for the wall normal
direction, periodicity does not apply and Chebyshev poly-
nomials are instead used as basis functions for the 𝑦 (wall-
normal) direction. The technique is similar to other spectral
codes used for channel flows [5–8, 17, 18], and the spectral
accuracy is a considerable advantage as compared to other
discretizations, such as the finite volumemethods used in, for
example, [9, 14].
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Figure 2: Schematic picture of the fringe region.

For initializing the simulations, a laminar base flow is
required and is given as the Blasius similarity solution [22]. A
trip forcing using a randomvolume force is then incorporated
at 𝑥 = 5 for the flow to undergo transition and thereafter we
have turbulent flow regime. Figure 1 depicts this scheme.

Particular attention must be given to the streamwise
direction since the boundary layer is growing downstream
and hence no natural periodicity exists in that direction.
Therefore, for the purpose of artificially creating a periodic
computational domain, a fringe region is introduced at the
end to achieve this. The purpose of this fringe region is
to dampen the velocity fluctuations to zero and bring the
velocity field back to the laminar Blasius solution such that
there are minimum upstream effects [23]. This is achieved by
introducing the volume forcing 𝐹𝑖 in (3):

𝐹𝑖 = 𝜆 (𝑥) (�̃�𝑖 − 𝑢𝑖) , (5)

where 𝜆(𝑥) is the strength of the forcing and �̃�𝑖 is the laminar
inflow velocity profile. The function 𝜆 is defined as

𝜆 (𝑥) = 𝜆max𝑓 (𝑥) (6)

with

𝑓 (𝑥) = 𝑆 (

𝑥 − 𝑥start
Δ𝑥rise

) − 𝑆(

𝑥 − 𝑥end
Δ𝑥fall

+ 1) . (7)

Here 𝜆max is the maximum strength of the fringe, 𝑥start and
𝑥end denote the spatial extent of the region where the fringe is
nonzero, and Δ𝑥rise and Δ𝑥fall are the rise and fall distance of
the fringe function, respectively. Figure 2 shows a schematic
of how the fringe function varies. 𝑆(𝜂) is a continuous step
function that varies from zero for 𝜂 ≤ 0 to unity for 𝜂 ≥ 1 and
is given by

𝑆 (𝜂) =

{
{
{
{

{
{
{
{

{

0, 𝜂 ≤ 0,

1

(1 + 𝑒
(1/(𝜂−1)+1/𝜂)

)

, 0 < 𝜂 < 1,

1, 𝜂 ≥ 1.

(8)

2.3. Wall Oscillation Implementation. The form of wall oscil-
lation implemented here is a spatial square wave with only
positive forcing to reduce power consumption. However,
there are numerical challenges in implementing this using
pseudospectral method. A square wave when represented
using Fourier basis gives rise to Gibbs phenomenon which

Table 1: Oscillation parameters for the simulations presented.

Parameter set (PS) 𝑊
𝑚

𝑘

PS1 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.0628
PS2 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.1256
PS3 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.2512

is shown in Figure 3(a). When we try to approximate the
strong discontinuity in the square wave, it results in strong
oscillations at the edges. These result in spurious values
causing numerical instability and large computational errors.
Increasing the number of terms in the Fourier series approx-
imation does reduce the oscillation but it does not eliminate
it completely.

In order to avoid Gibbs phenomenon, we utilize the same
step function as we used for fringe region (8). Using the
step function is advantageous as it has continuous derivatives
at all points and does not exhibit the spurious ringing phe-
nomenon. Figure 3(b) shows the use of𝑓(𝑥) in implementing
the wall boundary condition for the present simulations. By
including only a few Fourier coefficients, we can approximate
the function quite accurately and eliminate Gibbs rings.

Spatial wall oscillation can be incorporated with the fol-
lowing boundary condition:

𝑤 (𝑥)𝑦=0 = 𝑊𝑚𝑓 (𝑥) , (9)

where 𝑓(𝑥) is the same profile function as used for fringe
region (see equation (7)) and 𝑊𝑚 is the amplitude of the
spatial oscillations.

2.4. Numerical Parameters. All quantities are nondimension-
alized by the free-stream velocity (𝑈∞) and the displacement
thickness (𝛿∗) at the starting position of the simulation (𝑥 =
0), where the flow is laminar. The Reynolds number is set
by specifying Re𝛿∗ = 𝑈∞𝛿

∗
/] at the laminar inlet (𝑥 = 0).

Note that, unless otherwise stated, the + superscript indicates
that the quantity is made nondimensional with the friction
velocity of the unmanipulated boundary layer (the reference
case), denoted by 𝑢0

𝜏
, and the kinematic viscosity (]).

A computational domain with 𝐿𝑥 = 600, 𝐿𝑦 = 30, and
𝐿𝑧 = 34 is chosen with a mesh resolution of 800 × 201 × 144,
respectively. The resolution of these simulations in wall units
is Δ𝑥+ = 16, Δ𝑦+min = 0.04, and Δ𝑧

+
= 5.1. All scalings

are done based on 𝑢
0

𝜏
from reference case at the starting

position of wall forcing (𝑥 = 200). Wall oscillation boundary
conditions are employed between 𝑥start = 200 and 𝑥end = 450
once it is ascertained that the flow has become fully turbulent.
The Reynolds number based on momentum thickness varies
between 450 < ReΘ < 715 in the control region.

Table 1 summarizes the parameters chosen for the steady
spatial oscillation in the present work. Only the positive forc-
ing has been employed for these simulation setups as shown
in Figure 3(b). The spatial frequencies have been doubled
and halved with respect to PS2 to see its impact on drag
reduction performance. Also, the amplitude of oscillations is
varied to understand its impact on drag reduction.The aim is
to observe the effect of removing the negative forcing of the
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Figure 3: Function approximations using finite Fourier series terms.

0
100 200 300 400 500 6000

100 200 300 400 500 6000

100 200 300 400 500 6000

0.5

PS1

PS2

PS3

0

0.5

0

0.5

x

x

x

w
y
=
0

w
y
=
0

w
y
=
0

Figure 4: Wall boundary condition set for spanwise velocity
component for PS1, PS2, and PS3 at𝑊

𝑚
= 0.5.

wall boundary and its effects on power budget and net energy
savings. Figure 4 shows the wall boundary condition for the
three parameter sets at𝑊𝑚 = 0.5.

3. Results and Discussion

In this section, we look into two aspects of the results
obtained from our numerical simulations. First, we look into
attenuation of 𝑐𝑓 values with respect to the reference case.

Subsequently, we present the power budget based on the
different forcings.

3.1. Skin Friction Attenuation. Wecompare skin friction from
the unoscillated or the reference casewith the oscillated cases.
Skin friction coefficient for turbulent flows is defined as

𝑐𝑓 = 2(

𝑢𝜏

𝑈∞

)

2

, (10)

where 𝑢𝜏 is the friction velocity and is computed based on
mean streamwise velocity gradient at the wall:

𝑢𝜏 = √]
𝜕𝑢

𝜕𝑦








𝑦=0

. (11)

The resulting drag reduction (DR) is then calculated from

DR (%) = 100
𝑐
0

𝑓
− 𝑐𝑓

𝑐
0

𝑓

, (12)

where 𝑐0
𝑓
is the skin friction of the reference case. In contrast

to internal flows [1–11], the DR is varying in the downstream
direction for the present case of boundary layer flow. Figure 5
shows the results for the skin friction variation along stream-
wise direction. All three cases show skin friction attenuation.
As soon as wall oscillation is applied at 𝑥start = 200, we see a
strong gradient which marks the spatial transient for 𝑐𝑓. For
PS1, we have a longer wavelength and, due to discontinuous
half waves, we observe recovery of 𝑐𝑓 back towards the
reference case. However, for PS2 and PS3, due to smaller
wavelength, this recovery process is weaker. This is a crucial
observation as it indicates that, with positive forcing itself, we
can get drag reduction of a similar order ofmagnitude as with
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Figure 5: Spatial development of skin friction along streamwise
direction at𝑊
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a full cycle of wall oscillation. This would reduce the power
required for forcing the wall oscillation and this increases
our net power saving as will be presented in the next section.
At 𝑥end = 450, the oscillations are stopped and skin friction
attains the reference case values.

3.2. Power Budget. To compute the net energy savings, we
need to take into account the energy required for wall
oscillation as compared to the savings due to drag reduction.
The derivation of these terms was given for channel flow by
Quadrio and Ricco [6] which was extended to the boundary
layer case by Skote [13].

In order to compute the saved power 𝑃sav(%), DR (as
percentage of ratio of skin-friction coefficients from reference
and oscillated cases; see (12)) is integrated for the region with
wall oscillation. The total saved power can be written as

𝑃sav (%) =
1

𝐿

∫

𝑥end

𝑥start

DR (%) d𝑥, (13)

where 𝑥start denotes the position at which the wall oscillation
is started, 𝑥end denotes the endpoint for oscillation, and 𝐿 =

𝑥start − 𝑥end.
Similarly, the wall oscillation requires power input which

can also be defined in terms of the friction power of the
reference flow [13] and can be written as

𝑃req (%) =
∫

𝑥end

𝑥start
] (𝜕𝑤/𝜕𝑦)

𝑦=0
𝑊 d𝑥

∫

𝑥end

𝑥start
(𝑢
0
𝜏
)
2
𝑈∞ d𝑥

. (14)

The net saved power is then defined as 𝑃net = 𝑃sav − 𝑃req.
If 𝑃net is negative it indicates that the input power required
to oscillate the wall is greater than the saved power due to
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streamwise drag reduction. However, it is possible that, for
an optimized set of oscillation parameters, one may achieve
positive energy budget. As reported by other researchers
[15, 18, 19], a positive net energy is more attainable for spatial
forcing than for temporal forcing.

Power required for the three oscillation cases is shown in
Figure 6. For lower amplitudes of forcing, we require lesser
power and it grows exponentially for larger amplitudes. For
different spatial frequencies, there is not much difference
in input power required. Figure 7 shows the power saved
based on (13). Here, we see that with increasing amplitude,
the power saving saturates after a limit. The effect of spatial
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Figure 8: Net power savings for the three chosen parameter sets together with a quadratic curve fit.

frequency is rather interesting as we see that the power
saved for PS2 and PS3 is almost the same. PS1 has a lower
power saving and that can be attributed to the recovery
to unoscillated skin friction values discussed previously in
Section 3.1.

Figure 8 shows the net power savings for the different
parameter sets. PS2 with 𝑊𝑚 = 0.5 gives us the maximum
net power saving (∼18%) amidst our chosen parameter space.
Performance quickly deteriorates for larger amplitudes
which show negative net power savings indicating that we
spend more power in oscillating the wall as compared to the
power savings. No complete description of the drag reduc-
tion mechanism exists to date. Thus, the influence of the
parameters on the drag reduction remains largely unex-
plained. The parameter space explored in the current work is
definitely not exhaustive. Viotti et al. [17] show power budget
statistics for a wide parameter space using sinusoidal wall
oscillation. The maximum net power savings achieved is
reported as 23% which was found at 𝑊+

𝑚
= 6. On the other

hand, they showed maximum net power savings of 6% at
𝑊
+

𝑚
= 12, which is the amplitude comparable to the present

case. They concluded that lower amplitudes give higher net
power savings, even though the drag reduction values are
lower. The simulation cases in the present study are not as
exhaustive due to the computational demands for spatially
developing boundary layers. Nevertheless, for the current
study we obtain the maximum savings of 18% at 𝑊+

𝑚
= 10.

The current suboptimal results may very well be further
improved by increasing the parametric space.

Although the results look promising in terms of the net
power savings, one of the drawbacks of the proposedmethod-
ology is that it induces crossflow which might be undesirable
in certain situations. In order to illustrate the phenomena,

a horizontal plane at 𝑦+ = 10 is shown in Figure 9. The
figure has been compressed by a factor 4 in the stream-
wise direction for better visualization. From the figure it is
observed that, after the first oscillation stops, the streaks
reorient themselves to the streamwise direction. However,
a spanwise crossflow manifests itself as can be seen by the
oblique streaks in the regions after the second and third
periods of forcing.

Note that this phenomena would not occur if a periodic
functionwith equal amount of positive and negative spanwise
wall velocity is used, as in the study of temporal nonsinusoidal
wall forcing by Cimarelli et al. [20].

4. Conclusion

A new form of steady spatial wall oscillation technique in
the form of square waves with positive forcing has been
presented with promising results for developing an active
drag reduction technique. Spectral methods were used to
solve the governing equations and the use of a smooth step
has been demonstrated to approximate a square wave to over-
come Gibbs phenomenon and avoid sharp discontinuities.
Downstream development of skin friction and power budget
for different oscillation parameters have been presented. An
optimal set of wall oscillation parameters for the current
parameter space was found to have ∼18% net energy savings.
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Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a
large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation 𝑢

𝐸

r.m.s ∼ 𝐶(𝑎
𝐿
)
𝜑 between

the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads
to the increase of the exponent 𝜑 and the trajectory-conditioned correlation coefficient 𝜌(𝑎𝐿, 𝑢𝐸) and results in a weak power-law
augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian
viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation
between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the
weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

1. Introduction

As well known, the swirling flow, especially for the strongly
swirling jets at large Reynolds numbers to which few stud-
ies were devoted, is one type of anisotropic turbulence,
which is less understood than the homogenous and isotropic
turbulence [1, 2]. In the past decades, the swirling flows
have been studied extensively under the Eulerian framework,
including a variety of scientific research topics and indus-
trial applications, for example, swirling recirculating flow
field [3, 4], open Von Kármán swirling flow [5], gas-liquid
cylindrical cyclone [6], gas-liquid two-phase jet flow [7], gas
turbine combustor [8], and so on. However, the swirling
flows based on the Lagrangian framework have not been
well investigated. Referring to the recent investigations of
Lagrangian acceleration in highly turbulent flows [9, 10],
the turbulent anisotropic flows with either a swirling or a
rotating flow pattern are of specific interest. Unfortunately,

the characteristics of Lagrangian acceleration for highly
swirling flows are still not well known.

Moreover, due to the fundamental importance of the
Lagrangian characteristics of fluid particle motion to trans-
porting and mixing in turbulence and reacting systems
[11], the Lagrangian measurement/modeling method has
been well used recently as it is a powerful approach for
improving the understanding of turbulent flows [12, 13].
Therefore, a large number of excellent studies have been
carried out contributing to the Lagrangian characteristics of
fluid particle motion, especially on the acceleration structure
or Lagrangian velocity spectrum [14–18].

On the other hand, as the investigations of turbulence
under the Eulerian frame are better developed than those
under the Lagrangian frame, establishing the relationship
between the Lagrangian statistics and Eulerian statistics
should be helpful in determining the common intrinsic sta-
tistical features of turbulence. However, the joint Lagrangian
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and Eulerian statistics of fluid particles are not well under-
stood yet. For example, the relationship between acceleration
intermittency (from the Lagrangian viewpoint) and turbu-
lence intensity (from the Eulerian viewpoint) is unknown.

Additionally, to carry out direct numerical simulation of
strongly swirling jets at a larger Reynolds number is a state-of-
the-art challenging work. Thus, direct numerical simulation
of the strongly swirling jet is very essential and important to
the scientific research of anisotropic turbulence.

In conclusion, a numerical study of direct numerical
simulation of the Lagrangian motion of fluid particles at
large Reynolds numbers is performed in present study,
where the Lagrangian statistics and Eulerian statistics are
combined together. The main aim of this study is to show the
dependence of correlation between fluid particle acceleration
and the intensity of turbulence on various levels of swirls and
show the correlation between the Lagrangian acceleration
and Eulerian convection of turbulence fluctuation in strongly
swirling jets at a large Reynolds number.

2. Numerical Description

2.1. Governing Equations. The Navier-Stokes equations for
incompressible fluids, based on the conservation laws ofmass
and momentum, are formulated in dimensionless forms as
follows:

(1) continuum equation: 𝜕𝑢
𝑖
/𝜕𝑥
𝑖
= 0,

(2) momentum equation: (𝜕𝑢
𝑖
/𝜕𝑡) + 𝑢

𝑗
(𝜕𝑢
𝑖
/𝜕𝑥
𝑗
) =

−(𝜕𝑝/𝜕𝑥
𝑖
) + (1/Re)(𝜕/𝜕𝑥

𝑗
)(𝜕/𝜕𝑥

𝑗
)𝑢
𝑖
.

To solve the governing equations, the finite differencemethod
is applied. The upwind compact schemes [19] are used to
discretize the convection term. The fourth-order compact
difference schemes [20] are applied for space derivatives and
the pressure-gradient terms.The third-order explicit schemes
are used to deal with the boundary points, keeping the global
fourth-order spatial accuracy. The fourth-order Runge-Kutta
schemes [21] are used for time integration. The pressure-
Poisson equation is solved to obtain the pressure via using the
fourth-order finite differencemethod [22].Themethods have
already been successfully applied in my recently published
literature [23].

2.2. Simulation Setup. The parameters used in the present
simulation are listed in Table 1. In the momentum equation,
the Reynolds number is defined as Re

𝜆
= 𝑈
0
⋅ 𝜆/V = 387.3,

where𝑈
0
is the axial inlet velocity; 𝜆 is the Taylor microscale;

and the kinematic viscosity V = 10
−6 (m2/s) (water at 20.3∘C).

The configurations of swirling flow are illustrated in
Figure 1(a), which are similar to those from an earlier study
[24]. A round jet of diameter 𝑑 is imparted with a rotational
azimuthal velocity at the inlet and issued into a rectangular

Table 1: Parameters used in simulation.

Characteristic diameter 𝑑∗ (mm) 1.0
Characteristic inflow velocity 𝑈

0

∗ (m/s) 5, 8 and 10
Scales of the flow domain 13.3𝑑 × 10𝑑 × 10𝑑

Grid numbers,𝑁
𝑥
× 𝑁
𝑦
× 𝑁
𝑧
(−) 640 × 480 × 480

Spatial resolution 𝛿 (𝜇m) 20.8
Reynolds number, Re

𝑑
10000

Swirl number, S 0.49, 1.08 and 1.42
Density of fluid, 𝜌

𝑓
(kg/m3) 1.0 × 103

Kinematic viscosity of fluid, ] (m2/s) 1.0 × 10−6

Time step, Δ𝑡 (𝜇s) 0.2
Total simulation time, 𝑇

𝑠
(ms) 40

∗The characteristic variable.

flow domain of 13.3𝑑 × 10𝑑 × 10𝑑. The swirl level is
the ratio of the maximum azimuthal velocity 𝑈

𝑎,max to the
streamwise velocity 𝑈

0
; that is, 𝑆 = 2𝑈

𝑎,max/𝑈0 [25]. The
axial and azimuthal inlet velocity profiles are the same as
those mentioned in earlier studies [24, 26, 27] (Figures 1(b)
and 1(c)). No inflow disturbance is introduced to keep the
intrinsic feature of the strongly swirling flow. Three swirl
numbers, that is, 𝑆 = 0.49, 1.08, and 1.42, are simulated
in the present study by varying the azimuthal velocity. The
nonreflecting boundary condition is utilized for the outlet
condition [28], and the side walls are set to be nonslipping
wall boundaries.

The flow domain is discretized by 640 × 480 × 480 =

147 456 000 Cartesian mesh grids. With this spatial dis-
cretization (𝛿 = 20.8 𝜇m), the jet inlet area (𝜋𝑑2/4) is covered
by 1791mesh grids. It is estimated that the Kolmogorov length
scale is about 𝜂 ≈ 0.85𝛿, which is in the same order of
the finest mesh scale. According to [29], it is fine enough to
capture the smallest scale of turbulence. For time integration,
the time step is 0.2𝜇s and the total simulated time is 40ms,
about three convective periods.

The particles issued from the 1791 grid points inside the
jet inlet area are traced, and, for each grid point, one particle
is issued into the flow domain every 200 time steps. In this
way, a total number of 179,100 fluid particles are traced in
this study. The fluid particles originated from these 1791
points are designated as x(𝑗, 𝑡), 𝑗 = mod(𝑛, 1791), where 𝑛

is the particle number and 𝑗 designates the group number.
Then, all the particles can be divided into 1791 groups. Each
group has the same initial location and velocity. However, the
trajectories of fluid particles within each group are not the
same because the system of fluid flow dynamics is strongly
nonlinear. An ensemble average over each group of particles
is utilized to carry out the Lagrangian statistics. For each
group, the instantaneous acceleration for 100 particles is
traced and recorded at any time for analysis. Thus, each data
group includes∼O (106) points.The ensemble average process
should be statistically reliable over such a large number of
data points.
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Figure 1: (a) Sketch of flow configuration and typical vorticity and the axial (b) and azimuthal (c) inlet velocity profiles.

3. Results and Discussions

3.1. Fluid Vortex Structures and Particle Trajectory. The typ-
ical vortex structure of 𝑆 = 1.42 is visualized in Figure 1(a).
It is clearly seen that a bubble region is enclosed by the
nearly axisymmetric vortices, forming an open angle toward
downstream. It is so called the central recirculation zone
(CRZ) or vortex breakdown (VB). Moreover, strong small
vortices are observed due to the highly turbulent and swirling
fluid flow.

Corresponding to this type of vortex structure, the fluid
particles are transported from the initial locations to the
downstream. The trajectories of one typical group of fluid
particles originated from the same initial location at the inlet
of the flow are shown in Figure 2. It is found that the fluid

trajectories enclose a bubble region statistically too, which
are initiated from the location where the axial motion of
fluid particle is decreased to zero, that is, the stagnation
point. After that, an immediate expansion in the lateral
and spanwise directions is established. This feature of fluid
trajectory reflects the structural characteristics of swirling
flow under the Lagrangian viewpoint.

3.2. Joint Distribution of Acceleration andTurbulence Intensity.
In general, the velocity field depends on the location and
time, that is, u𝐸(x, 𝑡), where “𝐸” denotes the “Eulerian”
viewpoint. To average u𝐸(x, 𝑡) in time, the velocity field can
be divided into a time averaged part U𝐸(x) and a fluctu-
ation part u𝐸(x, 𝑡), corresponding to the mean flow field
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Figure 2: The trajectories of one group of particles for 𝑆 = 1.42.

and the turbulent fluctuation field, respectively. Hence, the
root mean square (RMS) values of velocity 𝑢

𝐸

r.m.s(x) =

((1/Δ𝑇) ∫

𝑡+Δ𝑇

𝑡
|u𝐸(x, 𝜏) − U𝐸(x)|

2

𝑑𝜏)

1/2

can be used to eval-
uate the local intensity of turbulence at location x. On the
other hand, the motion of fluid particles can be traced under
the Lagrangian framework. The velocity and acceleration
of the traced particles are defined as a𝐿(𝑗, 𝑡) and u𝐿(𝑗, 𝑡),
respectively, where 𝑗 denotes the fluid particle and “𝐿”
denotes the “Lagrangian” viewpoint. In thisway, the statistical
characteristics of Lagrangian motion of fluid particles with
regard to the acceleration a𝐿(𝑗, 𝑡), velocity u𝐿(𝑗, 𝑡), and
trajectories are obtained for analysis.

Assuming a “steady” turbulence field is reached, the
turbulence intensity field can be quantified using the time-
averaging method. The fluid particle moves through the
“steady” turbulence field with temporally and spatially varied
Lagrangian acceleration of 𝑎

𝐿
= 𝑎
𝐿
(𝑗; r, 𝑡). Focusing on

𝑢
𝐸

r.m.s and 𝑎
𝐿
= 𝑎
𝐿
(𝑗; r, 𝑡) on the particle trajectories, a joint

distribution of (𝑎𝐿(𝑗; 𝑡), 𝑢𝐸r.m.s) can be obtained for analysis
via the Eulerian-Lagrangian joint statistics of turbulence. It is
termed as the trajectory conditioned joint distribution here.

As shown in Figure 3, the trajectory conditioned distribu-
tion of (𝑎𝐿(𝑗; 𝑡), 𝑢𝐸r.m.s) for different levels of swirl is indicated.
Every point in Figure 3 illustrates the pair of (𝑎𝐿(𝑗; 𝑡), 𝑢𝐸r.m.s)
on the trajectories which the 𝑗th group particles go through.
Zonal distributions are observed for 𝑆 = 0.49, 1.08, and 1.42,
with the widths being increased under larger swirling levels.
Thus, it is indicated that the 𝑢𝐸r.m.s and 𝑎

𝐿
(𝑗) are correlated in

somemanner. Generally, this correlationmay follow the form
of power-law 𝑦 = 𝑎 + 𝑥

𝑏. Note that the linear relationship
is also included in the power-law, provided 𝑏 = 1. Based
on this assumption, the data are fitted by the near power-law
expression.

The log-log distribution of 𝑎𝐿(𝑗) and 𝑢
𝐸

r.m.s for 𝑆 = 1.42 is
illustrated in Figure 4.The trend of the log-log plot is approx-
imately linear, although the data points are scattered widely.
As the data points are corresponding to all fluid particles
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group of fluid particles.

within the flow, the distribution should be scattered due to the
stochastic and turbulent fluctuations of particles. Moreover,
it could indicate the intrinsic Lagrangian characteristics of
turbulent swirling flows, especially for the general trends of
distribution and the statistical relationships between 𝑎

𝐿
(𝑗)

and 𝑢
𝐸

r.m.s.
In addition, it is seen from Figure 4 that the slope of the

fitting line increases when the swirl level increases.The fitting
equations are listed in Table 2. By these fitted expressions,
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Figure 5: The correlation between the Eulerian convection term of turbulence fluctuations 𝑢 (a), V (b), and 𝑤
 (c) and the Lagrangian

acceleration fluctuations in the 𝑥, 𝑦, and 𝑧 directions, respectively, for 𝑆 = 0.49.

the relationship between the Lagrangian acceleration and the
local Eulerian turbulence intensity is indicated to follow a
weak power-law form

𝑢
𝐸

r.m.s ∼ 𝐶(𝑎
𝐿
)

𝜑

. (1)

Statistically, the turbulence intensity should be large where
the fluid particles always pass through with large acceleration
and vice versa. If the averaged turbulence intensity level is in
the sameorder as thatwith the sameReynolds number andno
extra disturbance, the effect of the swirl upon the Lagrangian
characteristics could be achieved through a change in the
exponent 𝜑 and coefficient 𝐶. Hence, the characteristics of
intermittency are closely related to swirl level and exponent
𝜑. With the increase of swirl levels, the exponent 𝜑 becomes

larger. Consequently, the Lagrangian acceleration is nearly
power-exponentially increased, leading to the augmented
characteristics of intermittency.

In addition, Figure 4 shows that the scope of distribution
of (𝑎𝐿(𝑗; 𝑡), 𝑢𝐸r.m.s) can be generally sketched by an inferior
line (𝐿

1
) and a superior line (𝐿

2
) (Table 3). The majority of

the data points are restricted inside the sketched scopes. The
superior and inferior limiting lines show the proper limiting
cases of the near power-law joint distribution; that is,

1.0(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

𝛼

< (

𝑢
𝐸

r.m.s
𝑈
0

) < 1.5(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

𝛼

, (2)

where the limiting exponent is about 𝛼 = 6.16
±0.17

× 10
−3.
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Figure 6: The correlation between the Eulerian convection term of turbulence fluctuations 𝑢 (a), V (b), and 𝑤
 (c) and the Lagrangian

acceleration fluctuations in the 𝑥, 𝑦, and 𝑧 directions, respectively, for 𝑆 = 1.42.

Table 2: Fitting expressions.

Expressions Inverse expressions

𝑆 = 0.49
𝑢
𝐸

r.m.s

𝑈
0

∼ 0.166(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

0.278

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
∼ 639(

𝑢
𝐸

r.m.s

𝑈
0

)

3.6

𝑆 = 1.08
𝑢
𝐸

r.m.s

𝑈
0

∼ 0.171(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

0.291

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
∼ 429(

𝑢
𝐸

r.m.s

𝑈
0

)

3.4

𝑆 = 1.42
𝑢
𝐸

r.m.s

𝑈
0

∼ 0.183(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

0.312

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
∼ 228(

𝑢
𝐸

r.m.s

𝑈
0

)

3.2

Table 3: Inferior and superior curves of the data points.

Inferior lg(
𝑢
𝐸

r.m.s

𝑈
0

) = 6.332 × 10
−3 lg( 𝑎

𝐿

⟨𝑎
𝐿

r.m.s⟩
) + 3.514 × 10

−3
(

𝑢
𝐸

r.m.s

𝑈
0

) = 1.0(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

6.33×10
−3

Superior lg(
𝑢
𝐸

r.m.s

𝑈
0

) = 5.974 × 10
−3 lg( 𝑎

𝐿

⟨𝑎
𝐿

r.m.s⟩
) + 1.777 × 10

−3
(

𝑢
𝐸

r.m.s

𝑈
0

) = 1.5(

𝑎
𝐿

⟨𝑎
𝐿

r.m.s⟩
)

6.0×10
−3
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3.3. Turbulent Convective Effect versus Lagrangian Acceler-
ation. On the other hand, the Lagrangian acceleration is
formulated as 𝐷

𝐸

𝑡
= 𝜕
𝑡
+ (u𝐸 ⋅ ∇). With u𝐸 = 0, the

Lagrangian acceleration is equivalent to the Eulerian accel-
eration. Thus, the nonlinear convective term u𝐸 ⋅ ∇ plays
a dominant role in correlation as well as the difference
between the Eulerian statistics and the Lagrangian statistics
of turbulence. Moreover, from the Eulerian viewpoint, u𝐸 ⋅
∇ = U𝐸 ⋅ ∇ + u𝐸 ⋅ ∇, where U𝐸 is the time-averaged
velocity and u𝐸 is the fluctuation velocity. Based on the order
analysis, it is assumed that the U𝐸 ⋅ ∇ term plays a leading
role in turbulence convection. Under this assumption, it is
appropriate to consider that the term U𝐸 ⋅ ∇u𝐸 represents
the effect of convection of turbulence fluctuations. Remember
that it is based on the Eulerian viewpoint. Then, moving
with a Lagrangian fluid particle, it is natural to calculate
the U𝐸 ⋅ ∇u𝐸 along the particle trajectory. We call it the
trajectory-conditioned U𝐸 ⋅ ∇u𝐸, namely, U𝐸 ⋅ ∇u𝐸|

𝑗
. In

this way, the joint Eulerian and Lagrangian statistics on
correlation between the convection of turbulence fluctuation
and the Lagrangian fluctuation of particle acceleration can be
performed.

Figure 5 shows the RMS values ofU𝐸 ⋅ ∇u𝐸|
𝑗
and acceler-

ation a𝐿 for 𝑆 = 0.49 in the 𝑥, 𝑦, and 𝑧 directions, respectively.
One point within Figure 5(a) represents the results for one
group of particles. It is seen that, for low swirl levels (𝑆 =

0.49), the RMS values are distributed nearly linearly. After
linear regression, the fitted expression is ⟨U𝐸 ⋅ ∇𝑢𝐸|

𝑗
⟩
r.m.s

≈

0.0556⟨𝑎
𝐿

𝑥
⟩
r.m.s.Moreover, it is observed fromFigure 5(b) and

Figure 5(c) that this nearly linear correlation also exists in the
other directions; that is, ⟨U𝐸 ⋅ ∇V𝐸|

𝑗
⟩
r.m.s

≈ 0.0315⟨𝑎
𝐿

𝑦
⟩
r.m.s

and ⟨U𝐸 ⋅ ∇𝑤𝐸|
𝑗
⟩
r.m.s

≈ 0.0317⟨𝑎
𝐿

𝑧
⟩
r.m.s. It indicates the

correlation between the convection of turbulence fluctuations
and the Lagrangian acceleration fluctuations along the par-
ticle trajectory; namely, the large fluctuation of Lagrangian
acceleration indicates the large fluctuation of Eulerian con-
vection of turbulence and vice versa. As a result, although
scattered widely, the trends of the scattering distributions
show the statistical correlation between the Lagrangian inter-
mittency effects, which corresponds to the extreme events of
the largely fluctuated Lagrangian acceleration, and the Eule-
rian intermittency effects of turbulence fluctuations, that is,
the extreme events of convection of turbulence fluctuations.

However, for large swirl levels (Figure 6, 𝑆 = 1.42),
this linear correlation in the axial direction seems to be
disturbed, since the data points are widely scattered within
a local domain. In contrast, the nearly linear correlation also
occurs in the other directions. Remembering the occurrence
of recirculation phenomena in the axial direction within the
bubble-breakdown region, it is appropriate to explain that
the disturbance of linear correlation is due to the formation
of bubble vortex breakdown—a dramatic change of the large
scale flow structure. In this way, the correlation of Lagrangian
intermittency effects as well as the Eulerian intermittency

effects becomes complex. It is correlated in the lateral and
spanwise directions and attenuated in the axial direction.

4. Conclusion

The present study focuses on the effect of swirl levels on
the correlation between the Lagrangian and Eulerian eval-
uations of turbulence. The statistical correlations between
the Lagrangian and Eulerian evaluations of turbulence are
demonstrated. It is found that the Lagrangian acceleration
follows a weak power-exponential form of augmentation
by the increase of swirl levels, leading to the augmented
characteristics of intermittency. Moreover, the fluctuations
of 𝑎
𝐿
(I, 𝑡) and 𝑢

𝐸
(r, 𝑡) become increasingly correlated to

each other with the increase of the swirl levels. Additionally,
the Eulerian convection of turbulence fluctuations is weakly
proportional to the Lagrangian acceleration fluctuations,
indicating the proportionally close correlation between the
Eulerian and Lagrangian intermittency effects.
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Multiphysics problems arise naturally in several engineering and medical applications which often require the solution to coupled
processes, which is still a challenging problem in computational sciences and engineering. Some examples include blood flow
through an arterial wall and magnetic targeted drug delivery systems. For these, geometric changes may lead to a transient phase
in which the structure, flow field, and electromagnetic field interact in a highly nonlinear fashion. In this paper, we consider
the computational modeling and simulation of a biomedical application, which concerns the fluid-structure-electromagnetic
interaction in themagnetic targeted drug delivery process. Our study indicates that the strongmagnetic fields, which aid in targeted
drug delivery, can impact not only fluid (blood) circulation but also the displacement of arterial walls. A major contribution of this
paper is modeling the interactions between these three components, which previously received little to no attention in the scientific
and engineering community.

1. Introduction

In the last decade, the rapid development of computational
science has provided new methodologies to solve complex
multiphysics applications involving fluid-structure interac-
tion to a variety of fields. These include solving applications
involving blood flow interactions with the arterial wall to
computational aeroelasticity of flexible wing micro-air vehi-
cles to magnetohydrodynamic of liquid-metal cooled nuclear
reactor to ferromagnetics with biological applications. In
these applications, the challenge is to understand and develop
algorithms that allow the structural deformation, the flow
field, and temperature variations to interact in a highly
nonlinear fashion.

Coupling these multiphysics with electromagnetic effects
makes the associated computational model too complex. Not
only is the nonlinearity in the geometry challenging but
in many of these applications the material is nonlinear as
well, which makes the problem even more complex. Direct

numerical solution of the highly nonlinear equations gov-
erning even the most simplified two-dimensional models of
such multiphysics interaction requires that all the unknown
fields, such as fluid velocity, pressure, the magnetic and the
electric field, the temperature field, and the domain shape, be
determined as part of the solution, since neither is known a
priori.

The past few decades, however, have seen significant
advances in the development of finite element and domain
decomposition methods. These have provided new algo-
rithms for solving such large scale multiphysics simulations.
There have been several methods that have been introduced
in this regard and their performance has been analyzed for
a variety of problems. One such technique is the mortar
finite element method which has been shown to be stable
mathematically and has been successfully applied to a variety
of applications and references therein. The basic idea is
to replace the strong continuity condition at the inter-
faces between the different subdomains modeling different
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multiphysics by a weaker one to solve the problem in a
coupled fashion. Such novel techniques provide hope for
us to develop new faster and efficient algorithms to solve
complexmultiphysics applications. A variety ofmethods have
been introduced including the level set methods [1], fictitious
domain methods [2, 3], nonconforming hp finite element
methods [4, 5], multilevel multigrid methods [6], and the
immersed boundary methods [7]. While these methods help
enhance our ability to understand complex processes, there
is still a great need for efficient computational methods that
cannot only help simulate physiologically realistic situations
qualitatively but also analyze and studymodeling of such pro-
cesses quantitatively. Such multiphysics applications involve
the interaction of various components, such as fluid with the
structure, electromagnetics with the fluid, or fluid-structure
interacting completely with electromagnetics.

1.1. Electromagnetic-Fluid Interaction. An important appli-
cation involving interaction of electromagnetics with fluid
which describes the behavior of electrically conducting fluid
is very complex under a magnetic field, since the additional
Lorentz force is caused by the interaction between velocity
field and electromagnetic field. Understanding such coupled
behavior not only helps us to create efficient algorithms but
also applies to a variety of magnetohydrodynamic (MHD)
applications. Due to its multidisciplinary applications, a solid
understanding of the MHD is required. In this regard, the
Hartmann flow has been studied extensively. The Hartmann
flow is the steady flow of an electrically conducting fluid
between two parallel walls, under the effect of a normal
magnetic and electric field. A thorough understanding of
such models for electromagnetic fluid interaction can help
us in developing new techniques for complex problems such
as magnetic drug targeting in cancer therapy. Such a model
would involve ferrohydrodynamics of blood that helps to
study external magnetic field and its interaction with blood
flow containing a magnetic carrier substance. The analytic
models would involve solving Maxwell’s equations in con-
junction with Navier-Stokes equations. While new models in
this area are just starting to evolve, these often consider the
structure to be fixed. There is a need to extend these models
to include fluid-structure interaction with electromagnetics,
which would be another focus of this work.

1.2. Proposed New Models. In this paper, we will develop
a computational infrastructure for solving coupled fluid-
structure interaction with electromagnetic and temperature
effects. The rest of the work is organized as follows. Section 2
presents the models, methods, and background required
to develop and solve the coupled multiphysics systems.
In Section 3, we consider the model of a blood vessel, a
permanent magnet, and surrounding tissue and air in two
dimensions. We will consider both a nonmoving structure
and a moving structure. The deformed structure provides a
new geometry, where the Navier-Stokes equations are solved
for the velocity andpressure fields in the bloodstream.Amag-
netic vector potential generated by the permanent magnet is
calculated, which in turn creates amagnetic volume force that

Permanent
magnet

Blood flow

Blood vessel wall

Blood vessel wall

System boundary

Figure 1: Electromagnetic fluid-structure interaction model.

impacts the flow in the blood vessel. The flow field changes
the displacement of the structure, and the problem is solved
once again for the new geometry. The proposed models
are validated against benchmark applications numerically.
Section 4 presents conclusion and a discussion of the results.
Future work on the proposed problems is also presented.

A magnetically targeted drug delivery system [8] is
based on magnetic particles under the action of an external
magnetic field. This is becoming an increasingly effective
approach in drug therapy. As this field has evolved in the
last decade, lots of scientific interest led to this inquiry into
efficient computational models that simulate this experimen-
tal process [9]. Our study indicates that the strong magnetic
fields which aid in targeted drug delivery can impact not only
fluid (blood) circulation but also the displacement of arterial
walls. Thus, it is important to have a model, which includes
the interactions between fluid, structure, and magnetic field
in order to study and optimize drug delivery.

In this section, we will present a model that describes
the interaction between these three components, which
previously received little to no attention in the scientific
community. To develop an electromagnetic fluid-structure
interaction, we incorporate the effects of the electromagnetic
field into a fluid-structure model. Gaining a thorough under-
standing of such a coupled model can help us to understand
the efficacy of magnetic nanoparticle-based drug delivery
for diseases such as cancer as has been proposed by various
researchers [10, 11].There is significant evidence that indicates
a need for more promising models which overcome current
limitations and improve magnetic targeting technique.

2. Mathematical Model and Governing
Equations

The model we consider is a blood vessel with a permanent
magnet near its surface, as illustrated in Figure 1. For sim-
plicity of presentation, we consider a computational model
that comprises three components. Let the computational
domain Ω ⊂ R2 be an open set with global system boundary
Γ. Let Ω be decomposed into the four disjoint open sets,
a fluid subdomain Ω

𝑓
denoted by blood flow, two solid
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subdomains Ω𝑖
𝑠
, 𝑖 = 1, 2 (blood vessel walls) with respective

boundaries Γ
𝑓
and Γ
𝑠
, and one electromagnetic domain Ω

𝑚

(permanent magnet). Let Γ𝑗
𝐼
, 𝑖 = 1, 2, 3, 4 be the interface

between the solid, fluid, and electromagnetic domains. The
structural domain consists of two symmetric arterial vessel
walls denoted by Ω1

𝑠
and Ω

2

𝑠
. The electromagnetic domain

consists of a permanentmagnet of dimensions 10 𝜇m×40 𝜇m
placed in free space. The arterial wall describes a structural
mechanism that interacts with the flow dynamics of blood
which in turn is impacted by a permanent magnet, which is
described next.

For this, we use Maxwell’s equation for the magnetostatic
case (the field quantities do not vary with time) that relates
themagnetic field intensityH and the electric current density
J [12]:

∇ ×H = J,

∇ ⋅ J = 0.
(1)

The constitutive relations between B and H depend on the
domain [12, 13]:

B =

{{

{{

{

𝜇
0
𝜇
𝑟,magH + Brem for the permanent magnet

𝜇
0
(H +M

𝑓𝑓
(H)) for the blood stream

𝜇
0
H for the tissue and air,

(2)

where 𝜇
0

is the magnetic permeability of vacuum
(V⋅s/(A⋅m)), 𝜇

𝑟,mag is the relative magnetic permeability of
the permanent magnet (dimensionless),Brem is the remanent
magnetic flux (A/m), andM

𝑓𝑓
is the magnetization vector in

the blood stream (A/m), which is a function of the magnetic
field,H. By defining a magnetic vector potential A such that

B = ∇ × A, with ∇ ⋅ A = 0, (3)

we get

∇ × (
1

𝜇
∇ × A −M) = J. (4)

Assuming no perpendicular currents, we can simplify to a 2D
problem and reduce this equation to

∇ × (
1

𝜇
0

∇ × A −M) = 0. (5)

This assumes that themagnetic vector potential has a nonzero
component only perpendicularly to the plane, which is
A = (0, 0, 𝐴

𝑧
). The induced magnetization M

𝑓𝑓
(𝑥, 𝑦) =

(𝑀
𝑓𝑓𝑥
,𝑀
𝑓𝑓𝑦
) is characterized by [14–17]

M
𝑥
= 𝛼 arctan(

𝛽

𝜇
0

𝜕𝐴
𝑧

𝜕𝑦
) ,

M
𝑦
= 𝛼 arctan(

𝛽

𝜇
0

𝜕𝐴
𝑧

𝜕𝑥
) .

(6)

To capture the magnetic fields of interest we can linearize
these expressions to obtain

M
𝑥
=
𝜒

𝜇
0

𝜕𝐴
𝑧

𝜕𝑦
, M

𝑦
=
𝜒

𝜇
0

𝜕𝐴
𝑧

𝜕𝑥
, (7)

where 𝜒 = 𝛼𝛽 is the magnetic susceptibility. This magnetic
field induces a body force on the fluid. With the assumption
that the magnetic nanoparticles in the fluid do not interact,
the magnetic force F = (𝐹

𝑥
, 𝐹
𝑦
) on the ferrofluid for relatively

weak fields is given by [16]

F = |M| ∇ |H| . (8)

Substituting (2) and (3) in (8) leads to the expression

𝐹
𝑥
= 𝑘
𝑓𝑓

𝜒

𝜇
0
𝜇2
𝑟

(
𝜕𝐴
𝑧

𝜕𝑥

𝜕
2
𝐴
𝑧

𝜕𝑥2
+
𝜕𝐴
𝑧

𝜕𝑦

𝜕
2
𝐴
𝑧

𝜕𝑥𝜕𝑦
) ,

𝐹
𝑦
= 𝑘
𝑓𝑓

𝜒

𝜇
0
𝜇2
𝑟

(
𝜕𝐴
𝑧

𝜕𝑥

𝜕
2
𝐴
𝑧

𝜕𝑥𝜕𝑦
+
𝜕𝐴
𝑧

𝜕𝑦

𝜕
2
𝐴
𝑧

𝜕𝑦2
) ,

(9)

where 𝑘
𝑓𝑓

is the fraction of the fluid which is ferrofluid. The
vector 𝐹

𝑓
= (𝐹
𝑥
, 𝐹
𝑦
) is the volume force, which is input for

the Navier-Stokes equations in the next subsection.

2.1. Modeling the Unsteady Blood Flow. We model the fluid
domain for the blood flow via the unsteady Navier-Stokes
equations for an incompressible, isothermal fluid flowwritten
in nonconservative form as

𝜌
𝑓

𝜕𝑢
𝑓

𝜕𝑡
+ 𝜌
𝑓
(𝑢
𝑓
⋅ ∇) 𝑢
𝑓
+ ∇𝑝 = ∇ ⋅ 𝜏

𝑓
+ 𝐹
𝑓
,

𝜌
𝑓
∇ ⋅ 𝑢
𝑓
= 0,

(10)

where 𝑢
𝑓
is the velocity, 𝜌

𝑓
is the density, 𝑝 is the pressure,

and 𝐹
𝑓

is the body forces. The viscous stress tensor is
𝜏(𝑢
𝑓
) = 2𝜂𝐷(𝑢

𝑓
), where 𝜂 is the dynamic viscosity and the

deformation tensor is

𝐷(𝑢
𝑓
) = 𝜇
𝑠
(

∇𝑢
𝑓
+ (∇𝑢

𝑓
)
𝑇

2
) . (11)

The fluid equations are subject to the boundary conditions:

𝑢
𝑓
= 𝑢wall, 𝑥 ∈ Γ

𝑗

𝐼
, 𝑗 = 2, 3

𝜏
𝑓
⋅ 𝑛 = 𝑡 ⋅ 𝑛, 𝑥 ∈ Γ

𝑁
,

𝑢
𝑓
=
𝜕𝑑
𝑠

𝜕𝑡
𝑥 ∈ Γ
𝑗

𝐼
, 𝑗 = 2, 3,

(12)

where 𝑡 = −𝑝𝐼 + 2𝐷 (𝑢
𝑓
) is the prescribed tractions on the

Neumann part of the boundary with 𝑛 being the outward
unit normal vector to the boundary surface of the fluid.
Conditions of displacement compatibility and force equilib-
rium along the structure-fluid interface are enforced. In order
to solve a fluid-structure interaction problem in a coupled
fashion we employ an arbitrary Lagrangian-Eulerian (ALE)
formulationwhere the characterizing velocity is no longer the
material velocity 𝑢

𝑓
, but a grid velocity �̂�

𝑓
. This allows us to

replace the material velocity 𝑢
𝑓
in (10) with the convective
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velocity 𝑐 = 𝑢
𝑓
− �̂�
𝑓
[5]. The weak variational formulation of

the fluid problem then becomes

∫
Ω𝑓

𝜏
𝑓
⋅ ∇𝜙 𝑑Ω

𝑓

= ∫
Ω𝑓

𝐹 ⋅ 𝜙 𝑑Ω
𝑓
+ ∫
Γ𝑓

𝑡 ⋅ 𝜙 𝑑Γ

+ ∫
Ω𝑓

𝜌
𝑓

𝜕𝑢

𝜕𝑡
⋅ 𝜙 𝑑Ω

𝑓
+ ∫
Ω𝑓

𝜌
𝑓
(𝑐 ⋅ ∇) 𝑢

𝑓
⋅ 𝜙 𝑑Ω

𝑓
,

∫
Ω𝑓

𝑞∇ ⋅ 𝑢 𝑑Ω
𝑓
= 0.

(13)

2.2. Modeling the Structure Equations. The structural
domains for the blood vessel walls consist of the arterial
vessel walls denoted by Ω1

𝑠
, Ω2
𝑠
. They are modeled via the

following equation:

𝜌
𝑠

𝜕
2
𝑑
𝑠

𝜕𝑡2
= ∇ ⋅ 𝜏

𝑠
+ 𝐹
𝑠
, (14)

where 𝑑
𝑠
is the structure displacement, 𝜌

𝑠
is the structure

density, 𝜏
𝑠
is the solid stress tensor, and 𝜕2𝑑

𝑠
/𝜕𝑡
2 is the local

acceleration of the structure.This is solvedwith the boundary
conditions:

𝑑
𝑠
= 𝑑
𝐷

𝑠
𝑥 ∈ Γ
𝐷

𝑆
,

𝜏
𝑠
⋅ 𝑛
𝑠
= 𝑡
𝑠

𝑥 ∈ Γ
𝑁

𝑆
,

𝜏
𝑠
⋅ 𝑛
𝑠
= −𝜏 ⋅ 𝑛 + 𝑡

𝐼

𝑆
𝑥 ∈ Γ
𝑗

𝐼
𝑗 = 2, 3.

(15)

Here Γ𝐷
𝑆

and Γ
𝑁

𝑆
are the respective parts of the structural

boundary where the Dirichlet and Neumann boundary
conditions are prescribed. Also, 𝑡

𝑆
are the applied tractions

on Γ
𝑁

𝑆
and 𝑡

𝐼

𝑆
are the externally applied tractions to the

interface boundaries Γ𝑗
𝐼
, 𝑗 = 1, 2, 3, 4. The unit outward

normal vector to the boundary surface of the structure is
𝑛
𝑠
. The stresses are computed using the constitutive relation

described next. Equations (15) enforce the equilibrium of
the traction between the fluid and the structure on the
respective fluid-structure interfaces. The total strain tensor
for a typical geometrically nonlinearmodel iswritten in terms
of displacement gradients:

𝜀 =
1

2
(∇𝑑
𝑠
+ ∇𝑑
𝑇

𝑠
+ ∇𝑑
𝑠
∇𝑑
𝑇

𝑠
) . (16)

For small deformations, the last term on the right hand side
is omitted to obtain a geometrically linear model. Since the
objective of this section is to investigate the influence of
electromagnetic effects on fluid-structure interactionmodels,
we will consider a geometrically linear model combined with
a linear constitutive law. The solid stress tensor 𝜏

𝑠
is given in

terms of the second Piola-Kirchoff stress 𝑆:

𝜏
𝑠
= (𝑆 ⋅ (𝐼 + ∇𝑑

𝑠
)) . (17)

20𝜇m

20𝜇m

40𝜇m

100𝜇m

10𝜇m

300𝜇m

∙ (150, 105)
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Figure 2: Domain and points of interest.

For the linear material model, we employ the following
constitute law relating the stress tensor to the strain tensor:

𝑆 = 𝑆
0
+ 𝐶 : 𝜀, (18)

where 𝐶 is the 4th order elasticity tensor and “:” stands for
the double-dot tensor product. 𝑆

0
and 𝜀
0
are initial stresses

and strains, respectively. The weak variational form of the
structural equations then becomes the following: find the
structure displacement 𝑢

𝑠
such that

∫
Ω𝑓

𝜏
𝑠
⋅ 𝜀
𝑠
𝑑Ω
𝑠

= ∫
Ω𝑓

𝐹
𝑠
⋅ 𝜙
𝑠
𝑑Ω
𝑠
+ ∫
Γ
𝑁
𝑆

𝑡
𝑠
⋅ 𝜙
𝑠
𝑑Γ

− ∫
Ω𝑓

𝜌
𝑠

𝜕
2
𝑑
𝑠

𝜕𝑡2
⋅ 𝜙
𝑠
𝑑Ω
𝑠
− ∫
Γ𝐼

(𝑡
𝐼

𝑆
− 𝜏
𝑓
⋅ 𝑛) ⋅ 𝜙

𝑠
𝑑Γ.

(19)

3. Numerical Results

In this section, we present the numerical results for the
electromagnetic-fluid-structure interaction model problem
presented in this section. To understand the effects of the
coupling between electromagnetic field and fluid-structure
interaction models better, we first consider the interaction
with a rigid structure, which is often employed in the
most research problems that are only interested in study-
ing the electromagnetic-fluid interaction.The computational
domain (see Figure 2) represents a blood vessel that is 300
micrometers long and 100 micrometers in diameter, with
walls 20micrometers in thickness. All the results presented
are for three magnetic fields: 0T (no magnetic field), 0.5T,
and 1T. The structure model we consider is linear (MLGL),
which was introduced in Section 2.

3.1. Coupled Interaction with Rigid Structure. Figures 3(a),
4(a), and 5(a) illustrate the influence of the magnetic field
on the interaction. These figures show the surface von Mises
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Figure 3: Surface von Mises stress with streamlines of spatial velocity field and magnetic field for Brem = 0T at 𝑡 = 0.215. Time = 0.215,
surface: von Mises stress (N/m2), surface: velocity magnitude (m/s), and streamline: velocity field (spatial).

400

450

350

300

250

200

150

100

50

0

−50

350300250200150100500−50

−100

−150

−200

−250

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0

0

00.1032

33.992

30.414

26.836

23.258

19.681

16.103

12.525

8.9471

5.3692

1.7914

−1.7865

−5.3643

−8.9421

−12.52

−16.098

−19.676

−23.253

−26.831

−30.409

−33.987

−3.3987 × 10
−6

3.3992 × 10
−6

×10
−7

(a) Nonmoving structure

400

450

350

300

250

200

150

100

50

0

−50

350300250200150100500−50

−100

−150

−200

−250

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.103

33.992

30.414

26.836

23.258

19.681

16.103

12.525

8.9471

5.3692

1.7914

−1.7865

−5.3643

−8.9421

−12.52

−16.098

−19.676

−23.253

−26.831

−30.409

−33.987

−3.3987 × 10
−6

3.3992 × 10
−6

×10
−7

0.2

0.4

0.6

0.8

1

1.2

75.713

1.389 × 10
4

×10
4

(b) Moving structure

Figure 4: Surface von Mises stress with streamlines of spatial velocity field and magnetic field for Brem = 0.5T at 𝑡 = 0.215. Time =
0.215, surface: von Mises stress (N/m2), surface: velocity magnitude (m/s), contour: magnetic vector potential, 𝑧 component (Wb/m), and
streamline: velocity field (spatial).

stress along with streamlines of spatial velocity field and the
𝑧-component of the magnetic vector potential. While there
is no significant impact of increasing the magnetic field on
the velocity profile in each of the graphs in Figures 3(a), 4(a),
and 5(a), the impact on the magnetic vector potential is as

expected. As it can be seen, the 𝑧-component of the magnetic
potential doubles when magnetic field doubles.

Figures 6(a), 7(a), and 8(a) compare the effect of varying
the magnetic field on the surface pressure. Unlike the impact
on the velocity profile, these figures suggest that the surface
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Figure 5: Surface vonMises stress with streamlines of spatial velocity field andmagnetic field forBrem = 1T at 𝑡 = 0.215. Time= 0.215, surface:
von Mises stress (N/m2), surface: velocity magnitude (m/s), contour: magnetic vector potential, 𝑧 component (Wb/m), and streamline:
velocity field (spatial).
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Figure 6: Pressure for Brem = 0T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).

pressure is impacted by increasing the magnetic field and the
doubling effect is also seen as expected.

3.2. Coupled Interaction with Moving Structure. Next, we
consider the benchmark problem presented with the struc-
ture moving. For this, we employ the ALE formulation for
the fluid-structure interaction as described in Section 2. We
notice from Figures 3(b), 4(b), and 5(b) that, at 𝑡 = 0.215

(when the fluid velocity has maximum value), the structure
and the flow pattern are not very much impacted by the mag-
net. For the maximum studied magnetic field of 1T, the arte-
rial wall is slightly bent towards the magnet. For even larger
magnetic fields not shown in the picture (the order of mag-
netic field of 5T), the magnet intersects with the arterial wall.

Even though we have not seen a big difference in
structural deformation and fluid flow for our study case, the
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Figure 7: Pressure for Brem = 0.5T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).
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Figure 8: Pressure for Brem = 1T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).

fluid pressure is entirely different between two considered
magnetic fields (see Figures 6(b), 7(b), and 8(b)). If forBrem =

0T the pressure is completely symmetric with respect to
the 𝑥-axis, the pressure around the magnet increases when
magnetization is 0.5T and becomes more than double the
maximum pressure in the rest of the fluid when Brem = 1T.

Another experiment we perform is to measure the veloc-
ity profile and displacement of two specific points. From
Figures 9 and 10, we notice that, as expected, the velocity
and pressure decrease at the center and increase around the

boundaries when the structure is moving, mainly because
of the dilatation of the structure. While the pressure in
the center is not affected much by the presence or absence
of magnetic field, near the magnet the pressure is steadily
increasing with the time.

For the measured displacement, we notice in Figure 11
that the wall towards the magnet is getting closer to the
magnet because of the increasing pressure, while the other
wall is virtually unaffected by the presence of the magnetic
field.
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Figure 9: Velocity for a center and edge point inside the fluid.
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Figure 10: Pressure for a center and edge point inside the fluid.

4. Conclusion

In this work, we presented the computational modeling
and simulation of coupled multiphysics applications. These
included a variety of processes such as fluid dynamics,
structural mechanics, and electromagnetic interaction that
impacted the behavior of the physical system in a coupled
way. Specifically, this work considered the research question
of “how does incorporating electromagnetic field into fluid-
structure interaction models influence the fluid flow and
structural deformation?” In answering this question, this

work led to the development of a two-dimensional multi-
physics problem involving electromagnetics coupled with
fluid-structure interaction.

In order to answer this research question, we first pre-
sented the mathematical background and simulation of the
interaction between fluid, structure, and magnetic field. The
motivation of this came from researchingmodels for targeted
drug delivery for delivering drugs in human body, to increase
the concentration of the drug in the target area. For example,
the chemotherapy drug dosage is limited by the negative
impact on the drugs on the healthy cells. By delivering the
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Figure 11: 𝑦-displacement of two points.

drugs with high accuracy and maximum concentration to
specific areas of the body, it is possible to increase local dosage
of the drug on the tumor, with lower concentration in the
rest of the body. The drug effectiveness is increased while the
side effects are reduced. Other examples of the applications
of magnetic drug targeting are treatment of cardiovascular
conditions, such as stenosis and thrombosis. Thus, it is
important to model not only the blood circulation but also
the deformation of the blood vessel, in order to improve
the accuracy which is the focus of the second problem in
this thesis. In particular, it is important to have an accurate
model of the interaction between the three components for
optimizing the shape, size, and magnetic power, in order
to deliver the drugs efficiently in the desired place and
minimize the side effects. Our results from this work clearly
indicate the importance of the magnetic field to be coupled
with a fluid-structure interaction model. More importantly,
the results suggest the importance of using moving walls
versus nonmoving walls in this coupled electromagnetic
fluid-structure interaction.

While this work provided a lot of insight into the impor-
tance of electromagnetic effects in fluid-structure interaction,
there is scope to enhance this work by considering effects
of non-Newtonian rheological properties incorporated along
with the extension to materially and geometrically nonlinear
models. In the last two decades, collagenous soft tissues
have been found to exhibit viscoelastic behavior, which
includes time-dependent creep and stress relaxation, rate-
dependence, and hysteresis in a loading cycle. As suggested
in [18], this hysteresis is less sensitive than the stiffness to
the loading rate, and this phenomenon is generally found in
soft tissues and elastomers [18]. One of the future directions
would be to extend the structural mechanics module to
incorporate viscoelasticity and then study the influence of
this on our models. The computational models in this

work included two-dimensional models for simplicity, but
our models can be naturally extended to three dimensions.
With increasing the size of the problem comes the need
for more computational resources. There is intensive work
that is evolving in the area of domain decomposition that
helps to address how to solve coupled multiphysics problems
efficiently. So as the problem dimension becomes bigger, one
must also resort to domain decomposition type approaches
which can then open up more venues on parallelization of
the algorithms that have been developed.
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Fused biconical tapering (FBT) is an importantmethod ofmanufacturing polarization-maintaining fiber (PMF) couplers. However,
the tension on the ends of the fibers can affect the performance of the coupler. In this paper, a computer-basedmethod of controlling
the drawing forcewas presented.The system includes a drawingmechanism, rotary position encoders, and a control circuit. A three-
dimensional model of a permanent magnet and a coil is constructed, and the relationship among the coil current, rotation angle of
the clamp, and electromagnetic force is determined using finite element simulations. Electromagnetic force control based on these
simulations can be realized. The method is verified experimentally, and it is shown that a drawing force of 0–1.8 gf can be achieved
with an error of within 3.04%. This result can be used in the FBT-based manufacture of fiber components such as fiber couplers
and gratings.

1. Introduction

Polarization-maintaining fiber (PMF) couplers are important
passive components for achieving polarization light coupling,
splitting, andmultiplexing.They arewidely used in fiber optic
sensing and coherent communications [1, 2]. PMF couplers
are typically fabricated using fiber biconical tapering (FBT)
method, which involves fixing two optical fibers at a certain
tension, heating the fibers to molten status, and drawing the
fibers to form a biconical or dumbbell shape [3, 4]. Although
the FBT method yields less extinction ratio of couplers than
the polishing method, it has better thermal stability and
smaller excess and insertion losses. FBT is controlled by three
process parameters, the drawing speed, heating temperature,
and drawing force, and the tension force on the fibers directly
affects the performance of the PMF coupler. The transla-
tion stage in conventional FBT machines [5–8] consists of
translation stage parts as well as heating and fiber clamping
parts, and the translation stage parts are controlled with a
computer to realize a precise drawing speed, but there is little
control over the drawing force. Identically spring-loaded fiber
pulling stages were introduced to impart a uniform tension

to a pair of fibers, and this alleviated problems associated
with sudden changes in the tension force [9]. However, the
elongation of the spring changes the tension force on the
fibers, which does not allow the tension force control during
the drawing process. Our experiments have shown that crys-
tallization of the fiber surface may occur when the drawing
force is large, which will increase the excess loss. FBT is also
an important method of manufacturing long-period fiber
gratings, and the periodic decrease in the fiber cross section
depends on the drawing force on the fiber. The drawing
tension was usually controlled by clamping one end of the
fiber to a translation stage and attaching a mass to the other
end of the fiber to keep it under a constant axial tension [10,
11]. When the fiber is being drawn, however, the translation
stage does not move at a constant velocity, so the tension in
the optical fiber varies. It is difficult to adjust the tension in
the fiber during the drawing process.

We propose here a computer-basedmethod of controlling
the drawingmechanism and drawing force during FBT. In the
method, the drawing force is generated through the control of
the coil current by detecting the rotation of the fiber clamp,
which thus achieves semiclosed loop control. The drawing

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 676457, 9 pages
http://dx.doi.org/10.1155/2015/676457

http://dx.doi.org/10.1155/2015/676457


2 Mathematical Problems in Engineering

PC

Coil current Electromagnetic
force

Drawing
forceDA card Drawing

mechanism

Motion
control card

Rotary position
encoders

Figure 1: Block diagram of the force control system for the PMF FBT.

mechanism and control principle are introduced in Section 2.
The force exerted on the permanent magnet by an electro-
magnetic coil is simulated using a three-dimensional (3D)
finite element method in Section 3. Based on the analysis,
a mathematical equation for the coil current, rotation angle
of the fiber clamp, and electromagnetic force is established,
and this equation is used to control the electromagnetic force.
The drawing mechanism is analyzed and a simplified force
model is presented in Section 4. In Section 5, we present
the device used to detect the tension and an experimentally
derived expression of the relationship among the coil current,
rotation clamp angle, and drawing force. Control of the
drawing force is also demonstrated in Section 5.

2. Setup and Control Method

The PMF fused taper drawing control system, shown in
Figure 1, links the drawing mechanism, electromagnetic coil,
rotary position encoders, digital-to-analog (DA) card, and
motion control card to a personal computer (PC). The draw-
ing mechanism (Figure 2) consists of a connect piece, drum
wheel, fiber clamp, mass, permanent magnet, coil, and rotary
position encoders.

The PC controls the current through the coil via the DA
card to produce a certainmagnetic field that interactswith the
permanentmagnet and generates the desired electromagnetic
force. This causes the drawing force on the fiber clamp. As
the two drumwheels are connected by two pieces, they rotate
with the same rotation angle. The glass-disk rotary position
encoders are linked to the drum wheel so that the rotary
position encoders can detect the rotation angle. The drawing
length of the clamped fibers is thus determined from the rota-
tion angle. During the drawing, the distance between the per-
manentmagnet and the coil changes so that the drawing force
on the fiber clamp varies. The force can also be varied by
changing the coil current in regard to the wheel rotation
angle.

3. Analysis and Calculation of
Electromagnetic Force

3.1. Theoretical Analysis. A cylindrical permanent magnet is
used in the drawing mechanism. For a cylindrical permanent
magnet that is magnetized along the 𝑧-direction with height

Rotary
position
encoders

Fiber clamp

Fiber

Mass

Coil

Permanent
magnet

Drum wheel

Figure 2: Structure of drawing mechanism.
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where𝐾(𝑘) and𝐸(𝑘) are complete elliptic integrals of the first
and second kind, respectively;
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The electromagnetic force can be calculated using the
Lorentz force method, Maxwell stress tensor method, or the
virtual workmethod [14]. As the Lorentz forcemethod is suit-
able for calculating the force of a carrier fluid in a magnetic
field, it was chosen in this study. The electromagnetic force
𝐹
𝑚
applied to the permanentmagnet and the electromagnetic

force 𝐹
𝑐
applied to the current coil are action and reaction

forces; that is,

𝐹
𝑚
= −𝐹
𝑐
= −∫

𝑉

𝑓𝑑V = −∫
𝑉

𝐽 ×𝐵𝑑V,

𝐽 = 𝐼 ⋅

𝑁

𝑆

,

(3)

where 𝑓 is the electromagnetic force per unit volume of the
coil, 𝐽 is the current density in the coil, 𝐵 is the magnetic
induction of the coil, 𝐼 is the current in the coil of 𝑁 turns,
and 𝑆 is the cross-sectional area of the coil wires.

3.2. Finite Element Analysis. The movement of the clamp is
moving so that an accurate two-dimensional (2D) simulation
cannot be performed when the cylindrical permanent mag-
net enters the coil. Thus, a 3D simulation model was created.
The center of the drumwheel rotation defines the origin, with
the 𝑥- and 𝑦-axes lying parallel to the length of the coil and
fiber clamp, respectively. An insulating nylon frame was used
for the coil, which is 24mm long with inner and outer diame-
ters of 20 and 40mm, respectively, and consists of 1676 turns.
Nd
2
Fe
14
Bwas chosen as thematerial for the permanentmag-

net as it has a high energy product, coercive force, and energy
density [15]. The surface magnetic induction of the perma-
nent magnet was 389mT, as measured by a Gauss meter (GV-
300).

During the movement of the fiber clamp, the center of
the permanent magnet and the angle vary with respect to
the horizontal plane. Figure 3 shows a 2D view of the model
structure in the 𝑧 = 0 plane. Assuming that the center of the
permanent magnet is at point 𝐵 with coordinates of (𝑝

𝑥
, 𝑝
𝑦
),

then the coordinates of point 𝐵 when the fiber clamp is
rotated by an angle 𝜃 are

𝑝
𝑥
= 𝐿1 sin 𝜃 + 𝐿2 cos 𝜃,

𝑝
𝑦
= 𝐿1 cos 𝜃 + 𝐿2 sin 𝜃,

(4)

where 𝐿
1
and 𝐿

2
are the length of the 𝐴–𝑂 and 𝐴–𝐵 lines,

respectively.
We created a cube of air with a side length of 130mm

to simulate the magnetic field distribution. This cube has
insulating boundary conditions; that is, n×A = 0, where n is
the vector normal to the surface andA is the magnetic vector
potential [16, 17]. Free tetrahedral elements are adopted in
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Figure 3: 2D schematic model of the drawing mechanism.
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Figure 4: Simulatedmagnetic flux norm distribution at 𝑥 = 35mm.

the finite element simulation. Finer meshes are used for the
coil and permanent magnet to improve the accuracy and cal-
culation speed, and finemeshes are used for the cube of air. A
total of 44743 finite division elements were used.The electro-
magnetic force is obtained from the calculation of the Lorentz
force.

3.3. Simulation Results. Themagnetic flux norm distribution
in the 𝑥 = 35mm plane, which is between the permanent
magnet and the coil and 1mm away from the coil, for a
current of 0.1 A passing through the coil is shown in Figure 4.
Figure 5 shows the distribution along the line 𝐴–𝐵 through
the center of the coil. These results show that the magnetic
flux norm is related to the distance from the coil center.
Inside the inner coil radius, themagnetic flux normdecreases
toward the center to a minimum of 3.41mT.This value agrees
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Figure 5: Magnetic flux norm along the line 𝐴–𝐵 in Figure 4.
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Figure 6: Simulated magnetic flux norm distribution at 𝑧 = 0.

well with the analytical value of 3.46mTgiven in the literature
[18]. The difference between the maximum and minimum
magnetic flux norm value is 0.2mT, which indicates that the
rate of change is low. Outside the inner coil radius, the mag-
netic flux norm decreases rapidly with increasing distance
from the maximum at the inner diameter of the coil. The
magnetic flux distribution in the 𝑧 = 0 plane which is shown
in Figures 6 and 7 shows the distribution along the longitu-
dinal axis of the coil (line 𝐶–𝐷). The magnetic flux norm is
symmetric about the longitudinal axis of the coil and achieves
a maximum value at the center of the coil. Near the coil, the
change in the magnetic flux norm is approximately linear.
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Figure 7: Simulatedmagnetic flux density norm along the line𝐶–𝐷
in Figure 6.
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Figure 8: Simulated electromagnetic force as a function of the
number of coil turns for 𝜃 = 0∘ and 𝐼 = 0.1A.

Figure 8 shows the relationship between the electromagnetic
force and the number of coil turns for 𝜃 = 0∘ and 𝐼 = 0.1A. A
least-squares fit of the data gives the linear relationship:

𝐹
𝑚
= 0.0023𝑁− 0.0026. (5)

The number of coil turns, however, is fixed to 𝑁 = 1676
for the simulations. Figure 9 shows the relationship between
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Figure 9: Simulated electromagnetic force as a function of the coil
current for 𝜃 = 0∘ and𝑁 = 1676.
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Figure 10: Simulated electromagnetic force as a function of the
rotating angle for various coil currents.

the electromagnetic force and coil current for 𝜃 = 0∘ and𝑁 =
1676, which also reveals linear behavior of

𝐹
𝑚
= 38.4558𝐼. (6)

Changing the rotation angle 𝜃 of the clamp will change the
position of the permanent magnet and hence the electro-
magnetic force. Figure 10 shows the relationship between
the rotation angle 𝜃 and the electromagnetic force for a
constant coil current. Again, we see a linear relationship,
but the gradient, which is defined as the rate of change of
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Figure 11: Simulated rate of change of the electromagnetic force as
a function of the current.

the electromagnetic force, depends on the current. The
gradient𝐾

𝐹𝜃
can be expressed as

𝐾
𝐹𝜃
=

Δ𝐹
𝑚

Δ𝜃

, (7)

where Δ𝐹
𝑚
is the change of the electromagnetic force of the

permanent magnet (in units of gram-force) and Δ𝜃 is the
change of the rotation angle of the clamp (in units of degrees).
The rate of change of the electromagnetic force is shown as a
function of the current in Figure 11. A linear fit gives

𝐾
𝐹𝜃
= 4.1517 ⋅ 𝐼. (8)

Changing 𝜃 will also change the relationship between the
electromagnetic force and the current. For a constant angle,
the electromagnetic force coefficient, 𝐾

𝐹𝐼
, can be defined as

𝐾
𝐹𝐼
=

Δ𝐹
𝑚

Δ𝐼

, (9)

where Δ𝐼 is the change of the coil current (in units of
amperes). Figure 12 shows 𝐾

𝐹𝐼
as a function of the rotating

angle (0∘ to 4.8∘), and a linear fit yields

𝐾
𝐹𝐼
= 4.1517𝜃 + 38.1982. (10)

We thus obtain a mathematical expression for the rela-
tionship among 𝐹

𝑚
, 𝐼, and 𝜃:

𝐼 = 0.026𝐹
𝑚
−

0.108𝐹
𝑚
𝜃

(4.1517𝜃 + 38.1982)
. (11)

The electromagnetic force can be controlled by adjusting
the coil current on the basis of (11). Figure 13 shows that a
relatively constant electromagnetic force can be achieved for
fiber clamp rotating angles from 0∘ to 4.8∘ once the coil cur-
rent control is implemented. Table 1 lists the simulation error
of the electromagnetic force, and it indicates that the force
can be controlled accurately with an error of about 1%.
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rotating angles after implementing current control.

Table 1: Simulated control error.

Electromagnetic force (gf) 1 3 5 7 9
Error (%) 0.98 1.03 1.03 1.02 1.01

4. Drawing Force Analysis

The drawing mechanism contains two spring pieces that are
used to connect the two drum wheels and maintain equal
clamp rotation angles. The bending elastic force of the two
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Mb1

Mb2

Mf1

Mf2

Mc
Mc

Figure 14: Force and moment analysis model of two separate
clamps.

pieces can be neglected as it is considerably smaller than the
drawing force. As the drawing force and the rotation angles of
the clamps are equal, the following analysis can be performed
for a single clamp (in this case, the clamp on the right). Fig-
ures 14 and 15 outline the force and torque components for the
analysis of the two clamps. For a rotation angle of 0∘–5∘, the
torque-balanced expression for the fiber holders is

𝑀
𝐺6 +𝑀𝑏2 +𝑀𝑓2 = 𝑀𝐺5 +𝑀𝑐, (12)

𝑀
𝐺2 +𝑀𝑏1 +𝑀𝑓1 +𝐹 ⋅ 𝐿𝐹 ⋅ cos 𝜃 +𝑀𝑐

= 𝑀
𝐺3 +𝐹𝑚 ⋅ 𝐿𝑚 ⋅ cos 𝜃,

(13)

where𝑀
𝑏2
(𝑀
𝑏1
) is the torque generated by the spring piece

and fastening bolts on the left (right) fiber clamp;𝑀
𝑓2

(𝑀
𝑓1
)

is the torque generated by friction during the rotation of the
left (right) fiber clamp;𝑀

𝐺6
(𝑀
𝐺2
) is the torque generated by

the mass on the bottom of the left (right) fiber clamp;𝑀
𝐺5

is
the torque generated by the left fiber clamp;𝑀

𝐺3
is the torque

generated by the right fiber holder, permanent magnet, and
fixed base; 𝐹 is the drawing force generated by the right fiber
clamp; 𝐿

𝐹
is the distance between the rotation center 𝑂

1
and

the application point of 𝐹
1
for 𝜃 = 0∘; 𝐿

𝑚
is the distance

between the application point of𝐹
𝑚
and𝑂

1
for 𝜃 = 0∘; and𝑀

𝑐

is the torque generated by the connect piece. From (12), we see
that𝑀

𝐺6
can be varied by adjusting the position of the mass

on the left fiber holder such that𝑀
𝑐
will be zero.The position

of the mass on the bottom of the right fiber clamp is then
adjusted so that𝑀

𝐺2
satisfies

𝑀
𝐺2 +𝑀𝑏1 +𝑀𝑓1 = 𝑀𝐺3. (14)
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Figure 16: Drawing force detection device.

The mechanical force of the drawing mechanism is thus
described in Figure 15, and the drawing mechanism then
satisfies the torque balance equation

𝑀
𝑓1 +𝐹 ⋅ 𝐿𝐹 ⋅ cos 𝜃 = 𝐹𝑚 ⋅ 𝐿𝑚 ⋅ cos 𝜃. (15)

The drawing mechanism used in this study has precision
deep groove ball bearings that have a friction coefficient of
0.001–0.0015. The friction during the fiber clamp rotation is
also small by comparison with the drawing force and can also
be neglected. Thus, (15) can be simplified as

𝐹 = 𝐹
𝑚
⋅

𝐿
𝑚

𝐿
𝐹

. (16)

When the right clamp is at 0∘ and the coil current is 0.1 A,
the theoretical value of the electromagnetic force is 3.8437 gf,
which yields a drawing force of 1.127 gf according to (16).

5. Force Detection Experiment

The experimental force detection device, shown in Figure 16,
includes a precision electric linear stage, force sensor, and the
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Figure 17: Experimental drawing force as a function of the coil
current.

control system shown in Figure 1.The linear stage has a repeat
accuracy of 1 𝜇m.The force sensor has a resolution of 0.1mgf
and is fixed on the linear stage connected to the right fiber
clampby the fiber.The rotation of the fiber clamp is controlled
by themotion control card in the PC through the linear stage.
Setting the rotation angle of the right fiber clamp to zero and
the coil current to 0.100A yields a drawing force on the right
fiber clamp end of 0.9952 gf, which is in reasonable agreement
with the simulation result of 1.127 gf.

For a rotating angle of zero, the relationship between the
drawing force and current is linear, as was shown in Section 3,
and to confirm this experimentally the drawing force 𝐹 was
measured for currents of 0 to 0.2 A (Figure 17). A fit to the
experimental data gave

𝐹 = 9.8512𝐼 − 0.0027, (17)

which includes a nonzero constant owing to friction and
assembly errors.

The drawing force is shown as a function of the rotating
angle (0∘ to 4.8∘) in Figure 18 for various coil currents. As
predicted by the simulations, there is a linear relationship
between the drawing force and the rotating angle, and the rate
of change of the drawing force (Figure 19) is given by

𝐾
𝐹𝜃
= 0.7119𝐼

𝑐
− 0.0078. (18)

Figure 20 shows the drawing force calibration rate as a
function of the rotating angle, which can be expressed as

𝐾
𝐹𝐼
= 0.7133𝜃 + 9.9860. (19)

The relationship among 𝐹, 𝐼, and 𝜃 can then be summarized
as

𝐼
𝑐
= 101.5𝐹+ 0.2741− 1000 (723𝐹 − 76) 𝜃

(7133𝜃 + 99860)
. (20)
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Figure 18: Experimental drawing force as a function of the rotating
angle for various coil currents.
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Figure 19: Experimental rate of change of the drawing force as a
function of the current.

The rotation angle of the clamp, detected by the rotary
position encoders, can thus be used in determining the
current to apply to the coil, which is controlled by the DA
output voltage, for a known drawing force. In this way, the
drawing force can be controlled. Figure 21 shows the drawing
force as a function of the rotating angle after implementing
the current control, and the errors in the experimental control
are listed in Table 2. The maximum error generated by a
constant force is 3.04%. A maximum force of 1.8 gf was
obtained, but (5) and (17) indicate that a higher force can
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Figure 20: Experimental drawing force calibration rate as a function
of the rotating angle.
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Figure 21: Experimental drawing force as a function of the rotating
angle after implementing current control.

Table 2: Experimental control error.

Drawing force (gf) 0.25 0.5 0.75 1 1.25 1.5 1.8
Error (%) 2.48 3.04 2.23 1.28 1.00 1.18 1.36

be applied by increasing the number of turns and the coil
current.
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6. Conclusion

Thedrawing force applied to the fibers can affect the coupling
performance in PMF FBT, and we have proposed a method
for controlling the force during FBT. We constructed a 3D
model of the permanent magnet in the drawing mechanism
and established an equation of motion for the magnet. We
developed an expression for the relationship among the coil
current, rotation angle of the fiber clamp, and the electromag-
netic force by simulation and used this expression to control
the electromagnetic force; the calculation error was within
1.03%. The mechanical model of the stretching mechanism
was simplified by adjusting the mass, and the relationship
between the drawing force on the fiber clamp and the electro-
magnetic force was established. The relationship among the
coil current, rotation angle of the clamp, and drawing force
was confirmed experimentally, and experimental control of
the driving force (0–1.8 gf) was accurate enoughwith an error
less than 3.04%. The results presented here have verified the
feasibility of the proposed control method for FBT. Using this
method, the drawing force on the fibers can be controlled
effectively.
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Efficient implicit predictor-corrector LU-SGS discontinuous Galerkin (DG) approach for compressible Euler equations on
unstructured grids is investigated by adding the error compensation of high-order term. The original LU-SGS and GMRES
schemes for DGmethod are discussed. Van Albada limiter is employed to make the schememonotone.The numerical experiments
performed for the transonic inviscid flows around NACA0012 airfoil, RAE2822 airfoil, and ONERA M6 wing indicate that the
present algorithm has the advantages of low storage requirements and high convergence acceleration.The computational efficiency
is close to that of GMRES scheme, nearly 2.1 times greater than that of LU-SGS scheme on unstructured grids for 2D cases, and
almost 5.5 times greater than that of RK4 on unstructured grids for 3D cases.

1. Introduction

High-order discontinuous Galerkin (DG) finite element
methods were developed based on weighted residual the-
ory; they maintain advantages of both the traditional high
resolution finite difference method and the finite volume
method while overcoming their shortcomings. Indeed, the
DG method can be considered as a mixture of classic finite
element method (FEM) and finite volume method (FVM),
which is a better solution strategy for solving problems in
the presence of strong shocks and discontinuities because the
solution across each element can be discontinuous.DGmeth-
ods can easily deal with complex boundary-value problem
and flexibly handle discontinuity, which have a low require-
ment of the regularity of grids. And high accuracy can be
achieved by selecting appropriate basis functions by improv-
ing the order of the piecewise interpolation polynomials
functions. In addition, the methods are highly parallelizable
as each element is independent and the interelement commu-
nications are minimal. And they have several useful mathe-
matical properties.

While DG method was introduced by Reed and Hill
[1] for solving the neutron transport equation back in 1973,
nowadays, DG methods have been widely used in the com-
putational fluid dynamics, computational aeroacoustics, and
computational electromagnetics. See [2–25].

In recent years, significant progress has been made in
developing numerical algorithms for solving the compress-
ible flow problems. Many numerical methods are based on
the semidiscrete approach: DGmethods are used for the spa-
tial discretization, rendering the original partial differential
equations (PDE) into a system of ordinary differential equa-
tions (ODE) in time. Usually, for time-dependent problems,
DG methods have been used in conjunction with explicit
high-order accurate time-integration methods, such as non-
linear stable Runge-Kutta DG methods in the literatures [7–
13]. In general, explicit schemes are easy to implement and
parallelize and require only limited memory storage. Such
methods are well suited for problems with similar spatial and
temporal scales, while being notoriously time-consuming
and inefficient for problems with disparate temporal and
spatial scales, such as low reduced frequency phenomena and
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steady-state problems. As a consequence, implicit time-inte-
gration strategies should be developed exclusively in order
to avoid the stability restrictions of explicit methods, which
are unconditionally stable; for details, refer to [5, 6, 26].
Implicit solvers, which do allow large time steps, are widely
used in the computational fluid dynamics community for the
steady solution of nonlinear conservation laws in [27]. The
Newton-Krylov-Schwarz method has recently emerged as a
promising technique for the parallel implicit solution of large-
scale aerodynamics problems in [28], which is specially well
suited for the discontinuous spectral Galerkin method, since
each subdomain can be treated separately.

The lower-upper symmetric Gauss-Seidel (LU-SGS)
time-marching scheme, which was originally given for struc-
tured grids, has been established in [29] and has been applied
to tetrahedral/prism unstructured grids. Another attractive
implicit scheme is the generalized minimum residual scheme
(GMRES), which was introduced by Saad and Schultz [2]
firstly. Then, Bassi and Rebay showed the efficiency of
GMRES method in [14] and used a simple block Jacobi pre-
conditioner for the implicit solution of the compressible
Navier-Stokes equations. Xia and Luo [3] presented a matrix-
free GMRES algorithm with an LU-SGS preconditioner
reconstructed discontinuous Galerkin method on tetrahe-
dron grids for compressible flow problems. Then, they pro-
posed implicit reconstructed discontinuousGalerkin (IRDG)
method based on the automatic differentiation technique [4].

In this work, we focus exclusively on a predictor-corrector
LU-SGS (PCLU-SGS) strategy for discontinuous Galerkin
method in conjunction with Van Albada limiter [30] to solve
the Euler equations on unstructured grids. The governing
equations are listed in Section 2. DG method is presented
and the limiter and numerical flux are described in detail in
Section 3. The implicit time-marching procedures are given
including TVDRunge-Kutta, LU-SGS, andGMRES schemes,
and the PCLU-SGS scheme is established in Section 4. The
numerical experiments are discussed in Section 5. Conclu-
sion is given in Section 6.

2. Governing Equations

The unsteady, compressible inviscid 2D Euler equations can
be expressed in the following conservative form:

𝜕U (𝑥, 𝑡)

𝜕𝑡
+

𝜕F (U (𝑥, 𝑡))

𝜕𝑥
+

𝜕G (U (𝑥, 𝑡))

𝜕𝑦
= 0

in Ω × (0, 𝑇) ,

(1)

where 𝑇 > 0 is the length of time interval and Ω is a two-
dimensional bounded domain. The conservative state vector
U and the inviscid flux component vectors F(U) andG(U) are
defined by

U = (

𝜌

𝜌𝑢

𝜌V
𝜌𝑒

) , F (U) = (

𝜌𝑢

𝜌𝑢
2
+ 𝑝

𝜌𝑢V
(𝜌𝑒 + 𝑝) 𝑢

) ,

G (U) = (

𝜌V
𝜌𝑢V
𝜌V2

(𝜌𝑒 + 𝑝) V

), (2)

where the notations 𝜌, 𝑝, and 𝑒 denote the density, pressure,
and specific total energy per unit mass of the fluid, respec-
tively. 𝑢 and V are the velocity components of the flow in
the 𝑥 and 𝑦 coordinate directions. This set of equations is
completed by the perfect gas equation of state given as fol-
lows:

𝑝 = (𝛾 − 1) 𝜌 [𝑒 −
1

2
(𝑢
2
+ V2)] , (3)

where 𝛾 is defined as the ratio of specific heat of the fluid (𝛾 =

1.4 for air).Then the equations are applied with the initial and
boundary conditions denoted by (4), where 𝜕Ω represents the
boundary of domainΩ. Consider the following:

U (𝑥, 0) = U
0
(𝑥) ,

𝐵 (U) = 0 on 𝜕Ω × (0, 𝑇) .

(4)

3. Discontinuous Galerkin Finite
Element Method

3.1. DG Spatial Discretization. The computational domain Ω

is partitioned into an ensemble of nonoverlapping elements,
triangles in 2D; that is, Ω = 𝑒

1
∪ 𝑒
2
∪ ⋅ ⋅ ⋅ ∪ 𝑒

𝑛
, where 𝑛

denotes the number of elements in the domain. We consider
possible choices of the piecewise basis functions and then
obtain the following weak formulation of (5) by multiplying
a test functionΦ and integrating by parts over the 𝑒

𝑚
:

𝑑

𝑑𝑡
∫
𝑒
𝑚

Φ
ℎ
U
ℎ
𝑑𝑉 − ∫

𝑒
𝑚

[
𝜕Φ
ℎ

𝜕𝑥
F (U
ℎ
) +

𝜕Φ
ℎ

𝜕𝑦
G (U
ℎ
)] 𝑑𝑉

+ ∫
𝜕𝑒
𝑚

Φ
ℎ
[F (U

ℎ
) 𝑛
𝑥
+ G (U

ℎ
) 𝑛
𝑦
] 𝑑𝑆 = 0 ∀Φ,

(5)

whereU
ℎ
andΦ

ℎ
represent the finite element approximations

of the analytical solution U and the test function Φ, respec-
tively. n = (𝑛

𝑥
, 𝑛
𝑦
) is the unit normal vector of outward to the

boundary. Let the approximate solution and test functionU
ℎ

and Φ
ℎ
be expressed as

U
ℎ
=

𝑁

∑

𝑗=1

𝑈
𝑗
(𝑡) 𝜑
𝑝

𝑗
(𝑥) , Φ

ℎ
=

𝑁

∑

𝑗=1

Φ
𝑗
𝜑
𝑝

𝑗
(𝑥) , (6)

where 𝜑
𝑝

𝑗
(𝑥) is the shape function of the polynomials of

degree 𝑝. Equation (5) must be satisfied for any test function
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Φ
ℎ
, so by substituting (6) to (5), we obtain the following

system of𝑁 equations:

𝑑𝑈
𝑗
(𝑡)

𝑑𝑡
∫
𝑒
𝑚

𝜑
𝑝

𝑖
𝜑
𝑝

𝑗
𝑑𝑉

− ∫
𝑒
𝑚

[

[

𝜕𝜑
𝑝

𝑖

𝜕𝑥
F(

𝑁

∑

𝑗=1

𝑈
𝑗
𝜑
𝑝

𝑗
) +

𝜕𝜑
𝑝

𝑖

𝜕𝑦
G(

𝑁

∑

𝑗=1

𝑈
𝑗
𝜑
𝑝

𝑗
)]

]

𝑑𝑉

+ ∫
𝜕𝑒
𝑚

𝜑
𝑝

𝑖
[

[

F(

𝑁

∑

𝑗=1

𝑈
𝑗
𝜑
𝑝

𝑗
)𝑛
𝑥
+ G(

𝑁

∑

𝑗=1

𝑈
𝑗
𝜑
𝑝

𝑗
)𝑛
𝑦
]

]

𝑑𝑆 = 0

𝑖 = 1, 2, . . . , 𝑁.

(7)

The interface flux function F(U
ℎ
)n
𝑥
+G(U

ℎ
)n
𝑦
can be treated

as a numerical Riemann flux function H(U𝐿
ℎ
,U𝑅
ℎ
,n), where

U𝐿
ℎ
and U𝑅

ℎ
represent the internal element interface solution

and neighboring element interface solution, respectively. In
the present work, the Roe, LLF, and HLLC approximate Rie-
mann solvers are employed. The domain and boundary
integrals in (7) are calculated by use of 2𝑝 and 2𝑝 + 1

order accurate Gauss quadrature formulas [31, 32] with a
number of quadrature points corresponding to the degree of
interpolating polynomials.

By grouping together all the elemental time-dependent
and spatial contributions, (7) can be written as a system of
ordinary differential equations:

M𝑑U
𝑑𝑡

= R (U) , (8)

where themassmatrixM has identical diagonal blocksM
𝑖𝑗
,U

is the global vector of the degrees of freedom, andR(U) repre-
sents the steady state residual vector. As a result, the inverse of
the mass matrix M can be easily computed, especially, using
the orthogonal basis functions, and stored in advance due to
the fact that it remains unchanged during the process.

In the present paper, we explore the orthogonal basis
functions through Gram-Schmidt orthogonalization meth-
od, and high accuracy can be achieved by improving the order
of the piecewise interpolation polynomials functions. For 2D
problems, 𝜑

0
= 1, 𝜑

1
= 𝜉, 𝜑

2
= 𝜂, 𝜑

3
= 𝜉
2
, . . ., and, for 3D

problems, 𝜑
0
= 1, 𝜑

1
= 𝜉, 𝜑

2
= 𝜂, 𝜑

3
= 𝜁, . . ..

3.2. Flux Functions. Thenumerical flux function can be eval-
uated using any upwind flux functions.This is exactly similar
to FVM because discontinuities can be allowed across the
interface. Therefore, approximate Riemann solvers can be
used to compute the flux function. In the present work, three
flux functions have been employed includingHLLCRiemann
numerical solver by Toro [33] which has easier and lower
computational cost in comparison with many other available
Riemann solvers, such as local Lax-Friedrich (LLF) scheme.
HLLC flux function not only maintains the advantages of the
HLL solver but also resolves isolated contact discontinuities

exactly, which has been extended in conjunction with time-
derivative preconditioning to compute flow problems at all
speeds. HLL flux can be expressed as

FHLL
=

{{{

{{{

{

F
𝐿

if 𝑆
𝐿
> 0

F∗
𝐿𝑅

if 𝑆
𝐿
≤ 0 ≤ 𝑆

𝑅

F
𝑅

if 𝑆
𝑅
< 0,

(9)

where 𝑆
𝐿
and 𝑆
𝑅
represent the fastest wave speed for the left

and right states, respectively. F∗
𝐿𝑅

is written as

F∗
𝐿𝑅

=
𝑆
𝑅
F
𝐿
− 𝑆
𝐿
F
𝑅
+ 𝑆
𝐿
𝑆
𝑅
(U
𝑅
− U
𝐿
)

𝑆
𝑅
− 𝑆
𝐿

. (10)

The HLLC flux is a modification of HLL flux, which can be
written as

FHLLC
=

{{{{{

{{{{{

{

F
𝐿

0 < 𝑆
𝐿

F∗
𝐿
= F
𝐿
+ 𝑆
𝐿
(U∗
𝐿
− U
𝐿
) 𝑆
𝐿
≤ 0, 𝑆

𝑀
> 0

F∗
𝑅
= F
𝑅
+ 𝑆
𝑅
(U∗
𝑅
− U
𝑅
) 𝑆
𝑀

≤ 0, 𝑆
𝑅
≥ 0

F
𝑅

0 > 𝑆
𝑅
,

(11)

where 𝑆
𝑀
is constant between the two acoustic waves:

𝑆
𝑀

=
𝑝
𝑅
− 𝑝
𝐿
+ 𝜌
𝐿
𝑞
𝐿
(𝑆
𝐿
− 𝑞
𝐿
) − 𝜌
𝑅
𝑞
𝑅
(𝑆
𝑅
− 𝑞
𝑅
)

𝜌
𝐿
(𝑆
𝐿
− 𝑞
𝐿
) − 𝜌
𝑅
(𝑆
𝑅
− 𝑞
𝑅
)

. (12)

For details, refer to [33, 34].
The second flux function implemented in this paper is

LLF solver [35]. It is more dissipate than both the HLLC flux
function and the Roe flux function, but it is more robust. The
LLF flux can be written as

FLLF =
1

2
[F
𝐿
+ F
𝑅
− (


𝜆

+ 𝑐

) (U
𝑅
− U
𝐿
)] , (13)

where 𝜆
 is the velocity normal to the interface and 𝑐

 is the
speed of sound at the interface. |𝜆| + 𝑐

 is the largest wave
speed in the direction normal to the interface.

The third flux function is Roe numerical flux by Roe
[36]. Roe format is a typical flux differential splitting scheme,
which contains more feature information, and therefore has a
strong ability to capture shock.The Roe flux can be expressed
as

FRoe =
1

2
[F
𝐿
+ F
𝑅
−

Ã

(U
𝑅
− U
𝐿
)] , (14)
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(a) (b)

Figure 1: Mesh around NACA0012 airfoil: (a) whole and (b) close-up mesh near the airfoil.

where


Ã

(U
𝑅
− U
𝐿
) = (

(

𝛼
4

𝑢𝛼
4
+ 𝑛
𝑥
𝛼
5
+ 𝛼
6

V𝛼
4
+ 𝑛
𝑦
𝛼
5
+ 𝛼
7

ℎ𝛼
4
+ 𝜆

𝛼
5
+ 𝑢𝛼
6
+ V𝛼
7
−

(𝑐

)
2

𝛾 − 1
𝛼
1

)

)

,

𝛼
1
=


𝜆

(Δ𝜌 −

Δ𝑝

(𝑐)
2
) , 𝛼

2
=


𝜆

+ 𝑐

(Δ𝑝 + 𝜌𝑐


Δ𝜆

)

2 (𝑐)
2

,

𝛼
3
=


𝜆

− 𝑐

(Δ𝑝 − 𝜌𝑐


Δ𝜆

)

2 (𝑐)
2

, 𝛼
4
= 𝛼
1
+ 𝛼
2
+ 𝛼
3
,

𝛼
5
= 𝑐

(𝛼
2
− 𝛼
3
) , 𝛼

6
= 𝜌


𝜆

(Δ𝑢 − 𝑛

𝑥
Δ𝜆

) ,

𝛼
7
= 𝜌


𝜆

(ΔV − 𝑛

𝑦
Δ𝜆

) ,

(15)

𝜆
 is the velocity normal to the interface, and 𝑐

 is the speed
of sound at the interface.

In this paper, Van Albada limiter [30] is employed to
make the scheme monotone for 2D problems and Barth-
Jespersen limiter [37] is used for 3D problems.

4. Time-Marching Schemes

In order to resolve the time-dependent problem, the semidis-
crete system can be integrated in time in this paper. The
implicit time-integration schemes have been widespread for

DG discretization. Iterative algorithms such as GMRES and
CGS are often used to approximately solve the sparse linear
equations due to the enormous computational cost and the
large memory requirement of direct methods. Another imp-
licit scheme, the LU-SGS scheme originally developed for
structured grids, has been extended to unstructured and
hybrid grids, which does not require any extra storage
compared to explicit methods. The LU-SGS procedures are
described as follows.

4.1. PCLU-SGS Scheme. In the original LU-SGS approach
[29], (8) can be translated into the following system:

AΔQ = Res𝑛, (16)

where Res𝑛 represents residual term.
Then the coefficient matrix using the decomposition

method can be written as A = D + L + U; we obtain

(D + L)D−1 (D + U) ΔQ𝑛 = Res𝑛 + (LD−1U) ΔQ𝑛, (17)

where D represents the diagonal matrix and L and U repre-
sent the lower and upper matrices. Ignoring the infinitesimal
quantity (LD−1U)ΔQ𝑛, (17) is then solved using one sweep of
symmetric Gauss-Seidel iteration as shown in the following:

forward sweep:

(D + L) ΔQ̃ = Res𝑛, (18)

backward sweep:

D−1 (D + U) ΔQ = ΔQ̃. (19)

While ignoring the higher-order infinitesimal quantity does
not affect the accuracy of the method, increasing the trunca-
tion error will affect the rate of convergence. Therefore, we
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Figure 2: Pressure coefficient distribution with different time-
marching format for transonic flow around NACA0012 airfoil (𝑝 =

2).

obtain the PCLU-SGS algorithm through the compensation
of high-order term for the original LU-SGS scheme.The com-
putational procedure is shown in detail as follows.

(1) Use the original LU-SGS scheme to solve ΔQ,

forward sweep and backward sweep:

(D + L) ΔQ̃ = Res𝑛, D−1 (D + U) ΔQ = ΔQ̃. (20)

(2) Compute the high-order infinitesimal quantity
(LD−1U)ΔQ𝑛 using the value of ΔQ to correct the
residual Res𝑛.

(3) Use the original LU-SGS scheme to compute ΔQ:

(D + L)D−1 (D + U) ΔQ𝑛 = Res𝑛 = Res𝑛 + (LD−1U) ΔQ. (21)

4.2. TVD Runge-Kutta Scheme. The explicit time-integration
schemes have been widespread for DG discretization. The
TVD Runge-Kutta scheme of Cockburn [10] for Euler equa-
tions can be expressed as follows.

(1) Denote u0
ℎ

= 𝑃k
ℎ

(u
0
), where 𝑃k

ℎ

is the projection
operator on 𝐿

2
.

(2) For 𝑛 = 0, 1, . . . , 𝑁−1, compute u𝑛+1
ℎ

and denote u0
ℎ
=

u𝑛
ℎ
, and,

Figure 3: Flood contours.

for 𝑗 = 1, . . . , 𝑝 + 1, compute the intermediate
function, u(𝑗)

ℎ
:

u(𝑗)
ℎ

=

𝑗−1

∑

𝑚=0

𝛼
𝑗𝑚
u(𝑚)
ℎ

+ 𝛽
𝑗𝑚

Δ𝑡
𝑛M−1𝐿

ℎ
(u(𝑚)
ℎ

, 𝛾
ℎ
(𝑡
𝑛
+ 𝑑
𝑚
Δ𝑡
𝑛
)) . (22)

(3) Denote u𝑛+1
ℎ

= u𝑝+1
ℎ

.

The scheme is linearly stable for a Courant number less than
or equal to 1/(2𝑝 + 1). In this paper, the RK4 scheme is
employed to compute the Euler equations.

5. Numerical Experiments

5.1. Transonic Flow around NACA0012 Airfoil. Consider the
calculation state 𝑀𝑎

∞
= 0.8 and 1.25

∘ angle of attack.
The pressure coefficient distribution using different time-
marching schemes compared with the experiment results for
transonic flow around NACA0012 airfoil is given in Figure 2.
Good agreement can be seen in terms of the location and
strength of shocks (see Figure 1). The flood contours are
shown in Figure 3. From Figure 4 it can be seen that it takes
only 1500 iterations to obtain the result by using the present
algorithm, which are far fewer than the 4500 iterations
required to obtain the same results by using the original LU-
SGS method. The computational efficiency is close to that of
GMRES algorithm and nearly 2.1 times greater than that of
the LU-SGS one. Figure 5 shows that LLF solver similar to
the HLL solver is more dissipate than both the HLLC flux
function and the Roe flux function. Figure 6 shows the effects
of convergence performance with different CFL number; it
can be clearly seen that the results are almost the same when
CFL number is greater than 100. The results of the test cases
verify the effectiveness and the ability to capture discontinu-
ous of PCLU-SGS DG method.

Furthermore, the Sod shock tube problem with the initial
conditions is given as follows:

U = {
(𝜌
𝐿
, 𝑢
𝐿
, 𝑝
𝐿
)
T
= (1, 0, 1)

T
, if − 5 ≤ 𝑥 ≤ 0

(𝜌
𝑅
, 𝑢
𝑅
, 𝑝
𝑅
)
T
= (0.125, 0, 0.1)

T
, if 0 ≤ 𝑥 ≤ 5,

(23)
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Figure 4: Convergence history for transonic flow around NACA0012 airfoil: (a) CPU-Time and (b) iteration number.
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Figure 5: Pressure coefficient distribution with different numerical flux for transonic flow around NACA0012 airfoil: (a) 𝑝 = 2 and (b) 𝑝 = 3.

where 𝑡 = 2.0, and the mesh consists of 100 elements in
Figure 7.

Obviously, with the improvement of the accuracy, the
method with HLLC flux resolves better contact discontinuity.

In the present paper, though the LLF flux function ismore
dissipate than both the HLLC flux function and the Roe flux
function, it ismore robust andmore economical.Thenwe use
it in the following examples.
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Figure 6: Convergence history with different CFL number for transonic flow around NACA0012 airfoil: (a) CPU-Time and (b) iteration
number.
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Figure 7: Density with HLLC flux for Sod shock tube problem: (a) 𝑝 = 1 and (b) 𝑝 = 2.

5.2. Transonic Flow around RAE2822 Airfoil. Consider the
calculation state 𝑀𝑎 = 0.725 and angle of attack 𝛼 = 2.54

∘.
The pressure coefficient distribution using different time-
marching schemes for transonic flow around RAE2822 airfoil

is given in Figure 8. The numerical solutions demonstrate
that it takes only 1200 iterations to obtain the result by using
the present algorithm, which are far fewer than 4000 itera-
tions required to obtain the same results by using the original
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Figure 8: Pressure coefficient distribution with different time-marching format flow around RAE2822 airfoil (𝑝 = 2).
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Figure 9: Convergence history with different time-marching format for transonic flow around RAE2822 airfoil: (a) CPU-Time and (b)
iteration number.

LU-SGS method. And the results show that the convergence
acceleration is nearly 2.3 times that of the original LU-SGS
one from Figure 9.

5.3. Transonic Flow over ONERAM6Wing. This case is about
a transonic flow at Mach number 𝑀𝑎 = 0.84 around the
ONERA M6 wing with 𝛼 = 3.06

∘ angle of attack. The
unstructured mesh consists of 582752 triangles in Figure 10.

The surface pressure coefficient distribution with different
spanwise location is given in Figure 12. From Figure 11 it can
be seen that it takes only 5050 iterations to obtain the result by
using the present algorithm, which are far fewer than 44021
iterations required to obtain the same results by using the
RK4method.The convergence acceleration is nearly 5.5 times
that of the RK4 one and nearly half that of GMRES one. The
convergence performance is similar to that in [38].
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(a) (b)

Figure 10: Surface mesh around ONERAM6 wing and flood contours: (a) surface mesh and (b) flood contours.
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Figure 11: Convergence history with different time-marching format for transonic flow around ONERA M6 wing: (a) CPU-Time and
(b) iteration number.

The results are not as good as those in the literature [39],
because the shock detector is used, which directly affect the
accuracy of solutions on smooth region. How to accurately
judge problem units will be our future efforts.

6. Conclusion

An improved implicit time-marching scheme based on
the original LU-SGS scheme is developed and applied for
the discontinuous Galerkin method on unstructured grids.
The developed new algorithm has been used to compute

the transonic flows around NACA0012 airfoil, RAE2822 air-
foil, and ONERA M6 wing. The implicit PCLU-SGS scheme
for the DG method on unstructured grids is significantly
more efficient and robust than the original LU-SGS scheme.
The convergence performance of the present scheme can
compete with the GMRES scheme.
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This paper proposes a novel reconstruction procedure to lessen the conservatism of stability assurance of T-S Fuzzy Mode. By
dividing the state variables into some bounded regions, the considered T-S fuzzy model can be first transferred to an alternative
form via a reconstructing procedure.Thus, we can attain some relaxing stability criteria based on the switching quadratic Lyapunov
function (SQLF) method. Notably, these proposed conditions are explicitly formulated by linear matrix inequality (LMI) form and
can handily be evaluated by current software tools. Finally some illustrative examples are given to experimentally demonstrate the
validity and merit of the proposed method.

1. Introduction

A class of empirical control architecture, fuzzy logic control
(FLC), is originally proposed in the past two decades [1].
And, it then has become one of the most active and fruitful
areas in this research community. Many researchers have
dedicated a lot of time and great effort to both theoretical
research and implementation techniques for FLC. The basic
idea behind FLC is to incorporate the “expert experience”
of a human operator into a system. Notably, a complicated
dynamic model is not necessary any more. However, model-
free type of fuzzy control is useful and practical, but this
control technique is insufficient of mathematical support.
In order to systematically analyze the stability of the fuzzy
system, Takagi-Sugeno (T-S) fuzzymodel [2, 3] was presented
to open a different viewpoint from the traditional fuzzy
system. Based on the T-S fuzzy model, a complicated system
can be represented as a set of fuzzy IF-THEN rules, each
of which represents the local linear subsystem in a different
state-space region. By the fuzzy blending operating, they
thus can approximately represent some uncertain or/and
nonlinear systems [4–8].

The stability issues of T-S fuzzy model were first ana-
lyzed by Tanaka and Sugeno [3]. Based on Lyapunov direct
method, they presented some sufficient conditions that could
systematically achieve the stability analysis and stabilization
of fuzzy systems [9, 10]. Moreover, the stability conditions
could be cast into linearmatrix inequality (LMI) forms [1, 10–
13]. For earlier research, most works are devoted to common
quadratic Lyapunov function (CQLF) methods. Thus, the
proposed criteria require finding a common positive definite
matrix P of a CQLF to satisfy all the subsystems [3, 14–19].
But, if the number of fuzzy rules is large, a commonmatrix P
mayhardly be obtained or does not exist in all the subsystems.
Instead of CQLF, a switching quadratic Lyapunov function
(SQLF) was involved [20–24].This SQLFmethod beforehand
divides the state space into several regions, and, in each region
we can try to find the individual positive-definite matrix P

𝑖

for the SQLF. Furthermore, we need to guarantee the SQLF
𝑉
𝑖
(x(𝑡))be the same in the region boundary but did not expect

that all P
𝑖
are equal. In previous works, the stability criteria

need to involve bilinear matrix inequality (BMI) conditions,
which cannot be directly evaluated by traditional LMI solver
[25].
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In thiswork, based on SQLFmethod,we devote the stabil-
ity criteria of T-S fuzzy model to the relaxing. Firstly, we use
a distinct region-division approach for the state space. When
assuming that the state variables of the considered T-S fuzzy
model can be correspondingly formulated by single mem-
bership function at the region boundary, we thus propose
a reconstructing procedure for substituting. Thus, based on
the SQLF method, more relaxed stability criteria can be
derived and expressed by LMImanner. Finally, an illustrative
example is given to verify the efficiency and superiority of the
proposed method.

2. Problem Description and Preliminaries

T-S fuzzy model can approximately represent some intract-
able systems with parametric uncertainty or nonlinearity via
the fuzzy IF-THEN rules interpretation. This mode mainly
characterizes the local dynamics behaviors of a system by the
fuzzy rules where their consequent parts are represented by
some locally linear models. Thus, an overall system can be
achieved via the fuzzy “blending” for these linearmodels.The
𝑟 rules of a T-S fuzzy model are expressed as follows:
Model Rule 𝑖— (MR

𝑖
) :

IF 𝑥
1 (𝑡) is 𝑀

𝑖1
and 𝑥

2 (𝑡) is 𝑀
𝑖2
⋅ ⋅ ⋅ and 𝑥

𝑛 (𝑡) is 𝑀
𝑖𝑛
,

THEN ẋ (𝑡) = A
𝑖
x (𝑡) 𝑖 = 1, 2, . . . , 𝑟,

(1)
where MR

𝑖
denotes the model rule 𝑖; 𝑀

𝑖𝑗
denotes the

fuzzy set corresponding to the state variable 𝑥
𝑗
(𝑡) of MR

𝑖
;

𝑟 is the number of IF-THEN fuzzy model rules; x(𝑡) =

[𝑥
1
(𝑡) 𝑥

2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇

∈ R𝑛 is the state vector; A
𝑖
∈

R𝑛×𝑛 denotes the system matrix of the subsystem.
The T-S fuzzy model in (1) is assumed to be inferred by

center average defuzzification (CAD) and can be described
by

ẋ (𝑡) =
∑
𝑟

𝑖=1
𝑤
𝑖 (x (𝑡))A𝑖x (𝑡)

∑
𝑟

𝑖=1
𝑤
𝑖 (x (𝑡))

=

𝑟

∑

𝑖=1

ℎ
𝑖 (x (𝑡))A𝑖x (𝑡) , (2)

where

𝑤
𝑖 (x (𝑡)) =

𝑛

∏

𝑗=1

𝑀
𝑖𝑗
(𝑥
𝑗 (𝑡)) ,

𝑟

∑

𝑖=1

𝑤
𝑖 (x (𝑡)) > 0, 𝑤

𝑖 (x (𝑡)) ≥ 0,

𝑖 = 1, 2, . . . , 𝑟.

(3)

𝑀
𝑖𝑗
(𝑥
𝑗
(𝑡)) is the grade ofmembership of𝑥

𝑗
(𝑡) inmembership

function𝑀
𝑖𝑗
. And, the inferred grade function is normalized

as

ℎ
𝑖 (x (𝑡)) =

𝑤
𝑖 (x (𝑡))

∑
𝑟

𝑖=1
𝑤
𝑖 (x (𝑡))

,

𝑟

∑

𝑖=1

ℎ
𝑖 (x (𝑡)) = 1, ℎ

𝑖 (x (𝑡)) ≥ 0,

𝑖 = 1, 2, . . . , 𝑟.

(4)

Based on Lyapunov stability theory, a candidate Lyapunov
function with a constant matrix 𝑃 is given by

𝑉 (x (𝑡)) = x𝑇 (𝑡)Px (𝑡) (5)

with𝑃 > 0.Thus, for stability assurance, the chosen Lyapunov
function needs to satisfy the following four conditions:

(1) 𝑉 is 𝐶1,
(2) x(𝑡) = 0 ⇔ 𝑉(x(𝑡)) = 0,
(3) x(𝑡) ̸= 0 ⇔ 𝑉(x(𝑡)) > 0,
(4) ‖x(𝑡)‖ → ∞ ⇒ 𝑉(x(𝑡)) → ∞,

where 𝐶
1 is the set of all real-valued functions that have a

continuous first derivative on (−∞,∞) and ‖ ⋅ ‖ denotes the
Euclidean norm for the considered vectors.

Based on (5), Tanaka and Sugeno [3] originally proposed
a stability criterion as follows.

Lemma 1 (see [3]). The equilibrium of the autonomous T-S
fuzzy system in (2) is asymptotically stable in the large, if there
exists a common positive-definite symmetricmatrix𝑃 such that

A𝑇
𝑖
P + PA

𝑖
< 0, 𝑖 = 1, 2, . . . , 𝑟. (6)

Remark 2. Lemma 1 shows that we need to find a common
matrix 𝑃 to satisfy all the conditions in (6) for global stability
assurance. Based on Lemma 1, some less conservative results
[12, 16] with a common positive-definite symmetric matrix
𝑃 were achieved by involving some extra slack matrices in
criteria.

3. Switching T-S Fuzzy Model and
Stability Issues

3.1. Switching T-S Fuzzy Model. Consider

Region Model Rule 𝑞— (RMR
𝑞
) :

IF x (𝑡) ∈ Region 𝑞

THEN

Local Model Rule 𝑖— (LMR
𝑖
) :

IF 𝑥
1(𝑡) is 𝑀

𝑞𝑖1
and 𝑥

2(𝑡) is 𝑀
𝑞𝑖2

⋅ ⋅ ⋅ and 𝑥
𝑛(𝑡) is 𝑀

𝑞𝑖𝑛
,

THEN ẋ (𝑡) = A
𝑞𝑖
x (𝑡) + Β𝑞𝑖u (𝑡)

𝑖 = 1, 2, . . . , 𝑟
𝑞
, 𝑞 = 1, 2, . . . , 2

𝑛
,

(7)

where RMR
𝑞
denotes the region model rule 𝑞. LMR

𝑖
denotes

the local model rule 𝑖.𝑀
𝑞𝑖𝑗

denotes the fuzzy set correspond-
ing to the state variable 𝑥

𝑗
(𝑡) of LMR

𝑖
in Region 𝑞. 𝑟

𝑞
is the

number of IF-THEN fuzzy local model rules in Region 𝑞. 2𝑛
is the number of region. 𝑛 is the number of state variables.
𝑟 = ∑

2
𝑛

𝑞=1
𝑟
𝑞
is the total number of IF-THEN fuzzy model

rules.A
𝑞𝑖

∈ R𝑛×𝑛 denotes the systemmatrix of the subsystem.
B
𝑞𝑖

∈ R𝑛×𝑚 denotes the input matrix of the subsystem.
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Figure 1: Divided state space and change of state.

Each linear consequent equation, A
𝑞𝑖
x(𝑡) + Β

𝑞𝑖
u(𝑡), is

called a subsystem.
Given a pair of (x(𝑡), u(𝑡)), the final output of the T-S

fuzzy model (7) is inferred by CAD and can be represented
as follows [23]:

ẋ (𝑡) =
2
𝑛

∑

𝑞=1

𝑟
𝑞

∑

𝑖=1

𝜂
𝑞 (x (𝑡)) ℎ𝑞𝑖 (x (𝑡)) {A𝑞𝑖x (𝑡) + Β𝑞𝑖u (𝑡)} , (8)

where

𝜂
𝑞 (x (𝑡)) = {

1, x (𝑡) ∈ 𝑅
𝑞

0, x (𝑡) ∉ 𝑅
𝑞
.

(9)

ℎ
𝑞𝑖
(x(𝑡)) is the normalizedmembership function of the LMR

𝑖

in Region 𝑞 and satisfies

2
𝑛

∑

𝑞=1

𝑟
𝑞

∑

𝑖=1

𝜂
𝑞 (x (𝑡)) ℎ𝑞𝑖 (x (𝑡)) = 1,

2
𝑛

∑

𝑞=1

𝑟
𝑞

∑

𝑖=1

𝜂
𝑞 (x (𝑡)) ℎ𝑞𝑖 (x (𝑡)) ≥ 0,

𝑖 = 1, 2, . . . , 𝑟
𝑞
.

(10)

In the 𝑞th region, we define

𝑅
𝑞
(𝑠
1𝑞
, 𝑠
2𝑞
, . . . , 𝑠

𝑛𝑞
)

𝑠
𝑘𝑞

= {
1, 𝑥

𝑘 (𝑡) ≥ 0

0, 𝑥
𝑘 (𝑡) < 0

𝑘 = 1, 2, . . . , 𝑛,

(11)

where the number of the state variables is equal to 𝑛 and its
corresponding state space can be divided into 2

𝑛 region. For
clarification, assume that the considered state space has three
dimensions and each separated region corresponds to a quad-
rant. Figure 1 depicts that the trajectory of a given initial state
passes over the different quadrants in a three-dimensional

space.The state in Figure 1 passes through Region 2, Region 1,
Region 5, Region 7, Region 3, Region 4, and Region 2 in turn.
To guarantee the stability of T-S fuzzy system,we suppose that
the trajectory of a system cannot be motionless on the region
boundaries.

3.2. Switching Quadratic Lyapunov Function. Consider

𝑉 (x (𝑡)) =

{{{{{

{{{{{

{

x𝑇 (𝑡)P1x (𝑡) , x (𝑡) ∈ Region 1

x𝑇 (𝑡)P2x (𝑡) , x (𝑡) ∈ Region 2

.

.

.
.
.
.

x𝑇 (𝑡)P2𝑛x (𝑡) , x (𝑡) ∈ Region 2
𝑛
,

(12)

where P
𝑞
∈ R𝑛×𝑛 ∀𝑞 are a set of positive-definite symmetric

matrices.This function is continuous on region boundaries if
P
𝑞
satisfies the following constraint [23]:

P
𝑞
=

[
[
[
[

[

𝑝
11𝜁(1,𝑞)

𝑝
12𝜓(1,2,𝑞)

⋅ ⋅ ⋅ 𝑝
1𝑛𝜓(1,𝑛,𝑞)

𝑝
12𝜓(1,2,𝑞)

𝑝
22𝜁(2,𝑞)

⋅ ⋅ ⋅ 𝑝
2𝑛𝜓(2,𝑛,𝑞)

.

.

.
.
.
. d

.

.

.

𝑝
1𝑛𝜓(1,𝑛,𝑞)

𝑝
2𝑛𝜓(2,𝑛,𝑞)

⋅ ⋅ ⋅ 𝑝
𝑛𝑛𝜁(𝑛,𝑞)

]
]
]
]

]

,

𝜁 (𝑘, 𝑞) = 2 − 𝑠
𝑘𝑞
, 𝜓 (𝑘, 𝑙, 𝑞) = −𝑠

𝑘𝑞
− 2𝑠
𝑙𝑞
+ 4.

(13)

Since the involved property is crucial for discussing the
SQLF, an example is illustrated as follows.

Example 3 (see [23]). As in Figure 1, consider a system with
three state variables 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡).The state space can

be divided into the following eight regions, eight quadrants:

𝑅
1 (1, 1, 1) , 𝑅

2 (0, 1, 1) , 𝑅
3 (1, 0, 1) ,

𝑅
4 (0, 0, 1) ; 𝑅

5 (1, 1, 0) , 𝑅
6 (0, 1, 0) ,

𝑅
7 (1, 0, 0) , 𝑅

8 (0, 0, 0) .

(14)

Based on the notation of a region, that is,
𝑅
𝑞
(𝑠
1𝑞
, 𝑠
2𝑞
, . . . , 𝑠

𝑛𝑞
), each P

𝑞
is represented as follows:

𝑃
1
= [

[

𝑝
111

𝑝
121

𝑝
131

𝑝
121

𝑝
221

𝑝
231

𝑝
131

𝑝
231

𝑝
331

]

]

, 𝑃
2
= [

[

𝑝
112

𝑝
122

𝑝
132

𝑝
122

𝑝
221

𝑝
231

𝑝
132

𝑝
231

𝑝
331

]

]

,

𝑃
3
= [

[

𝑝
111

𝑝
123

𝑝
131

𝑝
123

𝑝
222

𝑝
232

𝑝
131

𝑝
232

𝑝
331

]

]

, 𝑃
4
= [

[

𝑝
112

𝑝
124

𝑝
132

𝑝
124

𝑝
222

𝑝
232

𝑝
132

𝑝
232

𝑝
331

]

]

,

𝑃
5
= [

[

𝑝
111

𝑝
121

𝑝
133

𝑝
121

𝑝
221

𝑝
233

𝑝
133

𝑝
233

𝑝
332

]

]

, 𝑃
6
= [

[

𝑝
112

𝑝
122

𝑝
134

𝑝
122

𝑝
221

𝑝
233

𝑝
134

𝑝
233

𝑝
332

]

]

,

𝑃
7
= [

[

𝑝
111

𝑝
123

𝑝
133

𝑝
123

𝑝
222

𝑝
234

𝑝
133

𝑝
234

𝑝
332

]

]

, 𝑃
8
= [

[

𝑝
112

𝑝
124

𝑝
134

𝑝
124

𝑝
222

𝑝
234

𝑝
134

𝑝
234

𝑝
332

]

]

.

(15)
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0

M(j,1) M(j,2) M(j,p) M(j,m)M(j,p −1) M(j,m−1)M(j,p+1)

𝜙(j,1) 𝜙(j,2)
≈

≈≈

≈
𝜙(j,p+1)𝜙(j,p−1) 𝜙(j,m−1) 𝜙(j,m)

xj(t)

xj(t) < 0 xj(t) ≥ 0

Figure 2: State variable 𝑥
𝑗
(𝑡) triggers one fuzzy set at 𝑥

𝑗
(𝑡) = 0.

On the region boundary between Regions 5 and Regions
7, a plane A in Figure 1 for x(𝑡) = [𝑥1(𝑡) 0 𝑥

3
(𝑡)]
𝑇, the SQLF

is calculated as

𝑉 (x (𝑡)) = x𝑇 (𝑡) 𝑃5x (𝑡)

= [𝑥1 (𝑡) 0 𝑥
3 (𝑡)]

[

[

𝑝
111

𝑝
121

𝑝
133

𝑝
121

𝑝
221

𝑝
233

𝑝
133

𝑝
233

𝑝
332

]

]

[

[

𝑥
1 (𝑡)

0

𝑥
3 (𝑡)

]

]

= 𝑝
111

𝑥
2

1
(𝑡) + 2𝑝

133
𝑥
1 (𝑡) 𝑥3 (𝑡) + 𝑝

332
𝑥
2

3
(𝑡)

= [𝑥1 (𝑡) 0 𝑥
3 (𝑡)]

[

[

𝑝
111

𝑝
123

𝑝
133

𝑝
123

𝑝
222

𝑝
234

𝑝
133

𝑝
234

𝑝
332

]

]

[

[

𝑥
1 (𝑡)

0

𝑥
3 (𝑡)

]

]

= x𝑇 (𝑡) 𝑃7x (𝑡) .

(16)

Furthermore, the illustrative results can be similarly extended
to the other region boundaries of x(𝑡).

Remark 4. Based on the SQLF, (13), we have shown that
the state trajectory crossed a plane; that is, x(𝑡) =

[𝑥1(𝑡) 0 𝑥
3
(𝑡)]
𝑇 is continuous. In addition, it is also con-

tinuous when the trajectory crosses a line, such as x(𝑡) =

[0 𝑥
2
(𝑡) 0]

𝑇 [23].

4. Main Result

Considering in general fuzzy inference rules, a single state
variable triggers no more than two fuzzy sets. Thus, fuzzy
sets for a premise variable 𝑥

𝑗
(𝑡) can be assumed to have two

different patterns, defined in Figures 2 and 3, respectively,
where their differences are at 𝑥

𝑗
(𝑡) = 0 including singlemem-

bership function or two membership functions.
For generalization and unification, our proposed

approach merely focuses on addressing the pattern with
𝑥
𝑗
(𝑡) = 0 with single fuzzy set, that is, as in Figure 2. Thus, if

the pattern is like Figure 3, we need to beforehand perform a
reconstruction procedure described in the following.

By illustrating from the pattern in Figure 3, the recon-
struction procedure has two stages. Stage 1 is to delete the
two 𝑀

(𝑗,𝑝)
, 𝑀
(𝑗,𝑝+1)

regarding 𝑥
𝑗
(𝑡) = 0 and retain the other

fuzzy sets. Stage 2 is to establish three new fuzzy sets 𝑀
(𝑗,𝑝)

,
𝑀
(𝑗,0)

, and 𝑀


(𝑗,𝑝+1)
for 𝑥
𝑗
(𝑡) = 0 include single membership

function.The achieved pattern can thus be depicted by Figure
4. The membership function 𝑀



(𝑗,𝑝)
(𝑥
𝑗
(𝑡)), 𝑀

(𝑗,0)
(𝑥
𝑗
(𝑡)), and

𝑀


(𝑗,𝑝+1)
(𝑥
𝑗
(𝑡)) can be, respectively, constructed by

𝑀


(𝑗,𝑝)
(𝑥
𝑗 (𝑡))

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑀
(𝑗,𝑝)

(𝑥
𝑗 (𝑡)) ,

for 𝜙
(𝑗,𝑝−1)

≤ 𝑥
𝑗 (𝑡) ≤ 𝜙

(𝑗,𝑝)

𝑀
(𝑗,𝑝)

(𝑥
𝑗 (𝑡)) −

𝑀
(𝑗,𝑝) (0)𝑀(𝑗,𝑝+1) (𝑥𝑗 (𝑡))

𝑀
(𝑗,𝑝+1) (0)

,

for 𝜙
(𝑗,𝑝)

≤ 𝑥
𝑗 (𝑡) ≤ 0

(17)

𝑀
(𝑗,0)

(𝑥
𝑗 (𝑡))

=

{{{{{

{{{{{

{

𝑀
(𝑗,𝑝+1)

(𝑥
𝑗 (𝑡))

𝑀
(𝑗,𝑝+1) (0)

, for 𝜙
(𝑗,𝑝)

≤ 𝑥
𝑗 (𝑡) ≤ 0

𝑀
(𝑗,𝑝)

(𝑥
𝑗 (𝑡))

𝑀
(𝑗,𝑝) (0)

, for 0 ≤ 𝑥
𝑗 (𝑡) ≤ 𝜙

(𝑗,𝑝+1)

(18)

𝑀


(𝑗,𝑝+1)
(𝑥
𝑗 (𝑡))

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑀
(𝑗,𝑝+1)

(𝑥
𝑗 (𝑡)) −

𝑀
(𝑗,𝑝+1) (0)𝑀(𝑗,𝑝) (𝑥𝑗 (𝑡))

𝑀
(𝑗,𝑝) (0)

,

for 0 ≤ 𝑥
𝑗 (𝑡) ≤ 𝜙

(𝑗,𝑝+1)

𝑀
(𝑗,𝑝+1)

(𝑥
𝑗 (𝑡)) ,

for 𝜙
(𝑗,𝑝+1)

≤ 𝑥
𝑗 (𝑡) ≤ 𝜙

(𝑗,𝑝+2)
.

(19)
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0

M(j,1) M(j,2) M(j,p) M(j,m)
M(j,p −1) M(j,m−1)

M(j,p+1) M(j,p+2)

≈

≈

≈

≈

𝜙(j,p+2)𝜙(j,p+1)
𝜙(j,m−1) 𝜙(j,m)

xj(t)

xj(t) ≥ 0

𝜙(j,1) 𝜙(j,2) 𝜙(j,p−1) 𝜙(j,p)

xj(t) < 0

Figure 3: State variable 𝑥
𝑗
(𝑡) triggers two fuzzy set at 𝑥

𝑗
(𝑡) = 0.

0

M(j,1) M(j,2) M(j,0) M(j,m)
M(j,p −1) M(j,m−1)

M(j,p+2)

𝜙(j,1)
𝜙(j,p−1) 𝜙(j,p+1) 𝜙(j,p+2)

𝜙(j,p)𝜙(j,2)

≈

≈

xj(t) < 0

M
(j,p)

≈

≈

𝜙(j,m−1) 𝜙(j,m)

xj(t)

xj(t) ≥ 0

M
(j,p+1)

Figure 4: Reconstruction of fuzzy sets with state variable 𝑥
𝑗
(𝑡).

4.1. Reconstruction of Switching Takagi-Sugeno Fuzzy Model
via Vertex Expression. Consider

Region Model Rule (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
)— (RMR

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
) :

IF 𝑥
1 (𝑡) is 𝑁

(1,𝑞
1
)
and 𝑥

2 (𝑡) is 𝑁
(2,𝑞
2
)
⋅ ⋅ ⋅

and 𝑥
𝑛 (𝑡) is 𝑁

(𝑛,𝑞
𝑛
)
,

THEN

Local Model Rule (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛
)— (LMR

(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
) :

IF 𝑥
1 (𝑡) is 𝑀

𝑞
1
,(1,𝑖
1
)
and 𝑥

2 (𝑡) is 𝑀
𝑞
2
,(2,𝑖
2
)
⋅ ⋅ ⋅

and 𝑥
𝑛 (𝑡) is 𝑀

𝑞
𝑛
,(𝑛,𝑖
𝑛
)
,

THEN ẋ (𝑡) = A
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
x (𝑡)

+ Β
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
u (𝑡)

𝑞
𝑗
= 0, 1, 𝑖

𝑗
= 1, 2, . . . , 𝑟

𝑗𝑞
𝑗

, 𝑗 = 1, 2, . . . , 𝑛,

(20)

where RMR
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)

denotes the region model rule(𝑞
1
,

𝑞
2
, . . . , 𝑞

𝑛
), LMR

(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
denotes the local model rule(𝑖

1
, 𝑖
2
,

. . . , 𝑖
𝑛
), and𝑁

(𝑗,𝑞
𝑗
)
denotes the crisp set corresponding to the

state variable 𝑥
𝑗
(𝑡) in divisional region 𝑞

𝑗
.

Themembership function𝑁
(𝑗,𝑞
𝑗
)
(𝑥
𝑗
(𝑡)) of crisp set𝑁

(𝑗,𝑞
𝑗
)

is defined as below:

𝑁
(𝑗,0)

(𝑥
𝑗 (𝑡)) = {

1 for 𝑥
𝑗 (𝑡) < 0

0 for 𝑥
𝑗 (𝑡) ≥ 0

𝑁
(𝑗,1)

(𝑥
𝑗 (𝑡)) = {

1 for 𝑥
𝑗 (𝑡) ≥ 0

0 for 𝑥
𝑗 (𝑡) < 0.

(21)

𝑀
𝑞
𝑗
,(𝑗,𝑖
𝑗
)
denotes the fuzzy set corresponding to the state

variable 𝑥
𝑗
(𝑡) of LMR

(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
in divisional region 𝑞

𝑗
. 𝑟
𝑗𝑞
𝑗

is the number of 𝑥
𝑗
(𝑡)’s fuzzy sets in divisional region 𝑞

𝑗
.

𝑟
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)

= ∏
𝑛

𝑗=1
𝑟
𝑗𝑞
𝑗

is the number of IF-THEN region
model rule (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
) 𝑟 = ∑

1

𝑞
1
=0

∑
1

𝑞
2
=0

⋅ ⋅ ⋅ ∑
1

𝑞
𝑛
=0

𝑟
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)

is the total number of IF-THEN fuzzy model rules.
A
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
∈ R𝑛×𝑛 denotes the system matrix of the

subsystem.And,B
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
∈ R𝑛×𝑚 denotes the input

matrix of the subsystem.
Each linear consequent equationA

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
x(𝑡) +

Β
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
u(𝑡) is called a subsystem. Given a pair

of (x(𝑡), u(𝑡)), the final output of the T-S fuzzy model (20)
inferred by CAD can be represented as follows:

ẋ (𝑡) =
1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

⋅ ⋅ ⋅

1

∑

𝑞
𝑛
=0

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡))
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× ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))

× {A
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
x (𝑡) + Β(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
u (𝑡)} ,

(22)

where the normalized membership function of the
RMR
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
is

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡)) =

𝑛

∏

𝑗=1

𝑁
(𝑗,𝑞
𝑗
)
(𝑥
𝑗 (𝑡)) , (23)

and the fire strength of the LMR
(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
in 𝑅
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
is

𝑤
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡)) =

𝑛

∏

𝑗=1

𝑀
𝑞
𝑗
,(𝑗,𝑖
𝑗
)
(𝑥
𝑗 (𝑡)) (24)

for all 𝑡. And the term 𝑀
𝑞
𝑗
,(𝑗,𝑖
𝑗
)
(𝑥
𝑗
(𝑡)) is the grade of

membership of 𝑥
𝑗
(𝑡) in𝑀

𝑞
𝑗
,(𝑗,𝑖
𝑗
)
.

Thenormalizedmembership function of the LMR
(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)

in 𝑅
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
can be described by

ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))

=

𝑤
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))

∑
𝑟
1𝑞
1

𝑖
1
=1

∑
𝑟
2𝑞
2

𝑖
2
=1

⋅ ⋅ ⋅ ∑
𝑟
𝑛𝑞𝑛

𝑖
𝑛
=1

𝑤
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))

(25)

with

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

. . .

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡)) = 1,

ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡)) ≥ 0,

𝑖
𝑗
= 1, 2, . . . , 𝑟

𝑗𝑞
𝑗

, 𝑗 = 1, 2, . . . , 𝑛.

(26)

Example 5. Consider a system with two state variables 𝑥
1
(𝑡)

and 𝑥
2
(𝑡). The T-S fuzzy model is assumed to have 16

subsystems and four fuzzy sets for each state variable. A state
space with two dimension can be divided into the following
four regions: 𝑅(0, 0), 𝑅(0, 1), 𝑅(1, 0), and 𝑅(1, 1) as shown
in Figure 5. The T-S fuzzy model that uses the process of
reconstruction can obtain the following new T-S fuzzymodel
as shown in Figure 6. The new T-S fuzzy model has 25
subsystems and five fuzzy sets for each state variable

𝐴
(0,1)

= 𝑀
(1,2)

(𝑥
1 (𝑡)) 𝐴 (2,1) + 𝑀

(1,3)
(𝑥
1 (𝑡)) 𝐴 (3,1),

𝐴
(0,2)

= 𝑀
(1,2)

(𝑥
1 (𝑡)) 𝐴 (2,2) + 𝑀

(1,3)
(𝑥
1 (𝑡)) 𝐴 (3,2),

𝐴
(0,3)

= 𝑀
(1,2)

(𝑥
1 (𝑡)) 𝐴 (2,3) + 𝑀

(1,3)
(𝑥
1 (𝑡)) 𝐴 (3,3),

𝐴
(0,4)

= 𝑀
(1,2)

(𝑥
1 (𝑡)) 𝐴 (2,4) + 𝑀

(1,3)
(𝑥
1 (𝑡)) 𝐴 (3,4),

𝐴
(1,0)

= 𝑀
(2,2)

(𝑥
2 (𝑡)) 𝐴 (1,2) + 𝑀

(2,3)
(𝑥
2 (𝑡)) 𝐴 (1,3),

𝐴
(2,0)

= 𝑀
(2,2)

(𝑥
2 (𝑡)) 𝐴 (2,2) + 𝑀

(2,3)
(𝑥
2 (𝑡)) 𝐴 (2,3),

𝐴
(3,0)

= 𝑀
(2,2)

(𝑥
2 (𝑡)) 𝐴 (3,2) + 𝑀

(2,3)
(𝑥
2 (𝑡)) 𝐴 (3,3),

𝐴
(4,0)

= 𝑀
(2,2)

(𝑥
2 (𝑡)) 𝐴 (4,2) + 𝑀

(2,3)
(𝑥
2 (𝑡)) 𝐴 (4,3),

𝐴
(0,0)

= 𝑀
(1,2)

(𝑥
1 (𝑡))𝑀(2,2) (𝑥2 (𝑡)) 𝐴 (2,2)

+ 𝑀
(1,3)

(𝑥
1 (𝑡))𝑀(2,2) (𝑥2 (𝑡)) 𝐴 (3,2)

+ 𝑀
(1,2)

(𝑥
1 (𝑡))𝑀(2,3) (𝑥2 (𝑡)) 𝐴 (2,3)

+ 𝑀
(1,3)

(𝑥
1 (𝑡))𝑀(2,3) (𝑥2 (𝑡)) 𝐴 (3,3).

(27)

For the new T-S fuzzy model in Figure 6, it can be
separated at region boundaries and depicted as Figure 7.

4.2. Relaxed Stability Conditions Based on Switching Quad-
ratic Lyapunov Function. Consider

Region Function Rule (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
)— (RFR

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
) :

IF 𝑥
1 (𝑡) is 𝑁

(1,𝑞
1
)
and 𝑥

2 (𝑡) is 𝑁
(2,𝑞
2
)
⋅ ⋅ ⋅

and 𝑥
𝑛 (𝑡) is 𝑁

(𝑛,𝑞
𝑛
)
,

THEN 𝑉 (x (𝑡)) = x𝑇 (𝑡)P(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
x (𝑡) ,

𝑞
𝑗
= 0, 1, 𝑗 = 1, 2, . . . , 𝑛,

(28)

where RFR
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)

denotes the region function rule
(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
). P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
∈ R𝑛×𝑛 is a set of positive-definite

symmetric matrices.
Based on the CAD for the RFR

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
. The overall

SFQLF is given as

𝑉 (x (𝑡))

=

1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

⋅ ⋅ ⋅

1

∑

𝑞
𝑛
=0

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡)) x

𝑇
(𝑡)P(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)
x (𝑡) .

(29)

This function is continuous on region boundaries if
P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
satisfies the following constraint:

P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
=

[
[
[
[

[

𝑝
11𝑞
1

𝑝
12(2𝑞

1
+𝑞
2
)

⋅ ⋅ ⋅ 𝑝
1𝑛(2𝑞

1
+𝑞
𝑛
)

𝑝
12(2𝑞

1
+𝑞
2
)

𝑝
22𝑞
2

⋅ ⋅ ⋅ 𝑝
2𝑛(2𝑞

2
+𝑞
𝑛
)

.

.

.
.
.
. d

.

.

.

𝑝
1𝑛(2𝑞

1
+𝑞
𝑛
)

𝑝
2𝑛(2𝑞

2
+𝑞
𝑛
)

⋅ ⋅ ⋅ 𝑝
𝑛𝑛𝑞
𝑛

]
]
]
]

]

.

(30)

The autonomous switching T-S fuzzy system via vertex
expression with (22) can be represented as

ẋ (𝑡) =
1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

⋅ ⋅ ⋅

1

∑

𝑞
𝑛
=0

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡))

× ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))A(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
x (𝑡) .

(31)
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Figure 5: Rules illustration of Example 5.
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Figure 6: Rules illustration of Example 5 by the first process of reconstruction.
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(2
,0
)

N
(2
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R (0,0)

R (0,1)

R (1,0)
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≈

≈

≈≈

Figure 7: Rules illustration of Example 5 by the second process of reconstruction.

By reconstruction of the switching T-S fuzzy model,
we can obtain relaxed stability conditions for autonomous
switching T-S fuzzy systems via vertex expression (31) based
on SFQLF.

Theorem6. Theequilibriumof the reconstructive autonomous
switching T-S fuzzy system (31) is globally asymptotically stable
if there exist a set of matrices P

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
such that (30) and

(32):

P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
> 0, 𝑞

𝑗
= 0, 1, 𝑗 = 1, 2, . . . , 𝑛,

A𝑇
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)

+ P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
A
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
< 0,

𝑞
𝑗
= 0, 1, 𝑖

𝑗
= 1, 2, . . . , 𝑟

𝑗𝑞
𝑗

, 𝑗 = 1, 2, . . . , 𝑛.

(32)

Proof. Consider a candidate of Lyapunov function (29):

�̇� (x (𝑡)) =
1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

⋅ ⋅ ⋅

1

∑

𝑞
𝑛
=0

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡))

× {ẋ𝑇 (𝑡)P(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
x (𝑡) + x𝑇 (𝑡)P(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)
ẋ (𝑡)} .
(33)

By (22), we manipulate the above equation and it then yields
(34) (see below). Thus, from (30) and (32), the considered T-
S fuzzy system (31) is asserted to be globally asymptotically
stable.
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�̇� (x (𝑡)) =
1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

. . .

1

∑

𝑞
𝑛
=0

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡))

× {(

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡)) x

𝑇
(𝑡)A𝑇
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
) × P

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
x (𝑡)

+ x𝑇 (𝑡)P(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
× (

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

ℎ
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))A(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
x (𝑡))}

=

1

∑

𝑞
1
=0

1

∑

𝑞
2
=0

⋅ ⋅ ⋅

1

∑

𝑞
𝑛
=0

𝑟
1𝑞
1

∑

𝑖
1
=1

𝑟
2𝑞
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑟
𝑛𝑞𝑛

∑

𝑖
𝑛
=1

𝜂
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
) (x (𝑡)) ℎ(𝑞

1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
) (x (𝑡))

× x𝑇 (𝑡) {A𝑇
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
P
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
x (𝑡) + P

(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)
A
(𝑞
1
,𝑞
2
,...,𝑞
𝑛
)(𝑖
1
,𝑖
2
,...,𝑖
𝑛
)
} x (𝑡) .

(34)

5. Illustrative Example

Revisit Example 1 in the previous work [26]. By our proposed
approach, we can beforehand use the reconstruction proce-
dure for this T-S fuzzy model and thus can suitably perform
the stability verification byTheorem 6 with SFQLF described
in the sequel.

Example 7. Consider the following reconstructed switching
T-S fuzzy model:

RMR
(0,0)

: IF 𝑥
1 (𝑡) is 𝑁

(1,0)
and 𝑥

2 (𝑡) is 𝑁
(2,0)

THEN LMR
(1,1)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,1)
and 𝑥

2 (𝑡) is 𝑀
0,(2,1)

THEN ẋ (𝑡) = A
(0,0)(1,1)

x (𝑡)

LMR
(2,1)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,2)
and 𝑥

2 (𝑡) is 𝑀
0,(2,1)

THEN ẋ (𝑡) = A
(0,0)(2,1)

x (𝑡)

LMR
(1,2)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,1)
and 𝑥

2 (𝑡) is 𝑀
0,(2,2)

THEN ẋ (𝑡) = A
(0,0)(1,2)

x (𝑡)

LMR
(2,2)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,2)
and 𝑥

2 (𝑡) is 𝑀
0,(2,2)

THEN ẋ (𝑡) = A
(0,0)(2,2)

x (𝑡)
RMR
(1,0)

: IF 𝑥
1 (𝑡) is 𝑁

(1,1)
and 𝑥

2 (𝑡) is 𝑁
(2,0)

THEN LMR
(1,1)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,1)
and 𝑥

2 (𝑡) is 𝑀
0,(2,1)

THEN ẋ (𝑡) = A
(1,0)(1,1)

x (𝑡)

LMR
(2,1)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,2)
and 𝑥

2 (𝑡) is 𝑀
0,(2,1)

THEN ẋ (𝑡) = A
(1,0)(2,1)

x (𝑡)

LMR
(1,2)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,1)
and 𝑥

2 (𝑡) is 𝑀
0,(2,2)

THEN ẋ (𝑡) = A
(1,0)(1,2)

x (𝑡)

LMR
(2,2)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,2)
and 𝑥

2 (𝑡) is 𝑀
0,(2,2)

THEN ẋ (𝑡) = A
(1,0)(2,2)

x (𝑡)

RMR
(0,1)

: IF 𝑥
1 (𝑡) is 𝑁

(1,0)
and 𝑥

2 (𝑡) is 𝑁
(2,1)

THEN LMR
(1,1)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,1)
and 𝑥

2 (𝑡) is 𝑀
1,(2,1)

THEN ẋ (𝑡) = A
(0,1)(1,1)

x (𝑡)

LMR
(2,1)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,2)
and 𝑥

2 (𝑡) is 𝑀
1,(2,1)

THEN ẋ (𝑡) = A
(0,1)(2,1)

x (𝑡)

LMR
(1,2)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,1)
and 𝑥

2 (𝑡) is 𝑀
1,(2,2)

THEN ẋ (𝑡) = A
(0,1)(1,2)

x (𝑡)

LMR
(2,2)

: IF 𝑥
1 (𝑡) is 𝑀

0,(1,2)
and 𝑥

2 (𝑡) is 𝑀
1,(2,2)

THEN ẋ (𝑡) = A
(0,1)(2,2)

x (𝑡)

RMR
(1,1)

: IF 𝑥
1 (𝑡) is 𝑁

(1,1)
and 𝑥

2 (𝑡) is 𝑁
(2,1)

THEN LMR
(1,1)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,1)
and 𝑥

2 (𝑡) is 𝑀
1,(2,1)

THEN ẋ (𝑡) = A
(1,1)(1,1)

x (𝑡)

LMR
(2,1)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,2)
and 𝑥

2 (𝑡) is 𝑀
1,(2,1)

THEN ẋ (𝑡) = A
(1,1)(2,1)

x (𝑡)

LMR
(1,2)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,1)
and 𝑥

2 (𝑡) is 𝑀
1,(2,2)

THEN ẋ (𝑡) = A
(1,1)(1,2)

x (𝑡)

LMR
(2,2)

: IF 𝑥
1 (𝑡) is 𝑀

1,(1,2)
and 𝑥

2 (𝑡) is 𝑀
1,(2,2)

THEN ẋ (𝑡) = A
(1,1)(2,2)

x (𝑡) ,
(35)
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A (0,0)(2,2)

R (0,0)

R (0,1) R (1,1)

R (1,0)
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M1,(2,2)
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0 0

M0,(2,1)

A (0,0)(1,2)
A (1,0)(1,2) A (1,0)(2,2)

A (1,0)(2,1)A (1,0)(1,1)

A (1,1)(1,1) A (1,1)(2,1)

A (1,1)(2,2)A (1,1)(1,2)

A (0,1)(1,1)

A (0,0)(1,1)A (0,0)(2,1)

A (0,1)(2,1)

A (0,1)(2,2) A (0,1)(1,2)

≈ ≈

≈

≈

x2(t)

x2(t)

x1(t)

x1(t)

1

1

−𝜋

−𝜋

−𝜋/2

𝜋

𝜋

𝜋/2

𝜋/2
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N(1,0) N(1,1)

N
(2
,0
)

N
(2
,1
)

0

0

Figure 8: Rules illustration of switching T-S fuzzy model via vertex expression for Example 7.

where the original system matrices of the subsystem are

A
1
= [

−5 −4

−1 𝑎
] , A

2
= [

−4 −4

1

5
(3𝑏 − 2)

1

5
(3𝑎 − 4)

] ,

A
3
= [

−3 −4

1

5
(2𝑏 − 3)

1

5
(2𝑎 − 6)

] , A
4
= [

−2 −4

𝑏 −2
] .

(36)

By the reconstructing procedure, the considered system
associated with rules illustration via vertex expression is
depicted in Figure 8. Thus, the systems’ matrices can be,
respectively, calculated as

A
(0,0)(2,2)

= A
2
, A

(0,0)(1,2)
=
A
2
+ A
4

2
,

A
(1,0)(1,2)

=
A
2
+ A
4

2
, A

(1,0)(2,2)
= A
4
,

A
(0,0)(2,1)

=
A
1
+ A
2

2
, A

(0,0)(1,1)
=
A
1
+ A
2
+ A
3
+ A
4

4
,

A
(1,0)(1,1)

A
1
+ A
2
+ A
3
+ A
4

4
, A

(1,0)(2,1)
=
A
3
+ A
4

2
,

A
(0,1)(2,1)

=
A
1
+ A
2

2
, A

(0,1)(1,1)

A
1
+ A
2
+ A
3
+ A
4

4
,

A
(1,1)(1,1)

=
A
1
+ A
2
+ A
3
+ A
4

4
, A

(1,1)(2,1)
=
A
3
+ A
4

2
,

A
(0,0)(2,2)

= A
1
, A

(0,1)(1,2)
=
A
1
+ A
3

2
,

A
(1,1)(1,2)

=
A
1
+ A
3

2
, A

(1,1)(2,2)
= A
3
,

(37)

with

𝑁
(1,0)

(𝑥
1 (𝑡)) = {

1, for 𝑥
1 (𝑡) < 0

0, for 𝑥
1 (𝑡) ≥ 0,

𝑁
(1,1)

(𝑥
1 (𝑡)) = {

1, for 𝑥
1 (𝑡) ≥ 0

0, for 𝑥
1 (𝑡) < 0,



Mathematical Problems in Engineering 11

𝑁
(2,0)

(𝑥
2 (𝑡)) = {

1, for 𝑥
2 (𝑡) < 0

0, for 𝑥
2 (𝑡) ≥ 0,

𝑁
(2,1)

(𝑥
2 (𝑡)) = {

1, for 𝑥
2 (𝑡) ≥ 0

0, for 𝑥
2 (𝑡) < 0.

𝑀
0,(1,2)

(𝑥
1 (𝑡)) =

{

{

{

1, for 𝑥
1 (𝑡) ≤ −

𝜋

2

− sin (𝑥
1 (𝑡)) , for −

𝜋

2
≤ 𝑥
1 (𝑡) ≤ 0,

𝑀
0,(1,1)

(𝑥
1 (𝑡)) =

{

{

{

0, for 𝑥
1 (𝑡) ≤ −

𝜋

2

1 + sin (𝑥
1 (𝑡)) , for −

𝜋

2
≤ 𝑥
1 (𝑡) ≤ 0

𝑀
1,(1,1)

(𝑥
1 (𝑡)) =

{

{

{

1 − sin (𝑥
1 (𝑡)) , for 𝑥

1 (𝑡) ≤
𝜋

2

0, for 𝜋

2
≤ 𝑥
1 (𝑡)

𝑀
1,(1,2)

(𝑥
1 (𝑡)) =

{

{

{

sin (𝑥
1 (𝑡)) for 0 ≤ 𝑥

1 (𝑡) ≤
𝜋

2

1 for 𝜋

2
≤ 𝑥
1 (𝑡)

𝑀
0,(2,2)

(𝑥
2 (𝑡)) =

{

{

{

1, for 𝑥
2 (𝑡) ≤ −

𝜋

2

− sin (𝑥
2 (𝑡)) , for −

𝜋

2
≤ 𝑥
2 (𝑡) ≤ 0

𝑀
0,(2,1)

(𝑥
2 (𝑡)) =

{

{

{

0, for 𝑥
2 (𝑡) ≤ −

𝜋

2

1 + sin (𝑥
2 (𝑡)) , for −

𝜋

2
≤ 𝑥
2 (𝑡) ≤ 0

𝑀
1,(2,1)

(𝑥
1 (𝑡)) =

{

{

{

1 − sin (𝑥
2 (𝑡)) , for 𝑥

2 (𝑡) ≤
𝜋

2

0, for 𝜋

2
≤ 𝑥
2 (𝑡)

𝑀
1,(2,2)

(𝑥
2 (𝑡)) =

{

{

{

sin (𝑥
2 (𝑡)) for 0 ≤ 𝑥

2 (𝑡) ≤
𝜋

2

1 for 𝜋

2
≤ 𝑥
2 (𝑡) .

(38)

In this example, by applying a current tool, Matlab soft-
ware, we experimentally attain a widely feasible region for the
parameters’ pair (𝑎, 𝑏) via SQLF method compared to that of
the CQLF method. The feasible parameter pairs (𝑎, 𝑏) of the
CQLF and the SQLF methods are shown in Figures 9 and
10, respectively. By observation, the proposed approach can
dramatically lessen the conservatism of the stability assur-
ance.
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Figure 9: Feasible area for Example 7 that uses the CQLF method.
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Figure 10: Feasible area for Example 7 that uses the SQLF method.
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A delayed impulsive Lotka-Volterra model with Holing III type functional response was established. With the help of Mawhin’s
ContinuationTheorem in coincidence degree theory, a sufficient condition is found for the existence of positive periodic solutions
of the system under consideration. By applying the comparison theorem and constructing a suitable Lyapunov functional, the
permanence and global attractivity of themodel are proved. Two numerical simulations are also given to illustrate our main results.

1. Introduction

Recently, many complicated but realistic predator-prey sys-
tems based on classical Holling type functional responses
have been analyzed by ecologists and mathematicians; see
papers [1–6] and so forth. For example, a positive periodic
solution to a Lotka-Volterra model with mutual interference
and Holling III type functional response was proposed by
Lv and Du in [2]; Zhang and his coworkers studied positive
periodic solutions in a predator-prey model with Hassell-
Varley type functional response, nonselective harvesting, and
multiple delays in paper [6]. The theoretical values of these
studies not only have great significance in biological eco-
nomics but also provide strong support for the management
and development of renewable energy.

Hassell [7] introduced the following predator-prey system
with mutual interference𝑚 (0 < 𝑚 ≤ 1):

�̇� = 𝑥𝑔 (𝑥) − 𝜑 (𝑥) 𝑦
𝑚

,

̇𝑦 = 𝑦 (−𝑑 − 𝑘𝜑 (𝑥) 𝑦
𝑚−1

− 𝑞 (𝑦)) .

(1)

After thatmore scholars have further conducted research. For
example, Du and Lv investigated a Lotka-Volterramodel with
mutual interference and time delays in [8]:

�̇� = 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))) −

𝑐
1
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝑘

2
𝑦
𝑚

(𝑡) ,

̇𝑦 = 𝑦 (𝑡) (−𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑦 (𝑡)) +

𝑐
2
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝑘

2
𝑦
𝑚

(𝑡) ,

(0 < 𝑚 < 1, 𝑘 > 0) .

(2)

Some criteria on the permanence and global attractivity
of the above system are found. As far as we know, delay
models have been studied and applied extensively in biology,
physics, population dynamics, and other fields. However, the
assumption of these models with constant environment is
rarely the case in real life. A system must be nonautonomous
if the environmental fluctuation is taken into account, such
as seasonal effects of weather, food supplies, and harvesting.
Therefore, it is rational to consider the ecosystem with
periodic or almost periodic coefficients. On the other hand,
there exist a few discontinuous and impulsive phenomena;
for instance, many species are given birth seasonally. If we
introduce these impulsive factors into the systems, it is more
realistic to analyze the ecology models. For example, Wang
and Zhu [4] considered a delayed impulsive prey-predator
system with mutual interference:

�̇� = 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥 (𝑡 − 𝜏)) − 𝑐

1
(𝑡) 𝑥 (𝑡) 𝑦

𝑚

(𝑡) ,

̇𝑦 = 𝑦 (𝑡) (−𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑦 (𝑡 − 𝜎)) + 𝑐

2
(𝑡) 𝑥 (𝑡) 𝑦

𝑚

(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

,
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Δ𝑥 (𝑡) = 𝑑
𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = 𝑓
𝑘
𝑦 (𝑡) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

.

(3)

But as far as we all know, there are few results on the
existence and global attractivity of positive periodic solutions
of model (1) with delays and impulses. Motivated by these
facts, we formulate a delayed impulsive Lotka-Volterra model
with Holing III type functional response

�̇� = 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥 (𝑡 − 𝜏

1
(𝑡))) −

𝑐
1
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝐾

2
𝑦
𝑚

(𝑡) ,

̇𝑦 = 𝑦 (𝑡) (−𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑦 (𝑡 − 𝜏

2
(𝑡))) +

𝑐
2
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝐾

2
𝑦
𝑚

(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

,

Δ𝑥 (𝑡) = 𝑑
𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = ℎ
𝑘
𝑦 (𝑡) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

,

(4)

with initial conditions

𝑥 (𝑡) = 𝜑 (𝑡) , 𝜑 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) , 𝜑 (0) > 0,

𝑦 (𝑡) = 𝜙 (𝑡) , 𝜙 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) , 𝜙 (0) > 0,

(5)

where 𝑑
𝑘
and ℎ

𝑘
represent the regular harvest or death from

spraying pesticide of the predator and prey at time 𝑡
𝑘
, 𝜏 =

max
𝑡∈[0,𝜔]

{𝜏
1
(𝑡), 𝜏

2
(𝑡)}. In this paper, 𝑍, 𝑍+, and 𝑅 denote

integers, positive integers, and real numbers, respectively, and
𝑅
+
= [0,∞); 𝑟

𝑖
(𝑡), 𝑏

𝑖
(𝑡), and 𝑐

𝑖
(𝑡) (𝑖 = 1, 2) are continuously

nonnegative periodic functions with period 𝜔 > 0; 𝜏
𝑖
(𝑡) (𝑖 =

1, 2) are nonnegative and continuously differentiable periodic
functions with period 𝜔 on 𝑅, and min{1 − ̇𝜏

𝑖
(𝑡)} > 0; 𝑚

and 𝐾 are positive constants and 𝑚 < 1; 𝑥 and 𝑦 satisfy
Δ𝑥(𝑡) = 𝑥(𝑡

+

) − 𝑥(𝑡) = lim
𝑠→ 𝑡
+𝑥(𝑠) − lim

𝑠→ 𝑡
−𝑥(𝑠).

Furthermore, suppose that the following conditions hold.

(H1) There exists an integer 𝑙 ≥ 1, such that [0, 𝜔] ∩ {𝑡
𝑘
} =

{𝑡
1
, 𝑡

2
, . . . 𝑡

𝑙
}, 𝑡

𝑘+𝑙
= 𝑡

𝑘
+𝜔, and 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ are fixed points with lim
𝑘→∞

𝑡
𝑘
= +∞.

(H2) −1 < 𝑑
𝑘
≤ 0, −1 < ℎ

𝑘
≤ 0 are constants, and 𝑑

𝑘
=

𝑑
𝑘+𝑙

, ℎ
𝑘
= ℎ

𝑘+𝑙
.

This paper is organized as follows. In Section 2, we
introduce some useful lemmas. In Section 3, we not only
prove the existence of periodic solutions but also study the
permanence and the global attractivity of system (4). In
Section 4, two examples are given to illustrate the feasibility
of our results by using simulation. The last section is a brief
conclusion.

2. Preliminaries

Under the assumptions (H1) and (H2), we consider a new
system as follows:

�̇� (𝑡) = 𝑝 (𝑡) [𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑝 (𝑡 − 𝜏

1
(𝑡))]

−

𝐶
1
(𝑡) 𝑝

2

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
𝑞
𝑚

(𝑡) ,

̇𝑞 (𝑡) = 𝑞 (𝑡) [−𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑞 (𝑡 − 𝜏

2
(𝑡))]

+

𝐶
2
(𝑡) 𝑝

2

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
𝑞
𝑚

(𝑡) ,

(6)

with initial conditions

𝑝 (𝑡) = 𝜑 (𝑡) , 𝜑 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) , 𝜑 (0) > 0,

𝑞 (𝑡) = 𝜙 (𝑡) , 𝜙 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) , 𝜙 (0) > 0,

(7)

where

𝐵
1
(𝑡) = 𝑏

1
(𝑡) ∏

0<𝑡
𝑘
<𝑡−𝜏
1
(𝑡)

(1 + 𝑑
𝑘
) ,

𝐶
1
(𝑡) = 𝑐

1
(𝑡) ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
) (1 + ℎ

𝑘
)
𝑚

,

𝐵
2
(𝑡) = 𝑏

2
(𝑡) ∏

0<𝑡
𝑘
<𝑡−𝜏
2
(𝑡)

(1 + ℎ
𝑘
) ,

𝐶
2
(𝑡) = 𝑐

2
(𝑡) ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)
2

(1 + ℎ
𝑘
)
𝑚−1

,

𝐴 = ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)
2

, 0 < 𝐴 < 1.

(8)

Lemma 1. Suppose that (H1) and (H2) hold; then we have the
following.

(i) If (𝑝(𝑡), 𝑞(𝑡))𝑇 is a solution of systems (6) and (7), then
(𝑥(𝑡), 𝑦(𝑡))

𝑇 is a solution of systems (4) and (5), where

𝑥 (𝑡) = ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
) 𝑝 (𝑡) , 𝑦 (𝑡) = ∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
) 𝑞 (𝑡) . (9)

(ii) If (𝑥(𝑡), 𝑦(𝑡))𝑇 is a solution of systems (4) and (5), then
(𝑝(𝑡), 𝑞(𝑡))

𝑇 is a solution of systems (6) and (7), where

𝑝 (𝑡) = ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)
−1

𝑥 (𝑡) ,

𝑞 (𝑡) = ∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)
−1

𝑦 (𝑡) .

(10)
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Proof. (i) For any 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, we have

�̇� (𝑡) − 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥 (𝑡 − 𝜏

1
(𝑡))) +

𝑐
1
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝐾

2
𝑦
𝑚

(𝑡)

= ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)

×

{

{

{

�̇� (𝑡) − 𝑝 (𝑡)

× (𝑟
1
(𝑡) − 𝑏

1
(𝑡) ∏

0<𝑡
𝑘
<𝑡−𝜏
1
(𝑡)

(1 + 𝑑
𝑘
) 𝑝 (𝑡 − 𝜏

1
(𝑡)))

−

𝑐
1
(𝑡)∏

0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
) 𝑝

2

(𝑡)

∏
0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
)
2

𝑝
2
(𝑡) + 𝐾

2

∏

0<𝑡
𝑘
<𝑡

(1+ ℎ
𝑘
)
𝑚

𝑞
𝑚

(𝑡)

}

}

}

= 0.

(11)

Similarly, we have

̇𝑦 (𝑡) − 𝑦 (𝑡) (−𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑦 (𝑡 − 𝜏

2
(𝑡)))

−

𝑐
2
(𝑡) 𝑥

2

(𝑡)

𝑥
2
(𝑡) + 𝐾

2
𝑦
𝑚

(𝑡)

= ∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)

×

{

{

{

̇𝑞 (𝑡) − 𝑞 (𝑡)

×(−𝑟
2
(𝑡) − 𝑏

2
(𝑡) ∏

0<𝑡
𝑘
<𝑡−𝜏
2
(𝑡)

(1 + ℎ
𝑘
) 𝑞 (𝑡 − 𝜏

2
(𝑡)))

−

𝑐
2
(𝑡)∏

0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
)
2

𝑝
2

(𝑡)

∏
0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
)
2

𝑝
2
(𝑡)+ 𝐾

2

∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)
𝑚−1

𝑞
𝑚

(𝑡)

}

}

}

= 0.

(12)

On the other hand, for any 𝑡 = 𝑡
𝑘
, by definition, we obtain

that

𝑥 (𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

∏

0<𝑡
𝑖
<𝑡

(1 + 𝑑
𝑖
) 𝑝 (𝑡) = ∏

0<𝑡
𝑖
≤𝑡
𝑘

(1 + 𝑑
𝑖
) 𝑝 (𝑡

𝑘
) ,

𝑥 (𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

∏

0<𝑡
𝑖
<𝑡

(1 + ℎ
𝑖
) 𝑞 (𝑡) = ∏

0<𝑡
𝑖
≤𝑡
𝑘

(1 + ℎ
𝑖
) 𝑞 (𝑡

𝑘
) ,

(13)

and 𝑥(𝑡
𝑘
) = ∏

0<𝑡
𝑖
<𝑡
𝑘

(1+𝑑
𝑖
)𝑝(𝑡

𝑘
),𝑦(𝑡

𝑘
) = ∏

0<𝑡
𝑖
<𝑡
𝑘

(1+ℎ
𝑖
)𝑞(𝑡

𝑘
).

Then we get 𝑥(𝑡+
𝑘
) = (1 + 𝑑

𝑘
)𝑥(𝑡

𝑘
), 𝑦(𝑡+

𝑘
) = (1 + ℎ

𝑘
)𝑦(𝑡

𝑘
).

Hence, (𝑥(𝑡), 𝑦(𝑡))𝑇 is a solution of systems (4) and (5).

(ii) 𝑥(𝑡) = ∏
0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
)𝑝(𝑡) and 𝑦(𝑡) = ∏

0<𝑡
𝑘
<𝑡
(1 +

ℎ
𝑘
)𝑞(𝑡) are continuous on each interval (𝑡

𝑘
, 𝑡

𝑘+1
].

Since 𝑥(𝑡+
𝑘
) = (1 + 𝑑

𝑘
)𝑥(𝑡

𝑘
) and 𝑦(𝑡+

𝑘
) = (1 + ℎ

𝑘
)𝑦(𝑡

𝑘
),

we have

𝑝 (𝑡
+

𝑘
) = ∏

0<𝑡
𝑖
≤𝑡
𝑘

(1 + 𝑑
𝑖
)
−1

𝑥 (𝑡
+

𝑘
)

= ∏

0<𝑡
𝑖
<𝑡
𝑘

(1 + 𝑑
𝑖
)
−1

𝑥 (𝑡
𝑘
) = 𝑝 (𝑡

𝑘
) ,

𝑝 (𝑡
+

𝑘
) = ∏

0<𝑡
𝑖
≤𝑡
𝑘

(1 + ℎ
𝑖
)
−1

𝑦 (𝑡
+

𝑘
)

= ∏

0<𝑡
𝑖
<𝑡
𝑘

(1 + ℎ
𝑖
)
−1

𝑦 (𝑡
𝑘
) = 𝑞 (𝑡

𝑘
) .

(14)

And combining

𝑝 (𝑡
−

𝑘
) = ∏

0<𝑡
𝑖
≤𝑡
𝑘−1

(1 + 𝑑
𝑖
)
−1

𝑥 (𝑡
−

𝑘
)

= ∏

0<𝑡
𝑖
<𝑡
𝑘

(1 + 𝑑
𝑖
)
−1

𝑥 (𝑡
𝑘
) = 𝑝 (𝑡

𝑘
) ,

𝑞 (𝑡
−

𝑘
) = ∏

0<𝑡
𝑖
≤𝑡
𝑘−1

(1 + ℎ
𝑖
)
−1

𝑦 (𝑡
−

𝑘
)

= ∏

0<𝑡
𝑖
<𝑡
𝑘

(1 + ℎ
𝑖
)
−1

𝑦 (𝑡
𝑘
) = 𝑞 (𝑡

𝑘
) ,

(15)

we know that 𝑝(𝑡) and 𝑞(𝑡) are continuous on interval
[−𝜏, +∞).

Similarly,

�̇� (𝑡) − 𝑝 (𝑡) (𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑝 (𝑡 − 𝜏

1
(𝑡)))

+

𝐶
1
(𝑡) 𝑝

2

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
𝑞
𝑚

(𝑡) = 0,

̇𝑞 (𝑡) − 𝑞 (𝑡) (−𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑞 (𝑡 − 𝜏

2
(𝑡)))

−

𝐶
2
(𝑡) 𝑝

2

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
𝑞
𝑚

(𝑡) = 0.

(16)

Therefore, (𝑝(𝑡), 𝑞(𝑡))𝑇 is a solution of systems (6) and (7).

From Lemma 1, we notice that if we want to discuss the
existence of an 𝜔-periodic solution of systems (4) and (5), we
only need to discuss the existence of an 𝜔-periodic solution
of systems (6) and (7).

Let𝑋 and𝑌 be two normed linear spaces, let 𝐿 : Dom𝐿 ⊂
𝑋 → 𝑌 be a linear map, and let𝑁 : 𝑋 → 𝑌 be a continuous
map. If dimKer𝐿 = codimIm𝐿 < +∞ and Im 𝐿 is closed
in 𝑌, then 𝐿 is called Fredholm operator. If 𝐿 is a Fredholm
operator with index zero, there exist continuous projections
𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such that Ker 𝐿 = Im𝑃 and
Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄). Hence, 𝐿|Dom∩Ker𝑃 : (𝐼 − 𝑃)𝑋 →
Im 𝐿 has an inverse mapping 𝐾

𝑃
. The mapping 𝑁 is called

𝐿-compact on Ω, if Ω ∈ 𝑋 is an open bounded subset, and
𝑄𝑁(Ω) is bounded,𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact. Since

Ker 𝐿 is isomorphic to Im𝑄, there exists an isomorphism
𝐽 : Im𝑄 → Ker 𝐿.
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Lemma 2 (see [9], (ContinuationTheorem)). Let both𝑋 and
𝑌 be Banach spaces; 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 is a Fredholm
operator with index zero; continuous projection 𝑁 : Ω → 𝑌
is called 𝐿-compact on Ω, where Ω is an open bounded subset
on 𝑋. If all the following conditions hold,

(1) for any 𝜆 ∈ (0, 1), each solution of 𝐿𝑥 = 𝜆𝑁𝑥 satisfies
𝑥 ∉ 𝜕Ω,

(2) any 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω, 𝑄𝑁𝑥 ̸= 0,

(3) deg{𝐽𝑄𝑁,Ω∩Ker 𝐿, 0} ̸= 0, where 𝐽 : Im𝑄 → Ker 𝐿
is an isomorphism, then the equation 𝐿𝑥 = 𝑁𝑥 has at
least one solution in Dom𝐿 ∩ Ω.

Lemma 3 (see [10]). If 𝑎 > 0, 𝑏 > 0, and �̇� ≥ (≤)𝑥(𝑎 − 𝑏𝑥𝛾),
where 𝛾 is a positive constant, then

lim
𝑡→∞

inf 𝑥 (𝑡) ≥ (𝑎
𝑏

)

1/𝛾

, ( lim
𝑡→∞

sup𝑥 (𝑡) ≤ (𝑎
𝑏

)

1/𝛾

) . (17)

Lemma 4 (see [11]). If 𝜏 ∈ 𝐶1

(𝑅, 𝑅) with 𝜏(𝑡 + 𝜔) = 𝜏(𝑡) and
1− ̇𝜏(𝑡) > 0 for any 𝑡 ∈ [0, 𝜔], then function 𝜇(𝑡) = 𝑡−𝜏(𝑡) has a
unique inverse 𝜇−1(𝑡) satisfying 𝜇 ∈ 𝐶(𝑅, 𝑅) with 𝜇−1(𝑠 + 𝜔) =
𝜇
−1

(𝑠) + 𝜔, for 𝑠 ∈ [0, 𝜔].

3. Main Results

In order to express the formulas conveniently, we introduce a
few concepts

𝑓 =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡, 𝑓
𝐿

= min {𝑓 (𝑡)} ,

𝑓
𝑈

= max {𝑓 (𝑡)} ,

𝑡 ∈ [0, 𝜔] ,

(18)

where 𝑓 is a periodic function with period 𝜔.

Let (𝑝(𝑡), 𝑞(𝑡))𝑇 ∈ 𝑅2 be an arbitrary positive solution of
systems (6) and (7), for all 𝑡 ∈ 𝑅. Set 𝑢(𝑡) = ln𝑝(𝑡) and V(𝑡) =
ln 𝑞(𝑡). Consider the following model:

�̇� (𝑡) = 𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

−

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

,

V̇ (𝑡) = −𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

+

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

.

(19)

Apparently, if system (19) has an 𝜔-periodic solution
(𝑢(𝑡), V(𝑡))𝑇, then (𝑝(𝑡), 𝑞(𝑡))𝑇 = (𝑒𝑢(𝑡), 𝑒V(𝑡))𝑇 is an𝜔-periodic
solution of systems (6) and (7). Hence, we only need to show
that system (19) has an 𝜔-periodic solution.

Set

𝑋 = 𝑌

= {𝑧 (𝑡) = (𝑢(𝑡), V(𝑡))𝑇 ∈ 𝐶 (𝑅, 𝑅2) | 𝑧 (𝑡 + 𝜔) = 𝑧 (𝑡)} ,
(20)

where 𝐶(𝑅, 𝑅2) = {𝑧 : 𝑅 → 𝑅
2

| 𝑧 is continuous at 𝑡 ̸=
𝑡
𝑘
, 𝑧(𝑡

+

𝑘
), 𝑧(𝑡

−

𝑘
) = 𝑧(𝑡

𝑘
) exist} and the norm ‖𝑧‖ =

‖(𝑢(𝑡), V(𝑡))𝑇‖ = max{|𝑢(𝑡)| + |V(𝑡)|}, 𝑡 ∈ [0, 𝜔]. Then both
𝑋 and 𝑌 are Banach spaces.

Define operators 𝐿, 𝑃, and 𝑄 as follows, respectively:

𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌, 𝐿𝑧 = �̇�;

𝑃 (𝑧) =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡; 𝑄 (𝑧) =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡.

(21)

Define𝑁 : 𝑋 → 𝑌, satisfying

𝑁𝑧 =(

𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

−

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

−𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

+

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

). (22)

Note that Ker 𝐿 = 𝑅2, dimKer𝐿 = codimIm𝐿 = 2, and
Im 𝐿 = {𝑧 ∈ 𝑌 | ∫𝜔

0

𝑧(𝑡)𝑑𝑡 = 0} is closed in 𝑌 and 𝑃
and 𝑄 are continuous maps satisfying Ker 𝐿 = Im𝑃 and
Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄). Hence, 𝐿 is a Fredholm operator
with index zero. It implies that 𝐿 has a unique inverse 𝐾

𝑃
:

Im𝑃 → Dom𝐿 ∩ Ker𝑃. So we have

𝐾
𝑃
(𝑧) = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑧 (𝑠) 𝑑𝑠 𝑑𝑡. (23)

By a straightforward calculation, we get

𝑄𝑁𝑧 =(

1

𝜔

∫

𝜔

0

[𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

−

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

]𝑑𝑡

1

𝜔

∫

𝜔

0

[−𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

+

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

]𝑑𝑡

),
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𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑧 =(

∫

𝑡

0

[𝑟
1
(𝑠) − 𝐵

1
(𝑠) 𝑒

𝑢(𝑠−𝜏
1
(𝑠))

−

𝐶
1
(𝑠) 𝑒

𝑢(𝑠)+𝑚V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠

∫

𝑡

0

[−𝑟
2
(𝑠) − 𝐵

2
(𝑠) 𝑒

V(𝑠−𝜏
2
(𝑠))

+

𝐶
2
(𝑠) 𝑒

2𝑢(𝑠)+(𝑚−1)V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠

)

− 𝐸 + 𝐹 (𝑡) ,

(24)

where

𝐸 =(

1

𝜔

∫

𝜔

0

∫

𝑡

0

[𝑟
1
(𝑠) − 𝐵

1
(𝑠) 𝑒

𝑢(𝑠−𝜏
1
(𝑠))

−

𝐶
1
(𝑠) 𝑒

𝑢(𝑠)+𝑚V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠 𝑑𝑡

1

𝜔

∫

𝜔

0

∫

𝑡

0

[−𝑟
2
(𝑠) − 𝐵

2
(𝑠) 𝑒

V(𝑠−𝜏
2
(𝑠))

+

𝐶
2
(𝑠) 𝑒

2𝑢(𝑠)+(𝑚−1)V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠 𝑑𝑡

),

𝐹 (𝑡) =(

(

1

2

−

𝑡

𝜔

)∫

𝜔

0

[𝑟
1
(𝑠) − 𝐵

1
(𝑠) 𝑒

𝑢(𝑠−𝜏
1
(𝑠))

−

𝐶
1
(𝑠) 𝑒

𝑢(𝑠)+𝑚V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠

(

1

2

−

𝑡

𝜔

)∫

𝜔

0

[−𝑟
2
(𝑠) − 𝐵

2
(𝑠) 𝑒

V(𝑠−𝜏
2
(𝑠))

+

𝐶
2
(𝑠) 𝑒

2𝑢(𝑠)+(𝑚−1)V(𝑠)

𝐴𝑒
2𝑢(𝑠)
+ 𝐾

2

]𝑑𝑠

).

(25)

By the Lebesgue Convergence Theorem, it is not difficult to
notice that 𝑄𝑁 and𝐾

𝑃
(𝐼 − 𝑄)𝑁 are continuous. By applying

the Arzela-Ascoli Theorem, we know that the operator
𝑄𝑁(Ω) is bounded and 𝐾

𝑃
(𝐼 − 𝑄)𝑁(Ω) is compact, for any

open set Ω ∈ 𝑋. Therefore,𝑁 ∈ Ω is 𝐿-compact onΩ.
In order to use Lemma 2, we need to find an appropriate

open and bounded set Ω.

Theorem 5. Assume the following.
(i) 𝐶

2
> 𝐴(𝑟

2
+ Δ

𝑈

2
), where Δ

2
= 𝐵

2
(𝜇

−1

2
(𝑡))/(1 −

̇𝜏
2
(𝜇

−1

2
(𝑡))),min{1 − ̇𝜏

2
(𝑡)} > 0.

(ii) The following algebraic equation set

𝑟
1
− 𝐵

1
𝑒
𝑢(𝑡)

−

𝐶
1
𝑒
𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

= 0,

− 𝑟
2
− 𝐵

2
𝑒
V(𝑡)
+

𝐶
2
𝑒
2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

= 0,

(26)

has finite solutions (𝑢∗
𝑖
(𝑡), V∗

𝑖
(𝑡)), 𝑖 = 1, 2, . . . , 𝑛, and then

systems (6) and (7) have at least one 𝜔-periodic solution.

Proof. Considering the operator equation 𝐿𝑧 = 𝜆𝑁𝑧, 𝜆 ∈
(0, 1), we have

�̇� (𝑡) = 𝜆 [𝑟
1
(𝑡) − 𝐵

1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

−

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

] ,

V̇ (𝑡) = 𝜆 [−𝑟
2
(𝑡) − 𝐵

2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

+

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

] .

(27)

Integrating (27) on the interval [0, 𝜔], we have

𝑟
1
𝜔 = ∫

𝜔

0

[𝐵
1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

+

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

]𝑑𝑡,

𝑟
2
𝜔 + ∫

𝜔

0

𝐵
2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡,

(28)

yielding

∫

𝜔

0

|�̇� (𝑡)| 𝑑𝑡 ≤ 2𝑟
1
𝜔,

∫

𝜔

0

|V̇ (𝑡)| 𝑑𝑡 ≤ 2 (𝑟
2
𝜔 + ∫

𝜔

0

𝐵
2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

𝑑𝑡) .

(29)

In view of Lemma 4, we obtain that

∫

𝜔

0

𝐵
1
(𝑡) 𝑒

𝑢(𝑡−𝜏
1
(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
1
(𝜇

−1

1
(𝑡)) 𝑒

𝑢(𝑡)

1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))

𝑑𝑡,

∫

𝜔

0

𝐵
2
(𝑡) 𝑒

V(𝑡−𝜏
2
(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐵
2
(𝜇

−1

2
(𝑡)) 𝑒

V(𝑡)

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))

𝑑𝑡,

(30)

which together with (28) give

𝑟
1
𝜔 = ∫

𝜔

0

[

𝐵
1
(𝜇

−1

1
(𝑡)) 𝑒

𝑢(𝑡)

1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))

+

𝐶
1
(𝑡) 𝑒

𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

]𝑑𝑡, (31)

𝑟
2
𝜔 + ∫

𝜔

0

𝐵
2
(𝜇

−1

2
(𝑡)) 𝑒

V(𝑡)

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))

𝑑𝑡 = ∫

𝜔

0

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡. (32)
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From (31), we have

∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡 ≤

𝑟
1
𝜔

Δ
𝐿

1

≡ 𝜔𝑁
1
, (33)

where Δ
1
= 𝐵

1
(𝜇

−1

1
(𝑡))𝑒

𝑢(𝑡)

/(1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))).

Multiplying the first equation of system (27) by 𝑒𝑢(𝑡) and
the second one by 𝑒V(𝑡) and integrating them on [0, 𝜔], we get

∫

𝜔

0

𝑟
1
(𝑡) 𝑒

𝑢(𝑡)

𝑑𝑡

= ∫

𝜔

0

𝐵
1
(𝜇

−1

1
(𝑡)) 𝑒

2𝑢(𝑡)

1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))

𝑑𝑡 + ∫

𝜔

0

𝐶
1
(𝑡) 𝑒

2𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡,

(34)

∫

𝜔

0

𝑟
2
(𝑡) 𝑒

V(𝑡)
𝑑𝑡 + ∫

𝜔

0

𝐵
2
(𝜇

−1

2
(𝑡)) 𝑒

2V(𝑡)

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))

𝑑𝑡

= ∫

𝜔

0

𝐶
2
(𝑡) 𝑒

2𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡,

(35)

which imply that

∫

𝜔

0

𝑒
2𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡 ≤

𝑟
𝑈

1

𝐶
𝐿

1

∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡, (36)

∫

𝜔

0

𝑒
V(𝑡)
𝑑𝑡 ≤

𝐶
𝑈

2

𝑟
𝐿

2

∫

𝜔

0

𝑒
2𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡 ≤

𝑟
𝑈

1
𝐶

𝑈

2
𝜔𝑁

1

𝑟
𝐿

2
𝐶

𝐿

1

≡ 𝜔𝑁
2
. (37)

If V(𝑡) ≥ 0, then 𝑒V(𝑡) ≥ 1 and 𝑁
2
≥ (1/𝜔) ∫

𝜔

0

𝑒
V(𝑡)
𝑑𝑡 ≥ 1,

which implies that there must be a constant 𝜂
1
∈ [0, 𝜔] such

that V(𝜂
1
) ≤ ln𝑁

2
. From (33) and (37),

𝑁
1
≥

1

𝜔

∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡 ≥

𝑟
𝐿

2
𝐶

𝐿

1

𝑟
𝑈

1
𝐶

𝑈

2
𝜔

∫

𝜔

0

𝑒
V(𝑡)
𝑑𝑡 ≥

𝑟
𝐿

2
𝐶

𝐿

1

𝑟
𝑈

1
𝐶

𝑈

2

; (38)

then there exists a constant 𝜉
1
∈ [0, 𝜔] such that 𝑢(𝜉

1
) ≤

max{| ln𝑁
1
|, | ln(𝑟𝐿

2
𝐶

𝐿

1
/𝑟

𝑈

1
𝐶

𝑈

2
)|}.

On the other hand, it follows from (35) and the Hölder
inequality that

𝑟
𝐿

2
𝜔 ≤

𝐶
𝑈

2

𝐴

∫

𝜔

0

𝑒
𝑚V(𝑡)
𝑑𝑡 ≤

𝐶
𝑈

2

𝐴

𝜔
1−𝑚

(∫

𝜔

0

𝑒
V(𝑡)
𝑑𝑡)

𝑚

; (39)

that is

∫

𝜔

0

𝑒
V(𝑡)
𝑑𝑡 ≥ (

𝑟
𝐿

2
𝜔𝐴

𝐶
𝑈

2
𝜔
1−𝑚

)

1/𝑚

≡ 𝜔𝑁
3
. (40)

Since V(𝑡) ≥ 0 and 𝑚 < 1, then 0 < 𝑒(𝑚−1)V(𝑡)
< 1 and

𝑒
V(𝑡)
≥ 1.
From (32), 𝑟

2
𝜔 + Δ

𝐿

2
𝜔 ≤ (𝐶

𝑈

2
/𝐾

2

) ∫

𝜔

0

𝑒
2𝑢(𝑡)

𝑑𝑡, that is,

∫

𝜔

0

𝑒
2𝑢(𝑡)

𝑑𝑡 ≥

(𝑟
2
+ Δ

𝐿

2
) 𝜔𝐾

2

𝐶
𝑈

2

≡ 𝜔𝑁
4
. (41)

If V(𝑡) < 0, then 0 < 𝑒𝑚V(𝑡)
< 1, 0 < 𝑒V(𝑡) < 1, and

𝑒
(𝑚−1)V(𝑡)

> 1.

From (31), we obtain that

𝑟
1
𝜔 ≤ Δ

𝑈

1
∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡 +

𝐶
𝑈

1

𝐾
2
∫

𝜔

0

𝑒
𝑢(𝑡)+𝑚V(𝑡)

𝑑𝑡

≤ Δ
𝑈

1
∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡 +

𝐶
𝑈

1

𝐾
2
∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡,

(42)

that is,

∫

𝜔

0

𝑒
𝑢(𝑡)

𝑑𝑡 ≥

𝑟
1
𝜔𝐾

2

Δ
𝑈

1
𝐾

2
+ 𝐶

𝑈

1

≡ 𝜔𝑁
5
. (43)

Together with (33) and (41), we notice that there exists a
constant 𝜉

2
∈ [0, 𝜔] such that

𝑢 (𝜉
2
) ≤ max{


ln𝑁

1





,











ln
𝑟
𝐿

2
𝐶

𝐿

1

𝑟
𝑈

1
𝐶

𝑈

2











,

1

2





ln𝑁

4





,




ln𝑁

5





} ≡ 𝐴

1
. (44)

Furthermore, according to the condition𝐶
2
> 𝐴(𝑟

2
+Δ

𝑈

2
) and

(32), we have

∫

𝜔

0

𝐶
2
(𝑡) 𝑒

(𝑚−1)V(𝑡)
𝑑𝑡 − 𝐴(𝑟

2
𝜔 + ∫

𝜔

0

𝐵
2
(𝜇

−1

2
(𝑡)) 𝑒

V(𝑡)

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))

𝑑𝑡)

= ∫

𝜔

0

𝐾
2

𝐶
2
(𝑡) 𝑒

(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

𝑑𝑡;

(45)

then

0 < 𝜔 (𝐶
2
− 𝐴𝑟

2
− 𝐴Δ

𝑈

2
) ≤

𝐾
2

𝐶
𝑈

2

𝐴

∫

𝜔

0

𝑒
(𝑚−1)V(𝑡)

𝑒
2𝑢(𝑡)

𝑑𝑡

≤

𝐾
2

𝐶
𝑈

2
𝜔
3/2

𝐴

[∫

𝜔

0

𝑒
2(𝑚−1)V(𝑡)

𝑑𝑡]

1/2

[∫

𝜔

0

𝑒
𝑢(𝑡)
𝑑𝑡]

2

≤

𝐾
2

𝐶
𝑈

2
𝜔
3/2

𝐴𝜔
2
𝑁

2

5

[∫

𝜔

0

𝑒
2(𝑚−1)V(𝑡)

𝑑𝑡]

1/2

,

(46)

that is

∫

𝜔

0

𝑒
2(𝑚−1)V(𝑡)

𝑑𝑡 ≥ (

𝜔
3/2

𝑁
2

5
𝐴(𝐶

2
− 𝐴𝑟

2
− 𝐴Δ

𝑈

2
)

𝐾
2
𝐶

𝑈

2

)

2

≡ 𝜔𝑁
6
. (47)

We can find a constant 𝜂
2
∈ [0, 𝜔] such that

V (𝜂
2
) ≤ max{


ln𝑁

2





,




ln𝑁

3





,










ln𝑁
6

2 (𝑚 − 1)










} ≡ 𝐴
2
. (48)
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Hence, (19), (44), and (48) combine together tomake us know
that

|𝑢 (𝑡)| ≤




𝑢 (𝜉

2
)




+

1

2

∫

𝜔

0

|�̇� (𝑡)| 𝑑𝑡 ≤ 𝐴
1
+ 𝑟

1
𝜔 ≡ 𝐷

1
,

|V (𝑡)| ≤ 

V (𝜂

2
)




+

1

2

∫

𝜔

0

|V̇ (𝑡)| 𝑑𝑡

≤ 𝐴
2
+ 𝑟

2
𝜔 + Δ

𝑈

2
𝜔𝑒

𝐴
2
≡ 𝐷

2
.

(49)

Consider the algebraic equation set

𝑟
1
− 𝐵

1
𝑒
𝑢(𝑡)

−

𝐶
1
𝑒
𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

= 0,

− 𝑟
2
− 𝐵

2
𝑒
V(𝑡)
+

𝐶
2
𝑒
2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

= 0.

(50)

From the assumption, there exist finite solutions
(𝑢

∗

𝑖
(𝑡), V∗

𝑖
(𝑡)), 𝑖 = 1, 2, . . . , 𝑛, of the above system. By

simple computing, we can get its Jacobian matrix

𝐺 (𝑢, V) =(

−𝐵
1
𝑒
𝑢

−

𝐶
1
𝑒
𝑢+𝑚V

𝐴𝑒
2𝑢
+ 𝐾

2
+

2𝐴𝑒
3𝑢+𝑚V

(𝐴𝑒
2𝑢
+ 𝐾

2
)
2

−

𝑚𝐶
1
𝑒
𝑢+𝑚V

𝐴𝑒
2𝑢
+ 𝐾

2

2𝐶
2
𝑒
2𝑢+(𝑚−1)V

𝐴𝑒
2𝑢
+ 𝐾

2
−

2𝐴𝐶
2
𝑒
4𝑢+(𝑚−1)V

(𝐴𝑒
2𝑢
+ 𝐾

2
)
2

−𝐵
2
𝑒
V
+

(𝑚 − 1) 𝐶
2
𝑒
2𝑢+(𝑚−1)V

𝐴𝑒
2𝑢
+ 𝐾

2

), (51)

obviously det(𝐺(𝑢, V)) > 0.
Set𝑊 = 𝐴

1
+𝐴

2
+𝛿 andΩ = {𝑧 ∈ 𝑋 | ‖𝑧‖ < 𝑊}, 𝑧(𝑡+

𝑘
) ∈

Ω, where 𝛿 is a large enough number satisfying |𝑢∗
𝑖
|+|V∗

𝑖
| < 𝛿.

If 𝑧 ∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩ 𝑅2, then 𝑧 satisfies

𝑄𝑁𝑧 =(

𝑟
1
− 𝐵

1
𝑒
𝑢(𝑡)

−

𝐶
1
𝑒
𝑢(𝑡)+𝑚V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

−𝑟
2
− 𝐵

2
𝑒
V(𝑡)
+

𝐶
2
𝑒
2𝑢(𝑡)+(𝑚−1)V(𝑡)

𝐴𝑒
2𝑢(𝑡)
+ 𝐾

2

) ̸= 0, (52)

anddeg(𝐽𝑄𝑁𝑧,Ω∩Ker 𝐿, 0) = ∑𝑛

𝑖=1
sign(det𝐺(𝑢∗

𝑖
, V∗

𝑖
)) = 𝑛 ̸=

0, where 𝐽 : Im𝑄 → Ker 𝐿 is an isomorphism. Hence, Ω is
a bounded open set. System (19) has at least one 𝜔-periodic
solution (𝑢∗(𝑡), V∗(𝑡))𝑇 in Dom𝐿 ∩ Ω; that is, system (6) has
at least one 𝜔-periodic solution (𝑒𝑢

∗
(𝑡)

, 𝑒
V∗(𝑡)
)
𝑇.

Corollary 6. Suppose that Theorem 5 holds; system (4)
also has at least one 𝜔-periodic solution (𝑥∗(𝑡), 𝑦∗(𝑡)) =
(∏

0<𝑡
𝑘
<𝑡
(1 + 𝑑

𝑘
)𝑒

𝑢
∗
(𝑡)

,∏
0<𝑡
𝑘
<𝑡
(1 + ℎ

𝑘
)𝑒

V∗(𝑡)
).

Now, we discuss the permanence of models (6) and (7).
Before themain results, we give the definition of permanence.

Definition 7. System (6) is permanent, if there exist positive
constants 𝑚

𝑖
,𝑀

𝑖
(0 < 𝑚

𝑖
< 𝑀

𝑖
, 𝑖 = 1, 2) and time 𝑡

0
> 0

such that any solution of system (6) with initial condition (7)
satisfies𝑚

𝑖
≤ 𝑥

𝑖
(𝑡) ≤ 𝑀

𝑖
for all 𝑡 ≥ 𝑡

0
.

Denote

𝑀
1
=

𝑟
𝑈

1
𝑒
𝑟
𝑈

1
𝜏

𝐵
𝐿

1

,

𝑚
1
= (

𝑟
𝐿

1

𝐵
𝑈

1

−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐵
𝑈

1
𝐾

2

)

× exp{(𝑟𝐿
1
− 𝐵

𝑈

1
𝑀

1
−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2
)𝜏} ,

𝑀
2
= [

𝐶
𝑈

2

𝐴𝑟
𝐿

2

+ 𝑐]

1/(1−𝑚)

,

𝑚
2
=
[

[

𝐶
𝐿

2
𝑚

2

1
(𝑟

𝑈

2
+ 𝐵

𝑈

2
𝑀

2
)

−1

(𝐴𝑀
2

1
+ 𝐾

2
)

− 𝑐
]

]

1/(1−𝑚)

.

(53)

Theorem 8. If 𝑟𝐿
1
− 𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

> 0, then system (6) is
permanent.

Proof. From the first equation of model (6), we have �̇�(𝑡) ≤
𝑟
1
(𝑡)𝑝(𝑡), integrating it on interval [𝑡 − 𝜏

1
(𝑡), 𝑡],

𝑝 (𝑡) ≤ 𝑝 (𝑡 − 𝜏
1
(𝑡)) 𝑒

∫

𝑡

𝑡−𝜏
1
(𝑡)

𝑟
1
(𝑠)𝑑𝑠

≤ 𝑝 (𝑡 − 𝜏
1
(𝑡)) 𝑒

𝑟
𝑈

1
𝜏
1
(𝑡)

≤ 𝑝 (𝑡 − 𝜏
1
(𝑡)) 𝑒

𝑟
𝑈

1
𝜏

, 𝑡 > 𝜏;

(54)

then we get

�̇� (𝑡) ≤ 𝑝 (𝑡) [𝑟
𝑈

1
− 𝐵

𝐿

1
𝑒
−𝑟
𝑈

1
𝜏

𝑝 (𝑡)] , 𝑡 > 𝜏. (55)

According to Lemma 3, we have lim
𝑡→∞

sup𝑝(𝑡) ≤

𝑟
𝑈

1
𝑒
𝑟
𝑈

1
𝜏

/𝐵
𝐿

1
≡ 𝑀

1
, 𝑡 > 𝜏, and then there exists a sufficiently

large time 𝑡
1
> 𝜏 such that 𝑝(𝑡) ≤ 𝑀

1
for all 𝑡 > 𝑡

1
.

At the same time, we can find time 𝑡
2
= 𝑡

1
+ 𝜏 such that

𝑝(𝑡 − 𝜏
1
(𝑡)) ≤ 𝑀

1
for 𝑡 > 𝑡

2
.

From the second equation of model (6), we have

̇𝑞 (𝑡) ≤ −𝑟
𝐿

2
𝑞 (𝑡) +

𝐶
𝑈

2

𝐴

𝑞
𝑚

(𝑡) = 𝑞
𝑚

(𝑡) (

𝐶
𝑈

2

𝐴

− 𝑟
𝐿

2
𝑞
1−𝑚

(𝑡)) ; (56)

that is,

𝑑 (𝑞
1−𝑚

(𝑡))

𝑑𝑡

≤ (1 − 𝑚)(

𝐶
𝑈

2

𝐴

− 𝑟
𝐿

2
𝑞
1−𝑚

(𝑡)) . (57)
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By solving equation, we obtain that

𝑞
1−𝑚

(𝑡) ≤ [

𝐶
𝑈

2

𝐴𝑟
𝐿

2

+ (𝑞
1−𝑚

(0) −

𝐶
𝑈

2

𝐴𝑟
𝐿

2

) 𝑒
−𝑟
𝐿

2
(1−𝑚)𝑡

] ; (58)

then there must be 𝑡
3
> 𝑡

2
such that 𝑞(𝑡) ≤ [𝐶𝑈

2
/𝐴𝑟

𝐿

2
+

𝑐]
1/(1−𝑚)

≡ 𝑀
2
for all 𝑡 > 𝑡

3
, where 𝑐 is a constant.

Further, there exists time 𝑡
4
= 𝑡

3
+𝜏 such that 𝑞(𝑡−𝜏

2
(𝑡)) ≤

𝑀
2
for all 𝑡 > 𝑡

4
. In view of the first equation of model (6), we

have

�̇� (𝑡) ≥ 𝑝 (𝑡) (𝑟
𝐿

1
− 𝐵

𝑈

1
𝑝 (𝑡 − 𝜏

1
(𝑡)) −

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2
) , 𝑡 > 𝑡

4
. (59)

Assume that 𝑝(�̂�) is local minimal value of system (59); then
�̇�(�̂�) = 0. Thus, we have that

𝑟
𝐿

1
− 𝐵

𝑈

1
𝑝 (�̂� − 𝜏

1
(�̂�)) −

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2

≤ 0, 𝑡 > 𝑡
4
, (60)

that is,

𝑝 (�̂� − 𝜏
1
(�̂�)) ≥

𝑟
𝐿

1

𝐵
𝑈

1

−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐵
𝑈

1
𝐾

2

. (61)

Integrating (59) on [�̂� − 𝜏
1
(�̂�), �̂�] and noticing that

ln
𝑝 (�̂�)

𝑝 (�̂� − 𝜏
1
(�̂�))

≥ ∫

�̂�

�̂�−𝜏
1
(�̂�)

(𝑟
𝐿

1
− 𝐵

𝑈

1
𝑝 (𝑡 − 𝜏

1
(𝑡)) −

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2
)𝑑𝑡

≥ (𝑟
𝐿

1
− 𝐵

𝑈

1
𝑀

1
−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2
)𝜏,

(62)

we can easily get that

𝑝 (�̂�) ≥ (

𝑟
𝐿

1

𝐵
𝑈

1

−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐵
𝑈

1
𝐾

2

)

× exp{(𝑟𝐿
1
− 𝐵

𝑈

1
𝑀

1
−

𝐶
𝑈

1
𝑀

𝑚

2
𝑀

1

𝐾
2
)𝜏} ≡ 𝑚

1
.

(63)

Thus, there must be a large enough time 𝑡
5
> 𝑡

4
such that

𝑝(𝑡) ≥ 𝑝(�̂�) ≥ 𝑚
1
for 𝑡 > 𝑡

5
.

In view of the second equation of system (6), we have

̇𝑞 (𝑡) ≥ 𝑞
𝑚

(𝑡) [

𝐶
𝐿

2
𝑚

2

1

𝐴𝑀
2

1
+ 𝐾

2
− (𝑟

𝑈

2
+ 𝐵

𝑈

2
𝑀

2
) 𝑞

1−𝑚

(𝑡)] ,

𝑡 > 𝑡
5
.

(64)

Similarly, by solving the equation, we obtain that

𝑞
1−𝑚

(𝑡)

≥

𝐶
𝐿

2
𝑚

2

1
(𝑟

𝑈

2
+ 𝐵

𝑈

2
𝑀

2
)

−1

(𝐴𝑀
2

1
+ 𝐾

2
)

+ (𝑞
1−𝑚

(0) −

𝐶
𝐿

2
𝑚

2

1
(𝑟

𝑈

2
+ 𝐵

𝑈

2
𝑀

2
)

−1

(𝐴𝑀
2

1
+ 𝐾

2
)

) 𝑒
(𝑚−1)(𝑟

𝑈

2
+𝐵
𝑈

2
𝑀
2
)𝑡

.

(65)

For the above constant 𝑐, we can seek time 𝑡
6
> 𝑡

5
such that,

for 𝑡 > 𝑡
6
,

𝑞 (𝑡) ≥
[

[

𝐶
𝐿

2
𝑚

2

1
(𝑟

𝑈

2
+ 𝐵

𝑈

2
𝑀

2
)

−1

(𝐴𝑀
2

1
+ 𝐾

2
)

− 𝑐
]

]

1/(1−𝑚)

≡ 𝑚
2
. (66)

In summary, 𝑚
1
≤ 𝑝(𝑡) ≤ 𝑀

1
and 𝑚

2
≤ 𝑞(𝑡) ≤ 𝑀

2
for

𝑡 > 𝑡
6
. Therefore, system (6) is permanent.

Theorem 9. If 𝑟𝐿
1
− 𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

> 0, then system (4) is
permanent and enters eventually into the region𝐷, where

𝐷 = {(𝑥 (𝑡) , 𝑦 (𝑡)) | 𝑥 (𝑡) ∈ ( ∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)𝑚

1
,

∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)𝑀

1
) ,

𝑦 (𝑡) ∈ ( ∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)𝑚

2
,

∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)𝑀

2
)} .

(67)

Corollary 10. If 𝑟𝐿
1
−𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

> 0, then systems (6) and
(7) have a positive 𝜔-periodic solution.

Definition 11. System (6) is globally attractive, if

lim
𝑡→+∞

(




𝑝 (𝑡) − 𝑝

∗
(𝑡)




+




𝑞 (𝑡) − 𝑞

∗
(𝑡)




) = 0, (68)

for any two positive solutions (𝑝(𝑡), 𝑞(𝑡)) and (𝑝
∗
(𝑡), 𝑞

∗
(𝑡)) of

systems (6) and (7).

Theorem 12. If system (6) satisfies 𝑟𝐿
1
− 𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

> 0,
lim inf

𝑡→+∞
Φ(𝑡) > 0, and lim inf

𝑡→+∞
Ψ(𝑡) > 0, then

system (6) is globally attractive, where

Φ (𝑡) = 𝛼𝐵
1
(𝑡) −

𝛼𝐴𝐶
1
(𝑡)𝑀

2

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2
−

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚−1

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2

− ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉
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⋅ [𝛼(𝑟
1
(𝑡) + 𝐵

1
(𝑡)𝑀

1
+

𝐶
1
(𝑡)𝑀

1
𝑀

𝑚

2

𝐴𝑚
2

1
+ 𝐾

2
)

+

𝛼𝐶
1
(𝑡)𝑀

1
𝑀

𝑚

2
(𝐴𝑀

2

1
+ 𝐾

2

)

(𝐴𝑚
2

1
+ 𝐾

2
)
2

+

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2
+

𝛼𝑀
1
𝐵
1
(𝜇

−1

1
(𝑡))

1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))

] ,

Ψ (𝑡) = 𝐵
2
(𝑡) −

𝛼𝐶
1
(𝑡)𝑀

1
𝑚𝑚

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
− ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉

⋅ [

𝛼𝐶
1
(𝑡)𝑀

2

1
𝑚𝑚

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
+ 𝑟

2
(𝑡) + 𝐵

2
(𝑡)𝑀

2

+

𝐶
2
(𝑡)𝑀

2

1
𝑀

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
+

𝐶
2
(𝑡)𝑀

2

1
𝑀

2
(1 − 𝑚)𝑚

𝑚−2

2

𝐴𝑚
2

1
+ 𝐾

2
]

−

𝑀
2
𝐵
2
(𝜇

−1

2
(𝑡))

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))

∫

𝜇
−1

2
(𝜇
−1

2
(𝑡))

𝜇
−1

2
(𝑡)

𝐵
2
(𝜉) 𝑑𝜉.

(69)

Proof. Assume (𝑝(𝑡), 𝑞(𝑡)) and (𝑝
∗
(𝑡), 𝑞

∗
(𝑡)) are two positive

solutions of systems (6) and (7). According to Theorem 8,
there exist two positive constants 𝑚

𝑖
,𝑀

𝑖
(0 < 𝑚

𝑖
< 𝑀

𝑖
, 𝑖 =

1, 2) and 𝑡
6
such that, for 𝑡 > 𝑡

6
,

𝑚
1
≤ 𝑝 (𝑡) , 𝑝

∗
(𝑡) ≤ 𝑀

1
,

𝑚
2
≤ 𝑞 (𝑡) , 𝑞

∗
(𝑡) ≤ 𝑀

2
.

(70)

Define a function

𝑉
1
(𝑡) = 𝛼





ln𝑝 (𝑡) − ln𝑝

∗
(𝑡)




+




ln 𝑞 (𝑡) − ln 𝑞

∗
(𝑡)




, 𝑡 > 𝑡

6
. (71)

By calculating its upper right derivative along the solution of
system (6), we get that

𝐷
+

𝑉
1
(𝑡)

= 𝛼 sign (𝑝 (𝑡) − 𝑝
∗
(𝑡)) [

�̇� (𝑡)

𝑝 (𝑡)

−

�̇�
∗
(𝑡)

𝑝
∗
(𝑡)

]

+ sign (𝑞 (𝑡) − 𝑞
∗
(𝑡)) [

̇𝑞 (𝑡)

𝑞 (𝑡)

−

̇𝑞
∗
(𝑡)

𝑞
∗
(𝑡)

]

= 𝛼 sign (𝑝 (𝑡) − 𝑝
∗
(𝑡))

× {𝐵
1
(𝑡) [𝑝

∗
(𝑡 − 𝜏

1
(𝑡)) − 𝑝 (𝑡 − 𝜏

1
(𝑡))]

+ 𝐶
1
(𝑡) (

𝑝
∗
(𝑡) 𝑞

𝑚

∗
(𝑡)

𝐴𝑝
2

∗
(𝑡) + 𝐾

2
−

𝑝 (𝑡) 𝑞
𝑚

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
)}

+ sign (𝑞 (𝑡) − 𝑞
∗
(𝑡))

× {𝐵
2
(𝑡) [𝑞

∗
(𝑡 − 𝜏

2
(𝑡)) − 𝑞 (𝑡 − 𝜏

2
(𝑡))]

+ 𝐶
2
(𝑡) (

𝑝
2

(𝑡) 𝑞
𝑚−1

(𝑡)

𝐴𝑝
2
(𝑡) + 𝐾

2
−

𝑝
2

∗
(𝑡) 𝑞

𝑚−1

∗
(𝑡)

𝐴𝑝
2

∗
(𝑡) + 𝐾

2
)}

≤ −𝛼𝐵
1
(𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ 𝛼𝐵
1
(𝑡) ∫

𝑡

𝑡−𝜏
1
(𝑡)





�̇� (𝑠) − �̇�

∗
(𝑠)




𝑑𝑠

+

𝛼𝐶
1
(𝑡) 𝑝

∗
(𝑡)

𝐴𝑝
2

∗
(𝑡) + 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





+

𝛼𝐴𝐶
1
(𝑡) 𝑝 (𝑡) 𝑝

∗
(𝑡) 𝑞

𝑚

(𝑡)

(𝐴𝑝
2

∗
(𝑡) + 𝐾

2
) (𝐴𝑝

2
(𝑡) + 𝐾

2
)





𝑝 (𝑡) − 𝑝

∗
(𝑡)





− 𝐵
2
(𝑡)




𝑞 (𝑡) − 𝑞

∗
(𝑡)





+ 𝐵
2
(𝑡) ∫

𝑡

𝑡−𝜏
2
(𝑡)





̇𝑞 (𝑠) − ̇𝑞

∗
(𝑠)




𝑑𝑠

+

𝐾
2

𝐶
2
(𝑡) 𝑞

𝑚−1

∗
(𝑡) (𝑝 (𝑡) + 𝑝

∗
(𝑡))

(𝐴𝑝
2

∗
(𝑡) + 𝐾

2
) (𝐴𝑝

2
(𝑡) + 𝐾

2
)





𝑝 (𝑡) − 𝑝

∗
(𝑡)




,

(72)

where

∫

𝑡

𝑡−𝜏
1
(𝑡)





�̇� (𝑠) − �̇�

∗
(𝑠)




𝑑𝑠

=∫

𝑡

𝑡−𝜏
1
(𝑡)











[𝑟
1
(𝑠) − 𝐵

1
(𝑠) 𝑝 (𝑠 − 𝜏

1
(𝑠)) −

𝐶
1
(𝑠) 𝑝 (𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
𝑞
𝑚

(𝑠)]

× (𝑝 (𝑠) − 𝑝
∗
(𝑠))

+ 𝑝
∗
(𝑠) 𝐵

1
(𝑠) [𝑝

∗
(𝑠 − 𝜏

1
(𝑠)) − 𝑝 (𝑠 − 𝜏

1
(𝑠))]

+𝑝
∗
(𝑠) 𝐶

1
(𝑠)[

𝑝
∗
(𝑠) 𝑞

𝑚

∗
(𝑠)

𝐴𝑝
2

∗
(𝑠) + 𝐾

2
−

𝑝 (𝑠) 𝑞
𝑚

(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
]











𝑑𝑠

≤∫

𝑡

𝑡−𝜏
1
(𝑡)

{[𝑟
1
(𝑠) + 𝐵

1
(𝑠) 𝑝 (𝑠 − 𝜏

1
(𝑠)) +

𝐶
1
(𝑠) 𝑝 (𝑠) 𝑞

𝑚

(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
]

×




𝑝 (𝑠) − 𝑝

∗
(𝑠)





+ 𝐵
1
(𝑠) 𝑝

∗
(𝑠)




𝑝
∗
(𝑠 − 𝜏

1
(𝑠)) − 𝑝 (𝑠 − 𝜏

1
(𝑠))





+

𝐶
1
(𝑠) 𝑝

2

∗
(𝑠)

𝐴𝑝
2

∗
(𝑠) + 𝐾

2





𝑞
𝑚

(𝑠) − 𝑞
𝑚

∗
(𝑠)





+

𝐶
1
(𝑠) 𝑝

∗
(𝑠) 𝑞

𝑚

(𝑠) (𝐴𝑝
∗
(𝑠) 𝑝 (𝑠) + 𝐾

2

)

(𝐴𝑝
2

∗
(𝑠) + 𝐾

2
) (𝐴𝑝

2
(𝑠) + 𝐾

2
)

×




𝑝 (𝑠) − 𝑝

∗
(𝑠)




} 𝑑𝑠,

∫

𝑡

𝑡−𝜏
2
(𝑡)





̇𝑞 (𝑠) − ̇𝑞

∗
(𝑠)




𝑑𝑠
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= ∫

𝑡

𝑡−𝜏
2
(𝑡)











[−𝑟
2
(𝑠) − 𝐵

2
(𝑠) 𝑞 (𝑠 − 𝜏

2
(𝑠))

+

𝐶
2
(𝑠) 𝑝

2

(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
𝑞
𝑚−1

(𝑠)]

× (𝑞 (𝑠) − 𝑞
∗
(𝑠))

+ 𝑞
∗
(𝑠) 𝐵

2
(𝑠) [𝑞

∗
(𝑠 − 𝜏

2
(𝑠)) − 𝑞 (𝑠 − 𝜏

2
(𝑠))]

+ 𝑞
∗
(𝑠) 𝐶

2
(𝑠)

× [

𝑝
2

(𝑠) 𝑞
𝑚−1

(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
−

𝑝
2

∗
(𝑠) 𝑞

𝑚−1

∗
(𝑠)

𝐴𝑝
2

∗
(𝑠) + 𝐾

2
]











𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏
2
(𝑡)

{[𝑟
2
(𝑠) + 𝐵

2
(𝑠) 𝑞 (𝑠 − 𝜏

2
(𝑠))

+

𝐶
2
(𝑠) 𝑝

2

(𝑠) 𝑞
𝑚−1

(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2
]

×




𝑞 (𝑠) − 𝑞

∗
(𝑠)





+ 𝑞
∗
(𝑠) 𝐵

2
(𝑠)




𝑞
∗
(𝑠 − 𝜏

2
(𝑠)) − 𝑞 (𝑠 − 𝜏

2
(𝑠))





+

𝐶
2
(𝑠) 𝑝

2

(𝑠) 𝑞
∗
(𝑠)

𝐴𝑝
2
(𝑠) + 𝐾

2






𝑞
𝑚−1

(𝑠) − 𝑞
𝑚−1

∗
(𝑠)







+

𝐾
2

𝐶
2
(𝑠) 𝑞

𝑚

∗
(𝑠) (𝑝

∗
(𝑠) + 𝑝 (𝑠))

(𝐴𝑝
2

∗
(𝑠) + 𝐾

2
) (𝐴𝑝

2
(𝑠) + 𝐾

2
)

×




𝑝 (𝑠) − 𝑝

∗
(𝑠)




} 𝑑𝑠.

(73)

Thus, for 𝑡 > 𝑡
6
,

𝐷
+

𝑉
1
(𝑡)

≤ −𝛼𝐵
1
(𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ 𝛼𝐵
1
(𝑡)

× ∫

𝑡

𝑡−𝜏
1
(𝑡)

{[𝑟
1
(𝑠) + 𝐵

1
(𝑠)𝑀

1
+

𝐶
1
(𝑠)𝑀

1
𝑀

𝑚

2

𝐴𝑚
2

1
+ 𝐾

2
]

×




𝑝 (𝑠) − 𝑝

∗
(𝑠)





+ 𝑀
1
𝐵
1
(𝑠)




𝑝
∗
(𝑠 − 𝜏

1
(𝑠)) − 𝑝 (𝑠 − 𝜏

1
(𝑠))





+

𝐶
1
(𝑠)𝑀

2

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑠) − 𝑞
𝑚

∗
(𝑠)





+

𝐶
1
(𝑠)𝑀

1
𝑀

𝑚

2
(𝐴𝑀

2

1
+ 𝐾

2

)

(𝐴𝑚
2

1
+ 𝐾

2
)
2

×




𝑝 (𝑠) − 𝑝

∗
(𝑠)




} 𝑑𝑠

+

𝛼𝐶
1
(𝑡)𝑀

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





+

𝛼𝐴𝐶
1
(𝑡)𝑀

2

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)




−𝐵

2
(𝑡)




𝑞 (𝑡) − 𝑞

∗
(𝑡)





+ 𝐵
2
(𝑡)

× ∫

𝑡

𝑡−𝜏
2
(𝑡)

{[𝑟
2
(𝑠) + 𝐵

2
(𝑠)𝑀

2
+

𝐶
2
(𝑠)𝑀

2

1
𝑀

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
]

×




𝑞 (𝑠) − 𝑞

∗
(𝑠)





+ 𝑀
2
𝐵
2
(𝑠)




𝑞
∗
(𝑠 − 𝜏

2
(𝑠)) − 𝑞 (𝑠 − 𝜏

2
(𝑠))





+

𝐶
2
(𝑠)𝑀

2

1
𝑀

2

𝐴𝑚
2

1
+ 𝐾

2






𝑞
𝑚−1

(𝑠) − 𝑞
𝑚−1

∗
(𝑠)







+

2𝐾
2

𝐶
2
(𝑠)𝑀

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑠) − 𝑝

∗
(𝑠)




} 𝑑𝑠

+

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚−1

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





= −𝛼𝐵
1
(𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ 𝛼𝐵
1
(𝑡) ∫

𝑡

𝑡−𝜏
1
(𝑡)

𝑊
1
(𝑠) 𝑑𝑠 +

𝛼𝐶
1
(𝑡)𝑀

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





+

𝛼𝐴𝐶
1
(𝑡)𝑀

2

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)




−𝐵

2
(𝑡)




𝑞 (𝑡) − 𝑞

∗
(𝑡)





+ 𝐵
2
(𝑡) ∫

𝑡

𝑡−𝜏
2
(𝑡)

𝑊
2
(𝑠) 𝑑𝑠

+

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚−1

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)




,

(74)

where

𝑊
1
(𝑠)

= [𝑟
1
(𝑠) + 𝐵

1
(𝑠)𝑀

1
+

𝐶
1
(𝑠)𝑀

1
𝑀

𝑚

2

𝐴𝑚
2

1
+ 𝐾

2
]




𝑝 (𝑠) − 𝑝

∗
(𝑠)





+ 𝑀
1
𝐵
1
(𝑠)




𝑝
∗
(𝑠 − 𝜏

1
(𝑠)) − 𝑝 (𝑠 − 𝜏

1
(𝑠))





+

𝐶
1
(𝑠)𝑀

2

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑠) − 𝑞
𝑚

∗
(𝑠)





+

𝐶
1
(𝑠)𝑀

1
𝑀

𝑚

2
(𝐴𝑀

2

1
+ 𝐾

2

)

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑠) − 𝑝

∗
(𝑠)




,

𝑊
2
(𝑠)

= [𝑟
2
(𝑠) + 𝐵

2
(𝑠)𝑀

2
+

𝐶
2
(𝑠)𝑀

2

1
𝑀

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
]
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×




𝑞 (𝑠) − 𝑞

∗
(𝑠)





+ 𝑀
2
𝐵
2
(𝑠)




𝑞
∗
(𝑠 − 𝜏

2
(𝑠)) − 𝑞 (𝑠 − 𝜏

2
(𝑠))





+

𝐶
2
(𝑠)𝑀

2

1
𝑀

2

𝐴𝑚
2

1
+ 𝐾

2






𝑞
𝑚−1

(𝑠) − 𝑞
𝑚−1

∗
(𝑠)







+

2𝐾
2

𝐶
2
(𝑠)𝑀

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑠) − 𝑝

∗
(𝑠)




.

(75)

Define further

𝑉
2
(𝑡) = 𝛼∫

𝜇
−1

1
(𝑡)

𝑡

∫

𝑡

𝜏
1
(𝜉)

𝐵
1
(𝜉)𝑊

1
(𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
3
(𝑡) = ∫

𝜇
−1

2
(𝑡)

𝑡

∫

𝑡

𝜏
2
(𝜉)

𝐵
2
(𝜉)𝑊

2
(𝑠) 𝑑𝑠 𝑑𝜉.

(76)

For 𝑡 > 𝑡
6
, yielding that

𝐷
+

𝑉
1
(𝑡) + �̇�

2
(𝑡) + �̇�

3
(𝑡)

≤ −𝛼𝐵
1
(𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)




+

𝛼𝐶
1
(𝑡)𝑀

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





+

𝛼𝐴𝐶
1
(𝑡)𝑀

2

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





+

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚−1

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





− 𝐵
2
(𝑡)




𝑞 (𝑡) − 𝑞

∗
(𝑡)




+ 𝛼𝑊

1
(𝑡) ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉

+𝑊
2
(𝑡) ∫

𝜇
−1

2
(𝑡)

𝑡

𝐵
2
(𝜉) 𝑑𝜉.

(77)

Further define

𝑉
4
(𝑡) = 𝛼𝑀

1
∫

𝑡

𝑡−𝜏
1
(𝑡)

∫

𝜇
−1

1
(𝜇
−1

1
(𝜂))

𝜇
−1

1
(𝜂)

𝐵
1
(𝜉) 𝐵

1
(𝜇

−1

1
(𝜂))

1 − ̇𝜏
1
(𝜇

−1

1
(𝜂))

×




𝑝 (𝜂) − 𝑝

∗
(𝜂)




𝑑𝜉 𝑑𝜂,

𝑉
5
(𝑡) = 𝑀

2
∫

𝑡

𝑡−𝜏
2
(𝑡)

∫

𝜇
−1

2
(𝜇
−1

2
(𝜂))

𝜇
−1

2
(𝜂)

𝐵
2
(𝜉) 𝐵

2
(𝜇

−1

2
(𝜂))

1 − ̇𝜏
2
(𝜇

−1

2
(𝜂))

×




𝑞 (𝜂) − 𝑞

∗
(𝜂)




𝑑𝜉 𝑑𝜂.

(78)

Then we choose the Lyapunov functional as follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) ; (79)

then
𝐷

+

𝑉 (𝑡)

≤ −𝛼𝐵
1
(𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)




+

𝛼𝐶
1
(𝑡)𝑀

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





− 𝐵
2
(𝑡)




𝑞 (𝑡) − 𝑞

∗
(𝑡)





+

𝛼𝐴𝐶
1
(𝑡)𝑀

2

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





+

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚−1

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉 ⋅ 𝛼 [𝑟

1
(𝑡) + 𝐵

1
(𝑡)𝑀

1
+

𝐶
1
(𝑡)𝑀

1
𝑀

𝑚

2

𝐴𝑚
2

1
+ 𝐾

2
]

×




𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉 ⋅

𝛼𝐶
1
(𝑡)𝑀

1
𝑀

𝑚

2
(𝐴𝑀

2

1
+ 𝐾

2

)

(𝐴𝑚
2

1
+ 𝐾

2
)
2

×




𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ ∫

𝜇
−1

1
(𝑡)

𝑡

𝐵
1
(𝜉) 𝑑𝜉 ⋅

𝛼𝐶
1
(𝑡)𝑀

2

1

𝐴𝑚
2

1
+ 𝐾

2





𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)





+ ∫

𝜇
−1

2
(𝑡)

𝑡

𝐵
2
(𝜉) 𝑑𝜉 ⋅ [𝑟

2
(𝑡) + 𝐵

2
(𝑡)𝑀

2
+

𝐶
2
(𝑡)𝑀

2

1
𝑀

𝑚−1

2

𝐴𝑚
2

1
+ 𝐾

2
]

×




𝑞 (𝑡) − 𝑞

∗
(𝑡)





+ ∫

𝜇
−1

2
(𝑡)

𝑡

𝐵
2
(𝜉) 𝑑𝜉 ⋅

𝐶
2
(𝑡)𝑀

2

1
𝑀

2

𝐴𝑚
2

1
+ 𝐾

2






𝑞
𝑚−1

(𝑡) − 𝑞
𝑚−1

∗
(𝑡)







+ ∫

𝜇
−1

2
(𝑡)

𝑡

𝐵
2
(𝜉) 𝑑𝜉 ⋅

2𝐾
2

𝐶
2
(𝑡)𝑀

1
𝑀

𝑚

2

(𝐴𝑚
2

1
+ 𝐾

2
)
2





𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ ∫

𝜇
−1

1
(𝜇
−1

1
(𝑡))

𝜇
−1

1
(𝑡)

𝐵
1
(𝜉) 𝑑𝜉 ⋅

𝛼𝑀
1
𝐵
1
(𝜇

−1

1
(𝑡))

1 − ̇𝜏
1
(𝜇

−1

1
(𝑡))





𝑝 (𝑡) − 𝑝

∗
(𝑡)





+ ∫

𝜇
−1

2
(𝜇
−1

2
(𝑡))

𝜇
−1

2
(𝑡)

𝐵
2
(𝜉) 𝑑𝜉 ⋅

𝑀
2
𝐵
2
(𝜇

−1

2
(𝑡))

1 − ̇𝜏
2
(𝜇

−1

2
(𝑡))





𝑞 (𝑡) − 𝑞

∗
(𝑡)




.

(80)

Since 0 < 𝑚 < 1, then




𝑞
𝑚

(𝑡) − 𝑞
𝑚

∗
(𝑡)




≤ 𝑚𝑚

𝑚−1

2





𝑞 (𝑡) − 𝑞

∗
(𝑡)




,






𝑞
𝑚−1

(𝑡) − 𝑞
𝑚−1

∗
(𝑡)






≤ (1 − 𝑚)𝑚

𝑚−2

2





𝑞 (𝑡) − 𝑞

∗
(𝑡)




;

(81)

hence, we have

𝐷
+

𝑉 (𝑡) ≤ −Φ (𝑡)




𝑝 (𝑡) − 𝑝

∗
(𝑡)




− Ψ (𝑡)





𝑞 (𝑡) − 𝑞

∗
(𝑡)




. (82)

It follows fromΦ𝐿

> 0 and Ψ𝐿

> 0 that

𝐷
+

𝑉 (𝑡) ≤ −Φ
𝐿 



𝑝 (𝑡) − 𝑝

∗
(𝑡)




− Ψ

𝐿 



𝑞 (𝑡) − 𝑞

∗
(𝑡)




, (83)

for 𝑡 > 𝑡
6
. Integrating both sides of the above inequality on

[𝑡
6
, 𝑡], we have

𝑉 (𝑡) + Φ
𝐿 



𝑝 (𝑡) − 𝑝

∗
(𝑡)




+ Ψ

𝐿 



𝑞 (𝑡) − 𝑞

∗
(𝑡)





≤ 𝑉 (𝑡
6
) < +∞.

(84)
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Since |𝑝(𝑡) − 𝑝
∗
(𝑡)| and |𝑞(𝑡) − 𝑞

∗
(𝑡)| are uniformly

continuous on [𝑡
6
, +∞), by Barbalat’s Lemma [12], we obtain

that

lim
𝑡→+∞





𝑝 (𝑡) − 𝑝

∗
(𝑡)




= 0, lim

𝑡→+∞





𝑞 (𝑡) − 𝑞

∗
(𝑡)




= 0, (85)

that is, lim
𝑡→+∞

(|𝑝(𝑡)−𝑝
∗
(𝑡)|+ |𝑞(𝑡)−𝑞

∗
(𝑡)|) = 0.Therefore,

system (6) is globally attractive. Together with

lim
𝑡→+∞





𝑥 (𝑡) − 𝑥

∗
(𝑡)





= lim
𝑡→+∞

∏

0<𝑡
𝑘
<𝑡

(1 + 𝑑
𝑘
)




𝑝 (𝑡) − 𝑝

∗
(𝑡)




= 0,

lim
𝑡→+∞





𝑦 (𝑡) − 𝑦

∗
(𝑡)





= lim
𝑡→+∞

∏

0<𝑡
𝑘
<𝑡

(1 + ℎ
𝑘
)




𝑞 (𝑡) − 𝑞

∗
(𝑡)




= 0,

(86)

that is, lim
𝑡→+∞

|𝑥(𝑡) − 𝑥
∗
(𝑡)| + |𝑦(𝑡) − 𝑦

∗
(𝑡)| = 0, system (4)

is globally attractive.

Corollary 13. Let 𝜏(𝑡) ≡ 𝜏, where 𝜏 is a nonnegative
constant. If system (6) satisfies 𝑟𝐿

1
− 𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

> 0,
lim inf

𝑡→+∞
Φ(𝑡) > 0, and lim inf

𝑡→+∞
Ψ(𝑡) > 0, then system

(6) has a unique positive almost 𝜔-periodic solution which is
globally attractive.

4. Numerical Simulation

Example 14. Assume 𝜏(𝑡) ≡ 𝜏. Considering the following
model as application:

�̇� (𝑡) = 𝑝 (𝑡) [8 + 0.1 sin 𝑡 − 8𝑝 (𝑡 − 0.05)]

−

(4 + 0.3 sin 𝑡) 𝑝2 (𝑡)
0.5𝑝

2
(𝑡) + 1

𝑞
0.5

(𝑡) ,

̇𝑞 (𝑡) = 𝑞 (𝑡) [− (2.5 − 0.5 sin 𝑡) − 2𝑞 (𝑡 − 0.1)]

+

(2.5 + 0.5 sin 𝑡) 𝑝2 (𝑡)
0.5𝑝

2
(𝑡) + 1

𝑞
0.5

(𝑡) ,

(87)

corresponding to model (87), we take

𝑟
1
(𝑡) = 8 + 0.1 sin 𝑡, 𝐵

1
(𝑡) = 8,

𝐶
1
(𝑡) = 4 + 0.3 sin 𝑡,

𝑟
2
(𝑡) = 2.5 − 0.5 sin 𝑡, 𝐵

2
(𝑡) = 2,

𝐶
2
(𝑡) = 2.5 + 0.5 sin 𝑡,

𝐴 = 0.5, 𝑚 = 0.5, 𝐾 = 1,

𝜏
1
(𝑡) = 0.05, 𝜏

2
(𝑡) = 0.1.

(88)

By direct computation, we have 𝐶
2
− 𝐴(𝑟

2
+ Δ

𝑈

2
) = 0.25 > 0,

which satisfies the conditions of Theorem 5 and Corollary 6.
We can see that system (87) has a positive periodic solution
(see Figures 1 and 2).

Example 15. Assume 𝜏(𝑡) ≡ 𝜏. Considering the following
model as application

�̇� (𝑡) = 𝑝 (𝑡) [8 + 0.1 sin 𝑡 − 8𝑝 (𝑡 − 0.04)]

−

(3 + 0.3 sin 𝑡) 𝑝2 (𝑡)
0.5𝑝

2
(𝑡) + 1

𝑞
0.5

(𝑡) ,

̇𝑞 (𝑡) = 𝑞 (𝑡) [− (5 − 0.5 sin 𝑡) − 3.5𝑞 (𝑡 − 0.2)]

+

(1.5 + 0.5 sin 𝑡) 𝑝2 (𝑡)
0.5𝑝

2
(𝑡) + 1

𝑞
0.5

(𝑡) ,

(89)

corresponding to model (89), we take

𝑟
1
(𝑡) = 8 + 0.1 sin 𝑡, 𝐵

1
(𝑡) = 8,

𝐶
1
(𝑡) = 3 + 0.3 sin 𝑡,

𝑟
2
(𝑡) = 5 − 0.5 sin 𝑡, 𝐵

2
(𝑡) = 3.5,

𝐶
2
(𝑡) = 1.5 + 0.5 sin 𝑡,

𝐴 = 0.5, 𝑚 = 0.5, 𝐾 = 1,

𝜏
1
(𝑡) = 0.04, 𝜏

2
(𝑡) = 0.2.

(90)

By direct computation, we have 𝑟𝐿
1
− 𝐶

𝑈

1
𝑀

1
𝑀

𝑚

2
/𝐾

2

≈

1.2237 > 0, lim inf
𝑡→+∞

Φ(𝑡) > 0, and lim inf
𝑡→+∞

Ψ(𝑡) > 0.
We can see that system (89) is permanent and has a unique
positive 2𝜋-periodic solution, which is globally attractive (see
Figures 3 and 4). It is easy to verify the accuracy ofTheorems
8, 9, and 12 and Corollaries 10 and 13.

5. Conclusion

In the study of population dynamics, we focus on two aspects:
(1) the time-varying evolution of the population and (2) how
to implement manual intervention to protect, develop, and
utilize the population. Precisely, these two issues are reflected
in our model. Regarding the first aspect, we take into account
the impact of limited resources on population size; that is,
its density has a restriction on the growth of the population
size. Hence, we not only use the interspecific growth terms
𝑏
1
(𝑡)𝑥(𝑡−𝜏

1
(𝑡)) and 𝑏

2
(𝑡)𝑥(𝑡−𝜏

2
(𝑡)) to reflect themodel, where

𝜏
1
(𝑡) and 𝜏

2
(𝑡) are delays, but also consider the interference

constant 𝑚 and Holling III type functional response. Taking
into account the second aspect, we propose a regular pulse
harvest in the model.The corresponding ecological system of
the model we considered is more complex and has practical
significance.
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Figure 1: The integral curves of prey-time and predator-time.
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Figure 2: The orbits of prey-predator and time-prey-predator.

In this paper, we analyze the existence and global attrac-
tivity of positive periodic solutions of a delayed impul-
sive Lotka-Volterra model with Holing III type functional
response.We propose two delays and impulses to describe the
model. From Theorem 5, we can conclude that the positive
periodic solutions of system (4) are delay dependent. This
is different from these results that the positive periodic
solutions are delay independent, and our conclusion is more

general. Furthermore, we have shown the permanence and
global attractivity of system (4) under certain conditions.
We have found that system (4) has a unique and globally
attractive periodic solution, but how can we prove it? We
leave it as our work in the future. In addition to delayed
and impulsive biological systems, we hope that our analysis
can provide valuable design insights and supports to future
biological works.
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Figure 3: The integral curves of prey-time and predator-time.
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Figure 4: The orbits of prey-predator and time-prey-predator.
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It is aware that big data has gathered tremendous attentions from academic research institutes, governments, and enterprises in
all aspects of information sciences. With the development of diversity of marine data acquisition techniques, marine data grow
exponentially in last decade, which forms marine big data. As an innovation, marine big data is a double-edged sword. On the
one hand, there are many potential and highly useful values hidden in the huge volume of marine data, which is widely used
in marine-related fields, such as tsunami and red-tide warning, prevention, and forecasting, disaster inversion, and visualization
modeling after disasters. There is no doubt that the future competitions in marine sciences and technologies will surely converge
into the marine data explorations. On the other hand, marine big data also brings about many new challenges in data management,
such as the difficulties in data capture, storage, analysis, and applications, as well as data quality control and data security. To
highlight theoretical methodologies and practical applications of marine big data, this paper illustrates a broad view about marine
big data and its management, makes a survey on key methods and models, introduces an engineering instance that demonstrates
the management architecture, and discusses the existing challenges.

1. Introduction

Recently, the data volume all over the world is growing at an
overwhelming speed, which is acquired by various devices
with regard to Internet ofThings and Social Networks. In this
context, big data emerges and has been investigated exten-
sively so far. In terms of marine field, countries around the
world have launched several observing projects, for example,
Argo [1], NEPTUNE-Canada [2], GOOS [3], OOI [4], IOOS
[5], and so forth, and numerous marine observation satellites
[6, 7]. Acquiringmarine data by various observing techniques
leads to a sharp increase in data volume. For example, Argo
[1] has set up four data centers and deployed up to 10231
buoys all over the world, for real-time acquiring marine data
like temperature, salinity, acidity, density, and carbon dioxide.
Even one data center alone has to process 21954 profile data
with 657 active buoys over the whole of last year [8, 9].
The different data collection devices result in various data as
well as their format. We denote the diverse data provisions.
A marine observation satellite emitted by NASA, named as
Aquarius [6], records all the element of ocean circulation,

temperature, and ingredient and sea surface height every
7 days. Statistically, the data volume collected by Aquarius
within every 2 months amounts to that collected by survey
ships and buoys in 125 years [6]. By the end of year 2012,
the annual data volume had been up to 30 PB (1 PB =
1024 ∗ 1024GB) maintained by NOAA and over 3.5 billion
observational files would be gathered together from satellites,
ships, aircrafts, buoys, and other sensors each day [7]. As all-
round marine observation systems and multiple observing
techniques are widely put into service, data volume sharply
increases, data type is greatly diversified, and data value is
highly delivered, which formsmarine big data.

Marine big data contains great values and embodies
giant academic appeal, which can be transformed into a
rich set of information for people to learn, exploit, and
maintain the marine. For example, after analyzing the Argo
data, it is found that the earth is seeking an intensification
of global hydrological cycle [10]. Communities and species
distribution can be determined by analysis of acoustic remote
sensing data, which works as powerful scientific supporting
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evidence to maintain the marine ecological balance [11]. In
addition, researches on forecasting and warning of under-
sea earthquake and tsunami can be successfully preceding,
by analyzing observation data concerning seismic activity,
faulting activity and midoceanic ridges acquired by Neptune
project [12, 13]. In summary, marine big data supports
forecasting and warning potential problems in the field of
ecology, climate, and disasters and helps decision making.

In order to maximally exploit the value in marine data,
it is of great realistic and theoretical significance to study on
the management of marine big data concerning data storage,
data analysis, quality control, and data security.

At present, almost all the existing researches concentrate
on solving general issues about big data management. As a
kind of typical big data, marine big data features massiveness,
diverse data provisions, high-dimension besides temporal-
ity, and spatiality, which brings exceptional challenges and
problems. In terms of data storage, there are problems like
weak scalability in storage system and dissatisfaction on
timeliness. In terms of data analysis, there are still problems
like slow processing speed and failure in real-time response.
Furthermore, the data available and data security are two
features for themarine big datamanagement. In terms of data
available, there are some emerging problems like difference
of data quality, diversity of data error, and unfixed schema
of quality inspection. Additionally, as data security involves
in all the process of marine big data management, security in
data storage, data access, data computation, data sharing, and
data supervision must be considered all over marine big data
management. If the above problems cannot bewell solved, the
value of marine big data would not be fully exploited.

To our best of knowledge, this paper is the first survey on
marine big data management. Our contribution is to study
on marine big data management architecture, summarize
the related methods and models, introduce a practical appli-
cation to demonstrate the architecture of marine big data
management, discuss the facing challenges, and ultimately
prospect the research directions of marine big data manage-
ment.

Organization of the rest paper is arranged as follows.
Section 2 covers the source and informal definition of marine
big data and provides an overview of the data characteristics.
Relatedmethods andmodels inmarine big datamanagement
are summarized in Section 3. The project about marine
big data management is presented in Section 4. Section 5
describes the facing challenges of marine big data manage-
ment. Finally, we draw a conclusion.

2. Marine Big Data Management Architecture

2.1. Marine Big Data. There has been no consensus concern-
ing the definition of marine big data. Given 4V (volume,
variety, velocity, and value) characters of big data [14], marine
big data is informally described as large amount of data
which is collected by satellite, aerial remote sensing, stations,
ships, and buoys and serving in the marine-related fields.
According to corresponding profiles [15–17], we summarize
the significant characteristics of marine big data as follows.

(1) Diverse Data Provisions.Marine big data is acquired from
widespread sources, such as satellites, aerial remote sensing,
stations, ships, buoys, and undersea sensing. Different data
sources take diverse data acquisition technologies to capture
marine data; however, varieties in data acquisition technology
specification, data format, arguments, and observation region
make marine big data reveal its characteristic of data type
diversity. Data with different diverse data provisions, as well
as the various data types, is a significant characteristic of
marine big data.

(2) Temporality and Spatiality. Marine big data features
strong timeliness and spatial correlation. Only those marine
data who contain specific spatial and temporal information
will show significant values. The data storage and the data
analysis are based on these two attributes. Without these two
features, the marine data will be useless.

(3) High Dimension. The marine science involves several
disciplines such as physical oceanography, chemical ocean-
ography, biological oceanography, marine environment,
and marine economy. Besides temporality and spatiality,
every marine data still contains multiple attributes like water
temperature, salinity, acidity, density, and velocity according
to the various demands. As a result, it is known as high
dimension data.

(4) Huge Volume. Since marine data grows at an over-
whelming speed, due to its high dimension and real-time (or
periodically) data acquisition by existing marine observation
projects all over the world, all of these factors form the huge
volume of marine big data.

(5) Data Availability. Marine big data also needs the
techniques to keep the data’s reliability. Once some illegal
data injects in the system, we need some techniques to find
out using data sampling technique, data quality inspection
technique, and automatic restoration technique.

(6) Data Security. Marine big data involves privileged, con-
fidential and strategic data, like long-cycle meteorology and
hydrology data helping disaster evaluation and forecasting,
marine fisheries and oil-gas distribution data helping marine
resource utilization, large-scale reef data, and off-coast data
helping military decision making.

2.2. Marine Big Data Management Architecture. Marine big
data comes from various data provisions, and its application
requirement and data type differ in each other. By analysis
of marine big data, the architecture of marine big data
management can be illustrated: data provision, data prepro-
cessing, data storage, data analysis, and data application as
well as quality control and data security throughout thewhole
process, specific as Figure 1.

Themanagement architecture of marine big data involves
several parts. Marine big data derives from various sources
such as satellite, aerial remote sensing, stations, ships, buoys,
and undersea sensing. Due to extra complex data structure
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Figure 1: Marine big data management architecture.

and data type characteristics of marine big data, it is essential
to perform preprocessing operations, such as data extraction,
data transformation, and data integration. At data storage
stage, aspects like storage platform, data classification, index
building, query, and data migration should be properly taken
into account. At data analysis stage, techniques like machine
learning, data mining, and statistics are introduced to pro-
vide the reliable theoretical basis on applications, including
decision support, disaster prevention andmitigation, disaster
inversion and visualization modeling, tsunami warning, and
red-tide forecasting. Data quality and data security are
perceived as the assurance for the whole architecture. Data
quality involves quality dimension, sampling model, quality
inspection, and data availability and automatic restoration,
while data security involves storage security, access security,
computation security, sharing security, and supervision secu-
rity.

3. Methods and Models in Marine Big
Data Management

Nowadays, there are a great many of researches on big
data management, and a few general technologies have been
launched. This section discusses the methods and technolo-
gies, with regard to data storage, data analysis, data quality
control, and data security in marine big data management.

3.1. Data Storage and Analysis. With the advent and develop-
ment of cloud computing, new processing frameworks, com-
puting models, and analytical methods emerge as required,
which provide technical supports for storage and analysis in
big data management. From the view of data storage and
data analysis, this section analyzes these key technologies,
which are applicable to marine big data with significant
characteristics.

3.1.1. Data Storage. Cloud storage is widely applied in big
data. Currently there are several cloud storage platforms,
includingGoogle Store [18], Amazon S3 [19],MicrosoftAzure
[20], and IBM Blue Cloud [21, 22]. To make cloud storage
play better applicability in sensitive and spatial marine big
data, operations like partitioning marine big data by security
classification and building suitable index structure should
be carried out to raise query efficiency. With the continual
accumulation of observing data in data storage system,
data should be dynamically migrated, in consideration of
characteristics of marine big data. All the above contributes
to maximum use of storage system.

Data partition helps to increase execution efficiency of
index [23]. In terms of data security, current researches fasten
on taking data sensitivity calculation [17], physical isolation
[24], and user access restriction [25, 26], to partition data
to the corresponding node. Besides, there are some partition
methods based on statistical theory, such as clustering-based
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data partition [27], sampling-based data partition [28, 29],
and adaptive partition based on data distribution [30, 31].
These above methods aims to relieve processing pressure
of massive data, avoid data skew, and achieve stable and
dynamic data distribution. Data partitioning is a process
that a dataset is divided into several fragments according to
certain rules and there is no intersection among the various
fragments. After the data is divided into a number of data
fragments which are stored in clouds, assume that cloud
storage is large enough. When a dataset 𝐷 is uniformly
fragmented stored into the 𝑛 clouds, the information entropy
requires

𝐼 (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) = −

𝑛

∑

𝑖=1

𝑠
𝑖

𝑠
log
2

𝑠
𝑖

𝑠
, (1)

where 𝑠 is the total number of fragments of dataset 𝐷 and 𝑠
𝑖

is the number assigned to the Cloud
𝑖
fragments. When the

value of 𝑛 is greater, indicating that data is split into more
fragments, the greater its entropy.

Index is a powerful technique to improve query efficiency.
Cloud storage is a widely accepted distributed storage plat-
form on marine big data. In this case, current researches
mainly falls into several classes: hash index [32], tree structure
index [33, 34], time-led composite index [35, 36], index
dynamically adjusted with data migration [37, 38], and index
optimized with parallel processing [39].

To improve query efficiency on cloud storage, it is
essential to study on query optimization techniques, so as
to relieve computing pressure and improve transmission
speed. From the view of algorithm implementation, there
are a few improvements, such as sharing history query result
as intermediate result [40], adaptively sampling based on
data characteristics [41], and extracting representative tuples
according to relation compactness [42]. Zadeh introduced
the notion of possibility distributions, which acts as a fuzzy
restriction on the values that may be assigned to a variable.
Given a fuzzy set 𝐹 and a variable𝑋 on𝑈, then the possibility
of 𝑋 = 𝑢, denoted by 𝜋

𝑋
(𝑢), is defined to be equal to 𝜇

𝐹
(𝑢).

The possibility distribution of 𝑋 on 𝑈 with respect to 𝐹 is
denoted by

𝜋
𝑋
= {

𝜋
𝑋
(𝑢)

𝑢
| 𝑢 ∈ 𝑈, 𝜋

𝑋
(𝑢) = 𝜇

𝐹
(𝑢) ∈ [0, 1]} . (2)

Additionally, relevant studies still focus on hardware perfor-
mance improvement, adopting task scheduling [43, 44] to
realize efficient parallel processing.

Dynamic data migration on storage platform ensures
optimal utilization of storage resource. There are two kinds
of traditional data migration methods: one is based on high
and low water level method of storage space [44], and the
other is based on cache replacement migration algorithm
of data access frequency [45, 46]. With the development of
storage technology, several different storage patterns have
been created. In hierarchical storage, migration model is
introduced to support automatic datamigration [47]. Inmul-
tistage storage, CuteMig migration method [48] is involved
to realize data migration. In hybrid cloud storage, calculation

of data sensitivity and migration function contributes to
dynamic data migration [17]. Dremel [49] successes in ana-
lyzing massive data in short time and supports data analysis
platform over the cloud.

3.1.2. Data Analysis. Considering characteristics like real-
time and diversity in data type of marine big data, data
analysis should be performed according to data type and
analysis target. Hence, adaptive algorithm and model should
be taken to ensure the request for real-time data analysis.
MapReduce is widely used in numerous big data applications
to accelerate the data analysis process. As a result, there is
no exception in marine big data application. The paragraph
below briefly introduces some representative big data analysis
models.

MapReduce is the earliest computing model that Google
proposed, which applies to batch processing [50]. MapRe-
duce can be divided into two phase: map phase and reduce
phase. Graph is an effective data structure in representing
relationships or connections between objects in the real
world. Hence, graph computing is a normal computing
pattern. Since graph computing involves continuously data
updating and numerous message passing, it might impose
lots of unnecessary serialization and deserialization overhead
using MapReduce. Pregel [51] is another computing model
proposed by Google after MapReduce, which is mainly
devised to serve graph computing. Its core idea derives from
distinguished BSP [52] computing model. Additionally, there
exists a PageRank algorithm to reflect the computing quality.
The formula is given as follows:

PR (𝐴) = (1 − 𝑑) + 𝑑(
PR (𝑇

1
)

𝐶 (𝑇
1
)

+ ⋅ ⋅ ⋅ +
PR (𝑇

𝑛
)

𝐶 (𝑇
𝑛
)
) , (3)

where 𝑇
1
, . . . , 𝑇

𝑛
= Pages that point to page 𝐴 (citations) and

𝐶(𝑇) = number of links going out of𝑇. Dremel [49] successes
in analyzing massive data in short time and supports data
analysis platform over the cloud, that is, BigQuery [53]. As
to its data model, it is based on strongly typed nested records.
Its abstract syntax is given by

𝜏 = dom | ⟨𝐴
1
: 𝜏 [∗ |?] , . . . , 𝐴𝑛 : 𝜏 [∗ |?]⟩ , (4)

where 𝜏 is an atomic type or a record type. Field 𝑖 in a
record has a name 𝐴

𝑖
and an optional multiplicity label.

Repeated fields (∗) may occur multiple times in a record.
Optional fields (?)may be missing from the record. Analysis
tool, PowerDrill [54], adopts column storage and compress
technique to load as much as data into memory. Both
PowerDrill and Dremel are big data analysis tools of Google,
but they fit into different application scenarios, respectively,
and differ in implementation techniques. Dremel is mostly
used in analysis of multidatasets, and it can handle up to
PB data in several seconds. PoweDrill is mostly applied
in analysis of core subset of massive data, and it disposes
less data types than Dremel. Since PowerDrill resides data
in the memory buffer as much as possible, its processing
speed is higher. Microsoft proposed a data analysis model
named Dryad [55], which supports applications of Directed
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Acycline Graph (DAG), the same as Cascading on Hadoop
[56]. The singleton graph is generated from a vertex V as
𝐺 = ⟨(V), 0, {V}, {V}⟩. A graph can be cloned into a new
graph containing 𝑘 copies of its structure using the ∧ operator
where 𝐶 = 𝐺

∧
𝑘 is defined as

𝐶 = ⟨𝑉
1

𝐺
⊕ ⋅ ⋅ ⋅ ⊕ 𝑉
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1
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𝐾

𝐺
⟩ ,

(5)

where 𝐺
𝑛

= ⟨𝑉
𝑛

𝐺
, 𝐸
𝑛

𝐺
, 𝐼
𝑛

𝐺
, 𝑂
𝑛

𝐺
⟩ is a “clone” of 𝐺 containing

copies of all of 𝐺’s vertices and edges, ⊕ denotes sequence
concatenation, and each cloned vertex inherits the type and
parameters of its corresponding vertex in 𝐺.

3.2. Data Availability. Facing the quality problems of the
uncertainty and inconsistency of marine big data, a scheme
of data quality control throughout data management is
highly on-demand. So far, academic study on data quality
control involves several aspects, including selection of data
quality dimensions, design of quality inspection scheme,
regulation of quality control standard, and theories of the
data usability and data autorestoration.

Quality Dimensions. In essence, data quality is considered
as the applicability of data in applications [57] and can
be described from five dimensions, including consistency,
integrity, timeliness, usability, and credibility [58]. As for
spatial data, existing researches put forward five important
aspects of data quality evaluation, including spatial accuracy,
thematic accuracy, logical consistency, completeness, and
lineage [59]. In terms of various quality evaluation methods,
spatial data quality is measured as such in ISO/TC211:

𝑅 =

𝑘

∑

𝑖=1

(𝐶
𝑖
⋅ 𝑊
𝑖
) , (6)

where 𝑅 is the result of data quality, 𝑅 ∈ (0.0, 1.0); 𝐶
𝑖
is the

accuracy of the 𝑖th object, 𝐶
𝑖
∈ (0.0, 1.0); 𝑊

𝑖
is the weight of

the 𝑖th object,𝑊
𝑖
∈ (0.0, 1.0); 𝑘 is the amount of all kinds of

ground objects [60].

Sampling Schemes for Spatial Data. Sampling method is
an effective way for processing of massive information, by
choosing a small amount of sample to represent the popu-
lation. The sampling method is efficient with low cost. When
spatial samples are not independent, the Bootstrap algorithm
introduces two-time sampling technique [61], using the Bag
of Little Bootstraps (BLB) functions as follows:

𝑠
−1

𝑎

∑

𝑗=1

𝜉 (𝑄
𝑛
(𝑃
𝑗

𝑛,𝑏
)) , (7)

which has greatly improved the efficiency of data quality eval-
uation under parallel or distributed computing circumstance.
In spatial data sampling, the “Sandwich” sampling model
solves the problemof spatial heterogeneity, based on stratified
sampling [62, 63] by considering autocorrelation of the spatial
objects.

Quality Inspection Schemes for Spatial Data. During the past
several years, efforts have been made on quality inspection of
marine big data. These studies have put forward an available
quality inspection scheme for marine big data, especially for
one or a few dimensions. Marine dataset is usually composed
of multidimension, multiscale, and multisource. Thus, it is
required to propose a quality inspection scheme to inspect
the quality of marine big data as a complete, indivisible set
[64].

The purpose of quality inspection is to judge whether
the data reach the quality levels required by data analysis
or data utilization [65]. The principal goal of designing
an optimal sampling scheme is to obtain high accuracy of
product inspection and to reduce the inspection cost [66].
Current studies have proposed many sampling schemes of
quality inspection for industrial product based on statistical
theory [67–72]; based on hypergeometric distribution, the
accepting probability is calculated as follows:

𝐿 (𝑝) =

𝑐

∑

𝑑=0

ℎ (𝑑, 𝑛, 𝐷,𝑁) , (8)

where 𝑑 is the actual number of unaccepted data products
in the sample, 𝑛 is the sample size, 𝐷 is the total number of
unaccepted data products in the lot, and𝑁 is the lot size.

Thus, the inspection model of marine big data is also
brought up:

min 𝜀
𝑛

s.t. 𝜀 = 𝜀
𝜀
=

𝑐

∑
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(
𝑁−𝐷

𝑛−𝑑
) (
𝐷

𝑑
)

(
𝑁

𝑛
)

− (1 − 𝛼) ,

(0 < 𝑐 < 𝑛 − 1, 𝜀 > 0) ,

(9)

where 𝜀 is the residual of the accepting probability and 𝛼

represents the quality demand of data user.

Data Usability. The usability of dataset includes data
consistency, data integrity, data accuracy, timeliness, and
entity identity [73]. Studies on data consistency are mainly
based on description of semantic rules [74] and statistics
[75].Themost classic resolution dealing with data integrity is
an incomplete data expression system based on conditional
table [76]. There are few researches on data accuracy.
The most common one is a description method of data
accuracy based on possible world semantics. In terms of
timeliness, researches mainly fasten on autodetection and
autorestoration [77]. Studies on entity identity are based on
the detection of entity identity error, including semantic
rules and similarity measurement [78].

DataAutodetection andAutorestoration. Studies on data error
detection include two aspects, data consistency and entity
identity. As for data consistency, studies mainly focus on
designing on autodetection algorithm [79] and distributed
database detecting method [80]. The purpose of entity iden-
tity detection is to maximize the identification accuracy [81]
and the recognition efficiency [82]. In terms of studies on
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data restoration, traditional functional dependency is used
to solve the problem of data inconsistency [83], while data
fusion techniques are mostly used for data entity identity
issues [84].

3.3. Data Security. According to the challenges in marine
big data security, the related researches and development
techniques are summarized in the following five aspects
as secure data storage, secure data access, secure data
computation, secure data sharing, and secure data
supervision.

Secure Data Storage. Since the existing data storage security
depends on the credibility of the cloud servers, we needs to
study the ciphertext-based data storage techniques [85], to
resist the administrators of the storage servers and adversary
from the server side exposing and tampering data. Besides,
it is also necessary to research on the multiauthorities in the
access control to reduce the loss due to a single authority
compromised by the malicious adversary. In addition, the
techniques for data integrity checking [86] and data storage
proofing [87] are also essential in the ciphertext-based
storage.

Secure Data Access. Marine big data are used for different
scenarios and accessed by different users with different roles
and different security levels. Traditional access control is no
longer suitable for the ciphertext-based storage platform. It
is necessary to research the techniques of ciphertext-support
data retrieval [88], the fine-grained data access control [89],
and supporting the flexible functions such as “and,” “or,” and
“not” logical connectives data access control [90], indexing
[91], keyword searching and ranking [92], and similarity
searching [93] on the encrypted data to realize the access
security.

Secure Data Computation. Since the servers cannot be
fully trusted and computation services are often in an
outsourcing way, it requires that the input/output should
be in an encrypted form for data calculation and data
analysis, rather than that the storage ciphertext is decrypted
before computation and analysis [94]. In the marine big
data computation and analysis, it requires the techniques
involving solving the ciphertext-based large scale linear
equations [95], analyzing and mining the knowledge from
the encrypted data, processing the ciphered images [96], and
fully homomorphic encryption/decryption [97] to realize
the computation security.

Secure Data Sharing. The marine data sharing security
depends on the user’s secret key. To keep the data secure
sharing and data dissemination in the cloud environment
[98], it is inevitable to research the techniques of leakage
key tracing like white-box traceability [99, 100] and black-
box traceability [101] and access ability revocation [102].
Meanwhile, faced to marine data, it also requires efficient
encrypted data sharing and dissemination techniques [103],
marine data privacy-preserving techniques [104], and

optimized implementation techniques [105] to improve the
batch processing ability of marine big data.

Secure Data Supervision. In the data storage, computation,
sharing, and dissemination, it needs secure data supervision
techniques [106] such as removing illegal data [107], reducing
the cost of redundant data [105], checking the completeness
of the storage content [87], verifying the correctness of the
calculation results [95], andmining the sensitive information
and knowledge in the marine data usage. Furthermore, it
also requires rules from the government to coordinate the
personal privacy preserving and marine big data analyzing
[108].

4. Application in Marine Big Data

In terms of the marine big data management architecture,
we introduce a practical application of the marine big data—
a disaster inversion visualization instance that reproduces a
marine disaster happened in Chinese Yellow Sea to show our
marine big data.

The disaster results, including latitude and longitude, flow
velocity, flow direction, water depth, and height, produced
every 10 minutes, involve over 40000 inversion grids. Each
monitoring of disaster lasts 5 days, and the disaster data
amount alone is up to 4.5GB. (If we employ more precise
data, the data volume will be much huger.) Thus, we choose
it as an application since it satisfies all of the characteristics
of marine big data. Furthermore, to achieve authenticity and
quasireal-time of disaster process, massive data about the
geographic locations and continuously risingwater level need
to be loaded in the disaster visualization, which leads to
higher requirements for data transmission, data storage, data
analysis, and rendering efficiency.

In this project, we apply hybrid cloud storage architecture,
including public cloud and private cloud shown in Figure 2.
The project partitions the marine big data in terms of the
difference between spatial and temporal attributes. The data
with strong timeliness attribute and location related attribute
are stored in the private cloud. Public cloud assists to store the
rest of the marine data.

Meanwhile, data migration is the key problem in such
hybrid cloud storage architecture.Things like data sensitivity,
data access frequency, data time length, and data size should
be fully considered when performing data migration. To
improve query efficiency in the cloud, we use the query
optimization technique and improve transmission speed.
We take the migration algorithm [17] to help to lower the
management cost without sacrificing to slow down the data
access speed. The migration function is the key of migration
algorithm shown as follows:

𝑀(𝐷) =

𝑛

∑

𝑖=1

1

𝑇
𝑖

×

𝑛

∑

𝑘=1

𝑓
𝑘
×
1

𝑆
, (10)

where𝑇
𝑖
represents time-length of the 𝑖th access of themarine

dataset𝐷, 𝑓
𝑘
represents access frequency ofmarine dataset𝐷

over the period of 𝑇
𝑘
, and 𝑆 is the size of marine dataset 𝐷.
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Figure 2: Hybrid cloud storage architecture.

The system performs migration by judging the value of the
formula (10).

In this hybrid cloud storage platform, to keep the data
availability, we set the data quality inspectionmodel [68] to fit
in marine big data and improve the data usage and reliability.
The acceptance number 𝑐directly affects the inspection result.
Given a sample size 𝑛, we can obtain 𝑐 from the formula
shown as follows:

𝑐 = −
1

2
+

𝑛

log (𝑝
2
/𝑝
1
) / log (𝑞

1
/𝑞
2
) + 1

, (11)

where 𝑝
1
represents accepting probability and 𝑝

2
is rejecting

probability. And 𝑞
1
= 1 − 𝑝

1
, 𝑞
2
= 1 − 𝑝

2
.

We also use the data security technique to encrypt data in
the cloud and keep the data confidential in the private cloud
and to distribute the access right for cloud users and provide
an effective access to the cloud data.

Along with data storage, data analysis and quality control
finishing their works, the loaded disaster data would be
cached on cloud, to facilitate demonstration fluency of dis-
aster inversion process. The visualization cases of 3D terrain
representation, water level rising process,and detail disaster
situation are shown in Figures 3, 4, and 5, respectively.

In belief, the disaster inversion visualization has made
significant contributions for marine big data.

(1) Terrain Reconstruction. The project has visualized the
disaster of sea terrain in the form of 3-dimension style, which
could help to analyze the causes of the disasters based on
terrain conditions.

(2) Disaster Reproduction. The project, in a quasireal-time
way, has reproduced multiple dataset involved in disaster
process, including velocity, flow direction, and water depth,
which could further help to fleetly evacuate victims.

(3) Disaster Evaluation. The project has reconstructed the
postdisaster scene, which helps to evaluate the economic
losses and human victims of the disaster area. (The project
(Grant number 20905014-06) is finished by Digital Ocean
Institute, College of Information, Shanghai Ocean University
in May, 2014.)

5. Challenges in Marine Big Data Management

Prominent characteristics of marine big data have brought
about new issues. In this case, this section discusses practical
and theoretical challenges in the existence of marine big data
management: data storage, data analysis, quality control, and
data security.

5.1. Data Storage. Data storage underpins and sustains
the efficient application of data. Under storage platform,
rational data partition and suitable index building assist
to realize efficient data queries. It has to be noted that
there are some present situations in traditional storage
system, mainly including lack in supporting dynamic
scalability, simplified data storage method, relatively fixed
data structure, controllable data size, and aware data type.
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Figure 3: 3D terrain graph.

Figure 4: Water rising graph.

However, characteristics of marine big data, including large-
volume, sensitivity, real-time, high dimension, diversity
in data provision, and type, pose new challenges for data
storage, mainly in two aspects.

(1) Scalability Requirement for Storage Space. Due to huge-
volume and real-time characteristics of marine big data, it
poses new challenges towards hardware architecture and file
system, which requires data storage to be more scalable.
Along with real-time acquisition of observing data, data
storage should be more flexible.

(2) Diversity Requirement for Storage System and Storage
Model.Multisource characteristic of marine big data imposes
a great diversity in data type. Marine big data basically falls
into three catalogs: structured attribute data (∗.MDB, ∗.dbf,
∗
.bak, ∗.dmp, etc.), spatial data (∗.shp, ∗.adf, ∗.tif, ∗.jpg,
etc.), and unstructured data (∗.doc, ∗.xls, ∗.pdf, ∗.txt, ∗.xml,
etc.). Diversity in data type puts forward higher request
for database consistency, database usability, and partition
tolerance.

5.2. Data Analysis. The purpose of data analysis is to find
patterns and extract information from complex and vast data,
which is the key to effectively exploit the value of marine big
data. The object in traditional data analysis tends to be small
datasets, which are structured dataset and single objects.

Figure 5: Postdisaster graph.

Data analysis and data mining prefer to build models by
manual in advance according to priori knowledge and then
analyze based on the selected data model. Diversity in data
provision and heterogeneous characteristics of marine big
data has raised some new issues, such as huge data amount,
nonunified data type, and low data quality. Additionally,
traditional analysis techniques like data mining, machine
learning, and statistical analysis should be adjusted to make
it adaptive to marine big data. Marine big data brings along
with some analytical challenges, specific as follows.

(1) Effectiveness Requirement. Marine big data contains its
unique characteristics, such as huge data amount, complex
data type, and uncertain data distribution. Therefore,
adaptive algorithm and model should be selected according
to its data type and analysis target, to fleetly process marine
data.This further leads to some challenges towards hardware
and software, especially on data analysis algorithms.

(2) Efficiency Requirement.The application with marine data
requires a higher demand on real-time response. Under
such circumstances as Snow Dragon’s expedition on extreme
conditions in polar, it is essential to make a comprehensive
analysis of real-time information on weather, sea ice, seabed,
ship, and so forth. However, massive data processing and
analyzing in real-time consumes huge computing resources,
while traditional computing technologies are insufficient
to that. Basically, it performs better in cooperation with
cloud computing but proposes new challenges towards the
scalability and real-time of its algorithm.

5.3. Data Availability. Quality of marine big data is the
foundation of the development of marine Geographic
Information Science. Due to the restriction of the acquisition
and processing method, there exist a large number of
random errors in marine big data, which leads to the
unreliability of the marine data products.The existing theory
of quality management is mainly used to control the quality
of traditional industrial product, which is not quite suitable
for the quality control marine big data with characteristics
of multisource, massiveness, spatial relativity, and so forth.
Therefore, development of quality control theories based on
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characteristics of marine big data is one of the key issues in
data management. The challenges are combing conventional
quality control theory with marine big data management.

(1) Quality Inspection Plan Designing. Considering the
characteristics of marine big data, it has become a priority
issue to take the required precision into account, to design
the optimal the sampling number and the acceptance
number.

(2) Spatial Sampling Method Deducing. Due to the spatial
autocorrelation characteristic of marine big data, the method
of selectingmarine data samples is different from the classical
sampling method. The distance between data restricts the
information redundancy between the sample points. Both
considering the spatial autocorrelation of marine big data
and achieving the maximum of information under the same
inspection cost guarantee the implementation of the quality
control of marine big data.

(3) Theory of Usability and Autorestoration. In terms of the
quality inspection result, marine big data can be divided into
usable data and risk data. Due to various data acquisition
methods, most of marine big data are irreversible, which
makes it significant to study on the usability of marine data
products and data autorestoration.

5.4. Data Security. Compared to the traditional data
security, marine data’s security and privacy protection appear
significantly different and show the typical structure-based
characteristics including “one to many” structure (one
user stores the data, multiple users access), “many to one”
structure, and “many to many” structure. From the data
processing perspective, the service of marine big data can be
divided into data storage service, data access service, data
computation service, data share service, and data supervision
service. In short, the challenges in marine big data security
can be also summarized as “secure data storage, secure data
access, secure data computation, secure data sharing, and
secure data supervision.”

(1) Secure Data Storage Requirement. From the case of
Snowden, people all over the world have realized that the
users’ privacy as well as the sensitive data will be greatly
harmed if the data are not in a properly secure storage.
The storage of marine data often relies on the credibility
of the servers/nodes, which could not resist the servers’
administrators and the inside adversary wiretapping and
tampering the data. If the data is not discriminated and used
directly, the factual data also cheat the users; in particular
forgery or deliberately manufacturing data often leads to the
incorrect and incomplete conclusions.

(2) Secure Data Access Requirement. Data access control is
an effective way to realize the data sharing. Marine big data
are used for different scenarios and accessed by different
users with different roles and different security levels. The
access control requirements are very prominent since the

traditional access control techniques mainly depend on the
security of the database and cloud service providers. Once
the database administrators and cloud service providers take
malicious behaviors, the data are no longer secure in the
database and data sharing, which results in violation of the
data confidentiality and the users’ privacy.

(3) Secure Data Computation Requirement. Data compu-
tation such as calculation and analysis of marine data is
another important application. Since marine big data ser-
vice providers cannot be fully trusted and computation
services are often in an outsourcing way, it is an important
requirement that how to achieve the data confidentiality and
realize the data calculation and analysis simultaneously. In
addition, it is also important to improve the efficiency of data
calculation and analysis as well as ensure the effectiveness of
the storage data.

(4) Secure Data Sharing Requirement. In the marine data
sharing and dissemination, the data are often shared among
the authored users. Thus, the security is based on the users’
secret keys. The data will be given away if the user’s secret
keys were leaked intentionally or unintentionally, which is
unable to realize the secure data sharing and dissemination
mechanism in the cloud. Furthermore, since the security of
modern cryptographic systems depends only on the secret
keys, the whole security systems would collapse if there is no
technique to trace and revoke leaked secret keys.

(5) Secure Data Supervision Requirement.Data supervision is
a guarantee to marine data security. In the processing stages
of data storage, computation, sharing, and dissemination,
malicious adversaries may insert false data intentionally and
unintentional users may insert error data if there is a lack
of the techniques of data supervision and monitoring. It
is also important to remove illegal information, reduce the
redundancy cost, check the content completeness, and verify
the correctness of the calculation results in the marine data
supervision.

6. Conclusions

As we have entered an era of marine big data, it is of great
realistic and theoretical significance to study on the marine
big datamanagement. Unfortunately, existing techniques and
theories are very limited to solve the real problems completely
in the marine big data. To tackle above issues, this paper has
analyzed the existing challenges in data storage, data analysis,
quality control, and data security, summarized themarine big
data models, algorithms, methods, and techniques in field of
marine big data management, and finally presented a practi-
cal engineering instance that demonstrates the management
architecture. There is no doubt that study on marine big
data management is still in the initial stage of development;
thereby more scientific investments from both academy and
industry should be poured into this scientific paradigm to
capture huge values from marine big data.
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Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public
attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial
economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In
this paper, a computational fluid dynamics (CFD) model was developed for coal spontaneous combustion under goaf gas drainage
conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave
mine.The goaf was treated as an anisotropicmedium, and the effects ofmethane drainage and oxygen consumption on spontaneous
combustionwere considered.The simulation resultsmatched observational data from a field study, which indicates CFD simulation
is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous
combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk
of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches
for coalmines.

1. Introduction

Spontaneous combustion of coal is an issue that threatens
the development of the coal industry worldwide. Among
China’s state-owned collieries, 56% of the mines have been
jeopardized by spontaneous combustion, and the combustion
incidents in these mines account for 90–94% of all coalmine
fires [1]. Since the 1990s, the coalmines operating in China
have mainly been fully mechanized cave mines. This type of
mining leaves a large amount coal in the goaf.The production
efficiency is increased compared to nonmechanized mining,
but fully mechanized mining results in high air leakage, high
rock fall, and more loose coal. These factors increase the
probability of coal spontaneous combustion. Furthermore to
reduce the risks of gas explosion and improve utilization of
methane, especially in mines with high gas content, at some
coalmines gas is drained from the mine goaf and coal with
high negative pressure technology. These practices increase
the air leakage volume and disturb mine ventilation, which
elevates the risk of coal spontaneous combustion.

Spontaneous combustion of coal underground takes
placemainly in the goaf and occurs through a complex system
of thermal, hydraulic, chemical, and mechanical processes
[2–6]. The combustion of coal underground is closely related
to the concentration and distribution of oxygen in the goaf
[7]. Consequently, study of the oxygen concentration and
distribution is important to understand coal spontaneous
combustion. To date, the oxygen distribution in coal mine
goaf has typically been approximated from either a min-
imal number of actual gas measurements in the goaf or
model test results obtained in the laboratory. These two
methods have many disadvantages, one of which is the
heavy workload required. Although laboratory results are
valuable, their extrapolation to the mining environment is
not entirely successful because scaling is complicated, and
small-scale experiments do not accurately replicate the large-
scale environment. Scaling issues typically arise when the
coal temperature is high enough that radiative heat transfer
cannot be neglected. In these cases, there are problems with
scaling of the radiative heat transfer from the small-scale
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spontaneous combustion results to large-scale mining. For
small-scale tests when the coal temperature is low, radiative
heat transfer can be neglected but the test results have not
been validated [7, 8]. Consequently, it is necessary to establish
a new method to study coal spontaneous combustion.

In this paper, to study coal spontaneous combustion, we
developed a three-dimensional CFD model of the oxygen
concentration under conditions of gas drainage from the goaf.
The distribution of oxygen in the goaf was simulated, and
the results used to evaluate the coal spontaneous combustion
hazard in specific areas of the goaf. The influence of goaf
gas drainage on oxygen distribution was also studied using
numerical methods.The results could be used for prevention
of coal spontaneous combustion and to establish fire-fighting
protocols.

2. Theory

2.1. Oxygen Diffusion in the Goaf. In order to simulate the
oxygen distribution in goaf under gas drainage conditions,
numerical modeling was performed with CFD theories. The
finite volume method with the second-order upwind scheme
was used to solve the coupled flow, mass transfer, and energy
equations using the CFD solver. CFD simulations require
solving the Navier-Stokes (N-S) equations, which are formed
from a series of partial differential equations governing mass,
momentum, and energy conservation. If mass transfer and
mixing are part of the process under investigation, then
a conservation equation for the components must also be
included [9]. The mathematical model for flow of mixed gas
in the mine goaf is developed using these equations, along
with specific boundary conditions and initial conditions.The
following equations apply to gas flow in goaf [10]. The mass
conservation equation can be expressed as

𝜕𝜌

𝜕𝑡
+
𝜕 (𝜌𝑢
𝑖
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𝑖
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where 𝑝 is the gas pressure of cube 𝑖, 𝑗 represents the 𝑥, 𝑦,
𝑧 coordinates in three-dimensional space, 𝑥

𝑗
is the distance,
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is the viscous stress tensor which is caused by the viscous

effect, 𝑔
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is the gravity component in direction 𝑖, and 𝑠

𝑖
is

source of momentum loss. The momentum loss is caused by
fluid flow in porous media and can be expressed as
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where 𝜇 is the gas viscosity in the goaf; 𝐷
𝑖𝑗
is the matrix of

the viscous loss coefficient; 𝐶
𝑖𝑗
is the matrix of the inertia

loss coefficient; and V
𝑗
is the velocity component in direction

𝑗, where 𝑗 represents the 𝑥, 𝑦, 𝑧 coordinates in three-
dimensional space. This equation indicates that when the
velocity is low in comparison to the viscous loss coefficient,
the inertia loss coefficient will be infinitely small.

Equation (3) is equivalent to Darcy’s equation. Convec-
tion and diffusion of the multicomponent gas is mainly
considered when air transfer occurs in the goaf. From the
component mass conservation law, the following conserva-
tion equation is obtained:
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𝑆
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where 𝑐
𝑆
is the fraction of component 𝑆 and 𝜌 is its density,

𝐷
𝑆
is the diffusion coefficient of component 𝑆, 𝑠
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is the source

term of 𝑆, and div(∗) = 𝜕𝑎
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/𝜕𝑧 is a scalar

quantity. The source term includes events such as methane
and CO release and oxygen consumption.

The energy transport equation is formulated under the
assumption of thermal equilibrium between the solid matrix
and gas. Coal oxidation is an exothermic process, and to
provide an accurate description of oxygen concentration, the
link between heat production and oxygen consumptionmust
be considered. Therefore, the mathematical model should
contain energy conservation equations such as

𝜕 (𝜌𝑇)

𝜕𝑡
+ div (𝜌�⃗�𝑇) = div( 𝑘

𝑐
𝑝

grad𝑇) + 𝑠
𝑇
, (5)

where 𝑐
𝑝
is the specific heat capacity, 𝑇 is the thermodynamic

temperature, 𝑘 is the thermal conductivity of gas in the
goaf, and 𝑠

𝑇
is energy source term. For CFD simulation, the

geometry,material properties, and boundary conditions need
to be specified.

2.2. CFDModel of Oxygen for the FullyMechanized CaveMine
Workface. The distribution of oxygen was modeled using the
widely used CFD software FLUENT. CFD analysis generally
involves the following key steps: field studies to obtain basic
information on goaf geometry and other parameters; mesh-
ing of the established geometric model to a finite element
grid by automatic mesh generation software such as Gam-
bit; establishment of flow models and boundary conditions
through user-defined functions (UDFs) as described in [11];
model simulations with basic conditions; model calibration
and validation with field measured data; and study of the
influence of various parameters on the oxygen distribution
using the CFD model.

The main factors influencing the distribution of oxy-
gen in mine goaf are viscous flow, which is caused by
a pressure gradient, and diffusion, which is caused by a
concentration gradient. The longwall goaf permeability and
oxygen consumption and diffusion coefficients are the main
parameters in a mathematical model of oxygen distribution.
Goaf permeability is largely affected by the distribution of
pressure in the goaf. Creedy and Clarke highlighted that the
permeability at the edge of the goaf is significantly different
from that in the middle, and the permeability in these areas
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Figure 1: Permeability distributions in the goaf.

can range from 10−2m2 to 10−7m2 [12]. In the simulation
in the present study, goaf permeability was varied from
10−2m2 to 10−9m2, and the permeability was expressed by a
hyperbolic tangent function [13, 14], and the characteristics of
permeability distribution can be seen as in Figure 1.

With Fick’s Law of diffusion, the diffusion flux can be
expressed by the following equation [15]:
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where 𝐽
𝑖
is diffusion flow volume of gas 𝑖 and is mainly caused

by concentration and thermal gradients; 𝐷
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is the diffusion
coefficient of the mixed gas; 𝑥
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the thermal diffusion, and 𝑇 is the temperature.
For a nonrarefied gas, (5) can be replaced by the following

equation:
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where 𝑀
𝑖
is the molecular weight of gas 𝑖, 𝑀min is the

molecular weight of the mixed gas, and 𝐷
𝑖𝑗
is the diffusion

coefficient of gas 𝑖mixed with gas 𝑗.
The chemical reaction between coal and oxygen at low

temperatures is complex. Generally, the following three types
of processes are believed to occur [16]: (i) physical adsorption;
(ii) chemical adsorption, which leads to the formation of
coal-oxygen complexes and oxygenated carbon species; and
(iii) oxidation, in which the coal and oxygen react and
release gaseous products such as carbon monoxide (CO),
carbon dioxide (CO

2
), and water vapor (H

2
O). Of the above

processes, oxidation is by far the most exothermic. At low
temperatures, oxygen consumption can be expressed by the
following equation [17]:

Rate = 𝐴 [O
2
]
𝑛 exp(−𝐸

𝑅𝑇
) , (8)

where 𝐸 is the activation energy, which for different coals
can vary from 12 to 95 kJ/mol; 𝐴 is the preexponential factor,
which is typically between 1 and 7 × 105/s and depends on the
coal rank andmeasurementmethod;𝑅 is the gas constant; 𝑛 is
the apparent order of reaction; 𝑇 is the absolute temperature;
and [O

2
] is the oxygen concentration.

Table 1: Physical and chemical parameters of the coal.

Density of the coal (kg⋅m3) 1300
Activation energy (Kj/(mol⋅K)) 90.0
Thermal conductivity of coal W/(m⋅K) 0.1998
Heat release when coal absorbs one Moore oxygen
(Kj) 310

Preexponential factor (s−1) 64
Initial temperature (K) 300
Specific heat capacity (J⋅kg−1⋅K) 1003

Ground

Underground

Ball gall Pump Gas

Goaf

Chromatography analysis instrument

Figure 2: Collection of gas from the goaf for oxygen concentration
analysis.

According to the Arrhenius equation (Equation (8)),
the temperature will have a large influence on oxygen
consumption. Therefore, to accurately describe the oxygen
concentration, the heat of the coal oxidation reaction at low
temperatures must be considered. This heat can be expressed
by 𝑄 = 𝑉𝑞, where 𝑄 is the exothermic velocity, which is
closely related to the oxygen consumption, and 𝑞 is total
heat release for consumption of one mole of oxygen at low
temperature by coal oxidation. In this paper these chemical
reaction parameters of the coal can be seen as in Table 1.

3. In Situ Measurement and
Model Configuration

3.1. Field Experiment on Oxygen Concentration in Goaf. For
calibration and to validate the simulation results, mixed gas
samples were collected from the goaf (Figure 2) in an actual
coal mine and analyzed by gas chromatography (GC) to
obtain the oxygen concentration. To collect these samples,
multiple sample collection tubes were placed in the goaf
behind the scraper conveyor.

The gas from the goaf was collected through these tubes
using a pump and pumped into a ball sample vessel. This full
sample vessel was transferred to the laboratory for analysis.

The pump system to remove gas from the goaf using
suction was an electric rotary vane vacuum pump (Figure 3)
with an explosion-proofmotor and power of 0.75 kW.The gas
collection tubes were composed of rigid plastic (ø8mm) that
couldwithstand negative pressure.The tubes were also placed
in a seamless steel tube for further protection against damage
from falling rocks in the goaf (Figure 4(a)). A sealant of latex
clay was placed between the tubes and the protective sleeve
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Figure 3: Electric rotary vane vacuum.

Latex clay sealant

Entrance of goaf gas

(a) (b)

Gas collection tube 

Figure 4: (a) Protective sleeve around gas collection tube. (b)
Placement of latex clay sealant in protective sleeve.

(Figure 4(b)), to ensure that the extracted gas originated from
the goaf and not from the protective sleeve.

Gas samples were collected at three different points in
the mine (Figure 5). Collection tubes were placed in the
goaf near the air return, air inlet, and 60m from the air
return.The workface in this area is ventilated at 1400m3/min
with fresh air with the following composition (percentage
by volume): oxygen (20.7%), and nitrogen (80.6%). The gas
samples were analyzed using a KSS-200 chromatograph.This
system can be used to analyze the following gases (volume
fraction ranges): O

2
(0–25%);N

2
(70–98%); CO,C

2
H
4
, C
2
H
6
,

and C
2
H
2
(0–50%); and CH

4
and CO

2
(0–80%). This system

has an accuracy of ⩽1 ppm and relative error of ⩽1.5%.

3.2. Model for Simulation of Oxygen Concentration in the Goaf
under Gas Drainage Conditions. Boundaries for the model
were based on a workface in Dafosi coalmine (China), which
has a U-type ventilation mode. Figure 6 shows the layout for
the CFD model based on the Dafosi coalmine workface. The
intake airflow and return airflow are shown in red on the right
and left, respectively, of the front of thismodel. A gas drainage
system was established in the model, which included a gas
drainage pipe near the return airflow (Point 1 in Figure 6)
and gas drainage boreholes in the goaf (Point 2 in Figure 6).
The length of the workface which is also the goaf width in the
model was 200m, and the distance from the starting point of
the longwall to theworkfacewas 500m.Theheight of the goaf
flowfieldwas 20m, the coal seampitchwas 0∘, the pitch in the
strike direction was 2∘, and the workface was ventilated in U
+ L-mode. Air ventilation was at a rate of 1400m3/min with

Air inlet

Workface

Air return

Test point

Lo
ng

w
al

l s
ta

rt
-u

p

60m

Figure 5: Gas collection points in the coalmine.

Longwall start-up

1

2

Figure 6: Model for gas drainage from the goaf through (1) a gas
drainage tube in the area of the return airflow and (2) gas drainage
boreholes in the goaf.

Table 2: Parameters of the workface and goaf.

Goaf size (m) 500(𝐿)×200(𝑊)×20(𝐻)

Section size of workface (m×m) 3(𝐻)× 8(𝑊)

Wind volume of workface (m3/min) 1400

Oxygen concentration of the wind 20.7%
Coal seam pitch (∘) 0

Strike pitch (∘) 2

Section size of laneway (m×m) 4(𝑊) × 3(𝐻)

Diameter of drainage pipe 1 and pipe 2
(mm) 325

Gas drainage rate of pipe 1 (m3/h) 200

Gas drainage rate of pipe 2 (m3/h) 180

an oxygen volume fraction of 20.7%. The gas drainage pipe
at Point 1 had a diameter of 325mm, and the gas drainage
rate was 200m3/h. Gas drainage from the boreholes in the
goaf was at a rate of 180m3/h. The gas that was drained from
the goaf main mainly came from the workface and bottom
and roof of the goaf. Assuming that gas emission had a linear
relationship, the gas release from the goaf was predicted to be
about 21–24m3/min in this model. Main parameters of this
model can be seen as in Table 2.

The model was meshed using an unstructured grid con-
taining about 84000 cells and 179000 faces (Figure 7(a)). For
the model to converge easily during the solving process, the
mesh was increased around where the gas drainage boreholes
were located (Figure 7(b)).
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Figure 8: Percentage by volume of oxygen in the goaf.

4. Results and Discussion

4.1. Oxygen Concentrations in theMine Goaf from Field Study.
The oxygen concentration in the goaf was very high beside
the air inlet (Figure 8). In this area the volume fraction of
oxygen in the goaf remained >18% until 70m behind the
long-wall workface and >8% until 120m behind the longwall
workface. In the middle of the goaf, 60m from the air-return,
the volume fraction of oxygen in the goaf remained at >18%
until 20m behind the workface and at >8% until 75m behind
the longwall workface. The trends in the reduction of oxygen
in the goaf were very similar in these two areas.

4.2. Simulation Results and Discussion

4.2.1. Oxygen Concentration in the Goaf under Gas Drainage
Conditions. The distribution patterns of oxygen in the goaf
obtained with the model are illustrated in Figures 9 and
10. The gas at higher levels above the bottom of the goaf
has a lower oxygen concentration (Figure 10). The oxygen
concentration at different distances from the workface was
also obtained with the model (Figure 11). It presented similar
trends in the oxygen concentration as observed in the field
study (Figure 8). This suggests that the simulation can reflect
the actual gas distribution in goaf. Comparison of tempera-
ture anomalies between the presented simulation results and
in situ measurements is only possible when the overlying
beds are assumed to be homogeneous on amacroscopic scale.

Consequently, the results do not necessarily apply to all fire
sites.

At 20m above the bottom of the goaf, the air inlet region
was the only area where the volume fraction of oxygen was
>20%. At this height, the volume fraction of oxygen was only
15% near the air return.

Figure 12 shows the oxidation zone or coal spontaneous
combustion zone obtained from the model. This zone is
defined as the area where the oxygen volume fraction is 8–
18%. On the air inlet-side, float coal dust 75m from the
workface will be in the spontaneous combustion zone, and
that at 130m from the workface will be in the suffocation
zone. In the middle area of the goaf, the float coal dust
will be in the spontaneous combustion zone at only 30m
from the workface and in the suffocation zone at 67m
from the workface. Near the air return, float coal dust is
in the spontaneous combustion and suffocation zones at
26m and 72m, respectively, from the workface. Because
fully mechanized caving mining creates large quantities of
float coal dust in the goaf, the thickness of float coal dust
will always be sufficient for coal spontaneous combustion.
Therefore, the spontaneous combustion zone in the model is
equivalent to the hazard zone for the mine. The maximum
width of the spontaneous combustion hazard zone is 55m
near the intake airflow.The simulation showed that there is a
serious air leak at the workface of the goaf in this mine; even
with high methane release, high oxygen concentrations were
widespread.

Figure 13 presents a three-dimensional representation
of the spontaneous combustion zone. In this figure, blue
represents an oxygen volume fraction of 8%, and orange
represents an oxygen volume fraction of 18%.

Because oxygen density is higher than air density, the
oxygen concentration near the bottom of the goaf was
higher than that in the upper part of the goaf close to the
workface (Figures 14 and 15). This suggests the possibility of
coal spontaneous combustion is higher in the upper part of
the goaf than near the bottom. Further from the workface,
the possibility of coal spontaneous combustion was lower in
the upper part of goaf than near the bottom.

The CFD simulation indicated that the high oxygen
region was widespread in the goaf, which could increase coal
spontaneous combustion. To prevent this, the fire control
measures for the mine must be improved. Consequently,
three-phase foam was used during backfilling of the goaf.
Three-phase foam has a large flow volume, excellent fluidity,
and low density, is durable, and provides uniform cover-
age.

4.2.2. Effect of Gas Drainage Volume on Oxygen Distribution.
In order to study the effect of gas drainage parameters
on spontaneous combustion, the gas drainage volume was
changed and the oxygen distribution in goaf was simulated
again. Gas drainage from three points was investigated.These
points were (1) 5m behind the workface and 5m from
the goaf boundary near the air return, (2) 5m behind the
workface and 5m from the goaf boundary near the air intake,
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Figure 9: Oxygen on the surface of the model.
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Figure 10: Oxygen distribution at different levels in the goaf: (a) the bottom, (b) 1m above the bottom, (c) 10m above the bottom, and (d)
20m above the bottom.
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Figure 13:Three-dimensional distribution of spontaneous combus-
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Figure 14: The oxygen distribution in section planes (a) 10m, (b)
20m, (c) 30m, (d) 50m and (e) 80m behind the workface.

and (3) 50m behind the workface and 100m from the goaf
boundary, and all of these points are on the goaf bottom.

Figure 16 shows the changes in the volume fraction of
oxygen at Points 1–3 with different drainage volumes for
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Figure 15: Location of longitudinal sections.
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Figure 16: Effect of the gas drainage volume in pipe 1 on the
concentration of oxygen at Point 1, Point 2, and Point 3.

gas drainage pipe 1. The variation in the volume fraction
of oxygen was dependent on the goaf gas drainage volume.
Larger gas drainage volumes resulted in increased leakage
that is why volume fractions of oxygen at the three points
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Figure 17: Effect of the gas drainage volume in pipe 2 on the
concentration of oxygen at Point 1, Point 2, and Point 3.

become higher. However, the oxygen concentration at Point
3 increased slightly faster than at Point 1 or 2. This suggests
that increases in the gas drainage volume create greater risk
of coal spontaneous combustion on the air return side than
on the air intake side or in the middle of the goaf.

Figure 17 shows the changes in the volume fraction of
oxygen at Points 1–3 with different drainage volumes for gas
drainage pipe 2. From this figure we can also find that the
variation in the volume fraction of oxygen was dependent on
the goaf gas drainage volume. Larger gas drainage volumes
resulted in higher oxygen concentration. Besides, from the
contradistinction between Figures 16 and 17, we can find that,
with the same drainage volume, when there is drainage of the
gas from the pipe 1, oxygen concentration is higher; it means
that drainage from the pipe 1 may lead to higher possibility of
coal spontaneous combustion. So if we must use drainage of
gas from the goaf, we would better use drainage of gas at the
location of pipe 2 rather than pipe 1.

5. Conclusions

In combination with detailed field studies, extensive CFD
modeling was conducted to investigate the oxygen distri-
bution in longwall goaf under gas drainage conditions. The
results of these studies greatly improve the fundamental
understanding of the distribution of oxygen and other
gases in coalmines. The high oxygen region in the mine
was widespread in the goaf under gas drainage conditions.
Near the air inlet, the maximum width of the spontaneous
combustion zone was about 70m. The gas drainage volume
influenced the oxygen concentration in the goaf, with greater
volumes of gas drainage increasing the volume fraction of
oxygen. The oxygen was more concentrated near the air
return than near the air intake or the middle of the goaf.
In comparison to field study results, the CFD simulation

of the oxygen distribution in the mine was an accurate
representation of the actual situation in the goaf under gas
drainage conditions. This method is flexible and simple to
conduct and can be used to numerically simulate various
complex situations of spontaneous combustion. The results
provide a means for control of spontaneous combustion and
establishment of firefighting measures in coalmines.
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Using the convex model approach, the bounds of uncertain variables are only required rather than the precise probability
distributions, based on which it can be made possible to conduct the reliability analysis for many complex engineering problems
with limited information. In this paper, three types of convex model including interval, ellipsoid, and multiellipsoid convex
uncertainty model are investigated, and a uniform model of nonprobabilistic reliability analysis is built. In the reliability analysis
process, an effective space-filling design is introduced to generate representative samples of uncertainty space so as to reduce the
computational cost and provide an accurate depiction of possible model outcome. Finally, Spearman’s rank correlation coefficient
is used to perform parameters global sensitivity analysis. Three numerical examples are investigated to demonstrate the feasibility
and accuracy of the presented method.

1. Introduction

In practical engineering problems, uncertainty is often una-
voidable due to the lack of knowledge, assumptions made
by model builders, variations of physical properties of mate-
rials, geometric dimensions, and operating environments
and other reasons. Therefore, these uncertainties involved in
structure should be taken into account for a proper design
process [1]. With the ever-increasing demands of struc-
ture security, the structural reliability analysis has received
considerable attention in the last decades and is becoming
increasingly important in the structural design [2].

The aim of reliability analysis is to assess the probability
of structural survival or the probability of structural failure
when the uncertainties involved in the structures are take
into account [3]. In the area of reliability analysis, probability
model is one of the most commonly used uncertainty
models, in which the uncertainties involved in structures
are described as random variables. This reliability model has
been intensively studied in the last decades and a variety of
important analysis techniques have been established, such as
the first order reliability method (FORM) [4, 5], second order

reliabilitymethod (SORM) [6, 7],Monte-Carlomethod (MC)
[8], and system reliability method [9, 10].

It is important to point out that the aforementioned
reliability method requires precise probabilistic distribution
characteristics, which come from a large number of input
samples. However, in real world engineering design prob-
lems, probabilistic reliability model is often hindered due
to the lack of samples information. For instance, in the
conceptual design stage of structures, it is difficult to provide
sufficient experimental samples to describe the distribution
of uncertainty input variables [11]. As revealed by Ben-Haim
[12] and Elishakoff [13], probabilistic reliability model is very
sensitive to small inaccuracy of input quantities, whichmeans
that misleading results may be yield due to the unjustified
assumption in constructing a probabilistic model.

This challenge thus raised the interest of the alterna-
tive nonprobabilistic approach for uncertainty description,
namely, the set theory-based convex model [14–18]. At
present, interval, ellipsoid, and multiellipsoid convex model
are three widely studied convex models [19]. Based on
interval model, Guo et al. [20] proposed a robust reliability
index to estimate structural nonprobability reliability and
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presented three solution methods of the reliability index.
Tao et al. [21] proposed a semianalytic method to solve the
nonprobabilistic reliability index. Chen et al. [22] suggested
an enhanced semianalytic method based on monotonicity
analysis. Qiu and Elishakoff studied the structural optimal
design method using the interval set model [23, 24]. With
multiellipsoid convex model, Kang et al. [25] and Luo et al.
[26] constructed a nonprobabilistic reliability optimization
design method.

This paper aims to develop a practical nonprobability
reliability global sensitivity analysis technique based on
optimal Latin hypercube sampling (OLHS) and Monte Carlo
simulation. The method proposed in this paper has wider
applicability. It can be used in solving more general problems
with intervalmodel, ellipsoidmodel, ormultiellipsoid convex
model.The proposedmethod has some very attractive advan-
tages, such as the following: its analysis process is simple,
computational cost is regardless with variables dimension
and the nonlinear degree of the performance function. Hence
it is particularly suitable for implementing the nonprobabilis-
tic reliability analysis for some complicated structure.

This paper is organized as follows. Firstly, three uncertain
information description methods, including interval model,
ellipsoid model, and multiellipsoid convex model, are intro-
duced.The nonprobabilistic reliability model and its physical
meaning are then discussed in detail in Section 3. Based
on OLHS, a Monte Carlo simulation and global sensitivity
analysis method for structural nonprobabilistic reliability is
proposed in Section 4. The feasibility and accuracy of the
presentedmethod are demonstrated through three numerical
examples in Section 5. Conclusions are given in Section 6.

2. The Description of Structural Uncertainty
with Convex Model

In this paper, three types of ellipsoid-bound convex models,
including interval model, ellipsoid model, and multiellipsoid
convex model, are introduced for the description of uncer-
tainty variables [14, 27].

(1) In interval uncertainty model, an uncertain variable
can be described by an interval set, which can be expressed
as

𝑥 = [𝑥
𝐿
, 𝑥
𝑈
] = {𝑥 ∈ 𝑅 | 𝑥

𝐿
≤ 𝑥 ≤ 𝑥

𝑈
} , (1)

where variable 𝑥 ∈ 𝑅 belongs to a bounded closed interval,
𝑥
𝐿 denotes the lower bound of interval variable, 𝑥𝑈 stands for

the upper bound of interval variable, and 𝑥𝐿 ≤ 𝑥
𝑈.

For easy expression, the variable 𝑥 can also be expressed
by

𝑥 = (1 + 𝛿) ⋅ 𝑥, (2)

where 𝛿 denotes a dimensionless variable and 𝑥 denotes the
nominal value of the uncertain variable; it can be expressed
by

𝑥 =

𝑥
𝐿
+ 𝑥
𝑈

2

. (3)

(2) In ellipsoid uncertain model, the uncertain variables
are assumed to fall into amultidimensional (hyper-) ellipsoid.
The uncertainty domain can be expressed by

𝛿 = {𝛿 : 𝛿
𝑇W𝛿 ≤ 𝜀

2
} , (4)

where W is the characteristic matrix of the ellipsoid and 𝜀

is real number standing for the magnitude of the parameter
variability.

(3) In multiellipsoid uncertain model, the uncertain vari-
ables are assumed to fall into several ellipsoid sets. Supposing
𝑘 ellipsoid sets are employed, the vector of the grouped
uncertain variables can be expressed by

x𝑇 = {x𝑇
1
, x𝑇
2
, . . . , x𝑇

𝑘
} , (5)

where each group of variables is bounded by an ellipsoid set
as follows:

𝛿
𝑖
= {𝛿
𝑖
: 𝛿
𝑇

𝑖
W
𝑖
𝛿
𝑖
≤ 𝜀
2

𝑖
} (𝑖 = 1, 2, . . . , 𝑘) , (6)

where 𝛿
𝑖
denotes the dimensionless vector of x

𝑖
, W
𝑖
denotes

the characteristic matrix of the 𝑖th ellipsoid, and 𝜀
𝑖
(𝑖 =

1, 2, . . . , 𝑘) are real numbers.
For illustrative purpose, we provide a problem with three

uncertain variables. Its dimensionless vector is expressed by
𝛿 = {𝛿

1
, 𝛿
2
, 𝛿
3
}
𝑇. We describe it with interval model, ellipsoid

model, and multiellipsoid convex model, respectively.

(a) Interval model:

𝛿
2

1
≤ 𝜀
2

1
, 𝛿

2

2
≤ 𝜀
2

2
, 𝛿

2

3
≤ 𝜀
2

3
. (7)

(b) Single-ellipsoid model:

{𝛿
1
, 𝛿
2
, 𝛿
3
}
[

[

3 0 1

0 3 1

1 1 1

]

]

{

{

{

𝛿
1

𝛿
2

𝛿
3

}

}

}

≤ 𝜀
2
. (8)

(c) Multiellipsoid uncertain model:

{𝛿
1
, 𝛿
2
} [

1 0

0 1
] {

𝛿
1

𝛿
2

} ≤ 𝜀
2

1
, 𝛿

2

3
≤ 𝜀
2

2
. (9)

The above three types of convex model are schematically
shown in Figures 1(a)–1(c).

3. A Reliability Model with
Convex Uncertainty

During the reference review, we found that Jiang et al. [28]
proposed a desirable structural nonprobabilistic reliability
model, in which reliability is defined as a ratio of the
multidimensional volume falling into the reliability domain
to the one of whole convex model. This reliability model has
a very intuitional and easily understandable mathematical
form and can be used to deal with some complex engineering
problems. In this reference, ellipsoid convex model is inten-
sively discussed, while, in this paper, this reliability model
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Figure 1: Convex models for three uncertain variables.
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Figure 2: Nonprobabilistic reliability for 2D problem.

will be expanded to interval model, ellipsoid model, and
multiellipsoid convex model, which will be able to deal with
more general convex model problems. Assume a structural
performance function is expressed by

𝑌 = 𝑔 (x) , (10)
where x stands for an 𝑛-dimensional vector of input parame-
ters.

Firstly, a two-dimensional problem is considered. As
shown in Figure 2

From Figure 2, the whole uncertainty domain is divided
into two regions by the failure surface. One is in the reliability
region, which is denoted by 𝑔(x) ≥ 0. The other one is in the
failure region, which is denoted by 𝑔(x) < 0. The reliability
can be evaluated as follows:

𝑅
𝑐
=

𝐴 − 𝐴
1

𝐴

, (11)

where 𝐴 stands for the region of the whole convex model,
𝐴
1
stands for the failure region, and 𝐴 − 𝐴

1
stands for the

reliability region.
When a three-dimensional problem is taken into account,

the domain of whole convex model will extend to corre-
sponding volumes as shown in Figure 3.

The definition of the nonprobabilistic reliability formu-
lated by (11) can easily be extended to an 𝑛-dimensional prob-
lem, in which the domain will become a multidimensional

volume.The value of𝑅
𝑐
is in the range of [0, 1], which canwell

describe the safety extent of a structure. Correspondingly, the
dangerous degree 𝑓

𝑐
can be expressed by

𝑓
𝑐
=

𝐴
1

𝐴

. (12)

Obviously, we can find that the relationship of dangerous
degree 𝑓

𝑐
with reliability 𝑅

𝑐
can be expressed by

𝑅
𝑐
+ 𝑓
𝑐
= 1. (13)

4. Reliability and Variables Global
Sensitivity Solution Method Based on
Optimal Latin Hypercube Sampling

It should be pointed out that the reliability model mentioned
above is based on areas or volumes. However, the magnitude
of reliability domain in the whole uncertainty domain is
difficult to be computed analytically for some complex engi-
neering problems. Thus, a Monte Carlo simulation method
has been developed in [28] to deal with this problem. How-
ever, the Monte Carlo simulation present in this reference
can not assure the samples are uniformly scattered in the
uncertainty space. Hence the number of samples falling into
reliability domain can not effectively represent themagnitude
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Figure 3: Nonprobabilistic reliability for 3D problem.

of reliability domain. The precision of analysis result can not
be ensured even though a lot of samples are used.

In this study, we approached the problem by a space-
filling design of computer experiment. This method is pro-
posed by Jin et al. [29] and named as optimal Latin hypercube
sampling (OLHS). Because OLHS can evenly spread out
sample points over the entire design space, people also named
it as space-filling design [30]. After samples of structural
uncertainty variables are generated readily by the OLHS in
Section 4.1, an efficient nonprobabilistic reliability and global
sensitivity analysis method will be proposed in Sections 4.2
and 4.3, respectively.

4.1. Generate the Samples of Convex Model Uncertainty
Variables Based on Uniform Design. When the uncertain
variables are defined as (tolerances) intervalswith given lower
and upper bounds, failure analysis methods are needed to
consider the complete range of uncertain domain. Theoret-
ically, every point within the interval has some unknown
probability of occurrence. Therefore, all the possible combi-
nations of these uncertain intervals must be considered in the
analysis.

In this section, we will use optimal Latin hypercube
sampling (OLHS) to solve structural nonprobabilistic relia-
bility index. OLHS is one of the space-filling designs and it
seeks experimental points to be uniformly scattered in the
experimental domain, which is proposed by Jin et al. [29, 30].

OLHS has several advantages. It can explore relationships
between the response and the factors with a reasonable
number of runs and is shown to be robust to the situation
where little knowledge is known about the function to be
modeled. In the past decade, it has been successfully applied
in industry, system engineering, pharmaceutics, and natural
sciences. Its practical success is due to its economical and
flexible experimental runs to study many factors with high
levels simultaneously.

In order to verify the space-filling capability of OLHS, a
graphical comparison of Monte Carlo sampling (MCS), Hal-
ton sequence, Latin square sampling (LHS), Maximin Latin
hypercube sampling (Maximin LHS), and Optimal Latin

hypercube (Optimal LHS) for two independent variables is
presented in Figure 4.

As shown in Figure 4, among these sampling methods,
the OLHS method has been shown to be capable of space-
filling uniformity. It can uniformly scatter samples in the 2D
space and obviously is better than the othermethods in terms
of space-filling capability. Hence, in this paper, OLHS will be
introduced to solve the nonprobabilistic index. Concerning
how to carry out the optimal Latin hypercube sampling, this
content is discussed detailedly in [25]. So we will not repeat
it in this paper.

Consider that a structure contains 𝑆 variables that can
be realized 𝑁 times. The samples of input variables can be
arranged as an inputmatrix with𝑁 row and 𝑆 columns. Using
OLHS to generate𝑁×𝑆 uniform numbers 𝑟

𝑖
in [0 1], arrange

these values into a 𝑁 × 𝑆 matrix, which has the smallest
discrepancy and excellent space-filling capability. After the
matrix 𝑁 × 𝑆 in [0, 1] has been generated, we will construct
the sampling matrix 𝑁 × 𝑆 for three types of uncertainty
convex model including interval model, ellipsoid model, and
multiellipsoid convex model.

(1) IntervalModel. For intervalmodel, uncertain variables can
be described by an interval set with upper and lower bounds
(Figure 5). The uncertain domain can be expressed by

Ω
1
= {𝑥 = (𝑥

𝑖
, . . . , 𝑥

𝑆
) : 𝑥
𝐿

𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑈

𝑖
, 𝑖 = 1, . . . , 𝑆} , (14)

where variable 𝑥
𝑖
∈ 𝑅 and belong to a bounded closed

interval, 𝑥𝐿
𝑖
is the lower bound of interval variable, 𝑥𝑈

𝑖
is the

upper bound of interval variable, and 𝑥𝐿
𝑖
≤ 𝑥
𝑈

𝑖
.

Consider a computermodel requiring 𝑆 variables that can
be realized 𝑁 times. After a matrix 𝑁 × 𝑆 in [0, 1] has been
generated, we will construct the sampling matrix by

𝑥
∗

𝑖
= 𝑥
𝐿

𝑖
− 𝑟
∗

𝑖
(𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) , (15)

where𝑥∗
𝑖
is the sample of interval variable and 𝑟∗

𝑖
is the sample

of matrix𝑁 × 𝑆 in [0, 1].

(2) Ellipsoid Model. For ellipsoid convex model, it is difficult
to obtain the samples directly. Hence we can make the 𝑛



Mathematical Problems in Engineering 5

M
ax

im
in

 L
H

S

0 0.2 0.4 0.6 0.8 1
0

0.5

1

LH
S

0 0.2 0.4 0.6 0.8 1
0

0.5

1

H
al

to
n

0 0.2 0.4 0.6 0.8 1
0

0.5

1

M
CS

N = 40

0 0.2 0.4 0.6 0.8 1
0

0.5

1 N = 60

0 0.2 0.4 0.6 0.8 1
0

0.5

1 N = 80

0 0.2 0.4 0.6 0.8 1
0

0.5

1 N = 100

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

O
pt

im
al

 L
H

S

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 4: Comparison of realization sets generated by MCS, Halton, LHS, Maximin LHS, and OLHS.
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Figure 5: Samples of interval model variables in 2D space.

uncertain parameters as independent random variables and
obtain samples by interval model at first. Then we substitute
the samples into the ellipsoidal function and obtain a pile of
samples X∗e satisfying

Ω
2
= {X∗e : 𝛿

𝑇W𝛿 ≤ 𝜀
2
} . (16)

By this treatment, we can get a pile of samples, which
can be uniformly scattered in the 𝑛-dimensional ellipsoidal
convex model. This principle is shown in Figure 6.

(3) Multiellipsoid Model. Similarly to ellipsoid convex model,
we can make the 𝑛 uncertain parameters as independent
random variables and obtain samples by interval model at
first. Then we substitute the samples into the multiellipsoidal
function and obtain a pile of samples X∗me satisfying

Ω
3
= {X∗me : 𝛿

𝑇

𝑖
W
𝑖
𝛿
𝑖
≤ 𝜀
2

𝑖
, 𝑖 = 1, 2, . . . , 𝑘} . (17)

By this treatment, we can get a pile of samples X∗me,
which can be uniformly scattered in the 𝑛-dimensional
multiellipsoidal convex model.

4.2. Reliability Solution Method of Convex Models Based on
Monte Carlo Simulation. In the process of reliability solution,
we calculate the number of samples instead of the magnitude
of failure region. The proposed reliability method can be
outlined as follows.

Step 1. Consider a computer model containing 𝑆 variable;
we first generate the input variables samples matrix by the
method mentioned in Section 4.1. Suppose the number of
generated samples is 𝑁; the samples of input variables can
be viewed as an input matrix with 𝑁 row and 𝑆 columns,
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Figure 6: Samples of ellipsoid convex model variables in 2D space.

which has the smallest discrepancy and excellent space-filling
capability.

Step 2. Sequentially substitute the samples into the perfor-
mance function. Then we can obtain the number of samples
satisfying the 𝑔(x) = 𝑔(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) > 0. We denoted it by

𝑁
𝑠
. Through this step, the samples falling into the reliability

domain can be captured.

Step 3. Finally, calculate structural reliability through the
equation 𝑅

𝑐
= 𝑁
𝑠
/𝑁.

4.3. Global Sensitivity Analysis Method of Convex Uncer-
tainty Model. Compared with the researches on solving non-
probabilistic reliability index, the nonprobabilistic reliability
sensitivity analysis is less available. Sensitivity analysis can
quantitatively assess the impact of inputs on the output, which
can be used to identify significant inputs and thereby to help
you to improve design toward a more reliable and better
quality product.

In this paper, we will present a global sensitivities
analysis approach, different from local sensitivities [31].
Local sensitivities are mostly only local gradient informa-
tion. It usually calculates structural variables sensitivity by
finite-differencing scheme. Local sensitivities cannot globally
reflect the impact of the variability of inputs on the output.
It also neglects the influence of interactions between inputs
[32].The global approach proposed in this paper cannot only
consider the slope at a particular location, but also study
the global variability of an output induced by inputs over
the entire range of values of inputs. Hence it can provide an
overall view on the influence of inputs on the outputs.

In this paper, OLHS and Spearman’s rank correlation
coefficient [33] will be introduced to quantitatively assess the
influence of the inputs on the output performance function.

Suppose the samples of input variables are denoted by
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, and simulation results of output are denoted

by 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
. Then we can calculate Spearman’s rank

correlation coefficient 𝑟
𝑠
as follows:

𝑟
𝑠
=

∑
𝑛

𝑖=1
(𝑅
𝑥𝑖
− 𝑅
𝑥
) (𝑅
𝑦𝑖
− 𝑅
𝑦
)

√∑
𝑛

𝑖=1
(𝑅
𝑥𝑖
− 𝑅
𝑥
)

2
√∑
𝑛

𝑖=1
(𝑅
𝑦𝑖
− 𝑅
𝑦
)

2

, (18)

where 𝑅
𝑥𝑖

is the rank of 𝑥
𝑖
within the set of samples

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
. 𝑅
𝑦𝑖
is the rank of 𝑦

𝑖
within the set of samples

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
. 𝑅
𝑥
denotes the average ranks of 𝑅

𝑥𝑖
, and it can

be calculated by 𝑅
𝑥
= ∑
𝑛

𝑖=1
𝑅
𝑥𝑖
/𝑛 = (𝑛 + 1)/2. 𝑅

𝑦
denotes

the average ranks of 𝑅
𝑦𝑖
, and it can be calculated by 𝑅

𝑦
=

∑
𝑛

𝑖=1
𝑅
𝑦𝑖
/𝑛 = (𝑛 + 1)/2. Equation (18) can be rewritten in a

simple manner as follows:

𝑟
𝑠
= 1 −

6 [∑
𝑛

𝑖=1
(𝑅
𝑦𝑖
− 𝑅
𝑥𝑖
)

2

]

2

𝑛 (𝑛
2
− 1)

, −1 ≤ 𝑟
𝑠
≤ 1.

(19)

The range of the value 𝑟
𝑠
is in the range of −1 to 1. Its

magnitude stands for the extent of closeness between the
input variable and output. A positive value will be obtained
if the variables are directly positively related, while a negative
value will be obtained if they are inversely related.

Consider a computer model containing 𝑆 variables. We
generate 𝑁 samples by uniform design. Then the Monte
Carlo simulation will be performed to obtain the sampling
results of performance function, which can be denoted by
{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
}. We can organize the input parameter and

output parameter as follows:

[

[

[

[

[

𝑥
11

𝑥
12

. . . 𝑥
1𝑆

𝑥
21

𝑥
22

. . . 𝑥
2𝑆

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
𝑁1

𝑥
𝑁2

. . . 𝑥
𝑁𝑆

]

]

]

]

]

[

[

[

[

[

𝑦
1

𝑦
2

.

.

.

𝑦
𝑁

]

]

]

]

]

. (20)

By the definition of Spearman’s rank correlation coeffi-
cient, we can divide the input parameter and output parame-
ter into 𝑆 groups as follows:

[

[

[

[

[

𝑥
11

𝑥
21

.

.

.

𝑥
𝑁1

]

]

]

]

]

[

[

[

[

[

𝑦
1

𝑦
2

.

.

.

𝑦
𝑁

]

]

]

]

]

,

[

[

[

[

[

𝑥
12

𝑥
22

.

.

.

𝑥
𝑁2

]

]

]

]

]

[

[

[

[

[

𝑦
1

𝑦
2

.

.

.

𝑦
𝑁

]

]

]

]

]

, . . . ,

[

[

[

[

[

𝑥
1𝑆

𝑥
2𝑆

.

.

.

𝑥
𝑁𝑆

]

]

]

]

]

[

[

[

[

[

𝑦
1

𝑦
2

.

.

.

𝑦
𝑁

]

]

]

]

]

. (21)

By performing nonparametric Spearman’s rank correla-
tion coefficient analysis, we can obtain the sensitivity infor-
mation of variables about structural performance function.
The advance of this method is that it does not increase
the computation cost. After the reliability analysis is imple-
mented, the sensitivity results can be obtained readily.

5. Engineering Examples and Discussion

5.1. Case Study 1. In order to expound the analysis process of
the proposed method easily, a simple finite element analysis
(FEA) model is investigated.
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Table 1: Uncertainty variables of plate structure.

Variable name Mean value Minimum Maximum
Length 𝐴 (mm) 95 93 97
Width 𝐵 (mm) 40 38 42
Height𝐻 (mm) 6 5 7
Young’s modulus 𝐸 (MPa) 71700 71600 71800
External load 𝐹 (N) 2000 1900 2100

B

H

A
F

Figure 7: A plate structure.

This model is a simple plate structure as shown in
Figure 7. Its length,width, andheight are denoted by𝐴,𝐵, and
𝐻, respectively. In this model, an external load denoted by 𝐹
is acted at the center of the upper surface, and four corners
of the lower surface are fixed. Young’s modulus of the plank
is denoted by 𝐸, and Poisson’s ratio is 0.33. The uncertainties
related to geometrical dimensions, material properties, and
external loads can be described with interval model and are
listed in Table 1.

The FEA model of the plate structure is initially built
with the mean value of variables, and structural response
(maximum strain) is shown in Figure 8.

Suppose the maximum strain of the plate is denoted by
𝑑(𝐴, 𝐵,𝐻, 𝐸, 𝐹) and the allowable strain of the plane is 𝑑

𝑚
=

0.5mm; we can define structural performance function as
follows:

𝑔 (𝐴, 𝐵,𝐻, 𝐸, 𝐹) = 𝑑
𝑚
− 𝑑 (𝐴, 𝐵,𝐻, 𝐸, 𝐹) . (22)

To perform Monte Carlo analysis with 1000 samples
generated by uniform design, the plane structural reliability
can be readily obtained by 𝑅

𝑐
= (1000 − 9)/1000 = 0.991.

The sampling results of performance function are shown in
Figure 9.

To implement the sensitivity analysis by the method
mentioned in Section 4.3, the bar chart of sensitivity results
is shown in Figure 10.

As shown in Figure 10, the variable 𝐻 is a main factor
that influences the magnitude of structural strain. Compared
with other variables, Young’s modulus 𝐸 has less impact on
the magnitude of structural strain.

5.2. Case Study 2. A practical 25-bar steel truss (Figure 11) is
investigated, which is modified from [28].

In this model, Young’s modulus is 199949.2MPa and
Poisson’s ratio is 0.3. Horizontal bars and the vertical bars
have the same length denoted by 𝐿. The cross-sectional area
of bars (1)–(4) is𝐴

1
, the cross-sectional area of bars (16)–(25)

is 𝐴
2
, the cross-sectional area of bars (11)–(15) is 𝐴

3
, and the

cross-sectional area of bars (5)–(10) is𝐴
4
. The joints 6, 8, and
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Figure 8: Strain of the plate structure.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000
Sampling times

Pe
rfo

rm
an

ce
 fu

nc
tio

n 
va

lu
e

−0.05

Figure 9: Sampling results of performance function.
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Figure 10: Bar chart of sensitivity analysis results.

10 are roller-supported, and joint 12 is hinge-supported. The
vertical loads are denoted by𝐹

3
,𝐹
2
, and𝐹

1
and are acted at the

joints 7, 9, and 10, respectively. A horizontal load is denoted
by 𝐹
4
and is acted at the joint 1. The horizontal displacement

of joint 6 is denoted by 𝑑, and its allowable maximum value
is 𝑑
𝑚
. The five inputs (cross-sectional area 𝐴

𝑖
, 𝑖 = 1, 2, 3, 4,

and the length 𝐿) in this example are treated as uncertain
variables.The performance function of the structure can then
be expressed as

𝑔 (𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐿) = 𝑑

𝑚
− 𝑑 (𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐿) . (23)
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Figure 11: A 25-bar truss.

The uncertain intervals of the five input variables are

𝐴
1
= [630mm2; 770mm2] ,

𝐴
2
= [5580mm2, 6820mm2] ,

𝐴
3
= [4770mm2; 5830mm2] ,

𝐴
4
= [7920mm2; 9680mm2] ,

𝐿 = [13500mm; 16500mm2] .

(24)

The uncertainty domain of the design problem can be
represented as an ellipsoidal convex model:

[

[

[

[

[

[

[

𝐴
1
− 𝐴
1

𝐴
2
− 𝐴
2

𝐴
3
− 𝐴
3

𝐴
4
− 𝐴
4

𝐿 − 𝐿

]

]

]

]

]

]

]

𝑇

×

[

[

[

[

[

[

225.0492 −3.7576 −4.3957 −2.6474 0

−3.7576 2.8687 −0.4963 −0.2989 0

−4.3957 −0.4963 3.9257 −0.3497 0

−2.6474 −0.2989 −0.3497 1.4240 0

0 0 0 0 0.4444

]

]

]

]

]

]

×

[

[

[

[

[

[

[

𝐴
1
− 𝐴
1

𝐴
2
− 𝐴
2

𝐴
3
− 𝐴
3

𝐴
4
− 𝐴
4

𝐿 − 𝐿

]

]

]

]

]

]

]

≤ 10
6
.

(25)

In this problem, the ANSYS software is used to solve
to the horizontal displacement 𝑑 of joint 6. In order to
observe the difference between interval model and ellipsoidal
model for reliability analysis results, different values of the
maximum allowable displacement 𝑑

𝑚
are taken into account.

We calculated the structural reliability with interval model
and ellipsoidal model by Monte Carlo simulation with 1000
samples, respectively. The reliability analysis results are given
in Figure 12.

As shown in Figure 12, with increasing of 𝑑
𝑚
, the non-

probabilistic reliability 𝑅
𝑐
also has an increasing trend. From

Figure 12, it is noted that interval model is more conservative
than results of ellipsoidal model.
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Figure 12: Reliability analysis results with interval model and
ellipsoidal model.
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Figure 13: Sensitivity analysis result with interval model and
ellipsoidal model.

Set the maximum allowable horizontal displacements
𝑑
𝑚
= 22; perform sensitivity analysis with ellipsoidal model;

the structural sensitivity can be obtained readily as shown in
Figure 13.

As shown in Figure 13, increasing the value of cross-
sectional area 𝐴

𝑖
, 𝑖 = 1, 2, 3, 4, will enhance the structural

rigidity and increase the structural reliability, while increas-
ing the input variable 𝐿will decrease the structural reliability.
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Table 2: Uncertainty variables of piccolo tube structure.

Variable name Nominal value Convex model description
Pipeline diameter 𝐴 (m) 0.060 𝛿

2

𝐴
≤ 0.01

2

Pipeline wall thickness 𝐵 (m) 0.002
{𝛿
𝐵
, 𝛿
𝐶
} [

1 0

0 1

]{

𝛿
𝐵

𝛿
𝐶

} ≤ 0.1
2

Hole diameter 𝐶 (m) 0.002
Hole side distance𝐷 (m) 0.040

{𝛿
𝐷
, 𝛿
𝐸
} [

1 0

0 1

]{

𝛿
𝐷

𝛿
𝐸

} ≤ 0.1
2

Hole interval length 𝐸 (m) 0.04
Hole angle 𝐹 (∘) 45 𝛿

2

𝐹
≤ 0.01

2

Young’s modulus𝑀 2.1𝐸11 𝛿
2

𝑀
≤ 0.02

2

Density 𝜌 (kg/m3) 7800 𝛿
2

𝜌
≤ 0.1
2

External vibration frequency 𝜆 (Hz) 1700 𝛿
2

𝜆
≤ 0.1
2

Table 3: Anterior four mode frequencies of piccolo tube structure.

Mode number 1 2 3 4
Natural frequency (Hz) 1538.4 1613.8 1819.0 1827.5

This sensitivity analysis results are in accordance with the
engineering practice.

5.3. Case Study 3. An anti-ice piccolo structure is the core
component part of a wing anti-ice system. It is close to aircraft
engines, subject to random excitation generated by the
engine. So there exists the potential possibility of structural
resonances. In this paper, we take a part of anti-ice piccolo
structure to perform the resonance reliability and variables
sensitivity analysis. The finite element model (FEM) of anti-
ice piccolo structure is shown in Figure 14, which is built with
ANSYS software.The local methmodel is shown in Figure 15.

The uncertain parameters of piccolo are described with
multiellipsoid convex model and are listed in Table 2.

Firstly, we take the mean value of variables as input
parameters. By mode analysis, the anterior four natural
frequencies of anti-ice piccolo structure can be obtained.The
anterior four mode frequencies are shown in Table 3. The
anterior four vibration modes are shown in Figure 16.

As shown in Table 3, the first natural frequency denoted
by 𝜂 is close to external excitation frequency. According to
the requirement of antiresonance design, the performance
function of structural resonance failure can be expressed by

𝑔 (𝜂, 𝜆) = 𝜂 − 𝜆, (26)

where 𝜆 is the external excitation frequency and 𝜂 is the first
natural frequency. When |𝜂 − 𝜆| ≤ 𝛿, the structure will cause
resonance damage; when |𝜂 − 𝜆| > 𝛿, structure is safe. In
practical engineering, we usually set 𝛿 = 0.05𝜆; here 𝛿 =

60Hz.
To perform Monte Carlo analysis with 365 samples gen-

erated by the method mentioned in Section 4.3, the sampling
results of performance function are shown in Figure 17.

As shown in Figure 17, there are only 6 samples falling
into the structural resonance failure; the pipeline structural
reliability can be readily obtained by 𝑅

𝑐
= 350/356 =

0.9863. To implement the sensitivity analysis by the method

Figure 14: FEM of piccolo structure.

Figure 15: Local meth model of piccolo structure.

mentioned in Section 4.3, the bar chart of sensitivity analysis
results is shown in Figure 18.

Figure 18 provides a graphical illustration of the impact
of structural input variables on output. A positive sensi-
tivity indicates that increasing the value of input variable
will increase the structural reliability. Likewise, a negative
sensitivity indicates that increasing the value of input variable
will reduce the structural reliability.

6. Conclusions

In this paper, a practical nonprobability reliability and global
sensitivity analysis method for interval, ellipsoid, and multi-
ellipsoid convex uncertainty model is constructed. In order
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Figure 16: The diagram of anterior four vibration modes.
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Figure 18: Bar chart of sensitivity analysis results.

to provide an accurate depiction of possible model outcome,
uniform design, an effective space-filling design, is used to
generate representative samples for input variables. As the
computation of reliability index proposed in this paper is
based on Monte Carlo simulation, it is very suitable for more
general engineering problem, like some problems with black-
box performance function.

The global sensitivities analysis method present in this
paper is based on Spearman’s rank correlation coefficient,
which is different from local sensitivities analysis. The
advance of this method is that it does not increase the com-
putation cost. After the reliability analysis is implemented,
the sensitivity results can be obtained readily.These examples
demonstrated the feasibility of the presented method.
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The interaction between the plume of Hall thruster and the surface of the SMART-1 spacecraft is investigated by developing a three-
dimensional IFE-PIC-MCC code, with the emphasis on the effect of the disturbance force and thermal loading caused by charge
exchange ions (CEX) impingement on the surface of the spacecraft.The parameters such as heat flux and forces of CEX ions which
impinge on SMART-1 and solar arrays are obtained. The disturbance force of CEX ions to the spacecraft is calculated for different
divergence angles and different solar array rotation cases. The simulation results show that the disturbance force and heat flux on
spacecraft change very little as the divergence angle changes. The effect of maximum disturbance force can be neglected since it is
so small comparing with the nominal value of the main thrust. Solar arrays receive the least thermal heating from the CEX ions
when the beam ions flow is perpendicular to the solar array plane.

1. Introduction

Themotion of the satellite is usually controlled by the ejection
of the plume from the thruster into the space. Then, the
interaction between the plume and the spacecraft surface
may cause undesirable effects such as causing the disturbance
force and thermal loads and contaminating sensitive equip-
ment and sensors. The disturbance force can be a fraction
of the total thrust, while thermal loads on the surface of
spacecraft body result in the heating of the surface and affect
the working status of electronic components which can only
function properly in a range of temperatures. So the accurate
modeling and predictions of these effects are very crucial to
the design of a satellite [1–3].

The interaction between the exhausted plume of thrusters
and the satellite components has been studied by some
researchers for both chemical thrusters and electric propul-
sions thrusters [2, 4]. Park et al. [2] used three-dimensional
discrete simulation Monte Carlo (DSMC) to investigate
the interaction of the chemical thruster (a 4.45N MRE-1

monopropellant hydrazine liquid rocket engine) plume with
satellite components in KOMPSAT-II. The results showed
a negligible disturbance force/torque and thermal loading
compared with its nominal thrust/torque and solar heating.
Xiao et al. [5] analyzed molecules adsorption and transmis-
sion on the surface of satellite by using numerical simulation
and ground experiment method. Also, the motion of plume
pollutantswhich leads to performance degradation of satellite
key functional surfaces (optical systems, solar panels, thermal
control object surface, etc.) is calculated. Different from
the plume of the chemical thrusters, the plume of electric
propulsion is plasma which consists of a large number of
ions and electrons except neutral atoms. In addition, charge
exchange collisions will occur between the high-speed ions
and neutral atoms which result in the generation of low-
speed CEX ions that have significant impact on the plume
characteristics.These charged particles are affected heavily by
their self-consistent electric fields. Therefore, compared with
the plume of the chemical thrusters, the plume of the electric
propulsion thruster is different in not only the ingredients
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of the plume but also the flow characteristics of the plume.
A number of simulation models or numerical methods have
been developed for the plume in the electric propulsion
thruster to investigate the interaction with the spacecraft
surface and the results from these numerical models were
verified through the comparison with the experiment data
in recent years [6–13]. Yan et al. [10] used particle in cell
(PIC) code with DSMC techniques to model Hall thruster
plume and sputtering erosion on SPT-70. Kafafy and Cao
[11] investigated plume effects from indirect plume impinge-
ment on formation flying satellites using ion propulsion
by developing an immersed-finite-element PIC (IFE-PIC)
algorithm on parallel computers. Tajmar et al. [12] developed
a hybrid PIC code with Monte Carlo collision (MCC) to
study spacecraft-environment interaction. Boyd [13] studied
the ion current density profile and ion energy distribution
by using a detailed particle-fluid PIC-DSMC model, which
was compared with the experimental measurements taken in
space. However, most of them were concerned about CEX
ions sputtering erosion or the accuracy of simulation model,
but few of them were concerned about the disturbance force
and thermal loading on the spacecraft which are caused by
the impinging of the backflow CEX ions on the surface of the
spacecraft.

Therefore, in this paper, the study of the force and
thermal loads on the spacecraft caused by backflow CEX
ions is performed by using a three-dimensional IFE-PIC-
MCC code. The PIC-MCC [12] code is used to simulate the
generation and movement of CEX ions. The DSMC method
[14] is applied to model neutral atoms. Electric field in the
plume is obtained by solving Poisson’s equation which is
calculated by IFE-PIC [15, 16] method which is designed
to handle complex boundary conditions accurately while
maintaining the computational speed of the standard PIC
code. The code is then applied to the numerical simulations
of the SMART-1 spacecraft which had traveled to the moon
using a PPS-1350 Hall thruster with the maximum thrust of
70mN [17].

Section 2 describes the interaction model between the
plume of Hall thruster and the surface of the spacecraft. The
numerical method is presented in Section 3. The simulation
results are then shown in Section 4 and some discussions
on these results are carried out. Finally, the summary and
conclusions are presented at the end of this paper.

2. SMART-1 Spacecraft-Plume
Interactions Model

The geometry and dimensions of SMART-1 spacecraft model
are illustrated in Figure 1. The main body of SMART-1 can
be considered as the cubic shape with the dimensions of 𝑙 ×
𝑤 × ℎ = 1100mm × 1100mm × 900mm. In this model, the
Hall thruster is simplified as a cylinder with the diameter of
100mm and the height of 50mm; two thin rectangles with
5400mm length and 1000mmwidth are utilized to represent
the solar arrays which can rotate around the satellite.

The PPS-1350 Hall thruster emits an ion beam out of
a ring-shaped anode with a divergence angle 𝜃 = 45

∘.
Typical operating parameters of PPS-1350 Hall thruster are
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Figure 1: The geometry and dimensions of SMART-1 (in mm).

Table 1: Operating parameters of PPS-1350 Hall thruster.

Parameter Value
Thrust 70mN
Voltage 𝑈acc 350V
Ion current 𝐼

𝑖

3.8 A
Mass flow rate 4.2mg/s
Specific impulse 164 s
Total efficiency 𝜂 51%
Outer insulator diameter 𝑟

𝑜

100mm
Inner insulator diameter 𝑟

𝑖

56mm
Neutral temperature 750K
Electron temperature 𝑇

𝑒

2 eV

summarized in Table 1 [13]. At the exit of the thruster,
the densities and temperatures are assumed to be radically
uniform, and the velocity vectors vary uniformly from −45

∘

at the lower edge of the channel exit to +45
∘ at the upper

edge. The temperatures of the electrons and neutrals are
assumed to be 2 eV and 750K, respectively.The heavy particle
densities and velocities are subsequently obtained from the
mass flow rate and integrated ion current. The plume in the
PPS-1350 Hall thruster assumingly consists of the following
components:

(i) propellant beam ions,
(ii) unionized propellant neutrals,
(iii) slow propellant ions created by CEX reaction colli-

sions,
(iv) neutralising electrons.

The plasma in the beam of the Hall thruster typically
has a number density of more than 10

15m−3. The widely
used PIC approach is applied in this research. The so-called
super particle representing a number of 109 real particles is
introduced here. As a result, the total number of simulated
entities of Xe and Xe+ is kept below 10

7; therefore the
simulations can be carried out on standard workstations [17].

Xe+ particles are given a constant velocity at the thruster
exit as

V
𝑖
= √

2𝑒𝑈acc
𝑚
𝑖

, (1)
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where 𝑈acc is accelerating voltage, 𝑚𝑖 is xenon ion mass, and
V
𝑖
denotes the ion velocity.
Initially the ions are uniformly distributed across the

thruster opening between the inner radius 𝑟
𝑖
and the outer

radius 𝑟
𝑜
. The direction of the velocity v

𝑖
is determined in

spherical coordinates (V
𝑖
; 𝛼
1
; 𝛼
2
) [17], where 𝛼

1
is randomly

chosen in 0 < 𝛼
1
< 2𝜋 and 𝛼

2
is varied in accordance with the

radial position between the inner and outer beam-spreading
angles 𝛼

𝑖
and 𝛼

𝑜
by

𝛼
2
(𝑟) =

𝛼
𝑜
− 𝛼
𝑖

𝑟
𝑜
− 𝑟
𝑖

(𝑟 − 𝑟
𝑖
) + 𝛼
𝑖
, (2)

where 𝑟
𝑜
and 𝑟
𝑖
are the outer and inner radii at the exit of the

thruster, respectively.
During the simulations, the number of ejected Xe+ beam

ions by the Hall thruster at each time-step is obtained by the
ion current:

Δ𝑛
𝑖
= 𝐼
𝑖
Δ𝑡, (3)

where 𝐼
𝑖
denotes ion current,Δ𝑛

𝑖
is number of ions generated

at each time step, and Δ𝑡 represents the time of each step.
The electrons are assumed to be collisionless, currentless,

isothermal, and unmagnetized. The plasma is quasineutral
and electrons satisfy the Boltzmann [12] relation as

𝑛
𝑒
= 𝑛
𝑒0
exp[

𝑒 (𝜙 − 𝜙
0
)

𝑘𝑇
𝑒0

] , (4)

where 𝑛
𝑒
is electron number density, 𝜙 is potential, and 𝑛

𝑒0
,

𝜙
0
represent the reference parameters.
The electric field surrounding the spacecraft is solved

from Poisson equation

−∇ ⋅ 𝜀∇𝜙 = 𝑒 (𝑛
𝑖
− 𝑛
𝑒
) , (5)

where 𝜀 denotes permittivity of vacuum, 𝑛
𝑒
is electron

number density, 𝑛
𝑖
represents ion number density, and 𝜙 is

the potential.
Charged particles in the simulation area are accelerated

due to the electric field. Their movement can be determined
by the integration of the equation of motion, which can be
described with Newton’s second law:

d
d𝑡

(𝑚v) = F = 𝑞E, v =
dx
d𝑡

. (6)

Neutral Xe propellant atoms are introduced with no drift
velocity but the thermal velocity related to the temperature
of the neutral Xe propellant atom. As neutral Xe atoms
move, the DSMC method is applied to simulate collisions of
neutral Xe propellant atoms since neutral propellant can be
considered as a rarefied gas flow. In this method, each unit
cell, containing many particles, has the dimensions on the
order of a mean free path. Pairs of these particles are then
randomly selected and a collision probability is evaluated
which is proportional to the product of the relative velocity
and cross section of the collision for each pair.The probability
is compared with a random number to determine if that
collision occurs.

Let us consider a single simulation cell containing a
number of simulation macroparticles. Bird [14] gives the
probability of a collision for a macroparticle in this cell:

𝑃 = 𝐹
𝑁
𝜎
𝑇
𝑐
𝑟

Δ𝑡

𝑉
𝑐

, (7)

where 𝐹
𝑁
is the macroparticle weight, 𝜎

𝑇
is the total collision

cross section, 𝑐
𝑟
is the relative velocity, Δ𝑡 is the simulation

time step, and 𝑉
𝑐
is the cell volume.

One order to check for collisions would be to iterate over
all 𝑁 particles and compute probability with all remaining
particles.This would result in𝑁(𝑁−1)/2 ∼ (𝑁

2

)/2 pairs. For
a large number of particles, this method clearly becomes very
computationally inefficient. Bird’s no time counter (NTC)
methodwas designed to provide help with this issue. It allows
us to estimate ahead of time the maximum number of pairs
that need to be checked. The maximum collision probability
is

𝑃max = 𝐹
𝑁

(𝜎
𝑇
𝑐
𝑟
)max

Δ𝑡

𝑉
𝑐

, (8)

where (𝜎
𝑇
𝑐
𝑟
)max is a parameter chosen ahead of time using

approximate predictions of cross section and velocity. As
Bird points out in his book, the actual value is not all that
important since it ends up getting cancelled out.The number
of pairs to check is then

(
1

2
)𝑁𝑁𝐹

𝑁
(𝜎
𝑇
𝑐
𝑟
)max

Δ𝑡

𝑉
𝑐

. (9)

Here the second 𝑁 is the average particle count. The aver-
age is used to reduce the statistical time-step to time-step
oscillations. For each pair, we then compute the probability
as follows:

𝑃 =
𝜎
𝑇
𝑐
𝑟

(𝜎
𝑇
𝑐
𝑟
)max

. (10)

This value is compared to a random number and the collision
occurs if 𝑃 > 𝑅.

For atom-atom elastic collisions, the variable hard sphere
collision model is employed. For xenon, the collision cross
section is

𝜎EL (Xe,Xe) =
2.12 × 10

−18

𝑔2𝜔
m2, (11)

where 𝑔 is the relative velocity and 𝜔 denotes the viscosity
temperature exponent for xenon which has the value of 0.12
[14].

Charge-exchange collisions occur between the fast beam
Xe+ ions and the slow neutral Xe atoms. After these collisions,
the fast beam Xe+ ions turn to be neutral and keep the fast
speed; and the slow neutral Xe atoms change into ions which
are accelerated due to the effect of the electric field. These
changes can be expressed as follows:

Xeslow + Xe+fast → Xe+slow + Xefast. (12)
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To model the CEX process, we use the MCC method.
For each Xe+ ion we calculate the collision probability. This
probability is then compared to a random number. If the
probability is larger than the random number, the collision
occurs and a process-specific collision handler is called. The
collision probability is given by Birdsall [18] as

𝑃 = 1 − exp (−]Δ𝑡) = 1 − exp (−𝑛
𝑛
𝜎𝑔Δ𝑡) . (13)

𝑛
𝑛
is the density of the target gas at the location of the particle,

𝜎 is the collision cross section, 𝑔 is the relative velocity, and
Δ𝑡 is the time difference between collision checks. This time-
step may correspond to the time-step used to move the ions
in the PIC method.

In this research, the transfer of only one electron between
an atom and an ion is considered during the charge-exchange
process. For singly charged ions, the following cross section
measured by Pullins et al. and Miller et al. [19, 20] is used:

𝜎CEX (Xe,Xe+) = [−23.30log
10

(𝑔) + 142.21] × 0.8423

× 10
−20m2,

(14)

where 𝑔 is the relative velocity between the beam ion and
neutral atom.

Boundary conditions for computing of the Hall thruster
plume are presented as follows. Both field and particle
boundary conditions are required at the outer boundary of
the computational domain. The field condition is simply set
as the electric field normal to the boundary edges equal to
zero. The particle boundary condition is set to be that any
particle crossing the boundary is simply removed and will no
longer be calculated in the model. The solid surfaces of the
Hall thruster and the satellite are also considered during the
simulations. Along these surfaces, the potential of surfaces is
set to be at a certain given value (−2V). Any ions colliding
onto the surfaces are absorbed by the surfaces.

3. Numerical Method

A particle simulation code using the IFE-PIC-MCC algo-
rithm is developed to solve the plume interaction problem.
The IFE-PIC-MCC code solves the generating of CEX ions
and their trajectories and the electric field surrounding the
spacecraft.

The simulation is run in three phases: modeling beam
Xe+ ions, neutral Xe, and CEX ions, respectively. The reason
that these different species particles can be simulated asyn-
chronously is as follows.

(1) Beam Xe+ ions have so high energy that they are
hardly affected by self-consistent electric field.

(2) Neutral Xe atoms do not get charged so that they are
not affected by electric field.

(3) CEX ions are in small numbers in plasma plume and
their generation affects the plume character very little.

In the first phase, we run the PIC code to generate
and trace beam Xe+ ions and neutral Xe until steady-state

Z

Y

X

4
m

1
m

O
4m

7.5
m

Figure 2: The dimensions of the simulation region.

trajectories are obtained. In this phase, we use a simplified
approach to model beam Xe+ ions. Those beam Xe+ ions are
accelerated in the Hall thruster channel with the velocities on
the order of 10 km/s. So most high-energy beam Xe+ ions are
unaffected by self-consistent electric field and follow straight
trajectories. The DSMC method is used in the computation
of Xe-Xe collisions. After this phase, the distribution of beam
Xe+ ions and neutral Xe is gotten in the computation region,
respectively.

In the second phase, the IFE-PIC-MCC code is used to
trace CEX ions until steady-state trajectories are obtained.
CEX ions are generated from the collision of steady-state
beam Xe+ ions and neutral Xe by MCC at each time step.
The initial velocity of CEX ions is given a uniform velocity
distribution with a temperature corresponding to that of the
neutral propellant. That is to say, initial CEX ions only have
thermal velocity with no drift velocity which is relatively
small and is affected heavily by electric field. Using IFE-PIC,
the electric field is calculated which pushes the movement of
CEX ions at each time step. Those processes are cycled until
steady-state CEX ions trajectories are obtained.

In the final phase, CEX ions are collected which impinge
on SAMRT-1 and solar arrays; then all those CEX ions are
used to calculate the flux density of CEX ions, the energy
distribution, and pressure distribution on SMART-1 and solar
arrays.

4. Simulations Results

Due to the symmetry of SMART-1 (as illustrated in Figure 1), a
half-symmetrymodel is employed to simulate the interaction
between the plume and the surface of SMART-1, as shown in
Figure 2. The position of SMART-1 in the simulation region
is also shown in Figure 2.The simulation domain has a size of
4.0m × 7.5m × 4.0mwith 81 × 151 × 81 grid points. During
the simulations, approximately 8 million simulation particles
are employed. The time-step is on the order of 10

−6 s. The
simulation reaches a steady state for CEX ions after about 800
iterations, and solutions are then averaged over further 200
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Figure 3: Plasma potential distribution (at 𝜃 = 45
∘, 𝛾 = 0

∘).

iterations.The total computation time is about 24 h on an HP
computer server.

Figure 3 illustrates the distribution of the potential under
the conditions of 𝜃 = 45

∘ and 𝛾 = 0
∘ (here 𝛾 is the angle

between the normal of the solar array plane and the center
line of the beam flow). As shown in Figure 3, the backflow
of the CEX ions results in the fact that the isopotential
surface expands toward a direction opposite to the ion beam
movement. It makes the pattern of the distribution look like
a mushroom.

Figures 4 and 5 present the pressure and energy distribu-
tion of CEX ions on solar arrays, respectively. As solar arrays
can rotate around the axis to change their direction, the effect
of the angle between the normal of solar array plane and the
beam flow c enter line is investigated. As illustrated in Figures
4 and 5, three different angles are chosen as 𝛾 = 0

∘, 45∘,
and 90

∘ and their effects are presented. It is clear to see that
the solar arrays receive more CEX ions and bear much more
pressure at 𝛾 = 0

∘ than at 𝛾 = 90
∘.

Figures 6 and 7 present the energy and pressure distribu-
tion about CEX ions impinging on the surface of SMART-
1 main body. CEX impingement on main body and CEX
ions distribution on main body are almost the same for
different solar array rotation angles, since different solar array
positions can hardly affect the electric field distribution in

Table 2: Parameter values on main body for different solar array
rotation angle cases (at 𝜃 = 45

∘).

Solar array rotation
angle 𝛾 (in deg)

Average energy
(in W/m2)

Disturbance normal
force (in mN)

0 2.46513 0.5652
45 2.46513 0.5652
90 2.46513 0.5652

the vicinity of the main body. Also, it can be observed that
the less backflowCEX ions on themain body can be obtained
along with the increasing of the distance to the location of
theHall thruster.Themaximum energy of CEX ions reaching
onto the main body of the spacecraft is 17.056W/m2.

Tables 2 and 3 list the values of the disturbance normal
force and thermal loading on the SMART-1 spacecraft for
different solar array rotation angle cases, which are calculated
based on the backflow CEX ions energy and pressure distri-
bution. It can be seen that the values of the average energy
and disturbance force on the main body of the spacecraft are
the same under different solar array rotation angle, while the
values of the average energy and disturbance force on solar
arrays decrease as the solar array rotation angle 𝛾 increases.
The maximum value of disturbance force onto spacecraft can
reach 0.7mN when 𝛾 = 0

∘. The tangential force acting on the
main body is symmetric due to the symmetric distribution
of the pressure on the main body (as shown in Figure 7).
Although tangential force on the half main body can reach
a value of 0.1512mN, the total tangential force on main
body is counteracted and can be neglected. As the rotation
angle of the solar array increases, the tangential force in the
direction of array plane length direction decreases due to less
CEX impingement on solar arrays. But the total effect of the
tangential force on the solar arrays is limited, since the total
tangential force on both solar arrays is mostly counteracted
with each other.

Figure 8 presents the distribution of the plasma potential
for different divergence angle. It can be seen in Figure 8 that
the distributions of the plasma potential are quite different
under the condition of the same rotating angle but different
divergence angle. The divergence angle also affects the CEX
ions impinging on the spacecraft.The effects of three different
divergence angles are studied for the same mass flow rate
(4.2mg/s). The solar arrays are set in the position that solar
arrays are perpendicular to ion beam (𝛾 = 0

∘), and the
parameters of CEX ions impingement are recorded for the
three divergence angles: 𝜃 = 15

∘, 30∘, and 45
∘.

As listed in Table 4, the average energy on both the
main body and solar arrays does not change much when the
divergence angle changes. As divergence angle increases, the
disturbance force on the main body increases very little. The
disturbance force to solar arrays is relatively small comparing
to the disturbance force on the main body, since solar arrays
are far from the flux beam flow and receive less CEX ions.The
maximum disturbance force is less than 0.1% of the nominal
value of the main thrust.Thus, the disturbance force has little
influence on the dynamic system of the satellite, as well as the
propellant budget.
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∘) (in N/m2).
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Table 3: Parameter values on one of solar arrays for different solar array rotation angle cases (at 𝜃 = 45
∘).

Solar array rotation
angle 𝛾 (in deg)

Average energy
(in W/m2)

Disturbance normal
force (in mN)

Tangential force in array
width direction (in mN)

Tangential force in array
length direction (in mN)

0 0.16692 0.09449 0 0.2071
45 0.12463 0.05512 0.0354 0.1562
90 0.02903 0.01105 0.00732 0.0748

Table 4: Parameter values for different divergence angle cases (at 𝛾 = 0
∘).

Divergence
angle 𝜃 (in deg)

Average energy on
main body (in W/m2)

Average energy on solar
arrays (in W/m2)

Disturbance force to
main body (in mN)

Disturbance force to
solar arrays (in mN)

15 2.43187 0.18829 0.54366 0.17317
30 2.42073 0.19279 0.54532 0.19483
45 2.46513 0.16692 0.56523 0.18897
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Figure 7: CEX ions pressure distribution on the surface of SMART-1
main body (at 𝜃 = 45

∘) (in N/m2).

0 50 100 150
0

20

40

60

80

y

z

3.33
11.11
18.89
26.67
34.44
42.22
50.00

(V
)

−4.44
−12.22
−20.00

(a) At 𝜃 = 15∘, 𝛾 = 0∘

y

z

0 50 100 150
0

20

40

60

80

3.33
11.11
18.89
26.67
34.44
42.22
50.00

(V
)

−4.44
−12.22
−20.00

(b) At 𝜃 = 45∘, 𝛾 = 0∘

Figure 8: Distribution of plasma potential for different divergence
angles.

5. Summary and Conclusion

In summary, the interaction between the plume of the
Hall thruster and the SMART-1 spacecraft has been inves-
tigated using a three-dimensional IFE-PIC-MCC code. In
this research, the backflow CEX ions impingement on the
SMART-1 is investigated, and the effects of the disturbance
force and the thermal loading due to the impingement are
studied. The effects of different divergence angles and solar
array rotation angles on the disturbance force are considered.
Simulation results revealed that the maximum disturbance
normal force can only reach a value of 0.7mN, which is
relatively small comparing with the main thrust (70mN). As
the solar array rotation angle increases, both the disturbance
force on the spacecraft and the average energy on solar arrays
decrease substantially. With the increment of the divergence
angle, both the disturbance force and the average energy on
the surface of spacecraft are slightly changed under the same
solar array rotation angle conditions, whereas the disturbance
force in the main body has a slight rise. But the maximum
disturbance force is less than 0.1% of the nominal value of the
main thrust, which means the effect of the disturbance force
can be ignored.
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The calcium oscillations have many important roles to perform many specific functions ranging from fertilization to cell death.
The oscillation mechanisms have been observed in many cell types including cardiac cells, oocytes, and hepatocytes. There are
many mathematical models proposed to describe the oscillatory changes of cytosolic calcium concentration in cytosol. Many
experiments were observed in various kinds of living cells. Most of the experimental data show simple periodic oscillations. In
certain type of cell, there exists the complex periodic bursting behavior. In this paper, we have studied further the fractional chaotic
behavior in calcium oscillations model based on experimental study of hepatocytes proposed by Kummer et al. Our aim is to
explore fractional-order chaotic pattern in this oscillation model. Numerical calculation of bifurcation parameters is carried out
using modified trapezoidal rule for fractional integral. Fractional-order phase space and time series at fractional order are present.
Numerical results are characterizing the dynamical behavior at different fractional order. Chaotic behavior of the model can be
analyzed from the bifurcation pattern.

1. Introduction

The behaviors of many physical systems are nonlinear. The
study of complexity arising from nonlinear systems is an
intrigue subject for scientific research. Nonlinear systems
have demonstrated a wide range of strange behaviors; the
small change in initial conditions or system parameters result
in long-term unpredictable behavior known as chaos.

Nonlinear dynamical systems have many interesting
behaviors to study. The research in this field starts from
the discovery of chaos in atmospheric convection model
by Lorenz [1]. The equations that described the dynamical
system are differential equations which yield different type of
solutions [2] such as limit cycle, periodic, periodic doubling,
nonperiodic, and chaotic solutions. Further studies in this
field are chaos synchronization [3] and fractional-order
dynamical system [4–17].

The biological systems are examples of nonlinear system
where chaos arises including cardiac rhythms and bursting
patterns of excited neural and intracellular chemical oscilla-
tion [18]. Nonlinear dynamical systems in living organisms
are examples of complex system which evolved far from

equilibrium conditions [19]. Many biological phenomena
can now be understood with mathematical modeling [18].
The studies biological systems via nonlinear dynamics are
feasible to discover new explanation in biological sciences
and emerging applications for clinical diagnosis and therapy
[19]. The examples of nonlinear dynamics in living organism
include respiratory burst, glycolysis, peroxidase reaction, and
Ca2+ oscillations [18, 19].

Biorhythms are example of nonlinear dynamics in living
organism, usually associated with excitable cells, but there
is growing evidence that nonexcitable cells may also exhibit
periodic behavior [20]. Much of this periodic activity is
driven by regular oscillations in intracellular calcium [19, 20].
The experimental studies show that Ca2+ oscillations are the
changing in free cytosolic Ca2+ concentration, which are
found in various cell types [21].

A nonlinear dynamical system is a deterministic system
that is feasible to explain by set of differential equations [2].
Recently, studies on theory of fractional calculus have been
applied to describe the dynamical systemwhere the derivative
can be fractional order [4–17].
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Figure 1: Phase space of Ca2+ oscillation at 𝑞 = 1.

The fractional chaotic dynamical systems have attracted
increasing attention, for example, chaos in a fractional-order
Rössler system [4], chaotic dynamics of fractional-order
Arneodo’s systems [3], fractional Chen system [5], chaos in
a fractional order modified Duffing system [6], chaos in the
Newton–Leipnik system with fractional order [7], fractional
order Chua’s system [8], fractional-order Volta’s system [9],
fractional model for malaria transmission under control
strategies [10] and fractional order logistic [11], and discrete
chaos in fractional sine and standard maps [12].

The aimof this paper is to investigate the complex dynam-
ics of fractional-order Ca2+ oscillation model purposed by
Kummer et al. [21].Themodel is obtained from experimental
study of hepatocyte. This mathematical model is exhibiting

various dynamical behaviors, such as periodic and periodic
doubling, quadrupling, and chaos.The numerical calculation
of bifurcation parameters is carried out using modified
trapezoidal rule for fractional integral.

2. Role of Calcium Oscillations

The biological system provided good examples of nonlinear
dynamical system to study including the population of living
things in ecosystem and biochemical oscillation and spread
of epidemic diseases [19]. Oscillations in living thing are
an important biological rhythmic [22]. These phenomena
play an important role in many aspects of biological order
and function, which involve many systems ranging from
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Figure 2: Fractional-order phase space of Ca2+ oscillation 𝑞 = 0.6.

the molecular to the macroscopic scale. The rhythmic cycles
may range from microsecond to hours (molecular and cellu-
lar oscillations) or days (circadian rhythms) and evenmonths
(population growth cycles) [18]. Dynamical behaviors range
from sustained autonomous oscillations with periodic cycles
to periodic doubling and nonperiodic cycles or chaos [22].
Calcium oscillations are important oscillations at cellular
level. It has many important roles to perform many specific
functions ranging from fertilization to cell death [23]. There
are many mathematical models proposed to describe the
oscillatory changes on cytosolic calcium concentration in
intracellular [8, 9]. Many of experiments on different kinds of
living cells are observed [21]. Most of the experimental data
show simple periodic oscillations [24].

Woods et al. [25] discovered the calcium oscillations
experimentally in 1986 and large numbers of cells show

calcium oscillations after simulation by an extracellular
agonist [21]. Later, the role in calcium signaling by inositol
triphosphate (IP

3
) was discovered by Berridge from studies of

the control fluid secretion by an insect salivary gland [26].The
signaling pathway of IP

3
/Ca2+ has been adapted to control

processes as diverse as fertilization, proliferation, cell con-
traction, secretion, and information processing in neuronal
cells [26]. Many activities of living cells are controlled by
calcium from both intracellular and extracellular sources to
generate signals that transduce exogenous stimulation into
physiological output [23]. The important role of calcium
oscillations has been confirmed bymany experimental works
[18, 22, 23].

The difference in Ca2+ oscillations frequency regulates
different functions. The high frequency cytosolic Ca2+ oscil-
lations regulate fast responses, such as synaptic transmission
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Figure 3: Integer-order time series with chaotic parameters.

and secretion, whereas low frequency oscillations regulate
slow processes, such as fertilization and gene transcription
[27]. Ca2+ oscillations have essential role in intracellular sig-
naling [21].The oscillating signal can have different frequency
and amplitude depending upon the encoding of specific
message that triggers the functions [28]. There are many
mathematical models proposed to describe the mechanism
of calcium oscillations but most of them present only simple
periodic oscillations which are characterized by a single
frequency [10].

There exist non-periodic complex bursting types of cal-
cium oscillations found in some experimental study [21].The
models were proposed; that is, Borghans et al. [24] proposed

calcium-induced calcium release (CICR) based on model
focusing on the effect of cytosolic calcium on the degradation
of inositol trisphosphate. Shen and Larter [29] proposed
theoretical study of complex calcium oscillations model
based on both the calcium-induced calcium release (CICR)
and the inositol triphosphate (IP

3
) cross-coupling (ICC).The

model has demonstrated regular bursting and a transition
to chaos which involves differential equations for cytosolic
Ca2+, endoplasmic Ca2+, and IP

3
. Dupont and Goldbeter

[30] have developed somemathematical models; one of them
is related to the activation and autophosphorylation of the
multifunctional Ca2+-calmodulin-dependent protein kinase
II (CaMKII) by Ca2+ and calmodulin (CaM) which is able
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Figure 4: Fractional-order time series with chaotic parameters.

through underlying its ability to decode Ca2+ oscillations and
to control multiple cellular functions.

Meyer and Stryer [31] proposed the inositol trisphos-
phate- (IP

3
-) Ca2+ cross coupling model (ICC) in which the

cooperative release of Ca2+ from an IP
3
-sensitive store results

in positive feedback by Ca2+ on phospholipase C (PLC).
Borghans et al. [24] proposed the calcium-induced calcium
release (CICR) mechanism based on the processes originally
described in skeletal triggered by calcium itself via a positive

feedback loop. de Young and Keizer IP
3
R model [32] has one

IP
3
and two Ca2+ binding sites on the cytosolic side. Kummer

et al. [21] proposed calcium oscillation in hepatocytes on the
basis of qualitative experimental results. This mathematical
model consists of the four variables as follows: cytosolic
Ca2+, endoplasmic Ca2+, concentrations of active subunits
of a G protein, and active PLC [21]. The model shows good
agreement with experimental observations in two respects.
First, each oscillation period starts with a large, steep spike
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followed by a number of pulses of decreasing amplitude
around an elevated mean value. Second, varying the model
parameters, one finds that the difference in stimulation
nature can induce (periodic or aperiodic) bursting or regular
oscillations [33].

Calcium has many roles for controlling numerous cel-
lular functions. Intracellular signaling pathways are often
regulated by the Ca2+ and cAMP [19]. Many physiological
processes such as egg fertilization, short-term memory, neu-
rotransmission, and gene transduction and triggering cell
to death are controlled by Ca2+ oscillation [28]. The Ca2+
oscillation can be explained by change in cytosolic Ca2+
concentration.

A comprehensive review of the calcium modeling is pro-
vided by Schuster et al. [34]. Calcium has important role in
information processing. It has functions as messengers. Pro-
teins within the cell have the capacity to decode the informa-
tion from the Ca2+ signals to perform different functions [19].

3. Fractional Calculus

Fractional calculus is the theory of differential and integral
operator of non-integer order. This old mathematical topic
has origin date back to the day that Leibnitz replies to
L’Hospital about the meaning of half order derivative [35].
Theory is not known to scientists and engineers much
until the last few decades. The theory has been applied to
model many physical processes successfully with fractional
differential equations including theory of viscoelasticity,
heat diffusion, and nonlinear dynamics. The comprehensive
discussions of this theory are presented by Oldham and
Spanier [35], Miller and Ross [36], and Podlubny [37]. There
are many approaches for solving the fractional-order differ-
ential equation (FDE) including series expansion, numerical
approximation, Laplace transform [38], Adomian decom-
position [39], predictor corrector scheme [40], Galerkin
approximation [41], and AdamMoulton algorithm [42].

The applications of fractional calculus in physics are
better in describing the diffusion phenomena in inhomo-
geneous media with non-integer derivative [37], modeling
of ultracapacitors [43], the fractional derivatives model of
viscoelasticmaterial [44], thermalmodeling and temperature
estimation of a transistor junction [45], fractional-order
impedance in electric circuit [37], dynamical process of heat
conduction, and chaotic dynamical system [4–17].

In classical calculus, the meaning of integer-order deriva-
tive is the rate of change, direction of decline, or slope in the
geometric interpretation. The meaning of fractional-order
derivative is different. It has no obvious geometricmeaning or
physical interpretation [37]. Recently, Podlubny has proposed
a new physical interpretation based on general convolu-
tion integrals of the Volterra type [46]. Tenreiro Machado
gives a geometric and probabilistic interpretation based on
Grunwald-Letnikov definition of the fractional derivative
[47].Du et al. explain physicalmeaning of the fractional order
which is an index of memory [48]. Sabatier et al. impose
physically coherent initial conditions to a fractional system
[42]. Recently, this mathematical theory gains more attention
in biological science, that is, low frequency constant-phase
behavior in the respiratory impedance [49], front dynamics in
fractional-order epidemic models [15], fractional derivatives
in Dengue epidemics [14], and dynamical characteristics of
the fractional-order FitzHugh-Nagumo model neuron [13].

The advantage of fractional derivatives in comparison
with classical integer-order calculus is description ofmemory
properties. In the last few decades many authors show
that derivatives and integral of noninteger order are very
suitable for describing properties of various real materials,
for example, polymers; Bagley and Torvik show that the
fractional-order models are more adequate than integer-
order models [44].

4. Definition

Definition 1. The Riemann-Liouville fractional integral of
order 𝑞 > 0 of a function 𝑓 : 𝑅+ → 𝑅 is given by

𝐼
𝑞
𝑓 (𝑥) =

1

Γ (𝑞)
∫

𝑥

0

(𝑥 − 𝑡)
𝑞−1
𝑓 (𝑡) 𝑑𝑡 (1)

provided the right side is pointwise defined on 𝑅+ [37].

Where Γ(⋅) is Gamma function define by

Γ (𝑥) = ∫

∞

0

𝑒
−𝑢
𝑢
𝑥−1
𝑑𝑢. (2)

Definition 2. The Caputo fractional derivative of order 𝑞 ∈
(𝑛 − 1, 𝑛) of a continuous function 𝑓 : 𝑅+ → 𝑅 is given by
[37]

𝐷
𝑞
𝑓 (𝑥) = 𝐼

𝑛−𝑞
𝐷
𝑛
𝑓 (𝑥) , 𝐷 =

𝑑

𝑑𝑡
. (3)

Definition 3. Grunwald-Letnikov definition for fractional
derivative of order 𝑞 is given by [37]

𝑎𝐷
𝑞

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝑞

[𝑡−𝑎/ℎ]

∑

𝑗=0

(−1) (
𝑞

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (4)
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Figure 6: The bifurcation diagram of Ca2+ oscillations model with different control parameters.

where

(
𝑛

𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!
=
𝑛 (𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑟 + 1)

𝑟!

=
Γ (𝑛 + 1)

Γ (𝑟 + 1) Γ (𝑛 − 𝑟 + 1)
.

(5)

There are many definitions in fractional calculus. Twomostly
used definitions are Riemann-Liouville and Grunwald-
Letnikov.The Riemann-Liouville definition for the fractional
integral and derivative is used for solving the analytical

solution while the Grunwald-Letnikov definition is more
appropriate in numerical calculation [35–37].

5. Mathematical Model

The model proposed by Kummer et al. [21] focuses on the
feedback inhibition on the initial agonist receptor complex
by Ca2+ and activated phospholipase C (PLC) and receptor
type-dependent self-enhanced behavior of the activated 𝐺

𝛼

subunit. So the four main variables are the free Ca2+ concen-
tration in the cytosol (Cacyt), the concentration of the active
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Figure 7: Fractional-order bifurcation of Ca2+ oscillation model.

𝐺
𝛼
subunit, the concentration of active PLC (PLC), and the

concentration of Ca2+ in endoplasmic reticulum.
Kummer et al. [21] assume that IP

3
is in a quasi-stationary

state where the concentration of inositol triphosphate (IP
3
)

follows the dynamics of active PLC. The model can be
described by the four differential equations as follows:

𝑥

= 𝑘
1
+ 𝑘
2
𝑥 − 𝑘
3

𝑥𝑦

𝑥 + 𝑘
4

− 𝑘
5

𝑥𝑧

𝑥 + 𝑘
6

,

𝑦

= 𝑘
7
𝑥 − 𝑘
8

𝑦

𝑦 + 𝑘
9

,

𝑧

= 𝑘
10
𝑦𝑧

𝑢

𝑢 + 𝑘
11

+ 𝑘
12
𝑦 + 𝑘
13
𝑥 − 𝑘
14

𝑧

𝑧 + 𝑘
15

− 𝑘
16

𝑧

𝑧 + 𝑘
17

,

𝑢

= − 𝑘

10
𝑦𝑧

𝑢

𝑢 + 𝑘
11

+ 𝑘
16

𝑧

𝑧 + 𝑘
17

,

(6)

where

𝑥 is the change in the concentration of the active 𝐺
𝛼

subunit;

𝑦 is the concentration of active phospholipase C
(PLC);

𝑧 is the concentration of free calcium in the cytosol
(Cacyt);

𝑢 is the concentration of calcium in the intracellular
stores such as endoplasmic reticulum (ER) and 𝑘

1
to

𝑘
17
are constant values.

We have used the same initial values as Kummer et al. [21]
as follows:

𝑘
1
= 0.09, 𝑘

2
= 2.7738, 𝑘

3
= 0.64,

𝑘
4
= 0.19, 𝑘

5
= 4.88, 𝑘

6
= 1.18,

𝑘
7
= 2.08, 𝑘

8
= 32.24,

𝑘
9
= 29.09, 𝑘

10
= 5.0, 𝑘

11
= 2.67, 𝑘

12
= 0.7,

𝑘
13
= 13.58, 𝑘

14
= 153, 𝑘

15
= 0.16,

𝑘
16
= 4.85, 𝑘

17
= 0.05.

(7)

6. Fractional-Order Model

We consider the commensurate order where the orders are
all equal. The fractional-order calcium oscillation model is
simply represented by replacing the integer derivative with
fractional-order derivative as follows:

𝐷
𝑞
𝑥 = 𝑘
1
+ 𝑘
2
𝑥 − 𝑘
3

𝑥𝑦

𝑥 + 𝑘
4

− 𝑘
5

𝑥𝑧

𝑥 + 𝑘
6

,

𝐷
𝑞
𝑦 = 𝑘
7
𝑥 − 𝑘
8

𝑦

𝑦 + 𝑘
9

,

𝐷
𝑞
𝑧 = 𝑘
10
𝑦𝑧

𝑢

𝑢 + 𝑘
11

+ 𝑘
12
𝑦 + 𝑘
13
𝑥

− 𝑘
14

𝑧

𝑧 + 𝑘
15

− 𝑘
16

𝑧

𝑧 + 𝑘
17

,

𝐷
𝑞
𝑢 = − 𝑘

10
𝑦𝑧

𝑢

𝑢 + 𝑘
11

+ 𝑘
16

𝑧

𝑧 + 𝑘
17

,

(8)

where 𝑞 is commensurate fractional order.
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Figure 8: Spikes change in Ca2+ concentration for different 𝑘
14
and bifurcation diagram of Ca2+ concentration and 𝑘

6
.

7. Numerical Method

There are many approaches in fractional-order numerical
calculation. There are two main approaches for numerical
calculation: the frequency domain and time domain. The
study of Tavazoei andHaeri shows that the frequency domain
approach can lead to the fake chaotic results [38]. The
numericalmethod that we utilize in this paper is time domain
approach of the modified trapezoidal rule proposed by
Odibat andMomani [50].Thismethod is a simple calculation

scheme that is derived from the area of trapezoidal
shape.

Consider 𝑦 = 𝑓(𝑥) over [𝑎, 𝑏] and suppose that the inter-
val [𝑎, 𝑏] is subdivided into 𝑚 subintervals {[𝑥

𝑘−1
, 𝑥
𝑘
]}
𝑚

𝑘=1
of

equal width ℎ = (𝑏 − 𝑎)/𝑚 by using the equally spaced nodes
𝑥
𝑘
= 𝑥
0
+ 𝑘ℎ for 𝑘 = 1, 2, . . . , 𝑚.

The composite trapezoidal rule for𝑚 subinterval is

𝑇 (𝑓, ℎ) =
ℎ

2
(𝑓 (𝑎) + 𝑓 (𝑏)) + ℎ

𝑚

∑

𝑘=1

𝑓 (𝑥
𝑘
) . (9)
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The formula can extend to use with fractional-order dif-
ferential as follows [50]:

𝑇 (𝑓, ℎ, 𝑞) = ((𝑘 − 1)
𝑞+1
− (𝑘 − 𝑞 − 1) 𝑘

𝑞
)
ℎ
𝑞
𝑓 (0)

Γ (𝑞 + 2)

+

𝑘−1

∑

𝑗=1

((𝑘 − 𝑗 + 1)
𝑞+1

−2 (𝑘 − 𝑗)
𝑞+1

+ (𝑘 − 𝑗 − 1)
𝑞+1

)

×
ℎ
𝑞
𝑓 (𝑥
𝑗
)

Γ (𝑞 + 2)
.

(10)

The formula in (10) is used for approximating the integral
function of arbitrary order. According to the classical theory
of ordinary differential equations, to produce a unique
solution for the problem, we need to specify initial conditions
[50].

The equation is an approximation to fractional integral at
order 𝑞

(𝐼
𝑞
𝑓 (𝑥) (𝑎)) = 𝑇 (𝑓, ℎ, 𝑞) − 𝐸 (𝑓, ℎ, 𝑞) , (11)

where 𝑎 > 0 and 𝑞 > 0.
Odibat and Momani [50] show that the error is function

of parameter ℎ
𝐸 (𝑓, ℎ, 𝑞)

 = 𝑂 (ℎ
2
) . (12)

It is obvious that if the order 𝑞 = 1, then the modified
trapezoidal rule reduces to the classical trapezoidal rule

lim
𝑞→1

𝐷
𝑞
𝑓 (𝑥) =

𝑑𝑓 (𝑥)

𝑑𝑥
. (13)

8. Stability at Fractional Order

In this section, we discuss the stability condition for
fractional-order systems and a necessary condition for chaos
to exist. Consider the following fractional differential equa-
tion [6]:

𝐷
𝑞
𝑥
𝑖
= 𝑓
𝑖
(𝑥
1
, 𝑥
2
, 𝑥
3
) , 𝑖 = 1, 2, 3. (14)

The equilibrium points 𝑥eq
𝑖

of the fractional-order dif-
ferential system can be obtained by solving the following
equation:

𝐷
𝑞
𝑥
𝑖
= 0, (15)

and 𝛿
𝑖
a small deviation can be obtained from the following

equilibrium:

𝑓
𝑖
(𝑥

eq
1
+ 𝛿
1
(𝑡) , 𝑥

eq
2
+ 𝛿
2
(𝑡) , 𝑥

eq
3
+ 𝛿
3
(𝑡))

= 𝑓
1
(𝑥

eq
1
, 𝑥

eq
2
, 𝑥

eq
3
) +

𝜕𝑓
1

𝜕𝑥
1

eq
𝛿
1
+
𝜕𝑓
1

𝜕𝑥
2

eq
𝛿
2
+
𝜕𝑓
1

𝜕𝑥
3

eq
𝛿
3
,

(16)

and then

𝐷
𝑞
(𝛿
𝑖
) ≅ +

𝜕𝑓
1

𝜕𝑥
1

eq
𝛿
1
+
𝜕𝑓
1

𝜕𝑥
2

eq
𝛿
2
+
𝜕𝑓
1

𝜕𝑥
3

eq
𝛿
3
, (17)

Therefore, we will have a linear system

𝐷
𝑞
(𝛿
𝑖
) = 𝐴𝛿, (18)

where

𝐴 =

[
[
[
[
[
[
[
[
[
[

[

𝜕𝑓
1

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑥
2

𝜕𝑓
1

𝜕𝑥
3

𝜕𝑓
2

𝜕𝑥
1

𝜕𝑓
2

𝜕𝑥
2

𝜕𝑓
2

𝜕𝑥
3

𝜕𝑓
3

𝜕𝑥
1

𝜕𝑓
3

𝜕𝑥
2

𝜕𝑓
3

𝜕𝑥
3

]
]
]
]
]
]
]
]
]
]

]

. (19)

The following autonomous system:

𝐷
𝑞
𝑥 = 𝐴𝑥, 𝑥 (0) = 𝑥

0
, (20)

where 0 < 𝑞 < 1, 𝑥 ∈ 𝑅𝑛, and 𝐴 ∈ 𝑅𝑛×𝑛, is asymptotically
stable if and only if |arg(𝜆

𝑖
(𝐴))| > 𝑞𝜋/2. In this case, each

component of the states decays towards 0 like 𝑡−𝑞 Also; this
system is stable if and only if |arg(𝜆

𝑖
(𝐴))| ≥ 𝑞𝜋/2 and those

critical eigenvalues that satisfy |arg(𝜆
𝑖
(𝐴))| = 𝑞𝜋/2 have

geometric multiplicity one [17].

9. Commensurate Fractional Order

Consider that the commensurate fractional-order system
with the order is all equal to 𝑞. In this case, a system shows
regular behavior if it satisfies [51]

𝑞 <
2

𝜋
min
𝑖

arg (𝜆𝑖)
 . (21)

The equilibrium points of the system at the given param-
eters set are as follows:

𝐸
1
(10.0544, 53.7091, −1.3183, −0.0374864) ,

𝐸
2
(−1.24025, −2.15522, −0.0171356, −2.4883) ,

𝐸
3
(−0.352276, −0.64645, −0.00529478, −2.59275) ,

𝐸
4
(−0.0299949, −0.0561849, −0.000465736, −2.66236) ,

𝐸
5
(7.81412, 29.5754, 0.775014, 0.110537) ,

𝐸
6
(19.1242, −153.502, 32.7238, −0.000514706) .

(22)

From the initial condition in [10],

𝑘
1
= 0.09, 𝑘

2
= 2.7738, 𝑘

3
= 0.64, 𝑘

4
= 0.19,

𝑘
5
= 4.88, 𝑘

6
= 1.18, 𝑘

7
= 2.08, 𝑘

8
= 32.24,

𝑘
9
= 29.09, 𝑘

10
= 5.0, 𝑘

11
= 2.67, 𝑘

12
= 0.7,

𝑘
13
= 13.58, 𝑘

14
= 153,

𝑘
15
= 0.16, 𝑘

16
= 4.85, 𝑘

17
= 0.05.

(23)
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The Jacobian determinant is

𝐽 =



𝑘
2
−
𝑘
3
𝑘
4
(𝑘
6
+ 𝑥)
2

𝑦 + 𝑘
5
𝑘
6
(𝑘
4
+ 𝑥)
2

𝑧

(𝑘
4
+ 𝑥)
2

(𝑘
6
+ 𝑥)
2

−
𝑘
3
𝑥

𝑘 + 𝑥
−
𝑘
5
𝑥

𝑘
6
+ 𝑥

−
𝑘
5
𝑥

𝑘
6
+ 𝑥

𝑘
7

−
𝑘
8
𝑘
9

(𝑘
9
+ 𝑦)
2

0 0

𝑘
13

𝑘
12
+
𝑘
10
𝑢𝑧

𝑘
11
+ 𝑢

𝑘
10
𝑢𝑧

𝑘
11
+ 𝑢

−
𝑘
14
𝑘
15

(𝑘
15
+ 𝑧)
2
−

𝑘
16
𝑘
17

(𝑘
17
+ 𝑧)
2

𝑘
10
𝑢𝑦

𝑘
11
+ 𝑢

−
𝑘
14
𝑘
15

(𝑘
15
+ 𝑧)
2
−

𝑘
16
𝑘
17

(𝑘
17
+ 𝑧)
2

0
𝑘
10
𝑢𝑧

𝑘
11
+ 𝑢

−
𝑘
10
𝑢𝑦

𝑘
11
+ 𝑢

+
𝑘
16
𝑘
17

(𝑘
17
+ 𝑧)
2

−
𝑘
10
𝑢𝑦

𝑘
11
+ 𝑢

+
𝑘
16
𝑘
17

(𝑘
17
+ 𝑧)
2



.

(24)

The characteristic equation is

𝜆
4
+ 15.6113𝜆

3
+ 12.1598𝜆

2
+ 31.393𝜆 − 4.07004 × 10

−16

Arg (𝜆
1
) = 𝜋, Arg (𝜆

2
) = −1.80517,

Arg (𝜆
3
) = 1.80517, Arg (𝜆

4
) = 0.

(25)

From (21) system shows regular behavior if it satisfies 𝑞 <
1.14921.

We have calculated the values of each argument that
correspond to the equilibrium point’s results in either 0 or 𝜋
which means that all equilibrium points are unstable.

10. Fractional-Order Phase Space

The constructing fractional-order phase space can assist in
understanding the fractional change in dynamical system.
Chaotic behavior of the calcium oscillation in liver cell can
be viewed in phase space of the calcium concentration and
other system variables. The geometric meaning of the single
closed loop of phase space represents the periodic system, two
closed loops of phase space represent the periodic doubling,
and so on [49]. For chaotic system, the phase space appears as
amultiple loop. According to the given values of the constants
chaotic parameters 𝑘

1
to 𝑘
17
, the phase spaces of Kummer

model are presented in Figures 1 and 2, respectively.

11. Fractional-Order Time Series

Nonlinear dynamics are time dependent system. The change
from periodic behavior to periodic doubling and then route
to chaos can be analyzed from the time series. Time series
represent are sequence of points which describe the behav-
ior of dynamical system. The calcium oscillation model is
characterized by four different variables: the change in the
concentration of the active 𝐺

𝛼
subunit (𝑥), the concentration

of active phospholipase C (PLC) (𝑦), concentration of free
calcium in the cytosol (Cacyt) (𝑧), and concentration of
calcium in the intracellular stores (𝑢). The integer-order
time series of the Ca2+ model are shown in Figure 3 and

the numerical results of fractional-order time series obtained
by numerical integration of the modified trapezoidal rule are
shown in Figures 4 and 5, respectively. The complexities at
fractional-order are present as the bursting of the Ca2+ signal.

12. Fractional-Order Bifurcation Diagram

Generally, the bifurcation diagram represents the behavior
of dynamical system when varying certain parameter val-
ues. Single lines represent the stable periodic system, while
branching represents the periodic doubling or quadrupling
or higher.The band of dots represents the chaotic region.The
integer-order bifurcation diagram of themodel for parameter
𝑘
10
and 𝑘
16
is presented in Figure 6.The comparison between

integer-order bifurcation diagram and fractional order bifur-
cation of the parameter 𝑘

10
is presented in Figure 7. The

numerical result shows the existence of chaos at fractional
order for the same control parameter and initial condition.
The two diagrams look resemble but slightly different in
scales.

13. Numerical Results

The model proposed by Kummer et al. [10] show that there
exists chaotic behavior at the given parameters. We have
examined further different ranges with fractional calculus
for the parameters that show periodic doubling and route
to chaos. The corresponding bursting fractional-order time
series are also present.The numerical integration at fractional
order is accomplished by applying the modified trapezoidal
rule to the fractional differential equation. The numerical
errors are related to the time step of numerical integration.
To reduce the numerical errors, the time step is set to
ℎ = 3000.

The numerical results with fractional order are provided
by huge variations in the number of solutions. This would
be able to fit to the experimental data. According to the
literature, the functions of calcium are in numerous areas
ranging from fertilization and muscle movement. The vari-
ation in solutions outcome would be feasible to describe
certain functions caused from the oscillations.
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We have chosen the order 𝑞 = 0.8 to examine the
fractional-order time series of the Ca2+ concentration as
presented in Figure 5. The constant values are as follows:

𝑘
1
= 0.09, 𝑘

2
= 2.7738, 𝑘

3
= 0.64, 𝑘

4
= 0.19,

𝑘
5
= 4.88, 𝑘

6
= 1.18, 𝑘

7
= 2.08, 𝑘

8
= 32.24,

𝑘
9
= 29.09, 𝑘

10
= 5.0, 𝑘

11
= 2.67,

𝑘
12
= 0.7, 𝑘

13
= 13.58, 𝑘

14
= 153,

𝑘
15
= 0.16, 𝑘

16
= 4.85, 𝑘

17
= 0.05.

(26)

The initial values are 𝑥
0
= 0.01, 𝑦

0
= 0.01, 𝑧

0
= 0.01, and

𝑢
0
= 20.
The bifurcation diagrams are obtained by varying certain

control parameter and take the highest values from iteration.
The constant values in the model that show the periodic
doubling and route to chaos are 𝑘

6
, 𝑘
10
, 𝑘
11
, and 𝑘

16
.

We choose the parameter 𝑘
10
to study the fractional-order

bifurcation in Figure 7. The integer-order shows that there
exist period-3 (𝑘

10
< 2.2), period-6 (2.2 < 𝑘

10
< 2.6), and

period-10 (2.6 < 𝑘
10
< 3.4) and then route to chaos (3.6 <

𝑘
10
< 5). The fractional-order bifurcation diagram is slightly

different and there still exists the chaotic region at different
scale.

14. Discussion and Conclusions

We have shown that cytosolic Ca2+ oscillations can change
the concentration very rapidly when the constant variable
𝑘
14

changes from 152 to 153 as present with time series and
bifurcation diagram in Figure 8. There are many mathemat-
ical models proposed to explain the calcium oscillations.
Kummer’smodel of calciumoscillations in hepatocytes is able
to display simple oscillatory and chaotic bursting. The slight
change in certain variable can cause the abruptly change in
Ca2+ concentration.

The Poincare-Bendixson theorem states that continuous
dynamical systems cannot exhibit chaotic attractor if dimen-
sion is less than three. We have presented the example of
biological model of Ca2+ oscillation that exhibits chaotic
behavior at order less than three. In this paper, we have
applied the theory of fractional calculus to study chaotic
property in mathematical model of calcium oscillation pro-
posed by Kummer et al.There exists the irregularity behavior
in themodel.The complex behaviors are exhibited as bursting
during the oscillation. The fractional-order time series of
bursting signal are present. The bifurcation diagrams show
that there exists chaos with the order less than three. In
conclusion, the numerical results are able to yield insight
into an intermediate change in fractional order numerical
integration.The variation of the solutions by fractional order
integration would be feasible to describe certain functions of
the Ca2+ oscillations when compared with the experimental
data.
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In order to have a better evaluation process to determine the experts weight in the evaluation process, this paper proposes a new
expert weight calculation method. First of all to establish electric propulsion simulation evaluation system, use AHP method to
calculate the initial weight principle of index. Then use the D-S to fuse the experts evaluation information, combined with the
weight vector, structure of the expert weight objective function, and through the genetic algorithm to solve the expert weight size.
According to the expert weight vector, calculate the final weight vector. Not only can it greatly make use of the experts information
and analyze the similarity of information effectively but also it calculates the weight of each expert objectively. At the same time the
evaluation subjective factors have been reduced by the adoption of this new method.

1. Introduction

Regarding ship electric propulsion system as a modern
ship career development direction, its safety and reliability
are more and more concerned about [1]. The simulation
technology is one of the important means for people to
study ship electric propulsion system [2]. But the results of
simulation credibility are worth considering, and incorrect
results could lead tomajor events. So analyzing the credibility
in the system simulation results, determining the relative
weight of each subsystem, has great significance for studying
the mechanism of ship electric propulsion system.

In the system simulation credibility analysis, we need to
make sure of the mutual importance of the systems, namely,
the weight. Analytic hierarchy process (AHP) is a compre-
hensive evaluation method used in research of complicated
system [3]. The basic idea of using analytic hierarchy process
to determine weight is to invite more related experts to
compare each subsystem and to identify and analyse the
judgment matrix. As a result of difference between each
expert in knowledge, experience, ability, and level, different
experts have different result toweight evaluation system.How

to make better use of the evaluation experts has always been
about the topic of comparison.

The D-S evidence theory is a method widely used in
information fusion technology [4]. Chen et al. propose
making use of the Markov random fields (MRFs) and D-
S evidence theory to interactive color image segmentation
method [5]. Si et al. proposed a novel prediction approach
through information fusion of improvedD-S evidence theory
and neural network to forecast the distribution of coal seam
terrain [6]. Li and Pang use D-S evidence theory to solve
vessel collision risk assessment [7]. Experimental results
show that the proposed approach confirms the validity and
is reasonable for real application. But D-S evidence theory
cannot solve the conflict evidence problem.

To solve this problem, according to the multiple experts
judgment matrix by using analytic hierarchy process method
and D-S evidence theory, avoid the conflict in information
on the expert information synthesis from the actual case.
According to the weight of the fusion, establish an expert
weight target function and determine the weight of experts
using genetic algorithms. Finally, determine the weight of
final system by weighting. This algorithm is effective to
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Figure 1: Structure diagram for ship electric propulsion simulation system reliability evaluation index system.

solve the synthesis expert information conflict problems and
improve the system of the objectivity of the judgment.

2. The Simulation System Reliability
Evaluation Index System

For the ship electric propulsion simulation system reliability
evaluation study, according to user requirements and the
characteristics of the system itself, first of all we need to
establish the ship electric propulsion simulation system relia-
bility evaluation index system. Based on the key indicators
in research process, investigate subsystem one by one, and
establish the system equivalence evaluation index system.
In the process of building evaluation system, according to
the target layer, criterion layer, and measures layer sequence,
decompose the system step by step hierarchically and make
a complicated problem decomposed into several elements.
For ship electric propulsion simulation system is concerned
about, target layer is ship electric propulsion simulation
system reliability. Criterion layer, from the system simulation
model to system based on the simulation results, determines
the level of index measures step by step [8]. For system sim-
ulation model and system simulation results are concerned
about, the reliability is analyzed from the power supply
system, power distribution system, power transformation
system, and propulsion system, respectively. Finally ship
electric propulsion simulation system reliability evaluation
system is shown in Figure 1.

3. Expert Evaluation Weight Analysis

3.1. The Steps to Calculate the Index Weight

Step 1. According to many experts’ relative judgment matrix,
use the principle of AHP to calculate the index of the initial
weight.

Step 2. Determine the index weight fusion through the
modified D-S fusion initial index weight, and determine the
absolute judgment matrix through the expert judgment.

Step 3. According to each index fusion weight and absolute
judgment matrix, determine the expert weight, the objective
function and a genetic algorithm is adopted to calculate the
optimal solution to determine the expert weight.

Step 4. Weigh the initial weight and expert weight, and
determine the weights of the index.

3.2. Based on the AHP Analysis of Initial Weights. Initial
weight can be calculated by AHP to carry out. Compared
with the previous expert scoring method, fuzzy evalua-
tion method, the grey correlation method, Pressure-State-
Response method (PSR), and artificial neural network algo-
rithm, AHP is a kind of qualitative analysis and quantitative
analysis and systematic and hierarchical multiple factors of
decision analysis method; this method will be the decision
maker’s experience quantitative judgment. It is very con-
venient in the condition of the multiobjective and lack of
necessary data [9].

Ship electric propulsion simulation system reliability
evaluation index system calculation generally can be divided
into the following four steps [10].

Step 1. Each element value in judgment matrix is relative
to a certain element in a previous level, associated with the
each elements in the layer pairwise comparison judgment
importance. In the judge process, use 1–9 scale method to
show, specific as is shown in Table 1.

Step 2. The element’s relative weight for the criterion is
calculated by judgment matrix.

Step 3.Compute synthetic weight of each of the layer elements
to system target.

Step 4. Consistency check: consistency includes absolute
consistency (or complete consistency) and order consistency.
The so-called absolute consistency means that the judgment
matrix 𝐴, If matrix A meet

𝑎
𝑖𝑗

= 𝑎
𝑖𝑘
𝑎
𝑗𝑘

𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛. (1)

We called matrix 𝐴 meet absolute consistency.
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Table 1: The scale method of 1∼9.

Scale Meaning
1 Two factors have the same importance

3 A factor relative to another factor a little
important

5 A factor relative to another obvious important
factors

7 A factor relative to another important factor
strongly

9 A factor relative to another extremely important
factor

2, 4, 6, 8 Median in two adjacent judgments

Reciprocal
Factors 𝑖 and 𝑗 are to judge 𝑏

𝑖𝑗
;

the factors 𝑗 and 𝑖 compare judgment
𝑏
𝑗𝑖

= 1/𝑏
𝑖𝑗

It says 𝐴 is absolute consistency matrix (or complete
consistency matrix); at the same time there is

𝑎
𝑖𝑗

=
𝑊
𝑖

𝑊
𝑗

𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛,

𝐴𝑊 = 𝑛𝑊.

(2)

Sort consistency is to point to the following: if factor a is
important than factor 𝑏 and factor 𝑏 is important than factor
𝑐, then a factor is important than factor 𝑐. And the consistency
check index C.I. is as follows:

C.I. =
𝜆max − 𝑛

𝑛 − 1
. (3)

The 𝑛 is the order number of judgment matrix 𝐴 and 𝜆max is
the biggest characteristic root of judgment matrix 𝐴.

Calculation consistency ratio C.R. is as follows:

C.R. =
C.I.
R.I.

. (4)

When C.R. < 0.1, consider the consistency of judgement
matrix is acceptable [11] (Table 2).

3.3. The Construction of Expert Weight Objective Function
Based onD-SMethod. For the ship electric propulsion system
concerned about, setting the index set 𝐵 = {𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
},

experts set𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑚
}, andmatrix𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑛

(0 <

𝑎
𝑖𝑗

< 1) is absolute judgment matrix coming from experts to
marking index weight. Set index fusion weight vector 𝑊 =

{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
}, expert weight vector is 𝑅 = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑚
},

and meet ∑𝑛
𝑗=1

𝑤
𝑗
= 1, ∑𝑚

𝑖=1
𝑟
𝑖
= 1.

For absolute judgment matrix, if evaluation from expert
𝑑
𝑖
has no difference with other experts’ evaluation, the expert

𝑑
𝑖
has a higher similarity with other experts. That is to

say, expert 𝑑
𝑖
has higher credibility. 𝐹

𝑖𝑗
(𝑟) show the index

judgment deviation from experts 𝑑
𝑖
and other experts:

𝐹
𝑖𝑗 (𝑟) =

𝑚

∑

𝑘=1


𝑎
𝑖𝑗
𝑟
𝑖
− 𝑎
𝑘𝑗
𝑟
𝑘


∗ 𝑤
𝑗
. (5)

Table 2: The average random consistency targets R.I.

Matrix order number R.I.
1 0
2 0
3 0.52
4 0.89
5 1.12
6 1.26
7 1.36
8 1.41
9 1.46
10 1.19

𝐹
𝑗
(𝑟) show the total index judgment deviation from 𝑚

experts:

𝐹
𝑗 (𝑟) =

𝑚

∑

𝑖=1

𝑚

∑

𝑘=1


𝑎
𝑖𝑗
𝑟
𝑖
− 𝑎
𝑘𝑗
𝑟
𝑘


∗ 𝑤
𝑗
. (6)

For index 𝑏
𝑗
, deviation value 𝐹

𝑗
(𝑟) is smaller; credibility of

the judge from experts is higher. For the system in the index,
total deviation value is smaller; credibility of the judge from
experts is higher. According to the calculation of the system
integration indicators weight, structural expert weight target
optimization function

min 𝐹 (𝑟) =

𝑛

∑

𝑗=1

𝑚

∑

𝑖=1

𝑚

∑

𝑘=1


𝑎
𝑖𝑗
𝑟
𝑖
− 𝑎
𝑘𝑗
𝑟
𝑘


∗ 𝑤
𝑗

s.t.
𝑚

∑

𝑖=1

𝑟
𝑖
= 1

0 < 𝑟
𝑖
< 1 (𝑖 = 1, . . . , 𝑚) .

(7)

3.4. Solve theObjective Function. Formula (7) belongs to non-
linear optimization problem, the genetic algorithm suitable
for processing this kind of problem. With the increase of
matrix dimension, parameters in formula (7) will increase
sharply, in order to find the optimal solution undermultivari-
ate conditions, introducing the concept of niche to enhance
the diversity of population [12, 13]. Algorithm flow chart is
shown in Figure 2.

4. Ship Electric Propulsion
Simulation System Expert Evaluation
Weight Calculation Conclusion

Based on the analysis of the weight of each subsystem, invite
three authoritative experts to score evaluation. Relative to
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Figure 2: Flow chart for the niche genetic algorithm of AHP calcu-
lation.

the subsystem𝐵, three experts are given, respectively,𝐷1,𝐷2,
𝐷3, and 𝐷4 judgment matrix, specific as follows:

𝐵
1
=

[
[
[
[
[
[
[
[

[

1
1

6

1

3
3

6 1 2 7

3
1

2
1 5

1

3

1

7

1

5
1

]
]
]
]
]
]
]
]

]

,

𝐵
2
=

[
[
[
[
[
[

[

1
1

2

1

2
3

2 1 1 4

2 1 1 4

1

3

1

4

1

4
1

]
]
]
]
]
]

]

,

𝐵
3
=

[
[
[
[
[
[
[
[

[

1 1
1

5
3

1 1
1

5
3

5 1 1 7

1

3

1

3

1

7
1

]
]
]
]
]
]
]
]

]

.

(8)

According to the principle of AHP calculate the correspond-
ing initial weights of each subsystem, and check the con-
sistency of judge matrix. If they do not meet the require-
ments for consistency, give the judge matrix again. Get
three experts to 𝐷1, 𝐷2, 𝐷3, and 𝐷4 judgment weight:
𝑊
𝑏1

= {0.1176, 0.5345, 0.2904,0.0578},𝑊
𝑏2

= {0.2004,0.3587,
0.3583, 0.0816}, and 𝑊

𝑏3
= {0.1953, 0.1953, 0.5324, 0.0771}.

According to the calculation of the initial weight, using
the improvedD-S to fuse evaluation information, get𝐷1,𝐷2,
𝐷3, and 𝐷4 fusion weight to subsystem 𝐵𝑊

𝑏
 = {0.0633,

0.3941, 0.5334, 0.0091}.
For ship electric propulsion system simulation model

credibility analysis, the purpose is to determine whether the
model is accurate. In this criterion, the three experts give
𝐷1, 𝐷2, 𝐷3, and 𝐷4 weight fuzzy evaluation matrix: 𝐵 =

[0.1 0.5 0.3 0.1; 0.2 0.35 0.35 0.1; 0.2 0.2 0.5 0.1]. Accord-
ing to each subsystem fusion weight and expert fuzzy eval-
uation matrix, by the algorithm to determine the expert
weight objective function, and through the genetic algorithm
optimization, determine the expert weight optimal solution.
Get three subsystems𝐷1,𝐷2,𝐷3,𝐷4weight evaluation of its
own weight 𝑅

𝐵
= {0.401, 0.36, 0.238}.

According to the expert weight and the initial weight of
the subsystem, using the weighted method to calculate the
weight of each subsystem, get 𝐷1, 𝐷2, 𝐷3, 𝐷4 weight to
subsystem 𝐵𝑊

𝑏
= {0.1654, 0.3886, 0.3732, 0.0706}.

Similarly, the three experts give the judgment matrix of
each subsystem for objectives 𝐴 and 𝐶 and calculate the
weight of each subsystem according to the above method. In
view of the space reasons, give only the expert weight and the
weight of each subsystem.

For the three experts grade evaluation for𝐷5,𝐷6,𝐷7,𝐷8,
get the weight in the evaluation process of evaluation: 𝑅

𝐶
=

{0.48, 0.218, 0.3}, and the subsystem 𝐷5, 𝐷6, 𝐷7, 𝐷8 weight
𝑊
𝐶

= {0.1666, 0.1758, 0.2974, 0.3582}.
Analyzing subsystem 𝐵 and 𝐶 against overall goal 𝐴, get

evaluation weight 𝑅
𝐴

= {0.44, 0.259, 0.3} and the weight sub-
system 𝐵, 𝐶 to 𝐴 : 𝑊

𝐴
= {0.5108, 0.4882}.

According to the calculation of the 𝑊
𝐴
, 𝑊
𝐵
, 𝑊
𝐶
weight

vector, use the weighted method to calculate the total target:

𝑊 = [𝑊


𝐵
𝑊


𝐶
] ⋅ 𝑊


𝐴

=
[
[
[

[

0.1653 0.1666

0.3887 0.1758

0.3731 0.2974

0.0708 0.3582

]
]
]

]

⋅ [
0.5108

0.4882
]

= [0.1658 0.2844 0.3358 0.2110]

.

(9)

From the calculation results above, it is known that, in the
ship electric propulsion system, the simulation credibility
is the greatest impacted by power conversion subsystem,
secondly they were distribution subsystem, propulsion sub-
system, and power subsystem. Power transformation simula-
tion subsystem in energy conversion and harmonic aspects
affect the credibility of the system. Distribution system
simulation subsystem produces certain effect to management
and distribution of electricity. Propulsion system simulation
subsystem is aimed at mutation load. For power subsystem
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main consideration of its power quality, the other modules
produce small amount of influence.

5. Conclusions

By using D-S theory and AHP, study the ship electric propul-
sion simulation system for the credibility evaluation expert
weight. Through the inspection of the similarity between
the experts, determine the expert weight objective function,
and the genetic algorithm was used to calculate the expert
weight optimal solution. This method not only can fuse the
advantages of other methods, but also make better use of
the expert advice in the evaluate process greatly. It can make
subjective judgments of experts more united and avoid the
one-sidedness when considering only one expert, and various
judgments from different experts on reliability of ship electric
propulsion simulation system can be treated; particularly
evidence of conflict is no longer blindly negated. At the same
time, this method can optimize the indexes and enhance the
veracity and reliability for scientific decision-making, which
has better comprehensive assessment evaluation and is more
meaningful.
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The air-water mixture from an artificially aerated spillway flowing down to a canyonmay cause serious erosion and damage to both
the spillway surface and the environment.The location of an aerator, its geometry, and the aeration flow rate are important factors in
the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and com-
putational fluid dynamics (CFD)modeling is presented.The numerical modeling used was a large eddy simulation technique (LES)
combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing
unit (GPU).The result of this analysis in the formof design suggestionsmay help diminishing the hazards associatedwith cavitation.

1. Introduction

In spillway engineering there are numerous challenging
obstacles. One of the most determining factors is the geo-
logical geometry in which the dam and its spillway have to
be built in. The geometry, such as length and slope of the
spillway, can range from short and steep to long and flat or
vice versa. Generally, the longer and steeper is the spillway
the higher is the gradient of the energy head of the flowing
water. In some cases the velocity of the water might exceed
30m/s and cavitation might occur. Used as an illustrative
example, the high-energy spillway of the Kárahnjúkar Dam
which supports the Hálsson Reservoir in eastern Iceland
displays numerous problems in spillway engineering. An
aerial perspective of this spillway can be seen in Figure 1.

When a fluid changes state from liquid to vapor, its
volume increases by orders of magnitude and cavities (or
bubbles) can form. Indeed, cavities, which are filled with
water vapor, are formed by boiling at the local pressure which
equals the water vapor pressure. If the cavity is filled with
gases other than water vapor, then the process is named
gaseous cavitation [1].

There is a technical difference between boiling and
cavitation. On the one hand, boiling is defined as the process
of phase change from the liquid state to the vapor state by

changing the temperature at constant pressure. On the other
hand, cavitation is the process of phase change from the liquid
state to the vapor state by changing the local pressure at
constant temperature.

Cavitation is a consequence of the reduction of the
pressure to a critical value, due to a flowing liquid or in an
acoustical field. Spillways are subject to cavitation. Inertial
cavitation is the process in which voids or bubbles rapidly
collapse, forming shock waves. This process is marked by
intense noise. The shock waves formed by cavitation can
significantly damage the spillway face [1]. Cavitation damage
on the spillway face is a complex process [2]. Richer concrete
mixes are used to increase the resistance to cavitation damage
and erosion [3].

Falvey [1] suggested that impurities and microscopic air
bubbles in the water are necessary to initiate cavitation. As
can be seen from Figure 1, the color of water accumulated
behind the dam indicates that it may contain various types
of impurities including suspended fine solid particles. The
density of the water accumulated behind the dam was
determined from a sample using a hydrometer. The relative
density of the sample with respect to water has been found to
be approximately 1.08.

The melting water which transports suspended clay
particles flows into the side channel and then follows an
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Figure 1: Aerial view of Kárahnjúkar spillway with bottom aerator,
eastern Iceland.

approximately 414m long chute with a transition bend and
a bottom aerator.

The most important task is to reduce the energy head of
the flowing water until it enters the river. In this example the
jet should not hit the opposite canyon wall where it increases
erosion. An artificial aeration device “cushions” the water;
the widening at the chute’s end reduces the flow velocity
and increases the impact area in the plunge pool which in
turn decreases rock scouring. Additionally, seven baffles and
lateral wedges at themain throw lip abet the jet disintegration.
In general, every high-energy spillway has to be analyzed for
cavitation risk.

The water in spillways contains air bubbles and impu-
rities, such as suspended particles, in a range of sizes. As
discussed later these air bubbles and impurities induce cav-
itation. Vaporization is the most important factor in bubble
growth. At a critical combination of flow velocity, water pres-
sure, and the vapor pressure of the flowing water, cavitation
starts. The cavitation number is used to define this starting
point. The equation for this parameter is derived from the
Bernoulli equation for a steady flow between two points.
In dimensionless terms, the comparable equation results in
a pressure coefficient, 𝐶𝑝. The value of this parameter is a
constant at every point until the minimum pressure at a
certain location is greater than the vapor pressure of water.
Thepressure at a certain locationwill not decrease any further
once the vapor pressure is reached. Taking everything into
account, such as temperature, clarity of the water, and safety
reasons, the pressure coefficient is set to a minimum value
and then called cavitation number 𝜎. The cavitation number
is a dimensionless number which expresses the relationship
between the difference of a local absolute pressure from the
vapor pressure and the kinetic energy per volume. It may be
used to characterize the potential of the flow to cavitate.

It has been suggested that no cavitation protection for a
spillway would be needed if the cavitation number is larger
than 1.8. If the cavitation number is in the range of 0.12–0.17,
then the spillway should be protected by additional aeration
grooves. In Figure 2 the cavitation indices for different dis-
charges have been calculated.
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Figure 2: Cavitation numbers at different discharges on the
Kárahnjúkar spillway [4]. The location of the outlet is shown in
Figure 1. Here, blue diamonds: 200m3/s; red squares: 400m3/s;
green triangle: 800m3/s; blue squares: 950m3/s; yellow square with
green star: 1350m3/s; and orange dot: 2250m3/s.

As a precaution the cavitation zone has been set to 𝜎 =

0.25 because of the lower atmospheric pressure, low water
temperature, and overall safety reasons.Thus, as a precaution,
the aerator was placed 125m before the end of the chute.
Nevertheless, incipient white water far upstream from the
aerator allows the assumption that in such a long spillway
fully self-aerated flow may have already been developed.
Therefore, the purpose of this aerator is mainly to reduce the
impact energy in the plunge pool.

The main idea is to develop a fully 3D simulation of
an aerated spillway in the future. But to achieve that the
physics of bubble growth due to cavitation and aeration and
the formation and distribution of the bubbles have to be
understood and simulations have to be validated. In this work
it is shown that LES combinedwith a discrete elementmethod
onGPUs yields promising results. Cavitation is defined as the
formation of the vapor phase and the subsequent immediate
implosion of small liquid-free zones in a liquid, called voids
or bubbles [1].

The first section deals with forced cavitation and the
dynamics of cavitation bubbles. An experiment was carried
out in which cavitation was forced to develop with clear
water in glass and galvanized steel pipes. These findings were
compared to computational simulations. The mathematical
model and simulation results of the cavitation bubble dynam-
ics will be described.

In the second part of the paper the flow behavior of an
aerated spillway is computed. In this section, the reliability
of the predicted cavitation zone as shown in Figure 2 is
examined.

2. Experimental Methods and Observations

Cavitation occurs when the fluid pressure is lower than the
local vapor pressure [5]. In the cavities, the vapor phase
replaces the liquid phase. The surrounding liquid then expe-
riences evaporative cooling. For water these thermal effects
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Figure 3: The experimental setup for investigating cavitation. (a) Schematic of the experimental setup. Inset (on the right-hand side): an
image of the aquarium stone used in the cavitation test. Inset (lower): the minimum pressure measured was 4.55 kPa (absolute). (b) An image
of sheet cavitation at the discharge Q = 12.5 L/s.

can have a significant influence on the dynamics of bubbles in
the cavitation process. However, for simplicity, in this paper
the isothermal problem will be investigated which retains a
number of interesting qualitative features of the cavitation
process.

For water flow over a uniform roughness in a spillway,
incipient cavitation will occur randomly over the spillway
surface. If the cavitation number is lowered below incipi-
ent conditions, then cavitation will occur in sheets whose
locations are influenced by the magnitude and spectrum of
turbulent fluctuation within the boundary layer [1].

To enhance the predictive reliability of computational
models for cavitation, which are still considered to be
immature, further validation based on experimental data is
required. Figure 3 shows a simple system in which sheet
cavitation may be observed.

Surface roughness, cracks, and offsets may initiate cavita-
tion.The local pressure on the step’s surfaces or directly at the
step in a high velocity spillway can reach the vapor pressure.
This may result in sheet cavitation similar to that shown in
Figure 3. As stated earlier, cavitation can cause severe damage
to the spillway concrete. The extent of cavitation damage is a
function of the local cavitation number in the spillway chute
and the duration of the flow.

In brief, experiments were conducted in a test setup
as illustrated in Figure 3(a). The tests were performed in a
horizontal galvanized steel pipe with an outer diameter of

Table 1: Physical properties.

Material Dynamic
viscosity (Pa s)

Density
(kg/m3)

Vaporization pressure
(mmHg) [18]

Water (liquid) 0.001 996.4 log
10

𝑃 = 8.07131

−1730.63/𝑇 − 39.724Water (vapor) 1.34 × 10
−5 0.5542

Air 1.79 × 10
−5 1.175

𝐷 = 0.0254m and the length of 𝐿𝑝 = 0.3m. Two very similar
aquarium stones with a length of 𝑙 = 0.0215m and a height
of ℎ = 0.01m were attached to the bottom of the pipe in the
entrance section.The stones produced a sudden offset whose
leading edge is approximately an ellipse. The dimensions of
one of the stones are depicted in the inset of Figure 3(a).

Clear water was used in the experiments; its physical
properties are given in Table 1. The discharge 𝑄 = 12.5 L/s
was provided with a heavy-duty high-pressure wash-down
pump with a pressure range of 2.5 bar to 140 bars (maximum
pressure). A high-pressure hose was used to connect the test
tube to the high-pressure pump.

The average pressure at the pipe inlet was approximately
2.5 bars (absolute) and the minimum measured pressure
was 4.55 kPa (absolute). Figure 3(b) shows the monometer
connected to the pressure measuring port (PMP) as shown
in the second inset of Figure 3(a). The port was located
𝐿𝑚 = 0.048m downstream from the inlet of the test tube.
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Here, 𝐿𝑐 represents the length of the sheet. The low pressure
measured at the sampling port indicates that cavitation may
have occurred in the test tube.

The above-mentioned test with the same discharge of
Q = 12.5 L/s and the same average inlet pressure of 2.5 bar
(absolute) was repeated in a cylindrical borosilicate glass pipe
with a diameter of 𝐷 = 0.026m.The pipe wall thickness was
0.001m. A camera was used to take images of sheet cavitation
from the underside of the test tube.

Figure 3(b) shows an image of sheet cavitation with an
average inlet channel pressure of approximately 2.5 bars
(absolute). As can be seen from Figure 3(b), the sheet appears
to be attached to the stone with a length of 𝐿𝑐 > 5𝐷. The
sheet consists of a number of fuzzy white clouds. A flash
photograph reveals that a cloud consists of individual small
bubbles [1].

In the following section, simulation results will be pre-
sented, giving a more detailed insight and showing an
ongoing process of cavity formation and deformation.

It is difficult to obtain accurate measurements using the
simple setup as shown in Figure 3. The stones attached to the
bottom of the pipes may not be stable over long periods of
time.

Additional experimental studies in cavitation tunnels are
required to supply a more reliable and convincing data basis
for the validation of computational approaches to model
cavitation.

3. Mathematical Model and Simulation Results

If sheet cavitation, as described in the experiments in the
preceding section, occurs in the spillway chute, it can produce
extensive damage to its concrete linings [1]. Note that cavita-
tion damage in tunnels and conduits is less likely to result in
dam failure.

Experimental observations such as those shown in
Figure 3(b) are indispensable for investigating cavitation
problems. However, numerical simulation can provide possi-
bilities to study cavity formation and deformation in greater
detail than what is affordable by experiments.

3.1. Bubble Dynamics in a Quiescent Fluid. The importance
of microscopic bubbles as cavitation nuclei has been known
for a long time [1]. Consider a single bubble, which contains
the vapor of the liquid, in equilibrium in anincompressible,
Newtonian fluid that is at rest at infinity. In this case, the
bubble radius 𝑅𝐸 must satisfy the following condition [6]:

(𝑝V − 𝑝
(0)

∞
) 𝑅
3

𝐸
− 2𝛾𝑅

2

𝐸
+ 𝐺 = 0. (1)

The bubble radius at the limit point, where (𝑝V − 𝑝
(0)

∞
) =

(32𝛾
3
/27𝐺)

1/2, can be expressed in terms of material param-
eters as [5]

𝑅critical = (
3𝐺

2𝛾
)

1/2

. (2)

If 𝑅𝐸 ≤ 𝑅critical, then the bubble is stable against infinitesimal
changes in its radius. The bubble becomes unstable if 𝑅𝐸 >

𝑅critical. Note that the bubble may contain a “contaminant”
gas which dissolves very slowly compared to the time scales
associated with changes in its size.

Apparently small bubbles whose radii are smaller than the
critical radius behave like rigid spheres in accelerated flows
[7].

3.2. Bubble Dynamics in Accelerated Flows. For the present
study the interaction of a small bubble whose size is char-
acterized by the critical bubble radius with its neighboring
bubbles is assumed to be subjected to the Lennard-Jones (LJ)
condition [8]. Figure 5(a) shows the Lennard-Jones 12-6 pair
potential. The force between two bubbles with diameter 𝑑𝐵

located at 𝑟𝑖 and 𝑟𝑗 is given as
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] r𝑖𝑗. (3)

A simplified momentum equation for the 𝑖th spherical
bubble may be given as
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⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

buoyancy

+

𝑁

∑

𝑗=1

F𝑖𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟

bubble-bubble
interaction

.

(4)

In the current effort the aim is to combine the Lagrangian
(bubble-based) model (4) and large eddy simulation (LES)
in order to achieve more accurate simulations of cavita-
tion water flows. The filtered continuity momentum for an
isothermal 3D flow of water may be given as

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌k̃𝑤) = −𝑆V, (5)

𝜕𝜌k̃𝑤
𝜕𝑡

+ ∇ ⋅ (𝜌k̃𝑤k̃𝑤) = −
1

𝜌𝑤

∇ (𝜌𝑝) +
1

𝜌𝑤

∇ ⋅ (𝜌�̃�) + ∇ ⋅ 𝜏

+ 𝑓𝑏𝑤 + 𝜌g.

(6)

The viscous stress tensor in (6) is defined as

𝜎 = −
2

3
𝜇𝑤∇ ⋅ k𝑤I + 𝜇𝑤 (∇k𝑤 + (∇k𝑤)

𝑇
) . (7)
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In (6), 𝜏may be given as

𝜏 = −𝜌 (̃̃k𝑤k̃𝑤 − ̃̃k𝑤 ̃̃k𝑤) − 𝜌 (
̃k
𝑤
k̃𝑤 +

̃k̃𝑤k


𝑤
) − 𝜌 (

̃k
𝑤
k
𝑤

) .

(8)

The SGS stress tensor, 𝜏, is required to close the equations
for the large-scale fields on a grid small enough (but much
larger than the Kolmogorov scale) to provide reasonable
resolutions. In contrast to the filtered single-phase equations,
a conceptual restriction arising in the present approach is that
the filter width, Δ, should strictly be larger than the length
scale characteristic of the small bubbles.Thus, an appropriate
choice ofΔ should provide a sufficiently large-scale resolution
while not violating the aforementioned restriction.

Following Sauer and Schnerr [9], the mass flow rate
through the surface of a bubble with the radius of 𝑅, 𝑆V, may
be given as

𝑆V = 4𝜋𝑛𝐵𝑅
2

(1 +
4

3
𝜋𝑛𝐵𝑅
3
)

−2
𝜌𝑤𝜌V

𝜌
�̇�. (9)

Here, the changes in the bubble radius may be calculated
using the famous Rayleigh-Plesset equation [6]

𝑝V + 𝐺𝑇/𝑅
3

− 𝑝∞

𝜌𝑤

−
1

𝜌𝑤

(
2𝛾

𝑅
+

4𝜇𝑤

𝑅
�̇�) = 𝑅�̈� +

3

2
�̇�
2
. (10)

The vapor transport equation may be given as

𝜕

𝜕𝑡
(𝜙V𝜌V) + ∇ ⋅ (𝜙V𝜌V𝑉𝐵) = 𝑆V. (11)

It is known that the presence of bubbles contributes to the
processes of energy removal from the resolved scales of the
liquid phase. This two-way coupling effect may be modeled
by superposing bubble-induced SGS energy dissipation to
that induced by shear. A tentative first attempt at closure, the
momentum equation (6), may be closed with an SGS model
for, 𝜏, given as [10]

𝜏 mod = −𝜌 (̃̃k𝑤k̃𝑤 − ̃̃k𝑤 ̃̃k𝑤)

+ 𝜌 [2 (𝐶𝑠Δ)
2

(S̃ : S̃)
1/2

+ (𝐶𝑠Δ)

k̃slip


]

× (S̃ −
1

3
tr S̃I) .

(12)

Here, the value of the backscatter parameter, 𝐶𝑏0, is set to
𝐶𝑏0 = 0.2. The model for 𝜏 has been validated for dense gas-
particle flows [11–13].

During each time step of the simulation, the forces
acting on each particle should be calculated. This requires
knowledge of the local values of the fluid velocity components
at the position of the bubbles.These variables are only known
at spatial grid points in the computational domain. A tricubic
interpolation has been used for calculating the fluid velocity
components at the centers of the bubbles. The bubbles are
propagated using the generalized Verlet algorithm, whose
parallelization for the GPU is described in detail in [10].

3.3. Simulation Results

3.3.1. Air Bubbles. Figures 4(b) and 4(c) show a computed
large bubble in an aerated tank [7]. The bubble is a cluster
of small bubbles with a size of the critical air bubble radius.
Figure 4(d) depicts the denoised version of the bubble using
multiscale image denoising based on a multiscale representa-
tion of the images [14]. The denoised version of the bubble-
like structure in Figure 4(b) is very similar to the small
bubbles observed in an aerated tank [7].

Figures 4(e) and 4(f) are snapshots of bubbles separated
by 𝑡 = 0.3 sec. As can be seen from Figure 4(f), three bubbles
in Figure 4(e) coalesce to formone large bubble.Thedenoised
version depicted in Figure 4(g) is very similar to the bubbles
with complex geometries shown in [7].

To further assess the quality of the model described in
the preceding section, the cavitation water flow in Figure 3
is simulated in the following section.

3.3.2. 3D Model Using 2D Images. Apparently, it is not
possible to reconstruct a 3D model from a single image
of the stone as shown in the inset of Figure 5(a). To get
around this limitation, an optical processing algorithm can be
developed that employs multiple photographs taken at every
15 degrees, from the above and from the side to create a 3D
model of the stone. Figure 5(a) illustrates the positions of the
camera for taking about 40 photographs of the stone. The
images acquired are the input of the Autodesk 123D Catch
3D scanning software [15].

Figure 5(b) shows the basics of the stitching process for
the accurate creation of a 3D model of the stone. Figure 5(c)
represents a medium quality 3D mesh of the stone which is
used to simulate sheet cavitation in the following section.

3.3.3. Sheet Cavitation

Aspects of the Simulation. As mentioned earlier, turbulence
modeling has a critical role in cavitation prediction. Cavita-
tion flow in the liquid-vapor region is locally compressible [9,
16]. To capture the shedding dynamics and the unsteadiness
of cavitation the modified form of LES as detailed in the
preceding section would be required. Note that (5) and (6)
look like the equations of motion of a fluid with variable
density 𝜌 = 𝜌𝑤(1 − 𝜙V).

In this section, the mathematical model described in the
preceding section will be used to analyze sheet cavitation in a
pipe flow as shown in Figure 3. The discharge was set to 𝑄 =

12.5 L/s. The tube inner diameter was 𝐷 = 0.024m and its
length was 𝐿 = 0.3m.

The length and the height of the stones in the simulations
are exactly the same as those used in the experiments.
The model of the stone is shown in Figure 5(c). It is likely
that cavitation as shown in Figure 3(b) starts at minute
cracks on the otherwise smooth surface of the stones. The
aforementioned systemmay be characterized as belonging to
the singular roughness category [1].

In brief, the Lagrangian (bubble-based) and the Eulerian
(grid-based) methods are used to simulate the cavitation
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Figure 4:The interaction of small bubbles in an aerated tank. (a)The Lennard-Jones 12-6 pair potential. (b) Computed bubble-like structure
in an aerated tank at the Reynolds number of 29500. (c) A different view of (b). (d) The denoised version of (c). The length of the bubble
is approximately 1 cm and its height is 0.65 cm. (e) Configuration of a three bubble-like structure in an aerated tank. (f) The bubbles in (e)
coalesce to form a larger bubble after 0.3 sec. (g) The denoised version of (f).

singular roughness in a tube flow. Figure 6(a) illustrates the
model used in the simulations. Here, the dimensions are 𝐿𝑝 =
0.3m, 𝐷 = 0.024 cm, and ℎ𝑠 = 0.004m. Figure 6(b) depicts
a top view of the entrance region of the pipe in which the
positions of the stones are clearly shown. The total length

of the pipe covered by stones is 𝑙2 = 0.037m, and the pipe’s
length covered by the first stone is 𝑙1 = 0.0185m. The length
and height of the stones are exactly the same as those shown
in Figure 3(a). Figure 6(c) shows the grid which consists of
more than 5 × 10

6 tetrahedral meshes.
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Figure 5: A CFD model for a stone in Figure 3. (a) Taking 2D images of the stone by moving camera’s position at regular intervals. (b)
Automatically aligning the images with the others. (c) Reconstruction of a 3D model from 2D image.
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Figure 6: A CFDmodel for the tube in Figure 3. (a) Schematic of the pipe used in sheet cavitation simulations with some nomenclatures. (b)
A top view of the entrance region of the pipe. (c) The grid used in the cavitation simulations. Insets: the grid is magnified and replotted.



8 Mathematical Problems in Engineering

The filtered Navier-Stokes equations (5) and (6) are
discretized with the finite-volume method on a staggered
Cartesian grid. Convective and diffusive fluxes are approxi-
mated with central differences of second-order accuracy and
time advancement is achieved by a second-order, explicit
Adams-Bashforth scheme. The equation for coupling the
pressure to the velocity field is solved iteratively using the
SIP method [17]. The subgrid-scale stresses appearing in the
filteredNavier-Stokes equations are computed using (12). No-
slip boundary conditions are employed on the surface of the
stone and the tube walls. The physical properties used in
the simulations are listed in Table 1. The temperature was
assumed to be constant and it was set to 𝑇 = 302K. Note that
the vaporization pressure [18] at that temperature is 4500 Pa
(absolute). The acceleration due to gravity is 𝑔 = 9.81m/s2.

The Lagrangian (bubble-based) simulation was per-
formed to calculate the motion of bubbles in the liquid using
(4). In brief, equivalent spherical bubbles were determined
from irregular vapor structure bymarking the cells with 𝜙𝑤 <

0.95. Equation (4) was integrated using the generalized Verlet
algorithm. The time step used in the simulation was Δ𝑡 =
5 × 10

−7 s. The linear interpolation routines were used to
communicate the information from grid nodes to particle
positions and vice versa. The simulations were performed by
using GPU computing [10].

Results. Obviously, a single parameter such as the cavitation
number cannot describe many of the complexities of cavita-
tion. Falvey [1] suggested that for flow past stones as shown in
Figure 7(a), cavitation will not occur if the cavitation number
is greater than about 1.8. Figure 7(a) shows that cavitation
bubbles form within the flow at the discharge 𝑄 = 12.5 L/s.
This indicates that the cavitation number was below 1.8.
Figure 7(b) represents a view from below of an instantaneous
configuration of bubbles in the cavitation water flow. In this
case, a sheet consists of a large number of small bubbles
which are extensively developed downstream of the step
formed by the stones in the pipe. Here, cavitation is formed
by turbulence in the shear zone which is produced by the
sudden change of flow direction at the stone face. Figure 7(b)
also shows large nonspherical cavities with patterns similar to
those shown in Figure 3(b).

Following Falvey [1], it may be estimated that the system
in Figure 7(a) operates at a cavitation number of 𝜎ℎ = 0.9.
For this case, the reference location is immediately upstream
of the first stone and at its maximum height. The computed
length of the sheet is quite comparable with that shown
in Figure 3(b). It would be expected that for even lower
values of the cavitation number, the clouds form one long
supercavitating pocket.

Figure 7(c) depicts the computed instantaneous contours
of the averaged vapor volume fraction in the xz-plane. In
this figure, the locations at which cavitation occurred on the
surfaces of the stones are presented by the use of color coding.
As can be seen from Figure 7(c), the process starts with the
occurrence of swarm of bubbles in the small regions of the
first stone at sampling port 3 located at𝑥 = 0.015m.However,
no evidence of cavitation can be found at sampling port 4
located at 𝑥 = 0.022m in a narrow cleft between the stones

where the local pressure ismuch higher than that of the vapor
pressure. This figure also shows that a large number of small
bubbles are extensively produced on the trailing edge of the
second stone close to sampling port 8 located at 𝑥 = 0.045m.
Sampling ports 1 through 16 are all located in the 𝑥𝑧-plane.
The distances of these ports from the inlet of the pipe are 𝑥 =

5 × 10
−5, 0.0077, 0.015, 0.022, 0.025, 0.029, 0.035, 0.045, 0.055,

0.065, 0.09, 0.12, 0.2, 0.25, 0.29, and 0.298m, respectively.
Figure 7(d) illustrates the averaged vapor volume frac-

tion, 𝜙V, as a function of the vertical distance from the pipe
wall, 𝑙𝑤, at sampling ports 1 through 4. Here, the squares,
circles, diamonds, and left triangles represent the computed
vapor volume fraction at ports 1, 2, 3, and 4, respectively.
This figure indicates the occurrence of a swarm of bubbles at
sampling port 3.

The squares, circles, diamonds, and left triangles in
Figure 7(e) represent variations of 𝜙V as a function of 𝑙𝑤 at
sampling ports 5, 6, 7, and 8, respectively.This figure indicates
that cavitation reoccurred at sampling port 7 and became
extensive at port 8. These complexities cannot be described
with a single parameter such as cavitation number.

Figure 7(f) shows variations of 𝜙V as a function of 𝑙𝑤 at
sampling ports 9, 10, 11, and 12 using the squares, circles,
diamonds, and left triangles, respectively. As can be seen from
Figure 7(f), the vapor bubbles roll up into a larger volume and
become cloudy as they are transported further downstream
and leave the entrance region of the pipe.

Figure 7(g) represents the final stage of the process which
is an ongoing process of bubble formation and deformation.
This figure depicts variations of 𝜙V as a function of 𝑙𝑤 at
sampling ports 13, 14, 15, and 16 using the squares, circles,
diamonds, and left triangles, respectively.

In brief, the appearance of visible cavitation in the flowing
water in the pipe as shown in Figure 7 was preceded by the
occurrence of small bubbles in the small area on the surface
of the stones. This observation highlights the importance of
bubbles as cavitation nuclei which has been known for a long
time [6].

Figure 7(d) indicated that a swarm of small bubbles
occurred at sampling port 3. However, no evidence of cavita-
tion was found at sampling port 4 which was located further
downstream from port 3. To address this issue, the pressure
field is illustrated in the xz-plane in Figure 8(a). Here, the
dimensionless pressure Π

∗ is defined as Ln(𝑝)/Ln(𝑝V), where
𝑝 represents the local pressure. Figure 8(b) depicts variations
of the dimensionless pressure 𝑝

∗ (defined as 𝑝/𝑝V) as a
function of 𝑙𝑤 at sampling ports 1, 2, 3, and 4 using the squares,
circles, diamonds, and left triangles, respectively. This figure
indicates that the local pressure in the narrow cleft between
the stones is approximately 50 times higher than that of the
vapor pressure.

Figure 8(c) illustrates variations of the dimensionless
pressure, 𝑝

∗, as a function of 𝑙𝑤 at sampling ports 5, 6, 7,
and 8 using squares, circles, diamonds, and left triangles,
respectively. As can be seen from this figure, the local pressure
at port 7 on the surface of the second stone reached the vapor
pressure. Consequently, the small bubbleswere formed on the
trailing edge of the second stone as shown in Figure 7(e).The
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Figure 7: Computer experiments at a cavitation number of 𝜎ℎ = 0.9 in a duct. (a) A top view of the instantaneous configuration of bubbles
in a cavitating water flow of water through a pipe with inner diameter of 𝐷 = 0.024m at the discharge of 𝑄 = 12.5 L/s and at the cavitation
number of 𝜎ℎ = 0.9. (b) A view from below of the bubbles in the cavitating flow of water through the pipe. Here, the large cavities consisting
of small individual bubbles are illustrated. (c) Computed contours of the averaged vapor volume fraction on the xz-plane for the cavitating
water flow in (a). Here, a color code as illustrated below the stones is used to indicate the values of the averaged vapor volume fraction on the
surfaces of the stones. (d)–(g) Variations of 𝜙V as a function of 𝑙𝑤 at the sampling ports 1 through 16, respectively.

appearance of visible cavitation as shown in Figure 7(a) was
preceded by the occurrence of these bubbles in the small area
around sampling port 5 on the surface of the second stone.
The computed low pressure at port 8 (which is the same as

thatmeasured at the PMP in Figure 3(a)) provides a favorable
situation for a sheet, which consists of a large number of small
bubbles, to be developed and transported downstream as
depicted in Figures 7(a) and 7(b).The low pressure condition
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Figure 8: Cavitation in a tube. (a) The instantaneous computed contours of the dimensionless pressure Π
∗ on the xz-plane bubbles in a

cavitation flow of water at the cavitation number of 𝜎ℎ = 0.9. The locations of the sampling ports are the same as those in Figure 7(c). (b)–
(e) Variations of the dimensionless pressure 𝑝

∗ as a function of 𝑙𝑤. (f) The instantaneous computed velocity field of a cavitating water flow
through the pipe with inner diameter of 𝐷 = 0.024m at the discharge of 𝑄 = 12.5 L/s.

extends from sampling port 9 to sampling port 14 as shown
in Figures 8(d) and 8(e). The squares, circles, diamonds, and
left triangles in Figure 8(d) represent variations of 𝑝

∗ as a
function of 𝑙𝑤 at sampling ports 9, 10, 11, and 12, respectively.

In the aforementioned region the vapor bubbles roll up
into a larger volume and become less extensive as they are
transported further downstream. The volume fraction of the
vapor bubble is lower at the upper part of the pipe between
ports 9 and 14 due to the fact that the pressure slightly
increases with 𝑙𝑤.

The squares, circles, diamonds, and left triangles in
Figure 8(e) represent variations of 𝑝

∗ as a function of 𝑙𝑤 at
sampling ports 13, 14, 15, and 16, respectively. This figure
indicates that the pressure increased from ports 14 to 16 and

reached the atmospheric pressure at the pipe outlet at which
the vapor bubbles vanished.

The area-weighted average pressure at the inlet of the pipe
was found to be 257 kPa.The results show agreement between
simulation and experiment.Themodel is therefore deemed to
be sufficiently flexible to capture a number of the interesting
qualitative features of the cavitation process.

Figure 8(f) shows the computed velocity vector filed in
the xz-plane. This figure indicates a complex shearing flow
around sampling port 8 at which cavitation was formed. As
stated earlier, the system in Figure 7(a) operates at a cavitation
number of 𝜎ℎ = 0.9. Note that the computed pressure at
sampling port 1 immediately upstream of the first stone and
at its maximum height is approximately 300 kPa. In this case,
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Figure 9: Cavitation in a spillway chute. (a) Schematic of a hypothetical hole with a diameter 𝑑ℎ = 0.02 on the surface of a model of
Kárahnjúkar spillway at a distance from the inlet of 𝐿ℎ = 300m. The total length of the spillway is 𝐿𝑇 = 414m and its slope is 𝛼 = 11∘.
Inset: the computed contours of velocity in the spillway. The distances of the sampling ports 1, 2, 3, and 4 from the inlet are 0, 107, 300,
and 414m, respectively. (b) The averaged air volume fraction as a function of 𝑙𝑤 at the sampling ports 1, 2, 3, and 4. Here, the squares, circles,
diamonds, and left triangles represent the air volume fraction at the sampling ports 1 through 4, respectively. (c)The computed velocity vector
field around the hole at the sampling port 3. Here, a color code as illustrated on the left-hand side of the hole is used to indicate the values of
the local pressure.
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Figure 10: A CFD model for the Kárahnjúkar bottom aerator. (a) Perspective view of the simulation model and selected nomenclature. (b)
The front view of the spillway with bottom aerator. Here, 𝛿 = 0.02m, 𝐿 = 2.42m, 𝐻𝑎 = 0.44m, 𝐻𝑤 = 0.11m, 𝐿1 = 0.11m, 𝐿2 = 2.15m, ℎ0 =
0.022, 𝐻out = 0.55m, 𝜃1 = 20∘, and 𝜃2 = 30∘.

the computed average water velocity is 25m/s. The area-
weighted average pressure at the inlet of the pipe was found
to be 257 kPa.

In the following section, the model is employed to check
the reliability of the predicted cavitation zone as shown in
Figure 2.

3.3.4. Cavitation in a Spillway Chute. The previous section
described the complexity of the occurrence of cavitation. As
stated earlier, Figure 2 indicates that the cavitation number
should be quite low at approximately 135m from the end of
the chute of Kárahnjúkar spillway. Apparently, the designers
of the Kárahnjúkar spillway decided to use an aerator at that
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location (as shown in Figure 1) in order to protect the spillway
surface from cavitation.

Recall that Semenkov and Saranchev [19] suggested that
the beginning of the spillway is the cavitation-hazardous sec-
tion. Particularly for large discharges, natural air entrainment
is absent in more than 60m from the inlet [19]. The bottom
turbulent layer is shielded above by the undisturbed potential
flow core, which reduces diffusion air entrainment [19]. Con-
sequently, on the entire length of the cavitation-hazardous
section of the spillway passage the volume air concentration
in the boundary layer with thickness 0.2–0.25mwould be less
than 7-8%. In this case, artificial air entrainment is needed to
protect the surface of the spillway [20].

In this section, the usefulness of using artificial air
at 125m from the end of the chute of the Kárahnjúkar
spillway is investigated using the mathematical model as
detailed in the preceding section. To this end, a simplified
model of Kárahnjúkar spillway with a hypothetical hole with
diameter of 0.02m is used in the simulation. Figure 9(a)
shows the hypothetical hole which is essential to initiate
cavitation at the cavitation number of 0.25. The simplified
model of Kárahnjúkar spillway is 414m long with a slope of
approximately 𝛼 = 11∘.

The inlet boundary condition at 𝑥 = 0 was set to
𝑉 = 20m/s. The height of the water at the inlet was 3m.
Furthermore, it was assumed that the top surface of themodel
is open to the atmosphere.Theoutlet boundary conditionwas
set to 𝑝 = 𝑝atm. Periodic boundary conditions were used in
the 𝑧-direction. The no-slip boundary condition was applied
on the walls of the model. To capture the effects of viscous
boundary layers, a wall-function was used to specify velocity
at the forcing points as [21]

𝑢

𝑢∗

=

{{{{{{{{

{{{{{{{{

{

𝑦
+

𝑦
+

≤ 5

−1.15576 + 1.47869𝑦
+

−0.0527848𝑦
+2

+ 0.000655444𝑦
+3

5 < 𝑦
+

≤ 30

ln (𝑦
+

)

Κ
+ 5.1 𝑦

+
> 30,

(13)

where 𝑦
+ represents dimensionless, sublayer-scaled distance,

and Κ is the von Kármán constant (typically the value 0.41 is
used).

The inset of Figure 9(a) represents the computed velocity
contours in the model of the Kárahnjúkar spillway. The
computed bubble volume fraction as a function of vertical
distance from the wall 𝑙𝑤 at four sampling ports is illustrated
in Figure 9(b). In this case, the bubble is an air bubble which
may contain vapor. As can be seen from Figure 9(a), the
hypothetical hole is located at 135m from the outlet of the
model. Figure 9(b) indicates that the thickness of the air-
water mixture increases with 𝑥. Here, the squares, circles,
diamonds, and left triangles represent the bubble volume
fraction at sampling ports 1, 2, 3, and 4, respectively. As
can be seen from Figure 9(b), the bubble volume fraction at
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∗

Figure 11: Computed contours of the velocity field for the bottom
aerator of Kárahnjúkar spillway. Inset: a pair of vortices in the
ventilation zone.

sampling port 2 is lower than 7%. This finding highlights the
need of artificial aerators between sampling ports 1 and 2 in
order to protect the surface of the spillway.

Figure 9(b) indicates that the bubble volume fraction at
the hypothetical hole (i.e., at sampling port 3) is approx-
imately 38% which is in accordance with Semenkov and
Saranchev [19] and very much above the “cavitation safe”
value of 7% of entrained air. In this case, the vapor volume
fraction is quite low.

Figure 9(c) illustrates the computed velocity vector field.
A color code as illustrated on the left hand side of the hole in
Figure 9(c) is used to indicate the values of the local pressure.
This figure indicates that the water flows mainly over the
hole. A small part of the water stream hits the hole’s face and
reticulates inside the hole. As can be seen from Figure 9(c),
the pressure reaches a maximum of 2500 kPa and diverts
the flow to an upward direction over a little edge and in a
downward direction which initiates the water swirl in the
hole. The local pressure in the center of the hole is slightly
lower than 5 kPa. This finding indicates that cavitation might
occur at 125m from the end of the chute of the Kárahnjúkar
spillway. Indeed, cavitation will occur for the flow past the
sudden into-the-flow offset introduced by the hypothetical
hole as noted in Figure 9(c). This figure indicates a low-
pressure region and thus potential cavitationmight also occur
shortly after passing the hole’s edge. However, the air volume
fraction at the hole as shown in Figure 9(b) is approximately
38%. This finding suggests that the use of an aerator at port
3 in order to protect the surface of the spillway might not be
needed. Adding extra air at sampling port 3 would produce
a very thick air-water mist flow at the outlet of the spillway.
This will be further analyzed in the following section.

Figure 9(b) also indicates that in the absence of an
artificial aerator the computed thickness of the air-water
mixture at the outlet of the spillway is approximately 8m. In
addition, the average bubble volume fraction is higher than
50%.

3.3.5. Artificial Aeration. The designers of the Kárahnjúkar
spillway were challenged in their task due to the lack of
literature on air entrainment for spillways. As mentioned
in the preceding section, an aerator must be introduced to
prevent cavitation in the Kárahnjúkar spillway at high dis-
charges. The air volume fraction in the spillway downstream
from sampling port 2 in Figure 9(b) is well above the 7%
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Figure 12: The computed flow field for the aerator of Kárahnjúkar spillway. (a) Computed contours of velocity field of a more optimized
design for the aerator of Kárahnjúkar spillway. Inset: vortical structures in the ventilation zone. (b) Instantaneous configuration of bubbles in
a spillway with ski jump aerator. Here, 𝐿𝑛𝑏 = 0.62m. (c) Air concentration distribution versus 𝑧 in the aeration region. Here, right triangles,
squares, left triangles, and diamonds represent the air concentration at the sampling ports S1, S2, S3, and S4, respectively.

minimum requirement of its protection against cavitation.
Hence, artificial aeration would only be needed between
sampling ports 1 and 2 illustrated in Figure 9(a).

In this section, the mathematical model described in the
preceding section will be used to analyze the Kárahnjúkar
spillway with a bottom aerator. Figure 10 illustrates a CFD
model which can be imagined as a 1 : 15 Froude scale of the
Kárahnjúkar bottom aerator. Figure 1 shows an aerial view of
the Kárahnjúkar spillway and its bottom aerator located in
eastern Iceland.

By implementing periodic boundary conditions in the
𝑦-direction, a small part of the system that is far from the
vertical side walls was simulated. The model flow rate was
set to V𝑤0 = 20m/s at the inlet with a size of 𝐻𝑤 = 0.11m,
corresponding to 𝑄 = 2250m3/s.

As can be seen from Figure 11, the water stream is
deflected by a deflector in order to ventilate the nappe to the
atmosphere. The connection to the atmosphere is made via
a channel under the ski jump of the aerator. Note that the
air entraining capacity of the aerator depends on the take-off

distance from the free flow.The air pressure is atmospheric at
the inlets and the outlet.

Figure 12(a) and its insets illustrate the computed con-
tours and vector velocity field of a more optimized design for
the aerator of the Kárahnjúkar spillway. Here, vortices can
be seen to be created at the ventilation gate and to detach
periodically from its other side. A pair of vortices ismagnified
and replotted in the inset. The air enters the ventilation zone
with a normalized velocity of V∗ = 3.81. Here, the velocity is
normalized with the water velocity at inlet V𝑤0. Figure 12(b)
represents an instantaneous configuration of bubbles in the
spillway with an optimized bottom aerator. The high stream
of air tends to move the water stream up. In this case, the air
concentration in the ventilated zone appears to be more than
that needed to prevent cavitation. Figure 1 shows a highly
aerated water stream which is likely to serve as a source for
an intense canyon erosion.

When water flows over a spillway, vortex sheet insta-
bility at the air-water interface known as Kelvin-Helmholtz
instability can occur. The instability will be in the form of
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Figure 13: The computed flow field for a hypothetical case with a discharge of 𝑄 = 3150m3/s. (a) Computed contours of velocity field. (b)
Computed vector plot of vertical structures in the ventilation zone. (c) and (d) Variations of the normalized velocity V∗ as a function of 𝑧.
Squares, circles, diamonds, left triangles, gradients, and deltas represent the normalized velocity at the sampling ports S1, S6, S5, S2, S3, and
S4, respectively.
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waves being generated on the water surface which can initiate
natural air entrainment.

The air entrainment process is strengthened when a
growing boundary layer in the water flow reaches the free
surface. In this case, the entrained air from the free surface
can reach the spillway surface to minimize the danger of
cavitation. As can be seen from Figure 12, the details of air
entrainment through the upper air-water interface of the jet
can be predicted by the model. In addition, the details of
air entrainment through the lower interface are very similar
to those presented in [10]. Here, 𝐿𝑛𝑏 represents the length
at which the air entrainment through the lower interface
reaches that through the upper interface. Figure 12(c) depicts
the variations of air concentration as a function of 𝑧 at four
different sampling ports as shown in (b).

The region atwhich the natural air entrainment effectively
eliminates the risk of damage due to cavitation is called the
fully aerated region. The artificial aeration process discussed
above would not be needed in the fully aerated region.

Figure 13(a) illustrates the computed contours of the
velocity field for a hypothetical case in which the discharge
of the Kárahnjúkar spillway is 𝑄 = 3150m3/s. Figure 13(b)
indicates that the air enters the ventilation zone with a
normalized velocity of V∗ = 5.6. The vortex shedding of the
aeration gate is quite intense.Therefore, the air-watermixture
entering the canyon could cause extensive erosion. Recall that
the canyon shown in Figure 1 suffered a disastrous erosion in
2009.

4. Conclusions

A previous study revealed that the cavitation number of
the Kárahnjúkar spillway is below 0.25 at a discharge of
2250m3/s. Hence, the spillway was protected by additional
aeration grooves located some 300m from its inlet. In this
work, an analysis of the problem based on physical and
computational fluid dynamics (CFD) modeling is presented.
Thenumericalmodeling is based on the large eddy simulation
technique (LES) combinedwith the discrete elementmethod.

A three-dimensional simulation of a cavitation tube flow
at cavitation number of ca. 0.9 was performed to highlight
the importance of artificial aeration for protecting a spillway.
More simulations were performed using a CFDmodel which
is a 1 : 15 Froude scale of the Kárahnjúkar bottom aerator
in order to gain insights into how to diminish the hazards
associated with cavitation and minimize canyon erosion. It
is recommended to use the artificial aerators only at the
distances less than 100m from the inlet in order to minimize
canyon erosion.

The main finding was that the design of the aerator of
the Kárahnjúkar spillway should be improved. It is highly
unlikely that the artificial aerators would be needed at the
distances of 300m from the inlet of the spillway.

Nomenclature

𝐴𝑐: Archimedes number
𝐶𝑏0: Backscatter parameter

𝐶𝐷: Drag coefficient of the bubble, which is a
function of the Reynolds number of the
bubble

𝐶𝑝: Pressure coefficient
𝐶𝑠: Smagorinsky constant, given as

𝐶𝑠 = 2𝜋/3√3(−𝑅(1 + 𝐶𝑏0𝑅
2
)/Κ
3
)
1/2

𝐷: Pipe diameter
𝑑𝐵: Bubble diameter
𝑑ℎ: Hole diameter
𝐹: Force between two bubbles
𝑓𝑏𝑤: Forces exerted by the liquid on the bubbles

per unit volume
ℎ: Height of aquarium stone
ℎ𝑠: Step height
𝐺: Gas constant
𝑔: Gravitational acceleration
I: Second-order identity tensor
K: Kolmogorov constant
𝐿𝑐: Length of the sheet
𝐿ℎ: Distance of the hole from the inlet
𝐿𝑚: Axial distance of the pressure measuring

port for the pipe inlet
𝐿𝑝: Pipe length
𝐿 𝑡: Total length of spillway chute
𝑙: Length of aquarium stone
𝑙1: Length of the stone in the axial direction
𝑙2: Total length of the region covered by

stones
𝑙𝑤: Vertical distance from the pipe wall
𝑛𝐵: Bubble number density
𝑃
∗: Dimensionless pressure defined as

𝑃
∗

= 𝑝/𝑝V
𝑝V: Vapor pressure at ambient temperature
𝑝
(0)

∞
: Constant in (1)

𝑝∞: Ambient pressure in the fluid at a large
distance from the bubble

𝑝: Filtered pressure
𝑄: Discharge
𝑅critical: Bubble critical radius
𝑟𝑖: Location of the 𝑖th bubble
𝑟𝑖𝑗: Distance between the centers of two

bubbles
𝑅𝐸: Bubble equilibrium radius
Re𝐵: Bubble Reynolds number defined as

Re𝐵 = |V𝑖
𝐵

− V𝑤|𝑑/]𝑤
𝑅𝑘: Ratio of the mesh spacing and the

Kolmogorov length scale, so that
𝑅𝑘 = −1 + (𝜂/Δ)

4/3

𝑅: Bubble radius
�̇�: Bubble interface velocity
S: Resolved rate of strain tensor
𝑆V: Source term in (5) to account for the mass

transfer between liquid and vapor phase
𝑇: Temperature
𝑡: Time
𝑉: Mixture velocity
V𝑖
𝐵
: Velocity of the 𝑖th bubble with a diameter

𝑑𝐵
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V𝑤: Water velocity in absence of the bubble
k
𝑤
: Subgrid-scale part of v𝑤 based on Favre

filtering
k̃𝑤: Density-weighted Favre filter velocity

defined as ṽ𝑤 = 𝜌v𝑤/𝜌

kslip: Slip velocity
V∗: Normalized velocity.

Greek Symbols

𝛼: Chute angle for chute slope
Δ: Filter width
𝜀: Constant in (3)
𝛾: Surface tension
𝜇𝑤: Dynamic viscosity of water
Π
∗: Dimensionless pressure defined as

Π
∗

= Ln𝑃/Ln𝑃V
𝜌: Filtered density defined as 𝜌 = 𝜌𝑤𝜙𝑤

𝜙: Bubble volume fraction
𝜙V: Vapor volume fraction defined as

𝜙V = (4/3)𝜋𝑛𝐵𝑅
3
/(1 + (4/3)𝜋𝑛𝐵𝑅

3
)

𝜙𝑎: Air volume fraction
𝜙𝑤: Water volume fraction
𝜌𝑎: Air density
𝜌V: vapor density
𝜌𝑤: Water density
𝜎: Cavitation number
𝜎ℎ: Cavitation number
𝜏: Subgrid scale (SGS) stress tensor.
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Social networks are formed by individuals, in which personalities, utility functions, and interaction rules are made as close
to reality as possible. Taking the competitive product-related information as a case, we proposed a game-theoretic model
for competitive information dissemination in social networks. The model is presented to explain how human factors impact
competitive information dissemination which is described as the dynamic of a coordination game and players’ payoff is defined by a
utility function.Thenwedesign a computational system that integrates the agent, the evolutionary game, and the social network.The
approach can help to visualize the evolution of % of competitive information adoption and diffusion, grasp the dynamic evolution
features in information adoption game over time, and explore microlevel interactions among users in different network structure
under various scenarios.We discuss several scenarios to analyze the influence of several factors on the dissemination of competitive
information, ranging from personality of individuals to structure of networks.

1. Introduction and Prior Work

The emergent and rapid development of online social net-
working applications has changed the way in which both
consumers and enterprises interact and collaborate with each
other. Online social networking applications provide the
engaged individuals with collaborative environment to share
information or ideas with their neighbors, where the total
effect is greater than the sum of individual effects. In social
commerce, the dissemination of product-related informa-
tion is affected by individuals’ actions, which are strongly
determined by their characteristics and often influenced by
the decisions of other individuals. This kind of information
diffusion on the social network, including social advertise-
ments, word-of-mouth, and comments, finally influences the
buying behavior of the potential consumers. The features
and patterns of competitive information dissemination will
affect the product-related information spreading, such as
competitive advertisement and positive or negative word-of-
mouth because of their commercial feature. Therefore, it is

important to study how tomodel and analyze the competitive
diffusion through social network.

Epidemic models have been widely adopted by res-
earchers for information dissemination due to the analogy
between epidemics and the spread of information. The
underlying assumption of these models is that individuals
adopt a new behavior with a probability when they interact
with others who have already adopted it [1]. Gruhl et al. [2]
investigate the adoption of the classic Susceptible-Infected-
Removed (SIR) model for information dissemination. Yang
and Leskovec [3] developed a linear influence model to focus
on influence of individual node on the rate of dissemination
through the implicit network. Lü et al. [4] propose amodified
SIR model to describe the information diffusion in the
small-world network, proposing three different spreading
rules from the standard SIR model: memory effects, social
reinforcement, and nonredundancy of contacts, in which
the influence of social network structure is considered and
analyzed. These studies have macroscopically committed
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to the description of information diffusion through social
networks.

In recent years, researchers gradually observe that game
behaviors between individuals in social network, being the
foundation of the social group behavior, raise social dif-
fusions, which were always discussed in the microlevel in
prior related research. Micronodes in network constantly
adjust their strategy according to the behavior of other nodes,
through the dynamic game with other nodes to maximize
their own interests, and all the behaviours of individual node
finally form the social network group behavior. Therefore,
game-theoretic models, as a new perspective of interpreting
social diffusion, are increasingly adopted by computer sci-
entists for analyzing network behaviors. Game theory is a
set of analytical tools and solution concepts, which provides
explanatory and predicting power in interactive decision sit-
uations, when the aims, goals, and preferences of the partici-
pating players are potentially in conflict [5]. Unlike the classic
game theory, which assumes that gaming exists between
two individuals and happens only one-off, the evolutionary
game theory has opened up related hypothesis limitations.
It introduces the concept of time and space, considering the
game as the summary of historical experience and individual
learning, which makes it advantageous for social network
study. Several papers have applied evolutionary game theory
method to explain social diffusion. Kostka et al. [6] examined
the dissemination of competing rumors in social network,
using concepts of game theory and location theory,modelling
the selection of starting nodes for the rumors as a strategy
game. Meier et al. [7] presented a virus propagation game
model, finding that the Windfall of Friendship does not
increase monotonically with stronger relationships. Zinoviev
et al. [8, 9] adopted game theoretic models to understand
human aspects of information dissemination in which per-
sonalities of individuals are considered. Jiang et al. [10]
examined the evolutionary process of knowledge sharing
among users in social network and designed a computational
experimental system, developing a mixed learning algorithm
based on individual’s historical game strategy, neighbors’
strategy, and information noise.

Applying evolutionary game theory in social diffusion
study presumes that the game process between individuals
is not only determined by a single rival or individual, but
also all individuals in the neighborhood. Meanwhile, it takes
the historical game experience for future game behavior into
consideration. The benefit of each individual is evaluated by
the accumulated result of gaming many times. Individuals
benefit from the game with its neighbors; at the same time,
the benefit can be observed with comparisons to adjust
their game strategies, trying to achieve optimum benefits
and reach the overall game equilibrium. Evolutionary game
theory also has advantages on competitive social behaviors
and social diffusions. Alon et al. [11] introduced a game-
theoretic model of competitive dissemination of technolo-
gies, advertisements, or influence through a social network.
Wang et al. [12] proposed the stochastic game net model for
analyzing competitive network behaviors. Takehara et al. [13]
introduced and studied a deterministicmodel for competitive
information diffusion on social networks. In contrast tomany

other game theoretic models for the diffusion of information
and innovation [14, 15], the model considered competition
between different innovations spreading instead of discussing
a single one.

This paper is an extension of recent works, including
the method suggested by Jiang et al. [16] and the results
described by Yu et al. [17]. The dissemination of information
is modeled as the dynamic of coordination game, in which
player’s payoff is defined by a utility function and several cases
are analyzed to reach the conclusion that the spreading rate is
influenced by characteristics of individuals and several other
factors. Different from themodels of competitive information
diffusion introduced in prior work, we adopt a framework
for describing competitive information dissemination based
on a game-theoretic model and multiagent-based dynamics.
In this framework, we target several similar product-related
pieces of information that competes with each other. Con-
sumers may participate in discussing, adopting, and spread-
ing one of them. Totally different from news or opinions
dissemination that is always described as the spreading of the
virus, consumers always make product-related decision for
the utility motivation. In general, the utility is dynamically
determined by factors from the environment or from his
personal reasons. Meanwhile, prior research has shown that
different network structures topology has great impact on
social commerce. Therefore, both sociological and psycho-
logical characteristics are explicitly considered in our model
as the novelty. In thismodel, information passing intrinsically
involves both sides considering their characteristics: self-
perceived knowledge, brand loyalty, and social conformity,
which further determine their decisions of whether or not
to forward the information. The decisions are also based on
the global properties of the network, such as the knowledge
dynamic all through the network. These factors finally bring
different results of disseminations of different information
that compete with each other. Based on the dynamic game
model and strategy updating rules, we analyze competitive
information propagation and the affecting factors.

The remainder of this paper is organized as follows.
Section 2 presents the overview of competitive dissemination
model based on evolutionary game theory, social network,
and multiagent theory and introduces the individual’s utility
function. Section 3 discusses the dynamics and updating
rules for the model we build, proposes the assumptions,
and explains the model. In Section 4 we use an agent-based
computational approach for simulation.

2. Problem Statement

We propose a different, global point of view regarding the
incentives that govern the diffusion process. Suppose we have
several firms that would like to advertise competitive prod-
ucts via “viral marketing.” Each firm initially targets a small
subset of users, in the hope that the social advertisements
about their product would spread throughout the network.
However, a user that participates in discussing and spreading
product-related information is reluctant to participate in
another one.
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Table 1: Game payoff matrix.

Player 𝑖
𝑎 𝑏

Player 𝑗
𝑎 𝑈

𝑎𝑎
, 𝑈
𝑎𝑎

𝑈
𝑎𝑏
, 𝑈
𝑏𝑎

𝑏 𝑈
𝑏𝑎
, 𝑈
𝑎𝑏

𝑈
𝑏𝑏
, 𝑈
𝑏𝑏

For simplicity, we consider two pieces of information
competing over the social network, represented by infor-
mation 𝐴 or 𝐵. They are about the same kind of prod-
uct with different brands (e.g., Smartphones of iPhone or
Samsung). Which information is adopted by the individual
is determined by his self-perceived knowledge and herd
mentality. Information dissemination is caused by individ-
uals’ interaction with his neighbours for sharing knowledge
and opinion. This interaction, which arouses changes of
individuals’ acceptance and preference, could be considered
as a game based on information exchange. Individuals update
their strategies according to their payoff and the influence
of their neighbours. The change of individual’s information
level for the product affects the individual’s preference and
accordingly affects his choice of consumption.

2.1. Evolutionary Game Model. In the classic game-theoretic
model, the consumers are defined as players and each player
has only one state.We take each node in online social network
as players in game. The game is played in period 𝑡 = {𝑛, 𝑛 =

1, 2, 3, . . .} in online social networks that could be described
as an undirected graph.

First of all, we assume that all players engaged in the
evolutionary game are pure strategists, and each player could
choose only one of the strategies; strategy 𝑎 is participating
in discussion and spreading of information for information
𝐴 (corporation) and strategy 𝑏 is participating in discussion
and spreading of information 𝐵 (defection). Then the set of
available strategies for node 𝑖 could be described as two-
dimensional vectors:

𝑆
𝑖
= (

1

0
) or (

0

1
) , (1)

where 𝑆
𝑖
is the strategy of node 𝑖. In each round, the node

games with all of its neighbours (friends) and profit. The
payoff matrix 𝑀 is defined by the utility function 𝑈(𝑖)

illustrated in Table 1.
In Table 1, 𝑈

𝑖𝑗
, 𝑖, 𝑗 ∈ (𝑎, 𝑏), represents the utility for the

player according to what strategy he chooses. The evolution-
ary game equilibrium can be detected by the dynamic repli-
cation method [5, 18] that can provide theoretical support
for macroscopic decisions on information dissemination,
ignoring network structure and environmental factors.Then,
the expected cooperation (defection) benefit fromknowledge
sharing can be expressed as

𝑈
𝑖
(𝐶) = 𝑝 ∗ 𝑈

𝑎𝑎
+ (1 − 𝑝) ∗ 𝑈

𝑎𝑏
,

𝑈
𝑖
(𝐷) = 𝑝 ∗ 𝑈

𝑏𝑎
+ (1 − 𝑝) ∗ 𝑈

𝑏𝑏
,

(2)

where 𝑝 is the percentage of nodes holding a cooperative
attitude (strategy 𝑎). 𝑈

𝑖
(𝐶) and 𝑈

𝑖
(𝐷), respectively, stand for

the benefit that node 𝑖 get in current round of game.
From the dynamic replication, the average benefit of the

whole group is

𝑈 = 𝑝 ∗ 𝑈
𝑖
(𝐶) + (1 − 𝑝)𝑈

𝑖
(𝐷) . (3)

The state of the evolutionary system over time for differ-
ent initial value of 𝑝 can be evaluated by the diffusion rate
𝐹(𝑝):

𝐹 (𝑝)

=
𝑑𝑝

𝑑𝑡
= 𝑝 (𝑈

𝑖
(𝐶) − 𝑈)

= 𝑝 (1 − 𝑝) [(𝑈
𝑎𝑎
− 𝑈
𝑎𝑏
− 𝑈
𝑏𝑎
+ 𝑈
𝑏𝑏
) ∗ 𝑝 + (𝑈

𝑎𝑏
− 𝑈
𝑏𝑏
)] .

(4)

Therefore, the game has three possible solutions to reach
equilibrium:

𝑝 = 0, 1,
𝑈
𝑎𝑏
− 𝑈
𝑏𝑏

𝑈
𝑎𝑎
− 𝑈
𝑎𝑏
− 𝑈
𝑏𝑎
+ 𝑈
𝑏𝑏

,

𝑝
∗

=
𝑈
𝑎𝑏
− 𝑈
𝑏𝑏

𝑈
𝑎𝑎
− 𝑈
𝑎𝑏
− 𝑈
𝑏𝑎
+ 𝑈
𝑏𝑏

,

(5)

where 𝑝∗ is the value with which the group evolutionary will
get the game equilibrium.This method can get the evolution-
ary equilibrium independent of environmental factors and
network structure. However, the competitive dissemination
we discuss in this paper is more complex.The historical game
path, the impacts of environment, and the interactive users’
decision should be taken into consideration comprehensively.
In this context, the equilibrium cannot be simply and solely
determined by the traditional dynamic replication method.
In this paper, we choose themethod of computational simula-
tion approach so as to get a more reasonable explanation and
description for competitive information dissemination over
the social networks.

2.2. Utility Definition. The impact of other individuals’
behavior has been extensively studied in social psychology
and marketing. In general, many early past findings (Asch
[19] and Schachter [20]) suggest that individuals have a
tendency to behave in accordance with group or social norms
and behave negatively toward opinions that deviate from
these norms. Based upon this premise, Deutsch and Gerard
[21] further developed the distinction between normative
social influence (pressure to conform to the expectations
of others) and informational influence (individual’s accep-
tance of persuasive argument(s) of others). Meanwhile, other
researches [22, 23] (McQuail [22] and Flanagin and Metzger
[23]) proved that people expect two types of value to engage in
community: information value and social support. We refer
to the conclusion and define the utility function when game
continues as follows.

(1) Self-Perceived Knowledge Model. People feel that the
message they spread can help others make informed decision
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of purchase. Product-related information is now being over-
whelmed from a constantly increasing amount of advertising.
Meanwhile, it can also be obtained by interpersonal sources
(Feick and Price [24]). Self-perceived knowledge level helps
to reduce the risk when making adopting and purchasing
decision. In this paper, we define 𝑘

𝑖
∈ [0, 1] (𝑖 = 𝐴 or 𝐵)

as the quantitative measure of self-perceived knowledge for
the product of brand 𝑖. This kind of knowledge can either be
gained from mass media or word-of-mouth prevalent in the
social network.The quantity of 1 represents full knowledge of
the product, which means the player knows everything about
the background of the product. The quantity of 0 represents
no prior knowledge of the product, which means the product
is totally new to the player. A value of 𝑘 ∈ (0, 1) represents
partial background knowledge of the product, which means
the player knows something about the product (such as “I
know something about the Smartphone of this brand”). We
describe the self-perceived knowledge level for both the two
brands of play 𝑖 as a vector 𝐾

𝑖
= (
𝑘𝐴

𝑘𝐵

). The consistent
conclusion can easily be reached in the real social commerce
circumstance, because the more self-perceived knowledge
a consumer has, the lower risk and cost he will pay for
consumptions.

Moreover, we observe that knowledge will transfer within
players as game continues; under some situations even new
knowledgewill be created. In order to describe the knowledge
dynamics during the game process, we assume that there are
two independent kinds of knowledge, each kind correspond-
ing to one of the competitive pieces of information of product.
For example, 𝑘

𝑖
and 𝑘

𝑗
are referring to different products.

They interact as the following rules.

(1) Interacting with a player having different kinds of
knowledge does not increase knowledge; 𝑘

𝑖
and 𝑘
𝑗
are

different kinds of knowledge.
(2) Interacting with a player having no knowledge

increases knowledge; 𝑘
𝑖
and 𝑘

𝑗
are the same kind of

knowledge.
(3) Interacting with a player having full knowledge cre-

ates full knowledge; 𝑘
𝑖
, 𝑘
𝑗
are the same kind of

knowledge.

The combined knowledge (marked as 𝑘
(𝑖,𝑗)

) is generated
by the following equation:

𝑘
(𝑖,𝑗)

=

max (𝑘
𝑖
, 𝑘
𝑗
) +min (1,max (𝑘

𝑖
+ 𝑘
𝑗
))

2
. (6)

We define a transferring operator ⊕ to describe the
knowledge transferring process among players when the
game is going. The transferring equation is given below:

𝐾
𝑖𝑗,𝑡+1

= 𝐾
𝑖,𝑡

⊕ 𝐾
𝑗,𝑡
. (7)

The above method was observed by Szabó and Fáth [5]
and Yu et al. [17], with a slightly different definition.

(2) Brand Commitment Model. In marketing, applications
of social or group influence can be found across a wide

range of contexts [25]. For example, scholars (Arndt [26]
and Gatignon and Robertson [27]) have often relied on
social influence as a theoretical basis for studying WOM
dynamics in the adoption of new products, for understanding
reference-group’s influence on product and brand choice
(Bearden and Etzel [28]) as well as polarization phenomenon
in group decision-making (Ward and Reingen [29]). Social
identity theory, explained by Ellermers et al. [30] and Tajfel
[31], indicates that some people care about the success of the
company they identify with. Dutton et al. [32] found that
people always voluntarily promote the company on which
they have a positive view and become loyal to the brand
once they develop to self-identity. Brand commitment is an
enduring desire to maintain a relationship with a brand. It
can be perceived as a condition inwhich consumers are firmly
enchanted with a certain brand to the extent that there is no
second choice. In other words, it implies brand loyalty.

Therefore, if an actor has a high level of commitment to a
brand, he or shewill tend to keep a stable relationshipwith the
brand. The actions of person with high or low commitment
will be different when they receive a negative message talking
about a target brand. For the sake of simplicity, we define
𝑏
𝑖 (𝑖=𝑎 or 𝑏) as the quantitative measure of brand commitment
of the product.This kind of commitment can bring bias when
choosing strategy. A value of 𝑏 ∈ [0, 1] represents player’s
preference or bias on some brand of product, which means
the player will definitely choose certain brand of the product
and reject others, no matter which one his neighbours
choose. Under some situations we can even infer that they
are spokesman or discommender of particular brand. We
describe the brand preference level of the two products for
player 𝑖 as a vector 𝐵

𝑖
= (
𝑏𝐴

𝑏𝐵

).

(3) The Rational Choice Model of Conformity. In social
commerce, applications of social or group influence can be
found across a wide range of contexts; prior results found by
Ryu and Han [25] and Arndt [26] suggest that individuals
are susceptible to social influence and that they often behave
in ways that conform to social norms or pressure. The same
conclusion is also observed by Gatignon and Robertson [27]
and Bearden and Etzel [28]. Conformity is often meant to
represent a solution to the problem and attain or maintain
social order that requires cooperation.These studies generally
focus onmodelling the dynamics of norms in the perspective
of cooperation. With reference to the prior research, we
assume that the need for social conformity is associated with
popularity. Popularitymeasures player 𝑖’s social influence and
dominance. It is one of the components in his utility function.
For the sake of simplicity, we evaluate it with the number of
his neighbours, which ismodified from themethod suggested
by Yu et al. [17]:

𝑃
𝑖
= 𝛼

𝑛
𝑖

𝑛max
. (8)

In this equation, 𝑛max is the maximum number of neigh-
bours of all players in the network, and 𝑛

𝑖
represents the

number of neighbours of player 𝑖. 𝛼 = [0, 1] is a controlling
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parameter anddescribes the probability the playerwill choose
to assimilate. For example, if 𝛼 = 1, keeping conformity with
his neighbours brings benefit to the player; 𝛼 = 0 indicates
that the two players’ choice conflicts with each other and the
total benefit for both two players is 0. In that case he is more
reasonable when making purchase decision.

(4)The Utility Function. Sociologists believe that how human
beings interpret and accept things could be summarized to
more than one way [33]. The first way is personal experience
and findings; another one is the established agreements or
beliefs; also some people rely on the behaviours of people
in groups, for they insist that believing what others say
is a very useful quality that can make people easily get
along and contributes a lot to stable social relations. In
actual social activities, these three ways are often combined.
However giving different weights on them reflects different
personalities of people and different characteristics of social
behaviour. We believe that the purpose of a rational actor 𝑖 is
to maximize her utility 𝑈

𝑖
. Therefore, 𝑈

𝑖
can be defined as a

convex combination of information contribution and social
norm contribution with coefficients 0 ≤ 𝜌, 𝜋, 𝑘 ≤ 1:

𝑈
𝑖
= 𝜌𝐾
𝑖
+ 𝜋𝐵
𝑖
+ 𝑘𝑃
𝑖
. (9)

With reference to the method and the experienced data
recommended by Zinoviev and Duong [8], we use a set of
coefficients {𝜌, 𝜋, 𝑘} to characterize a particular type of actors.
For example, 𝜌 = 0, 𝜋 = 1, and 𝑘 = 0 describe a type of
actors who have high loyalty to a special brand or those who
represent the benefit of certain brand. We call them “sworn
followers.” 𝜋 = 0, 𝜌 = 1, and 𝑘 = 0 probably correspond to a
community of actors who believe that different self-perceived
knowledge level will uniquely determine the strategy-making
process; we call them “experts.” 𝜋 = 0, 𝜌 = 0, and 𝑘 =

1 probably correspond to a community of actors who care
more about their reputation and conformity with the whole
community; we call them “conformists.” Meanwhile, 𝑗 is
the neighbour of 𝑖 in the network. According to the utility
definition we can calculate the payoff matrix in detail.

3. Analysis of Model

3.1. Assumption of the Model. Product-related information is
a kind of public information that can be got from various
channels; therefore we modify public goods game model and
make the following assumptions:

(1) In social network, the nodes are bounded rational.
We agreed that each node only interacts with its
neighbour nodes.

(2) Benefit is defined by the payoff matrix. Each node
is trying to obtain maximum benefit by enhancing
the significance of its activities to improve the social
capital in the community.

(3) The evolution process of nodes in the network is influ-
enced by various social factors. Each node has to con-
stantly adjust their strategy, imitating the behaviours
of its neighbours to improve the sociability within
community.

Strategies in the evolutionary game tend to be influenced
by other nodes’ opinion in the public information environ-
ment.Therefore, the strategy for node 𝑖 could be described as
a dimensional vector 𝑆

𝑖
. This kind of game is carried out over

certain kinds of social network structures; node 𝑖 interacts
with all of his neighbors in each round, and its payoff (𝑃

𝑖
) can

be described as

𝑃
𝑖
= ∑

𝑗∈Ω𝑖

𝑠
𝑇

𝑖
𝑀𝑠
𝑗
, (10)

whereΩ
𝑖
is the set of neighbors of node 𝑖 in the network and

𝑀 is the payoff matrix defined in Section 2.

3.2. Learning and Updating. Each node in the network
evolution needs to constantly adjust its strategy to imitate the
behaviors of its neighbors to improve sociability, referring to
various social factors. Nodes 𝑖 and 𝑗 may also change their
strategies because they contact public socialmedia or they are
influenced by other environment factors.Whether to keep the
old strategy or change to the new one is defined by updating
rules. At the end of each stage of the evolutionary game, all
nodes can adjust their strategy according to the features and
benefits of its neighbours. This kind of imitation processes
formed a wide class of microscopic update rules. The essence
of the imitation is that the node who has the opportunity to
revise her strategy takes over one of her neighbor’s strategy
with some probability. The imitation process covers two
respects: whom to imitate and with what probability.

There are several common strategy update rules described
in the dynamics of evolutionary games. [5] (Majority rules,
Best Response Dynamic, etc.). Among them, this paper
considers the typical rule of imitation: Imitate If Better. The
standard procedure of the rule is to choose the node to imitate
at random from the neighbourhood. In the mean-field case
this can be interpreted as a random partner from the whole
population. The imitation probability may depend on the
information available for the node. The rule can be different
if only the strategies used by the neighbours are known,
or if both the strategies and their resulting last-round (or
accumulated) payoffs are available for inspection. Node 𝑖with
strategy 𝑆

𝑖
takes over the strategy 𝑆

𝑗
of another node 𝑗, which

is chosen randomly from 𝑖’s neighbourhood, if 𝑗’s strategy has
yielded higher payoff. Otherwise the original strategy 𝑆

𝑖
is

maintained. If we denote the set of neighbours of node 𝑖 who
hold the strategy 𝑆

𝑖
byΩ
𝑖
(𝑠
𝑖
) ⊆ Ω

𝑖
(Ω
𝑖
(𝑎) + Ω

𝑖
(𝑏) = Ω

𝑖
). The

individual’s strategy transition rate from strategy 𝑠
𝑖
to strategy

𝑠


𝑖
could be written as

𝜔 (𝑠
𝑖
→ 𝑠


𝑖
) =

𝜆

Ω𝑖


∑

𝑗∈Ω𝑖(𝑠


𝑖
)

𝜃 [𝑈
𝑗
− 𝑈
𝑖
] , (11)

where 𝜃 is the Heaviside function, 𝜆 > 0 is an arbitrary
constant, and |Ω

𝑖
| is the number of neighbors. Imitation

rules are more realistic if they take into consideration the
actual payoff difference between the original and the imitated
strategies. Proportional imitation does not allow for an
inferior strategy to replace a more successful one. Update
rules which forbid this are usually called payoff monotone.
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However, payoff monotonicity is frequently broken in case
of bounded rationality. Therefore, a possible general form of
imitation more realistic could be described as follows:

𝑃
𝑟𝑖→ 𝑗

=
1

1 + exp [(𝑈
𝑖
− 𝑈
𝑗
) /𝐾]

, (12)

where 𝑃
𝑟𝑖→ 𝑗

represents the probability node 𝑖 and imitates the
strategy of its neighbour 𝑗 finally. 𝑈

𝑗
is the benefit generated

by node 𝑗 and it is the maximum among those accrued by its
neighbours, while 𝑈

𝑖
is the accumulated benefits of node 𝑖,

and𝐾 is the information noise [34], representing the rational
level of the nodes.

The smaller𝐾 value is, the more rational of the behaviour
is. If 𝐾 = 0, then the whole process can be described
as a completely rational game, in which there is no error
when making decision; 𝐾 = +∞ indicates that game
strategies choosing can be depicted as a pure randomprocess,
which is completely irrational; 0 < 𝐾 < +∞ indicates a
limited rational game process; namely, the gamers adjust their
strategies according to rules, but there is a certain error.

4. Computational Simulations

In this section, we design the computational system, simulate
the virtual community and evolutionary process, collect
numerical results under different scenarios, and make com-
parisons through statistical analysis. The simulation and
experiments are implemented by NetworksX 1.7. NetworkX is
a graph theory and complex network modelling tool, devel-
oped with Python language, containing built-in algorithms
figure and complex network analysis modules, which can be
conveniently imported and executed for complex network
data analysis, simulation modelling, and so forth.

4.1. Formalize the Model Definition. Let each node in the
virtual network be an agent and there are 𝑛 agents. We define
the community network𝑁 as𝑁 = {𝑋,NT, 𝑈, 𝐹, 𝑡}, in which

(1) 𝑋 is the set of agents and 𝑋 = {agent1, agent2,
. . . , agent𝑛}. Each agent is a node in the network.

(2) NT is the set of network types and NT =

{smallword, random, scalefree}.
(3) 𝑈 is the set of benefits derived by all agents in each

game round; it is the accumulated value while gaming
with all its neighbours, 𝑈 = {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
}.

(4) 𝐹 is the state transfer function. The state of agent 𝑖 at
time 𝑡 + 1 is a function of parameters as stated in (12).

4.2. Experimental System and the Default Parameters. In our
study, a node in the network is either in a cooperation
(strategy 𝑎) or defection (strategy 𝑏) state. We describe the
diffusion of information for product 𝐴 (information 𝐴 for
simplicity in the later paper) in the network as

diffusion of information 𝐴 (%)

=
sum of the nodes holding strategy 𝑎

total number of nodes
∗ 100%.

(13)

And we describe the diffusion of information for product
𝐵 (information 𝐵 for simplicity) as

diffusion of information 𝐵 (%)

=
sum of the nodes holding strategy 𝑏

total number of nodes
∗ 100%.

(14)

In the model, we simulate individual strategy evolution.
The evolutions of the information spreading and accepting
conditions are studied, trying to find out how to promote
or hinder certain preference of strategy from winning. We
conduct several experiments on the competitive information
dissemination in a social network. There are some famil-
iar and natural models of social networks, which could
be applied in these experiments: random graph, scale-free
network, and small-world network. We applied the latter two
different networks for case study. A scale-free network is a
random graphwhose degree distribution follows a power law,
while a small-world network follows a random graph model
inwhichmost nodes can be reached fromevery other node by
a small number of hops, which is generally known as small-
world phenomenon. Many empirical networks are well-
modelled by small-world networks, such as social networks,
wikis, and gene networks.

We explore the interaction among all individuals over
time (100 simulation rounds in our case). The simulation is
divided into five procedures.

(1) Set up the network structure; define the game param-
eters and the model parameters.

(2) Graphically illustrate the network evolution and show
how the nodes change dynamically in the network.

(3) In each step, each participating individual updates the
strategy according to the rules of replication dynamic
view (strategy).

(4) In each simulation time period, take the evolutionary
steps in the periodic system that all the individuals or
a fixed percentage of them reach or maintain a stable
state as the equilibrium of the evolution.

(5) Display the simulation result and show the character-
istics of the network.

4.3. Experimental Results. Thepopulation of our experiments
is set to 1000. The small-world network applied for our
experiments is set as follows: the number of connections per
node is set to 5, and the probability of connection to link
neighbours per node is set to 0.2. For the scale-free network,
the number of edges being added to the network each step
is set as 5. 𝑘

𝑎
, 𝑘
𝑏
, 𝑏
𝑎
, and 𝑏

𝑏
are initialized using uniform

distribution on [0, 1) throughout the experiment with slight
difference under different scenarios.

(1) Results for Different Network Structures. At the start of
the experiments, the two pieces of product information has
been equally adopted. 𝑘

𝑎
, 𝑘
𝑏
, 𝑏
𝑎
, and 𝑏

𝑏
are initialized using

uniform distribution, with the condition that 𝐴 dominate in
dissemination during gaming.We assume that the maximum
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(a) Information diffusions in small-world networks
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(b) Information diffusions in scale-free networks

Figure 1: % of adoption for competitive product-related information under different network structure.

value of 𝑘
𝑎
is larger than the one of 𝑘

𝑏
; for simplicity, to

guarantee the condition, 𝑘
𝑎
and 𝑘
𝑏
are initialized on [0.2, 0.7]

and [0, 0.2) and vary following the knowledge dynamic rules
defined in Section 2. 𝑏

𝑎
and 𝑏
𝑏
follow uniform distribution on

the interval [0, 1). 𝜋 = 0.3, 𝜌 = 0.3, 𝑘 = 0.4, and 𝐾 = 0.8. The
evolutionary steps in each round are set to 50.

Following the conditions of this scenario, we find the
dominant strategy reaches the whole population or reaches a
stable dominant winning status (the equilibrium), in different
gaming steps over different network structure (see Figure 1).
In the scale-free network, the dynamic can reach a stable
status more easily.

Compared to the small-world networks, in scale-free
network, the majority of individuals have only one high-
degree neighbour. There will be more references for him to
evaluate his neighbours’ payoff, providing him with a higher
probability to successfully imitate a better strategy. Then the
neighbours of him are apt to imitate his strategy because of
his high-degree status in the social networks. After several
game rounds, the individual game is changed to group game
with several high-degree players as the core nodes. It is
obvious that the number of groups is much less than the
number of nodes who participate in the game; thus the Scale-
free networks can reach equilibrium faster than small-world
model and meanwhile shows higher sensitivity, assumed by a
larger amplitude around the equilibrium.

(2) Results for Different Personalities. Our analysis continues
with how the spreading of competitive information differs
according to the weight of acceptance change that affects
agents’ utility function. In the prior model, we classify the
cases into different personalities.

(a) The Influence of Individual Personality Differences on
Game Equilibrium. We use a particular set of coefficients

{𝜌, 𝜋, 𝑘} to characterize different types of agents. At the start of
experiments, 𝑘

𝐴
, 𝑘
𝐵
, 𝑏
𝐴
, and 𝑏

𝐵
are initialized using uniform

distribution on the internal [0, 1) and they evolve according
to the knowledge dynamic rules described in Section 2.
Referring to the empirical data [17] (Yu et al., 2012), 𝐾 =

0.01. We ran the experiment in three different cases which
cover population with different personalities. In the first case
(Figure 2), the agents have high desire for knowledge and low
desire for brand loyalty and reputation; we set the parameters
(𝜋, 𝜌, 𝑘) distinguishing personalities as (0.8, 0.1, 0.1), which
we called “experts.” In the second case, the agents have low
expectation for reputation and knowledge and strong desire
for loyalty to a certain brand; we set the parameter (𝜋, 𝜌, 𝑘)
as (0.1, 0.8, 0.1), and we called them “sworn followers.” In the
last case, the agents have great desire for social conformity
and influence; we set the parameter (𝜋, 𝜌, 𝑘) as (0.1, 0.1, 0.8)
and call them “conformist.”

In this experiment, the gaming steps are set to 50 in
each simulation round and the initial % of information 𝐴

is set to 80% to get a more definite comparison. We carry
out experiments in 100 simulating rounds totally for the two
different kinds of network structure.

Comparing experimental results under three different
scenarios, a phenomenon could be observed in common,
that the average steps before reaching the equilibrium in
scale-free network is generally less than that in the small-
world network, which get the consistent conclusion with
experiment (a). The convergence of dynamic in scale-free
network is more obvious with slight fluctuation, while the
dissemination in the small-world network distribute more
scattered.

As one can see from the figures, in all scenarios the
whole network rapidly converges to a stable distribution. In
the network of “experts” the average full convergence takes
more time than in the network of “sworn followers” and
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(a) Information diffusions among “Experts”
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(b) Information diffusions among “Sworn followers”
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(c) Information diffusions among “Conformists”

Figure 2: Different convergence times due to different settings of (𝜋, 𝜌, 𝑘), 𝑘
𝐴
, 𝑘
𝐵
, 𝑏
𝐴
, and 𝑏

𝐵
are initialized on [0, 1). The values of (𝜋, 𝜌, 𝑘)

are, from (a) to (c), (0.8, 0.1, 0.1), (0.1, 0.8, 0.1), and (0.1, 0.1, 0.1), representing experts, sworn followers, and conformists.

“conformist.” Also, the “expert” network always has some
unsubstantial numbers of people doubting the diffused facts,
performance in the sharp fluctuations. Generally speaking,
information dissemination will proceed to the stable state
most quickly in the scale-free network with “conformist” in
the majority.

Local heterogeneity behaviour preference can explain
the phenomenon, which could be sharply reduced over the
network of “sworn followers” and “conformist.” A compatible
opinion or preference could be more easily reached, being
explained by fewer steps before the equilibriumduring evolu-
tion. Each agent considers all the strategies their neighbours
take and keep consistent with the overall opinion easily.
However, when “experts” take a strategy, accidental shadows

have more chance to happen, which increase the uncertainty
of spreading result.

(b)The Influence of Preference Benefit on InformationDissemi-
nation. Large proportion of a particular personality dominant
in the population indicates a certain psychological tendency
in social networks. For example, the psychology of “First
Impression” leads to a majority of “sworn followers” to a
special brand or product. The psychology of “Herd effect”
leads to plenty of “conformists.” Meanwhile, the psychology
of “Experientialism” makes most agents in the network more
rational and specialistic.

In addition, a piece of information has its own life cycle,
experiencing the process of production, diffusion, decay, and
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Figure 3: Under different evolutionary time, the diffusion states of information 𝐴 with yield change of 𝐴’s preference benefit (relative to 𝐵).
The values of 𝑏

𝐴
and 𝑏
𝐵
are well-distributed on [0, 1)with step size 0.05. 𝑘

𝐴
, 𝑘
𝐵
are initialized using uniform distribution on the internal [0, 1).

death, which cannot be absolutely fixed. Therefore, each
round of evolutionary game cannot continue without time
limiting.Thus, we simulate the winning probability of certain
information for evolutionary process in limited time periods,
trying to reveal the dissemination of competitive information
from a more practical perspective.

As is shown in Figure 3, the gaming steps are, the gaming
steps are, respectively, set to 20, 50, and 100; the initial % of
information 𝐴 is set to relatively low rate as 1%. Taking the
small-world network under the psychological state of “First
Impression” for instance, we carry out experiments in 100
rounds for different evolution time, trying to observe the
change on winning probability and diffusion rate of informa-
tion 𝐴 due to different information preference benefits.

The winning probability of 𝐴 generally increases with its
preference benefit and the evolution time. When the benefit
is lower than 0.1 comparing to 𝐵, there is no advantage for 𝐴
to win. There is a sharp rising between the preference values
0.1 and 0.2. After that, the probability fluctuates at a relatively
high level. Following the rule of “Imitate If Better,” a very
small group of initial adoption can get a high win probability.
The diffusion rate of 𝐴 also shows an ascending trend along
with the preference benefit increasing when the benefit is
lower than 0.2. Then the average diffusion rate keeps stable.
Meanwhile, it can be concluded that information diffuse
becomes lower after 50 game steps, which means, in most
rounds of simulation, the minority of population for infor-
mation 𝐴 will quickly occupy the whole population because
of the enough preference benefit and knowledge dynamic.

(3) Results with Different Initial Settings. We now discuss the
impact of the initial % of information settings. The initial

percentage of people adopting information𝐴 is set at 0.1, 0.5,
and 0.8, respectively. 𝑘

𝑎
and 𝑘

𝑏
are initialized on [0.2, 0.7]

and [0, 0.2), varied by the knowledge dynamic rules defined
in Section 2. 𝑏

𝑎
and 𝑏

𝑏
follow uniform distribution on the

interval [0, 1). 𝜋 = 0.3, 𝜌 = 0.3, 𝑘 = 0.4, and 𝐾 = 0.8. The
evolution steps in each round are set to 50. The simulation
round is set to 100 and the value gained at each step is
calculated to the average.

The results indicate that the initial support of information
will also have a major impact on the diffusion process. If
information 𝐴 in the initial state of the system has a higher
adoptive rating (𝑝 > 0.5), the chance of information 𝐴 wins
will be further enhanced. As to the lower initial adoptive
rating of information𝐴 (𝑝 < 0.5), the networkwill takemuch
more time to reach an equilibrium as shown in Figure 4. In
the network structure of small-world, information 𝐴 will fail
to win when its initial adoptive rating is set to 0.1. When
information 𝐴’s initial adoptive rating is increasing, the
diffusion rate of 𝐴 raises sharply, indicating that information
𝐴 is more likely to reach the whole population. Under the
structure of scale-free network, the phase change process is
much smoother. It can be inferred that scale-free networks
provide more heterogeneous topology structure, in which
information 𝐴 has a higher probability of winning. Thus
scale-free networks could be seen as a factor which decreases
with the winning odds of preferred information for a certain
product.

(4) Results with Incomplete Information. We finally examine
the impact of information noise on the probability of 𝐴’s
adoption and dissemination.The information noise levels are
set at 𝑘 = 0.01, 10, and 10,000, respectively.
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(a) Diffusion of information 𝐴 under different initial % setting in small-
world networks
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(b) Diffusion of information 𝐴 under different initial % setting in scale-
free networks

Figure 4: Diffusion of information under different initial % setting through different network structure. The value of 𝑝 is 0.1, 0.5, and 0.8.

The initial percentage of people adopting information 𝐴
is set at 0.1 to make a more significant comparison. 𝑘

𝑎
and

𝑘
𝑏
are initialized on [0.2, 0.7] and [0, 0.2) and vary following

the knowledge dynamic rules defined in Section 2. 𝑏
𝑎
and 𝑏
𝑏

follow uniform distribution on the interval [0, 1). 𝜋 = 0.3,
𝜌 = 0.3, and 𝑘 = 0.4. The evolution steps in each simulation
time period are set to 50. The simulation round is set to 100
and in each simulation period the mean value is referred.

The results in Figure 5 reveal that individual’s irrational
selection of strategies will also affect the results of dissemi-
nation. The smaller 𝐾’s value is, the more rational behaviour
can be observed. The preferred information will take the
advantage more easily over the network. It indicates that, for
a limited rational game process, namely the game players
adjust their strategies according to certain rules, the evolution
will reach an equilibrium under the circumstance of low
knowledge noise.Therefore, in the process of irrational game,
it is hard for a certain piece of information to win more
audience than the other, even though the former one has
an obvious advantage of initial share. The reason is that the
increasing of noise brings uncertainty of strategy evolution
when “Imitate If Better” updating rule plays a role. It can
also easily reach the conclusion again that scale-free networks
structure could weaken the winning probability of preferred
information.

5. Conclusion and Future Work

An evolutionary game model based on stochastic strategy
updating dynamic for competitive product-related informa-
tion dissemination in social network is presented in this
paper. Several important implications can be drawn from the
work.

Firstly, compared with the Small-world networks, Scale-
free networks are a kind of better structure for information
dissemination. In the case that the overall average knowledge
level is relatively high, the advantageous information in scale-
free networksmore easily defeat the others because of the less
difference between individuals in this network structure.

Secondly, different virtual communities (with differ-
ent network structures) should adopt different macrolevel
managerial strategies, for instance customized rewarding
and penalty mechanisms. Different incentives and penalties
can influence user’s choice of product-related information
spreading decision and affect the performance of information
sharing.

Furthermore, results of the competitive information dis-
semination are affected by the initial self-perceived knowl-
edge distribution of products and brand preference among
individuals, which means that, in order to make more
individuals prefer a brand than the other, the company should
provide more information to indirectly promote individuals’
acceptance of the product, for example, through the mass
media.

Finally, different personalities and mentalities in the
virtual community lead to different dissemination process
of competitive product-related information. Individuals’ irra-
tional selection of strategies also affects the results of dissem-
ination.

Other models as we know, including SIR Model, Markov
Model, and Random Petri-Net Model, only explain the
information spreading in individual behaviour level. They
could not preferably reflect the individual spreading behavior
evolution in the context of time change, network structure,
and interaction with others. Game theory is powerful tool in
information dissemination behavior description. Our work
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(a) The trend of change for information 𝐴 adoption in evolution over
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(b) The trend of change for information 𝐴 adoption in evolution over
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Figure 5: The impact of information noise on the % of information adoption in evolutionary process, the value of 𝐾 is 0.01, 10, and 1000.

reveals several interesting conclusions as to the nature of
competitive information dissemination, employing an agent-
based simulationmethod to explore the evolution of informa-
tion adoption and dissemination behavior in social networks.
We hope that this paper would provide some new insights
into the research of competitive information.

This paper has some limitations and we will improve our
model from the aspects as follows.

(1) We assume that the network structure is fixed and
did not consider the evolution of the network struc-
tures themselves, including not only homogeneous
network, but also heterogeneous network containing
several different types of players.

(2) Theutility parameters are endogenous to some extent.
To evaluate how the endogeneity impacts the person-
ality and to what extent it will influence the choice of
information adoption is a problem we will discuss in
the future work.

(3) Large number of real data should be used to support
the model, as a supplement of the simulation.
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Business data has been one of the current and future research frontiers, with such big data characteristics as high-volume, high-
velocity, high-privacy, and so forth. Most corporations view their business data as a valuable asset and make efforts on the
development and optimal utilization on these data. Unfortunately, datamanagement technology at present has been lagging behind
the requirements of business big data era. Based on previous business process knowledge, a lifecycle of business data is modeled to
achieve consistent description between the data and processes. On this basis, a business data partitionmethod based on user interest
is proposed which aims to get minimum number of interferential tuples. Then, to balance data privacy and data transmission cost,
our strategy is to explore techniques to execute SQL queries over encrypted business data, split the computations of queries across
the server and the client, and optimize the queries with syntax tree. Finally, an instance is provided to verify the usefulness and
availability of the proposed method.

1. Introduction

With the advent of Big Data, attentions from all walks of life
gradually focus on exploiting their controllable data so as to
realize a satisfactory profit. Against this background, data
resource is widely recognized to be equal in status and value
to mineral resource. In enterprise-led dataspace, data gener-
ated in business process are the most significant factor which
will affect the performance of process execution. As business
process is closely related to enterprise’s business strategy
and market competiveness, researches on business data will
benefit enterprises in coping with the challenges brought by
Big Data and are significant in predicting and responding to
potential business risks in a timely way as well as offering
business opportunities. Recently, research work on dataman-
agement in business process has gradually become a research
hotspot.

During business process execution, there is usually a large
data transfer, which falls into the scope of Big Data. For
example, currently China Unicom monthly stores more than
2 trillion records, data volume is over 525 TB, and the highest
data volume has reached a peak of 5 PB [1]. China UnionPay
daily handles more than 60 billion transactions; thereby the

generated data are exceptionally large. Google supports such
a great many of services as both processing over 20 petabytes
(1015 bytes) of data and monitoring 7.2 billion pages per day
[2]. Starting from 2005, NTDB (National TraumaData Bank)
has tracked more than half a million trauma patients by now
and stored their records, and many service retailers collect
data frommultiple sales channels, catalogs, stores, and online
interaction, such as Client-Side Click-to-Action [3]. Hence,
Big Data is ubiquitous (business process data arises in enter-
prises (large or small)) and grows exponentially, which poses
huge challenges in datamanagement. To address this, the first
priority is to build an adaptive data model, which provides
basis and direction for efficient data acquisition. Secondly, we
see it as the next big issue about devising a suitable query
strategy for business data which is a prerequisite for data
processing and analysis.

Data modeling is the foundation for dataspace building.
The research work in the early days focused on dataspace
modeling where its subject is individual [4, 5]. iDM (iMeMex
datamodel) [6] is the first model which is able to represent all
heterogeneous personal information into a singlemodel.This
data model uses database approach so easy to understand but
introduce a new query language iQL, which is a little hard
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for normal users to learn. UDM (unified data model) [7] uses
the integrated IR-DB approach, which is able to represent the
partial sections of a file but is also not able to support rela-
tional data query. Triple model [8] represents heterogeneous
data in triple form, which is a simple and flexible solution
but does not support the path expression queries, uncertainty,
and lineage queries. PDM (probabilistic semantic model) [9]
supports top-k query answering but it is difficult to obtain
reliable probability functions. The methods above are based
on personal dataspace. Unfortunately, in enterprise-led data
space scenarios today there is rare research works on data
modeling.

Query ability is the basis of the exploitation of Big Data’s
value. Query language iQL [6] realizes rules-based query
optimization but ignores the evaluation of optimization cost.
UDM [7] introduces a new query language, which is based
on SQL query language with some extended core opera-
tions, called TALZBRA operation. Triple model [8] supports
subject predicate object (SPO) query language that can be
enhanced by RDF-based query language. DSSP (dataspace
support platforms) supports some useful services on datas-
pace, helps to recognize the correlation among sources of
dataspace, and provides a basic query schema upon these
data sources. In enterprise-led dataspace, business process
data is the key element in data modeling, which has such
characteristics as large-volume, strong temporal correlation
and stable lifecycle. These characteristics make it an extreme
challenge for current query schemes.

Business data realistically records the whole execution
process of a single task, including execution status, resource
status and real-time usage, and correlation with other busi-
ness process instances. Executing a business process would
generate additional data for a variety of reasons such as
monitoring for performance or business concerns, auditing,
and compliance checking. Even business process schemas
and enactments can be viewed as data so that they can be
managed, queried, mined for process schemas, and analyzed
[10]. An artifact is a kind of widely recognized business pro-
cess data, representing key business entities. Artifact-centric
approach [11] is the representative method in data-centric
business process management and has been applied in vari-
ous client engagements, including financial [12], supply chain,
retailer [13], bank, pharmaceutical research [14], and cooper-
ative work [15]. In this paper we firstly adopt artifact as a basic
element, analyze its evolution process, and then model busi-
ness data through corresponding artifact lifecycle. Secondly,
we make efforts on devising a safe and quick query strategy
in consideration of the privacy and storage distribution of
artifacts.

The rest of the paper is organized as follows. In Section 2
we introduce the concept of artifact in field of workflow
management and model business data with its lifecycle from
the perspective of process. In Section 3 we propose a business
data partition method concerning user interest, based on
which we further present a cryptograph query for off-site
storage data. Then, we give a detailed instance to verify the
proposed method in Section 4. In the last section, we draw a
conclusion.

2. Business Data Modeling

As before, artifacts describe the business-relevant data and
their lifecycles which is an important property of business
data and describes the whole dynamic process of business
data. It also contains specific time information. To take
advantage of these characteristics, our strategy is to model
business data with its lifecycle, which aims to realize the com-
pleted description of dynamic business data. In this section,
we introduce artifact-relevant notions and take artifact-
centric process description method to model business data
with artifact lifecycle. Furthermore, we adopt business pro-
cess logic model to illustrate the lifecycle of business data and
then measure the quality of above model.

2.1. Basic Definition

Definition 1. Artifact [16] is an objective data entity which
records the business process. Artifact comprises both a
unique immutable identity and self-describing mutable con-
tent.

Definition 2. An artifact lifecycle captures the end-to-end
process of a specific artifact, from creation to completion and
archiving.

Definition 3. Artiflow model (artifact logical flow) [17] is 5-
tuple (𝑁, 𝑆, 𝑅, 𝐶, Ru), where 𝑁 is the name of model, 𝑆 is a
finite set of services,𝑅 is a finite set of repositories,𝐶 is a finite
set of transport channels, and Ru is a finite set of business
rules.

Definition 4. The states of artifact are a set, ∧𝑚
𝑖=1

𝐼𝑠𝐷𝑒𝑓𝑖𝑛𝑒(𝐴
𝑖
)

(conjunction expression), where 𝐼𝑠𝐷𝑒𝑓𝑖𝑛𝑒(𝐴
𝑖
) is a mapping

function that assigns a Boolean value {0, 1} to each single
attribute 𝐴

𝑖
in attribute set 𝐴, 𝐴

𝑖
∈ 𝐴, 𝑖 ∈ {1, 𝑚}, and 𝑚 is

the number of attributes in artifact. If the attribute is defined
and has value, it will return 1; else it will return 0.

Definition 5. Service is 5-tuple (𝑛, 𝑉
𝑟
, 𝑉
𝑤
, 𝑃, 𝐸), where 𝑛 is

the name of a certain service, 𝑛 ∈ 𝑆; 𝑉
𝑟
, 𝑉
𝑤
are the finite set of

artifact classes, where 𝑉
𝑟
is a set of artifacts which the service

is about to read and 𝑉
𝑤
is a set of artifacts which the service is

about to rewrite;𝑃 is the description of artifact states inputted
by 𝑉; 𝐸 is the description of activities on 𝑉.

Definition 6. Repository is 4-tuple 𝑅 = (re, 𝑅
𝑎
, 𝑅
𝑟
, 𝐶
𝑡
), where

re is the name of repository; 𝑅
𝑎
, 𝑅
𝑟
are the set of stored and

read artifacts, respectively; 𝐶
𝑡
is the reading condition for 𝑅

𝑟
.

Definition 7. Transport channel is 2-tuple (Cn, Cs) where Cn
is the name of the channel; Cs is 3-tuple (prior service/repos-
itory name, rear service/repository name, channel type). Cs ∈

𝑅 × 𝑆 × {Read,ReadOnly} ∪ 𝑆 × 𝑅 × {Write}, where 𝑅, 𝑆 are
the finite set of repository elements and service elements in
Artiflow, respectively, and the set of transport channel types
is described as {Read, ReadOnly, Write}.

2.2. Data Modeling with Artifact Lifecycle. As suggested in
Definitions 2 and 3, Artiflow is a logical model that records
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Figure 1: Lifecycle of business data in “monitoring information.”

the artifact lifecycle, in which elements of repository, service,
artifact type, and transport channel are abstracted to rep-
resent a realistic business process. Artiflow views business
process as a graph, where nodes are either “service” or “repos-
itory.” We formalize Artiflow to facilitate data analysis and
illustrate it to facilitate process analysis. Figure 1 illustrates
a quality inspection process instance of a certain enterprise
where themain artifact is the “monitoring information sheet.”
The artifact captures the detected product’s evolvement from
creation to archiving, which includes all the business-relevant
data in this process. The whole process comprises detection
task registration, task assignment, task inspection, task audi-
tion, and so forth. Note that artifact “monitoring information
sheet” is inseparable from the coordinatewith such other arti-
facts as “product standard” and “method & standard” within
its lifecycle.When “monitoring information sheet” completes
its lifecycle, it will serve as a reference to form a new artifact—
“detection information sheet (DIS, for short).”

In this figure, there are nine services (“task assignment,”
“auditing,” etc.), seven repositories (“assignment task library,”
etc.), and serial transport channels between these repositories
and services.

2.3. Model Quality Evaluation. Exactly, one business object
can be achieved by implementing different business pro-
cesses, while different business process corresponds to a dif-
ferent Artiflowmodel. However, wewillmeasure theArtiflow
based on two factors: (1) the number of services determines
the flexibility of model. (2) The repository services read and
update artifacts. It is in this context that we define following
theorem to measure the quality of artifact models.

Theorem 8. Given an Artiflow (𝑁, 𝑆, 𝑅, 𝐶, 𝑅𝑢), it has 𝑗 Arti-
facts where the number of attributes in any𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡

𝑖
is 𝑛
𝑖
. Sup-

pose |𝑆
𝑖
| and |𝑅

𝑖
| represent the service amount and repository

amount of corresponding 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡
𝑖
, respectively; formula (1)

is defined to calculate Artiflow’s web service granularity and

repository service proportion, so as to measure the quality of
models:

𝜋 =

∑
𝑗

𝑖=1
𝜌
𝑖
(𝛼 (


𝑆
𝑖

/𝑛
𝑖
) + 𝛽 (1 −


𝑅
𝑖

/ (

𝑆
𝑖

+

𝑅
𝑖
)))

∑
𝑖

𝑖=1
𝛼 (

𝑆
𝑖 /𝑛
𝑖
) + 𝛽 (1 −

𝑅
𝑖 / (

𝑆
𝑖 +

𝑅
𝑖))

, (1)

where 𝛼, 𝛽, and 𝜌
𝑖
are known.

Theorem Proving. For a given Artiflow (𝑁, 𝑆, 𝑅, 𝐶, Ru), each
Artifact

𝑖
comprises both a service sequence and a reposi-

tory sequence, marked as (𝑆
𝑥
, 𝑅
𝑢
, . . . , 𝑆

𝑦
, 𝑅V), where service

sequence is described as 𝑆
𝑖

= (𝑆
𝑥
, . . . , 𝑆

𝑦
) and repository

sequence is described as𝑅
𝑖
= (𝑅
𝑢
, . . . , 𝑅V). Each Artifact𝑖 also

contains 𝑚 attributes.
Suppose |𝑆

𝑖
| and |𝑅

𝑖
| represent the service amount and

repository amount, respectively, then |𝑆
𝑖
|/𝑚 represents the

granularity of services when dividing the whole lifecycle of
artifact by its attribute number 𝑚. A larger value indicates
there are more blocks that are divided and the granularity is
less, which contributes to building a more flexible model.

In Artiflow, normally each artifact has a following repos-
itory to store its intermediate state, but there is exception
that some services can directly communicate with each other
and do not need intermediate repositories. Therefore, for the
same Artifact, the few the repository elements are, the less
the redundancy would be. |𝑅

𝑖
|/(|𝑆
𝑖
| + |𝑅

𝑖
|) represents the

proportion of repository elements in both service and repos-
itory elements within its corresponding artifact lifecycle. The
shorter the value is, the better the designed lifecycle would be.

The quality of Artifact
𝑖
is computed by the following

formula:

𝜋 = 𝛼 (


𝑆
𝑖

𝑛
𝑖

) + 𝛽 (1 −


𝑅
𝑖

𝑆
𝑖 +

𝑅
𝑖

) , (2)

where 𝛼 and 𝛽 are predefined constants, which is used to
balance the different magnitude between values both before
and after the plus.
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Each Artiflow comprises multiple Artifacts, so the qual-
ity measurement formula for the whole Artiflow is 𝜋 =

∑
𝑗

𝑖−1
𝜌
𝑖
𝜋
𝑖
/ ∑
𝑗

𝑖−1
𝜋
𝑖
, where 𝑗 is the number of artifacts and

∑
𝑗

𝑖−1
𝜌
𝑖

= 1; 𝜌
𝑖
represents the importance of Artifact

𝑖
. The

optimization of key Artifacts has a great impact on the whole
model to great extent, while the optimization of less-valuable
artifact does not contribute too much to the model efficiency.
Note that 𝜌

𝑖
can be either given by user or obtained by data

analysis.
By integrating with both repository element redundancy

and service element granularity,

𝜋 =
∑
𝑗

𝑖=1
𝜌
𝑖
𝜋
𝑖

∑
𝑗

𝑖=1
𝜋
𝑖

=

∑
𝑗

𝑖=1
𝜌
𝑖
(𝛼 (


𝑆
𝑖

/𝑛
𝑖
) + 𝛽 (1 −


𝑅
𝑖

/ (

𝑆
𝑖

+

𝑅
𝑖
)))

∑
𝑖

𝑖=1
𝛼 (

𝑆
𝑖 /𝑛
𝑖
) + 𝛽 (1 −

𝑅
𝑖 / (

𝑆
𝑖 +

𝑅
𝑖))

(3)

can be deduced and taken to measure the model quality.

3. Business Data Querying

Enterprises like Google, Amazon have provided plenty of
cloud services, which provide an open storage solution for
data like process data all over the world. But off-site storage
is unsafe due to data privacy, even public cloud. In this case,
these data need to be encrypted and then stored in database.
But it is hard to make a trade-off between data security and
query speed, which is because process data need to be fre-
quent queried, modified, and transmitted. In this section we
make study on partitioning encrypted artifacts and coming
up with a superior query plan for cryptograph query that
minimizes the execution cost.

3.1. Business Data Partition. In order to ensure the efficiency
of business process, a superior data partition is on-demand.
When using Bucket partitionmethod, query result on crypto-
graph is actually a superset of true results generated by rele-
vant operators and then filtered at the client after decryption.
Thus, superior partition method is of great help and aims to
minimize the work done as much as possible, such as mini-
mizing the number of interferential results.

3.1.1. Data Analysis

Definition 9 (Bucket [18]). Mapping the domain of attribute
𝐴 into another partitions set {𝑝

1
, . . . , 𝑝

𝑀
}, where 𝑝

𝑖
∪ 𝑝
𝑗

= 0,
1 ⩽ 𝑖, 𝑗 ⩽ 𝑀, each partition 𝑝

𝑖
is named as a Bucket; 𝑀 is the

Bucket number.

Definition 10 (the user interest on artifact). Querying onArti-
fact’s attribute 𝐴 of 𝑛 times, respectively, while 𝑞(𝑎

𝑖
) repre-

sents any single result of queries 𝑞 that contains value 𝑎
𝑖
,

suppose 𝑓(𝑞(𝑎
𝑖
)) is the frequency of 𝑞(𝑎

𝑖
) occurring in 𝑛

trials, as 𝑛 increases, the frequency stabilizes at a certain value,
which is expressed as 𝑝(𝑞(𝑎

𝑖
)). In other words, 𝑝(𝑞(𝑎

𝑖
) is the

probability of artifact attribute 𝑎
𝑖
emerged in query result

dataset, called user interest.

Definition 11 (interferential artifact). (Intf-Artifact) is an arti-
fact which is incorrect result but belong to cryptograph query
result 𝑞

∗
(𝑎
𝑖
), named as INTFA(𝑞

∗
(𝑎
𝑖
)).

3.1.2. Min-Interference Partition. All Artifacts in each Bucket
correspond to a given index number in Bucket-based crypto-
graph partition. Cryptograph query returns all the encrypted
Artifacts in Bucket where true result exists.The rest in Bucket
would be transmitted to users as Intf-Artifact, and then it
should be deciphered and further filtered. Hence, Bucket
partition method determines the number of Intf-Artifacts,
which further effects the query processing cost.

Suppose a cryptograph relation contains 𝑛 tuples {Arti-
fact
1
,Artifact

2
, . . . ,Artifact

𝑛
} and 𝑘 is a large integer; then we

pose 𝑘 random queries. Totally, there are 𝑘
𝑖
queries where

their final query results are Artifact
𝑖.
, and other 𝑙

𝑖
tuples are

returned as the provisional result. In this case the expectation
of Intf-Artifact is 𝑙

𝑖
∗ (𝑘
𝑖
/𝑘).

There are 𝑛 tuples in the relation at all, and then the
expectation of total Intf-Artifacts is

𝑙
1

∗ (
𝑘
1

𝑘
) + 𝑙
2

∗ (
𝑘
2

𝑘
) + ⋅ ⋅ ⋅ + 𝑙

𝑛
∗ (

𝑘
𝑛

𝑘
) . (4)

As for each Bucket containing 𝑛 different attribute values,
its user interest is𝑝(𝑞(𝐵)) = 𝑝(𝑞(𝑎

1
))+𝑝(𝑞(𝑎

2
))+⋅ ⋅ ⋅+𝑝(𝑞(𝑎

𝑛
).

If the user interest on 𝑖th artifact in a given Bucket is
𝑝(𝑞(𝑎
𝑖
)/𝑝(𝑞(𝐵)), (1 ≤ 𝑖 ≤ 𝑛), then the number of Intf-

Artifacts brought by above query is |INTFA(𝑞 ∗ (𝑎
𝑖
))| = 𝑓

1
+

𝑓
2

+ ⋅ ⋅ ⋅ + 𝑓
𝑖−1

+ 𝑓
𝑖+1

+ ⋅ ⋅ ⋅ + 𝑓
𝑛
.

As for Bucket 𝑗 (1 ≤ 𝑗 ≤ 𝑘), based on the user interest on
artifact and the number of Intf-Artifacts in each Bucket, we
can describe Bucket Intf-Artifact as follows:
WINTFA

=

𝑀

∑

𝑗=1

⟦𝑝 (𝑞 (𝐵
𝑗
))⟧ ∗


INTFA (Bucket

𝑗
)


=

𝑀

∑

𝑗=1

[𝑝 (𝑞 (𝐵
𝑗
)) ∗

𝑛

∑

𝑖=1

(
𝑝 (𝑞 (𝑎

𝑖
))

𝑝 (𝑞 (𝐵
𝑗
))

INTFA (𝑞
∗

(𝑎
𝑖
))

)]

=

𝑀

∑

𝑗=1

[𝑝 (𝑞 (𝐵
𝑗
)) ∗

𝑛

∑

𝑖=1

(
𝑝 (𝑞 (𝑎

𝑖
))

𝑝 (𝑞 (𝐵
𝑗
))

(

𝑛

∑

𝑖=1

𝑓
𝑗

𝑖
− 𝑓
𝑗

𝑖
))]

=

𝑀

∑

𝑗=1

[

𝑛

∑

𝑖=1

𝑝 (𝑞 (𝑎
𝑖
))

𝑛

∑

𝑖=1

𝑓
𝑗

𝑖
−

𝑛

∑

𝑖=1

𝑝 (𝑞 (𝑎
𝑖
)) 𝑓
𝑗

𝑖
]

=

𝑀

∑

𝑗=1

[

𝑛

∑

𝑖=1

𝑝 (𝑞 (𝑎
𝑖
)) 𝐹
𝑗

−

𝑛

∑

𝑖=1

𝑝 (𝑞 (𝑎
𝑖
)) 𝑓
𝑗

𝑖
] .

(5)

From here we see that in the case of a fixed Bucket num-
ber, the smaller the value of formula (5) is, the more excellent
the index would be. A larger value brings a heavy cost when
querying and renders a low efficiency of Bucket partition.
From the probability angle, Bucket where artifact with higher
user interest exists should contain fewer Artifacts. Therefore,
user interest on each artifact should be viewed as the weight
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in the whole process.Moreover, when the index is being built,
formula (5) is used to determine which Bucket we store each
artifact in, which helps to obtain an optimal partition result.

3.2. Business Data Query. Cloud service stores encrypted
artifact information and corresponding index information,
while such other information as the partitioning of attributes,
mapping function, and so forth are stored at client. When a
user issues a query request, query 𝑞 should be rewritten to
its server-side cryptograph query 𝑞

∗, which is then executed
on cloud.The purpose of rewriting SQL queries is to split the
query computation across the client and cloud.

3.2.1. Basic Definitions

Definition 12. 𝜉
(∗,𝑎]

(𝑥) is a function which returns a set of
all the Bucket ID where its right boundary value 𝐵

𝑗

∗
.right is

not greater than 𝑥 when once partitioning Bucket; that is,
𝜉
(∗,𝑎]

(𝑥) = {BIDV
∗

| 𝐵
V
∗
.right ≤ 𝑥}.

Definition 13. 𝜉
[𝑎,∗)

(𝑥) is a function which returns a set of all
the Bucket ID where its left boundary value 𝐵

𝑗

∗
.left is greater

than 𝑥 when once partitioning Bucket; that is, 𝜉
[𝑎,∗)

(𝑥) =

{BIDV
∗

| 𝐵
V
∗
.left ≥ 𝑥}.

Definition 14. 𝜉
(∗,𝑝(𝑞(V𝑖))](𝑥) is a function which returns a set

of all the Bucket ID where its maximum artifact query proba-
bility 𝐵

∗

𝑗
.𝑝right is not greater than 𝑥 when twice partitioning

Bucket; that is, 𝜉
(∗,𝑝(𝑞(V𝑖))](𝑥) = {BID∗

𝑗
| 𝐵
∗

𝑗
.𝑝right ≤ 𝑥}.

Definition 15. 𝜉
[𝑝(𝑞(𝑎𝑖)),∗)

(𝑥) is a function which returns a
set of all the Bucket ID where its minimum artifact query
probability 𝐵

∗

𝑗
.𝑝left is not less than 𝑥when twice partitioning

Bucket; that is, 𝜉
[𝑝(𝑞(𝑎𝑖)),∗)

(𝑥) = {BID∗
𝑗

| 𝐵
∗

𝑗
.𝑝left ≥ 𝑥}.

Definition 16. 𝛿cond(𝐶) is a function that translates specific
query conditions to encrypted ones.

Definition 17. Query rewriting function is described as
𝛿query(𝑞) ⇒ 𝑞

∗, where 𝑞 is the original query and 𝑞
∗ is the

cryptograph query.

3.2.2. Query Rewriting Rules. In view of grammatical rules,
query condition cond includes: V, 𝐴 : 𝐴, cond

1
∨ cond

2
,

cond
1

∧ cond
2
, where “:” is the operator, such as equal, less

than, not greater than, greater than, and not less than. We list
the rewrite formulas for various query conditions as shown
in Formulas (6) to (8).

(1) 𝐴 : V:
𝛿cond (𝑥 = 𝑒) ⇒

1
𝐴
∗

= 𝜉
𝑒
(𝑥)

𝛿cond (𝑥 < 𝑒) ⇒
2
𝐴
∗

≤ 𝜉
𝑒
(𝑥)

𝛿cond (𝑥 < 𝑒) ⇒
3
𝐴
∗

∈ 𝜉
(∗,𝑒]

(𝑥)

𝛿cond (𝑥 > 𝑒) ⇒
4
𝐴
∗

≥ 𝜉
𝑒
(𝑥)

𝛿cond (𝑥 > 𝑒) ⇒
5
𝐴
∗

∈ 𝜉
[𝑒,∗)

(𝑥) ,

(6)

where both Map 2 and Map 4 are order preserving, and both
Map3 and Map 5 are random.

(2) 𝐴 : 𝐴:

𝛿cond (𝐴
𝑖
< 𝐴
𝑗
)

⇒
1

∨ (𝐴
∗

𝑖
= Bid

𝐴𝑖
(𝑝
𝑘
) ∧ 𝐴
∗

𝑗
≥ 𝜉
𝐴𝑖

(𝑝.left))

𝛿cond (𝐴
𝑖
< 𝐴
𝑗
)

⇒
2

∨ (𝐴
∗

𝑗
= Bid

𝐴𝑗
(𝑝
𝑙
) ∧ 𝐴
∗

𝑖
≥ 𝜉
𝐴𝑗

(𝑝.right))

𝛿cond (𝐴
𝑖
< 𝐴
𝑗
) ⇒
3

∨ (𝜉
𝐴𝑖

(𝑝
𝑘
.left) ≤ 𝜉

𝐴𝑗
(𝑝
𝑙
.right))

𝛿cond (𝐴
𝑖
< 𝐴
𝑗
)

⇒
4

∨ (𝐴
∗

𝑖
= Bid

𝐴𝑖
(𝑝
𝑘
) ∧ 𝐴
∗

𝑗
= Bid

𝐴𝑗
(𝑝
𝑙
)) ,

(7)

where 𝑝
𝑘

∈ partition(𝐴
𝑖
), 𝑝
𝑙

∈ partition(𝐴
𝑗
), and 𝑝

𝑙
.high ≥

𝑝
𝑘
.low.
When the condition is 𝐴

𝑖
< 𝐴
𝑗
, in Map 1 𝐴

𝑖
is order pre-

serving, while in Map 3 both 𝐴
𝑖
and 𝐴

𝑗
are order preserving.

Meanwhile, in Map 2 𝐴
𝑗
is order preserving, and in Map 4

both 𝐴
𝑖
and 𝐴

𝑗
are random.

(3) cond
1

∨ / ∧ cond
2
:

𝛿cond (cond
1

∨ cond
2
)

⇒ 𝛿cond (cond
1
) ∨ 𝛿cond (cond

2
) ,

𝛿cond (cond
1

∧ cond
2
)

⇒ 𝛿cond (cond
1
) ∧ 𝛿cond (cond

2
) .

(8)

For instance, suppose there are two artifact plaintext
tables in cloud database, which are app (aid, aname, time,
content, cid) check (cid, aid, result), respectively, where the
range of attribute aid is divided into 6 partitions, including
idapp.aid([0, 100]) = 3; idapp.aid((100, 200]) = 7; idapp.aid((200,

300]) = 5; idapp.aid((300, 400]) = 1; idcheck.aid([0, 200]) = 2;
idcheck.aid((200, 400]) = 6.

Given above partition results, we rewrite the following
query conditions based on above formulas:

𝛿cond (aid = 256) ⇒ aid∗ = 5,

𝛿cond (aid < 180) ⇒ aid∗ ∈ {3, 7} ,

𝛿cond (aid > 240) ⇒ aid∗ ∈ {5, 1} .

(9)

𝛿cond (app.did = check.did)⇒ (app∗.did∗ = 3 ∧ check∗
.did∗ = 2) ∨ (app∗.did∗ = 7 ∧ check∗.did∗ = 2) ∨ (app∗.did∗ =
5 ∧ check∗.did∗ = 6) ∨ (app∗.did∗ = 1 ∧ check∗.did∗ = 6).

𝛿cond (app.did < check.did)⇒ (app∗.did∗ = 3 ∧ check∗
.did∗ = 2) ∨ (app∗.did∗ = 3 ∧ check∗.did∗ = 6) ∨ (app∗.did∗ =
7 ∧ check∗.did∗ = 2) ∨ (app∗.did∗ = 7 ∧ check∗.did∗ = 6) ∨

(app∗.did∗ = 5 ∧ check∗.did∗ = 6) ∨ (app∗.did∗ = 1 ∧ check∗
.did∗ = 6).

3.2.3. Query Optimization Principles. Because data is
encrypted and stored in various places, in order to reduce
the transmission cost and improve the query efficiency, we
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Plane.airway = airway.airway

Airway

Price Plane Plane

Πchairman

𝜎price < 900 𝜎begin = “Shanghai” 𝜎end = “Beijing”

Plane.planeid = plane.planeid

Figure 2: Initial syntax tree.

𝜎begin = “Shanghai” 𝜎end = “Beijing”

Plane.airway = airway.airway

Πchairman

𝜎price < 900

Price∗ Plane∗ Plane∗

DecryptDecryptDecrypt

Decrypt

Airway∗

Plane.planeid = plane.planeid

Figure 3: Syntax tree applied to cloud DB.

should run operations on cloud services as much as possible,
and the answers can be computed with little effort by the
client.

For clear expression, operation procedure is expressed
by using the syntax tree. The decryption operation splits the
tree into cryptograph operations and plaintext operations.
Because any single operation on the original tree ends with
the selection after decryption; thereby the principle of query
optimization by using syntax tree is to iteratively pull up the
selection.

For example, given a selection “SELECT chairman FROM
Airway, Price, PlaneWHERE price < 900 AND begin = “shang-
hai” AND end = “beijing” ANDPrice.planeid = Plane.planeid
AND Plane.airway = Airway.airway”, we take query tree to
illustrate how to optimize this query and describe its detailed
procedures.

In Figure 2 the SQL statement is converted into an initial
syntax tree. If the enterprise use cloud services or other off-
site storage platforms, we need to first decrypt the crypto-
graph then query the data at client, as shown in Figure 3,
where cryptograph database on cloud is bounded by the dot-
ted line. Query objects (Price, Plane, and Airway) are con-
verted to cryptograph tables (Price∗, Plane∗ and Airway∗) in
the cloud database.

Operations on syntax tree are performed from bottom to
up. In Figure 3 the first step is to execute selection, while the
following steps include rewriting the condition of selection
operations, converting it to a selection on cryptograph in
cloud database and then decrypting and further filtering the
result at client. A new syntax tree is derived as shown in
Figure 4.

Plane.airway = airway.airway

Plane.planeid = plane.planeid

Πchairman

𝜎price < 900

Price∗ Plane∗ Plane∗

Decrypt

Decrypt Decrypt Decrypt

Airway∗

𝜎
∗
𝛿cond(price < 900) 𝜎

∗
𝛿cond(begin = “Shanghai”) 𝜎

∗
𝛿cond(end = “Beijing”)

𝜎begin = “Shanghai” 𝜎end = “Beijing”

Figure 4: Rewriting syntax tree.

Plane.airway = airway.airway

Plane.planeid = plane.planeid

Πchairman

Price∗ Plane∗

Decrypt

Decrypt Decrypt

Airway∗

𝜎
∗
𝛿cond(price < 900)

𝜎price < 900 ∧ begin = “Shanghai” ∧ = “Beijing”end

(begin = “Shanghai” ∧ end = “Beijing”)𝜎
∗
𝛿cond

Figure 5: Moving selections in syntax tree.

According to optimization principles described above,
we should iteratively pull up selections. Therefore, by both
exchanging the positions between selection operations
(price< 900, begin = “shanghai” and end = “beijing”) and join
operation and then combing corresponding conditions, we
obtain a new syntax tree, as shown in Figure 5.

Moreover, based on operation rewriting rules, join opera-
tion in Figure 5 should be converted into two parts, including
the join on cryptograph in the cloud database and the selec-
tion on decrypted provisional results, as shown in Figure 6.
Repeat the above steps, rewrite all kinds of operations, and
continuously exchange the positions between selection oper-
ations and other operations, till all the selections cannot be
pulled up. As a result, we get the ultima syntax tree as shown
in Figure 7. Operations within dotted line would be executed
on cloud service, whereas user only needs to execute the last
selection. From here we see that the above method takes full
advantage of cloud service to reduce the cost of transmitting
and postprocessing and improve the efficiency of artifact
querying in business process.

4. Case Study

In this section, we will introduce a business instance of a
certain enterprise. Based on themethod in Section 2,we com-
plete the data modeling with artifact lifecycle from a given
process instance and illustrate the query process through
query tree mentioned in Section 3.

An enterprise’s process of equipment purchase/scrap
involves the following steps. At first equipment division fills
out the equipment purchase/scrap application and hands it to
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Plane.airway = airway.airway

Πchairman

Price∗ Plane∗

Decrypt

Decrypt

Airway∗

∗

𝜎price.planeid = plane.planeid

𝛿cond(price.planeid = plane.planeid)

𝜎
∗
𝛿cond(price < 900)

𝜎price < 900 ∧ begin = “Shanghai” ∧ = “Beijing”end

(begin = “Shanghai” ∧ end = “Beijing”)𝜎
∗
𝛿cond

Figure 6: Rewriting syntax tree.

departmentmanagers and company’s leadership for approval.
If the application is consented, then we should archive it;
else we withdraw it. Purchasing department does purchase
according to a copy of application, and when the purchase
is completed, documents should be archived. Equipment
division scraps the equipment based on specific methods and
standards and then archives the processing results. Assets
department regularly verifies company’s assets based on
purchase/scrap equipment information. Archive department
has permission to query all the archived information.

This process involves multiple departments and multiple
sets of information. If we manage the data alone, as business
data are complicated, and even one attribute has difference
value in different event, thereby it is difficult to manage. If we
manage the process alone, only the department activities will
be involvedwhile business data in the process will be ignored.
In this context, we analyze the process concerning both data
and process and describe this instance with an Artiflow (𝑁,
𝑆, 𝑅, 𝐶, Ru), where

𝑁: “EP/𝑆”;

𝑆: {FilloutEPA,Audit1, Audit2,Query, Purchase, Asset
Verification. . .};

𝑅: {NewEPA, PrimaryEPA, FinalEPA, Unapro-ved
EPA, PO, FAL. . .};

𝐶: {FtoN, NtoA,. . .};

Ru: {constraint (EPA) = (FilloutEPA, Audit1, Aud-
it2). . .}.

The model contains multiple artifacts: “EPA” is for
describing equipment purchase application, while its lifecycle
starts from filling, auditing to archiving. When having been
archived, it will provide asset verification and support query
processing. “ESA” is for describing equipment scrap applica-
tion, while its lifecycle starts from filling, auditing to archiv-
ing. It is associated with another artifact, called “method &
standard.” The lifecycle of “PO”/“SL” captures process from

Πchairman

Price∗ Plane∗

Decrypt

Airway∗
∗

∗

𝛿cond(price.planeid = plane.planeid)

𝛿condplane.airway = airway.airway

price.planeid = plane.planeid ∧ plane.airway = airway.airway
𝜎price < 900 ∧ begin = “Shanghai” ∧ = “Beijing”end

𝜎
∗
𝛿cond(price < 900) (begin = “Shanghai” ∧ end = “Beijing”)𝜎

∗
𝛿cond

Figure 7: The ultima syntax tree.

purchase/scrap to application archive. The whole process is
shown in Figure 8.

Artifact Example.

Artifact: (𝐶, A, 𝜏, 𝑄, 𝑠, 𝐹)
𝐶 = “EPA”;
A: {EquipmentName, PurchaseAmount, UnitPrice,
ApplicationDate, Applicant, AuditingComment, Audit-
ingDate};
𝑄: {empty table (initial state 𝑠), basic information fill-
ing, delivery auditing, auditing completion, audited
application archiving (terminate state 𝐹)};
𝜏: EquipmentName: verchar; PurchaseAmount: In;
UnitPrice: Int; ApplicationDate: Date; Applicant: Ver-
char; AuditingComment: Verchar; AuditingDate: Date.

Service Example.

service = (𝑛, 𝑉
𝑟
, 𝑉
𝑤
, 𝑃, 𝐸), where:

𝑛 = “Audit2”;
𝑉
𝑟
: {EPA};

𝑉
𝑤
: {EPA};

𝑃: DEFINED (EquipmentName) ∧ DEFINED (Pur-
chaseAmount) ∧ DEFINED (UnitPrice) ∧ DEFINED
(ApplicationDate) ∧ DEFINED (Applicant) ∧

¬DEFINED (AuditingComment) ∧ ¬DEFINED
(AuditingDate).
𝐸: DEFINED (EquipmentName) ∧ DEFINED (Pur-
chaseAmount) ∧ DEFINED (UnitPrice) ∧ DEFINED
(ApplicationDate) ∧ DEFINED (Applicant) ∧

DEFINED (AuditingComment) ∧ DEFINED (Audit-
ingDate).

Repository Example.

𝑅 = (re, 𝑅
𝑎
, 𝑅
𝑟
, 𝐶
𝑡
).

re: “FinalEPA”;
𝑅
𝑎
: {EPA};
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Figure 8: Lifecycle of business data in equipment purchase/scrap process.

DecryptDecrypt

Decrypt

PO.EPAid = finalEPA.Id

FAL .Poid = PO.Id 𝜎finalEPA.audit1 = “Doctor Li”

𝜎FAL.name = “depth sounder”

FinalEPA∗

FAC∗

PO∗

Πapp name

Figure 9: Initial query on EP/S.

𝑅
𝑟
: {EPA};

𝐶
𝑡
: IsDefine(AuditingComment).

There is a repository named “FinalEPA,” which reads and
stores artifact “EPA” only if “AuditingComment” has been
assigned.

Given a query “SELECT app name FROM FAL, PO,
FinalEPA WHERE Fal.name = ‘depthsounder’ AND FAL
.POid=PO.IdANDPO.EPAid= FinalEPA.IdANDFinalEPA
.Audit2 = ‘Doctor Li”’, it can be converted into a syntax tree
as shown in Figure 9, which can be further converted into a
new syntax tree shown in Figure 10. Queries will be issued on
this syntax tree.

Decrypt

FinalEPA∗

FAC∗

PO∗

Πapp name

𝜎FAL.name = “depth sounder” ∧ FAL .POId=PO.Id ∧

PO.EPAid = finalEPA.Id ∧ finalEPA .audit2 = “Doctor Li”

𝛿cond(PO.EAPId = finalEPA.Id)

𝛿cond(FAL .Poid = PO.Id) 𝜎
∗
𝛿cond (finalEPA .audit2 = “Doctor Li”)

𝜎
∗
𝛿cond FAL .name = “depth sounder”

∗

∗

Figure 10: Ultima query on EP/S.

5. Conclusion

There is no doubt that more and more large datasets will be
poured out during business process execution; meanwhile,
these business data are extremely valuable. In this case, we
modeled business data through its lifecycle from the per-
spective of process, which ensures the integrity of dynamic
business data. Furthermore, we present the notion of user
interest on business data, which has a superior function in
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countingminimum interferential tuples during data partition
and ensuring a lower cost of postprocessing brought by
data partition. Considering current business data are mostly
stored on cloud, we proposed a query rewriting strategy for
off-site encrypted data which has a significant advantage in
reducing the postprocessing cost. Currently there is little
research on business data modeling and querying in the true
sense. Our research lays great foundation for business data’s
application in enterprise. That is the initial step of business
data management architecture, and we will further research
on business data analysis with its lifecycle, to fully dig the
significant value of business data.
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The first-order differential equation of the seismic active earth pressure is established by horizontal slices analysis method, based
on the elastic wave theory, with the summarized dynamic analysis model of the reinforced retaining wall and the plane of fracture
assumed as linear type. And then this paper proposes a time-frequency analysismethod for the internal antiseismic stability analysis
on the retaining wall. The reasonability of this method is verified by the results from other methods, for example, rule.The internal
frictional angle of filling earth, the seismic intensity, and the frequency of the input earthquake wave have a predominant effect on
the needed total tensile force of the lacing wires, which shows that (1) the needed total tensile force of the lacing wires goes up with
the increase of the PGA and the internal frictional angle; (2) the needed total tensile force of the expandability lacing wires is bigger
than that of the nonexpandability lacing wires; (3) the needed total tensile force of lacing wires is saddle distributed and the force
achieves maximum value when the frequency of input wave equals the natural frequency of reinforced retaining wall. Besides, if the
reinforced retaining wall is designed in compliance with the rules, the emergency capacity of reinforced retaining wall is reduced.
At last, this paper not only takes into account the effect of three factors of the seismic wave (PGA, frequency, and duration) on the
internal antiseismic stability analysis of reinforced retaining wall but also provides some valuable references for the time-frequency
seismic design of other retaining structures.

1. Introduction

In Wenchuan earthquake, only one type of destruction
of reinforced retaining wall caused by earthquake ground
motion results in the rigid-plastic complex reinforcement’s
fracture. This phenomenon fully shows that reinforced
retaining wall is applicable in high intensity earthquake
area [1]. The earthquake stability analysis methods for rein-
forced retaining wall are usually pseudostatic method, limit
displacement method, and numerical method [2–7]. The
pseudostatic method only considers the effect of PGA on
the stability of retaining wall and ignores the duration and
frequency of seismic wave; while duration and frequency are
not considered in limit displacement method, the method is
not convenient in engineering practice with poor precision.
The progress of computer techniques promotes the numerical

analysis methods development in practical engineering anal-
ysis.Themethods contain the finite element method, bound-
ary element method, the meshless method, and so forth
[8, 9]. Among those analysis methods, the meshless method
is suitable in resolving practical problems, and another
problem as mesh distortion in the finite element method and
boundary element method can be generally avoided. Now,
there are dozens of meshless methods, and each method uses
different weighted residuals and approximate functions [10],
which might be the direction of development in numerical
analysismethods. As for the design of the reinforced retaining
wall, results are more precise than pseudostatic method,
finite element method, and boundary element method. It can
consider the effect of PGA likewise, duration, and frequency
of seismic wave, and nonlinear behavior of backfill earth on
the stability of retaining wall. However, the meshless method
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is hard for the engineers to learn and implement. Results of
study also indicate that duration and frequency of seismic
wave have remarkable effect on the earthquake stability of
reinforced retaining wall [11, 12]. It is thus important to
strengthen time-frequency analysismethod on the stability of
reinforced retaining wall under earthquake excitation, which
can be easily used in reinforced earth wall design and solves
the problem of general design methods unable to consider
the effect of frequency and duration of seismic wave. For
example, thismethod is compatible in EXCEL or other simple
procedures (see Figure 1).

According to the reports on retaining walls damage in
the Wenchuan earthquake [13, 14], the SV-wave of which
vibrating direction is perpendicular to the direction of
propagation in the cross-section of retaining wall is the
most destructive wave. Moreover, SV-wave is a complex
nonstationary signal and its frequency alters gradually over
time, restricting the practical usage of pseudostatic method
and limited displacement method. To tackle the problem,
this paper presents an analysis work based on the elastic
wave theory [15] and summarizes the dynamic analysismodel
of reinforced retaining wall. For the case of expandability
and nonexpandability lacing wires, the plane of the frac-
ture being linear type is assumed and thus the first-order
differential equation of the seismic active earth pressure is
established by horizontal slices analysis method. After that,
by use of Hilbert-Huang transform method [16], authors
have proposed a time-frequency analysis method for internal
antiseismic stability analysis of reinforced retaining wall
under SV-wave excitation. The validation of the new method
is illustrated and verified through shaking table test and
numerical analysis. In an effort to study the advantages of
the method, the seismic stability calculation of reinforced
retaining wall is conducted and further compared with
the relevant results from time-frequency analysis method,
pseudostatic method, and numerical simulation method.

2. Time-Frequency Analysis Method of
the Antiseismic Stability for Reinforced
Retaining Wall

According to the above shortcomings of pseudostaticmethod
and limited displacement method, this paper proposes a
time-frequency analysis method, which can take fully into
account the effect of three elements of the seismic wave on the
antiseismic stability of reinforced retaining wall. Its derived
process follows this train of thought: firstly, summarize the
analysis model. The sliding mass of retaining wall is divided
into several horizontal slices by slices method. Solve the force
induced by seismic wave at infinitesimal body of any layer
based on HHT and elastic wave theory, and then one can
establish a mechanical balance equation of microelement. By
such analogy, the governing equations of the whole sliding
mass are deduced. Hence, the needed total tensile force and
length of the lacing wires for the reinforced retaining wall
are worked out. In essence, the inertial force is a simplified
quantification [17] of seismic wave’s propagation in the soil.

Figure 1: Failure of reinforced retainingwall inWenchuan earthquake.
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Figure 2: Nonductility reinforcement.

Therefore, the horizontal seismic inertial force should be
equivalent to the wave force in this paper.

2.1. Formula Derivation of Time-Frequency Analysis Method

2.1.1. Basic Assumptions. Thetime-frequency analysismethod
of the antiseismic stability for reinforced retaining wall
depends on the following assumptions. (1) The location
and shape of rupture planes in the backfill soil behind the
retaining wall are very important to determine the cross-
section and length of rods. In the specifications for design
of highway reinforced earth engineering [18, 19], there are
two kinds of simplified rupture planes for the geosynthetics
with different modulus, and the rupture planes are shown in
Figures 2 and 3. The first simplified rupture plane is linear
type plane where dip angle is 45∘ +Φ/2. This plane can divide
the backfill soil into two sections, including active zone and
passive zone. If the reinforcement is ductile, a number of
field test results indicate that this rupture plane is close to
the real failure plane.The second rupture plane is bend linear
type plane, divided into two sections, which contains vertical
section and inclined section. In the vertical section, the height
is ℎ
1

= 𝐻/2 and the distance from the retaining wall is 𝑏.
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In the inclined section, the height is ℎ
2

= 𝐻/2 and the dip
angle is 45

∘

+ Φ/2. If the reinforcement is nonductile, field
test results show that this rupture plane is close to the real
failure plane. Therefore, according to the characteristics of
rods, this paper simplifies the rupture plane to two kinds.
(2) In the real reinforced earth retaining wall engineering,
the backfill soil is placed in layers, while not every layer
is proper continuous, homogeneous, and isotropic. As a
theoretical study, this paper assumes that the backfill soil
meets the above characteristics. A number of research results
indicate that the above assumptions of backfill soil cannot
produce bigger effect on the calculated results. (3) When the
seismic wave spreads from the bottom of the retaining wall
to the top, the internal material damping will dissipate major
seismic energy, the seismic wave will produce waveform
transformation, and the seismic wave will be transformed
into surface wave, behaving in the elliptical polarization
movement. The reflective seismic wave on the upper surface
of soil carries a small amount of energy of downpropagation,
which has been verified by the same results. In this paper,
ignoring the influence of surface reflective seismic wave is
reasonable.

2.1.2. Generalized Model. For the cases of expandable and
nonexpandable lacing wires, one can establish mechanical
balance equations of the selectivemicroelement by horizontal
slice method, respectively. Figure 4 shows the parameters
of unit-volume selected out as follows: the self-weight of

Moving direction

Propagation
direction

tensile forceD
i Reinforcement

Figure 5: Wave-force model of horizontal soil layer.

the slice is 𝑊
𝑖
; the normal and shear interaction forces of the

upper individual horizontal slice are 𝐹
𝑁,𝑖

, 𝐹
𝑡,𝑖
, respectively,

and those of the lower slice are 𝐹
𝑁,𝑖−1

, 𝐹
𝑡,𝑖−1

; tensile force of
the geosynthetic at layer 𝑖 is 𝑇

𝑖
; the horizontal inertial force

on the slice is 𝐹
𝐸𝐻,𝑖

; the angle between rupture plane and
horizontal plane is 𝛼

𝑖
. The free-body diagram of wave force

on the horizontal slice is shown in Figure 5.

2.1.3. Calculated Tension of Reinforcement. In Figure 4, when
the force of slice 𝑖 reached a balance, the total of all vertical
components is zero:

𝐹
𝑁,𝑖+1

− 𝐹
𝑁,𝑖

− 𝑊
𝑖
+ 𝑁
𝑡,𝑖
sin𝛼
𝑖
+ 𝑁
𝑁,𝑖

cos𝛼
𝑖
= 0, (1)

𝑁
𝑡,𝑖

= 𝑐𝑙
𝑖
+ 𝑁
𝑁,𝑖

tan𝜙, (2)

where 𝑐 is the cohesion of the filling earth and𝜑 is the internal
frictional angle.

Bring (2) into (3); the normal force of the horizontal slice
𝐹
𝑁,𝑖

can be derived:

𝑁
𝑁,𝑖

=
𝐹
𝑁,𝑖

− 𝐹
𝑁,𝑖+1

+ 𝑊
𝑖
− 𝑐𝑙
𝑖
sin𝛼
𝑖

tan𝜑 sin𝛼
𝑖
+ cos𝛼

𝑖

. (3)

When the whole sliding mass reached a balance, the sum
of all horizontal components is zero:

𝑛

∑

𝑖=1

𝑇
𝑖
+

𝑛

∑

𝑖=1

𝑁
𝑡⋅𝑖
cos𝛼
𝑖
−

𝑛

∑

𝑖=1

𝑁
𝑡⋅𝑖
sin𝛼
𝑖
−

𝑛

∑

𝑖=1

𝐹
𝐸𝐻,𝑖

= 0. (4)

Bringing (2) and (3) into (4), we can get that

𝑛

∑

𝑖=1

𝑇
𝑖
+

𝑛

∑

𝑖=1

(𝑐𝑙
𝑖
+ 𝑁
𝑁,𝑖

tan𝜙) cos𝛼
𝑖

−

𝑛

∑

𝑖=1

𝐹
𝑁,𝑖

− 𝐹
𝑁,𝑖+1

+ 𝑊
𝑖
− 𝑐𝑙
𝑖
sin𝛼
𝑖

tan𝜑 sin𝛼
𝑖
+ cos𝛼

𝑖

sin𝛼
𝑖

−

𝑛

∑

𝑖=1

𝐹
𝐸𝐻,𝑖

= 0.

(5)

The potential function of SV-wave can be formulated
uniformly by elastic displacements [20], as follows:

𝑢 (𝑧, 𝑡) = 𝑈 (𝑧) 𝑒
𝑖𝜔𝑡

, (6)
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where 𝑈(𝑧, 𝑡) is the displacement function of microunit 𝑖;
𝑈(𝑧) is the amplitude of the elastic displacement of microunit
𝑖; 𝜔 is the vibrational frequency of microunit 𝑖.

Then, the inertial force which is generated by SV-wave of
microunit 𝑖 is as follows:

𝐹
𝐸𝐻,𝑖

=



𝑤
𝑖
⋅
𝜕
2

𝑢/𝜕𝑡
2

𝑔



=
𝑊
𝑖
𝑤
2

𝑈 (𝑧)

𝑔
. (7)

Hence, the needed total tensile force of the expandability
and nonexpandability lacing wires in reinforced retaining
wall can be obtained, respectively, by bringing (7) into (5),
as follows:
𝑛

∑

𝑖=1

𝑇
𝑖
= 𝜌𝑉𝑤

2

𝑈 (𝑧) −
𝑐𝐻 cos𝛼
sin𝛼

−
[cos𝛼 tan𝜑 − sin𝛼] [𝐹

𝑁,0
+ 𝑊 − 𝑐𝐻]

tan𝜑 sin𝛼 + cos𝛼
,

(8)

𝑛

∑

𝑖=1

𝑇
𝑖
= 𝜌𝑉𝑤

2

𝑈 (𝑧) − 0.3𝑐𝐻

+
0.3 (1 − 0.3 tan𝛼) 𝛾𝐻

2

− [𝑐 (1 − 0.3 tan𝛼)𝐻]

tan𝜑

× ([cos𝛼 tan𝜑 − sin𝛼] [𝐹
𝑁,0

+ 0.045𝛾𝐻
2 tan𝛼]

− 0.3𝑐𝐻 tan𝛼)

× (tan𝜑 sin𝛼 + cos𝛼)
−1

,

(9)

where 𝐹
𝑁,0

is the overload at the top surface of the retaining
wall; 𝜔 is the instantaneous frequency of SV-wave, which
changes over time; 𝜌 is the density of the filling earth behind
retaining wall;𝑉 is the volume of the slidingmass ABCD; 𝛼 is
the angle between the rupture plane inclined part of retaining
wall and the horizontal plane.

The needed total tensile force (∑
𝑖=1

𝑇
𝑖
) of the lacing wires

in reinforced retaining wall can be transformed into the
dimensionless value 𝐾, which is equal to the coefficient of
soil pressure with the traditional design method for retaining
wall. And then the formulation of 𝐾 is that

𝐾 =

𝑛

∑

𝑖=1

𝑇
𝑖

𝛾𝐻
2

. (10)

The tensile force of lacing wires at layer 𝑖 is 𝑇
𝑖
, as follows:

𝑇
𝑖
= 𝛾ℎ
𝑖
𝐷
𝑖
𝐾. (11)

2.2. Analysis Mentality of Time-Frequency Effect. Time-
frequency effect of seismic wave is mainly manifested in
the elastic amplitude 𝑈(𝑧) and frequency 𝜔 of input seis-
mic excitation. The analysis procedures of time-frequency
effect proposed in this paper are as follows. (1) Decompose
the seismic wave to several intrinsic mode functions (IMF)
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Figure 6: Time history of Wenchuan-Wolong wave.
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Figure 7: Acceleration time history of IMF.

by the empirical mode decomposition (EMD) method. (2)
Convert the multiple-channel multiple signals which consist
of IMF to several single-channel single signals by conducting
channel switch. (3) Solve instant frequency of each channel
and plot the frequency time history curve. (4) The needed
total tensile force of lacing wires can be obtained by bringing
every IMF and its instant frequency into (8) and (9).

From the above analysis, we know that time-frequency
effect method of the antiseismic stability of reinforced retain-
ing wall proposed in this paper can offset the drawbacks
of pseudostatic method and limited displacement method.
Moreover, it considers the effects of PGA, frequency, and
duration primly for the stability of reinforced retaining wall
under earthquake.

2.3. Application of Time-Frequency Effect for Seismic Wave.
In order to illustrate the application of time-frequency effect
for seismic wave particularly, authors chose Wolong seis-
mic waves input to carry out time-frequency analysis. (1)
Input the Wolong seismic wave (Figure 6). (2) Disintegrate
the seismic wave into multiple IMF by conducting EEMD
method (Figure 7). (3) Solve the instant frequency of each
IMF (Figure 8).

Note that owing to sustenance over long periods of time
for Wolong seismic wave, in Figures 7 and 8, the time history
is only chosen from zero to eighty seconds, including peak
ground acceleration.



Mathematical Problems in Engineering 5

Table 1: Comparison of tensile force of reinforcement between time-frequency and other calculated methods.

PGA
Tensile force (kN) Tensile force (kN) Tensile force (kN)

𝜑 = 20
∘

𝜑 = 25
∘

𝜑 = 30
∘

𝑇-𝐹 Shahgholi et al. [21] Code 𝑇-𝐹 Shahgholi et al. [21] Code 𝑇-𝐹 Shahgholi et al. [21] Code
0.1 151 159 156 137 147 144 123 118 117
0.2 161 171 169 146 157 154 145 138 136
0.4 177 189 184 161 173 169 157 150 145
Note: PGA means peak ground acceleration; 𝑇-𝐹 means time-frequency method presented in this paper; Sha means method presented by Shahgholi et al.,
2001 [21].

Table 2: Error analysis of tensile force of reinforcement between time-frequency and other calculated methods.

PGA
Tensile force (%) Tensile force (%) Tensile force (%)

𝜑 = 20
∘

𝜑 = 25
∘

𝜑 = 30
∘

Shahgholi et al. [21] Code Shahgholi et al. [21] Code Shahgholi et al. [21] Code
0.1 5.30 3.14 7.30 4.76 −4.07 −5.08
0.2 6.21 4.68 7.53 5.10 −4.83 −6.52
0.4 6.78 3.70 7.45 4.62 −4.46 −8.00
Note: error = (the results of Shahgholi et al. [21] or Code-that of 𝑇-𝐹) ∗ 100%/the results of 𝑇-𝐹.
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Figure 8: Frequency time history of IMF.

3. Solution Procedures of Time-Frequency
Analysis Method for the Antiseismic
Stability of Reinforced Retaining Wall

The solution procedures of time-frequency analysis method
for the antiseismic stability of reinforced retaining wall
proposed in this paper are as follows.

(1) Summarize the analysis model, based on the panel,
filling earth, geosynthetics of reinforced retaining
wall, and actual site condition.

(2) Judge the place of fracture plane and bar spacing in
accordance with the physical characteristic of soil and
the type of reinforcement.

(3) Determine the design response spectra according
to the “Code for Seismic Design of Buildings,” and
then synthesize the acceleration time history by the
method detailed in [22].

(4) Generate displacement time history curve according
to acceleration time history curve; then, with Hilbert-
Huang transform, solve all the intrinsic mode func-
tions of seismic wave and corresponding frequency
time history curves.

(5) Bring the results above into (8) or (9) to obtain
the needed total tensile force of the lacing wires;
moreover, in alliance with (10), acquire the tension of
reinforcement in each layer.

(6) Based on the above calculations and the position of
rupture plane, we can get the requisite sectional area
and the length of any reinforcement.

4. Verification of Time-Frequency Analysis
Method for the Antiseismic Stability of
Reinforced Retaining Wall

In order to verify the correctness of time-frequency analysis
method for the antiseismic stability of reinforced retaining
wall, we consider the effect of the PGA, however, regardless of
the frequency of seismic wave. For example, the unit weight
of the backfill is 20 kN/m3 and the height of retaining wall
is 5m, to arrange 18 layers of expandability lacing wires with
constant spacing, and the antipull friction coefficient is 0.75;
characteristic values of the shear strength parameters for the
backfill are 𝑐 = 0 and 𝜑 = 20

∘

, 25
∘

, 30
∘, respectively, PGA of

the input sinusoidal wave is 0.1, 0.2, 0.4 (g), and the frequency
is 15HZ which is beyond the incidence of frequency about
seismic wave by part 3. The results of the total tensile force
are shown in Tables 1 and 2.

In general, themaximumerror is 8.0%, and theminimum
error is 3.14%, which can show that the results by time-
frequency analysis method when ignoring the effect of
frequency which are shown in Tables 1 and 2 are consistent
with that by the current standard method and reference.
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Figure 9: Relationship between total tensile force parameter 𝐾 and
internal friction angle of fill under frequency of 0.2Hz.

Hence, the comparing simulation results proves the reliability
and effectiveness of the new method proposed in this paper.

5. Parametric Study of Time-Frequency
Analysis Method for the Antiseismic
Stability of Reinforced Retaining Wall

For the time-frequency analysis method of reinforced retain-
ing wall, the internal frictional angle of the filling earth, the
seismic intensity, and the frequency of the input earthquake
wave in different types of geosynthetics have a predominant
effect on the parameter𝐾. For example, the unit weight of the
backfill is 20 kN/m3 and the height of retaining wall is 5m;
arrange 18 layers of reinforcements with a constant spacing
and the antipull friction coefficient is 0.75; characteristic
values of the shear strength parameters for the backfill are
𝑐 = 0 and 𝜑 = 15

∘

, 20
∘

, 25
∘

, 30
∘, respectively, and PGA of

the input sinusoidal wave is 0.1, 0.2, 0.4 (g) with the frequency
change among 0.1, 0.2, 0.4, 0.8, 1.0, 2, 4, 5, 6, 8, and 10 (HZ).

The values of the parameter𝐾 are shown in Figures 9, 10,
11, and 12, and as well 𝐾 and 𝐵 represent the expandable and
nonexpandable lacing wires separately.

Analyzing Figure 9 to Figure 12 comprehensively, we can
reach that the parameter 𝐾 of the total tensile force of
the lacing wires decreases with the increase of the internal
frictional angle, and it may be because of the following
reasons: the frictional resistance on the surface of lacing
wires increases with the frictional angle, which improves the
pulling resistance of lacing wires, and then the total tensile
force reduces. However, the inertia force of backfill earth
increases with the increase of the PGA, and then the total
tensile force of lacing wires also increases significantly; the
parameter 𝐾 of the total tensile force of the expandability
lacing wires is bigger than that of the nonexpandability lacing
wires, and it may be because of the following reasons: if
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Figure 10: Relationship between total tensile force parameter𝐾 and
PGA under frequency of 0.2Hz.
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Figure 11: Relationship between total tensile force parameter𝐾 and
frequency under internal friction angle of 20 degrees.

the reinforcement is ductility, the rupture plane is linear. On
the contrary, the rupture is bending rupture plane that the
reinforcement is nonductility. However, the wedge formed by
the linear type plane is bigger than that formed by the bend
linear type plane, and then the inertia force of the former is
bigger than the latter, so the parameter 𝐾 of the total tensile
force of the expandability lacing wires is bigger than that of
the nonexpandability lacing wires; the needed total tensile
force of lacing wires is distributed in the shape of saddle and
the force achieves the maximum value when the frequency
of the input wave is 1HZ. This phenomenon is because the
instant frequency (1HZ) of the input seismic wave is close to
the natural frequency (1.16HZ) of the retaining wall, causing
the resonance effect to be enhanced; for the expandability
and nonexpandability lacing wires, the calculations of𝐾with
the method that is proposed in this paper range from 1.0 to
1.25, while that value with normative methodologies between
1.02 and 1.35 (both inclusive), which indicate seismic safety
reserve of retaining wall, may be lowered by formal methods
for the design of antiseismic stability of the reinforcement
retaining wall.
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Figure 12: Relationship between different total tensile force param-
eter 𝐾 and frequency under internal friction angle of 20 degrees.

From the above analysis, one can know that the type
of geosynthetic, the internal frictional angle of the filling
earth, the seismic intensity, and the frequency of the input
earthquakewave have a predominant effect on the antiseismic
stability of the reinforced retaining wall. Therefore, the effect
of the above factors should be given due considerations in the
earthquake-resistant design.

6. Conclusions

Based on the above analysis, the following conclusions can be
concluded.

First, for the expandability and nonexpandability lacing
wires, based on the elastic wave theory, we summarize the
dynamic analysis model of the reinforced retaining wall and
establish time-frequency analysis method of the antiseismic
stability with HHT method by horizontal slices analysis
method. And then the reasonability of this method is verified
by the results of the other methods, for example, normative
methodologies.The newmethod not only considers the effect
of three factors of the seismic wave (PGA, frequency, and
duration) on the internal antiseismic stability analysis of
reinforced retaining wall and improves the seismic design
accuracy greatly but also provides some valuable references
for the seismic design of the other retaining structures.

Second, the type of geosynthetic, the internal frictional
angle of the filling earth, the seismic intensity, and the
frequency of the input earthquake wave have a predominant
effect on the antiseismic stability of the reinforced retaining
wall, which should be given due considerations in the
earthquake-resistant design. Likewise, for the expandability
and nonexpandability lacing wires, seismic safety reserve of
retaining wall may be lowered by formal methods for the
design of antiseismic stability of the reinforcement retaining
wall when considering the effect of the PGA, while ignoring
the frequency.

Third, the needed total tensile force of the lacing wires
decreases with the increase of the internal frictional angle; on
the contrary, it increases significantly with the increase of the
PGA; the total tensile force of the expandability lacing wires
is bigger than that of the nonexpandability lacing wires, and it

is distributed in the shape of saddle and the force achieves the
maximum value when the frequency of the input wave is the
same as the natural frequency of reinforced retaining wall.
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The maximum weighted clique (MWC) problem, as a typical NP-complete problem, is difficult to be solved by the electronic
computer algorithm. The aim of the problem is to seek a vertex clique with maximal weight sum in a given undirected graph.
It is an extremely important problem in the field of optimal engineering scheme and control with numerous practical applications.
From the point of view of practice, we give a parallel biological algorithm to solve the MWC problem. For the maximum weighted
clique problemwith𝑚 edges and 𝑛 vertices, we use fixed length DNA strands to represent different vertices and edges, fully conduct
biochemical reaction, and find the solution to the MVC problem in certain length range with𝑂(𝑛

2
) time complexity, comparing to

the exponential time level by previous computer algorithms. We expand the applied scope of parallel biological computation and
reduce computational complexity of practical engineering problems. Meanwhile, we provide a meaningful reference for solving
other complex problems.

1. Introduction

DNA computing, as a comprehensive discipline, can use
DNA biological technologies to solve complex practical engi-
neering problems. In 1994, Adleman [1] made use of DNA
molecule operations to solve the Hamiltonian path problem
with 𝑛 vertices in 𝑂(𝑛) time complexity; simultaneously,
he also demonstrated the strong parallel ability of DNA
computing. In 1995, Lipton [2] figured out the NP-complete
satisfiability problem utilizing Adleman’s biochemical exper-
iment. Since then, DNA biological computing attracted more
and more interest from different disciplinary scholars. DNA
biological computing has three advantages: high parallelism,
low energy consumption, and large memory capacity. Many
research scholars, designing DNA procedures and algo-
rithms, succeed in solving multifarious kinds of complicated
NP-complete problems [3–21], which promoted development
of DNA computing. In order to better apply DNA computing

theory to more practical engineering science broad, it is
worth trying to solve more intractable problems using the
DNA molecular computing. Furthermore, most previous
works, relating to DNA computing, focused on how to solve
the path search problems that the solutions are continuous
head-to-tail ligation edge or vertex sets, so that the possi-
ble solutions can be relatively easily represented by DNA
strands, while some practical engineering problems, such as
maximumweighted clique problem, are discrete set problems
without sequentially connected path. So how to represent dis-
crete data on DNA strands is an important key to expand the
applied scope of DNA computing.

The maximum weighted clique problem has a wide
range of applications in optimal engineering scheme and
computational mathematics. In this paper, DNA algorithm,
based on the research foundation of Adleman [1] and Lipton
[2], is used to get solution of the maximum weighted
clique problem. The rest dissertation is organized as follows.
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In Section 2, the parallel biological computingmodel is intro-
ducedwith detailed description. Section 3 usesDNAmolecu-
lar algorithm to solve themaximumweighted clique problem.
Section 4 proves DNA algorithm correctness and feasibility
and gets the computation complexity. We come to the
conclusions in Section 5.

2. The Parallel Biological Computing Model

DNA is the material basis of biological genetics, which is
strung together from deoxyribonucleotides. DNA is formed
by four kinds of base composition. These bases are, respec-
tively, called adenine (𝐴), guanine (𝐺), cytosine (𝐶), and
thymine (𝑇).Thepermutation and combination of bases store
genetic information. An important feature of DNA is that two
single strands can form a double strand through complemen-
tary base pairing. Moreover, the pairing has high specificity:
𝐴 can only match 𝑇; 𝐶 can only be paired with 𝐺. The
length of a DNA single strand is counted by the number of
bases. For example, a single strand (𝐴𝑇𝑇𝐶𝐺) includes 5 bases;
then it is called a 5 𝑚𝑒𝑟.

Based on Adleman [1] and Lipton’s [2] research, DNA
biological algorithmoperations are described as follows. Cor-
responding biological operations can be used to get solution
of the maximum weighted clique problem. In the parallel
biological computing model, we can perform the following
operations with given tubes which contain a list of DNA
strands.

(1) Copy(𝑃
1
, 𝑃
2
): given a test tube 𝑃

1
, it can get another

test tube 𝑃
2
with the same strands as 𝑃

1
.

(2) Merge(𝑃
1
, 𝑃
2
): given two test tubes 𝑃

1
and 𝑃

2
, it can

get the compound strands 𝑃
1
and 𝑃

2
in 𝑃
1
and leave

𝑃
2
empty.

(3) Annealing(𝑃): given a test tube 𝑃, it can generate
all feasible double strands in 𝑃 by annealing. The
products and residues are still stored in 𝑃 after
annealing.

(4) Separation(𝑃
1
, 𝑍, 𝑃
2
): given a test tube 𝑃

1
and a list

strands set 𝑍, it can remove all single strands in 𝑍

from 𝑃
1
and get an another tube 𝑃

2
with the removed

strands.
(5) Ligation(𝑇): given a tube𝑃, it is used to ligate together

the strands in 𝑃.
(6) Sort(𝑃

1
, 𝑃
2
, 𝑃
3
): it picks out the shortest length strands

into tube 𝑃
2
from tube 𝑃

1
, the longest strands into 𝑃

3
,

and the surplus strands are still kept in 𝑃
1
.

(7) Denaturation(𝑃): given a test tube 𝑃, it can dissociate
every double strand in 𝑃 to couple of single strands.

(8) Read(𝑃): given a tube 𝑃, it can be used to describe
each single strand in 𝑃.

(9) Append-tail(𝑃, 𝑧): given a test tube 𝑃 and a single
strand 𝑧, it can append 𝑧 at back of each strand in the
tube 𝑃.

(10) Discard(𝑃): given a test tube 𝑃, it discards the strands
in tube 𝑃 and leave 𝑃 empty.

Since above operations are realized through the limited
biological experimental procedures with DNA strands [18],
we can reasonably conclude that each operation is in 𝑂(1)

time complexity.

3. Biological Algorithm for the Maximum
Weighted Clique Problem

An undirected simple graph 𝐺 = (𝑉, 𝐸,𝑊) is a pair of vertex
set 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} with corresponding vertex positive

weight value {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} and edge set 𝐸 = {𝑒

𝑖,𝑗
| 1 ≤

𝑖 < 𝑗 ≤ 𝑛}. For a vertex subset 𝑇
1

⫅ 𝑉, if ∀V
𝑖
, V
𝑗

∈ 𝑇
1
,

V
𝑖
and V

𝑗
can be linked by edge 𝑒

𝑖,𝑗
in the graph, then 𝑇

1
is

called a clique of the graph 𝐺, and simultaneously the clique
weight is the sum of vertex weight in the 𝑇

1
. The solution

of maximum weighted clique problem aims to seek a vertex
clique 𝑇 of graph 𝐺 with maximal weight sum. For example,
the undirected simple graph in Figure 1 is defined as theMVC
problem.

In succession, the symbols 𝐴
𝑘
, 𝐵
𝑘
(𝑘 = 1, 2, . . . , 𝑛), 1, 0,

#, # are composed by different single strands having same
length, as 𝑡 𝑚𝑒𝑟. Certainly, 𝑡 would be best to choose a small
integer which can be determined by the scale of the problem.
Then in the following algorithms, we use DNA single strands
symbols𝐴

𝑘
0𝐵
𝑘
,𝐴
𝑘
1𝐵
𝑘
to indicate the vertex V

𝑘
, with strands

symbol 𝐴
𝑘
1𝐵
𝑘
for vertex V

𝑘
in the vertex subset while 𝐴

𝑘
0𝐵
𝑘

for not. Simultaneously, the symbols #, # are the signal of
division between different vertex subsets. We denote DNA
singled strands 𝑦

𝑘
to encode the vertex V

𝑘
weight value with

length of𝑤
𝑘
𝑚𝑒𝑟. For distinguishing some edges belonging to

the graph𝐺 or not, wemeantime design DNA strings 𝐵
𝑖
𝐴
𝑗
in

the tube 𝑅 if 𝑒
𝑖,𝑗

∈ 𝐸. Let

𝑇
1
= {#, 𝐴

𝑘
0𝐵
𝑘
, 𝐴
𝑘
1𝐵
𝑘
| 𝑘 = 1, 2, . . . , 𝑛} ,

𝑇
2
= {#𝐴

1
, 𝐵
𝑛
#, 0, 1, 𝐵

𝑘−1
𝐴
𝑘
| 𝑘 = 2, 3, . . . , 𝑛} ,

𝑅 = {𝐵
𝑖
𝐴
𝑗
| 𝑒
𝑖,𝑗

∈ 𝐸} ,

𝑌 = {𝑦
𝑘
| 𝑘 = 1, 2, . . . , 𝑛} .

(1)

For a 𝑛-vertex graph, every vertex subset can be expressed
by a 𝑛-bit binary value. The 𝑘th bit set to 1 means the vertex
V
𝑘
in the subset; on the contrary, the 𝑘th bit set to 0 shows the

vertex V
𝑘
out of the subset. Taking Figure 1, for example, the

vertex subset {V
2
, V
3
, V
5
} can be expressed by the binary value

01101. Using the same method, we can represent the vertex
subsets of a 𝑛-vertex simple graph as a series of 𝑛-bit binary
numbers.

(1) We generate all possible vertex subsets in graph 𝐺;

(1) 𝑀𝑒𝑟𝑔𝑒(𝑇
1
, 𝑇
2
);

(2) 𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔(𝑇
1
);

(3) 𝐿𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑇
1
);

(4) 𝐷𝑒𝑛𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑇
1
, {#𝐴
1
}, 𝑇
3
);

(5) 𝐷𝑖𝑠𝑐𝑎𝑟𝑑(𝑇
1
);

(6) 𝐷𝑒𝑛𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑇
3
, {𝐵
𝑛
#}, 𝑇
1
).
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�1(2)

�2(3)

�3(5) �4(6)

�5(4)

Figure 1: An undirected simple graph𝐺with 5 vertices and 8 edges.

After the above six manipulations, the single strands
in tube 𝑇

1
mean all kinds of vertex subsets. For

example, in Figure 1, we have single strands:

#𝐴
1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
# ∈ 𝑇
1 (2)

which denote the vertex subset {V
1
, V
2
, V
4
, V
5
} corre-

sponding to binary value 11011. These operations can
be executed with 𝑂(1) time complexity since every
operation can be finished in 𝑂(1).

(2) Every strand in tube 𝑇
1
denotes one kind of vertex

subset. For the maximum weighted clique problem,
solution is one kind of vertex subset that arbitrary
two vertices in the subset can be connected by one
edge included in the graph 𝐺. Therefore, we check
whether all vertex subsets in 𝑇

1
are in line with the

condition or not. If 𝑒
𝑖,𝑗

∉ 𝐸, we discard the strands
indicating that both vertices V

𝑖
and V
𝑗
are in the same

subset. For example, in Figure 1, the singled strands
#𝐴
1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
# representing the

vertex subset ({V
2
, V
4
, V
5
}) should be discarded for not

including the edge 𝑒
2,4

in graph 𝐺 to connect vertices
V
2
and V

4
. We choose all possible vertex cliques in

graph.

For 𝑖 = 1 to 𝑖 = 𝑛,
(1) 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑃, {𝐴

𝑖
1𝐵
𝑖
}, 𝑇
2
);

For 𝑗 = 1 and 𝑗 ̸= 𝑖 to 𝑗 = 𝑛

(2) 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑅, {𝐵
𝑖
𝐴
𝑗
}, 𝑇
3
);

(3) If(𝐷𝑒𝑡𝑒𝑐𝑡(𝑇
3
));

Then
(4) 𝐷𝑖𝑠𝑐𝑎𝑟𝑑(𝑇

3
);

(5) 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑇
2
, {𝐴
𝑗
1𝐵
𝑗
}, 𝑇
4
);

(6) 𝑀𝑒𝑟𝑔𝑒(𝑃, 𝑇
2
);

End for
End for

Through the above operations, all the single strands
in tube 𝑇

1
represent different vertex clique subsets.

Meanwhile, the algorithm includes two “For” clauses,
this step is executed in 𝑂(𝑛

2
) time complexity since

each operation can be finished in 𝑂(1).
(3) The maximum weighted clique problem should be

a maximal vertex clique subset in which arbitrary
two vertices should be linked by certain edge of the
graph𝐺. So we select the maximal vertex subset from
all kinds of vertex clique subsets. If the vertex V

𝑘
is

included in the vertex subset, we append additional
strand 𝑦

𝑘
at the end of previous subset strand in order

to find the optimum solution strand. For the singled
strand (representing the vertex subset {V

2
, V
3
, V
5
})

#𝐴
1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
# ∈ 𝑇
1
, (3)

we append strands {𝑦
2
, 𝑦
3
, 𝑦
5
} at end of the previous

strand to

#𝐴
1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
2
𝑦
3
𝑦
5
. (4)

This step can be carried out as follows.
For 𝑘 = 1 to 𝑘 = 𝑛,
(1) 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑇

1
, 𝐴
𝑘
1𝐵
𝑘
, 𝑇
7
);

(2) 𝐴𝑝𝑝𝑒𝑛𝑑-𝑡𝑎𝑙𝑖(𝑇
7
, 𝑦
𝑘
);

(3) 𝑀𝑒𝑟𝑔𝑒(𝑇
1
, 𝑇
7
);

(4) 𝐷𝑠𝑐𝑎𝑟𝑑(𝑇
7
).

End for

This step includes one “For” clause; thus it can be
finished in 𝑂(𝑛) time complexity.

(4) We select single strands with the longest length
from 𝑇

1
, which represent the solutions of maximum

weighted clique problem. For example, in Figure 1,
single strands in 𝑇

1
with the largest length are

#𝐴
1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
#𝑦
3
𝑦
4
𝑦
5
. (5)

Consequently, solution of maximum weighted clique
problem for Figure 1 is vertex subset {V

3
, V
4
, V
5
} with

weight sum 15.

(1) 𝑆𝑜𝑟𝑡(𝑇
1
, 𝑇
8
, 𝑇
9
);

(2) 𝑅𝑒𝑎𝑑(𝑇
9
).

4. The Feasibility and Computational
Complexity of the Parallel Biological
Computing Algorithm

Theorem 1. The maximum weighted clique problem for a 𝑛-
vertex graph can be solved by the biological computing alg-
orithm.

Proof. At first, we get all kinds of the vertex combinational
subset in the test tube after Step (1). For the maximum
weighted clique problem, if 𝑒

𝑖,𝑗
∉ 𝐸, vertices V

𝑖
and V

𝑗

should be not in the same subset. Therefore, basic biological
manipulations remove illegal combinations and seek legal
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Table 1: Sequences chosen to represent #, 𝐴
𝑘
, 𝐵
𝑘
, 𝑦
𝑘
(𝑘 = 1, 2, . . . , 𝑛) in the example of Figure 1.

Symbol 3-5 DNA sequence Symbol 3-5 DNA sequence
𝐴
1

𝐶𝐶𝑇 𝐵
1

𝐴𝐶𝑇

𝐴
2

𝐶𝐴𝐶 𝐵
2

𝑇𝐴𝑇

𝐴
3

𝐶𝑇𝐴 𝐵
3

𝑇𝐴𝐴

𝐴
4

𝑇𝑇𝐶 𝐵
4

𝐴𝑇𝐶

𝐴
5

𝐴𝐴𝐶 𝐵
5

𝐶𝑇𝑇

0 𝐶𝐴𝐴 1 𝐴𝐴𝑇

# 𝑇𝐴𝐶 𝑦
1

𝐺𝐺

𝑦
2

𝐺𝐺𝐺 𝑦
3

𝐺𝐺𝐺𝐺𝐺

𝑦
4

𝐺𝐺𝐺𝐺𝐺𝐺 𝑦
5

𝐺𝐺𝐺𝐺

ones from solution space strands through the Step (2). At
Step (3), we append a series of “tails” 𝑦

𝑘
at the end of the

strands which imply the vertex V
𝑘
included in the vertex

subset. Owing to the length of strands ‖𝑦
𝑘
‖ = 𝑤

𝑘
, the longest

length strands in the pool mean the solutions of maximum
weighted clique problem. Besides, we can search and get the
solution at the last step.

Theorem 2. The solutions of maximum weighted clique prob-
lem for a 𝑛-vertex graph can be solved in𝑂(𝑛

2
) time complexity

using DNA molecules computing.

Proof. The parallel biological computing algorithm can be
entirely executed in finite time complexity such as Steps (1)

and (4) in𝑂(1), Step (3) in𝑂(𝑛), and simultaneously Step (2)

in 𝑂(𝑛
2
) time complexity. The total algorithm complexity 𝑇

is as below:

𝑇 (Step (1)) = 𝑂 (1) ;

𝑇 (Step (2)) = 𝑂 (𝑛) ;

𝑇 (Step (3)) = 𝑂 (𝑛
2
) ;

𝑇 (Step (4)) = 𝑂 (1) ;

𝑇 = 𝑇 (Step (1)) + 𝑇 (Step (2))

+ 𝑇 (Step (3)) + 𝑇 (Step (4)) ;

= 𝑂 (1) + 𝑂 (𝑛
2
) + 𝑂 (𝑛) + 𝑂 (1) ;

= 𝑂 (𝑛
2
) .

(6)

In conclusion, we can get the solutions ofmaximumweighted
clique problems with 𝑛-vertices in 𝑂(𝑛

2
) time complex-

ity.

Theorem 3. Solution strands to the maximumweighted clique
problem with 𝑛-vertices can be found in the finite length range.

Proof. After Step (1), the singled strands in tube 𝑇
1
denote

all possible vertex subsets. These strands can be described as
follows:

#𝐴
1
𝑥
1
𝐵
1
𝐴
2
𝑥
2
𝐵
2
⋅ ⋅ ⋅ 𝐴
𝑘
𝑥
𝑘
𝐵
𝑘
⋅ ⋅ ⋅ 𝐴
𝑛
𝑥
𝑛
𝐵
𝑛
# 𝑥
𝑘
= 0 or 1. (7)

At Step (2), the single strands in 𝑇
1
mean all possible vertex

clique subsets.We design the fixed length strands of #,𝐴
𝑘
,𝐵
𝑘
,

and 𝑥
𝑘
, for





𝐴
𝑘





=





𝐵
𝑘





= ‖#‖ =





𝑥
𝑘





= 𝑡 𝑚𝑒𝑟. (8)

𝑆 is defined as strands assemblage after Step (3). Then 𝑆 can
be described:

#𝐴
1
𝑥
1
𝐵
1
𝐴
2
𝑥
2
𝐵
2
⋅ ⋅ ⋅ 𝐴
𝑘
𝑥
𝑘
𝐵
𝑘
⋅ ⋅ ⋅ 𝐴
𝑛
𝑥
𝑛
𝐵
𝑛
#𝑦
𝑖
1

⋅ ⋅ ⋅ 𝑦
𝑖
𝑛

. (9)

Appending the strands 𝑦
𝑖
𝑗

or not is decided whether there
exists vertex V

𝑖
𝑗

information strands 𝐴
𝑖
𝑗

1𝐵
𝑖
𝑗

on the previous
strands. Due to the fact that the number of vertex V

𝑘
in sunset

is between 1 and 𝑛, so after “append” operation, the strands is
also in a finite length range:

‖𝑆‖ = ‖#‖ +




𝐴
1





+





𝑥
1





+





𝐵
1






+ ⋅ ⋅ ⋅ +




𝐴
𝑘





+





𝑥
𝑘





+





𝐴
𝑘





+ ⋅ ⋅ ⋅

+




𝐴
𝑛





+





𝑥
𝑛





+





𝐴
𝑛





+ ‖#‖

+






𝑦
𝑖
1






+ ⋅ ⋅ ⋅ +






𝑦
𝑖
𝑛







= 2 ‖#‖ +

𝑛

∑

𝑘=1





𝐴
𝑘





+

𝑛

∑

𝑘=1





𝑥
𝑘






+

𝑛

∑

𝑘=1





𝐵
𝑘





+ ∑

𝑥
𝑘
=1





𝑦
𝑘






= (3𝑛 + 2) 𝑡 + ∑

𝑥
𝑘
=1





𝑦
𝑘






∵ 0 ≤ ∑

𝑥
𝑘
=1





𝑦
𝑘





≤

𝑛

∑

𝑘=1





𝑦
𝑘






Let
𝑛

∑

𝑘=1





𝑦
𝑘





= 𝑚

∴ (3𝑛 + 2) 𝑡 ≤ ‖𝑆‖ ≤ (3𝑛 + 2) 𝑡 + 𝑚.

(10)

For the maximum vertex clique problem, the length of
solution strands is between (3𝑛 + 2)𝑡 and (3𝑛 + 2)𝑡 + 𝑚.
Therefore, we can get the solution in appropriate length range
at Step (4).
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Table 2: Sequences chosen to represent all kinds of vertex subsets for the example of Figure 1.

Vertex subset Symbols sequence 3-5 DNA sequence

{V
1
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶𝐴

𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶
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Table 2: Continued.

Vertex subset Symbols sequence 3-5 DNA sequence

{V
1
, V
2
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴

𝐴𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
3
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐶𝐴𝐴𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
3
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
2
, V
3
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

{V
1
, V
2
, V
3
, V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

𝑇𝐴𝐶𝐶𝐶𝑇𝐴𝐴𝑇𝐴𝐶𝑇𝐶𝐴𝐶𝐴𝐴

𝑇𝑇𝐴𝑇𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴

𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶𝑇𝑇𝑇𝐴𝐶

5. The Detailed Approach and Walkthrough of
the Biological Computing Algorithm

Taking Figure 1 as example, we describe operation result
of each step. Due to the fact that biological computing
algorithm depends on basic biochemical DNA molecules
reactions which may cause errors in the process, it is an
importantmatter tomake biological computingmore reliable
by means of the DNA molecular sequence design. To have
a better performance in hybridization reactions, we follow

[22] to accomplish the sequence design. For the problem of
Figure 1, the program generates 3-base random sequences to
represent symbols #, 𝐴

𝑘
, 𝐵
𝑘
, and 𝑦

𝑘
. If the generated DNA

sequence fails to pass any of the constraints, the program
will regenerate a new DNA sequence. If the constraints are
satisfied, the new DNA sequences are accepted. If all the
DNA strands satisfy the constraints, the program has then
succeeded and these sequences would be the outputs. The
corresponding vertex symbol sequences are shown in Table 1.
In accordance with the above design, we can get all kinds of
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Table 3: Symbols sequences chosen to represent the different vertex
cliques for the example of Figure 1.

Vertex cliques Symbols sequence
{V
1
, V
2
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

{V
1
, V
3
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

{V
1
, V
4
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#

{V
1
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#

{V
2
, V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

{V
2
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#

{V
2
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#

{V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#

{V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#

{V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
#

{V
1
, V
2
, V
3
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#

{V
1
, V
2
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#

{V
1
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#

{V
2
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#

{V
3
, V
4
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#

{V
1
, V
2
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
#

Table 4: Symbols sequences chosen to represent the vertexweighted
cliques for the example of Figure 1.

Vertex set Symbols sequence
{V
1
, V
2
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#𝑦
1
𝑦
2

{V
1
, V
3
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#𝑦
1
𝑦
2

{V
1
, V
4
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#𝑦
1
𝑦
4

{V
1
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
1
𝑦
5

{V
2
, V
3
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#𝑦
2
𝑦
3

{V
2
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#𝑦
2
𝑦
4

{V
2
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
2
𝑦
5

{V
3
, V
4
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#𝑦
3
𝑦
4

{V
3
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
3
𝑦
5

{V
4
, V
5
} #𝐴

1
0𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
#𝑦
4
𝑦
5

{V
1
, V
2
, V
3
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
0𝐵
5
#𝑦
1
𝑦
2
𝑦
3

{V
1
, V
2
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#𝑦
1
𝑦
2
𝑦
5

{V
1
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
1𝐵
2
𝐴
3
0𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
1
𝑦
3
𝑦
5

{V
2
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
1𝐵
4
𝐴
5
0𝐵
5
#𝑦
2
𝑦
3
𝑦
5

{V
3
, V
4
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
1𝐵
3
𝐴
4
0𝐵
4
𝐴
5
1𝐵
5
#𝑦
3
𝑦
4
𝑦
5

{V
1
, V
2
, V
3
, V
5
} #𝐴

1
1𝐵
1
𝐴
2
0𝐵
2
𝐴
3
0𝐵
3
𝐴
4
1𝐵
4
𝐴
5
1𝐵
5
#𝑦
1
𝑦
2
𝑦
3
𝑦
5

symbol representations of vertex subsets in Table 2 after Step
(1). Step (2) discards the inappropriate vertex combinatorial
sequences and retains the vertex clique sequences in Table 3.
At Step (4), we append the correspondingweighted sequences
which are showed in Table 4. Through the “Sort” operation
at Step (4), we find the optimal solution to the maximum
weighted clique problem of Figure 1 in Table 5.

Table 5: DNA sequences chosen to represent the solution of the
maximum weighted clique problem.

{V
3
, V
4
, V
5
}

3-𝑇𝐴𝐶𝐶𝐶𝑇𝐶𝐴𝐴𝐴𝐶𝑇𝐶𝐴𝐶𝐶𝐴𝐴𝑇𝐴𝑇

𝐶𝑇𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝐶𝐴𝐴𝑇𝐴𝑇𝐶𝐴𝐴𝐶𝐴𝐴𝑇𝐶

𝑇𝑇𝑇𝐴𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺-5

6. Conclusions

In this paper, we present a parallel computing algorithm to
solve the maximum weighted clique problem based on bio-
logical operations. Due to the fact that DNA biological com-
puting has some advantages including high parallelism, low
energy consumption, and large memory capacity, comparing
to electronic computers low speed and limited memory, the
method of DNA computing has attracted more and more
attention. Besides, compared with the previous algorithms,
our proposed algorithmhas the following features: (1)we uti-
lize fixed lengthDNA strands to generate the solution strands
of the problem, the algorithm actually has lower error rate in
hybrid operations; (2) the time cost of algorithm and solution
strands length increase in linear proportion with the expan-
sion of instance scale. For an undirected simple 𝑛-vertex
graph, the parallel biological computing algorithm executes
in 𝑂(𝑛

2
) time complexity for the maximum weighted clique

problem, having lower computational complexity than previ-
ous algorithms in exponential level. Although operations in
our paper are on the basis of a theoretical model, the capacity
to executive complicated operations in algorithm could help
us understand more about the nature of computing and
promote the better and faster development of biocomputing,
more conducive for us to solve complex practical engineering
problems.
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The global quasi-minimal residual (QMR) method is a popular iterative method for the solution of linear systems with multiple
right-hand sides. In this paper, we consider the application of the global QMRmethod to classical ill-posed problems arising from
image restoration. Since the scale of the problem is usually very large, the computations with the blurring matrix can be very
expensive. In this regard, we use a Kronecker product approximation of the blurring matrix to benefit the computation. In order to
reduce the disturbance of noise to the solution, the Tikhonov regularization technique is adopted to produce better approximation
of the desired solution. Numerical results show that the global QMRmethod outperforms the classic CGLS method and the global
GMRES method.

1. Introduction

In the area of remote sensing, materials science, medical and
astronomical imaging, and so on, image restoration plays
an important role in preprocessing and postprocessing the
image [1]. Many image restoration tasks can be posed as
problems of the form

∬
Ω

ℎ (𝑥, 𝑦; 𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 = 𝑔 (𝑥, 𝑦) , (1)

where the functions 𝑓, 𝑔 represent the original and blurred
images, respectively. The kernel ℎ is a point spread function
(PSF) which is a function that specifies the degree of blurring.
PSFs are often classified as either spatially variant or spatially
invariant [2, 3]. For simplicity, we take into account spatially
variant PSF in this paper. Bymeans of discretizationmethods
such as the Galerkin method or quadrature method [4], (1)
can be discretized to the following linear equations:

𝐴𝑥 = �̃�, 𝐴 ∈ R
𝑛
2
×𝑛
2 , 𝑥, �̃� ∈ R

𝑛
2 , (2)

where 𝑥 is a vector representing the true image and �̃�
is a vector representing the blurred image, which are the
discretized versions of𝑓 and 𝑔 in (1), respectively.Thematrix

𝐴 is the blurring matrix constructed from the discretized
version of the PSF ℎ. It should be noted that the PSF is
assumed to be known here. In fact, if the PSF is unknown,
there are a variety of means of techniques available for
estimating it [5, 6]. In real applications, the right-hand side
error-free vector �̃� is not accessible. Instead, the vector

𝑏 = �̃� + 𝜂 (3)

is known, where the vector 𝜂 represents the additive noise.
That is, the observed image is not only blurred but also
contaminated with noise. Commonly, 𝜂 is assumed to be
the white Gaussian noise, and its Euclidean vector norm is
considered to be a priori but the noise vector itself is not.

In this work, we aim to obtain an approximation of the
original image 𝑥 by computing a solution of the linear system
of equations

𝐴𝑥 = 𝑏, 𝐴 ∈ R
𝑛
2
×𝑛
2 , 𝑥, 𝑏 ∈ R

𝑛
2 . (4)

If the observed image array has dimension 𝑛 × 𝑛, then 𝑓 and
𝑔 are vectors of length 𝑛2, and 𝐴 is an 𝑛2 × 𝑛2 matrix. Typical
values of 𝑛 are 256, 512, and 1024, so the dimensions of the
matrix 𝐴 can be extremely large [7]. Then the computations
with 𝐴 can be very expensive.
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Fortunately, the matrix 𝐴 has a special structure when
an appropriate boundary condition is imposed. Then the
computational cost of matrix-vector multiplication can be
alleviated to some extent. For large-scale problems, such as
image restoration problems, the direct regularizationmethod
cannot always obtain good solutions, but the iterativemethod
is a better choice. Krylov subspace iterative methods are the
most commonly used approaches that can be employed for
solving (4). In [8], the authors proposed to employ the well
known BiCG and QMRmethods for image restoration. They
also considered using a popular iterative method GMRES
which was first proposed by Saad and Schultz for image
restoration in [9].

Equation (4) can be replaced by new ones involving
matrix equations, if the matrix 𝐴 can be decomposed as
Kronecker products, and then the computations with 𝐴 can
be reduced. In [10], the authors first proposed the global
Krylov subspace methods to solve the matrix equations. The
methods were proved to be very effective for large-scale
matrix equations. Later in [11], Bouhamidi and Jbilou applied
the global GMRES method to image restoration problems.
Their numerical tests demonstrated that the global GMRES
method was better than the GMRES method.

Due to the error in the right-hand side and the severe
ill-conditioning property of the matrix 𝐴, the straightfor-
ward solution of (4) typically does not yield a meaningful
approximation [4, 12, 13]. Therefore, instead of solving the
system (4) directly, we replace it by a nearby linear system
with a less ill-conditionedmatrix and solve the corresponding
new linear system.This replacement is commonly referred to
as regularization [9]. Probably the most renowned regular-
ization approach to overcome ill-conditioning dates back to
Tikhonov and Arsenin [14].

In this paper, we consider the implementation of the
global quasi-minimal residual (QMR) method for image
restoration problems. The approach discussed here can be
considered as an extension and a specific real application of
the method introduced in [15] where the authors applied this
method to solve the general Sylvester equation.This approach
is motivated by the work of Bouhamidi and Jbilou in [11].The
numerical experiments show that the global QMRmethod is
very effective compared with the global-GMRESmethod and
the classic conjugate gradientmethod for least square (CGLS)
problem.

The outline of this paper is as follows. In the next section,
we give some notations and definitions that will be used
throughout this paper. Section 3 introduces the global QMR
method for image restoration problems. We present some
numerical experiments to show the efficiency of the global
QMR method in Section 4. Finally concluding remarks can
be found in Section 5.

2. Preliminaries

As shown in [7], some blurring operators (e.g., Gaussian) are
separable and therefore can be factored as Kronecker product
of two matrices. The computation for the solution of (4) can
be reduced if the Kronecker product approximation of 𝐴 is
employed.

Suppose that 𝑃 ∈ R𝑛×𝑛 is the discretized PSF. If the PSF is
separable, that is, 𝑃 can be decomposed as

𝑃 = ab𝑇, (5)

where a and b are 𝑛 × 1 vectors, the matrix 𝐴 constructed
from 𝑃 has block structure of the form

𝐴 = 𝐴
𝑟
⊗ 𝐴
𝑐
= (

𝑎𝑟
11
𝐴
𝑐
𝑎𝑟
12
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
1𝑛
𝐴
𝑐𝑎𝑟

21
𝐴
𝑐
𝑎𝑟
22
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
2𝑛
𝐴
𝑐... ... ...

𝑎𝑟
𝑛1
𝐴
𝑐
𝑎𝑟
𝑛2
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
𝑛𝑛
𝐴
𝑐

), (6)

where the matrices 𝐴
𝑟
and 𝐴

𝑐
have parameters a and

b, respectively, with the specific structures depending on
the imposed boundary condition [6, 16], and “⊗” denotes
Kronecker product. We refer the readers to [17] for details
about the properties of Kronecker product.

If the PSF𝑃 is inseparable, then the correspondingmatrix
𝐴 is inseparable. However, we can find theKronecker product
approximation of𝐴 by using SVD technique so that𝐴 can be
approximately decomposed as the following form:

𝐴 ≈
𝑟

∑
𝑖=1

𝐴a
𝑖

⊗ 𝐴b
𝑖

, (7)

where 𝑃 = ∑𝑟
𝑖=1

b
𝑖
a𝑇
𝑖
with a given integer 𝑟 ≤ rank(𝑃). In

particular, the authors in [2, 16] pointed out that 𝐴a
1

⊗ 𝐴b
1

is the best (as measured by the Frobenius norm) Kronecker
approximation of 𝐴.

According to the properties of Kronecker product, (4) can
be rewritten as

𝐴
𝑐
𝑋𝐴𝑇
𝑟
= 𝐵, (8)

where 𝑥 = vec(𝑋) and 𝑏 = vec(𝐵). Note that 𝑧 = vec(𝑍) with
𝑍 ∈ R𝑛×𝑛 is the 𝑛2×1 vector obtained by stacking 𝑛 columns of
the matrix 𝑍. Define an operator A : 𝑋 ∈ R𝑛×𝑛 → 𝐴

𝑐
𝑋𝐴𝑇
𝑟

andA𝑇 : 𝑋 ∈ R𝑛×𝑛 → 𝐴
𝑟
𝑋𝐴𝑇
𝑐
; then (4) can be rewritten as

A𝑋 = 𝐵. (9)

We use the notation

K
𝑚 (A, 𝑉) = span {𝑉,A𝑉,A2𝑉, . . . ,A𝑚−1𝑉} , (10)

for the global Krylov subspace of R𝑛×𝑛 generated by the
matrix 𝑉 ∈ R𝑛×𝑛 and the operatorA. Note that

𝑍 ∈ K
𝑚 (A, 𝑉) ⇐⇒ 𝑍 =

𝑚

∑
𝑖=1

𝛼
𝑖
A
𝑖−1𝑉, 𝛼

𝑖
∈ R. (11)

Let 𝑋,𝑌 ∈ R𝑛×𝑛; we define the inner matrix product
⟨𝑋, 𝑌⟩

𝐹
= tr(𝑋𝑇𝑌), where tr(𝑍) denotes the trace of the

square matrix 𝑍 and 𝑋𝑇 the transpose of the matrix 𝑋. The
associated norm is the Frobenius norm ‖⋅‖𝐹. The matrices
𝑋,𝑌 are said to be F-orthonormal if tr(𝑋𝑇𝑌) = 0.

In the following, we will introduce an algorithm of
the global Lanczos biorthogonal process, which has been
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(1) GivenA, 𝑉
1
and𝑊

1
such that ⟨𝑉

1
,𝑊
1
⟩
𝐹
= 1;

(2) Set 𝛽
1
= 𝛿
1
= 0 and 𝑉

0
= 𝑊
0
= 𝑂
𝑛×𝑛

;
(3) For 𝑖 = 1, 2, . . . , 𝑚

𝛼
𝑗
= tr(𝑊𝑇

𝑗
A𝑉
𝑗
);

�̂�
𝑗+1

= A𝑉
𝑗
− 𝛼
𝑗
𝑉
𝑗
− 𝛽
𝑗
𝑉
𝑗−1

;
�̂�
𝑗+1

= A𝑇𝑊
𝑗
− 𝛼
𝑗
𝑊
𝑗
− 𝛿
𝑗
𝑊
𝑗−1

;
𝛿
𝑗+1

= tr(�̂�𝑇𝑗+1�̂�𝑗+1)

1/2

, if 𝛿
𝑗+1

= 0, stop;
𝛽
𝑗+1

= tr(�̂�𝑇
𝑗+1

�̂�
𝑗+1

)/𝛿
𝑗+1

;
𝑉
𝑗+1

= �̂�
𝑗+1

/𝛿
𝑗+1

;
𝑊
𝑗+1

= �̂�
𝑗+1

/𝛽
𝑗+1

;
End

Algorithm 1: The global Lanczos biorthogonal process.

elaborately discussed in [15, 18]. This process is used to
construct a pair of biorthogonal basis 𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑚
and

𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
of the two Krylov subspacesK

𝑚
(A, 𝑉
1
) and

K
𝑚
(A𝑇,𝑊

1
), respectively, such that

⟨𝑉
𝑖
,𝑊
𝑗
⟩ = tr (𝑉𝑇

𝑖
𝑊
𝑗
) = 𝛿
𝑖𝑗

= {1, 𝑖 = 𝑗,
0, 𝑖 ̸= 𝑗. for 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(12)

The construction process can be summarized as in
Algorithm 1.

For convenience, we denote by V
𝑚
and W

𝑚
the 𝑛 × 𝑛𝑚

block matrix, that is, V
𝑚

= [𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
] and W

𝑚
=

[𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
]; two matrices are of dimension 𝑛 × 𝑚𝑛.

Suppose that the tridiagonal matrix 𝑇
𝑚
is denoted by

𝑇
𝑚
= (

𝛼
1

𝛽
2𝛿

2
𝛼
2

d
d d 𝛽

𝑚−1𝛿
𝑚

𝛼
𝑚

), (13)

where 𝛼
𝑖
, 𝛽
𝑖
, and 𝛿

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are the scalars defined in

Algorithm 1.
To derive the relation between AV

𝑚
and 𝑇

𝑚
, we define

the matrix �̃�
𝑚
= ( 𝑇𝑚
𝛿
𝑚+1
𝑒
𝑇

𝑚

), where 𝑒
𝑚
= (0, . . . , 0, 1)𝑇 ∈ R𝑚.

Recall the notation ∗ in [10]:

V
𝑚
∗ 𝑦 =

𝑚

∑
𝑖=1

𝑦𝑖𝑉
𝑖
= V
𝑚
(𝑦 ⊗ 𝐼

𝑛
) , (14)

where 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)𝑇 is a vector of R𝑚, 𝐼

𝑛
is the 𝑛 × 𝑛

identity matrix, and

V
𝑚
∗ 𝑇
𝑚
= [V
𝑚
∗ 𝑇
.,1
, . . . ,V

𝑚
∗ 𝑇
.,𝑚
] , (15)

where 𝑇
.,𝑖
denotes the 𝑖th column of the matrix 𝑇

𝑚
. Then, for

𝑗 = 1, 2, . . . , 𝑚 − 1, we have the following relations:
V
𝑚
∗ 𝑇
.,𝑗
= 𝛼
𝑗
𝑉
𝑗
+ 𝛿
𝑗+1

𝑉
𝑗+1

+ 𝛽
𝑗
𝑉
𝑗−1

= A𝑉
𝑗
,

V
𝑚
∗ 𝑇
.,𝑚

= 𝛽
𝑚
𝑉
𝑚−1

+ 𝛼
𝑚
𝑉
𝑚

= A𝑉
𝑚
+ 𝛿
𝑚+1

𝑉
𝑚+1

.
(16)

Then we get

AV
𝑚
= V
𝑚
∗ 𝑇
𝑚
+ 𝛿
𝑚+1

[𝑂
𝑛×𝑛

, . . . , 𝑂
𝑛×𝑛

, 𝑉
𝑚+1

]
= V
𝑚
∗ 𝑇
𝑚
+ 𝛿
𝑚+1

𝑒𝑇
𝑚
𝑉
𝑚+1

= [V
𝑚
, 𝑉
𝑚+1

] ∗ �̃�
𝑚
.

(17)

That is, by the global Lanczos biorthogonal process, we can
obtain

AV
𝑚
= V
𝑚+1

∗ �̃�
𝑚
. (18)

It was pointed out in [15] that the global Lanczos algo-
rithmhad significant advantages over theArnoldimethod for
its fewer matrices of storage.

3. The Global QMR Method for Image
Restoration

The quasi-minimal residual (QMR) method was first intro-
duced by Freund and Nachtigal [19] to solve the linear
equation 𝐴𝑥 = 𝑏. The main idea of this algorithm is
to solve the reduced tridiagonal system in a least squares
sense. Additionally, the QMR method uses the look-ahead
technique to avoid breakdowns in the underlying Lanczos
process, which makes it more robust than the BiConjugate
Gradient method (BiCG) [20], and when BiCG makes no
progress at all, QMR may still show slow convergence. Since
the linear system is usually of large scale in applications such
as image restoration, it needs enormous computation.

Fortunately, by applying the Kronecker product approx-
imation of the matrix 𝐴 [16, 17], the large-scale problems
such as image restoration could be simplified intensively. In
[10], the authors first introduced a global approach for solving
matrix equations and derived the global FOM and the global
GMRES methods. These methods are generalizations of the
global MINRES method proposed by Saad [20]. The authors
proved that these methods were effective when applied for
matrix equations of large scale and low rank [21]. More
recently, Wang and Gu [15] applied the global QMR method
to solve the Sylvester equations. In this work, we will focus on
the global QMR method for image restoration.

Suppose that the operator A = 𝐴
𝑟
⊗ 𝐴
𝑐
is a good

approximation of 𝐴, 𝑥 = vec(𝑋) and 𝑏 = vec(𝐵). In the
following, we give details of the global QMR method for
image restoration. Let 𝑋

0
∈ R𝑛×𝑛 be the initial solution of

(9) and let 𝑅
0
= 𝐵 − A𝑋

0
be the corresponding residual.

Usually we set the black image to be the initialization. By
using Algorithm 1 for (9), the iterate 𝑋

𝑚
at step 𝑚 satisfies

that
𝑋
𝑚
− 𝑋
0
∈ K
𝑚
(A, 𝑅

0
) . (19)

Define 𝑉
1

= 𝑅
0
/𝜌, 𝜌 = 𝑅0𝐹 and 𝑊

1
such that,

⟨𝑉
1
,𝑊
1
⟩
𝐹

= 1. Suppose that the matrix Krylov subspaces
K
𝑚
(A, 𝑅
0
) and K

𝑚
(A𝑇,𝑊

1
) are generated by the sets of

matrices {𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
} and {𝑊

1
,𝑊
2
, . . . ,𝑊

𝑚
} constructed

by Algorithm 1. Then according to (19), we can obtain an
approximate solution of (9):

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ y
𝑚
, (20)
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where y
𝑚

= (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)𝑇. Consequently, we can get the

associated residual matrix

𝑅
𝑚
= 𝐵 −A𝑋

𝑚

= 𝐵 −A (𝑋
0
+V
𝑚
∗ y
𝑚
)

= 𝑅
0
−AV

𝑚
∗ y
𝑚

= 𝜌𝑉
1
−V
𝑚+1

∗ �̃�
𝑚
y
𝑚

= V
𝑚+1

∗ (𝜌𝑒
1
− �̃�
𝑚
y
𝑚
) ,

(21)

where 𝑒
1
= (1, 0, . . . , 0)𝑇. Hence, the norm of the residual

matrix is
𝑅𝑚𝐹 = V𝑚+1 ∗ (𝜌𝑒

1
− �̃�
𝑚
y
𝑚
)𝐹 . (22)

An approximate solution of (9) can be obtained by com-
puting theminimizer from (22) with respect to y

𝑚
. Generally,

the 𝑉
𝑖
’s obtained by Algorithm 1 are not F-orthonormal.

However, as shown in [20], it is still reasonable to obtain that

ŷ
𝑚
= arg min

𝑦
𝑚
∈R𝑚

𝜌𝑒1 − �̃�
𝑚
y
𝑚

𝐹 . (23)

What has been shown above is the key idea of the global
QMRmethod; hence the approximated solution by the global
QMR method can be given as

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
, (24)

where ŷ
𝑚

= argmin
𝑦
𝑚
∈R𝑚

𝜌𝑒1 − �̃�
𝑚
y
𝑚

𝐹. We refer the
readers to see [15, 20] for the details on how to compute ŷ

𝑚
.

To sum up, the algorithm for obtaining the approxi-
mate solution of (9) arising from image restoration can be
described as in Algorithm 2.

We note that the discrepancy principle can be used as the
stopping criterion in Algorithm 2; that is, the computations
will be terminated if the associated residual error corresponds
to the approximate solution𝑋

𝑚

A𝑋
𝑚
− 𝐵 ≤ 𝜇𝜖, A𝑋

𝑚−1
− 𝐵 > 𝜇𝜖, (25)

where 𝜖 is the noise’s Frobenius Norm which is supposed to
be a priori and 𝜇 ≥ 1 is a fixed constant. For details on the
discrepancy principle, we refer to [22] and references therein
for more details.

Since the matrix𝐴 is usually ill-conditioned, the solution
is sensitive to the noise in the observed image. In the
following, in order to improve the accuracy of the solution,we
consider combining the global QMR method with Tikhonov
regularization technique. Motivated by the work in [11], we
can obtain the following algorithm which is named as the
global Tik-QMR method.

In Algorithm 3, the regularization parameter 𝜆 can be
determined by the L-curve criterion or the GCVmethod.We
choose the latter here. Note that the regularization step in our
work is different from the work in [11], since we adopt the
regularization after Lanczos process while the authors in [11]
used the regularization before the Lanczos process. Then our
method needs fewer computations than theirs.

(1) GivenA, and 𝐵,𝑋
0
;

(2) Set 𝑅
0
= 𝐵 −A𝑋

0
, 𝜌 = 𝑅0𝐹,𝑊1 = 𝑉

1
= 𝑅
0
/𝜌;

(3) For𝑚 = 1, 2, . . .
Compute �̃�

𝑚
, 𝑉
𝑚
,𝑊
𝑚
using Algorithm 1;

ŷ
𝑚
= arg min

y𝑚∈R𝑚
𝜌𝑒1 − �̃�

𝑚
y
𝑚

2;
𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
;

End

Algorithm 2: The global QMR method for image restoration.

(1) GivenA, 𝐵, 𝑋
0
, 𝜇 and 𝜖;

(2) Set 𝑅
0
= 𝐵 −A𝑋

0
, 𝜌 = 𝑅0𝐹,𝑊1 = 𝑉

1
= 𝑅
0
/𝜌;

(3) For𝑚 = 1, 2, . . .
Compute �̃�

𝑚
, 𝑉
𝑚
,𝑊
𝑚
using Algorithm 1;

ŷ
𝑚
= arg min

y𝑚∈R𝑚
𝜌𝑒1 − �̃�

𝑚
y
𝑚


2

2
+ 𝜆2y𝑚22;

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
;

𝑅
𝑚
= V
𝑚+1

∗ (𝜌𝑒
1
− �̃�
𝑚
y
𝑚
);

if 𝑅𝑚𝐹 satisfies the discrepancy principle, stop
else

𝑋
0
= 𝑋
𝑚
, 𝜌 = 𝑅𝑚𝐹, 𝑉1 = 𝑅

𝑚
/𝜌;

End

Algorithm 3: The global Tik-QMR method for image restoration.

4. Numerical Experiments

In this section, we report some numerical examples to
illustrate the performance of the global QMR method for
image restoration problems.The results show that the quality
of images restored by the global QMR method is better than
those obtained by other methods of the same kind, such as
the classic CGLSmethod [23] and the global GMRESmethod
proposed by Jbilou et al. [10].The experiments are carried out
in Matlab 7.0 on a PC equipped with a 2.93GHz Intel Core
Duo CPU, with 2GB of RAM, under MicrosoftWindows XP.

Example 1. Our first example is to show the practical effi-
ciency of the global QMR method. The original image 𝑋 of
size 256 × 256 is shown in Figure 1(a), which can be obtained
from the Telescope Science Institute, and intended to simulate
a star cluster image taken by the Hubble space telescope
before its defective mirror was replaced [24]. Let 𝑋 denote
the exact star cluster. The PSF used in this example is the so-
called Moffat function [6]. The PSF is given by

𝑃
𝑖𝑗
=
{{
{{
{
((𝑖 − 16)2 + (𝑗 − 16

2 )
2

)
−5

if 1 ≤ 𝑖, 𝑗 ≤ 30,
0, otherwise.

(26)

This PSF 𝑃 is nonsymmetric and unseparable, so the
blurring matrix 𝐴 constructed from 𝑃 is nonsymmetric and
unseparable. If the zero boundary condition is imposed,
the matrix 𝐴 can be represented as the Kronecker product
approximation of Toeplitz matrices 𝐴

𝑟
and 𝐴

𝑐
; that is, 𝐴 =

𝐴
𝑟
⊗𝐴
𝑐
.We add 1%whiteGaussian noise to the blurred image
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Table 1: Numerical results for the experiments, in terms of PSNR (dB) and CPU time (second).

Test problem Method restored PSNR CPU time observed PSNR
starcluster global QMR 41.16 0.25 s 30.82

MRI global QMR 20.61 0.156 s 17.95
global Tik-QMR 22.16 0.344 s

Indian man global Tik-QMR 25.69 8.078 s 23.51
CGLS 25.05 1.7 s

bridge global Tik-QMR 19.91 49.42 s 15.66
global GMRES 20.05 67.95 s

(a) Exact image (b) Observed image (c) Restored image

Figure 1: Example 1: (a) original image. (b) Observed image contaminatedwith blur and noise. (c) Image restored by the global QMRmethod.

to simulate the observed image (Figure 1(b)). The PSNR of
the observed image is 30.82 dB. We set the parameter 𝜇 =
1.05 for the discrepancy principle. Using the global QMR
method, we obtained the estimated image after 4 iterations
when the discrepancy principle of its associated residual is
satisfied.The numerical results in terms of PSNR are reported
in Table 1. From the table, we see that the PSNR of the
restored image by the global QMRmethod is 41.16 dB and the
consumed CPU time is 0.25 s.The restored image is shown in
Figure 1(c).

Example 2. In order to suppress the sensitivity of solution
to noise, we employ Tikhonov regularization technique to
get a more accurate solution. In this example, we compared
the performance of the global Tik-QMR method and the
global QMR method. We consider the problem of restoring
the image of theMRIdata fromMatlab (Figure 2(a)).Thedata
size is 128 × 128. The blurred and noisy image is shown in
Figure 2(b). The PSF for blurring in this test is the truncated
separableGaussian function, and the variance of theGaussian
blur is 3 and 1% white Gaussian noise is added.

The restored images obtained by the global QMRmethod
and the global Tik-QMR method are shown in Figure 3,
respectively. From Figure 3, it is easy to see that the image
restored by the global Tik-QMR method has higher visual
quality than that by the global QMR method. The numerical
results are shown in Table 1, and it is not difficult to see that

the global Tik-QMR method outperforms the global QMR
method.

Example 3. The third example consists in restoring the image
of 512×512 “Indianman” degraded by the Gaussian blur and
0.1% additive noise. The true image and degraded image are
shown in Figure 4.We compare the global Tik-QMRmethod
with the classic CGLS. The PSNR of the restored images by
the two methods and computational CPU time are given in
Table 1. The restored images are shown in Figure 5.

From Figure 5 and Table 1, we see that the global Tik-
QMR method is quite competitive with the CGLS method.

Example 4. In the last experiment, the 256×256 bridge image
has been contaminated by a nonsymmetric wavefront blur
[25] and 0.1% additive noise. The true image, the wavefront
PSF, and the degraded image are shown in Figure 6. The
PSF is also unseparable. Then the corresponding blurring
matrix 𝐴 is approximated by the Kronecker product of two
small matrices. We compared the behavior of the global Tik-
QMR method and the global GMRES method [11] in this
experiment.

The numerical results are given in Table 1. From the
table, we see that the PSNR of the restored image by the
global GMRES method is slightly higher than the global Tik-
QMR method, but the CPU time by using the global Tik-
QMR method is much less than the global GMRES method.
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(a) Exact image (b) Observed image

Figure 2: Example 2: exact and observed images.

(a) Global QMR image (b) Global Tik-QMR image

Figure 3: Example 2: restored images by the global QMR method and the global Tik-QMR method.

(a) Exact image (b) Observed image

Figure 4: Example 3: exact and observed images.

The visual quality of restored images is very close. The
restored images by using the two methods are displayed in
Figure 7.

At the end of this section, a general comment about the
presented numerical experiments is worth mentioning. The
first example illustrates efficiency of the proposedmethod for
image restoration problems. In general, the global Tik-QMR

method behaves better than the classic CGLSmethod and the
global GMRES method.

5. Conclusion

In [10], Jbilou et al. first introduced the global methods. In
this paper, we take the advantage of the global QMR method
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(a) Global Tik-QMR image (b) CGLS image

Figure 5: Example 3: exact and observed images.

(a) Exact image (b) Wavefront PSF (c) Observed image

Figure 6: Example 4: exact image, wavefront PSF, and observed image.

(a) Global GMRES image (b) Global Tik-QMR image

Figure 7: Example 4: restored images using the global GMRES method and the global Tik-QMR method.
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for image restoration and compare it with other popular
methods. Numerical results show that the global QMR
method is very efficient and is competitive with the classic
CGLS method and the global GMRES method in [11]. In
addition, when combining with the Tikhonov regularization,
the global QMR method can behave much better.
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This work presents the analysis, application, and comparison of thirteen fluid flow models in the prediction of two-dimensional
airfoil aerodynamics, considering laminar and turbulent subsonic inflow conditions. Diverse sensitivity analyses of different free
parameters (e.g., the domain topology and its discretization, the flowmodel, and the solutionmethod together with its convergence
mechanisms) revealed important effects on the simulations’ outcomes.TheNACA 4412 airfoil was considered throughout the work
and the computational predictions were compared with experiments conducted under a wide range of Reynolds numbers (7𝑒5 ≤
Re ≤ 9𝑒6) and angles-of-attack (−10∘ ≤ 𝛼 ≤ 20∘). Improvements both in modeling accuracy and processing time were achieved by
considering the RS LP-S and the Transition SST turbulence models, and by considering finite volume-based solution methods with
preconditioned systems, respectively. The RS LP-S model provided the best lift force predictions due to the adequate modeling of
the micro and macro anisotropic turbulence at the airfoil’s surface and at the nearby flow field, which in turn allowed the adequate
prediction of stall conditions. The Transition-SST model provided the best drag force predictions due to adequate modeling of the
laminar-to-turbulent flow transition and the surface shear stresses. Conclusions, recommendations, and a comprehensive research
agenda are presented based on validated computational results.

1. Introduction

The measurement and prediction of aerodynamic forces on
two-dimensional airfoils is a problem that has been widely
investigated since the early 1930s and its development has
produced important improvements in the aerospace, auto-
motive, and wind-based sciences, among others [1–4]. Prior
to the experimental assessment of aerodynamic forces, the
state-of-the-art procedures [1, 2] impose major prerequisites
such as the detailed manufacture of the tested airfoil [5],
the setup of expensive wind tunnel facilities [6], and the

use of special sensing equipment to characterize both the
aerodynamic behavior of the airfoil and the disturbances it
produces on the free stream (e.g., streamlines, flow attach-
ment/detachment, flow compression dynamics, and wake
aerodynamics). In addition, correction factors [1, 4, 6–10]
are often applied to account for nonideal inflow conditions
(e.g., buoyancy, solid blockage, wake blockage, or stream-
line curvature corrections). These prerequisites and issues,
together with the overall propagation of uncertainty, turn the
experimentation procedures into daunting tasks. A useful,
inexpensive, and faster alternative to perform aerodynamic
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characterizations involves the implementation of computa-
tional methods for the theoretical estimation of aerodynamic
forces, which are predicted through the numerical solution of
the governing equations of fluid mechanics. This approach is
formally known as Computational Fluid Dynamics (CFD).

It is generally acknowledged that there is no universal
model/method that ultimately describes the complete char-
acteristics of a fluid flow and its interactions with objects with
reasonable accuracy while employing a reasonable amount
of computational resources.This modeling problem becomes
more complex as more physical phenomena are considered
(e.g., if turbulent, compressible, and multiphase flows are
considered, among other relevant conditions). Therefore,
depending on the case study conditions and the assumptions
made, differentCFD-based approacheswith different levels of
sophistication can be employed. Some of the most important
fluid flow modeling techniques are briefly presented next:
(1) the potential flow theory [11], considered the coarsest
modeling approach, does not account for turbulence or
vorticity effects in its basic formulations. Nonetheless, recent
advances in potential flow theory and Boundary Layer (BL)
modeling have led to the development of the vortexmodeling
approach [12], inwhich viscous and vorticity effects have been
successfully integrated into the fluid flowmodeling, resulting
in improved aerodynamic predictions. (2) The turbulence
modeling approach, considered as the industry standard
approach for design purposes, is much more complex and
computationally demanding since both small-scale and large-
scale turbulence effects are modeled by solving either the
Reynolds-Averaged Navier-Stokes (RANS) or the Favre-
Averaged Navier-Stokes (FANS) equations complemented
with turbulencemodels [13, 14]. (3) Advanced techniques that
solve large-scale turbulence effects andmodel only the small-
scale turbulence effects are based on large eddy simulations
(LES) complemented with subgrid-scale models [15]. Finally,
(4) more advanced techniques based on Direct Numerical
Simulations (DNS) [16], which are typically implemented for
theoretical research purposes, have the ability to solve the
whole range of spatial and temporal scales of the turbulence
and predict all the effects and interactions between fluids
and solids at the cost of an extraordinary large amount of
computational resources.

Currently, there is no consensus regarding the mini-
mum level of flow modeling required to accurately pre-
dict airfoil aerodynamics, while considering different flow
regimes/states (e.g., laminar, transitional, and turbulent
flows) and different inflow conditions (e.g., Reynolds num-
bers and angles of attack). Despite this issue, in works mainly
focused on airfoil shape development and optimization [3, 17]
it is often considered sufficient to solve the compressible Euler
equations [18] or solve a set of potential flow equations that
are coupled with integral BL formulations, some of which
are implemented in popular public domain and commercial
codes such as XFOIL [19, 20] or VisualFoil [21], respectively,
to estimate aerodynamic forces under subsonic, transonic, or
supersonic flows.The selection of these approaches, however,
wasmostly based on the convenient amount of computational
resources they require rather than their performance for
predicting aerodynamic forces.

Only a limited number of research works have attempted
to determine the accuracy of different fluid flow modeling
techniques for predicting the aerodynamic behavior of two-
dimensional airfoils undergoing different inflow conditions.
Wolfe and Ochs [22] presented a laminar/turbulent flow
analysis, considering an airflow at a Reynolds number (Re) of
2𝑒6 and the range of angles of attack (𝛼, AOA) 0∘ ≤ 𝛼 ≤ 20.5∘,
to determine the asymmetric S809 airfoil aerodynamics.They
employed the commercial code CFD-ACE, which solves the
FANS equations coupled with the Standard 𝑘-𝜀 turbulence
model. Wolfe and Ochs contrasted the computed pressure
coefficient distributions and the computed aerodynamic
coefficients with experimentalmeasurements obtained under
laminar inflow conditions and observed a drag force overpre-
diction when fully turbulent computations were considered.
To address the issue of simulating transitional flows, they
developed a mixed laminar/turbulent calculation method, in
which the computational domain was split into one laminar
and one turbulent region at a guessed transition point,
which in turn improved the drag force predictions. They
concluded that more research on both the determination of
the laminar-to-turbulent flow transition point [23] and the
accurate modeling of turbulent effects under stall conditions
was necessary to reduce observed discrepancies.

Some of the discrepancies observed by Wolfe and Ochs
are related to BL modeling issues. In their work, the modeled
dimensionless wall distance (𝑦+ = 𝑢

∗

𝑦/] [24], which is a
parameter typically used to determine what sublayers of the
BL are solved) was of the order of 𝑦+ ≥ 30, thus limiting
the probed sample volume of the BL to the logarithmic and
outer layers. Therefore, the modeling of the near-wall flow
dynamics and the calculation of wall shear stresses depended
on the use of wall functions. The standard wall functions
[24, 25], such as the ones used by Wolfe and Ochs, have
proven to be inaccurate while modeling BLs subject to large
adverse pressure gradients (like the ones encountered on
airfoils undergoing inflow conditions at large AOA), which
in turn induce flow detachment conditions. The appropriate
description of the complex BL, from which aerodynamic
forces are calculated, requires the accurate modeling of the
viscous, turbulent, and rotational properties of the flow found
within the airfoil’s vicinity. Therefore, the better the airfoil’s
BL is modeled, with special emphasis on the viscous sublayer
(or laminar sublayer, which is located at the inner part of
the BL), the better the agreement between the computed
and the measured aerodynamic forces and the observed flow
dynamics. In order to model the viscous sublayer, a solved
𝑦
+

≅ 1 is required over the entire airfoil surface [24, 26].
The interested reader is directed to [1, 2, 27] for additional
and comprehensive descriptions of the physics of airfoil
aerodynamics.

Eleni et al. [28] presented a work focused on determining
which turbulence model, among the Spalart-Allmaras, the
Realizable 𝑘-𝜀, and the SST 𝑘-𝜔 turbulence models, was
the best performer for predicting the symmetric four-digit
National Advisory Committee for Aeronautics (NACA) 0012
airfoil aerodynamics, while considering an airflow at a Re =
3𝑒6 and for the range of AOA −12∘ ≤ 𝛼 ≤ 20

∘. Similar
to the study performed by Wolfe and Ochs, Eleni et al.
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found drag overpredictions when comparing fully turbulent
computations with experimental measurements that consid-
ered laminar inflow conditions. To improve the drag force
predictions, they conducted mixed laminar/turbulent simu-
lations, similar to the procedure proposed byWolfe andOchs.
However, in order to determine the laminar-to-turbulent flow
transition point, Eleni et al. developed an iterative method
that depends on already measured data. In addition, they
conducted simulations, considering five different Reynolds
numbers (1𝑒6 ≤ Re ≤ 5𝑒6), at a zero AOA by assuming
both fully turbulent andmixed laminar/turbulent conditions.
In such simulations, the laminar-to-turbulent flow transition
took place at the same axial point at both the top and
the bottom surfaces of the airfoil due to its symmetry.
The resultant drag coefficients were compared satisfacto-
rily with the experimental measurements. They concluded
that for both fully turbulent and mixed laminar/turbulent
flows the best performer turbulence model was the SST
𝑘-𝜔.

Kumar et al. [29] presented awork inwhich the asymmet-
ric NACA 4412 airfoil was simulated in a turbulent airflow,
at a Re = 3.42𝑒6 and for the range of AOA −18

∘

≤

𝛼 ≤ 18
∘, while considering the Spalart-Allmaras and the

Standard 𝑘-𝜔 turbulence models. The computed predictions
were contrasted with the experimental data (at a Re = 3𝑒6)
provided by Abbott and von Doenhoff [1]. Kumar et al.
reached the same conclusions as Wolfe and Ochs about the
importance of the accurate determination of the laminar-to-
turbulent flow transition points at both the upper and the
lower surfaces of the airfoil, since a notable overprediction
of the drag coefficient was observed by simulating a fully
turbulent flow over the airfoil’s vicinity. They concluded that
the Standard 𝑘-𝜔 model was the best performer turbulence
model.

Villalpando et al. [30] presented an assessment of the
ability of different turbulence models to predict the asym-
metric NACA 63-415 airfoil aerodynamics, while considering
an airflow at a Re = 1.6𝑒6, the range of AOA 0

∘

≤

𝛼 ≤ 28
∘, and an inlet turbulence intensity (TI) of 1%. The

contrasted turbulence models were the Spalart-Allmaras, the
RNG 𝑘-𝜀, the SST 𝑘-𝜔, and the Reynolds Stress Low-Re S-𝜔.
The computational results were compared with experimental
measurements performed under laminar inflow conditions,
which were provided by the Risø National Laboratory for
Sustainable Energy. Unlike the observations of the previously
describedworks, the contrasted turbulencemodels accurately
predicted the experimental drag coefficient for 𝛼 ≤ 17

∘.
Only at large AOA (i.e., under stall conditions) all the tested
models overpredicted both the lift and drag coefficients.
Villalpando et al. did not report the numerical convergence
criteria of their finite-volume-based solution method but
reported oscillatory convergence, an observation pointing to
numerical instabilities, for moderately large AOA (e.g., 𝛼 ≥
8
∘). In such cases, an averaging procedure was performed
to estimate the aerodynamic forces. The approach, however,
is believed to be inadequate since such convergence issues
are often related to the quality of the domain discretization
and/or to the numerical approach used to solve the problem.

They concluded that the SST 𝑘-𝜔 model was the best per-
former model, with the Reynolds Stress Low-Re S-𝜔 being
the worst performer model.

Other studies related to the prediction of airfoil aerody-
namics (e.g., [31–34]), in which laminar/transitional flows are
involved,may be affected by the already noted overprediction
of the drag coefficient, which is an issue directly related to
the lacking ability of full-turbulent models to simulate the
laminar-to-turbulent flow transition. In order to deal with
this issue, improved turbulence models, named Transition-
based models [24, 26, 35], have been developed to accurately
estimate the laminar-to-turbulent flow transition zones and
solve the flow as turbulent at downstream locations. So far,
improved drag predictions have been obtained as described
by Yuhong and Congming [36], Yao et al. [37], Aranake et al.
[38], and Khayatzadeh and Nadarajah [26].

Yuhong and Congming [36] presented a work in which
the asymmetric S814 airfoil aerodynamics was predicted
using the Transition SST model, considering an airflow at
a Re = 1𝑒6 and for the range of AOA 0

∘

≤ 𝛼 ≤ 30
∘.

They concluded that the Transition SST model predicts the
lift and drag coefficients more accurately than full-turbulent
models only in prestall conditions. Under stall conditions,
both tested turbulence models (the Transition SST and the
SST 𝑘-𝜔) failed to predict the aerodynamic behavior of the
tested airfoil.

Yao et al. [37] performed a similar work by predicting the
symmetric NACA 0018 airfoil aerodynamics for an airflow at
a Re = 5𝑒5, a relative Mach number of 0.023, and for the
range of AOA −8∘ ≤ 𝛼 ≤ 13

∘. The contrasted turbulence
models were the Standard 𝑘-𝜀, the RNG 𝑘-𝜀, the four-
equation Transition SSTmodel, and a five-equation Reynolds
Stress model. For all the considered inflow conditions, all
turbulence models overpredicted the drag coefficient, as
concluded in previous works. The magnitude of the lift
coefficient was systematically underpredicted for both large
negative AOA and large positive AOA. The Reynolds Stress
model was the top performer in that study.

Aranake et al. [38] presented an evaluation of the RANS-
based Transition 𝛾 −Re

𝜃𝑡
model, which was coupled with the

Spalart-Allmaras turbulencemodel (named theTransition 𝛾−
Re
𝜃𝑡
−SAmodel), for predicting the asymmetric S827 and the

S809 airfoil aerodynamics. For the S827 airfoil aerodynamics
prediction, an airflow at a Re = 3𝑒6, a Mach number of
0.1, an inlet TI = 0.05%, and the range of AOA 0∘ ≤ 𝛼 ≤
20
∘ were considered. The same conditions, but considering

a Re = 2𝑒6, were assumed for the evaluation of the
S809 airfoil aerodynamics. After comparing fully turbulent
computations performed with the Spalart-Allmaras model,
laminar/transitional computations performed with the Tran-
sition 𝛾 − Re

𝜃𝑡
− SA model, and experimental measurements

conducted under laminar inflow conditions, Aranake et al.
found improved lift, drag, and pressure coefficients predic-
tions under both prestall and stall conditions. Nevertheless,
significant discrepancies were found at intermediary AOA,
where a characteristic double-stall condition arises for both
tested airfoils. They concluded that in situations for which
the flow remains completely attached or massively separated,
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the Transition 𝛾 − Re
𝜃𝑡
− SA model qualitatively and quan-

titatively exhibits the same behavior as the fully turbulent
SA model. But when moderate flow separation occurs, the
coupled model significantly improves the quality of the
predictions.

Khayatzadeh and Nadarajah [26] presented a compre-
hensive evaluation of the RANS-based Transition 𝛾 − R̃e

𝜃𝑡

model, which was coupled with the SST 𝑘-𝜔 turbulence
model, for predicting the asymmetric NLF(1)-0416 and the
S809 airfoil aerodynamics. They provided modifications for
both the SST 𝑘-𝜔 and the Transition 𝛾 − R̃e

𝜃𝑡
models

in order to allow an appropriate gradual activation of the
SST 𝑘-𝜔 model along the BL upon the onset of transition
from laminar-to-turbulent flow conditions. The proposed
modifications improved the aerodynamic predictions of the
original models, which were compared with experimental
measurements performed under laminar inflow conditions.
The improved model predicted the laminar-to-turbulent
transition locations, the skin friction coefficient distribution,
the pressure coefficient distribution, and the lift, drag, and
moment coefficients with reasonable accuracy for different
inflow conditions, which included the ranges 2𝑒6 ≤ Re ≤ 4𝑒6
and −10∘ ≤ 𝛼 ≤ 15∘. Khayatzadeh and Nadarajah highlighted
the importance of using an adequate domain discretization
(considering average 𝑦+ values below 1) and the importance
of developing robust and well-calibrated relations for the
prediction of the laminar-to-turbulent flow transition, which
were shown to be very sensitive to the considered inflow
condition.

The evidence presented in the above-described works
indicates that by employing Transition-based models, or by
performing mixed laminar/turbulent procedures, improved
predictions can be obtained when comparing computa-
tional results with experiments conducted under lami-
nar/transitional inflow conditions. However, for the mixed
laminar/turbulent procedures proposed in [22, 28], three
unsolved issues have been identified: (1) no insights of the
boundary conditions used between the split regions were
provided; thus, the procedure may have resulted in an
unphysical representation of the flow field in the vicinity
of that boundary, (2) the determination of the transition
point was guessed or computed from already measured data,
and (3) the laminar/turbulent domain segmentation must be
changed for different scenarios, resulting in a complex task
when considering asymmetric airfoils undergoing nonho-
mogeneous inflow conditions. Moreover, grid-independence
tests must be performed for each considered scenario. If a
mixed laminar/turbulent procedure is to be implemented,
instead of guessing the transition location, the authors of the
present work recommend computing the airfoil’s top transi-
tion point (𝑥𝑇tr) and bottom transition point (𝑥𝐵tr) by first using
specialized software such as XFOIL that incorporates the 𝑒𝑛
method for transition prediction [39], which has proven to be
accurate [40], thus avoiding possible metastability issues. It
should be noted that one of the key advantages of employing
Transition-based turbulence models is that they implicitly
solve the three above-described issues, at the expense of
increased computational requirements and the incorporation

of complex formulations for the accurate prediction of the
laminar-to-turbulent flow transition [24, 26, 35].

As it becomes apparent from this literature review, most
of the researchworks have focused on validating the effective-
ness of a limited number of fluid flow models for predicting
two-dimensional airfoil aerodynamics, while considering a
limited range of inflow conditions. None of them provided
a justification for the selection of specific full-turbulence
models (e.g., while coupling with Transition models [26, 38])
during the validation process and their scope was limited
mainly due to the availability of experimental measurements.
Moreover, only a few works have investigated the sensitivity
of the simulations’ outcomes to the different free parameters,
and the majority of the works have not provided detailed
descriptions of the numerical solution process and its conver-
gencemechanisms.As consequence, only limited conclusions
can be drawn about the performance of the testedmodels due
to the impossibility of extrapolating the findings to situations
different from the original case studies. It should be noted that
a wide range of conflicting findings arise in the literature with
regard to which models, or combination of models, are the
most effective in terms of solution quality and computational
efficiency. Thus, in order to overcome these issues, this work
reports on an extended assessment of the accuracy of thirteen
state-of-the-art fluid flow models applied to the problem of
quantifying aerodynamic forces on two-dimensional airfoils
for a wide range of inflow conditions. The outcomes of the
assessment allowed to (1) identify the best performing fluid
flowmodels, (2) understand themodeling pitfalls for different
conditions (e.g., stall conditions), (3) determine which free
parameters are the most important during the computational
evaluation, (4) identify strategies for improved numerical
convergence, and (5) identify key research needs and provide
a comprehensive research agenda.

A full comparison of two different CFD-based method-
ologies was performed; the first one is based on the potential
flow modeling approach [11, 41] complemented with an 𝑒𝑛
transition model and a set of integral BL formulations,
which are implemented in the XFOIL 6.96 software. The
second methodology is based on the turbulence modeling
approach, where twelve different turbulence models were
tested. Transition-based turbulence models were adopted
when laminar/transitional inflow conditions were consid-
ered. For the remaining turbulence models, the free-stream
flow was considered to be turbulent (i.e., no attempts were
made to separate the laminar and the turbulent regionswithin
the computational domain) and, therefore, an overprediction
of the drag coefficient was expected when comparing the
computational outputs with experimentalmeasurements that
were typically conducted under laminar inflow conditions.
The asymmetric four-digit NACA 4412 airfoil was considered
as a test case.The rationale for selecting this airfoil is twofold:
on the one hand, abundant information of the NACA 4412
airfoil can be found in the literature [1, 42–45], containing
experimental measurements for up to 23 different Reynolds
numbers ranging from 4.21𝑒4 ≤ Re ≤ 9𝑒6. On the other
hand, the asymmetric features of the NACA 4412 airfoil pose
a reasonable challenge to the flow modeling techniques.
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The remainder of this work is structured as follows:
Section 2 presents the different setups of the computational
study. Section 3 presents the computational results, their
validation, and the corresponding physical interpretations.
Finally, Section 4 presents the overall conclusions and out-
lines future research.

2. Computational Study

The NACA 4412 is an airfoil that has a maximum camber of
4%, which is located at 40% from the leading edge, and has
a maximum thickness of 12%, all percentages measured with
respect to the airfoil’s chord length.TheNACA4412 ordinates
were obtained from [20, 45]. The airfoil’s trailing edge was
smoothed, with the aid of the XFOIL 6.96 software, on the
last 5% of the chord to produce a sharp closed profile since
the original ordinates had an open section at the tip of the
trailing edge (i.e., blunt shape). This is a common issue for
analytically developed airfoils and affects all the NACA four-
digit airfoils.

The present work reproduced the experimental tests
reported in [1, 10, 42, 43, 45] in which transonic and
supersonic flows were avoided since the experiments were
performed in the Langley two-dimensional low-turbulence
pressure tunnel [6], which compressed the airflow up to an
absolute pressure of 4 atmospheres in order to increase the
air density.Therefore, the simulated airflowwas considered to
be incompressible and standard sea level air properties (𝜌 =
1.225 (kg/m3), 𝜇 = 1.7894 × 10−5 (kg/m-s), 𝑇 = 288.15 (K),
and 𝑝 = 101.325 (kPa)) were considered in all case studies.
Furthermore, the earth’s gravitational force was neglected.

The computer used to perform the computational assess-
ment was a customized machine containing a water-cooled
Intel Core i7-2600k processor operating at 5.2 GHz, 16GB of
memory DDR3 @1600MHz, a Corsair Force GT solid state
drive operating at 6Gb/s, and an ASUS Maximus IV GENE-
Z motherboard based on the Intel Z68 chipset. Double-
precision parallelized simulations were performed for all case
studies using an Intel 64 Message Passing Interface (MPI-2).

2.1. Computation of the NACA 4412 Airfoil Aerodynamics
Using XFOIL 6.96. XFOIL [19, 20] is Fortran-based software,
created by Drela in 1986 at the Massachusetts Institute of
Technology (MIT) during the MIT Daedalus project, for the
analysis of the subsonic aerodynamics of isolated airfoils.
The XFOIL computations are based on the panel method
[11, 19, 41, 46], which is combined with an 𝑒𝑛 laminar-
to-turbulent transition method [35, 39] and a set of inte-
gral boundary layer formulations. Given an initial inflow
condition, the flow velocity distribution around the airfoil
is computed from the panel method while accounting for
viscous forces and the induced vorticity from the airfoil
surface.The resultant boundary layer andwake are interacted
with a surface transpiration model. The resultant flow field
is incorporated into the fluid mechanics viscous equations,
yielding a nonlinear elliptic system of equations which is
solved by a Newton-Raphson algorithm, resulting in both
a complete pressure and velocity distributions in the airfoil
vicinity. The lift force coefficient (𝐶

𝐿
) is calculated by direct

Figure 1: Panel node distribution over the NACA 4412 airfoil.

surface pressure integration, as viscous contributions to the
lift force are often neglected, and the pressure coefficient (𝐶

𝑃
)

is calculated using the Karman-Tsien compressibility cor-
rection. The drag force coefficient (𝐶

𝐷
) is determined from

the wake momentum thickness at a location far downstream
of the airfoil and calculated with use of the Squire-Young
formulation. The methods, corrections, and the boundary
layer formulation used in XFOIL are extensively described in
[19, 46].

For panel-based methods, the first set of free parameters
is related to the discretization of the airfoil’s geometry. In
all the XFOIL-based simulations, a constant number of
panel nodes (160) were considered. The panel nodes were
concentrated towards both the leading and the trailing edges
of the airfoil, as shown in Figure 1, with the aim of increasing
the density of nodes in these sensitive zones.The trailing edge
to the leading edge panel density ratio was of 0.15. The panel
density ratio at the leading edge was 0.2 and the maximum
panel angle was 7.87∘. The second set of free parameters is
related to the definition of the specific inflow conditions to be
studied. In XFOIL, the laminar-to-turbulent flow transition
begins when one of the following two scenarios occur: (1)
a free transition occurs when the 𝑒𝑛 criterion is met or
(2) a forced transition occurs when a trip or the airfoil’s
trailing edge is encountered. For this Transition-basedmodel,
a free parameter named the critical amplification factor
(𝑁Crit), which affects the laminar-to-turbulent flow transition
location, must be defined. A suitable value of this parameter
depends on the ambient disturbance, or Turbulence Intensity
(TI), in which the airfoil operates and mimics the effect of
such disturbances on the flow state transition. A value of𝑁Crit
= 2.6232 was set to simulate a free-streamTI of 1%, which was
the same flow condition of the experimental measurements
obtained from the literature. Finally, it was observed that the
XFOIL computations were usually very fast, in the order of
milliseconds for one simulated case, and consume almost
negligible computational resources.

2.2. Computation of the NACA 4412 Airfoil Aerodynam-
ics through Turbulence Modeling. Two-dimensional, incom-
pressible, steady-state, turbulence modeling-based simula-
tions were performed for predicting the NACA 4412 air-
foil aerodynamics using the specialized commercial pack-
age ANSYS Fluent 13.0. On the preprocessing stage, the
geometry, the boundary topology, and the finite volume
domain discretization were set/performed as described in
next subsections.

2.2.1. Boundary Topology. The first set of free parameters on
finite volume-based simulations refers to the definition of
the boundary topology, which is strongly dependent on the
geometric complexity of the tested object/system. The main
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Figure 2: Boundary topologies and edge labels.

concern is related to the requirement of allowing enough free
space between the tested object/system and the simulation’s
boundary so that no blockage effects occur. Blockage effects
may produce significant side effects on the modeled physics,
even if numerical convergent simulations are obtained. Dif-
ferent boundary topologies have been considered in the
literature within the context of two-dimensional airfoil aero-
dynamics prediction. Most of them are based on the two-
dimensional immersed boundary method [47], which is an
approach used for solving external fluid flow problems (i.e.,
problems in which the fluid flows through the external sur-
face of the tested object). Therefore, the geometry of interest
is immersed in a uniform or nonuniform nonboundary-
conforming Cartesian grid; thus the flow and its interactions
with the tested object are modeled.

In the present work, three different boundary topologies
based on the C-type shape, as shown in Figure 2, were
studied with the aim of improving the quality of the numer-
ical solutions and reducing the resources spent during the
computational assessment. Type 1 topology consisted in an
upwind semicircular boundary (denoted by the letters I and
J) of radius equal to 10 times the chord length of the airfoil
and a downwind rectangle of total height and axial length of
20 and 10 times the chord length of the airfoil, respectively.
Type 2 and 3 topologies consisted of upwind semielliptical
boundaries with semimajor axis of 15 and 20 times the chord
length of the airfoil and a semiminor axis of 10 times the
chord length of the airfoil. The boundaries were extended
at least 10 times the chord length of the airfoil in all direc-
tions in order to avoid flow blockage effects, thus properly
encompassing all the relevant zones of the simulation (e.g.,
the wake zone and the zones where the pressure, velocity,
and main turbulence variables distributions still affected
the computation of aerodynamic forces). Elliptical-based
topologies enabled discretizing the domain using structured
quadrilateral elements (e.g., see Section 2.2.2) without sig-
nificantly affecting the final grid quality and its use can
be advantageous when highly asymmetric and/or sharper
airfoils are considered. However, elliptical topologies often
require more quadrilateral elements and require finer grid
refinements towards the airfoil surface in order to obtain
acceptable values of dimensionless wall distance (𝑦+). In the
boundary topology analysis performed for the NACA 4412

airfoil, it was found that the use of any of the proposed
topologies is suitable as it was easy to get enough grid
quality to get quality-converged results, considering any of
the studied inflow conditions. However, type 1 topology was
used in the rest of this work as it requires fewer discretized
elements in the final refined grid. In cases where the grid
quality is low due to the geometric features of the tested
airfoil, the use of cubic splines or the airfoil shape itself
can provide a guideline for the construction of the upwind
boundaries (i.e., edges I and J in Figure 2).

2.2.2. Spatial Discretization. Thefinite volume-based domain
discretization consisted of structured quadrilateral elements
that were refined towards airfoil’s surface. The use of high-
quality structured quadrilateral grids allows numerical algo-
rithms to converge faster, thus requiring less computational
resources. The grid quality is commonly measured in terms
of the cell aspect ratio, cell Jacobian ratio, cell parallel
deviation, cell maximum corner angle, cell skewness, and cell
orthogonal quality, among other measures. Each edge of the
boundary topology (labeled with a specific letter, as shown in
Figure 2) contained a different number of nodal points and
different nodal refinements (e.g., arrows in Figure 2 define
the refinement direction in which the average quality of
the grid is enhanced). In previous studies [28, 48], 80,000
quadrilateral elements formed the total grid andwere consid-
ered sufficient since successful grid-independence tests were
performed, and, therefore, the same grid was used for all
the computational experiments. In the present work, it was
found that the use of a unique grid was not sufficient to
properly test the different fluid flow models and thus several
grid-independence tests were performed for eachmodel.This
fact can be understood in terms of BL modeling; since each
model predicts different results in the converged solution, as
described in Section 3, different grids are required to obtain
suitable values of the dimensionless wall coordinate (𝑦+),
hence adequately modeling the complete airfoil’s BL. The
grids were constructed in such a way that the converged
𝑦
+ varied along the airfoil’s surface with an approximated

maximumvalue of 1 for cases considering a Reynolds number
of 9𝑒6 and below 1 for cases considering lower Reynolds
numbers. The first nodal point was typically located at a
distance of 7.35𝑒-7m from the airfoil’s surface. The best
nodal distributions, determined through grid-independence
tests (as discussed in Section 3.1), are summarized for each
turbulence model in Table 1. The bias factor, or refinement
factor, is defined as the ratio of the largest distance between
two adjacent nodes in the discretized edge to the smallest
distance between two adjacent nodes in the discretized edge,
so the distance between nodes increased linearly towards the
nonrefined section of the edge.

2.2.3. TurbulenceModels, Numerical Schemes, Boundary Con-
ditions, and Convergence Criteria. In ANSYS Fluent 13.0,
the set of RANS equations [13, 14, 24], complemented with
turbulence models, are solved. A total of 12 different turbu-
lence models were tested and are summarized in Table 2. A
complete description of each turbulence model can be found
in [24].
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Table 1: Best performing grids for each turbulence model.

Edge/turbulence
models

(1) SA VB
(2) SA S-VB

(3) Standard k-𝜀
(5) Realizable k-𝜀
(6) Standard k-𝜔

(4) RNG k-𝜀
(7) SST k-𝜔

(9) Transition SST
(8) Transition k-kl-𝜔

(10) RS LP-S
(11) RS QP-S

(12) RS Low-Re S-𝜔
A 66 78 84 72 96
B 110 130 140 90 120
C 110 130 140 90 120
D 66 78 84 72 96
E 110 130 140 90 120
F 110 130 140 90 120
G 110 130 140 90 120
H 66 78 84 72 96
I 770 910 980 720 960
J 770 910 980 720 960
K 770 910 980 720 960
L 770 910 980 720 960
Total elements 183,920 256,880 297,920 142,560 253,440

Refinement factor
A B C D E F G H I J K L
500 5𝑒5 5𝑒5 500 5𝑒5 5𝑒5 5𝑒5 3400 50 50 10 10

Table 2: Contrasted turbulence models.

# Turbulence model Formulation and/or wall functions Reference [24] chapter theory

(1) Spalart-Allmaras V-B (vorticity-based
formulation for turbulent production) Low Reynolds damping. 4.2

(2)
Spalart-Allmaras SV-B
(strain/vorticity-based formulation for
turbulent production)

Low Reynolds damping. 4.2

(3) Standard k-𝜀 Enhanced wall treatment. 4.3.1
(4) Renormalization group (RNG) k-𝜀 Enhanced wall treatment. 4.3.2
(5) Realizable k-𝜀 Enhanced wall treatment. 4.3.3

(6) Standard k-𝜔 Low-Reynolds corrections.
Shear Flow corrections. 4.4.1

(7) Shear stress transport (SST) k-𝜔 Low-Reynolds corrections. 4.4.2
(8) Transition k-kl-𝜔 NA. 4.5
(9) Transition SST NA. 4.6

(10) Reynolds stress LP-S
(linear pressure-strain model)

Enhanced wall treatment, wall boundary
conditions from k equation, wall reflection
effects were considered.

4.8

(11) Reynolds Stress QP-S
(quadratic pressure-strain model)

Enhanced wall treatment, wall boundary
conditions from k equation. 4.8

(12) Reynolds Stress Low-Re S-𝜔
(Low-Reynolds Stress-𝜔model)

Low-Reynolds corrections. Shear flow
corrections. 4.8

The models’ characteristic constants were maintained at
their default values. Enhancedwall functionswere considered
instead of standard wall functions, although no meaningful
differences in flowmodelingwere observedwhile considering
standard wall functions [24, 49] for cases in which the grid
was sufficiently refined towards the airfoil surface, so a value
of 𝑦+ ≅ 1 was obtained. In all cases, a density-based solver
with an absolute velocity formulation was considered. The

solution method considered an implicit formulation and
a Roe flux-difference splitting (FDS) convective flux type
scheme. The gradients and derivatives were computed using
the least squares cell-based method and the flow variables
(i.e., the𝑥 and𝑦 velocities, the pressure, and all the turbulence
variables) were solved and interpolated using second-order
upwind discretization schemes. A full description of such
methods and schemes can be found in [24, 25]. The edges A,
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I, J, and D in Figure 2 were prescribed with an inlet-velocity
boundary condition in which the magnitude and direction
of the free-stream airflow varied with the Reynolds number
and the AOA. The values of the inlet turbulence variables
were calculated as a function of the free-stream TI (1%),
which was reported in the experimental data found in the
literature, and the eddy length scale, which was defined as 1%
of the length of the airfoil (0.01m) [24] since the experiments
were conducted in a low turbulence wind tunnel where larger
free-stream eddies were hardly found. The edges B and C
were prescribed with a pressure-outlet condition, where the
gauge pressure was set to 0 Pa and the backflow turbulence
intensity and backflow turbulence length scale were set to
1% and 0.01m, respectively. The edges K and L (the airfoil’s
top and bottom surfaces) were prescribed as stationary walls
with a no-slip shear condition. The airfoil was considered
to be solid and made of aluminum with a density of 𝜌Airf =
2,719 kg/m3. The wall roughness height and the roughness
constant were defined as 0m and 0.5, respectively, as no
other information was available from the literature results.
A zero wall roughness height (smooth wall) means that no
roughness effects [27, 50] were included during the work
development.

The numerical convergence definition is based on the
computation of double-precision residuals. In ANSYS Fluent
13.0, the residual of a variable being solved, considering a
density-based solver, is defined as the time rate of change of
the conserved variable (𝑊). Equation (1) shows the unscaled
root-mean-square residual definition,which is used for all the
variables being solved:

𝑅 (𝑊) = √

𝑛

∑

𝑖=1

(𝜕𝑊
𝑖
/𝜕𝑡)
2

𝑛
, (1)

where 𝑛 is the number of nodal points in the spatial discretiza-
tion. In order to properly judge the numerical convergence,
the scaled residual definition presented in (2) was considered:

𝑅 (𝑊)
𝑆
=
𝑅 (𝑊)

𝑁

𝑅 (𝑊)
5

, (2)

where 𝑅(𝑊)
𝑁
is the unscaled residual of the 𝑁th iteration

and 𝑅(𝑊)
5
is the largest absolute residual value found within

the first five iterations. In the present work, an absolute
convergence criterion of 𝑅(𝑊)

𝑆
≤ 5𝑒 − 7 was considered for

all the solved variables.This value was considered adequate as
no significant improvements in the solution’s precision (e.g.,
up to 5 significant digits when computing aerodynamic coef-
ficients) were obtained when considering lower convergence
criteria values.

In ANSYS Fluent 13.0, the coupled set of governing
equations are discretized in time, for both steady-state and
unsteady-state computations, and are solved with the use
of an explicit or an implicit time-marching algorithm. The
present work adopted a Euler-type implicit discretization in
time of the governing equations, which was combined with
a Newton-type linearization of the flow fluxes, to produce

the following preconditioned linearized system in delta form
[24]:

[

[

𝐷 +

𝑁faces

∑

𝑗

𝑆
𝑗𝑘

]

]

ΔQ𝑁+1 = −R𝑁, (3)

where the center and off-diagonal coefficient matrices𝐷 and
𝑆
𝑗𝑘
are given by

𝐷 =
𝑉

Δ𝑡
Γ +

𝑁faces

∑

𝑗

𝑆
𝑗𝑖
, (4)

𝑆
𝑗𝑘
= (

𝜕F
𝑗

𝜕𝑄
𝑘

−

𝜕G
𝑗

𝜕𝑄
𝑘

)𝐴
𝑗
, (5)

where the residual vector 𝑅𝑁 and the time step Δ𝑡, computed
from the Courant number (CFL), are defined as

R𝑖 =
𝑁faces

∑ (F (Q𝑖) − G (Q𝑖)) ⋅ A − 𝑉H,

Δ𝑡 =
2 (CFL) 𝑉
∑
𝑓

𝜆
max
𝑓

𝐴
𝑓

,

(6)

where 𝑉 is the cell volume with surface area A, 𝐴
𝑓
is the cell

face area,𝑄𝑖 is an intermediate solution,𝑄
𝑘
is a spatial coordi-

nate in the simulation domain, Γ is a preconditioned matrix,
whose aim is to help in reducing numerical divergence issues
at the beginning of the simulations [24],𝜆max

𝑓

is themaximum
of the local eigenvalues of the preconditioned system, F is
a vector containing the convective variables to solve, G is a
vector that contains the viscous stress tensor terms, and H
contains source terms such as body forces and energy sources:

F =

{{{{{{{{{

{{{{{{{{{
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}

, G =

{{{{{{{{
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𝜏
𝑧𝑖

𝜏
𝑖𝑗
V
𝑗
+ q

}}}}}}}}

}}}}}}}}

}

, (7)

where 𝜌, v, 𝐸, 𝑝, and q are the density, velocity, total energy
per unit mass, pressure, and heat flux, respectively. In the
present work, the energy equation is not solved, since the flow
is considered to be subsonic and incompressible, so the last
term of F and G is not considered.

During computations, the variation of the values of the
explicit underrelaxation factors (URFs) was crucial to get
quality-converged results and to speed up convergence [24,
51].Whenoscillatory convergence on themonitored residuals
was observed, the URFs values (which typically range around
0 ≤ URFs ≤ 1) were decreased to almost a fifth of its default
values and later, after numerical oscillations were reduced,
they were increased to almost the unity. Nonetheless, the
variation of the CFL number provided the best speed-up
improvements. By increasing the CFL number an increased
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time step is computed; on the one hand, the increased
time step develops the steady-state solution faster through
the time-marching algorithm and on the other hand makes
the first term of (4) less important and therefore D more
dependent on the computed linear strain rate tensor 𝑆

𝑗𝑖
, thus

reducing the effects of the preconditioned system on the
Euler-type implicit scheme. From the linear stability theory, it
is well known that the implicit formulations are uncondition-
ally stable (e.g., the Courant-Friedrichs-Lewy condition [25])
in contrast to explicit formulations. This fact provides the
ability to propose any desired time step to the problem being
solved. However, nonlinearities in the governing equations
will often limit the numerical stability at the beginning of
the simulations (e.g., first 300–500 iterations) and thus the
CFL number was maintained low (e.g., 0.1 ≤ CFL ≤ 5) to
avoid numerical divergences. Later, the CFL number was
slowly increased (e.g., up to a value of 200) until the conver-
gence criterion was met. This simple procedure accelerated
the numerical convergence at least three times in contrast
with constant CFL number simulations. However, numerical
convergence is often difficult unless a good initial solution is
provided. In ANSYS Fluent 13.0 three different initialization
procedures are available. The first type of initialization (or
standard initialization) assigns the same value, which is typi-
cally determined from the inlet condition, to all the variables
being solved within the discretized domain. The second type
of initialization, named the “hybrid initialization” [24, 51],
solves the Laplace equation (i.e., is based on a potential flow
procedure) in a preprocessing stage to produce a velocity
field and a pressure field which smoothly connects high
and low pressure values in the computational domain. The
third type of initialization consists in incorporating a solution
from a previous simulation by using solution interpolations
(multigridding approach). The present work considered a
multigridding technique in which solutions computed using
coarser grids (i.e., having less quadrilateral elements and
where the converged 𝑦+ values were larger than 30) were
used as initial solutions to solve refined cases, which had
grids such as the ones reported in Table 1. Nonetheless,
the hybrid initialization procedure was considered while
conducting simulations using coarser grids. Even after these
considerations, in some cases numerical convergence could
not be obtained if a proper multigrid initialization and a
proper variation of the URFs and the CFL number are not
provided/performed.

The computation of aerodynamic forces employing tur-
bulence modeling approaches is very slow in contrast with
the XFOIL computations, requiring execution times in the
scale of tens of minutes per simulated case and consuming
significant computational resources as a function of grid size
and considered turbulence model.

2.2.4. Test Cases. In order to properly determine the perfor-
mance of the testedmodelswhile predicting two-dimensional
airfoil aerodynamics, more than 1,200 CFD-based simula-
tions, considering the range of AOA −10∘ ≤ 𝛼 ≤ 20∘ and
five different Reynolds numbers (5.5𝑒5, 8𝑒5, 3𝑒6, 6𝑒6, and
9𝑒6), were performed and the outputs were contrasted with
experimental measurements reported in the literature. Some

of the literature results were not reported in a tabular fashion;
thus the data was digitized using the commercial software
GetData Graph Digitizer [52]. In addition, most of the drag-
based characteristics are commonly reported as a function of
the lift coefficient. In order to express the drag coefficient as
function of the AOA, the MATLAB 2012a Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) function was
used. Finally, in order to compare the CFD-based computa-
tions with the experimental measurements provided in the
literature, bicubic interpolations were performed using the
MATLAB R2012a griddata function, which is based on the
Boris Delaunay triangulation method, which in turn fits a
surface of the form 𝐶

𝐿
= 𝑓(𝛼,Re) and 𝐶

𝐷
= 𝑓(𝛼,Re) to the

set of experimental data.

3. Results and Discussion

3.1. Grid-Independence Tests. The case chosen for the deter-
mination of the minimum amount of quadrilateral elements
required to compute grid-independent values of the aero-
dynamic coefficients was an airflow having the properties
described in Section 2, a Reynolds number of 9𝑒6, and the
AOA 12.22∘. The selection of this inflow condition posed a
reasonable challenge during the grid-independence charac-
terization due to the required flow modeling complexity, as
opposed to previous works [26, 30, 47] in which a prestall
condition was considered. The experimental values of the lift
and drag coefficients for this test case are 𝐶12.22

∘

𝐿

= 1.5742

and 𝐶12.22
∘

𝐷

= 0.01511 [1, 45]. For this case, XFOIL predicts a
𝐶
12.22

∘

𝐿

= 1.7077 and 𝐶12.22
∘

𝐷

= 0.01504. Figure 3 summarizes
the grid-independence test results for all the considered
models. From the figure three important findings can be
highlighted: (1) it can be noted that the differentmodels differ
quite substantially in their predictions of both the lift and
the drag coefficients values. (2) At least 120,000 quadrilateral
elements are required (with their corresponding refinements
towards the airfoil’s surface) to obtain stable values of the
computed aerodynamic coefficients and to reach amaximum
𝑦
+ value of approximately 1 along the airfoil surface. Note,

however, that the 𝑦+ values are highly dependent on the
refinement factor described in Section 2.2.2. (3) In all cases, a
drag coefficient overprediction is observed when comparing
with the experimental measurement.

3.2. Boundary Layer Modeling Effects. After performing
multigridding techniques, as described in Section 2.2.3,
insights into how the different solved layers of the BL affect
the computation of aerodynamic coefficients were obtained.
Figure 4 shows the difference between the absolute values
of the aerodynamic coefficients computed using grids with
converged maximum values of 𝑦+ ≅ 1 along the airfoil’s
surface and grids with converged maximum values of 𝑦+ ≫
30 (i.e., Δ𝐶

𝐿,𝐷
= |𝐶
𝐿,𝐷
(𝑦
+

≅ 1)| − |𝐶
𝐿,𝐷
(𝑦
+

≫ 30)|)
for different AOA, Reynolds numbers, and five turbulence
models (for the sake of brevity). It can be observed that there
is an important effect in both the lift and the drag coefficients
predictions as stall conditions are reached. The magnitude of
the effect is partially attributed to the change of the wall shear



10 Mathematical Problems in Engineering

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

0 100,000 200,000 300,000
Quadrilateral elements (—)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100,000 200,000 300,000
Quadrilateral elements (—)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0M
ax

im
um

 v
al

ue
 o

f t
he

 w
al

l c
oo

rd
in

at
e
y
+

(—
)

100,000 200,000 300,000
Quadrilateral elements (—)

Standard k-𝜀

Realizable k-𝜀

SST k-𝜔
Transition SST

RNG k-𝜀

Standard k-𝜔
RS LP-S
RS QP-S

Spalart-Allmaras V-B
Spalart-Allmaras SV-B
Transition k-kl-𝜔
RS Low-Re S-𝜔

Li
ft 

co
effi

ci
en

tC
L

(—
)

D
ra

g 
co

effi
ci

en
tC

D
(—

)

Figure 3: Grid-independence tests.

stressesmagnitudes, which substantially increase in near-stall
and stall conditions. These changes were captured differently
in grids that do not solve the inner parts of the BL and
depended on the considered wall models [24, 49]. Moreover,
the effect varied in magnitude depending on the considered
turbulence model; it can be observed that the effect is
lower for the Standard 𝑘-𝜀 and the Standard 𝑘-𝜔 models
(note that, for all the 𝑘-𝜀 turbulence models, enhanced wall
functions were considered for both cases showing converged
𝑦
+

≅ 1 and 𝑦+ ≫ 30). However, the predictions of other
turbulence models (e.g., the Transition-based models and all
the Reynolds Stress models) were substantially affected. In
particular, the RS LP-S model showed a maximum difference
in the lift coefficient magnitude of 0.3275 and a maximum
difference in drag coefficient magnitude of 0.0326.

The ability of the Transition-based models to predict the
laminar-to-turbulent flow transition is strongly influenced
by the converged 𝑦+ value [24, 26], and therefore an erratic
behavior was obtained when characterizing the effects of not
explicitly modeling all the layers of the BL. The side effect
of not meeting a value of 𝑦+ ≅ 1 (e.g., 𝑦+ > 5) is that
the transition onset locationmoves upstreamwith increasing
𝑦
+, resulting in higher drag and lower lift forces predictions.

However, it must be noted that this effect can be confused
with modeling performance since the comparison between
the computed lift coefficients (e.g., considering 𝑦+ ≫ 30) and
the experimental measurements performed under laminar
inflow conditions tends to improve. It has been observed
(not shown) that lift predictions typically improve as larger
𝑦
+ values are considered, but drag predictions worsen even

more.
Figure 5 shows the evolution of the converged maximum

𝑦
+ along the airfoil’s surface, for both the coarse (e.g., 𝑦+ ≫
30) and the refined (e.g., 𝑦+ ≅ 1) grids, as a function of
the Reynolds number and AOA while considering the RS
LP-S model. The converged maximum 𝑦+ value increased as

both the Reynolds number and the magnitude of the AOA
increased. It can be observed that the magnitude of the slope
decreases in the range 16∘ ≤ 𝛼 ≤ 20

∘ as the maximum
wall shear stresses are reached (stall condition). It is expected,
as shown in the coarse grid results, that at larger AOA this
slope will tend to zero and/or become negative, as no larger
wall shear stresses would result in deep stall conditions,
consequence of the massive flow separation observed in such
conditions.

Not unexpectedly, the variation of the converged maxi-
mum 𝑦+ value as a function of Reynolds number, for a given
AOA, is linear, as shown in Figure 6. It should be noted that
the obtained linear regressions are a function of the grid,
the considered turbulence model, and the airfoil’s shape. A
similar behavior was observed for the results of the remaining
turbulence models. The graph provided in Figure 6 is a very
useful tool to determine up to which Reynolds number the
grid will be able to simulate the viscous sublayer. When the
maximum 𝑦+ value, evaluated at the first grid layer along the
airfoil’s surface, is much larger than 1, the grid will not be
able to simulate the viscous sublayer and the resultant airfoil
aerodynamics could be questionable, even if the simulations
were numerically convergent.

3.3. Validation of the Computational Predictions. It has been
experimentally observed [1, 27, 53] that as the Reynolds
number increases the lift coefficient will increase but the
drag coefficient will decrease for a given AOA. Nonethe-
less, the net effects of varying the Reynolds number are
higher at large AOA. Through the simulation of flows with
different free-stream velocities, the ability of the different
turbulence models to predict prestall and stall conditions can
be quantified. Figure 7 illustrates theReynolds number effects
predictions of each turbulence model on the computed lift-
to-drag ratio (direct comparisons of the individual predicted
coefficients against experimental measurements performed
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Figure 5: Variation of the converged maximum 𝑦+ as a function of the AOA, considering the RS LP-S turbulence model.
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Figure 6: Variation of the converged maximum 𝑦+ as a function of
the Reynolds number, considering the RS LP-S turbulence model.

under laminar inflow conditions [1, 42, 45] can be found in
Figures 11, 12, 13, 14, 15, 16, and 17). It can be observed that
both Spalart-Allmaras formulations predicted similar results
for the lift and drag coefficients as a function of Reynolds
number and AOA. The different 𝑘-𝜀 and 𝑘-𝜔 turbulence

models predicted quite different results for both the lift and
the drag coefficients, as previously noted from the grid-
independence tests. In particular, the Standard 𝑘-𝜀, the Stan-
dard 𝑘-𝜔, and the Transition 𝑘-𝑘𝑙-𝜔models could not capture
the lift and the drag forces dependence on the Reynolds
number since almost identical values were obtained for each
computational experiment. However, the remaining models
were able to capture a Reynolds number effect but in different
magnitude.

Interestingly, the drag coefficient predictions of the Stan-
dard 𝑘-𝜔 model are almost the double in magnitude as
compared with the SST 𝑘-𝜔model predictions, while consid-
ering large Reynolds numbers (e.g., see Figures 15–17). This
behavior is similar to the one observed when contrasting the
outputs of the Standard 𝑘-𝜀 and the Realizable 𝑘-𝜀 turbulence
models. It should be noted that the drag predictions of
the Transition-based models are substantially lower when
comparing with the outputs of full-turbulence turbulence
models and are in better agreement with the experimental
measurements (e.g., see Figures 11–17). This behavior is
consistent with the findings observed in previous works
[26, 36, 38]. However, despite the improvements in the drag
coefficient estimation, the predictions of the lift coefficient by
the Transition-based models tend to be larger as the AOA
increases and differ when comparing with the outputs of
any other full-turbulence model or when comparing with
the experimental measurements. In the following sections,
separated descriptions and interpretations of this problematic
and the accuracy of the remaining flow models on the
prediction of aerodynamic forces are provided.

3.3.1. Description of the Accuracy of the Tested Flow Mod-
els for Predicting the Lift Coefficient. Based on the results
shown in Figures 11 to 17, it can be observed that at the
highest simulated Reynolds number (i.e., Re = 9𝑒6) the
agreement between the experimental data and all the flow
models predictions is relatively good for nonstall conditions.
However, as the Reynolds number becomes smaller, the
discrepancy becomes larger, except for the RS LP-S model
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Figure 7: Predicted Reynolds number effects on the lift-to-drag ratio by different turbulence models.

whose predictions remain close to the experimental data for
all Reynolds numbers. The RS QP-S model predicted the
lowest lift coefficient values on prestall conditions among all
the tested models and at all Reynolds numbers, while XFOIL
and the Transition 𝑘-𝑘𝑙-𝜔 models predicted the largest lift
coefficient values.

When stall conditions were considered, the Transition 𝑘-
𝑘𝑙-𝜔 model failed to predict stall at all. Both XFOIL and the
Transition SST model performed somewhat better but sig-
nificantly overpredicted the lift coefficient for AOA beyond
the experimental stall angle, similar to the observations
provided by Yuhong andCongming [36]. Out of the Standard
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Figure 8: Evolution of the top and bottom superficial transition points as a function of Reynolds number.

models, both Spalart-Allmaras models, the NRG 𝑘-𝜀, the
Realizable 𝑘-𝜀, the SST 𝑘-𝜔, and the RS Low-Re S-𝜔 models
overpredicted the poststall lift at all Reynolds numbers. For
the Standard 𝑘-𝜀 and the 𝑘-𝜔 models, the poststall lift is
somewhat overpredicted at low Reynolds numbers, while for
high Reynolds numbers the poststall lift is underpredicted,
with good agreement at intermediate Reynolds numbers (e.g.,
1𝑒6 < Re < 6𝑒6). The RS LP-S model comes out the best
in lift prediction for all the considered inflow conditions.
The remarkable aspect of this model is that it predicts the
lift coefficient with reasonable accuracy even in stall states.
The RS QP-S and the RS Low-Re S-𝜔 underpredict and
overpredict lift, respectively, at stall conditions and at all
Reynolds numbers.

3.3.2. Discussion of the Lift Coefficient Predictions by Different
Fluid FlowModels. Theprestall lift coefficient overprediction
observed at low Reynolds numbers (e.g., see Figures 11–
14) can be largely attributed to the inadequate prediction
of the laminar-to-turbulent flow transition (i.e., not only
close the airfoil surface) and the inadequate turbulence
modeling at the outer layers of the BL. Both factors affect
the pressure distribution around the airfoil, thus directly
affecting the prestall lift force computation, as discussed
next. The differences observed while contrasting the prestall
lift predictions of the different Transition-based models,
which showed the largest discrepancies in the prediction of
the experimentally observed prestall lift, are due to their
differences while predicting the laminar-to-turbulent flow
transition, as exemplified in Figure 8. It can be observed
that the laminar-to-turbulent flow transition predictions of
XFOIL and the Transition SST model differ quite substan-
tially at low Reynolds numbers. Moreover, an inadequate
modeling of turbulent forces in the outer layers of the
BL, together with an inadequate laminar-to-turbulent flow
transition prediction, can lead to an inadequate modeling
of the local flow speed, which in turn affects the pressure
distribution around the airfoil, thus affecting the computation
of the main component of the lift force. It was observed that

Transition-based models typically predict higher flow speeds
close to the top surface of the airfoil (e.g., see Figure 21), thus
resulting in larger lift forces as compared to full-turbulence
models or the experimental data. An extended description
of this issue is given in Section 3.4, where a validation
study of the predicted pressure coefficient distributions is
presented.

As the Reynolds number increased, the airfoil’s superficial
laminar-to-turbulent transition locations moved towards the
leading edge in a nonlinear fashion, as shown in Figure 8.
An increased agreement between the models’ predictions of
the laminar-to-turbulent flow transition locations, as well as
an increased concordance while predicting the experimental
prestall lift force (e.g., see Figures 15–17), was observed
as the Reynolds number increased. In such cases, a large
part of the airfoil’s BL was turbulent and the effects of the
laminar-to-turbulent flow transition were less relevant in
the prediction of the lift force since turbulent forces were
the most important mechanism regulating the transversal
diffusion of momentum between the different layers of the
airfoil’s BL, hence affecting the flow speedmagnitude in most
of the airfoil’s vicinity and, thus, the pressure distribution
along the airfoil’s surface.Therefore, the increased agreement
between the prestall lift force predictions by all tested mod-
els and the experimental measurements at large Reynolds
numbers is understood given that the experimental laminar
flow became turbulent sooner at the airfoil’s surface (i.e.,
closer to the leading edge of the airfoil) as the Reynolds
number increased. The differences between the predictions
of the prestall lift by the different models at large Reynolds
numbers essentially depended on the way turbulent forces
were modeled. Nonetheless, since all the models’ predictions
of the prestall liftwere similar in those conditions and showed
good agreement with the experimental data, it can be inferred
that almost negligible changes on the prestall lift predic-
tions occur at large Reynolds numbers when considering
either turbulent inflow conditions (i.e., when employing full-
turbulence models) or laminar inflow conditions (i.e., when
employing Transition-based models).
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Figure 10: Evolution of the predicted NACA 4412 drag components for different Reynolds numbers.
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Figure 11: NACA 4412 performance characteristics for Re = 0.7𝑒6.
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Figure 12: NACA 4412 performance characteristics for Re = 1𝑒6.

When the AOA increases, the laminar-to-turbulent flow
transition location moves towards the leading edge (i.e.,
upstream) at the airfoil’s top surface whereas at airfoil’s
bottom surface it moves towards the trailing edge (i.e.,
downstream), as shown in Figure 8. Moreover, opposite
effects occur when the AOA is decreased to negative values.

As the absolute value of the AOA increases, a stall condi-
tion is reached independently of the considered Reynolds
number. Nonetheless, the AOA at which the stall condition
occurs depend on the Reynolds number and the geometric
complexity of the airfoil. Under stall conditions, almost
half of the experimental airfoil’s BL was turbulent, and the
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Figure 13: NACA 4412 performance characteristics for Re = 1.5𝑒6.
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Figure 14: NACA 4412 performance characteristics for Re = 2𝑒6.

flow detachment condition occurred on the turbulent side
(e.g., see Figures 21–24). Therefore, the flow detachment
modeling is strongly dependent on the modeled turbulent
effects. Following this line of reasoning, the most important
deviations in the prediction of the lift force by the different
turbulence models were found in stall conditions.

The overprediction of the lift force under stall conditions
by full-turbulence models can be understood since free-
stream turbulence promotes the earlier formation of turbu-
lent BLs, which typically prevent flow detachment conditions
(i.e., surface flow attachment/reattachment is enhanced in
turbulent BL). Therefore, the modeled delay on the onset
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Figure 15: NACA 4412 performance characteristics for Re = 3𝑒6.
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Figure 16: NACA 4412 performance characteristics for Re = 6𝑒6.

of stall was a consequence of the modeled turbulent BL, as
opposed to the partial laminar BL of the experimental data.
However, the simulated free-stream turbulence intensity was
rather low (1%) and the magnitude of the computed delay
on the onset of stall seems to be unrealistic and it is not
expected in real free-stream turbulent experiments, which
unfortunately were not available in the literature. In this

regard, the RS LP-Smodel properly regulates the delay on the
onset of stall, as shown in Figures 11–17, due to the proper
modeling of anisotropic turbulent forces. Moreover, since the
RS LP-S model considered a fully turbulent inflow condition,
the effects of the laminar-to-turbulent flow transition and the
modeling of a turbulent BL at the bottom surface of the airfoil
played aminor role in the prediction of the poststall lift force.
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Figure 17: NACA 4412 performance characteristics for Re = 9𝑒6.

It should be noted that the performance of the Standard 𝑘-
𝜀 and the Standard 𝑘-𝜔models for predicting lift coefficients
can be good at certain Reynolds numbers, but the agreement
can be shown to be fortuitous. As illustrated in Figures
7 and 11–17, their predictions are literally independent of
the Reynolds number, whereas the experimental lift and
drag coefficients increased and decreased with increasing
Reynolds numbers, respectively. Therefore, the observed
agreement can be regarded as an occasional coincidence.This
observation contradicts with the findings of Kumar et al. [29]
who, for a fixed Reynolds number of 3.42𝑒6, concluded that
the Standard 𝑘-𝜔model provided the best predictions of the
NACA 4412 airfoil aerodynamics.

3.3.3. Description of the Accuracy of the Tested Flow Models
for Predicting the Drag Coefficient. The drag coefficient was
overpredicted by all the RANS-based approaches, being the
Transition-based models the best performers at all Reynolds
numbers.The best drag predictions occurred at low Reynolds
numbers and at low absolute AOA, with the discrepancy
monotonically increasing towards higher Reynolds numbers
and higher AOA, as shown in Figures 11 to 17.

In all cases, the Standard 𝑘-𝜀 and the Standard 𝑘-𝜔models
predicted the largest drag coefficients. Similar predictions
were found for the SST 𝑘-𝜔 and the RS Low-Re S-𝜔 models;
both models perform poorly at lower Reynolds numbers
and when stall conditions were considered. All Reynolds
stressmodels overpredicted the experimental drag coefficient
values with the RS Low-Re S-𝜔 predicting the lowest drag
values among the three different models. Both the RS LP-S
and the RS QP-S predicted similar drag values at all Reynolds
numbers and AOA. XFOIL comes out best, quite accurately
predicting the drag for all the considered inflow conditions.

3.3.4. Discussion of the Drag Coefficient Predictions by Differ-
ent Fluid Flow Models. In prestall conditions, the friction-
based drag is the dominant component of the total drag
force; thus any increase in the magnitude of the wall shear
stresses will significantly affect the total drag force. Figure 9
shows the drag components predicted by one full-turbulence
model (the RS LP-S) and two Transition-based models (the
Transition SST and XFOIL) at a Reynolds number of 3𝑒6.
The friction-based drag prediction of the RS LP-S model
is significantly larger when compared to the other models’
predictions at any given AOA. This is because the RS LP-
S model predicts a fully turbulent BL around the airfoil,
similarly to other full-turbulence models. Therefore, the
overprediction of the prestall drag force by the different full-
turbulence models can be attributed to the modeled small-
scale turbulence found near the surface of the airfoil (i.e.,
the airfoil’s full-turbulent BL), which produces larger wall
shear stresses and therefore larger values of the skin friction
coefficient (𝐶

𝑓
), as shown in Figure 25. As described in [1, 27],

it is well known that free-stream turbulence increases the
total drag force and in some cases doubles the drag force
compared to laminar cases. Therefore, in prestall conditions,
Transition-based models do a better job in predicting drag
because they consider a laminar inflow condition, predict
a laminar-to-turbulent flow transition, and solve the flow
as turbulent in the airfoil’s downstream vicinity and in the
resultant wake. From Figure 9, it can be observed that impor-
tant discrepancies between XFOIL and the Transition SST
model predictions of the laminar-to-turbulent flow transition
occur only at prestall conditions, which in turn result in
the observed discrepancy of both models for predicting
the same values of the friction-based drag. The Transition
SST model predicted a lower friction-based drag component
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Figure 18: Pressure coefficient distributions for a Re = 3𝑒6 and 𝛼 = 0∘.
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for a Re = 3𝑒6 and 𝛼 = 20∘.
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Figure 20: Pressure coefficient 𝐶
𝑃

for a Re = 9𝑒6 and 𝛼 = 20∘.

Figure 21: Contours of wind speed magnitude (m/s) for Re = 3𝑒6 and 𝛼 = 0∘.

(consequence of predicting a delayed laminar-to-turbulent
flow transition), resulting in a slight underprediction of the
drag coefficient at low AOA when compared with the XFOIL
predictions or the experimental measurements, as shown in
Figures 11 to 17.

As the Reynolds number increases, the laminar-to-
turbulent flow transition points at both the top and the
bottom surfaces of the airfoil move towards the leading edge,
as shown in Figure 8. However, as opposed to intuition,
the relocation of the laminar-to-turbulent flow transition

locations does not lead to larger prestall total drag coeffi-
cients. Figure 10 shows the evolution of the predicted drag
components by various models, while considering differ-
ent Reynolds numbers. It can be observed that both the
friction-based drag coefficient and the pressure-based drag
coefficient decreased as the Reynolds number increased and
hence the total drag coefficient decreased. This fact can be
understood since the rate of increase of the net drag force
was lower compared to the rate of increase of the free-stream
dynamic pressure at different Reynolds numbers.Moreover,
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Figure 22: Contours of turbulent kinetic energy (m2/s2) for Re = 3𝑒6 and 𝛼 = 0∘.

Figure 23: Contours of wind speed magnitude (m/s) for Re = 3𝑒6 and 𝛼 = 20∘.

the observed reduction of the pressure-based drag was also
a consequence of the modeled turbulence, which prevented
the formation of adverse pressure gradients in prestall condi-
tions.The predictions of the pressure-based drag at low AOA
were similar among all the different models.

The discrepancies observed in prestall conditions
between the Transition-based models’ predictions and
the experimental measurements, as the Reynolds number
increased, were due to the modeling of the pressure-based
drag, which was heavily influenced by the AOA and the
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Figure 24: Contours of turbulent kinetic energy (m2/s2) for Re = 3𝑒6 and 𝛼 = 20∘.
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Figure 25: NACA 4412 skin friction coefficient (𝐶
𝑓

) for Re = 3𝑒6.
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modeled turbulence effects, as shown in Figure 10 and
as discussed in detail in Section 3.4. Equivalently, the
differences between the full-turbulence models’ predictions
of the prestall drag were due to the modeling of the pressure-
based drag, since almost no changes in the friction-based
drag values were found when varying the AOA, as shown in
Figures 9 and 10.

When stall conditions were reached, the pressure-based
drag coefficient became the dominant component of the total
drag coefficient (e.g., see Figure 9) and the friction-based
drag coefficient decreased due to the flow detachment condi-
tions. Thus, the growth rate of the total drag force increased
dramatically in stall conditions. As it can be observed from
Figures 11 to 17, the drag discrepancies between the full-
turbulence models’ predictions and the experimental mea-
surements increased more rapidly when the AOA increased,
as compared to the discrepancies observed between the
Transition-based models and the experimental measure-
ments. This fact implies that the drag force is very sensitive
to the modeled turbulence effects. Therefore, under stall
conditions, the laminar-to-turbulent flow transition becomes
less relevant and the proper modeling of the turbulent effects
and the flow detachment/reattachment conditions becomes
crucial in the prediction of the total drag force.

The large discrepancies of the drag coefficient predictions
by the different full-turbulence models, observed at large
AOA, depended on the modeled medium-to-large-scale tur-
bulence, which induced larger values of the pressure-based
drag (𝐶

𝐷𝑝
), which in turn produced a premature flow detach-

ment, as discussed in detail in Section 3.4. Moreover, their
predictions were influenced by the lift force overprediction
described above, which created an induced drag component
(or lift-induced drag 𝐶

𝐷𝑖
), consequence of the modification

on the pressure distribution around the airfoil due to the
trailing vortex system that accompanies the lift generation.

Based on the findings presented before, the common
modeling pitfalls are related to the inadequate modeling
of the laminar-to-turbulent flow transition, the turbulent
effects, and the flow detachment conditions. Moreover, there
appears to be no current methodology that yields accurate
results for both aerodynamic forces for any given inflow con-
dition. On the one hand, the turbulence modeling approach
(with the RSM LP-S model as the top performer) is capable
of predicting the experimental lift force with reasonable
accuracy but tends to overpredict drag force, as the flow
is considered turbulent in the entire spatial domain. On
the other hand, Transition-based models (as exemplified by
XFOIL or the Transition SST model) are able to accurately
predict the experimental drag characteristics but tend to
overpredict lift forces. The main difference between the
RANS-based full-turbulence models and the RANS-based
Reynolds stress models is the way in which Reynolds stresses
are approximated (e.g., the Boussinesq isotropic eddy vis-
cosity assumption is considered in most 𝑘-𝜀-based models
[32]). Moreover, the difference between the Reynolds stress
models is the way they model the pressure-strain term in
the equations for the transport of the Reynolds stresses
(𝜌𝑢
𝑖

𝑢


𝑗

), which models transport due to pressure and the

mean turbulent strain rate interactions [24]. Since the best
lift force predictions were achieved by the RS LP-S model in
contrast with the predictions of both the RS QP-S and the
RS Low-Re S-𝜔 models, it can be inferred that the pressure-
strain term plays an important role in the prediction of lift
coefficient in stall conditions.

In order to enhance the level of understanding of the
effects that the modeled turbulence produces on the airfoil
aerodynamics, the next section contrasts the main flow
variables solved within the airfoil’s vicinity.

3.4. Main Differences between the Flow Models’ Predictions.
In order to understand what mechanisms are driving the
modeling procedures, a comparison of the main variables
solved (i.e., the local flow speed, the pressure coefficient
distributions, and the turbulent variables) was conducted.
The test cases used for such comparison are (1) an airflow at
a Re = 3𝑒6 and 𝛼 = 0∘ and (2) an airflow at a Re = 3𝑒6 and 𝛼
= 20∘. Based on the observed agreements and disagreements
with the experimental measurements, the contrasted models
were XFOIL, the Standard 𝑘-𝜔, the SST 𝑘-𝜔, the Transition
SST, and the RS LP-S models.

3.4.1. Test Case 1 (Re = 3𝑒6 and 𝛼 = 0∘). The first test case
was reasonably well predicted by all models in terms of
the lift coefficient. In this case, XFOIL and the Transition
SST model slightly overpredict the lift coefficient while the
RS LP-S slightly underpredicts it. The best lift coefficient
prediction is given by the Standard 𝑘-𝜔 and the SST 𝑘-𝜔
models.The drag coefficient is accurately predicted by XFOIL
and the Transition SST models. The worst drag predictions
are given by the Standard 𝑘-𝜔 and the RS LP-S models (e.g.,
see Figure 15).

As expected, the predicted pressure coefficient profiles
along the airfoil’s surface are very similar among all the
considered models and are similar to the experimental
measurements, as shown in Figure 18. In this case, both
XFOIL and the Transition SST model underpredict the
pressure coefficient at all chord positions at the top surface
and conversely at the bottom surface. This is consistent
with the already noted lift coefficient overprediction. The
transition point predicted by XFOIL differs slightly from
the one predicted by the Transition SST model, as noted
in Figures 8 and 9, where XFOIL predicts the transition
point sooner than the Transition SST model. The pressure
coefficient shape profiles for both the Standard 𝑘-𝜔 and the
SST 𝑘-𝜔 models are almost identical. At the top surface and
in most of the bottom surface, the best performer model is
the RS LP-S. The disagreement between the full-turbulence
models’ predictions and the experimental measurements is
mostly observed within the range 0 ≤ 𝑥/𝑐 ≤ 0.40 at the
top surface and is understood given that the experimental
flow was laminar in that section. An increased agreement
between the full-turbulence models’ predictions and the
experimental measurements is observed after 𝑥/𝑐 ≈ 0.40,
as the experimental flow became turbulent. Furthermore, an
increased agreement between all the flowmodels’ predictions
and the experimental measurements is observed at both
surfaces close to the trailing edge of the airfoil.
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3.4.2. Test Case 2 (Re = 3𝑒6 and 𝛼 = 20∘). The second test case
is challenging to solve because it considers a stall condition.
The best lift force predictors are the RS LP-S and the Standard
𝑘-𝜔 models; however, they overpredict the drag force when
comparedwith the remaining flowmodels’ predictions. From
Figure 19, it can be observed that the predictions of the pres-
sure coefficient distribution along the top surface of the airfoil
are substantially different between flowmodels. Interestingly,
the pressure coefficient distributions from XFOIL and the
Transition SST turbulence model are very similar in both
surfaces. However, XFOIL and the Transition SST models
overpredicted the absolute value of the pressure coefficient
at most of the airfoil’s top surface. This is consistent with
the fact that both models predicted similar values for the
lift and drag coefficients, as shown in Figures 9 and 15. It
is conspicuous that the Standard 𝑘-𝜔 model predicted large
values of the pressure coefficient (i.e., lower absolute values
of the pressure coefficient) along the leading edge of the
airfoil, which led to the already observed discrepancy in the
predicted aerodynamic forces, as shown in Figures 10 and 15.
The overprediction of the pressure coefficient by the Standard
𝑘-𝜔 model increased with increasing Reynolds number, as
shown in Figure 20, which presents the resultant pressure
coefficient distributions for the case of simulating an airflow
at a Re = 9𝑒6 and at an 𝛼 = 20∘. This behavior was also found
in the predictions of the Standard 𝑘-𝜀 and NRG 𝑘-𝜀 models.
The best performer turbulence model is, again, the RS LP-S
showing the best agreement with the experimental pressure
coefficient distributions.

3.4.3. Discussion of the Pressure Coefficient Predictions by
Different Flow Models. The pressure coefficient and the lift
coefficient overprediction of XFOIL has been noted pre-
viously [40, 54] and it is attributed to (1) the inadequate
prediction of the local flow speed within the laminar section,
close to the airfoil surface, and (2) the lacking ability of XFOIL
to simulate the turbulent BL development, rotational effects,
and the proper flow attachment/detachment conditions.
Equivalently, the Transition SSTmodel typically overpredicts
the local flow speed at the airfoil’s top surface, close to leading
edge, compared to other models that predict more accurate
aerodynamics (e.g., see Figures 21 and 23).

The overprediction of the pressure coefficient (or the
underprediction of the absolute value of the pressure coef-
ficient) by full-turbulence models (e.g., Standard 𝑘-𝜔) is a
direct consequence of the modeled turbulent forces found
near the leading edge of the airfoil, as shown in Figures
22 and 24 which illustrate the contours of turbulent kinetic
energy, which in turn are limited to the range of values
found for the same situation but considering the RS LP-
S model (i.e., the uncolored zones represent zones where
the magnitude of the turbulent kinetic energy is larger or
lower than the maximum or minimum values found for the
same situation but considering the RS LP-S model).The large
turbulent kinetic energy and the large turbulent viscosity
(not shown) predicted by the Standard 𝑘-𝜔model within the
airfoil’s vicinity produce an enhanced transversal diffusion of
momentum, mostly noted at the upper surface of the airfoil,
resulting in both a substantial reduction of the flow speed

magnitude and an affectation of the resultant flow direction,
as shown in Figures 21 and 23, when compared to the RS
LP-S, SST 𝑘-𝜔, and the Transition SST models’ results. The
induced disturbances on the wind field, product of the large
modeled turbulent forces, lead to premature flow detachment
conditions, thus producing thicker and larger wakes and pro-
moting the prediction of large values of pressure-based drag
coefficient. This is observed phenomenon is consistent with
the already studied drag predictions of each full-turbulence
model, as shown in Figure 10. Therefore, the prediction
large pressure-based drag coefficient values by most full-
turbulence models, with the exception of the Transition
models, can be partially attributed to the large modeled
turbulent forces, which produced premature flowdetachment
conditions. Nonetheless, proper premature flow detachment
conditions are required for the adequate prediction of the lift
reduction that accompanies the stall regime, which is well
described by the RS LP-S model.

The prediction of large turbulent forces within the airfoil’s
vicinity is mostly observed when employing turbulence
models that are based on the Boussinesq isotropic eddy
viscosity hypothesis [55]. Nonetheless, this modeling issue
does not affect the predictions of the Reynolds stress-based
models as they solve additional transport equations for the
six independent Reynolds stresses and the eddy viscosity
isotropic assumption is avoided, thus denoting the main
reason why the turbulent forces are better described by the
Reynolds Stress-based models compared to the Standard 𝑘-𝜀
or the Standard 𝑘-𝜔models.

In order to improve the level of understanding of the
already noted drag coefficient overpredictions, an illustration
of the skin friction coefficient (𝐶

𝑓
) is shown in Figure 25. It is

worth noting that in the frontal top and bottom surfaces of the
airfoil the skin friction coefficient is larger when considering
full-turbulence models. As previously discussed, these larger
values are expected since the airfoil’s BL is turbulent. Both
XFOIL and the Transition SST models predicted lower
values of the skin friction coefficient since the flow was
laminar in that section. When the laminar-to-turbulent flow
transition occurred, the computed 𝐶

𝑓
increased and became

comparable to the predicted 𝐶
𝑓
values by full-turbulence

models. Interestingly, there is reasonable agreement between
the predictions of XFOIL, the Transition SST, and the RS LP-S
models of the𝐶

𝑓
at the airfoil’s top surface. It can be observed

that the skin friction coefficient tends to decay rapidly at the
top forward half of the airfoil surface, when considering the
case 𝛼 = 20∘. The observed reduction is attributed to a flow
detachment condition. Interestingly, as already discussed,
full-turbulence models predict total flow detachment sooner
than XFOIL or the Transition SST models, the Standard 𝑘-
𝜔 being the one that predicts more turbulent kinetic energy
in the airfoil’s vicinity and the one that predicts total flow
detachment sooner. Equivalent to𝐶

𝑓
, the friction-based drag

tends decay due to the flow detachment experienced at larger
AOA, as previously shown in Figure 9.

Figure 26 shows the magnitude and the shape profile of
the solved independent superficial Reynolds stresses, con-
sidering the RS LP-S model. In 2D cases, four independent
stresses are solved, corresponding to the normal stresses
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Figure 26: Computed airfoil’s surface Reynolds stresses from the RS LP-S model.

𝑢
𝑖
𝑢
𝑖
and the off-diagonal Reynolds stresses 𝑢

𝑖
𝑢
𝑗
. It should

be noted from this figure that the normal stresses are, in
magnitude, more important than the off-diagonal Reynolds
stresses at both surfaces of the airfoil and for both studied
cases. However, the off-diagonal Reynolds stress cannot be
neglected. For both test cases (𝛼 = 0∘ and 𝛼 = 20∘) the
superficial Reynolds stresses tend to decay rapidly towards
the tip of the airfoil, with the exception of the tip zone
at the airfoil’s bottom surface for the 𝛼 = 20∘ case, where
the formation of vortexes takes place. Furthermore, the
Reynolds stresses shape profiles are significantly affected by
flow detachment conditions, as noted from the case 𝛼 =
20∘. It was observed that the magnitude of all the Reynolds
stresses decayed rapidly in the near wake as a result of the
turbulent dissipation rate found in such zone. Finally, as
mentioned before, themodeling of such independent stresses
is important to get accurate predictions of the lift coefficient
in the stall regime, thus denoting the importance ofmodeling
anisotropic turbulent flows during the airfoil aerodynamics
prediction.

4. Conclusions and Future Research

This work presented a comprehensive assessment of the
accuracy of thirteen state-of-the-art fluid flowmodels applied
to the problem of predicting aerodynamic forces on two-
dimensional airfoils. The primary aims of the work were
to (1) extend previous literature conclusions by considering
additional flowmodels and a wide range of inflow conditions,
(2) identify the best performermodels and their keymodeling

features, (3) study the effects of different free parameters
on the simulations’ outcomes, (4) provide a complete set of
physical interpretations based on validated computational
results, and (5) provide recommendations for future work
regarding the modeling of two-dimensional airfoil aerody-
namics.The specific improvements achieved during the work
development are summarized next.

(i) One of themain concerns in previous literature works
results is related to the quality of the numerical solu-
tions. During the development of the present com-
putational assessment, it was possible to achieve an
adequate numerical convergence, while considering
any of the tested turbulence models and even while
considering stall conditions. This was possible due to
the proper setup of the computational experiments,
which considered model-tailored spatial domain dis-
cretizations. In this regard, extensive guidelines of the
procedures and calculations were provided to allow
the reader to replicate them in different scenarios.
Furthermore, additional recommendations, based on
a boundary topology analysis and on a set of grid-
independence tests, were given with the aim of
improving the quality and the computational effi-
ciency of the solution process. Through the extensive
study of the effects of different free parameters, it
was possible to spare computational resources with-
out compromising the modeling accuracy. The grid-
independence tests revealed that at least 120,000 ele-
ments, with their corresponding refinements towards
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the airfoil’s surface, are required to simulate stable
airfoil aerodynamics at large Reynolds numbers and
at large AOA. Moreover, among the most relevant
strategies for improved numerical convergence, it
was found that the use of finite volume-based solu-
tion methods incorporating preconditioned systems,
together with the proper variation of the under-
relaxation factors and the Courant number values,
was crucial to significantly speed up the numerical
convergence process.

(ii) Contradictory findings were distinguished in the lit-
erature with regard to which models, or combination
of models, are the most effective in terms of solution
quality and computational efficiency while predicting
two-dimensional airfoil aerodynamics. Through the
development and validation of a variety of compu-
tational experiments that encompassed a wide range
of inflow conditions, the best modeling approaches
were objectively identified. However, it was found
that the prediction of aerodynamic forces considering
laminar inflow conditions is complex and there is
still no methodology that by itself provides accurate
predictions of both the lift and the drag forces. On the
one hand, the turbulence modeling approach (with
the RSM LP-S model as the top performer) was able
to predict lift forces that agreed with the experimental
results, even when stall conditions were considered,
but drag forces were substantially overpredicted. By
assuming a free-stream turbulent inflow condition,
it was demonstrated that the frictional (or viscous)
component of the drag was larger in the frontal zone
of the airfoil, since the airfoil’s BL was turbulent, as
opposed to the partially laminar BL layer found in the
experimental measurements. In addition, premature
flow detachment conditions were observed when
considering free-stream turbulent inflow conditions
in contrast with considering free-stream laminar
inflow conditions, which were modeled with the
aid of XFOIL and the Transition SST models. The
premature flow detachment conditions predicted by
full-turbulence models were a consequence of the
large turbulent forces predicted at the leading edge of
the airfoil, which produced a substantial modification
of the local flow speed magnitude and its direction
within the airfoil’s vicinity, which in turn produced
larger values of the pressure-based drag due to the
induced adverse pressure gradients. It was observed
that as the magnitude of the turbulent kinetic energy
found close to the airfoil’s surface increased the abso-
lute value of the pressure coefficient decreased. This
modeled effect increased the drag force predictions
discrepancy between the full-turbulence models pre-
dictions and the experimental results. On the other
hand, XFOIL and theTransition SST turbulencemod-
els predicted near identical drag forces as compared to
the literature results but overpredicted lift forces even
in prestall conditions. This is because both XFOIL
and the Transition SST models predicted large flow

speed magnitudes within the airfoil’s vicinity, thus
affecting the prediction of the pressure coefficient at
all chord positions. The overprediction of the flow
speed magnitude by XFOIL is believed to be due its
lacking ability to properly simulate turbulent BLs,
rotational effects, and flow detachment conditions.
Furthermore, the overprediction of the flow speed
magnitude by the Transition SST model is related
to the prediction of the laminar-to-turbulent flow
transition in the outer layers of the BL (i.e., not
only close to the airfoil’s surface). Important differ-
ences were found when contrasting the laminar-to-
turbulent flow transition predictions of XFOIL and
the Transition SST models in prestall conditions.

(iii) The worst performance was observed when full-
turbulence models based on the Boussinesq isotropic
eddy viscosity hypothesis were employed, which
include all the 𝑘-𝜀-based models, as they were unable
to model a Reynolds number dependence while
predicting both aerodynamic coefficients. Moreover,
they predicted the largest drag coefficients, which
differed with the literature results at all AOA and
Reynolds numbers. For these full-turbulence models,
large values of the turbulent kinetic energy and the
turbulent viscosity were found in the airfoil’s vicinity,
which led to a greatly underpredicted absolute value
of the pressure coefficient.

(iv) During the computational assessment, it was found
that significant variations in all the model’s predic-
tions occur by not explicitly modeling the inner
layers of the airfoil’s BL. The proper modeling of the
complete airfoil’s BL leads to the accurate estimation
of wall shear stresses and flow detachment condi-
tions, which are required to match the experimen-
tal results. The modeling of anisotropic turbulence
employing RANS-based approaches complemented
with Reynolds stress turbulence models, considering
a linear pressure-strain term in the equations for the
transport of the Reynolds stresses, was crucial to
obtain accurate predictions of the lift coefficient in
the stall regime since the prediction of flow detach-
ment conditions is heavily influenced by the modeled
turbulent diffusion of momentum across the airfoil’s
vicinity. However, detailed experimental studies on
flow detachment/reattachment and its relation with
the pressure-based drag coefficient and the free-
stream turbulence intensity are required in order to
improve the lift predictions in the stall regime.

Based on the validated computational results, the most
important modeling pitfalls, which still provide room for
improvement and define fertile areas of inquiry, as well as
the main research needs, were identified and are presented
in summary form.

(i) Since the performance of the RS LP-S and the
Transition-based models for predicting lift and drag
forces was good, respectively, coupling the Transition
𝛾 − R̃e

𝜃𝑡
model with the RS LP-S model could result
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in a model capable of predicting accurate airfoil
aerodynamics when considering laminar/transitional
inflow conditions.

(ii) Important differences in the laminar-to-turbulent
flow transition prediction were found when con-
trasting the outputs of XFOIL and the outputs of
the Transition SST model. A recalibration of the
Transition SST model constants could enhance the
performance of the model while predicting prestall
aerodynamics at different Reynolds numbers.

(iii) One important unaddressed question is related to
quantification of the effects that different free-stream
turbulent conditions have on the prediction of aero-
dynamic forces (i.e., the determination of the effects
of varying the inlet turbulence intensity and the
eddy length scale on the aerodynamic predictions),
while considering different inflow conditions (e.g.,
different Reynolds numbers and AOA). In many real
applications (e.g., aircrafts flying within the earth’s
BL, automobiles or wake-affectedwind turbines, etc.),
free-stream turbulent conditions are experienced and
their aerodynamics should be studied assuming fully
turbulent conditions, while considering different tur-
bulence intensities and eddy length scales. In order to
validate the outputs of the cases that considered free-
stream turbulent inflow conditions, it is required to
performwind tunnel tests over the NACA 4412 airfoil
considering free-stream turbulent flows containing
different levels of turbulent intensity. Such experi-
mental information is not available in the literature.

(iv) Other relevant cases to be studied are (1) the computa-
tion of the two-dimensional airfoil aerodynamics up
to 0∘ ≤ 𝛼 < 360

∘, (2) assessment of the ability of
different turbulence models for predicting transonic
and supersonic aerodynamics, (3) assessment of the
accuracy of advanced techniques based on LES and
different subgrid-scale models for the prediction of
two-dimensional airfoil aerodynamics, (4) evaluation
of the ability of the Transition-based models for
predicting airfoil aerodynamics at very low Reynolds
numbers (e.g., the prediction of laminar separation
bubbles), and (5) assessment of the net effects the
superficial roughness produces on the lift and drag
forces prediction.

Although RANS-based and FANS-based approaches are
often used for comparison purposes during the development
of alternative flow models, it is clear that these approaches
still exhibit deficiencies while predicting two-dimensional
airfoil aerodynamics. The findings of this work, together
with the provided physical interpretations, are believed to
be useful and can be considered as a building block for the
development of alternative flow models.

Nomenclature

𝐴
𝑓
: Cell face area (m2)

𝑐: Airfoil chord (m)

𝐶
𝐷
: Drag coefficient (—)

𝐶
𝐷𝑓
: Friction-based drag coefficient (—)

𝐶
𝐷𝑝
: Pressure-based drag coefficient (—)

𝐶
𝑓
: Skin friction coefficient (—)

𝐶
𝐿
: Lift coefficient (—)

𝐶
𝑃
: Pressure coefficient (—)

𝑁Crit: Critical amplification factor for the 𝑒𝑛
transition prediction method (—)

𝑃: Pressure (kPa)
Re: Reynolds number [—]
𝑇: Temperature (K)
TI: Turbulence intensity (%)
𝑢


𝑖

𝑢


𝑗

: Reynolds stress (m2/s2)
𝑢
∗: Friction velocity (m/s)

]: Local kinematic viscosity (m2/s)
V: Velocity (m/s)
𝑉: Cell volume (m3)
𝑥: Axial distance from the airfoil leading edge (m)
𝑥
𝑇

tr: Normalized transition point at the top surface
of the airfoil (—)

𝑥
𝐵

tr: Normalized transition point at the bottom
surface of the airfoil (—)

𝑦: Distance to the nearest wall (m)
𝑦
+: Dimensionless wall distance (—)
𝛼: Angle of attack (∘)
𝜇: Dynamic viscosity (kg/m-s)
𝜌: Fluid density (kg/m3)
𝜌Airf: Airfoil density (kg/m3)
𝜏: Shear stress (Pa)
Δ𝐶
𝐷
: Difference of absolute drag coefficient (—)

Δ𝐶
𝐿
: Difference of absolute lift coefficient (—)

Δ𝑡: Time step (s).
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Using parallel computation can enhance the performance of numerical simulation of electromagnetic radiation and get great
runtime reduction. We simulate the electromagnetic radiation calculation based on the multicore CPU and GPU Parallel
Architecture Clusters by usingMPI-OpenMP andMPI-CUDA hybrid parallel algorithm.This is an effective solution comparing to
the traditional finite-difference time-domainmethodwhich has a shortage in the calculation of the electromagnetic radiation on the
problem of inadequate large data space and time. What is more, we use regional segmentation, subregional data communications,
consolidation, and other methods to improve procedures nested parallelism and finally verify the correctness of the calculation
results. Studying these two hybrid models of parallel algorithms run on the high-performance cluster computer, we draw the
conclusion that both models are suitable for large-scale numerical calculations, and MPI-CUDA hybrid model can achieve higher
speedup.

1. Introduction

Finite-difference time-domain (FDTD) method has become
a common method for solving Maxwell’s equations [1]. It
is a full vector method and can be naturally given time-
domain and frequency-domain information user need. This
is the unique advantage in electromagnetic and photonic
application. FDTD algorithm is discrete in terms of time and
space. Therefore, the structure of the electromagnetic field
must be described on the grid by theYee cellular composition.
Maxwell’s equation is discrete in time factor; therefore, time
step is closely related to the mesh size. When mesh size
tends to zero in the limit case, the discrete model accurately
describes Maxwell’s equations.

Recently, general-purpose computing on a graphics pro-
cessing unit (GPGPU) has received considerable attention
in many scientific fields [2–4] because a GPGPU offers high
computational performance at low cost. What is more, Intel
Xeon Phi coprocessor, based on the Many Integrated Core
(MIC) architecture, packs up to 1 TFLOP of double precision
performance in one chip. It runs a Linux operations system
and provides x86 compatibility and also supports several
popular programming models including MPI, OpenMP,

Thread Building Blocks, and others that are used on multi-
core architectures. High-performance computer architecture
tends to hybrid system, and this corresponds to the software
program design requirements mixed programming model.
GPGPU andMIC accelerated computing components which
appeared in recent years provide the opportunity to improve
the performance of FDTD parallel algorithm. Therefore, we
achieved the parallel three-dimensional FDTD algorithm
based MPI-CUDA model.

The FDTD algorithm obtains a wide range of appli-
cations in many fields of electromagnetic radiation, such
as radiation antenna analysis, scattering calculations, elec-
tronic packaging, and radar. With the development of high-
performance computing, the MPI has solved a weakness that
the computing time of the FDTD parallel algorithm [5, 6]
is too long. However, increasing amount of computation,
the MPI process in a single node increases computational
burden. When we use two different hybrid models which are
MPI-OpenMP model and MPI-CUDA model to solve this
problem, we can use the distributed shared memory features
to improve the parallel speedup and scalability [7, 8].

The rest of the paper is organized as follow. We present
the FDTD algorithm with uniaxial perfectly matched layer
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Figure 1: The structure of Yee cell.

(UPML) in Section 2. Then we describe the procedure and
present basic steps for the method acceleration by means
of MPI-OpenMP paradigms and MPI-CUDA paradigms in
Sections 3 and 4. In Section 5, the performance of parallel
computing of the two methods was compared and analyzed
the factor that affects performance.The conclusions are given
in Section 6 finally.

2. FDTD Algorithm

FDTD algorithm is a numerical method based on Maxwell’s
equations. The algorithm uses leapfrog calculation method
and alternating electric field and magnetic field distribution
in space within a half step sampling by Yee cellular composi-
tion [9].

From Figure 1, we can see that the Yee cell has the
following characteristics: eachmagnetic field component was
surrounded by four electric field components and each elec-
tric field component was surrounded by the four components
of the magnetic field, and these field components placement
relative position in the Yee cell and automatically satisfy the
continuity conditions in the interface. This sampling method
not onlymeetsMaxwell’s equations difference calculation but
alsomeets Faraday’s law of electromagnetic induction and the
natural Ampere’s law [10]. Therefore, this method gradually
completes recursive entire electromagnetic fields. First, the
explicit equations for the 𝐸

𝑥
and𝐻

𝑥
are given by

𝐸
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End of the calculation

Calculate all the H value at the time

Calculate all the E value at the time

t2 = t1 + Δt/2

t1 = t0 = nΔt

t1 = t2 + Δt/2

T > Tmax?

E value was to initialized at the time

Figure 2: The workflow of the FDTD method.
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where

𝐶𝐴 (𝑖, 𝑗, 𝑘) =
(1 − 𝜎 (𝑖, 𝑗, 𝑘) Δ𝑡/2𝜀 (𝑖, 𝑗, 𝑘))

(1 + 𝜎 (𝑖, 𝑗, 𝑘) Δ𝑡/2𝜀 (𝑖, 𝑗, 𝑘))
;

𝐶𝐵 (𝑖, 𝑗, 𝑘) =
𝜀
0

𝜀 (𝑖, 𝑗, 𝑘)
+
𝜎 (𝑖, 𝑗, 𝑘) Δ𝑡

2𝜀 (𝑖, 𝑗, 𝑘)
;

𝐶𝐷 =
Δ𝑡

𝛿√𝜀0𝜇0

,

(3)

where 𝜀 is the relative permittivity, 𝜎 is the conductivity of
the tissue [S/m], 𝛿 is the mesh size, and Δ𝑡 is the time step.
Figure 2 shows the workflow of the FDTD method.

The explicitly iterative process of FDTD algorithm
requires initial field values and boundary conditions. The
traditional definition of initial field values put all the space
field values which are defined as 0, then the field values of two
successive time steps are stored as the initial field value of the
next step.There are a variety of the boundary conditions, such
as Mur absorbing boundary, perfectly matched layer (PML),
and uniaxial perfectly matched layer [11] (UMPL). With the
improvement of FDTD algorithm these threematching layers
have good effect on absorption.
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In our experiments, we use uniaxial perfectly matched
layer (UPML) as absorbing boundary condition. UPML
inherited the PML absorbing layers good absorption charac-
teristics, but the UPML absorbing layer is directly based on
Maxwell’s equations which is different from PML absorbing
layer. This ensures that the form of FDTD algorithm calcu-
lation model has good consistency with Maxwell’s equations,
which makes it easier to understand and program.

3. FDTD Algorithm Based on MPI-OpenMP

3.1. MPI-OpenMP Hybrid Model. MPI programming model
is a parallel programming interface for developing standards
based messaging, acting on a heterogeneous network envi-
ronment. It provides a reliable transport mechanism, and it
uses security channel to achieve the communication between
all the tasks within a process group, data exchange and pro-
cessing. However, MPI is calculated by parallel interprocess
communication, which results in a lower efficiency, the par-
allel memory overhead, programming problems, and other
shortcomings. The OpenMP programming model utilizes
fork-join execution mode and shared memory model where
a process can be divided into several parallel task execution
threads. In a single node, when the main thread is running
into OpenMP parallel region, it will produce different thread
queue to achieve a parallel effect. However, since OpenMP
parallel programming model can only be a single node,
computing power of the CPU has been greatly restricted.

MPI-OpenMP programming model is the combination
of these two models, which is between multiple machines
using MPI distributed memory and each MPI process uses
multithreaded OpenMP shared memory model to parallel
computing [12]. This model can reduce the number of
MPI processes in parallel, thereby reducing the number of
messages passing. What is more, OpenMP parallel on each
node can save memory overhead. So this parallel hybrid
model has certain advantage over a single model.

3.2. The Division of MPI Model. According to the different
regional calculation scale, each division way has different
characteristics. Common area includes one-dimensional,
two-dimensional, and three-dimensional division. In the
cube model, each section of the communication direction
is all the sane, which means that the communication traffic
is proportionate to the number of communication surfaces.
Three-dimensional method produces the minimal commu-
nication surface. Therefore, we should select the three-
dimensional division in the balanced scales calculating. But
when the area which you calculated is dominant in one
direction or in both directions, the communication traffic is
not proportional to the number of communication surfaces.
The one-dimensional or two-dimensional division can get
better results. For example, long waveguide will be divided
one-dimensional along the waveguide direction. In addition
wing aircraft is usually divided two-dimensional alone its
width direction.

In this paper, the computational model which is similar
to the phone box is an extreme rectangular model. We

Figure 3: The division of rectangular computational model.
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Figure 4: Data communication between processes.

performed a one-dimensional division by the meshing and
each process is assigned to one node on average to obtain high
efficiency. This division can be reduced communication time
between nodes in the rectangular model (Figure 3).

3.3. MPI Parallel Communication Design. As shown in (1),
FDTD field value for each step of the algorithm depends only
on the value ofmagnetic field intensity and the circumference
value of the grid, which means that it has significantly
localized. Therefore, MPI algorithm just calculates the area
into a plurality of subregions, and each subregion is allocated
MPI node in themesh to ensure the exchange data in the each
time step. Finally, we synchronize data of each node at end of
the step. In order to obtain high efficiency of parallel speedup,
we partition the process by𝑋 direction and put the processes
average assigned to each node. This partitioning can reduce
the communication between nodes time in the 𝑋 direction
dominant of the rectangular parallelepiped model.

After the calculate area is divided into a number of
subregions. The data communication is shown in Figure 4.
If we want to calculate 𝐻

𝑧
which is in process II, we should

require the value of electric fields 𝐸
𝑥
and 𝐸

𝑦
which is in

process I. Then process I transfers the values to process II.
𝐻
𝑧
can begin calculating when data exchange is completed.

Obviously, the data in the other direction can communicate
with each other in this way.

3.4. OpenMPThreadedDesign andOptimization. Theelectric
field andmagnetic field strength only depends on the electro-
magnetic field data of the former step in the electromagnetic
computing. Therefore, it has the natural parallelism. In the
multicore computing, the program uses OpenMP model to
increase program parallelism.

For better memory utilization, the load balancing may
not be very good; therefore, when considering performance
optimization, we should have a compromise between the
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#pragma omp parallel for schedule(static)
for (𝑖 = 1; 𝑖 < 𝑖𝑒 tot; 𝑖++)
for (𝑗 = 0; 𝑗 < 𝑗𝑒 tot; 𝑗++)
for (𝑘 = 0; 𝑘 < 𝑘𝑒 tot; 𝑘++)
⋅ ⋅ ⋅

In order to increase OpenMP load balance and get better scalability, we merge
the nested loops and reduce from 3 nest layers to 2 layers.

end = 𝑗𝑒 tot;
𝑖𝑗 end = (𝑖𝑒 tot) ∗ (𝑗𝑒 tot);
𝑖𝑗 start = 𝑗 end + 1;
#pragma omp parallel for schedule(static)
for (𝑖𝑗 = 𝑖𝑗 start; 𝑖𝑗 < 𝑖𝑗 end; 𝑖𝑗++)
{

𝑖 = 𝑖𝑗/𝑗 end;
𝑗 = 𝑖𝑗;
if (!𝑖) continue;
for (𝑘 = 0; 𝑘 < 𝑘𝑒 tot; 𝑘++)
⋅ ⋅ ⋅

}

Algorithm 1

need to optimize memory utilization and load balancing.
In OpenMP model, there are four kinds of commonly used
scheduling, such as static, dynamic, guided, and runtime.
The commonly used scheduling is static where iterations
are divided into chunks of size chunk size while chunks are
assigned to threads in the team in round-robin fashion in
order of thread number and dynamic where each thread
executes a chunk of iterations and then requests another
chunk until no chunks remain to be distributed.

From the definitions of the schedule, we can see that static
scheduling applies to the situation that all CPU functions
are similar due to the complexity of balancing reasons, while
the dynamic scheduling applies to the situation of the ability
to run large differences between the CPUs. Due to the
experimental environment that each CPU computing power
is not very different, we use static scheduling so that each
thread can average computing tasks [13] (see Algorithm 1).

Its obvious that 𝑥, 𝑦, and 𝑧 directions have similar
calculation.

3.5.MPI-OpenMPHybrid Programming. With the increasing
scale of operation, the shared storage processor overhead
of process limits parallel performance. We can solve this
problem by OpenMP and MPI hybrid model where each
node is calculated by MPI processes and each node uses the
optimal number of threads.Thus the amount of computation
is shared by multiple threads, thereby reducing communica-
tion overhead and easing the process workload on each node.

When FDTD algorithm based on MPI-OpenMP model
allocates a process for each compute node, each node is
assigned a process. PassingMPI initialization and calculation
parameters initialization, the process starts OpenMP par-
allel computing. In this phase, the program should update
cycle electric field value and the electric field value with
adjacent nodes exchanges the date. After the communication
is completed, CPUs use OpenMP programming model to

update the value of the magnetic field. When the programs
achieve themaximum time step, MPI processes and themain
procedures will end. As for the border absorption treatment,
process calculation is carried out in a single process in every
time step.Therefore, it can also improve program parallelism
through OpenMP model.

The pseudocode is as shown in Algorithm 2.

4. MPI + GPU Programming Model Design

4.1. FDTD Parallel Algorithm Based on GPUModel. FDTD is
the most popular method of computational electromagnetic
simulation because of its simple algorithm and high com-
putational efficiency. Figure 5 shows the flow of the three-
dimensional FDTD method for a single GPU computation
[14]. There are four tasks within each time step for the
GPU side in this figure: electric field computation (𝑒 field),
uniaxial perfectly matched layers (UPML) computation for
electric field (𝑒 upml) as the absorbing boundary condition,
magnetic field computation (ℎ field), and PML for magnetic
field (ℎ upml). All field updates in each time step can be
parallelized and are offloaded to the GPU [15].

Our GPU implementation of the FDTD method is based
on the C++ code that runs on the ZiQiang4000 high-
performance computer clusters of Shanghai University. Since
all the magnetic and electric field computations can be vec-
tored and parallelized, these computations are also candidates
for GPU computation with a CUDA kernel. The CUDA
kernel including 𝑒 field, 𝑒 pml, ℎ field, and ℎ pml follows.
And our GPU three-dimensional FDTD program requires
no data transfer for field updates because of all computations
within each time. The CUDA kernel function [16] would be
in Algorithm 3.

4.2. The Optimized Memory of Access Patterns. The kernel
code which can be called by the GPU has role similar to
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MPI Init(&argc, &argv); //MPI parallel environment initialization
MPI Comm rank(MPI COMM WORLD, &rank);
MPI Comm size(MPI COMM WORLD, &size);
MPI Get processor name(processor name, &namelen);
MPI Barrier(MPI COMM WORLD);
node.init(𝑥 size/size, 𝑦 szie, 𝑧 size); //Grid data initialization
UPMLcompute(); //Set up the absorbing boundary
for (int 𝑖 = 0; 𝑖 <max step; 𝑖++) //Iterating over the time step
{

#pragma omp parallel for schedule(static)
for (𝑖 = 1; 𝑖 < 𝑖𝑒 tot; 𝑖++)
{

. . .Compute; //Calculating the electric field and magnetic field values
}

MPI Send(datasend right, data size, MPI DOUBLE, NodeRank + 1, 1,
MPI COMM WORLD); //Send data to the neighboring node
MPI Recv(datarecv right, data size, MPI DOUBLE, NodeRank + 1, 1, MPI COMM WORLD,

&status); //Accept the adjacent node data
MPI Barrier(MPI COMM WORLD);
}

MPI Finalize();
Out(EHdate); //Output the results

Algorithm 2

Initialization

Processing

Data

Data

No

Yes

Host Device

Compute E

E_upml

Compute H

H_upml

T > Tmax

Figure 5:Theworkflow of the three-dimensional FDTDmethod for
a single GPU computation.

caluH C function. The kernel variable threadIdx, blockIdx,
and blockDim can calculate the array indexes 𝑖𝑥, 𝑖𝑦, and 𝑖𝑧.
Host-side code then uses caluH⋘grid, block⋙ (arguments)
function to call the kernel code, where grid and block specify
the division of thread blocks and the number of threads in the
each block.

As the internal memory of GPU, registers and shared
memory have a high access speed and a small data latency.
Therefore, the data is loaded into the global memory so that
shared memory can improve the efficiency of GPU parallel.
Consider

shared double new ℎ𝑥[];
new ℎ𝑥 [ℎ𝑥 size] = ℎ𝑥 [ℎ𝑥 size].

Thefirst line of code is carried in the sharedmemory array
definition. Since the shared memory space is very limited,
programmer should choose dynamically allocated arrays or
static allocation based on the data size.The second line was to
load the data into the global memory shared memory which
can increasememory access speed by data sharing.Obviously,
other data should also do the same optimization.

4.3. MPI-CUDA Hybrid Programming. In the MPI program-
mingmodel, a problemwill be divided intomultiple subtasks
so that each process to execute a task. But with the growth of
the scale,MPI communication overhead increases at the same
time; thereby this will reduce the parallel efficiency. However,
the model is just coarse-grained parallelism between the
nodes, and computing capacity of CPU is not fully utilized.
Then the CUDA model is just to make up the deficiency
of this section. The use of multithreaded shared memory
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global void caluH(arguments)
{

𝑖𝑥 = threadIdx.𝑥 + blockIdx.𝑥 ∗ blockDim.𝑥;
𝑖𝑦 = threadIdx.𝑦 + blockIdx.𝑦 ∗ blockDim.𝑦;
𝑖𝑧 = threadIdx.𝑧 + blockIdx.𝑧 ∗ blockDim.𝑧;
if (𝑖𝑥 < 𝑒𝑥 size && 𝑖𝑦 < 𝑒𝑦 size && 𝑖𝑧 < 𝑒𝑧 size)
{

int 𝑖 = 𝑖𝑥 ∗ 𝑒𝑧 size ∗ 𝑒𝑦 size + 𝑖𝑦 ∗ 𝑒𝑧 size + 𝑖𝑧;
double tmp = 𝑏𝑥[𝑖];
𝑏𝑥[𝑖] =𝐷1 ∗ 𝑏𝑥[𝑖] −𝐷2 ∗ (( 𝑒𝑧[𝑖 + 𝑒𝑧 size] − 𝑒𝑧[𝑖]) − ( 𝑒𝑦[𝑖 + 1] − 𝑒𝑦[𝑖]))/delta;
ℎ𝑥[𝑖] =𝐷3 ∗ ℎ𝑥[𝑖] +𝐷4 ∗ (𝐷5 ∗ 𝑏𝑥[𝑖] −𝐷6 ∗ tmp)

}

}

The host:
dim3 block(BlockDim[0], BlockDim[1], BlockDim[2]);
Grid[0] = 𝑛𝑥/blockDim[0];
Grid[1] = 𝑛𝑦/blockDim[1];
Grid[2] = 𝑛𝑧/blockDim[2];
dim3 grid (Grid[0], Grid[1], Grid[2]);
caluH <<<grid, block>>> (arguments);

Algorithm 3

mechanism on the GPU achieves data sharing fine-grained
parallelism, which can achieve higher speedup [17].

In order to reduce the computational load of the GPU, we
use a single node in a multi-GPU programming model [18],
which means that each process is calculated by calling the
function cudaSetDevice() to get two GPUs in a single node.

Workflow of three-dimensional FDTD program based
MPI-CUDA model is as follows.

(1) Initialize calculation parameter GPU and MPI envi-
ronment.

(2) Divide the regional calculation and allocate GPU
memory and copy initial data to GPU.

(3) Time step for-loop Use MPI model.

(a) execute electric field computation on GPU
(b) execute magnetic field computation on GPU.

(5) Process output results.

5. Experiments and Analysis

5.1. Experimental Environment. ZiQiang4000 normal cluster
is constituted of 40-unit IBM X240 server blade, which
contains two intel E5-2680, 64G shared memory, and 16
core components in each blade. The GPU computing cluster
node contains 11 sets of IBM DX360, which has two intel
E5-2680, 64G shared memory, and plus two Nvidia M2090
GPU constitution. The software environment of the system
includes Centos Linux 6.3 operating system, NVCC compiler
supports OpenMP guided C/C++ compiler, and MPICH2
parallel environment.

5.2. Model Validation and Analysis. Verifying the correctness
of parallel programs is a prerequisite for its performance
analysis. In order to verify the correctness of the program

Table 1: The result of FDTD algorithm based on MPI.

Process Overall
time(s)

Speedup
ratio

Communication
area (×103)

Efficiency
(%)

1 17146 1 0 100
2 8956 1.9144 32 95.72
4 4632 3.7012 99 92.59
8 2306 7.4353 230 92.9
16 1188 14.4327 482 90.21
32 623 27.5217 1017 86.01
48 422 40.6303 1540 84.64
64 338 50.7221 2066 79.25

and UMPL absorbing boundary absorption effect, this paper
makes use of three-dimensional point source radiation to
have a situation analysis. we compared the run time between
GPUs and CPUs in the case of Gaussian incidence at
900MHz. What is more, the grid size is 0.02mm and the
calculation scale is of 100×100×100.We useUPMLabsorbing
layer which is set to 10-mesh size and themaximum time step
1000. Figure 6 shows the 50 layers and 65 layers of XY section
of the electric field strength calculations at the 1000 steps. As
we can see in the figure, electromagnetic waves shape was
diffusion, and the further the cross-sectional layer of electric
field away from the excitation source, the smaller the value
you get. The excitation source is at the center of the field map
and gradually spreads to the electromagnetic field borders,
which fits the propagation of electromagnetic waves.

5.3. Parallel Analysis. In order to obtain intuitive results, we
expand the calculated scale to 1024 × 256 × 128, and the
absorbing boundary UMPL mesh size is set to 16. The results
were as follows after 1000 steps calculation using MPI model.

Table 1 shows the result of point source radiation cal-
culation time based on the MPI model, such as speedup
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Figure 6: The electric field strength calculations of sectional 𝑥-𝑦 at 1000 steps.
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Figure 7: GPU/CPU speed ratio.

and efficiency of the communication area. In this paper, we
performed 16 processes on each node. It can be seen from
the table that, as the number of processes increases, the
computing time significantly reduced for linear speedup. And
the electromagnetic radiation program has good scalability
and parallelism in a distributed process parallel environ-
ment. But with the increase in the number of processes,
the parallel efficiency becomes more and more low. This is
because the increase in the number of processes leading to
the communication area is increasing. It will increase the
communication overhead and cause the load between nodes
to be not balanced.

From Figure 7, we can see that, when calculating small
scale, the acceleration effect of GPU is not obvious. This is

due to the number of threads too little to create enough
block to make SM concurrent execution, reducing GPU
occupancy rate. With the increasing of the calculation size,
GPU computing resources gradually are called and the speed
of computation is improved. Therefore, when calculating a
smaller scale, GPU speed increase is limited, and in the large-
scale electromagnetic calculations, GPU-accelerated effects
model is very impressive, which is reaching about 9 times
the CPU. After optimizing memory access patterns by shared
storage, the max speed ratio achieves 23 when the number of
grids is 6 × 106. The reason is segmentation of data blocks fit
in GPU memory.

MPI-OpenMP hybrid programming model combines
two kinds of models, which can take advantage of shared
memory and message passing model and improve FDTD
algorithm parallelism. FDTD program is mainly calculated
by the parameter initialization, the time step, absorbing
boundary calculated, updating the electric field, and data
processing. However, over 98% of the total time is conducted
in two stages which are absorbed electromagnetic boundaries
update phase and calculating electromagnetic fields. We can
utilize OpenMP programming model to improve program
parallelism at this two stages. In this paper, each node
runs two processes, and the number of parallel threads is
8. Similarly, MPI-CUDA models use shared memory and
message passing mechanism to calculate the electric field
value performed on the GPU. Each block is divided into
16 × 16 × 16, and the calculation results are shown in Table 2.

From Columns 2 and 3 of Table 2, it can be seen that
pure MPI program is better than MPI-OpenMP model
when the calculating cores is small. This is because MPI
communication is very small when the number of processes
is small, and OpenMP program will be a corresponding
increase in the thread overhead. But with the increase of the
number of the GPUs, the growth rate of MPI model will
decline as MPI process communication and synchronization
overhead increases, while MPI-OpenMP program obtains
a better parallelism for saving offset cost of the thread.
By comparing the two parallel methods, we can see MPI
application performance superior to MPI-OpenMP program
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Table 2: The result of FDTD algorithm based on all models.

Process MPI model MPI-OpenMP model MPI-CUDA model
Overall time(s) Speedup ratio Overall time(s) Speedup ratio Overall time(s) Speedup ratio

1 17146 1 17146 1 803 21.3524
4 4632 3.7012 4697 3.6504 217 79.0138
8 2306 7.4353 2376 7.2163 109 157.3028
16 1188 14.4327 1210 14.1702 79 217.0378
32 623 27.5217 615 27.8797 68 252.1471
48 422 40.6303 407 42.7581 61 281.082
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Figure 8: The result of FDTD algorithm based on two hybrid
models.

when calculating the cores is less than 32. But with the
increase in the number of cores, the advantage of MPI-
OpenMP program will gradually be revealed and get better
speedup.

From Columns 2 and 4 of Table 2, it can be seen that
pure MPI-CUDA program is better than pure MPI model,
and it has a linear increase when the number of processes is
small. But with the increase in the number of processes, the
efficiency of the program decreased very significantly. MPI
communication overhead is increased in the proportion of
the total time. As the overall calculation region is divided into
a plurality of subregions, the size of each process significantly
reduced to GPU parallel efficiency. We can find that the
speedup of MPI-CUDA programming model is about 20
times the pure MPI program, which effectively improved the
parallelism of the program.

Figure 8 shows the result of FDTD algorithm based on
two hybrid models. Due to the GPU’s high-speed floating-
point operations, MPI-CUDA parallel model clearly has a
better effect. However, this model is limited by memory
and is device-dependent. MPI-OpenMP program can save
communication costs and have better scalability. These two
kinds of parallel models are suitable for mass-scale elec-
tromagnetic calculations which conform the actual electro-
magnetic calculations. Therefore, the programmer should be

selected by different hybrid models according to the different
circumstances.

6. Conclusions

With the development of high-performance computing,
the new technology provides a better use of space for
FDTD algorithm. The various parallel models make hybrid
programming model become the mainstream of high-
performance computing. In this study, we implemented
the three-dimensional FDTD method by MPI-OpenMP
model. What is more, we also implemented FDTD method
on multi-GPU cluster environment with CUDA and MPI
and fulfilled the simulation of three-dimensional numerical
electromagnetic radiation. The results indicate that hybrid
programming model can better take advantage of distributed
shared memory in order to improve parallel performance.
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Airport congestion, in particular congestion of departure aircraft, has already been discussed by other researches. Most solutions,
though, fail to account for uncertainties. Since it is difficult to remove uncertainties of the operations in the real world, a strategy
should be developed assuming such uncertainties exist. Therefore, this research develops a fast-time stochastic simulation model
used to validate various methods in order to decrease airport congestion level under existing uncertainties. The surface movement
data is analyzed first, and the uncertainty level is obtained. Next, based on the result of data analysis, the stochastic simulation
model is developed.Themodel is validated statistically and the characteristics of airport operation under existing uncertainties are
investigated.

1. Introduction

Airport ground congestions are becoming a critical problem
at many airports in the world. Since the bottleneck of airport
operations exists on the runway, there are longwaiting queues
of aircraft both on the ground taxiway and in the air, which
increase the fuel burn and emissions. Arrival aircraft are
often considered in research targeting airport congestions
decrease because any additional flight time obviously requires
extra fuel. Even if not so apparent, departure aircraft burn
sufficient amount of fuel during taxiing, too, so departure
queue management can help to reduce fuel burn. Although
there are some researches regarding the taxi-out time saving
of the departure aircraft [1–5], these researches focus on taxi-
out time saving and do not investigate its negative effect.
One such possible negative effect caused by departure queue
management is take-off delay.

The main reason for increased taxi-out time is that many
departure aircraft wait in a queue before the runway due to
runway congestion, so taxi-out time reduction is achieved by
shifting the pushback time later intentionally. If the aircraft
waits in the spot instead of waiting in a queue near the
runway, the aircraft can turn its engines off and therefore

save fuel. However, if this shift is too large, the aircraft
cannot take off at the expected time. If all airport operations
were estimated without errors, the reduction of taxi-out time
would be maximized without imposing any take-off time
delay, but this is impossible due to various uncertainties. Even
if large margins are set to absorb uncertainties, the expected
delay will be close to 0, but not definitely 0. Besides, setting of
a largemargin leads to decrease the reduction of taxi-out time
as well. Therefore, to evaluate uncertainty effects, stochastic
simulation model is necessary. The main focus of this paper
is the development of such a stochastic simulation model.

There are numerous airport simulation models proposed
by many researchers already. However, this paper focuses
on a stochastic model, which should also be appropriate
to run a simulation fast enough. Most existing simulation
models account for detailed aircraft movement but are also
deterministic and slow, thus not suitable for the purpose of
this paper [6–13]. Although some airport models consider
uncertainty effect, such as the variance of taxiing speed or
the take-off separation [14, 15], there are few researches con-
sidering uncertainties. In addition, uncertainty parameters
are usually obtained via actual airport operation data, but
only specific parameters are used in the simulation, and
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no stochastic simulation model has been verified whether
it accurately models the airport operation. For example,
even when the variation of taxiing speed is assumed, the
model does not estimate the take-off time well unless the
model handles variation of take-off separation.Therefore, this
paper aims at developing a sufficiently accurate stochastic
airport simulation model to account for the uncertainty
effect. The stochastic parameters are obtained based on the
actual operation data in each phase of the aircraft movement,
and, using these parameters, the taxi-out of each departure
aircraft is simulated. The simulated take-off time is then
compared to the actual take-off time. Using the developed
simulationmodel, the characteristics of the airport operation
are also investigated, and the importance of the uncertainty
is revealed.

2. Stochastic Airport Simulation Model at
Tokyo International Airport

Tokyo International Airport is the target airport of this
research. First, the airport operation is briefly explained in
Section 2.1, and a stochastic simulation model is developed.
To conduct sufficient number of simulations to account
for uncertainty effects, a single simulation run time should
be short enough, so the model itself should be simplified.
Error distribution models for stochastic components are
introduced in Section 2.2, and taxi-out time of departure
aircraft and taxi-in time of arrival aircraft are stochastically
modeled in Section 2.3. Additional simulation constraints
are explained in Section 2.4, and the take-off separation is
stochastically modeled in Section 2.5. Finally, the simulation
flow is shown and the model limitations are described in
Section 2.6.

2.1. Tokyo International Airport and Its Runway Operation.
Tokyo International Airport is the busiest airport in Japan
and is mostly used for domestic flights. In 2010, the traffic
volume was 303,000 flights per year and increases to 447,000
flights per year in 2014 with the opening of the new runway.
Figure 1 shows the airport map and typical operation under
north wind. There are four runways at the airport. A runway
is used for arrival and D runway is used for departure, but
C runway is shared by both departure and arrival aircraft.
Due to the runway location, aircraft departing fromDrunway
cannot take off while a landing aircraft is approaching C
runway. B runway is usually not used under north wind.

In order to model taxiing correctly, knowledge of the
procedures preceding take-off is necessary. The air traffic
control (ATC) flow of departure aircraft is summarized in
Figure 2. First, about 5 minutes before the aircraft is ready
for starting the engines, the pilot calls clearance delivery.
If the flight plan is approved, the pilot will get a departure
clearance from ATC. When the aircraft is ready for block-
off, the pilot requests pushback to ATC. Once the pilot gets
pushback approval, the aircraft starts pushback. During or
after the pushback, the pilot requests taxiing to the runway.
If the taxiing is approved and the aircraft is ready for taxiing,
the aircraft will start taxiing. When the aircraft approaches

the runway, the pilot requests runway clearance. Only after
the runway clearance is approved, the aircraft can take off.

Here, several variables are defined. The time when the
pilot starts pushback is AOBT (actual off-block time), and
actual take-off time is defined as ATOT. The difference
between ATOT and AOBT is defined as AXOT (actual taxi-
out time). Airport operation is not completely deterministic,
and there are probabilistic factors. Therefore, considering
certain uncertainty, AXOT is determined probabilistically in
the simulation. The distribution of AXOT is examined in
Section 2.3.

As for arrival aircraft, the aircraft lands at ALDT (actual
landing time). After landing, the aircraft go taxiing to the spot
and block in at AIBT (actual in-block time). The duration
of taxiing (AIBT-ALDT) is defined as AXIT (actual taxi-in
time).

This time, the data used to determine the simulation
parameters in this research are obtained based on the
smoothened airport surface movement data for 20 days
between 2012 and 2014 (called Day 1 to Day 20), when north
wind operation was conducted throughout a day.

2.2. Error Distribution Model. To consider the error factor,
several error distributionmodels are applied. In this research,
normal distribution and Erlang distribution are used. Nor-
mal distribution, also known as Gaussian distribution, is a
symmetric distribution. Detailed explanation is not given
here, but it has two parameters: average 𝜇 and standard
deviation (SD) 𝜎. The probability density function of normal
distribution is given by the following equation:

𝑁(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
exp(−
(𝑥 − 𝜇)

2

2𝜎2
) . (1)

Furthermore, to account for error’s asymmetry, Erlang
distribution is also introduced.This distribution is asymmet-
ric and is defined only when 𝑥 is greater than 0.This function
is often used in the field of stochastic processes. There are
two parameters: average 𝜇 and shape 𝑛 (positive integer).The
probability density function of Erlang distribution is given
by the following equation. This distribution approaches the
normal distribution as 𝑛 increases:

𝐸 (𝑥; 𝜇, 𝑛) =
𝑛
𝑛
𝑥
𝑛−1
𝑒
−𝑛𝑥/𝜇

𝜇𝑛 (𝑛 − 1)!
(𝑥 > 0) . (2)

2.3. Distribution of Taxi-Out Time (AXOT) and Taxi-In
Time (AXIT). Taxi-out time is defined as the time between
pushback start and take-off. To determine the taxi-out time,
it is divided into several stages, and the duration of each
stage is determined. Figure 3 shows the taxi-out flow. First,
the aircraft has to complete pushback, defined as “pushback
time” (Δ𝑡pushback). Next, the aircraft has to be released from
the pushback truck and prepare for taxiing, defined as
“preparation time” (Δ𝑡prepare). Then, the aircraft goes taxiing
to the runway, defined as “taxiing time.” If there is a queue
before the runway, the aircraft will need to wait extra. The
minimum time which an aircraft needs to cover the distance
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Figure 3: Taxi-out flow.

between its spot and the runway even when no congestion is
observed is defined as “minimum taxiing time” (Δ𝑡taxi). The
difference between total taxiing time and minimum taxiing
time is defined as “additional waiting time” (Δ𝑡wait). Finally,
taxi-out time (AXOT) is calculated by the following equation.
Each time is estimated based on the data available:

AXOT = Δ𝑡pushback + Δ𝑡prepare + Δ𝑡taxi + Δ𝑡wait. (3)

Here, some variables are defined. PTOT (earliest possible
take-off time) is defined as the time when the aircraft is
ready for take-off assuming there is no congestion. PTOT is
calculated by the following equation:

PTOT = ATOT − Δ𝑡wait. (4)

PXOT (earliest possible taxi-out time) is also defined in
the same way by the following equation:

PXOT = AXOT − Δ𝑡wait = Δ𝑡pushback + Δ𝑡prepare + Δ𝑡taxi.
(5)

As for the pushback time (Δ𝑡pushback), it is expected to
depend on the pushback distance. The pushback distance
and thus the pushback time are usually determined by the
spot position. Another variable defined in this research is the
preparation time (Δ𝑡prepare). It includes the time for the pilot
to receive a taxiing clearance and the time needed to release
the pushback truck from the aircraft. This preparation time
is assumed to be the same in all situations, so the sum of the
pushback time and the preparation time (Δ𝑡pushback+Δ𝑡prepare)
is assumed to depend on the spot position, and this variable
(called setup time) is used for the data analysis. Figure 4
shows the average and standard deviation of setup time in
each spot position. As seen in the figure, the average of setup
time varies with spot position, but the standard deviation of
setup time does not change significantly with spot positions.
Therefore, the setup time is assumed to depend on the spot
position only. Here, the difference between the average setup
time and the actual setup time is denoted by the residual of
the setup time, and it is fitted by the combination of normal
distribution and Erlang distribution as shown in Figure 5.
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The probability density function of setup time is calculated
by the following function:

0.0959𝑁 (Δ𝑡pushback + Δ𝑡prepare − 𝑡setup (spot) ; 46.07, 78.72)

+ 0.9041𝐸 (Δ𝑡pushback + Δ𝑡prepare − 𝑡setup (spot)

+ 117.0; 122.0, 13) ,

(6)

where 𝑡setup(spot) is the average setup time in each spot
obtained by data.

The next element needed to be defined in order to
determine the earliest possible taxi-out time is the taxiing
time (Δ𝑡taxi). The taxiing time is basically related to taxiing
distance, so it is modeled with the parameter of the taxiing
distance. Of course, the taxiing time varies with each pilot,
and some aircraft go faster taxiing while others go slower. In
addition, if two aircraft are conflicted along the taxiing route,
additional taxiing time is required. Here, these effects are
included in uncertainty. When obtaining the data of taxiing
time, only the value of the sum of taxiing time and waiting
time (Δ𝑡taxi + Δ𝑡wait) is available, because the data of start
taxiing time and take-off time is obtained based on the surface
movement data. Here, only the data where the aircraft goes
taxiing smoothly and is not stuck in the waiting queue are
used to calculate the taxiing time, because the waiting time is
assumed to be zero for such aircraft.

Figure 6 shows the relationship between taxiing distance
and taxiing time for noncongested aircraft departing from D
runway. Note that the red points indicate the aircraft whose
spot is at the international terminal. The figure shows that
there is a correlation between taxiing distance and taxiing
time, and the residual tends to increase with the taxiing dis-
tance. Therefore, the distribution of the normalized residual
(residual per 1 km taxiing distance) is fitted by an Erlang
distribution. In addition, the aircraft from the international
terminal tends to have longer taxiing time, but that is because
these aircraft have to cross A runway along the taxiing route
and often wait due to passing landing aircraft. Therefore, it
is assumed that these aircraft require additional taxiing time.
Finally, the probability density function of taxiing time is
calculated based on the following equations:

C RWY: 𝐸(Δ𝑡taxi − 0.1090𝑑taxi − 68.03 − Δ𝑥;
37.3𝑑taxi
1000, 5
) ,

(7)

D RWY: 𝐸(Δ𝑡taxi − 0.1002𝑑taxi − 71.60 − Δ𝑥;
75.2𝑑taxi
1000, 30

) ,

(8)

Δ𝑥 = {
120, spot is in the international terminal.
0, otherwise.

(9)

Taxiing route and route structure differ between C and D
runways, so minimum taxiing time is calculated in a different
manner. Once the spot position and the departure runway are
determined, the taxiing distance and time are easily obtained.

Table 1: Prohibited departure time relative to the landing time on C
runway.

Prohibited start Prohibited end
Departure from C runway −65 s +85 s
Departure from D runway −80 s +0 s

As for the arrival aircraft, the result of RWY C is well fitted,
so the taxiing time is calculated based on (7).

Finally, the additional waiting time (Δ𝑡wait) is considered.
The additional waiting time is caused by the waiting queue at
the runway, so it is strongly affected by take-off separation.
Since only one aircraft can use the runway at the same time,
a minimum separation (called take-off separation) is set. The
take-off is usually operated based on first-come-first-served
policy. If many aircraft come to the runway at the same
time, a departure queue is made and the aircraft has to wait
before the runway. In addition, the departure and arrival
traffic are mutually dependent due to the arrangement of the
runways at this airport, so the runway interaction should
also be considered. The runway interaction is explained
in Section 2.4. The take-off separation is affected by many
parameters, so it is explained in Section 2.5.

As for taxi-in time of arrival aircraft, the arrival aircraft
only goes taxiing to the spot. If the spot is not occupied by
other aircraft, the aircraft can block in.Therefore, uncertainty
is found only in the taxiing phase. As mentioned before,
the distribution of taxiing of arrival aircraft almost follows
the one of departure aircraft on C runway, so (7) is used to
estimate the taxiing time from the runway to the spot. The
spot occupancy problem is described in Section 2.4.

2.4. Constraints at the Airport. In Section 2.3, the normal
operation of departure and arrival aircraft was explained.
However, there aremany constraints at the airport, such as (1)
take-off separation, (2)mutual interaction between runways,
(3) the spot occupancy problem, and (4) conflict of two
aircraft on the taxiway.The run time of the simulation should
be small, so this time only the constraints (1), (2), and (3) are
considered, and the constraint (4) is not explicitly considered
and is assumed to be included in “uncertainty.”The constraint
(1) take-off separationwill be explained in Section 2.5, so here
the constraints (2) and (3) are explained.

As for mutual interaction between runways, as shown
in Figure 1, the runway interaction is observed between
take-off and landing aircraft on C runway and between
take-off aircraft on D runway and landing aircraft on C
runway. In addition, due to the departure and arrival route
structure, C runway traffic and D runway traffic are mutually
affected. However, this effect is complicated and its influence
is relatively small so it is not considered here. Considering
the runway operation, the landing time of arrival aircraft is
currently not controlled, and the take-off time is controlled
in accordance with the landing aircraft. Therefore, it is
reasonable that the “no take-off time” relative to the landing
time on C runway is set. According to the data analysis, the
following constraints are set as shown in Table 1.
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As for the spot occupancy problem, obviously a single
spot contains a single aircraft only. If the spot is already
occupied by another aircraft, the arrival aircraft cannot block
in until the aircraft leaves the spot, which is implemented in
the simulation. In addition, paths near the spots are often
shared among several spots, so arrival aircraft sometimes
cannot get into the spot during the pushback of departure
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Figure 6: Taxiing time versus taxiing distance of aircraft departing
from runway D.

aircraft from a nearby spot. Therefore, based on the surface
movement data, the conflict path of pushback and block-in
is investigated in each spot, and the conflict effect between
block-in path and pushback path is also implemented in the
simulation.

2.5. Distribution of Take-Off Separation. The take-off sepa-
ration is the key to determine the waiting time of departure
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Table 2: Average take-off separation in each combination of wake
turbulence category [s] (data size = 4144).

Preceding/following Heavy Medium
Heavy 99.92 106.06
Medium 90.28 91.31

aircraft. The take-off procedure is operated by a pilot, so the
take-off separation should include uncertainty effect. How-
ever, the take-off separation is also affected by the following
two factors: wake turbulence and weather condition.

As for the wake turbulence, ICAO determines the min-
imum take-off separation based on the aircraft size of
the current aircraft and the aircraft ahead [16]. There are
four categories of aircraft: super, heavy, medium, and light
(denoted by “S,” “H,” “M,” and “L”). Note that super and
light aircraft are not operated at Tokyo International Airport,
so only heavy and medium aircraft are considered in this
research.

Table 2 shows the average take-off separation in each
combination of wake turbulence category. Note that the
standard deviation of take-off separation is about 20 s for each
category. This table shows that the take-off separation differs
by the wake turbulence category, and it is reflected in the
calculation. The take-off separation between M-H and M-M
is almost the same, so it is treated as the same value (90.75 s).
From now, the take-off separation of “M-H” and “M-M” is
treated as the nominal take-off separation, and the separation
of “H-H” and “H-M” is reduced by the difference of the aver-
age to fit the nominal separation. The uncertainty of take-off
separation is assumed to be the same for all wake turbulence
categories.

Regarding weather conditions, it is said that wind and
visibility affect the take-off separation. According to the
data analysis, only visibility statistically affects the take-off
separation, and here only the visibility effect is explained.The
visibility information is provided by METAR (METeological
Airport Report) usually every thirty minutes. If the visibility
is more than 10 km, it is recorded as 9999m. Figure 7 shows
the relationship between the visibility and take-off separation
(wake turbulence effect is already considered). Note that 80%
of data is obtained when the visibility is more than 10 km, so
low visibility data is relatively less. As shown in the figure,
the take-off separation increases with smaller visibility, but
it jumps up around 4000m of visibility. Therefore, this is
modeled by sigmoid function and linear regression as shown
in the following expression:

95.64 − 0.0005356V +
7.235

1 + exp (0.0604 (V − 4000))
, (10)

where V is the visibility in m. When the visibility of 10 km is
treated as the nominal take-off separation, the separation data
of another visibility is reduced to fit the nominal separation.

Now, the nominal take-off separation is defined as the
data where the visibility is 10 km and “M-H” or “M-M” of
wake turbulence category is applied. Even if these effects are
considered, there is still a large residual, which is modeled
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by the combination of normal distribution and Erlang dis-
tribution. Figure 8 shows the distribution of obtained take-
off separation and probability density function of the fitted
distribution of the nominal take-off separation (𝑡sep nom) is
described by the following equation:

0.890𝐸 (𝑡sep nom − 13.56; 72.47, 30)

+ 0.110𝑁 (𝑡sep nom; 122.47, 30.03) .

(11)
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The take-off separation should include the wake turbu-
lence effect and visibility effect. Finally, the take-off separa-
tion (𝑡sep) is calculated in the following equation:

𝑡sep = 𝑡sep nom − 0.0005356V +
7.235

1 + exp (0.0604 (V − 4000))

+ 5.35 + Δ𝑡wake,

Δ𝑡wake =
{{

{{

{

9.17, H-H
15.31, H-M
0, M-H or M-M.

(12)

2.6. Flow of the Simulation and Limitations of the Simulation
Model. In order to conduct a simulation, initial conditions
must be specified. As for the departure aircraft, once AOBT
is obtained, the PTOT can be calculated considering the
uncertainty explained before. In the simulation, each depar-
ture aircraft is assumed to come to the runway at PTOT,
and ATOT is decided based on the runway status and first-
come-first-served basis. For arrival aircraft, once ALDT is
obtained, AIBT is obtained based on (7) and taxiway status.
The flow of the calculation of each variable is summarized in
Figure 9.

In order to simulate the actual airport operation, AOBT
and ALDT are set the same as the data obtained on each
day. Furthermore, the spot position, the taxiing distance,
the wake turbulence category, and the departure/arrival
runway of each aircraft are also set based on each day’s
data. These data are called each day’s scenario data. This
scenario data includes each day’s traffic volume and the
distribution of traffic. Even if the traffic volume is the same,
the congestion level at the airport might differ between days.
By using the scenario data, the daily fluctuation can also be
investigated.

In order to appropriately evaluate the results, the limita-
tions of the simulationmodel should be carefully considered.
First, this model does not take into account the conflict
on taxiway between aircraft in any areas apart from the
spot areas. It is assumed that the additional taxiing time
by the conflict includes uncertainty. Second, in the real
world, there are cases when the runway operation does not
necessarily follow the first-come-first-served basis. The air
traffic controllers are in charge of the operations, so the
take-off sequence is sometimes changed. In addition, EDCT

(expected departure clearance time) is sometimes set to
the departure aircraft. This is the take-off time restriction
due to the congestion in airspace or destination airport,
and the aircraft cannot take off before EDCT, which is
not considered in the simulation. EDCT also changes the
departure sequence. Finally, nonstandard operation might
be included in the data. It is confirmed in advance that the
data do not include the long runway close, but short runway
close might be included in data, which is difficult to exclude.
Considering these limitations, the simulation accuracy will
be evaluated.

3. Verification of Proposed Simulation
Model and Daily Data Analysis

3.1. Characteristics of Daily Data. Before evaluating the
simulation model, the characteristics of the daily traffic are
investigated first. The proposed simulation model is to be
used to evaluate uncertainty effect, especially important in
congestions, so the model performance in such cases is of
the utmost importance. Therefore, first, the congestion level
throughout a day at the airport is investigated.

When the airport is not congested, the take-off is operated
smoothly; that is, the waiting time of take-off aircraft is zero.
Therefore, the congestion level at the airport closely relates
to the waiting time of take-off aircraft. To investigate the
actual congestion level at the airport, the actual waiting time
of take-off aircraft is calculated. Since the actual waiting
time is difficult to obtain directly, it is estimated based on
the difference between AXOT and PXOT. AXOT can be
obtained directly from the data. PXOT can be estimated as
the nominal PXOT. PXOT is usually stochastically calculated
as explained in the last section, but the nominal PXOT can be
estimated if the uncertainty is assumed to be zero. Even if the
uncertainty is zero, the nominal PXOT includes the taxiing
distance effect and the spot position effect. In this way, the
waiting time is estimated for each aircraft, and this waiting
time based on actual data is called estimated waiting time.
Figure 10 shows the estimated waiting time of each aircraft
throughout a day onDay 1.Thewaiting time is not distributed
evenly throughout a day, because the traffic volume in each
time range differs. Some data include negative waiting time,
which occurs because the estimatedwaiting time is calculated
based on the estimated PXOT. Now, the time is split into
three hours each, and the congestion is considered in each
time range. The traffic volume and scheduled traffic distri-
bution are almost the same within the time range between
days, so the waiting time can be compared in each time
range.

Figure 11 shows the total estimated waiting time in each
time range on each day. Table 3 shows the average of esti-
mated total waiting time for 20 days and the average number
of departure and arrival aircraft. According to the figure and
the table, the largest total waiting time is observed at PM6–
PM9, and the smallest waiting time is observed at PM3–
PM6, but the daily fluctuation is also large. On the other
hand, both departure and arrival traffic are the largest at
AM9–AM12. Although more traffic potentially causes longer
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Figure 10: Estimated waiting time on Day 1 (ordered by actual take-off sequence).

Table 3: Average estimated waiting time and traffic volume in each time range for 20 days.

Time range Estimated waiting time [minutes] Number of departure aircraft Number of arrival aircraft
AM6–AM9 174.5 105.5 44.0
AM9–AM12 178.3 105.8 104.4
AM12–PM3 158.3 99.6 98.8
PM3–PM6 133.4 93.8 102.1
PM6–PM9 281.9 98.4 104.2
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Figure 11: Total estimated waiting time in each time range on each
day.

waiting time, there seems to be other factors as well. The
waiting time increases if the runway waiting queue gets
longer. The length of the runway queue is heavily affected
by the traffic concentration. If many aircraft approach the
runway at the same time, the runway queue becomes long and
therefore the waiting time gets long and vice versa. Actually,
at PM6–PM9, the departure traffic is not evenly distributed
for these 3 hours, and it is concentrated between PM7 and
PM8 and the waiting time is also long.Therefore, the effect of
the traffic concentration seems to bemore important than the
traffic volume itself. Each day’s scenario fixes AOBT, which

includes the actual distribution of off-block time, so the traffic
concentration effect can also be evaluated in the simulation.

In addition, the take-off separation can also affect the total
waiting time. According to Figure 7 and (11), the visibility
affects the take-off separation. When the take-off separation
is large, large total waiting time is expected. In Figure 11,
the cases where the visibility is less than 5000m are shown
separately. When the visibility is less than 5000m, large
total waiting time is observed at all times. However, the
cases where the large total waiting time is observed are not
necessarily on a low visibility day. The visibility, that is, the
take-off separation, is an important factor, but it is not the
only one.

3.2. Validation of the Proposed Simulation Model. Next, the
proposed simulationmodel is evaluated.Themodel considers
the uncertainty effect, so it should be evaluated by a sufficient
number of simulation runs.This time, 10,000 runs of simula-
tions are conducted and the result is discussed. The program
is made by C++ language and run with Intel Core i7-3770.
It takes about 20 s to complete 10,000 runs of simulation on
each day, and it is sufficiently fast to evaluate the uncertainty
effect.

When evaluating the simulation model, it is important to
decide what is expected in the simulation model. The main
purpose of the simulationmodel is to evaluate the uncertainty
effect, and the modeling of the congestion phenomena is the
most important. On the other hand, the runway operation
is assumed to follow the first-come-first-served basis, so
the take-off time of individual aircraft (i.e., waiting time of
individual aircraft) might not be necessarily well modeled.
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Here, the total waiting time and the take-off time of each
aircraft are used as an index of the simulation accuracy.

First, the total waiting time is discussed. Figure 12 shows
the distribution of the total waiting time on Day 1 PM6–
PM9 based on 10,000 times of simulation. The estimated
waiting time based on the actual data is 316.5 minutes,
and the peak of the distribution by the simulation and the
estimated waiting time almost match. The estimated waiting
time corresponds to 47.49 percentile of the distribution.
However, only this result by itself does not indicate that the
proposed simulation model works well. The actual operation
can be considered a single sample set of simulations. If so, it
is expected that the actual operation is the same as one of the
simulations. To evaluate it, the percentile of the waiting time
is used. If the uncertainty of the simulation is underestimated,
the percentile will be observed often around 0 and 100.
If the uncertainty is overestimated, the percentile will be
observed often around 50.Therefore, if the uncertainty of the
simulation is well modeled, the percentile of the estimated

Table 4: Statistical tests results.

𝑃 value
KS test AD test

AM6–AM9 0.8247 0.8443
AM9–PM12 0.2684 0.1409
PM12–PM3 0.7513 0.6186
PM3–PM6 0.4026 0.0693
PM6–PM9 0.3282 0.5481
All 0.8211 0.4698

waiting time should be uniformly distributed between 0 and
100. As shown in Figure 11, a whole day is split into 5 time
ranges for all 20 days; the percentile of the total estimated
waiting time of 100 data is obtained. To investigate that the
obtained percentile is evenly distributed, Q-Q plot is often
used. Q-Q plot is a probability plot, where one axis shows
the data quantile and the other axis shows the theoretical
quantile. If the actual data completely follow the theoretical
distribution, the plot is observed on the line “𝑦 = 𝑥.” Figure 13
shows the Q-Q plot of the total waiting time.

This figure shows that the theoretical quantile and data
quantile match very well, which infers that the uncertainty is
well modeled, and therefore the proposed simulation model
works well. The uniformity of the distribution is also exam-
ined via a statistical test.This time, Kolmogorov-Smirnov test
(KS test) [17] and Anderson-Darling test (AD test) [18] are
used. Both tests are statistical tests to verify whether a given
sample of data is made from a given probability distribution
(this time, uniform distribution). Both tests show a 𝑃 value,
which is the probability of a test result being at least as
extreme as the one that is actually obtained. A small 𝑃 value
means that the actual data is more extreme, and usually if the
𝑃 value is less than 0.05, it is concluded that the actual data
do not come from a given probability distribution. The main
difference betweenKS test andAD test is that AD test weights
much more on the tail probability. However, these tests are
usually done to reject the null hypothesis, that is, to prove
that the obtained data do not come from the given probability
distribution.Therefore, even if the𝑃 value is greater than 0.05,
it does not directly mean that the obtained data follow the
given probability distribution, but such a result leaves open
the probability that the obtained data do not come from the
given probability distribution.

The statistical test results are shown in Table 4. The
statistical test is also done with data of each time range only.
According to the result, the 𝑃 value of all data is much greater
than 0.05 for both tests, and no 𝑃 value being less than 0.05 is
observed for any time range.

Next, the take-off time is considered. The take-off time
in the simulation is also distributed, and the percentile of
the actual take-off time is obtained. However, as mentioned
before, the take-off sequence is not modeled in the sim-
ulation, so the percentile of the take-off time might not
be uniformly distributed. Figure 14 shows the Q-Q plot of
the take-off time of all aircraft for 20 days. In total, 10,226
departure aircraft data are used.
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Figure 14: Q-Q plot of take-off time.
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Figure 15: Total estimated waiting time and 95% range of total
simulated waiting time at PM6–PM9 on each day.

The data quantile slightly differs from the theoretical
quantile around the edge of the quantile. KS test is also
conducted, and the 𝑃 value here is 1.385𝐸 − 9, which
means that the actual percentile is not uniformly distributed.
However, as mentioned in the last section, this simulation
model does not include all effects of airport operation, and
it is expected that the percentile of take-off time is not
completely uniformly distributed. However, according to
Figure 14, the data quantile and theoretical quartile almost
match each other, and also considering the result of total
waiting time, it is concluded that the proposed simulation
model is sufficiently accurate as an airport-runway statistical
simulation model.

3.3. Uncertainty Effect Based on the Simulation. Since the
simulationmodel is developed successfully, several aspects of
uncertainty effects in airport operations are examined. The
congestion in a runway queue is observed every day, but the
congestion level changes every day. There are many possible
factors related to the total waiting time, such as the number
of departure aircraft, the initial condition (howmuch traffic is
concentrated on a specific time slot, here also called scenario
uncertainty), uncertainties of taxi-in, taxi-out, and take-off
separation (called traffic uncertainty), and meteorological

conditions. The effects of the number of departure aircraft
and meteorological conditions can be associated with each
day.The traffic uncertainty effect can be evaluatedwith a large
number of simulations under the same initial condition. The
scenario uncertainty can be investigated between days. It is
interesting to understand how much each factor affects the
congestion level.

First, the variation of the congestion within a day is
examined. An example is shown in Figure 12 on Day PM6–
PM9,which shows the distribution of total waiting time based
on 10,000 simulations. According to additional calculations,
the similar shape of distribution is obtained on other days
and other time ranges. This variation of the total waiting
time stems from traffic uncertainty effects. On this day, the
estimated total waiting time based on the actual data is
316.5 minutes, but the distribution of the total waiting time
between about 150 minutes and 600 minutes is observed.
Even between 2.5 percentile and 97.5 percentile, the total
waiting time varies between 211 and 472 minutes. This
infers that the congestion level changes more than twice
even if the scenario involves no uncertainty. In addition,
the distribution of the total waiting time is not symmet-
ric, and the large waiting time is observed slightly more
often.

Next, Figure 15 shows the daily fluctuation of the total
waiting time at PM6–PM9. The bar indicates the estimated
total waiting time based on actual data (the same data shown
in Figure 11), and the error bar indicates the 95% range of
the total waiting time in the simulation. The red line shows
the number of departure aircraft within this time range. On
Day 15, visibility was low. From this figure, there are many
interesting points found.

First, the number of departure aircraft is almost constant
in this time range, and only a small difference among
the days is observed. However, like the result obtained in
Table 3, there is no clear relationship between the number of
departure aircraft and the total waiting time. Second, even
though the flight schedule is almost the same on each day
in each time range, the range of the total waiting time in the
simulation varies.The simulation scenario includes the initial
condition of the off-block time, so it does not include the
uncertainty between actual off-block time and scheduled off-
block time, that is, scenario uncertainty. On Days 15 and 17,
large estimated waiting time is observed, but the simulated
total waiting time is also large. The low visibility seems to be
a reason for large total waiting time on Day 15, but that is not
the case on Day 17, maybe due to the traffic concentration.
Therefore, on these days, the large total waiting time is caused
not because of the traffic uncertainty effect, but because
of either visibility or the scenario uncertainty, that is, the
uncertainty of the off-block time compared to the scheduled
time. If so, the total waiting time in the simulation varies
very much with only traffic uncertainty, which means that
the further large distribution will be obtained if the scenario
uncertainty is considered. Therefore, the uncertainty affects
the airport congestion very much, and it is almost impossible
to estimate the airport congestion level on a specific day
in advance, though the average congestion level can be
estimated.
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However, this result does not directly mean that conges-
tion cannot be relieved. If the scheduled departure or arrival
time is optimally decided, the average congestion level might
be reduced with keeping the traffic volume. The better spot
allocation might also decrease the congestion level. However,
since we understand that the uncertainty in airport traffic
is significant, the uncertainty effect cannot be ignored when
considering the airport operation.Otherwise, even if the taxi-
out time is reduced, the uncertainty might cause the delay of
take-off time or reduce the runway capacity.

4. Conclusions

This paper evaluated the uncertainty effect in the airport
operation. The uncertainty level was obtained in each phase
based on the surface movement data, and a fast-time airport
traffic simulation model was developed.The validation of the
simulation model was also done, and the simulation model
seemed to model the uncertainty effect appropriately. Based
on the developed simulation model, the characteristics of the
airport traffic were investigated. The results inferred that the
airport traffic congestion seemed to be mostly affected by the
uncertainty of taxi-out or taxi-in and the traffic concentra-
tion, not by the traffic volume and weather conditions. Since
the uncertainty effect was significant in airport traffic, it was
difficult to estimate the congestion level on a specific day in
advance.The developed airport simulationmodel would help
to evaluate the airport operation with existing uncertainties.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author would like to thank Japan Civil Aviation Bureau
for providing the airport surveillance data at Tokyo Inter-
national Airport. Also, this work was supported by JSPS
KAKENHI Grant no. 25871210.

References

[1] N. Pujet, B. Delcaire, and E. Feron, “Input-output modeling
and control of the departure process of congested airports,”
in Proceedings of the AIAA Guidance, Navigation and Control
Conferences and Exhibit, AIAA-1999-4299, 1999.

[2] I. Simaiakis, H. Khadilkar, H. Balakrishnan, T. G. Reynolds, and
R. J. Hansman, “Demonstration of reduced airport congestion
through pushback rate control,”Transportation Research Part A:
Policy and Practice, vol. 66, 2014.

[3] C. Brinton, C. Provan, S. Lent, T. Prevost, and S. Passmore,
“Collaborative departure queue management: an example of
airport collaborative decision making,” in Proceedings of the 9th
USA/Europe Air TrafficManagement Research and Development
Seminar, 2011.

[4] S. H. Kim and E. Feron, “Impact of gate assignment on gate-
holding departure control strategies,” in Proceedings of the 31st
Digital Avionics Systems Conference: Projecting 100 Years of

Aerospace History into the Future of Avionics (DASC ’12), pp.
E31–E38, IEEE, October 2012.

[5] G.Gupta,W.Malik, andY.C. Jung, “An integratedCollaborative
Decision Making and tactical advisory concept for airport sur-
face operations management,” in Proceedings of the 12th AIAA
Aviation Technology, Integration, and Operations Conference
(ATIO ’12), Indianapolis, Ind, USA, September 2012.

[6] Jeppesen, “Total Airspace and Airport Modeler,” http://www.
jeppesen.com/industry-solutions/aviation/government/total-
airspace-airport-modeler.jsp.

[7] Airtopsoft, AirTOp, http://www.airtopsoft.com/index.html.
[8] S. Atkins, Y. Jung, C. Brinton, L. Stell, T. Carniol, and S.

Rogowski, “Surface management system field trial results,”
AIAA 4th Aviation, Technology, Integration and Operations
Forum AIAA-2004-6241, 2004.

[9] G. J. Couluris, R. K. Fong, M. B. Downs et al., “A new modeling
capability for airport surface traffic analysis,” in Proceedings of
the 27th IEEE/AIAADigital Avionics Systems Conference (DASC
’08), pp. 3.E.4-1–3.E.4-11, St. Paul, Minn, USA, October 2008.

[10] G. J. Couluris, P. C. Davis, N. C. Mittler, A. P. Saraf, and S. D.
Timar, “Aces terminal model enhancement,” in Proceedings of
the 28th Digital Avionics Systems Conference: Modernization of
Avionics and ATM-Perspectives from the Air and Ground (DASC
’09), October 2009.

[11] L. Meyn, R. Windhorst, K. Roth et al., “Build 4 of the airspace
concept evaluation system,” in Proceedings of the AIAA Model-
ing and Simulation Technologies Conference, AIAA-2006-6110,
2006.

[12] Z. Wood, M. Kistler, S. Rathinam, and Y. Jung, “A simulator for
modeling aircraft surface operations at airports,” in Proceedings
of the AIAA Modeling and Simulation Technologies Conference,
AIAA-2009-5912, 2009.

[13] R. Mori, “Aircraft ground-taxiing model for congested airport
using cellular automata,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 1, pp. 180–188, 2013.

[14] J. B. Gotteland, N. Durand, J. M. Alliot, and E. Page, “Air-
craft ground traffic optimization,” in Proceedings of the 4th
USA/Europe Air TrafficManagement Research and Development
Seminar, 2001.

[15] F. R. Carr, Stochastic modeling and control of airport surface
traffic [Doctoral dissertation], Massachusetts Institute of Tech-
nology, 2001.

[16] International Civil Aviation Organization, “Procedures for Air
Navigation Service—Air Traffic Management (PANS-ATM),”
Doc 4444.

[17] F. J. Massey Jr., “The Kolmogorov-Smirnov test for goodness of
fit,” Journal of the American statistical Association, vol. 46, no.
253, pp. 68–78, 1951.

[18] T. W. Anderson and D. A. Darling, “A test of goodness of fit,”
Journal of the American Statistical Association, vol. 49, pp. 765–
769, 1954.



Research Article
An Analytical Solution of Partially Penetrating Hydraulic
Fractures in a Box-Shaped Reservoir

He Zhang,1,2 Xiaodong Wang,1,2 and Lei Wang1,2

1School of Energy Resources, China University of Geosciences, Beijing 100083, China
2Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, Beijing 100083, China

Correspondence should be addressed to Lei Wang; wanglei1986sp@foxmail.com

Received 19 August 2014; Revised 8 December 2014; Accepted 8 December 2014

Academic Editor: Shaofan Li

Copyright © 2015 He Zhang et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a newmethod to give an analytical solution in Laplace domain directly that is used to describe pressure transient
behavior of partially penetrating hydraulic fractures in a box-shaped reservoir with closed boundaries. The basic building block of
the method is to solve diffusivity equation with the integration of Dirac function over the distance that is presented for the first
time. Different from the traditional method of using the source solution and Green’s function presented by Gringarten and Ramey,
this paper uses Laplace transform and Fourier transform to solve the diffusivity equation and the analytical solution obtained is
accurate and simple. The effects of parameters including fracture height, fracture length, the position of the fracture, and reservoir
width on the pressure and pressure derivative are fully investigated. The advantage of the analytical solution is easy to incorporate
storage coefficient and skin factor. It can also reduce the amount of computation and compute efficiently and quickly.

1. Introduction

Hydraulic fracturing technology has been a common appli-
cation in the oil and gas industry during the last two decades.
More and more attentions were focused on the study of pres-
sure transient behavior of hydraulically fractured wells. In
most published literatures, hydraulic fractures were assumed
to be fully penetrating the formation. Limited efforts have
been made to investigate the effects of partially penetrating
fracture height on the performance of wells. In practice, fully
penetrating fracturesmay lead to an early or immediate water
or gas breakthrough in a reservoir with bottom water or gas
cap in contact, whereas partially penetrating fracturesmay be
the only way to prevent the early breakthrough [1–3].

No matter the problem of wells with or without hydraulic
fractures,most scholars considered the fully penetratingwells
or fully penetrating hydraulic fractures. However the issue
of partial penetration is always ignored. In the early time,
some scholars presented some methods to study partially
penetrating wells. Muskat, Nisle, Brons and Marting, and
Papatzacos used the method of images [4], Streltsova-Adams
[5] used Laplace and Hankel transformations, and Buhidma

and Raghavan [6] used Green’s function to solve the problem
to partial penetration well in a reservoir. Later Yeh and
Reynolds [7] used a numerical simulator to present some type
curves for partial penetration, multilayered reservoirs with
transient crossflow. In the late time, Ozkan and Raghavan
[8] proposed a solution for a limited-entry slanted well in
an infinite reservoir with closed top and bottom boundaries
using the Laplace transformation and Bui et al. [9] used
the double-porosity formulation of Warren and Root for
naturally fractured reservoir. Fuentes-Cruz and Camacho-
Velazquez [10] obtained the pressure transient behavior for
partially penetrating wells completed in naturally fractured-
vuggy reservoir by combination of Laplace transformation
and finite Fourier transformation.

To solve the unsteady-state flow problem of fractures in
the reservoir, most solutions were presented based on the
using of the source solution and Green’s function provided
by Gringarten and Ramey [11] which can be used in combi-
nation with Newman’s product method to generate solutions
for different reservoir flow problem. At first, the pressure
behavior of the partially penetrating fractures was presented
by Gringarten and Ramey Jr. [12] using Green’s function. But
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the physical model only considered the closed upper and
lower boundaries. Raghavan et al. [13] presented an analytical
model that researched the effect of the vertical fracture height
on the pressure transient behavior of a partially penetrated
uniform-flux fractured well by evaluating the uniform-flux
solution at a point in the fracture which was assumed to
yield the infinite-conductivity solution. This model was an
extension of the case of fully penetrating vertical fracture
previously found by Gringarten et al. Rodriguez et al. [14, 15]
presented semianalytical solution of the pressure transient
behavior in a homogeneous and isotropic reservoir with
a well intersected by a partially penetrating single vertical
fracture of finite or infinite conductivity. However they did
not investigate the effect of vertical fracture position on the
wellbore pressure.

These previous solutions were quite significant to the later
analysis of the pressure behavior of the partially penetrating
fractures. Valkó and Amini [16] presented a method of
distributed volume sources (DVS) to investigate a horizontal
well with multiple transverse fractures in a box-shaped reser-
voir.The diffusivity equation considered a source term to cal-
culate the pressure distribution and compute the production
rate from a fracture. But it was only an approximate approach.
Alpheus and Tiab [3] presented the analysis of the solution
to the effect of partial penetration of an infinite conductivity
hydraulic fracture on the pressure behavior of horizontal well
extending in naturally fractured reservoirs. They founded
that the duration of early linear flow regime is a function
of the hydraulic fractures height. Although the mathematical
model was obtained in Laplace domain with elliptical flow
model, the method was complex and unclear because of the
model that was obtained indirectly. Al Rbeawi and Tiab [1, 2]
presented an analytical model in real time domain for the
pressure behavior of a horizontal well with multiple vertical
and inclined partially penetrating hydraulic fractures in an
infinite homogenous reservoir to explain the pressure tran-
sient tests and forecast productivity of the well by using the
instantaneous source function in three principal directions.
Moreover, Lin and Zhu [17] developed a slab source method
to evaluate performance of horizontal wells with or without
fractures with consideration of the three-dimensional frac-
ture geometry. However, the solution was also derived in
real time domain, making it difficult to incorporate storage
coefficient and skin factor that are usually obtained from the
Laplace domain solution.

This study attempts to give some new insights in under-
standing the partially penetrating hydraulic fractures in
a box-shaped reservoir. This paper presents an analytical
solution that describes pressure transient behavior of partially
penetrating fractures in a box-shaped reservoir and is suc-
cessfully applied to examine effects of fracture half height,
fracture half length, and reservoir width on performance of a
fracture in a reservoir with closed boundaries based on pres-
sure and pressure derivative concepts. Moreover the effect
of the vertical position of the fracture on the pressure and
pressure derivative is fully investigated. More specifically, the
diffusivity equation is presented for the first time and the
analytical solution of pressure transient behavior in Laplace
domain is derived by using Laplace transform and Fourier
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Figure 1: Schematic diagram of partially penetrating fracture.

transform. Then the bottomhole pressure in the real time
domain can be obtained by using the inverse Laplace algo-
rithm as proposed by Stehfest [18] subsequently. The result is
validated accurately by comparingwith previous results in the
literature.The advantages of Laplace domain solution are that
it can make it easy to incorporate storage coefficient and skin
factor, can reduce the amount of computation, and improve
the computational efficiently because it is unnecessary to
scatter time.

2. Mathematical Model

Consider a partially penetrating hydraulic fracture in a closed
homogenous box-shaped reservoir as shown in Figure 1. If we
assume that all fluid withdrawal will be through the fracture,
the fracture is partially penetrating the formation and the
fracture can be simulated as plane source [2].

As shown in Figure 1, a partially penetrating fracture is
placed in a reservoir with height (𝑧 direction) 𝑧

𝑒
, length

(𝑥 direction) 𝑥
𝑒
, and width (𝑦 direction) 𝑦

𝑒
, having its

dimension 2𝑤
𝑥
in 𝑥 direction and 2𝑤

𝑧
in 𝑧 direction. The

formation has horizontal and vertical permeability 𝑘
ℎ
and

𝑘
𝑧
, respectively. The fracture is assumed to be infinitely

conductive and its position is (𝑐
𝑥
, 𝑐
𝑦
, 𝑐
𝑧
). The pressure is

uniform initially throughout the reservoir and equal to 𝑝
𝑖
.

The analytical model for the pressure behavior of a
fracture in a box-shaped reservoir can be derived based on
the solution for the diffusivity equation in the porous media.
The diffusivity equation that governs the flow is
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where 𝜙 is porosity, 𝑐
𝑡
is total compressibility, 𝑡 is the time,𝑝 is

reservoir pressure, and 𝐵 is formation volume factor.Thewell
produces slightly compressible fluid with constant viscosity 𝜇
at the total flow rate of 𝑄, where
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We should notice that

𝑄𝐵 = 𝑞2𝑤
𝑥
2𝑤
𝑧
, (3)

where 𝑞 is the fluid withdraw per unit fracture surface area.
Reservoir pressure is initially constant

𝑝 (𝑥, 𝑦, 𝑧, 0) = 𝑝
𝑖
. (4)

The outer boundaries are assumed to be closed so that
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where 𝛿 is Dirac function.
To simplify the problem we define dimensionless vari-

ables as the follows:
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where 𝐿 is the reference length.
Using the dimensionless variables (1) can be written as
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= 0.

(10)

The Laplace transform with respect to time is defined as

𝑝
𝐷
(𝑟
𝐷
, 𝑠) = ∫

∞

0

𝑝
𝐷
(𝑟
𝐷
, 𝑠) 𝑒
−𝑠𝑡
𝐷

𝑑𝑡
𝐷
. (11)

By applying Laplace transform to (8), we obtain

𝜕
2

𝑝
𝐷

𝜕𝑥
2

𝐷

+

𝜕
2

𝑝
𝐷

𝜕𝑦
2

𝐷

+

𝜕
2

𝑝
𝐷

𝐿
2

𝐷
𝜕𝑧
2

𝐷

+ 2𝜋

𝐻
1𝐷

× 𝐻
2𝐷

× 𝐻
3𝐷

𝑠

= 𝑠𝑝
𝐷
.

(12)

Outer boundary conditions in Laplace space are

𝜕𝑝
𝐷

𝜕𝑥
𝐷








𝑥
𝐷
=0,𝑥
𝑒𝐷

= 0

𝜕𝑝
𝐷

𝜕𝑦
𝐷








𝑦
𝐷
=0,𝑦
𝑒𝐷

= 0

𝜕𝑝
𝐷

𝜕𝑧
𝐷








𝑧
𝐷
=0,𝑧
𝑒𝐷

= 0.

(13)

Fourier cosine transform with respect to 𝑥
𝐷

can be
defined as

𝑝
𝐷
(𝑢
𝑛
) = ∫

𝑥
𝑒𝐷

0

𝑝
𝐷
cos (𝑢

𝑛
𝑥
𝐷
) 𝑑𝑥
𝐷
. (14)

The characteristic equation is defined as

sin (𝑢
𝑚
𝑥
𝑒𝐷

) = 0. (15)

By solving (15), the characteristic number is obtained as fol-
lows:

𝑢
𝑚

=

𝑚𝜋

𝑥
𝑒𝐷

. (16)
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Based on the concept of Fourier cosine transform, the
Fourier transform of the 𝐻

1𝐷
, 𝐻
2𝐷
, and 𝐻

3𝐷
function,

respectively, is

𝐻
1𝐷

= ∫

𝑥
𝑒𝐷

0

∫

𝑐
𝑥𝐷
+𝑤
𝑥𝐷

𝑐
𝑥𝐷
−𝑤
𝑥𝐷

1

2𝑤
𝑥𝐷

𝛿 (𝑥
𝐷
− 𝑐
𝑥𝐷

) 𝑑𝑐
𝑥𝐷

⋅ cos (𝑢
𝑚
𝑥
𝐷
) 𝑑𝑥
𝐷

=

{sin [𝑢
𝑚
(𝑐
𝑥𝐷

+ 𝑤
𝑥𝐷

)] − sin [𝑢
𝑚
(𝑐
𝑥𝐷

− 𝑤
𝑥𝐷

)]}

2𝑢
𝑚
𝑤
𝑥𝐷

(17a)

𝐻
2𝐷

= ∫

𝑦
𝑒𝐷

0

𝛿 (𝑦
𝐷
− 𝑐
𝑦𝐷

) cos (V
𝑛
𝑦
𝐷
) 𝑑𝑦
𝐷

= cos (V
𝑛
𝑐
𝑦𝐷

)

(17b)

𝐻
3𝐷

= ∫

𝑧
𝑒𝐷

0

∫

𝑐
𝑧𝐷
+𝑤
𝑧𝐷

𝑐
𝑧𝐷
−𝑤
𝑧𝐷

1

2𝑤
𝑧𝐷

𝛿 (𝑧
𝐷
− 𝑐
𝑧𝐷

) 𝑑𝑐
𝑧𝐷

⋅ cos (𝑤
𝑝
𝑧
𝐷
) 𝑑𝑧
𝐷

=

{sin [𝑤
𝑝
(𝑐
𝑧𝐷

+ 𝑤
𝑧𝐷

)] − sin [𝑤
𝑝
(𝑐
𝑧𝐷

− 𝑤
𝑧𝐷

)]}

2𝑤
𝑝
𝑤
𝑧𝐷

.

(17c)

The first Fourier cosine transform of (12) on the variable 𝑥
𝐷

is

−𝑢
2

𝑚
𝑝
𝐷
+

𝜕
2

𝑝
𝐷

𝜕𝑦
2

𝐷

+

𝜕
2

𝑝
𝐷

𝐿
2

𝐷
𝜕𝑧
2

𝐷

+ 2𝜋

𝐻
1𝐷

× 𝐻
2𝐷

× 𝐻
3𝐷

𝑠

= 𝑠𝑝
𝐷
.

(18)

The second Fourier cosine transform of (18) on the variable
𝑦
𝐷
is

−𝑢
2

𝑚
𝑝
𝐷
− V2
𝑛
𝑝
𝐷
+

𝜕
2

𝑝
𝐷

𝐿
2

𝐷
𝜕𝑧
2

𝐷

+ 2𝜋

𝐻
1𝐷

× 𝐻
2𝐷

× 𝐻
3𝐷

𝑠

= 𝑠𝑝
𝐷
.

(19)

For the third Fourier cosine transform of (19) on the variable
𝑧
𝐷
, we obtain

−𝑢
2

𝑚
𝑝
𝐷
− V2
𝑛
𝑝
𝐷
−

𝑤
2

𝑝

𝐿
2

𝐷

𝑝
𝐷
+ 2𝜋

𝐻
1𝐷

× 𝐻
2𝐷

× 𝐻
3𝐷

𝑠

= 𝑠𝑝
𝐷
,

(20)

where

𝑢
𝑚

=

𝑚𝜋

𝑥
𝑒𝐷

V
𝑛
=

𝑛𝜋

𝑦
𝑒𝐷

𝑤
𝑝
=

𝑝𝜋

𝑧
𝑒𝐷

. (21)

According to the following equation

𝑃
𝐷
(𝑥
𝐷
) =

∞

∑

𝑚=1

cos (𝑢
𝑚
𝑥
𝐷
)

𝑁 (𝑛)

𝑃
𝐷
(𝑢
𝑚
) (22)

taking the first Fourier inverse transform of (20) on the
variable 𝑧

𝐷
, the solution can be expressed as follows:

𝑠𝑝
𝐷

= 2𝜋

1

𝑧
𝑒𝐷

𝐻
1𝐷

× 𝐻
2𝐷

×

1

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
)

+ 2𝜋𝐻
1𝐷

× 𝐻
2𝐷

×

2

𝑧
𝑒𝐷

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
)𝐻
3𝐷

1

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

.

(23)

The second Fourier inverse transform of (19) on the variable
𝑦
𝐷
is

𝑠𝑝
𝐷

= 2𝜋

1

𝑦
𝑒𝐷

1

𝑧
𝑒𝐷

𝐻
1𝐷

(𝑠 + 𝑢
2

𝑚
)

+ 2𝜋

2

𝑦
𝑒𝐷

𝐻
1𝐷

∞

∑

𝑛=1

1

𝑧
𝑒𝐷

cos (V
𝑛
𝑦
𝐷
)

𝐻
2𝐷

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
)

+ 2𝜋

1

𝑦
𝑒𝐷

𝐻
1𝐷

2

𝑧
𝑒𝐷

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
)

𝐻
3𝐷

(𝑠 + 𝑢
2

𝑚
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

+ 2𝜋

2

𝑦
𝑒𝐷

2

𝑧
𝑒𝐷

𝐻
1𝐷

×

∞

∑

𝑛=1

∞

∑

𝑝=1

cos (V
𝑛
𝑦
𝐷
) cos (𝑤

𝑝
𝑧
𝐷
)

⋅

𝐻
2𝐷

𝐻
3𝐷

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

.

(24)

The third Fourier inverse transform of (18) on the variable 𝑥
𝐷

is

𝑠𝑝
𝐷

=

2𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

𝑠

+

4𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑚=1

cos (𝑢
𝑚
𝑥
𝐷
)

𝐻
1𝐷

(𝑠 + 𝑢
2

𝑚
)

+

4𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑛=1

cos (V
𝑛
𝑦
𝐷
)

𝐻
2𝐷

(𝑠 + V2
𝑛
)

+

8𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

⋅

∞

∑

𝑛=1

∞

∑

𝑚=1

cos (V
𝑛
𝑦
𝐷
) cos (𝑢

𝑚
𝑥
𝐷
)

𝐻
1𝐷

𝐻
2𝐷

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
)

+

4𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
)

𝐻
3𝐷

(𝑠 + 𝑤
2

𝑝
/𝐿
2

𝐷
)

+

8𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷
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⋅

∞

∑

𝑚=1

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
) cos (𝑢

𝑚
𝑥
𝐷
)

𝐻
1𝐷

𝐻
3𝐷

(𝑠 + 𝑢
2

𝑚
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

+

8𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

⋅

∞

∑

𝑛=1

∞

∑

𝑝=1

cos (V
𝑛
𝑦
𝐷
) cos (𝑤

𝑝
𝑧
𝐷
)

𝐻
2𝐷

𝐻
3𝐷

(𝑠 + V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

+

16𝜋

𝑥
𝑒𝐷

𝑦
𝑒𝐷

𝑧
𝑒𝐷

⋅

∞

∑

𝑚=1

∞

∑

𝑛=1

∞

∑

𝑝=1

cos (V
𝑛
𝑦
𝐷
) cos (𝑤

𝑝
𝑧
𝐷
) cos (𝑢

𝑚
𝑥
𝐷
)

⋅

𝐻
1𝐷

𝐻
2𝐷

𝐻
3𝐷

(𝑠 + 𝑢
2

𝑚
+ V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷
)

.

(25)

Applying (17b) and following equation

2 cos (V
𝑛
𝑐
𝑦𝐷

) cos (V
𝑛
𝑤
𝑦𝐷

)

= cos (V
𝑛
(𝑐
𝑦𝐷

− 𝑤
𝑦𝐷

)) + cos (V
𝑛
(𝑐
𝑦𝐷

+ 𝑤
𝑦𝐷

))

= cos( 𝑛𝜋

𝑦
𝑒𝐷

(𝑐
𝑦𝐷

− 𝑤
𝑦𝐷

)) + cos( 𝑛𝜋

𝑦
𝑒𝐷

(𝑐
𝑦𝐷

+ 𝑤
𝑦𝐷

))

∞

∑

𝑘=1

cos 𝑘𝑥
𝑘
2
+ 𝛼
2
=

𝜋

2𝛼

cosh𝛼 (𝜋 − 𝑥)

sinh𝛼𝜋

−

1

2𝛼
2

(26)

we can obtain

∞

∑

𝑛=1

2 cos (V
𝑛
𝑦
𝐷
) cos (V

𝑛
𝑐
𝑦𝐷

)

𝑠 + V2
𝑛

=

𝑦
𝑒𝐷

2√𝑠

(cosh√𝑠 (𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑐
𝑦𝐷

))

+ cosh√𝑠 (𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑐
𝑦𝐷

)))

⋅ (sinh (√𝑠𝑦
𝑒𝐷

))
−1

−

1

𝑠

.

(27)

Using the same method, the following formulas can be
written as

∞

∑

𝑛=1

2 cos (V
𝑛
𝑦
𝐷
) cos (V

𝑛
𝑐
𝑦𝐷

)

𝑠 + 𝑢
2

𝑚
+ V2
𝑛

=

𝑦
𝑒𝐷

2𝜀
𝑚

(cosh 𝜀
𝑚
(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑐
𝑦𝐷

))

+ cosh 𝜀
𝑚
(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑐
𝑦𝐷

)))

⋅ (sinh (𝜀
𝑚
𝑦
𝑒𝐷

))
−1

−

1

𝜀
2

𝑚

∞

∑

𝑝=1

2 cos (V
𝑛
𝑦
𝐷
) cos (V

𝑛
𝑐
𝑦𝐷

)

𝑠 + V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷

=

𝑦
𝑒𝐷

2𝜀
𝑝

(cosh 𝜀
𝑝
(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑐
𝑦𝐷

))

+ cosh 𝜀
𝑝
(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑐
𝑦𝐷

)))

⋅ (sinh (𝜀
𝑝
𝑦
𝑒𝐷

))

−1

−

1

𝜀
2

𝑝

∞

∑

𝑝=1

2 cos (V
𝑛
𝑦
𝐷
) cos (V

𝑛
𝑐
𝑦𝐷

)

𝑠 + 𝑢
2

𝑚
+ V2
𝑛
+ 𝑤
2

𝑝
/𝐿
2

𝐷

=

𝑦
𝑒𝐷

2𝜀
𝑚𝑝

(cosh 𝜀
𝑚𝑝

(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑐
𝑦𝐷

))

+ cosh 𝜀
𝑚𝑝

(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑐
𝑦𝐷

)))

⋅ (sinh (𝜀
𝑚𝑝

𝑦
𝑒𝐷

))

−1

−

1

𝜀
2

𝑚𝑝

,

(28)

where

𝜀
2

𝑚
= 𝑠 + 𝑢

2

𝑚
= 𝑠 +

𝑚
2

𝜋
2

𝑥
2

𝑒𝐷

𝜀
2

𝑝
= 𝑠 + 𝑤

2

𝑝
= 𝑠 +

𝑝
2

𝜋
2

𝐿
2

𝐷

𝜀
2

𝑚𝑝
= 𝑠 + 𝑢

2

𝑚
+ 𝑤
2

𝑝
= 𝑠 +

𝑚
2

𝜋
2

𝑥
2

𝑒𝐷

+

𝑝
2

𝜋
2

𝐿
2

𝐷

.

(29)

Substitute (27)–(29) in (25) and simplify the equation is
calculated as

𝑠𝑝
𝐷

=

𝜋

𝑥
𝑒𝐷

𝑧
𝑒𝐷

⋅ ([cosh√𝑠 (𝑦
𝑒𝐷

− 𝑦
𝐷
+ 𝑐
𝑦𝐷

)

+ cosh√𝑠 (𝑦
𝑒𝐷

− 𝑦
𝐷
− 𝑐
𝑦𝐷

)])

⋅ (√𝑠 sinh√𝑠𝑦
𝑒𝐷

)
−1

+

2𝜋

𝑥
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑚=1

cos (𝑢
𝑚
𝑥
𝐷
)

cos (𝑢
𝑚
𝑐
𝑥𝐷

) sin (𝑢
𝑚
𝑤
𝑥𝐷

)

𝑢
𝑚
𝑤
𝑥𝐷

× [(cosh 𝜀
𝑚
(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑦
𝑤𝐷

))

+ cosh 𝜀
𝑚
(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑦
𝑤𝐷

)))

⋅ (𝜀
𝑚
sinh 𝜀

𝑚
𝑦
𝑒𝐷

)
−1

]

+

2𝜋

𝑥
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
)

cos (𝑤
𝑝
𝑐
𝑧𝐷

) sin (𝑤
𝑝
𝑤
𝑧𝐷

)

𝑤
𝑝
𝑤
𝑧𝐷
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Figure 2:Model validation between this study and literature results.

× [(cosh 𝜀
𝑝
(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑦
𝑤𝐷

))

+ cosh 𝜀
𝑝
(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑦
𝑤𝐷

)))

⋅ (𝜀
𝑝
sinh 𝜀

𝑝
𝑦
𝑒𝐷

)

−1

]

+

4𝜋

𝑥
𝑒𝐷

𝑧
𝑒𝐷

∞

∑

𝑚=1

∞

∑

𝑝=1

cos (𝑤
𝑝
𝑧
𝐷
) cos (𝑢

𝑚
𝑥
𝐷
)

⋅

cos (𝑢
𝑚
𝑐
𝑥𝐷

) sin (𝑢
𝑚
𝑤
𝑥𝐷

)

𝑢
𝑚
𝑤
𝑥𝐷

cos (𝑤
𝑝
𝑐
𝑧𝐷

) sin (𝑤
𝑝
𝑤
𝑧𝐷

)

𝑤
𝑝
𝑤
𝑧𝐷

× [

𝑦
𝑒𝐷

2

(cosh 𝜀
𝑚𝑝

(𝑦
𝑒𝐷

− (𝑦
𝐷
− 𝑦
𝑤𝐷

))

+ cosh 𝜀
𝑚𝑝

(𝑦
𝑒𝐷

− (𝑦
𝐷
+ 𝑦
𝑤𝐷

)))

⋅ (𝜀
𝑚𝑝

sinh 𝜀
𝑚𝑝

𝑦
𝑒𝐷

)

−1

] .

(30)

Equation (30) is the mathematical model for pressure
response of a partially penetrating hydraulic fracture in
Laplace domain in dimensionless form. The solution in the
real time domain can be obtained by using the inverse Laplace
algorithm as proposed by Stehfest [18].

3. Validation of the Method

Kuchuk and Brighan [19] presented analytical solutions that
are applicable to infinite-conductivity vertically fractured
wells, elliptically shaped reservoirs, and anisotropic reser-
voirs producing at a constant rate or pressure. In order to
validate the solution, we considered a special case that the
fracture is full penetration; that is, 𝑤

𝑧𝐷
= 0.5. We obtained

some data from the literature presented by Kuchuk and
Brighan. Figure 2 shows a comparison between the results
from Kuchuk and Brighan and this work for the fully pene-
trating infinite-conductivity isotropic case. We can see a very

Table 1: Basic data of the system.

Dimensionless parameter Value
Reservoir length 𝑥

𝑒𝐷
4000

Reservoir width 𝑦
𝑒𝐷

4000
Reservoir height 𝑧

𝑒𝐷
1

Half fracture length 𝑤
𝑥𝐷

1
Half fracture height 𝑤

𝑧𝐷
0.5

Variable 𝐿
𝐷

1
Fracture position 𝑐

𝑥𝐷
, 𝑐
𝑦𝐷

, 𝑐
𝑧𝐷

(2000, 2000, 0.5)
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Figure 3: The effect of fracture height for fracture in the center.

good agreement between the solution in this paper and the
literature, showing that the method in this study produces
reliable transient pressure.

4. Sensitivity Analysis

Based on the analytical solution for a partially penetrating
fracture in a box-shaped reservoir presented in the previous
part, a sensitivity study for the parameters affecting the
pressure and pressure derivative in the model is carried out.
The intention of this study is to show the effect of each
of these parameters on the dynamic behavior of a partially
penetrating fracture in a box-shaped reservoir. We evaluate
the pressure transient solution by varying the values of four
parameters including the fracture half height, the fracture
half length, the fracture position, and the reservoir width.
As shown on the plots, the pressure and pressure deriva-
tive have different shapes for each combination of fracture
height, fracture length, fracture position, and reservoir width.
Dimensionless basic parameters used for simulating pressure
transient response are presented in Table 1.

4.1. The Effect of Fracture Half Height and Off Center Fracture.
Figure 3 depicts pressure and pressure derivative curves
versus time for 𝑤

𝑧𝐷
= 0.005, 0.025, 0.05, 0.1, 0.3, 0.5 with

a fracture in the center of the reservoir, respectively (see
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Figure 4: Schematic diagram of partially penetrating fracture.

Figure 4(a)). Other parameters are not changed in Table 1.
Obviously, the pressure drop becomes larger as the fracture
half height is decreased, which means that small fracture
height will cause big pressure drop mainly in the early time
period. The pressure drop for different 𝑤

𝑧𝐷
tends to be con-

sistent as time goes on. As shown in the pressure derivative
curves, the fracture height mainly influences the early linear
flow and transition flow and has no effect on the intermediate
radial flow and boundary dominated flow. The fluids which
take place in the direction of the upper and lower boundaries
towards the fracture because of the effect of the partially pen-
etrating fracture could produce the transition flow. As shown
in Figure 3, when the 𝑤

𝑧𝐷
= 0.5 (fully penetrating fracture),

the transition flow cannot be seen from the pressure deriva-
tive curve.The end time of the early linear flow of the smaller
𝑤
𝑧𝐷

is shorter than that of larger 𝑤
𝑧𝐷
. All pressure derivative

curves for different 𝑤
𝑧𝐷

value are also parallel in early
linear flow regime.

Figure 5 depicts pressure and pressure derivative curves
versus time for 𝑤

𝑧𝐷
= 0.005, 0.025, 0.05, 0.1, 0.3, 0.5 with a

fracture in the off center of the reservoir, respectively (see
Figure 4(b)). The fracture is located at (500, 500, 0.5) and
other parameters are not changed as shown in Table 1. Com-
paring to the fracture in the center of the reservoir, the only
difference is the number of the boundary dominated flows.
The fluids flowing from the nearer boundaries and further
boundaries towards the fracture cause first boundary dom-
inated flow and second boundary dominated flow, respec-
tively, because the distance of the off center fracture to each
boundary (𝑥-direction boundary and 𝑦-direction boundary)
is different at late time. According to the boundary dominated
flow which occurs twice as seen from the pressure derivative
curve we can judge the fracture is off the center.

4.2. The Effect of Fracture Half Length and Off Center Fracture
4.2.1. Small Half Penetration Ratio (2𝑤

𝑧𝐷
< 0.5). Figure 6

shows the type curves for different value of fracture half
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Figure 5: The effect of fracture height for fracture not in the center.

length (𝑤
𝑥𝐷

= 2, 4, 6, 8, resp.). The fracture is in the cen-
ter of the reservoir while remaining other parameters are
unchanged as shown in Table 1. As expected, the smaller the
fracture half length, the higher the dimensionless pressure
drop, which implies that small fracture length will cause great
pressure drop at the early time. As shown in the pressure
derivative curves, the fracture length mainly influences the
early linear flow and transition flow and has no effect on the
radial flow and boundary dominated flow. Comparing with
the type curves for a fully penetrating fracture, the pressure
derivative of a partially penetrating fracture has higher values
during early time period. Before the intermediate radial flow
regime, the pressure derivative becomes larger when the frac-
ture length (𝑤

𝑥𝐷
) is decreased. For the same fracture height

and reservoir thickness, the larger the dimensionless fracture
half length 𝑤

𝑥𝐷
is, the longer it takes to reach radial flow

regime in the reservoir.
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Figure 6: The effect of fracture length at 𝑤
𝑧𝐷

= 0.05 for fracture in
the center.
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Figure 7:The effect of fracture length at𝑤
𝑧𝐷

= 0.05 for fracture not
in the center.

Figure 7 depicts pressure and pressure derivative curves
versus time for 𝑤

𝑥𝐷
= 2, 4, 6, 8 with a fracture in the off

center of the reservoir, respectively. The fracture is located
at (500, 500, 0.5) and other parameters are not changed as
shown in Table 1. Comparing to Figure 6, the off center
fracture mainly affects the boundary dominated flow. The
boundary dominated flow regime appears twice followed by
the intermediate radial flow.

4.2.2. Large Half Penetration Ratio (2𝑤
𝑧𝐷

> 0.5). The effect
of the fracture half length on pressure and pressure derivative
when the fracture with large half penetration ratio is in the
center of the reservoir is shown in Figure 8. Because of the
large half penetration ratio, the pressure behavior in this case
tends to be similar to the fully penetrating fractures (𝑤

𝑧𝐷
=

0.5) where other factors such as fracture dimension have the
main influence. A slight transition regime appears at the ini-
tial production time followed by the early linear flow regime.
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Figure 8: The effect of fracture length at 𝑤
𝑧𝐷

= 0.35 for fracture in
the center.
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Figure 9:The effect of fracture length at𝑤
𝑧𝐷

= 0.35 for fracture not
in the center.

Comparing with the type curves for a fully penetrating frac-
ture, the pressure derivative of a partially penetrating fracture
has higher values during early time period. The pressure
drop is larger as the fracture length is decreased and the
pressure derivative has the same rule before the radial flow
regime.

Figure 9 depicts pressure and pressure derivative curves
for 𝑤

𝑥𝐷
= 2, 4, 6, 8 with a fracture in the off center of

the reservoir, respectively. The position of the fracture is
(𝑐
𝑥𝐷

= 500, 𝑐
𝑦𝐷

= 500, 𝑐
𝑧𝐷

= 0.5), and other parameters
are not changed as shown in the Table 1. We notice that
the pressure and pressure derivative values for the case of
partially penetrating fractures in the off center of the reservoir
are very similar to that case of fully penetrating fractures.The
only difference is that the boundary dominated flow regime
appears twice. As such, the boundary dominated flow can be
used to distinguish whether the fracture in the center of the
reservoir.
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Figure 10: The effect of reservoir width.

4.3. The Effect of the Reservoir Width. Figure 10 depicts
pressure derivative curves versus time for 𝑦

𝑒𝐷
= 500, 1500,

2500, 3500 with a fracture in the center of the reser-
voir, respectively, while other parameters are not changed.
Reservoir width mainly affects the boundary dominated
flow regime. As seen in Figure 10, the starting time of
the boundary dominated flow regime is affected by the
dimensionless reservoir width. It is observed that the dimen-
sionless pressure drop becomes larger as the dimensionless
reservoir width is decreased, which means that a small
reservoir will cause big pressure drop in the boundary domi-
nated flow regime.

5. Application of Type Curve Matching

Type-curve matching is a quick method to estimate reservoir
and fracture parameters. The following procedures illustrate
how type curve matching is used to calculate reservoir and
fracture characteristics such as permeability, fracture half
length, and fracture half height.

Step 1. Plot pressure change (Δ𝑝) and pressure derivative (𝑡 ×
Δ𝑝
) values versus test time on a log-log graph.

Step 2. Obtain the best match of the data with one of the type
curves.

Step 3. Read from an match point: 𝑡
𝑀
, 𝑡
𝐷𝑀

, Δ𝑝
𝑀
, 𝑝
𝐷𝑀

, 𝑤
𝑧𝐷
,

𝑤
𝑥𝐷
, 𝐿
𝐷
.

Step 4. Calculate 𝑘
ℎ
:

𝑘
ℎ
=

141.2𝑄𝐵𝜇𝑝
𝐷

𝑧
𝑒
Δ𝑝

. (31)

Step 5. Calculate 𝐿:

𝐿 = √

0.0002637𝑡
𝑀
𝑘
ℎ

𝜙𝜇𝑐
𝑡
𝑡
𝐷𝑀

. (32)
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Figure 11: Pressure and pressure derivative plot for example.

Step 6. Calculate 𝑘
𝑧
:

𝑘
𝑧
=

𝑘
ℎ

(𝐿
𝐷
𝐿/𝑧
𝑒
)
2
. (33)

Step 7. Calculate the fracture half height:

𝑤
𝑧
= 𝑤
𝑧𝐷

𝑧
𝑒
. (34)

Step 8. Calculate the fracture half length:

𝑤
𝑥
= 𝑤
𝑥𝐷

𝐿. (35)

Example 1. Giving the reservoir and well data,

𝑄 = 500 STB/D 𝜙 = 0.3 𝜇 = 4 cp

𝐵
𝑜
= 1.4 bbl/STB 𝑧

𝑒
= 100ft

𝑐
𝑡
= 4 × 10

−6 psi−1 𝑟
𝑤
= 0.25ft

𝑝
𝑖
= 6000 psi.

(36)

Fracture position is in the center of the reservoir.

Step 1. Plot pressure change (Δ𝑝) and pressure derivative (𝑡 ×
Δ𝑝
) values versus test time on a log-log graph as shown in

Figure 11.

Step 2. Obtain the best match of the data with one of the type
curves as shown in Figure 12.

Step 3. Read from an match point: 𝑡
𝑀
, 𝑡
𝐷𝑀

, Δ𝑝
𝑀
, 𝑝
𝐷𝑀

, 𝑤
𝑧𝐷
,

𝑤
𝑥𝐷
, 𝐿
𝐷
:

𝑡
𝑀

= 10 𝑡
𝐷𝑀

= 0.11 Δ𝑝
𝑀

= 100

𝑝
𝐷𝑀

= 0.05 𝑤
𝑧𝐷

= 0.1 𝑤
𝑥𝐷

= 4 𝐿
𝐷

= 1.

(37)

Step 4. Calculate 𝑘
ℎ
from (31):

𝑘
ℎ
=

141.2 × 500 × 1.4 × 4 × 0.05

100 × 100

= 2md. (38)
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Figure 12: Type-curve matching plot for example (𝑤
𝑥𝐷

= 4, 𝐿
𝐷

= 1).

Table 2: Results of example.

Parameter Input value
Calculated value by type

curve matching
technique

Horizontal
permeability 𝑘

ℎ
, md 2 2

Vertical permeability
𝑘
𝑧
, md 2 2

Fracture half length
𝑤
𝑥
, ft 400 400

Fracture half height
𝑤
𝑧
, ft 10 10

Step 5. Calculate 𝐿 from (32):

𝐿 = √
0.0002637 × 10 × 2

0.3 × 4 × 4 × 10
−6

× 0.11

= 100ft. (39)

Step 6. Calculate 𝑘
𝑧
from (33):

𝑘
𝑧
=

2

((100 × 1)/100)
2
= 2md. (40)

Step 7. Calculate the fracture half height from (34):

𝑤
𝑧
= 0.1 × 100 = 10ft. (41)

Step 8. Calculate the fracture half length from (35):

𝑤
𝑥
= 4 × 100 = 400ft. (42)

Table 2 compares the input data and the resulting values of
the example.

6. Conclusions

A detailed step by step procedure for solving the analytical
solution of a partially penetrating hydraulic fracture in

a box-shaped reservoir by using Fourier cosine transform and
Laplace transform is presented. The solution can be used to
investigate the pressure transient behavior. In this paper, we
validated it availablewith the published analytical solution for
a relative simple system. Sensitivity analyses about the effects
of the main parameters including fracture height, fracture
length, and reservoir width on type curves are also presented
in detail. Moreover the effect of the vertical position of
the fracture on the pressure and pressure derivative is fully
investigated. And an example is used to illustrate that the
type curves can be used to analyze transient well test analysis
for partially penetrating fracture in closed reservoirs. The
merit of the solution is that it can also reduce the amount of
computation and compute efficiently and quickly. The solu-
tion can be further developed as its great applicability.
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[16] P. P. Valkó and S. Amini, “Themethod of distributed volumetric
sources for calculating the transient and pseudosteady-state
productivity of complex well-fracture configurations,” in Pro-
ceedings of the SPE Hydraulic Fracturing Technology Conference,
SPE paper 106279, pp. 1–14, January 2007.

[17] J. Lin and D. Zhu, “Predicting well performance in complex
fracture systems by slab source method,” in Proceedings of the
SPE Hydraulic Fracturing Technology Conference, SPE Paper
151960, pp. 1–15, TheWoodlands, Tex, USA, February 2012.

[18] H. Stehfest, “Algorithm 368: numerical inversion of laplace
transforms,” Communications of the ACM, vol. 13, no. 1, pp. 47–
49, 1970.

[19] F. Kuchuk and W. E. Brighan, “Transient flow in elliptical sys-
tems,” Tech. Rep. SPE-7488-PA, Society of PetroleumEngineers,
December 1979.



Research Article
Generalized Finite Difference Time Domain Method
and Its Application to Acoustics

Jianguo Wei,1 Song Wang,1 Qingzhi Hou,2 and Jianwu Dang2,3

1School of Computer Software, Tianjin University, Tianjin 300072, China
2Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300072, China
3Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan

Correspondence should be addressed to Qingzhi Hou; qhou@tju.edu.cn

Received 28 August 2014; Revised 11 January 2015; Accepted 11 January 2015

Academic Editor: Shaofan Li

Copyright © 2015 Jianguo Wei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ameshless generalized finite difference time domain (GFDTD)method is proposed and applied to transient acoustics to overcome
difficulties due to use of grids or mesh. Inspired by the derivation of meshless particle methods, the generalized finite difference
method (GFDM) is reformulated utilizing Taylor series expansion. It is in a way different from the conventional derivation of
GFDM in which a weighted energy norm was minimized. The similarity and difference between GFDM and particle methods
are hence conveniently examined. It is shown that GFDM has better performance than the modified smoothed particle method in
approximating the first- and second-order derivatives of 1D and 2D functions. To solve acoustic wave propagation problems, GFDM
is used to approximate the spatial derivatives and the leap-frog scheme is used for time integration. By analog with FDTD, the
whole algorithm is referred to as GFDTD. Examples in one- and two-dimensional domain with reflection and absorbing boundary
conditions are solved and good agreements with the FDTD reference solutions are observed, even with irregular point distribution.
The developed GFDTD method has advantages in solving wave propagation in domain with irregular and moving boundaries.

1. Introduction

Partial differential equations (PDEs) modeling problems in
science and engineering, such as electromagnetics, acoustics,
and hydrodynamics, are usually solved by numericalmethods
that discretize the computational domain with mesh or grids.
Grid-basedmethods such as finite differencemethod (FDM),
finite elementmethod (FEM), and boundary elementmethod
(BEM) [1, 2] have had much achievements and still domi-
nate the field of scientific computing. However, numerical
difficulties originating from usage of grids often emerge.
For complicated and irregular geometry, implementation of
boundary conditions could be a big challenge for FDM.
Generation of grids with high quality is not an easy task in
FEM and BEM. Moreover, when free surface and moving
boundary/interface have to be treated, the transformation of
grids will turn the conventional grid-based methods into a
difficult, time-consuming process. Numerical accuracy often
degenerates and divergence problem occurs.

In recent 20 years, to overcome numerical difficulties due
to use of grids or mesh, meshless methods (MMs) based on

different techniques have been proposed and widely used
in many fields such as hydrodynamics [3], astrophysics [4],
and solid mechanics [3, 5]. Among the MMs, generalized
finite difference method (GFDM) is the one that evolved
from traditional FDM [6, 7] and many different forms
have been developed [8]. Benito and his coauthors made
great contribution to its recent development [9–11]. For heat
conduction problem, it has been compared with the element-
free Garlerkin (EFG) method (one of the most used MMs in
solid mechanics) and better performance has been observed
[10]. Recently, GFDM was used to solve the wave equations
[11] and Burgers’ equations [12] and simulate seismic wave
propagation problems in heterogeneousmedia [13]. An appli-
cation to the detonation shock dynamics [14] was also carried
out. Nevertheless, few work on computational acoustics has
been reported.

For acoustic wave propagation problems, the concentra-
tion is on the ones in confined domain, for which grid-
based methods like FDTD and TDFEM (time-domain finite-
element methods) [15], are mostly used. However, moving
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boundary exists in many acoustic problems like sound wave
propagation inside a deforming vocal tract. This problem is
hardly solved by conventional grid-based methods andMMs
provide a possibility. As one of the MMs, GFDM is extended
to transient acoustics in this paper, which is helpful to solve
wave propagation problems with moving boundary in the
future.

Inspired by the derivation of meshless particle methods,
we firstly formulated the GFDM in a way different from the
original one that minimizes an energy norm. Such that the
relationship between GFDM and meshless particle meth-
ods like smoothed particle hydrodynamics (SPH) and its
improvements can be conveniently examined. Compari-
son with the modified dmoothed particle hydrodynamics
(MSPH) method, which has better performances than SPH
and its corrections [16], shows higher approximation accu-
racy of the GFDM, especially at the boundary region. By
analog with FDTD, a method referred to as generalized finite
difference time domain (GFDTD) is proposed, in which
GFDM is used to discretize the spatial operators and the leap-
frog algorithm is used for time integration. To show its good
performance and efficiency, the GFDTD method is applied
to transient acoustics. Comparison with conventional FDTD
solutions is presented and discussed.

2. Generalized Finite Difference
Method (GFDM)

Other than conventional derivation of GFDM byminimizing
an energy norm [10], a different derivation of GFDM is pre-
sented in this section. Taylor series expansion of 𝑓(𝑥, 𝑦)
around point (𝑥

0
, 𝑦
0
) remaining up to second-order terms

yields

𝑓 ≈ 𝑓
0
+ ℎ
𝜕𝑓
0

𝜕𝑥
+ 𝑘
𝜕𝑓
0

𝜕𝑦
+
ℎ2

2

𝜕2𝑓
0

𝜕𝑥2
+
𝑘2

2

𝜕2𝑓
0

𝜕𝑦2
+ ℎ𝑘

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
, (1)

where 𝑓 = 𝑓(𝑥, 𝑦), 𝑓
0
= 𝑓(𝑥

0
, 𝑦
0
), ℎ = 𝑥 − 𝑥

0
, and 𝑘 =

𝑦 − 𝑦
0
.

By multiplying both sides of (1) with 𝑤2ℎ and 𝑤2𝑘 (𝑤 is
a weighting function with compact support) and integrating

the resulted equations over the support domainΩ, we get two
equations, and the following, as an example, is the result for
𝑤2ℎ:

∫
Ω

𝑓𝑤2ℎ dV ≈ ∫
Ω

𝑓
0
𝑤2ℎ dV + ∫

Ω

𝜕𝑓
0

𝜕𝑥
𝑤2ℎ2dV

+ ∫
Ω

𝜕𝑓
0

𝜕𝑦
𝑤2ℎ𝑘 dV + 1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑥2
𝑤2ℎ3dV

+
1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑦2
𝑤2ℎ𝑘2dV + ∫

Ω

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
𝑤2ℎ2𝑘 dV,

(2)

where dV is a volume measure.
Repeating the same procedure with 𝑤2ℎ2/2, 𝑤2𝑘2/2, and

𝑤2ℎ𝑘 instead of 𝑤2ℎ and 𝑤2𝑘, we get other three equations
and the following is the result for 𝑤2ℎ2/2:

∫
Ω

𝑓
𝑤2ℎ2

2
dV ≈ ∫

Ω

𝑓
0

𝑤2ℎ2

2
dV + ∫

Ω

𝜕𝑓
0

𝜕𝑥

𝑤2ℎ3

2
dV

+ ∫
Ω

𝜕𝑓
0

𝜕𝑦

𝑤2ℎ2𝑘

2
dV + 1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑥2
𝑤2ℎ4

2
dV

+
1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑦2
𝑤2ℎ2𝑘2

2
dV + ∫

Ω

𝜕2𝑓
0

𝜕𝑥𝜕𝑦

𝑤2ℎ3𝑘

2
dV.

(3)

To approximate the integrations byRiemann sum, the volume
of the support domain Ω is divided into 𝑁 points with
associated volumes dV

𝑖
, (𝑖 = 1, 2, . . . , 𝑁). Equations (2),

(3), and the other three constitute a system of five equations
written in matrix form as

APDfP = bP, (4)

with

AP =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ2
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ
𝑖
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ2
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
𝑘2
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖
𝑘
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

𝑘3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘2
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖
𝑘
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖𝑗

ℎ4
𝑖

4
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖
𝑘2
𝑖

4
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ3
𝑖
ℎ
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖𝑗

ℎ
𝑖
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

𝑘3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖
𝑘2
𝑖

4
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

𝑘4
𝑖

4
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ
𝑖
𝑘3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ2
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘2
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ3
𝑖
𝑘
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ
𝑖
𝑘3
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ2
𝑖
𝑘2
𝑖
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,
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DfP =

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝜕𝑓
0

𝜕𝑥

𝜕𝑓
0

𝜕𝑦

𝜕2𝑓
0

𝜕𝑥2

𝜕2𝑓
0

𝜕𝑦2

𝜕2𝑓
0

𝜕𝑥𝜕𝑦

}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}
}

, bP =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
ℎ
𝑖
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
𝑘
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
𝑘
𝑖
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖

2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖

ℎ2
𝑖

2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖

𝑘2
𝑖

2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖

𝑘2
𝑖

2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(5)

where𝑤
𝑖
= 𝑤(𝑑

𝑖
, 𝑑
𝑚
)with 𝑑

𝑖
= √(𝑥

𝑖
− 𝑥
0
)2 + (𝑦

𝑖
− 𝑦
0
)2, ℎ
𝑖
=

𝑥
𝑖
− 𝑥
0
, and 𝑘

𝑖
= 𝑦
𝑖
− 𝑦
0
, and 𝑑

𝑚
is a measure of the support

size.
The conventional derivation of GFDM is presented in

appendix. It is clear that the difference between the conven-
tional and the current derivation is not only the procedure but
also the final form. The conventional derivation loses term
dV
𝑖
(see (A.5)). If all the points in the domain have the same

volume, dV
𝑖
at both sides of (4) will be cancelled, and the two

final forms will be the same. However, dV
𝑖
can hardly be the

same when points are irregularly spaced. From this point of
view, our derived final form is more general and takes point
irregularity into account.

3. Modified Smoothed Particle
Hydrodynamics (MSPH)

As a modification to SPH, the MSPH method improves the
accuracy of the approximations especially at points near the
boundary of the domain [16]. It uses Taylor series expansion
of function 𝑓(𝑥, 𝑦) as in (1). Similar to the derivations of (2)
and (3), but with different weight functions 𝜕𝑤/𝜕𝑥, 𝜕𝑤/𝜕𝑦,

𝜕𝑤2/𝜕𝑥2, 𝜕𝑤2/𝜕𝑦2, and 𝜕2𝑤/𝜕𝑥𝜕𝑦, the following equations,
as examples, for 𝜕𝑤/𝜕𝑥 and 𝜕𝑤2/𝜕𝑥2, are obtained:

∫
Ω

𝑓
𝜕𝑤

𝜕𝑥
dV = ∫

Ω

𝑓
0

𝜕𝑤

𝜕𝑥
ℎ dV +

𝜕𝑓
0

𝜕𝑥
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ dV

+
𝜕𝑓
0

𝜕𝑦
∫
Ω

𝜕𝑤

𝜕𝑥
𝑘 dV + 1

2

𝜕2𝑓
0

𝜕𝑥2
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ2dV

+
1

2

𝜕2𝑓
0

𝜕𝑦2
∫
Ω

𝜕𝑤

𝜕𝑥
𝑘2dV +

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ𝑘 dV,

∫
Ω

𝑓
𝜕𝑤2

𝜕𝑥2
dV = ∫

Ω

𝑓
0

𝜕𝑤2

𝜕𝑥2
dV +

𝜕𝑓

𝜕𝑥
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ dV

+
𝜕𝑓

𝜕𝑦
∫
Ω

𝜕𝑤2

𝜕𝑥2
𝑘 dV + 1

2

𝜕2𝑓
0

𝜕𝑥2
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ2dV

+
1

2

𝜕2𝑓
0

𝜕𝑦2
∫
Ω

𝜕𝑤2

𝜕𝑥2
𝑘2dV +

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ𝑘 dV.

(6)

Again the Riemann sum over the support domain Ω is used
to approximate the integrations and a system of five equations
is obtained as

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
ℎ
𝑖
𝑘
𝑖
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝜕𝑓
0

𝜕𝑥

𝜕𝑓
0

𝜕𝑦

𝜕2𝑓
0

𝜕𝑥2

𝜕2𝑓
0

𝜕𝑦2

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
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}
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=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑓
0

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖

𝜕𝑤
𝑖

𝜕𝑥
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖

𝜕𝑤
𝑖

𝜕𝑦
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖

𝜕𝑤2
𝑖

𝜕𝑥2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖

𝜕𝑤2
𝑖

𝜕𝑦2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(7)

Compared with formula (4), the only difference is the
terms multiplied to both sides of (1). In GFDM, 𝑤2ℎ, 𝑤2𝑘,
𝑤2ℎ2/2, 𝑤2𝑘2/2, and 𝑤2ℎ𝑘 are used instead of 𝜕𝑤/𝜕𝑥,
𝜕𝑤/𝜕𝑦, 𝜕𝑤2/𝜕𝑥2, 𝜕𝑤2/𝜕𝑦2, and 𝜕2𝑤/𝜕𝑥𝜕𝑦 in MSPH. As a
result, GFDM avoids computing the derivatives of the weight
function and hence saves computational efforts and leads to
more choice of the weight function.

4. Numerical Tests for
Approximation of Derivatives

In previous sections the deviation of GFDM and MSPH is
presented. In this section, to compare the performance of the
two methods, they are used to approximate the derivatives
of certain 1D and 2D functions. For the convenience of
evaluation, a global error measure is defined as follows:

Error
𝑢
=

1

|𝑢|max
√
1

𝑁

𝑁

∑
𝑖=1

(𝑢(𝑒)
𝑖
− 𝑢(𝑛)
𝑖
)
2

, (8)

where 𝑢 can be 𝜕𝑓/𝜕𝑥, 𝜕𝑓/𝜕𝑦, 𝜕2𝑓/𝜕𝑥2, and 𝜕2𝑓/𝜕𝑦2 and
the superscripts (𝑒) and (𝑛) refer to the exact and numerical
solutions, respectively.

The quartic spline function is used as the weight function
𝑤
𝑖
:

𝑤
𝑖
(𝑑) =

{{
{{
{

1 − 6(
𝑑

𝑑
𝑚

)
2

+ 8(
𝑑

𝑑
𝑚

)
3

− 3(
𝑑

𝑑
𝑚

)
4

, 𝑑 ≤ 𝑑
𝑚
,

0, 𝑑 > 𝑑
𝑚
,

(9)

where 𝑑
𝑚
is the kernel radius taken as 2.1Δ𝑥 (Δ𝑥 is the space

interval) which is usually used in meshless methods.

4.1. One-Dimensional Case. Consider the following function:

𝑓 (𝑥) = (𝑥 − 0.5)
4 , 𝑥 ∈ [0, 1] . (10)

Figure 1 shows the first- and second-order derivatives esti-
mated by GFDM and MSPH and the exact results when

the domain is discretized into 21 equally spaced points. It is
seen that GFDM has better performance in both derivatives
especially for the points near boundaries. When the number
of points increases to 51, the results are similar as exhibited in
Figure 2. Error analysis shown in Table 1 indicates that GFDM
has higher accuracy. With increasing number of points, the
global error decreases.

4.2. Two-Dimensional Case. For the function

𝑓 (𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦, 𝑥, 𝑦 ∈ [0, 1] × [0, 1] , (11)

its first- and second-order derivatives together with estima-
tions by GFDM and MSPH are shown in Figure 3. In each
direction 21 points are employed. As expected, GFDM has
higher approximation accuracy than MSPH for both first-
and second-order derivatives as shown in Table 2.

5. Generalized Finite Difference Time Domain
Method for Computational Acoustics

For computational acoustics, the mostly used approach is
the FDTD method, which was originally designed for the
simulation of electromagnetics [1, 2]. As a finite difference
scheme, its applicability to complex problems suffers from
aforementioned difficulties, for which the generalized finite
difference can be a good alternative. In this section, together
with the basics of computational acoustics, a meshless
method is proposed, in which GFDM is used to discretize
the spatial derivatives and the leap-frog algorithm is used to
discretize the temporal derivatives. By analog with FDTD,
it is referred to as generalized finite difference time domain
(GFDTD) method and is expected to have advantages due to
its meshless property.

The governing equations for acoustic wave propagation
problems are

𝜌
0

𝜕k
𝜕𝑡
= −∇𝑝,

1

𝑐2
0

𝜕𝑝

𝜕𝑡
= −𝜌
0
∇ ⋅ k,

(12)
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Figure 1: Estimates of the first derivative (a) and second derivative (b) of function 𝑓(𝑥) = (𝑥 − 0.5)4 with 21 equally spaced points on [0, 1].

Table 1: Approximation errors in the derivatives of the function
𝑓(𝑥) = (𝑥 − 0.5)4.

Error (%) 𝜕𝑓/𝜕𝑥 𝜕2𝑓/𝜕𝑥2

GFDM with 21 points 0.77 5.81
MSPH with 21 points 0.77 6.02
GFDM with 51 points 0.11 1.55
MSPH with 51 points 0.11 1.61

Table 2: Approximation errors in the derivatives of the function
𝑓(𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦.

Error (%) 𝜕𝑓/𝜕𝑥 𝜕𝑓/𝜕𝑦 𝜕2𝑓/𝜕𝑥2 𝜕2𝑓/𝜕𝑦2

GFDM 0.29 0.29 2.87 2.87
MSPH 0.47 0.47 4.71 4.71

where 𝑝 is pressure, k is particle velocity, 𝜌
0
is the density of

the medium, and 𝑐
0
is the speed of sound.

5.1. Spatial Derivative Approximations by GFDM. The spatial
derivatives on the right-hand side of (12) are approximated
by GFDM. By solving (4) we get the approximations of 𝜕𝑓/𝜕𝑥
and 𝜕𝑓/𝜕𝑦. That is, the derivatives of variable 𝑓 at point
(𝑥
0
, 𝑦
0
) can be approximated by function values at points

inside the support domain centered at (𝑥
0
, 𝑦
0
) as

𝜕𝑓
0

𝜕𝑥
= −𝑚
0
𝑓
0
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑚
𝑖
,

𝜕𝑓
0

𝜕𝑦
= −𝜂
0
𝑓
0
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝜂
𝑖
,

(13)

where 𝑚
0
and 𝜂

0
are the difference coefficients for center

point and 𝑚
𝑖
and 𝜂

𝑖
are coefficients for other points in the

support domain. AsGFDMcan reproduce constant functions
[4], we have

𝑚
0
=
𝑁

∑
𝑖=1

𝑚
𝑖
, 𝜂

0
=
𝑁

∑
𝑖=1

𝜂
𝑖
. (14)

By taking both 𝑝 and k in (12) as 𝑓, the approximated spatial
operators in (12) are accordingly obtained.

5.2. Explicit Leap-Frog Scheme in GFDTD. Generally, the
temporal derivatives on the left-hand side of (12) can be
integrated by any time marching algorithms. Inspired by
the conventional FDTD method, the second-order accurate
explicit leap-frog scheme is used herein, in which two
variables 𝑝 and k are alternatively calculated. The velocity is
computed at the half time step and the pressure is calculated
at the integer time step [2]. After temporal approximations
the semi-discretization of (12) becomes

𝜌
0

k𝑛+1/2 − k𝑛−1/2

Δ𝑡
= −∇𝑝𝑛,

1

𝑐2
0

𝑝𝑛+1 − 𝑝𝑛

Δ𝑡
= −𝜌
0
∇ ⋅ k𝑛+1/2,

(15)

where superscript 𝑛 represents the time step. The leap-frog
scheme is conditionally stable and the time step Δ𝑡 should
satisfy the Courant-Friedrichs-Lewy (CFL) condition; that is,
Δ𝑡 ≤ Δ𝑥/(√dim ⋅ 𝑐

0
), where dim is the dimension of the

problem.
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Figure 2: Estimates of the first derivative (a) and second derivative (b) of function𝑓(𝑥) = (𝑥 − 0.5)4 with 51 equally spaced points on [0, 1].

Substituting (13) into the right-hand side of (15) as the
approximation of the first-order spatial derivatives, the full
discretized system of equations becomes

k𝑛+1/2
0

= k𝑛−1/2
0

+
Δ𝑡

𝜌
0

⋅ [(𝑚
0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑝𝑛
𝑖
) ,(𝜂

0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝜂
𝑖
𝑝𝑛
𝑖
)]

𝑇

,

𝑝𝑛+1
0
= 𝑝𝑛
0
+ Δ𝑡𝜌
0
𝑐2
0

⋅ [(𝑚
0
𝑢𝑛+1/2
0

−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑢𝑛+1/2
𝑖

)

+(𝜂
0
V𝑛+1/2
0

−
𝑁

∑
𝑖=1

𝜂
𝑖
V𝑛+1/2
𝑖

)] ,

(16)

where the particle velocity is a 2D vector k = [𝑢, V]𝑇.
By analog with FDTD, the full discretization scheme

is referred to as generalized finite difference time domain
(GFDTD) method.

6. Numerical Results

To validate the proposed GFDTD method, it is applied
to one- and two-dimensional wave propagation problems.
Three cases are presented. The first two examine the acoustic
wave propagation in one- and two-dimensional domain,
respectively, and the third one is a real case with different
types of boundary conditions. All the cases use (9) as the
weight function. The other parameters are 𝜌

0
= 1 kg/m3 and

𝑐
0
= 346.4m/s and the time interval Δ𝑡 is set to be 1 𝜇s to

satisfy the CFL condition. FDTD solutions are chosen as the
reference.

6.1. One-Dimensional Case. In this case 501 points are equally
spaced in the domain [0, 1]. In themiddle of it, there is a wave
source in Gaussian pulse form:

gp (𝑥) = 𝑒−25|𝑥−0.5|. (17)

As shown in Figure 4, the simulated results at two time
levels 𝑡 = 250 𝜇s and 500𝜇s have good agreement with the
FDTD solutions. Compared with FDTD, the relative errors
concerning the pressure 𝑃FDTD and 𝑃GFDTD are

Error
250
=

𝑃
FDTD − 𝑃GFDTD

2
𝑃

FDTD2
= 0.267 ⋅ 10−2,

Error
500
=

𝑃
FDTD − 𝑃GFDTD

2
𝑃

FDTD2
= 0.519 ⋅ 10−2.

(18)

6.2. Two-Dimensional Case. The Gaussian wave propagation
in two-dimensional domain is simulated in this section. The
length of the square domain is 0.1m and 101 points are
uniformly distributed in each direction. The wave source
starts from the middle of the domain. Figure 5 compares the
solutions of FDTDandGFDTDat 𝑡 = 20 𝜇s.The results along
𝑦 = 0.05m are shown in Figure 5(c). Again, good agreement
is observed and the relative error is less than 2%.

To show the advantage of the proposed GFDTD over the
conventional FDTD, irregular point distribution is examined.
All the points used above are allowed to have ±10% per-
turbation around their original locations to make the distri-
bution irregular, part of which is shown in Figure 6(a) and
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Figure 3: Exact (top) and estimated (a) 𝜕𝑓/𝜕𝑥 and (b) 𝜕2𝑓/𝜕𝑥2 of function 𝑓(𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦 by GFDM (middle) and MSPH (bottom).

the result is shown in Figure 6(b). The comparison of the
result along 𝑦 = 0.05m shown in Figure 6(c) indicates
that, with irregular distribution of computational points, the
Gaussian wave propagates as well as before.

In the GFDTD simulation of wave propagation with
irregular point distribution, the volume associated to each

point had better to be considered as analyzed at the end of
Section 2. In 2D case, the volume associated with a given
point is the area that the point dominates. Here we use
Delaunay triangulation andVoronoi diagram [17] to calculate
the area and the results are shown in Figure 7. The volume of
each point is shown in Figure 7(a). Due to the designed ±10%
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Figure 4: Gaussian wave propagation at two time points: (a) 𝑡 = 250 𝜇s and (b) 500 𝜇s.
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perturbation, the volume fluctuates around 1−6m2. Based on
Delaunay triangulation and Voronoi diagram, the area asso-
ciated with a red point is indicated by the area surrounded by
the blue lines as shown in Figure 7(b). To compare the results
with regular and irregular point distributions, the values on
regularly distributed points have to be firstly interpolated
by the calculated results with irregularly spaced points. The
third-order accurate cubic interpolation method [17] is used
herein. The relative error is

Error =
𝑃

iriegular − 𝑃regular
2

𝑃
regular2

= 1.58 ⋅ 10−2. (19)

The relatively small error is due to the gentle irregular point
distribution.That is, if the point irregularity is small, the effect
of dV
𝑖
is negligible. This is consistent with Benito’s results [9–

11].

6.3. Two-Dimensional Case with Effect of Boundary Con-
ditions. In Sections 6.1 and 6.2, wave propagation inside
a domain is simulated. In this section, to show the effect
of boundaries, which is of high importance in transient
acoustics, sound wave propagation in a rectangular tube is
studied. Two different kinds of boundary conditions includ-
ing reflection and absorbing boundary are considered. At the
left edge of the computational domain there is a Gaussian
pulse as the source term. The upper and bottom boundaries
are reflection layers and the second-order Mur’s absorbing
boundary condition [18] exists at the right side boundary. In
this case, the same 𝜌

0
and 𝑐
0
are used as before and the time

interval Δ𝑡 is 1 𝜇s. Inside the computational domain 64 × 100
points with spatial interval Δ𝑥 = Δ𝑦 = 1mm are evenly
spaced.

6.3.1. Source Term. The left is a wave source with pressure
given by the Gaussian pulse:

gp (𝑡) = 𝑒−{(𝑡−𝑇)/0.29𝑇}
2

, (20)

where 𝑇 = 0.646/𝑓
0
and 𝑓

0
= 10KHz.

6.3.2. Reflection Boundary Condition. To simulate reflections
at the upper and bottomwall boundaries, themodel proposed
by Yokota et al. [19, 20] and widely used in room acoustics
is employed herein. In this model, the normal component
of particle velocity and the pressure of the points on the
boundary are supposed to satisfy the following condition:

knorm =
𝑝

𝑍norm
, (21)

where 𝑍norm is the normal acoustic impedance on the
boundary given by

𝑍norm = 𝜌0𝑐0
1 + √1 − 𝛼norm

1 − √1 − 𝛼norm
. (22)

Here the normal sound absorption coefficient 𝛼norm is taken
as 0.2 as in [19].

6.3.3. Absorbing Boundary Condition. At the right boundary,
second-order Mur’s absorbing boundary condition [18] is
applied:

1

𝑐
0

𝜕2𝑝
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+
1

𝑐2
0

𝜕2𝑝

𝜕𝑡2
+
1

2

𝜕2𝑝

𝜕𝑦2
= 0. (23)

By applying (12) to (23) and performing time integration, (23)
degenerates to

𝜕𝑝

𝜕𝑥
+
1

𝑐
0

𝜕𝑝

𝜕𝑡
−
𝑐
0
𝜌
0

2

𝜕𝑢

𝜕𝑦
= 0. (24)

When GFDTD is used, the discrete form of (24) is obtained
as

𝑝𝑛+1
0
− 𝑝𝑛
0

Δ𝑡
=
𝑐2
0
𝜌
0

2
(𝜂
0
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0

−
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𝜂
𝑖
𝑢𝑛+1/2
𝑖

)

− 𝑐
0
(𝑚
0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑝𝑛
𝑖
) .

(25)

6.3.4. Results. After applying the source term and the two
boundary conditions into our case, the wave is considered
to be propagating from left to right inside a tube and gets
absorbed at the end of it. Figure 8 shows the simulated results
after 200𝜇s with a color map image that clearly depicts the
pressure distribution. In Figure 9, the results after 350 𝜇s are
depicted and the absorbing boundary at the right edge leads
to no reflection.

7. Conclusion

A new derivation of the generalized finite difference method
(GFDM)with Taylor series expansion generates the same for-
mulation as its conventional derivation and clearly demon-
strates its relationship with meshless particle methods.
GFDM has better performance in derivative approxima-
tions than the particle methods. The proposed generalized
finite difference time domain (GFDTD) method has been
successfully applied to one- and two-dimensional acoustic
wave propagation problems with reflection and absorbing
boundary conditions. The numerical results are in line with
the FDTD reference solutions even with irregular point
distribution. The GFDTD method has high potentials in
solving transient acoustic problems with moving boundaries,
which deserves further studies.

Appendix

Conventional Derivation of GFDM

Considering the 2D case, for the sameTaylor expansion in (1),
we consider an energy norm 𝐵:

𝐵 =
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Figure 8: Soundwave propagation in a two-dimension tube. (a) FDTD results, (b) GFDTD results, and (c) the comparison along 𝑦 = 0.034m
at 𝑡 = 200 𝜇s.
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Figure 9: Soundwave propagation in a two-dimension tube. (a) FDTD results, (b) GFDTD results, and (c) the comparison along 𝑦 = 0.034m
at 𝑡 = 350 𝜇s.
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where 𝑓
𝑖
= 𝑓(𝑥
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and 𝑤
𝑖
is weighing function with compact support.

The solution of the derivatives is obtained by minimizing
the norm 𝐵, that is,

𝜕𝐵

𝜕 {𝐷𝑓}
= 0, (A.2)

with
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For example, the first equation is
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Equation (A.4) and the other four give the following
system:
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Sea ice is one of the most critical marine disasters, especially in the polar and high latitude regions. Hyperspectral image is suitable
for monitoring the sea ice, which contains continuous spectrum information and has better ability of target recognition. The
principal bottleneck for the classification of hyperspectral image is a large number of labeled training samples required. However,
the collection of labeled samples is time consuming and costly. In order to solve this problem, we apply the active learning
(AL) algorithm to hyperspectral sea ice detection which can select the most informative samples. Moreover, we propose a novel
investigated AL algorithm based on the evaluation of two criteria: uncertainty and diversity. The uncertainty criterion is based on
the difference between the probabilities of the two classes having the highest estimated probabilities, while the diversity criterion is
based on a kernel 𝑘-means clustering technology. In the experiments of Baffin Bay in northwest Greenland on April 12, 2014, our
proposed AL algorithm achieves the highest classification accuracy of 89.327% compared with other AL algorithms and random
sampling, while achieving the same classification accuracy, the proposed AL algorithm needs less labeling cost.

1. Introduction

As a member of the global marine and atmospheric system,
sea ice with the high albedo has impacted the marine, power
between the atmospheres, and heart and material exchange.
Also sea ice plays a key role in the radiation balance, energy
balance, andmass balance on the ocean surface [1]. Expect for
the influence on marine hydrology, atmospheric circulation,
and ecosystems, sea ice has a great threat to the shipping and
the facilities ofmarine resource development and has become
one of the most prominent oceanic disasters in the polar and
high latitude regions.

For the prevention and mitigation of the ice disasters
and the hazard assessment, we not only need to obtain
real-time sea ice area and the outer line information, but
also need more detailed data about types, thickness, and
distribution of sea ice. However, for the traditional methods
of sea ice detection, it is very difficult to get the continuous
and large-area sea ice condition, while, remote sensing is

an effective mean that can get the large area of sea ice
data rapidly. Currently, the main research areas of sea ice
detection with the remote sensing are in the polar and
high latitude regions. Furthermore, the countries carrying
out the relevant research include America, Canada, Norway,
Australia, and German. These researches mainly aimed at
the moderate-resolution remote sensing detections, such
as airborne remote sensing, moderate-resolution imaging
spectrometer (MODIS) [2], and synthetic aperture radar
(SAR). Shi et al. [3] extracted the information of sea ice by
the surface temperature based onNOAA/AVHRRand got the
relation between ice thickness and reflectivity by empirical
formula; Meyer et al. [4] introduced an approach to map
landfast ice extent based on L-band SAR data; Ozsoy-Cicek
et al. [5] verified that active microwave can depart the ice
edge and floating ice by field survey; Hong [6] proposed
to use passive microwave for the inversion of small-scale
roughness on ice surface and refractive index of sea ice.
In contrast with the traditional remote sensing technology,
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the hyperspectral remote images contain nearly continuous
spectral information and the abundant spatial information,
which has a higher capability of the target recognition and
can greatly improve the accuracy of target detection. From
the published literatures, the researches on sea ice detection
with hyperspectral technology are rarely involved by far.

Many methods have been developed in the classification
of hyperspectral images, which can be mainly concluded in
two types [7, 8]: the unsupervised classification and super-
vised classification.Unsupervised classification does not need
priori knowledge and can classify the primary hyperspectral
images directly, which is simple and easy to implement, but
the classification accuracy is low; the supervised classification
needs some priori knowledge in advance and to get the
classifier by training the labeled samples; finally we can use
the trained classifier to categorize the unlabeled samples,
which can get accurate classification accuracies.The classifier
based on supervised classification can be obtained by the
following ways: probabilistic model, empirical risk mini-
mization (ERM) and structural risk minimization (SRM)
[9, 10].Themost classic method based on probabilistic model
is maximum likelihood classifier (MLC), which has higher
computational complexity and requires a large number of
training samples in order to get better classification results
[11]; the commonly used methods based on ERM theory
include the decision tree and neural network, which are easier
to face the problems of “Hughes” and “overfitting” in the
case of high dimension and small sample; the SRM principle
considers the ERM and SRM simultaneously and increases
the generalization capabilities for future samples, where the
classic method based on the SRM principle is support vector
machine (SVM). At present, SVM has got great progress
in the way of theory research and algorithm realization
and has obtained better classification results compared with
traditional classifiers [12–16]. For example, Melgani and
Bruzzone [17] compared the different SVMmethods with the
𝑘-means and neural network based on radial basis function
(RBF) in the original feature space and the feature subspace.
Camps-Valls et al. [18] put forward to classify the crop by
SVM and compare with other neural network methods,
such as a multilayer perception neural network and RBF.
Pal and Mather [19] compared the SVM with MLC and
multilayer perception neural network and verified the results
with Landsat-7.

The classification of hyperspectral remote sensing image
often applies the supervised classification techniques, which
require a large amount of labeled samples.The quality and the
number of the available training samples are important for
the accurate classification images. Because of the limitations
of environment and conditions, the measured data used
in the sea ice detection are very rare. The interpretation
of hyperspectral images need to be analyzed by traditional
remote sensing images with the higher spatial resolution at
the same time and scene. But the available training samples
are usually not enough for adequate learning of the classifier.
How tomark as few samples as possible artificially and obtain
better classification performance becomes the key issues of
sea ice detection. In order to solve the classification problems,
active learning (AL) approaches are proposed based on SVM

which have got remarkable success in the real-world learning.
The SVM classifier is fit for AL because its classification rule
can be characterized by a small number of support vectors
that can be easy to update over the successive iterations [20].
At each iteration, the classifiers do not passively accept the
training samples provided by the user but actively select the
most valuable samples for the current classification model.
The obtained labeled samples by the user are incorporated in
the training set and the classifiers is retrained and updated. In
this way, we can greatly reduce the labeling time and improve
the classification accuracy. In recent years, researchers have
conducted a large number of studies on the active learning
and proposedmanyALmethods. Tong et al. [21, 22] proposed
the margin sampling (MS), which selects the samples closest
to the current separating hyperplane as the most uncertainty
and informative samples. Another popular strategy is given
by committee-based active learners. A set of unlabeled sam-
ples are trained by different classifiers. The approach selects
the examples where the disagreement is maximal between
the classifiers. Afterward, the method based on entropy is
proposed. Examples with the highest value of entropy are
selected to query the user. In [23], Joshi et al. put forward
the best versus second-best (BvSB) approach, which is based
on the difference between the probabilities of the two classes
having the highest estimated probabilities as a measure of
uncertainty. In addition, there aremany other AL algorithms,
such as the Fisher information matrix method. In this paper,
we propose a novel investigated AL technology on the
classification of hyperspetral sea ice images, which can select
the most informative samples and get good classification
results.

2. AL Algorithms

2.1. AL Process Model. AL was put forward by professor
Angluin from Yale University in the paper of “Queries and
concept learning” [24]. Currently, the AL algorithms are
widely used in the text classification and image retrieval.
However, AL can be applied to the classification of remote
sensing images by considering the specific features of this
area. In the remote sensing problems, the land-cover types
of the area are selected by the three methods, such as photo
interpretation, ground survey andmixed strategies. But, these
strategies are implemented with high costs and much time.
So we expect that the AL process can be conducted with few
labeled training samples without reducing the convergence
capability. The classification framework based on AL is
described as shown as the Figure 1.

The active learning process is conducted according to an
iterative process that can be described by the form (𝐶, 𝑄, 𝐸,
𝑇, 𝑈) [25], in which, 𝐶 is a supervised classifier trained; 𝑇

is the labeled training set; 𝑄 is the query function, in order
to select the most informative unlabeled samples from the
unlabeled sample pool 𝑈; 𝐸 is an human expert who can
label the selected samples with the above mentioned three
strategies.

The iterative process of AL can be described as fol-
lows. First, the classifier 𝐶 is trained on the initial train-
ing set 𝑇 which made up of few labeled samples. After
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Figure 1: The classification framework based on AL.

the initialization, the set of samples are selected by 𝑄 query
function from the pool 𝑈 and query the expert 𝐸.Then, these
labeled samples are included into 𝑇 and the classifier 𝐶 is
retained by the updated training set. The retrained process
continues until a stopping criterion (e.g., the labeling costs
or the generalization accuracy reached some standard) is
satisfied. The algorithm is described as follows.

Algorithm 1 (active learning).

Inputs.The inputs are labeled sample set 𝑇, unlabeled sample
set 𝑈, classifier 𝐶 (Initial), and query function 𝑄.

Output. the output is updated classifier 𝐶.

(1) Train the initial classifier 𝐶 on labeled sample set 𝑇.
(2) Classify the unlabeled samples 𝑈 by classifier 𝐶.
(3) Repeat.
(4) Select the unlabeled samples with the query function

𝑄 from the unlabeled sample pool 𝑈.
(5) Label the unlabeled samples by human expert 𝐸.
(6) Add the new labeled samples to the training set 𝑇.
(7) Retrain the classifier 𝐶.
(8) Until the stopping criteria is satisfied.

From the above mentioned descriptions, the selection of
classifier and sampling strategy are two important compo-
nents of AL.

2.2. The Classification Model. Because SVM shows the out-
standing performance in solving small sample, nonlinear and
high-dimensional pattern recognitions, we choose the SVM
classifier in this paper. SVM is only directly applicable for
two-class tasks. Aiming at solving themulticlass classification
problems of hyperspectral sea ice images, the implementation
of SVM is approached by multiclass strategy.

Supposing that the training sample set 𝑇 is made up of
𝑁 independent samples, which can be described (𝑥

𝑖
, 𝑦
𝑖
)
𝑁

𝑖=1
,

where 𝑥
𝑖
denotes the training samples and 𝑦

𝑖
∈ {+1, −1}

denotes the associated labels. The basic thought of SVM is
to map the data through a proper nonlinear transformation
into a higher dimensional feature space, in order to find an
optimal hyperplane which maximizes the margin between
the two classes.

The classification problem can be transformed into a
typical convex programming problem [5] on the basis of
Kuhn-Tucker theorem. Accordingly, the convex program-
ming problem can be converted into the following the dual
linear programming problem by Lagrange multipliers 𝛼

𝑖

associated with the original training patterns 𝑥
𝑖
:

Max 𝐽 (𝑎) = Max
{{

{{

{

𝑁

∑

𝑖=1

𝛼
𝑖

−
1

2

𝑁

∑

𝑖=1
𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾 (𝑥
𝑖
, 𝑥
𝑗
)

}}

}}

}

s.t.
𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖

= 0 𝛼
𝑖

≥ 0; 𝑖 = 1, . . . , 𝑁.

(1)

The dual linear problem has global optimization. The 𝛼
𝑖

values corresponding with the nonsupport vectors are zero,
so the optimal classification decision function used for binary
problem is obtained by solving above problems:

𝑓 (𝑥) = sgn(∑

SV
𝛼
𝑖
𝑦
𝑖
𝐾 (𝑥
𝑖

⋅ 𝑥) + 𝑏) , (2)

where SV is the set of support vectors, 𝛼
𝑖
and 𝑏 are the

parameters used to define the optimal hyperplane, and 𝐾(⋅, ⋅)

is the kernel function (we adopt the radial basis kernel
function with better classification performance).

The multiclass classification problems depend on the
binary classification, which can be transformed into multiple
binary classification problems to solve. The construction of
multiclass SVM classifier can be approached in two methods
[26, 27]. Firstly, by constructing a series of binary classifiers,
the decision is taken by combining the partial decisions
of the single members of the ensemble [26, 27]. There are
two common techniques, namely, the one-against-all (OAA)
strategy and one-against-one (OAO) strategy. Secondly, the
method is represented by SVM formulated directly as a
multiclass optimization problem. The second method has
poor stability and can affect the classification accuracy for
the multiclass optimization. The OAO method for SVM
is computationally efficient and shows good classification
performance [28]. So we use OAO approach for multiclass
classification in the paper. If there are 𝑘 classes of data, then
we need to construct 𝑘(𝑘 − 1)/2 binary classifiers in total. In
this case, the binary classifier can separate class 𝑖 from class 𝑗

by means of a discriminant function 𝑓
𝑖𝑗

(𝑥):

𝑓
𝑖𝑗 (𝑥) = sgn [𝑤

𝑖𝑗
⋅ 𝑥 + 𝑏

𝑖𝑗
]

(𝑖 = 1, . . . , 𝑘; 𝑗 = 1, . . . , 𝑘; 𝑖 < 𝑗) ,

(3)

where 𝑤
𝑖𝑗 is the normal vector of the hyperplane discriminat-

ing the class 𝑖 and the class 𝑗. The final decision in the OAO
strategy is taken on the basis of the “winner-takes-all” rule,
which corresponds to the following maximization:

𝑀 = argmax(

𝑘

∑

𝑗=1,𝑗 ̸=𝑖

sgn (𝑓
𝑖𝑗 (𝑥))) . (4)
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Figure 2: Architecture of the BvSB method.

Sometimes, conflict situations may occur between two
different classes characterized by the same score. Such ambi-
guities can be solved by selecting the class with the smaller
index value of the class.

2.3. The Sampling Strategy. The sampling strategy is crucial
to distinguish the pros and cons of different AL algorithms.
The selection of unlabeled samples with different strategies
depends on the information content of the samples (i.e.,
the influence of the unlabeled samples on the generalization
capabilities of classifier). Currently, the sampling strategy is
widely used on the basis of uncertainty. In which, MS is
one of the popular and effective measure for active SVM
learning, but this method is only applicable to binary SVM
classification problem. Although the entropy method is
suitable for multiclass classification, it has a drawback. A
major shortcoming of the entropy method is that its value is
heavily affected by probability values of unimportant classes,
which make the classifier confused [23]. In order to solve
the aformentioned problems, the BvSBmethodwas proposed
which can achieve better performance in the multiclass
classification.

It is very important to observe that the above mentioned
strategies consider only the uncertainty. In the way, the
selected samples may have the same label after querying the
user. It means that there will be a lot of redundant samples
selected, which do not provide additional information and
are unfavorable for the algorithm convergence. In order
to address the shortcomings, we adopted the enhanced
clustering-based diversity criterion (ECBD) based on the
diversity distribution of the samples. In the following sec-
tions, we will introduce the BvSB method and the EBCD
method, respectively.

3. AL Algorithm Based on Uncertainty
and Diversity

3.1.TheBvSBMethodBased on theUncertainty. Let us assume
that the unlabeled sample set is 𝑈 = {𝑥

1
, . . . , 𝑥

𝑛
} and the

associated labels are denoted by𝑌 = {𝑦
1
, . . . , 𝑦

𝑘
}, where𝑝(𝑦

𝑖
|

𝑥
𝑖
) denotes the membership probability [29]. Under the

BvSB criterion, we only consider the difference as a measure
of uncertainty between the probabilities of the two classes
having the highest estimated probability. The optimal label
and the suboptimal label are denoted by 𝑦Best and 𝑦Second-best,
respectively, but the other classes are ignored.

The probabilities of the optimal label and the suboptimal
label for sample 𝑥

𝑖
are represented by 𝑝(𝑦Best | 𝑥

𝑖
) and

𝑝(𝑦Second-best | 𝑥
𝑖
); then the criterion can be described as

𝑐uncertainty (𝑥
𝑖
) = argmin

𝑥𝑖∈𝑈

(𝑝 (𝑦Best | 𝑥
𝑖
) − 𝑝 (𝑦Second-best | 𝑥

𝑖
)) .

(5)

The BvSB method is taken as a more greedy approach
as a measure of uncertainty. We use the OAO strategy for
multiclass classification. We assume that 𝐶

𝑖,𝑗
(𝑖, 𝑗 ∈ 𝑌) is the

classifier used to discriminate the sample 𝑥 between the class
𝑖 and class 𝑗. If the true class label of an unlabeled sample 𝑥

is 𝑙, once its label is marked and added to the training set,
whichwillmodify the boundary of the classifiers that separate
class 𝑙 from the other classes. We denote these classifiers by
𝐶
𝑙

= {𝐶
𝑙,𝑖

(𝑖, 𝑙 ∈ 𝑌, 𝑖 ̸= 𝑙)}. Because the true label of the sample
𝑥 is unknown, we use the optimal label 𝑦best as the evaluation
of the true label. Thus, the classification set in contention is
called 𝐶

𝑦best
= {𝐶

𝑦best ,𝑦𝑖
(𝑖, 𝑦best ∈ 𝑌, 𝑦

𝑖
̸= 𝑦best)}. For the

classifier set 𝐶
𝑦best

, the uncertainty degree of sample 𝑥 can be
denoted by the difference in the estimated class probability
value 𝑝

𝑦best
− 𝑝
𝑖
, which can be taken as an indicator describing

the information content of sample 𝑥. Byminimizing the value
of𝑝
𝑦best

−𝑝
𝑦𝑖
, that ismaximizing the classification uncertainty,

the BvSB criterion is obtained:
𝑐uncertainty (𝑥)

= argmin
𝑥𝑖∈𝑈

( min
𝑦∈𝑌,𝑦𝑖 ̸=𝑦Best

(𝑝 (𝑦best | 𝑥) − 𝑝 (𝑦
𝑖

| 𝑥)))

= argmin
𝑥𝑖∈𝑈

(𝑝 (𝑦best | 𝑥) − 𝑝 (𝑦second-best | 𝑥)) .

(6)

According to formula (6), 𝑚 samples with lower 𝑐uncertainty
are selected as uncertainty samples. From the view of chang-
ing the classification boundaries, the BvSB criterion can
be considered an efficient approximation for selecting the
informative samples. Figure 2 shows the architecture based
on the BvSB method.

3.2. The ECBD Method Based on the Diversity. Considering
the distribution of uncertain samples at the diversity step,
clustering is an effective solution to select the most diverse
samples. In the previous section, the similar samples may
be selected as the informative samples by the BvSB method.
So we consider combining the sampling strategy with unsu-
pervised clustering. In this case, the representative samples
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are selected to label from different clusters. That is to say,
the ℎ < 𝑚 samples are selected by clustering, where 𝑚

samples are obtained in the uncertainty step.The standard 𝑘-
means clustering algorithm is applicable to original feature
space, while the SVM classification hyperplane works in the
kernel space. Therefore, the selected samples in the original
space may not be fit for the kernel space. To overcome
this shortcoming, we adopt the enhanced clustering-based
diversitymethod (ECBD) by clustering in kernel space, which
is improved based on the standard 𝑘-means clustering. The
ECBD is described as follows [20].

Assuming that 𝑚 samples (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) are selected

at the uncertainty step, the idea of kernel 𝑘-means is to
divide 𝑚 samples into ℎ clusters (𝐶

1
, 𝐶
2
, . . . , 𝐶

ℎ
) in the kernel

space, then the most uncertainty samples of each cluster is
taken as the representative sample. The center of each cluster
is denoted by (𝜌

1
, 𝜌
2
, . . . , 𝜌

ℎ
). We suppose that sample 𝑥

𝑖

mapped into the kernel space is indicated by 𝜑
𝑖

= 0(𝑥
𝑖
). The

Euclidean distance between the sample 𝜑
𝑖
and the sample 𝜑

𝑗

is written as

𝐷
2

(𝜑
𝑖
, 𝜑
𝑗
) =


0 (𝑥
𝑖
) − 0 (𝑥

𝑗
)


2

= 0
2

(𝑥
𝑖
) − 20 (𝑥

𝑖
) ⋅ 0 (𝑥

𝑗
) + 0
2

(𝑥
𝑗
)

= 𝐾 (𝑥
𝑖
, 𝑥
𝑖
) − 2𝐾 (𝑥

𝑖
, 𝑥
𝑗
) + 𝐾 (𝑥

𝑗
, 𝑥
𝑗
) .

(7)

Let ∇
𝑘
be the cluster center in the kernel space that

∇
𝑘

=
1

𝐶𝑘


𝑚

∑

𝑖=1

𝛿 (𝜑
𝑖
, 𝐶
𝑘
) 𝜑
𝑖
, (8)

where |𝐶
𝑘
| denotes the total number of samples in the cluster

𝐶
𝑘
and is computed as |𝐶

𝑘
| = ∑

𝑚

𝑖=1
𝛿(𝑥
𝑖
, 𝐶
𝑘
). 𝛿(𝑥

𝑖
, 𝐶
𝑘
) (1 ≤

𝑘 ≤ ℎ) shows the indicator function:

𝛿 (𝑥
𝑖
, 𝐶
𝑘
) =

{

{

{

1 𝐷 (𝑥
𝑖
, 𝑚
𝑘
) < 𝐷 (𝑥

𝑖
, 𝑚
𝑗
) ∀𝑗 ̸= 𝑘

0 otherwise.

(9)

The distance between 𝜑
𝑖
and ∇

𝑘
can be expressed as

𝐷
2

(𝜑
𝑖
, ∇
𝑘
) =



𝜑
𝑖

−
1

𝐶𝑘


𝑚

∑

𝑗=1

𝛿 (𝜑
𝑗
, 𝐶
𝑘
) 𝜑
𝑗



2

= 𝐾 (𝑥
𝑖
, 𝑥
𝑖
) + 𝑓 (𝑥

𝑖
, 𝐶
𝑘
) + 𝑔 (𝐶

𝑘
) ,

(10)

where

𝑓 (𝑥
𝑖
, 𝐶
𝑘
) = −

1
𝐶𝑘



𝑚

∑

𝑗=1

𝛿 (𝜑
𝑗
, 𝐶
𝑘
) 𝐾 (𝑥

𝑖
, 𝑥
𝑗
) ,

𝑔 (𝐶
𝑘
) =

1

𝐶𝑘

2

𝑚

∑

𝑗=1

𝑚

∑

𝑠=1

𝛿 (𝜑
𝑗
, 𝐶
𝑘
) 𝛿 (𝜑
𝑠
, 𝐶
𝑘
) 𝐾 (𝑥

𝑗
, 𝑥
𝑠
) .

(11)

By applying (10) to the standard 𝑘-means clustering,
we obtain the kernel-based 𝑘-means algorithm described as
follows:

(1) Assign the initial value of 𝛿(𝑥
𝑖
, 𝐶
𝑘
) (𝑖 = 1, 2, . . . , 𝑚,

𝑘 = 1, 2, . . . , ℎ), and ℎ initial clusters 𝐶
1
, 𝐶
2
, . . . , 𝐶

ℎ

are obtained.
(2) For each cluster 𝐶

𝑘
, compute |𝐶

𝑘
|, 𝑓(𝑥

𝑖
, 𝐶
𝑘
) and

𝑔(𝐶
𝑘
).

(3) For each training sample 𝑥
𝑖
and cluster 𝐶

𝑘
, assign 𝑥

𝑖

to the closest cluster:

𝛿 (𝑥
𝑖
, 𝐶
𝑘
)

=
{

{

{

1 𝑓 (𝑥
𝑖
, 𝐶
𝑘
) + 𝑔 (𝐶

𝑘
) < 𝑓 (𝑥

𝑖
, 𝐶
𝑗
) + 𝑔 (𝐶

𝑗
) ∀𝑗 ̸= 𝑘

0 otherwise

(12)

(4) Repeat step (2) and step (3) until converge.
(5) For each cluster 𝐶

𝑘
, select the sample that is closest to

the center in the kernel space as the pseudocenter of
𝐶
𝑘
:

𝑚
𝑘

= arg min
𝑥𝑖 that 𝛿(𝑥𝑖 ,𝐶𝑘)=1

(𝐷
2

(0 (𝑥
𝑖
) , ∇
𝑘
)) . (13)

After 𝐶
1
, 𝐶
2
, . . . , 𝐶

ℎ
are obtained, the most informative

sample is selected as the representative sample of each cluster.
This sample is defined as follows:

𝑥
BvSB+ECBD
𝑘

= arg min
𝑥𝑖 that 𝛿(𝑥𝑖 ,𝐶𝑘)=1

{𝑐uncertainty (𝑥
BvSB
𝑖

)}

𝑘 = 1, 2, . . . , ℎ,

(14)

where 𝑥
BvSB+ECBD
𝑘

represents the 𝑘th sample chosen by the
sampling strategy (i.e., BvSB + ECBD), and it is the most
uncertain sample of the 𝑘th cluster (i.e., the sample that has
minimum 𝑐uncertainty(𝑥) in the 𝑘th cluster). Totally, ℎ samples
are selected using (14), one for each cluster.

3.3. AL Algorithm Based on BvSB + ECBD. Based on the
considerations of the uncertainty of the current classifier
and the diversity of the sample distribution, we design the
multiclass classification algorithm based on the BvSB +
ECBDmethod.The BvSB criterion aims at selecting the most
informative samples; ECBD criterion is used to select the
diversity samples by clustering in the kernel space. In this
case, the most representative samples are selected to query
the user for sample labels. Then the obtained samples and
the corresponding labels are together incorporated into the
training samples and the classifier is retrained.The algorithm
can be summarized as follows.

Algorithm 2 (Proposed BvSB + ECBD).

Inputs

𝑚 is the number of samples selected based on the
BvSB method
ℎ is the number of samples selected to add to training
set at each iteration
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Figure 3: (a) Hyperspectral image marked with labeled samples (a false color image composed of R: 84, G: 49, and B: 25). (b) Partial
hyperspectral image taken from (a).

𝐾ini is the number of samples selected as initial
training samples

Output

𝑋 is set of unlabeled samples added in the training set

(1) The Selection of Training Samples and the Classifier. The
training set and the unlabeled pool are marked as 𝑇 and 𝑈,
respectively. In the initial classification, 𝐾ini samples from the
pool𝑈 are selected and labeled by the user, and the sample set
is denoted by 𝑆ini.The training sample set𝑇 and the unlabeled
pool 𝑈 are updated: 𝑇 = 𝑆ini, 𝑈 → 𝑈 \ 𝑆ini. The SVM
classifier is trained by the training set 𝑇, then we compute the
probabilities of all unlabeled samples in the pool 𝑈 samples
belonging to each class, which is denoted by 𝑝(𝑦

𝑖
| 𝑥), 𝑦

𝑖
∈ 𝑌,

and 𝑥 ∈ 𝑈.

Repeat

(2) ALBased on the BvSBMethod.According to aforeobtained
probabilities 𝑝(𝑦

𝑖
| 𝑥) of each unlabeled samples, 𝑚 samples

are chosen from𝑈 by formula (5), which ismarked as𝑋BvSB =

{𝑥
BvSB
1

, 𝑥
BvSB
2

, . . . , 𝑥
BvSB
𝑚

}.

(3) The Clustering Based on ECBD in the Kernel Space. The
𝑚 samples are clustered in the kernel space, and detailed
description is shown in Section 3.2. The ℎ samples are
selected according to formula (14), which is marked as
𝑋BvSB+ECBD = {𝑥

BvSB+ECBD
1

, 𝑥
BvSB+ECBD
2

, . . . , 𝑥
BvSB+ECBD
ℎ

}.
These selected samples are marked as the representative
samples by the user and denote them by 𝑋 = 𝑋BvSB+ECBD.

(4) Updating the Training Sample Set and Retraining the
Classifier. Renew the training sample set and unlabeled

sample set with new selected sample 𝑇 = 𝑇 ∪ 𝑋, 𝑈 → 𝑈 \ 𝑋,
then the SVM classifier are retrained with the novel training
sample set.

Until algorithm converges or satisfies the number of
iterations.

4. Experiment Analysis

4.1. Data set Description. Hyperion sensor is mounted on the
Earth observation satellite which was launched by NASA in
November 2000.Hyperspectral image has a total of 242 bands
and spatial resolution of 30m. There are 220 unique spectral
channels collected with a complete spectrum covering from
357–2576 nm. Because it is being in the experimental stage,
the coverage of hyperspectral image is small, only 7.7 km ×

44 km [30]. Because hyperspectral images have the high
resolution and continuous spectrums, it has been widely used
in vegetation studies, geological surveys, fine agriculture,
marine remote sensing and so on.

Thedata set is a hyperspectral image acquired on amarine
area of Baffin Bay in northwest Greenland on April 12, 2014.
The data are L1Gst level through geometric correction, pro-
jection registration and topographic correction. This image
consists of 2395 × 1769 pixels (which include background
pixels). The number of bands is initially reduced to 176
by removing the bands with low signal-to-noise and water
absorption. The available labeled samples (1678 samples)
are collected by Landsat-8 image interpretation, which are
illustrated in Figure 3(a). Figure 3(b) is a subset of the entire
image in Figure 3(a). As can be seen from the image, there are
three different classes available, namely seawater, thin ice and
thick ice. All labeled samples are randomly divided to derive a
pool 𝑈 and the validation set 𝑉. Here we use Landsat-8 data
with a spatial resolution of 15m as the test set at the same
time and same scene. The final classification performance is
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Table 1: Number of samples of each class in 𝑈, 𝑉 for the data set.

Class 𝑈 𝑉

Seawater 343 200
Thin ice 339 200
Thick ice 396 200
Total 1078 600

evaluated by calculating the Kappa coefficient and the overall
classification accuracy. The classes and the related number of
samples used in the experiments are shown in Table 1.

4.2. Design of Experiments. In our experiments, without
losing generality, we adopt an SVM classifier with radial
basis function (RBF) kernel.The values for the regularization
parameter 𝐶 and the spread 𝛾 of the RBF kernel parameters
are acquired by the cross validation grid search method on
the basis of the validation set. Finally, the best value of the
parameter 𝐶 is 32; the optimal kernel width parameter 𝛾 is
found equal to 16.

The experiments are designed in order to compare the
classification accuracy with different AL algorithms that
are, respectively, BvSB and the investigated and proposed
techniques (BvSB + 𝑘-means and BvSB + ECBD). In the
experiments with AL algorithms, three samples of each class
are randomly chosen from the pool 𝑈 as initial training
samples, and the rest are considered as unlabeled samples.
All experimental results are referred to the average classifi-
cation accuracies obtained in ten trials because of ten initial
randomly selected training samples. At each round of active
learning in the following, firstly, in the uncertainty step, we
select 𝑚 samples on the basis of uncertainty (the difference
between the highest estimated probability values of the two
classes, i.e., BvSB) to query the user for labels. In the diversity
step, the most diverse ℎ < 𝑚 samples are chosen based on
either standard 𝑘-means or ECBD to query the user for labels.
Then the selected samples and the corresponding labels are
together incorporated in the training set. Finally, the classifier
is retrained. The related number of samples chosen by the
different methods is shown in Table 2.

4.3. Experimental Results. This section reports experimental
results with the random sampling and AL algorithms, that
are respectively BvSB, BvSB + 𝑘-means, and BvSB + ECBD.
Results are presented as learning rate curves, which show the
relation between the average overall classification accuracies
and the active learning rounds used to train the SVM
classifier. By analyzing Figure 4, we can observe that three
AL algorithms are generally better than random sampling.
The results show that our proposed BvSB + ECBD technique
shows the highest accuracies in most of the iterations.
Furthermore, given the same size of training samples, as
indicated by the same point on the 𝑥-axis, BvSB + ECBD
shows significantly improved classification accuracy. From
another perspective, in order to achieve the same value
of classification accuracy (same point on the 𝑦-axis), our
proposed active learning algorithm needs far fewer training
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Figure 4: Classification of overall accuracy obtained with different
AL algorithms and sampling.

Table 2: Number of samples chosen by the different methods.

Method 𝑚 ℎ

BvSB 3 —
BvSB + 𝐾-means 12 3
BvSB + ECBD 12 3

Table 3: Percentage reduction in the number of training samples.

BvSB + ECBD
selection rounds

Random selection
rounds

%Reduction in
training samples

1 8 63.64
2 9 58.33
5 17 60
8 19 50

samples than random selection from Table 3. The result
indicates that the proposed method selects the most useful
samples at each iteration, so that user input can be effectively
utilized on the most relevant samples [23].

From Figure 4, one can know that the BvSB + ECBD
method provides more informative samples compared to
BvSB and BvSB + 𝑘-means methods and achieves higher
accuracies with the same active learning rounds. Figures 5
and 6 show the distribution of the chosen training samples
and the pool (considering bands 49 and 84 of the hyper-
spectral image) after six iterations of the AL process with the
BvSB method and BvSB + ECBD method, respectively. Note
that, since the BvSB method considers only the uncertainty
of samples, it may result in the selection of similar samples
which can only provide redundant information. We can
also find that performing the clustering in the kernel space
can improve the classification accuracy compared with the
standard 𝑘-means clustering. Indeed, because of the kernel
mapping, the set of most diverse sample in the original space
may not be the most diverse in the kernel space [20].
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Figure 5: Distribution of the chosen training samples by the BvSB
method and pool samples considering bands 49 and 84 of the
hyperspectral image.
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Figure 6: Distribution of the chosen training samples by the BvSB +
ECBDmethod and pool samples considering bands 49 and 84 of the
hyperspectral image.

In Figure 7, we demonstrate the original hyperspectral
image and the classification results, in which, Figure 7(a) is
an original hyperspectral image composed of band 25, 49
and 84. Figure 7(b) is the classification image of the Landsat-
8 data obtained by the standard SVM classifier, which
used as a reference image for evaluating the classification
performance. Further, Figure 7(c) is the classification image
of the hyperspectral image with the BvSB + ECBD method.

In order to assess the classification performance of our
proposed method, in Table 4, we also report the confusion
matrix, the accuracy per class and Kappa coefficient at the
last iteration of the BvSB + ECBD method. It is important to
observe that the accuracies of seawater and thin ice are low.

Table 4: Confusion matrix for the classification with the proposed
BvSB + ECBD method.

Class Seawater Thin ice Thick ice Total
Seawater 45476 9967 2450 57893
Thin ice 21741 139924 39873 201538
Thick ice 3729 59508 963416 1026653
Total 70946 209399 1005739 1286084
%Accuracy per
class 64.099 66.822 95.792 —

Kappa = 0.693 Overall accuracy = 89.327%

Since hyperspectral image was acquired in April, 2014, thin
ice began to melt with the increasing temperature. So there
are lots of pixels of seawater and thin ice that were confused
and wrongly classified.

Finally, we carry out an analysis of the sensibility of
our proposed BvSB + ECBD method with different number
of initial training samples. In Figure 8, 𝑛 denotes the total
number of initial training samples of three classes, where, the
selected number of samples of each class is the same. One
can see that, selecting different 𝑛 values results in similar
classification accuracies. The experiment result indicates
that the different initial training samples do not provide a
large benefit in the BvSB + ECBD method, that is to say,
the classification accuracy is not sensitive to the selection
of initial training samples [23]. Furthermore, we can also
observe that, when using high 𝑛 values, convergence is easily
achieved than when using small 𝑛 values. That is because the
greater 𝑛 values, the more the number of training samples,
when given the same number of rounds.

5. Conclusions

In this paper, AL algorithms in the classification of hyper-
spectral image have been addressed, which can reduce the
number of labeled samples added to training set and improve
the classification accuracy with respect to traditional passive
techniques. Query function based on BvSB in the uncertainty
step, and standard 𝑘-means clustering andECBD in the diver-
sity step have been generalized to multiclass problems. More-
over, our proposed novel BvSB + ECBDmethod is compared
with BvSB, BvSB + 𝑘-means and random sampling in the
classification accuracy. By analyzing the experiment results,
we can summarize as follows: (1) The proposed BvSB +
ECBD method gets the best performance in terms of classi-
fication accuracy and can reduce a large amount of labeled
samples compared with random sampling; (2) the BvSB
+ 𝑘-means method provides slightly lower classification
accuracies than the BvSB + ECBD technique. At the diversity
step, because of kernel mapping, the most diverse samples in
the original space by the standard 𝑘-means clusteringmay not
be the most diverse in the kernel space, which means that the
most informative samples cannot be selected for the current
classifier; (3) the BvSB method leads to poorer classification
accuracies with respect to other AL algorithms. Therefore,
we can conclude that obtained uncertainty samples based on
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Figure 7: (a) Hyperspectral image (a false color image composed of R: 84, G: 49, and B: 25). (b) Result of the classification of the Landsat-8
data. (c) Result of the classification of the hyperspectral image.
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Figure 8: Classification overall accuracy obtained by the BvSB +
ECBD method with different 𝑛 values.

the BvSB technique may be the similar samples and cannot
provide available information; (4) our proposed BvSB +
ECBD method is not sensitive to the selection of initial
training samples.

As a future development, we consider to extend our
proposed AL technique by integrating the semisupervised
method in the classification of hyperspectral image. During
the iterative process, we can also make full use of abundant
spectral information to select the more respective samples
and more accurately identify the types of ice.
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This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump
by impellers.The design of these impellers was optimized using a commercial CFD (computational fluid dynamics) code and DOE
(design of experiments). The design variables of meridional plane and vane plane development were defined for impeller design.
In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane
plane development. The verification of the experiment sets that were generated by 2𝑘 factorial was done by numerical analysis. The
objective functions were defined as the NPSHre (net positive suction head required), total efficiency, and total head of the impellers.
The importance of the geometric design variables was analyzed using 2𝑘 factorial designs.The interaction between the NPSHre and
total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2𝑘 factorial design results.
The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model
was retained by comparison of numerical analysis and comparative analysis with the reference model.

1. Introduction

Themixed-flow pump is a typical instrument of mass energy
consumption although it also has important roles in water
resource development and various industrial plants. The
importance of design engineering of the mixed-flow pump
with high total efficiency and suction performance and
energy saving as a consequence is increasing as oil price
increases. The advanced enterprises in developed countries
like the US, Germany, and Japan have competitiveness
through their own technologies and know-how in pump
designing that has been accumulated formore than a hundred
years.

Specifically for the pumps that are used in higher
value added business such as desalination or extraction of
petroleum, the total efficiency and suction performance are a
main issue giving advanced enterprises possessing accumu-
lated technologies absolute advantage. For that reason, there
have been researches going on regarding pumps including
mixed-flow pump and the results have been reported several
times by different companies and research agencies [1, 2].

When it comes to impeller designing of the mixed-flow
pump, twomain objectives of the research, namely, high total
efficiency and improved suction performance, have conflict-
ing directions of the design [3, 4]. The design technique that
could improve suction performance maintaining high total
efficiency at the same time is very important but more design
experiences are required at this stage.

Suction performance correlate with cavitation. In case
where the flow level changes by time when the pump is
operating, unusual phenomena such as cavitation happen as
the pressure of pump inlet part changes. Because of the nature
of the fluid, the suction performance of a pump decreases
creating bubbles when the pressure is low. Thus, securing
design technology for pump with high suction performance
is very important [5–7].

In order to improve total efficiency and suction perfor-
mance of the impeller by selecting impeller shape variables
appropriately, an analysis that can determine the importance
of the design variables and the effect of chosen variables on
pump performance is required. In order to perform the study,
numerical analysis and bench marking via experiments were
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done on the reference model and the results of them were
used as criteria for the comparison.

Recently, the application of computational fluid dynamics
(CFD) in the performance analysis of fluid machinery is
common, and many studies have conducted for validating
its usefulness in predicting the performance of pumps. For
instance, Goto and Zangeneh [8] applied their optimization
methodology based on an inverse design method and three-
dimensional numerical analysis to design low specific speed
pump diffusers with high efficiency performance. Bing and
Cao [9] also improved the total hydraulic efficiency of a
mixed-flow pump impeller by a combined approach using
numerical simulation, inverse design, and a genetic algo-
rithm. J. H. Kim and K. Y. Kim [10] tried the single-objective
numerical optimization to enhance the total efficiency of a
mixed-flow pump with two design variables related to vaned
diffuser geometry.

In design engineering, the importance of the mixed-
flow pump with high total efficiency and suction perfor-
mance has been increasing, which has made it necessary
to improve hydrodynamic design techniques in order to
develop a mixed-flow pump with high total efficiency and
optimal suction performance. Because the most important
component of the pump is the impeller, its hydrodynamic
design determines the pump design technique.

The two main objectives in designing the impeller of
the mixed-flow pump, namely, high total efficiency and
improved suction performance, can be realized using con-
trasting techniques. A design technique that could improve
suction performance andmaintain high total efficiency at the
same time is desirable but remains in the experimental stage.

In this study, the design variables of the impeller merid-
ional plane and vane plane development were defined for the
improvement of suction performance. The design variables
were then rated in importance by systematically analyzing
them in relation to the response variables of the impeller.
First, an impeller with high total efficiency, which satisfies the
head at the design flow rate, was designed by using database
(𝐷/𝐵).

The impeller was designed using 𝐷/𝐵, 2𝑘 factorial
designs, which were applied to analyze the effect on suction
performance and total efficiency of the design variables. The
tendency to change performance according to each variation
in shape was studied by numerical analysis. By applying
response optimization, themain design variables determined
by the 2𝑘 factorial design were used to create the optimal
shape.

The performance of optimized impeller was verified by
numerical analysis and experiments. Numerical analysis and
experiment of the reference model were used to compare the
optimal impeller with the reference model.

2. Mixed-Flow Pump Impeller Design Method

2.1. Traditional DesignMethod. The traditional design for the
meridional plane and the front plane of the impeller is done
easily by applying pump theory. When design specifications
are given, the diameters of the inlet/outlet of the meridional

plane are determined by basic pump theory. The shroud and
hub curve of the inlet/outlet of themeridional plane are easily
connected by drawing an arc.

In designing the blade shape, the inlet/outlet angles of
the blade are mainly determined by the flow angles of the
inlet/outlet using the given meridional plane, according to
pump design theory.The sweep angle, which is relevant to the
blade length, is determined by the inlet/outlet angles because
it is designed such that it connects the inlet/outlet angles
smoothly when the angles are determined.

As shown in Figure 1, the shape of the impeller is
presented in the meridional and front planes; Figure 1(a)
shows the meridional view of the blade shape and presents
information on the direction of axis and radius; Figure 1(b)
shows the front plane representing the radius and rotational
direction; and Figure 1(c) shows the vane plane development
of the impeller. The vane plane development includes the
blade angle distribution. Axis 𝑥 of the vane plane develop-
ment indicates the total length of the arc at each radius from
the front view. Axis 𝑦 indicates the total length of the blade
in the meridional view. Hence, the distribution of the blade
angles is easily seen in the vane plane development and is
usually achieved by the smooth connection of the inlet blade
angle and the outlet blade angle. The inlet and outlet angles
of the blade are mainly derived using pump design theory
[11, 12].

The head can be satisfied by a traditionally designed
impeller but, in order to improve total efficiency and suction
performance, a detailed definition of the design variables and
subsequent analysis of performance variations according to
different impeller design variables are required.

The meridional plane shows the shape and size of blade.
The impeller meridional shape was designed using our own
𝐷/𝐵. Figure 2 shows the newly designed impeller shape. As
shown in Figure 2, consequentially, the axis direction of the
newly designed shape is approximate 24% shorter than that
of the reference model.

2.2. Design Variables in aMeridional Plane. The typical shape
of the meridional plane is shown in Figure 1(a), and the
design variables for this meridional plane are defined in
Figure 3. On the inlet of the impeller, 𝑅1ℎ is the hub, 𝑅1𝑠
is the inlet radius of shroud, and Φ1 indicates the inclined
angle of the impeller’s leading edge. On the outlet of the
impeller, 𝑅2 is the outlet radius, 𝐵2 is the blade width of
the impeller’s trailing edge, and Φ2 indicates the inclined
angle of the trailing edge. The outlet hub of the impeller
and the straight line of the shroud are defined as %𝐿 ℎ and
%𝐿 𝑠, respectively. Because it can express smooth curves, a
Bezier curve was used to connect the inlet to the outlet of
the impeller. When using Bezier curves, two reference points
with set inclination levels are connected smoothly using a
control point, and the shape of the curve varies depending on
the location of the control point. When the control point is
determined, the curve is connected smoothly in accordance
with the inlet/outlet angles. When the impeller hub curve
meets the horizontal and vertical lines, 𝜃1 ℎ and 𝜃2 ℎ indicate
the inlet angle and outlet angle, respectively. 𝜃1 𝑠 and 𝜃2 𝑠
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indicate those of the shroud. 𝜃 ℎ and 𝜃 𝑠 indicate the angles of
the outlet hub and the shroud, respectively, when %𝐿 ℎ and
%𝐿 𝑠 of the straight lines meet the vertical axis. The control
points of the hub inlet and outlet are shown as %CP1 ℎ and
%CP2 ℎ, respectively, and%CP1 𝑠 and%CP2 𝑠 indicate those
of the shroud. 𝑍tip indicates the length of the axial direction
from inlet/outlet parts of the shroud [11, 12].

2.3. Design Variables in a Vane Plane Development. A typical
shape of vane plane development is shown in Figure 1(c),
and the design variables for this vane plane development
are defined in Figure 4. In the diagram, “ℎ” means hub, “𝑚”
means midspan, and “𝑠” means shroud. Σ(𝑅 𝑑𝜃) (ℎ,𝑚, 𝑠)
indicates the total length of the arc at each radius from
the front view. Σ𝑑𝑀 (ℎ,𝑚, 𝑠) represents the total values
of blade length in the meridional view; %𝛽1 (ℎ,𝑚, 𝑠) and
%𝛽2 (ℎ,𝑚, 𝑠) show the portion of the blade having the same
blade angle at the leading edge and trailing edge, respectively,
and they are presented as a percentage of the whole length
of the 𝑦-axis. 𝛽1 (ℎ,𝑚, 𝑠) is the inlet angle of the blade from
the impeller, and 𝛽2 (ℎ,𝑚, 𝑠) is the outlet angle of the blade
from the impeller. 𝑅2 𝑑𝜃 (ℎ, 𝑠) shows the inclination level
toward the circumference from the hub and shroud at the
outlet of the impeller. The inlet and outlet sections are con-
nected by a smooth curved line, the angle of which changed
linearly. Figure 5 shows the three-dimensional geometry of
the impeller using the variables of the meridional plane and
the vane plane development [13, 14].

3. Numerical Analysis Methods

The three-dimensional shape of the impeller was generated
using the ANSYS CFX-BladeGen program. The structured
grid system was generated using ANSYS CFX-TurboGrid, a
program that generates a fluid machinery grid [15].

Although the impeller has five blades, we carried out the
numerical analysis on only one blade passage using a periodic
condition. Figure 6 shows the boundary conditions for the
impeller calculation.Waterwith ambient temperature of 25∘C
was specified as the working fluid. We set the atmospheric
pressure of 1 atm with the turbulence intensity of 5% on the
inlet section of the impeller and gave the mass flow rate of

Figure 5: Three-dimensional geometry of the impeller.

Inlet: 
total pressure

Outlet: 
mass flow rate 

Computational domain:
1 passage region

(using periodic condition)

Rotational speed

(1 atm)

Figure 6: Boundary conditions for the impeller calculation.

665.33 kg/s of one blade passage at the design point on the
exit section as a boundary condition.The solid surfaces in the
computational domain were considered to be hydraulically
smooth with adiabatic and no-slip conditions. The rotational
speed of the impeller was 580 r/min. When the numerical
analysis was performed for the impeller only, the inlet was
simplified as a straight pipe and the outlet was expressed as
the same meridional shape without the diffuser vane.

A structured grid system was constructed in the compu-
tational domain, with O-type grids near the main blade and
vane surfaces and H-type grids in the other regions. Figure 7
shows the results of the grid dependency test for the total head
and total efficiency of the reference impeller model. The total
head and total efficiency values of the reference impeller did
not change as the grid size was varied from approximately
90,000 to 110,000. Thus, about 90,000 grid points were used
to define the computational domain encompassing the main
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Figure 7: Results of the grid dependency test.

impeller passage. Figure 8 shows a typical example of the grid
system used for the mixed-flow pump impeller in this work.

The ANSYS CFX-11, which is a commercial compu-
tational fluid dynamics (CFD) code, was used for the
numerical analysis. A three-dimensional Reynolds average
Navier-Stokes equation was used to analyze incompressible
turbulence flow inside the pump.The governing equationwas
discretized using a finite volume method. A high-resolution
scheme, which has more than a second degree of accuracy,
was used to solve the convection-diffusion equations. For the
turbulent model, the shear stress transport 𝑘-𝜔 model [16–
19], which is appropriate for the prediction of flow separation,
was used to analyze turbulent flow through the impeller.

We used water as a working fluid. Disk friction losses,
mechanical losses, leakage losses, and the tip clearance effect
were not included in this calculation. The specific speed
(r/min, m3/min, m) of the pump was 380, the flow rate was
12,000m3/hr, and the total head was 60m.

4. Design of Experiments

The experiments design was based on the modern analysis
of statistics, which helps select the main cause of abnormal
fluctuations from many possible causes. In this study, 2𝑘
factorial designs of the design of experiment (DOE) were
used as numerical optimizationmethods [21–23]. Minitab 14,
a commercial program, was used for the analysis of DOE.

Figure 9 shows the flow chart of this study. The per-
formance of the reference model with same specific speed
was analyzed and drawbacks that reduce pump performance
could be identified based on the result of the analysis.
Impeller design variables for the improvement of pump
performance were defined using 𝐷/𝐵. Response variables

Zoom in

Figure 8: Grid system for numerical analysis of the impeller.

Design variables selection

Analysis of CFD results

Response variables selectionReference model selection

Comparison analysis of 
response variables

DOE (2k factorial design)

Figure 9: Optimization process flowchart.

were defined as total head, total efficiency, and suction
performance. Tendencies of the response variables according
to the identified design variables were analyzed by using 2𝑘
factorial.The response variables of experiment sets generated
by 2𝑘 factorial were verified by using numerical analysis.
Impeller shape was deduced by response optimization with
the result of 2𝑘 factorial. The performance of the optimized
model was compared to that of the reference model using
comparative analysis.

In DOE, a response variable should be defined in order
to analyze the performance of the impeller according to the
design variables. The actual response variables are defined in
the total head curve, the total efficiency curve, and the NPSH
curve, as shown in Figures 10 and 11. The design flow-rate is
considered ideal if the flow rate at maximum total efficiency
corresponds to the required flow rate.

In the case where the flow level changes over time
when the pump is operating, unusual phenomena, such as
cavitation, happen as the pressure of the pump inlet changes.
Because of the nature of the fluid, the suction performance
of the pump decreases, creating bubbles when the pressure
is low. Thus, securing a design technology for a pump with
high suction performance is very important.The graph of the
results shows that net positive suction head (NPSH) value,
which is represented as the 𝑥-axis, is determined by the set
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Table 1: Design target (real), design specifications, and CFD results of the reference model.

Design target (real) Design specifications Reference model
CFD

𝑄 (m3/hr) 12,000 12,000 12,000
Total head (m) 60 More than 63m 57.48
Total efficiency (%) To be maximized To be maximized 96.84
NPSHre (m) To be minimized To be minimized 6.7

Design flow rate
0

Total efficiency curve

Total head curve
Maximum efficiency 
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Figure 10: Total head and total efficiency curve.

decreases by 3%

NPSHre

Decreasing inlet pressure

Onset of cavitation

NPSH (m)

A spot where total head

Ht (m)

Figure 11: NPSH curve.

inlet pressure (𝑃in) and saturation vapor pressure (𝑃v), and it
is calculated by the following equation:

NPSH =
𝑃in − 𝑃v
𝜌𝑔

. (1)

Different NPSH values are generated as the inlet pressure
decreases and NPSH required (NPSHre) represents an area
with more than 3% of loss in the total head [24–26].

5. Optimal Mixed-Flow Pump Impeller Design

Table 1 shows the real design target and the modified design
specifications for the CFD cases and the CFD results for
the reference model. The specific speed (r/min, m3/min, m)
of the pump is 380, the flow rate is 12,000m3/hr, the total
head is 60m, the total efficiency should be maximized, and

the NPSHre should be minimized at the design flow-rate.
According to the numerical analysis of the reference model,
however, the numerical analyses for the impeller do not
satisfy 60m. As a result, a new design model that satisfies the
specifications is needed.

Because of the simplified flow domain, without including
tip clearance and roughness, the results of the numerical
analysis are expected to be higher than those of the design
target. Thus, we modified the design specifications for the
CFD results. Design specifications for the numerical analysis
are shown in Table 1. The total head was defined to be higher
than 63m from the impeller. The total efficiency should be
maximized and the NPSHre should be minimized at the
design flow rate.

5.1. 2𝑘 Factorial Designs. 2𝑘 factorial designs are usually
represented as 𝑛𝑘. In this DOE, the number of factors is 𝑘
and the number of levels is 𝑛.The experiments are performed
in every possible combination of all factors. The number
of performed experiments should be at least 𝑛𝑘, without
repetition. The advantage of factorial designs is that we can
assume the main effect (the sole effect of the factor) and
interaction effect (the effect between factors) of all factors.
This convenient screening method can be used to find the
core factor when there are many factors involved at the
beginning of the experiment. In this study, considering the
number of factors involved and the number of possible
experiments, in addition to cost and time, we used fractional
factorial designs in which the number of experiments is
reduced by deleting less meaningful interactions.

5.2. Effect of Impeller Design Variables. To analyze the influ-
ence of the impeller design variables on the performance of
the mixed-flow pump, the 2𝑘 factorial designs were applied
after defining the design variables of the meridional plane
and the vane plane development.We therefore generated nine
experimental conditions for the numerical analysis, including
a center point using four design variables. As the various
impeller design variables, the selected design variables for the
2
𝑘 factorial designs are i𝛽1 ℎ and i𝛽

1
𝑠, which are related to

the incidence angle of the design variables of the vane plane
development, and 𝑅1𝑠 and 𝑍tip, which are the meridional
plane design variables. Here, the i𝛽

1
ℎ, and i𝛽

1
𝑠 are the

incidence angles at the leading edge of the blade on the hub
and shroud, respectively. The incidence angles are the design
variables showing the difference between flow angle and the
inlet angle.
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Figure 12: Main effects plot for total head.

Table 2: 2𝑘 factorial designs set.

Set 𝐴 𝐵 𝐶
𝐷

(𝐴×𝐵×𝐶)
1 − − − −

2 + − − +
3 − + − +
4 + + − −

5 − − + +
6 + − + −

7 − + + −

8 + + + +
Center 0 0 0 0

Table 2 shows the set arrangement of 2𝑘 factorial designs
for nine experimental conditions. Here, the symbols of “+”
and “−” mean the maximum and minimum levels of each
design variable, respectively. In Table 2, the variables of 𝐴, 𝐵,

and𝐶 are defined by the orthogonal design and the𝐷 variable
is decided by the combination of 𝐴 × 𝐵 × 𝐶.

The base model applied in 2𝑘 factorial designs was the
shape used in a previous study, and it satisfiedmaximum total
efficiency at the design flow rate. Variation ranges of i𝛽

1
ℎ and

i𝛽
1
𝑠 are±3∘, and those of𝑅1𝑠 and𝑍tip were±2.5% and±3.6%,

respectively.The rest of the design variables of themeridional
plane and vane plane development were fixed as base design
value. Table 3 shows the numerical analysis sets of 2𝑘 factorial
designs.

Figures 12 and 13 show plots of the main effects and a
Pareto chart of the total head, respectively. In the main effects
plot, the tendency to increase the total head can be identified
as increases in 𝑅1𝑠, i𝛽1 ℎ, and i𝛽1 𝑠. In Pareto chart, the total
head is influenced by i𝛽1 𝑠,𝑅1𝑠, and i𝛽1 ℎ in the order ofmost
to least.

Figures 14 and 15 show plots of the main effects and
Pareto chart of total efficiency, respectively. In the main
effects plot, total efficiency tends to increase as 𝑅1𝑠 and
𝑍tip decrease, but i𝛽

1
ℎ and i𝛽

1
𝑠 increase. It is clear that

the tendency of the meridional plane design variables is
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Table 3: Numerical analysis set of 2𝑘 factorial designs for the impeller design.

Set 𝑅
1
𝑠 (m) 𝑍tip (m) i𝛽 ℎ (∘) i𝛽 ℎ (∘) Total head (m) Total efficiency (%) NPSHre (m)

1 0 0 3 −1 63.24 96.65 6.36
2 5 0 3 5 64.92 97.21 5.23
3 0 7.2 3 5 64.07 97.61 5.64
4 5 7.2 3 −1 63.25 95.47 8.09
5 0 0 9 5 64.18 97.55 6.15
6 5 0 9 −1 63.86 97.19 5.28
7 0 7.2 9 −1 63.83 97.18 5.74
8 5 7.2 9 5 64.55 97.04 5.28
Center 2.5 3.6 6 2 64.10 97.54 5.48

opposite to that of the vane plane development. In the
Pareto chart, i𝛽

1
𝑠, 𝑅1𝑠, and i𝛽1 ℎ are variables affecting total

efficiency; i𝛽
1
𝑠 shows themost influence and i𝛽

1
ℎ shows the

least.
Figures 16 and 17 show plots of the main effects and a

Pareto chart of NPSHre. In the main effects plot, NPSHre
tends to increase as 𝑍tip decreases, but i𝛽

1
ℎ and i𝛽

1
𝑠

increase. Compared to other design variables, 𝑅1𝑠 does not
have a significant effect onNPSHre. Apart from𝑅1𝑠, it is clear
that the tendency of the meridional plane design variables
is opposite to that of the vane plane development. In the
Pareto chart, i𝛽

1
𝑠, i𝛽
1
ℎ, and𝑍tip are variables affecting total

efficiency; i𝛽
1
𝑠 shows the most influence and 𝑍tip shows the

least.
To summarize the 2𝑘 factorial designs, it was identified

that the tendencies of total efficiency and NPSHre were
opposite, depending on the design variables. The analysis of
the tendencies of the response variables was important in
order to draw a shape with improved NPSHre in high total
efficiency, depending on the changing design variables. In
order to create an impeller shape with improved NPSHre
in high total efficiency, a response optimization method was

applied. In Table 3, most of the 2𝑘 factorial sets satisfy 63m
of total head. Thus, the response variables were defined to
improve total efficiency and NPSHre at the design flow rate,
except for the total head as the objective function.

Response optimization was performed by regression
analysis. Regression analysis is assuming mathematical
model based on data in order to investigate the relevance
among variables. Generally, the estimated model is used to
make necessary prediction or statistical inference. Multiple
regression analysis is a type of regression analysis where the
relation between two or more predictors and one dependent
variable is estimated linearly on straight line. Estimation
equation for multiple regression analysis is as follows:

�̂� = 𝛽0 + 𝛽1 × 𝑋1 + 𝛽2 × 𝑋2 + ⋅ ⋅ ⋅ + 𝛽𝑛 × 𝑋𝑛, (2)

where 𝑋 indicates the design variables from 2𝑘 factorial. �̂�
and 𝛽 are established by regression analysis. The regression
model with consideration of multiple regression models is as
(3) and (4).
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(a) Reference model (b) Optimum model

Figure 19: Comparison of three-dimensional geometry impeller.

The regression equations for total efficiency and NPSHre
are as follows, respectively:

Total efficiency = 96.7 − 0.104 × 𝑅1𝑠 − 0.0447 × 𝑍tip

+ 0.0839 × i𝛽
1
ℎ + 0.121 × i𝛽

1
𝑠,

(3)

NPSHre = 6.68 − 0.000 × 𝑅1𝑠 + 0.0604 × 𝑍tip

− 0.119 × i𝛽
1
ℎ − 0.132 × i𝛽

1
𝑠.

(4)

The regression models in (2) and (3) were produced
considering each design variable and thereby applicable as
reliable optimization and predictive models. In response
optimization, the objective function was defined as max-
imum total efficiency and minimum NPSHre. The total
head was excluded because it showed little change as the
design variables changed. Figure 18 shows the plot of response
optimization. As shown in Figure 18, the optimummodel that
satisfies the objective value can be drawn when 𝑅1𝑠 is 0%,
𝑍tip is 7.2%, i𝛽

1
𝑠 is 9∘, and i𝛽

1
ℎ is 5∘. Figure 19 shows the

three-dimensional geometry impeller of referencemodel and
optimummodel.

6. Analyses of Numerical Analysis and
Experiment Results

The selected optimummodel was verified by numerical anal-
ysis. Figure 20 shows total head and total efficiency curves
according to the result of numerical analysis. Figure 20(a)
shows total head curves of the reference and optimum mod-
els. The tendencies of total head curves from the reference
and optimum models are same but total head curve of
optimum model has higher value than that of reference
model. Especially, the total head at design flow rate from the
reference model is expected to be under 60m not meeting
the requirement of design specification. Optimummodel was
designed to have total head higher than 60m which is design
specification considering disk friction losses, mechanical
losses, leakage losses, tip clearance effect, machine loss,
roughness loss, and diffuser loss. Figure 20(b) shows the total
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Figure 20: Comparison of total head and total efficiency curve.

(a) Reference model (b) Optimum model

Figure 21: Comparison of streamline at design flow rate.

efficiency curves of the reference and optimum models. In
Figure 20(b), the total efficiency of optimummodel is higher
not only from the design flow rate but also from low and high
flow rates than that of the reference model.

Figure 21 shows the comparison between reference and
optimum models regarding streamline at impeller blades. In
Figure 21(a), there is a section side with flow separation at
inlet shroud of the referencemodel.The total efficiency seems
to decrease as a result of this flow separation at impeller
blades. In Figure 21(b), the streamline is stabilized at inlet
shroud of the optimum model increasing total efficiency
compared to reference model.

The NPSH curves for the reference and optimummodels
are shown in Figure 22. In Figure 22, the NPSHres for the
reference and optimum models are 6.7m and 5.7m, respec-
tively. Consequently, the optimum model was improved as
1m compared to the reference model. On the other hand,
Figures 23 and 24 show the isosurfaces of vapor pressures
of −20 kPa and −40 kPa at the NPSH = 8.0m (design flow
rate) and NPSH = 5.9m, respectively. It seems that the
quantity of vapor in both the models is similar as shown
in Figure 23. In Figure 24, the dramatic decrease of the
vapor in the optimum model is observed at the NPSH =
5.9m in comparison with the reference model. It is thought
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(a) Reference model (b) Optimum model

Figure 23: Comparison of isosurface of vapor pressure at NPSH = 8.0m.

that the suction performance of the optimum model is
improved by the considerable decrease of vapor in the suction
side.

Figure 25 shows the NPSHre curves for the reference
and optimum models. In Figure 25, it is apparent that the
suction performance of the optimum model is improved
in the entire flow rate, compared to the reference model.
Table 4 shows the numerical results of the efficiency and
NPSHre for the reference and optimummodels at the design
flow rate. According to the result of numerical analysis in
Table 4, total head of optimum model is improved by the
approximate 6m than that of reference model. Moreover,
it has shown 1m and 0.81% improvements in the NPSHre
and total efficiency, respectively, compared to the reference

Table 4: Comparison of total head, total efficiency, and NPSHre
(CFD results).

Total head
(m)

Total
efficiency (%) NPSHre (m)

Reference model 57.48 96.84 6.7
Optimum model 64.25 97.65 5.7

model. Therefore, the optimum design produced mostly
stable flows in the impeller passage.

The overall experimental apparatus used in the per-
formance test is illustrated in Figure 26, which shows the
installation of the test pump [20].The test pump is connected
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Figure 25: Comparison of NPSHre curve.

to the electric motor which is controlled by an inverter
and a data acquisition system. As shown in Figure 26, the
main component devices for the experimental apparatus
consist of the flow meter, control valve, heat exchanger,
booster pump, thermometer, damping valve, and pres-
sure gauge. The measuring instruments and their uncer-
tainties used for the performance test are tabulated in
Table 5.

The numerical and experimental results for the total
head, total efficiency, and NPSHre of the optimummodel are
compared in Figure 27. As shown in Figures 27(a) and 27(b),
although the numerical and experimental results are different
in terms of quantitative value, they are similar in tendency.

Table 5: Specifications of a measurement device.

Measurement device Uncertainty (%)
Torque meter ±2
Flow meter ±2
Rotational sensor ±0.3
Absolute pressure transducer ±2
Differential pressure transducer ±2
Thermocouple ±2

In Figure 27(c), they are also similar in tendencies in the
NPSHre curves but show the bigger difference at especially
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Figure 26: Schematic diagram of experimental apparatus for a mixed-flow pump [20].

the high flow rate. This is probably explained by the fact
that bell mouth of inlet part, disk friction losses, mechanical
losses, leakage losses, tip clearance effect, machine loss,
roughness loss, and diffuser loss were not considered for the
numerical analysis. First of all, the main effect on a relatively
large error between the CFD and experiment results is due to
no consideration of the tip clearance. These results illustrate
the enhancement of the pump impeller’s performances as a
result of the optimization.

7. Conclusion

A numerical optimization on the improvement of suction
performance and hydraulic efficiency of a mixed-flow pump
impeller was conducted in this work. The main conclusions
of this work are summarized as follows.

(1) In this work, the impeller’s meridional plane and
vane plane development were employed as the design
variables to improve the suction performance and
total efficiency of the mixed-flow pump. According to
the result of 2𝑘 factorial, it showed that the suction
performance and total efficiency had an opposite
trend with the selected design variables.

(2) In the analyses of the main effects plot and Pareto
chart, the i𝛽

1
𝑠 was more sensitive than other vari-

ables in terms of the NPSHre and total efficiency. On
the other hand, the 𝑅1𝑠 affected considerably to total
efficiency, whereas it did not affected absolutely to the
NPSHre.

(3) As a result of the optimization, the total head of the
optimum model was numerically improved by the
approximate 6m, and moreover its numerical result
showed 1m and 0.81% improvements in the NPSHre
and total efficiency, respectively, in comparison with
the reference model.

(4) The numerical and experimental results for the
total head, total efficiency, and NPSHre of the
optimum model were compared. Although the
numerical and experimental results for the total
head, total efficiency, and NPSHre were different
in terms of quantitative value, they were similar in
tendency. Therefore, the numerical optimization
method based on the impeller’s meridional plane and
vane plane development can be effectively used for
improving hydraulic performance of the mixed-flow
pump.

Nomenclature

CFD: Computational fluid dynamics
DOE: Design of experiments
ℎ: Hub
𝐻d: Designed total head (m)
𝐻t: Total head (m)
𝑀: Meridional length (m)
𝑁: Rotational speed (r/min)
NPSH: Net positive suction head (m)
NPSHre: Net positive suction head required (m)
𝑁s: Specific speed (r/min, m3/min, m)
𝑃in: Inlet pressure (pa)
𝑃v: Vapor pressure (pa)
𝑄: Flow rate (m3/hr)
𝑄d: Design flow rate (m3/hr)
𝑅1: Radius of inlet part (m)
𝑅2: Radius of outlet part (m)
𝑠: Shroud
𝑍tip: Axial direction from inlet/outlet parts of

the shroud (m)
Φ1: Inclined angle of the leading edge (∘)
Φ2: Inclined angle of the trailing edge (∘)
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Figure 27: Comparative analysis of the performance evaluation (experimental versus numerical analysis).

𝛽1: Inlet angle of the impeller (∘)
i𝛽
1
: Incidence angle (∘)

𝜃1: Inlet angle from meridional curve (∘)
𝜃2: Outlet angle from meridional curve (∘)
%𝐿: Straight line from outlet part (%)

%CP1: Control points of inlet part (%)
%CP2: Control points of outlet part (%)
%𝛽
1
: Portion of same inlet blade angle (%)

%𝛽2: Portion of same outlet blade angle (%)
𝜔: Angular velocity (m/s).
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RANS simulation is widely used in the flow prediction of centrifugal pumps. Influenced by impeller rotation and streamline
curvature, the eddy viscosity models with turbulence isotropy assumption are not accurate enough. In this study, Spalart-Shur
rotation/curvature correction was applied on the SST 𝑘-𝜔 turbulence model. The comparative assessment of the correction was
proceeded in the simulations of a centrifugal pump impeller. CFD results were compared with existing PIV and LDV data under
the design and low flow rate off-design conditions. Results show the improvements of the simulation especially in the situation
that turbulence strongly produced due to undesirable flow structures. Under the design condition, more reasonable turbulence
kinetic energy contour was captured after correction. Under the low flow rate off-design condition, the prediction of turbulence
kinetic energy and velocity distributions became much more accurate when using the corrected model. So, the rotation/curvature
correction was proved effective in this study. And, it is also proved acceptable and recommended to use in the engineering
simulations of centrifugal pump impellers.

1. Introduction

Reynolds-averaged Navier-Stokes (RANS) simulation pro-
vides effective solutions for numerical simulations in engi-
neering. By solving the time-averaged N-S equations, RANS
simulation reduces the consumption of computing resources
on the premise of keeping sufficient accuracy. Based on the
Boussinesq assumption [1, 2], eddy viscosity models (EVM)
directly established the relationship between Reynolds stress
tensor and the traceless mean strain rate tensor. Because
of the simplicity and stability, EVMs are widely used in
engineering simulations. However, because of the coordinate
invariance, EVMs are insensitive to streamline curvature and
system rotation [3]. Moreover, with the turbulence isotropy
assumption, the rotation effect on turbulent flow is difficult
to describe. However, under the influences of the nonlinear
wave induced by the Coriolis force, the flow structure will
change [4]. So, a proper correction for EVM is necessary in
the RANS simulation of rotating and swirling flow.

To describe the effects of rotation or streamline curvature
on a turbulent flow, Bradshaw [5] first proposed the gradient

Richardson number 𝑅𝑖. Combined with the low-Reynolds-
number 𝑘-𝜀model, Khodak and Hirsch [6] introduced a new
form of 𝑅𝑖 number which allows including the influence of
curvature and rotation on the three-dimensional turbulent
flow. It improved the prediction accuracy of mean velocity
and Reynolds stresses in verification cases. On the basis of
Galilean invariance, Spalart and Shur [3] differentiated the
property between streamline curvature and system rotation
and also introduced a new 𝑅𝑖 number. By establishing inter-
mediate variables, this new𝑅𝑖 numberwas used to correct the
turbulence production term of EVM.This correctionmethod
was applied to Spalart-Allmaras model by Shur et al. [7]
and proved to be much more accurate than the original S-A
model.Moreover, Dufour et al. [8, 9] corrected the 𝑘-𝜀model
and compared it with the Spalart-Shur corrected S-A model
through a compressor case. Improvements were obtained
after the rotation and curvature correction for the corrected
𝑘-𝜀model. Smirnov andMenter [10] also applied the Spalart-
Shur correction to SST 𝑘-𝜔 model that is known as the
SST-RC model. The computational accuracy was proved to
be significantly improved with just a little increase of the
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time costs. Then, Dhakal and Walters [11] corrected the SST
𝑘-𝜔 model based on the correction method by York et al.
[12]. The new model was compared with the SST-RC model
and was proved accurate without compromising stability
and efficiency. With the modified mean-flow time scale,
Hellsten [13] also introduced a new 𝑅𝑖 number to correct
the 𝜔 equation of SST 𝑘-𝜔model. This new corrected model,
which is called SST-RC-Hellstenmodel, was sensitized on the
effects of system rotation and streamline curvature with slight
improvement on the numerical behavior. Based on Spalart-
Shur correction method and Hellsten’s time scale, Zhang and
Yang [14] corrected the S-A model and got reasonable results
in a U-turn duct case.

In general, all the correction methods mentioned above
were theoretically feasible for swirling turbulent flow. For
centrifugal pumps, the internal flow regime varies with the
operating condition [15]. Under off-design conditions, the
turbulent flow in the impeller is much more complicated due
to the vortex, backflow, and other secondary flow structures.
Hence, it is necessary to ensure the simulation accuracy of
centrifugal pumps under the influence of system rotation and
streamline curvature. However, in the vast majority of RANS
simulations of centrifugal pumps, the rotation and curvature
effects are not considered when using EVM. In order to
evaluate the Spalart-Shur rotation/curvature correction in the
centrifugal pump cases, RANS simulations were conducted
with both the original and the corrected SST 𝑘-𝜔models.The
simulation results were compared with the experimental data
by particle image velocimetry and laser Doppler velocimetry
[16, 17].

2. Turbulence Modeling

As mentioned above, the SST-RC turbulence model [10] was
used in the turbulent flow simulation. Compared with the
original SST 𝑘-𝜔 model [18], in consideration of the tur-
bulence anisotropy, the rotation/curvature correction coeffi-
cient𝑓

𝑟1
was introduced as amultiplier of the turbulence pro-

duction term 𝑃 in the turbulence kinetic energy 𝑘 equation
and specific dissipation rate 𝜔 equation. So, the production
term 𝑃 is defined as follows:

𝑃 = 𝑓
𝑟1
𝜏
𝑖𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

, (1)

where𝑓
𝑟1
is given empirically with specific limiters as follows:

𝑓
𝑟1
= max [min (𝑓rot, 1.25) , 0] ,
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)
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where𝐶
𝑟1
,𝐶
𝑟2
, and𝐶

𝑟3
are constants valued as 1.0, 2.0, and 1.0

respectively. The remaining functions are defined as follows:
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where Ωrot is the rotation rate of the reference frame and
the term D𝑆

𝑖𝑗
/D
𝑡
represents the Lagrangian derivative of the

strain rate tensor. 𝑆
𝑖𝑗
is the strain rate tensor and 𝑊

𝑖𝑗
is the

rotation rate tensor by

𝑆
𝑖𝑗
=
1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

)

𝑊
𝑖𝑗
=
1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) + 𝜀
𝑚𝑗𝑖
Ω

rot
𝑚
.

(4)

The 𝜏
𝑖𝑗
in (1) is the Reynolds stress tensor. In the Boussi-

nesq assumption [2], 𝜏
𝑖𝑗
is proportional to the strain rate

tensor 𝑆
𝑖𝑗
by

𝜏
𝑖𝑗
= 𝜇
𝑡
(2𝑆
𝑖𝑗
−
2

3

𝜕𝑢
𝑘

𝜕𝑥
𝑘

𝛿
𝑖𝑗
) , (5)

where 𝜇
𝑡
is the turbulent eddy viscosity. By applying the rota-

tion/curvature correction, anisotropic effects were consid-
ered in the simulationwhen solving the turbulence equations.

3. Numerical Simulation

To assess the Spalart-Shur rotation/curvature correction in
RANS simulation of centrifugal pump, the internal flow in the
impeller was numerically simulated. Based on the numerical
results and available experimental data [16], the flow details
were comparatively investigated under both the design and
low flow rate off-design conditions.

3.1. Pump Impeller Model. The scheme of the investigated
centrifugal pump impeller is shown in Figure 1. The specific-
speed𝑁

𝑠
of this impeller is about 26.3 calculated by

𝑁
𝑠
= 3.65

𝑛√𝑄

𝐻3/4
, (6)

where 𝑛 is the rotational speed of 725 r/min, 𝑄
𝑑
is the design

flow rate of 3.06 × 10
−3m3/s, and 𝐻

𝑑
is the design head of

1.75m. The geometrical parameters of impeller are shown in
Table 1 and illustrated in Figure 1. Two operating conditions
including 𝑄 = 1.0𝑄

𝑑
and 𝑄 = 0.25𝑄

𝑑
were simulated and

performed in this study.

3.2. Flow Domain Discretization. The flow domain consisted
of the impeller only. For a better geometric adaptability, tetra-
hedral mesh elements were used to discretize the impeller
domain. For the usage of wall functions, 𝑦+ of the first
element outside the walls should be set in the log-layer. So,
prism boundary layers were used in the near wall region.
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Figure 1: Scheme of the investigated centrifugal pump impeller.

Table 1: Geometrical parameters of impeller.

Parameter Value
Inlet diameter𝐷

1
71.0mm

Outlet diameter𝐷
2

190.0mm
Inlet height 𝑏

1
13.8mm

Outlet height 𝑏
2

5.8mm
Number of blades 𝑍 6
Blade thickness 𝑡

𝑏
3.0mm

Inlet blade angle 𝛽
1

19.7 degrees
Outlet blade angle 𝛽

2
18.4 degrees

Blade curvature radius 𝑅
𝑏

70.0mm

Table 2: Detailed parameters of mesh scheme.

Parameter Value
Nodes 406012
Elements 2046670
Prism boundary layers 5
The first layer height 0.1mm
Boundary layer growth rate 1.2

Then, a mesh-size independence check was conducted to
compromise the accuracy and costs in the simulation. By
modifying the mesh size, the residuals of head and hydraulic
efficiency was ensured to be less than 1 × 10−3. By modifying
the boundary layer height, the 𝑦

+ values were controlled
within the range from 1.53 to 26.97 so that the near-wall
region could be solved with wall functions. The final mesh
scheme is shown in Table 2 and Figure 2.

3.3. Simulation Settings. In this study, transient numerical
simulations were conducted.Three dimensional incompress-
ible N-S equations were solved in the simulation process.
The fluid medium was set as water at 25 degree centigrade
(density 𝜌 = 997 kg/m3 and dynamic viscosity 𝜇 = 8.899 ×

10
−4 kg/m⋅s). The reference frame was set as rotational with

the speed of 725 r/min. The reference pressure was 1 Atm.
Mass flow inlet was set at the impeller inflow with the

Figure 2: Schematic map of the mesh.

velocity normal to the boundary. Pressure outlet was set at the
impeller outflow with a value of 0 Pa. No-slip wall condition
was given on the solid wall boundaries including hub, shroud
and blades.

4. Results and Discussion

In order to fully assess the impacts of Spalart-Shur correction,
as mentioned above, the simulations were proceeded under
the design (1.0𝑄

𝑑
) and off-design (0.25𝑄

𝑑
) conditions. The

design condition is the most important operating condition
of pump. A correct simulation of the flow details is obviously
significant. The off-design condition is also crucial. Unde-
sirable flow structures make the flow hard to predict. For
this reason, the improvements of simulation accuracy are
necessary. Hence, based on the CFD results, the comparative
assessment of the rotation/curvature correction and discus-
sions are given as follows.

4.1. Flow under the Design Condition. Under the design
condition (1.0𝑄

𝑑
), the velocity field on the spanwise 50%

surface was simulated and compared with the LDV data [16]
as shown in Figure 3. It can be seen that the flow regime is
smooth, stable, and uniform among all the impeller passages.

The correction coefficient𝑓
𝑟
contour on the spanwise 50%

surface is shown in Figure 4. It indicates the enhancement or
reduction of local turbulence production under the influence
of rotation and curvature. As the multiplier of turbulence
production term, the value of 𝑓

𝑟
was almost 1.0 in the

vast majority of impeller domain. However, small scale of
reduction was detected at the blade leading edge (LE) and in
the near suction surface (SS) region.

Figure 5 shows the comparisonmap of turbulence kinetic
energy 𝑘

2𝐷
. In the impeller, fluid separated from the blade

surface while flowing around the LE. High 𝑘
2𝐷

region
occurred due to the small scale local separation. Also, in the
near SS region, high turbulence occurred due to the local
unattached flow. After the rotation/curvature correction, the
range of high 𝑘

2𝐷
region became smaller than before because
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(a) SST 𝑘-𝜔 (b) SST-RC (c) LDV

Figure 3: Velocity field on spanwise 50% surface under 1.0𝑄
𝑑
.

1.25

0.00

Figure 4: Correction coefficient 𝑓
𝑟
on spanwise 50% surface at

1.0𝑄
𝑑
.

of the turbulence reduction. As shown in Figure 5, by com-
paring the 𝑘

2𝐷
value and pattern, the result by SST-RCmodel

was more consistent with the PIV data [16].
Additionally, the relative velocity distributions on the

spanwise 50% surface are analyzed and shown as follows.
The radial component (𝑊

𝑟
) and tangential component (𝑊

𝑡
)

in three different radius’ positions were plotted, respectively,
in Figure 6 (𝑅

2
= 0.5𝐷

2
). Considering the flow uniformity

among all the passages, the velocity distributions were com-
pared based on just a single passage. Seen from the velocity
curves, the velocities magnitude by SST-RC model was just
slightly bigger than that by SST 𝑘-𝜔 model. In consideration
of the deviations between the PIV andLDVdata [16], both the
original and the corrected turbulence models get the similar
velocity distribution regularities.

In general, the impact of rotation/curvature correction
on the simulation accuracy was not obvious under 1.0𝑄

𝑑
.

Nevertheless, there was no obvious extra time cost when
using SST-RC model instead of SST 𝑘-𝜔 model. So, it would

be reasonable to use the SST-RC model in the simulation of
centrifugal pump under the design condition.

4.2. Flow under the Low Flow Rate Off-Design Condition.
Under the low flow rate off-design condition (0.25𝑄

𝑑
), the

velocity field on the spanwise 50% surface was also simu-
lated and compared with the LDV data [16] as shown in
Figure 7. With the flow rate decreasing, flow regime in the
impeller became undesirable with secondary flow structures.
As shown in the velocity field map, fluid did not flow along
the direction of blade geometry. Back flow fromoutlet to inlet
occurred in the passage. Lateral secondary flow from blade
pressure surface (PS) to suction surface (SS) also occurred.
Under the influence of all the disordered flow structures,
the flow uniformity among all the passages disappeared.
Some passages were blocked by secondary flow, but some
other passages were smoother. As shown in the LDV exper-
iment, the blocked passage and unblocked passage occurred
alternately in the impeller [16]. This phenomenon was also
captured by numerical simulations. In this situation, the
streamline curvature under 0.25𝑄

𝑑
became more obvious

than that under 1.0𝑄
𝑑
.

The correction details under 0.25𝑄
𝑑

are shown in
Figure 8. As plotted in the 𝑓

𝑟
contour, reductions of tur-

bulence production were detected in the vast majority of
impeller domain. But influenced by the flow regime, the
rotation/curvature correction was different in each passage.
The passages marked “A” and “B” in Figure 8 represented the
unblocked and blocked passages, respectively. In passage-A,
the low 𝑓

𝑟
region occurred at the whole blade SS.The high 𝑓

𝑟

region occurred at the PS near LE and the midpassage near
trailing edge (TE). In passage-B, the low 𝑓

𝑟
region occurred

at SS near LE and midpassage near TE. The high 𝑓
𝑟
region

occurred at SS near TE.
Influenced by the differences of coefficient 𝑓

𝑟
, the tur-

bulence kinetic energy 𝑘
2𝐷

had also changed after the
correction. Figure 9 shows the 𝑘

2𝐷
contour on the spanwise

50% surface under 0.25𝑄
𝑑
. As shown in the contours, the

turbulence kinetic energy was low in the unblocked “A”
passages andwas high in the blocked “B” passages. Due to the
flow separation at LE and backflow at TE, the high 𝑘

2𝐷
region
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Figure 5: Contour of turbulence kinetic energy 𝑘
2𝐷

on the spanwise 50% surface under 1.0𝑄
𝑑
.

occurred at LE and TE in “B” passages. On the contrary,
because of the well-behaved flow regime, the 𝑘

2𝐷
value was

lower in “A” passages. Compared with the PIV data [16], the
location and intensity of 𝑘

2𝐷
were more reasonable after cor-

rection. Moreover, the alternately blocked phenomena were
more obvious by using the SST-RC model.

To assess in details, the relative velocity distributions on
the spanwise 50% surface are also plotted in Figure 10. Con-
sidering the differences of flow regime among all the passages,
two adjacent passages (“A” and “B”) were analyzed. The dis-
tributions of velocity components changed after correction.
Compared with the experimental data [16], it can be seen
that the results became more accurate. In particular, flow
severely separated at blade LE with a stronger streamline
curvature and higher turbulence. So, corrected by reducing
the production of turbulence, radial and tangential velocities
becamemore consistent with experiments especially at 0.5𝑅

2
.

All in all, the correction impact was obvious under
0.25𝑄

𝑑
. So, it is strongly recommended to use the corrected

model under the low flow rate off-design condition.

5. Conclusions

By comparatively assessing the Spalart-Shur correction in
the RANS simulations in centrifugal pump impeller under

different operating conditions, conclusions can be drawn as
follows.

(1) In the RANS simulations, the isotropous description
of turbulence model is not perfect enough. The flow
in a centrifugal pump impeller is strongly affected by
the system rotation and streamline curvature. With
the pump rotation, separation flow occurred at blade
leading edge. Under different operating conditions,
the scale of separation is also different. Particu-
larly under low flow rate off-design conditions, fluid
does not flow along the blade geometry; secondary
flow structures become more and more obvious and
occurred everywhere in the pump impeller passages.

(2) By the supplements of descriptions of turbulence
anisotropy, turbulence production term is corrected.
Verified by comparing the CFD results with exper-
imental data, improvements are found after correc-
tion. Under the design condition, the impact of
correction is not obvious but theoretically reasonable.
Under the low flow rate off-design condition, sim-
ulation accuracy is significantly improved especially
in the strong separation region. Moreover, there is
no obvious extra time cost when using the corrected
model. Hence, in the RANS simulations of centrifugal
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pumps, if the flow regime is undesirable with strong
secondary flow structures, it will be very appropriate
to apply the Spalart-Shur rotation/curvature correc-
tion to the SST 𝑘-𝜔 model and other eddy viscosity
turbulence models.
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The generalized regularized long wave (GRLW) equation is an important nonlinear equation for describing a large number of
physical phenomena, for examples, the shallow water waves and plasma waves. In this study, numerical approximation of the
GRLW using the element-free improved moving least-squares Ritz (IMLS-Ritz) method is performed. In the solution procedure,
the IMLS approximation is employed to reduce the number of unknown coefficients in the trial functions. The Ritz minimization
procedure is then used to derive the final algebraic equation system through discretizing the constructed energy formulation of the
nonlinear GRLW equation. Time difference technique and Newton-Raphson method are adopted to solve the nonlinear equation
system. Numerical experiments are conducted on the final form of the governing equation system to demonstrate the accuracy
and efficiency of the element-free IMLS-Ritz method by comparing the computed IMLS-Ritz results with the existing available
analytical solutions.

1. Introduction

The damped GRLW equation is established as a model for
small-amplitude long waves on the surface of water [1, 2]. For
some special cases, such as the regularized long wave (RLW)
or the Benjamin-Bona-Mahony equation [3] which is used to
describe a large number of physical phenomena with weak
nonlinearity and dispersion waves.

TheGRLWequation has been extensively studied for gen-
erating its solutions by analytical and approximate methods.
Unlike the RLW and the Benjamin-Bona-Mahony equations,
the stability of solutions to the GRLW equation depends on
the solitary wave velocity [4]. Due to its potentially high
nonlinearity, many efforts have been made to generate its
solutions accurately and efficiently bymeans of, for examples,
the finite difference method [5], the Adomian decomposition
method [6, 7], the finite element method [8–14], and the
element-free method [15–18]. Moreover, the separation of
temporal and spatial derivatives was also used to study the
wave interactions [19, 20].

The element-free or meshless method has become a
popular numerical tool in recent years. It has been developed

and successfully applied to obtain accurate solutions for PDEs
deriving from the physical and engineering fields [21–26].
These include the element-free Galerkin method [27, 28],
smooth particle hydrodynamics method [29], radial basis
function method [30], element-free kp-Ritz method [31–
36], and meshless local Petrov-Galerkin method [37]. The
major advantage of the element-free method for solving
partial differential equations (PDEs) is that it does not require
domain or boundary discretization. With this advantage
together with its flexibility and simplicity in implementation
[38–40], element-free methods have also been employed for
solving many mathematical models of wave equation [17–
20, 41, 42], such as the kp-Ritz method [17], the radial
basis functions method [41], and the element-free Galerkin
method [20, 42].

In this paper, we present an element-free computational
framework to predict numerical solutions for the nonlinear
GRLW equation using an improved moving least square Ritz
(IMLS-Ritz) method. This novel IMLS-Ritz method consists
of two essential parts: (i) the improved moving least-squares
(IMLS) approximation and (ii) the Ritz procedure.The IMLS
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technique is employed for construction of the shape func-
tions. An energy formulation for the nonlinear GRLW equa-
tion is formulated and discretized by the Ritz minimization
procedure to obtain its final algebraic equation system. In the
solution procedure, the penalty method is adopted to impose
the essential boundary conditions. Time difference technique
and Newton-Raphson method are employed to solve the
nonlinear system equations. Computational simulations for
several numerical examples are presented to examine the
affectivity and efficiency of the IMLS-Ritz method on the
nonlinear GRLW equation.

2. Theoretical Formulation

2.1. Equivalent Functional of GRLW Equation. The general
form of the GRLW equation can be written as

𝑢
𝑡
+ 𝛼𝑢
𝑥
+ 𝜀𝑢
𝑝−1

𝑢
𝑥
= 𝛾𝑢
𝑥𝑥

+ 𝜇𝑢
𝑥𝑥𝑡

,

𝑥 ∈ Ω = [𝑎, 𝑏] ⊂ R, 0 < 𝑡 ≤ 𝑇,

(1)

where 𝑎 = 1, 𝛾 = 0, 𝑝 is a known positive integer, 𝜀 and 𝜇

are two known positive parameters. The subscripts 𝑥 and 𝑡

denote space and time derivatives, respectively. The function
𝑢(𝑥, 𝑡) will be determined when functions 𝑓, 𝑔

1
, and 𝑔

2
are

given.Ω is the computational domain with boundary Γ.
The corresponding initial condition for the problem is

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (2)

and the boundary conditions are

𝑢 (𝑎, 𝑡) = 𝑔
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑔

2
(𝑡) . (3)

The functional Π(𝑢) is constructed from the weak form
of (1), that is,

Π (𝑢) = ∫

Ω

𝑢
𝑇
𝑢
𝑡
dΩ + ∫

Ω

𝑢
𝑇
𝑢
𝑥
dΩ

+ 𝜀∫

Ω

𝑢
𝑇
𝑢
𝑝−1

𝑢
𝑥
dΩ + 𝜇∫

Ω

𝑢
𝑇

𝑥
𝑢
𝑥𝑡
dΩ.

(4)

2.2. IMLS Shape Functions. The IMLS approximation was
proposed for construction of the shape functions [21] in the
element-free method. In one-dimensional IMLS approxima-
tion, for ∀𝑓(𝑥), 𝑔(𝑥) ∈ span(p), we define

(𝑓, 𝑔) =

𝑛

∑

𝐼=1

𝑤 (𝑥 − 𝑥
𝐼
) 𝑓 (𝑥

𝐼
) 𝑔 (𝑥
𝐼
) , (5)

where (𝑓, 𝑔) is an inner product, and span(p) is the Hilbert
space.

In span(p), for the set of points {𝑥
𝑖
} and weight functions

{𝑤
𝑖
}, if functions 𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) satisfy the condi-

tions

(𝑝
𝑘
, 𝑝
𝑗
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑝
𝑘
(𝑥
𝑖
) 𝑝
𝑗
(𝑥
𝑖
)

= {

0, 𝑘 ̸= 𝑗,

𝐴
𝑘
, 𝑘 = 𝑗,

(𝑘, 𝑗 = 1, 2, . . . , 𝑚) ,

(6)

we furnish the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) as a

weighted orthogonal function set with a weight function {𝑤
𝑖
}

about points {𝑥
𝑖
}. If 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) are polynomials,

the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) is called a weighted

orthogonal polynomials set with a weight function {𝑤
𝑖
} about

points {𝑥
𝑖
}.

Consider an equation system from MLS approximation
as follows:

A (𝑥) a (𝑥) = B (𝑥) u, (7)

whereA is themomentmatrix. Equation (7) can be expressed
as

[
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(8)

If the basis function set 𝑝
𝑖
(𝑥) ∈ span(p), 𝑖 = 1, 2, . . . , 𝑚,

is a weighted orthogonal function set about points {𝑥
𝑖
}, that

is, if

(𝑝
𝑖
, 𝑝
𝑗
) = 0, (𝑖 ̸= 𝑗) , (9)

then (8) becomes
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(10)

Subsequently, coefficients 𝑎
𝑖
(𝑥) can be determined

accordingly:

𝑎
𝑖
(𝑥) =
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𝑖
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)
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, 𝑖 = 1, 2, . . . , 𝑚; (11)

that is,

a (𝑥) = Ã (𝑥)B (𝑥) u, (12)

where
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From (7) and (11), the expression of approximation func-
tion 𝑢

ℎ
(𝑥) is

𝑢
ℎ
(𝑥) = Φ̃ (𝑥) u =

𝑛

∑

𝐼=1

Φ̃
𝐼
(𝑥) 𝑢
𝐼
, (14)
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where Φ̃(𝑥) is the shape function and

Φ̃ (𝑥) = (Φ̃
1
(𝑥) , Φ̃

2
(𝑥) , . . . , Φ̃

𝑛
(𝑥)) = p𝑇 (𝑥) Ã (𝑥)B (𝑥) .

(15)

The abovementioned formulation details an IMLS ap-
proximation in which coefficients 𝑎

𝑖
(x) are obtained directly.

It is, therefore, avoiding forming an ill-conditioned or singu-
lar equation system.

From (15), we have

Φ̃
𝐼
(𝑥) =

𝑚

∑

𝑗=1

𝑝
𝑗
(𝑥) [

̃A (𝑥)B (𝑥)]
𝑗𝐼
, (16)

which represents the shape function of the IMLS approx-
imation corresponding to node 𝐼. From (16), the partial
derivatives of Φ̃

𝐼
(𝑥) lead to

Φ̃
𝐼,𝑖

(𝑥) =

𝑚

∑

𝑗=1

[𝑝
𝑗,𝑖
(ÃB)
𝑗𝐼

+ 𝑝
𝑗
(Ã
,𝑖
B + ÃB

,𝑖
)
𝑗𝐼
] . (17)

The weighted orthogonal basis function set p = (𝑝
𝑖
) is

formed by using the Schmidt method as

𝑝
1
= 1,

.

.

.

𝑝
𝑖
= 𝑟
𝑖−1

−

𝑖−1

∑

𝑘=1

(𝑟
𝑖−1

, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)

𝑝
𝑘
, 𝑖 = 2, 3, . . . .

(18)

Moreover, using the Schmidt method, the weighted
orthogonal basis function set p = (𝑝

𝑖
) can be formed from

the monomial basis function. For example, for the monomial
basis function

p̃ = (𝑝
𝑖
) = (1, 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
1
𝑥
2
, 𝑥
1
𝑥
3
, 𝑥
2
𝑥
3
, 𝑥
2

1
, 𝑥
2

2
, 𝑥
2

3
, . . .) ,

(19)

the weighted orthogonal basis function set can be generated
by

𝑝
𝑖
= 𝑝
𝑖
−

𝑖−1

∑

𝑘=1

(𝑝
𝑖
, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)

𝑝
𝑘
, 𝑖 = 1, 2, 3, . . . . (20)

Using the weighted orthogonal basis functions described
in (19) and (20), fewer coefficients existed in the trial function.

3. Ritz Minimization Procedure for
the GRLW Equation

In the present element-free IMLS-Ritz method, the shape
functions do not possess the Kronecker delta property, yield-
ing to special techniques to impose the Dirichlet boundary
conditions to the method. Lagrange’s multiplier approach,
the penalty method, and modified variational principles are
those techniques which are often adopted for imposition
of boundary conditions. In the present work, we employ
the penalty method to modify the constructed functional in

implementing the specified Dirichlet boundary conditions.
The variational form of the penalty function is described as
follows:

Π
𝐵
=

𝛼

2

∫

Γ
𝑢

(𝑢 − 𝑢)
2dΓ, (21)

where 𝑢 is the specified function on the Dirichlet boundary
Γ
𝑢
and 𝛼 is the penalty parameter; normally it is chosen as

103 ∼107 which is case-dependent.
The total functional involving the Dirichlet boundary

conditions can be expressed as

Π
∗
(𝑢) = Π (𝑢) + Π

𝐵
. (22)

Substituting (4) into (22), we have

Π
∗
(𝑢) = ∫

Ω

𝑢
𝑇
𝑢
𝑡
dΩ + ∫

Ω

𝑢
𝑇
𝑢
𝑥
dΩ + 𝜀∫

Ω

𝑢
𝑇
𝑢
𝑝−1

𝑢
𝑥
dΩ

+ 𝜇∫

Ω

𝑢
𝑇

𝑥
𝑢
𝑥𝑡
dΩ +

𝛼

2

∫

Γ
𝑢

(𝑢 − 𝑢)
2dΓ.

(23)

The approximation of the field function can be obtained
from (14) as follows:

𝑢
ℎ
(𝑥, 𝑡) =

𝑛

∑

𝐼=1

Φ
𝐼
(𝑥) 𝑢
𝐼
(𝑡) = Φ (𝑥)U (𝑡) ,

𝜕𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑡

=

𝑛

∑

𝐼=1

Φ
𝐼
(𝑥)

𝜕𝑢
𝐼
(𝑡)

𝜕𝑡

= Φ (𝑥)
̇U (𝑡) ,

𝜕𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑥

=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥

(𝑥) 𝑢
𝐼
(𝑡) = Φ

𝑥
(𝑥)U (𝑡) ,

𝜕
2
𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑥𝜕𝑡

=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥

(𝑥)

𝜕𝑢
𝐼
(𝑡)

𝜕𝑡

= Φ
𝑥
(𝑥) U̇ (𝑡) ,

(24)

where

Φ (𝑥) = (Φ
1
(𝑥) , Φ

2
(𝑥) , . . . , Φ

𝑛
(𝑥)) ,

Φ
𝑥
(𝑥) = (Φ

1,𝑥
(𝑥) , Φ

2,𝑥
(𝑥) , . . . , Φ

𝑛,𝑥
(𝑥)) ,

U (𝑡) = (𝑢
1
(𝑡) , 𝑢
2
(𝑡) , . . . , 𝑢

𝑛
(𝑡))
𝑇

,

̇U (𝑡) = (

𝜕𝑢
1
(𝑡)

𝜕𝑡

,

𝜕𝑢
2
(𝑡)

𝜕𝑡

, . . . ,

𝜕𝑢
𝑛
(𝑡)

𝜕𝑡

)

𝑇

.

(25)

Substituting (24) into (23) and applying the Ritz mini-
mization procedure to themaximumenergy functionΠ

∗, one
has the following:

𝜕Π
∗

𝜕𝑢
𝐼
(𝑡)

= 0, 𝐼 = 1, 2, . . . , 𝑛. (26)

That yields the following matrix form:

(C +M)
̇U (𝑡) + (K + K)U (𝑡) + 𝜀K𝑢

𝑝
= F (𝑡) , (27)
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where

𝐶
𝐼𝐽

= ∫

Γ

Φ
𝐼
(𝑥)Φ
𝐽
(𝑥) dΓ,

𝑀
𝐼𝐽

= 𝜇∫

Γ

Φ
𝐼,𝑥

(𝑥)Φ
𝐽,𝑥

(𝑥) dΓ,

𝐾
𝐼𝐽

= ∫

Γ

Φ
𝐼
(𝑥)Φ
𝐽,𝑥

(𝑥) dΓ,

𝐾
𝐼𝐽

= 𝛼 (Φ
𝐼
(𝑥)Φ
𝐽
(𝑥)




𝑥=𝑎

+ Φ
𝐼
(𝑥)Φ
𝐽
(𝑥)




𝑥=𝑏

) ,

𝐹
𝐼
= 𝛼 (Φ

𝐼
(𝑥) 𝑢




𝑥=𝑎

+ Φ
𝐼
(𝑥) 𝑢




𝑥=𝑏

) .

(28)

To solve the above system, time discretization of (27) is
forming with the center difference method as follows:

(C +M)

U𝑛+1 − U𝑛

Δ𝑡

+ (K + K)

U𝑛+1 + U𝑛

2

+ 𝜀K
(𝑢
𝑝
)
𝑛+1

+ (𝑢
𝑝
)
𝑛

2

=

F𝑛+1 + F𝑛

2

,

(29)

where Δ𝑡 is the time of the step and
U𝑛 = U (𝑛Δ𝑡) = (𝑢

1
(𝑛Δ𝑡) , 𝑢

2
(𝑛Δ𝑡) , . . . , 𝑢

𝑛
(𝑛Δ𝑡)) . (30)

Iteration with Newton-Raphson method is implemented
to solve the above equation and the numerical solution of the
GRLW equation will be obtained.

4. Numerical Examples and Discussion

Numerical analysis for three selected example problems is
performed in order to demonstrate the applicability and
examine the accuracy of the IMLS-Ritz method for the
GRLW equation.The problems are solved using regular node
arrangements.

The convergence study is carried out for the results of
the GRLW equation for (i) a single solitary wave, (ii) an
interaction of two solitary waves, and (iii) an interaction of
three solitary waves. Accuracy of the numerical solutions by
the IMLS-Ritz method is measured by using the following
equations:

𝐿
2
=





𝑢exact − 𝑢numerical




2

= √

𝑁

∑

𝑖=0





𝑢
𝑖

exact − 𝑢
𝑖

numerical





2

,

𝐿
∞

=




𝑢exact − 𝑢numerical




∞

= max
𝑖






𝑢
𝑖

exact − 𝑢
𝑖

numerical





,

(31)
where 𝑢exact and 𝑢numerical denote the exact solution and
numerical approximation, respectively.

4.1. Single Solitary Wave. The analytical solution of (1) is
given in the general form of [1, 35] as follows:

𝑢 (𝑥, 𝑡) = 𝑑{sech2 [𝑘 (𝑥 + 𝑥
0
− V𝑡)]}

1/(𝑝−1)

, 𝑎 ≤ 𝑥 ≤ 𝑏.

(32)
When 𝑝 = 3, (32) can be simplified as

𝑢 (𝑥, 𝑡) = 𝑑sech2 [𝑘 (𝑥 + 𝑥
0
− V𝑡)] , (33)

Table 1: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (𝑁) for the solution of
GRLW equation (𝑡 = 0.1, Δ𝑡 = 0.01, and 𝑑max = 3.5).

𝑁 𝐿
2
-norm error 𝐿

∞
-norm error CPU time (s)

11 2.4514 × 10−2 1.3741 × 10−2 0.11356
21 1.5578 × 10−2 1.3473 × 10−2 0.15316
51 1.6046 × 10−3 9.2657 × 10−4 0.23117
101 3.8300 × 10−4 3.3494 × 10−4 0.50029
201 3.5489 × 10−4 3.2499 × 10−4 1.05792

Table 2: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the time steps (Δ𝑡) for the solution of GRLW
equation (𝑁 = 100 and 𝑑max = 3.5).

Δ𝑡 𝐿
2
-norm error 𝐿

∞
-norm error CPU time (s)

2 2.2253 × 10−3 1.0837 × 10−3 0.4448
1.5 1.4073 × 10−3 5.0827 × 10−4 0.4574
1 1.1937 × 10−3 4.1598 × 10−4 0.4962
0.1 4.1246 × 10−4 3.3449 × 10−4 0.4426
0.01 3.8300 × 10−4 3.3494 × 10−4 0.4025

Table 3: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of GRLW equation
(𝑁 = 100 and 𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
-norm error CPU time (s)

2 3.4836 × 10−4 3.3442 × 10−4 0.5774
2.4 3.4911 × 10−4 3.3456 × 10−4 0.5658
2.8 3.5201 × 10−4 3.3474 × 10−4 0.5742
3 3.5504 × 10−4 3.3483 × 10−4 0.5827
3.5 3.8300 × 10−4 3.3494 × 10−4 0.4335
4 4.5051 × 10−4 3.3498 × 10−4 0.4465

where 𝑘 = (1/𝜇)√(V − 1)/V, 𝑑 = √4(V − 1)/(2𝜀), 𝜀 = 1, and
𝜇 = 1 for all examples. The initial and boundary conditions
are extracted from the exact solution. Equation (29) is solved
numerically with [𝑎, 𝑏] = [−100, 100], V = 1.01, and 𝑥

0
= 10.

We examine the convergence of the element-free IMLS-
Ritz method on this example by varying the number of nodes
(𝑁). The penalty factor is set as 𝛼 = 10

3 and 𝑑max =

3.5. The 𝐿
2
-norm and 𝐿

∞
errors of 𝑢 are computed with

the number of nodes varied from 11 to 201. The results are
tabulated in Table 1. It is apparent that both 𝐿

2
-norm and 𝐿

∞

errors decrease as 𝑁 increases, indicating convergent results
are obtained by the IMLS-Ritz method. Subsequently, we
investigated the influence of time steps (Δ𝑡) on the accuracy
of the IMLS-Ritz method by keeping𝑁 = 101 and 𝑑max = 3.5

and varying Δ𝑡 from 0.01 to 2. As illustrated in Table 2, it
is obvious that a smaller time step leads to a more precise
result for this example. Moreover, as shown in Table 3, by
varying 𝑑max from 2 to 4, accurate results can be furnished
when 𝑑max = 2.

Furthermore, the predicted results are compared with the
analytical solutions at 𝑡 = 0.1. As shown in Figure 1, these
results and the absolute error are obtained when 𝑁 = 101. A
close agreement is obtained from the illustrated results. The
computed results of 𝑢(𝑥, 𝑡) for a time history is also predicted
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Figure 1: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) at𝑁 = 101 (single solitary wave). (a) Solutions of 𝑢(𝑥, 𝑡); (b) absolute error.
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Figure 2: Numerical solutions of 𝑢(𝑥, 𝑡) at different times (single solitary wave). (a) Numerical solutions of 𝑢(𝑥, 𝑡); (b) absolute errors.

between 𝑡 = 0 s and 𝑡 = 15 s (Δ𝑡 = 1) (Figure 2(a)).
The corresponding absolute errors are plotted in Figure 2(b).
To illustrate clearly the influence of number of nodes, we
display 𝐿

2
-norm errors in a time period from 0 s to 0.01 s

in Figure 3(a). Here we set Δ𝑡 = 0.001 because when
Δ𝑡 is smaller than 0.001, the 𝐿

2
-norm errors will increase

slightly, presumably due to the increase in round-off error.
To further investigate the influence of different time steps,
we examine the variation trend of the 𝐿

2
-norm errors as

time step varies in different time period. As exhibited in
Figure 3(b), generally, the 𝐿

2
-norm errors tend to decline

linearly as time steps decreased. From the presented results in

the tables and figures, we can conclude that the approximate
solutions generated by the IMLS-Ritz method are in close
agreement with the analytical results.

4.2. Interaction of Two Solitary Waves. Consider an inter-
action of two solitary waves; we have the following exact
solution [1, 35]:

𝑢 (𝑥, 0) =

2

∑

𝑗=1

𝑑
𝑗
sech [𝑘

𝑗
(𝑥 + 𝑥

0𝑗
− V
𝑗
𝑡)] , (34)

where 𝑘
𝑗
= (1/𝜇)√(V

𝑗
− 1)/V

𝑗
and 𝑥
0𝑗
are arbitrary constants.
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Figure 3: 𝐿
2
-norm errors of 𝑢(𝑥, 𝑡) (single solitary wave). (a) 𝐿

2
-norm errors at different number of nodes; (b) 𝐿

2
-norm errors at different

time steps.
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Figure 4: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) at𝑁 = 101 (two solitary waves). (a) Solutions of 𝑢(𝑥, 𝑡); (b) absolute errors.

In this analysis, parameters are chosen to be [𝑎, 𝑏] =

[−150, 100], V
1

= 1.005, V
2

= 1.01, 𝑥
01

= 45, 𝑥
02

= −35,
and Δ𝑡 = 0.0001. The problem is analyzed with 101 nodes.
The numerical solutions are predicted and comparedwith the

analytical solutions at 𝑡 = 0.02. As presented in Figure 4, the
comparison study shows that the IMLS-Ritzmethod provides
a very similar solution as the exact result. In Figure 5, the
computed results and corresponding absolute errors of 𝑢(𝑥, 𝑡)
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Figure 5: Numerical solutions of 𝑢(𝑥, 𝑡) at different times (two solitary waves). (a) Numerical solutions of 𝑢(𝑥, 𝑡); (b) absolute errors.
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Figure 6: 𝐿
2
-norm errors of 𝑢(𝑥, 𝑡) (two solitary waves). (a) 𝐿

2
-norm errors at different number of nodes; (b) 𝐿

2
-norm errors at different

𝑑max.

for a time period from 0 s to 0.002 are displayed at 𝑁 =

301. Again, further examination of the influence of number
of nodes and 𝑑max in predicting the interaction between
two solitary waves, we display the time history of 𝐿

2
-norm

errors by varying time from 0 s to 0.01 s. As exhibited in
Figure 6(a), the 𝐿

2
-norm errors decrease substantially as the

arranged nodes increased while keeping the other variations
as constants. Moreover, in this case, the results of numerical
analysis suggested that satisfied accuracy can be achieved
when 2 ≤ 𝑑max ≤ 3.

4.3. Interaction ofThree SolitaryWaves. A third example con-
sidered the interaction of three waves of various amplitudes
and traveling in the same direction. The analytical solutions
has the same form as in Section 4.2, when choosing the
following parameters: [𝑎, 𝑏] = [−30, 120], 𝑐

1
= 7, 𝑐

2
= 3.25,

𝑐
3
= 1.6, 𝑥

01
= −10, 𝑥

02
= −45, and 𝑥

03
= −65.

Firstly, a regular 401 node is used in the IMLS-Ritz
analysis with 𝑑max = 2, the penalty factor 𝛼 = 10

5, and
Δ𝑡 = 0.001. In Figure 7, the comparison results of IMLS-Ritz
solutions and the analytical results are illustrated at 𝑡 = 0.15 s.
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Figure 7: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) at𝑁 = 401 (three solitary waves). (a) Solutions of 𝑢(𝑥, 𝑡); (b) absolute errors.
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Figure 8: Numerical solutions of 𝑢(𝑥, 𝑡) at different times (three solitary waves). (a) Numerical solutions of 𝑢(𝑥, 𝑡); (b) absolute errors.

It is observed that the results obtained by implementing the
IMLS-Ritz method are very close to the exact solutions. It is
worth mentioning that the maximum error occurs near the
peak position of the solitary wave, showing a good agreement
with the results in [35]. Solutions at initial and different time
levels are plotted in Figure 8(a), while Figure 8(b) gives the
corresponding absolute error at Δ𝑡 = 0.0001. To examine
the influence of number of nodes and 𝑑max in predicting the
interaction between three solitary waves, we display the time
history of 𝐿

2
-norm errors by varying time from 0 s to 0.002 s.

As observed from Figure 9, convergent results are obtained as

𝑁 increases up to 450 while keepingΔ𝑡 = 0.0001, and smaller
𝐿
2
-norm errors are produced as 𝑑max increases.

5. Conclusion

An accurate numerical solution of the GRLW equation is
important in investigating the creation of secondary solitary
waves corresponding to particle physics. In this paper, the
element-free IMLS-Ritz method is applied to provide an
alternative solution for theGRLWequation. In this numerical
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Figure 9: 𝐿
2
-norm errors of 𝑢(𝑥, 𝑡) (three solitary waves). (a) 𝐿

2
-norm errors at different number of nodes; (b) 𝐿

2
-norm errors at different

𝑑max.

solving process, IMLS approximation is employed to estimate
the one-dimensional field function. The total functional is
established by enforcement of Dirichlet boundary conditions
using the penalty approach. The system of nonlinear discrete
equations is furnished through Ritz minimization procedure.
Time difference technique and Newton-Raphsonmethod are
used to solve the nonlinear equation system. The accuracy
and efficiency of the IMS-Ritz method are examined through
carefully selected numerical examples. From the computa-
tional results, it is concluded that the presented element-free
method with satisfied performance can be extended to other
PDEs in engineering problems.
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We present a desorption-diffusion-seepage model for the gas flow problem in deformable coalbed methane reservoirs. Effects
of fracture systems deformation on permeability have been considered in the proposed model. A mixed finite element method
is introduced to solve the gas flow model, in which the coalbed gas pressure and velocity can be approximated simultaneously.
Numerical experiments using the lowest order Raviart-Thomas (RT

0
) mixed element are carried out to describe the dynamic

characteristics of gas pressure, velocity, and concentration. Error estimate results indicate that approximation solutions could
achieve first-order convergence rates.

1. Introduction

Coalbed methane (CBM) is an abundant, low cost energy
source, which has become a viable alternative source to
conventional fuel. CBM reservoirs are dual porosity systems
consisting of coal matrix and fracture network [1]. In CBM
reservoirs, most of coalbed gas is stored in the coal matrix as
adsorbed gas, and only a small amount is stored in fracture
systems as free gas. Comparing with conventional natural
gas reservoirs, the effect of fracture systems deformation
on permeability is significant in CBM reservoirs [2–4].
Meanwhile, the gas flow in fracture systems is driven not only
by pressure field but also by gas concentration field [5, 6],
so we need to consider Darcy seepage and Fick diffusion
simultaneously in multifield. As coalbed gas is released from
CBM reservoirs, fracture system pressure reduces, resulting
in gas diffusion in the coal matrix and gas desorption from
coal matrix surface to fracture systems. Therefore, the gas
flow process in CBM reservoirs includes gas desorption-
diffusion in coal matrix and gas seepage in fracture systems
[7–10]. Usually, the fracture systems are considered as the gas
flow passage and the coal matrix is treated as the source for
fracture systems.

Based on the above understandings about coalbed gas
flow mechanism, a series of conventional mathematical and
numericalmodels [5, 6, 11, 12] have been developed, obtaining

some useful computational and simulation results. Young [11]
presented a computermodel forCBMreservoirs to determine
key data and to describe the variability in CBM reservoir
properties. Unsal et al. [12] proposed a numerical model
for multiphase flow in CBM reservoirs using a fracture-only
model. Thararoop et al. [5, 6] developed a compositional
dual porosity, dual permeability CBM numerical model to
describe the pressure and concentration dynamic behaviors.
Nevertheless, the existing CBM numerical simulation meth-
ods are based on finite difference scheme andmainly focus on
gas pressure and concentration, ignoring gas flow velocity.

Mixed finite element method was initially introduced by
engineers [13] in the 1960s and has been applied tomany areas
such as solid and fluid mechanics, which could approximate
both vector variable (e.g., the fluid velocity) and scalar
variable (e.g., the pressure) simultaneously and give a high
order approximation of both variables. Comparing with the
standard finite elementmethod only employing a single finite
element space, mixed finite element method need construct
two different finite element spaces. Raviart and Thomas [14]
introduced the first family of mixed finite element spaces for
second-order elliptic problems. Nedelec [15] extended these
spaces to three-dimensional problems. Then, Brezzi et al.
[16, 17] and Chen and Douglas [18] presented many mixed
finite element spaces.
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In addition, the study about numerical method and
numerical analysis for fluid flow problems in porous media
has been a research hotspot for the past decades [19–24],
due to its wide applications in various engineering areas.
Douglas et al. [19–21] have done a lot of useful work for the
fluid flow problem in porous media. For the incompressible
miscible displacement problem in porous media, Wang [22]
introduced ELLAM-MFEM to solve equation of the problem.
A component-based Eulerian-Lagrangian method [23] was
used to treat the multicomponent, multiphase flow problem
in porous media. Li and Sun [24] presented an uncondi-
tional convergence Galerkin-mixed element approximation
for the incompressible miscible flow problem. However,
until now, we have not found any paper considering mixed
element approximation scheme for the gas flow problem in
deformable CBM reservoirs.

The aim of this paper is to study the gas flow problem
in deformable CBM reservoirs using mixed element method.
For this purpose, we introduce a mixed finite element
method to approximate the coalbed gas pressure and velocity
simultaneously. Another objective of this paper is to carry out
some numerical experiments using the lowest order Raviart-
Thomas mixed element, so as to show the convergence rate
of the mixed element approximation method, and to analyze
coalbed gas flow characteristics.

This paper is organized as follows. In Section 2, consid-
ering the effects of fracture system deformation, we present
a desorption-diffusion-seepage model of gas flow in deform-
able CBM reservoirs for the two-dimensional problem. In
Section 3 we introduce a mixed finite element approximation
scheme for the coalbed gas flow model. In Section 4 numeri-
cal experiments using the lowest order Raviart-Thomas (RT

0
)

mixed element are carried out.

2. Coalbed Gas Flow Problem in
Deformable CBM Reservoirs

In this section, considering the pressure dependence of
permeability and porosity, we derive a mathematical model
for the gas flow problem in deformable CBM reservoirs.

2.1. Basic Assumptions and Gas State Descriptions

(i) CBM reservoirs are treated as dual porosity systems
consisting of coal matrix and fracture network.

(ii) CBM reservoirs are isothermal.When pressure varia-
tion is not significant, we can assume the gas viscosity
is constant under isothermal conditions [25].

(iii) The gas diffusion process in the coal matrix is pseu-
dostatic and described by Fick’s first diffusion law.

(iv) Gas absorption/adsorption is described by Langmuir
adsorption isotherm.

The equation of real gas state is

𝑝𝑉 = 𝑛𝑍𝑅𝑇 =
𝑚

𝑀
𝑍𝑅𝑇, (1)

where 𝑝 is the gas pressure, 𝑉 is the gas volume, 𝑛 is the
amount of substance, 𝑇 is the gas temperature, 𝑚 is the gas
mass,𝑀 is the gas molar mass, 𝑍 is the gas deviation factor,
and 𝑅 is the universal gas constant. From (1) the gas density
𝜌 can be written as

𝜌 =
𝑚

𝑉
=

𝑝𝑀

𝑍𝑅𝑇
. (2)

According to the Langmuir isotherm and the state equa-
tion of real gas, the adsorbed gas concentration 𝐶

𝑚
in coal

matrix and free gas concentration 𝐶
𝑓
in fracture systems can

be written, respectively, as

𝐶
𝑚
(𝑝

𝑚
) =

𝐶
𝐿
𝑝
𝑚

𝑝
𝐿
+ 𝑝

𝑚

, 𝐶
𝑓
= 𝜙

𝑓
𝜌 =

𝜙
𝑓
𝑝
𝑓
𝑀

𝑍𝑅𝑇
, (3)

where 𝑝
𝑚

is the gas pressure in coal matrix, 𝐶
𝐿
is the

maximum adsorption concentration of the coal matrix, 𝑝
𝐿

is the Langmuir pressure, 𝑝
𝑓
is the gas pressure in fracture

systems, and 𝜙
𝑓
is the porosity of fracture systems.

2.2. Gas Flow Model. Considering the effects of fracture
system deformation, fracture system permeability tensor
K
𝑓
(𝑥, 𝑝

𝑓
) can be written as

K
𝑓
(𝑥, 𝑝

𝑓
) = K

0
𝑒
𝛽(𝑝𝑓−𝑝0), (4)

where 𝑝
0
is the initial gas pressure in fracture systems, K

0
is

the fracture system permeability tensor under 𝑝
0
, and 𝛽 is the

permeability modulus with respect to gas pressure.
Coalbed gas flow in fracture systems is driven by pressure

field and concentration field simultaneously. According to
Darcy’s law and Fick’s diffusion law, the motion equation of
gas flow in fracture systems can be written as

u = −(
K
𝑓
(𝑥, 𝑝

𝑓
)

𝜇
𝑔

+
D
𝑓
𝜙
𝑓

𝑝
𝑓

)∇𝑝
𝑓
, (5)

where u is the total volume velocity of gas flow driven by
multifield, 𝜇

𝑔
is the gas viscosity, and D

𝑓
is the gas diffusion

coefficient in fracture systems.
Then, according to the mass conservation law, the conti-

nuity equation of gas flow in fracture systems is
𝜕𝜌𝜙

𝑓

𝜕𝑡
+ ∇ ⋅ (𝜌u) = 𝜌𝑞

𝑚
, (6)

where 𝑞
𝑚
is the gas volume of interporosity flow from coal

matrix to fracture systems. Using the state equation of real
gas, the divergence term of (6) could be unfolded as the
following form:

∇ ⋅ (𝜌u) = 𝜌∇ ⋅ u + u ⋅ ∇𝜌 = 𝜌∇ ⋅ u + 𝜌

𝑝
𝑓

u ⋅ ∇𝑝
𝑓
. (7)

Similarly, the capacity term could be unfolded as the follow-
ing form:

𝜕𝜌𝜙
𝑓

𝜕𝑡
= 𝜙

𝑓

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝜙
𝑓

𝜕𝑡

=
𝜙
𝑓
𝜌

𝑝
𝑓

𝜕𝑝
𝑓

𝜕𝑡
− 𝑐

𝑍
𝜙
𝑓
𝜌
𝜕𝑝

𝑓

𝜕𝑡
+ 𝑐

𝜙
𝜙
𝑓
𝜌
𝜕𝑝

𝑓

𝜕𝑡
,

(8)
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where 𝑐
𝜙
is the compressibility factor of 𝜙

𝑓
and 𝑐

𝑧
is the

compressibility factor of 𝑍, defined as

𝑐
𝜙
=

1

𝜙
𝑓

𝜕𝜙
𝑓

𝜕𝑝
𝑓

, 𝑐
𝑧
=

1

𝑍

𝜕𝑍

𝜕𝑝
𝑓

. (9)

For the expression brevity, define

K (𝑥, 𝑝
𝑓
) =

K
𝑓
(𝑥, 𝑝

𝑓
)

𝜇
𝑔

+
D
𝑓
𝜙
𝑓

𝑝
𝑓

,

𝑐 (𝑥, 𝑝
𝑓
) =

𝜙
𝑓

𝑝
𝑓

− 𝑐
𝑧
𝜙
𝑓
+ 𝑐

𝜙
𝜙
𝑓
,

(10)

and substitute motion equation (5) into (7); the continuity
equation (6) can be rewritten as follows:

𝑐 (𝑥, 𝑝
𝑓
)
𝜕𝑝

𝑓

𝜕𝑡
− ∇ ⋅ (K (𝑥, 𝑝

𝑓
) ∇𝑝

𝑓
) −

K(𝑥, 𝑝
𝑓
)
−1

𝑝
𝑓

u2 = 𝑞
𝑚
.

(11)

Since the seepage velocity u is very low, the quadratic term u2
usually can be omitted in engineering application.Therefore,
the more common form of continuity equation is as follows:

𝑐 (𝑥, 𝑝
𝑓
)
𝜕𝑝

𝑓

𝜕𝑡
− ∇ ⋅ (K (𝑥, 𝑝

𝑓
) ∇𝑝

𝑓
) = 𝑞

𝑚
. (12)

In addition, there are some other studies [26, 27] considering
the influence of quadratic term u2. For example, Ranjbar et
al. [26] have considered the gas density variation in space and
solved the nonlinear equations using semianalyticalmethods.
However, they did not consider the effect of gas desorption
and deformable media. But their method may form a basis
for application of semianalyticalmethods for problem like the
one studied here and it will be useful to the readers.

According to Fick’s first diffusion law, the pseudosteady
state equation of gas diffusion in coal matrix can be written
as

𝑑𝐶
𝑎𝑚

𝑑𝑡
= 𝐷

𝑚
𝜎 (𝐶

𝐸
(𝑝

𝑓
) − 𝐶

𝑎𝑚
) , (13)

where 𝐶
𝑎𝑚

is the average gas concentration of a coal matrix
block, 𝐶

𝐸
(𝑝

𝑓
) is the adsorbed concentration on the coal

matrix surface and is defined as 𝐶
𝐸
(𝑝

𝑓
) = 𝐶

𝐿
𝑝
𝑓
/(𝑝

𝐿
+ 𝑝

𝑓
),

𝐷
𝑚
is the gas diffusion coefficient in coal matrix block, and 𝜎

is the geometrical factor.
Combining (11) and (13), with corresponding initial and

boundary conditions, we have the coalbed gas flow model as
follows:

(i) 𝑐 (𝑥, 𝑝
𝑓
)
𝜕𝑝

𝑓

𝜕𝑡
− ∇ ⋅ (K (𝑥, 𝑝

𝑓
) ∇𝑝

𝑓
) = 𝑞

𝑚
,

𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

(ii)
𝑑𝐶

𝑎𝑚

𝑑𝑡
= 𝐷

𝑚
𝜎 (𝐶

𝐸
(𝑝

𝑓
) − 𝐶

𝑎𝑚
) , 𝑡 ∈ [0, 𝑇] ,

(iii) 𝑝
𝑓
= 𝑝

𝑑
, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] ,

(iv) 𝑝
𝑓
= 𝑝

0
, 𝑥 ∈ Ω, 𝑡 = 0,

(v) 𝐶
𝑎𝑚

= 𝐶
0
, 𝑥 ∈ 𝑉

𝑚
, 𝑡 = 0,

(14)

where Ω is the objective region for the two-dimensional
problem with boundary 𝜕Ω, [0, 𝑇] is a time interval with
𝑇 ∈ (0,∞], and 𝑉

𝑚
is the region of a coal matrix block.

3. Notations and Mixed Element
Approximation Scheme

In this section, we will present the mixed element approxi-
mation scheme for the coalbed gas flowmodel and give some
notations.

3.1. Some Notations and Basic Approximation Results. For the
convenience of subsequent analysis, we first give notations
and basic approximation results. Define the inner product on
Ω and its norm:

(𝑢, V) = ∫
Ω

𝑢 (𝑥) V (𝑥) 𝑑𝑥, ‖𝑢‖𝐿2(Ω) = (∫
Ω

𝑢
2
𝑑𝑥)

1/2

.

(15)

Recall that the Sobolev space𝐻𝑘
(Ω) is the closure of 𝐶∞

(Ω)

in the norm

‖𝑢‖
2

𝑘
= ∑

|𝛼|≤𝑘

𝐷
𝛼
𝑢

2

𝐿
2
(Ω)

. (16)

Define the function spaces𝑊, 𝑉 and their norms as follows:

𝑊 = 𝐿
2
(Ω) ,

𝑉 = 𝐻 (div, Ω)

= {k = (V
1
, V

2
) ∈ (𝐿

2
(Ω))

2

| ∇ ⋅ k ∈ 𝐿
2
(Ω)} ,

‖𝜔‖𝑊 = (∫
Ω

𝜔
2
𝑑𝑥)

1/2

, ‖k‖𝑉 = {‖k‖2 + ‖∇ ⋅ k‖2}
1/2

.

(17)

Let𝑊
ℎ
× 𝑉

ℎ
⊂ 𝑊 × 𝑉 be the mixed element function spaces

such as RT
𝑘
with index 𝑘 and discretization parameter ℎ. Now

we define the RT projection Π
ℎ
: 𝑉 → 𝑉

ℎ
, satisfying

(∇ ⋅ (k − Π
ℎ
k) , 𝜔

ℎ
) = 0, k ∈ 𝑉, 𝜔

ℎ
∈ 𝑊

ℎ
,

k − Π
ℎ
k0 ≤ 𝐶‖k‖𝑠ℎ

𝑠
,

1 ≤ 𝑠 ≤ 𝑘 + 1, ∀k ∈ 𝑉 ∩ (𝐻
𝑠
(Ω))

2
,

∇ ⋅ (k − Π
ℎ
k)0 ≤ 𝐶‖∇ ⋅ k‖𝑠ℎ

𝑠
,

0 ≤ 𝑠 ≤ 𝑘 + 1, ∀k ∈ 𝑉 ∩ 𝐻
𝑠
(div, Ω) .

(18)

Define standard 𝐿2 projection 𝑃
ℎ
: 𝑊 → 𝑊

ℎ
, satisfying

(𝑃
ℎ
𝑧 − 𝑧, 𝜔

ℎ
) = 0, 𝑧 ∈ 𝑊, 𝜔

ℎ
∈ 𝑊

ℎ
,

𝑧 − 𝑃
ℎ
𝑧
0 ≤ 𝐶‖𝑧‖𝑠ℎ

𝑠
, 0 ≤ 𝑠 ≤ 𝑘 + 1, ∀𝑧 ∈ 𝑊 ∩𝐻

𝑠
(Ω) .

(19)
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3.2. Mixed Element Approximation Scheme. We consider the
case that the seepage-diffusion tensor K(𝑥, 𝑝

𝑓
) is a diagonal

matrix and 𝑘
𝑖,𝑖
> 0 (𝑖 = 1, 2) for the two-dimensional prob-

lem. That is to say, there exist positive constants 𝑘
𝑚
and 𝑘

𝑀

such that, for all 𝜉 ∈ 𝑅
2,

𝑘
𝑚
𝜉

𝜉 ≤ 𝜉

K (𝑥, 𝑝
𝑓
) 𝜉 ≤ 𝑘

𝑀
𝜉

𝜉. (20)

For the practical situation, there exist 𝑐
𝑚
and 𝑐

𝑀
such that the

scalar coefficient 𝑐(𝑥, 𝑝
𝑓
) satisfies

0 < 𝑐
𝑚
≤ 𝑐 (𝑥, 𝑝

𝑓
) ≤ 𝑐

𝑀
< ∞. (21)

Also, we can easily verify that the coefficients 𝑘
𝑖,𝑖
(𝑝

𝑓
), 𝑐(𝑝

𝑓
),

and 𝑞
𝑚
(𝑝

𝑓
) satisfy the Lipschitz continuity. Since K(𝑥, 𝑝

𝑓
) is

a diagonal and invertible matrix, from (5) we have that

K(𝑥, 𝑝
𝑓
)
−1

u + ∇𝑝
𝑓
= 0. (22)

Using the integration by parts and applying the boundary
condition, we can define the mixed weak formation, which is
to find 𝑝

𝑓
∈ 𝑊, u ∈ 𝑉 such that

(K−1
(𝑥, 𝑝

𝑓
) u, k) − (∇ ⋅ k, 𝑝

𝑓
) = −(𝑝

𝑑
, k ⋅ n)

𝜕Ω
, ∀k ∈ 𝑉,

(𝑐 (𝑥, 𝑝
𝑓
)
𝜕𝑝

𝑓

𝜕𝑡
, 𝜔) + (∇ ⋅ u, 𝜔) = (𝑞

𝑚
(𝑝

𝑓
) , 𝜔) , ∀𝜔 ∈ 𝑊,

(23)

where n is the unit exterior normal vector to the 𝜕Ω.
Replacing the original pressure 𝑝

𝑓
and velocity u by

their approximations, we get the semidiscrete mixed element
approximate problem, which is to find 𝑝

ℎ
∈ 𝑊

ℎ
, u

ℎ
∈ 𝑉

ℎ
such

that

(K−1
(𝑥, 𝑝

ℎ
) u

ℎ
, k

ℎ
) − (∇ ⋅ k

ℎ
, 𝑝

ℎ
)

= −(𝑝
𝑑
, k

ℎ
⋅ n)

𝜕Ω
, ∀k

ℎ
∈ 𝑉

ℎ
,

(𝑐 (𝑥, 𝑝
ℎ
)
𝜕𝑝

ℎ

𝜕𝑡
, 𝜔

ℎ
) + (∇ ⋅ u

ℎ
, 𝜔

ℎ
)

= (𝑞
𝑚
(𝑡, 𝑝

ℎ
) , 𝜔

ℎ
) , ∀𝜔

ℎ
∈ 𝑊

ℎ
.

(24)

Let Δ𝑡 > 0, 𝑀 = 𝑇/Δ𝑡, an integer, and 𝑡
𝑛
= 𝑛Δ𝑡, 𝑛 = 0,

1, . . . ,𝑀. We can define the full discrete mixed element
approximate scheme with backward Euler time-discret-
ization as follows:

(K−1
(𝑝

𝑛−1

ℎ
) u𝑛

ℎ
, k

ℎ
) − (∇ ⋅ k

ℎ
, 𝑝

𝑛

ℎ
)

= −(𝑝
𝑑
, k

ℎ
⋅ n)

𝜕Ω
, ∀k

ℎ
∈ 𝑉

ℎ
,

(𝑐 (𝑝
𝑛−1

ℎ
)
𝑝
𝑛

ℎ
− 𝑝

𝑛−1

ℎ

Δ𝑡
, 𝜔

ℎ
) + (∇ ⋅ u𝑛

ℎ
, 𝜔

ℎ
)

= (𝑞
𝑚
(𝑝

𝑛−1

ℎ
) , 𝜔

ℎ
) , ∀𝜔

ℎ
∈ 𝑊

ℎ
.

(25)

Since gas diffusion equation (13) is an ordinary differential
equation, when 𝑝𝑛

ℎ
is known, we can get 𝐶

𝑎𝑚
(𝑡
𝑛
) as follows:

𝐶
𝑎𝑚

(𝑡
𝑛
) = 𝐶

𝐸
(𝑝

𝑛

ℎ
) − (𝐶

𝐸
(𝑝

𝑛

ℎ
) − 𝐶

0
) 𝑒

−𝐷𝑚𝜎𝑡𝑛 . (26)

Then, the gas volume of interporosity flow from coal matrix
to fracture systems could be calculated as follows:

𝑞
𝑚
(𝑝

𝑛

ℎ
) = −

1

𝜌

𝑑𝐶
𝑎𝑚

𝑑𝑡

𝑡=𝑡𝑛

= −
1

𝜌
𝐷
𝑚
𝜎 (𝐶

𝐸
(𝑝

𝑛

ℎ
) − 𝐶

0
) 𝑒

−𝐷𝑚𝜎𝑡𝑛 .

(27)

In practical calculation, alternative and iterative method is
used to solve (25)–(27), and specific calculation procedure is
listed as follows.

(i) For 𝑛 = 1, 2, . . . ,𝑀, when 𝑝
𝑛−1

ℎ
is known, 𝑞

𝑚
(𝑝

𝑛−1

ℎ
)

can be calculated using (27).

(ii) Then, substituting 𝑞
𝑚
(𝑝

𝑛−1

ℎ
) into (25), (𝑝𝑛

ℎ
, u𝑛

ℎ
) can be

approximated using (25).
(iii) Lastly, when 𝑝

𝑛

ℎ
is known, 𝐶

𝑎𝑚
(𝑡
𝑛
) can be calculated

using (26).

Let 𝜏
ℎ
be a quasiregular triangulation for the two-

dimensional rectangular region Ω with mesh size ℎ. For
a triangular element 𝑇(𝐴

1
𝐴
2
𝐴
3
), let x

𝑖
= (𝑥

𝑖
, 𝑦

𝑖
) be the

coordinate of vertex𝐴
𝑖
and 𝛾

𝑖
the edge opposite to vertex𝐴

𝑖
.

Let n
𝑖
be the outward unit vector on the edge 𝛾

𝑖
and ℎ

𝑖
the

length of the perpendicular dropped from the vertex𝐴
𝑖
onto

the edge 𝛾
𝑖
, 𝑖 = 1, 2, 3. We denote by ϝ

ℎ
the set of all edges of

the triangulation 𝜏
ℎ
.

The pressure function space𝑊
ℎ
is the space of piecewise

constant functions:

𝑊
ℎ
= {𝜔

ℎ
| 𝜔

ℎ
= 𝜔

𝑘
≡ constant

𝑘
in 𝑇

𝑘
, 𝑇

𝑘
∈ 𝜏

ℎ
} (28)

and the dimension of the space 𝑊
ℎ
is equal to 𝑚

1
—the total

number of elements 𝑇
𝑘
in the triangulation 𝜏

ℎ
. Each function

𝜔
ℎ
∈ 𝑊

ℎ
can be represented as a linear combination:

𝜔
ℎ
=

𝑚1

∑

𝑘=1

𝜔
𝑘
𝜓
𝑘 (x) , (29)

where 𝜓
𝑘
(x) is the basis function associated with the element

𝑇
𝑘
, satisfying

𝜓
𝑘 (x) = {

1, x ∈ 𝑇
𝑘

0, x ∉ 𝑇
𝑘

𝑘 = 1 ⋅ ⋅ ⋅ 𝑚
1
. (30)

The velocity function space 𝑉
ℎ
is chosen to be the

RT
0
(Ω, 𝜏

ℎ
), defined as

𝑉
ℎ
= RT

0
(Ω, 𝜏

ℎ
) = {k

ℎ
| k

ℎ
= (

𝑎
𝑥
+ 𝑏𝑥

𝑎
𝑦
+ 𝑏𝑦

) in 𝑇
𝑘
, 𝑇

𝑘
∈ 𝜏

ℎ
}

(31)

and the dimension of the space 𝑉
ℎ
is equal to 𝑚

2
—the total

number of edges 𝛾
𝑗
∈ ϝ

ℎ
. Each function k

ℎ
∈ 𝑊

ℎ
can be

represented as a linear combination

k
ℎ
=

𝑚2

∑

𝑗=1

V
𝑗
𝜙
𝑗
(x) , (32)
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where V
𝑗
= k

ℎ
⋅n

𝑗
and 𝜙

𝑗
is the basis function associated with

the edge 𝛾
𝑗
∈ ϝ, satisfying

𝜙
𝑗
⋅ n

𝑗
 = {

1, 𝑗 = 𝑗


0, 𝑗 ̸= 𝑗

.

(33)

To be specific, for a triangle element 𝑇
𝑘
, the basis functions

𝜙
𝑖
(𝑖 = 1, 2, 3) are determined by the following formulas:

𝜙
𝑖
(x) = 1

ℎ
𝑖

(x − x
𝑖
) ≡

𝛾𝑖


2 |𝑇|
(x − x

𝑖
) , (34)

where x
𝑖
= (𝑥

𝑖
, 𝑦

𝑖
) are the coordinates of the vertices 𝐴

𝑖
(𝑖 =

1, 2, 3) and |𝑇| is the area of triangle element 𝑇
𝑘
.

Now we use the basis functions 𝜓
𝑘
(x) (𝑘 = 1 ⋅ ⋅ ⋅ 𝑚

1
) and

𝜙
𝑗
(x) (𝑗 = 1 ⋅ ⋅ ⋅ 𝑚

2
) to represent 𝑝𝑛

ℎ
and u𝑛

ℎ
:

𝑝
𝑛

ℎ
=

𝑚1

∑

𝑘=1

𝑝
𝑛

𝑘
𝜓
𝑘
(x) , u𝑛

ℎ
=

𝑚2

∑

𝑗=1

𝑢
𝑛

𝑗
𝜙
𝑗
(x) . (35)

Substituting (35) into (25) and setting 𝜔
ℎ
= 𝜓

𝑘
(𝑘 = 1 ⋅ ⋅ ⋅ 𝑚

1
)

and k
ℎ
= 𝜙

𝑗
(x) (𝑗 = 1 ⋅ ⋅ ⋅ 𝑚

2
), full discrete mixed element

approximation scheme (25) can be written as follows:

𝑚2

∑

𝑗=1

(K−1
(𝑝

𝑛−1

ℎ
) 𝜙

𝑗
, 𝜙

𝑡
) 𝑢

𝑛

𝑗
−

𝑚1

∑

𝑘=1

(∇ ⋅ 𝜙
𝑡
, 𝜓

𝑘
) 𝑝

𝑛

𝑘

= −(𝑝
𝑑
, 𝜙

𝑡
⋅ n)

𝜕Ω
, 𝑡 = 1, 2 ⋅ ⋅ ⋅ 𝑚

2
,

Δ𝑡

𝑚2

∑

𝑗=1

(∇ ⋅ 𝜙
𝑗
, 𝜓

𝑙
) 𝑢

𝑛

𝑗
+

𝑚1

∑

𝑘=1

(𝑐 (𝑝
𝑛−1

ℎ
) 𝜓

𝑘
, 𝜓

𝑙
) 𝑝

𝑛

𝑘

= Δ𝑡 (𝑞
𝑚
(𝑝

𝑛−1

ℎ
) , 𝜓

𝑙
) + (𝑐 (𝑝

𝑛−1

ℎ
) 𝑝

𝑛−1

ℎ
, 𝜓

𝑙
)

𝑙 = 1, 2 ⋅ ⋅ ⋅ 𝑚
1
.

(36)

We introduce matrices and vectors as follows:

A = (𝐴
𝑖𝑗
)
𝑚2×𝑚2

, B = (𝐵
𝑖𝑗
)
𝑚2×𝑚1

, C = (𝐶
𝑖𝑗
)
𝑚1×𝑚1

,

U𝑛
= (𝑢

𝑛

𝑗
)
𝑚2×1

, P𝑛 = (𝑝
𝑛

𝑘
)
𝑚1×1

,

b
1
= (𝑏

1,𝑖
)
𝑚2×1

, b
2
= (𝑏

2,𝑖
)
𝑚1×1

,

(37)

where

𝐴
𝑖𝑗
= ∫

Ω

K−1
(𝑝

𝑛−1

ℎ
) 𝜙

𝑗
𝜙
𝑗
𝑑𝑥, 𝐵

𝑖𝑗
= ∫

Ω

∇ ⋅ 𝜙
𝑖
𝜓
𝑗
𝑑𝑥,

𝐶
𝑖𝑗
= ∫

Ω

𝑐 (𝑝
𝑛−1

ℎ
) 𝜓

𝑖
𝜓
𝑗
𝑑𝑥,

𝑏
1,𝑖
= −∫

𝜕Ω

𝑝
𝑑
(𝜙

𝑖
⋅ n) 𝑑𝑥,

𝑏
2,𝑖
= Δ𝑡∫

Ω

𝑞
𝑚
(𝑝

𝑛−1

ℎ
) 𝜓

𝑖
𝑑𝑥 + ∫

Ω

𝑐 (𝑝
𝑛−1

ℎ
) 𝑝

𝑛−1

ℎ
𝜓
𝑖
𝑑𝑥.

(38)

Table 1: Relative errors and convergence rates for 𝑝
ℎ
.

Resolution Error (
‖𝑝

𝑁

ℎ
− 𝑝

𝑁

1/128
‖
𝐿
2

‖𝑝𝑁
1/128

‖
𝐿
2

) Rate

ℎ =
1

4
6.67𝐸 − 2 —

ℎ =
1

8
3.60𝐸 − 2 −0.8903

ℎ =
1

16
1.91𝐸 − 2 −0.9131

ℎ =
1

32
9.63𝐸 − 3 −0.9880

ℎ =
1

64
4.81𝐸 − 3 −1.0015

Therefore, (36) can be written in a matrix form as follows:

(
A −B

Δ𝑡B𝑇 C )(
U𝑛

P𝑛) = (
b
1

b
2

) , (39)

whereB𝑇 is the transpose ofB. Solving linear algebra problem
(39), we can get approximation solutions P𝑛 and U𝑛 at 𝑛th
time step, simultaneously.

4. Numerical Examples

In this section, we carry out numerical experiments using the
lowest order Raviart-Thomas mixed finite elements RT

0
for

the gas flow problem in deformable CBM reservoirs.

Example 1. In order to verify the convergence, the test region
is selected as unit square; that is, Ω = [0, 1] × [0, 1], and 6
levels for ℎ = 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 are computed
to estimate the convergence rate. Since we cannot get the
analytical solution 𝑝

𝑓
, u, and 𝐶

𝑎𝑚
for the problem (14),

we use ‖𝑝𝑁
ℎ
− 𝑝

𝑁

1/128
‖
𝐿
2/‖𝑝

𝑁

1/128
‖
𝐿
2 , ‖u𝑁ℎ − u𝑁

1/128
‖
𝐿
2/‖u𝑁1/128‖𝐿2 ,

and ‖𝐶
𝑁

𝑎𝑚,ℎ
− 𝐶

𝑁

𝑎𝑚,1/128
‖
𝐿
2/‖𝐶

𝑁

𝑎𝑚,1/128
‖
𝐿
2 as the criterion of

convergence for the pressure, velocity, and concentration.
Error estimates in 𝐿

2-norm and convergence rate estimates
for 𝑝

ℎ
, u

ℎ
, and 𝐶

𝑎𝑚,ℎ
are listed in Tables 1, 2, and 3,

respectively. We can find that the approximation solutions
𝑝
ℎ
, u

ℎ
, and 𝐶

𝑎𝑚,ℎ
could achieve first-order convergence rate

(see Figure 1).

Example 2. For a simple application, the scale of objective
region Ω is 100m × 100m and the mesh size ℎ = 2.5m.
There is a production well at the center of region Ω with
the production rate 𝑞

𝑔
. Simulation parameters are listed in

Table 4.
Substituting the parameter value into calculation proce-

dure, we can get the numerical solutions, so as to describe
the dynamic characteristic of gas flow in deformable CBM
reservoirs.

Since average pressure could reflect the decrement of
reservoir driving energy during production process, Figures
2 and 3 illustrate the gas average pressure in fracture systems
varying with time 𝑡 and show the effects of 𝐷

𝑚
and 𝛽

on average pressure, respectively. In Figure 2, the model
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Table 2: Relative errors and convergence rates for u
ℎ
.

Resolution Error (
‖u𝑁

ℎ
− u𝑁

1/128
‖
𝐿
2

‖u𝑁
1/128

‖
𝐿
2

) Rate

ℎ =
1

4
1.17𝐸 − 2 —

ℎ =
1

8
6.23𝐸 − 3 −0.9092

ℎ =
1

16
3.24𝐸 − 3 −0.9432

ℎ =
1

32
1.64𝐸 − 3 −0.9823

ℎ =
1

64
8.17𝐸 − 4 −1.0053

Table 3: Relative errors and convergence rates for 𝐶
𝑎𝑚,ℎ

.

Resolution Error (
‖𝐶

𝑁

𝑎𝑚,ℎ
− 𝐶

𝑁

𝑎𝑚,1/128
‖
𝐿
2

‖𝐶𝑁

𝑎𝑚,1/128
‖
𝐿
2

) Rate

ℎ =
1

4
4.77𝐸 − 2 —

ℎ =
1

8
2.54𝐸 − 2 −0.9092

ℎ =
1

16
1.31𝐸 − 2 −0.9553

ℎ =
1

32
6.59𝐸 − 3 −0.9912

ℎ =
1

64
3.29𝐸 − 3 −1.0022

has the initial reservoir pressure of 10MPa, and diffusion
coefficient of coal matrix 𝐷

𝑚
is taken as 1 × 10

−7, 5 × 10
−8,

1 × 10
−8, and 5 × 10

−9m3/s, respectively, so as to analyze
the effects of 𝐷

𝑚
on average pressure in fracture systems.

In Figure 2, we have found that pressure variation curves
could be divided into 3 stages. Firstly, at the initial stage,
since coalbed gas could not desorb and diffuse from matrix
into fracture systems instantly, average pressure in fracture
systems declines rapidly. At this stage, we have found when
𝐷
𝑚
is increasing, the initial stage became shorter. It is because

that larger 𝐷
𝑚

could make fracture systems get pressure
compensation from coal matrix more quickly. Secondly, at
the stable stage, with gas desorption increasing from the coal
matrix into fracture systems, fracture systems could get more
pressure compensation; thus, the average pressure drop speed
slows down. We have also found, with a bigger 𝐷

𝑚
, fracture

systems could maintain a higher average pressure, while the
stable stage would be shorter. Lastly, at the last stage, due
to the decline of gas concentration in matrix gas desorption
rate decreases, resulting in the pressure drop speed becoming
rapid once again.Meanwhile, when𝐷

𝑚
is larger, the last stage

appears at an earlier time.The double porosity characteristics
of CBM reservoirs have been just shown through the pressure
variation process presented above.

In Figure 3, the permeability modulus 𝛽 is set as 1 ×

10
−1, 1 × 10

−3, and 1 × 10
−5, respectively, so as to analyze

the effects of 𝛽 on average pressure. We have found that
pressure drop curves with different 𝛽 are almost coincident
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Table 4: Parameters for simulation.

Coefficient Value
Ω 100m × 100m
𝜙
𝑓

0.15
𝑝
0

10MPa
𝐶
0

22.5 kg/m 3

𝐷
𝑚

10
−8m3/s

𝑃
𝐿

6MPa
𝑐
𝑍

10
−3

𝑞
𝑔

180m3/h
ℎ 2.5m
𝑘
0

0.01md
𝜇
𝑔

0.65mPa⋅s
𝐷
𝑓

10
−6m3/s

𝐶
𝐿

36 kg/m 3

𝑐
𝜙

5 × 10
−2

𝛽 1.25 × 10
−3

at early time, which indicates that fracture deformation has
no evident effects on permeability and pressure at this stage.
Essentially, with the fracture pressure dropping, the effects
of fracture deformation on permeability become significant,
and, conversely, the permeability could also affect fracture
pressure. That is to say, the effects of permeability and pore
pressure are mutual. Subsequently, we have found pressure
drop curves become apart in Figure 3. Also, we have found
that the larger the 𝛽 is, the lower the average pressure
will be. From the definition of 𝛽, we know that 𝛽 reflects
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Figure 2: Gas average pressure of fracture systems with different
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𝑚
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Figure 3: Gas average pressure of fracture systems with different 𝛽.

the effects of fracture systemdeformation on the permeability
K
𝑓
. Thus, when 𝛽 is larger, K

𝑓
decreases more significantly

with 𝑝
𝑓
dropping, such that CBM reservoirs can only get less

pressure compensation from outer boundary, resulting in a
lower average pressure.

Figure 4 shows the bottom hole pressure varying with
time 𝑡, and the diffusion coefficient 𝐷

𝑚
of coal matrix is

taken as 1 × 10
−7, 5 × 10

−8, 1 × 10
−8, and 5 × 10

−9m3/s,
respectively, so as to analyze the effects of 𝐷

𝑚
on bottom

hole pressure. Since the bottom hole pressure is the direct
reflection of production effects, the bottom hole pressure
drops sharply from 10MPa to about 4.25MPa after starting
production, and then there is a pressure recovery due to the
gas desorption from coal matrix to fracture systems. Thus,
this causes an early fluctuation before reaching a stable state.
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Figure 4: Bottom hole pressure of CBM reservoirs with different
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In the subsequent stable stage, we have found that a bigger
diffusion coefficient𝐷

𝑚
couldmakemore coalbed gas desorb

into fracture systems and result in a higher bottom hole
pressure. Then, at the last stage, due to the gas desorption
decreasing, the effects of 𝐷

𝑚
become weak and bottom hole

pressure curves tend to be close. Put simply, the effects of𝐷
𝑚

are evident at stable stage, while they are not so evident at the
early and last stage.

Coalbed gas flow in fracture systems is driven by pressure
field and concentration field simultaneously; thus, the effects
of gas diffusion in fracture systems need to be investigated. In
Figure 5, we set fracture diffusion coefficient𝐷

𝑓
as 0, 1×10−2,

1 × 10
−3, and 1 × 10

−5m3/s, respectively, so as to analyze
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the effects of gas diffusion in fracture systems. We have
found that when 𝐷

𝑓
is larger, the bottom hole pressure is

higher. Specifically, the pressure difference between 𝐷
𝑓

=

1 × 10
−2 and 𝐷

𝑓
= 0 is about 0.35MPa all through the stable

stage in Figure 5. That is to say, existence of gas diffusion
in fracture systems could make fracture systems get more
pressure compensation from outer boundary, resulting in a
higher bottom hole pressure. Thus, it is very meaningful to
consider gas diffusion in fracture system.

In order to illustrate the gas desorption dynamic process
from coal matrix into fracture systems, we show the gas
average desorption rate varyingwith time 𝑡 in Figures 6 and 7.
In Figure 6, the diffusion coefficient 𝐷

𝑚
is taken as 1 × 10

−7,
5 × 10

−8, 1 × 10
−8, and 5 × 10

−9m3/s, respectively, so as
to investigate the effects of matrix diffusion coefficient on
gas desorption process. According to equilibrium desorption
model, we know that gas desorption rate is affected by gas
average concentration 𝐶

𝑎𝑚
in matrix, fracture pressure 𝑝

𝑓
,

and diffusion coefficient 𝐷
𝑚
. During production process,

as fracture pressure 𝑝
𝑓
and gas average concentration 𝐶

𝑎𝑚

decline, there are two stages in gas desorption process. At
first half stage, due to quick drawdown of fracture pressure,
gas concentration 𝐶

𝐸
(𝑝

𝑓
) on matrix surface declines sharply,

and then the gas average desorption rate increased to the
maximum.Then, at the second half stage, the desorption rate
declines due to the reduction of gas average concentration
𝐶
𝑎𝑚
. In Figure 6, we have also found when 𝐷

𝑚
is larger,

average desorption rate will be higher and peak desorption
rate appears at an earlier moment. In Figure 7, the fracture
diffusion coefficient 𝐷

𝑓
is taken as 0, 1 × 10

−2, 1 × 10
−3,

and 1 × 10
−5m3/s, respectively. Since the effects of 𝐷

𝑓
on

desorption rate are indirect and reflected bymeans of fracture
pressure 𝑝

𝑓
, the effects of 𝐷

𝑓
are not evident at the starting

and ending time. However, we have still found that the larger
the𝐷

𝑓
is, the higher the peak desorption rate will be.

In order to reflect the remaining reserves of coalbed
gas in coal matrix, we show the gas average concentration
in coal matrix varying with time 𝑡 in Figures 8 and 9. In
Figure 8, 𝐷

𝑚
is taken as 1 × 10

−7, 5 × 10
−8, 1 × 10

−8, and
5×10

−9m3/s, respectively.We have found that the gas average
concentration declines slowly at the early stage on account
of the existence of desorption delay phenomenon. Then, due
to gas desorption increasing from coal matrix into fracture
systems, the average concentration in coal matrix declines
quickly at the later stage. At last stage, due to gas desorption
rate decreasing, the concentration drop speed becomes slow
once again. Also, in Figure 8, we have found concentration
curves are almost coincident at early time. At subsequent
stages, when 𝐷

𝑚
is larger, the average concentration is lower

and the concentration drop speed is quicker. It is because that
larger 𝐷

𝑚
could accelerate gas desorption rate. In Figure 9,

we have found that the effects of initial permeability 𝑘
0

are not evident at the early stage, due to the existence of
desorption delay phenomenon. And then, at the later half
stage, the average concentration increases with 𝑘

0
increasing.

It indicates that the CBM reservoir with higher permeability
could get more pressure compensation from outer boundary,
resulting in higher pore pressure and matrix concentration.

0.0

10 100 1000

Time t (hour)

Dm = 1 × 10−7

Dm = 5 × 10−8
Dm = 1 × 10−8

Dm = 5 × 10−9

12

10

8.0

6.0

4.0

2.0

Av
er

ag
e d

es
or

pt
io

n 
ra

te
 (k

g/
s∗

m
3
)

×10−7

Figure 6: Gas average desorption rate with different𝐷
𝑚
.

Df = 1 × 10−2
Df = 1 × 10−3

Df = 1 × 10−5
Df = 0

0.0

10 100 1000

Time t (hour)

12

10

8.0

6.0

4.0

2.0

Av
er

ag
e d

es
or

pt
io

n 
ra

te
 (k

g/
s∗

m
3
)

×10−7

Figure 7: Gas average desorption rate with different𝐷
𝑓
.

5. Conclusions

(1) In this paper, we present a desorption-diffusion-
seepage model of gas flow in deformable CBM res-
ervoirs, in which the effects of fracture system defor-
mation have been considered.

(2) We introduce a mixed finite element method to
approximate the coalbed gas pressure and velocity,
simultaneously, and establish error estimates for the
numerical solutions.

(3) We carry out numerical experiments using the low-
est order Raviart-Thomas mixed finite elements
RT

0
. Numerical results in Example 1 indicate that

the approximation solutions 𝑝
ℎ
, u

ℎ
, and 𝐶

𝑎𝑚,ℎ
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could achieve first-order convergence rate. Numerical
results in Example 2 have shown that the existence of
fracture system deformation phenomenon will result
in a lower gas average pressure.
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This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated
seepage flowmechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes
the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the
basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For
gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering
the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well canmanifest four characteristic
periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial
flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior
of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir
with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure
behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the
characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain
horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the
characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the
new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis process
more simple and the results more accurate.

1. Introduction

Recent years have seen the ever-growing application of hori-
zontal wells technology, which aroused considerable interest
in the exploration of horizontal well test analysis [1–4]. In
order to surmount the challenges in estimating horizontal
well productivity and parameters, analytical solutions for
interpreting transient pressure behavior of horizontal wells
have attracted great attention.

Numerous studies on the pressure transient analysis
of horizontal wells have been documented extensively in
the literature. Combined with Newman’s product method,
Gringarten and Ramey [5] found an access to solve the

unsteady-flow problems in reservoirs by means of the use
of source and Green’s function. Clonts and Ramey [6]
presented an analytical solution for interpreting the tran-
sient pressure behavior of horizontal drain holes located in
the heterogeneous reservoir. On the basis of finite Fourier
transforms, Goode and Thambynayagam [7] addressed a
solution for horizontal wells with infinite-conductivity in
the semi-infinite reservoir. Ozkan and Rajagopal [8] demon-
strated a derivative approach to analyze the pressure-
transient behavior of horizontal wells, which revealed the
relationship between the dimensionless well length and
the horizontal-well pressure responses. Odeh and Babu
[9] indicated that four significant flow periods could be
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observed during the process of horizontal well transient
pressure behavior, which was further consolidated by the
buildup and drawdown equations. Thompson and Temeng
[10] introduced the automatic type curve matching method
in analyzing multirate horizontal well pressure transient
data through nonlinear regression analysis techniques. Raha-
van et al. [11] employed a mathematical model to iden-
tify the features of pressure responses of a horizontal well
with multiple fractures. Equipped with Laplace transforma-
tion and boundary element method, Zerzar and Bettam
[12] addressed an analytical model for horizontal wells
with finite conductivity vertical fractures. By extrapolat-
ing the transient pressure data, a simplified approach to
predict well production was presented by Whittle et al.
[13].

Owing to the imperfection of common well test anal-
ysis methods including the semilog data plotting analysis
technique [14, 15], type curve matching analysis method
[16, 17], and automatic fitting analysis method [18], it is
inconvenient to apply those methods during the process of
analyzing and determining reservoir parameters. Therefore,
this paper presents the characteristic value method of well
test analysis for horizontal gas well for the sake of over-
coming conventional limitations. This method involves two
steps. The first step is to develop formulas to calculate gas
reservoir fluid flow parameters according to the character-
istic lines manifested by pseudopressure derivative curves
of each flowing period. The next step is to utilize these
formulas to complete the well test analysis for horizontal
gas well by means of combining the measured pressure
with the pseudopressure derivative curve. The characteristic
value method of well test analysis for horizontal gas well
enriches and develops the well test analysis theory and
method.

2. Mathematical Models and Solutions of Well
Test Analysis for Horizontal Gas Well

The hypothesis: the formation thickness is ℎ, the initial
formation pressure of gas reservoir is 𝑝

𝑖
and equal every-

where, the gas reservoir is anisotropic, the horizontal per-
meability is 𝐾

ℎ
, the vertical permeability is 𝐾V, horizontal

section length is 2𝐿, and the position of horizontal sec-
tion in the gas reservoir which is parallel to the closed
top and bottom boundary is 𝑧

𝑤
. The surface flow rate

of horizontal gas well is 𝑞
𝑠𝑐

and assumed to be constant.
Single-phase compressible gas flow obeys Darcy law and
the effect of gravity and capillary pressure is ignored. The
physical model of horizontal gas well seepage is illustrated in
Figure 1.

Considering the complexity of the seepage flow mech-
anism of horizontal gas well and in order to make the
mathematical model’s solving and calculation more simple,
the establishment of mathematical models are divided into
two parts: one is to ignore the effect of wellbore storage and
skin effect; the other is to consider the effect of wellbore
storage and skin effect [19, 20].
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Figure 1: Physical model of horizontal gas well seepage.

2.1. The Mathematical Models without Considering the Effect
of Wellbore Storage and Skin. The diffusivity equation is
expressed by Ozkan and Raghavan [21]:
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Initial condition is

𝑚
𝐷
(𝑟
𝐷
, 0) = 0. (2)

Inner boundary condition is

lim
𝜀→0

[ lim
𝑟𝐷→0

∫

𝑧𝑤𝐷+𝜀/2

𝑧𝑤𝐷−𝜀/2

𝑟
𝐷

𝜕𝑚
𝐷

𝜕𝑟
𝐷

𝑑𝑧
𝑤𝐷

]

=

{{{{{{{{

{{{{{{{{

{

0, 𝑧
𝐷

> (𝑧
𝑤𝐷

+
𝜀

2
)

−
1

2
, (𝑧

𝑤𝐷
+

𝜀

2
) ≥ 𝑧
𝐷

≥ (𝑧
𝑤𝐷

−
𝜀

2
)

0, 𝑧
𝐷

< (𝑧
𝑤𝐷

−
𝜀

2
) ,

(3)

where 𝜀 is a tiny variable.
Infinite outer boundary condition in horizontal direction

is

lim
𝑟𝐷→∞

𝑚
𝐷
(𝑟
𝐷
, 𝑡
𝐷
) = 0. (4)

Closed outer boundary condition in horizontal direction
is

𝜕𝑚
𝐷

𝜕𝑟
𝐷

𝑟𝐷=𝑟𝑒𝐷

= 0. (5)

Constant pressure outer boundary condition in horizon-
tal direction is

𝑚
𝐷

𝑟𝐷=𝑟𝑒𝐷
= 0. (6)

Closed outer boundary conditions in vertical direction
are

𝜕𝑚
𝐷

𝜕𝑧
𝐷

𝑧𝐷=1

= 0,
𝜕𝑚
𝐷

𝜕𝑧
𝐷

𝑧𝐷=0

= 0. (7)
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The dimensionless variables are defined as follows:

𝑚
𝐷

=
78.489𝐾

ℎ
ℎ

𝑞
𝑠𝑐
𝑇

(𝑚
𝑖
− 𝑚) , 𝑡

𝐷
=

3.6𝐾
ℎ
𝑡

𝜙𝜇𝑐
𝑡
𝑟2
𝑤

,

𝐿
𝐷

=
𝐿

ℎ
√

𝐾V

𝐾
ℎ

, ℎ
𝐷

=
ℎ

𝑟
𝑤

√
𝐾
ℎ

𝐾V
,

𝑧
𝐷

=
𝑧

ℎ
, 𝑧

𝑟𝐷
= 𝑧
𝑤𝐷

+ 𝑟
𝑤𝐷

𝐿
𝐷
,

𝑧
𝑤𝐷

=
𝑧
𝑤

ℎ
, 𝑟

𝐷
=

𝑟

𝐿
,

𝑟
𝑒𝐷

=
𝑟
𝑒

𝐿
, 𝑟

𝑤𝐷
=

𝑟
𝑤

𝐿
.

(8)

The defined gas pseudopressure is

𝑚(𝑝) = 2∫

𝑝

𝑝ref

𝑝

𝜇 (𝑝)𝑍 (𝑝)
𝑑𝑝. (9)

2.2. The Mathematical Model with Considering the Effect of
Wellbore Storage and Skin. According to Duhamel’s principle
[22] and the superposition principle, while using the defini-
tion of dimensionless variables, the mathematical model of
horizontal gas well with considering the effect of wellbore
storage and skin is derived as follows:

𝑚
𝑤𝐷

= 𝑚
𝐷

+ ∫

𝑡𝐷

0

𝐶
𝐷

𝑑𝑚
𝑤𝐷

𝑑𝜏
𝐷

𝑑𝑚
𝑤𝐷

(𝑡
𝐷

− 𝜏
𝐷
)

𝑑𝜏
𝐷

𝑑𝜏
𝐷

+ (1 − 𝐶
𝐷

𝑑𝑚
𝑤𝐷

𝑑𝜏
𝐷

)ℎ
𝐷
𝑆,

(10)

where

𝐶
𝐷

=
𝐶

2𝜋𝜙𝐶
𝑡
ℎ𝐿2

. (11)

2.3. The Solutions of the Mathematical Models. The solutions
of the mathematical models [23, 24] at various outer bound-
ary conditions can be obtained by applying source function
and integral transform and taking the Laplace transform to 𝑠

with respect to 𝑡
𝐷
.

For gas reservoir with closed outer boundary in vertical
direction and infinite outer boundary in horizontal direction,
according to (1), (2), (3), (4), and (7), the dimensionless
bottomhole pseudopressure of horizontal gas well in the
Laplace space can be obtained. This results in

𝑚
𝐷

=
1

2𝑠
{∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
0
)𝑑𝛼

+ 2

∞

∑

𝑛=1

∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
𝑛
) cos (𝛽

𝑛
𝑧
𝑟𝐷

)

× cos (𝛽
𝑛
𝑧
𝑤𝐷

) 𝑑𝛼} ,

(12)

where

𝛽
𝑛
= 𝑛𝜋,

𝜀
𝑛
= √𝑠(ℎ

𝐷
𝐿
𝐷
)
2
+ 𝛽
𝑛
𝐿2
𝐷
.

(13)

For gas reservoir with closed outer boundary both in
vertical and horizontal direction, according to (1), (2), (3),
(5), and (7), the dimensionless bottomhole pseudopressure of
horizontal gas well in the Laplace space can be obtained.This
results in

𝑚
𝐷

=
1

2𝑠
{∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
0
)𝑑𝛼

+
𝐾
1
(𝑟
𝑒𝐷

𝜀
0
)

𝐼
1
(𝑟
𝑒𝐷

𝜀
0
)

∫

1

−1

𝐼
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
0
)𝑑𝛼

+ 2

∞

∑

𝑛=1

[∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
𝑛
)𝑑𝛼

+
𝐾
1
(𝑟
𝑒𝐷

𝜀
𝑛
)

𝐼
1
(𝑟
𝑒𝐷

𝜀
𝑛
)

∫

1

−1

𝐼
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
𝑛
)𝑑𝛼

⋅ cos (𝛽
𝑛
𝑧
𝑟𝐷

) cos (𝛽
𝑛
𝑧
𝑤𝐷

) ]} .

(14)

For gas reservoir with closed outer boundary in vertical
direction and constant pressure outer boundary in horizontal
direction, according to (1), (2), (3), (6), and (7), the dimen-
sionless bottomhole pseudopressure of horizontal gas well in
Laplace space can be obtained. This results in

𝑚
𝐷

=
1

2𝑠
{∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
0
)𝑑𝛼

−
𝐾
0
(𝑟
𝑒𝐷

𝜀
0
)

𝐼
0
(𝑟
𝑒𝐷

𝜀
0
)

∫

1

−1

𝐼
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
0
)𝑑𝛼

+ 2

∞

∑

𝑛=1

[∫

1

−1

𝐾
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
𝑛
)𝑑𝛼

−
𝐾
0
(𝑟
𝑒𝐷

𝜀
𝑛
)

𝐼
0
(𝑟
𝑒𝐷

𝜀
𝑛
)

∫

1

−1

𝐼
0
(√(𝑥

𝐷
− 𝛼)
2
𝜀
𝑛
)𝑑𝛼

⋅ cos (𝛽
𝑛
𝑧
𝑟𝐷

) cos (𝛽
𝑛
𝑧
𝑤𝐷

) ]} .

(15)

Making the Laplace transform to 𝑠 with respect to
𝑡
𝐷
/𝐶
𝐷
, (10) can be solved for the dimensionless bottomhole

pseudopressure of horizontal gas well considering the effect
of wellbore storage and skin in the Laplace space.This results
in

𝑚
𝑤𝐷

=
𝑠𝑚
𝐷

+ ℎ
𝐷
𝑆

𝑠 + 𝑠
2
(𝑠𝑚
𝐷

+ ℎ
𝐷
𝑆)

=
1

𝑠 (𝑠 + 1/ (𝑠𝑚
𝐷

+ ℎ
𝐷
𝑆))

.

(16)
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Figure 2: Well test analysis type curve of horizontal well in gas
reservoir with infinite outer boundary.

3. Type Curves of Well Test
Analysis for Horizontal Gas Well

3.1. Gas Reservoir with Infinite Outer Boundary in Horizontal
Direction. For gas reservoir with infinite outer boundary in
horizontal direction, according to (12) which is the solution of
horizontal well seepage mathematical model, while combin-
ingwith (16), the type curve of well test analysis for horizontal
gas well can be plotted with Stehfest inversion algorithm, as
shown in Figure 2.

As seen from Figure 2, for gas reservoir with infinite
outer boundary in horizontal direction, the pseudopressure
behavior of horizontal gas well can manifest four character-
istic periods: pure wellbore storage period (I), early vertical
radial flow period (II), early linear flow period (III), and late
horizontal pseudoradial flow period (IV).

3.1.1. Pure Wellbore Storage Period. The characteristic of pure
wellbore storage period of horizontal well is the same as
vertical well, which is manifested as a 45∘ straight line
segment on the log-log plot of 𝑚

𝑤𝐷
, 𝑚
𝑤𝐷

versus 𝑡
𝐷
/𝐶
𝐷
, and

the duration of this period is affected by wellbore storage and
skin effect.

Expressions of dimensionless bottomhole pseudopres-
sure and pseudopressure derivative during this period can be
obtained. This results in

𝑚
𝑤𝐷

=
𝑡
𝐷

𝐶
𝐷

,

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
=

𝑡
𝐷

𝐶
𝐷

.

(17)

3.1.2. Early Vertical Radial Flow Period. The early vertical
radial flow period appears after the effect of wellbore storage;
the characteristic of this period is manifested as a horizontal
straight line segment on the log-log plot of 𝑚



𝑤𝐷
versus

𝑡
𝐷
/𝐶
𝐷
.The pseudopressure behavior of this period is affected

by formation thickness, horizontal section length, and the

Figure 3: The schematic diagram of early vertical radial flow.

Figure 4: The schematic diagram of early linear flow.

position of horizontal section in the gas reservoir. The flow
regime of this period is shown in Figure 3.

Expressions of dimensionless bottomhole pseudopres-
sure and pseudopressure derivative during this period can be
obtained. This results in

𝑚
𝑤𝐷

=
1

4𝐿
𝐷

[ln 2.25 (
𝑡
𝐷

𝐶
𝐷

) + ln𝐶
𝐷
𝑒
2𝑆
] ,

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
=

1

4𝐿
𝐷

.

(18)

3.1.3. Early Linear Flow Period. The early linear flow period
appears after the early vertical radial flow period. The
characteristic of this period is manifested as a straight line
segment with a slope of 0.5 on the log-log plot of𝑚

𝑤𝐷
versus

𝑡
𝐷
/𝐶
𝐷
. This characteristic describes the linear flow of fluid

from formation to horizontal section. The pseudopressure
behavior of this period is affected by dimensionless formation
thickness ℎ

𝐷
, dimensionless horizontal section length 𝐿

𝐷
,

and the position of horizontal section in the gas reservoir 𝑧
𝑤𝐷

.
The flow regime of this period is shown in Figure 4.

Expressions of dimensionless bottomhole pseudopres-
sure and pseudopressure derivative during this period can be
obtained. This results in

𝑚
𝑤𝐷

= 2𝑟
𝑤𝐷

√𝜋𝑡
𝐷

+ 𝑆,

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
= 𝑟
𝑤𝐷

√𝜋𝑡
𝐷
.

(19)

3.1.4. Late Horizontal Pseudoradial Flow Period. The late hor-
izontal pseudoradial flow period appears after the early linear
flow period. The characteristic of this period is manifested
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Figure 5: The schematic diagram of late horizontal pseudoradial
flow.
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Figure 6: Well test analysis type curve of horizontal well in gas
reservoir with closed outer boundary.

as a horizontal straight line segment with the value of 0.5
on the log-log plot of 𝑚

𝑤𝐷
versus 𝑡

𝐷
/𝐶
𝐷
. This characteristic

describes the horizontal pseudoradial flow of fluid from
formation horizontal plane in the distance to horizontal
section. The flow regime of this period is shown in Figure 5.

Expressions of dimensionless bottomhole pseudopres-
sure and pseudopressure derivative during this period can be
obtained. This results in

𝑚
𝑤𝐷

=
1

2
[ln(

𝑟
𝑤𝐷

𝑡
𝐷

𝐶
𝐷

) + ln𝐶
𝐷
𝑒
2𝑆
] ,

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
=

1

2
.

(20)

3.2. Gas Reservoir with Closed Outer Boundary in Horizontal
Direction. For gas reservoir with closed outer boundary in
horizontal direction, according to (14)which is the solution of
horizontal well seepage mathematical model, while combin-
ingwith (16), the type curve of well test analysis for horizontal
gas well can be plotted with Stehfest inversion algorithm, as
shown in Figure 6.

As seen from Figure 6, for gas reservoir with closed outer
boundary in horizontal direction, the pseudopressure behav-
ior of horizontal gas well can manifest five characteristic
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Figure 7: Well test analysis type curve of horizontal well in gas
reservoir with constant pressure outer boundary.

periods. The previous four periods of gas reservoir with
closed outer boundary are exactly the same as gas reservoir
with infinite outer boundary, but the pseudopressure behav-
ior of the horizontal gas well adds the pseudosteady state
flow period (V) which appears after the boundary response.
The characteristic of the pseudosteady state flow period is
manifested as a straight line segment with a slope of 1 on
the log-log plot of 𝑚

𝑤𝐷
, 𝑚
𝑤𝐷

versus 𝑡
𝐷
/𝐶
𝐷
. The greater the

distance of the outer boundary, the later the appearance of
the pseudosteady state flow period. The smaller the distance
of the outer boundary, the sooner the appearance of the
pseudosteady state flow period.

Expressions of dimensionless bottomhole pseudopres-
sure and pseudopressure derivative during the pseudosteady
state flow period can be obtained. This results in

𝑚
𝑤𝐷

= 2𝜋(
𝑟
𝑤𝐷

𝑟
𝑒𝐷

)

2

𝑡
𝐷

+ 𝑆,

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
= 2𝜋(

𝑟
𝑤𝐷

𝑟
𝑒𝐷

)

2

𝑡
𝐷
.

(21)

3.3. Gas Reservoir with Constant Pressure Outer Boundary in
Horizontal Direction. For gas reservoir with constant pres-
sure outer boundary in horizontal direction, according to (15)
which is the solution of horizontal well seepagemathematical
model, while combining with (16), the type curve of well test
analysis for horizontal gas well can be plotted with Stehfest
inversion algorithm, as shown in Figure 7.

As seen from Figure 7, for gas reservoir with constant
pressure outer boundary in horizontal direction, the pseu-
dopressure behavior of horizontal gas well can manifest
five characteristic periods; the previous four periods of gas
reservoir with constant pressure outer boundary are exactly
the same as gas reservoir with infinite outer boundary,
but the pseudopressure behavior of the horizontal gas well
adds the steady state flow period (V) which appears after
the boundary response. The occurrence time of the steady
state flow period is affected by the outer boundary distance
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in horizontal direction. The smaller the distance of the outer
boundary, the sooner the appearance of the steady state flow
period. The greater the distance of the outer boundary, the
later the appearance of the steady state flow period.

3.4. Characteristic Value Method of Well Test Analysis for
Horizontal GasWell. The characteristic value method of well
test analysis for horizontal gas well can determine the gas
reservoir fluid flowparameters according to the characteristic
lines which are manifested by pseudopressure derivative
curve of each flow period on the log-log plot.

3.4.1. PureWellbore Storage Period. The characteristic of pure
wellbore storage period of horizontal well is manifested as
a straight line segment with a slope of 1 on the log-log plot
of 𝑚
𝑤𝐷

, 𝑚
𝑤𝐷

versus 𝑡
𝐷
/𝐶
𝐷
. The expression of dimensionless

bottomhole pseudopressure during this period is

𝑚
𝑤𝐷

=
𝑡
𝐷

𝐶
𝐷

. (22)

Equation (22) can be converted to dimensional form,
and then according to the time and pressure data during
pure wellbore storage period, the method to determine the
wellbore storage coefficient can be obtained. By plotting
the log-log plot of Δ𝑚, Δ𝑚

 versus 𝑡, the wellbore storage
coefficient can be determined by the straight line segment
with a slope of 1 on the log-log plot.

The following can be obtained from the definitions of
dimensionless variables:

𝑡
𝐷

𝐶
𝐷

=
3.6𝐾
ℎ
𝑡/𝜙𝜇𝑐
𝑡
𝑟
2

𝑤

𝐶/2𝜋𝜙𝑐
𝑡
ℎ𝐿2

=
7.2𝜋𝐾

ℎ
ℎ𝐿
2

𝜇𝑟2
𝑤

𝑡

𝐶
. (23)

According to (22), (23), and the definition of dimension-
less pseudopressure, the wellbore storage coefficient can be
obtained. This results in

𝐶 =
0.288𝑞

𝑠𝑐
𝑇

𝜇

𝐿
2

𝑟2
𝑤

𝑡

Δ𝑚
, (24)

where 𝑡/Δ𝑚 represents the actual value on the log-log plot of
Δ𝑚, Δ𝑚

 versus 𝑡 during the pure wellbore storage period.

3.4.2. Early Vertical Radial Flow Period

The Determination of Geometric Mean Permeability. The
dimensionless bottomhole pseudopressure derivative curve
is manifested as a horizontal straight line segment with the
value of 1/(4𝐿

𝐷
) during the early vertical radial flow period.

The expression of dimensionless bottomhole pseudopressure
derivative during this period is

𝑚


𝑤𝐷
=

𝑑𝑚
𝑤𝐷

𝑑 ln (𝑡
𝐷
/𝐶
𝐷
)
=

1

4𝐿
𝐷

. (25)

According to the definitions of dimensionless variables,
the dimensional form of (25) can be obtained. This results in

78.489𝐾
ℎ
ℎ

𝑞
𝑠𝑐
𝑇

(𝑡Δ𝑚

)
er

=
1

4 (𝐿/ℎ)√𝐾V/𝐾ℎ
. (26)

The geometric mean permeability of gas reservoir can be
determined by (26). This results in

√𝐾
ℎ
𝐾V =

3.185 × 10
−3

𝑞
𝑠𝑐
𝑇

𝐿(𝑡Δ𝑚)er
, (27)

where (𝑡Δ𝑚

)er represents the actual value on the log-log plot

of Δ𝑚
 versus 𝑡 during the early vertical radial flow period.

The Determination of Skin Factor and Initial Reservoir Pres-
sure. The expression of dimensionless bottomhole pseudo-
pressure during the early vertical radial flow period is

𝑚
𝑤𝐷

=
1

4𝐿
𝐷

[ln 2.25 (
𝑡
𝐷

𝐶
𝐷

) + ln𝐶
𝐷
𝑒
2𝑆
] . (28)

According to the definitions of dimensionless variables
and (28), the skin factor can be obtained. This results in

𝑆 = 0.5 [
Δ𝑚er

(𝑡Δ𝑚)er
− ln

𝐾
ℎ
𝑡er

𝜙𝜇𝐶
𝑡
𝑟2
𝑤

− 0.80907] , (29)

where Δ𝑚er and 𝑡er represent the pseudopressure difference
and time corresponding to the (𝑡Δ𝑚


)er, respectively.

For pressure buildup analysis, when Δ𝑡 → ∞, the
lnΔ𝑡/(Δ𝑡 + 𝑡

𝑝
) → 0, (30) can be obtained through

the use of the definitions of dimensionless variables and
pseudopressure difference during the early vertical radial flow
period:

𝑚
𝑖
− 𝑚
𝑤𝑓

𝑡Δ𝑚
= ln 𝑡
𝑝𝐷

+ 0.80907 + 2𝑆. (30)

The initial reservoir pseudopressure can be determined
by (30). This results in

𝑚
𝑖
= 𝑚
𝑤𝑓

+ (𝑡Δ𝑚

)
erb

(ln 𝑡
𝑝𝐷

+ 0.80907 + 2𝑆) , (31)

where (𝑡Δ𝑚

)erb represents the actual value on the pressure

buildup log-log plot of Δ𝑚
 versus 𝑡 during the early vertical

radial flow period.

3.4.3. Early Linear Flow Period. The dimensionless bot-
tomhole pseudopressure derivative curve is manifested as
a straight line segment with the slope of 0.5 during the
early linear flow period. According to the expression of
dimensionless bottomhole pseudopressure derivative during
this period and the definitions of dimensionless variables, the
following can be obtained:

78.489𝐾
ℎ
ℎ

𝑞
𝑠𝑐
𝑇

(𝑡Δ𝑚

)
𝑙
=

𝑟
𝑤

𝐿
√

3.6𝜋𝐾
ℎ
𝑡

𝜙𝜇𝐶
𝑡
𝑟2
𝑤

. (32)

The horizontal permeability of gas reservoir can be
determined by (32). This results in

√𝐾
ℎ
=

4.28 × 10
−2

𝑞
𝑠𝑐
𝑇

𝐿ℎ√𝜙𝜇𝐶
𝑡

[
√𝑡

(𝑡Δ𝑚)
]

𝑙

, (33)



Mathematical Problems in Engineering 7

where (𝑡Δ𝑚

)
𝑙
represents the actual value on the log-log plot

of Δ𝑚
 versus 𝑡 during the early linear flow period.

Combining (27) with (33), the vertical permeability can
be obtained. This results in

√𝐾V = 7.44 × 10
−2

ℎ√𝜙𝜇𝐶
𝑡

[(𝑡Δ𝑚

) /√𝑡]

𝑙

(𝑡Δ𝑚)er
. (34)

3.4.4. Late Horizontal Pseudoradial Flow Period. The dimen-
sionless bottomhole pseudopressure derivative curve is man-
ifested as a horizontal straight line segment with the value
of 0.5 during the late horizontal pseudoradial flow period.
According to the expression of dimensionless bottomhole
pseudopressure derivative during this period and the defini-
tions of dimensionless variables, (35) can be obtained:

78.489𝐾
ℎ
ℎ

𝑞
𝑠𝑐
𝑇

(𝑡Δ𝑚

)
lr
= 0.5. (35)

The horizontal permeability of gas reservoir can be
determined by (35). This results in

𝐾
ℎ
=

6.37 × 10
−3

𝑞
𝑠𝑐
𝑇

ℎ(𝑡Δ𝑚)lr
, (36)

where (𝑡Δ𝑚

)lr represents the actual value on the log-log plot

of Δ𝑚
 versus 𝑡 during the late horizontal pseudoradial flow

period.
For pressure buildup analysis, when Δ𝑡 → ∞, the

lnΔ𝑡/(Δ𝑡 + 𝑡
𝑝
) → 0, (37) can be obtained through the use

of the definitions of dimensionless variables and pseudopres-
sure difference during the late horizontal pseudoradial flow
period:

𝑚
𝑖
− 𝑚
𝑤𝑓

(𝑡Δ𝑚)lrb
= ln 𝑟
𝑤𝐷

𝑡
𝑝𝐷

+ 0.80907 + 2𝑆. (37)

The initial reservoir pseudopressure can be determined
by (37). This results in

𝑚
𝑖
= 𝑚
𝑤𝑓

+ (𝑡Δ𝑚

)
lrb

(ln 𝑟
𝑤𝐷

𝑡
𝑝𝐷

+ 0.80907 + 2𝑆) , (38)

where (𝑡Δ𝑚

)lrb represents the actual value on the pressure

buildup log-log plot ofΔ𝑚
 versus 𝑡 during the late horizontal

pseudoradial flow period.

3.4.5. Pseudosteady Flow Period. The dimensionless bot-
tomhole pseudopressure derivative curve is manifested as
a straight line segment with the slope of 1 during the
pseudosteady flow period. According to the expression of
dimensionless bottomhole pseudopressure derivative during
this period and the definitions of dimensionless variables,
(39) can be obtained:

78.489𝐾
ℎ
ℎ

𝑞
𝑠𝑐
𝑇

(𝑡Δ𝑚

)
pp

=
7.2𝜋𝐾

ℎ
𝑡pp

𝑟2
𝑒
ℎ𝜙𝜇𝐶

𝑡

. (39)

The pore volume of gas reservoir can be determined by
(39). This results in

𝜋𝑟
2

𝑒
ℎ𝜙 =

0.905𝑞
𝑠𝑐
𝑇

ℎ𝜇𝐶
𝑡

𝑡pp

(𝑡Δ𝑚)pp
, (40)
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Figure 8: The gas flow rate and water flow rate curve of Longping 1
well.
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Figure 9: The tubing head pressure and casing head pressure curve
of Longping 1 well.

where (𝑡Δ𝑚

)pp represents the actual value on the log-log plot

of Δ𝑚
 versus 𝑡 during the pseudosteady flow period.

4. Example Analysis

The Longping 1 well is a horizontal development well in
JingBian gas field, the well total depth is 4672m, the drilled
formation name is Majiagou group, the mid-depth of reser-
voir is 3425.63m, and the well completion system is screen
completion. According to the deliverability test during 26–29
December, 2006, the calculated absolute open flow was 94.26
× 104m3/d. The commissioning data of Longping 1 well was
in 12May, 2007, the initial formation pressure was 29.39MPa,
before production, and the surface tubing pressure and casing
pressure were both 23.90MPa. The production performance
curves of Longping 1 well are shown in Figures 8 and 9,
respectively.

Longping 1 well has been conducted pressure buildup
test during 14 August, 2007, and 23 October, 2007. The gas
flow rate of Longping 1 well was 40 × 104m3/d before the
shut-in. The bottomhole pressure recovered from 22.38MPa
to 27.83MPa during the pressure buildup test. Physical
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Figure 10: The pressure buildup log-log plot of Longping 1 well.
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Figure 11: The pressure buildup semilog plot of Longping 1 well.

Table 1: Physical parameters of fluid and reservoir.

Parameter Value
Initial formation pressure 𝑝

𝑖
(MPa) 29.39

Formation temperature 𝑇 (∘C) 95.80
Formation thickness ℎ (m) 6.31
Porosity 𝜙 (%) 7.77
Initial water saturation 𝑆wi (%) 13.60
Well radius 𝑟

𝑤
(m) 0.0797

Gas gravity 𝛾
𝑔

0.608
Gas deviation factor 𝑍 0.9738
Gas viscosity 𝜇

𝑔
(mPa⋅s) 0.0222

Table 2: Well test analysis results of Longping 1 well.

Parameter Parameter values
Wellbore storage coefficient 𝐶 (m3/MPa) 1.229
Horizontal permeability 𝐾

ℎ
(mD) 7.742

Vertical permeability 𝐾
𝑣
(mD) 0.039

Flow capacity 𝐾
ℎ
ℎ (mD⋅m) 48.857

Skin factor 𝑆 −2.49

Effective horizontal section length 𝐿 (m) 198.37

Reservoir pressure 𝑝
𝑅
(MPa) 28.385

parameters of fluid and reservoir are shown in Table 1. The
pressure buildup log-log plot of Longping 1 well is shown in
Figure 10.
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Figure 12: The pressure history matching plot of Longping 1 well.

As seen from the contrast between Figure 10 and well test
analysis type curves of horizontal well, the pseudopressure
behavior of Longping 1 well manifests four characteristic
periods during the pressure buildup test: pure wellbore
storage period (I), early vertical radial flow period (II), early
linear flow period (III), and late horizontal pseudoradial flow
period (IV).

Using the above characteristic value method of well test
analysis for horizontal gas well, well test analysis results of
Longping 1 well are shown in Table 2. The pressure buildup
semilog plot and pressure history matching plot of Longping
1 well are shown in Figures 11 and 12, respectively.

5. Summary and Conclusions

The four main conclusions and summary of this study are as
follows.

(1) On the basis of establishing the mathematical models
of well test analysis for horizontal gas well and obtain-
ing the solutions of the mathematical models, several
type curves which can be used to identify flow regime
have been plotted and the seepage characteristic of
horizontal gas well has been analyzed.

(2) The expressions of dimensionless bottomhole pseu-
dopressure and pseudopressure derivative during
each characteristic period of horizontal gas well have
been obtained; formulas have been developed to
calculate gas reservoir fluid flow parameters.

(3) The example study verifies that the characteristic
value method of well test analysis for horizontal gas
well is reliable and practical.

(4) The characteristic value method of well test analysis,
which has been included in the well test analysis
software at present, has been widely used in vertical
well. As long as the characteristic straight line seg-
ments which are manifested by pressure derivative
curve appear, the reservoir fluid flow parameters
can be calculated by the characteristic value method
of well test analysis for vertical well. The proposed
characteristic value method of well test analysis for
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horizontal gas well enriches and develops the well test
analysis theory and method.

Nomenclature

𝐶: Wellbore storage coefficient, m3/MPa
𝐶
𝐷
: Dimensionless wellbore storage coefficient

𝐶
𝑡
: Total compressibility, MPa−1

ℎ: Reservoir thickness, m
ℎ
𝐷
: Dimensionless reservoir thickness

𝐼
𝑛
: Modified Bessel function of first kind of order 𝑛

𝐾
ℎ
: Horizontal permeability, mD

𝐾
𝑛
: Modified Bessel function of second kind of order 𝑛

𝐾
𝑉
: Vertical permeability, mD

𝐿: Horizontal section length, m
𝐿
𝐷
: Dimensionless horizontal section length

𝑚(𝑝): Pseudopressure, MPa2/mPa⋅s
𝑚
𝐷
: Dimensionless pseudopressure

𝑚
𝑖
: Initial formation pseudopressure, MPa2/mPa⋅s

𝑚
𝑤𝐷

: Dimensionless bottomhole pseudopressure
𝑚
𝑤𝑓
: Flowing wellbore pseudopressure, MPa2/mPa⋅s

𝑚


𝑤𝐷
: Derivative of𝑚

𝑤𝐷

𝑚
𝐷
: Laplace transform of 𝑚

𝐷

𝑚
𝑤𝐷

: Laplace transform of 𝑚
𝑤𝐷

Δ𝑚: Pseudopressure difference, MPa
Δ𝑚
: Derivative of Δ𝑚

𝑝
𝑐ℎ
: Casing head pressure, MPa

𝑝
𝑖
: Initial formation pressure, MPa

𝑝
𝑅
: Reservoir pressure, MPa

𝑝
𝑤ℎ
: Tubing head pressure, MPa

𝑝
𝑤𝑠
: Flowing wellbore pressure at shut-in, MPa

𝑞
𝑠𝑐
: Gas flow rate, 104m3/d

𝑞
𝑤
: Water production rate, m3/d

𝑟: Radial distance, m
𝑟
𝐷
: Dimensionless radial distance

𝑟
𝑒
: Outer boundary distance, m

𝑟
𝑒𝐷
: Dimensionless outer boundary distance

𝑟
𝑤
: Wellbore radius, m

𝑟
𝑤𝐷

: Dimensionless wellbore radius
𝑆: Skin factor
𝑠: Laplace transform variable
𝑆
𝑤𝑖
: Initial water saturation, fraction

𝑡: Time, hours
𝑡
𝐷
: Dimensionless time

𝑡
𝑝
: Production time, hours

𝑡
𝑝𝐷

: Dimensionless production time
Δ𝑡: Shut-in time, hours
𝑇: Formation temperature, ∘C
𝑧: Vertical distance, m
𝑧
𝐷
: Dimensionless vertical distance

𝑧
𝑤
: Horizontal section position, m

𝑧
𝑤𝐷

: Dimensionless horizontal section position
𝑍: Gas deviation factor
𝜀: Tiny variable
𝜙: Porosity, fraction
𝜇: Gas viscosity, mPa⋅s
𝛾
𝑔
: Gas gravity.

Subscripts

𝐷: Dimensionless
er: Early
erb: Early of buildup
ℎ: Horizontal
𝑖: Initial
𝑙: Linear
lr: Late horizontal pseudo-radial
lrb: Late horizontal pseudo-radial of buildup
pp: Pseudosteady flow period
𝑡: Total
V: Vertical
𝑤𝑓: Flowing wellbore
𝑤𝑠: Shut-in wellbore.
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This paper is concerned with a novel methodology of smoothing analysis process of multicolor point relaxation by multigrid
method for solving elliptically partial differential equations (PDEs). The objective was firstly focused on the two-color relaxation
technique on the local Fourier analysis (LFA) and then generalized to themulticolor problem.As a key starting point of the problems
under consideration, the mathematical constitutions among Fourier modes with various frequencies were constructed as a base to
expand two-color tomulticolor smoothing analyses. Two different invariant subspaces based on the 2h-harmonics for the two-color
relaxation with two and four Fourier modes were constructed and successfully used in smoothing analysis process of Poisson’s
equation for the two-color point Jacobi relaxation. Finally, the two-color smoothing analysis was generalized to the multicolor
smoothing analysis problems by multigrid method based on the invariant subspaces constructed.

1. Introduction

Multigrid methods [1–6] are generally considered as one of
the fastest numerical methods for solving complex partial
differential equations (PDEs), for example, Navier-Stokes
equation in computational fluid dynamics (CFD). As we
know, the speed of the multigrid computational conver-
gence depends closely on the numerical properties of the
underlying problem of PDEs, for example, equating type and
discretizing stencil.Meanwhile, a variety of algorithms for the
components in multigrid are of great importance, for exam-
ple, the processing methods based on smoothing, restriction,
prolongation processes, and so on. So, an appropriate choice
for the available components has a great impact on the overall
performance for specific problems.

Local Fourier analysis (LFA) [5, 7–12] is a very useful tool
to predict asymptotic convergence factors of the multigrid
methods for PDEs with high order accuracy. Therefore it
is widely used to design efficient multigrid algorithms. In
LFA an infinite regular grid needs to be considered and
boundary conditions need to be ignored. On an infinite
grid, the discrete solutions and the corresponding errors

are represented by linear combinations of certain complex
exponential functions. Thus, Fourier modes are often used
to form a unitary basis of the subspace of the grid functions
with bounded norms [5, 7, 12]. The LFA monograph by
Wienands and Joppich [11] provides an excellent background
for experimenting with Fourier analysis. Recent advances in
this context included LFA for triangular grids [13, 14], hexag-
onal meshes [15], semistructured meshes [16], multigrid with
overlapping smoothers [17], multigrid with a preconditioner
as parameters [18], and full multigrid method [19]. In [8], an
LFA for multigrid methods on the finite element discretiza-
tion of a 2D curl-curl equation with a quadrilateral grid was
introduced.

A general definition on themulticolor relaxationwas pro-
vided in [20]. Smoothing analysis of the two-color relaxation
on LFA was given in [21–24], and the four-color relaxation
with tetrahedral grids was presented in [16, 25]. In [26], a
parallel multigrid method for solving Navier-Stokes equation
was investigated and a multigrid Poisson equation solver was
employed in [27]. A parallel successive overrelaxation (SOR)
algorithm for solving the Poisson problem was discussed in
[28], and multicolor SOR methods were studied in [29].
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In the present paper, a novel smoothing analysis process
of multicolor relaxation on LFA is provided with details.
An important coupled relation among Fourier modes with
various frequencies is constructed and expanded to themulti-
color smoothing analysis.The roles of the Fouriermodeswith
the high and low frequencies in the proposedmethod are well
characterized. Thus, by the two invariant subspaces based on
the 2h-harmonics the two-color smoothing analysis process
is well generalized to the multicolor problems.

2. LFA in Multigrid

2.1. General Definition. A rigorous base of the local mode
analysis in multigrid was elaborated [12]. Herein, we are
following [11] as a starting point of our framework.

A generally linear scalar constant-coefficient systemwith-
out boundary conditions is described with a discrete problem
with infinite grid; that is,

𝐿ℎ𝑢ℎ (
⇀
𝑥) = ∑

⇀
𝑛∈𝐽

𝑙⇀
𝑛
𝑢ℎ (
⇀
𝑥 +
⇀
𝑛 ⋅
⇀
ℎ) = 𝑓ℎ (

⇀
𝑥) ,

⇀
𝑥 ∈ 𝐺ℎ

(1)

in which an infinite grid is stated as

𝐺ℎ = {
⇀
𝑥 = (𝑘1ℎ1, . . . , 𝑘𝑑ℎ𝑑) |

⇀
𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Z

𝑑
} , (2)

where
⇀
ℎ = (ℎ1, ℎ2, . . . , ℎ𝑑) is the mesh size, 𝑑 denotes the

dimension of ⇀𝑥 , the discrete operator is given by

𝐿ℎ := [𝑙⇀𝑛 ]ℎ
, (3)

and 𝑙⇀
𝑛
∈ R with ⇀𝑛 ∈ 𝐽 is the stencil coefficients [3–

5] of 𝐿ℎ for (2), 𝐽 ⊂ Z𝑑 containing (0, 0, . . . , 0), and ⇀𝑛 ⋅
⇀
ℎ =̂ (𝑛1ℎ1, 𝑛2ℎ2, . . . , 𝑛𝑑ℎ𝑑). From [11, 20], the Fourier eigen-
functions of the constant-coefficient infinite grid operator 𝐿ℎ
in (1) are given by

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) :=

𝑑

∏

𝑗=1

exp(
𝑖𝜃𝑗𝑥𝑗

ℎ𝑗

) = exp (𝑖
⇀
𝜃
⇀
𝑘) , (4)

where ⇀𝑥 ∈ 𝐺ℎ,
⇀
𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑑) ∈ Θ = (−𝜋, 𝜋]

𝑑

denotes the Fourier frequency,
⇀
𝜃
⇀
𝑘 =̂ 𝜃1𝑘1 +𝜃2𝑘2 + ⋅ ⋅ ⋅+𝜃𝑑𝑘𝑑,

and 𝜑ℎ(
⇀
𝜃 ,
⇀
𝑥) is called Fourier mode [3, 5, 20], which is

orthogonalwith respect to the scaledEuclidean inner product
[3, 5, 10]. On grid (2), the corresponding eigenvalues of 𝐿ℎ are
expressed by

𝐿ℎ𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) = �̃�ℎ (

⇀
𝜃)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) (5)

with

�̃�ℎ (
⇀
𝜃) := ∑

⇀
𝑛∈𝐽

𝑙⇀
𝑛
exp (𝑖
⇀
𝜃
⇀
𝑛) (6)

called Fourier symbol of 𝐿ℎ. Further, a Fourier subspace
with the bounded infinite grid function 𝑉ℎ ∈ 𝐹(𝐺ℎ), that is
𝐹(𝐺ℎ) ⊆ 𝐹ℎ, is defined as

𝐹ℎ := span {𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θ = (−𝜋, 𝜋]

𝑑
} (7)

in whichΘlow = (−𝜋/2, 𝜋/2]
𝑑 is referred to the low frequency

and Θhigh = Θ \ Θlow is referred to the high frequency. As

a standard multigrid coarsening [11], a case of ⇀𝐻 = 2
⇀
ℎ is

considered, and infinite coarse grid 𝐺𝐻 is stated as

𝐺𝐻 = {
⇀
𝑥 = (𝑘1𝐻1, 𝑘2𝐻2, . . . , 𝑘𝑑𝐻𝑑) |

⇀
𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑑) ∈ Z

𝑑
} .

(8)

2.2. Smoothing Analysis of Multigrid Relaxation. For multi-
grid relaxation 𝑆ℎ of discrete operator 𝐿ℎ on the infinite
grid (2), if (4) are the eigenfunctions of 𝑆ℎ, then 𝑆ℎ(

⇀
𝜃 )

is the Fourier symbol of 𝑆ℎ. For pattern relaxation [11],
(4) are no longer the eigenfunctions of relaxation operator
𝑆ℎ. However, it leaves certain low-dimensional subspaces of
(4) invariant yielding a block-diagonal matrix of smoothing
operator consisting of small blocks. As presented in [10, 11],
the 2ℎ-harmonics of (4) is defined as

𝐹2ℎ (
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) |
⇀
𝛼 = (𝛼1, . . . , 𝛼𝑑) ,

𝛼𝑚 ∈ {0, 1} , 𝑚 = 1, . . . , 𝑑} ,

(9)

where
⇀
𝜃 =
⇀
𝜃

(0,...,0)

∈ Θlow and
⇀
𝜃

⇀
𝛼

=
⇀
𝜃

(0,...,0)

− (𝛼1 sign(𝜃1),
. . . , 𝛼𝑑 sign(𝜃𝑑))𝜋. If relaxation operator 𝑆ℎ satisfies

𝑆ℎ (𝜑ℎ (
⇀
𝜃

(0,...,0)

,
⇀
𝑥) , . . . , 𝜑ℎ (

⇀
𝜃

(0,...,1)

,
⇀
𝑥))

= (𝜑ℎ (
⇀
𝜃

(0,...,0)

,
⇀
𝑥) , . . . , 𝜑ℎ (

⇀
𝜃

(0,...,1)

,
⇀
𝑥)) 𝑆ℎ (

⇀
𝜃) ,

(10)

that is, 𝑆ℎ : 𝐹2ℎ → 𝐹2ℎ, the matrix 𝑆ℎ(
⇀
𝜃 ) is called Fourier

representation of 𝑆ℎ. Furthermore, an idea coarse-grid cor-
rection operator 𝑄𝐻

ℎ
is introduced [11] to drop out the low-

frequency modes and to keep the high-frequency modes. So,
it is clear that 𝑄𝐻

ℎ
is a projection operator onto the subspace

of the high-frequency modes

𝐹high (
⇀
𝜃) := span {𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θhigh} . (11)

By the same way, a subspace of the low-frequency modes is
defined as

𝐹low (
⇀
𝜃) := span {𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θlow} . (12)
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Thus, a general coarsening strategy [11] is stated as

𝑄
𝐻

ℎ
𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) :=

{

{

{

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∈ 𝐹high

0 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∈ 𝐹low.

(13)

Consequently, a smoothing factor [11] on the Fourier modes
for the multigrid relaxation, 𝑆ℎ(𝜔) and 𝑄

𝐻

ℎ
, is yielded as

𝜌 (V, 𝜔) = sup
⇀
𝜃∈Θlow

V
√𝜌(𝑄

2ℎ

ℎ
𝑆
V
ℎ
(
⇀
𝜃 , 𝜔)), (14)

where 𝜔 is the relaxation parameter, V = V1 + V2 denotes the
sum of pre- and postsmoothing steps, 𝑄𝐻

ℎ
and 𝑆ℎ(

⇀
𝜃 , 𝜔) are

the Fourier representations of 𝑆ℎ(𝜔) and𝑄
𝐻

ℎ
, respectively, and

𝜌(𝑀) denotes the spectral radius of the matrix𝑀.

3. Smoothing Analysis of
Two-Color Relaxation

To develop two different processes of LFA for the two-color
relaxation, grid (2) is divided into two disjoint subsets 𝐺𝑅

ℎ

and 𝐺𝐵
ℎ
, referring to as the red and black points, respectively.

Two process steps [11] are required to construct a complete
two-color relaxation 𝑆𝑅𝐵

ℎ
(𝜔). In the first step (𝑆𝑅

ℎ
(𝜔)), the

unknowns located at the red points are only smoothed,
whereas the unknowns at the black points remain to be
unchanged. Then, in the second step (𝑆𝐵

ℎ
(𝜔)), the unknowns

at the black points are changed by using the new values
calculated with the red points in the first step. So, a complete
red-black point process is obtained by iteration

𝑆
𝑅𝐵

ℎ
(𝜔) = 𝑆

𝐵

ℎ
(𝜔) 𝑆
𝑅

ℎ
(𝜔) . (15)

From the process mentioned above, it is noted that the
Fourier modes (4) are no longer eigenfunctions of (15) on
grid (2) because the relaxation operator is used.

3.1. Invariant Subspaces for Two-Color Relaxation. A new
smoothing analysis process of the two-color relaxation is
proposed with details. The proposed process is different
with [11, 20–24]. A novel constitution among the Fourier
modes with various frequencies is developed as a base of the
smoothing analysis process. The analysis process is proved to
be valuable.

The grid 𝐺ℎ = {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) |

⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2}

is divided into two disjoint subsets 𝐺0
ℎ
and 𝐺1

ℎ
; that is, 𝐺ℎ =

𝐺
0

ℎ
∪ 𝐺
1

ℎ
with

𝐺
𝛽

ℎ
= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘1 + 𝑘2 = 𝛽 mod 2,

⇀
𝑘 ∈ Z

2
} ,

(16)

where 𝛽 = 0, 1. According to (16), the subspace of the 2ℎ-
harmonics (9) is redefined as

𝐹
2

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥)} (17)

with
⇀
𝜃 = (𝜃1, 𝜃2) ∈ Θlow = (−𝜋/2, 𝜋/2]

2, where
⇀
𝜃

𝛼

= (
⇀
𝜃 +

(𝛼, 𝛼)𝜋) mod 2𝜋, 𝛼 = 0, 1. Thus, the constitutions among the
various Fourier modes defined by (16) and (17) are presented
as follows.

Proposition 1. For ∀⇀𝑥 ∈ 𝐺ℎ, ∀(𝑘1, 𝑘2) ∈ Z2, and ∀𝛼 ∈ {0, 1},
if
⇀
𝜃 ∈ Θlow, then the following formulation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (18)

Proof. From (4), for ∀⇀𝑥 ∈ 𝐺ℎ, it holds for 𝜑ℎ(
⇀
𝜃

𝛼

,
⇀
𝑥) =

exp(𝑖
⇀
𝜃

𝛼 ⇀
𝑘 ). From (17), ∃ ⇀𝑛 = (𝑛1, 𝑛2) ∈ Z

2 is subjected to
⇀
𝜃

𝛼

= (𝜃1 + 𝛼𝜋, 𝜃2 + 𝛼𝜋) + 2𝜋
⇀
𝑛 . Then

⇀
𝜃

𝛼 ⇀
𝑘 =
⇀
𝜃
⇀
𝑘 + 𝜋𝛼 (𝑘1 + 𝑘2) + 2𝜋

⇀
𝑛
⇀
𝑘 (19)

holds. Thus,

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp(𝑖

⇀
𝜃

𝛼 ⇀
𝑘)

= exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] exp (𝑖
⇀
𝜃
⇀
𝑘)

= exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) .

(20)

Proposition 1 follows.

Proposition 2. For ∀𝛼, 𝛽 ∈ {0, 1}, and ∀⇀𝑥 ∈ 𝐺𝛽
ℎ
, if
⇀
𝜃 ∈ Θlow,

then the following formulation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp (𝑖𝜋𝛼𝛽) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (21)

Proof. By Proposition 1 and 𝐺𝛽
ℎ
⊆ 𝐺ℎ, for ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ
, then

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) , (22)

where (𝑘1, 𝑘2) ∈ Z2. For ⇀𝑥 ∈ 𝐺𝛽
ℎ
, from (16), ∃𝑝 ∈ Z is

subjected to 𝑘1 + 𝑘2 = 𝛽 + 2𝑝; hence,

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝛽 + 2𝑝)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥)

= exp (𝑖𝜋𝛼𝛽) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) .

(23)

Proposition 2 holds.

Subsequently, the smoothing analysis process of the two-
color relaxation on the subspace of the 2ℎ-harmonics (17) is
conducted. By (15) and (16) and without loss of generality, let
𝐺
0

ℎ
and𝐺1

ℎ
correspond to𝐺𝑅

ℎ
and𝐺𝐵

ℎ
, respectively; thus (15) is

rewritten as

𝑆
01

ℎ
(𝜔) = 𝑆

1

ℎ
(𝜔) 𝑆
0

ℎ
(𝜔) . (24)

Theorem 3. The iteration operator 𝑆01
ℎ
(𝜔) for the two-color

relaxation leaves the subspace of the 2ℎ-harmonics (17) to be
invariant.
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Proof. From the process of the two-color relaxation, the
operator 𝑆𝛽

ℎ
(𝜔) of grid (16) is

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) =

{

{

{

𝑆
𝛽

ℎ
(
⇀
𝜃 , 𝜔) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
,

(25)

where 𝑆𝛽
ℎ
(
⇀
𝜃 , 𝜔) is Fourier symbol of 𝑆𝛽

ℎ
(𝜔) on grid (16)

with 𝛽 = 0, 1. From (10) and (25), now it is proved that
the subspace of the 2ℎ-harmonics (17) is invariant for the
iteration operator (24). Because of (17), we need to find out
two complex numbers 𝑎0 and 𝑎1 with ∀𝛼, 𝛽 ∈ {0, 1} andmake
them subjected to

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) = 𝑎0𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) + 𝑎1𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥) . (26)

From (25), the right hand side of (26) is written as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

{{

{{

{

𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) 𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(27)

By Propositions 1 and 2, the right hand side of (27) is
expressed as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥)

=

{

{

{

𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) exp (𝑖𝛼𝛽𝜋) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

exp [𝑖𝛼 (1 − 𝛽) 𝜋] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(28)

Taking 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔), (28) is written as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥)

=

{

{

{

𝐴
𝛽

𝛼
exp (𝑖𝛼𝛽𝜋) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

exp [𝑖𝛼 (1 − 𝛽) 𝜋] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(29)

FromPropositions 1 and 2, the left hand side of (26) is written
as

𝑎0𝜑ℎ (
⇀
𝜃

0

,
⇀
𝑥) + 𝑎1𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥)

=

{

{

{

(𝑎0 + 𝑎1 exp (𝑖𝛽𝜋)) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥)

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

(𝑎0 + 𝑎1 exp [𝑖 (1 − 𝛽) 𝜋]) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥)
⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(30)

Hence, from (26), (29), and (30), a set of two linear equations
on 𝑎0 and 𝑎1 is given as

𝑎0 + 𝑎1 exp (𝑖𝛽𝜋) = 𝐴
𝛽

𝛼
exp (𝑖𝛼𝛽𝜋)

𝑎0 + 𝑎1 exp [𝑖 (1 − 𝛽) 𝜋] = exp [𝑖𝛼 (1 − 𝛽) 𝜋] ,
(31)

where 𝛼, 𝛽 ∈ {0, 1}. Therefore, from (31), it is concluded that
there exist two complex numbers 𝑎0 and 𝑎1 that are subjected
to (26). From (10), (17), and (26), solving linear equation (31),
the Fourier representations of the iteration operators 𝑆0

ℎ
(𝜔)

and 𝑆1
ℎ
(𝜔) are obtained as

𝑆
0

ℎ
(
⇀
𝜃 , 𝜔) =

1

2
(

𝐴
0

0
+ 1 𝐴

0

1
− 1

𝐴
0

0
− 1 𝐴

0

1
+ 1

) ,

𝑆
1

ℎ
(
⇀
𝜃 , 𝜔) =

1

2
(

𝐴
1

0
+ 1 −𝐴

1

1
+ 1

−𝐴
1

0
+ 1 𝐴

1

1
+ 1

) ,

(32)

where 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) and 𝛼, 𝛽 ∈ {0, 1}. Furthermore, from
(32), the Fourier representations of the two-color relaxation
𝑆
01

ℎ
(𝜔) are

𝑆
01

ℎ
(
⇀
𝜃 , 𝜔) = 𝑆

1

ℎ
(
⇀
𝜃 , 𝜔) 𝑆

0

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(
𝐴
1

0
+ 1 −𝐴

1

1
+ 1

−𝐴
1

0
+ 1 𝐴

1

1
+ 1
)

⋅
1

2
(
𝐴
0

0
+ 1 𝐴

0

1
− 1

𝐴
0

0
− 1 𝐴

0

1
+ 1
) .

(33)

From (10), Theorem 3 holds.

3.2. Invariant Subspaces on Four Fourier Modes for Two-Color
Relaxation. We need to develop a Fourier representation of
the two-color relaxation in the subspace of the 2ℎ-harmonics
with four Fourier modes. By following (9), for 2D system,
another subspace of the 2ℎ-harmonics is given as

𝐹
∗

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) |
⇀
𝛼 = (𝛼1, 𝛼2) ,

𝛼𝑚 ∈ {0, 1} , 𝑚 = 1, 2}

(34)

with
⇀
𝜃 = (𝜃1, 𝜃2) =

⇀
𝜃

(0,0)

∈ Θlow = (−𝜋/2, 𝜋/2]
2,
⇀
𝜃

⇀
𝛼

=

⇀
𝜃

(0,0)

− (𝛼1 sign(𝜃1), 𝛼2 sign(𝜃2))𝜋.

For the sake of convenient analysis, taking
⇀
𝜃

⇀
𝛼

=

⇀
𝜃

(𝛼
1
,𝛼
2
)

=
⇀
𝜃

𝛼
1
𝛼
2

, for example,
⇀
𝜃

(0,0)

=
⇀
𝜃

00

, then 𝐹∗
2ℎ
(
⇀
𝜃 ) is

defined as

𝐹
∗

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥) ,

𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥)} .

(35)

Meanwhile, the grid 𝐺ℎ is divided into four subsets [11] as

𝐺ℎ = 𝐺
00

ℎ
∪ 𝐺
11

ℎ
∪ 𝐺
10

ℎ
∪ 𝐺
01

ℎ
, (36)

where 𝐺
⇀
𝜂

ℎ
= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘𝑚 = 𝜂𝑚 mod 2,𝑚 = 1, 2}

and ⇀𝜂 = (𝜂1, 𝜂2) ∈ Λ = {00, 11, 10, 01}. The red and black
grid points corresponding with Gℎ are thus obtained as

𝐺
𝑅

ℎ
= 𝐺
00

ℎ
∪ 𝐺
11

ℎ
, 𝐺

𝐵

ℎ
= 𝐺
10

ℎ
∪ 𝐺
01

ℎ
. (37)
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Therefore, a constitutive relationship among the various
Fourier 2ℎ-harmonics is constructed.

Proposition 4. For ∀⇀𝑥 ∈ 𝐺ℎ, ∀
⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2, and

∀
⇀
𝛼 ∈ Λ, if

⇀
𝜃 ∈ Θlow, the following equation is yielded as

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = exp (−𝑖𝜋⇀𝛼

⇀
𝑘)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (38)

Proposition 5. For ∀⇀𝑥 ∈ 𝐺
⇀
𝛽

ℎ
, ∀
⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2, and

∀
⇀
𝛼,
⇀
𝛽 ∈ Λ, if

⇀
𝜃 ∈ Θlow, the following equation is yielded

as

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = exp (−𝑖𝜋⇀𝛼

⇀
𝛽)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (39)

The proof of Propositions 5 and 4 is similar to Propositions 2
and 1.

Subsequently, a smoothing analysis process of the two-
color relaxation on the subspace of the 2ℎ-harmonics (35) is
obtained.

Theorem 6. The iteration operator (15) for the two-color
relaxation leaves the subspace of the 2h-harmonics (35) to be
invariant 0.

Proof. Similar to the proof ofTheorem 3, from process of the
two-color relaxation and (15), operators 𝑆𝑅

ℎ
(𝜔) and 𝑆𝐵

ℎ
(𝜔) of

the grid (37) are

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{

{{{{

{

𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝑅

ℎ

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝑅

ℎ

(40)

𝑆
𝐵

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{

{{{{

{

𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝐵

ℎ

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝐵

ℎ
,

(41)

where 𝑆𝑅
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) and 𝑆𝐵
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) are Fourier symbols of 𝑆𝑅
ℎ
(𝜔)

and 𝑆𝑅
ℎ
(𝜔) with 𝜑ℎ(

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) on the corresponding grids (37),

respectively, and ⇀𝛼 ∈ Λ. From (15), in order to prove

𝑆
𝑅𝐵

ℎ
(𝜔) : 𝐹

∗

2ℎ
(
⇀
𝜃 ) → 𝐹

∗

2ℎ
(
⇀
𝜃 ) with

⇀
𝜃 ∈ Θlow, we need to find

out four complex numbers 𝑎00, 𝑎11, 𝑎10, and 𝑎01 subjected to

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = 𝑎00𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) + 𝑎11𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥)

+ 𝑎10𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) + 𝑎01𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥) .

(42)

Meanwhile, we also need to find other four complex numbers
𝑏00, 𝑏11, 𝑏10, and 𝑏01 and make them subjected to

𝑆
𝐵

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = 𝑏00𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) + 𝑏11𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥)

+ 𝑏10𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) + 𝑏01𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥) .

(43)

Firstly, we prove (42) as follows.
From (36) and (40), as well as Propositions 5 and 4, the

right and left hand sides of (42) are written as, respectively,

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{{{{

{{{{{{{

{

𝐴
𝑅
⇀
𝛼
𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

00

ℎ

𝐴
𝑅
⇀
𝛼
exp [−𝑖𝜋 (𝛼1 + 𝛼2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

11

ℎ

exp (−𝑖𝜋𝛼1) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

10

ℎ

exp (−𝑖𝜋𝛼2) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

01

ℎ
,

∑

⇀
𝛼∈Λ

𝑎⇀
𝛼
𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{{{{

{{{{{{{

{

(𝑎00 + 𝑎11 + 𝑎10 + 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

00

ℎ

(𝑎00 + 𝑎11 − 𝑎10 − 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

11

ℎ

(𝑎00 − 𝑎11 − 𝑎10 + 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

10

ℎ

(𝑎00 − 𝑎11 + 𝑎10 − 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

01

ℎ
,

(44)

where 𝐴𝑅⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ. Hence, by using
(42) and (44), linear equations with respect to the complex
numbers 𝑎00, 𝑎11, 𝑎10, and 𝑎01 are obtained as

𝑎00 + 𝑎11 + 𝑎10 + 𝑎01 = 𝐴
𝑅
⇀
𝛼

𝑎00 + 𝑎11 − 𝑎10 − 𝑎01 = 𝐴
𝑅
⇀
𝛼
exp [−𝑖𝜋 (𝛼1 + 𝛼2)]

𝑎00 − 𝑎11 − 𝑎10 + 𝑎01 = exp (−𝑖𝜋𝛼1)

𝑎00 − 𝑎11 + 𝑎10 − 𝑎01 = exp (−𝑖𝜋𝛼2) .

(45)
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In the same way, equations with respect to the complex
numbers 𝑏00, 𝑏11, 𝑏10, and 𝑏01 are obtained as

𝑏00 + 𝑏11 + 𝑏10 + 𝑏01 = 1

𝑏00 + 𝑏11 − 𝑏10 − 𝑏01 = exp [−𝑖𝜋 (𝛼1 + 𝛼2)]

𝑏00 − 𝑏11 − 𝑏10 + 𝑏01 = 𝐴
𝐵
⇀
𝛼
exp (−𝑖𝜋𝛼1)

𝑏00 − 𝑏11 + 𝑏10 − 𝑏01 = 𝐴
𝐵
⇀
𝛼
exp (−𝑖𝜋𝛼2) ,

(46)

where 𝐴𝐵⇀
𝛼
= 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ. From
(10), (35), (42), and (43), solving (45) and (46), the Fourier
representations of the iteration operators 𝑆𝑅

ℎ
(𝜔) and 𝑆𝐵

ℎ
(𝜔) are

obtained as

𝑆
𝑅
⇀
ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝑅

00
+ 1 𝐴

𝑅

11
− 1 0 0

𝐴
𝑅

00
− 1 𝐴

𝑅

11
+ 1 0 0

0 0 𝐴
𝑅

10
+ 1 𝐴

𝑅

01
− 1

0 0 𝐴
𝑅

10
− 1 𝐴

𝑅

01
+ 1

)

𝑆
𝐵

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝐵

00
+ 1 −𝐴

𝐵

11
+ 1 0 0

−𝐴
𝐵

00
− 1 𝐴

𝐵

11
+ 1 0 0

0 0 𝐴
𝐵

10
+ 1 −𝐴

𝐵

01
+ 1

0 0 −𝐴
𝐵

10
+ 1 𝐴

𝐵

01
+ 1

) .

(47)

Furthermore, from (47), the Fourier representation of the
iteration operators 𝑆𝑅𝐵

ℎ
(𝜔) is

𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 𝜔)

= 𝑆
𝐵

ℎ
(
⇀
𝜃 , 𝜔) 𝑆

𝑅

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝐵

00
+ 1 −𝐴

𝐵

11
+ 1 0 0

−𝐴
𝐵

00
− 1 𝐴

𝐵

11
+ 1 0 0

0 0 𝐴
𝐵

10
+ 1 −𝐴

𝐵

01
+ 1

0 0 −𝐴
𝐵

10
+ 1 𝐴

𝐵

01
+ 1

)

⋅
1

2
(

𝐴
𝑅

00
+ 1 𝐴

𝑅

11
− 1 0 0

𝐴
𝑅

00
− 1 𝐴

𝑅

11
+ 1 0 0

0 0 𝐴
𝑅

10
+ 1 𝐴

𝑅

01
− 1

0 0 𝐴
𝑅

10
− 1 𝐴

𝑅

01
+ 1

) ,

(48)

where 𝐴𝑅⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), 𝐴𝐵⇀
𝛼
= 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ.
Theorem 6 holds.

FromTheorems 3 and 6, two ways to carry out smoothing
analysis of the two-color relaxation are obtained.

4. Two-Color Jacobi Relaxation for
2D Poisson Equation

4.1. Poisson Equation and Optimal Smoothing Parameter. 2D
Poisson equation to be considered is stated as

−Δ𝑢 (𝑥1, 𝑥2) = 𝑓 (𝑥1, 𝑥2) . (49)

For using uniform grids of mesh size ℎ to solve this equation,
a central discretization stencil is introduced as

𝐿ℎ = −Δ ℎ =
1

ℎ2
[

[

−1

−1 4 −1

−1

]

]ℎ

. (50)

From (3)–(6), the Fourier symbol of (50) is

�̃�ℎ (
⇀
𝜃) =

1

ℎ2
(4 − 2 cos 𝜃1 − 2 cos 𝜃2) . (51)

From [1], the damped Jacobi relaxation 𝑆JAC
ℎ

is defined as

𝑆
JAC
ℎ
(𝜔) = 𝐼ℎ − 𝜔𝐷

−1

ℎ
𝐿ℎ, (52)

where 𝐼ℎ = [1]ℎ is the identity operator, 𝜔 is the smoothing
parameter, and 𝐷ℎ = (1/ℎ

2
)[4]ℎ is the diagonal part of the

discrete operator 𝐿ℎ.Thus, the Fourier symbol of (52) is given
as

𝑆
JAC
ℎ
(
⇀
𝜃 , 𝜔) = 1 − 𝜔(sin2 𝜃1

2
+ sin2 𝜃2

2
) . (53)

For the operators 𝑆ℎ(𝜔) and 𝑄
𝐻

ℎ
in (14) with a relax-

ation parameter 𝜔 and according to the optimal one-stage
relaxation [11], smoothing parameter and a related smoothing
factor are given by

𝜔opt =
2

2 − 𝑆max − 𝑆min
, 𝜌opt =

𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

, (54)

where 𝑆max and 𝑆min are the maximum and minimum
eigenvalues of the matrix 𝑄𝐻

ℎ
𝑆ℎ(
⇀
𝜃 , 1) for

⇀
𝜃 ∈ Θlow =

(−𝜋/2, 𝜋/2]
2 and 𝑆ℎ(

⇀
𝜃 , 1) is the Fourier representation of

𝑆ℎ(𝜔) with 𝜔 = 1.

4.2. Two-Color Relaxation on (17). According to (32), (33),
and (53), for point Jacobi relaxation, 𝐴𝛽

𝛼
in (17) is expressed

as

𝐴
0

𝛼
= 𝐴
1

𝛼
= 𝑆
0

ℎ
(
⇀
𝜃

𝛼

, 𝜔) = 𝑆
1

ℎ
(
⇀
𝜃

𝛼

, 𝜔)

= 𝑆
JAC
ℎ
(
⇀
𝜃

𝛼

, 𝜔) = 1 − 𝜔(sin2
𝜃
𝛼

1

2
+ sin2

𝜃
𝛼

2

2
)

(55)

which denotes that both red and black points are swept by the
Jacobi point relaxationmethod, where 𝛼, 𝛽 = 0, 1 and𝜔 is the
smoothing parameter. Further, when 𝜔 = 1, (55) is rewritten
as

𝐴
0

𝛼
= 𝐴
1

𝛼
= 𝑆

JAC
ℎ
(
⇀
𝜃

𝛼

, 1) = 1 − (sin2
𝜃
𝛼

1

2
+ sin2

𝜃
𝛼

2

2
) , (56)
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where 𝛼 = 0, 1. For simplification, let

𝑠1 = sin
2 𝜃
0

1

2
= sin2 𝜃1

2
,

𝑠2 = sin
2 𝜃
0

2

2
= sin2 𝜃2

2
.

(57)

By substituting (56) and (57) into (33), (56) is given as

𝐴
0

0
= 𝐴
1

0
= 1 − (𝑠1 + 𝑠2) ,

𝐴
0

1
= 𝐴
1

1
= 𝑠1 + 𝑠2 − 1,

(58)

𝑆
01

ℎ
(
⇀
𝜃 , 1) = (

1 −
1

2
(𝑠1 + 𝑠2) 1 −

1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

)

⋅ (

1 −
1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2) − 1

−
1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

) .

(59)

Further, by using (13) and (17), the Fourier representation of
𝑄
𝐻

ℎ
is given as𝑄𝐻

ℎ
= diag(0, 1). From (59), the product of𝑄𝐻

ℎ

and (59) is

𝑄
𝐻

ℎ
𝑆
01

ℎ
(
⇀
𝜃 , 1)

= (

0 0

1

2
(𝑠1 + 𝑠2) (1 − 𝑠1 − 𝑠2)

1

2
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

) .

(60)

Therefore, a unique nonzero eigenvalue of the matrix
𝑄
𝐻

ℎ
𝑆
01

ℎ
(
⇀
𝜃 , 1) is yielded as

𝜆 (𝑠1, 𝑠2) =
1

2
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1) . (61)

Because of
⇀
𝜃 ∈ Θlow = (−𝜋/2, 𝜋/2]

2, thus, from (57), we
know (𝑠1, 𝑠2) ∈ [0, 1/2]

2. So, by using (54), the optimal
smoothing parameters for the two-color relaxation are given
as

𝑆max = max
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆 (𝑠1, 𝑠2)

⇀
𝜃=(𝜋/2,𝜋/2)

= 0,

𝑆min = min
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆 (𝑠1, 𝑠2)

⇀
𝜃=(0,𝜋/2)

= −
1

8
,

(62)

𝜔opt =
2

2 − 𝑆max − 𝑆min
=
16

17
,

𝜌opt =
𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

=
1

17
.

(63)

4.3. Two-Color Jacobi Relaxation on (35). By using (48) and
(53), for point Jacobi relaxation, 𝐴𝑅⇀

𝛼
and 𝐴𝐵⇀

𝛼
for (35) are

expressed as

𝐴
𝑅
⇀
𝛼
= 𝐴
𝐵
⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) = 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)

= 𝑆
JAC
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) = 1 − 𝜔(sin2
𝜃
𝛼
1

1

2
+ sin2

𝜃
𝛼
2

2

2
)

(64)

which denotes that both red and black points are swept by
the Jacobi point relaxation method, where ⇀𝛼 = (𝛼1, 𝛼2) ∈
Λ. Further, substituting (57) into (64), when 𝜔 = 1, (64) is
written as

𝐴
𝑅

00
= 𝐴
𝐵

00
= 1 − (𝑠1 + 𝑠2)

𝐴
𝑅

11
= 𝐴
𝐵

11
= 𝑠1 + 𝑠2 − 1

𝐴
𝑅

10
= 𝐴
𝐵

10
= 𝑠1 − 𝑠2

𝐴
𝑅

01
= 𝐴
𝐵

01
= − (𝑠1 − 𝑠2) .

(65)

Substituting (65) into (48), the Fourier representation of
𝑆
𝑅𝐵

ℎ
(𝜔) with 𝜔 = 1 is expressed as

𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) = diag (𝑆11, 𝑆22) , (66)

where

𝑆11 = (

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
− 2) −

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
− 2)

−
1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
)

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
)
),

𝑆22 = (

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
) −
1

2
(𝑠
1
− 𝑠
2
+ 1) (𝑠

1
− 𝑠
2
)

1

2
(𝑠
2
− 𝑠
1
+ 1) (𝑠

1
− 𝑠
2
) −
1

2
(𝑠
2
− 𝑠
1
+ 1) (𝑠

1
− 𝑠
2
)
) .

(67)

From (13) and (35), the Fourier representation of operator𝑄𝐻
ℎ

is given as

𝑄
𝐻

ℎ
= diag (𝑄11, 𝑄22) , (68)

where 𝑄11 = diag(0, 1), 𝑄22 = diag(1, 1). Therefore, the
product of (66) and (68) is obtained as

𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) = diag (𝑄11𝑆11, 𝑄22𝑆22) , (69)
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in which the diagonal blocks are expressed as

𝑄11𝑆11

= (

0 0

−
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2

(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2

) ,

(70)

𝑄22𝑆22

= (

(𝑠1 − 𝑠2) (𝑠1 − 𝑠2 + 1)

2
−
(𝑠1 − 𝑠2) (𝑠1 − 𝑠2 + 1)

2
(𝑠1 − 𝑠2) (𝑠2 − 𝑠1 + 1)

2
−
(𝑠1 − 𝑠2) (𝑠2 − 𝑠1 + 1)

2

) .

(71)

The eigenvalues of the matrix (69) are obtained as

𝜆1 = 0, 𝜆2 = (𝑠1 − 𝑠2)
2
,

𝜆3 = 0, 𝜆4 =
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2
.

(72)

When
⇀
𝜃 ∈ Θlow, the maximum andminimum eigenvalues of

the matrix 𝑄𝐻
ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) are as follows:

𝜆max (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1)) = max

(𝑠
1
,𝑠
2
)∈[0,1/2]

2

{𝜆1, 𝜆2, 𝜆3, 𝜆4}

= max
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆2 =
1

4
,

(73)

𝜆min (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1)) = min

(𝑠
1
,𝑠
2
)∈[0,1/2]

2

{𝜆1, 𝜆2, 𝜆3, 𝜆4}

= min
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆4 = −
1

8
.

(74)

Therefore, by using (54), the values of the optimal smoothing
parameters for the Poisson equation are obtained as

𝑆max = 𝜆max (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1))


⇀
𝜃=(0,𝜋/2)

=
1

4
,

𝑆min = 𝜆min (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1))


⇀
𝜃=(𝜋/2,0)

= −
1

8
,

(75)

𝜔opt =
2

2 − 𝑆max − 𝑆min
=
16

15
,

𝜌opt =
𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

=
1

5
.

(76)

5. Extending Two-Color to
Multicolor Relaxation

Herein, the proposed smoothing analysis process of two-
color relaxation is generalized to a 3D system. The Fourier
representation of the smoothing operator for two-color relax-
ation is still a 2-order square matrix in (17). The result in (35)
for a 3D case is changed to a 23 × 23 diagonal block matrix.

For a 𝑚-color relaxation (𝑚 > 2), the infinite grid 𝐺ℎ is
subdivided into 𝑚 types of the grid points 𝐺0

ℎ
, 𝐺
1

ℎ
, . . . , 𝐺

𝑚−1

ℎ

for presenting𝑚different colors [11, 20].Thus a complete ana-
lyzing step of the 𝑚-color relaxation consists of 𝑚 substeps:
at the 𝛽th step (𝛽 = 0, 1, . . . , 𝑚 − 1), the unknowns located
at only ⇀𝑥 ∈ 𝐺𝛽

ℎ
are changed by using updated data at the

previous step. For example, for the𝑚-color relaxation of a 2D
system, the infinite grid 𝐺ℎ is stated as

𝐺ℎ =

𝑚−1

⋃

𝛽=0

𝐺
𝛽

ℎ
, (77)

with

𝐺
𝛽

ℎ

= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘1 + 𝑘2 = 𝛽 mod 𝑚, (𝑘1, 𝑘2) ∈ Z

2
} ,

(78)

where 𝛽 ∈ Λ𝑚 := {0, 1, . . . , 𝑚 − 1}. In the subdivisions of the
infinite grids𝐺ℎ, there are∀𝑗, 𝑛 ∈ Λ𝑚, 𝑗 ̸= 𝑛, and𝐺

𝑗

ℎ
∩𝐺
𝑛

ℎ
= 𝜙.

For the standard coarsening [11, 20], the subspace of the
2ℎ-harmonics is defined as

𝐹
𝑚

2ℎ
:= span{𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥) , . . . ,

𝜑ℎ (
⇀
𝜃

𝑚−1

,
⇀
𝑥)} ,

(79)

where
⇀
𝜃 ∈ Θlow, ∀𝛼 ∈ Λ𝑚, and

⇀
𝜃

𝛼

= (
⇀
𝜃 + (2𝜋/

𝑚)(𝛼, 𝛼))(mod 2𝜋).
In order to obtain a Fourier representation of the 𝑚-

color point relaxation, let 𝑆𝑚𝑐
ℎ
(𝜔) be the above complete 𝑚-

color point relaxation operator and let 𝑆𝛽
ℎ
(𝜔) be the 𝛽th

subrelaxation (𝛽 ∈ Λ𝑚); thus, the 𝑚-color point relaxation
is expressed as

𝑆
𝑚𝑐

ℎ
(𝜔) =

𝑚−1

∏

𝛽=0

𝑆
𝛽

ℎ
(𝜔) (80)

with

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

{{

{{

{

𝐴
𝛽

𝛼
𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥)
⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥)

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
,

(81)

where 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) denotes the Fourier symbol of 𝑆𝛽
ℎ
(𝜔),

𝛼, 𝛽 ∈ Λ𝑚. The proof of this process is analogous to the
two-color case. In fact, as we know, the subspace of the 2ℎ-
harmonics 𝐹𝑚

2ℎ
with𝑚 Fourier modes remains to be invariant

for𝑚-color point relaxation operator 𝑆𝑚𝑐
ℎ
(𝜔); that is, 𝑆𝑚𝑐

ℎ
(𝜔) :

𝐹
𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
. So, the Fourier representation of the 𝑚-color

point relaxation (80) is given as 𝑆𝑚𝑐
ℎ
(𝜔) = ∏

𝑚−1

𝛽=0
𝑆
𝛽

ℎ
(𝜔), where

𝑆
𝛽

ℎ
(𝜔) is a Fourier representation of 𝑆𝛽

ℎ
(𝜔) in 𝐹𝑚

2ℎ
.
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Proposition 7. For ∀𝛼, 𝛽 ∈ Λ𝑚, ∀
⇀
𝑥 ∈ 𝐺

𝛽

ℎ
, if
⇀
𝜃 ∈ Θlow, the

following equation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp(𝑖2𝜋

𝑚
𝛼𝛽)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (82)

The proof is similar to Proposition 1.

Theorem 8. The iteration operator (80) for 𝑚-color point
relaxationmakes the subspace of the 2ℎ-harmonics (79) invari-
ant.

The proof is similar to Theorem 3. In fact, in order to prove
𝑆
𝑚𝑐

ℎ
(𝜔) : 𝐹

𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
, one only needs to do ∀𝛽 ∈ Λ𝑚,

𝑆
𝛽

ℎ
(𝜔) : 𝐹

𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
, which is equivalent to finding out 𝑚

complex numbers 𝑎𝑗, 𝑗 ∈ Λ𝑚, subject to

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

𝑚−1

∑

𝛼=0

𝑎𝛼𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) . (83)

Being similar to the proof of Theorems 3 and 6 and
according to (81), (83) and Proposition 7, 𝑚 linear equations
on 𝑎𝑗 are obtained as

𝑎0 + 𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑚−1 = 1
⇀
𝑥 ∈ 𝐺

0

ℎ

𝑎0 + 𝑎1 exp(𝑖
2𝜋

𝑚
) + 𝑎2 exp (𝑖

2𝜋 ⋅ 2

𝑚
) + ⋅ ⋅ ⋅

+𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1)

𝑚
] = exp(𝑖2𝜋𝛼

𝑚
)

⇀
𝑥 ∈ 𝐺

1

ℎ

𝑎0 + 𝑎1 exp(𝑖
2𝜋 ⋅ 2

𝑚
) + 𝑎2 exp(𝑖

2𝜋 ⋅ 4

𝑚
)

+ ⋅ ⋅ ⋅ + 𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ 2

𝑚
]

= exp (𝑖2𝜋 ⋅ 2𝛼
𝑚
)

⇀
𝑥 ∈ 𝐺

2

ℎ

.

.

.

𝑎0 + 𝑎1 exp(𝑖
2𝜋 ⋅ 𝛽

𝑚
) + 𝑎2 exp(𝑖

2𝜋 ⋅ 2𝛽

𝑚
)

+ ⋅ ⋅ ⋅ + 𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ 𝛽

𝑚
]

= 𝐴
𝛽

𝛼
exp(𝑖

2𝜋 ⋅ 𝛼𝛽

𝑚
)

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

.

.

.

𝑎0 + 𝑎1 exp [𝑖
2𝜋 (𝑚 − 1)

𝑚
]

+𝑎2 exp [𝑖
2𝜋 ⋅ 2 (𝑚 − 1)

𝑚
] + ⋅ ⋅ ⋅

+𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ (𝑚 − 1)

𝑚
]

= exp [𝑖2𝜋 (𝑚 − 1) ⋅ 𝛼
𝑚

]
⇀
𝑥 ∈ 𝐺

𝑚−1

ℎ
.

(84)

Letting 𝜂 = 2𝜋/𝑚, 𝜉𝑛 = exp(𝑖𝑛 𝜂) with 𝑛 ∈ Λ𝑚, the equations
are simplified as

𝑁
⇀
𝑎 =
⇀
𝑏 𝛽,

(85)

where ⇀𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑚−1)
𝑇,
⇀
𝑏 𝛽 = (𝜉0, 𝜉1, . . . , 𝐴

𝛽

𝛼
𝜉
𝛼𝛽

1
,

. . . , 𝜉
𝛼

𝑚−1
)
𝑇, 𝑇 denotes transposition of matrix or vector, and𝑁

is the Vander monde matrix; namely,

𝑁 =(

1 1 ⋅ ⋅ ⋅ 1

𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑚−1
.
.
.

.

.

. d
.
.
.

𝜉
𝑚−1

0
𝜉
𝑚−1

1
⋅ ⋅ ⋅ 𝜉
𝑚−1

𝑚−1

). (86)

Because of ∀𝑗 ̸= 𝑛 ∈ Λ𝑚, 𝜉𝑗 ̸= 𝜉𝑛, the determinant of the
matrix 𝑁 is nonzero. Therefore, from (83)–(86), for ∀𝛼, 𝛽 ∈
Λ𝑚, the Fourier representation of the 𝛽th substep relaxation in
𝐹
𝑚

2ℎ
is obtained as

𝑆
𝛽

ℎ
(𝜔) = 𝑁

−1
𝑁𝛽 (87)

in which 𝑁𝛽 is a square matrix which is obtained by substi-

tuting
⇀
𝜉 𝛽 = (𝐴

𝛽

𝛼
𝜉
𝛽

0
, 𝐴
𝛽

𝛼
𝜉
𝛽

1
, . . . , 𝐴

𝛽

𝛼
𝜉
𝛽

𝑚−1
) for the 𝛽th row of the

matrix𝑁, and𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔).Therefore, from (80) and (87),
the Fourier representation of the𝑚-color point relaxation in the
subspace of the 2ℎ-harmonics 𝐹𝑚

2ℎ
is stated as

𝑆
𝑚𝑐

ℎ
(𝜔) =

𝑚−1

∏

𝛽=0

𝑁
−1
𝑁𝛽. (88)

Theorem 8 holds.

6. Conclusions

A novel smoothing analysis process of the two-color point
relaxation for a 2D system is presented. The results are gen-
eralized to the𝑚-color point relaxation and extended to a 3D
system.The applications to the 2D and 3D Poisson equations
show that the computational domain overmultigrids needs to
be divided into the multisubsets to correspond with the dif-
ferent frequency modes in partial differential equations and
to use the corresponding discretizing stencils.Meanwhile, the
definition of the subspace based on the 2ℎ-harmonics has to
be agreeable to the subdomains of the multigrids. It is an
important fact that establishes a mathematical constitution
among the various Fourier modes with the different 2ℎ-
harmonics and constructs a usable Fourier representation of
the𝑚-color point relaxation in subspace of the 2ℎ-harmonics.
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[5] K. Stüben and U. Trottenberg, “Multigrid methods: fundamen-
tal algorithms, model problem analysis and applications,” in
MultigridMethods, W. Hackbusch andU. Trottenberg, Eds., vol.
960 of Lecture Notes in Mathematics, pp. 1–176, Springer, Berlin,
Germany, 1982.

[6] A. Brandt andO. E. Livne, 1984 Guide toMultigrid Development
in Multigrid Methods, Society for Industrial and Applied Math-
ematics, 2011.

[7] A. Brandt, “Multi-level adaptive solutions to boundary-value
problems,” Mathematics of Computation, vol. 31, no. 138, pp.
333–390, 1977.

[8] T. Boonen, J. van lent, and S. Vandewalle, “Local Fourier
analysis of multigrid for the curl-curl equation,” SIAM Journal
on Scientific Computing, vol. 30, no. 4, pp. 1730–1755, 2008.

[9] S. Vandewalle and G. Horton, “Fourier mode analysis of
the multigrid waveform relaxation and time-parallel multigrid
methods,” Computing, vol. 54, no. 4, pp. 317–330, 1995.

[10] R. Wienands and C. W. Oosterlee, “On three-grid Fourier
analysis for multigrid,” SIAM Journal on Scientific Computing,
vol. 23, no. 2, pp. 651–671, 2001.

[11] R. Wienands and W. Joppich, Practical Fourier Analysis for
Multigrid Methods, CRC Press, 2005.

[12] A. Brandt, “Rigorous quantitative analysis of multigrid—I: con-
stant coefficients two-level cycle with &-norm,” SIAM Journal
on Numerical Analysis, vol. 31, pp. 1695–1730, 1994.

[13] C. Rodrigo, P. Salinas, F. J. Gaspar, and F. J. Lisbona, “Local
Fourier analysis for cell-centered multigrid methods on trian-
gular grids,” Journal of Computational andAppliedMathematics,
vol. 259, pp. 35–47, 2014.

[14] F. J. Gaspar, J. L. Gracia, and F. J. Lisbona, “Fourier analysis
for multigrid methods on triangular grids,” SIAM Journal on
Scientific Computing, vol. 31, no. 3, pp. 2081–2102, 2009.

[15] G. Zhou and S. R. Fulton, “Fourier analysis of multigrid meth-
ods on hexagonal grids,” SIAM Journal on Scientific Computing,
vol. 31, no. 2, pp. 1518–1538, 2009.

[16] B. Gmeiner, T. Gradl, F. Gaspar, and U. Rüde, “Optimization
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The objective of this paper is to study the effect of rotation on the wave propagation in an infinite poroelastic hollow circular
cylinder. The frequency equation for poroelastic hollow circular cylinder is obtained when the boundaries are stress free and is
examined numerically. The frequency, phase velocity, and attenuation coefficient are calculated for a pervious surface for various
values of rotation, wave number, and thickness of the cylinder which are presented for nonaxial symmetric vibrations for a pervious
surface. The dispersion curves are plotted for the poroelastic elastic behavior of the poroelastic material. Results are discussed for
poroelastic material. The results indicate that the effect of rotation, wave number, and thickness on the wave propagation in the
hollow poroelastic circular cylinder is very pronounced.

1. Introduction

The study of wave propagation over a continuous medium is
of practical importance in the fields of engineering,medicine,
and bioengineering. Application of the poroelastic materials
inmedical fields such as orthopedic, dental, and cardiovascu-
lar iswell known. In orthopedics, wave propagation over bone
is used in monitoring the rate of fracture healing. There are
two types of osseous tissue such as cancellous or trabecular
and compact or cortical bone, which are of different materi-
als, with respect to theirmechanical behavior. Inmacroscopic
terms, the percentage of porosity in the cortical bone is 3–
5%, whereas, in the trabecular or cancellous, the percentage
of porosity is up to 90% [1]. In fact, in a recent article, Ahmed
and Abd-Alla [1] investigated the electromechanical wave
propagation in a cylindrical poroelastic bone with cavity.
Analytical solution of electromechanical wave propagation in
long bones has been obtained by El-Naggar et al. [2]. Abd-
Alla et al. [3] studied the wave propagationmodeling in cylin-
drical human longwet boneswith cavity.Hart [4] investigated
the theoretical study of the influence of bone maturation
rate on surface remodeling predictions. Qin et al. [5] studied

the thermoelectroelastic solutions for surface bone remodel-
ing under axial and transverse loads. Mart́ınez et al. [6] dis-
cussed the external bone remodeling through boundary ele-
ments and damage mechanics. Computational simulation of
simultaneous cortical and trabecular bone change in human
proximal femur during bone remodeling has been investi-
gated by Jang and Kim [7]. Tsili [8] studied the theoretical
solutions for internal bone remodeling of diaphyseal shafts
using adaptive elasticity theory. Cowin and Firoozbakhsh
[9] investigated the bone remodeling of diaphyseal surfaces
under constant load: theoretical predictions, a contribution
to the mechanics and thermodynamics of surface growth.
Application to bone external remodeling has been studied
by Ganghoffer [10]. Sims and Gooi [11] investigated bone
remodeling: multiple cellular interactions required for cou-
pling of bone formation and resorption. Zumsande et al. [12]
discussed the general analysis of mathematical models for
bone remodeling. Malachanne et al. [13] studied the numeri-
cal model of bone remodeling sensitive to loading frequency
through a poroelastic behavior and internal fluidmovements.
A model for mechanical adaptation of trabecular bone incor-
porating cellular accommodation and effects ofmicrodamage
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and disuse has been studied by Vahdati and Rouhi [14].
Hazelwood et al. [15] investigated the mechanistic model
for internal bone remodeling exhibiting different dynamic
responses in disuse and overload. Qu et al. [16] studied the
hypothetical mechanism of bone remodeling and modeling
under electromagnetic loads. Papathanasopoulou et al. [17]
investigated the poroelastic bone model for internal remod-
eling. Isotropic continuum damage/repair model for alveolar
bone remodeling has been studied by Mengoni and Ponthot
[18]. Boyle and Kim [19] investigated the three-dimensional
microlevel computational study of Wolff ’s law via trabecular
bone remodeling in the human proximal femur using design
space topology optimization. Wang et al. [20] studied the
theoretical analysis of alendronate and risedronate effects on
canine vertebral remodeling and microdamage. A physio-
logically based mathematical model of integrated calcium
homeostasis and bone remodeling has been discussed by
Peterson and Riggs [21]. Qin and Ye [22] studied the ther-
moelectroelas-tic solutions for internal bone remodeling
investigated under axial and transverse loads. Boyle and Kim
[23] studied the comparison of different hip prosthesis shapes
consideringmicrolevel bone remodeling and stress-shielding
criteria using three-dimensional design space topology opti-
mization. Cowin and Van Buskirk [24] investigated surface
bone remodeling induced by a medullary pin. Biot [25]
explained the general theory of three-dimensional consoli-
dation. Hegedus and Cowin [26] studied bone remodeling
II, small strain adaptive elasticity. The extensive literature on
the topic is now available and we can only mention a few
recent interesting investigations in [27–33]. Recently, Abd-
Alla and Abo-Dahab [34] investigated magnetic field effect
on poroelastic bone model for internal remodeling.

In the present analysis, the free vibrations of an infinite
hollow poroelastic circular cylinder are studied employing
general displacement components in cylindrical polar coor-
dinates, following Biot’s [35] theory. The general frequency
hollow cylinder is homogeneous and isotropic. Degenerate
cases of the general frequency equation of pervious sur-
faces, when the longitudinal wave number 𝑘 is considered.
The numerical result displayed by figures and the physical
meaning are explained.The results and discussions presented
in this study may be helpful to further understand wave
propagation in hollow poroelastic circular cylinder.

2. Governing Equations

Let us consider that the equations of motion of a homoge-
neous, isotropic poroelastic solid in the presence of dissipa-
tion 𝑏 are
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are all poroelastic constants, and 𝜌
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(𝑖, 𝑗 = 1, 2) are the mass

coefficients following Biot [35].
The stress-strain equations for an isotropic poroelastic

material of solid and liquid are given as
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3. Solution of the Problem

Let us consider (𝑟, 𝜃, 𝑧) to be the cylindrical polar coordi-
nates. Consider a homogeneous, isotropic, poroelastic cylin-
der with inner and outer radii being 𝑟
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where �⃗�, V⃗ are displacements of solid and liquid, respectively,
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where 𝑃 = 𝐴 + 2𝑁.
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where 𝑘 is the axial wave number, 𝑛 is an integer number of
waves around the circumference or also known as angular
wave number, and 𝑤 is circular frequency. From the second
and third equations of (5) with (4), when the first two
equations of (5) remain the same, they are reduced to
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− �̇�
𝜃
) ,

0 = (𝜌
12
ℎ̈
𝑧
+ 𝜌
22
�̈�
𝑧
) − 𝑏 (ℎ̇

𝑧
− �̇�
𝑧
) .

(7)

From (7) and (6), we obtain

𝑝Δ𝑓
1
+ 𝑄Δ𝑓

2
= −𝑤
2
[𝑘
11
𝑓
1
+ 𝑘
12
𝑓
2
] ,

𝑄Δ𝑓
1
+ 𝑅Δ𝑓

2
= −𝑤
2
[𝑘
12
𝑓
1
+ 𝑘
22
𝑓
2
] ,

𝑁 [Δ𝑔
𝑟
−
𝑔
𝑟

𝑟2
−
2𝑛

𝑟2
𝑔
𝜃
] = −𝑤

2
[𝑘


11
𝑔
𝑟
+ 𝑘
12
𝐺
𝑟
] ,

𝑁 [Δ𝑔
𝜃
−
𝑔
𝜃

𝑟2
−
2𝑛

𝑟2
𝑔
𝑟
] = −𝑤

2
[𝑘


11
𝑔
𝜃
+ 𝑘
12
𝐺
𝜃
] ,

𝑁Δ𝑔
3
= −𝑤
2
[𝑘


11
𝑔
𝑧
+ 𝑘
12
𝐺
𝑧
] ,

0 = −𝑤
2
[𝑘
12
𝑔
𝑟
+ 𝑘
22
𝐺
𝑟
] ,

0 = −𝑤
2
[𝑘
12
𝑔
𝜃
+ 𝑘
22
𝐺
𝜃
] ,

0 = −𝑤
2
[𝑘
12
𝑔
𝑧
+ 𝑘
22
𝐺
𝑧
] ,

(8)

where

Δ =
𝑑
2

𝑑𝑟2
+
1

𝑟

𝑑

𝑑𝑟
−
𝑛
2

𝑟2
− 𝑘
2
,

𝑘
11
= 𝜌
11
(1 − Ω

2
) −

𝑖𝑏

𝑤
,

𝑘
12
= 𝜌
12
+
𝑖𝑏

𝑤
, 𝑘

22
= 𝜌
22
−
𝑖𝑏

𝑤
,

𝑘


11
= 𝜌
11
(1 + Ω

2
) −

𝑖𝑏

𝑤
.

(9)

The general solution of (8) can be obtained in terms of
the Bessel function of the first and second kind 𝐽 and 𝑌

depending on its arguments∝
1
𝑟,∝
2
𝑟,∝
3
𝑟.

From (8), we obtain

𝑓
1
= 𝑐
1
𝐽
𝑛
(∝
1
𝑟) + 𝑐
2
𝑌
𝑛
(∝
1
𝑟) + 𝑐
3
𝐽
𝑛
(∝
2
𝑟) + 𝑐
4
𝑌
𝑛
(∝
2
𝑟) ,

𝑔
3
(𝑟) = 𝐴

3
𝐽
𝑛
(𝛼
3
𝑟) + 𝐵

3
𝑌
𝑛
(𝛼
3
𝑟) ,

2𝑔
1
= 𝑔
𝑟
− 𝑔
𝜃
= 2𝐴
1
𝐽
𝑛+1

(∝
3
𝑟) + 2𝐵

1
𝑌
𝑛+1

(∝
3
𝑟) ,

2𝑔
2
= 𝑔
𝑟
+ 𝑔
𝜃
= 2𝐴
2
𝐽
𝑛−1

(𝑟𝛼
3
) + 2𝐵

2
𝑌
𝑛−1

(𝑟𝛼
3
) ,

(10)

where 𝐽
𝑛
is Bessel function of the first kind and order 𝑛 and

𝑌
𝑛
is the Bessel function of the second kind and order 𝑛.

Consider that

∝
2

1
= 𝜁
2

1
− 𝑘
2
+ Ω
2
,

∝
2

2
= 𝜁
2

2
− 𝑘
2
+ Ω
2
,

∝
2

3
= 𝜁
2

3
− 𝑘
2
− Ω
2

(11)

are positive or negative and

𝜔
2
= 𝜁
2

𝑖
V2
𝑖

(𝑖 = 1, 2, 3) , (12)

where V
𝑟
, V
𝜃
are the dilatational wave velocities of first and

second kind, respectively, and V
𝑧
is shear wave velocity.

The gauge invariance property, following the analysis of
[36], is used to eliminate two integration constants from (10).
Any one of the potential functions 𝑔

1
, 𝑔
2
, or 𝑔

3
can be set

equal to zero,without loss of generality of the solution. Setting
𝑔
2
= 0, we can obtain

𝑔
𝑟
= −𝑔
𝜃
= 𝑔
1
. (13)

The displacement vector of solid �⃗� = (𝑢
𝑟
, 𝑢
𝜃
, 𝑢
𝑧
)with the help

of (3) and (4) is given by

𝑢
𝑟
=

𝜕0
1

𝜕𝑟
+
1

𝑟

𝜕ℎ
𝑧

𝜕𝜃
−
𝜕ℎ
𝜃

𝜕𝑧
,

𝑢
𝜃
=

1

𝑟

𝜕0
1

𝜕𝜃
+
𝜕ℎ
𝑟

𝜕𝑧
−
𝜕ℎ
𝑧

𝜕𝑟
,

𝑢
𝑧
=

𝜕0
1

𝜕𝑧
+
𝜕ℎ
𝜃

𝜕𝑟
+
ℎ
𝜃

𝑟
−
1

𝑟

𝜕ℎ
𝑟

𝜕𝜃
.

(14)

Substituting from (6) into (14), the displacement components
of solid are

𝑢
𝑟
= [𝑓


1
+
𝑛

𝑟
𝑔
𝑧
− 𝑖𝑘𝑔
𝜃
] cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

𝑢
𝜃
= [−

𝑛

𝑟
𝑓
1
+ 𝑖𝑘𝑔
𝑟
− 𝑔


𝑧
] sin (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

𝑢
𝑧
= [𝑖𝑘𝑓

1
+ 𝑔


𝜃
+ 𝑔
𝜃
−
𝑛

𝑟
𝑔
𝑟
] cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡).

(15)

Substituting from (13) into (15), the solid displacement is

𝑢
𝑟
= [𝑓


1
+
𝑛

𝑟
𝑔
3
− 𝑖𝑘𝑔
1
] cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),
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𝑢
𝜃
= [−

𝑛

𝑟
𝑓
1
+ 𝑖𝑘𝑔
1
− 𝑔


3
] sin (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

𝑢
𝑧
= [𝑖𝑘𝑓

1
+ 𝑔


1
−
(𝑛 + 1)

𝑟
𝑔
1
] cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(16)

where “prime” over a quantity denotes differentiation with
respect to 𝑟, 𝛽

1
, 𝛽
2
, 𝛽
3
being the absolute values of 𝛼

1
, 𝛼
2
, 𝛼
3
,

respectively.
The dilatations of solid and liquid media are

𝑒 = Δ𝑓
1
(𝑟) cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

𝜖 = Δ𝑓
2
(𝑟) cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡).

(17)

Substituting from (16) into strain displacement relations and
then using (2), the stresses 𝜎

𝑖𝑗
and the liquid pressures are

𝜎
𝑟𝑟
+ 𝑠 = [𝑐

1
𝑀
11
(𝑟) + 𝑐

2
𝑀
12
(𝑟)

+ 𝑐
3
𝑀
13
(𝑟) + 𝑐

4
𝑀
14
(𝑟) + 𝐴

3
𝑀
15
(𝑟)

+ 𝐵
3
𝑀
16
(𝑟) + 𝐴

1
𝑀
17
(𝑟) + 𝐵

1
𝑀
18
(𝑟)]

× cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(18)

𝜎
𝑟𝜃
= [𝑐
1
𝑀
21
(𝑟) + 𝑐

2
𝑀
22
(𝑟)

+ 𝑐
3
𝑀
23
(𝑟) + 𝑐

4
𝑀
24
(𝑟) + 𝐴

3
𝑀
25
(𝑟)

+ 𝐵
3
𝑀
26
(𝑟) + 𝐴

1
𝑀
27
(𝑟) + 𝐵

1
𝑀
28
(𝑟)]

× sin (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(19)

𝜎
𝑟𝑧
= [𝑐
1
𝑀
31
(𝑟) + 𝑐

2
𝑀
32
(𝑟)

+ 𝑐
3
𝑀
33
(𝑟) + 𝑐

4
𝑀
34
(𝑟) + 𝐴

3
𝑀
35
(𝑟)

+ 𝐵
3
𝑀
36
(𝑟) + 𝐴

1
𝑀
37
(𝑟) + 𝐵

1
𝑀
38
(𝑟)]

× cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(20)

𝑠 = [𝑐
1
𝑀
41
(𝑟) + 𝑐

2
𝑀
42
(𝑟)

+ 𝑐
3
𝑀
43
(𝑟) + 𝑐

4
𝑀
44
(𝑟)]

× cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(21)

𝜕𝑠

𝜕𝑟
= [𝑐
1
𝑀
41
(𝑟) + 𝑐

2
𝑀
42
(𝑟)

+ 𝑐
3
𝑀
43
(𝑟) + 𝑐

4
𝑀
44
(𝑟)]

× cos (𝑛𝜃) 𝑒𝑖(𝑘𝑧+𝜔𝑡),

(22)

where the coefficients𝑀
𝑖𝑗
(𝑟) are given as

𝑀
11
(𝑟) = {2𝑁[

𝑛 (𝑛 − 1)

𝑟2
− 𝛼
2

1
]

+ [(𝑄 + 𝑅) 𝛿
2

1
− (𝐴 + 𝑄)] (𝑘

2
+ 𝛼
2

1
) }

× 𝐽
𝑛
(𝛽
1
𝑟) +

2𝑁𝛽
1

𝑟
𝐽
𝑛+1

(𝛽
1
𝑟) ,

𝑀
12
(𝑟) = {2𝑁[

𝑛 (𝑛 − 1)

𝑟2
− 𝛼
2

1
]

+ [(𝑄 + 𝑅) 𝛿
2

1
− (𝐴 + 𝑄)] (𝑘

2
+ 𝛼
2

1
) }

× 𝑌
𝑛
(𝛽
1
𝑟) +

2𝑁𝛽
1

𝑟
𝑌
𝑛+1

(𝛽
1
𝑟) ,

𝑀
13
(𝑟) = {2𝑁[

𝑛 (𝑛 − 1)

𝑟2
− 𝛼
2

1
]

+ [(𝑄 + 𝑅) 𝛿
2

1
− (𝐴 + 𝑄)] (𝑘

2
+ 𝛼
2

1
) }

× 𝐽
𝑛
(𝛽
1
𝑟) +

2𝑁𝛽
1

𝑟
𝐽
𝑛+1

(𝛽
1
𝑟) ,

𝑀
14
(𝑟) = {2𝑁[

𝑛 (𝑛 − 1)

𝑟2
− 𝛼
2

1
]

+ [(𝑄 + 𝑅) 𝛿
2

1
− (𝐴 + 𝑄)] (𝑘

2
+ 𝛼
2

1
) }

× 𝑌
𝑛
(𝛽
1
𝑟) +

2𝑁𝛽
1

𝑟
𝐽
𝑛+1

(𝛽
1
𝑟) ,

𝑀
15
(𝑟) =

2𝑁𝑛 (𝑛 − 1)

𝑟2
𝐽
𝑛
(𝛽
3
𝑟) −

2𝑁𝑛𝛽
3

𝑟
𝐽
𝑛+1

(𝛽
3
𝑟) ,

𝑀
16
(𝑟) =

2𝑁𝑛 (𝑛 − 1)

𝑟2
𝑌
𝑛
(𝛽
3
𝑟) −

2𝑁𝑛𝛽
3

𝑟
𝑌
𝑛+1

(𝛽
3
𝑟) ,

𝑀
17
(𝑟) = 2𝑁𝑖𝑘𝛽

3
𝐽
𝑛
(𝛽
3
𝑟) −

2𝑁 (𝑛 + 1) 𝑖𝑘

𝑟
𝐽
𝑛+1

(𝛽
3
𝑟) ,

𝑀
18
(𝑟) = 2𝑁𝑖𝑘𝛽

3
𝑌
𝑛
(𝛽
3
𝑟) −

2𝑁 (𝑛 + 1) 𝑖𝑘

𝑟
𝑌
𝑛+1

(𝛽
3
𝑟) ,

𝑀
21
(𝑟) =

2𝑁𝑛 (1 − 𝑛)

𝑟2
𝑌
𝑛
(𝛽
1
𝑟) +

2𝑁𝑛𝛽
1

𝑟
𝐽
𝑛+1

(𝛽
1
𝑟) ,

𝑀
22
(𝑟) =

2𝑁𝑛 (1 − 𝑛)

𝑟2
𝑌
𝑛
(𝛽
1
𝑟) +

2𝑁𝑛𝛽
1

𝑟
𝑌
𝑛+1

(𝛽
1
𝑟) ,

𝑀
23
(𝑟) =

2𝑁𝑛 (1 − 𝑛)

𝑟2
𝐽
𝑛
(𝛽
2
𝑟) +

2𝑁𝑛𝛽
2

𝑟
𝐽
𝑛+1

(𝛽
2
𝑟) ,

𝑀
24
(𝑟) =

2𝑁𝑛 (1 − 𝑛)

𝑟2
𝑌
𝑛
(𝛽
2
𝑟) +

2𝑁𝑛𝛽
2

𝑟
𝑌
𝑛+1

(𝛽
2
𝑟) ,

𝑀
25
(𝑟) = [

2𝑁𝑛 (1 − 𝑛)

𝑟2
+ 𝑁𝛼
2

3
] 𝐽
𝑛
(𝛽
3
𝑟)

−
2𝑁𝛽
3

𝑟
𝐽
𝑛+1

(𝛽
3
𝑟) ,



6 Mathematical Problems in Engineering

𝑀
26
(𝑟) = [

2𝑁𝑛 (1 − 𝑛)

𝑟2
+ 𝑁𝛼
2

3
]𝑌
𝑛
(𝛽
3
𝑟)

−
2𝑁𝛽
3

𝑟
𝑌
𝑛+1

(𝛽
3
𝑟) ,

𝑀
27
(𝑟) = 𝑖𝑘𝑁𝛽

3
𝐽
𝑛
(𝛽
3
𝑟)

−
2𝑁 (𝑛 + 1) 𝑖𝑘

𝑟
𝐽
𝑛+1

(𝛽
3
𝑟) ,

𝑀
28
(𝑟) = 𝑖𝑘𝑁𝛽

3
𝑌
𝑛
(𝛽
3
𝑟)

−
2𝑁 (𝑛 + 1) 𝑖𝑘

𝑟
𝑌
𝑛+1

(𝛽
3
𝑟) ,

𝑀
31
(𝑟) =

2𝑁𝑛𝑖𝑘

𝑟
𝐽
𝑛
(𝛽
1
𝑟) − 2𝑁𝑖𝑘𝛽

1
𝐽
𝑛+1

(𝛽
1
𝑟) ,

𝑀
32
(𝑟) =

2𝑁𝑛𝑖𝑘

𝑟
𝑌
𝑛
(𝛽
1
𝑟) − 2𝑁𝑖𝑘𝛽

1
𝑌
𝑛+1

(𝛽
1
𝑟) ,

𝑀
33
(𝑟) =

2𝑁𝑛𝑖𝑘

𝑟
𝐽
𝑛
(𝛽
2
𝑟) − 2𝑁𝑖𝑘𝛽

2
𝐽
𝑛+1

(𝛽
2
𝑟) ,

𝑀
34
(𝑟) =

2𝑁𝑛𝑖𝑘

𝑟
𝑌
𝑛
(𝛽
2
𝑟) − 2𝑁𝑖𝑘𝛽

2
𝑌
𝑛+1

(𝛽
2
𝑟) ,

𝑀
35
(𝑟) =

𝑁𝑛𝑖𝑘

𝑟
𝐽
𝑛
(𝛽
3
𝑟) ,

𝑀
36
(𝑟) =

𝑁𝑛𝑖𝑘

𝑟
𝑌
𝑛
(𝛽
3
𝑟) ,

𝑀
37
(𝑟) =

−𝑁𝑛𝛽
3

𝑟
𝐽
𝑛
(𝛽
3
𝑟) − 𝑁(𝑘

2
− 𝛼
2

3
) 𝐽
𝑛+1

(𝛽
3
𝑟) ,

𝑀
38
(𝑟) =

−𝑁𝑛𝛽
3

𝑟
𝑌
𝑛
(𝛽
3
𝑟) − 𝑁(𝑘

2
− 𝛼
2

3
) 𝑌
𝑛+1

(𝛽
3
𝑟) ,

𝑀
41
(𝑟) = (𝑅𝛿

2

1
− 𝑄) (𝑘

2
+ 𝛼
2

1
) 𝐽
𝑛
(𝛽
1
𝑟) ,

𝑀
42
(𝑟) = (𝑅𝛿

2

1
− 𝑄) (𝑘

2
+ 𝛼
2

1
) 𝑌
𝑛
(𝛽
1
𝑟) ,

𝑀
43
(𝑟) = (𝑅𝛿

2

2
− 𝑄) (𝑘

2
+ 𝛼
2

1
) 𝐽
𝑛
(𝛽
2
𝑟) ,

𝑀
44
(𝑟) = (𝑅𝛿

2

2
− 𝑄) (𝑘

2
+ 𝛼
2

2
) 𝑌
𝑛
(𝛽
2
𝑟) ,

𝑀
45
(𝑟) = 0, 𝑀

46
(𝑟) = 0,

𝑀
47
(𝑟) = 0, 𝑀

48
(𝑟) = 0.

(23)

In (23),

𝛿
2

𝑖
=

1

(𝑅𝑘
12
− 𝑄𝑘
22
)

× [(𝑅𝑘
11
− 𝑄𝑘
12
) − 𝑉
−2

𝑖
(𝑃𝑅 − 𝑄

2
)]

(𝑖 = 1, 2) ,

(24)

where we considered
𝑘V1

 < 𝜔. (25)

4. Boundary Conditions and
Frequency Equation

The boundary conditions for traction free inner and outer
surfaces of the hollow poroelastic cylinder in case of a
pervious surface are

𝜎
𝑟𝑟
+ 𝑠 = 0, 𝜎

𝑟𝜃
= 0, 𝜎

𝑟𝑧
= 0,

𝑠 = 0, at 𝑟 = 𝑟
1
, 𝑟 = 𝑟

2
.

(26)

Equations (18)–(21) together with (26) yield eight homoge-
neous equations for eight arbitrary constants 𝐶

1
, 𝐶
2
, 𝐶
3
, 𝐶
4
,

𝐴
3
, 𝐵
3
, 𝐴
1
, and 𝐵

1
. A nontrivial solution can be obtained

when the determinant of coefficients vanishes. Thus, the
frequency equation for a previous surface is



𝑀
11
(𝑟
1
) 𝑀
12
(𝑟
1
) 𝑀
13
(𝑟
1
) 𝑀
14
(𝑟
1
) 𝑀
15
(𝑟
1
) 𝑀
16
(𝑟
1
) 𝑀
17
(𝑟
1
) 𝑀
18
(𝑟
1
)

𝑀
21
(𝑟
1
) 𝑀
22
(𝑟
1
) 𝑀
23
(𝑟
1
) 𝑀
24
(𝑟
1
) 𝑀
25
(𝑟
1
) 𝑀
26
(𝑟
1
) 𝑀
27
(𝑟
1
) 𝑀
28
(𝑟
1
)

𝑀
31
(𝑟
1
) 𝑀
32
(𝑟
1
) 𝑀
33
(𝑟
1
) 𝑀
34
(𝑟
1
) 𝑀
35
(𝑟
1
) 𝑀
36
(𝑟
1
) 𝑀
37
(𝑟
1
) 𝑀
38
(𝑟
1
)

𝑀
41
(𝑟
1
) 𝑀
42
(𝑟
1
) 𝑀
43
(𝑟
1
) 𝑀
44
(𝑟
1
) 0 0 0 0

𝑀
11
(𝑟
2
) 𝑀
12
(𝑟
2
) 𝑀
13
(𝑟
2
) 𝑀
14
(𝑟
2
) 𝑀
15
(𝑟
2
) 𝑀
16
(𝑟
2
) 𝑀
17
(𝑟
2
) 𝑀
18
(𝑟
2
)

𝑀
21
(𝑟
2
) 𝑀
22
(𝑟
2
) 𝑀
23
(𝑟
2
) 𝑀
24
(𝑟
2
) 𝑀
25
(𝑟
2
) 𝑀
26
(𝑟
2
) 𝑀
27
(𝑟
2
) 𝑀
28
(𝑟
2
)

𝑀
31
(𝑟
2
) 𝑀
32
(𝑟
2
) 𝑀
33
(𝑟
2
) 𝑀
34
(𝑟
2
) 𝑀
35
(𝑟
2
) 𝑀
36
(𝑟
2
) 𝑀
37
(𝑟
2
) 𝑀
38
(𝑟
2
)

𝑀
41
(𝑟
2
) 𝑀
42
(𝑟
2
) 𝑀
43
(𝑟
2
) 𝑀
44
(𝑟
2
) 0 0 0 0



= 0. (27)

In (27), the element𝑀
𝑖𝑗
(𝑟) is defined in (23).

By ignoring the liquid effects in the frequency equation of
a pervious surface (27), the results of purely elastic solid are

obtained as a special case considered by [36]. Now, we con-
sider the particular cases of the general frequency equations
(27) when the axial and angular wave numbers vanish.
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4.1. Motion Independent of 𝑧. When the axial wave number
𝑘 is taken to be equal to zero, that is, by considering zeroth
azimuthalmode, the frequency equation of a pervious surface

(28) degenerates into the product of two determinants as
follows:

𝐷
1
𝐷
2
= 0, (28)

where

𝐷
1
=



𝑀


11
(𝑟
1
) 𝑀


12
(𝑟
1
) 𝑀


13
(𝑟
1
) 𝑀


14
(𝑟
1
) 𝑀


15
(𝑟
1
) 𝑀


16
(𝑟
1
)

𝑀


21
(𝑟
1
) 𝑀


22
(𝑟
1
) 𝑀


23
(𝑟
1
) 𝑀


24
(𝑟
1
) 𝑀


25
(𝑟
1
) 𝑀


26
(𝑟
1
)

𝑀


41
(𝑟
1
) 𝑀


42
(𝑟
1
) 𝑀


43
(𝑟
1
) 𝑀


44
(𝑟
1
) 0 0

𝑀


11
(𝑟
2
) 𝑀


12
(𝑟
2
) 𝑀


13
(𝑟
2
) 𝑀


14
(𝑟
2
) 𝑀


15
(𝑟
2
) 𝑀


16
(𝑟
2
)

𝑀


21
(𝑟
2
) 𝑀


22
(𝑟
2
) 𝑀


23
(𝑟
2
) 𝑀


24
(𝑟
2
) 𝑀


25
(𝑟
2
) 𝑀


26
(𝑟
2
)

𝑀


41
(𝑟
2
) 𝑀


42
(𝑟
2
) 𝑀


43
(𝑟
2
) 𝑀


44
(𝑟
2
) 0 0



,

𝐷
2
=



𝑀


37
(𝑟
1
) 𝑀


38
(𝑟
1
)

𝑀


37
(𝑟
2
) 𝑀


38
(𝑟
2
)



.

(29)

The terms 𝑀
𝑖𝑗
(𝑟) appearing in 𝐷

1
and 𝐷

2
are given in

Appendix A for 𝑘 = 0. It clears that, for 𝑘 = 0, 𝛼2
1
, 𝛼
2

2
, 𝛼
2

3
being

all positive, Bessel functions of the first and second kind enter
the solution. Equation (30) is satisfied, if either 𝐷

1
or 𝐷
2
is

equal to zero. The case of𝐷
1
= 0 corresponds to plane-strain

vibrations of thick-walled hollow poroelastic cylinders for a
pervious surface.

The case of 𝐷
2

= 0, corresponds to longitudinal
vibrations which involve only longitudinal displacement 𝑤.
Also, 𝐷

2
= 0 is the same for a pervious and an impervious

surface; hence, it is clear that longitudinal shear vibrations
are independent of the nature of the surface. From (27), it
is clear that plane-strain vibrations and longitudinal shear
vibrations are uncoupled for a pervious surface, when the
motion is independent of longitudinal coordinated 𝑧, and
these vibrations are coupled for nonzero longitudinal wave
number 𝑘; that is, 𝑘 ̸= 0. The frequency equation of

longitudinal shear vibrations𝐷
2
= 0, when expanded, gives

𝐽


𝑛
(𝛼
3
𝑟
1
) 𝑌


𝑛
(𝛼
3
𝑟
2
) − 𝐽


𝑛
(𝛼
3
𝑟
2
) 𝑌


𝑛
(𝛼
3
𝑟
1
) = 0. (30)

And the amplitude ratio is given as

𝐴
1

𝐵
1

= −
𝑌


𝑛
(𝛼
3
𝑟
1
)

𝐽
𝑛
(𝛼
3
𝑟
1
)
, (31)

the frequency equation of longitudinal shear vibrations of
hollow poroelastic cylinders (31).

4.2. Motion Independent of 𝜃. When the motion is indepen-
dent of angular coordinated 𝜃 (i.e., 𝑛 = 0), the frequency
equation (27) for a pervious surface is reduced to the product
of two determinants given by

𝐷
3
𝐷
4
= 0, (32)

where

𝐷
3
=



𝑀


11
(𝑟
1
) 𝑀


12
(𝑟
1
) 𝑀


13
(𝑟
1
) 𝑀


14
(𝑟
1
) 𝑀


17
(𝑟
1
) 𝑀


18
(𝑟
1
)

𝑀


31
(𝑟
1
) 𝑀


32
(𝑟
1
) 𝑀


33
(𝑟
1
) 𝑀


34
(𝑟
1
) 𝑀


37
(𝑟
1
) 𝑀


38
(𝑟
1
)

𝑀


41
(𝑟
1
) 𝑀


42
(𝑟
1
) 𝑀


43
(𝑟
1
) 𝑀


44
(𝑟
1
) 0 0

𝑀


11
(𝑟
2
) 𝑀


12
(𝑟
2
) 𝑀


13
(𝑟
2
) 𝑀


14
(𝑟
2
) 𝑀


17
(𝑟
2
) 𝑀


18
(𝑟
2
)

𝑀


31
(𝑟
2
) 𝑀


32
(𝑟
2
) 𝑀


33
(𝑟
2
) 𝑀


34
(𝑟
2
) 𝑀


37
(𝑟
2
) 𝑀


38
(𝑟
2
)

𝑀


41
(𝑟
2
) 𝑀


42
(𝑟
2
) 𝑀


43
(𝑟
2
) 𝑀


44
(𝑟
2
) 0 0



𝐷
4
=



𝑀


25
(𝑟
1
) 𝑀


26
(𝑟
1
)

𝑀


25
(𝑟
2
) 𝑀


26
(𝑟
2
)



.

(33)
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The terms 𝑀
𝑖𝑗
(𝑟) in 𝐷

3
and 𝐷

4
are given in Appendix B for

𝑛 = 0. From (33), now (32) is satisfied if𝐷
3
= 0 or𝐷

4
= 0.The

case of𝐷
3
= 0 gives the frequency equation of axial symmet-

ric vibrations of an infinite hollow poroelastic cylinder for a
pervious surface discussed by Ahmed Shah [37].

The case of𝐷
4
= 0 when simplified yields the equation

𝐽
2
(𝛼
3
𝑟
1
) 𝑌
2
(𝛼
3
𝑟
2
) − 𝐽
2
(𝛼
3
𝑟
2
) 𝑌
2
(𝛼
3
𝑟
1
) = 0, (34)

which is the frequency of torsional vibrations of infinite
hollow poroelastic cylinder studied by El-Naggar et al. [2] in
the presence of dissipation.Moreover, the frequency equation
(34) is independent of the nature of the surface, that is,
pervious.

Also, it can be said that (34) is the same for pervious
surfaces.

4.3. Equivoluminal Modes. For 𝑛 = 0, the stress free bound-
ary conditions on the inner and outer surfaces of the hollow
poroelastic cylinder are satisfied if

𝛼
2

3
= 𝑘
2
> 0. (35)

The dilatational and equivoluminal potentials 𝑓
1
and 𝑔

1
are

coupled through the boundary conditions. In particular, to
consider purely equivoluminal modes, we set

𝑓
1
= 𝑓
2
= 0 𝑔

3
= 0. (36)

Using (36) into (17), it is seen that the dilatations of solid and
liquid media are zero. Hence, from (2), the liquid pressure
is zero. Therefore, the equivoluminal modes are independent
of the nature of surface, that is, pervious and impervious.
Accordingly, no distinctions between pervious surfaces are
seen. Therefore, from (35) and (36), we have

𝑔


1
(𝛼
3
𝑟
1
) = 𝑔


1
(𝛼
3
𝑟
2
) = 0 𝜎

𝑟𝑟
+ 𝑠 = 0, (37)

where

𝑔
1
(𝛼
3
𝑟) = 𝐴

1
𝐽
1
(𝛼
3
𝑟) + 𝐵

1
𝑌
1
(𝛼
3
𝑟) . (38)

Substituting from (38) into (37) and eliminating the constants
𝐴
1
, 𝐵
1
, the frequency equation of purely equivoluminal

modes is

𝐽


1
(𝛼
3
𝑟
1
) 𝑌


1
(𝛼
3
𝑟
2
) − 𝐽


1
(𝛼
3
𝑟
2
) 𝑌


1
(𝛼
3
𝑟
1
) = 0, (39)

with the amplitude ratio

𝐴
1

𝐵
1

= −
𝑌


1
(𝛼
3
𝑟
1
)

𝐽
1
(𝛼
3
𝑟
1
)
. (40)

And the nonzero displacement and stress for equivoluminal
modes are

𝑈 = 𝑖𝑘 [𝐴
1
𝐽
1
(𝛼
3
𝑟
1
) + 𝐵
1
𝑌
1
(𝛼
3
𝑟
2
)] 𝑒
𝑖(𝑘𝑧+𝑤𝑡)

𝑊 = − 𝛼
3
[𝐴
1
𝐽
0
(𝛼
3
𝑟) + 𝐵

1
𝑌
0
(𝛼
3
𝑟)] 𝑒
𝑖(𝑘𝑧+𝑤𝑡)

𝜎
𝑟𝑟
= − 2𝑁𝑘𝑖 [𝐴

1
𝐽


1
(𝛼
3
𝑟) + 𝐵

1
𝑌


1
(𝛼
3
𝑟)] 𝑒
𝑖(𝑘𝑧+𝑤𝑡)

.

(41)

Equation (39) is the same as (34) of longitudinal shear
vibrations for a case of 𝑛 = 1.

4.3.1. For Thin Poroelastic Cylindrical Shell. When ℎ/𝑟
1
≪ 1,

that is, for thin poroelastic cylindrical shell, the frequency
equation (27) by using Hankel-Kirchhoff asymptotic approx-
imations [38] is reduced to

Sin (𝛼
3
ℎ) −

7𝛼
3
ℎ

8𝛼
3
𝑟
1
𝑟
2

cos (𝛼
3
ℎ) +

49

64𝛼
3
𝑟
1
𝑟
2

sin (𝛼
3
ℎ) ≈ 0.

(42)

As 𝛼
3
𝑟
1

→ ∞, 𝛼
3
𝑟
2

→ ∞, with the help of (41), (27) is
simplified to

𝜔 ≈ √2
𝑞𝜋V
3

ℎ
[1 +

7

8𝑞2𝜋2
(
ℎ

𝑟
1

)

2

] , (𝑞 = 1, 2, 3, . . .) . (43)

Equation (43) determines the frequency of purely equivolu-
minal modes of a poroelastic plate of thickness ℎ.

4.3.2. For Poroelastic Solid Cylinder. When 𝑟
1
/ℎ → 0, that is,

for the poroelastic solid cylinder, the frequency equation (39)
is reduced asymptotically to

𝐽


1
(𝛼
3
𝑟) = 0, (44)

which is the frequency equation of purely equivoluminal
modes of a poroelastic solid cylinder of radius ℎ.

5. Nondimensional Frequency Equation

For propagating modes in a nondissipative medium, the
wave number 𝑘 is real. To analyze the frequency equation of
pervious and impervious surfaces, it is convenient to intro-
duce the following nondimensional parameters:

𝑃

=

𝑃

𝐻
, 𝑄


=

𝑄

𝐻
,

𝑅

=

𝑅

𝐻
, 𝑁


=
𝑁

𝐻
,

𝜌


11
=
𝜌
11

𝜌
, 𝜌



12
=
𝜌
12

𝜌
,

𝜌


22
=
𝜌
22

𝜌
, 𝑊 = 𝜔ℎ𝐶

−1

0
,

𝜀
1
=
𝑉
2

0

𝑉2
1

, 𝜀
2
=
𝑉
2

0

𝑉2
2

, 𝜀
3
=
𝑉
2

0

𝑉2
3

,

𝛿 =
ℎ

𝐿
, Ω


=

Ω

𝑉2
0
𝜌
,

(45)

where 𝑤 is nondimensional frequency,

𝐻 = 𝑃 + 2𝑄 + 𝑅, 𝜌 = 𝜌
11
+ 2𝜌
12
+ 𝜌
22
, (46)

where 𝐶
0
and 𝑉

0
are the reference velocities taking the

following form

(𝐶
2

0
=
𝑁

𝜌
, 𝑉
2

0
=
𝐻

𝜌
) , (47)
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Figure 1: Effect of the frequency determinant Δ with respect to the rotationΩ for different values of 𝑘, ℎ, and 𝑛.

where ℎ is the thickness of the hollowporoelastic cylinder and
𝐿 is the wavelength.

Let

𝑔 =
𝑟
2

𝑟
1

so that ℎ

𝑟
1

= (𝑔 − 1) . (48)

6. Numerical Results and Discussion

The numerical results for frequency equations are computed
for the poroelastic material. Since the frequency equation,
phase velocity, and attenuation coefficient are transcendental
in nature. The roots are obtained for 𝑛 = 0, the axisymmetric
mode, and for the flexural mode 𝑛 = 1. The values of the
elastic constants of poroelastic material, one being sandstone

saturated with kerosene [37] and the other one being sand-
stone with water [39], are as follows:

𝑃

= 0.843, 𝑄


= 0.065, 𝑅


= 0.028, 𝑁


= 0.234

𝜌


11
= 0.901, 𝜌



12
= 0.001, 𝜌



22
= 0.101, 𝜀

1
= 0.999,

𝜀
2
= 4.763, 𝜀

3
= 3.851.

(49)
The numerical technique outlined above was used to

obtain frequency equation with respect to rotation Ω under
the effect of wave number and thickness. For the sake of
brevity, some computational results are being presented here.
The variations are shown in Figures 1–5, respectively.

Figure 1 shows the variation of the frequency equation
Δ, phase velocity Re(Δ), and attenuation coefficient Im(Δ)
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Figure 2: Effect of the frequency determinant𝐷
1
with respect to the rotationΩ for different values of 𝑛 and ℎ.

of wave propagation in hollow poroelastic circular cylinders
with respect to rotationΩ for different values of wave number
𝑘 and thickness ℎ. In both figures, it is clear that the frequency
equation, phase velocity, and attenuation coefficient have
a nonzero value only in a bounded region of space. It is
observed that the frequency equation and phase velocity
increase with increasing rotation, while it decreases with
increasing wave number and thickness; as well, attenua-
tion coefficient increases with increasing thickness, while it
decreases with increasing of rotation.

Figure 2 shows the variation of the frequency equation
𝐷
1
, phase velocityRe(𝐷

1
), and attenuation coefficient Im(𝐷

1
)

of wave propagation in hollow poroelastic circular cylinders
with respect to rotation Ω subjected to motion independent
of 𝑧 for different values of longitudinal mode (𝑛 = 0), flexural
mode (𝑛 = 1), and thickness ℎ. In both figures, it is clear
that the frequency equation, phase velocity, and attenuation
coefficient have a nonzero value only in a bounded region of
space. It is observed that the frequency equation and phase

velocity increase with increasing rotation, longitudinalmode,
and flexural mode, while frequency equation increases with
increasing rotation, while it decreases with increasing thick-
ness; as well, attenuation coefficient increases with increasing
thickness, while it decreases with increasing rotation.

Figure 3 shows the variation of the frequency equation𝐷
2

of wave propagation in hollow poroelastic circular cylinders
with respect to rotation Ω subjected to motion independent
of 𝑧 for different values of longitudinal mode (𝑛 = 0), flexural
mode (𝑛 = 1), and thickness ℎ. In both figures, it is clear
that the frequency equation has a nonzero value only in a
bounded region of space. It is observed that the frequency
equation decreaseswith increasing rotation, while it increases
with increasing longitudinalmode and flexuralmode; as well,
it decreases with increasing of thickness.

Figure 4 shows the variation of the frequency equation
𝐷
3
, phase velocityRe(𝐷

3
), and attenuation coefficient Im(𝐷

3
)

of wave propagation in hollow poroelastic circular cylinders
with respect to rotation Ω subjected to motion independent
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with respect to the rotationΩ for different values of 𝑘 and ℎ.
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Figure 5: Effect of the frequency determinant𝐷
4
with respect to the rotationΩ for different values of 𝑘 and ℎ.

of 𝜃 for different values of wave number 𝑘 and thickness ℎ.
In both figures, it is clear that the frequency equation, phase
velocity, and attenuation coefficient have a nonzero value only
in a bounded region of space. It is observed that the frequency
equation and attenuation coefficient decrease with increasing
wave number and thickness, respectively, while it increases
with increasing rotation; as well, attenuation coefficient
decreases with increasing thickness, while it increases with
increasing rotation.

Figure 5 shows the variation of the frequency equation𝐷
4

of wave propagation in hollow poroelastic circular cylinders
with respect to rotation Ω subjected to motion independent
of 𝜃 for different values of wave number 𝑘 and thickness
ℎ. In both figures, it is clear that the frequency equation
has a nonzero value only in a bounded region of space.
It is observed that the frequency equation decreases with
increasing thickness and, while it has oscillatory behavior in
the whole range ofΩ-axis, there is no effect on the frequency
equation.

Comparing with previous studies, we find that our results
(shown in Figures 1–5)without rotation for thewave propaga-
tion of poroelastic bone with the results obtained by Ahmed
Shah [37]. Also, these results agree with those of Kumar
[40] by ignoring the liquid and rotation effect and, after
rearrangement of terms, the results obtained agree with the
purely elastic solid. In case of gravity Ω = 0, our results are
in agreement with those of Biot [36]. The analytical results
obtained by Sharma and Gogna [41] can be considered as a
limiting case (by takingΩ = 0), which are in agreement with
earlier results obtained by Fotiadis et al. [42].

7. Conclusion

In this paper, the wave propagation of poroelastic bone
with circular cylinder subjected to traction free surfaces is
considered. We adopted the analysis of [3], and the solution

of the problem was expressed in terms of a Bessel function of
the first and second kind, respectively.

The resulting frequency equation has been solved numer-
ically.The contribution of the fluid term to wave propagation
is a well-established possiblemechanism of wave propagation
connected to many biological phenomena observed in bone.
Although the prediction of the model cannot be trusted
quantitatively at this stage, its qualitative behavior complies
with the predictions of other theoretical and experimental
models referred to in the literature. A calibration of themodel
and its verification with experimental data is in progress.
Important phenomena are observed in all these computations
as follows:

(i) the frequency equation of axially symmetric vibra-
tions is independent of the nature of surface, rotation,
and presence of fluid in the poroelastic cylindrical;

(ii) by comparing Figures 1–5, it was found that the
frequency equation, phase velocity, and attenuation
coefficient have the same behavior in both media;
but, with the passage of rotation, wave number,
and thickness, numerical values of frequency in the
poroelastic cylinder are large in comparison due to
the influences of rotation and fluid;

(iii) special cases are considered as motion independent
on 𝑧 and motion independent on 𝜃 in poroelastic
medium, as well as in the isotropic case for very large
wave numbers and dispersion curves for longitudinal
mode and flexural mode (𝑛 = 0, 1), respectively;

(iv) the results presented in this paper should prove to
be useful for researchers in material science and
designers of new materials and bones;

(v) the study of the phenomenon of rotation, wave
number, and thickness is also used to improve the
conditions of bones.
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From the viewpoint of practical application, based on the unsteady analytical model for transverse fluid elastic instability of tube
array proposed by Yetisir and the linear attenuation function introduced by Li Ming, a new explicit model based on nonsteady state
“streamtube” hypothesis is proposed and solved using complex number method. In the model, numerical integral is avoided and
inappropriate aspects in Li Ming model are modified. Using the model, the fluid elastic instability analysis of a single flexible tube
is made. The stability graphs for four typical types of tube array are plotted and contrasted with experimental results. It is found
that the current explicit model is effective in the analysis of transverse fluid elastic instability of tube bundle.

1. Introduction

Among the various fluid excitation mechanisms of the tube
bundle in heat exchange, fluid elastic instability can cause
the most rapid deterioration of the tube supports and has
received the most attention [1, 2]. Many efforts have been
made to study this phenomenon. However the mechanism of
instability is not fully understood. Connors [3] andAfshin [4]
successively studied the fluid elastic instability of tube bundle
induced by transverse flow with wind tunnel experiments.
Based on their studies, a quasistatic model was proposed to
describe fluid elastic instability and the judgment formula
of critical velocity for single-phase fluid elastic instability
was given. Then Blevins [5] proposed another quasistatic
model for one-dimensional tube array. These models are just
comprehensive analytical solutions with experimental data,
not the real analytical solutions.ThenPrice andPaidoussis [6]
and Blevins [7] put forward a quasisteadymodel in which the
fluid influence on displacement of the tubes has been further
considered. This model is the simplified form of unsteady
flow model and is only suitable for high conversion velocity.
Thereafter, based on the general equation of fluid mechanics,
an unsteady flow model was proposed by Tanaka et al. [8, 9].

In the model, many parameters for the calculation of fluid
elastic force need to be determined by experiment; therefore
it was also known as the semiempirical theoretical model.
Lever and Weaver [10] proposed a simplified elastic fluid
system based on a large number of experimental observations
and given analytical expressions of the fluid force used in
one-dimension unsteady flow theory. Then Lai [11] used
this method to study the dynamic characteristics of a heat
exchange tube bundle. Potential function was also proposed
by Paidoussis et al. [12] to solve the flow force and calculate
the critical velocity. These models are called analytical model
due to the advantages that they need less experimental data
over semiempirical theory model. Furthermore, the flow
force induced by the pipe movement in analytical model was
derived by Yetisir andWeaver [13] using unsteady continuous
and momentum equations. This method is essentially an
unsteady analytical model with relatively few experimental
data. The result based on the model is in good agreement
with those from experiment. Consequently, many similar
models were developed. However, the calculation of the flow
force in this kind of model involves numerical integration.
Therefore it is not very convenient in practical to use them.
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Figure 1: Idealized streamtube pattern [10].

In order to overcome the shortage, Li [14] attempted to give
an explicit expression of flow force in Yetisir and Weaver’s
model by introducing a linear delay function. Nevertheless,
there are several mistakes in his derivation such as coefficient
A5. The final expression of the model is also not convenient
for application.

The purpose of this paper is to present an explicit
analytical model for transverse fluid elastic instability of
standard array configurations which needs less experimental
data and is convenient for application.

2. Theoretical Model

2.1. Physical Model. In Lever and Weaver’s model (L-W
model), “streamtube” concept is given. As shown in Figure 1,
only an element of parallel triangle array is considered. On
opposite sides of the centre pipe, there are two streamtubes
with the sections changing with the motion of the pipe.
Along the streamtubes, the curvilinear systems are set up.
Meanwhile it is assumed that streamtubes began to attach to
the centre flexible tube at position 𝑠

𝑎
and separate at position

𝑠
𝑠
.
In order to derive the eventual theoretical model, the

mean area of the streamtube cross section along the stream-
tube length is assumed constant and determined by the
minimum gap area at position −𝑠

𝑙
. Consider

𝐴
0
= min(𝑃 cos𝛼 − 𝐷

2

, 𝑃 − 𝐷) , (1)

where 𝑃 is tube spacing, 𝐷 is tube diameter, 𝛼 is geometric
angle of tube array [13].

The instantaneous cross section area𝐴(𝑠, 𝑡) of the stream-
tube changes with the vibration of the centre tube. Thus

𝐴(𝑠, 𝑡) can be written as follows which contains average item
𝐴
0
and fluctuation item 𝑎(𝑠, 𝑡):

𝐴 (𝑠, 𝑡) = 𝐴
0
+ 𝑎 (𝑠, 𝑡) . (2)

Similarly, velocity and pressure of the streamtube can be
expressed as follows:

𝑈 (𝑠, 𝑡) = 𝑈
0
+ 𝑢 (𝑠, 𝑡) , 𝑃 (𝑠, 𝑡) = 𝑃

0
+ 𝑝 (𝑠, 𝑡) , (3)

where 𝑢(𝑠, 𝑡) and 𝑝(𝑠, 𝑡), respectively, represent the fluctua-
tion parts of speed and velocity. On the upper position far
enough from the vibrating tube −𝑠

𝑙
, velocity and pressure can

be seen as constants 𝑈
0
and 𝑃

0
.

Obviously, the vibration of the centre tube cannot imme-
diately affect the flow at other position on the streamtube.
Therefore upstream perturbation function 𝑎(𝑠, 𝑡) can be
expressed as follows, based on the application of a phase
function which considers the disturbance delayed effect:

𝑎 (𝑠, 𝑡) = 𝑎 (𝑠
𝑚
, 𝑡) 𝑓 (𝑠) 𝑒

𝑖𝜑(𝑠)

, (4)

where 𝑓(𝑠) is artificial attenuation function which denotes
the disturbance attenuation from the flexible tube position
to upstream region and 𝑎(𝑠

𝑚
, 𝑡) is the area perturbation at

the minimum clearance position and is the function of pipe
geometry.

2.2. Continuity Equation, Momentum Equation, and Pressure
Equation. The application of fluid continuity equation along
the streamtube can yield the following formula:

𝜕

𝜕𝑡

𝐴 (𝑠, 𝑡) +

𝜕

𝜕𝑠

[𝐴 (𝑠, 𝑡) 𝑈 (𝑠, 𝑡)] = 0. (5)

Formula (5) can also bewritten as follows by using the fol-
lowing steps: introduce formulas (2) and (3) into formula (5)
with a harmonic disturbance frequency 𝜔 adopted, integrate
formula (5) along the coordinate 𝑠 from the entrance 𝑠 = 𝑠

𝑖

to the exit 𝑠 = 𝑠
𝑒
of the streamtube, eliminate the steady state

and high-order items, and normalize:

1

𝑈
𝑟

𝜔

𝜔
𝑛

∫

𝑠
𝑒

𝑠
𝑖

𝜕𝑎
∗

(𝑠
∗

, 𝑡
∗

)

𝜕𝑡
∗

d𝑠∗ + 𝑙∗
0
𝐴
∗

0
[𝑢
∗

(𝑠
∗

𝑒
, 𝑡
∗

) − 𝑢
∗

(𝑠
∗

𝑖
, 𝑡
∗

)]

+ 𝑙
∗

0
[𝑎
∗

(𝑠
∗

𝑒
, 𝑡
∗

) − 𝑎
∗

(𝑠
∗

𝑖
, 𝑡
∗

)] = 0,

(6)

where 𝑈
𝑟
is reduced flow velocity and 𝑈

𝑟
= 𝑈
0
/𝜔
𝑛
𝑙
0
, 𝜔
𝑛

is the natural frequency of the pipe in static water, 𝜔 is
vibration complex frequency, 𝑙

0
= 2𝑠
1
(𝑠
1
is the distance

between the vibrating tube and the position where pres-
sure disturbance can be ignored), 𝑡∗ = 𝜔𝑡, 𝑎∗(𝑠, 𝑡) =

𝑎(𝑠, 𝑡)/𝐷, 𝑙∗
0
= 𝑙
0
/𝐷, 𝐴∗

0
= 𝐴
0
/𝐷, 𝑢∗(𝑠, 𝑡) = 𝑢(𝑠, 𝑡)/𝑈

0
, 𝑠∗ =

𝑠/𝐷, and𝑝∗(𝑠, 𝑡) = 𝑝(𝑠, 𝑡)/𝑃
0
.

Linear momentum equation of the fluid can be written as

𝜕

𝜕𝑡

∫

∀

U (𝑠, 𝑡) d∀ + ∮𝜌U (𝑠, 𝑡) [U (𝑠, 𝑡) ⋅ n (𝑠)] d𝐴 =

1

𝜌

∑ F,

(7)
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Figure 2: Control volume in streamtube.

where ∀ denotes control volume (see Figure 2) and ∀ = 𝐴d𝑠,
𝜌 is the fluid density, and the right item denotes the sum of
external forces on the control volume with unit length.

Using the derivation process similar to the above men-
tioned one, the momentum equation (7) can be further
written as follows by substituting formulas (2) and (3) into
it:

𝜔

𝜔
𝑛

𝑙
∗

0
𝑈
𝑟
∫

𝑠
𝑒

𝑠
𝑖

𝜕𝑢
∗

(𝑠
∗

, 𝑡
∗

)

𝜕𝑡
∗

d𝑠∗ + 𝜔

𝜔
𝑛

𝑙
∗

0

𝐴
∗

0

𝑈
𝑟
∫

𝑠
𝑒

𝑠
𝑖

𝜕𝑎
∗

(𝑠
∗

, 𝑡
∗

)

𝜕𝑡
∗

d𝑠∗

+ [2𝑙
∗

0
𝑢
∗

(𝑠
∗

𝑖
, 𝑡
∗

) +

𝑙
∗

0

𝐴
∗

0

𝑎
∗

(𝑠
∗

𝑖
, 𝑡
∗

)] 𝑙
∗

0
𝑈
2

𝑟

+ [2𝑙
∗

0
𝑢
∗

(𝑠
∗

𝑒
, 𝑡
∗

) +

𝑙
∗

0

𝐴
∗

0

𝑎
∗

(𝑠
∗

𝑒
, 𝑡
∗

)] 𝑙
∗

0
𝑈
2

𝑟

= −𝑝
∗

(𝑠
∗

𝑖
, 𝑡
∗

) − 𝑝
∗

(𝑠
∗

𝑒
, 𝑡
∗

) .

(8)

It is worth noting that 𝑝∗ = 𝑝/(𝜌𝑑
2

𝜔
2

𝑛
) which is not

mentioned in Li’s model. This is probably the main reason
which leads to no density (𝜌) existence in the final fluid force
expression in Li’s model.

Many studies have proved the fact that fluid elastic
instability usually first occurs in the lift direction. Therefore,
in the following part, only the fluid force calculation and fluid
elastic analysis in the lift direction are made.

The force on the centre flexible tube can be obtained by
integrating the pressure item on the pipe surface attached
with fluid (𝑠∗

𝑎
≤ 𝑠 ≤ 𝑠

∗

𝑠
). Consider

𝐹
∗

𝑦
= ∫

𝑠

∗

𝑠

𝑠
∗

𝑎

𝑝
∗

(𝑠
∗

, 𝑡
∗

) cos [𝛽 (𝑠∗)] d𝑠∗, (9)

where 𝛽(𝑠∗) is the angle of the normal vector of the tube
surface and 𝛽(𝑠∗) = 2𝑠∗/Pr. More detail about 𝛽(𝑠∗) is shown
in literature [13].

2.3. Dynamic Equation. It is assumed that flexible tube
vibrates in the lift and drags directions with the same
harmonic oscillation

𝑚 ̈𝑦 + 𝑐 ̇𝑦 + 𝑘𝑦 = 𝐹
𝑦
𝑎
1
(𝑠
𝑚
, 𝑡) − 𝐹

𝑦
𝑎
2
(𝑠
𝑚
, 𝑡) , (10)

where 𝑎
1
(𝑠
𝑚
, 𝑡) and 𝑎

2
(𝑠
𝑚
, 𝑡), respectively, denote the area

perturbations at theminimum clearances of streamtube 1 and
streamtube 2.

The displacement mode of the centre pipe can be defined
as follows:

𝑦 (𝑡) = 𝑌𝑒
𝑖𝜔𝑡

, (11)

where 𝜔 is vibration complex number frequency and 𝑌 is
maximum vibration amplitude.

Substituting formula (11) into formula (10) and introduc-
ing the dimensionless variables, 𝑦∗ = 𝑌/𝑑, 𝐹

𝑦
= 𝐹
𝑦
/𝜌𝑑
3

𝜔
𝑛

can yield the following equation:

𝑚

𝜌𝑑
2
[−(

𝜔

𝜔
𝑛

)

2

+

𝛿

𝜋

(

𝜔

𝜔
𝑛

) 𝑖 + 1] 𝑦
∗

= 𝐹
∗

𝑦
𝑎
∗

1
(𝑠
𝑚
, 𝑡) − 𝐹

∗

𝑦
𝑎
∗

2
(𝑠
𝑚
, 𝑡) .

(12)

Formula (12) can be further transformed as follows:

𝑚

𝜌𝐷
2
=

𝐹
∗

𝑦
(𝑈
𝑟
, 𝜔/𝜔
𝑛
)

1 − (𝜔/𝜔
𝑛
)
2

+ 𝑖 (𝛿/𝜋) (𝜔/𝜔
𝑛
)

, (13a)

𝐹
∗

𝑦
= 2𝑙
∗

0
𝑈
𝑟
cos𝛼𝐹∗

𝑦
(𝑠) = 𝐹

∗

𝑅
(𝑈
𝑟
,

𝜔

𝜔
𝑛

) + 𝑖𝐹
∗

𝑙
(𝑈
𝑟
,

𝜔

𝜔
𝑛

) ,

(13b)

where𝑚 is the quality of the tube with unit length (including
added fluidmass), 𝜌 is fluid density, 𝛿 is damping logarithmic
attenuation rate, 𝐹∗

𝑦
is the fluid resultant force applied on the

unit length tube in the lift direction and is the function of
frequency ratio 𝜔/𝜔

𝑛
, and reduced speed 𝑈

𝑟
= 𝑈
0
/𝜔
𝑛
𝑙
0
. It is

noted that the fluid resultant force 𝐹∗
𝑦
is a complex number

and can be written as (13b) where 𝐹
∗

𝑅
, 𝐹∗
𝑙
, respectively,

represent real part and imaginary part.
According to the relation among the array geometry, fluid

velocity at minimum interval 𝑈
0
, interval fluid velocity 𝑈

𝑝
=

[Pr/(Pr − 1)]𝑈
∞

(𝑈
∞

is free flow velocity, Pr is tube pitch
ratio, and Pr = 𝑃/𝐷), and fluid continuity equation, formula
(14) can be obtained:

𝑈
𝑟
=

𝑈
𝑝

𝑓
𝑛
𝐷

1

𝑙
∗

0
𝐴
∗

0

cos𝛼
2𝜋

(Pr − 1) . (14)

2.4. Area Perturbation Equation. In order to obtain the
explicit expression for the calculation of fluid force, the
following linear attenuation function [14] is used, according
to the requirement on it. For the convenience of introduction,
superscript “∗” will be ignored in the following derivation
process:

𝑓 (𝑠) =

𝑠 − 𝑠
1

𝑠
𝑎
− 𝑠
1

, 𝑠
1
≤ 𝑠 ≤ 𝑠

𝑎
,

𝑓 (𝑠) = 1, 𝑠
𝑎
≤ 𝑠 ≤ 𝑠

𝑠
.

(15)
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Noting the fact that perturbation attenuation only takes place
on “streamtube” path, two area perturbation equations for
parallel triangular tube array are presented as follows:

𝑎
1
(𝑠, 𝑈
𝑟
) = 𝑓 (𝑠) 𝑒

𝑖𝜑(𝑠,𝑈
𝑟
) cos𝛼,

𝜑 (𝑠, 𝑈
𝑟
) = 𝜑 (𝑈

𝑟
)

𝑠 − 𝑠
𝑎

𝑠
1
− 𝑠
𝑎

,

𝑠
1
≤ 𝑠 ≤ 𝑠

𝑎
,

𝑎
2
= cos𝛼, 𝑓 (𝑠) = 1.0, 𝜑 (𝑠, 𝑈

𝑟
) = 0,

𝑠
𝑎
≤ 𝑠 ≤ 𝑠

𝑠
.

(16)

For other types of tube array, area perturbation equations are
similar as the above equations except for the item cos𝛼.

2.5. Solving Method. For the convenience of derivation, let
𝑠 = (𝑠 − 𝑠

𝑎
)/(𝑠
1
− 𝑠
𝑎
), so that attenuation function and (16)

can be rewritten, respectively, as follows:

𝑓 (𝑠) = 1 − 𝑠,

𝑎
1
(𝑠, 𝑈
𝑟
) = 𝑎 (−𝑠

𝑚
, 𝑡) 𝑓 (𝑠) 𝑒

𝑖𝜑(𝑠)

=

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼 (1 − 𝑠) 𝑒𝑖𝑠𝜑(𝑈𝑟),

𝑠
1
≤ 𝑠 ≤ 𝑠

𝑎
,

𝑎
2
=

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼, 𝑓 (𝑠) = 1.0, 𝜑 (𝑠, 𝑈

𝑟
) = 0,

𝑠
𝑎
≤ 𝑠 ≤ 𝑠

𝑠
.

(17)

To further facilitate the derivation, 𝜑(𝑈
𝑟
) is briefly written as

𝜑 in the following work.
Substituting (17) into (6) yields the following expression:

𝑢
1
(𝑠, 𝑈
𝑟
) = (𝐴

1
𝑒
𝑖𝜑𝑠

+ 𝐴
2
𝑠𝑒
𝑖𝜑𝑠

+ 𝐴
3
)

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼, (18)

where

𝐴
1
= −

1

𝐴
0

−

𝜔
𝑟

𝑙
0
𝐴
0
𝑈
𝑟

(𝑠
𝑙
− 𝑠
𝑎
) (

1

𝜑

−

𝑖

𝜑
2
) ,

𝐴
2
=

1

𝐴
0

+

𝜔
𝑟

𝑙
0
𝐴
0
𝑈
𝑟

(𝑠
𝑙
− 𝑠
𝑎
)

1

𝜑

,

𝐴
3
= −

𝜔
𝑟
𝑖

𝑙
0
𝐴
0
𝑈
𝑟

(𝑠
1
− 𝑠
𝑎
)

1

𝜑
2
𝑒
𝑖𝜑

.

(19a)

In the same way we have

𝑢
2
(𝑠, 𝑈
𝑟
) = (𝐴

4
𝑠 + 𝐴
5
)

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼,

0 ≤ 𝑠 ≤

𝑠
𝑠
− 𝑠
𝑎

𝑠
1
− 𝑠
𝑎

,

(19b)

where

𝐴
4
= −

𝜔
𝑟
𝑖

𝑙
0
𝐴
0
𝑈
𝑟

(𝑠
𝑙
− 𝑠
𝑎
) ,

𝐴
5
= −

𝜔
𝑟

𝑙
0
𝐴
0
𝑈
𝑟

(𝑠
𝑙
− 𝑠
𝑎
) (

1

𝜑

−

𝑖

𝜑
2
+

𝑖

𝜑
2
𝑒
𝑖𝜑

) −

1

𝐴
0

.

(20)

Substituting (18) and (19b) into the integral expression for
unsteady pressure (8) yields the following formula:

𝑝
2
(𝑠, 𝑈
𝑟
) = (𝐶

1
𝑠
2

+ 𝐶
2
𝑠 + 𝐶
3
)

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼, (21)

where

𝐶
1
= −𝜔
𝑟
𝑙
0
𝑈
𝑟
𝑖𝐵
2
,

𝐶
2
= −𝜔
𝑟
𝑙
0
𝑈
𝑟
𝑖𝐵
3
− 2𝑙
2

0
𝑈
2

𝑟
𝐴
4
−

𝜔
𝑟
𝑙
0
𝑈
𝑟
𝑖

𝐴
0

(𝑠
1
− 𝑠
𝑎
) ,

𝐶
3
= −𝜔
𝑟
𝑙
0
𝑈
𝑟
𝑖𝐵
1
− 2𝑙
2

0
𝑈
2

𝑟
𝐴
5
−

𝑙
2

0
𝑈
2

𝑟

𝐴
0

−

𝜔
𝑟
𝑙
0
𝑈
𝑟

𝐴
0

𝐵
4
,

(22)

where

𝐵
1
= (𝑠
1
− 𝑠
𝑎
)

× (

−𝑖𝐴
1

𝜑

+

𝑖𝐴
1

𝜑

𝑒
𝑖𝜑

+

𝑖𝐴
2

𝜑

𝑒
𝑖𝜑

+

𝐴
2

𝜑
2
−

𝐴
2

𝜑
2
𝑒
𝑖𝜑

− 𝐴
3
) ,

𝐵
2
=

(𝑠
1
− 𝑠
𝑎
) 𝐴
4

2

,

𝐵
3
= (𝑠
1
− 𝑠
𝑎
) 𝐴
5
,

𝐵
4
= (𝑠
1
− 𝑠
𝑎
) (−

𝑖

𝜑

−

1

𝜑
2
+

1

𝜑
2
𝑒
𝑖𝜑

) .

(23)

The explicit expression for the fluid force applied on the
centre moving tube is obtained by substituting formula (21)
into formula (9). Consider

𝐹
𝑦
=

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼∫

𝑠
𝑠

𝑠
𝑎

𝑝
2
(𝑠, 𝑈
𝑟
) cos(2𝑠

Pr
) d𝑠

=

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼∫

𝑠
𝑠

𝑠
𝑎

(𝐶
1
𝑠
2

+ 𝐶
2
𝑠 + 𝐶
3
) cos(2𝑠

Pr
) d𝑠

=

𝑌

𝐷

𝑒
𝑖𝜔𝑡 cos𝛼

3

∑

𝑖=1

𝐶
𝑖
𝐷
𝑖
,

(24)
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Table 1: Numerical values of geometric parameters for test arrays [1].

Layout pattern 𝑃/𝑑 𝛿 𝜌 (kg/m3) 𝐴
0
/𝑑 𝑠

0
/𝑑 𝑠

1
/𝑑 𝑙

0
/𝑑 𝑥

1
/𝑑

Square (90∘)
1.25 0.012 1.112 0.25 1.25 1.25 5.00 0.05
1.32 0.015 1.125 0.32 1.32 1.32 5.28 0.05
1.41 0.010 1.110 0.41 1.41 1.41 5.64 0.05

Rotated triangular (60∘)
1.25 0.024 1.124 0.25 0.654 0.982 2.616 0.104
1.32 0.021 1.110 0.32 0.691 1.037 2.764 0.0985
1.41 0.030 1.110 0.41 0.738 1.107 2.952 0.092

Rotated square (45∘) 1.25 0.019 1.110 0.25 0.981 1.472 3.925 0.155
1.41 0.015 1.110 0.41 1.107 1.660 4.427 0.137

Triangular (30∘) 1.25 0.014 1.110 0.125 1.249 1.874 4.996 0.203
1.41 0.018 1.110 0.205 1.371 2.057 5.484 0.181

where

𝐷
1
= (

1

𝑠
1
− 𝑠
𝑎

)

2

(

2𝑠

𝑏
2
cos 𝑏𝑠 − 2

𝑏
3
sin 𝑏𝑠 + 𝑠

2

𝑏

sin 𝑏𝑠)










𝑠
𝑠

𝑠
𝑎

−

2𝑠
𝑎

(𝑠
1
− 𝑠
𝑎
)
2
(

1

𝑏
2
cos 𝑏𝑠 + 𝑠

𝑏

sin 𝑏𝑠)











𝑠
𝑠

𝑠
𝑎

+ (

𝑠
𝑎

𝑠
1
− 𝑠
𝑎

)

2

1

𝑏

sin 𝑏𝑠










𝑠
𝑠

𝑠
𝑎

,

𝐷
2
=

1

𝑠
1
− 𝑠
𝑎

(

1

𝑏
2
cos 𝑏𝑠 + 𝑠

𝑏

sin 𝑏𝑠)








𝑠
𝑠

𝑠
𝑎

−

𝑠
𝑎

𝑠
1
− 𝑠
𝑎

1

𝑏

sin 𝑏𝑠








𝑠
𝑠

𝑠
𝑎

,

𝐷
3
= ∫

𝑠
𝑠

𝑠
𝑎

cos(2𝑠
Pr
) d𝑠

= ∫

𝑠
𝑠

𝑠
𝑎

cos (𝑏𝑠) d𝑠 = 1

𝑏

sin 𝑏𝑠








𝑠
𝑠

𝑠
𝑎

,

(25)

where

𝑎 =

𝜑

𝑠
1
− 𝑠
𝑎

, 𝑏 =

2

Pr
. (26)

In formula (24), 𝐹
𝑦
is fluid force with complex number form

and can be written as 𝐹
𝑦
= 𝐹
𝑅
+ 𝐹
𝐼
𝑖. By substituting the fluid

force into formula (13a), the relation between the reduced
fluid velocity𝑈

𝑝
/𝑓
𝑛
𝐷 and quality-damping ratio𝑚𝛿/𝜌𝐷2 can

be obtained.

3. Example

Using the above explicit unsteadymodel, fluid elastic instabil-
ity analyses on four standard tube arrays are carried out and
the result is compared with those from experiment in order
to verify the validity of the model. Geometric parameters of
the four types of tube arrays are listed in Table 1.The diameter

and first order natural frequency of the tubes in experiment
are, respectively, 0.022m and 90Hz.

The results from the explicit analytic method and exper-
iment are presented in Figure 3 where vertical coordinate
denotes reduced fluid velocity and horizontal coordinate
denotes quality-damping parameter. It is shown in the figure
that for the four typical tube arrays, the results from the
explicit analytic method are consistent with those from Nie’s
experiment [1]. For 𝑚𝛿/𝜌𝐷2 > 5, the results based on
current method tend to be more conservative than the result
of experiment, whereas, for 𝑚𝛿/𝜌𝐷2 < 5, the result of
experiment is more conservative. But the difference between
the two types of results is not great.The influence of the pitch
ratio (P/d) on the result is not obvious.This is consistent with
the observed phenomenon by Lever and Weaver [10].

It is shown in the above analysis that the current explicit
analytic method inherits the advantage of Y-W “streamtube”
model which possesses good calculation precision and needs
little experiment data.Moreover, comparingwithY-Wmodel,
the unsteady explicit model presented in this paper has
another advantage that no numerical integral is needed in
the calculation of fluid force due to its explicit expression.
Therefore, the current method is more convenient for prac-
tical application.

4. Conclusion

This paper introduces an unsteady model in detail for fluid
elastic instability analysis of standard array configuration in
transverse flow. Complex number solving method is used to
deduce the unsteady explicit analytical model with new area
perturbation equation. In the model, numerical integration
similar to Y-W model is avoided and inappropriate parame-
ters presented in Li’s model are corrected. Finally the explicit
expression of the model which is convenient for application
is presented.

Fluid elastic instability analysis on four standard array
configurations is made and the stability maps based on
current model are given. A comparison of the result between
the current model and those from Nie’s experiment data is
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Figure 3: Stability maps for typical tube arrays (solid black points represent Nie’s experiment result and black solid lines represent the result
in this paper).

made to indicate the validity of current explicit fluid elastic
analytical model.
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large-scale identification.The abilities of Curvelet transform capturing directional edges of fingerprint images make the fingerprint
suitable to be classified for higher classification accuracy. This paper presents an efficient algorithm for fingerprint classification
combining Curvelet transform (CT) and gray-level cooccurrence matrix (GLCM). Firstly, we use fast discrete Curvelet transform
warping (FDCT WARPING) to decompose the original image into five scales Curvelet coefficients and construct the Curvelet
filter by Curvelet coefficients relationship at adjacent scales to remove the noise from signals. Secondly, we compute the GLCMs of
Curvelet coefficients at the coarsest scale and calculate 16 texture features based on 4 GLCMs. Thirdly, we construct 49 direction
features of Curvelet coefficients at the other four scales. Finally, fingerprint classification is accomplished by 𝐾-nearest neighbor
classifiers. Extensive experiments were performed on 4000 images in the NIST-4 database. The proposed algorithm achieves the
classification accuracy of 94.6 percent for the five-class classification problem and 96.8 percent for the four-class classification
problem with 1.8 percent rejection, respectively. The experimental results verify that proposed algorithm has higher recognition
rate than that of wavelet-based techniques.

1. Introduction

As a type of human biometrics, fingerprint has been widely
used for personal recognition in forensic and civilian appli-
cations because of its uniqueness, immutability, and low cost.
An automatic recognition of people based on fingerprints
requiresmatching of an input fingerprint with a large number
of fingerprints in a database. However, the database can be
huge (e.g., the FBI database contains more than 70 million
fingerprints), such a task can be very expensive in terms of
computational burden and time. In order to reduce the search
time and computational burden, fingerprints in the database
are classified into several prespecified types or subclasses.
When an input fingerprint is received, a coarse levelmatching
is applied to determine which subclass the input belongs to,
and then at a finer level, it is compared to samples within the
subset of the database for recognition. While such a scheme
is obviously more efficient, the first step, that is, fingerprint

classification, must be accurate and reliable and hence has
attracted extensive research in recent years [1–13].

Fingerprints are classified based on their shapes, and
in literature it is common to have five classes as shown in
Figure 1 (x):(A) (x = a, b, c, d, e), including whorl (W), right
loop (R), left loop (L), arch (A), and tent arch (T). Although
these five classes appear very different to us as a person,
automatically classifying a fingerprint by a machine is in
fact a very challenging pattern recognition problem, due to
the small interclass variability, the large intraclass variability
and the difficulty for poor quality fingerprints. Fingerprint
classification is carried out by analysis and comparison of
the features. Over the past decade various approaches have
been proposed bymeans of different types of features, such as
singularities [1–3], orientation field [4–6], and statistical and
frequency features [7–10].Themethods based on singularities
[1–3] accomplish fingerprint classification according to the
number and relative position of the core and delta points.
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Figure 1: Continued.
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Figure 1: (a) (A) Original right loop image and (B) denoised right loop image. (b) (A) Original left loop image, (B) denoised left loop image.
(c) (A) Original whorl image and (B) denoised whorl image. (d) (A) Original arch image and (B) denoised arch image. (e) (A) Original tented
arch image and (B) denoised tented arch image.

The approaches using orientation field [4–6] partition the
fingerprint orientation field into “homogeneous” orientation
regions and the relational graphs of these regions are used
to make fingerprint classification. Gabor filter [9] can also
be used to extract the fingerprint features for classification
where the input image is decomposed into four component
images by four Gabor filters, and the standard deviation of
the component images in each sector to generate the feature
vector, and uses a K-nearest neighbor classifier to make
fingerprint classification.

In 2001, Tico et al. [10] proposed an approach to use
wavelet transform as features for fingerprint recognition. In
[10], a wavelet decomposition on 6 octaves of each fingerprint
image was performed, and the normalized 𝑙

2
-norm of each

wavelet subimage is computed to extract a feature vector of

length 18.The experimental database contains 168 fingerprint
images collected from 21 fingers (8 images per finger). The
algorithm achieves the accuracy of 100% when wavelet basis
Symmlet 6 or Symmlet 9 was employed. The work in [10]
shows that the wavelet features are suitable for matching
complex patterns of oriented texture such as fingerprints.
However, wavelets are characterized by isotropic scaling (e.g.,
the standard orthogonal wavelet transform contains wavelets
in the directions of primary vertical, primary horizontal, and
primary diagonal only) and hence their abilities to resolve
directional features are limited. So wavelets are not able to
detect curved singularities effectively.

Inspired by the success of wavelets, a number of other
multiresolution analysis tools have also been proposed with
the aim to present better the edges and other singularities
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along curves. These tools include contourlet, ridgelet, and
Curvelet. In recent years, researchers have used Curvelets for
fingerprint image enhancement [11, 12] and for fingerprint
recognition [13]. Comparing to the limited directional fea-
tures of wavelets, Curvelets aremore powerful as they are able
to describe a signal by a group of matrices at multiscale and
multidirection. Furthermore, with the increase of the scale,
the number of directions is much finer.

In 2008, Mandal and Wu [13] proposed to use Curvelet
transform for fingerprint recognition and achieved the accu-
racy of 100%. However, the performance of the proposed
algorithm was only tested on a small database of 120 finger-
print images (containing only 15 individuals). Furthermore,
in order to ensure the accuracy, the technique requires
manual detection of the core of the fingerprint image. Also,
before extracting the Curvelet features, the technique needs
complex image enhancement process which includes esti-
mation of local ridge-orientation, estimation of local ridge-
frequency across the fingerprint, filtering of the image, and
binarization (conversion of a gray-scale fingerprint image to
binary image).

In this paper, we present a novel fingerprint classification
algorithm. Firstly, we use fast discrete Curvelet transform
warping (FDCT WARPING) to decompose the original
image into five-scale Curvelet coefficients and construct
the Curvelet filter by Curvelet coefficients relationship at
adjacent scales to smooth the discontinuities of ridges and
remove the noise in the fingerprint image. Secondly, we
calculate four gray-level cooccurrence matrices (GLCMS)
of Curvelet coefficients at the coarsest scale and calculate
16 texture features based on 4 GLCMS. Furthermore, we
construct 49 direction features of Curvelet coefficients at the
other four scales. Finally, these combined Curvelet-GLCM
based features act as the feature set to a K-nearest neighbor
classifier.

In the following sections, wewill present the details of our
fingerprint classification algorithm. Section 2 presents our
noise filtration scheme and our feature extraction scheme.
Section 3 presents some experimental results achieved on
NIST-4 databases. Finally Section 4 draws the conclusions
and outlines the open problems.

2. Fingerprint Classification

2.1. Fingerprint Alignments. Considering the translation and
rotation between template images and probe images, this
paper adopted the algorithm in [14] to accomplish the fin-
gerprint image registration.The algorithm used the reference
points of the central area to calculate the parameters of
translation and rotation, which is much more general when
there are no cores in the fingerprint images.

2.2. FastDiscrete Curvelet Transform (FDCT). Curveletswere
proposed by Candese and Donoho [15], constituting a family
of frames that are designed to represent the edges and
other singularities along curves. Conceptually, the Curvelet
transform is amultiscale pyramidwithmany orientations and
positions at each length scale and needle-shaped elements

at fine scale. This pyramid is nonstandard, however. Indeed,
Curvelets have useful geometric features that set them apart
from wavelets and the likes. For instance, Curvelets present
highly anisotropic behavior as it has both variable length
and width. At fine scale, anisotropy increases with decreasing
scale, in keeping with power law.

In 2006, Candès et al. proposed two fast discrete Curvelet
transforms (FDCT) [16]. The first one is based on unequally
spaced fast Fourier transforms (USFFT) [16], and the other is
based on the wrapping of specially selected Fourier samples
(FDCT WARPING) [16]. Curvelets by warping have been
used for this work, because this is the fastest Curvelet
transform currently available [16].

AfterCurvelet transform, several groups of Curvelet coef-
ficients are generated at different scales and angles. Curvelet
coefficients at scale 𝑗 and angle 𝑙 are represented by a matrix
𝐶
𝑗,𝑙
, and scale 𝑗 is from finest to coarsest scale, and angle 𝑙

starts at the top-left corner and increases clockwise.
Suppose that 𝑓(𝑡

1
, 𝑡
2
), 1 ≤ 𝑡

1
≤ 𝑁
1
, 1 ≤ 𝑡

2
≤ 𝑁
2
denotes

original image and 𝑓[𝑛
1
, 𝑛
2
] denotes 2D discrete Fourier

transform;𝑁
1
,𝑁
2
is the size of original image.

The implementation of FDCT WARPING is as follows.

Step 1. 2D FFT (fast Fourier transform) is applied on 𝑓(𝑡
1
, 𝑡
2
)

to obtain Fourier samples 𝑓[𝑛
1
, 𝑛
2
].

Step 2. Resample 𝑓[𝑛
1
, 𝑛
2
] at each pair of scale and direction

𝑗, 𝑙 in frequency domain, yielding the new sampling function:

𝑓 [𝑛
1
, 𝑛
2
− 𝑛
1
tan 𝜃
𝑙
] , (𝑛

1
, 𝑛
2
) ∈ 𝑃
𝑗
, (1)

where 𝑃
𝑗
= {(𝑛

1
, 𝑛
2
), 𝑛
1,0

≤ 𝑛
1
< 𝑛
1,0

+ 𝐿
1,𝑗
, 𝑛
2,0

≤ 𝑛
2
<

𝑛
2,0

+ 𝐿
2,𝑗
} and 𝑛

1,0
and 𝑛

2,0
are two initial positions of the

window function �̃�
𝑗,𝑙
[𝑛
1
, 𝑛
2
].

𝐿
1,𝑗

and 𝐿
2,𝑗

are relevant parameters of 2𝑗 and 2
𝑗/2,

respectively, and they are length and width components of
window function support interval.

Step 3. Multiplication of the new sampling function𝑓[𝑛
1
, 𝑛
2
−

𝑛
1
tan 𝜃
𝑙
] with window function �̃�

𝑗
[𝑛
1
, 𝑛
2
], and the result is

[16]

𝑓
𝑗,𝑙
[𝑛
1
, 𝑛
2
] = 𝑓 [𝑛

1
, 𝑛
2
− 𝑛
1
tan 𝜃
𝑙
] �̃�
𝑗,𝑙
[𝑛
1
, 𝑛
2
] , (2)

where

�̃�
𝑗,𝑙
[𝑛
1
, 𝑛
2
] = 𝑤
𝑗
(𝑤
1
, 𝑤
2
) V
𝑗
(𝑠
𝜃𝑙
⋅

(2
⌊𝑗/2⌋

𝑤
2
)

𝑤
1

) ,

𝑤
𝑗
(𝑤
1
, 𝑤
2
) = √𝜙

2

𝑗+1
(𝑤2) − 𝜙

2

𝑗
(𝑤2),

𝜙
𝑗
(𝑤
1
, 𝑤
2
) = 𝜙 (2

−𝑗
𝑤
1
) 𝜙 (2

−𝑗
𝑤
2
) ,

𝑠
𝜃𝑙
= [

1 0

− tan 𝜃
𝑙
1
] ,

tan 𝜃
𝑙
= 𝑙 × 2

⌊−𝑗/2⌋
, 𝑙 = −2

⌊−𝑗/2⌋
, . . . , 2

⌊−𝑗/2⌋
− 1.

(3)
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Step 4. Apply the inverse 2DFFT to each𝑓
𝑗,𝑙
, hence collecting

the discrete coefficients 𝐶
𝑗,𝑙
.

2.3. Fingerprint Image FDCT and Noise Filtration Technique.
Curvelet transform describes a signal by the power at each
scale, angle, and position. Curvelets have variable length in
addition to variable width. Curvelet transform has improved
directional capability and better ability to represent edges
and other singularities along curves compared to other
multiscale transforms, for example, wavelet transform. Image
like fingerprints often have two nearby regions (ridges and
valleys) that differ in pixel values. These variations in pixel
values between two consecutive regions are likely to form
such “edges” and this edge information is eventually captured
by digital Curvelet transform.

2.3.1. Acquisition of Curvelet Coefficients. In this paper, fin-
gerprint images are from NIST-4 databases. Firstly, the size
of all the images is normalized to 256 × 256 pixels. The
proposed algorithm is implemented by using MATLAB 7.5
programming language and is executed under Windows
XP Professional O.S. on a PC with AMD Dual-Core CPU
E-350 at 1.28GHz. The original image is decomposed by
FDCT WARPING [16].

Suppose that 𝑓(𝑡
1
, 𝑡
2
), 1 ≤ 𝑡

1
≤ 𝑁
1
, 1 ≤ 𝑡

2
≤ 𝑁
2
denotes

original fingerprint image and 𝑓[𝑛
1
, 𝑛
2
] denotes 2D discrete

Fourier transform; 𝑁
1
, 𝑁
2
is the size of original fingerprint

image.
The number of scales can be calculated by

𝑁scales = ceil (log
2
(min (𝑁

1
, 𝑁
2
)) − 3) , (4)

where min(𝑁
1
, 𝑁
2
) returns the minimum of 𝑁

1
and 𝑁

2
and

ceil(⋅) rounds the input to the nearest integers greater than or
equal to input.

The number of orientation at scale 2, 3, . . . , 𝑁scales − 1, is
calculated by

𝑙
𝑗
= 16 × 2

ceil((𝑁scales−𝑖)/2), (5)

where 𝑖 = 𝑁scales, 𝑗 = 2; 𝑖 = 𝑁scales − 1, 𝑗 = 3; . . .; 𝑖 = 3, and
𝑗 = 𝑁scales − 1.

Noted that if FDCT WARPING chooses the Curvelets
for the coefficients at the finest level 𝑁scales, the number of
orientation at scale 𝑁scales can be determined by (2). On the
other hand, when choosing the wavelets for the coefficients at
the finest level𝑁scales, there is only one angle at the finest level
𝑁scales. In this paper, we adopt the wavelets for the coefficients
at the finest level𝑁scales. As a result, there is only one angle at
the finest level𝑁scales.

For scale 𝑗 = 2, 3, . . . , (𝑁scales − 1), all the Curvelet
coefficients are divided into the four quadrants.The quadrant
label of Curvelet coefficients is denoted by quad, and four
quadrants are denoted by quad = 1, 2, 3, 4, respectively. At
each quadrant, Curvelet coefficients are further subdivided
in angular panels. The number of angular panels at each
quadrant of each scale 𝑗, denoted by 𝑛quad−𝑗, can be calculated
as follows:

𝑛quad−𝑗 = 4 × 2
ceil((𝑁scales−𝑖)/2), (6)

where 𝑖 = 𝑁scales, 𝑗 = 2; 𝑖 = 𝑁scales − 1, 𝑗 = 3; . . .; 𝑖 = 3, and
𝑗 = 𝑁scales − 1.

In this paper, according to (4), we can get the number of
scales 𝑁scales = 5. According to (5), the number of angle at
scale 4 is 32, at scale 3 is 32, and at scale 2 is 16. At scale 4, the
number of angular panels of each quadrant is 8. At scale 3,
the number of angular panels of each quadrant is 8. At scale
2, the number of angular panels of each quadrant is 4. After
decomposition, the original image was divided into three
levels: coarse, detail, and fine. The low-frequency coefficients
were assigned to coarse. The high-frequency coefficients
were assigned to fine.Themiddle-frequency coefficients were
assigned to detail. According to FDCT WARPING [16], the
scale 𝑗 is from finest to coarsest scale and angle 𝑙 starts at the
top-left corner and increases clockwise.

The acquisition of Curvelet coefficients is as follows.

Step 1. 2D FFT (fast Fourier transform) is applied on 𝑓(𝑡
1
, 𝑡
2
)

to obtain Fourier samples 𝑓[𝑛
1
, 𝑛
2
].

Step 2. Acquire the Curvelet coefficients at scale 5, denoted
by matrix 𝐶

5,1
.

Suppose that

𝑀
1
=
𝑁
1

6
, 𝑀

2
=
𝑁
2

6
,

𝑙
𝑁scales−1

= floor (2 ×𝑀
1
) − floor (𝑀

1
) − 1,

𝑙
𝑁scales−2

= floor (2 ×𝑀
2
) − floor (𝑀

2
) − 1.

(7)

In this paper, floor(⋅) rounds the input to the nearest integers
less than or equal to the input.

(1) Construct the right and left windows along the
horizontal direction, denoted by row vector𝑊

𝑟−1
and

𝑊
𝑙−1

, respectively. Consider

𝑊
𝑟−1

(𝑖) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

1,

𝑖 = 0,

𝑒
(1−1/(1−𝑒

(1−1/𝑖)
))
,

𝑖 =
1

𝑙
𝑁scales−1

,
2

𝑙
𝑁scales−1

, . . . ,

𝑙
𝑁scales−1

− 1

𝑙
𝑁scales−1

,

0,

𝑖 = 1,

𝑊
𝑙−1

(𝑖) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0,

𝑖 = 0,

𝑒
(1−1/(1−𝑒

(1−1/(1−𝑖))
))
,

𝑖 =
1

𝑙
𝑁scales−1

,
2

𝑙
𝑁scales−1

, . . . ,

𝑙
𝑁scales−1

− 1

𝑙
𝑁scales−1

,

1,

𝑖 = 1.

(8)
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(2) Construct the right and left windows along the verti-
cal direction, denoted by row vector 𝑊

𝑟−2
and 𝑊

𝑙−2
,

respectively. Consider

𝑊
𝑟−2

(𝑖) =

{{{{{{{{{{{

{{{{{{{{{{{

{

1,

𝑖 = 0,

𝑒
(1−1/(1−𝑒

(1−1/𝑖)
))
,

𝑖 =
1

𝑙
𝑁scales−2

,
2

𝑙
𝑁scales−2

, . . . ,

𝑙
𝑁scales−2

− 1

𝑙
𝑁scales−2

,

0,

𝑖 = 1,

(9)

𝑊
𝑙−2

(𝑖) =

{{{{{{{{{{{

{{{{{{{{{{{

{

0,

𝑖 = 0,

𝑒
(1−1/(1−𝑒

(1−1/(1−𝑖))
))
,

𝑖 =
1

𝑙
𝑁scales−2

,
2

𝑙
𝑁scales−2

, . . . ,

𝑙
𝑁scales−2

− 1

𝑙
𝑁scales−2

,

1,

𝑖 = 1.

(10)

𝑊
𝑟−1

,𝑊
𝑙−1

,𝑊
𝑟−2

, and𝑊
𝑙−2

are normalized by

𝑊
𝑟−1

(𝑖) =
𝑊
𝑟−1

(𝑖)

√[𝑊
𝑟−1

(𝑖)]
2

+ [𝑊
𝑙−1

(𝑖)]
2

,

𝑊
𝑙−1

(𝑖) =
𝑊
𝑙−1

(𝑖)

√[𝑊
𝑟−1

(𝑖)]
2

+ [𝑊
𝑙−1

(𝑖)]
2

,

𝑊
𝑟−2

(𝑖) =
𝑊
𝑟−2

(𝑖)

√[𝑊
𝑟−2

(𝑖)]
2

+ [𝑊
𝑙−2

(𝑖)]
2

,

𝑊
𝑙−2

(𝑖) =
𝑊
𝑙−2

(𝑖)

√[𝑊
𝑟−2

(𝑖)]
2

+ [𝑊
𝑙−2

(𝑖)]
2

.

(11)

(3) Construct the two sub-low-pass filters, denoted by
row vector 𝑓lowpasssub1 and 𝑓lowpasssub2, respectively.
Consider

𝑓lowpasssub1 = [𝑊
𝑙−1
, 1, 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝1

,𝑊
𝑟−1

]

1×[2×floor(2×𝑀1)+1]

,

𝑓lowpasssub2 = [𝑊
𝑙−2
, 1, 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝2

,𝑊
𝑟−2

]

1×[2×floor(2×𝑀2)+1]

,

(12)

where 𝑝
1
= 2 × floor(𝑀

1
) + 1, 𝑝

2
= 2 × floor(𝑀

2
) + 1.

(4) Construct a low-pass filter at scale 5, denoted by
matrix (𝑓lowpass 5)[2×floor(2×𝑀1)+1]×[2×floor(2×𝑀2)+1], and

𝑓lowpass 5 = (𝑓lowpasssub1)
𝑇

× 𝑓lowpasssub2, (13)

where (⋅)
𝑇 is the transpose vector or matrix of the

input vector or matrix.

(5) Construct a high-pass filter at scale 5, denoted by
matrix 𝑓hipass 5, which has the same size as 𝑓lowpass 5.
Consider

𝑓hipass 5 = √1 − (𝑓lowpass 5)
2

. (14)

(6) 𝑓[𝑛
1
, 𝑛
2
] is filtered by 𝑓hipass 5, hence generating the

filtered high-pass signal at scale 5 𝑓hipass 5, which has
the same size of𝑁

1
× 𝑁
2
as 𝑓[𝑛

1
, 𝑛
2
]. Consider

𝑓


hipass 5 (𝑛1, 𝑛2)

= {
𝑓 (𝑛
1
, 𝑛
2
) × 𝑓hipass 5 (𝑛1, 𝑛2) , 𝑎 ≤ 𝑛

1
≤ 𝑏, 𝑐 ≤ 𝑛

2
≤ 𝑑,

𝑓 (𝑛
1
, 𝑛
2
) , others,

(15)

where the filter at scale 5 has the following range:

𝑎 = −floor (2 ×𝑀
1
) + ceil(

(𝑁
1
+ 1)

2
) ,

𝑏 = floor (2 ×𝑀
1
) + ceil(

(𝑁
1
+ 1)

2
) ,

𝑐 = −floor (2 ×𝑀
2
) + ceil(

(𝑁
2
+ 1)

2
) ,

𝑑 = −floor (2 ×𝑀
2
) + ceil(

(𝑁
2
+ 1)

2
) .

(16)

(7) Inverse 2DFFT (inverse fast Fourier transform) is
applied to 𝑓



hipass 5, hence generating the discrete
Curvelet coefficients at scale 5, 𝐶

5,1
.

(8) 𝑓[𝑛
1
, 𝑛
2
] is filtered by 𝑓lowpass 5, hence

generating the filtered low-pass signal at scale 5,
(𝑓


lowpass 5)[2×floor(2×𝑀1)+1]×[2×floor(2×𝑀2)+1]
and

𝑓


lowpass
5

(𝑛
1
, 𝑛
2
) = 𝑓 (𝑛

1
, 𝑛
2
) × 𝑓lowpass

5
(𝑛
1
, 𝑛
2
) ,

𝑎 ≤ 𝑛
1
≤ 𝑏, 𝑐 ≤ 𝑛

2
≤ 𝑑.

(17)

Step 3. Acquire the Curvelet coefficients at scale 4 and angle
1 to angle 32, 𝐶

4,𝑙
, 𝑙 = 1, 2, . . . , 32.

Firstly, we acquire the Curvelet coefficients at scale 4 and
angle 1, 𝐶

4,1
.

Suppose that

𝑀
1
=

𝑁
1

(6 × 2)
, 𝑀

2
=

𝑁
2

(6 × 2)
. (18)

The filter at scale 4 has the following range:

𝑎
𝑁scales−1

= −floor (2 ×𝑀
1
) + floor (4 ×𝑀

1
) + 1,

𝑏
𝑁scales−1

= floor (2 ×𝑀
1
) + floor (4 ×𝑀

1
) + 1,

𝑐
𝑁scales−1

= −floor (2 ×𝑀
2
) + floor (4 ×𝑀

2
) + 1,

𝑑
𝑁scales−1

= floor (2 ×𝑀
2
) + floor (4 ×𝑀

2
) + 1.

(19)
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(1) Construct a low-pass filter at scale 4 and
angle 1 in the same way as at scale 5,
(𝑓lowpass 4)[2×floor(2×𝑀1)+1]×[2×floor(2×𝑀2)+1]

.

(2) Construct a high-pass filter at scale 4 and
angle 1 in the same way as at scale 5,
(𝑓hipass 4)[2×floor(2×𝑀1)+1]×[2×floor(2×𝑀2)+1]

.

(3) 𝑓lowpass 5 is filtered by 𝑓lowpass 4, hence
generating the filtered low-pass signal at scale 4
(𝑓


lowpass 4)[2×floor(2×𝑀1)+1]×[2×floor(2×𝑀2)+1]
.

(4) 𝑓lowpass 5 is filtered by 𝑓hipass 4, hence generating the
filtered high-pass signal at scale 4 𝑓hipass 4, which has
the same size as that of 𝑓lowpass 5.

(5) Determine the discrete locating window of wedge
wave at scale 4 and angle 1.

The Curvelet coefficients at scale 4 are divided into the
four quadrants. The quadrant label of Curvelet coefficients is
denoted by quad, and four quadrants are denoted by quad =

1, 2, 3, 4, respectively. Each quadrant has 8 angles. In the first
quadrant, quad = 1, angle ranges from 1 to 8, in the second
quadrants, quad = 2, angle ranges from 9 to 16, in the third
quadrants, quad = 3, angle ranges from 17 to 24, in the fourth
quadrants, and quad = 4, angle ranges from 25 to 32.

Suppose that

𝑀horiz = 𝑀
2
,

𝑀vert = 𝑀
1
,

quad = 1 or 3,

𝑀horiz = 𝑀
1
,

𝑀vert = 𝑀
2
,

quad = 2 or 4,

𝑝 =
1

2 × 𝑛quad−4
,

𝑞 = 2 × floor (4 ×𝑀horiz) ,

(20)

where 𝑛quad−4 denotes the number of angle at each quadrant
at scale 4; in this paper, 𝑛quad−4 = 8.

The left vector of wedge wave is denoted by 𝑊left =

(𝑎
1,𝑘+1

)
1×(𝑛quad−4+1)

, where 𝑎
1,𝑘+1

= round (𝑘 × 𝑝 × 𝑞 + 1),
𝑘 = 0, 1, 2, . . . , 𝑛quad−4.

The right vector of wedge wave is denoted by 𝑊right =

(𝑎
1,𝑘+1

)
1×(𝑛quad−4)

, where 𝑎
1,𝑘+1

= 𝑞 + 2 − round (𝑘 × 𝑝 × 𝑞 + 1),
𝑘 = 𝑛quad−4, 𝑛quad−4 − 1, . . . , 1.

The combination wedge wave vector is denoted by 𝑊 =

[𝑊left,𝑊right]1×(2×𝑛quad−4+1)
.

The endpoint vector of wedge wave is denoted by𝑊end =
(𝑎
1,𝑘
)
1×(𝑛quad−4)

, where 𝑎
1,𝑘

= 𝑊(2 × 𝑘) ⋅ ⋅ ⋅ 𝑘 = 1, 2, . . . , 𝑛quad−4.
The first midpoint vector of wedge wave is denoted by

𝑊mid1 = (𝑎
1,𝑘
)
1×(𝑛quad−4−1)

, where 𝑎
1,𝑘

= 𝑊end(𝑘) ⋅ ⋅ ⋅ 𝑘 =

1, 2, . . . , 𝑛quad−4 − 1.
The second midpoint vector of wedge wave is denoted

by 𝑊mid2 = (𝑎
1,𝑘
)
1×(𝑛quad−4−1)

, where 𝑎
1,𝑘

= 𝑊end(𝑘) ⋅ ⋅ ⋅ 𝑘 =

2, 3, . . . , 𝑛quad−4.

The combination midpoint vector of wedge wave is
denoted by𝑊mid = (𝑎

1,𝑘
)
1×(𝑛quad−4−1)

, where 𝑎
1,𝑘

= ((𝑊mid1(𝑘)+

𝑊mid2(𝑘))/2) ⋅ ⋅ ⋅ 𝑘 = 1, 2, 3, . . . , 𝑛quad−4 − 1.
The first wedge wave endpoint along the vertical orienta-

tion is denoted by

𝑟first wedge endpont = round(
2 × floor (4 ×𝑀vert)

2 × 𝑛quad−4
+ 1) . (21)

The length of the first wedge wave is denoted by

𝑠wedge = floor (4 ×𝑀vert) − floor (𝑀vert)

+ ceil(
𝑟first wedge endpont

4
) .

(22)

The width of the wedge wave is denoted by 𝑊wedge =

𝑊end(2) + 𝑊end(1) − 1.
The slope of the first wedge wave is 𝑠slope = [floor(4 ×

𝑀horiz) + 1 −𝑊end(1)]/floor(4 ×𝑀vert).
The left line vector is denoted by 𝑠left line = (𝑎

1,𝑘
)
1×(𝑠wedge)

,
where 𝑎

1,𝑘
= round(2 − 𝑊end(1) + 𝑠slope × (𝑘 − 1)) ⋅ ⋅ ⋅ 𝑘 =

1, 2, . . . , 𝑠wedge.
The first row coordinate is 𝑟first = floor(4 × 𝑀vert) + 2 −

ceil((𝑠wedge + 1)/2).
The first column coordinate is 𝑐first = floor(4 × 𝑀horiz) +

2 − ceil((𝑊wedge + 1)/2).
Condition column vector is denoted by 𝑉col =

(𝑎
1,𝑘
)
1×𝑊wedge

, where

𝑎
1,𝑘

= 𝑠left line (𝑘 + 1)

+ mod ((𝑘 − 𝑠left line (𝑘 + 1) + 𝑐first) ,𝑊wedge) ,

𝑘 = 0, 1, 2, . . . ,𝑊wedge − 1,

mod (𝑥, 𝑦) =
{

{

{

𝑥 − 𝑛 × 𝑦 𝑛 = floor(𝑥
𝑦
) , 𝑦 ̸= 0,

𝑥, 𝑦 = 0.

(23)

Thus, the discrete locating window of wedge wave is
denoted by𝑊data = (𝑎

𝑛1 ,𝑛2
)
𝑠wedge×𝑊wedge

, where

𝑎
𝑛1 ,𝑛2

=

{

{

{

𝑓


hipass
4

(𝑛
1
, 𝑛
2
) , 𝑉col (𝑛2) > 0,

0, 𝑉col (𝑛2) ≤ 0,

(24)

where

𝑛
1
= 1 + mod (𝑘 − 𝑟first, 𝑠wedge) , 𝑘 = 1, 2, . . . , 𝑠wedge, (25)

𝑛
2
= 0.5 × 𝑉col (𝑘) + 1 +

𝑉col (𝑘) − 1
 ,

𝑘 = 1, 2, . . . ,𝑊wedge.
(26)

(6) The discrete locating window of wedge wave 𝑊data is
filtered and rotated, hence generating matrix𝑊data 2.

Suppose that

𝑦corner = (𝑎
1,𝑘
)
1×𝑠wedge

, (27)
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where 𝑎
1,𝑘

= 𝑘, 𝑘 = 1, 2, 3, . . . , 𝑠wedge and

𝑥corner = (𝑎
1,𝑘
)
1×𝑞

, (28)

where 𝑎
1,𝑘

= 𝑘, 𝑘 = 1, 2, 3, . . . , 𝑞 + 1 and

𝑋 =

[
[
[
[
[
[

[

𝑥corner
𝑥corner
𝑥corner

...
𝑥corner

]
]
]
]
]
]

]𝑠wedge×𝑞

,

𝑌
𝑇
=

[
[
[
[
[
[

[

𝑦corner
𝑦corner
𝑦corner

...
𝑦corner

]
]
]
]
]
]

]𝑞×𝑠wedge

,

𝑋wrap = (𝑋 (𝑛
1
, 𝑛
2
))
𝑠wedge×𝑊wedge

,

(29)

where 𝑛
1
, 𝑛
2
are calculated by (25) and (26), respectively.

Consider

𝑌wrap = (𝑌 (𝑛
1
, 𝑛
2
))
𝑠wedge×𝑊wedge

, (30)

where 𝑛
1
, 𝑛
2
are calculated by (25) and (26), respectively.

The slope of right wedge wave is 𝑠slope-right = (floor(4 ×
𝑀horiz) + 1 −𝑊mid(1))/floor(4 ×𝑀vert).

The middle line matrix𝑀mid-line-right = (𝑎
𝑛1 ,𝑛2

)
𝑠wedge×𝑊wedge

,
where 𝑎

𝑛1 ,𝑛2
= 𝑊mid(1) + 𝑠slope-right × (𝑌wrap(𝑛1, 𝑛2) − 1).

The right coordinate matrix is 𝐶cord-right =

(𝑎
𝑛1 ,𝑛2

)
𝑠wedge×𝑊wedge

, where

𝑎
𝑛1 ,𝑛2

= 0.5 +
floor (4 ×𝑀vert)

𝑊end (2) − 𝑊end (1)

×

𝑋wrap (𝑛1, 𝑛2) − 𝑀mid-line-right (𝑛1, 𝑛2)

floor (4 ×𝑀vert) + 1 − 𝑌wrap (𝑛1, 𝑛2)
,

𝑐2 = 1

× (
1

2 × (floor (4 ×𝑀horiz) / (𝑊end (1) − 1)) − 1
− 1

+1 × (2 × (
floor (4 ×𝑀vert)

𝑟first-wedge-endpont − 1
) − 1)

−1

)

−1

,

𝑐1 =
𝑐2

2 × ((floor (4 ×𝑀horiz)) / (𝑟first-wedge-endpont − 1)) − 1

.

(31)

The corner coordinate matrix 𝐶cord-corner =

(𝑎
𝑛1 ,𝑛2

)
𝑠wedge×𝑊wedge

, where

𝑎
𝑛1 ,𝑛2

= 𝑐1 + 𝑐2

× [

𝑋wrap (𝑛1, 𝑛2) − 1

floor (4 ×𝑀horiz)
−

𝑌wrap (𝑛1, 𝑛2) − 1

floor (4 ×𝑀vert)
] ,

× (2 − [

𝑋wrap (𝑛1, 𝑛2) − 1

floor (4 ×𝑀horiz)
−

𝑌wrap (𝑛1, 𝑛2) − 1

floor (4 ×𝑀vert)
])

−1

.

(32)
The 𝐶cord-corner is wrapped, yielding the matrix𝑊

𝑙-left and
𝑊
𝑟-right:

𝑊
𝑙-left (𝑛1, 𝑛2) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

1,

𝐶cord-coner (𝑛1, 𝑛2) = 0,

𝑒
(1−1/(1−𝑒

(1−1/𝐶cord-corner(𝑛1,𝑛2))))
,

0 < 𝐶cord-corner (𝑛1, 𝑛2) < 1,

0,

𝐶cord-𝑙corner (𝑛1, 𝑛2) = 1,

𝑊
𝑙-right (𝑛1, 𝑛2) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

1,

𝐶cord-corner (𝑛1, 𝑛2) = 0,

𝑒
(1−1/(1−𝑒

(1−1/(1−𝐶cord-corner(𝑛1,𝑛2)))))
,

0 < 𝐶cord-corner (𝑛1, 𝑛2) < 1,

0,

𝐶cord-corner (𝑛1, 𝑛2) = 1.

(33)

In the same way, the 𝐶cord-right is wrapped, yielding the
matrix𝑊

𝑤𝑙-left and𝑊𝑤𝑟-right.
The discrete locating window of wedge wave 𝑊data is fil-

tered, yielding thematrix𝑊data-tran = (𝑎
𝑛1 ,𝑛2

)
𝑠wedge×𝑊wedge

, where
𝑎
𝑛1 ,𝑛2

= 𝑊data(𝑛1, 𝑛2) × [𝑊
𝑙-left(𝑛1, 𝑛2) × 𝑊

𝑤𝑟-right(𝑛1, 𝑛2)].
Thematrix𝑊data-tran is rotated, yielding thematrix𝑊data 2

𝑊data 2 = rot 90 (𝑊data-tran, − (quad − 1)) , (34)
where rot 90(𝐴, 𝑘) rotates matrix 𝐴 counterclockwise by 𝑘 ×
90
∘ degrees.
(7) Inverse 2DFFT is applied to𝑊data 2, hence generating

the Curvelet coefficient at scale 4 and angle 1, 𝐶
4,1
.

(8) Repeat (5), (6), and (7) in Step 3, in the same way
of acquiring 𝐶

4,1
; Curvelet coefficients at scale 4 and

angle from 2 to 8 are generated.
Noted that at angle from 2 to 32, the left line vector

is denoted by 𝑠left line = (𝑎
1,𝑘
)
1×(𝑠wedge)

, where 𝑎
1,𝑘

=

round(𝑊end(𝑙sub − 1) + 𝑠slope × (𝑘 − 1)) ⋅ ⋅ ⋅ 𝑘 = 1, 2, . . . , 𝑠wedge.
Consider

𝑙sub = 2, 3, 4, . . . , 8. (35)
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Table 1: Structure of Curvelet transform coefficients.

Levels Scales (𝑗) Orientation (𝑙) Matrix form 𝐶
𝑗,𝑖

Coarse 1 1 21 × 21

Details

2 16

18 × 22 16 × 22 16 × 22 18 × 22

22 × 18 22 × 16 22 × 16 22 × 18

18 × 22 16 × 22 16 × 22 18 × 22

22 × 18 22 × 16 22 × 16 22 × 18

3 32

34 × 22 32 × 22 32 × 22 32 × 22 32 × 22 32 × 22 32 × 22 34 × 22

22 × 34 22 × 32 22 × 32 22 × 32 22 × 32 22 × 32 22 × 32 22 × 34

34 × 22 32 × 22 32 × 22 32 × 22 32 × 22 32 × 22 32 × 22 34 × 22

22 × 34 22 × 32 22 × 32 22 × 32 22 × 32 22 × 32 22 × 32 22 × 34

4 32

67 × 44 64 × 43 64 × 43 64 × 44 64 × 44 64 × 43 64 × 43 67 × 44

44 × 67 43 × 64 43 × 64 44 × 64 44 × 64 43 × 64 43 × 64 44 × 67

67 × 44 64 × 43 64 × 43 64 × 44 64 × 44 64 × 43 64 × 43 67 × 44

44 × 67 43 × 64 43 × 64 44 × 64 44 × 64 43 × 64 43 × 64 44 × 67

Fine 5 1 256 × 256

(9) The Curvelet coefficients at scale 4 and other three
quadrants, 𝐶

4,𝑙
, 𝑙 = 9, 10, . . . , 32 are acquired in the

same way as that in the first quadrants.

Finally, the Curvelet coefficients at scale 4, 𝐶
4,𝑙
, 𝑙 =

1, 2, . . . , 32, are generated after Step 3.

Step 4. Repeat Step 3, hence generating the Curvelet coeffi-
cients at scale 3, 𝐶

3,𝑙
, 𝑙 = 1, 2, . . . , 32.

Note that the discrete locating window of wedge wave at
scale 3 can be calculated by

𝑊data 3 = (𝑎
𝑛1 ,𝑛2

)
𝑠wedge-3×𝑊wedge-3

, (36)

where

𝑎
𝑛1 ,𝑛2

=

{

{

{

𝑓


hipass
3

(𝑛
1
, 𝑛
2
) , 𝑉col3 (𝑛2) > 0,

0, 𝑉col 3 (𝑛2) ≤ 0,

(37)

𝑠wedge-3, 𝑊wedge-3 is the length and width of the discrete
locating window of wedge wave at scale 3, and 𝑉col 3 is
condition vector at scale 3.

Step 5. Repeat Step 3, hence generating the Curvelet coeffi-
cients at scale 2, 𝐶

2,𝑙
, 𝑙 = 1, 2, . . . , 16.

Note that the discrete locating window of wedge wave at
scale 2 can be calculated by

𝑊data 2 = (𝑎
𝑛1 ,𝑛2

)
𝑠wedge-2×𝑊wedge-2

, (38)

where

𝑎
𝑛1 ,𝑛2

=

{

{

{

𝑓


hipass
2

(𝑛
1
, 𝑛
2
) , 𝑉col2 (𝑛2) > 0,

0, 𝑉col 2 (𝑛2) ≤ 0,

(39)

and 𝑉col 2 is condition vector at scale 2.

Step 6. Inverse 2DFFT is applied to the low-pass signal at
scale 2, 𝑓lowpass

2

(𝑛
1
, 𝑛
2
), generating the Curvelet coefficient at

scale 1 𝐶
1,1
.

The detailed structure of the Curvelet coefficients
obtained by FDCT WARPING is shown in Table 1.

2.3.2. Fingerprint Image Noise Filtration Technique. Noise
always arises from the acquiring fingerprint images.Thenoise
may result in the vagueness and many discontinuities of
ridges (or valleys) in the image and thus affects accurate
feature extraction and recognition. So, it is necessary and
important to denoise in fingerprint images.

The relationship of the Curvelet coefficients between the
different scales is similar to the relationship of the wavelet
coefficients; that is, there exists strong correlation between
them.

From Table 1, there are 16 and 32 orientations at scale 2
and scale 3, respectively. Each Curvelet coefficient matrix is
at scale 2 and each orientation corresponds to two adjacent
matrices generated at scale 3. The ridges in a fingerprint
image correspond to the Curvelet coefficients with large
magnitude at scale 2. Each Curvelet coefficientmatrix at scale
2 is decomposed into two Curvelet coefficient matrices at
scale 3 and at two adjacent orientations. The corresponding
two Curvelet coefficient matrices at scale 3 also have large
magnitude, while the magnitude of the Curvelet coefficients
corresponding to the noise dies out swiftly from scale 2 to
scale 3. So, we use the direct spatial correlation of Curvelet
coefficients at scale 2 and scale 3 to accurately distinguish
ridges from noise. For scales 4 and 5, we adopt hard thresh
method to filter the noise. Finally, we reconstruct all the
Curvelet coefficients by the technique [17] and accomplish
fingerprint image filtration.

The proposed noise filtration technique has the following
steps.
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Step 1. Noise filtration ofCurvelet coefficientmatrices at scale
2 and scale 3, respectively.

This section details the major steps of the proposed noise
filtration algorithmof Curvelet coefficientmatrices generated
at scales 2 and 3.

Assume eachmatrix to be at scale 2 and orientation 𝑙,𝐶
2,𝑙
,

corresponds to two adjacent matrices generated at scale 3,
𝐶
3,2×(𝑙−1)+1

and𝐶
3,2×(𝑙−1)+2

, (𝑙 ranges from 1 to 16×2ceil((5−3)/2)).
Let (𝑟

0
, 𝑐
0
) be the size of 𝐶

2,𝑙
. The sizes of 𝐶

3,2×(𝑙−1)+1
and

𝐶
3,2×(𝑙−1)+2

are (𝑟
1
×𝑐
1
) and (𝑟

2
×𝑐
2
), respectively.Thematrices

at scales 2 and 3 are filtered as follows.

(1) Decompose the Curvelet coefficients matrix
𝐶
3,2×(𝑙−1)+1

into two matrices 𝐴 and 𝐵 with the
same size as 𝐶

2,𝑙
, 𝑟
0
× 𝑐
0
. The elements of 𝐴 are

extracted from row 1 to 𝑟
0
and column 1 to 𝑐

0
of

𝐶
3,2×(𝑙−1)+1

, and the elements of 𝐵 are extracted from
row 𝑟
1
− 𝑟
0
+ 1 to 𝑟

1
and column 𝑐

1
− 𝑐
0
+ 1 to 𝑐

1
of

𝐶
3,2×(𝑙−1)+1

. Consider

𝐴 = (𝑎
𝑛1 ,𝑛2

)
𝑟0×𝑐0

, (40)

where 𝑎
𝑛1 ,𝑛2

= 𝐶
3,2×(𝑙−1)+1

(𝑛
1
, 𝑛
2
), 𝑛
1
= 1, 2, 3, . . . , 𝑟

0
,

𝑛
2
= 1, 2, 3, . . . , 𝑐

0
, and

𝐵 = (𝑎
𝑛1 ,𝑛2

)
𝑟0×𝑐0

, (41)

where 𝑎
𝑛1 ,𝑛2

= 𝐶
3,2×(𝑙−1)+1

(𝑛
1
, 𝑛
2
), 𝑛
1
= 𝑟
1
− 𝑟
0
+ 1,

𝑟
1
− 𝑟
0
+ 2, . . . , 𝑟

1
, 𝑛
2
= 𝑐
1
− 𝑐
0
+ 1, 𝑐
1
− 𝑐
0
+ 2, . . . , 𝑐

1
.

(2) Decompose the Curvelet coefficients matrix
𝐶
3,2×(𝑙−1)+2

into two matrices 𝐷 and 𝐸 with the
size of 𝑟

0
× 𝑐
0
:

𝐷 = (𝑎
𝑛1 ,𝑛2

)
𝑟0×𝑐0

, (42)

where 𝑎
𝑛1 ,𝑛2

= 𝐶
3,2×(𝑙−1)+2

(𝑛
1
, 𝑛
2
), 𝑛
1
= 1, 2, 3, . . . , 𝑟

0
,

𝑛
2
= 1, 2, 3, . . . , 𝑐

0
, and

𝐸 = (𝑎
𝑛1 ,𝑛2

)
𝑟0×𝑐0

, (43)

where 𝑎
𝑛1 ,𝑛2

= 𝐶
3,2×(𝑙−1)+2

(𝑛
1
, 𝑛
2
), 𝑛
1
= 𝑟
1
− 𝑟
0
+ 1,

𝑟
1
− 𝑟
0
+ 2, . . . , 𝑟

1
, 𝑛
2
= 𝑐
1
− 𝑐
0
+ 1, 𝑐
1
− 𝑐
0
+ 2, . . . , 𝑐

1
.

(3) Calculate the four multiplication coefficient matrices
(𝑚
𝑘
, 𝑘 = 1, 2, 34) between 𝐶

2,𝑙
and the four matrices

𝐴, 𝐵,𝐷, and 𝐸, respectively. Consider

𝑚
1
(𝑛
1
, 𝑛
2
) = 𝐶
2,𝑙
(𝑛
1
, 𝑛
2
) × 𝐴 (𝑛

1
, 𝑛
2
) ,

𝑛
1
= 1, 2, . . . , 𝑟

0
, 𝑛
2
= 1, 2, . . . , 𝑐

0
,

𝑚
2
(𝑛
1
, 𝑛
2
) = 𝐶
2,𝑙
(𝑛
1
, 𝑛
2
) × 𝐵 (𝑛

1
, 𝑛
2
) ,

𝑛
1
= 1, 2, . . . , 𝑟

0
, 𝑛
2
= 1, 2, . . . , 𝑐

0
,

𝑚
3
(𝑛
1
, 𝑛
2
) = 𝐶
2,𝑙
(𝑛
1
, 𝑛
2
) × 𝐷 (𝑛

1
, 𝑛
2
) ,

𝑛
1
= 1, 2, . . . , 𝑟

0
, 𝑛
2
= 1, 2, . . . , 𝑐

0
,

𝑚
4
(𝑛
1
, 𝑛
2
) = 𝐶
2,𝑙
(𝑛
1
, 𝑛
2
) × 𝐸 (𝑛

1
, 𝑛
2
) ,

𝑛
1
= 1, 2, . . . , 𝑟

0
, 𝑛
2
= 1, 2, . . . , 𝑐

0
.

(44)

(4) Filter the Curvelet coefficientmatrices𝐶
3,2×(𝑙−1)+1

and
𝐶
3,2×(𝑙−1)+2

by

𝐴

(𝑛
1
, 𝑛
2
)

=

{

{

{

𝐴(𝑛
1
, 𝑛
2
) ,



𝑚1 (𝑛1, 𝑛2)
 −

𝑚3 (𝑛1, 𝑛2)


 > 𝑇
𝑠
,

0, otherwise,

𝐷

(𝑛
1
, 𝑛
2
)

=

{

{

{

𝐷(𝑛
1
, 𝑛
2
) ,



𝑚1 (𝑛1, 𝑛2)
 −

𝑚3 (𝑛1, 𝑛2)


 > 𝑇
𝑠
,

0, otherwise,

𝐵

(𝑛
1
, 𝑛
2
)

=

{

{

{

𝐵 (𝑛
1
, 𝑛
2
) ,



𝑚2 (𝑛1, 𝑛2)
 −

𝑚4 (𝑛1, 𝑛2)


 > 𝑇
𝑠
,

0, otherwise,

𝐸

(𝑛
1
, 𝑛
2
)

=

{

{

{

𝐸 (𝑛
1
, 𝑛
2
) ,



𝑚2 (𝑛1, 𝑛2)
 −

𝑚4 (𝑛1, 𝑛2)


 > 𝑇
𝑠
,

0, otherwise,
(45)

where 𝐴, 𝐷, 𝐵, and 𝐸
 are the Curvelet coefficient

matrices at scale 3 after filtration, the operation
| ⋅ | returns the complex modulus (magnitude) of
the input, and 𝑇

𝑠
is the threshold. For example, if

||𝑚
1
(𝑛
1
, 𝑛
2
)| − |𝑚

3
(𝑛
1
, 𝑛
2
)|| > 𝑇

𝑠
, we assume that

the Curvelet coefficients correspond to the ridges
of the image. Otherwise, the Curvelet coefficients
correspond to the noise of the image, which are
assigned to 0.

(5) When filtering the Curvelet coefficient matrix 𝐶
2,𝑙
, if

any of the filtered Curvelet coefficient matrices (𝐴,
𝐷
, 𝐵,and 𝐸

) equal to 𝑍, 𝐶
2,𝑙

is considered as noise
and assigned to 𝑍. Where 𝑍 is a matrix with all
elements are zero.

(6) repeat (1) to (5) with 16 times (the number of
orientation of Curvelet coefficients at scale 2).

After (1)–(5), all the Curvelet coefficients at scale 2 and
scale 3 are filtered.

Step 2. Noise Filtration of Curvelet coefficient matrices at
scale 4 and scale 5, respectively.

The Curvelet coefficient matrices generated at scale 4 are
filtered by

𝐶


𝑗,𝑙
(𝑖, 𝑗) =

{

{

{

𝐶
𝑗,𝑙
(𝑛
1
, 𝑛
2
) ,


𝐶
𝑗,𝑙
(𝑛
1
, 𝑛
2
)

> thresh × 𝐸

𝑗,𝑙
,

0, otherwise,
(46)
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where 𝐶
𝑗,𝑙
are the filtered Curvelet coefficient matrices, | ⋅ | is

the complex modulus operation, and thresh is the threshold;
in this paper, thresh = 1.5, and

𝐸
𝑗,𝑙
=

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
√

𝐶
𝑗,𝑙
(𝑖, 𝑗)



2

𝑛 × 𝑚
,

(47)

where (𝑛,𝑚) is the size of matrix 𝐶
𝑗,𝑙
.

The Curvelet coefficient matrices generated at scale 5 are
filtered in the same way as the Curvelet coefficient matrices
generated at scale 4. Note that at scale 5 thresh = 2.

Step 3. After the coefficients at scale 2, 3, 4, and 5 are filtered,
we reconstruct the coefficients using the technique [16] and
accomplish image noise filtration.

𝑇
𝑠
in (45) can be acquired by the statistics of difference

of correlation coefficients in adjacent directions at the same
scale. Finally, 𝑇

𝑠
= 100 is selected by many experiments.

Figure 1 shows the noise filtration results of five types of
fingerprint image by proposed noise filtration algorithm.

From Figure 1 (x):(B) (x = a, b, c, d, e), we can see
many discontinuities of ridges in the original image can
be smoothed after filtering and the direction of ridge is
well followed, which founds the good basis for accurate
feature extraction and recognition.We demonstrate Curvelet
coefficients at different scales of five types of filtered images
in Figure 2.

As Figure 2(a) to Figure 2(e) show, there are strong
orientations in the Curvelet coefficients images. The white
parts in the images represent partial edges of the ridge of
fingerprint image in different orientations. Meanwhile, it
means the significant Curvelet coefficients of images. The
low-frequency (coarse scale) coefficients are stored at the
center of the display. The Cartesian concentric coronae show
the coefficients at different scales; the outer coronae corre-
spond to higher frequencies. There are four strips associated
with each corona, corresponding to the four cardinal points;
these are further subdivided in angular panels. Each panel
represents coefficients at a specified scale and along the
orientation suggested by the position of the panel.

2.4. Fingerprint Feature Extraction. Haralick et al. [18] first
proposed gray-level cooccurrencematrix (GLCM) for texture
descriptions in the 1970s. It is still popular until today
and widely used in various texture classifications [19–23],
because of its good statistic performance. The GLCM is a
second order statistics method which describes the spatial
interrelationships of the grey tones in an image.

GLCM contains elements that are counts of the number
of pixel pairs, which are separated by certain distance and at
some angular direction. Typically, the GLCM is calculated in
a small window, which scans the whole image. The texture
feature will be associated with each pixel.

In our studies, GLCM is computed based on two parame-
ters, which are the distance between the pixel pair 𝑑 and their
angular relationship 𝜃. 𝑑 = 1 and 𝜃 are quantized in four
directions (0∘, 45∘, 90∘, and 135∘). For image 𝐼, defined square

Table 2: Direction values.

𝜃 0∘ 45∘ 90∘ 135∘

𝜃
0

0 1 1 1
𝜃
1

1 1 0 −1

window𝑁 ×𝑁, brightness levels 𝑖 and 𝑗, the nonnormalized
GLCM 𝑝

𝑖𝑗
are defined by

𝑝
𝑖,𝑗,𝜃

=

𝑁

∑

𝑥=1

𝑁

∑

𝑦=1

𝐶{(𝐼 (𝑥, 𝑦) = 𝑖)
(𝐼(𝑥±𝑑𝜃0 ,𝑦∓𝑑𝜃1)=𝑗)

} , (48)

where𝐶{⋅} = 1 if the argument is true and𝐶{⋅} = 0, otherwise.
The signs ± and ∓ in (10) mean that each pixel pair is counted
twice: once forward and once backward in order to make the
GLCM diagonally symmetric. For each direction, 𝜃

0
and 𝜃

1

are shown in Table 2.
The procedures of feature extraction are as follows.

Step 1. Scale the grayscale values in Curvelet transform
coefficients into 8 levers and compute the GLCMs of Curvelet
coefficients at scale 1 𝐶

1,1
and calculate 16 texture features

based on 4 GLCMs:

(1) Angular second moment (ASM)

𝑓
1
=

𝐺−1

∑

𝑖=0

𝐺−1

∑

𝑗=0

𝑝(𝑖, 𝑗)
2

. (49)

(2) Contrast (CON)

𝑓
2
=

𝐺−1

∑

𝑛=0

𝑛
2
{

{

{

𝐺−1

∑

𝑖=0

𝐺−1

∑

𝑗=0

𝑝(𝑖, 𝑗)
2
}

}

}

, (50)

where |𝑖 − 𝑗| = 𝑛.
(3) Correlation (COR)

𝑓
3
=

∑
𝐺−1

𝑖=0
∑
𝐺−1

𝑗=0
(𝑖𝑗) 𝑝 (𝑖, 𝑗) − 𝜇

1
𝜇
2

𝜎
2

1
𝜎
2

2

, (51)

where

𝜇
1
=

𝐺−1

∑

𝑖=0

𝑖

𝐺−1

∑

𝑗=0

𝑝 (𝑖, 𝑗) , 𝜇
2
=

𝐺−1

∑

𝑖=0

𝑗

𝐺−1

∑

𝑗=0

𝑝 (𝑖, 𝑗) ,

𝜎
2

1
=

𝐺−1

∑

𝑖=0

(𝑖 − 𝜇
1
)
2

𝐺−1

∑

𝑗=0

𝑝 (𝑖, 𝑗) ,

𝜎
2

2
=

𝐺−1

∑

𝑖=0

(𝑗 − 𝜇
2
)
2

𝐺−1

∑

𝑖=0

𝑝 (𝑖, 𝑗) .

(52)

(4) Entropy (ENT)

𝑓
4
= −

𝐺−1

∑

𝑖=0

𝐺−1

∑

𝑗=0

𝑝 (𝑖, 𝑗) log𝑝 (𝑖, 𝑗) . (53)
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Figure 2: Curvelet coefficients of five filtered fingerprint classes. (a) Right loop (R), (b) left loop (L), (c) whorl (W), (d) arch (A), and (e)
tented arch (T).
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Step 2. Calculate averaged 𝑙
1
-norm of Curvelet coefficients

in 8 directions at the second scale 𝐶
2,𝑙

and acquire 8 texture
features according to (51). Consider

𝐸
𝑙
=

1

𝑚
1
× 𝑚
2

𝑚1

∑

𝑖

𝑚2

∑

𝑗

𝐶2,𝑙 (𝑖, 𝑗)
 , (54)

where, (𝑚
1
, 𝑚
2
) is the size of the matrix 𝐶

2,𝑙
, and 𝑙 =

1, 2, 3, 4, 5, . . . , 16.

Step 3. Calculate averaged 𝑙
1
-norm of Curvelet coefficients

in 16 directions at the third scale 𝐶
3,𝑙

and acquire 16 texture
features according to (54).

Step 4. Calculate averaged 𝑙
1
-norm of Curvelet coefficients in

16 directions at the fourth scale 𝐶
4,𝑙

and acquire 16 texture
features according to (54).

Step 5. Calculate averaged 𝑙
1
-norm of Curvelet coefficients at

the fifth scale 𝐶
5,1

and acquire 1 texture feature.

Note that in Step 2, Step 3, and Step 4, we only calcu-
late the averaged 𝑙

1
-norm of Curvelet coefficients in even

directions to assure the classification accuracy and reduce
the recognition time. So, a feature vector containing 57
components for each image can be extracted.

3. Experiment Results

3.1. Datasets. NIST special fingerprint database 4(NIST-4)
is one of the most important benchmarks for fingerprint
classification. Most published results on fingerprint classifi-
cation are based on this database. For comparison with other
approaches, we also perform our fingerprint classification
algorithm on this database for the five-class fingerprint
classification problem. Since fingerprint classes A (arch) and
T (tented arch) have a substantial overlap, it is very difficult
to separate these two classes. Therefore, we also report our
results for the four-class classification problem, where classes
A and T have been merged into one class. NIST-4 contains
4000 fingerprints of size 480 × 512 pixels, taken from 2000
fingers. Each finger has two impressions (f and s). The first
fingerprint instances are numbered from f0001 to f2000 and
the second fingerprint instances are numbered from s0001
to s2000. All fingerprints in this database are used in our
experiment. We form our training set with the first 2,000
fingerprints from 1,000 fingers (f0001 to f1000 and s0001
to s1000) and the test set contains the remaining 2,000
fingerprints (f1001 to f2000 and s1001 to s2000).

To eliminate the large difference between the feature
vectors, each feature vector V

𝑘
is normalized according to

V
𝑘
(𝑖) =

V
𝑘
(𝑖) − Vmin (𝑖)

Vmax (𝑖) − Vmin (𝑖)
, (55)

where V
𝑘
(𝑖) represents the 𝑖th element of vector V

𝑘
, Vmin(𝑖)

denotes theminimumof the 𝑖th element of all the row vectors,
and Vmax(𝑖) denotes themaximum of the 𝑖th element of all the
row vectors.

Table 3: Fingerprint classification results on NIST-4.

True class Hypothesized class
A T L R W

A 432 12 3 1 2
T 28 296 8 4 0
L 4 5 370 0 4
R 3 8 1 386 3
W 3 1 6 5 380

3.2. Experiment Results and Analysis. The performance of
a fingerprint classification algorithm is often measured in
terms of accuracy. The accuracy is computed as the ratio
between the number of correctly classified fingerprint and
the total number of fingerprints in the test set. Each image
is labeled with one or more of the five classes (W, R, L, A,
and T). To simplify the training procedure, we make use of
only the first label of a fingerprint to train our system. For
testing, however, wemake use of all the labels for a fingerprint
and consider the output of our classifier to be correct if the
output matches any one of the labels. This is in line with the
common practice used by other researchers in comparing the
classification results on the NIST-4 database.

Classification accuracy does not always increase with
increasing𝐾 of the𝐾-nearest neighbor classifier; there exists
an optimal value of 𝐾 for finite training sample size classi-
fication problems. According to the method in [24], in our
experiments, 10 nearest neighbors (𝐾 = 10) are considered.
The classification results of our proposed approach are shown
in Table 3. The diagonal entries in Table 3 show the number
of test patterns from different classes which are correctly
classified.

From Table 3, we can conclude that the proposed algo-
rithm achieves an accuracy of 94.6 percent for the five-class
classification task. For the four-class classification task (where
classes A and T were collapsed into one class), an accuracy of
96.8 percent is achieved.

Experiment. To evaluate the performance of the proposed
algorithm, we have compared the proposed approach to
wavelet-based, GLCM-based, and Curvelet-based, respec-
tively. We use wavelet transform to decompose gray images
into five scales wavelet coefficients using wavelet bases
“Symmlets 4, 5, 6, 8, and 9” and calculate averaged 𝑙

1
-norm

of wavelet coefficients at each scale. Finally, WT feature
vector with dimension of 16 are acquired. The reason using
“Symmlets 4, 5, 6, 8, and 9” is that in the work of Tico et al.
[10] best results were obtained with these five wavelet bases.
In Table 4, we show the comparison results for the five-class
classification.

From Table 4, we can conclude that our algorithm
achieves higher accuracy of classes W by reducing the
misclassification of W as L or R. Our algorithm also achieves
higher accuracy of classes R by reducing the misclassification
of R as A. Finally, our algorithm achieves higher accuracy of
classes A by reducing the misclassification of A as T.
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Table 4: Comparison of accuracy on NIST-4 for the five-class classification.

Features Accuracy
A

Accuracy
T

Accuracy
L

Accuracy
R

Accuracy
W

Wavelet
(Symmlet 4) 92% 79.7% 94.2% 93.3% 93.7%

Wavelet
(Symmlet 5) 92% 82.7% 94.5% 93.5% 93.1%

Wavelet
(Symmlet 6) 92% 83.7% 94.2% 93.0% 93.7%

Wavelet
(Symmlet 8) 92% 82.7% 94.2% 93.0% 93.7%

Wavelet
(Symmlet 9) 92% 81.2% 94.2% 93.0% 93.7%

GLCM 78.4% 77.7% 79.4% 72.8% 82.7%
Curvelet 93.6% 84.7% 95.0% 94.0% 94.5%
Proposed algorithm 96.0% 88.1% 96.6% 96.3% 96.2%

Also, Curvelet-based is better than wavelet-based and
GLCM-based. The reason is CT can better capture the direc-
tion of fingerprint ridge than WT and GLCM. Furthermore,
the proposed algorithm can provide much more information
on the ridge direction by combining the good statistic
performance of GLCM and well capturing the direction of
CT.

Most of misclassifications in the proposed approach are
caused by heavy noise in the poor quality fingerprints, where
it is very difficult to correctly extract Curvelet coefficients.

4. Conclusion

In this paper, we present an efficient fingerprint classification
algorithm that uses CT and GLCM to model the feature
set of fingerprint. There are two main contributions in this
paper. Firstly, we construct Curvelet filter that can smooth
the discontinuities of ridges and remove the noise in the
original image. As a result, the direction of ridge is well
followed. Secondly, in combination with the effectiveness of
CT and GLCM, we propose to construct a 53-dimensional
feature vector as classifier input that can represent curves
singularities and the statistics in fingerprint image with
compact feature. We have tested our algorithm on the NIST-
4 database and a very good performance has been achieved
(94.6 percent for the five-class classification problem and
96.8 percent for the four-class classification problem with 1.8
percent rejection).These good performances of the proposed
algorithm could be ascribed to the high information contents
of Curvelet features and to the combination ofGLCMandCT.

Our system takes about 1.47 seconds on a AMD E-350
PC to classify one fingerprint, which needs to be improved.
Since image decomposition (filtering) steps account for 82
percent of the total compute time, special purpose hardware
for Curvelet transform can significantly decrease the overall
time for classification.
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In order to prevent the creep of surrounding rock in long-term construction, with consideration of different construction methods
and other factors during the construction of large-scale underground cavity, three different construction schemes are designed for
specific projects and a nonlinear viscoelastic-plastic creep model which can describe rock accelerated creeping is introduced and
applied to construction optimization calculation of the large-scale three-connected-arch hydraulic underground cavity through
secondary development of FLAC3D. The results show that the adoption of middle cavity construction method, the second
construction method, enables the maximum vault displacement of 16.04mm. This method results in less stress redistribution and
plastic zone expansion to the cavity’s surrounding rock than the other two schemes, which is the safest construction scheme. The
conclusion can provide essential reference and guidance to similar engineering for construction optimization.

1. Introduction

Since the construction period of large-scale underground
cavity engineering is long, the creep property of rock mass is
relatively obvious, andmany large-scale underground cavities
collapse and finally break down due to deformation which is
continuously developing with time. The selection of reason-
able construction scheme is one of the main ways to prevent
and control surrounding rock’s creep of the underground
cavity.

In the past years, numerous scholars at home and abroad
acquired lots of achievements in underground cavity con-
struction safety [1, 2] and its optimization [3, 4] and acquired
abundant accomplishment in rock mass creep constitu-
tive model [5], creep parametric inversion [6], engineering
application [7], and so forth as well. Meanwhile, lots of
mathematical softwares or numerical methods were used to
solve engineering problems, such as finite element method

[8], meshless or meshfree method [9, 10], discrete element
method [11, 12], and Fast Lagrangian Analysis of Continua
(FLAC) [13]. FLAC3D is a three-dimensional software that
uses full dynamics equation and has a good secondary
development interface, which can simulate and help analyze
the three-dimensional structure behavior and plastic flow
of soil, rock, and other materials. FLAC has become the
fastest and the most influential numerical analysis software
in geotechnical mechanics and engineering.

This paper takes research on a three-connected-arch front
inflow pool of an underground water intake pumping station
somewhere in Shenzhen; before construction of the project,
the FLAC3D software [13], with secondary development of the
nonlinear creep model, is applied by adopting the method
of numerical simulation to survey for a construction method
appropriate for the long-span hydraulic underground cavity
of this region, and the optimal safety construction method
has been proposed through comparative study on numerical
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simulation response, plastic zone expansion, and so forth
of surrounding rock displacement variation of three kinds
of construction methods. This research result can provide
reference and guidance for the similar projects.

2. Project Profile

The underground pump station is with floor elevation of the
front inflow pool at 17.3m, while ground elevation of current
situation at 55.0m, with net width of the underground pump
station at 26.9m, net length at 23.7m, andnet height at 15.2m.
It consists of 3 cavities, with span of single cavity exceeding
8.1m; 12.61m in the second half of the middle cavity is not
equipped with wall support, bearing by cross walls at two
sides.The horizontal layout of the pool support structure and
the cross-section of the second half of the pool are shown in
Figures 1 and 2.

The project is proposed to be constructed among the
valleys; the valley bottom is at the ground elevation of 53.1∼
56.2m, being relatively plain. The formation lithology of the
pump room is mainly distributed with residual soil at the
elevation of 55.0∼49.8m, moderately weathered limestone
at the elevation of 49.8∼26.0m, and moderately weathered
quartz sandstone at the elevation under 26.0m.

3. Nonlinear Viscoelastic-Plastic Creep
Constitutive Model

The nonlinear viscoelastic-plastic creep model is a tandem
compound of a nonlinear viscoelastic-plastic body (the third
part in Figure 3) and a Burgers creep model [14], as shown in
Figure 3. And see the FLAC3D secondary development of the
model in the document manual [15].

Wherein, when 𝜎 ≤ 𝜎
∞

(long-term strength or yield
strength), the third part does not work, and the model is
transformed into Burgers creep model; the creep equation of
the model is as follows:
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When 𝜎 > 𝜎
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, the creep equation of the creep model is as

follows:
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Here, 𝜂(𝑛, 𝑡) = 𝑡𝑛−1/𝜂
3
, where 𝜂

3
is the initial value of 𝜂(𝑛, 𝑡).

4. Calculation Model and Excavation Scheme

4.1. Numerical Model. A plane strain model is adopted
for calculation; the model consists of moderately weath-
ered quartz sandstone, moderately weathered limestone, and
residual soil from the bottom up; the PBA model has 16092
units and 24675 nodes in total, and side-middle cavity
method has 15884 units and 24372 nodes in total. The
horizontal displacement at left and right boundaries of the
whole model is restrained, the vertical displacement of the
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Figure 1: Plane figure of the front inflow pool.
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Figure 2: Cross-section (1-1) drawn of the front inflow pool.
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Figure 3: Nonlinear viscoelastic-plastic creep model.

lower boundary of the model is restrained, and the upper
boundary is the free boundary. See the mesh generation of
calculation model in Figure 4.
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(a) The side and middle cavity methods (b) PBA model

Figure 4: The numerical calculation model.

4.2. The Modeling Details

4.2.1. Parameter Selection. During the numerical analog
calculation process, the elastic constitutive is adopted for
initial support and secondary support. The Mohr-Coulomb
constitutive is adopted for calculating the initial ground
stress, and, according to the geological exploration report and
indoor experiment results, the basicmechanical property and
the support structure parameters of the surrounding rock
at the location of the pump station can be seen in Table 1.
And the mechanical property of initial support anchor rod
is shown in Table 2.

4.2.2. The Creep Calculation Details. The second-phase engi-
neering of the three-connected-arch underground pump
station mentioned in this paper is going through feasibility
analysis and verification of the design stage, and site dis-
placement deformation monitoring data is not available yet;
therefore, only the moderately weathered limestone which is
affected much by excavation disturbance is conducted with
creep calculation (that was used the nonlinear visco-elastic-
plastic creep constitutive model, while other rock mass still
used Mohr-Coulomb constitutive model), and the creep
calculation parameter can be obtained through inversion of
the site monitoring displacement data of the first-phase engi-
neering construction; the parameter inversion is realized by
adopting quasi-Newton algorithm (BFGS algorithm) Matlab
programming as well, as shown in Table 3.

Three-step method was used in each cavity excavation
and creep calculation age of every step is 15 days. In the
process of calculation, the unbalanced force rate is set as 1𝑒−6,
and the time step is 1𝑒 − 4.

4.3. Simulation Scheme of Construction Method. According
to the construction experience of long-span underground
cavity at home and abroad, and combining with structural
features of the underground cavity mentioned in this paper,
three excavation construction methods are designed here for
numerical simulation optimization calculation. Excavation
footage for each construction method is 2m, and construc-
tion among stairs is staggered for 6m. 30 cm of sprayed
concrete and 3m of anchor rod are adopted for initial
support.

4.3.1. ConstructionMethod I. Construction Procedures of
Middle Cavity Method (See Figure 5)

Step 1. Excavate the first, second, and third parts of rock
mass of middle cavities, hang bar-mat reinforcement at
surrounding rock in sequence, blow the anchor rod, and
conduct with sprayed concrete.

Step 2. Cast ground beam 4, concrete floor 5, stand wall 6, top
beam 7, and second lining 8 of the middle cavity.

Step 3. Excavate the ninth, tenth, and eleventh parts of the
rock mass of the left cavity, dismantle the temporary support
of corresponding part, and conduct the initial support such
as anchor rod, and sprayed concrete.

Step 4. Cast the ground beam 12, floor 13, and left wall 14 and
the second lining 15 of the left cavity.

Step 5. Excavate the right cavity with the same method as the
left cavity.

4.3.2. ConstructionMethod II. Construction Procedures of Side
Cavity Method (See Figure 6)

Step 1. Excavate the left cavities 1, 2, and 3, and perform initial
support.

Step 2. Cast the ground beam 4, stand column 5, top beam 6,
floor 7, side wall 8, and the second lining 9.

Step 3. Excavate the right cavities 10, 11, and 12 with the same
method, and perform the initial support.

Step 4. Cast the ground beam 13, stand wall 14, top beam 15,
floor 16, side wall 17, and the second lining 18.

Step 5. Excavate the cavities 19, 20, and 21, dismantle the
temporary anchor rod, and complete the lining 22 and the
floor 23.
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Table 1: The rock mass parameters.

Surrounding rock 𝐸/GPa 𝜐 𝐶/Pa 𝜑/∘ 𝜎

𝑡
/Pa 𝜌/kg⋅m3

Residual soil 1.8𝑒 − 4 0.3 1𝑒4 20 1𝑒4 1900
Weakly weathered limestone 10 0.32 1𝑒6 35 1𝑒6 2400
Weak weathering quartz sandstone 15 0.27 1𝑒6 40 1𝑒6 2500
Primary lining 25 0.22 2300
Secondary lining 30 0.2 2500

Table 2: Mechanics parameters of cable and grout.

The basic parameters Unit Values
Cable elastic modulus (Gpa) 200
Cohesive force of cement slurry (kN/m) 800
Friction coefficient of cement slurry (∘) 38
Stiffness of cement slurry (N/m2) 6.33𝐸9

Outer perimeter of cement slurry (m) 0.5024

Cable cross-sectional area (m2) 1.20𝐸 − 3

Cable tensile yield strength (MN) 200

Table 3: The nonlinear creep model parameters.

𝐸

1

(GPa)
𝜂

1

(GPa⋅d)
𝐸

2

(GPa)
𝜂

2

(GPa⋅d)
𝜂

0

(GPa⋅d) 𝑛

9.626 103.179 4.96 92.13 2.13 1

4.3.3. Construction Method III. Construction Procedures of
PBA (See Figure 7)

Step 1. Excavate pilot tunnels 1, 2, 3, and 4, hang the bar-mat
reinforcement, blow the anchor rod, and spray the concrete.

Step 2. Cast the ground beams 3 and 7, dig holes and cast stand
columns 5 and 8, cast the top beams 6 and 9, excavate the rock
mass 10, and cast the second lining 11.

Step 3. Symmetrically excavate the side cavity rock masses
12, 13, and 14, dismantle the temporary support, and conduct
initial support; cast side ground beam 15, floor 16, side wall 17,
and the second lining 18 in sequence.

Step 4. Excavate the bottom rock masses 19 and 20 of the
middle cavity, dismantle the temporary support structure,
and cast the floor 21 of the middle cavity.

5. Results of Construction
Optimization Calculation

5.1. Surrounding Rock Creep Property Analysis. Figure 8
shows the excavation-completed surrounding rock displace-
ment contour maps of three excavation methods after per-
forming the second support; it can be seen that themaximum
range of surrounding rock displacement deformation under
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Figure 5: Construction steps of middle cavity method.
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Figure 6: Construction steps of side cavity method.
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Figure 7: Construction method of PBA.

the three excavation methods is focused at the vault part of
the three cavities.

Figure 9 shows, respectively, cavity vault part surround-
ing rock displacement monitoring curves of three construc-
tion methods. Each curve in the figure reflects the creep
condition of the vault at each construction phase. Table 4
shows percentage statistics of vault maximum accumulative
creep value and increment at each construction phase; it can
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Figure 8: Displacement contour map after excavation completed.

Table 4: Comparative table for maximum settlement value of phased excavation in different methods.

Construction method First stage Excavation complete
Vault maximum accumulative creep value (mm) Increment (%)

Side cavity method 13.49 16.26 3.30
Middle cavity method 14.06 16.04 6.01
PBA method 5.09 14.18 3.35

be seen that the first-phase creep value of the side cavity
method is relatively lower, being 13.49mm, while the creep
increment of the right cavity at second phase increases to
16.68%; the vault creep value is 16.04mm by adopting middle
cavity method for excavation, which is 0.22mm lower than
that of side cavity method; for PBA construction, the excava-
tion of pilot tunnel releases part of stress in the surrounding
rock, and the beam, stand column, and themiddle cavity vault
second lining and other permanent supports provide well
restraining effect for surrounding rock deformation in the
subsequent construction, which makes the cavity maximum
vault accumulative deformation being merely 14.18mm.

By comparing three construction methods, it can be
obtained that the PBA construction is the optimal excavation
construction scheme in the point of surrounding rock dis-
placement, and the middle cavity method follows.

5.2. Stress Field Distribution Rule of Surrounding Rock. The
surrounding rockmaximum andminimumprinciple stresses
variation contour map obtained after excavation completed
through three excavation construction methods can be seen
in Figures 10, 11, and 12. In the FLAC software, it is ruled
that tension stress is positive, while pressure stress is negative;
therefore, in the figure, SMin actually represents the maxi-
mum principle stress, while SMax represents the minimum
principle stress. Table 5 is the numerical statistics table of
maximum and minimum stresses.

All the three excavation methods enable stresses of the
surrounding rock being redistributed and stress concentra-
tion appearing at the vault and the bottom part of the three
cavities; themiddle cavitymethod and the side cavitymethod
cause the equal maximum pressure stress at 2.04MPa, while
the PBA construction causes the maximum pressure stress
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Figure 9: Creep curve at vault monitoring point of excavated cavity.
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Figure 11: Surrounding rock principle stress contour map of middle cavity method.
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Figure 12: Surrounding rock principle stress contour map of PBA.

at 3.30MPa; they all cause the surrounding rock generating
tension stress area and tension stress serious concentration
appearing near the vault of the middle cavity; the tension
stress of the side cavity method is greatest, 0.58MPa; then the
PBA follows, which is 0.26MPa; the middle cavity method
provides the lowest stress, 0.16MPa.

5.3. Force Characteristic Analysis of Support Structure

5.3.1. Anchor Rod Support. Figure 13 is the anchor rod axial
force diagram of three excavation methods after the excava-
tion is completed; in the diagram, black indicates the tension
force of the anchor rod, and red indicates the pressure force
of the anchor rod. In the three excavation methods, the
position with the maximum force of the anchor rod is the
vault, wherein pressure of the anchor appears at both sides

of the vault of every cavity in the side cavity method and the
middle cavity method, and the maximum axial force of the
construction anchor rods of the two methods is, respectively,
25190N and 27640N; and for the PBA construction the
anchor rods at the top of the cavity are all pressed, and the
maximum tension load of the anchor rod is 26450N.

Seen from the axial force characteristic of the anchor rod,
the anchor rod bears themost sufficient force throughmiddle
cavity method for construction, and the side cavity method
follows.

5.3.2. The Second Lining. Figures 14, 15, and 16 show, respec-
tively, distribution diagram of minimum and maximum
principle stress of secondary support.
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Table 5: Comparative table of phase-excavation surrounding rock stress in different construction methods.

Construction method Maximum pressure stress (MPa) Maximum tension stress (MPa) Ratio
Side cavity method 2.04 0.58 3.52
Middle cavity method 2.04 0.16 12.75
PBA method 3.30 0.26 12.69
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Figure 13: Anchor rod axial force after the excavation is completed.
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Figure 14: Second lining principle stress contour of side cavity method.
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Figure 15: Second lining principle stress contour of middle cavity method.
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Figure 16: The second lining principle stress contour map of PBA.

Seen from the figure, the main distribution rule of
the maximum principle stress of the secondary support is
basically the same, the maximum value always appears at
two sides of the middle cavity and the joint part of two side
cavities; the maximum value of the middle cavity method
is 0.287MPa and that of PBA is 0.34MPa; the minimum
principle stress concentration mainly appears at the stand
column and support position of the beam; the maximum
value of side cavity construction is −2.92MPa, while that of
middle cavity construction is −3.28MPa and that of PBA
construction is −4.30MPa. Concrete is mainly a pressure
part; the appearance of tension stress might lead to tension
failure in the secondary support concrete. The construction
bymiddle cavitymethod provides relatively lighter secondary
support force, without heavy tension stress, so as to be the
optical support scheme.

5.4. Distribution Feature Analysis of Plastic Zone around the
Cavity. Even the creep property of the surrounding rock is

considered in the construction, and the calculated maximum
value of displacement and stress is not great; the under-
ground cavities may also come up with surrounding rock
falling, collapse, and other unstable phenomenon.Therefore,
the surrounding rock plastic zone distribution during the
construction of the cavities will be considered as well.

After the construction is completed, the plastic zone
distribution can be seen in Figures 17(a), 17(b), and 17(c). It
can be seen from the figure that the surrounding rock plastic
yielding area of PBA is the largest, and the construction of
middle cavity method causes smaller plastic yielding area to
the surrounding rock of the cavity.

Therefore, after comprehensive comparison and analysis
of surrounding rock creep property, surrounding rock stress
field distribution features, support structure force character-
istics, and construction caused by surrounding rock plastic
zone expansion condition, this paper shows the point that in
the three construction schemes, the middle cavity method is
the optimum scheme, and the PBA follows.
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(c) PBA

Figure 17: Surrounding rock plastic zone expansion.

6. Conclusions

When the nonlinear viscoelastic-plastic creep model is
adopted, the construction development scheme for long-
span three-connected-arch underground hydraulic cavity
somewhere in Shenzhen is optimized, and the following
conclusions are obtained.

(1) The nonlinear viscoelastic-plastic creep model can be
well applied to the construction optimization analysis
for large-scale underground cavities.

(2) From the point of surrounding rock’s creep displace-
ment, it is obtained that the PBA is the optimal
scheme, and the middle cavity method follows.

(3) Seen from the point of surrounding rock’s stress, the
force characteristic of support structure, the expan-
sion of surrounding rock’s plastic zone, and difficulty
level of construction, the middle cavity method is the
optimal scheme.

(4) From the comparison and selection of numerical
simulated construction of the three construction
schemes, the cavity vault displacement is 16.04mmby
adopting the middle cavity method for construction,
thismethod causes smaller stress redistribution to the
cavity surrounding rock, the maximum tension stress
in the surrounding rock is only 0.16MPa, and even the
plastic zone expansion is smaller than the other two
schemes, so it is the optimal construction scheme.
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By constructing a radial basis function collocation method combined with a difference method, a two-dimensional mathematical
model with boundary conditions of soil water movement under irrigation is proposed.The nonlinear term is dealt with a difference
method and the equation is solved using an implicit scheme. In addition, the existence and uniqueness of the solution to the soil
water movement equation are proven. Numerical results show that the proposed method has high precision and is easier to use
than traditional methods. Moreover, the selection of parameter c plays an important role in guaranteeing calculation precision. It
lays the foundation for the numerical solutions to high-dimensional soil water movement equations.

1. Introduction

Between 1960 and 2000, numerical techniques such as
boundary element and finite element methods have made
spectacular advances in the computation of physical phe-
nomena in engineering and sciences. Particularly, the last
two decades have witnessed substantial efforts in developing
a new class of numerical methods. These methods, using
traditional methods that require certain underlying meshes
such as the triangulation of a region for computation, were
primarily developed for simulating low-dimensional applica-
tion problems. However, designing relevant meshes is usually
quite a difficult task for two-dimensional regions and might
become impossible for higher-dimensional problems.

However, the triangulation process is too time consum-
ing, even if a sophisticated mesh-generator is employed. In
fact, for a given distribution of points, it is possible to achieve
a mesh quickly, but this always requires a considerable
number of iterations including manual interaction before
reaching a satisfactory mesh.

Meshless methods were first introduced by Lucyt, and
Gingold and Monaghan in 1977 [1, 2]. Further works, such
as Nayroles et al. [3], Belytschko et al. [4], Schaback [5],
Sukumar et al. [6], Wu [7], and Wendland [8, 9] (see books
[10, 11]), attempted to reduce or even eliminate the need

for discretization of a domain or surface in the context of
numerical solutions for boundary and initial value problems.
These rapidly developed methods can not only reduce the
large costs of labor, but also spare computational time
compared to the finite element method, boundary element
method, and other mesh-dependent methods.

The initial idea of meshless methods could date back
to the smooth particle hydrodynamics (SPH) method for
modeling astrophysical phenomena [1, 2]. In 1992, Nayroles
et al. proposed the diffuse element method (DEM) [3]. In
1994, Belytschko et al. improved theDEMand introduced the
element-free Galerkin method (EFG) [4]. Since then, there
has been a great deal of research into meshless methods.
Meshless methods, such as the reproducing kernel particle
method (RKPM) by Liu et al. [12], Hp-cloud method by
Duarte and Oden [13], natural element method (NEM)
by Sukumar et al. [6], partition of unity finite element
method (PUFEM) by Babuška andMelenk [14], andmeshless
Galerkin method using radial basis functions (RBF) by
Wendland [9], have also been described in literatures. The
major differences between these meshless methods, all of
which can be classified as Galerkin methods, come only
from the techniques used for interpolating the trial functions.
Even though no mesh is required in these methods for the
interpolation of the trial or test functions and the solution
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variables, the use of shadow elements is unavoidable during
the integration of the symmetric weak form.Therefore, these
methods are not truly meshless.

The finite point method (FPM) introduced by
Oñate et al. [15], which is based on the moving least-
squares and the collocation method, is a truly meshless
method. Other truly meshless methods include the PCM
[16], the Hp-meshless clouds [17], the LBIE [18], the LSC [19],
and the WLSM [19] among others. In particular, in 1990,
Kansa introduced the radial basis function (RBF) collocation
method for solving elliptic, hyperbolic, and parabolic partial
differential equations (PDEs) [20]. Later, the RBF was
further developed by Schaback [5] and Fasshauer [21]. Hon
et al. applied the RBF to the numerical computation of the
variable normal equations, nonlinear Burgers equation, and
shallow water wave equation [22]. In 1999, Rippa carried
out work on selecting the correct shape parameter 𝑐 for
the RBFs [23]. Another class of RBF was further developed
by Wendland [8, 9], Wu [7], and Buhmann [24]. Zhang
et al. have made more research on element-free kp-Ritz
method and applied it to solve different problems [25–29].
Therefore, the collocation-based meshless method has been
an important meshless method in the current literature [30].

By creating a univariate basis function with an Euclidean
norm, meshless methods are often naturally radically sym-
metric, and the high-dimensional problem can be turned into
virtually one-dimensional one. Consequently, the study of the
numerical solutions of PDEs through radial basis function
interpolation has yielded a number of significant results.

1.1. The Problem and the Approach to Solve the Problem.
The FEM has difficulty in remeshing and adaptive analysis.
In contrast, meshless methods do not require a mesh to
discretize the domain, and the approximate solution is con-
structed entirely with a set of scattered nodes [31]. However,
meshlessmethodsmay lead to lower computational efficiency
than FEM because more computational effort for the mesh-
less interpolation and numerical integrations are required
[32]. Hence, the improvement of the computational efficiency
of meshless methods targeted at meshless interpolation and
numerical integrations becomes an important issue. Other
concerns or weaknesses of the existing meshless methods
include difficulty in introducing the essential boundary
conditions, a greater cost in evaluating the shape function
derivatives, problems in handling discontinuities such as
those due to heterogeneous material distributions, and the
need for complicated node connectivity to ensure accurate
results.

A trulymeshlessmethod, based on collocationwith radial
basis functions and radial basis functions are chosen to
represent the solutions of PDEs, is the main focus of this
paper. Moreover, the collocation-based meshless method is
a truly meshless technique without mesh discretization. This
method has the advantage of higher accuracy, convenient for
computing, and has been successfully applied to numerical
solutions of various PDEs. By using collocation with radial
basis functions, the partition of the domain is not needed;
hence the method can be applied to complex domains and
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Figure 1: Schematic diagram of flow region.

overcomes some drawbacks of the traditional finite element
method. It only needs to compute the shape functions and
their derivatives, while the finite element method requires
a calculation of the relevant integrals that often lowers
the efficiency of computation significantly. The boundary
conditions are relatively easier to be imposed without special
manipulation. Finally, the way of obtaining the solutions to
the PDEs is intuitive. From a practical point of view, this
approach can achieve higher accuracy withmore easily coded
computer programs. Therefore, the collocation method with
radial basis function interpolation can produce good results.

1.2. Mathematical Model of Soil Water Movement. Assume
that permeable pipes in fields are parallel and have the
same spacing and depth. Figure 1 shows a soil profile which
is perpendicular to the permeable pipeline. Assuming that
the water flow in the soil is negligible, then the problem
considering irrigation can be solved as a plane problem.
Obviously, in the case of Figure 1, it is sufficient to focus on
soil watermovement in the shaded part abcd, namely, the flow
region.

In the region of soil water flow, both perpendiculars ad
and bc are symmetrical lines, where ad traverses through
the center of a permeable pipe and bc is equidistant from
two adjacent permeable pipes. The symmetry means that the
water flux along the normal direction of two lines equals zero.
Line ab, the earth’s surface, is the upper boundary of the
region of soil water flow. The water flow which crosses line
ab is affected by the soil’s conveyance capacity, which is in
turn related to the surface soil transpiration and strength of
rainfall. By ignoring the transpiration and rainfall effects, the
water flux across ab is zero. Line dc is the lower boundary of
the region of soil water flow but is deep enough so that water
movement caused by irrigation cannot reach it.

Assume that, in the region of soil water flow, the soil
water flow is continuous in time and space, obeying the law
of mass conservation. Then we can develop mathematical
models of the soil water movement based on the physical
process through the area.

The mathematical model of 2D water movement in
unsaturated soil can be established as

𝜕𝜃

𝜕𝑡

=

𝜕

𝜕𝑥

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

) +

𝜕

𝜕𝑧

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

) +

𝜕𝐾 (𝜃)

𝜕𝑧

, (1)
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where 𝜃 is the volumetric soil water content; 𝐷(𝜃) and 𝐾(𝜃)
both are continuous functions which denote the diffusivity
and hydraulic conductivity of the unsaturated soil flow
respectively; 𝑡 is time and 𝑧 is the distance with the upward
direction defined as positive.

The remainder of this paper is organized as follows. In
Section 2, we introduce the construction of the meshless
method based on the collocation method with radial basis
functions, where the explicit schemes for the given equation
are proposed and the existence and uniqueness of the solution
to the method are proved. In Section 3, we give some
applications and apply the method developed in this paper to
examine the appropriateness and efficiency of the numerical
solutions and to analyze the factors influencing the accuracy.
We also compare our method to FEM. Section 4 comprises
the conclusions and remarks.

2. Construction of a Meshless Method Based
on Collocation with Radial Basis Functions

2.1. Radial Basis Functions. Radial basis functions (RBFs),
also known as distance basis functions, are a type of func-
tions with a basic variable 𝑑𝑗 (𝑑𝑗 = ‖𝑥 − 𝑥𝑗‖). They are
isotropic and simple in form and can be solved easily with
numerical calculation. The method, which combines radial
basis functions with collocation, has many advantages when
solving the partial differential equation [33, 34]. It has no
correlation with the space dimensions and does not need
any element or mesh for interpolation. Therefore, it is a truly
meshless method. Currently, FEM [35] and FDM [36–38]
are mostly used to solve soil moisture movement equations.
With the development of meshless methods in recent years,
many scholars now solve the soil water seepage problem
using the finite volume method [39] and the RBF method
[40]. The mathematical models of soil water movement
are usually convection-diffusion equations, meaning that
numerical oscillation occurs frequently when FDMor FEM is
used. However, the radial basis function collocation method
can solve many of these problems.

2.2. Construction of Radial Basis FunctionCollocationMethod.
The 2D soil water movement equation is

𝜕𝜃

𝜕𝑡

=

𝜕

𝜕𝑥

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

) +

𝜕

𝜕𝑧

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

)

+

𝜕𝐾 (𝜃)

𝜕𝑧

, (𝑥, 𝑧) ∈ Ω,

𝜃 (𝑥, 𝑧, 0) = 𝜃0, (𝑥, 𝑧) ∈ Ω,

𝜃 (𝑥, 𝑧, 𝑡) = 𝜃1, (𝑥, 𝑧) ∈ 𝜕Ω,

(2)

where 𝜃 is the volumetric soil water content, 𝐷(𝜃) and
𝐾(𝜃) are the diffusivity and hydraulic conductivity of the
unsaturated soil flow, respectively, 𝑡 is time, and 𝑧 is the
distance with the upward direction defined as positive. 𝜃0 is
the initial water content, 𝜃1 is the constant water content of
ground under humid conditions,Ω is the seepage region, and
𝜕Ω is the boundary ofΩ.

Because the quadratic term in (2) is nonlinear, we cannot
use the collocation method directly. Thus, we apply centered
differences to deal with the nonlinear term in (𝑥𝑖, 𝑧𝑗):

𝜕

𝜕𝑥

[𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

]

𝑥=𝑥𝑖

≈

1

2Δ𝑥

{[𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

]

𝑥=𝑥𝑖+1

− [𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

]

𝑥=𝑥𝑖−1

}

=

1

2Δ𝑥

[𝐷(𝜃𝑖+1,𝑗)(

𝜕𝜃𝑖+1,𝑗

𝜕𝑥

)

𝑥=𝑥𝑖+1

−𝐷(𝜃𝑖−1,𝑗)(

𝜕𝜃𝑖−1,𝑗

𝜕𝑥

)

𝑥=𝑥𝑖−1

] ,

𝜕

𝜕𝑧

[𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

]

𝑧=𝑧𝑗

≈

1

2Δ𝑧

{[𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

]

𝑧=𝑧𝑗+1

− [𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

]

𝑧=𝑧𝑗−1

}

=

1

2Δ𝑧

[

[

𝐷(𝜃𝑖,𝑗+1)(

𝜕𝜃𝑖,𝑗+1

𝜕𝑧

)

𝑧=𝑧𝑗+1

−𝐷(𝜃𝑖,𝑗−1)(

𝜕𝜃𝑖,𝑗−1

𝜕𝑧

)

𝑧=𝑧𝑗−1

]

]

,

(3)

whereΔ𝑥 andΔ𝑧 are spatial intervals, respectively. (𝑥𝑖, 𝑧𝑗) are
boundary points when 𝑖, 𝑗 = 1,𝑁, are inner points when 𝑖, 𝑗 =
2, 3, . . . , 𝑁 − 1.

Discretizing the left side of (2) with forward differences
gives

(

𝜕𝜃

𝜕𝑡

)

𝑡=𝑡𝑛+1

(𝑥𝑖 ,𝑧𝑗)

≈ (

𝜃
𝑛+1

− 𝜃
𝑛

Δ𝑡

)

(𝑥𝑖 ,𝑧𝑗)

=

𝜃
𝑛+1
𝑖,𝑗 − 𝜃

𝑛
𝑖,𝑗

Δ𝑡

. (4)

Discretizing the third term in the right side of (2) with
central differences gives

(

𝜕𝐾 (𝜃)

𝜕𝑧

)

𝑡=𝑡𝑛+1

(𝑥𝑖 ,𝑧𝑗)

≈

𝐾 (𝜃
𝑛+1
𝑖,𝑗+1) − 𝐾 (𝜃

𝑛
𝑖,𝑗−1)

2Δ𝑧

. (5)

Let function ̃𝜃(𝑋, 𝑡𝑛) be an approximation of 𝜃(𝑋, 𝑡𝑛):

̃
𝜃 (𝑋, 𝑡

𝑛
) =

𝑁𝐼

∑

𝑖=1

𝛼
𝑛
𝑖 𝜑 (





𝑋 − 𝐼𝑖





) +

𝑁𝑏

∑

𝑖=1

𝛽
𝑛
𝑖 𝜑 (





𝑋 − 𝐵𝑖





) , (6)

where 𝑋 = (𝑥, 𝑧), 𝐼𝑖 ∈ Ω, and 𝐵 ∈ 𝜕Ω. 𝑁𝐼 is the number of
the nodes in the region and𝑁𝑏 is the number of the nodes on
the border.
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Applying collocation method, (6) should satisfy the
differential equation for the region Ω in (7) and boundary
conditions on the borders 𝜕Ω in (8). That is,

𝑁𝐼

∑

𝑖=1

𝛼
𝑛
𝑖 (𝜑 (






𝐼𝑗 − 𝐼𝑖
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𝑑𝑥
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𝑛
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)
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𝑑

𝑑𝑧

(𝐷(𝜃
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)
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𝐼𝑗 − 𝐵𝑖
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(𝐷(𝜃
𝑛
(𝐼𝑗))
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𝐼𝑗 − 𝐵𝑖
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𝑑𝑧
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𝑛
𝑖,𝑗 +

𝜕𝐾 (𝜃
𝑛
(𝐼𝑗))

𝜕𝑧

, 𝑗 = 1, 2, . . . , 𝑁𝐼,

(7)

𝑁𝐼
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𝑖 𝜑 (
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𝛽
𝑛
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𝑛
1 (𝐵𝑗) . 𝑗 = 1, 2, . . . , 𝑁𝑏.

(8)

Let

𝜓 (‖𝑋 − 𝐼‖) = 𝜑 (‖𝑋 − 𝐼‖)

−

𝑑

𝑑𝑥
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.

(9)

Then (7) and (8) can be expressed with the following matrix
equation:

HU = F, (10)

where

H =

[

[

[

[

[

[

[

[

[

[

[

[
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]

]

]

]

]

]

]

]

]

]

]

,

U = [𝛼
𝑛
1 , 𝛼
𝑛
2 , . . . , 𝛼

𝑛
𝑁𝑖
, 𝛽
𝑛
1 , 𝛽
𝑛
2 , . . . , 𝛽

𝑛
𝑁𝑏
]

𝑇
,

F = [𝑓𝑛1 (𝐼1), 𝑓
𝑛
1 (𝐼2), . . . , 𝑓

𝑛
1 (𝐼𝑁𝑖

), 𝜃
𝑛
1(𝐵1), 𝜃

𝑛
1 (𝐵2) , . . . , 𝜃

𝑛
1 (𝐵𝑁𝑏

)]

𝑇
.

(11)

2.3. The Existence and Uniqueness of the Solution. Let

A1 =
[
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]

,
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...
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.

(12)

Then 𝐻 = [
𝐴1 𝐴2
𝐴3 𝐴4

]. For (10), the following theorem is
obtained.

Theorem 1. If the Fourier transform 𝐹[𝜙] of 𝜙(𝜔) is almost
everywhere larger than 0 and (A3A−11 A2 − A4)

−1 exists, then
𝐻 is invertible. Consequently, the matrix equation (10) has a
unique solution.

Proof. First, we can show that A−11 and A−14 exist. According
to the characteristics of radial basis function, matrix A1 is
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symmetric. Then we show that it is positive definiteness. For
∀𝜉 (𝜉 ̸= 0) ∈ 𝑅

𝑁𝑏 ,

(A1𝜉, 𝜉) =
𝑁𝑏

∑

𝑗=1

𝑁𝑏

∑

𝑘=1

𝜉𝑗𝜉𝑘𝜑𝑗 (𝑥

𝑗)

=

𝑁𝑏

∑

𝑗=1

𝑁𝑏

∑

𝑘=1

𝜉𝑗𝜉𝑘𝜑 (





𝑥𝑗 − 𝑥𝑘






)

= (

1

2𝜋

)

𝑁𝑏

∫

+∞

−∞

𝐹 [𝜑]




𝜉(𝜔)






2
𝑑𝜔 > 0,

(13)

where 𝜉(𝜔) = ∑𝑁𝑏𝑗=1 𝜉𝑗𝑒
𝑖<𝜔,𝑥𝑗>. So A1 is a symmetric positive

definite matrix; that is, A−11 exists.
Because 𝜑(𝑟) is an even function, then −𝜑(𝑟) is an even

function too. Moreover, 𝐹[−𝜑] = −(𝑖𝜔)
2
𝐹[𝜑] = 𝜔

2
𝐹[𝜑] >

0. Similarly, A4 is also a symmetric positive definite matrix.
Hence, A−14 exits. Now, we have

[
E −A2A−14
0 E ] [

A1 A2
A3 A4

] = [
A1 − A2A−14 A3 0

A3 A4
] . (14)

Computing the determinants of both sides of (14), we have

|H| =









A1 A2
A3 A4










=






A1 − A2A

−1
4 A3






⋅




A4




. (15)

As (A3A−11 A2 − A4)
−1 exists,

(A1 − A2A
−1
4 A3)

× [A−11 − A−11 A2(A3A
−1
1 A2 − A4)

−1A3A
−1
1 ]

= E − A2(A3A
−1
1 A2 − A4)

−1A3A1
−1

− A2A
−1
4 A3A

−1
1 + A2A

−1
4 A3A

−1
1 A2

× (A3A
−1
1 A2 − A4)

−1
A3A
−1
1 .

(16)

In addition,

A2A
−1
4 A3A

−1
1 A2(A3A

−1
1 A2 − A4)

−1A3A
−1
1

− A2(A3A
−1
1 A2 − A4)

−1A3A
−1
1

= A2A
−1
4 (A3A

−1
1 A2 − A4)

× (A3A
−1
1 A2 − A4)

−1A3A
−1
1

= A2A
−1
4 A3A

−1
1 .

(17)

By (16) and (17), we obtain

(A1 − A2A
−1
4 A3)

× [A−11 − A−11 A2(A3A
−1
1 A2 − A4)

−1
A3A
−1
1 ] = E.

(18)
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Figure 2: The exact solutions of Example 1.

So

(A1 − A2A
−1
4 A3)

−1

= A−11 − A−11 A2(A3A
−1
1 A2 − A4)

−1
A3A
−1
1 .

(19)

According to (15) and (19), we know that |H| ̸= 0. Thus,
the matrix equation (10) has a unique solution. Now the
numerical solution to problem (1), based on the radial basis
function collocation method, can be calculated.

3. Numerical Examples

Example 1. Solve the following linear model using the radial
basis function collocation method:

𝜕𝜃

𝜕𝑡

=

𝜕

𝜕𝑥

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

) +

𝜕

𝜕𝑧

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

) + 𝑓,

(𝑥, 𝑧) ∈ Ω = [0, 1] × [0, 1] ,

𝜃 (𝑥, 𝑧, 0) = 𝜃0, (𝑥, 𝑧) ∈ Ω,

𝜃 (𝑥, 𝑧, 𝑡) = 𝜃1, (𝑥, 𝑧) ∈ 𝜕Ω, 𝑡 > 0.

(20)

Let𝐷(𝜃) = 1; then the analytic solution of (20) is 𝜃(𝑧, 𝑡) =
(𝑥
2
−𝑥)(𝑧

2
−𝑧)𝑡 and 𝑓 = (𝑥2 −𝑥)(𝑧2 −𝑧)−2𝑡(𝑥2 +𝑧2 −𝑥−𝑧).

The values of 𝜃0 and 𝜃1 are determined by analytic solution
using a spatial step ℎ = 0.1 and a time step Δ𝑡 = 0.01 from
𝑡 = 0 to 𝑡 = 10. The Gaussian function exp(−𝑐𝑟2) is selected
as the radial basis function and the error estimate is based on
𝐿2-norm.The numerical and exact solutions of Example 1 are
shown in Figures 2 and 3, respectively.

Table 1 shows a comparison of this method with FEM,
where ℎ = 0.1 and 𝑡 = 10.

Next, we consider the time step Δ𝑡 = 0.01, a different
spatial step, and different parameters 𝑐 in the Gaussian
function exp(−𝑐𝑟2). The results are shown in Table 2.

For the linear model, Figures 1–4 and Table 1 show
that the method presented in this paper is feasible. And
comparing it with the traditional method, it showed good
accuracy and rapid convergence rate. And Table 2 shows that
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Table 1: The results of the new method compared with FEM.

Numerical methods 𝑡 Calculation errors Calculation time(s) Degree of convergence

New method 0.5 8.4197𝑒 − 004 1.230020 2.7300
1.0 9.1056𝑒 − 004 2.427944 2.4725

FEM 0.5 1.0017𝑒 − 003 1.021520 2.6720
1.0 1.6667𝑒 − 003 3.825802 2.2707

Table 2: Numerical solutions of Example 1 related to the parameter and spatial step.

Spatial step Parameters 𝑐 Calculation errors Calculation time(s)

0.1
9.0 3.4000𝑒 − 003 1.372784
9.5 9.1056𝑒 − 004 2.427944
9.6 3.4000𝑒 − 003 1.580791

0.25
0.33 1.1000𝑒 − 003 0.672394
0.35 5.7098𝑒 − 004 0.659509
0.4 9.2511𝑒 − 004 0.659885
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Figure 3: Numerical solutions using the radial basis function
collocation method.

the computational accuracy and computing time are both
related to the selections of parameter 𝑐 in the radial basis
functions and the spatial step.

Example 2. We consider the 2D horizontal absorption soil
water movement equation:

𝜕𝜃

𝜕𝑡

=

𝜕

𝜕𝑥

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑥

) +

𝜕

𝜕𝑧

(𝐷 (𝜃)

𝜕𝜃

𝜕𝑧

) + 𝑓,

(𝑥, 𝑧) ∈ Ω = [0, 1] × [0, 1] ,

𝜃 (𝑥, 𝑧, 0) = 𝜃0, (𝑥, 𝑧) ∈ Ω,

𝜃 (𝑥, 𝑧, 𝑡) = 𝜃1, (𝑥, 𝑧) ∈ 𝜕Ω, 𝑡 > 0.

(21)

Here 𝐷(𝜃) = 0.01𝑒𝜃, 𝑓 = −0.02𝑡
2
(𝑥 − 𝑥

2
)(𝑧 − 𝑧

2
)(𝑥
2
− 𝑥 +

𝑧
2
− 𝑧) − 0.01𝑡

2
(𝑧
2
(2𝑥𝑧 − 𝑧 − 2𝑥 + 1)

2
) + 𝑥
2
(2𝑥𝑧 − 2𝑧 − 𝑥 +

1)
2
+(𝑥−𝑥

2
)(𝑧
2
−𝑧) and the analytic solution is 𝜃(𝑧, 𝑡) = (𝑥2−

𝑥)(𝑧
2
−𝑧)𝑡.The values of 𝜃0 and 𝜃1 are determined by analytic

solution. It is a nonlinear equation with the spatial step
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Figure 4: The error graph of the new method.
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Figure 5: The exact solutions of Example 2.

ℎ = 0.1 and time step Δ𝑡 = 0.01 from 𝑡 = 0 to 𝑡 =

10. The radial basis function is also a Gaussian function
exp(−𝑐𝑟2) (𝑐 > 0). The error estimate is based on 𝐿2-norm.
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Table 3: The results of the new method compared with FEM for Example 2.

Numerical methods 𝑡 Calculation errors Calculation time(s) Degree of convergence

New method 0.5 4.6462𝑒 − 005 2.100832 3.6871
1.0 9.6914𝑒 − 005 3.782251 3.2203

FEM 0.5 1.0701𝑒 − 004 2.201250 3.4186
1.0 1.5367𝑒 − 004 3.882052 3.0664

Table 4: Numerical solution based on different spatial steps and different parameters in Example 2.

Spatial step Parameters 𝑐 Calculation errors Calculation time(s)

0.1
10 3.1488𝑒 − 004 2.995965
11 9.6914𝑒 − 005 3.782251
12 1.0218𝑒 − 004 4.800045

0.25
0.45 1.5427𝑒 − 004 1.682164
0.50 7.7579𝑒 − 005 1.645171
0.55 9.8661𝑒 − 005 1.686100
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Figure 6: Numerical solutions using the radial basis function
collocation method.

The numerical and exact solutions of Example 2, along with
the error, are shown in Figures 5, 6, and 7, respectively.

Table 3 shows the comparison of this method with FEM,
where ℎ = 0.1 and 𝑡 = 10

For the time step Δ𝑡 = 0.01, we give the results of the
new method based on different spatial steps and different
parameters 𝑐. These are shown in Table 4.

For the nonlinear soil water movement equation, we can
get the same conclusions as in linear equation.

4. Conclusions

In this paper, a mathematical model with the boundary
conditions for soil watermovement under irrigation has been
developed by constructing a radial basis function collocation
method. The existence and uniqueness of the solution were
proven. Several numerical examples show that the proposed
method yields higher precision and is easier to solve 2D soil
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Figure 7: The error graph.

water movement equations than traditional methods. More-
over, the selection of the time, spatial steps, and parameter
𝑐 has a direct influence on calculation accuracy. Therefore, it
is necessary to study the combination of steps, radial basis
function, and parameter 𝑐 to obtain the numerical solutions.
In addition, it lays the foundation for the numerical solutions
to high-dimensional soil water movement equations, which
is very important.
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The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-
interpolation.Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions
directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using
the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to
approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative
of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and
lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments
show that it is feasible and valid.

1. Introduction

Burgers’ equation plays a significant role in various fields,
such as turbulence problems, heat conduction, shock waves,
continuous stochastic processes, number theory, gas dynam-
ics, and propagation of elastic waves [1–5]. The one-
dimensional Burgers’ equation first suggested by Bateman [6]
and later treated by Burgers [1] has the form

𝑈
𝑡

+ 𝑈𝑈
𝑥

− 𝜆𝑈
𝑥𝑥

= 0, (1)

where 𝜆 > 0 is the coefficient of kinematic viscosity and the
subscripts 𝑥 and 𝑡 denote space and time derivatives. Initial
and boundary conditions are

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑈 (𝑎, 𝑡) = 𝛽
1
, 𝑢 (𝑏, 𝑡) = 𝛽

2
, 𝑡 ≥ 0,

(2)

where 𝛽
1
, 𝛽
2
, and 𝑓(𝑥) will be chosen in a later section.

Burgers’ equation is a quasi-linear parabolic partial differ-
ential equation, whose analytic solutions can be constructed

from a linear partial differential equation by using Hopf-Cole
transformation [1, 2, 7]. But some analytic solutions consist
of infinite series, converging very slowly for small viscosity
coefficient 𝜆. Thus, many researchers have spent a great deal
of effort to compute the solution of Burgers’ equation using
various numerical methods. Finite difference methods were
presented to solve the numerical solution of Burgers’ equation
in [8–11]. Finite element methods for the solution of Burgers’
equation were introduced in [12–15]. Recently, various pow-
erful mathematical methods such as Galerkin finite element
method [16, 17], spectral collocation method [18, 19], sinc
differential quadraturemethod [20], factorized diagonal padé
approximation [21], B-spline collocation method [22], and
reproducing kernel functionmethod [23] have also been used
in attempting to solve the equation.

In 1968 Hardy proposed the multiquadric (MQ) which is
a kind of radial basis function (RBF). In Franke’s reviewpaper,
the MQ was rated as one of the best methods among 29 scat-
tered data interpolation and ease of implementation. Since
Kansa successfully appliedMQ for solving partial differential
equation, more and more reasearchers have been attracted
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by this meshfree, scattered data approximation scheme [24].
Themeshfree method uses a set of scattered nodes, instead of
meshing the domain of the problem. It has been successfully
applied to solve many physical and engineering problems
with only a minimum of meshing or no meshing at all [25–
30]. In recent years, many meshfree metheods have been
developed, such as the element-freeGalerkinmethod [31], the
smooth particle hydrodynamics method [32], the element-
free kp-Ritz method [33–36], the meshless local Petrov-
Galerkin method [37], and the reproducing kernel particle
method [38].

With the use of univariate multiquadric (MQ) quasi-
interpolation, solution of Burgers’ equations was obtained by
Chen and Wu [39]. Moreover, Hon and Mao [40] developed
an efficient numerical scheme for Burgers’ equation applying
the MQ as a spatial approximate scheme and a low order
explicit finite difference approximation to the time deriva-
tion. Zhu and Wang [41] presented the numerical scheme
for solving the Burgers’ equation, by using the derivative of
the cubic B-spline quasi-interpolation to approximate the
time derivative of the dependent variable and a low order
forward difference to approximate the time derivative of the
dependent variable. In this paper, we provide a numerical
scheme to solve Bugers’ equation using the quartic B-spline
quasi-interpolation. Then we do not require to solve any
linear system of equation so that we do not meet the question
of the ill-condition of the matrix.Therefore, we can solve the
computational time and decrease the numerical error.

This paper is arranged as follows. In Section 2, the defi-
nition of quartic B-spline has been described and univariate
quartic B-spline quasi-interpolants have been presented. In

Section 3, wemainly propose the numerical techniques using
quartic B-spline interpolation to solve Burgers’ equation.
In Section 4, numerical examples of Burgers’ equation are
presented and compared with those obtained with some
previous results. At last, we conclude the paper in Section 5.

2. Univariate Quartic
B-Spline Quasi-Interpolant

For an interval 𝐼 = [𝑎, 𝑏], we introduce a set of equally-spaced
knots of partition Ω = {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
}. We assume that 𝑛 ≥ 5,

𝑥
𝑖

= 𝑎 + 𝑖ℎ (𝑖 = 0, 1, . . . , 𝑛), 𝑥
0

= 𝑎, and 𝑥
𝑛

= 𝑏. Let 𝑆
4
[𝜋] be

the space of continuously-differentiable, piecewise, quartic-
degree polynomials on 𝜋. A detailed description of B-spline
functions generated by subdivision regarding the B-splines
basis in 𝑆

4
[𝜋] can be found in [45].

The zero degree B-spline is defined as

𝑁
𝑖,0

(𝑥) = {
1, 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1

] ,

0, otherwise,
(3)

and, for positive constant 𝑝, it is defined in the following
recursive form:

𝑁
𝑖,𝑝

=
𝑥 − 𝑥
𝑖

𝑥
𝑖+𝑝

− 𝑥
𝑖

𝑁
𝑖,𝑝−1

(𝑥) +

𝑥
𝑖+𝑝+1

− 𝑥

𝑥
𝑖+𝑃+1

− 𝑥
𝑖+1

𝑁
𝑖+1,𝑝−1

,

𝑝 ≥ 1.

(4)

We apply this recursion to get the quartic B-spline𝑁
𝑖,4

(𝑥),
which is defined in 𝑆

4
(𝜋) as follows:

𝑁
𝑖,4

(𝑥) =
1

24ℎ4

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑥 − 𝑥
𝑖−2

)
4

, 𝑥 ∈ [𝑥
𝑖−2

, 𝑥
𝑖−1

] ,

(𝑥 − 𝑥
𝑖−2

)
4

− 5(𝑥 − 𝑥
𝑖−1

)
4

, 𝑥 ∈ [𝑥
𝑖−1

, 𝑥
𝑖
] ,

(𝑥 − 𝑥
𝑖−2

)
4

− 5(𝑥 − 𝑥
𝑖−1

)
4

+ 10(𝑥 − 𝑥
𝑖
)
4

, 𝑥 ∈ [𝑥
𝑖
, 𝑥
𝑖+1

] ,

(𝑥 − 𝑥
𝑖+3

)
4

− 5(𝑥 − 𝑥
𝑖+2

)
4

, 𝑥 ∈ [𝑥
𝑖+1

, 𝑥
𝑖+2

] ,

(𝑥 − 𝑥
𝑖+3

)
4

, 𝑥 ∈ [𝑥
𝑖+2

, 𝑥
𝑖+3

] ,

0, otherwise.

(5)

As usual, we add multiple knots at the endpoints: 𝑎 = 𝑥
−4

=

𝑥
−3

= ⋅ ⋅ ⋅ = 𝑥
0
and 𝑏 = 𝑥

𝑛
= 𝑥
𝑛+1

= ⋅ ⋅ ⋅ = 𝑥
𝑛+4

.
In [24], univariate quartic B-spline quasi-interpolants

(𝑎𝑏𝑏𝑟.𝑄𝐼𝑠) can be defined as operators of the form

𝑄
4

(𝑓) =

𝑛+4

∑

𝑗=1

𝜇
𝑗
𝑁
𝑗,4

. (6)

The coefficients are listed as follows:

𝜇
1

(𝑓) = 𝑓
1
,

𝜇
2

(𝑓) =
17

105
𝑓
1

+
35

32
𝑓
2

−
35

96
𝑓
3

+
21

160
𝑓
4

−
5

244
𝑓
5
,

𝜇
3

(𝑓) = −
19

45
𝑓
1

+
377

288
𝑓
2

+
61

288
𝑓
3

−
59

480
𝑓
4

+
7

288
𝑓
5
,

𝜇
4

(𝑓) =
47

315
𝑓
1

−
77

144
𝑓
2

+
251

144
𝑓
3

−
97

240
𝑓
4

+
47

1008
𝑓
5
,

𝜇
𝑗

(𝑓) =
47

1152
(𝑓
𝑗−4

+ 𝑓
𝑗+1

) −
107

288
(𝑓
𝑗−3

+ 𝑓
𝑗−1

)

+
319

192
𝑓
𝑗−2

, 𝑗 = 5, . . . , 𝑛,

𝜇
𝑛+1

(𝑓) =
47

315
𝑓
𝑛+2

−
77

144
𝑓
𝑛+1

+
251

144
𝑓
𝑛

−
97

240
𝑓
𝑛−1

+
47

1008
𝑓
𝑛−2

,
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𝜇
𝑛+2

(𝑓) = −
19

45
𝑓
𝑛+2

+
377

288
𝑓
𝑛+1

+
61

288
𝑓
𝑛

−
59

480
𝑓
𝑛−1

+
7

288
𝑓
𝑛−2

,

𝜇
𝑛+3

(𝑓) =
17

105
𝑓
𝑛+2

+
35

32
𝑓
𝑛+1

−
35

96
𝑓
𝑛

+
21

160
𝑓
𝑛−1

−
5

244
𝑓
𝑛−2

,

𝜇
𝑛+4

(𝑓) = 𝑓
𝑛+2

,

(7)

and 𝑓
𝑖

= 𝑓(𝑡
𝑖
), 𝑡
𝑖

= (1/2)(𝑥
𝑖−2

+ 𝑥
𝑖−1

), 𝑖 = 1, . . . , 𝑛 + 2. For
𝑓 ∈ 𝐶

5
(𝐼), we have the error estimate

𝑓 − 𝑄
4

(𝑓)
∞

= 𝑂 (ℎ
5
) . (8)

We use ∏
4
to denote the space of polynomials of the

total degree at most 4. In general, we impose that 𝑄
4
is exact

on the space ∏
4
; that is, 𝑄

4
(𝑝) = 𝑝 for all 𝑝 ∈ ∏

4
. As a

consequence of this property, the approximation order of 𝑄
4

is 𝑂(ℎ
5
) on smooth functions. In this paper, the coefficient

𝜇
𝑗
is a linear combination of discrete values of 𝑓 at some

points. The main advantage of 𝑄𝐼𝑠 is that they have a direct
construction without solving any system of linear equations.
Moreover, they are local in the sense that values of 𝑄

4
𝑓(𝑥)

depend only on values of 𝑓 in a neighborhood of 𝑥. Finally,
they have a rather small infinity norm and, therefore, are
nearly optimal approximant.

Differentiating interpolation polynomials leads to the
classic finite difference for the approximate computation
of derivatives. Therefore, we can draw a conclusion of
approximating derivatives of 𝑓 by derivatives of 𝑄

4
𝑓. The

general theory will be developed elsewhere. We can evaluate
the value of 𝑓 at 𝑥

𝑖
by (𝑄

4
𝑓)


= ∑
𝑛+4

𝑗=1
𝜇
𝑗
(𝑓)𝑁


𝑗,4
and

(𝑄
4
𝑓)


= ∑
𝑛+4

𝑗=1
𝜇
𝑗
(𝑓)𝑁


𝑗,4
. 𝑁


𝑗,4
and 𝑁



𝑗,4
can be computed by

the formula of B-spline’s derivatives as follows:

𝑁
(𝑘)

𝑖,4
=

4!

(4 − 𝑘)!

𝑛

∑

𝑗=1

𝛼
𝑘,𝑗

𝑁
𝑖+𝑗,4−𝑘

, (9)

where

𝛼
0,0

= 1,

𝛼
𝑘,0

=
𝛼
𝑘−1,0

𝑥
𝑖+3−𝑘

− 𝑥
𝑖

,

𝛼
𝑘,𝑘

=
−𝛼
𝑘−1,𝑘−1

𝑥
𝑖+5

− 𝑥
𝑖+𝑘

,

𝛼
𝑘,𝑗

=

𝛼
𝑘−𝑗,𝑗

− 𝛼
𝑘−1,𝑗−1

𝑥
𝑖+𝑗+5−𝑘

− 𝑥
𝑖+𝑗

.

(10)

By some trivial computations, we can obtain the value
of 𝑁
(𝑘)

𝑖,4
(𝑘 = 0, 1, 2, 3) at the knots, which are illustrated in

Table 1: The values of 𝑁
(𝑘)

𝑖,4
(𝑥) at the knots.

𝑥
𝑖−1

𝑥
𝑖

𝑥
𝑖+1

𝑥
𝑖+2

Otherwise

𝑁
𝑖,4

(𝑥)
1

24

11

24

11

24

1

24
0

𝑁


𝑖,4
(𝑥)

1

6ℎ

3

6ℎ
−

3

6ℎ
−

1

6ℎ
0

𝑁


𝑖,4
(𝑥)

1

2ℎ
2

−
1

2ℎ
2

−
1

2ℎ
2

−
1

2ℎ
2

0

𝑁


𝑖,4
(𝑥)

1

ℎ3
−

3

ℎ3

3

ℎ3
−

1

ℎ3
0

Table 1. Then, we get the differential formulas for quartic B-
spline QIs as

𝑓


=

𝑛+4

∑

𝑗=1

𝜇
𝑗

(𝑓) 𝑁


𝑗,4
,

𝑓


=

𝑛+4

∑

𝑗=1

𝜇
𝑗

(𝑓) 𝑁


𝑗,4
.

(11)

3. Numerical Scheme Using
the Meshfree Quasi-Interpolation

In this section, we present the numerical scheme for solv-
ing Burgers’ equation based on the quartic B-spline quasi-
interpolation.

Discretizing the Burgers’ equation

𝑈
𝑡

+ 𝑈𝑈
𝑥

− 𝜆𝑈
𝑥𝑥

= 0, (12)

in time with meshlength 𝜏, we get

𝑈
𝑘+1

𝑗
− 𝑈
𝑘

𝑗

𝜏
+ 𝑈
𝑘

𝑗
(𝑈
𝑥
)
𝑘

𝑗
− 𝜆(𝑈

𝑥𝑥
)
𝑘

𝑗
= 0. (13)

We can get

𝑈
𝑘+1

𝑗
= 𝑈
𝑘

𝑗
+ 𝜏𝑈
𝑘

𝑗
(𝑈
𝑥
)
𝑘

𝑗
− 𝜏𝜆(𝑈

𝑥𝑥
)
𝑘

𝑗
, (14)

where 𝑈
𝑘

𝑗
is the approximation of the value of 𝑈(𝑥, 𝑡) at the

point (𝑥
𝑗
, 𝑡
𝑘
). Then, we can use the derivatives of the quartic

B-spline quasi-interpolant 𝑄
4
𝑈(𝑥
𝑗
, 𝑡
𝑘
) to approximate (𝑈

𝑥
)
𝑘

𝑗

and (𝑈
𝑥𝑥

)
𝑘

𝑗
. To dump the dispersion of the scheme, we define

a switch function 𝑔(𝑥, 𝑡), whose values are 0 and 1 at the
discrete points (𝑥

𝑗
, 𝑡
𝑘
), as follows:

𝑔 (𝑥
𝑗
, 𝑡
𝑘
) = max {0, 1 + min {0, sign ((𝑈

𝑥
)
𝑘

𝑗
⋅ (𝑈
𝑥
)
𝑘

𝑙
)}} ,

(15)

where 𝑙 = 𝑗 − sign(𝑈
𝑘

𝑗
). Thus, the resulting numerical scheme

is

𝑈
𝑘+1

𝑗
= 𝑈
𝑘

𝑗
+ 𝜏𝑈
𝑘

𝑗
(𝑈
𝑥
)
𝑘

𝑗
𝑔 (𝑥
𝑗
, 𝑡
𝑘
) − 𝜏𝜆(𝑈

𝑥𝑥
)
𝑘

𝑗
. (16)

Starting from the initial condition, we can compute the
numerical solution of Burgers’ equation step by step using the
B-spline quasi-interpolation scheme (16) and formulas (11).
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Table 2: Comparison of exact and numerical solution at 𝑡 = 0.001.

𝑥
𝜆 = 1 𝜆 = 0.5

Our method Asai [42] Exact Our method Asai [42] Exact
0.1 0.653563 0.653589 0.653544 0.327870 0.327874 0.327870
0.2 1.305519 1.305611 1.305534 0.655028 0.655078 0.655069
0.3 1.949321 1.949485 1.949364 0.978449 0.978427 0.978413
0.4 2.565977 2.566103 2.565925 1.288417 1.288485 1.288463
0.5 3.110769 3.110992 3.110739 1.563014 1.563096 1.563064
0.6 3.492902 3.493222 3.492866 1.756653 1.756691 1.756642
0.7 3.549538 3.550079 3.549595 1.787184 1.787281 1.787206
0.8 3.050089 3.050702 3.050134 1.537658 1.537794 1.537694
0.9 1.816492 1.817077 1.816660 0.916795 0.916941 0.916860

Table 3: The computational results at 𝑡 = 0.5 for 𝜆 = 0.01 with ℎ = 1/36 and 𝜏 = 0.01.

BSQI [41] MQQI [39] QBCM I [17] QBGM I [43] Our method
𝐿
2

× 10
3 3.43253 5.77786 0.77033 1.92558 0.85269

𝐿
∞

× 10
3 9.26698 20.8467 3.03817 6.35489 3.79716

4. Numerical Results

To investigate the applicability of the quasi-interpolation
method to Burgers’ equation, four selected example problems
are studied. To show the efficiency of the present method for
our problem in comparison with the exact solution, we use
the following norms to assess the performance of our scheme:

𝐿
∞

= max
𝑗


𝑈

exact
𝑗

− 𝑈
num
𝑗


,

𝐿
2

= √ℎ

𝑛

∑

𝑗=1

(𝑈
exact
𝑗

− 𝑈
num
𝑗

)
2

.

(17)

Example 1. Burgers’ equation is solved over the region
[0, 1] and the initial and boundary conditions are given in
Asaithambi [42]:

𝑈 (𝑥, 0) =
2𝜆𝜋 sin𝜋𝑥

𝛼 + cos𝜋𝑥
(𝛼 > 1) ,

𝑈 (0, 𝑡) = 0, 𝑈 (1, 𝑡) = 0, 𝑡 > 0,

(18)

and the exact solution of this problem has the following nice
compact closed-form, as given by Wood [46]:

𝑈 (𝑥, 𝑡) =
2𝜆𝜋𝑒
−𝜋
2
𝜆𝑡 sin𝜋𝑥

𝛼 + 𝑒−𝜋
2
𝜆𝑡 cos𝜋𝑥

(𝛼 > 1) . (19)

In this computational study, we set 𝛼 = 2, ℎ = 0.025,
Δ𝜏 = 0.0001. The comparison of the numerical solutions
obtained by the present method, at the different coefficient
of kinematic viscosity 𝜆, are presented with the solutions
obtained byAsaithambi [42] and the exact solution inTable 2.

Example 2. In this example, we consider the exact solution of
Burgers’ equation [47]:

𝑈 (𝑥, 𝑡) =
𝛼 + 𝜇 + (𝜇 − 𝛼) exp 𝜂

1 + exp 𝜂
, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, (20)

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=0.3t=0.1 t=0.5 t=1t=0.7

Figure 1: The numerical solutions with ℎ = 1/36, 𝜏 = 0.01 for 𝜆 =

0.01.

where 𝜂 = (𝛼(𝑥 − 𝜇𝑡 − 𝛾))/𝜆, 𝛼, 𝜇, and 𝛾 are constants. The
boundary conditions are

𝑈 (0, 𝑡) = 1, 𝑈 (1, 𝑡) = 0.2, 𝑡 ≥ 0, (21)

and initial condition is used for the exact solution at 𝑡 = 0.

We solve the problem with 𝛼 = 0.4, 𝜇 = 0.6, and 𝛾 =

0.125 by ourmethod. In Table 3, 𝐿
2
and 𝐿

∞
errors at the time

level 𝑡 = 0.5 are compared with the error obtained by Chen
andWu [39], Zhu andWang [41], Dağ et al. [17], and Saka and
Dağ [43]. For comparison, the parameters are adopted as time
step 𝜏 = 0.01, space step ℎ = 1/36, and viscosity coefficient
𝜆 = 0.01. FromTable 3, we can find that ourmethod provides
better accuracy than most methods through the 𝐿

2
and 𝐿

∞

error norms. The profiles of initial wave and its propagation
are depicted at some times in Figure 1.
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Table 4: Comparison of results at different time for 𝜆 = 0.1 with ℎ = 0.025 and 𝜏 = 0.0001.

𝑥 𝑡 Hassanien [44] Kutluay [11] Ozis [15] Our method Exact

0.25

0.4 0.3089 0.3083 0.3143 0.3089 0.3089
0.6 0.2407 0.2404 0.2437 0.2407 0.2407
0.8 0.1957 0.1954 0.1976 0.1957 0.1957
1.0 0.1626 0.1624 0.1639 0.1626 0.1626
3.0 0.0272 0.0272 0.0274 0.0272 0.0272

0.50

0.4 0.5696 0.5691 0.5764 0.5696 0.5696
0.6 0.4472 0.4468 0.4517 0.4472 0.4472
0.8 0.3592 0.3589 0.3625 0.3592 0.3592
1.0 0.2919 0.2916 0.2944 0.2919 0.2919
3.0 0.0402 0.0402 0.0406 0.0402 0.0402

0.75

0.4 0.6254 0.6256 0.6259 0.6257 0.6254
0.6 0.4872 0.4570 0.4903 0.4872 0.4872
0.8 0.3739 0.3737 0.3771 0.3739 0.3739
1.0 0.2875 0.2872 0.2902 0.2875 0.2875
3.0 0.0298 0.0297 0.0133 0.0298 0.0298

Example 3. Consider Burgers’ equation with the initial con-
dition

𝑈 (𝑥, 0) = sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 1 (22)

and the boundary conditions

𝑈 (0, 𝑡) = 𝑈 (1, 𝑡) = 0. (23)

The analytical solution of this problem was given by Cole
[2] in the term of an infinite series as

𝑈 (𝑥, 𝑡) =

2𝜋𝜆 ∑
∞

𝑘=1
𝑘𝐴
𝑘
sin (𝑘𝜋𝑥) exp (−𝑘

2
𝜋
2
𝜆𝑡)

𝐴
0

+ ∑
∞

𝑘=1
𝐴
𝑘
cos (𝑘𝜋𝑥) exp (−𝑘2𝜋2𝜆𝑡)

(24)

with the Fourier coefficients

𝐴
0

= ∫

1

0

exp {−(2𝜋𝜆)
−1

(1 − cos (𝜋𝑥))} 𝑑𝑥,

𝐴
𝑘

= 2 ∫

1

0

exp {−(2𝜋𝜆)
−1

(1 − cos (𝜋𝑥))} cos (𝑘𝜋𝑥) 𝑑𝑥,

𝑘 ≥ 1.

(25)

In Table 4, we have computed the numerical solutions of
this example at differential time levels with parameter values
𝜆 = 0.1, ℎ = 0.025, and 𝜏 = 0.0001. The comparison of
our results with the exact solutions as well as the solutions
obtained in [11, 15, 44] is reported in Table 4. FromTable 4, we
can find that the presented scheme provides better accuracy.
Moreover, in Tables 5, 6 and 7, we compare our method with
Hon and Mao’s scheme, Chen and Wu’s MQQI method, and
Zhu’s BSQI method at 𝑡 = 1 with 𝜏 = 0.001, ℎ = 0.01 for
𝜆 = 0.1, 0.01, 0.0001, respectively. For the MQQI method,
the shape parameter 𝑐 = 7.2 × 10

−3, 2.9 × 10
−3, 1.43 × 10

−4 for
Table 5, respectively, as [39]. Solutions foundwith the present
method are in good agreement with the result and better than
other methods. These show that the method works well.

Example 4. We consider particular solution of Burgers’ equa-
tion:

𝑈 (𝑥, 𝑡) =
𝑥/𝑡

1 + √𝑡/𝑡
0
exp (𝑥2/4𝜆𝑡)

, 𝑡 ≥ 1, 0 ≤ 𝑥 ≤ 1,

(26)

where 𝑡
0

= exp(1/8𝜆). Initial condition is obtained from
when 𝑡 = 1 is used. Boundary conditions are 𝑈(0, 𝑡) =

𝑈(1.2, 𝑡) = 0. Analytical solution represents shock-like
solution of the one-dimensional Burgers’ equation. Param-
eters ℎ = 0.02, 0.005 and 𝜆 = 0.005, 0.01 are selected for
comparison over the domain [0, 1]. Accuracy of our method
is shown by calculating the error norms. These together with
some previous results are given in Table 8. Table 8 shows that
our method provides better accuracy than MQQI method
and BSQI method. Although the accuracy is not higher than
that of QBCM method, we know that, at each time step, the
complexity of ourmethod is lower than theirs.The numerical
solutions are depictedwith ℎ = 0.02, 𝜏 = 0.001, and𝜆 = 0.005

for 𝑡 ≤ 4 in Figure 2.

5. Conclusion

Following the recent development of the quasi-interpolation
method for scattered data interpolation and the meshfree
method for solving partial differential equations, this paper
combines these ideas and proposes a new meshfree quasi-
interpolation method for Burgers’ equation. The method
does not require solving a large size matrix equation and,
hence, the ill-conditioning problem from using B-spline
functions as global interpolants can be avoided. We have
made comparison studies between the present results and the
exact solutions. The agreement of our numerical results with
those exact solutions is excellent. For the high-dimensional
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Table 5: Comparison of results at 𝑡 = 1 for 𝜆 = 0.1.

𝑥 Hon and Mao [40] MQQI [39] BSQI [41] Our method Exact
0.1 0.0664 0.07124 0.06628 0.06630 0.06632
0.2 0.1313 0.13431 0.13115 0.13119 0.13121
0.3 0.1928 0.19339 0.19269 0.19271 0.19279
0.4 0.2481 0.24538 0.24792 0.24797 0.24803
0.5 0.2919 0.28517 0.29175 0.29185 0.29191
0.6 0.3159 0.30473 0.31580 0.31598 0.31607
0.7 0.3079 0.29288 0.30791 0.30800 0.30810
0.8 0.2534 0.23784 0.25337 0.25344 0.25372
0.9 0.1459 0.13542 0.14583 0.14587 0.14606

Table 6: Comparison of results at 𝑡 = 1 for 𝜆 = 0.01.

𝑥 Hon and Mao [40] MQQI [39] BSQI [41] Our method Exact
0.1 0.0755 0.07868 0.07530 0.07538 0.0754
0.2 0.1507 0.15202 0.15049 0.15066 0.1506
0.3 0.2257 0.22554 0.22544 0.22573 0.2257
0.4 0.3003 0.29904 0.30002 0.30028 0.3003
0.5 0.3744 0.37226 0.37407 0.37437 0.3744
0.6 0.4478 0.44484 0.44742 0.44778 0.4478
0.7 0.5202 0.51643 0.51985 0.52038 0.5203
0.8 0.5913 0.58622 0.59106 0.59151 0.5915
0.9 0.6607 0.62956 0.65964 0.66007 0.6600

Table 7: Comparison of results at 𝑡 = 1 for 𝜆 = 0.0001.

𝑥 Hon and Mao [40] MQQI [39] BSQI [41] Our method
0.05 0.0422 0.0422 0.0422 0.0422
0.16 0.1263 0.1263 0.1262 0.1262
0.27 0.2103 0.2103 0.2096 0.2103
0.38 0.2939 0.2939 0.2928 0.2939
0.50 0.3769 0.3769 0.3754 0.3769
0.61 0.4592 0.4592 0.4573 0.4592
0.72 0.5404 0.5404 0.5381 0.5404
0.83 0.6203 0.6201 0.6174 0.6203
0.94 0.6983 0.6957 0.6947 0.6983

Table 8: Comparison of results at different times for 𝜏 = 0.01.

𝐿
2

× 10
3

𝐿
∞

× 10
3

𝐿
2

× 10
3

𝐿
∞

× 10
3

𝐿
2

× 10
3

𝐿
∞

× 10
3

ℎ = 0.02, 𝜆 = 0.005 𝑡 = 1.8 𝑡 = 1.8 𝑡 = 2.4 𝑡 = 2.4 𝑡 = 3.2 𝑡 = 3.2

BSQI [41] 1.66464 5.12020 2.06695 6.31491 2.36889 6.85425
QBCM I [17] 0.19127 0.54058 0.14246 0.39241 0.93617 5.54899
QBCM II [17] 0.49130 1.16930 0.41864 0.93664 1.28863 7.49147
MQQI [39] 6.88480 25.6767 7.89738 27.2424 8.56856 2.68122
Our method 0.6642 0.91725 0.7573 1.1465 0.8592 1.2103

ℎ = 0.02, 𝜆 = 0.01 𝑡 = 1.8 𝑡 = 1.8 𝑡 = 2.4 𝑡 = 2.4 𝑡 = 3.2 𝑡 = 3.2

BSQI [41] 0.82751 2.59444 0.98595 2.35031 1.58264 5.73827
QBCM I [17] 0.17014 0.40431 0.20476 0.86363 1.29951 6.69425
QBCM II [17] 0.24003 0.48800 0.30849 1.14760 1.57548 8.06798
MQQI [39] 5.89555 14.7550 6.64358 15.9892 6.90385 16.3403
Our method 0.82751 0.50367 0.46281 1.05625 0.88261 4.73827
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Figure 2: The numerical solutions for 𝑡 ≤ 4.

Burgers’ equations, we believe our scheme can also be appli-
cable. In this case, we would use multivariate spline quasi-
interpolation instead of univariate spline quasi-interpolation.
We will consider these problems in our future work.
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The three-dimensional unsteady numerical method is applied to investigate the pressure fluctuation of the S-shaft extension
pumping system. Some monitor pointers are set at the key positions of blade region to capture the changing rules of the pressure
pulsations, from which the data are collected through time-domain and spectrum analysis. The predicted head and efficiency
were validated by the comparison with the tested results, and the comparison result shows that the unsteady flow characteristic
of pumping system can be simulated by this method.The pulsating amplitude decreases gradually from blade tip to hub, under the
condition of large flow rate for both the inlet and outlet of the impeller, in the way different from the smaller flow rate condition.
Through adjusting the impeller rotation speed and the number of blades, the dominant frequency can be controlled. For the same
monitor point at the impeller, as the flow coefficient is becoming larger, the pulsating amplitude decreases, inwhich case, it decreases
firstly and then increases between the impeller and the guide vane, and the pulsating amplitude is smallest on the high efficiency
condition. The rotation speed of impeller has little effect on the dominant frequency at the outlet of guide vane.

1. Introduction

Hydraulic model, composed of impeller and guide vane,
plays an important role for high performance of hydraulic
machinery system, of which the safety and efficiency depend
on the hydrodynamic characteristics. The model pressure
pulsation of interior flow is very difficult to be measured
by traditional experimental equipment. Today, the pressure
is often analyzed by numerical simulation. Wang et al. in
[1] studied the unsteady flow feature in axial-flow pump
based on the Reynolds-averaged Navier-Stokes method and
the large eddy simulation method. Shi et al. in [2] applied
the standard turbulent 𝑘-𝜀 model and SIMPLEC algorithm
to investigate the pressure fluctuation induced by the rotor-
stator interactions of the mixed-flow pump. Wu et al. in [3]
used the Reynolds-averagedNavier-Stokes equations coupled
with the RNG 𝑘-𝜀 turbulent flow of the whole flow passage
of a prototype Kaplan turbine. Shi et al. in [4] studied
the dynamic pressure gradient model of axial piston and
parameters optimization for stabilizing the pressure gradient
in pressure rising and control the pressure of piston chamber.

Liu et al. in [5] studied characteristics of pressure pulsation
of pump-turbines withmisaligned guide vanes based onCFD
commercial software. And someother domestic scholars have
focused on the study of the pressure pulsation of interior flow
in centrifugal pump by numerical simulation and test in [6–
10].

In china, research on pressure pulsation of pumping
system with low head has become a hotspot. Wang et al. in
[11] analyzed the impeller elevation, unsteady flow, hydraulic
thrust, and the zero-head flow of the slanted axial pumping
system, using fluent software. Zhu et al. in [12] studied pres-
sure pulsation of tubular pump internal pressure pulsation
based on large eddy simulation data. Yang and Liu in [13]
studied the characteristics of pressure pulsation of mixed-
flow pumping system, for irrigation and drainage, through
performance test. Given the fact that pressure pulsation of
blade region in shaft-extension tubular pumping system is
rarely studied domestically, in this paper, taking the S-shaped
shaft-extension as the research object, three-dimensional
flow field of pumping system has been simulated by the
programming of the commercial code ANSYS-CFX; it was
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Figure 2: Blade region.

analyzed on three different operating conditions, offering a
reference for safer and more stable operation of this type of
pump.

2. Pumping System Geometry and
Numerical Method

Figure 1 shows 3D geometric of S-shaped shaft tubular pump-
ing system model, with specific speed 𝑛

𝑠
= 970 and impeller

diameter 300, which is used to simulate andmeasure its entire
flow field. The impeller has 3 blades and the stator has 7
blades. The rotating speed 𝑛 is 1450 r/min. The average tip
clearance of impeller is 0.2mmat blade angle 0∘, which are the
same as those of the experimental model. The blade region is
defined as Figure 2,𝑁 is integer, and𝐷 is impeller diameter.

The grid quality in the impeller and guide vane will affect
the accuracy of pumping system simulation. Accordingly,
H/J/L-type topology structure is applied to the impeller,
and H-type topology structure is applied to the guide vane.
O-type grid is used at the blade surface region to control
boundary layer distribution. Grid refinement is applied to
impeller with 18 nodes in the tip clearance. A structured grid
system is constructed in the computational domain. Surface
grid of every flow component is shown as Figure 3.

Prior to step for analysis of pumping system, in order
to determine the optimal number of grids, a preliminary
grid dependency test with numbers of nodes ranging from
1000000 to 2200000 is carried out. The computations have
shown that grid convergence has been obtained for the per-
formance of the S-shaped shaft-extension tubular pumping
system at𝐾

𝑄
= 0.460, as shown in Figure 4.With the increase

of grid numbers, the head coefficient 𝐾
𝐻

and efficiency 𝜂
change greatly at first then change very little gradually. Finally,
the appropriate number of grid numbers for the simulation
was determined by the preliminary simulation results. In the

present study, grid number 1516416 is selected as the optimum
number of grids.

The commercial URANSE-CFD-Solver ANSYS CFX 14.0
was used. ANSYS CFX uses the element based finite volume
method and an algebraic multigrid approach. The timestep
for the transient calculation (eight impeller revolutions) rep-
resented 1 of rotation. So, 2880 timesteps are calculated. Every
timestep consisted of 8 to 22 inner coefficient loops. The
turbulence effects are modeled by the RNG 𝑘-𝜀 turbulence
model. The RNG model provides a way to account for the
effects of swirl or rotation by modifying the turbulent viscos-
ity appropriately. A uniform axial velocity based on themass-
flowrate is specific at the inlet for each computation run, and
the total pressure at the outlet is set to 1.2 atm. The transient
rotor-stator method is used for interface condition between
the rotating impeller and stationary diffuser. Scalable wall
functions are used to simulate the boundary layers. Adiabatic
and hydraulically smooth walls with no slip condition were
considered at solid boundaries. Periodic boundaries are set
at the blade passage interfaces.

3. Performance Prediction and
Results Comparison

3.1. Test Device andMethod. Physical model of pumping sys-
tem is tested in the Hydrodynamic Engineering Laboratory
of Jiangsu Province. Physical model is shown in Figure 5.The
sketch of the complete test rig is shown in Figure 6. Pumping
system head is measured by differential pressure transmitter
EJA110A, andmeasuring sections are chosen in the tankswith
the inlet and outlet passages for concluding hydraulic loss
of inlet and outlet sections. Torque is measured by ZJ type
torquemeter, which is transmitted by pump shaft. Flowrate is
measured by E-mag type electromagnetic flowmeter.

3.2. Results Comparison. According to test data, the highest
efficiency of pumping system is 83.55% at blade angle 𝜃 = −2∘,
with flowrate coefficient 𝐾

𝑄
of 0.443 and head coefficient

𝐾
𝐻
of 0.828. With flowrate coefficient 𝐾

𝑄
of 0.478 and head

coefficient𝐾
𝐻
of 0.887 at blade angle 𝜃 = 0∘, the efficiency 𝜂 is

82.57%. Dynamic characteristics predictionmethod is shown
in

𝑄 =
∑
𝑀

𝑖=1
�̇�
𝑖

𝑀
, 𝐻 =

∑
𝑀

𝑖=1
�̇�
𝑖

𝑀
, 𝑃 =

∑
𝑀

𝑖=1
�̇�
𝑖

𝑀
,

𝜂 =
𝜌𝑔𝑄𝐻

𝑀
, 𝐾

𝑄
=
𝑄

𝑛𝐷3
, 𝐾

𝐻
=
𝑔𝐻

𝑛2𝐷2
.

(1)

The prediction data agree with the experimental head and
efficiency, as shown in Table 1. From the predicted results, the
maximal deviation of𝐾

𝐻
is 3.15%, and themaximal deviation

of 𝜂 is 3.07% in the unsteady simulation. The simulation
results agree with test data very well.

To verify the simulation with RNG 𝑘-𝜀 turbulence model
andReynolds time-averaged equation, a comparison between
the simulation and experimental results is made, as shown in
Figure 7.The position concerning the pressure fluctuations is
a measuring point on the outlet section of the inlet passage.
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(a) Inlet passage (b) Impeller

(c) Guide vane (d) Outlet passage

Figure 3: Computational grids.

Table 1: Experimental and predicted results.

Flow coefficient 𝐾
𝑄

Test results 𝐾
𝐻

Unsteady prediction𝐾
𝐻

Deviation/%
0.368 1.249 1.222 2.16
0.402 1.143 1.107 3.15
0.460 0.945 0.964 2.01
0.508 0.761 0.774 1.71
0.552 0.529 0.524 0.95
Flow coefficient 𝐾

𝑄
Test results 𝜂/% Unsteady prediction 𝜂/% Deviation/%

0.368 69.92 71.10 1.69
0.402 75.72 74.87 1.12
0.460 81.66 81.57 0.11
0.508 81.23 80.47 0.94
0.552 70.02 72.17 3.07

The numerically calculated pressure fluctuation follows the
trend very well as compared to the experimental ones. The
dominant frequencies and their amplitudes for simulation
and experimental results are 72.5Hz, 0.0530, 72.5Hz, 0.0491,
respectively. This indicated that the simulation with RNG 𝑘-
𝜀 turbulence model and Reynolds time-averaged equation
could be used to predict the pressure fluctuation in the
pumping system in the view of engineering.

4. Pressure Pulsation Results and Discussions

To analyze pressure pulsation of blade region, 26 monitoring
points are made in the blade region to monitor it and the
developing trend thereof. Four groups of measuring points
are shown in Figure 8, distributed as 8 measuring points

(P01∼P08) in the impeller inlet, 4 measuring points (P09∼
P16) between the impeller and guide vane, 4measuring points
(P17∼P20) inside the guide vane, and 6 measuring points
(P21∼P26) in the guide vane outlet.

In the analysis of pressure pulsation of blade region,
mathematical statistics and spectrum analysis are applied.
Hydraulic pressure process is assumed to be a stationary
stochastic process for spectrum analysis, and the irregular
pressure pulsation is decomposed into many superimposed
results of simple harmonic wave, including different ampli-
tudes, frequencies, and phases. Spectrum analysis is adopted
by many scholars for pressure pulsation analysis, for it
can overcome the shortage of randomness of mathematical
statics; in this paper it is used in the blade region, whereby
pressure coefficient 𝐶

𝑝
is defined in [2], and fast Fourier
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Figure 5: Physical model.

transform (FFT) is applied to show the unsteady pressure
features in frequency domain based on the pressure time
domain data results of unsteady simulation.

In this calculation model, pressure of pumping system
acquired can meet the periodic requirements after 1440
timesteps, whereby the 7th rotating cycle is chosen for the
analysis of the unsteady characteristics.

4.1. Pressure Pulsation of Impeller Inlet. The pulsation spec-
trums of 8 monitoring points in 3 different operating con-
ditions for pumping system in 3 different operating condi-
tions are shown in Figure 9. Pulsation amplitude increases
gradually from the hub to the tip in different operating
conditions.The pressure coefficientmagnitude ofmonitoring
point P01 is 1.381 times that of monitoring point P04, and
the pressure coefficient magnitude of monitoring point P08
is 1.379 times that of monitoring point P05 in small flowrate
condition 𝐾

𝑄
= 0.368. The pressure coefficient magnitude of

monitoring point P01 is 1.405 times that of monitoring point
P04, and the pressure coefficient magnitude of monitoring
point P08 is 1.410 times that of monitoring point P05 in high
efficiency condition 𝐾

𝑄
= 0.460. The pressure coefficient

magnitude of monitoring point P01 is 1.348 times that of
monitoring point P04, and the pressure coefficientmagnitude
of monitoring point P08 is 1.352 times that of monitoring
point P05 in large flowrate condition 𝐾

𝑄
= 0.552. It is

obvious that the trend of pressure amplitude is the same in
two sides of impeller inlet. The velocity flow field of impeller

8

213

4
5

67

7

Figure 6: Sketch of test rig. (1) Pumping system model, (2) inlet
water tank, (3) outlet water tank, (4) surge tank, (5) electromagnetic
flowmeter, (6) auxiliary pump, (7) pipeline, and (8) valve.
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inlet is symmetric distribution. The rotating of impeller has
little effects on the distribution of velocity components at
the impeller inlet. For the same monitoring points, pressure
pulsation amplitude decreases gradually with the increase
of flowrate. The dominant frequency of every monitoring
point is 72.5Hz in impeller inlet, which is equal to the blade
passing frequency. Pressure pulsation of impeller inlet is
mainly influenced by rotating speed of impeller and blade
numbers.

4.2. Pressure Pulsation between Impeller Outlet and Guide
Vane Inlet. The pulsation spectrums of P09∼P16 are shown
in Figure 10. In small flowrate operating condition 𝐾

𝑄
=

0.368, the relative difference of pressure pulsation is higher
for symmetric point, the minimum relative difference is
7.47%, and themaximum relative difference is 19.35%. In high
efficiency operating condition 𝐾

𝑄
= 0.460, the minimum

relative difference of symmetric points is 11.76%, and the
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Figure 9: The pulsation spectrums of P01∼P08 at impeller inlet under different operating conditions.

maximum relative difference is 22.39%. Comparedwith small
flowrate and high efficiency operating conditions, the relative
difference of symmetric points is larger in large flowrate
operating condition𝐾

𝑄
= 0.552; the minimum relative value

is 11.81%, and the maximum relative value is 14.56%. The
analytic results show that the velocity distribution of impeller

outlet is obviously asymmetric in 𝐾
𝑄
= 0.368, which is

mainly affected by velocity circulation of impeller outlet in
this operating condition.

In 𝐾
𝑄
= 0.368, the pulsation amplitude decreases gradu-

ally from P09 to P12, the pulsation amplitude increases firstly
then decreases from P16 to P13. The pulsation amplitude
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Figure 10: The pulsation spectrums of P09∼P16 between impeller and guide vane.

decreases gradually from blade tip to hub for monitoring
points of the same side in 𝐾

𝑄
= 0.460 and 𝐾

𝑄
= 0.552. The

internal flow of impeller and guide vane is more complex in
small flowrate operating condition, because the characteristic
of rotor-stator interaction is very significant. In order to
decrease the pressure pulsation between impeller and guide

vane, people should pay attention to select and regulate
the pumping system operation conditions. The dominant
frequency of P09∼P16 is 72.5Hz, which is affected by both
rotation frequency and blade number. The pulsation ampli-
tude of impeller inlet is larger than that between impeller and
guide vane in the same operating condition.
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To further describe change of the pulsation amplitude
between impeller and guide vane on three operation condi-
tions, the pressure coefficient amplitude is defined as 𝐴P1 in
𝐾
𝑄
= 0.368, the pressure coefficient amplitude is defined as

𝐴P2 in 𝐾𝑄 = 0.460, and the pressure coefficient amplitude is
defined as𝐴P3 in𝐾𝑄 = 0.552. The pressure coefficient ampli-
tude 𝐴P2 is used as reference for the same monitoring point
in different operating conditions. The calculation results are
shown in Figure 11.

In 𝐾
𝑄
= 0.368, the average value of pressure coefficient

amplitude is 2.44 times that in 𝐾
𝑄
= 0.460 for every

monitoring points, and every monitoring point is higher
than that in high efficiency operating condition. In 𝐾

𝑄
=

0.552, the average value of pressure coefficient amplitude
is 1.06 times that in 𝐾

𝑄
= 0.460 for every monitoring

point, and every monitoring point is higher than that in
high efficiency operating condition except monitoring P09
and P16, while pulsation amplitude of P09 and P16 near
blade tip is lower than that in high efficiency operating
condition. The pulsation amplitude decreases firstly then
increases for monitoring points between impeller and guide
vane; in particular, the pulsation amplitude is minimum in
high efficiency operating condition.

4.3. Pressure Pulsation of Guide Vane. The pressure pulsation
time domain charts and pulsation spectrums of P17∼P20
is shown in Figure 12. The results of spectrum analysis
for P17∼P20 are shown in Table 2, where F1 is dominant
frequency and F2 is secondary dominant frequency.The flow
of guide vane is far away from impeller outlet, but pressure
pulsation of guide vane is affected by impeller rotating. The
dominant or secondary frequency of every monitoring point
is 72.5Hz, which is the same as the rotating frequency.
Low frequency pulsation is main part of pressure pulsation
frequency. The characteristics of pressure pulsation are not
obvious, because the internal flow of guide vane is complex.
With the flow into guide vane, pressure coefficient amplitude
decreases gradually along the flow path, because guide vane

recovers velocity circulation of impeller outlet and makes
flow steady. The average pressure pulsation amplitudes in
sections of P09∼P16 and P17∼P20 was taken for example.
In 𝐾
𝑄
= 0.368, the average pressure pulsation amplitude

decreases by 16.98% compared with section of P09∼P16. The
average pressure pulsation amplitude decreases by 65.40% in
𝐾
𝑄
= 0.460, and the average pressure pulsation amplitude

decreases by 70.89% in 𝐾
𝑄
= 0.552. The velocity circulation

of impeller outlet is recovered by guide vane in the high
efficiency and large flowrate operating conditions.

4.4. Pressure Pulsation of Guide Vane Outlet. The dominant
frequency and pulsation amplitude of P21∼P26 are shown
in Figure 13 in the three operating conditions of pumping
system. In small flowrate coefficient 𝐾

𝑄
= 0.368, the

dominant frequency of P21∼P23 is 1.125 times that of rotating
frequency, the dominant frequency of P24∼P25 is 0.375 times
that of rotating frequency, and the dominant frequency of P26
is 0.563 times that of rotating frequency. In high efficiency
coefficient 𝐾

𝑄
= 460, the dominant frequency of P21∼

P23 is 0.563 times that of rotating frequency, the dominant
frequency of P24 is 3 times that of rotating frequency, the
dominant frequency of P25 is 0.75 times that of rotating
frequency, and the dominant frequency of P26 is 0.188 times
that of rotating frequency. In large flowrate coefficient 𝐾

𝑄
=

0.552, the dominant frequency of P21 is 0.882 times that
of rotating frequency, the dominant frequency of P22∼P25
is 0.176 times that of rotating frequency, and the dominant
frequency of P26 is 0.353 times that of rotating frequency.The
rotating impeller and blade numbers have little influence on
the pressure pulsation of guide vane outlet.

5. Conclusion

The unsteady turbulent flow in the pumping system was
simulated based on software ANSYS CFX, and the pressure
pulsations of different monitoring points were analyzed.
Compared to the test performance results, the unsteady
results are in agreement with unsteady prediction results, and
the maximal error of unsteady prediction is only 3.15%.

As the flowrate increases, the pressure pulsation ampli-
tude of the same monitoring point decreases gradually in the
impeller inlet, and it decreases gradually from blade tip to
hub; it is mainly affected by impeller rotating in the impeller
inlet, whereby the dominant frequency of this section is
72.5Hz, 3 times that of rotation frequency.

The pressure pulsation amplitude between impeller and
guide vane decreases from blade tip to hub on the high
efficiency and large flowrate conditions, while, on the small
flowrate condition, the change law from blade tip to hub in
the both sides of pump shaft axis is different; it decreases
gradually from blade tip to hub in one side and increase
earlier then decrease later in another side. The dominant
frequency of pressure pulsation between impeller and guide
vane is mainly affected by blade numbers and rotation
frequency. When 𝐾

𝑄
= (0.368∼0.552), the pressure pulsation

amplitude decreases at the beginning then increases; it is
minimum in the high efficiency area and greatest at the
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Figure 12: Time domain and frequency spectra of pressure pulsations of P17∼P20.
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Table 2: Frequency analysis of pressure pulsation of P17∼P20.

Flowrate coefficient 𝐾
𝑄

Spectral parameter P17 P18 P19 P20
F1 F2 F1 F2 F1 F2 F1 F2

0.368 f /Hz 13.59 72.50 13.59 72.50 13.59 72.50 13.59 72.50
𝐴
𝑃

0.0195 0.0083 0.261 0.0055 0.0260 0.0060 0.0176 0.0080

0.460 f /Hz 72.50 66.46 66.46 72.50 72.50 12.08 72.50 12.08
𝐴
𝑃

0.0039 0.0033 0.0038 0.0026 0.0039 0.0034 0.0039 0.0034

0.552 f /Hz 72.50 8.53 72.50 8.53 4.26 72.50 4.26 72.50
𝐴
𝑃

0.0034 0.0024 0.0039 0.0030 0.0032 0.0023 0.0033 0.0027
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Figure 13: Frequency spectra and pressure coefficient amplitude of
P21∼P26.

impeller inlet, and its average value decreases sharply from
the impeller inlet to the guide vane outlet.

The rotation impeller has little influence on the pressure
pulsation of guide vane, when the dominant or secondary
frequency is 3 times that of rotation frequency. The change
of pressure pulsation in the guide vane is not prominent.

Nomenclature

𝑄: Average flowrate
�̇�: Static flowrate of every timestep
𝑀: Total number of timesteps for 1 rotating cycle
𝐻: Average pumping system head
�̇�: Static head of every timestep
𝑃: Average power
�̇�
𝑖
: Static power of every timestep
𝜂: Average efficiency of pumping system
𝜌: Fluid density
𝑔: Acceleration of gravity
𝐾
𝑄
: Flowrate coefficient
𝑛: Rotation speed
𝐷: Diameter of impeller
𝐾
𝐻
: Head coefficient.
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We consider the MINRES seed projection method for solving multiple right-hand side linear systems 𝐴𝑋 = 𝐵, where 𝐴 ∈ 𝑅
𝑛×𝑛 is

a nonsingular symmetric matrix, 𝐵 ∈ 𝑅
𝑛×𝑝. In general, GMRES seed projection method is one of the effective methods for solving

multiple right-hand side linear systems. However, when the coefficient matrix is symmetric, the efficiency of this method would
be weak. MINRES seed projection method for solving symmetric systems with multiple right-hand sides is proposed in this paper,
and the residual estimation is analyzed. The numerical examples show the efficiency of this method.

1. Introduction

Consider the multiple right-hand side linear systems

𝐴𝑋 = 𝐵, (1)

where 𝐴 ∈ 𝑅
𝑛×𝑛 is a nonsingular symmetric matrix, and 𝐵 ∈

𝑅
𝑛×𝑝.
Equation (1) plays an important role in chemistry, elec-

tronics, structures, control, and other problems; see [1, 2] for
detail.

In the last few years, the block methods have been
developed to solve (1), such as the block conjugate gradient
algorithm (BCG) [3], the block generalized minimal residual
method [4–6], the block BiCGSTAB method [7], the block
QMR method [8], the block least squares method [9], the
block Lanczos method [10], and the block IDR(𝑠) method
[11] which have been proposed recently. In general, the block
methods are faster than solving each one separately.

The meshless methods are extensively used for solving
(1); these meshless methods show to be efficient and accurate
in terms of their numerical results; see [12–18]. The global
methods [19, 20] are also a class of important methods. Fol-
lowing the work [20], many other global methods have been
developed, including the global BiCG and global BiCGSTAB

methods [21], the global Hessenberg and global CMRH
methods [22], and the polynomial preconditioned global
CMRH method [23, 24]. Generally, the global methods are
more appropriate for large and sparse systems.

In many practical applications, the right-hand sides are
not arbitrary and are very close; then the seed projection
methods are often used to solve (1); see [1, 2, 25, 26]. The
main idea of this method is selecting one system to be the
seed systems firstly, then solving the seed systems by some
Krylov subspace method, and creating a Krylov subspace
𝐾, then projecting the residual of the other systems, called
nonseed systems, onto this Krylov subspace 𝐾 to get the
approximate solutions. The process is repeated with other
seed systems until all the systems are solved. The seed
projection methods were proposed by Smith et al. [1] for
the CG method firstly. When 𝐴 is unsymmetric, Simoncini
and Gallopulos [2] proposed the GMRES seed projection
method. Later, a seed method which uses Morgan’s Krylov
subspace augmented with eigenvectors was presented in [25].
Moreover, the seedmethod can be used to solve unsymmetric
shifted systems withmultiple right-hand sides [26]. However,
if 𝐴 is a symmetric matrix, the efficiency of these methods
would be weak.
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In this paper, we propose the MINRES seed projection
method for solving symmetric systems with multiple right-
hand sides, and the residual estimation is analyzed.

The paper is organized as follows. In Section 2, we give
a quick overview of the GMRES seed projection method. In
Section 3, we present the MINRES seed projection method
and the residual estimation. In the last section, we show the
efficiency of our method by numerical experiments.

2. GMRES Seed Projection Method

In this section, we recall the GMRES seed projection method
for solving (1). Details of the algorithm can be found in [2, 25].
We summarize it in the following algorithm.

Algorithm 1 (𝑋 = Gseed(𝐴, 𝐵,𝑋(0), 𝜀, 𝑚)). We have the
following:

(1) 𝑋 = 𝑋
(0);

(2) 𝑅 = 𝐵 − 𝐴𝑋;
(3) for 𝑙 = 1, 2, . . . , 𝑝 until all the systems are solved
(4) [𝜎, 𝑟

𝜎
] = 𝑆𝐸𝐸𝐷(𝑅), 𝛽 = ‖𝑟

𝜎
‖
2
;

(5) for 𝑘 = 1, 2, . . ., until convergence;
(6) [𝑉

𝑚+1
, 𝐻] = 𝐴𝑟𝑛𝑜𝑙𝑑𝑖(𝐴, 𝑟

𝜎
);

(7) 𝑏
𝜎
= 𝛽𝑒
1
, where 𝑒

1
= (1, 0, . . . , 0)

𝑇

∈ 𝑅
𝑚+1;

(8) 𝑏
𝑗
= 𝑉
Τ

𝑚+1
(𝑏
𝑗
− 𝐴𝑥
𝑗
), 𝑗 = 1, . . . , 𝑝, 𝑗 ̸= 𝜎;

(9) compute 𝑦
𝑗
by minimizing ‖𝐻𝑦 − 𝑏

𝑗
‖
2

, 𝑦 ∈ 𝑅
𝑚, 𝑗 =

1, . . . , 𝑝;
(10) 𝑋 = 𝑋 + 𝑉

𝑚
𝑌, where 𝑌 = [𝑦

1
, . . . , 𝑦

𝑝
]
Τ;

(11) 𝑅 = 𝐵 − 𝐴𝑋, 𝑟(𝑗) = ‖𝑅(:, 𝑗)‖
2
;

(12) if ‖𝑟(𝑗)‖
2
< 𝜀, then delete the 𝑗th systems, let 𝑤 be

the number of the 𝑗 conforming to this condition, and
then 𝑝 := 𝑝 − 𝑤;

(13) if ‖𝑟
𝜎
‖
2
< 𝜀, then delete these seed systems, set 𝑝 :=

𝑝 − 1, and go to 3;
(14) end(k);
(15) end(l).

We now make a few descriptions of Algorithm 1. Firstly,
we give an initial approximation to the solutions 𝑋(0), com-
pute the initial residuals, and select seed systems by a function
𝑆𝐸𝐸𝐷. In this algorithm, 𝑆𝐸𝐸𝐷 applied to the𝑅 returns 𝜎 and
𝑟
𝜎
, where 𝜎 is the index of column of 𝑅 having the maximum

norm. Secondly, we apply restarted GMRES method for
solving the seed systems and function 𝐴𝑟𝑛𝑜𝑙𝑑𝑖 applies the
Arnoldi procedure to generate an orthogonal basis 𝑉

𝑚+1
=

[V
1
, . . . , V

𝑚
] for the Krylov subspace𝐾

𝑚+1
(𝐴, 𝑟
𝜎
). Meanwhile,

the nonseed solutions are approximated by projecting the
residual 𝑟

𝑗
= 𝑏
𝑗
− 𝐴𝑥
𝑗
on 𝐾
𝑚+1

(𝐴, 𝑟
𝜎
) and solving the least

square problem min
𝑦𝑗∈𝑅
𝑚‖𝐻𝑦
𝑗
− 𝑉
Τ

𝑚+1
𝑟
𝑗
‖
2

. Thirdly, after the
seed systems are solved to desired accuracy, new seed systems
are selected from the unsolved systems and then the whole
procedure is repeated until all the systems are solved. Some

theoretical analysis about the above algorithm can be found
in [2, 25].

3. MINRES Seed Projection Method

Based on the MINRES method for solving the symmetric
linear systems, in this section, we combine the GMRES seed
projectionmethod and theMINRESmethod and propose the
MINRES seed projectionmethod for solving (1).The Arnoldi
procedure in GMRES seed projection method is exchanged
by Lanczos procedure, and applying the seed projection idea
to MINRES method, the MINRES seed projection method is
proposed as the following algorithm.

Algorithm 2 (𝑋 = Mseed(𝐴, 𝐵,𝑋(0), 𝜀, 𝑚)). We have the
following:

(1) 𝑋 = 𝑋
(0);

(2) 𝑅 = 𝐵 − 𝐴𝑋;
(3) for 𝑙 = 1, 2, . . . , 𝑝 until all the systems are solved;
(4) [𝜎, 𝑟

𝜎
] = 𝑆𝐸𝐸𝐷(𝑅), 𝛽 = ‖𝑟

𝜎
‖
2
;

(5) for 𝑘 = 1, 2, . . ., until convergence;
(6) [𝑄

𝑚+1
, �̃�
𝑚
] = 𝐿𝑎𝑛𝑐𝑧𝑜𝑠(𝐴, 𝑟

𝜎
);

(7) 𝑏
𝜎
= 𝛽𝑒
1
, where 𝑒

1
= (1, 0, . . . , 0)

𝑇

∈ 𝑅
𝑚+1;

(8) 𝑏
𝑗
= 𝑉
Τ

𝑚+1
(𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

), 𝑗 = 1, . . . , 𝑝, 𝑗 ̸= 𝜎;

(9) compute 𝑑
(𝑗) by minimizing ‖�̃�

𝑚
𝑑 − 𝑏
𝑗
‖
2

, 𝑑 ∈

𝑅
𝑚, 𝑗 = 1, . . . , 𝑝;

(10) 𝑋 = 𝑋 + 𝑄
𝑚
𝐷, where𝐷 = [𝑑

(1)

, . . . , 𝑑
(𝑝)

]
Τ;

(11) �̃� = 𝐵 − 𝐴𝑋, 𝑟(𝑗) = ‖�̃�(:, 𝑗)‖
2
;

(12) if ‖𝑟(𝑗)‖
2

< 𝜀, then delete 𝑗th system, let 𝑤 be the
number of the 𝑗 conforming to this condition, and
then 𝑝 := 𝑝 − 𝑤;

(13) if ‖𝑟
𝜎
‖
2
< 𝜀, then delete this seed systems, set 𝑝 :=

𝑝 − 1, go to 3;
(14) end(k);
(15) end(l).

We now make a few descriptions about Algorithm 2.
Firstly, we give an initial approximation to the solutions𝑋(0),
compute the initial residuals, and select seed systems by a
function 𝑆𝐸𝐸𝐷. In this algorithm, 𝑆𝐸𝐸𝐷 applied to the 𝑅

returns 𝜎 and 𝑟
𝜎
, where 𝜎 is the index of column of 𝑅 having

the maximum norm. Secondly, we apply restarted Lanczos
method for solving the seed systems and function 𝐿𝑎𝑛𝑐𝑧𝑜𝑠

applies the Lanczos procedure to generate an orthogonal basis
𝑄
𝑚+1

= [𝑞
1
, . . . , 𝑞

𝑚
] for the Krylov subspace 𝐾

𝑚+1
(𝐴, 𝑟
𝜎
).

Meanwhile, the nonseed solutions are approximated by pro-
jecting the residual 𝑟(𝑗) = 𝑏

(𝑗)

−𝐴𝑥
(𝑗) on𝐾

𝑚+1
(𝐴, 𝑟
𝜎
) and solv-

ing the least square problem min
𝑑
(𝑗)
∈𝑅
𝑚‖�̃�
𝑚
𝑑
(𝑗)

− 𝑄
Τ

𝑚+1
𝑟
(𝑗)

‖
2
.

Thirdly, after the seed systems are solved to desired accuracy,
new seed systems are selected from the unsolved systems and
then the whole procedure is repeated until all the systems are
solved.
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According to Algorithm 2, we can get

𝑟
(𝑗)

= 𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

= 𝑏
(𝑗)

− 𝐴 (𝑥
(𝑗)

+ 𝑄
𝑚
𝑑
(𝑗)

)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= 𝑟
(𝑗)

− 𝑄
𝑚+1

�̃�
𝑚
𝑑
(𝑗)

(2)

and 𝑄
𝑇

𝑚+1
𝑟
(𝑗)

= 𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− �̃�
𝑚
𝑑
(𝑗). In addition, let 𝑃 =

𝑄
𝑚+1

𝑄
𝑇

𝑚+1
be the orthogonal operator on 𝐾

𝑚+1
(𝐴, 𝑟
(𝑠)

). It
follows that

𝑟
(𝑗)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= (𝐼 − 𝑃) 𝑟
(𝑗)

+ (𝑃𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

)

= (𝐼 − 𝑃) 𝑟
(𝑗)

+ 𝑄
𝑚+1

(𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− �̃�
𝑚
𝑑
(𝑗)

) .

(3)

The following property can be attained.

Property 1. The residual 𝑟(𝑗) in nonseed systems in Algo-
rithm 2 satisfy


𝑄
𝑇

𝑚+1
𝑟
(𝑗)
2

= min
𝑥∈𝑥
(𝑗)
+𝐾𝑚


𝑄
𝑇

𝑚+1
(𝑏
(𝑗)

− 𝐴𝑥)
2
,


𝑟
(𝑗)


2

2

=

(𝐼 − 𝑃) 𝑟

(𝑗)


2

2

+ min
𝑑∈𝑅
𝑚


𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− �̃�
𝑚
𝑑


2

2

.

(4)

Theorem 3. Set 𝐾
𝑚

≡ 𝐾
𝑚
(𝐴, 𝑟
(𝑠)

) as 𝑚-dimension Krylov
subspace; one has

(1) for the seed systems: 𝑥(𝑠) ∈ {𝑥
(𝑠)

} + 𝐾
𝑚
, 𝑟(𝑠) ∈ 𝐾

𝑚+1
,

and 𝑟(𝑠) ⊥ 𝐴𝐾
𝑚
⊆ 𝐾
𝑚+1

;
(2) for the nonseed systems:𝑥(𝑗) ∈ {𝑥

(𝑗)

}+𝐾
𝑚
, 𝑟(𝑗) ∈ {𝑟

(𝑗)

}+

𝐾
𝑚+1

, and 𝑟(𝑗) ⊥ 𝐴𝐾
𝑚
.

Proof. (1) According to the Lanczos method, the conclusion
of (1) is right obviously;

(2) since 𝑥(𝑗) = {𝑥
(𝑗)

} + 𝑄
𝑚
𝑑
(𝑗)

∈ {𝑥
(𝑗)

} + 𝐾
𝑚
, it follows

that

𝑟
(𝑗)

= 𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= 𝑟
(𝑗)

− 𝑄
𝑚+1

�̃�
𝑚
𝑑
(𝑗)

.

(5)

Using 𝐴𝑄
𝑚
as inner product, we can get

(𝐴𝑄
𝑚
)
𝑇

𝑟
(𝑗)

= �̃�
𝑇

𝑚
𝑄
𝑇

𝑚+1
(𝑟
(𝑗)

− 𝑄
𝑚+1

�̃�
𝑚
𝑑
(𝑗)

)

= �̃�
𝑇

𝑚
(𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− �̃�
𝑚
𝑑
(𝑗)

) .

(6)

Since 𝑑
(𝑗)

= argmin
𝑑∈𝑅
𝑚‖𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− �̃�
𝑚
𝑑‖
2
is the least

squares solution and satisfies the normal equation
�̃�
𝑇

𝑚
�̃�
𝑚
𝑑
(𝑗)

= �̃�
𝑇

𝑚
𝑄
𝑇

𝑚+1
𝑟
(𝑗), then (𝐴𝑄

𝑚
)
𝑇

𝑟
(𝑗)

= 0.

4. Numerical Experiments

In order to prove the efficiency of our algorithm, we com-
pare the following methods. (1) MINRES1, it uses MINRES
method for solving the multiple right-hand side linear sys-
tems one by one and uses the convergent solution of (𝑗 −

1)th systems as the iterative initial vector of 𝑗th systems
when the (𝑗 − 1)th systems converge. (2) MINRES2, it uses

MINRES method for solving the multiple right-hand side
linear systems one by one, and the initial vector is zero vector.
(3)Mseed is MINRES seed projection method.

All numerical experiments are implemented inMATLAB
2009 and run in Intel Pentium Dual T2390 computer. We set
𝑚 = 30; all the tests are stopped as soon as ‖𝑟(𝑗)‖

2
< 𝜀 ≡ 10

−6.

Example 1. 𝐴 is a 1024 × 1024 symmetric matrix:

𝐴 =

[
[
[
[
[
[
[
[

[

1 0.1 0.5 0.5 ⋅ ⋅ ⋅ 0.5

0.1 2 0.1

0.5 0.1 3 0.1

0.5 0.1 4 d
... d d 0.1

0.5 0.1 1024

]
]
]
]
]
]
]
]

]

. (7)

In numerical experiment, the right-hand sides of systems
are constructed by two forms as the following, respectively.

Form 1:

𝐵
1
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

] ,

𝑏
(𝑗)

≡ 𝑏
(𝑗)

(𝑡
𝑖
) = − cos(5 cos(𝑡

𝑖
−
2 (𝑗 − 1) 𝜋

128
)) ,

(8)

where 𝑗 = 1, . . . , 𝑝; 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛.

Form 2:

𝐵
2
=[𝑏
(1)

, . . . , 𝑏
(𝑝)

] , where 𝑏
(𝑗)

=𝐴𝑢
(𝑗)

, 𝑢
(1)

=(1, . . . , 1)
𝑇

,

𝑢
(𝑗)

= 𝑗 ⋅ cos ((2𝑗 + 𝑖) × 10
6

) ⋅ sin ((3 (4 − 𝑗) + 𝑖) × 10
(6)

) ,

𝑖 = 1, . . . , 𝑛, 𝑗 = 2, . . . , 𝑝.

(9)

The numerical results are shown in Tables 1 and 2 and the data
in bracket is the sum of iterative steps.

In Table 1, the iterative steps of each system are listed and
the data in bracket are the sum of iterative steps of all systems.
From Table 1, we can know that Mseed can do better than
MINRES1 and MINRES2.

Figures 1, 2, and 3 are the convergent curve of three
methods, respectively, when the right side is 𝐵

1
. And from

them, we can see that Mseed can do better than MINRES1
and MINRES2.

Example 2. Next example comes fromMatrixMarket, and all
the matrices are symmetric as shown in Table 3:

𝐵
1
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

] , 𝑗 = 1, . . . , 𝑝, (10)

where 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛, 𝐵

2
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

],
and 𝑏

(𝑗)

= (1, . . . , 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗−1

)
𝑇.

Let 𝑝 = 5, and the dimensions of projection space𝑚 = 25

and results of calculation are shown in Table 4.
From Table 4, we can see that Mseed is superior to

MINRES method.
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Table 1: Iterative steps of convergent solution of each system.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

(81) 29, 16, 8, 9, 19 (155) 29, 20, 40, 45, 21 (286) 29, 41, 57, 73, 86
𝐵
2

(57) 25, 15, 15, 2, 0 (125) 25, 27, 25, 21, 27 (181) 25, 36, 34, 46, 40

Table 2: Convergent time (second) of each method.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

17.1720 19.2810 20.8430
𝐵
2

17.0870 18.5620 19.7832

Table 3

Matrix name Order If diagonal
dominance

Conditions
number

bcsstm19 817 × 817 Y 2.3𝑒 + 05

bcsstk27 1224 × 1224 N 7.7𝑒 + 04

bcsstk22 138 × 138 N 1.7𝑒 + 05

Example 3. 𝐴 is a 1000 × 1000 symmetric matrix:

𝐴 =

[
[
[
[
[
[
[

[

1 0.1

0.1 2 0.1

0.1 3 0.1

0.1 4 d
d d 0.1

0.1 1024

]
]
]
]
]
]
]

]

. (11)

Form 1:

𝐵
1
= [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑝
] ,

(𝑏
𝑗
)
𝑖

= − cos(5 cos(𝑖 −
2 (𝑗 − 1) 𝜋

128
)) ,

(12)

where 𝑗 = 1, . . . , 𝑝; 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛.

Form 2:

𝐵
2
=[𝑏
(1)

, . . . , 𝑏
(𝑝)

] , where 𝑏
(𝑗)

=𝐴𝑢
(𝑗)

, 𝑢
(1)

=(1, . . . , 1)
𝑇

,

𝑢
(𝑗)

= 𝑗 ⋅ cos ((2𝑗 + 𝑖) × 10
3

) ⋅ sin ((3 (4 − 𝑗) + 𝑖) × 10
3

) ,

𝑖 = 1, . . . , 𝑛, 𝑗 = 2, . . . , 𝑝.

(13)

The numerical results are shown in Tables 5 and 6 and the
data in bracket is the sum of iterative steps.

5. Conclusion

In this paper, we propose the MINRES seed projection
method for solving symmetric systems with multiple right-
hand sides, and the residual estimation is analyzed. The
numerical examples show that our method is effective.
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Figure 1: MINRES seed projection method.
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Figure 2: MINRES1.
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Table 4: Convergent iterative steps of each system and CPU time (second).

𝐵 𝐴
Minres seed projection method Minres2
Iterative steps T1 (s) Iterative steps T2 (s)

𝐵
1

bcsstm9 (718) 171, 146, 179, 129, 93 3.13 (980) 171, 201, 241, 191, 176 5.77
bcsstk27 (781) 211, 187, 154, 124, 105 11.82 (1033) 211, 206, 203, 203, 210 24.98
bcsstk22 (1833) 984, 574, 142, 119, 14 4.32 (4705) 984, 935, 850, 1014, 922 16.82

𝐵
2

bcsstm9 (475) 175, 124, 62, 68, 46 2.24 (898) 175, 201, 175, 176, 171 5.37
bcsstk27 (748) 215, 156, 143, 140, 94 11.34 (1079) 215, 216, 216, 216, 216 25.85
bcsstk22 (2312) 1019, 590, 393, 162, 148 5.33 (5231) 1019, 986, 1079, 1059, 1088 18.85

Table 5: Iterative steps of convergent solution of each system.

Right-hand Mseed MINRES1 MINRES 2
𝐵
1

(34) 11, 8, 6, 4, 5 (48) 11, 10, 9, 9, 9 (54) 11, 11, 11, 10, 11
𝐵
2

(36) 11, 13, 11, 0, 1 (60) 11, 11, 13, 12, 13 (60) 11, 11, 12, 13, 13

Table 6: Convergent time (second) of each method.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

4.785072 5.967727 6.053866
𝐵
2

4.934010 5.739067 5.823134
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We investigate the numerical solution of linear fractional integro-differential equations by least squares method with aid of shifted
Chebyshev polynomial. Some numerical examples are presented to illustrate the theoretical results.

1. Introduction

Many problems can be modeled by fractional Integro-
differential equations from various sciences and engineering
applications. Furthermore most problems cannot be solved
analytically, and hence finding good approximate solutions,
using numerical methods, will be very helpful.

Recently, several numerical methods to solve frac-
tional differential equations (FDEs) and fractional Integro-
differential equations (FIDEs) have been given. The authors
in [1, 2] applied collocation method for solving the follow-
ing: nonlinear fractional Langevin equation involving two
fractional orders in different intervals and fractional Fred-
holm Integro-differential equations. Chebyshev polynomials
method is introduced in [3–5] for solving multiterm frac-
tional orders differential equations and nonlinear Volterra
and Fredholm Integro-differential equations of fractional
order.The authors in [6] applied variational iterationmethod
for solving fractional Integro-differential equations with
the nonlocal boundary conditions. Adomian decomposition
method is introduced in [7, 8] for solving fractional diffu-
sion equation and fractional Integro-differential equations.
References [9, 10] used homotopy perturbation method for
solving nonlinear Fredholm Integro-differential equations of
fractional order and system of linear Fredholm fractional
Integro-differential equations. Taylor series method is intro-
duced in [11] for solving linear integrofractional differential
equations of Volterra type. The authors in [12, 13] give an

application of nonlinear fractional differential equations and
their approximations and existence and uniqueness theorem
for fractional differential equations with integral boundary
conditions.

In this paper least squares method with aid of shifted
Chebyshev polynomial is applied to solving fractional
Integro-differential equations. Least squaresmethodhas been
studied in [14–18].

In this paper, we are concerned with the numerical
solution of the following linear fractional Integro-differential
equation:

𝐷
𝛼

𝜑 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1, (1)

with the following supplementary conditions:

𝜑
(𝑖)

(0) = 𝛿
𝑖
, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N, (2)

where 𝐷𝛼𝜑(𝑥) indicates the 𝛼th Caputo fractional derivative
of 𝜑(𝑥); 𝑓(𝑥), 𝐾(𝑥, 𝑡) are given functions, 𝑥 and 𝑡 are real
variables varying in the interval [0, 1], and 𝜑(𝑥) is the
unknown function to be determined.

2. Basic Definitions of Fractional Derivatives

In this section some basic definitions and properties of
fractional calculus theory which are necessary for the formu-
lation of the problem are given.
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Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇 such that

𝑓(𝑥) = 𝑥
𝑝

𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶[0, 1).

Definition 2. A function𝑓(𝑥), 𝑥 > 0, is said to be in the space
𝐶
𝑚

𝜇
, 𝑚 ∈ N ∪ {0}, if 𝑓(𝑚) ∈ 𝐶

𝜇
.

Definition 3. The left sided Riemann-Liouville fractional
integral operator of order 𝛼 ≥ 0 of a function𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1,

is defined as [19]

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼

𝑑𝑡, 𝛼 > 0, 𝑥 > 0, (3)

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) . (4)

Definition 4. Let 𝑓 ∈ 𝐶
𝑚

−1
1, 𝑚 ∈ N ∪ {0}. Then the Caputo

fractional derivative of 𝑓(𝑥) is defined as [20–22]

𝐷
𝛼

𝑓 (𝑥) =

{

{

{

𝐽
𝑚−𝛼

𝑓
𝑚

(𝑥) , 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N,
𝐷
𝑚

𝑓 (𝑥)

𝐷𝑥𝑚
, 𝛼 = 𝑚.

(5)

Hence, we have the following properties:

(1) 𝐽
𝛼

𝐽
]
𝑓 = 𝐽
𝛼+]

𝑓, 𝛼, ] > 0, 𝑓 ∈ 𝐶
𝜇
, 𝜇 > 0,

(2) 𝐽
𝛼

𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0,

(3) 𝐽
𝛼

𝐷
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑥
𝑘

𝑘!
,

𝑥 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(4)𝐷
𝛼

𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) , 𝑥 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(5)𝐷
𝛼

𝐶 = 0, 𝐶 is a constant,

(6)𝐷
𝛼

𝑥
𝛽

=

{{

{{

{

0, 𝛽 ∈ N
0
, 𝛽 < [𝛼] ,

Γ (𝛽 + 1)

Γ (𝛽 − 𝛼 + 1)
𝑥
𝛽−𝛼

, 𝛽 ∈ N
0
, 𝛽 ≥ [𝛼] ,

(6)

where [𝛼] denoted the smallest integer greater than or equal
to 𝛼 and N

0
= {0, 1, 2, . . .}.

3. Solution of Linear Fractional
Integro-Differential Equation

In this section the least squares method with aid of shifted
Chebyshev polynomial is applied to study the numerical
solution of the fractional Integro-differential (1).

This method is based on approximating the unknown
function 𝜑(𝑥) as

𝜑
𝑛
(𝑥) ≅

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑥) , 0 ≤ 𝑥 ≤ 1, (7)

where𝑇∗
𝑖
(𝑥) is shifted Chebyshev polynomial of the first kind

which is defined in terms of the Chebyshev polynomial 𝑇
𝑛
(𝑥)

by the following relation [23]:

𝑇
∗

𝑛
(𝑥) = 𝑇

𝑛
(2𝑥 − 1) , (8)

and the following recurrence formulae:

𝑇
∗

𝑛
(𝑥) = 2 (2𝑥 − 1) 𝑇

∗

𝑛−1
(𝑥) − 𝑇

∗

𝑛−2
(𝑥) , 𝑛 = 2, 3, . . . ,

(9)

with initial conditions

𝑇
∗

0
(𝑥) = 1, 𝑇

∗

1
(𝑥) = 2𝑥 − 1, (10)

𝑎
𝑖
, 𝑖 = 0, 1, 2, . . ., are constants.
Substituting (7) into (1) we obtain

𝐷
𝛼

(

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑥)) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡.

(11)

Hence the residual equation is defined as

𝑅 (𝑥, 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡.

(12)

Let

𝑆 (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) = ∫

1

0

[𝑅 (𝑥, 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)]
2

𝑤 (𝑥) 𝑑𝑥,

(13)

where 𝑤(𝑥) is the positive weight function defined on the
interval [0, 1]. In this work we take 𝑤(𝑥) = 1 for simplicity.
Thus

𝑆 (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)

= ∫

1

0

{

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥)

− ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡}

2

𝑑𝑥.

(14)

So, finding the values of 𝑎
𝑖
, 𝑖 = 0, 1, . . . , 𝑛, which minimize

𝑆 is equivalent to finding the best approximation for the
solution of the fractional Integro-differential equation (1).

The minimum value of 𝑆 is obtained by setting
𝜕𝑆

𝜕𝑎
𝑗

= 0, 𝑗 = 0, 1, . . . , 𝑛. (15)

Applying (15) to (14) we obtain

∫

1

0

{

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡}

×{𝐷
𝛼

𝑇
∗

𝑗
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝑇
∗

𝑗
(𝑡) 𝑑𝑡} 𝑑𝑥.

(16)
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By evaluating the above equation for 𝑗 = 0, 1, . . . , 𝑛 we can
obtain a system of (𝑛 + 1) linear equations with (𝑛 + 1)

unknown coefficients 𝑎
𝑖
’s. This system can be formed by

using matrices form as follows:

𝐴

=

(
(
(

(

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
0
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
0
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
0
𝑑𝑥

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
1
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
1
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
1
𝑑𝑥

...
... d

...

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
𝑛
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
𝑛
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
𝑛
𝑑𝑥

)
)
)

)

,

𝐵 =
(
(

(

∫

1

0

𝑓 (𝑥) ℎ
0
𝑑𝑥

∫

1

0

𝑓 (𝑥) ℎ
1
𝑑𝑥

...

∫

1

0

𝑓 (𝑥) ℎ
𝑛
𝑑𝑥

)
)

)

,

(17)

where

ℎ
𝑗
= 𝐷
𝛼

𝑇
∗

𝑗
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝑇
∗

𝑗
(𝑡) 𝑑𝑡, 𝑗 = 0, 1, . . . , 𝑛,

𝑅 (𝑥, 𝑎
𝑖
) =

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡,

𝑖 = 0, 1, . . . , 𝑛.

(18)

By solving the above system we obtain the values of the
unknown coefficients and the approximate solution of (1).

4. Numerical Examples

In this section, some numerical examples of linear fractional
Integro-differential equations are presented to illustrate the
above results. All results are obtained by using Maple 15.

Example 1. Consider the following fractional Integro-
differential equation:

𝐷
1/2

𝜑 (𝑥) =
(8/3) 𝑥

3/2

− 2𝑥
1/2

√𝜋
+
𝑥

12
+ ∫

1

0

𝑥𝑡𝜑 (𝑡) 𝑑𝑡,

0 ≤ 𝑥, 𝑡 ≤ 1,

(19)

subject to 𝜑(0) = 0 with the exact solution 𝜑(𝑥) = 𝑥2 − 𝑥.
Applying the least squares method with aid of

shifted Chebyshev polynomial of the first kind 𝑇
∗

𝑖
(𝑥),

𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-differential

Column Ro
w

1 1

3 3

2 2

4 4

5 5

6 6

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

1

×10
6

Figure 1: The matrix inverse of Example 1.

0

10.2 0.4 0.6 0.8

Exact
Approximate

−0.25

−0.20

−0.10

−0.15

−0.05

x

Figure 2: Numerical results of Example 1.

equation (19) we obtain a system of (6) linear equations
with (6) unknown coefficients 𝑎

𝑖
, 𝑖 = 0, 1, . . . , 5. This system

can be transformed into a matrix equation and by solving
this matrix equation we obtain the inverse which is given
in Figure 1 and we obtain the values of the coefficients.
Substituting the values of the coefficients into (7) we obtain
the approximate solution which is the same as the exact
solution and the results are shown in Figure 2.
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Column Ro
w

1 1

3 3

2 2

4 4

5 5

6 6

100000

200000

300000

400000

500000

600000

Figure 3: The matrix inverse of Example 2.

0

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1

Exact
Approximate

x

Figure 4: Numerical results of Example 2.

Example 2. Consider the following fractional Integro-
differential equation:

𝐷
5/6

𝜑 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝑥𝑒
𝑡

𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1, (20)

subject to 𝜑(0) = 0, where

𝑓 (𝑥) = −
3

91

𝑥
1/6

Γ (5/6) (−91 + 216𝑥
2

)

𝜋
+ (5 − 2𝑒) 𝑥 (21)

with the exact solution 𝜑(𝑥) = 𝑥 − 𝑥3.

Column
Ro
w

11

3
3

0

2
2

4 4

5 5

6 6

−5

5

10

15

×10
9

Figure 5: The matrix inverse of Example 3.

Similarly as in Example 1 applying the least squares
method with aid of shifted Chebyshev polynomial of the first
kind 𝑇∗

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-

differential equation (20) the numerical results are shown in
Figures 3 and 4 andwe obtain the approximate solutionwhich
is the same as the exact solution.

Example 3. Consider the following fractional Integro-
differential equation:

𝐷
5/3

𝜑 (𝑥) =
3√3Γ (2/3) 𝑥

1/3

𝜋
−
1

5
𝑥
2

−
1

4
𝑥

+ ∫

1

0

(𝑥𝑡 + 𝑥
2

𝑡
2

) 𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1,

(22)

subject to 𝜑(0) = �̀�(0) = 0 with the exact solution 𝜑(𝑥) = 𝑥2.
Similarly as in Examples 1 and 2 applying the least squares

method with aid of shifted Chebyshev polynomial of the first
kind 𝑇∗

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-

differential equation (22) the numerical results are shown in
Figures 5 and 6 andwe obtain the approximate solutionwhich
is the same as the exact solution.

5. Conclusion

In this paper we study the numerical solution of three
examples by using least squares method with aid of shifted
Chebyshev polynomial which derives a good approximation.
We show that this method is effective and has high conver-
gency rate.
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This paper examines the differences of learning performance of 5 MNCs (multinational corporations) that filed the largest number
of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the
networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs
with differing network structures, we develop an organization learning model by regarding the reality as having 𝑚 dimensions,
which denotes the heterogeneous knowledge about the reality. We further set 𝑛 innovative individuals that are mutually interactive
and own unique knowledge about the reality. A longer (shorter) distance between the knowledge of the individual and the reality
denotes a lower (higher) knowledge level of that individual. Individuals interact with and learn from each other within the small-
world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure
of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization
negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section
suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

1. Introduction

Many studies have proved that the innovation process has
recently become a network process [1]. Innovation network
facilitates knowledge sharing, R&D cooperation, and tech-
nology complementation between firms, while constraints
like distance and culture are playing less important roles.
The contacts of firms from different regions and countries
are becoming closer, which characterizes the “small world”
of innovation network. As the theory of “six-degrees-of-
separation” (everyone is six or fewer steps away, by way of
introduction, from any other person in the world, so that
a chain of “a friend of a friend” statements can be made to
connect any two people in a maximum of six steps) proposed
by Milgram [2] has been becoming more popular, the closely
related theory of “small world” has been receiving much
focus [3]. In the small world network, most vertices are far
away from each other but could reach each other by passing
several other vertices. If we denote the vertices in the small

world network by people, edges between vertices suggest that
the two people know each other; then the network where
everyone could know each other by a chain of “a friend of
a friend” is signified by the phenomenon of “small world.”

The social network is so complex and important that a
comprehensive study from the fields of computer science,
physics, statistics, sociology, and even economics is carried
out [4]. The literature on small worlds has grown rapidly
in the social science and management literature [5], like
Björneborn [6], Davis et al. [7], Fowler [8], Kogut andWalker
[9], Kleinberg [10], Iravani et al. [11], Goyal et al. [12], Baum
et al. [13], and Watts [14]. In recent years, many scholars
introduced small world theory into innovation network and
focused on the “small worldliness” of innovation network,
for example, Fleming and Marx [15], Hargadon [16], Chen
and Guan [17], Guan and Shi [18], Fleming et al. [19], and
Hung and Wang [20]. In a regular innovation network,
individuals are constrained by distance and thus can only
connect with close neighbors; see Figure 1(a). In small world
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(a) Regular (b) Small world (c) Random

Figure 1: Three types of innovation network.

innovation network, minor connections are established by
several individuals far from each other; see Figure 1(b).
In random innovation network, the connections are totally
random and free of distance; see Figure 1(c). Obviously,
small world innovation network lies between regular and
random innovation networks; that is, most connections are
constrained by but some are free of distance. As most real
innovation networks lie between regular and random net-
works, it is common to see small world innovation network,
which is playing an important role in the technology progress
of firms and even the whole industry [15, 21].

The network system is important to an organization [22,
23]. The structure of small-world networks and of real net-
works has been probed through the calculation of their diam-
eter as a function of network size [24]. Based on the analysis
of the small world network, electric power grid for Southern
California, the network of movie-actor collaborations, the
neuronal network of the worm Caenorhabditiselegans [25],
the world-wide web [26], and the network of citations of
scientific papers [27, 28], the scale-free network with the
distribution of connectivities that decays with a power law
tail is proposed. Scale-free networks are also small-world
networks, because (i) they have clustering coefficients much
larger than random networks [24] and (ii) their path length
increases logarithmically with the number of vertices [26].
However, as there are constraints limiting the addition of new
links, Amaral et al. [29] suggested that such constraints may
be the controlling factor (e.g., aging of vertices and cost of
adding new links) for the emergence of scale-free networks;
they further presented evidence of the occurrence of three
classes of small-world networks according to the constraints:
(a) scale-free networks with no constraints, characterized by
a vertex connectivity distribution that decays as a power law;
(b) broad-scale networks with low constraints, characterized
by a connectivity distribution that has a power law regime
followed by a sharp cutoff; and (c) single-scale networks with
high constraints, characterized by a connectivity distribution
with a fast decaying tail (see Figure 2).

It is increasingly acknowledged that network structure
plays an important role in explaining the potential of emerg-
ing technologies to spread [30–32]. Many studies focused
on the patent coauthorship network and the innovation
productivity of inventors, for example, Chen and Guan [17],
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Figure 2: Truncation of scale-free connectivity by adding con-
straints to network.

Fleming et al. [19], and Zhang and Guan [33]. As the patents
are mostly coinvented by inventors with complementary
knowledge, inventors could gain the necessary knowledge
by making a joint research, where the network relationships
between inventors are functioning as the intermediaries of
knowledge flow. Patent coauthorship network, which reflects
the networking relationship between inventors, plays an
important role in facilitating the knowledge flow. Inventors
are continuously learning from each other through the
networks and improve their own knowledge, which in turn
improves the organization learning [34].

Networks with different structures would play different
roles in improving learning performance [35]. Numerous
studies on the network effects between diverse firms have
been conducted, focusing on the way in which innova-
tion clusters are continuously achieving competitiveness
and improving organization learning performance [36–41].
Finding the effective structure of innovation networks within
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the firm may be indicative for firm managers who care about
the organization design.

Existing studies may not make an in-depth analysis
of the differences of the network structure between firms,
leaving an unclear effectiveness of the networks with differing
structures. However, measuring and comparing the compet-
itiveness of innovation networks with the real regional firm
data may be difficult, since there are other potential multi-
impacting factors, for example, R&D input, economic profit,
wages, and culture, which make it difficult to identify the
effect of innovation networks.With the numerical simulation
method, Choi et al. [35] made a comparison of the effec-
tiveness of the innovation networks and found that scale-
free network owns the highest learning performance, which
is followed by broad-scale and single-scale network. This
provided evidence for the significant impact of constraints
on network effectiveness, which is proposed by Amaral et al.
[29]. However, the structure of real network may differ
widely from simulated ones, for example, in real network,
most vertices may own relatively low connections, while a
small ratio owns relatively high connections. In comparison,
most vertices in simulated networks mostly own the same
connections. Simulation of the real-world network has been
conducted [42–45]. As the structures of real and simulated
networks are different, it is necessary to make another empir-
ical study with the real data, so that the learning performance
of real networks with different network classification could
be studied. This paper contributes to existing literatures by
analyzing the real empirical network data with the simulation
method. We examine the effectiveness of the real innovation
network within the firms with simulation method. This
would allow us to exclude other nonnetwork effects and
conduct an independent study about the effect of innovation
networks.We use the patent coauthorship data in establishing
the innovation network and analyze the differences of real
network structure and learning performance of 5 selected
Chinese companies that filed the largest number of patents
in China.

Section 2 classifies the small-world networks. Section 3
presents the computation analysis. Section 4 discusses and
Section 5 concludes.

2. Network Modeling

2.1. Small Worldliness. Recent studies mostly utilized two
key attributes to measure small world effect: local clustering
and global average path length [3]. Clustering coefficient is
measured with the number of links with which all neighbors
of an inventor are connecting each other, divided by the
number of connections among those inventors. For inventor
𝑖, the clustering coefficient is

CC
𝑖
=

𝜏
𝑖,Δ

𝜏
𝑖,3

, (1)

where 𝜏
𝑖,Δ

is the number of triangles that contains inventor
𝑖 and 𝜏

𝑖,3
is the number of connected triples for which the

other two inventors are both connected with 𝑖. The clustering
coefficient (CC) of the network is averaged over all the
inventors in the network.

The average path length (PL) is defined to be the average
of all the shortest distances between any two inventors. For
inventor 𝑖, the average path length is

PL
𝑖
=

1

𝑛 − 1

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

(PL
𝑖,𝑗
+ 1) , (2)

where PL
𝑖,𝑗
is the number of intermediaries between inventor

𝑖 and 𝑗. If 𝑖 and 𝑗 are directly connected, PL
𝑖,𝑗
= 0. The

average path length (PL) of the network is averaged over all
the inventors in the network.

The small world network is characterized by high local
clustering and low distance between inventors, which is
distinguished from both random networks that are charac-
terized by low clustering and low average path length and
regular networks that are characterized by high clustering
and high average path length. However, considering only
the real network would be misleading, since the clustering
coefficient may be overestimated and the patent length may
be underestimated [46]. Following Newman et al. [46] and
Humphries and Gurney [47], the CC ratio (CC of the real
network/CC of a random network comparison) and PL ratio
(PL of the real network/PL of a randomnetwork comparison)
is introduced so that the estimation could be corrected. The
more its CC ratio is greater than 1 and the less its PL ratio, the
stronger the small world character is. It is usually measured
by the small world quotient (CC ratio/PL ratio) [5, 7, 26].
The larger the quotient is, the greater the network’s small
world nature is. Humphries et al. [47] and Humphries and
Gurney [48] proposed a definition that makes a judgment
of the small world network: if PL ratio≥ 1 and CC ratio≫ 1,
in other words, CC ratio/PL ratio> 1, the network is said to
be a small world network. Since PL is based on a connected
component, both CC and PL are calculated within the largest
connected component in this study.

All the indicators, such as CC, PL, and small world
quotient, are calculated on the basis of unweighted network.
The CC and PL of random network, with both the same
number of patents and inventors and equal possibility that
two inventors collaborate, are calculated with the method
presented by Li et al. [45].

We identify the collaboration of inventors by utilizing
the patent coauthorship data; that is, a link is established
between two identified inventors as they coinvent a patent.
We utilize the patent coauthorship data from SIPO (State
Intellectual Property Office of China), which covers a total
of over 6 million patents by the year 2011. The number of
patents filed during 1992–2010 in SIPO grows at the fastest
pace and becomes the second largest database in the world,
only less than USPTO (United States Patent and Trademark
Office) but greater than JPO (Japanese Patent Office) and
EPO (European Patent Office) [18]. The patents in SIPO are
classified into 3 categories: invention patent, utility model,
and design. Since advanced technologies in China are mostly
filed as invention patents [33], we utilize the data of invention
patents filed by 5 Chinese companies with the largest number
of patent application: twomost famousMNCs in IT industry:
Huawei and ZTE (Zhongxing Telecommunications Equip-
ment), two largest state-ownedMNCs in petroleum industry:
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Table 1: Summary statistics of patent coauthorship data in the largest connected component.

Size of largest
componenta

𝑀: number of
patents

𝑁: number of
inventors

𝑈: average number of
patents an inventor filed

𝑉: average number of
inventors in a patent

Foxconn 0.5117 6,019 1,839 7.1147 2.1738
Huawei 0.9064 15,690 9,059 4.2328 2.4439
SINOPEC 0.8439 5,210 4,879 5.5433 5.1912
CNPC 0.8061 1,302 3,853 2.4269 7.1820
ZTE 0.9174 11,878 7,050 4.1417 2.4582
asize of largest component is calculated with the ratio of inventors in the largest connected component to the total inventors.

SINOPEC (China Petroleum & Chemical Corporation) and
CNPC (China National Petroleum Corporation), and the
large manufacturer Foxconn in China are included.

Since we analyze the innovation network within the
company only, we remove the patents coapplied by two
or more organizations (mainly composed of companies,
universities, and research institutes) from the data, so that
the interorganizational network is not taken into account.
However, as there are always subsidiaries for large companies,
patents coapplied by the parent firm and its subsidiary are
included.

People usually own the same name in China, which
may mislead the analysis of network structure. It is thus
quite necessary but time consuming to distinguish inventors
with identical name. However, as we have classified the data
by company, it is scarce to see this phenomenon within a
company.

The patent data in this study are filed during 2000–
2009. Since we study only the largest connected network, we
present the summary statistics of only the largest connected
component of each company. As is shown in Table 1, the
manufacturer Foxconn owns the smallest size numbered
at 0.5117, which suggests that the innovation network in
Foxconn may not be well connected as there are 48.83%
isolated inventors. In comparison, ratio of isolated inventors
in the network of IT giants Huawei and ZTE is much lower,
which are both lower than 10%. Similarly, the size of largest
component of petroleum giants SINOPEC and CNPC is also
close.

Although Foxconn owns the fewest inventors, it owns
more patents than SINOPEC and CNPC, which suggests
that inventors in Foxconn may have done more intensive
research and thus filed averagely more patents than the other
four companies. In addition, as is shown in the last column,
there are on average more inventors cofiling a patent in
SINOPEC and CNPC than the others. This may either be
because R&D project in petroleum industry requires more
cooperative work or because of the bureaucracy of state-
owned companies that respect managers by adding their
name to the patent, even if they do not contribute to the
patent.

In summary, the statistics of largest connected compo-
nent differs by company. However, they show a similar trend
by industry, which suggests that similar industrial invention
may lead to common ground of innovation network.

Table 2: Small worldliness of innovation network.

Clustering coefficient Path length Small world Q
Foxconn 0.6775 10.4484 1.4443
Huawei 0.6213 5.4428 2.3294
SINOPEC 0.7764 5.3747 2.3893
CNPC 0.8223 6.0095 1.3545
ZTE 0.5544 5.7833 1.8819

As is shown in Table 2, the small world Qs of these 5
MNCs are all greater than 1, which confirms the existence of
small world characteristics. CNPC owns a higher clustering
coefficient than the other companies, which may facilitate
knowledge flow. In comparison, a longer path length between
inventors in Foxconn may impede knowledge flow.

2.2. Classification of Network Structure. Differing clustering
coefficient, path length, and small world Q suggest different
network structures and thus learning performance of 5 com-
panies. We may further investigate this from the perspective
of distribution of connections. Since the characteristics of
the tail of distribution determine the main effect on learning
performance [29, 35], we conduct an in-depth analysis on it.
As is shown in Figure 3, the tail of ln-ln cumulative distri-
bution curve of SINOPEC falls on a straight line, indicating
an exponential decay of the distribution of connectivities
and a broad-scale network according to Amaral et al. [29].
Comparing SINOPEC with an exponential decay, the tails
of Huawei and ZTE appear to be falling faster, suggesting
a Gaussian decay and broad-scale or single-scale networks.
Since both exponential and Gaussian decays indicate that
the connectivity distribution is not scale-free [29], we may
conclude that there may be inefficiencies in knowledge flow
in the real network according to Choi et al. [35].

The cumulative distribution curves of Foxconn and
CNPC appear to be complex, with a convex in the tail
that dislikes any distribution curve of classified networks
mentioned above. Such weird distribution suggests a net-
work with new structure. As is shown in Figure 4, for
Foxconn, CNPC, and SINOPEC, there is a flat area in the
tail of density curve, which indicates extremely unevenly
distributed networks that own minor “super-inventors” who
have extremely high connections with other inventors, while
for most inventors in the network, the connections are much
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Figure 3: ln-ln cumulative distribution function of connections. 𝑥-axis: ln(value) of inventors’ degree as measured by the number of
connections to other inventors; 𝑦-axis: ln(value) of cumulative distribution.

fewer.These lead to networks with hierarchical properties. In
comparison, this phenomenon is absent from Huawei and
ZTE with a smooth density curve, which indicates more
evenly distributed networks where there appears to be no
“super-inventors.”

As is circled in Figure 4, the scale of the circled flat tails is
different. Foxconn owns larger flat tail (0.0049) than CNPC
(0.0041), which in turn is larger than SINOPEC (0.0036).
A relatively larger flat tail appears to have produced a new
structured network, while a relatively smaller flat tail is bound
to be scale-free.

Therefore, there ismonopolization in terms of technology
innovation, which suggests that minor inventors may have
controlled most R&D resources and made most inventions
by connecting with more other inventors. This monopoliza-
tion appears to be greater in Foxconn than in CNPC and
SINOPEC, while there appears to be no suchmonopolization
in Huawei or ZTE.

2.3. How Important Is Innovation. For firms in different
industry, the importance of innovation may be different. As
these 5 companies are in different industries, they may make
different effort in R&D. Of all these 5 companies, Huawei
and ZTE are likely to do more R&D work, since information
technology is typically an R&D intensive industry [49]. In
petrochemical technology industry in China, SINOPEC and
CNPC are also devoted to build up many research insti-
tutes and research centers in technology fields of petrochem-
icals, coal-to-chemicals, commodity polymers, oilfield chem-
icals, and specialty chemicals (SINOPEC: http://english.sin-
opec.com/about sinopec/subsidiaries/research institutions/
20080326/3092.shtml CNPC: http://www.cnpc.com.cn/en/
aboutcnpc/technologyinnovationRandDProgress/). In com-
parison, Foxconn, the largest gadget manufacturer in China,
is doing more package work for R&D intensive products, for
example, iPhone and iPad.

Companies with a greater focus on innovation are more
likely to be motivated to improve network efficiency. With
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the intention of identifying the importance of innovation
by company, we use the data of industrial output and new
product output for analysis. Since the value of high tech
product is reflected by the market acceptance [50], selected
indicators can also reflect the learning performance from the
perspective of market value. As is shown in Table 3, although
the scale of Foxconn, Huawei, and ZTE is in the same level
in terms of industrial output, Foxconn produced much less
new product than Huawei and ZTE. In comparison, for
the sake of national monopolization, SINOPEC and CNPC
own significantly higher industrial output; however, the new
product output appears to be in the same level as Huawei and
ZTE. In terms of the ratio of new product output, Huawei
and ZTE perform better with higher ratio than SINOPEC
andCNPC,while Foxconn owns the lowest performancewith

lower ratio than the others. As Foxconn do more assembly
line production, technology innovation appears to be less
important, which makes it less likely to pay much attention
to improving the efficiency of innovation network.

Since the ratio of new product output differs by industry
and by firms, it is reasonable to conclude that innovation in
assembly line manufacturing may thus not be as important
as in IT and petroleum industry, which may lead to certain
network structures with different effects on learning. Com-
panies that make more effort in R&D work may pay more
attention to network design and make more changes that
will greatly improve network’s performance; thus efficient
innovation networks are more likely to be established. On
the contrary,manufacturing oriented companiesmay provide
production environment or even set the barriers that impede
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Table 3: Industrial output and new product output of 5 companies (billion RMB in 2010 price).

Industrial output New product output Ratio of new product output Year of data included
Foxconn 604.01 3.27 0.0054 2002, 2007, 2009, 2010a

Huawei 466.87 88.64 0.1899 2000, 2002, 2003, 2005–2007, 2009, 2010
SINOPEC 5,147.08 189.01 0.0367 2000, 2002, 2003, 2005–2007, 2009, 2010
CNPC 4,112.46 36.58 0.0089 2000, 2002, 2003, 2005–2007, 2009, 2010
ZTE 164.72 132.13 0.8021 2002, 2003, 2006, 2007, 2009, 2010
Data resources: China Industry Business Performance Data (2001–2011).
aAs the new product output for each company is not recorded all the year, we select the year of data where new product output is recorded.

innovation, so that the rule of standard product manufactur-
ing is followed; thus the structure of innovation network is
not likely to be improved.

3. Computation Analysis

With the intention of distinguishing the effectiveness of
networks with different structure, we compare firm learning
performance by investigating the efficiency of knowledge
flow. Let the innovation network be formulated by innovative
individuals (denoted by vertex) and their coauthorships
(denoted by edge). We use the method of numerical simula-
tion in measuring the effectiveness of knowledge flow based
on the real network of 5 companies. In the initial period,
we set individuals own heterogeneous knowledge. As the
interactions increase, individuals will make a comparison
between their own and neighbors’ performance. When the
individual has lower performance than one of his/her neigh-
bors, he/she is more likely to learn from individuals with
higher performance and update his/her own knowledge.

Accordingly, we refer to and extend the organization
learning model by March [34]. First, we regard reality as
having𝑚 dimensions. Since the scale of network to be inves-
tigated is relatively large, we extend the sampling interval of
each dimension 𝑎

𝑠
(𝑠 = 1, 2, . . . , 𝑚) by making 𝑎

𝑠
randomly

drawn from the integer set [−13, −12, −11, −10, −9, −8, −7,
−6, −5] and [5, 6, 7, 8, 9, 10, 11, 12, 13] with equal probability.
Second, we assume there are 𝑛 innovative individuals that
aremutually interactive.The heterogeneous knowledge about
the reality is also denoted by a vector with 𝑚 dimensions,
𝑋
𝑗,0
= [𝑥

1,0
, 𝑥
2,0
, . . . 𝑥
𝑚,0
]; each dimension will have a

value randomly drawn from integer interval [−13, 13] (other
intervals do not change our empirical result) with equal
probability. The sampling interval of individuals is obviously
larger than the reality by adding [−4, −3, −2, −1, 0, 1, 2, 3,
4], which suggests that individual owns no knowledge about
the reality in this dimension (March (1991) sets 𝑎

𝑠
to be

randomly drawn from [−1, 1]with equal probability and𝑥
𝑠
be

randomly drawn from [−1, 0, 1]. 0 suggests individual owns
no knowledge about the reality in dimension 𝑠. Obviously we
extend the organization learning model by March (1991) in
this study). Since the reality is unknown to any individuals,
the knowledge level 𝑘

𝑗
of individual 𝑗 is determined by the

distance between his/her heterogeneous knowledge and the
reality; that is,

𝑘
𝑗
=

1

∑
𝑚

𝑠=1
(𝑥
𝑠,𝑗
− 𝑎
𝑠
)
2
. (3)

(𝑥
𝑠,𝑗
− 𝑎
𝑠
)
2 denotes the distance between 𝑗’s heteroge-

neous knowledge and the reality in dimension 𝑠. Obviously,
the closer the distance is, the smaller (𝑥

𝑠,𝑗
− 𝑎
𝑠
)
2 will be and

the higher 𝑘
𝑗
will be. Therefore, a high value of 𝑘

𝑗
suggests a

high level of knowledge.
The knowledge level determines the learning perfor-

mance to a large extent [34]. However, since the result of
innovation activity is highly mobile, it is appropriate to
assume that learning performance is a variable and has its
own distribution function.March [34] assumed learning per-
formance was normally distributed and argued that higher
knowledge level will increase both the expected performance
and its variability. March [34] gave an explanation from the
perspective of relative competition advantage: if there are𝑁+
1 (𝑁 > 1) innovative individuals, the probability that the𝑁+
1th individual performs better than the other 𝑁 individuals
is usually determined by the area of right hand distribution
(which is determined by the variability of performance) of
the performance of 𝑁 + 1th individual. A similar argument
can also be found in David [51]. Improving the knowledge
level will on the one hand increase the expected performance,
but on the other hand will also increase the variability [34].
For example, adoption of a new technology will increase
the output theoretically; however, since workers are not
familiar with the new technology, the output is more likely
to fluctuate in the short run; introducing an individual
with heterogeneous knowledge, culture, and attitude into the
organization will have a similar effect. As is stated above, it
is reasonable to assume that the learning performance 𝑦

𝑗
of

individual 𝑗 is normally distributed with both expectation
and variance being 𝑘

𝑗
; that is,

𝑦
𝑗
∼ 𝑁(𝑘

𝑗
, 𝑘
2

𝑗
) . (4)

In the innovation network, the result ofmutually learning
process is to a large extent determined by the structural
characteristics and network openness [35]. Let individual’s
openness be denoted by learning rate 𝑝, namely, the proba-
bility that individual 𝑗 changes his/her knowledge to 𝑖, who
owns the highest performance of all 𝑗’s partner. We set all the
knowledge dimension change independently; then individual
𝑗 changes his 𝑠th dimension knowledge 𝑥

𝑠,𝑗
to 𝑖’s 𝑥

𝑠,𝑖
with

probability 𝑝. A high value of 𝑝 suggests high openness,
which suggests that individual 𝑗 is more likely to accept
knowledge from outside. Choi et al. [35] and March [34]
assign the value for 𝑝 in the interval [0, 0.9]. Accordingly, we
set 𝑝 to be 0.1, 0.3, and 0.9 in accordance with the network
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Figure 5: Learning performance of network with different openness.

with low, middle, and high openness. We measure the net-
work learning performance 𝑦 by averaging the performance
of all individuals in the network; that is, 𝑦 = ∑𝑁

𝑖=1
𝑦
𝑖
. All the

empirical results are averaged over 1,000 simulations.
As is shown in Figure 5, the learning performance

remains flat in the initial period then rises sharply and
converges to a constant value. This trend is similar with Choi
et al. [35], whose findings are based on simulated network.
Learning performance of networks with lower openness
(𝑝
0
= 0.1) converges at lower rate but to a higher value;

on the contrary, learning performance of networks with
higher openness (𝑝

0
= 0.9) converges at higher rate but

to a much lower value. It appears that network openness
contributes positively to convergence rate but negatively to
convergence value.This also correspondswithChoi et al. [35],
who believe that substantially high openness homogenizes
the entire cluster dramatically fast, coming to an equilibrium
point before new knowledge is learned that could improve
performance, resulting in lower performance throughout the
cluster. In comparison, low openness facilitates individuals in
achieving higher performance.

Innovation network of Foxconn has the lowest perfor-
mance with a much lower convergence value than the other
4 networks in all periods. SINOPEC and CNPC own higher
learning performance with low network openness, while
Huawei owns the highest learning performance with high
network openness in later period.

However, the scale of innovation networks of 5 companies
is not equal, which may lead to the efficiency differences of
knowledge flow between networks. A direct comparison of
learning performance should be based on networks with the
same scale. Ignoring the network scale may be misleading,
for example, learning performance of network with 2 vertices
would converge faster at a lower value than network with 10
vertices. However, we may propose that if the real network
facilitates knowledge flow much better, it should perform
better than other networks with the same scale. Following
Davis et al. [7], Newman et al. [46], and Uzzi et al. [5],
who estimated the small world quotient of real network by
taking into account the random network with the same scale,
that is, the same number of edges and vertex, we choose the
random network as the reference. We compare the learning
performance ratio of real networks, which divides the value of
learning performance of real network by the learning perfor-
mance of randomnetworkwith the same scale in each period.

As is shown in Figure 6, the converging value of most
real networks (except Foxconn) is close to 1 in the later
period in Figures 6(a) and 6(b), which suggests that the
learning performance of real and random network with low
and medium openness is finally almost equal. However, if
the openness is high, the converging value of real network
is much lower than the random network (see Figure 6(c)).
This is because low openness allows individuals to learn from
each other for longer periods by delaying the occurrence of
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Figure 6: Learning performance of network relative to random network.

convergence that terminates knowledge flow. On the con-
trary, knowledge flow in networks with high openness would
stop earlier. In addition, the highest learning performance
ratio in preconvergence period in (c) with high openness is
also lower than in (a) and (b). As the individuals are closer
to each other in random network, knowledge flow would be
faster than in real network. Thus earlier convergence would
facilitate individuals in random network.

The learning performance ratios of almost all the net-
works show inverted U shape, which suggests that the
learning performance of real network is initially becoming
increasingly greater than the random network, but later the
differences are becoming smaller.

After being divided by the learning performance of
random network, the differences of converging value become
smaller. However, the differences are also significant after
zooming in the tail of the figure. The network of SINOPEC
shows significantly higher convergence value than the other
companies in Figures 6(a) and 6(c), while in (b) the differ-
ences are smaller. CNPC follows SINOPEC in the innovation
convergence period. IT giants Huawei and ZTE are in the
middle position. Foxconn owns the lowest converging value
in all the network openness.

In initial period, IT giants Huawei and ZTE show much
greater learning performance than the other three companies,
which suggests that the network structure of Huawei and
ZTE benefit knowledge flow better than the other networks
in early period. However, they may not converge to higher
value compared to the network of SINOPEC and CNPC.

In comparison, learning performance of Foxconn shows
the lowest value in all periods, which suggests that the
network structure of Foxconn owns the lowest efficiency of
knowledge flow compared with the other 4 companies.

4. Discussions

The structure of innovation networks differs widely in reality,
which may be the main cause of the differences of learning
performance. Huawei and ZTE appear to facilitate learning
better than Foxconn, CNPC, and SINOPEC in early period
when performance has been increasing (see Figures 5 and 6),
while the latter two companies converge to higher learning
performance. As the largest manufacturer in China, learning
performance in Foxconn appears to be the lowest, which
may harm technology innovation according to Shin and Park
[52] and Orihata and Watanabe [53]. With a careful analysis,
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we may find that the network structure of Foxconn is quite
different from the other 4 companies, and also SINOPEC
and CNPC are different from Huawei and ZTE, which can
be summarized into the following 5 aspects that may be the
main cause of learning performance differences.

1st: the innovation network of Foxconn is not well
connected, with a smaller size of largest connected com-
ponent than the other four companies (see Table 1). This
would obviously cut the path of knowledge flow and prevent
knowledge exchanges between inventors. As inventors are
more distant from each other in Foxconn than in the other
4 companies (see Table 2), knowledge flow will have to pass
more intermediaries and thus lose efficiency.

2nd: there is networkmonopolization in Foxconn,CNPC,
and SINOPEC,with relatively small ratio of “super-inventors”
inventingmost technologies (see Figure 4). Sincemost inven-
tors are connected with these “super-inventors,” innovation
networks in the above 3 companies are likely to be hierarchi-
cal, where minor inventors account for large ratio of R&D
resources by acting as the most important intermediaries
of knowledge flow. This network structure may prevent
efficient knowledge flow, since inventors with heterogeneous
knowledge are not likely to take important positions. People
aremore likely to learn from “super-inventors” which leads to
knowledge homogeneity that harms innovation. This may be
another cause of a lower learning performance of Foxconn
(see Figures 5 and 6), whose network monopolization is
greater than in CNPC and SINOPEC (see Figure 4).

3rd: the network monopolization in SINOPEC leads to
a network structure that to some degree harms innovation.
As is shown in Figure 6, SINOPEC owns higher performance
than Huawei and ZTE in later period, which is mainly due to
a scale-free structured network that owns fewer constraints
than broad-scale or single-scale networks [29]. However,
under the environment of hierarchy characterized by state-
run companies, “super-inventor”monopolized networksmay
harm innovation. This may be the main cause that the
learning performance of SINOPEC with scale-free networks
falls far behind Huawei and ZTE with broad-scale or single-
scale networks in early period, which is different from Choi
et al. [35], who found that scale-free network performs better
than broad-scale and single-scale networks in all the periods.

4th: the two state-run petroleum giants, SINOPEC and
CNPC, have different network structure.The tail of SINOPEC
is likely to be scale-free (see Figure 3), while CNPC is not.This
may be mainly because CNPC owns higher monopolization
level than SINOPEC, which may be the main cause that
SINOPEC appears to own more efficient knowledge flow in
later period than CNPC (see Figures 5 and 6). However, as
a state-run company characterized by bureaucracy, neither
SINOPEC nor CNPC could avoid establishing a hierarchical
network that suffers efficiency losses.

5th: a relatively flat network structure like Huawei and
ZTE (see Figure 4) with R&D resources evenly distributed
may facilitate learning. However, as the network appears to
be broad-scale or even single-scale, there are still efficiency
losses, which make Huawei and ZTE perform worse than
SINOPEC and CNPC in later period.

The causes that lead to the differences of network
structure may be, on the one hand, the attention paid to
the innovation network. As the technology innovation in
Foxconn is not so important (see Table 3), it may pay much
less attention to improving the network structure and will
allow the existence of low efficient innovation network and,
on the other hand, the genetic bureaucracy of state-run
firms. Although CNPC and SINOPEC pay much attention
to innovation, bureaucracy leads to a hierarchical network
that is losing efficiency. In addition, since Huawei and ZTE
have paid much attention to innovation and are free from
bureaucracy, they established relatively efficient innovation
networks that facilitate knowledge flow better when learning
performance is increasing.

5. Conclusions and Limitations

This paper uses the patent coauthorship data of China in
establishing the innovation network of 5 MNCs that filed the
largest number of patents in China. The structure of network
differs by company and by industry: inventors in the largest
Chinese manufacturer Foxconn are more distant from each
other, which reduces the network efficiency; the network
of petroleum giant SINOPEC is scale-free but connections
are hierarchically distributed, while IT giants Huawei and
ZTE are broad-scale or single-scale but connections are flatly
distributed. We establish the innovation network with the
patent coauthorship data by these 5 MNCs and make a
classification of these networks according to the distribution
curve of connections. We develop an organization learning
model by regarding the reality as havingmdimensions, which
denotes the heterogeneous knowledge about the reality. We
set 𝑛 mutually interactive innovative individuals, who own
unique knowledge about the reality. The distance between
the knowledge of the individual and the reality denotes
the knowledge level of that individual. In the empirical
analysis section, we make 1,000 numerical simulations by
randomly assigning values to each dimension and get the
learning performance of these 5 MNCs. We then make a
comparison of the learning performance of these 5 MNCs
with differing network structures, where individuals interact
with and learn from each other within the small world
network. The empirical result shows that different network
structures lead to differing learning performance: Huawei
and ZTE perform better in early period, which is attributed
to a flat distribution of connections that allows inventors
with heterogeneous knowledge to take important positions.
However, as the networks of Huawei and ZTE are broad-scale
or single-scale, efficiency losses are significant in later period.
The learning performance of Huawei and ZTE appears to be
lower than SINOPEC with scale-free network in later period.
In comparison, for Foxconn where technology innovation is
less important, the learning performance is the lowest.

Our empirical finding is implicative for company man-
agers from the following aspects. (1st) As carefully and
well organized networks (e.g., Huawei, ZTE, CNPC, and
SINOPEC with much focus on innovation) would show
higher efficiency in knowledge flow and thus perform better
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than randomly organized networks, and with not well orga-
nized networks (e.g., Foxconn with less focus on innovation),
it is quite necessary to make a careful reorganization of
the innovation network, even for firms where innovation
is less important. (2nd) Since network monopolization may
be harmful to innovation, it is beneficial to transfer a
hierarchical network to a flat network, where R&D resources
are evenly distributed among inventors. (3rd) Since perfectly
scale-free networks may never exist in reality, making firm
innovation network structure closer to scale-free may be
more favorable.

As the learning performances of inventors within the
network are simulated, how simulation results correspond
with the real learning performance is not analyzed in this
study. As the real learning performance is determined by
multireal factors, it is necessary to conduct a survey with
inventors about these potential impacting factors. Our future
attention would possibly be paid to testing the consistency of
the simulated learning performance with the survey data of
these 5 firms.
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